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Summary 

In the last years histone demethylases were excessively studied regarding their role in cancer 

development and their involvement in DNA damage response. Especially the members of the 

Jarid1 demethylase family that are associated with numerous oncogenic diseases came into 

focus of researchers. Many studies that screened for specific inhibitors were initiated to reveal 

the exact roles in cell cycle regulation and oncogenic signaling and to target the Jarid1 

demethylase family for cancer treatment. In several cancer cell lines I investigated the effects 

of siRNA-mediated depletion of histone demethylase Jarid1A (KDM5A, RBP2), which 

demethylates transcription activating tri- and dimethylated lysine 4 at histone H3 

(H3K4me3/me2), on cellular proliferation, H3K4 methylation and certain histone acetylation 

levels as well as on cellular response to radiation. In unirradiated cells Jarid1A depletion leads 

besides the expected increase in H3K4me3 methylation levels to histone hyperacetylation 

without affecting cellular growth and proliferation properties. In irradiated cells, depletion of 

Jarid1A significantly increased cellular radiosensitivity without altering cell cycle regulation. 

Unexpectedly, the hyperacetylation phenotype did not affect accumulation of the DNA damage 

response and repair factors γH2AX, 53BP1, BRCA1, or Rad51 at damage sites. It did 

furthermore not influence the resolution of radiation-induced foci DSB repair pathways as 

indicated in a DSB reporter assay. Gene expression microarray analysis after Jarid1A 

depletion and irradiation did not hint at major disturbance of pathways related to DNA damage 

or general cellular stress response. Single DDR genes that showed a slightly altered 

expression in the microarray displayed no changes on protein level. I therefore conclude, that 

the radiation sensitivity observed following depletion of Jarid1A is neither caused by 

deregulation of typical damage response pathways nor by deficiencies in the repair of DNA 

double-strand breaks.    
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1 Introduction 

1.1 Organization of chromatin 

Chromatin is a complex of DNA and histone proteins in the eukaryotic cell. During the 

interphase of the cell cycle chromatin is widespread in the nucleus, while it is condensed and 

builds microscopically visible chromosomes during cell division. The repeating unit of the 

chromatin is the nucleosome that consists of approximately 146 bp DNA wrapped around a 

histone octamer (Luger et al. 1997). The octamer is composed of two histone H2A-H2B 

heterodimers and a tetramer of the histones H3 and H4 (Kornberg 1977). The linker histone 

protein H1 binds to the DNA that is located between the nucleosomes. It is, amongst others, 

responsible for the formation of higher-order structures and plays a role in chromatin dynamics 

(Izzo and Schneider 2016).  

In 2012 a higher-order chromatin organization in three-dimensional megabase-sized 

structures called topologically associating domains (TADs) was observed by Dixon and 

colleagues. TADs are sequences that preferentially contact with each other and form domains 

distinct from other chromatin domains (Dixon et al. 2012). It is assumed that these highly 

conserved structures enable the distinct formation of euchromatin and heterochromatin 

(Solovei et al. 2016) - the two structurally and functionally distinct chromatin regions. They 

differ in gene-density and time of replication and also interact with different structures in the 

nucleus (Solovei et al. 2016). Heterochromatin is associated with late replication and is 

assumed to have a condensed structure with either non-coding and repetitive DNA-sequences 

(constitutive heterochromatin) or locally silenced genes (facultative heterochromatin). 

Facultative heterochromatin is either restricted to distinct chromosomal regions or affects 

entire chromosomes (e.g. the inactive x chromosome). It has the potential to convert into 

euchromatin via epigenetic alterations under certain conditions, such as during cell 

differentiation. Constitutive heterochromatin has to be kept stably silenced to preserve genome 

integrity, like e.g. centromeric and telomeric DNA (Trojer and Reinberg 2007). Euchromatin by 

contrast is gene-rich, preferentially localized in the interior of the nucleus and replicates early 

in S-phase (Dileep et al. 2015). Recent research begins to unravel the classical view of the 

densely packed, transcriptionally inactive heterochromatin. It was shown that some pericentric 

regions are only around 1.5-fold denser than surrounding euchromatin. Consequently, binding 

of transcription factors is enabled in this regions and low-level transcription is performed as 

shown for several non-coding RNAs transcribed from heterochromatin (Saksouk et al. 2015; 

Imai et al. 2017).  



Introduction 

3 
 

Chromatin structure plays a critical role in all cellular processes involving DNA, such as 

transcription, replication, recombination and repair. The DNA-histone interaction and the 

accessibility of DNA for DNA-regulating protein complexes is accomplished by ATP-driven 

chromatin remodeling and post-translational modifications of the core histones (Swygert and 

Peterson 2014).  

1.1.1 Post-translational modifications of histones  

The different histones underlie a high variability of covalent modifications, especially within 

their amino-terminal tails protruding from the nucleosomes, but also in the nucleosome core 

region (Mersfelder and Parthun 2006). The modifications occur at specific amino acids of the 

histones and include phosphorylation, methylation, acetylation, ADP-ribosylation, 

glycosylation, ubiquitination and SUMOylation (reviewed in Zhang et al. 2016). Depending on 

the type of modification and on the affected amino acid, the post-translational modifications 

(PTMs) can form a binding site for the recruitment of proteins/complexes with specific 

enzymatic activities or can change the interplay between DNA and histones directly. Strahl and 

Allis (2000) proposed that distinct histone modifications at amino acids act sequentially or in 

combination to generate a ´histone code`. It is now widely accepted that this code can be read 

by relevant proteins that initiate the appropriate downstream events, influencing transcription, 

repair and other processes concerning the DNA. The different PTMs and the cross-talk 

between them results in a vast number of possible combinations and effects on chromatin 

structure (Zhang et al. 2015). PTMs are added or removed by different histone-modifying 

enzymes. The regulation of acetylations e.g., is performed by histone acetyltransferases 

(HATs) and histone deacetylases (HDACs). Acetylations are thought in general to lead to an 

opening of the chromatin structure and enable transcription, as they neutralize the positive 

charge of the lysine at the histone tails, thus decreasing the interaction with the negative 

charged DNA backbone (Tse et al 1998).  

The impact of histone methylations, which are accomplished by the action of 

methyltransferases and demethlyases, is more complex and depends on the altered amino 

acid residue. Since they occur as mono-, di- or tri-methylations and can be found at lysine and 

arginine residues, they offer a high diversity of functional consequences (Alam et al. 2015). 

Figure 1 gives an overview of exemplary histone modifications and their impact on chromatin 

structure and transcriptional regulation. Tri-methylation of histone H3 on lysine 27 (H3K27me3) 

is a typical mark of facultative heterochromatin (Probst et al. 2009), while di- or tri-methylations 

of histone H3 on lysine 9 (H3K9me3/2) are associated with maintaining and establishing 

constitutive heterochromatin. H3K9me2/3 is accompanied by binding of HP1 to chromatin, 

providing a platform for the recruitment of several factors that are involved in preserving the 
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condensed structure (Muramatsu et al. 2016). H3K4me3/2 in contrast is usually enriched at 

transcriptionally active genes and often found in the promoter regions (Soares et al. 2017). 

 

 

Figure 1: Regulation of transcription based on chromatin structure  

Schematic representation of typical exemplary posttranslational histone modifications for transcriptional 

repression and silencing. The corresponding enzymes modify i.a. acetylation and methylation levels at 

designated amino acids of the histones. Thereby higher chromatin organization is regulated enabling or 

preventing binding of transcription factors (TF) (Ohtani and Dimmeler 2011, modified).  

 

1.2 DNA damage response and double-strand break repair  

DNA lesions induced by endogenous reactions or by exogenous sources like chemical 

substances, UV light and ionizing radiation can have severe consequences to cells. DNA 

double-strand breaks (DSBs) are the most deleterious lesions as both strands of the DNA are 

affected. Due to missing or defective repair, cells lose their genomic stability resulting in cell 

death or leading to chromosomal aberrations and in the end to carcinogenesis (van Gent et al. 

2001). To prevent this, cells have to repair those breaks rapidly and efficiently with a highly 

specialized repair mechanism called the DNA DSB repair. 
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One of the first factors sensing a DSB is the MRN complex – a complex of the proteins Mre11, 

Rad50 and Nbs1 (Mirzoeva and Petrini 2003). Binding of MRN to the break leads to the 

monomerization and auto-phosphorylation of the kinase ATM (Paull 2015). ATM belongs to 

the phosphoinositide 3-kinase (PI3K) related protein kinase family, which also includes the 

ATR kinase. ATM triggers complex signal transduction pathways, particularly following 

damage to DNA, by phosphorylation of various downstream proteins that are involved in cell 

cycle control, apoptosis and DNA repair (Bensimon et al. 2011).  

An important step in the DDR is the phosphorylation of the histone variant H2AX at serine 139 

(γH2AX) in a 1-2 Mb large region surrounding the DSB by the kinase ATM (Rogakou et al. 

1998). γH2AX is one of the earliest detectable protein in the region around the break and is 

widely accepted as a marker for DSBs. The accumulation of proteins of the DDR in the region 

of the damage after irradiation leads to the formation of so called ionizing radiation-induced 

foci (IRIF) that can be detected by immunofluorescence microscopy (Misteli and Soutoglou 

2009). Other proteins associated with chromatin in the regions of a DSB are e.g. the mediator 

proteins 53BP1 or MDC1 that can also be detected as foci by immunofluorescence techniques 

(Pandita and Richardson 2009). 

1.2.1 Non-homologous end joining 

In mammals most DSBs are repaired via the non-homologous end joining (NHEJ) pathway. It 

is relatively error-prone as the NHEJ promotes direct ligation of the DSB ends, which often 

results in deletions or insertions at the repair junction sites. Nevertheless it is the major 

pathway in the G0/G1 phase, as it can be accomplished rapidly and independently of the cell 

cycle phase (Mao et al. 2008).  

The process of NHEJ is illustrated in Figure 2 on the left. The heterodimer Ku70-Ku80 is the 

first factor that binds to the break, which results in stabilization and protection from unspecific 

processing. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is recruited to 

Ku70-Ku80 and leads to the formation of the DNA-PK holoenzyme, which helps to promote 

the end stability, and builds - together with XRCC4 and maybe other elements - a scaffold for 

additional factors involved in NHEJ. For the formation of ligatable ends several factors perform 

DNA end processing, including the nucleases Artemis and APLF, the kinase PNKP and DNA 

polymerases. Ligation of the broken ends by DNA ligase IV and its binding partner XRCC4 

completes the NHEJ repair and leads to the dissociation of the repair factors (reviewed in Davis 

and Chen 2013). 
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1.2.2 Homologous recombination 

Homologous recombination (HR) is classified as relatively error-free pathway, since it uses 

homologous sequences as template for the repair. Accordingly, this repair pathway can only 

proceed in the late S and G2 phases of the cell cycle, when a sister chromatid is available.  

The pathway begins with the resection of the DSB ends by 5′ to 3′ exonucleases resulting in 

the production of 3′-OH ending single-stranded DNA tails. The ssDNA is bound by the human 

replication protein A (RPA) and subsequently replaced by Rad51. In an ATP-consuming 

reaction, Rad54 stabilizes the filament and enables the homology search and DNA strand 

invasion by Rad51, generating a Holliday junction and a heteroduplex molecule (Simandlova 

et al. 2013). Then either the invading strand reanneals with the second end of the DSB or both 

ends of the DSB anneal to the template DNA, whereby a double Holliday junction is formed. 

The pathway proceeds, using the undamaged strand as a template, followed by the repair of 

ssDNA gaps by DNA polymerase and ligases. Finally the junction is resolved, resulting in either 

crossover or non-crossover products (Srivastava and Raman 2007; Li and Heyer 2008).    

1.2.3 Pathway choice 

As accurate repair of DSBs is crucial for cell survival and the maintenance of genomic stability, 

the choice of the appropriate repair pathway is of fundamental importance.  

Besides the cell cycle phase, the chromatin structure and the structure of the DSB ends play 

a major role in directing repair towards HR or NHEJ (Aymard et al. 2014; Shibata et al. 2017). 

53BP1-RIF1 competes with BRCA1-CtIP for the broken DNA ends of the DSB. While the role 

of 53BP1-RIF1 is to protect the end of DNA from processing, BRCA1-CtIP triggers the 

processing of the DNA ends (Bakr et al. 2016). Independently of the cell cycle phase or the 

DSB end structure 53BP1 is always recruited to the ends of DSBs to protect the end from 

misrepair or induction of resection by BRCA1. Then, either the DSB is subsequently repaired 

via NHEJ or - if the structure of the DSB ends does not enable NHEJ – BRCA1 is recruited 

and weakens the binding of 53BP1 to the break ends by triggering its dephosphorylation 

(reviewed in Shibata et al. 2017). BRCA1 binding to the break enables the initiation of 5′-end 

resection and recruitment of factors that trigger the homology search and strand invasion by 

the Rad51 nucleofilament (Grabarz et al. 2012). 

