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Summary 

Chloroplasts consist of highly organized membranes with a double envelope and an inner 

stacked membranous system called thylakoids wherein photosynthesis takes place. The 

biogenesis of chloroplasts requires the expression of genes encoded in the nucleus and 

their product translated into proteins that have to be imported into the organelle, as well as 

from genes encoded in the chloroplast. In this way, organelles cannot form de novo but 

rather are generally maternally inherited and multiply by division.  

The biogenesis of chloroplasts starts from undifferentiated plastids lacking thylakoids. Upon 

light, differentiation is triggered in angiosperms, and thylakoids are built up progressively to 

form photosynthetic chloroplasts. In spite of what is known about the composition of the 

photosynthetic machinery, the making of the thylakoid components is not well understood 

and even less is known about the proteins involved in the differentiation from proplastids 

into chloroplasts. Here, we identify two proteins namely RV-1 and PG18, which loss of 

function in A. thaliana impact chloroplast biogenesis as well as function. RV-1 is a protein 

located in the stroma of the chloroplast which loss of function causes a seedling lethal 

phenotype with plants which form only albino cotyledons and leaves. Biochemical studies 

revealed that RV-1 partially comigrates with ribosomes but the exact function is still 

unknown. On the other hand, PG18 is a protein located in the plastoglobuli of chloroplasts 

and plays a role in thylakoid formation and function. The characterization of loss of function 

mutant plants reveals that it is important for the photosynthetic activity. Mutant plants are 

pale with a reduction of PSI subunits as well as the ATP synthase. Additionally, PG18 loss 

of function impacts the ultrastructure of chloroplasts by reducing their size, shortening the 

stroma lamellae and a higher grana stacking degree in the thylakoid membranes compared 

to wild type. 
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Zusammenfassung 

Chloroplasten bestehen aus hochorganisierten Membranen mit einer doppelten Hülle und 

einem inneren, gestapelten Membransystem, den Thylakoiden, an denen die 

Photosynthese stattfindet. Die Biogenese von Chloroplasten erfordert die Expression von 

Genen, welche direkt in den Plastiden kodiert sind. Darüberhinaus werden Proteine 

benötigt, deren Gene im Kern kodiert sind. Diese Proteine müssen post-translational in den 

Chloroplasten importiert werden. Daher können Organellen nicht de novo gebildet werden, 

sondern werden in der Regel mütterlich vererbt und durch Teilung vermehrt.  

Die Biogenese von Chloroplasten beginnt mit undifferenzierten Plastiden ohne Thylakoide, 

den sogenannten Proplastiden. Durch Licht wird in Angiospermen eine Differenzierung 

ausgelöst und die Thylakoide werden nach und nach zu photosynthetischen Einheiten 

aufgebaut. Trotz des Wissens über die Zusammensetzung der Photosynthesemaschine ist 

die Entstehung der Thylakoidkomponenten noch ungeklärt. Gleiches gilt für die Proteine, 

die an der Differenzierung von Proplastiden zu Chloroplasten beteiligt sind. Hier 

identifizieren wir zwei Proteine, nämlich RV-1 und PG18, deren Funktionsverluste bei A. 

thaliana sowohl die Chloroplastenbiogenese als auch die Funktion beeinflussen. RV-1 ist 

ein Protein, das sich im Stroma des Chloroplasten befindet, dessen Funktionsverlust einen 

keimlingsletalen Phänotyp verursacht, wobei die Pflanzen nur albinotische Kotyledonen 

und -blätter erzeugen. Biochemische Studien haben gezeigt, dass RV-1 teilweise mit 

Ribosomen komigriert, obwohl die genaue Funktion noch unbekannt ist. Auf der anderen 

Seite ist PG18 ein Protein, das sich in den Plastoglobuli der Chloroplasten befindet und 

eine Rolle bei der Bildung und Funktion von Thylakoiden spielt. Die Charakterisierung des 

Funktionsverlustes von Mutantenpflanzen zeigt, dass PG18 für die photosynthetische 

Aktivität wichtig ist. Mutantenpflanzen sind blass mit einer Reduktion von PSI-

Untereinheiten sowie der ATP-Synthase. Zudem beeinflusst der PG18-Funktionsverlust die 

Ultrastruktur von Chloroplasten, indem er deren Größe reduziert, die Stromalamellen 

verkürzt und einen höheren Grad von Granastapel in den Thylakoidmembranen im 

Vergleich zum Wildtyp aufweist. 
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Abbreviations 

 
ATP  Adenosine triphosphate 

BCA   Bicinchoninic acid 

BLAST  Basic local alignment search tool 

BN-PAGE  Blue native polyacrylamide gel electrophoresis 

BSA  Bovine serum albumin 

CDS  Coding sequence 

Col-0   Arabidopsis thaliana ecotype Columbia 

cpSEC  Chloroplast Secretory pathway 

cpTAT  Chloroplast Twin Arginine Translocase 

Cyt  Cytochrome  

DGDG Digalactosyl diacylglycerol 

DMF   Dimethyl formamide 

DNA  Deoxyribonucleic acid  
DTT   Dithiothreitol 

ECL   Enhanced chemiluminescence 

EDTA   Ethylene-diamine-tetra-acetic acid 

EGTA  Ethylene glycol bis (aminoethyl ether) -N, N, N ', N'-tetraacetic acid 

EMSA  Electrophoretic Mobility Shift Assay 

ETR   Electron Transfer Rate 

ER  Endoplasmic reticulum  

FBN  Fibrillin 

gDNA   Genomic DNA 

GFP   Green fluorescent protein 

GTP   Guanosine triphosphate 

H   Homozygous 

h  Heterozygous 

HEPES  2- (4- (2-hydroxyethyl) -1-piperazinyl) ethanesulfonic acid 

His tag  Hexa or deca histidine tag 

Hsp   Heat shock protein 
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IE  Inner envelope of the chloroplast 

IL  Increased light 

IPTG   Isopropyl-β-D-thiogalactopyranoside 

kDa   Kilodalton 

LDS  Lithium dodecyl sulfate 

LHC   Light harvesting complex 

MBP   Maltose binding protein 

MDGD  Mono galactosyl diacylglycerol 

MES  2- (N-Morpholino) ethanesulfonic acid 

MOPS  3- (N-Morpholino) propanesulfonic acid 

mRNA  Messenger RNA 

mt  Mutant 

NADPH  Nicotinamide adenine dinucleotide phosphate 

Ni-NTA  Nickel-nitrilotriacetic acid 

NL  Normal light 

NPQ   Non-photochemical quenching 

PAGE  Polyacrylamid gel electrophoresis 

PAM   Pulse Amplitude Modulation 

pb  Pair base 

PCR   Polymerase chain reaction 

PG  Platoglobuli 

PLBs   Prolamellar bodies 

PMSF  Phenylmethylsulfonyl fluoride 

PS   Photosystem 

PVDF   Polyvinylidene fluoride 

PVP   Polyvinylpyrrolidone 

RNA  Ribonucleic acid 

rRNA  Ribosomal RNA 

RT   Room temperature 

ROS   Reactive oxygen species 

RSH  RelA and SpoT homolog 
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OE  Outer envelope of the chloroplast 

SDS   Sodium dodecyl sulfate 

SGDG  Sulfoquinovosyl diacylglycerol 

SPP  Stromal processing peptidase 

T-DNA  Transferred DNA 

TCA  Trichloroacetic acid 

TBST  Tris-buffered saline and Polysorbate 20 

TEM   Transmission electron microscopy 

TIC   Translocase of the inner membrane of chloroplasts 

tRNA  Transfer RNA 

TOC   Translocase of the outer membrane of chloroplasts 

TP   Transit peptide 

TPP   Thylakoidal processing peptidase 

WT   Wildtype 

Y  Quantum yield of photosystem 

β-DM   β-dodecyl maltoside 
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1 Introduction 

1.1 Origin of plastids  
Life as we know it today is the result of successful adaptation and evolution 

throughout billions of years. In the beginning of this process, our planet had a toxic 

and warmer atmosphere deprived of oxygen with abundant greenhouse gases and 

dramatically different ocean chemistries (Kerr, 2005). In this scenario, life appeared 

3,5 billions of years ago as self-replicable organisms with the fundamental 

components such as RNAs, DNAs, amino acids, and membranes (Brasier et al., 

2015; Lake et al., 2018). Among all the components that were changing on early 

earth, one constant that shaped the rest of life’s story is the sun. About 2.5 billions 

of years ago emerged the first organism able to convert solar radiation into chemical 

energy and releasing oxygen to the atmosphere, a process called oxygenic 

photosynthesis (Shih, 2015). This event dramatically changed the earth’s fate by 

producing oxygen from water splitting and using its electrons to drive biosynthetic 

metabolism (De Marais, 2000). In order to do so, this photosynthetic ancestor had 

to develop systems of protein complexes to split water and transport electrons to 

oxidized acceptors (Cardona, 2018; Ponce-Toledo et al., 2017). It was not until 1.5 

billions of years ago when a heterotrophic protist engulfed an ancestral 

photosynthetic cyanobacterium marking the birth of modern plastids such as 

chloroplasts (de Vries & Archibald, 2017; Douzery et al., 2004).  

 

1.2 Protein targeting and import into the plastid 
The endosymbiotic event resulted in a massive transfer of genetic material to the 

host cell leading the cyanobacterial guest into a semiautonomous state (Stiller, 

2007). In spite of this, plastids retained their own genome, today encoding for just a 

small number of their proteins. Modern plastids contain between 2100 to 4800 

proteins, for which plastid genomes encode for between 60 to 200 proteins in various 

linages (Richly & Leister, 2004; Timmis et al., 2004). Ever since, plastids necessitate 

a system for trafficking of translated proteins encoded by nuclear genes through the 

organelle membranes which gave rise to the translocons of the outer and inner 
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envelope membrane of the modern chloroplast (TOC and TIC respectively) (Gross 

& Bhattacharya, 2009). The right sorting of proteins destined to the plastid and other 

organelles was accomplished by sequence information to facilitate their correct 

trafficking within the cell. Although in most cases this information resides in a 

cleavable N-terminal sequence the different organelle-targeting sequences have 

distinct properties (Kim & Hwang, 2013). The N-terminal sequences for chloroplast 

localization is highly heterologous and have a net positive charge due to lack of 

acidic residues (Schwenkert et al., 2011). 

The proteins encoded by nuclear genes that are localized to the plastid are 

translated in the cytosol and recognized at the surface of the organelle in order to 

proceed with their import. At this point, the pre-proteins are assisted by chaperones 

in the cytosol to prevent their aggregation (Schwenkert et al., 2011). Once the 

complex of pre-protein and chaperones reaches the plastid surface, the N-terminal 

transit peptide (TP) is recognized by members of the TOC apparatus. Its core 

components are Toc159, Toc34 and Toc75. Depending on the chaperones bound 

to the pre-protein, the TP makes first contact with either Toc34 or Toc159 receptors 

in a GTP depending manner (Demarsy et al., 2014; Hirsch et al., 1994; Kessler et 

al., 1994). Afterwards the import across the outer envelope continues through Toc75, 

which forms a β-barrel protein acting as a channel embedded in the membrane 

(Hinnah et al., 2002). Once the pre-protein passes across the outer envelope, it 

reaches the TIC apparatus composed of Tic110, Tic40 and Hsp93 as the minimal 

functional unit and Tic32, Tic55 and Tic62, which form the redox regulon. At the inner 

membrane, the first point of contact is assumed to be Tic110, which was identified 

decades ago (Schnell et al., 1994). This has been thought to be the major channel 

of the TIC apparatus (Balsera et al., 2009; Heins et al., 2002; Kovacheva et al., 

2005), however Tic20 has also been proposed as a channel at the inner envelope 

(Kikuchi et al., 2009; Kouranov et al., 1998). Tic40 and Hsp93 assist the import of 

the pre-protein through the inner envelope along with the consumption of ATP (Chou 

et al., 2006; Kovacheva et al., 2005). This process has been reported to be regulated 

by the NADP+/NADPH ratio in the interaction of Tic32 and Tic62 with Tic110 (Benz 

et al., 2009; Chigri et al., 2006). Additionally, Tic55 has been identified as a potential 
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thioredoxin target (Bartsch et al., 2008). Once the pre-protein crosses the inner and 

outer envelopes, its TP is cleaved off by the stromal processing peptidase (SPP) 

(Trosch & Jarvis, 2011) and the mature protein is folded with the assistance of Hsp70 

(Flores-Perez & Jarvis, 2013; Yalovsky et al., 1992).  

Imported proteins can still continue their transit to the thylakoid membranes or the 

lumen inside the thylakoids. These proteins bear a bipartite TP, wherein its first part 

is used for translocation across the envelopes and the second part guides the 

intermediate to thylakoids where it is processed by a thylakoidal processing 

peptidase (TPP) (Chaal et al., 1998; Schackleton & Robinson, 1991). Then the 

protein in transit can follow one of four pathways; for membrane proteins 

spontaneous insertion or the Signal Recognition Particle (SRP) dependent pathway, 

and for lumenal proteins the Secretory (cpSec) or the Twin Arginine Translocase 

(cpTat) pathways (Albiniak et al., 2012; Schunemann, 2007).  

 

1.3 Chloroplast biogenesis and maturation  
Plastids, while functionally and structurally distinct, are present in all plant cells. They 

originate from the differentiation of proplastids, requiring thylakoid membrane 

formation and protein synthesis (Barsan et al., 2012; Enami et al., 2011; Rottet et 

al., 2015). Proplastids are colorless round organelles deprived of internal 

membranes which in the presence of light undergo differentiation into chloroplasts 

in angiosperms by building up consecutive phases of internal membrane systems, a 

process during which often vesicles or small saccular structures have been observed 

(Muhlethaler, 1959; Vothknecht & Westhoff, 2001). However, in absence of light, 

plastids turn into etioplasts, which contain few internal membranes but a 

characteristic prolamellar body, rich in Mg-tetrapyrrole protochlorophyllide and 

NADPH dependent protochlorophyllide oxidoreductase (Sperling et al., 1998). Upon 

illumination, etioplasts can continue their differentiation into chloroplasts (Solymosi 

& Schoefs, 2010).  

Plastids are not synthetized de-novo but rather originate from division - similar to 

prokaryotes. Plastid division happens in developing tissues such as new leaves and 

meristems, i.e. chloroplasts as well as proplastids can undergo division 
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(Miyagishima, 2011). Depending on the tissue and developmental stage, proplastids 

differentiate into multiple organelles with distinct functions (Figure 1). Among these 

we find chromoplasts, which are non-photosynthetic carotenoid accumulating 

plastids abundant in flowers, fruits and roots (Egea et al., 2010). Alternatively, 

proplastids can differentiate into amyloplasts, located in root cells and specialized in 

starch accumulation. Recently, these plastids have been found to play an important 

role in gravitropism of roots (Toyota et al., 2013). Finally, proplastids can differentiate 

into chloroplast. Their maturation starts with the elongation of a first lamella, which 

ultimately forms stacks known as grana (Westphal et al., 2003). The specific steps 

that lead to the initial thylakoid formation are still unknown. Nevertheless the 

observation of vesicles in early stages of chloroplast maturation suggests that 

vesicle trafficking is involved in thylakoid biogenesis (Morre et al., 1991). Moreover, 

in some plants such as maize and sorghum vesicles have also been observed in 

fully mature chloroplasts (Rosado-Alberio et al., 1968).  

 

 

 
 

Figure 1. Proplastid differentiation fates. In absence of light, proplastids differentiate into etioplasts 

which then turn into chloroplasts upon light exposure. Additionally, proplastids can differentiate into 

amyloplast in tissues such as roots. Depending on the developmental stage, chloroplast can further 

differentiate into plastids rich in carotenoids known as chromoplast which are present in tissues such 

as fruits and flowers. Modified from Kato and Sakamoto (2010). 
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In addition to membrane re-modeling and protein import, chloroplast maturation 

requires the coordination of other processes happening inside the organelle such as 

transcription and translation. Plastid genes are highly regulated at RNA level by RNA 

splicing, editing and processing (Mullet, 1993; Suzuki et al., 2003). Besides, it has 

been shown that plastid rRNAs undergo multiple maturation steps for ribosome 

assembly by various nuclear encoded RNases. Chloroplast RNases have been 

shown to play a role also in the maturation of tRNAs and other transcripts as well as 

for RNA decay. The importance of these RNases has been confirmed by their 

deletions which often leads to lethal phenotypes (Stoppel & Meurer, 2012). Protein 

synthesis inside the chloroplast is performed by bacterial-type 70S ribosomes, 

composed of a large subunit (50S) and a small subunit (30S) containing one (16S 

rRNA) and three rRNAs species (23S rRNA, 5S rRNA, and 4.5S rRNA), respectively 

(Zoschke & Bock, 2018). Just recently, the structure of the chloroplast ribosome has 

been resolved which reveals plastid specific extensions remodeling the mRNA entry 

and exit sites (Bieri et al., 2017).  

