
Coping With New Challenges

for Density-Based Clustering

Dissertation im Fach Informatik
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

von

Peer Kröger

Tag der Einreichung: 18.5.2004
Tag der mündlichen Prüfung: 8.7.2004

Berichterstatter:
Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München

Prof. Dr. Jörg Sander, University of Alberta (Kanada)

ii

Acknowledgement

I would like to thank all the people for supporting me during the past years

and in particular during the development of this thesis, even if I cannot

mention all of their names here.

First of all, I extend my warmest thanks to my supervisor, Prof. Dr.

Hans-Peter Kriegel who initiated and supported this work with his long

standing experiences and the organizational background. He made this work

possible by taking special care of an inspiring and supportive working envi-

ronment in the database research group. He always encouraged me in hard

times and also let me any freedom for my research activities.

I also want to thank Prof. Dr. Jörg Sander for his interest in my work.

He was kindly willing to act as second referee to this work and provided me

with several fruitful discussions and valuable hints for the completion of this

thesis.

Parts of this work has been performed within the joint project BFAM

(Bioinformatics for the Functional Analysis of Mammalian genomes) funded

by the German Ministry for Education, Science, Research and Technol-

ogy (BMBF) under grant number 031U112F and embedded in the German

Genome Analysis Network (NGFN).

This work would not have been initiated and matured without the cooper-

ation of and discussion with my colleagues in the database research group. In

particular, I want to thank Karin Kailing, Martin Pfeifle, Matthias Schubert,

Stefan Brecheisen, Alexey Pryakhin, Prof. Dr. Christian Böhm, Prof. Dr.

Thomas Seidl, and Dr. Marco Pötke for constructive and productive team-

iii

iv

work, as well as Matthias Renz, Eshref Januzaj, Peter Kunath, and Stefan

Schönauer for many helpful discussions. Especially, I also want to mention

Stefan Schönauer for his administrative advice and support and for reading

several parts of this thesis to give some valuable hints for improvements.

For such a practically oriented work as this thesis, a large amount of

implementation, data preprocessing, and testing were necessary. I whish to

thank all the students that helped me to manage the various tasks, in par-

ticular, Arthur Zimek, Elke Achtert, Stefanie Wanka, Heribert Mühlberger,

and Maximilian Viermetz.

This thesis could not have been completed without the tremendous back-

ground support of Susanne Grienberger. Besides bearing much of the admin-

istrative burdens, she carefully read this thesis and gave my invaluable hints

for improving the language. In addition, I want to express special thanks to

Franz Krojer for his openness and flexibility meeting my sometimes strange

technical demands and problems and for being on the spot when my work-

station crashed.

Last but not least, I want to thank my family. My parents who always

supported my career and encouraged me to find my way, and my fiancée,

Cornelia Bucher, for all the love and care she gave me, for her patience

enduring my absent-mindedness and for many sacrifices she shouldered in

the last months.

Abstract

Knowledge Discovery in Databases (KDD) is the non-trivial process of identi-

fying valid, novel, potentially useful, and ultimately understandable patterns

in data. The core step of the KDD process is the application of a Data Min-

ing algorithm in order to produce a particular enumeration of patterns and

relationships in large databases. Clustering is one of the major data mining

tasks and aims at grouping the data objects into meaningful classes (clusters)

such that the similarity of objects within clusters is maximized, and the sim-

ilarity of objects from different clusters is minimized. Beside many others,

the density-based clustering notion underlying the algorithm DBSCAN and

its hierarchical extension OPTICS has been proposed recently, being one of

the most successful approaches to clustering.

In this thesis, our aim is to advance the state-of-the-art clustering, es-

pecially density-based clustering by identifying novel challenges for density-

based clustering and proposing innovative and solid solutions for these chal-

lenges.

We describe the development of the industrial prototype BOSS (Browsing

OPTICS plots for Similarity Search) which is a first step towards develop-

ing a comprehensive, scalable and distributed computing solution designed

to make the efficiency and analytical capabilities of OPTICS available to a

broader audience. For the development of BOSS, several key enhancements

of OPTICS are required which are addressed in this thesis. We develop in-

cremental algorithms of OPTICS to efficiently reconstruct the hierarchical

clustering structure in frequently updated databases, in particular, when a

set of objects is inserted in or deleted from the database. We empirically show

v

vi

that these incremental algorithms yield significant speed-up factors over the

original OPTICS algorithm. Furthermore, we propose a novel algorithm for

automatic extraction of clusters from hierarchical clustering representations

that outperforms comparative methods, and introduce two novel approaches

for selecting meaningful representatives, using the density-based concepts of

OPTICS and producing better results than the related medoid approach.

Another major challenge for density-based clustering is to cope with high

dimensional data. Many today’s real-world data sets contain a large num-

ber of measurements (or features) for a single data object. Usually, global

feature reduction techniques cannot be applied to these data sets. Thus, the

task of feature selection must be combined with and incooperated into the

clustering process. In this thesis, we present original extensions and enhance-

ments of the density-based clustering notion to cope with high dimensional

data. In particular, we propose an algorithm called SUBCLU (density based

SUBspace CLUstering) that extends DBSCAN to the problem of subspace

clustering. SUBCLU efficiently computes all clusters that would have been

found if DBSCAN is applied to all possible subspaces of the feature space.

An experimental evaluation on real-world data sets illustrates that SUBCLU

is more effective than existing subspace clustering algorithms because it is

able to find clusters of arbitrary size and shape, and produces determine

results. A semi-hierarchical extension of SUBCLU called RIS (Ranking In-

teresting Subspaces) is proposed that does not compute the subspace clusters

directly, but generates a list of subspaces ranked by their clustering charac-

teristics. A hierarchical clustering algorithm can be applied to these inter-

esting subspaces in order to compute a hierarchical (subspace) clustering. A

comparative evaluation of RIS and SUBCLU shows that RIS in combination

with OPTICS can achieve an information gain over SUBCLU. In addition,

we propose the algorithm 4C (Computing Correlation Connected Clusters)

that extends the concepts of DBSCAN to compute density-based correlation

clusters. 4C benefits from an innovative, well-defined and effective clustering

model, outperforming related approaches in terms of clustering quality on

real-world data sets.

Zusammenfassung

Knowledge Discovery in Databases (KDD) ist der Prozess der (semi-)automa-

tischen Extraktion von Wissen aus Datenbanken, das gültig, bisher unbekannt

und potentiell nützlich für eine gegebene Anwendung ist. Der zentrale Schritt

des KDD-Prozesses ist das Data Mining. Eine der wichtigsten Aufgaben

des Data Mining ist Clustering. Dabei sollen die Objekte einer Datenbank

in Gruppen (Cluster) partitioniert werden, so dass Objekte eines Clusters

möglichst ähnlich und Objekte verschiedener Cluster möglichst unähnlich zu

einander sind. Das dichtebasierte Clustermodell und die darauf aufbauen-

den Algorithmen DBSCAN und OPTICS sind unter einer Vielzahl anderer

Clustering-Ansätze eine der erfolgreichsten Methoden zum Clustering.

Im Rahmen dieser Dissertation wollen wir den aktuellen Stand der Tech-

nik im Bereich Clustering und speziell im Bereich dichtebasiertes Clustering

voranbringen. Dazu erarbeiten wir neue Herausforderungen für das dichte-

basierte Clustermodell und schlagen dazu innovative Lösungen vor.

Zunächst steht die Entwicklung des industriellen Prototyps BOSS (Brow-

sing OPTICS plots for Similarity Search) im Mittelpunkt dieser Arbeit.

BOSS ist ein erster Beitrag zu einer umfassenden, skalierbaren und verteilten

Softwarelösung, die eine Nutzung der Effizienzvorteile und die analytischen

Möglichkeiten des dichtebasierten, hierarchischen Clustering-Algorithmus OP-

TICS für ein breites Publikum ermöglichen. Zur Entwicklung von BOSS wer-

den drei entscheidende Erweiterungen von OPTICS benötigt: Wir entwickeln

eine inkrementelle Version von OPTICS um nach einem Update der Daten-

bank (Einfügen/Löschen einer Menge von Objekten) die hierarchische Clus-

tering Struktur effizient zu reorganisieren. Anhand von Experimenten mit

vii

viii

synthetischen und realen Daten zeigen wir, dass die vorgeschlagenen, inkre-

mentellen Algorithmen deutliche Beschleunigungsfaktoren gegenüber dem

originalen OPTICS-Algorithmus erzielen. Desweiteren schlagen wir einen

neuen Algorithmus zur automatischen Clusterextraktion aus hierarchischen

Repräsentationen und zwei innovative Methoden zur automatischen Auswahl

geeigneter Clusterrepräsentaten vor. Unsere neuen Techniken erzielen bei

Tests auf mehreren realen Datenbanken im Vergleich zu den konkurrieren-

den Verfahren bessere Ergebnisse.

Eine weitere Herausforderung für Clustering-Verfahren stellen hochdi-

mensionale Featureräume dar. Reale Datensätze beinhalten dank moderner

Verfahren zur Datenerhebung häufig sehr viele Merkmale. Teile dieser Merk-

male unterliegen oft Rauschen oder Abhängigkeiten und können meist nicht

im Vorfeld ausgesiebt werden, da diese Effekte jeweils in Teilen der Daten-

bank unterschiedlich ausgeprägt sind. Daher muss die Wahl der Features

mit dem Data-Mining-Verfahren verknüpft werden. Im Rahmen dieser Ar-

beit stellen wir innovative Erweiterungen des dichtebasierten Clustermodells

für hochdimensionale Daten vor. Wir entwickeln SUBCLU (dichtebasiertes

SUBspace CLUstering), ein auf DBSCAN basierender Subspace Clustering

Algorithmus. SUBCLU erzeugt effizient alle Cluster, die gefunden werden,

wenn man DBSCAN auf alle möglichen Teilräume des Datensatzes anwen-

det. Experimente auf realen Daten zeigen, dass SUBCLU effektiver als

vergleichbare Algorithmen ist. RIS (Ranking Interesting Subspaces), eine

semi-hierarchische Erweiterung von SUBCLU, wird vorgeschlagen, das nicht

mehr direkt die Teilraumcluster berechnet, sondern eine Liste von Teilräumen

geordnet anhand ihrer Clustering-Qualität erzeugt. Dadurch können hier-

archische Partitionierungen auf ausgewählten Teilräumen erzeugt werden.

Experimente belegen, dass RIS in Kombination mit OPTICS ein Informa-

tionsgewinn gegenüber SUBCLU erreicht. Außerdem stellen wir den neuarti-

gen Korrelationscluster Algorithmus 4C (Computing Correlation Connected

Clusters) vor. 4C basiert auf einem innovativen und wohldefinierten Cluster-

modell und erzielt in unseren Experimenten mit realen Daten bessere Ergeb-

nisse als vergleichbare Clustering-Ansätze.

Survey of Chapters

I Preliminaries 3

1 Introduction 3

2 Density-Based Clustering 13

II Using Density-Based Hierarchical Clustering for Sim-

ilarity Search Applications

33

3 A Browsing Tool for Similarity Search 33

4 Incremental Clustering 43

5 Cluster Recognition and Representation 67

6 BOSS: Browsing OPTICS Plots for Similarity Search 87

III Adopting Density-Based Clustering to High Dimen-

sional Data

99

7 Clustering High Dimensional Data 99

8 Subspace Clustering 113

9 Correlation Clustering 151

IV Conclusions 185

10 Summary and Future Directions 185

ix

x

Contents

Acknowledgement iv

Abstract vi

Zusammenfassung viii

Survey of Chapters ix

I Preliminaries 1

1 Introduction 3

1.1 Knowledge Discovery in Databases, Data Mining and Clustering 4

1.2 Outline of the Thesis . 9

2 Density-Based Clustering 13

2.1 General Clustering Approaches 14

2.1.1 Partitioning Algorithms 14

2.1.2 Hierarchical Algorithms 16

2.2 Basic Notations . 17

2.3 Foundations of Density-Based Clustering 18

2.3.1 Clusters as Density Connected Sets 19

2.3.2 Density-Based Hierarchical Decompositions 24

xi

xii CONTENTS

II Using Density-Based Hierarchical Clustering for
Similarity Search Applications 31

3 A Browsing Tool for Similarity Search 33

3.1 Motivation . 34

3.1.1 Visual Data Mining . 35

3.1.2 Similarity Search . 36

3.1.3 Evaluation of Similarity Models 38

3.2 Required Enhancements . 39

4 Incremental Clustering 43

4.1 Related Work . 44

4.2 Incremental OPTICS . 45

4.2.1 General Ideas and Concepts 46

4.2.2 Incremental Insertion of a Point 52

4.2.3 Incremental Deletion of a Point 58

4.2.4 Extensions for Bulk Updates 61

4.3 Experimental Evaluation . 61

4.4 Summary . 64

5 Cluster Recognition and Representation 67

5.1 Cluster Recognition . 68

5.1.1 Related Work . 68

5.1.2 Gradient Clustering . 70

5.1.3 Experimental Evaluation 74

5.2 Cluster Representation . 77

5.2.1 The Minimum Core Distance Approach 78

5.2.2 The Maximum Successors Approach 79

5.2.3 Experimental Evaluation 82

5.3 Summary . 84

CONTENTS xiii

6 BOSS: Browsing OPTICS Plots for Similarity Search 87

6.1 System Architecture . 88

6.2 Sample Applications . 90

6.2.1 Visual Data Mining . 90

6.2.2 Evaluation of Similarity Models 91

6.3 Summary and Discussion . 95

III Adopting Density-Based Clustering to High Di-
mensional Data 97

7 Clustering High Dimensional Data 99

7.1 The Curse of Dimensionality 100

7.2 General Approaches for Clustering High Dimensional Data . . 102

7.3 Sample Applications . 106

7.3.1 Gene Expression Analysis 107

7.3.2 Metabolic Screening of Newborns 110

7.4 Summary . 111

8 Subspace Clustering 113

8.1 Related Work . 114

8.2 Foundations of Density-Based Subspace Clustering 117

8.2.1 Adapting Density-Based Concepts to Subspace Clus-

tering . 117

8.2.2 Monotonicity Properties 120

8.3 Density-Based Subspace Clustering 124

8.3.1 General Idea . 124

8.3.2 Algorithm SUBCLU 126

8.3.3 Experimental Evaluation 129

8.4 Density-Based Subspace Ranking 133

8.4.1 Motivation . 133

xiv CONTENTS

8.4.2 General Idea . 135

8.4.3 Ranking Interesting Subspaces 136

8.4.4 Algorithm RIS . 139

8.4.5 Experimental Evaluation 144

8.5 Summary and Discussion . 148

9 Correlation Clustering 151

9.1 Motivation and Related Work 152

9.2 Foundations of Connected Correlation Clustering 155

9.2.1 Correlation Sets . 155

9.2.2 Clusters as Correlation Connected Sets 157

9.3 Computing Correlation Connected Clusters 164

9.3.1 Algorithm 4C . 164

9.3.2 Complexity Analysis 166

9.3.3 Input Parameters . 167

9.4 Quality Evaluation . 168

9.5 Modifications and Specializations 174

9.5.1 A Variant for Pattern-Based Clustering 174

9.5.2 A Variant for Projected Clustering 177

9.6 Summary . 180

IV Conclusions 183

10 Summary and Future Directions 185

10.1 Summary of Contributions . 186

10.1.1 Preliminaries (Part I) 186

10.1.2 Using Density-Based Hierarchical Clustering for Simi-

larity Search Applications (Part II) 186

10.1.3 Adopting Density-Based Clustering to High Dimensio-

nal Data (Part III) . 188

CONTENTS xv

10.2 Future Work . 189

List of Figures 193

List of Tables 196

References 197

xvi CONTENTS

Part I

Preliminaries

1

Chapter 1

Introduction

Today’s capabilities of data generation produce larger and larger amounts

of data that are collected and stored in databases. Knowledge Discovery in

Databases (KDD) is an interdisciplinary field, aimed at extracting valuable

knowledge from such large databases. At the core of the KDD process is

the Data Mining step which embraces many data mining methods. One of

them is Clustering, the central topic of this thesis. In this chapter, the KDD

process is introduced and discussed in detail. Then we describe the data

mining step in more detail, and review the most important and influential

methods of data mining. In this thesis, we focus on clustering, in particular

on the so-called density-based clustering approach. We identify several novel

challenges for this density-based clustering approach, solutions of which are

proposed in this thesis. The chapter concludes with an outline of this thesis.

3

4 1 Introduction

1.1 Knowledge Discovery in Databases, Data

Mining and Clustering

With steadily advancing capabilities of both generating and collecting data

in the last several decades, a tremendous amount of information is available

in nearly all different aspects of life. These mountains of stored data contain

information from such diverse sources as credit card transactions, telephone

calls, space observatories, genome research, gene expression profiles, super-

market purchase transactions (market basket data) or web clickstreams. The

information hidden in such data is mostly of outstanding strategic and fi-

nancial importance for companies or may enable scientific breakthroughs.

However, without the help of automated analysis tools, the full use cannot

be made out of this mass of data.

Knowledge Discovery in Databases (KDD) is an interdisciplinary field

bringing together techniques from various areas, e.g. machine learning, statis-

tics, databases and visualization, to address the issues of analyzing such huge

data sets, and extracting knowledge from them.

Classical techniques from the areas of statistics and on-line analytical

processing (OLAP) were not designed to cope with today’s large databases

and the new demands on the power of the analysis method. Important

reasons for the limited applicability of these methods include the following:

• Massive data sets: they do not scale well with large data sets, i.e. a

large number of records and/or a large number of dimensions/attributes.

Many statistical packages assume that the whole data set can be ”loaded”

into main memory.

• Hypothesis-verification vs. exploratory data analysis (EDA):

statistical techniques are primarily focused on the verification of user-

defined hypothesis, while many current problems demand the possibil-

ity to analyze the data by exploration.

• Visualization: OLAP techniques are well suited for visualizing the

entire data set or relatively simple aggregates and groupings of the

1.1 Knowledge Discovery in Databases, Data Mining and Clustering 5

Pre-
Processing

Trans-
formation

Database

Focusing Data
Mining

Evaluation

Pattern Knowledge

Figure 1.1: The KDD process.

data records. However, they cannot visualize complex patterns hidden

deep inside the data.

• Storage and access: Most OLAP and statistical techniques require

easy access to the whole data set. Many data warehouses and data-

bases, however, are located on remote servers, so access to the entire

data set may not be allowed or simply not possible because of network

traffic constraints.

To meet these new requirements and constraints of massive data sets,

novel methods, algorithms, and techniques have been developed in the new

research area of KDD. In [FPSS96b] the following definition is proposed:

Knowledge Discovery in Databases is the non-trivial process of identi-

fying valid, novel, potentially useful, and ultimately understandable patterns

in data.

Figure 1.1 gives a detailed overview of the KDD process, showing the

basic flow of steps. Frequently, multiple iterations among these steps are

necessary.

1. Focus: Create a target data set by selecting a subset of the attributes

(projection) and/or records (sampling) of the database.

2. Preprocessing: Clean the data, i.e., for example, remove noise, model

6 1 Introduction

or account for noise, decide on suitable strategies to handle missing

attribute values or add derived features.

3. Transformation: Reduce the data further, e.g. by using dimensional-

ity reduction to minimize the effective number of attributes, by finding

invariant representations of the data or by identifying useful features

to represent the data depending on the goal of the discovery task.

4. Data Mining: Match the goal of the knowledge discovery task with

a suitable data mining method, e.g. classification. Choose the data

mining algorithm for searching patterns in the data (e.g. a support

vector machine or a decision tree like C4.5). Finally, apply the chosen

algorithm to the transformed data set, in order to receive a set of

patterns extracted from the data.

5. Evaluation: Interpret the mined patterns, e.g. by visually represent-

ing the patterns and/or the subsets of the data. This may result in

returning to one of the previous steps (if the discovered knowledge is

unsatisfactory or new insights are gained, making further investigations

necessary), and leading to an iterative process. Finally, consolidate the

discovered knowledge, e.g. by documenting and reporting it or taking

suitable actions.

For a survey of industrial applications of KDD see [PSBK+96], and for

applications in science data analysis and research see [FPSS96a].

The core step in the KDD process is the application of a data mining

algorithm. Thus, the notions “KDD” and “data mining” are often used

interchangeably. In [FPSS96b], data mining is defined as follows.

Data mining is a step in the KDD process consisting of applying data

analysis algorithms that, under acceptable computational efficiency limita-

tions, produce a particular enumeration of patterns over the data.

In [HK01] the diverse data mining algorithms proposed recently in the

1.1 Knowledge Discovery in Databases, Data Mining and Clustering 7

literature are classified according to the following primary data mining meth-

ods:

• Clustering: group the objects of a database into clusters by maximiz-

ing the intra-cluster similarity and minimizing the inter-cluster simi-

larity.

• Outlier Detection: find outliers, i.e. data objects that do not corre-

spond to the general behavior or model of the data.

• Classification/Prediction: learn a function or model to classify a

data object into one of several predefined classes.

• Association Analysis: find association rules that show attribute-

value conditions that occur frequently together in the database.

• Evolution Analysis: describe and model regularities or trends for

objects whose behavior changes over time.

• Characterization and Discrimination: summerize general charac-

teristics or features of a subset of the database and compare particular

subsets of the data with comparative subsets.

In this thesis we focus on clustering.

Clustering is the task of grouping objects of a database into classes (clus-

ters) such that objects within one cluster are most similar to each other and

objects of different clusters are most dissimilar to each other.

Thus, clustering aims at detecting new classes of data without any a priori

knowledge. Therefore, clustering is often also called unsupervised learning in

contrast to classification where the classes are predefined and which is often

also called supervised learning.

The task of clustering has been studied in statistics (e.g. [McQ67],

[Har75], [JD88]), machine learning (e.g. [CKS+88], [Fis95], [FPL91]), and

more recently databases (e.g. [NH94], [ZRM96], [SEKX98]). The reason for

8 1 Introduction

the new database-oriented approaches have already been indicated above.

Well-known clustering algorithms from statistics such as k-means [McQ67]

or SLINK [Sib73] do not scale well with large databases. In addition, the

entire database is assumed to reside in main memory at the same time during

the clustering process. Furthermore, novel real-world database applications

create new challenges for clustering algorithms including — among others:

• Incremental maintenance of mined patterns:

In a dynamic database environment, updates such as insertion or dele-

tion of data objects may frequently occur. The necessary update of

the mined clustering structure should be worked out incrementally for

efficiency, i.e. availability, reasons.

• Usability of clustering results for semi-automatic cluster anal-

ysis and further postprocessing:

Solid cluster extraction from hierarchical cluster representations is a

mandatory assumption for semi-automatic cluster analysis and post-

processing. Meaningful cluster representatives form the basis to get a

quick overview of the generated clusters. Both cluster extraction and

cluster representation can help to get a quick overview of massive data

sets.

• Clustering in high dimensional feature spaces:

Most clustering algorithms work on feature databases, i.e. databases of

points in some d-dimensional space, using the proximity of points, e.g.

the Euclidean distance, as a measure of (dis)similarity. Usually, these

algorithms compute clusters in the “full” (d-) dimensional space, i.e.

all features are taken into account for computing the distance between

two points. However, as indicated above, nowadays more and more

data sets are high dimensional, i.e. provide a huge number of features.

In high dimensional spaces, traditional clustering algorithms tend to

break down in terms of efficiency as well as accuracy because data do

not cluster well anymore. Therefore, high dimensional feature spaces

require new clustering concepts to cope with today’s data.

1.2 Outline of the Thesis 9

In this thesis, we will address these three novel challenges in the context

of density-based clustering.

1.2 Outline of the Thesis

The starting point of this thesis is the density-based clustering approach,

in particular the concepts of density connected clusters underlying the algo-

rithms DBSCAN [EKSX96] and its hierarchical extension OPTICS [ABKS99].

In this thesis, we propose techniques to cope with the three challenges men-

tioned in the previous section in the context of density-based clustering. The

major contributions of this thesis include:

1. An incremental version of the OPTICS algorithm to efficiently maintain

the computed clusters in large, dynamic databases.

2. A new algorithm for solid cluster extraction from hierarchical cluster

representations computed by OPTICS and innovative methods for se-

lecting intuitive cluster representatives for the recognized clusters.

3. The techniques mentioned in 1. and 2. are incorporated into an indus-

trial prototype called BOSS (Browsing OPTICS plots for Similarity

Search) that uses density-based hierarchical clustering for advanced

similarity search purposes.

4. Original adoptions and extensions of the density-based clustering con-

cepts to detect density connected clusters in high dimensional feature

spaces.

5. A novel correlation clustering algorithm based on a combination of

density-based clustering concepts with principal component analysis

(PCA).

The remainder of this thesis is organized as follows.

10 1 Introduction

Chapter 2 provides a brief and rather general overview over existing

clustering algorithms and introduces the density-based clustering notion un-

derlying DBSCAN and OPTICS. As mentioned above, the concepts described

in this chapter form the basis of the techniques proposed in this thesis. In

addition, the chapter describes some basic notations used throughout this

thesis.

Part II describes the above mentioned prototype BOSS and all concepts

necessary for its development.

Chapter 3 motivates the use of density-based hierarchical clustering for

advanced similarity search purposes. In particular, we sketch our interactive

data browsing tool BOSS and outline three of its application ranges. The

chapter concludes with a list of improvements to density-based hierarchical

clustering required for the development of BOSS.

Chapter 4 deals with the efficient update of the hierarchical clustering

structure in a dynamic database. First, related work is reviewed. Then, the

concepts underlying the clustering algorithm OPTICS are extended to enable

the development of an incremental version. An efficient, incremental version

of the OPTICS algorithm called IncOPTICS is proposed thereafter. A per-

formance evaluation using synthetic and real-world data sets is presented,

showing that IncOPTICS yields a significant speed-up over OPTICS.

Chapter 5 addresses the tasks of solid cluster recognition from hierar-

chical clustering structures and the selection of meaningful cluster represen-

tatives. First, recent approaches for cluster extraction are discussed and a

novel approach called Gradient Clustering is proposed. A comparative ex-

perimental evaluation based on real-world data sets is presented. Second,

two original approaches for selecting cluster representatives are introduced

and empirically evaluated.

Chapter 6 describes details of the browsing tool BOSS. In particular,

some details about the implementation of the BOSS prototype are presented

and two sample applications of BOSS are illustrated, including an application

to visual data mining and semi-automatic cluster analysis, as well as an

1.2 Outline of the Thesis 11

application to the evaluation of different similarity models.

Part III presents innovative adoptions and extensions necessary to com-

pute density-based clusters in high dimensional feature spaces.

Chapter 7 introduces general aspects of clustering high dimensional data.

First, the major problems associated with high dimensional feature spaces in

the context of clustering which are often summarized by the term curse of

dimensionality are worked out. Then, a classification of general approaches

to find clusters in high dimensional data is presented. The chapter concludes

with two motivating examples of real-world applications, where clustering

high dimensional feature spaces is required. It is also investigated which

general approach is suited for the two sample applications and a test bed of

real-world data sets is described. The methods proposed in this part of the

thesis are evaluated using these data sets.

Chapter 8 presents two novel algorithms that address the subspace clus-

tering problem. First, we adopt the density-based clustering concepts to the

problem of subspace clustering and explore monotonicity properties of these

concepts in order to investigate opportunities for efficient subspace searching.

Based on these considerations, we present SUBCLU (density-based SUB-

space CLUstering), a density-based subspace clustering algorithm. A broad

experimental evaluation of SUBCLU shows its superior accuracy compared

to existing subspace clustering algorithms. After that, an extension of SUB-

CLU called RIS (Ranking Interesting Subspaces for clustering) is proposed.

A comparative evaluation of RIS and SUBCLU reveals that RIS can gain

significantly more information than SUBCLU.

Chapter 9 proposes a novel correlation clustering algorithm called 4C

which is based on a combination of density-based clustering and principal

component analysis (PCA). First, the concept of correlation connected clus-

ters is formalized. Then, we present the details of the 4C algorithm. An

experimental evaluation compares 4C to several competing clustering algo-

rithms showing its superior performance. After that, some modifications

and specializations are introduced, illustrating how the concepts of 4C can

12 1 Introduction

be adopted to the pattern-based clustering and the projected clustering ap-

proach.

Part IV concludes this thesis.

Chapter 10 summerizes and discusses the major contributions of the the-

sis. It concludes with indicating some potentials for possible future research

directions.

Chapter 2

Density-Based Clustering

Many clustering algorithms have been proposed recently. This thesis will

base on the density-based clustering approach which turned out to be one

of the most effective and also efficient one. In this chapter, we will first

give a brief and rather general overview and classification of recently pro-

posed clustering algorithms (cf. Section 2.1) and establish basic notations

used throughout this thesis in Section 2.2. After that, we give a detailed

introduction to the density-based notion of clusters (cf. Section 2.3). In

particular, we introduce the notion of flat density connected sets as proposed

in [EKSX96] providing the basis of the algorithm DBSCAN and discuss the

hierarchical extensions leading to the concept of density-based cluster order-

ings as proposed in [ABKS99] constituting the foundations of the algorithm

OPTICS.

13

14 2 Density-Based Clustering

2.1 General Clustering Approaches

In the past decade, many algorithmic solutions for the problem of clustering

have been proposed. In the following, we will present a general classification

of these approaches. In particular, the recent clustering approaches can be

classified into (“flat”) partitioning methods, and hierarchical methods. In

this section, we will provide a brief and rather general overview of these

clustering approaches together with a short list of reference methods.

2.1.1 Partitioning Algorithms

Partitioning clustering algorithms compute a “flat” partition of the data into

a given number of clusters, i.e. a unique assignment of each data object to

a cluster. The number of clusters k is often a user specified parameter.

There are several types of partitioning methods. We review four classes of

algorithms being probably the most significant ones in the field of KDD.

Optimization Based Methods try to optimize a specific clustering qual-

ity function, e.g. the average distance of the data objects in each cluster to

their corresponding representative objects. This requires that each cluster is

represented by a specific object. Methods usually differ in what kind of ob-

jects are used to represent cluster, e.g. objects that are part of the database,

such as the medoids of the clusters, or objects that need not be part of the

database, such as the mean of the points in the cluster. Typically, parti-

tioning algorithms start with an initial partitioning of the database into k

clusters. This initial partitioning may be user-defined or randomly generated.

The clustering quality function determines the quality of the clustering. The

initial partitioning is iteratively optimized according to the clustering qual-

ity by changing cluster representatives and reassigning objects to the new

cluster representatives. If the clustering quality does not decrease after an

iteration, i.e. converges, the clustering algorithms terminate. Partitioning

algorithms usually converge to local minima and thus may miss the “best”

clustering in terms of cluster quality. In addition, these algorithms tend to

2.1 General Clustering Approaches 15

produce clusters of spherical shapes and are rather sensitive to noise, since

all objects of the database are assigned to a cluster. A further drawback of

these algorithms is the sensitivity to the input parameter k (number of clus-

ters), because the correct value of k is usually not known beforehand. Sample

algorithms are k-means [McQ67], PAM [KR90], and CLARANS [NH94].

Distribution- (or Model-) Based Methods use a distribution-based

quality function. Each object is assumed to be drawn from one of k un-

derlying Gaussian distributions [JD88]. Model-based algorithms work rather

similar to optimization based methods. Usually, objects are assigned to one

of the k clusters using a maximum likelihood decision. Most of these al-

gorithms have similar drawbacks as optimization based methods. Sample

algorithms include the EM-algorithm [DLR77] and DBCLASD [XEKS98].

Graph Theory Based Methods model the data objects using a graph

and search for connected components in that graph representing clusters. The

nodes in the graph represent the data objects and an edge represents some

information on the similarity of the according objects. Several approaches

have been proposed, differing in the way the graph is generated. In [Zah71]

a minimum spanning tree is used. Before computing the connected compo-

nents, inconsistent edges (e.g. edges between two points having a distance

significantly larger than the inter-point distances of the nearby edges) are

removed. In [ESK03] the authors propose to use a shared k-nearest neighbor

graph (objects share an edge if they share at least a minimum number of

their k-nearest neighbors). The presented algorithm SNN finds clusters of

arbitrary shape, different size, and different density. However, the computa-

tional complexity of the graph theoretic approaches is rather high compared

to the other approaches.

Density-Based Methods search for regions of high point density that are

separated by regions of lower point density. These algorithms usually need

two input parameters, one specifying a volume and a second one specifying a

minimum number of points. Using these two parameters, a density threshold

16 2 Density-Based Clustering

1

1

5

5

1
3
2 4

6
5

7
8 9

1 2 3 4 5 6 7 8 9
0

1

2

distance

Figure 2.1: A dendrogram (right) for a sample data set (left).

is specified. Sets of objects must exceed this density threshold to be detected

as clusters. The pioneering density-based approach is DBSCAN [EKSX96]

which is founded on the notion of density connected sets. Since this clustering

notion is the basis of this thesis, we will present the concepts underlying

DBSCAN in more details in Section 2.3.

2.1.2 Hierarchical Algorithms

Hierarchical clustering algorithms compute a hierarchical decomposition of

the data objects rather then a unique assignment of data objects to clus-

ters. The hierarchical clustering structure is usually visualized by using a

tree representation, a so-called dendrogram (cf. Figure 2.1). The leafs of a

dendrogram correspond to one data object whereas the root represents the

entire database. Each node in the dendrogram represents a cluster containing

all clusters represented by its child nodes. Each level of the dendrogram rep-

resents a clustering of the database. An agglomerative algorithmic schema

to construct a dendrogram starts with each object in the database placed

in a unique cluster (leaf nodes) and then merges in each step the pair of

clusters having the minimal distance until all data objects are contained in

one cluster. In [Bou96] several definitions of the distance between two clus-

ters (e.g. single link [Sib73]) are discussed. It is shown that each approach

2.2 Basic Notations 17

yields the same result in terms of clustering quality. The combination of

density-based clustering and hierarchical concepts is presented in [ABKS99].

The algorithm OPTICS is proposed to compute a density-based hierarchical

decomposition of the data. In particular, OPTICS computes the clustering

of DBSCAN for a broad range of parameter settings in a single scan over the

data. The enhancements to density-based hierarchical clustering presented

in Part II are based on the concepts of this algorithm, thus, we will discuss

the concepts of OPTICS in more details in Section 2.3.

2.2 Basic Notations

Clustering relies on a notion of similarity among the database objects. Defin-

ing the similarity of complex data objects — such as car parts, protein

molecules or text documents — is a non-trivial task, and beyond the scope

of this thesis. Thus, we rely on a common approach to define similarity

among the objects of a database, the so-called feature-based approach. The

definition of similarity is often also called similarity model.

The key step of a feature-based similarity model is the so-called feature

extraction or feature transformation. For each data object, a given num-

ber (d) of numeric features is extracted. The objects of the database are

transformed into d-dimensional feature vectors, i.e. data objects are repre-

sented by points in a d-dimensional space. Then, the similarity of two data

objects is measured through the proximity of the according feature vectors,

e.g. using the Euclidean distance as a measure of dissimilarity. Examples of

feature-based similarity include [FRM94], [MG95], and [KKM+03]. Let us

note that there are other ways to define similarity on objects in a database,

e.g. [Kei99], [KBK+03]. The general idea of the feature transformation of

feature-based similarity is illustrated in Figure 2.2.

Throughout the rest of the thesis, we assume that D is a feature database

of n feature vectors (or points) in some d-dimensional feature space (D ⊆ Rd).

The features (or attributes) of D are denoted by A = {a1, . . . , ad}.

18 2 Density-Based Clustering

object

feature
transformation feature

vector

Figure 2.2: The idea of feature transformation.

A non-empty subset S ⊆ A is called a subspace. The dimensionality of

a subspace S ⊆ A, i.e. the number of attributes spanning S, is denoted by

dim[S] = |S|. The projection of a point p ∈ D onto a subspace S ⊆ A is

denoted by πS(p).

We assume that dist : D × D → R is a metric distance function on

points in D, indicating the dissimilarity of two objects in D. For the sake of

simplicity, we further assume dist to be one of the Lp-norms which is defined

for an arbitrary p ∈ N as given below:

dist(x, y) = p

√√√√ d∑
i=1

(π{ai}(x)− π{ai}(y))p,

where x, y ∈ D.

Let us note that we will usually use the Euclidean distance (p = 2) for

illustration throughout this thesis when ever it is not specified differently.

2.3 Foundations of Density-Based Clustering

The basis of density-based clustering is the observation that inside a cluster

the density of points is considerably higher than outside a cluster. Fur-

thermore, different clusters are separated by areas of noise, where the point

density is lower than inside a cluster. The observation can be validated when

looking at the two sample databases “database 1” and “database 2” depicted

in Figure 2.3. Using the criterion of point density, we can easily and unam-

2.3 Foundations of Density-Based Clustering 19

database 1 database 2 database 3 database 4

Figure 2.3: Sample databases.

biguously detect the clusters and noise points in the two sample databases.

In [EKSX96], this intuitive notion of clusters and noise in a database of

points in some feature space is formalized. Clusters are defined as “flat”

density connected sets.

