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ABSTRACT

While the human brain had long been considered a reflexive organ that operates primarily in
response to stimulation, more and more recent evidence instead points to a proactive role of it.
Among such evidence is the observation that the brain exhibits striking patterns of activation
also in the absence of any external stimulus, with these patterns being highly organized in
both time and space. The overarching aim of the current thesis is to contribute to a better
understanding of this so-called intrinsic brain activity, as measured non-invasively with
electroencephalography (EEG). To this end, two original research projects were conducted.
By examining the functional relevance of low-frequency fluctuations in intrinsic activity on
the one hand and by exploring an experimental design able to enhance the measurability of
intrinsic cross-frequency coupling on the other hand, these projects were targeted at

dynamically evolving intrinsic brain activity in terms of both content and methodology.

In the first project of the current thesis, a visual backward-masking task was carried out in
combination with EEG. During each trial of this task, participants localized the missing part
of a briefly presented target stimulus and subsequently indicated their confidence as a proxy
for the stimulus’ access to conscious awareness. We found that this access was related to the
evolution of low-frequency fluctuations in electrophysiological activity, so-called slow
cortical potentials (SCPs), seconds before stimulus presentation. After stimulus presentation,
conscious access came along with enhancements of established correlates of visual
consciousness, namely the visual awareness negativity, the P3 component, and associated
positive SCPs. These findings provide evidence for the functional relevance of SCPs, which
seem to be optimally positioned for integrative processes leading up to the formation of
unified conscious experiences, and are in support of a considerable impact of intrinsic brain

activity on human perception, cognition, and behavior.



In the second project of the current thesis, EEG was combined with concurrent transcranial
magnetic stimulation (TMS), implemented as single-pulse TMS (sTMS) and repetitive TMS
(rTMS) at 5, 11, and 23 Hz over the left motor cortex and the right visual cortex of healthy
participants. We investigated the influence of this stimulation on theta-gamma, alpha-gamma,
and beta-gamma phase-amplitude coupling and found that, relative to sham stimulation, TMS
pulses caused transient coupling increases in all assessed conditions. This effect arose not
only at the stimulation site but also over various other cortical regions, with the propagation
induced by rTMS outperforming that induced by sTMS. The obtained findings support
considerations according to which TMS synchronizes natural neural oscillators and thereby
enhances the detectability of associated intrinsic signals at the EEG-recorded population level.
It stands to reason that concurrent TMS-EEG thus constitutes an effective methodological tool
to assess (the functional relevance of) intrinsic brain activity non-invasively at a considerably

improved signal-to-noise ratio.

Together, the projects presented in the current thesis complement contemporary research
efforts to decode the human brain’s intrinsic activity. By providing novel insights into both
the functional relevance and the measurability of the fluctuating/oscillating features of such
activity, the current thesis paves the way for future studies that might capitalize on these
findings in order to target joint overall research objectives: a detailed understanding of the
time-frequency-resolved mechanisms generating and maintaining intrinsic brain activity as
well as knowledge of this activity’s precise role in the dynamic neural processes underlying
human perception, cognition, and behavior. In the end, such comprehension has the potential
to produce path-breaking advancements in the context of healthy brains, diseased neuronal

structures, and artificial neural systems.
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Introduction:
The Human Brain’s Intrinsic Activity

The human brain is inherently restless (Raichle 2011). It exhibits highly organized, dynamic
patterns of activation not only during active stimulus processing but also in the absence of any
external stimulation or overt task. Over the past decades, the complex temporal and spatial
properties of such ongoing or intrinsic brain activity have become a major focus of attention
in systems neuroscience (e.g., Allen et al. 2014; Biswal et al. 1995; Massimini et al. 2005;
Mitra et al. 2015), with evidence for this activity’s pronounced influence on human
perception, cognition, and behavior rapidly accumulating (e.g., Devrim et al. 1999; Fox et al.
2007; Hesselmann et al. 2008a, 2008b; Scholvinck et al. 2012; Wohlschlager et al. 2016). The
operations performed by the brain’s intrinsic activity have been proposed to reflect
information processing for interpreting, responding to, and specifically also predicting the
external environment (Raichle 2010, 2015). Consequently, the traditionally reflexive view of
brain functions is more and more substituted by a proactive view of the human brain as an
intrinsic prediction machine (Clark 2013). In this introductory chapter, seminal discoveries,
hypotheses, and implications relating to the brain’s intrinsic activity mode will be presented in
order to pave the way for the current thesis’ two main projects. By (1) demonstrating a
pronounced relationship between low-frequency fluctuations in intrinsic pre-stimulus activity
and subsequent stimulus perception in the visual domain and by (2) introducing a novel
experimental technique to effectively probe intrinsic cross-frequency coupling in humans,
these projects are aimed at enabling a more sophisticated understanding of the spectral

characteristics of dynamically fluctuating/oscillating intrinsic brain activity. Ultimately, such



Introduction: The Human Brain’s Intrinsic Activity

decoding of the restless brain is going to be indispensable for a general understanding of the

brain in both the healthy and diseased state.

1.1 The Human Brain during Rest

While the human brain is restless by its very nature, this nature is best investigated during so-
called resting state measurements, in which the participant’s brain activity is recorded in the
absence of any explicit task. In the current section, essential insights into the brain’s condition
during resting state are presented by portraying (1) a short history of such measurements, (2)
the temporo-spatial properties of intrinsic brain activity that were identified through them, and
(3) the potential of human resting state data for the assessment of different psychiatric and
neurological disorders, whose diagnosis and treatment monitoring might be crucially

facilitated through the study of intrinsic brain activity.

1.1.1 Discovering Intrinsic Brain Activity

It has been noted early on that mental work adds only a small increment to the continuous
stream of cortical activity measurable non-invasively in human electroencephalography
(EEG; Berger 1929). Rather than focusing on this dominant facet of measurable activity
though, neuroscientists have traditionally dismissed it as unsystematic noise and consequently
sought to attenuate its power during data collection or processing (see e.g., Dawson 1954). In
1995, the functional significance of intrinsic brain activity eventually received broader
recognition, when the advancement of functional magnetic resonance imaging (fMRI; Kwong
et al. 1992; Ogawa et al. 1990) allowed for the detection of coherent patterns in spontaneous
blood-oxygen-level-dependent (BOLD) signal time courses (Biswal et al. 1995). By
demonstrating high temporal correlations among low-frequency signals in distributed
sensorimotor cortical regions, Biswal and colleagues found evidence for the depiction of

meaningful neural communication in resting state data and thereby initiated a long line of
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The Human Brain during Rest

research aimed at identifying the human brain’s intrinsic functional connectome (for reviews,
see Smith et al. 2013; van den Heuvel and Hulshoff Pol 2010). Up to the present, manifold
methods for associated signal analyses and the treatment of potentially confounding non-
neuronal signals (e.g., fluctuations originating from cardiac and respiratory cycles) have been
actively developed (e.g., Allen et al. 2014; Chang et al. 2009; Friston et al. 2014; Murphy et
al. 2013). Novel technological advancements, especially the simultaneous collection of EEG
and fMRI data and the involved combination of high temporal and high spatial data resolution
(see Huster et al. 2012), promise further remarkable discoveries in the near future, with the

research potential in the field of intrinsic brain activity being far from exhausted.

1.1.2 Temporo-Spatial Properties of Intrinsic Brain Activity

With several state-of-the-art methodologies at hand, research has begun to identify a
sophisticated web of temporo-spatial mechanisms inherent to intrinsic brain activity, which is
ever growing in its explanatory power. In terms of temporal properties, dominant arrhythmic
fluctuations and rhythmic oscillations in brain activity have been characterized using (time-)
frequency decompositions of electrophysiological resting state data (e.g., Alahmadi et al.
2016; He et al. 2008; Papagiannopoulou and Lagopoulos 2016). Among the traditionally
employed frequency bands (encompassing the delta, theta, alpha, beta, and gamma range),
alpha activity, which is typically defined as rhythmic activity between 8 and 12 Hz,
constitutes the most salient signal during wakeful resting state (Berger 1929) and has thus
been ascribed a particularly prominent role in the maintenance of healthy brain functioning. In
their inhibition-timing hypothesis, Klimesch and colleagues (Klimesch et al. 2007) associated
the alpha band with the inhibitory control and timing of cortical processes. In a similar vein,
the group around Jensen (Jensen and Mazaheri 2010; Mazaheri and Jensen 2010; Scheeringa
et al. 2012) proposed that alpha activity operates in a pulsed manner to provide rhythmic

functional inhibition, the dynamic reduction of processing capabilities in a particular brain
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region or set of regions, as a means of effective information gating. As active information
processing is by contrast associated with neural activity in the faster gamma band
(approximately 30-100 Hz; Henrie and Shapley 2005; Melloni et al. 2007; Pesaran et al.
2002), cross-frequency interactions between both bands are considered a fundamental tool of
intrinsic neural coordination (Bonnefond and Jensen 2015; Jensen and Mazaheri 2010;
Osipova et al. 2008). More generally, such interactions, implemented in particular as coupling
between a slower oscillation’s phase and a faster oscillation’s amplitude (Canolty et al. 2006;
Lakatos et al. 2005; Tort et al. 2010), enable the integration of functional systems across
different temporo-spatial scales, with high-frequency activity typically reflecting local cortical
processing and low-frequency activity arising from the computations of large-scale brain
networks (Canolty and Knight 2010). At the lower end of such low-frequency activity and
outside of the traditionally employed frequency bands, so-called slow cortical potentials
(SCPs; typically < 1 Hz) have lately received broad attention and are now increasingly
considered in the context of neural information processing (He and Raichle 2009; Khader et
al. 2008; Northoff 2017). Based on their slow time scale, SCPs have been proposed to be
optimally positioned for the synchronization of distributed brain regions and to consequently

carry out large-scale information integration in the brain (He and Raichle 2009).

As illustrated by these examples of spectral brain organization, coupled oscillations and
fluctuations of different frequencies are an effective tool to dynamically control the
processing, gating, and integration of neural information, with the temporal properties of brain
activity being closely interwoven with this activity’s spatial characteristics. The close link
between temporal and spatial mechanisms is further illustrated by observations according to
which the degree of interaction between certain highly connected cortical areas and the rest of
the brain changes at various time scales (de Pasquale et al. 2017) and by a recent whole-brain

model that accounts for interregional communication patterns by means of local oscillations
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on multiple frequency channels (Deco et al. 2017). To illuminate the precise specifics of such
communication patterns, modern neuroimaging research is taking advantage of the wide
spatial range of low-frequency signal transmission in particular and has so far produced a

number of seminal findings on the brain’s global architecture, as detailed next.

To date, multiple networks of functionally connected brain regions have been identified in the
human resting state (see van den Heuvel and Hulshoff Pol 2010). Most prominent among
these is the so-called default mode network, which comprises, among other areas, the
posterior cingulate and adjacent precuneus and the medial prefrontal cortex and is supposed to
be tonically active in the baseline state of wakeful rest (Greicius et al. 2003; Raichle et al.
2001; Shulman et al. 1997). As proposed by Raichle and colleagues (Raichle et al. 2001),
activity in this network may reflect the brain’s continuous gathering and evaluation of internal
and external information that is attenuated only when an attention-demanding overt task is
performed. From a cognitive perspective, default mode network activation relates to the
engagement in internally focused actions such as autobiographical memory retrieval, with the
network being crucially involved in the consolidation of past experiences to predict future
demands (Buckner et al. 2008). Besides the default mode network and its fundamental role in
the human resting state, further networks of spatially separate yet functionally connected brain
regions can be consistently observed, including the frontoparietal control network, the ventral
and dorsal attention networks, as well as the somatomotor, visual, and language networks
(Lee et al. 2012). While functional connectivity within such networks is traditionally
understood in terms of zero-lag, non-dynamic temporal synchrony among the activity time
courses of contained brain regions (dating back to Biswal et al. 1995), novel approaches have
recently emerged that challenge this perspective. In a seminal study, Allen and colleagues
(Allen et al. 2014) demonstrated that connectivity patterns are dynamic rather than stationary

over time and thus argued for flexibility in neural coordination that contradicts the notion of
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distinct stable networks. Taking a different approach, Mitra and colleagues (Mitra et al. 2015)
broke the conventional resting state networks down into sequences of propagating activity and
identified so-called temporal lag threads as a fundamental organizing property of intrinsic
brain activity. By applying analysis techniques based on graph theory, others have
characterized the complex topological properties of intrinsic brain networks, including small-
world organization with deeply connected hub regions (for a review, see Wang et al. 2010).
When taking these extensive temporo-spatial mechanisms of intrinsic brain activity into
consideration, it should come as no surprise that their maintenance accounts for the majority

of the brain’s energy consumption (Raichle and Mintun 2006).

1.1.3 Intrinsic Brain Activity in Clinical Populations

Also unsurprisingly, a structure as complex as the human brain’s intrinsic temporo-spatial
layout is particularly prone to disturbances and dysfunctional alterations. Changes in intrinsic
brain activity have indeed been reported in a number of clinical conditions such as
schizophrenia (e.g., Dong et al. 2018; Karbasforoushan and Woodward 2012; Kirino et al.
2017), major depressive disorder (e.g., Sacchet et al. 2016; Workman et al. 2017; Zhou et al.
2017), Alzheimer’s disease (e.g., Brueggen et al. 2017; de Vos et al. 2018; Wang et al. 2017),
and autism spectrum disorder (e.g., Khan et al. 2015; Ye et al. 2014; Yerys et al. 2017). Most
of these studies identified aberrant connectivity patterns within and/or between functional
brain networks as a neural correlate of disease (see also Greicius 2008). An imbalance in
intrinsic information coordination, manifested in the case of schizophrenia, e.g., as decreased
communication within systems involved in salience processing, information gating, internal
thought, emotion processing, and perception (among other aspects; Dong et al. 2018), entails
a novel, intrinsic-activity-based perspective on pathophysiology. This paradigm shift is
substantiated by an influential model unifying major psychiatric and neurological disorders

under the framework of disturbances in three interacting core networks - the default mode
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network, the salience network, as well as the central executive network (Menon 2011). Since
resting state data have thus good potential as a significant marker of disease and treatment
response and can be collected easily in clinical populations (relative to task-based
examinations), their assessment together with an elevated understanding of intrinsic brain
activity might be able to drive personalized medicine in the context of brain-related disorders

to a new and enduring high.

1.2 The Human Brain during Active Tasks

In everyday life though, the brain rarely operates in a state of task-free rest. Instead, it
continuously receives sensory input, actively processes and evaluates information, forms
decisions, and plans and executes motor commands. Intrinsic brain activity does not cease to
exist during these routines but runs alongside them and interacts with associated stimulation-
or task-related activations and resulting overt output. In the current section, the form of such
interactions is discussed in order to convey a detailed picture of how intrinsic brain activity
influences human perception, cognition, and behavior. This is achieved by portraying (1) a
broad overview of neuroscientific studies that contributed to the field and (2) a close-up view
of one particular fMRI study that examined the tight relationship between intrinsic brain
activity in early visual areas and the conscious perception of a briefly presented visual target
stimulus (Wohlschlédger et al. 2016). The latter study is highlighted as it is part of the research

work of the current thesis’ author and a direct precursor of this thesis’ first main project.

