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Zusammenfassung

Die vorliegende kumulative Dissertation umfasst fünf wissenschaftliche Beiträge, die in drei
Teilen gegliedert sind. Der erste Teil der Arbeit erweitert das mlr Paket für die statistis-
che Software R. Das Paket bietet ein generisches, objektorientiertes und leicht erweiterbares
Grundgerüst für maschinelles Lernen und die Durchführung von Benchmark-Experimenten. Der
erste wissenschaftliche Beitrag ist in Kapitel 3 eingebettet und präsentiert mehrere Verfahren für
Multilabel-Klassifikation, die auch im mlr Paket implementiert und in einer Benchmark-Studie
miteinander verglichen wurden.

Der zweite Teil dieser Arbeit konzentriert sich auf die Vereinfachung von Benchmark-Experimenten
mithilfe der Onlineplattform OpenML.org. Die Plattform ermöglicht es unter anderem Datensätze
und Ergebnisse aus Benchmark-Experimenten einfach in maschinenlesbarer Form zu verwalten
und Forschern und Anwendern aus aller Welt frei zugänglich zu machen. Kapitel 4 stellt das R
Paket OpenML vor, welches eine einfache Schnittstelle für die Kommunikation mit dem OpenML-
Server direkt aus R heraus ermöglicht und somit die Suche, sowie den Download und Upload
von Datensätzen und Benchmark-Ergebnissen erleichtert. In Kapitel 5 wird für der Einsatz von
Benchmarking-Suiten geworben (d.h. einer Sammlung von sorgfältig ausgewählten und leicht
zugänglichen Datensätzen) und eine Möglichkeit auf der OpenML Plattform geschaffen eigene
Benchmarking-Suiten zu erstellen. Weiterhin wird eine erste solche Sammlung für Klassifika-
tionsdatensätze vorgeschlagen (die OpenML100 Benchmarking-Suite). Die OpenML100 Suite
wurde sorgfältig aus Tausenden von Datensätzen aus OpenML zusammengestellt und stellt eine
große Auswahl an gut dokumentierten Datensätzen aus verschiedenen Bereichen mit umfangre-
ichen Metadaten zur Verfügung. Darüber hinaus werden auch die Datensplits für Resampling-
Methoden bereitgestellt, die eine reproduzierbare, besser vergleichbare und standardisierte Anal-
yse der Benchmark-Ergebnisse ermöglichen.

Der dritte Teil dieser Arbeit beschäftigt sich mit Visualisierungsmethoden für die Beurteilung
und Interpretation von Vorhersagemodellen. Kapitel 6 legt den Fokus auf eine Erweiterung der
sogenannten predictiveness Kurve, welches als visuelles Werkzeug zur Beurteilung der Leistung
von Vorhersagemodellen vorgeschlagen wurde. Im Gegensatz zur receiver operating characteris-
tic (ROC) Kurve, berücksichtigt die predictiveness Kurve zusätzlich auch die Kalibrierung der
Vorhersagen. Im Rahmen der in Kapitel 6 vorgeschlagenen Erweiterung wird ein neuartiges vi-
suelles Werkzeug vorgestellt, die residual-based predictiveness (RBP) Kurve, welches verschiedene
Mängel der herkömmlichen predictiveness Kurve behebt. Kapitel 7 gibt einen Überblick über
gängige modell-agnostische Interpretationsmethoden für maschinelle Lernverfahren und präsen-
tiert dann ein Verfahren für die lokale Merkmalswichtigkeit, d.h. der Beitrag einzelner Beobach-
tungen auf die Merkmalswichtigkeit. Daraus werden dann zwei neuartige visuelle Werkzeuge
abgeleitet, die veranschaulichen sollen, wie sich Änderungen in einem Merkmal sowohl auf die
globale als auch lokale Merkmalswichtigkeit auswirken. Darüber hinaus wird ein weiteres Maß für
die Merkmalswichtigkeit vorgeschlagen, welches die Gesamtperformance eines Modells fair auf die
Beiträge der einzelnen Merkmale verteilt, um die Merkmalswichtigkeit auch Modell übergreifend
sinnvoll vergleichen zu können.

https://www.openml.org




Summary

This cumulative dissertation consists of five contributing articles, which are divided into three
parts. The first part of the thesis extends the mlr package for the statistical software R. Specifically,
the package provides a generic, object-oriented, and easily extensible framework for machine
learning and benchmark experiments. The first contributing article is embedded in Chapter 3
and is concerned with the implementation of several multilabel classification methods into the
mlr package. These methods are first described and then, after being implemented into the mlr
package, compared in a benchmark study.

The second part of this work focuses on the simplification of benchmark experiments using the
online machine learning platform OpenML.org. One of the capabilities of the platform is to orga-
nize datasets and results of benchmark experiments online in a machine-readable form, thereby
making them freely accessible to researchers from all over the world. The second contribution in-
cluded in Chapter 4 introduces the R package OpenML. The package provides a simple interface to
communicate with the OpenML server directly from within R. Furthermore, it facilitates search-
ing, downloading, and uploading datasets and benchmark results. The third contributing article
integrated in Chapter 5 advocates the use of benchmarking suites (i.e., a collection of carefully
selected and easily accessible datasets). The article proposes the OpenML100 benchmarking suite
as a first such collection of classification datasets, and it introduces an extension of the OpenML
platform that allows researchers to create their own benchmarking suites. The OpenML100 has
been carefully compiled from thousands of datasets from OpenML, and it provides a wide range of
well-documented datasets from various domains, together with rich meta-data. Furthermore, the
OpenML100 also includes the data splits required by resampling methods, thereby allowing for a
more easily reproducible, better comparable, and standardized analysis of benchmark results.

The third part of this thesis deals with visualization methods for the evaluation and interpretation
of prediction models. The fourth contributing article is concerned with an extension of the predic-
tiveness curve, which is a visual tool to assess the performance of prediction models. In contrast
to the receiver operating characteristic (ROC) curve, the predictiveness curve also considers the
calibration of predictions in addition to the discrimination performance. The proposed extension
in Chapter 6 describes various shortcomings of the predictiveness curve and introduces a novel
visual tool to remedy most of these shortcomings, namely the residual-based predictiveness (RBP)
curve. The last contribution in Chapter 7 gives an overview of common model-agnostic inter-
pretability methods in machine learning and then introduces a local feature importance measure.
Based on this, two novel visual tools are derived. Both tools visualize how changes in a feature
affect the model performance on average, as well as for individual observations. Furthermore, the
Shapley feature importance (SFIMP) measure is presented, which fairly distributes the overall
model performance among the features. Thus, the SFIMP measure can also be used to compare
the feature importance across different models.

https://www.openml.org
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1. Introduction

1.1. Outline

This thesis focuses on the development of tools and methods that facilitate the application, com-
parison, as well as evaluation and interpretation of supervised machine learning methods. The
next section gives an overview of all contributing articles and describes their respective goals on
a general level. Furthermore, the section presents the motivation of the contributing articles, and
it establishes a connection between the articles from a general perspective.

Chapter 2 introduces some basic concepts that help with understanding the broader context of
this thesis, and it outlines previous and related work. The contents of the chapter should be
understood as a guideline for the reader regarding the main topics of this thesis. In particular,
this chapter also points out how the individual contributions of this thesis fit within the context of
the topics. It should be noted that the notation used in Chapter 2 has been unified and therefore
does not always match the notation used in the contributing articles embedded in Chapters 3 to
7. However, the analogies in the notation should be clear from the context.

The rest of this thesis is organized into three main parts (i.e., Part I - III). The contributing
articles of this thesis are embedded within these parts as chapters (i.e., Chapter 3 - 7). At
the beginning of each of these chapters, the full reference to the original publication is given,
including a description of the author’s specific contributions. If applicable, other information such
as supplementary materials, accompanying software, and copyright information of the articles are
also included. The thesis concludes with Part IV by emphasizing possible future and ongoing
work.

1.2. Motivation and Scope

The world we live in presents us with a lot of information and phenomena, which humanity has
always tried to understand better. Data is gathered by measuring and observing such information
and phenomena. Hence, data contains valuable insights into the relationships in the real world
that humanity aims at understanding. For this reason, companies, governments, and scientists
have an ever-increasing interest in collecting data from many sources. There is the hope that the
collected data may provide answers to domain-specific problems and questions in business and
science applications. However, the relationships in the real world and consequently also those in
collected data can be very complicated. Because of this, answers to relevant questions may remain
hidden behind this complexity if data is not reported and analyzed correctly. One of the key aims
in statistics and machine learning is to simplify this complexity by building a mathematical model
based on the observed data. The model itself is regarded as a simplification of the real world,
which is due to two main reasons. First, the data used to build the model is often limited, meaning
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1. Introduction

that several aspects of the real world remain unobserved. Second, models are only approximations
with simplifying assumptions that are based on the available data.

In this dissertation, the focus is on supervised machine learning. This includes all problems that
involve learning the relationship between data and an associated target outcome, with the aim
to predict the outcome for new data. Such prediction tasks often occur in applications related to
decision making. Whenever possible, people usually consider additional information from observed
data when they try to make the best decision. Machine learning algorithms can help in this
regard as they are able to learn complex relationships from historical data and produce accurate
predictions for new data (Fernández-Delgado et al., 2014). Accurate predictions provide some
insight into the future and can thus assist in anticipating future situations. Such insights may be
used to accelerate and facilitate the decision-making process in various applications. Therefore, it
is not surprising that the use of machine learning techniques is gaining more attraction in many
different disciplines such as medicine (e.g., to support decisions on health care plans for patients
with serious diseases) (Holmberg and Vickers, 2013; Obermeyer and Emanuel, 2016), politics (Hill
and Jones, 2014), criminology (Berk et al., 2009; Wang et al., 2013), ecology (Cutler et al., 2007),
and astrophysics (VanderPlas et al., 2012).

The first step in many data-driven applications is to translate an underlying domain-specific
problem into a machine learning task. After this, many practitioners may still be faced with
several hurdles if they consider applying machine learning algorithms to solve their domain-specific
problem. This often begins with the choice of an appropriate programming language or software
tool that allows for building machine learning models in a technical sense. On the one hand, such
a choice depends on personal preferences, but it also depends on the quality and availability of
the software tool. In the academic community, the statistical programming language R (R Core
Team, 2018) is often used. One of the reasons is that R is open source and offers many excellent
add-on packages for processing data (Wickham, 2017), visualizing data (Wickham, 2009), and for
building predictive models (cf. Hothorn, 2018). Furthermore, it provides many other convenient
functionalities and packages, including packages for dynamic report generation and reproducible
research (Leisch, 2002; Xie, 2014; Stodden et al., 2014). However, the vast amount of R packages
that provide algorithms for building predictive models do not always offer a unified interface.
Furthermore, there is no guarantee that the corresponding output of the function calls of individual
algorithms from different packages have the same structure. Such inconsistencies are due to
different programming styles and practices used by the authors of the R packages, and make it
more complicated and time-consuming for other researchers to write generic code for conducting
and analyzing more complex machine learning experiments. As a consequence, researchers often
have to write additional lines of code to unify the function calls and their corresponding outputs.
Our open source R package called mlr (Bischl et al., 2016) addresses this issue by providing a
modularized and unified framework for machine learning in R. In the context of this thesis, we
extended the mlr package in Chapter 3 (cf. Probst et al., 2017) such that standard classification
algorithms can handle multilabel classification tasks. In this way, a user benefits from all the
other functionalities of the mlr package when working with multilabel classification tasks. This
includes building predictive models, making predictions, assessing the algorithms’ performance
through different resampling techniques and different performance measures, as well as applying
different methods for hyperparameter tuning and feature selection.

After deciding on a software tool that provides access to a wide range of machine learning al-
gorithms, practitioners still need to find an appropriate subset of these algorithms, which can

2



1.2 Motivation and Scope

also solve the underlying machine learning task as best as possible. For this purpose, it is often
required to conduct benchmark experiments to compare the algorithms’ performances. This in-
volves assessing the performance of algorithms, which again requires two significant aspects to be
considered. The first aspect is the choice of a performance measure that is best suited to assess the
algorithms’ performance for the machine learning task at hand. As not all performance measures
are equally suitable for all types of machine learning tasks, such a choice requires both domain
knowledge and knowledge about the properties of the performance measures under consideration.
Section 2.2 describes this point in more detail. The second aspect is related to estimating the gen-
eralization performance of algorithms, which requires estimation methods that use the available
data (repeatedly) to obtain accurate and reliable performance estimates. This topic is addressed
in Section 2.3.

The selection of suitable algorithms and their comparison to find the best among all competing
ones often requires an additional human expert guiding this process. However, such an expert is
not always available. Furthermore, according to van Someren (2001), even experts “have often
been observed to have a favorite method and to be able to transform a wide range of problems into
a form that allows the method to be applied.” This means that the choice of suitable algorithms is
often limited to the personal experience or knowledge of the human expert and may be biased due
to personal preferences. In this context, the field of meta-learning offers a data-driven alternative.
One of the goals in meta-learning is to predict which algorithms are more appropriate for a given
machine learning task based on previous results of benchmark experiments (Vilalta and Drissi,
2002). However, producing reliable predictions requires as many benchmark results as possible so
that enough information can be provided on how different algorithms have already performed in
different scenarios. The online machine learning platform OpenML (Vanschoren et al., 2013) offers
access to a variety of such benchmark results, which have been shared by many other researchers.
I believe that sharing and analyzing such results on a large scale (e.g., using platforms such as
OpenML) provides more detailed insights into the behavior of different algorithms in different
scenarios, thereby also supporting the research in the field of meta-learning. One of the long-term
goals of the contributions in Part II of this thesis is to motivate other researchers to use OpenML
and share their benchmark results. For this purpose, the contributions in Part II facilitate two
important and rather technical aspects regarding benchmark experiments on OpenML. First,
the R package OpenML is introduced in Chapter 4 (cf. Casalicchio et al., 2017). The package
offers the possibility to interact with the OpenML server directly through R, thereby simplifying
the work with the OpenML platform. Second, the contribution in Chapter 5 (cf. Bischl et al.,
2017) promotes creating and using standardized and well-documented benchmarking suites (i.e.,
a collection of datasets). It also proposes a curated collection of classification datasets as a first
such benchmarking suite. Here, one of the aims is to make it easier for researchers to reuse or
extend existing benchmarking suites for their benchmark experiments, without having to search
for appropriate datasets manually.

Another essential aspect besides looking for well-performing machine learning models is the in-
terpretability of a model. This interpretability often refers to the ability to explain why a model
produced a specific prediction. This task has attracted much attention in recent years as many
machine learning models have been considered to be black boxes (Lipton, 2016; Krause et al.,
2016; Guidotti et al., 2018). The contributions in Chapters 6 (cf. Casalicchio et al., 2016) and 7
(cf. Casalicchio et al., 2018) address the issue of model interpretability by developing visual tools
for the evaluation of the model performance as well as the feature importance.

3





2. Methodological and General Background

2.1. Supervised Machine Learning

2.1.1. Preliminaries

In the context of supervised machine learning, it is assumed that there is an unknown functional
relationship f between a p−dimensional feature space X of arbitrary measurement scales and
a target space Y. Let X = (X1, . . . , Xp) denote the corresponding random variables generated
from the feature space, and let Y denote the random variable generated from the target space.
Supervised machine learning algorithms aim at learning the unknown functional relationship based
on observed training data Dtrain. Each observation (x, y) ∈ Dtrain is drawn i.i.d. from an unknown
probability distribution P on the joint space X × Y. Let the vector x(i) = (x(i)

1 , . . . , x
(i)
p )> ∈ X

denote the feature values of the i-th observation. Its associated target value is denoted by y(i) ∈ Y.
The learning algorithm uses Dtrain as input and induces a prediction model f̂ , which approximates
f . This learning process is often achieved by minimizing the empirical risk Remp(f) based on
training data, i.e.,

f̂ = arg min
f∈H

Remp(f) = arg min
f∈H

1
|Dtrain|

∑
(x,y)∈Dtrain

L(f(x), y). (2.1)

Here, H is the hypothesis space that refers to the set of all possible candidate models, and L is a
loss function that measures to what extent the actual target values are in concordance with the
predictions generated from such a candidate model (see also Section 2.2 for some example loss
functions). In particular, this means that Equation (2.1) tries to find a prediction model f̂ , for
which averaging the loss function across all observations in Dtrain takes its minimum value.

Theoretically, Equation (2.1) can be directly minimized by finding a prediction function f̂ for
which f̂(x) = y, ∀(x, y) ∈ Dtrain. However, this does not necessarily result in a well-performing
prediction model that also generalizes for unseen observations (x, y) 6∈ Dtrain, although such a
prediction model is usually desired. To illustrate this issue, consider the data points in Figure 2.1
that follow a true functional relationship f and randomly scatter around this underlying latent
function f with some noise. Furthermore, suppose a prediction model f̂ (here, the higher degree
polynomial) that only sees a subset of these data points (i.e., the training data) and is only
fitted on this training data. Figure 2.1 shows that the polynomial f̂ is sufficiently flexible to
pass through every single point of the training data, thereby minimizing the empirical risk from
Equation (2.1). However, the polynomial f̂ does not appear to be a good approximation of f and
is said to overfit the training data since it does not generalize well. This is illustrated in Figure
2.1 by the large residuals of the polynomial for other unobserved data points. This means that
the distance between the polynomial and other unobserved data points that also follow the true
functional relationship f is large.
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2. Methodological and General Background

To address the overfitting issue, several approaches regularize the complexity (i.e., the flexibility)
of the prediction model f̂ by minimizing Equation (2.1) with an additional penalty term J(f)
that measures the complexity of f̂ , i.e.,

f̂ = arg min
f∈H

Remp(f) + λ · J(f). (2.2)

Regularization usually introduces an additional parameter λ that controls the degree of penaliza-
tion. Typically, λ is estimated by means of cross-validation. A more in-depth introduction to this
topic can be found in Murphy (2013).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

f(
x)

true relationship f(x)
overfitting polynomial f̂(x)

training data

unobserved data

Figure 2.1.: Illustration of the overfitting issue. The polynomial f̂ is fitted based on the training
data and therefore passes through every single training data point. However, it does
not appear to be a good approximation of the true functional relationship f due to
the large distance between f̂ and the unobserved data points.

2.1.2. Learning Tasks and Algorithms

The target space Y typically determines the type of the machine learning task at hand. The two
most fundamental learning tasks are regression and classification tasks, and classification tasks
are further categorized into binary classification and multiclass classification tasks. In regression
tasks, the target space is continuous, e.g., Y = R. Consequently, regression algorithms aim at
predicting the continuous target y through f̂(x) ∈ R as accurately as possible.

Binary classification tasks have a target space that consists of two classes (e.g., Y = {0, 1}).
At this point, there is a further distinction between discrete (or hard) classifiers, probabilistic
classifiers, and scoring (or ranking) classifiers, each producing a different type of prediction. The
three different prediction types are now briefly described, since they are essential for identifying
appropriate performance measures (cf. Section 2.2.2). Discrete classifiers classify observations
into only one of the available classes (i.e., they directly predict discrete classes). By contrast, a
probabilistic classifier aims at estimating the whole probability distribution over all classes instead
of merely predicting the class membership. A scoring classifier predicts real-valued scores rather
than probabilities. However, since scores are difficult to interpret, several strategies have been
developed to transform (i.e., calibrate) these scores to obtain values that can be interpreted as
posterior probabilities (see also Section 2.2.2). From this point on, the predictions of discrete
classifiers are denoted as ĥ(x) ∈ {0, 1}, while predictions of probabilistic classifiers are denoted

6



2.2 Performance Measures

as π̂(x) ∈ [0, 1]. As in the regression scenario, the notation of continuous predictions of scoring
classifiers is kept as f̂(x) ∈ R.

Another type of machine learning tasks are multiclass classification tasks, which can be viewed
as a generalization of binary classification tasks where the target space is a finite set with at
least three discrete classes, e.g., Y = {1, . . . ,m} with m ≥ 3. Here, the aim is to classify an
observation into only one of the m available classes. Due to the similarity between binary and
multiclass classification tasks, several classifiers naturally also account for the multiclass case,
such as decision trees. However, there are also approaches that allow transforming multiclass
classification tasks into multiple binary classification tasks, such as the one-versus-rest and the
one-versus-one approach (cf. Bishop, 2006, Ch. 4.1.2). Based on such approaches, it is possible
to use any binary classifier to solve multiclass classification tasks.

There are also more complex tasks such as multilabel classification. Here, the binary target
space is of finite dimensionality m, e.g., Y = {0, 1}m, where m ≥ 2. The target outcome is
denoted by the vector y(i) = (y(i)

1 , . . . , y
(i)
m )> ∈ Y. The aim is to classify an observation in up

to m different classes at the same time, i.e., without limiting the number of classes to which the
observation is classified. This aim is in contrast to multiclass classification where observations can
only be classified to one single class. The most straightforward approach to address multilabel
classification is to consider each target value separately and fit m binary classifiers, specifically one
for each target value. However, there are other more sophisticated adaption and transformation
methods based on binary classifiers that have been proposed in the literature for approaching
multilabel classification tasks. Chapter 3 discusses and compares a few of these methods, and it
also provides an implementation of several transformation methods into the mlr package.

2.2. Performance Measures

Before practitioners can evaluate the performance of machine learning algorithms, they first have
to consider two significant aspects. First, they need to choose a performance measure that is
best suited for the machine learning task at hand and reasonable for the pursued goal of the
underlying application. As not all performance measures are equally suitable for all types of
machine learning tasks, such a decision requires both domain knowledge and knowledge about the
properties of the performance measures under consideration. Second, practitioners need to use
an estimation technique that can estimate the generalization performance of the algorithm based
on the available data as accurately as possible. This section focuses on the former aspect and
summarizes a few common performance measures that are essential for evaluating the performance
of machine learning models. For the sake of simplicity, the section describes how the performance
of such models can be estimated based on a set of observations that were not used to fit the
prediction model. This set is referred to as the test set Dtest = {(x(i), y(i))}ni=1, where n = |Dtest|.
Section 2.3 then describes in more detail the second aspect of how the available data can be
efficiently used to obtain a reliable estimate of the generalization performance.

Performance measures are quantitative values that reflect how well the predictions of a machine
learning model match the ground truth (i.e., the actual target values). In particular, many
performance measures can be expressed in terms of a loss function.1 It should be noted that the

1In the case where higher performance values signify a better performance, the loss function is often included in
the definition of the performance measure with a negative sign (e.g., see the minus sign in Equation (2.4)).
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2. Methodological and General Background

loss function included in the definition of a performance measure does not necessarily have to
coincide with the loss function that occurs in Equation (2.1) when minimizing the empirical risk.
Although such a concordance is preferable in many applications, it is not always possible. The
reason for this is that the former loss function is typically used to assess the performance of a
machine learning algorithm after the learning process. It allows practitioners to consider multiple
performance measures simultaneously, which may also be of interest to them depending on the
application. By contrast, the latter loss function defines the objective function, which is directly
minimized by the machine learning algorithm during the learning process. In particular, this
loss function cannot always be chosen arbitrarily for at least two reasons. First, many algorithms
already implicitly minimize a specific loss function that cannot be replaced due to the design of the
algorithm. Second, some algorithms allow the use of different loss functions, but they still require
a loss function that satisfies several requirements (e.g., some algorithms require differentiable loss
functions).

There are usually many performance measures, and the development of new ones is undoubtedly
possible, each coming with its strengths and weaknesses. Consequently, the performance mea-
sures described in the following sections should by no means be regarded as exhaustive. Most
notably, the focus in this section is more on performance measures for binary classification tasks,
since they serve as a basis for the performance assessment in Chapter 3 in the context of mul-
tilabel classification and play a significant role in the visual performance assessment in Chapter
6. Furthermore, there are also several types of visual performance measures. While quantitative
performance measures are scalar values reflecting the overall performance, visual performance
measures aim at visualizing more details that often remain hidden in scalar values.

2.2.1. Measures for Regression

Many performance measures for regression tasks are based on the estimated model residuals
ε̂ = y − f̂(x), which refer to the difference between the actual target value and the associated
prediction of the model. The two most widely used loss functions in such situations are the L1-loss
and the L2-loss.2 Both can be written in terms of the model residuals, i.e.,

L1(f̂(x), y) = |y − f̂(x)| = |ε̂| and L2(f̂(x), y) = (y − f̂(x))2 = ε̂2.

In regression settings, the mean squared error (MSE) is frequently used to measure the perfor-
mance. It is estimated by averaging the L2-loss across all observations involved in the computation
of the MSE, i.e.,

M̂SE = 1
n

n∑
i=1

L2(f̂(x(i)), y(i)) = 1
n

n∑
i=1

(y(i) − f̂(x(i)))2 = 1
n

n∑
i=1

(ε̂(i))2.

Since the square is being taken for each term, the MSE puts more weight on outlier predictions
in the case where |ε̂(i)| > 1. If predictions are far from their associated actual target values, their
model residuals ε̂(i) will be large, and squaring them will make their contribution to the MSE even

2Note that using the L1-loss in the minimization problem from Equation (2.1) leads to predictions that estimate
the conditional median, while using the L2-loss leads to predictions that estimate the conditional mean of the
distribution of Y given X (cf. Cramer (1946, Ch. 15) and Shynk (2012, pp. 545 – 553)).
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2.2 Performance Measures

larger. If this property is not desirable, it is possible to use the mean absolute error (MAE) as
an outlier-robust alternative, which is based on the L1-loss, i.e.,

M̂AE = 1
n

n∑
i=1

L1(f̂(x(i)), y(i)) = 1
n

n∑
i=1
|y(i) − f̂(x(i))| = 1

n

n∑
i=1
|ε̂(i)|.

Furthermore, many transformations and modifications of the MSE are also frequently used. For
example, the root mean squared error (RMSE) or the root mean squared logarithmic error
(RMSLE). The former provides better interpretable performance values as they are on the same
scale as the target values. The latter is often used when the target values are non-negative, such
as in the case of count data.

2.2.2. Measures for Binary Classification

As mentioned, discrete classifiers, scoring classifiers, and probabilistic classifiers produce different
predictions types. Figure 2.2 illustrates how these different types of predictions (i.e., discrete
classes, scores, and probabilities) can be converted into another prediction type. There are spe-
cialized performance measures for each of these three prediction types, and some of these measures
are described in the following paragraphs. The easiest way to assess the performance is to directly
use an appropriate performance measure for the corresponding prediction type produced by the
classifier. Alternatively, the predictions can be converted into a different type as illustrated in
Figure 2.2. This allows practitioners to also consider other performance measures, which are more
appropriate for the converted predictions.

Probabilities

Scores

Discrete Classes

Calibrating/Scaling

Thresholding

Recalibrating

Thresholding

are often produced 
intrinsically by the 
algorithm based on 

can also 
be seen as

Figure 2.2.: Illustration of how different types of predictions can be converted into another type.
The topics of recalibrating, calibrating, and thresholding are also referred to in the
corresponding paragraphs below.

Discrete Classifiers

The two discrete classes in binary classification are often referred to as the positive class and the
negative class.3 As the aim of discrete classifiers is to predict discrete classes, many performance
measures are mainly concerned with measuring the discrimination performance, i.e., the ability of
a classifier to separate those classes. The confusion matrix is a 2 × 2 contingency table that can
help in this respect. It summarizes all four possible outcomes that can occur when the predictions

3This terminology has its origin in a different notation of the target space, in which the class labels are −1 or
+1. However, the notation here denotes the classes as 0 or 1. Thus, the positive class refers to class 1, and the
negative class refers to class 0.
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2. Methodological and General Background

ĥ(x) of a discrete classifier are compared with the ground truth, i.e., the associated actual classes
y. More specifically, the confusion matrix in Table 2.1 reports the number of true negatives (TN),
true positives (TP ), false negatives (FN) and false positives (FP ).

Ground Truth
Positive Negative
Y = 1 Y = 0

Pr
ed

ic
tio

n Positive
TP FP

ĥ(X) = 1
Negative

FN TN
ĥ(X) = 0

Total TP + FN FP + TN

Table 2.1.: An illustration of a 2×2 confusion matrix. TN and TP refer to the number of predicted
classes that were correctly classified as the negative and positive class, respectively.
FN and FP refer to the positive and negative classes of the ground truth that were
wrongly classified as the negative and positive class, respectively.

Various performance measures can be derived from the confusion matrix (cf. Sokolova et al.,
2006; Sokolova and Lapalme, 2009). Among them is the classification accuracy (ACC), which
corresponds to the proportion of correctly classified observations. The ACC can be calculated
from the elements of the confusion matrix by T P +T N

T P +F N+F P +T N . Many performance measures that
are based on the confusion matrix can be expressed in terms of the zero-one loss (also referred to
as the indicator loss) function, which is defined as

L0/1(ĥ(x), y) = I(ĥ(x) 6= y) =
{

1 if ĥ(x) 6= y

0 if ĥ(x) = y
. (2.3)

For the aforementioned classification accuracy, this can be best illustrated by first writing the
ACC in terms of a probability, i.e.,

ACC = P(ĥ(X) = Y ) = 1− P(ĥ(X) 6= Y ).

The ACC is then estimated using the set of observations Dtest = {(x(i), y(i))}ni=1 and the zero-one
loss from Equation (2.3) by

ÂCC = 1− 1
n

n∑
i=1

L0/1(ĥ(x(i)), y(i)). (2.4)

Two other commonly used measures are the true positive rate (TPR) and the false positive rate
(FPR). The TPR is defined as the proportion of correctly classified observations among the
ones with positive actual class, which can be expressed as T P

T P +F N . It can also be written as a
conditional probability, i.e.,

TPR = P(ĥ(X) = Y |Y = 1) = 1− P(ĥ(X) 6= Y |Y = 1).
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2.2 Performance Measures

The FPR refers to the proportion of wrongly classified observations among the ones with negative
actual class (i.e., F P

F P +T N ), and it can be written as

FPR = P(ĥ(X) 6= Y |Y = 0).

Both TPR and FPR can therefore be estimated using the zero-one loss, i.e.,

T̂PR = 1− 1
n1

∑
i: y(i)=1

L0/1(ĥ(x(i)), y(i)) and F̂PR = 1
n0

∑
i: y(i)=0

L0/1(ĥ(x(i)), y(i)), (2.5)

where n0 = ∑n
i=1 I(y(i) = 0) and n1 = ∑n

i=1 I(y(i) = 1) denote the number of observations within
each class from the ground truth. In general, there is a trade-off between the TPR and FPR.
In fact, always predicting the positive class results in a TPR of 1 (i.e., the best possible value),
which is because the positive class is implicitly always correctly classified. At the same time, the
negative class is always wrongly classified, yielding a FPR of 1 (i.e., the worst possible value for
the FPR). Figure 2.3, panel (a) illustrates how this trade-off can be visualized in the receiver
operating characteristic (ROC) space, which is a 2-dimensional plot that depicts FPR vs. TPR
(Fawcett, 2004). Each discrete classifier yields a single point in the ROC space. For example, the
best possible classifier has a FPR of 0 and TPR of 1, and in such a case the point is located in
the upper left corner of the ROC space. A random guessing classifier that predicts the positive
class (i.e., class 1) at random with some constant probability is always located on the identity line
(i.e., the baseline).

