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Eidesstattliche Versicherung 

 

Ich erkläre hiermit an Eides statt,  

dass ich die vorliegende Dissertation mit dem Thema  

 

„A global definition of Roquin-mediated regulation of mRNA expression and 

translation uncovers its impact on PI3K-mTOR signaling and T cell differentiation.”  

 

selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und 

alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als 

solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln 

nachgewiesen habe.  

 

Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in 

ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades 
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Summary 

CD4+ T cells comprise effector and regulatory subsets, which exhibit unique functions and 

properties and protect against different pathogens. Several molecular cues that define the 

differentiation into the distinct T cell subsets have already been identified. One determinant is 

the RNA-binding protein Roquin that post-transcriptionally regulates gene expression and 

prevents autoimmunity. It is therefore crucial to precisely understand how Roquin controls 

CD4+ T cell fate decisions on the molecular level. In this thesis, we proved that Roquin acts 

on different layers of regulation to direct T cell differentiation. On the one hand by 

destabilizing but also by inhibiting the translation of its mRNA targets, and on the other hand 

by suppressing the PI3K-mTOR signaling pathway. In publication I, we investigated whether 

translational regulation is a further post-transcriptional mechanism by which Roquin controls 

its targets. By performing PAR-CLIP, mRNA sequencing and ribosome profiling on MEF 

cells, we globally determined that Roquin does not only reduce the stability of its mRNA 

targets, but also, at least for a smaller subset, inhibits their translation. These data sets also 

enabled us to identify a new linear binding element (LBE) of Roquin that is highly abundant in 

its targets and is recognized by its ROQ and Znf domains. Furthermore, we revealed that 

Roquin-mediated translational regulation of its targets depends on the number of binding 

sites in their 3' untranslated regions (UTRs). Among the translationally-repressed Roquin 

targets we found the T cell relevant genes Nfat5 and Nfkbid. Through further analysis of the 

3' UTR of Nfkbid we have identified a minimal response element, which consists of six stem 

loop structures and is indispensable for its post-transcriptional regulation by Roquin. In 

publication II we examined the function of Roquin in Treg cells by analyzing mice, which 

lacked Roquin expression specifically in these cells. We found that Roquin-deficient Treg 

cells are dysfunctional and failed to inhibit the induction of colitis in a T cell transfer model. 

Furthermore, we observed that they lose the expression of the IL-2 receptor α chain (CD25) 

and adopt a functional follicular Treg (Tfr) phenotype. Mechanistically, we elucidated that 

Roquin suppresses the PI3K-Akt-mTOR-Foxo1 signaling pathway in Treg and conventional T 

cells by controlling two novel Roquin-targeted mRNAs, the PI3K antagonist Pten and the 

Foxo1-specific E3 ubiquitin ligase Itch. Roquin interferes with miR-17~92 binding to an 

overlapping cis-element in the PTEN 3' UTR thereby upregulating Pten expression. In 

addition, it represses Itch expression leading to increased levels and nuclear localization of 

Foxo1. Finally, we showed that inhibition of PI3K or mTOR rectifies the aberrant frequencies 

of Roquin-deficient Th17 and iTreg cells in vitro and Tfh cells in vivo. My contribution to these 

two studies was to globally define a Roquin-bound mRNA set and its mode of post-

transcriptional repression. These investigations also enabled me to elucidate Roquin-

mediated regulation of the PI3K-mTOR signaling pathway, thereby controlling Treg cell 

function and differentiation of T helper cells. 
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Zusammenfassung 

CD4+ T Zellen umfassen Effektor- und regulatorische Untergruppen mit spezifischen 

Funktionen und Eigenschaften, die vor Infektionen mit Pathogenen schützen. Zahlreiche 

molekulare Signale, die die Differenzierung in die unterschiedlichen T-Zell-Untergruppen 

steuern, wurden bereits identifiziert. Das RNA-bindende Protein Roquin ist einer dieser 

entscheidenden Faktoren, der die Genexpression post-transkriptionell reguliert und die 

Entstehung von Autoimmunerkrankungen verhindert. Deshalb ist es entscheidend, ein 

genaues Verständnis darüber zu erlangen, wie Roquin Schicksalsentscheidungen von CD4+ 

T Zellen auf molekularer Ebene kontrolliert. In der vorliegenden Arbeit haben wir bewiesen, 

dass Roquin auf verschiedenen regulatorischen Ebenen T-Zell-Differenzierung lenkt, zum 

einen, indem es sowohl die Stabilität als auch die Translation seiner mRNA Zielmolekülen 

verringert, und zum anderen durch Hemmung des PI3K-mTOR Signalwegs. In Publikation I 

haben wir untersucht, ob translationale Regulation einen weiteren post-transkriptionellen 

Mechanismus darstellt, durch den Roquin seine Zielmoleküle kontrolliert. Mit Hilfe der 

Methoden PAR-CLIP, mRNA Sequenzierung und Ribosome Profiling konnten wir global in 

MEF Zellen feststellen, dass Roquin nicht nur die Stabilität seiner mRNA Zielmoleküle senkt, 

sondern auch die Translation einiger weniger Zielmolekülen hemmt. Diese Datensätze 

ermöglichten es uns zudem, ein neues lineares Bindungselement (LBE) von Roquin zu 

identifizieren, das in seinen Zielemolekülen sehr häufig vorkommt und von seinen ROQ und 

Znf Domänen erkannt wird. Weiterhin zeigten wir, dass die durch Roquin-vermittelte 

translationale Regulation seiner Zielmoleküle von der Anzahl der Bindungsstellen innerhalb 

ihrer 3' untranslatierten Region (UTR) abhängt. Unter den translational reprimierten mRNAs 

fanden wir die T-Zell relevanten Gene Nfkbid und Nfat5. Durch weitere Analysen des 

3' UTRs von Nfkbid haben wir ein minimales Response-Element identifiziert, das aus sechs 

Haarnadelstrukturen besteht und für die post-transkriptionelle Regulation durch Roquin 

notwendig ist. In Publikation II haben wir die Funktion von Roquin in Treg Zellen erforscht 

und dazu Mäuse untersucht, denen spezifisch in diesem Zelltyp die Expression von Roquin 

fehlt. Hier zeigte sich, dass Roquin-defiziente Treg Zellen dysfunktional sind und somit nicht 

in der Lage waren, das Einsetzen von Colitis in einem T Zell Transfer Modell zu verhindern. 

Weiterhin konnte beobachtet werden, dass diese Zellen die Expression der alpha-Kette des 

IL-2 Rezeptors (CD25) verlieren und einen funktionellen follikulären regulatorischen T Zell 

(Tfr) Phänotyp annehmen. Mechanistisch konnten wir zeigen, dass Roquin den PI3K-Akt-

mTOR-Foxo1 Signalweg in Treg und Effektor-T-Zellen hemmt, indem es zwei neue Roquin 

Zielmoleküle, den PI3K Antagonist Pten und die Foxo1-spezifische E3 Ubiquitin Ligase Itch, 

kontrolliert. Roquin verhindert die Bindung von miR-17~92 an ein überlappendes cis-Element 

im 3' UTR von Pten, wodurch dessen Expression erhöht wird. Außerdem verringert Roquin 

die Expression von Itch, was zu einem höheren Proteinlevel und zur nuklearen Lokalisation 
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von Foxo1 führt. Abschließend zeigten wir, dass die Inhibierung von PI3K oder mTOR die 

abnormale Entstehung von Roquin-defizienten Th17 und iTreg Zellen in vitro, sowie die von 

Tfh Zellen in vivo, auf Wildtyp Niveau korrigiert. Mein Beitrag zu diesen zwei 

Veröffentlichungen war es, global alle Roquin-gebundenen mRNAs sowie ihre durch Roquin-

ausgelöste post-transkriptionelle Hemmung aufzuklären. Des Weiteren ermöglichten es mir 

diese Untersuchungen aufzudecken, dass Roquin den PI3K-mTOR Signalweg reguliert, um 

dadurch die Funktion und Differenzierung von Treg und T Helferzellen zu steuern.  
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1 Introduction 

The immune system can be divided into two components, the innate and the adaptive 

immune system. Both are essential for combating various pathogens, but they differ in their 

function, specificity and complexity. The innate immune system forms the first protective 

barrier against pathogens. This type of immune reaction comprises the activation of 

macrophages, dendritic cells and natural killer cells and is triggered directly after the infection 

by the recognition of several conserved molecular structures of bacteria and viruses. 