However, if we look at “database 3” and “database 4” depicted in Figure

2.3, we face the problem that different clusters my exhibit varying density.

In addition, we may have nested clusters (cf. “database 3”), i.e. a less

dense cluster may contain denser sub-clusters. To discover such hierarchical

clusters, the application of hierarchical concepts is necessary. In [ABKS99]

the density-based notion is extended by hierarchical concepts. Since these

concepts of flat and hierarchical density-based clustering are the basis for our

work, we will introduce them in detail in the following.

2.3.1 Clusters as Density Connected Sets

The key idea of “flat” density-based clustering is that for each point of a

cluster the neighborhood of a given radius has to contain a minimum num-

ber of points, i.e. the density in the neighborhood has to exceed a density

threshold. This threshold is determined by two user defined input parame-

ters ε (specifying the size of the neighborhood) and MinPts specifying the

minimum number of points the neighborhood must contain.

Definition 2.1 (ε-neighborhood)

Let ε ∈ R. The ε-neighborhood of a point p ∈ D, denoted by Nε(p), is

20 2 Density-Based Clustering

defined by

Nε(p) = {o ∈ D | dist(p, o) ≤ ε}.

As claimed above, a point should be inside a cluster if its neighborhood

contains at least a given number of points.

Definition 2.2 (core point)

A point q ∈ D is a core point w.r.t. ε ∈ R and MinPts ∈ N, denoted by

Coreden(q), if its ε-neighborhood contains at least MinPts points, formally:

Coreden(q) ⇔ |Nε(p)| ≥ MinPts.

Let us note, that the acronym den in the definition refers to the density

parameters ε and MinPts. In the following, we omit the parameters ε and

MinPts wherever the context is clear and use den instead. The core point

concept is visualized in Figure 2.4(a).

A naive approach could require the core point property for each member

of a cluster. However, this approach fails because there are some points on the

border of the cluster (border points) that do not fit the core point property

but are intuitively part of a cluster. In fact, a cluster has two properties:

density and connectivity. The first one is captured through the core point

property. The second one is captured through the following concepts.

Definition 2.3 (direct density reachable)

A point p ∈ D is direct density reachable w.r.t. ε ∈ R and MinPts ∈ N
from q ∈ D, denoted by DirReachden(q,p), if q is a core point and p is in

the ε-neighborhood of q, formally:

DirReachden(q, p) ⇔ Coreden(q) ∧ p ∈ Nε(q).

The concept of direct density reachability is depicted in Figure 2.4(b).

Obviously, directly density reachable is a symmetric relation for pairs of core

points. However, it is not symmetric in general.

2.3 Foundations of Density-Based Clustering 21

Definition 2.4 (density reachable)

A point p ∈ D is density-reachable from q ∈ D w.r.t. ε ∈ R and MinPts ∈
N, denoted by Reachden(q,p), if there is a chain of points p1, . . . , pn ∈ D,

p1 = q, pn = p such that pi+1 is directly density reachable from pi, formally:

Reachden(q, p) ⇔
∃p1, . . . , pn ∈ D : p1 = q ∧ pn = p ∧
∀i ∈ {1, . . . , n− 1} : DirReachden(pi, pi+1).

Density reachability is illustrated in Figure 2.4(c). It is the transitive

enclosure of direct density reachable but it is not symmetric in general (again

only for pairs of core points). Thus, we have captured the connectivity of core

points so far. But two border points of the same cluster C are not density

reachable from each other. However, there must be a core point in C from

which both border points are reachable. Therefore, the following definition

captures general connectivity of points within a cluster.

Definition 2.5 (density connected)

A point q ∈ D is density-connected to another point p ∈ D w.r.t. ε ∈ R
and MinPts ∈ N, denoted by Connectden(q,p), if there is an object o ∈ D
such that both p and q are density reachable from o, formally:

Connectden(q, p) ⇔
∃o ∈ D : Reachden(o, q) ∧ Reachden(o, p).

Density connected is in general a symmetric relation. The concept is

visualized in Figure 2.4(d).

Now, the density-based notion of a cluster can be defined using the in-

troduced concepts. Intuitively, a cluster is defined to be a set of density

connected points which is maximal w.r.t. density reachability. The points in

D not belonging to any of its density connected sets are defined as noise.

Definition 2.6 (density connected set)

A non-empty subset C ⊆ D is called a density connected set w.r.t. ε ∈ R

22 2 Density-Based Clustering

q
MinPts=5 p

q
MinPts=5

o
q

r

MinPts=5 MinPts=5p

qo

(a) Coreden(q)

q
MinPts=5 p

q
MinPts=5

o
q

r

MinPts=5 MinPts=5p

qo

(b) DirReachden(q,p)

q
MinPts=5 p

q
MinPts=5

o
q

p

MinPts=5 MinPts=5p

qo

(c) Reachden(q,p)

q
MinPts=5 p

q
MinPts=5

o
q

q

MinPts=5 MinPts=5p

qo

(d) Connectden(q,p)

Figure 2.4: Illustration of density-based clustering concepts

and MinPts ∈ N, if all objects in C are density-connected, formally:

ConSetden(C) ⇔ ∀p, q ∈ C : Connectden(p, q)

Definition 2.7 (density connected cluster)

A non-empty subset C ⊆ D is called a density connected cluster w.r.t. ε ∈ R
and MinPts ∈ N, denoted by Clusterden(C), if C is a density connected set

and C is maximal w.r.t. density-reachability, formally:

Clusterden(C) ⇔

(1) Connectivity: ConSetden(C)

(2) Maximality: ∀p, q ∈ D : q ∈ C ∧Reachden(q, p) ⇒ p ∈ C.

We will use the terms “density-based” and “density connected” through-

out the rest of the thesis interchangeable for the clustering notion as defined

in Definition 2.7. Note, that the density connected clustering notion is able

to detect clusters of arbitrary shape and size as long as they exceed the

threshold. A flat density-based decomposition of a database is defined as

follows.

2.3 Foundations of Density-Based Clustering 23

algorithm DBSCAN(SetOfObjects D, Real ε, Integer MinPts)

// each point in D is marked as unclassified
generate new clusterID cid;
for each p ∈ D do

if p.clusterID = UNCLASSIFIED then
if ExpandCluster(D, p, cid, ε, MinPts) then

cid := cid + 1
end if

end if
end for

Figure 2.5: The DBSCAN algorithm.

Definition 2.8 (flat density-based decomposition)

Let ε ∈ R and MinPts ∈ N. A flat density-based decomposition of D w.r.t.

ε and MinPts is a decomposition Dden of D into k ≥ 1 subsets, such that

k− 1 subsets are density connected clusters and the k-th (possible empty) set

contains the noise points, formally:

Dden = {C1, . . . , Ck−1, N} where

¬Clusterden(N) ∧ ∀i : i ∈ {1, . . . , k − 1} ∧ Ci 6= ∅ ∧Clusterden(Ci).

Using the previously described concepts, the algorithm DBSCAN is pro-

posed in [EKSX96] computing a flat density-based decomposition w.r.t. the

user-specified parameters ε and MinPts by one single pass over the data. For

that purpose, DBSCAN uses the fact, that a density connected set can be

detected by finding one of its core points p and computing all objects which

are density reachable from p. The pseudo code of DBSCAN is depicted in

Figure 2.5. The method ExpandCluster which computes the density connected

cluster starting from a given core point, is given in Figure 2.6.

The correctness of DBSCAN can be formally proven (cf. Lemmata 1 and

2 in [EKSX96], proofs in [SEKX98]). Although DBSCAN is not in a strong

sense deterministic (the run of the algorithm depends on the order in which

the points are stored), both the run-time as well as the result (number of

detected clusters and association of core objects to clusters) are determi-

nate. The worst case time complexity of DBSCAN is O(n log n) assuming

an efficient spatial index (e.g. [BKK96] or [BBJ+00]) and O(n2) if no index

exists.

24 2 Density-Based Clustering

boolean ExpandCluster(SetOfObjects D, Object start, Integer cid, Real ε, Integer MinPts)

SetOfObjects seeds := Nε(start);
if |seeds| < MinPts then

start.clusterID := NOISE;
return false;

end if
for each o ∈ seeds do

o.clusterID := cid;
end for
remove start from seeds;
while seeds 6= ∅ do

o := first point in seeds;
neighbors := Nε(o);
if |neighbors| ≥ MinPts then

for each p ∈ neighbors do
if p.clusterID ∈ {UNCLASSIFIED, NOISE} then

if p.clusterID = UNCLASSIFIED then
insert p into seeds;

endif
p.clusterID := cid;
endif

end for
end if
remove o from seeds;

end while
return true;

Figure 2.6: Method ExpandCluster.

2.3.2 Density-Based Hierarchical Decompositions

DBSCAN computes a flat density-based decomposition of a database. It de-

tects each density connected set w.r.t. a global density parameter specified

by ε and MinPts. However, there may be clusters of different density and/or

nested clusters in the database (cf. “database 3” and “database 4” in Figure

2.3). If the densities of different clusters vary significantly, the parameteri-

zation of DBSCAN gets problematic. A less strict density threshold would

detect also the clusters of lower density but may merge clusters of higher den-

sity. On the other hand, a more strict density threshold would partition the

denser clusters but would miss clusters with lower density. In addition, the

information of nested clusters, i.e. denser clusters within less dense clusters,

may be missed.

2.3 Foundations of Density-Based Clustering 25

C

C1 C2

eps1 eps2

Figure 2.7: Nested clusters of different density.

In [ABKS99], the density connected clustering notion is extended by hi-

erarchical concepts. Based on these concepts, the algorithm OPTICS is pre-

sented. The key idea is, that (for a constant MinPts-value) density-based

clusters w.r.t. a higher density (i.e. a lower value for ε) are completely con-

tained in density-based clusters w.r.t. a lower density (i.e. a higher value

for ε). Figure 2.7 illustrates this observation: C1 and C2 are density-based

clusters w.r.t. eps1 < eps2 and C is a density-based cluster w.r.t. eps2

completely containing C1 and C2.

The algorithm OPTICS works like an extended DBSCAN algorithm, com-

puting the density connected clusters w.r.t. all parameters εi that are smaller

than a generic value ε. In contrast to DBSCAN, OPTICS does not assign

cluster memberships, but stores the order in which the data objects are pro-

cessed and the information which would be used by an extended DBSCAN

algorithm to assign cluster memberships. This information consists of only

two values for each object, the core distance and the reachability distance.

The core distance is based on the concept of k-nearest neighbor distances.

Definition 2.9 (k-nearest neighbor distance)

Let k ∈ N. The k-nearest neighbors of a point p ∈ D is the smallest set

NNk(p) ⊆ D that contains (at least) k points from the database, and for

which the following condition holds:

∀o ∈ NNk(p),∀q ∈ D −NNk(p) : dist(o, p) < dist(q, p).

The k-nearest neighbor distance of p, denoted by nn-distk(p) is defined as

26 2 Density-Based Clustering

follows:

nn-distk(p) = max{dist(o, p) | o ∈ NNk(p)}.

Let us note that in Definition 2.9 it is implicitly assumed that D contains

at least k elements, i.e. k ≤ n.

Definition 2.10 (core distance)

The core distance of a point q ∈ D w.r.t. ε ∈ R and MinPts ∈ N is defined

as

CoreDistden(q) =

 nn-distMinPts(q) if |Nε(q)| ≥ MinPts

∞ else.

The core distance of a point q is the smallest threshold ε̂ ≤ ε such that q

is a core point w.r.t. ε̂ and MinPts. If ε̂ would be greater than the generic ε

value, the core distance of q is set to ∞.

Definition 2.11 (reachability distance)

The reachability distance of a point p ∈ D relative from another point q ∈ D
w.r.t. ε ∈ R and MinPts ∈ N is defined as

ReachDistden(q, p) = max(CoreDistden(q), dist(q, p)).

The reachability distance of a point p w.r.t. another point q is the smallest

threshold ε̂ ≤ ε such that p is directly density reachable from q. Obviously,

to achieve this relation, q has to be a core point. Thus, the reachability

distance cannot be smaller than the core distance of q. As a consequence,

if dist(q, p) ≤ CoreDistden(q), the reachability distance of p w.r.t. q is set

to CoreDistden(q). Otherwise, the smallest threshold ε̂ ≤ ε, such that p is

directly density reachable from q, is exactly dist(q, p). Let us note that if q

is not a core point w.r.t. the generic ε-value (i.e. CoreDistden(q) = ∞),

we get ReachDistden(q, p) = ∞ indicating that the smallest threshold ε̂ is

in fact greater than ε, i.e. p cannot be directly reached from q w.r.t. the

generic threshold ε.

2.3 Foundations of Density-Based Clustering 27

core-distance(o)

reachability distance(o,p)

reachability distance(o,q)

MinPts = 5

o
p

q
eps

generic eps value

Figure 2.8: Illustration of core distance and reachability distance.

Both the core distance of a point o and the reachability distances of the

points p and q relative to o are illustrated in Figure 2.8.

The OPTICS algorithm computes a so-called cluster ordering of a database

w.r.t. the two input parameters ε and MinPts. In addition, the core distance

and a “suitable” reachability distance is stored for each object. The pseudo

code of the OPTICS algorithm is depicted in Figure 2.9. It starts with an

arbitrary point o ∈ D, assigns a reachability distance of ∞ to o and expands

the cluster order if the core distance of o is smaller than the generic (input

parameter) ε. The expansion is worked out by inserting each point p ∈ Nε(o)

into a seed list OrderedSeeds. This seed list is organized as a heap, storing

that point q as first object in the list, having the minimum reachability dis-

tance to the already processed points. The heap structure is maintained

by the procedure OrderedSeeds::update (cf. Figure 2.10) which updates the

reachability distances of the points that are already in the seed list if their

according values decrease. The next point to be inserted in the cluster order-

ing is always the first object in the seed list. If the core distance of this object

is smaller or equal to ε, all points in the ε-neighborhood are again inserted

into or updated in the seed list. If the seed list is empty and there are still

some not yet processed points in D, we have a so-called “jump”. OPTICS

selects another arbitrary not yet handled point in D to further expand the

cluster ordering CO as described above.

Definition 2.12 (cluster ordering)

Let MinPts ∈ N, ε ∈ R, and CO be a permutation of the objects in D. Each

o ∈ D has additional attributes o.P , o.C and o.R, where o.P ∈ {1, . . . , n}

28 2 Density-Based Clustering

algorithm OPTICS(SetOfObjects D, Real ε, Integer MinPts)

CO := empty cluster ordering;
while |CO| < n do

o := arbitrary not yet handled point in D;
neighborso := Nε(o);
o.R := ∞;
o.C := Coreden(o);
mark o as handled;
append o to CO;
if o.C 6= ∞ then

OrderedSeeds.update(neighborso, o);
while OrderedSeeds 6= ∅ do

p := OrderedSeeds.first();
neighborsp := Nε(p);
p.C := Coreden(p);
mark p as handled;
append p to CO;
if p.C 6= ∞ then

OrderedSeeds.update(neighborsp, p);
end if

end while
end if

end while

Figure 2.9: The OPTICS algorithm.

symbolizes the position of o in CO. We call CO a cluster ordering w.r.t. ε

and MinPts if the following three conditions hold:

(1) ∀p ∈ CO : p.C = CoreDistden(p)

(2) ∀x, y ∈ CO : 1 < x.P < y.P ⇒

∀o ∈ CO : o.P < x.P ⇒ ReachDistden(o, x) ≤ Reachden(o, y)

(3) ∀p ∈ CO :

p.R = min{ReachDistden(o, p) | o ∈ CO ∧ o.P < p.P},

where min ∅ = ∞.

Intuitively, condition (2) states that the order is built on selecting at each

position i in CO that object o having the minimum reachability to any object

before i. o.C symbolizes the core distance of an object o in CO whereas o.R

is the reachability distance assigned to object o during the generation of CO.

2.3 Foundations of Density-Based Clustering 29

method OrderedSeeds::update(SetOfObjects neighbors, Object center)

cdist := center.C;
for each o ∈ neighbors do

if o is not yet processed then
rdist := max{cdist, dist(o, center)};
if o is already in OrderedSeeds then

if o.R > rdist then
o.R := rdist;
decrease(o);

end if
else

o.R := rdist;
insert(o);

end if
end if

end for

Figure 2.10: Method OrderedSeeds::update.

Figure 2.11: Reachability plot (right) computed by OPTICS for a sample

2-D data set (left).

A cluster ordering contains sufficient information to extract all density-

based clusterings w.r.t. any ε′ ≤ ε. The density-based clustering w.r.t.

a particular ε′ ≤ ε can be extracted by scanning the cluster ordering and

checking the reachability distance and the core distance of each object. If

the reachability distance of the current object is larger than ε′, we have to

check its core distance. If the core distance of this object is also larger than

ε′, this object is assigned to noise. Else, the object is a core object and we

start a new cluster. If the reachability of the current object is smaller than

ε′, it can be assigned to the current cluster because it is density reachable

from a preceding core point in the cluster ordering. Let us note, that the

resulting clusters may miss some border points.

30 2 Density-Based Clustering

A breakthrough advantage of OPTICS is that the resulting cluster or-

dering can be visualized very intuitively and clearly by means of a so-called

reachability plot. A reachability plot is a 2-dimensional visualization of a clus-

ter ordering, where the points are plotted according to the sequence specified

in the cluster ordering along the x-axis, and for each point, the reachabil-

ity distance along the y-axis. Figure 2.11 (right) depicts the reachability

plot based on the cluster ordering computed by OPTICS for the sample 2-

dimensional data set in Figure 2.11 (left). Intuitively, clusters are “valleys”

or “dents” in the plot, because sets of consecutive points with a lower reach-

ability value are packed more densely. In particular, to manually obtain a

density-based clustering w.r.t. any ε′ ≤ ε by visual analysis, one simply has

to cut the reachability plot at y-level ε′ (i.e. parallel to the x-axis). The

consecutive valleys in the plot below this cutting line contain the according

clusters. An example is presented in Figure 2.11: For a cut at the level ε1,

we find two clusters denoted as A and B. Compared to this clustering, a

cut at level ε2 would yield three clusters. The cluster A is split into two

smaller clusters denoted by A1 and A2 and cluster B decreased its size. This

illustrates how the hierarchical cluster structure of a database is revealed at

a glance and could be easily explored by visual inspection.

Part II

Using Density-Based

Hierarchical Clustering for

Similarity Search Applications

31

Chapter 3

A Browsing Tool for Similarity

Search

In the last ten years, an increasing number of database applications has

emerged for which efficient and effective support for similarity search is sub-

stantial. In this chapter, we outline the application of OPTICS to similarity

search. First, we sketch the use and the benefit of density-based hierarchi-

cal clustering for different application ranges related to similarity search and

visual data mining in Section 3.1, including visual data mining, similarity

search, and evaluation of similarity models. These considerations motivate

and initiate the development of an interactive data browsing tool called BOSS

(Browsing OPTICS plots for Similarity Search). Second, we identify two key

requirements necessary for the realization of the BOSS prototype in Sec-

tion 3.2 which represent novel challenges for density-based clustering. The

challenges will be addressed in the consecutive chapters of this part of the

thesis.

33

34 3 A Browsing Tool for Similarity Search

3.1 Motivation

The importance of similarity search grows in application areas such as mul-

timedia, medical imaging, molecular biology, computer aided engineering,

marketing and purchasing assistance, etc. (e.g. [Jag91], [AFS93], [MG95],

[FRM94], [ALSS95], [BK97], [Kei99]). Particularly, the task of finding similar

shapes in 2-dimensional and 3-dimensional spaces becomes more and more

important. Examples for new applications that require the retrieval of sim-

ilar 3-dimensional objects include databases for molecular biology, medical

imaging and computer aided design.

In this section, we outline novel application ranges of density-based hier-

archical clustering which led to the development of an interactive browsing

tool, called BOSS (Browsing OPTICS plots for Similarity Search). The core

idea of BOSS is to provide a browsable hierarchy of clusters each represented

by one or more significant objects. We will describe the details of BOSS

and evaluate the prototype in Chapter 6. To generate a cluster hierarchy,

BOSS makes use of the density-based hierarchical clustering algorithm OP-

TICS which was introduced in Section 2.3. The use of OPTICS yields several

advantages due to the following reasons:

• OPTICS is — in contrast to most other algorithms — relatively in-

sensitive to its two input parameters, ε and MinPts. The authors in

[ABKS99] state that the input parameters just have to be large enough

to produce good results.

• OPTICS is a hierarchical clustering method which yields more infor-

mation about the cluster structure than a method that computes a flat

partitioning of the data (e.g. DBSCAN [EKSX96]).

• OPTICS is applicable and scalable to large databases. The perfor-

mance of OPTICS can be significantly improved through speeding-

up the range queries, using appropriate spatial index structures (e.g.

[BBJ+00], [CPZ97]).

• The result of OPTICS is a cluster ordering. Using reachability plots,

3.1 Motivation 35

cluster orderings can be visualized much more clear than dendrograms

especially for large data sets.

BOSS was designed for three different purposes: visual data mining, sim-

ilarity search and the evaluation of similarity models. For the first two appli-

cations, the choice of the representative objects of a cluster is the key step. It

helps the user to get a meaningful and quick overview of a large existing data

set. Furthermore, BOSS helps scientists to evaluate new similarity models.

3.1.1 Visual Data Mining

As defined in [Ank00], visual data mining is a step in the KDD process that

utilizes visualization as a communication channel between the computer and

the user to produce novel and interpretable patterns. Based on the balance

and sequence of the automatic and the interactive (visual) part of the KDD

process, three classes of visual data mining can be identified.

• Visualization of the data mining result: An algorithm extracts

patterns from the data. These patterns are visualized to make them

interpretable. Based on the visualization, the user may want to return

to the data mining algorithm and run it again with different input

parameters (cf. Figure 3.1a).

• Visualization of an intermediate result: An algorithm performs

an analysis of the data not producing the final patterns but an inter-

mediate result which can be visualized. Then the user retrieves the

interesting patterns in the visualization of the intermediate result (cf.

Figure 3.1b).

• Visualization of the data: Data is visualized immediately without

running a sophisticated algorithm before. Patterns are obtained by the

user by exploring the visualized data (cf. Figure 3.1c).

The approach presented in this thesis belongs to the first and second class.

A hierarchical clustering algorithm is applied to the data which extracts the

36 3 A Browsing Tool for Similarity Search

Figure 3.1: Different approaches to visual data mining [Ank00].

clustering structure as an intermediate result. There is no meaning associ-

ated with the generated clusters. However, our approach allows the user to

visually analyze the contents of the clusters. The clustering algorithm used

in the algorithmic part is independent from an application. It performs the

core part of the data mining process and its result serves as a multi-purpose

basis for further analysis directed by the user. This way, the user may obtain

novel information which was not even known to exist in the data set. This

is in contrast to similarity search where the user is restricted to find similar

parts respective to a query object and a predetermined similarity measure.

3.1.2 Similarity Search

The development, design, manufacturing and maintenance of modern engi-

neering products is a very expensive and complex task. Effective similarity

3.1 Motivation 37

Figure 3.2: Browsing through reachability plots.

models are required for two- and three-dimensional CAD applications to

cope with rapidly growing amounts of data. Shorter product cycles and a

greater diversity of models are becoming decisive competitive factors in the

hard-fought automobile and aircraft market. These demands can only be

met if the engineers have an overview of already existing CAD parts. It

would be desirable to have an interactive data browsing tool which depicts

the reachability plot computed by OPTICS in a user friendly way together

with appropriate representatives of the clusters. This clear illustration would

support the user in his time-consuming task to find similar parts. It is rather

obvious, that other application domains to similarity search beside CAD,

e.g. molecular biology and multimedia, would also benefit from such a tool.

From the user’s point of view, this browsing tool should meet the following

two requirements:

• The hierarchical clustering structure of the data set is revealed at a

glance. The reachability plot is an intuitive visualization of the cluster

hierarchy which helps to assign each object to its corresponding cluster

or to noise. Furthermore, the hierarchical representation of the clusters

using the reachability plot helps the user to get a quick overview of

all clusters and their relation to each other. As each entry in the

reachability plot is assigned to one object, we can easily illustrate some

representatives of the clusters belonging to a given density threshold

(cf. Figure 3.2).

• The user is not only interested in the shape and the number of the

38 3 A Browsing Tool for Similarity Search

Figure 3.3: Hierarchically ordered representatives.

clusters, but also in the specific objects building up a cluster. As for

large clusters it is rather difficult to depict all objects, suitable repre-

sentatives of each cluster should be displayed. To follow up a first idea,

these representatives could be simply constructed by superimposing all

parts belonging to the regarded cluster (cf. Figure 3.3). We can browse

through the hierarchy of the representatives in the same way as through

the OPTICS plots.

This way, the cost of developing and producing new parts could be re-

duced by maximizing the reuse of existing parts, because the user can browse

through the hierarchical structure of the clusters in a top-down way. Thus,

the engineers get an overview of already existing parts and are able to navi-

gate their way through the diversity of existing variants of products, such as

cars.

3.1.3 Evaluation of Similarity Models

In general, similarity models can be evaluated by computing k-nearest neigh-

bor queries (k-nn queries). However, this evaluation approach is subjective

and error-prone because the quality measure of the similarity model depends

on the results of a few similarity queries and, therefore, on the choice of the

query objects. A model may perfectly reflect the intuitive similarity accord-

ing to the chosen query objects and would be evaluated as “good” although

it produces disastrous results for the vast majority of database objects. On

3.2 Required Enhancements 39

the other hand, one may choose a database object which is rather unique, i.e.

there are no similar objects to the query object in the database (in terms of

clustering, we would speak of a noise object). Based on the results for such

a query object, a model will be evaluated as bad, unless it may represent the

intuitive notion of similarity for the data objects quite well. In addition, the

parameter k of the k-nn queries may not be suitable for all query objects.

There may be objects that have only very few similar objects in the database

(e.g. only two wings in a data set of aircraft parts) whereas other objects

may have many similar objects (e.g. hundreds or thousands of screws in the

same data set).

A better way to evaluate and compare several similarity models is to apply

a clustering algorithm [KKM+03]. It is more objective since each object of

the data set is taken into account to evaluate the data models rather than

some sample objects. In fact, the results of a hierarchical clustering algorithm

such as OPTICS is rather suitable to evaluate and compare several similarity

models. Our browsing tool BOSS extremely simplifies the comparisons of

two or more reachability plots generated by OPTICS applied to different

similarity models.

3.2 Required Enhancements

The BOSS prototype uses the information of a reachability plot generated

by OPTICS to support the three sketched applications by visualizing the

hierarchical clustering structure, generating a hierarchy of clusters, and re-

vealing representative objects of each cluster. However, some steps in the

pipeline from the raw data to the interactive browsing remain unsolved so

far. In particular, to enable browsing a hierarchy of cluster representatives

extracted from a reachability plot, several additions and enhancements to

the hierarchical clustering algorithm OPTICS are necessary. In the follow-

ing, we work out two requirements that were needed to be addressed during

the development of BOSS.

40 3 A Browsing Tool for Similarity Search

Requirement 1: Incremental Clustering

The browsing tool BOSS is supposed to be applied to large dynamic data-

bases, i.e. the databases contain a huge amount of objects and updates —

insertion of new objects and deletion of objects — frequently occur. In such a

dynamic environment, the detected clustering structure most likely changes

due to update operations. For consistency reasons, the computed clusters

have to be updated as well. Rerunning OPTICS applied on the updated

database to rearrange the cluster ordering (and thus the reachability plot)

is obviously rather inefficient. It would be much more sensible to rearrange

only that parts of the cluster ordering being affected by the update (if this

is even possible). In fact, incrementally updating the clustering structure

of a large database is mandatory for interactive systems in a dynamic envi-

ronment. Due to availability reasons, the clusters should not be recomputed

from scratch after a database update operation. Since — to the best of our

knowledge — there has been no incremental version of OPTICS proposed so

far, this is a first urgent requirement for our prototype.

Requirement 2: Cluster Recognition and Representation

Solid cluster extraction and the determination of meaningful cluster repre-

sentatives form the foundation for providing the user with significant infor-

mation and a quick overview of the objects in the database and to enable

interactive browsing. Thus, the extraction of clusters from a cluster ordering

or reachability plot is a mandatory component of BOSS. In addition, the

generation of meaningful representative objects for the recognized clusters is

a key feature for the visual browsing facility. Both cluster recognition and

cluster representation together are a second requirement for our prototype.

In the following, we will meet both requirements. In Chapter 4 an incre-

mental version of the OPTICS algorithm (cf. Requirement 1) is presented

to scale the ideas of BOSS to a dynamic environment. Novel solutions for

cluster recognition and cluster representation from reachability plots com-

puted by OPTICS (cf. Requirement 2) are introduced in Chapter 5. All

these concepts extend the basic OPTICS algorithm to cope with novel in-

3.2 Required Enhancements 41

dustrial applications. Chapter 6 describes some technical details of the BOSS

prototype and presents some sample applications of BOSS.

42 3 A Browsing Tool for Similarity Search

Chapter 4

Incremental Clustering

The interactive browsing tool BOSS is supposed to be applied to dynamic

environments, i.e. databases in which updates frequently occur. Thus, one

major challenge for density-based hierarchical clustering identified in Section

3.2 is an incremental version of the OPTICS algorithm. In this chapter, we

address this requirement. First, we review and discuss related work on in-

crementally updating mined patterns in dynamic databases in Section 4.1.

Then, we present the modifications and extensions of density-based hier-

archical concepts, necessary for the development of an incremental OPTICS

algorithm in Section 4.2. In addition, an incremental algorithm called IncOP-

TICS is proposed. The concepts proposed in this section are major extensions

of the material published in [KKG03]. A broad experimental evaluation of

the performance of IncOPTICS compared to the original OPTICS algorithm

is presented in Section 4.3. Section 4.4 concludes this chapter with a short

summary.

43

44 4 Incremental Clustering

4.1 Related Work

The problem of incrementally updating mined patterns is a rather new area

of research. Most work has been done in the area of developing incremen-

tal algorithms for the task of mining association rules [AS94]. Incremental

approaches include [CHNW96] and [FAAM97]. In [EW98] algorithms for

incremental attribute-oriented generalization are presented.

The problem of incremental clustering has been addressed in several pub-

lications recently. In the following, we present some of the proposed methods

without the sake of completeness.

In [Sib73] the SLINK algorithm for single-linkage clustering is presented.

Based on this work, in [Def77] a similar method called CLINK for complete-

linkage clustering is proposed. Both algorithms work recursively, i.e. they

compute a dendrogram of n data objects by starting with a dendrogram of

one object and then recursively inserting the remaining n − 1 object. The

fundamental concept of both approaches is the so-called pointer representa-

tion which is a compact representation of a dendrogram. In both algorithms,

the insert of one object into a dendrogram represented by the pointer rep-

resentation of n objects has a run time complexity of O(n). Using SLINK

or CLINK, one can only incrementally update inserts. Due to the recursive

property, deletions cannot be handled incrementally.

In [CHO02] the incremental hierarchical clustering algorithm GRIN is

proposed. GRIN uses GRACE, an agglomerative hierarchical clustering al-

gorithm, to produce a dendrogram for the data set. After that, the bottom

levels of this dendrogram is pruned. Each cluster in the resulting dendrogram

is represented by the centroid, the radius, and the number of points of the

cluster. New data points are inserted into leaf nodes based on the gravity

theory in physics.

The agglomerative incremental hierarchical clustering algorithm IHC is

proposed in [WIY02]. IHC defines the homogeneity of clusters and mono-

tonicity of the cluster hierarchy. New points are inserted bottom-up into the

hierarchy. A reconstruction procedure repairs clusters whose homogeneity

4.2 Incremental OPTICS 45

has decreased by eliminating lower and higher dense regions.

In [EKS+98] an incremental version of DBSCAN called IncrementalDB-

SCAN is proposed. Due to its density-based clustering notion (cf. Section

2.3), IncrementalDBSCAN limits the effects of an update operation only to

the neighborhood of the update object. In fact, IncrementalDBSCAN yields

tremendous speed-up factors even for a huge bulk of updates compared to

rerunning DBSCAN from scratch.

Let us note that there are several incremental solutions to the clustering

of stream data (e.g. [Bar02], [AHWY03], [OMM+02], [GGR02]) which is

a related problem. Usually these methods pay off accuracy for efficiency

reasons.

In [BKKS01] a compression technique for hierarchical clustering called

“Data Bubbles” is proposed, yielding a huge speed-up for clustering of vec-

tor data by paying only a small decrease of clustering quality. Recently,

this approach was extended for non-vector data (i.e. arbitrary metric data).

The extended version outperforms the original Data Bubbles in terms of

clustering quality on vector data [ZS03]. In [NSC04], the authors propose

an incremental summarization method based on these Data Bubbles which

can be applied to dynamic hierarchical clustering. In particular, Data Bub-

bles are tested using OPTICS, providing a suitable possibility to speed-up

the construction and incrementally maintain a cluster ordering computed by

OPTICS. However, Data Bubbles are not applicable to BOSS because, due

to the data summarization, they tend to miss details in the cluster hierarchy

by increasing the compression rate. As a consequence, important details in

the cluster hierarchy cannot be browsed by BOSS, because the details are

simply not present in the cluster ordering.

4.2 Incremental OPTICS

Our ideas of BOSS rely on the use of OPTICS as a clustering algorithm (cf.

Section 3.1), thus, recent approaches for incrementally maintaining a flat or

46 4 Incremental Clustering

hierarchical clustering structure cannot be applied. We need an incremental

version of OPTICS which will be presented in the following.

4.2.1 General Ideas and Concepts

The key idea of an incremental version of OPTICS is to reconstruct only parts

of the cluster ordering that are affected by the update operation rather than

recomputing the entire cluster ordering from scratch. Recall from Section 2.3

that the cluster ordering is generated by starting from an arbitrary point in D
and then at each position i in the cluster ordering, selecting that point having

the smallest reachability distance to the already processed points (i.e. points

coming before i in the cluster ordering). In case of an update operation, this

order may be violated. In particular, conditions (2) and (3) of Definition

2.12 may be violated such that the cluster ordering is not valid anymore.

Theorem 4.1

Let CO be a cluster ordering of D w.r.t. ε ∈ R and MinPts ∈ N. An update

(insert/delete) operation may affect the entire cluster ordering.

Proof. By example: Consider a 2-dimensional data set containing 2 clus-

ters and an additional point A — cluster 1 contains point B and cluster 2

contains points C and D. Let us assume that OPTICS starts with point A

which does not belong to any cluster. At next, assume that point B has the

smallest reachability value w.r.t. point A, directing the run of OPTICS into

cluster 1. After all points in cluster 1 are worked out, let us assume that

point D from cluster 2 is the next point in the seed list with a minimal reach-

ability distance w.r.t. the already processed points. Thus, OPTICS will enter

cluster 2 via point D. Let us further assume that point C is visited as last

point.

An insertion of a point U near A and C may affect the run of OPTICS

in the following way: from point A we now may visit points U and C instead

of point B. Thus, OPTICS will now run through cluster 2 first, and after

4.2 Incremental OPTICS 47

A

B

C

D

U

cluster 1

cluster 2

Reachability plot of OPTICS run without U

Reachability plot of OPTICS run with U

… …
A B

2-dimensional data set

D C

… …
A U D B

cluster 1

cluster 1

C

cluster 2

cluster 2

Figure 4.1: Sample dataset where the entire cluster ordering is affected by

the insertion/deletion of point U .

that through cluster 1 to stop at B. Obviously, we processed the points after

the insertion in reverse order.

Deletion analogously. 2

The example constructed in the proof is illustrated in Figure 4.1

The theorem states that it cannot be guaranteed that a complete recom-

putation of the ordering is never needed. The path OPTICS chooses through

the database can be completely different after an update because reachability

connections change. For each changed connection, we need the computation

of one range query. A range query can be computed in O(n) time if not using

an index, and can be accelerated to O(log n) using a spatial index structure

such as the X-Tree [BKK96] or the IQ-Tree [BBJ+00]. However, in most

cases, several connections remain unchanged. The idea of an incremental

update is to save as much of the range queries, necessary for a rerun, as

possible during an incremental reconstruction. In the following, we say that

if a point participates in a change of connections, this point is affected by

the update and need a reorganization.

48 4 Incremental Clustering

To determine the objects that are affected by an update operation, i.e.

need reorganization to re-establish a valid cluster ordering, we make the

following considerations: Due to an update (insert/delete) operation, the

core distance of some points may change. As a consequence, the reachability

distances of some objects that were “reached” from these points in the cluster

ordering may also change, causing the above mentioned violation of condition

(2) in Definition 2.12. Thus, in a first step, it is important to determine the

points with changing core levels, and then, in a second step, to determine

the objects that are affected by these changes. The following considerations

are based on the concepts described in Section 2.3.

Definition 4.1 (reverse k-nearest neighbors)

Let k ∈ N. The reverse k-nearest neighbors of a point p ∈ D, denoted by

Revk(p), is defined as

Revk(p) = {q ∈ D | p ∈ NNk(q)}.