 

1.4 Thylakoid biogenesis 
Thylakoids house the photosystems (PSs), wherein light energy is used to split water 

and use its electrons to produce NADPH and the chemical potential for ATP 

synthesis to fuel anabolic metabolism. These membranes are organized in two 

recognizable regions namely grana stacks and stroma lamellae (Figure 2). These 

are not just structurally different but also differ in their protein composition wherein 

PSII and the Cyt b6f complex are enriched in the grana stacks and PSI and the ATP 

synthase in the stroma lamellae (Danielsson et al., 2004; Dumas et al., 2016). The 

synthesis of these complexes is achieved by the coordinated expression of their 

respective nuclear and plastid encoded subunits. The proper assembly and 

stoichiometry of thylakoid complexes is ensured by a number of auxiliary assembly 

factor  such as in the case of the retrograde signaling regulation of nuclear encoded 

genes expression (Chan et al., 2016). The de novo synthesis of thylakoid complexes 

is highly dependent on the developmental stage of the tissue in higher plants 

(Roberts et al., 1987), with a half-life that can be up to one week for Cyt b6f complex 
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(Schottler et al., 2007). In contrast, the reaction center subunit D1 of PSII has the 

highest turnover ranging from once per day to once per hour due to its susceptibility 

to oxidative damage (Aro et al., 1993). In spite of the high turnover rate of D1, PSII 

is not synthesized de novo but rather disassembled by phosphorylation of its core 

proteins and light harvesting complexes (LHC) to facilitate the replacement of a 

newly synthesized D1 subunit (Tikkanen et al., 2008). The proper assembly of the 

thylakoid complexes is assisted by nuclear encoded assembly factors and while the 

majority of them are conserved in photosynthetic organisms the molecular 

mechanisms are not always identical (Chi et al., 2012).  

 

 

 
Figure 2. Thylakoid membrane organization. Schematic model of thylakoid membrane 

organization into their two major sections - grana stacks and stroma lamellae. Additionally, complexes 

involved in photosynthesis are represented according on their location on the thylakoid membrane. 

Modified from Voet et al. (2008). 

 

 

Although thylakoids are typical bilayer membranes with embedded protein 

complexes, the proportion of protein to lipid content is higher than in any other 

membrane with about 80% proteins (Kirchhoff, 2008). The lipid composition of 

thylakoids is very unique with the presence mainly of non-phosphorus lipids unlike 

most biological membranes. Thylakoid membranes are composed of mono- and 

digalactosyldiacylglycerols (MGDG and DGDG respectively) constituting about 53% 

and 27% of the lipids respectively. Other lipids present in the thylakoids are 



 12 

sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG), which are 

anionic lipids with a negative charge in their head groups (Kobayashi, 2016). The 

biosynthesis of thylakoid lipids takes place at the inner envelope where the MGDG 

synthase is located (Kobayashi et al., 2007), and also at the outer envelope where 

the DGDG synthase transfers a second galactose to MGDG (Froehlich et al., 2001). 

Since lipids cannot diffuse freely from one membrane to another without assistance, 

i.e. from the inner envelope to the thylakoid membranes, it has been theorized that 

chloroplast could use vesicle trafficking to mobilize lipids for thylakoid membrane 

formation (Benning et al., 2006). This hypothesis has also been formulated by the 

observation of fatty acid desaturase mutants in Arabidopsis, which are localized in 

the endoplasmic reticulum (ER). These mutants showed a strong reduction on 

MGDG species suggesting the necessity of lipid transport from the ER to the 

thylakoid membrane (Miquel & Browse, 1992; Slack et al., 1977).  

Besides the fatty acid and protein content of the thylakoid membrane, several 

pigments play a crucial role in thylakoid function. Chlorophyll is the most abundant 

pigment in thylakoids and is associated with proteins such as LHCs and both PSI 

and PSII, thus allowing the harvest of light to power photosynthesis (Eckhardt et al., 

2004). Among other relevant pigments that play a role in photosynthesis, there are 

compounds related to photo protection such as the members of the xanthophyll 

cycle. When light intensity is not higher than the capacity of the photosystems, the 

Δ pH across the thylakoid membrane leads to the lumen being more acidic than the 

stroma. However, during higher light intensities, photosystems reach their maximum 

capacity to transfer electrons, thus prolonging the chlorophyll excitation state 

lifetime, which in turn leads to the production of reactive oxygen species (ROS) 

(Johnson et al., 2012). In addition to the latter, the lumen pH drops due to the 

limitation of the ATP synthase to relax the Δ pH. This causes the de-epoxidation of 

violaxanthin to antheraxanthin further de-epoxidation of the latter to the photo 

protective pigment zeaxanthin (Rockholm & Yamamoto, 1996). Thus, zeaxanthin 

attached to the LHC quenches the excited state of chlorophyll preventing the 

production of ROS by a process called Non Photochemical Quenching (NPQ) (Jahns 

& Holzwarth, 2012). 
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1.5 The function of Plastoglobuli  
Beside vesicles, that might transport lipid and protein components to the thylakoids, 

lipid bodies persistently attached to the thylakoid membrane have been observed, 

which are called plastoglobuli (PGs). Early descriptions of these compartments were 

performed during the sixties and they were first described as osmiophilic globules 

due to their ability to get stained with osmium tetroxide during the preparation of TEM 

pictures. These early observations led to the study of their composition and they 

were initially described as lipid bodies containing plastoquinone and galactolipids 

(Greenwood et al., 1963). Later it was found that PGs are present throughout the 

plant’s life and propagate in distinct developmental stages and tissues. For instance, 

PGs propagate and are bigger in size in chromoplasts especially in flowers and fruits 

(Hansmann & Sitte, 1982). This holds true for several plant species. Further 

investigation of the composition of PGs in chromoplasts revealed that they are rich 

in carotenoids. Moreover, this led to the identification of fibrillin (FBN) as the core 

protein of PGs (Deruere, Bouvier, et al., 1994; Deruere, Romer, et al., 1994). 

Additionally, it was observed that during senescence the number and size of PGs 

increased in chloroplasts and that they play a role in the accumulation of break down 

intermediates of chlorophyll degradation such as phytol (Tevini & Steinmuller, 1985; 

Vom Dorp et al., 2015). In this stage, plastid metabolism is solely catabolic losing 

stroma and storing thylakoid breakdown content into PGs. Moreover, PGs are also 

accumulating under stress conditions such as drought (Langenkamper et al., 2001), 

high light stress (Zhang et al., 2010) and nitrogen limiting conditions (Gaude et al., 

2007).  

Electron tomography studies on the structure of PGs have revealed that they are 

composed of a neutral lipid core and a lipid monolayer, which is physically attached 

and continuous with the stroma-side leaflet of the thylakoid membrane (Figure 3). 
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Figure 3. Plastoglobuli organization. Scheme representing a PG in relation with the thylakoid 

membrane. Proteins are represented as shapes on the monolayer of the PG. Modified from Austin et 

al. (2006). 

 

 

Besides, it was shown that even though PGs propagate they always maintain at least 

one contact site with another PG or the thylakoid membrane, i.e. PGs are not found 

as individual components (Austin et al., 2006). Further analyses on the composition 

of PGs have shown that certain variations in their lipid composition can occur 

depending on the developmental stage of the plant or the plant tissue. Under non-

stress conditions, PGs are composed of high levels of tocopherols and quinones as 

well as neutral lipids such as triacylglycerol and free fatty acids (Steinmuller & Tevini, 

1985; Vidi et al., 2006; Zbierzak et al., 2009). Other less abundant components are 

galactolipids, carotenoids and phytol esters, which increase in senescent 

chloroplasts (Gaude et al., 2007; Tevini & Steinmuller, 1985) or during chromoplast 

differentiation, i.e. carotenoids (Deruere, Romer, et al., 1994; Hansmann & Sitte, 

1982). The proteome of PGs was identified by mass-spectrometry of isolated PGs 

from chromoplasts and chloroplasts (Vidi et al., 2006; Ytterberg et al., 2006). This 

revealed that in normal conditions PGs are composed of 30 proteins, the most 

abundant of which are FBNs (Lundquist et al., 2012). This family of proteins is well 

conserved from plants to cyanobacteria (Cunningham et al., 2010; Singh & McNellis, 

2011). Initially, they were called fibrillins due of their ability to form fibers in the 
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presence of carotenoids and polar lipids, a phenomenon that was also observed in 

chromoplasts (Deruere, Romer, et al., 1994). Furthermore, the second most 

abundant family of proteins in PGs is the ABC1K kinase family two of which were 

shown to play a role in vitamin E synthesis (Martinis et al., 2013; Martinis et al., 

2014). Other proteins present in PGs are related to isoprenoid and neutral lipid 

metabolism (Lundquist et al., 2012). 

Analyses of mutant knockout plants for many of the PG’s proteins lead to the 

conclusion that the function PGs is related to stress conditions or specific 

developmental stages. (Fatihi et al., 2015; Singh et al., 2010; Youssef et al., 2010). 

Thus, PGs are assumed not to be essential for plant survival but rather relevant in 

their adaptation to different conditions and successful tissue differentiation. 
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1.6 Aim of this work 
The central question to be answered in this thesis was: which are the crucial factors 

required for chloroplast biogenesis that are still unknown? 

To date, the process by which proplastids undergo thylakoid formation and arrange 

their membranes along with the different embedded photosynthetic complexes 

embedded is still obscure. In order to tackle this question, a chloroplast proteome 

analysis from young plants should be utilized to identify proteins without known 

function. This should provide insights into proteins that might be involved in either 

early development of thylakoid formation (and therefore differentiation from 

proplastids to chloroplasts) or chloroplast biogenesis in general. To understand 

those processes the study of proteins with either unknown domains or function is 

crucial. In this work two proteins with unknown function, RV-1 and PG18, were 

selected to pursue a molecular characterization and investigate their role in plant 

development using knockout mutant plants in Arabidopsis.   
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2 Material and methods 

2.1 Material 
 
2.1.1 Chemicals  
If not noted otherwise, all used chemicals were received from Sigma Aldrich 

(Taufkirchen, Germany), Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany), 

Thermo Fisher Scientific (Braunschweig, Germany) or Serva (Heidelberg, 

Germany). 

 
2.1.2 Molecular weight and size markers  
For SDS-PAGE peqGOLD protein marker I (VWR, Ismaning, Germany) was used. 

EcoRI and HindIII digested lambda phage DNA (Thermo Fisher Scientific) was used 

as a marker for agarose gel electrophoresis. HMW Calibration Kit for Native 

Electrophoresis (GE Healthcare, Munich, Germany) was used for BN-PAGE. 

 
2.1.3 Oligonucleotides  
DNA oligonucleotides were ordered from Metabion (Martinsried, Germany) and are 

listed in Table 1. 

 
Table 1. Oligonucleotides used for this work. 

Oligonucleotide 5'-3' oligonucleotide sequence  Purpose 
Gabi Kat F ATATTGACCATCATACTCATTGC Genotyping 

AT1G36320 GT F GGGGACAAGTTTGTACAAAAAAG
CAGGCTTCGAAGGAGATAGAACC

ATGGTTTCAGTGTT 

pK7FWG2 

AT1G36320 GT R -stop GGGGACCACTTTGTACAAGAAAG
CTGGGTCTCCACCTCCGGACATA

TACTTCTTTT 

pK7FWG2 

AT4g37920 F EcoRV -TP GATATCGCGGAAGTAAAAAGCTC pMAL-c5x 

AT4g37920 R EcoRI Histag -stop GAATTCGTGATGGTGATGGTGAT
GGTTCAAAAAAT 

pMAL-c5x 
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AT4g37920 GT F GGGGACAAGTTTGTACAAAAAAG
CAGGCTTCGAAGGAGATAGAACC

ATGGCGAATTTACTG 

gateway vectors, 
Genotyping 

AT4g37920 GT R -stop GGGGACCACTTTGTACAAGAAAG
CTGGGTCTCCACCTCCGGAGTTC

AAAAAATCTTCA 

pK7FWG2 

AT4g37920 GT R +stop GGGGACCACTTTGTACAAGAAAG
CTGGGTCTCCACCTCCGGATCAG

TTCAAAAAATC 
 

pDest14, pDest17, 
Genotyping 

AT4g37920 GT F -TP GGGGACAAGTTTGTACAAAAAAG
CAGGCTTCCTGGAAGTTCTGTTT
CAGGGCCCGGCGGAAGTAAAAA

GCTC 

pDest17 

AT4g37920 R cDNA AGTCGTAATTGCAATTATAGCTGA Genotyping 

AT4g37920 RNAi F GGGGACAAGTTTGTACAAAAAAG
CAGGCTTTAGTTTTAACATTTT 

pOpOff2 

AT4g37920 RNAi R GGGGACCACTTTGTACAAGAAAG
CTGGGTCTTTGTAAGTGACAGTG 

pOpOff2 

ATCG00920 rRNA 16S F  TCTCATGGAGAGTTCGATCCT pSP64 

ATCG00920 rRNA 16S R  AAAGGAGGTGATCCAGCCG pSP64 

ATCG00950 rRNA 23S F  TTCAAACGAGGAAAGGCTT pSP64 

ATCG00950 rRNA 23S R  AGGAGAGCACTCATCTTGG pSP64 

AT1G36320 F TGATCACTAAAGCTTGGTCG Genotyping 

AT1G36320 R TCACATATACTTCTTTTCAA Genotyping 
 

AT4G13200 GT F GGGGACAAGTTTGTACAAAAAAG
CAGGCTTCGAAGGAGATAGAACC

ATGAGTAGCTTCACGA 

gateway vectors, 
Genotyping 

AT4G13200 GT F -TP GGGGACAAGTTTGTACAAAAAAG
CAGGCTTCCTGGAAGTTCTGTTT

CAGGGCCCGGAGTCTCGAAG 

pDest17 

AT4G13200 GT R -stop GGGGACCACTTTGTACAAGAAAG
CTGGGTCTCCACCTCCGGATCAG

TCTTCATCACT 
 

pK7FWG2 



 19 

AT4G13200 GT R +stop 
 
 
 
23S F NW 
 
23S R NW 
 
16S F NW 
 
16S R NW  

GGGGACCACTTTGTACAAGAAAG
CTGGGTCTCCACCTCCGGATCAG

TCTTCATCA 
 

TTCAAACGAGGAAAGGCTTA 
 

AGGAGAGCACTCATCTTG 
 

GTAAAGCGTCTGTAGGTG 
 

GCCTAGTATCCATCGTTT 

pDest17, Genotyping 
 
 
 

Northern Blot 
 

Northern Blot  
 

Northern Blot 
 

Northern Blot 
 

 
 

2.1.4 Vectors 

To overproduce proteins fused to an N-terminal His-tag pDest17 vector was used 

(Thermo Fisher Scientific). The vector pMAL-c5x (New England Biolabs) was used 

to overproduce proteins fused to MBP at their N-terminal. pDest14 (Thermo Fisher 

Scientific) and pSP64 (Promega) vectors were used for in vitro transcription and 

translation. For plant transformation the following binary vectors were used: 

pK7FWG2 for expression under 35S promoter and pOpOff2 for expression of 

interference RNA (both Plant Systems Biology, Zwijnaarde, Belgium). Cloning into 

binary vectors as well as pDest14 and pDest17, was performed using the Gateway 

system (Thermo Fisher Scientific) via pDONR207 vector. Restriction site cloning was 

performed by using the entry vector Zero blunt (Thermo Fisher Scientific). All 

plasmids used for this thesis are listed in Table 2. 

 
Table 2. List of plasmids used for this work. 

Gene Description vector Restriction sites purpose 
AT4g37920 - stop pDONR207 - localization 
AT4g37920 + stop pDONR207 - in-vitro translation 
AT4g37920 - TP / + stop pDONR207 - over-expression 
AT4g37920  - stop pK7FWG2 - localization 
AT4g37920  - TP / + stop pDest17 - over-expression 
AT4g37920  + stop pDest14 - in-vitro translation 
AT4g37920  Histag / - TP / - stop pCR-Blunt EcoRV / EcoRI over-expression 
AT4g37920 Histag / - TP / - stop pMAL-c5x EcoRV / EcoRI over-expression 
AT4g37920 - pDONR207 - RNAi 
AT4g37920 - pOpOff2 - RNAi 
AT1G20020 + stop pF3A  - in-vitro translation 
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ATCG00920 - pCR-Blunt - In-vitro transcription 
ATCG00950 - pCR-Blunt - In-vitro transcription 
ATCG00920 - pSP64 - In-vitro transcription 
ATCG00950 - pSP64 - In-vitro transcription 
AT1G36320 - stop pDONR207 - localization 
AT1G36320 - stop pK7FWG2 - localization 
AT4G13200 - stop pDONR207 - localization 
AT4G13200 - TP / + stop  pDONR207 - over-expression 
AT4G13200 - stop pK7FWG2 - localization 
AT4G13200 - TP / + stop  pDest17 - over-expression 

 
 

2.1.5 Enzymes  
Restriction endonucleases were purchased either from Thermo Fisher Scientific or 

from New England BioLabs (Frankfurt am Main, Germany). T4 DNA ligase was 

received from Thermo Fisher Scientific, Phusion DNA polymerase from New 

England BioLabs, Taq DNA polymerase from Bioron (Ludwigshafen, Germany). 
 