Nevertheless, certain types of microbes and viruses are capable to evade these 

mechanisms. Therefore, the adaptive immune system with its immense diversity of antigen-

specific receptors is additionally activated and can eliminate the respective pathogens after a 

certain induction phase. The central cellular components herein are B and T lymphocytes, 

which recognize a broad variety of antigens via their B (BCR) and T cell receptor (TCR). B 

cells derive from the bone marrow and can differentiate into plasma cells, which produce 

large amounts of antibodies. T cells develop in the thymus where they differentiate into two 

different subsets: cytotoxic CD8+ T cells, which kill cells infected with viruses or intracellular 

pathogens, and CD4+ T cells. Basically, CD4+ T cells can also be subdivided into two groups. 

On the one hand, there are CD4+ T effector (Teff) cells like T helper (Th) cells including Th1, 

Th2, Th17 and follicular T helper (Tfh) cells, and on the other hand regulatory T cells. The 

latter can also be categorized into three subsets, thymus-derived Treg (tTreg), peripherally 

induced Treg (iTreg) and follicular regulatory T (Tfr) cells. The different CD4+ T cell subsets, 

with the exception of tTreg and Tfr cells, differentiate from naive CD4+ T cells upon TCR 

activation in an appropriate cytokine milieu. Each subset has distinct immunological 

functions, requires and secretes different cytokines and is characterized by specific 

transcription factors (Figure 1). The major function of Teff cells is to protect the organism 

from various infections, whereas Treg cells suppress self-reactive immune responses to 

prevent autoimmune diseases. In a healthy organism, Treg and Teff cells are in a balance to 

maintain self-tolerance and in parallel to avoid inflammations.  
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Figure 1 CD4+ T cell subsets. 

The different CD4+ T cells subsets including Th1, Th2, Th17, Tfh and iTreg cells 

differentiate from naive CD4+ T cells upon T cell activation in the presence of a different 

cytokine milieu. Tfr cells develop from thymus-derived Foxp3+ precursors. Each CD4+ T cell 

subset is characterized by specific transcription factors and secretes different types of 

interleukins (IL). 

 

However, when the differentiation of naive T cells into the different CD4+ T cell 

subsets is dysregulated and the balance between Treg and Teff cells is tilted towards a 

strong Teff response, this can lead to dysregulated and exaggerated immune responses, 

hence to severe autoimmune diseases. For this reason, it is of great importance for the 

organism to maintain the immune homeostasis, and that the naive T cells make the “right“ 

decision to become either a Treg or Teff cell. An arising question is what influences a T cell 

to make the “right” decision? There are several critical determinants that affect T cell fate 

decisions: environmental cues e.g. diet and stress, signal-induced ubiquitylation and protein 

degradation, epigenetics, TCR signal strength, transcription, post-transcriptional gene 

regulation, metabolism, and signaling pathways (Figure 2). The complex interplay between 

these factors and their sensitivity towards minor changes can lead to drastic effects on T cell 

homeostasis and function. 
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Figure 2 Determinants of T cell fate.  

Environmental factors, protein stability, epigenetics, signaling, transcription, post-

transcriptional gene regulation and metabolism can influence T cell fate decisions. 

 

This introduction will focus on one determinant of T cell fate decision, the RNA-binding 

protein Roquin that post-transcriptionally regulates gene expression to control CD4+ T cell 

differentiation and protects against autoimmunity.  

 The importance of Roquin in the prevention of autoimmune diseases was discovered 

in an ethylnitrosourea (ENU) mutagenesis screen in mice. It identified a single point mutation 

in the Rc3h1 gene, encoding the Roquin-1 protein that causes a lupus-like autoimmune 

disease in homozygous so-called sanroque mice (Vinuesa et al., 2005). These mice carry a 

M199R mutation in the ROQ domain of Roquin-1 and are characterized by an accumulation 

of Tfh cells, which promote the spontaneous formation of germinal centers (GC) where they 

provide inappropriate help to B cells, stimulating the generation of GC B cells and the 

development of high-affinity anti-nuclear autoantibodies (Linterman et al., 2009; Vinuesa et 

al., 2005). Further investigations of Roquin-1 and its paralog Roquin-2 have also shown that 

combined deletion of Roquin-1 and Roquin-2 encoding genes in CD4+ T cells (DKOT mice) 

causes autoinflammatory diseases and leads to spontaneous activation of CD4+ and CD8+ T 

cells. CD4+ T cells in this mouse model adopt a pro-inflammatory Th17 phenotype and 

accumulate in the lung and are more prone to become Tfh cells. Both subsets are likely to 

contribute to the pathology of the DKOT mice (Jeltsch et al., 2014; Vogel et al., 2013). 

Currently, the pronounced T cell phenotype of the sanroque and the DKOT mouse is 

explained by the post-transcriptional derepression of several Roquin-targeted mRNAs, 

leading to an increase in their expression and thereby influencing T cell differentiation. In 

particular elevated mRNA and protein levels of the co-stimulatory receptors ICOS and OX40 

and the Th17 promoting factors IκBNS and IκBzeta, encoded by Nfkbid and Nfkbiz, 

respectively, were found to be involved in the manifestation of the phenotype (Jeltsch et al., 
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2014; Pratama et al., 2013; Vinuesa et al., 2005; Vogel et al., 2013; Yu et al., 2007). On the 

molecular level, several publications have demonstrated that Roquin post-transcriptionally 

controls its targets by recruiting the mRNA decay machinery (Glasmacher et al., 2010; 

Leppek et al., 2013; Murakawa et al., 2015; Sgromo et al., 2017). So far, Roquin function 

was only investigated with respect to its function in mRNA degradation. However, it remained 

elusive if Roquin uses other regulatory mechanisms to control its targets and thereby 

regulates CD4+ T cell differentiation. Furthermore, it is of great interest to identify new 

Roquin-targeted mRNAs to obtain closer insights how Roquin influences T cell fate decisions 

by targeting different mRNAs. Taken together, the focus of this study was centered on 

investigations of new post-transcriptional mechanisms and targets by which Roquin can 

maintain T cell homeostasis and prevent autoimmune and autoinflammatory diseases. 

The first aim of my work was to investigate whether translational regulation is a further 

mechanism that is exerted by Roquin to regulate its targets. The idea of this analysis arose 

from some pre-experiments performed in our laboratory, which hinted to a possible 

translational regulation of Roquin-targeted mRNAs. To test this hypothesis on a global scale, 

I established two state-of-the art methods, namely PAR-CLIP (Photoactivatable 

ribonucleoside crosslinking and immunoprecipitation) and ribosome profiling in mouse 

embryonic fibroblast (MEF) cells. PAR-CLIP was the ideal method to identify transcriptome-

wide binding sites of Roquin and hence to define a Roquin-bound mRNA target set. 

