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Summary 

Epigenetic mechanisms regulating gene expression mainly involve DNA methylation, 

histone modification, and non-coding RNAs. Disruption of these mechanisms may lead 

to cancer, complicated disorders such as behavioral disorders, amnesia, autoimmune 

disease, and addiction. DNA methylation is a widespread modification found in various 

species, which is produced by DNA methyltransferases (DNMTs), including Dnmt1, 

Dnmt2, Dnmt3a, Dnmt3b and Dnmt3L, and also considered as a stable gene-silencing 

mechanism. Specifically, the inhibition of gene transcription occurs, either by blocking 

the binding of transcriptional factors or through the recruitment of methylated DNA 

binding domain proteins. However, DNA methylation is also linked with histone 

modifications. Histones undergo a series of covalent modifications, like methylation, 

acetylation, ubiquitination, phosphorylation, and sumoylation. Furthermore, histone 

modifications are determined by the substrate specificity of the enzymes as well as 

enzymes that remove these marks. Among these modifications, histone acetylation is 

regarded as one of the marks for transcriptional activation and deacetylation of histone 

is closely associated with gene repression.  

In this work, we found that the nicotine adenine dinucleotide (NAD+)-dependent 

deacetylase sirtuins family is involved in epigenetic regulation, and connects histone 

deacetylation with DNA methylation. On the one hand, Sirt1 can interact with non-

histone proteins, like Dnmt1 and Uhrf1, and influence protein stability and DNA 

methylation. Sirt1 mediated deacetylation stabilizes Uhrf1 in combination with the 

deubiquitinase Usp7. Functionally, deacetylation of Uhrf1 is a prerequisite for Uhrf1 to 

be phosphorylated by Cdk2 and enter into S phase of the cell cycle. The expression 

level of Uhrf1 fluctuates in different phases of the cell cycle and plays a crucial role in 

the regulation of DNA methylation. On the other hand, Sirtuins have been reported to 

deacetylate various substrates of histones, such as H3K9ac, H3K14ac, H4K16ac, and 

H1K6ac (Imai et al., 2000; Vaquero et al., 2004). Not only Sirt7 is a highly selective 

H3K18ac deacetylase for maintaining cellular transformation, but also Sirt1, Sirt2, and 

Sirt6 can deacetylate H3K18ac and regulate metabolism by downregulating some target 

genes. Significantly, these genes are regulated via a transcriptional factor, Hif1a, which 
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provides new insights into therapies and metabolic diseases. Specifically, these genes 

are downregulated via the increased DNA methylation because sirtuins-mediated 

H3K18 deacetylation promotes Uhrf1-associated ubiquitination of H3K18, which is 

essential for Dnmt1 binding and DNA methylation (Qin et al., 2015a). Taken together, 

our data suggest that H3K18 acetylation, as one of the common histone substrate of 

sirtuin proteins, is enriched at the transcription start site (TSS) of active and poised 

genes, offends DNA methylation and thereby promotes transcriptional activation of 

these genes. 
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1 Introduction 

1.1 Epigenetic regulation 

In eukaryotic nuclei, histones tightly compact chromosomal DNA and make the 

nucleosome a basic unit, in which histones are small and positively charged proteins 

and DNA is negatively charged from phosphate groups in its phosphate-sugar backbone 

(Richmond and Davey, 2003). For one nucleosome, 146 bases of DNA are packaged by 

the histone octamer which includes double core histones termed H2A, H2B, H3, and H4 

and additional 20 bases DNA is wrapped by one H1 (Holde, 1989). A long chain of 

nucleosomes forms a structure called chromosome, which contains over 100 million 

base pairs of DNA on average. As a high-order structure, chromosomes and 

nucleosomes pose barriers to processes such as replication and transcription 

preventing the two strands of DNA to separate temporarily. In general, it is reversible as 

chromatin can be modified by other proteins to make it more accessible by histone 

acetylation, methylation or phosphorylation (Fischle et al., 2003).  

‘Epigenetics’ is defined as heritable changes in gene expression (active and inactive 

genes) without alterations in the DNA sequence. These changes are a natural and 

common occurrence in the distinct cell types for the formation of multicellular organisms 

and tissues, but can also be influenced by aging or environment. Chromatin is the major 

relevant substrate for all the genetic processes in eukaryotic cells. Dynamic changes in 

the local or global level of chromatin influence genomic functions. So the epigenetic 

changes, including various post-transcriptional histone modifications, exchange of 

histone variants and genome-wide DNA methylation, are critical events for the 

organization of chromatin status and biological processes. Epigenetic regulations are 

crucial for development and differentiation in normal cells, as well as various cancers. In 

fact, epigenetic changes, especially DNA methylation, caused by a certain environment, 

are more susceptible to increase the risk of cancer. Collectively, the fundamental 

mechanisms behind epigenetic regulation contain at least five aspects: (I) DNA 

methylation; (II) histone modifications; (III) histone variants; (IV) chromatin remodeling; 

(V) non-coding RNA (ncRNA)-associated gene silencing (Akimaru et al.). In the last 
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decades, an increasing number of studies have uncovered considerable changes in 

these epigenetic mechanisms that are associated with different gene expression. The 

new theories explaining these epigenetic mechanisms encourage people to apply in 

potential epigenetic therapies or improve the treatment of various diseases. 

1.1.1 DNA methylation 

Currently, DNA methylation is one of the most studied epigenetic modifications. Since 

the methylated base 5-methylcytosine (m5C) was discovered in 1948, Aharon Razin and 

Arthur D. Riggs have emphasized that DNA methylation is a key element in the control 

of gene function and differentiation in 1980 (Hotchkiss, 1948; Razin and Riggs, 1980). 

DNA methylation occurs when the methyl group is transferred from S-adenosyl 

methionine to a cytosine base by DNA methyltransferase enzymes. In this reaction, a 

cytosine base in normal B-DNA is flipped completely out of the helix into an extrahelical 

position so that DNA methyltransferase enzymes can access and methylate the cytosine 

(Roberts and Cheng, 1998). This phenomenon of base flipping was discovered with the 

first crystal complex structure at 2.8 Å resolution in 1994 (Klimasauskas et al., 1994) 

(Figure 1).  
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Figure 1.  The crystal structures of HhaI methyltransferase with its substrate DNA. (A) 

HhaI can bind to unmodified DNA (PDB: 3MHT) (O'Gara et al., 1996a). (B) HhaI binds to 

hemimethylated DNA (PDB: 5 MHT) (O'Gara et al., 1996b). The flipped cytosine base is labeled 

in red dot block. And the protein HhaI is shown in grey. The sugar-phosphate backbone is in 

orange and the side chains of DNA are in green, the bases are in blue. 

DNA methylation occurs ubiquitously in prokaryotes and eukaryotes. In bacterial 

genomes, DNA methylation is post-replicative and occurs at specific DNA sequences, 

which functions as part of an immune protector by introducing sequence-specific 

restriction enzymes to degrade the unmethylated foreign DNA to avoid bacteriophage 

infection. In plants, DNA is highly methylated with 5-methylcytosine (m5C) and N6-

methyladenine (m6A), and m5C is located not only in symmetrical CG and CNG 

sequence but also in other non-symmetrical contexts (Vanyushin, 2006). In mammals’ 

genome, DNA methylation occurs mainly in a CpG dinucleotide context. Specifically, 

more than 98% of DNA is methylated in a CpG site in the somatic cells, while there is 

still around one-quarter of DNA methylation occurring in a non-CpG context in 

embryonic stem cells (ESCs) (Lister et al., 2009). In addition, non-CG methylation is 

mostly enriched in gene bodies and dynamically exists in protein binding sites and 

enhancers, which disappears in the differentiation of embryonic stem cells (Lister et al., 

2009).   

In eukaryotes, DNA methylation is essential in a wide range of key cellular processes 

including gene regulation, genome stability, imprinting and X-chromosome inactivation 

(Bender, 2004; Gopalakrishnan et al., 2008). Deregulation of DNA methylation can 

result in diseases like cancer. Global DNA hypomethylation is one of the epigenetic 

hallmarks of cancer (Suzuki and Bird, 2008). Mostly, DNA methylation in promoter 

elements can disturb the binding of transcriptional factors and repress gene transcription, 

which also indirectly promotes the formation of tight chromatin by recruiting the methyl 

DNA-associated proteins (Bird, 2002). The proteins which catalyze cytosines to methyl-

cytosines are members of DNA methyltransferase (DNMT) protein family, including 

DNMT1, DNMT2, DNMT3A and DNMT3B (Cheng and Blumenthal, 2008; Okano et al., 

1998). All the DNMTs except DNMT3L contain a highly conserved methyltransferase 

catalytic domain in their C-terminal regions (Figure 2). Mammalian Dnmt1 preferentially 

https://en.wikipedia.org/wiki/Restriction_enzyme
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methylates hemimethylated DNA and functions as the maintenance methyltransferase 

for the DNA methylation of daughter strand during DNA replication (Probst et al., 2009). 

While Dnmt3A and Dnmt3B, different from DNMT1, prefer to bind unmethylated DNA 

and perform de novo methylation during development. Although DNMT2 shares a 

similar sequence and structure with the other DNMTs, DNMT2  does not methylate DNA 

but instead a small  RNA, specially methylating cytosine 38 in the anticodon loop of a 

tRNA (Goll et al., 2006). 

 

Figure 2. Domain structures of human DNMT family proteins. All DNMTs except DNMT2 

and DNMT3L contain a regulatory N-terminal and a conserved C-terminal catalytic domain. 

DNMT2 only contains a catalytic domain. PBD: PCNA binding domain; TS: targeting sequence; 

ZnF: zinc finger domain; BAH: bromo-adjacent homology domain; PWWP: Pro-Trp-Trp-Pro motif 

containing domain; PHD: plant homeodomain; MTase: methyltransferase domain. AA: amino 

acid. The numbers of amino acids of DNMTs are indicated (Maresca et al., 2015).  

DNA methylation is timely removed after the zygote formation and re-established after 

the implantation of embryonic stem cells (Lee et al., 2014). DNA methylation and 

demethylation determine the level and pattern of 5mC in the different states of cells, 

meaning that reprogramming to reach a global hypomethylation function to erase the 

memory and provide a potential for diversity of transcriptional states (Lee et al., 2014). 
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Recently researchers have discussed that a protein family of DNA glycosylases can 

demethylate DNA through a base excision repair pathway (Zhu, 2009). These DNA 

glycosylases, such as MBD4 and TDG, repair G/T mismatches following the conversion 

of 5-methylcytosine to thymine that can occur spontaneously or be catalyzed by the 

AID/Apobec family of deaminases. 

1.1.2 Histone modifications 

As the major structural proteins of a chromosome, histones experience various post-

translational modifications (PTMs), including phosphorylation, acetylation, methylation, 

ubiquitination, and sumoylation. The first histone modification was found in the early 

1960s when Vincent Allfrey showed that histones can be acetylated and methylated 

(Allfrey et al., 1964). To explore the significant roles of histone modifications in 

chromatin, the high resolution of the X-ray crystal structure of the nucleosome provided 

a clear insight into these unknown questions (Luger et al., 1997). The structure displays 

that histone fold domain regulates the histone/histone and histone/DNA interactions, 

and histone amino-terminal tails also can be modified to connect neighboring 

nucleosome, influencing some key processes, including nucleosome dynamics, 

chromatin compaction, and transcription. Recent work has largely shown that 

modifications in the histone cores can directly influence replication and nucleosome 

stability, and even DNA damage response, stemness, leukemia and cell differentiation 

(Lawrence et al., 2015). 

1.1.2.1 Histone acetylation 

Since Vincent Allfrey has identified that histone can be acetylated, researchers have 

been trying to figure out the mechanism of this modification. Acetylation of histones 

takes place on the NH3+ groups of lysine residues and this reaction can be carried out 

by histone acetylases (HATs) and the cofactor acetyl-CoA. The acetylated lysine 

residues neutralize its positive charge and weaken the interaction of histones and DNA, 

resulting in a loose condition of chromatin, so it is thought that acetylation is closely 

associated with transcriptional activation. Over the past 50 years, various HATs have 
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been isolated from different species. In general, there are two types of HATs: Type A 

HATs are localized in nuclei and type B HATs are in the cytoplasm. For the type A HATs, 

the proteins, including Gcn5, p300/CBP, and TAFII250, contain a conserved 

bromodomain for specifically binding to the acetylated lysine residues. Different from 

type A HATs, type B HATs without bromodomain, prefer to acetylate the newly 

synthesized histones or deacetylated histones. There are mainly four families of type A 

HATs: Gcn5-related N-acetyltransferases (GNATs); MYST HATs; global coactivators 

p300/CBP and CREB-binding protein, and nuclear receptor coactivators SRC-1, ACTR, 

and TIF2; TATA-binding protein-associated factor TAFII250; and TFIIIC, the subunit of 

RNA polymerase III.  

The members of the GNAT family have a conserved motif A, characterized by an 

Arg/Gln-X-X-Gly-X-Gly/Ala sequence that provides a base for acetyl-CoA binding (Roth 

et al., 2001). The GNAT family includes Gcn5, Pcna, Hat1, Elp3, Hpa2, Hpa3, ATF-2, 

and Nut1. Gcn5 and Pcna share a homologous sequence and contain an N-terminal 

domain, a highly conserved catalytic domain (HAT) and C-terminal bromodomain. Hat1 

is the first identified HATs. Elp3 and Hat3 are found in yeast. ATF-2 can bind to the 

cAMP-responsive element (Bonapace et al.) and forms a homodimer or heterodimer 

with c-jun to activate CRE-dependent transcription. The GNAT HATs have been shown 

to acetylate lysine on histone H2B, H3, and H4. Among these, Gcn5 and Pcaf have a 

preference for H3K14 acetylation, but it requires other protein factors to assist Gcn5 to 

acetylate histones (Sterner and Berger, 2000).  

The MYST family includes Moz, Ybf2 (Sas3), Sas2, Tip60, Esa1, Mof, Morf, and Hbo1, 

which typically contain two domains: zinc finger and chromodomain. The zinc finger is 

now recognized to bind DNA, RNA, protein and lipid substrates (Gamsjaeger et al., 

2007; Hall, 2005; Klug, 1999; Matthews and Sunde, 2002). Chromodomain is a 

structural domain of about 40-50 amino acids and associated with remodeling of 

chromatin. The MYST family proteins mainly acetylate histone H2A, H3, and H4. Tip60, 

also named Kat5, is firstly found in yeast and its homolog is Mof in fruit flies. Tip60 is 

known for acetylating histones and non-histone proteins, involved in regulation of 

transcription, DNA repair, and apoptosis. Tip60 targets multiple proteins and these 

proteins interact as the substrates for acetylation in regulatory pathways (Lehner et al., 
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2006). It has also been shown that in the late G1 phase of cell cycle, hyperacetylation of 

H3 and H4 occurs dependent on E2F-mediated recruitment of the Tip60 complex (Tip60, 

Trrap, p400, Tip48, and Tip49) (Taubert et al., 2004).  

CREB-binding protein (CBP) and p300 are proposed to be the same protein family 

because both of them bind to E1A to co-activate CREB-mediated transcription (Akimaru 

et al., 1997). Both of p300 and CBP contain an N-terminal nuclear receptor-interacting 

domain (Fuks et al.), the CREB-binding domain (KIX), bromodomain and the three 

cysteine/histidine-rich regions (CH1, CH2, and CH3) (Radhakrishnan et al., 1999). It is 

reported that p300 and CBP not only acetylate histones but also have many non-histone 

substrates, including non-histone chromatin proteins HMG1, HMG14, the transcriptional 

factors TFIIE and TFIIF, the transcriptional activators p53 and c-Myb. But it has also 

been observed that p300 and CBP can be autoacetylated and regulate their own 

function (Kraus and Kadonaga, 1998).  

1.1.2.2 Histone deacetylation 

Histone acetylation is highly reversible. Histone acetylation and deacetylation are 

dynamic processes dependent on different states of cells. The establishment of 

acetylation is performed by HATs family proteins and elimination of acetylation is by 

histone deacetylases (HDACs). It is likely that deacetylation of histones is related to 

transcriptional repression and increased DNA methylation. HDACs now is also called 

lysine deacetylases (KDACs). In mammals, HDACs are divided into four classes based 

on the similarity of protein sequences: the class I Rpd3-like proteins including HDAC1, 

HDAC2, HDAC3, and HDAC8; class II Hda1-like proteins are HDAC4, HDAC5, HDAC6, 

HDAC7, HDAC9, and HDAC10; class III sirt2-like proteins containing SIRT1, SIRT2, 

SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7; class IV protein is HDAC11.  For the class I, 

II, IV, the proteins require a zinc ion to deacetylate acetylated lysines, but for the class 

III HDACs, the proteins require NAD+ as a cofactor for the enzyme activity. 

In class I HDACs, the proteins share a similar sequence with the transcription regulator 

reduced potassium dependency 3 (Rpd3) which is a subunit of the histone deacetylase 

complex in yeast. The N-terminal catalytic domain is the main part of the proteins. 
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HDAC1 and HDAC2 are highly similar at about 82% identity, and HDAC3 is closely 

related to HDAC8 with 34% identity based on their structural domain. HDAC1 and 

HDAC2 are only localized in nuclei with a nuclear localization signal (NLS), while 

HDAC3 has both nuclear localization signal (NLS) and nuclear export signal (Robertson 

et al.), suggesting that HDAC3 may shuttle between nucleus and cytoplasm. Till now, 

HDAC8 has been found in both the nucleus and cytoplasm (de Ruijter et al., 2003).  

For the class II HDACs, HDAC4, HDAC5, HDAC6 have been identified from GenBank 

based on sequence similarity with yeast Hda1 (Grozinger et al., 1999).  These three 

HDACs own a lower level of enzyme activity than other HDACs. In their structures, 

HDAC4, HDAC5, and HDAC7 have a catalytic domain in the C-terminus, followed by an 

NLS, while HDAC9 has the catalytic domain at the N-terminus. Both of HDAC6 and 

HDAC10 have two catalytic domains. It has been reported that HDAC6 is linked with the 

ubiquitin system through ubiquitin conjugation, suggesting that the stability of HDAC6 is 

regulated in the cell  (Hook et al., 2002). 

As the only member of class IV HDACs, HDAC11 was first described in 2002 (Gao et al., 

2002). It has an N-terminal catalytic domain and localized in the nucleus. Till now, 

HDAC11 is not involved in any HDAC complexes, so it may have unknown physiological 

roles distinct from other known HDACs.  

1.1.3 The correlation  between DNA methylation and histone 

modifications  

The deep insight into the role of DNA methylation and histone modifications on 

transcription, chromatin stability, DNA repair, cell cycle, and differentiation, reveals a 

complex relationship between them. For example, there is evidence that the level of 

DNA methylation in global or local genome affects histone states in chromatin, 

particularly the histone lysine methylation state, and in turn, the modifications of histone, 

including acetylation, methylation, phosphorylation, and ubiquitination, also influence 

DNA methylation in chromatin. Although histone modifications are more complex with 

the absence of DNA methylation in some species, it is fascinating to raise interesting 
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questions about the interplay between DNA methylation and histone modifications 

(Rose and Klose, 2014). 

In mammals, the percentage of DNA methylation reach up to 80% and especially, in 

mouse and human, DNA methylation is essential for heterochromatin formation, 

transcriptional repression, and the inactive X chromosome. Like DNA methylation, 

H3K9me is shown to tighten heterochromatin and repress transcriptional expression. 

The histone methyltransferases, Suv39h1/2, which methylate H3K9, strongly associate 

with methylated CpG DNA binding protein MeCP2 and co-localize at pericentromeric 

heterochromatin (Fuks et al., 2003). However, there is no obvious lack of H3K9me3 at 

pericentromeric heterochromatin in the MeCP2 knockout mouse model owing that the 

other members of the MBD family are still essential for H3K9me3 binding to 

heterochromatin. For example, It has also been reported that Suv39h1 and HP1 can 

directly interact with MBD1 and enhance histone deacetylation and DNA methylation for 

transcriptional repression (Fujita et al., 2003). Another histone methyltransferase for 

H3K9me, SETDB1, is recruited by the methyl-CpG binding protein MBD1 to form a large 

complex with chromatin assembly factor CAF-1 during DNA replication. However, the 

absence of MBD1 leads to serious loss of H3K9 methylation, indicating that MBD1 is 

essential for maintenance of H3K9 methylation state in heterochromatin (Sarraf and 

Stancheva, 2004). Histone methylation is associated with either transcriptional 

repression or activation. H3K4 trimethylation is a well-known factor for gene activation. It 

is demonstrated that H3K4 methylation can block de novo DNA methylation because 

Dnmt3L strongly interact with unmethylated H3 and the interaction is disturbed by 

methylated H3K4 (Ooi et al., 2007). The interaction of Dnmt3L and unmethylated H3K4 

can recruit and active Dnmt3A2 for de novo DNA methylation. Consistent with this 

discovery, DNA methylation is disrupted in Lsd2-deficient mice and Lsd2/Kdm1b is a 

histone demethylase for removing H3K4 methylation (Wang et al., 2008).  

Besides histone lysine methylation, recent evidence has indicated that histone 

ubiquitination affects DNA methylation. Uhrf1 not only specifically binds to 

hemimethylated DNA and recruits Dnmt1 to maintain DNA methylation, but also has a 

role in histone ubiquitination. It has been shown that Uhrf1-dependent ubiquitylation of 

histone H3K 23 is markedly accumulated in the absence of Dnmt1, suggesting that 

https://en.wikipedia.org/wiki/Repressor
https://en.wikipedia.org/wiki/Operon
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H3K23 ubiquitylation is a precondition for the maintenance DNA methylation (Nishiyama 

et al., 2013). Moreover, it also has been proven that H3K18 is another novel 

ubiquitination target of Uhrf1 and H3K18 ubiquitination binds to the newly identified 

ubiquitin-interacting motif (UIM) in the N-terminal regulatory domain of DNMT1, which is 

essential for DNA methylation (Qin et al., 2015b). It is further demonstrated with the 

crystal structure of the targeting sequence (TS) of Dnmt1 in complex with 

H3K18Ub/23Ub, which displays that the spatial rearrangement of TS binding to 

H3K18Ub/23Ub opens Dnmt1 active site and increases its catalytic activity for DNA 

methylation maintenance (Ishiyama et al., 2017).  

Histone acetylation can contribute to the decondensed chromatin structure and activate 

gene transcription. Hyperacetylation generally represents transcriptionally active genes, 

where DNA methylation is low. Although histone hyperacetylation cannot dramatically 

reduce the level of DNA methylation, the level of histone acetylation is increased in the 

Dnmt1 knockout cells. Histone hypoacetylation is required for the formation and 

maintenance of normal heterochromatin (Casas-Delucchi et al., 2011). The acetylation 

of H3 at K18 and K23 is necessary for local gene activation in mammals. It is reported 

that a regulator of DNA demethylation, IDM1, binds to the methylated DNA without 

histone H3K4 methylation and further acetylates H3 for preventing DNA 

hypermethylation at multicopy genes and repetitive sequences in Arabidopsis (Qian et 

al., 2012). And Repressor of silencing 1 (ROS1), a DNA demethyltransferase in 

Arabidopsis, is identified to silence 35S-NPTII transgene in the RNA-directed DNA 

methylation (RdDM) pathway and increase H3K18 and H3K23 acetylation level (Barber 

et al., 2012b). Together, it is suggested that H3K18 and H3K23 acetylation probably 

suppress the maintenance of DNA methylation. 

1.2 Maintenance DNA methylation by Dnmt1 and Uhrf1 

It has been proposed that DNA methylation of the genome is inherited in somatic cells, 

but the enzyme for methylating half-methylated sites was not detected in eukaryotes  

(Riggs, 1975). Since that Dnmt1 was first discovered as a DNA methyltransferase, it has 

been the most widely studied. The theory that the methylated DNA sequences were 
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replicated in somatic cells was tested with biochemical experiments, and it has shown 

that methylation at modification enzyme M-Hpa II sites is replicated in the cultured cells 

but not with 100% fidelity (Wigler et al., 1981). Moreover, it has been demonstrated that 

DNA methylation is highly dynamic during mouse development (Razin and Cedar, 1993). 

The DNA methyltransferases, Dnmt3a and Dnmt3b, have also been identified to be 

indispensable for de novo DNA methylation that mainly occurs during the early stages of 

embryo development in mice (Okano et al., 1999). Furthermore, Uhrf1 has been also 

found and reported to recruit Dnmt1 to replication forks for the maintenance of DNA 

methylation (Bostick et al., 2007).    

1.2.1 Dnmt1 for DNA methylation maintenance 

Since that Dnmt1 has been first identified to methylate DNA, researchers have started to 

explore the structures and cellular functions of Dnmt1. Dnmt1 is a large protein 

containing around 1620 amino acids. In its structure, the N-terminal regulatory domain 

contains the motifs, such as PCNA binding domain (PBD), targeting sequence (TS), zinc 

finger domain (ZnF) and bromo-adjacent homology domain (BAH). Among these motifs, 

the PBD has been identified to specifically bind to PCNA and recruit Dnmt1 to DNA 

replication and repair sites. The CXXC motif of zinc finger domain (ZnF) has been 

shown to selectively bind to unmethylated DNA substrates (Frauer et al., 2011a). The 

TS domain mainly targets heterochromatin. The function of the BAH domain is still 

unclear, although it is predicted that the BAH domain forms a platform for protein-protein 

interaction linking DNA methylation and gene silencing (Callebaut et al., 1999). The C-

terminal domain of Dnmt1 is the catalytic domain connected with the N terminus by a 

linker of seven glycine-lysine repeats (GK linker). However, the catalytic domain of 

Dnmt1 is inactive when the N-terminal part is deleted (D'Aiuto et al., 2010). The 

biochemical assay has also shown that the preference for hemimethylated DNA to 

Dnmt1 is dependent on the catalytic domain of Dnmt1, but neither the isolated catalytic 

domain does not methylate DNA, nor in combination with other domains, suggesting 

that the binding of methylated DNA stimulates the allosteric activation of the catalytic 

domain of Dnmt1 (Fatemi et al., 2001). In the crystal structure of the Dnmt1-DNA 
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complex, the CXXC motif specifically binds to unmethylated DNA, resulting in the linker 

between CXXC-BAH1 occupying the active site of Dnmt1 to prevent de novo DNA 

methylation (Song et al., 2011).  