2.1.6 Bacterial strains  
E. coli TOP10 cells were used for propagation of plasmid DNA. Overexpression of 

heterologous proteins was performed using RIPL (BL21-CodonPlus (DE3)-RIPL 

strain) cells. For stable transformation of A. thaliana plants A. tumefaciens GV3101 

(pMP90RK) cells were used. A. tumefaciens AGL1 cells were used for transient 

transformation of Nicotiana tabacum with GFP tagged proteins. 

 

2.1.7 Membranes  
PVDF transfer membrane for western blotting was received from Macherey-Nagel 

(Düren, Germany), blotting paper was obtained from Millipore (Darmstadt, 

Germany). 

 

2.1.8 Antisera 
Antisera against Arabidopsis proteins were purchased from Agrisera (Vännäs, 

Sweden), i.e. PGL35 (AS06 116), D1 (AS05 084), CP47 (AS04 038), PsaF (AS06 

104), PsaD (AS09 461), Cyt f (AS08 306), LHCaI (AS01 005), LHCaII (AS01 006) 
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and LHCbII (AS01 003). Phycocyanin antiserum was purchased from ABBIOTEC 

(250488). ATP synthase, D1 and OE33 antisera were kindly provided by Stephan 

Greiner, TIC110 and FBPase antisera from Bettina Bölter and PsaG antiserum from 

Jörg Meurer. RV-1 and PG18 antisera were produced by Biogenes (Berlin, 

Germany). 

 

2.1.9 Accession numbers  
The gene accession numbers of the proteins involved in this work can be seen in 

Table 3. 
 

Table 3. Gene accession numbers of proteins involved in this work. 

Gene name Accession number 
RV-1 AT4g37920 

RV-1-like AT1G36320 
PG18 AT4G13200 

rRNA 16S ATCG00920 
rRNA 23S ATCG00950 

FNR AT1G20020 
 

 

2.1.10 Computational analyses  
Sequences for RV-1, RV-1-like PG18 from Arabidopsis were obtained from TAIR 

(https://www.arabidopsis.org). Homologs of RV-1, RV-1-like PG18 from other 

species were collected from NCBI/BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

and Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html). Phylogenetic trees 

were generated by using the MEGA7 software (Kumar et al., 2016). The accessions 

for each sequence used for phylogenetic trees are indicated in table 4. Alignments 

were generated by using the algorithm provided by CLC Main Workbench 

(developed by QIAGEN Aarhus).  

Graphs and statistical analyses were generated by using GraphPad Prism version 

6.0, GraphPad Software, La Jolla, California, USA (www.graphpad.com). Image 

analyses were done by using the software ImageJ. 
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Table 4. Gene accession numbers of proteins used for phylogenetic analyses. 

Species RV-1 RV-1-like PG18 
Arabidopsis 

thaliana 
AT4g37920 AT1G36320 AT4G13200 

Physcomitrella 
patens 

- - Pp3c16_19690V3.2 

Citrus sinensis orange1.1g013676m orange1.1g048140m A0A067FRT7_CITSI 
Fragaria vesca mrna05566.1-v1.0-

hybrid 
mrna31319.1-v1.0-

hybrid 
mrna17524.1-v1.0-hybrid 

Solanum tuberosum PGSC0003DMT400078
670 

PGSC0003DMT400070
893 

PGSC0003DMT40007198
9 

Solanum 
lycopersicum 

Solyc02g091640.2.1 Solyc04g072400.2.1 Solyc09g061440.2.1 

Sorghum bicolor Sobic.010G157700.1 Sobic.001G530900.1 Sobic.006G145200.1 
Zea mays B6TPX9_MAIZE C0PEL6_MAIZE B6TBJ2_MAIZE 

Oryza sativa LOC_Os01g20110.1 A3A5Q9_ORYSJ LOC_Os04g43350.1 
Sphagnum fallax - - Sphfalx0010s0144.1 

Micromonas pusilla - - 189112 
Calothrix sp. 336/3 - - WP_035149421 
Synechocystis sp. 

PCC 6803 
- - WP_010872303 

Anabaena sp. 
WA113 

- - WP_066381343 

 

 

2.2 Molecular biological methods  
General methods not listed below were performed according to Sambrook and 

Russell (2001). Competent cells for DNA transformation were prepared according to 

Hanahan (1985). 

 

2.2.1 Cloning strategies  
For over-expression of proteins fused to an N-terminal MBP tag pMAL-c5x vector 

and in vitro transcription of rRNAs, PCR product created with primes containing the 

appropriate restriction site were digested with EcorV and EcoRI for RV-1 and with 

XbaI and BamHI for rRNAs. Ligation was carried out for 1 h at RT using T4 ligase 

into the vector pCR-Blunt. Afterwards, the corresponding plasmids were digested 

with EcorV and EcoRI, as well as the pMAL-c5x vector. Additionally, the 

corresponding plasmids with rRNA were digested with XbaI and BamHI as well as 

the vector pSP64 for its ligation as described above. For stable plant transformation, 
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over-expression of proteins and in vitro transcription and translation, Gateway 

system (Thermo Fisher Scientific) was used to clone constructs via homologous 

recombination from pDONR207 into binary vectors pk7FWG2, pDest14, pDest17 or 

pOpOff2. Cloning was performed according to the manufacturer’s instructions. 

 

2.2.2 Polymerase chain reaction (PCR)  
PCR was performed with gDNA, cDNA or plasmid DNA as templates. For 

subsequent cloning proof-reading Phusion polymerase was used. For genotyping 

and colony PCR Taq polymerase was chosen. Annealing temperature and 

elongation time were adapted concerning oligonucleotides and length of constructs. 

PCR products for cloning were excised from 1% agarose gels run in TAE buffer (40 

mM Tris, 2.5 mM EDTA, 1% acetic acid) and purified using NucleoSpin Gel and PCR 

Clean-up kit (Macherey-Nagel). 

 

2.2.3 Isolation of plasmid DNA from E. coli  
Plasmid DNA was isolated from 2 ml overnight E. coli culture using the NucleoSpin 

Plasmid EasyPure kit (Macherey-Nagel) according to the manufacturer’s 

instructions. 

 

2.2.4 Sequencing  
Each plasmid was confirmed by sequencing which was performed by the sequencing 

service of the Faculty of Biology (Ludwig-Maximilians-Universität München, 

Germany) using 100 – 200 ng of vector with appropriate primer. 

 

2.2.5 Isolation of genomic DNA from A. thaliana for genotyping PCR 

One leaf was homogenized in 500 µl of extraction buffer (1 M Tris-HCl pH 7.5, 50 

mM NaCl, 50 mM EDTA, 1% (w/v) PVP 40) by a mixing mill for 3 min in a tube with 

a tungsten carbide 3 mm ball. Afterwards, 66 µl of 10% (w/v) SDS were added and 

the samples were mixed by inverting them several times followed by the addition of 

166 µl of 5 M potassium acetate. The sample was then centrifuged for 15 min at 

15000 gRT. The supernatant was rescued and mixed with 0.7 vol of isopropanol and 
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incubated for 15 min at -20 ºC. The sample was then centrifuged for 15 min at 15000 

g and 4 ºC and the supernatant was discarded. The pellet was washed with 500 µl 

of 70% (v/v) ethanol and mixed by inverting the tube and then centrifuged for 5 min 

at 15000 g and 4 ºC. The pellet was dried at RT and dissolved in 50 µl of H2O. 

 

2.2.6 Isolation of RNA from A. thaliana 

RNA from A. thaliana leaves was isolated using the Rneasy Plant Mini kit (Qiagen) 

according to the manufacturer’s instructions. Digestion with Dnase was either 

performed during RNA isolation (DnaseI, Roche, Mannheim, Germany). 

 

2.2.7 cDNA synthesis  
cDNA was synthesized in 10 μl reaction volume from 1 μg RNA using M-MLV reverse 

transcriptase (Promega) according to the manufacturer’s instructions. 

 

2.2.8 Protein precipitation with trichloroacetic acid (TCA) 
Proteins were precipitated by adding TCA (final percentage 10% [v/v]) and 

incubating the samples for 30 min at -20 ºC. Afterwards, proteins were centrifuged 

for 15 min at 16000 g and 4ºC and the supernatant was discarded. The pellet was 

washed twice by adding 1 ml of 100% ethanol and centrifuging for 5 min at 16000 g 

and 4 ºC. The pellet was dried at Rtfor 15 min and resuspended in loading buffer 

(100 mM Tris pH 7.5, 2% SDS, 10% glycerol, 5% β-mercaptoethanol, 0.004% 

bromphenol blue). 

 

 

2.3 Biochemical methods 
 
2.3.1 Overexpression of recombinant proteins  
Transformed E. coli bacteria were grown in LB medium (1% peptone from casein, 

0.5% yeast extract, 171 mM NaCl) at 37°C to an OD600 of 0.6 – 0.8. Overexpression 

was induced by the addition of 1 mM isopropyl β-D-1-thiogalactopyranoside. E. coli 

strains and conditions for overexpression were depending on the construct and are 
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listed in Table 5. 

 
Table 5. Conditions for overexpression and way of purification of recombinant proteins 

Construct Vector E. coli strain Temperature Time Purification 
RV-1 pDest17 RIPL 37 ºC overnight inclusion bodies 
RV-1 pMAL-c5x RIPL 12 ºC overnight soluble 
PG18 pDest17 RIPL 37 ºC overnight inclusion bodies 

 

 
2.3.2 Purification of soluble proteins  
Pelleted bacteria from 1 l overexpression of constructs with His-tags were 

resuspended in 25 ml lysis buffer (20 mM Tris pH 7.5, 200 mM NaCl, 15 mM 

imidazole). After cell disruption by a microfluidizer (Microfluidics, Westwood, USA) 

the solution was centrifuged at 20000 g, 4°C for 30 min and the supernatant was 

rotated with 250 μl Ni-Sepharose at 4°C for 2 h. The beads were washed three times 

with 5 ml wash buffer (20 mM Tris pH 7.5, 200 mM NaCl, 15 mM imidazole). 

Recombinant proteins were eluted in 200 – 400 μl fractions with elution buffer (20 

mM Tris pH 7.5, 200 mM NaCl, 500 mM imidazole). Samples were then dialyzed to 

remove imidazole in bags with a molecular weight cut-off of 3.5 kDa (Spectra/Por 3) 

against 2 l of lysis buffer without imidazole overnight at 4 ºC with agitation. 

 

2.3.3 Purification of proteins out of inclusion bodies  
Insoluble proteins were purified out of inclusion bodies. Pelleted bacteria from 0.5 – 

1 l overexpression were resuspended in 25 ml resuspension buffer (50 mM Tris pH 

8.0, 200 mM NaCl, 5 mM β-mercaptoethanol). Cells were disrupted and centrifuged 

as described in 2.3.4. The pellet was washed one time with 20 ml detergent buffer 

(20 mM Tris pH 7.5, 200 mM NaCl, 1% deoxycholic acid, 1% nonidet P-40, 10 mM 

β-mercaptoethanol), two times with Triton buffer (20 mM Tris pH 7.5, 0.5% Triton X-

100, 5 mM β-mercaptoethanol) and two times with Tris buffer (20 mM Tris pH 8.0, 

10 mM DTT). Centrifugation was done at 12000 g, 4°C for 10 min. Finally, the pellet 

was resuspended in 5 ml urea buffer (50 mM Tris pH 8.0, 100 mM NaCl, 7 M urea) 

and rotated for overnight at 4 ºC. After centrifugation at 20000 g, 4 ºC for 15 min 

denaturated proteins were present in the supernatant. In order to get rid of urea from 
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the buffer, samples were dialyzed as described in section 2.3.2. 

 

2.3.4 Isolation of proteins from A. thaliana  
A. thaliana leaves were homogenized in 300 μl homogenization medium (50 mM Tris 

pH 8.0, 10 mM EDTA, 2 mM EGTA, 10 mM DTT) using an electronic micropestle. 

The suspension was incubated for 10 min in the dark on ice then filtered and 

centrifuged at 9300 g for 10 min and 4 ºC. Supernatant contained soluble proteins, 

pellet resuspended in homogenization medium contained membrane proteins. For 

total protein extraction, leaves were grinded with liquid nitrogen and the powder was 

then transferred into a tube and resuspended by adding equal volume of extraction 

buffer (50 mM Tris-HCl pH 8, 2% [w/v] LDS, 0.1 mM PMSF). The sample was 

vortexed and then incubated on ice for 30 min and centrifuged for 15 min at 16000 

g and 4 ºC. The supernatant was rescued, and protein concentration was measured 

by BCA test. Finally, EDTA and DTT were added immediately to a final concentration 

of 50 mM and 10 mM respectively. 

 

2.3.5 Determination of protein concentration  
Concentration of proteins was determined using Bradford reagent (Bio-rad). 10 μl 

protein was mixed with 1:5 diluted Bradford reagent and absorption was measured 

against buffer at 595 nm. When indicated, protein concentrations were also 

quantified by using the kit Pierce™ BCA protein assay according to the 

manufacturer’s instructions (Thermo Fisher Scientific). 

 

2.3.6 SDS polyacrylamide gel electrophoresis (SDS-PAGE)  
Proteins were separated by SDS-PAGE using discontinuous gels according to 

(Laemmli, 1970) consisting of a stacking gel (5% polyacrylamide) and a running gel 

(10 – 15% polyacrylamide). Samples were loaded with SDS loading buffer (62.5 mM 

Tris pH 6.8, 2% SDS, 10% glycerol, 5% β-mercaptoethanol, 0.004% bromphenol 

blue). Gels were run in SDS running buffer (25 mM Tris, 192 mM glycine, 0.1% SDS) 

and afterwards either stained with 26oomassie (45% methanol, 9% acetic acid, 0.2% 

26oomassie brilliant blue R-250) or used for western blotting (see 2.3.7). 
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2.3.7 Semi-dry electro blot and immunodetection of proteins  
Proteins were electrotransferred out of an SDS gel onto a PVDF membrane using a 

semi-dry blotting apparatus. The blot was assembled as follows on the anode: three 

blotting papers in anode I buffer (20% methanol, 300 mM Tris), two blotting papers 

in anode II buffer (20% methanol, 25 mM Tris), activated membrane, gel, three 

blotting papers in cathode buffer (20% methanol, 40 mM aminocaproic acid). 

Transfer was carried out for 1 h at 0.8 mA/cm2, proteins on membrane were stained 

with ponceau solution (5% acetic acid, 0.3% ponceau S). For immunodetection of 

proteins membrane was blocked for 30 min with 5% skimmed milk in TBST (20 mM 

Tris pH 7.6, 137 mM NaCl, 0.075% Tween). Incubation with primary antibody was 

performed over night at 4°C. After three times 10 min washing in TBST membrane 

was incubated for 2 h at RT with horse radish peroxidase conjugated secondary 

antibody. After three times 10 min washing in TBST membrane was incubated in 

equal volumes of development solution I (100 mM Tris pH 8.5, 1% luminol, 0.44% 

coumaric acid) and II (100 mM Tris pH 8.5, 0.018% H2O2) and signal was detected 

with enhanced chemiluminescence using Image Quant LAS 400 (GE Healthcare). 

 
2.3.8 Detection of radiolabeled proteins  
To visualize radiolabeled proteins dried SDS gels were exposed overnight to BAS-

MS phosphor imaging plates (FUJIFILM) which were analyzed using a Typhoon 

scanner (GE healthcare). 

 
2.3.9 Blue Native PAGE (BN-PAGE)  
Solubilized samples (thylakoid membranes) were separated on native acrylamide 

gradient Bis-Tris gel (5 – 12% polyacrylamide). Samples were loaded with BN 

loading buffer (750 mM aminocapronic acid, 5% Serva-G 250), gel was run with 

cathode buffer (50 mM tricine, 15 mM Bis-Tris pH 7.0, 0.2% Serva-G 250) and anode 

buffer (50 mM Bis-Tris pH 7.0). For second dimension one lane of the BN gel was 

placed on top of an SDS gel containing 4 M urea which was either silver stained to 

visualize proteins. 
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2.3.10 Silver staining of SDS gels  
Gels were incubated for 1 h in fixation solution (50% [v/v] ethanol, 12% [v/v] acetic 

acid, 0.05% [v/v] formaldehyde) then washed three times for 30 min in 50% (v/v) 

ethanol. After 90 sec pre-impregnation in 0.02% (v/v) sodium thiosulfate and three 

times 30 sec washing in water impregnation of the gel was performed for 30 min in 

darkness using 0.2% (w/v) silver nitrate and 0.075% (v/v) formaldehyde. Gels were 

washed again in water then stained with development solution (6% [w/v] Na2CO3, 

0.05% [v/v] formaldehyde, 0.0004% [v/v] sodium thiosulfate). After protein signals 

became visible reaction was stopped with stopping solution (50% [v/v] ethanol, 12% 

[v/v] acetic acid). 
 