As mentioned above, pathway choice is also strongly regulated by the chromatin environment. 

Some claim the existence of a “DSB repair choice histone code”, where posttranslational 

modifications, like the methylation and acetylation states of specific histone positions near 

or/and at the break sites are assumed to directly influence the pathway choice (Clouaire and 

Legube, 2015). It was observed that histone acetylation antagonizes 53BP1 binding and 
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53BP1 foci formation at the break site, thereby enabling BRCA1 accumulation, triggering end 

resection and repair via homologous recombination (Hsiao et al. 2013; Tang et al, 2013).  

In summary, studying spatial and temporal recruitment of the different foci forming DDR and 

repair proteins like 53BP1, BRCA1 or Rad51 to DSBs after ionizing irradiation allows to draw 

conclusions about the interplay between HR and NHEJ and to identify and characterize 

modified, inefficient or defective repair in different treated cells.   

 

 

Figure 2: Repair of typical IR-induced DSBs in G2-phase 

70% of the typically IR induced two-ended DSBs are repaired via NHEJ in G2-phases. The remaining 

30% that cannot be repaired via NHEJ due to transcription status, chromatin structure or DSB end 

complexity, are repaired via HR. In case of HR the Ku70/Ku80 complex at the DNA ends is removed, 

followed by recruitment of exonucleases that promote resection (Shibata at el. 2017). 
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1.3 DSB-induced chromatin dynamics 

In case of the occurrence of a DSB, modification of the chromatin structure is a highly important 

prearrangement to enable the access to the break site, the repair of the damage and the 

restoration of the chromatin to the original state according to the `access-repair-restore`-model 

(Soria et al. 2012). Hence the DNA damage response (DDR) must be accompanied by 

reorganization of chromatin, including local chromatin decondensation, alterations of histone 

modifications and exchange of histones. In recent years a large number of chromatin-based 

events after DSB-induction have been discovered. Some variations lead to a relaxation of the 

chromatin to simplify the access of repair factors, others direct the chromatin to a more 

repressive state to prevent transcription at the DSBs (reviewed in Friedl et al. 2012).  

The most investigated alteration of the chromatin after induction of a DSB is the earlier 

mentioned phosphorylation of the histone variant H2AX rapidly after induction of a DSB. The 

emerging γH2AX recruits downstream DDR factors like MDC1 arranging the site of the DSB 

for further signaling and repair. Binding of MDC1 to γH2AX leads to recruitment of the E3 

ubiquitin ligase RNF8. Its ubiquitination of H2A and H2AX primes the chromatin at the break 

site and recruits the E3 ubiquitin ligase RNF168, which catalyzes the formation of lysine 63-

linked ubiquitin chains. This amplification leads to the accumulation of the repair factors 

BRCA1 and 53BP1 at the DSB (Doil et al. 2009; Campbell et al. 2012).   

The kinase ATM facilitates the repair of heterochromatic DSBs by phosphorylation of the 

transcriptional repressor Kap1 at Ser 824. p-Kap1 directly interacts with the SUMO1-proteins, 

what disrupts the interaction between SUMO1 and the catalytic subunit CHD3 of the NuRD 

complex, mediating transient chromatin relaxation (Goodarzi et al. 2011). Kap1 is further 

phosphorylated at Ser 473 by the checkpoint kinase 2 (Chk2), which leads to disruption of the 

Kap1-HP1-β interaction and release of HP1-β from chromatin, promoting DNA repair 

(Bolderson et al. 2012). 

As acetylation is associated with a relaxed chromatin structure, it is not surprising that, 

following DSB induction, histones show an increased level of acetylation. The 

acetyltransferase Tip60 has been identified as candidate involved in DNA-damage induced 

chromatin acetylation. It is recruited to DSBs, where its chromodomain interacts with H3K9me3 

at the break site. This activates the acetlytransferase activity, whereupon Tip60 directly 

acetylates and activates the ATM kinase (Sun et al. 2009). Furthermore, Tip60 is responsible 

for the acetylation of the histones H2A and H4 at DSBs. The emerging open chromatin 

structure leads to the recruitment of BRCA1 and 53BP1 triggering the repair of the DSBs (Murr 

et al. 2005). As mentioned in chapter 1.2.3 a shift in the acetylation level can influence pathway 

choice by directing repair towards HR or NHEJ. 
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Besides the PTMs mentioned before, all histones can be poly-ADP-ribosylated (PARylated). 

The Poly-(ADP-ribose) polymerase PARP1 is rapidly activated by DSBs and causes sequential 

addition of ADP-ribose at histones and other nuclear proteins (Schreiber et al. 2006; Haince 

et al. 2008). For years it has been accepted that PARylation of nucleosomes in the presence 

of NAD+ leads to chromatin relaxation (Poirier et al. 1982). However, several groups claim a 

contrary function of PARP1 concerning the influence to the chromatin structure in the case of 

DNA damage. Chou and colleagues revealed that PARP1 is associated with transient 

repression of transcription by recruiting components of the chromatin remodeling complexes 

NuRD and the polycomb group to damage sites, which are involved in epigenetic silencing 

(Chou et al. 2010). They also observed a loss of the actively transcribing form of RNA 

Polymerase II (RNA Polymerase II phosphorylated at Ser 2) at laser- and UV-induced γH2AX-

domains.  

How the chromatin relaxation contributing to DNA repair on the one hand and the condensation 

of chromatin to prevent transcription at the break site on the other hand are coordinated, is still 

under investigation. It is conceivable that the extremely dynamic chromatin at the damage sites 

enables the existence of both conditions almost simultaneously, with a tiny temporarily/ 

spatially separation. Figure 3 depicts some well-known chromatin dynamics in eu- and 

heterochromatin regions after DSB induction. This overview of Shi and Oberdoerffer shows 

factors and chromatin modifications accomplishing initial chromatin relaxation followed by 

chromatin compaction (Shi and Oberdoerffer 2012).  
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Figure 3: DSB-induced dynamics of chromatin structure  

After induction of DSBs, both in eu- and heterochromatin, H2AX is phosphorylated and repair factors 

are recruited (A). In heterochromatin (B, right side), phosphorylated HP1 and Kap1 dissociate from the 

damaged chromatin and chromatin remodeler move the damage to the periphery to ensure accessibility 

to the break like in euchromatin. Several histone modifiers and chromatin remodelers, like e.g. Tip60 

and INO80, reorganize the chromatin environment at the break site (B, left side), leading to repression 

of transcription and repair of the damage. During the initial steps of repair chromatin is believed to be in 

a more open condition followed by chromatin compaction later on (C). Compaction is mediated by the 

NuRD complex and the recruitment of HP1. RNA Polymerase II is temporarily excluded from the damage 

site (Shi and Oberdoerffer 2012). 

In recent work in our laboratory a loss of di- and trimethylation of histone H3 at lysine 4 (H3K4) 

in the gamma-H2AX domain after ionizing irradiation was demonstrated. This was 

accompanied by the loss of active RNA polymerase II in γH2AX-decorated chromatin regions, 

suggesting that inhibition of transcription in the vicinity of break sites is associated with a loss 

of active histone marks. The loss of methylation increased with time after irradiation, 

suggesting an active removal process by a histone demethylase (Seiler at al. 2011). As 

members of the Jarid1 family are the only demethylases that are able to remove tri- and di-

methylations at H3K4, they are strong candidates for involvement in this process. Furthermore, 

an accumulation of Jarid1A/KDM5A at laser-induced DNA damage sites was observed (Seiler 
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et al. 2011), outlining this protein as strong candidate to be responsible for the loss of the active 

histone modification.  

 

1.4 Structure and function of the Jumonji C domain-containing histone 

demethylases  

Since the discovery of histone demethylases, it is widely accepted that histone methylations 

are dynamic and can be regulated by an interplay of methyltransferases and demethylases. 

The lysine-specific demethylase 1 (LSD-1) was the first identified histone demethylase. Its 

structure enables the demethylation of di- or monomethylated lysines of H3K4 and H3K9 (Shi 

et al. 2004). In recent years a wide range of histone demethylases has been discovered. The 

enzymes of the Jumonji C (JmjC) domain-containing family represent the major class of 

histone demethylases. They are able to remove tri-, di- and monomethylations from different 

lysine residues in a Fe(II) and α-ketoglutarate dependent oxygenase reaction by a highly 

conserved mechanism (Tsukada et al. 2006). Figure 4 represents all known human JmjC 

demethylases with corresponding substrates. All of them contain the catalytic active JmjC 

domain, but differ in additional DNA and protein binding domains demonstrating their high 

functional diversity in distinct biological processes (Shmakova et al. 2014). Aberrant 

expression and deregulation of histone demethylases is often linked to diseases like 

neurological defects or cancer (Cloos et al. 2008), what will be taken up again in chapters 1.4.2 

and 1.4.3.  
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Figure 4: JmjC family domain structure and histone targets  

Indicated are names, protein domains and substrate specificity of the JmjC family of demethylases. 

They all possess the catalytic active JmjC domain. Other potential domains: ARID - AT-rich interactive 

domain; C5HC2-ZF - C5HC2 zinc finger domain; CXXC-ZF - CXXC zinc finger domain; FBox - F-box 

domain; JmjC - Jumonji C domain; JmjN - Jumonji N domain; LRR - leucine-rich repeat domain; TPR - 

tetratricopeptide domain; Tudor - Tudor domain (Shmakova et al. 2014). 

1.4.1 Role of JmjC histone demethylases in the DNA damage response 

As there is a lot of reorganization of chromatin in the case of a DNA damage (see chapter 1.3), 

it is not surprising that the action of histone demethylases is of high importance in the DNA 

repair. At the beginning of my thesis the role of histone demethylases in the DNA damage 

response was scarcely investigated. In the last years during my research several histone 

demethylases have been implicated in contributing to the DDR in numerous modes of action. 

For instance overexpression of KDM4B leads to enhanced repair and higher radioresistance 

after γ-irradiation, associated with decreased levels of H3K9me3/me2 (Young et al. 2013). 

Khoury-Haddad and colleagues reported that KDM4D is linked to the first steps of the DNA 

damage signaling in a PARP1-dependent manner. After depletion of the histone demethylase, 

cells failed to activate the kinase ATM resulting in impaired DSB repair (Khoury-Haddad et al. 

2014). Recently it was shown in C. elegans that loss of the H3K36me2 demethylase KDM8 
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affects repair by HR after ionizing radiation. KDM8 prevents the resolution of recombination 

intermediates and the release of Rad51 claiming a central role for the demethylase to maintain 

genome stability (Amendola et al. 2017). Further, LSD-1/KDM1A and KDM2A have been 

implicated in the DDR, as well as KDM5B (Mosammaparast et al. 2013; Li et al. 2014: Cao et 

al. 2015).  

1.4.2 Jarid1 demethylases 

The JmjC domain-containing Jarid1 family of demethylases in humans consists of four 

members: Jarid1A (RBP2/ KDM5A), Jarid1B (PLU1/ KDM5B), Jarid1C (SMCX/ KDM5C) and 

JARID1D (SMCY/ KDM5D). Their structure is highly conserved and includes, besides the 

catalytic active JmjC domain, JmjN, A-T rich interactive, C5HC2-zinc-finger and PHD-finger 

domains (see Figure 4) (Blair et al. 2011). All members are able to remove tri- and di-

methylations at H3K4 with Fe(II) and α-ketoglutarate as co-factors (Christensen et al. 2007; 

Iwase et al. 2007).  

Mutations in the SMCX gene on the X chromosome, coding for the demethylase Jarid1C, often 

lead to neuronal diseases like X-linked intellectual disability. Known are nonsense or missense 

mutations in the catalytic domain suggesting that loss of demethylase activity impairs neuronal 

functions (Iwase et al. 2007; Rujirabanjerd et al. 2010). Recent studies reveal overexpression 

of Jarid1C in breast cancer and hepatocellular carcinoma leading to increased cell invasion 

and migration (Ji et al. 2015; Wang et al. 2015).  

The functions of Jarid1D are poorly described. The gene KDM5D is encoded on the Y 

chromosome in a region linked to spermatogenesis. Akimoto and colleagues demonstrated an 

interaction of the demethylase with the factor MSH5 that performs crossing-over events during 

meiosis. Hence, Jarid1D is presumed to play a role in regulating spermatogenesis by its 

chromatin modifying function (Akimoto et al. 2008).  