Two further aspects should be considered in the context of discrete classes. The first aspect refers
to situations where the classes are highly imbalanced. For example, using the ACC in such sit-
uations is not appropriate and can result in misleading interpretations of the performance. The
reason for this is best illustrated by a model that always predicts the majority class and conse-
quently misclassifies all observations belonging to the minority class. In this case, the ACC value
would still be high, indicating a well-functioning model, although observations from the minority
class are always misclassified. Thus, it is preferable to use performance measures that also take
the class imbalance into account, such as the balanced accuracy BACC = 1

2

(
T P

T P +F N + T N
F P +T N

)
(Brodersen et al., 2010). The BACC offers a better alternative in the case of imbalanced classes,
since it is defined as the arithmetic mean of the classification errors in both classes, and thus it
weights both errors equally. Another alternative is the F-measure, which is the harmonic mean
between the TPR (also known as recall) and the precision measure (i.e., Precision = T P

T P +F P )
(Hripcsak and Rothschild, 2005). The second aspect is concerned with applications that involve
different (i.e., asymmetric) costs for specific parts of the confusion matrix in Table 2.1. For ex-
ample, in medical diagnosis, the cost of FP (i.e., classifying a healthy patient as diseased) is often
different from the cost of FN (i.e., classifying a diseased patient as healthy). Here, it is reasonable
to use a modified version of the balanced accuracy by using weights that are proportional to the
costs instead of using equal weights. Such a weighted accuracy with varying weights was proposed
by Androutsopoulos et al. (2000). Similarly, other measures that also take costs into account
could be used (cf. Hidalgo, 2002).

At this point, it should be noted that many discrete classifiers are inherently scoring or probabilistic
classifiers, although they directly predict class memberships (see Figure 2.2). This is because they
often internally compute scores or probabilities and determine the class membership based on
these values (cf. Fawcett, 2004).
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2. Methodological and General Background

Scoring Classifiers

Scoring classifiers predict scores that usually range from −∞ to ∞, i.e., f̂(x) ∈ R. In particular,
different scoring classifiers may predict scores that are on a completely different scale. Conse-
quently, it is often only the order of the scores that is relevant when comparing different scoring
classifiers. Therefore, the scale and magnitude of the scores can often be neglected. The easiest
way to compare and assess the performance of scoring classifiers is to transform them into discrete
classifiers (see Figure 2.2). This allows the use of previously described discrimination measures,
which are based on the confusion matrix. For this purpose, a threshold θ is usually used to sep-
arate the scores into discrete classes. The resulting discrete classifier for a given threshold θ is
then

ĥ(x, θ) =
{

1 if f̂(x) > θ

0 if f̂(x) ≤ θ
. (2.6)

However, any value within the range of the predicted scores can act as a threshold, and different
thresholds might result in an entirely different confusion matrix. Therefore, it is not trivial how to
assess the performance in such situations and how to select an appropriate threshold beforehand.
The most common way is to select the threshold value either manually (e.g., a pre-specified
threshold value of interest) or based on optimizing specific criteria (cf. Fluss et al., 2005; Perkins
and Schisterman, 2006).

The ROC curve has proven to be useful for assessing the performance of a scoring classifier because
it visualizes the resulting TPR(θ) and FPR(θ) for each possible threshold θ. Thus, it implicitly
considers the order of the scores imposed by the scoring classifier (cf. Hernández-Orallo et al.,
2012). Specifically, the TPR and FPR at a given threshold value θ are defined respectively as

TPR(θ) = P(f̂(X) > θ|Y = 1) and FPR(θ) = P(f̂(X) > θ|Y = 0).

The pairs (F̂PR(θ), T̂PR(θ)) are computed using Equation (2.5) based on different threshold
values θ and by using ĥ(x, θ) from Equation (2.6). The points can then be visualized in the ROC
space, yielding an estimate of the ROC curve when connecting these points.

A natural performance measure that can be derived from the ROC curve is the area under the
curve (AUC), which according to Pencina et al. (2008) can be defined as

AUC =
∫ 1

0
TPR(θ) d

dθ FPR(θ) dθ.

Obviously, the AUC integrates over all possible thresholds θ across the whole range of scores. For
illustration purposes, Figure 2.3, panel (b) displays an optimal ROC curve with AUC = 1 and a
ROC curve with an AUC = 0.8. The dashed identity line refers to the ROC curve of a random
guessing classifier and is used as the baseline. Since the area of the baseline is equal to 0.5, the
estimated AUC of a random guessing classifier will also be close to 0.5.

Probabilistic Classifiers

Probabilistic classifiers are often preferred in applications where it is desirable to report proba-
bilities instead of discrete classes or real-valued scores. For instance, in the context of biomedical
research, probabilistic classifiers can be very useful as they allow to quantify the risk of having a
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Figure 2.3.: Panel (a) displays the best possible discrete classifier in the ROC space and two
random guessing classifiers lying on the baseline, namely one that always predicts
class 1 and one that never predicts class 1. Panel (b) displays the optimal ROC curve
(with AUC = 1), a ROC curve with AUC = 0.8, and the ROC curve of a random
guessing classifier (with AUC = 0.5).

disease. Probabilities can be considered as scores lying between 0 and 1. Thus, it is possible to use
the same discrimination measures as those for scoring and discrete classifiers to assess the perfor-
mance of probabilistic classifiers. However, another essential criterion for assessing probabilistic
classifiers besides the use of discrimination measures is the calibration of the predicted probabili-
ties. For well-calibrated predictions, it is typically expected that the predicted probabilities of an
event are, on average, close to the relative frequency for which that event actually occurred within
the ground truth. In contrast to scoring classifiers, the magnitude of the predicted probabilities
is therefore relevant when assessing the performance of probabilistic classifiers.

For this reason, more appropriate performance measures such as the log-loss (cf. Buja et al.,
2005) or the Brier score (BS) (Brier, 1950) have been proposed for probabilistic classifiers. These
measures also take into account the magnitude of the predicted probabilities. For example, the
Brier score, which corresponds to the MSE of the predicted probabilities π̂(x), is defined as

B̂S = 1
n

n∑
i=1

(y(i) − π̂(x(i)))2.

In particular, the log-loss measure as well as the Brier score are known to take into account
both discrimination and calibration performance. This is because both measures belong to the
class of strictly proper scoring rules (Gneiting and Raftery, 2007; Steyerberg et al., 2010). In fact,
Murphy (1972, 1973) showed that the Brier score is decomposable in at least two components, that
is, a measure of calibration (also referred to as reliability) and a measure of discrimination (also
referred to as refinement loss). According to Hernández-Orallo et al. (2012), the decomposition
of the Brier score also “suggests a connection between the Brier score and ROC curves, and
particularly between refinement loss and AUC, since both are performance metrics which do not
require the magnitude of the scores of the model.” The link between the discrimination component
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of the Brier score (i.e., the refinement loss) and the AUC emphasizes once again that the AUC is
only a discrimination measure and does not assess the calibration of predicted probabilities.

As mentioned in the previous paragraph, it is reasonable to assess the performance of scoring
classifiers by utilizing ROC curves. However, the use of a ROC curve and its AUC for assess-
ing the performance of probabilistic classifiers has often been criticized because these measures
only take into account the discrimination performance (Hanley and McNeil, 1982; Cook, 2007).
Furthermore, the ROC curve does not directly visualize either the magnitude of the predicted
probabilities or the magnitude of the threshold values (Pepe et al., 2008). Therefore, many other
visualization methods have been proposed to remedy these deficiencies, such as the Brier curve
(Hernández-Orallo et al., 2011) or the predictiveness curve (Huang et al., 2007; Pepe et al., 2008).
The predictiveness curve and several of its shortcomings are described in Chapter 6 in more detail.
The contribution in Chapter 6 introduces the residual-based predictiveness (RBP) curve, which
extends the original predictiveness curve and addresses several of its shortcomings. Furthermore,
the chapter also relates the RBP curve to several other measures, such as the TPR and FPR
at given threshold values (i.e., discrimination measures), the Hosmer-Lemeshow statistic (i.e., a
calibration measure also known as the calibration across deciles) (Hosmer and Lemesbow, 1980;
Lemeshow and Hosmer, 1982), and the MAE.

It is possible to convert the scores predicted by scoring classifiers into posterior probabilities by
using methods, such as Platt scaling (Platt et al., 1999) (i.e., a calibration method based on a
sigmoid function), isotonic regression (Zadrozny and Elkan, 2002), or more recently spline-based
calibration (Lucena, 2018). One of the biggest challenges here is to find an appropriate mapping of
the real-valued scores into the interval [0, 1] so that the resulting probabilities can be interpreted
as such – that is, in a way where they can be considered as well-calibrated posterior probabilities.
In general, there is no guarantee for probabilistic classifiers that their resulting predictions are by
default well-calibrated probabilities. For example, Niculescu-Mizil and Caruana (2005) show that
some probabilistic classifiers tend to shift the probabilities away from 0 and 1, while others tend to
shift them toward 0 and 1. In such situations, it is reasonable to correct this bias by recalibrating
the predicted probabilities using the same strategies (e.g., Platt scaling or isotonic regression).

2.2.3. Remarks on Multiclass and Multilabel Classification

As for multiclass classification, it is also possible to construct a m ×m confusion matrix for m
different classes. Similar to binary classification, several performance measures can be derived
from such a m ×m confusion matrix, with most of them in a one-versus-rest or one-versus-one
fashion (cf. Flach, 2012, Ch. 3.1). Thus, many performance measures of binary classifiers can be
extended to handle multiple classes, e.g., different variations of the multiclass AUC (Hand and
Till, 2001; Ferri et al., 2009).

In the context of multilabel classification, there are observation-based and label-based performance
measures. For the sake of completeness, the main differences and similarities between both types
of measures are briefly explained here. As mentioned, in multilabel classification, each observation
can belong to multiple labels at the same time. Therefore, the confusion matrix is computed for
each observation separately, yielding the TP, FP, TN, and FN of individual observations. Based
on such an observation-based confusion matrix, it is possible to calculate a performance measure
for each observation separately, such as the ACC, TPR, or FPR. After that, the resulting values
are averaged across all observations to obtain the final performance value.
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An alternative for assessing the performance in multilabel classification are label-based perfor-
mance measures. For this purpose, a confusion matrix is computed separately for each label.
These label-based confusion matrices can be aggregated in two different ways to obtain label-based
performance measures. Usually, this is achieved either by micro-averaging or by macro-averaging.
Micro-averaging first computes an averaged confusion matrix by averaging each element (i.e., TP,
FP, TN, and FN) across all label-based confusion matrices. After this, the desired performance
measure is calculated only once, as the calculation is only based on this averaged confusion ma-
trix. Conversely, the macro-averaging approach computes the desired performance measure for
each label-based confusion matrix separately. Finally, it averages these label-based performance
measures to obtain a macro-averaged performance value.

For both observation-based and label-based performance measures, there are also measures that
are appropriate for discrete classifiers and measures that make more sense for probabilistic (or
scoring) classifiers (cf. Zhang and Zhou, 2014; Charte and Charte, 2015). The contributing article
in Chapter 3 compares several algorithm transformation methods with discrete classifiers using
observation-based performance measures.

2.3. Performance Estimation

Obtaining reliable performance estimates based on available data is crucial for various applica-
tions. For example, in the context of this thesis, it is essential to assess the performance of
prediction models (see Chapter 6) and the importance of features (see Chapter 7), to compare
the performance of different algorithms (see benchmark studies in Chapter 3 and Chapter 4), and
to support the field of meta-learning by sharing and retrieving reliable benchmark results (see
Chapter 4 and Chapter 5).

Practitioners should always be aware of the overfitting issue when estimating the performance
of a machine learning algorithm. As illustrated in Figure 2.1 and mentioned in Section 2.1.1,
the overfitting issue suggests that several flexible algorithms are able to learn the functional
relationship f on the provided training data almost perfectly. However, the resulting prediction
model f̂ does not necessarily generalize well on new unobserved data. For this reason, assessing
the performance of a prediction model based on the same data that was used to fit the model
(i.e., the training data) usually yields a misleading (i.e., over-optimistic) performance estimate of
the fitted model (cf. Efron, 1983). To overcome this issue, all existing performance estimation
approaches mimic the situation of evaluating the performance on new unobserved data. This
is achieved by dividing the available data into training data and test data (repeatedly). Figure
2.4 illustrates a general scheme to estimate the performance in supervised machine learning. On
a unified high-level view, this involves three steps: a data splitting or resampling procedure,
followed by the learning process and lastly the evaluation process. Two different quantities can be
estimated with this general procedure, depending on whether the data splitting (and consequently
also the model fitting) is repeated or not. More precisely, there is a difference between estimating
the performance of a prediction model (i.e., the conditional generalization error) and estimating
the performance of a machine learning algorithm (i.e., the expected generalization error).
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Figure 2.4.: A general scheme to estimate the performance: The data splitting / resampling pro-
cess splits the available data into (a set of) training data and test data. The algorithm
is trained on each training data and produces associated models (learning process).
Each model along with its associated test data produces predictions. The perfor-
mance measure calculates a performance value on each test data using the actual
target values and their associated predictions. Multiple performance values are then
aggregated to estimate the overall performance by a scalar value (evaluation process).

2.3.1. Conditional Generalization Error

Formally, the conditional generalization error of a fixed prediction model f̂D trained on some
dataset D is defined as

GE(f̂D,P) = E(L(f̂D(X), Y )). (2.7)
Here, L is the loss function used to assess the performance of the model, which is implicitly defined
through the choice of the performance measure as described in the previous section. Ideally, the
performance is assessed on independently drawn observations from P that were not used to train
the prediction model. Unfortunately, P is unknown, and it is not possible to directly draw any
new observations from it. Thus, the performance is usually estimated by splitting the available
data to mimic the presence of new unobserved data.

The holdout method is the most straightforward data-splitting approach to address this issue.
Based on a pre-defined splitting ratio, the available data D is divided into two disjoint sets, namely
the training data Dtrain and test data Dtest = D \ Dtrain. According to Figure 2.4, estimating the
performance is then based on two further steps. First, during the learning process, the machine
learning algorithm is trained on the training data Dtrain. In the evaluation process, the resulting
prediction model f̂Dtrain is then evaluated on the remaining test data, which contains observations
not used during the learning process. Consequently, the holdout method estimates the conditional
generalization error by

ĜE(f̂Dtrain ,Dtest) = 1
|Dtest|

∑
(x,y)∈Dtest

L(f̂Dtrain(x), y). (2.8)

The holdout method preserves the test data for assessing the performance and does not use the
available data D efficiently. Therefore, in order to obtain reliable performance estimates, the
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holdout method usually requires the available data D to be large, as the choice of the splitting
ratio involves a bias-variance trade-off (cf. Japkowicz and Shah, 2011, Ch. 5). This means that
on the one hand, the holdout method requires enough training data to learn a representative
model and to prevent the algorithm from learning less due to fewer observations, which would
lead to a pessimistic bias. On the other hand, it is also crucial to have enough test data for
the evaluation process to obtain a reliable estimate. Otherwise, the estimate introduces a huge
variance. Furthermore, it is important to keep in mind that the holdout estimate is always
conditional on the training data Dtrain, since the algorithm used this training data to induce the
prediction model f̂Dtrain . Therefore, any conclusion that can be drawn from this estimate should
refer to the prediction model and not to the algorithm itself. The contribution in Chapter 7 uses
exactly this approach since the primary goal there was to infer conclusions about the importance
of the features captured by an already fitted prediction model.

2.3.2. Expected Generalization Error

An algorithm a usually induces different prediction models when applied to different datasets, even
if the algorithm itself is of deterministic nature. Consequently, the application of an algorithm
a to a given dataset D results in a(D) = f̂D.4 Suppose that it is possible to generate datasets
D of equal size n from P. To take into account the variability introduced by randomly drawing
different datasets D of equal size n from P, the expected generalization error of an algorithm a is
usually defined by

GE(a,P, n) = E|D|=n(GE(a(D),P)). (2.9)

Consequently, the expected generalization error refers to the expectation of the conditional gen-
eralization error with respect to all possible datasets D of size n that were generated from the
distribution P.

Because P is unknown, resampling techniques have to reuse the available data D to obtain a
stable estimate of the generalization error. For this purpose, the available data D is split into
multiple (i.e., B) different training data of approximately equal size ntrain and corresponding test
data, which are denoted by Db

train and Db
test with b = 1, . . . , B, respectively. During the learning

process, the algorithm induces multiple models, one for each training data (see also Figure 2.4),
i.e., a(Db

train) = f̂Db
train

with b = 1, . . . , B. Each model makes predictions on each test data, which
are then assessed using Equation (2.7) to obtain individual performance values of each model. An
estimate of the algorithm’s performance is the average of these performance values, i.e.,

ĜE(a,D, ntrain) = 1
B

B∑
b=1

ĜE(f̂Db
train

,Db
test), (2.10)

where ntrain refers to the size of each training data.

All existing resampling techniques mainly differ in how they produce the training and test datasets.
Japkowicz and Shah (2011) make a distinction between two types, namely resampling techniques
that use observations from the test data only once and resampling techniques that use observations

4In general, many algorithms are parametrized and can be configured with hyperparameters ααα, that is, a more
general notation would be a(D,ααα). However, as this thesis does not focus on hyperparameter optimization, the
notation of a(D) is used.
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from the test data multiple times. For example, k-fold cross-validation (which produces k non-
overlapping train-test splits) belongs to the former type. The latter type includes the repeated
k-fold cross-validation, random subsampling (which can be seen as a repeated holdout), as well
as the bootstrap, which was introduced in Efron (1979). The properties of different resampling
techniques have been widely studied and discussed in the literature (cf. Bengio and Grandvalet,
2004; Molinaro et al., 2005; Kim, 2009).

2.4. Benchmark Experiments

2.4.1. Motivation

In the past few decades, researchers have made considerable efforts to develop new machine
learning algorithms or to extend well-established ones. Among other objectives, the intention
has often been to overcome the limitations of existing algorithms and to obtain more accurate
predictions. For a newly proposed algorithm to gain wide acceptance and generate interest, it
is indispensable to provide empirical studies that illustrate the behavior of the novel algorithm
(including its advantages and disadvantages) compared to other competing algorithms. In the field
of statistics and machine learning, such empirical studies are called benchmark experiments and
are usually performed on a collection of datasets. The purpose is to compare several algorithms
in different data situations regarding their predictive performance, runtime, or any other measure
of interest.

One of the main goals when comparing algorithms is to rank them according to a pre-defined
performance measure of interest and to identify the best algorithm among all competing ones. At
first glance, this goal seems contradictory to the no free lunch (NFL) theorem (Schaffer, 1994;
Wolpert, 1996), which states that there is no such master algorithm5 that strictly outperforms
any other algorithm when averaging the algorithms’ performances across all possible and con-
ceivable datasets. However, the NFL theorem considers a universe where everything is uniformly
distributed and equally possible, including the distribution from which all conceivable datasets
are generated. As pointed out in Giraud-Carrier (2008) in their definition of the weak assumption
of machine learning, “the process that presents us with learning problems induces a non-uniform
probability distribution over the possible functions.” This quote emphasizes that, in the world we
live in, some datasets (among all conceivable datasets) are more likely to occur than others. In
particular, this point implies that we are not necessarily interested in finding a master algorithm
that outperforms any other algorithm in all conceivable datasets. Instead, we are interested in
finding one that is only relevant for datasets resulting from real-world applications, or even only
from specific domains or subdomains. For this reason, the space of all conceivable datasets of
the universe is usually restricted to a well-defined subset (i.e., to the domain of interest). Here,
a common underlying structure within this domain is assumed. This restriction can even be very
general, such that the well-defined subset can still be an uncountable infinite set. In any case, it is
widely accepted that the existence of a master algorithm in such a closed world assumption does
not violate the NFL theorem in the context of machine learning (cf. Giraud-Carrier and Provost,
2005; Giraud-Carrier, 2008).

5The use of the term master algorithm in this context is based on the work of Domingos (2015).
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Much work has already been done in developing frameworks for the statistical inferential analysis
of benchmark results. Many of these frameworks enable researchers to draw general conclusions
about the ranking of algorithms based on benchmark results. Starting from the framework pro-
posed by Hothorn et al. (2005) for the statistical analysis of single dataset-based benchmark results,
several generalizations that also allow for a domain-based analysis (i.e., an analysis based on mul-
tiple datasets from the same domain) of such benchmark results have been proposed. Examples
of these generalizations include the frameworks proposed in Eugster et al. (2012) and Boulesteix
et al. (2015). Furthermore, Eugster et al. (2014) proposed a general framework based on a paired
comparison model, which makes it possible to analyze the influence of dataset characteristics on
the algorithms’ performance based on benchmark results. This general framework is based on
the Bradley-Terry model for paired comparisons (cf. Bradley and Terry, 1952; Casalicchio et al.,
2015).

Many contributions of the present dissertation focus on a different and rather technical but equally
important aspect of benchmark experiments. Specifically, there are at least two somewhat tech-
nical requirements before such benchmark experiments can be conducted. First, a software tool
is required that provides access to several machine learning algorithms to be compared. Ideally,
the software tool also includes a convenient infrastructure to assess the performance of these algo-
rithms. The mlr (Bischl et al., 2016) package for R can be used to meet this requirement. Second,
there is a need for easily accessible and well-documented collections of datasets, on which the
corresponding algorithms are applied to solve a common underlying machine learning task (e.g.,
regression or classification tasks). The contribution in Chapter 5 presents such a first collection
of curated datasets at least for classification tasks, and it encourages other researchers to create
and share their own benchmarking suites on OpenML (Vanschoren et al., 2013). Furthermore,
the R package introduced in Chapter 4 makes this collection of datasets and all other datasets on
OpenML easily accessible and queryable directly from R. The package also includes a convenient
infrastructure in R for sharing and retrieving results of previous benchmark experiments.

2.4.2. Reproducibility and Reusability

In order to make reliable conclusions about the ranking of the algorithms and to also address
the issue of the “variability across datasets” (Boulesteix et al., 2015), benchmark experiments
should preferably be based on a large number of datasets. Fortunately, for this purpose, there
are already many freely accessible datasets available from repositories, such as the UCI Machine
Learning Repository (Dheeru and Karra Taniskidou, 2017), the PMLB benchmarking suite (Olson
et al., 2017), and the UCR time series classification archive (Chen et al., 2015). However, the
problem often is that many benchmark experiments published in scientific journals are rarely fully
reproducible. One of the reasons for this is that the source code of the benchmark experiments
is not always made available in many publications. Consequently, it is often impossible for other
researchers to reproduce, build upon, extend, or modify previous benchmark experiments. This
claim is in line with the findings in Hothorn and Leisch (2011) and Hofner et al. (2016) concerning
the reproducibility of experiments in scientific publications in general. Convenient tools such as
Sweave (Leisch, 2002) and knitr (Xie, 2014) make it already very easy for authors to embed the
textual descriptions, the data, and the source code that produces the computational results into
one single document. With such a single document, it is possible to generate a fully reproducible
article if the computational experiments are easy and fast to compute, which is the case, e.g.,
with a simple explorative data analysis. However, to make benchmark experiments reproducible
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in the same way and without caching intermediate results, it would require much more time
and computational resources to generate a fully reproducible article (cf. Braun and Ong, 2014).
Therefore, there may be a need for additional tools or platforms such as OpenML that help with
organizing, structuring, and mining information of benchmark experiments in a convenient and
machine-readable way.

Many details of benchmark experiments such as the properties of the datasets (e.g., the number of
observations) and the performance values of the benchmark results themselves are often reported
in publications as tables or figures, which are representations that are not easily machine-readable.
Thus, even if the source code is provided, it is still required to re-run the benchmark experiments
in order to have access to all details. Furthermore, the benchmark results found in different pub-
lications will most probably lack a unified format as there is no widely accepted and standardized
way to publish such results. Consequently, it is often not feasible to reuse previous benchmark re-
sults from different publications for other purposes, such as to perform statistical (meta-)analyses
based on these benchmark results. To some extent, this slows down machine learning research
since researchers are now required to extract, join, and unify the benchmark results from different
sources or re-run the experiments if they want to reuse these results, e.g., to perform their own
statistical (meta-)analyses. Having access to meta-information of benchmark experiments could
reveal a better understanding of these algorithms. For example, by analyzing the properties of
datasets that cause certain algorithms to work better. Such meta-information can be easily stored
in an online machine learning platform. If many researchers jointly use such a platform and feed it
with more information, it may be possible for the machine learning community to identify better
practices much faster than by reading traditional publications. Furthermore, when practitioners
face a new machine learning problem, it may be helpful to analyze previous benchmark experi-
ments on similar problems to find suitable algorithms. Similar tasks have already been carried
out in the field of meta-learning. Here, one of the main objectives is to exploit meta-knowledge
to better understand the relation between algorithms and machine learning tasks or datasets of a
specific domain. This meta-knowledge can then be used to automatically propose suitable algo-
rithms that are able to solve a new machine learning task, hence stimulating the learning-to-learn
paradigm (Vilalta and Drissi, 2002).

The OpenML platform addresses many reproducibility and reusability issues of benchmark experi-
ments. The platform allows researchers to share and organize their benchmark experiments online,
and it facilitates reusing the benchmark results of other researchers. It also allows researchers to
interact and collaborate with one another using their shared results. Furthermore, it is also possi-
ble to perform different meta-analyses based on previous benchmark results to obtain answers to
various research questions such as whether certain characteristics of datasets are responsible for
certain algorithms to perform better than other algorithms (cf. Bilalli et al., 2017).

2.5. Model-Agnostic Interpretability

2.5.1. Motivation

The hope in many machine learning applications is that a model may render help to understand
something about the real world. However, it is important to remember that models are – if at
all – only a simplification of certain parts of the real world. This is an issue that was already
stressed by Box (1979) with the statement “all models are wrong, but some are useful.” Different
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people may consider certain models more useful than others. Thus, the question arises as to what
people understand to be a useful model. Does a useful model refer to a well-performing model
that produces accurate predictions or does it refer to a simpler and therefore better interpretable
model with probably less accurate predictions? In general, there is even a trade-off between model
interpretability and model performance, which can be observed in many applications. If model
interpretability is the primary concern, some practitioners tend to prefer simpler models. However,
these simple models are often still improved through various means, such as preprocessing, feature
engineering, and feature selection (Lipton, 2016). On the other hand, if model performance is of
interest, some practitioners prefer to use machine learning models since they are known to produce
more accurate predictions. Such machine learning models are often difficult to interpret and are
consequently considered a black box (Caruana et al., 2015). Thus, a more appropriate question
that can be asked is: How much is a user willing to pay for an interpretable model if the price to
be paid is a drop in the performance of the model?

In general, not all applications require interpretable models. For example, in situations where
unexpected results do not have serious consequences in the corresponding application, it may
be reasonable to rely on well-performing black box models without worrying much about inter-
pretability (Doshi-Velez and Kim, 2017). However, it can still make sense to optionally peek
inside such a black box in order to extract valuable insights that have been captured by the
model. Reasons for this include pure curiosity, the ability to make scientific explanations, or
examination purposes, e.g., to check whether the model also captured effects that are expected
in the real world (Miller, 2017). In other critical areas such as medicine or criminology, models
are sometimes used to assist in making important decisions that can affect human life (Caruana
et al., 2015; Krause et al., 2016). In such applications, it is essential to use an interpretable model
that provides explanations for its decisions. Fortunately, there are many model-agnostic interpre-
tation methods for such tasks that make it possible to explain the output of black box models
in a similar way as intrinsically interpretable models. Examples of such interpretability methods
include partial dependence (PD) plots (Friedman, 2001), functional ANOVA (Hooker, 2004, 2007),
individual conditional expectation (ICE) plots (Goldstein et al., 2015), local interpretable model-
agnostic explanations (LIME) (Ribeiro et al., 2016), SHapley Additive exPlanation (SHAP) values
(Strumbelj and Kononenko, 2014; Lundberg and Lee, 2017), SHAP dependence plots (Lundberg
et al., 2018), Sobol’ indices (Sobol’, 1990; Owen, 2014), the feature importance ranking measure
(FIRM) (Zien et al., 2009), and the model reliance (Fisher et al., 2018). Many of these methods
are also implemented in the R package iml (Molnar et al., 2018).

More recently, many researchers have been engaged with answering an even more fundamental
question in the context of machine learning, namely the question of “what is interpretability?”
(Lipton, 2016; Doshi-Velez and Kim, 2017; Miller, 2017; Biran and Cotton, 2017; Gilpin et al.,
2018). For example, the definition in Gilpin et al. (2018) states that “for a system to be inter-
pretable, it must produce descriptions that are simple enough for a person to understand using a
vocabulary that is meaningful to the user.” Clearly, descriptions or explanations that are under-
standable for one person may not necessarily be understandable for another person. Thus, looking
for a single interpretability method that can be understood by anyone remains an open problem.
The vast landscape of interpretability methods offers different types of explanations. For different
applications, certain types of explanations are more appropriate to meet individual interpreta-
tion goals of practitioners. The next section presents an ontology that may help practitioners in
choosing an appropriate interpretability method that meets their individual interpretation goals.
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Furthermore, it is also shown how the methods introduced in Chapter 7 can be positioned within
the proposed ontology.

2.5.2. An Ontology

An interpretability method ideally provides explanations that are appropriate for both the under-
lying application and the intended interpretation goal of the practitioner. Thus, the first step of
the practitioner is to formulate the interpretation goal that he or she is most likely interested in.
From a model-agnostic perspective, this is closely related to asking the question: Which quantity
of interest that can be derived from a model deserves an explanation? Any quantity that can be
derived from a model may be easier to understand for humans if it is possible to break it down
into the individual contribution of each feature (or a set of features) to that quantity. The same
objective has already been addressed by many interpretability methods, as these methods often
decompose a certain quantity of interest into parts that are attributable to each feature (or set of
features). In general, there are three frequently used quantities of interest in the literature that
are often decomposed, namely 1) the model predictions (i.e., through feature effect methods),
2) the uncertainty or variability of the model predictions (i.e., through variance-based feature
importance methods), or 3) the model performance (i.e., through performance-based feature im-
portance methods). Specifically, many interpretability methods also often quantify or visualize
how changes (or permutations) of one feature (or a set of features) affect the aforementioned
quantities of interest. A similar categorization of interpretability methods has been described in
Jiang and Owen (2002), Wei et al. (2015), Zhao and Hastie (2017), and Guidotti et al. (2018).

