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Summary

The characterization of physical and functional interactions between molecules is of vital
importance in biology. It is vital because it improves our understanding of biological
processes, their regulatory mechanisms and thereby their disease-associated malfunctions,
impairments and disruptions. In this thesis, I focused on the study of protein-protein
interactions (PPIs). Powerful experimental methods coupled with mass spectrometry
(MS) have been developed to study PPIs. However, methods always have limitations,
particularly of sensitivity and false discoveries. No method on its own is able to accurately
reproduce the whole interactome of the subject under study, and thus bioinformatics tools
that overcome such limitations and improve the capabilities of the methods are always in
demand.

In this work, I have developed bioinformatics tools and pipelines for the interpretation
and integration of MS-based PPI data. Additionally, I have broadened the applicability
of chemical cross-linking followed by MS, through the incorporation of quantitative in-
formation during data analysis and modeling. As a result, the main contributions of my
work have been on resolving protein interaction networks through data integration and
on predicting protein binding interfaces and their affinities by chemical cross-linking and
quantitative mass spectrometry.

The first chapter of my thesis gives a general introduction to the study of protein in-
teractions and mass spectrometry based methods to discover, measure and characterize
PPIs. This chapter provides the theoretical background for a clear understanding of the
remaining chapters in this document.
The second chapter describes a bioinformatics tool, called compleXView, which I published
during my doctoral work. This chapter shows that the combination of interactomics data
obtained with different experimental methods improves the prediction of protein com-
plexes in protein interaction networks, and that the incorporation of information from
knowledge databases facilitates these predictions and the interpretation of the data.
The third chapter outlines a bioinformatics pipeline that combines sequence-level prop-
erties with the quantification of protein-protein cross-links to infer binding interfaces in
macromolecular complexes. Three predictions that were experimentally validated are pre-
sented as proofs of concept. This chapter shows that the effective use of quantitative
MS information in chemical cross-linking experiments allows the characterization of PPI
binding interfaces.
Finally, the fourth chapter describes a bioinformatics method to estimate the dissociation
constants of protein interactions through the quantification of protein-protein cross-links.



x Summary

The applicability of the method is proven in a well-benchmarked trimeric complex and in
a multimeric protein association. This chapter shows that the effective use of quantita-
tive MS information in chemical cross-linking experiments allows the measurement of PPI
binding affinities.

Overall, my work extends the applications of mass-spectrometry-based methods for the
molecular characterization of protein complexes. The tools and concepts that were de-
veloped in this endeavor will help the scientific community with the study of protein
interactions. As a result, we will improve our understanding of protein complexes and
their vital role in biology.



Chapter 1

Theoretical Background

1.1 Proteins and the importance of their interactions

The name ’protein’ is derived from the Greek word proteios that means ’the first’, ’in the
lead’ or ’on the top’. The denomination of proteins as ’in the lead’ is very appropriate.
Proteins are one of the main building blocks that constitute a cell and a whole organism.
They catalyze biological processes that take place within and outside cells and carry out
the roles of signaling, kinesis, synthesis of molecules and their maturation, translocation
and degradation. Moreover, they regulate these processes at different levels.

For executing these roles, physical associations between the same or different proteins
are established. These associations are known as protein complexes and are built upon
protein-protein interactions (PPI). The overall protein levels within the cell may remain
relatively unchanged, even those of individual complex members, and yet, because of the
formation or disassembly of certain protein complexes, biological processes can be initiated,
modulated and terminated [30]. It is not surprising then that protein complexes constitute
the primary targets of drugs of all kinds. The study of proteins and their interactions is
fundamental for understanding the molecular mechanisms of diseases and opens doors for
discovering new clinical markers and protein therapeutics.

Ever since their discovery, proteins have posed hard challenges to scientists. In part due to
the difficulties of isolating them in good quantities, and due to the complex composition
of proteins, their large diversity and their dynamism. Proteins were discovered in the 18th
century and were first described in 1838, 30 years before nucleic acids. However, discoveries
about the properties of the molecules themselves and the elucidation of their roles have not
always been in the lead. The constitution of proteins by amino acids was first proposed
in 1902, whereas DNA constitution by nucleotides was proven between 1885-1901. The
first protein structures to be resolved were those of hemoglobin and myoglobin in 1958,
whereas the structure of DNA was published in 1953. And even though Edman’s method
for protein sequencing was invented before Sanger’s method for nucleic acids sequencing,
the breakthrough of next-generation DNA sequencing technologies in the 1990s, allowed
a faster and thorough study of genomes and transcriptomes, while the study of proteomes
lagged behind.
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Paradoxically, not being in the lead ended up being fruitful. The in-silico translation of
gene sequences resulted in the creation of protein sequence databases for different organ-
isms. These databases would later allow the high-throughput identification of numerous
protein samples and whole proteomes by mass spectrometry from the 90s up to now.

Given the relevance of proteins and protein-protein interactions, the main purpose of my
doctoral work was to characterize protein complexes through the bioinformatic analysis of
mass spectrometry data obtained from protein interaction experiments. In this endeavor,
I managed to characterize the composition of protein complexes and the binding interfaces
and affinities of their protein members. Thus, the work presented in this thesis extends
the applications of mass-spectrometry-based methods for the study of protein complexes.
In the remaining parts of this chapter, a theoretical background is provided in order to
allow the readers to understand each of the three contributions of my thesis.

1.2 Experimental methods to detect proteins and their

interactions

A number of methods have been developed to detect and enrich protein complexes from
cells. These methods are classified based on the main technology that supports them. In
the proteomics field, liquid chromatography coupled with mass spectrometry (LC-MS) has
become the main technology to analyze proteins. Mass spectrometry (MS) is a technology
that analyzes molecules based on their mass and charge. Together with chromatography
and ionization technologies, MS can separate proteins or peptides, ionize them, sort them
based on their masses, quantify them and fragment them into smaller molecules. The
masses of these molecules can be compared to the masses of the sequences stored in pro-
tein databases, and thereby provide an identification of the proteins in a sample. A typical
workflow to identify proteins by MS is depicted in Figure 1.1. Proteins are first extracted
and purified from the cell or any other biological sample. They are cut into peptides by
proteases with cleavage specificity (e.g., trypsin). Peptides are separated by chromatog-
raphy based on their hydrophobicities, charged by an ionization source, separated further
by the mass spectrometer based on their mass to charge (m/z) ratios, quantified by a
detector within the machine (MS1 spectrum). Some of these peptides are selected and
then separately fragmented into smaller molecules, whose masses are again analyzed and
stored in a spectrum (MS2 spectrum). The fragmentation of a peptide is controlled such
that it occurs at the peptide bonds of the amino acid sequence. Thus, the MS2 spectrum
of a peptide contains masses of its complete sequence and of its fragments. Peptide can-
didates from a sequence database can be then selected and be split in silico into fragment
sequences. The candidate that shows the best match to the masses of the experimental
spectrum is chosen as the identity of the peptide. Moreover, the quantification of peptides
is also possible, because the mass spectrometer also records the intensity of the peptide
ions before fragmentation (MS1 spectrum), which corresponds to the relative abundances
of the peptides in the sample. The identity and intensity of the peptides are used then to
infer the identity of the proteins and their quantities in the sample.
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vitro and in vivo. Due to unspecific interactions with the tag or the antibodies, a negative
control is always required. The control usually consists of a pull-down where the tag is
linked to a decoy protein (e.g., GFP) that is used as bait. An alternative control is a
pull-down where the real bait protein has been knocked down in the cell population. To
increase specificity, some versions of AP-MS use two epitope tags in tandem, which allows
for two consecutive purifications, and thus reduces the number of contaminant proteins
[76]. However, only very stable complexes survive this procedure, but dynamic and weak
interactions may pass undetected [61]. This would result in a loss of sensitivity that could
be compensated for by cross-linking with formaldehyde in order to stabilize complexes
previously to cell lysis or purification steps. Otherwise, a protein identified as an interactor
in one co-purification experiment can be used as bait in another co-purification experiment.
This strategy achieves a broader coverage of interactors, allowing the study of not only
protein complexes but also protein interaction networks. AP-MS experiments require
high amounts of input material, and thus methods with less starting material and higher
sensitivity are needed. The use of nanobodies has to some extent solved the sensitivity and
specificity issues because nanobodies have affinities for their epitopes in the sub-nanomolar
range and contain a single antigen-binding domain [99]. On the other hand, AP-MS is less
suitable for detecting integral-/trans-membrane proteins and their interactors. Membrane
complexes are mainly involved in translocation and signaling processes, which means their
interactions with other proteins is dynamic and often short-lived. Membrane complexes
are relatively low abundant and hydrophobic and thus, their purification requires high
sample amounts and harsh extraction conditions. All this leads to destabilization of the
interactions, aggregation of proteins due to hydrophobicity and MS-signal suppression due
to high lipid contaminations [73].

The second category of methods relies on chromatographic separation based on charge (Ion
Exchange Chromatography, IEX) or size (Size Exclusion Chromatography, SEC; Figure
1.2, top method). Protein complexes have higher masses and higher charges than their in-
dividual subunits. Thus, different chromatographic fractions are selectively enriched with
one or another protein complex or subcomplex. High-throughput fractionation of whole
cell extracts is achievable and allows global profiling of PPIs [109, 27]. However, co-elution
of non-related complexes may lead to the determination of false interactions. Hence, sub-
cellular fractionation (e.g., into cytoplasmic and nuclear extracts) and other fractionation
methods (e.g., sucrose gradient or isoelectric focusing) may be used along with SEC and
IEX to decrease the complexity of the overall protein extract. SEC-MS allows the distinc-
tion between stable and dynamic interactions as well as the elucidation of the multiple
complex memberships of a protein [44]. Stable complexes (or its core components) should
have very highly correlated elution profiles across the fractions of an experiment. Stable
complexes involved in dynamic, physical associations show multiple apexes in their elution
profiles. So do proteins that belong to multiple complexes. Complexes that transiently
interact with each other will only show high correlation in local regions of the elution
range.

The third category of methods relies on the enzymatic modification of the interactors of a
protein to facilitate their purification. These methods are called proximity ligation assays.
They fuse a catalytic domain to a protein of interest (i.e., the bait), which then modifies its
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domain fused to GFP or to a peptide localization signal that puts the mock protein in
the same subcellular location as the actual bait in the experiment. BioID is dependent
on the availability/proximity of primary amines that are presented by lysine side chains
and protein N-termini, whereas APEX is dependent on the presence of aromatic groups
like side chains of tyrosine and phenylalanine. Compared to AP-MS methods, proximity
ligation assays offer three advantages: i) apart from stable interactions, dynamic and weak
associations are also detected, ii) interactors of membrane proteins can be probed as the
purification does not depend on a stable bait-prey interaction but on the biotin modifica-
tion of the prey, and iii) the cellular localization of biotinylated proteins can be observed
with confocal microscopy before protein harvesting. A recent modification to the BioID
protocol showed that BioID has another advantage over AP-MS. Because of its relatively
short radius of action, enrichment of biotinylated peptides can be used to inform about
the interfaces of direct protein-protein interactions [55].

The fourth category of methods relies on the correlated behavior of interacting proteins
under a perturbation. Thermal proteome profiling (TPP) is the canonical method in this
category (Figure 1.2, bottom method). TPP triggers the perturbation through temper-
ature and has been used on ligand-complex stability assays [21]. At each temperature,
proteins that are still soluble are quantified and their denaturation curves are plotted
with these values. If the ligand (de-)stabilizes the protein, a shift should be observed on
the denaturation curve of the protein respect to the control experiment, which consists
of a cell culture without the ligand. Accordingly, interactors of the protein should also
show a similar shift of their curves. The main limitation of this method is its inability to
distinguish between physical and functional interactions [99].

Despite advances in these methods, none of them can distinguish between direct and in-
direct protein interactions neither can they resolve the topology of protein complexes.
Protein cross-linking followed by mass spectrometry (XL-MS) can overcome these limita-
tions. XL-MS uses a chemical cross-linker to covalently link residues spatially close to each
other. Hence, the detection of a crosslink is a good indication for a direct protein-protein
interaction. Following complex purification and protein digestion, cross-linked peptides are
enriched by SEC or strong cation exchange (SCX) chromatography, and analyzed by LC-
MS (Figure 1.3). Subsequent to peptide identification the resulting information restricts
the plausible protein-protein interfaces to specific regions (e.g., domains, helices, etc.),
thereby revealing the topology of the protein complex [50]. Due to the specific length
of the cross-linker, only residues separated by a distance below this length are linked.
This has made XL-MS an important source of distance information for refining structural
models obtained by cryo-electron microscopy [87] and even by computational predictor
tools [89]. Moreover, the quantification of cross-links has permitted the study of confor-
mational changes within protein complexes [86, 108]. However, XL-MS may suffer from
limitations due to the requirement of specific amino acid residues at the protein-protein
interfaces, as well as the relatively low abundance of cross-linked peptides compared to
linear ones. Recently, a modified method has been shown to be able to distinguish between
intra-protein interfaces and homodimeric interactions [52]. However, proteins sharing a
common interactor within different complexes cannot yet be resolved.
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to be known prior to MS analysis. Thus, absolute quantification is not used directly
for interactome screening, but for stoichiometry determination of discovered or known
interactions and complexes. Heavy-labeled synthetic counterparts of these peptides are
ordered and spiked into the sample at known concentrations. Their intensities are used for
estimating the abundance of the non-labeled native peptides by comparison of peak areas
[85]. Alternatively, synthetic peptides with no relation to the targeted peptides can be
spiked in the sample at known and distinct concentrations to each other. The intensities
of the spiked-in peptides are then used for learning the relation between MS intensity
and the real abundance [7]. This relationship is then used to interpolate the intensities
of the targeted peptides and inferred their amounts. While absolute quantification and
targeted MS methods are more accurate to measure stoichiometries, relative quantification
with label-free MS methods can yield satisfactory estimations of the ratios for the core
components of a complex [99].

1.4 The inference of PPIs and protein complexes

Comparing protein abundances between the experimental cases and the control, and set-
ting a minimum threshold for the abundance ratios is not enough to determine genuine
interactions [69]. Statistical and computational models must be used in order to assess
the plausibility and significance of a putative interaction [69]. Apart from the protein
abundance, these models take into account the reproducibility of the observations, the
specificity of the prey to co-purify with one or only certain baits, and the co-occurrence
of preys across different purifications. These models can be classified based on two cri-
teria. The first is the type of input data that they accept, which could be qualitative or
quantitative. And the second is the type of interactions that they infer, which can be only
bait-prey interactions or both bait-prey and prey-prey interactions.

Independent of those criteria, the input data is always a matrix, where each column rep-
resents a purification experiment or a negative control, and each row represents a protein.
The content of the matrix cells are either all qualitative (i.e., in a binary format: 0 for ab-
sence and 1 for presence) or all quantitative (e.g., spectral counts or intensity). In the case
of quantitative information, spectral counts indicate the number of MS2 spectra matched
to the protein, whereas intensities indicate the sum of intensities of the corresponding MS1
peaks of the peptides. Both measures are normalized to account for the different number
of peptides that the protein generates during digestion. Most modeling methods prefer
the use of spectral counts despite intensity-based measures being arguably more accurate
and representative of the actual abundance of a protein in the purification [19].

The output of processing the input matrix is another matrix where both, columns and
rows, represent proteins. The cells in the matrix contain scores that indicate the plausi-
bility of the protein in the row to interact with the protein in the column. Some methods
only output bait-prey interactions and are called ’Spoke’ models [4] because the output
network graphically resembles spokes attached to the hub of a wheel. Other methods
will output interactions between preys in addition to bait-prey interactions and are called
’Matrix’ models [4]. Matrix models provide more connectivity, which translates in higher
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sensitivity to detect interactions. As they incorporate more levels of inference, their speci-
ficity decreases. Spoke models, on the other hand, require a large number of purification
experiments to achieve a good level of sensitivity. And these purifications must come from
baits that share a relatively good number of preys in common. In principle, integrating
data from different MS-based interactomics methods can overcome the limitations of the
Spoke and Matrix models.

Even though some Matrix models could also process SEC-MS data, Correlation models and
Machine Learning are preferred for this kind of data [44, 27, 42, 109]. As the assumption
for SEC-MS is that proteins from the same complex elute in the same SEC fraction
(Figure 1.2), they must be identified in the same MS runs. Nonetheless, interactions can
be disrupted during SEC fractionation and result in shifts in the elution profiles of the
complex components. Cross-correlation models account for this by taking the highest
similarity between two elution profiles shifted from one another by a maximum number
of SEC fractions. On the other hand, protein complexes that interact transiently with
each other have multimodal elution profiles, which may be deconvoluted to detect them
and also to find proteins with multiple complex memberships. Correlations on their own
could be misleading because co-elution can be due to complexes with similar sizes but not
really interacting. Therefore, a subset of known protein complexes can be searched in the
data and used as the training set for a machine-learning (ML) model that, together with
the elution correlations of the training complexes, will learn to discern true from possibly
false interactions in the whole dataset.

Matrices output by ’Spoke’, ’Matrix’ and ’Correlation’ models can be graphically rep-
resented as networks. Within these networks, nodes represent proteins, and the edges
between them represent interactions. Edges do not have directionality and can contain
weights that indicate the plausibility of the interaction. Networks have been used for
a long time in scientific applications and plenty of research has been done in the fields
of Mathematics, Computer Science, Physics and Biology. Network properties have been
thoroughly studied [111, 6] and algorithms have been optimized to find and extract clus-
ters from them [101]. Nevertheless, identifying complexes in a PPI network is not a trivial
task. Biological networks have unique properties and protein complexes are a special case
of clusters: physical interactions, and not only functional associations, define membership.
Algorithms to predict protein complexes in PPI networks are classified based on two cri-
teria: i) those that use only network topology information and ii) those that use network
topology and additional biological information [101].