Furthermore, this analysis resulted in the discovery of the first linear sequence element, the 

so-called LBE, that is directly bound via the ROQ and zinc finger (Znf) domains of Roquin 

(Publication I). This finding was unexpected, because several studies proved that Roquin 

mainly binds to stem-loop structures in the 3' untranslated region (UTR) of its targets. These 

hairpins consist of tri- or hexa-loops, also known as constitutive (CDE) or alternative decay 

elements (ADE), respectively, which are recognized by the ROQ domain in a more structure- 

and less sequence-dependent manner. In principle, CDEs are characterized by a pyrimidine-

purine-pyrimidine (Py-Pu-Py) sequence, and ADEs have uridine-rich sequences in their 

loops (Codutti et al., 2015; Janowski et al., 2016; Leppek et al., 2013; Murakawa et al., 2015; 

Sakurai et al., 2015; Schlundt et al., 2014; Schuetz et al., 2014; Tan et al., 2014). 

Interestingly, the core of the LBE sequence is also composed of a Py-Pu-Py order that is 

exclusively recognized by the ROQ domain, whereas the Znf domain recognizes the flanking 

regions preferentially enriched in uridines. However, it has not yet been clarified if the 

recognition of the LBE contributes to the regulatory function of Roquin (Publication I). 

Moreover, we also detected a lower binding affinity of Roquin to the LBE compared to stem-

loop structures. Nevertheless, the LBE is highly abundant in Roquin-targeted mRNAs and 

possibly sterically more accessible for Roquin, suggesting that the LBE could function as a 

stabilizing cis-element for the potentially less stable but high-affinity stem-loops. 
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 Using the defined Roquin mRNA target set and combining it with the ribosome 

profiling and mRNA sequencing data in MEF cells, we were the first to globally prove that 

Roquin not only destabilizes its mRNA targets, but can also regulate them at the translational 

level. In fact, we identified 96 out of 974 targets, which are translationally repressed by 

Roquin. Remarkably, we found that these targets typically have four or more Roquin-binding 

sites in their 3' UTRs (Publication I). With relevance for CD4+ T cell differentiation I found 

two novel direct Roquin targets in our PAR-CLIP dataset: the kinase SGK1 (serum- and 

glucocorticoid-induced protein kinase 1), and the transcription factor NFAT5 (nuclear factor 

of activated T cells 5) (Publication I). Both targets play a critical role in Th17 cell 

differentiation (Alberdi et al., 2016; Kleinewietfeld et al., 2013; Wu et al., 2013) and might 

contribute to the Th17 phenotype of the DKOT mouse. Interestingly, we found that Nfat5 is a 

translationally regulated Roquin target and contains ten Roquin binding sites in its 3' UTR. 

Furthermore, we focused our analysis on the previously described Roquin target Nfkbid, 

which is also essential for Th17 cell generation and function, but also for the development of 

Treg cells in the thymus (Annemann et al., 2015; Kobayashi et al., 2014; Schuster et al., 

2012). However, because Nfkbid is lowly expressed in MEF cells, I performed ribosome 

profiling with a reporter system containing its 3' UTR, thereby identifying Nfkbid as a further 

potential translationally regulated Roquin target. Additionally, polysome profiles of 

endogenous Nfkbid substantiated this finding. Moreover, we identified six stem-loop 

structures within the 3' UTR of Nfkbid, which are crucial for its post-transcriptional regulation 

by Roquin (Publication I).  

 Surprisingly, through further exploration of the ribosome profiling data, I discovered a 

strong downregulation of the translation efficiency of mRNAs encoding for components of the 

translation machinery, such as ribosomal proteins, elongation factors as well as several 

initiation factors. These mRNAs are also known as 5' TOP mRNAs, that are defined by an 

oligopyrimidine tract at their 5' termini, the 5' TOP motif, which is crucial for their translational 

control (Avni et al., 1994; Levy et al., 1991). In addition, we revealed that Roquin also 

negatively impacts on global protein synthesis. This type of regulation was a completely new 

aspect of Roquin-mediated post-transcriptional gene regulation that I did not only find in MEF 

cells, but also in CD4+ T cells (Publication II). Previous studies have already shown that 

primary CD4+ Foxp3– and CD4+ Foxp3+ T cells largely differ in their translational activity to 

determine their cell fate (Bjur et al., 2013). These investigations led us to the assumption that 

Roquin, in addition to regulating individual targets, might also control the overall translational 

machinery to direct CD4+ T cell differentiation. To date, there is only one study showing that 

the translational regulation of TOP mRNAs can affect CD8+ T cell differentiation (Araki et al., 

2017). Nevertheless, we first wanted to investigate how Roquin post-transcriptionally 

regulates TOP mRNAs and initially thought that Roquin directly binds to the TOP motif. 
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However, the PAR-CLIP data did not indicate any Roquin binding sites in the TOP mRNAs, 

suggesting that Roquin indirectly controls the translation of TOP mRNAs. However, I found 

that the ROQ domain and therefore Roquin binding is indispensable for the inhibitory effect 

on protein synthesis (Publication II). A closer look into the literature pointed out that the 

translation of 5' TOP mRNAs is mainly controlled by the mechanistic target of rapamycin 

(mTOR) (Hsieh et al., 2012; Thoreen et al., 2012), and this fact prompted me to investigate 

whether Roquin impacts the PI3K-Akt-mTOR signaling pathway (Publication II).  

mTOR is a serine/threonine kinase that regulates various cellular processes like 

growth, survival, proliferation, metabolism, translation, and cell differentiation. Especially in T 

cells, mTOR integrates a variety of environmental cues such as growth factors, nutrients, 

cytokines, co-stimulation, and TCR signals to translate them into distinct T cell fate decisions 

(Chapman and Chi, 2015; Chi, 2012; Pollizzi and Powell, 2015; Saxton and Sabatini, 2017). 

Over the last few years, several publications have revealed the importance of the PI3K-Akt-

mTOR signaling pathway for the regulation of CD4+ T cell differentiation into the different 

subsets (Delgoffe et al., 2009; Delgoffe et al., 2011; Kurebayashi et al., 2012; Lee et al., 

2010; Ray et al., 2015; Sauer et al., 2008; Xu et al., 2017; Yang et al., 2016b; Yang et al., 

2013; Zeng et al., 2016; Zeng et al., 2013). The results of these studies lead us to speculate 

that Roquin might regulate this pathway to control CD4+ T cell differentiation. To address this 

issue, I first investigated the phosphorylation levels of important downstream substrates of 

the mTOR complexes, mTORC1 and mTORC2, and disclosed that their activities are 

increased in Roquin-deficient CD4+ T cells (Publication II). Interestingly, in the PAR-CLIP 

data set from publication I, I found the phosphatase Pten as a novel direct Roquin target, 

which functions upstream of mTORC1 and mTORC2 and inhibits the activation of the PI3K-

Akt-mTOR pathway. Moreover, it is described that the loss of Pten in T cells results in 

constitutive mTOR activation, thereby increasing Tfh cell differentiation (Zeng et al., 2016) 

and causing dysfunction and instability of Treg cells (Huynh et al., 2015; Shrestha et al., 

2015). Remarkably, the lack of Roquin in CD4+ T cells elicited a reduction of the mRNA and 

protein levels of Pten, an effect that has not yet been observed for any known direct Roquin 

target. In addition, it is known that Pten is also a target of the miR-17~92 cluster, which has 

an important role in the survival, proliferation, differentiation, and function of CD4+ T cells 

(Baumjohann et al., 2013; de Kouchkovsky et al., 2013; Jiang et al., 2011; Kang et al., 2013; 

Liu et al., 2014; Montoya et al., 2017; Simpson et al., 2014; Wu et al., 2015; Xiao et al., 2008; 

Yang et al., 2016a). For this reason, we hypothesized that Roquin might interfere with the 

post-transcriptional repression of Pten by the miR-17~92 cluster, thereby increasing its 

expression. With the help of our PAR-CLIP dataset, we found that Roquin recognizes a 

predicted RNA-stem-loop in the Pten 3' UTR that overlaps with a binding site of the miR-

17~92 cluster (Publication II). Therefore, we supposed that direct binding of Roquin to Pten 
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induces a structural switch within its 3' UTR, and thus impedes the binding of the miR-17~92 

that is loaded into an RNA-induced silencing complex (RISC) (Figure 3). This structural 

change might then prevent miRNA-mediated mRNA decay.  