Let us note that we implicitly assume that D contains at least k objects,

i.e. k ≤ n.

Based on the concepts of reverse k-nearest neighbors, we can identify the

objects changing their core distance in a given cluster ordering.

Definition 4.2 (points with changing core distances)

Let p be a point either in or not yet in D and CO be a cluster ordering of D
w.r.t. ε ∈ R and MinPts ∈ N. The set of points with changing core distances

due to insertion/deletion of a point p ∈ D, denoted by Changeden(p), is

defined as

Changeden(p) = {q ∈ RevMinPts(p) | dist(q, p) ≤ ε}

Let us note that we use the acronym den for the density parameter ε and

MinPts wherever they are clear from context.

In fact, not all points in Changeden(p) must change their core distances.

It may happen that a point in Changeden(p) has a core distance of already

4.2 Incremental OPTICS 49

∞. In case of deleting p, the core distance remains unchanged (the MinPts-

nearest neighbor distance further grows). In case of inserting p, the change of

the core distance depends on whether the MinPts-nearest neighbor distance

decreases under the limit of ε. If so, the core distance of the point changes,

otherwise not. However, all points not belonging to Changeden(p) cannot

change its core distance due to the insertion/deletion of p.

The set Changeden(p) can be efficiently computed using an index struc-

ture for reverse nearest neighbor queries such as proposed in [KM00] or

[YL01]. However, both approaches suffer from high update costs (for the

according index structure) and are only proposed for the support of reverse

1-nearest neighbor queries. Nevertheless, Changeden(p) for an update point

p can be computed rather efficiently, due to the following lemma.

Lemma 4.1

Let p be a point either in or not yet in D and CO be a cluster ordering of

D w.r.t. ε ∈ R and MinPts ∈ N. Then Changeden(p) can be computed as

follows:

Changeden(p) = {q | q ∈ Nε(p) ∧ dist(p, q) ≤ Coreden(q)}.

Proof.

Let X := {q | q ∈ Nε(p) ∧ dist(p, q) ≤ Coreden(q)}.
We show that Changeden(p) = X:

∀q ∈ Changeden(p)
Def 4.2⇐⇒ dist(q, p) ≤ ε ∧ q ∈ RevMinPts(p)
Def 2.1⇐⇒ q ∈ Nε(p) ∧ q ∈ RevMinPts(p)
Def 4.1⇐⇒ q ∈ Nε(p) ∧ p ∈ NNMinPts(q)
Def 2.9⇐⇒ q ∈ Nε(p) ∧ dist(p, q) ≤ nn-distMinPts(q)
Def 2.10⇐⇒ q ∈ Nε(p) ∧ dist(p, q) ≤ Coreden(q)

⇔ q ∈ X

2

Lemma 4.1 states that we can filter out a lot of points not belonging

to Changeden(p) by computing only one range query around the update

50 4 Incremental Clustering

q

p

eps-neighborhood

core distance before update of p

core distance after update of p

MinPts = 5

q

p

Delete(p) Insert(p)

Figure 4.2: The core distance of q changes due to insertion/deletion of p.

point. In addition, we only have to test the points q ∈ Nε(p) whether q ∈
RevMinPts(p). The idea is that for all q ∈ RevMinPts(p), it holds that

dist(p, q) ≤ Coreden(q). The change of the core distance of a point q due to

an insertion/deletion of point p is illustrated in Figure 4.2. If p is inserted,

the core distance of q decreases, whereas if p is deleted, the core distance of

q increases.

The second step to determine the points in a cluster ordering affected by

an update operation is to determine that points, the reachability distances of

which are changing due to mutating core distances. A changing reachability

distance may cause the violation of condition (2) in Definition 2.12. If a

reachability distance of a point p decreases due to a changed core distance,

p may move forward in the cluster ordering, otherwise, if the core distance

of p increases, p may move backwards.

In the following, we say that q comes before p in the cluster ordering if

q.P < p.P .

4.2 Incremental OPTICS 51

Definition 4.3 (predecessor in the cluster ordering)

Let CO be a cluster ordering of D w.r.t. ε ∈ R and MinPts ∈ N. The pre-

decessor of a point p ∈ D in the cluster ordering CO, denoted by Preden(p),

is defined as follows:

Preden(p) =

 q if p.R = ReachDistden(q, p)

UNDEFINED if p.R = ∞

Intuitively, the predecessor of a point p is that point q in the cluster

ordering from which p has been “reached” during the OPTICS run, i.e. p

has been chosen at position p.P because p had the minimum reachability

distance of the not yet processed points to the already processed points,

and this minimum reachability distance was determined by q. Obviously,

that implies that p.P > q.P . If p has not been reached from any other

point, its reachability distance p.R in the cluster ordering is ∞, and thus, its

predecessor is undefined.

Definition 4.4 (successors in the cluster ordering)

Let CO be a cluster ordering of D w.r.t. ε ∈ R and MinPts ∈ N. The

successors of a point p ∈ D in the cluster ordering CO, denoted by Sucden(p),

is defined as follows:

Sucden(p) = {q ∈ CO |Preden(q) = p}.

The successors of a point p include all points in the cluster ordering that

have been “reached” from p, i.e. have been chosen at the according position

in the cluster ordering because of their reachability distances w.r.t. p. Let

us note that for each q ∈ Sucden(p), q in general comes after p in the cluster

ordering, i.e. p.P < q.P . Since there are points in the cluster ordering that

may not have a predecessor, there may also be points that do not have any

successors.

In the following, COold denotes the original cluster ordering before the

update. IncOPTICS aims at efficiently computing COnew, the new (valid)

52 4 Incremental Clustering

cluster ordering after insertion/deletion of a point u. We will create COnew by

performing a single pass over COold. During the creation, each point p keeps

its three additional attributes p.P (the position in the old/new ordering), p.C

(its new core level), and p.R (the minimal reachability distance to all points

already in COnew which can be the original reachability distance assigned

during the generation of COold, or a new value). In addition, we store the

current predecessor Preden(p) and the current successors Sucden(p).

4.2.2 Incremental Insertion of a Point

When inserting a point into a cluster ordering, the core distances of some

points may decrease. As a consequence, some reachability distances may be

not valid anymore and thus, some connections may be affected. As a con-

sequence, further points (the successors of affected points) may be affected,

too. The following definition of potential successors captures the points that

may also be affected if a point p is affected due to an insertion.

Definition 4.5 (potential successors in the cluster ordering)

Let CO be a cluster ordering of D w.r.t. ε ∈ R and MinPts ∈ N. The

potential successors of a point p ∈ D in the cluster ordering CO, denoted

by Sucpot
den(p), includes all q ∈ Nε(p), such that at least one of the following

conditions hold:

(1) q has no predecessor, i.e. Preden(q) = UNDEFINED or

(2) the original reachability distance of q is not smaller than the core

distance of p, i.e. q.R ≥ p.C or

(3) the predecessor of q is not yet added to the new cluster ordering

COnew, i.e. Preden(q) 6∈ COnew.

The potential successors are formally defined as follows:

Sucpot
den(p) = {q ∈ CO | q ∈ Nε(p) ∧
(Preden(q) = UNDEFINED ∨ q.R ≥ p.C ∨Preden(q) 6∈ COnew}.

4.2 Incremental OPTICS 53

Lemma 4.2

Let CO be a cluster ordering of D w.r.t. ε ∈ R and MinPts ∈ N, and

p ∈ COold. If p is affected during the reorganization, i.e. is part of the

reorganization, and is inserted into COnew, only the points in Sucpot
den(p) also

need to be considered for a reorganization.

Proof.

(1) Let x ∈ Sucpot
den(p):

It follows from x ∈ Nε(p) that x is reachable from p w.r.t. ε (and MinPts).

(1.1) Preden(x) = UNDEFINED:

Since x is reachable from p w.r.t. ε it is inserted into the seed list with

Preden(x) = p. Thus, there may be a new connection between x and p that

needs reorganization.

(1.2) x.R ≥ p.C:

Since x is reachable from p w.r.t. ε and the current reachability of x is greater

than the core-distance of p, it is possible, that x is also reachable w.r.t. an

ε′ which is smaller than the current reachability distance of x, i.e. ε′ < x.R.

If so, x is updated in the seed list including Preden(x) = p, and thus, there

may be a connection between x and p that needs a reorganization.

(1.3) Preden(x) 6∈ COnew:

Since x is reachable from p w.r.t. ε and the current predecessor of x is not

yet in COnew, it is possible, that x is the next point which must be inserted

into COnew with predecessor p, i.e. the predecessor of x may change.

(2) Let x 6∈ Sucpot
den(p):

(2.1) x 6∈ N (
εp):

It is clear that x is not reachable from p w.r.t. ε, thus there cannot be a

connection between x and p that needs reorganization.

(2.2) Preden(x) 6= UNDEFINED and x.R < p.C and Preden(x).P ≤ p.P :

Since x has a predecessor that comes before p in COnew, it is already in

the seed list when p is processed. Obviously, x was inserted into the seed

list at last after the processing of Preden(x). From x.R < p.C follows that

x is already reachable w.r.t. a lower ε’ than ReachDistden(p, x) because

ReachDistden(p, x) ≥ p.C and x.R < p.C. As a consequence, x will not be

updated in the seed list when p is processed and thus, p cannot become x’s

54 4 Incremental Clustering

predecessor, i.e. there cannot be any connection between x and p that needs

reorganization. 2

To determine the potential successors of p we have to perform a range

query around p. For objects that are not affected, i.e. which are taken over

from COold without changes, we do not need to compute a range query. Let

us note, that “without changes” do not imply that these points have the

same position in COold and COnew. Lemmata 4.1 and 4.2 are important to

determine the points that may be affected by an insertion. Only the points

in Changeden(u) and recursively the potential successors of affected points

may be affected and need a range query for reorganizing their reachability

connectivities.

Algorithm Insert

Now we are able to develop an incremental algorithm for the insertion of a

point u. The pseudo code of the incremental insert algorithm is depicted

in Figure 4.3. As mentioned above, we assume that for each o ∈ COold the

predecessor Preden(o) and the set of successors Sucden(o) have been correctly

determined. Preden(o) can be computed on the fly during the OPTICS run

by adopting the method OrderedSeeds::update (cf. Figure 2.10) as depicted in

Figure 4.4. The idea of the adoption is to set the predecessor of an inserted

object q to the object o from which q is actually reached. If q is decreased

in the seed list, its predecessor must be updated accordingly. Sucden(o) can

be computed after the OPTICS run from the predecessor information of the

points in the cluster ordering.

In the first step of the insertion of u, the core distances of each o ∈
Changeden(p) are updated and u is inserted into the seed list OrderedSeeds

with a reachability distance p.R = ∞. This is because it is not yet clear,

from which object u is reached in COnew.

After that, the reorganization is performed, imitating the original OP-

TICS algorithm. We manage the points that need reorganization in the seed

list. In each iteration of the reconstruction loop, we compare the next not yet

4.2 Incremental OPTICS 55

algorithm insert(Object u, ClusterOrdering COold)

// all points in COold are marked as not yet handled
u.P := n + 1;
u.C := CoreDistden(u);
COnew := empty cluster ordering;
for each o ∈ Changeden(u) do

update the core distance of o;
end for
insert u into OrderedSeeds with reachability distance ∞;
while COold contains unhandled points or OrderedSeeds 6= ∅ do

c := first not yet handled object in COold;
s := first not yet handled object in OrderedSeeds;
if s.R > c.R or (s.R = c.R and s.P > c.P) then

append c to COnew;
else

remove s from OrderedSeeds;
append s to COnew;

end if
l := the object recently appended to COnew;
mark l as handled;
if l has been chosen from OrderedSeeds or l ∈ Changeden(u) then

OrderedSeeds.update(Sucpot
den(l), l);

else
if u is not yet handled and l.C ≤ ε and dist(u, l) ≤ ε then

OrderedSeeds.update({u}, l);
end if

end if
end while

Figure 4.3: Algorithm insert for IncOPTICS.

handled point c in COold with the first point s in OrderedSeeds. The point

of c and s which has the smaller reachability distance value is appended

to COnew. If the reachability distance values of both points are equal, i.e.

c.R = s.R, we append that point having the smaller position value .P to

COnew.

After the insertion of a point l in the new cluster ordering COnew, we

have to update the seed list OrderedSeeds. This is done by the method Or-

deredSeeds::update depicted in Figure 4.4. As mentioned above, this method

is an adoption of the original method presented in Section 2.3. If the re-

cently processed point l is derived from the original cluster ordering COold,

we have to test whether the update point u has been already processed. If

56 4 Incremental Clustering

method OrderedSeeds::update(SetOfObjects objects, Object o)

for each q ∈ objects do
if q is not yet processed then

if o = null then
rdist := ∞;

else
rdist := max{o.C, dist(o, q)};

end if
if q is already contained in OrderedSeeds then

if q.R > rdist then
q.R := rdist;
decrease(q);
Preden(q) := o

end if
else

q.R := rdist;
insert(q);
if rdist < ∞ then

Preden(q) := o;
end if

end if
end if

end for

Figure 4.4: IncOPTICS: adopted method OrderedSeeds::update.

u has not been processed and l.C 6= ∞ and dist(l, u) ≤ ε, u would have

been inserted/updated in OrderedSeeds in the original OPTICS run. Thus, l

may be a potential predecessor of u and OrderedSeeds has to be updated ac-

cordingly. Other connections are not affected, since we store the points that

need reorganization in the seed list. If l is derived from OrderedSeeds or from

Changeden(u), some connections may need reorganization. Thus, all not yet

processed potential successors x ∈ Sucpot
den(l) have to be inserted/updated in

the seed list.

The reorganization stops if the original cluster ordering COold does not

contain unprocessed points any more and the seed list is empty.

Correctness

Lemma 4.3

The incremental insert algorithm is correct, i.e. produces a valid cluster

4.2 Incremental OPTICS 57

ordering w.r.t. Definition 2.12.

Proof. We have to show that COnew is valid w.r.t. Definition 2.12 after

the insertion of u. Obviously, condition (1) holds for COnew: the correct core

distance is assigned to each point. Conditions (2) and (3) in Definition 2.12,

however, need some further verification.

In order to get a valid cluster ordering, we have to ensure that at each

step of the reorganization, we choose that point having the minimum reacha-

bility distance to the already processed points. Obviously, only points that are

contained in the ε-neighborhood of at least one point coming before position

i have to be considered for the next free position i in COnew.

At the beginning of the generation of COnew, only u is in OrderedSeeds

with u.R = ∞. Thus, the first object in COnew will be the first object o in

COold because o.R = ∞ = u.R but o.P = 1 < n + 1 = u.P .

During the reorganization, we choose that not yet processed point either

from COold or OrderedSeeds having the minimum reachability distance. If

both points have equal reachability distances, we choose that point coming first

in COold (maintaining the non-deterministic order generated by the original

OPTICS run). Thus, the critical aspect for the correctness is the correct

maintenance of the current reachability distances of the points w.r.t. that

points already added to COnew. As we have seen from Lemma 4.2, only the

reachability distances of the potential successors of affected points may change

because some connectivities are reorganized. This maintenance is worked out

in the last part of the algorithm, where it is decided how to update the seed

list, depending on the last point l added into COnew.

If l has been chosen from COold and l 6∈ Changeden(u), we need no reor-

ganization, i.e. the connectivities within the old cluster ordering are locally

conserved. The only problem may be that l is a potential predecessor of u.

This can only be true if u is not yet processed and the core distance of l is

defined (i.e. l.C ≤ ε) and u ∈ Nε(l) (i.e. dist(l, u) ≤ ε). If so, we have to

update the predecessor of u in OrderedSeeds.

If l has been chosen from OrderedSeeds or l ∈ Changeden(u), a local

58 4 Incremental Clustering

reorganization takes place because in the first case, the old cluster ordering

may be altered locally, and in the second case, successors of l may need re-

organization due to the changed core distance of l. In both cases, all not yet

processed potential successors Sucpot
den(l) have to be inserted into OrderedSeeds

with current predecessor l or updated (if they are already in OrderedSeeds) in

terms of their current predecessors. Due to Lemma 4.2, no other point have

to be considered, i.e. inserted into the seed list. 2

4.2.3 Incremental Deletion of a Point

When deleting a point from a cluster ordering, the core distances of some

points may increase. Again, this may affect the reachability distances of

some points, i.e. some connections need reorganization. The reorganization

of some connections may result in further affected points. The following

definition of recursive successors captures the points that may need reorga-

nization if a point p has been reorganized due to a deletion.

Definition 4.6 (recursive successors in the cluster ordering)

Let CO be a cluster ordering of D w.r.t. ε ∈ R and MinPts ∈ N. The

recursive successor of a point p ∈ D in the cluster ordering CO, denoted by

Sucrec
den(p), is defined recursively:

(1) o ∈ Sucden(p) ⇒ o ∈ Sucrec
den(p)

(2) q ∈ Sucrec
den(p) ∧ o ∈ Sucden(q) ⇒ o ∈ Sucrec

den(p)

Algorithm Delete

Now we are able to develop an incremental algorithm for the deletion of a

point u. The pseudo code of the incremental delete algorithm is depicted

in Figure 4.5. We again assume that for each o ∈ COold the predecessor

Preden(o) and the set of successors Sucden(o) have been correctly deter-

mined.

4.2 Incremental OPTICS 59

algorithm delete(Object u, ClusterOrdering COold)

// all points in COold are marked as not yet handled
mark u as handled;
COnew := empty cluster ordering;
rs := ∅;
for each o ∈ Changeden(u) do

update the core distance of o;
insert Sucrec

den(o) into rs;
end for
OrderedSeeds.update(rs, null);
while COold contains unhandled points or OrderedSeeds 6= ∅ do

c := first not yet handled object in COold not contained in rs;
s := first not yet handled object in OrderedSeeds;
if s.R ≤ c.R or Preden(c) is not yet handled then

remove s from OrderedSeeds;
append s to COnew;

else
append c to COnew;

end if
l := the object recently appended to COnew;
mark l as handled;
if l.C ≤ ε then

OrderedSeeds.updateAll(l, ε);
OrderedSeeds.update(Sucden(l), l);

end if
end while

Figure 4.5: Algorithm delete for IncOPTICS.

In the first step of the delete method, u is marked as handled. This ensures

that u is not inserted into COnew. In addition, for each o ∈ Changeden(p)

the core distance of each o is updated and its recursive successors Sucrec
den(o)

are inserted into the seed list OrderedSeeds. For the insertion, we use the

method OrderedSeeds::update from Figure 4.4 and the null-value for the sec-

ond parameter, ensuring that the reachability distance of each inserted point

is set to ∞ and the predecessor is set to null (i.e. UNDEFINED). Thus, we

have placed all recursive successors of o ∈ Changeden(u) into the seed list

with a reachability distance of ∞ because we do not yet know from which

points they will be reached in COnew.

After that, the reorganization is worked out, again imitating the original

OPTICS algorithm and managing the points that need reorganization in the

seed list. In each iteration of the reconstruction loop, we compare the reach-

60 4 Incremental Clustering

method OrderedSeeds::updateAll(Object o, Real ε)

for each q ∈ OrderedSeeds do
if dist(o, q) ≤ ε then

rdist := max{o.C, dist(o, q)};
if rdist < q.R then

q.R := rdist;
decrease q;
Preden(q) := o;

end if
end if

end for

Figure 4.6: IncOPTICS: method OrderedSeeds::updateAll.

ability distance of the next not yet handled point c in COold which is not

contained in Changeden(u) with that of the first point s in OrderedSeeds.

If the predecessor of c (Preden(c)) is not yet processed (i.e. inserted into

COnew), c cannot be taken from COold and appended to COnew. Other-

wise, the point of c and s, having the smaller reachability distance value, is

appended to COnew.

After the insertion of a point l in the new cluster ordering COnew, we have

to update OrderedSeeds. This is done by the method OrderedSeeds::update

depicted in Figure 4.4 and OrderedSeeds::updateAll depicted in Figure 4.6. If

the recently processed point l is a core object w.r.t. the generic ε-value, then l

can become a predecessor of all points that are still in the seed list. Thus, we

have to update all points in OrderedSeeds which is worked out by the method

OrderedSeeds::updateAll. In addition, all successors of l (Sucden(l)) have to

be inserted into OrderedSeeds because they may be affected by changing

reachability distances or affected predecessors.

The reorganization stops if the original cluster ordering COold does not

contain unprocessed points any more and the seed list is empty.

Correctness

Lemma 4.4

The incremental delete algorithm is correct, i.e. produces a valid cluster

4.3 Experimental Evaluation 61

ordering w.r.t. Definition 2.12.

Proof. analogously to Lemma 4.3 2

4.2.4 Extensions for Bulk Updates

Both the insert as well as the delete methods perform one pass over the orig-

inal cluster ordering, i.e. have a runtime complexity of at least O(n). How-

ever, the great benefit is that both incremental updates save as many range

queries as possible. In addition, the incremental algorithms for insertion and

deletion of a single point can be easily extended to work on a bulk of in-

sert/delete points. The difference to the methods insert and delete is that the

core distances of all points o ∈ Changeden(u) (for all update points u) have

to be updated first. After that — in case of insertion — we simply insert all

update points into OrderedSeeds instead of only one update point. The rest of

the bulk insertion is analogously to the single insertion. In case of a deletion,

we have to insert the recursive successors Sucrec
den(o) for all o ∈ Changeden(u)

(for all update points u) into OrderedSeeds, analogously. The reorganization

loop is also identical to the single update procedure. Thus, to insert/delete a

set of nu points should be rather efficient because we do not have to perform

nu passes over the original cluster ordering but can work out the reorganiza-

tion for the nu insertions/deletions in one single pass. This is an important

advantage because bulk updates are a realistic scenario in batch mode sys-

tems such as data warehouses, i.e. databases, in which the updates are not

performed immediately but are collected and applied in a batch mode (e.g.

over night). Obviously, the bulk update algorithms are also correct.

4.3 Experimental Evaluation

We evaluated the efficiency of IncOPTICS in comparison to the original

OPTICS algorithm on several synthetic as well as on a real-world data set.

The synthetic data sets contain a diverse number of 2-dimensional feature

62 4 Incremental ClusteringInsert

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 200 300 400 500

database size (x 1000)

sp
ee

d
-u

p

AVG

MIN

(a) Insert

Delete

0

200

400

600

800

1000

1200

100 200 300 400 500

database size (x 1000)

sp
ee

d
-u

p

AVG

MIN

(b) Delete

Figure 4.7: Runtime speed-up factors of IncOPTICS vs. OPTICS.

vectors from n = 100, 000 to n = 500, 000. The real-world data set contains

around 100,000 feature vectors representing TV snapshots encoded by 64-

dimensional color histograms. We used an X-Tree [BKK96] for speeding up

the range queries for both IncOPTICS and the original OPTICS algorithm.

Since both algorithms benefit from the index structure, we did not consider

the index creation time in our runtime experiments. For each data set, we

performed 500 random inserts and 500 random deletions.

IncOPTICS gained impressing speed-up factors compared to the non-

incremental version of OPTICS. Figure 4.7 depicts the average and minimum

runtime speed-up factors in case of a single insertion/deletion w.r.t. the size

of the database. It can be observed that with growing database size, the

runtime gain is increasing from an average speed-up factor of 1.300 (n =

100, 000) to factor 8.500 (n = 500, 000) in case of insertion. In case of

deletion, the speed-up factors are slightly lower — 330 (n = 100, 000) to

nearly 1,000 (n = 500, 000). However, even in the worst case, IncOPTICS

achieved at least speed-up factors between 170 and 700. The reason for the

less high speed-up factors in case of deletions is that for more objects a new

predecessor need to be determined. Let us note that in case of a bulk update,

this effect is less significant (see below).

The main reason for this large speed-up is depicted in Figure 4.8(a) show-

ing the average number of range queries saved by IncOPTICS during one sin-

4.3 Experimental Evaluation 63
synthetic

0

2000

4000

6000

8000

10000

12000

100 200 300 400 500

database size (x 1000)

fa
ct

o
r

o
f

sa
ve

d
 r

an
g

e
q

u
er

ie
s

(i
n

se
rt

 a
n

d
 d

el
et

e
av

er
ag

ed
)

(a) Synthetic data

TV data

0

1000

2000

3000

4000

5000

6000

7000

8000

Range Queries Insert Delete

sp
ee

d
-u

p
 f

ac
to

r
(b) TV data

Figure 4.8: Results of IncOPTICS on synthetic and real-world TV data.

gle update operation. IncOPTICS achieves its significant performance gain

over OPTICS by saving from 2,000 to more than 10,000 times of the range

queries which are necessary for the original OPTICS run. This empirically

shows that the strategy of limiting the reorganization to a predefined part

of the cluster ordering is usually much more efficient than recomputing the

cluster ordering from scratch.

The experimental results on the TV data set, depicted in Figure 4.8(b),

confirms that observation. The left bar in Figure 4.8(b) illustrates the factor

of range queries saved by IncOPTICS compared to OPTICS on the TV data

(factor 7,500). The two other bars show the average speed-up factors for 500

random insertion (factor 6,000) and 500 random deletion (factor 1,800) that

IncOPTICS yields over OPTICS.

Let us note that the use of an index such as the X-Tree favors the original

OPTICS because it accelerates the computation of the range queries. If

the range queries are computed on top of the sequential scan, IncOPTICS

may most likely yield even higher speed-up factors since it saves a significant

amount of queries. This is especially important for high dimensional data sets

where the performance boost of most index structures usually deteriorate.

To test the performance of the bulk mode of IncOPTICS, we used the

synthetic data set containing 200,000 points in a 2-dimensional feature space.

We performed bulk update operations using sets of 500 to 4,000 update

64 4 Incremental Clustering

Bulk-Update
database size: 200.000

0

20

40

60

80

100

120

500 1000 1500 2000 2500 3000 3500 4000

number of update objects

ru
nt

im
e

(i
n

m
in

ut
es

)

OPTICS

IncOPTICS Insert

IncOPTICS Delete

Figure 4.9: Comparison of bulk IncOPTICS vs. OPTICS.

objects. A runtime comparison of the bulk update runs are depicted in

Figure 4.9. It can be seen that even when inserting or deleting 20% of the

database, the runtime of IncOPTICS is still significantly smaller than the

original OPTICS algorithm. In addition, it can be observed that deletions

can be worked out much faster in the bulk mode than in the single update

mode compared to insertions. The reason for this behavior is indicated in

the following. When inserting a point p of the update set, we have to check

each remaining point q in the update set if p ∈ Changeden(q). If this is the

case, q has to be inserted into the seed list. Obviously, the higher the number

of update points, the higher the probability that p ∈ Changeden(q).

4.4 Summary

Incrementally maintaining the cluster hierarchy computed by OPTICS is

a mandatory requirement for the BOSS browsing tool, desired to work in

dynamic database scenarios. In this chapter, we proposed an incremental

variant of the OPTICS algorithm called IncOPTICS that efficiently handles

insertions and deletions of points.

4.4 Summary 65

The performance of IncOPTICS is evaluated on synthetic and real-world

data sets. On the average, IncOPTICS yields rather significant speed-up fac-

tors (e.g. 8,500 for an insertion and 1,000 for a deletion, both on a database

of 500,000 points) over OPTICS. Due to our experimental results, this per-

formance gain is achieved — although IncOPTICS performs a single pass

over the cluster ordering for reconstruction — by saving unnecessary range

queries during the reorganization of the cluster ordering.

A further advantage of the proposed incremental OPTICS variant is that,

by applying very simple extensions, it can handle bulk updates rather effi-

ciently. In the presented experiments, significant speed-up factors can still be

achieved when inserting/deleting 20% of a database of 200,000 points. It can

be expected that for larger databases the results further improve. Thus, the

incorporation of IncOPTICS provides BOSS with the applicability to large

dynamic databases.

66 4 Incremental Clustering

Chapter 5

Cluster Recognition and

Representation

The BOSS prototype is supposed to enable smart and comfortable brows-

ing through a hierarchy of clusters. Thus, a second major challenge for

density-based hierarchical clustering, identified in Section 3.2, is solid cluster

recognition and intuitive cluster representation. In this chapter, we first ad-

dress the task of cluster recognition, i.e. the extraction of meaningful clusters

from a density-based cluster ordering, in Section 5.1. After a discussion of

related work about cluster extraction from hierarchical representations, we

introduce a novel approach, called GradientClustering to extract hierarchies of

clusters from a cluster ordering. Then, we present novel approaches for the

problem of finding meaningful cluster representatives in Section 5.2. A short

summary in Section 5.3 concludes this chapter. The basic ideas contained in

this chapter have been published in [BKK+03], [BJK+03], and [BKKP04].

67

68 5 Cluster Recognition and Representation

5.1 Cluster Recognition

5.1.1 Related Work

To the best of our knowledge, there are only two methods for automatic

cluster extraction from hierarchical representations such as reachability plots

or dendrograms, both are also based on reachability plots. Since clusters are

represented as valleys (or dents) in the reachability plot, the task of automatic

cluster extraction is to identify significant valleys.

The first approach proposed in [ABKS99], called ξ-clustering, is based on

the steepness of the borders of valleys in the reachability plot. Each cluster

starts with a so-called steep downward area. A steep downward area is an

interval in the cluster ordering where the reachability distances of points

strictly decreases and which is flanked by points whose reachability distance

is ξ% higher than that of their successors. Each cluster ends with a so-called

steep upward area which is defined analogously to steep downward areas. The

parameter ξ, specifying the steepness of these areas, is the input parameter of

this cluster recognition method. The method suffers from the fact that this

input parameter is difficult to understand and hard to determine. Rather

small variations of the value ξ often lead to drastic changes of the resulting

clustering hierarchy. As a consequence, this method is unsuitable for our

purpose of automatic cluster extraction.

The second approach was proposed recently by Sander et al. [SQL+03].

The authors describe an algorithm called cluster tree that automatically

extracts a hierarchical clustering from a reachability plot and computes a

cluster tree. It is based on the idea that significant local maxima in the

reachability plot separate clusters. Two parameters are introduced to decide

whether a local maximum is significant: The first parameter specifies the

minimum cluster size, i.e. how many objects must be located between two

significant local maxima. The second parameter specifies the ratio between

the reachability distance of a significant local maximum m and the average

reachability distances of the regions to the left and to the right of m. The

authors in [SQL+03] propose to set the minimum cluster size to 0.5% of the

5.1 Cluster Recognition 69

Figure 5.1: Sample nested clusters: data space (left); reachability plot

(middle); cluster hierarchy (right)

data set size and the second parameter to 0.75. They empirically show that

this default setting approximately represents the requirements of a typical

user.

Although the cluster tree method is very intuitive and rather suitable

for automatic cluster extraction from reachability plots, it has one major

drawback. Many real-world data sets consist of nested clusters, i.e. clusters

each consisting of exactly one smaller sub-cluster (cf. Figure 5.1).

Since the algorithm cluster tree runs through a list of all local maxima

(sorted in descending order of reachability distance) and decides at each local

maximum m whether m is significant to split the objects to the left of m and

to the right of m into two clusters, the algorithm cannot detect such nested

clusters. These clusters cannot be split by a significant maximum. Figure

5.1 illustrates this fact. The nested cluster A contains the sub-cluster B

which itself contains the sub-cluster C (the clusters are indicated by dashed

lines in the reachability plot). The algorithm cluster tree will only find

cluster A since there are no local maxima to split clusters B and C. This

makes the algorithm unsuitable for the intended BOSS system. Obviously,

the cluster tree algorithm was designed to help an unexperienced user to

get a quick overview of the most significant parts of the cluster hierarchy and

to prevent the user from getting overwhelmed by potentially uninteresting

details. However, in the desired BOSS system — especially for the similarity

70 5 Cluster Recognition and Representation

search application — we want to extract the details of the cluster hierarchy

and not missing out some small clusters or the split of a larger cluster into

smaller sub-clusters.

In addition, also the ξ-clustering will only detect one of the clusters A,

B or C depending on the ξ-parameter but will fail to detect the cluster

hierarchy.

Thus, for the purposes of BOSS, we need a new cluster recognition algo-

rithm that should meet the following requirements:

• It should detect all kinds of sub-clusters, including nested sub-clusters.

• It should create a clustering structure which is close to the one an

experienced user would manually extract from a given reachability plot.

• It should allow an easy integration into the OPTICS algorithm. We do

not want to apply an additional cluster recognition step after the OP-

TICS run is completed. In contrast, the hierarchical clustering struc-

ture should be created on-the-fly during the OPTICS run without caus-

ing any considerable additional cost.

• It should be integrable into the incremental version of OPTICS.

5.1.2 Gradient Clustering

In this section, we introduce our new GradientClustering algorithm which ful-

fills all of the above mentioned requirements. The idea behind our new cluster

extraction algorithm is based on the concept of inflection points. During the

OPTICS run we decide for each point added to the result set, i.e. the reacha-

bility plot, whether it is an inflection point or not. If it is an inflection point,

we might be at the start or at the end of a new cluster. We store the possible

starting points of the sub-clusters in a stack, called startP ts. This stack

consists of pairs (o.P, o.R). Our GradientClustering algorithm can easily be

integrated into OPTICS and is described in full detail after we have formally

introduced the new concept of inflection points.

5.1 Cluster Recognition 71

g(x,y)

x y z

g(y,z)

y.R - x.R
z.R - y.R

w w

Figure 5.2: Gradient vectors ~g(x, y) and ~g(y, z) of objects x, y and z adja-

cent in the cluster ordering.

In the following, we assume that CO is a cluster ordering as defined in

Definition 2.12. We call two objects o1, o2 ∈ CO adjacent in CO if o2.P =

o1.P + 1 or vice versa. Let us recall that o.R is the reachability distance

of o ∈ CO assigned by OPTICS while generating CO. For any two objects

o1, o2 ∈ CO adjacent in the cluster ordering, we can determine the gradient of

the reachability distances o1.R and o2.R. The gradient can easily be modeled

as a 2D vector where the y-axis measures the reachability distances (o1.R and

o2.R) in the ordering, and the x-axis represents the ordering of the objects.

If we assume that each object in the ordering is separated by width w, the

gradient of o1 and o2 is the vector

~g(o1, o2) =

(
w

o2.R− o1.R

)
.

An example for a gradient vector of two objects x and y adjacent in a cluster

ordering is depicted in Figure 5.2.

Intuitively, an inflection point should be an object in the cluster ordering

where the gradient of the reachability distances changes significantly. This

significant change indicates a starting or an end point of a cluster.

Let x, y, z ∈ CO be adjacent, i.e. x.P + 1 = y.P = z.P − 1. We can

now measure the differences between the gradient vector ~g(x, y) and ~g(y, z)

by computing the cosinus function of the angle between the vectors ~g(x, y)

and ~g(z, y) = (−w, y.R − z.R)T. The cosinus of this angle is equal to −1

72 5 Cluster Recognition and Representation

if the angle is 180◦, i.e. the vectors have the same direction. On the other

hand, if the gradient vectors differ a lot, the angle between them will be

clearly smaller than 180◦ and thus the cosinus will be significantly greater

than −1. This observation motivates the concepts of inflection index and

inflection points:

Definition 5.1 (inflection index) Let CO be a cluster ordering and x, y, z ∈
CO be objects adjacent in CO. The inflection index of y, denoted by II(y), is

defined as the cosinus of the angle between the gradient vector of x, y (~g(x, y))

and the “inverse” gradient vector of y, z (~g(z, y)), formally:

II(y) = cos ϕ(~g(x,y),~g(z,y)) =
−w2 + (y.R− x.R)(y.R− z.R)

‖~g(x, y)‖ ‖~g(z, y)‖
,

where ‖~v‖ :=
√

v2
1 + v2

2 is the length of the vector ~v.

Definition 5.2 (inflection point) Let CO be a cluster ordering and x, y, z ∈
CO be objects adjacent in CO and let t ∈ R (t ∈ [−1, 1]). Object y is an

inflection point iff

II(y) > t.

The concept of inflection points is suitable to detect objects in CO which

are interesting for extracting clusters.

Definition 5.3 (gradient determinant) Let CO be a cluster ordering and

x, y, z ∈ CO be objects adjacent in CO. The gradient determinant of the

gradients ~g(x, y) and ~g(z, y) is defined as

gd(~g(x, y), ~g(z, y)) :=

∣∣∣∣∣∣ w −w

x.R− y.R z.R− y.R

∣∣∣∣∣∣ .
If x, y, z are clear from the context, we use the short form gd(y) for the

gradient determinant gd(~g(x, y), ~g(z, y)).

The sign of gd(y) indicates whether y ∈ CO is a starting point or end

point of a cluster. In fact, we can distinguish the following two cases which

are visualized in Figure 5.3:

5.1 Cluster Recognition 73

n o p
.

a c d x y zwb

cluster ordering

reachability

cluster Dcluster C

cluster B

cluster A

Figure 5.3: Illustration of inflection points measuring the angle between

the gradient vectors of objects adjacent in the ordering.

• II(y) > t and gd(y) > 0:

Object y is either a starting point of a cluster (e.g. object a in Figure

5.3) or the first object outside of a cluster (e.g. object z in Figure 5.3).

