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1. Introduction 

Regenerating articular cartilage degeneration due to age or extreme sports-related 

excursions remains one of the major challenges of tissue regenerative sciences (Hunter 

1743). For nearly three centuries since a re-visitation by Hunter on the many 

observations of Hippocrates on the healing aspect of various tissue types and organs, 

the problem at successfully healing the cartilage of joints by filling the defect parts with a 

tissue that has the same mechanical properties as hyaline cartilage and effectively 

integrates at the defect site without becoming ossified with time (Campbell 1969; Caplan, 

et al. 1997; Fuller and Ghadially 1972; Ghadially, et al. 1977; Hunter 1743; Kim, et al. 

1991; Mankin 1982; Silver and Glasgold 1995), remains a problem still faced in the 21st 

century (Hangody, et al. 2001). The introduction with associated literature review brings 

to light the many aspects of this unique enigma providing new prospects that to date are 

not properly considered or have been ignored in light of a burgeoning pharmaceutical 

sector intent on providing quick fixes instead of long-term solutions. 

 

1.1 Chondrogenesis 

Chondrogenesis is a specialized process that occurs as a result of mesenchymal cell 

condensation and chondroprogenitor cell differentiation (Goldring, et al. 2006). Following 

chondrogenesis, the chondrocytes remain in a quiescent phase from which then either 

the cartilage anlage develops that will then form parts of the bones of the skeleton, in the 

process of endochondral osteogenesis, or develop the highly specialized connective 

tissue that covers the weight-bearing surfaces of diarthrodial joints, whose principal 

functions are  to provide a smooth, lubricated surface for the joint and to facilitate the 
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transfer of a load with a low coefficient of friction termed  articular cartilage (Sophia Fox, 

et al. 2009). 

 

• Endochondral bone formation 

The endochondral bone formation is the process during the 8th week of fetal 

development in the mammalian skeleton system, involving mesenchymal progenitor 

cells differentiating into chondrocytes which are responsible for depositing a 

cartilaginous framework that is later mineralized and replaced by bone tissue (de 

Crombrugghe, et al. 2001). Endochondral osteogenesis is an essential process 

occurring in the development and growth of long bones including the method by which 

fractures are healed within these bone types (Brighton and Hunt 1986; Scammell and 

Roach 1996).  

 

There are five stages to endochondral ossification as follows: (1) Mesenchymal stem 

cells (MSCs) condensate and proliferate; (2) MSCs differentiate into chondrocytes; (3) 

chondrocytes synthesize cartilage extracellular matrix(ECM); (4) hypertrophy occurs and 

matrix mineralization (5) endochondral ossification.   

 

Before the first phase of endochondral ossification, during embryogenesis, begins, the 

spatiotemporal pattern causes mesenchymal stem cells to migrate and localize to the 

region where bones will develop (Kovacs 2011). The first stage of endochondral 

ossification is achieved by the interaction of fibroblast growth factor (FGF) expression 

and the Hedgehog pathway signals (Quintana, et al. 2009), where mesenchymal cells 
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aggregate, condense and undergo hyper-proliferation to form a skeletal bone cellular 

model (Alborzi, et al. 1996; Kovacs 2011; Quintana, et al. 2009). Proliferated 

mesenchymal cells then differentiate into chondrocytes, the cartilage cells, and begin to 

secrete a cartilage-specific extracellular matrix skeleton form, in which bone formation 

will occur (Gilbert 2000; Quintana, et al. 2009). In the fourth stage of the endochondral 

ossification process, chondrocytes stop proliferating and increase their size dramatically, 

becoming hypertrophic chondrocytes that alter the matrix and produce collagen type X 

and fibronectin which subsequently are mineralized by calcium phosphates or as is more 

commonly termed hydroxyapatite (Gilbert 2000; Kovacs 2011). The transcription factor 

sex determining region Y-box 9 (SOX9) is expressed during the early stages to regulate 

the differentiation of the chondrocyte, whereas runt-related transcription factor 2 

(RUNX2) expression is initiated during the hypertrophic differentiation (Hattori, et al. 

2010). Also, other regulating factors such as bone morphogenetic proteins (BMPs) and 

wingless-type MMTV integration site family (Wnts) signals are involved in these 

processes (Day and Yang 2008; Mackie, et al. 2008). However, a small portion of 

chondrocytes is converted into chondroclasts and specialized cells, which are critical for 

the final stages of the endochondral osteogenic process(Kovacs 2011). This is followed 

by the invasion of osteoblast progenitors, osteoclasts, hematopoietic cells and blood 

vessel endothelial cells from the perichondrium into the hypertrophic cartilage. The 

chondroclasts dissolve the hypertrophic cartilage through lysosomal enzymes, the 

incoming osteoprogenitor stem cells differentiate into trabecular bone-forming 

osteoblasts, together with hematopoietic and endothelial cells to establish bone marrow 

in which becomes the primary ossification centre (Gilbert 2000; Maes, et al. 2010). The 

osteoblasts then deposit osteoid matrix on the partially degraded cartilage as a template, 
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mainly including osteocalcin, chondroitin and collagen type I (Gilbert 2000; Hatori, et al. 

1995). Eventually, the osteoid is replaced by new bone through mineralization including 

the penetration by mineral salts, in particular, calcium and phosphate ions to the matrix 

(Bruder and Caplan 1989). After these processes, two ossification centres are then 

formed: the cartilage template is first invaded at its centre and later at each end by a 

mixture of cells that establish the primary and secondary centres of ossification. These 

centres subsequently and gradually invade the remaining cartilage, ultimately replacing 

it with bone therby reaching skeletal maturity, except for the articular surface occupied 

by articular cartilage(Mackie, et al. 2008). 

 

• Articular chondrogenesis 

Three different cell germ layers are formed during embryogenesis, called mesoderm, 

ectoderm and endoderm. After four weeks of gestation, mesenchymal stem cells 

(MSCs), derived from the mesoderm, grow into the components of the appendicular 

skeleton(Hall and Miyake 1992). MSCs experience cell-substrate and cell-cell 

interactions over the development of the limbs, resulting in cell aggregation and 

advanced mitosis, thus increasing cell density within the condensate(Vogel and Sheetz 

2006). Before the condensation, the pre-chondrocyte MSCs produce ECM rich in 

hyaluronic acid and collagen type I. During the condensation the cells synthesize 

hyaluronidase and cell adhesion molecules, leading to a decreased concentration of 

hyaluronic acid and thus a closer cell-cell contact. Transforming growth factor-beta 

(TGF-β) signalling induces the expression of the SOX9, which is required for collagen 

type II (Col2) and aggrecan (ACAN) expressing during early condensation(de 
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Crombrugghe, et al. 2000). At the end of the condensation process, the expression of 

the intracellular signalling pathway activates, thereby initiating the transformation of the 

chondrocyte progenitor cells into mature chondrocytes(DeLise, et al. 2000). After the 

gestation from 4 to 7 weeks, these prechondrogenic MSCs undergo condensation that 

gives rise to cell aggregates, which then continue to differentiate into two distinct 

chondrogenic lineages: persistent chondrocytes and proliferating chondrocytes, which 

excrete large amounts of collagen and ECM for forming hyaline cartilage, and form the 

growth plate, respectively (Pacifici, et al. 2006).  

 

Chondrogenesis differentiation is an intricate process that results in a cartilage 

intermediate, leading to articular cartilage formation and endochondral ossification 

during development. The proliferating chondrocytes eventually become hypertrophic, 

which produce individual growth factors that promote blood vessels extension. After 

initial chondrocyte angiogenesis and osteoblasts, derived from MSCs, these secrete a 

matrix material that leads to mineralization and formation of the bone collar, where the 

first ossification centre occurs (Thompson, et al. 1989) and continues to grow into the 

trabecular bone which promotes continued bone elongation. A second ossification 

centre then forms at the other end of the cartilage anlage, thereby enclosing the hyaline 

cartilage in the interzone (Kronenberg 2003), followed by cavitation and finally formation 

of joint structures. However, the prechondrogenic cells originating from the interzone 

continue to condensate, differentiate into persistent chondrocytes which produce matrix 

components such as collagen type II and aggrecan, with collagen type I production 

turned off, resulting in the development of the articular cartilage. The matured 
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chondrocytes are then entrapped in their ECM and obtain a characteristic round 

phenotype (Holtzer 1964).  

 

The cellular processes involved in articular cartilage formation reveal essential insights 

and guide regenerative science towards developing improved therapies. The cell activity 

and phenotypic state, as well as production and structural composition of the ECM, 

change significantly through the condensation, differentiation of prechondrogenic 

mesenchymal cells during the embryonic stages until maturation and also in the 

processes of the articular cartilage formation from limb buds (Jadin, et al. 2005). At the 

early stage, chondrocytes proliferate and produce components of the ECM resulting in 

tissues with dense cells. As a response to the corresponding applied mechanical forces, 

the articular cartilage is remodelled by changing its composition and structure in the 

maturity phase, leading to an increase of the birefringence of the tissue (Armstrong and 

Gardner 1977; Hunziker, et al. 1997). Articular cartilage reaches maturation consistently 

with the maturity of the skeleton, when chondrocytes almost stop proliferating and 

excreting ECM, living in a quiet and stable stage (Jadin, et al. 2005). 

 

1.2 Pathologies of articular cartilage 

Articular cartilage remains, due to its avascular structure and limited nerve regulation, a 

tissue, unlike bone, that has extreme difficulties at regenerating or healing itself, even 

when minimally damaged  (Chiang and Jiang 2009; Loeser, et al. 2012; Wang, et al. 

2006; Wang, et al. 2014). Damage from injury or degenerative pathologies frequently 

results in gradual tissue deterioration, leading to debilitating joint effusion, joint pain, 
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functional impairment and degenerative arthritis(Centers for Disease and Prevention 

1994; Lawrence, et al. 1998). There are generally two groups of articular cartilage 

lesions: partial-thickness (chondral) and full-thickness (osteochondral) defects.  

 

A chondral defect, referring to a focal area of damage to the articular cartilage, can be 

the result of direct blunt trauma, accidental and sudden joint loading, and torsional 

injuries (Buckwalter 1998; Campbell 1969; Newman 1998). It leads to a brief metabolic 

and enzymatic response, which produces enough new chondrocytes to repair superficial 

defects spontaneously (Fuller and Ghadially 1972; Ghadially, et al. 1977; Hunziker and 

Rosenberg 1996; Kim, et al. 1991). In osteochondral defect in which the defect 

penetrates the subchondral bone resulting in an intense inflammatory response together 

with the release of cytokines and growth factors, such as interleukin-1 (IL-1), the matrix 

metalloproteinases (MMP) and TGF-β supergene family protein members, jointly 

promote tissue lysis and mesenchymal progenitor stem cell accumulation within the 

defect site (Caplan, et al. 1997; Ivkovic, et al. 2010; Silver and Glasgold 1995). The 

progenitor stem cells within the defect site often then differentiate into hypertrophic 

chondrocytes which together with the invasion of new blood vessels and new bone 

marrow formation penetrate the defect site eventually leading to the formation of 

fibrocartilage instead of the required articular cartilage matrix reformation, which is 

inferior to hyaline cartilage in structure and mechanical competence(Campbell 1969; 

Caplan, et al. 1997; Shapiro, et al. 1993).  