The first category of algorithms searches for highly dense regions of connections within the
network. They either take an agglomerative or partitioning approach to discover clusters
in the network. While some methods in this class will be strict about the membership of
a protein to one cluster or another, others allow overlapping clusters by assigning fuzzy
memberships. The Markov clustering (MCL; [17]) algorithm is a member of this category.
MCL iteratively performs two matrix operations on the underlying matrix of the network:
expansion and inflation. At each iteration, highly connected proteins are revealed clearer
and clearer as a group, because their connectivity to other groups in the network decreases
while the strength of the connections within the group increases. The algorithm stops when
the operations change the underlying matrix no more, which results in the identification
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of non-overlapping clusters in the network.

The second category of algorithms incorporates previous knowledge about complexes.
This knowledge can be general or particular. A general property of protein complexes
is the core-attachment categorization and organization of the components. The core-
attachment principle states that proteins are either part of the core of a complex or
simply attach themselves to the core to modulate its function or transiently interact with
it [24]. Clustering methods that use this principle determine core proteins by the degree
of common interactors between core members respect to all their interactors. Once cores
are defined, a protein p outside the core is defined as an attachment component if it has
interactions with at least half of the core components. Attachment proteins can belong
to more than one core, but core proteins have unique membership. And two cores can
interact without attachment proteins as intermediaries. Particular properties of protein
complexes are related with their functions and cellular localization. Proteins within the
same complex share a particular function. Clustering methods that guide themselves
through this principle use databases such as Gene Ontology to incorporate functional
annotations and cellular localization of proteins to improve the performance of complex
prediction.

A relevant aspect of protein complex membership is to determine if the physical interaction
between any two members is direct or indirect. For some complexes in the network, this
might be already known and can be retrieved from structural databases like the Protein
Data Bank (PDB). For others, incorporating data from XL-MS and two-hybrid assays can
help to elucidate the answer. Thus, both methods can be used to annotate direct physical
interactions within a protein network and infer the topology of protein complexes.

In chapter 2 of my thesis, I show that combining data from quantitative AP-MS or BioID
experiments with XL-MS information increases the sensitivity and specificity of protein
complex detection and allows the estimation of their stoichiometries.

1.5 Characterization of protein binding interfaces and

their affinities

A complete characterization of a protein complex goes beyond determining its members
and their stoichiometries. It is highly relevant to elucidate the affinity of the proteins to
each other and the binding interfaces that establish the affinity. Studying binding inter-
faces is important because mutations in these regions can lead to diseases [23, 35]. Knowing
the physical interfaces of the interacting proteins in a complex provides helpful information
to understand the mechanisms of a disease. Similarly, binding affinities between proteins
are very important to explain the formation of complexes and their ontology [39].

Knowledge about binding interfaces shows that these sites have properties that are rel-
atively specific and distinct from other protein regions [117, 105]. Binding sites display
high evolutionary conservation and low soluble surface area. Binding sites attract each
other by physicochemical complementarity of their amino acids, such as hydrophobicity,
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hydrogen bridges and electrostatic interactions. And the interaction is further governed
by the shape and molecular flexibility of the binding pockets. Binding interfaces can be
directly observed on resolved structures in PDB and have been deposited in databases
such as EPPIC, SCOPPI and others.

However, for thousands of binary interactions and protein complexes, their interfaces re-
main unknown because their structures have not been resolved. In order to uncover their
binding interfaces, experimental and computational methods have been proposed. Low-
resolution experimental methods to predict binding interfaces include alanine scanning
mutagenesis assays [64] and MS-based methods such as hydrogen/deuterium (H/D) ex-
change [71] and XL-MS [96]. On the other hand, a plethora of predictor software uses
either homology-based structures or sequence-level properties to directly infer binding
interfaces from protein sequences [114].

In chapter 3 of my thesis, I outline a binding interface predictor that combines sequence-
level properties with qXL-MS to infer binding sites in dimeric and multimeric complexes.
Three cases in which this strategy was employed are shown as proofs of concept.

A protein-protein interaction is a reversible chemical reaction governed by the concentra-
tion of the interacting proteins (law of mass action). The affinity of the binding interfaces
attracting each other defines the strength of the interaction [39]. When the reaction
reaches the equilibrium, the concentrations of the proteins in the free and bound states
do not change any longer with time. At equilibrium, the affinity is inversely related to the
dissociation constant (Kd) of the reaction. The Kd indicates the molar ratio of the two
free proteins relative to the complex. A low Kd indicates strong affinity whereas a high
one weak affinity. Classical technologies to measure Kd values include surface plasmon
resonance (SPR), isothermal titration calorimetry (ITC), fluorescence polarization (FP)
and fluorescence resonance energy transfer (FRET). Chemical proteomics approaches are
less commonly used for this task. However, coupled to MS have been fundamental to
perform binding assays between proteins and small molecules [94, 5]. Similarly, thermal
proteome profiling (Figure 1.2) has been employed to estimate the affinity of proteins for
drugs in a proteome-wide manner [84, 60]. And recently, Makowski et al. [57] presented a
new method that uses iTMT-MS in binding assays to estimate the dissociation constants
of nuclear proteins for specific DNA sequences and nucleosomes.

Apart from its use in protein interaction studies, XL-MS is mainly employed in structural
approaches to reveal the topology and structural features of native proteins and protein
complexes [1, 95, 89]. Nonetheless, further applications for XL-MS can be envisioned if
quantitative information is taking into account. Quantitative cross-linking mass spec-
trometry (qXL-MS) has the potential to measure the dynamic cooperation of proteins in
biological networks.

In chapter 4 of my thesis, I describe a qXL-MS approach to estimate the affinities of protein
interaction assemblies of macromolecular complexes. The method estimates the amount
of bound and unbound partners from the intra- and inter-protein cross-link intensities of
protein complexes and subsequently calculates the Kd of the interaction. Its applicability
is proven in the trimeric complex CNN1-SPC24/25 and in the multimeric complex PRC2
bound to its cofactors AEBP2 and JARID2.
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1.6 Aim and Contribution

In summary, numerous experimental methods exist to study protein complexes by MS.
The aim of my thesis was to improve these applications through data integration and
quantification of protein interactions. The main contributions of my work are summarized
by the following achievements:

i Resolving protein interaction networks through the integration of MS-based interac-
tomics data;

ii Predicting binding interfaces through the combination of qXL-MS, sequence conser-
vation and secondary structure prediction; and

iii Measuring protein affinities by qXL-MS.
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Chapter 2

Integration of MS-based
interactomics data to infer protein
complexes in PPI networks

2.1 Introduction

Data integration is understood as the collection of data from different sources, which are
then combined, re-analyzed and interpreted in the contextual information provided by
each of the data sets [47]. The expectation of integrating data is to obtain novel insights
and conclusions, which are shared again with the scientific community as new knowledge.
Protein interactomics data is vast and is centralized by efforts such as PRIDE [106] and
IntAct [41]. Most of them have been acquired via AP-MS experiments and Y2H assays. In
recent years, however, methods like XL-MS and BioID have contributed largely to these
repositories. The integration of these data may lead to the discovery of novel interactions
and protein complexes.

Most integrative approaches that combine and re-analyze different data types use either a
supervised or a semi-supervised approach. This means that previous knowledge is required
to guide or supervise the discovery of new knowledge. In the context of protein interactions,
supervised approaches rely on gold standard lists of protein complexes, and are usually
applied on large networks (i.e., with thousands of proteins). A machine-learning (ML)
framework can efficiently execute a supervised integration provided that the data set and
the standard set share a significant subset of proteins. As nobody knows the most effective
way of combining data from different sources, one expects that an ML algorithm would
do this efficaciously. For medium-sized networks and relatively unexplored interaction
networks, the overlap between the gold standard and the data may be poor. Thus, previous
knowledge should be used as guidance and has to be weighted equally or lower than the
experimental data. For these cases, a semi-supervised approach may be preferred, and
manual validation and curation of interactions is very important.

Here, I aimed to establish a framework and a strategy to analyze and combine MS-based
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interactomics data sets and to generate a unified view of their outcomes. As a result,
I introduce a semi-supervised tool called compleXView [100], which infers pairwise pro-
tein interactions and complexes in small and medium data sets by integrating MS-based
quantitative interactomics data with functional annotations. compleXView integrates AP-
MS, XL-MS, BioID data and Gene Ontology (GO) functional similarities. The tool was
published in Nucleic Acids Research, and a copy of the original article can be found in
Appendix B.

This chapter starts by describing the main idea behind compleXView and the visualization
tools that it provides to validate protein complex members, estimate their stoichiometries
and infer topologies. It demonstrates the applicability of the tool by analyzing two protein
networks: the Protein Phosphatase 2A network and the Mini-chromosomal Maintenance
complex and its interactors. The protein interactions and clusters discovered in both
networks are discussed in detail.

2.2 Results

2.2.1 Analysis workflow of compleXView

The workflow of compleXView is shown in Figure 2.1. Unprocessed AP-MS or BioID
interaction data is usually incomplete and noisy. Indeed, any experimental method pro-
duces false positives and negatives. Thus, in order to assess the signal over noise ratio,
statistical methods estimate the probability of an interaction based on its abundance, re-
producibility and specificity. compleXView measures the specificity as the enrichment of
the prey protein in the purification relative to its abundance in the negative control. The
reproducibility is accounted for by filtering out preys observed in less than N replicates
and/or by penalizing absences. The abundance of the prey relative to the bait is taken
as a decision criterion for the acceptance of a putative interaction. The significance of
the remaining interactions is assessed either by a mixture probability model similar to
SAINT [10] or a t-test. compleXView is built upon the assumption that the user knows
better. Thus, it makes few assumptions about the experiment and is very transparent and
flexible with its parameters and thresholds, even allowing the user to reduce the number
of replicates for cases where a study is in an exploratory/pilot stage.

The first output of compleXView is a network of bait-prey interactions (Figure 2.1, step
1). The enrichment of the preys in the purifications can be assessed using blot plots or
heatmap-colored networks (Figure 2.2 A and B). Medium sized bait-prey networks lack
the connectivity between preys. Thus inferring higher order structures, such as protein
clusters and complexes, is limited. Discovering functionally and physically associated pro-
teins is highly relevant and can be learned from the data. To achieve this, compleXView
correlates the abundances of the preys across the purifications (Figure 2.1, step2). This
correlation approach is based on the fact that baits not only interact with individual pro-
teins but also with protein complexes. If the direct interaction with one subunit in the
complex changes, the abundances of the other members will change accordingly. Thus, one
can expect high correlations in the co-variation of the abundances of proteins that belong
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the binding interfaces of the interactions can be revealed by further in-depth analysis of
the distance restraints and the proximal secondary structure domains (Figure 2.2 C and
Chapter3).

compleXView provides visualization tools to facilitate the interpretation of the networks
generated in each of the data integration steps. The tools allow the discovery of single bi-
nary interactions, protein complexes, their topology, stoichiometry, and binding interfaces
in a single framework.

In order to validate the applicability of compleXView, I tested the software on two datasets
that were obtained by AP-MS, BioID and XL-MS. These datasets comprised the protein
interaction networks of the Protein Phosphatase 2A and the Minichromosome Maintenance
complex, respectively. The data was acquired by other authors and is publicly available
on the PRIDE server. The analysis with compleXView reproduced the findings of the
respective publications [29, 15] and was able to provide further insights. In the following
sections, the results obtained from the first dataset are presented as an example. The
results of the second data set are discussed in Appendix A.

2.2.2 The Protein Phosphatase 2A complex and its regulators

Protein Phosphatase 2A (PP2A) is a large protein complex that dephosphorylates pro-
teins in a multitude of signal transduction pathways. PP2A acts on serine/threonine
(S/T) residues and thereby plays the antagonistic role of S/T kinases like cyclin-dependent
kinases or polo-like kinases. Together with protein phosphatases of type 1, PP2A is re-
sponsible for more than 90% of the S/T phosphatase activity in the cell [74]. Thus, it is
frequently associated with a plethora of clinical implications where mutations cause mis-
regulation of its activity. Studying the interactome and substrates of PP2A is therefore
of high relevance for the molecular understanding of these diseases.

Class Members
B 2ABA, 2ABB, 2ABD, 2ABG
B’ 2A5A, 2A5B, 2A5D, 2A5G, 2A5E
B” P2R3A, P2R3B, P2R3C
B”’ STRN1, STRN3, STRN4

Adapters ANKL2, DAB2P, EST1A, IER5, SMG5/7
Biogenesis IGBP1, LCMT1, PPME1, PTPA

Inhibitors
AN32A, AN32E, ARP19, CIP2A, ENSA, F122A,
IEX1, PA216, PPR1A, PPR17, SET, TIPRL

Retainers MFHAS1
Activators NXN

Table 2.1: PP2A canonical regulatory subunits, other activators and inhibitors

Structurally, the PP2A holoenzyme is composed of 3 subunits: a catalytic subunit that
encompasses a serine/threonine phosphatase (also called C subunit), a scaffold subunit
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(also called A subunit) and a regulatory subunit (also called B subunit). However, about
one third of PP2A in the cell is in a dimeric state, consisting of a catalytic protein and a
scaffold protein [74]. The C protein exists either in the alpha isoform (PP2AA) or in the
beta isoform (PP2AB) within a protein phosphatase complex. Despite their high sequence
similarity, the substrates of the C isoforms are apparently not redundant. The A protein
is also represented by either one of two isoforms, either 2AAA or 2AAB, which are as well
not redundant in their function. The C-A dimer can further associate with B regulatory
proteins in a mutually exclusive way, which modulates the subcellular localization, activity
and substrate specificity of PP2A [74].

PP2A regulatory proteins are classified into the following families: B, B’, B” and B”’
(Table 2.1). In addition, many other regulatory proteins have been identified including
activators and inhibitors. The way they modulate PP2A, in terms of subcellular location
and substrate specificity, is not fully understood.

In this first analysis by compleXView, I integrated MS-based interactomics data from
AP-MS and XL-MS experiments [29]. This data is publicly available at https://xvis.
genzentrum.lmu.de/compleXView/docs/PP2A_dataset/RAW. The results showed a se-
ries of regulatory proteins and substrates of the PP2A network and allowed a detailed
characterization of their associated complexes.

Bait-prey interaction network of the PP2A data

In order to identify PP2A interactors, a series of AP-MS pull-downs of the catalytic,
scaffold and canonical regulatory subunits of PP2A (see Materials and Methods) were
analyzed, and the preys were filtered by an FDR of 0.05 and a minimum abundance
relative to the bait of 1%.

In agreement with the literature the catalytic subunits PP2AA and PP2AB did not co-
purify one another. Nonetheless, they shared a large number of regulators and substrates
more than their unique interactors (Figure 2.3). This indicates that their activities may
overlap in these cases, but are not fully redundant. Isoform B exhibited more unique
interactors than isoform A. Ribosomal proteins and cell-cell adhesion proteins were pref-
erentially pull-downed with PP2AB. Similarly, the prefoldin complex was one of PP2AB
main interactors. Prefoldins are chaperone proteins mainly localized in the nucleus and
the mitochondrion. RNA polymerase II subunits co-purified preferentially with PP2AA as
well as some ribosomal subunits. Protein 2AAB was the most abundant scaffold subunit
that associated with the two phosphatases. Isoform A of the scaffold proteins did not
pass the thresholds of either fold change to the negative control or minimal abundance
relative to the bait. 2ABD was uniquely detected with the PP2AB bait, whereas the
remaining regulatory subunits were co-purified with any of the phosphatases. Among the
shared interactors were also the TCP cytoplasmic chaperons, liprins and integrator pro-
teins. Overall, the data show the broad implication of PP2A in basic cellular tasks that
occur in different subcellular locations, such as transcription, translation, protein folding
and cell adhesions.
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can create a denser protein-protein interaction map where the edge between two proteins
indicates a high probability of being part of the same complex. A high correlation in
the next analyses means a value above 0.8 within the range of 0 to 1. compleXView
provides links to the UniProt database as a mean to curate clusters in the networks. In
the remaining of this chapter, when no citation is provided, the information was retrieved
from UniProt.

Clustering preys based on the correlation of their abundances across purifications identified
protein complexes such as the TRiC, Integrator and Striatin (Figure 2.7). A closer look
using compleXView blotplots reveals that the members of these protein complexes have
highly correlated variations across the PP4C, PP2AA, PP2AB, IGBP1 and 2ABG purifi-
cations (Figure 2.8). Moreover, with the blotplots, one can estimate the stoichiometry of
the components within the complexes. For example, TRiC subunits exhibited abundance
ratios between 0.75 and 1.33. Integrator subunits 9 and 11 were twofold enriched over
subunits 4, 5, 6, 8 and 12, and were up to 3 times more abundant than subunits 1, 3 and
10. In the case of striatin proteins, STRN3 was two times more abundant than STRN4,
but similar to STRN. These ratios are in good agreement with the literature. The TRiC
complex is assembled upon the stack of two hetero-oligomeric rings, each constituted by
the eight TCP proteins [36, 51]. In the case of STRN3, mutational studies have revealed
that its homo-dimerization is essential for its interaction with PP2A [9]. For the Integrator
nothing is known about is stoichiometry. Nevertheless, it is known that in Drosophila,
INT9 and INT11 have the nuclease activity required for the processing of snRNAs, whereas
INT3 and INT10 are dispensable for this process [18]. Overall, this shows the capability of
label-free AP-MS quantification to estimate the stoichiometries within protein complexes.

Previously known interactors of these complexes were also detected. For example, the
associations of the Integrator with SOSB1, SOSSC ANKL2 and RNA polymerase II sub-
units, and the interaction of striatins with CTTB2, CT2NL and a set of kinases. The
latter represents the STRIPAK complex [32] without the phosphatase PP2AA, which is
also proper of this complex.