Jarid1B is overexpressed in several kinds of cancer, including lung, epithelial ovarian and 

breast cancer. The overexpression implies an increased rate of proliferation and invasiveness, 

respectively a higher resistance to chemotherapy (Yamamoto et al. 2014; Shen et al. 2015; 

Wang et al. 2015). In hepatocellular tumors, Tang and colleagues revealed Jarid1B-mediated 

transcriptional repression of the tumor suppressor PTEN in the PI3K/ Akt pathway by 

decreasing H3K4me3 at the PTEN promoter (Tang et al. 2015). A similar mode of action was 

demonstrated in breast tumorigenesis, where Jarid1B promotes cell cycle progression by 

repressing the expression of the tumor suppressors BRCA1 (Scibetta et al. 2007) and 

microRNA let-7e (Mitra et al. 2011). 
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Jarid1A was initially discovered as binding partner of the tumor-suppressor retinoblastoma 

(Rb) protein (Benevolenskaya et al. 2005). Rb binding to the transcription factor E2F4 leads to 

transcriptional silencing of E2F4-regulated genes, suggesting a function of Jarid1A in 

transcriptional repression by demethylation of H3K4 during differentiation (Beshiri et al. 2012). 

Besides, the demethylase was shown to transiently interact with the PRC2 complex that 

mediates polycomb-mediated silencing during cell differentiation and most likely at sites of 

DSBs (Pasini et al. 2008; Campbell et al. 2013). Further interaction partners of Jarid1A are the 

chromatin remodeling complexes MRG15 and NuRD (Hayakawa et al. 2007; Nishibuchi et al. 

2014). This implicates a role for Jarid1A in the regulation of transcription by binding to specific 

chromatin regions leading to a loss of methylation at H3K4 at these sites. Both, the identified 

interaction partners of Jarid1A and the observed loss of H3K4me3/me2 at radiation-induced 

damage sites (see chapter 1.4.13) strongly suggest a role for the demethylase in the DDR.  

1.4.3 Role of JmjC-family in cancer treatment 

Aberrant methylation as well as deregulated expression of histone demethylases can 

contribute to tumorigenesis in numerous ways. Several studies highlight the important role of 

histone demethylases in cancer development and resistance to therapeutic applications. In 

different types of cancer overexpression of Jarid1 histone demethylases was observed 

resulting in increased proliferation and invasiveness of affected tumor cells (see chapter 1.4.2). 

Recently Jarid1A was found to be overexpressed in glioblastoma cells with high resistance to 

temozolomide, an alkylating agent used for chemotherapy (Banelli et al. 2015). Breast cancer 

cells overexpressing Jarid1A also display enhanced proliferation and drug resistance (Hou et 

al. 2012). Besides, deregulated expression of histone demethylases that are involved in DNA 

repair, like KDM4D and KDM5B, might interfere with the DNA damage response and thereby 

provoke genomic instability.  

The fact that methylations are dynamic and reversible can be exploited and genes controlling 

histone lysine methylation, including histone demethylases, came into focus as potential 

targets in cancer treatment (Itoh et al. 2015; McGrath and Trojer 2015). In contrast to HDAC 

inhibitors, which affect various processes causing cytotoxicities in clinical trials (Mottamal et 

al. 2015), inhibitors of histone demethylases seem to be very promising as demethylase 

activity is specific for particular histone residues. Additionally, the JmjC-family of histone 

demethylases is strongly reliant upon the co-factor α-ketoglutarate and can therefore be 

inhibited by the oncometabolite 2-hydroxyglutarate, which is a product of mutated isocitrate 

dehydrogenase IDH1 and IDH2 (Dang et al. 2009; Chowdhury et al. 2011). 
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1.5 IDH mutations 

An emerging hallmark of cancer is reprogramming of energy metabolism (Hannahan and 

Weinberg 2011). Among the best known examples are mutations in the NADP+-dependent 

enzymes isocitrate dehydrogenase 1 and 2 (IDH1/2). These mutations were identified in a 

variety of tumors including gliomas, chondrosarcomas and acute myeloid leukemia (Yan et al. 

2009; Amary et al. 2011; Mardis et al. 2009). The regular enzymatic reaction of the enzymes 

IDH1/2 is the conversion of isocitrate to α-ketoglutarate (α-KG). This reaction is either 

catalysed in the cytosol by IDH1 or in the mitochondrion by IDH2 during the tricarboxylic acid 

(TCA) cycle (see Figure 5). The heterozygous mutation that has a dominant effect over the 

remaining wild-type allele in the IDH1/2 genes enables the catalysation of this reaction, but is 

accompanied by a novel enzymatic gain-of-function reaction that further converts α-KG to 2-

hydroxyglutarate, more precisely to the enantiomer R-2-hydroxyglutarate (R-2-HG) (Yang et 

al. 2012).  

Under normal physiological conditions only minimal traces of 2-HG can be detected in 

mammalian cells, while in human glioma samples with IDH mutations cells accumulate the 

metabolite up to ~100-fold compared to tumors featuring wild-type IDH1 (Dang et al. 2009). 

The oncogenic potential of the metabolite is probably based on several effects. Accumulation 

of R-2-HG may cause some issues concerning the neutralization of reactive oxygen species 

(ROS) conducted by NADPH, since NADPH consumption is elevated, when isocitrate is 

converted to R-2-HG instead of α-KG (Reitman and Yan 2010). Additionally, competitive 

inhibition of α-KG-dependent enzymes by R-2-HG can provoke tumorigenesis due to 

epigenetic dysregulation, as R-2-HG was shown to inhibit several α-KG-dependent 

dioxygenases like histone lysine demethylases and the 5-methyl cytosine hydroxylase TET2. 

Consequently, the strictly regulated DNA and histone methylation status is impaired resulting 

in altered epigenetic patterns and disturbed gene regulation and tissue homeostasis (Xu et al. 

2011). The outcome of this depends on the affected cell type. For example in hematopoietic 

progenitor cells IDH1/2 mutations lead to a histone hypermethylation phenotype resulting in 

dysregulation or blocking of hematopoietic differentiation and thereby triggering hematologic 

neoplasms like acute myeloid leukemia (Lu et al. 2012). Interestingly, patients with IDH1/2 

mutations in lower-grade glioblastomas have a significantly longer overall survival, longer 

progression-free survival and better response to chemotherapy than patients without these 

mutations (Yan et al. 2009; Chen et al. 2016). Furthermore it was shown that glioblastoma 

cells expressing mutated IDH1 or IDH2 are more sensitive to radiation (Li et al. 2013). 

Increased radiation sensitivity may at least in part be caused by inactivation of the activity of 

JmjC family histone demethylases, several of which have recently been implicated in genome 

stability and DNA repair pathways (see chapter 1.4.1). 
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To mimic the IDH1 mutation cells can be treated with the cell permeable ester of R-2-HG, 

called (2R)-2-Hydroxyglutaric Acid Octyl Ester Sodium Salt. This ester has been reported to 

competitively inhibit α-KG and hence can be used to study the effects of the mutation in 

glioblastoma cells (Xu et al. 2011).  

 

 

 

 

Figure 5: Reactions of wild-type and mutant IDH enzymes in mitochondria and cytoplasm and 

consequences on α-KG-dependent enzymes 

Wild-type (wt) IDH1 and IDH2 convert isocitrate to α-KG, in the cytoplasm or in mitochondria during the 

TCA cycle, respectively. Mutated IDH1/2 catalyzes the conversion of isocitrate to the oncometabolite 2-

HG, leading to NADPH consumption and suppression of prolyl hydroxylase, and of DNA and histone 

demethylases. Consequences are i. a. gene expression modifications possibly provoking glial tumor 

differentiation (Megova et al. 2014). 
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1.6 Aims of the present thesis 

Deregulation of the JmjC domain-containing family of histone demethylases leads to changes 

in pathways regulating the epigenome and the chromatin structure. In the last years some 

histone demethylases have also gained some interest due to their direct involvement in the 

DNA damage response and DNA repair as shown for the H3K9me3/me2 demethylase KDM4D 

or for the H3K36me2/me demethylase KDM2A. In addition, the JmjC domain-containing family 

of histone demethylases has attracted attention because its members rely on α-ketoglutarate 

as a co-factor in demethylation and can thus be inhibited by the oncometabolite 2-

hydoxyglutarate, a product of mutated isocitrate dehydrogenases IDH1 or IDH2 (Chowdhury 

et al. 2011, Xu et al. 2011, Lu et al. 2012, Turcan et al. 2012, Kernytsky et al. 2015). To put it 

plainly, every aberration of histone demethylation either caused by direct inhibition of 

demethylases or by deregulation of their expression leads to disturbed regulation of 

transcription, replication or repair provoking genetic instability and carcinogenesis.  

In recent work we observed a loss of di- and trimethylation of histone H3 at lysine 4 (H3K4) 

and a concomitant loss of active RNA polymerase II in γH2AX-decorated chromatin regions 

surrounding DNA double-strand breaks (DSB) after treatment with ionizing radiation (Seiler at 

al. 2011). As histone demethylases are quite specific and only the Jarid1 family of 

demethylases is able to remove di- and trimethylation at H3K4, we had four demethylases 

being possibly responsible for this effect. Since the histone demethylase Jarid1A 

(KDM5A/RBP2) is highly expressed in the cell lines used in that work and since it accumulates 

at laser-induced DNA damage sites (the others were not tested), it constitutes a strong 

candidate (Seiler et al. 2011).  

The aim of the present thesis was to investigate the impact of siRNA-mediated depletion of 

histone demethylase Jarid1A (KDM5A, RBP2) on growth characteristics, cell survival, potential 

alterations in histone modifications and the chromatin structure. Preliminary data suggesting 

higher radiosensitivity of Jarid1A knockdown cells (Penterling 2013) should be verified and the 

causes of this observation should be revealed. To test for a potential role of the demethylase 

in the DNA damage response, cell cycle analysis experiments and recruitment kinetics of 

damage response proteins after Jarid1A depletion and irradiation was performed. I additionally 

checked for enhanced recruitment of Jarid1A to the damage site and for efficiency of DSB 

repair in Jarid1A-depleted cells via DSB repair reporter assays. 

Another issue was the potential involvement of Jarid1A in the loss of di- and trimethylation at 

H3K4 at γH2AX regions surrounding ionizing radiation induced DSBs. To study this I 

performed intensity correlation analysis, with and without Jarid1A depletion, and also analysed 

the effects of inhibition of Jarid1B, ATM, ATR and PARP1. To elucidate the effects of the 
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Jarid1A depletion on transcriptional regulation, potential changes in gene expression after 

Jarid1A knockdown with and without irradiation were investigated via microarray experiments.  

In the final part of this thesis glioblastoma cell lines were treated with the cell permeable ester 

of R-2-HG to mimic the IDH1 mutation. The impact of the unspecific inhibition of α-KG-

dependent JmjC demethylases on the level of histone modifications as well as on cell 

proliferation and migratory behaviour was analysed.  
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2 Material 

2.1 Cell lines  

Cell line Origin Source Medium 

HeLa* Human cervix 

carcinoma 

DSMZ RPMI-1640 + 10% FBS + 1% 

Penicillin/Streptomycin 

HeLa pEJ Human cervix 

carcinoma 

Friedl group RPMI-1640 + 10% FBS + 1% 

Penicillin/Streptomycin + 400 µg/ml 

G418 

HeLa pGC Human cervix 

carcinoma 

Friedl group RPMI-1640 + 10% FBS + 1% 

Penicillin/Streptomycin + 0.4 µg/ml 

Puromycin 

HTC116 Human colorectal 

carcinoma 

Kind gift of K. 

Lauber 

McCoy's 5a Medium + 10% FBS + 

1% Penicillin/Streptomycin 

MCF-7* Human breast 

adenocarcinoma 

DSMZ RPMI-1640 + 10% FBS + 1% 

Penicillin/Streptomycin 

U2OS* Human 

osteosarcoma 

Kind gift of P. 

Grigaravicius 

RPMI-1640 + 10% FBS + 1% 

Penicillin/Streptomycin 

A172* Human 

glioblastoma 

Kind gift of K. 

Lauber 

DMEM + 10% FBS+ 1% 

Penicillin/Streptomycin 

U-87 MG* Human 

glioblastoma 

Kind gift of K. 