 

The incidence and prevalence of partial thickness chondral defects within joints are 

difficult to detect as many lesions within the articular surface are “silent” or undetectable 
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where it is clear that it is precisely these asymptomatic defects that are the ones that 

advance and progress from partial-thickness chondral lesions to the more full-thickness 

severe osteochondral defects. Curl et al. (1997) analysis from 31000 knee arthroscopic 

procedures discovered that 63% of the chosen sample size of patients with 

asymptomatic knees had chondral lesions (Curl, et al. 1997). This was also supported 

by Widuchowski et al. (2007) after evaluating over 25,000 knee arthroscopy samples, it 

was found that 60% of patients had chondral lesions and 58% patients’ symptoms of 

articular cartilage lesions which were as a direct result from traumatic, noncontact 

mechanism of injury (Widuchowski, et al. 2007). On the other hand, degenerative 

chondral changes mainly occur in elderly patients due to arthritic changes, which make 

the cartilage in a joint to become soft and lose its elasticity, making it more sensitive to 

injuries and leading to a large area of focal lesions. 

 

Other pathologies, meniscal injuries or deficiency, malalignment, and ligamentous 

instability that are known to contribute to the development of articular cartilage lesions, 

are frequently encountered by the operating surgeon treating articular cartilage defects 

(Breinan, et al. 1997; Joshy, et al. 2010; Mandelbaum 2016; Shelbourne, et al. 2003).  It 

has been demonstrated that chondral injuries may accompany an injury to a ligament 

such as the anterior cruciate ligament (ACL) and meniscus (Tandogan, et al. 2004). The 

ligament tear of the knee joint may cause and accelerate the cartilage defect, which may 

need to be reconstructed before or at the same time to re-lay the cartilage surface to 

slow the development of arthritis (Engebretsen, et al. 1988). Furthermore, patients with 

cartilage lesions due to lack of meniscus are likely to have no successful cartilage 

surface replacement unless replaced by a new meniscus. In these cases, it may be 
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beneficial to conduct an appropriate assessment and examination of potential meniscal 

transplants(Lohmander, et al. 2007). 

 

1.3 Articular cartilage defect treatments 

There are two fundamental problems which need to be addressed in the repair 

of articular cartilage which are that : (1) the tissue utilized to restore an articular cartilage 

defect site has the same mechanical properties as hyaline cartilage, whilst (2) effectively 

integrating itself within a defect site without undergoing endochondral bone formation 

(Rubak, et al. 1982). Even a small defect caused by mechanical damage tends to 

degenerate progressively over time towards osteoarthritis. Clinically, orthopaedic 

surgeons treat chondral lesions depending on patient selection, daily sports activities, 

age, grade and quality of the cartilage defect. The options of treatment range from 

conservative, through outdated and ineffective conventional arthroscopic surgical 

techniques of repair, mainly including abrasion arthroplasty, chondrectomy, micro-

fracture of the subchondral bone, perichondria or periosteal resurfacing and the 

transplantation of autologous or allogeneic osteochondral grafts (Angermann, et al. 2002; 

Argun, et al. 1993; Breinan, et al. 1997; Chen, et al. 2011; Homminga, et al. 1990). The 

common target of all utilized methods is to produce a sufficiently stable quality of the 

cartilage reparation or regeneration, eventually, achieve the restoration of a functioning 

joint. 

 

1.3.1 Routine clinical articular cartilage treatments 

Conservative treatment is considered in the mild symptomatic cases with small chondral 

defects to relieve the symptoms other than repair cartilage lesion，taking into account 
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the disadvantages of surgery may harm the right part of the articular (Yasuda 1997). 

Messner and Maleitus (1996) reported that although about 80% of patients with isolated 

chondral lesions had good or excellent results undergoing the conservative treatment 

after a long-term follow-up, most of the patients had abnormal radiographic findings 

14 years later. The study revealed that asymptomatic lesions might deteriorate to 

permanent knee damage (Messner and Maletius 1996). 

 

Current surgical strategies of treatment for articular cartilage defects can be grouped 

into palliative, reparative, and restorative techniques. Patients with low physical 

demands and small lesions are firstly considered to have palliative procedures such as 

arthroscopic lavage and debridement (Dervin, et al. 2003; Harwin 1999), while young 

patients with high physical demand are considered for a reparative or a restorative 

treatment. Although the debridement has not been shown to enhance the repair of 

cartilage lesions, it could alleviate the symptoms such as pain and joint dysfunction. 

Lavage procedure is the essential irrigation of the inflammatory mediators out from the 

knee joint. Debridement performed by the simple shaving of fibrotic cartilage surfaces, 

removing lesion tissue, debris and any loose piece of cartilage from the joint (Sprague 

1981). Arthroscopic lavage removes inflammatory mediators, loose cartilage and 

collagen debris, which can slip into the synovium and cause synovitis and fluid 

accumulation (Gibson, et al. 1992). Both of these two techniques have been proven to 

be the best frontline treatment of chondral lesions in the treatment of early stages of 

osteoarthritis (OA) since the early 1980s (Edelson, et al. 1995; Livesley, et al. 1991; 

Ogilvie-Harris and Fitsialos 1991).  
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The most studied reparative technique is micro-fracture, which is a controlled perforation 

of the subchondral bone plate to permit the pluripotent bone marrow stem cells and 

growth factors into the site of a cartilage defect which leads to the formation of 

fibrocartilage (Bae, et al. 2006). The arthroscopic micro-fracture technique uses angled 

awls to avoid the potential risk of the thermal necrosis, which is more natural and 

effective than drilling (Hunt, et al. 2002). This reparative fibrocartilage contains a high 

concentration of type I collagen, which is biochemically and biomechanically inferior to 

the hyaline articular cartilage that has the properties as type II collagen to resist 

compression and shear load, appears to deteriorate over time (Kreuz, et al. 2006; 

Redler, et al. 2012). According to the literature, although about 80% of patients have 

been relieved of pain and dysfunction in the short term, these results are further 

deteriorated after about four years (Hunt, et al. 2002; Shannon, et al. 2001). 

 

Those as mentioned above conventional surgical techniques of articular cartilage repair 

are partially successful in alleviating pain symptoms, but fail to regenerate tissue with 

the similar properties in nature as native articular cartilage and prompted the 

development of other new techniques. The restorative techniques, autologous 

chondrocyte implantation (ACI) (Brittberg, et al. 1994) and autologous osteochondral 

transplantation (AOT) (Hangody, et al. 2001), aimed to replace damaged cartilage with 

the formation of fresh hyaline-like cartilage with higher postoperative expectation and 

are indicated for large symptomatic lesions or prior failed treatment, in high demand 

patients. ACI is a two-stage procedure. The first stage contains an arthroscopic 

evaluation of the chondral lesion and performing the biopsy of the healthy hyaline 

cartilage from a non-weight bearing region of the articular cartilage. The chondrocytes 
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are released from the ECM by enzymatic digestion and culture expanded in vitro. 

Subsequently, the expanded chondrocytes are harvested and transplanted with fibrin 

beneath a periosteal flap sutured over the cartilage defect (Grande and Pitman 1988). 

This surgical technique is widely used in many clinical studies since the last two 

decades and has shown satisfactory outcomes (Matsusue, et al. 1993; Micheli, et al. 

2001; Ohlendorf, et al. 1996).  

 

AOT, on the other hand, involves removal of osteochondral plugs from relatively non-

weight bearing areas of the articular cartilage, such as femoral trochlear groove and tibia, 

and transplant them into debrided defect sites (Campbell, et al. 1963). The advantage of 

this technique is that osteochondral grafts provide a formed articular cartilage matrix with 

viable chondrocytes for rapid healing adjacent recurrent tissue and offers an excellent 

vertical fixation of the osteochondral plug to the implant site through a small incision 

performed in one procedure. Although it could be used to fill relatively large defects, the 

application of this technique is limited due to the amount of donor tissue available in the 

joint (Yamashita, et al. 1985). Some clinical follow-up studies revealed that 

transplantation of autologous grafts could restore articular surface in patients with large 

defects and provide proper function of the joint for a longer time(Jacobs 1965; 

Yamashita, et al. 1985). Finally, for the end-stage of the chondral lesion and irreversible 

degenerative joint pathology, the standard surgical intervention is total joint arthroplasty. 

 

Whilst each of these treatments are to date the best and often only viable action known 

to help temporally repair articular cartilage damage they possess many limitations of 

which the repaired tissue develops more often into fibrocartilage rather than real hyaline 
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articular cartilage, which although partially successful in alleviating pain in the short run 

is not a viable long-term solution. This often results again in a degenerative process 

taking hold thereby requiring continuous long term follow-up procedures of the same 

type. It is because of these poor outcomes of current surgical strategies, that has 

promoted medical and regenerative scientists to find alternatives through stem cell-

based biomaterial research to develop long-term solutions that could more appropriately 

heal the defect instead of just temporally fixing it.  

 

1.3.2 Regenerative articular cartilage repair 

Before 1994 limitations in repairing articular cartilage damage successfully was limited, 

until Brittberg et al. (1994) introduced a cell-based therapy in which culture-expanded 

autologous chondrocytes were transplanted into chondral defect sites through which 

hyaline-like cartilage formation was achieved, providing the basis from which the 

concept of cellular based and subsequently biomaterial articular cartilage formation 

would develop (Brittberg, et al. 1994). Similar to autogenous bone grafting that to date 

remains the golden standard to heal bone defects clinically(Havers 1692; Ollier 1867; 

Senn 1889), autologous chondrocyte or cartilage implantation (ACI) has become a 

commonly utilised orthopaedic surgical technique that can significantly improve the 

chances of reforming cartilage in articular cartilage defects over a more extended period 

of time than usual surgical interventions towards articular cartilage defects (Gillogly, et al. 

1998; Grande, et al. 1989; Grande, et al. 1987; Pascual-Garrido, et al. 2009; Viste, et al. 

2012). However, autologous chondrocyte implantation also has several limitations. Often 

a cartilage graft when harvested from an articular joint, much like in autogenous bone 

graft, can cause distinct donor site morbidity, limiting the amount of autologous 
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chondrocytes material that can be harvested at a given time (Cui, et al. 2009; Gao, et al. 

2007). On the other hand, obtaining allografts from other donors pose a severe health 

risk as there is a danger of either pathogenic transfer occurrence or immunological 

rejection (Fan, et al. 2013; Gilbert 1998; Nejadnik, et al. 2010).  

 

Moreover, in vitro expansion of chondrocytes remains problematic where chondrocyte 

cellular expansion in culture is limited to a certain number of passages, of which the 

cells tend to dedifferentiate into fibroblasts terminally (Darling and Athanasiou 2005b; 

Gosset, et al. 2008; Stokes, et al. 2002), making them unsuitable for use clinically and 

significantly limiting in vitro analyses. Other limitations concerning the ACI procedure are 

also related to the lack of a viable biomimetic scaffold with multipotent stem cells which 

together could provide a more balanced physical and biological response necessary to 

facilitate proper growth and differentiation into hyaline articular cartilage. As such 

through advances in regenerative tissue engineering ， especially stem cell-based 

research, one could circumvent the shortcomings and limitations of existing therapies to 

facilitate better healing.  

 

1.4 Stem cells in articular cartilage repair 

Stem cell-based therapies over the years has emerged as a great alternative to 

overcome the poor self-repair capacity of cartilage, as highlighted under the bone 

induction principle, of an insoluble substratum combined with soluble signal(s) (Reddi 

2000; Sampath and Reddi 1981; Urist, et al. 1967), being able to facilitate the formation 

of de novo tissue formation. Similarly to this principle cartilage regeneration utilises 

chondrocytes or stem cells (soluble signal) combined with a biomimetic biomaterial 
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(insoluble signal) that facilitates the formation of neo-cartilage tissue in vitro and in vivo 

that possesses similar characteristic as actual hyaline articular cartilage (Awad, et al. 

2004; Liu, et al. 2010a; Ochi, et al. 2001; Xie, et al. 2012; Ye, et al. 2009). 