Additional complexes, such as prefoldins and liprins, were clustered with some apparently
spurious interactors. Prefoldins are chaperone proteins that localize to the nucleus and
the mitochondrion (source: UniProt) and associate distinctively with phosphatase PP2AB
but not PP2AA (see previous section and [25]). Liprins are important for the disassem-
bly of focal adhesions between the cell and the extracellular matrix (source: UniProt).
They regulate the association of tyrosine phosphatases type 2A with their extracellular
substrates by localizing these enzymes to the cell membrane [92, 93]. The presence of
other proteins in each of these two clusters may be spurious given the lack of functional
relation between them with prefoldins and liprins, respectively. Another distinct cluster
in the network is the PP4 complex including its catalytic and regulatory subunits.

The remaining clusters and the large groups in the network of Figure 2.7 may represent
proteins highly correlated due to chance. They can be partially resolved by applying a
second iteration of the MCL algorithm or by grouping them based on their Gene On-
tology similarities. compleXView calculates GO similarities in the whole network and
detect functional groups present in the dataset. compleXView uses annotations from the
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used for MCL clustering. The combined score increased the recognition of clusters and
improved the membership plausibility of the proteins within each group (Figure 2.10).

SGOL1 clustered now with PP2A regulators. SGOL1 is required for proper chromosome
segregation during mitosis and this function requires the interaction with the PP2A com-
plex (source: UniProt). In the network, it was found also associated with the regulatory
subunits 2A5A and 2A5B. Prefoldin 3 did not associate with CE350 any more. On the
contrary, it grouped again with other prefoldins. RBBP4 did not associate anymore with
HNRPC (a heterogenous ribonucleoprotein). RBBP4 is a histone-binding protein impor-
tant for chromatin assembly and remodeling (source: UniProt). It clustered now with
other chromatin/DNA-binding proteins, but also with tRNA ligases. Separase ESPL1
appeared now associated with 26S proteasome subunits and through this to the anaphase-
promoting complex subunit APC1 and BUB3. LC7L2 and RU17 did not associate with
NADAP any more, but as expected with other RNA binding proteins that are also involved
in mRNA processing and splicing.

Additional clusters were also detected in this network constructed with the combined
scores. For example, the cluster formed by NUMA1 and GPSM2 is known to interact
in order to regulate the recruitment of the dynein-dynactin complex to the mitotic cell
cortex regions, which is important for correct spindle orientation (source: UniProt). In the
cluster formed by AMRA, BAT3 and BAG5, the latter two proteins are a chaperone and
a chaperone-regulator, respectively. Their association with AMRA may be due to their
involvement in apoptosis, while AMRA is involved in autophagy. In the cluster formed by
AIMP1 and the t-RNA ligase SYIM, AIMP1 is an interactor of tRNAs and a component
of the tRNA multisynthase complex. HAUS5 clustered with gamma tubulins, which are
required for microtubule nucleation at the centrosome (source: UniProt). HAUS5 is a
component of the HAUS augmin-like complex, which contributes to the assembly of the
mitotic spindle, centrosome integrity and completion of cytokinesis (source: UniProt). In
the cluster formed by TXTP, M2OM, ADT3 and MPCP, all the proteins are involved in
the transport of metabolites from the cytoplasm to the mitochondrion. TXTP exchanges
citrate/malate, M2OM exchanges oxoglutarate/malate, ADT3 exchanges ADP/ATP, and
MPCP imports phosphate groups (source: UniProt). In the cluster formed by WDR61,
FOXD2, IER5, TTC33 and F122A, the first three proteins are involved in transcription
regulation. TTC33 function is unknown, but its tetratricopeptide repeat motif and its
presence in this cluster suggest that it is involved in the control of transcription. F122A
function is also unknown, and no domains are annotated for the protein. The cluster
formed by FOXC1, JUN and TFAM is due to their role as transcription factors. While
FOXC1 and JUN express uniquely in the nucleus, TFAM predominantly exists in the
mitochondrion (source: UniProt) but has been found to express in the nucleus too [49].
The green cluster in Figure 2.10 contains a number of mRNA-binding proteins involved
in different stages of transcription and splicing. LC7L2 biological function is unknown,
its presence in this cluster might indicate a role during transcription or mRNA splicing.
Additionally, three proteins involved in mRNA translation were present in this cluster:
PABP1, IF2B1 and HNRPC (source: UniProt).

Surprisingly, the PP2A subunits remained separated in this network. This is mainly due
to the low abundance correlation between its subunits. Because the composition of the
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of 0.8. Similarly, the cluster formed by EF1G, LAP2A, AF1Q, MMS19, NOP56 and
CAND2 has relatively low functional similarities. Apart from their principal roles, the first
four proteins in this cluster are involved directly or indirectly in transcription regulation
(source: UniProt), which might explain their association. The cluster started to dissociate
upon a score threshold of 0.7. Other clusters that lose association after a cutoff of 0.7
were, for example, the group formed by the transcription factors IF4G1 and EIF3B with
ribosomal proteins, and the cluster between IPYR (an inorganic diphosphatase involved
in tRNA aminoacylation for translation) and two ribosomal proteins.

Adding cross-linking information to the network

The single analysis of XL-MS data also identified the main protein complexes detected by
AP-MS. Thereby, cross-links validated the interactions inferred in previous steps for the
TRiC and STRIPAK complexes as well as for the cluster of calmodulin-dependent kinases
(KCC proteins). Furthermore, cross-links revealed the interaction between the complexes
predicted in previous steps of the analysis workflow. For example, it revealed that the
TRiC complex interacts with PP2A and its regulatory subunits 2ABA and 2ABG.

Additionally, XL-MS revealed two new clusters. The first consisted of FR1OP, CE350
and P2R3C. The first two proteins are known to be required for anchoring microtubules
to the centrosomes (source: UniProt), while the presence of P2R3C in this cluster is
perhaps to give specificity to PP2A for FR1OP and CE350. The second cluster showed
the association of the PP2A catalytic subunits, the regulatory subunits and IGBP1. With
them, other proteins, like CT117 (SOGA1), appeared to interact directly with PP2A
phosphatases. SOGA1 has a putative KEN motif (source: ELM database) and thus
might bind to the APC/C complex, which promotes the transition from metaphase to
anaphase via degradation of cohesin (source: UniProt). Linked to PP2A was also SGOL1,
which prevents the degradation of cohesin by separase ESPL1, which formed a subcluster
with the 26S proteasome component and the APC1 subunit. SGOL1 is also required for
proper attachment of the spindle microtubule to the kinetochore (source: UniProt). The
remaining proteins in this cluster were CCDC6, PR14L and FA13A. The former has been
shown to interact with components of the SCF E3 ubiquitin ligase complex; the second
is a proline-rich protein whose function is unknown; and the latter is an activator of Rho
GTPases. The members of this cluster may not represent a single protein complex, and
might be rather due to their different interactions with the PP2A complex.

Finally, the integration of both MS datasets showed that they complement each other.
Among the subunits of the Integrator only two physical contacts were detected by XL-
MS, and thus AP-MS data was fundamental to keep the cluster integrity and recognition
of the complex. Protein abundances of the Integrator subunits were relatively high across
the purifications indicating that the lack of detection by XL-MS could not have been due
to low sample amounts. Recent studies have suggested that the Integrator might not exist
as a single physical entity, but rather that its subunits accomplish the Integrator’s function
in a sequential manner [16]. The cross-linking data indicated that the nuclease core of the
complex, represented by INT9 and 11, are in close proximity to INT4. It has been shown
that INT4 knockdown reduces the association of INT11 with snRNAs [16]. Thus, the data
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2.3 Discussion

Here I described the implementation of a web server tool for the analysis and integration of
PPI data. Given the simplicity of its input tables, compleXView can be employed to com-
bine AP-MS, BioID, APEX-labeling, XL-MS and Y2H data. The software does not aim
to be a highly precise predictor of protein complexes. False interactions may be wrongly
inferred during analysis. Nevertheless, compleXView provides tools for the validation and
interpretation of the protein complexes and clusters that it predicts. It is able to resolve
known protein complexes and can be the starting point for the characterization of novel
interactions and their functional relevance.

An advantage of compleXView is that it is applicable to relatively small datasets. Previous
work on inferring complexes used different clustering algorithms on very large networks
that included datasets from Gavin and Krogan in 2006. Gavin et al. [24] performed a
proteome-wide screen for complexes in budding yeast by systematic tagging of 6466 open
reading frames. A concurrent effort was carried out by Krogan et al. [45] to process
4562 tagged yeast proteins by AP-MS. The purification of thousands of baits generated a
high level of protein connectivity in these datasets, which served in subsequent years for
the training of clustering algorithms and machine learning methods that inferred novel
protein complexes in these networks [101]. In contrast, I showed here that compleXView
is applicable to medium and small AP-MS datasets, with at least 5 baits, that together
with Gene Ontology information can predict protein complexes in such networks.

A frequent discussion in PPI studies is whether a bait-prey interaction network (Spoke
model) or a prey-prey interaction network (Matrix model) is better for the inference of
protein complexes. In large data sets, Bader et al. [4] showed that a Spoke model of
PPIs was more accurate than a Matrix model. This may be true for large data sets but
not for small ones where the degree of connectivity is low, and thus, a Matrix model
becomes necessary. Strictly speaking, compleXView does not model the data as a full
Matrix model because it does not allow every possible protein-protein interaction in the
network but only those with high correlation values. Furthermore, these correlations are
calibrated with GO similarity scores by average or multiplication. Threshold filters and
calibration of correlation values reduced the number of spurious interactions and resulted
in better clustering of the data into sub-networks and complexes in the PP2A network
and the MCM network (see Appendix A).

Recently, Montano-Gutierrez et al. [63] have shown by simulation studies that protein
correlations between true interactors are robust enough to distinguish them as complexes,
especially when the quantitative signal of the preys is high across experiments. The PP2A
dataset is a good example of this case, and compleXView was able to recognize such
correlated signatures within the TriC, Integrator and other complexes in this network.
In another dataset, where the overlap of the baits interactomes was small, and therefore
the correlation signals were low across purifications, compleXView was able to resolve
complexes after the incorporation of GO similarities [100].

Different clustering algorithms have been used to group PPI networks into sub-modules
and complexes. compleXView uses the simple and robust MCL algorithm for this task.
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MCL does not require prior knowledge of protein domains or functional annotations. It
groups proteins solely based on their predicted interaction strengths. Thanks to com-
pleXView, prior information can be incorporated into the clustering process by fetching
GO functional similarities between proteins. However, using only GO information was not
as reliable as in combination with abundance correlations. Based on the compleXView
analysis of the studied networks, the combination of these scores has more power than any
of the two alone (see Results and Appendix A).

A closely related strategy to the one implemented in compleXView was carried out by
Saha et al. [81], where MS quantitative information was also exploited and combined
with GO functional similarities to infer protein complexes in a dataset of 384 human bait
proteins. However, the authors did not provide any tool that makes their method publicly
accessible. The advantage of compleXView is that it provides an automated web server
for the analysis and visualization of PPI data from different sources.

Other methods are more general and have been developed for proteomics expression data
obtained under different conditions or perturbations. An example is the pipeline Nano
Random Forest [63]. Approaches like this rely again on machine learning algorithms
that require positive and negative training sets of known interactions. In comparison,
compleXView is straightforward in inferring complexes. Though, it may be less accurate,
it has the advantage that the user can curate putative interactions thanks to the quick
UniProt links that are provided. On top of that, compleXView integrates cross-linking
information as a mean of validating physical interactions. Moreover, the integration of
different data types enriches the insights that one obtains from each source alone, as
shown here.

In summary, compleXView provides a simple bioinformatics pipeline with a user-friendly
interface and highly annotated graphs that make it useful for the exploration, integration
and interpretation of MS-based interactomics data.

2.4 Materials and Methods

Datasets

The two datasets analyzed in this chapter and Appendix A includes the quantification
of protein abundances and the identification of chemical cross-links by mass spectromet-
ric analyses. The first dataset was previously published by [29] and comprises AP-MS
pull-downs of 14 different bait proteins from the PP2A complex and interactors. The
baits include: PP2A catalytic subunit alpha (PP2AA), PP2A catalytic subunit beta
(PP2AB), PP2A regulatory subunit A beta (2AAB), PP2A regulatory subunit B al-
pha (2ABA), PP2A regulatory subunit B gamma (2ABG), PP2A regulatory subunit
delta (2A5D), PP2A regulatory subunit epsilon (2A5E), PP2A regulatory subunit gamma
(2A5G), protein phosphatase 4 catalytic subunit (PP4C), Immunoglobulin-binding pro-
tein 1 (IGBP1), Shugoshin-like 1 (SGOL1), CTTNBP2 N-terminal-like protein (CT2NL),
Striatin-interacting protein 2 (FA40B or STRP2) and FGFR1 oncogene partner (FR1OP).
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The second data set [15] includes 6 bait proteins, each a member of the MCM2-7 subcom-
plex.

Data analysis

In order to quantify peptide abundances in the PP2A data set, raw files were analyzed
with MaxQuant version 1.5 [11] and the results were filtered at 1% FDR. For the second
data set, MaxQuant tables were directly retrieved from their respective PRIDE repository
PXD004089. The cross-links for this data set were retrieved from PXD002987 (only cross-
links between MCM components were considered).

In order to identify and quantify putative interactors of the bait proteins, raw peptide
intensities obtained by MaxQuant were analyzed within the statistical environment R.
Only unique peptides and proteins with a minimum of 2 identified peptides were con-
sidered for quantification. Median normalization between experiments was performed at
the peptide level. Normalized peptide intensities were averaged within replicates in or-
der to obtain protein abundance estimations. Protein identifications were required to be
present in at least 2 replicates of the respective bait for the PP2A case and 1 for the MCM
case (this latter data set did not contain replicates). Protein abundances across the same
bait purifications were averaged and the significance of their fold-changes to the negative
control was assessed by a Posterior Probability method (see below). Protein identifica-
tions were regarded as interactors if their enrichment to the negative control was at least
two-fold and significant with an FDR of 0.05. The abundance ratios to the respective
bait were calculated and interactors with ratios <2% were not included. As a result we
obtained a ‘Bait-Prey Interactions Table’ listing the putative bait-prey interactions with
their respective abundance ratios.

Posterior Probabilities were estimated using a mixture of 3 Gaussian distributions, whose
parameters (mean and variance) were estimated using the ratios of the abundances in the
positive experiment over the abundances in the negative control. The 3 Normal distri-
butions were found and fitted using the Expectation-Maximization algorithm from the
‘mclust’ package in R. After parameter estimation, the left distribution was used to esti-
mate the probability of an abundance ratio to be false, whereas the middle distribution
was used to estimate the probability of an abundance ratio to be true if the ratio was
below a threshold of 10 otherwise the right distribution was used. FDR and posterior
error probabilities were estimated using the method of Kaell et al. [37].

The bait-prey interaction tables were used as input to infer prey-prey interactions. Pair-
wise cosine correlations were calculated using the prey-to-bait abundance ratios across
different protein samples. Hence, this mathematical term is referred to as abundance cor-
relation. GO similarities were calculated using the getGeneSim function from the GOSim
Bioconductor package [22] with the following parameters: similarity method, ‘dot’; nor-
malization method, ‘sqrt’; and similarity term, ‘relevance’. Only ‘Biological Process’ (BP)
and ‘Molecular Function’ (MF) categories were used. UniProt accession numbers were
mapped to Entrez IDs using the UniProt ‘Retrieve/ID mapping’ tool. The BP and MF
similarity values were summarized by keeping the maximum of the two per protein-protein
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pair. Abundance correlations were combined with GO correlations by calculating the av-
erage of their values. Minimum thresholds of 0.8, 0.6 and 0.65 were allowed for abundance,
GO and combined correlations, respectively in the case of the PP2A data, and 0.9, 0.7
and 0.75 in the case of MCM. Proteins were clustered using the MCL algorithm [17] on
the abundance correlations, GO correlations or the combination of the two, respectively.
The following parameters were used, expansion: 2, inflation: 3, maximum iterations: 50.
Protein interactions were considered as true, if either i) any of the two proteins was a bait
and their correlation was above the respective threshold or ii) both proteins were preys
in the same MCL cluster with at least one showing a relative ratio to the bait higher
than 2%, and their correlation value above the respective threshold, or iii) at least one
protein-protein contact was detected by XL-MS. The results are summarized in 3 different
tables with interactions based on abundance correlations, GO correlations or the combi-
nation of both correlations. These tables are annotated with the respective number of
protein-protein contacts detected by XL-MS.

Result tables from the cross-linking experiments were directly retrieved from the PRIDE
database. Intra-protein cross-links were filtered from the list whereas inter-protein cross-
links were summarized to the number of cross-links per protein-protein pair.

compleXView modules

compleXView offers two different modules, which operate independently of each other.
One module is for the analysis of AP-MS data and performs part of the analysis workflow
described in Figure 2.1. The main input file for the ‘Analysis’ module is the ‘Purifica-
tions Table’ containing the protein abundances across all purifications. Its first column
must be named Prey and contains the protein IDs of the co-purified proteins. The second
and all other columns must contain the abundances of the preys in each of the purifica-
tion experiments. These columns have to be named according to the following format:
BaitID ReplicateNumber Condition. The name in the ‘BaitID’ field must match the
format of the entries in the ‘Prey’ column and the bait itself has to be detected in the
respective purification. Negative controls must be named ‘NegCtr’ in this field. The
‘ReplicateNumber’ field contains any number or code for the identification of technical or
biological replicates (e.g., R1, R2, R3). The ‘Condition’ field is optional and should be
provided in cases where purifications of the same bait under different biological conditions
are compared. compleXView requires abundance values like iBAQ or other normalized
intensities without log-transformation. Median or quantile normalization between condi-
tions is optional.