1.2.1 Intrinsic Brain Activity Impacts on Human Performance

When investigating the interplay between intrinsic brain activity, stimulus-related brain
activity, and behavior, one needs to find an adequate technique to isolate the former signal in
brain recordings obtained during task performance. A straightforward way to implement this

is to assess brain activity immediately before or right at stimulus onset, an interval that is
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naturally free of any effects directly evoked by the stimulus, and to examine how this activity
influences subsequent post-stimulus activity and/or relevant behavioral outcome measures
(e.g., Britz et al. 2014; Busch et al. 2009; Devrim et al. 1999; Ergenoglu et al. 2004;
Hesselmann et al. 2008a, 2008b; Scheeringa et al. 2011). Given a sufficient spatial resolution,
one can also use activity time courses of non-engaged brain regions that exhibit high resting
state functional connectivity to the engaged region of interest as a proxy for ongoing intrinsic
activity in that very region not only before but also during active processing (e.g., Fox et al.
2006, 2007; Scholvinck et al. 2012; Wohlschldger et al. 2016). Recently, Huang and
colleagues (Huang et al. 2017) furthermore proposed a novel signal correction approach,
based on the subtraction of stimulation-free pseudo-trials, to analyze the interaction between
intrinsic and evoked brain activity without the need to assume that certain brain regions are
entirely unaffected by stimulation. While findings can vary among analysis techniques (see
Huang et al. 2017), they are all in all suited to draw a comprehensive picture of the eminent

functional relevance of intrinsic brain activity.

This relevance is most often assessed in the context of visual perception. The power of alpha
activity prior to visual stimulation near sensory threshold has been shown to be lower before
detected than before undetected stimuli, with detected stimuli triggering a stronger evoked
neural response (Ergenoglu et al. 2004). Others have related low pre-stimulus alpha power to
enhanced visual discrimination ability (van Dijk et al. 2008) and high confidence in visual
discrimination decisions (Samaha et al. 2017). Besides such power effects, intrinsic alpha
oscillations have been shown to exert influence particularly via their phase (Busch et al. 2009;
Mathewson et al. 2009; Sherman et al. 2016), with stimulus presentation during the alpha
wave’s trough coming along with decreased visual detection performance (Mathewson et al.
2009). Consistent with this finding is the observation that, during a certain period of a

cognitive task, high-frequency gamma power is lower at the trough than at the peak of alpha
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oscillations (Bonnefond and Jensen 2015). The prominent role of intrinsic alpha activity and
alpha-gamma coupling is in line with the oscillation’s abovementioned inhibitory function,
presumably serving efficient information gating (Jensen and Mazaheri 2010), and suggests
that the alpha rhythm is an apt marker of cortical excitability (e.g., Ergenoglu et al. 2004).
Interestingly, a relation to visual perception has also been reported for the abovementioned
SCPs, which are more negative before detected than before undetected stimuli and have thus
been similarly related to fluctuations in the excitability state of neural networks (Devrim et al.
1999). From a spatial perspective, such fluctuations seem to be relevant first and foremost in
those brain regions locally engaged in the task. Hesselmann and colleagues demonstrated that
pre-stimulus BOLD activity is higher in the fusiform face area when a subsequently presented
ambiguous vase-faces picture is perceived as two faces (Hesselmann et al. 2008a) and higher
in the right motion-sensitive occipito-temporal cortex when periliminal coherent motion is
perceived as coherent rather than random (Hesselmann et al. 2008b). The authors furthermore
showed that pre- and post-stimulus activity interact in a non-additive fashion during these
tasks, a finding arguing against a simple linear superposition of evoked and intrinsic brain
activity (e.g., brought forward by Fox et al. 2006) and instead supporting an account
according to which evoked activity is dependent on the phase cycles of intrinsic activity
(Huang et al. 2017). More globally, differences in the perceptual awareness of visual stimuli
near sensory threshold have been related to distinct pre-stimulus EEG microstates, i.e., brief
states of stable scalp topography that might represent activity in specific neural networks
(Britz et al. 2014). The importance of large-scale topological network architecture is also
supported by Ekman and colleagues (Ekman et al. 2012), who demonstrated that the
anticipatory reconfiguration of communication patterns between a densely connected,
frontally dominated network core and task-relevant visual regions is predictive of the success
in subsequent visual perception. Together, these studies have started to shed light on the

pronounced relationship between intrinsic brain activity at different temporal and spatial
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scales and the brain’s operations and outputs during active (visual) tasks. Yet, numerous open

questions remain to be explored.

1.2.2 Relating Intrinsic Brain Activity in V1 to Visual Consciousness

One of these questions is whether and how intrinsic activity fluctuations within occipital
networks covering the early visual areas V1 (primary visual cortex) and V2 (secondary visual
cortex) can account for an incoming visual stimulus’ access to conscious awareness. To
answer this question, Wohlschldger and colleagues (Wohlschlédger et al. 2016) collected fMRI
measurements from 16 healthy adults during (1) 6 min of resting state, with a limited field of
view focusing on the occipital cortex at a specifically high spatial resolution, (2) another 6
min of resting state, this time encompassing the entire brain, and (3) 4 blocks of 20 trials each
of a visual backward-masking task. Each trial of this task started with the presentation of a
sound cue for 25 ms. After a variable interval of 2, 4, or 6 s, the target stimulus, a honeycomb
pattern with a missing comb either at its top or bottom, was presented for 16.5 ms in either the
upper or lower left visual field. Following an interval of 66 ms, a negative image of the
complete honeycomb pattern appeared for 16.5 ms at the same location, acting as a masking
stimulus. Participants then indicated the position of the target’s missing comb and whether
they had been sure or unsure via button presses. Trials were separated by an inter-target
interval of 28 + 6 s (mean + SD). Throughout the trials, fixation was maintained on a centrally
presented cross. In order to examine whether conscious awareness of the target stimulus was
related to BOLD fluctuations in early visual areas, the authors defined cortical regions of
interest in the following manner. By performing an independent component analysis of the
high-resolution resting state fMRI data with a subsequent comparison of independent
components to cytoarchitectonically defined occipital areas, two bilateral intrinsic brain
networks centered on V1 and V2, respectively, were defined. Given that visual stimulation

was restricted to the left visual field and consequently the right visual cortex, activity in the
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unstimulated left-hemispheric parts of these networks served as a proxy for intrinsic brain
activity. In addition, sites of significant activation by the target in the right-hemispheric
network parts were extracted to examine stimulation-related brain activity. Analyzing the
BOLD signal time courses within these regions of interest revealed the following main
findings. In trials where the target was consciously perceived as compared to missed, (1)
intrinsic brain activity in V2 was significantly lower before target presentation, (2) intrinsic
brain activity in V1 was significantly higher during the interval of active target processing,
and (3) stimulation-related activity in both V1 and V2 was significantly higher during active
target processing. Interestingly, in V1, intrinsic activity before target presentation was
significantly correlated with stimulation-related activity during target processing on a trial-by-
trial basis, with lower pre-target intrinsic activity accompanying higher stimulation-related
activity. An additional analysis of the intrinsic BOLD signal time courses, filtered narrowly to
the dominant frequency of the whole-brain resting state data in order to eliminate any
remaining task effects, moreover revealed a significant relation between V1’s intrinsic signal
evolution before target presentation and the access to consciousness, with a predominant pre-
target signal decrease preceding a lack of conscious awareness. Together, these findings
vividly illustrate the strong connection between fMRI-based fluctuations in intrinsic brain
activity, especially within the primary visual cortex/V1, and the neural and behavioral
markers of conscious visual perception. Since the fate of sensory information seems to
critically depend on the particular intrinsic state that it meets when entering the human cortex,
it becomes obvious now that intrinsic brain activity is not a mere by-product of normal brain

functioning but an elementary building block of this very condition.

1.3 Aims of the Thesis
The current thesis is aimed at further advancing our understanding of the complex functional

properties of dynamically evolving intrinsic brain activity, especially with regard to its
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spectral characteristics. This activity is assessed non-invasively with scalp EEG, whose high
temporal data resolution and relatively easy and cost-efficient application make the method
attractive for a wide range of scientific and clinical practices. The thesis is subdivided into
two main projects, with the first project directly continuing our fMRI study on the relation
between low-frequency fluctuations in intrinsic brain activity and the emergence of visual
consciousness (Wohlschldger et al. 2016; see above) and the second project putting forth a
novel experimental technique based on the combination of EEG and transcranial magnetic
stimulation (TMS) to enhance the measurability of intrinsic brain activity, in the form of
intrinsic phase-amplitude coupling, in non-invasive brain recordings. The two presented
projects examine the dynamics of prevalent fluctuations and oscillations within the restless
brain and thereby contribute directly to the ever-growing field of interest surrounding intrinsic
brain activity. Together, they open the door for future studies aimed at demonstrating the
relevance of this activity for emerging perception at a considerably improved signal-to-noise

ratio.

While we were able to show before that the evolution of slow fluctuations in the intrinsic
BOLD signal is relevant for visual perception (Wohlschldger et al. 2016), the direct
translation of this effect, with the BOLD signal being merely an indirect measure of neural
activity, into more direct electrophysiological markers remained to be understood. Several
studies attending to this issue proposed relations between the hemodynamic signal and
different faster electrophysiological oscillations (Mantini et al. 2007; Scheeringa et al. 2016),
e.g., in the alpha and beta (Ritter et al. 2009) as well as the gamma range (Niessing et al.
2005). Yet, the closest electrophysiological correlate of the fMRI signal in its raw fluctuations
might be the equally slow but traditionally underappreciated SCPs, which have been reported
to exhibit temporal correlations with BOLD activity and overall similar (task-related)

activation patterns (He and Raichle 2009; Khader et al. 2008). In the current thesis’ first main
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project, it was tested whether this link holds true for intrinsic brain activity in the context of
conscious visual perception. Using a visual backward-masking paradigm similar to the one
used by Wohlschldger and colleagues (Wohlschldger et al. 2016) with concurrent EEG, we
addressed the following research question. Do intrinsic fluctuations in SCPs, in particular
their relative evolution toward stimulus presentation (rather than their sheer magnitude; see
Devrim et al. 1999), relate to whether that stimulus will reach conscious awareness?
Substantiated insights into this matter can advance our understanding of the
neurophysiological basis and functional relevance of fluctuating intrinsic brain activity while

further illuminating the variability in sensory experiences omnipresent in everyday life.

One mechanism in particular is a striking candidate for how slow long-range changes in
intrinsic brain activity can influence fast local stimulus processing, the phase-to-amplitude
coupling of neural oscillations, which is assumed to coordinate neural processing across
multiple temporo-spatial scales (Canolty and Knight 2010; Canolty et al. 2006; Lakatos et al.
2005; Tort et al. 2010). The reliable and preferably non-invasive measurement of this
mechanism is therefore of uttermost importance for a further advancement of neuroscience in
the field of intrinsic information processing, with the minimal data length that yields a
sufficient signal-to-noise ratio in this context depending critically on the wavelength of the
involved oscillations. Following a previous approach of including at least 200 oscillatory
cycles (Tort et al. 2010), a phase frequency of interest at 0.1 Hz would in this regard already
require over 30 min of stable recordings. Better signal-to-noise ratios in scalp EEG
measurements are fundamentally hindered by the method’s inherent property of capturing not
individual neural oscillators but their population-level sum, which involves considerable
signal nullifications. In the current thesis’ second main project, we therefore aimed at bringing
forward a novel TMS-based experimental paradigm that can overcome this deficit by

increasing the macroscopic brain signal through an alignment of individual oscillators. In
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particular, the following research question was addressed. Does TMS cause a transient
enhancement of the macroscopic phase-amplitude coupling of neural oscillations, as measured
with concurrent EEG? Evidence for such a modulation can enable a new surge of studies
successfully demonstrating intrinsic phase-amplitude coupling in the human brain and relating

this mechanism to healthy and/or pathological brain functioning.

The current thesis targets two different research questions in the realm of intrinsic brain
activity and thereby illustrates the broad range of topics pressing to be tackled by
neuroscientists in the field. By examining (1) the perceptual relevance of slow fluctuations in
intrinsic brain activity and (2) the non-invasive perturbation of intrinsic nested oscillations,
relevant knowledge of this activity’s EEG-assessed dynamics and neurophysiological
functionality will be imparted and an incentive for future studies building on this knowledge
provided. Both projects work toward a thorough understanding of the restless brain, which
will eventually constitute a cornerstone for extensive advances in decoding healthy, diseased,

as well as artificial neural systems.
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Project I:
The Evolution of Pre-Stimulus Slow Cortical Potentials
is Associated with an Upcoming Stimulus’
Access to Visual Consciousness

The current chapter depicts a research article entitled “The evolution of pre-stimulus slow
cortical potentials is associated with an upcoming stimulus’ access to visual consciousness”.
The article is authored by Sarah Glim, Anja Ries, Christian Sorg, and Afra M. Wohlschldger
and is currently unpublished. In the presented research project, a visual backward-masking
task was used to elicit perception near sensory threshold. It was demonstrated that the
evolution of EEG-recorded SCPs can be related to the level of conscious stimulus perception
seconds before the actual stimulus presentation, with this finding strengthening the link

between slow fluctuations in intrinsic brain activity and essential perceptual functioning.
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Pre-Stimulus SCPs and Visual Consciousness

Abstract

Slow cortical potentials (SCPs) have been proposed to be optimally positioned for neural
processes leading up to the formation of conscious visual experience. While the sheer signal
magnitude of SCPs can indeed influence the perception of a subsequently appearing visual
stimulus, the role of their relative evolution toward stimulus presentation has so far received
much less attention. To this end, we recorded direct-current electroencephalography during a
visual backward-masking task, which required participants to localize the missing part of a
briefly presented target stimulus. A subsequent confidence rating was used as a proxy for the
target’s access to conscious awareness. Broadband event-related potentials (ERPs) of all
correct trials were determined relative to a short period immediately before the target and then
compared among consciousness levels. From 2 s prior to target presentation up to this period,
a negative relationship between ERPs and the level of consciousness became evident, with the
grand average ERP slowly increasing toward the target when highest conscious awareness
was about to be formed and slightly declining in all other cases. After target presentation,
conscious awareness was characterized by an enhanced visual awareness negativity, an
increased P3 component, and associated positive SCPs. By stressing the relevance of their
intrinsic pre-stimulus evolution while also noting their occurrence during active stimulus
processing, our findings support the proposed role of SCPs in the successful emergence of

conscious visual perception.

Keywords

electroencephalography, slow cortical potentials, event-related potentials, visual perception,

confidence
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New & Noteworthy

We used a backward-masking paradigm to elicit visual perception near sensory threshold. The
level of conscious target processing was found to be associated with the evolution of slow
cortical potentials (SCPs) seconds before target presentation. After target presentation, visual
consciousness was characterized by enhancements of the visual awareness negativity, the P3
component, and related positive SCPs. Results stress the importance of SCPs alongside faster

neural processes for emerging visual consciousness.