Figure 2.5 displays a general ontology. In its first dimension, it organizes common interpretabil-
ity methods into the three quantities of interest mentioned above (i.e., feature effect methods,
variance-based feature importance methods, and performance-based feature importance meth-
ods). The second dimension of the ontology refers to the scope of the interpretability method,
that is, whether the method accounts for local or global explanations (Doshi-Velez and Kim, 2017).
Local interpretability methods provide explanations for single observations (or a group of similar
observations, e.g., neighboring observations that are close to each other). By contrast, global inter-
pretability methods take into account all available observations or a (randomly selected) subset of
these in order to provide explanations that are representative for the entire model. However, global
explanations are often approximations of the overall behavior of the model since they are typically
based on averaging local explanations. The third dimension in the ontology concerns the output
type produced by the interpretability method. Here, the ontology further distinguishes between
methods that provide summary statistics (e.g., quantitative values for each feature) and methods
that also allow visualizations (e.g., a curve for each feature). Some interpretability methods also
produce a surrogate model as intermediate output (e.g., the method LIME). However, since such
surrogate models are ultimately used again to produce summary statistics or visualizations, this
is not considered to be a third output type in the ontology.

It should be noted that the ontology described here should not be considered as exhaustive by any
means. However, many interpretability methods can most probably be placed in the proposed
ontology, or they can extend its design. For example, our contribution in Chapter 7 has extended
the ontology for the performance-based feature importance in such a way that it allows practi-
tioners to distinguish between a local and global performance-based feature importance similar
to feature effects (this was not possible before our contribution). For illustration purposes, the
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following paragraphs briefly describe how several model-agnostic interpretability methods can be
placed into this ontology.

Scope

Quantity
of Interest

Model-agnostic
 Methods

Variance-based 
Feature Importance

Output 
Type

Feature Effect Performance-based 
Feature Importance

GlobalLocal

Visualization

Summary 
Statistic

Global

VisualizationSummary 
Statistic

LocalGlobal

Visualization

Summary 
Statistic

Figure 2.5.: A general ontology of model-agnostic interpretability methods.

Feature Effects

In a simple linear regression model without interaction effects, the effect of a feature can be easily
interpreted by examining the estimated regression coefficient of that feature. This is because
the learned prediction function is based on the linear combination of all involved features of an
observation x(i) = (x(i)

1 , . . . , x
(i)
p )>, i.e.,

f̂(x(i)) = β̂0 + x
(i)
1 β̂1 + · · ·+ x(i)

p β̂p.

Thus, the coefficients β̂j quantify the contribution of the j-th feature to the final prediction, and
β̂0 is an intercept term. The coefficients are constant and do not vary across different observations.
The interpretation of the feature effect is, therefore, very simple: if the value of the j-th feature
increases by one unit (while holding all other feature values fixed), the expected value of the target
outcome changes by the value of the regression coefficient β̂j . However, many machine learning
algorithms are able to model more complex relationships such as high-order interactions or non-
linear feature effects. Thus, the resulting prediction function is not directly human-interpretable.
In such situations, the functional ANOVA (Hooker, 2004, 2007) approach can be used to de-
compose the high-dimensional prediction function into additive components that depend only on
subsets of the feature space, i.e.,

f̂(x) = f̂∅︸︷︷︸
constant

+
p∑

j=1
f̂j(xj)

︸ ︷︷ ︸
first order effects

+
p∑

k 6=j

f̂jk(xj ,xk)
︸ ︷︷ ︸

second order effects

+ . . . =
p∑

k=0

∑
S⊆{1,...,p},
|S|=k

f̂S(xS),

where xj denotes the realizations of the j-th feature with j = 1, . . . , p. Many model-agnostic
methods often quantify or visualize the first order (i.e., main effects) or second order feature
effects (i.e., interaction effects) on a local or global level and neglect the higher-order effects.
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A local feature effect method is the ICE plot (Goldstein et al., 2015), which visualizes the marginal
relationship of a feature and the target feature for individual observations by plotting a single curve
for each observation. Typically, only the first order or second order effects are visualized while
higher-order effects are neglected. SHAP values (Strumbelj and Kononenko, 2014; Lundberg and
Lee, 2017) decompose the prediction of an individual observation into components attributable
to each feature. This means that instead of neglecting the higher-order effects, SHAP values aim
at fairly distributing the higher-order effects toward each individual feature based on the Shapley
value from cooperative game theory (cf. Shapley, 1953). Another method with local scope is
LIME (Ribeiro et al., 2016), which locally fits a surrogate model around a single observation
based on artificially created observations in the neighborhood of the considered observation to be
explained.

A global feature effect method is the PD plot (Friedman, 2001), as it visualizes the marginal
relationship of a feature and the target feature across its range of feature values on a global level.
Specifically, the PD plot is the pointwise average of the ICE curves. Examples of global methods
that output a single quantitative summary statistic per feature include average marginal effects
(AME) (Leeper, 2017) and other methods based on (averaging) partial derivatives (Ancona et al.,
2018). However, such derivative-based methods are often restricted to differentiable algorithms,
such as logistic regression or neural networks.

Variance-Based Feature Importance

This paragraph briefly describes two types of variance-based feature importance methods. The
first type is related to the idea of variance-based sensitivity analysis. Its aim is to decompose the
overall variance of the model predictions into variance components attributable to each feature.
For this task, it is possible to use methods from global sensitivity analysis (e.g., Sobol’ indices
(Sobol’, 1990; Iooss and Lemâıtre, 2015)) or methods from cooperative game theory (e.g., Shapley
values (Shapley, 1953; Owen, 2014)).

The second type is based on the idea that if varying the values of a feature does not significantly
change model predictions (i.e., if the variance is low), the considered feature may be considered
less important. Here, it is possible to use the variability of the PD plot of a feature as a measure
of feature importance. As mentioned, the PD curve visualizes the feature effect on a global level.
Thus, a “flat” curve indicates that changing the feature values does not significantly affect the
feature effect. Therefore, such a feature can be considered less important. Two methods based on
this idea are the feature importance ranking measure (FIRM) (Zien et al., 2009) and the method
described in Greenwell et al. (2018).

Performance-Based Feature Importance

The permutation importance introduced in Breiman (2001) belongs to the performance-based
feature importance methods. However, the method is not a model-agnostic method, since it
was initially introduced for random forests. Nevertheless, its main idea of permuting a feature
and measuring the associated drop in performance can also be performed in a model-agnostic
fashion. A model-agnostic counterpart of the permutation importance called model reliance was
first described in Fisher et al. (2018). However, several implementations in various software tools
have already been carried out before. For example, in Microsoft AzureML (Bleik, 2015; Team,
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2016) and in the eli5 package for Python (Korobov and Lopuhin, 2017), there has already been an
implementation for years.

The contribution in Chapter 7 introduces a performance-based feature importance measure with
local scope. The idea is based on decomposing the model reliance of a feature into parts attributable
to individual observations. Specifically, using the terminology regarding the output type from the
proposed ontology, the individual conditional importance (ICI) curve is regarded as a visualization
method, and the integral of the ICI curves is regarded as a summary statistic. Furthermore,
the pointwise average of all ICI curves yields another novel visualization method with global
scope, namely the partial importance (PI) curve, where its integral results in the model reliance.
From this point of view, the model reliance can be categorized as a summary statistic with
global scope. Chapter 7 also proposes another summary statistic with global scope, namely the
Shapley feature importance measure (SFIMP), which aims at decomposing the model performance
into parts attributable to each feature based on the Shapley value (Shapley, 1953). Thus, the
proposed method is inspired by the two decomposition methods described above, namely the
SHAP values (Strumbelj and Kononenko, 2014; Lundberg and Lee, 2017) for decomposing the
feature effects and the variance-based feature importance method described in (Owen, 2014) for
decomposing the variance of the model predictions. The only difference is that SFIMP decomposes
the model performance instead of the variance of the model predictions or the model predictions
themselves.
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3. Multilabel Classification with R Package mlr

Chapter 3 describes several methods for multilabel classification that were also implemented into
our R package mlr (Bischl et al., 2016). Furthermore, the methods are compared in a benchmark
study on several multilabel datasets using different observation-based multilabel performance mea-
sures.
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Multilabel Classification with R Package
mlr
by Philipp Probst, Quay Au, Giuseppe Casalicchio, Clemens Stachl and Bernd Bischl

Abstract We implemented several multilabel classification algorithms in the machine learning package
mlr. The implemented methods are binary relevance, classifier chains, nested stacking, dependent
binary relevance and stacking, which can be used with any base learner that is accessible in mlr.
Moreover, there is access to the multilabel classification versions of randomForestSRC and rFerns.
All these methods can be easily compared by different implemented multilabel performance measures
and resampling methods in the standardized mlr framework. In a benchmark experiment with several
multilabel datasets, the performance of the different methods is evaluated.

Introduction

Multilabel classification is a classification problem where multiple target labels can be assigned to each
observation instead of only one, like in multiclass classification. It can be regarded as a special case of
multivariate classification or multi-target prediction problems, for which the scale of each response
variable can be of any kind, for example nominal, ordinal or interval.

Originally, multilabel classification was used for text classification (McCallum, 1999; Schapire and
Singer, 2000) and is now used in several applications in different research fields. For example, in
image classification, a photo can belong to the classes mountain and sunset simultaneously. Zhang
and Zhou (2008) and others (Boutell et al., 2004) used multilabel algorithms to classify scenes on
images of natural environments. Furthermore, gene functional classifications is a popular application
of multilabel learning in the field of biostatistics (Elisseeff and Weston, 2002; Zhang and Zhou, 2008).
Additionally, multilabel classification is useful to categorize audio files. Music genres (Sanden and
Zhang, 2011), instruments (Kursa and Wieczorkowska, 2014), bird sounds (Briggs et al., 2013) or even
emotions evoked by a song (Trohidis et al., 2008) can be labeled with several categories. A song could,
for example, be classified both as a rock song and a ballad.

An overview of multilabel classification was given by Tsoumakas and Katakis (2007). Two different
approaches exist for multilabel classification. On the one hand, there are algorithm adaptation methods
that try to adapt multiclass algorithms so they can be applied directly to the problem. On the other
hand, there are problem transformation methods, which try to transform the multilabel classification
into binary or multiclass classification problems.

Regarding multilabel classification software, there is the mldr (Charte and Charte, 2015) R package
that contains some functions to get basic characteristics of specific multilabel datasets. The package
is also useful for transforming multilabel datasets that are typically saved as ARFF-files (Attribute-
Relation File Format) to data frames and vice versa. This is especially helpful because until now
only the software packages MEKA (Read and Reutemann, 2012) and Mulan (Tsoumakas et al., 2011)
were available for multilabel classification and both require multilabel datasets saved as ARFF-files
to be executed. Additionally, the mldr package provides a function that applies the binary relevance
or label powerset transformation method which transforms a multilabel dataset into several binary
datasets (one for each label) or into a multiclass dataset using the set of labels for each observation as a
single target label, respectively. However, there is no R package that provides a standardized interface
for executing different multilabel classification algorithms. With the extension of the mlr package
described in this paper, it will be possible to execute several multilabel classification algorithms in R
with many different base learners.

In the following section of this paper, we will describe the implemented multilabel classification
methods and then give a practical instruction of how to execute these algorithms in mlr. Finally, we
present a benchmark experiment that compares the performance of all implemented methods on
several datasets.

Multilabel classification methods implemented in mlr

In this section, we present multilabel classification algorithms that are implemented in the mlr package
(Bischl et al., 2016), which is a powerful and modularized toolbox for machine learning in R. The
package offers a unified interface to more than a hundred learners from the areas classification,
regression, cluster analysis and survival analysis. Furthermore, the package provides functions and
tools that facilitate complex workflows such as hyperparameter tuning (see, e.g., Lang et al., 2015) and
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feature selection that can now also be applied to the multilabel classification methods presented in
this paper. In the following, we list the algorithm adaptation methods and problem transformation
methods that are currently available in mlr.

Algorithm adaptation methods

The rFerns (Kursa and Wieczorkowska, 2014) package contains an extension of the random ferns algo-
rithm for multilabel classification. In the randomForestSRC (Ishwaran and Kogalur, 2016) package,
multivariate classification and regression random forests can be created. In the classification case, the
difference to standard random forests is that a composite normalized Gini index splitting rule is used.
Multilabel classification can be achieved by using binary encoding for the labels.

Problem transformation methods

Problem transformation methods try to transform the multilabel classification problem so that a simple
binary classification algorithm, the so-called base learner, can be applied.

Let n be the number of observations, let p be the number of predictor variables and let Z =
{z1, . . . , zm} be the set of all labels. Observations follow an unknown probability distribution P on
X × Y , where X is a p−dimensional input space of arbitrary measurement scales and Y = {0, 1}m

is the target space. In our notation, x(i) =
(

x(i)1 , . . . , x(i)p

)>
∈ X refers to the i-th observation and

xj =
(

x(1)j , . . . , x(n)j

)>
refers to the j-th predictor variable, for all i = 1, . . . , n and j = 1, . . . , p. The

observations x(i) are associated with their multilabel outcomes y(i) =
(

y(i)1 , . . . , y(i)m

)>
∈ Y , for all

i = 1, . . . , n. For all k = 1, . . . , m, setting y(i)k = 1 indicates the relevance, i.e., the occurrence, of label

zk for observation x(i) and setting y(i)k = 0 indicates the irrelevance of label zk for observation x(i).

The set of all instances thus becomes D =
{(

x(1), y(1)
)

,
(

x(2), y(2)
)

, . . . ,
(

x(n), y(n)
)}

. Furthermore,

yk =
(

y(1)k , . . . , y(n)k

)>
refers to the k-th target vector, for all k = 1, . . . , m. Throughout this paper, we

visualize multilabel classification problems in the form of tables (n = 6, p = 3, m = 3):

D =̂

x1 x2 x3 y1 y2 y3
0 0 1
1 0 1
1 1 0
1 1 1
1 1 0
1 1 0

(1)

The entries of x1, x2, x3 can be of any (valid) kind, like continuous, binary, or categorical. The
table in (1) visualizes this as an empty gray background. The target variables are indicated by a red
background and can only take the binary values 0 or 1.

Binary relevance

The binary relevance method (BR) is the simplest problem transformation method. BR learns a binary
classifier for each label. Each classifier C1, . . . , Cm is responsible for predicting the relevance of their
corresponding label by a 0/1 prediction:

Ck : X −→ {0, 1}, k = 1, . . . , m

These binary prediction are then combined to a multilabel target. An unlabeled observation x(l) is

assigned the prediction
(

C1

(
x(l)
)

, C2

(
x(l)
)

, . . . , Cm

(
x(l)
))>

. Hence, labels are predicted indepen-
dently of each other and label dependencies are not taken into account. BR has linear computational
complexity with respect to the number of labels and can easily be parallelized.

Modeling label dependence

In the problem transformation setting, the arguably simplest way (Montañés et al., 2014) to model
label dependence is to condition classifier models not only on X , but also on other label information.
The idea is to augment the input space X with information of the output space Y , which is available
in the training step. There are different ways to realize this idea of augmenting the input space. In
essence, they can be distinguished in the following way:
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• Should the true label information be used? (True vs. predicted label information)

• For predicting one label zk, should all other labels augment the input space, or only a subset of
labels? (Full vs. partial conditioning)

True vs. predicted label information

During the training of a classifier Ck for the label zk, the label information of other labels are available
in the training data. Consequently, these true labels can directly be used as predictors to train the
classifier. Alternatively, the predictions that are produced by some classifier can be used instead of the
true labels.

A classifier, which is trained on additional labels as predictors, needs those additional labels as
input variables. Since these labels are not available at prediction time, they need to be predicted first.
When the true label information is used to augment the feature space in the training of a classifier,
the assumption that the training data and the test data should be identically distributed is violated
(Senge et al., 2013). If the true label information is used in the training data and the predicted label
information is used in the test data, the training data is not representative for the test data. However,
experiments (Montañés et al., 2014; Senge et al., 2013) show that none of these methods should be
dismissed immediately. Note that we use the superscript “true” or “pred” to emphasize that a classifier
Ctrue

k or Cpred
k used true labels or predicted labels as additional predictors during training, respectively.

Suppose there are n = 6 observations with p = 3 predictors and m = 3 labels. The true label y3
shall be used to augment the feature space of a binary classifier Ctrue

1 for label y1. Ctrue
1 is thus trained

on all predictors and the true label y3. The binary classification task for label y1 is therefore:

Train Ctrue
1 on

x1 x2 x3 y3 y1
0 0
1 1
0 1
1 1
0 1
0 1

to predict y1 (2)

For an unlabeled observation x(l), only the three predictor variables x(l)1 , . . . , x(l)3 are available at

prediction time. However, the classifier Ctrue
1 needs a 4-dimensional observation

(
x(l), y(l)3

)
as input.

The input y(l)3 therefore needs to be predicted first. A new level-1 classifier Clvl1
3 , which is trained on

the set D′ = ∪6
i=1

{(
x(i), y(i)3

)}
, will make those predictions for y(l)3 . The training task is:

Train C1vl1
3 on D′ =̂

x1 x2 x3 y3
1
1
0
1
0
0

to predict y3 (3)

Therefore, for a new observation x(l), the predicted label ŷ(l)3 is obtained by using Clvl1
3 on x(l). The

final prediction for y(l)1 is then obtained by using Ctrue
1 on

(
x(l), ŷ(l)3

)
.

The alternative to (2) would be to use predicted labels ŷ3 instead of true labels y3. These labels
should be produced by means of an out-of-sample prediction procedure (Senge et al., 2013). This can be
done by an internal leave-one-out cross-validation procedure, which can of course be computationally
intensive. Because of this, coarser resampling strategies can be used. As an example, an internal 2-fold

cross-validation will be shown here. Again, let D′ = ∪6
i=1

{(
x(i), y(i)3

)}
be the set of all predictor

variables with y3 as target variable. Using 2-fold cross-validation, the dataset D′ is split into two parts

D′1 = ∪3
i=1

{(
x(i), y(i)3

)}
and D′2 = ∪6

i=4

{(
x(i), y(i)3

)}
:

x1 x2 x3 y3
1

D′1 1
0
1

D′2 0
0

(4)

Two classifiers CD′1
and CD′2 are then trained on D′1 and D′2, respectively, for the prediction of y3:

Train CD′1
on

x1 x2 x3 y3
1

D′1 1
0

to predict y3, Train CD′2 on
x1 x2 x3 y3

1
D′2 0

0

to predict y3
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Following the cross-validation paradigm, D′1 is used as test set for the classifier CD′2 , and D′2 is
used as a test set for CD′1

:

CD′2 :
x1 x2 x3

D′1
7→

ŷ3
1
0
0

, CD′1
:

x1 x2 x3

D′2
7→

ŷ3
0
0
1

These predictions are merged for the final predicted label ŷ3, which is used to augment the feature
space. The classifier Cpred

1 is then trained on that augmented feature space:

Train Cpred
1 on

x1 x2 x3 ŷ3 y1
1 0
0 1
0 1
0 1
0 1
1 1

to predict y1 (5)

The prediction phase is completely analogous to (3). It is worthwhile to mention that the level-1
classifier Clvl1

3 , which will be used to obtain predictions ŷ3 at prediction time, is trained on the whole
set D′ = D′1 ∪ D′2, following Simon (2007).

Full vs. partial conditioning

Recall the set of all labels Z = {z1, . . . , zm}. The prediction of a label zk can either be conditioned on
all remaining labels {z1, . . . , zk−1, zk+1, . . . , zm} (full conditioning) or just on a subset of labels (partial
conditioning). The only method for partial conditioning, which is examined in this paper, is the chaining
method. Here, labels zk are conditioned on all previous labels {z1, . . . , zk−1} for all k = 1, . . . , m. This
sequential structure is motivated by the product rule of probability (Montañés et al., 2014):

P
(

y(i)
∣∣∣x(i)

)
=

m

∏
k=1

P
(

y(i)k

∣∣∣x(i), y(i)1 , . . . , y(i)k−1

)
(6)

Methods that make use of this chaining structure are e.g., classifier chains or nested stacking (these
methods will be discussed further below).

To sum up the discussions above: there are four ways in modeling label dependencies through
conditioning labels zk on other labels z`, k 6= `. They can be distinguished by the subset of labels,
which are used for conditioning, and by the use of predicted or real labels in the training step. In
Table 1 we show the four methods, which implement these ideas and describe them consequently.

True labels Pred. labels

Partial cond. Classifier chains Nested stacking
Full cond. Dependent binary relevance Stacking

Table 1: Distinctions in modeling label dependence and models

Classifier chains

The classifier chains (CC) method implements the idea of using partial conditioning together with the
true label information. It was first introduced by Read et al. (2011). CC selects an order on the set of
labels {z1, . . . , zm}, which can be formally written as a bijective function (permutation):

τ : {1, . . . , m} −→ {1, . . . , m} (7)

Labels will be chained along this order τ:

zτ(1) → zτ(2) → . . .→ zτ(m) (8)

However, for this paper the permutation shall be τ = id (only for simplicity reasons). The labels
therefore follow the order z1 → z2 → . . . → zm. In a similar fashion to the binary relevance (BR)
method, CC trains m binary classifiers Ck, which are responsible for predicting their corresponding
label zk, k = 1, . . . , m. The classifiers Ck are of the form

Ck : X × {0, 1}k−1 −→ {0, 1}, (9)
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where {0, 1}0 := ∅. For a classifier Ck the feature space is augmented by the true label information
of all previous labels z1, z2, . . . , zk−1. Hence, the training data of Ck consists of all observations((

x(i), y(i)1 , y(i)2 , . . . , y(i)k−1

)
, y(i)k

)
, i = 1, . . . , n, with the target y(i)k . In the example from above, this

would look like:

Train C1 on

x1 x2 x3 y1
0
1
1
1
1
1

Train C2 on

x1 x2 x3 y1 y2
0 0
1 0
1 1
1 1
1 1
1 1

Train C3 on

x1 x2 x3 y1 y2 y3
0 0 1
1 0 1
1 1 0
1 1 1
1 1 0
1 1 0

(10)

At prediction time, when an unlabeled observation x(l) is labeled, a prediction
(

ŷ(l)1 , . . . , ŷ(l)m

)
is

obtained by successively predicting the labels along the chaining order:

ŷ(l)1 = C1

(
x(l)
)

ŷ(l)2 = C2

(
x(l), ŷ(l)1

)

...

ŷ(l)m = Cm

(
x(l), ŷ(l)1 , ŷ(l)2 , . . . , ŷ(l)m−1

)

(11)

The authors of Senge et al. (2013) summarize several factors, which have an impact on the
performance of CC:

• The length of the chain. A high number (k− 1) of preceding classifiers in the chain comes with a
high potential level of feature noise for the classifier Ck. One may assume that the probability of
a mistake will increase with the level of feature noise in the input space. Then the probability of
a mistake will be reinforced along the chain, due to the recursive structure of CC.

• The order of the chain. Some labels may be more difficult to predict than others. The order of a
chain can therefore be important for the performance. It can be advantageous to put simple to
predict labels in the beginning and harder to predict labels more towards the end of the chain.
Some heuristics for finding an optimal chain ordering have been proposed in da Silva et al.
(2014); Read et al. (2013). Alternatively Read et al. (2011) developed an ensemble of classifier
chains, which builds many randomly ordered CC-classifiers and put them on a voting scheme
for a prediction. However, these methods are not subject of this article.

• The dependency among labels. For an improvement of performance through chaining, there should
be a dependence among labels, CC cannot gain in case of label independence. However, CC is
also only likely to lose if the binary classifiers Ck cannot ignore the added features y1, . . . , yk−1.

Nested stacking

The nested stacking method (NST), first proposed in Senge et al. (2013), implements the idea of using
partial conditioning together with predicted label information. NST mimicks the chaining structure of
CC, but does not use real label information during training. Like in CC the chaining order shall be
τ = id , again for simplicity reasons. CC uses real label information yk during training and predicted
labels ŷk at prediction time. However, unless the binary classifiers are perfect, it is likely that yk and
ŷk do not follow the same distribution. Hence, the key assumption of supervised learning, namely
that the training data should be representative for the test data, is violated by CC. Nested stacking
tries to overcome this issue by using predicted labels ŷk instead of true labels yk.

NST trains m binary classifiers Ck on Dk := ∪n
i=1

{((
x(i), ŷ(i)1 , . . . , ŷ(i)k−1

)
, y(i)k

)}
, for all k =

1, . . . , m. The predicted labels should be obtained by an internal out-of-sample method (Senge et al.,
2013). How these predictions are obtained was already explained in the True vs. Predicted Label
Information chapter. The prediction phase is completely analogous to (11).

The training procedure is visualized in the following with 2-fold cross-validation as an internal
out-of-sample method:

Train C1 on

x1 x2 x3 y1
0
1
1
1
1
1

Use 2-fold CV on

x1 x2 x3 y1
0
1
1
1
1
1

to obtain

ŷ1
1
1
1
1
0
1

(12)
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Train C2 on

x1 x2 x3 ŷ1 y2
1 0
1 0
1 1
1 1
0 1
1 1

Use 2-fold CV on

x1 x2 x3 ŷ1 y2
1 0
1 0
1 1
1 1
0 1
1 1

to obtain

ŷ2
1
1
1
0
1
0

(13)

Train C3 on

x1 x2 x3 ŷ1 ŷ2 y3
1 1 1
1 1 1
1 1 0
1 0 1
0 1 0
1 0 0

(14)

The factors which impact the performance of CC (i.e., length and order of the chain, and the
dependency among labels), also impact NST, since NST mimicks the chaining method of CC.

Dependent binary relevance

The dependent binary relevance method (DBR) implements the idea of using full conditioning together
with the true label information. DBR is built on two main hypotheses (Montañés et al., 2014):

(i) Taking conditional label dependencies into account is important for performing well in multil-
abel classification tasks.

(ii) Modeling and learning these label dependencies in an overcomplete way (take all other labels
for modeling) may further improve model performance.

The first assumption is the main prerequisite for research in multilabel classification. It has been shown
theoretically that simple binary relevance classifiers cannot achieve optimal performance for specific
multilabel loss functions (Montañés et al., 2014). The second assumption, however, is harder to justify
theoretically. Nonetheless, the practical usefulness of learning in an overcomplete way has been shown
in many branches of (classical) single-label classification (e.g., ensemble methods (Dietterich, 2000)).

Formally, DBR trains m binary classifiers C1, . . . , Cm (as many classifiers as labels) on the corre-
sponding training data

Dk = ∪n
i=1

{((
x(i), y(i)1 , . . . , y(i)k−1, y(i)k+1, . . . , y(i)m

)
, y(i)k

)}
, (15)

k = 1, . . . , m. Thus, each classifier Ck is of the form

Ck : X × {0, 1}m−1 −→ {0, 1}.

Hence, for each classifier Ck the true label information of all labels except yk is used as augmented
features. Again, here is a visualization with the example from above:

Train C1 on

x1 x2 x3 y2 y3 y1
0 1 0
0 1 1
1 0 1
1 1 1
1 0 1
1 0 1

Train C2 on

x1 x2 x3 y1 y3 y2
0 1 0
1 1 0
1 0 1
1 1 1
1 0 1
1 0 1

Train C3 on

x1 x2 x3 y1 y2 y3
0 0 1
1 0 1
1 1 0
1 1 1
1 1 0
1 1 0

(16)

To make these classifiers applicable, when an unlabeled instance x(l) needs to be labeled, the help

of other multilabel classifiers is needed to produce predicted labels ŷ(l)1 , . . . ., ŷ(l)m as additional features.
The classifiers, which produce predicted labels as additional features, are called base learners (Montañés
et al., 2014). Theoretically any multilabel classifier can be used as base learner. However, in this paper,
the analysis is focused on BR as base learner only. The prediction of an unlabeled instance x(l) formally
works as follows:

(i) First level: Produce predicted labels by using the BR base learner:

CBR

(
x(l)
)
=
(

ŷ(l)1 , . . . , ŷ(l)m

)
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(ii) Second level, which is also called meta level (Montañés et al., 2014): Produce final prediction
ˆ̂yk =

(
ˆ̂y(l)1 , . . . , ˆ̂y(l)m

)
by applying DBR classifiers C1, . . . , Cm:

C1

(
x(l), ŷ(l)2 , . . . , ŷ(l)m

)
= ˆ̂y(l)1

C2

(
x(l), ŷ(l)1 , ŷ(l)3 , . . . , ŷ(l)m

)
= ˆ̂y(l)2

...

Cm

(
x(l), ŷ(l)1 , . . . , ŷ(l)m−1

)
= ˆ̂y(l)m

Stacking

Stacking (STA) implements the last variant of Table 1, namely the use of full conditioning together
with predicted label information. Stacking is short for stacked generalization (Wolpert, 1992) and was
first proposed in the multilabel context by Godbole and Sarawagi (2004). Like in classical stacking, for
each label it takes predictions of several other learners that were trained in a first step to get a new
learner to make predictions for the corresponding label. Both hypotheses on which DBR is built on
also apply to STA, of course.

STA trains m classifiers C1, . . . , Cm on the corresponding training data

Dk = ∪n
i=1

{((
x(i), ŷ(i)1 , . . . , ŷ(i)m

)
, y(i)k

)}
, k = 1, . . . , m. (17)

The classifiers Ck, k = 1, . . . , m, are therefore of the following form:

Ck : X × {0, 1}m −→ {0, 1}

Like in NST, the predicted labels should be obtained by an internal out-of-sample method (Sill et al.,
2009). STA can be seen as the alternative to DBR using predicted labels (like NST is for CC). However,
the classifiers Ck, k = 1, . . . , m, are trained on all predicted labels ŷ1, . . . , ŷm for the STA approach (in
DBR the label yk is left out of the augmented training set).

The training procedure is outlined in the following:

For i=1,2,3 use 2-fold CV on

x1 x2 x3 yk

y(1)k
y(2)k
y(3)k
y(4)k
y(5)k
y(6)k

to obtain

ŷk

ŷ(1)k
ŷ(2)k
ŷ(3)k
ŷ(4)k
ŷ(5)k
ŷ(6)k

(18)

For i=1,2,3 train Ck on

x1 x2 x3 ŷ1 ŷ2 ŷ3 yk

ŷ(1)1 ŷ(1)2 ŷ(1)3 y(1)k
ŷ(2)1 ŷ(2)2 ŷ(2)3 y(2)k
ŷ(3)1 ŷ(3)2 ŷ(3)3 y(3)k
ŷ(4)1 ŷ(4)2 ŷ(4)3 y(4)k
ŷ(5)1 ŷ(5)2 ŷ(5)3 y(5)k
ŷ(6)1 ŷ(6)2 ŷ(6)3 y(6)k

(19)

Like in DBR, STA depends on a BR base learner, to produce predicted labels as additional features.
Again, the use of BR as a base learner is not mandatory, but it is the proposed method in Godbole and
Sarawagi (2004).