The basic output of the ‘Analysis’ module is the ‘Bait-Prey Interactions Table’ visualized
as a spoke network. Abundance correlations will only be computed if the number of baits
or conditions is >4. The output is a protein-protein interaction table that we call the
‘Abundance Correlations Table’. In order to compute GO functional similarities between
proteins, an optional input table with two columns must be provided. The first column
named ‘From’ contains the Protein IDs in the same format as in the ‘Prey’ column of
the ‘Purifications Table’. The second column named ‘To’ contains the respective UniProt
Entrez ID of the protein. The compleXView output is a protein-protein interaction table
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called ‘GO Correlations Table’, where each row contains a pair of preys and their cor-
responding GO similarity values. For the implementation of inter-protein cross-links an
input table of at least four columns with the following headings is required: ‘Protein1’,
‘Protein2’, ‘AbsPos1’ and ‘AbsPos2’. The IDs in the first two columns should have the
same format as the ‘Prey’ column in the ‘Purifications Table’. The numbers in the ‘Ab-
sPos’ columns indicate the positions of the cross-linked amino acid residues. For more
details, see online manual at https://xvis.genzentrum.lmu.de/compleXView.

On the other hand, the ‘Visualization’ module displays all bait-prey interaction tables and
correlation-based tables generated by the ‘Analysis’ module. Both modules operate inde-
pendently, which allows the visualization of output tables generated by other programs,
such as SAINT, MiST or compPASS. The input table must contain at least 2 columns
named ‘Bait’ and ‘Prey’; optional columns are used to represent quantitative information
for the node edges. The ‘Visualization’ module generates two types of representations the
‘Network’ and ‘Blot’ plots. The former represents proteins as circular nodes and linear
edges indicate their interactions, which are deduced from AP-MS abundances or indicated
by XL-MS restraints. The ’Blot’ plot is designed as a western blot diagram displaying
protein abundances across the different bait purifications.
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Inferring protein binding interfaces
using amino acid sequence-level
information and quantitative XL-MS

3.1 Introduction

Protein-protein interactions (PPI) are established upon the non-covalent binding of pro-
tein domains. These regions are called binding sites in the free state, and binding interfaces
in the bound state. The establishment of binding interfaces is governed by amino acid se-
quence and structural properties of the interacting proteins. Physicochemical complemen-
tarity, shape, solvent accessibility, and evolutionary conservation are the most prominent
properties of binding sites [34, 26, 114]. The elucidation of the binding interfaces in a PPI
is important because mutations in these regions can lead to impairment of the interaction.
In turn, this may lead to a loss of function and the disruption of a biological process. In
a clinical context, dysfunctions due to abrogation or excessive formation of PPIs can lead
to diseases [23, 35]. Thus, the characterization of protein binding interfaces is relevant for
understanding the mechanisms of certain diseases and for the development of therapeutic
interventions and drugs [48, 110].

For some protein complexes, binding interfaces can be retrieved from their X-Ray or NMR
structures in the Protein Data Bank (PDB). A residue is considered to be part of a binding
site if its distance to residues of the interacting protein is below 4-6 Å [114]. Among the
set of binding residues, some are more relevant than others as most of the overall inter-
action energy resides on them. These residues are called hotspots [53]. High-resolution
methods are not able to elucidate the majority of protein complexes and PPIs. In order to
characterize the binding interfaces of these complexes, low-resolution experimental meth-
ods and computational predictors have been developed. Experimental methods are either
laborious (e.g., alanine mutagenesis) or have low accuracy (e.g., hydrogen/deuterium ex-
change and XL-MS). Computational predictors, on the contrary, suffer from low specificity.
Combining experimental information and bioinformatics analyses has been shown to be
advantageous, as exemplified by homology-based predictors of binding interfaces [115].
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Homology-based approaches search for structural models with high sequence similarity to
the proteins in the queried PPI. Binding interfaces can be inferred on the queried proteins
based on the assumption that high sequence similarity results in similar structural and
functional domains. Compared to other computational methods, homology-based pre-
dictors are more accurate and reliable [115]. Nevertheless, they require the presence of
homologous high-resolution structures in PDB, which, as mentioned, are missing for many
PPIs.

In order to address the limitations of the available computational approaches to identify
protein binding interfaces, the method described in this chapter aimed to combine quan-
titative XL-MS (qXL-MS) data and sequence-level properties in order to obtain a more
accurate prediction of binding sites. The proposed approach constraints the search space
by inferring the most probable regions in a protein sequence that may be binding sites.
The method uses chemical cross-linking data of the protein complex, identifies the inter-
protein cross-link sites and quantifies them relative to other cross-links in the protein.
Subsequently, the regions around these sites are manually ranked as candidates for bind-
ing interfaces. The ranking considers the evolutionary conservation, secondary structure
and relative accessible surface area of these regions, which are all properties derived from
the amino acid sequences of the proteins.

This chapter describes the complete bioinformatics framework where the cross-linking and
sequence-level information were combined to predict protein binding interfaces. Finally,
it presents three proof-of-concept cases where the predictions were validated by in vitro
and in vivo assays testing deletions of motifs or point mutants.

3.2 Results

3.2.1 Properties of binding interfaces

In order to find the sequence properties that discriminate binding from non-binding re-
gions, I used density plots and random forest to evaluate the discriminant powers of a
number of amino-acid-based sequence-level indexes. The analysis was performed on a set
of 27 non-redundant protein complexes downloaded from PDB. Binding interfaces were
defined based on a maximum threshold distance of 4.5 between any two residues on dif-
ferent partner proteins. The result of this evaluation showed that the most differentiating
sequence properties were amino acid type, evolutionary conservation, relative accessible
surface area, disorder, and relative position. The amino acids isoleucine, leucine, arginine
and tyrosine were more frequently found at interfaces, whereas alanine, proline and serine
were predominantly detected in non-binding regions (Figure 3.1 A). Furthermore, evolu-
tionary conservation was shown to be relatively higher in binding interfaces. Nonetheless,
the majority of residues within these regions had conservation values below 60% (Figure
3.1 B). Conservation was particularly distinctive on the following residues: tyrosine, argi-
nine, glutamine, proline, asparagine, isoleucine, glycine, glutamate, aspartate and alanine
(Figure 3.2). The predicted relative accessible surface areas also showed that interface
residues are less accessible than their counterparts (Figure 3.1 C). Additionally, interfaces
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was then assessed on 4 testing data sets. Although the sensitivity of the SVM model was
higher, the specificity decreased (Table 3.1). Previous predictors have achieved similar
sensitivities and specificities with only sequence-level properties [116, 67]. More limiting
is the fact that the predicted interface residues are not partner-aware; i.e., they do not
tell to which protein they bind. These two reasons make the applicability of the models
very limited. Combining experimental data with the main predictor variables may result
in better prediction of binding domains.

Model Data Sensitivity Specificity Error
RF Test1 61.3 56.5 41.1
SVM Test1 75.3 41.1 41.8
RF Test2 62.8 52.7 42.2
SVM Test2 79.7 36.1 42.1
RF Test3 44.0 61.9 47.0
SVM Test3 57.6 44.0 49.2
RF Test4 40.6 70.2 44.5
SVM Test4 56.9 54.5 44.3

Table 3.1: Performance of the RF and SVM models on four test sets

3.2.3 Inter-protein cross-link intensities as indicators of binding
interfaces

Inter-protein cross-linked sites in XL-MS experiments occur mostly at the binding inter-
face or close to it. However, some cross-links also occur in regions that are flexible and
only transiently come close to the interface or in contact with other parts of the bind-
ing partner. Distinguishing these regions is essential to make a precise prediction of the
binding interface. By theorizing about the establishment of binding interfaces and the for-
mation of lysine-specific cross-links, I deduced the following pseudo axioms: i) Cross-link
intensity depends on the spatial distance of the linked sites (Figure 3.3 A); ii) Binding
interfaces and structural regions tend to be ordered and not flexible regions (Figure 3.3
B); iii) During cross-linking of a PPI, intra- and inter-protein cross-links have to compete
for the cross-linker amount and for lysine sites at the binding interface or nearby.

From the pseudo axioms above, one can deduce that the inter-protein cross-link intensity of
a specific lysine site relative to the total sum of intensities on that site will be higher if the
lysine is close to the binding interface. Structural regions that are not part of the interface
will have the smallest intensity ratio, whereas flexible regions that transiently come in
proximity to the interface (or other parts of the binding partner) will have a middle value.
I call this ratio the relative interface propensity index (RIPI) of a cross-linked residue
(Equation 3.1).

RIPIKi =
Inter XL IntensityKi

Intensity(MonolinkKi + Loop LinkKi + Intra XLKi + Inter XLKi)
(3.1)
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From these structures, the following fasta files were retrieved from Human UniProt: 1A03,
PSA6, B2MG, PSA7, CALR, PSB1, PSB2, PSB3, PSB4, PSB5, PSB6, PSB7, PDIA3,
PSD11, PSD12, PSD13, PRS10, PSDE, PRS4, PSMD1, SEM1, PRS6A, PSMD2, PRS6B,
PSMD3, TPSN, PRS7, PSMD4, PRS8, PSMD6, PSA1, PSMD7, XRCC5, XRCC6, PSA2,
PSA3, PSA4, PSMD8, RMI1, RMI2, PSA5; and from S. cerevisiae UniProt: LSM7,
RPAB2, MDY2, RPAB3, MPP10, RPAB4, CDC4, PAN2, RPAB5, CLP1, PAN3, RPB11,
EAF6, PCF11, RPB1, EPL1, PCL10, RPB2, ESA1, RPB3, GET3, PHO80, RPB4, GET4,
PHO85, RPB7, GTR1, POP6, RPB9, GTR2, POP7, SAC1, H2A1, H2B2, H3, SKP1, H4,
IMP3, LSM1, VPS74, LSM2, LSM3, LSM4, YNG2, LSM5, LSM6, RPAB1.

The data was split into training and testing sets. The following complexes were in the
testing set: the yeast RNA polymerase II complex (PDB: 5IP7), the Proteasome 26S
complex (PDB: 5L4G, 5L4K), the Peptide loading complex (PDB: 6ENY) and the Ku
heterodimer complex (PDB: 1JEY).

The cross-linking data for the RNA polymerase II was acquired as explained below. The
cross-linking data for the complexes CNN1-SPC, the CENPA nucleosomes-MIF2-OKP1-
AME1, the KRE28-MTWc and the CBF3A-MTWc was acquired similarly, but by other
doctoral candidates in the group of Dr. Franz Herzog.

Feature matrices for machine learning

Binding interface residues were labeled as such if their distance to a residue on an inter-
acting protein was less than 4.5 Å. Distance was measured from any heavy atom in one
residue to any heavy atom in the other residue.

To measure evolutionary conservation, fasta sequences were given as input to the PSIBlast
[2] standalone software. The search was done against the non-redundant and Uref90
databases separately. For the yeast proteins, the genus Saccharomyces was excluded from
the search. The following indexes (obtained from the PSSMmatrix) were used as indicators
of conservation: the conservation of the query residue, the highest conservation on the
MSA position, and the information content per position.

To predict the secondary structure and accessible surface area (ASA) of the protein se-
quences, the PSSM matrices obtained with PSIBlast were also used as input for the SPI-
DER2 [28] software. The relative ASA was computed from the ASA using a home script.
The script calculated these values using previously reported maximal ASA values of each
amino acid from the SPIDER2 publication itself as well as from Tien et al. 2013 (empirical
and theoretical; [104]), Miller et al. 1987 [62], and Rose et al. 1985 [77].

In order to predict disorder and induced-order-upon-interaction, the IUPRED [13] and
ANCHOR [14] software were used.

To obtain the physicochemical properties of the amino acids, the index tables provided by
the AAindex database and ExPASY ProtScale were used.

Overall 603 sequence properties were present in the features set.
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Learning of the RF and SVM predictors

The R packages randomForest and e1071 were used for the training and prediction of the
random forest (RF) and support vector machine (SVM) models. In order to select the
best features for interface prediction, the variables in the features matrices were smoothed
by the average method using windows of odd sizes from 5 to 25. A feature was replaced
by its smooth version if the resulting average decrease in the RF out-of-bag error was
greater than 3%. Subsequently, features were clustered using the hierarchical clustering
algorithm to avoid redundancy from highly correlated features. For the physicochemical
indexes, their tree was divided into 10 clusters. For the conservation, ASA, secondary
structure and (dis-)order properties, the tree was divided into 5 clusters. From each of the
15 clusters, the best 2 features were selected based on their 5 cross-validation RF variable
importance index with a sequentially reduced number of predictors. The importance
index was determined by the mean decrease accuracy after randomization of the feature
in question.

The remaining features (41 in total) were fed to the RF and SVM algorithms. Their
performances on the training and testing data sets were evaluated using the sensitivity,
specificity and overall error indexes.

Cross-linking of the RNA polymerase II complex

The purified protein complex was kindly provided by the group of Dr. Patrick Crammer.
A total of 52.8 µg of complex was diluted in cross-linking buffer to a concentration of
0.8 µg/µl. Under the assumption that 1 µg of protein contains 0.5 nmol of lysine, 26.4
nmoles of BS3 cross-linker were added and left to react for 30 min at 10 C. The reaction
was stopped by adding 8 µl of AMBIC 1M. Subsequently, proteins were denaturated by
adding 132 µl of urea 8M. Reduction and alkylation was done with 20.6 µl of TCEP
and 22.7 µl of iodo acetamide. Protein digestion was performed with 1 µg of lysC for
2 h at 35 C, followed by 1 ug of trypsin overnight. Digestion was stopped by medium
acidification using TFA to a final percentage of 1% and ACN to a final percentage of 3%.
Peptide cleanup was performed using C18 columns using ACN 100% as activator solution,
3% ACN + 0.2% formic acid as washing solution, and 60% ACN as eluting solution, to
a final elution volume of 700 µl. The solution was then dry using the speedvac, and
re-suspended on size exclusion chromatography (SEC) buffer. After SEC separation, the
fractions corresponding to the cross-linked peptides were selected and pooled for mass
spectrometric analysis.

Mass spectrometric analysis

Peptides were separated by a Thermofisher nano-HPLC machine and analyzed with an
LTQ-Orbitrap Elite instrument. A flow rate of 20 nl/min at incremental gradients of
buffer B from 3% to 98% was used. At each MS cycle, the top 10 intense peptides with
charges greater than 2 were selected for fragmentation and MS2 scanning, with exclusion
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times of 30 s. MS1 spectra were acquired in the orbitrap analyzer at 12K resolution, and
MS2 fragment scans at low resolution in the ion trap analyzer.

Identification and quantification of cross-links

Peptide-peptide cross-links were identified using the Xquest/Xprophet software [107].
Mono-links, loop-links and intra-/inter-protein cross-links with a score above 25 were
retained and quantified. The quantification was performed using a modified version of the
OpenMS FeatureFinderCentroided tool. This tool and the changes that I made to the
source code are presented in detail in the next chapter of my thesis.

The RIPI index

Cross-link intensities were summarized to lysine site intensities, by summing up all the
intensities were the protein lysine site was involved. This total sum includes mono-links,
loop-links and intra-/inter-protein cross-links. Next, the site intensity due to inter-protein
cross-links from a specific dimer interaction was divided by the total sum. The resulting
value was called the relative interface propensity index (RIPI) of a cross-linked residue.
Lysine sites, for which none inter-protein cross-link was observed, were assigned a RIPI
value equal to the minimum RIPI in the set. This was done to avoid infinite values for
the plotted inversed RIPIs in the figures above.

Other indexes in the RIPI plots

Conservation in the RIPI plots was computed using PSIBlast against the UNIREF90
database. Only residue positions with conservation above the 80% quantile within the
protein sequence were plotted. Secondary structure and rASA were predicted using the
SPIDER2 software against the UNIREF90 database. Residues were considered to have
low disorder if their IUPred index was below 0.25 in a scale of 0 to 1. Residues were
considered to have low accessibility if their rASA was below 40%. Real interface residues
were extracted from PDB models. The predicted interface residues were obtained with
the RF and SVM models trained on the best-selected features.
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Estimation of dissociation constants
by quantitative XL-MS

4.1 Introduction

An important step towards the characterization of protein complexes is to determine the
affinities of protein-protein interactions (PPI) because they guide and stabilize the assem-
bly of protein complexes and enrich the information provided by biochemical pathways.
Protein complex formation is a non-covalent biochemical reaction that reaches equilibrium
when the concentrations of the free subunits and the associated subunits are constant over
time (Equation 4.1 and 4.2).

aA+ bB
kf
−⇀↽−
kr

C (4.1)

where C = AaBb := the protein complex

.
At equilibrium,

kf [A]
a[B]b = kr[C] (4.2)

Kd =
[A]a[B]b

[C]
=

kr

kf
(4.3)

The affinity of an interaction is measured in solution by the association rate kf of the pro-
teins relative to their dissociation rate kr. This ratio is called the association constant and
equals the ratio between bound and unbound partners at equilibrium. Association con-
stants of biochemical reactions range from the mili-molar to the nano-molar scale. They
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often play critical roles in biological pathways, where molecular interactions are highly
regulated to modulate the rate of biochemical reactions. Thus, the manipulation of as-
sociation rates provides opportunities to control cellular processes naturally or through
drugs. Examples are protein inhibitors, co-activators, the preference of enzymes for dif-
ferent substrates and the use of drugs to ameliorate disease symptoms.

Association constants are inversely related to dissociation constants (Kd; Equation 4.3).
Thus, a low Kd indicates high affinity between the subunits of a protein complex, whereas
a high Kd indicates the opposite. There are three widely used technologies to measure the
Kd of protein complexes: surface plasmon resonance (SPR), isothermal titration calorime-
try (ITC) and fluorescence-based methods such as fluorescence polarization (FP) and
fluorescence resonance energy transfer (FRET). Advantages and disadvantages exist for
all these techniques [78], ranging from cost, required sample amounts, dynamic range, and
interferences caused by fluorescence tags and platform immobilization.

Chemical cross-linking in combination with mass spectrometry (XL-MS) has become in-
creasingly popular in hybrid structural biology approaches to reveal the topology and
structural features of native proteins and protein complexes. Nevertheless, the develop-
ment of bioinformatics pipelines for the quantification of cross-links can open new applica-
tions for XL-MS that go beyond the sole structural elucidation of proteins. Quantitative
XL-MS (qXL-MS) has the potential to measure the dynamic cooperation of proteins in
biological networks. It is suitable for calculating the stoichiometry of protein complexes,
estimating the relative affinities between their members and measuring complex turnover.
qXL-MS can also allow the quantification of post-translational modifications (PTMs) at
or next to the contact interface and thereby evaluate the effect of PTMs on the affinity
of binary interactions [86]. All these potential applications are important to advance the
understanding of the dynamics of protein interactions.