Introduction

The same extrinsic stimulus can reach our conscious awareness in some moments and might
fail to do so in others. Even though such perceptual variability has long been studied (e.g.,
Busch et al. 2009; Devrim et al. 1999; Ergenoglu et al. 2004; Linkenkaer-Hansen et al. 2004;
Monto et al. 2008; Samaha et al. 2017), the neural mechanisms that determine whether an
incoming piece of information will gain access to conscious processing are still insufficiently
understood. Recently, slow fluctuations (frequency f typically < 1 Hz) in brain activity, so-
called slow cortical potentials (SCPs), have been put forward as a necessary condition or
“neural predisposition” of consciousness (Northoff 2017; see also Birbaumer et al. 1990; He
and Raichle 2009; Rutiku and Bachmann 2017). Due to their slow temporal dynamics, which
are well suited for a large-scale synchronization of neural assemblies (He et al. 2008; von
Stein and Sarnthein 2000), as well as their generation primarily by pyramidal cells with long-
distance connections in upper cortical layers (Mitzdorf 1985), SCPs are believed to be
optimally positioned for processes of global information integration (He and Raichle 2009). In
a similar vein, other authors have associated variants of the SCP signal with consciousness-
relevant processing properties such as network excitability (Devrim et al. 1999), perceptual
anticipation (van Boxtel and Bocker 2004), and neural ignition (Dehaene and Changeux

2011), with the relevance of SCPs fitting well to recent theories of consciousness, including

18



Pre-Stimulus SCPs and Visual Consciousness

the global neuronal workspace model (GNW model; Dehaene and Changeux 2011; Dehaene
and Naccache 2001; Dehaene et al. 1998), the integrated information theory (IIT; Oizumi et
al. 2014; Tononi 2004), and the temporo-spatial theory of consciousness (TTC; Northoff
2013, 2017; Northoff and Huang 2017). While the fundamental role of SCPs in the emergence
of conscious awareness is thus generally agreed upon, knowledge of their precise shape and

timing in empirical recordings of varying perceptual outcomes is still incomplete.

Empirically, SCPs can be observed in humans with a range of non-invasive recording
techniques including direct-current (DC) electroencephalography (EEG; e.g., Vanhatalo et al.
2004, 2005). So far, a number of EEG studies have demonstrated the occurrence of SCPs
during efficient processing and/or retention of sensory stimuli, particularly in the most
commonly examined visual domain (Bosch et al. 2001; Pins and ffytche 2003; Pun et al.
2012). Only few studies, though, have also recognized the relevance of the intrinsic (ongoing)
SCP state previous to stimulus presentation for an incoming stimulus’ successful transfer to
conscious awareness. In a seminal study, Devrim and colleagues (Devrim et al. 1999)
demonstrated that the detection of visual stimuli near sensory threshold was better after
negative relative to positive SCP magnitudes and thereby highlighted the relevance of
spontaneous shifts in the EEG baseline for visual performance. Interestingly, evidence from
other sensory modalities (Monto et al. 2008), recording techniques (see Wohlschlédger et al.
2016, for a functional magnetic resonance imaging [fMRI] study), and signal frequency
ranges (especially the alpha band [~8-12 Hz]; Busch et al. 2009; Helfrich et al. 2014;
Mathewson et al. 2009) indicates that not only sheer signal magnitude but also the signal’s
evolution, most often assessed via oscillatory phase analyses, prior to or right around stimulus
presentation can be crucially involved in the stimulus’ eventual fate. Of particular interest in
this context is an EEG study by Monto and colleagues (Monto et al. 2008), which related an

enhanced detection of somatosensory stimuli to stimulus presentation during the rising phase
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of SCPs. It should be noted, though, that methodological criticism regarding such phase
dependency has recently been raised, attributing effects in parts to a mere filtering artifact,
namely the characteristic of acausal filters to smear post-stimulus differences into the pre-
stimulus time interval (Zoefel and Heil 2013). While these studies thus hint, tentatively and
with reservations, at a potential connection also between the pre-stimulus signal evolution of
EEG-recorded SCPs on the one hand and upcoming consciousness in the visual domain on the
other hand, the present study aims at providing direct and methodologically clean evidence

for this relation.

To this end, we collected EEG inclusively DC signals from fifteen healthy participants while
they were performing a demanding visual backward-masking task. In each trial of this task,
the missing part of a target stimulus had to be localized within a binary-decision setting (“gap
at top” or “gap at bottom”). A subsequent confidence rating (“not sure at all”, “slightly sure”,
“quite sure”, or “very sure”) was used as a proxy for the target’s access to conscious
awareness (Sandberg et al. 2010; Seth et al. 2008; Wohlschliger et al. 2016; Zehetleitner and
Rausch 2013). It should be noted in this context that any operationalization of consciousness
naturally emphasizes certain concept dimensions over others. With the selection of confidence
ratings, our measure was targeted mainly at the “cognitive features of consciousness”
(Northoff and Huang 2017) or the “ability to reflexively represent oneself”, typically referred
to as self-monitoring, introspection, or meta-cognition (Dehaene et al. 2017). Yet, while we
controlled for differences in objective performance by including only correct trials in the EEG
analysis (e.g., Lamy et al. 2009), our measure was not generally aimed at isolating a particular
concept dimension and adopted a rather comprehensive approach to consciousness
(considering the typically good agreement between different behavioral measures including
those not assessed here; see Dehaene and Changeux 2011). With respect to the conducted

EEG analysis, an exploratory procedure was implemented with little a priori assumptions
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about the precise profile (e.g., frequency structure and rhythmicity) of SCPs and other
potentially relevant electrophysiological signals. We hence spared narrow band-pass filtering
and involved artificial signal modifications and instead took advantage of the 1/f power
relationship inherent to EEG data (Buzsaki and Draguhn 2004; Dehghani et al. 2010; see also
Freeman et al. 2000; He 2014) by assessing SCP-dominated, broadband event-related
potentials (ERPs). ERPs were computed relative to a 0.2 s window immediately before target
onset and thereby satisfied our primary interest not in sheer signal magnitude but in the
evolution of signals around the target stimulus. Subsequent statistical tests (Page 1963) were
used to assess monotonic changes of voltage values with changing consciousness levels. As
the analysis’ main focus was on slowly changing pre-target differences in intrinsic activity
fluctuations, the analysis window began 2 s before target onset. In addition, we also examined
a corresponding post-target time interval, ending 2 s after target onset, with the intention to
replicate previously established post-stimulation correlates of conscious processing (e.g.,

Koivisto et al. 2008; Lamy et al. 2009; Ojanen et al. 2003; Pins and ffytche 2003).

Materials and Methods

Participants

Fifteen healthy adults (ten females, five males, mean age = SD: 25.1 + 3.3 years) took part in
this study. One participant had to be excluded from data analysis because valid trials were
lacking for the confidence rating “very sure”. The remaining fourteen participants (nine
females, five males) had a mean age = SD of 25.4 + 3.1 years. All participants were right-
handed and had normal or corrected-to-normal vision. Participants gave written informed
consent prior to experimentation and were paid a compensation of 8 € per hour. The
experiment was approved by the Ethics Commission of the TUM School of Medicine and

conducted in accordance with the Declaration of Helsinki.
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Behavioral Task

An overview of the visual perception task is presented in Fig. 1. Stimuli and trial sequence
were based on previously published tasks (Haynes et al. 2005; Wohlschldger et al. 2016),
partially modified for the purpose of this study, and controlled with the Presentation stimulus
delivery software (Neurobehavioral Systems, Inc., USA). Throughout the task, participants
fixated a central white fixation cross on a black background. Each trial started with the
presentation of just this fixation cross for 2,007 ms, after which a honeycomb-like grid was
added as the target stimulus. This grid was composed of eighteen white hexagonal combs that
were arranged to form a global hexagonal pattern with a missing comb either at the pattern’s
top or bottom. Each of the two possible gap locations was used in half of the trials in
randomized order. We presented this target either in participants’ upper or lower left visual
field, with each visual field again selected in half of the trials in randomized order. In either
case, the distance between the fixation cross and the closest and furthest grid point was 7° and
10.44° of visual angle, respectively. The target appeared for 34 ms and was followed by a
fixation interval of 67 ms. Subsequently, a color-inverted image of the complete hexagonal
honeycomb grid, consisting of all nineteen combs, was presented for 17 ms at the same
location as the target, serving as the backward-masking stimulus. After the mask’s
disappearance, participants indicated, first, whether the target’s missing comb had been
located at its top or bottom and, second, how confident they were on a four-point scale from
“not sure at all” over “slightly sure” and “quite sure” to “very sure” (e.g., Sandberg et al.
2010). Participants were instructed to respond as accurately as possible before the beginning
of the subsequent trial without optimizing response speed. Judgments of the gap location were
automatically considered incorrect if they were registered earlier than 200 ms after target
onset or after the trial’s ending. The next trial started after an inter-trial interval of 6,021 m:s,

8,028 ms, or 10,035 ms, with the shortest interval having been used in 34/100 trials (17/50
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trials), the middle interval in 33/100 trials (17/50 trials), and the longest interval in 33/100

trials (16/50 trials) of the actual experimental blocks (training blocks) in randomized order.

2,007 ms

gap location:
top — bottom

confidence:

not sure at all — slightly sure — .
quite sure — very sure time

Fig. 1. Behavioral task. Throughout the task, participants fixated a white cross displayed
centrally on a black computer screen. Following the presentation of just this fixation cross,
each trial proceeded with the addition of a target stimulus, a honeycomb-like grid with a
missing comb either at its top or bottom, in the upper or lower left visual field. After a fixed
inter-stimulus interval, a negative image of the complete grid was presented at the same
location, acting as a backward mask. Participants then had to indicate, first, the location of
the target’s missing comb and, second, their confidence on a four-point scale from “not sure
at all” over “slightly sure” and “quite sure” to “very sure” via unspeeded button presses.
After an inter-trial interval of 6,021 ms, 8,028 ms, or 10,035 ms, the next trial began

automatically.
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The visual perception task was implemented within the following testing procedure. To
familiarize them with the task, participants first underwent a training session, in which at least
two blocks of 50 trials each had to be completed. In the first training block, the white fixation
cross turned either green or red for 500 ms after the first response to indicate a correct or an
incorrect judgment, respectively. No confidence ratings had to be given. The second training
block was identical to the actual experiment, as described above. Depending on a participant’s
performance and learning rate, further training blocks were optionally inserted. After this
training session, participants completed 10 min of eyes-closed resting state, data of which
were not analyzed in the context of the present study, followed by four blocks of 100 trials

each of the visual perception task. Between blocks, participants could take short breaks.

Experimental Setup

While the experiment was run, participants were seated at a distance of 57 cm in front of a
computer monitor in a darkened testing room and wore headphones over which white noise
was played at an individually determined volume that was sufficient to eliminate any external
noise while still being perceived as comfortable. Behavioral responses were registered via
right-hand presses of neighboring keys on a standard computer keyboard with German layout
(gap at top or bottom: “B” or “N”; confidence in increasing order: “V”, “B”, “N”, “M”).
During resting state and the four visual perception task blocks, EEG was recorded with the
BrainVision Recorder software (Brain Products GmbH, Germany) from 63 scalp electrodes
(EASYCAP GmbH, Germany). Electrodes were positioned according to the 10/20 system
with all further electrodes inserted from the 10/10 system. In addition, we placed one
electrode on participants’ left torso to record electrocardiographic (ECG) activity as well as
two electrodes below the outer canthi of the eyes to record electrooculography (EOG). For all
recordings, electrode AFz served as ground while FCz was used as online reference. Signals

from DC to 250 Hz were sampled at a rate of 5,000 Hz and amplified with the BrainAmp MR
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plus system (Brain Products GmbH, Germany). Impedances between the skin and the

electrodes were kept below 10 kQ.

Behavioral Analysis

We examined participants’ task behavior in order to confirm that the experimental design was
suited well for the research question at hand. To this end, behavioral responses of all valid
trials, as defined below, were analyzed in SPSS Statistics (IBM, USA) in the following
manner. First, we checked whether setup and timing of the backward-masking paradigm were
appropriate to avoid floor or ceiling effects in performance by computing the proportion of
trials with a correct first response (“gap at top” or “gap at bottom”) relative to the total trial
number of each participant. Using a two-tailed one-sample Student’s #-test over participants,
we then tested statistically whether the observed performance differed significantly from
chance performance, which was 50% correct in the present study. Second, we examined
whether participants’ confidence judgments reflected their objective performance to a
reasonable extent by computing the proportion of correct trials relative to the total trial
number within each of the four confidence categories separately. In this regard, an increasing
proportion of correct trials with increasing confidence ratings would suggest that valid
judgments were readily accessible and earnestly reported. As before, the observed proportions
were tested against chance level with two-tailed one-sample Student’s #-tests over
participants. Additionally, we examined whether proportions differed among one another
using a one-way repeated-measures analysis of variance (ANOVA) and subsequent two-tailed
paired-sample Student’s #-tests, with multiple comparisons accounted for with the Bonferroni
correction. Third, as the present study was focused on contrasting trials that were assigned
different confidence levels despite objectively correct visual perception, we took a closer look
at the allocation of correct trials to the four confidence categories, i.e., at the relative sample

sizes available for the EEG analysis. For that matter, we computed the proportion of correct
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trials within each category relative to the total number of correct trials of a participant and
then tested all proportions against the value of 0.25, representing the theoretical outcome of
uniformly distributed confidence ratings, with two-tailed one-sample Student’s z-tests over
participants. The significance threshold for the conducted behavioral analyses was set at p <

.05, unless stated otherwise.

EEG Preprocessing and Analysis

EEG data from the four visual perception task blocks were individually preprocessed with the
BrainVision Analyzer software (Brain Products GmbH, Germany) in the following manner.
First, the data were filtered using phase shift-free Butterworth filters with infinite impulse
responses (IIR), implemented as a low-pass filter with a cutoff frequency at 70 Hz and a notch
filter at 50 Hz + 2.5 Hz. Next, global DC trend correction was performed to remove DC drift
artifacts, e.g., originating from thermal and electrochemical changes in the skin and the
electrolyte, by computing the linear trend over the average voltage values within all 1 s pre-
target intervals and then subtracting this trend from the data (Hennighausen et al. 1993). To
remove electrophysiological artifacts brought about by eye movements and eye blinks as well
as by ECG activity and higher-frequency muscular activity, the following procedure was
implemented. After applying a high-pass Butterworth filter with a cutoff frequency at 0.5 Hz
and manually excluding data intervals that contained prominent, unsystematic noise in all
electrodes, an independent component analysis (ICA; 64 components, classic sphering,
restricted infomax algorithm) was performed. We carefully selected all components that
captured the aforementioned artifacts (Hipp and Siegel 2013; Jung et al. 2000) and from these
components reconstructed the corresponding time-domain signals with an inverse ICA.
Lastly, difference waves between the reconstructed signals on the one hand and the original
data before high-pass filtering on the other hand were computed to clean the original data of

all identified artifacts. After this cleaning procedure, the data were re-referenced to the
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average of electrodes TP9 and TP10 and subjected to a semi-automatic data inspection with
the following criteria: maximal allowed voltage step: 50 pV/ms, maximal allowed difference
of values in a 100 ms interval: 200 puV, lowest allowed activity (difference between maximum
and minimum) in a 100 ms interval: 0.5 uV. Whenever a criterion was violated, an interval of
+ 200 ms around the respective data point was marked as bad for later data rejection.
Additional intervals were tagged upon visual inspection where required. At last, the
preprocessed time-domain data as well as the computed ICA components were down-sampled

to a sampling rate of 500 Hz and imported into MATLAB (The MathWorks, Inc., USA).