 

For cell resources, instead of autologous chondrocytes, studies have focused on 

mesenchymal stem cells (MSCs), which are considered an alternative cell source for 

chondrogenic progenitor stem cells due to their excellent capacities at proliferating and 

possessing the capacity to differentiate into chondrocytes (Grande, et al. 1995; Huang, 

et al. 2010; Huang, et al. 2014; Morille, et al. 2016; Wakitani, et al. 1994). Thus, adult 

mesenchymal stem cells from bone marrow, termed bone marrow-derived stem cells 

(BMSCs), or from adipose tissue, termed adipose-derived stem cells (ADSCs), have 

been considered as an alternative stem cell, as they equally possess cellular growth 

kinetics, cell senescence, multi-lineage differentiation and gene transduction efficiency, 

allowing them to be effectively utilized for generating various specialized cell types, 

under the correct conditions (Elahi, et al. 2016; Wei, et al. 2013), or tissues for that fact 

(da Silva Meirelles, et al. 2006). Especially in cartilage tissue engineering BMSCs have 

been shown to be a fantastic stem cell candidate for research and clinical applications 

(Deng, et al. 2013; Fortier, et al. 1998; Johnstone and Yoo 1999; Loken, et al. 2008).  

 

Here, in relation to mature chondrocytes which are typically highly differentiated cells, as 

seed cells, the BMSCs could not only differentiate into the chondrocytes that reform 

parts of the damaged cartilage tissue layer but could also under the correct conditions 

reconstruct sub-chondral bone in vivo (Bara, et al. 2014; Dwivedi, et al. 2017; Zhou, et al. 

2006). However, due to the quantity of viable required BMSCs essential to facilitate such 



  

 
 

- 19 - 

procedures, necessitating thus often large, invasive and painful autologous bone 

harvesting procedures resulting in donor site morbidity(Csaki, et al. 2008; Stosich and 

Mao 2007), alternative stem cell types that can be harvested en masse without affecting 

overall patient homeostasis were necessary. To solve this problem ADSCs where 

deemed a tremendous viable alternative, as adipose tissue can easily be obtained from 

beautification liposuction surgeries without any hostile side effects to the patient (Stosich 

and Mao 2007). ADSCs within the adipose tissue are extremely abundant (Gimble and 

Guilak 2003) and can easily be isolated to be made to differentiate into multi-lineages 

(De Ugarte, et al. 2003; Gao, et al. 2007; Winter, et al. 2003; Xie, et al. 2012). 

Subsequently ADSCs have also been shown to be viable for use in chondrogenesis 

related experiments, being able to differentiate easily into chondrocytes both in vivo and 

in vitro (Fang, et al. 2014; Lu, et al. 2012; Ye, et al. 2009), under the stimulation of TGF-

β3 for chondrogenic induction in vitro (Estes, et al. 2010; Ude, et al. 2017). Thus, it is 

possible to use ADSCs as seed cells to undergo chondrogenic differentiation to engineer 

cartilage tissue. 

 

The critical issue for stem cells used in tissue engineering is the initiation and control of 

cellular differentiation where two-dimensional (2D) monolayer conventional culture 

conditions including the system and serum-supplemented medium methods, tend to 

cause ADSCs to differentiate into an adipogenic or osteogenic lineage rather than the 

required chondrogenic lineage (Heng, et al. 2004; Lo Furno, et al. 2016). Therefore, 

developing a suitable culture technique to direct ADSCs into a chondrogenic lineage is a 

crucial prerequisite for cartilage defect repair applications utilizing ADSCs. In particular, 

the culture conditions employed and the physical interactions that occur between the 
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cells and extracellular matrix (ECM) can exert a profound influence. Environmental 

factors regulating the shape and alignment of cells, cell adhesion and migration 

including the build-up of mechanical stresses in the cytoskeleton have all been identified 

as essential factors that can exert an influence on the chondrogenic differentiation 

potential of stem cells (Hsu, et al. 2011; Li, et al. 2005; Mahmoudifar and Doran 2010). 

Typically, the differentiation of stem cells is more suitable when incorporated within  a 

three-dimensional (3D) high-density cell aggregated (spheroid, micromass culture, and 

pellet culture) cell culture system, now the standard 3D culture systems(Tare, et al. 

2005), that allow improved cell to cell interactions similar to those within in vivo pre-

cartilage condensation process during embryonic cartilage development (Panadero, et al. 

2016; Zhang, et al. 2010). However, 3D pellet cell cultures because of an often limited 

size complicated by weak mechanical properties are unsuitable in the clinical application 

for the repairing of cartilage lesions (Li, et al. 2005), where biomimetic biomaterial 

devices replicating specific matrix components have emerged as better alternatives in 

directing proper matrix formation. 

 

1.5 Biomaterials and cartilage repair 

Natural or synthetic based biomimetic scaffolds (biomaterials) designed with nonlinear, 

inhomogeneous and viscoelastic properties can replicate both the structural and also 

behavioral characteristics of native of hyaline articular cartilage, providing not only the 

necessary structural template for the re-formation of new cartilage but also serves as an 

extracellular matrix substratum that facilitates cellular attachment, proliferation, 

differentiation to the desired cyto-phenotype thereby ensuring proper integration into the 
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adjacent the surrounding cartilage tissue defect site (Awad, et al. 2004; Cavallo, et al. 

2013; Correa and Lietman 2017; Guilak, et al. 2001).  

 

The type of biomaterial and its specific geometric configuration are key elements, 

considered in the development of new materials for causing targeted stem cell 

differentiation into specific tissue types(Ripamonti, et al. 2008; Salim, et al. 2004; Zhang, 

et al. 2015). As there is a wide range of natural and synthetic biomaterials available, 

selecting the appropriate biomaterial is crucial (Liu, et al. 2013; Shin, et al. 2003), as the 

material needs to both provide the necessary cues for cell development and 

differentiation but also possess excellent biocompatibility so as to integrate flawlessly 

into the defect site. Several natural biomaterials used for adipose tissue engineering 

include matrigel, collagen type I matrix, a collagen-chitosan blend or collagen sponges 

with synthetic biomaterials used for adipose tissue engineering involving polyglycolic 

acid (PGA) scaffolds, polylactic acid, poly(lactic-co-glycolic acid) and poly(varepsilon-

caprolactone) (Dahlin, et al. 2014a; Vinatier and Guicheux 2016). The polysaccharide 

chitosan, a component derived from the exoskeleton of crustacean and insect (Chandy 

and Sharma 1990; Pugnaloni, et al. 1988; Younes and Rinaudo 2015) is a copolymer of 

glucosamine and N-acetyl-glucosamine, obtained by the deacetylation of chitin. It is the 

most widely used biopolymer in various biomedical applications because of its potential 

at stimulating hemostasis and accelerating the regeneration of damaged or lost tissues 

in the process of wound healing (Hoekstra, et al. 1998; Oryan and Sahvieh 2017). 

Chitosan possesses an excellent ability to form synthetically derived porous structures, 

generated by freezing and lyophilizing (Madihally and Matthew 1999). It has a 

hydrophilic surface that enhances cell adhesion, proliferation and differentiation 

http://www.sciencedirect.com.emedien.ub.uni-muenchen.de/topics/biochemistry-genetics-and-molecular-biology/cell-adhesion
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efficiently attracting fluids and cells to the defect site (Costa-Pinto, et al. 2011). Chitosan 

has been shown to mimic the natural components of cartilage and possess excellent 

biocompatibility (Hoffmann, et al. 2009), physicochemical properties including being 

bioactive and biodegradable making it a good candidate for cartilage tissue engineering 

(Oryan and Sahvieh 2017; Zhang, et al. 2013). When combined with the corresponding 

stem cell type and or morphogens it could become a viable alternative to other cartilage 

tissue engineering prospects.  
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2. Hypothesis of the Study 

The hypothesis was that human adipose-derived stem (hADSCs) cells would 

differentiate into articular matrix forming chondrocytes within pure porous chitosan-

based biomimetic scaffolds in vitro.  

 

3. Aims and Objectives 

Since there are limited studies that have assessed the biocompatibility and tissue 

engineering capabilities of pure porous chitosan scaffolds with hADSCs, the aim of this 

study was to evaluate the chondrogenic differentiation but especially the articular 

cartilage matrix formation potential of human adult ADSCs when these were applied to 1% 

porous chitosan-based scaffolds (PCSs), within a chondrogenic-simulating environment 

in vitro.  

 

Study Objective 1: 

Monitor stem cell survival, proliferation, differentiation and matrix formation capabilities 

utilizing Live/Dead, Wst-1, Pico-Green and Scanning electron microscopy coupled with 

immunofluorescent assays respectively, when hADSCs are cultured on 1% PCS in a 

chondrogenic or standard in vivo replicating in vitro environment. 

 

Study Objective 2: 

Validate that hADSCs do in fact differentiate into articular forming chondrocytes on 

1%PCS under standard or chondrogenic culturing conditions, by monitoring key gene 

expression events in the articular and endochondral bone formation pathways utilizing 



  

 
 

- 24 - 

quantitative reverse transcription real-time polymerase chain reaction (qRT-PCR) 

according the Bustin et al (2009, 2013) MIQE guidelines.   

 

4. Materials and methods 

The methods employed in the present study were performed in two phases. Firstly, 

hADSCs were isolated from the adipose tissue from donor patients and cultured up to 

passage 4 after which the cellular attachment, chondrogenic differentiation and 

proliferation potential including the corresponding matrices that were secreted by the 

cells into the macroporous spaces of 1% porous chitosan scaffold was assessed 

(Objective 1) and validated (Objective 2). 

 

4.1 1% Porous chitosan constructs (PCS)  

The 1% PCSs used in this study were custom produced by the Advanced Materials 

Research Center of the Friedrich-Baur BioMed Center in Bayreuth of Germany. Briefly, 

first porous sponges were made by lyophilization of glutaraldehyde-crosslinked 1% 

weight to volume (w/v) chitosan hydrogels as described in (Hoffmann, et al. 2009). Here, 

chitosan with a 95% degree of deacetylation (Heppe Medical, Halle) was dissolved at 2% 

w/v. in 0.1N hydrochloric acid at pH1. Using 1N sodium hydroxide, the pH was adjusted 

to 5 by careful, dropwise addition under constant stirring on a magnetic stirrer (Thomas 

Scientific, NJ, USA) platform. Hydrogels were formed by mixing 1 ml of chitosan solution 

with 1 ml aqueous 1% glutaraldehyde solution (Sigma-Aldrich, St. louis, USA) in forms 

with 15 mm in diameter. After gelation, the samples were frozen at -32°C using 

polystyrene insulation to control the freezing rate. Frozen samples were freeze-dried at -

50°C under vacuum using an Alpha 1-4 LD system (Christ, Lagos State, Nigeria). The 
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dry scaffolds were trimmed on both ends to a final height of 8mm with a microtomic 

blade. Chitosan scaffolds were then gamma-sterilized at ca. 27 kGy. Quality check to 

ensure correct morphological scaffolds was performed using a VHX-5000 3D digital 

microscope (Keyence, Osaka, Japan) and software VHX-5000 Ver. 1.6.1.0 / System Ver. 

1.04 (Keyence, Osaka, Japan). The microstructure of the scaffolds was captured 

utilizing a Zeiss EVO LS 10 scanning electron microscopy (SEM) (Zeiss, Oberkochen, 

German).  