Although Dnmt1 is known as a DNA methyltransferase for maintenance of DNA 

methylation based on the biochemical data and crystal structure, it is universally 

expressed in proliferating and post-mitotic cells for copying the methylation pattern to 

the nascent strand of DNA. While the N-terminal part of Dnmt1 controls the subcellular 

distribution of Dnmt1 in the cell cycle, the expression level of Dnmt1 is regulated during 

cell differentiation and diseases. For example, Dnmt1 is downregulated in PC12 

neuronal cells and upregulated in acute myeloid leukemia (AML) (Deng and Szyf, 1999; 

Mizuno et al., 2001). Furthermore, recent studies have also revealed that the altered 

expression of Dnmt1 is significantly associated with different tumors and cancers. Some 

types of tumors are detected with an elevated level of Dnmt1 methylation but some 

tumors with a low level of DNA methylation (Robert et al., 2002). And also, the 

importance of Dnmt1 has been deduced originally from evidence about Dnmt1 

knockouts of cell lines or mice. Mouse embryonic stem cells deficient in Dnmt1 showed 

a three-fold reduction of global DNA methylation and increased global gene expression 

(Li et al., 1992). Surprisingly, the mutation of Dnmt1 is introduced into the germline of 

mice, causing a recessive lethal phenotype have with a reduction of the level of m5C. In 

contrast, the Dnmt1 knockout murine fibroblasts undergo p53 mediated cell cycle arrest 

at G1 phase and apoptosis (Jackson-Grusby et al., 2001). More specifically, Dnmt1 is 

crucial for X-chromosome inactivation and chromatin stability. Dnmt1 has been shown to 

link with DNA damage and repair. Dnmt1 is rapidly recruited to the DNA double-strand 

breaks and interacts with the DNA damage response factors, including PCNA and the 

ATR effectors’ kinase CHK1, for the accuracy of inherited DNA methylation (Ha et al., 

2011). Furthermore, only Dnmt1, not Dnmt3a and Dnmt3b, accumulates with PCNA at 

DNA sites during DNA repair (Mortusewicz et al., 2005). 

1.2.2 Uhrf1- a cofactor of Dnmt1 
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As a cofactor of Dnmt1 for maintenance of DNA methylation during DNA replication in 

cells, ubiquitin-like with PHD and RING Finger domains 1 (UHRF1), also known as 

inverted CCAAT box-binding protein of 90 kDa (ICBP90), is a nuclear factor and 

preferentially localized in pericentric heterochromatin but is also found in euchromatin 

and plays a critical role in DNA methylation and histone modifications (Bronner et al., 

2010; Hopfner et al., 2000). Uhrf1 specifically binds to hemimethylated CpG dinucleotide 

and recruits Dnmt1 and histone deacetylase 1 (HDAC1) through distinct domains (Liu et 

al., 2013). Structurally, Uhrf1 contains five specific domains: Ubiquitin-like domain (UBL) 

at the N terminus of Uhrf1 required for its E3 ubiquitin ligase activity, tandem Tudor 

domain (TTD) for binding to di- or tri-methylated H3K9, plant homeodomain (PHD) 

interacting with G9a for H3 methylation, Set and RING Associated domain involved in 

maintaining DNA methylation and histone modifications by recruiting Dnmt1 and HDAC1, 

Really Interesting New Gene (RING) domain at the C terminal of Uhrf1 for H3 

ubiquitination with its E3 ligase activity. Moreover, TTD of Uhrf1 acts to tightly contact 

the residues with the methylated lysine and meanwhile, it cooperates with PHD of Uhrf1 

to recognize H3K9me3 and drives Uhrf1 to the pericentric heterochromatin (Cheng et al., 

2013). The crystal structure of Uhrf1 and hemimethylated DNA also revealed that 5-

methylcytosine flips out of the DNA helix and then gets positioned into a pocket by 

stacking and interacting with two conserved residues, Y478, and Y466 (Hashimoto et al., 

2008). Emerging evidence indicates that the modules of UHRF1 do not act 

independently of each other but establish complex modes of interaction with patterns of 

chromatin modifications, like the cooperative interaction between TTD, PHD and SRA 

domain for establishment and maintenance of methylation patterns. In addition, it is also 

demonstrated that the SRA domain of Uhrf1 can directly bind to the replication focus 

targeting sequence domain of DNMT1, resulting in an almost 5-fold increase of the 

Dnmt1 activity (Bashtrykov et al., 2014).  

The expression of Uhrf1 is tightly controlled. It is highly expressed in proliferating cells, 

and also peaks at late G1 and during G2/M phases in the cell cycle. There is a higher 

level of Uhrf1 in various cancer cell lines and the expression of Uhrf1 remains constant 

throughout the entire cell cycle. Aberrations in UHRF1 expression are linked with many 

different human diseases, especially various cancers. For example, it is easily detected 



INTRODUCTION 
 

14 

 

in tissue samples and urine sediments of bladder cancer patients. The detection method 

based on immunohistochemistry in urine sediment can be potentially applied to the 

current diagnosis (Unoki et al., 2009a). Knockout or downregulation of Uhrf1 in cancer 

cells contributes to the inhibition of cell proliferation and the increase of apoptosis (Ge et 

al., 2016). It is reported that the silencing of Uhrf1 in gall bladder cancer cells arrests 

cells at G1/S phase by increasing p21 expression in a p53-independent pathway and 

induces extrinsic and intrinsic apoptosis through the elevated expression level of genes, 

such as FasL/FADD, bax, cytosolic cytochrome c, cleaved caspase-8, -9 and -3 and 

cleaved PRAP (Qin et al., 2014). Besides the involvement in cancers, Uhrf1 is also 

reported to regulate DNA repair. Co-immunoprecipitation assay has proven the 

interaction between Uhrf1 and N-methylpurine DNA glycosylase (MPG), the first enzyme 

identified in the base excision repair pathway, that is involved in repairing single-strand 

DNA (Liang et al., 2013). Uhrf1 is also involved in two kinds of double-strand repair 

pathways, including homology-directed and nonhomologous end joining (NHEJ), with 

different factors. In the homologous repair pathway, Uhrf1 is phosphorylated at S674 

site by the BRCT domain of BRCA1. The phosphorylated Uhrf1 then activates its E3 

ubiquitin ligase activity to replication timing regulatory factor 1 (RIF1), resulting in the 

dissociation of RIF1 from 53BP1, initialization of homologous recombination (Zhang et 

al., 2016). The nonhomologous DNA repair pathway occurs when the endogenous level 

of the Ku heterodimer protein complex (Ku70/Ku80) is reduced by the inhibition of Uhrf1 

(Yang et al., 2013). 

1.3 The class III of histone deacetylases: Sirtuins 

As mentioned in the part of histone deacetylation, histone deacetylases (HDACs) have 

four classes. Sirtuins are the class III of histone deacetylases with nicotine adenine 

dinucleotide (NAD+) instead of zinc as a cofactor. Sirtuins were originally identified as 

histone deacetylases in yeast and mouse Sirt2 mediated the deacetylation of lysine 9 

and 14 of H3 and specifically lysine 16 of H4, which contributes to a tighter chromatin 

structure and transcriptional repression (Imai et al., 2000). Sirtuins have 7 members 

(Sirt1-7) in mammals and catalyze a range of post-translational modifications in histones 
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and nonhistone proteins, including deacetylation, desuccinylation, demalonylation and 

deglutarylation (Du et al., 2011; Tan et al., 2014) (Figure 3). The members of the sirtuin 

family share a conserved catalytic motif in which structurally forms a cleft for their 

substrates and nicotinamide. 

 

Figure 3. Schematic domains of mouse sirtuins family members, Sirt1–7, with different 

molecular weights. The core domain of sirtuins for enzyme activity is in orange, GFP tag is 

labeled in green. Nuclear localization sequence (NLS) is in purple and nuclear export sequence 

(NES) in light yellow. The mitochondrial cleavage site in Sirt3, Sirt4, and Sirt5 is shown in blue 

(Flick and Lüscher, 2012b). 

Sirtuins ubiquitously distribute in tissues and the expression levels vary according to the 

types of tissues and cells. Generally, Sirt1 is predominately localized in the nucleus, but 

it also shuttles between the nucleus and the cytosol in different cell types (Tanno et al., 

2007); Sirt2 is mainly expressed in the cytoplasm, but it is also involved in mitosis 

(Perrod et al., 2001; Vaquero et al., 2006); Sirt3, Sirt4, and Sirt5 localize in mitochondria, 

but Sirt3 is also present in the  nucleus (Iwahara et al., 2012; Matsushita et al., 2011; 

Onyango et al., 2002); Sirt6 and Sirt7 are also nuclear proteins, but both of them own 
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distinct sub-nuclear localization patterns. In the nucleus, Sirt1 is mainly associated with 

euchromatin, while Sirt6 binds to heterochromatin and Sirt7 localizes in the nucleolus 

(Ford et al., 2006; Michishita et al., 2005). Yeast Sirt1 was originally identified to 

promote transcriptional silencing at many types of genomic locus, including telomeres, 

rDNA locus and mating type locus (Gasser and Cockell, 2001). It is reported that yeast 

Sirt2 functions to control longevity through suppressing extrachromosomal rDNA derived 

from errant intralocus recombination (Kaeberlein et al., 1999). The enzyme activity of 

Sirtuins requires NAD+ as a cofactor, suggesting that the cytosolic ratio of NAD+ and 

NADH connects sirtuins with the metabolic state and cellular energy state. The NAD+ 

level is affected by certain conditions, including nutritional status, diet, and exercise 

(Opitz and Heiland, 2015). It has been reported that the decrease in the nuclear NAD+ 

level is the outcome of caloric restriction (Anderson et al., 2003). Numerous evidence 

has demonstrated that Sirt2 in different species, including yeast, spiders, fish, and 

Drosophila, functions to extend the lifespan through the caloric restriction (Haigis and 

Guarente, 2006). However, Sirt2 can only extend life span in yeast under starvation 

conditions or certain exceptional mutations to extend the life span of Sirt2delta mutants 

(Fabrizio et al., 2005). Besides Sirt2, the traditional role of other sirtuins is also a 

lifespan-extending effect mediated by caloric restriction. Dysfunction of sirtuins 

contributes to aging and a wide range of metabolic, cardiac, and neurodegenerative 

diseases and cancers (Wątroba and Szukiewicz, 2016).  

Despite their ability to regulate metabolism, sirtuins are ubiquitously distributed in 

different cells and tissues and different sirtuins are expressed distinctly dependent on 

tissue types and developmental stages. In the brain, each sirtuin displays a unique 

spatial and temporal expression pattern at different stages and the relative mRNA 

expression levels does not correlate with the respective protein level, which suggests 

that a specific sirtuin is potentially targeted or target specific substrates to display cell-

type selective effects in the rat brain (Sidorova-Darmos et al., 2014).  

Because of their important roles and diseases caused by sirtuins, sirtuins must be tightly 

controlled, including the protein level, subcellular localization and enzymatic activity 

(Buler et al., 2016). And they are regulated to response to intricate regulatory networks 

in several conditions, such as metabolic and nutritional disorder, inflammatory formation 
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and oxidative stress. Each sirtuin protein is uniquely regulated by a wide range of 

factors through the regulation of transcription. Furthermore, post-transcriptional 

modifications control the sirtuins’ catalytic activity. Although all sirtuins share a 

conserved catalytic domain for binding NAD+, the enzymatic activities differ for each 

sirtuin family member because of its flexible N- and C- terminal extensions. To date, 

available evidence suggests that the N- and C- terminal extensions are the main targets 

of post-translational modifications that control the functions and localizations of sirtuins, 

thus connecting these proteins to different signaling pathways (Flick and Lüscher, 

2012a).    

1.3.1 Sirt1 

Sirt1 is a protein of about 747 amino acids composed of a catalytic domain and has 

extended N- and C-terminal regions different from other members of the mammalian 

sirtuins family. It is mainly localized in the nucleus but is also present in the cytosol in 

different cell types (Tanno et al., 2007). The reason for Sirt1’s different localization is 

that it contains two signal regions: the nuclear localization signal and a nuclear export 

signal. Sirt1 is distinct from other sirtuins for the extended N- and C-terminal regions. In 

the crystal structure of Sirt1, it has been shown that the C-terminal regulatory segment 

(CTR) plays a key role in its activity, especially the 25-residue C-terminal ESA sequence, 

which mediates the binding and inhibition of Sirt1 catalytic domain via forming a β 

hairpin structure to complement the β sheet of the NAD+-binding domain (Davenport et 

al., 2014). It is also reported that the resveratrol and related compounds, as direct 

SIRT1 activators, interact with the N-terminal domain (NTD) of Sirt1 and the amino-4-

methylcoumarin (AMC)-containing peptide, which provides a model for further 

mechanistic analysis (Cao et al., 2015).  

In mammalian cells, Sirt1 deacetylates histones and many transcriptional factors, 

including p53, fork-head box protein O (FOXO), NF-kB, peroxisome proliferator-

activated receptor g coactivator 1-a (PGC-1a) and various nuclear receptors (Poulose 

and Raju, 2015). Through the interaction with these numerous proteins, Sirt1 is involved 

in fundamental cellular processes including metabolism, glycosylation, DNA repair, 
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apoptosis, inflammation and mitochondrial biogenesis (Haigis and Sinclair, 2010). 

Consequently, dysregulation of Sirt1 in expression and function leads to several 

diseases, including cancers, insulin resistance and cardiac disease (Liang et al., 2009; 

Lin and Fang, 2013; Matsushima and Sadoshima, 2015). Sirt1 also regulates the 

expression of specific genes associated with cardiovascular disease, type2 diabetes 

(T2D) susceptibility and Parkinson’s disease (Kilic et al., 2014; Rai et al., 2012; Zhang et 

al., 2012). Although numerous studies have shown that yeast Sirt2 extends life span via 

a diet of reduced calories, also known as caloric restriction (CR), there is no evidence 

for Sirt1 to extend life span. However, mouse models have shown a link between Sirt1 

and caloric restriction. For example, caloric restriction in mice requires Sirt1 for a 

complex pattern of physiological and behavioral changes (Chen et al., 2005). Sirt1 

transgenic mice display some metabolic phenotypes similar to CR phenotypes: more 

metabolically active; more glucose tolerant and reductions in blood cholesterol, 

adipokines, insulin and glucose (Bordone et al., 2007). Moreover, Sirt1 null mice also 

have shown that Sirt1 is an important regulator of energy metabolism in response to 

caloric restriction (Boily et al., 2008). Meanwhile, the expression level of Sirt1 is not only 

controlled by specific transcriptional factors but also associated with the stimuli of 

energy stresses, such as CR, fasting and food withdrawal. Energy deprivation promotes 

Sirt1 activation by increasing the ratio of NAD+/NADH and also upregulates Sirt1 

expression through the interaction between cyclic AMP response-element-binding 

protein (CREB) and carbohydrate response-element-binding protein (ChREBP) (Noriega 

et al., 2011). Sirt1 is downregulated in aging organisms. It has been demonstrated that 

decrease of Sirt1 in the liver of old mice is mediated by CCAAT/Enhancer Binding 

Protein/histone deacetylase 1 (C/EBPβ-HDAC1) complexes, which binds to Sirt1 

promoter and represses its expression and consequently reduces the level of glucose 

and triglycerides during liver regeneration (Jin et al., 2011). Other regulators of the Sirt1 

gene, such as p53, FOXO1, BMAL1, and E2F1 are deacetylated by Sirt1 and in turn, 

regulate Sirt1 level as to form a feedback loop. The stability of Sirt1 is also related to its 

post-translational modifications. Sirt1 can be stabilized by an ubiquitin-specific peptidase, 

USP22. USP22 interacts with Sirt1 and removes polyubiquitin chains conjugated onto 

Sirt1, and the USP22-mediated stabilization of Sirt1 decreases the level of acetylated 
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p53 and suppresses p53-dependent apoptosis (Lin et al., 2012). Previous mass 

spectrometry identified 13 residues of Sirt1 for phosphorylation and the mutations of 

T530 and S540 (threonine 530 and serine 540) that are phosphorylated by cycling/Cdk1 

disturb cell cycle progression and proliferation (Sasaki et al., 2008).   

1.3.2 Sirt2  

Mammalian Sirt2 is homologous with yeast Sirt2 and with a smaller molecular weight of 

around 40 kDa.  In the sirtuin family, Sirt2 is the only cytoplasmic protein. In mice, Sirt2 

has two isoforms:  mSIR2L2 and mSIR2L3, similar to human Sir2-like proteins SIR2L2 

and SIR2L3. The two isoforms share the highly conserved core domain, however, their 

proteins have a different structure and intracellular localization compared to yeast Sirt2 

(Yang et al., 2000). According to the crystal structure of the catalytic core of sirtuin 

proteins, they share a NAD-binding domain and a smaller domain composed of a helical 

module and a zinc-binding module, which form a conserved large groove at the interface 

(Yuan and Marmorstein, 2012). The pocket, composed of several hydrophobic residues 

in the large groove, provides the space for the binding of specific proteins. However, 

besides the previously established catalytic intermediates I and II, a new intermediate 

(III) has been reported in the crystal structures of Sirt2 in complexes with a thiomyristoyl 

lysine peptide-based inhibitor and NAD, which provides more mechanistic insights into 

sirtuin-catalytic processes (Wang et al., 2017). The distribution and abundance of Sirt2 

are dependent on the cell- or tissue-type. It is reported that Sirt2 is highly expressed in 

the brain of mouse and rat, and human cortex, while Sirt2 is expressed at extremely low 

level in immortalized cultured cells, including mouse N2a, human SH-SY5Y 

neuroblastoma, and U87-MG glioblastoma lines (Maxwell et al., 2011). 

In recent years, Sirt2 has been reported to regulate multiple cellular processes, such as 

cell cycle, adipogenesis, fatty acid oxidation, gluconeogenesis, insulin sensitivity, and 

tumorigenesis. In the cytoplasm, Sirt2 functions to deacetylate lysine-40 of alpha-tubulin, 

which suggests a potential role of Sirt2 in cell shape, intracellular transport, cell motility 

and cell division (North et al., 2003). In the cell cycle, Sirt2 shuttles to the nucleus and 

deacetylates H4K16Ac (acetylation of H4K16) and PR-Set7 at K90 to modulate its 
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chromatin localization (Serrano et al., 2013). Not only Sirt2 is involved in mitosis in the 

normal cell cycle, but it has also been reported that Sirt2 can block the entry to 

chromosome condensation in response to mitotic stress (Inoue et al., 2006). In this 

study, Sirt2-null mice display chromatin instability and promote tumorigenesis during 

mitosis. Moreover, Sirt2 also plays important roles in mammalian metabolism. For 

example, Sirt2 deacetylates several target proteins associated with metabolic 

homeostasis. Through physically interacting with insulin, Sirt2 activates Akt and targets 

downstream genes for insulin sensitivity. Sirt2 inhibits adipogenesis via the 

deacetylation of FOXO1. PGC-1α can be deacetylated by Sirt2 and involved in 

mitochondrial biogenesis. Sirt2 inhibits NF-κB activity by deacetylating p65 in response 

to inflammatory stress (Gomes et al., 2015). For some substrates, Sirt2 exhibits a 

catalytic activity similarity to Sirt1. Tumor suppressor p53 is a common target protein for 

Sirt1 and Sirt2. Both of Sirt1 and Sirt2 deacetylate and repress the transcriptional 

activity of p53 (Jin et al., 2008).  As in the case of Sirt1, Sirt2 is also regulated by post-

translational modifications (PTMs). It has been reported that the tyrosine kinase, c-Src, 

phosphorylates Y104 of Sirt2 and reduce the stability and catalytic activity of Sirt2  (Choi 

et al., 2014). 

1.3.3 Sirt3 

Sirt3 has been identified as a mitochondrial protein deacetylase with major roles in 

mitochondria, including ATP generation, metabolism and the response to oxidative 

stress (Zhang et al., 2013). The N-terminal 25 amino-acid residues of Sirt3 are 

responsible for its mitochondrial localization (Onyango et al., 2002). It also contains a 

highly conserved catalytic domain, which is composed of two distinct domains: a large 

Rossmann fold domain for NAD+ binding and a small domain binding to a zinc atom. 

The cleft between the two domains provides the space for the interaction of Sirt3 with its 

acetylated substrates. Acetyl-CoA synthetase 2 (AceCS2) is the first reported substrate 

of Sirt3 and the crystal structure of the complex of Sirt3 and AceCS2 has shown that 

Sirt3 owns a stable interaction with AceCS2 without NAD+ (Schwer et al., 2006). The 

mRNA and protein level of Sirt3 has been reported to be regulated by Peroxisome 



INTRODUCTION 
 

21 

 

proliferator-activated receptor c (PPARc) coactivator-1α (PGC-1α). PGC-1α stimulates 

Sirt3 protein expression via the recruiting an estrogen-related receptor (ERR)-binding 

element to the Sirt3 promoter (Kong et al., 2010). Moreover, Sirt3, in turn, stimulates 

PGC-1α expression through the activation of CREB phosphorylation, resulting in a 

positive feedback loop. In the study, overexpression of Sirt3 decreases basal ROS level 

by the stimulation of PGC-1α. Through regulation of ROS, Sirt3 deacetylate several 

metabolic enzymes and regulates crucial mitochondrial functions. For example, 

overexpression of Sirt3 increases the protein level of two antioxidant proteins, 

mitochondrial superoxide dismutase 2 (SOD2) and catalase, mediated by a 

transcriptional factor, FoxO3a. And the increased expression of two proteins leads to the 

decrease of ROS level and the maintenance of appropriate mitochondrial status 

(Sundaresan et al., 2009). Moreover, Sirt3 has been shown to be involved in 

mitochondrial metabolism by deacetylating acetyl-CoA synthetase 2 (AceCS2) and 

glutamate dehydrogenase (GDH), which implies that Sirt3 modulates metabolism during 

caloric restriction (CR) (Hallows et al., 2006). Besides the roles of Sirt3 in mitochondria, 

Sirt3 is also implied in tumor proliferation (Finley and Haigis, 2012). Sirt3 has been 

identified as a tumor suppressor linked with metabolic processes. A ROS-mediated 

pathway and metabolic reprogramming which are regulated by Sirt3 can stimulate 

carcinogenesis. Therefore, the inhibitors and activators of Sirt3 have been studied as 

potential drug targets (Bruzzone et al., 2013). In addition, a recent study has also shown 

that the defect of Sirt3 triggers the tumor phenotypes of cells in a ROS-dependent 

manner, which is mediated by the enhanced HIF-1α stabilization. Activation of HIF-1 

and HIF-2 strongly promote the survival and proliferation of tumor cells because of their 

downstream genes, such as glucose transporters and glycolytic enzymes, and Vascular 

Endothelial Growth Factor (VEGF), is significant for the survival of tumor cells under 

hypoxic conditions (Schumacker, 2011). The evidence has also shown that Sirt3 

function as an oncogene. To this point, it has been proved that Sirt3 may protect cancer 

cells from oxidative stress-mediated cell death through deacetylation of the factors 

responding to stress-mediated conditions. In bladder cancer, Sirt3 can deacetylate 

tumor suppressor p53 and rescue growth arrest and senescence (Li et al., 2010). Ku70 

has also been identified as a new target of Sirt3. By binding to and deacetylating Ku70, 
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Sirt3 promotes the interaction of Ku70 with the proapoptotic protein Bax and thus 

prevents the translocation of Bax to the mitochondria, protecting HeLa cells from 

apoptosis under stress conditions (Sundaresan et al., 2008). The fact that Sirt3 plays a 

role in cancer cells may implicate Sirt3 as a potential target in cancer therapy. Although 

there are no studies on Sirt3 as a drug target to treat cancer, the underlying 

mechanisms of Sirt3 in different cancer types enhance our understanding and help us to 

develop a novel clinical strategy for cancer treatment. 

1.3.4 Sirt4 

Sirt4 is a mitochondrial matrix protein and only when it is cleaved to an active form, Sirt4 

can be imported into mitochondria. Different from other sirtuin members, the enzymatic 

activity of Sirt4 remains unclear. Originally, Sirt4 was thought to be an ADP-

ribosyltransferase (Ahuja et al., 2007). By catalyzing ADP-ribosylation of glutamate 

dehydrogenase (GDH), Sirt4 regulates insulin secretion. However, the ADP-

ribosyltransferase activity of Sirt4 has been questioned because the weak ADP-

ribosyltransferase reaction can be explained by both enzymatic and nonenzymatic 

reaction mechanisms (Du et al., 2009). Sirt4 has also been identified as a deacetylase, 

but with a limited deacetylation activity (Laurent et al., 2013). In this study, Sirt4 can 

deacetylate and inhibit malonyl CoA decarboxylase (MCD), an enzyme that produces 

acetyl CoA from malonyl CoA, to repress fatty acid oxidation and promote lipid 

anabolism in mice in nutrient-rich conditions. Numerous studies have shown that Sirt4 is 

involved in several important biological pathways. For example, Sirt4 acts on the 

mammalian target of rapamycin complex 1 (mTORC1) to activate glutamate 

dehydrogenase (GDH) for promoting glutamine anaplerosis (Csibi et al., 2013). In this 

process, mTORC1 destabilizes cAMP-responsive element binding 2 (CREB2) for 

proteasome degradation and represses the activity of Sirt4. Further, Sirt4 is also 

associated with cancer due to the low expression level of Sirt4 in human cancer. 

Overexpression of Sirt1 inhibits cell proliferation, transformation, and tumor 

development with high mTORC1 signaling. Dysregulation of Sirt4 has been reported to 

contribute to metabolic diseases including diabetes and obesity. The defect of Sirt4 in 
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mice activates glutamate dehydrogenase (GDH) which functions to enhance the 

metabolism of glutamate and glutamine by generating ATP and promoting insulin 

secretion (Haigis et al., 2006). Besides the role of Sirt4 in insulin secretion, Sirt4 also 

regulates genes related to fatty acid metabolism (Nasrin et al., 2010). Knockdown of 

Sirt4 results in increased fatty acid oxidation (FAO), cellular respiration, and pAMPK 

levels in primary myotubes. Taken together, Sirt4 plays an important role in several 

metabolic pathways, which might provide us with a new therapeutic strategy for some 

diseases associated with metabolic disorders such as type 2 diabetes. 

1.3.5 Sirt5 

Sirt5 has been studied because of its enzyme activity and biological functions. It is found 

that Sirt5 has a weak deacetylase activity compared with other sirtuins, however, it has 

strong desuccinylation, demalonylation, and deglutarylation activities in vitro and in vivo 

(Du et al., 2011; Roessler et al., 2015). In the crystal structure of Sirt5, it contains two 

main domains: the zinc-binding domain and Rossmann fold domain (Zhou et al., 2012). 

The cleft between these two domains forms the site for its catalytic activity by several 

loops. The change of cleft conformation switches Sirt5 from an inactive open state to an 

active closed state. The binding site for its desuccinylation activity is an antiparallel β-

sheet with one loop from the zinc-binding domain and the other loop from the Rossmann 

fold domain. This β-sheet is also stabilized by the hydrogen bonds between Sirt5 and 

the substrate peptide. The pattern of binding succinylation site of Sirt5 is the same as 

the binding of acetyl peptides, and the rotation for confirmation of different states is 

independent of the interaction for succinylated or acylated lysine residues of substrates. 