The prediction of an unlabeled instance x(l) works almost identically to the DBR case and is
illustrated here:

(i) First level. Produce predicted labels by using the BR base learner:

CBR

(
x(l)
)
=
(

ŷ(l)1 , . . . , ŷ(l)m

)

(ii) Meta level. Apply STA classifiers C1, . . . , Cm:

C1

(
x(l), ŷ(l)1 , . . . , ŷ(l)m

)
= ˆ̂y(l)1

...

Cm

(
x(l), ŷ(l)1 , . . . , ŷ(l)m

)
= ˆ̂y(l)m
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Multilabel performance measures

Analogously to multiclass classification there exist multilabel classification performance measures. Six
multilabel performance measures can be evaluated in mlr. These are: Subset 0/1 loss, hamming loss,
accuracy, precision, recall and F1-index. Multilabel performance measures are defined on a per instance
basis. The performance on a test set is the average over all instances.

Let Dtest =
{(

x(1), y(1)
)

, . . . ,
(

x(n), y(n)
)}

be a test set with y(i) =
(

y(i)1 , . . . , y(i)m

)
∈ {0, 1}m for

all i = 1, . . . , n. Performance measures quantify how good a classifier C predicts the labels z1, . . . , zn.

(i) The subset 0/1 loss is used to see if the predicted labels C(x(i)) =
(

ŷ(i)1 , . . . , ŷ(i)m

)
are equal to

the actual labels
(

y(i)1 , . . . , y(i)m

)
:

subset0/1

(
C,
(

x(i), y(i)
))

= 1(y(i) 6=C(x(i))) :=





1 if y(i) 6= C
(

x(i)
)

0 if y(i) = C
(

x(i)
)

The subset 0/1 loss of a classifier C on a test set Dtest thus becomes:

subset0/1 (C, Dtest) =
1
n

n

∑
i=1

1y(i) 6=C(x(i))

The subset 0/1 loss can be interpreted as the analogon of the mean misclassification error in
multiclass classifications. In the multilabel case it is a rather drastic measure because it treats a
mistake on a single label as a complete failure (Senge et al., 2013).

(ii) The hamming loss also takes into account observations where only some labels have been
predicted correctly. It corresponds to the proportion of labels whose relevance is incorrectly

predicted. For an instance
(

x(i), y(i)
)

=
(

x(i),
(

y(i)1 , . . . , y(i)m

))
and a classifier C

(
x(i)
)

=
(

ŷ(i)1 , . . . , ŷ(i)m

)
this is defined as:

HammingLoss
(

C,
(

x(i), y(i)
))

=
1
m

m

∑
k=1

1(
y(i)k 6=ŷ(i)k

)

If one label is predicted incorrectly, this accounts for an error of 1
m . For a test set Dtest the

hamming loss becomes:

HammingLoss(C, Dtest) =
1
n

n

∑
i=1

1
m

m

∑
k=1

1(
y(i)k 6=ŷ(i)k

)

The following measures are scores instead of loss function like the two previous ones.

(iii) The accuracy, also called Jaccard-Index, for a test set Dtest is defined as:

accuracy(C, Dtest) =
1
n

n

∑
i=1

∑m
k=1 1

(
y(i)k =1 and ŷ(i)k =1

)

∑m
k=1 1

(
y(i)k =1 or ŷ(i)k =1

)

(iv) The precision for a test set Dtest is defined as:

precision(C, Dtest) =
1
n

n

∑
i=1

∑m
k=1 1

(
y(i)k =1 and ŷ(i)k =1

)

∑m
k=1 1

(
ŷ(i)k =1

)

(v) The recall for a test set Dtest is defined as:

recall(C, Dtest) =
1
n

n

∑
i=1

∑m
k=1 1

(
y(i)k =1 and ŷ(i)k =1

)

∑m
k=1 1

(
y(i)k =1

)

(vi) For a test set Dtest the F1-index is defined as follows:

F1(C, Dtest) =
1
n

n

∑
i=1

2 ∑m
k=1 1

(
y(i)k =1 and ŷ(i)k =1

)

∑m
k=1

(
1(

y(i)k =1
) + 1(

ŷ(i)k =1
)
)
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The F1-index is the harmonic mean of recall and precision on a per instance basis.

All these measures lie between 0 and 1. In the case of the subset 0/1 loss and the hamming loss
the values should be low, in all other cases the scores should be high. Demonstrative definitions with
sets instead of vectors can be seen in Charte and Charte (2015).

Implementation

In this section, we briefly describe how to perform multilabel classifications in mlr. We provide
small code examples for better illustration. A short tutorial is also available at http://mlr-org.
github.io/mlr-tutorial/release/html/multilabel/index.html. The first step is to transform the
multilabel dataset into a ‘data.frame’ in R. The columns must consist of vectors of features and one
logical vector for each label that indicates if the label is present for the observation or not. To fit a
multilabel classification algorithm in mlr, a multilabel task has to be created, where a vector of targets
corresponding to the column names of the labels has to be specified. This task is an S3 object that
contains the data, the target labels and further descriptive information. In the following example, the
yeast data frame is extracted from the yeast.task, which is provided by the mlr package. Then the 14
label names of the targets are extracted and the multilabel task is created.

yeast = getTaskData(yeast.task)
labels = colnames(yeast)[1:14]
yeast.task = makeMultilabelTask(id = "multi", data = yeast, target = labels)

Problem transformation methods

To generate a problem transformation method learner, a binary classification base learner has to
be created with ‘makeLearner’. A list of available learners for classifications in mlr can be seen
at http://mlr-org.github.io/mlr-tutorial/release/html/integrated_learners/. Specific hyper-
parameter settings of the base learner can be set in this step through the ‘par.vals’ argument in
‘makeLearner’. Afterwards, a learner for any problem transformation method can be created by ap-
plying the function ‘makeMultilabel[. . .]Wrapper’, where [. . .] has to be substituted by the desired
problem transformation method. In the following example, two multilabel variants with rpart as base
learner are created. The base learner is configured to output probabilities instead of discrete labels
during prediction.

lrn = makeLearner("classif.rpart", predict.type = "prob")
multilabel.lrn1 = makeMultilabelBinaryRelevanceWrapper(lrn)
multilabel.lrn2 = makeMultilabelNestedStackingWrapper(lrn)

Algorithm adaptation methods

Algorithm adaptation method learners can be created directly with ‘makeLearner’. The names of
the specific learner can be looked up at http://mlr-org.github.io/mlr-tutorial/release/html/
integrated_learners/ in the multilabel section.

multilabel.lrn3 = makeLearner("multilabel.rFerns")
multilabel.lrn4 = makeLearner("multilabel.randomForestSRC")

Train, predict and evaluate

Training and predicting on data can be done as usual in mlr with the functions ‘train’ and ‘predict’.
Learner and task have to be specified in ‘train’; trained model and task or new data have to be
specified in ‘predict’.

mod = train(multilabel.lrn1, yeast.task, subset = 1:1500)
pred = predict(mod, task = yeast.task, subset = 1501:1600)

The performance of the prediction can be assessed via the function ‘performance’. Measures are
represented as S3 objects and multiple objects can be passed in as a list. The default measure for
multilabel classification is the hamming loss (multilabel.hamloss). All available measures for multilabel
classification can be shown by ‘listMeasures’ or looked up in the appendix of the tutorial page1

(http://mlr-org.github.io/mlr-tutorial/release/html/measures/index.html).

1In the mlr package precision is named positive predictive value and recall is named true positive rate.
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performance(pred, measures = list(multilabel.hamloss, timepredict))
multilabel.hamloss timepredict
0.230 0.174
listMeasures("multilabel")
# [1] "multilabel.ppv" "timepredict" "multilabel.hamloss" "multilabel.f1"
# [5] "featperc" "multilabel.subset01" "timeboth" "timetrain"
# [9] "multilabel.tpr" "multilabel.acc"

Resampling

To properly evaluate the model, a resampling strategy, for example k-fold cross-validation, should be
applied. This can be done in mlr by using the function ‘resample’. First, a description of the subsequent
resampling strategy, in this case three-fold cross-validation, is defined with ‘makeResampleDesc’. The
resample is executed by a call to the ‘resample’ function. The hamming loss is calculated for the binary
relevance method.

rdesc = makeResampleDesc(method = "CV", stratify = FALSE, iters = 3)
r = resample(learner = multilabel.lrn1, task = yeast.task, resampling = rdesc,
measures = list(multilabel.hamloss), show.info = FALSE)
r
# Resample Result
# Task: multi
# Learner: multilabel.classif.rpart
# multilabel.hamloss.aggr: 0.23
# multilabel.hamloss.mean: 0.23
# multilabel.hamloss.sd: 0.00
# Runtime: 6.36688

Binary performance

To calculate a binary performance measure like, e.g., the accuracy, the mean misclassification error
(mmce) or the AUC for each individual label, the function ‘getMultilabelBinaryPerformances’ can
be used. This function can be applied to a single multilabel test set prediction and also on a resampled
multilabel prediction. To calculate the AUC, predicted probabilities are needed. These can be obtained
by setting the argument ‘predict.type = "prob"’ in the ‘makeLearner’ function.

head(getMultilabelBinaryPerformances(r$pred, measures = list(acc, mmce, auc)))
# acc.test.mean mmce.test.mean auc.test.mean
# label1 0.7389326 0.2610674 0.6801810
# label2 0.5908151 0.4091849 0.5935160
# label3 0.6512205 0.3487795 0.6631469
# label4 0.6921804 0.3078196 0.6965552
# label5 0.7517584 0.2482416 0.6748458
# label6 0.7343815 0.2656185 0.6054968

Parallelization

In the case of a high number of labels and larger datasets, parallelization in the training and pre-
diction process of the multilabel methods can reduce computation time. This can be achieved by
using the package parallelMap in mlr (see also the tutorial section of parallelization: http://mlr-
org.github.io/mlr-tutorial/release/html/multilabel/index.html). Currently, only the binary
relevance method is parallelizable, the classifier for each label is trained in parallel, as they are inde-
pendent of each other. The other problem transformation methods will also be parallelizable (as far as
possible) soon.

library(parallelMap)
parallelStartSocket(2)
lrn = makeMultilabelBinaryRelevanceWrapper("classif.rpart")
mod = train(lrn, yeast.task)
pred = predict(mod, yeast.task)
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Benchmark experiment

In a similar fashion to Wang et al. (2014), we performed a benchmark experiment on several datasets
in order to compare the performances of the different multilabel algorithms.

Datasets: In Table 2 we provide an overview of the used datasets. We retrieved most datasets
from the Mulan Java library for multilabel learning2 as well as from other benchmark experiments of
multilabel classification methods. See Table 2 for article references. We uploaded all datasets to the
open data platform OpenML (Casalicchio et al., 2017; Vanschoren et al., 2013), so they now can be
downloaded directly from there. In some of the used datasets, sparse labels had to be removed in order
to avoid problems during cross-validation. Several binary classification methods have difficulties
when labels are sparse, i.e., a strongly imbalanced binary target class can lead to constant predictions
for that target. That can sometimes lead to direct problems in the base learners (when training on
constant class labels is simply not allowed) or, e.g., in classifier chains, when the base learner cannot
handle constant features. Furthermore, one can reasonably argue that not much is to be learned for
such a label. Hence, labels that appeared in less than 2% of the observations were removed. We
computed cardinality scores (based on the remaining labels) indicating the mean number of labels
assigned to each case in the respective dataset. The following description of the datasets refers to the
final versions after removal of sparse labels.

• The first dataset (birds) consists of 645 audio recordings of 15 different vocalizing bird species
(Briggs et al., 2013). Each sound can be assigned to various bird species.

• Another audio dataset (emotions) consists of 593 musical files with 6 clustered emotional labels
(Trohidis et al., 2008) and 72 predictors. Each song can be labeled with one or more of the labels
{amazed-surprised, happy-pleased, relaxing-calm, quiet-still, sad-lonely, angry-fearful}.

• The genbase dataset contains protein sequences that can be assigned to several classes of protein
families (Diplaris et al., 2005). The entire dataset contains 1186 binary predictors.

• The langLog3 dataset includes 998 textual predictors and was originally compiled in the doctorial
thesis of Read (2010). It consists of 1460 text samples that can be assigned to one or more topics
such as language, politics, errors, humor and computational linguistics.

• The UC Berkeley enron4 dataset represents a subset of the original enron5 dataset and consists of
1702 cases of emails with 24 labels and 1001 predictor variables (Klimt and Yang, 2004).

• A subset of the reuters6 dataset includes 2000 observations for text classification (Zhang and
Zhou, 2008).

• The image7 benchmark dataset consists of 2000 natural scene images. Zhou and ling Zhang
(2007) extracted 135 features for each image and made it publicly available as processed image
dataset. Each observation can be associated with different label sets, where all possible labels
are {desert, mountains, sea, sunset, trees}. About 22% of the images belong to more than one class.
However, images belonging to three classes or more are very rare.

• The scene dataset is an image classification task where labels like Beach, Mountain, Field, Urban
are assigned to each image (Boutell et al., 2004).

• The yeast dataset (Elisseeff and Weston, 2002) consists of micro-array expression data, as well as
phylogenetic profiles of yeast, and includes 2417 genes and 103 predictors. In total, 14 different
labels can be assigned to a gene, but only 13 labels were used due to label sparsity.

• Another dataset for text-classification is the slashdot8 dataset (Read et al., 2011). It consists of
article titles and partial blurbs. Blurbs can be assigned to several categories (e.g., Science, News,
Games) based on word predictors.

Algorithms: We used all multilabel classification methods currently implemented in mlr: binary
relevance (BR), classifier chains (CC), nested stacking (NST), dependent binary relevance (DBR) and
stacking (STA) as well as algorithm adaption methods of the rFerns (RFERN) and randomForestSRC
(RFSRC) packages. For DBR and STA the first level and meta level classifiers were equal. For CC and
NST we chose random chain orders for each resample iteration.

2http://mulan.sourceforge.net/datasets-mlc.html
3http://languagelog.ldc.upenn.edu/nll/
4http://bailando.sims.berkeley.edu/enron_email.html
5http://www.cs.cmu.edu/~enron/
6http://lamda.nju.edu.cn/data_MIMLtext.ashx
7http://lamda.nju.edu.cn/data_MIMLimage.ashx
8http://slashdot.org
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Dataset Reference # Inst. # Pred. # Labels Cardinality

birds* Briggs et al. (2013) 645 260 15 0.96
emotions Trohidis et al. (2008) 593 72 6 1.87
genbase* Diplaris et al. (2005) 662 112 16 1.20
langLog* Read (2010) 1460 998 18 0.85
enron* Klimt and Yang (2004) 1702 1001 24 3.12
reuters Zhang and Zhou (2008) 2000 243 7 1.15
image Zhou and ling Zhang (2007) 2000 135 5 1.24
scene Boutell et al. (2004) 2407 294 6 1.07
yeast* Elisseeff and Weston (2002) 2417 103 13 4.22
slashdot* Read et al. (2011) 3782 1079 14 1.13

Table 2: Used benchmark datasets including number of instances, number of predictor, number of
label and label cardinality. Datasets with an asterisk differ from the original dataset as sparse labels
have been removed. The genbase dataset contained many constant factor variables, which were
automatically removed by mlr.

Base Learners: We employed two different binary classification base learner for each problem
transformation algorithm: random forest (rf) of the randomForest package (Liaw and Wiener, 2002)
with ntree = 100 and adaboost (ad) from the ada package (Culp et al., 2012), each with standard
hyperparameter settings.

Performance Measures: We used the six previously proposed performance measures. Further-
more, we calculated the reported values by means of a 10-fold cross-validation.

Code: For reproducibility, the complete code and results can be downloaded from Probst (2017).
The R package batchtools (Bischl et al., 2015) was used for parallelization.

The results for hamming loss and F1-index are illustrated in Figure 1. Tables 3 and 4 contain
performance values with the best performing algorithms highlighted in blue. For all remaining
measures one may refer to the Appendix. We did not perform any threshold tuning that would
potentially improve some of the performance of the methods.

The results of the problem transformation methods in this benchmark experiment concur with the
general conclusions and results in Montañés et al. (2014). The authors ran a similar benchmark study
with penalized logistic regression as base learner. They concluded that, on average, DBR performs
well in F1 and accuracy. Also, CC outperform the other methods regarding the subset 0/1 loss most of
the time. For the hamming loss measure they got mixed results, with no clear winner concordant to
our benchmark results. As base learner, on average, adaboost performs better than random forest in
our benchmark study.

Considering the measure F1, the problem transformation methods DBR, CC, STA and NST out-
perform RFERN and RFSRC on most of the datasets and also almost always perform better than BR,
which does not consider dependencies among the labels. RFSRC and RFERN only perform well on
either precision or recall, but in order to be considered as good classifiers they should perform well on
both. The generally poor performances of RFERN can be explained by the working mechanism of the
algorithm which randomly chooses variables and split points at each split of a fern. Hence, it cannot
deal with too many features that are useless for the prediction of the target labels.

Summary

In this paper, we describe the implementation of multilabel classification algorithms in the R package
mlr. The problem transformation methods binary relevance, classifier chains, nested stacking, depen-
dent binary relevance and stacking are implemented and can be used with any base learner that is ac-
cessible in mlr. Moreover, there is access to the multilabel classification versions of randomForestSRC
and RFerns. We compare all of these methods in a benchmark experiment with several datasets and
different implemented multilabel performance measures. The dependent binary relevance method
performs well regarding the measures F1 and accuracy. Classifier chains outperform the other methods
in terms of the subset 0/1 loss most of the time. Parallelization is available for the binary relevance
method and will be available soon for the other problem transformation methods. Algorithm adapta-
tion methods and problem transformation methods that are currently not available can be incorporated
in the current mlr framework easily. In our benchmark experiment we had to remove labels which
occured too sparsely, because some algorithms crashed due to one class problems, which appeared
during cross-validation. A solution to this problem and an implementation into the mlr framework is
of great interest.
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Figure 1: Results for hamming loss and F1-index. The best performing algorithms are highlighted on
the plot.

BR(rf) CC(rf) NST(rf) DBR(rf) STA(rf) BR(ad) CC(ad) NST(ad) DBR(ad) STA(ad) RFERN RFSRC BR(fl)
birds* 0.0477 0.0479 0.0475 0.0472 0.0468 0.0442 0.0441 0.0436 0.0431 0.0429 0.4148 0.0510 0.0641

emotions 0.1779 0.1832 0.1818 0.1801 0.1753 0.181 0.1916 0.1849 0.1981 0.1863 0.2492 0.1832 0.3114
genbase* 0.0021 0.0023 0.0025 0.0027 0.0023 0.0003 0.0003 0.0003 0.0004 0.0003 0.0240 0.0006 0.0748
langLog* 0.0464 0.0465 0.0467 0.0464 0.0466 0.0451 0.0442 0.0446 0.0447 0.0448 0.6673 0.0466 0.0473

enron* 0.0903 0.0904 0.0902 0.0909 0.0891 0.0874 0.0913 0.0881 0.1045 0.0877 0.4440 0.0919 0.1279
reuters 0.0663 0.0654 0.0661 0.0629 0.065 0.0666 0.0814 0.0664 0.1926 0.0664 0.2648 0.0668 0.1649
image 0.1774 0.1791 0.1737 0.1761 0.1754 0.1714 0.1939 0.1721 0.2935 0.1717 0.2983 0.1802 0.2472
scene 0.0836 0.0809 0.0832 0.0796 0.0799 0.0791 0.0821 0.0796 0.0945 0.076 0.1827 0.0884 0.1790

yeast* 0.2038 0.2044 0.2023 0.2123 0.2008 0.2048 0.2105 0.2038 0.2221 0.2046 0.4178 0.2040 0.2486
slashdot* 0.0558 0.0560 0.0559 0.0559 0.0554 0.059 0.0635 0.0586 0.1382 0.0582 0.4925 0.0562 0.0811

Table 3: Hamming loss

BR(rf) CC(rf) NST(rf) DBR(rf) STA(rf) BR(ad) CC(ad) NST(ad) DBR(ad) STA(ad) RFERN RFSRC BR(fl)
birds* 0.6369 0.6342 0.6433 0.64 0.6459 0.6835 0.683 0.6867 0.6846 0.6895 0.1533 0.5929 0.4774

emotions 0.6199 0.6380 0.6192 0.6625 0.6337 0.6274 0.6449 0.6206 0.6598 0.615 0.6603 0.6046 0.0000
genbase* 0.9885 0.9861 0.9855 0.9835 0.9861 0.9977 0.9977 0.9977 0.9962 0.9977 0.9214 0.9962 0.0000
langLog* 0.3192 0.3194 0.3148 0.3199 0.3167 0.3578 0.3772 0.3686 0.3653 0.3643 0.2401 0.3167 0.2979

enron* 0.5781 0.5822 0.5791 0.5866 0.5826 0.592 0.6009 0.5906 0.6017 0.5917 0.2996 0.5446 0.3293
reuters 0.6708 0.6944 0.6769 0.7303 0.6846 0.6997 0.7537 0.7012 0.7556 0.7082 0.6296 0.6541 0.0000
image 0.4308 0.4835 0.4362 0.5561 0.4456 0.47 0.5814 0.4709 0.6085 0.4824 0.5525 0.3757 0.0000
scene 0.6161 0.6420 0.6161 0.6563 0.6326 0.6585 0.73 0.661 0.765 0.685 0.6647 0.5729 0.0000

yeast* 0.6148 0.6294 0.6180 0.6195 0.6244 0.6238 0.63 0.6257 0.616 0.6266 0.4900 0.5991 0.4572
slashdot* 0.4415 0.4562 0.4422 0.4716 0.4535 0.4009 0.4654 0.4052 0.5216 0.411 0.2551 0.4320 0.0325

Table 4: F1-index
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Appendices

BR(rf) CC(rf) NST(rf) DBR(rf) STA(rf) BR(ad) CC(ad) NST(ad) DBR(ad) STA(ad) RFERN RFSRC BR(fl)
birds* 0.4481 0.4481 0.4466 0.4497 0.4451 0.4156 0.4218 0.4171 0.4233 0.4202 0.9830 0.4777 0.5226

emotions 0.6846 0.6575 0.6728 0.6457 0.6626 0.6777 0.6643 0.7031 0.6845 0.6828 0.7992 0.6829 1.0000
genbase* 0.0333 0.0363 0.0393 0.0423 0.0363 0.0045 0.0045 0.0045 0.0060 0.0045 0.2115 0.0091 1.0000
langLog* 0.6836 0.6829 0.6884 0.6842 0.6856 0.6521 0.6349 0.6418 0.6438 0.6466 0.8589 0.6856 0.7021

enron* 0.8531 0.8413 0.8560 0.8408 0.8484 0.8496 0.819 0.8484 0.8320 0.8408 1.0000 0.8619 0.9982
reuters 0.3620 0.3405 0.3575 0.311 0.3515 0.349 0.2945 0.338 0.3495 0.3385 0.5830 0.3695 1.0000
image 0.6635 0.6150 0.6505 0.575 0.6445 0.63 0.539 0.6275 0.6225 0.619 0.8365 0.6955 1.0000
scene 0.4225 0.3926 0.4217 0.3835 0.4046 0.3913 0.3095 0.3805 0.3610 0.3648 0.7540 0.4570 1.0000

yeast* 0.8316 0.7600 0.8201 0.8167 0.8155 0.8304 0.7563 0.8134 0.8217 0.806 0.9338 0.8337 0.9855
slashdot* 0.6140 0.5994 0.6116 0.5859 0.6052 0.6489 0.5923 0.6449 0.6658 0.6396 0.9966 0.6142 0.9675

Table 5: Subset 0/1 loss

BR(rf) CC(rf) NST(rf) DBR(rf) STA(rf) BR(ad) CC(ad) NST(ad) DBR(ad) STA(ad) RFERN RFSRC BR(fl)
birds* 0.6153 0.6126 0.6197 0.6169 0.6232 0.6589 0.657 0.6604 0.6581 0.6621 0.0999 0.5753 0.4774

emotions 0.5453 0.5649 0.5464 0.5849 0.5609 0.5519 0.5676 0.5408 0.5727 0.5427 0.5503 0.5332 0.0000
genbase* 0.9834 0.9806 0.9796 0.9773 0.9806 0.9972 0.9972 0.9972 0.9957 0.9972 0.8884 0.9950 0.0000
langLog* 0.3185 0.3188 0.3140 0.3188 0.3161 0.3553 0.3741 0.366 0.363 0.3615 0.1953 0.3161 0.2979

enron* 0.4693 0.4757 0.4694 0.4804 0.4742 0.483 0.4987 0.4824 0.4919 0.4847 0.1859 0.4394 0.2241
reuters 0.6625 0.6856 0.6682 0.7199 0.6754 0.6873 0.7414 0.6912 0.7197 0.6964 0.5620 0.6482 0.0000
image 0.4068 0.4585 0.4142 0.5225 0.4228 0.4446 0.5508 0.4458 0.5366 0.4564 0.4467 0.3578 0.0000
scene 0.6064 0.6333 0.6067 0.6463 0.6233 0.646 0.7201 0.6505 0.7313 0.6725 0.5513 0.5654 0.0000

yeast* 0.5091 0.5320 0.5138 0.514 0.5205 0.5182 0.5345 0.522 0.5068 0.5239 0.3674 0.4945 0.3361
slashdot* 0.4274 0.4421 0.4285 0.4569 0.4385 0.3883 0.4507 0.3925 0.4613 0.3982 0.1651 0.4202 0.0325

Table 6: Accuracy

BR(rf) CC(rf) NST(rf) DBR(rf) STA(rf) BR(ad) CC(ad) NST(ad) DBR(ad) STA(ad) RFERN RFSRC BR(fl)
birds* 0.2763 0.2752 0.2897 0.2859 0.2936 0.3755 0.3865 0.3772 0.3687 0.3784 0.8352 0.1949 0.0000

emotions 0.6197 0.6474 0.6187 0.6847 0.6358 0.6335 0.6708 0.6293 0.7189 0.6237 0.8276 0.6001 0.0000
genbase* 0.9846 0.9819 0.9809 0.9786 0.9819 0.9977 0.9977 0.9977 0.9962 0.9977 0.9962 0.9955 0.0000
langLog* 0.0334 0.0330 0.0270 0.0331 0.0308 0.0971 0.1191 0.1056 0.0995 0.102 0.9264 0.0301 0.0000

enron* 0.5426 0.5487 0.5421 0.5580 0.5466 0.5611 0.5902 0.5619 0.6314 0.5633 0.771 0.4959 0.2613
reuters 0.6733 0.6959 0.6801 0.7338 0.6875 0.7038 0.754 0.7046 0.9032 0.7123 0.8598 0.6559 0.0000
image 0.4192 0.4696 0.4228 0.5562 0.4335 0.4581 0.5691 0.4603 0.7787 0.4724 0.7374 0.3598 0.0000
scene 0.6148 0.6373 0.6134 0.6555 0.6306 0.6614 0.7243 0.6613 0.8174 0.6879 0.9173 0.5662 0.0000

yeast* 0.5722 0.6097 0.5788 0.6035 0.5874 0.5951 0.6229 0.5978 0.6104 0.6013 0.6296 0.5442 0.3365
slashdot* 0.4267 0.4412 0.4270 0.4574 0.4391 0.3834 0.4526 0.3868 0.6984 0.3931 0.8065 0.4094 0.0000

Table 7: Recall

BR(rf) CC(rf) NST(rf) DBR(rf) STA(rf) BR(ad) CC(ad) NST(ad) DBR(ad) STA(ad) RFERN RFSRC BR(fl)
birds* 0.8812 0.8889 0.8764 0.9056 0.8874 0.8461 0.8349 0.8401 0.8648 0.8605 0.0859 0.8996

emotions 0.7627 0.7242 0.7499 0.7265 0.7644 0.7537 0.7014 0.739 0.6783 0.7347 0.5869 0.7577
genbase* 0.9987 0.9987 0.9987 0.9987 0.9987 0.9995 0.9995 0.9995 0.9995 0.9995 0.8917 0.9995
langLog* 0.7267 0.7356 0.7058 0.7207 0.6882 0.6874 0.7228 0.7133 0.7014 0.6965 0.0632 0.7233

enron* 0.7283 0.7188 0.7305 0.7092 0.7331 0.7235 0.6807 0.7198 0.6371 0.7233 0.1973 0.7448 0.5135
reuters 0.9411 0.9168 0.9346 0.8995 0.9298 0.9014 0.7689 0.8983 0.7465 0.8931 0.5715 0.9562
image 0.7899 0.7333 0.8029 0.7086 0.7865 0.7841 0.6281 0.7814 0.6036 0.7737 0.4813 0.83
scene 0.9071 0.8956 0.9112 0.8917 0.9143 0.8936 0.81 0.8856 0.7879 0.8872 0.5662 0.9233

yeast* 0.7372 0.7218 0.7351 0.7055 0.7389 0.7225 0.6947 0.7233 0.6827 0.7159 0.4361 0.7508 0.7478
slashdot* 0.8365 0.8127 0.8298 0.7927 0.8277 0.8119 0.6804 0.8161 0.5025 0.8196 0.1679 0.8366

Table 8: Precision (For the featureless learner we have no precision results for several datasets. The reason is that
the featureless learner does not predict any value in all observations in these datasets. Hence, the denominator in
the precision formula is always zero. mlr predicts NA in this case.)
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Figure 2: Results for the remaining measures.
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4. OpenML: An R Package to Connect to the
Machine Learning Platform OpenML

Chapter 4 introduces the R package OpenML, which provides a simple interface for communicating
with the OpenML server directly from within R and allows users to easily search, download, and
upload datasets and benchmark results.
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1 Introduction

OpenML is an online machine learning platform for sharing and organizing data,
machine learning algorithms and experiments (Vanschoren et al. 2013). It is designed
to create a frictionless, networked ecosystem (Nielsen 2012), allowing people all over
the world to collaborate and build directly on each other’s latest ideas, data and results.
Key elements of OpenML are data sets, tasks, flows and runs:

– Data sets can be shared (under a licence) by uploading them or simply linking to
existing data repositories (e.g., mldata.org, figshare.com). For known data formats
(e.g., ARFF for tabular data), OpenML will automatically analyze and annotate
the data sets with measurable characteristics to support detailed search and further
analysis.Data sets can be repeatedly updated or changed and are then automatically
versioned.

– Tasks can be viewed as containers including a data set and additional information
defining what is to be learned. They define which input data are given and which
output data should be obtained. For instance, classification tasks will provide the
target feature, the evaluation measure (e.g., the area under the curve) and the
estimation procedure (e.g., cross-validation splits) as inputs. As output they expect
a description of the machine learning algorithm or workflow that was used and, if
available, its predictions.

– Flows are implementations of single machine learning algorithms or whole work-
flows that solve a specific task, e.g., a random forest implementation is a flow that
can be used to solve a classification or regression task. Ideally, flows are already
implemented (or custom) algorithms in existing software that take OpenML tasks
as inputs and can automatically read and solve them. They also contain a list (and
description) of possible hyperparameters that are available for the algorithm.