 

 
 

Figure 3 Model of post-transcriptional regulation of Pten by Roquin. 

Roquin competes with the miR-17~92 RISC complex to prevent miRNA-mediated decay of 

the Pten mRNA.  

 

To prove this model, I performed an Argonaute 2 (Ago2) immunopreciptation in CD4+ T cells 

and analyzed the amount of Pten mRNA associated with Ago2 via quantitative RT-PCR. 

Here, we detected a stronger association of Ago2 with Pten in extracts of Roquin-deficient 

CD4+ T cells compared to control T cells, demonstrating that the RISC complex might bind 

more efficiently to the Pten mRNA when Roquin is not present (Publication II). We have 

thereby uncovered a novel function of Roquin in modulating miRNA-mediated gene 

expression regulation by competing with a miRNA for a common mRNA target. To date the 

existence of such a mechanism could only be shown for one other RNA-binding protein 

named Pumilio, which also induces structural changes in its targeted 3' UTR, but in this case 

to facilitate miRNA-mediated gene silencing (Kedde et al., 2010). 

Since we discovered decreased Pten levels in Roquin-deficient CD4+ T cells, we 

asked whether further downstream substrates of the PI3K-mTOR signaling pathway are 

affected. One substrate of particular interest for us was the transcription factor Foxo1, which 

is an essential regulator for CD4+ T cell differentiation. It positively controls the development 

and function of iTreg cells, but restrains the formation of Tfh and Th17 cells. Upon activation 

of the PI3K-Akt-mTOR signaling pathway Foxo1 is phosphorylated by the kinase Akt and 

exported to the cytoplasm, where it can no longer regulate the transcription of Treg-, Tfh- and 

Th17-related genes (Fabre et al., 2005; Kerdiles et al., 2010; Lainé et al., 2015; Ouyang et 

al., 2010; Ouyang et al., 2012; Stone et al., 2015). In the cytoplasm Foxo1 can be 

ubiquitylated by the E3 ligase Itch promoting its degradation (Xiao et al., 2014). 

Concomitantly with reduced Pten expression in Roquin-deficient CD4+ T cells, we found 

increased activation of Akt, and therefore investigated Foxo1 localization. In fact, we 

observed a stronger translocation of Foxo1 to the cytoplasm. Additionally, we detected 
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increased Foxo1 levels, which coincided with a strong decrease in Itch levels (Publication 

II). Surprisingly, Itch was found in our PAR-CLIP dataset in MEF cells, and in further 

validation experiments I confirmed Itch as a novel direct Roquin target in CD4+ T cells. 

Roquin might repress Itch to enable Foxo1 to relocalize into the nucleus, thereby blocking 

Tfh and Th17 cell differentiation and promoting the generation and function of Treg cells. 

At this point, the question arose whether Roquin indeed regulates the PI3K-Akt-

mTOR-Foxo1 signaling pathway to regulate CD4+ T cell differentiation. In order to shed light 

on this issue, we examined iTreg and Th17 cell differentiation in vitro and Tfh cell 

differentiation in vivo, using different inhibitors against PI3K or mTOR. Strikingly, we obtained 

a rectification of the aberrant frequencies of the three T cell subsets from Roquin-deficient 

mice to levels found in wild-type controls (Publication II). These results clearly demonstrate 

that Roquin suppresses this signaling pathway to control CD4+ T cell differentiation.  

While a dominant role of Roquin in Th17 and Tfh cell differentiation in vivo was 

established, its effect on other CD4+ T cell subsets remained unclear. Based on the fact that 

Treg cells have a pivotal role in the suppression of autoreactive T cells, and that both, the 

sanroque and the DKOT mouse, exhibit signs of autoimmunity and autoinflammation, we 

hypothesized that Roquin might also be involved in Treg cell differentiation and function. 

Hence, it was of great interest to analyze the role of Roquin in Treg cells to obtain a closer 

insight into the mechanism how Roquin protects against autoimmunity. For this analysis, we 

examined Treg cells from mice with a specific deletion of Roquin-1 and Roquin-2 in these 

cells (DKOTreg mice) and revealed that they lose their suppressive activity on Teff cells 

(Publication II). Based on these findings, my aim was to elucidate the molecular mechanism 

how Roquin controls Treg cell function. Interestingly, the extensive investigation of the 

phenotype of the DKOTreg mice showed a strong overlap with the phenotype of mice with a 

Treg-specific deletion of Pten (Pten KOTreg mice). Both phenotypes exhibited increased 

numbers and frequencies of Treg cells, presumably due to a stronger proliferation, enhanced 

activation of CD4+ and CD8+ T cells, loss of Treg function in vivo and development of 

splenomegaly and lymphadenopathy. The phenotype of the Pten KOTreg mouse was 

explained by a strong PI3K-mTORC2 activity in Treg cells (Huynh et al., 2015; Shrestha et 

al., 2015). Moreover, previous studies have demonstrated that both mTOR complexes 

negatively impact Treg cell differentiation and indicated that both complexes must be inactive 

to allow Treg cell differentiation (Delgoffe et al., 2009; Delgoffe et al., 2011; Sauer et al., 

2008). However, a further study showed that the suppressive activity of Treg cells mainly 

relies on mTORC1 signaling (Zeng et al., 2013). Taken together, these findings convinced 

me to investigate the PI3K-Akt-mTOR signaling pathway in Treg cells. Firstly, I analyzed 

again mTORC1 and mTORC2 activity by examining the phosphorylation levels of their 

downstream substrates, and herein I detected increased activity of both complexes in 
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Roquin-deficient Treg cells. In addition, as already shown for CD4+ T cells, Pten levels were 

downregulated and Itch levels were upregulated in Roquin-deficient Treg cells demonstrating 

that the regulation of the PI3K-Akt-mTOR signaling pathway is a central mechanism that 

Roquin also uses to control Treg cell differentiation and function (Publication II).  