Till now, many studies have reported that Sirt5 plays a crucial role in several key 

biological processes, including the regulation of ammonia detoxification, fatty acid 

oxidation, cellular respiration, ketone body formation, and reactive oxygen species (ROS) 

management. The dysregulation of Sirt5 is associated with some human diseases such 

as cancer, Alzheimer’s disease, and Parkinson’s disease. For example, carbamoyl 

phosphate synthetase 1 (CPS1), a rate-limiting enzyme in the first step of the urea cycle, 

has been identified as a substrate target of Sirt5. Sirt5 can deacetylate CPS1 to activate 
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its function in the urea cycle for generating more urea under the caloric restriction 

condition (Ogura et al., 2010). Sirt5 has also been found to deacetylate cytochrome c, a 

protein of the mitochondrial intermembrane space, to regulate oxidative metabolism and 

apoptosis initiation (Schlicker et al., 2008). However, there are no mitochondrial matrix 

proteins which can be deacetylated by Sirt5. Furthermore, the Sirt5 KO mice display 

reduced fatty acid oxidation and increased accumulation of acylcarnitines compared to 

the wild type. Currently, some clues from its biological functions and structures of Sirt5 

provide a possible therapeutic treatment for diseases. Some new Sirt5 inhibitors have 

been designed for further studies.  

1.3.6 Sirt6 

Sir6, as a member of the sirtuin family, possesses histone deacetylase and mono-

ribosyltransferase activity (Liszt et al., 2005). Its activity is highly selective for histone 

substrates. It has been confirmed that Sirt6 deacetylates histone H3K9ac, H3K18ac, 

H3K27, H3K56ac and a weaker activity on H3K4ac and H3K23 (Cea et al., 2016; 

Michishita et al., 2008; Tasselli et al., 2016; Wang et al., 2016). It exists in different 

species, including bacteria, archaea, and eukaryotes and is mainly expressed in skeletal 

muscles, brain, heart, liver, and thymus in a tissue-specific manner (Mostoslavsky et al., 

2006). Sirt6 is localized in the nucleus and the C-terminus is required for proper nuclear 

localization. And it is mainly enriched on heterochromatin. The N-terminus of Sirt6 

specifically binds to chromatin and influences its catalytic activity. In the crystal structure 

of the complex of  SIRT6 with a H3K9 myristoyl peptide and ADP-ribose at 2.2-

Angstrom resolution, Sirt6 provides a large hydrophobic pocket for accommodating long 

chain fatty acyl groups and removes long chain fatty acyl groups, such as K19 and K20 

of tumor necrosis factor α (TNFα), for the increase of its secretion (Jiang et al., 2013). 

Sirt6 has been shown to play a crucial role in aging, metabolism, and diseases. For 

instance, SIRT6-deficient mice display metabolism disorder and shortened lifespan. 

Conversely, the overexpression of Sirt6 leads to a significant increase in lifespan in 

male mice, because transgenic males have shown decreased serum levels of insulin-

like growth factor 1 (IGF1), increased levels of IGF-binding protein 1 and altered 
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phosphorylation levels of major components of IGF1 signaling, vital for the regulation of 

lifespan (Kanfi et al., 2012). Recently, genome-wide studies have suggested that aging 

is also associated with chromatin compaction and heterochromatin silencing at repetitive 

DNA elements, such as centromeres, telomeres, and retrotransposons. As one of the 

key elements for heterochromatin silencing, Sirt6 modulates telomeric chromatin 

through the deacetylation of H3K9ac, which is also required for the stable interaction 

with WRN, the factor that is mutated in Werner syndrome (Michishita et al., 2008). 

Besides the role of Sirt6 in aging, Sirt6 is also regarded as a factor for tumor 

suppression, may be due to the role of Sirt6 on histone deacetylation in cancers. Sirt6 

also exerts its tumor suppressor activity by preventing aerobic glycolysis in cancer cells, 

known as the Warburg effect (Sebastián et al., 2012). Specifically, Sirt6 selectively 

deacetylates histone H3K9ac to alter the expression of specific genes linked to glucose 

homeostasis, like the transcription factor Hif1alpha (Zhong et al., 2010b). 

1.3.7 Sirt7 

Sirt7 is also one of the members of the sirtuin family of NAD+-dependent protein 

deacetylases and highly conserved in prokaryotes and eukaryotes. Different from other 

sirtuin proteins (Sirt1-6), it is a nuclear protein and mainly localized in the nucleolus 

(Michishita et al., 2005). Similar with other sirtuin proteins, Sirt7 owns a conserved 

catalytic domain and a nicotinamide adenine dinucleotide (NAD+)-binding site.  However, 

the enzymatic activity of Sirt7 is still further studied. For example, recent research has 

shown that Sirt7 is also an NAD+-dependent histone desuccinylase involved in DNA 

double-strand breaks (DSBs) repair through the desuccinylation of H3K122 in a PARP1-

dependent manner (Li et al., 2016). For the cellular functions of Sirt7, new evidence has 

shown that Sirt7 is linked to cell proliferation, chromatin structure, stress response, cell 

cycle, energy metabolism and the maintenance of genome stability. Dysregulation of 

Sirt7 contributes to several diseases, including various cancers, neurodegenerative 

disorders and type II diabetes (Taylor et al., 2008). Previous studies have shown that 

Sirt7 is abundant in metabolically active mammalian cells and low in non-proliferating 

cells, suggesting that the expression of Sirt7 is associated with ribosome biogenesis and 
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cell proliferation (Ford et al., 2006). For example, Sirt7 deacetylates polymerase-

associated factor 53 (Paf53) at lysine 373, a subunit of RNA polymerase I, and thereby 

increases rDNA occupancy of RNA polymerase I and transcription activation (Chen et 

al., 2013). Moreover, the subcellular distribution of Sirt7 in the nucleolus is dependent 

on the binding to nascent pre-rRNA. And the release of Sirt7 from the nucleolus results 

from hyperacetylation of Paf53, which directly leads to the downregulation of RNA 

polymerase I transcription and thus responses cellular stress conditions (Andersen et al., 

2005). The function of Sirt7 in metabolic homeostasis is well studied. For example, the 

Sirt7 knockout mice display high-fat diet-induced fatty liver, obesity, and glucose 

intolerance. In this study, it is found that Sirt7 can positively promote the expression of 

TR4/TAK1, a nuclear receptor involved in lipid metabolism and consequently activate its 

downstream genes for increasing fatty acid uptake and triglyceride synthesis/storage. 

Meanwhile, Sirt7 also protects TR4 against ubiquitin-proteasome degradation by binding 

to the complex of DDB1-CUL4-associated factor 1 (DCAF1)/damage-specific DNA 

binding protein 1 (DDB1)/cullin 4B (CUL4B) E3 ubiquitin ligase (Yoshizawa et al., 2014). 

In support of the view that overexpression of Sirt7 enhances cell proliferation and 

ribosome biogenesis, Sirt7 has oncogenic potential by metabolically activating rRNA 

synthesis for ribosome in growing tumor cells or cancer cells, such as hepatic, ovarian, 

breast or lung cancers. However, Sirt7 itself cannot cause oncogenic transformation of 

primary fibroblasts but maintain the transformed state of cancer cells by specifically 

deacetylating histone H3K18Ac in the promoters of a set of gene targets linked to tumor 

suppression (Barber et al., 2012a). Conversely, Sirt7 knockout leads to the global 

hyperacetylation of H3K18ac and reduces the tumorigenicity of human cancer cell in 

mice. In addition, studies also suggest that microRNAs, such as miR-125a-5p, miR-

125b, and miR-34a, repress Sirt7 expression and prevent the cancer cell growth (Kim 

Jeong et al., 2012; Zhang et al., 2015). Consistent with its role in multiple biological 

processes, such as transcription, ribosome biogenesis, chromatin structure, metabolism, 

and cell proliferation, Sirt7 is linked with several diseases and makes itself a promising 

target for future therapy.  

1.4 The aim of this work 
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In mammals, the cooperation of DNA methylation and histone modifications plays a 

major role in the regulation of numerous key biological processes. It has been apparent 

that DNA methylation promotes stable transcriptional repression, whereas different 

kinds of histone modifications reversibly lead to diverse local formation or dissociation of 

heterochromatin. Furthermore, DNA methylation and histone modifications can be 

dependent on each other, and the crosstalk between them occurs because DNA 

methyltransferases interact with various enzymes for histone modifications.  

The first part of the work I focused on was to explore the specific sites of Dnmt1 key for 

the autoinhibitory mechanism of Dnmt1 de novo methylation. To reach this aim, based 

on the crystal structure of human DNMT1 composed of CXXC, tandem bromo-adjacent 

homology (BAH1/2), and methyltransferase domains bound to DNA-containing 

unmethylated CpG sites, I  analyzed the protein sequence of the linker between CXXC 

and BAH1 and selected the only phosphorylated site identified by quantitative mass 

spectrometry for further study. 

The second part is about the relationship of Uhrf1 and Sirt1. Till now, little is known 

about the post-translational modifications of Uhrf1 and their cellular functions. To 

uncover the relationship between the acetylation of Uhrf1 and its interaction with Sirt1, I 

performed biochemical assays and found that (de)acetylation of Uhrf1 was linked to the 

stability of Uhrf1. It is novel to find Uhrf1 acetylation by acetylase Tip60 promoting its 

proteasomal degradation and only happens in the G1 phase of the cell cycle. But the 

acetylation-mediated degradation of Uhrf1 can be inhibited by the deubiquitinase Usp7. 

Furthermore, it is also found that acetylated Uhrf1 enhances its binding to Dnmt1 and 

heterochromatin. For Uhrf1 acetylation, we also tried to figure out acetylation sites of 

Uhrf1 by quantitative mass spectrometry. Because Sirt1 has been proven to inhibit the 

acetyltransferase activity of Tip60 via its deacetylation-driven degradation (Peng et al., 

2012). After the G1 phase, Sirt1 not only interacts with Uhrf1 but also deacetylates 

Uhrf1, which occurs during the transition of G1 phase to S phase for stabilizing Uhrf1. 

Moreover, the interaction of Uhrf1 and Sirt1 structurally disturbs Cdk2 binding to Uhrf1 

and thereby it happens earlier than the phosphorylation of Uhrf1 by Cdk2 in the 

transition of G1/S of the cell cycle. 
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The objective of the third part of work was to establish the connection between sirtuin 

proteins and the transcriptional repression of common target genes regulated by their 

deacetylation activity of histone H3K18ac. Specifically, sirtuin-mediated H3K18 

deacetylation enhances the Uhrf1-associated ubiquitination of H3K18, which is essential 

for Dnmt1 binding and DNA methylation. The increased DNA methylation is a 

prerequisite for the transcriptional repression of these target genes. By using CRISPR-

Cas9 technology to build the doxycycline-induced cell lines, I analyzed the downstream 

genes regulated with the different sirtuin proteins and tried to figure out the relationship 

between sirtuins and key cellular biological functions. 
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2 Methods and materials 

2.1 Materials 

2.1.1 Bacterial strains and cell lines 

The bacterial strains, E.coli JM109 and BL21 (DE3) were used for all the constructs 

(Table 1). The murine C2C12 (mouse myoblasts) cell lines were used for fluorescence 

imaging, and mouse embryonic stem cell lines, J1 wild type and E14 wild type, were 

mainly used for the establishment of different gene knockin or knockout (Table 2). 

Human embryonic kidney cells were used for overexpression of proteins. A baby 

hamster kidney (BHK) cell line with stably integrated lac operator array was used for the 

detection of proteins’ interactions. 

Table 1. Bacterial strains  

Name of the bacterial 
strain 

Genotype Source 

E. coli  JM109 recA1, endA1, gyrA96, thi, 
hsdR17, supE44, relA1, 
Δ(lac-proAB)/F' [traD36, 
proAB+, lacIq, lacZΔM15] 

(Hanahan, 1983) 

E. coli  BL21 (DE3) F- ompT hsdSB (rB-mB-) gal 
dcm rne131 (DE3) 

(Studier and Moffatt, 1986) 

 

Table 2. Cell lines 

Name of 
cell line 

Cell type Antibiotic 
resistanc
e 

Description Source 

C2C12 Somatic 
cells 

no Mouse myoblast cells (Blau et al., 1985) 

HEK 293T Somatic 
cells 

no Human embryonic kidney 
cells 

(DuBridge et al., 
1987) 

BHK (lacO) Somatic 
cells 

no Baby hamster kidney with 
stably integrated lac 
operator array 

(Tsukamoto et al., 
2000) 

J1 wt mESCs no Mouse wild type embryonic 
stem cell  

(Lei et al., 1996) 

E14 wt mESCs no Mouse wild type embryonic 
stem cell 

(Sharif et al., 2007) 
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Sirt1-/-(KO) 
from J1 

mESCs G418 Mouse Sirt1 knockout cell 
line 

this work 

Sirt1sirt1/sirt1 
from J1 

mESCs G418 Mouse Sirt1 knock-in cell 
line 

this work 

Dnmt TKO 
from  J1 

mESCs G418 Mouse Dnmt (Dnmt1, 
Dnmt3a, and Dnmt3b) 
knockout cell line 

(Lei et al., 1996) 

Dnmt CC 
from J1 

mESCs G418 Mouse Dnmt (Dnmt3a and 
Dnmt3b) knockout cell line 

(Lei et al., 1996) 

GFP-Sirt1 
inducible cell 
from    J1 

mESCs Puromycin Mouse doxycycline-
inducible GFP-Sirt1 cell line 

this work 

GFP-Sirt2 
inducible cell 
from    J1 

mESCs Puromycin Mouse doxycycline-
inducible GFP-Sirt2 cell line 

this work 

GFP-Sirt6 
inducible cell 
from J1 

mESCs Puromycin Mouse doxycycline-
inducible GFP-Sirt6 cell line 

this work 

GFP-Sirt7 
inducible cell 
from J1 

mESCs Puromycin Mouse doxycycline-
inducible GFP-Sirt7 cell line 

this work 

 

2.1.2 Plasmids and antibodies  

Table 3. Plasmid constructs 

 
Construct name 

 
Numbe
r  
 

 
Antibiotic 
resistance 

 
Description  

s 
Source 

pCAG-GFP-IB PC1624 Ampicillin CAG driven GFP expression 
constructed by Daniela Meilinger 

(Meiling
er et al., 
2009) 

Lacl-GBP PC1398 Kanamycin Bacterial Lac repressor fused to 
GFP binding protein (GBP) and 
used for F3H assay constructed by 
Jonas Helma 

(Herce 
et al., 
2013) 

pCAG-GMT1-NL-IB PC1626 Kanamycin CAG-driven Dnmt1 (long isoform) 
expression with an N-terminal GFP 
fusion constructed by Nan Liu 

(Frauer 
et al., 
2011b; 
Meilinge
r et al., 
2009) 

pCAG-Dnmt1 
S717A 

PC4129 Kanamycin CAG-driven Dnmt1 mutant S717A 
expression with an N-terminal GFP 
fusion constructed by Pin Zhao 
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pCAG-Dnmt1 
S717E 

PC4128 Kanamycin CAG-driven Dnmt1 mutant S717AE 
expression with an N-terminal GFP 
fusion constructed by Pin Zhao 

 

pCAG-Ch-IB PC1625 Ampicillin CAG driven mCherry expression 
constructed by Daniela Meilinger 

(Meiling
er et al., 
2009) 

pENmRFPPCNAL2 PC1054 Ampicillin CAG-driven PCNA expression with 
an N-terminal RFP fusion 
constructed by  Ingrid Grunewald 

(Sporber
t et al., 
2005) 

pCAG-GFP-Np95-IB PC1755 Ampicillin CAG-driven Uhrf1 expression with 
an N-terminal GFP fusion 
constructed by Andrea Rottach 

(Rottach 
et al., 
2010) 

pCAG-Uhrf1 deleted 
TTD -GFP 

PC2984 Ampicillin CAG-driven Uhrf1 with deleted TTD 
expression with a C-terminal GFP 
fusion constructed by Martha Smets 

(Rottach 
et al., 
2010) 

pCAG-Uhrf1 deleted 
PHD -GFP 

PC2985 Ampicillin CAG-driven Uhrf1 with deleted PHD 
expression with a C-terminal GFP 
fusion constructed by Martha Smets 

(Rottach 
et al., 
2010) 

pCAG-Uhrf1 deleted 
SRA -GFP 

PC2986 Ampicillin CAG-driven Uhrf1 with deleted SRA 
expression with a C-terminal GFP 
fusion constructed by Martha Smets 

(Rottach 
et al., 
2010) 

pCAG-Uhrf1 deleted 
RING -GFP 

PC2987 Ampicillin CAG-driven Uhrf1 with deleted 
RING expression with a C-terminal 
GFP fusion constructed by Martha 
Smets 

(Rottach 
et al., 
2010) 

pCAG-Uhrf1K644A 
K664A-GFP 

PC4154 Ampicillin CAG-driven Uhrf1 mutant K644A 
K664A expression with a C-terminal 
GFP fusion constructed by Pin Zhao 

 

pCAG-GFP-Sirt1 PC4159 Ampicillin CAG-driven mouse Sirt1 expression 
with an N-terminal GFP fusion 
constructed by Pin Zhao 

 

pCAG-RFP-Sirt1 PC4148 Ampicillin CAG-driven mouse Sirt1 expression 
with an N-terminal RFP fusion 
constructed by Pin Zhao 

 

pCAG-GFP-Sirt1 
catalytic domain 

PC4173 Ampicillin CAG-driven mouse Sirt1 catalytic 
domain expression with an N-
terminal GFP fusion constructed by 
Pin Zhao 

 

pCAG-GFP-Sirt1 C 
terminus 

PC4172 Ampicillin CAG-driven mouse Sirt1 C terminus  
expression with an N-terminal GFP 
fusion constructed by Pin Zhao 

 

pCAG-GFP-Sirt1 N 
terminus 

PC4178 Ampicillin CAG-driven mouse Sirt1 N terminus 
expression with an N-terminal GFP 
fusion constructed by Pin Zhao 

 

pCAG-GFP-Sirt1 N 
terminus and the 
catalytic domain 

PC4177 Ampicillin CAG-driven mouse Sirt1 N terminus  
and catalytic domain expression 
with an N-terminal GFP fusion 
constructed by Pin Zhao 
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pCAG-GFP-Sirt1 C 
terminus and the 
catalytic domain 

PC4174 Ampicillin CAG-driven mouse Sirt1 C terminus  
and catalytic domain expression 
with an N-terminal GFP fusion 
constructed by Pin Zhao 

 

pCAG-eGFP- 
Chromodomain 
CBX1  

PC4142 Ampicillin CAG-driven CBX1 expression with 
an N-terminal GFP fusion 
constructed by Pin Zhao 

 

pCAG-ch-Usp7-IB PC2612 Ampicillin CAG-driven Usp7 expression with 
an N-terminal Cherry fusion 
constructed by Weihua Qin  

(Qin et 
al., 
2011b) 

pCAG-ch-Hif1a PC4146 Ampicillin CAG-driven mouse Hif1a 
expression with an N-terminal 
Cherry fusion constructed by Pin 
Zhao 

 

pCAG-ch-Tip60 PC4151 Ampicillin CAG-driven Tip60 expression with 
an N-terminal Cherry fusion 
constructed by Pin Zhao 

 

pCAG-GFP-Tip60 PC2058 Ampicillin CAG-driven Tip60 expression with 
an N-terminal GFP fusion 
constructed by Nan Liu 

 

pCAG-ch-Cdk2 PC4145 Ampicillin CAG-driven Cdk2 expression with 
an N-terminal Cherry fusion 
constructed by Pin Zhao 

 

His-Ubi PC1632 Ampicillin CMV driven ubiquitin expression 
with an N-terminal His tag 
constructed by Karin Fellinger 

(Qin et 
al., 
2015b) 

pCAG-GFP-Sirt2 PC4179 Ampicillin CAG-driven mouse Sirt2 expression 
with an N-terminal GFP fusion 
constructed by Pin Zhao 

 

pCAG-Sirt3-GFP PC4152 Ampicillin CAG-driven mouse Sirt3 expression 
with a C-terminal GFP fusion 
constructed by Pin Zhao 

 

pCAG-Sirt4-GFP PC4153 Ampicillin CAG-driven mouse Sirt4 expression 
with a C-terminal GFP fusion 
constructed by Pin Zhao 

 

pCAG-Sirt5-GFP PC4171 Ampicillin CAG-driven mouse Sirt5 expression 
with a C-terminal GFP fusion 
constructed by Pin Zhao 

 

pCAG-GFP-Sirt6 PC4181 Ampicillin CAG-driven mouse Sirt6 expression 
with an N-terminal GFP fusion 
constructed by Pin Zhao 

 

pCAG-GFP-Sirt7 PC4155 Ampicillin CAG-driven mouse Sirt7 expression 
with an N-terminal GFP fusion 
constructed by Pin Zhao 

 

CttP-RE-TIGHT-
GFP-Sirt1 

PC4162 Gentamycin CttP-driven mouse Sirt1 expression 
with an N-terminal GFP fusion 
constructed by Pin Zhao 

 

CttP-RE-TIGHT-
GFP-Sirt2 

PC4163 Gentamycin CttP-driven mouse Sirt2 expression 
with an N-terminal GFP fusion 
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constructed by Pin Zhao 

CttP-RE-TIGHT-
GFP-Sirt6 

PC4164 Gentamycin CttP-driven mouse Sirt6 expression 
with an N-terminal GFP fusion 
constructed by Pin Zhao 

 

CttP-RE-TIGHT-
GFP-Sirt7 

PC4165 Gentamycin CttP-driven mouse Sirt7 expression 
with an N-terminal GFP fusion 
constructed by Pin Zhao 

 

 

Table 4. Antibodies 

Target protein Manufacturer Species Application Dilution 

GFP Roche Applied 
Science 
(11814460001) 

mouse primary antibody 1:5000 

RFP or mCherry 
(anti-RED5F8) 
 
 

Dr. Kremer,  
Dr. Rottach 

rat primary antibody 1:50 

α-CBX1 Abcam (ab 10478) rabbit primary antibody 1:1000 

α-CBX1-S89ph (31C11-
11) 

Dr. E. Kremmer mouse primary antibody 1:1000 

acetyl lysine Abcam (RM101) rabbit primary antibody 1:2500 

β-actin Sigma (A5441) mouse primary antibody 1:2500 

Sirt1 Biolegend(690502) rat primary antibody 1:500 

H3K9me3 Active motif (39765) rabbit primary antibody 1:1000 

H3K18ac Active motif (39755) rabbit primary antibody 1:2500 

H3 Abcam (ab1791) rabbit primary antibody 1:1000 

PCNA Dr. Kremer,  
Dr. Rottach 

mouse primary antibody 1:2500 

 
Antigen 

 
Manufacturer 

 
Species 

 
Application 

 
Dilution 

HRP-conjugated 
antibody 

Molecular Probes rabbit secondary 
antibody 

1:2500 

mouse secondary 
antibody 

1:5000 

rat secondary 
antibody 

1:5000 

Alexa Fluor 647N Invitrogen mouse photostable dye as 
secondary 
antibody 

1:2500 

Invitrogen rabbit photostable dye as 
secondary 
antibody 

1:2500 

Alexa Fluor 594 Invitrogen mouse photostable dye as 
secondary 

1:2500 
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antibody 

Alexa Fluor 488 Invitrogen mouse photostable dye as 
secondary 
antibody 

1:2500 

 

2.1.3 Primers  

All primers and oligonucleotides were ordered from MWG Eurofins Operon. 