– Runs are the result of executing flows, optionally with preset hyperparameter val-
ues, on tasks and contain all expected outputs and evaluations of these outputs
(e.g., the accuracy of predictions). Runs are fully reproducible because they are
automatically linked to specific data sets, tasks, flows and hyperparameter set-
tings. They also include the authors of the run and any additional information
provided by them, such as runtimes. Similar to data mining challenge platforms
(e.g., Kaggle; Carpenter 2011), OpenML evaluates all submitted results (using a
range of evaluationmeasures) and compares them online. The difference, however,
is that OpenML is designed for collaboration rather than competition: anyone can
browse, immediately build on and extend all shared results.

As an open science platform, OpenML provides important benefits for the science
community and beyond.

Benefits for Science: Many sciences have made significant breakthroughs by adopt-
ing online tools that help organizing, structuring and analyzing scientific data
online (Nielsen 2012). Indeed, any shared idea, question, observation or tool may
be noticed by someone who has just the right expertise to spark new ideas, answer
open questions, reinterpret observations or reuse data and tools in unexpected new
ways. Therefore, sharing research results and collaborating online as a (possibly cross-
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disciplinary) teamenables scientists to quickly build on and extend the results of others,
fostering new discoveries.

Moreover, ever larger studies become feasible as a lot of data are already available.
Questions such as “Which hyperparameter is important to tune?”, “Which is the best
known workflow for analyzing this data set?” or “Which data sets are similar in
structure to my own?” can be answered in minutes by reusing prior experiments,
instead of spending days setting up and running new experiments (Vanschoren et al.
2012).

Benefits for Scientists: Scientists can also benefit personally from using OpenML. For
example, they can save time, because OpenML assists in many routine and tedious
duties: finding data sets, tasks, flows and prior results, setting up experiments and
organizing all experiments for further analysis. Moreover, new experiments are imme-
diately compared to the state of the art without always having to rerun other people’s
experiments.

Another benefit is that linking one’s results to those of others has a large potential
for new discoveries (Feurer et al. 2015; Post et al. 2016; Probst et al. 2017), leading
to more publications and more collaboration with other scientists all over the world.
Finally, OpenML can help scientists to reinforce their reputation bymaking their work
(published or not) visible to a wide group of people and by showing how often one’s
data, code and experiments are downloaded or reused in the experiments of others.

Benefits for Society: OpenML also provides a useful learning and working environ-
ment for students, citizen scientists and practitioners. Students and citizen scientist can
easily explore the state of the art and work together with top minds by contributing
their own algorithms and experiments. Teachers can challenge their students by letting
them compete on OpenML tasks or by reusing OpenML data in assignments. Finally,
machine learning practitioners can explore and reuse the best solutions for specific
analysis problems, interact with the scientific community or efficiently try out many
possible approaches.

The remainder of this paper is structured as follows. First, we discuss the web services
offered by the OpenML server and the website on OpenML.org that allows web access
to all shared data and several tools for data organization and sharing. Second, we
briefly introduce the mlr package (Bischl et al. 2016; Schiffner et al. 2016), which is
a machine learning toolbox for R (R Core Team 2016) and offers a unified interface to
many machine learning algorithms. Third, we discuss and illustrate some important
functions of the OpenML R package. After that, we illustrate its usage in combination
with the mlr R package by conducting a short case study. Finally, we conclude with
a discussion and an outlook to future developments.

2 The OpenML platform

The OpenML platform consists of several layers of software:
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Web API: Any application (or web application), can communicate with the OpenML
server through the extensive Web API, an application programming interface (API)
that offers a set of calls (e.g., to download/upload data) using representational state
transfer (REST) which is a simple, lightweight communication mechanism based
on standard HTTP requests. Data sets, tasks, flows and runs can be created, read,
updated, deleted, searched and tagged through simple HTTP calls. An overview of
calls is available on http://www.openml.org/api_docs.

Website: OpenML.org is a website offering easy browsing, organization and sharing
of all data, code and experiments. It allows users to easily search and browse all shared
data sets, tasks, flows and runs, aswell as to compare and visualize all combined results.
It provides an easy way to check and manage your experiments anywhere, anytime
and discuss them with others online. See Fig. 1 for a few screenshots of the OpenML
website.

Programming Interfaces: OpenML also offers interfaces in multiple programming
languages, such as the R interface presented here, which hides the API calls and allow
scientists to interact with the server using language-specific functions. As we demon-
strate below, the OpenML R package allows R users to search and download data sets
and upload the results ofmachine learning experiments in just a few lines of code.Other
interfaces exist for Python, Java and C# (.NET). For tools that usually operate
through a graphical interface, such as WEKA (Hall et al. 2009), MOA (Bifet et al.
2010) and RapidMiner (van Rijn et al. 2013), plug-ins exist that integrate OpenML
sharing facilities.

OpenML is organized as an open source project, hosted on GitHub (https://github.
com/openml) and is free to use under the CC-BY licence. When uploading new data
sets and code, users can select underwhich licence theywish to share the data,OpenML
will then state licences and citation requests online and in descriptions downloaded
from the Web API.

OpenML has an active developer community and everyone is welcome to help
extend it or post new suggestions through the website or through GitHub. Currently,
there are close to 1,700,000 runs on about 20,000 data sets and 3500 unique flows
available on the OpenML platform. While still in beta development, it has over
1400 registered users, over 1800 frequent visitors and the website is visited by around
200 unique visitors every day, from all over the world. It currently has server-side
support for classification, regression, clustering, data stream classification, learning
curve analysis, survival analysis and machine learning challenges for classroom use.

3 The mlr R package

The mlr package (Bischl et al. 2016; Schiffner et al. 2016) offers a clean, easy-
to-use and flexible domain-specific language for machine learning experiments in
R. An object-oriented interface is adopted to unify the definition of machine learn-
ing tasks, setup of learning algorithms, training of models, predicting and evaluating
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Fig. 1 Screenshots of the OpenML website. The top part shows the data set ‘autos’, with wiki description
and descriptive overview of the data features. The bottom part shows a classification task, with an overview
of the best submitted flows with respect to the predictive accuracy as performance measure. Every dot here
is a single run (further to the right is better)
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the algorithm’s performance. This unified interface hides the actual implementations
of the underlying learning algorithms. Replacing one learning algorithm with another
becomes as easy as changing a string. Currently,mlr has built-in support for classifica-
tion, regression, multilabel classification, clustering and survival analysis and includes
in total 160 modelling techniques. A complete list of the integrated learners and how
to integrate own learners, as well as further information on the mlr package can be
found in the corresponding tutorial (http://mlr-org.github.io/mlr-tutorial/). A plethora
of further functionality is implemented in mlr, e.g., assessment of generalization per-
formance, comparison of different algorithms in a scientifically rigorous way, feature
selection and algorithms for hyperparameter tuning, including Iterated F-Racing (Lang
et al. 2015) and Bayesian optimization with the package mlrMBO (Bischl et al. 2017).
On top of that, mlr offers a wrapper mechanism, which allows to extend learners
through pre-train, post-train, pre-predict and post-predict hooks. A wrapper extends
the current learner with added functionality and expands the hyperparameter set of
the learner with additional hyperparameters provided by the wrapper. Currently, many
wrappers are available, e.g., missing value imputation, class imbalance correction,
feature selection, tuning, bagging and stacking, as well as a wrapper for user-defined
data pre-processing. Wrappers can be nested in other wrappers, which can be used to
create even more complex workflows. The package also supports parallelization on
different levels based on different parallelization backends (local multicore, socket,
MPI) with the package parallelMap (Bischl and Lang 2015) or on managed high-
performance systems via the package batchtools (Lang et al. 2017). Furthermore,
visualization methods for research and teaching are also supplied.

The OpenML packagemakes use of mlr as a supporting package. It offers methods
to automatically run mlr learners (flows) on OpenML tasks while hiding all of the
necessary structural transformations (see Sect. 4.4).

4 The OpenML R package

The OpenML R package Casalicchio et al. (2017) is an interface to interact with the
OpenML server directly from within R. Users can retrieve data sets, tasks, flows and
runs from the server and also create and upload their own. This section details how to
install and configure the package and demonstrates its most important functionalities.

4.1 Installation and configuration

To interact with the OpenML server, users need to authenticate using an API key, a
secret string of characters that uniquely identifies the user. It is generated and shown
on users’ profile page after they register on the website http://www.openml.org. For
demonstration purposes, we will use a public read-only API key that only allows to
retrieve information from the server and should be replaced with the user’s personal
API key to be able to use all features. The R package can be easily installed and
configured as follows:
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install.packages("OpenML")
library("OpenML")
saveOMLConfig(apikey = "c1994bdb7ecb3c6f3c8f3b35f4b47f1f")

The saveOMLConfig function creates a config file, which is always located in
a folder called .openml within the user’s home directory. This file stores the user’s
API key and other configuration settings, which can always be changed manually or
through the saveOMLConfig function. Alternatively, the setOMLConfig func-
tion allows to set the API key and the other entries temporarily, i.e., only for the current
R session.

4.2 Listing information

In this section, we show how to list the available OpenML data sets, tasks, flows and
runs using listing functions that always return a data.frame containing the queried
information. Each data set, task, flow and run has a unique ID, which can be used to
access it directly.

Listing Data Sets and Tasks: A list of all data sets and tasks that are avail-
able on the OpenML server can be obtained using the listOMLDataSets and
listOMLTasks function, respectively. Each entry provides information such as
the ID, the name and basic characteristics (e.g., number of features, number of
observations, classes, missing values) of the corresponding data set. In addition,
the list of tasks contains information about the task type (e.g., "Supervised
Classification"), the evaluationmeasure (e.g.,"Predictive Accuracy")
and the estimation procedure (e.g.,"10-fold Crossvalidation") used to esti-
mate model performance. Note that multiple tasks can be defined for a specific data
set, for example, the same data set can be used for multiple task types (e.g. classifica-
tion and regression tasks) as well as for tasks differing in their estimation procedure,
evaluation measure or target value.

To find data sets or tasks that meet specific requirements, one can supply arguments
to the listing functions. In the example below, we list all supervised classification tasks
based on data sets having two classes for the target feature, between 500 and 999
instances, at most 100 features and no missing values:
tasks = listOMLTasks(task.type = "Supervised Classification",

number.of.classes = 2, number.of.instances = c(500, 999),
number.of.features = c(1, 100), number.of.missing.values = 0)

tasks[1:2, c("task.id", "name", "number.of.instances", "number.of.features")]
## task.id name number.of.instances number.of.features
## 1 37 diabetes 768 9
## 2 49 tic-tac-toe 958 10

Listing Flows and Runs: When using the mlr package, flows are basically learners
from mlr, which, as stated previously, can also be a more complex workflow when
different mlrwrappers are nested. Custom flows can be created by integrating custom
machine learning algorithms and wrappers into mlr. The list of all available flows on
OpenMLcanbedownloadedusing thelistOMLFlows function.Each entry contains
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mlr.classif.rpart(21)
mlr.classif.ctree(9)
mlr.classif.C50(18)
mlr.classif.C50(2)

mlr.classif.kknn(10)
mlr.classif.rpart.bagged(9)

mlr.classif.ksvm(7)
mlr.classif.svm(6)

mlr.classif.C50.bagged(8)
mlr.classif.randomForest(17)

mlr.classif.logreg(4)
mlr.classif.glmnet(4)

mlr.classif.xgboost(4)

0.74 0.75 0.76 0.77 0.78
Predictive Accuracy

Fl
ow
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e

Fig. 2 The predictive accuracy of some mlr flows on task 37. The numbers in brackets refer to the version
of the flow. Multiple dots for the same flow refer to runs with different hyperparameter values for that flow

information such as its ID, its name, its version and the user who first uploaded the
flow to the server. Note that the list of flows will not only contain flows created with
R, but also flows from other machine learning toolkits, such as WEKA (Hall et al.
2009), MOA (Bifet et al. 2010) and scikit-learn (Pedregosa et al. 2011), which can be
recognized by the name of the flow.

When a flow, along with a specific setup (e.g., specific hyperparameter values), is
applied to a task, it creates a run. The listOMLRuns function lists all runs that, for
example, refer to a specific task.id or flow.id. To list these evaluations as well,
the listOMLRunEvaluations function can be used. In Fig. 2, we used ggplot2
(Wickham 2009) to visualize the predictive accuracy of runs, for which only flows
created with mlr were applied to the task with ID 37:

res = listOMLRunEvaluations(task.id = 37, tag = "openml_r_paper")
res$flow.name = reorder(res$flow.name, res$predictive.accuracy)

library("ggplot2")
ggplot(res, aes(x = predictive.accuracy, y = flow.name)) +

geom_point() + xlab("Predictive Accuracy") + ylab("Flow Name")

4.3 Downloading OpenML objects

Most of the listing functions described in the previous section will list entities by their
OpenML IDs, e.g., the task.id for tasks, the flow.id for flows and the run.id
for runs. In this section, we show how these IDs can be used to download a certain data
set, task, flow or run from the OpenML server. All downloaded data sets, tasks, flows
and runs will be stored in the cachedir directory, which will be in the .openml
folder by default but can also be specified in the configuration file (see Sect. 4.1).
Before downloading an OpenML object, the cache directory will be checked if that
object is already available in the cache. If so, no internet connection is necessary and
the requested object is retrieved from the cache.
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Downloading Data Sets and Tasks: The getOMLDataSet function returns an S3-
object of classOMLDataSet that contains the data set as a data.frame in a $data
slot, in addition to some pieces of meta-information:

ds = getOMLDataSet(data.id = 15)
ds
##
## Data Set "breast-w" :: (Version = 1, OpenML ID = 15)
## Default Target Attribute: Class

To retrieve tasks, the getOMLTask function can be used with their corresponding
task ID.Note that the ID of a downloaded task is not equal to the ID of the data set. Each
task is returned as an S3-object of class OMLTask and contains the OMLDataSet
object as well as the predefined estimation procedure, evaluation measure and the
target feature in an additional $input slot. Further technical information can be
found in the package’s help page.

Downloading Flows and Runs: The getOMLFlow function downloads all infor-
mation of the flow, such as the name, all necessary dependencies and all available
hyperparameters that can be set. If the flow was created in R, it can be converted into
an mlr learner using the convertOMLFlowToMlr function:
mlr.lrn = convertOMLFlowToMlr(getOMLFlow(4782))
mlr.lrn
## Learner classif.randomForest from package randomForest
## Type: classif
## Name: Random Forest; Short name: rf
## Class: classif.randomForest
## Properties: twoclass,multiclass,numerics,factors,ordered,prob,class.weights
## Predict-Type: response
## Hyperparameters:

This allows users to apply the downloaded learner to other tasks or to modify the
learner using functions from mlr and produce new runs.

The getOMLRun function downloads a single run and returns an OMLRun object
containing all information that are connected to this run, such as the ID of the task and
the ID of the flow:

run = getOMLRun(run.id = 1816245)
run
##
## OpenML Run 1816245 :: (Task ID = 42, Flow ID = 4782)
## User ID : 348
## Tags : study_30
## Learner : mlr.classif.randomForest(17)
## Task type: Supervised Classification

The most important information for reproducibility, next to the exact data set and
flow version, are the hyperparameter and seed settings that were used to create this
run. This information is contained in the OMLRun object and can be extracted via
getOMLRunParList(run) and getOMLSeedParList(run), respectively.

If the run solves a supervised regression or classification task, the corresponding
predictions can be accessed via run$predictions and the evaluation measures
computed by the server via run$output.data$evaluations.
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4.4 Creating runs

The easiest way to create a run is to define a learner, optionally with a preset hyper-
parameter value, using the mlr package. Each mlr learner can then be applied to
a specific OMLTask object using the function runTaskMlr. This will create an
OMLMlrRun object, for which the results can be uploaded to the OpenML server as
described in the next section. For example, a random forest from the randomForest
R package (Liaw and Wiener 2002) can be instantiated using the makeLearner
function from mlr and can be applied to a classification task via:

lrn = makeLearner("classif.randomForest", mtry = 2)
task = getOMLTask(task.id = 37)
run.mlr = runTaskMlr(task, lrn)

To run a previously downloaded OpenML flow, one can use the runTaskFlow
function, optionally with a list of hyperparameters:

flow = getOMLFlow(4782)
run.flow = runTaskFlow(task, flow, par.list = list(mtry = 2))

To display benchmarking results, one can use the convertOMLMlrRunToBMR
function to convert one ormoreOMLMlrRunobjects to a singleBenchmarkResult
object from the mlr package so that several powerful plotting functions (see
http://mlr-org.github.io/mlr-tutorial/release/html/benchmark_experiments for exam-
ples) from mlr can be applied to that object (see, e.g., Fig. 3).

4.5 Uploading and tagging

Uploading OpenML Objects: It is also possible to upload data sets, flows and runs to
the OpenML server to share and organize experiments and results online. Data sets,
for example, are uploaded with the uploadOMLDataSet function. OpenML will
activate the data set if it passes all checks, meaning that it will be returned in listing
calls. Creating tasks from data sets is currently only possible through the website, see
http://www.openml.org/new/task.

OMLFlow objects can be uploaded to the server with the uploadOMLFlow func-
tion and are automatically versioned by the server: when a learner is uploaded carrying
a different R or package version, a new version number and flow.id is assigned. If
the same flow has already been uploaded to the server, a message that the flow already
exists is displayed and the associated flow.id is returned. Otherwise, the flow is
uploaded and a new flow.id is assigned to it:

lrn = makeLearner("classif.randomForest")
flow.id = uploadOMLFlow(lrn)

A run created with the runTaskMlr or the runTaskFlow function can be
uploaded to the OpenML server using the uploadOMLRun function. The server will
then automatically compute several evaluation measures for this run, which can be
retrieved using the listOMLRunEvaluations function as described previously.
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Tagging and Untagging OpenML Objects: The tagOMLObject function is able to
tag data sets, tasks, flows and runs with a user-defined string, so that finding OpenML
objects with a specific tag becomes easier. For example, the task with ID 1 can be
tagged as follows:

tagOMLObject(id = 1, object = "task", tags = "test-tagging")

To retrieve a list of objects with a given tag, the tag argument of the list-
ing functions can be used (e.g., listOMLTasks(tag = "test-tagging")).
The listing functions for data sets, tasks, flows and runs also show the tags that
were already assigned, for example, we already tagged data sets from UCI (Asun-
cion and Newman 2007) with the string "uci" so that they can be queried using
listOMLDataSets(tag = "uci"). In order to remove one or more tags from
an OpenML object, the untagOMLObject function can be used, however, only
self-created tags can be removed, e.g.:

untagOMLObject(id = 1, object = "task", tags = "test-tagging")

4.6 Further features

Besides the aforementioned functionalities, the OpenML package allows to fill up the
cache directory by downloading multiple objects at once (using the
populateOMLCache function), to remove all files from the cache directory
(using clearOMLCache), to get the current status of cached data sets (using
getCachedOMLDataSetStatus), to delete OpenML objects created by the
uploader (using deleteOMLObject), to list all estimation procedures (using
listOMLEstimationProcedures) as well as all available evaluation measures
(using listOMLEvaluationMeasures) and to get more detailed information on
data sets (using getOMLDataSetQualities).

5 Case study

In this section, we illustrate the usage of OpenML by performing a small comparison
study between a random forest, bagged trees and single classification trees. We first
create the respective binary classification learners using mlr, then query OpenML for
suitable tasks, apply the learners to the tasks and finally evaluate the results.

5.1 Creating learners

We choose three implementations of different tree algorithms, namely theCART algo-
rithm implemented in the rpart package (Therneau et al. 2015), the C5.0 algorithm
from the package C50 (Kuhn et al. 2015) and the conditional inference trees imple-
mented in the ctree function from the package party (Hothorn et al. 2006). For the
random forest, we use the implementation from the package randomForest (Liaw
and Wiener 2002). The bagged trees can conveniently be created using mlr’s bag-
ging wrapper. Note that we do not use bagging for the ctree algorithm due to large
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memory requirements. For the random forest and all bagged tree learners, the number
of trees is set to 50. We create a list that contains the random forest, the two bagged
trees and the three tree algorithms:

lrn.list = list(
makeLearner("classif.randomForest", ntree = 50),
makeBaggingWrapper(makeLearner("classif.rpart"), bw.iters = 50),
makeBaggingWrapper(makeLearner("classif.C50"), bw.iters = 50),
makeLearner("classif.rpart"),
makeLearner("classif.C50"),
makeLearner("classif.ctree")

)

5.2 Querying OpenML

For this study, we consider only binary classification tasks that use smaller data sets
from UCI (Asuncion and Newman 2007), e.g., between 100 and 999 observations,
have no missing values and use 10-fold cross-validation for validation:

tasks = listOMLTasks(data.tag = "uci",
task.type = "Supervised Classification", number.of.classes = 2,
number.of.missing.values = 0, number.of.instances = c(100, 999),
estimation.procedure = "10-fold Crossvalidation")

Table 1 shows the resulting tasks of the query, which will be used for the further
analysis.

5.3 Evaluating results

We now apply all learners from lrn.list to the selected tasks using the
runTaskMlr function and use the convertOMLMlrRunToBMR function to create
a single BenchmarkResult object containing the results of all experiments. This
allows using, for example, the plotBMRBoxplots function from mlr to visualize
the experiment results (see Fig. 3):

Table 1 Overview of OpenML
tasks that will be used in the
study

Task id Name Number of
instances

Number of
features

37 Diabetes 768 9

39 Sonar 208 61

42 Haberman 306 4

49 Tic-tac-toe 958 10

52 Heart-statlog 270 14

57 Ionosphere 351 35
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Fig. 3 Cross-validated predictive accuracy per learner and task. Each boxplot contains 10 values for one
complete cross-validation

grid = expand.grid(task.id = tasks$task.id, lrn.ind = seq_along(lrn.list))
runs = lapply(seq_row(grid), function(i) {

task = getOMLTask(grid$task.id[i])
ind = grid$lrn.ind[i]
runTaskMlr(task, lrn.list[[ind]])

})
bmr = do.call(convertOMLMlrRunToBMR, runs)
plotBMRBoxplots(bmr, pretty.names = FALSE)

We can upload and tag the runs, e.g., with the string"study_30" to facilitate finding
and listing the results of the runs using this tag:

lapply(runs, uploadOMLRun, tags = "study_30")

The server will then compute all possible measures, which takes some time
depending on the number of runs. The results can then be listed using the
listOMLRunEvaluations function and can be visualized using the ggplot2
package:
evals = listOMLRunEvaluations(tag = "study_30")
evals$learner.name = as.factor(evals$learner.name)
evals$task.id = as.factor(evals$task.id)

library("ggplot2")
ggplot(evals, aes(x = data.name, y = predictive.accuracy, colour = learner.name,

group = learner.name, linetype = learner.name, shape = learner.name)) +
geom_point() + geom_line() + ylab("Predictive Accuracy") + xlab("Data Set") +
theme(axis.text.x = element_text(angle = -45, hjust = 0))

Figure 4 shows the cross-validated predictive accuracies of our six learners on the
considered tasks. Here, the random forest produced the best predictions, except on the
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Fig. 4 Results of the produced runs. Each point represents the averaged predictive accuracy over all
cross-validation iterations generated by running a particular learner on the respective task

tic-tac-toe data set, where the bagged C50 trees achieved a slightly better result. In
general, the two bagged trees performed marginally worse than the random forest and
better than the single tree learners.

6 Conclusion and outlook

OpenML is an online platform for open machine learning that is aimed at connecting
researchers who deal with any part of the machine learning workflow. The OpenML
platform automates the sharing of machine learning tasks and experiments through
the tools that scientists are already using, such as R. The OpenML package introduced
in this paper makes it easy to share and reuse data sets, tasks, flows and runs directly
from the current R session without the need of using other programming environments
or the web interface.

Current work is being done on implementing the possibility to connect to OpenML
via browser notebooks (https://github.com/everware) and running analysis directly on
online servers without the need of having R or any other software installed locally. In
the future, it will also be possible that users can specify with whom they want to share,
e.g., data sets.
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5. OpenML Benchmarking Suites

Chapter 5 promotes the use of benchmarking suites (i.e., a carefully selected collection of easily
accessible datasets). The chapter also describes how researchers can create their own benchmark-
ing suites on OpenML, and it presents a first such collection for classification datasets, namely
the OpenML100 benchmarking suite.
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Abstract

We advocate the use of curated, comprehensive benchmark suites of machine learning
datasets, backed by standardized OpenML-based interfaces and complementary software
toolkits written in Python, Java and R. Major distinguishing features of OpenML bench-
mark suites are (a) ease of use through standardized data formats, APIs, and existing
client libraries; (b) machine-readable meta-information regarding the contents of the suite;
and (c) online sharing of results, enabling large scale comparisons. As a first such suite, we
propose the OpenML100, a machine learning benchmark suite of 100 classification datasets
carefully curated from the thousands of datasets available on OpenML.org.
Keywords: machine learning, benchmarking

1. A Brief History of Benchmarking Suites

Proper algorithm benchmarking is a hallmark of machine learning research. It allows us,
as a community, to track progress over time, to identify still challenging issues, and to
learn which algorithms are most appropriate for specific applications. However, we cur-
rently lack standardized, easily-accessible benchmark suites of datasets that are curated to
reflect important problem domains, practical to use, and that support a rigorous analysis of
performance results. This often results in suboptimal shortcuts in study designs, producing
rather small-scale, one-off experiments that should be interpreted with caution (Aha, 1992),
are hard to reproduce (Pedersen, 2008; Hirsh, 2008), and may even lead to contradictory
results (Keogh and Kasetty, 2003).

The machine learning field has long recognized the importance of dataset repositories.
The UCI repository (Lichman, 2013) offers a wide range of datasets, but it does not at-
tempt to make them available through a uniform format or API. The same holds for other
repositories, such as LIBSVM (Chang and Lin, 2011). mldata.org is a very popular repos-
itory that does provide an API to easily download datasets, and is readily integrated in
scikit-learn. However, it is no longer being maintained, and will very likely be merged with
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our OpenML. KEEL (Alcala et al., 2010) offers some benchmark data suites, including one
for imbalanced classification and one with data sets with missing values. It has a Java
toolkit and an R library for convenient access. Likewise, PMLB (Olson et al., 2017) is an-
other collection of datasets, with strong overlap to UCI, with tools to import them into
Python scripts. However, none of the above tools allows to add new datasets or easily share
and compare benchmarking results online.1 Other related benchmark collections include
UCR (Chen et al., 2015) for time series data, OpenAI gym (Brockman et al., 2016) for re-
inforcement learning problems, and Mulan (Tsoumakas et al., 2011) for multilabel datasets,
with some of the multilabel datasets already available on OpenML (Probst et al., 2017).

All of these existing repositories are rather well-curated, and for many years machine
learning researchers have benchmarked their algorithms on a subset of their data sets. How-
ever, most of them do not provide APIs for downloading data in standardized formats into
popular machine learning libraries and uploading and comparing the ensuing results. Hence,
large scale benchmarks that also build upon previous results of others are still the exception.

2. OpenML Benchmarking Suites

We advocate expanding on previous efforts by comprehensive benchmark suites backed by
the open machine learning platform OpenML (Vanschoren et al., 2013). Our goal is to sub-
stantially facilitate in-depth benchmarking by providing a standard set of datasets covering
a wide spectrum of domains and statistical properties, together with rich meta-data and
standardized evaluation procedures (i.e., we also provide unified data splits for resampling
methods). This eliminates guesswork, makes individual results more comparable, and allows
more standardized analysis of all results. In addition, we provide software libraries in sev-
eral programming languages to easily download these datasets, optionally download prior
benchmarking results for reuse and comparison, and to share your results online.

OpenML is an online platform for reproducible, collaborative machine learning exper-
iments and can be used to store and share all aspects of machine learning experiments,
including data, code, experiment parameters and results. All our datasets in OpenML are
provided in a uniform format, highlight issues such as unique-valued or constant features, in-
clude extensive meta-data for deeper analysis of evaluation results, and provide task-specific
meta-data, such as target features and predefined train-test splits.

Researchers can conveniently explore the datasets included in OpenML through com-
prehensive APIs to find suitable learning tasks for their planned experiments, depending on
required data set characteristics. These APIs allow, for instance, to find all high-dimensional
data sets with few observations and no missing values.

3. The OpenML100 Benchmarking Suite

On top of OpenML’s customizable functionality, we provide a new standard benchmark
suite of 100 high-quality datasets carefully curated from the many thousands available on
OpenML: the OpenML100.

1. The latter used to be possible with DELVE (http://www.cs.toronto.edu/~delve/) and mlcomp.org,
but both services are no longer maintained.
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We selected classification datasets for this benchmarking suite to satisfy the following
requirements: (a) the number of observations are between 500 and 100 000 to focus on
medium-sized datasets, (b) the number of features does not exceed 5000 features to keep
the runtime of algorithms low, (c) the target attribute has at least two classes, and (d) the
ratio of the minority class and the majority class is above 0.05 (to eliminate highly im-
balanced datasets). We excluded datasets which (a) cannot be randomized via a 10-fold
cross-validation due to grouped samples, (b) are a subset of a larger dataset available on
OpenML, (c) have no source or reference available, (d) are created by binarization of re-
gression tasks or multiclass classification tasks, or (e) include sparse data (e.g., text mining
data sets). A detailed list of the data properties can be found on OpenML2.

4. How to use the OpenML100

In this section we demonstrate how our dataset collection can be conveniently imported for
benchmarking using our client libraries in Python, Java and R. Figure 1 provides exemplary
code chunks for downloading the datasets and running a basic classifier in all three lan-
guages. In these examples, we use the Python library with scikit-learn (Pedregosa et al.,
2011), the R package (Casalicchio et al., 2017) with mlr (Bischl et al., 2016), and the Java
library with Weka (Hall et al., 2009). OpenML has also been integrated in MOA and Rapid-
Miner (van Rijn and Vanschoren, 2015).

OpenML works with the concept of tasks to facilitate comparable and reproducible
results. A task extends a dataset with task-specific information, such as target attributes
and evaluation procedures. Datasets and tasks are automatically downloaded at first use
and are afterwards cached locally. Studies combine a specific set of tasks and can also hold
all benchmarking results obtained on them. In the code examples, the OpenML100 tasks
are downloaded through the study with the same name. They also show how to access the
raw data set (although this is not needed to train a model), fit a simple classifier on the
defined data splits, and finally publish runs on the OpenML server. Note that the Java
implementation automatically uploads results to the server.