2.3.11 Mass spectrometry 
Mass spectrometric analyses were performed at the MSBioLMU core facility 

(Deparment Biology I, Ludwig-Maximilians-Universität München). 

 

2.3.12 Transformation of A. tumefacium 

1 – 2 µg plasmid was added to either to competent GV2101 or AGL1 cells which 

were incubated 5 min on ice then for 5 min in liquid nitrogen. Heat shock was 

performed for 5 min at 37 ºC then 800 µl LB was added and cells were incubated 

shaking for 3 h at 28 ºC before plated on LB plates with appropriate antibiotics. Cells 

were grown for 2 days at 28 ºC. 

 

2.3.13 Pigment analysis 
Pigment measurements were done by Prof. Dr Peter Jahns (Plant Biochemistry, 

Heinrich-Heine-University Düsseldorf, Düsseldorf). Leaf samples were frozen in 

liquid N2 and either used directly for pigment extraction or stored at -80°C for up to 

2 weeks until further use. Pigments were extracted by grinding frozen leaf material 

in a mortar after addition of 1 ml 100% acetone. After short centrifugation, the 

supernatant was filtered through a 0.2-μm membrane filter (GE Healthcare, Little 

Chalfont, Buckinghamshire, UK) and then subjected to HPLC analysis. Separation 
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and quantification of pigments was done by reversed-phase chromatography as 

described in Farber et al. (1997). 

 

2.3.14 In vitro transcription 
Vectors including either a T7 or SP6 promoter sequence were used for in vitro 

transcription of various genes (see Table 2). For the transcription reaction, 1 μg 

plasmid, 0.05% BSA, 2 mM DTT, 0.25 mM m7G(5’)ppp(5’)G Cap analog (Ambion), 

0.4 mM ACU (Roche), 50 U RibolockRI (Thermo Fisher Scientific), 30 U T7 or SP6 

RNA polymerase (Thermo Fisher Scientific), 1x transcription buffer (Thermo Fisher 

Scientific) were added in a total volume of 50 μl and incubated at 37°C for 15 min 

for RNA capping. To this capped RNA, 1.2 mM GTP was added and reaction was 

incubated at 37 ºC for 120 min for final mRNA generation. For transcription and 

simultaneous radiolabeling, the transcription reaction was set up as follows: 1 μg 

plasmid, 0.5 mM AGU (Roche), 12 μM CTP (Roche), 40 U RibolockRI (Thermo 

Fisher Scientific), 20 U SP6 RNA polymerase (Thermo Fisher Scientific), 1x 

transcription buffer (Thermo Fisher Scientific), 2.5 μCi/μl [a 32P] CTP (sp. act. 800 

Ci/mmol) (Perkin Elmer, Walluf, Germany) in a total volume of 20 μl. The reaction 

was performed at 37 ºC for 120 min and then 2 U of Dnase I (Roche) were added 

and incubated for extra 15 min 37 ºC. The reaction was stopped by adding 230 μl of 

buffer G50 (20 mM Tris-HCl pH 7.5, 300 mM sodium acetate, 2 mM EDTA, 0.25% 

[w/v] SDS).500 μl of 25:24:1 phenol/chloroform/isoamylalcohol and the solution was 

vortexed. The sample was then centrifuged for 5 min at 14000 g at4 ºC and the upper 

aqueous phase was transferred into a new tube. 600 μl of 100% ethanol were added 

to the sample and then centrifuged for 10 min at 14000 g and 4ºC discarding the 

supernatant and the pellet was dried for 10 min at RT. The pellet was resuspended 

in 10 μl of distilled, deionized H2O. 

 

2.3.15 In vitro translation 

In vitro translation of radiolabeled proteins was done using reticulocyte lysate 

(Promega). 1 μl in vitro transcription product was used for 10 μl translation reaction 

with 30 μCi 35S methionine (Perkin Elmer, Walluf, Germany), 80 μM amino acid 
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mixture without methionine, 66% reticulocyte lysate and 70 mM KCl. Translation was 

carried out at 30°C for 50 min. 

 

2.3.16 Agarose gel electrophoresis 

DNA samples were separated on 1% agarose gels containing 0.5 μg/ml ethidium 

bromide in TAE 1X buffer (40 mM Tris, 20 mM acetate, 1 mM EDTA). Samples were 

loaded into the gel by adding loading buffer (5% (v/v) glycerol. 0.042% (w/v) 

bromophenol blue 0.042% (w/v) xylene cyanol FF).  

RNA samples were separated on 1.2% agarose gels in buffer MOPS (20 mM MOPS 

pH 7.5 mM sodium acetate, 1 mM EDTA) and 1X MOPS running buffer. The RNA 

was prepared by incubating the sample for 10 min at 60ºC in 3.5% DMSO (v/v), 0.4% 

glyoxal, @ 10 μg RNA in 1X MOPS buffer (total volume of 10 μl) and then 5 μl of 

loading buffer were added as mentioned above. EMSA samples were separated on 

a 1% agarose gels without ethidium bromide in buffer TBE 1X (89 mM Tris pH 8, 89 

mM boric acid, 2 mM EDTA). Samples were loaded using the loading buffer indicated 

above and the gels were run in buffer TBE. 

 

2.3.17 Electrophoretic mobility shift assay (EMSA) 
RNA synthesized as described in section 2.3.14 was used along with soluble purified 

proteins as described in section 2.3.2. Binding was performed by preparing a 15 μl 

sample containing 0-10 μg of protein and 0.125 μCi RNA [a 32P] in binding buffer (40 

mM Tris-HCl pH 8, 30 mM KCl, 1 mM MgCl2, 1 mM DTT, 0.01% [v/v] NP40). The 

reaction was performed for 30 min at 20ºC and samples were further separated on 

agarose gels as described in section 2.3.15. 

 

2.3.18 RNAse assay 
Total RNA extracted from plants as described in section 2.2.6 or in vitro transcribed 

RNA as described in section 2.3.14 was used to performed RNAse assays. Soluble 

proteins purified as described in section 2.3.2 were used for preparing 20 μl of 

reaction mix containing 1 μg of RNA, 5 μg of protein in RNAse buffer (50 mM HEPES 
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pH 7, 10 mM MgCl2). The reaction was incubated for 30 min at RT and separated 

on an agarose gel as described in section 2.3.15. 

 

2.3.19 Northern Blot 
EMSA samples that were run on an agarose gel were transferred onto a nylon 

membrane (Biodyne, Pall). The agarose gel was rinsed twice in buffer 20X SSC (3 

M NaCl, 300 mM sodium citrate pH 7) and placed onto wet whatman paper 

connected to a beaker with 20X SSC buffer. Transfer was done by putting the nylon 

membrane onto the agarose gel and whatman paper, letting it transfer by capillarity 

overnight at RT. Afterwards, the membrane was exposed overnight to BAS-MS 

phosphor imaging plates (FUJIFILM).  

In case of transferring RNA, the samples isolated as described in section 2.2.6 were 

separated in agarose gels as described in section 2.3.16 containing 0.925% 

formaldehyde. The gels were then washed twice for 15 min in 20X SSC buffer and 

transferred onto a nylon membrane as described above. The membrane was then 

expose to UV light (0.12 J, Stratalinker). The RNA onto the membrane was 

hybridized with probes obtained by PCR (section 2.2.2) using Digoxigenin-11-UDP 

(Roche) and specific primers for the 16S and 23S rRNAs. Hybridization mix was 

prepared with probes incubated for 30 min at 68 ºC at a concentration of 2.5 ng 

probe/ml in prehybridization mix (0.25 M Na2HPO4 pH 7.2, 1 mM EDTA, 20% SDS, 

0.5% Blocking reagent [10 g Blocking (Roche) in 0.1 M maleic acid, pH 8, 0.15 M 

NaCl]). The membrane was transferred into a tube containing pre-heated 

hybridization mix for 1 h at 68 ºC. Denaturation of DIG-labeled DNA probes were 

done by adding 25 ng of each probe to 100 μL of water in a clean microreaction tube 

and incubate for 10 min at 99°C, immediately the probe was placed on ice for at least 

1 min. These probes were then added into the membrane with hybridization mix 

incubating it overnight at 68 ºC. Later the membrane was washed for 20 min at 65 

ºC three times with pre-heated hybridization wash buffer (20 mM Na2HPO4, 1 mM 

EDTA, 1% SDS). The membrane was brought to RT and washed with buffer I (0.1 

M maleic acid, pH 8.0, 3 M NaCl, 0.3% Tween 20) and then transferred into blocking 

buffer II (19 mL wash buffer I plus 1 ml 20 x blocking) and incubated for 1 h at RT. 
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For immunodetection of the probes onto the membrane, conjugate buffer III was 

prepared by diluting α-DIG-AP 1: 20000 with blocking buffer II (0.5 μL antibody / 10 

mL). The membrane was incubated for 1 h in conjugate buffer containing α-DIG-AP 

and then washed four times for 10 min with buffer I. Then the membrane was 

incubated for 5 min in substrate buffer IV (0.1 M Tris-HCl pH 9.5, 0.1 M NaCl, 50 mM 

MgCl2) and transfered from tube onto a plastic foil, pipet substrate buffer V (0.12 mM 

CDP* [1:100, Roche] 50 μL/ 5 mL substrate buffer IV) onto membrane and incubate 

for 5 minutes and the membrane expose in ECL reader. 
 
 
2.4 Cell biological methods 

 

2.4.1 Isolation of intact chloroplasts from P. sativum 

Approximately 200 g leaf material of 9 – 14 days old peas was mixed in isolation 

buffer (330 mM sorbitol, 20 mM MOPS, 13 mM Tris pH 7.6, 3 mM MgCl2, 0.1% BSA) 

filtered and centrifuged for 1 min at 1900 g, 4°C. Intact chloroplasts were isolated 

out of the pellet via a discontinuous percoll gradient of 12 ml 40% percoll solution 

(330 mM sorbitol, 50 mM HEPES pH 7.6, 40% percoll) and 8 ml 80% percoll solution 

(330 mM sorbitol, 50 mM HEPES pH 7.6, 80% percoll) for 5 min at 8000 g, 4°C and 

washed twice with washing buffer (330 mM sorbitol, 25 mM HEPES pH 7.6, 3 mM 

MgCl2). The chlorophyll concentration was determined by measuring the absorption 

of 1 μl chloroplast solution in 1 ml 80% acetone and calculated with the following 

formula:  

mg chlorophyll / ml = 8.02 x (E663 – E750) + 20.2 x (E645 – E750) 

 

2.4.2 Isolation of inner and outer chloroplast envelope from P. sativum 
Plant material from 20 trays of 9-11 days old pea seedlings was harvested in dark 

and homogenized in 5-7 l of isolation medium (330 mM sorbitol, 20 mM MOPS, 13 

mM Tris, 0.1 mM MgCl2, 0.02% (w/v) BSA). The suspension was filtered through 

four layers of mull and one layer of gauze (30 μm pore size) and centrifuged for 5 

min at 1500 g. Using a soft brush, the pellet was gently resuspended in small volume 

of isolation medium and overlaid onto discontinuous Percoll gradient (as described 
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in section 2.4.1). Intact chloroplasts separated at the interface were transferred to 

250 ml beakers and washed twice with wash media (330 mM sorbitol, Tris-base pH 

7.6). The chloroplasts were burst by incubation in a hypotonic 0.7 M sucrose buffer 

for 10 min on ice in darkness and subsequent pottering in down’s homogenizer. The 

suspension was further treated according to the modification of Waegemann et al. 

(1992) of the previously described method by Keegstra and Yousif (1986). 

Afterwards, the suspension was centrifugated for 1 h at 100000 g and 4 ºC and the 

pellet carefully resuspended in buffer Tricine (10 mM Tricine pH 7.9, 1 mM EDTA). 

This was then loaded onto a discontinuous sucrose gradient (composed by three 

phases of 0.996 M, 0.8 M and 0.465 M sucrose) and centrifuged for 3 h at 100000 g 

and 4 ºC. The gradients were fractionated and further precipitated by using TCA as 

described in section 2.2.8. 

 

2.4.3 Isolation of plastoglobuli from P. sativum 
Intact chloroplasts from 3-week-old peas were isolated as described in section 2.4.2. 

The chloroplasts were then separated in a discontinuous sucrose gradient according 

to Vidi et al. (2006). Intact chloroplasts were resuspended in osmotic buffer (10 mM 

Tricine pH 7.9, 0.6 M sucrose, 1 mM EDTA) and incubated for 30 min on ice and 

then centrifugated for 1 h at 100000 g and 4 ºC. The pellet was resuspended in TED 

buffer plus sucrose (50 mM Tricine pH 7.9, 2 mM DTT, 2 mM EDTA, 48% sucrose) 

and subsequently pottered in down’s homogenizer. The solution was further treated 

with three sonication pulses of 1 min separated by intervals of 5 min. The final 

solution was used as the bottom solution for the discontinuous gradient by adding 

four extra phases (38%, 20%, 15% and 5% sucrose with 1 mM EDTA pH 7.9). The 

gradient was then centrifuged over night at 100000 g and 4ºC and then fractionated 

by taking 1 ml samples. The proteins in each fraction were precipitated with 

trichloroacetic acid as described in section 2.2.8. 

 

2.4.4 Isolation of thylakoid membranes  
Approximately 1 g leaf material of 21 days old Arabidopsis plants grown on soil was 

mixed in 25 ml isolation medium (330 mM sorbitol, 50 mM HEPES pH 7.5, 2 mM 
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EDTA, 1 mM MgCl2, 5 mM ascorbic acid) using a polytron homogenizer. After 

filtration the homogenate was centrifuged at 760 g at 4 min, 4°C. The pellet was 

resuspended in washing buffer (5 mM sorbitol, 50 mM HEPES pH 7.5) and 

centrifuged again. The pellet was resuspended in TMK buffer (100 mM sorbitol, 50 

mM HEPES pH 7.5, 5 mM MgCl2) and the sample was incubated 10 min on ice, 

centrifuged and resuspended in a small volume of TMK buffer. Chlorophyll content 

was measured. 

 

2.4.5 Solubilization of thylakoid membranes  
For analysis of photosynthetic protein complexes via BN-PAGE thylakoid 

membranes according to 30 μg chlorophyll were pelleted at 3300 g, 3 min, 4°C, then 

solubilized in 70 μl ACA buffer with n-dodecyl β-D-maltoside (β-DM) (1.1% final 

concentration) for 10 min on ice. After 10 min centrifugation at 16000 g, 4°C 

supernatant was loaded on BN-PAGE. 

 

2.4.6 Thylakoid membrane wash from A. thaliana 
Thylakoids isolated as described in section 2.4.2, were sonicated on ice with three 

1 min pulses applied at 5 min intervals. Immediately, broken thylakoids were mixed 

with different salt solutions (final concentration of 1 M NaCl, 100 mM Na2CO3, 3 mM 

urea or 1% LDS, respectively) and incubated for 30 min on ice. The samples were 

further centrifuged for 10 min at 10000 g and 4ºC to separate the soluble and 

membrane fraction of the thylakoids. 

 

2.4.7 Trypsin digestion of thylakoid membranes from A. thaliana 

Intact thylakoids isolated as described in section 2.4.2 were diluted to a final 

concentration of 1 mg/ml of chlorophyll in 1 ml in digestion buffer (50 mM HEPES 

pH 8, 5 mM MgCl2) and incubated for 15 min on ice. Afterwards, 20 μl of trypsin at 1 

mg/ml was added to 1 ml of thylakoids (final trypsin concentration 20 μg/ml) and 

incubated on ice for 5, 10 and 15 min. The reaction was stopped by adding SDS-

loading buffer. 
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2.4.8 In vitro import into chloroplasts from P. sativum  
10 μg chlorophyll was used in a final reaction volume of 100 μl import buffer (330 

mM sorbitol, 50 mM HEPES pH 7.6, 3 mM MgCl2, 10 mM methionine, 10 mM 

cysteine, 0.2% BSA, 3 mM ATP) together with 4 μl 35S labeled, reticulocyte lysate 

translated preprotein. Import was performed for indicated times at 25°C. Sample was 

loaded on 300 μl of 40% percoll solution to reisolate intact chloroplasts by 

centrifugation at 4500 g, 5 min, 4°C. Pellets were washed twice in 100 μl washing 

buffer (1100 g, 1 min, 4°C) then resuspended in SDS loading buffer, heated for 3 

min at 95°C and loaded onto a SDS gel. Radioactive signals were detected by 

exposure overnight to BAS-MS phosphor imaging plates (FUJIFILM). 