Interestingly, when we analyzed the DKOTreg mice, we observed a strong 

accumulation of Tfr cells. This CD4+ T cell subset was initially discovered a few years ago, 

and since then several studies have focused on the elucidation of their development and 

function, which have not yet been fully clarified. So far, it is known that Tfr cells develop from 

thymus-derived Foxp3+ Treg precursor cells (Figure 1) and resemble Tfh and Treg cells 

phenotypically by the coexpression of Tfh and Treg signature markers. However, in contrast 

to Tfh cells, Tfr cells suppress GC responses by inhibiting Tfh and GC B cells (Chung et al., 

2011; Linterman et al., 2011; Wollenberg et al., 2011). Furthermore, differentiation and 

function of Tfr cells require mTORC1 activity (Xu et al., 2017). First of all, we were interested 

if the arising Tfr cells in the DKOTreg mice are functional in inhibiting GC reactions. Therefore, 

I immunized wild-type and DKOTreg mice with an antigen to induce an immune response and 

found that only a few antigen-specific GC B cells were formed in the DKOTreg compared to 

wild-type mice (Publication II). Furthermore, we observed that Roquin-deficient Treg cells 

strongly down-regulated the expression of the α-chain of the IL-2 receptor (CD25). In 

general, IL-2 is essential for Treg cell development, maintenance and function (Cheng et al., 

2013; Chinen et al., 2016; de la Rosa et al., 2004; Fontenot et al., 2005). To elucidate the 

mechanism of Roquin in restraining CD25 expression on Treg cells on the molecular level, I 

performed mRNA sequencing to compare mRNA expression of CD25+ and CD25- Roquin-

deficient Treg cells. Surprisingly, we found that CD25- Roquin-deficient Treg cells strongly 

express Tfh signature genes, whereas CD25+ Roquin-deficient Treg cells still express Treg 

signature genes (Publication II). From these results we concluded that Roquin-deficient 

Treg cells that lose CD25 are no longer sensitive to IL-2 and can therefore convert into Tfr 

cells and suppress GC immune responses. During the revision of our publication two other 

studies also came up with the finding that Tfr cells do not express CD25 because ongoing IL-

2 signaling limits their differentiation (Botta et al., 2017; Wing et al., 2017). Nevertheless, we 

were the first to connect increased mTORC1 and mTORC2 activity in Treg cells to CD25 

downregulation, and thereby to the generation of Tfr cells in a Roquin-dependent manner.  

In conclusion, in this thesis I identified novel post-transcriptional mechanisms that 

Roquin exerts to maintain T cell homeostasis and to prevent autoimmune and 

autoinflammatory diseases. In particular I elucidated that Roquin does not only destabilize its 

mRNA targets but also represses their translation. Furthermore, I proved that Roquin 

suppresses the PI3K-Akt-mTOR-Foxo1 pathway to control CD4+ T cell differentiation. The 

multiple layers on which Roquin mediates its regulatory effect on differentiation are good 
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examples for the complexity of T cell fate decisions and its fragile nature. The absence of a 

functional Roquin protein in both the sanroque and the DKOT mouse results in a tilted 

immune balance towards inflammation. A broader understanding of the determinants of T 

cell fate decisions in vivo is required to understand how dysregulated immune responses 

arise and how they could be controlled. 

 



  References 21 

2 References 

Alberdi, M., Iglesias, M., Tejedor, S., Merino, R., López-Rodríguez, C., and Aramburu, J. 
(2016). Context-dependent regulation of Th17-associated genes and IFNγ expression by the 
transcription factor NFAT5. Immunology And Cell Biology 95, 56. 

Annemann, M., Wang, Z., Plaza-Sirvent, C., Glauben, R., Schuster, M., Ewald Sander, F., 
Mamareli, P., Kühl, A.A., Siegmund, B., Lochner, M., et al. (2015). IκBNS Regulates Murine 
Th17 Differentiation during Gut Inflammation and Infection. The Journal of Immunology. 

Araki, K., Morita, M., Bederman, A.G., Konieczny, B.T., Kissick, H.T., Sonenberg, N., and 
Ahmed, R. (2017). Translation is actively regulated during the differentiation of CD8(+) 
effector T cells. Nature immunology 18, 1046-1057. 

Avni, D., Shama, S., Loreni, F., and Meyuhas, O. (1994). Vertebrate mRNAs with a 5'-
terminal pyrimidine tract are candidates for translational repression in quiescent cells: 
characterization of the translational cis-regulatory element. Molecular and cellular biology 14, 
3822-3833. 

Baumjohann, D., Kageyama, R., Clingan, J.M., Morar, M.M., Patel, S., De Kouchkovsky, D., 
Bannard, O., Bluestone, J.A., Matloubian, M., Ansel, K.M., et al. (2013). The microRNA 

cluster miR-17∼92 promotes T FH cell differentiation and represses subset-inappropriate 
gene expression. Nature Immunology 14, 840-848. 

Bjur, E., Larsson, O., Yurchenko, E., Zheng, L., Gandin, V., Topisirovic, I., Li, S., Wagner, 
C.R., Sonenberg, N., and Piccirillo, C.A. (2013). Distinct translational control in CD4+ T cell 
subsets. PLoS genetics 9, e1003494-e1003494. 

Botta, D., Fuller, M.J., Marquez-Lago, T.T., Bachus, H., Bradley, J.E., Weinmann, A.S., 
Zajac, A.J., Randall, T.D., Lund, F.E., León, B., et al. (2017). Dynamic regulation of T 
follicular regulatory cell responses by interleukin 2 during influenza infection. Nature 
Immunology 18, 1249. 

Chapman, N.M., and Chi, H. (2015). mTOR links environmental signals to T cell fate 
decisions. Frontiers in Immunology 6, 1-11. 

Cheng, G., Yu, A., Dee, M.J., and Malek, T.R. (2013). IL-2R Signaling Is Essential for 
Functional Maturation of Regulatory T Cells during Thymic Development. The Journal of 
Immunology 190, 1567. 

Chi, H. (2012). Regulation and function of mTOR signalling in T cell fate decisions. Nature 
Reviews Immunology 12, 325-338. 

Chinen, T., Kannan, A.K., Levine, A.G., Fan, X., Klein, U., Zheng, Y., Gasteiger, G., Feng, 
Y., Fontenot, J.D., and Rudensky, A.Y. (2016). An essential role for the IL-2 receptor in Treg 
cell function. Nature Immunology 17, 1322. 

Chung, Y., Tanaka, S., Chu, F., Nurieva, R.I., Martinez, G.J., Rawal, S., Wang, Y.-H., Lim, 
H., Reynolds, J.M., Zhou, X.-h., et al. (2011). Follicular regulatory T cells expressing Foxp3 
and Bcl-6 suppress germinal center reactions. Nature Medicine 17, 983. 



  References 22 

Codutti, L., Leppek, K., Zálešák, J., Windeisen, V., Masiewicz, P., Stoecklin, G., and 
Carlomagno, T. (2015). A Distinct, Sequence-Induced Conformation Is Required for 
Recognition of the Constitutive Decay Element RNA by Roquin. Structure 23, 1437-1447. 

de Kouchkovsky, D., Esensten, J.H., Rosenthal, W.L., Morar, M.M., Bluestone, J.A., and 
Jeker, L.T. (2013). microRNA-17-92 Regulates IL-10 Production by Regulatory T Cells and 
Control of Experimental Autoimmune Encephalomyelitis. The Journal of Immunology 191, 
1594-1605. 

de la Rosa, M., Rutz, S., Dorninger, H., and Scheffold, A. (2004). Interleukin-2 is essential for 
CD4+CD25+ regulatory T cell function. European Journal of Immunology 34, 2480-2488. 

Delgoffe, G.M., Kole, T.P., Zheng, Y., Zarek, P.E., Matthews, K.L., Xiao, B., Worley, P.F., 
Kozma, S.C., and Powell, J.D. (2009). The mTOR Kinase Differentially Regulates Effector 
and Regulatory T Cell Lineage Commitment. Immunity 30, 832-844. 

Delgoffe, G.M., Pollizzi, K.N., Waickman, A.T., Heikamp, E., Meyers, D.J., Horton, M.R., 
Xiao, B., Worley, P.F., and Powell, J.D. (2011). The kinase mTOR regulates the 
differentiation of helper T cells through the selective activation of signaling by mTORC1 and 
mTORC2. Nature Immunology 12, 295-304. 