Here, I describe a method that combines chemical cross-linking and mass spectrometry
to estimate the Kd of protein complexes (Figure 4.1). The method is based on a series
of titrations where the concentration of one of the proteins remains constant whereas
the concentration of the other is varied. Proteins are incubated with a deuterated cross-
linker, and the cross-linked peptides are enriched by size exclusion chromatography and
identified and quantified by mass spectrometry. The next step models the relation of the
intra-protein cross-link intensities with the initial concentrations of the subunits through
linear regression. Subsequently, it interpolates the intensities of the inter-protein cross-
links to estimate the amount of formed complex and the Kd of the interaction. Measuring
the intensities of the cross-links thoroughly and accurately is critical for the success of
our method. Thus, I developed a new bioinformatics quantification pipeline. The pipeline
couples the identification results from popular cross-links search engines with peptide ion
quantification. This is achieved sensitively and accurately, yielding a useful tool for the
estimation of dissociation constants in protein-protein interactions.

This chapter starts with the description of the bioinformatics pipeline used for the quan-
tification of cross-links. It further describes the Kd estimation of the CNN1-SPC24/25
complex. The estimated value is benchmarked to an ITC measurement as proof of con-
cept. Subsequently, the ability of the method to measure affinities below the µM range
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ist at the MS1 level. After feature extraction, peaks are matched to the identifications
using the IDMapper tool. This was also modified from its original version, mainly to
allow the matching of an identification to the second isotopomer in the extracted feature.
The changes introduced to both tools are based on empirical observations in processing
cross-linking data. I observed that the elution profiles of highly abundant cross-linked
peptides are mostly asymmetric, whereas low abundant cross-links have symmetric peaks
(i.e., Gaussian-shaped). Isotopomers from low-abundant peaks may have a lower fit to the
averagine model, and frequently a pseudo monoisotopic peak (i.e., lighter than the actual
monoisotopic peak) co-occurs not only for mono-links but also cross-links. This pseudo
monoisotopic peak can deceive the feature extraction algorithm in some cases, which ends
up in its erroneous incorporation to the feature, thereby avoiding an identification match.
The next tool in the pipeline is the FeatureLinkerUnlabeled tool, which matches features
between different runs as long as they are replicates or from analog fractions. This re-
sembles the known ‘match-between-runs’ strategy developed in the quantification software
MaxQuant [11]. Finally, the annotated features are summarized to unique peptide-peptide
cross-links and unique site-site cross-links. Like other OpenMS tool, the pipeline can be
operated in the command line or in a graphical user interface. Running times are faster
than the Xtract software [108] and comparable or faster than MaxQuant [20].

To validate the pipeline, I tested its performance on previously published datasets that
were acquired for other extraction tools. They include the dataset used for the development
of the Xtract algorithm [108] and the datasets used in the extraction pipelines described
in [20, 66].

The first dataset comprises 4 dilution experiments from bovine albumin, bovine transferrin,
and chicken transferrin [108]. Each protein was cross-linked separately and then pooled
before spectra acquisition. In each dilution experiment, the concentration of albumin
was kept constant, whereas the concentration of transferrins decreased monotonically in
2:4:8 ratios for the bovine homolog and 4:16:64 for the chicken homolog. As shown in
Figure 4.2A, the feature extraction pipeline is able to reproduce the dilution steps of
the experimental design. In the 2 most diluted experiments of chicken transferrin, the
extracted features were only detectable by the ‘match-between-runs’ strategy since the
protein was not identified in these 2 dilutions. In the most diluted experiment, the features
that passed undetected by the ‘match-between-runs’ strategy were noisy and had too many
missing mass traces, thus the failure of detection was justified. Overall, the proposed
pipeline was able to quantify a similar number of site-site cross-links as the Xtract software,
for which this dataset was created. The overall recall of site-site cross-links was 97.5%
(118/121) and the accuracy of the quantification close to the expected values (Figure
4.2A).

The second dataset [20] consists of a SILAC-like experiment, where the protein C3 was
cross-linked in its native and cleaved form, C3b, in forward (C3-BS3d0 and B3b-BS3d4)
and reverse labeling (C3-BS3d4 and B3b-BS3d0). I used the identifications provided
by the authors as feature extraction seeds, without ‘match-between-runs’ as it was not
applicable to this dataset. As benchmark pipeline, the authors used the Pinpoint software
with manual curation of the extracted features. I also used this reference as ground
truth to compare the performance of their MaxQuant version tailored for cross-linking
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quantification against the here proposed extraction pipeline. The latter showed a 10%
increase in sensitivity by recalling features not detected by MaxQuant. Moreover, the
pipeline could quantify certain identifications, whose recall was not possible even with the
benchmark Pinpoint pipeline (Figure 4.2B). Thus, the reported sensitivity might be even
higher than 79%.

A third dataset that was published for the assessment of the reproducibility of cross-link
quantification [66] was also used for evaluation. This dataset comprises 2 experiments with
10 replicates each. In the first one, human serum albumin was cross-linked in 10 cross-
linking reaction replicates that were analyzed separately by mass spectrometry. In the
second, the 10 reaction replicates were pooled and analyzed 10 times by mass spectrometry,
so they represent injection replicates. The IDs provided by the authors of the publication
were matched to the extracted features from the MS1 maps using a ‘match-between-runs’
strategy. As a result, unique cross-linked residues were quantified with a recall between 67-
76% in the injection replicates and 55-66% in the reaction replicates respect to the overall
number of unique cross-links in each of the two experiments (Figure 4.2 C, first row).
Pooling all the quantifications across their replicates results in a sensitivity of 86% and
79% for the injection and reaction experiments, respectively. The sensitivities concerning
the number of identifications within each replicate are even higher and fluctuate between
84-92% and 82-92% for the injection and reaction experiments, respectively (Figure 4.2
C, second row). Overall, these quantification rates highlight the high sensitivity of the
proposed pipeline. Next, I calculated the correlations and coefficients of variation of the
abundances at the peptide-peptide cross-link level (Figure 4.2 C, third and fourth rows).
The minimum Pearson correlation between replicates was 0.92 in the injection experiment
and 0.67 in the reaction experiment. Regarding the coefficients of variation, the median
value was 14.6% in the injection experiment and 42.3% in the reaction experiment. Similar
coefficients of variation were observed at the unique cross-linked residues level: 15% and
43% respectively. These values are higher relative to the values reported in the original
publication of 14% and 32%, respectively. Part of this variation is due to the higher
sensitivity achieved with the ‘match-between-runs’ strategy, as the values decrease to
11% and 38%, respectively, after removing quantifications extracted with this strategy.
In summary, this analysis shows that cross-linking reaction replicates show 2-3 times
higher variation than technical replicates, which should be taken into consideration when
interpreting and benchmarking the estimation of Kd values by mass spectrometry with
respect to established methods such as ITC.

The experiments described in the following sections were performed by Goetz Hagemann
in the Herzog group. My work involved the data processing in order to identify and
quantify cross-links for Kd estimation.

4.2.2 Kd estimation of a CNN1 short peptide and the SPC24/25
dimer

In order to evaluate the applicability of qXL-MS for the estimation of dissociation con-
stants, a series of titrations between a CNN1-peptide (residues 60-85) and the SPC24/25
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µM [102], whereas, the affinity of JARID2 peptide 110-122 K116me3 has been found to
be higher with a Kd of about 3 µM [82]. Kasinath et al [38] mentioned that their electron
microscopy structures show that JARID2 stabilizes the interaction between AEBP2 and
PRC2. The calculations presented here not only corroborate this, they also measure the
increment in the stabilization.

Taken together, this case shows that qXL-MS can be employed to compare the affinities
of two proteins for a third one and to asses affinity changes in the presence of another
subunit.

4.3 Discussion

Here I described a method to estimate constants of dissociation in protein interactions
using qXL-MS. To my knowledge, Maedler et al [56] carried out the only previous attempt
in this direction. The authors found that the amount of cross-linked complex correlates
with the binding affinity of protein interactions with Kds between 30 nM and 25 µM. For
cases above 25 µM, unspecific cross-linking between not real interactors may as well occur
[56]. Affinities in ranges lower than 30 nM were not investigated and Kd values could not
be estimated. The method proposed in this chapter corroborates the correlation of protein
complex amount and cross-links abundances, and moreover, it shows that the relation of
intra-/inter-protein cross-links can be used to estimate Kd values.

Is it correct to use intra- and inter-protein cross-links alone to estimate the amounts of
the free subunits and the complex? Would the incorporation of mono-links and loop-
links improve the analysis? The short answer to the latter question is no. The estimated
Kd values deviated considerably from the benchmarks when these types of links were
considered in the analysis. They increased by more than a factor of 10. Nonetheless,
I observed that their incorporation improved the fit of experimental intensities to the
expected changes in the concentration of the varying subunit. However, the deviation of
the ratio to the constant subunit with respect to the expected ratios increased. Moreover,
incorporating these type of links may be detrimental to the estimation of the amount of
complex, as it is impossible to decide whether a mono-link or loop-link that involves a
lysine site that was also observed in inter-protein cross-links occurred in the free-subunit
or in the complex species. In other words, it is apparently better to restraint the analysis
to the use of intra-/inter-protein cross-links for estimating the Kd and relative affinities.

How applicable is the method presented here? The kinetic equation for the complex model
used in the present study assumes that the 2 subunits (CNN1 and SPC24/25) associate at
a 1:1 stoichiometry, which is indeed the case as proven by X-ray structures (PDB: 4GEQ).
For complexes where the stoichiometry differs from this relation, the method should still
be applicable, because such cases should affect the number of identified inter-protein cross-
linked sites, but not their average intensity. Other advantages of the method are that the
reaction is performed in solution and thus steric effects do not pose limitations and no
additional tagging or labeling that could affect the affinity is performed on the protein
sequences. The method requires small sample amounts and is not limited by the size of
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the subunits. In principle, higher affinities could be measured as it has been shown that
mass spectrometers could measure analytes from the µM to the fM range. However, this
method cannot measure the forward and reverse kinetic constants, but only the relation of
them in the equilibrium state. Moreover, measurements do not occur in real time. Thus,
the method is limited by technical variabilities that could be introduced during digestion,
peptide clean-up or SEC/MS analysis. The method is also limited by the presence of
cross-linkable amino acids at or proximal to the interface. Therefore, experiments using
a variety of cross-linkers with different spacer lengths and reactive groups may boost the
applicability and performance of the method.

Taken together, I demonstrated the feasibility of determining Kds on dimeric/trimeric
complexes using qXL-MS data. Properly normalized inter-protein cross-link intensities
can facilitate the characterization of relative binding affinities or even the estimation of
absolute Kd values. Furthermore, the proposed approach provides a unique method for
following relative affinities of several binding interfaces in multimeric complexes simulta-
neously.

4.4 Materials and Methods

Expression and Protein Purification of SPC24/25 and the CNN1 peptide

For the expression of the budding yeast Spc24/25 complex in E. coli the respective genes
were amplified from genomic DNA and cloned into the pETDuet-1 vector (Novagen). Ex-
pression and purification of the Spc24/25 complex were performed as described previously
[46]. In brief, pDuet1-Spc24-6xHis/Spc25 was transformed into E. coli strain BL21 DE3
(EMD Millipore). Bacteria were grown to an OD600 of 0.6 at 37C and protein expression
was induced with 0.2 mM IPTG for 18 h at 18C. Cells were lysed in lysis buffer (30 mM
HEPES, pH 7.5, 300 mM NaCl, 5% glycerol, 30 mM imidazole, 5% glycerol, Complete
EDTA-free protease inhibitors [Roche]) and the cleared lysate was incubated with Ni-NTA
agarose beads (Qiagen). The protein complex was eluted with buffer containing 30 mM
HEPES (pH 7.5), 150 mM NaCl, 0.01% NP40, 2% glycerol and 250 mM imidazole. The
Spc24/25 complex was further purified on a Superdex 200 HiLoad 16/60 column (GE
Healthcare) applying 30 mM HEPES (pH 7.5), 150 mM NaCl and 5% glycerol as the
mobile phase.

For the CNN1 peptide, the respective nucleotide sequence was cloned into Insect cells.
Cells were lysed in buffer containing 30 mM HEPES (pH 7.5), 400 mM NaCl, 10% glycerol
and protease inhibitor cocktail (Roche) using a cell disruptor at 18000 psi. The complex
was purified on Ni-NTA resin (Qiagen) and eluted in 30 mM HEPES (pH 7.5), 150 mM
NaCl, 5% glycerol and 250 mM imidazole. The eluate was further purified on a Superdex
200 HiLoad 16/60 column (GE Healthcare) applying 30 mM HEPES (pH 7.5), 150 mM
NaCl and 5% glycerol as the mobile phase.
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Complex titration, chemical cross-linking and mass spectrometry

Purified in vitro reconstituted dimers and peptides were titrated in different molar ratios
and incubated for 45 min to allow complex formation. The SPC dimer concentration was
kept constant, while the CNN1 peptide concentration varied to fit the following molar
ratios: 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 4.0, and 4.5.
Subsequently, protein complexes were cross-linked by addition of an equimolar mixture of
isotopically light (hydrogen) and heavy (deuterium) labeled bis[sulfosuccinimidyl]suberate
(BS3, H12/D12) (Creative Molecules). BS3 was added at a final concentration of 2 fold the
total protein concentration and let react at 30C for 6 min. The crosslinking reaction was
quenched by adding ammonium bicarbonate to a final concentration of 100mM for 20 min
at 30C. Samples were then reduced with 5mM TCEP (Thermo Fisher Scientific) at 35C for
15min and alkylated with 10mM iodoacetamide (Sigma-Aldrich) at room temperature for
30 min in the dark. Proteins were digested with Lys-C (1:50 (w/w), Wako Pure Chemical
Industries) at 35C for 2 h, diluted with 50 mM ammonium bicarbonate to 1 M urea,
and digested with Trypsin (1:50 (w/w), Promega) overnight. Peptides were acidified with
trifluoroacetic acid (TFA) at a final concentration of 1% and purified by reversed phase
chromatography using C18 cartridges (Sep-Pak, Waters).

Cross-linked peptides were enriched by size exclusion chromatography on a Superdex Pep-
tide PC 3.2/30 column using water/acetonitrile/TFA (77.4/22.5/0.1, v/v/v) as mobile
phase at a flow rate of 50l/min. Fractions typically containing cross-linked peptides were
analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)
using a nano-HPLC and an LTQ-Orbitrap Elite instrument. A flow rate of 20 nl/min
at incremental gradients of buffer B from 3% to 98% was used. At each MS cycle, the
top 10 intense peptides with charges >2 were selected for fragmentation and MS2 scan,
with exclusion times of 30 s. MS1 spectra were acquired in the Orbitrap analyzer at 12K
resolution, and MS2 fragment scans at low resolution in the ion trap.

Identification of cross-linked spectra

Raw spectra were converted to mzXML format using MSConvert from the ProteoWiz-
ard suit tools and analyzed with xQuest/XProphet for the identification of cross-linked
peptides. Peptide spectrum matches were performed against a database containing the
subunits of the complex in question (i.e., SPC24, SPC25 and CNN1) and 22 E. coli decoy
sequences. A maximum of 2 trypsin missed cleavages was allowed, and peptide lengths
between 4 and 45 amino acids. Carbamidomethyl-Cys was set as a fixed modification and
a mass shift of 138.068 for intra-/inter-protein cross-link candidates with an additional
shift of 12.075321 to account for cross-links with the heavy version of BS3. A precur-
sor mass tolerance of -/+ 10 ppm was used and a tolerance of 0.2 and 0.3 Da for linear
and cross-linked fragment ions, respectively. The search was performed in the so-called
‘ion-tag’ mode. Identifications were filtered at the Xquest score threshold of 25; precursor
errors above 5.0 ppm were filtered out; a maximum of 0.95 delta score was allowed and
a minimum of 3 ions matches per peptide was imposed. Final identification tables were
downloaded as xtract.csv-formatted files from the xQuest/xProphet visualization tool.
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Quantification of cross-linked peptides

Quantification was performed with an in-house established workflow implemented in the
OpenMS software version 2.0 and described in the following lines. Identifications con-
tained in the xtract.csv files were converted to idXML format using our house script
xtractToIdXML.py. Files in the mzXML format were converted to mzML using the File-
Converter function with default parameters, except for the filter of MS2 scans and MS1
peaks with intensities <100.0. Peak features in the mzML files and their respective profile
chromatograms were extracted with an in-house modified version of the FeatureFinder-
AlgorithmPicked tool from OpenMS. Parameters fed to this tool are found in the file
‘ffc params.ini’. Detected features were then annotated with their putative peptide iden-
tifications in the idXML files using the IDMapper function with an m/z tolerance of 7
ppm and RT tolerance of 10 s. Retention times between runs were aligned using the Ma-
pAlignerIdentification function with default parameters. Finally, consensus tables were
generated using the FeatureLinkerUnlabeled function with default parameters and con-
verted to CSV format with the TextExporter function. The intensity of the quantified
peptide ions was summarized to protein-protein cross-linked sites using an in-house script.

Estimation of Kd

Protein-protein cross-linked sites intensities were loaded and analyzed in the statistical
environment R as described in the following lines. Technical replicates were averaged,
with non-assigned values being ignored in this step. The intensities of peptides seen in
>1 SEC fraction were summed up, and peptide-peptide cross-links were summarized to
protein site-site cross-links by addition of their intensities. The intensities of the subunit
whose concentration was constant in all titrations were used to normalize the intensities
between runs. Finally, a linear model was fitted between the initial concentrations of the
varying subunit and the intensities of its intra-protein cross-links. This linear relation was
used to predict the concentration of the complex from the median intensity of the inter-
protein cross-links. Subsequently, the constants of dissociation were calculated as in the
kinetic equation shown in the RESULTS section. The initial concentrations of the protein
subunits were recalculated based on the linear relation of Concentration and Intensity.
The estimated complex concentration was subtracted from the initial concentrations to
obtain the amount of the free subunits. For each titration, a Kd was calculated, and the
mean and standard deviation of these values was reported.