Table 5. Primers  

Primer name Sequence 5’-3’ Applicatio
n 

F-SIRT1 AGGGCCAGAGAGGCAGTTGGAAGAT  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 PCR 

R-SIRT1 CCGGACAGCTTCAATAGTGTTATG 

F-SIRT1-AsiS1 ACGTGCGATCGCATGGCGGACGAGGTG 

R-SIRT1-Not1 CAGCGGCCGCATTATGATTTGTCTGA   

F-SIRT1-Ca- AsiS1 ACGTGCGATCGCATGATTAACACCAT 

R-SIRT1-Ca- Not1 CAGCGGCCGCTTAGGCATATTCACCA 

F-SIRT1-C- AsiS1 ACGTGCGATCGCATGAAACTTTGTTGT 

R-SIRT1-N- Not1 CAGCGGCCGCTTAGTCTTTCCTCTTC 

F-SIRT2 GAG CAGTCGGTGACAGTC CC 

R-SIRT2 CTGTCCTGCGGGAGGTCATGGTT 

F-SIRT2-AsiS1 ACGTGCGATCGCATGGCCGAGCCGG 

R-SIRT2-Not1 CAGCGGCCGCTTACTGCTGTTCCT 

F-SIRT3 CTGCAGTAGGGTGGTGGTCATGG 

R-SIRT3 CAGGTGAAGAAGCCATAGTCTTATC 

F-SIRT3-AsiS1 ACGTGCGATCGCATGGTGGGGGCCG 

R-SIRT3-Not1 CAGCGGCCGCTTATCTGTCCTGTC 

F-SIRT4 GAATTGTGGAAGAATAAGAATGA 

R-SIRT4 GATTCAGAGTTGGAGCGGCATTG 

F-SIRT4-AsiS1 ACGTGCGATCGCATGAGCGGATTGA 

R-SIRT4-Not1 CAGCGGCCGCTTAGGGATCTTGAG 

F-SIRT5 GACTTCAACGAAAACCTGATGCG 

R-SIRT5 CATAAAAGTCAAGTCACCAACT 

F-SIRT5-AsiS1 ACGTGCGATCGCATGCGACCTCTCC 

R-SIRT5-Not1 CAGCGGCCGCTCACCAACTCTCTC 

F-SIRT6 CTTTATTGTTCCCGTGCGGCAGCGC 

R-SIRT6 GTTCCTTCAAGTTCCCCTCCCGC 

F-SIRT6-AsiS1 ACGTGCGATCGCATGTCGGTGAATTATG 

R-SIRT6-Not1 CAGCGGCCGCATCAGCTGGGGGCAGC 

F-SIRT7 AAGCGCAGTCAAAGGAGCGATGG 

R-SIRT7 TCTTTGTCAACTCCGGGCTATGCC 

F-SIRT7-AsiS1 ACGTGCGATCGCATGGCAGCCGGTGGC 

R-SIRT7-Not1 CAGCGGCCGCACTATGCCACTTTCTT 

F-Dnmt1 ACCAGTGAGAAACTGGCAATCTACGACTCCACCTC 

R-Dnmt1 CCCCATCGATGCTCACCTTCTGA 
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F-Dnmt1 S717A  GATGTGTCAGAGATGCCAGCACCCAAA 

R-Dnmt1 S717A TTTGGGTGCTGGCATCTCTGACACATC 

F-Dnmt1 S717E GATGTGTCAGAGATGCCAGAACCCAAA 

R-Dnmt1 S717E TTTGGGTTCTGGCATCTCTGACACATC 

F-Uhrf1- AsiS1 ACGTGCGATCGCATGTGGATCCAGG 

R-Uhrf1-R1 CCCACACATGCCATGCCTCGGCC 

F-Uhrf1-R1 CCCGGCGGGACTGGGGCCGAGGC 

R-Uhrf1- Not1 CAGCGGCCGCTTACTGCTCCAAGGC 

F-Uhrf1-R2 GAAGGGCGGGAAACACAGCCGATA 

R-Uhrf1-R2 CCCTCTGCAGGAGCGTATCGGCT 

F-Cdk2 GCCTGAGCCGCCTCACTAG 

R-Cdk2 CTTTGGGAAGGGCATCAGAG 

F-Cdk2-AsiSI ACGTGCGATCGCATGGAGAAC 

R-Cdk2-NotI CAGCGGCCGCTCAGAGCCGAAG 

F-Hif1a GGCACCGATTCGCCATGGA 

R-Hif1a CAAAAGGAATGAGATTAG 

F-Hif1a-AsiSI ACTGGCGATCGCATGGAGGGCGCCGGC 

R-Hif1a-NotI GAGTAGCGGCCGCCTCAGTTAACTTGATC 

F-MajorS AAAATGAGAAACATCCACTTG 

R-MajorS CCATGATTTTCAGTTTTCTTG 

F-CBX1 S89E-scr GGCTCTCTTCCAAGACTAGCTC 

R-CBX1S89E-scr GGCCAGCCTAGGCTTCTATGC 

CBX1-scr-F GATTTCCCTGGGCTCCTCAC  

CBX1-scr-R ATGCCCATCACAGAACTGCT  

F-GAPDH-q GAAGGTCGGTGTGAACGG  
 
 
 
 
RT-qPCR 

R-GAPDH-q TGAAGGGGTCGTTGATGG 

F-CyclinE-q GTTATAAGGGAGACGGGGAG 

R- CyclinE -q TGCTCTGCTTCTTACCGCTC 

F-CDK1-q GACATCTGGAGTATAGGGACC 

R-CDK1-q CTTCGTTGTTAGGAGTGCC 

F- E2F1-q GCCCTTGACTATCACTTTGGTCTC 

R-E2F1-q CCTTCCCATTTTGGTCTGCTC 

F-CDK2-q GCTAGCAGACTTTGGACTAGCCAG 

R-CDK2-q AGCTCGGTACCACAGGGTCA 

F-UHRF1-q CTGGCTATGGTGTGGGTCACAG 

R-UHRF1-q CTGGGCCTCAAACCATGCAC 

F--LDHA-q ATCCCATTTCCACCATGATT 

R- LDHA -q ACTGCAGCTCCTTCTGGATT 

F- PFKL -q GAACTACGCACACTTGACCAT 

R- PFKL -q CTCCAAAACAAAGGTCCTCTGG 

F- PLIN3 -q TCCTGTCCAAGCTGGAGCCC 

R- PLIN3 -q GTCGGCTGCTGGAGGATGGG 

F-Eno1-q AGTACGGGAAGGACGCCACCA 

R-Eno1-q GCGGCCACATCCATGCCGAT 

F- CDKN1A -q AAGTGTGCCGTTGTCTCTTCG 

R- CDKN1A -q AGTCAAAGTTCCACCGTTCTCG 

F -UPP1-q TCTACCATTTCAACCTCAGCACTAGCA 

R-UPP1-q CCATGGCTCACAGACAGCACG 
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F- RAC2 -q AAGAAGCTGGCTCCCATCACCTAC 

R- RAC2-q AACACGGTTTTCAGGCCTCTCTG 

F -DKC1-q TTAGGACAACGACACCACCA 

R-DKC1-q CCCAGCTGGACATAATGCTT 

F -β-Actin-q GACCTCTATGCCAACACAGT 

R- β-Actin -q AGTACTTGCGCTCAGGAGGA 

F- LDHA -chip GGGTTCTTGCGGGGGTGGGG  
 
 
ChIP-qPCR 

R- LDHA -chip ATGAACCCCAAAAGGGGATG 

F- LDHA -chip GGGTTCTTGCGGGGGTGGGG 

F- PFKL -chip TGGGGAACCTCTGTGTTTGT 

R- PFKL -chip TACTCAGGATTCGGTCGAAG 

F-Eno1-chip GCTATCCGGGGAGCACTC 

R-Eno1-chip CAACCCTGAAACTCGGTGAT 

F-MyoD-chip GCCGGTGTGCATTCCAA 

R-MyoD-chip TCAACCCAAGCCGTGAGAGT 

 

2.1.4 Kits and reagents  

Table 6. Kits and reagents  

Kits and chemicals Supplier 

4’,6-Diamidino-2-phenylindol (DAPI) Roche Diagnostics 

Agar AppliChem 

Agarose Sigma Aldrich 

Ampicillin AppliChem 

Aphidicolin Sigma Aldrich 

Bromphenol blue sodium salt AppliChem 

Bovine serum albumin(BSA) Sigma Aldrich 

Carbobenzoxy-Leu-Leu-leucinal (MG132) Sigma Aldrich 

Chloroform Roth GmbH 

Cycloheximide Sigma Aldrich 

Dimethylsulfoxide (DMSO) AppliChem 

Dithiothreitol (DTT) Carl Roth GmbH + Co. KG 

Dulbecco's Modified Eagle Medium (DMEM) PAA Laboratories GmbH 

dNTPs PeqLab 

Dulbecco’s PBS (1x), without Ca2+ and Mg2+ Sigma Aldrich 

ECL reagent Thermo Scientific 

EDTA-dihydrate AppliChem 

Ethanol (98%) AppliChem 

Ethanol, absolute AppliChem 

Ethidium bromide AppliChem 

EZ DNA Methylation-Gold Kit™ Zymo 

FastDigest® restriction enzymes + Buffer Thermo Scientific 

Fetal bovine serum (FBS) PAA Laboratories 

Formaldehyde Sigma Aldrich 
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Gelatine Sigma Aldrich 

Gentamicin (50 mg/ml) PAA Laboratories 

GFP-Trap® ChromoTek 

Glycerol Carl Roth GmbH + Co. KG 

Glycin Carl Roth GmbH + Co. KG 

High Capacity cDNA Reverse Transcription Kit Applied Biosystems 

HisTrap FF GE Healthcare 

Hydrochloric acid (HCl) Carl Roth GmbH + Co. KG 

Imidazole AppliChem 

Isopropanol (2-Propanol) Carl Roth GmbH + Co. KG 

Isopropyl β-d‐thiogalactopyranoside (IPTG) AppliChem 

Kanamycin SERVA 

Lysogeny broth (LB) Medium Carl Roth GmbH + Co. KG 

L-Glutamine PAA Laboratories 

LIF (ESGRO) Millipore 

Lipofectamine 3000 Invitrogen 

Magnesium chloride (MgCl2) Sigma-Aldrich 

MEM Non-essential amnio acid Solution PAA Laboratories 

Milk powder Carl Roth GmbH + Co. KG 

Nonyl phenoxypolyethoxylethanol (NP-40) Sigma Aldrich 

NucleoSpin Triprep Kit Macherey Nagel 

NucleoSpin® Gel and PCR Clean up Macherey Nagel 

OptiMEM Invitrogen 

PageRuler™ Prestained Protein Ladder Fermentas 

Phosphate buffer saline (PBS) PAA Laboratories 

Penicillin/Strepomycin PAA Laboratories 

Phusion® High Fidelity Polymerase + Kit New England Biolabs 

PMSF (Phenylmethylsulfonyl fluoride) SERVA 

Polyethyleneimine (PEI) Sigma Aldrich 

Potassium dihydrogen phosphate (KH2PO4) Merck 

Power SYBR Green PCR Master Mix Applied Biosystems 

Propidium Iodide Sigma Aldrich 

Protease Inhibitor SERVA 

Protein assay kit Pierce 

Pure Yield™ Plasmid MidiPrep System Promega 

Puromycin Invitrogen GmbH 

QIAamp DNA Mini Kit QIAGEN 

Hot Start Polymerase QIAGEN 

RNase A AppliChem 

RNase-free DNase I Roche Diagnostics 

Smart Ladder, Smart Ladder Small Fragment Eurogentec 

Sodium chloride (NaCl) Carl Roth GmbH + Co. KG 

Sodium hydroxide (NaOH) Carl Roth GmbH + Co. KG 

Sodium sulfate (Na2SO4) Sigma-Aldrich 

β-Mercaptoethanol Invitrogen 

StrataCloneTM PCR Cloning Kit Agilent Technologies 

Streptomycin PAA Laboratories 

Superdex 75 preparative gel filtration column GE Healthcare 
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T4 DNA Ligase New England Biolabs 

TEMED Merck 

Trichloroacetic acid (TCA) Sigma-Aldrich 

Tris Carl Roth GmbH + Co. KG 

Triton X-100 Carl Roth GmbH + Co. KG 

Trypsin/EDTA 1x PAA Laboratories 

Tween 20 Carl Roth GmbH + Co. KG 

μ-Slide 8 well ibidi 

Vectashield Mounting Medium Alexis 

Zero Blunt® PCR Cloning Kit Invitrogen 

 

2.1.5 Technical devices and consumables 

Table 7. Technical devices  

Devices  Type Supplier 

Agarose gel imaging system Mupid-Ex Advance co 

Small Bacterial incubator UL 40 Memmert GmbH 

Large Bacterial incubator Certomat H+R B.Braun 

Cell microscope EVOS xl AMG 

Laminar flow hood Herasafe KS, Class II Fisher Scientific GmbH 

Axiophot photomicroscope Axiophot 2 Carl Zeiss MicroImaging 
GmbH 

Cell sorting system FACS Aria II Becton Dickinson 

Fixed angle rotor fixed angle 1720 Hettich Zentrifugen 

Freezer (-20°C) Comfort neoLab Migge Laborbedarf 

Freezer (-80°C) MDF-594 SANYO GmbH 

Fridge (4°C) Premium Liebherr 

Gel documentation system UV System INTAS 

The high content imaging system Operetta PerkinElmer 

High-speed centrifuge Avanti J30l Beckman Coulter GmbH 

Laser scanning confocal microscope SP5 Leica microsystems 

PCR machine Mastercycler Eppendorf AG 

Photometer NanoVue GE Healthcare 

Pipettor Eppendorf Research Eppendorf AG 

Real-time PCR System 7500 Fast Applied Biosystems 

SDS PAGE system Mini-Protean Tetra Bio-Rad Laboratories GmbH 

Shaker DOS-10L NeoLab Migge Laborbedarf 

Sonifier Branson Digital Sonifier 
450D 

G. Heinemann Ultraschall‐ 
und Labortechnick 

Spinning disc confocal 
microscope 

Ultraview VOX PerkinElmer 

Tabletop centrifuge Mikro 22R Hettich Zentrifugen 

Table top centrifuge Centrifuge 5454 Eppendorf AG 

Microplate reader Infinite M1000 TECAN 
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Vortex mixer Neolab 7-2020 NeoLab Migge laborbedarf 
GmbH 

Water bath Type 1013 GFL 

Waving platform shaker Polymax 1040 Heidolph Instruments 
GmbH&Co 

The western blot scanning system Typhoon Trio Variable 
Mode Imager 

GE Healthcare 

RSLCnano system UltiMate 3000 Thermo Fisher Scientific 

HF Hybrid Quadrupole Q Exactive Thermo Fisher Scientific 

Longwave Ultraviolet Crosslinker UVP 95-0228-01 Cole-Parmer 

 

Table 8. Consumables 

Consumables Supplier 

Cell culture plates & flasks Falcon Becton Dickinson 

CryoTube™ Nunc GmbH & Co. KG 

FACS tube Becton Dickinson 

Falcon™ Tubes (15 ml, 50 ml) Becton Dickinson 

Filter paper Whatman 

Immersol™ 518F (immersion oil) Carl Zeiss 

Laboratory bottle (100 ml, 250 ml, 500 ml, 1 L) SCHOTT 

Laboratory vacuum manifold Vac-Man® Promega 

Latex exam gloves „Satin PLUS“ Kimberly Clark 

Microcentrifuge tubes (1.5 ml, 2 ml) Eppendorf 

Microscope coverslips (18 mm) Menzel GmbH + Co KG 

Nail polish Lacura Beauty 

Parafilm®M sealing film neoLab Migge Laborbedarf-Vertriebs 

Nitrocellulose Membrane (0.45 µm, 0.2 µm) Bio-Rad 

Pipette tips (10 μl / 200 μl / 1000 μl) Brand Tech Scientific 

pipettes (single channel) Eppendorf 

Pipette tips with filter (10 μl, 200 μl, 100 μl) SLG Süd Laborbedarf 

PureYield™ Binding and Clearing Columns Promega 

Serological pipettes Carl Roth GmbH + Co. KG 

Soft wipes (KIMTECH Science) Kimberly Clark 

 

2.2 Methods 

2.2.1 Expression constructs 

The plasmid pCAG-GFP-Sirt1 was derived from pCAG-GFP-IB by addition of mouse 

Sirt1 cDNA from E14 ESCs and unique restriction enzyme sites AsiSI and NotI (Thermo 

Scientific). The PCR product of the Sirt1 cDNA was obtained with primers: F-Sirt1 
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(forward), 5’- AGGGCCAGAGAGGCAGTTGGAAGAT -3’; and R-Sirt1 (reverse), 5’- 

CCGGACAGCTTCAATAGTGTTATG -3’. The primers with restriction enzyme sites 

AsiSI and NotI are as follows: F-Sirt1-AsiSI (forward), 5’- ACGTGCGATCGCATG 

GCGGACGAGGTG -3’; and R-Sirt1-NotI (reverse), 5’- CAGCGGCCGCATTATGATTTG 

TCTGA -3’. The construction of the plasmid pCAG-GFP-Sirt1 was shown in Figure 2.1. 

With the similar strategy for constructing other plasmids, including pCAG-GFP-Sirt2, 

pCAG-GFP-Sirt6, pCAG-GFP-Sirt7, pCAG-Sirt3-GFP, pCAG-Sirt4-GFP, and pCAG-

Sirt5-GFP, the primers for the plasmid pCAG-GFP-Sirt2 were listed as follows:  F-Sirt2 

(forward), 5’- GAGCAGTCGGTGACAGTCCC -3’; R-Sirt2 (reverse), 5’- CTGTCCTGCGGGA 

GGTCATGGTT -3’; F-Sirt2-AsiSI (forward), 5’- ACGTGCGATCGCATGGCCGAGCCGG -3’; 

and R-Sirt2-NotI (reverse), 5’- CAGCGGCCGCTTACTGCTGTTCCT -3’. The primers for 

the plasmid pCAG-Sirt3-GFP:  F-Sirt3 (forward), 5’- CTGCAGTAGGGTGGTGGTCATGG -

3’; R-Sirt3 (reverse), 5’- CAGGTGAAGAAGCCATAGTCTTATC -3’; F-Sirt3-AsiSI (forward), 

5’- ACGTGCGATCGCATGGTGGGGGCCG -3’; and R-Sirt3-NotI (reverse), 5’- CAGCGGCC 

GCTTATCTGTCCTGTC -3’. The primers for the plasmid pCAG-Sirt4-GFP: F-Sirt4 

(forward), 5’- GAATTGTGGAAGAATAAGAATGA -3’; R-Sirt4 (reverse), 5’- GATTCAGAGTT 

GGAGCGGCATTG -3’; F-Sirt4-AsiSI (forward), 5’- ACGTGCGATCGCATGAGCGGATTGA -

3’; and R-Sirt4-NotI (reverse), 5’- CAGCGGCCGCTTAGGGATCTTGAG -3’. The primers 

for the plasmid pCAG-Sirt5-GFP: F-Sirt5 (forward), 5’- GACTTCAACGAAAACCTGATGCG 

-3’; R-Sirt5 (reverse), 5’- CATAAAAGTCAAGTCACCAACT -3’; F-Sirt5-AsiSI (forward), 5’- 

ACGTGCGATCGCATGCGACCTCTCC -3’; and R-Sirt5-NotI (reverse), 5’- CAGCGGCCGCT 

CACCAACTCTCTC -3’. The primers for the plasmid pCAG-GFP-Sirt6:  F-Sirt6 (forward), 

5’- CTTTATTGTTCCCGTGCGGCAGCGC -3’; R-Sirt6 (reverse), 5’- GTTCCTTCAAGTTCCC 

CTCCCGC -3’; F-Sirt6-AsiSI (forward), 5’- ACGTGCGATCGCATGTCGGTGAATTATG -3’; 

and R-Sirt6-NotI (reverse), 5’- CAGCGGCCGCATCAGCTGGGGGCAGC -3’. The primers 

for the plasmid pCAG-GFP-Sirt7:  F-Sirt7 (forward), 5’- AAGCGCAGTCAAAGGAGCGATG 

G -3’; R-Sirt7 (reverse), 5’- TCTTTGTCAACTCCGGGCTATGCC -3’; F-Sirt7-AsiSI 

(forward), 5’- ACGTGCGATCGCATGGCAGCCGGTGGC -3’; and R-Sirt7-NotI (reverse), 5’- 

CAGCGGCCGCACTATGCCACTTTCTT -3’. 

For the construction of truncations of Sirt1, the fragments of Sirt1, including its N 

terminus, catalytic domain, C terminus, Sirt1 with deletion of the C terminus, and Sirt1 
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with deletion of its N terminus, were amplified by PCR (Figure 2.2). The primers for 

cloning the N terminus of Sirt1were shown as follows: F-SIRT1-AsiS1 (forward), 5’- 

ACGTGCGACGCATGGCGGACGAGGTG -3’; R-SIRT1-N-Not1 (reverse), 5’- CAGCGGCCGC 

TTAGTCTTTCCTCTTC -3’. The primers for the catalytic domain of Sirt1: F-SIRT1-Ca-

AsiS1 (forward), 5’- ACGTGCGATCGCATGATTAACACCAT -3’, and R-SIRT1-Ca-Not1 

(reverse), 5’- CAGCGGCCGCTTAGGCATATTCACCA -3’. The primers for the C terminus 

of Sirt1: F-SIRT1-C-AsiS1 (forward), 5’- ACGTGCGATCGCATGAAACTTTGTTGT -3’, and R-

SIRT1-Not1 (reverse), 5’- CAGCGGCCGCATTATGATTTGTCTGA -3’. The primers of F-

SIRT1-AsiS1 and R-SIRT1-Ca-Not1 were used for amplifying the N terminus and catalytic 

domain of Sirt1, and the primers of F-SIRT1-Ca-AsiS1 and R-SIRT1-Not1 were used for 

the fragment of the catalytic domain and C terminus of Sirt1. 

  

Figure 2.1. Construction of the plasmid pCAG-GFP-Sirt1. The DNA sequences coding for 

mouse Sirt1 were amplified from E14 ESCs by PCR using fusion high-fidelity DNA polymerase 

and then amplified again with AsiSI and NotI. The PCR products and the vector pCAG-GFP-IB 

were digested with unique restriction enzyme sites AsiSI and NotI and then ligated at 16°C 
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overnight. The plasmid inserted with Sirt1 cDNA was sequenced and stored. These two 

enzymes were labeled in red. Amp means Ampicillin. 
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Figure 2.2 Construction of Sirt1 truncations. The different fragments of Sirt1, including its N 

terminus, catalytic domain, C terminus, the N terminus and catalytic domain, and catalytic 

domain and C terminus, were amplified by PCR with the corresponding primers (F-SIRT1-AsiS1, 

R-SIRT1-Not1, F-SIRT1-Ca- AsiS1, R-SIRT1-Ca- Not1, F-SIRT1-C- AsiS1,  R-SIRT1-N- Not1). 

And the plasmid pCAG-GFP-Sirt1 was used as a template. Afterward, the PCR products and the 

vector pCAG-GFP-IB were digested with AsiSI and NotI. Each digested PCR product was 

ligated with the digested GFP vector at 16°C overnight. The plasmids inserted with various Sirt1 

fragments were sequenced and stored. These two enzymes were labeled in red. Amp means 

Ampicillin.  

The expression constructs of GFP-Dnmt1, LacI-GBP, GFP-Uhrf1, RFP-Uhrf1, and the 

truncation of Uhrf1, including Uhrf1 deletion of TTD, PHD, SRA, and RING domains 

have been generated previously (Meilinger et al., 2009; Rottach et al., 2010; 

Schermelleh et al., 2005). To generate GFP-Dnmt1 S717E and S717A, pCAG-GFP-IB 

was digested with restriction endonucleases AsiSI and NotI and ligated with the 
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fragments of Dnmt1 S717E and S717A constructed by overlapping PCR with wild type 

Dnmt1 (Figure 2.3). The primers for Dnmt1 S717A and S717E were listed as follows: F-

Dnmt1 (forward), 5’- ACCAGTGAGAAACTGGCAATCTACGACTCCACCTC-3’; R-

Dnmt1 (reverse), 5’- CCCC ATCGAT GCTCACCTTCTGA -3’; F-Dnmt1 S717A (forward), 

5’- GATGTGTCAGAGATGCCAGCACCCAAA -3’; R-Dnmt1 S717A (reverse), 5’- TTTG 

GGTGCTGGCATCTCTGACACATC -3’; F-Dnmt1 S717E (forward), 5’- GATGTGTCAG 

AGATGCCAGAACCCAAA -3’; and R-Dnmt1 S717E (reverse), 5’- TTTGGGTTCTGGCA 

TCTCTGACACATC -3’. The double mutation of GFP-Uhrf1, K644R, and K664R, was 

obtained by overlapping extension PCR from wild type Uhrf1 and linked to the digested 

pCAG-GFP-Sirt7 (Figure 2.4). The overlapping extension PCR of Uhrf1 was composed 

of three fragments. The primers for the first fragment of PCR were F-UHRF1- AsiS1 

(forward), 5’- ACGTGCGATCGCATGTGGATCCAGG -3’ and R-UHRF1-R1 (reverse), 

5’- CCCACACATGCCATGCCTCGGCC -3’. The second fragment was amplified with 

the primers, including F-UHRF1-R1 (forward), 5’- CCCGGCGGGACTGGGGCCGAGGC 

-3’ and R-UHRF1-R2 (reverse), 5’- CCCTCTGCAGGAGCGTATCGGCT -3’. The 

primers for the third fragment were: F-UHRF1-R2 (forward), 5’- GAAGGGCGGGAAAC 

ACAGCCGATA -3’ and R-UHRF1- Not1 (reverse), 5’- CAGCGGCCGCTTACTGCTCCA 

AGGC -3’. 

GFP-Cbx1 and RFP-Usp7 have also been generated previously (Ma et al., 2014; Qin et 

al., 2011b). Mouse Cdk2 and Hif1a were amplified from mouse cDNA and inserted into 

the backbone of pCAG-Ch-IB digested with AsiSI and NotI. The primers for Cdk2: F-

Cdk2 (forward), 5’- GCCTGAGCCGCCTCACTAG -3’; R-Cdk2 (reverse), 5’- CTTTGGG 

AAGGGCATCAGAG -3’; F-Cdk2-AsiS1 (forward), 5’- ACGTGCGATCGCATGGAGAAC 

-3’; and R-Cdk2-NotI (reverse), 5’- CAGCGGCCGCTCAGAGCCGAAG -3’. The primers 

for Hif1a were listed: F- Hif1a (forward), 5’- GGCACCGATTCGCCATGGA -3’; R-Hif1a 

(reverse), 5’- CAAAAGGAATGAGATTAG -3’; F-Hif1a-AsiS1 (forward), 5’- ACTGGCGA 

TCGCATGGAGGGCGCCGGC -3’; and R-Hif1a-NotI (reverse), 5’- GAGTAGCGGCCGC 

CTCAGTTAACTTGATC -3’. The plasmid pCAG-RFP-Tip60 was generated by cutting 

the Tip60 fragment from pCAG-GFP-Tip60 with AsiSI and NotI and linking to pCAG-

RFP-IB. The four plasmids, including CttP-RE-TIGHT-GFP-Sirt1, CttP-RE-TIGHT-GFP-

Sirt2, CttP-RE-TIGHT-GFP-Sirt6, CttP-RE-TIGHT-GFP-Sirt7, were derived from CttP-
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RE-TIGHT-GFP. The cloned fragments of Sirt1, Sirt2, Sirt6, and Sirt7 were inserted into 

the vector CttP-RE-TIGHT-GFP with AsiSI and NotI. The plasmid information was 

shown in Figure 2.5. All primers were also listed in Materials and Methods (Table 5). 

And all constructs were verified by DNA sequencing (Eurofins).  
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Figure 2.3 Construction of Dnmt1 mutation S717A and S717E. The fragments of two Dnmt1 

mutants, S717A and S717E, were derived from wild type Dnmt1 with the designed primers. The 

PCR products were digested with restriction enzymes, BgIII and ClaI, and then ligated at 16°C 

overnight. The plasmids inserted with fragments of the Dnmt1 mutant were sequenced and 

stored. These two enzymes were labeled in red. Amp means Ampicillin.  
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Figure 2.4 Construction of Uhrf1 double mutation K644RK664R. The three fragments of 

Uhrf1 mutation were derived from wild type Uhrf1 of the plasmid pCAG-GFP-Np95-IB with the 

designed primers. The PCR products were digested with restriction enzymes, AsiSI and NotI, 

and then ligated with the backbone pCAG-GFP-Sirt7 at 16°C overnight. The plasmid inserted 

with Uhrf1 K644RK664R was sequenced and stored. These two enzymes were labeled in red. 

Amp means Ampicillin. 
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Figure 2.5 Graphic maps of seven plasmids, including pCAG-RFP-Cdk2, pCAG-RFP-Hif1a, 

pCAG-RFP-Tip60, CttP-RE-TIGHT-GFP-Sirt1, CttP-RE-TIGHT-GFP-Sirt2, CttP-RE-TIGHT-

GFP-Sirt6, and CttP-RE-TIGHT-GFP-Sirt7. All of the plasmids were constructed with restriction 

enzymes, AsiSI and NotI. The two enzymes were labeled in red. Amp meaned Ampicillin; Genta 

meaned gentamycin; Puro was puromycin. 

2.2.2 Cell culture and transfection 

Human embryonic kidney (HEK) 293T cells were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) plus 10% fetal calf serum and 50 μg/ml gentamycin (PAA). 

C2C12 cells were maintained in DMEM supplemented with 20% fetal calf serum and 50 

μg/ml gentamycin. J1 ESCs were maintained in gelatin-coated dishes in DMEM 

supplemented with 20% fetal bovine serum (FBS, Biochrom), 0.1 mM β-

mercaptoethanol (Invitrogen), 2 mM l-glutamine, 2 mM 100 U/ml penicillin, 100 μg/ml 
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streptomycin (PAA Laboratories GmbH), 1 × MEM non-essential amino acids, 1000 

U/ml recombinant mouse LIF (Millipore) and 2i (1 μM PD032591 and 3 μM CHIR99021) 

(Axon Medchem, Netherlands). Baby hamster kidney (BHK) cells were cultured in 

DMEM supplemented with 10% fetal calf serum and 50 μg/ml gentamycin. HEK293T 

cells and BHK cells were transfected with transfection reagent of polyethyleneimine 

(Sigma) according to the manufacturer’s instructions.  C2C12 cells were transfected with 

Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s instructions. 