Fabre, S., Lang, V., Harriague, J., Jobart, A., Unterman, T.G., Trautmann, A., and Bismuth, 
G. (2005). Stable Activation of Phosphatidylinositol 3-Kinase in the T Cell Immunological 
Synapse Stimulates Akt Signaling to FoxO1 Nuclear Exclusion and Cell Growth Control. The 
Journal of Immunology 174, 4161-4171. 

Fontenot, J.D., Rasmussen, J.P., Gavin, M.A., and Rudensky, A.Y. (2005). A function for 
interleukin 2 in Foxp3-expressing regulatory T cells. Nature Immunology 6, 1142. 

Glasmacher, E., Hoefig, K.P., Vogel, K.U., Rath, N., Du, L., Wolf, C., Kremmer, E., Wang, X., 
and Heissmeyer, V. (2010). Roquin binds inducible costimulator mRNA and effectors of 
mRNA decay to induce microRNA-independent post-transcriptional repression. Nature 
immunology 11, 725-733. 

Hsieh, A.C., Liu, Y., Edlind, M.P., Ingolia, N.T., Janes, M.R., Sher, A., Shi, E.Y., Stumpf, 
C.R., Christensen, C., Bonham, M.J., et al. (2012). The translational landscape of mTOR 
signalling steers cancer initiation and metastasis. Nature 485, 55-61. 

Huynh, A., Dupage, M., Priyadharshini, B., Sage, P.T., Quiros, J., Borges, C.M., 
Townamchai, N., Gerriets, V.A., Rathmell, J.C., Sharpe, A.H., et al. (2015). Control of PI(3) 
kinase in Tregcells maintains homeostasis and lineage stability. Nature Immunology 16, 188-
196. 

Janowski, R., Heinz, G.A., Schlundt, A., Wommelsdorf, N., Brenner, S., Gruber, A.R., Blank, 
M., Buch, T., Buhmann, R., Zavolan, M., et al. (2016). Roquin recognizes a non-canonical 
hexaloop structure in the 3′-UTR of Ox40. Nature Communications 7, 1-13. 

Jeltsch, K.M., Hu, D., Brenner, S., Zöller, J., Heinz, G.A., Nagel, D., Vogel, K.U., Rehage, N., 
Warth, S.C., Edelmann, S.L., et al. (2014). Cleavage of roquin and regnase-1 by the 
paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 
differentiation. Nature Immunology 15, 1079-1089. 



  References 23 

Jiang, S., Li, C., Olive, V., Lykken, E., Feng, F., Sevilla, J., Wan, Y., He, L., and Li, Q.-J. 
(2011). Molecular dissection of the miR-17-92 cluster's critical dual roles in promoting Th1 
responses and preventing inducible Treg differentiation. Blood 118, 5487-5497. 

Kang, S.G., Liu, W.H., Lu, P., Jin, H.Y., Lim, H.W., Shepherd, J., Fremgen, D., Verdin, E., 

Oldstone, M.B.A., Qi, H., et al. (2013). MicroRNAs of the miR-17∼92 family are critical 
regulators of T FH differentiation. Nature Immunology 14, 849-857. 

Kedde, M., van Kouwenhove, M., Zwart, W., Oude Vrielink, J.A.F., Elkon, R., and Agami, R. 
(2010). A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-
222 accessibility. Nature Cell Biology 12, 1014. 

Kerdiles, Y.M., Stone, E.L., Beisner, D.L., McGargill, M.A., Ch'en, I.L., Stockmann, C., 
Katayama, C.D., and Hedrick, S.M. (2010). Foxo Transcription Factors Control Regulatory T 
Cell Development and Function. Immunity 33, 890-904. 

Kleinewietfeld, M., Manzel, A., Titze, J., Kvakan, H., Yosef, N., Linker, R.A., Muller, D.N., and 
Hafler, D.A. (2013). Sodium chloride drives autoimmune disease by the induction of 
pathogenic TH17 cells. Nature 496, 518-522. 

Kobayashi, S., Hara, A., Isagawa, T., Manabe, I., Takeda, K., and MaruYama, T. (2014). The 
Nuclear IκB Family Protein IκBNS Influences the Susceptibility to Experimental Autoimmune 
Encephalomyelitis in a Murine Model. PLOS ONE 9, e110838. 

Kurebayashi, Y., Nagai, S., Ikejiri, A., Ohtani, M., Ichiyama, K., Baba, Y., Yamada, T., Egami, 
S., Hoshii, T., Hirao, A., et al. (2012). PI3K-Akt-mTORC1-S6K1/2 Axis Controls Th17 
Differentiation by Regulating Gfi1 Expression and Nuclear Translocation of RORγ. Cell 
Reports 1, 360-373. 

Lainé, A., Martin, B., Luka, M., Mir, L., Auffray, C., Lucas, B., Bismuth, G., and Charvet, C. 
(2015). Foxo1 Is a T Cell-Intrinsic Inhibitor of the RORγt-Th17 Program. Journal of 
immunology (Baltimore, Md : 1950) 195, 1791-1803. 

Lee, K., Gudapati, P., Dragovic, S., Spencer, C., Joyce, S., Killeen, N., Magnuson, M.A., and 
Boothby, M. (2010). Mammalian target of rapamycin protein complex 2 regulates 
differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743-
753. 

Leppek, K., Schott, J., Reitter, S., Poetz, F., Hammond, M.C., and Stoecklin, G. (2013). 
Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition 
motifs. Cell 153, 869-881. 

Levy, S., Avni, D., Hariharan, N., Perry, R.P., and Meyuhas, O. (1991). Oligopyrimidine tract 
at the 5' end of mammalian ribosomal protein mRNAs is required for their translational 
control, pp. 3319-3323. 

Linterman, M.A., Pierson, W., Lee, S.K., Kallies, A., Kawamoto, S., Rayner, T.F., Srivastava, 
M., Divekar, D.P., Beaton, L., Hogan, J.J., et al. (2011). Foxp3+ follicular regulatory T cells 
control the germinal center response. Nature Medicine 17, 975. 



  References 24 

Linterman, M.A., Rigby, R.J., Wong, R.K., Yu, D., Brink, R., Cannons, J.L., Schwartzberg, 
P.L., Cook, M.C., Walters, G.D., and Vinuesa, C.G. (2009). Follicular helper T cells are 
required for systemic autoimmunity. The Journal of Experimental Medicine 206, 561. 

Liu, S.Q., Jiang, S., Li, C., Zhang, B., and Li, Q.J. (2014). Mir-17-92 cluster targets 
phosphatase and tensin homology and ikaros family zinc finger 4 to promote th17-mediated 
inflammation. Journal of Biological Chemistry 289, 12446-12456. 

Montoya, M.M., Maul, J., Singh, P.B., Pua, H.H., Dahlström, F., Wu, N., Huang, X., Ansel, 
K.M., and Baumjohann, D. (2017). A Distinct Inhibitory Function for miR-18a in Th17 Cell 
Differentiation. The Journal of Immunology 199, 559. 

Murakawa, Y., Hinz, M., Mothes, J., Schuetz, A., Uhl, M., Wyler, E., Yasuda, T., 
Mastrobuoni, G., Friedel, C.C., Dölken, L., et al. (2015). RC3H1 post-transcriptionally 
regulates A20 mRNA and modulates the activity of the IKK/NF-κ B pathway. Nature 
Communications 6. 

Ouyang, W., Beckett, O., Ma, Q., Paik, J.-h., DePinho, R.A., and Li, M.O. (2010). Foxo 
proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nature 
immunology 11, 618-627. 