Lauber 

DMEM + 10% FBS + 1% 

Penicillin/Streptomycin 

* STR (short tandem repeat) typed cell lines   

2.2 Solutions and reagents for cell culture and siRNA transfection 

Product Manufacturer 

R-2-Hydroxyglutaric Acid Octyl Ester Sodium Salt Toronto Research Chemicals  

Cell-TAK Tissue Adhesive BD Biosciences 

Dimethylsulfoxid (DMSO) Sigma-Aldrich  

DMEM Gibco  

Fetal Bovine Serum (FBS)  Sigma-Aldrich 

Geneticin disulfate (G418) Solution Roth 

Lipofectamine 2000 Invitrogen  

McCoy's 5a Sigma-Aldrich 

Opti-MEM I Reduced Serum Medium Gibco  

Penicillin/Streptomycin Sigma-Aldrich  

Phosphate Buffered Saline (PBS) Sigma-Aldrich 

Puromycin Solution Sigma-Aldrich 

RPMI-1640 Sigma-Aldrich 

Trypsin-EDTA Sigma-Aldrich 
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2.2.1 Inhibitors 

Inhibitor Targets Manufacturer 

KU-60019 ATM Selleckchem 

Olaparib PARP1 Selleckchem 

PBIT Jarid1B/KDM5B Cayman Chemical 

VE-821 ATR Selleckchem 

 

2.2.2 Stealth siRNAs 

siRNA Sequence Manufacturer Cat. Number 

Stealth RNAi Jarid1A  

A1 

CCA AAC UCC AGA 

UGU UGA UAG AUA U 

Invitrogen HSS109096 

Stealth RNAi Jarid1A  

A3 

GAG CCU GAG GUU 

CUC AGC ACU GAU A 

Invitrogen HSS109098 

Stealth RNAi Negative 

Control Medium GC 

Duplex 

unspecified Invitrogen 12935-300 

 

2.2.3 Plasmids 

Plasmid Resistance E.coli Resistance human Source 

pEJ Kanamycin G418 Kind gift of W. Y. Mansour 

(Mansour et al. 2008)  

pGC Ampicillin Puromycin Kind gift of W. Y. Mansour 

(Mansour et al. 2008) 

pMCC-

GFP-P 

Ampicillin Puromycin Designed in our lab. 

pMCV-I-

SceI 

Ampicillin - Kind gift of W. Y.  Mansour (Rouet 

et al. 1994; Mansour et al. 2008) 

The sequences of the plasmids are listed in appendix A. 
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2.3 Reagents and buffers for protein extraction and Westernblotting 

Reagent/buffer Composition 

4x Laemmli 9.6 ml Tris (1M, pH 8.6), 3.2 g SDS, 16 ml 

21lycerine, 4 ml β-mercaptoethanol, 0.14 g 

bromphenol blue, 11.2 ml aqua dest.  

Blocking solution (BSA) 5% BSA in PBS-T 

Blocking solution (milk) 5% milk powder in PBS-T 

ECL reagent ECL Ultra solution A and B 1:1 (Lumigen Inc.) 

SDS-PAGE running buffer I  20x NuPAGE MES SDS Running Buffer 

(Invitrogen) 1:20 in aqua dest. 

SDS-PAGE running buffer II 20x NuPAGE Tris-Acetate Running Buffer 

(Invitrogen) 1:20 in aqua dest. 

 

RIPA buffer 

1% Triton X-100, 150 mM NaCl, 10 mM Tris, 1 

mM EDTA, 1% deoxycholic acid 

Rotiblock 10 Roti-Block (Roth) 1:10 in aqua dest. 

Transfer buffer  20x NuPAGE Transfer Buffer (Invitrogen) 1:20 

in aqua dest. + 10% methanol  

Wash buffer for Westernblotting 0.1% Tween 20 in PBS (PBS-T) 

 

2.4 Reagents and buffers for immunofluorescence 

Reagent/buffer Composition 

Blocking buffer 1% BSA, 0.15% glycine in PBS 

Fixation buffer 2% paraformaldehyde dissolved in PBS at 

72°C 

Permeabilization buffer 0.15% Triton X-100 in PBS 

Pre extraction buffer 25 mM Hepes pH 7.5, 50 mM NaCl, 1 mM 

EDTA, 3 mM MgCl2, 300 mM sucrose, 0.5% 

Triton X-100 

 

2.5 Chemicals 

Chemical Manufacturer 

100 bp DNA ladder gene ruler Fermentas 

Agarose peq GOLD Peqlab 

β-mercaptoethanol Sigma-Aldrich 

Boric acid Merck 

Bovine serum albumin (BSA) Sigma-Aldrich 

Calcium chloride Alfa Aesar 

Citric acid Applichem 

Complete Mini Protease Inhibitor Roche 

DAPI Sigma-Aldrich 

Deoxycholic acid Sigma-Aldrich 

Ditihiothreitol Applichem 

EDTA Sigma-Aldrich 
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Ethanol absolut VWR 

Ethidium bromide Roth 

Glucose Sigma-Aldrich 

Glycine Sigma-Aldrich 

Glyzerin Sigma-Aldrich 

Hepes Sigma-Aldrich 

Magnesium chloride Sigma 

Methanol Sigma-Aldrich 

Methylen blue Applichem 

Micrococcal nuclease Thermo Scientific 

Milk powder Roth 

Nonidet P40 Substitute Fluka   

Paraformaldehyde (PFA) Sigma-Aldrich 

Phenol:Chloroform:Isoamyl Alcohol 
25:24:1 Saturated with 10 mM Tris, pH 
8.0, 1 mM EDTA 

Sigma-Aldrich 

PhosSTOP Phosphatase Inhibitor 
Cocktail 

Roche 

Potassium chloride Sigma-Aldrich 

Precision Plus Dual Color Protein 
Standard 

BioRad  

ProLong Gold antifade reagent Molecular Probes 

Propidium iodide solution Sigma-Aldrich 

Proteinase K Merck 

Rnase A Sigma-Aldrich 

Rnase Zap Wipes Ambion  

Sodium acetate Merck 

Sodium butyrate  Sigma-Aldrich 

Sodium chloride Merck 

Sodium citrate Roth 

Sodium dodecyl sulfate (SDS) Sigma-Aldrich 

Sucrose Roth 

Tris Merck 

Tween 20 Sigma-Aldrich 

Triton X-100 Sigma-Aldrich 

Vectashield Vector Laboratories 
 

2.6 Antibodies 

2.6.1 Antibodies for Westernblotting 

Antibody Source Dilution Blocking solution 

goat-anti-mouse-HRP Santa Cruz sc-2005 0.35 µl/ 
20 ml  

Same as primary 
antibody 

goat-anti-rabbit-HRP Santa Cruz sc-2004 0.25 µl/ 
20 ml 

Same as primary 
antibody 

mouse-anti-Jarid1A Abcam ab78322 1:1000 5% BSA 

mouse-anti-Jarid1B   Sigma-Aldrich 
SAB1404865 

1:4000  5% milk 

mouse-anti-H3 Millipore 05-1341 1:5000 5% milk 
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mouse-anti-H3K4me3 Abcam ab12209 1:1000  Roti block 

mouse-anti-H4 Abcam ab31830 1:1000 5% milk 

mouse-anti-HDAC3 Upstate 06-890 1:750 5% milk 

mouse-anti-PARP1  Trevigen 4338-MC-50 1:2000 5% milk 

mouse-anti-Tubulin α Abcam ab7291 1:6000  Roti block 

mouse-anti-𝛾H2AX Millipore 05-636 1:2000 5% milk 

rabbit-anti-CENPF Novus Biologicals 
NB500-101  

1:1000 5% milk 

rabbit-anti-H3K4me3 Abcam ab8580  1:1000  Roti block 

rabbit-anti-H3K4me2 Abcam ab32356 1:1000 Roti block 

rabbit-anti-H3K9me3 Millipore 07-442 1:1000 Roti block 

rabbit-anti-H3K9me2 Millipore 04-768 1:1000 Roti block 

rabbit-anti-H3K9ac Millipore 06-942 1:1000 Roti block 

rabbit-anti-H3K56ac Millipore 07-677 1:1000 Roti block 

rabbit-anti-H4K16ac Millipore 07-329 1:1000 5% milk 

rabbit-anti-HSP90 Cell Signaling 4877 1:1000 5% milk  

rabbit-anti-NFKBIE Sigma-Aldrich 
SAB4300544  

1:1000 5% milk 

rabbit-anti-p21 Cell Signaling 2947P 1:1000  5% BSA 
    

2.6.2 Antibodies for immunofluorescence 

Antibody Source Dilution 

mouse-anti-Jarid1A/RBP2 Abcam 78322 1:400  

mouse-anti-BRCA1 Abcam 16780 1:100 

mouse-anti-H3K4me3 Abcam ab12209 1:500  

mouse-anti-RNAPol II Kindly provided by D. Eick 1:10 

mouse-anti-Ubiquitin-
conjug. 

Biomol PW8810 1:1000 

mouse-anti-XRCC1 Abcam ab1838 1:500 

mouse-anti-γH2AX Millipore 05-636 1:500  

rabbit-anti-53BP1 Novus Biologicals NB100-305 1:500  

rabbit-anti-H3K4me3 Abcam ab8580  1:400  

rabbit-anti-pChk1 
  

Cell Signaling 2348 1:100 

rabbit-anti-pChk2 
  

Cell Signaling 2661 1:100 

rabbit-anti-Rad51 Calbiochem PC130 1:250  

 

2.7 Primer for qRT-PCR 

TaqMan Gene Expression Assay FAM-MGB 20x 

(Thermo Scientific) 

Assay ID 

KDM5A Hs00231908_m1 

β-Actin Hs01060665_g1 

GAPDH Hs99999905_m1 
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2.8 Kits 

Kit Manufacturer 

TaqMan® Gene Expression Master Mix Thermo Scientific 

RNeasy Mini Kit Qiagen 

SuperScript First-Strand Synthesis System for RT-

PCR 

Thermo Scientific 

Mycoplasma Detection Kit for conventional PCR 

Venor GeM Classic  

Minerva Biolabs 

SurePrint G3 Human Gene Expression v2 8x60K 

Microarray Kit 

Agilent Technologies 

Low Input Quick Amp Labeling Kit, One-Color Agilent Technologies 

Subcellular Protein Fractionation Kit Thermo Scientific 

RNA 6000 Nano Kit Agilent Technologies 

Qubit RNA BR Assay Kit Thermo Scientific 

 

2.9 Equipment 

Instrument Manufacturer 

SLI 18 linear accelerator Elekta 

Flow Cytometer BD LSR II Becton Dickinson 

Bioanalyzer 2100  Agilent Technologies 

AxioCam Mr3 camera Zeiss 

Chemismart documentation system PeqLab 

Nitrocellulose Blotting Membrane 0.2 µm GE Healthcare 

NanoDrop 2000 spectrophotometer Thermo Scientific 

Microarray Hybridization Oven Agilent Technologies 

AxioObserver Z1 Microscope Zeiss 

ViiA 7 Real Time PCR System Cycler Thermo Scientific 

SureScan Microarray Scanner Agilent Technologies 

Qubit 2.0 Fluorometer Thermo Scientific 
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3 Methods 

3.1 Cell biology methods 

3.1.1 Cultivation of cells 

Detailed information about the origin and the cultivation conditions of the cell lines are listed in 

chapter 2.1. All used cell lines have a human origin and adherent growth properties. 

Periodically monitoring for mycoplasma infection was performed by PCR (Kit Minerva Biolabs) 

and only cell lines negative for mycoplasma were used for experiments. HeLa, MCF-7 and 

U2OS cells were cultivated in RPMI 1640 medium, HCT116 cells were cultivated in Mc Coy`s 

5 A medium and the glioblastoma cell lines A172 and U-87 MG were grown in DMEM medium. 

All media were supplemented with 10% FBS, 100 U/ml penicillin and 50 µg streptomycin. Cell 

lines were kept in a humidified incubator at 37°C with 5% CO2. For optimal growth conditions, 

cells were split 1:10 every three to four days. For this the old medium was removed and the 

cells were washed with PBS. For detachment of the cells Trypsin/EDTA was added to the cell 

layer and the sample was incubated for 5 min at 37°C. To stop the enzymatic reaction of the 

Trypsin cells were resuspended in supplemented medium. One-tenth of the cell suspension 

was transferred to a new culture vessel with medium and further cultivated in the incubator. To 

seed a designated amount of cells cell number was determined with a Buerker counter 

chamber after trypsinization and resuspension. 

For long-term storage cells were collected by centrifugation and the pellet was resuspended 

in freezing solution containing 10% DMSO as frost protection agent and 90% FBS. The 

suspension was transferred to a 2 ml cryo tube. The tube was placed in a freezing box with 

isopropanol enabling the gentle freezing of cells by cooling of 1°C per minute. The box was 

transferred to a -80°C freezer overnight. The following day, the cryo tubes were relocated from 

–80°C into liquid nitrogen for long-term storage. Thawing of cells has to be performed quickly 

as the DMSO is toxic for cells at RT. After incubation of the cryo tube at 37°C for 1 min, the 

cell suspension was transferred to a tube with 10 ml prewarmed supplemented medium. Cells 

were collected by centrifugation, resuspended in fresh supplemented medium and seeded in 

new vessels. To remove residual DMSO, the medium has to be replaced the following day.   