• II(y) > t and gd(y) < 0:

Object y is either an end point of a cluster (e.g. object n in Figure 5.3)

or the second object inside a cluster (e.g. object b in Figure 5.3).

Let us note that a local maximum m ∈ CO, which is the cluster separation

point in [SQL+03], is a special form of the first case (i.e. II(m) > t and

gd(m) > 0).

The threshold t is independent from the absolute reachability distances

of the objects in CO. The influence of t is also very comprehensible because

if we know which values for the angles between gradients are interesting, we

can easily compute t. For example, if we are interested in angles < 120◦ and

> 240◦, we set t = cos 120◦ = −0.5.

Obviously, the gradient clustering algorithm is able to extract narrow-

ing clusters. Our experimental comparisons with the cluster tree and ξ-

clustering methods in Section 5.1.3 confirm this observation.

74 5 Cluster Recognition and Representation

The pseudo code of the GradientClustering algorithm is depicted in Figure

5.11 on page 86. Initially, the first object of the cluster ordering CO is pushed

to the stack of starting points startP ts. Whenever a new starting point is

found, it is pushed to the stack. If the current object is an end point, a new

cluster is created, containing all objects between the starting point on top of

the stack and the current end point. Starting points are removed from the

stack if their reachability distance is lower than the reachability distance of

the current object. Clusters are created as described above for all removed

starting points as well as for the starting point which remains in the stack.

The input parameter MinPts determines the minimum cluster size and

the parameter w influences the gradient vectors and proportionally depends

on the reachability distances of the objects in CO. In fact, a good solution is

to normalize all reachability distance values within the interval [0, 1] and set

w = 0.5. The normalization can be achieved on the fly during the OPTICS

run by computing o.Rnorm := o.R/ε for each o ∈ CO, where the reachability

distance after a jump (i.e. for an object for which no predecessor exists) is set

to ε instead of ∞. We used this proceeding throughout all our experiments.

Let us note that the GradientClustering algorithm can also easily inte-

grated into IncOPTICS, the incremental version of OPTICS proposed in

Chapter 4. The reason for this is that IncOPTICS constructs the new (up-

dated) cluster ordering step by step similar to the original OPTICS algo-

rithm.

5.1.3 Experimental Evaluation

We evaluated both the effectiveness and efficiency of our approach using two

real-world test data sets. The first one contains approximately 200 CAD

objects from a German car manufacturer, and the second one is a sample

of the Protein Databank (PDB) [BWF+00] containing approximately 5,000

protein structures. We tested on a workstation featuring a 1.7 GHz CPU

and 2 GB RAM.

5.1 Cluster Recognition 75

Car data Protein data

recognized
clusters

a)

b)

c)

o.R

7

6

5

o.R

7

6

5

o.R

7

6

5

o.R

4

3

2

o.R

4

3

2

o.R

4

3

2

Figure 5.4: Clusters found on car parts and proteins by: a) GradientClus-

tering, b) ξ-Clustering, c) cluster tree

Effectivity

Both the Car and the Protein data set exhibit the commonly seen quality of

unpronounced but nevertheless to the observer clearly visible clusters. The

corresponding reachability plots of the two data sets are depicted in Figure

5.4.

Figure 5.4c shows that the cluster tree-algorithm does not find any

clusters at all in the Car data set with the suggested default ratio-parameter

of 75% [SQL+03]. In order to detect clusters in the CAR data set, we had

to adjust the ratio-input parameter to 95%. In this case, the cluster tree-

algorithm detected some clusters but missed out on some other important

clusters and did not detect any cluster hierarchies at all. If we have rather

high reachability distances, e.g. values between 5-7 as in Figure 5.4 for the

Car data set, the ratio-parameter for the cluster tree-algorithm should be

higher than for smaller values. In the case of the Protein data set, we detected

76 5 Cluster Recognition and Representation

200 car parts 5,000 protein molecules

ξ-clustering 0.221 s 5.057 s

cluster tree 0.060 s 1.932 s

Gradient Clustering 0.310 s 3.565 s

Table 5.1: CPU time for cluster recognition.

several clusters with the default parameter setting, but again missed out

on some important clusters. Generally, in cases where a reachability graph

consists of rather high reachability distances or does not present peaks at

all, but clusters are formed by smooth troughs in the waveform, this cluster

recognition algorithm is unsuitable. Furthermore, it is inherently unable to

detect nested clusters where a cluster has one sub-cluster of increased density

(cf. Figure 5.1).

On the other hand, the ξ-clustering approach successfully recognizes some

clusters while also missing out on significant sub-clusters (cf. Figure 5.4b).

This algorithm has some trouble recognizing cluster structures with a sig-

nificant differential of ”steepness”. For instance, in Figure 5.1 it does not

detect the nested cluster B inside of cluster A because it tries to create steep

down-areas containing as many points as possible. Thus, it will merge the

two steep edges if their steepness exceeds the threshold ξ. On the other hand,

it is able to detect cluster C within A.

Finally, we look at our new Gradient Clustering algorithm. Figure 5.4a

shows that the recognized cluster structure is close to the intuitive one, which

an experienced user would manually derive. Clusters which are clearly dis-

tinguishable and contain more than MinPts elements are detected by this

algorithm. Not only does it detect a lot of clusters, but it also detects a lot

of meaningful cluster hierarchies consisting of nested sub-clusters.

To sum up, in all our tests the GradientClustering algorithm detected

much more clusters than the other two approaches without producing any

redundant and unnecessary cluster information.

5.2 Cluster Representation 77

Efficiency

In all our tests we first created the reachability plots and then applied the

algorithms for cluster recognition and representation. Let us note that we

can also have integrated the GradientClustering into the OPTICS run without

causing any noteworthy overhead.

The overall runtimes for the three different cluster recognition algorithms

are depicted in Table 5.1. Our new GradientClustering algorithm does not

only produce the most meaningful results, but also in sufficiently short time.

This is due to its runtime complexity of O(n).

5.2 Cluster Representation

Many partitioning clustering algorithms are known to use means or medoids

as cluster representatives. The mean — also called centroid — is not suitable

for cluster representation, since it is usually an artificial object not contained

in the database. For complex objects (e.g. CAD parts, proteins), it may

be quite difficult or even impossible to display a centroid. The medoid of

a cluster C is the closest object to the mean of all objects in C. If k > 1

representatives should be generated, one could simply choose the k closest

objects to the centroid of C as representatives.

The choice of medoids as cluster representative is somehow questionable.

Obviously, if C is not of convex shape, the medoid is not really meaningful.

An extension of this approach coping with the problem of clusters with

non-convex shape is the computation of k medoids by applying a k-medoid

clustering algorithm to the objects in C. The clustering using a k-medoid

algorithm is rather efficient due to the expectation that the clusters are much

smaller than the whole data set. This approach can also be easily extended

to cluster hierarchies. At any level the k-medoid clustering algorithm can

be applied to the merged set of objects from the child clusters or — due

to performance reasons — merge the medoids of child clusters and apply k-

medoid clustering on this merged set of medoids. However, the questionable

78 5 Cluster Recognition and Representation

Figure 5.5: Representing clusters by superimposing all contained objects.

representative power of medoids for clusters of arbitrarily shaped clusters

still remains.

In this section, we present two new approaches to determine represen-

tative objects for clusters computed by OPTICS. A simple approach could

be to superimpose all objects of a cluster to build the representative as it

is depicted in Figure 5.5. However, this approach has the huge drawback

that it is only applicable to image data. In addition, the representatives on

a higher level of the cluster hierarchy become rather unclear. Therefore, we

choose real objects of the data set as cluster representatives.

In the following, CO denotes the cluster ordering (cf. Definition 2.12)

from which we want to extract clusters. A cluster C ⊆ CO will be represented

by a set of k objects of the cluster, denoted as Rep(C). The number of

representatives k can be a user defined number or a number which depends

on the size and data distribution of the cluster C.

5.2.1 The Minimum Core Distance Approach

Beside taking medoids, the second approach to choose representative objects

of hierarchical clusters uses the density-based clustering notion of OPTICS.

The core distance o.C = Core(o) of an object o ∈ CO (cf. Definition 2.10)

5.2 Cluster Representation 79

B
J

A

I
K

L

R

M

N

C

D E

G

H
S

U

V

PPP

Figure 5.6: Illustration of the minimum core distance approach.

indicates the density of the surrounding region. The smaller the core distance

of o, the denser the region surrounding o. This observation lead us to the

choice of the object having the minimum core distance as representative of

the respective cluster. Formally, Rep(C) can be computed as:

Rep(C) := {o ∈ C | ∀x ∈ C : o.C ≤ x.C}.

We choose the k objects with the minimum core distances of the cluster

as representatives. An example is illustrated in Figure 5.6. For MinPts = 3

and k = 1, we choose object P as representative of the cluster containing the

white objects.

The straightforward extension for cluster hierarchies is to choose the k

objects from the merged child clusters having the minimum core distances.

Let us note that the choice of the object having the minimum core distance

is not determinate because more than k points may have the minimum core

distance in a cluster.

5.2.2 The Maximum Successors Approach

The third approach to choose representative objects of hierarchical clusters

also uses the density-based clustering notion of OPTICS, but in a more so-

phisticated way. In fact, it makes use of the density connected relationships

between points established by the OPTICS algorithm.

80 5 Cluster Recognition and Representation

A

B

D

E

C

F

G

1.6

1.9

1.5

2.3

1.7
2.1

SIRC(A) = 0.385

SIRC(B) = 1.067

SIRC(C) = 0.303

SIRC(D) = 0

SIRC(E) = 0.37

SIRC(F) = 0

SIRC(G) = 0

Figure 5.7: Sample successor graph for a cluster of seven objects.

As described in Section 2.3, the result of OPTICS is an ordering of the

database, minimizing the reachability distance relation. At each step of the

ordering, the object o having the minimum reachability distance w.r.t. the al-

ready processed objects before o in the ordering is chosen. Thus, if the reach-

ability distance of object o is not ∞, it is determined by ReachDistden(p,o)

where p is a unique object located before o in the cluster ordering. In Defi-

nition 4.3 p is defined as the predecessor of o (Pre(o) = p). Based on that

concept, the set of successors of an object o (Sucden(o)) was formalized in

Definition 4.4.

We observed in Section 4.2 that objects may have no predecessor, e.g.

each object having a reachability distance of ∞ does not have a predecessor,

including the first object in the ordering. On the other hand, some objects

may have more than one successor. In that case, some other objects have

no successors. An object and its successors need not to be adjacent in the

ordering.

We can model the successor-relationship among points within each cluster

as a directed successor graph where the nodes are the points of one cluster and

a directed edge from object o to s represents the relationship s ∈ Sucden(o).

Each edge (x, y) can further be labeled by ReachDistden(x, y) (= y.R). A

sample successor graph is illustrated in Figure 5.7.

For the purpose of computing representatives of a cluster, these objects

having many successors are interesting. Roughly speaking, these objects

are responsible for the most connections within a cluster. The reachability

5.2 Cluster Representation 81

distance values of these connections further indicate the distance between

the objects. In the example cluster visualized in Figure 5.7, object B is

responsible for the most connections since its node in the successor graph

has the most outgoing edges.

Our third strategy selects the representatives of clusters by maximizing

the number of successors and minimizing the according reachability distances.

For this purpose, we compute for each object o of a cluster C the Sum of

the Invers Reachability distances of the successors of o within C, denoted

by SirC(o):

SirC(o) :=


0 if Sucden(o) = ∅∑
s∈Sucden(o),

s∈C

1

1+ReachDistden(o,s)
otherwise.

We add 1 to ReachDistden(o,s) in the denominator to weight the impact

of the number of successors over the significance of the reachability values.

Based on SirC(o), the representatives can be computed as follows:

Rep(C) := {o ∈ C | ∀x ∈ C : SirC(o) ≥ SirC(x)}.

In Figure 5.7, the Sir-values of some objects of the depicted successor graph

for a cluster of seven objects are computed. Since D has no successors,

SirC(D) is zero. In fact, object B has the highest Sir-value, indicating the

central role of B in the cluster: B has three successors with relatively low

reachability distance values. Our third strategy selects object B as represen-

tative for the cluster.

An illustration of the maximum successor approach is presented in Figure

5.8. For MinPts = 3 and k = 1, we choose object L as representative of the

cluster, containing the white objects (recall that the minimum core distance

approach choose P).

Let us note that there is no additional overhead to compute the reach-

ability distances ReachDistden(o,Sucden(o)) for each o ∈ CO since these

values have been computed by OPTICS during the generation of CO and

ReachDistden(o,Sucden(o)) = Sucden(o).R. Furthermore, the result of our

82 5 Cluster Recognition and Representation

J

A

IB
K

R

M

P N

C

D E

G

H
S

OPTICS run

LLL
U

V

Figure 5.8: Illustration of the maximum successor approach.

selection obviously depends on the order in which the points are processed

by OPTICS.

If we want to select k representatives for C, we simply have to choose the

k objects with the maximum SirC value.

5.2.3 Experimental Evaluation

After a cluster recognition algorithm has analyzed the data, algorithms for

cluster representation can help to get a quick visual overview of the data.

With the help of representatives, large sets of objects may be characterized

through a single object of the data set. We extract sample clusters by ap-

plying the GradientClustering algorithm as described in Section 5.1 to the car

parts and protein data sets in order to evaluate the different approaches for

cluster representatives. In our tests we set the number of representatives to

k = 1.

The objects of one cluster from the car data set are displayed in Figure

5.9, and the objects of one cluster from the protein data set are displayed in

Figure 5.10. The annotated objects are the representatives computed by the

respective algorithm. Both, the Maximum Successor and the Minimum Core

Distance approaches give good results. Despite the slight inhomogeneity of

the clusters, both representatives sum up the majority of the elements within

the clusters. This cannot be said of the representatives computed by the

5.2 Cluster Representation 83

Figure 5.9: A cluster of CAD objects with corresponding representative

objects.

commonly used medoid method which selects objects from the trailing end

of the cluster. These two clusters and their corresponding representatives are

no isolated cases, but reflect our general observations. Nevertheless, there

have been some rare cases where the medoid approach yielded the more

intuitive representative than the other two approaches. As a consequence,

we suggest to use all three approaches within the BOSS system.

If we allow a higher number of representatives, for instance k = 3, it might

be better to display the representatives of all three approaches to reflect the

content of the cluster, instead of displaying the three best representatives of

one single approach.

84 5 Cluster Recognition and Representation

Figure 5.10: A cluster of proteins with corresponding representative ob-

jects.

5.3 Summary

Solid cluster extraction from reachability plots and meaningful cluster rep-

resentation is the heart of our interactive data browsing tool BOSS.

In this chapter, we first proposed a novel approach for cluster recognition

that overcomes the problems of existing approaches. For BOSS, it is desir-

able to find a considerable high number of hierarchically organized clusters to

make data browsing sensible. According to this consideration, the proposed

cluster extraction algorithm GradientClustering empirically outperforms the

recent approaches to cluster extraction. The experimental evaluation con-

firming this result is based on two real-world data sets, a CAD car data set

and a protein structure data set.

5.3 Summary 85

Secondly, we investigated two novel approaches to cluster representation

in this chapter. We proposed the Minimum Core Distance approach and

the Maximum Successor approach. Both based on the concepts of density

connected hierarchical clustering underlying the OPTICS algorithm. Exper-

iments on the car parts database and the protein structure database indicate

that both approaches can outperform the simple approach of medoids in

terms of intuitive cluster representation. However, we suggest to try always

all three approaches of cluster representation. In fact, we integrated all three

approaches into the BOSS system.

86 5 Cluster Recognition and Representation

algorithm GradientClustering(ClusterOrdering CO, Integer MinPts, Real t)

startPts := emptyStack;
setOfClusters := emptySet;
currCluster := emptySet;

o := CO.getFirst(); // first object is a starting point
startPts.push(o);
while o.hasNext() do // for all remaining objects

o := o.next;
if o.hasNext() then

if II(o) > t then // inflection point
if gd(o) > 0 then

if currCluster.size() ≥ MinPts then
setOfClusters.add(currCluster);

end if
currCluster := emptySet;
if startPts.top().R ≤ o.R then

startPts.pop();
end if
while startPts.top().R < o.R do

setOfClusters.add(set of objects from startPts.top() to last end point);
startPts.pop();

end while
setOfClusters.add(set of objects from startPts.top() to last end point);
if o.next.R < o.R then // o is a starting point

startPts.push(o);
end if

else
if o.next.R > o.R then // o is an end point

currCluster := set of objects from startPts.top() to o;
end if

end if
end if

else // add clusters at end of plot
while not startPts.isEmpty() do

currCluster := set of objects from startPts.top() to o;
if (startPts.top().R > o.R) and (currCluster.size() ≥ MinPts) then

setOfClusters.add(currCluster);
end if
startPts.pop();

end while
end if

end while
return setOfClusters;

Figure 5.11: Pseudo code of the GradientClustering algorithm.

Chapter 6

BOSS: Browsing OPTICS Plots

for Similarity Search

In this chapter, we describe the application features of the BOSS prototype.

Some technical details of the BOSS implementation are discussed in Section

6.1. Some sample applications of BOSS are presented in Section 6.2, includ-

ing a visual data mining application using protein data and the application of

BOSS to evaluate similarity models for voxelized CAD data. A demonstra-

tion of the BOSS prototype has been published in [BKK+04]. The chapter

concludes with a short summary in Section 6.3.

87

88 6 BOSS: Browsing OPTICS Plots for Similarity Search

OPTICS

Cluster Recognition

Cluster Representation

Similarity Model

BOSS Client

Object Data Visualization Data

VRML JPEG

Browser

DB1 DBn

BOSS Server

Client Side

Data Repository

Server Side

Figure 6.1: BOSS distributed architecture.

6.1 System Architecture

The development of the industrial prototype BOSS is a first step towards

developing a comprehensive, scalable and distributed computing solution,

designed to make the efficiency of OPTICS and the analytical capabili-

ties of BOSS available to a broader audience. BOSS is implemented as a

client/server system allowing users to provide their own data locally along

with an appropriate similarity model (cf. Figure 6.1).

The data provided by the user will be comprised of the objects to be

clustered as well as a data set to visualize these objects, e.g. VRML files

for CAD data (cf. Figure 6.2) or JPEG images for multi-media data. Since

this data resides on the user’s local computer and is not transmitted to the

server, heavy network traffic can be avoided. In order for BOSS to be able to

interpret this data, the user must supply his own similarity model with which

the reachability data can be calculated. Thus, BOSS can bee also seen as a

clustering web service providing all the benefits of BOSS via a web interface.

The independence of the data processing and the data specification en-

ables maximum flexibility. Further flexibility is introduced through the sup-

6.1 System Architecture 89

Figure 6.2: BOSS screenshot.

port of external visual representation. As long as the user is capable of

displaying the visualization data in a browser, e.g. by means of a suitable

plug-in, the browser will then load web pages generated by BOSS, displaying

the appropriate data. Thus, multimedia data such as images or VRML files

can easily be displayed (cf. Figure 6.2). By externalizing the visualization

procedure, we can resort to approved software components which have been

specifically developed for displaying objects of the same type as the objects

within our clusters.

Figure 6.2 shows a screen shot of the BOSS system where a user evaluates

different similarity models. The BOSS application in the background displays

four different reachability plots of the same data, generated by using different

similarity models. In the foreground, a web browser displays the objects of

a cluster of one reachability plot which is marked by the user.

90 6 BOSS: Browsing OPTICS Plots for Similarity Search

cluster 1 cluster 2

Figure 6.3: OPTICS plot of the protein data set.

6.2 Sample Applications

6.2.1 Visual Data Mining

We applied BOSS to a part of the Protein Data Bank (PDB) [BWF+00]

comprising the 3D structural information of about 5,000 proteins (this se-

lection was application specific and done by a domain expert). The protein

structures where transformed into feature vectors using the similarity model

proposed in [AKKS99, KKS98]. A biological expert used BOSS for visually

mining through the underlying part of the PDB, in particular, to visual-

ize the resulting clusters for semi-automatic cluster analysis. The resulting

reachability plot generated by OPTICS is visualized in Figure 6.3. We used

GIF images to visualize the proteins. Some resulting clusters are depicted

in Figure 6.4 (cluster 1) and Figure 6.5 (cluster 2). Based on the cluster

analysis, several new and interesting insights into the PDB where gained.

For example, cluster 1 exhibits several structural similarities among proteins

that were previously unknown to our user. Cluster 2 contains variants of the

same protein which is combined with different ligands in each data entry. In

fact, the information of cluster 2 enabled our user to prune the redundant

variants of this protein for further analysis. With the help of BOSS, the

6.2 Sample Applications 91

Figure 6.4: Sample cluster 1 found on the protein database.

analysis of the clustering results was rather user-friendly. The big advantage

of BOSS is its applicability to a broad variety of data sets as long as the

data objects comprise a suitable visualization that can be handled by a stan-

dard browser. In fact, the semi-automatic cluster analysis is dramatically

simplified by using BOSS.

6.2.2 Evaluation of Similarity Models

We also applied BOSS to a CAD database containing voxelized car parts

in order to evaluate several similarity models for voxelized CAD data. We

compared the three space partitioning models presented in [KKM+03] and

the object partitioning model presented in [KBK+03].

The space partitioning models are based on a partitioning of the data

space into buckets or cells. In our case, since the data objects are voxelized

(i.e. are represented as a set of voxels), the three-dimensional data space was

partitioned by using an axis-parallel grid of fixed cell width. Each cell of the

three-dimensional grid corresponds to one or more attributes of the resulting

92 6 BOSS: Browsing OPTICS Plots for Similarity Search

Figure 6.5: Sample cluster 2 found on the protein database.

feature vectors that represent the voxelized parts. The models differ in the

kind of features that are extracted from each cell:

• The Volume Model extracts the proportion of the object’s volume in

each cell as feature (i.e. the number of object voxels normalized by the

total number voxels in each cell).

• The Solid Angle Model extracts the mean value of Solid-Angle values

of the object’s surface voxels in each cell as feature (the value is 0 if no

voxel is in the according cell and 1 if the according cell contains voxels

of an object but no surface voxels). The Solid Angle value [Con86] is

a measurement for the convexity or concavity of surfaces.

• The Eigen Value Model extracts the three eigen values of the object

voxels in each cell as features. The resulting feature vector contains

three times more attributes than grid cells.

The object partitioning model is based on a decomposition of the object

by means of covers [Jag91]. Each object is transformed in a sequence of cover-

6.2 Sample Applications 93

(a) Volume Model (b) Solid Angle Model

(c) Eigen Value Model (d) Vector Set Model

Figure 6.6: Reachability plots computed by OPTICS using different simi-

larity models.

segments that cover the object perfectly. The Vector Set Model [KBK+03]

extracts several features for each cover-segment of one object. Since the data

objects are composed of several such cover-segments, they are represented

as a set of feature vectors, each representing a single cover-segment. A suit-

able distance function on sets of feature vectors is defined in [KBK+03] for

similarity search purposes.

Using BOSS, the evaluation of these four models turned out to be rather

easy because the clustering power of each model is revealed at a glance and

BOSS allows a comparative analysis of the resulting cluster hierarchy. The

four reachability plots are visualized in Figure 6.6. The contents of some

sample clusters in the plots are depicted in Figure 6.7. As it can be seen in

Figure 6.6(a), the Volume Model is rather unsuitable for the car data set.

The according clustering structure computed by OPTICS does not reveal

94 6 BOSS: Browsing OPTICS Plots for Similarity Search

Class A

Class A2

Class A1

Class G

Class G2

Class G1

Class E

Class D

Class F

Class B

Class C

Figure 6.7: Contents of the clusters detected in Figure 6.6.

any clusters. Slightly better results are achieved by the Solid Angle Model

(cf. Figure 6.6(b)). At least, clusters A, B, and C can be detected. However,

when we browsed the clusters with BOSS, it turned out that all three clusters

contained additional parts that are not intuitively similar. On the other hand,

the Eigen Value Model reflects the intuitive notion of similarity rather well.

Many classes of car parts are detected, even the hierarchy of the objects in

cluster G split in sub-clusters G1 and G2 is detected (cf. Figure 6.6(c)).

Finally, the Vector Set Model reflects the intuitive notion of similarity best.

Using this model, OPTICS detects the most clusters (cf. Figure 6.6(d)) and

the most hierarchical structure. However, the difference between the Eigen

Value Model and the Vector Set Model is only marginal.

In summary, the evaluation of the similarity models using OPTICS is

6.3 Summary and Discussion 95

rather objective and is extremely simplified by BOSS.

6.3 Summary and Discussion

In this chapter, we introduced some details regarding the implementation of

BOSS. In addition, we outlined two sample applications of BOSS. The first is

an application to visual data mining. We used BOSS for semi-automatic clus-

ter analysis of a database of protein structures. BOSS significantly simplifies

this procedure of extracting valuable knowledge. The second application of

BOSS was to evaluate different similarity models for voxelized CAD data.

We compared four different models using a database of car parts. Again,

BOSS significantly simplifies this evaluation and allows the deduction of im-

portant hints for the usability of each model. The evaluation of the models

using hierarchical clustering is much more objective than applying sample k-

nn queries because all data objects are taken into account for the evaluation

rather than some sample (random) data objects.

96 6 BOSS: Browsing OPTICS Plots for Similarity Search

Part III

Adopting Density-Based

Clustering to High Dimensional

Data

97

Chapter 7

Clustering High Dimensional

Data

Clustering high dimensional data is usually a difficult task. In fact, most tra-

ditional (“full dimensional”) clustering algorithms tend to break down when

applied to high dimensional feature spaces. The reasons for this behavior is

also known by the term curse of dimensionality and are worked out within

this chapter in Section 7.1. Since the importance of clustering high dimen-

sional data is steadily increasing with new data generation capabilities, new

approaches have been developed recently to address this problem. Section

7.2 provides a general classification of these approaches. Section 7.3 outlines

two motivating examples and describes some data sets used as an evaluating

test bed for the methods proposed in the next chapters.

99

100 7 Clustering High Dimensional Data

7.1 The Curse of Dimensionality

In this section, we will explore some general properties of high dimensional

feature spaces that have an impact on the performance of clustering algo-

rithms. These phenomena are usually summed up by the term curse of

dimensionality. Let us note that there are several properties contributing to

the curse of dimensionality that may be missed in this section, but are less

important in the context of this thesis.

Observation 7.1 The probability that points are located at the border of the

data space increases with growing dimensionality.

The correctness of this observation can be made clear with the following

considerations. If we assume uniform distribution of the data points inside

a hypercube with side length 1, i.e. D ⊆ [0, 1]d (cf. Figure 7.1 left), the

volume of such a data space is 1d = 1. The probability Psurface(r) that a

point randomly taken from a uniform and independent distribution in a d-

dimensional space has a distance of r or below to the space boundary can be

determined as given below:

Psurface(r) = 1− (1− 2 · r)d.

As it is shown in Figure 7.1 (right), the probability that a point is inside

a 10% border of the data boundary rapidly increases with growing dimen-

sionality. For d = 3 dimensions, Psurface(0.1) is already 0.488% and reaches

0.965% for d = 15 dimensions.

Observation 7.2 In high dimensional feature spaces, the ε-neighborhoods of

the points will most likely exceed the boundaries of the data space.

Due to Observation 7.1, the points tend to be located nearer to the boundaries

of the data space with increasing dimensionality. As a consequence the hyper-

sphere of the ε-range query of these points, growing with each dimension,

will exceed the boundaries of the data space. Since density-based clustering

7.1 The Curse of Dimensionality 101

0 1

1

0.90.1

0.1

0.9

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35 40

dimension

P surface(0,1)

Figure 7.1: Probability of a point near by the data space boundary.

works on top of ε-neighborhoods, this observation may cause problems. If

the points are located at the boundary of the data space, the ε-neighborhood

of these points are usually “smaller” because they exceed the boundaries of

the data space, i.e. the probability that they contain a certain number of

points decreases.

The first two observations have an impact on the density-based clustering

notion. However, the next observation challenges the entire idea of clustering

in high dimensional feature spaces.

Observation 7.3 In high dimensional feature spaces, the furthest neighbor

of a point is usually as far as the nearest neighbor.

In [HAK00] the authors experimentally show that with growing dimensional-

ity the concept of density tends to become meaningless because nearest and

furthest neighbors of objects tend to be no more discriminable. Concepts

like nearest neighbor or ε-neighborhood also tend to become meaningless in

high dimensional spaces. The general consequence of this observation is that

clustering makes no sense in high dimensional feature spaces because the

data objects usually do not cluster any more but are sparsely distributed.

102 7 Clustering High Dimensional Data

Most clustering methods mentioned in Section 2.1 compute “full dimen-

sional” clusters in a given feature space, i.e. each dimension of this fea-

ture space is equally weighted when computing the distance between points.

These approaches are successful for low-dimensional feature spaces. How-

ever, in higher dimensional feature spaces, their accuracy and/or efficiency

deteriorates significantly due to the curse of dimensionality; in particular due

to Observation 7.3.

7.2 General Approaches for Clustering High

Dimensional Data

As we have seen in the previous section, clustering high dimensional data is

usually a hopeless task because in high dimensional feature spaces, the data

objects do not cluster anymore. In addition, many features may be irrelevant

and/or strongly correlated. Nevertheless, clustering such high dimensional

data is mandatory in many applications. Thus, novel clustering approaches

especially developed for high dimensional data are necessary.

A common approach to cope with high dimensional feature spaces in

many contexts including clustering is the application of a dimensionality

reduction technique before clustering. Dimensionality reduction techniques

such as Principal Component Analysis (PCA) map all objects of the data

set onto a particular subspace while minimizing the loss of information. A

standard clustering method can then be used to compute clusters in this

subspace. However, if different subsets of the objects cluster well on different

subspaces of the feature space, a dimensionality reduction will most likely

fail. An example is visualized in Figure 7.2: two subsets of a 3-dimensional

data set are projected onto two different 2-dimensional subspaces. One subset

can be clustered well when projected onto the subspace spanned by the x-

/y-axes, whereas it is scattered significantly along the z-axis. The second

subset clusters well in the projection on the subspace spanned by the y-/z-

axes and scatters significantly along the x-axis. The application of a global

dimensionality reduction method on this sample data set would yield a rather

7.2 General Approaches for Clustering High Dimensional Data 103

y

x

y

z

Figure 7.2: Sample projected clusters in different subspaces.

high loss of information or may not yield an appropriate, significantly lower

dimensional subspace.

In general, global feature reduction techniques cannot be applied when

different subsets of features are irrelevant in different subgroups of data ob-

jects. As a consequence, in recent years several original approaches have

been investigated to solve the problem of clustering high dimensional data.

These approaches try to incooperate the task of feature selection within the

clustering procedure. In the following, we give a classification of these ap-

proaches. The basis of these approaches is that points in a high dimensional

feature space usually cluster in (different) subspaces of this feature space.

Projected clustering. The goal of projected clustering is to compute a

flat partition of the data into k projected clusters, i.e. to assign a unique

cluster-ID to each data point. Intuitively, a projected cluster is a set of points

in a high dimensional feature space, having a low variance in one or more

(but not all) attributes, and a higher but arbitrary variance in the remaining

attributes. Projected clustering methods map each cluster to its associated

subspace, allowing more flexibility than global methods projecting the entire

data set onto a single subspace. The subspace of a particular cluster may in

general vary significantly from the subspaces of the other clusters. Objects

not belonging to any projected cluster should be classified as noise. Figure

7.2 illustrates two projected clusters in a sample 3-dimensional space spanned

by attributes {x, y, z}. One subset of points (indicated by dots) cluster in the

104 7 Clustering High Dimensional Data

1
2

3
4

6

5

1

3

6

4

2
5

B

A C

D

Figure 7.3: Sample objects cluster differently in varying subspaces.

projection onto subspace {y, z} whereas the rest of the points cluster in the

projection onto subspace {x, y}. In Section 9.5.2, we will propose a density-

based approach for the projected clustering problem as a specialization of

correlation clustering (see below).

Subspace clustering. While the projected clustering approach is more

flexible than dimensionality reduction, it suffers from the fact that the infor-

mation of objects which are clustered differently in varying subspaces is lost.

Figure 7.3 illustrates this problem using a feature space of four attributes A,

B, C, and D. In the subspace {AB} the objects 1 and 2 cluster together with

objects 3 and 4, whereas in the subspace {CD} they cluster with objects 5

and 6. Either the information of the cluster in subspace {AB} or in sub-

space {CD} will be lost. In recent years, the task of subspace clustering was

introduced to overcome these problems. Subspace clustering is the task of

automatically detecting clusters in subspaces of the original feature space. In

Chapter 8, we introduce density-based approaches to the subspace clustering

problem.

Pattern-based clustering. Projected clustering algorithms and subspace

clustering algorithms search for dense regions in subsets of the entire feature

space. The similarity between points is measured using the distance of the

points in the according subspace. Thus, these approaches are sometimes also

called distance-based methods. However, a more general kind of similarity

can also be rather interesting in several applications. Using such a more gen-

7.2 General Approaches for Clustering High Dimensional Data 105

attribute 1 attribute 2 attribute 3 attribute 4

x

x
x

x

attribute 1 attribute 2 attribute 3

x

x
x

Figure 7.4: Transposed view (left) and pattern-based cluster (right) of some

sample database objects.

eral similarity notion, pattern-based clustering algorithms search for groups

of points that exhibit a similar tendency (or pattern) in a subset of their

attributes. An example similar pattern could be a common shift of the at-

tribute values. The absolute attribute values need not to be similar, so the

resulting clusters need not to be dense in the according subspace. However,

subspace clusters that exhibit a certain density can be seen as a special case

of a pattern-based cluster. A common shift can be easily visualized by a

so-called transposed view of the data points, i.e. a 2-dimensional view where

the attributes are plotted along the x-axis, and the value of each attribute is

plotted along the y-axis. Then, pattern-based clusters can be visually seen as

points that exhibit a common pattern in a subset of their attributes. An ex-

ample is illustrated in Figure 7.4. The transposed view of four 4-dimensional

points are depicted on the left. Three of these objects form a pattern-based

cluster because they exhibit a common pattern in the first three attributes

(cf. Figure 7.4(right)).

Correlation clustering. Correlation clustering is a mixture of distance-

based approaches and pattern-based methods. Projected clustering algo-

rithms and subspace clustering algorithms are usually not able to capture

local data correlations and find clusters of correlated objects. The princi-

pal axes of correlated data are arbitrarily oriented. In contrast, projected

and subspace clustering techniques only find axis-parallel projections of the

106 7 Clustering High Dimensional Data

(a) 3-dimensional view (b) Transposed view

Figure 7.5: A 2-dimensional correlation plane in a 3-dimensional feature

space.

data. Similar limitations hold for pattern-based algorithms that detect only

positive linear correlations but cannot detect negative correlations nor corre-

lations where one attribute is determined by two or more attributes. Figure

7.5 illustrates such an example where the 3-dimensional data points exhibit

a 2-dimensional linear correlation (which can be seen as a 2-dimensional

hyperplane in Figure 7.5(a)). In particular, two attributes are independent,

whereas the third attribute is a linear combination of the first two attributes.

The transposed view of this set does not exhibit a common pattern (cf. Figure

7.5(b)). Finding such sets of points that exhibit both, density and arbitrary

linear correlation, is the task of correlation clustering. In Chapter 9, we

introduce a density-based correlation clustering approach.

7.3 Sample Applications

We will focus on two applications of clustering high dimensional data which

are described in the following. We will evaluate the methods that will be

proposed in the following using data sets from these applications. Let us

note that both applications come from molecular biology and are of great

practical impact.

7.3 Sample Applications 107

7.3.1 Gene Expression Analysis

Proteins are the building blocks of cells in living organisms. It is mandatory

for cells to produce identical copies of proteins in a large amount. The

blueprints to produce such identical copies are coded in the genes. The

protein production is a very complex procedure, so we will give only a short

overview of the mechanism. First, the gene that codes for the requested

protein is “read” and transcribed into an intermediate, called messenger RNA

(mRNA). This procedure is called gene expression. In a second step, parts

of this mRNA are translated into a copy of the desired protein or may have

other functionalities within the organism. Roughly speaking, the so-called

expression level of a gene is a measurement for the frequency the gene is

expressed, i.e. transcribed into its mRNA product. Thus, the expression

level of a gene allows conclusions about the current amount of the protein in

a cell the gene codes for.

Micro-array chip technologies enable biologists to measure the expression

level of thousands of genes simultaneously under different conditions or in

different tissues. Usually, gene expression data appears as a matrix where

the rows represent genes, and the columns represent samples (e.g. different

experiments, time slots, test persons, etc.). The value of the i-th feature of

a particular gene is the expression level of this gene in the i-th sample (cf.

Figure 7.6 left). Figure 7.6 (right) shows a visualization of a raw data matrix

from a real gene expression experiment.

It is interesting from a biological point of view to cluster both the rows

(genes) and the columns (samples) of the matrix, depending on the research

scope. Clustering the genes is the method of choice if one searches for

co-expressed genes, i.e. genes, whose expression levels are similar, and co-

regulations between genes, i.e. linear dependencies between the expression

levels of genes. Co-expression and co-regulation usually indicates that the

genes are functionally related. Throughout this thesis, we will focus on clus-

tering genes to find co-expressions and co-regulations between genes.