Mouse ESCs were also transfected with Lipofectamine 2000 reagent. 

2.2.3 Co-immunoprecipitation and Western blot 

For the co-immunoprecipitation assay, pull down of GFP-protein with its interactors 

using the GFP-Trap beads (ChromoTek) were performed as described (Rothbauer et al., 

2008). Briefly, the harvested cells were incubated on ice for 30 minutes in 400 μl lysis 

buffer (20 mM Tris-HCl, pH 7.5, 0.5 mM EDTA, 150m M NaCl, 0.5% NP-40, and 1 mM 

PMSF and protease inhibitor cocktail, SERVA). Cell lysates were sonicated and 

precleared by centrifugation at 14000 g for 10 minutes at 4°C. The supernatants were 

incubated with GFP-trap beads (Chromotek) for 3 hours at 4°C and then washed with 

wash buffer (20 mM Tris-HCl, pH 7.5, 0.5 mM EDTA, 150 mM NaCl) for three times and 

mixed with 30 μl Laemmli buffer and boiled for 10 minutes at 95°C.  

For the detection of targeted proteins by western blot, the boiled proteins were resolved 

by SDS-PAGE and transferred to nitrocellulose membranes. The membranes were 

blocked in TBST (Tris-buffered saline, 0.075% Tween 20) with 5% fat-free milk for 1 h at 

room temperature and then incubated with primary antibody overnight at 4°C. After 

washing with TBST three times, the membranes were incubated with secondary 

antibody for 1 hour at room temperature. Bound secondary antibody conjugated to 

horseradish peroxidase (HRP) is visualized for chemiluminescent detection according to 

an ECL detection kit (Pierce) Amersham Imager 600’s instructions (Amersham). 

2.2.4 Immunofluorescence staining and microscopy 
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Immunostaining was performed as described previously (Dambacher et al., 2012). 

Briefly, cells were cultured on coverslips for 12 hours, washed with PBS, fixed with 4% 

paraformaldehyde for 10 min, and permeabilized with PBST (PBS and 0.02% Tween-20) 

plus 0.5% Triton X-100. After washing with PBST for three times, the coverslips were 

blocked with 3% BSA (bovine serum albumin) in PBST for one hour and incubated the 

cells with primary and secondary antibody in dark chambers for one hour at room 

temperature. For DNA staining, coverslips were incubated with 200 ng/ml DAPI in PBST 

buffer for 5 minutes. The coverslips were mounted in anti-fading medium (Vectashield, 

Vector Laboratories) and sealed with nail polish.  

For the MitoTracker Orange staining, 1 mL of warm medium was placed into each well 

of 6-well plate and pipetted 0.5 μl of 115 μM MitoTracker Orange into each well, and 

then incubated the plate in 37°C for 10 minutes. 

For super-resolution microscopy, cells were cultured in μ-Slide 8 well (ibidi) with the 

different concentration of Dox at 0 μg/ml, 0.1 μg/ml, 0.5 μg/ml, 1 μg/ml, 2 μg/ml for 24 

hours and used for images. The super-resolution images were obtained with a spinning 

disc confocal microscope (Ultraview VOX, PerkinElmer). The images were processed 

and assembled by ImageJ software (NIH Image). 

2.2.5 DNA methylation assay 

The DNA methylation assay has been reported to be performed by the standard 

protocol with EZ DNA Methylation-Gold™ Kit (Zymo research). Firstly, to get purified 

DNA, we used the kit from QIAamp for genomic DNA purification according to the 

instructions. The cell pellet was lysed and then digested by proteinase K at 56°C. After 

the centrifugation in microcentrifuge tubes, the mixture was added into 100% ethanol to 

wash the DNA samples. And then the purified DNA was collected by distilled water.  For 

the reaction with Dnmt1 protein and genomic DNA, the methylation activity of Dnmt1 on 

genomic DNA was activated at the buffer NEB2 (Thermo Fisher) supplemented with 

Bovine serum albumin (BSA) and S-Adenosyl methionine in 37°C for 1.5 hours. The 

theory for bisulfite treatment of the methylated DNA is that the methylated cytosine at 

position 5 remains intact while the unmethylated cytosines are completely converted into 
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uracil following bisulfite treatment and detected as thymine following PCR. Briefly, The 

20 µl DNA sample was added into 130 µl of the CT Conversion Reagent and mixed for 

the next step: 98°C for 10 minutes, 64°C for 2.5 hours and then stored at 4°C. The 

Zymo-Spin™ IC Column was prewashed with M-Binding buffer and then loaded with the 

DNA sample. After centrifuging at a speed of 8000 x g for 30 seconds, the column was 

washed by M-Wash Buffer. The sample was then mixed with M-Desulphonation buffer 

at room temperature for 20 minutes and washed by M-wash buffer for one more time. 

Finally, the Elution buffer was used to elute the DNA sample. PCR was performed using 

the eluted DNA as a template for amplifying the products of Major satellite repeats. The 

PCR products were then sequenced and analyzed for the methylation level at different 

CpG sites. 

2.2.6 F3H assay 

The F3H method has been described before (Herce et al., 2013). Due to BHK cells 

containing a lac operator repeats array, Cells were cultured on coverslips and co-

transfected with fluorescent fusion protein expression vectors and a LacI-GBP fusion 

construct using polyethyleneimine and fixed about 16 h after transfection with 3.7% 

formaldehyde in PBS for 10 min, washed with PBST (PBS with 0.02% Tween), stained 

with 200 ng/ml DAPI and mounted in Vectashield medium and sealed with nail polish. 

The F3H sample was analyzed with an SP5 confocal fluorescence microscope. DAPI, 

GFP, and mCherry/RFP were excited by 405 nm diode, 488 nm argon and 561 nm 

diode-pumped solid-state lasers, respectively. Images were recorded and further 

analyzed using ImageJ software (NIH Image). 

2.2.7 In vitro deacetylation assay 

Immunoprecipitated and purified Uhrf1 and Sirt1 and its mutated proteins were 

incubated in HDAC buffer (10 mM Tris, pH 8.0, 150 mM NaCl, and 10% glycerol) 

containing 5 mM NAD
＋
for 2 hours at 30°C. Reaction products were then resolved on 

SDS gels and visualized by immunoblotting with an anti-acetyl-lysine antibody. 
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2.2.8 Protein stability assay 

Cells were seeded in a 6-well plate and transfected with plasmids, including GFP-Uhrf1 

and GFP-Uhrf1 with deletion of SRA. After 12 hours, fresh medium with 100 µg/ml 

cycloheximide (CHX) (Sigma Aldrich) and 2 µg/ml Aphidicolin (Sigma Aldrich) was 

added to cells and incubated for 12 hours for collection. Cell pellets were lysed in 4% 

SDS and subjected to SDS-PAGE and western blot analysis with indicated antibodies. 

2.2.9 Slot Blot 

To perform this assay, genomic DNA was firstly extracted from the ESCs induced by 

different concentration of Dox (doxycycline) using the Blood & Cell Culture Midi Kit 

(Qiagen). Genomic DNA was added to Nitrocellulose membranes (Amersham) using the 

Bio-Rad slot blot system according to the manufacturer’s instruction. Nitrocellulose 

membranes were plated in Longwave Ultraviolet Crosslinker (Colo-Parmer, GZ-39462-

14) and crosslinked with the “Auto” selection. After crosslinking, the members were 

blocked with PBST supplemented with 5% milk for 1 h at room temperature. Membranes 

were incubated with primary antibody against mouse mC (Eurogentec, 33D3) 1 hour at 

room temperature or overnight at 4°C. A secondary antibody against mouse conjugated 

to Alexa 488 (Life Technologies, A21202) was used for fluorescence detection and 

visualized with Typhoon TRIO (GE Healthcare Life Sciences). Quantification was 

performed by ImageJ software (NIH Image). 

2.2.10 Fluorescence-activated cells sorting (FACS) analysis 

Cells were seeded in 6-well plates, incubated with different concentrations of Dox at 0 

μg/ml, 0.1 μg/ml, 1 μg/ml, 2 μg/ml and 4 μg/ml for 24 h, washed with PBS and incubated 

with Trypsin-EDTA solution for 5 minutes at 37°C. Then cells were resuspended in 1 ml 

PBS and transferred to a conical centrifuge tube. 5 × 104 Cells were sorted and 

analyzed for GFP signal on a BD FACS Aria Ⅲ cell sorter. The results were analyzed by 

FlowJo software (BD Biosciences). 
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2.2.11 Mass spectrometry 

GFP-Uhrf1 was overexpressed in HEK293T cells with or without 2 μg/ml Aphidicolin  

(Sigma Aldrich) for 24 hours and purified with GFP-Trap beads. The samples were 

boiled at 95°C for 5 min and analyzed by SDS-PAGE. Gel bands were manually excised 

and digested with trypsin as described before (Shevchenko et al., 2000; Wilm et al., 

1996). First, gel slices were washed twice with 100 μl of H2O, three times with 100 μl of 

25 mM NH4HCO3 and dehydrated by washing them three times with 100 μl of 

acetonitrile. Gel slices were then incubated 1 hour with 50 μl of 10 mM DTT in 25 mM 

NH4HCO3. Afterward, slices were incubated 30 minutes in a dark place with 50 μl of 55 

mM iodoacetamide in 25 mM NH4HCO3 to carbamidomethylate cysteines. Gel 

fragments were washed with 100 μl of 25 mM NH4HCO3 and dehydrated again with 100 

μl of acetonitrile. Ten µl of 25 ng/μl trypsin (Promega) dissolved in 25 mM NH4HCO3 

were added to each gel slice, depending on the volume of the excised spot, incubated 

45 minutes at 4ºC and then the non-absorbed trypsin removed. Gel fragments were 

covered with 25 mM NH4HCO3 and digestion took place for 16 hours at 30°C. For the 

peptide extraction, gel slices were washed twice with 50 μl of acetonitrile/mQ H2O 1/1 

0.25% TFA and twice more with 50 μl of acetonitrile. The resulting liquid containing the 

digested peptides was totally evaporated, redissolved with 15 μl of 0.1% formic acid and 

stored at –20 ºC until further processing. 

For the mass spectrometry analysis performed by Dr. Ignasi Forné, 5 µl of peptides 

were injected in an RSLCnano system (Thermo) and separated in a 15 cm analytical 

column C18 nanocolumn (75 μm ID home-packed with ReproSil-Pur C18-AQ 2.4 μm, a 

50-min gradient from 5 to 60% acetonitrile in 0.1% formic acid. The effluent from the 

HPLC was directly electrosprayed into a Q ExactiveTM HF Hybrid Quadrupole (Thermo). 

The Q Exactive HF instrument was operated in a data-dependent mode to automatically 

switch between full scan MS and MS/MS acquisition. Survey full scan MS spectra (from 

m/z 375–1600 were acquired with resolution R= 60,000 at m/z 400 (AGC target of 

3x106). The ten most intense peptide ions with charge states between 3 and 5 were 

sequentially isolated to a target value of 1x105 and fragmented at 27% normalized 

collision energy. Typical mass spectrometric conditions were: spray voltage, 1.5 kV; no 
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sheath and auxiliary gas flow; heated capillary temperature, 250°C; ion selection 

threshold, 33.000 counts. Each individual thermo binary raw file was searched with 

Mascot/Sequest against the database (UniProt-proteome-3AUP000005640, Hsapiens. 

fasta). Typical search parameters for peptide were as follows: mass tolerance, 10 ppm; 

fragment tolerance, 0.5 Da; enzyme was set to trypsin, allowing up to two missed 

cleavages; static modification, carbamidomethylated cysteine (+57.0215 Da); variable 

modifications, methionine oxidation (+15.9949 Da) and acetylation (+42.0106). 

2.2.12  RNA-seq and Real-time PCR 

RNA sequencing analysis was performed as described previous (Ziegenhain et al., 

2017). In brief, cells were cultured with or without induction by doxycycline for 24 hours. 

RNA was isolated using the RNeasy kit (QIAGEN Incorporated, Germantown, MD) 

according to the manufacturer's protocol. Libraries prepared by Christopher B. 

Mulholland in Leonhardt group. Briefly, RNA was reversing transcribed using barcoded 

oligo-dT primers and products pooled and concentrated. Unincorporated barcode 

primers were digested using Exonuclease I (New England Biolabs). Pre-amplification of 

cDNA pools were done with the KAPA HiFi HotStart polymerase (KAPA Biosystems). 

Nextera XT libraries were constructed from 5 ng of pre-amplified cDNA with a custom 

P5 primer (Mulholland et al.). Raw data was analyzed by Dr. Sebastian Bultmann with 

the the SCRB-seq (zUIMs pipeline) and assessed for the statistical significance using a 

threshold of p< 0.001 and log R script. 

Total RNA from cells was isolated with NucleoSpin RNA purification kit (Macherey Nagel) 

following its protocol. The cDNA was synthesized using 2 μg of total RNA and RT-RCR 

was performed with the High Capacity cDNA Reverse Transcription Kits (Thermo Fisher) 

according to its instruction. Quantitative real-time PCR was performed using 10 μl 

diluted cDNA using Absolute Blue QPCR SYBR Green Mix (Thermo) in the LightCycler 

(Roche Applied Science) real-time thermocycler. The values of relative expression were 

normalized to GAPDH in each sample. Primer sequences were presented in Material 

and Methods (Table 5). The experiments for statistical analysis were performed in 

triplicates as mean ± SD. 
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2.2.13  ChIP and ChIP-qPCR 

The ChIP assay was performed following the manufacturer’s instructions (Abcam). In 

brief, mouse embryonic stem cells were fixed with 0.75% formaldehyde directly to cell 

culture media at room temperature for 10 min, followed by incubating with 125 mM 

glycine for 5 min at room temperature. Cells were washed with cold PBS, scraped and 

resuspended in lysis buffer (50 mM HEPES-KOH pH7.5, 140 mM NaCl, 1 mM EDTA 

pH8, 1% Triton X-100, 0.1% Sodium Deoxycholate, 0.1% SDS) with protease inhibitor 

cocktail (SERVA). Chromatin was then sonicated to the fragments of 0.5 kb and 

preincubated with the Dynabead G (Merck Millipore) and anti-H3K18ac antibody 

overnight at 4°C. The beads without antibody were as control of IgG. The chromatin-

bound to the beads was eluted in 500 µl of freshly prepared elution buffer (1% SDS, 

0.1 M NaHCO3). After reversing the cross-linking, the samples were deproteinized and 

phenol–chloroform-extracted, and DNA was ethanol-precipitated using glycogen as a 

carrier. Pellets were resuspended in 100 µl of H2O for qPCR analysis. 
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3 Results 

3.1 The autoinhibition of de novo methylation in Dnmt1 

requires the phosphorylation of CXXC-BAH1 linker. 

3.1.1 The flexible loop between CXXC and BAH1 domains of Dnmt1 

prevents de novo methylation 

Dnmt1 has long been known for the maintenance of genomic methylation. However, the 

mechanism for its activity is still unclear. Firstly, the eukaryotic Dnmt1 is a multidomain 

protein, containing a replication foci-targeting domain (RFD), a DNA-binding CXXC 

domain, a pair of bromo-adjacent homology (BAH) domains (BAH1 and BAH2), and a 

C-terminal catalytic domain (Figure 1.1A). By binding to DNA, the catalytic domain of 

Dnmt1 repositioned relative to the CXXC domain. Furthermore, the published crystal 

structure of DNMT1 composed of CXXC, tandem bromo-adjacent homology (BAH1/2), 

and methyltransferase domains bound to unmethylated DNA, has shown that the CXXC 

motif binds specifically to unmethylated DNA and switch the CXXC-BAH1 linker into the 

active catalytic sites of Dnmt1 for preventing de novo methylation (Figure 1.1B) (Song 

et al., 2011). This loop in this linker is about 33 amino acids and flexible to position 

directly between the unmethylated DNA and the active site. 
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Figure 1.1 Structure of the complex of mDnmt1 composed of CXXC, tandem bromo-

adjacent homology (BAH1/2), and methyltransferase domains bound to unmethylated 

DNA. (A) Domain structure of mDnmt1. Dnmt1 contains a methyltransferase domain at the C 

terminus and three main domains at the N terminus, which include a replication foci-targeting 

domain (RFD), a DNA-binding CXXC domain, a pair of bromo-adjacent homology (BAH) 

domains (BAH1 and BAH2). The RFD is represented in gray color; CXXC domain is in yellow; 

BAH1 and BAH2 are in green; the catalytic domain is in blue. The linker between CXXC and 

BAH1 is labeled in red. (B) The crystal structure of the Dnmt1 complex with 19-nucleotide 

oligomer (PDB: 3PT6). The different domains of Dnmt1 are in the same color above (Song et al., 

2011). 

3.1.2 The CXXC-BAH1 linker can be phosphorylated 

It has been reported that Dnmt1 activity and stability are regulated by various post-

translational modifications (Scott et al., 2014). To explore the role of the relationship 

between the CXXC-BAH1 linker and modifications of Dnmt1, I used GFP-Trap beads to 

purify Dnmt1 for mass spectrometry (Figure 1.2A). Analysis of the mass spectrometry 

of Dnmt1 has shown that there were 10 different phosphorylated sites of Dnmt1, but 

only one site, S717, of Dnmt1 was from the CXXC-BAH1 linker (Figure 1.2B). To mimic 

the unphosphorylated and the phosphorylated states, respectively, I mutated S717 of 

Dnmt1 to A717, and E717 to mimic phosphorylation on and off (phospho on and 

phospho off). The purified proteins, Dnmt1 S717A and S717E, were collected and 

tested by SDS-PAGE (Figure 1.2C). 
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Figure 1.2 The site at the CXXC-BAH1 linker of Dnmt1 can be phosphorylated. (A) The 

purification and enrichment of Dnmt1. HEK293T cells were transfected with the plasmid of 

pCAG-GMT1-NL-IB and then GFP-Dnmt1 protein was pulled down by GFP-Trap beads. The 

samples were analyzed by SDS-PAGE. The untransfected cells were used as a control. This 

figure was from Dr. Weihua. (B) The result of the phosphorylation analysis at the CXXC-BAH1 

linker by Mass Spectrometry. 10 protein sequences containing sites for phosphorylation were 

labeled in red. The mass spectrometry was performed by Dr. Weihua and Dr. Ignasi Forné. The 

mutation from serine (S) to alanine (A) prevents phosphorylation (phospho off) and serine to 

glutamic acid (E) can mimic the state of phosphorylation (phospho on). (C) Protein purification of 

Dnmt1 wild type and its mutant forms, Dnmt1 S717A and Dnmt1 S717E. The constructs of 

pCAG-GMT1-NL-IB, pCAG-GFP-Dnmt1 S717A, and pCAG-GFP-Dnmt1 S717E, were 

separately transfected and overexpressed in HEK cells. The GFP-Trap beads were used for 

purification of these proteins. The results were analyzed by SDS-PAGE. I was input sample; F 

was flowthrough sample; B was bound sample. 

3.1.3 The role of phosphorylation sites of Dnmt1 in maintenance or 

de novo methylation  

To test whether the phosphorylated loop of Dnmt1 influences Dnmt1 maintenance or de 

novo methylation activity in vitro, I designed and performed this assay according to our 

workflow (Figure 1.3A). I first prepared the plasmids, including pCAG-GMT1-NL-IB, 
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pCAG-GFP-Dnmt1 S717A, and pCAG-GFP-Dnmt1 S717E, and separately transfected them 

to HEK cells for overexpression.  With GFP-Trap beads, three proteins of Dnmt1 wild 

type and its mutant forms, Dnmt1 S717A and Dnmt1 S717E, were purified and shown 

above (Figure 1.2C). Then two kinds of genomic DNA were extracted, one was from 

Dnmt1 knockout cell lines (CC cell lines), another from a triple knockout of all Dnmts 

(Dnmt1, Dnmt3a, and Dnmt3b) cell lines (TKO cell lines). The reason for choosing these 

two different cell lines is mainly because most of DNA is regarded as hemimethylated 

status in CC cell lines and the global DNA methylation level is very low for 

unmethylation in TKO cell lines. By incubating these proteins with genomic DNA, in vitro 

genomic DNA was treated with bisulfite conversion followed by EZ DNA Methylation-

Gold™ Kit’s instructions. The major satellite repeats were cloned from these genomic 

DNA after bisulfite treatment for sequencing (Figure 1.3B). There are at least 8 sites for 

methylation on the DNA sequence of the major satellite repeats (Figure 1.3C). By 

comparing with DNA sequences from CC cells  without coupled with Dnmt1 protein, the 

percentage of DNA methylation in each CpG site of major satellite repeats was 

obviously increased when incubated with all of Dnmt1 wild type and mutation, but a little 

slightly decreased in that of Dnmt1 S717A, suggesting that Dnmt1 still owned its 

maintenance DNA methylation activity in vitro and the mutation of Dnmt1 S717A for 

phospho-off had little or nearly no influence on Dnmt1 maintenance DNA  methylation 

activity (Figure 1.3D). For DNA methylation level in TKO cells, I also used a CpG 

Methyltransferase, M.Sss1, as the positive control, which is from Spiroplasma and can 

methylate all unmethylated or hemimethylated cytosine nucleotides at the C5 position of 

double-strand DNA. Together with the control of M.Sss1 activity with 80%, it was 

displayed that, In vitro, the percentage of methylated CpG sites of Major satellite repeat 

reached as high as around 30% (Figure 1.3E). It can be concluded that Dnmt1 has a 

relatively weak de novo methylation activity in vitro. Notably, the methylated DNA level 

in Dnmt1 wild type is highest than Dnmt1 S717E, and the lowest was that of Dnmt1 

S717A, suggesting that Dnmt1 phospho-off (S717A) weakened Dnmt1 de novo DNA 

methylation activity.  
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Figure 1.3  Analysis of Dnmt1 maintenance and de novo methylation in vitro. (A) The 

workflow of in vitro DNA methylation assay. The plasmids for Dnmt1 wild type and mutations, 

Dnmt1 S717A and S717E, were constructed and transfected in HEK cells for protein 

overexpression. The proteins were extracted and purified with GFP-Trap beads. Then the 

genomic DNA from CC cell line or TKO cell line was incubated with these proteins for in vitro 
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methylation assay. After incubation, the DNA was treated with bisulfite conversion and used for 

the PCR of the major satellite repeats. And the CpG sites of the DNA sequence of major satellite 

repeats were sequenced and the methylation level was valued by pyrosequencing (Varionostic 

GmbH, Ulm, Germany). This method is based on the principle of detecting the unincorporated 

nucleotides in the synthesis of the DNA sequence by a DNA polymerase. (B) The PCR products 

of major satellite repeats were amplified and run in 2% agarose gel with a DNA marker. The 

primers used for PCR were F-Majsat and R-Majsat. The sequence of primers was shown in 

Table 5. The size of the PCR band was 234 base pairs. (C) The DNA sequence of major 

satellite repeats was shown and the CpG sites for methylation analysis were labeled in red. (D) 

Comparison of the methylation level of each CpG site in the sequence of major satellite repeats 

from genomic DNA from the CC cell line, which was used for measuring Dnmt1 maintenance 

methylation activity. The PCR products were amplified from the genomic DNA of the CC cell line. 

The proteins of Dnmt1 wild type, S717A, and S717E, were separately incubated with the 

genomic DNA from the CC cell line and used as a template for PCR. The DNA untreated with 

Dnmt1 proteins was used as the control. The experiments were repeated two times and the 

values represent mean ± SD. (E) Measurement of DNA methylation level in TKO cell line for 

detecting Dnmt1 de novo methylation activity. As followed as above, Dnmt1 proteins were 

incubated with DNA from the TKO cell line and further used for PCR. The Escherichia coli CpG 

methyltransferase, M.SssI, was and used as positive control. The DNA untreated with Dnmt1 

proteins was used as negative control. The experiments were repeated two times and the 

values represent mean ± SD. 

Next, the effect of Dnmt1 phosphorylation on Dnmt1 maintenance or de novo 

methylation activity in vivo still needs to be further explored. The in vivo DNA 

methylation was performed differently from in vitro methylation assay. Briefly, the well-

constructed plasmids, including pCAG-GMT1-NL-IB, pCAG-GFP-Dnmt1 S717A, and 

pCAG-GFP-Dnmt1 S717E, and separately transfected to CC cell lines or TKO cell lines. 

I sorted and collected transfected cells by FACS. Then genomic DNA was extracted 

from these cells and treated with bisulfite conversion for amplification of major satellite 

repeats. The DNA methylation level of different sites of major satellite repeats was 

measured similarly with the analysis of DNA methylation in vitro (Figure 1.4A). The 

PCR products were run and collected for further sequencing (Figure 1.4B). By 

comparing with the site-based DNA methylation level treated with different Dnmt1 
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proteins, there was a little influence of phosphorylation on Dnmt1 maintenance 

methylation activity because, for CC cell line, the total of DNA methylation of Dnmt1 

S717A was as high as Dnmt1 wild type and S717E (Figure 1.4C). In addition, in TKO 

cells, DNA methylation was extremely low and even cells were transfected different 

Dnmt1 proteins for rescue, the level of DNA methylation was too low to calculate 

(Figure 1.4D). However, it was also suggested that Dnmt1 de novo methylation activity 

was inhibited by other mechanisms in vivo. 
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Figure 1.4  Analysis of Dnmt1 maintenance or de novo methylation in vivo. (A) The 

workflow of in vivo DNA methylation assay. The plasmids for Dnmt1 wild type and mutants, 

Dnmt1 S717A and S717E, were constructed and transfected in CC cells or TKO cells for protein 

overexpression. Then genomic DNA from CC cell line or TKO cell line was extracted and treated 

with bisulfite conversion and used for the PCR of the major satellite repeats. And the CpG sites 

of the DNA sequence of major satellite repeats were sequenced and the methylation level was 

valued by pyrosequencing. (B) The PCR products of major satellite repeats were amplified and 

run in 2% agarose gel with a DNA marker. The primers used for PCR were F-Majsat and R-

Majsat. The sequence of primers was shown in Table 5. The size of the PCR band was 234 

base pairs. (C) Comparison of the methylation level of each CpG site in the sequence of major 

satellite repeats from genomic DNA from the CC cell line, which was used for measuring Dnmt1 

d methylation activity. The PCR products were amplified from the genomic DNA of the CC cell 

line. The DNA untransfected with Dnmt1 plasmids was used as the control. The experiments 

were repeated two times and the values represent mean ± SD. (D) Measurement of DNA 

methylation level in TKO cell line for detecting Dnmt1 de novo methylation activity. As followed 

as the workflow, DNA from the TKO cell line was used for PCR. The DNA untransfected with 

Dnmt1 plasmids was used as negative control. The experiments were repeated two times and 

the values represent mean ± SD.  

3.2 Sirt1 mediated deacetylation controls the stability of     

Uhrf1 during cell cycle progression. 