Ouyang, W., Liao, W., Luo, C.T., Yin, N., Huse, M., Kim, M.V., Peng, M., Chan, P., Ma, Q., 
Mo, Y., et al. (2012). Novel Foxo1-dependent transcriptional programs control T reg cell 
function. Nature 491, 554-559. 

Pollizzi, K.N., and Powell, J.D. (2015). Regulation of T cells by mTOR: The known knowns 
and the known unknowns. Trends in Immunology 36, 13-20. 

Pratama, A., Ramiscal, R.R., Silva, D.G., Das, S.K., Athanasopoulos, V., Fitch, J., Botelho, 
N.K., Chang, P.-P., Hu, X., Hogan, J.J., et al. (2013). Roquin-2 Shares Functions with Its 
Paralog Roquin-1 in the Repression of mRNAs Controlling T Follicular Helper Cells and 
Systemic Inflammation. Immunity 38, 669-680. 

Ray, J.P., Staron, M.M., Shyer, J.A., Ho, P.C., Marshall, H.D., Gray, S.M., Laidlaw, B.J., 
Araki, K., Ahmed, R., Kaech, S.M., et al. (2015). The Interleukin-2-mTORc1 Kinase Axis 
Defines the Signaling, Differentiation, and Metabolism of T Helper 1 and Follicular B Helper T 
Cells. Immunity 43, 690-702. 

Sakurai, S., Ohto, U., and Shimizu, T. (2015). Structure of human Roquin-2 and its complex 
with constitutive-decay element RNA. Acta Crystallographica Section F, Structural Biology 
Communications 71, 1048-1054. 

Sauer, S., Bruno, L., Hertweck, A., Finlay, D., Leleu, M., Spivakov, M., Knight, Z.A., Cobb, 
B.S., Cantrell, D., O'Connor, E., et al. (2008). T cell receptor signaling controls Foxp3 
expression via PI3K, Akt, and mTOR. Proceedings of the National Academy of Sciences 
105, 7797-7802. 

Saxton, R.A., and Sabatini, D.M. (2017). mTOR Signaling in Growth, Metabolism, and 
Disease. Cell 168, 960-976. 



  References 25 

Schlundt, A., Heinz, G.A., Janowski, R., Geerlof, A., Stehle, R., Heissmeyer, V., Niessing, D., 
and Sattler, M. (2014). Structural basis for RNA recognition in roquin-mediated post-
transcriptional gene regulation. Nature Structural & Molecular Biology 21, 671-678. 

Schuetz, A., Murakawa, Y., Rosenbaum, E., Landthaler, M., and Heinemann, U. (2014). 
Roquin binding to target mRNAs involves a winged helix-turn-helix motif. Nature 
communications 5, 5701-5701. 

Schuster, M., Glauben, R., Plaza-Sirvent, C., Schreiber, L., Annemann, M., Floess, S., Kühl, 
A.a., Clayton, L.K., Sparwasser, T., Schulze-Osthoff, K., et al. (2012). IκB(NS) protein 
mediates regulatory T cell development via induction of the Foxp3 transcription factor. 
Immunity 37, 998-1008. 

Sgromo, A., Raisch, T., Bawankar, P., Bhandari, D., Chen, Y., Kuzuoğlu-Öztürk, D., 
Weichenrieder, O., and Izaurralde, E. (2017). A CAF40-binding motif facilitates recruitment of 
the CCR4-NOT complex to mRNAs targeted by Drosophila Roquin. Nature Communications 
8, 14307-14307. 

Shrestha, S., Yang, K., Guy, C., Vogel, P., Neale, G., and Chi, H. (2015). Treg cells require 
the phosphatase PTEN to restrain TH1 and TFH cell responses. Nature immunology 16, 
178-187. 

Simpson, L.J., Patel, S., Bhakta, N.R., Choy, D.F., Brightbill, H.D., Ren, X., Wang, Y., Pua, 
H.H., Baumjohann, D., Montoya, M.M., et al. (2014). A miRNA upregulated in asthma airway 
T cells promotes T(H)2 cytokine production. Nature immunology 15, 1162-1170. 

Stone, E.L., Pepper, M., Katayama, C.D., Kerdiles, Y.M., Lai, C.Y., Emslie, E., Lin, Y.C., 
Yang, E., Goldrath, A.W., Li, M.O., et al. (2015). ICOS coreceptor signaling inactivates the 
transcription factor FOXO1 to promote Tfh cell differentiation. Immunity 42, 239-251. 

Tan, D., Zhou, M., Kiledjian, M., and Tong, L. (2014). The ROQ domain of Roquin recognizes 
mRNA constitutive-decay element and double-stranded RNA. Nature structural & molecular 
biology 21, 679-685. 

Thoreen, C.C., Chantranupong, L., Keys, H.R., Wang, T., Gray, N.S., and Sabatini, D.M. 
(2012). A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 
109-113. 

Vinuesa, C.G., Cook, M.C., Angelucci, C., Athanasopoulos, V., Rui, L., Hill, K.M., Yu, D., 
Domaschenz, H., Whittle, B., Lambe, T., et al. (2005). A RING-type ubiquitin ligase family 
member required to repress follicular helper T cells and autoimmunity. Nature 435, 452-458. 

Vogel, K.U., Edelmann, S.L., Jeltsch, K.M., Bertossi, A., Heger, K., Heinz, G.A., Zöller, J., 
Warth, S.C., Hoefig, K.P., Lohs, C., et al. (2013). Roquin Paralogs 1 and 2 Redundantly 
Repress the Icos and Ox40 Costimulator mRNAs and Control Follicular Helper T Cell 
Differentiation. Immunity 38, 655-668. 

Wing, J.B., Kitagawa, Y., Locci, M., Hume, H., Tay, C., Morita, T., Kidani, Y., Matsuda, K., 
Inoue, T., Kurosaki, T., et al. (2017). A distinct subpopulation of CD25- T-follicular regulatory 
cells localizes in the germinal centers. Proceedings of the National Academy of Sciences 
114, E6400-E6409. 



  References 26 

Wollenberg, I., Agua-Doce, A., Hernández, A., Almeida, C., Oliveira, V.G., Faro, J., and 
Graca, L. (2011). Regulation of the Germinal Center Reaction by Foxp3+ Follicular 
Regulatory T Cells. The Journal of Immunology 187, 4553. 

Wu, C., Yosef, N., Thalhamer, T., Zhu, C., Xiao, S., Kishi, Y., Regev, A., and Kuchroo, V.K. 
(2013). Induction of pathogenic TH 17 cells by inducible salt-sensing kinase SGK1. Nature 
496, 513-517. 

Wu, T., Wieland, A., Lee, J., Hale, J.S., Han, J.-H., Xu, X., and Ahmed, R. (2015). miR-17-92 
is required for both CD4 Th1 and T(FH) responses during viral infection(). Journal of 
immunology (Baltimore, Md : 1950) 195, 2515-2519. 

Xiao, C., Srinivasan, L., Calado, D.P., Patterson, H.C., Zhang, B., Wang, J., Henderson, 
J.M., Kutok, J.L., and Rajewsky, K. (2008). Lymphoproliferative disease and autoimmunity in 
mice with increased miR-17-92 expression in lymphocytes. Nature Immunology 9, 405-414. 

Xiao, N., Eto, D., Elly, C., Peng, G., Crotty, S., and Liu, Y.C. (2014). The E3 ubiquitin ligase 
Itch is required for the differentiation of follicular helper T cells. Nature Immunology 15, 657-
666. 

Xu, L., Huang, Q., Wang, H., Hao, Y., Bai, Q., Hu, J., Li, Y., Wang, P., Chen, X., He, R., et al. 
(2017). The Kinase mTORC1 Promotes the Generation and Suppressive Function of 
Follicular Regulatory T Cells. Immunity 47, 538-551.e535. 