3.1.2 Seeding of cells for irradiation 

For irradiation with x-rays cells can be seeded in usual plastic culture vessels as this sort of 

radiation can entirely pass the material. Thus, for colony formation assays or Western Blot 

analysis after x-rays, cells were seeded in 6 well plates. If immunofluorescence detection was 

performed, cells were seeded on glass coverslips in 6 well plates. 
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For irradiation with accelerated 55 MeV carbon ions at the ion microirradiation facility SNAKE 

(see chapter 3.1.3.2), cells were seeded 24 h prior to irradiation on 6 μm Mylar foil fixed in 

stainless steel containers (Figure 6) or steel rings (Figure 7). While glass or plastic culture 

vessels would hinder the ions from transition, the Mylar foil enables the passage of the ions to 

the cell layer. Proper attachment of the cells is ensured by pre-coating the foil with Cell-TAK 

(BD Bioscience). The steel containers can be equipped with a foil, where a grid of coordinates 

is indicated. This facilitates the location of the irradiated area after applying single ions in a 

distinct pattern (e.g. lines or matrix pattern) to the cells. For irradiation in a small angle, cells 

were seeded on Mylar foil in steel rings.  

 

 
 

 

Figure 6: Steel container for irradiation of cells in a distinct pattern at the ion microbeam SNAKE 

(a) Bottom view of the cell chamber. Cells are attached to the inserted Mylar foil in the midddle. (b) Side 

view of the container. For irradiation the chamber is closed with a lid (Hauptner et al. 2004).  
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Figure 7: Steel ring for small angle irradiation of cells at the ion microbeam SNAKE 

Outlined are the side and the bottom view of the ring chamber with the inserted Mylar foil in the middle 

(Auer et al. 2011).  

3.1.3 Irradiation of cells 

3.1.3.1 Irradiation with x-rays 

Irradiation with different doses of X-rays was performed with an Elekta SLI 18 linear accelerator 

(dose rate 2 Gy/min). 

3.1.3.2 Ion microirradiation with SNAKE   

The ion microbeam SNAKE (Superconducting Nanoscope for Applied Nuclear Experiments) 

at the 14 MV tandem accelerator in Garching enables targeted irradiation of structures in cells 

or cell nuclei with single ions of a broad energy range. The possibility to applicate single ions 

to nuclei in a distinct pattern makes SNAKE a perfect tool to analyse DSB repair. In this way it 

is possible to distinguish between ion-induced and spontaneous foci. Subsequent detection of 

specific DNA damage factors and potential changes in histone modifications by indirect 

immunofluorescence helps to elucidate the procedure of DNA damage response directly at the 

DSBs.  

For analysis of correlation between γH2AX and H3K4me3 or RNA Pol II after ion irradiation, 

cells were irradiated with single ions applied in a linear pattern with 1 μm lateral distance and 

5 μm distance between the “lines” thus formed (Hable et al. 2012), or in a matrix pattern of 5 

µm x 5 µm distance (Girst et al. 2013; Drexler et al. 2015). In this set-up, single ions arrive at 

a perpendicular angle to the cell layer (Figure 8), which results in a dose of approximately 0.46 

Gy per ion hit.  

After closing the cell container with a lid it can be clamped in a perpendicular angle between 

the exit nozzle of the ion beam and a detector (Figure 8). During irradiation the cell layer is not 

http://www.e12.physik.tu-muenchen.de/groups/rim/
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covered with medium as this would arrest the ions during the transition. With the help of the 

integrated microscope, a suitable position of the cell layer is defined for irradiation and noted 

with the help of the coordinates indicated on the Mylar foil. Thereby the irradiated area can be 

localized easily later on during microscopy. After the irradiation of the cells, the lid of the 

container was removed and the medium was replaced. Before fixation the cells were incubated 

for 1 h in a humidified incubator at 37°C to start the DNA damage response signaling.  

For analysis of foci formation after Jarid1A knockdown I performed small angle irradiation in 

steel rings, where the ion beam hits the cell layer at an angle of 10° (Figure 8), allowing to 

visualize protein accumulations along the track of ion-induced damage (Du et al. 2011). After 

irradiation cells were incubated in fresh medium for different periods of time, dependent on the 

purposes of the experiments. Subsequently, cells were fixed and immunofluorescence was 

performed.  

 

a 

 

b 

 

Figure 8: Position of cell container and steel ring during irradiation at SNAKE  

(a) In the container cells are located between the exit nozzle of the ion beam and a scintillator and are 

irradiated in a perpendicular angle (Hauptner et al. 2004). (b) Cells in steel rings are irradiated at an 

angle of 10° (Hauptner et al. 2006).     

3.1.4 Transfection of cells with siRNA  

Double-stranded short interfering RNAs (siRNAs), consisting of 21-23 RNA nucleotides, can 

be used to rapidly silence the expression of specific genes.  

To study the effects of the demethylase Jarid1A I depleted the protein via transfection with 

siRNA. All siRNA transfections were performed with stealth siRNAs using Lipofectamine 2000 

as transfection reagent (both purchased from Life Technologies). The stealth scrambled (scr) 

RNAi was used as control to exclude transfection effects. If not indicated otherwise, a 1:1 
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combination of the two siRNAs A1 and A3 was used as this resulted in the highest knockdown 

efficiencies (Penterling 2013). 

For transfection 180000 cells were seeded in 6 well plates in medium without penicillin/ 

streptomycin. SiRNA transfection was performed the following day (12-16 h after seeding 

recommended). In the first step, separate mixtures of the siRNA and serum-reduced OPTI-

MEM I medium and of Lipofectamine 2000 and OPTI-MEM I were prepared and incubated for 

15 min at RT. Per sample, 2.5 µl Lipofectamine and 6.25 µl of the respective siRNA was used 

and diluted with OPTI-MEM I to 250 µl, resulting in a siRNA concentration of 50 pmol. In a 

second step, the Lipofectamine 2000 mixture was combined 1:1 with the single siRNAs 

mixtures and again incubated for 15 min at RT. After this second incubation, 500 µl of the 

siRNA/ Lipofectamine 2000 mixtures were added to the cells.  

Depending on the purposes of the experiment, cells were irradiated or harvested 72 h later. 

For DSB-repair assay cells were transfected with I-SceI 24 h later. Efficiency of depletion was 

verified for every single experiment by Western Blotting and Jarid1A was normalized to the 

sample transfected with scr siRNA. 

3.1.5 Cell Cycle Analysis  

For cell cycle analysis after Jarid1A depletion 20000 HeLa cells per well were seeded 48 h 

after siRNA transfection into 24 well plates and allowed to adhere overnight. After irradiation 

of the cells with 0 Gy or 5 Gy at the next day, cells were incubated and harvested at different 

time points (before irradiation and 4 h, 8 h, 12 h, 24 h, 48 h after irradiation). Cell suspension 

was centrifuged, pellet was washed with PBS and resuspended in DNA staining solution I for 

fixation and staining (see Table 1). After incubation for 30 min at RT in the dark, DNA staining 

solution II was added (see Table 1). Samples were stored at 4°C until cell cycle data were 

collected with FACS BD LSR II (Becton Dickinson). Forward scatter (FSC), sideward scatter 

(SSC), and PI fluorescence of the nuclei were analyzed flow cytometrically and all nuclei with 

less than diploid DNA content were considered apoptotic. Evaluation was performed with the 

free flow cytometry software FlowPy. 
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Table 1: Composition of DNA staining solution I and II for cell cycle analysis 

Solution Composition 

DNA staining solution I 10 μg/ml RNase,  

0.6 mg/ml NaCl,  

1 mg/ml Sodium citrate,  

0.07% NP-40,  

10 μg/ml propidium iodide (PI)  

in PBS 

DNA staining solution II 15 μg/ml citric acid,  

85 μg/ml sucrose,  

10 μg/ml PI  

in PBS 

 

3.1.6 Colony formation assay 

To determine the sensitivity to radiation after Jarid1A depletion in a colony formation assay 72 

h after siRNA transfection cells were plated in triplicates in a range of 150 – 50000 cells per 

well depending on the dose of radiation. After attachment of the cells, 6 well plates were 

irradiated with 0 Gy, 2 Gy, 5 Gy or 10 Gy x-rays and incubated for 10 days in a humidified 

incubator.  

Fixation and staining was done by incubating the cells in a solution consisting of 0.3% 

methylene blue and 80% ethanol for 30 min at RT. After removing the solution, cells were 

washed with aqua dest. and air-dried. Colonies comprising more than 50 cells were counted. 

Cell survival curves were calculated with the following linear-quadratic model:  

S0e - ad - bd^2 

S0 represents the plating efficiency, d the radiation dose, a [Gy-1] the linear coefficient and b 

[Gy-2] the coefficient of the quadratic component. Curve coefficients were calculated with the 

R-package CFAssay (Braselmann 2014; Braselmann et al. 2015) using the maximum 

likelihood method. Curves were compared with the F-test (Faraway 2006).  

3.1.7 Incubation of glioblastoma cells with 2-hydroxyglutaric acid 

IDH1 mutations can be simulated by addition of 2-hydroxyglutaric acid octyl ester sodium salt 

(2-HG) to glioblastoma cells (Dang et al. 2009; Reitmann et al. 2014). U-87 MG and A172 cells 

were seeded in 6 well plates and incubated with different concentrations of 2-HG for 7 d. As 

no manufacturer`s instructions were available, 2-HG was solved in DMSO and concentrations 
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from 0.01 mM to 1.0 mM of 2-HG were used and added to the cells. It was reported that a 

concentration of 0.1 mM R-2-HG in the medium for 7 d results in the same level of intracellular 

R-2HG as produced in knock-in IDH1 mutant HTC116 cells (Reitmann et al. 2014). DMSO was 

added to the cells as control. After 7 d either wound healing assays to study migration or 

extraction of proteins for Western blotting was performed. 

3.1.8 Wound healing assay 

To investigate the migration of glioblastoma cells after incubation with 2-HG, wound healing 

assays were performed. Cells were seeded into silicone culture inserts consisting of two 

chambers for cell seeding separated with a defined gap (μ-dishes, Ibidi) placed in conventional 

culture dishes. 35000 U-87 MG cells were seeded in each of the two areas with 0.22 cm² and 

allowed to attach overnight. To compare the migratory capacity of different treated cells, one 

culture insert was provided with control cells, while a second insert was provided with cells 

treated with 2-HG for 6 d. On the next day when cells reached confluency, the cell-free gap of 

500 µm was generated for both samples by removing the insert. Cell migration into the “wound” 

was monitored using an inverse microscope with a 5x objective and an AxioCam Mr3 camera 

(Zeiss). Images were acquired every 30 min over a period of 8 h using the AxioVision 4.6 

software (Zeiss). Every 30 min the cell free area was measured with the function “Analyze” 

and “Measure” in WCIF ImageJ 1.37c. The colonized area was calculated according to the 

following formula: 

Colonized area at t1 [µm2] = Cell free area [µm2] at t1 - cell free area in [µm2] at t0 

Potential existing differences in the rate of migration of control cells and 2-HG treated cells can 

finally be revealed by comparing the colonized area over time. 

 

3.2 Biochemical methods 

3.2.1 Protein extraction and Westernblotting 

3.2.1.1 Whole cell protein extraction  

To prepare whole cell protein lysates cells were trypsinized, counted and collected by 

centrifugation (5 min, 500 x g, 4°C). The proteins were extracted by adding RIPA-buffer 

supplemented with PhosSTOP Phosphatase Inhibitor, Complete Mini Protease Inhibitor 

(Roche) and 5 mM sodium butyrate as HDAC inhibitor. To ensure similar protein amount in the 

samples, 20 µl buffer per 100 000 cells was used for lysis. After vigorous vortexing, lysates 
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were incubated for 10 min on ice, heated for 10 min to 104°C and subsequently stored at -

80°C until usage.  

3.2.1.2 SDS-PAGE and Western immunoblotting   

For separation of the proteins, lysates were thawed on ice and cleared by centrifugation for 5 

min at 11000 x g at 4°C. 4x Laemmli loading dye was added to the lysates and heated to 95°C 

for 10 min. Depending on the size of the protein of interest, lysates were loaded on 3-8% Tris-

Acetate or 12% Bis-Tris NuPAGE gels (Invitrogen) and separated by electrophoresis for 1.5 h 

at 120 V.  