 

4.2 Isolation and culture of human adipose-derived stem cells (hADSCs) 

Human ADSCs were isolated, as previously described (Bondarava, et al. 2017), from 

subcutaneous adipose tissue that was acquired from the Biobank of the University 

Hospital of Munich Germany which operates in accordance to the European Union 

compliant ethical and legal framework of the Human Tissue and Cell Research 

Foundation (http://www.htcr.org). The research was approved by the Human Ethics 

Committee of the Faculty of Medicine (#315-13) at the University of Munich and the 

Bavarian State Medical Association. Briefly, harvested adipose tissue was rinsed with 

phosphate buffered saline (PBS) containing 180 IU/ml penicillin/streptomycin and 0.75 

µg/ml amphotericin B (Biochrom, Berlin, Germany), after which the tissue was cut into 

small pieces and digested by 0.2 % collagenase A solution (Sigma-Aldrich, St. louis, 

USA) in DMEM (Gibco, Waltham, MA, USA) at 37oC. Then, 15% fetal calf serum (FCS; 

Sigma-Aldrich) supplemented culture medium was added, after which the mixture was 

resuspended, filtered through 100 µm sieves and centrifuged at 400 x g for 10 minutes 

at room temperature (RT). The pellet containing hADSCs was resuspended with fresh 

growth medium (DMEM, 15% FCS, 60 IU/ml penicillin/streptomycin), seeded in a T-75 
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culture flask and cultured at 37oC with 5% CO2 for 24 hours. Subsequently, the adhered 

cells were washed with PBS and 20ml of fresh growth medium was added. The medium 

was replaced every 3 days. Human ADSCs used in this study were used at passage 4. 

 

4.3 Cell seeding onto 1% PSCs and in vitro chondrogenic differentiation 

The dry chitosan scaffolds were placed carefully in a 12-Nunc well plate (Thermo Fisher 

Scientific, Waltham, MA, USA) and covered with 2ml normal growth medium consisting 

of high-glucose DMEM 4.5 g/L D-glucose, 110 µg/ml Pyruvate (Gibco) supplemented 

with 10% FCS and 60 IU/ml penicillin/streptomycin. Scaffolds were then incubated at 

37oC with 5% CO2 for 6 hours after which the medium was changed and left to incubate 

overnight. Human ADSCs (~90% confluent) were then digested with trypsin/EDTA, 

counted and resuspended at a concentration of ~1x107/ml. To seed the cells on the 

chitosan scaffolds, the old medium was removed and 100 µl of cell suspension was 

pipetted evenly onto the surface of the devices. Scaffolds with cells were then incubated 

at 37 oC at 5% CO2 for 1h to allow for cell attachment to the device, whereupon 2ml of 

normal growth medium was added to each well and incubated overnight. The following 

morning (Day1), the cell-seeded scaffolds were transferred into either normal growth 

medium (Normal + Scaffold or “NS”; n=9) or chondrogenic medium (Chondrogenic + 

Scaffold or “CS”; n=9). Chondrogenic medium consisted of normal growth medium 

supplemented with 10 ng/ml recombinant human TGF-β3 (R&D Systems, Minneapolis, 

MN, USA), 100nM dexamethasone (Sigma-Aldrich), 50ug/ml L-ascorbic acid-2-

phosphate (Sigma-Aldrich), 40ug/ml L-proline (Sigma-Aldrich) and ITS +1 (Sigma-

Aldrich; final concentrations: 10 mg/L insulin, 5.5 mg/L transferrin, 4.7 µg/ml linoleic acid, 

0.5 mg/ml bovine serum albumin and 5 μg/L selenium). The cell-seeded constructs 
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cultured with normal growth medium (NS) were considered as the scaffold control group. 

Samples were cultured for 7, 14, and 28 days and medium was replaced every 3days. 

 

4.4 Pellet culture and chondrogenic differentiation 

Pellet culture was used as comparable, scaffold-free 3D culture control (Estes and 

Guilak 2011), to investigate both scaffold and culture medium influence on stem cell 

differentiation and matrix formation. Human ADSCs from the fourth passage were 

resuspended at a concentration of 2.5x105 cells per ml in normal growth medium (see 

above). Two milliliters of the cell suspension containing 5×105 hADSCs were then 

pipetted into a 15 mL sterile polypropylene conical tube and centrifuged under the speed 

at 500 x g for 5min to allow for 3D cell pellet formation. The 3D pelleted cells were then 

incubated overnight at 37oC with 5% CO2 in Eppendorf tubes with loosened caps to 

permit gas exchange. Spheroid aggregates formed at the bottom of each tube. The 

following day (Day1), the culture medium was replaced with 2ml of fresh growth medium 

(Normal + Pellet or “NP”; n=9) or chondrogenic medium (Chondrogenic + Pellet or 

“CP”; n=9) carefully so as not to resuspend the cell pellet. The 3D pellet medium was 

changed every 3 days and 3D cell pellets were cultured for 7, 14, and 28 days prior to 

harvest and processing for analysis. Cells cultured in normal growth medium were used 

as the pellet control group. 

 

4.5 Scanning electron microscopy (SEM) 

In order to visualize the matrix development progression on the scaffolds, one device 

was randomly chosen and cultured for 1, 7, 14 and 28 days. Upon harvest, the sample 

was washed with PBS and fixed in 2.5% glutaraldehyde in PBS overnight at 4°C. The 



  

 
 

- 28 - 

construct was then stained with 1% osmium tetroxide, dehydrated in a graded series of 

alcohols and finally dried using the critical point drying method after which it was coated 

with gold. The samples were examined with an EVO LS 10 SEM at an accelerating 

voltage of 20 kV (Zeiss). 

 

4.6 Cell Viability and Proliferation assay 

Viability and proliferation of hADSCs within chitosan based scaffolds was evaluated 

utilizing a water-soluble tetrazolium reagent (WST-1, Roche, Penzberg, Germany) in 

combination with Quant-iTTM PicoGreen dsDNA Kit (Invitrogen, Life Technologies, USA) 

at day 1 and subsequently at day 7, 14, or 28. Briefly, hADSCs-seeded scaffolds were 

transferred to a new 24-Nunc well plate, washed twice with PBS, after which 0.5ml fresh 

normal growth medium containing WST-1 at 10:1 (v/v) was added to each well and 

incubated for 2 hours at 37°C at 5% CO2. The absorbance of the WST-1/medium 

mixture was read at 450 nm using a Synergy HT microplate reader with Gen 5 2.03 

software (BioTek, Bad Friedrichshall, Germany) in a 96-well plate. The same scaffolds 

were used for the PicoGreen dsDNA Assay. Here the samples were washed twice with 

PBS. According to the manufacturer's protocol, the cells were lysed from the scaffold 

and DNA standards were mixed with TE-buffer and subsequently with Quant-iT 

PicoGreen dsDNA reagent. The samples were excited at 480 nm and the fluorescence 

emission intensity was measured at 520 nm using a Synergy HT microplate reader with 

Gen 5 2.03 software (BioTek). 

 

 

4.7 Cell survival in the scaffold 
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The effect of cultivation in chitosan sponges on cell survivability in relation to the number 

of dead cells in chondrogenic differentiation medium was studied using a LIVE/DEAD 

Viability/Cytotoxicity Kit (Invitrogen). At day 1, 7, 14 and 28 the cell-scaffold constructs 

were rinsed with PBS and incubated in a staining solution containing Calcein AM and 

Ethidium homodimer-1(EthD-1) at room temperature for 30 min. After washing with PBS 

the constructs were then examined under a Axio Vert.A1 Inverted fluorescence 

microscope (Zeiss). Healthy cells or dead cells fluoresce green or red, respectively 

(Yang, et al. 2008). 

 

4.8 Histological analysis and Immunofluorescence staining 

 After 7, 14 and 28 days of culture the cell-scaffolds and 28 day 3D cell pellets were 

harvested and specimens were then fixed in 4% paraformaldehyde for 30 min at room 

temperature. The 1% chitosan-based scaffold specimens with cells were then 

dehydrated through a graded series of alcohols into paraffin, whereas the 3D cell pellet 

cultures were embedded in a Tissue-Tek O.C.T.™ compound (Sakura Finetek, Staufen, 

Germany) and frozen in liquid nitrogen. Following this, 10 µm thick sections were cut 

using either a Microtome (Leica, Wetzlar, Germany), for paraffin specimens, or a CM 

3050 cryomicrotome (Leica), for the cryogenic embedded specimens. To visualize tissue 

morphology and cartilage matrix formation, sections were stained with either, 

hematoxylin and eosin (H&E) for morphological evaluation(Landini and Perryer 2009), or 

Alcian blue at ph 2.5 for glycosaminoglycan (GAG) content formation(Green and 

Pastewka 1974). All stained sections were analyzed with a PreciPoint M8 Digital 

Microscope & Scanner (PreciPoint GmbH, Freising, Germany). 
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To determine the quality of the matrix composition secreted by cells in chitosan-based 

scaffolds within the CS and NS groups, immunofluorescence staining for collagen I, 

collagen II and aggrecan was performed. Briefly, paraffin sections were incubated with 

primary antibodies (all from Abcam, Cambridge, UK) for either collagen type I (1:300; 

Cat# ab34710), collagen type II (1:200; Cat# ab34712) or aggrecan (1:300; Cat# 

ab3778) at 4°C overnight. The antibodies were diluted with antibody dilution buffer (DCS, 

Germany). For negative controls, the first antibody was omitted. For positive control, use 

the hyaline cartilage section from the normal human knee to ensure the antibody was 

working correctly. The slides were then incubated with the conjugated secondary 

antibody (Abcam, Cambridge, UK) for 1 h at room temperature. Nuclei of cells were then 

stained for 8min with Hoechst 33342(Life Technologies, Carlsbad, USA), which will 

show blue dye under the inflorescence microscopy. The slides were mounted with 

Fluoromount W (Serva Electrophoresis, Heidelberg, Germany), air-dried and stored in 

darkness at 4 °C. Fluorescence microscopy was then performed with a Zeiss Axioskop 

40 equipped with appropriate filter sets and AxioCam MRc 5 (Carl Zeiss, Munich, 

Germany). Images were obtained with Axio Vision, Rel. 4.9 (Carl Zeiss, Munich, 

Germany). Exposure time was kept constant for the samples where fluorescence 

intensity was to be compared. 

 

4.9 QRT-PCR according to Bustin’s MIQE Guidelines 

In order to generate the most accurate gene expression profiles thereby reflecting 

whether articular cartilage formation was indeed occurring within chitson-based scaffolds 

seeded with hADSCs the quantitative reverse transcription real-time polymerase chain 
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reaction procedures was performed in accordance to the strict guidelines as set out by 

Bustin et al 2009 and 2010.  

 

4.9.1 Gene primer design and optimisation 

Endochondral bone formation and articular cartilage gene markers together with 

reference genes, reference genes known to be suitable for the normalization of qRT-

PCR expression studies that focus on those with a standard deviation of the average 

amplification threshold (Cq) of less than 1 across 35 in human cell (Dheda, et al. 2004; 

Warrington, et al. 2000), were custom designed, utilising the relevant mRNA sequences 

Homo sapiens, from GenBank (http://www.ncbi.nlm.nih.gov/genbank/), together with 

PrimeQuest in conjunction with OligoAnalyzer 3.1 on the IDT website 

(https://eu.idtdna.com/site). The specificity of the designed primers was confirmed 

through the use of the Basic Local Alignment Search Tool program on Pubmed Central 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi).  

 

Eight potential forward and reverse primers of 8 reference genes and six endochondral 

osteogenic and chondrogenic relative target gens were designed. For the 8 reference 

TATA-binding protein (TBP), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

RNA 28S ribosomal 4 (RNA28S4), RNA polymerase II subunit e (POLR2e), ribosomal 

protein lateral stalk subunit P0 (RPLPO), succinate dehydrogenase complex flavoprotein 

subunit A (SDHA), actin beta (ACTB), ribosomal protein L13a (RPL13a) were designed 

whilst the 6 endochondral bone and articular cartilage formation genes included in this 

study were aggrecan(ACAN – articular cartilage marker ), collagen type II(COL2A1 – 

articular cartilage marker), collagen type X(COL10A1 – endochondral marker), collagen 

http://www.ncbi.nlm.nih.gov/genbank/
https://eu.idtdna.com/site
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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type I (COL1A1 – endochondral marker), SOX9 (articular cartilage and endochondral 

marker) and cartilage oligomeric matrix protein (COMP – cartilage marker) (Table 1).   