3.2.1 Uhrf1 interacts with Sirt1 
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Previous evidence has shown that Sirt1-mediated deacetylation of DNMT1 is crucial for 

DNMT1's multiple effects, including its methyltransferase activity, gene silencing and the 

capability to regulate G2/M transition of the cell cycle (Peng et al., 2011). Due to the 

influences of interaction with Sirt1 on Dnmt1, I tried to explore the connection of Uhrf1 

and Sirt1. HEK293T cells were transfected with the plasmids of pCAG-GFP-NP95 and 

pCAG-RFP-Sirt1. Then GFP-Uhrf1 protein was purified with GFP-Trap beads and 

incubated with the cell lysate transfected with pCAG-RFP-Sirt1. The untransfected cell 

lysate was used as a control. The pull-down assay verified the direct interaction of Uhrf1 

and Sirt1 (Figure 2.1A). As reported that Uhrf1 recruits and interacts with Dnmt1 

(Berkyurek et al., 2013), we also observed the direct interaction of GFP-Uhrf1 and 

Dnmt1. Further, we identified the interaction of GFP-Uhrf1, GFP-Dnmt1, and RFP-Sirt1 

by co-immunoprecipitation with GFP-Trap beads (Figure 2.1B). These experiments 

suggested that Sirt1 was associated with the Uhrf1-Dnmt1 complex. To further validate 

our finding, we also assessed its interaction by fluorescent three-hybrid assay (F3H) 

(Figure 2.1C) (Herce et al., 2013). GFP-labeled protein A can be specially recruited to 

the LacO array via GBP-LacR within the nucleus.  If RFP-labeled protein B interacts with 

protein A, it will also display an accumulation at the LacO site. As a negative control, 

GFP was efficiently recruited to the LacO site, but RFP-Uhrf1 did not efficiently bind to 

the light dot accumulated by GFP on the LacO site. For GFP-Sirt1, RFP-Uhrf1 was 

recruited to the LacO site (Figure 2.1D) and the fluorescence signal for its interaction 

was detected. The 20 images for LacOp-mediated this interaction were collected and 

analyzed by ImageJ software. Then the relative binding intensity was calculated by 

measuring the relative signal intensity of each dot. The average binding intensity was 

valued and it was found that the intensity of RFP-Uhrf1 displayed on the LacO site of 

GFP-Sirt1 was as stronger as around 4-fold than that of GFP (Figure 2.1E).   

3.2.2  SET- and-RING associated domain of Uhrf1 interacts with the 

catalytic domain of Sirt1 

Then we tried to dissect which domain of Uhrf1 interacts with Sirt1. As it was shown, 

Uhrf1 has five domains: the ubiquitin-like (UBL), plant homeodomain (PHD), tandem 
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Tudor domain (TTD), SET- and-RING associated, and really interesting new gene 

(RING) domain (Figure 2.1F). Sirt1 contains three common domains, N-terminus, a 

conserved catalytic domain for deacetylation activity and C-terminus (Figure 2.1G). We 

constructed plasmids with serial truncation of Uhrf1 and subjected to the co-

immunoprecipitation assay. RFP-Sirt1 interacted robustly with all of the domains of 

GFP-Uhrf1, but there was a weaker interaction for Uhrf1 with the deletion of the SRA 

domain (GFP-Uhrf1 delta SRA) (Figure 2.1H). And also, we specifically identified that 

there was nearly no interaction when Uhrf1 lost its SRA domain (Figure 2.1I). We as 

well constructed several plasmids harboring truncated mutants of Sirt1 and tested their 

interactions with RFP-Uhrf1 using the same assay. As shown in western blot, there was 

a weak binding of RFP-Uhrf1 with all truncated forms without the Sirt1 catalytic domain 

(Figure 2.1J). The results suggested that UHRF1 interacted with the catalytic domain of 

Sirt1. Altogether, these results established that Uhrf1 interacted with Sirt1.  
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Figure 2.1 Uhrf1 interacts with Sirt1. (A) Coomassie blue stained gel showed the pull-down 

experiment. GFP-Uhrf1 was purified by GFP-Trap beads and incubated with the lysate of HEK 

cells overexpressing RFP-Sirt1. Untransfected HEK cells were used as a control. (B) Co-

immunoprecipitation of GFP-Sirt1 with RFP, RFP-Dnmt1, and RFP-Uhrf1. HEK cells were co-

transfected with expression constructs for GFP-Sirt1 and RFP or RFP-Dnmt1 or RFP-Uhrf1. 

RFP was used as the control. The complexes were immunoprecipitated (IPed) and analyzed by 

immunoblotting (IB). (C) The principle of the fluorescent-3-hybrid (F3H) assay. A GFP binder 

protein (GBP) is co-expressed with a protein (LacR) that accumulates at a well-defined location 

(LacO array) within the nucleus. The complex specifically recruits GFP-tagged protein (protein 

A). If RFP-labeled protein B interacts with protein A, it will also display an accumulation at the 

LacO region, which can be immediately visualized by fluorescent microscopy. (D) The 

interaction between Uhrf1 and Sirt1 was confirmed by the F3H assay. GFP was used as a 

negative control. Scale bar, 5 μm. (E) The interaction by F3H in part D was quantitated by 

ImageJ. By measuring the signal intensity (S) of each dot and the corresponding background (B), 

the relative binding intensity (V) was calculated with a formula: V= (S/B-1)*10. The average 
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binding intensity from 20 images was valued. The values represent mean ± SD and SEM. Data 

were analyzed by an unpaired Student’s t-test and ANOVA test (*p<0.05, **p<0.01, ***p<0.001). 

(F) Schematic presentation of Uhrf1 truncations. (G) Schematic presentation of Sirt1 truncations. 

(H) Co-immunoprecipitation of RFP-Sirt1 with full-length Uhrf1 or various Uhrf1 truncations. GFP 

was used as a negative control. The complexes were IPed and analyzed by IB. (I) Co-

immunoprecipitation of RFP-Sirt1 with full-length Uhrf1 or Uhrf1 lacking SRA domain (Uhrf1 

deleted SRA). (J) Co-immunoprecipitation of RFP-Uhrf1 with full-length Sirt1 or various Sirt1 

fragments. The complexes were IPed and analyzed by IB. 

3.2.3 Uhrf1 is acetylated by Tip60  and deacetylated by Sirt1 

Then we further explored the relationship between Sirt1 and Uhrf1. It has been 

previously proven that Uhrf1 recruits and binds the MYST domain of Tip60, while Tip60 

acetylates and destabilizes Dnmt1 by triggering Uhrf1-mediated ubiquitination (Achour 

et al., 2009; Du et al., 2010). Consistently, our F3H assay showed that Uhrf1 interacted 

with Tip60 by recruiting Tip60 to the LacO site (Figure 2.2A and 2.2B). Tip60 protein 

contains several domains, including a chromodomain and MYST domain with acetylase 

activity (Figure 2.2D). Our co-immunoprecipitation assay also supported the SRA 

domain of Uhrf1 interacts with Tip60, suggesting that the SRA domain of Uhrf1 interacts 

with the MYST domain of Tip60 (Figure 2.2C and 2.2E). To figure out whether Tip60 

interacts with Uhrf1 through acetylation, we performed in vivo and in vitro acetylation 

assays. We found that the acetylation of Uhrf1 was increased when Tip60 was 

overexpressed in cells (Figure 2.2F). In vitro, Uhrf1 was also acetylated by Tip60 in the 

presence of Ac-CoA (Figure 2.2G). Taken together, it was verified that, apart from 

Dnmt1, Uhrf1 was also a substrate of Tip60 in the macro-molecular complex of Uhrf1, 

Dnmt1, and Tip60. 

As Sirt1 owns deacetylation activity, I hypothesized that Uhrf1 can be deacetylated by 

Sirt1. To verify it, I tried to evaluate the acetylation level of Uhrf1 in Sirt1-inhibited 

conditions. Nicotinamide (NAM) acts as an inhibitor of Sirtuin proteins. Treatment of 

HEK cells with NAM, I found that Uhrf1 acetylation level was increased in a dose-

dependent manner (Figure 2.2H), indicating that Uhrf1 acetylation is regulated by 

Sirtuins. In the Sirt1 knockout embryonic stem (ES) cell lines, the acetylation level of 



RESULTS 
 

68 

 

Uhrf1 was also increased when compared with normal E14 ES cells (Figure 2.2I and 

2.2J). For in vitro deacetylation, GFP-Uhrf1, GFP-Sirt1, and its catalytic-inactive GFP-

Sirt1 HA were separately overexpressed in HEK cells and purified with GFP-Trap beads. 

And then GFP-Uhrf1 was incubated with GFP-Sirt1 or its mutant GFP-Sirt1 HA in the 

presence of NAD+. It was displayed that, GFP-Sirt1 deacetylated Uhrf1 efficiently in the 

presence of NAD+. Deacetylation of Uhrf1 was inhibited by the catalytic mutation of Sirt1 

(Figure 2.2K). Collectively, these results convincingly showed that Uhrf1 was a 

substrate of Sirt1. To identify the acetylation lysine of Uhrf1, we overexpressed GFP-

Uhrf1 in HEK cells and treated the cells with aphidicolin. Aphidicolin (APH) is a specific 

inhibitor of DNA polymerase used for blocking the cell cycle at the G1 phase, but I found 

that Uhrf1 acetylation was increased by aphidicolin (Figure 2.2L and 2.2M) (Haraguchi 

et al., 1983). Immunopurified GFP-Uhrf1 was run by SDS-PAGE and analyzed by mass 

spectrometry. 6 acetylated lysine sites were detected (Figure 2.2N), and 5 of these 

lysine sites are consistent with the previously identified acetylated lysine sites. Two 

highly conserved acetylation sites (K644 and K664) identified in the region around the 

SRA domain of Uhrf1 may have a regulatory function and thus were studied further 

(Figure 2.2O and 2.2P). 
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Figure 2.2 Uhrf1 was acetylated by Tip60 and deacetylated by Sirt1. (A) The interaction 

between Uhrf1 and Tip60 was confirmed by the F3H assay. GFP was used as a negative control 

for RFP-Tip60 binding. Scale bar, 5 μm. (B) The interaction of F3H in figure A was quantitated 

by ImageJ. The relative binding intensity was calculated with the same method as above for the 

interaction of GFP-Sirt1 and RFP-Uhrf1. The values represent mean ± SD and SEM (n=13). 

Data were analyzed by an unpaired Student’s t-test and ANOVA test (*p<0.05, **p<0.01, 

***p<0.001). (C) Co-immunoprecipitation of RFP-Tip60 with GFP or GFP-Uhrf1. HEK cells were 

co-transfected with plasmids of pCAG-RFP-Tip60 and pCAG-GFP-IB or pCAG-GFP-NP95-IB. 

GFP was used as the control. The complexes were immunoprecipitated (IPed) and analyzed by 

immunoblotting (IB). (D) Schematic presentation of Uhrf1, Uhrf1 deleted SRA domain and Tip60. 

(E) Co-immunoprecipitation of RFP-Tip60 with full-length Uhrf1 or Uhrf1 deleted SRA. The 

complexes were IPed and analyzed by IB. (F) In vivo acetylation assay. HEK cells were 

transfected with plasmids of pCAG-GFP-NP95-IB and pCAG-RFP-Tip60. The acetylation level 
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of Uhrf1 was measured by immunoprecipitation and immunoblotting (IB) with an anti-acetyl 

antibody. The cells only transfected GFP-Uhrf1 was used as a negative control. (G) In vitro 

acetylation assay. GFP-Uhrf1 and RFP-Tip60 were separately purified and then incubated in 

HAT buffer (50 mM Tris, pH 8.0, 1 mM EDTA, 1 mM dithiothreitol, and 10% glycerol) in the 

presence of acyl-CoA at 30°C for 2 hours. The complexes were IPed and analyzed by IB. (H) 

HEK cells were transfected with the plasmid of pCAG-GFP-NP95-IB and treated with 5 and 10 

mg/ml nicotinamide (NAM). GFP-Uhrf1 was IPed and analyzed by IB. (I) Western blot for 

endogenous Sirt1 in Sirt1 knockout (Sirt1 KO) embryonic stem cell lines. (J) Acetylation level of 

Uhrf1in Sirt1 KO embryonic stem cell lines. GFP-Uhrf1 was overexpressed in cells and purified 

with GFP-Trap beads. E14 ES cells were used as negative control. The acetylation level of 

Uhrf1 was detected with an anti-acetyl-lysine antibody. (K) In Vitro deacetylation assay. HEK 

cells were transfected with the plasmid, pCAG-GFP-NP95-IB, and treated with 2 μg/ml APH for 

12 hours. Then GFP-Uhrf1 was purified by GFP-Trap beads and incubated with GFP-Sirt1 or 

GFP-Sirt1 HA in addition to 10mM NAD+. The reaction was performed and analyzed by western 

blot. (L) HEK cell overexpressing GFP-Uhrf1 was treated with or without 2 μg/ml aphidicolin 

(APH) overnight. The GFP-Uhrf1 was immunoprecipitated and acetylation level of Uhrf1 was 

detected with an anti-acetyl-lysine antibody. (M) Cell cycle analysis using propidium iodide (PI) 

staining and flow cytometry. HEK cells were transfected with the plasmid pCAG-GFP-NP95-IB 

for 24 hours and treated with APH for 12 hours. The percentages of different phages were 

analyzed by FlowJo. (N) The acetylation sites of GFP-Uhrf1 were analyzed by mass 

spectrometry. The acetylated GFP-Uhrf1 was enriched by overexpressing GFP-Uhrf1 in HEK 

cells with 2 μg/ml aphidicolin. In this part, I prepared samples and Dr. Ignasi Forné performed 

mass spectrometry and analyzed the results. 6 acetylated lysines were identified and labeled on 

the structure domain of Uhrf1. The residues K644 and K664 were shown highly conserved by 

protein sequence alignment in different species and labeled in red. The peptides fragments used 

to calculate the mass of residues 644 and 664 were highlighted by bold arrowheads (O and P). 

3.2.4 Uhrf1 acetylation enhances the interaction with Dnmt1 and the 

binding to heterochromatin while disturbing the interaction 

with Usp7. 

Uhrf1 has been shown to stimulate and recruit Dnmt1 by its SET and RING-associated 

domain to hemimethylated DNA for maintaining DNA methylation (Berkyurek et al., 
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2013). To identify whether acetylation of Uhrf1 influences its interaction with Dnmt1, we 

used aphidicolin (APH) to determine it because aphidicolin has been shown to promote 

the acetylation of Uhrf1. Our results of co-immunoprecipitation showed that more Uhrf1 

bound Dnmt1 when the acetylation of Uhrf1 was increased (Figure 2.3A). This 

interaction was also validated with nicotinamide (NAM), as an inhibitor of Sirtuin proteins 

(Figure 2.3B).  Aphidicolin-driven acetylation and nicotinamide-inhibited deacetylation 

collectively explained that Uhrf1 acetylation enhanced its binding to Dnmt1. In addition, 

when two acetylated sites of Uhrf1, K644, and K664, were mutated to arginine (R), the 

binding of Dnmt1 was slightly decreased (Figure 2.3C). 

It is clear that Uhrf1 is able to associate with pericentric heterochromatin and recruits 

Dnmt1 by binding either H3K9me2/3 or hemimethylated CpG sites (Liu et al., 2013). 

Given that H3K9me3 has been considered as the marker of heterochromatin, I tried to 

test the binding intensity of Uhrf1 and its mutation to heterochromatin in vivo and in vitro. 

In vivo, Uhrf1 was efficiently bound to heterochromatin and present some bright spot 

area, compared to those of Uhrf1 deleted SRA and K644RK664R (2KR), suggesting 

that the SRA domain of Uhrf1 was mainly responsible for its binding to heterochromatin, 

and especially, two sites for acetylation on SRA domain, K644, and K664, were crucial 

for its heterochromatin binding (Figure 2.3D and 2.3E). In vitro, cell nuclei were 

extracted and incubated with GFP-Uhrf1, or GFP-Uhrf1 deleted SRA, or GFP-Uhrf1 

K644RK664R (2KR). After incubation, the level of H3K9me3 was tested by western blot. 

Thus, our result confirmed it again that Uhrf1 acetylation on its SRA domain influenced 

its binding to heterochromatin in vitro (Figure 2.3F). 

To further determine the acetylation of Uhrf1 promotes its binding to heterochromatin, I 

used aphidicolin to test it. By treating cells with aphidicolin in vivo, more H3K9me3 was 

accumulated than that without aphidicolin, hinting that Uhrf1 acetylation promoted its 

binding to heterochromatin (Figure 2.3G). Furthermore, I also identified the binding 

assay in vitro. Briefly, I isolated nuclei and incubated with purified acetylated GFP-Uhrf1 

and GFP-Uhrf1 deleted SRA. Then the reaction mixtures were assessed by western blot 

with an anti-H3K9me3 antibody. It was concluded that acetylation of Uhrf1 enhanced its 

association with heterochromatin, but deletion of the SRA domain has eliminated its 

binding to heterochromatin in vitro (Figure 2.3H). 
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While it has been clearly illustrated how the deubiquitinase Usp7 structurally interacts 

with Uhrf1 and regulates its chromatin association, the relationship between acetylation 

on the SRA domain of Uhrf1 and Usp7 is still one of the open questions. Firstly, I used 

the F3H method to verify the interaction of Uhrf1 and Usp7. We noted that there was not 

a strong interaction of Usp7 and Uhrf1 maybe because of the binding site on LacO 

sequence, not binding in heterochromatin (Figure 2.3I and 2.3J). By my co-

immunoprecipitation assay, I found that, when acetylation of Uhrf1 was increased by 

aphidicolin, its interaction with Usp7 was weakened (Figure 2.3K), suggesting that Usp7 

disturbed Uhrf1 acetylation. In addition, I also observed that, when the catalytic activity 

of Sirt1 was inhibited by nicotinamide, there were less Sirt1 proteins binding to Uhrf1 

(Figure 2.3L).  When cells were treated with aphidicolin for Uhrf1 acetylation, the 

interaction between Sirt1 and Uhrf1was enhanced (Figure 2.3M). 
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Figure 2.3. Acetylation of Uhrf1 enhances Dnmt1 and heterochromatin binding while 

disturbing its interaction with Usp7. (A) HEK cells were co-transfected with two plasmids of 

pCAG-GFP-NP95-IB (GFP-Uhrf1) and pCAG-RFP-Dnmt1 and treated with APH or NAM (B) for 

12 hours. The complexes were IPed and analyzed by IB. (C) HEK cells were transfected with 

the plasmid pCAG-RFP-Dnmt1 with pCAG-GFP-NP95-IB or pCAG-GFP-Uhrf1 K644RK664R 

(2KR). The complexes were IPed and analyzed by IB. (D) The binding of GFP-Uhrf1, GFP-Uhrf1 

deleted SRA, and 2KR to heterochromatin. C2C12 cells were separately transfected with 

plasmids of pCAG-GFP-NP95-IB, pCAG-GFP-Uhrf1 deleted SRA, and pCAG-GFP-Uhrf1 

K644RK664R (2KR), and imaged by microscope. DAPI was used for staining chromatin and 

DAPI-dense dots were labeled to represent clusters of pericentric chromatin. Scale bar, 5 μm. 

(E) The heterochromatin binding signals in figure D were valued by ImageJ. By measuring the 
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signal intensity (S) of each dot and the corresponding background (B), the relative binding 

intensity (V) was calculated with a formula: V= (S/B-1)*10. the number of dots I counted for 

imaging was 77 in GFP-Uhrf1, 85 in GFP-Uhrf1 deleted SRA and 87 in GFP-Uhrf1 2KR. The 

values represent mean ± SD and SEM. Data were analyzed by an unpaired Student’s t-test and 

ANOVA test (*p<0.05, **p<0.01, ***p<0.001). (F) HEK cells were transfected with plasmids of 

pCAG-GFP-NP95-IB, pCAG-GFP-Uhrf1 deleted SRA, and pCAG-GFP-Uhrf1 K644RK664R 

(2KR, the levels of H3K9me3 were analyzed by IB. Lamin B was used as control. (G) GFP-Uhrf1 

were overexpressed in HEK cells and treated with APH for 12 hours. The equal amount of GFP-

tagged proteins was analyzed and the heterochromatin marker Histone 3 lysine 9 tri-methylated 

(H3K9me3) was blotted and Lamin B as the control. (H) In Vitro heterochromatin binding assay. 

HEK cells were transfected with plasmids of GFP-NP95-IB and pCAG-GFP-Uhrf1 deleted SRA 

and treated with APH for 12 hours. The equal amount of GFP-Uhrf1 and GFP-Uhrf1 deleted 

SRA were incubated with the same amount of prepared chromatin extracted from HEK cells and 

analyzed the heterochromatin marker Histone 3 lysine 9 tri-methylated (H3K9me3). Lamin B 

was used as a control. (I) The interaction between Uhrf1 and Usp7 was confirmed by the F3H 

assay. GFP was used as a negative control for RFP-Usp7 binding. Scale bar, 5 μm. (J) The 

interaction of F3H assay in figure H was qualified by ImageJ. The binding signal intensity was 

calculated similarly to the interaction for Sirt1 and Uhrf1. The values represent mean ± SD and 

SEM (n=11). Data were analyzed by an unpaired Student’s t-test and ANOVA test (*p<0.05, 

**p<0.01, ***p<0.001). (K) HEK cells were co-transfected with plasmids of pCAG-GFP-NP95-IB 

and pCAG- RFP-Usp7 and treated with APH for 12 hours. The complexes were IPed and 

analyzed by IB. (L) HEK cells were co-transfected with plasmids of pCAG-GFP-NP95-IB and 

pCAG-RFP-Sirt1 and treated with APH or NAM (M) for 12 hours. The complexes were IPed and 

analyzed by IB. 

3.2.5 Uhrf1 stability is regulated by acetylation and deacetylation. 

We also wanted to know whether the acetylation level of Uhrf1 could as well modulate 

the protein stability of Uhrf1, we measured the mRNA level of Uhrf1 in Sirt1 knockout 

(Sirt1 KO) embryonic cells and we found that without Sirt1, the expression level of Uhrf1 

was increased (Figure 2.4A). To specifically figure out how acetylation regulated Uhrf1 

stability, we overexpressed GFP-Uhrf1 and His-Ubi with or without aphidicolin (APH) 

and nicotinamide (NAM) and evaluated the ubiquitination level of GFP-Uhrf1 by western 
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blot. The ubiquitination level of GFP-Uhrf1 was increased after adding APH or NAM, 

suggesting that acetylation of Uhrf1 promotes its proteasomal degradation, while 

deacetylation of Uhrf1 by Sirt1 protects it from degradation (Figure 2.4B, 2.4C, and 

2.4D). Furthermore, we confirmed that the deletion of ubiquitin-like (UBL) domain of 

Uhrf1 did not affect its degradation, suggesting that the specific lysine sites in UBL 

domain of Uhrf1, previously identified 4 sites, have nearly no effect on Uhrf1 stability 

(Figure 2.4E and 2.4F), but the deletion of the SRA domain of Uhrf1 dramatically 

inhibited degradation of Uhrf1 in the presence of APH or NAM (Figure 2.4G and 2.4H). 

Moreover, I found by western blot that the two acetylated sites, K644 and K664, were 

important for stabilizing Uhrf1 and inhibiting its degradation (Figure 2.4I and 2.4J). Also, 

APH treatment, which increased the acetylation level of Uhrf1, significantly decreased 

GFP-Uhrf1 half-life (Figure 2.4K). In contrast, the deletion of the SRA domain did not 

affect Uhrf1 half-life and the 2KR mutant was starkly more stable than wild-type Uhrf1 

(Figure 2.4L and 2.4M). Moreover, when cells were treated with APH and NAM, the 

protein half-life of GFP-Uhrf1, deleted SRA, and 2KR was dramatically different. The 

protein of GFP-Uhrf1 deleted SRA was the most stable and GFP-Uhrf12KR was less 

stable (Figure 2.4N and 2.4O). Given that Usp7 stabilizes Dnmt1 and Uhrf1 at 

chromatin sites, we also overpressed GFP-Uhrf1, RFP-Usp7, and His-ubiquitin in HEK 

cells and explored the possibility that Usp7 can protect Uhrf1 from degradation (Figure 

2.4P). Intriguingly, the acetylation of Uhrf1 promoted by APH still triggered Uhrf1 

degradation in the presence of Usp7 (Figure 2.4Q).   
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Figure 2.4. Uhrf1 stability is regulated by acetylation and deacetylation. (A) The expression 

level of Uhrf1 in Sirt1 knockout (KO) cell lines with RT-qPCR. The values represent mean ± SD 

and SEM, and data were analyzed by an unpaired Student’s t-test and ANOVA test (*p<0.05, 

**p<0.01, ***p<0.001). (B) HEK cells were transfected with the plasmid of pCAG-GFP-NP95-IB, 

with or without His-Ubi for 12 hours, treated with MG132 and APH or NAM (C) for 12 hours. The 

cell lysates were analyzed by IB. (D) HEK cells were transfected with the plasmids of pCAG-
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GFP-NP95-IB and pCAG-RFP-Sirt1, and treated with MG132 for 12 hours. The cell lysates were 

analyzed by IB. (E) HEK cells were transfected with the plasmid of pCAG-GFP-Uhrf1 deleted 

UBL, with or without His-Ubi for 12 hours, treated with MG132 and APH or NAM (F) for 12 hours. 

The cell lysates were analyzed by IB. (G) HEK cells were transfected with plasmids of pCAG-

GFP-Uhrf1 deleted SRA (H) or pCAG-GFP-Uhrf1 K644RK664R (2KR) (I and J), treated with 

MG132 and NAM for 12 hours. The cell lysates were analyzed by IB. (K) HEK cells were 

transfected with plasmids of pCAG-GFP-NP95-IB, pCAG-GFP-Uhrf1 deleted SRA (L) or pCAG-

GFP-Uhrf1 K644RK664R (2KR) (M) for 24 hours, incubated with cycloheximide (CHX) and 

treated with APH or NAM for 12 hours. The cell lysates were analyzed by IB. (N) HEK cells were 

transfected with plasmids of pCAG-GFP-NP95-IB, pCAG-GFP-Uhrf1 deleted SRA and pCAG-

GFP-Uhrf1 K644RK664R (2KR), and treated with APH and CHX or NAM and CHX (O), cells 

were measured the GFP signal at indicated time and the signals were represented protein levels 

and analyzed with mean ± SD. (P) HEK cells were transfected with plasmids of pCAG-GFP-

NP95-IB, His-Ubi, and pCAG-RFP-Usp7 for 12 hours, treated with or without MG132 for 12 

hours. The cell lysates were analyzed by IB. (Q) HEK cells were transfected with plasmids of 

pCAG-GFP-NP95-IB, His-Ubi, and pCAG-RFP-Usp7 for 12 hours, treated with or without 

MG132 and APH for 12 hours. The cell lysates were analyzed by IB. 