We also used a more common method to estimate the Kd, namely plotting the linear
relation of ‘fraction of SPC bound over concentration of free CNN1’ (y-axis) versus ‘fraction
of SPC bound’ (x-axis). In this approach, the Kd should equal the negative inverse of the
slope as well as the inverse of the intersection coefficient.

Relative affinities in the AEBP2-JARID2-PRC2 complex

Raw files from the relevant experiments were directly downloaded from the PRIDE repos-
itory with entry number PXD008605. Cross-links were identified with xQuest/xProphet
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with the same parameters specified in the authors publication. Quantification was per-
formed as explained above. Match between runs was applied whenever replicates were
available.

Intensities were summarized to protein-protein cross-linked sites, which were normalized
by either the median intensity of the final bait in order to control for the initial abundance
of AEBP2 or JARID2:106 or by the sum of both medians (in the case of the double pull-
down, where AEBP2 and JARID2:119 have the same flag tag). The affinity for PRC2
was determined using either cross-links within and to PRC2 or cross-links within PRC2
or intra-protein cross-links within PRC2 (Figure 4.7 B) or, when applicable, using the
inter-protein crosslinks between AEBP2 and PRC2 (Figure 4.7 C). For this latter case,
the median intensity of AEBP2:x:PRC2 inter-protein crosslinks common across all samples
was also computed and indicated in Figure 4.7 C. This was done in order to discount for
conformational changes when both cofactors are bound to PRC2.



Conclusion and Outlook

In this doctoral work, I have developed bioinformatics tools and concepts for the molecular
characterization of protein complexes through mass spectrometry.

In the second chapter of my thesis, I presented compleXView, a tool for the integration and
interpretation of MS-based interactomics data. Previous works on the matter have already
combined AP-MS data with Gene Ontology information. My work improves on them by
automatizing their ideas into a software tool, which additionally incorporates, for the first
time, XL-MS and BioID data in its workflow. Not least, I showed in this chapter that
the integrated data is more powerful than any of its sources alone, as regards sensitivity
and specificity in the discovery of physical and functional protein associations. Useful
insights will be obtained with my tool from small and medium protein interaction studies
that use mass spectrometry. I anticipate that future bioinformatics tools will improve
by incorporating quantitative information of cross-links in network clustering algorithms,
and information from other knowledge databases besides Gene Ontology. All together,
this will lead to greater insights and accuracy on the elucidation of protein complexes in
PPI networks.

In the third chapter of my thesis, I presented a bioinformatics workflow for the prediction
of minimal binding domains in protein complexes. Previous work also used XL-MS data
for the same purpose. My approach improves on it by incorporating for the first time
quantitation of the cross-links in order to rank protein regions as potential candidates
for binding domains and to elucidate dispensable from indispensable regions. As proven,
my workflow will facilitate a more educated and data-driven design of deletion mutants in
protein interaction experiments. I anticipate that future improvements will automatize the
workflow into a software tool that employs a better machine-learning algorithm, which this
time will successfully combine the protein sequence-level information with the quantitated
cross-links. All together, this will lead to finer tools that predict hot spot residues within
the binding domains.

In the last chapter of my thesis, I presented a method for the estimation of protein binding
affinities through the quantification of inter-protein crosslinks. Previous efforts in this
direction could not achieve the calculation of Kds. The method proposed here did achieve
this in a trimeric complex. Future work will have to expand the capability of the method
to measure Kds in multimeric complexes. Moreover, I anticipate that quantitative XL-
MS will be highly useful in the characterization of post-translational modifications that
affect protein-binding affinities. Thus, future work in this line will allow the elucidation
on how protein subunits assemble collaboratively and dynamically into macromolecular
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structures.

Overall, the tools and concepts that were developed here will help the scientific community
in the molecular characterization of protein interactions. As a result of this and future
work, we will improve our understanding of protein complexes and their vital role in
biology and human diseases.



Appendices





Appendix A

Supplement to Chapter 2

A.1 Results

A.1.1 The Minichromosome Maintenance complex and interac-
tors

The Minichromosome Maintenance Complex (MCM) is a protein complex that cleaves
hydrogen bonds between DNA double strands to allow the replication of the genome.
The proposed physiologically active complex consists of six protein subunits, each with
DNA-helicase and ATPase activities. The current model that describes the assembly of
the pre-replication complex [118] proposes that two MCM hexamers are loaded sequen-
tially onto an origin of replication. In more detail, one copy of each subunit (from MCM2
to MCM7) assembles into a hexamer ring structure that binds an origin of replication,
through its interaction with the Origin Recognition Complex (ORC) and the CDC6 pro-
tein. Subsequently, a second MCM hexamer is loaded. In the overall process, CTD1 is
important to maintain the stability of each MCM ring and to load them. Eventually,
the two rings move in opposite directions, separating the DNA strands along their ways.
MCM2-7 proteins have high sequence similarity, but are all and each indispensable for
growth and DNA replication. Thus, they are associated with a number of cancer types
[70]. The observation of other n-mer MCM complexes and the existence of other MCM
proteins (i.e., MCM8 to 10), suggest that these proteins may be involved in other cellular
processes. Therefore, studying the interactome of MCM proteins is highly relevant.

To that aim I integrated 3 interactomics data sets from BioID, AP-MS and XL-MS experi-
ments. This data is publicly available at PRIDE under the accession numbers PXD004089
and PXD002987, respectively, where MCM proteins were used as baits. The data shows
the implication of MCM proteins in DNA repair and putative involvements in ribosome
biogenesis and splicing processes. The integrative approach revealed the protein com-
plexes involved in this network. Because the AP-MS abundance measurements were not
suitable for quantification, only the protein identifications were used as an inclusion filter
for the identifications in the BioID data set. The BioID data has good quantification
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measurements, but contains proteins that are clear false positives (even though their high
enrichment respect to the negative control and their high abundance respect to the baits).
For example, two of the most highly abundant proteins were LIAS (involved in lipoyl
modification of proteins) and ABCAD (involved in transmembrane transport of lipids).
Their functionality is clearly out of relation with MCM proteins. Using this filtering, false
interactors enriched simply due to physical proximity to the BirA*-bait will be discarded.
To still account for transient/weak interactions with nuclear proteins, any BioID-labeled
protein with nuclear localization was not excluded.

A note aside: In the rest of this section, when no citation is provided then the information
was retrieved from the UniProt or DAVID databases.

Interactors of the MCM2-7 proteins

In total 154 MCM2 putative interactors were identified. Proteins involved in mRNA pro-
cessing, particularly splicing (41 and 35) were the most enriched. The next category was
rRNA processing (29), overlapping with 17 proteins involved in ribosome biogenesis. The
next group was DNA replication proteins, which included (apart from the 6 MCM compo-
nents) 7 proteins: replication factor protein RFC1, origin recognition protein ORC2, and
the proteins FANCJ, MRE11, NASP, SP16H and SSRP1. There were 10 helicases in the
MCM2 interactome apart from the MCM proteins: the DNA-helicases RUVB2, SMCA5
and FANCJ, as well as the RNA-helicases DDX27/42/46, DHX15, DX39B, IF4A3 and
U520. Transcription regulators were also enriched (12, that included the negative elon-
gation factors NELF proteins). Finally, there were 9 proteins involved in DNA damage
and repair. Leaving the MCM aside, the 5 most abundant proteins were histone vari-
ants H2AW/Y, HNRPF (involved in mRNA processing), CBX3 (part of heterochromatin-
like complexes) and SSRP1 (component of the FACT complex, which reorganizes nucleo-
somes).

In total 158 MCM3 putative interactors were identified. Proteins involved in mRNA
processing, particularly splicing (34 and 28) were the most enriched. They were followed
by proteins involved in DNA replication (24). There were 17 helicases: the 6 MCM
proteins, 5 more DNA-helicases (RUVB1/2, FANCJ, SMCA5 and CHD4) and 6 RNA-
helicases (DDX10/42/46, DHX15, IF4A3 and U520). There were 14 proteins involved in
DNA damage and repair, and 14 in DNA replication. This latter group contained MCM
proteins, DNA polymerases DPOD1/2 and DPOLA, replication factors RFC1/3/4/5 and
protein FEN1. There were 42 transcription regulatory proteins (18 of them repressors);
7 proteins involved in ribosome biogenesis and 7 in mismatch repair. Leaving the MCM
aside, the 5 most abundant proteins were the general transcription co-activator TCP4,
DPOLA, RL27A, PCNP (putative cell cycle regulator), and LRWD1/PARP3 (the first
a stabilizer of the ORC; and the second poly ADP-ribose polymerase involved in base
excision repair).

In total 120 MCM4 putative interactors were identified. The most enriched category was
DNA replication with 22 proteins. Besides the 6 MCM helicases, there were 4 DNA heli-
cases (RUVB1/2, FANCJ, and CHD4) and 4 RNA helicases (DDX10/42/46 and MTREX).
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The next category was for proteins involved in mRNA processing and splicing (24 and 19),
followed by proteins involved in DNA damage and repair (15). There were 32 transcrip-
tion regulatory proteins (15 of them repressors). Leaving the MCM aside, the 5 most
abundant proteins were TADBP (a DNA-/RNA-binding protein that regulates transcrip-
tion and splicing), ORC3, NASP (DNA replication protein), WDR46 (component of the
nucleolar structure) and AQR (component of the spliceosome).

In total 164 MCM5 putative interactors were detected. The most enriched category was
for proteins involved in mRNA processing and splicing (36 and 33), followed by DNA
replication (28). There were 22 rRNA processing proteins overlapping with 13 proteins
involved in ribosome biogenesis. Apart from the MCM, there were 11 helicases: 5 DNA-
helicases (RUVB1/2, SMCA5, FANCJ, and CHD4) and 6 RNA-helicases (DDX27/42/46,
IF4A3, MTREX and U520). There were 17 proteins involved in DNA damage and repair;
8 proteins involved in mRNA export from the nucleus and 36 involved in transcription
regulation. Leaving the MCM aside, the 6 most abundant proteins were the transcrip-
tion initiation factor TF2AA, followed by PARP3, ORC2/3, LRWD1, TCP4, and T2EA
(transcription factor the recruits the initiation complex).

In total 181 MCM6 putative interactors were detected. The most enriched category was
mRNA processing and splicing (35 and 31), followed by 30 rRNA processing proteins
overlapping with 14 ribosome biogenesis proteins, and then DNA replication with 20 pro-
teins. There were 13 helicases beside the MCM: G3BP1, 3 DNA helicases (RUVB1/2 and
CHD4) and 9 RNA helicases. There were 43 transcription regulators (22 repressors) and 12
proteins involved in DNA damage and repair. Leaving the MCM aside, the 6 most abun-
dant proteins were the ribosomal proteins RS28 and RL27A, MCMBP, H2AY, HNRH1
(heterogeneous nuclear ribonucleoprotein involved in splicing) and PPIA (isomerase that
accelerates the folding of proteins).

For MCM7 the least number of interactors were detected: 70. The most enriched category
was DNA replication with 10 members (MCM proteins, ORC2/3/5 and DPOD3). There
were 6 helicases besides the MCM complex: G3BP1, RUVB1 and the RNA helicases
DDX27/46/47 and DX39B. There were 7 proteins involved in protein folding; 9 in mRNA
processing and 8 in splicing. Leaving the MCM aside, the 5 most abundant proteins were
TADBP, HS90B (a chaperone), PPIA, STMN1 (destabilizes microtubules and prevents
their assembly) and TCPZ (chaperone).

What is the stoichiometry of the MCM subunits in the data? As explained before, the
MCM holocomplex is a hetero-hexamer with equal ratios of the MCM2-7 proteins. How-
ever, one can observe 2 MCM subcomplexes in the data, with more stability than the
holocomplex (Figure A.1). These subcomplexes are apparently formed by subunits 2, 4, 6
and 7 on the one hand, and 3 and 5 on the other. Why are the MCM protein abundances
different? Is the tag on the N or C-terminus of the protein affecting the assembly or
stability of the hexamer? Cdt1 acts as a chaperone that stabilizes the hexameric ring by
interacting with the N-termini of MCM2, 4 and 6 [118]. However, Cdt1 was not detected
in any of the purifications. The interaction of Cdt1 with the hexamer might be prevented
if the exogenous constructs have birA* tagged to the N-termini of the MCM proteins. The
original publication of this data set does not report any information about the location
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(down in MCM2), SMC3 (down in MCM2), SP16H (down in MCM2; up in MCM3). SFPQ
is a splicing factor; in association with NONO may be involved in DNA non-homologous
end joining after dsDNA break repair. BRD4 isoform B is a chromatin insulator of DNA
damage response; i.e., it inhibits the response signaling by recruiting condensing-2 com-
plex to DNA regions rich in acetylated histones. MSH2 is a component of the mismatch
repair system, which binds to mismatches and initiates DNA repair. CDK9 in association
with cyclin-K prevents DNA damage, while isoform 2 in interaction with Ku70/XRCC6
may have a role in DNA repair. SSRP1 is a component of the FACT complex, which
reorganizes nucleosomes during DNA replication and repair. SMC1A is involved in chro-
mosome cohesion and is involved in DNA repair via its interaction with BRCA1. RIF1 is
a telomere-associated protein that regulates TP53BP1, which is a positive regulator and
key for dsDNA repair. UBP7 is recruited to DNA damage sites to promote the deubiqui-
tination of ERCC6, a protein positively involved in the transcription-coupled nucleotide
excision repair. CDC5L is a DNA-binding protein that is required for the efficient expres-
sion and splicing of genes involved in DNA damage response [65]. SYF1 is involved in
the transcription-coupled repair of DNA. BAZ1B is a kinase that phosphorylates H2AX
at Y142, which is central for DNA repair. SMC3 is a component of cohesin. Cohesion
presumably prevents DNA repair by impairing the use of strands as templates for repair
[68]. SP16H is also a component of the FACT complex, which promotes the dissociation
of nucleosomes and their subsequent reestablishment. Taken together, it seems that pro-
teins that promote DNA repair interact more with MCM3 and MCM5 after the damage
induced by etoposide, but less with MCM7, while MCM2 interacts less with both positive
and negative effectors of DNA repair.

During the functional analysis it was observed that proteins associated with telomere,
heterochromatin and remodelers were mildly enriched. The blot plots of these proteins
showed that the abundance of 9 of them change after treatment: H2AY (down in MCM2;
up in MCM3; down in MCM5; up in MCM6), H2AW (down in MCM2; down in MCM5; up
in MCM6), SMCA5 (down in MCM2), CBX1 (down in MCM2), CBX3 (down in MCM2;
up in MCM3; up in MCM6), DEK (down in MCM3; down in MCM7) and BRD4 (down in
MCM5). Histone variants H2AY/W are proper of heterochromatic nucleosomes. SMCA5
is an essential component of the nucleolar-remodeling complex that leads to the formation
of heterochromatin. CBX1 is a usual component of heterochromatin. CBX3 seems to
be part of heterochromatin-like complexes, and can also recruit NIPBL to DMA damage
sites; NIPBL has a role in cohesin loading to these sites. DEK changes the topology of
DNA by inserting positive supercoils. Taken into account the DNA damage context after
treatment, it seems logical that the chromatin should be in a more open state to allow
repair. Strikingly, heterochromatic proteins interact more with MCM3 and MCM6 after
treatment, but less with MCM2 and MCM5.

What is the effect of etoposide on the other biological processes that were enriched across
the pull-downs? Blot plots showed that mRNA processing proteins tend to interact less
with MCM2 after treatment; more with MCM3; no change with MCM4; less with MCM5;
more with MCM6; and mildly less with MCM7. Regarding rRNA processing and ribo-
some biogenesis proteins, they tend to interact less with MCM2 after treatment; no change
with MCM3; no change in MCM4; less with MCM5; mildly more with MCM6; and both
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ways with MCM7. On the other hand, DNA replication is apparently not affected by
the treatment. Regarding transcription regulation proteins, their interaction with MCM2
decreases; with MCM3, 3 interactions change up and 3 down; with MCM4, only 2 interac-
tions change up; with MCM5, 5 increase and 1 decreases; with MCM6, 4 proteins increase
interaction; with MCM7, 6 change up and 3 down.

Detection of protein complexes in the MCM network

The use of correlation of abundances combined with GO similarities and XL-MS infor-
mation, revealed a number of complexes in the MCM network related with DNA replica-
tion and repair (Figure A.2). The MCM subcomplex MCM2/4/6/7 is validated by the
cross-linking data, and its interaction with MCMBP is revealed (Cluster C1). Moreover,
the subcomplex interacts via MCM7 with a group of RNA helicases (Cluster C2) and
the DNA-helicases RUVB1 and 2 (Cluster C3). The MCM3/5 subcomplex interacts with
ORC3 and 5, and with 2 DNA-polymerases involved in repair: FANCJ and SMCA5 (Clus-
ter C4). RBBP7, which is also in the cluster, is a protein required for the reorganization
of chromatin after replication. Replication factors (RFC proteins) cluster with DNA poly-
merase delta subunits and CTF18 (Cluster C5). CTF18 is known to form a complex with
RFC proteins that binds to ssDNA to load the proliferating cell nuclear antigen-sliding
clamp, which in turn is important for the recruitment of DNA polymerases during repli-
cation and repair. The origin of recognition protein ORC1 clusters with the kinase CDC7
(which regulates DNA replication by phosphorylation) and with the mismatch repair pro-
tein MLH1 (Cluster C6). The structural maintenance of chromosomes proteins SMC1A
and SMC3 also formed a cluster (C7); both proteins are required for cohesion of sister
chromatids. Cohesion is coupled to DNA replication and is involved in DNA repair. In the
cluster formed by HNRPK and MEF2D (Cluster C8), HNRPK is both a coactivator and
corepressor of p53 response to DNA damage, while MEF2D is a transcriptional activator
that decreases etoposide-induced damage [8]. The proteins SP16H and SSRP1, both com-
ponents of the FACT complex (which reorganizes chromatin to regulate processes such
as transcription elongation and DNA replication and repair), cluster with Z280C, whose
function is unknown, but might be a transcription factor (Cluster C9).