 

Generated gene primers were optimized using a standard temperature gradient run to 

determine the optimal range of primer annealing temperatures. Each reaction contained 

25ng cDNA (from chondrogenic differentiated hADSCs), with 2x FastStart Essential 

DNA Green Master (Roche, Basel, Switzerland) and 10 µM of each primer (Table 1) in a 

final reaction volume of 10 µl. Runs were performed in a LightCycler® 96 thermocycler 

(Roche, Basel, Swiss), with thermocycling parameters including a pre-incubation of 3 

min at 95°C, followed by a three-step amplification program of 40 cycles consisting of a 

denaturation, annealing and extension step set at 95°C for 10 s, 55 to 65 °C for 15s and 

72°C for 30s, respectively. A melt curve was included in each run to confirm 

amplification of a single product. After PCR amplification wells identified with positive 

amplicons, and therefore generating a valid temperature range at which primers function 

optimally, were purified with the MinElute PCR Purification Kit (Qiagen, Crawley, UK), 

according to the manufacturer’s instructions and analyzed, after Sanger sequencing 

(GATC Biotech, Cologne, Germany) utilizing BLASTn against the GenBank database to 

validate primer reference gene and target gene sequences amplification specificity. 

 

4.9.2 cDNA standardization for qRT-PCR 

Too much or too little cDNA can prevent proper gene amplification within a reaction. At 

the correct quantity of cDNA one can also maximize the number of genes one can 

analyze per sample making cDNA standardization a necessary requirement to facilitate 

a broad spectrum analysis of genes within an experiment. As such the optimum cDNA 
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quantity to be used per qRT-PCR using a standard curve was utilized to determine this. 

A 2x dilution gradient of cDNA amounts, specifically 40 ng, 20 ng, 10ng, 5 ng, 2.5ng and 

0ng, was utilized to generate the standard curve in relation to the amplification threshold 

(Cq). PCR reactions were carried out in 96-well plates in duplicate. The PCR reactions 

were performed using a qRT-PCR LightCycler® 96 Instrument (Roche, Basel, Swiss), 

where the total volume per reaction was 10μl, containing 10μM of each reference primer 

(Table 1), the corresponding diluted cDNA and 2x FastStart Essential DNA Green 

Master (Roche). The thermocycling procedure included a pre-incubation of 3 min at 

95°C, followed by a three step amplification program of 40 cycles consisting of a 

denaturation, annealing and extension step set at 95°C for 10 s, 60 °C for 15s and 72°C 

for 30s, respectively. A melt curve was included in each run to validate product 

amplification. Standard curve determined that an optimal cDNA amount of 10ng per 

reaction was the most appropriate to utilize in the qRT-PCR analysis.   

 

4.9.3 Stability and quantity of reference primers (GeNorm) 

A GeNorm analysis was performed to determine which of the 8 reference genes were 

the most stably expressed within the experiment and how many of these reference 

genes were necessary to facilitate proper normalization in relation to the test genes. All 

treated and control groups within the experiment were incorporated into the GeNorm 

validation process including hADSCs fresh (endogenous baseline control) PCR 

reactions were carried out in 96-well plates in duplicate utilizing a qRT-PCR 

LightCycler® 96 Instrument (Roche) with a total reaction volume of 10μl, that contained 

10μM of each reference primer (Table 1), 10 ng of cDNA and 2x FastStart Essential 

DNA Green Master (Roche). Thermocycling parameters had a pre-incubation step of 3 
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min at 95°C, followed by a three-step amplification program of 40 cycles consisting of a 

denaturation, annealing and extension step set at 95°C for 10 s, 60 °C for 15s and 72°C 

for 30s, respectively. A melt curve was included in each run to validate product 

amplification. Generated data was then inputted into GeNorm 

(http://medgen.ugent.be/wjvdesomp/genorm/) using the relative quantities based on the 

comparative threshold cycle (Cq) method (VanGuilder, et al. 2008). The statistical tools 

used by GeNorm were used to assess the expression stability of the candidate 

reference gene using the M-value, which refers to the average pairwise variation 

between each reference gene and the other reference genes. A gene with M<1.5 is 

considered as a stable reference gene. Subsequently, the pairwise variation (V-score) 

was determined which indicates the optimal number of reference genes to use for the 

cell or tissue type to generate realistic and accurate relative quantitative gene 

expression data (Bustin, et al. 2009; Dolgin 2017; VanGuilder, et al. 2008). The value of 

Vn/n+1 under 0.15 indicates that no additional reference genes are required for 

normalization (VanGuilder, et al. 2008). 

 

4.9.4 qRT-PCR 

 QRT-PCR was performed to determine the relative expression of the chondrogenic 

genes, aggrecan (ACAN), collagen type II (COL2A1), cartilage oligomeric matrix protein 

(COMP), SRY-box 9 (SOX9) with collagen type I (COL1A1) and collagen type X 

(COL10A1) being included to determine if cartilage matrix development was purely 

articular or progressing towards an endochondral ossification lineage. After 7, 14 and 28 

days, total RNA was isolated using a modified RNA Trizol extraction procedure 

(Chomczynski and Mackey 1995). Briefly, 1 ml Trizol (Invitrogen) was added to cell 

http://medgen.ugent.be/wjvdesomp/genorm/
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material after which chloroform (Sigma-Aldrich) was added to permit separation of the 

RNA from the proteinaceous material. After centrifugation, the aqueous RNA containing 

phase was transferred to a fresh tube where the RNA was then precipitated by adding 

Isopropanol (Sigma-Aldrich). After incubating at RT for 10 min, the samples were 

centrifuged at the speed of 16000 rpm overnight at 4 °C, upon which RNA pellets were 

then washed with 75% Ethanol (Merck, Billerica MA, USA) and permitted to dry briefly to 

prevent alcohol contamination. Following drying, total RNA was resuspended in 32 μl 

RNase free water (Gibco) and assessed the purity and concentration of the RNA using a 

NanoDropTMLite spectrophotometer (Thermo Scientific) and quality assessed with a 

Bioanalyzer 2100 (Agilent Technologies). Finally, approximately 1 µg of RNA was 

reverse transcribed into complementary DNA (cDNA) utilizing the QuantiTect Reverse 

Transcription cDNA Synthesis Kit (Qiagen, Germany). 

 

QRT-PCR was then performed in duplicate, using the FastStart Essential DNA Green 

Master (Roche, Basel, Switzerland) on a Light Cycler 96 thermocycler (Roche, Basel, 

Swiss). Each reaction mixture contained 10 ng cDNA, 10 µM of each primer (Table 1), 

2x FastStart Essential DNA Green Master and RNase-free water to a final reaction 

volume of 20 µl. From section 4.9.3 of the Materials and Methods Section, GeNorm 

analysis identified that in order to generate realistic gene expression data four reference 

genes had to be utilized, of which the most stably expressed were TATA sequence 

binding protein (TBP), β-actin (ACTB), ribosomal protein lateral stalk subunit P0 (RPLP0) 

and RNA polymerase II subunit E (POLR2e). PCR thermocycling conditions included a 

3min pre-incubation at 95°C, followed by a three-step amplification program of 40 cycles 

consisting of a denaturation, annealing and extension step set at 95°C for 10 s, 58 °C for 



  

 
 

- 36 - 

15s and 72°C for 30s, respectively. Relative expression between samples of the six 

target genes was normalized to the four reference genes using the qbase+ software 

(https://www.qbaseplus.com). Data was further normalized to unaltered hADSCs in 

monolayer which was the baseline to which experimental groups were compared. 

Table 1. Gene primers used for optimization 

 

 

4.10 Statistical analysis  

Data from triplicate cultures are presented as means ± standard deviation (SD, n=9) for 

the results of WST-1, PicoGreen and qPCR. Qbase+ software was used to analyze the 

data from qPCR. Microsoft Excel and Prism 5.02 software (GraphPad Software, San 

Diego, USA) were used for analyzing the data. The Students’ T-test was used for 

comparing groups of data. Values for p < 0.05, p < 0.01 and p < 0.001 were considered 

significant, highly or extremely significant, respectively. Statistical significance is 

indicated by * for p<0.05, **for p<0.01 and ***for p<0.001. 
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5. Results 

 

5.1 Characterization of porous chitosan scaffold and seeding with differentiated 

hADSCs 

The chitosan scaffolds appeared as a soft and highly porous spongy-like disk (Fig. 1A). 

SEM micrographs showed that the scaffolds contained pores of approximately 100-200 

µm in diameter. The magnified view of the pores was relatively uniform and had irregular 

morphology (Fig. 1B). The scaffold structure appeared different after cultivation in 

medium, which might be due to drying during SEM preparation (Fig. 1C). Once scaffolds 

had been seeded with hADSCs and cultured in vitro in the chondrogenic medium for 1 

day, SEM analysis showed that the cells attached to scaffolds (Fig. 1D-F). At day 7, 

abundant and fibrous matrix had been secreted into the porous structures of the 

sponges (Fig. 1G-I). At day 14, cells in chondrogenic medium continued producing 

abundant ECM not only on the surface of the scaffold (Fig. 1J, K) but also in its inner 

pores (Fig. 1L). With cartilage formation being detectable by day 28, ECM covered all 

porous spaces and the inside (Fig. 1 M-O) of the devices, demonstrating superior 

scaffold properties of the chitosan sponges. 
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Figure 1. Scanning electron microscopy images (B-O) of chitosan scaffolds at different time 

points in culture. (A) The spongy-like topography of non-cultured pure chitosan scaffolds discs in 

the absence of medium (B) possess a rigid microstructural environment that upon addition of 

medium (C) are seen transforming into a geometrical configuration that favors cellular 
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attachment (D), which through chondrogenic medium with hTGF-β3 and hADSCs already shows 

minor extracellular matrix deposition after 24h (D-F). Human ADSCs in chondrogenic medium 

quickly and efficiently are observed to be depositing substantial amounts of a collagenous 

fibrous matrix at day 7 (G-I) filling up the microporous structures of the chitosan scaffolds that is 

aggregating into a woven fibrous structure by day 14 (J-L) indicative of cartilage formation. (M-O) 

By day 28 microstructures can no longer be detected by SEM but are seen to be nearly 

completely covered by extracellular matrix that stains positive for Alcian Blue (GAG). 

Magnifications were set at 100x (B), 300x (C, D, G, J, M), 1.10Kx (E, F, H, I, K, L, N, O). 

 

5.2 Viability and proliferation of hADSCs on chitosan scaffolds 

In order to evaluate cell viability on the hADSCs-seeded scaffolds and to determine 

proliferation, a WST-1 test in combination with PicoGreen assay was performed 24 

hours after cell seeding and subsequently after 7, 14 and 28 days of in vitro incubation. 

Both values increased progressively over the 28 days incubation period indicating a 

steady increase of cells in all experimental groups, with a marked decrease in slope 

after 15 days indicating the onset of differentiation (Fig. 2). The cell cultures on the 

scaffolds showed significantly higher viability at all-time points of incubation with a 

significant difference between NS and CS groups, chondrogenic medium having 

stimulated stronger growth and cellular activity (Fig. 2 A). Similar results were obtained 

by PicoGreen dsDNA assay (Fig. 2 B). After 14 and 28 days, values were significantly 

higher than at day 7 for NS and CS groups (Fig. 2 A). After 14 days, proliferation slowed 

down, a typical process attributed to a change towards differentiation of the cell masses. 