 

2.4.9 In vivo translation of proteins in Arabidopsis seedlings 
Arabidopsis seedlings grown for 10 days on MS medium with sugar were taken and 

immersed into 50 μl of 1 mM KH2PO4. To this mix 30 μCi 35S methionine (Perkin 

Elmer, Walluf, Germany) was added and vacuum infiltration was applied. Afterwards, 

samples were incubated at 25ºC for the indicated time points with illumination (125 

100 μmol / m2s). Subsequently, the buffer was discarded, and the seedlings were 

washed twice with 500 μl of Na2CO3. Finally, the seedlings were homogenized in100 

μl isolation buffer (330 mM sorbitol, 50 mM HEPES pH 7.5, 2 mM EDTA, 1 mM 

MgCl2, 5 mM ascorbic acid) by using a pistil. The homogenate was then centrifuged 

for 3 min at 6000 g and 4 ºC. The pellet was washed twice with washing buffer (5 

mM sorbitol, 50 mM HEPES pH 7.5) by centrifuging the samples for 3 min at 6000 g 

and 4 ºC. Finally, samples were used for photosynthetic protein complexes analysis 

via BN-PAGE as it is described in section 2.4.5. To separate soluble and membrane 

proteins, infiltrated seedlings were homogenized in60 μl of 100 mM Na2CO3 by using 

a pistil and centrifuged for 15 min at 16000 g and 4 ºC. The supernatant containing 

the soluble proteins was stored and the pellet was further washed with 100 μl of 20 

mM Na2CO3 by centrifuging the samples for 15 min at 16000 g and 4 ºC. The pellet 

was then resuspended in50 μl of 100 mM Na2CO3. Soluble and membrane proteins 

were further separated by SDS-PAGE as described in section 2.3.6. 
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2.4.10 RNAse A treatment 
Soluble proteins from A. thaliana were isolated as described in section 2.3.4. The 

protein concentration was adjusted to 1.5 mg/ml in 5 ml. For RNAse A treatment, 

200 μl of RNAse A (0.4 mg/ml) were added to 2 ml of the soluble proteins and the 

reaction was incubated for 1 hon ice. In parallel, 2 ml of soluble proteins were 

incubated with the addition of 50 U RibolockRI (Thermo Fisher Scientific). The 

proteins were further separated by loading 2 ml of the samples onto continuous 

sucrose gradients (5% -40%), which were centrifuged for 3 h at 100000 g and 4ºC. 

The gradients were fractionated into 1 ml fractions and the proteins were precipitated 

by using TCA as described in section 2.2.8. 

 

 

2.5 Plant biological methods 
 

2.5.1 Plant growth conditions  
Pea (Pisum sativum) was grown under long day conditions (14 h light / 10 h dark). 

A. thaliana WT Columbia ecotype (Col-0) and the mutant plants were grown either 

on soil or on half-strength MS (Murashige and Skoog) medium supplied with 1% 

sucrose and 1.2% agar-agar under controlled conditions in a growth chamber (16 h 

light / 8 h dark, 22°C, 100 μmol / m2s in fluorescent light conditions). For plants grown 

on soil; Seeds were sown and vernalized at 4°C in the dark for 2 days to synchronize 

germination. For sowing seed on sterile plates, seeds were surface-sterilized by 

washing once with 70%ethanol with 0.1% Tween-20 for 15 min and then thrice with 

100% ethanol, dried before sowing. The plates were sealed and vernalized at 4°C 

for 2 days. For phenotyping analysis plants were grown on soil in long day condition 

(16 h light / 8 h dark, 22°C, 100 μmol / m2s in fluorescent light conditions). 

 

2.5.2 Stable transformation of A. thaliana with A. tumefacium  
400 ml LB medium was inoculated with preculture of transformed A. tumefacium 

strain GV3101 and grown over night. Cells were harvested by 20 min centrifugation 

at 1900 g, resuspended in Silwet medium (5% sucrose, 0.05% silwet L-77) and 
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adjusted to an OD600 of 0.8. Flowering A. thaliana plants were dipped for 5 sec in 

cell suspension. Seeds from transformed plants were selected on MS medium with 

50 mg/l kanamycin or 15 mg/l hygromycin. 

 

2.5.3 Transient transformation of N. benthamiana 

Subcellular localization of proteins was analyzed by transient expression of GFP-

fusion proteins in 3 - 4 weeks old Nicotiana benthamiana plants. Agrobacterium 

tumefaciens (AGL1) transformed with plasmid of interest was grown in LB medium 

with appropriate antibiotics. When cell density of 0.5 OD600 was reached, cells were 

pelleted (centrifugation: 15 min at 4000 rpm) and resuspended in infiltration medium 

(10 mM MgCl2, 10 mM MES / KOH pH 5.6, 150 μM Acetosyringone) such that OD600 

was 1. This cell suspension was incubated in dark for 2 h (rotating) and then used 

to infiltrate the abaxial surface of Nicotiana benthamiana leaves. Infiltrated plants 

were kept for two-three days before isolation of protoplast for observing the 

expression of GFP-fusion protein. 

 

2.5.4 Isolation of protoplast from N. benthamiana for GFP localization 
Nicotiana benthamiana leaves transiently expressing GFP-fusion proteins were 

used for isolation of protoplasts. The leaves cut approximately into 0.2 - 0.4 cm wide 

and 1 cm long stripes were incubated in 10 ml enzyme solution (1% Cellulase R10 

and 0.3% Macerozyme R10) made in F-PIN medium (MS medium PC-vitamins [200 

mg/l Myoinositol, 1 mg/l thiamin-HCl, 2 mg/l Ca-panthotenate, 2 mg/l nicotinic acid, 

2 mg/l pyridoxin-HCl, 0.02 mg/l biotin, 1 mg/l 6-benzylaminopurin (BAP), 0.1 mg/l α-

naphtaleneacetic acid (NAA)], 2 mM MES pH 5.8, 5 mM KNO3, 1.5 mM CaCl2, 0.75 

mM MgSO4, 0.625 mM KH2PO4, 20 mM NH4-succinat, 80 g/l glucose [550 Osm]) for 

2 h rotating in dark at 40 rpm on bench top shaker. After a short 1 min rotation at 80 

rpm, the suspension was filtered through 100 μM Nylon-membrane and overlaid with 

2 ml F-PCN medium (F-PIN, except instead of glucose, sucrose was added as the 

osmoticum). The gradient was centrifuged for 10 min at 70 g (slow deceleration) to 

separate intact protoplasts at the interface between the F-PIN and F-PCN media. 

The protoplasts were transferred to new tubes and washed with 10 ml W5 buffer 



 38 

(centrifugation: 10 min at 50 g) and resuspended with 200 μl of W5 (2 mM MES ph 

5.8, 125 mM CaCl2, 5 mM KCl, 550 Osm glucose).To stain mitochondria, 5 μl of 

Mitotracker orange (Thermo Fisher Scientific) were added and incubated in dark for 

30 min. Protoplasts were then centrifuged at 100 g for 1 min at RT and resuspended 

in W5 buffer. GFP as well as Mitotracker orange fluorescence was observed with a 

TCS-SP5 confocal laser scanning microscope (Leica, Wetzlar, Germany). 

 

2.5.5 Photosynthetic performance by pulse amplitude modulation analysis 
(PAM) 
The kinetics of induction of chlorophyll a fluorescence in WT and mutant leaves was 

measured using a pulse-modulated fluorimeter (DUAL-PAM100; Walz). Leaves, 

dark adapted for at least 15 min, were used to analyze minimal (F0) and maximal 

(Fm) fluorescence yields, the latter being determined by application of a saturating 

light pulse (1-s duration, 500 μmol photons m−2 s−1). The potential maximum 

quantum yield of PSII was measured as (Fm − F0)/Fm = Fv/Fm (Schreiber et al., 1998). 

PSI yield in leaves was measured as absorption changes at 820 nm induced by 

saturating pulses and far-red light (12 W m−2 as measured with a YSI Kettering 

model 65 A radiometer) in the absence or presence of actinic light (650 nm, 20 and 

250 μmol m−2 s−1) using the DUAL-PAM100 (Klughammer & Schreiber, 1994). Other 

parameters were calculated using the algorithms provided in the DUAL-PAM100 

software (Walz). 
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2.6 Microscopy 
 

2.6.1 Analysis of chloroplast ultrastructure 
Sample preparation and imaging was performed by Prof. Dr. Andreas Klingl 

(Department of Biology I, Ludwig-Maximillian’s-University Munich). Plant leaves 

were cut into small pieces (1 x 1 x 1 mm or smaller) in 75 mM cacodylate buffer 

containing 2 mM MgCl2 and 2.5% glutaraldehyde. After over-pressure/normal 

pressure infiltration with the fixation buffer and storage of the samples overnight at 

4°C, the samples were post-fixed with 1% osmium tetroxide for 1 h. This step was 

followed by dehydration in a graded acetone series: samples were successively 

incubated in 10% acetone for 15 min, 20% acetone supplemented with 1% uranyl 

acetate for 30 min and in 40, 60 and 80% acetone for 20 min each. Finally, the 

samples were put into 100% acetone at least twice (for 5 min, then overnight). 

Afterwards, the plant tissue was infiltrated with Spurr’s resin and polymerized at 63°C 

for at least 16 h. After thin sectioning, the material was examined on a Zeiss EM 912 

with an integrated OMEGA filter for transmission electron microscopy (TEM). The 

acceleration voltage was set to 80 kV and the microscope was operated in the zero-

loss mode. Images were acquired using a 2k x 2k slow-scan CCD camera (TRS 

Tröndle Restlichtverstärkersysteme, Moorenweis, Germany). 
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3 Results 

3.1 RV-1 

3.1.1 Phylogenetic conservation of RV-1  
The protein RV-1 (AT4g37920) was selected from a proteomics screen, which was 

performed earlier on chloroplasts from very young pea plants in the laboratory of 

Prof Jürgen Soll. Due to its prediction of a chloroplast transit peptide it was selected 

as a potential candidate involved in chloroplast biogenesis. Phylogenetic analysis in 

photosynthetic organisms revealed a clear conservation in higher plants (Figure 4).  

 

 

 
Figure 4. Evolutionary conservation of RV-1 and RV1-like. Phylogenetic tree of RV-1 and RV1-

liek protein sequences was constructed by the maximum likelihood method. The evolutionary 
distances were computed using the Jones-Taylor-Thornton (JTT) model. Represented in green are 

the species that contain at least one homolog of RV-1 and in red those with at least one homolog of 

RV1-like. Those species represented in black contain one gene homolog to both RV-1 and RV-1-like. 

Individual accession numbers are given in Material and methods.  
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Furthermore, an RV-1 paralog was identified, with a sequence identity of 41%, which 

was likewise found to be conserved in higher plants (Figure 4), we accordingly 

termed it RV-1-like (AT1G36320). Interestingly a search for conserved domains (with 

NCBI Blast) (Marchler-Bauer et al., 2017) revealed the presence of a RelA/SpoT 

domain (accession TIGR00691), also called RSH for RelA and SpoT homologs. 

However, the domain is only conserved to a relatively low level (Bit Score 38.91, e-

value 5.45 e-3 with RV-1). These proteins have been identified to control translation 

and RNA stability by synthesizing (p)ppGpp which inhibits translation (Potrykus & 

Cashel, 2008). Additionally, both RV-1 and RV-1-like have a distant homology with 

an RNAse E protein from rice of 53% (within a stretch of 200 aminoacids in RV1, 

see black box in Figure 5) and 48% of identity (within 174 aminoacids) (accession 

BAD44933). This type of RNAses have been described to be involved in rRNA 

processing (Carpousis et al., 2009) (Figure 5). Interestingly, no distinct homologs of 

both RV-1 and RV-1-like were found in cyanobacteria, algae or mosses. 
 

 
 

Figure 5. Amino acid conservation between RV-1 and RV-1-like. Protein sequences from 

Arabidopsis thaliana were aligned using BLASTp (Altschul et al., 1997). Amino acids highlighted with 
red correspond  to positions with indentical residues for both proteins. The black box represents the 

domain found to be similar to an RNAse E domain from a Oryza sativa protein (locus BAD44933). 

The green box represents the region with homology to the RelA/Spot family domain (accession 

TIGR00691). 
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3.1.2 RV-1 localization in chloroplasts 

To validate the localization of RV-1 (from A. thalina) in chloroplasts, tobacco leaves 

were infiltrated with Agrobacteria bearing a construct for the over-expression of RV-

1 fused to GFP at its C-terminus (Figure 6). The fluorescence of GFP in the 

protoplasts isolated from the infiltrated leaves was colocalized with the 

autofluorescence of chlorophyll from chloroplasts indicating its possible chloroplast 

localization. 

 

 

 
 

Figure 6. RV-1 protein is localized in chloroplasts. Tobacco leaves were infiltrated with 
Agrobacteria containing the vector of RV-1 fused to GFP. After two days of incubation, protoplasts 

were prepared from the infiltrated leaves and visualized with confocal microscopy. 

 

 

Furthermore, in order to corroborate the chloroplast localization of RV-1 and to   

know the length of the mature form of the protein (mRV-1) in-vitro import analyses 

were performed. Therefore, chloroplasts from peas were isolated and the RV-1 

precursor was synthesized in-vitro from the full CDS of Arabidopsis (pRV-1). 

Additionally, the chloroplast protein ferredoxin-NADP+-oxidoreductase (FNR), was 

used as a positive control. The precursor and mature forms for both proteins were 

identified by the radioactive signal of their polypeptides synthesized with methionine 
35S. In order to identify the mature form of each protein, chloroplasts subjected to 
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import were further treated with thermolysin for the digestion of non-imported 

precursors. As a result, the FNR protein showed a size shift corresponding to the 

cleavage of its TP to produce its mature form and validating the competence of the 

chloroplast to perform import. For RV-1, the import showed also a size shift from its 

precursor into a mature form of 45 kDa (Figure 7A). In silico analysis for RV-1 

predicted a TP of 6.8 kDa (analysis done using ChloroP software) (Emanuelsson et 

al., 1999), however the experimental data revealed that the true TP consists of about 

the first 34 aminoacids (with a size of 3.8 kDa). This result supports the in-vivo 

localization observed by the fluorescence of GFP fused to RV-1 indicating that it is 

indeed localized in the chloroplast. 

Additionally, the mature form of RV-1 was heterologously over-expressed in E. coli 

and purified, from which antibodies were raised. Chloroplast sub-compartments 

were separated in order to identify RV-1 localization within the chloroplast. As 

expected, due to lack of hydrophobic regions on its sequence, RV-1 was found to be 

located in the stroma of chloroplasts (Figure 7B). The band obtained in the 

immunoblot matches with the size of the mature form of RV-1 of 45 kDa observed in 

the in in-vitro import, thus corroborating the correct size of the protein. The 

distribution of RV-1 in the different subcompartments was observed by its 

accumulation in the stroma as it also does the protein fructose-1,6-

bisphosphate (FBPase) which was used as a marker for stroma proteins. On the 

other hand, marker proteins for thylakoids as LHCbII, inner envelope TIC110 and 

outer envelope OEP37 showed the purity of the fractions indicating the absence of 

RV-1 in these  
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Figure 7. The protein RV-1 is localized in the stroma of chloroplasts. (A) Intact chloroplasts 

isolated from peas were used to perform import analyses by using in-vitro translated precursors (Pre) 

radiolabeled with methionine 35S. After import, chloroplasts were treated with thermolysin to digest 
the fraction of precursor that was not imported. The stromal protein ferredoxin-NADP+-

oxidoreductase (FNR) was used as positive control for import. Asterisks indicate the mature form for 

each protein after being imported into chloroplasts. (B) Chloroplasts from peas were isolated and 

their specific sub-compartment separated by using discontinuous sucrose gradients. Immunoblots 

were performed by using specific antibodies against RV-1 and maker proteins for each compartment; 

OEP37 (outer envelope, OE), TIC110 (inner envelope, IE), FBPase (stroma, Str) and LHCII 

(thylakoids, Thy). 

 

 

3.1.3 Isolation of rv-1 mutant lines 
Two independent T-DNA insertion lines in the background of Col-0 (N347947 and 

N580811) were studied. The isolation of homozygous plants showed that the 

mutation on RV-1 gene is seedling lethal, producing albino plants which can survive 

when grown on sugar till expanding their first true leaves but not producing seeds 

nor increasing size. A younger plant stage 14 days after germination with expanded 

cotyledons is shown in Figure 8A. The genotype of the lines was screened by 

performing PCR using different primer arrangements to amply either the mutant or 

WT allele (Figure 8B). The WT PCR was performed by using primers flanking the 
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CDS region of the gene, whereas for the mutant PCR the insertion primer from GABI-

Kat was used with either forward CDS primer (for the line N347947) or reverse CDS 

primer (for the line N580811) (Figure 8C upper panel). Furthermore, the line 

N347947 was complemented by transforming heterozygous plants with Agrobacteria 

bearing a construct for the over-expression of RV-1 under the control of the 35S 

promotor. The complementation line was checked by PCR for its homozygous 

mutant genotype along with the presence of the transgene (Figure 8C, lower panel). 

The PCR arrangement done by amplifying the mutant allele as explained above but 

in this case the WT PCR using CDS forward and reverse primers were used to 

amplify the transgene which was 35S::RV-1. In order to identify if the plants had 

heterozygous or homozygous genotype from the insertion, the WT PCR was 

repeated by using the forward CDS primer with a reverse primer annealing in the 3’ 

UTR region which ensures amplification just in case the full sequence is present and 

differs in size from the previous PCR because of the additional intron sequences. 