After separation of the proteins via SDS-PAGE, they were transferred to a nitrocellulose 

membrane. For this, 6 Whatman papers, 2 sponges, the nitrocellulose membrane and the gel 

were equilibrated in 1x transfer buffer (Invitrogen) + 10% methanol and stacked together that 

the negative charged proteins from the gel were transferred to the membrane via electricity. 

The transfer was performed over night at 40 V and 4°C in a blotting chamber filled with transfer 

buffer. After immunoblotting membranes were cut and blocked for 1 h at RT with Roti-Block 

(Roth), 5% milk or 5% BSA, each in PBS + 0.1% Tween, depending on the primary antibody 

used (see chapter 2.6.1). Primary antibodies were diluted in the respective blocking solutions 

and membranes were incubated in 2 ml of the antibody solution for 1 h at RT or overnight at 

4°C in rotating 50 ml tubes. After three washing steps with PBS + 0.1% Tween for 5 min at RT, 

membranes were incubated with the appropriate goat polyclonal secondary antibodies, 

coupled with horse reddish peroxidase (HRP). 0.35 µl of goat-α-mouse-HRP and 0.35 µl of 

goat-α-rabbit-HRP (Santa Cruz) per 20 ml blocking solution were used and membranes were 

incubated for 45 min at RT. Following three more washing steps with PBS + 0.1% Tween for 

5 min and a short wash in PBS, membranes were developed with Lumigen ECL Ultra (TMA-

6). Therefore, solution A and solution B of the ECL kit were mixed 1:1 and membranes were 

incubated for 5 min at RT in the dark. Chemiluminescence was detected and images were 

acquired with a CHEMISMART documentation system (Peqlab, Vilber Lourmat) and the 

Chemi-Capt 5000 software. Quantitative analysis was performed with the Bio-1D software 

(Vilber Lourmat). The signals were normalized with respect to the scr siRNA transfected, 

unirradiated or - in the case of 2-HG incubation – to the control samples (DMSO). 

3.2.2 Subcellular Protein Fractionation 

To analyse the localization of Jarid1A in the cell after irradiation a stepwise extraction of 

proteins from different cell compartments was performed with the Subcellular Protein 

Fractionation Kit (Thermo Scientific). All buffers were supplemented 1:100 with a Protease 

Inhibitor Cocktail directly before use. Ice-cold CEB buffer was added to the cell pellet and the 



Methods 

33 
 

extraction was started by using the volumes indicated in Table 2 depending on the number of 

cells: 

Table 2: Buffer volumes for different packed cell volumes. 1x106 HeLa cells are equivalent to 10 

µl packed cell volume 

Packed Cell 

Volume (µl) 

CEB (µl) MEB (µl) NEB (µl) NEB (µl) + 

CaCl2, 

MNase 

PEB (µl) 

10 100 100 50 50 50 

20 200 200 100 100 100 

50 500 500 250 250 250 

   

If not indicated otherwise, all incubation and centrifugation steps were performed at 4°C with 

ice-cold buffers. Cell pellets with CEB buffer were mixed gently for 10 min before centrifugation 

at 500 x g for 5 min. The supernatant was transferred to a pre-chilled tube (cytoplasmic 

extract). MEB buffer was added to the remaining cell pellet and the tube was vortexed 

vigorously for 5 s. After incubating the tube for 10 min with gentle mixing, it was centrifuged at 

3000 x g for 5 min. The supernatant containing the membrane proteins was transferred to a 

pre-chilled tube. The pellet was mixed with NEB buffer, vortexed for 15 s and then incubated 

for 30 min with gentle mixing. After the following centrifugation step at 5000 x g for 5 min, the 

supernatant was again transferred to a new tube (soluble nuclear extract). The buffer for the 

extraction of chromatin-bound proteins was prepared by adding 5 µl of 100 mM CaCl2 and 3 

µl MNase to 100 µl NEB buffer at RT. This supplemented buffer was added to the cell pellet at 

RT. The tube was vortexed vigorously for 15 s and incubated for 5 min at 37°C. After vortexing 

the tube again for 15 s and centrifugation at 16000 x g for 5 min, the supernatant (chromatin-

bound nuclear extract) was transferred to a pre-chilled tube. For my purposes the extraction 

of the final fraction - the cytoskeletal proteins - was not necessary.    

The different fractions were either directly used for Western Blotting or stored at -80°C until 

usage.  

3.2.3 Immunofluorescence 

For the immunofluorescence staining experiments cells were grown on glass coverslips or 

Mylar foils. If not indicated otherwise, a volume of 2 ml for 6 well plates and steel rings and a 

volume of 3 ml for steel containers were used for all steps of the immunofluorescence protocol 

(except for the incubation with antibodies). After treatment and different incubation periods, 

medium was removed and cells were washed with PBS. Fixation of the cells was performed 
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for 15 min with 2% paraformaldehyde. After that cells were washed 1x with PBS and 

permeabilized by three incubation steps with PBS + 0.15% Triton X-100 for 5 min. Before 

incubation with primary antibodies, nonspecific binding sites were blocked three times for 10 

min with PBS containing 1% BSA and 0.15% Glycine. Cells were then stained with 75 µl of the 

appropriate primary antibody solution (antibody diluted in blocking solution) for 1 h at RT or 

overnight at 4°C in a humidified chamber. Subsequently, the samples were washed for 5 min 

with PBS, for 10 min with PBS + 0.15% Triton X-100 and again for 5 min with PBS. Following 

another blocking step for 7 min, the cells were incubated with 75 µl of the secondary antibody 

solution for 45 min at RT in a humidified chamber. From this on, all steps need to be performed 

in the dark as secondary antibodies are coupled with a fluorochrome. After additional washing 

steps with PBS 1x for 10 min and 2x for 5 min, DNA was counterstained with DAPI. Therefor 

a stock solution of 1 mg/ ml was diluted 1:10000 in PBS and added to the cells. After 90 s 

incubation of cells with the DAPI solution, remaining DAPI was removed by two washing steps 

with PBS for 2 min. For mounting 10 µl Vectashield or a drop of Prolong Gold was added to a 

Ø 22 mm cover glass and applied to the cell layer without producing bubbles. In the case of a 

steel ring or container the foil with the attached cells mounted with a cover glass was cut out 

with a soldering bolt, sticked to an objective slide and sealed with nail polish. Samples mounted 

with Vectashield should immediately be transferred to 4°C and have to be visualized soon, 

while longer-lasting samples mounted with Prolong Gold need to harden for at least 24 h at 

RT before transferring them to 4°C.  

 

3.3 Epifluorescence microscopy 

Image acquisition was performed with an inverse epifluorescence microscope (Zeiss 

AxioObserver Z1) using a Zeiss LCI Plan Neofluor 63×/1.3 glycerine objective, the software 

AxioVision 4.8 and a AxioCam Mrm camera (Zeiss). Z-stacks were collected sequentially for 

all channels with 250 nm distance between optical sections. Filters used were 01 (BP 365/12) 

for DAPI, 38HE (BP 470/40 (HE) for GFP or A488 and filter 20 (BP 546/12) for Cy3 (all obtained 

from Zeiss). 

All z-stack images were deconvolved with Huygens deconvolution software (Scientific Volume 

Imaging) (Greubel et al. 2008). Images were further processed using the free software WCIF 

(Wright Cell Imaging Facility) ImageJ 1.37c (www.uhnresearch.ca/wcif).  
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3.3.1 Image processing for intensity correlation analysis  

Images used for intensity correlation analysis (Li et al. 2004) had to be processed according 

to the instructions for the ImageJ-based ICA (intensity correlation analysis) module. The 

nucleus was cut out from the image in all channels by “Polygon Selection”. The sharpest three 

to four sections of the z-stack were selected and remaining sections removed with the plug in 

“Slice Remover”. Gray values were normalized to 8 bit via the plug in “Eightbit Converter”. 

Subsequently a background subtraction was performed. Therefore, the background was 

measured in areas without any signals, e.g. nucleoli. By choosing the plug-in “Background 

Substraction” mean intensity of the background signal plus standard deviation was subtracted 

from the image. It is necessary to normalize the gray values again to 8 bit before accomplishing 

the analysis via the plug-in “Intensity Correlation Analysis”. This plug-in enables the qualitative 

and quantitative measuring of the correlation between pixel pairs in the red (Cy3) and the green 

(Alexa488) channels. More precisely the “product of the differences from the mean” (PDM) is 

calculated by (Ai-a)*(Bi-b), where Ai and Bi represent the intensities of the single pixel pairs, 

while a and b represent the mean intensities of the pixels in both channels. In the case of 

colocalization, the intensities of the pixel pairs are similar and as a result the PDM will have a 

positive value. If the pixel pairs are randomly distributed, the PDM is around zero. PDM value 

will be negative, when the pixel pairs show anti-correlation. The plug in compiles a PDM plot 

of every channel that shows the distribution of the pixel intensities and the PDM values. 

Additionally a scatter plot is compiled, which shows the pixel intensities of the channels 1 and 

2. This enables to differentiate between high and low intensities and its correlations (Figure 9). 

Furthermore, a LUT (Look Up Table) is produced to give an overview of the PDM values. 

Negative correlation is indicated in pink, positive correlation in green and random distribution 

in black (see PDM maps in chapter 4.1.7). The plots and the LUT only permit qualitative 

evaluation of the pixel correlation.  
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Figure 9: Intensity correlation analysis for three simulated cases  

(A) Random distribution of pixels, (B) positive correlation and (C) negative correlation between pixel 

pairs. The analysis calculates the product of the differences from the mean (PDM) for pixel pairs of two 

channels (channel A and B) with the following formula: PDM = (Ai-a)*(Bi-b).  The scatter plots on the left 

show the distribution of pixels in both channels with their corresponding intensities. PDM plots in the 

middle and on the right show the PDM values with corresponding intensities for every pixel (Li et al. 

2004). 

3.3.2 Quantitative analysis of γH2AX, BRCA1, 53BP1 and Rad51 foci 

For foci analysis with ImageJ, deconvolved z-stacks were converted to an 8-bit format. The 

settings of the PlugIn FociPicker 3D (Du et al. 2011) had to be optimized for the different 

antibody stainings by changing the parameters “Tolerance Setting” and “Minimal pixels number 

in the focus”. The output is a 3D FociMask that displays all counted foci in different colours, a 

result table, where the number of foci per cell and the size of each focus is listed and a log file 

as summary of each processed image with file name, parameter setting and number of foci 

detected. For determination of residual foci, the foci number and size of at least 20 cells per 

sample were evaluated.  

For determination of foci forming capability of BRCA1, 53BP1 and Rad51 at least 50 cells with 

clearly identifiable γH2AX tracks were evaluated. Cells were categorized into (1) full overlap 

of protein in question with γH2AX track, (2) some foci of protein in question coinciding with 

γH2AX track, or (3) no foci of protein in question coinciding with γH2AX track. 
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3.4 Molecular biological methods 

3.4.1 Isolation of RNA 

For microarray analysis or quantitative real-time PCR total RNA was isolated using the RNeasy 

Mini Kit (Qiagen). After harvesting the cells, lysis was performed by adding 350 µl (<5*106 

cells) RLT buffer to the cell pellet. Homogenization was accomplished by vortexing the lysates. 

After addition of 350 µl 70% ethanol, lysates were mixed well by pipetting and transferred to 

an RNeasy spin column. The columns were centrifuged for 15 s at 8000 x g and the flow-

through was discarded. The columns were washed with 700 µl buffer RW1 and two times with 

500 µl buffer RPE. Before placing the columns in new collection tubes, an additional 

centrifugation step at full speed for 1 min was performed to remove residual RPE buffer. For 

elution of the RNA 30 µl RNase-free water were directly added to the column and centrifuged 

for 1 min at 8000 x g.  

RNA was quantified using the NanoDrop 2000 spectrophotometer (Thermo Scientific). To 

determine the RNA concentration in ng/µl the absorption at 260 nm was measured. The 

260/280 ratio should be around 2.0, while the 260/230 ratio should be in the range of 2.0-2.2. 

Lower ratios indicate the presence of contaminants. 

As RNA is highly instable, the samples were immediately frozen at -80°C or transcribed into 

cDNA. 