All following analyses were performed using the FieldTrip toolbox (Oostenveld et al. 2011)
and custom-written MATLAB scripts. We segmented the imported time-domain EEG data
into trials of + 2 s around target onset and discarded all trials that met at least one of the
following exclusion criteria. (1) Fewer or more than the required two responses were
registered between the onset of the trial’s target and the appearance of the next target, (2)
invalid keys were pressed to respond, (3) the trial segment contained intervals previously
marked as bad, and (4) an eye blink was registered closer than £ 100 ms around target
emergence, indicating insufficient processing of the physical stimulus. Regarding the last
criterion, data points were tagged as containing eye blinks whenever the time course of the
ICA component capturing those blinks best within a particular task block exceeded + 3 SD
around its mean value. Out of 400 collected trials per participant, 383.93 + 11.27 valid trials
(mean = SD over participants) were retained. After this preparatory step, we examined
whether the EEG signal evolution around target presentation was related to the level of
confidence in objectively correct target percepts. For this purpose, the following analysis was
performed successively for each available scalp electrode. We selected all correct trials,
baseline-corrected them using a baseline window of -0.2 s to 0 s around target onset, and

averaged the resulting time courses within each confidence category of each participant.

27



Project I

Separately for each trial time point, we then performed a pair of non-parametric significance
tests for linear ranks (Page’s trend tests; Page 1963), which allowed us to check the data for
monotonic changes of voltage values with increasing levels of the ordinal confidence variable.
To conduct these tests, we first ranked the trial-averaged voltage values of the different
confidence categories separately for each participant, with the lowest value receiving the rank

1 and the highest value receiving the rank 4. Second, the test statistic L was computed as

5[]

where n = 4 confidence categories, m = 14 participants, ¥; = hypothetical rank of the jth
confidence category, and X;; = observed rank of the jth confidence category within the ith
participant. The test statistic L was computed twice, with the hypothetical ranking of
confidence categories from “not sure at all” to “very sure” (Y) being 4, 3, 2, 1 when checking
for a monotonic decrease and 1, 2, 3, 4 when checking for a monotonic increase of voltage
values with increasing confidence. Third, statistical significance was determined by
permutation testing. For each observed test statistic L, we computed 1,000 test statistics based
on ranks that were permuted within participants. The p-value was defined as the proportion of
permuted test statistics equal to or larger than the originally observed one. As we performed
4,002 such tests, two for each of 2,001 covered time points, p-values were subsequently
adjusted for multiple comparisons with the false discovery rate (FDR) procedure (Benjamini

and Hochberg 1995). The significance threshold was set at p,, < .05.

Results

Behavioral Results

The proportion of correct trials relative to all valid trials was 0.77 + 0.11 (mean + SD over
participants). This performance level differed significantly from a value of 0.5, which would

have been expected for chance performance (two-tailed one-sample Student’s #-test: #(13) =
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8.92, p <.001), and attests that neither floor nor ceiling effects in performance prevailed. The
implemented backward-masking paradigm was thus well suited to elicit visual perception near
the threshold of conscious awareness. Broken down into the different confidence categories
(Fig. 24), the proportion of correct trials relative to the total trial number within a particular
category was 0.63 + 0.13 for “not sure at all”, 0.72 + 0.13 for “slightly sure”, 0.83 + 0.12 for
“quite sure”, and 0.91 + 0.12 for “very sure” (mean = SD over participants). All performance
levels differed significantly from chance performance (two-tailed one-sample Student’s z-
tests: #(13) = 3.91, p = .002 for “not sure at all”’; #(13) = 6.00, p < .001 for “slightly sure”;
t(13) =9.93, p <.001 for “quite sure”; #13) = 12.46, p < .001 for “very sure”). The presence
of above-chance performance during apparent guessing (“not sure at all”) has been
demonstrated previously and is considered an indication of unconscious stimulus knowledge
according to the “guessing criterion” (e.g., Dienes et al. 1995; Sandberg et al. 2010). A one-
way repeated-measures ANOVA furthermore yielded a significant main effect of confidence
(F(3,39) =32.51, p <.001). Subsequent pairwise comparisons revealed significant differences
between all possible pairs of confidence categories but one, the pair “quite sure” vs. “very
sure” (two-tailed paired-sample Student’s z-tests with a Bonferroni-corrected significance
threshold at p <.008: #(13) = -4.54, p = .001 for “not sure at all” vs. “slightly sure”; #13) = -
6.09, p <.001 for “not sure at all” vs. “quite sure”; #(13) = -7.80, p <.001 for “not sure at all”
vs. “very sure”; #(13) = -4.79, p < .001 for “slightly sure” vs. “quite sure”; #(13) = -5.46, p <
.001 for “slightly sure” vs. “very sure”; #(13) = -2.54, p = .025 for “quite sure” vs. “very
sure”). As objective performance thus increased with increasing confidence ratings, these
results indicate that participants were able to readily access the higher-order judgments
required for the task at hand, with conscious knowledge of their performance generally
available according to the “zero-correlation criterion” (e.g., Dienes et al. 1995; Sandberg et al.

2010).
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Fig. 2. Behavioral results. Bar charts show the proportion of correct trials in a particular
confidence category relative to the total trial number in that category (A) and the total
number of correct trials (B), respectively. Depicted are the mean proportion £ 1 SEM over N
= 14 participants. Values are based on valid trials only, as defined in “Materials and
Methods . Statistical significance was examined with two-tailed one-sample Student’s t-tests
against the values of 0.5 or 0.25 (see dashed lines in A and B: * p < .05) and two-tailed
paired-sample Student’s t-tests between categories (see lines above the respective bars in A: *

p <.008).
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Next, we checked the allocation of correct trials to the different confidence categories in order
to examine the relative sample sizes underlying the EEG analysis (Fig. 2B). The proportion of
correct trials in a particular category relative to the total number of correct trials was 0.17 +
0.14 for “not sure at all”, 0.29 & 0.07 for “slightly sure”, 0.33 + 0.13 for “quite sure”, and 0.21
+ 0.17 for “very sure” (mean + SD over participants), with the first three proportions differing
significantly from a value of 0.25, the theoretical outcome of uniformly distributed confidence
ratings (two-tailed one-sample Student’s #-tests: #(13) = -2.20, p = .047 for “not sure at all”;
t(13) =2.39, p = .032 for “slightly sure”; #(13) = 2.29, p = .039 for “quite sure”; #(13) = -0.94,
p = .362 for “very sure”). Although correct trials were thus non-uniformly distributed among
the different confidence categories, the ranking of their relative sample sizes (“not sure at all”
< “very sure” < “slightly sure” < “quite sure”) differed from those rankings tested in the EEG

analysis and was therefore unlikely to have confounded the following findings.

Event-Related Potentials

Since previous studies in the field had focused on local activity in visual cortical areas
(Devrim et al. 1999; Wohlschldger et al. 2016) and since the target in our study was always
presented in the left visual field and visual processing was thus handled primarily by the right
visual cortex, ERPs at the nearby-located electrode O2 were of particular interest to us. As
displayed in Fig. 3, three findings were striking at this location. First, the baseline-corrected
EEG signal decreased significantly (Page’s trend tests: p.»x < .05) with increasing confidence
ratings at multiple time points across the entire pre-target interval (see green highlighting in
Fig. 3). During this interval, the activity that eventually gave rise to a “very sure” rating of the
upcoming perception diverged noticeably from the signal traces of the other three confidence
categories. While low-frequency signals in the latter categories slightly declined toward target
onset, they increased on average before the target’s appearance when high confidence was

about to be reached. Second, a pronounced negativity associated with high confidence became
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manifest also ~0.2 s after target presentation, but did not reach statistical significance at
electrode O2. Third, the opposite pattern, i.e., significant signal increases with increasing
confidence ratings, emerged in an interval of approximately 0.45-0.9 s after target onset (see
yellow highlighting in Fig. 3). The signal modulation was again non-linear, with only little
difference between the two lowest confidence categories and a conspicuous deviation of the

“very sure” category.
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Fig. 3. Local event-related potentials (ERPs) at electrode O2. Grand average ERPs over N =
14 participants are displayed for the four utilized confidence categories as a function of trial
time, ranging from -2 s to 2 s around target onset. Time points at which the signal decreased
significantly with increasing confidence ratings are highlighted in green, time points of
significant signal increase are marked in yellow (Page’s trend tests: p.»<.05). Note that only
correct valid trials were included in this analysis, with single-trial signal values computed

relative to a window of -0.2 s to 0 s around target onset.
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Next, we examined the topographic layout of the aforementioned three effects across all
analyzed electrodes (Fig. 4). First, significant signal decreases with increasing confidence (see
green highlighting in Fig. 44) before target onset turned out to be concentrated on right
occipital electrodes, with less prominent effects being observable at right parietal and fronto-
temporal electrodes (see also Fig. 4B, for a different visualization of this topographic focus).
As already observed at electrode O2, other electrodes’ signal patterns likewise indicated that
the effect was driven primarily by a deviation of the “very sure” category from the other
categories’ low-frequency signal traces. Second, several midline and right central electrodes
showed significant signal decreases with increasing confidence around 0.2 s after target onset
(see also Fig. 4C). Third, significant signal increases with increasing confidence ratings (see
yellow highlighting in Fig. 44) occurred in the post-target intervals of almost all electrodes.
As can be easily appreciated via visual inspection, this effect was broadest at right frontal,
fronto-central, and fronto-temporal electrodes, where it encompassed most of the post-target
interval, and the least pronounced at corresponding electrodes of the left hemisphere (see also

Fig. 4D).

Discussion

With the present study, we provide evidence that the evolution of SCPs seconds before the
presentation of a visual target stimulus near sensory threshold is tightly linked to whether that
stimulus will reach conscious awareness. In this regard, a negative relationship became
manifest between the signal values of SCPs, determined relative to a brief period immediately
before target presentation, on the one hand and the access to consciousness on the other hand,
with a rising SCP signal preceding best conscious access and slightly declining signals in all
other consciousness categories. The 1/f power relationship inherent to EEG data (Buzséaki and
Draguhn 2004; Dehghani et al. 2010) allowed us to expose this connection without applying a

narrow band-pass filter to the data. We thereby aimed at avoiding signal distortions associated
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Fig. 4. Global topographic layout. (A) Grand average event-related potentials (ERPs) over N
= 14 participants are displayed for the four utilized confidence categories and each available
scalp electrode. Time points at which the signal decreased significantly with increasing
confidence ratings are highlighted in green, time points of significant signal increase are
marked in yellow (Page’s trend tests: p.x <.05). (B-D) Topographic maps show the number of
time points highlighted in green during the pre-target interval (B) and the entire interval after
target onset (C) as well as the number of time points highlighted in yellow during this latter
interval (D), with each interval containing 1,000 time points at a sampling rate of 500 Hz in

total.

with both acausal and causal (high-pass) filters (Acunzo et al. 2012; Tanner et al. 2015, 2016;

Zoetel and Heil 2013), including, but not limited to, the creation of artificial rhythmicity when
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being actually interested in a largely arrhythmic fluctuation (He and Raichle 2009) with no a
priori hypotheses about the contribution of phase and amplitude progressions within specific
tight frequency limits. The observations made in this manner fit closely to previous studies in
the field, which related enhanced somatosensory stimulus detection to the rising phase of SCP
activity (Monto et al. 2008) and associated a lack of conscious access with a declining pre-
stimulus blood-oxygen-level-dependent (BOLD) signal (Wohlschldger et al. 2016). The
present result extends these previous studies into the domain of EEG-monitored visual
perception, where the access to consciousness has been shown before to relate to low-
frequency differences in sheer pre-stimulus signal magnitude, with cortical negativity
accompanying better perception (Devrim et al. 1999), rather than to differences in relative

signal evolution.

Together, these and other (e.g., Fox et al. 2007; Hesselmann et al. 2008a, 2008b; Scholvinck
et al. 2012) studies draw a comprehensive picture of the pronounced influence that the brain’s
slowly fluctuating intrinsic state seems to exert on human perception, cognition, and behavior
and thereby substantiate the proposed view of the brain as a proactive rather than reflexive
organ (Bar 2007; Raichle 2010). This view, which advocates the continuous generation of
top-down predictions about incoming sensory input as a major brain function (see also Clark
2013), is further supported by the highly structured organization of the awake brain’s intrinsic
activity (Raichle 2011; Raichle et al. 2001; see Fingelkurts et al. 2010, 2013, for a detailed
discussion of the brain’s and mind’s space-time organization), to whose maintenance the vast
majority of the brain’s energy consumption is devoted (Raichle 2010; Raichle and Mintun
2006). In this context, the pre-target SCP fluctuations observed in the present study might
reflect anticipatory adjustments of cortical excitability to tune the intrinsic system to the
expected behaviorally relevant events, with conscious awareness of threshold stimuli

indicating successfully configured settings for sensory information processing (see e.g.,
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Ekman et al. 2012). As proposed by the recently introduced TTC (Northoff and Huang 2017),
such favorable settings might be characterized by a temporo-spatial alignment or binding of
intrinsic activity to the incoming stimuli. The long cycle duration of SCPs could in this regard
provide a temporal window for the integration of stimuli into a cognitive unity of
consciousness, with the proper correspondence between SCP timing and stimulus onset

constituting the prerequisite for that stimulus’ successful transfer to conscious awareness.

Topographically, the demonstrated relationship between pre-target EEG activity and
conscious access was concentrated on electrodes over occipital and parietal sites of the right
cerebral hemisphere, where the left-sided stimuli were primarily processed. This finding is
consistent with previous work indicating that the connection between slow fluctuations in
intrinsic brain activity and task performance is clearest in those brain regions pertaining to the
task (Born et al. 1984) and, in the case of visual consciousness, stronger for the primary visual
cortex, where bottom-up processing of the incoming stimulus dominates (Melloni et al. 2012),
than for a later visual processing stage (Wohlschldger et al. 2016). Even though the spatial
resolution of scalp EEG does not allow for a precise anatomical localization of effects, the
topographic focus of our results together with these studies support the hypothesized role of
intrinsic brain activity in the anticipatory fine-tuning of relevant processing capacities, with
the stage for successful conscious access being set locally in brain regions involved in sensory

stimulus processing.

By contrast, the access to conscious processing after target presentation became evident first
through a negative EEG potential at (right) central electrodes. This finding is in line with
studies suggesting that the earliest electrophysiological correlate of visual consciousness is the
so-called visual awareness negativity (VAN) around 200-300 ms after stimulus onset, with the

actually observed latency depending on a stimulus’ precise nature and design (Koivisto et al.
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2005, 2008; Ojanen et al. 2003; Wilenius-Emet et al. 2004). While the VAN might announce
this stimulus’ entry into phenomenal awareness (Koivisto and Revonsuo 2003), potential
secondary conscious processes (Koivisto et al. 2008; Pins and ffytche 2003) manifested
themselves in our study as subsequent positivity at almost all scalp electrodes. The
topographic focus of this later positivity was on right frontal, fronto-central, and fronto-
temporal sites, where the effect started the earliest and ended the latest. An enhanced positive
potential emerging approximately 300-500 ms after stimulus presentation, typically termed
the P3 component, has been consistently shown in the literature to accompany stimulus
visibility (e.g., Dehaene and Changeux 2011; Koivisto et al. 2008; Lamy et al. 2009; Pins and
ffytche 2003; Sergent et al. 2005) at the intersection of task-related activation and meta-
cognitive experiences (Desender et al. 2016) and appears to be generated by activation in
widespread brain areas including association cortices and the hippocampus (Halgren et al.
1998). The right-hemispheric dominance observed in our study is in accordance with the
previously reported involvement of mainly the right brain side in meta-cognitive insights and
reports (Fleming et al. 2012; Schmitz et al. 2006; Yokoyama et al. 2010). Still, the actual
neural mechanisms underlying the P3 component are a matter of ongoing debate. According
to the widely applied GNW model, incoming visual information gains access to consciousness
when it is made globally available to multiple associative regions, which in turn trigger a top-
down reactivation of early visual areas (Dehaene and Changeux 2011; Dehaene and Naccache
2001; Dehaene et al. 1998; Sergent et al. 2005). Several observations of the present study are
consistent with the idea that the P3 event and therein included longer-lasting effects in the
SCP range reflect this reverberant activation or global ignition. First, the hypothesized top-
down-induced reactivation of visual areas is in line with the observed later P3 onset in
occipital relative to more frontal electrodes. Second, the proposed ignition’s all-or-none
character fits well to the non-linear P3 changes emerging in our study (see also Sergent et al.