At that time point, chondrogenic (CS) cultures had already reached a higher cell number 

(Fig. 2 B), which was maintained towards 28 days while metabolic activity continued to 

increase (Fig. 2 A). 
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Figure 2. (A) WST-1 (cell viability) and (B) PicoGreen (cell proliferation) assays for hADSCs on 

chitosan scaffolds cultured with normal (NS) or chondrogenic (CS) medium. The chitosan 

scaffolds are seen promoting stem cell proliferation and supports cell integrity over the 28 day 

culturing period under the NS conditions, which through the addition of chondrogenic medium 

with hTGF-β3 is significantly increased (CS). The level of significance was set as * for p<0.05, ** 

for p<0.01, *** for p<0.001. 

 

5.3 Cell survival with Live/Dead Assay in porous chitosan scaffolds 

 At 1, 7 and14 days post seeding, cell survival and proliferation in scaffolds treated with 

chondrogenic differentiation medium (CS) or normal medium (NS) were demonstrated 

by using live/dead staining. Human ADSCs are attaching to the chitosan and 

proliferating rapidly on the surface of the scaffolds with high viability over time in both CS 

(Fig. 3) and NS groups (Fig. 3B), but cells in the CS group proliferated more quickly and 

formed denser layers than in the NS group. At day 1 post seeding, viable cells were 

observed on the surface and interior of the constructs including several dead cells (Fig. 

3A, B). The viability of the cells was consistent and was observed to increase slightly 
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from day 1 to 14, with only occasional dead cells, indicating that the chitosan is suitable 

for in vitro cultivation of hADSCs. 
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Figure 3. Fluorescent microscopy images of the Live/dead cell survival assay. Living cells 

fluoresce green and dead cells fluoresced red.  Miniscule or no cell death (EthD-1 images) 

could be detected in both normal (B) and chondrogenic medium (A) for chitosan scaffolds 

groups with hADSCs at day 1, 7 and 14. Living cells (Calcein AM images), on the other hand, 

remained fully intact as the culturing period increased in which living cells are seen to become 

more abundant by day 14 after initially seeding the bioreactors with hADSCs. 

 

5.4 Histology analyses of chitosan scaffold culture 

Hematoxylin and Eosin (H&E) staining (Fig.4) revealed that hADSCs were proliferating 

more and more evenly distributed in chitosan sponges in chondrogenic medium (Fig.4D-

F) compared to the normal medium group (Fig.4A-C). Moreover, cell density continued 
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to increase with culture time with round chondrocyte-like cells embedded in ECM being 

observed at day 28 days of culture (Fig.4F).  

 

Alcian blue staining (Fig.5) revealed that the density of glycosaminoglycan (GAG) in the 

matrix formed by the cells was increasing as the culture period progressed in the 

chitosan with the chondrogenic medium group (Fig.5 D-F) here as limited cartilaginous 

matrix could be seen in the normal medium scaffold treatment group (Fig.5 A-C).  

 

 

Figure 4. H&E staining to monitor cellular tissue density and distribution of hADSCs in chitosan 

scaffolds cultured with either normal (NS) (A-C) or chondrogenic medium (CS) (D-F), after 7 (A, 

D), 14 (B, E) and 28 (C, F) days in vitro. Substantial cellular and extracellular connective tissue 

formation is observed as the culturing period increased, with hADSCs/chondrocytes migrating 

from their initial seeding into the microporous structure of the chitosan devices. Substantially 

more cellular and connective tissue formation can be observed in the CS group (D, E, F) than in 

the NS group (A, B, C) highlighting the proliferative power of hTGF-β3 on cell mitosis. 

Magnification 40x (Bar scales: 200 µm). 
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Figure 5. Alcian blue staining for GAG in chitosan scaffolds seeded with hADSCs cultured in 

either normal (NS) (A-C) or chondrogenic medium (CS) (D-F) after 7, 14 and 28 days. Limited or 

no GAG deposition was observed within the NS group. In the CS cultured chitosan scaffolds with 

hADSCs, GAG formation was readily seen even by day 7 (D), with the cartilage proteoglycan 

deposition increasing substantially by day 28 (F). This indicates that hADSCs differentiated more 

quickly in the CS than NS group, directed by the hTGF-β3 in the medium. Magnification 40x (Bar 

scales: 200 µm). 

 

5.5 Pellet Culture results and histology analyses 

After 4 weeks, the chondrogenic pellets were larger and rounder than control pellets and 

also had a shiny white appearance macroscopically (Fig. 6). 

H&E staining of CP (Fig.7B) showed a change in cellular morphology towards a 

chondrocyte phenotype where larger round chondrocyte-like cells encapsulated in 

lacunae were seen compared to control pellets (NP) (Fig.7A), which appeared to have a 

more fibroblastic morphology. The positive Alcian blue stain observed in the CP (Fig.7D) 
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was only weakly detected in the NP group (Fig.7C). In chondrogenic pellets, in 

homogenous matrix formation was observed, with several nodules lacking Alcian blue 

and regions with dense cell masses, which appear partly elongated, while Alcian blue 

positive regions have a much lower cell/matrix ratio (Fig.7D) 

 

 

Figure 6. Macroscopic image of pellet cultures in control and chondrogenic media at 4 weeks. A 

comparative image showing pellets cultured in control vs chondrogenic media shows a distinct 

difference in size at 4 weeks between the larger chondrogenic pellets and the smaller control 

pellet. 
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Figure 7. H&E and Alcian blue staining of day 3D hADSCs pellets cultured in either normal (A, C) 

and chondrogenic medium (B, D) at day 28. H&E staining of the 3D hADSCs pellet cultures in 

normal medium (NP) (A) indicate cells that appear more fibroblastic in morphology than 

compared to 3D hADSCs pellets in chondrogenic medium (CP) (B). Alcian blue staining shows 

extensive GAG proteoglycan formation with cellular and connective tissoid formation in the CP 

group (D) compared with the NP 3D pellets (C), where hADSCs/differentiated chondrocytes are 

seen organizing themselves into specific cell and tissue layers. Magnification 20x (Bar scales: 

200 µm). 
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5.6 Immunofluorescence analyses 

Immunofluorescent staining for type II collagen and aggrecan expressions, markers for 

general chondrogenesis, was performed to compare matrix formation in chitosan 

scaffolds between chondrogenic induction and control group at day 7, 14 and 28. 

Collagen type II (Fig.8) and ACAN (Fig.9) were detected in CS group with substantial 

increases in the deposition of these proteins being visualized as the culture period 

progressed. On the other hand, only limited fluorescent signals were observed in the NS 

group (Fig.8, 9).  As for type I collagen, this matrix protein was minimally expressed in 

both CS and NS groups (Fig.10) with the deposition only increasing marginally by day 

28 of in vitro culture. 
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Figure 8. Immunofluorescence staining of collagen type II (green) at day 7, 14 and 28 in 

chitosan scaffolds with hADSCs cultured in normal (NS) or chondrogenic medium (CS). The 

chitosan scaffold fluoresced yellow. Cartilage matrix collagen type II protein was detected 

minimally in the NS group where cells (blue fluorescence), are seen lining the micropore 

surfaces of the chitosan scaffolds, depositing the matrix protein over the 28 day culturing period. 

Through the addition of the chondrogenic medium in the CS group, the fluorescent signal of both 

collagen type II and cells increased substantially and the periphery and microporous inner 

structures of the chitosan scaffolds are seen filling up with collagen type II matrix proteins. 

Magnification set a 10x. 
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Figure 9. Immunofluorescence staining of aggrecan (green) at day 7, 14 and 28 in chitosan 

scaffolds with hADSCs cultured in normal (NS) or chondrogenic medium (CS). The chitosan 

scaffold fluoresced yellow. Aggrecan was detected minimally in the NS group where cells (blue 

fluorescence), are seen lining the micropore surfaces of the chitosan scaffolds, depositing the 

signaling protein on and within the extracellular cartilage-like matrix and on the surface 

topography of the chitosan devices, respectively, over the 28 day culturing period. Through the 

addition of the chondrogenic medium in the CS group, the fluorescent signal of aggrecan 

increased substantially both in the periphery and microporous inner structures of the chitosan 

scaffolds. Magnification set a 10x.   
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Figure 10. Immunofluorescence staining of collagen type I (green) at day 7, 14 and 28 in 

chitosan scaffolds with hADSCs cultured in normal (NS) or chondrogenic medium (CS). The 

chitosan scaffold fluoresced yellow. Osteogenic collagen type I was not detected in the NS 

group and only very minimally in CS group. Only the cells (blue fluorescence) are seen to 

increase in numbers especially in the chondrogenic cultured CS group. Magnification set a 10x.   

 

 

5.7 QRT-PCR results 

5.7.1 Optimum Amplification Temperature of all gene primers  

In order to determine the optimum temperature at which to run all gene primer 

sequences at to facilitate proper gene amplification during qRT-PCR reactions a 

temperature gradient (55oC – 65oC) run was performed. The results (Table 2) showed 

that the optimum temperature range for most gene primer pairs was 55oC to 65oC with 

Col1A1 temperature range beginning only at 58oC with Col2A1 temperature range being 

55oC - 58oC. This therefore limited the optimum annealing temperate between all gene 

primers to an overall annealing temperature of 58oC such that PCR reaction runs 

remained standardized.  
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Table 2. Temperature gradient range at which primers amplified relevant gene sequences 

  Gene  
Primers    

Temperature Gradient Range (oC) 

55 55.5 56.5 58 59 60.3 61.7 62.9 63.9 64.6 65 

COL1A1            

COMP            

SOX9            

COL2A1            

COL10A1            

ACAN            

TBP            

GAPDH            

RNA28S            

POLR2e            

RPLP0            

SDHA            

ACTB            

RPL13a            

      Optimum Temperature Range per gene primer pair 

      Optimum Temperature shared between all primers 

 

5.7.2 Standardized cDNA quantity for optimum qRT- PCR reactions 

In order to maximize the number of genes to be analyzed within the present study a 

standard curve analysis in the form of Cq values in Table 3 was generated to see at 

which cDNA amount of differentiated hADSCs into chondrocytes (Chond.) a reasonable 

amplification threshold was maintained. Results revealed that the best Cq values were 

generated at a cDNA quantity of 40 ng with Cq values increasing as the cDNA amounts 

decreased to 2.5ng.  However, all Cq values between all reference genes were below 

the 35 Cq mark and had similar numerical differences at a specific cDNA quantity with 

little to no overall variation in the Cq value, which meant that any cDNA quantity can be 

utilized with 10ng of cDNA being chosen as the best amount for all qRT-PCR reactions.   
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Table 3. The mean Cq of reference genes at different cDNA quantities 

 

Note: Chond. = hADSCs differentiated into chondrocytes. 

 

5.7.3 GeNorm: Stability and optimal number of reference gene(s)  

Generated GeNorm reference gene expression stability results of chondrogenic 

differentiated hADSCs were ranked as RPLP0, ACTB, TBP, POLR2e, RNA28S4, 

GAPDH, SDHA and RPL13a. All of the M values of the amplified reference genes were 

below 0.15, demonstrating that all the reference genes chosen were stable. Among 

them, the RPLP0, ACTB were the most stable reference genes expressed in 

chondrogenic differentiated hADSCs (Fig. 11 A). As shown in Figure 11, the optimal 

number of reference genes to use for normalization during a qRT-PCR analysis was 3 to 

4 for the chondrogenic differentiated hADSCs group as generated by GeNorm (Fig. 11 

B), because the V3/V4 value was the lowest. 
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Figure 11. Ranking of reference genes by average expression stability (A) and optimal number 

of reference genes for normalization (B) for qRT-PCR assays, utilizing the GeNorm algorithm for 

chondrogenic differentiated hADSCs. 
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5.7.4 qRT-PCR of in vitro chondrogenic differentiation 

To evaluate chondrogenic gene expression between the NS, CS, NP and CP groups, 

relative qRT-PCR gene analysis was performed on in vitro samples, monitoring the 

relative change in transcription of ACAN, COL1A1, COL2A1, COL10A1, SOX9 and 

COMP. The results represent a snapshot of the above genes at day 7, 14 and 28 after 

culturing with chondrogenic induction medium or normal medium in PCSs or in the form 

of a 3D pellet. The results have been normalized to four control genes (ACTB, RPLP0, 

TBP, POLR2e), expressed as log10NRQ (calibrated normalized relative quantities, 

CNRQ). Relative expression of every gene in different groups but at the same time point 

is shown in Fig.12, whereas of every gene at different time points but in the same group 

is shown in Fig.13. 