The phenotype was completely restored in the complemented line (data not shown).  
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Figure 8. Homozygous rv-1 mutant present pale phenotype. (A) Heterozygous seeds from the 

exon insertional line N347947 were sowed on MS plus 1% sugar plates for 2 weeks. The genotype 

of the plants was checked by PCR confirming the pale phenotype for the homozygous plants 

(N347947, rv-1). (B) Gene scheme represents the position of the insertion lines N347947 and 

N580811. The position of the primers used for genotyping are represented as arrows. (C) Genotyping 
was performed by using gDNA from lines N347947 and N580811 (upper panel). For line N347947, 

the mutant allele PCR (m) was performed by using the primers WF and GF on (A). The line N580811 

was genotyped performing PCR for the mutant allele using WR and GF primers. The asterisk 

indicates an unspecific amplicon. WT PCR was performed using WF and WR primers (W). On the 

lower panel is shown the genotyping for the complementation of the line N347947. The WT PCR (W2) 

was performed by using WF and WR2 whereas the mutant PCR was performed as mentioned above.  

 
 

From this point the line N347947 (henceforth referred to as rv-1) was used for further 

studies since both lines showed the same phenotype in homozygous mutants (data 

not shown). Ultrastructure images of chloroplasts on the homozygous rv-1 showed 

an aberrant chloroplast morphology with the absence of thylakoid membranes. 

Overall aberrant chloroplasts in rv-1 were strongly reduced in size in comparison to 
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WT (Figure 9). Accumulation of large vesicle was observed in every chloroplast and 

their sizes were also very different from one another.  

 

 

 
Figure 9. Homozygous rv-1 mutant affected in chloroplast morphology. (D) Heterozygous seeds 

were sowed on MS plus 1% sugar for 3 weeks and true leaves from WT and homozygous plants 

(N347947, rv-1) were excised for electron microscopy analyses. Pictures taken by Prof Andreas 

Klingl. 
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3.1.4 Translation is impaired in rv-1 
Since the homozygous mutant plants showed undeveloped chloroplasts and were 

albino, the ability to perform translation was assessed. Therefore, 21 days old 

seedlings were infiltrated with radiolabeled methionine 35S and then incubated under 

light exposure for 20 min. Proteins were extracted from the seedlings and separated 

into soluble and membrane proteins. In the WT, translation of the large subunit of 

RubisCO was very prominent in the soluble fraction as well for the D1 subunit of PSII 

in the membrane fraction. Surprisingly, the mutant rv-1 showed barely any 

translation in comparison to WT seedlings (Figure 10A). Interestingly, it could be 

observed in the CBB gel even a high reduction in RubisCO content compared with 

the total soluble proteins in the rv-1 mutant as well for LHCs in the membrane fraction 

in comparison to WT. This observation posed the question about the absence or 

presence of plastid ribosomes. This was investigated by isolating total proteins from 

WT and rv-1 mutant seedlings and performing immunoblots using specific antibodies 

against members of the 50S subunit of plastid ribosomes, RPL2 and RPL4. 

Interestingly, this showed the absence of these in the mutant rv-1 seedlings 

compared to WT (Figure 10B). Since absence of thylakoid membranes was 

observed from ultrastructure pictures, the protein TIC110 present in the inner 

envelope of the chloroplast was used as a loading control and to monitor the 

presence of plastid ribosomes, two proteins of the large ribosomal subunit were for 

immunoblot analyses. 

Furthermore, since ribosomes subunits are complexes of protein and rRNA, the 

presence of the rRNA was analyzed by isolating total RNA from WT and rv-1 mutant 

seedlings. As expected, rv-1 showed high reduction of the chloroplast rRNAs, both 

of the 30S and 50S ribosomal subunit, 16S and 23S rRNA, respectively. In 

comparison to WT levels (Figure 10C). However, the 25S and the 18S were even 

slightly more abundant in the mutant compared to WT indicating that the problem of 

translation or ribosomal stability relays on the plastid ribosomes. 
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Figure 10. Homozygous rv-1 mutant plants are impaired in protein translation and lack plastid 
ribosomes. (A) Heterozygous seeds were sowed on MS medium with 1% sugar for 4 weeks. WT 

and mutant seedlings (rv-1) were took and infiltrated with radiolabeled methionine 35S. The total 

soluble and membrane proteins of the plants were extracted to run an SDS-PAGE and the gel then 

exposed to phosphoimaging screen to visualize the labelled proteins. (B) Plants were grown on MS 

medium with 1% sugar for 4 weeks. Immunoblots were performed by extracting total protein content 
from WT and mutant plants and using specific antibodies against RV-1, TIC110 as loading control 

and RPL2 and RPL4 from the 50S subunits in chloroplast ribosomes. (C) Total RNA was isolated 

from WT and homozygous rv-1 mutant plants and analyzed on agarose gel. 

 

 

In order to discard the presence of the plastid rRNAs, northern blot analyses were 

performed by using specific probes for 16S and 23S rRNAs and fresh isolated RNA 

from Arabidopsis plants. Surprinsingly, dispite that in normal agarose gel analysis 

16S and 23S rRNAs appered absent, northern blots revealed that both rRNAs and 

their processed fragments are still present though in both cases the rRNAs are highly 

reduced (Figure 11). 
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Figure 11. Homozygous rv-1 mutant is highly reduced in 16S and 23S plastid rRNA. Total RNA 

isolated from homozygous pale rv-1 mutant plants and WT, grown on MS plus sugar for three weeks, 

were used for northern blot analyses using specific probes against 16S and 23S rRNA. Northern blot 

performed by Dr. Steffen Heinz. 
 

 

3.1.5 Analysis of  a putative RNAse activity of RV-1 
Due to the, albeit distant, homologies to RNA binding and processsing proteins  the 

ability of RV-1 to either degrade or bind to RNA was assesed. Therefore, RV-1 fused 

to MBP was purified from over-expression in E. coli RIPL cells (Figure 12A). 

Interestinlgy, RV-1 was not able to degrade RNA isolated from WT plants nor DNA 

(Figure 12B). Since it is known that plastid rRNAs undergo steps of processing from 

precursors, putative specific RNAse activity was tested by using plastid precursors 

rRNAs 16S and 23S. Likewise, these rRNAs were not suceptible to any degradation 

by RV-1 (Figure 12C).  
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Figure 12. RV-1 does not present RNAse activity. (A) Over-expression of RV-1 fused to MBP in 

RIPL cells and purified by Ni2+ beads. The fractions indicated in the SDS-PAGE gel correspond to 

flow through (FT), washes (W1, W2, W3 and W4) and elution (E). (B) Total RNA was isolated from 3 

weeks old Arabidopsis plants and then used to performed RNAse assays by using purified RV-1 fused 

to MBP. As a negative control for RNAse activity was used the purified MBP protein. The RNA and 

DNAg (as negative control) were run on agarose gel. (C) In-vitro transcribed 16S and 23S 
chloroplasts rRNA were used to perform RNAse assays by using RV-1 fused to MBP. The RNAs 

were analyzed by running them on an agarose gel  

 

 

Besides its putative RNAse activity, the ability of RV-1 to bind RNA was tested by 

performing an electrophoretic mobility shift assay (EMSA) and using radiolabeled 

plastid 16S and 23S rRNAs. Interestingly, neither 16S nor 23S rRNAs could be 

targets for the putative RV-1 binding activity (Figure 13). As positive control, the 

protein PAC was used, which is known to bind 23S rRNA (Meurer et al., 2017). 
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Figure 13. RV-1 does not bind to chloroplast rRNAs. Plastid rRNA 16S and 23S were cloned and 

in vitro synthesized by using radiolabeled UTP (α 32P) to perform EMSA analysis. The recombinant 

protein RV-1 fused to MBP was freshly isolated used for binding assays with the synthesized RNAs 
by incubation of 30 min at RT. After this the samples were run in 1% agarose gels and transferred to 

a membrane by Northern Blot. As positive control the PAC protein was used and MBP as negative 

control. 

 

Despite the evidence showing that RV-1 does not bind or degrade plastid rRNAs, its 

potential to bind to ribosomes was investigated further. Stroma samples from WT 

Arabidopsis plants treated with or without RNAse A were separated onto continuous 

sucrose gradients. During RNAse A treatment, ribosomes should be disassembled 

due to the absence of RNA thus shifting their distribution in a sucrose gradient. The 

same behavior would also be expected for proteins associated to those ribosomes. 

The gradients were separated into 12 fractions which were further precipitated with 

TCA to analyze their protein content performing immunoblots. The majority of RV1 

accumulated in fractions with a very low sucrose concentration, suggesting this 

fraction of the protein is not part of a larger complex. However, a portion of RV1 was 

also found to accumulate at higher sucrose concentrations and in fact co-migrated 

with the ribosomal subunit RPL4.  Interestingly, RV-1 was shifted upon RNAse A 

treatment as was RPL4 (Figure 14). This indicates that even though RV-1 is not able 

to bind plastid rRNAs, it might be nevertheless associated to ribosomes. 
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Figure 14. RV-1 forms RNAase A sensitive complexes that co-migrate with ribosomes. Stroma 

fractions from peas chloroplast were isolated and treated with RNAse A or RNAse inhibitor. These 
samples were separated in sucrose gradients for immunoblot analyses of the different fractions using 

specific antibodies against RV-1 and the 50S subunit of chloroplasts ribosomes RPL4. 

 

 

In order to analyze the function of RV-1 in more detail, RNA interference (RNAi) lines 

for the RV-1 gene were generated in Col-0 background. As expected, over-

expressing RNAi lines were affected in greening of leaves as well as overall fitness 

of the plants. However, they reached adulthood and were able to produce seeds 

(Figure 15A). In order to verify that the phenotype correlates with a decrease in RV-

1 levels, the down-regulation of RV-1 expression due to RNAi was tested by 

performing immunoblots. As expected, RV-1 is highly reduced in the RNAi mutant 

line in comparison to the WT, and therefore it validates the affected phenotype in the 

RNAi line (Figure 15B). Interestingly, when analyzing the ultrastructure of chloroplast 

of the RNAi line 1 in comparison to WT it is possible to observed severly affected 

chloroplast similar to Figure 9. Nevertheless, chloroplast containing thylakoid 

membranes are also observed though also affected with reduced grana stacks in 

comparison to WT (Figure 15C). These lines will be useful for further analysis to 

monitor their chloroplast function and content since they can grow on soil being able 

to produce enough plant material. 
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Figure 15. Down-regulation of RV-1 affects Arabidopsis plant development at all stages. (A) 
WT plants were stably transformed with a construction for down-regulation of RV1 expression by 

RNAi in the vector pOpOff2. Stable lines affected in their development were selected. Plants were 

grown on soil for 3 weeks and just two out of three survived to produced seeds. (B) Immunoblots 

were done by isolating total protein from the RNAi line 1 and WT plants. Specific antibodies were 

used to detect RV-1 and as loading control TIC110. (C) Arabidopsis plants from the RV-1 RNAi line 

1 and WT were grown on soil for 3 weeks under long day conditions and their leaves were excised 

for electron microscopy analyses. The scale bars represent for each case 500 nm. Pictures taken by 

Prof Andreas Klingl. 
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3.1.6 Characterization of the RV-1-like gene 
As mentioned above, RV-1 has a paralog, termed RV-1-like. In-silico analysis for its 

localization using the online server TargetP 1.1 showed chloroplast predicted TP 

(Emanuelsson et al., 2000). Therefore, we proceeded to investigate the localization 

of RV-1-like experimentally. The expression of a RV-1-like-GFP fusion protein in 

tobacco leaves was analyzed. In addition to infiltrating leaves RV-1-like-GFP 

construct, protoplast extracted from those leaves were further treated with 

Mitotracker orange to visualize mitochondria on the microscope. Surprisingly, the 

GFP signal obtained did not colocalize with chlorophyll but with the mitotracker signal 

suggesting that RV-1-like is localized in the plant mitochondria (Figure 16).  

 

 

 
Figure 16. RV-1-like is localized in plant mitochondria. Tobacco leaves were infiltrated with 

Agrobacteria containing the vector of RV-1-like fused to GFP. After two days of incubation, protoplasts 

were prepared from the infiltrated leaves. Protoplast were incubated with Mitotracker and then 

visualized with confocal microscopy. 

 

 

In order to understand the relevance of RV-1-like for plant growth, a T-DNA mutant 

line, with the T-DNA located in the last exon of RV-1-like gene, was used for further 

studies (GK844F05, henceforth referred to as rv-1-like) (Figure 17A). Genotype 

analyses was performed with primers located at the fourth exon as forward and at 

the last exon as reverse for the WT PCR. On the other hand, for the mutant PCR it 

was used the forward GABI-kat primer with the forward primer at the fourth exon of 

RV-1-like gene. This showed that the heterozygous plants did not produce 
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homozygous individuals but rather a distribution of 50% WT and 50% heterozygous 

plants (analyzing around 50 individual plants). Therefore, the siliques of the 

heterozygous plants were analyzed in order to identify aborted embryos which might 

explain the absence of homozygous plants in the segregation of the heterozygous 

rv-1-like line. Indeed, the siliques from heterozygous rv-1-like plants showed empty 

spaces (Figure 17C). Furthermore, heterozygous rv-1-like showed a reduced 

amount of seeds per silique and an increased number of empty spaces or aborted 

embryos per silique (Table 6). 

 

 

 

 

 

 

 

 

 

 



 57 

 
 

Figure 17. Homozygous mutant plants for RV-1-like are not viable. (A) Schematic representation 

of the rv-1-like gene. The T-DNA insertion site is indicated as a triangle. The primers used for 

genotyping are represented as arrows. (B) Genotypification of heterozygous rv-1-like plants. PCR 

was conducted using forward and Gabi-forward (GF) primers for the mutant PCR (m) and WF 

whereas the WT PCR with the primers WF and WR (W). (C) Heterozygous seeds for an insertion 

mutant line for rv-1-like were grown for 6 weeks. Siliques were taken and opened to observed aborted 
embryos.  

 

 

 

 

 

 

 



 58 

 

Genotype 

 

Nº of seeds / Silique 

 

Aborted embryos / Silique 

WT 44.5 ± 1.2 0 

rv-1-like h 20.5 ± 2 * 10 ± 0.6 * 

 
Table 6. Heterozygous rv1-like mutant plants present aborted embryos and reduced seeds in 
their siliques. Seeds from the heterozygous mutant line (rv-1-like h) were sowed and plants grew for 

6 weeks on soil. Heterozygous and WT plants were identified by genotyping them with PCR and the 
siliques were used to count their number of seeds as well as aborted embryos per silique. Asterisks 

represent significant differences (P < 0.05) in comparison to the WT based on the t-test. The mean 

of seeds and aborted embryos from 10 siliques taken from 3 independent plants are represented 

along with the SEMs. 

 

 

The phenotype for RV-1 and RV-1-like demonstrated that both genes are essential 

for viability of the plant. Loss of function of RV-1 alters not just chloroplast 

morphology but also the plastid ribosomes stability or assembly  which provides 

insight on its possible function. Whereas RV-1-like is most likely localized in the plant 

mitochondria but still impacting plant viability in its loss of function with the inability 

of producing homozygous individuals. However, the exact molecular function of both 

proteins remains to be invesigated.  

 

 

3.2 PG18  

3.2.1 Characterization of PG18 
Similar to RV1, PG18 (AT4G13200) was selected from the prevoisly performed 

proteomic study. Interestingly, this protein was also found in a proteome analysis 

from PG of Arabidiopsis (Lundquist et al., 2012). It has no kown protein domains and  

phylogenetic analyis showed that PG18 is conserved from higher plants to 

cyanobacteria (Figure 18).  
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Figure 18. PG18 conservation in photosynthetic organisms. Phylogenetic tree showing homology 

of PG18 protein from cyanobacteria to higher plants. The phylogenetic tree was made by using 

distance-based method with the neighbor-joining algorithm and bootstrap value of 100. 