Complexes whose members are involved in rRNA processing and ribosome biogenesis are
also detected. The PeBow complex (PESC and WDR12) associates with SFBP1 (Cluster
C10); the three proteins are required for the maturation and processing of rRNA. Another
cluster of rRNA processing proteins is formed by IMP3/4, NH2L1, UT14A and WDR3
(Cluster C11). Aside, WDR43 and UTP15, both involved in ribosome biogenesis, also form
a group (C12). Similarly, another set of this kind of proteins cluster with PCID2, which is
a component of the TREX2 complex, responsible for the export of ribonucleoproteins from
the nucleus (Cluster C13). The rRNA processing proteins in this cluster include EBP2,
DCA13, RRP9, TBL3 and UTP11; while the ribosome biogenesis proteins include HEAT1,
NOL11, NOP2 andWDR74. Another cluster is formed by the ribosome biogenesis proteins
BMS1 and NOG1 together with the splicing protein U5S1 (Cluster C14). Two components
of the cleavage and poly-adenylation specificity factor (proteins CPSF1 and FIP1) cluster
with WDR46, which is involved in rRNA processing (Cluster C15). Another cluster is
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involved in splicing of mRNAs (Cluster 22). The splicing factors SFPQ and NONO, whose
interaction is known to be essential for mRNA splicing formed their own group (C23). And
two components of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes do
the same: proteins HNRPF and HNRH1 (Cluster 24). hnRNP complexes are required
for the processing and maturation of pre-mRNAs to become translatable; this includes
regulation of alternative splicing events.

Other complexes in the network include heterochormatin related complexes. Histones
H2AW and H2AY, proper of heterochromatic nucleosomes, formed their own group (C25).
Histones deacetylases 1 and 2 do the same (Cluster C26). And also the heat shock proteins
90A and 90B, which constitute a group of chaperones for histone deacetylases and DNA
methyltransferases (Cluster C27). The chromobox protein homologs CBX1 and 3 also form
their own cluster (Cluster C28). These proteins are involved in transcription silencing via
the formation of heterochromatin-like complexes.

Additional clusters include, the amino acid t-RNA ligases SYK and SYTC (Cluster C29),
and the peroxiredoxin proteins PRDX1 and 6 (Cluster C30). The group formed by BUD31,
FUBP1, KAISO, S30BP and TCRG1 represent a cluster of transcription regulators and
factors (Cluster C31). Nucleoporins TPR and NUP62 also group (C32), and so do riboso-
mal proteins RL8, RL27A, RL35A and RS28 (Cluster C33). The 26S proteasome complex
is partially revealed by the cluster formed by PRS8, PSMD6 and PSME3 (Cluster C34).
And so is the TRiC complex, revealed here by 3 TCP proteins (Cluster C35).

Other clusters include proteins of unknown function. For example, PRP4 and RBM27 are
two RNA binding proteins that form a group (C36). While the former is a component
of the splicesome, the function of the latter is unknown. Similarly, THOC2 and FA50A
cluster together (C37). While THOC2 is a component of the TREX complex (which is
responsible for the translocation of spliced mRNAs to the cytoplasm), FA50A is a putative
DNA binding protein of unknown function.

Some clusters have subgroups with apparently unrelated (or not closely related) functions.
For example, the cluster formed by ANLN, NUDC, PUF60 and TAGL2 (Cluster C38)
is a group of cadherin binding proteins, but each with different biological roles. Splicing
factors SF3B1 and SF3B3 group with ribosome biogenesis proteins WDR36/75 and BRX1,
as well as with the transcription regulators BCLF1 and TDIF2 (Cluster 39). The cluster
formed by the negative factors of transcription elongation (NELF proteins) with TOX4 and
SNUT1 seems also to be false (Cluster 40). TOX4 is a component of a phosphatase complex
that regulates chromatin structure and cell cycle progression, whereas SNUT1 is involved
in mRNA splicing. Similarly, the cluster formed by PA2G4, ILF2 and MKI67 seems to be
a false positive as their members have not similar functional relations (Cluster 41). PA2G4
is a co-repressor of transcription, particularly of E2F1-regulated genes. It also associates
with rRNA and is thought to be involved in rRNA processing. ILF2, together with ILF3
(not in the network), is a transcription regulator of the gene interleukin 2, which is required
for T-cell proliferation. KI67, however, is a protein that acts as a chromosome surfactant
preventing their agglomeration into a single chromatin mass. Finally, cluster C42 formed
by the negative transcription factor NELFE and the positive transcription factors T2AG,
T2EB, TF2AA and T2EA, contains the functionally unrelated proteins CRNL1 (involved
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in splicing), ELYS (required for nucleopore assembly) and CHAP1 (required for proper
chromosome alignment during metaphase and to maintain the attachment of the mitotic
spindle to the kinetochore).

The unclustered proteins in the network comprised 24 proteins involved in transcription
regulation, 23 proteins involved in mRNA processing (18 of them involved in mRNA
splicing), followed by 13 proteins involved in DNA damage and repair, 7 in DNA replication
and 5 in rRNA processing and ribosome biogenesis.

Taken together, the combination of abundance correlations with GO similarities and cross-
linking data provides context and validation to the complexes observed in the network and
facilitates the biological interpretation of the data.
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ABSTRACT

The molecular understanding of cellular processes

requires the identification and characterization of

the involved protein complexes. Affinity-purification

and mass spectrometric analysis (AP–MS) are per-

formed on a routine basis to detect proteins as-

sembled in complexes. In particular, protein abun-

dances obtained by quantitative mass spectrometry

and direct protein contacts detected by crosslink-

ing and mass spectrometry (XL–MS) provide com-

plementary datasets for revealing the composition,

topology and interactions of modules in a protein

network. Here, we aim to combine quantitative and

connectivity information by a webserver tool in order

to infer protein complexes. In a first step, modeling

protein abundances and functional annotations from

Gene Ontology (GO) results in a network which, in

a second step, is integrated with connectivity data

from XL–MS analysis in order to complement and

validate the protein complexes in the network. The

output of our integrative approach is a quantitative

protein interaction map which is supplemented with

topological information of the detected protein com-

plexes. compleXView is built up by two indepen-

dent modules which are dedicated to the analysis

of label-free AP–MS data and to the visualization of

the detected complexes in a network together with

crosslink-derived distance restraints. compleXView
is available to all users without login requirements at

http://xvis.genzentrum.lmu.de/compleXView.

INTRODUCTION

Proteins interact and build up complexes in order to execute
their function rather than acting as individual proteins. The
assembly of complexes is a dynamic and highly regulated
process which ensures that the protein function is exerted
at the proper cellular localization and time. Thus, elucidat-

ing the molecular mechanisms of cellular processes requires
the biochemical analysis of the involved proteins and their
interactions in a signaling pathway.
Affinity purification coupled to mass spectrometry (AP–

MS) is a widely used technique to detect protein interac-
tions in biological samples. The identified interactors of a
certain bait protein are called preys and their abundances
are obtained from the respective peptide intensities by mass
spectrometry. In addition, recent efforts have combined
chemical crosslinking and mass spectrometry (XL–MS) for
the identification of proteins which directly contact each
other or are in close proximity within a complex and thus,
crosslinks provide topological information. In most cases,
XL–MS studies apply amine reactive crosslinking agents
to covalently link lysine residues and dedicated software to
identify the crosslinked lysines from fragment ion spectra
(1, 2).

Affinity-purifications of protein complexes are usually
contaminated with unspecific proteins depending on the
purification protocol, affinity-tag or cell line. To separate
contaminants from interacting proteins is crucial for de-
termining the protein complex composition. Negative con-
trol samples are used together with statistical methods to
filter out spurious interactions. A frequently used method
is SAINT (significance analysis of interactome) (3), which
models the abundances of protein identifications in the neg-
ative and positive samples into a mixture probability distri-
bution that calculates the odds of an interaction being true
rather than false. Additional software programs like MiST
(mass spectrometry interaction statistics) (4) and comp-
PASS (comparative proteomic analysis software suite) (5),
measure the abundance, reproducibility and specificity of
the identification, and combine those into a probability
score of interaction. In all three methods, scores above cer-
tain thresholds indicate the prey as an interactor of the bait
and represent the bait–prey interactions in a table depicting
the abundance values of the preys.
There are two different approaches for modeling network

topology in the population of interactions: the Spokemodel
and the Matrix model (6). The Spoke model displays a net-
work as a wheel-like arrangement of baits connected to
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multiple preys through spokes lacking connectivity between
proteins. Thus, no higher-order structures and very few pro-
tein clusters are observed in this kind of network. In con-
trast, in theMatrix model the input data is first transformed
in order to infer interactions between preys, which results in
a network with higher-order structures and protein clusters.
However, the number of false interactions is proportionally
amplified to the size of the dataset.
Approaches for inferring prey–prey interactions include

profile correlation, socio-affinity index (7) and hypergeo-
metric probabilities (8). The profile correlation method as-
sumes that protein complexes are regulated and perturbed
as a single entity where changes in subunit abundances will
change others accordingly. Thus, high correlation in the
co-variation of abundances across the different purifica-
tions is expected. In the second method, the socio-affinity
index measures the number of times two proteins appear
in the same purification relative to their frequency in the
whole dataset. Other methods rely on machine learning al-
gorithms and require large datasets, bona-fide complexes
for training, and the derivation of loose explanatory vari-
ables based on measures of abundance, co-purification, and
reproducibility (9).

The majority of protein interaction studies includes less
than a few tens of baits turning abundance profile correla-
tions into the most appropriate method for the identifica-
tion of prey–prey interactions as other approaches are tai-
lored to cope with hundreds of baits (7–9).

Subsequent to calculating a measure of interaction
strength, proteins are displayed in a network and clustered
by different algorithms in order to infer protein complexes
and submodules. Clustering algorithms either use prop-
erties inherent to the network or introduce prior knowl-
edge into their models. Algorithms such as force-layout,
Markov Clustering (MCL) (10) and Molecular Complex
Detection (MCODE) (11) belong to the first category and
apply the calculated interaction strengths and local con-
nectivity within the network to group proteins into clus-
ters. Algorithms such as CORE (12) and WCOACH (13)
belong to the second category, which either adhere to the
protein-complex-organization model (7) or use Gene On-
tology (GO) functional annotations to weight the member-
ship of a protein in a cluster.
Here, we introduce compleXView a webserver that cal-

culates measures of abundance, reproducibility and speci-
ficity derived fromAP–MS experiments to discriminate true
from false bait–prey interactions. Prey–prey interactions
are predicted and quantified based on the profile correla-
tion method and these values together with GO functional
similarities are supplied to an MCL algorithm. The web-
server integrates crosslink data to complement and validate
the predicted interactions and to provide connectivity infor-
mation within and between complexes in a network. com-
pleXView is an extension of the previously described xVis
webserver (14) and facilitates the generation of protein in-
teraction tables at every step and visualizes the network of
protein complexes as interactive maps.

MATERIALS AND METHODS

Datasets

Two datasets from previous studies were analyzed, each in-
clude label-free quantification of protein abundances and
the identification of chemical crosslinks by mass spectro-
metric analyses.
The first dataset (15) comprises affinity-purifications of

14 different bait proteins of the protein phosphatase 2A
(PP2A) network, including: PP2A catalytic subunit alpha
(PP2AA), PP2A catalytic subunit beta (PP2AB), PP2A
regulatory subunit A beta (2AAB), PP2A regulatory sub-
unit B alpha (2ABA), PP2A regulatory subunit B gamma
(2ABG), PP2A regulatory subunit delta (2A5D), PP2A
regulatory subunit epsilon (2A5E), PP2A regulatory sub-
unit gamma (2A5G), protein phosphatase 4 catalytic sub-
unit (PP4C), Immunoglobulin-binding protein 1 (IGBP1),
Shugoshin-like 1 (SGOL1), CTTNBP2 N-terminal-like
protein (CT2NL), Striatin-interacting protein 2 (FA40B or
STRP2) and FGFR1 oncogene partner (FR1OP).
The second dataset (16) includes five bait proteins of

distinct complexes which are associated with DNA in-
cluding: ribose-phosphate pyrophosphokinase 1 (PRPS1);
DNA replication licensing factor MCM6; structural main-
tenance of chromosomes protein 1A (SMC1A); structural
maintenance of chromosomes protein 3 (SMC3); and X-ray
repair cross-complementing protein 6 (XRCC6).

Data analysis

In order to quantify peptide abundances in the PP2A
dataset raw files were analyzed with MaxQuant version 1.5
(17) at 1% FDR. For the second dataset (16) MaxQuant
tables were directly retrieved from their respective PRIDE
repository locations (PXD002987).
In order to identify and quantify putative interactors

of the bait proteins, raw peptide intensities obtained by
MaxQuant were analyzedwithin the statistical environment
R (18). Only unique peptides and proteins with a minimum
of two identified peptides were considered for quantifica-
tion. Median normalization between experiments was per-
formed at the peptide level. Normalized peptide intensi-
ties were averaged within replicates in order to obtain pro-
tein abundances. Protein identifications were required to
be present in at least two replicates of the respective bait.
For the PP2A dataset, a plausible set of contaminants was
downloaded from the CRAPome database version 1.1 (19),
applying the following filters: cell/tissue type, HEK293;
epitope tag, Strep-HA; subcellular fractionation, total cell
lysate; affinity approach, streptactin; fractionation, 1DLC–
MS; and instrument, LTQ-Orbitrap. Proteins observed in
six or more CRAPome datasets were considered as con-
taminants. Protein identifications present in this list were
filtered out as well as ribosomal proteins. Protein abun-
dances across the same bait purifications were averaged and
the significance of their fold-changes to the negative con-
trol was assessed by the Student’s t-test. Protein identifica-
tions were regarded as interactors if their enrichment to the
negative control was at least twofold and significant with a
Benjamini–Hochberg adjusted P-value of 0.05. The abun-
dance ratios to the respective bait were calculated and in-
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Figure 1. Workflow of the compleXView ‘Analysis’ module. (A) bait–prey interactions are determined upon enrichment over the negative control and their
relative abundance to the bait (PD, pull-down; CTR, control; FC, fold change). (B) Pairwise cosine correlations of prey abundance ratio profiles are used
to infer interactions between preys. Subunits of a complex are expected to exhibit similar relative abundances to the bait across different bait purifications.
Abundance correlations above a certain threshold value are selected for clustering the proteins into modules. (C) To eliminate spurious high correlations
between two proteins, GO functional similarities between preys are used to refine the protein–protein interactions identified in the previous step. Highly
correlated proteins with notably different molecular functions are scored lower. The combined score improves the resolution of the protein complexes in
the network. (D) Protein interactions are inferred from quantitative AP–MS data. The final analysis step integrates direct protein interactions detected
by XL–MS into the network and thereby, validates protein complexes and reveals inter-complex contacts. (E) Input (I1–I3) and output (O1–O4) tables
required and generated by the compleXView ‘Analysis’ module (top panel) and example layouts of the input files. Grey arrows indicate optional files.

teractors with ratios <2% were not included. As a result we
obtained a ‘Bait–Prey Interactions Table’ listing the puta-
tive bait–prey interactions with their respective abundance
ratios.
The bait–prey interaction tables were used as input to in-

fer prey–prey interactions. Pairwise cosine correlationswere
calculated using the prey-to-bait abundance ratios across
different bait purifications. Hence, this mathematical term
is referred to as abundance correlation. GO similarities
were calculated using the getGeneSim function from the
GOSim Bioconductor package (20) with the following pa-
rameters: similarity method, ‘dot’; normalization method,
‘sqrt’; and similarity term, ‘relevance’. UniProt accession
numbers were mapped to Entrez IDs using the UniProt
‘Retrieve/ID mapping’ tool (21) and only ‘Biological Pro-
cess’ and ’Molecular Function’ categories were used. Their
values were summarized by keeping the maximum of the
two per protein–protein pair. Abundance correlations were
combined with GO correlations by calculating the average
of their values. Minimum thresholds of 0.8, 0.6 and 0.65
were allowed for abundance, GO and combined correla-
tions, respectively. Proteins were clustered using the MCL
algorithm (8) on either the abundance correlations, GO cor-

relations or the combination of the two. Protein interactions
were considered as true, if (i) any of the proteins was a bait
and their correlation was above the respective threshold or
(ii) both proteins were preys in the same MCL cluster with
at least one showing a relative ratio to the bait >2%, and
their correlation value above the respective threshold or (iii)
at least one protein–protein contact was detected by XL–
MS. The results are summarized in three different tables
with interactions based on either abundance correlations,
GO correlations or the combination of both correlations.
These tables are annotated with the respective number of
protein–protein contacts detected by XL–MS.
Result tables from the crosslink experiments were di-

rectly retrieved from the PRIDE database. Intra-protein
crosslinks were filtered from the list whereas inter-protein
crosslinks were summarized to number of crosslinks per
protein–protein pair.

compleXView Analysis Module

compleXView offers two different modules, which oper-
ate independent of each other. One module is for the
analysis of AP–MS data and performs part of the analy-