 

ACAN and COL2A1 expressions were found to be up-regulated in all the groups 

(Fig.12A, C) and increased significantly by day 28 in both pellets and cell-scaffold 

constructs treated with chondrogenic medium (p<0.05, p<0.001) (Fig.13 A, C). In CS 

and CP groups, the two genes increase in expression with in vitro culture time, in 

contrast to this in NS group ACAN and COL2A1 decreased (Fig.13 A, C). Compared to 

NP and NS groups, ACAN expression in the CP and CS groups was significantly higher 

(p<0.001) at all three-time points (Fig.12A). The expression of COL2A1 at day 28 was 

significantly greater in the chondrogenic group compared to the control group of both 

pellets and cell-scaffold constructs, the difference is larger for the scaffolds (Fig.12C). 

 

COMP and SOX9 were both up-regulated in CS group at all time points and the 

expression increased significantly by day 14 but decreased at day 28 (Fig.13E, F). In 
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the CP group, these two genes increased significantly over time. Conversely, in the NS 

and NP groups, the expression of COMP (Fig.13E) was down-regulated. SOX9 

expression in NP was down-regulated at day 7 and 14, but up-regulated at day 28, 

whereas being down-regulated at all time points in NS group (Fig. 12F, 13F). Changes 

across the pellets and cell-scaffold constructs were significant. Compared to NP and NS, 

respectively, COMP expression was significantly higher in chondrogenic groups at all 

time points (Fig.12E, F).  

         

COL1A1 and COL10A1 were included as negative markers for differentiation towards 

articular cartilage (Benya, et al. 1978; Long and Linsenmayer 1995), as they are 

indicators of the endochondral bone formation. COL1A1 was significantly up-regulated in 

the CS group at day 7 and 14 but was down-regulated at day 28. The NS group had a 

similar tendency as the CS group over the four-week culture period (Fig.12B, 13B). In 

the NP and CP groups, the expression of COL1A1 was down-regulated at day 7 with the 

NP group showing a similar pattern of down-regulation as the NS group. However, the 

CP group COL1A1 expression changed drastically by day 28 where the transcription 

was significantly up-regulated (Fig.13B). Compared to CS, the expression of COL1A1 in 

CP group was significantly higher at day 28 (p<0.01) (Fig.12B). This is characteristic for 

a more fibrous and less hyaline matrix production from cells under the influence of the 

proliferation medium. The expression of COL10A1 was also analyzed, as the up-

regulation of this gene during chondrogenesis is a known marker for chondrocyte 

hypertrophy indicating cartilage that is progressing towards an endochondral bone 

lineage rather than hyaline articular cartilage. The expression of COL10A1 was down-

regulated in all groups except for the CS group where the transcription increased 
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significantly after day 7 and was not significantly down-regulated at day 14 or 28 

(Fig.13D). The gene expression of ACAN, COL2A1, COMP and SOX9, known 

chondrogenic markers, increased consistently over the 28 day culture period in both 

groups with chondrogenic medium (CS & CP), but decreased for the proliferative 

medium in scaffolds only (NS) (Fig.13A, C, E, F). Gene expression of COMP and SOX9 

only increased for pellet culture in proliferation medium (NP, Fig.13E, F). Interestingly, 

the expression of COL10A1, a classical hypertrophy marker, was significantly increased 

on day 28 in both groups treated hTGF-β3 in relation to control, indicating a possible 

induction towards non-articular cartilage development by this factor (Fig.12D). 
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Figure 12. Relative gene expression quantity of (A) ACAN, (B) COL1A1, (C) COL2A1, (D) 

COL10A1, (E) COMP and (F) SOX9 between all culture groups (N= normal medium; C= 

chondrogenic medium, P= 3D Pellet; S= chitosan scaffolds) at day 7, 14 and 28. (*p< 0.05, 

**p<0.01, ***p<0.001). 
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Figure 13. Relative gene expression quantity of (A) ACAN, (B) COL1A1, (C) COL2A1, (D) 

COL10A1, (E) COMP and (F) SOX9 between all time points (day 7, 14 and 28) per 3D pellet or 

chitosan scaffolds culture medium group (N= normal medium; C= chondrogenic medium, P= 3D 

Pellet; S= chitosan scaffolds). (*p< 0.05, **p<0.01, ***p<0.001). 
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6. Discussion    

Articular cartilage regeneration remains a challenging clinical issue (Chiang and Jiang 

2009; Veronesi, et al. 2014; Wang, et al. 2014), despite several promising approaches 

using adapted scaffold materials and a combination of stem cells with growth factors 

(Dahlin, et al. 2014a; Fan, et al. 2006; Jeong, et al. 2008; Mizuta, et al. 2004; Wakitani, 

et al. 1994). The biomaterials used in cartilage tissue engineering need to be highly 

biocompatible, biodegradable, possess the proper biomechanical properties and the 

appropriate geometric configurations that further support cell attachment, proliferation 

and differentiation (Awad, et al. 2004; Cavallo, et al. 2013; Correa and Lietman 2017). 

As such, the ideal scaffold would need to be one that mimics the extracellular cartilage 

matrix with the properties including biocompatibility, bioactivity, biomimetic, 

bioresponsibility and biodegradability, retaining the phenotype of differentiated stem 

cells in both form and function on which they can proliferate three-dimensionally 

(Vinatier and Guicheux 2016). One such material is chitosan, a polysaccharide derived 

from the exoskeleton of arthropods, which has shown to be one of the more beneficial 

substances that has been widely investigated and used in various derivative forms in 

tissue engineering and specific clinical applications (Rodriguez-Vazquez, et al. 2015). 

Especially scaffolds composed of poly(lactic-co-glycolic acid)  (PLGA)/ chitosan devices 

have been shown to support chondrocyte development, Schwann cell differentiation 

from hADSCs and form articular cartilage in a lagomorph model over 12 weeks (Fang, et 

al. 2014; Razavi, et al. 2015; Zhang, et al. 2015). As for cells compared with 

differentiated chondrocytes isolated from cartilage and BM-MSCs isolated from bone 

marrow, hADSCs can be harvested in large amounts and are readily accessible (Zheng, 

et al. 2005). Human ADSCs are capable of maintaining the stable phenotype of 
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differentiated cells and can easily be differentiated into chondrocyte-like cells in vitro 

under specific culture conditions, maintaining the chondrogenic phenotype even in vivo 

after transplantation (Lo Furno, et al. 2016; Xie, et al. 2012; Zheng, et al. 2006). 

However, hADSCs cultured on a pure, elastic and porous scaffold composed of 

glutaraldehyde-crosslinked chitosan have so far not been shown to support chondrocyte 

development and articular cartilage matrix formation. The use of such carriers with 

specific morphogenic factors was therefore assessed in this study with the aim of 

developing improved systems for the formation of articular cartilage in vivo. 

The viability, proliferation and differentiation capacity of hADSCs cultivated in lyophilized 

scaffolds of glutaraldhyde-crosslinked chitosan in vitro increased stably with culture time 

over the 28 days. The scaffolds with their porous structure enabled migration, 

accumulation and proliferation of hADSCs. Results from the Live/Dead assay 

demonstrated that the hADSCs exhibited excellent adhesion and biocompatibility on the 

biomaterial. Comparing the results from this assay from 14 days onward between 

chondrogenic and control groups, a strongly enhanced cell proliferation in chitosan 

scaffolds with chondrogenic differentiation medium demonstrated a positive interaction 

of the carrier with the morphogens. Scanning electron microscopy clearly showed cells 

colonizing the scaffolds, forming a dense fibrous matrix with denser layers occurring on 

the periphery of the device by 28 days. 

 

A subsequent marker for the chitosan’s capacity to induce chondrogenesis was the 

detection of both glycosaminoglycans (GAGs) synthesis, a key marker for 

chondrogenesis, that is part of the extracellular matrix of cartilage as well as collagen 

type II transcription and translation together with ACAN and SOX9 up-regulation. Human 



  

 
 

- 64 - 

ADSCs cultured on PCSs with normal medium did not show substantial formation of 

GAGs compared to both their corresponding 3D pellet controls or the PCSs cultured in 

chondrogenic medium (Fig. 5, 7), which was further supported by both 

immunofluorescent analysis and qRT-PCR assays (Fig. 8, 9, 12, 13). COL2A1 was 

significantly down-regulated by day 28 in the NS group with ACAN and SOX9 also 

decreasing substantially compared to the same normal medium group with 3D pelleted 

hADSCs. The relative gene expression assay of chondrogenic differentiation markers 

further supported this finding where whilst ACAN and SOX9 expression increased in 

both PCSs groups irrelevant of medium type, COL2A1 was only significantly up-

regulated in the PCSs with hADSCs in chondrogenic medium (Fig.12, 13). The 

transcription factor SOX9 is an early marker for chondrogenesis that regulates collagen 

type II and cartilage-specific matrix synthesis by activating the COL2A1 and ACAN 

(Lefebvre, et al. 2001; Ng, et al. 1997). Another study previously demonstrated that 

SOX9 was also expressed in proliferating and pre-hypertrophic chondrocytes, however, 

is down-regulated in hypertrophic chondrocytes (Suchorska, et al. 2017). From the 

present results, therefore, it is clear that the chitosan device on its own can induce 

hADSCs to undergo differentiation towards a cartilage lineage but does not possess the 

necessary capacity to form a cartilage matrix without the addition of a subsequent 

stimulant which was the case for the CS and CP groups where hTGF-β3 was used.  

 

In the chondrogenic differentiation process of MSCs, members of the TGF-β superfamily 

play a crucial role (Darling and Athanasiou 2005a; Ude, et al. 2017; Wu, et al. 2013). 

The combination of TGF-β and other factors was adopted in the current work to promote 

the chondrogenic differentiation of hADSCs, simulate the environment of an articular 
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implant site and also promote faster proliferation and differentiation of hADSCs towards 

a chondrogenic lineage (Dahlin, et al. 2014b; Lopez-Ruiz, et al. 2018). In particular, 

hTGF-β3 has been shown to possess the ability to promote cartilage repair and 

accelerate cartilage differentiation with gene expression studies demonstrating that a 

correlation exists between cartilage formation and the differentiation of hADSCs 

(Diekman, et al. 2010; Wu, et al. 2013). A previous study documented that TGF-β1 and 

TGF-β3 was shown to have a similar effect on cell proliferation, gene expression and 

cartilage biosynthetic activity in ADSCs cultured in alginate beads (Estes, et al. 2006). 

Cals et al (Cals, et al. 2012) reported that no significant differences in total collagen and 

GAG formation could be observed among MSCs cultured in medium containing the 

three TGF-β isoforms, respectively. Some other previous studies found that TGF-β3 was 

more efficient and potent than TGF-β1 in enhancing hADSCs and MSCs chondrogenic 

differentiation (Barry, et al. 2001a; Liu, et al. 2010b). Other studies again have also 

shown that TGF-β3 is very beneficial for cartilage as it stimulates chondrocytes in vitro to 

induce the elevation of proteoglycan and the production of collagen type II (Darling and 

Athanasiou 2005a; Toh, et al. 2010; Ude, et al. 2017). Therefore, in this study, we 

applied hTGF-β3 (10 ng/ml) to induce chondrogenesis of hADSCs, finding similar results 

of induced chondrogenesis, stimulated proliferation and promotion of differentiation into 

chondrocytes.  