When clustering the genes to detect co-expressed genes, one has to cope

with the problem that usually the co-expression of the genes can only be

108 7 Clustering High Dimensional Data

samples (e.g. time slots)

genes
expression level

of this gene in the
according sample

Figure 7.6: Gene expression data matrix: schematic view (left), visualiza-

tion of a sample raw data excerpt (right).

detected in subsets of the samples. Moreover, genes may have several different

functions that are needed in different subsets of the samples. In other words,

different subsets of the attributes (samples) are responsible for different co-

expressions of the genes. Let us note that when clustering the samples to

identify e.g. homogeneous groups of patients, this situation is even worse. As

various phenotypes (e.g. hair color, gender, cancer type, etc.) are hidden in

varying subsets of the genes, the samples could usually be clustered differently

according to these phenotypes, i.e. in varying subspaces.

As a consequence, from the biological point of view, it is interesting to ap-

ply a projected clustering algorithm to find co-expressed genes. In addition,

it is even more interesting to apply a subspace clustering method to gene

expression data. The information of varying co-expressions of genes under

different conditions or in different tissues is necessary to understand the reg-

ulation of gene expression and the interaction of the encoded proteins which

are both key information for many industrial applications such as drug de-

sign. Last but not least, correlation clustering could be applied to find linear

dependencies of genes (i.e. co-regulations between genes). The information

of co-regulation is also very important to understand the regulation of gene

expression.

7.3 Sample Applications 109

Table 7.1: Summarization of gene expression data sets.

Data set Number of genes (n) Number of samples (d) Reference

Spellman 4381 24 [SSZ+98]

Tavazoie 2884 17 [THC+99]

In this thesis, we will validate the proposed methods using two benchmark

gene expression data sets. Both data sets study the mitotic cell cycle of yeast,

a reference organism for molecular biology, and are derived from a time series

experiment.

The first data set (CDC15 mutant set from [SSZ+98]), in the following

referred to as “Spellman” data, is suitable to detect co-expressions. Thus, it

was used to validate the subspace clustering algorithms proposed in Chapter

8. It contains the expression level of 6,000 genes measured at 24 different time

slots. Since some genes have missing expression values and the handling of

missing values in gene expression analysis is a non-trivial task, we eliminated

those genes from our test data set. The resulting data set contains around

4,400 genes expressed at 24 different time slots.

The second data set [THC+99], in the following referred to as “Tavazoie”

data, is suitable for detecting co-regulations. Thus it was used to validate

the correlation clustering algorithm. The expression levels of approximately

3,000 genes are measured at 17 different time slots.

Table 7.1 summerizes the features of both gene expression sets used for

evaluation in this thesis.

The resulting clusters are evaluated in terms of functional relationships of

the genes in the same cluster. A cluster is regarded as biologically meaningful

if it contains a significant amount of functionally related genes. We tested the

genes according to the following three biologically proven criteria, indicating

that two genes are functionally related:

1. known direct interactions of the genes or the according gene products,

2. known common complexes of the genes or the according gene products,

110 7 Clustering High Dimensional Data

3. participation of the according gene products in common pathways.

We used the publicly available Saccharomyces Genome Database (SGD)[Sac]

for this analysis.

Let us note that the validation of the clustering results on gene expres-

sion data sets is sometimes delicate. The data generation procedure is rather

error-prone. Thus, gene expression data is usually very noisy, and may lead

to several meaningless clusters. Nevertheless, the detection of homogeneous

clusters containing functionally related genes is significant and confirms the

accuracy of the according clustering method. Since both data sets contain

several genes of yet unknown functions, cluster analysis has also some pre-

dictive power for the functions of these genes.

Both test data sets were clustered using OPTICS in the full-dimensional

space. The resulting clusters did not contain a significant amount of func-

tional related genes.

7.3.2 Metabolic Screening of Newborns

The metabolome is the entirety of metabolites in a cell or organism. Sub-

stances that are imported into cells or organisms (e.g. food) are usually

converted through a tremendous cascade of biochemical reactions. Consec-

utive sequences of such reactions are called metabolic pathways that are

directed and controlled by special proteins called enzymes. Genetic diseases

may cause the presence or absence of particular enzymes and thus, some

undesired reactions may take place or some necessary reactions do not. The

resulting (“metabolic”) diseases may heavily affect the organisms.

Biologists and medical researchers try to investigate these diseases by

so-called metabolic screenings. A metabolic screening measures the concen-

tration of dedicated metabolites in the blood of patients. Unfortunately, the

information about the relationships of metabolism concentration and disease

is rather small. However, pioneering projects like the Bavarian metabolic

newborn screening [LNRvK+02] are first steps to get a data set of sufficient

7.4 Summary 111

Table 7.2: Class distribution of the Metabolome data set.
Class Number of newborns

control 1.400

LCHAD 60

MCAD 53

PKU 306

others 181

information of the relationships of metabolite concentration and metabolic

diseases. Data mining methods such as cluster analysis are a key step to ex-

tract useful information and thus to gain new insights for medical treatment

of metabolic diseases. In particular, the application of a correlation cluster-

ing algorithm is important to find correlations between the concentrations

of the metabolites, significant for a special disease. In addition, correlation

clustering is needed in the future to find new groups of newborns suffer-

ing from unknown diseases. This would provide important information for

the analysis of the huge metabolic screening data collected by the newborn

screening program in Bavaria, Germany [LNRvK+02].

In this thesis, we will validate the proposed correlation clustering method

using a small part of the metabolome screening data set of [LNRvK+02], in

the following referred to as “Metabolome” data set. It measures the con-

centrations of 43 metabolites in the blood of 2,000 human newborns. The

newborns were labeled according to some specific metabolic diseases such as

PKU. The distribution of classes are summarized in Table 7.2. The healthy

newborns are labeled with “control”. The aim of the cluster analysis is to dis-

tinguish the predefined classes of this benchmark data set in a best possible

way.

7.4 Summary

In this section, we outlined the need of original clustering approaches for

high dimensional data. First, we discussed some phenomena occurring in

112 7 Clustering High Dimensional Data

high dimensional feature spaces which are known by the term curse of di-

mensionality. We observed, that points usually do not cluster anymore when

the data dimensionality increases but tend to cluster in subspaces of the

original feature space. After that, we classified the clustering approaches

designed especially for high dimensional data. In particular, we identified

four classes of methods: projected clustering, subspace clustering, pattern-

based clustering, and correlation clustering. Last but not least, we described

two sample real-world applications where these new approaches play a cen-

tral role in data analysis: gene expression analysis and metabolic screening.

Both applications demand the clustering of high dimensional feature data

that usually cannot be worked-out by traditional (Full-dimensional) cluster-

ing algorithms. We also introduced two gene expression data sets and one

metabolic screening data set that will serve as benchmark data sets used

in the evaluation of the methods that will be presented in the consecutive

chapters.

Chapter 8

Subspace Clustering

Subspace clustering is getting increasing attention from the research com-

munity. In this chapter, we propose a density-based solution to the sub-

space clustering problem. First, we review and discuss recent subspace clus-

tering algorithms in Section 8.1. Then, we investigate the foundations of

density-based subspace clustering in Section 8.2, presenting an extension of

the (traditional) density-based concepts to subspace clustering. Based on

these concepts, the density-based subspace clustering algorithm SUBCLU

and its semi-hierarchical extension RIS is introduced in Section 8.3 and Sec-

tion 8.4, respectively. The concepts presented in this chapter are major ex-

tensions of the material published in [KKKW03] and [KKK04]. The chapter

is concluded by a short summary in Section 8.5.

113

114 8 Subspace Clustering

8.1 Related Work

Recent work has been done to tackle the problem of subspace clustering. In

the following, current approaches are reviewed with no claim on complete-

ness.

One of the first approaches to subspace clustering is CLIQUE (CLustering

In QUEst) [AGGR98]. CLIQUE is a grid-based algorithm using an Apriori -

like method to recursively navigate through the set of possible subspaces in

a bottom-up way. The data space is first partitioned by an axis-parallel grid

into equi-sized blocks of width ξ called units. Only units whose densities

exceed a threshold τ are retained. Both ξ and τ are the input parameters of

CLIQUE. The bottom-up approach of finding such dense units starts with

1-dimensional dense units and is based on the monotonicity of dense units.

The recursive step from (k − 1)-dimensional dense units to k-dimensional

dense units takes (k−1)-dimensional dense units as candidates and generates

the k-dimensional units by self-joining all candidates having the first (k −
2) dimensions in common. All generated candidates which are not dense

are eliminated. For efficiency reasons, a pruning criterion called coverage is

introduced to eliminate dense units lying in less “interesting” subspaces as

soon as possible. For deciding whether a subspace is interesting or not, the

Minimum Description Length principle is used. Naturally, this pruning bears

the risk of missing out some information. After generating all “interesting”

dense units, clusters are found as a maximal set of connected dense units. For

each k-dimensional subspace, CLIQUE takes all dense units of this subspace

and computes disjoint sets of connected k-dimensional units. These sets are

in a second step used to generate minimal cluster descriptions. This is done

by covering each set of connected dense units with maximal regions and

then determining the minimal cover. The worst-case runtime complexity of

CLIQUE is O(n · d + cd) for some constant c [AGGR98].

A slight modification of CLIQUE is the algorithm ENCLUS (ENtropy-

based CLUStering) [CFZ99]. The major difference is the criterion used for

subspace selection. The criterion of ENCLUS is based on entropy computa-

tion of a discrete random variable. The entropy of any subspace S is high

8.1 Related Work 115

when the points are uniformly distributed in S whereas it is lower the more

closely the points in S are packed. Subspaces with an entropy below an

input threshold ω are considered as suitable for clustering. A monotonicity

criterion is presented, enabling the use of a similar bottom-up algorithm as

in CLIQUE [CFZ99].

A more significant modification of CLIQUE is presented in [GNC99] and

[NGC01], introducing the algorithm MAFIA (Merging of Adaptive Finite

IntervAls). MAFIA uses adaptive, variable-sized grids in each dimension. A

dedicated technique based on histograms which aims at merging grid cells is

used to reduce the number of bins compared to CLIQUE. An input param-

eter α is used as a so-called cluster dominance factor to select bins which

are α-times more densely populated (relative to their volume) than the av-

erage. The algorithm starts to produce such one-dimensional dense units

as candidates and proceeds recursively in higher dimensions. In contrast to

CLIQUE, MAFIA uses any two k-dimensional dense units to construct a

new (k+1)-dimensional candidate as soon as they share an arbitrary (k−1)-

face (not only first dimensions). As a consequence, the number of generated

candidates is much larger compared to CLIQUE. Neighboring dense units

are merged to form clusters. Redundant clusters, i.e. clusters that are true

subsets of higher dimensional clusters, are removed.

A big drawback of all these methods is caused by the use of grids. In

general, grid-based approaches heavily depend on the positioning of the grids.

Figure 8.1(a) illustrates this problem for CLIQUE: Each grid by itself is not

dense, if τ > 4, and thus, the cluster C is not found. On the other hand, if

τ = 4, at least a part cluster C is found but the cell with four objects in the

lower right corner just above the x-axis is reported as a cluster. In fact, we

have to set τ = 1 in order to detect the complete cluster C. Entire clusters

or parts of it may also be missed if they are inadequately oriented or shaped.

In [PJAM02] a mathematical definition of an “optimal projected cluster”

is presented along with a Monte Carlo algorithm called DOC (Density-based

Optimal projective Clustering) to compute an approximation of such an opti-

mal projected cluster. Using the user-specified input parameters w and α, an

116 8 Subspace Clustering

C

(a) CLIQUE

w

w

w

w

(b) DOC

Figure 8.1: Illustration of drawbacks of existing subspace clustering algo-

rithms.

optimal projected cluster is defined as a set of points C ⊆ D associated with

a subspace of dimensions S ⊆ A such that C is α-dense (i.e. contains more

than α% points of the database) and the projection of C onto the subspace

spanned by S must be contained in a hyper-cube of width w. In all other

dimensions ai 6∈ S the points in C are not contained in a hyper-cube of width

w. The proposed algorithm DOC takes a random seed point and computes

an optimal set of dimensions S for this seed from a randomly taken subset of

D. All points that are within distance w in the projection onto S from the

seed point are included into the cluster C. The algorithm has to be applied

multiple times to find several subspace clusters.

DOC only finds approximations of subspace clusters, because it gener-

ates projected clusters of width 2w. In addition, no assumption on the

distribution of points inside C and thus inside the hyper-cube of width w

in the subspace spanned by S is made. The reported projected clusters may

contain additional noise objects, especially when the size of the projected

cluster is considerably smaller than 2w. Furthermore, the reported clusters

may miss some points that naturally belong to the projected cluster, espe-

cially when the size of the projected cluster is considerably larger than 2w.

8.2 Foundations of Density-Based Subspace Clustering 117

Both problems are illustrated in Figure 8.1(b). The runtime of DOC applied

to a d-dimensional data set of n points for finding a single “optimal” pro-

jected cluster is O(n · dc) where c is a constant, depending on the two input

parameters [PJAM02].

8.2 Foundations of Density-Based Subspace

Clustering

In this section, we formalize the notion of density-based subspace clustering

by adapting the density-based clustering concepts to the subspace cluster-

ing problem. After that, we will explore monotonicity properties for these

concepts.

8.2.1 Adapting Density-Based Concepts to Subspace

Clustering

The concepts of density-based clustering as described in full details in Section

2.3 are defined for “full-dimensional” clustering. In the following, we adopt

these definitions to the problem of subspace clustering in order to develop a

density-based subspace clustering method.

We start with the basic concept of a projected ε-neighborhood.

Definition 8.1 (ε-neighborhood in a subspace)

Let ε ∈ R, S ⊆ A and o ∈ D. The ε-neighborhood of o in S, denoted by

N S
ε (o), is defined by

N S
ε (o) = {x ∈ D | dist(πS(o), πS(x)) ≤ ε}.

Based on the definition of ε-neighborhood in a subspace, the core point

property in a subspace is straightforward.

118 8 Subspace Clustering

Definition 8.2 (core point in a subspace)

A point o ∈ D is a core point in a subspace S ⊆ A w.r.t. ε ∈ R and

MinPts ∈ N, denoted by CoreS
den(o), if its ε-neighborhood in S contains at

least MinPts objects, formally:

CoreS
den(o) ⇔ |N S

ε (o) | ≥ MinPts.

Let us note that the acronym den in the definition refers to the density

parameters ε and MinPts. In the following, we omit the parameters ε and

MinPts wherever the context is clear and use den instead.

Direct density reachability in a subspace can then be defined as follows.

Definition 8.3 (direct density reachable in a subspace)

A point p ∈ D is directly density reachable from q ∈ D in a subspace S ⊆ A
w.r.t. ε ∈ R and MinPts ∈ N, denoted by DirReachS

den(q, p), if q is a core

point in S and p is an element of N S
ε (q), formally:

DirReachS
den(q, p) ⇔ CoreS

den(q) ∧ p ∈ N S
ε (q).

Direct density reachability in a subspace is obviously symmetric only for

pairs of core points in a subspace.

Definition 8.4 (density reachable in a subspace)

A point p ∈ D is density reachable from q ∈ D in a subspace S ⊆ A
w.r.t. ε ∈ R and MinPts ∈ N, denoted by ReachS

den(q, p), if there is a chain

of points p1, . . . , pn ∈ D, p1 = q, pn = p such that pi+1 is directly density

reachable from pi, formally:

ReachS
den(q, p) ⇔

∃p1, . . . , pn ∈ D : p1 = q ∧ pn = p ∧
∀i ∈ {1, . . . , n− 1} : DirReachS

den(pi, pi+1).

8.2 Foundations of Density-Based Subspace Clustering 119

Density reachability in a subspace is obviously the transitive enclosure of

direct density reachability in a subspace, but it is still only symmetric for a

pair of core points in a subspace.

Definition 8.5 (density connected in a subspace)

A point p ∈ D is density connected to a point q ∈ D in a subspace S ⊆ A
w.r.t. ε ∈ R and MinPts ∈ N, denoted by ConnectS

den(q, p), if there is a

point o such that both p and q are density reachable from o, formally:

ConnectS
den(q, p) ⇔

∃o ∈ D : ReachS
den(o, q) ∧ ReachS

den(o, p).

Density connected in a subspace is symmetric in general.

Definition 8.6 (density connected set in a subspace)

A non-empty subset C ⊆ D is called a density connected set in a subspace

S ⊆ A w.r.t. ε ∈ R and MinPts ∈ N, denoted by ConSetS
den(C) if all

objects in C are density connected in S, formally:

ConSetS
den(C) ⇔ ∀p, q ∈ C : ConnectS

den(p, q).

Density connected clusters in a subspace can then be defined as given

below.

Definition 8.7 (density connected cluster in a subspace)

A non-empty subset C ⊆ D is called a density connected cluster in a subspace

S ⊆ A w.r.t. ε ∈ R and MinPts ∈ N, denoted by ClusterS
den(C), if C is a

density connected set in S and C is maximal w.r.t. density-reachability in S,

formally:

ClusterS
den(C) ⇔

(1) Connectivity: ConSetS
den(C)

120 8 Subspace Clustering

(2) Maximality: ∀p, q ∈ D : q ∈ C ∧ReachS
den(q, p) ⇒ p ∈ C.

A flat density-based decomposition of a database in a subspace is defined

as follows.

Definition 8.8 (flat density-based decomposition in a subspace)

A flat density-based decomposition w.r.t. ε ∈ R and MinPts ∈ N of D in

a subspace S ⊆ A is a decomposition DS
den of D into k ≥ 1 subsets such that

k − 1 subsets are density connected sets in S and the k-th (possible empty)

set contains the noise points, formally:

DS
den = {C1, . . . , Ck−1, N} where

¬ClusterS
den(N) ∧ ∀i ∈ {1, . . . , k − 1} : Ci 6= ∅ ∧ClusterS

den(Ci).

Let us note that by adopting the full-dimensional density-based clustering

notion, our subspace clustering notion is able to detect subspace clusters of

different size and shape. In addition, we can obviously compute a density

decomposition in a subspace S by applying DBSCAN to the projection of D
onto S.

8.2.2 Monotonicity Properties

To use an efficient strategy for the search through all possible subspaces, we

have to examine monotonicity properties of density-based clusters. We start

with core points in a subspace.

Lemma 8.1 (monotonicity of core points)

Let ε ∈ R, MinPts ∈ N, and S ⊆ A. If o ∈ D is a core point in subspace

S, o is also a core point in any projection T ⊂ S, formally:

∀T ⊂ S : CoreS
den(o) ⇒ CoreT

den(o).

8.2 Foundations of Density-Based Subspace Clustering 121

Proof.

CoreS
den(o)

⇔ |N S
ε (o) | ≥ MinPts

⇔ |{x | dist(πS(o), πS(x)) ≤ ε}| ≥ MinPts

⇔ |{x | p

√√√√√dim[S]∑
i=1

(π{ai}(o)− π{ai}(x))p ≤ ε}| ≥ MinPts

(T⊂S)⇒ |{x | p

√√√√√dim[T]∑
i=1

(π{ai}(o)− π{ai}(x))p ≤ ε}| ≥ MinPts

⇔ |{x | dist(πT (o), πT (x)) ≤ ε}| ≥ MinPts

⇔ |N T
ε (o) | ≥ MinPts

⇔ CoreT
den(o).

2

Based on the monotonicity of core points, we can examine the monotonic-

ity of direct density reachable.

Lemma 8.2 (monotonicity of direct density reachable)

Let ε ∈ R, MinPts ∈ N, and S ⊆ A. If a point q ∈ D is direct density

reachable from a point o ∈ D in S, q is also direct density reachable from o

in any projection T ⊂ S, formally:

∀T ⊆ S : DirReachS
den(o, q) ⇒ DirReachT

den(o, q).

Proof.

DirReachS
den(o, q)

⇔ CoreS
den(o) ∧ q ∈ N S

ε (o)

⇔ CoreS
den(o) ∧ dist(πS(o), πS(q)) ≤ ε

⇔ CoreS
den(o) ∧ p

√√√√√dim[S]∑
i=1

(π{ai}(o)− π{ai}(q))
p ≤ ε

122 8 Subspace Clustering

(T⊆S), Lemma 8.1
=⇒

CoreT
den(o) ∧ p

√√√√√dim[T]∑
i=1

(π{ai}(o)− πai
(q))p ≤ ε

⇔ CoreT
den(o) ∧ dist(πT (o), πT (q)) ≤ ε

⇔ CoreT
den(o) ∧ q ∈ N T

ε (o)

⇔ DirReachT
den(o, q).

2

Based on the monotonicity of direct density reachable, we can examine

the monotonicity of density reachable.

Lemma 8.3 (monotonicity of density reachable)

Let ε ∈ R, MinPts ∈ N, and S ⊆ A. If a point q ∈ D is density reachable

from a point o ∈ D in S, q is also density reachable from o in any projection

T ⊂ S, formally:

∀T ⊆ S : ReachS
den(o, q) ⇒ ReachT

den(o, q).

Proof.

ReachS
den(o, q)

⇔ ∃p1, . . . , pn ∈ D : p1 = o ∧ pn = q ∧ ∀i ∈ {1, . . . , n− 1} :

DirReachS
den(pi, pi+1)

(T⊆S), Lemma 8.2
=⇒ ∃p1, . . . , pn ∈ D : p1 = o ∧ pn = q ∧

∀i ∈ {1, . . . , n− 1} : DirReachT
den(pi, pi+1)

⇔ ReachT
den(o, q).

2

Based on the monotonicity of density reachable, we can prove the mono-

tonicity of density connected.

8.2 Foundations of Density-Based Subspace Clustering 123

o

p

q

A

B

A

B

p

q

(a) p and q are density connected by o

o

p

q

A

B

A

B

p

q

(b) p and q are not density connected

Figure 8.2: Monotonicity of density connected (the circles indicate the ε-

neighborhoods, MinPts = 4).

Lemma 8.4 (monotonicity of density connected)

Let ε ∈ R, MinPts ∈ N, and S ⊆ A. If a point q ∈ D is density connected

to a point o ∈ D in S, q is also density connected to o in any projection

T ⊂ S, formally:

∀T ⊆ S : ConnectS
den(o, q) ⇒ ConnectT

den(o, q).

Proof.

ConnectS
den(o, q)

⇔ ∃x ∈ D : ReachS
den(x, o) ∧ReachS

den(x, q)
(T⊆S), Lemma 8.3

=⇒ ∃x ∈ D :

ReachT
den(x, o) ∧ReachT

den(x, q)

⇔ ConnectT
den(o, q).

2

The monotonicity of density connected is illustrated in Figure 8.2. In

Figure 8.2(a), p and q are density connected via o in the subspace spanned

124 8 Subspace Clustering

by attributes A and B, i.e. subspace {A, B}. Thus, p and q are also den-

sity connected via o in each subspace {A} and {B} of {AB}. The inverse

conclusion is depicted in Figure 8.2(b): p and q are not density connected in

subspace {B}. Thus, they are also not density connected in the superspace

{AB}, although they might be density connected in subspace {A}.

Lemma 8.5 (monotonicity of density connected sets)

Let ε ∈ R, MinPts ∈ N, and S ⊆ A. If a non-empty subset C ⊆ D is a

density connected set in S, it is also a density connected set in any projection

T ⊂ S, formally:

∀T ⊆ S : ConSetS
den(C) ⇒ ConSetT

den(C).

Proof.

ConSetS
den(C)

⇔ ∀o, q ∈ C : ConnectS
den(o, q)

(T⊆S), Lemma 8.4
=⇒ ∀o, q ∈ C : ConnectT

den(o, q)

⇔ ConSetT
den(C).

2

Although density connected sets are monotonic, density connected clus-

ters are not monotonic in general as we will see in the next section. Never-

theless, the monotonicity properties presented in this section provide a solid

basis for an efficient subspace clustering algorithm.

8.3 Density-Based Subspace Clustering

8.3.1 General Idea

A straightforward approach for density-based subspace clustering would be

to run DBSCAN in all possible subspaces to detect all density connected

8.3 Density-Based Subspace Clustering 125

p

C

A

B

q

MinPts = 4

Figure 8.3: Visualization of a density connected cluster C loosing its max-

imality w.r.t. density reachability in a subspace.

clusters. The problem is that the number of subspaces is O(2d). A more

effective strategy would be to use the clustering information of previous sub-

spaces in the process of generating all clusters and drop all subspaces that

cannot contain any density connected clusters.

Unfortunately, density connected clusters are not monotonic, i.e. if C ⊆
D is a density connected cluster in subspace S ⊆ A, it need not to be a

density connected cluster in any T ⊆ S. The reason for this is that in T

the density connected cluster C needs not to be maximal w.r.t. density

reachability any more. There may be additional points which are not in

C but are density-reachable in T from a point in C. Figure 8.3 illustrates

this fact on a simple 2-dimensional example. The density connected set C

(containing point q) in the 2-dimensional subspace spanned by attributes A

and B (containing the points painted in black) obviously does not contain

point p (painted in white) but is maximal w.r.t. density reachability, i.e. C

is a density connected cluster in subspace S = {A, B}. On the other hand, in

the projection onto subspace T = {A} ⊆ {A, B}, point p is obviously density

reachable from q, and thus belongs to the same cluster. As a consequence,

the density connected set C is not maximal w.r.t. density reachability any

more, i.e. it is not a cluster for itself but a part of a cluster in T .

However, density connected sets are monotonic (cf. Lemma 8.5). In fact,

126 8 Subspace Clustering

if C ⊆ D is a density connected set in subspace S ⊆ A, then C is also a

density connected set in any subspace T ⊆ S.

The inversion of Lemma 8.5 is the key idea for an efficient bottom-up

algorithm to detect the density connected sets in all subspaces of high dimen-

sional data. Due to this inversion, we do not have to examine any subspace

S if at least one Ti ⊂ S contains no cluster (i.e. a density connected set). On

the other hand, Figure 8.3 not only visualizes that clusters are not monotonic

but also gives us a hint what can happen with a density connected cluster

when we add a dimension: some points (in this example p) may disappear,

or (not illustrated in Figure 8.3) a cluster may be split in several subclusters.

Thus, if all Ti ⊂ S contain clusters, we have to test whether the clusters in

all Ti ⊂ S are conserved in S. However, all points that are noise in Ti are

also noise in S. As a consequence, we do not need to consider noise objects

in Ti when we generate the clusters in S.

8.3.2 Algorithm SUBCLU

SUBCLU is based on a bottom-up, greedy algorithm to detect the density-

connected clusters in all subspaces of high dimensional data. The algorithm

is presented in Figure 8.4. We use the procedure DBSCAN(D, S, ε,MinPts)

to compute a flat density connected decomposition of D in subspace S w.r.t.

ε and MinPts. In addition, the following data structures are used (cf. Figure

8.4):

• CS denotes the set of all density connected clusters of D in subspace

S (w.r.t. ε and MinPts) and can be computed by the procedure

DBSCAN(D, S, ε,MinPts) (the input parameters ε and MinPts are

fixed), i.e. CS := DBSCAN(D, S, ε,MinPts). Let us note, that CS is

the density-based decomposition of D in S (DS
den) without the noise

set.

• Sk denotes the set of all k-dimensional subspaces containing at least

one cluster, i.e. Sk := {S | dim[S] = k ∧ CS 6= ∅}.

8.3 Density-Based Subspace Clustering 127

algorithm SUBCLU(SetOfObjects D, Real ε, Integer MinPts)

/* STEP 1 Generate all 1-D clusters */
S1 := ∅;
C1 := ∅;
for each ai ∈ A do
C{ai} := DBSCAN(D, {ai}, ε,MinPts);
if C{ai} 6= ∅ then
S1 := S1 ∪ {ai};
C1 := C1 ∪ C{ai};

end if
end for

/* STEP 2 Generate (k + 1)-D clusters from k-D clusters */
k := 1;
while Sk 6= ∅ do

CandSk+1 := GenerateCandidateSubspaces(Sk);

for each cand ∈ CandSk+1 do
bestSubspace := min

T∈Sk∧T⊂cand

∑
Ci∈CT |Ci|

Ccand := ∅;
for each cluster cl ∈ CbestSubspace do
Ccand = Ccand ∪DBSCAN(cl, cand, ε,MinPts);
if Ccand 6= ∅ then
Sk+1 := Sk+1 ∪ cand;
Ck+1 := Ck+1 ∪ Ccand;

end if
end for

end for
k := k + 1

end while

Figure 8.4: The SUBCLU algorithm.

• Ck denotes the set of sets of all clusters in k-dimensional subspaces, i.e.

Ck := {CS | dim[S] = k}.

We begin with generating all 1-dimensional clusters by applying DBSCAN

to each 1-dimensional subspace (STEP 1 in Figure 8.4).

For each detected cluster we have to check whether this cluster is (or parts

of it are) still existent in higher dimensional subspaces. Due to Lemma 8.5

no other clusters can exist in higher dimensional subspaces. Thus, for each

k-dimensional subspace S ∈ Sk, we search all other k-dimensional subspaces

T ∈ Sk (T 6= S) having (k − 1) attributes in common and join them to

generate (k + 1)-dimensional candidate subspaces (STEP 1 of the procedure

128 8 Subspace Clustering

method GenerateCandidates(SetOfSubspaces Sk)

CandSk+1 := ∅;
/* STEP 1 Join */

for each s1 ∈ Sk do
for each s2 ∈ Sk do

if s1.attr1 = s2.attr1 ∧ . . . ∧ s1.attrk−1 = s2.attrk−1 ∧ s1.attrk < s2.attrk

then
insert {s1.attr1, . . . , s1.attrk, s2.attrk} into CandSk+1;

end if
end for

end for

/* STEP 2 Prune */
for each cand ∈ CandSk+1 do

for each s ⊂ cand with |s| = k do
if s /∈ Sk then

delete cand from CandSk+1;
end if

end for
end for

Figure 8.5: Procedure GenerateCandidates.

GenerateCandidates in Figure 8.5). The set of (k + 1)-dimensional candidate

subspaces is denoted by CandSk+1.

Due to Lemma 8.5, for each candidate subspace S ∈ CandSk+1, Sk must

contain each k-dimensional subspace T ⊂ S (dim[T] = k). We can prune

these candidates having at least one k-dimensional subspace not included in

Sk (STEP 2 of procedure GenerateCandidates in Figure 8.5). This reduces

the number of (k + 1)-dimensional candidate subspaces.

In the last step (STEP 2 in Figure 8.4), we generate the (k+1)-dimensional

clusters and the corresponding (k + 1)-dimensional subspaces containing

these clusters, using the k-dimensional subclusters and the list of (k + 1)-

dimensional candidate subspaces. For that purpose, we have to do the

following: for each candidate subspace cand ∈ CandSk+1 we take one k-

dimensional subspace T ⊂ cand and simply call the above mentioned proce-

dure DBSCAN(cl, cand, ε, m) for each cluster cl in T (cl ∈ CT) to generate

Ccand. To minimize the cost of the run of DBSCAN in each cand, we choose

that subspace bestSubspace ⊂ cand from Sk in which a minimum number of

8.3 Density-Based Subspace Clustering 129

objects are in the cluster, i.e.

bestSubspace := argminT∈Sk∧T⊂cand

∑
Ci∈CT

|Ci|.

These heuristics minimize the number of range queries necessary during the

run of DBSCAN in cand. If Ccand 6= ∅, we add it to Ck+1 and add cand to

Sk+1.

Step 2 is iteratively executed as long as the set of k-dimensional subspaces

containing clusters is not empty.

The most time consuming parts of our algorithm are all the partial range

queries (range queries on arbitrary subspaces of the data space) necessary for

the DBSCAN algorithm. As DBSCAN is applied to different subspaces, an

index structure for the full-dimensional data space is not applicable. There-

fore, we apply the approach of inverted files. Our algorithm provides an

efficient index support for range queries on each single attribute in loga-

rithmic time. For range queries on more than one attribute, we apply the

range query to each separate attribute (index structure) and generate the

intersection of all intermediate results to obtain the final result.

8.3.3 Experimental Evaluation

Efficiency

We evaluated the efficiency of SUBCLU using several synthetic data sets.

All tests were run with MinPts = 8 and ε = 2.0.

The scalability of SUBCLU against the size of the data set, the dimension-

ality of the data set and the dimensionality of the hidden subspace clusters

are depicted in Figure 8.6. In all three cases, the runtime of SUBCLU grows

with an at least quadratic factor. The reason for this scalability w.r.t. the

size of the data set is that SUBCLU performs multiple range queries in ar-

bitrary subspaces. As mentioned above, we can only support these queries

using inverted files, since there is no index structure that can support partial

range queries in average case logarithmic time. The scalability to the dimen-

130 8 Subspace Clustering

(a) Scalability of SUBCLU against n. (b) Scalability of SUBCLU against d.

(c) Scalability of SUBCLU against the
maximum subspace cluster dimensionality.

Figure 8.6: Scalability of SUBCLU.

sionality of the data set and of the hidden subspaces can be explained by the

Apriori -like bottom-up greedy algorithm underlying SUBCLU to navigate

through the space of all possible subspaces.

Accuracy

To evaluate the effectivity of SUBCLU, we compared it with the subspace

algorithm CLIQUE [AGGR98]. Since CLIQUE is a product of IBM and

its code is not easy to obtain, we re-implemented CLIQUE according to

[AGGR98]. In all accuracy experiments, we run CLIQUE with a broad range

of parameter settings and took only the best results.

We applied SUBCLU and CLIQUE to several synthetic data sets which we

8.3 Density-Based Subspace Clustering 131

Table 8.1: Comparative evaluation of SUBCLU and CLIQUE: Summary of
the results on synthetic data sets.

Name d dimension of n # of clusters found by
subspace cluster clusters SUBCLU CLIQUE

DS01 10 4 18999 1 1 1
DS02 10 4 27704 1 1 1
DS03 15 5,5,5 3802 3 3 1
DS04 15 3,5,7 4325 3 2 1
DS05 15 5,5,5 4057 3 3 1
DS06 15 4,4,6,7,7,10 2671 6 5 2

generated as described above. In each data set, several clusters are hidden in

subspaces of varying dimensionality. The results are depicted in Table 8.1. In

almost all cases, SUBCLU computed the artificial clusters whereas CLIQUE

had difficulties in detecting all patterns properly. In addition, CLIQUE split

usually connected clusters into several distinct clusters (not mentioned in the

table).

We also applied SUBCLU to the Spellman data set (cf. Section 7.3) in

order to find co-expressed genes.

SUBCLU found many interesting clusters in several subspaces of this data

set. The most interesting clusters were found in the subspaces spanned by

time slots 90, 110, 130, and 190 as well as time slots 190, 270, and 290. The

functional relationships of the genes in the resulting clusters were investigated

using the three biological criteria for functional relationships mentioned in

Section 7.3.

The contents of four sample clusters in two different subspaces are de-

picted in Table 8.2. The first cluster (in subspace spanned by time slots 90,

110, 130, 190) contains several genes which are known to play a role during

the cell cycle such as DOM34, CKA1, CPA1, and MIP6. In addition, the

products of two genes in that cluster are part of a common protein complex.

The second cluster contains the gene STE12, identified by [SSZ+98] as an

important transcription factor for the regulation of the mitotic cell cycle.

In addition, the genes CDC27 and EMP47 which have possible STE12-sites

and are most likely co-expressed with STE12 are in that cluster. The third

132 8 Subspace Clustering

Table 8.2: Contents of four sample clusters in different subspaces.
Gene Name Function

Cluster 1 (subspace 90, 110, 130, 190)
RPC40 subunit of RNA pol I and III, builds complex with CDC60
CDC60 tRNA synthetase, builds complex with RPC40
FRS1 tRNA synthetase
DOM34 protein synthesis, mitotic cell cycle
CKA1 mitotic cell cycle control
CPA1 control of translation
MIP6 RNA binding activity, mitotic cell cycle

Cluster 2 (subspace 90, 110, 130, 190)
STE12 transcription factor (regulation of cell cycle)
CDC27 regulation of cell cycle, possible STE12-site
EMP47 Golgi membrane protein, possible STE12-site
XBP1 Transcription factor

Cluster 3 (subspace 90, 110, 130, 190)
CDC25 starting control factor for mitosis
MYO3 control/regulation factor for mitosis
NUD1 control/regulation factor for mitosis

Cluster 4 (subspace 190, 270, 290)
RPT6 protein catabolism; builds complex with RPN10
RPN10 protein catabolism; builds complex with RPT6
UBC1 protein catabolism; subunit of 26S protease
UBC4 protein catabolism; subunit of 26S protease
MRPL17 component of mitochondrial large ribosomal subunit
MRPL31 component of mitochondrial large ribosomal subunit
SNF7 direct interaction with VPS2
VPS4 mitochondrial protein; direct interaction with SNF7

cluster consists of the genes CDC25 (starting point for mitosis), MYO3 and

NUD1 (known for an active role during mitosis) as well as various other

transcription factors (e.g. CHA4, ELP3) required during the cell cycle. The

fourth cluster contains several mitochondrion related genes which have sim-

ilar functions. For example, the genes MRPL17, MRPL31, MRPL32, and

MRPL33 (the last two are not listed in Table 8.2) are four mitochondrial

large ribosomal subunits, the genes UBC1 and UBC4 are subunits of a cer-

tain protease, and the genes SNF7 and VPS4 are direct interaction partners.