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/n
a

r/a
rtic

le
-a

b
s
tra

c
t/4

5
/W

1
/W

2
7

6
/3

8
1

9
2

3
5

 b
y
 U

n
iv

e
rs

ita
ts

b
ib

lio
th

e
k
 M

u
n

c
h

e
n

 u
s
e

r o
n

 2
7

 J
a

n
u

a
ry

 2
0

1
9



Nucleic Acids Research, 2017, Vol. 45, Web Server issue W279

Figure 2. PP2A complexes inferred from bait–prey interactions and abundance correlations. (A) bait–prey interactions of the PP2A network. Minimum
relative abundance to the bait is 0.02 and the minimum enrichment over the negative control is 2.0. Proteins were grouped by a force-layout algorithm
using relative abundances as measure for interaction strength and their inverse values as node-node initial distances. (B) PP2A complexes detected based
on abundance correlations between preys. Correlation values >0.8 were considered as interactions. Proteins were clustered using the MCL algorithm,
arranged by a force-layout algorithm using correlation values as interaction strength and the inverse values for node-node initial distances. (C) Zoom-in
on complexes indicated in (B). Core subunits and interactors are depicted in black. Putative spurious interactions are shown in green.

sis workflow described in the previous section using pro-
tein abundances (Figure 1). Thus, the main input file for
the ’Analysis’ module is the ‘Purifications Table’ contain-
ing the protein abundances across all purifications. Its
first column must be named ‘Prey’ and contains the pro-
tein IDs of the co-purified proteins. The second and all
other columns must contain the abundances of the preys
in each of the purification experiments. These columns
have to be named according to the following format:
BaitID ReplicateNumber Condition. The name in the
‘BaitID’ field must match the format of the entries in the
‘Prey’ column and the bait itself has to be detected in the
respective purification. Negative controls must be named
‘NegCtr’ in this field. The ‘ReplicateNumber’ field contains
any number or code for the identification of technical or bi-
ological replicates (e.g. R1, R2, R3). The ‘Condition’ field
is optional and should be provided in cases where purifica-
tions of the same bait under different biological conditions
are compared.
compleXView requires abundance values like iBAQ or

other normalized intensities without log-transformation.
Median or quantile normalization between conditions is

optional. The basic output of the ‘Analysis’ module is the
‘Bait–Prey Interactions Table’ visualized as a spoke net-
work. Abundance correlations will only be computed if
the number of baits or conditions is >4. The output is a
protein–protein interaction table that we call the ‘Abun-
dance Correlations Table’.
In order to compute GO functional similarities between

proteins an optional input table with two columns must be
provided. The first column named ‘From’ contains the Pro-
tein IDs in the same format as in the ‘Prey’ column of the
‘Purifications Table’. The second column named ‘To’ con-
tains the respective UniProt Entrez ID of the protein. The
compleXView output is a protein–protein interaction table
called ‘GO Correlations Table’, where each row contains a
pair of preys and their corresponding GO similarity values.
For the implementation of inter-protein crosslinks an in-

put table of at least four columns with the following head-
ings is required: ‘Protein1’, ‘Protein2’, ‘AbsPos1’ and ‘Ab-
sPos2’. The IDs in the first two columns should have the
same format as the ‘Prey’ column in the ‘Purifications Ta-
ble’. The numbers in the ‘AbsPos’ columns indicate the po-
sitions of the crosslinked amino acid residues.
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Figure 3. PP2A complexes predicted based on GO functional similarities alone and in combination with abundance correlations. (A) PP2A complexes
inferred from GO similarities. Similarity values >0.6 were considered as interactions. Proteins were cluster using the MCL algorithm and arranged by
a force-layout algorithm as described in (2A). (B) PP2A network analysis by applying abundance correlations combined with GO functional similarities
between preys. Combined values >0.65 were considered as interactions. Proteins were clustered using the MCL algorithm and arranged by force-layout
algorithm using combined values as interaction strength and the inverse values for node-node initial distances. (C) Zoom-in on complexes detected in (A)
and (B).

The interactions in the output tables can be filtered ac-
cording to different parameters like fold-change and p-
value thresholds (see online Manual).

compleXView Visualization Module

The ‘Visualization’ module displays all bait–prey interac-
tion tables and correlation-based tables generated by the
‘Analysis’ module (Figure 1E). Both modules operate in-
dependently which facilitates visualization of output tables
generated by other programs, such as SAINT (3), MiST
(4) or compPASS (5). The input table must contain two
columns named ‘Bait’ and ‘Prey’ and optional columns to
represent quantitative information.
The ‘Visualization’ module generates two types of rep-

resentations the ‘Network’ and ‘Blot’ plots. The former

represents proteins as circular nodes and linear edges in-
dicate their interactions which are deduced from AP–MS
abundances or indicated by XL–MS restraints. The ‘Blot’
plot is designed as western blot diagram displaying protein
abundances across different bait purifications. ‘Blot’ plots
are generated by selecting the respective nodes in the net-
work and their quantitative interaction values determine
the band intensities.

RESULTS AND DISCUSSION

Workflow

compleXView comprises two independent modules: an
‘Analysis’ module and a ‘Visualization’ module. The work-
flow of the ‘Analysis’ module is schematically represented in
Figure 1. compleXView exploits the quantitative informa-

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/n
a

r/a
rtic

le
-a

b
s
tra

c
t/4

5
/W

1
/W

2
7

6
/3

8
1

9
2

3
5

 b
y
 U

n
iv

e
rs

ita
ts

b
ib

lio
th

e
k
 M

u
n

c
h

e
n

 u
s
e

r o
n

 2
7

 J
a

n
u

a
ry

 2
0

1
9



Nucleic Acids Research, 2017, Vol. 45, Web Server issue W281

Figure 4. compleXView analysis and visualization of the PP2Anetwork based on crosslink-derived protein connectivity in combinationwith abundance and
GO correlations. (A) Protein complexes in a PP2A network identified by inter-protein crosslinks. (B) Network of PP2A complexes based on the combination
of abundance correlations, GO functional similarities and crosslinks. Crosslink-derived restraints validate interactions within predicted complexes, reveal
inter-complex contacts and provide insights into the complex topology. Heat shock proteins and propionyl-CoA carboxylases detected in (A) did not pass
the threshold values applied in (B). (C) Zoom-in on predicted clusters in (B). Interactions predicted by abundance correlations are indicated as dotted lines
and interactions identified by crosslinks are depicted as solid lines.

tion of multiple AP–MS experiments as well as GO func-
tional annotations to infer protein complexes in protein in-
teraction studies. Furthermore, compleXView implements
XL–MS data to establish direct connectivity within or be-
tween the predicted complexes. The input data introduced
as ‘Purifications Table’ is used by the ‘Analysis’ module to
determine whether a detected protein is significantly en-
riched over the negative control and thus, considered as
true interactor. Furthermore, only interactors whose rel-
ative abundances to the bait are greater than a specified
threshold are considered (Figure 1A). The output is a ta-
ble which serves as input file for the ‘Visualization’ module.
The ‘Bait–Prey InteractionsMap’ derived from the quan-

titative AP–MS analysis of a limited number of baits do
not provide enough protein connectivity to infer complexes
in the network. compleXView overcomes this limitation by
inferring the relation between preys based on calculating
the correlation of their abundances profiles across different
bait preparations. Accordingly, compleXViewmoves from a
Spoke model of bait–prey interactions to a Matrix model
of prey–prey interactions where correlations of abundances
between all proteins are calculated. Abundance correla-
tions are computed using the cosine similarity formula as
schematically shown in Figure 1B. Although, abundance
correlations may be capable of clustering the whole net-
work into submodules and protein complexes, interactions

between unrelated proteins may remain. To eliminate these
incidents, compleXView retrieves GO functional terms and
computes the similarity of the GO trees for every pair of
proteins (Figure 1C). GO similarities are combined with
the abundance correlations in order to obtain a network
with higher resolution in terms of protein complex iden-
tification. Putative false interactions due to coincidentally
occurring high correlations are resolved by accounting GO
functional similarities. Low similarity values penalize cor-
relations and only highly correlated or highly functionally
similar protein–protein pairs remain.
The integration of direct protein connectivity informa-

tion from XL–MS experiments with correlated protein
abundances advances the approach, aids in inferring pro-
tein complex composition and provides additional topo-
logical information (Figure 1D). To integrate inter-protein
crosslinks into correlation-based protein networks, the user
has to provide a table listing the crosslinked amino acid po-
sitions between protein pairs. As demonstrated for the test
datasets, XL–MS data confirms interactions within com-
plexes and indicates contacts between them (Figures 1Dand
4C).
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Figure 5. compleXView analysis and visualization of chromatin-associated complexes (16) applying abundance correlations combined with GO functional
similarities and inter-protein crosslinks. (A) Zoom-in on the network solely based onGO similarities depicting only bait complexes. Co-purifying complexes
are shown in (C). (B) Inter-protein crosslink network. (C) Network of protein complexes detected by the combination of abundance correlations, GO
functional similarities and inter-protein crosslinks.

Analysis of AP–MS / XL–MS Datasets

We tested compleXView on two different datasets which
comprise AP–MS analyses and their respective XL–MS ex-
periments (see Materials and Methods).
The first dataset of a PP2A network was obtained from

purifications of PP2A core subunits, adapter and substrate
proteins (Figure 2). The ‘Bait–Prey Interactions Map’ de-
rived from data of the ‘Purifications Table’ depicts the co-
purifying proteins of 14 different baits (Figure 2A). To re-
veal protein complexes in the network, computing abun-
dance correlations between preys resulted in a network with
a higher degree of connectivity. Clustering the proteins by a
force-layout algorithm which applies the correlation values
as measures of interaction strength is able to infer submod-
ules and protein complexes in the network (Figure 2B). In
particular, TRiC (TCP-1 ring complex), the Integrator and
the STRIPAK complexes are discerned (Figure 2C) from
co-purifying proteins. Remaining proteins are associated in
large groups due to high random co-variation. Further clus-
tering of proteins based on their GO functional similarities
results in higher resolution of the indicated protein com-
plexes in the network (Figure 3A) and reveals additional
clusters and interactions (Figure 3B, C). Furthermore, com-

pleXView facilitates the interactivemanual inspection of pu-
tative interactions and protein clusters by providing links to
the UniProt database.
The TRiC complex is revealed subsequent to clustering

the proteins based on their abundance correlations (Fig-
ure 2C). Correlation values >0.9 are calculated between
core components of the complex: TCPA, TCPB, TCPD,
TCPE, TCPG, TCPH, TCPQ TCPW and TCPZ. In ad-
dition, known interactors of the TRiC core complex are
identified: the heterogeneous nuclear ribonucleoprotein H
(HNRH1), prefoldin subunit 2 (PFD2) and the PP2A reg-
ulatory subunit 2ABG. These interactions are annotated
in the BioGRID and Intact databases. The associated pro-
teins, SRTD4, IER2 and CDCA4, are putative interactors
with high correlations to the TRiC complex. Clustering the
network solely based on GO similarities only maintains the
core subunits of the TRiC complex in the same group (Fig-
ure 3C). The functional similarities of HNRH1, PFD2 and
2ABG to TRiC subunits are low and their low correlation
values are insufficient to keep them in the combined net-
work.
Similarly, the Integrator complex is delimited upon clus-

tering the proteins based on their abundance correlations.
Integrator core subunits form a group with other known
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interactors, such as the ankyrin repeat and LEM domain-
containing protein 2 (ANKL2), the PP2A regulatory sub-
unit 2AAA, the integrator subunit 6-like (DX26B), the
uncharacterized protein CG026, von Willebrand factor A
domain-containing protein 9 (CO044), SOSS complex sub-
units C and B1 and the cell cycle regulator Mat89Bb ho-
molog (Figure 2C). For the cluster members, RPB9, U2AF,
UBIQ and HEMH, no previous evidence for their associ-
ation with the Integrator complex has been reported. In-
terestingly, the Integrator complex was found to regulate
RNA polymerase II activity (22) indicating that RPB9 may
be directly associated with the Integrator complex and thus,
these interactions have to be further evaluated. Clustering
the network based onGO similaritiesmaintains the Integra-
tor core subunits in a group. However, many of the known
Integrator interactors mentioned above are eliminated from
the cluster. On the other hand, proteins, exclusively impli-
cated by GO similarities in binding the Integrator complex,
are possibly false interactors as their high GO similarity
scores result from very general ‘Molecular Process’ terms
(Figure 3C). Moreover, they lack previous evidence of in-
teraction with the Integrator in the BioGRID and Intact
databases and are removed from the cluster upon combin-
ing abundance correlations with GO similarities. The pres-
ence of LIPA1 and 2 in the cluster is due to its high corre-
lation with LIPA3 which is based on a general Molecular
Function similarity to Integrator subunits (Figure 3C).

Clustering based on abundance correlations also distin-
guishes the STRIPAK complex comprising kinases and
kinase-associated proteins such as MAP4K4, MST4 and
PDCD10 and proteins which interact with striatin like
dynein light chains (DYL1 and 2), the Mps one binder-
like protein (MOBL3) and the Cortactin-binding protein 2
(CTTB2) (Figure 2C). However, applying GO similarities
alone or in combination with abundance correlations re-
sults in loss of STRIPAK interacting proteins (Figure 3C)
Thus, correct clustering based on weaker abundance cor-
relations may be abrogated once combined with GO func-
tional similarities.
Regulatory subunits of protein phosphatase 4 (PP4) are

clustered by applying abundance correlations. However,
regulatory subunits of PP2A are dispersed in different
groups in the network (Figure 2C). Clustering solely based
onGO similarities groups all PP2A regulatory subunits into
a cluster and leaves some PP4 regulators outside (Figure
3C). In this case, the clustering with abundance correlations
and functional similarities splits the PP2A regulators into
subgroups and unifies PP4 regulators with its original clus-
ter.
Bait–prey and prey–prey interactions which are abun-

dant in the affinity-purifications are usually sufficiently cov-
ered by the XL–MS analysis detecting at least one crosslink
per interaction. Hence, the composition and topology of
the PP2A core complexes, TRiC and the STRIPAK com-
plex were revealed solely based on inter-protein crosslinks
(Figure 4A). Protein interactions below the detection limit
of XL–MS were inferred from AP–MS data revealing clus-
ters of phosphatase and proteasome regulators and inter-
actions of MAP4K4 and PDC10 with the STRIPAK com-
plex (Figure 4B). Thus, the integration and visualization
of AP–MS and XL–MS data through compleXView anal-

ysis complements the protein interactions of complexes in-
dicated by crosslink-derived restraints and validates inter-
actions inferred from abundance correlations (Figure 4C).
The second dataset analyzed by compleXView is com-

prised of five bait proteins with four of them assembled in
chromatin-associated complexes and one enzyme involved
in the nucleotide metabolic pathway (16). Clustering solely
based on abundance correlations did not resolve these pro-
tein complexes (data not shown). Indeed, clustering by GO
similarities alone was sufficient to groupmany subunits into
the respective complexes (Figure 5A). Importantly, only
the combination of both, abundance correlations and GO
functionalities, associated STAG3 and RD21L to the co-
hesin complex and PRPS2 to the phosphoribosyl pyrophos-
phate synthase complex (Figure 5C). Several other com-
plexes with relative abundances <10% of the bait, which
were not detected by XL–MS, were distinguished (Figure
5B and C).
compleXView offers interactive graphical features for the

manipulation and interpretation of the interaction maps. In
single-bait experiments users can color preys based on their
relative abundances and multiple purifications can be di-
rectly compared in a ‘Blot’ plot representation (see online
Manual for detailed description).
compleXView aims to provide an analysis tool for biol-

ogists to identify and interpret protein complexes in their
pull-down studies. In particular, the combination and visu-
alization of quantitative and connectivity data obtained by
mass spectrometry complements the standard maps of co-
purifying proteins with structural restraints between sub-
units and modules in the network.
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20. Fröhlich,H., Speer,N., Poustka,A. and Beissbarth,T. (2007)
GOSim–an R-package for computation of information theoretic GO
similarities between terms and gene products. BMC Bioinformatics, 8,
166.

21. The UniProt Consortium (2014) UniProt: a hub for protein
information. Nucleic Acids Res., 43, D204–D212.

22. Stadelmayer,B., Micas,G., Gamot,A., Martin,P., Malirat,N.,
Koval,S., Raffel,R., Sobhian,B., Severac,D., Rialle,S. et al. (2014)
Integrator complex regulates NELF-mediated RNA polymerase II
pause/release and processivity at coding genes. Nat. Commun., 5,
5531.

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/n
a

r/a
rtic

le
-a

b
s
tra

c
t/4

5
/W

1
/W

2
7

6
/3

8
1

9
2

3
5

 b
y
 U

n
iv

e
rs

ita
ts

b
ib

lio
th

e
k
 M

u
n

c
h

e
n

 u
s
e

r o
n

 2
7

 J
a

n
u

a
ry

 2
0

1
9



Bibliography

[1] Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J.,

Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B. T.,

Rout, M. P., and Sali, A. Determining the architectures of macromolecular
assemblies. Nature 450, November (2007), 683–694.

[2] Altschul, S. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Research 25, 17 (1997), 3389–3402.

[3] Azzarito, V., Long, K., Murphy, N. S., and Wilson, A. J. Inhibition
of α-helix-mediated protein-protein interactions using designed molecules. Nature
Chemistry 5, 3 (2013), 161–173.

[4] Bader, G. D., and Hogue, C. W. V. Analyzing yeast protein-protein interaction
data obtained from different sources. Nat Biotechnol 20, 10 (2002), 991–997.

[5] Bantscheff, M., Hopf, C., Savitski, M. M., Dittmann, A., Grandi, P.,

Michon, A. M., Schlegl, J., Abraham, Y., Becher, I., Bergamini, G.,
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[22] Fröhlich, H., Speer, N., Poustka, A., and Beissbarth, T. GOSim–an
R-package for computation of information theoretic GO similarities between terms
and gene products. BMC bioinformatics 8, 1 (2007), 166.

[23] Gao, M., Zhou, H., and Skolnick, J. Insights into disease-associated mutations
in the human proteome through protein structural analysis. Structure 23, 7 (2015),
1362–1369.

[24] Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch,

M., Rau, C., Jensen, L. J., Bastuck, S., Dümpelfeld, B., Edelmann, A.,
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