5. Creating new Benchmarking Suites

The set of datasets on OpenML.org can easily be extended, and additional OpenML bench-
mark suites, e.g., for regression and time-series data, can easily be created by defining sets
of datasets according to specific needs. Instructions for creating new benchmarking suites
can be found on https://www.openml.org. We currently envision two routes of exten-
sions: (a) facilitate the creation and versioning of these benchmark suites on OpenML.org;
and (b) adding automatic statistical analysis, visualization and reporting on the online plat-
form.
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1 import openml

2 import sklearn

3 benchmark_suite = openml.study.get_study('OpenML100','tasks') # obtain the benchmark suite

4 clf = sklearn.pipeline.Pipeline(steps=[('imputer',sklearn.preprocessing.Imputer()), ('estimator',

sklearn.tree.DecisionTreeClassifier())]) # build a sklearn classifier

5 for task_id in benchmark_suite.tasks: # iterate over all tasks

6 task = openml.tasks.get_task(task_id) # download the OpenML task

7 X, y = task.get_X_and_y() # get the data (not used in this example)

8 openml.config.apikey = 'FILL_IN_OPENML_API_KEY' # set the OpenML Api Key

9 run = openml.runs.run_model_on_task(task,clf) # run classifier on splits (requires API key)

10 score = run.get_metric_score(sklearn.metrics.accuracy_score) # print accuracy score

11 print('Data set: %s; Accuracy: %0.2f' % (task.get_dataset().name,score.mean()))

12 run.publish() # publish the experiment on OpenML (optional)

13 print('URL for run: %s/run/%d' %(openml.config.server,run.run_id))

(a) Python, available on https://github.com/openml/openml-python/

1 public static void runTasksAndUpload() throws Exception {

2 OpenmlConnector openml = new OpenmlConnector();

3 Study benchmarksuite = openml.studyGet("OpenML100", "tasks"); // obtain the benchmark suite

4 Classifier tree = new REPTree(); // build a Weka classifier

5 for (Integer taskId : benchmarksuite.getTasks()) { // iterate over all tasks

6 Task t = openml.taskGet(taskId); // download the OpenML task

7 Instances d = InstancesHelper.getDatasetFromTask(openml, t); // obtain the dataset

8 openml.setApiKey("FILL_IN_OPENML_API_KEY");

9 int runId = RunOpenmlJob.executeTask(openml, new WekaConfig(), taskId, tree);

10 Run run = openml.runGet(runId);}} // retrieve the uploaded run

(b) Java, available on Maven Central with artifact id ‘org.openml.openmlweka’

1 library(OpenML)

2 lrn = makeLearner('classif.rpart') # construct a simple CART classifier

3 task.ids = getOMLStudy('OpenML100')$tasks$task.id # obtain the list of suggested tasks

4 for (task.id in task.ids) { # iterate over all tasks

5 task = getOMLTask(task.id) # download single OML task

6 data = as.data.frame(task) # obtain raw data set

7 run = runTaskMlr(task, learner = lrn) # run constructed learner

8 setOMLConfig(apikey = 'FILL_IN_OPENML_API_KEY')

9 upload = uploadOMLRun(run) # upload and tag the run

10 }

(c) R, available on CRAN via package OpenML

Figure 1: Running classifiers on a task and (optionally) uploading the results. Uploading
requires the user to fill in an API key.

HU 1900/3-1) and Collaborative Research Center SFB 876/A3 from the German Research
Foundation (DFG).
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Appendix A. Datasets Included in the OpenML100 Benchmark Suite

Table 1: Datasets included in the OpenML100 benchmark suite. For each dataset, we show:
the OpenML task id and name, the number of classes (nClass), features (nFeat) and obser-
vations (nObs), as well as the ratio of the minority and majority class sizes (ratioMinMaj).

Task id Name nClass nFeat nObs ratioMinMaj

3 kr-vs-kp 2 37 3196 0.91
6 letter 26 17 20000 0.90
11 balance-scale 3 5 625 0.17
12 mfeat-factors 10 217 2000 1.00
14 mfeat-fourier 10 77 2000 1.00
15 breast-w 2 10 699 0.53
16 mfeat-karhunen 10 65 2000 1.00
18 mfeat-morphological 10 7 2000 1.00
20 mfeat-pixel 10 241 2000 1.00
21 car 4 7 1728 0.05
22 mfeat-zernike 10 48 2000 1.00
23 cmc 3 10 1473 0.53
24 mushroom 2 23 8124 0.93
28 optdigits 10 65 5620 0.97
29 credit-a 2 16 690 0.80
31 credit-g 2 21 1000 0.43
32 pendigits 10 17 10992 0.92
36 segment 7 20 2310 1.00
37 diabetes 2 9 768 0.54
41 soybean 19 36 683 0.09
43 spambase 2 58 4601 0.65
45 splice 3 62 3190 0.46
49 tic-tac-toe 2 10 958 0.53
53 vehicle 4 19 846 0.91
58 waveform-5000 3 41 5000 0.98
219 electricity 2 9 45312 0.74
2074 satimage 6 37 6430 0.41
2079 eucalyptus 5 20 736 0.49
3021 sick 2 30 3772 0.07
3022 vowel 11 13 990 1.00
3481 isolet 26 618 7797 0.99
3485 scene 2 300 2407 0.22
3492 monks-problems-1 2 7 556 1.00
3493 monks-problems-2 2 7 601 0.52
3494 monks-problems-3 2 7 554 0.92
3510 JapaneseVowels 9 15 9961 0.48
3512 synthetic_control 6 62 600 1.00
3543 irish 2 6 500 0.80
3549 analcatdata_authorship 4 71 841 0.17
3560 analcatdata_dmft 6 5 797 0.79
3561 profb 2 10 672 0.50
3567 collins 15 24 500 0.07
3573 mnist_784 10 785 70000 0.80
3889 sylva_agnostic 2 217 14395 0.07
3891 gina_agnostic 2 971 3468 0.97
3896 ada_agnostic 2 49 4562 0.33
3899 mozilla4 2 6 15545 0.49
3902 pc4 2 38 1458 0.14
3903 pc3 2 38 1563 0.11
3904 jm1 2 22 10885 0.24

Task id Name nClass nFeat nObs ratioMinMaj

3913 kc2 2 22 522 0.26
3917 kc1 2 22 2109 0.18
3918 pc1 2 22 1109 0.07
3946 KDDCup09_churn 2 231 50000 0.08
3948 KDDCup09_upselling 2 231 50000 0.08
3950 musk 2 170 6598 0.18
3954 MagicTelescope 2 12 19020 0.54
7592 adult 2 15 48842 0.31
9914 wilt 2 6 4839 0.06
9946 wdbc 2 31 569 0.59
9950 micro-mass 20 1301 571 0.18
9952 phoneme 2 6 5404 0.42
9954 one-hundred-plants-margin 100 65 1600 1.00
9955 one-hundred-plants-shape 100 65 1600 1.00
9956 one-hundred-plants-texture 100 65 1599 0.94
9957 qsar-biodeg 2 42 1055 0.51
9960 wall-robot-navigation 4 25 5456 0.15
9964 semeion 10 257 1593 0.96
9967 steel-plates-fault 2 34 1941 0.53
9968 tamilnadu-electricity 20 4 45781 0.48
9970 hill-valley 2 101 1212 1.00
9971 ilpd 2 11 583 0.40
9976 madelon 2 501 2600 1.00
9977 nomao 2 119 34465 0.40
9978 ozone-level-8hr 2 73 2534 0.07
9979 cardiotocography 10 36 2126 0.09
9980 climate-model-simulation-crashes 2 21 540 0.09
9981 cnae-9 9 857 1080 1.00
9983 eeg-eye-state 2 15 14980 0.81
9985 first-order-theorem-proving 6 52 6118 0.19
9986 gas-drift 6 129 13910 0.55
10093 banknote-authentication 2 5 1372 0.80
10101 blood-transfusion-service-center 2 5 748 0.31
14964 artificial-characters 10 8 10218 0.42
14965 bank-marketing 2 17 45211 0.13
14966 Bioresponse 2 1777 3751 0.84
14967 cjs 6 35 2796 0.40
14968 cylinder-bands 2 40 540 0.73
14969 GesturePhaseSegmentationProcessed 5 33 9873 0.34
14970 har 6 562 10299 0.72
34536 Internet-Advertisements 2 1559 3279 0.16
34537 PhishingWebsites 2 31 11055 0.80
34538 MiceProtein 8 82 1080 0.70
34539 Amazon_employee_access 2 10 32769 0.06
125920 dresses-sales 2 13 500 0.72
125921 LED-display-domain-7digit 10 8 500 0.65
125922 texture 11 41 5500 1.00
125923 Australian 2 15 690 0.80
146606 higgs 2 29 98050 0.89
146607 SpeedDating 2 123 8378 0.20
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6. The Residual-Based Predictiveness Curve

The predictiveness curve (Huang et al., 2007) is a visualization method to assess the performance
of binary classifiers that predict probabilities. Regarding the assessment of such probabilistic
classifiers, two essential criteria must be considered, namely the discrimination performance and
the calibration of the predicted probabilities. The ROC curve is known to consider only the
discrimination performance and not the calibration of the predicted probabilities. Therefore, the
use of the predictiveness curve is a reasonable alternative, since it also accounts for the calibration
of the predicted probabilities (cf. Pepe et al., 2008). Chapter 6 reviews the role of the predictiveness
curve in the performance assessment and discusses several shortcomings of the curve. Furthermore,
the RBP curve is proposed as an extension that addresses several shortcomings of the original
predictiveness curve. This chapter also shows how the RBP curve can be used to derive several
discrimination and calibration measures.
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Summary. It is agreed among biostatisticians that prediction models for binary outcomes should satisfy two essential criteria:
first, a prediction model should have a high discriminatory power, implying that it is able to clearly separate cases from
controls. Second, the model should be well calibrated, meaning that the predicted risks should closely agree with the relative
frequencies observed in the data. The focus of this work is on the predictiveness curve, which has been proposed by Huang
et al. (Biometrics 63, 2007) as a graphical tool to assess the aforementioned criteria. By conducting a detailed analysis of
its properties, we review the role of the predictiveness curve in the performance assessment of biomedical prediction models.
In particular, we demonstrate that marker comparisons should not be based solely on the predictiveness curve, as it is not
possible to consistently visualize the added predictive value of a new marker by comparing the predictiveness curves obtained
from competing models. Based on our analysis, we propose the “residual-based predictiveness curve” (RBP curve), which
addresses the aforementioned issue and which extends the original method to settings where the evaluation of a prediction
model on independent test data is of particular interest. Similar to the predictiveness curve, the RBP curve reflects both the
calibration and the discriminatory power of a prediction model. In addition, the curve can be conveniently used to conduct
valid performance checks and marker comparisons.

Key words: Calibration; Classification; Discrimination; Predictiveness curve; Risk prediction.

1. Introduction

The development of prediction models for binary outcomes
is an important issue in biomedical research (Moons et al.,
2009). Key issues in biostatistical method development are
not only to propose methods for deriving new marker combi-
nations but also to develop reliable methods to evaluate and
assess the predictive value of a new model.

In the biomedical sciences, a binary outcome D often refers
to the status of a disease, with diseased (D = 1) and healthy
(D = 0) subjects being considered cases and controls, respec-
tively. It is commonly agreed that prediction models for a
binary outcome should satisfy two major criteria: first, they
should have a high discriminatory power, meaning that they
are able to separate the two categories of the outcome. Sec-
ond, they should be well calibrated, meaning that the pre-
dicted risks should closely agree with the relative frequencies
observed in the data. Both discrimination and calibration can
be evaluated by a variety of measures (see Section 2).

The focus of this article is on the use of the predictive-
ness curve (Huang, Pepe, and Feng, 2007), which is a popu-
lar graphical tool to evaluate and compare the performance
of prediction models (see Johnson et al., 2010; Soto et al.,
2013 and Web Appendix A for further references on this
topic). The predictiveness curve depicts the risk distribution

of a marker (or a marker combination) Y and is formally de-
fined as follows: Let F be the cumulative distribution func-
tion (cdf) of Y , and let ν = F(Y) ∈ (0, 1) be the ν-th per-
centile of Y . The risk at a specific value ν is then given by
R(ν) = risk(F−1(ν)) := P(D = 1 | Y = F−1(ν)), and the predic-
tiveness curve is obtained by plotting R(ν) versus ν.

In situations where R(·) is not known, statistical estimation
of the risk is required. This is typically done by fitting a pre-
diction model to an i.i.d. data set D = {(xi, Di), i = 1, . . . , n}
with n observations, where Di denotes the disease status of
subject i and xi = (1, xi,1, . . . , xi,P)� is the associated vector
of P marker values that may include the constant 1 for the
intercept term. A prediction model is then obtained by spec-
ifying, for example, a score ηi = x�

i βββ via

risk(ηi) = P(D = 1 | Y = ηi) = G(ηi), i = 1, . . . , n, (1)

where G is a pre-defined monotone increasing function that
transforms the range of the score to the interval (0, 1) and
where βββ is a vector of unknown coefficients that has to be
estimated. This parametrization is widely used in parametric
modeling, for example in logistic regression. An estimate
of the predictiveness curve is then obtained by plotting
the predicted risks obtained from the prediction model

392 © 2015, The International Biometric Society
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Figure 1. Predictiveness curve obtained from the simulated data set of Section 1 with estimated prevalence θ̂ = 0.3. The
dashed gray line represents the predictiveness curve of a logistic regression model while the solid black line corresponds to
the optimal predictiveness curve that was obtained by using the binary outcome values. The black points correspond to the
proportion of diseased within each decile of predicted risks. Because the black points are close to the respective predictiveness
curve, they indicate that the logistic regression model is well calibrated.

R̂(ν) = r̂isk(F̂−1(ν)) versus ν = F̂(η̂), where η̂ refers to the es-
timated linear predictor η̂ = x�β̂ββ and F̂ is the empirical c.d.f.
of Y ≡ η̂ (Gu and Pepe, 2009). To unify notation, we also
allow η̂ to refer to the observed value of a single marker Y ,
although no estimation is involved in this case. An even more

general situation than (1) is given when r̂isk(·) refers to a
probability estimate obtained from some arbitrary statistical
estimation technique. This situation includes the special case
where the marker Y itself is defined as a probability estimate,

i.e., Y ≡ r̂isk(Y). For a given i.i.d. data set, the prevalence
θ = P(D = 1) can be estimated by θ̂ = 1

n

∑n

i=1
Di.

Figure 1 shows the predictiveness curve obtained from a
simulated data set with n = 10, 000 observations and P = 5
standard normally distributed markers X1, . . . , X5 ∼ N(0, 1).
The values of the disease status D were generated from the
model logit(P(D = 1 |xi)) = x�

i βββ with randomly generated
coefficients βββ = (−2.99, −2.53, −2.04, −2.35, −2.17, −2.75)�.
The first coefficient corresponds to the intercept and the oth-
ers correspond to the five markers. It is seen that the predic-
tiveness curve characterizes the distribution of the risk: each
horizontal line at R̂(ν) = t intersects the curve at a specific
abscissa ν, where ν = R̂−1(t) is interpreted as the proportion
of the population that has a risk of being a case less than or
equal to t. The estimated prevalence in the data was θ̂ = 0.3. If
the prediction model is well calibrated, the step function that
jumps up from 0 to 1 at ν = 1 − θ̂ can be considered as the
“optimal” predictiveness curve that would be obtained from
a model with perfect discriminatory power. Consequently, a

steep slope of the curve indicates that cases and controls are
well separated, and a predictiveness curve that is close to the
“optimal” curve is interpreted as having a high discriminatory
power (Huang et al., 2007).

In this article, we carry out a detailed analysis of the prop-
erties of the predictiveness curve and review its role in the per-
formance assessment of prediction models. A key result is that
the predictiveness curve should not be used as a criterion for
marker or model comparison, unless one has made sure that
all prediction models under consideration are well calibrated.
This result is in line with Cook (2010), Pepe (2010), and

Pepe et al. (2013), who suggested first checking whether all
prediction models under consideration are well calibrated be-
fore comparing the predictiveness curves with regard to their
slopes.

We further propose a new graphical tool, the residual-
based predictiveness curve, hereinafter abbreviated as RBP
curve, which does not depend on the results of previously
conducted calibration checks. The idea of the RBP curve is
to incorporate the binary outcome values into the definition
of the predictiveness curve, thereby defining a new evaluation
criterion for marker performance that also reveals how well a
model is calibrated. The properties of the RBP curve will be
assessed in detail in Section 3, and it will be demonstrated
that several well-known performance criteria, such as the clas-
sification accuracy, the true positive rate (TPR) and the false

positive rate (FPR) can be derived graphically from the RBP
curve.
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2. Calibration and Discrimination

An important issue in the assessment of marker performance
is to quantify calibration and discrimination, i.e., to define
appropriate measures for evaluating the two criteria. In this
respect, Pepe et al. (2008) and Gu and Pepe (2009) have
shown that many relevant properties of a marker can be sum-
marized through the predictiveness curve. The connections
between the predictiveness curve and measures of calibration
and discrimination are described in the following subsections.

2.1. Measures of Calibration

Pepe et al. (2013) distinguish between good calibration
of a model and a well calibrated model. A measure for
good calibration is given by the calibration-in-the-large, which
measures how well the average risk over all observations agrees
with the proportion of diseased subjects. Good calibration is
satisfied when E(risk(Y)), which is estimated by the mean

risk 1
n

∑n

i=1
r̂isk(η̂i), is close to the prevalence θ, estimated by

θ̂ = 1
n

∑n

i=1
Di. Therefore, good calibration is obtained when

the area under the predictiveness curve is close to the area
under the “optimal” predictiveness curve, which is the area
of a rectangle with width θ̂ and height 1 (see Figure 1). Note
that these considerations require θ̂ to be a valid estimate of
the prevalence (which is, e.g., the case if the data are a ran-
dom sample from the underlying population).

Cook (2010) pointed out that evaluating only the
calibration-in-the-large is not sufficient to fully assess the cali-
bration of a prediction model. Rather, it should be seen as the
most basic requirement because many aspects of calibration
may not be accounted for even if calibration-in-the-large is
satisfied. A more precise measure for a well calibrated model
can be obtained by grouping the observations via quantiles
of the predicted risks and by comparing the mean of the pre-
dicted risk in each group to the respective proportion of dis-
eased subjects within each group. This strategy gives rise to
the Hosmer–Lemeshow statistic (e.g., Crowson et al., 2014).
Pepe et al. (2008) suggested visualizing the components of
the Hosmer–Lemeshow statistic by additionally plotting the
observed proportions of diseased subjects at the midpoint of
each decile of the predicted risks (see Figure 1). If the points
are close to the predictiveness curve, the prediction model in
question is likely to be well calibrated.

2.2. Measures of Discrimination

The discriminatory power of a well calibrated prediction
model can be visually assessed by inspecting the slope of the
predictiveness curve. Because observations with higher risks
are located to the right side of the vertical line at ν = 1 − θ̂, a
well discriminating model should assign risk values close to 1
to these observations. Conversely, it should assign risk values
close to 0 to the observations to the left side, i.e., at ν < 1 − θ̂.

A popular measure to quantify the discriminatory power
of a prediction model is the mean risk difference MRD :=
E(risk(Y) | D = 1)− E(risk(Y) | D = 0), which is also known
as discrimination slope and which is closely related to the
proportion of explained variation (“PEV”, Pepe, Feng, and
Gu, 2008; Gu and Pepe, 2009). MRD is the difference be-
tween the conditional expectations of risk(Y) in the diseased
and healthy groups. Because the first expectation should be
close to 1 and the second one close to 0 in a well discrimi-

nating model, the MRD is directly related to the slope of the
predictiveness curve. The steeper the slope, the better the
population is separated into two groups (Huang et al., 2007).
If, at the same time, the model is well calibrated, a steep
slope of the curve implies a large value of MRD. Empirically,

the measure can be estimated by M̂RD = 1
n1

∑
i:Di=1

G(η̂i) −
1
n0

∑
i:Di=0

G(η̂i), where G(η̂i) is the parametrization of the es-

timated risk similar to equation (1) and nj := ∑n

i=1
I(Di = j),

j = 0, 1, are the numbers of healthy and diseased subjects, re-
spectively.

3. The RBP Curve

3.1. Definition and Derivation of the RBP Curve

Although the predictiveness curve has proved to be a valu-
able tool for the characterization of biomarker combinations,
several shortcomings regarding the evaluation of prediction
models remain. In particular, it can be misleading to rely on
the predictiveness curve when the aim is to compare differ-
ent marker combinations. This problem is mainly due to the
fact that the predictiveness curve does not involve any of the
true values of the outcome variable D. It is, therefore, possible
to construct algorithms that “optimize” marker combinations
such that they result in the “optimal” step function of Fig-
ure 1 although they are impractical and badly calibrated (see
Web Appendix B, where we derive and illustrate such an al-
gorithm).

Another problem, which will be discussed in more detail in
Section 4.1, is that the predictiveness curve cannot be used
to evaluate whether a prediction model overfitted the data
it was derived from. Evaluating the curve on external test
data does not help in this respect, as the predictiveness curve
only displays the distribution of risk(Y). Consequently, if the
covariates in the test data follow the same distribution as
those in the original data, both curves will be highly similar
regardless of whether the model overfits the original data or
not.

As noted in Section 1, several authors have suggested
conducting marker comparisons only if the prediction models
under consideration are well calibrated, which is achieved by
taking into account the real outcome values. Although this
strategy solves part of the problem, it is highly dependent
on how well the calibration check works. In particular,
wrong conclusions are possible if low-power tests such as the
Hosmer–Lemeshow test are used (Cook, 2010).

To address these issues, we propose using the residuals ε =
D − risk(Y) and plot ε versus the c.d.f. of the residuals Fε(ε).
Because the real outcome D is included in the definition of
ε, this strategy allows one to directly assess the calibration
of a prediction model without plotting any additional points
as in Figure 1. When statistical estimation is involved (as
described in Section 1), we consider the empirical c.d.f. of
the residuals denoted by F̂ε(ε̂) and the estimated residuals

ε̂i = Di − p̂i, where p̂i := r̂isk(η̂i) ∈ [0, 1] and Di ∈ {0, 1}. This

means that in the first step, a probability model for r̂isk(Y) is
used to transform the values of Y to the interval [0, 1] and to

calculate the estimated residuals ε̂ = D − r̂isk(Y). In the next
step, the empirical c.d.f. of the residuals, denoted by F̂ε(ε̂),
is used to plot ε̂ versus F̂ε(ε̂). Note that the RBP curve can

6. The Residual-Based Predictiveness Curve
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be applied whenever the original predictiveness curve can be
applied; it only requires the existence of a probability model

to calculate r̂isk(Y).
Figure 2 illustrates the RBP curve and how various crite-

ria (calibration-in-the-large, calibration across deciles, MRD,
classification accuracy, FPR, and TPR) can be obtained from
it. The horizontal line corresponds to the optimal RBP curve
where all residuals are zero. By definition, all non-diseased
subjects {i : Di = 0} are located below the horizontal zero line,
as ε̂i = Di − p̂i = −p̂i ≤ 0. Accordingly, all diseased subjects
{i : Di = 1} are located above the horizontal line. The vertical
line that splits diseased and non-diseased subjects is located
at 1 − θ̂, i.e., at one minus the prevalence. Therefore one can
derive the proportion of diseased subjects from this line.

3.2. Relation between the RBP Curve and Other
Performance Measures

Relation to the calibration-in-the-large. The calibration-
in-the-large reflects whether a prediction model satisfies
good calibration, meaning that the expected value of the risk
should be as close as possible to the prevalence θ = P(D = 1).
It follows that the risks should satisfy θ − E(risk(Y)) = 0
when good calibration is satisfied. The empirical counterpart
of θ − E(risk(Y)) is

ÂRBP := 1

n

n∑

i=1

Di − 1

n

n∑

i=1

p̂i = 1

n

n∑

i=1

ε̂i.

If ÂRBP = 0, good calibration is satisfied. Visually, good cal-
ibration implies that the area above the horizontal zero line
and the area below the horizontal zero line should be approx-
imately equal. This is because the integral below the RBP
curve can be rewritten as

ÂRBP = 1

n

n∑

i=1

(Di − p̂i)

= 1

n

{ ∑

i:Di=0

(Di − p̂i) +
∑

i:Di=1

(Di − p̂i)

}

= 1

n

∑

i:Di=0

(0 − p̂i) + 1

n

∑

i:Di=1

(1 − p̂i),

where the two sums correspond to the integrals below and
above the horizontal zero line, respectively. For example, in
Figure 2(a) the integrals below and above the horizontal zero
line are 1

n

∑
i:Di=0

(−p̂i) = −0.0611 and 1
n

∑
i:Di=1

(1 − p̂i) =
0.0611, respectively.

Relation to the calibration across deciles. In a similar way
one can show that the RBP curve is related to the cali-
bration across deciles of the predicted risks. Let Qq, with
q = 0.1, 0.2, . . . , 1, be the sets of observations whose pre-
dicted risks are included in intervals that are bounded by the
(q ∗ 10 − 1)-th and (q ∗ 10)-th deciles of the predicted risks,
so that the sets are equally sized. Furthermore, let Â

q

RBP ,
q = 0.1, 0.2, . . . , 1, be the integrals that are obtained by split-
ting ÂRBP according to deciles of the predicted risks, so that
ÂRBP = Â0.1

RBP + Â0.2
RBP + · · · + Â1

RBP . For example, the integral

for the first decile is estimated by

Â0.1
RBP = 1

n0.1

∑

i∈Q0.1

(Di − p̂i) = 1

n0.1

∑

i∈Q0.1

Di − 1

n0.1

∑

i∈Q0.1

p̂i,

where n0.1 = |Q0.1| is the number of observations below the
first decile of predicted risks. Analogous to the previous sec-
tion, this integral can be rewritten as

Â0.1
RBP = 1

n0.1

∑

{i:i∈Q0.1∧Di=0}
(−p̂i) + 1

n0.1

∑

{i:i∈Q0.1∧Di=1}
(1 − p̂i),

where the first sum corresponds to the integral below the hor-
izontal zero line (using only the observations whose predicted
risks are below the first decile). The second sum corresponds
to the integral above the horizontal zero line, also using only
the observations whose predicted risks are below the first
decile. When both integrals are equal in magnitude, they sum
up to zero, yielding Â0.1

RBP = 0, so that good calibration for the
first decile is satisfied. A well calibrated prediction model in
terms of the calibration across deciles is given when each in-
tegral Â0.1

RBP , Â0.2
RBP , . . . , Â1

RBP is close to zero. In Figure 2(b),
areas with the same gray tone refer to the predicted risks for
a specific decile. In case of a well calibrated prediction model,
the areas with the same gray tones above and below the hor-
izontal zero line should therefore be approximately equal.

Relation to the L1 loss. There is also a relation between the
RBP curve and the absolute error

MAE = 1

n

n∑

i=1

L1(Di, p̂i) = 1

n

n∑

i=1

|Di − p̂i| = 1

n

n∑

i=1

|εi|. (2)

As seen from the definition of the residuals εi = Di − p̂i, the
RBP curve depicts the signed summands of the L1 loss in
equation (2). Visually, the MAE reflects the sum of the
absolute values of the integrals below and above the RBP
curve, that is, the area enclosed by the RBP curve is pro-
portional to the MAE. For example, in Figure 2(a) the area
below and above the horizontal line are both 0.0611, yield-
ing MAE = 0.0611 + 0.0611 = 0.1222. Consequently, although
the exact value of the MAE cannot be read off directly from
the RBP curve, inspecting the area enclosed by the RBP curve
provides analysts with information on the magnitude of the
MAE.

Relation to the MRD. The MRD measure is visually ob-
tained by the difference of the gray areas in Figure 2(c).
By definition, the gray shaded area above the horizon-
tal line corresponds to the conditional expectation E1 :=
E(risk(Y) | D = 1) in the diseased group (estimated by Ê1 =
1
n1

∑
i:Di=1

p̂i), whereas the gray shaded area below the hori-
zontal line corresponds to the conditional expectation E0 :=
E(risk(Y) | D = 0) in the non-diseased group (estimated by
Ê0 = 1

n0

∑
i:Di=0

p̂i). It follows that the MRD measure is esti-

mated by M̂RD = Ê1 − Ê0. For example, in Figure 2(c) one

obtains M̂RD = Ê1 − Ê0 = 0.796 − 0.087 = 0.709.
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(e) FPR and TPR
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Figure 2. Derivation of performance measures from the RBP curve, as described in Section 3. The plots are based on the
simulated data and the predictions from the logistic model described in Section 1. The numbers in panels (a) correspond to
the integral of the respective regions. The bar plots in the panel (b) facilitate the comparison of integrals with the same gray
tones, which should be equal in magnitude. That is, the bar plots should be symmetric about the x-axis when the predicted
risks are well calibrated.

6. The Residual-Based Predictiveness Curve
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Relation to classification accuracy. The classification accu-
racy is defined as

ACC = 1

n

n∑

i=1

I(D̂i = Di),

where D̂i is the predicted outcome calculated from the pre-
dicted risks p̂i using a threshold t, so that D̂i = I(p̂i > t). Typ-
ically t is set to 0.5. For given t, the classification accuracy can
be visually assessed via the RBP curve by the proportion of
points lying above −t and below 1 − t (Figure 2(d)).

Relation to the FPR and TPR. True and false positive rates
are defined by

TPR(θ) = P(risk(Y) > θ | D = 1)

= P(1 − risk(Y) < 1 − θ | D = 1)

= Fε(1 − θ | D = 1),

FPR(θ) = P(risk(Y) > θ | D = 0)

= P(0 − risk(Y) < 0 − θ | D = 0)

= Fε(0 − θ | D = 0),

respectively. Estimates of FPR and TPR are hence given
by T̂PR(θ̂) = F̂ε(1 − θ̂ | D = 1) and F̂PR(θ̂) = F̂ε(0 − θ̂ | D = 0),
which correspond to the intersections of the RBP curve with
the horizontal lines at 0 − θ̂ and 1 − θ̂, respectively (see Fig-
ure 2(e)).

Relation to the total gain. Bura and Gastwirth (2001) pro-
posed the standardized total gain, which is defined as TG =
TPR(θ) − FPR(θ) and can be estimated by T̂G = T̂PR(θ̂) −
F̂PR(θ̂) (see also Gu and Pepe, 2009). As discussed in the pre-

vious paragraph, the components T̂PR(θ̂) and F̂PR(θ̂) can be
directly obtained from the RBP curve. It is therefore possible
to “read off” these values from the RBP curve and to estimate

the standardized total gain by T̂G = T̂PR(θ̂) − F̂PR(θ̂).
Distributional information. As shown in Section 1, the pre-

dictiveness curve contains the full distribution of the risk R(ν),
which is depicted as a function of the quantiles of the marker
Y . It follows that one can read off the proportion of the pop-
ulation having a disease risk less than or equal to a specific
value t (see also Figure 1). Analogous distributional inter-
pretations can be derived from the RBP curve. This is seen
when writing P(risk(Y) ≤ t) in terms of TPR, FPR, and the
prevalence θ, whose values can all be obtained from the RBP
curve:

P(risk(Y) ≤ t) = 1 − [P(risk(Y) > t | D = 1) · P(D = 1)

+ P(risk(Y) > t | D = 0) · {1 − P(D = 1)}]
= 1 − {

TPR(t) · θ + FPR(t) · (1 − θ)
}

.