3.2.6  Uhrf1 acetylation in the G1 phase and deacetylation in the early 

S phase in the cell cycle 

Although we have shown that Uhrf1 was acetylated by APH when cells were blocked at 

G1 phase in the cell cycle, we also used PCNA as a marker of the cell cycle to analyze 

Sirt1 localization in the cell cycle. Our immunofluorescence assay showed that Sirt1 

interacted with Uhrf1 at the early S phase (Figure 2.5A and 2.5B), suggesting that 

deacetylation of Uhrf1 occurred in the early S phase. To analyze the distribution of 

acetylated Uhrf1 in the cell cycle, we used propidium iodide (PI) staining to assess DNA 

content of  APH treated cells (Figure S1C), and our result indicated that acetylation of 

Uhrf1 by Tip60 happened at G1 phase. Furthermore, it has been reported that Sirt1 

overexpression induced the cell cycle arrest at G1/S transition in vitro, whereas RNAi-

mediated knockdown of Sirt1 resulted in the opposite effect (Li L, 2011). Here, Sirt1 

inhibition by NAM, arrested cells at G1 and G2/M phases and fewer cells were at S 
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phase (Figure 2.5C). In Sirt1 knockout cells, more cells were arrested at the G2/M 

phase (Figure 2.5D). Altogether we concluded that Sirt1-mediated deacetylation 

regulates the stability of Uhrf1 at the early S phase.  
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Figure 2.5. Uhrf1 acetylation in the G1 phase and deacetylation in the early S phase in the 

cell cycle. (A) RFP-PCNA displays cell cycle-dependent punctuate patterns in C2C12 cell lines. 

GFP-Uhrf1 (A) or GFP-Sirt1 (B) was co-transfected with RFP-PCNA in C2C12 cells and 

separately displayed their distribution in G1, early S, middle S, late S and G2 phases in cell 

cycle with confocal. DAPI was used for chromatin counterstaining. Scale bar, 10 μm. (C) Cell 

cycle analysis of HEK cells using propidium iodide (PI) staining and flow cytometry. HEK cells 

were treated with nicotinamide for 12 hours and stained with PI for cell cycle analysis. The 

percentages of different phases were measured by the software FlowJo. The values represent 

mean ± SD. (D) Cell cycle analysis of Sirt1 wild type, Knockout, and Rescue cell lines with PI 
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staining. The percentage of different phases was measured by the software FlowJo. The values 

represent mean ± SD. 

3.2.7 Sirt1 mediated deacetylation drives Cdk2 to phosphorylate Uhrf1 

in the transition from G1 to S phase of cell cycle. 

To explore how Sirt1 regulated Uhrf1 in the cell cycle, we overexpressed GFP-Sirt1 and 

GFP-Uhrf1, and found that the cell cycle was arrested at G1 phase, which was 

consistent with the result for GFP-Sirt1 catalytic domain and GFP-Uhrf1 (Figure 2.6A). 

To explore how Sirt1 dynamically regulated Uhrf1 in the early S phase of the cell cycle, 

we further studied cell cycle related genes, such as Cdk1, E2f1, cyclin E and Cdk2. 

There was no dramatic change on their mRNA levels in the cell lines in different cell 

lines, including Sirt1 knockout, cell lines with overexpression of GFP-Uhrf1, GFP-Sirt1, 

and GFP-Uhrf1-SRA deletion, indicating that these cell cycle-related proteins genetically 

acted as upstream factors to regulate Sirt1 and Uhrf1 to some extent (Figure 2.6B). 

Meanwhile, previous reports have shown that Cdk2 and Cdk1 play a role in different 

checkpoints in the cell cycle by phosphorylating Uhrf1 at different serine sites. 

Furthermore, it has been demonstrated that Cdk2 can directly interact with PCNA and 

both of them were involved in the S phase (Koundrioukoff et al., 2000). More specially, I 

found that Cdk2 co-localized with PCNA in the early S phase (Figure 2.7A).  And only 

the site S657 of Uhrf1 was reported to be phosphorylated by Cdk2, which is in the 

interface of Uhrf1 interacting with Sirt1 (Figure 2.7B). Our results showed that double 

mutation of lysine sites in Uhrf1 (K644R and K664R) weakened the interaction of Sirt1 

and Uhrf1, which promoted the S phase to G2/M phase transition of the cell cycle with 

Cdk2 (Figure 2.7C), suggesting that overexpression of Sirt1 occupied the region of the 

SRA domain and the linker in Uhrf1 and blocked Cdk2 to phosphorylate Uhrf1, which 

resulted in G1/S arrest in the cell cycle. Taken together, it can be concluded that Sirt1-

mediated deacetylation stabilizes Uhrf1 and promotes it phosphorylated by Cdk2 and 

then pushes cells into S phase. 
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Figure 2.6 Sirt1 mediated deacetylation of Uhrf1 in the transition from G1 to S phase of 

cell cycle, which was regulated by the cell cycle-associated factors. (A) Cell cycle analysis 

of Uhrf1 and Sirt1 in HEK cells. HEK cells were transfected with plasmids of pCAG-GFP-NP95-

IB and pCAG-GFP-Sirt1 or pCAG-GFP-Sirt1 catalytic domain for 24 hours. No transfection of 

HEK cells was used as the control. (B) The relative mRNA levels of CDK1, CDK2, Cyclin E and 

E2F1 in Sirt1 Wild type, Knockout and Rescue ES cell lines and HEK cells overexpressing GFP-

Uhrf1, GFP-Sirt1, GFP-Uhrf1 deleted SRA, GFP-Uhrf1 together with GFP-Sirt1 and GFP-Uhrf1 

deleted SRA together with GFP-Sirt1 cells by RT-qPCR. The values represent mean ± SD (n=3). 
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Figure 2.7 Sirt1 mediated deacetylation drives Cdk2 to phosphorylate Uhrf1 in the 

transition from G1 to S phase of the cell cycle. (A) GFP-Cdk2 was co-expressed with RFP-

PCNA in C2C12 cells and its distribution in early S, middle S, late S phases in cell cycle was 

monitored with confocal. DAPI was used for chromatin counterstaining. Scale bar, 10 μm. (B) 

The phosphorylation site of Uhrf1 by Cdk2 was shown between the two lysine sites targeted by 

Sirt1. (C) Cell cycle analysis of Uhrf1 2KR and Cdk2 in HEK cells. HEK cells were transfected 

with plasmids of pCAG-GFP-Cdk2 and pCAG-GFP-NP95-IB or pCAG-GFP-Uhrf1 K644RK664R 
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(2KR) for 24 hours. The untransfected HEK cells were used as the control. The values represent 

mean ± SD. (D) Model of dynamic regulation of Uhrf1 stability driven by (de)acetylation in the 

cell cycle. 

3.3 Sirtuin proteins link histone H3 lysine 18 deacetylation to 

metabolism via Hif1a 

3.3.1 Different sirtuin proteins are expressed with distinct subcellular 

distribution. 

Mammalian sirtuin proteins share a conserved catalytic core domain with a flanking N or 

C terminal sequence, which consistently decide their different molecular weights (Figure 

3.1A and 3.1B). I constructed all of the sirtuin proteins with GFP tag and determined 

their localization in C2C12 cells. Previous evidence has shown, that subcellular 

localization of sirtuin proteins are dependent on their N- or C-terminal sequence, which 

is also responsible for their interactions with different partners and substrates (Haigis 

and Sinclair, 2010). Specifically, Sirt1, Sirt6, and Sirt7 are located in the nuclear and 

Sirt7 mainly in nucleolus; Sirt2 is cytoplasmic (Figure 3.1C); Sirt3, Sirt4, and Sirt5 are 

mitochondrial. When Sirt2 is overexpressed, it is shuttled to the nucleus (Figure 3.1D). 
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Figure 3.1 schematic structures of different sirtuin proteins with GFP tag and their 

subcellular distribution. (A) The domain structures of sirtuin proteins, including Sirt1, Sirt2, 

Sirt3, Sirt4, Sirt5, Sirt6 and Sirt7. All sirtuins shared the common core domain for catalytic 

activity. Sirt1, Sirt2, Sirt6, and Sirt7 were constructed with GFP tag at the N terminus, while the 

mitochondrial proteins, Sirt3, Sirt4, and Sirt5 only with GFP tag at the C terminus for their 

precise localization. NLS, nuclear localization sequence; NES, nuclear export sequence; MCS, 

mitochondrial cleavage site (Flick and Lüscher, 2012b). (B) The expression of all sirtuin proteins. 

All the constructed sirtuins with GFP tag were overexpressed in HEK cells and purified with 

GFP-Trap beads, and then analyzed with western blot. (C) The subcellular localization of Sirt1, 

Sirt2, Sirt6, and Sirt7 with a GFP tag at the N terminus. The plasmids, pCAG-GFP-Sirt1, pCAG-

GFP-Sirt2, pCAG-GFP-Sirt6, and pCAG-GFP-Sirt7 were used in HEK cells and overexpressed 

for 12 hours. The cells were fixed and imaged by the confocal microscope. DAPI was used for 

chromatin counterstaining. Scale bar, 10 μm. (D) The subcellular localization of Sirt3, Sirt4, and 

Sirt5 with GFP tag at the C terminus. Since the mitochondrial signal was sequenced in the N 

terminus of Sirt3, Sirt4, and Sirt5, the GFP tag was linked to their C terminus and expressed in 

HEK cells for imaging. Mitochondria were labeled with a commercial and sensitive marker, the 

Mito tracker. Scale bar, 10 μm.     
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3.3.2 Effects of sirtuins overexpression on H3K18 acetylation 

To explore the relationship between sirtuins protein and histone H3K18ac, I 

overexpressed all sirtuin proteins with GFP tag in HEK cells and investigated the histone 

H3K18 acetylation level in vivo by western blot. Although several members of the sirtuin 

family, including Sirt1, Sirt2, Sirt3, Sirt6, and Sirt7, are known to directly deacetylate 

specific acetylated histone, I overexpressed sirtuin proteins in HEK cells and discovered 

that only four sirtuin proteins, Sirt1, Sirt2, Sirt6, and Sirt7, can downregulate H3K18ac 

(Figure 3.2A). Sirt3, Sirt4, and Sirt5 had nearly no influence on H3K18ac level, mainly 

because of their mitochondrial localization (Figure 3.2B). Consistent with my western 

blot, the immunofluorescence staining for H3K18ac also showed that H3K18ac was 

regulated by Sirt1, Sirt6, and Sirt7 (Figure 3.2C and 3.2D).  
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Figure 3.2 The effect of sirtuin proteins on the level of histone H3K18ac. (A) The H3K18ac 

level was measured in HEK cells overexpressing GFP-Sirt1, GFP-Sirt2, GFP-Sirt6, and GFP-

Sirt7 by western blot. (B) The H3K18ac level in HEK cells overexpressing Sirt3-GFP, Sirt4-GFP, 

and Sirt5-GFP by western blot. (C) The fluorescence imaging of the H3K18ac level in HEK cells 

overexpressing GFP-Sirt1, GFP-Sirt6, and GFP-Sirt7. And then the mean intensity of H3K18ac 

was quantitated by ImageJ (D). The values represent mean ± SD and SEM (n=20). Data were 

analyzed by an unpaired Student’s t-test and ANOVA test (*p<0.05, **p<0.01, ***p<0.001). 

3.3.3 The establishment of stable cell lines for doxycycline induction 

with the Tet-On system 

To further quantify the correlation between the protein level of sirtuins and the enzyme 

activity on histone H3K18 in cells, we used a Tet-on system, based on the Tet repressor 

protein (TetR) and Tet operator (TetO) DNA elements derived from the Tn10-encoded 

tetracycline resistance operon, and generated a doxycycline-dependent sirtuins 
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expression model in mouse embryonic stem cells. For establishing these inducible cell 

lines, I set up and implemented the process as follows (Figure 3.3A). Specifically, I 

used the multifunctional integrase (MIN) tag as an attachment site for the serine 

integrase Bxb1 to efficiently introduce two functional cassettes into the genomic locus of 

Rosa26. The one cassette is the tetracycline transactivator (tTA) gene and the other one 

is the gene of sirtuins. The novel strategy of MIN-Tagging and Bxb1-mediated 

recombination is based on a CRISPR/Cas assisted in-frame insertion of an attP site and 

firstly developed by our lab (Mulholland et al., 2015). After generation of these 

recombined cell lines, doxycycline (dox) was added in an exclusively bound rTA protein, 

which promotes the expression of sirtuin proteins with GFP tag by coupling on a minimal 

promoter of a tetracycline response element (TRE). To identify MIN-tagged cells, 

Rosa26attp/attp, the DNA sequence surrounding the ATG was amplified using the 

screening primers and digested by the restriction enzyme HincII for that there is only 

restriction site (Figure 3.3B) (primers in Table 5). For Rosa26attp/rtTA cell lines analysis, I 

amplified the DNA sequence by PCR with the same primers and run it in 2% agarose 

gel together with PCR products from wild type, MIN-tagged cell lines. It was displayed 

that there were two bands for Rosa26attp/rtTA cell lines because MIN tag only remained at 

one strand of DNA (Figure 3.3C). To screen for Bxb1-mediated cell lines, Rosa26 
rtTA 

/GFP-Sirt, a three-primer PCR strategy with primers for MIN-tagged locus and the attL-

specific primer was employed (Figure 3.3D) (primers in Table 5). 
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Figure 3.3 The generation of doxycycline-inducible cell lines. (A) Schematic overview of the 

establishment of doxycycline-inducible cell lines. The MIN-tag donor harbors the attP site and 

homology to the genomic sequence 5′ and 3′ of the start codon of Rosa26. Integration is 

facilitated by double-strand breaks created by Cas9 directed to the target sequence by a specific 

gRNA. Restriction enzyme HincII recognition site used for screening in this study are indicated 

with a red line above the attP sequence. With Bxb1-mediated recombination, the plasmid of 

tetracycline transactivator (tTA) gene and vectors expressing GFP-Sirt1, GFP-Sirt2, GFP-Sirt6, 

and GFP-Sirt7, were successfully introduced the Rosa26 genome. When doxycycline was 

added in, it can recruit rTA protein to bind a minimal promoter, a tetracycline response element 

(TRE), and promote expression of sirtuins with GFP tag. (B) The analysis of Rosa26attp/attp cell 

lines by PCR. The DNA sequence surrounding the ATG was amplified using the screening 

primers and digested by the restriction enzyme HincII and run in 2% agarose gel. The cells 

without any editing were used as a control. H2O was used as a negative PCR control. (C) The 
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Rosa26attp/rtTA cell lines analysis. DNA sequences from WT, Rosa26attp/attp, and Rosa26attp/rtTA cell 

lines were amplified by PCR with same primers and run it in 2% agarose gel. (D) The analysis of 

Rosa26 rtTA /GFP-Sirt cell lines. Every sirtuin protein had two subclones. The DNA sequence was 

amplified by PCR with a three-primer PCR strategy. Three primers, namely primer F, primer R, 

and primer attLF (all primers were listed in Table 5). 

3.3.4 The expression level of proteins is dependent on the 

concentration of doxycycline 

To test whether doxycycline induces sirtuins expressing in the cell lines, we cultured the 

cells with different concentrations of doxycycline at 0.1, 0.5, 1, 2 μg/ml and tested 

sirtuins expressing by UltraVIEW VoX spinning disk microscope and western blot. Both 

of them showed that, with increasing doxycycline concentration, the expression level of 

sirtuins was unregulated (Figure 3.4A and 3.4B). In short, sirtuins expression was 

doxycycline-dependent in these inducible cell lines. 

To determine the percentage of cells expressing sirtuin proteins with doxycycline, I used 

fluorescence-activated cell sorting (FACS) to sort and measure the GFP signal of each 

cell by treating with different concentration of doxycycline. When the concentration of 

doxycycline was the highest at 4 μg/ml, there were around 80% of 5 × 105 cells 

expressing GFP-Sirt1, 87% for GFP-Sirt2, 95% for GFP-Sirt6, and 63% for GFP-Sirt7 

(Figure 3.4C).  
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Figure 3.4 The characterization of doxycycline-induced cell lines. (A) The fluorescence 

imaging of doxycycline-inducible cell lines. The inducible cell lines were cultured in different 

concentrations of doxycycline (Dox) at 0, 0.1, 0.5, 1, 2 μg/ml for 12 hours and imaged their GFP 

signal by UltraVIEW VoX spinning disk microscope. (B) The protein expression levels of sirtuins 

were analyzed by western blot. The cell lines were cultured with different concentration of 

doxycycline for 12 hours and then analyzed by western blot. The antibody of GFP was used for 

the detection of sirtuins and antibodies of β-actin and tubulin were used as a control. (C) 

Analysis of the percentage of cells with GFP signals by FACS. With Dox increased, the 

percentage of cells expressing sirtuins was dependently raised from 5% to 80% or more. 

3.3.5  H3K18 acetylation decreases with increasing sirtuins expression 



RESULTS 
 

98 

 

After I have previously verified that overexpression of Sirt1, Sirt2, Sirt6, and Sirt7 

decreased the level of H3K18ac in HEK cells, it is necessary to test H3K18ac level in 

these inducible cell lines. By treating cells with different concentrations of doxycycline, I 

found by western blot that H3K18ac was reduced with increasing sirtuins expressing, 

pointing out again that sirtuin proteins, including Sirt1, Sirt2, Sirt6, and Sirt7, exerted the 

deacetylase activity on H3K18ac (Figure 3.5A, 3.5B, 3.5C, and 3.5D). 

 



RESULTS 
 

99 

 

Figure 3.5 The H3K18ac levels decreases with increasing sirtuin expression. (A) The 

analysis of H3K18ac level in GFP-Sirt1 or GFP-Sirt2 (B) or GFP-Sirt6 (C) or GFP-Sirt7 (D) 

expressing cells by western blot. The inducible cell lines were cultured in different 

concentrations of doxycycline (Dox) at 0, 2 and 4 μg/ml for 12 hours. And the level of H3K18ac 

was measured with the antibodies of acH3K18 and β-actin by western blot. The column showed 

that western blot for H3K18ac was performed and repeated three times, and then the results 

were quantitated by ImageJ. The values represent mean ± SD.  

3.3.6 The global DNA methylation is correlated with the H3K18ac 

deacetylation activity of sirtuin proteins  

Extensive studies have established that histone acetylation was primarily associated 

with gene activation. H3K18 acetylation mainly accumulates for a robust peak at the 

transcription site (TSS) of active and poised genes and prevents DNA methylation for 

transcriptional silencing. With the induction with doxycycline in these recombined cell 

lines, sirtuin proteins were upregulated and dramatically deacetylate H3K18ac, leading 

to an increase in the level of DNA methylation. Different sirtuin proteins influenced the 

DNA methylation to a different extent (Figure 3.6A, 3.6B, 3.6C, and 3.6D). Here it can 

be explained that the increased global DNA methylation is mainly because sirtuins-

mediated H3K18 deacetylation promotes Uhrf1-associated ubiquitination of H3K18, 

which is essential for Dnmt1 binding and DNA methylation.  
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Figure 3.6 The global DNA methylation in cell lines with induced expression of sirtuins. (A) 

The analysis of global DNA methylation level in GFP-Sirt1 or GFP-Sirt2 (B) or GFP-Sirt6 (C) or 

GFP-Sirt7 (D) expressing cells by slot blot. The inducible cell lines were cultured in different 

concentrations of doxycycline (Dox) at 0, 2 and 4 μg/ml. After 12 hours, genomic DNA was 

extracted and incubated with antibodies against mC and single-stranded DNA for slot blot. 

ssDNA means single-strand DNA. The column shows that the slot blots for global DNA 
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methylation was performed and repeated three times, and then the results were quantitated by 

ImageJ. The values represent mean ± SD.   

3.3.7  Metabolism is regulated by sirtuin proteins via the deacetylation 

of histone H3K18ac  

To identify the specific genes regulated by sirtuin proteins, I isolated RNA from the cells 

with or without doxycycline induction and performed RNA-seq with the help of my 

colleagues. We found that overexpression of each sirtuin protein affected different 

genes (Figure 3.7A). We further identified 10 genes regulated by all of the sirtuin 

proteins (Figure 3.7B). Compared with wild type embryonic stem cell, J1 ES cells 

without doxycycline induction, the expression level of all of these 10 genes are 

decreased to a different extent (Figure 3.7C). By using the Ingenuity System Database 

(IPA) software, we analyzed signaling pathways with these downregulated genes that 

were altered significantly at or above P < 0.001 level between control and treated 

groups. Among these signaling pathways, three common signaling processes linked 

with metabolism, especially glycolysis, were further evaluated, which were tightly linked 

with the upstream regulator, the transcriptional factor Hif1a (Figure 3.7D). The targeted 

genes include LDHA, PFKL, ENO1, TPI1 and PLIN3, and also HIF1a-associating genes, 

like RAC2, CDKN1A, UPP1and DKC1, were downregulated, as shown by RT-qPCR, 

when Sirt1, Sirt2, Sirt6, or Sirt7 expressing in cell lines (Figure 3.7E). In addition, to 

further test H3K18 acetylation is also affected in promoters of these genes, I selected 

three genes, LDHA, ENO1, and PFKL, and used chromatin immunoprecipitation (ChIP) 

to evaluate the occupancy of H3K18ac in these genes’ promoters with the anti-acH3K18 

antibody. The ChIP signal obtained with this antibody in J1 ES cells was as high as J1 

ES cells treated with doxycycline; however, acH3K18 occupancy was evidently reduced 

when doxycycline-induced sirtuins were expressed in these recombined cells (Figure 

3.7F). These results suggested that at least at these genes’ promoters, doxycycline in 

J1 ES cells does not affect H3K18 acetylation. This result is consistent with the western 

blot analysis that sirtuins are inductively expressed by doxycycline and then they affect 

those target genes via deacetylation of H3K18ac.  
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Figure 3.7 RNA-seq analysis of Dox-induced cell lines. (A) The analysis of different numbers 

of regulated genes in induced cell lines with the help of my colleagues, Christopher B. 

Mulholland, and Sebastian Bultmann. (B) The analysis of common genes downregulated in 

induced cell lines. (C) The hot map for the expression level of downregulated genes compared 

with cell lines without induction. (D) Three signaling pathways related to the downregulated 

genes and cooperated with the common transcriptional factor Hif1a. Four sirtuins regulated 

three pathways to a different extent. (E) The mRNA levels of genes, including LDHA, PFKL, 

ENO1 and PLIN3, and even the HIF1a-associated proteins, like RAC2, CDKN1A, UPP1and 

DKC1 were measured by RT-qPCR. The cDNA was generated from the cells with or without 

Dox induction, and the mRNA level of β-actin was used as the control. Error bars represent 

standard deviation from experimental triplicate measurements for all assays. (F) The ChIP-

qPCR analysis of H3K18ac recruited to the promoters of three different targeted genes, LDHA, 

PFKL, and ENO1. Cells were treated with or without Dox for 24 hours and then extracted the 

genomic DNA for qPCR. ChIP with α-H3K18Ac was performed and H3K18ac occupancy was 

shown relative to background signals in IgG negative control ChIPs. Error bars represent SD 

from experimental triplicate measurements for all assays. 

3.3.8  Sirtuin proteins interact with Hif1a to regulate metabolism 

To specifically explore the mechanism of transcriptional repression of metabolism-

associated genes, I constructed the plasmid for expressing Hif1a. Hypoxia-inducible 

factor 1-alpha (Hif1a) is a protein acting as the transcriptional regulator of the adaptive 

response to hypoxia. Under hypoxic conditions, it can activate the transcription of over 

40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular 

endothelial growth factor, HILPDA, and other genes whose protein products increase 

oxygen delivery or facilitate metabolic adaptation to hypoxia through its heterodimer 

binding to the core DNA sequence 5'-TACGTG-3' within the hypoxia response element 

of target gene promoters (Chen et al., 2015; Kim et al., 2006; Maier et al., 2017; 

Mastrogiannaki et al., 2012; Mole et al., 2009; Semenza et al., 1994). It can bind to 

histone acetylases or deacetylases. It has been shown that p300/CBP formed a DNA 

binding complex with Hif1a to activate genes encoding glycolytic enzymes, 

erythropoietin (Epo), and vascular endothelial growth factor (Arany et al., 1996). 
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Therefore, we tested whether sirtuin proteins interacted with Hif1a directly or not. By the 

F3H assay, Hif1a showed a stronger interaction with nuclear sirtuins, including Sirt1, 

Sirt6, and Sirt7, than that with cytoplasmic Sirt2, and meanwhile, I found that Sirt7 had 

the tightest binding to Hif1a, Sirt1 was the second and Sirt6 was the last (Figure 3.8A 

and 3.8B). However, the values represent RFP-Hif1a binding intensity were not exactly 

consistent with the results in figure 3.8A, mainly because I did not have enough images 

for analysis (only 15 images for GFP, 15 images for GFP-Sirt1, 11 images for GFP-Sirt6 

and 12 images for GFP-Sirt7). In addition, I performed a co-immunoprecipitation assay 

to evaluate their interaction level, which was consistent with the analysis of F3H assay 

(Figure 3.8C). In conclusion, I pointed out that sirtuin proteins, including Sirt1, Sirt2, 

Sirt6 and Sirt7, regulated metabolism, especially glycolysis, by deacetylation of 

H3K18ac with the transcriptional factor Hif1a.  
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Figure 3.8 The interaction of Hif1a with sirtuin proteins. (A) The interaction between Hif1a 

and sirtuins was confirmed by the F3H assay. The relative RFP-Hif1a binding signal was 

calculated similarly to the F3H for interaction between Sirt1 and Uhrf1. GFP was used as a 

negative control. Scale bar, 5 μm. (B) The interaction of F3H in figure A was quantitated by 

ImageJ. The values represent mean ± SD and SEM (n=12). Data were analyzed by an unpaired 

Student’s t-test and ANOVA test (*p<0.05, **p<0.01, ***p<0.001). (C) Co-immunoprecipitation of 

RFP-Hif1a with GFP, GFP-Sirt1, GFP-Sirt2, GFP-Sirt6, and GFP-Sirt7, separately. HEK cells 

were co-transfected with plasmids of pCAG-RFP- Hif1a and pCAG-GFP-IB, pCAG-GFP-Sirt1, 

pCAG-GFP-Sirt2, pCAG-GFP-Sirt6 or pCAG-GFP-Sirt7. GFP was used as a control. The 

complexes were immunoprecipitated (IPed) and analyzed by immunoblotting (IB). 
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4 Discussion 

4.1 Various regulatory mechanisms are responsible for DNA 

methyltransferase 1 (Dnmt1) activity 

4.1.1 Dnmt1 activity is regulated by dynamic post-translational 

modifications 

The reversible post-modifications of Dnmt1, including methylation, acetylation, 

phosphorylation, sumoylation, and ubiquitination, have been reported for many years. 