Yang, H.-Y., Barbi, J., Wu, C.-Y., Zheng, Y., Vignali, Paolo D.A., Wu, X., Tao, J.-H., Park, 
Benjamin V., Bandara, S., Novack, L., et al. (2016a). MicroRNA-17 Modulates Regulatory T 
Cell Function by Targeting Co-regulators of the Foxp3 Transcription Factor. Immunity 45, 83-
93. 

Yang, J., Lin, X., Pan, Y., Wang, J., Chen, P., Huang, H., Xue, H.H., Gao, J., and Zhong, 
X.P. (2016b). Critical roles of mTOR complex 1 and 2 for t follicular helper cell differentiation 
and germinal center responses. eLife 5, 1-22. 

Yang, K., Shrestha, S., Zeng, H., Karmaus, P.W.F., Neale, G., Vogel, P., Guertin, D.A., 
Lamb, R.F., and Chi, H. (2013). T Cell Exit from Quiescence and Differentiation into Th2 
Cells Depend on Raptor-mTORC1-Mediated Metabolic Reprogramming. Immunity 39, 1043-
1056. 

Yu, D., Tan, A.H.-M., Hu, X., Athanasopoulos, V., Simpson, N., Silva, D.G., Hutloff, A., Giles, 
K.M., Leedman, P.J., Lam, K.P., et al. (2007). Roquin represses autoimmunity by limiting 
inducible T-cell co-stimulator messenger RNA. Nature 450, 299-303. 

Zeng, H., Cohen, S., Guy, C., Shrestha, S., Neale, G., Brown, S.A., Cloer, C., Kishton, R.J., 
Gao, X., Youngblood, B., et al. (2016). mTORC1 and mTORC2 Kinase Signaling and 
Glucose Metabolism Drive Follicular Helper T Cell Differentiation. Immunity 45, 540-554. 

Zeng, H., Yang, K., Cloer, C., Neale, G., Vogel, P., and Chi, H. (2013). MTORC1 couples 
immune signals and metabolic programming to establish T reg-cell function. Nature 499, 
485-490. 
 



  Publication I 27 

 

3 Publication I 
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Roquin targets mRNAs in a 3'-UTR-specific manner by different 

modes of regulation 

 

Katharina Essig, Nina Kronbeck, Joao C. Guimaraes, Claudia Lohs, Andreas Schlundt, 

Anne Hoffmann, Gesine Behrens, Sven Brenner, Joanna Kowalska,  

Cristina Lopez-Rodriguez, Jacek Jemielity, Helmut Holtmann, Kristin Reiche,  

Jörg Hackermüller, Michael Sattler, Mihaela Zavolan, and Vigo Heissmeyer 

 

3.1 Contribution to the publication 

As a first author of this publication, I was deeply involved in the conception of this study, 

performed the main body of the experimental work and wrote the manuscript together with 

the two corresponding authors Mihaela Zavolan and Vigo Heissmeyer. A central part of my 

work was to establish and perform two state-of-the art methods: PAR-CLIP and ribosome 

profiling. The data sets from these techniques enabled us to define a Roquin target mRNA 

set in MEF cells (Fig. 1a-d and Fig. S1), and by combining them with mRNA sequencing data 

to globally dissolve translational regulation of Roquin-targeted mRNAs (Fig. 7d-e). The 

bioinformatic analysis was performed by Joao Guimaraes. Additionally, I investigated the 

regulation of the Roquin targeted 3' UTR of Nfkbid in ribosome profiles of MEF cells (Fig.2d 

and Fig.6a) and analyzed this 3' UTR as well as mutant forms in degradation kinetic studies 

and polysome profiles using a β-globin reporter system in HeLa cells (Fig. 7 a-c and 

Supplementary S6 i). Furthermore, I reanalyzed the polysome profiling data generated by our 

collaboration partners and compared subpolysomal with polysomal fractions to prove 

translational regulation of endogenous Nfkbid by Roquin in MEF and CD4+ T cells (Fig. 6c, e 

and Fig. S6g). To examine Roquin-mediated mRNA decay in more detail, I also generated 

and tested a MEF cell line expressing a doxycycline-inducible shRNA against the core 

subunit of the deadenylase complex cNOT1 (Fig. 5k). Finally, I identified two novel Roquin 

targets, Sgk1 and Nfat5, and validated these targets by investigating Roquin-dependent 

regulation in reporter assays as well as on the mRNA and protein level (Fig. 8d-j and Fig. 

S7d-e). 
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Roquin suppresses the PI3K-mTOR signaling pathway to inhibit 

T helper cell differentiation and conversion of Treg to Tfr cells 

 

Katharina Essig, Desheng Hu, Joao C. Guimaraes, Dominik Alterauge, Stephanie Edelmann, 

Timsse Raj, Jan Kranich, Gesine Behrens, Alexander Heiseke, Stefan Floess, Juliane Klein, 

Andreas Maiser, Susan Marschall, Martin Hrabĕ de Angelis, Heinrich Leonhardt, 

 Cornelis F. Calkhoven, Elfriede Noessner, Thomas Brocker, Jochen Huehn, Anne B. Krug,  

Mihaela Zavolan, Dirk Baumjohann, and Vigo Heissmeyer 

 

4.1 Contribution to the publication 

As a first author of this publication, I made major contributions to the experimental work as 

well as to the conception of the study. Furthermore, I wrote the manuscript together with the 

two corresponding authors Desheng Hu and Vigo Heissmeyer. Initially, through a thorough 

analysis of the mRNA-sequencing and ribosome profiling data from publication I, I found that 

Roquin indirectly downregulates the translation of 5' TOP mRNAs and thereby restricts the 

overall protein synthesis in MEF and CD4+ T cells (Fig. 5A-C and Fig. S5A-D). According to 

the literature it is known that the translation of 5' TOP mRNAs is mainly controlled by the 

kinase mTOR, and this finding prompted me to investigate the impact of Roquin on the PI3K-

mTOR signaling pathway (Fig. 5D-F and Fig. S6A-C). Herein, I disclosed that Roquin 

suppresses this pathway by regulating its direct targets PTEN and Itch in conventional T and 

Treg cells (Fig. 5I-K, Fig. 6B-E and Fig. S6D-E, G). In addition, I elucidated the mechanism 

how Roquin post-transcriptionally regulates Pten mRNA expression (Fig. 6H-I). Moreover, I 

had the idea to investigate whether the aberrant numbers of Th17, Treg and Tfh cells in mice 

with a T cell specific deletion of Roquin-1 and Roquin-2 can be corrected to levels found in 

wild-type counterparts through the inhibition of PI3K or mTOR in vitro and in vivo. To show 

this, I performed several experiments by myself (Fig. 7B,D and Fig. S7A-C, E) and I also 

strongly supported my colleagues for their analyses (Fig. 7G-M and Fig. S7F-M). 

Furthermore, I investigated the function of Tfr cells in suppressing germinal center responses 

(Fig. 2G-I and Fig. S1I-J) and examined the conversion of Treg into Tfr cells on the mRNA 

and protein level (Fig. 3C, E-F and Fig. S4F-G). Additionally, I contributed to the experiments 

performed by our collaboration partners. I provided and prepared cells for the analysis of 

cytokines (Fig. S4A-E) and Foxo1 localization (Fig. 5G-H, CD4+ T cells), immunized mice 

and collected blood samples to study antibody affinity maturation (Fig. 2J-M), and sorted 

Treg cells for the in vitro suppression assay (Fig. S2A-B). 

https://doi.org/10.1016/j.immuni.2017.11.008
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