2005). And third, a suggested influence of highly structured intrinsic brain activity on whether
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this ignition will arise or not (Dehaene and Changeux 2005) is in accordance with the
demonstrated relationship between pre-target activity fluctuations and conscious access.
While broad correspondence thus seems to exist between the observed data and established
model concepts, it should be noted that other authors have objected to the interpretation of P3
and associated positive SCPs as reflecting global ignition and instead related these signals to a
global inhibition of irrelevant information (Li et al. 2014). Notwithstanding these
discrepancies, our results support the long-distance character innate to both approaches by
emphasizing the role of far-ranging information processing rather than that of localized
activity in single visual areas (e.g., ffytche and Zeki 1996; Zeki and Bartels 1998; Zeki and
ffytche 1998) for a successful transfer of visual information to consciousness, with evidence
for the supramodality of human meta-cognitive mechanisms having recently been provided

(Faivre et al. 2018).

In the current study, this transfer was assessed via subjective confidence ratings in the face of
objectively correct performance. To date, a wide variety of measures has been applied to
quantify conscious access (see Seth et al. 2008, for a review). Because adopting an objective
criterion, i.e., assuming consciousness whenever performance in a stimulus classification task
surpasses chance level, has been criticized for overestimating conscious perception (among
other points; see Dehaene and Changeux 2011), subjective measures are nowadays often the
method of choice. In this context, confidence ratings are considered meta-cognitive judgments
that test for “awareness of knowing” on a trial-by-trial basis, with their application based on
the assumption that a mental state is conscious if the participant is aware of being in that state
(Seth et al. 2008; note also Jachs et al. 2015, for an alternative view opposing the classically
intimate link between meta-cognition and consciousness). Even though no subjective measure
has proven itself to be clearly superior to all others, confidence ratings have been used in a

number of studies on meta-cognition and/or conscious access so far (e.g., Cheesman and
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Merikle 1986; Dienes et al. 1995; Fleming et al. 2012; Maniscalco and Lau 2012;
Wohlschliger et al. 2016) and captured the emergence of visual consciousness sufficiently
well in our study, as indicated by the broad correspondence of post-target effects with
established correlates of conscious awareness (but see Li et al. 2014, for a dissociation of
neural activity underlying confidence ratings and other measures of conscious access).
Controlled experimental studies investigating the current findings with other behavioral
measures are needed in the future to illuminate the precise interplay among the various
theorized dimensions of consciousness inclusively (meta-)cognition that are potentially

underlying them.

To summarize, we recorded DC-EEG during a demanding backward-masking task in which
the visual target’s access to conscious processing was assessed on a trial-by-trial basis via
subjective confidence ratings. The evolution of slow EEG signals in the SCP range was
associated with this access as early as ~2 s before target presentation. Even though no claim to
direct causality is made, these results suggest that the brain’s intrinsic state is critically
involved in the perceptual fate of incoming sensory information. After target presentation, this
fate was characterized by established neural correlates of consciousness, in particular the
VAN, the P3 component, and related positive SCP shifts, with differences between
consciousness categories lingering for at least 2 s post-target. Together, these findings add to
our growing understanding of SCPs in the context of conscious awareness and encourage the

routine inclusion and analysis of such low-frequency activity in future EEG studies.
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Project II:
Phase-Amplitude Coupling of Neural Oscillations can
be Effectively Probed with Concurrent TMS-EEG

The current chapter depicts a research article entitled “Phase-amplitude coupling of neural
oscillations can be effectively probed with concurrent TMS-EEG”. The article is authored by
Sarah Glim, Yuka O. Okazaki, Yumi Nakagawa, Yuji Mizuno, Takashi Hanakawa, and
Keiichi Kitajo and has been submitted for publication. In the presented research project,
concurrent TMS-EEG was used to demonstrate that both single-pulse TMS (sTMS) and
repetitive TMS (rTMS) can transiently enhance the macroscopic phase-amplitude coupling of
neural oscillations, presumably by synchronizing underlying neural oscillators. It was
concluded that TMS-EEG constitutes an effective experimental technique to probe intrinsic

phase-amplitude coupling in humans.

Contributions

The author of this thesis is the first author of the manuscript. Y.N., T.H., and K.K. conceived
and designed the experiment. Y.N., Y.0.0., Y.M., T.H., and K.K. collected the data. S.G.,
Y.N,, Y.0.0., and K.K. analyzed the data. S.G., Y.0.0., and K.K. wrote the manuscript. All

authors reviewed the manuscript.
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Probing Phase-Amplitude Coupling with TMS-EEG

Abstract

Despite the widespread use of transcranial magnetic stimulation (TMS), knowledge of its
neurophysiological mode of action is still incomplete. Recently, TMS has been proposed to
synchronise neural oscillators, and to thereby increase the detectability of corresponding
oscillations at the population level. As oscillations in the human brain are known to interact
within nested hierarchies via phase-amplitude coupling, TMS might also be able to increase
the macroscopic detectability of such coupling. In a concurrent TMS-electroencephalography
study, we therefore examined the technique’s influence on theta-gamma, alpha-gamma and
beta-gamma phase-amplitude coupling by delivering single-pulse TMS (sTMS) and repetitive
TMS (rTMS) over the left motor cortex and right visual cortex of healthy participants. The
rTMS pulse trains were of 5 Hz, 11 Hz and 23 Hz for the three coupling variations,
respectively. Relative to sham stimulation, all conditions showed transient but significant
increases in phase-amplitude coupling at the stimulation site. In addition, we observed
enhanced coupling over various other cortical sites, with a more extensive propagation during
rTMS than during sTMS. By indicating that scalp-recorded phase-amplitude coupling can be
effectively probed with TMS, these findings open the door to the technique’s application in

manipulative dissections of such coupling during human cognition and behaviour.

Introduction

Due to its extensive effects on human perception, cognition and action, transcranial magnetic
stimulation (TMS) is nowadays widely used in both basic neuroscientific research (e.g.,
during investigations of visual awareness', attention’, speech’ and motor processing’) and in
clinical practice (with potential treatment domains [see guidelines on therapeutic use’]
including medication-resistant major depressive disorder®, post-stroke motor impairment’,
aphasia® and schizophrenia’). Despite this broad scope of application, knowledge of the

precise neurophysiological effects of TMS is still incomplete.
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Over the past decade, interest has arisen in the effects of TMS on macroscopic neural
oscillations, as measured with non-invasive recording techniques such as

ILIZII 1 this context, Kawasaki and colleagues'

electroencephalography (EEG)
demonstrated a direct modulation of the temporal dynamics of these oscillations by showing
that the consistency of oscillatory phases across stimulation trials, so-called phase locking, is
transiently enhanced after single-pulse TMS (sTMS). Even though this effect can occur within
a wide oscillatory spectrum, sTMS is assumed to act on intrinsic neural systems, and thus to
be most effective for those frequencies that arise naturally within particular cortico-thalamic
modules". Accordingly, a highly probable candidate mechanism behind the observed increase
in macroscopic across-trial phase locking is the phase resetting of underlying intrinsic
oscillators (but see Sauseng and colleagues'® for a critical discussion of phase locking).
Considering that such resets would simultaneously pertain to a multitude of coexistent
oscillators, transiently enhanced synchronisation would also unfold within stimulation trials.

As Thut and colleagues'*"”

argued, rhythmic stimulation via repetitive TMS (rTMS) can
foster such a synchronisation through neural entrainment, during which individual oscillators
start to cycle with the same period as pulses delivered at their eigenfrequency, and thus
become more and more aligned to such pulses, and consequently also to each other.
Interestingly, this synchronisation or alignment of coexistent neural oscillators has been
argued to prevent population-level signal nullifications, and to thereby enhance the
detectability of macroscopic oscillations with scalp-based measurement techniques'’.

Associated EEG-recorded oscillatory power increases have de facto been reported for both

sTMS">'® and rTMS'2,

To fully appreciate the neurophysiological effects of TMS, it is necessary to consider that the
human brain is unlikely to be a composition of neatly separated neural modules whose

oscillatory signatures can be manipulated independently from each other. Rather, its essence
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lies in a myriad of dynamic neural interactions that serve the integration of information across
various temporal and spatial processing scales'’. One promising mechanism for how such
integration may be implemented in the brain is through a nested hierarchy of neural
oscillations™. In particular, studies have shown that the phase of oscillations arising from
slower global computations can flexibly modulate the amplitude of faster local

S 2122232425
oscillations”™ ="

, a mechanism that might enable the coordination of multiple specialised
processing nodes across large-scale brain networks. The functional relevance of such phase-
amplitude coupling is supported by findings associating its strength with behavioural
outcomes, e.g., success in a visual motion discrimination task?. Given that phase-amplitude
coupling is an inherent property of neural systems, the alignment of oscillators by TMS
should enhance not only the detectability of individual macroscopic oscillations, but also the
detectability of their coupling to other oscillations. As this feature would greatly facilitate the
investigation of phase-amplitude coupling with non-invasive measurement techniques such as
scalp EEG, which often require extensive recordings to cope with only moderate signal-to-

noise ratios, its clear demonstration would be of high relevance for both TMS methodologists

and cognitive neuroscientists.

Attempts have already been made to demonstrate an enhancement of EEG-recorded phase-
amplitude coupling by TMS? and other non-invasive brain stimulation techniques,
specifically transcranial alternating current stimulation (tACS)®. Even though Noda and
colleagues®’ demonstrated increased theta-gamma coupling within an offline paradigm
following several sessions of rTMS in patients with depression, conclusive evidence from a
sham-controlled examination of online EEG recordings during TMS in the healthy population
is still missing. With the present study, we set out to provide such evidence, thereby using
TMS to shed light on the transient modulation of the human brain’s nested oscillations. To

this end, we delivered both sSTMS and rTMS over the left motor cortex and right visual cortex
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of healthy participants while simultaneously collecting EEG. To ensure coverage of a wide

range of the oscillatory nesting observable in neural systems”***~°

, the enhancement of phase-
amplitude coupling relative to sham stimulation was assessed separately for theta-gamma,
alpha-gamma and beta-gamma coupling, with the rTMS frequency always equalling the
frequency of the slower modulating oscillation to allow for this oscillation’s direct
entrainment. The experiments were designed to evaluate the following theoretical reasoning.
As enhanced oscillatory power has been reported for both sTMS'™'® and rTMS', scalp-
recorded phase-amplitude coupling should likewise be transiently enhanced for both
stimulation paradigms. As both paradigms were further shown to modulate phase dynamics

13,14, the

not only locally at the stimulation site, but also with network-wide signal propagation
enhancement of phase-amplitude coupling might likewise propagate across the cortex.
Finally, we directly compared the neurophysiological effects of sTMS and rTMS by
examining whether an rTMS-induced entrainment of neural oscillators can induce a locally

stronger and/or globally more widespread enhancement of phase-amplitude coupling relative

to sSTMS.

Methods

Participants

Fourteen right-handed healthy participants (two females, twelve males; mean age = SD, 30.8
+ 5.5 years) were recruited to this study. Written informed consent was obtained from all
participants prior to experimentation. The study was approved by the RIKEN Ethics
Committee and was conducted in accordance with the code of ethics of the World Medical

Association for research involving humans (Declaration of Helsinki).
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TMS Design

TMS pulses were delivered through a figure-of-eight coil with a 70 mm wing diameter,
connected to a biphasic magnetic stimulator unit (Magstim Rapid, The Magstim Company
Ltd, UK). Stimulation intensity was fixed at 90% of a participant’s active motor threshold,
which was determined for the right first dorsal interosseous (FDI) muscle. During the entire
experimental procedure, participants fixated on a central grey cross on a black computer
monitor background and wore earplugs to reduce stimulation-evoked auditory potentials in

neural activity.

An overview of the experimental design is presented in Fig. 1. Each participant received
stimulation at three different sites in randomly ordered sessions. In one session, TMS was
applied over the left motor cortex (approximately between electrodes C1 and C3, with the
exact position being determined by the individual hotspot of the right FDI muscle stimulation;
coil handle perpendicular to the central sulcus) and in a second session, it was applied over
the right visual cortex (between electrodes Oz and O2; coil handle perpendicular to the
midsagittal plane). In a third session, sham stimulation was delivered at a location 10 cm
above the vertex of the head (electrode Cz; coil handle directed posteriorly). Each of these
sessions comprised four different blocks, with each block consisting of 30 trials with inter-
trial intervals of 10 s £ 15%. Depending on the block, trials contained either single TMS

pulses or trains of five consecutive pulses delivered at 5 Hz, 11 Hz or 23 Hz.

EEG Recording and Preprocessing

During the entire stimulation procedure, EEG (left earlobe reference; AFz as ground) was
recorded from 63 TMS-compatible Ag/AgCl scalp electrodes (EASY CAP, EASYCAP
GmbH, Germany; see Fig. la for the electrode layout), which were positioned according to

the international 10/10 system with lead wires rearranged orthogonally to the TMS coil handle
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to reduce TMS-induced artefacts’'. In addition, horizontal and vertical electrooculography
(EOG) was recorded to monitor eye movements and blinks. All signals were sampled at a rate
of 5,000 Hz, filtered online from DC to 1,000 Hz and amplified using the TMS-compatible

BrainAmp MR plus system (Brain Products GmbH, Germany). Impedances were kept below

10 kQ.
a b
10s £15% 1 pulse
Motor TMS: 1 block —— —
sTMS: + | | |
> Time
Fixation Trial 1 Trial 2 Trial 30
Visual TMS:
10s £15% 5 pulses
3 blocks
rrvs: R ([l [[I] -~ (Il .
Sham stimulation: 5,11,23 Hz - - 7 me
Fixation Trial 1 Trial 2 Trial 30

Figure 1: Experimental design. (a) The EEG electrode layout used in the present study is
displayed along with the different stimulation sites. In separate sessions, TMS was applied
over the left motor cortex (first row), over the right visual cortex (second row) and as sham
stimulation 10 cm above the vertex of the head (third row). (b) Each session contained four
blocks of 30 trials each, in which we performed sTMS (first row) as well as 5 Hz, 11 Hz and
23 Hz rTMS (second row). During rTMS trials, stimulation was delivered in trains of five

consecutive pulses.

We preprocessed the EEG data by first segmenting it into epochs starting 2 s before the first
(or single) TMS pulse and ending 3 s after the last (or single) pulse of a train, and then re-
referencing these epochs to the averaged recordings from electrodes positioned on the left and

right earlobe. To remove the TMS-induced ringing artefact in the EEG signals, we substituted
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all values within an interval of 0-8 ms after each pulse with replacement values estimated
using linear interpolation. In those cases where the interval was deemed to be too short, it was
manually extended to 12 ms after the pulse. The longer-lasting exponential decay artefact was

attenuated by identifying components capturing this artefact with an independent component

18,32

analysis (ICA), and then removing them from the data ™. Next, we rejected trials with signal

values exceeding + 200 pV within an interval of —1 s to +1 s around the stimulation to
exclude any remaining artefacts. After performing a current source density (CSD)

transformation of the surface voltage distribution using spherical splines to reduce the effects

33,34

of volume conduction’™", the data were down-sampled to a rate of 1,000 Hz.