 

 

In order to validate its chloroplast localization, transient over-expression of PG18-

GFP fusion protein was performed under the control of the 35S promoter in tobacco 

leaves. Leaves were infiltrated with Agrobacteria containing the construct and 

protoplasts were isolated two days after the transfection. GFP, as well as chlorophyll 

autofluorescence, was detected in isolated protoplasts with a confocal laser-

scanning microscope. The GFP signal was found exclusively in chloroplasts, where 

it appeared to form punctate structures (Figure 19A). In order to generate antobodies 

against PG18, the protein was over-expressed in E. coli RIPL cells and the purified 

protein was used to raised the specific antibodies. As PG18 did not show any 

hydrophobic region in its aminoacid sequence but it was found in PGs, the solubility 

of the protein was assesed by separating WT Arabidopsis total proteins in soluble 

and membrane fractions. Surprinsilgy, the PG18 protein was found exclusively in the 

membrane fraction using specific antibodies againts PG18 (Figure 19B). 
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Furthermore, in order understand the assosiation of PG18 with membranes, 

thylakoids were isolated and washed with several buffers. Then the membrane 

fraction was treated with 1 M NaCl, 0.1 M Na2CO3, and 3 M urea to ascertain whether 

PG18 is attached to the membrane by hydrophobic or electrostatic interactions and 

could therefore be removed by any of these agents (Figure 19C). Incubation with 

buffer (HEPES/KOH 5 mM, EDTA 5 mM, pH 7.5) served as a negative control and 

disruption of the membrane with 1% LDS was applied to achieve total solubilization 

of the membrane. Only the treatment with 1% LDS resulted in complete solubilization 

of PG18. However, a small amount of PG18 was found in the supernatant after 

treatment with 3 M urea (Figure 19C). To assess the efficiency of these treatments, 

the blot was probed with OE33 antiserum. OE33 is a peripheral lumenal protein and 

is at least partially extracted by each of the agents mentioned above, as they all 

damage the integrity of the thylakoid membrane (Figure 19C) (Bhuiyan et al., 2015). 

Cytochrome f (Cyt f) was used as an example of an integral membrane protein and, 

as expected, it is solubilized only by treatment with 1% LDS (Figure 19C). Several 

proteomics studies have identified PG18 in PGs (Friso et al., 2004; Peltier et al., 

2004; Ytterberg et al., 2006) and therefore it was set out to test this further. To this 

end, pea chloroplasts were fractionated into PGs and thylakoid membranes. Pea 

plants were chosen instead of Arabidopsis for this experiment because they provide 

larger amounts of leaf material. Thylakoid membranes and PGs were separated on 

a sucrose density gradient, and selected fractions were subjected to SDS-PAGE and 

subsequently probed with antisera against LHC1a as a thylakoid marker, 

plastoglobulin 35 (PGL35) as a PG marker and PG18 (Figure 19D). As revealed by 

the distribution of the PG marker protein PGL35, the PG fraction was not 

contaminated with thylakoids, and the majority of PG18 was also detected in this 

fraction. Since PGs are known to be associated with the thylakoid membrane (Austin 

et al., 2006), it is not surprising that small amounts of both PG18 and PGL35 are 

detected in the thylakoid fraction. Additionally, in order to demonstrate that PG18 is 

located at the surface of the PGs, intact thylakoids and their associated PGs were 

treated with trypsin (Figure 19E). As expected, PG18 was completely digested – as 

was the alpha subunit of ATP synthase, which is exposed on the stroma side of the 
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thylakoids – while the lumenal OE33 protein used as a control for thylakoid integrity 

remained intact. Taken together, the observed punctate structures of PG18-GFP, 

the sub-fractionation data, and the fact that PG18 has been assigned to PGs by 

mass spectrometric analyses (Lundquist et al., 2012) led to the conclusion that PG18 

is indeed a PG-localized protein. Considering that none of the PG proteins identified 

so far harbor transmembrane domains but are nevertheless most likely to be 

integrated into the lipid monolayer surface of PGs, the observation that PG18 

behaves similarly to an integral membrane protein upon treatment with various 

chaotropic agents is compatible with the protein’s localization to PGs. 
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Figure 19. PG18 is a membrane-associated protein in PGs. (A) Tobacco leaves were infiltrated 

with Agrobacteria containing a vector expressing PG18 fused to GFP (see Materials and methods). 

Protoplasts were prepared from the infiltrated leaves and visualized with confocal microscopy. (B) A 
total protein extract from Arabidopsis was separated into a membrane (M) and a soluble fraction (S). 

PG18 was detected on immunoblots using specific antibodies. Antibodies raised against TIC110 (a 

membrane protein marker) and FBPase (a soluble protein marker) were used as controls. (C) 
Disrupted Arabidopsis thylakoids were extracted with salt-containing buffers and separated into 

supernatant (S) and pellet (P) fractions by centrifugation. The samples were fractionated by SDS-

PAGE and analyzed immunologically using antibodies specific for PG18, Cyt f and OE33, 

respectively. As a control for the specificity of the anti-PG18 antibody, isolated chloroplasts from the 

mutant line pg18 were also loaded onto the gel. (D) Chloroplast membranes were isolated from 3-

week-old peas. The samples were then further fractionated on a discontinuous sucrose gradient (the 

number of the fraction is indicated above each lane). Immunoblotting was performed and the blot was 

probed for the presence of the marker proteins for thylakoids (LHCA1) and plastoglobuli (PGL35). (E) 
Arabidopsis thylakoids were isolated from plants grown on soil for three weeks. Trypsin digestion of 

thylakoids was performed on ice for 10 min and the samples were analyzed after immunoblotting. An 

antiserum directed against the ATP synthase α subunit was used to ensure that the stromal side of 

the thylakoid was accessible to the enzyme, whereas the lumen protein OE33 served as a marker for 

the integrity of the thylakoids. PGL35 was used as a PG control. 

 

 

3.2.2 Characterization of pg18 mutant lines 
Two independent T-DNA insertion lines in the background Col-0 (N442085 and 

N459729) were obtained (Figure 20A). The genotype of the line N442085 was 

screened by performing PCR (Figure 20B) and was then used for further studies 

(henceforth referred to as pg18). The WT PCR was performed by using forward and 

reverse primers flanking the full CDS sequence of PG18. Whereas for the mutant 

PCR it was assessed two combination of primers which was the GABI-kat forward 

primer with either the reverse or forward primer for the CDS sequence of PG18. 
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Figure 20. pg18 mutant lines isolation. (A) Schematic representation of the pg18 gene. The T-DNA 

insertion site is indicated as a triangle. The primers used for genotyping are represented as arrows. 

(B) Genotypification of pg18 mutant plants (line N442085).  WT PCR was conducted using the 

primers WF and WR (W). On the other hand, mutant PCR was done by using Gabi-forward primers 

(GF) with either WF (m1) or WR (m2) primers. The asterisk indicates an unspecific amplicon and the 
H indicates homozygous and h to heterozygous plant for the line N442085. 

 

 

The mutant was viable on soil but displayed a pale green phenotype under normal 

lighting (NL) conditions (21°C, 120 µmol / m2s light, 16 / 8 h light / dark). Since it has 

been observed that PGs become more abundant under light stress (Zhang et al., 

2010), mutant plants were also exposed to increased light intensities (IL, 250 

µmol/m2s) for 3.5 days, following 17.5 days growth under NL conditions (Figure 21A). 

To ensure that the phenotype correlated with the disruption of the PG18 gene, the 

mutant pg18 line was complemented with a PG18-GFP fusion construct expressed 

under the control of a 35S promoter. A representative example of a complemented 

line is shown in Figure 21A. The knock-out of PG18 was verified at the protein level 

using the specific antiserum (Figure 21B). Total protein extracts of WT and pg18 

were probed with the PG18 antiserum, which detected a specific band at 18 kDa in 

the WT that was absent in the mutant. An antiserum raised against the chloroplast 

protein TIC110 was used as a loading control. In addition, proteins were extracted 
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from the complemented mutant line and likewise probed with PG18 antiserum. A 

protein of 45 kDa was detected, corresponding to the expected size of PG18-GFP. 

These results demonstrate the specificity of the generated antiserum, as well as 

successful complementation of the mutant.  It has been reported that PG proteins 

are strongly expressed under increased light (IL) – with the exception of PG18 

(Ytterberg et al., 2006). To verify this, levels of PG18 in plants were monitored under 

NL and IL conditions. As expected, P18 is equally abundant in NL and IL plants, 

while expression of the core PG protein PGL35 increases upon exposure to high 

light levels (Figure 21C). 

Since the pale phenotype indicated a defect in chloroplasts, the phenotype was 

analyzed at the ultrastructural level (Figure 21D). Interestingly, when examined at 

higher magnification, the stroma lamellae in pg18 mutant chloroplasts are shorter 

and appear to be stacked, rather than present in single layers. Moreover, the stroma 

lamellae exhibit less branching between grana stacks, while the latter display a more 

compact organization and generally consist of more layers in the mutant than in the 

WT or the complemented line. This effect is observed under both NL and IL 

conditions, although it is more pronounced in IL (Figure 21D). In comparison to the 

WT, the cross-sectional area of pg18 chloroplasts is significantly smaller under both 

conditions (Figure 21E). Interestingly, under both light conditions, PG abundance 

per chloroplast is also reduced in the mutant chloroplast in comparison to WT. The 

number of PGs increases under IL in the WT by 100%. Strikingly, this effect of 

exposure to IL is also observed in the mutant, in spite of the overall reduction in the 

numbers of PGs (Figure 21F).  
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Figure 21. PG18 is required for normal development of A. thaliana. (A) WT, homozygous mutant 

(pg18) and complemented mutant plants (35S::PG18-GFP) were grown in long-day conditions for 

three weeks (normal light, NL) and for 17.5 days under 120 µmol photons m-2 s-1 followed by 3.5 days 

under 250 µmol photons m-2 s-1 (increased light, IL). (B) Total protein extracts from WT and pg18 

mutant plants were gel-fractionated and immunoblots were prepared. The PG18 protein was detected 

with specific antibodies. TIC110, a protein found in the inner envelope of the chloroplast was used as 
a loading control. The immunolabeled PG18-GFP is highlighted with an asterisk. (C) Total protein 

was extracted from plants grown under NL and IL conditions, and subjected to immunoblot analysis. 

The PG18 protein was detected using the specific antibodies mentioned above. The alpha subunit of 

the chloroplast ATP synthase was used as a loading control. Antibodies against PGL35 were used 

to show PG accumulation under IL relative to NL conditions. (D) Plants were grown in long-day 

conditions for three weeks under NL and IL as explained in (A), and the leaves were excised for 

electron microscopy. Scale bars represent 500 nm. Thylakoid ultrastructure zooms in plants grown 

on the panels bellow under NL or IL conditions. The scale bar corresponds to 200 nm. Pictures taken 
by Prof Andreas Klingl. (E) Quantification of chloroplast area (in µm2). The bars represent standard 

error (SEM) and asterisks represent significant differences (P < 0.05) in comparison to the WT 

(Student’s t-test). (F) Numbers of PGs per chloroplast. The bars represent the standard error (SEM) 

and asterisks represent significant differences (P < 0.05) relative to the WT based on the t-test. 

 

 

3.2.3 Arabidopsis pg18 mutant plants show symptoms of light stress  
To assess differences in thylakoid pigments that might be related to the mutant 

phenotype, the pigment content of pg18 leaves was analyzed. Chlorophylls a and b 

were indeed reduced in the mutant, in agreement with its pale green phenotype (20% 

and 36% reduction for chlorophylls b and a respectively); however, only the 

difference in chlorophyll a relative to the WT was significant (Figure 22A).  

Analysis of carotenoid content revealed that β-carotene was significantly reduced in 

the pg18 mutant compared to WT, irrespective of the lighting conditions during 

growth. In particular, the level of the protective carotenoid lutein was reduced in the 

mutant under IL conditions, whereas the neoxanthin content remained unchanged 

(Figure 22B). Further pigments related to photoprotection, specifically constituents 

of the xanthophyll cycle, were also analyzed. In WT plants under NL conditions, 

violaxanthin (Vx), which binds to light-harvesting complexes (LHCs), is by far the 

most abundant of these, but upon light stress this compound undergoes two de-
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epoxidation steps to produce the intermediate antheraxanthin (Ax) and finally 

zeaxanthin (Zx). On the return of NL, this process is reversed, with epoxidation of Zx 

regenerating Vx. Interestingly, antheraxanthin (Ax) and zeaxanthin (Zx) levels were 

clearly increased in the mutant, suggesting a light stress response, although the pool 

of xanthophyll cycle pigments as a whole (the VAZ pool) was not markedly altered, 

except under IL conditions, where the mutant pg18 showed a higher overall pigment 

content (Figure 22C). However, the ratio of the xanthophyll intermediates, which 

takes the de-epoxidation reactions into account reveals that both lighting conditions 

are associated with significantly higher levels of de-epoxidation in the pg18 mutant 

than in WT (Figure 22C), suggesting that the mutant is more susceptible to light 

stress.  
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Figure 22. Pigment analysis of WT and pg18 mutants. Pigments were isolated from 3-week-old 

Arabidopsis plants grown on a long-day photoperiod under NL and IL conditions. (A) Chlorophyll 

content was measured from plants grown under NL and IL conditions. Chlorophyll a and b levels were 

measured and the sum of the two is also represented. The ratio of chlorophyll a to Chl b is shown on 
the right. (B) Carotenoid content measured from plants grown under NL and IL conditions. The 

pigments analysed correspond to β-carotene (Car), lutein (Lu) and neoxanthin (Nx). (C) Xanthophyll 

content and de-epoxidation state (DEPS) of plants grown under NL and IL conditions. The pigments 

measured were violaxanthin (Vx), antheraxanthin (Ax) and zeaxanthin (Zx). VAZ represents their 

sum. The DEPS ratios (on the right) were calculated using the following formula: (Zx + 0.5 * Ax) / (Vx 

+ Ax + Zx) * 100. Values on the Y-axis represent pmol per mg fresh weight (FW) of leaves. Asterisks 

represent significant differences (P < 0.05) in comparison to the WT based on the t-test. Error bars 

correspond to SEMs. Analyses performed by Dr Peter Jahns. 
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3.2.4 Photosynthetic performance is affected in pg18 mutant plants 
Since the ultrastructure of the chloroplast is altered in pg18 mutant plants, their 

photosynthetic performance was analyzed by measuring the quantum yields of both 

photosystems in 3-week-old plants grown under NL and IL conditions using a pulse-

amplitude modulated (PAM) fluorimeter. Both parameters are reduced in the pg18 

mutant, especially under high light intensities (Figure 23A and 23B). Moreover, the 

electron transport rate (ETR) was dramatically reduced by more than threefold in NL 

and about fivefold in NL in the mutant compared to the WT, which is an indication of 

much less efficient electron transport from PSII to PSI (Figure 23C). Interestingly, 

however, levels of nonphotochemical quenching (NPQ) in the pg18 mutant were 

twice as high as in the WT, which is a symptom of light stress (Figure 23D). 
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Figure 23. Loss of PG18 affects photosynthetic performance. Arabidopsis plants (3 weeks old) 

grown under NL and IL conditions were subjected to chlorophyll fluorescence analysis. (A) Quantum 

yields of photosystem I, Y(I). (B) Quantum yield of photosystem II, Y(II). (C) Electron transport rate 

(ETR) in μmol electrons m-2 s-1. (D) Non-photochemical quenching (NPQ). Data represent mean 

values (+/- SEM), n= 3. 
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Since the differences between WT and pg18 plants follow the same trend regardless 

of whether they are grown and evaluated under NL or IL conditions their recovery 

from photo-inhibition of PSII was analyzed by measuring their Fv / Fm values. 

Interestingly, the degree of photo-inhibition after a 2-h exposure to 1000 µE m2 s−1 

was the same for WT and pg18 plants coming from NL as well for IL conditions. 

Likewise, their Fv / Fm values recovered with the same kinetics on return to normal 

light levels (Figure 24A). This indicates again that PSII is equally susceptible to 

photo-damage in both lines. Additionally, the translation efficiency was assessed to 

discard any effect on biogenesis of the different subunits of the photosynthetic 

complexes. In-vivo translation was performed by infiltrating young WT and mutant 

pg18 plants with methionine 35S and then incubating it for 20 min. Afterwards, 

thylakoids were isolated, and the photosynthetic complexes were separated in a 

Blue native gel. In line with the recovery experiment results, the translation rate for 

WT and pg18 mutant did not show high differences indicating that the defects in 

photosynthetic parameters could come from the accumulation of the complexes 

(Figure 24B). Since the effect on ETR or low quantum yield for both photosystems 

might relate to stoichiometry or assembly of the different complexes in the thylakoid 

membrane, they were considered to be investigated in more detail. 
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Figure 24. Loss of PG18 does not alter thylakoid complexes biogenesis and repair. (A) 
Arabidopsis plants of 3 weeks old grown under normal light (NL) and increased light (IL) were 

exposed to intense light (1000 µE m2 s−1) for two hours and recovery was performed under 30 

µE m2 s−1. PAM measurements were done in order to monitor the status of PSII of WT and the 

mutant plants of PG18 (pg18). Fv / Fm was 0.84 for WT and 0.58 for pg18. Values for Fv / Fm are 
represented as percentage and the error bars correspond to SEM. (B) WT and mutant pg18 seeds 

were sowed on MS medium with 1% sugar for 4 weeks. Seedlings were taken and infiltrated with 

radiolabelled methionine 35S and thylakoid were isolated to run Blue native gel. The gel was then 

exposed to a phosphoimaging screen to visualize the labelled proteins.  
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3.2.5 Loss of PG18 has an impact on the accumulation of thylakoid membrane 
complexes 
In order to monitor abundance of the thylakoid membrane proteins in WT and pg18, 

immunoblot analysis was performed with antisera against subunits of the 

photosystems, the ATP synthase as well as the cytochrome b6f complex. The results 

revealed that components of the ATP synthase (ATPase α and ATPase γ) as well 

as for the subunits of PSI PsaG, PsaD, PsaF and Lhca2 were reduced to approx. 