All gene products are located in mitochondria. This indicates a higher mito-

8.4 Density-Based Subspace Ranking 133

chondrial activity at these time spots which might be explained by a higher

demand of biological energy during the cell cycle (the energy metabolism is

located in mitochondria).

Let us note that the described four clusters are only a representative

glance at the results SUBCLU yields when applied on the gene expression

data set. Each cluster contains additional genes with yet unknown function.

We also detected few clusters with no significant functional relationships

among the grouped genes. However, most of the resulting clusters contained

functional related genes, indicating that the detected co-expression is biolog-

ical meaningful. Since most clusters also contain genes which have not yet

any annotated function, the results of SUBCLU might propose a biologically

interesting prediction for these genes. The overall results of SUBCLU on the

Spellman data set are rather accurate, especially when the fact that this data

set is fairly noisy is taken into account.

We also applied CLIQUE to the gene expression data set. We again tested

a broad range of parameter settings and compared SUBCLU to the best

results of CLIQUE. CLIQUE was not able to find any reasonable clusters in

the gene expression data set possibly because it favors axis-parallel clusters.

Thus, SUBCLU is much more suitable than CLIQUE due to the fact that

the density-connected clustering notion underlying SUBCLU is able to detect

arbitrarily shaped (subspace) clusters.

8.4 Density-Based Subspace Ranking

8.4.1 Motivation

SUBCLU, as introduced in Section 8.3, is rather effective in finding density-

based subspace clusters. However, the most severe problem of SUBCLU

and all other subspace clustering algorithms is the use of a global density

threshold for the definition of clusters due to efficiency reasons. The use of

a global density parameter yields the following handicaps:

134 8 Subspace Clustering

1. The application of one global density threshold to subspaces of differ-

ent dimensionality is rather unacceptable since the data space natu-

rally increases exponentially with each dimension added to a subspace.

Choosing a less strict density threshold results in getting a lot of low

dimensional clusters or subspaces that are not really dense w.r.t. the

dimensionality, while choosing a more strict density threshold has the

contrary effect and cuts off all higher dimensional clusters. Thus, for

subspace clustering, it would be highly desirable to adapt the density

threshold to the dimensionality of the subspaces or even better to rely

on a clustering notion that is independent from a globally fixed thresh-

old. This problem is illustrated in Figure 8.7 (left): The objects of

cluster C1 in subspace {a1} are very densely packed, whereas they are

rather sparsely located in subspace {a1, a2}. Even the density of the

cluster C2 is lower in subspace {a1, a2} than in subspace {a1}. If we

want to find the 2D extension of C2 as a cluster, the density threshold

has to be specified rather low. As a consequence, the two clusters C1

and C2 in subspace {a1} may no longer be separable.

2. The application of one global density threshold to all clusters in one

subspace of a fixed dimensionality is also rather unacceptable since

the clusters may exceed different density parameters. A less strict

threshold would detect one big cluster, whereas a more strict threshold

would yield more clusters of smaller size. In addition, the information

of nested clusters (clusters having sub-clusters of higher densities) is

completely neglected. Therefore, for subspace clustering, a hierarchical

approach would be desirable where the clustering notion does again

not rely on a globally fixed threshold. This problem is illustrated in

Figure 8.7 (right): A lower global density parameter would report the

sets A, B, and C as clusters. The information of the nested clusters

(C1, C2, and C3) would be neglected. On the other hand, using a

denser global threshold would detect clusters C1, C2, and C3 but would

neglect clusters A and B and the information that C is a nested cluster

containing C1, C2, and C3.

8.4 Density-Based Subspace Ranking 135

a1

a2

a1

C2

C2C1

a3

a4
B

C1

C

A

C2

C3

P
e
e
r

Figure 8.7: Problems with a global density parameter.

The first drawback is hard to tackle since the concepts of density-based

subspace clustering are monotonic (cf. Section 8.2.2), and this is needed for

efficiency reasons. However, at least the second drawback could be tackled if

a hierarchical clustering algorithm, e.g. OPTICS (cf. Section 2.3), would be

applied to the subspaces instead of a partitioning algorithm. In the rest of

this section, we address the second problem of detecting clusters of different

density in the same subspace.

8.4.2 General Idea

A first idea to get independent of a global parameter setting is to extend

SUBCLU by hierarchical concepts, similar to the extension of the algorithm

DBSCAN that resulted in the OPTICS algorithm. However, it is rather

unclear how to navigate through the search space of all possible O(2d) sub-

spaces. An Apriori -like greedy algorithm based on a monotonic concept used

by CLIQUE or SUBCLU is preferable.

On the other hand, we could apply a hierarchical clustering algorithm

such as OPTICS to some (say: “interesting”) subspaces. All we need to do

is to rate the interestingness of a subspace. The algorithm RIS (Ranking

Interesting Subspaces for clustering), the details of which will be presented

136 8 Subspace Clustering

in the following, works exactly like this. It is based on a quality criterion

for subspaces that uses the density-based concepts of core points. Thus,

RIS does not compute the subspace clusters hidden in the data directly,

but can be seen as a preprocessing step for clustering, an advanced feature

selection that selects several subspaces for clustering. The output of RIS is a

list of subspaces sorted by descending quality values indicating how well the

data points cluster in the according subspace. The clusters in the particular

subspaces can be generated in a second step, using the clustering algorithm

a user is most accomplished to.

8.4.3 Ranking Interesting Subspaces

Our approach to rate the interestingness of subspaces is based on the core

point property. This property can be used for deciding about the interesting-

ness of a subspace. Obviously, if a subspace contains no core point, it contains

no dense region (cluster) and therefore contains no relevant information.

Observation 8.1 The number of core points of a data set D (w.r.t. a given

ε and MinPts) is proportional to the number of different clusters in D and/or

the size of the clusters in D and/or the density of clusters in D.

This observation can be used to rate the interestingness of subspaces.

However, simply counting all the core points for each subspace delivers not

enough information. Even if two subspaces contain the same number of

core points, the quality may differ a lot. Dense regions also contain border

points, i.e. points which are not core points themselves but lie within the

ε-neighborhood of a core point and are thus a vital part of the dense region.

Therefore, it is not only interesting how many core points a subspace contains

but also how many objects lie within the ε-neighborhood of these core points.

Definition 8.9 (count-value of a subspace)

The count-value (w.r.t. ε ∈ R and MinPts ∈ N) of a subspace S ⊆ A,

denoted by count[S], is the sum of all points lying in the ε-neighborhood of

8.4 Density-Based Subspace Ranking 137

all core points (w.r.t. ε ∈ R and MinPts ∈ N) in the subspace S, formally:

count[S] =
∑

p∈D, CoreS

den(p)

|N S
ε (p)|.

If we measure the interestingness of a subspace according to its count[S]

value and rank all subspaces according to this quality value, a severe problem

is not addressed.

Recall from Observation 7.2 in Section 7.1 that the ε-neighborhoods of

the core points tend to exceed the boundaries of the data space with increas-

ing dimensionality. As a consequence, naturally with each dimension, the

number of expected points in the ε-neighborhood of a core point decreases.

Thus, this naive quality value favors lower dimensional subspaces over higher

dimensional ones. A first solution to overcome this problem is that we in-

troduce a scaling co-efficient that takes the dimensionality of the subspace

into account. We take the ratio between the count[S] value and the “virtual”

count value of S we would get if all data objects were uniformly distributed

in S.

For that purpose, we compute the volume of a d-dimensional ε-neighbor-

hood, denoted by Voldε. If dist is the L∞-norm, Voldε is a hypercube and can

be computed by Voldε = (2ε)d or if dist is the Euclidian distance (L2-norm),

Voldε is a hyper-sphere and can be computed as given below:

Voldε =

√
πd

Γ(d/2 + 1)
· εd

where Γ(x + 1) = x · Γ(x), Γ(1) = 1 and Γ(1
2
) =

√
π.

If we further assume that the points are normalized within [0,MAX]d, i.e.

MAX is the maximum value of each attribute, and are uniformly distributed,

we expect n objects in the volume MAX d. The number of points expected

to be in Voldε is
Voldε · n
MAX d .

Since the number of range queries in a particular subspace is n, we scale

the count-value by n times the number of points expected to be in Voldε.

138 8 Subspace Clustering

Thus, the quality of a subspace can be computed as given in the following

definition.

Definition 8.10 (subspace quality)

The quality of a subspace S ⊆ A, measuring the interestingness of S is

defined by:

Quality(S) =
count[S]

n · Voldim[S]

ε ·n
MAX dim[S]

This quality value would still favor lower dimensional subspaces. Due

to the above mentioned phenomenon, the ε-neighborhoods of many points

most likely exceed the boundaries of the data space when the dimension-

ality increases. As a consequence, the estimation of the volume of these

ε-neighborhoods using Voldim[S]
ε is inadequate in higher dimensional spaces.

In [BBKK97] the authors show that the average volume of the intersection

of the data space and a hyper-sphere with radius ε can be expressed as the

integral of a piecewise defined function, integrated over all possible positions

of the ε-neighborhood, i.e the core points. For our implementation, we choose

a less complex, commonly used heuristics to eliminate this effect based on

periodical extensions of the data space (cf. Section 8.4.4 for details). Using

these heuristics, the quality criterion is robust against the dimensionality of

the subspace.

For two subspaces U, V ⊆ A with U ⊃ V this quality criterion has two

complementary effects which are summarized in the following lemmata:

Lemma 8.6

Let U ⊃ V . Then the following inequality holds:

count[U] ≤ count[V].

Proof. ∀p, x ∈ D :

CoreU
den(p) ∧ x ∈ N U

ε (p)

8.4 Density-Based Subspace Ranking 139

⇔ CoreU
den(p) ∧ dist(πU(p), πU(x)) ≤ ε

U⊃V, Lemma 8.1
=⇒ CoreV

den(p) ∧ dist(πV (p), πV (x)) ≤ ε

⇔ CoreV
den(p) ∧ x ∈ N V

ε (p).

Thus, each object x contributing to count[U] also contributes to count[V]. On

the other hand, the reverse implication does obviously not hold in general. In

summary, we have count[U] ≤ count[V]. 2

Lemma 8.7

Let U ⊃ V .

count[U] = count[V] ⇒ Quality(U) ≥ Quality(V).

Proof. Through simple algebraic transformations we get

Quality(S) =
count[S] ·MAX dim[S]

n2 · Voldim[S]
ε

.

Since U ⊃ V , and we can assume MAX ≥ 2ε, it follows that MAX dim[S]

grows faster with increasing dimensionality than Voldim[S]
ε . Thus, we can

conclude from the assumption (count[U] = count[V]) that Quality(U) ≥
Quality(V). 2

The lemmata state that while navigating through the subspaces bottom-

up, the count value decreases (cf. Lemma 8.6) until at a certain point the

core points loose their core point property due to the addition of irrelevant

features. The consequence of adding irrelevant features is that the quality

decreases. On the other hand, as long as this is not the case, i.e. the count

values are stable, the features are relevant for the clusters and the quality

increases (cf. Lemma 8.7). Obviously, this is a desirable behavior of the

quality measure.

8.4.4 Algorithm RIS

Given a set of objects D and density parameters ε and MinPts, RIS finds all

interesting subspaces and presents them to the user ordered by relevance. For

140 8 Subspace Clustering

algorithm RIS(SetOfObjects D, Real ε, Integer MinPts)
Subspaces := ∅ ;
for i from 1 to n do

Object := SampleObjects.get(i);
RelevantSubspaces := GenerateSubspaces(Object,SetOfObjects);
Subspaces.add(RelevantSubspaces);

end for
Subspaces.prune();
Subspaces.sort();

Figure 8.8: The RIS algorithm.

each object, RIS computes a set of relevant subspaces. All these sets are then

merged. A pruning and sorting procedure is applied to the resulting set of

subspaces. The pseudo code of the algorithm RIS is given in Figure 8.8. For

each object o ∈ D, all subspaces in which the core point condition holds for o

are computed. This step will be described below in more detail. Let us note

that the algorithm can also be applied to a sample of D, e.g. for performance

reasons (see the experimental evaluation in Section 8.4.5). For each detected

subspace, statistical data is accumulated. The detected subspaces are pruned

according to certain criteria. In Section 8.4.4, these criteria will be discussed.

Finally, the subspaces are sorted for a more comprehensible user presentation.

Then the clustering in these subspaces can be generated by any clustering

algorithm.

Efficient Generation of Subspaces

For a given object o ∈ D, the method GenerateSubspaces finds all subspaces S

in which the core point condition holds for o w.r.t. ε and MinPts. Formally,

it computes the following set:

Ko := {T ⊆ A | |N T
ε (o)| ≥ MinPts}.

The problem of finding the set Ko is equivalent to the problem of de-

termining all frequent itemsets in the context of mining association rules

[AS94] when using the L∞-norm as distance function and thus can be com-

puted rather efficiently. Let us note that the use of L∞-norm is no serious

8.4 Density-Based Subspace Ranking 141

constraint. The only difference is that by using the L∞-norm we may find

additional core points because we will find few additional points in the ε-

neighborhood of some points and thus additional subspaces. However, these

additional subspaces get low quality values anyway.

For each x ∈ D a transaction Tx ⊆ A is defined such that

ai ∈ Tx ⇔ |π{ai}(x)− π{ai}(o) | ≤ ε for all i ∈ {1, . . . , d}.

Lemma 8.8

Let Ko be defined as given above. For all o ∈ D, the following holds.

Ko = {T ⊆ A | SuppD(T) ≥ MinPts

n
}

where

SuppD(T) =
|{x ∈ D |T ⊆ Tx}|

n
.

Proof.

T ⊆ A ∧ |N T
ε (o)| ≥ MinPts

⇔ T ⊆ A ∧ |{x ∈ D | distL∞(πT (o), πT (x)) ≤ ε}| ≥ MinPts
dist=L∞⇐⇒ T ⊆ A ∧

|{x ∈ D | ∀i ∈ {1, . . . , d} : ai ∈ T ⇒ |π{ai}(o)− π{ai}(x)| ≤ ε}|
≥ MinPts

⇔ T ⊆ A ∧ |{x ∈ D |T ⊆ Tx}|
≥ MinPts

⇔ T ⊆ A ∧ SuppD(T) ≥ MinPts

n
.

2

The method GenerateSubspaces extends the familiar Apriori algorithm

[AS94] in accumulating the statistical information for measuring the subspace

quality, using the monotonicity of the core point condition (cf. Lemma 8.1).

As mentioned before, we are extending the data space periodically to address

the problems stated in Observations 7.2, ensuring that all ε-neighborhoods

142 8 Subspace Clustering

p

q
periodic extension of the

neighborhood of p

x

y

o

Figure 8.9: Illustration of the periodic extension of the data space (dist =

L∞).

have the same size. This can be done very easily by changing the way the

transactions are defined. Instead of only checking if |πai
(x)− πai

(o)| ≤ ε, we

have to check if |πai
(x) − πai

(o)| ≤ ε or |πai
(x) − πai

(o)| ≥ attrRange − ε.

A 2-dimensional example is illustrated in Figure 8.9. The ε-neighborhood

(in case of dist = L∞ the geometric interpretation is a hyper-cube) of point

p exceeds the data space along the y-axis and is periodically extended as

depicted, and thus, o ∈ N {x,y}
ε (p). The ε-neighborhood of q obviously needs

no extension because it does not exceed the boundaries of the data space.

Pruning of Redundant Subspaces

As we are only interested in the subspaces which provide the most informa-

tion, we can perform the following two downward pruning steps to eliminate

redundant subspaces:

First, if there exists a (k +1)-dimensional subspace S with higher quality

than the k-dimensional subspace T and S ⊃ T , we delete T because T is

redundant (cf. Lemma 8.7).

For the second pruning step, we assume that for a given data set the

k-dimensional subspace S reflects the clustering in that special data set in

8.4 Density-Based Subspace Ranking 143

a best possible way. Thus, its quality value and the quality values of all

its (k − 1)-dimensional subspaces T1, . . . , Tm is high. On the other hand,

if we combine one of these (k − 1)-dimensional subspaces T1, . . . , Tm with

another 1-dimensional subspace with lower quality, the quality of the re-

sulting k-dimensional subspace can still be good. But as we know that

it does not reflect the clustering in the best possible way, we are not in-

terested in this k-dimensional subspace. The following heuristic pruning

eliminates such subspaces. Let S be a k-dimensional attribute space and

Sk−1 := {T | T ⊂ S ∧ dim[T] = k − 1} be the set of all (k − 1)-dimensional

subspaces of S. Let count be the mean count value of all T ∈ Sk−1 and s

be the standard deviation. Let maxdiff := max
T∈Sk−1

(| count[T] − count|) be

the maximum deviation of the count-values of all T ∈ Sk−1 from the mean

count-value. Then, the so-called bias-value can be computed as follows:

bias = s
maxdiff

. If this bias-value falls below a certain threshold, we prune the

k-dimensional subspace S. Experimental evaluations indicate that 0.56 is a

good value for this bias-criterion.

Determination of Density Parameters

A heuristic method, which is experimentally shown to be sufficient, suggests

MinPts ≈ ln(n) where n is the size of the database. Then, ε must be picked,

depending on the value of MinPts. In [EKSX96] a simple heuristics is pre-

sented to determine the ε of the ”thinnest” cluster in the database (for a

given MinPts). But as we do not know beforehand in which subspaces clus-

ters will be found, we cannot determine ε to find a single subspace with one

particular clustering. Quite the contrary, we want to choose the parame-

ters such that RIS detects subspaces which might have clusters of different

density and different dimensionality.

However, we can determine an upper bound for ε for a given value of

MinPts. If we take uniform distribution as worst case, the ε-neighborhood

of an object should not contain more than (MinPts − 1) objects in the full-

dimensional space. Otherwise, all objects are core points. In case of the

L∞-norm, an upper bound for ε can be computed as follows:

144 8 Subspace Clustering

n · Voldε
attrRangedim

< MinPts
L∞=⇒ ε <

attrRange

2
· dim

√
MinPts

n

where dim = d. If we have any knowledge about the dimensionality of the

subspaces we want to find, we can further decrease the upper bound by

setting dim to the highest dimension of such a subspace.

This upper bound is very rough. Nevertheless, it provides a good indica-

tion for the choice of ε. Indeed, it empirically turned out that upperbound/4

is a reasonable choice for ε. Experiments on synthetic data sets show that

our suggested criteria for the choice of the density parameters are sufficient

to detect the relevant subspaces containing clusters.

8.4.5 Experimental Evaluation

We tested RIS using several synthetic as well as the Spellman gene expression

data set described in 7.3. The experiments were run on a workstation with

a 1.7 GHz CPU and 2 GB RAM.

The synthetic data sets were generated by a self-implemented data gen-

erator. It permits to control the size and structure of the generated data sets

through parameters such as number and dimensionality of subspace clusters,

dimensionality of the feature space and density parameters for the whole

data set as well as for each cluster. In a subspace that contains a cluster, the

average density of data points in that cluster is much larger than the density

of points not belonging to the cluster in this subspace. In addition, it is

ensured that none of the synthetically generated data sets can be clustered

in full-dimensional space.

A subsequent clustering of the data sets in the detected subspaces was

performed for each experiment using the above mentioned algorithm OPTICS

to validate the interestingness of the subspaces computed by RIS.

8.4 Density-Based Subspace Ranking 145

(a) Scalability against size

0

10000

20000

30000

40000

50000

0 5000 10000 15000 20000 25000 30000

size

se
c.

(b) Scalability against dimensionality

0

20000

40000

60000

80000

100000

120000

10 15 20 25 30 35 40 45 50

dim. of feature space

se
c.

(c) Scalability against dimensionality of the
detected subspaces

0
2000
4000
6000
8000

10000
12000

2 4 6 8 10 12

dim[UR]

se
c.

(d) Scalability against the size of a random
sample

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000

no. of sample objects

se
c.

Figure 8.10: Efficiency evaluation.

Efficiency

The results of the efficiency evaluation are depicted in Figure 8.10. This

evaluation is based on several synthetic data sets. The experiments were run

with MinPts = ln(n) and ε chosen, as suggested in Section 8.4.4. All run

times are in seconds.

RIS scales well to the dimensionality of the relevant subspaces. With

increasing dimensionality of the relevant subspaces, the runtime of RIS grows

with a linear factor. On the other hand, the scalability of RIS to the size n

and the dimensionality d of the input data set is not linear. With increasing

n and d, the runtime of RIS grows with an at least quadratic factor for rather

large n and d, respectively. The reason for this scalability vs. the size n is

that RIS performs multiple range queries without any index support, due to

the fact that the ε-neighborhoods of all points in arbitrary subspaces have

to be computed. However, there is no index structure to efficiently support

range queries in arbitrary subspaces. The observed scalability with respect

to d can be explained by the Apriori -like navigation through the search space

of all subspaces.

146 8 Subspace Clustering

Speed-up for Large Data Sets

Since the runtime of RIS is rather high especially for large data sets, we

applied random sampling to accelerate our algorithm. Figure 8.10 shows that

for a large data set of n = 750, 000 data objects, sampling yields a rather good

speed-up. The data set contained two overlapping four-dimensional subspace

clusters, containing approximately 400,000 and 350,000 points. Even using

only 100 sample points, RIS had no problem to detect the subspaces of these

two clusters. For all sample sizes, these subspaces had by far the highest

quality values. Further experiments empirically show that random sampling

can be successfully applied to RIS in order to speed-up the runtime of this

algorithm, paying a minimum loss of quality.

Accuracy

Synthetic Data Sets. We evaluated the effectiveness of RIS using sev-

eral synthetic data sets of varying dimensionality. The data sets contained

between two and five overlapping clusters in varying subspaces. In all ex-

periments, RIS detected the correct subspaces in which clusters exist and

assigned the highest quality values to them. All higher dimensional sub-

spaces which were generated, were removed by the pruning procedures.

Gene Expression Data. We also applied RIS to the Spellman data set.

The two top-ranked subspaces were the subspace spanned by the time spots

90, 110, 130, and 190 and the subspace spanned by the time spots 190, 270

and 290. Both subspaces played also a central role in the evaluation of the

algorithm SUBCLU (cf. Section 8.3.3). A clustering using OPTICS in these

two top-ranked subspaces provided several clusters and in fact more infor-

mation than SUBCLU yields. This is due to the use of a hierarchical cluster-

ing algorithm in the detected subspaces. For example, the genes MRPL17,

MRPL31, MRPL32, and MRPL33 (four mitochondrial large ribosomal sub-

units), were clustered together with other mitochondrial proteins SNF7 and

VPS4 (which are direct interaction partners) by SUBCLU. However, several

8.4 Density-Based Subspace Ranking 147

MRPL17
MRPL31
MRPL32
MRPL33

UBC1
UBC4

VPS4
SNF7

...

CYC1
MGE1

PHB1
MEF1
ATP12
MCR1

Figure 8.11: Part of the reachability plot generated by OPTICS in the

subspace, ranked second by RIS.

other genes that code for mitochondrial proteins (e.g. MEF1, PHB1, CYC1,

MGE1, ATP12) could be added to this cluster because of the information

OPTICS yielded in this subspace. Figure 8.11 illustrates the part of the

cluster ordering generated by OPTICS in the particular subspace. It can be

seen that the additional genes, obviously still a virtual part of the cluster,

are less dense than the core part of the cluster. To detect the entire nested

cluster, the global parameter setting for the SUBCLU run in Section 8.3.3

was too strict, i.e. the ε-value to was too small. However, running SUBCLU

with a higher ε-value blurs the clusters found in Section 8.3.3 by non-related

genes, i.e. noise points.

A second example of the information gain is the cluster of which an ex-

cerpt is depicted in Table 8.3. The cluster was found in the same subspace,

spanned by the time spots 90, 110, 130, and 190 and contains several tran-

scription related genes that directly interact with each other. It was not

detected by SUBCLU because it does not fit the density threshold used for

the SUBCLU run. However, it is a significant valley in the reachability

plot generated by OPTICS in that subspace and thus a true cluster. The

functional relationships of the contained genes is biologically meaningful and

148 8 Subspace Clustering

Table 8.3: A cluster missed by SUBCLU, but detected by RIS/OPTICS.
Gene Name Function
RRP3 RNA splicing, builds complex with NPL3
NPL3 RNA splicing, builds complex with RRP3
TFA1 transcription elongation factor
SPT5 part of transcription elongation factor complex (TEFC)
CDC73 part of TEFC, builds complex with CKB1
CKB1 cell cycle transition gene, builds complex with CDC73

important.

In summary, RIS detects several subspaces containing several biologically

relevant co-expressions. All significant clusters SUBCLU has found were re-

produced by the combined application of RIS and OPTICS. Furthermore,

the application of the hierarchical algorithm OPTICS yielded additional in-

sights such as extended nested clusters and more clusters showing different

densities. By outperforming SUBCLU, the combined application of RIS and

OPTICS also yields superior accuracy than CLIQUE.

8.5 Summary and Discussion

In this chapter, we proposed two novel algorithms for subspace clustering

based on the density-based clustering notion.

The algorithm SUBCLU (density-based SUBspace CLUstering) is an ef-

ficient extension of the density-based clustering algorithm DBSCAN for the

subspace clustering problem. It detects all subspace clusters that would

have been found if DBSCAN would have been applied exclusively to each

subspace. Based on the monotonicity of density connected sets, SUBCLU

excludes all subspaces that cannot contain any density connected cluster

from further computation and is thus much more efficient than an exhaus-

tive search, i.e. the application of DBSCAN to all possible subspaces. An

experimental evaluation of SUBCLU, using gene expression data, empirically

shows the superior performance over existing subspace clustering algorithms,

such as CLIQUE, in terms of accuracy and information gain.

8.5 Summary and Discussion 149

Since the application of a global density threshold to the clusters of one

single subspace is rather restrictive, and a hierarchical subspace clustering

is intended in several applications, we proposed RIS (Ranking Interesting

Subspaces for clustering). RIS does not directly compute subspace clusters

but ranks the subspaces according to their interestingness in terms of clus-

tering quality. It relies on a quality criterion for subspaces and generates a

sorted list of interesting subspaces. Any clustering algorithm can be applied

to the resulting subspaces of interest. We evaluated RIS in combination with

OPTICS (to compute a hierarchical clustering in some resulting subspaces),

applied on the gene expression data set, and empirically showed that RIS

can further outperform SUBCLU in terms of the information gained.

150 8 Subspace Clustering

Chapter 9

Correlation Clustering

Beside point density, a second kind of hidden information that may be inter-

esting to users are local correlations in a data set. In this chapter, we pro-

pose a density-based algorithm to the correlation clustering problem called

4C. First, we discuss recent approaches related to correlation clustering in

Section 9.1. Thereafter, we present the foundations of density-based corre-

lation clustering underlying 4C in Section 9.2 which rely on a combination

of the density-based clustering concepts and a suitable primitive to measure

the correlation. In Section 9.3, the details of the 4C algorithm are described.

A broad experimental evaluation of 4C is presented in Section 9.4. Two

modifications of the concepts of 4C that produce a density-based solution for

pattern-based clustering and for projected clustering are proposed in Section

9.5. The concepts described in this chapter are major extensions of the ma-

terial published in [BKKZ04]. Section 9.6 concludes the chapter with a short

summary.

151

152 9 Correlation Clustering

9.1 Motivation and Related Work

Beside point density, a second kind of hidden information that may be in-

teresting to users are correlations in a data set. A correlation is a linear

dependency between two or more features (attributes) of the data set. The

most important method for detecting correlations is the principal components

analysis (PCA), also known as Karhunen Loèwe transformation. Knowing

correlations is also important and valuable because the dimensionality of the

data set can be considerably reduced which improves both the performance of

similarity search and data mining as well as the accuracy. Moreover, knowing

about the existence of a relationship between attributes enables one to detect

hidden causalities (e.g. the influence of the age of a patient and the dose rate

of medication on the course of his/her disease or the co-regulation of gene

expression) or to gain financial advantage (e.g. in stock quota analysis), etc.

However, traditional methods such as PCA are restricted, because they

are global and can only be applied to the entire data. Therefore, it is only

possible to detect correlations which are expressed in all points or almost all

points of the data set. For a lot of applications this is not the case. For

instance, in the analysis of gene expression, we are facing the problem that

a dependency between two genes does only exist under certain conditions.

Therefore, the correlation is visible only in a local subset of the data. Other

subsets may be either not correlated at all or they may exhibit completely

different kinds of correlation (different features are dependent on each other).

The correlation of the entire data set can be weak, even if for local subsets of

the data strong correlations exist. Figure 9.1 shows a simple example, where

two subsets of 2-dimensional points exhibit different correlations. We use the

transposed view (cf. Section 7.2) to visualize simple correlations.

Projected clustering algorithms such as PROCLUS [APW+99] and DOC

[PJAM02] are restricted to find axis-parallel dense projections. However,

correlations may be arbitrarily oriented, i.e. the dense projections are not

axis-parallel.

To the best of our knowledge, both concepts of clustering (i.e. finding

9.1 Motivation and Related Work 153

(a) 2D view. (b) Transposed view.

Figure 9.1: 1-dimensional correlation lines.

densely populated subsets of the data) and correlation analysis have not

yet been addressed as a combined task for data mining. The most relevant

related approach is ORCLUS [AY00]. It is a k-means like approach that

iteratively optimizes the clustering quality. Each cluster Ci is represented by

its centroid and is associated with a set of pairwise orthonormal vectors Si

that span an arbitrarily oriented subspace of the cluster. In each iteration,

the points of the database are first assigned to the nearest medoid. The

computation of the distance between a point and the medoid of cluster Ci

is adopted according to Si, i.e. is the distance between the two points in

subspace spanned by Si rather than in full-dimensional space. After that,

new spanning vectors Si are computed using PCA (only the l eigenvectors

with the smallest eigenvalues are taken; l is an input parameter). The medoid

of the new cluster Ci is computed according to Si.

The problems of ORCLUS are the typical drawbacks of optimization-

based clustering methods. First, the user has to specify the number of clusters

k in advance. If this guess does not correspond to the actual number of

clusters the results of ORCLUS deteriorate. For example, if k is too small,

the locality of the analyzed correlations is usually too coarse, i.e. the number

of points taken into account for correlation analysis is too large. A second

problem is noisy data. In this case, the clusters found by ORCLUS are

far from optimal since ORCLUS assigns each point to a cluster and thus

cannot handle noise efficiently. An additional problem is that all clusters

154 9 Correlation Clustering

must have the user-specified intrinsic dimensionality l (for each cluster Ci,

l eigenvectors are added to Si). In real data sets, this is a rather coarse

generalization, because in fact, the intrinsic dimensionality of the clusters

(i.e. correlations) may differ significantly. As a consequence, the assignment

of points to clusters may be even more ambiguous.

As mentioned previously, pattern-based algorithms can find some special-

ized correlations in a data set. The pioneering approach for pattern-based

clustering is presented in [YWWY02], introducing the so-called δ-clusters

model and the algorithm FLOC to compute near-optimal δ-clusters. The

transposed view of the data is used to show the correlations which are cap-

tured by this δ-cluster model. A cluster is regarded as a subset of objects and

attributes for which the participating objects show the same (or a similar)

tendency (pattern) rather than being close to each other on the associated

attributes. The δ-cluster model concentrates on two forms of coherence,

namely shifting (or addition) and amplification (or production). In the case

of amplification coherence for example, the vectors representing the objects

must be multiples of each other. The authors state that this can easily be

transformed to the problem of finding shifting coherent δ-cluster by apply-

ing logarithmic function to each object. Thus, they focus on finding shifting

coherent δ-clusters and introduce the metric of residue to measure the co-

herency among objects of a given cluster. An advantage is that thereby they

can easily handle missing attribute values. However, the δ-cluster model

limits itself to a very special form of correlation where all attributes are

positively linear correlated. It does not include negative correlations or cor-

relations where one attribute is determined by two or more other attributes.

In these cases, searching for a trend is no longer possible as can be seen in

Figure 9.2(b). As noted previously, such complex dependencies cannot be

illustrated by transposed views of the data. The same considerations ap-

ply for the very similar p-cluster model introduced in [WWYY02] and two

extensions presented in [PZC+03] and [LW03].

In the following, we develop a new method which is capable of detecting

local subsets of the data which exhibit strong correlations and which are

densely populated (w.r.t. a given density threshold). We call such a subset

9.2 Foundations of Connected Correlation Clustering 155

(a) 3D view. (b) Transposed view of one plane.

Figure 9.2: 2-dimensional correlation planes.

a correlation connected cluster. Its correlation will be hidden locally in the

data set and cannot be detected by global techniques. Figures 9.1 and 9.2

show simple examples how correlation connected clusters can look like. In

Figure 9.1 the attributes exhibit two different forms of linear correlation. We

observe that if for some points there is a linear correlation of all attributes,

these points are located along a line. Figure 9.2 presents two examples where

an attribute z is correlated to attributes x and y (i.e. z = a + bx + cy). In

this case, the set of points forms a 2-dimensional plane. As noted above, the

transposed view is not capable of appropriately visualizing such a complex

linear dependency (cf. Figure 9.2(b)). Obviously, there is no common pattern

visible.

9.2 Foundations of Connected Correlation Clus-

tering

9.2.1 Correlation Sets

In order to identify correlation connected clusters (regions in which the points

exhibit correlation) and to distinguish them from usual clusters (regions of

high point density only), we are interested in all sets of points with an in-

156 9 Correlation Clustering

trinsic dimensionality that is considerably smaller than the embedding di-

mensionality of the data space (e.g. a line or a plane in a three or higher

dimensional space). There are several methods to measure the intrinsic di-

mensionality of a point set in a region, such as the fractal dimension or the

principal components analysis (PCA). We choose PCA because the fractal

dimension appeared to be not stable enough in our first experiments.

The PCA determines the covariance matrix M = [mij] with mij =∑
q∈S

π{ai}(q) · π{aj}(q) of a considered point set S, and decomposes it into

an orthonormal matrix V called eigenvector matrix and a diagonal matrix E

called eigenvalue matrix such that M = VEVT. The eigenvectors represent

the principal axes of the data set, whereas the eigenvalues represent the vari-

ance along these axes. In case of a linear dependency between two or more

attributes of the point set (correlation), one or more eigenvalues are close to

zero. A set forms a λ-dimensional correlation hyperplane if (d − λ) eigen-

values fall below a given threshold δ ≈ 0. Since the eigenvalues of different

sets, exhibiting different densities, may differ a lot in their absolute values,

we normalize the eigenvalues by mapping them onto the interval [0, 1]. This

normalization is denoted by Ω and simply divides each eigenvalue ei by the

maximum eigenvalue emax. We call the eigenvalues ei with Ω(ei) ≤ δ close

to zero.

Definition 9.1 (λ-dimensional linear correlation set)

Let S ⊆ D, λ ∈ N (λ ≤ d), EV = e1, ..., ed, the eigenvalues of S in

descending order (i.e. ei ≥ ei+1) and δ ∈ R (δ ≈ 0). S forms a λ-dimensional

linear correlation set w.r.t. δ if at least (d− λ) eigenvalues of S are close to

zero, formally:

CorSetλ
δ (S) ⇔ |{ei ∈ EV |Ω(ei) ≤ δ}| ≥ d− λ,

where Ω(ei) = ei/e1.

This condition states that the variance of S along (d− λ) principal axes

is low and therefore the points of S form a λ-dimensional hyperplane. If we

drop the index λ and speak of a correlation set in the following, we mean a

λ-dimensional linear correlation set where λ is not specified but fix.

9.2 Foundations of Connected Correlation Clustering 157

Definition 9.2 (Correlation dimension)

Let S ∈ D be a linear correlation set w.r.t. δ ∈ N. The number of eigenval-

ues with Ω(ei) > δ is called correlation dimension, denoted by CorDim(S).

Let us note that if S is a λ-dimensional linear correlation set, then

CorDim(S) ≤ λ. The correlation dimension of a linear correlation set S

corresponds to the intrinsic dimension of S.

9.2.2 Clusters as Correlation Connected Sets

A correlation connected cluster can be regarded as a maximal set of density-

connected points that exhibit uniform correlation. We can formalize the

concept of correlation connected sets by merging the concepts of density

connected sets (cf. Definition 2.7) and correlation sets (cf. Definition 9.1).

The intuition of our formalization is to consider those points as core points

of a cluster which have an appropriate correlation dimension in their neigh-

borhood. Therefore, we associate each point p with a similarity matrix Mp

which is determined by PCA of the points in the ε-neighborhood of p. For

convenience, we call Vp and Ep the eigenvectors and eigenvalues of p, re-

spectively. A point p is inserted into a cluster if it has the same or a similar

similarity matrix like the points in the cluster. To achieve this goal, our al-

gorithm looks for points that are close to the principal axis (or axes) of those

points which are already in the cluster. We will define a similarity measure

M̂p for the efficient search of such points.