EEG Analysis

To compute phase-amplitude coupling, we first convolved the preprocessed time series with

complex Morlet wavelets w(z,f)*>°:

t2

2
O ¢

w(t, )= ﬁexp{— 5 ]exp(i27y‘t),

with ¢ denoting time, f denoting the central frequency of interest, o; denoting the SD of the
Gaussian window and the number of wavelet cycles within a 60y interval n., = 3 determining

the approximate width of the frequency bands’”:

2]

The central frequencies f were chosen to be 5 Hz, 11 Hz and 23 Hz for phase extraction and
30 Hz to 45 Hz in 1 Hz steps for amplitude extraction. The upper limit was fixed at 45 Hz to
diminish potential artefacts from muscular activity and power line noise. The instantaneous
phase ¢ at each time point was then defined as the angle of the resulting complex-plane vector

with respect to the positive real axis, while the magnitude of this vector was utilised as a

measure of instantaneous amplitude a. For each combination of phase and amplitude
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frequency and for each trial time point, we separately computed the event-related phase-

amplitude coupling (ERPAC) pgq, which was defined as the circular-linear correlation of

phase and amplitude values across stimulation trials**":

2 2
Voea+1 sa =20, 1,1,
p(l)a - 2 2
1—7r7c

where 7., = c(cosg[n],a[n]), rx = c(sing[n],a[n]) and r.; = c(sing[n],cos@[n]) with c(x,y) being

the Pearson correlation between x and y.

As the sixteen amplitude frequencies were pooled together in each ERPAC analysis, three
different phase-amplitude combinations existed (5 Hz, 11 Hz or 23 Hz phase coupled to
amplitudes at 30—45 Hz, i.e., theta-gamma coupling, alpha-gamma coupling and beta-gamma
coupling), which were examined separately for motor and visual TMS. Analyses of the
resulting six conditions focused on contrasting motor or visual TMS with sham stimulation to
account for any indirect effects of stimulation and were performed either individually for
sTMS and rTMS (first and third analysis) or directly compared the two stimulation paradigms
(second and fourth analysis), as detailed below. Whenever statistical tests were performed, the
(multiple-comparison-corrected) significance level was set at p <.05. With regard to rTMS, it
is important to note that the frequency of a condition’s respective phase angle time series
always corresponded to the applied stimulation frequency. This approach allowed us to
directly assess how targeting a particular oscillation via repetitive stimulation affected this

oscillation’s scalp-recorded coupling to faster oscillations.

We first examined whether sSTMS and rTMS led to an increase in phase-amplitude coupling at
the stimulation site by analysing ERPAC as a function of amplitude frequency and time,
spanning —0.5 cycles to +4.5 cycles of a condition’s phase-providing oscillation around the

onset of the first (or single) pulse. Statistically significant enhancements of ERPAC were
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determined via nonparametric permutation testing in the following way. To evaluate the
observed set of time-frequency representations encompassing the ERPAC data from the two
local electrodes of interest (C1 and C3 for motor TMS; Oz and O2 for visual TMS), the two
modes of stimulation (TMS and sham) and each of the fourteen participants, we created 500
sets of corresponding surrogate representations by computing ERPAC between the unchanged
phase values and the trial-shuffled amplitude values. As we randomised the relative trial
structure between phase and amplitude while maintaining the temporal structure, and thus left
any pulse-evoked changes intact, significant differences to the observed data could not arise
from spurious stimulus-evoked relationships between phase and amplitude values®. We next
averaged each set’s ERPAC data over the electrodes of interest, then took the difference
between motor or visual TMS and sham stimulation and averaged resulting values over
participants. One observed time-frequency representation and a distribution of 500 surrogate
representations emerged, all of which were subsequently binarised by thresholding them with
the 95 percentile of the surrogate distribution at each time-frequency point. Contiguous
suprathreshold points were clustered and the sum of ERPAC values within each cluster was
determined. To account for multiple comparisons, we removed from the observed time-
frequency representation those clusters whose cluster sum of ERPAC values was below the
95™ percentile of the distribution of maximum cluster sums, obtained by taking the highest

sum within each surrogate representation.

Second, to investigate whether the local enhancement of phase-amplitude coupling differed
between sTMS and rTMS, we took the mean ERPAC over the local electrodes of interest (C1
and C3 for motor TMS; Oz and O2 for visual TMS), subtracted corresponding mean data
obtained from sham stimulation and averaged values over a time window of interest, covering
+ 1/10™ of the respective phase-providing oscillation’s cycle around either the sSTMS pulse or

the last pulse of the rTMS trains, as well as over the sixteen amplitude frequencies. By
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selecting a narrow time window around the last rTMS pulse, we aimed at minimising the
potential contamination of the rTMS data from surrounding pulses. Resulting values were
then compared between sTMS and rTMS using a two-tailed paired-sample Student’s z-test

over participants.

Third, we assessed whether an enhancement of phase-amplitude coupling by sSTMS and rTMS
was observable not only at the stimulation site, but also over other cortical regions. ERPAC
was therefore computed at all scalp electrodes for each time point within nine different time
windows of interest, centred at —2 cycles to +6 cycles of a condition’s phase-providing
oscillation in 1-cycle steps around the onset of the first (or single) pulse and spanning + 1/10"
of this cycle. Topographic maps were created by taking the difference between motor or
visual TMS and sham stimulation, and then averaging the resulting values over time points
within the respective window of interest, over the sixteen amplitude frequencies as well as

over participants.

Fourth, to analyse whether the global propagation of phase-amplitude coupling differed
between sTMS and rTMS, we counted the number of electrodes that showed significantly
higher ERPAC during motor or visual TMS than during sham stimulation using one-tailed
paired-sample Student’s #-tests over participants. Tests were performed for windows of +
1/10"™ of a condition’s phase-providing oscillation’s cycle around the sSTMS pulse and each of
the five rTMS pulses, with ERPAC values averaged over the respective time points as well as
over amplitude frequencies. The extent of propagation induced by each of the five rTMS
pulses was then compared to the sTMS-induced extent of propagation using exact binomial
tests with parameters n.; ; = number of electrodes with a significant TMS-sham difference
during a particular rTMS pulse but not the STMS pulse, n.; » = number of electrodes with a

significant TMS-sham difference during the sSTMS pulse but not a particular rTMS pulse and
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the total number of discordant electrodes ne = ne ; + ne 2. As the assignment of these
electrodes to either n,; ; or n, > would have happened with equal probability under the null
hypothesis of no sSTMS-rTMS difference, the p-value was defined as the probability of n,; ;
reaching the observed or a higher value. Since we performed five tests per condition, multiple
comparisons were subsequently accounted for by adjusting p-values with the false discovery

rate (FDR) procedure™.

All analyses were performed in MATLAB (The MathWorks, Inc., USA), using the CSD

toolbox34, the CircStat toolbox38, the FieldTrip toolbox*! and custom-written scripts.

Data Availability
The dataset analysed in the current study is available from the corresponding author on

reasonable request.

Results

Local Modulation of Phase-Amplitude Coupling

Time-frequency representations of the local change in ERPAC relative to the sham
stimulation revealed that both motor TMS, analysed at electrodes C1 and C3, and visual TMS,
analysed at electrodes Oz and 02, led to an enhancement of phase-amplitude coupling in all
assessed phase-amplitude combinations (Fig. 2). For sTMS (Fig. 2a), significant time-
frequency clusters (p < .05, one-tailed cluster-based permutation tests) were found around the
onset of the single pulse at 0 ms in all conditions but one: The ERPAC increase around the
time of the pulse did not reach significance for the effect of visual sSTMS on alpha-gamma
coupling. However, later clusters of significant increases suggested an effect of sSTMS on
local ERPAC in this condition as well. For rTMS (Fig. 2b), significant time-frequency

clusters of increased ERPAC could likewise be observed around the onset times of almost all
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Figure 2: Grand average time-frequency representations of phase-amplitude coupling. Plots
show the strength of motor-TMS-induced (left column) and visual-TMS-induced (right
column) theta-gamma (first row), alpha-gamma (second row) and beta-gamma (third row)
event-related phase-amplitude coupling (ERPAC) as a function of trial time and amplitude
frequency. Stimulation paradigms are (a) sTMS and (b) rTMS, with the rTMS frequency
always corresponding to the frequency of the phase series. We extracted TMS effects by
averaging ERPAC over electrodes C1 and C3 for motor TMS and electrodes Oz and O2 for
visual TMS, subtracting corresponding mean data obtained during sham stimulation and
averaging the resulting values over the fourteen assessed participants. Time points of pulses
are indicated by black arrows and significant time-frequency clusters (p < .05, one-tailed

cluster-based permutation tests) by black contours.

pulses. Interestingly, whereas the ERPAC increases induced by the individual pulses were

clearly separated in time in the 5 Hz and 11 Hz stimulation, which related to theta-gamma and
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alpha-gamma coupling, respectively, the effects were more strongly merged for the beta-
gamma coupling occurring during the faster 23 Hz stimulation. Although clusters in all
conditions could spread out symmetrically in time because of the temporal smoothing
introduced by the wavelet convolution, it should be noted that their spreading was generally
biased towards post-stimulation rather than pre-stimulation time points. While the ERPAC
enhancement induced by the present TMS design thus seemed to linger for some tens of
milliseconds, it was still transient in nature, with individual effects typically lasting for less

than 50 ms.

A comparison of the local change in phase-amplitude coupling induced by sTMS and rTMS
revealed that in all but one condition, the mean ERPAC increase relative to the sham
stimulation was higher for the last rTMS pulse than for the sSTMS pulse, with the opposite
pattern being observable for beta-gamma coupling during visual TMS (Fig. 3). However,
because of high variability over participants, the p-values from two-tailed paired-sample
Student’s #-tests did not reach statistical significance (all p > .05), there being merely a
statistical trend (#(13) = —1.93, p = .076) observable for alpha-gamma coupling during visual

TMS, suggesting stronger ERPAC enhancement by rTMS than by sTMS.

Global Modulation of Phase-Amplitude Coupling

To illustrate the change in ERPAC relative to the sham stimulation at all 63 scalp electrodes,
nine topographic maps were computed for each condition and stimulation paradigm (Fig. 4).
The first two maps represented pre-stimulation time windows, the next one (sSTMS) or next
five (tTMS) represented windows centred on the individual pulses and all remaining maps
represented post-stimulation time windows. In accordance with the transient character of the
assessed effects, an enhancement of ERPAC was most noticeable within the topographic

maps centred on the pulses. Visual inspection further revealed that sSTMS-induced increases in
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Figure 3: Local comparisons of phase-amplitude coupling between sTMS and rTMS. Plots
show the strength of motor-TMS-induced (left column) and visual-TMS-induced (right
column) theta-gamma (first row), alpha-gamma (second row) and beta-gamma (third row)
event-related phase-amplitude coupling (ERPAC) during the sTMS pulse in green and the last

rTMS pulse in blue, with the rTMS frequency always corresponding to the frequency of the

66

ERPAC

ERPAC

ERPAC

0.12
0.11
0.1}
0.09 -
0.08
0.07
0.06
0.05
0.04 +
0.03 +
0.02 +

0.09
0.08
0.07
0.06
0.05
0.04 -
0.03 -
0.02 -
0.01 -

Motor

p=.772

sTMS rTMS
p=.468

sTMS rTMS
p=.465

sTMS rTMS

ERPAC

ERPAC

ERPAC

011

0.16
0.14 1
012 1
0.1}
0.08
0.06
0.04 -
0.02 -

-0.02
-0.04

011

Visual
p=.224

sTMS rTMS
p=.076

sTMS rTMS
p=.754

\

sTMS rTMS



Probing Phase-Amplitude Coupling with TMS-EEG

phase series. We extracted TMS effects by averaging ERPAC over electrodes C1 and C3 for
motor TMS and electrodes Oz and O2 for visual TMS, subtracting corresponding mean data
obtained during sham stimulation and averaging the resulting values over predefined time
windows of interest around the respective pulses and over the sixteen amplitude frequencies.
Bars of sTMS and rTMS represent mean values £ 1 SEM over the fourteen assessed
participants; each displayed p-value is based on a two-tailed paired-sample Student’s t-test

between the stimulation paradigms.

ERPAC were prominent primarily over the site of stimulation, with sporadic enhancements
also occurring at other sites (Fig. 4a). By contrast, the effects of rTMS within the five
topographic maps centred on the five pulses appeared to be more strongly distributed over the

entire cortex (Fig. 4b).

We quantified this observation by determining the number of electrodes with significantly
higher ERPAC during motor or visual TMS than during sham stimulation (p < .05, one-tailed
paired-sample Student's t-tests), and then comparing the electrode numbers between sTMS
and the five rTMS pulses (Fig. 5). As expected, in most cases, the number of significant
electrodes was larger for a particular rTMS pulse than for the sTMS pulse of the same
condition. With regard to motor stimulation, this difference was statistically significant (ps. <
.05, exact binomial tests) for three out of five rTMS pulses when investigating alpha-gamma
coupling (pulses 1, 2, 3: each p., = .041) and for one rTMS pulse when investigating beta-
gamma coupling (pulse 3: p.: = .019). With regard to visual stimulation, three out of five
rTMS pulses showed a significantly larger propagation when investigating theta-gamma
coupling (pulse 1: pme = .019, pulse 4: pme = .009, pulse 5: pq: = .006), whereas two rTMS
pulses were significant for beta-gamma coupling (pulses 2, 3: each p.,, = .021). Thus, while

significant sTMS-sham differences were still found at five or more electrodes in all
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conditions, indicating a certain extent of propagation in this stimulation paradigm as well,

rTMS induced a considerably more widespread propagation of ERPAC enhancement overall.

a Visual

theta-
gamma

alpha-
gamma

beta-
gamma '\

ERPAC

theta-
gamma

ERPAC

alpha- ) QS b ) @y *e =4 8 o
amma 7 8, s @ e Y ) V2 Y T (o -0.05
¢ ~ % - - ) s A > =) - \ s A Yie

beta-
gamma

Figure 4: Grand average topographic maps of phase-amplitude coupling. Plots show the
strength of motor-TMS-induced (left column) and visual-TMS-induced (right column) theta-
gamma (first row), alpha-gamma (second row) and beta-gamma (third row) event-related
phase-amplitude coupling (ERPAC) at all scalp electrodes within nine time windows of
interest. Stimulation paradigms are (a) sSTMS and (b) rTMS, with the rTMS frequency always
corresponding to the frequency of the phase series. We extracted TMS effects by subtracting
ERPAC obtained during sham stimulation from that obtained during motor or visual TMS
and averaging the resulting values over predefined time windows of interest, positioned at —2
cycles to +6 cycles of a condition’s phase-providing oscillation around the onset of the first
(or single) pulse, over the sixteen amplitude frequencies and fourteen assessed participants.

Topographic maps centred on pulses are indicated by black arrows.
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Discussion

With the present study, we provide compelling evidence that both sTMS and rTMS can
transiently enhance phase-amplitude coupling of neural oscillations, as measured with
concurrent EEG. This enhancement was found not only locally at the stimulation site, but also
over various other cortical sites, with the propagation induced by rTMS outperforming that
induced by sTMS. By demonstrating enhanced theta-gamma, alpha-gamma and beta-gamma
phase-amplitude coupling during motor and visual TMS, our results have relevance for a wide

range of the nested oscillatory signatures inherent to neural processing?*'*>*

and are highly
consistent with the hypothesised population-level increase in intrinsic coupling brought about
by oscillatory phase alignment. We hence propose that concurrent TMS-EEG can be utilised

to effectively probe such coupling in humans, a feature making it a highly promising

technique for future non-invasive investigations of this important mechanism.