70% of WT levels (Figure 25A). Moreover, mutant levels of Cyt f did not show 

differences compared to WT as well as for subunits of PSII except for LHCbII, which 

was surprisingly increased by 20%. To analyze the assembly status of thylakoid 

complexes, thylakoid membranes were solubilized with 1% β-dodecylmaltoside and 

separated in Blue native gels (BN) followed by a second dimension of SDS-PAGE. 

In accordance with the immunoblot results, the mutant pg18 showed higher 

accumulation of LHCbs compared to WT and a slight reduction of ATP synthase and 

PSI subunits (Figure 25C). 
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Figure 25. Loss of PG18 has an impact on the accumulation of thylakoid membrane 
complexes. (A) Thylakoids were isolated from plants grown on soil of three weeks old under long 

day conditions. Proteins in the thylakoid membranes were immunodetected by using antibodies 
against subunits of PSI, PSII, ATP synthase and the Cyt b6f complex. Loading of 100% corresponds 

to 20 μg protein and the same amount was loaded for the mutant. (B) Immunoblotting quantification 

using ImageJ. Each column represents percentage in relation to WT with mean value of three 

replicates for each case and the error bars represent SEM with n = 3. (C) Thylakoid membranes were 

isolated from Arabidopsis plants grown on MS sugar plates, and then solubilized with 1% (w/v) DM. 

BN-PAGE (left panel) was followed by separation of protein complexes in the second dimension by 

SDS/PAGE and silver staining (right panel). 
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4 Discussion 

With the development of molecular biology techniques, there has been a rapid 

advance in gaining knowledge about the chemistry and the biology of 

photosynthesis. The last years have seen the development of techniques such as 

X-ray emission spectroscopy to understand the very steps that electrons follow when 

water is split by PSII (Gul et al., 2015). In spite of the deep knowledge that has been 

collected around the photosynthetic complexes, undoubtedly there is still a lot to 

discover since mimicking photosynthesis has turned out to be very challenging 

(Rutherford & Moore, 2008). Furthermore, the biosynthesis of various complexes are 

quite different from one organism to another showing that despite their common 

principle they differ dramatically in assembly and therefore compatibility (Nickelsen 

& Rengstl, 2013). For instance, recently has been elucidated that a thylakoid region 

in cyanobacteria could be dedicated for PSII biogenesis and assembly (Nickelsen & 

Zerges, 2013). Additionally, in higher plants it has been identified that for the 

biosynthesis and assembly of the thylakoid complexes alone there are multiple 

nuclear encoded proteins required (Chi et al., 2012; Schottler et al., 2011; Schottler 

et al., 2015). However, the focus over the past years has been on the protein level 

of the complexes neglecting how important the actual organization of these are and 

how they become organized and segregated in different portions of the thylakoid 

membranes. Attempts to understand the processes that are not just involved protein 

complexes assembly but also in the biogenesis of thylakoids as a whole have started 

with the observation of vesicles (Westphal et al., 2001). In line with this idea, in-silico 

analyses have been done in order to identify candidates with homology to proteins 

known to participate in vesicle trafficking  (Khan et al., 2013). Unfortunately, there is 

still no protein clearly identified which plays a role specifically in vesicle trafficking 

inside the chloroplast making the process even more difficult to tackle. Whether or 

not vesicles play a role in the biogenesis of thylakoids, there are still unknown 

processes that require other ways to be approached for they thorough 

understanding. 
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4.1 RV-1 
The unknown protein named RV-1 was successfully localized to chloroplasts and its 

mature form was identified by import experiments. Despite of not having close 

homologs with known domains, RV-1 is conserved in higher plants highlighting its 

relevance. Other green linages like mosses and algae present distant homologs to 

RV-1 but not to RV-1-like. This suggests that in those linages RV-1 might be dual 

targeted to chloroplast and mitochondria. When analyzing the mutant rv-1 lines, the 

seedling lethal phenotype observed revealed its fundamental role in chloroplast 

biogenesis. In addition of not being able to produce seeds, homozygous rv-1 plants 

were pale and present aberrant chloroplast morphology which indicates that the loss 

of RV-1 might be affecting a very initial step in chloroplast biogenesis. The lethal 

phenotype of homozygous rv-1 plants was very surprising, taking into account that 

its paralog is as conserved as RV-1 is and therefore functional redundancy was 

initially expected. Interestingly, however, the cellular localization of RV-1-like 

showed that it is localized in the mitochondria. This observation revealed that 

probably RV-1 and RV-1-like are derived from an ancestral gene which got 

duplicated and evolutionary distributed into both organelles. The absence of 

homologs in cyanobacteria or even non-photosynthetic prokaryotes posed the 

question about their ancestry from a conserved gene in endosymbiotic organisms or 

from a horizontal gene transfer followed by duplication. Furthermore, the rv-1-like 

mutant line also showed that RV-1-like might play a fundamental role in plant 

physiology since mutant siliques exhibited embryos abortion which is a typical 

phenotype for genes essential for plant mitochondria (Leon et al., 2007; Yamaoka & 

Leaver, 2008). Thus, these observations suggest that both paralogs might have 

similar functions that are essential and shared between chloroplast and 

mitochondria.  

In order to provide insights on the function of RV-1 which turned out to be essential 

for chloroplast biogenesis, the drastic reduction on plastid rRNAs exhibited by the 

rv-1 mutant was investigated in detail. Since proteins like PAC known to participate 

in plastid rRNA maturation also present a similar phenotype with reduction or 

absence of processed rRNA (Meurer et al., 2017), the distant homology of RV-1 to 
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an RNAse E from rice was taken into account. RNAse E proteins were first identified 

in E. coli playing a role in the processing of 5S rRNA (Ghora & Apirion, 1978). Later 

it was found that this family of proteins play similar role in other organisms such as 

Arabidopsis and Synechocystis (Horie et al., 2007; Mudd et al., 2008). It is known 

that RNAse E proteins play a role not just in the maturation of RNA but also in the 

degradation of mRNA (Carpousis, 2007; Carpousis et al., 2009). Thus, the putative 

RNAse E activity of RV-1 was assessed with the unmatured form of plastid rRNAs 

namely 16S and 23S. However, no RNAse activity was observed even when using 

total RNA extracted from young plants. Therefore, the ability to bind rRNA was tested 

again using as targets the plastid 16S and 23S rRNAs. EMSA analyses revealed 

that RV-1 does not have the ability to bind to any of these two rRNAs, whereas the 

protein PAC binds specifically 23S.  

Moreover, RV-1 has a distant homology to RelA and SpoT proteins (RSHs). These 

proteins were characterized to cause inhibition of stable RNA accumulation 

provoked by amino acid starvation in E. coli (Cashel & Gallant, 1969). In prokaryotes 

it has been shown that RelA is responsible for the accumulation of the (p)ppGpp 

which causes failure of stable RNA accumulation (Alfoldi et al., 1962; Potrykus & 

Cashel, 2008). Later it was shown that a RelA homolog SpoT was able to synthesize 

and degrade (p)ppGpp (Battesti & Bouveret, 2006; Seyfzadeh et al., 1993). In 

Arabidopsis, RSHs have been already identified playing a role in chloroplast function 

and gene expression (Sugliani et al., 2016). However, similar to the effect of 

(p)ppGpp in translation (English et al., 2011), rv-1 mutant seedling exhibited drastic 

reduction in de-novo translation of proteins. Furthermore, it has been shown that 

(p)ppGpp inhibits the activity of chloroplast translation in-vitro which could give a hint 

on RV-1 putative function (Nomura et al., 2012). However, the distant homology to 

the RelA/Spot domain and the absence of homology to other RSH proteins makes 

the relation of RV-1 with RelA/Spot probably more evolutive than functional.  

Since RV-1 could neither bind or process any of the plastid rRNA, it was 

hypothesized that it could bind to the ribosomes. The rv-1 mutant plants showed 

absence of plastid ribosome proteins posing the question whether RV-1 could be 

related to the stability or assembly of these ribosomes. Surprisingly, experiments 
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performed by treating stroma with and without RNAse shifted the distribution of RV-

1 in a sucrose gradient separation which was also observed for one subunit of the 

plastid ribosome. This might imply that RV-1 could bind ribosomes similar to proteins 

such as PAC. In order to validate this hypothesis, RNA sequencing of pulled down 

RV-1 might provide its targets. Additionally, since the transit peptide of RV-1 is 

already known it could be assessed the chloroplast localization of the paralog RV-1-

like protein and test its ability to rescue the rv-1 mutant phenotype. Thus, the 

successful complementation of rv-1 mutant by chloroplast RV-1-like could 

demonstrate their functional homology in chloroplast and plant mitochondria.  

 

4.2 PG18 
Several lines of evidence indicate that PGs play an important role in thylakoid 

development. Their number decreases during de-etiolation, while mutants with 

defects in thylakoid formation often accumulate larger numbers of PGs (Babiychuk 

et al., 2008; Kroll et al., 2001). Their function may consist in providing metabolites, 

such as carotenoids and prenylquinones. Additionally, they may be responsible for 

providing triglycerides for membrane lipid synthesis. 

The protein with unknown domain identity named PG18 was investigated for its role 

in chloroplast biogenesis. PG18 is a protein of unknown function that was identified 

in PGs of higher plants by mass spectrometry (Lundquist et al., 2012). With the help 

of a PG18-specific antiserum, it was confirmed that PG18 is indeed localized to PGs. 

Surprisingly, despite the absence of obvious hydrophobic regions in its sequence, 

PG18 behaves as a membrane protein. A previous study on the fibrillin PGL34, 

which likewise does not contain typical transmembrane domains, revealed that most 

deletion variants tested failed to localize to PGs when transiently expressed as GFP 

fusions (Vidi et al., 2006). This suggests that the association of PG proteins with the 

PG monolayer might rely on their folded conformation rather than a particular 

hydrophobic domain. 

The characterization of a loss-of-function mutant of PG18 clearly demonstrates that 

the lack of this protein has a severe impact on plant fitness throughout development. 

Mutant plants show a light green phenotype and are smaller than WT. Since PGs 
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have been shown to accumulate under light stress (Zhang et al., 2010), it was 

assessed whether the mutant line exhibits a stronger phenotype under such 

conditions. Mutants for other PG proteins typically show enhanced phenotypes when 

subjected to light stress (Fatihi et al., 2015; Porfirova et al., 2002; Youssef et al., 

2010). However, the phenotype of pg18 remained essentially the same under NL 

and IL conditions. This indicates that PG18 plays a more general role in chloroplast 

biogenesis. This notion is supported by the fact that pg18 plants have smaller 

chloroplasts and fewer PGs per chloroplast than WT. Interestingly, the number of 

PGs was increased under IL conditions in both WT and pg18 chloroplasts, although 

the latter always contained fewer PGs per chloroplast. This indicates that PG18 is 

not involved in promoting PG accumulation under light stress.  

The pale green leaves of pg18 plants point to a reduction in chlorophyll content. This 

assumption was verified by analyzing the chlorophyll content of leaves from plants 

grown under NL and IL conditions, and the most significant reduction was noted in 

chlorophyll a. The carotenoid fraction revealed a strong reduction in β-carotene in 

the pg18 mutant compared to WT under both NL and IL conditions, whereas the 

reduction in lutein was statistically significant only under IL. PGs are known to play 

a role in carotenoid accumulation, for example in the chromoplasts of fruits and 

flowers (Steinmuller & Tevini, 1985), which are enriched in biosynthetic enzymes 

such as zeaxanthin epoxidase (ZDS) and lycopene-β  cyclase (LYC-β) (van Wijk & 

Kessler, 2017). Therefore, a reduction in carotenoid content could be a reflection of 

PG dysfunction linked to changes in the activity of such enzymes. 

Analysis of the pigments of the xanthopyll cycle in the pg18 mutant showed that 

levels of the photoprotective pigments Ax and Zx were increased relative to WT, and 

further enhanced under IL conditions. These pigments are synthesized from Vx 

under light stress and serve as photoprotectants for PSII, binding to its LHC proteins 

and contributing to energy dissipation as heat (nonphotochemical quenching; NPQ) 

(Gilmore et al., 1995). Thus, pg18 mutant plants show symptoms of light stress even 

under normal light conditions, which probably explains the accumulation of larger 

grana stacks in their chloroplasts. 
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Chlorophyll fluorescence analyses showed that photosynthetic performance in 

general was affected, with both photosystems showing lower quantum yields than 

WT, and these deficits became more pronounced under increased light intensities. 

Taking into account the fact that levels of ATP synthase and PSI were reduced in 

the mutant plants, the reduction observed in ETR can be explained by an early 

saturation of the electron transport chain, since the Δ pH cannot be fully relaxed. 

Therefore, the early reduction and saturation of PSII and PSI might cause damage, 

which could also explain a further reduction in the abundances of both photosystems 

(Gilmore et al., 1995). In accordance with an expected rise in lumen pH, NPQ levels 

were higher in the mutant than in the WT, which dissipates energy mainly from PSII 

(Horton et al., 1996). This observation correlates with the high levels of Zx and Ax 

found in the mutant plants relative to WT. These pigments are known to modulate 

NPQ by deactivating excited states in the PSII antenna, and also acting as 

antioxidants in the thylakoid membrane (Havaux & Niyogi, 1999; Nilkens et al., 

2010). Complementation of the mutant line rescued both the photosynthetic activity 

and reduced pigment accumulation to WT levels (data no shown). 

Moreover, to investigate the light sensitivity of PSII and the ability to repair it via de 

novo synthesis and incorporation of D1 under IL conditions, it was performed light 

stress recovery analysis. Strikingly, both WT and pg18 were equally affected by light 

stress and both showed the same ability to recover. Thus, the pleiotropic effects on 

photosynthetic performance in pg18 chloroplasts probably do not result from a PSII 

that is more sensitive to light, but rather from initial assembly defects or altered 

stoichiometry of the photosynthetic complexes. In line with this, analysis of the 

accumulation of thylakoid proteins revealed a reduction in the ATP synthase and PSI 

complexes. Concordantly with the reduction in PSI, levels of chlorophyll a were 

sharply reduced in the pg18 mutant compared to the WT, which is also reflected in 

the fact that the ratio of chlorophyll a to b remains essentially the same under NL 

and IL conditions. Furthermore, our finding that the stroma lamellae are shorter and 

less branched in the pg18 mutant than in WT correlates with the reduction in levels 

of PSI and ATP synthase, as less membrane area is available for their integration. 

Furthermore, the overall assembly of the complexes in the thylakoid membrane is 
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affected in the mutant pg18. Interestingly, there is a clear accumulation of LHC 

proteins in the mutant line which is compatible with the fact that pg18 plants 

accumulate more photoprotective LHC-binding pigments like Zx (Johnson et al., 

2007). This effect can also be seen in the high level of NPQ seen in the pg18 mutant, 

which is further enhanced under IL, in accordance with the increased levels of Zx in 

the mutant relative to WT under both NL and IL conditions. Hence, PG18 seems not 

to intervene in the assembly of any particular complex in the thylakoid membrane, 

but affects the composition of some of them, possibly by modulating the structural 

organization of the thylakoid membrane during its biogenesis. 

Despite the lack of identifiable functional domains, which suggests that PG18 is not 

itself an enzyme, loss of PG18 has a significant impact on the composition and 

architecture of the thylakoid membrane. In light of the indications that PGs play an 

important role in mobilizing lipids for incorporation into the thylakoid membrane 

(Deruere, Romer, et al., 1994; Simkin et al., 2007), an alteration in PGs could be 

expected to affect thylakoid complexes, as has been observed when the lipid content 

of the thylakoid membrane is altered (Kansy et al., 2014; Zhou et al., 2009). Levels 

of the PG18 protein were not found to be specifically upregulated under stress 

conditions, nor does it accumulate to a greater extent in PGs isolated after high light 

treatment (Ytterberg et al., 2006). These findings indicate that it is a constitutive 

component of PGs, possibly fulfilling a general role in PG maintenance or interacting 

with other PG proteins. This inference is supported by the observation that knockout 

mutants for other PG proteins do not show a phenotype under normal conditions. 

Phenotypes only become manifest when PG mutants are exposed to stresses, such 

as high light intensities (Avendano-Vazquez et al., 2014; Fatihi et al., 2015; Martinis 

et al., 2013; Porfirova et al., 2002; Singh et al., 2010; Youssef et al., 2010). Moreover, 

PG18 was also found in chromoplasts of red pepper (Ytterberg et al., 2006), also 

suggesting that its function is not restricted to chloroplasts. Interestingly however, 

PG18 is phosphorylated, which might lead to conformational changes or otherwise 

have an impact on its activity, possibly depending on different developmental stages 

or stress conditions (Wang et al., 2013). 
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In summary, investigation of the pg18 mutant underlines the importance of PGs in 

the formation of thylakoid membranes. Elucidating its exact role will be a challenging 

task to address in the future. 
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