We start with the formal definition of the covariance matrix Mp associated

with a point p.

Definition 9.3 (covariance matrix)

Let p ∈ D. The matrix Mp = [mij] with

mij =
∑

q∈Nε(p)

π{ai}(q) · π{aj}(q) (1 ≤ i, j ≤ d)

is called the covariance matrix of the point p. Vp and Ep (with Mp =

158 9 Correlation Clustering

(a) (b)

Figure 9.3: Correlation ε-neighborhood of a point p according to (a) Mp

and (b) M̂p.

VpEpV
T
p), as determined by PCA of Nε(p), are called the eigenvectors and

eigenvalues of the point p, respectively.

We can now define the new similarity measure which searches points in

the direction of the highest variance of Mp (the major axes). Theoretically,

Mp could be directly used as a similarity measure, i.e.

distMp(p, q) =
√

(p− q)Mp(p− q)T where p, q ∈ D.

Figure 9.3(a) shows the set of points which lies in an ε-neighborhood of

the point, using Mp as similarity measure. The distance measure puts high

weights on those axes with a high variance, whereas directions with a low

variance are associated with low weights. This is usually desired in similarity

search applications where directions of high variance have a high distinguish-

ing power and, in contrast, directions of low variance are negligible.

Obviously, for our purpose of detecting correlation clusters, we need quite

the opposite. We want to search for points in the direction of highest variance

of the data set. Therefore, we need to assign low weights to the direction of

highest variance in order to shape the ellipsoid such that it reflects the data

distribution (cf. Figure 9.3(b)). The solution is to change large eigenvalues

9.2 Foundations of Connected Correlation Clustering 159

into smaller ones and vice versa. We use two fixed values, 1 and a param-

eter κ � 1 rather than, for example, inverting the eigenvalues in order to

avoid problems with singular covariance matrices. The number 1 is a natural

choice because the corresponding semi-axes of the ellipsoid are then ε. The

parameter κ controls the ”thickness” of the λ-dimensional correlation line or

plane, i.e. the tolerated deviation.

This is formally captured in the following definition:

Definition 9.4 (correlation similarity matrix of a point)

Let p ∈ D and Vp, Ep the corresponding eigenvectors and eigenvalues of the

point p. Let κ ∈ R be a constant with κ � 1. The new eigenvalue matrix

Êp with entries êi (i = 1, . . . d) is computed from the eigenvalues e1, . . . , ed

in Ep according to the following rule:

êi =

 1 if Ω(ei) > δ

κ if Ω(ei) ≤ δ

where Ω is the normalization of the eigenvalues onto [0, 1] as described above.

The matrix M̂p = VpÊpV
T
p is called the correlation similarity matrix of point

p. The correlation similarity measure associated with point p is denoted by

distp(p, q) =
√

(p− q) · M̂p · (p− q)T.

Figure 9.3(b) shows the ε-neighborhood according to the correlation sim-

ilarity matrix M̂p. As described above, the parameter κ specifies how much

deviation from the correlation is allowed. The greater the parameter κ, the

tighter and clearer the correlations which will be computed. It empirically

turned out that our algorithm presented in Section 9.3.1 is rather insensitive

to the choice of κ. A good suggestion is to set κ = 50 in order to achieve

satisfying results, thus — for the sake of simplicity — we omit the parameter

κ in the following.

Using this similarity measure, we can define the notions of correlation core

points and correlation reachability. However, in order to define correlation

connectivity as a symmetric relation, we face the problem that the similarity

160 9 Correlation Clustering

p

q

p

q

(a)

p

q

p

q

(b)

Figure 9.4: Symmetry of the correlation ε-neighborhood: (a) p ∈ N M̂q
ε (q).

(b) p 6∈ N M̂q
ε (q).

measure in Definition 9.4 is not symmetric, because distp(p, q) = distq(q, p)

does in general not hold (cf. Figure 9.4(b)). Symmetry, however, is impor-

tant to avoid ambiguity of the clustering result. If an asymmetric similarity

measure is used in DBSCAN, a different clustering result can be obtained,

depending on the order of processing (e.g. which point is selected as the

starting point) because the symmetry of density connectivity depends on

the symmetry of direct density reachability for core points. Although the

result is typically not seriously affected by this ambiguity effect, we avoid

this problem easily by an extension of our similarity measure which makes

it symmetric. The trick is to consider both similarity measures distp(p, q) as

well as distq(p, q) and to combine them by a suitable arithmetic operation

such as the maximum of the two.

Definition 9.5 (general correlation distance)

The general correlation distance between two points p, q ∈ D, denoted by

distcorr, is defined as the maximum of the correlation similarity measure be-

tween p and q according to p and according to q, formally:

distcorr(p, q) = max{distp(p, q), distq(q, p)}.

Lemma 9.1 The general correlation distance as defined in Definition 9.5 is

symmetric.

Proof. Obvious from Definition 9.5. 2

9.2 Foundations of Connected Correlation Clustering 161

Based on this new symmetric similarity measure distcorr, we define the

correlation ε-neighborhood as a symmetric concept.

Definition 9.6 (correlation ε-neighborhood)

Let ε ∈ R. The correlation ε-neighborhood of a point o ∈ D, denoted by

N M̂o
ε (o), is defined by:

N M̂o
ε (o) = {x ∈ D | distcorr(o, x)} ≤ ε}.

The symmetry of the correlation ε-neighborhood is illustrated in Figure

9.4. A point p is only contained in N M̂q
ε (q) if q is also contained in N M̂p

ε (p).

Correlation core points can now be defined as follows.

Definition 9.7 (correlation core point)

Let ε, δ ∈ R and MinPts, λ ∈ N. A point o ∈ DB is called correlation

core point w.r.t. ε, MinPts, δ, and λ (denoted by Corecor
den(o)) if its ε-

neighborhood is a λ-dimensional linear correlation set and its correlation ε-

neighborhood contains at least MinPts points, formally:

Corecor
den(o) ⇔ CorSetλ

δ (Nε(o)) ∧ |N M̂o
ε (o) | ≥ MinPts.

Let us note that in Corecor
den the acronym cor refers to the correlation

parameters δ and λ. In the following, we omit the parameters ε, MinPts, δ,

and λ wherever the context is clear and use den and cor instead.

Definition 9.8 (Direct correlation reachable)

Let ε, δ ∈ R and MinPts, λ ∈ N. A point p ∈ D is direct correlation

reachable from a point q ∈ D w.r.t. ε, MinPts, δ, and λ (denoted by

DirReachcor
den(q,p)) if q is a correlation core point, the correlation dimension

of Nε(p) is at most λ, and p ∈ N M̂q
ε (q), formally:

DirReachcor
den(q, p) ⇔

(1) Corecor
den(q)

(2) CorDim(Nε(p)) ≤ λ

162 9 Correlation Clustering

(3) p ∈ N M̂q
ε (q).

Direct correlation reachability is symmetric only for pairs of correlation

core points. Both points p and q must find the other point in their corre-

sponding correlation ε-neighborhood.

Definition 9.9 (correlation reachable)

Let ε, δ ∈ R (δ ≈ 0) and MinPts, λ ∈ N. A point p ∈ D is correla-

tion reachable from a point q ∈ D w.r.t. ε, MinPts, δ, and λ (denoted by

Reachcor
den(q,p)) if there is a chain of points p1, · · · pn such that p1 = q, pn = p

and pi+1 is direct correlation reachable from pi, formally:

Reachcor
den(q, p) ⇔

∃p1, . . . , pn ∈ D : p1 = q ∧ pn = p ∧
∀i ∈ {1, . . . , n− 1} : DirReachcor

den(pi, pi+1).

It is easy to see that correlation reachability is the transitive closure of

direct correlation reachability.

Definition 9.10 (correlation connected)

Let ε, δ ∈ R (δ ≈ 0) and MinPts, λ ∈ N. A point p ∈ D is correla-

tion connected to a point q ∈ D w.r.t. ε, MinPts, δ, and λ (denoted by

Connectcor
den(q,p)) if there is a point o ∈ D such that both p and q are cor-

relation reachable from o, formally:

Connectcorr
den (q, p) ⇔

∃o ∈ D : Reachcorr
den (o, q) ∧ Reachcorr

den (o, p).

Correlation connectivity is a symmetric relation. A correlation connected

cluster can now be defined as a maximal correlation connected set.

Definition 9.11 (correlation connected cluster)

Let ε, δ ∈ R (δ ≈ 0) and MinPts, λ ∈ N. A non-empty subset C ⊆ D

9.2 Foundations of Connected Correlation Clustering 163

is called a correlation connected cluster w.r.t. ε, MinPts, δ, and λ if all

points in C are correlation connected and C is maximal w.r.t. correlation

reachability, formally:

Clustercor
den(C) ⇔

(1) Connectivity: ∀o, q ∈ C : Connectcor
den(o, q)

(2) Maximality: ∀p, q ∈ D : q ∈ C ∧Reachcor
den(q, p) ⇒ p ∈ C.

The following two lemmata are important for validating the correctness

of our clustering algorithm. Intuitively, they state that we can discover a cor-

relation connected set for a given parameter setting in a two-step approach,

analog to DBSCAN. First, choose an arbitrary correlation core point o from

the database. Second, retrieve all points that are correlation reachable from

o. This approach yields the correlation connected cluster containing o.

Lemma 9.2

Let p ∈ D. If p is a correlation core point, then the set of points which are

correlation reachable from p is a correlation connected cluster, formally:

Corecor
den(p) ∧ C = {o ∈ D |Reachcor

den(p, o)} ⇒ Clustercor
den(C).

Proof.

(1) C 6= ∅:
By assumption, Corecor

den(p) and thus, CorDim(N M̂
ε (p)) ≤ λ.

⇒ DirReachcor
den(p, p)

⇒ Reachcor
den(p, p)

⇒ p ∈ C.

(2) Maximality:

Let x ∈ C and y ∈ D and Reachcor
den(x, y).

⇒ Reachcor
den(p, x) ∧Reachcor

den(x, y)

⇒ Reachcor
den(p, y) (since correlation reachability is a transitive relation).

⇒ y ∈ C.

(3) Connectivity:

∀x, y ∈ C : Reachcor
den(p, x) ∧Reachcor

den(p, y)

⇒ Connectcor
den(x, y) (via p). 2

164 9 Correlation Clustering

Lemma 9.3

Let C ⊆ D be a correlation connected cluster. Let p ∈ C be a correlation

core point. Then C equals the set of points which are correlation reachable

from p, formally:

Clustercor
den(C) ∧ p ∈ C ∧Corecor

den(p) ⇒ C = {o ∈ D |Reachcor
den(p, o)}.

Proof.

Let C̄ = {o ∈ D |Reachcor
den(p, o)}. We have to show that C̄ = C:

(1) C̄ ⊆ C: obvious from definition of C̄.

(2) C ⊆ C̄: Let q ∈ C. By assumption, p ∈ C and Clustercor
den(C).

⇒ ∃o ∈ C : Reachcor
den(o, p) ∧Reachcor

den(o, q)

⇒ Reachcor
den(p, o) (since both o and p are correlation core points, and corre-

lation reachability is symmetric for correlation core points)

⇒ Reachcor
den(p, q) (transitivity of correlation-reachability)

⇒ q ∈ C̄. 2

9.3 Computing Correlation Connected Clus-

ters

9.3.1 Algorithm 4C

In the following, we describe the algorithm 4C (Computing Correlation Con-

nected Clusters). 4C performs one single pass over the database to find all

correlation clusters for a given parameter setting according to Lemmata 9.2

and 9.3. The pseudocode of the algorithm 4C is given in Figure 9.5. At the

beginning, each point is marked as unclassified. During the run of 4C, all

points are either assigned to a certain cluster identifier or marked as noise.

For each point which is not yet classified, 4C checks whether this point is a

correlation core point. If the point is a correlation core point, the algorithm

expands the cluster belonging to this point. Otherwise the point is marked

9.3 Computing Correlation Connected Clusters 165

algorithm 4C(D, ε, MinPts, λ, δ)

// assumption: each point in D is marked as unclassified

for each unclassified o ∈ D do
if Corecor

den(o) then
generate new clusterID;

insert all x ∈ N M̂o
ε (o) into queue Φ;

while Φ 6= ∅ do
q = first point in Φ;
compute R = {x ∈ D |DirReachcor

den(q, x)};
for each x ∈ R do

if x is unclassified or noise then
assign current clusterID to x

end if
if x is unclassified then

insert x into Φ;
end if

end for
remove q from Φ;

end while
else

mark o as noise;
end if

end for

Figure 9.5: Pseudo code of the 4C algorithm.

as noise. To find a new cluster, 4C starts with an arbitrary correlation core

point o and expands a cluster by searching for all points that are correlation

reachable from o. This is sufficient to find the whole cluster containing the

point o, due to Lemmata 9.2 and 9.3. When 4C finds a new initial correlation

core point, a new cluster identifier clusterID is generated which will be as-

signed to all points found during the expansion. 4C begins this expansion by

inserting all points in the correlation ε-neighborhood of point o into a queue.

For each point in the queue, it computes all directly correlation reachable

points and inserts those points into the queue which are still unclassified.

This is repeated until the queue is empty.

Obviously, the results of 4C do not depend on the order of processing, i.e.

the resulting clustering (number of clusters and association of core points to

clusters) is determinate.

166 9 Correlation Clustering

9.3.2 Complexity Analysis

The computational complexity with respect to the number of data points as

well as the dimensionality of the data space is an important issue because

the proposed algorithms are typically applied to large data sets of high di-

mensionality. The idea of our correlation connected clustering method is

founded on DBSCAN. The complexity of the original DBSCAN algorithm

depends on the existence of an index structure for high dimensional data

spaces. The worst case complexity is O(n2), but the existence of an ef-

ficient index reduces the complexity to O(n log n) [EKSX96]. DBSCAN is

linear in the dimensionality of the data set for the Euclidean distance metric.

If a quadratic form distance metric is applied instead of Euclidean (which

enables user adaptability of the distance function), the time complexity of

DBSCAN is O(d2 · n log n). ORCLUS claims to have a runtime complexity

of O(k3 +k ·n ·d+k2 ·d3) where k is the number of clusters required as input

parameter [AY00].

We begin our analysis with the assumption of no index structure.

Lemma 9.4 The overall worst-case time complexity of our algorithm on top

of the sequential scan of the data set is O(d2 · n2 + d3 · n).

Proof. Our algorithm has to associate each point of the data set with a

similarity measure that is used for searching neighbors (cf. Definition 9.4).

We assume that the corresponding similarity matrix must be computed once

for each point, and it can be held in the cache until it is no more needed (it

can be easily decided whether or not the similarity matrix can be safely dis-

carded). The covariance matrix is filled with the result of a Euclidean range

query which can be evaluated in O(d · n) time. Then, the matrix is decom-

posed using PCA which requires O(d3) time. For all points together, we have

O(d · n2 + d3 · n).

Checking the correlation core point property according to Definition 9.7, and

expanding a correlation connected cluster requires for each point the evalua-

tion of a range query with a quadratic form distance measure which can be

done in O(d2 · n). For all points together (including the above cost for the

9.3 Computing Correlation Connected Clusters 167

determination of the similarity matrix), we obtain a worst-case time com-

plexity of O(d2 · n2 + d3 · n). 2

Under the assumption that an efficient index structure for high dimen-

sional data spaces [BKK96, BBJ+00] is available, the complexity of all range

queries is reduced from O(n) to O(log n). Let us note that we can use Eu-

clidean range queries as a filter step for the quadratic form range queries

because no semi-axis of the corresponding ellipsoid exceeds ε. Therefore, the

overall time complexity in this case is given as follows:

Lemma 9.5 The overall worst case time complexity of our algorithm on top

of an efficient index structure for high dimensional data is O(d2 · n log n +

d3 · n).

Proof. Analogous to Lemma 9.4. 2

9.3.3 Input Parameters

The algorithm 4C needs four input parameters which are discussed in the

following:

The parameter ε ∈ R specifies the size of the local areas in which the

correlations are examined and thus determines the number of points which

contribute to the covariance matrix and consequently to the correlation sim-

ilarity measure of each point. It also participates in the determination of

the density threshold, a correlation cluster must exceed. Its choice usually

depends on the volume of the data space (i.e. the maximum value of each

attribute and the dimensionality of the feature space). The choice of ε has

two aspects. First, it should not be too small because in that case, an in-

sufficiently small number of points contribute to the correlation similarity

measure of each point and thus, this measure can be meaningless. On the

other hand, ε should not be too large because then some noise points might

be correlation reachable from points within a correlation connected cluster.

168 9 Correlation Clustering

Let us note that our experiments indicated that the second aspect is not

significant for 4C (in contrast to ORCLUS).

The parameter MinPts ∈ N specifies the number of neighbors a point

must find in an ε-neighborhood and in a correlation ε-neighborhood to exceed

the density threshold. It determines the minimum cluster size. The choice

of MinPts should not be to small (MinPts ≥ 5 is a reasonable lower bound)

but is rather insensitive in a broad range of values.

Both ε and MinPts should be chosen hand in hand.

The parameter λ ∈ N specifies the correlation dimension of the correla-

tion connected clusters to be computed. As discussed above, the correlation

dimension of a correlation connected cluster corresponds to its intrinsic di-

mension. Only those clusters with a correlation dimensionality of no more

than λ are determined. In our experiments, it turned out that λ can be seen

as an upper bound for the correlation dimension of the detected correlation

connected clusters. However, the computed clusters tend to have a correla-

tion dimension close to λ. If the correlation dimensionality of the clusters is

unknown, 4C must simply be started with several selections of λ, since clus-

ters of different correlation dimensionality may form a hierarchy (e.g. two

2-dimensional clusters may together form a 3-dimensional cluster).

The parameter δ ∈ R (where 0 ≤ δ ≤ 1) specifies the lower bound for the

decision whether an eigenvalue is set to 1 or to κ � 1. It empirically turned

out that the choice of δ influences the tightness of the detected correlations,

i.e. how much local variance from the correlation is allowed. Our experiments

also showed that δ ≤ 0.1 is usually a good choice.

9.4 Quality Evaluation

In this section, we present a broad efficiency evaluation of 4C. The evalua-

tion is based on several synthetic data sets as well as on the Tavazoie gene

expression data and the Metabolome data (cf. Section 7.3). In addition,

we compared the quality of the results of our method to the quality of the

9.4 Quality Evaluation 169

Dataset D

Cluster 1 Cluster 2

Cluster 3

Noise

Figure 9.6: Transposed view of three clusters and noise found by 4C on a

10D synthetic data set. Parameters: ε = 10.0, MinPts = 5, λ = 2, δ = 0.1.

results of DBSCAN, ORCLUS, and CLIQUE. In all our experiments, we set

the parameter κ = 50 as suggested in Section 9.2.2.

Synthetic Data Sets

We first applied 4C on several synthetic data sets (with 2 ≤ d ≤ 30) con-

sisting of several dense, linear correlations. In all cases, 4C had no problems

to separate the correlation-connected clusters from noise. As an example,

Figure 9.6 illustrates the transposed view of the three clusters and the noise

4C found on a sample 10-dimensional synthetic data set consisting of ap-

proximately 1,000 points. Applied to all synthetic data sets, 4C computed

100% accuracy.

170 9 Correlation Clustering

Sample Cluster 1 Sample Cluster 2

Sample Cluster 4Sample Cluster 3

Figure 9.7: Sample clusters found by 4C on the gene expression data set.

Parameters: ε = 25.0, MinPts = 8, λ = 8, δ = 0.01.

Real-World Data Sets

Gene Expression Data. 4C found 60 correlation connected clusters of

co-regulated genes (10-20). Such small cluster sizes are quite reasonable from

a biological perspective. The transposed views of four sample clusters are

depicted in Figure 9.7. All four clusters exhibit simple linear correlations

on a subset of their attributes. Let us note that we also found other linear

correlations which are rather complex to visualize. We also analyzed the

results of our correlation clusters and found several biologically important

implications. For example, one cluster consists of several genes coding for

proteins related to the assembly of the spindle pole, required for mitosis

(e.g. KIP1, SLI15, SPC110, SPC25, and NUD1). Another cluster contains

several genes coding for structural constituents of the ribosome (e.g. RPL4B,

RPL15A, RPL17B, and RPL39). The functional relationships of the genes

in the clusters confirm the significance of the computed co-regulation.

9.4 Quality Evaluation 171

PKU PKU PKU

LCHAD control control

Figure 9.8: Clusters found by 4C on the metabolome data set. Parameters:

ε = 150.0, MinPts = 8, λ = 20, δ = 0.1.

Metabolome Data. 4C detected six correlation connected sets which

are visualized in Figure 9.8. Cluster one and two (in the upper right cor-

ner marked with “control”) consists of healthy newborns whereas the other

clusters consists of newborns having one specific disease (e.g. “PKU” or

“LCHAD”). The group of newborns suffering from “PKU” was split in three

clusters. Several ill as well as healthy newborns were classified as noise. Let

us note that the computed clusters are 100% pure, i.e. they only contain

instances of a single class.

Comparisons to Other Methods

We compared the effectiveness of 4C with related clustering methods, in par-

ticular the density-based clustering algorithm DBSCAN, the subspace clus-

tering algorithm CLIQUE, and the projected clustering algorithm ORCLUS.

For that purpose, we applied these methods on several synthetic data sets

including 2-dimensional data sets and higher dimensional data sets (d = 10).

172 9 Correlation Clustering

Clusters found
by DBSCAN

Clusters found
by 4C

Dataset A Dataset B

Figure 9.9: Comparison between 4C and DBSCAN.

Comparison with DBSCAN. The clusters found by DBSCAN and 4C

applied on the 2-dimensional data sets are depicted in Figure 9.9. In both

cases, DBSCAN finds clusters which do not exhibit correlations (and thus

are not detected by 4C). In addition, DBSCAN cannot distinguish varying

correlations which overlap (e.g. both correlations in data set B in Figure

9.9) and treat such clusters as one density-connected set, whereas 4C can

differentiate such correlations. We gain similar observations when we applied

DBSCAN and 4C on the higher dimensional data sets. Let us note that these

results are not astonishing since DBSCAN only searches for density connected

sets but does not search for correlations and thus cannot be applied to the

task of finding correlation connected sets.

Comparison with CLIQUE. A comparison of 4C with CLIQUE gained

similar results. CLIQUE finds clusters in subspaces which do not exhibit cor-

relations (and thus are not detected by 4C). On the other hand, CLIQUE is

usually limited to axis-parallel clusters and therefore cannot detect arbitrary

correlations. These observations occur especially with higher dimensional

data (d ≥ 10 in our tests). Again, these results are not astonishing since

CLIQUE only searches for axis-parallel subspace clusters (dense projections)

but does not search for correlations. This empirically supported the suspicion

that CLIQUE cannot be applied to the task of finding correlation connected

9.4 Quality Evaluation 173

ORCLUS cluster 1

ORCLUS cluster 2

ORCLUS cluster 3

3 clusters found by 4C

Figure 9.10: Clusters found by 4C (parameters: ε = 2.5, MinPts = 8,

δ = 0.1, λ = 2), and ORCLUS (parameters: k = 3, l = 2).

sets. In general, subspace clustering and correlation clustering algorithms

aim at different results.

Comparison with ORCLUS. A comparison of 4C with ORCLUS re-

sulted in quite different observations. In fact, ORCLUS computes clusters of

correlated points. However, since it is a k-means based, it suffers from the

following two drawbacks: First, the choice of k is a rather hard task for real-

world data sets. Even for synthetic data sets, where we knew the number of

clusters beforehand, ORCLUS often performs better with a slightly different

value of k. Second, ORCLUS is rather sensitive to noise which often appears

in real-world data sets. Since all points have to be assigned to a cluster, the

locality of the analyzed correlations is often too coarse (i.e. the subsets of the

points taken into account for correlation analysis are too large). As a conse-

quence, the correlation clusters are often blurred by noise points and thus are

174 9 Correlation Clustering

hard to obtain from the resulting output. Figure 9.10 illustrates a sample

3-dimensional synthetic data set, the clusters found by 4C are marked by

black lines. Figure 9.10 depicts the points in each cluster found by ORCLUS

(k = 3 yields the best result) separately. It can be seen that the correlation

clusters are — if detected — blurred by noise points. When we applied OR-

CLUS on higher dimensional data sets (d = 10), the choice of k became even

more complex and the problem of noise points blurring the clusters (i.e. too

coarse locality) simply cumulated in the fact that ORCLUS often could not

detect correlation clusters in high-dimensional data.

9.5 Modifications and Specializations

In this section, we will propose two small variations of the concepts under-

lying 4C. One variation is a modification to identify pattern-based clusters,

the second is a specialization to address the projected clustering approach.

9.5.1 A Variant for Pattern-Based Clustering

General Idea

4C computes arbitrary linear correlations that exhibit a given density. How-

ever, for pattern-based clustering, the density constraint should be relaxed.

Intuitively, we want to add all points that are located on a correlation hy-

perplane and not only those that are also dense. 4C provides a solid basis to

achieve this claim. The key idea is to modify the similarity matrix of a point

in Definition 9.4 in the following way. Instead of setting the eigenvalues of

Êp to 1 and κ, we set it to 0 and κ. The resulting similarity matrix is called

pattern-based similarity matrix instead of correlation similarity matrix.

Definition 9.12 (pattern-based similarity matrix of a point)

Let p ∈ D and Vp, Ep the corresponding eigenvectors and eigenvalues of the

point p. Let κ ∈ R be a constant with κ � 1. The new eigenvalue matrix

9.5 Modifications and Specializations 175

p

q

Figure 9.11: Visualization of the adopted correlation similarity measure for

pattern-based clustering.

Ĕp with entries ĕi (i = 1, . . . d) is computed from the eigenvalues e1, . . . , ed

in Ep according to the following rule:

ĕi =

 0 if Ω(ei) > δ

κ if Ω(ei) ≤ δ

where Ω is the already known normalization of the eigenvalues onto [0, 1].

The matrix M̆p = VpĔpV
T
p is called the pattern-based similarity matrix of

point p. The pattern-based similarity measure associated with point p is

denoted by

distpat
p (p, q) =

√
(p− q) · M̆p · (p− q)T.

All other concepts known from Section 9.2.2 remain unchanged, i.e. we can

define a general (symmetric) pattern-based distance function very similar

to Definition 9.5 and we can also define a pattern-based ε-neighborhood,

pattern-based core points, pattern-based direct reachability, etc. The adopted

algorithm based on this notion of pattern connected clusters works in principle

like 4C but detects pattern-based clusters.

176 9 Correlation Clustering

data set noise

Figure 9.12: Synthetic test data set (left) and points classified as noise by

the pattern-based variant of 4C (right).

The effect of the modified pattern-based similarity measure is visualized

in Figure 9.11. The adopted pattern-based ε-neighborhood captures the com-

plete data space along the direction of highest variance, whereas its extension

along the direction of lowest variation remains ε/κ. As a consequence, points

that are correlated but are not dense are added to a common cluster, e.g. p

and q in Figure 9.11. The adoption of 4C based on that notion of pattern

connected clusters is more general than the algorithmic schemes proposed for

pattern-based clustering so far. However, both points p and q in Figure 9.11

must still exhibit a similar correlation in their local neighborhood because

otherwise, they may have different similarity measures and may not find each

other in their according adopted correlation ε-neighborhood.

Experimental Results

We tested the pattern-based variant of 4C, using several synthetic data sets,

that contained one or more lower dimensional pattern-based clusters. The

results of a sample 2-dimensional data set (cf. Figure 9.12) is depicted in

Figure 9.13. As it can be seen from the transposed view, the clusters contain

all points that exhibit a similar pattern. In addition, the points in the cluster

need not to be dense anymore. However, as it can be seen from the results,

9.5 Modifications and Specializations 177

cluster 1

cluster 2

cluster 1 (transposed)

cluster 2 (transposed)

Figure 9.13: Clusters found by the pattern-based variant of 4C.

we still need local density to detect any pattern-based cluster.

9.5.2 A Variant for Projected Clustering

General Idea

4C detects arbitrarily oriented dense hyperplanes, i.e. projections where

the points exhibit a certain density and that are arbitrarily oriented in the

feature space. On the other hand, projected clustering aims at detecting axis-

parallel dense projections. Based on the modification for the pattern-based

clustering approach in the previous subsection, a density-based projected

clustering algorithm is in sight which is able to detect projected clusters of

178 9 Correlation Clustering

arbitrary shape and size. This would be an enhancement of existing methods

such as PROCLUS [APW+99] which is k-means based or DOC (cf. Chapter

8). Both approaches suffer from the fact that they cannot detect projected

clusters of arbitrary shape and size. In order to compute density connected

projected clusters, we just need to adopt the concepts of pattern connected

clusters to compute density-based projected clusters. Instead of computing

the principal axis of a set of points, we now search for low variation along one

or more axes. The attributes that exhibit a low variation should be weighted

by κ and the other attributes by 0. Thus, our new projected similarity

measure is a weighted Euclidean distance function with weights κ and 0.

The only question that remains is how to distinguish between attributes of

low variation and attributes of high variation. A natural choice to decide

about the variation of the points around a point p in the projection onto an

attribute ai is to test whether the ε-neighborhood of p projected onto ai, i.e.

N {ai}
ε (p) contains at least MinPts points. Based on these considerations, we

can define the adopted projection similarity measure of a point as follows.

Definition 9.13 (projection similarity measure of a point)

Let p ∈ D. Let w̄p be the so-called projection similarity weight vector of

point p:

w̄p = (w1, w2, ...wd),

where

wi =

 0 if N {ai}
ε (p) ≤ MinPts

1 else.

The projected similarity measure associated with a point p is denoted by

distproj
p (p, q) =

√√√√ d∑
i=1

wi · (π{ai}(p)− π{ai}(q))
2

where wi is the i-th component of w̄p.

Using this projection similarity measure of a point, we can define the

general symmetric extension of this measure analogously to Definition 9.5.

Thus, we can define a projected ε-neighborhood and based on this, we can

9.5 Modifications and Specializations 179

p

q

Figure 9.14: Visualization of the adopted projection similarity measure for

projected clustering.

formalize the notion of density connected projected clusters analogously to

Definitions 9.6 to 9.11.

In fact, the projected ε-neighborhoods exhibit hyper-spheres onto the ac-

cording projections of low variation. Using the concept of density connectiv-

ity adopted to projected clustering as described above, we will detect clusters

of arbitrarily shape and size in the according projections. The adopted pro-

jected ε-neighborhood is depicted in Figure 9.14 for a 2-dimensional point p.

The projected ε-neighborhood captures the complete data space along the

axes of high variance, whereas its extension along the axes of low variation is

ε, i.e. it forms a hyper-sphere with radius ε onto the projection of low varia-

tion. Thus, point q in Figure 9.14 will be inserted into the projected cluster

of p. In fact, the projected clusters are rather similar to those DBSCAN

would find in the according projections of the data space.

180 9 Correlation Clustering

(a) 2-dimensional projection of a 50-
dimensional synthetic data set

(b) 2-dimensional projection of the clus-
ter found by the adoption of 4C

Figure 9.15: Results of the projected clustering variation of 4C on a sample

synthetic data set

Experimental Results

We tested the adoption of 4C to projected clustering using several synthetic

data sets that contained one or more lower dimensional projected clusters

of arbitrary shape and size. The data were generated to guarantee that

DBSCAN cannot find any cluster in full-dimensional space. A sample result

is depicted in Figure 9.15. The 2-dimensional projection of a 50-dimensional

synthetic data set, in which there is a cluster, is depicted in Figure 9.15(a).

The data set contains one 2-dimensional projected cluster of complex shape.

Our adoption of 4C detected this cluster by an accuracy of 100% as can be

seen in Figure 9.15(b). Our further tests on other synthetic data sets confirm

these results.

9.6 Summary

In this Chapter, we proposed a density-based approach to find sets of linearly

correlated, densely packed points in a high dimensional feature space. Our

formal notion of correlation connected clusters combines the (full-dimensional)

density connected notion of clusters with the concept of PCA. We devel-

9.6 Summary 181

oped an algorithm called 4C (Computing Correlation Connected Clusters)

for efficiently detecting such correlation connected clusters. Due to the well-

founded clustering notion, the correctness of 4C can be formally proven. 4C

outperforms existing correlation clustering algorithms (especially ORCLUS)

in terms of accuracy because it is not sensitive to noise and can detect any

linear correlation with a dimensionality lower than the user defined threshold

λ. In addition, the results of 4C do not depend on the order of processing,

and the assignment of points to clusters or noise is determinate (at least for

correlation core points). A broad experimental evaluation on synthetic and

real-world data sets including the Metabolome data set and the Tavazoie

gene expression data set empirically confirmed this proper performance of

4C.

In addition, we presented two extensions to the concept of 4C. The first

extension addresses the pattern-based clustering approach. Using this exten-

sion, 4C detects clusters of points that exhibit an arbitrary linear tendency

(pattern) in a subset of their attributes. This is a generalization of current

pattern-based approaches that are limited to find clusters of points showing

only less complex tendencies. The second extension addresses the projected

clustering approach. Using this extension, 4C detects projected clusters of

arbitrary shape and size. The advantage of a determinate result is received.

This is an enhancement to existing projected clustering methods (e.g. PRO-

CLUS and DOC) that suffer mainly from non-determine results and rather

simple clustering models that favors particular cluster shapes. The accuracy

of both extensions where illustrated using synthetic data sets.

182 9 Correlation Clustering

Part IV

Conclusions

183

Chapter 10

Summary and Future

Directions

Within the KDD process, data mining is the application of algorithms to

discover patterns and trends in large databases. Clustering is one of the

most important data mining tasks. The methods and concepts presented

in this thesis contribute to the solution of novel challenges for clustering

algorithms. This chapter summerizes the main contributions of this thesis

(Section 10.1) and shows potentials for future research directions (Section

10.2).

185

186 10 Summary and Future Directions

10.1 Summary of Contributions

The rapidly increasing amount of data stored in databases requires efficient

and effective data mining methods to make the full use out of the collected

data. Clustering is one of the primary data mining tasks and aims at de-

tecting subgroups of similar data objects. This thesis contributes in the field

of clustering. New and original solutions for novel challenges of clustering

algorithms, in particular for the density-based clustering approach, which is

one of the most successful clustering models, are proposed. In the following,

we give a detailed summary of these contributions.

10.1.1 Preliminaries (Part I)

The preliminaries in Part I illustrate the topic and the background of this

work. After a very general introduction to KDD, data mining, and clustering,

we give a classification of general clustering algorithms proposed recently.

The density-based clustering notion underlying the algorithms DBSCAN and

OPTICS which forms the basis of this thesis is reviewed in more detail. In

addition, basic notations are introduced.

10.1.2 Using Density-Based Hierarchical Clustering for

Similarity Search Applications (Part II)

Part II presents an industrial prototype called BOSS (Browsing OPTICS

Plots for Similarity Search) that enables visual data browsing based on a hi-

erarchy of clusters computed by OPTICS. BOSS is a first step towards devel-

oping a comprehensive and scalable solution, designed to make the efficiency

and the analytical potentials of OPTICS available to a broader audience. In

particular, BOSS is designed to support the following important application

ranges:

• Visual Data Mining: BOSS enables to visually browse the results of

the cluster hierarchy generated by OPTICS. This supports the user in

10.1 Summary of Contributions 187

analyzing the clustering results, i.e. a semi-automatic cluster analysis

of massive data sets.

• Interactive Similarity Search: BOSS enables a user to visually

search for similar data objects without the requirement to specify or

sketch a query object. Applied to CAD databases and digital engi-

neering (e.g. of car parts), BOSS can provide engineers with a quick

overview of already existing data objects (i.e. parts). Engineers are

able to navigate their way through the diversity of existing variants

of products and parts, reducing the costs of developing and producing

new parts by maximizing the reuse of existing parts.

• Evaluation of Similarity Models: Effective similarity models form

the basis of accurate similarity search. In general, similarity models can

be evaluated by computing sample similarity queries. However, this

procedure is subjective and error-prone, since the quality of a model

depends on the results of few sample queries and, therefore, on the

choice of the query objects. Applying a clustering algorithm is much

more objective, taking all data objects into account for evaluation.

BOSS helps to analyze how accurate the clustering structure generated

by OPTICS reflects the intuitive notion of similarity. This helps to

decide about the accuracy of the similarity model.

In Part II, we identify three key requirements for the development of

BOSS that have been insufficiently addressed so far by other approaches or

not yet addressed at all. These requirements include an incremental version

of OPTICS to cope with large dynamic (i.e. frequently updated) databa-

ses, solid cluster extraction from hierarchical cluster representations, and

selection of meaningful cluster representatives. The three requirements are

improvements of the density-based hierarchical clustering method OPTICS.

We present solutions for these requirements in this work.