3.4.2 Reverse transcription 

Isolated RNA was transcribed into cDNA with the SuperScript First-Strand Synthesis System 

for RT-PCR (Thermo Scientific). In the first step, 1 µg RNA was mixed with the dNTP mix, 

random hexamer primers and diethylpyrocarbonate (DEPC)-treated water to get a total volume 

of 10 µl per sample as follows: 

Table 3:  Preparation of RNA-primer mix 

Component Amount 

RNA 1 µg 

10 mM dNTP mix 1 µl 

Random hexamers (50 ng/µl) 1 µl 

DEPC-treated water add to a total volume of 10 µl 

 

This RNA-primer mix was incubated for 5 min at 65°C and then transferred to ice for at least 1 

min. In the second step, a 2 x reaction mix of RT buffer, MgCl2, DTT and RNase OUT was 

prepared and added to the RNA-primer mix (see Table 4).  
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Table 4: Preparation of 2x reaction mix for reverse transcription 

Component Amount 

10 x RT buffer 2.0 µl 

25 mM MgCl2 4.0 µl 

0.1 M DTT 2.0 µl 

RNase OUT (40 U/µl) 1.0 µl 

 

After incubation for 2 min at RT, 1 µl of Super Script II reverse transcriptase was added and 

incubated for 10 min at RT and afterwards for 50 min at 42°C. The reverse transcription 

reaction was terminated by incubation for 15 min at 70°C. Finally, RNase H was added and 

samples were incubated for 20 min at 37°C. Synthesized cDNA was directly used for PCR or 

stored at -80°C. 

3.4.3 Quantitative real-time PCR 

To verify the Jarid1A knockdown on mRNA level in the samples used for microarray analysis, 

quantitative real-time PCR (qRT-PCR) was used. QRT-PCR enables to study the relative 

expression levels of a gene of interest in comparison to a stably expressed housekeeping 

gene. qRT-PCR was performed in a 384 well plate format on a ViiA 7 Real Time PCR System 

Cycler (Thermo Scientific). The TaqMan probe is coupled with a FAM dye label on the 5’ end 

and a quencher on the 3’ end. During synthesis the Taq polymerase cleaves the probe via its 

5´–3´ exonuclease activity, which results in a fluorescence signal that is directly proportional 

to the amount of DNA template in the PCR.  

The PCR was performed in triplicates. Used housekeeping genes were beta-actin and 

GAPDH. The qRT-PCR reaction mix was prepared as follows: 

Table 5: Reaction mix for qRT-PCR   

Component Amount 

20 x TaqMan gene expression assay (probe) 0.5 µl 

2 x TaqMan gene expression mastermix 5.0 µl 

RNase-free H2O 3.5 µl 

 

9 µl of the reaction mix were pipetted into the wells on ice. 1 µl cDNA or - in the case of a 

negative control – H2O were added to each well. The plate was sealed with a foil, centrifuged 

briefly and loaded into the cycler. qRT-PCR was performed under the following conditions:  
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Table 6: Thermal cycling conditions for qRT-PCR 

Stage Temp (°C) Time (mm:ss) 

Hold 95 10:00 

Cycle 

(40 cycles) 

95 

60 

00:15 

01:00 

 

The relative amounts of mRNA can be calculated by establishing the cycle threshold (Ct) 

values of the reference genes and the genes of interest. The Ct value is the number of PCR 

cycles that is necessary to reach a fluorescence intensity signal that is higher than the 

background signal. In the first step of the evaluation the Ct value of the reference gene is 

subtracted from the gene of interest:   

∆Ct = Ct (gene of interest) – Ct (reference gene) 

In the next step the ∆ Ct value of the control sample is subtracted from the ∆ Ct value of the 

treated sample:  

∆∆Ct = ∆Ct (treated sample) - ∆Ct (control sample)  

The relative expression of the treated sample compared to the control sample is called ratio 

and can be calculated as follows:   

Ratio = 2 -∆∆Ct (Pfaffl 2001).  

 

3.5 MNase digestion 

Digestion of chromatin by the enzyme micrococcal nuclease (MNase) represents a simple 

method to obtain information about the compaction of chromatin. MNase cuts the DNA 

between the nucleosomes leading to polynucleosomal or mononucleosomal DNA dependent 

on incubation time and concentration of the enzyme. These fragments with different size can 

be separated via gel electrophoresis and give a hint on chromatin accessibility and 

compaction.      

72 h after siRNA transfection cells were harvested and 1x106 cells per sample and treatment 

were transferred to a tube. After washing the cell pellet with PBS, 400 µl buffer A was added 

that was prepared as indicated in Table 7. Shortly before use buffer A was supplemented with 

Complete Mini Protease Inhibitor - EDTA free (Roche). 
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Table 7: Composition of hypotonic buffer A 

Component  Amount for 100 ml 

10 mM HEPES 10 ml 

1.5 mM MgCl2 0.01428 g 

10 mM KCl 0.074 g 

0.5 mM DTT  500 µl of 0.1 M stock solution 

   

Cells were incubated in the hypotonic buffer A for 10 min on ice allowing them to swell. To 

release the nuclei, 4 µl 10% NP-40 was added per sample and incubated for 5 min at RT. After 

vortexing the tubes for 10 s, they were centrifuged at 3800 x g for 10 min at 4°C. Supernatant 

was rejected and isolated nuclei were digested at 37°C for different periods of time with 0.5 U 

MNase in 650 μl of MNase reaction buffer, prepared as follows:  

Table 8: MNase reaction buffer 

Component  Amount for 100 ml 

50 mM Tris (pH 8.0) 5 ml Tris (1M, pH 8.0) 

5 mM CaCl2 73.51 mg 

 

Aliquots of 100 μl were taken every 8 min and MNase activity was inactivated by adding 4 µl 

0.5 M EDTA pH 8.0 to the samples. DNA isolation was performed by adding SDS to a final 

concentration of 1% and incubating with RNase A (200 µg/ml) at 37°C for 30 min. Next, 

Proteinase K (400 µg/ml) was added and the sample was incubated at 55°C for 2 h. Genomic 

DNA was purified by phenol-chloroform extraction by addition of phenol:chloroform:isoamyl 

alcohol 1:1 to the digested DNA. After vortexing and centrifugation at 10000 x g for 10 min at 

4°C, aqueous phase was transferred to a new tube followed by DNA precipitation with ethanol 

and sodium acetate. For this, 1/10 volume of 3 M sodium acetate pH 5.0 and 2.5 times volume 

of 100% ethanol was added and precipitated at   -20°C overnight. After centrifugation for 20 

min at 10000 x g at 4°C, pellet was washed twice with 70% ethanol, dried and finally dissolved 

in 21.5 µl H2O. DNA concentration was measured with the NanoDrop 2000 spectrophotometer 

and similar amounts of the partially digested DNA were loaded on a 2.0% agarose gel and 

separated by electrophoresis. 

 

3.6 DSB repair reporter assay 

To study the usage of the different DNA DSB repair pathways after depletion of Jarid1A, I used 

two GFP-based repair plasmids. They were a kind gift of Dr. Wael Mansour from the 
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Uniklinikum Hamburg-Eppendorf (Mansour et al. 2008). The principle of the repair substrates 

pEJ and pGC are based on activation of GFP by repair of endonuclease I-SceI-induced DSBs 

via NHEJ or HR, respectively. Repair via NHEJ can be detected with the pEJ plasmid, which 

has two sites for I-SceI cutting (Figure 10A). An artificial start codon that is not in frame with 

the original start codon is located between these cutting-sites. Hence, expression of GFP is 

prevented. After I-SceI transfection, a DSB is produced leading to loss of the artificial start 

codon. If repair via NHEJ takes place, DNA ends are ligated and GFP can be expressed. 

Repair via HR can be monitored with the GC substrate (Figure 10B). GFP cannot be expressed 

as the I-SceI site is directly located in the GFP sequence. A truncated, also non-functional GFP 

sequence with 520 bp sequence homology is in vicinity. GFP expression can only take place, 

after cutting of I-SceI in the GFP sequence followed by repair via gene conversion, one 

mechanism of HR. 

 

Figure 10: GFP-based reporter constructs to monitor repair via NHEJ and HR    

(A) Schematic illustration of the reporter construct for NHEJ repair. The GFP gene is only expressed 

after cutting out the artificial start codon by I-SceI and repair of the I-SceI-induced DSB. (B) GFP-based 

substrate to monitor HR repair. After I-SceI transfection, the two non-functional GFP genes with 520 bp 

homology can be fused together by HR leading to functional GFP and green fluorescence (Mansour et 

al. 2008). 

The same HeLa isolate as used in the other experiments was stably transfected with pEJ and 

HeLa pGC (Claudia Böhland, personal communication). Then cells were transfected with scr 

or Jarid1A A1+A3 as described in chapter 3.1.4. 24 h later cells were transfected with 1 µg of 

the I-SceI expression vector pMCV-I-SceI to induce DSBs. A vector expressing GFP (pMCC-

gfp-P) was used as positive control. Transfections were performed using Lipofectamine 2000 

as transfection reagent.  
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Separate mixtures of DNA and supplemented DMEM and of Lipofectamine 2000 and DMEM 

were prepared and incubated for 5 min at RT. Per sample, 1 µg of DNA and 2 µl of 

Lipofectamine 2000 were mixed with DMEM, respectively, to a final volume of 250 µl. After 5 

min, mixtures were combined 1:1 and incubated for additional 15 min at RT. After this second 

incubation step 500 µl of the DNA/ Lipofectamine 2000 mixtures were added to the cells. To 

reduce the toxicity of the transfection reagent, medium was replaced 24 h after transfection of 

pMCV-I-SceI or pMCC-gfp-P. After 48 h cells were harvested and prepared for FACS analysis. 

All steps were performed on ice and only ice cold buffers were used. Cell pellet was washed 

with 10 ml PBS, centrifuged for 5 min at 500 x g at 4°C and washed again with 5 ml PBS. After 

an additional centrifugation step cells were fixed with 1 ml of a solution consisting of 3% PFA 

and 2% glucose in PBS for 10 min on ice. 14 ml PBS was added after fixation, centrifuged for 

5 min at 500 x g at 4°C and pellet was washed one more time with 5 ml of PBS. Samples were 

stored at 4°C in PBS with 10% FBS until measuring fluorescence of GFP with FACS BD LSR 

II.  

 

3.7 Gene expression microarray analysis 

3.7.1 Sample preparation 

To study possible changes in gene expression after the depletion of Jarid1A in HeLa cells I 

performed One-Color Microarray-Based Gene Expression Analysis (Agilent Technologies). 

This was carried out in cooperation with the group Integrative Biology of Dr. Kristian Unger 

from the Helmholtz Zentrum in Munich. 

Four biological replicates of every sample - control, scr siRNA and Jarid1A A1+A3 siRNA, 0 

Gy and 5 Gy respectively - were prepared. 72 h after siRNA transfection cells were irradiated 

with x-rays and harvested 2 h later to isolate the total RNA. Integrity and purity of the isolated 

RNA were checked via the Bioanalyzer (Agilent Technologies) using a Bioanalyzer RNA 

Nanochip. For all total RNA samples that achieved the required RIN (RNA integrity number) of 

7, 25 ng of the RNA were Cy3-labeled with the One-Color Low Input Quick Amp Labelling Kit 

(Agilent Technologies). 1.5 µl diluted RNA were mixed with 2 µl of diluted spike mix and 1.8 µl 

of the T7 promoter primer mix. Primer and template were denatured for 10 min at 65°C and 

subsequently incubated for 5 min on ice. In the next step the cDNA master mix was prepared 

as follows: 
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Table 9: cDNA master mix 

Component Amount 

5x first strand buffer 2.0 µl 

0.1 M DTT 1.0 µl 

10 mM dNTP mix 0.5 µl 

AffinityScript RNAse block mix  1.2 µl 

 

4.7 µl of cDNA master mix was transferred to each sample tube (total volume: 10 µl) and 

incubated for 2 h at 40°C and subsequently for 15 min at 70°C. Samples were transferred to 

ice before the reverse transcription reaction and the labelling is started. Table 10 shows the 

components of the transcription master mix. 

Table 10: Transcription master mix 

Component Amount 

Nuclease-free water 0.75 µl 

5x transcription buffer 3.2 µl 

0.1 M DTT 0.6 µl 

NTP mix 1.0 µl 

T7 RNA polymerase blend 0.21 µl 

Cyanine 3-CTP 0.24 µl 

  

6 µl of transcription master mix was added to each sample (total volume: 16 µl) and incubated 

for 2 h at 40°C. The labelled cRNA was purified using the RNeasy Mini Kit (Qiagen) as 

described before (chapter 3.4.1). The quantity of labelled RNA (cRNA) and the fluorochrome 

incorporation rate was determined using a Nanodrop sprectrophotometer and a specific activity 

score (concentration Cy3 / concentration of labelled cRNA x 1000 pmol Cy3 per µg cRNA) was 

calculated. At least 0.825 µg of cRNA with a specific activity of 6 pmol Cy 3 per µg cRNA is 

needed to fulfil the recommendations on quality assessment. All cRNA samples that 

accomplished these recommendations were used for hybridization to the microarray.  