 

Immunofluorescence staining of collagen type II and aggrecan (Fig.8, 9), histological 

staining of Alcian blue for GAG (Fig.5,7) confirmed that the chondrogenic treated 

medium groups with hTGF-β3, CP and CS, showed an increase both on the translational 

and transcriptional level of most cartilage relevant markers. Especially in the CS group, 
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histological and immunofluorescence staining demonstrated that GAG and collagen type 

II synthesis was significantly increased during the in vitro culturing for 28 days. Results 

of qRT-PCR, with ACAN, COL2A1 and SOX9 expression levels all increased 

significantly; suggest that the chitosan scaffold provides a far superior microenvironment 

that allows for the adhesion, proliferation and differentiation of cells under the influence 

of the chondrogenic medium. However, the crucial question of every cartilage culture in 

vitro is whether the matrix formed is hyaline or contains significant amounts of collagen I, 

and if it is hyaline cartilage, the matrix develops towards stable articular cartilage rather 

than progresses towards hypertrophy and mineralization. 

 

ACAN, COL2A1 and SOX9 are markers that are generally utilized to monitor if any 

cartilage formation had occurred irrelevant of the type (Dehne, et al. 2010; Unguryte, et 

al. 2016; Wehrli, et al. 2003). On the other hand, COL1A1, COL10A1 and COMP are 

classical markers to further differentiate what type of cartilage is being formed (Dehne, 

et al. 2009; Dehne, et al. 2010; Grogan, et al. 2014). Articular cartilage has superior 

load-bearing and mechanical properties and is free of collagen I (Sophia Fox, et al. 2009; 

Wilson, et al. 2006), while hyaline cartilage formed during endochondral ossification 

during embryogenesis for certain skeletal bones, is characterized by the early 

appearance of collagen X (Bahney, et al. 2014). In our study, collagen type I 

immunofluorescence staining was undetectable in all groups at day 7, 14 and 28, 

suggesting possible articular hyaline cartilage formation, but the gene expression 

patterns for COL1A1 and COL10A1 revealed that cultures were not purely articular and 

already programmed towards hypertrophy. Neither COL10A1 nor COL1A1 decreased 

significantly as is typically expected during articular cartilage formation but where either 
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inactive or slightly elevated over the 28 days of culture. In the 3D pelleted hADSCs with 

the chondrogenic medium, a similar gene expression pattern was observed but here 

COL1A1 increased slightly at day 28 with COL10A1 being significantly down-regulated 

over all time points. Taken that hADSC cultures in chitosan without chondrogenic 

treatment did not show elevated COL10A1 expression, indicating that perhaps the 

scaffolds interacted with hTGF- β3 absorbing the morphogen into their matrix and 

thereby affecting cellular functionality. Chitosan scaffolds on their own have a limited 

capacity to direct stem cell differentiation, as has been suggested elsewhere (Sampath 

and Reddi 1981; Urist, et al. 1967). On the other hand, the fact that hTGF-β3 alone may 

not be a suitable morphogen for articular cartilage formation has also been 

demonstrated before (Klar, et al. 2014; Ripamonti, et al. 2016; Ripamonti, et al. 2008), 

as it seems to cause endochondral cartilage ossification rather than true articular 

cartilage development.  

 

Alternatively, COMP a member of the thrombospondin (TSP) calcium-binding protein 

family, is predominantly expressed in the pericellular matrix of maturing articular 

cartilage chondrocytes (DiCesare, et al. 1994). Accumulating evidence suggests that 

COMP plays a crucial role in the regulation of chondrogenesis and endochondral bone 

formation, where it functions to stabilize the extracellular matrix of articular cartilage by 

maintaining the structural integrity of the cartilage by interacting with aggrecan, collagen 

type II, type IX and fibronectin (Chen, et al. 2007; Di Cesare, et al. 2002; Hecht, et al. 

2005; Mann, et al. 2004). COMP demonstrates significant expression in chondrocytes, 

osteoblasts, tenocytes, and ligament cells but not in undifferentiated mesenchymal cells 

(Barry, et al. 2001b; Zaucke, et al. 2001). In our study COMP was down-regulated in NP 
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and NS (Fig.13E) groups. Conversely, COMP expressed in the CS group was 

significantly higher compared to the NS group (Fig.12E) at all time points but was seen 

to decrease significantly at the day 28 (Fig.13E). We therefore can also hypothesize, 

based on the COMP results that the growth of the cartilage could have progressed in 

two stages within the scaffolds. In the first stage, a possible cell growth phase occurred, 

which is characterized by significantly increased cell proliferation up to 14 days (Fig.2B). 

In the second stage, described as cell differentiation and tissue deposition phase, 

decreased proliferation and increased collagen type II and proteoglycan were deposited 

possibly due to continued stimulation by hTGF-β3. It is plausible then that the 

extracellular cartilage matrix within the first two weeks of in vitro culturing could have 

tended towards an endochondral bone cartilage lineage, which was then slowly being 

transforming into mature articular hyaline cartilage. As the hADSCs differentiate into 

chondrocytes, the cells begin to produce extracellular matrix rich in aggrecan and COMP. 

This can be confirmed by the increasing expression of collagen type II, ACAN and the 

rare COL1A1 in scaffolds which is also supported by the immunofluorescence (Fig.8, 9, 

10) and histological results (Fig.5 D-F). Through the possible abundance in matrix 

molecules, a negative feedback loop could be reducing the expression of specific genes 

effectively regulating chondrocyte metabolism towards an articular matrix rather than an 

endochondral bone structure (Hamid, et al. 2012; Mardani, et al. 2013; Tsuda, et al. 

2003). 

 

As such it is clear, that despite the results of chitosan being a viable compound that has 

the potential to cause articular cartilage formation, the appropriate biomaterials utilized 

to either simulate in vivo environments of cartilage in vitro or that are supplemented 
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within cartilage inducing bioreactor devices needs to be re-assessed and adjusted as 

the current findings clearly suggest that hTGF-β3 is an ineffective articular cartilage 

inducing factor. Clearer molecular mechanisms need to be established in future 

experiments that ensure that viable articular cartilage repair clinically is stimulated and 

maintained after biomaterial implantation. 
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7. Conclusion 

From the study, it is therefore evident, that chitosan remains a viable and highly 

beneficial biomaterial that even on its own and at very low percentages has good 

qualities to stimulate and differentiate stem cells into chondrocytes. Indeed, hADSCs 

have once again proven to be a competitive alternative stem cell type that has many 

excellent qualities to differentiate into the appropriate cell types if the correct signal, 

either substratum or soluble, is provided. However, from the results, with the usage of 

chondrogenic differentiation medium with hTGF-β3, the appropriate morphogen effect on 

cells and even tissue types through exact molecular expression patterns over time 

needs to be more clearly defined so as to prevent possible misinterpretation of 

considered candidate signaling growth factors, intended to enhance the development 

and re-formation of the target tissue type, without causing unwanted results. If this is 

correctly solved, then it can be stated that the cell-scaffold based construct may provide 

the basis as a viable alternative to autologous cartilage grafts that are more efficient and 

effective at regenerating articular cartilage defects clinically.  
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8. Summary 

Human adipose-derived adult stem cells (hADSCs) are considered to be an alternative 

cell source for cell-based cartilage repair because of their ability to differentiate into a 

chondrogenic phenotype in response to specific environmental signals such as growth 

factors or biomimetic bioreactors. In this study, the chondrogenic differentiation and 

cartilage formation potential of hADSCs seeded onto three-dimensional (3D) porous, 

glutaraldehyde-crosslinked chitosan scaffolds in comparison to pellet culture in vitro after 

cultivation for up to 28 days, was investigated. By culturing either in normal or 

chondrogenic medium containing human transforming growth factor beta 3 (hTGF-β3), 

the cartilage formation potential was assessed using a combination of viability, 

proliferation, scanning electron microscopy and quantitative RT-PCR assays. Scanning 

electron microscopy coupled with Alcian blue staining, Collagen type 2 

immunofluorescence and the up-regulation of COL2A1, ACAN, COMP and SOX9 in 

untreated and treated (chondrogenic medium) chitosan scaffolds and 3D cell pellets, 

indicated a progression of hADSCs towards a chondrogenic lineage that showed the 

capacity to form a cartilage matrix within the porous structure of the chitosan scaffolds. 

Whilst limited articular cartilage matrix formation was found within samples with hADSCs 

under non-chondrogenic in vitro conditions, supported by the down-regulation of both 

COL1A1 and COL10A1, the inverse was true for those in the chondrogenic medium 

where hADSCs were seen depositing “a” cartilaginous matrix but that seemed to be 

predestined for endochondral ossification. These results clearly re-iterate the potential of 

hADSCs as a viable and reliable stem cell source that together with chitosan scaffolds 

have the potential to re-form or heal cartilaginous defect sites of an articular nature. 
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However, hTGF-β3 does not appear as a suitable chondrogenic differentiation 

morphogen as it seems to cause endochondral ossification. 
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9. Zusammenfassung 

Humane, von adipösem Gewebe gewonnene Erwachsene Stammzellen (hADSCs) 

gelten aufgrund ihrer Fähigkeit, unter spezifische Umweltsignale wie 

Wachstumsfaktoren oder biomimetische Bioreaktoren, sich in chondrogenischen 

Phänotyp zu differenzieren, als alternative Zellquelle für die zellbasierte 

Knorpelreparatur. In dieser Studie wurde das chondrogene Differenzierungs- und 

Knorpelbildungspotential von hADSCs auf dreidimensionalen (3D) porösen, 

Glutaraldehyd-vernetzten Chitosangerüsten im Vergleich zu Pelletkulturen in vitro nach 

Kultivierung bis zu 28 Tagen untersucht. Durch Kultivieren entweder in normalem oder 

chondrogenem Medium, das den humanen transformierenden Wachstumsfaktor beta 3 

(hTGF-β3) enthielt, wurde das Knorpelbildungspotential unter Verwendung einer 

Kombination von Viabilität, Proliferation, Rasterelektronenmikroskopie und quantitativen 

RT-PCR-Assays bewertet. Rasterelektronenmikroskopie gekoppelt mit Alcian-Blau-

Färbung, Collagen-Typ-2-Immunfluoreszenz und die Hochregulation von COL2A1, 

ACAN, COMP und SOX9 in unbehandelten und behandelten (Chondrogen-Medium) 

Chitosan-Gerüsten und 3D-Zellpellets zeigten eine Progression von hADSCs hin zu 

einer chondrogenischen Zellen Linie welches die Fähigkeit zeigte, eine Knorpelmatrix 

innerhalb der porösen Struktur der Chitosangerüste zu bilden. Während begrenzte 

artikulare Knorpelmatrixbildung innerhalb der Proben mit hADSCs unter nicht-

chondrogenem in vitro Bedingungen gefunden wurde, unterstützt durch die 

Herunterregulierung von sowohl COL1A1 als auch COL10A1, war die Umkehrung für 

jene in chondrogenem Medium zutreffend, wo hADSCs eine Knorpelmatrix deponierten 

welches mehr zur Endochondralen Ossifikation prädestiniert gewesen zu schien. Diese 

Ergebnisse zeigen ein deutlich das Potenzial von hADSCs als eine lebensfähige und 
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zuverlässige Stammzellquelle, die zusammen mit Chitosangerüsten das Potenzial 

haben, knorpelige Defektstellen von einer artikularen Natur neu zu bilden oder zu heilen. 

Humanes TGF-β3 erscheint jedoch nicht als ein geeignetes chondrogenes 

Differenzierungsmorphogen zu sein, da es eine Knorpelmatrix Deponierung verursacht 

welches zur Endochondralen Ossifikation neigt. 
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