The values of TPR(t) and FPR(t) can be read off at the
intersection of the curve and the horizontal lines at 1 − t

and −t. In Figure 2(f), for example, we used t = 0.66 and
obtained TPR(t) = 0.766 and FPR(t) = 0.029. It follows that
P(risk(Y) ≤ t) = 0.75, yielding the same distributional inter-

pretation as in Figure 1, namely that 75% of the population
have a risk ≤ 66%.

Relation to the ROC curve. The ROC curve is constructed
by plotting all pairs (FPR(t), TPR(t)) at each possible de-
cision threshold t (e.g. Zou et al., 1997). As illustrated in
Figure 2(e), it is possible to read the estimated values of
FPR(t) and TPR(t) off the RBP curve. One can, therefore,
calculate the ROC curve from the RBP curve by reading
off and plotting the pairs (FPR(t), TPR(t)). Generally, the
closer the RBP curve to the horizontal line at 0, the smaller
the FPR and the higher the TPR values, yielding a steeper
ROC curve. From Figure 2(e) and Figure 2(f), for exam-
ple, we obtained the pairs (TPR(θ̂), FPR(θ̂)) = (0.917, 0.1) and
(TPR(t), FPR(t)) = (0.766, 0.029), so that the resulting ROC
curve will pass through these points.

Relation to the decision curve. Decision curve analysis has
been proposed by Vickers and Elkin (2006) to incorporate the
relative harms of false positive and false negative predictions
into the evaluation of a prediction model. The decision curve
is the plot of the so-called “net benefit” NB(t) versus a specific
threshold t of the marker Y . Janes and Pepe (2013) showed
that the net benefit can be written in terms of TPR(t), FPR(t)
and the prevalence θ: NB(t) = θ TPR(t) − t

1−t
(1 − θ) FPR(t).

It is therefore possible to derive an estimate of NB(t) at a
given threshold t from the RBP curve. This is done by reading
off the components T̂PR(t) and F̂PR(t) from the curve (see
Figure 2(f)) and by inserting them into the above formula.

Remark 1. The above considerations are valid as long as
θ̂ = 1

n

∑n

i=1
Di is a valid estimate of the prevalence θ. This

is, for example, the case when the data are an i.i.d. sample of
the underlying population. In contrast, if no valid estimate of θ

can be obtained from the data, prevalence-based measures such
as the calibration-in-the-large and the total gain cannot be read
off the RBP curve in a meaningful way. A typical example in
this respect are case-control studies, which are usually based
on a pre-defined ratio of cases and controls.

4. Simulations

In this section, we present the results of two simulation
studies. In the first study (Section 4.1), we illustrate the
importance of calibration checks before assessing the per-
formance of a prediction model using the predictiveness
curve. By evaluating a model that massively overfits the
data, we demonstrate that calibration checks are not possible
without consideration of the outcome variable D and that
the predictiveness curve hence cannot visualize calibration
problems. In the second study (Section 4.2), we show that it
is possible to construct models with almost undistinguishable
predictiveness curves although one of the models ignores an
influential marker. In contrast to the predictiveness curves,
the respective RBP curves visualize both overfitting issues
and the inclusion/exclusion of influential markers.

4.1. Overfitting Issues

An overfitting prediction model fits a specific data set well
but poorly predicts future values of D. To construct such
a model, we generated a data set D = {(xi, Di), i = 1, . . . , n}
with n = 3000 observations and 1000 non-informative mark-
ers x�

i = (xi,1, . . . , xi,1000)
�. The data were subdivided into
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Figure 3. Predictiveness curves and RBP curves obtained from the overfitting prediction model considered in Section 4.1.
The points correspond to the observed proportions of diseased subjects in the risk deciles.

a training set L = {(xi, Di), i = 1, . . . , 1800} and a test set
T = D \ L. Based on the training data, we estimated the co-
efficients of a logistic regression model that included all avail-
able predictors. The model was subsequently evaluated on the
test data. Panels (a) and (b) in Figure 3 show the predictive-
ness curves for the predicted risks in the training and test
data. It is seen that the shapes of both curves are similar
to the respective “optimal” predictiveness curve, suggesting
an “optimal” predictive performance of the model. On the
other hand, when considering the calibration points in Fig-
ure 3(b) (obtained from the test data), it is obvious that the
prediction model is not well calibrated at all. In particular,
Figure 3(a) and (b) show that no valid calibration and per-
formance checks are possible without adding the calibration
points to the curve.

Figure 3(c) shows the RBP curves obtained from both the
training and the test data. As expected, the RBP curve in the
training data is a horizontal line at zero. As it corresponds to
a prediction model with extreme overfitting, it is very similar
to the “optimal” RBP curve defined in Section 3. Unlike the

predictiveness curve obtained from the test data depicted in
Figure 3(b), the respective RBP curve looks far from being
optimal. Because the RBP curve depends on the real outcome
values, it is sensitive to bad calibration and large prediction
errors.

In Web Appendix B, we demonstrate that it is even possible
to optimize the predictiveness curve of a model with poor
performance such that it still looks “optimal” as in Figure 1.
This can be achieved by direct maximization of the empirical
MRD measure.

4.2. Model Comparisons

In this section we compare two well calibrated prediction mod-
els (one model with and the other model without an influential
marker) by their predictiveness curves. The aim of our sim-
ulation study was to demonstrate that making conclusions
about the model performance by solely using the predictive-
ness curve can be misleading – even if the prediction model
is well calibrated.

6. The Residual-Based Predictiveness Curve
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Figure 4. Results of the simulation study of Section 4.2. Panels (a) and (c) show the averaged predictiveness curves for
models M0 and M1 and the pointwise differences between the two predictiveness curves, respectively. Panels (b) and (d)
visualize the averaged RBP curves and their pointwise differences, respectively.

We simulated 1000 data sets with 10, 000 obser-
vations each and considered five independent markers
X1, . . . , X5 ∼ N(0, 1). The marker combination η = x�βββ

was defined by the randomly generated coefficients βββ =
(−2.71, −2.21, −2.59, −2.12, −2.06, 1)�, where the first coef-
ficient corresponded to the intercept and the others corre-
sponded to the influential markers. Each of the 1000 data
sets was split into training and test sets (containing 60 and
40% of the observations, respectively). In each training set we
fitted one model with marker X5 (model M1) and one model
without X5 (model M0). By solving the optimization prob-
lem from Web Appendix B, we ensured that the model fits
were “optimal” with respect to the step function in Figure 1.
Details on model fitting and tuning parameter selection are
given in Web Appendix C.1.

In the next step we applied the Hosmer–Lemeshow test to
both the training and the test data and selected those data
sets whose predicted risks were well calibrated (according to
the Hosmer–Lemeshow test) for both the training and the
test data. Although the Hosmer–Lemeshow test has been crit-
icized in many respects (Kramer and Zimmerman 2007), us-
ing this test in a simulation study nicely illustrates that model
comparisons based on the predictiveness curve are problem-
atic even when automated calibration checks are carried out
beforehand. In our simulation study, 114 out of the 1000 data
sets passed the Hosmer–Lemeshow test. We used these 114
data sets for the following computations.

Figure 4 shows the averaged predictiveness curves obtained
from the 114 test data sets (panel (a)) as well as the respec-
tive pointwise differences between the averaged predictiveness

curves (panel (c)). Since the curves almost overlap and the
pointwise differences scatter around the zero line, the model
performance indicated by the predictiveness curves is simi-
lar for the two models. It is therefore difficult to tell whether
the model with or without X5 performed better, although,
according to the data generating process, the former model
includes the influential predictor X5.

In contrast to panels (a) and (c), panels (b) and (d) of
Figure 4 (which are based on the RBP curve instead of the
predictiveness curve) indicate a difference between models M0

and M1. Specifically, panel (d) indicates that model M1, which
reflects the true data generating process, has a better model
performance than model M0. This result was confirmed by the
evaluation of various other performance measures on the test
data (see Web Figure 2). Note that the aim of Figure 4 was
not to analyze and understand a single data set but rather
to work out the systematic differences between the original
predictiveness curve and the RBP curve. We also repeated
this simulation with smaller sample sizes and obtained similar
results (see Web Appendix C.3).

Remark 2. The differences between RBP curves shown in
Figure 4(d) are related but not equivalent to a method pro-
posed by Uno et al. (2011). The authors suggested to com-
pare competing prediction models by evaluating the differences
in predicted risk for any given marker combination. Although
this approach is similar to what is shown in Figure 4(d), we
emphasize that the RBP procedure sorts the respective sets
of residuals in increasing order before differences are taken.
Therefore, the difference between two predictiveness curves at
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Figure 5. Predictiveness curves (panel (a)) and RBP curves (panel (b)) obtained from the training and test data in Section 5.

a specific value on the abscissa does not necessarily refer to
a single observation or a unique covariate combination. In
contrast, the method by Uno et al. (2011) is based on the
observation-wise differences in predicted risks.

5. Evaluation on Real Data

The data set considered in this section was collected by
Hatzis et al. (2011). It contains information on patients
with newly diagnosed ERBB2-negative breast cancer and
is publicly available from the GEO repository website
at http://www.ncbi.nlm.nih.gov/geo. Covariate information
consists of clinical data and high-throughput molecular data
(expression levels of 22,283 genes, see Hatzis et al. (2011)
for details). The data are stored in two separate data sets
(GEO accession numbers GSE25055 and GSE25065) that, in
our analysis, were merged together and randomly split into
training set and test set containing 2/3 and 1/3 of the ob-
servations, respectively. The response variable considered for
our analysis was the residual cancer burden (RCB) class. The
levels RCB-0 and RCB-I (referring to no and minimal resid-
ual disease, respectively) were coded as D = 0, whereas levels
RCB-II and RCB-III (referring to moderate and extensive
residual disease, respectively) were coded as D = 1. Obser-
vations with missing values in the clinical data and/or the
response (RCB class) were omitted, yielding training and test
sets of sizes 254 and 128, respectively.

To construct a meaningful model that combines clinical and
omics information, we used an approach that was originally
proposed by De Bin, Sauerbrei, and Boulesteix (2014) (“Strat-
egy 4a”). The main idea of this strategy is to first fit a model
to the omics data and to use the linear predictor obtained
from this model, the so-called omics score, as an additional
explanatory variable in a final logistic regression model that
also contains the clinical predictors age, nodal status, tumor
size, grade, estrogen receptor status, and progesterone recep-

tor status. For the derivation of the omics score, we applied a
modeling strategy that was able to handle high-dimensional
data. More specifically, we used a component-wise gradient
boosting algorithm with linear base-learners (Friedman, 2001;
Mayr et al., 2014) that automatically selected the most rele-
vant predictors from the data. To avoid overfitting, the num-
ber of boosting iterations, which is the main tuning parameter
of the algorithm, was optimized using stratified 25-fold boot-
strap.

Figure 5 shows the RBP curve and the predictiveness curve
for the meaningful model, where the omics score was com-
puted using the bootstrapped number of 19 boosting itera-
tions, and for an overfitting model, where the omics score was
computed using 200 boosting iterations. It can be seen that
the RBP curve displays the differences in model performance
more clearly than the predictiveness curve, especially in case
of the overfitting model (black curves). Web Appendix D is
intended for an exemplary application of the RBP curve to
this real data. In Web Appendix D.1, we illustrate how to
derive the MRD, TPR and FPR values from the RBP curves
of the overfitting model and the meaningful model. Web Ap-
pendix D.2 explains how the added value can be visualized
by the RBP curves. Here we used the meaningful model with
and without the omics score to investigate its added value
and explain how the in-sample and extra-sample error can be
assessed by subsampling the training data.

6. Summary and Discussion

In biomedical research it is essential for researchers and prac-
titioners to use reliable and unbiased measures of prediction
accuracy. Equally important is the availability of suitable
graphical tools for visualizing prediction accuracy. In this re-
spect, the RBP curve is a convenient choice, since it contains
the full distribution of the risks and several well-established
summary measures can be derived from it. In particular, the

6. The Residual-Based Predictiveness Curve
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RBP curve visualizes both discrimination and calibration and
is therefore a suitable graphical tool for unbiased marker com-
parisons.

It is important to note that the RBP curve and the pre-
dictiveness curve are based on the same assumptions, namely
the existence of a marker or marker combination Y (that is
not necessarily restricted to the interval [0, 1]) and a proba-
bility model that is needed to calculate risk(Y). In contrast
to strategies for the original predictiveness curve, the RBP
curve does not rely on asymptotically valid calibration tests
and is therefore insensitive to power issues and convergence
problems.

As demonstrated in the preceding sections, the RBP curve
serves as an evaluation tool that is applied to a data set after
the prediction rule risk(Y) has been derived. As a consequence,
the RBP curve can be used to either assess the “in-sample er-
ror” or to assess the “extra-sample error” of the prediction
rule under consideration. In the former case, the same data
would be used to derive the formula for the prediction rule
risk(Y) and to calculate the quantities involved in the defi-
nition of the RBP curve. In the latter case, the RBP curve
would be applied to a test data set that is different from the
data used to derive risk(Y). The variability introduced by esti-
mation of the prediction rule can, for example, be investigated
by resampling methods and by plotting the set of resampled
RBP curves (see Web Appendix D.2).

The RBP curve is implemented in the R package RBPcurve,
which is available at http://cran.r-project.org. The package
provides a user-friendly interface to generate RBP curves and
enables users to visualize the relationships between the RBP
curve and the measures discussed in Section 3.

7. Supplementary Material

Web Appendices and Web Figures referenced in Sections 1,
3.1, and 4–6 are available with this article at the Biometrics
website on Wiley Online Library.
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7. Visualizing the Feature Importance for Black
Box Models

Chapter 7 first provides an overview of common model-agnostic interpretability methods in ma-
chine learning. Furthermore, it introduces a local feature importance measure from which two
novel visual tools are derived, namely the partial importance (PI) and individual conditional
importance (ICI) plots. The visual tools visualize how changes in a feature affect the model per-
formance on average, as well as for individual observations. Moreover, another feature importance
measure called the Shapley feature importance (SFIMP) measure is introduced, which can be used
to compare the feature importance across different models, since it fairly distributes the overall
performance of a model among the features.
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Box Models

Giuseppe Casalicchio (�), Christoph Molnar, and Bernd Bischl

Department of Statistics
Ludwig-Maximilians-University Munich

Ludwigstraße 33, 80539 Munich, Germany
giuseppe.casalicchio@stat.uni-muenchen.de

Abstract. In recent years, a large amount of model-agnostic methods
to improve the transparency, trustability, and interpretability of machine
learning models have been developed. Based on a recent method for
model-agnostic global feature importance, we introduce a local feature im-
portance measure for individual observations and propose two visual tools:
partial importance (PI) and individual conditional importance (ICI) plots
which visualize how changes in a feature affect the model performance on
average, as well as for individual observations. Our proposed methods are
related to partial dependence (PD) and individual conditional expectation
(ICE) plots, but visualize the expected (conditional) feature importance
instead of the expected (conditional) prediction. Furthermore, we show
that averaging ICI curves across observations yields a PI curve, and
integrating the PI curve with respect to the distribution of the considered
feature results in the global feature importance. Another contribution
of our paper is the Shapley feature importance, which fairly distributes
the overall performance of a model among the features according to the
marginal contributions and which can be used to compare the feature
importance across different models.

Keywords: Interpretable Machine Learning · Explainable AI · Feature
Importance · Variable Importance · Feature Effect · Partial Dependence.

1 Introduction and Related Work

Machine learning (ML) algorithms such as neural networks and support vector
machines (SVM) are often considered to produce black box models because
they do not provide any direct explanation for their predictions. However, these
methods often outperform simple linear models or decision trees in predictive
performance as they can model complex relationships in the data. Nevertheless,
such simple models are still preferred in areas such as life sciences and social
sciences due to their simplicity and interpretability [14]. Many researchers have
therefore developed and implemented several model-agnostic interpretability
tools, which quantify or visualize feature effects or feature importance [9, 11, 17].

In our context, the terms feature effect, feature contribution and feature attri-
bution describe how or to what extent each feature contributes to the prediction
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of the model, either on a local or a global level. Methods for feature effects
include partial dependence (PD) plots [10], individual conditional expectation
(ICE) plots [11] and, more recently, SHAP values [15]. These methods visualize
or quantify the relationship and contribution of each feature to the prediction
of a model without requiring knowledge about the true values of the target
variable. A method that measures feature effects based on the Shapley value [19]
from coalitional game theory was first presented for classification in [21] and has
been extended to regression and global analysis in [22]. Further developments,
visualizations, and generalizations were introduced by [15, 16]. Similar work
proposing a general notion of a quantity of interest for the characteristic function
of the Shapley value and focusing on the joint and marginal contributions of
feature sets was introduced by [8].

In biomedical research, for example, measuring the effects of biomedical
markers w.r.t. model prediction is as essential as measuring their added value
regarding model performance [4]. We use the term feature importance1 to describe
how important the feature was for the predictive performance of the model,
regardless of the shape (e.g., linear or nonlinear relationship) or direction of
the feature effect. This implies that measures of feature importance require
knowledge of the true values of the target variable. The most prominent approach
is the permutation importance introduced by Breiman [3] for random forests. It
computes the drop in out-of-bag performance after permuting the values of a
feature. A model-agnostic global permutation-based feature importance (PFI)
was recently introduced in [9].

Contributions: We review model-agnostic global PFI and propose an efficient
approximation based on Monte-Carlo integration. We then introduce a local
version of the global PFI, which measures the feature importance of individual
observations. We provide visualizations for local and global PFI, which illustrate
how changes in the considered feature affect model performance. We also relate our
new visual tools to PD plots, ICE plots and show that the integral of our PI curve
results in the global PFI measure. Furthermore, we propose a permutation-based
Shapley feature importance (SFIMP) measure that fairly distributes the model
performance among features and allows the comparison of feature importances
across different models.

2 Preliminaries and Background on Feature Effects

In this section, we introduce the notation and describe methods focusing on
feature effects, which we transfer to feature importance in Section 4 and 5.

General Notation: Consider a p−dimensional feature space XP = (X1 × . . .×
Xp) with the feature index set P = {1, . . . , p} and a target space Y. Suppose
that there is an unknown functional relationship f between XP and Y. ML
algorithms try to learn this relationship using training data with observations

1 In the literature, the term feature importance is sometimes also used for methods
that only work with model predictions. In our context, however, we would categorize
them under feature effects as they do not take into account the model performance.
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that have been drawn i.i.d. from an unknown probability distribution P on the
joint space XP ×Y . We consider an arbitrary prediction model f̂ , fitted on some
training data to approximate f and analyze it with model-agnostic interpretability
methods. Let D = {(x(i), y(i))}ni=1 be a test data set sampled i.i.d. from P where
n is the number of observations in the test set. We denote the corresponding
random variables generated from the feature space by X = (X1, . . . , Xp) and
the random variable generated from the target space by Y . In our notation,

the vector x(i) = (x
(i)
1 , . . . , x

(i)
p )> ∈ XP refers to the i-th observation, which is

associated with the target variable y(i) ∈ Y, and xj = (x
(1)
j , . . . , x

(n)
j )> denotes

the realizations of the j-th feature. We denote the generalization error of a fitted
model, which is measured by a loss function L on unseen test data from P, by
GE(f̂ ,P) = E(L(f̂(X), Y )). It can be estimated using the test data D by

ĜE(f̂ ,D) = 1
n

∑n
i=1 L(f̂(x(i)), y(i)). (1)

A better estimate for the generalization error of an ML algorithm can be obtained
using resampling techniques such as cross-validation or bootstrap [1].

PD Plots [10] visualize the marginal relationship between features of interest
and the expected prediction of a fitted model on a global level. Consider a subset
of feature indices S ⊆ P and its complement C. Each observation x ∈ XP can be
partitioned into xS ∈ XS and xC ∈ XC containing only features from S and C,
respectively. Let XS and XC be the corresponding random variables and let the
prediction function using features in S, marginalized over features in C be the
PD function defined by fS(xS) = EXC

(f̂(xS , XC)). This definition also covers
f∅(x∅) and results in a constant, the average prediction over P . We can estimate
the PD function using Monte-Carlo integration by averaging over feature values

x
(i)
C in order to marginalize out features in C:

f̂S(xS) = 1
n

∑n
i=1 f̂

(i)
S (xS) = 1

n

∑n
i=1 f̂(xS ,x

(i)
C ). (2)

Here, f̂
(i)
S (xS) = f̂(xS ,x

(i)
C ) can be read in two ways: a) the prediction of the i-th

observation with replaced feature values in S taken from x or b) the prediction
of x with replaced values in C taken from the i-th observation. Plotting the pairs

{(x∗(k)

S , f̂S(x∗
(k)

S ))}mk=1 using (often m < n) grid points denoted by x∗
(1)

S , . . . ,x∗
(m)

S

yields a PD curve. Fig. 1 illustrates the PD principle for a simple example.

x1 x2 x3

1 4 5
2 6 7

→
x1 x2 x3

1 4 5
1 6 7

2 4 5
2 6 7

→

x1 x2 x3 f̂
(i)
S (x1)

1 4 5 f̂
(i)
S (1)

1 6 7 f̂
(i)
S (1)

2 4 5 f̂
(i)
S (2)

2 6 7 f̂
(i)
S (2)

→
x1 x2 x3 f̂S(x1)

1 4 5 1
n

∑n
i=1 f̂

(i)
S (1)

2 6 7 1
n

∑n
i=1 f̂

(i)
S (2)

Fig. 1. PD plot for an example with n = 2, p = 3 and S = {1} and C = {2, 3} (marginal
effect of x1 on f̂). We construct a grid using each observed value from x1, i.e., x1

(1) = 1
and x1

(2) = 2, and compute the PD function using these grid points.
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ICE Plots [11]: The averaging in Eq. (2) of the PD function can obfuscate
more complex relationships resulting from feature interactions, i.e. when the
partial relationship of one or more observations depends on other features. ICE
plots address this problem by visualizing to what extent the prediction of a
single observation changes when the value of the considered feature changes.

Instead of plotting the pairs {(x∗(k)

S , f̂S(x∗
(k)

S ))}mk=1, ICE plots visualize the pairs

{(x∗(k)

S , f̂
(i)
S (x∗

(k)

S ))}mk=1 for each observation indexed by i ∈ {1, . . . , n}.
Shapley Value: A coalitional game is defined by a set of players P , which

can form coalitions S ⊆ P . Each coalition S achieves a certain payout. The
characteristic function v : 2P → R maps all 2p possible coalitions to their payouts.
The Shapley value [19] now fairly assigns a value to each player depending on
their contribution in all possible coalitions. This concept was transferred to
feature effect estimation in [21]. We could explain the prediction of a single,
fixed observation x by regarding features as players, who form various coalitions
(subsets) S to achieve the prediction f̂(x). For each coalition S, we are only
allowed to access values of features from S. A natural definition of the payout
is the PD value fS(xS), which we shift so that an empty set of no features is
assigned a value of 0 – which is required by the general Shapley value definition:

v(xS) = EXC
(f̂(xS , XC))− EX(f̂(X)) = fS(xS)− f∅(x∅). (3)

The marginal contribution of feature j, joining a coalition S, is defined as

∆j(xS) = v(xS∪{j})− v(xS) = fS∪{j}(xS∪{j})− fS(xS).

Let Π be the set of all possible permutations over the index set P . For a
permutation π ∈ Π, we denote the set of features that are in order before feature
j as Bj(π). For example, for p = 4, if we consider feature j = 4 and permutation
π = {2, 3,4, 1}, then B4(π) = {2, 3}. For an observation x and its feature value
for feature j, the Shapley value can be estimated by

φ̂j(x) = 1
p!

∑
π∈Π ∆̂j(xBj(π)

)

= 1
p!

∑
π∈Π f̂Bj(π)∪{j}(xBj(π)∪{j})− f̂Bj(π)(xBj(π)

)

= 1
p!·n

∑
π∈Π

∑n
i=1 f̂

(i)
Bj(π)∪{j}(xBj(π)∪{j})− f̂

(i)
Bj(π)

(xBj(π)
),

where f̂Bj(π) and f̂Bj(π)∪{j} are estimated by Eq. (2). An efficient approximation
based on Monte-Carlo integration using m rather than p! · n summands was
proposed by [22]. Consider the following example to illustrate the Shapley value:
The features enter a room in a random order specified by the permutation π. All
features in the room participate in the game, i.e., they contribute to the model
prediction. The Shapley value φj is the average additional contribution of feature
j by joining whatever features already entered the room before.

3 Permutation-based Feature Importance

Background. The permutation importance for random forests introduced in [3]
measures the performance, e.g., the mean squared error (MSE), of each tree
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within a random forest using out-of-bag samples. The performance is measured
once with and once without permuted values of the feature of interest. The
difference between those two performance values is computed for each tree and
averaged to yield the feature importance. Permuting the values of a feature breaks
the association between the feature and the target variable and results in a large
drop in performance if the considered feature is important. A model-agnostic
global PFI for features included in S can be defined as

PFIS = E(L(f̂(X̃S , XC), Y ))− E(L(f̂(X), Y )) (4)

where X̃S refers to an independent replication of XS , which is also independent
of XC and Y . This implies that X̃S is a new (multivariate) random variable,
which is distributed as XS , but independent of everything else. This definition is
analogous to the permutation-based model reliance introduced by [9] and relates
to the definition in [12] where the authors focus on random forests. The larger the
value of PFIS , the more substantial the increase in error when we permute feature
values in S, and the more important we deem the feature set S. According to [9],

the use of the ratio PFIS = E(L(f̂(X̃S , XC), Y ))/E(L(f̂(X), Y )) instead of the
difference might be more comparable across different models, as it always refers
to the relative drop in performance with respect to the standard generalization
error. However, using the ratio can result in numerically unstable estimations if
the denominator is close or equal to zero. Thus, both definitions have drawbacks
that we try to are address in Section 5.

Estimating and Approximating the PFI. The first term of Eq. (4) encodes the
expected generalization error under perturbation of features in feature set S,
which can be formulated as:

E(L(f̂(X̃S , XC), Y )) = E(XC ,Y )(EX̃S |(XC ,Y )(L(f̂(X̃S , XC), Y )))

= E(XC ,Y )(EX̃S
(L(f̂(X̃S , XC), Y )))

= E(XC ,Y )(EXS
(L(f̂(XS , XC), Y )))

In the derivation above, the first equality follows from the “law of total expec-
tation”, the second from the independence of X̃S from (XC , Y ), and the third
because X̃S is distributed as XS . We can plug in an estimator for the inner
expected value and denote the estimate of this quantity by

ĜEC(f̂ ,D) = 1
n

∑n
i=1

1
n

∑n
k=1

L(f̂(x
(k)
S ,x

(i)
C ), y(i)). (5)

The index C in GEC emphasizes that the set of features in C were not replaced
with a perturbed random variable and can thus be seen as the model performance
using features in C (and ignoring those in S). The above estimator is analogous
to the V-statistic [18] and may also be replaced by the unbiased U-statistic using
1
n

∑n
i=1

1
n−1

∑
k 6=i L(f̂(x

(k)
S ,x

(i)
C ), y(i)) as proposed by [9].2 The estimator scales

2 For the sake of simplicity, we consider the V-statistic throughout the article. How-
ever, all calculations and approximations based on Eq. (5) still apply – with slight
modifications – when using the U-statistic.

7. Visualizing the Feature Importance for Black Box Models
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with O(n2) (for a given set C, and assuming f̂ can be computed in constant
time), which can be expensive when n is large. However, we can use a different
formulation to motivate an approximation for Eq. (5): Let {τττ1, . . . , τττn!} be the
set of all possible permutation vectors over the observation index set {1, . . . , n}.
As shown by [9], we can replace Eq. (5) by the equivalent formulation

ĜEC,perm(f̂ ,D) = 1
n

∑n
i=1

1
n!

∑n!
k=1

L(f̂(x
(τ

(i)
k )

S ,x
(i)
C ), y(i)).

If we approximate ĜEC,perm by Monte-Carlo integration using only m randomly
selected permutations rather than all n! permutations, we obtain

ĜEC,approx(f̂ ,D) = 1
n

∑n
i=1

1
m

∑m
k=1

L(f̂(x
(τ

(i)
k )

S ,x
(i)
C ), y(i)). (6)

The approximation refers to permuting features in S repeatedly (i.e., m times)
and averaging the resulting model performances.3 The PFI from Eq. (4) can be
estimated using Eq. (5) for the first term and using Eq. (1) for the last term.
Including the summands into an iterated sum yields the estimate

P̂F IS = 1
n2

∑n
i=1

∑n
k=1

(
L(f̂(x

(k)
S ,x

(i)
C ), y(i))− L(f̂(x(i)), y(i))

)
. (7)

If we use Eq. (6) rather than Eq. (5), we obtain the approximation

P̂F IS,approx = 1
n·m

∑n
i=1

∑m
k=1

(
L(f̂(x

(τ
(i)
k )

S ,x
(i)
C ), y(i))− L(f̂(x(i)), y(i))

)
. (8)

Eq. (8) is identical to the permutation importance of random forests formalized
in [12] if we consider m as the number of trees, replace n with the number of

out-of-bag samples per tree and replace the model f̂ with the individual trees
fitted within a random forest, i.e., f̂k.

4 Visualizing Global and Local Feature Importance

Consider the summands in Eq. (7) and denote them by

∆L(i)(xS) = L(f̂(xS ,x
(i)
C ), y(i))− L(f̂(x(i)), y(i)).

This quantity refers to the change in performance between the i-th observa-
tion with and without replaced feature values xS . Inspired by ICE plots, we
introduce individual conditional importance (ICI) plots which visualize the pairs

{(x(k)
S , ∆L(i)(x

(k)
S ))}nk=1 for all observations i = 1, . . . , n. We define the local fea-

ture importance of the i-th observation (regarding features in S) as the integral of

3 By the same logic, we could also directly approximate Eq. (5) by summing over m
randomly selected feature values for features in S instead of using all of them. We
here opted for Eq. (6), due to the in our opinion interesting relation to the random
forest permutation importance explained at the end of this section.
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the corresponding ICI curve with respect to the distribution of XS . It is estimated

by P̂F I
(i)

S = 1
n

∑n
k=1∆L

(i)(x
(k)
S ) and can be interpreted as the expected change

in performance of the i-th observation after marginalizing its features in S. It
also refers to the contribution of the i-th observation to the global PFI (see later
in Eq. (9)). To the best of our knowledge, a similar definition for local feature
importance only exists in the context of random forests, e.g., in [7].