First, we propose an incremental variant of OPTICS called IncOPTICS

for incrementally maintaining the clustering structure after the insertion or

deletion of an update object. The basic algorithms are extended for handling

188 10 Summary and Future Directions

bulk updates. IncOPTICS achieves significant speed-up factors over OPTICS

and thus enables the application of BOSS in a dynamic environment.

Second, we present a novel algorithm called GradientClustering for extract-

ing clusters from hierarchical representations generated by OPTICS. The

GradientClustering algorithm is designed to meet the requirements of BOSS,

especially to compute a cluster hierarchy of deep details. It outperforms re-

cent comparative approaches in terms of these requirements. In addition,

we proposed two approaches for selecting meaningful cluster representatives

based on the density-based concepts underlying OPTICS. Both approaches

have shown to produce better results than the well-known medoid approach.

We illustrate some details on the implementation of the BOSS prototype,

incooperating the ideas presented in Part II. In addition, we outline two

sample applications, first, to visual data mining and semi-automatic cluster

analysis in a database of protein structures and second, to the evaluation

of similarity models using a database of car parts. Both examples show the

sound usability of BOSS.

10.1.3 Adopting Density-Based Clustering to High Di-

mensional Data (Part III)

Part III deals with the problem of high dimensional feature databases which

is an active area of research. We first give a general introduction to the

problems of clustering high dimensional data, summarized by the term curse

of dimensionality. After that, we classify current approaches for clustering

high dimensional data into projected clustering, subspace clustering, pattern-

based clustering, and correlation clustering algorithms. Each class of ap-

proaches has different aims and, therefore, different requirements. Density-

based clustering is then combined with dedicated approaches to deal with

that special requirements.

A density-based subspace clustering algorithm called SUBCLU (density-

based Subspace Clustering) is proposed. It automatically and efficiently com-

putes all “flat” subspace clusters DBSCAN would have found if applied to all

10.2 Future Work 189

possible subspaces. SUBCLU is applied to a real-world gene expression data

set outperforming comparative subspace clustering approaches and yielding

a significant amount of important biological information. A second algorithm

called RIS (Ranking Interesting Subspaces), a semi-hierarchical extension of

SUBCLU, is proposed for the subspace clustering problem. The main differ-

ence to SUBCLU is that RIS ranks the subspaces according to their clustering

quality rather than computing subspace clusters. A user can choose some

subspaces from a list sorted by clustering quality and apply his/her own (e.g.

hierarchical) clustering algorithm to the particular subspaces. The advantage

of RIS is that it can be combined with a hierarchical clustering algorithm.

The combination of RIS and OPTICS is applied to gene expression data,

yielding further important insights that were missed by SUBCLU.

In addition, we combined the density-based clustering notion with PCA,

a primitive to measure correlation. Based on this combination, a sound

formalization of correlation connected clusters is presented. We propose an

efficient algorithm called 4C to compute such correlation connected clusters

and apply this method on a gene expression data set and on a metabolome

data set. 4C shows a significant accuracy gain compared to other clustering

methods. In addition, two extensions of 4C are presented. One extension

aims at finding pattern-based clusters and the second extension is able to

compute density-based projected clusters of arbitrary size and shape.

In summary, we applied the density-based clustering notion to the ap-

proaches for clustering high dimensional data. The benefit of the proposed

methods is that the advantages of this powerful clustering model are con-

served.

10.2 Future Work

At the end of this thesis, let us emphasize the potentials of the proposed

methods for clustering.

For BOSS, we see the following opportunities for future research:

190 10 Summary and Future Directions

• To improve the representatives displayed in the browsable hierarchy,

a quality measure is needed. Such a quality measure for cluster rep-

resentatives could be based on the concept of local outlier detection,

determining how strong a point is an outlier w.r.t. the other objects in

the cluster. Having such a quality measure at hand, we could compare

the representatives generated by the different approaches incooperated

within BOSS and could e.g. present a ranked list of representatives to

the user.

• In many real-world databases, the data objects are distributed over

several sites. A parallel and/or distributed version of OPTICS may

be required since a centralized clustering could be impossible due to

network bandwidth constraints. This would be the first step towards a

BOSS system for a distributed database environment.

For the clustering of high dimensional data, future research could be

guided in the following directions:

• Currently, subspace clustering/ranking algorithms are limited by the

use of a global density threshold. The development of a density-based

subspace ranking method which is adoptable to local density would be

an enhancement to SUBCLU and RIS. However, it is not clear how the

concepts of OPTICS can be adopted for efficient subspace clustering.

• Beside the approach of inverted files, there are no index structures for

partial range queries, i.e. range queries in arbitrary subspaces of the

feature space, needed by the SUBCLU and RIS algorithms. An open

question is, if traditional index structures, which originally cannot be

applied to this problem, can be adopted to support partial range queries

more efficiently.

• Computing hierarchies of correlation connected clusters is another open

question. Currently, 4C can only detect correlations of a fixed correla-

tion dimension. However, two k-dimensional correlations can e.g. form

a (k+1)-dimensional correlation. It would be interesting to investigate

10.2 Future Work 191

how the concepts of correlation connected clusters could be extended

to find correlation hierarchies.

• Last but not least, it is interesting to combine the density-based clus-

tering notion with other correlation primitives. Beside PCA (used in

4C as proposed in this thesis), there are several other concepts such as

fractal dimension, Hough transformations, etc. which could be used.

It could even be interesting to design a general framework where the

user can combine the density-based clustering notion with primitives

for correlation analysis of his/her choice.

192 10 Summary and Future Directions

List of Figures

1.1 The KDD process. 5

2.1 A dendrogram (right) for a sample data set (left). 16

2.2 The idea of feature transformation. 18

2.3 Sample databases. 19

2.4 Illustration of density-based clustering concepts 22

2.5 The DBSCAN algorithm. 23

2.6 Method ExpandCluster. 24

2.7 Nested clusters of different density. 25

2.8 Illustration of core distance and reachability distance. 27

2.9 The OPTICS algorithm. 28

2.10 Method OrderedSeeds::update. 29

2.11 Reachability plot (right) computed by OPTICS for a sample

2-D data set (left). 29

3.1 Different approaches to visual data mining [Ank00]. 36

3.2 Browsing through reachability plots. 37

3.3 Hierarchically ordered representatives. 38

4.1 Sample dataset where the entire cluster ordering is affected by

the insertion/deletion of point U 47

4.2 The core distance of q changes due to insertion/deletion of p. . 50

4.3 Algorithm insert for IncOPTICS. 55

193

194 LIST OF FIGURES

4.4 IncOPTICS: adopted method OrderedSeeds::update. 56

4.5 Algorithm delete for IncOPTICS. 59

4.6 IncOPTICS: method OrderedSeeds::updateAll. 60

4.7 Runtime speed-up factors of IncOPTICS vs. OPTICS. 62

4.8 Results of IncOPTICS on synthetic and real-world TV data. . 63

4.9 Comparison of bulk IncOPTICS vs. OPTICS. 64

5.1 Sample nested clusters: data space (left); reachability plot

(middle); cluster hierarchy (right) 69

5.2 Gradient vectors ~g(x, y) and ~g(y, z) of objects x, y and z ad-

jacent in the cluster ordering. 71

5.3 Illustration of inflection points measuring the angle between

the gradient vectors of objects adjacent in the ordering. 73

5.4 Clusters found on car parts and proteins by: a) GradientClus-

tering, b) ξ-Clustering, c) cluster tree 75

5.5 Representing clusters by superimposing all contained objects. . 78

5.6 Illustration of the minimum core distance approach. 79

5.7 Sample successor graph for a cluster of seven objects. 80

5.8 Illustration of the maximum successor approach. 82

5.9 A cluster of CAD objects with corresponding representative

objects. 83

5.10 A cluster of proteins with corresponding representative objects. 84

5.11 Pseudo code of the GradientClustering algorithm. 86

6.1 BOSS distributed architecture. 88

6.2 BOSS screenshot. 89

6.3 OPTICS plot of the protein data set. 90

6.4 Sample cluster 1 found on the protein database. 91

6.5 Sample cluster 2 found on the protein database. 92

6.6 Reachability plots computed by OPTICS using different sim-

ilarity models. 93

LIST OF FIGURES 195

6.7 Contents of the clusters detected in Figure 6.6. 94

7.1 Probability of a point near by the data space boundary. 101

7.2 Sample projected clusters in different subspaces. 103

7.3 Sample objects cluster differently in varying subspaces. 104

7.4 Transposed view (left) and pattern-based cluster (right) of

some sample database objects. 105

7.5 A 2-dimensional correlation plane in a 3-dimensional feature

space. 106

7.6 Gene expression data matrix: schematic view (left), visualiza-

tion of a sample raw data excerpt (right). 108

8.1 Illustration of drawbacks of existing subspace clustering algo-

rithms. 116

8.2 Monotonicity of density connected (the circles indicate the ε-

neighborhoods, MinPts = 4). 123

8.3 Visualization of a density connected cluster C loosing its max-

imality w.r.t. density reachability in a subspace. 125

8.4 The SUBCLU algorithm. 127

8.5 Procedure GenerateCandidates. 128

8.6 Scalability of SUBCLU. 130

8.7 Problems with a global density parameter. 135

8.8 The RIS algorithm. 140

8.9 Illustration of the periodic extension of the data space (dist =

L∞). 142

8.10 Efficiency evaluation. 145

8.11 Part of the reachability plot generated by OPTICS in the sub-

space, ranked second by RIS. 147

9.1 1-dimensional correlation lines. 153

9.2 2-dimensional correlation planes. 155

196 LIST OF FIGURES

9.3 Correlation ε-neighborhood of a point p according to (a) Mp

and (b) M̂p. 158

9.4 Symmetry of the correlation ε-neighborhood: (a) p ∈ N M̂q
ε (q).

(b) p 6∈ N M̂q
ε (q). 160

9.5 Pseudo code of the 4C algorithm. 165

9.6 Transposed view of three clusters and noise found by 4C on a

10D synthetic data set. Parameters: ε = 10.0, MinPts = 5,

λ = 2, δ = 0.1. 169

9.7 Sample clusters found by 4C on the gene expression data set.

Parameters: ε = 25.0, MinPts = 8, λ = 8, δ = 0.01. 170

9.8 Clusters found by 4C on the metabolome data set. Parame-

ters: ε = 150.0, MinPts = 8, λ = 20, δ = 0.1. 171

9.9 Comparison between 4C and DBSCAN. 172

9.10 Clusters found by 4C (parameters: ε = 2.5, MinPts = 8,

δ = 0.1, λ = 2), and ORCLUS (parameters: k = 3, l = 2). . . . 173

9.11 Visualization of the adopted correlation similarity measure for

pattern-based clustering. 175

9.12 Synthetic test data set (left) and points classified as noise by

the pattern-based variant of 4C (right). 176

9.13 Clusters found by the pattern-based variant of 4C. 177

9.14 Visualization of the adopted projection similarity measure for

projected clustering. 179

9.15 Results of the projected clustering variation of 4C on a sample

synthetic data set . 180

List of Tables

5.1 CPU time for cluster recognition. 76

7.1 Summarization of gene expression data sets. 109

7.2 Class distribution of the Metabolome data set. 111

8.1 Comparative evaluation of SUBCLU and CLIQUE: Summary

of the results on synthetic data sets. 131

8.2 Contents of four sample clusters in different subspaces. 132

8.3 A cluster missed by SUBCLU, but detected by RIS/OPTICS. 148

197

198 LIST OF TABLES

References

[ABKS99] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. ”OP-

TICS: Ordering Points to Identify the Clustering Structure”.

In Proc. ACM SIGMOD Int. Conf. on Management of Data

(SIGMOD’99), Philadelphia, PA, pages 49–60, 1999.

[AFS93] R. Agrawal, C. Faloutsos, and A. Swami. “Efficient Similar-

ity Search in Sequence Databases”. In Proc. 4th. Int. Conf. on

Foundations of Data Organization and Algorithms (FODO’93),

Evanston, ILL, volume 730 of Lecture Notes in Computer Sci-

ence (LNCS), pages 69–84. Springer, 1993.

[AGGR98] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. ”Au-

tomatic Subspace Clustering of High Dimensional Data for

Data Mining Applications”. In Proc. ACM SIGMOD Int. Conf.

on Management of Data (SIGMOD’98), Seattle, WA, 1998.

[AHWY03] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. ”A Frame-

work for Clustering Evolving Data Streams”. In Proc. 29th Int.

Conf. on Very Large Databases (VLDB’03), Berlin, Germany,

pages 81–92, 2003.

[AKKS99] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl. “3D

Shape Histograms for Similarity Search and Classification in

Spatial Databases”. In Proc. 6th Int. Symposium on Large

Spatial Databases (SSD’99), Hong Kong, China, volume 1651

of Lecture Notes in Computer Science (LNCS), pages 207–226.

Springer, 1999.

199

200 REFERENCES

[ALSS95] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim. “Fast

Similarity Search in the Presence of Noise, Scaling, and Trans-

lation in Time-Series Databases”. In Proc. 21st Int. Conf. on

Very Large Databases (VLDB’95), Zurich, Switzerland, pages

490–501, 1995.

[Ank00] M. Ankerst. Visual Data Mining. PhD thesis, Institute for

Computer Science, University of Munich, 2000.

[APW+99] C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and

J. S. Park. ”Fast Algorithms for Projected Clustering”. In

Proc. ACM SIGMOD Int. Conf. on Management of Data (SIG-

MOD’99), Philadelphia, PA, 1999.

[AS94] R. Agrawal and R. Srikant. ”Fast Algorithms for Mining As-

sociation Rules”. In Proc. 20th Int. Conf. on Very Large Da-

tabases (VLDB’94), Santiago, Chile, pages 487–499, 1994.

[AY00] C. C. Aggarwal and P. S. Yu. ”Finding Generalized Projected

Clusters in High Dimensional Space”. In Proc. ACM SIGMOD

Int. Conf. on Management of Data (SIGMOD’00), Dallas, TX,

2000.

[Bar02] D. Barbara. ”Requirements for Clustering Data Streams”.

SIGKDD Explorations, 3:23–27, 2002.

[BBJ+00] S. Berchtold, C. Böhm, H. V. Jagadish, H.-P. Kriegel, and

J. Sander. ”Independent Quantization: An Index Compression

Technique for High-Dimensional Data Spaces”. In Proc. 16th

Int. Conf. on Data Engineering (ICDE’00), San Diego, CA,

2000.

[BBKK97] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel. ”A

Cost Model For Nearest Neighbor Search in High-Dimensional

Data Space”. In Proc. ACM PODS Symp. on Principles of

Database Systems, Tucson, AZ, pages 78–86, 1997.

REFERENCES 201

[BJK+03] S. Brecheisen, E. Januzai, H.-P. Kriegel, P. Kröger, and

M. Pfeifle. ”Visual Mining of Cluster Hierarchies”. In Proc.

3rd International ICDM Workshop on Visual Data Mining

(VDM@ICDM2003), Melbourne, FL, 2003.

[BK97] S. Berchtold and H.-P. Kriegel. “S3: Similarity Search in CAD

Database Systems”. In Proc. ACM SIGMOD Int. Conf. on

Management of Data (SIGMOD’97), Tucson, AZ, pages 564–

567, 1997.

[BKK96] S. Berchtold, D. A. Keim, and H.-P. Kriegel. ”The X-Tree:

An Index Structure for High-Dimensional Data”. In Proc.

22nd Int. Conf. on Very Large Databases (VLDB’96), Mumbai

(Bombay), India, 1996.

[BKK+03] S. Brecheisen, H.-P. Kriegel, P. Kröger, M. Pfeifle, and M. Vier-

metz. ”Representatives for Visually Analyzing Cluster Hierar-

chies”. In Proc. 4th Int. SIGKDD Workshop on Multimedia

Data Mining: ”Integrated Media Mining” (MDM/KDD’03),

Washington, DC, 2003.

[BKK+04] S. Brecheisen, H.-P. Kriegel, P. Kröger, M. Pfeifle, M. Vier-

metz, and M. Pötke. ”BOSS: Browsing OPTICS-Plots for Sim-

ilarity Search”. In Proc. 19th Int. Conf. on Data Engineering

(ICDE’04), Boston, MA, page 858, 2004.

[BKKP04] S. Brecheisen, H.-P. Kriegel, P. Kröger, and M. Pfeifle. ”Vi-

sually Mining Through Cluster Hierarchies”. In Proc. SIAM

Int. Conf. on Data Mining (SDM’04), Lake Buena Vista, FL,

pages 400–412, 2004.

[BKKS01] M. M. Breunig, H.-P. Kriegel, P. Kröger, and J. Sander. “Data

Bubbles: Quality Preserving Performance Boosting for Hierar-

chical Clustering”. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data (SIGMOD’01), Santa Barbara, CA, pages 79–

90, 2001.

202 REFERENCES

[BKKZ04] C. Böhm, K. Kailing, P. Kröger, and A. Zimek. ”Computing

Clusters of Correlation Connected Objects”. In Proc. ACM

SIGMOD Int. Conf. on Management of Data (SIGMOD’04),

Paris, France), 2004.

[Bou96] A. Bouguettaya. ”On-Line Clustering”. IEEE Transactions on

Knowledge and Data Engineering, 8(2):333–339, 1996.

[BWF+00] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat,

H. Weissig, I. N. Shindyalov, and P. E. Bourne. “The Protein

Data Bank”. Nucleic Acids Research, 28:235–242, 2000.

[CFZ99] C.-H. Cheng, A. W.-C. Fu, and Y. Zhang. ”Entropy-Based

Subspace Clustering for Mining Numerical Data”. In Proc. 5th

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining (SIGKDD’99), San Diego, CA, 1999.

[CHNW96] D. W. Cheung, J. Han, V. T. Ng, and Y Wong. ”Mainte-

nance of Discovered Association Rules in Large Databases: An

Incremental Technique”. In Proc. 12nd Int. Conf. on Data En-

gineering (ICDE’96), New Orleans, LA, pages 106–114, 1996.

[CHO02] C. Chen, S. Hwang, and Y. Oyang. ”An Incremental Hierar-

chical Data Clustering Algorithm Based on Gravity Theory”.

In Proc. 6th Pacific Asian Conf. on Knowledge Discovery and

Data Mining (PAKDD’02) Taipei, Taiwan, 2002.

[CKS+88] P. Cheesman, J. Kellu, M. Self, J. Stutz, W. Taylor, and

D. Freeman. ”AUTOCLASS: a Bayesian Classification Sys-

tem”. In Proc. 5th Int. Conf. on Machine Learning, Ann Ar-

bor, MI, pages 54–64, 1988.

[Con86] M. L. Connolly. “Shape Complementarity at the Hemoglobin

a1b1 Subunit Interface”. Biopolymers, 25:1229–1247, 1986.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. “M-Tree: An Efficient

Access Method for Similarity Search in Metric Spaces”. In

REFERENCES 203

Proc. 23rd Int. Conf. on Very Large Databases (VLDB’97),

Athens, Greece, pages 426–435, 1997.

[Def77] D. Defays. ”CLINK: An Efficient Algorithm for the Complete

Link Cluster Method”. The Computer Journal, 20(4):364–366,

1977.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. ”Maxi-

mum Likelihood from Incomplete Data via the EM Algorithm”.

Journal of the Royal Statistical Society, Series B, 39(1):1–31,

1977.

[EKS+98] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu.

”Incremental Clustering for Mining in a Data Warehousing En-

vironment”. In Proc. 24th Int. Conf. on Very Large Databases

(VLDB’98), New York, NY, pages 323–333, 1998.

[EKSX96] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. ”A Density-

Based Algorithm for Discovering Clusters in Large Spatial Da-

tabases with Noise”. In Proc. 2nd Int. Conf. on Knowledge

Discovery and Data Mining (KDD’96), Portland, OR, pages

291–316, 1996.

[ESK03] L. Ertoz, M. Steinbach, and V. Kumar. ”Finding Clusters

of Different Sizes, Shapes, and Densities in Noisy, High Di-

mensional Data”. In Proc. SIAM Int. Conf. on Data Mining

(SDM’03), San Francisco, CA, 2003.

[EW98] M. Ester and R. Wittman. ”Incremental Generalization for

Mining in a Data Warehousing Environment”. In Proc. 6th

Int. Conf. on Extending Database Technology, Valencia, Spain,

volume 1377 of Lecture Notes in Computer Science (LNCS),

pages 135–152. Springer, 1998.

[FAAM97] R. Feldman, Y. Aumann, A. Amir, and H. Mannila. ”Efficient

Algorithms for Discovering Frequent Sets in Incremental Data-

bases”. In Proc. ACM SIGMOD Workshop on Research Issues

204 REFERENCES

on Data Mining and Knowledge Discovery, Tucson, AZ, pages

59–66, 1997.

[Fis95] D. H. Fisher. ”Iterative Optimization And Simplification of Hi-

erarchical Clusterings”. In Proc. 1st Int. Conf. on Knowledge

Discovery and Data Mining (KDD’95), Montreal, Canada,

1995.

[FPL91] D. H. Fisher, M. J. Pazzani, and P. Langley. Concept For-

mation: Knowledge and Experience in Unsupervised Learning.

Morgan Kaufmann Publishers, 1991.

[FPSS96a] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. ”KDD for

Science Data Analysis: Issues and Examples”. In Proc. 2nd Int.

Conf. on Knowledge Discovery and Data Mining (KDD’96),

Portland, OR, pages 50–56, 1996.

[FPSS96b] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. ”Knowledge

Discovery and Data Mining: Towards a Unifying Framework”.

In Proc. 2nd Int. Conf. on Knowledge Discovery and Data Min-

ing (KDD’96), Portland, OR, pages 82–88, 1996.

[FRM94] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. “Fast

Subsequence Matching in Time-Series Databases”. In Proc.

ACM SIGMOD Int. Conf. on Management of Data (SIG-

MOD’94), Minneapolis, MN, pages 419–429, 1994.

[GGR02] V. Ganti, J. Gehrke, and R. Ramakrishnan. ”Mining Data

Steams under Block Evolution”. SIGKDD Explorations, 3:1–

10, 2002.

[GNC99] S. Goil, H. S. Nagesh, and A. Choudhary. ”MAFIA: Efficient

and Scalable Subspace Clustering for Very Large Data Sets”.

Tech. Report No. CPDC-TR-9906-010, Center for Parallel and

Distributed Computing, Dept. of Electrical and Computer En-

gineering, Northwestern University, 1999.

REFERENCES 205

[HAK00] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. ”What is the

Nearest Neighbor in High Dimensional Spaces?”. In Proc. 26th

Int. Conf. on Very Large Databases (VLDB’00), Cairo, Egypt,

pages 506–515, 2000.

[Har75] J. A. Hartigan. Clustering Algorithms. John Wiley & Sons,

1975.

[HK01] J. Han and M. Kamber. Data Mining: Concepts and Tech-

niques. Academic Press, 2001.

[Jag91] H. V. Jagadish. “A Retrieval Technique for Similar Shapes”.

In Proc. ACM SIGMOD Int. Conf. on Management of Data

(SIGMOD’91), Denver, CO, pages 208–217, 1991.

[JD88] A. Jain and R. C. Dubes. Algorithms for Clustering Data.

Prentice-Hall, 1988.

[KBK+03] H.-P. Kriegel, S. Brecheisen, P. Kröger, M. Pfeifle, and

M. Schubert. “Using Sets of Feature Vectors for Similarity

Search on Voxelized CAD Objects”. In Proc. ACM SIGMOD

Int. Conf. on Management of Data (SIGMOD’03), San Diego,

CA), 2003.

[Kei99] D. A. Keim. “Efficient Geometry-based Similarity Search of

3D Spatial Databases”. In Proc. ACM SIGMOD Int. Conf. on

Management of Data (SIGMOD’99), Philadelphia, PA, pages

419–430, 1999.

[KKG03] H.-P. Kriegel, P. Kröger, and I. Gotlibovich. ”Incremental OP-

TICS: Efficient Computation of Updates in a Hierarchical Clus-

ter Ordering”. In 5th Int. Conf. on Data Warehousing and

Knowledge Discovery (DaWaK’03), Prague, Czech Republic,

volume 2737 of Lecture Notes in Computer Science (LNCS),

pages 224–233. Springer, 2003.

[KKK04] K. Kailing, H.-P. Kriegel, and P. Kröger. ”Density-Connected

Subspace Clustering for High-Dimensional Data”. In Proc.

206 REFERENCES

SIAM Int. Conf. on Data Mining (SDM’04), Lake Buena

Vista, FL, 2004.

[KKKW03] K. Kailing, H.-P. Kriegel, P. Kröger, and S. Wanka. ”Rank-

ing Interesting Subspaces for Clustering High Dimensional

Data”. In Proc. 7th European Conf. on Principles and Prac-

tice of Knowledge Discovery in Databases (PKDD’03), Cavtat-

Dubrovnic, Croatia, volume 2838 of Lecture Notes in Artificial

Intelligence (LNAI), pages 241–252. Springer-Verlag, 2003.

[KKM+03] H.-P. Kriegel, P. Kröger, Z. Mashael, M. Pfeifle, M. Pötke,

and T. Seidl. “Effective Similarity Search on Voxelized CAD

Objects”. In Proc. 8th Int. Conf. on Database Systems for

Advanced Applications (DASFAA’03), Kyoto, Japan, 2003.

[KKS98] G. Kastenmüller, H.-P. Kriegel, and T. Seidl. “Similarity

Search in 3D Protein Databases”. In Proc. German Conf. on

Bioinformatics (GCB’98), Köln, Germany, 1998.

[KM00] F. Korn and S. Muthukrishnan. ”Influenced Sets Based on

Reverse Nearest Neighbor Queries”. In Proc. ACM SIGMOD

Int. Conf. on Management of Data (SIGMOD’00), Dallas, TX,

2000.

[KR90] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An

Introduction to Cluster Analysis. John Wiley & Sons, 1990.

[LNRvK+02] B. Liebl, U. Nennstiel-Ratzel, R. von Kries, R. Fingerhut,

B. Olgemöller, A. Zapf, and A. A. Roscher. ”Very High Compli-

ance in an Expanded MS-MS-Based Newborn Screening Pro-

gram Despite Written Parental Consent”. Preventive Medicine,

34(2):127–131, 2002.

[LW03] J. Liu and W. Wang. ”OP-Cluster: Clustering by Tendency

in High Dimensional Spaces”. In Proc. of the 3rd IEEE Inter-

national Conference on Data Mining (ICDM’03), Melbourne,

FL, 2003.

REFERENCES 207

[McQ67] J. McQueen. ”Some Methods for Classification and Analysis

of Multivariate Observations”. In 5th Berkeley Symp. Math.

Statist. Prob., volume 1, pages 281–297, 1967.

[MG95] R. Mehrotra and J. E. Gary. “Feature-Index-Based Simi-

lar Shape Retrieval”. In Proc. 3rd Working Conf. on Visual

Database Systems, 1995.

[NGC01] H. S. Nagesh, S. Goil, and A. Choudhary. ”Adaptive Grids for

Clustering Massive Data Sets”. In Proc SIAM Int. Conf. on

Data Mining (SDM’01), Chicago, IL, 2001.

[NH94] R. Ng and J. Han. ”Efficient and Effective Clustering Methods

for Spatial Data Mining”. In Proc. 20th Int. Conf. on Very

Large Databases (VLDB’94), Santiago, Chile, pages 144–155,

1994.

[NSC04] S. Nassar, J. Sander, and C. Cheng. ”Incremental and Effective

Data Summerization for Dynamic Hierarchical Clustering”. In

Proc. ACM SIGMOD Int. Conf. on Management of Data (SIG-

MOD’04), Paris, France), 2004.

[OMM+02] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Mot-

wani. ”Streaming-data Algorithms for High-quality Cluster-

ing”. In Proc. 18th Int. Conf. on Data Engineering (ICDE’02),

San Jose, CA, pages 685–704, 2002.

[PJAM02] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali.

”A Monte Carlo Algorithm for Fast Projective Clustering”.

In Proc. ACM SIGMOD Int. Conf. on Management of Data

(SIGMOD’02), Madison, WI, 2002.

[PSBK+96] G. Piatetsky-Shapiro, R. Brachman, T. Khabaza, W. Kloes-

gen, and E. Simoudis. ”An Overview of Issues in Develop-

ing Industrial Data Mining and Knowledge Discovery Applica-

tions”. In Proc. 2nd Int. Conf. on Knowledge Discovery and

Data Mining (KDD’96), Portland, OR, pages 89–95, 1996.

208 REFERENCES

[PZC+03] J. Pei, X. Zhang, M. Cho, H. Wang, and P. S. Yu. ”MaPle:

A Fast Algorithm for Maximal Pattern-based Clustering”. In

Proc. of the 3rd IEEE International Conference on Data Min-

ing (ICDM’03), Melbourne, FL, 2003.

[Sac] Saccharomyces Genome Database (SGD).

http://www.yeastgenome.org/. (visited: Oktober/November

2003).

[SEKX98] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. ”Density-Based

Clustering in Spatial Databases: The Algorithm GDBSCAN

and its Applications”. Data Mining and Knowledge Discovery,

2:169–194, 1998.

[Sib73] R. Sibson. ”SLINK: An Optimally Efficient Algorithm for

the Single-Link Cluster Method”. The Computer Journal,

16(1):30–34, 1973.

[SQL+03] J. Sander, X. Qin, Z. Lu, N. Niu, and A. Kovarsky. ”Au-

tomatic Extraction of Clusters from Hierarchical Clustering

Representations”. In Proc. 7th Pacific-Asia Conference on

Knowledge Discovery and Data Mining (PAKDD 2003), Seoul,

Korea, 2003.

[SSZ+98] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders,

M. Eisen, P Brown, D. Botstein, and B. Futcher. ”Com-

prehensive Identification of Cell Cycle-Regulated Genes of

the Yeast Saccharomyces Cerevisiae by Microarray Hybridiza-

tion.”. Molecular Biolology of the Cell, 9:3273–3297, 1998.

[THC+99] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and

G. M. Church. ”Systematic Determination of Genetic Network

Architecture”. Nature Genetics, 22:281–285, 1999.

[WIY02] D. H. Widyantoro, T. R. Ioerger, and J. Yen. ”An Incremental

Approach to Building a Cluster Hierarchy”. In Proc. of the 2rd

IEEE International Conference on Data Mining (ICDM’02),

Maebashi City, Japan, pages 705–708, 2002.

REFERENCES 209

[WWYY02] H. Wang, W. Wang, J. Yang, and P. S. Yu. ”Clustering by

Pattern Similarity in Large Data Set”. In Proc. ACM SIGMOD

Int. Conf. on Management of Data (SIGMOD’02), Madison,

WI, 2002.

[XEKS98] X. Xu, M. Ester, H.-P. Kriegel, and J. Sander. ”A Distribution-

Based Clustering Algorithm for Mining in Large Spatial Da-

tabases”. In Proc. 14th Int. Conf. on Data Engineering

(ICDE’98), Orlando, FL, pages 324–331, 1998.

[YL01] C. Yang and K.-I. Lin. ”An Index Struture for Efficient Reverse

Nearest Neighbor Queries”. In Proc. 17th Int. Conf. on Data

Engineering (ICDE’01), Heidelberg, Germany, 2001.

[YWWY02] J. Yang, W. Wang, H. Wang, and P. S. Yu. ”Delta-Clusters:

Capturing Subspace Correlation in a Large Data Set”. In Proc.

18th Int. Conf. on Data Engineering (ICDE’02), San Jose, CA,

2002.

[Zah71] C. T. Zahn. ”Graph-Theoretical Methods for Detecting and

Describing Gestalt Clusters”. IEEE Transactions on Comput-

ers, C-20(1), 1971.

[ZRM96] T. Zhang, R. Ramakrishnan, and Livny M. ”BIRCH: An Effi-

cient Data Clustering Method for Very Large Databases”. In

Proc. ACM SIGMOD Int. Conf. on Management of Data (SIG-

MOD’96), Montreal, Canada, pages 103–114, 1996.

[ZS03] J. Zhou and J. Sander. ”Data Bubbles for Non-Vector

Data: Speeding-up Hierarchical Clustering in Arbitrary Met-

ric Spaces”. In Proc. 29th Int. Conf. on Very Large Databases

(VLDB’03), Berlin, Germany, 2003.

210 REFERENCES

Curriculum Vitae

Peer Kröger was born on January 21, 1975 in Kösching, Germany. He at-

tended primary school from 1981 to 1985, and high-school from 1985 to 1994.

From August 1994 until October 1995, he served in the mandatory civil

service at the charitable neighborhood support organization, Nachbarschafts-

hilfe Vaterstetten, Zorneding, and Grasbrunn, Germany.

He entered the Ludwig-Maximilians-Universität München (LMU) in Novem-

ber 1995, studying Computer Science with a minor in Physiological Chem-

istry. His diploma thesis was on “Molecular Biology Data: Database Overview,

Modelling Issues, and Perspectives”, supervised by Prof. Dr. François Bry

and Prof. Dr. Rolf Backofen.

In Oktober 2001, Peer Kröger started working at the LMU as a research

and teaching assistant in the group of Prof. Hans-Peter Kriegel, the chair

of the teaching and research unit for database and information systems at

the Department “Institute for Computer Science”. His research interests

include knowledge discovery in large standard, spatial, and multimedia data-

bases, data mining for molecular biology data analysis and similarity search

in spatial databases.

	Acknowledgement
	Abstract
	Zusammenfassung
	Survey of Chapters
	I Preliminaries
	1 Introduction
	1.1 Knowledge Discovery in Databases, Data Mining and Clustering
	1.2 Outline of the Thesis

	2 Density-Based Clustering
	2.1 General Clustering Approaches
	2.1.1 Partitioning Algorithms
	2.1.2 Hierarchical Algorithms

	2.2 Basic Notations
	2.3 Foundations of Density-Based Clustering
	2.3.1 Clusters as Density Connected Sets
	2.3.2 Density-Based Hierarchical Decompositions

	II Using Density-Based Hierarchical Clustering for Similarity Search Applications
	3 A Browsing Tool for Similarity Search
	3.1 Motivation
	3.1.1 Visual Data Mining
	3.1.2 Similarity Search
	3.1.3 Evaluation of Similarity Models

	3.2 Required Enhancements

	4 Incremental Clustering
	4.1 Related Work
	4.2 Incremental OPTICS
	4.2.1 General Ideas and Concepts
	4.2.2 Incremental Insertion of a Point
	4.2.3 Incremental Deletion of a Point
	4.2.4 Extensions for Bulk Updates

	4.3 Experimental Evaluation
	4.4 Summary

	5 Cluster Recognition and Representation
	5.1 Cluster Recognition
	5.1.1 Related Work
	5.1.2 Gradient Clustering
	5.1.3 Experimental Evaluation

	5.2 Cluster Representation
	5.2.1 The Minimum Core Distance Approach
	5.2.2 The Maximum Successors Approach
	5.2.3 Experimental Evaluation

	5.3 Summary

	6 BOSS: Browsing OPTICS Plots for Similarity Search
	6.1 System Architecture
	6.2 Sample Applications
	6.2.1 Visual Data Mining
	6.2.2 Evaluation of Similarity Models

	6.3 Summary and Discussion

	III Adopting Density-Based Clustering to High Dimensional Data
	7 Clustering High Dimensional Data
	7.1 The Curse of Dimensionality
	7.2 General Approaches for Clustering High Dimensional Data
	7.3 Sample Applications
	7.3.1 Gene Expression Analysis
	7.3.2 Metabolic Screening of Newborns

	7.4 Summary

	8 Subspace Clustering
	8.1 Related Work
	8.2 Foundations of Density-Based Subspace Clustering
	8.2.1 Adapting Density-Based Concepts to Subspace Clustering
	8.2.2 Monotonicity Properties

	8.3 Density-Based Subspace Clustering
	8.3.1 General Idea
	8.3.2 Algorithm SUBCLU
	8.3.3 Experimental Evaluation

	8.4 Density-Based Subspace Ranking
	8.4.1 Motivation
	8.4.2 General Idea
	8.4.3 Ranking Interesting Subspaces
	8.4.4 Algorithm RIS
	8.4.5 Experimental Evaluation

	8.5 Summary and Discussion

	9 Correlation Clustering
	9.1 Motivation and Related Work
	9.2 Foundations of Connected Correlation Clustering
	9.2.1 Correlation Sets
	9.2.2 Clusters as Correlation Connected Sets

	9.3 Computing Correlation Connected Clusters
	9.3.1 Algorithm 4C
	9.3.2 Complexity Analysis
	9.3.3 Input Parameters

	9.4 Quality Evaluation
	9.5 Modifications and Specializations
	9.5.1 A Variant for Pattern-Based Clustering
	9.5.2 A Variant for Projected Clustering

	9.6 Summary

	IV Conclusions
	10 Summary and Future Directions
	10.1 Summary of Contributions
	10.1.1 Preliminaries (Part I)
	10.1.2 Using Density-Based Hierarchical Clustering for Similarity Search Applications (Part II)
	10.1.3 Adopting Density-Based Clustering to High Dimensional Data (Part III)

	10.2 Future Work

	List of Figures
	List of Tables
	References