At the site of stimulation, all of the assessed conditions showed significant increases in phase-
amplitude coupling strength during or slightly after TMS. As the phase-amplitude coupling in
the present study was operationalised as the circular-linear correlation of phase and amplitude

values at each time point across stimulation trials**’

, changes in coupling strength could be
assessed without the loss of temporal resolution inherent to most other coupling
measures” >>*’. Given that the enhancement of local phase-amplitude coupling typically
lasted for less than 50 ms around the pulse, a finding consistent with the previously reported
short-lived character of TMS-induced phase dynamics'?, this approach was vital to quantify
transient effects that would otherwise be barely detectable in scalp EEG recordings. We took
the following steps to ensure that the observed effects did indeed reflect a direct enhancement
of macroscopic phase-amplitude coupling by TMS. First, to account for any indirect effects of

stimulation, particularly for auditory-evoked changes in brain activity including cross-

modally triggered phase locking after salient sounds*, phase-amplitude coupling was always
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Figure 5: Global comparisons of phase-amplitude coupling between sTMS and rTMS. Plots
show the spatial extent of motor-TMS-induced (left column) and visual-TMS-induced (right
column) theta-gamma (first row), alpha-gamma (second row) and beta-gamma (third row)

event-related phase-amplitude coupling (ERPAC) during the sTMS pulse in green and the five

70



Probing Phase-Amplitude Coupling with TMS-EEG

rTMS pulses in blue, with the rTMS frequency always corresponding to the frequency of the
phase series. We extracted TMS effects by averaging ERPAC at all electrodes over predefined
time windows of interest around the respective pulses and over the sixteen amplitude
frequencies, comparing the resulting values between motor or visual TMS and sham
stimulation with one-tailed paired-sample Student’s t-tests and counting the number of
electrodes with a statistically significant difference (p < .05; drawn on y-axis). The spatial
extent of TMS effects was subsequently compared between the sTMS pulse and each of the five
rTMS pulses with exact binomial tests. Corresponding p-values, adjusted for multiple
comparisons with the false discovery rate (FDR) procedure, are superimposed onto the rTMS
bars in all plots, significant p-values (p.x < .05) are displayed in white, all other p-values in

black.

assessed relative to the sham stimulation, which was applied over the vertex of the head.
Second, by statistically comparing the observed TMS-sham differences to surrogate
distributions of trial-shuffled data with unmodified temporal structure®, we confirmed that
the observed enhancement of phase-amplitude coupling was based on a specific statistical
relationship between phase and amplitude values across trials, rather than on spurious
relationships induced by unrelated neural effects of the pulse or any sharp edge artefacts®.
Thanks to these methodological approaches, a clear demonstration of TMS-induced changes
in phase-amplitude coupling was made possible. Even though such changes seemed to be
stronger for the last pulse of the delivered rTMS trains (targeted at the phase-providing lower-
frequency oscillations) than for the sSTMS pulse in almost all conditions, the statistical power
was not high enough to enable a conclusion regarding local phase-amplitude coupling
differences between stimulation paradigms. Notably, a slight modification of the rTMS
paradigm could potentially facilitate the detection of such differences. Successful neural

entrainment, which might underlie a potential rTMS benefit by enabling stronger oscillatory
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phase alignment relative to sTMS, requires the existence of a neural population that can
oscillate at the stimulation frequency under natural conditions'’. As such eigenfrequencies
differ between cortical regions15 and individuals*, the entrainment capability of rTMS should
be enhanced by tuning its frequency to the local power spectrum peak frequencies of
participants. Recent evidence has indeed demonstrated the benefits of such an individualised
targeting of intrinsic oscillations by rTMS', making a comparison of local phase-amplitude
coupling strength between this rTMS paradigm and sTMS promising. Importantly, even
though the perturbation of intrinsic oscillations is potentially stronger in the case of
individualised rTMS frequencies, previously reported effects of non-individualised
stimulation on human cognition*’ suggest successful entrainment in this case as well. As Thut
and colleagues'? noted, such effects might be enabled by intra-individual frequency
fluctuations as well as a loosening relationship between eigenfrequency and effective
stimulation frequency at higher stimulation intensities (see also Gouwens and colleagues™). A
decision in favour of non-individualised stimulation paradigms may eventually also be driven
by the increased expenditure of time and resources associated with the pre-experimental

determination of individual peak frequencies, especially when testing clinical populations.

Alongside the described local effects of STMS and rTMS, we found that TMS can enhance
population-level measures of phase-amplitude coupling over various other cortical sites. In
line with this finding, propagation of neural activation related to either STMS or rTMS has

. . - 13,14,49,50,51,52,53,54
been shown in a number of previous studies > "7 777>

. In particular, Kawasaki and
colleagues'® demonstrated an sTMS-induced large-scale propagation of oscillatory phase
locking, which was accompanied by increased directional information flow of phase
dynamics from the occipital stimulation site to an examined distant site over the motor cortex,

as assessed by transfer entropy. Since the therein suggested alignment of phases of individual

oscillators should increase the detectability of intrinsic phase-amplitude coupling at the
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population level, the propagation of enhanced coupling observed here is highly consistent
with this report. However, knowledge of any propagation differences between sTMS and
rTMS is sparse. In the present study, rTMS enhanced scalp-recorded phase-amplitude
coupling at considerably more sites than sSTMS. This difference was particularly pronounced
for alpha-gamma coupling during 11 Hz motor stimulation and theta-gamma coupling during
5 Hz visual stimulation, with three out of five rTMS pulses outperforming the respective
sTMS pulse in each case. As (nested) intrinsic oscillations are believed to play an important

. . 42,55
role in neural signal transmission™

, their entrainment by rTMS may again be at the bottom
of the observed benefit. In accordance with this idea, Romei and colleagues'* demonstrated
that rTMS pulses propagate from the sensorimotor cortex to spinal levels only when
sensorimotor oscillations are specifically targeted via their eigenfrequency, with stimulation at
other frequencies having little impact on cortico-spinal signal interactions. Likewise, the
impact of sSTMS on relevant oscillations might have been too weak to reach the extent of
propagation achieved by rTMS in the present study. Before alternatively ascribing the
observed propagation benefit of rTMS to a methodological contamination of rTMS pulses by
surrounding pulses, it should be noted that during rTMS, both local alpha-gamma coupling
and local theta-gamma coupling typically returned to baseline long before the next pulse
arrived. Still, one could argue that we had already observed a more widespread distribution of
enhanced phase-amplitude coupling during the first rTMS pulse in several conditions. As an
rTMS-induced synchronisation of neural oscillators might have progressively strengthened
within entire rTMS blocks, including multiple stimulation trials, in these cases, the assessed
correlation of phase and amplitude values could have been driven by the intensified
entrainment present only in later trials. Nonetheless, conclusive evidence on this matter is so

far missing and future studies are needed to shed light on the exact cause of the observed

sTMS-rTMS differences in phase-amplitude coupling propagation.
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As phase-amplitude coupling is believed to play a fundamental role in the transfer of neural
information across diverse spatial and temporal processing scales, thereby serving the
dynamic integration of global computations with fast local processing, it may be extremely
relevant for cognitive functioning®™. Recent evidence has started to support this claim by
hinting at its functional significance for visual perception, feedback processing™, memory
recall’’, visuomotor mapping™ and movement planning and execution®. Accordingly, a
dysfunction in phase-amplitude coupling has been identified in several clinical conditions
such as Parkinson’s disease®, autism spectrum disorders®' and epilepsy®™. Still, our current
understanding of this intriguing mechanism is far from exhaustive. Investigations of phase-
amplitude coupling in the human population are hampered by the inherent shortcomings of
established non-invasive measurement techniques. As methods such as EEG capture the
summed potentials of tens of thousands of synchronously activated neurons, scalp-recorded
oscillations inevitably reflect the summation of multiple underlying neural oscillators.
Consequently, even strong phase-amplitude coupling can only be detected with EEG if a
considerable quantity of those oscillators are in phase, and thus are not cancelling out at the
population level. We suggest that by aligning the phases of individual oscillators, TMS fosters
this setting, and thereby facilitates the non-invasive detection of intrinsic phase-amplitude
coupling with an improved signal-to-noise ratio. The proposed perturbational approach
therefore holds great promise for future investigations aimed at further unravelling the
association between such oscillatory nesting on the one hand, and healthy or pathological
human functioning on the other hand. By probing the intrinsic capacity of individuals for
phase-amplitude coupling, concurrent TMS-EEG might, in this regard, prove particularly
useful for the reliable development of coupling-based biomarkers, as have already been
presented for amnestic mild cognitive impairment®. Besides opening the door to a deeper
understanding of the functional role of phase-amplitude coupling, the present results add to

the constantly growing body of knowledge regarding the neurophysiological mode of action
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underlying TMS (see Klomjai and colleagues® for a review). By actively modulating nested
intrinsic oscillations, TMS impacts on the gating of information along interconnected neural
ensembles, and consequently affects a fundamental property of neural processing in the

human brain.

In conclusion, we used a concurrent TMS-EEG study design to demonstrate that TMS can
transiently enhance scalp-recorded phase-amplitude coupling. This enhancement was found
for both sTMS and rTMS, with a more widespread propagation of effects being observed
during the latter stimulation paradigm. We thus recommend the perturbational approach of
concurrent TMS-EEG as a novel experimental technique to effectively probe intrinsic phase-
amplitude coupling in humans. The utility of this design for future studies investigating the
functional roles of phase-amplitude coupling in the healthy population, as well as phase-

amplitude coupling changes in pathological conditions, awaits confirmation.
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4

Discussion:
Decoding the Restless Brain

The current thesis is aimed at drawing a detailed picture of intrinsic brain activity, one of the
indispensable neural foundations of low- and high-level mental functioning (see e.g.,
Sadaghiani and Kleinschmidt 2013). Existing knowledge of this activity’s dynamic temporo-
spatial layout, especially with respect to its spectral characteristics, and of its essential impact
on human perception, cognition, and behavior has been extended by means of two main
projects. While the first project took an interest in the relation between slow fluctuations in
intrinsic brain activity and the emergence of conscious visual perception, the second project
laid its focus on the development of a methodological tool to advance the reliable assessment
of similar relations in future non-invasive studies. The two conducted projects are exemplary
for a wide range of topics pressing to be addressed in this rapidly developing research field
and promote the overall appreciation of the so-called restless brain (Raichle 2011) as the basic
state of human neural processing. In this chapter, the key findings from both projects are
summarized, interpreted, and integrated into the current state of research, taking into account
also methodological limitations and (in parts already implemented) conceivable future
research steps, to allow for the assessment of their usefulness in understanding elementary

brain mechanisms and functions.

4.1 Advancing Research on Intrinsic Brain Activity
Two original research articles were presented, entitled (1) “The evolution of pre-stimulus
slow cortical potentials is associated with an upcoming stimulus’ access to visual

consciousness” and (2) “Phase-amplitude coupling of neural oscillations can be effectively
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probed with concurrent TMS-EEG”. In the current section, the key attributes of each of these
projects are summarized and integrated into a common frame of advancements in

understanding the dynamics of intrinsic brain activity with scalp EEG.

The first main project was dedicated to the functional relevance of intrinsic brain activity, in
particular concerning the relation between slow fluctuations in such activity and the access of
incoming visual information to conscious awareness. This relation had been tackled
previously in an fMRI study by the group around the current thesis’ author (Wohlschliger et
al. 2016), with the present project aimed at finding a potential electrophysiological analog of
the therein emphasized meaningful evolution of slow pre-stimulus BOLD signals. SCPs,
which reside at the low-frequency end of electrophysiological activity measures and thus in a
frequency range similar to that of BOLD activity, seem to be optimally positioned for large-
scale information integration (He and Raichle 2009) and have been proposed to constitute a
neural predisposition of integrated conscious experience (Northoff 2017). While a relation
between the magnitude of intrinsic SCPs on the one hand and the detection of visual stimuli
near sensory threshold on the other hand had indeed been demonstrated experimentally
(Devrim et al. 1999), the role of their relative evolution toward stimulus presentation
remained to be understood. We therefore conducted a visual backward-masking task, during
each trial of which healthy participants had to, first, identify a given property of a briefly
presented target stimulus and to, second, indicate their confidence on a four-point scale from
“not sure at all” up to “very sure” as a proxy for the target’s access to conscious awareness.
Direct-current (DC) EEG was recorded throughout the task. The inspection of correct-trials-
only event-related potentials (ERPs), which were generated relative to a brief period
immediately before target presentation, revealed that the grand average signal slowly
increased toward target presentation when highest awareness was about to arise and slightly

decreased in all other conditions. The presented EEG project thus successfully demonstrated
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the functional relevance of slowly evolving intrinsic brain activity, a finding in close
correspondence with the fMRI study of Wohlschldger and colleagues (Wohlschlidger et al.
2016) and in support of a recent theoretical account according to which incoming stimuli bind
to slow intrinsic activity - accessible either via SCPs or the BOLD signal - as a function of the
degree of temporal correspondence between the stimuli and such activity’s ongoing cycles
(Northoff and Huang 2017). In addition, we identified well-known post-target correlates of
conscious awareness, including enhancements of the visual awareness negativity and the P3
component (see e.g., Koivisto et al. 2008). While it therefore seemed that slow activity
fluctuations acted alongside faster neural processes to offer incoming information access to
higher-level neural processing and ultimately conscious experience, any attempts to quantify
such interplay of slow and fast neural processes were unsuccessful in the context of the

conducted study.

With the second main project, we aimed at bringing forward a novel experimental technique
to enhance the detectability of such interactions, in the form of intrinsic phase-amplitude
coupling, in non-invasive scalp recordings. Given that the perturbational method of TMS had
been proposed to synchronize individual neural oscillators by means of phase alignment and
to thereby attenuate population-level signal nullifications (Thut et al. 2011a, 2011b),
concurrent TMS-EEG was considered a promising yet untested candidate to accomplish this
objective. In separate sessions, we consequently delivered sTMS as well as rTMS at 5, 11,
and 23 Hz over the left motor cortex, over the right visual cortex, and as sham stimulation
above the vertex of the head while simultaneously collecting EEG data. Changes relative to
sham stimulation were assessed for theta-gamma, alpha-gamma, and beta-gamma phase-
amplitude coupling, with the rTMS frequency always corresponding to the frequency of the
phase-providing slower oscillation (which means that we assessed changes in theta-gamma

coupling, e.g., during motor and visual sTMS and 5 Hz rTMS). An in-depth analysis of the
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collected EEG data revealed that TMS pulses of all conditions induced transient increases in
phase-amplitude coupling at the respective stimulation site. In addition, phase-amplitude
coupling was found to be enhanced also over other cortical sites. A direct comparison of
sTMS and rTMS showed in this context that the latter stimulation paradigm induced a
significantly more extensive propagation of coupling enhancement than the former paradigm.
Together, these results indicate that TMS can be successfully applied to increase the
detectability of phase-amplitude coupling in scalp recordings of neural activity. They thereby
open the door to the method’s application in various lines of research revolving around
intrinsic brain activity, e.g., concerning a tentative relationship between the strength of
intrinsic oscillatory nesting and healthy or pathological mental functioning. Explicitly probing
an individual’s inherent capacity for such nesting has the potential to uncover the neural basis
of particular psychological traits and states and to provide an apt biomarker of neurological or

psychiatric disease.