Analogous to the PD function from Eq. (2), we introduce the partial impor-
tance (PI) function as the expected change in performance at a specific value

xS , which can be estimated by P̂ IS(xS) = 1
n

∑n
i=1∆L

(i)(xS). Consequently, a

PI plot visualizes the pairs {(x(k)
S , P̂ IS(x

(k)
S ))}nk=1 and refers to the pointwise

average of all ICI curves across all observations at fixed grid points xS .
Fig. 2 illustrates the computation of ICI and PI curves for the first feature.

It also shows the n grid points for which ∆L(i)(x
(i)
S ) = 0 ∀i. We can omit these

points by plotting the pairs {(x(k)
S , ∆L(i)(x

(k)
S ))}k∈{1,...,n}\{i} to visualize the

unbiased estimation of the feature importance proposed by [9]. Visualizing the
ICI curves for the approximation in Eq. (8) implies that some grid points are
randomly skipped because the feature values used as grid points are implicitly
determined by the randomly selected permutations in Eq. (8). The ICI curves,
the PI curve, and the global PFI are related: Averaging all ICI curves pointwise
yields a PI curve. Integrating the PI curve (as well as averaging the integral of

all ICI curves) using Monte-Carlo integration over all points {x(k)
S }nk=1 yields an

equivalent estimate of the global PFI from Eq. (7):

P̂F IS = 1
n

∑n
i=1 P̂F I

(i)

S = 1
n

∑n
k=1 P̂ IS(x

(k)
S ). (9)

We propose to additionally inspect the PI and ICI curves instead of focusing on a
single PFI value. PI curves enable the user to identify regions in which the feature
importance is higher or lower than its global PFI. ICI curves additionally enable
the user to identify (suspicious) observations that impact the global PFI strongly
and can reveal heterogeneity in the feature importance among the observations,
which remain hidden in the PI plots (see also Section 6).

Algorithm 1 describes a procedure for obtaining PI and PD plots, which also

allows to return ICI and ICE plots by visualizing {(x∗(k)

S , ∆L(i)(x∗
(k)

S ))}mk=1 and

{(x∗(k)

S , f̂
(i)
S (x∗

(k)

S ))}mk=1 for all observations i. Similar to PD and ICE plots, we
can use all k = 1, . . . , n or a random sample (of size m < n) of feature values
from S as grid points for PI and ICI plots.

5 Shapley Feature Importance

In this section, we introduce the Shapley F eature IMPortance (SFIMP) measure,
which allows to easily visualize and interpret the contribution of each feature to
the model performance. Our goal is to fairly distribute the performance difference
among the individual features between the scenario when all features are used
and when all features are ignored, which is illustrated in Fig. 3.

7. Visualizing the Feature Importance for Black Box Models
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x1 x2 x3
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i x1 x2 x3 ∆L
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Fig. 2. The tables on the left side illustrate the required steps to create ICI curves
and PI plots as described in Algorithm 1. The right plot visualizes the ICI curves
of individual observations for i = 1, 2, 3 (dotted and dashed lines) and the PI curve
(solid line) which is the average of ICI curves at each point of the abscissa. All points
belonging to the same observation are connected by a line to produce the ICE curves.

Algorithm 1: PD plot and PI plot

1. Choose m grid points x∗
(1)

S , . . . ,x∗
(m)

S .
2. Repeat the following steps for the k-th grid point:

a) Modify the data by replacing all observed values in xS with the constant

values from the k-th grid point x∗
(k)

S .
b) Use the modified data from a), the prediction function f̂ and the loss function

L and calculate for all individual observations:
i) f̂

(i)
S (x∗

(k)

S ) = f̂(x∗
(k)

S ,x
(i)
C )

ii) ∆L(i)(x∗
(k)

S ) = L(f̂(x∗
(k)

S ,x
(i)
C ), y(i))− L(f̂(x(i)), y(i))

c) Aggregate the individual values:

i) f̂S(x∗
(k)

S ) = 1
n

∑n
i=1 f̂

(i)
S (x∗

(k)

S )

ii) P̂ IS(x∗
(k)

S ) = 1
n

∑n
i=1∆L

(i)(x
(k)
S )

3. Plot the pairs {(x∗(k)

S , f̂S(x∗
(k)

S ))}mk=1 and {(x∗(k)

S , P̂ IS(x∗
(k)

S )}mk=1.

The Shapley value was used in [6] for a fair attribution of the difference in
model performance. However, the authors focused on feature selection which
requires refitting the model by leaving out or including features. This can lead
to different results of the learning algorithm since different relationships can
be learned due to the absence of features. This is reasonable in the context of
feature selection. However, as we measure the feature importance of an already
fitted model, we prefer marginalizing over features rather than omitting them
completely. Inspired by Eq. (3), we define the characteristic function of the
coalition of features in S ⊆ P based on Eq. (5) as:

vGE(S) = ĜES(f̂ ,D)− ĜE∅(f̂ ,D). (10)

The characteristic function measures the change in performance between using
features in S (i.e., ignoring features in its complement C by marginalizing over
them) and ignoring all features. This is similar to Eq. (7) which, in contrast,
measures the change in performance between ignoring features in S and using
all features. Since the error ĜE∅(f̂ ,D) (no features are considered, i.e., all
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
performance (e.g. classification error)

 performance achieved by

no feature (S =  ∅ )
all features (S = P)

Fig. 3. Illustration of the difference in model performance that we want to fairly
distribute among the features. The model performance (e.g., classification error) is 0.1
when using all features (green bar) and 0.5 when ignoring all features (red bar). Our
goal is to fairly distribute the resulting performance difference of 0.4 among all involved
features based on their marginal contribution.

features are marginalized out) is usually greater than ĜES(f̂ ,D), vGE(S) will
have negative values.4 The marginal contribution of a feature j to a coalition of
features in S is given by

∆j(S) = vGE(S ∪ {j})− vGE(S) = ĜES∪{j}(f̂ ,D)− ĜES(f̂ ,D).

If we consider a permuted order π ∈ Π of the features, where Bj(π) is the set of
features occurring before feature j, we obtain the Shapley value estimation

φ̂j(vGE) = 1
p!

∑
π∈Π ∆j(Bj(π))

= 1
p!

∑
π∈Π ĜEBj(π)∪{j}(f̂ ,D)− ĜEBj(π)(f̂ ,D),

(11)

which refers to the SFIMP measure of feature j. Computing Eq. (11) is compu-
tationally expensive when the number of features p is large, even if we use the
approximation of the model performance from Eq. (6). We therefore suggest an
efficient procedure in Algorithm 2. The Shapley value satisfies the following four
desirable properties as already worked out in [6]:

1. Efficiency:
∑p
j=1 φj = vGE(P ). All SFIMP values add up to vGE(P ), i.e., the

difference in performance between the scenario when all features are used
and when all features are ignored. This allows us to calculate the proportion
of explained importance for each feature j using

φj∑p
j=1 φj

.

2. Symmetry: If vGE(S ∪ {j}) = vGE(S ∪ {k}) for all S ⊆ {1, . . . , p} \ {j, k},
then φj = φk. Two features j and k have the same SFIMP values if their
marginal contribution to all possible coalitions is the same.

3. Dummy property: If vGE(S ∪ {j}) = vGE(S) for all S ⊆ P , then φj = 0.
The SFIMP value of a feature j is zero if its marginal contribution does not
change no matter to which coalition S the feature is added.

4. Additivity: φj(vGE+wGE) = φj(vGE)+φj(wGE). The SFIMP value resulting
from a single game with two combined performance measures φj(vGE +wGE)
is the same as the sum of the two SFIMP values resulting from two separate
games with corresponding characteristic functions, i.e., φj(vGE) + φj(wGE).
Linearity: φj(c · vGE) = c · φj(vGE). Any multiplication of the performance
measure with a constant c does not affect the feature ranking.

4 We prefer the definition in Eq. (10) as it directly shows the relation to Eq. (3),
however, we could also swap the sign as discussed at the end of this section.

7. Visualizing the Feature Importance for Black Box Models
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Algorithm 2: Approximation of SFIMP values: Contribution of j-th feature
towards the model performance.

Input: mfeat, mobs, f̂ , L, D = {(x(i), y(i))}ni=1

1 forall k ∈ {1, . . . ,mfeat} do
2 choose a random permutation of the feature indices π ∈ Π.
3 set S = Bj(π) containing features that won’t be permuted.

4 set ĜES,perm = 0 and ĜES∪{j},perm = 0.
5 forall l ∈ {1, . . . ,mobs} do
6 choose a random permutation of observation indices τττ ∈ {τττ1, . . . , τττn!}.
7 measure performance by permuting features w.r.t. τττ = (τ (1), . . . , τ (n)):

ĜES,perm = ĜES,perm + 1
n

∑n
i=1 L(f̂(x

(i)
S ,x

(τ(i))
C ), y(i)))

ĜES∪{j},perm = ĜES∪{j},perm + 1
n

∑n
i=1 L(f̂(x

(i)

S∪{j},x
(τ(i))

C\{j}), y
(i)))

8 compute marginal contribution for feature j in iteration k:

∆
(k)
j (S) = 1

mobs
· (ĜES∪{j},perm − ĜES,perm)

9 return φ̂j = 1
mfeat

∑mfeat
k=1 ∆

(k)
j (S)

The properties above imply that fairly distributing the drop in performance

using vPFI(S) = P̂F IS = ĜEC(f̂ ,D)− ĜEP (f̂ ,D) results in the same Shapley
values (except for the sign) and is equivalent to using −vGE(P ). The SFIMP
measure can thus be seen as an extension of the PFI measure in the sense that
it additionally fairly distributes the importance values among features. The
PFI measure ignores features in S by permuting or marginalizing over them,
which destroys any correlation and interaction of features in C with features
in S. Consequently, the PFI of a feature also includes the importance of any
interaction with that feature and features in C and therefore an interaction will
be fully attributed to all involved features. The SFIMP measure solves this issue
as it considers the marginal contribution of a feature and equally distributes the
importance of interactions among the interacting features. This allows comparing
feature importances across different models.

6 Simulations and Application

For full reproducibility, all our proposed methods are available in the R package
featureImportance5. The repository also contains the R code, which is partly
based on batchtools [13], for the application and simulation in this section.

6.1 Simulations

PI and ICI Plots. Consider the following data-generating model:

Y = X1 +X2 + 10X1 · 1X3=0 + 10X2 · 1X3=1 + ε,

5 https://github.com/giuseppec/featureImportance.
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X1, X2
i.i.d∼ N (0, 1), X3 ∼ B(1, 0.5), ε ∼ N (0, 0.5).

We simulate a training data set with 10000 observations, train a random forest
and compute the global PFI on 100 test sets of size n = 100 sampled from the
same distribution. We demonstrate that, by merely inspecting the global PFI,
the features X1 and X2 would be considered equally important. However, due to
the interactions, it is clear that feature X1 should be considered more important
than X2 when X3 = 0 and vice-versa when X3 = 1.

According to Eq. (9), averaging the local feature importances (i.e., the integral
of all ICI curves) results in the global PFI. Having at hand the local feature
importance of each observation allows calculating the PFI conditional on other
features. This does not require additional time-consuming calculations, as we only
have to average the already computed local feature importances according to the
condition considered in the conditional PFI. The relevance of conditional feature
importance in the case of random forests with correlated features was discussed
in [20]. In Fig. 4, we illustrate the usefulness of a model-agnostic conditional PFI
in case of interactions by showing the PI curves of X1 and X2 conditional on the
binary feature X3. The integral of these conditional PI curves refers to the PFI
conditional on X3. Its value differs depending on the two groups introduced by
feature X3, which suggests that there is an interaction between the features X1

and X3 as well as X2 and X3.
Table 1 shows that feature X1 and X2 are almost equally important if we

consider the unconditional global PFI. However, a different ranking of features is
obtained when we compute the PFI conditional on X3. Thus, inspecting PI and
ICI curves conditional on other feature values may help in detecting interactions.

Table 1. The mean and the standard deviation (numbers in brackets) of the PFI values
estimated using the 100 simulated test data sets.

X1 X2

global PFI 77.976 (14.15) 76.764 (13.89)
PFI for X3 = 0 152.49 (26.06) 1.428 (1.32)
PFI for X3 = 1 1.261 (1.03) 151.489 (24.69)

Shapley Feature Importance. We illustrate how the SFIMP measure can be
used to compare the feature importance across different models and present the
results of a small simulation study to compare the SFIMP measure introduced in
Section 5 with the difference-based and the ratio-based PFI discussed in Section
3. Consider the following data-generating linear model with a simple interaction:

Y = X1 +X2 +X3 +X1 ·X2 + ε, X1, X2, X3
i.i.d∼ N (0, 1), ε ∼ N (0, 0.5).

All three features and the interaction of X1 and X2 have the same linear effect on
the target Y . We simulate training data with 10000 observations and train four

7. Visualizing the Feature Importance for Black Box Models
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Fig. 4. PI curves of X1 and X2 calculated using all observations (black line) and
conditional on X3 = 0 (red line) and X3 = 1 (green line). The points plotted on the
lines refer to the observed feature values that were used as grid points to produce the
corresponding PI curves as described in Algorithm 1.

learning algorithms using the mlr R package [2] in their defaults: An SVM with
Gaussian kernel (ksvm), a random forest (randomForest), a simple linear model
(lm) and another one that considers 2-way interaction effects (rsm). We use a test
set with n = 100 observations sampled from the same distribution and compute
the SFIMP values according to Eq. (11). Panel (a) of Fig. 5 displays how the
SFIMP measure distributes the total explainable performance among all features
and shows the proportion of explained importance for each feature. We repeat
the experiment 500 times on different test sets of equal size and additionally
compute the difference-based and ratio-based PFI. The results are shown in panel
(b) of Fig. 5. For the linear model without interaction effects, the calculated
importance of all three features is equal (median ratio of 1). For all other models,
we obtained a higher importance for the interacting features, indicating that
these models were able to grasp the interaction effect. However, as permuting a
feature destroys any interaction with that feature, the PFI values of a feature
will also include the importance of any interaction with that feature. Thus, the
importance of the interaction between X1 and X2 is contained in the PFI value
for feature X1 as well as in the PFI value for feature X2. This will overestimate
the importance of X1 and X2 with respect to X3 since X1 and X2 share the
same interaction. In panel (b), we thus show the ratio of the importance values
with respect to X3. The results suggest that the difference-based PFI considers
X1 and X2 twice as important as X3 as the median ratio is around 2. In contrast,
the median ratio of SFIMP is around 1.5 as the importance of the interaction is
fairly distributed among X1 and X2.

6.2 Application on Real Data

We demonstrate our graphical tools on the Boston housing data, which is publicly
available on OpenML [23] with data set ID 531. The data set contains 13 features
that may affect the median home price of 506 metropolitan areas of Boston. We
used the OpenML R package [5] and created the OpenML task with ID 167147
containing a holdout split ( 2

3 vs. 1
3 ) for training a random forest and producing

the PI and ICI plots on the test set.
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Fig. 5. Panel (a) shows the results of a single run, consisting of sampling test data and
computing the importance on the previously fitted models. The first numbers on the
left refer to the model performance (MSE) using all features. The other numbers are
the SFIMP values which sum up to the total explainable performance vGE(P ) from Eq.
(10). The percentages refer to the proportion of explained importance. Panel (b) shows
the results of 500 repetitions of the experiment. The plots display the distribution of
ratios of the importance values for X1 and X2 with respect to X3 computed by SFIMP,
by the difference-based PFI, and by the ratio-based PFI.

Row (1) of Table 2 shows the global PFI values of all features. They are
estimated using Eq. (7) by taking into account all 166 ·166 points of the test data.
Fig. 6 shows the corresponding PI and ICI curves for the two most important
features (LSTAT and RM). They visualize which regions of each feature and
which observations have a high impact on the computed PFI values on a global
and local level, which follows from the relation in Eq. (9).

PI plots visualize the expected change in performance at each position of the
abscissa. An expected change close to zero across the whole range of the feature
values suggests an unimportant feature. The PI plot of LSTAT in Fig. 6 suggests
that the feature is more important if LSTAT < 10. For illustration purposes,
we omit all observations for which LSTAT ≥ 10 and recompute the conditional
PFI values, which are displayed in Row (2) of Table 2. The resulting conditional
PFI values are smaller, i.e., excluding observations for which LSTAT ≥ 10 makes
the LSTAT feature less important. Note that omitting observations change the
empirical distribution of the features and thus also affects the importance of
other features when the PFI values are recomputed.

ICI curves additionally reveal the most (and the least) influential observations
for the feature importance by considering their integral (see highlighted lines
in Fig. 6). We can, for example, omit observations with a negative ICI curve
integral. In our test set, we observe 18 of 166 ICI curves with a negative integral

7. Visualizing the Feature Importance for Black Box Models
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for the LSTAT feature. These observations have a negative impact on the global
PFI according to the relation in Eq. (9). We omit them and recompute the PFI
values. The results are listed in row (3) of Table 2 and show an increased PFI
value for LSTAT.

Table 2. PFI values calculated for a random forest trained on the Boston housing
training set and using the MSE on the test data. The PFI values in row (1) are based
on all observations from the test set, in row (2) on a subset where LSTAT < 10 and in
row (3) after removing observations having a negative ICI integral.

LSTAT RM NOX DIS CRIM PTRATIO AGE INDUS TAX RAD B ZN CHAS

(1) 32.0 15.6 3.9 2.7 2.6 2.2 1.2 1.0 1.0 0.8 0.8 0.1 0.1
(2) 10.4 29.6 1.5 3.3 0.8 2.3 0.8 0.5 1.2 1.1 0.6 0.2 0.2
(3) 35.3 17.0 4.3 2.4 2.5 2.5 1.1 1.2 0.8 0.9 0.8 0.1 0.1

7 Conclusion and Future Work

It is essential for practitioners to peek inside black box models to get a better
understanding of how features contribute to model predictions or how they affect
the model performance. Model-agnostic visualization methods can simplify this
task tremendously. Regarding the feature importance, the PI and ICI curves are
a convenient choice for visualizing how features affect model performance. We
demonstrated how to disaggregate the global PFI into its individual local PFI
components, which enabled us to visualize the feature importance on a local
and global level. It also allows practitioners to analyze and compare the feature
importance across different groups of observations in the data, e.g., by subsetting
the data according to other feature values and computing a conditional feature
importance similar to [20] on the subsetted data which may reveal interactions.
Another interesting aspect, which we leave for future work, is aggregating the local
feature importances of individual observations (i.e., the integral of ICI curves)
across different features to obtain a measure for the importance of individual
observations. This could be used to find clusters of observations in the data
that were important for the model performance similar to [15], but based on
feature importance rather than feature effects. Furthermore, it is also possible to
disaggregate the Shapley feature importance introduced in Section 5 and produce
plots similar to Shapley dependency plots that were recently introduced in [15],
but we leave this for future work. Our proposed methods serve as an evaluation
tool that is applied to a data set after a model has been fitted. As a consequence,
our methods can be used to either assess the feature importance based on the
“in-sample performance” or based on the “out-of-sample performance” of a fitted
model. In the former case, the same data could be used to fit the model and to
calculate the quantities involved in the definition of our methods. We focused on
the latter case with independent test data. However, we could also investigate
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Fig. 6. PI and ICI plots for a random forest and the two most important features of the
Boston housing data (LSTAT and RM). The horizontal lines in the PI plots represent
the value of the global PFI (i.e., the integral of the PI curve). Marginal distribution
histograms for features are added to the PI margins. The ICI curve with the largest
integral is highlighted in green and the curve with the smallest integral in red.

the variability introduced by the estimation of the model itself via resampling
and plot or aggregate the resulting set of quantities.
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8. Concluding Remarks and Future Work

The mlr package wraps machine learning algorithms from already existing packages and puts them
into a unified input and output structure. It also implements algorithms to handle even more
complex supervised learning tasks, such as multilabel classification (see Chapter 3). Although
currently not implemented, further extensions to support ordinal regression and mixed-type multi-
outcome prediction are planned. There are many methods that transform ordinal regression tasks
into multiple binary classification tasks and thus also take into account the ordering imposed by
the ordinal target value (Li and Lin, 2006; Gutierrez et al., 2016). Implementing such methods
into the mlr package is very similar to the work in Chapter 3. However, these methods involve
fitting multiple binary classifiers, which can be computationally demanding. Another possibility
to support ordinal regression tasks in mlr is to consider the ordinal target as a real-valued target
so that traditional regression algorithms can be used. However, obtaining ordinal classes requires
an additional step, namely the search of reasonable thresholds that introduce ordinal categories to
the real-valued predictions. Methods that are based on this idea include threshold methods that
assume an underlying latent variable (Sánchez-Monedero et al., 2013) and naive methods based
on rounding the real-valued predictions (Kramer et al., 2001). An alternative, which requires
further investigation, would be to treat the thresholds as hyperparameters and to estimate them
by directly optimizing the performance measure of interest. A similar idea was described by the
author of this dissertation in a Kaggle competition, which received considerable attention.1

Multilabel classification can be seen as a special case of a more general task, i.e., the task of
simultaneously modeling and predicting multiple targets of mixed-type. In Saha et al. (2017), a
framework for such mixed-type multi-outcome prediction was described, where each target can
either be real-valued, discrete or ordinal. Adding support for such tasks in mlr should again be
straightforward to the work in Chapter 3. However, assessing the performance in such situations
is only straightforward if all targets have the same type, such as only real-valued, only ordinal, or
only discrete (either with two or with multiple categories) targets. If the targets are of mixed-type,
one of the biggest challenges may be to find an appropriate way on how to assess the performance,
which requires future work, especially since the literature on this topic is rather scarce.

One of the aims of OpenML is to make benchmark results and meta-information for algorithms
and datasets available to researchers all over the world on a large scale. The hope is that many
questions may be answered based on such results. Researchers already use benchmark results
in OpenML to answer research questions such as identifying which hyperparameters are most
important in several machine learning algorithms and finding generally good hyperparameter
values that might be used as defaults in software tools (Probst et al., 2018; van Rijn and Hutter,
2018). Another example is the work of Bilalli et al. (2017), who investigated which characteristics
of datasets are responsible for algorithms to perform better. Other similar research questions that
might be answered with already existing benchmark results on OpenML are conceivable.

1Kaggle. https://www.kaggle.com/casalicchio/use-the-mlr-package-scores-0-649#102820. Accessed on
November 24th, 2018
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8. Concluding Remarks and Future Work

In Chapter 6, the RBP curve was proposed to assess the performance of probabilistic classifiers.
The RBP curve is based on visualizing the empirical cumulative distribution of the model residuals.
An extension to multiclass classification algorithms may also be possible in a one-versus-rest or
one-versus-one fashion. Furthermore, as the RBP curve is based on the model residuals and the
integral enclosed by the RBP curve is directly related to the MAE, it could also be used in
the regression setting. In the context of comparing model-agnostic models, a very similar visual
tool called residual distribution plot was recently implemented in Biecek (2018) and Gosiewska
and Biecek (2018). This tool is based on the empirical cumulative distribution function for the
absolute values of the model residuals. Here, further work will be required to study the role of
the RBP curve in the regression setting, its usefulness (e.g., in the comparison and diagnosis of
model-agnostic models), and its relation to other visual tools, such as residual plots, which are
also based on residuals and are often used for model diagnosis in regression models.

As mentioned, there is a trade-off between model interpretability and model performance. A global
measure that takes into account the model interpretability and the model performance may be
useful in model selection. This would allow practitioners to visualize the trade-off so that they can
choose a Pareto-optimal2 model regarding the two criteria, namely the model interpretability and
the model performance. However, this purpose requires being able to quantify the interpretability
of a model. While the model performance can be quantified using specific performance measures,
the issue of how practitioners may quantify the interpretability of a model is not a trivial matter
and thus requires further research.

The scientific contribution in Chapter 7 was threefold. First, the contribution uses a unified
notation based on the partial dependence function, and it gives an encompassing overview of
some interpretability methods for feature effect estimation. Furthermore, several techniques for
the visualization of feature effects were adapted so that they can be applied to visualize the
performance-based feature importance. The work was based on a recently proposed global model-
agnostic feature importance, which also served as a basis for the proposed local feature importance
measure. Further work may be done using the proposed local feature importance, such as finding
or clustering observations with similar local feature importance values. Lastly, the contribution
describes another interpretability method for a fair attribution of the feature importance to the
features. The variance-based feature importance methods described in the ontology in Section
2.5.2 are based on using the variance of the model predictions. The development of similar
methods that use the variance of the model performance based on the work in Chapter 7 is
conceivable and needs to be further investigated.

2For Pareto-optimal solutions, it is not possible to improve one criterion without worsening another at the same
time.
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Iooss, B. and P. Lemâıtre (2015). A Review on Global Sensitivity Analysis Methods. In Uncertainty
Management in Simulation-Optimization of Complex Systems, pp. 101–122. Boston: Springer.

Japkowicz, N. and M. Shah (2011). Evaluating Learning Algorithms: A Classification Perspective.
Cambridge: Cambridge University Press.

Jiang, T. and A. B. Owen (2002). Quasi-regression for Visualization and Interpretation of
Black Box Functions. Technical report. URL http://statweb.stanford.edu/˜owen/reports/
qregvis.pdf.

Kim, J.-H. (2009). Estimating Classification Error Rate: Repeated Cross-validation, Repeated
Hold-out and Bootstrap. Computational Statistics & Data Analysis 53 (11), 3735–3745.

Korobov, M. and K. Lopuhin (2017). Permutation Importance – ELI5 0.8.1 Documentation. URL
https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html. Ac-
cessed: 2018-11-23.

Kramer, S., G. Widmer, B. Pfahringer, and M. De Groeve (2001). Prediction of Ordinal Classes
Using Regression Trees. Fundamenta Informaticae 47 (1-2), 1–13.

Krause, J., A. Perer, and E. Bertini (2016). Using Visual Analytics to Interpret Predictive Machine
Learning Models. arXiv preprint arXiv:1606.05685.

Leeper, T. J. (2017). Interpreting Regression Results Using Average Marginal Effects with R’s Mar-
gins. Technical report. URL https://cran.r-project.org/web/packages/margins/index.
html.

Leisch, F. (2002). Sweave: Dynamic Generation of Statistical Reports Using Literate Data Anal-
ysis. In Compstat, pp. 575–580. Springer.

Lemeshow, S. and D. W. Hosmer (1982). A Review of Goodness of Fit Statistics for Use in the
Development of Logistic Regression Models. American Journal of Epidemiology 115 (1), 92–106.

Li, L. and H.-T. Lin (2006). Ordinal Regression by Extended Binary Classification. In Proceedings
of the 19th International Conference on Neural Information Processing Systems, pp. 865–872.
MIT Press.

Lipton, Z. C. (2016). The Mythos of Model Interpretability. arXiv preprint arXiv:1606.03490.

Lucena, B. (2018). Spline-Based Probability Calibration. arXiv preprint arXiv:1809.07751.

Lundberg, S. and S.-I. Lee (2017). A Unified Approach to Interpreting Model Predictions. arXiv
preprint arXiv:1705.07874.

117

http://statweb.stanford.edu/~owen/reports/qregvis.pdf
http://statweb.stanford.edu/~owen/reports/qregvis.pdf
https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html
http://arxiv.org/abs/1606.05685
https://cran.r-project.org/web/packages/margins/index.html
https://cran.r-project.org/web/packages/margins/index.html
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1809.07751
http://arxiv.org/abs/1705.07874


Further References

Lundberg, S. M., G. G. Erion, and S.-I. Lee (2018). Consistent Individualized Feature Attribution
for Tree Ensembles. arXiv preprint arXiv:1802.03888.

Miller, T. (2017). Explanation in Artificial Intelligence: Insights from the Social Sciences. arXiv
preprint arXiv:1706.07269.

Molinaro, A. M., R. Simon, and R. M. Pfeiffer (2005). Prediction Error Estimation: A Comparison
of Resampling Methods. Bioinformatics 21 (15), 3301–3307.

Molnar, C., G. Casalicchio, and B. Bischl (2018). iml: An R package for Interpretable Machine
Learning. The Journal of Open Source Software 3 (26), 786.

Murphy, A. H. (1972). Scalar and Vector Partitions of the Probability Score: Part I. Two-State
Situation. Journal of Applied Meteorology 11 (2), 273–282.

Murphy, A. H. (1973). A New Vector Partition of the Probability Score. Journal of Applied
Meteorology 12 (4), 595–600.

Murphy, K. P. (2013). Machine Learning: A Probabilistic Perspective (1 ed.). MIT Press.

Niculescu-Mizil, A. and R. Caruana (2005). Predicting Good Probabilities with Supervised Learn-
ing. Proceedings of the 22nd International Conference on Machine Learning - ICML ’05 (1999),
625–632.

Obermeyer, Z. and E. J. Emanuel (2016). Predicting the Future – Big Data, Machine Learning,
and Clinical Medicine. The New England Journal of Medicine 375 (13), 1216.

Olson, R. S., W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H. Moore (2017). PMLB:
A Large Benchmark Suite for Machine Learning Evaluation and Comparison. BioData Min-
ing 10 (1), 36.

Owen, A. B. (2014). Sobol’indices and Shapley Value. SIAM/ASA Journal on Uncertainty Quan-
tification 2 (1), 245–251.

Pencina, M. J., R. B. D’Agostino Sr, R. B. D’Agostino Jr, and R. S. Vasan (2008). Evaluating the
Added Predictive Ability of a New Marker: From Area under the ROC Curve to Reclassification
and Beyond. Statistics in Medicine 27 (2), 157–172.

Pepe, M. S., Z. Feng, Y. Huang, G. Longton, R. Prentice, I. M. Thompson, et al. (2008, February).
Integrating the Predictiveness of a Marker with its Performance as a Classifier. American
Journal of Epidemiology 167 (3), 362–368.

Perkins, N. J. and E. F. Schisterman (2006). The Inconsistency of “Optimal” Cutpoints Obtained
Using Two Criteria Based on the Receiver Operating Characteristic Curve. American Journal
of Epidemiology 163 (7), 670–675.

Platt, J. et al. (1999). Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods. Advances in Large Margin Classifiers 10 (3), 61–74.

Probst, P., B. Bischl, and A.-L. Boulesteix (2018). Tunability: Importance of Hyperparameters
of Machine Learning Algorithms. arXiv preprint arXiv:1802.09596.

118

http://arxiv.org/abs/1802.03888
http://arxiv.org/abs/1706.07269
http://arxiv.org/abs/1802.09596


Further References

R Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria:
R Foundation for Statistical Computing.

Ribeiro, M. T., S. Singh, and C. Guestrin (2016). Model-Agnostic Interpretability of Machine
Learning. arXiv preprint arXiv:1606.05386.

Saha, B., S. Gupta, D. Phung, and S. Venkatesh (2017). A Framework for Mixed-Type Multi-
outcome Prediction With Applications in Healthcare. IEEE Journal of Biomedical and Health
Informatics 21 (4), 1182–1191.
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