Parts of the modifications of Dnmt1 affect its activity and stability to some extent (Figure 

1) (Kinney and Pradhan, 2011). Previous evidence has suggested that the regulation of 

Dnmt1 activity is mediated by the control of the stability of Dnmt1 with various post-

translational modifications. For example, Dnmt1 can be methylated by SET domain-

containing lysine methyltransferase (Set7), a known histone methyltransferase, at lysine 

142 (Lys142), which promotes proteasome-mediated degradation of Dnmt1 (Estève et 

al., 2009). Conversely, the phosphorylation of Dnmt1 at Ser143 by the serine-threonine 

protein kinase (Akt1) interferes with Lys142 monomethylation and prevents Dnmt1 

degradation (Estève et al., 2011). Another site of human Dnmt1, Ser154, can be 

phosphorylated by CDKs, such as CDK1, CDK2, and CDK5, which affects the 

conformation structure of Dnmt1 by altering the interaction between N- and C-terminus, 

and thus regulates Dnmt1 activity and stability (Lavoie and St-Pierre, 2011).  

I specifically analyzed phosphorylated sites of Dnmt1 by mass spectrometry and only 

focused on one site in CXXC-BAH linker of Dnmt1, S717, mainly because it has been 

shown that this linker can switch to active catalytic sites of Dnmt1 and block de novo 

methylation (Song et al., 2011). I try to figure out the relationship between the 

phosphorylated linker and Dnmt1 de novo methylation activity. By analyzing the results 

from in vitro and in vivo DNA methylation assay, I found that phosphorylation in CXXC-

BAH linker of Dnmt1 has no influence on Dnmt1 maintenance methylation activity 

indeed. And also, phosphorylation of S717 of Dnmt1 does not have any effect on Dnmt1 

maintenance and de novo methylation activity in the cell. But it is still observed a weak 
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impact on Dnmt1 de novo methylation activity in vitro. However, the mechanism of 

Dnmt1 de novo methylation activity is still confusing. As it has been shown that Dnmt1 

activity and stability are regulated by different post-modifications, it is reasonable for us 

to explore the roles of various phosphorylated sites of Dnmt1 in its activity and stability. 

It has been reported that Dnmt1 owns a considerable de novo methylation activity, and I 

also first find that phosphorylated linker of Dnmt1 obviously affects its de novo 

methylation activity in vitro. Our findings provide us an insight that the deletion or 

mutations at the linker of Dnmt1 maybe influence Dnmt1 de novo methylation activity 

through the conformational changes of Dnmt1 structure. Moreover, it is also interesting 

to make clear whether phosphorylation at this linker of Dnmt1 is tightly controlled in the 

cell cycle and how it is regulated. Till now, it has been known that the expression and 

methylation activity of Dnmt1 are tightly regulated dependent on cell cycle via the 

modifications of Dnmt1 by other factors, suggesting that the abundance of Dnmt1 is 

coordinated with the need for DNA synthesis and Dnmt1 activity. Methylated DNMT1 

peaks during the S and G2 phases of the cell cycle and phosphorylated DNMT1 peaks 

during DNA synthesis, before DNMT1 methylation, whereas, acetylated Dnmt1 occurs 

at either late S or G2 phases of cell cycle. Phosphorylation of Dnmt1 can weaken its 

interaction with PCNA and the binding of Uhrf1 at replication fork in early and mid-S 

phase, resulting in the prevention of erroneous methylation of DNA in late S and G2 

phases (Denis et al., 2011). In addition, the interaction between Dnmt1 and Uhrf1 is 

enhanced during the late S phase, but this interaction is interrupted by Usp1 for the 

balance of Dnmt1 ubiquitination (Qin et al., 2010). So it is complex for Dnmt1 

modifications in the cell cycle. But it is also meaningful to further study the functions of 

the linker of Dnmt1 in the cell cycle, which is likely to give us some hints on DNA de 

novo methylation activity.  
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Figure 1. The summary of the five common post-translational modifications of Dnmt1 that 

affect its activity and stability. The main modifications include phosphorylation, methylation, 

acetylation, ubiquitination, and sumoylation. The different modified sites of Dnmt1 are linked to 

the stability and activity in a cell-cycle-dependent manner (adapted from (Kar et al., 2012)).  

4.1.2 Dnmt1 activity is regulated by regulatory proteins 

Recent publications have identified a number of transcriptional factors and regulators 

associated with Dnmt1 mediated by the interaction with Dnmt1 (Figure 2). However, 

most of the work on Dnmt1 mainly focuses on its maintenance methylation activity in 

cells. Here, I try to uncover the reasons why Dnmt1 de novo methylation activity is 



DISCUSSION 
 

111 

 

blocked in cells. And even in my work, phosphorylation at the linker of Dnmt1 also has a 

weak influence on its de novo methylation activity. To analyze it, the proteins interacting 

with Dnmt1 are one of the important aspects. For example, by directly binding to PCNA, 

the methylation efficiency of Dnmt1 was increased about 2-fold, even though this 

interaction is not necessary for the accommodation of Dnmt1 to the DNA replicate forks 

(Schermelleh et al., 2007). And also the binding of Dnmt1 to de novo methyltransferases 

Dnmt3a and Dnmt3b improve the efficiency of targeted DNA methylation (Kim et al., 

2002). Dnmt1 activity is activated by the interaction with HDAC1 and HDAC2, which is 

enhanced by the DNA binding proteins, MeCP2, MBD2 and MBD3 (Methyl-CpG-Binding 

Domain proteins) (Svedružić, 2011). Mechanically, the connection of MBD proteins and 

HDACs can enrich Dnmt1 in highly methylated regions, which is helpful for the formation 

of heterochromatin. It can be concluded that Dnmt1 activity, especially maintenance 

methylation activity, is obviously influenced by different kinds of proteins in cells. So, 

how about Dnmt1 de novo methylation activity? I try to figure out the relationship 

between Dnmt1 de novo methylation activity and its stability. I incubated the purified 

proteins, Usp7, His-Ubi, Dnmt1, and its mutants, Dnmt1 deletion of UBL domain, with 

genomic DNA from TKO cells (Dnmt1, Dnmt3a and Dnmt3b knockout cell lines) and 

performed in vitro DNA methylation assay. The results showed that Usp7-mediated 

stabilization of Dnmt1 enhanced its de novo methylation activity in vitro (data was not 

shown). But it is still interesting to know whether Usp7 promotes Dnmt1 de novo 

methylation activity in vivo or not. 

For the establishment and maintenance of euchromatin and heterochromatin, DNA 

methylation is also tightly linked to Dnmt1. The activity of Dnmt1 on DNA methylation is 

also connected with histone modifications. The proteins involved in histone 

modifications also interact with Dnmt1 by binding to different domains of Dnmt1, which 

is also helpful to change the structural conformation of Dnmt1 for blocking its de novo 

methylation activity in vivo.  For example, HP1β (heterochromatin binding protein 1), the 

histone methylation and two eukaryotic histone methyltransferases Suv39H1 

(suppressor of variegation 3–9 homologs 1) and EHMT2 (euchromatic histone-lysine N-

methyltransferase 2; also known as G9a), are responsible for H3K9 methylation. Dnmt1 

has been reported to interact with these proteins and affects each other (Qin et al., 
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2011a). In addition, the Dnmt1 activity is mechanistically linked to the PcG (Polycomb 

group) proteins, such as enhancer of zeste homolog 2 (EZH2) (Viré et al., 2006). EZH2 

serves as a recruitment platform for Dnmt1 to methylate the promoters of EZH2-target 

genes. The interaction of Dnmt1 with different chromatin remodelers, including LSH 

(lymphoid-specific helicases) and BAZ2A (bromodomain adjacent to zinc finger domain 

2A; also known as TIP5), hSNF2H (also known as SMARCA5 (SWI/SNF related, matrix 

associated, actin dependent regulator of chromatin, subfamily A, member 5), enhance 

the binding affinity of Dnmt1 to chromatin and the distribution in heterochromatic regions 

(Qin et al., 2011a). Dnmt1 has been proved to interact with various tumor suppressor 

genes, like WT1 (Wilms tumor 1), Rb and p53 (Pradhan and Kim, 2002). P53 can 

stimulate Dnmt1 methylation activity and thus lead to hypermethylation in tumor cells. 

 

Figure 2. The various interactions of Dnmt1. Dnmt1 has been reported to bind to a number of 

transcription factors and simultaneously affect its activity and other related functions, including 

chromatin re-organization, cell cycle regulation, response to DNA damage and tumor growth 

(Kar et al., 2012). 

4.2 The modifications of Uhrf1 play a crucial role in its 

stability and functions 
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As an important epigenetic regulator maintaining DNA methylation and histone 

modifications, Uhrf1 is also subjected to different post-translational modifications, 

including phosphorylation, ubiquitination, acetylation, and sumoylation. Our study has 

illuminated a previously unknown pathway that acetylation of Uhrf1 regulates its process 

in the cell cycle. We demonstrate that through a balance of acetylation and 

deacetylation at the key lysine sites, protein stability and the binding with Dnmt1 and 

heterochromatin of Uhrf1 are regulated by the different phases of cell cycle.  

It is reported that Uhrf1 is highly expressed in proliferating cells and involved in 

carcinogenesis (Mousli et al., 2003; Unoki et al., 2009b; Venza et al., 2015). Uhrf1 

peaks at late G1 and during G2/M phases in human lung fibroblasts and important for 

induction of genes at G1 to S transition (Mousli et al., 2003). Knockdown or silencing of 

uhrf1 in cancer cells led to decreased proliferation and increased apoptosis (Du et al., 

2011; Ge et al., 2016). The mechanism behind it may have been selected for some 

reasons. Firstly, downregulation of Uhrf1 suppressed GC proliferation and reactivated 7 

tumor suppressor genes (TSG), including CDX2, CDKN2A, RUNX3, FOXO4, PPARG, 

BRCA1, and PML by demethylating these promoters (Zhou et al., 2015). The second 

reason could be that the Uhrf1 protein level controls the process of the cell cycle. Uhrf1 

downregulation arrested colorectal cancer cell at G0/G1 phase and reduced p16INK4A
-

mediated apoptosis (Wang et al., 2012). Uhrf1 silencing arrested gall bladder cancer 

cells at G1/S phase by inducing p21 in a p53-independent manner and triggered 

apoptosis by upregulating the expression of FasL /FADD, Bax, cytosolic cytochrome c, 

cleaved caspase-8, -9 and -3 and cleaved PRAP and downregulating bcl-2 expression 

(Qin et al., 2014). 

An immediate question arising from these findings is how Uhrf1 might regulate the 

maintenance of DNA methylation in the cell cycle. Our data provide a possibility that 

post-translational modifications of Uhrf1, especially acetylation, are crucial for its 

abundance and protein stability in the cell cycle. In G1 phase, Uhrf1 is acetylated by 

Tip60 and recruits Dnmt1, which strengthen the interaction between Tip60 and Dnmt1. 

The macro-complex binds to heterochromatin and ensures a condensed and 

transcriptional inert chromatin conformation. Previous structure and biochemical data 

have also provided a basis for a conformational rearrangement of Uhrf1 domains that a 
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polybasic region (PBR) between SRA domain and RING domain of Uhrf1 is mutated or 

occupied by the phosphatidylinositol phosphate PI5P, allowing the TTD domain to bind 

to H3K9me3 (Gelato et al., 2014). While our results suggest that acetylation in the 

region between SRA domain and RING domain of Uhrf1 enhances its binding with 

heterochromatin, suggesting that the specific interaction for SRA domain of Uhrf1 with 

Tip60 results in the TTD domain of Uhrf1 switch bind to H3K9me3 in heterochromatin. 

However, it is still not clear how Uhrf1 separates from heterochromatin and how the 

dynamic changes of the structural conformation for Uhrf1. 

Sirt1-mediated deacetylation of Dnmt1 regulates Dnmt1 activity and its distribution in the 

cell cycle (Peng et al., 2011). Also, we verified that Sirt1 deacetylated Uhrf1 in early S 

phase of the cell cycle, which stabilizes Uhrf1 and coordinates Uhrf1 with PCNA. Other 

studies have identified that Sirt1 deacetylates hMOF and Tip60 and inhibits their 

acetyltransferase activity and promotes their ubiquitination-mediated degradation (Peng 

et al., 2012; Wang and Chen, 2010). It is still not clear which, Tip60 or Uhrf1, Sirt1 first 

deacetylates and how Sirt1 influences their stability and roles in the cell cycle. And 

furthermore, Sirt1 is also modified, including phosphorylation (Sasaki et al., 2008),  

ubiquitination (Peng et al., 2015), sumoylation (Yang et al., 2007), carbonylation (Caito 

et al., 2010) and methylation (Liu et al., 2011). These modifications can control Sirt1 

level, activity and nuclear localization in normal or stressed cells. For example, the sites 

of Sirt1, T530, and S540, are targets of cyclin B/Cdk1 and their ablation inhibit the 

process of the cell cycle and proliferation (Sasaki et al., 2008). It is possible that Sirt1 

phosphorylation is involved in the regulation of Uhrf1 and Tip60 in the cell cycle. 

Phosphorylation of Sirt1 might decrease its deacetylase activity independent of NAD+ 

level so that Cdk2 could promote the process of the cell cycle by phosphorylating Uhrf1 

at S phase in the cell cycle. Our findings provide additional implications for why the 

factors interacting with Uhrf1 could influence its function in cells. From a translational 

standpoint, the landscape of Uhrf1 PTMs has become increasingly more diverse and 

more evidence need to be gathered for the functions of these modifications in cancer, 

oxidative stress, and DNA damage.  
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4.3 The enzymic activity and expression level of sirtuins 

regulate key biological functions  

4.3.1 Sirtuin proteins deacetylate different histones 

Sirtuins are a conserved family of proteins and common in all different species. In 

mammals, the sirtuin family consists of seven sirtuins, termed Sirt1-Sirt7, all of which 

have a highly conserved nicotine adenine dinucleotide (NAD+) -dependent catalytic 

domain with different flanking N and C terminal sequence (RA, 2000). Sirtuins are 

classified as class III histone deacetylases (HDACs) and function as NAD+-dependent 

deacetylases and or ADP-ribosylases to deacetylate histone and non-histone proteins. 

Although little is known about how individual epigenetic marks are set up and 

maintained in the process of DNA replication and cell division, sirtuin proteins undergo a 

variety of adaption that enables them to regulate dynamic chromatin and genome with 

the development of chromatin in eukaryotes. The sirtuin function associated with 

chromatin is mainly through direct deacetylation of specific histone acetylation marks as 

epigenetic modulation. Previous evidence has shown that different sirtuin proteins 

deacetylated special histones. In my work, I find that sirtuin proteins, including Sirt1, 

Sirt2, Sirt6, and Sirt7, can corporately deacetylate H3K18ac to a different extent. The 

targeted histone substrate H3k18ac is enriched at the transcription start site (TSS) of 

active and poised genes and usually considered to promote transcriptional activation of 

genes. So the question about how these four sirtuin proteins function through 

deacetylation of H3K18ac in cells even in mammals is rising. In the epigenetic level, it 

has been demonstrated that H3K18 acetylation prevents Dnmt1 binding and methylating 

DNA. In contrast, sirtuins-mediated H3K18 deacetylation promotes Uhrf1-associated 

ubiquitination of H3K18, which is essential for Dnmt1 binding and DNA methylation. So I 

have checked the unregulated global DNA methylation level with increased sirtuins 

expression by slot blot. My results are consistent with previous research. In addition, it is 

easy to test H3K18ac level with the confocal microscope in the conditions of 

overexpressed nuclear Sirt1, Sirt6, and Sirt7, but for cytoplasmic Sirt2, it is difficult to 

image it. To figure out the reason for it, it has been reported that Sirt2 deacetylases 
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H4K16ac during the G2/M transition of the mammalian cell cycle (Vaquero et al., 2006). 

And till now, it is unclear when Sirt1 deacetylate H3K18ac in the cell cycle.  More work 

needs to be done to solve this problem.  

Consistent with the localization of Sirt3 in the nucleus, Sirt3 is also capable of histone 

deacetylase activity for H3K9ac and H4K16ac (Iwahara et al., 2012), while Sirt4 and 

Sirt5 do not deacetylase histones in the mitochondria. Initially classified as a nuclear 

ADP-ribosyltransferase, Sirt6 is also revealed to deacetylase H3K9ac and H3K56ac to 

modulate telomeric chromatic, with a low deacetylase activity compared to other sirtuins 

(Liszt et al., 2005; Michishita et al., 2008). Sirt7 is a highly selective H3K18ac 

deacetylase for maintaining cellular transformation (Barber et al., 2012b). And it is also 

described that DNA methylation and histones modifications are mutually regulated 

during mammalian development (Cedar and Bergman, 2009). It seems that DNA might 

provide a template for some histone modification and histone modification could 

promote or repress DNA methylation. The modifications of histone proteins are different 

on chromatin, including acetylation, methylation, phosphorylation, and ubiquitination. 

Among these modifications, acetylation of H3K18 disturbs DNA methylation, a highly 

stable silencing marker, and promotes gene expression.   

4.3.2 Dysregulation of sirtuin proteins leads to metabolic-associated 

diseases 

Recent work has shown that sirtuins regulate a variety of biological processes and 

crucial cellular functions including aging, metabolism, neurodegeneration, cancer, 

transcriptional silencing, genomic stability and progression of the cell cycle (Dali‐

Youcef et al., 2007; Gan and Mucke, 2008; Haigis and Sinclair, 2010; Saunders LR, 

2007). It is demonstrated that Sirt1 overexpression leads to disease syndromes, 

including diabetes, neurodegenerative diseases and inflammation, similar with the effect 

of Sirt1 activators like resveratrol and newer sirtuin activating compounds (STACs) in 

transgenic mice (Baur et al., 2006; Bordone et al., 2007; Herranz et al., 2010; Howitz et 

al., 2003; Lagouge et al., 2006; Milne et al., 2007; Pfluger et al., 2008). Deletion of Sirt1 

in mice also leads to metabolic dysfunction (Chalkiadaki and Guarente, 2012). 
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Overexpression of Sirt2 significantly affects energy metabolism via regulation of 

glycolytic enzymes including phosphoglycerate kinase, glyceraldehyde-3-phosphate 

dehydrogenase, and enolase (Cha et al., 2017). The role of Sirt6 in the regulation of 

cardiac metabolism is linked with the FOXO-mediated transcription of PDK4 in the heart 

of Sirt6 deficiency (Khan et al., 2018). It is also demonstrated that Sirt6 controls the 

multiple glycolytic genes as a histone H3K9 deacetylase and a co-repressor of the 

transcription factor Hif1 alpha (Zhong et al., 2010a). Sirt7 positively regulate fatty acid 

uptake and triglyceride synthesis in lipid metabolism by increasing the expression of 

TR4/TAK1 and binding the DCAF1/DDB1/CUL4B complex to disturb its degradation 

(Michan and Sinclair, 2007).  

My work on sirtuins also points out that four sirtuins, Sirt1, Sirt2, Sirt6, and Sirt7, can 

corporately regulate metabolism, especially glycolysis, via the transcriptional factor, 

Hif1a.  In my study, I have discovered that these four sirtuins transcriptionally repress 

metabolism-associated genes by deacetylating H3K18ac with the Hif1a. Specifically, 

sirtuins directly interact with Hif1a and deacetylate H3K18ac, which, at one hand, 

dissociates the complex of p300/CBP with Hif1a, and in the other hand, increases DNA 

methylation level on these genes’ promoters (Figure 3). P300/CBP is a histone 

acetylase for H3K18 and has been reported to regulate metabolism by interacting with 

Hif1a.  
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Figure 3  Model of the effect of Sirtuin proteins on metabolism. Sirt1, Sirt2, Sirt6, and Sirt7 

are distributed in the nuclear and inhibit metabolism, mainly glycolysis, by deacetylating 

H3K18ac and interacting with Hif1a. In contrast, histone acetylase p300/CBP can acetylate 

H3K18ac and bind Hif1a to activate metabolism-related genes, therefore promoting glycolysis 

process. 
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For other sirtuins, I do not detect any changes of H3K18ac level in cells overexpressing 

the mitochondrial Sirt3, Sirt4, and Sirt5. But few publications have reported Sirt3 is also 

capable of histone deacetylase activity for H3K9ac and H4K16ac, while Sirt4 and Sirt5 

do not deacetylase histones in the mitochondria (Iwahara et al., 2012).  Moreover, Sirt3 

and Sirt5 have been proved to regulate the urea cycle. Deletion of Sirt3 or Sirt5 shows a 

defect in the up-regulation of the urea cycle (Hallows et al., 2011; Nakagawa et al., 

2009).  
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5.2    Abbreviations 

2iLIF                       Leukemia inhibitory factor containing a selective GSK3β & Mek 1/2 inhibitors 

5mC                        5-methylcytosine 

AA                           Amino acid 

AceCS2                  Acetyl-CoA synthetase 2 

ACTR                     Nuclear receptor coactivator 

AKT1                      Serine-threonine protein kinase 

AMC                        7-amino-4-methylcoumarin 

APH                         Aphidicolin 

ATF-2                      Activating transcription factor 2 

BAH                         Bromo-adjacent homology domain 

BAZ2A                     Bromodomain adjacent to zinc finger domain 2A 

BRCA1                    Breast cancer susceptibility gene 1 

BSA                         Bovine serum albumin 

CBP                         CREB-binding protein 

CC cells                   Dnmt1 knockout cell line 

CD                           Chromodomain 

CDK2                       Cyclin-dependent kinase 2 

CHK1                       Checkpoint kinase 1 

ChREBP                  Carbohydrate response-element-binding protein 

CHX                         Cycloheximide 

CK2                          Casein kinase 2 

c-Myb                       Avian myeloblastosis virus oncogene cellular homolog 

CpG                         5'- C-phosphate-G -3' 

CPS1                       Carbamoyl phosphate synthetase 1 
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CR                                Calorie restriction 

CSD                              Chromoshadow-domain 

CTR                             The C-terminal regulatory segment 

DAPI                            4', 6-diamidino-2-phenylindole 

DNA                              Deoxyribonucleic acid 

DNMTs                         DNA methyltransferases 

DNMT1                         DNA methyltransferase 1 

DNMT2                         DNA methyltransferase 2  

DNMT3A                       DNA methyltransferase 3A 

DNMT3B                       DNA methyltransferase 3B 

DNMT3L                        DNA methyltransferase 3-like 

Dox                                Doxycycline 

DSBH                            Double-stranded β-helix domain 

DSBs                             DNA double-strand breaks 

E1A                                Adenovirus early region 1A 

E2F1                             Transcription factor family including E2F-like subunit 1 

EHMT2                          Euchromatic histone-lysine N-methyltransferase 2 

ELP3                              Elongator complex protein 3 

ESA1                              Essential sas2-related acetyltransferase 1 

ESCs                              Embryonic stem cells 

EZH2                              Enhancer of zeste homolog 2 

FAO                                Fatty acid oxidation 

FADD                              Fas-associated protein with death domain 

FOXO                             Fork-head box protein 

FACS                              Fluorescence-activated cell sorting 

GDH                               Glutamate dehydrogenase 
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GK linker                             Glycine-lysine repeats 

GNATs                                Gcn5-related N-acetyltransferases 

Gsk3β                                  Glycogen synthase kinase 3β 

H3K9 me3                            Trimethylated histone 3 lysine 9 

H3K18ac                              Histone 3 lysine 18 acetylation 

H3K18Ub/23Ub                    Histone 3 lysine 18/23 ubiquitination 

HATs                                    Histone acetylases 

HBO1                                    HAT bound to ORC1 

HDACs                                  Histone deacetylases 

HMG1/ HMG14                     High mobility group protein 1/14 

HP1                                       Heterochromatin protein 1 

ICBP90                                  Inverted CCAAT box-binding protein of 90 kDa 

IGF1                                      Insulin-like growth factor 1 

iPSCs                                    Induced pluripotent stem cells 

KDACs                                  Lysine deacetylases 

KRAB                                    Encoding Krüppel-associated box domain 

LIF                                         Leukemia inhibitory factor 

LSH                                       Lymphoid specific helicases 

LSD1                                     Histone demethylase 1 

m5C                                       5-methylcytosine 

m6A                                        N6-methyladenine 

MTase                                   Methyltransferase domain 

MBD                                      Methyl-CpG binding domain 

MCD                                      Malonyl CoA decarboxylase 

MeCP2                                  Methyl CpG binding protein 2 

MGMT                                   O6-methylguanine DNA methyltransferase 
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MOF                                         Males absent on the first 

MoRF                                       Molecular recognition feature 

MOZ                                         Monocytic leukemia zinc finger protein 

MPG                                         N-methylpurine DNA glycosylase 

mTORC1                                  Rapamycin complex 1  

NAM                                          Nicotinamide 

NEL                                           Nuclear export sequence 

NF-kB                                        Nuclear factor kappa-light-chain-enhancer of activated B cells 

NHEJ                                         Nonhomologous end joining 

NLS                                            Nuclear localization sequence 

NTD                                            N-terminal domain 

P300                                           Histone acetyltransferase protein 300 

PBD                                            PCNA binding domain 

PBR                                            Polybasic region 

PBS                                            Phosphate-buffered saline 

PBST                                          PBS and 0.02% Tween-20 

PCAF                                          P300/CBP-associated factor 

PCNA                                          Proliferating cell nuclear antigen 

PDB                                             Protein Data Bank 

PGC-1a                                        Peroxisome proliferator-activated receptor g coactivator 1-a 

PHD                                             Plant homeodomain 

RIF1                                             Replication timing regulatory factor 1 

PRAP                                           Receptor-associated protein 

PTMs                                            Post-translational modifications 

PWWP                                          Pro-Trp-Trp-Pro motif containing domain 

RdDM                                           RNA-directed DNA methylation 
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RFTS                                               Replication foci targeting sequence 

RING domain                                   Really interesting new gene domain 

RNA                                                 Ribonucleic acid 

ROS1                                               Repressor of silencing 1 

Rpd3                                                 Reduced potassium dependency 3 

SETDB1                                           ERG-associated protein with SET domain 

SRA domain                                     SET and RING finger-associated domain  

SRC-1                                              Steroid receptor coactivator-1 

SUV39h1/2                                      Suppressor of variegation 3–9 homologs 1/2 

TAFII250                                           Transcription initiation factor TFIID 250 kDa subunit 

TetO                                                 Tet operator 

TFII                                                   Transcription factor II 

Tip60                                                Tat interactive protein 60kDa 

TKO cell                                            Triple of Dnmts knockout cell line 

TNFα                                                 Tumor necrosis factor α 

TRE                                                   Tetracycline response element 

TRIM28                                             Tripartite motif protein 28 

TRRAP                                              Transformation/transcription domain-associated protein 

TS                                                      Targeting sequence 

TSG                                                   Tumor suppressor gene 

tTA                                                     Tetracycline transactivator 

TTD                                                   Tandem Tudor domain 

UBL                                                   Ubiquitin-like domain 

Uhrf1                                                 Ubiquitin-like with PHD and ring finger domains 1 

UIM                                                   Ubiquitin interacting motif 

ZnF                                                   Zinc finger  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/structural-motif
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