While the two main projects of the current thesis tackled different subtopics in the realm of
intrinsic brain activity, they both help toward a better understanding of this activation mode.
Both projects focused on the puzzling temporo-spatial dynamics of such activity, with the
temporal signal evolution having been assessed either via slow fluctuations (first project) or
faster oscillatory phases (second project). The inherent properties, settings, and consequences
of the addressed neural fluctuations and oscillations were spotlighted as these phenomena
might lie at the very core of human functional brain organization. Evidence for the functional
relevance of dynamic intrinsic brain activity, which can range from contributions to basic
perception or action up to interactions with high-level mental processes such as decision-
making, cognitive control, and the formation of unified conscious experiences, is an essential
advocate for its right to exist. Such evidence, though, can only be provided with sensitive

measures of brain activity, which need to be non-invasive in order to be applicable to broad
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and representative samples of the human population. EEG is a feasible and widely-used
method in this regard, since it is relatively inexpensive, mobile, and can generate data at a
high temporal resolution on the order of milliseconds. Even though notable discoveries have
indeed been made with EEG, the method’s power is undoubtedly limited by its low spatial
resolution, with the captured electrophysiological signal reflecting not single neuronal sources
but the summed, and in the process partly nullified, potentials of tens of thousands of active
neurons. The ability to measure the mechanisms of intrinsic brain activity without this
limitation or with it at least being diminished (and without raising new limitations by
switching to entirely different methods such as fMRI) constitutes a valuable asset to
understanding the activity’s functional relevance. Concurrent TMS-EEG, as brought forward
in the second main project, can fulfill this demand and pave the way for comprehensive
examinations of intrinsic brain activity and its relation to mental functioning, with an
exemplary research question behind such examinations having been presented in the first
main project. Although intrinsic brain activity is not understood in its entirety yet, a solid

fundament has thus been built for future discoveries in the field.

4.2 Methodological Considerations
Nonetheless, a number of methodological considerations concerning the two presented

research projects can be brought up and will be discussed in detail in the current section.

A major challenge with regard to the first main project has been the adequate
operationalization of a concept as abstract as conscious awareness, with such an
operationalization being required to make the concept measurable in empirical observations.
So what is the best way to quantify the extent to which participants become aware of a
sensory stimulus? There is an ongoing debate about the most suitable approach to access

conscious experience in cognitive neuroscience and experimental psychology (see Sandberg
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et al. 2010; Seth et al. 2008; Zehetleitner and Rausch 2013) and a generally agreed-upon
answer is still pending. Several behavioral measures of consciousness have been proposed,
among them objective measures such as performance accuracy and subjective measures such
as ratings of the clarity of sensory experiences or ratings of confidence, as used here (for a
comparison of subjective consciousness measures, see Zehetleitner and Rausch 2013). The
choice of a particular empirical measure is often driven by a particular theoretical
understanding of what consciousness actually is, with views again diverging among different
scientists and philosophers: While a mental state might already be considered conscious if it
can express its content in behavior, other approaches require a person to be aware of being in
that state (see Seth et al. 2008, for an insightful review of relevant theories and associated
behavioral measures). Confidence ratings reflect an implementation of the latter notion, with
consciousness being characterized by self-monitoring or “the ability to conceive and make use
of internal representations of one’s own knowledge and abilities” (Dehaene et al. 2017). The
results of the first main project thus need to be understood in terms of this meta-cognitive
interpretation of conscious visual perception and provide only limited insight into other,

potentially distinguishable forms of consciousness.

A further debatable issue of the first main project concerns the mode of action through which
slow fluctuations in intrinsic brain activity ultimately impact on the fast local processing
associated with moment-to-moment perception. While a nested hierarchy of oscillations in the
traditional frequency bands has been found by others to control neuronal excitability and thus
stimulus-related responses via cross-frequency interactions and in particular phase-amplitude
coupling (e.g., Canolty et al. 2006; Lakatos et al. 2005; Tort et al. 2010), a corresponding
mechanism incorporating SCPs could not be detected in the current project. Slow activity
fluctuations have been shown to exhibit phase-amplitude coupling among their own

subfrequency bands (Huang et al. 2017) and may thus be suited to also modulate activity in
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faster bands such as the alpha and/or gamma band (see Monto et al. 2008; Vanhatalo et al.
2004) in order to control local visual processing. The (unreported) null result of the presented
research project does by no means exclude this possibility and might be simply caused by an
insufficient signal-to-noise ratio within the artifact-prone frequency range of SCPs (for a
description of relevant artifacts, see Birbaumer et al. 1990). As long as evidence for this
mechanism or a different process is missing though, the underlying mode of action of SCPs
remains only incompletely understood. Such understanding is further limited by the low
spatial resolution of scalp EEG, with any statements about top-down global-to-local
modulations of neural activity being merely tentative (e.g., regarding the exact brain areas that

generate and drive relevant fluctuations in SCPs).

The second main project faced an entirely different set of challenges, centered on our
hypothesis that TMS can enhance the detectability of intrinsic phase-amplitude coupling by
synchronizing natural neural oscillators. While this hypothesis is highly compatible with the
findings presented by us and others (Thut et al. 2011b), irrevocable evidence for it, based on
the direct observation of modulated oscillators, is still missing. Alternatively to the
hypothesized mechanism, one might ascribe the observed increase in macroscopic phase-
amplitude coupling to the generation of entirely novel coupling overlaid on top of intrinsic
brain activity. Given that different cortical regions exhibit different oscillatory profiles
(Rosanova et al. 2009), a TMS-induced modulation of intrinsic phase-amplitude coupling
should entail differences in phase-amplitude coupling enhancement between motor and visual
stimulation. While such differences were not apparent in the current project and could have
been obscured by the relatively high stimulation intensity, a quantitative investigation targeted
at particular intrinsic modules, present already before stimulation and altered afterwards, may
be able to reveal regionally distinct effects of TMS in the future, with a conclusive answer in

this matter still being pending. Apart from this objection, one might be inclined to attribute
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the reported effects to no neural mechanism at all but simply to artifacts brought about by the
TMS pulses. TMS has indeed been shown to produce a number of artifacts in EEG
recordings, which originate, e.g., from interactions between the magnetic field and the
recording equipment (Herring et al. 2015; Ilmoniemi and Kici¢ 2010; Rogasch et al. 2017). In
the current project, established techniques to attenuate these artifacts have been applied,
including the linear-interpolation-based substitution of affected data segments and the
removal of artifact components via independent component analyses. The occurrence of
spurious phase-amplitude coupling has been further reduced by assessing all effects relative to
sham stimulation and by determining significance via surrogate-based permutation testing. It
has to be acknowledged, though, that TMS-related artifacts cannot be entirely eliminated from
EEG data, especially not within the analyzed period directly enclosing the pulses, and that
neither sham stimulation (which did not control for TMS-induced somatosensory inputs in the
presented project) nor surrogate analyses can preclude their influence completely. As there is
currently no technique available to entirely prevent TMS artifacts in the EEG signal during
data recording or analysis, any findings resulting from concurrent TMS-EEG need to be
critically evaluated against this background. However, given that novel technological and
analytical advancements are brought up regularly, future investigations are likely to reduce
this concern, with evidence that TMS does in fact interact with intrinsic brain activity already

now accumulating (e.g., Eldaief et al. 2011; Kundu et al. 2014; van der Werf et al. 2010).

4.3 Future Directions and Already Accomplished Steps

As foreshadowed in the previous section, research on intrinsic brain activity, and in particular
on the two topics addressed by the current thesis’ two main projects, is not completed yet.
While a number of relevant future research projects are conceivable, including the targeted
and more fine-grained investigation of cross-frequency interactions between SCPs and faster

neural oscillations, the comparison of such interactions between different behavioral measures
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of conscious awareness, and their modulation by TMS, the current section focuses on one
project in particular. This project addresses the limited spatial resolution of scalp (DC-)EEG
in a different manner, by combining the method with simultaneous fMRI, and has already
been initialized by the current thesis’ author and colleagues (i.e., by Sarah Glim, Anja Ries,
Cristiana Dimulescu, Christian Sorg, and Afra M. Wohlschldger). In the following, the
rationale behind this project is presented, together with an overview of the already completed
data collection and (pre-)processing steps. Even though final results are still pending, the
project should be able to convey a sound impression of how concurrent fMRI-EEG can be

utilized in the future to advance research on intrinsic brain activity.

Slow electrophysiological fluctuations in brain activity, generally known as SCPs, have been
ascribed a particularly prominent role in neural information integration (He and Raichle
2009). While we were able to show in the current thesis’ first main project that the intrinsic
evolution of SCPs is related to the emergence of conscious visual perception, the precise
integrative mechanisms underlying this relationship remained partly elusive, owing to the low
spatial resolution of the obtained EEG measurements. As mentioned above though, SCPs
seem to be accessible not only via electrophysiology but might constitute a direct correlate of
the fMRI BOLD signal with its equally slow temporal dynamics (He and Raichle 2009;
Khader et al. 2008). This hypothesis, for which evidence is more and more accumulating (He
et al. 2008; Hiltunen et al. 2014; note also the close correspondence of findings obtained in
the current thesis’ first main project and by Wohlschldger et al. 2016), opens up the possibility
to examine intrinsic SCPs, their relation to faster neural oscillations (which have been
associated with the BOLD signal via power fluctuations; Goldman et al. 2002; Mantini et al.
2007; Sadaghiani et al. 2010), and to behavior at both a high temporal and a high spatial
resolution. With the initialized fMRI-EEG project, we aim at (1) providing further evidence

for a direct mapping of electrophysiological SCPs and the hemodynamic BOLD signal in its
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raw fluctuations and at (2) characterizing the precise temporo-spatial layout of functionally
relevant intrinsic brain activity in the context of SCPs and emerging visual consciousness. In
particular, we are interested in the dynamic configuration of brain areas and networks that
drive the modulation and integration of incoming visual information - before, during, and

after local visual processing - and in the oscillatory mechanisms reflecting such proceedings.

To pursue this research interest, the following measurements were conducted. 25 healthy
adults were assessed on two testing days each. The first day started with a training session of
the same visual backward-masking task that was applied already in the current thesis’ first
main project and, in a modified form, by Wohlschldger and colleagues (Wohlschldger et al.
2016; with each trial requiring the localization of the missing part of a briefly presented target
stimulus, followed by a confidence rating). After this behavioral training, participants
underwent 10 min of eyes-closed resting state fMRI with an occipital field of view,
inclusively measurements of their electrodermal activity, heart rate, oxygen saturation, and
respiration, as well as a retinotopy fMRI session, during which an expanding and rotating
checkerboard stimulus had to be observed while maintaining central fixation. Both fMRI
measurements were performed to enable an exact delineation of early visual areas during later
data processing (see Engel et al. 1994; Sereno et al. 1995; Wig et al. 2014). The first testing
day was concluded with a T1-weighted anatomical MRI scan and a routine clinical scan
employed to check for incidental clinical findings. On the second testing day, participants
started again by training the visual backward-masking task and then carried out one block of
100 trials of this task with concurrent EEG. The latter measurement was conducted to obtain
electrophysiological data free from fMRI artifacts for subsequent data quality checks.
Afterwards, whole-brain fMRI-EEG was recorded during (1) 10 min of eyes-closed resting
state and (2) 4 blocks of 100 trials each of the visual task. These measurements were again

accompanied by the simultaneous recording of a number of physiological parameters, namely
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electrodermal activity, heart rate, oxygen saturation, and respiration, which provide valuable
information for the reduction of non-neuronal noise in the signals of interest (see e.g., Birn et
al. 2008; Chang et al. 2009). Finally, participants completed the “Student Opinion Scale”
(with the word “test” replaced by “task™; Sundre 2007) as a measure of their overall study
motivation. After the data acquisition phase had been completed, the collected data were
preprocessed, which - for the task fMRI data - corresponded to slice timing correction,
realignment and unwarping, co-registration of the anatomical image, segmentation,
normalization, and spatial smoothing. With regard to the concurrent task EEG data,
preprocessing comprised the correction of scanner and cardioballistic artifacts specific to
combined fMRI-EEG recordings (Allen et al. 1998, 2000), therein included low-pass filtering,
DC detrending (Hennighausen et al. 1993), the independent-component-analysis-based
removal of artifacts originating from eye movements, eye blinks, and other muscular activity
(Hipp and Siegel 2013; Jung et al. 2000), re-referencing, as well as down-sampling. As to all
data, trials were rejected if they contained any remaining artifacts in the collected signals, if
the presented target stimulus was obscured by an eye blink occurring immediately around it,
or if participants’ button presses were invalid, regarding either the number of presses or the
used buttons. Besides these routines, further processing steps are currently being implemented
or planned, including the integration of retinotopic maps and of the recorded physiological

parameters.

With this comprehensive, ready-to-use data set at hand, manifold analyses are possible in
future research projects, targeting the abovementioned study aims and numerous others.
Concurrent fMRI-EEG, albeit being a technologically and methodologically demanding
method, offers the valuable possibility to examine neural mechanisms and processes non-
invasively at a high spatial and high temporal resolution and should thereby enable novel

insights into intrinsic brain activity that are barely achievable otherwise. An essential first step
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toward such insights has been made with the preparation of the presented task and rest fMRI-

EEG data set, which will be made available upon reasonable request.

4.4 Conclusions

Intrinsic brain activity is widely accepted these days as the basic scaffold of human neural
functioning. The restless brain is believed to set the stage for survival by predicting
environmental changes; it processes and maintains behaviorally relevant information and
tunes its internal structures to enhance responses and improve performance (Raichle 2011,
2015). Accordingly, intrinsic brain activity commands the majority of the brain’s energy
resources (Raichle and Mintun 2006) and is engaging an ever-growing research community.
Much insight has been gained already on the dynamic temporo-spatial layout of this activity,
on its (non-invasive) measurability, and on its significance for human perception, cognition,
and behavior. Nonetheless, the precise mechanisms underlying its generation and evolvement,
ranging from the level of cell biology to network-level neuroscience, are not understood in
their entirety yet and more work is required to illuminate the importance of intrinsic brain

activity for healthy and diseased mental functioning.

With the current thesis, a relevant step is made toward a more complete understanding of a
number of these topics. The thesis offers original findings on (1) the functional relevance of
EEG-recorded intrinsic brain activity, specifically with regard to the relation between slowly
evolving fluctuations in such activity and the emergence of conscious visual perception, and
on (2) its non-invasive detection, which has been shown by us to improve - in the case of
intrinsic phase-amplitude coupling - with concurrent TMS-EEG. These findings can open the
door for future studies aimed at examining the functional relevance of (nested) oscillatory

mechanisms at an enhanced signal-to-noise ratio. An enhanced spatial resolution can be
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furthermore achieved with concurrent fMRI-EEG, a large data set of which was additionally

outlined above.

In conclusion, the current thesis provides novel content-related and methodology-related
insights into the dynamics of intrinsic brain activity, as recorded non-invasively with scalp
EEG, and thereby complements existing literature on this critical subject of modern
neuroscience. The aspired comprehensive decoding of intrinsic brain activity might be able to
advance personalized medicine in the field of neurological and psychiatric disorders and to
serve as a model for artificial neural systems in the conceivable future, with exciting

developments lying ahead of us.
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