3.7.2 Hybridization 

For the preparation of the sample hybridization, the fragmentation mix was pipetted as shown 

in Table 11: 
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Table 11: Fragmentation mix for 8-pack microarray formats 

Component Amount 

Cyanine 3-labeled, linearly amplified cRNA 600 ng 

10x blocking agent 5.0 µl 

Nuclease-free water ad 24.0 µl 

25x fragmentation buffer 1.0 µl 

 

To fragment the RNA, the fragmentation mix was incubated for 30 min at 60°C and placed on 

ice for 1 min. 25 µl 2x hybridization buffer was added to the samples to stop the fragmentation 

reaction. Samples were mixed well by pipetting up and down without introducing bubbles and 

then placed on ice until they were loaded onto the arrays. 40 µl per hybridization were loaded 

onto the slides in an Agilent SureHyb chamber base. After the complete assembly of the slide 

chambers they were placed to a hybridization oven heated to 65°C and hybridized four 17 h. 

The gene expression wash buffer 2 + 0.005% Triton-X100 had to be prewarmed to 37°C 

overnight. All dishes, racks and stir bars were washed thoroughly with Milli-Q water. 

The next day the microarray slides were washed. The hybridization chambers were 

disassembled and immediately transferred to a slide-staining dish with wash buffer 1 at RT. 

The slides were then removed to a second dish with wash buffer 1 and the buffer was stirred 

for 1 min at RT. The prewarmed wash buffer 2 was now filled in a fresh slide-staining dish, 

slides were transferred to it and the buffer was stirred for 1 min. After the washing steps the 

slides were put in a slide holder with an ozone-barrier slide cover on top and scanned 

immediately with the SureScan Microarray Scanner (Agilent Technologies).  

3.7.3 Differential gene expression analysis and pathway enrichment analysis 

Text files containing the fluorescence intensities of the array probes were extracted using the 

Agilent Feature Extraction software. Differential gene expression and pathway enrichment 

analysis were performed by Dr. Kristian Unger (Helmholtz Zentrum, Munich) and will here only 

be described shortly.   

In order to analyse the data for differential gene expression between groups the text files were 

imported into the R statistical platform using the Bioconductor library Agi4x44PreProcess. After 

quantile normalisation the data points were quality filtered and only data from microarray 

probes of HGNC annotated genes were kept. Differential gene expression analysis was 

conducted with functions from the Bioconductor limma package 

(https://bioconductor.org/packages/release/bioc/html/limma.html). The resulting p-values were 
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corrected for multiple-testing error by applying Benjamini-Hochberg false-discovery approach 

(Benjamini and Hochberg, 1995). 

For the purpose of interpretation of the results the list with differentially expressed genes were 

subjected to pathway enrichment analysis. An in-house written function was used that applied 

Fisher’s exact test assessing enrichment of genes from the gene lists in gene sets defining 

pathways. The Reactome pathway database (https://reactome.org) was used as source for the 

pathway enrichment analysis to investigate the function and interaction of the diffentially 

expressed genes (Matthews et al. 2009). 

 

3.8 Statistical analysis 

To examine the differences between the cells transfected with scrambled siRNA and Jarid1A 

A1+A3 siRNA regarding histone acetylations, an unpaired, 2-tailed t-test was performed using 

Microsoft Excel 2010. P-values < 0.05 were defined as statistically significant differences. 

Statistical evaluation of colony formation assay is described in chapter 3.1.6.   
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4 Results 

4.1 Impact of Jarid1A depletion on cellular growth characteristics and radiation 

response 

4.1.1 Knockdown of Jarid1A is associated with global increase of H3K4me3 

By Western Blotting both known isoforms of Jarid1A are detected in HeLa cells (Figure 11A), 

as well as in MCF-7 and U2OS cells and total expression of the Jarid1A protein is comparable 

in these three cell lines (see Appendix B, Figure B.1). Knockdown of Jarid1A was established 

previously using stealth siRNAs (Penterling 2013). 72 h after transfection of Jarid1A A1+A3 

siRNA, protein levels in HeLa whole cell extracts are reduced to 20-30% compared to scr 

siRNA transfected HeLa cells. Preliminary results showed an increase of cellular H3K4me3 

levels in immunofluorescence and Western Blotting as a consequence of the Jarid1A 

depletion. This has been reported before by others (Pasini et al. 2008; Beshiri et al. 2012). The 

efficiency of the Jarid1A knockdown with subsequent increase of H3K4me3 could be verified 

within this thesis in all three tested cell lines (HeLa, U2OS and MCF-7 cells) and is shown in 

Figure 11. Figure 11A shows a representative Western blot image of knockdown of Jarid1A 

with associated increase of H3K4me3 in HeLa cells. The normalized relative expression of 

Jarid1A (mean of 10 independent experiments) and of H3K4me3 (mean of 3 independent 

experiments) in whole cell extracts 72 h after siRNA transfection is displayed in the graph next 

to it. After transfection with Jarid1A A1+A3 siRNA, the demethylase is reduced to about 25%. 

This drastic reduction of nuclear Jarid1A after transfection with Jarid1A A1+A3 siRNA can also 

be observed in immunofluorescence analysis (see Figure 11B). The decrease of the Jarid1A 

protein is associated with a strong increase of H3K4me3 of about 1.8-fold in HeLa cells that is 

evident from Western Blotting (Figure 11A) and immunofluorescence (Figure 11B). Figure 11C 

shows the Western Blotting results of Jarid1A and H3K4me3 expression in U2OS and MCF-7 

cells. Cellular H3K4me3 levels increase about 1.5- to 1.7-fold in MCF-7 and U2OS cells.   

The antibody recognizing the histone modification H3K4me3 is very specific in 

immunofluorescence, whereas it also binds to H3K4me2 in Western Blotting experiments (see 

Appendix B, Figure B.2 and B.3).   
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Figure 11: Efficient down-regulation of Jarid1A is associated with global increase of H3K4me3 

(A) Decreased levels of Jarid1A are associated with increased levels of H3K4me3 in whole cell protein 

extracts of HeLa cells after siRNA transfection. Western blot images show levels of Jarid1A and 

H3K4me3 72h after transfection with scrambled siRNA (scr) or Jarid1A A1+A3 siRNA. Graph displays 

the normalized average amount (+/- SD) of Jarid1A and H3K4me3 protein after siRNA transfection of 

HeLa cells determined by quantitative analysis of Western blots of protein extracts obtained in 10 

(Jarid1A) and 3 (H3K4me3) independent experiments.  

(B) Decreased Jarid1A and increased H3K4me3 signal intensity after indirect immunofluorescence in 

HeLa cells transfected with Jarid1A A1+A3 siRNA. Microscopic images were obtained at comparable 

exposure times and display the cell nuclei stained with DAPI in blue (left), the protein Jarid1A in red 

(right) and the histone modification H3K4me3 in green. The graph indicates normalized average 

fluorescence of Jarid1A and H3K4me3 in nuclei of 20 randomly chosen cells. 

(C) Increase of H3K4me3 in whole cell protein extracts of MCF-7 cells and U2OS cells after 

knockdown of Jarid1A. Western blot images show levels of Jarid1A and H3K4me3 in cells transfected 

with scr siRNA and Jarid1A A1+A3 siRNA 72 h after transfection. Numbers give levels of H3K4me3 

normalized to scr sample after quantitative analysis. 

4.1.2 Knockdown of Jarid1A does not affect cell growth 

Contradicting reports about the influence of Jarid1A on growth characteristics of cells exist in 

the literature. It has been reported that depletion of Jarid1A in SAOS-2 cells leads to increase 

of the cyclin-dependent kinase inhibitors p21 and p27 associated with stop of cell proliferation 

in G1 and S-phase (Benevolenskaya et al. 2005). Increase of p21 and p16, both mediating 

cellular senescence, was also seen in Jarid1A-depleted cells in gastric and cervical cancer 

(Zeng et al. 2010). On the contrary, Chicas et al. observed, that Jarid1A and Jarid1B induce 

senescence in cooperation with the Rb protein by silencing of Rb target genes (Chicas et al. 

2012).  

In a preliminary approach, knockdown of Jarid1A did not seem to affect cell growth in HeLa 

cells (Penterling 2013). To study the effect of siRNA-mediated Jarid1A depletion on cell growth 
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of HeLa, U2OS and MCF-7 cells, cell yield was determined 72 h after transfection with scr or 

Jarid1A siRNA and was normalized to untransfected cells (= contr). Figure 12A shows a minor 

reduction in the cell numbers after siRNA transfection compared to the control, probably due 

to cytotoxic effects of the transfection reagent Lipofectamine 2000. The Jarid1A knockdown 

per se seems not to have an influence on short-term viability and proliferation of HeLa, MCF-

7 or U20S cells.  Additionally, cell cycle analysis of HeLa cells was performed after transfection 

with siRNA. Therefore, cells were harvested 72 h and 96 h after siRNA transfection and nuclei 

were stained with PI before flow cytometry analysis. No differences in the cell cycle distribution 

of cells transfected with scr siRNA or Jarid1A A1+A3 siRNA (see Figure 12B) were observed. 

Jarid1A knockdown cells show neither cessation of the cell cycle nor G1/S-phase arrest.  

It was also reassessed, if the cell lines exhibit up-regulation of p21 after Jarid1A knockdown. 

HeLa and U2OS cells in general feature a relatively low level of p21 compared to MCF-7 cells 

(Figure 12C). In fact, in HeLa cells p21 expression even seem to slightly decrease after Jarid1A 

depletion, while MCF-7 cells show a slight increase. Anyway, the minor changes in p21 

expression after knockdown of Jarid1A are negligible. Corresponding to our data concerning 

proliferation and cell cycle analysis, there is no evidence for substantial up-regulation of p21 

in HeLa, MCF-7 and U2OS cells after Jarid1A depletion and thereby no indication of induction 

of cellular senescence.  

Additionally, long-term viability and growth properties after Jarid1A knockdown were 

investigated in HeLa cells by determining the plating efficiency and the colony size in colony 

formation experiments. Both plating efficiency (Figure 12D) as well as average size of the 

colonies (Figure 12E) were unaffected in Jarid1A-depleted cells. In summary, these data 

demonstrate that siRNA-mediated knockdown associated with strong reduction of Jarid1A 

level and increase in cellular H3K4me3 levels does neither affect cellular viability nor growth 

behaviour in the cell lines tested here. 
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Figure 12: Jarid1A depletion does not affect cell viability or proliferation 

(A) No difference in the cell number 72 h after transfection with scr or Jarid1A siRNA. In all 

experiments involving protein extracts, the cell number of the different transfection samples was 

determined prior to protein extraction. Indicated are mean cell numbers (+/- SD) of HeLa cells (12 

experiments), U2OS cells (3 experiments) and MCF-7 cells (2 experiments), each normalized with 

respect to the untransfected control samples. 

(B) Consistent cell cycle distribution after down-regulation of Jarid1A. 72 h and 96 h after siRNA 

transfection HeLa cells were harvested, stained with PI and analyzed by flow cytometry. Experiment 

was performed in triplicates for every treatment and time point. Exemplary cell cycle distributions are 

displayed. The x-axis shows fluorescence of propidium iodide, the y-axis the cell count. 

(C) Depletion of Jarid1A does not lead to strong induction of p21. Expression of p21 after depletion 

of Jarid1A in HeLa, MCF-7 and U2OS cells, 72 h after transfection with scr or Jarid1A siRNA.  
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(D) Constant plating efficiency of the transfected cells. After incubating transfected and control HeLa 

cells for 10 days, colonies were stained with methylene blue and the number of colonies was 

determined. Graph indicates the mean plating efficiency (+/- SD) of 3 independent colony forming 

assays.  

(E) Exemplary methylene blue stained colonies 10 days after seeding of 300 cells per well. 

4.1.3 Downregulation of Jarid1A leads to histone hyperacetylation 

As mentioned before in chapter 1.4.2, Jarid1A interacts with several histone deacetylase 

complexes (Hayakawa et al. 2007; Nishibuchi et al. 2014). This suggests a possible 

contribution of the demethylase in chromatin remodeling or rather in repression of specific 

target genes cooperatively with HDACs. Coexistence of histone acetylations and H3K4me3 is 

often observed at transcriptional start sites and promoters of active genes and it was reported 

that there may be a direct association between H3K4me3 and histone acetylations (Liang et 

al. 2004; Zhang et al. 2015). This implied the question if depletion of Jarid1A and associated 

changes in the H3K4me3 level provoked altered levels of histone acetylations.  

To elucidate this, I analysed the levels of acetylation at H3K9, H3K56 and H4K16 by Western 

blotting experiments 72 h after Jarid1A knockdown. The respective antibodies were tested for 

specificity by peptide competition assays in our lab (Maroschik et al. 2014). All investigated 

acetylation levels increased after Jarid1A knockdown as displayed by representative Western 

blot images (Figure 13A). The graphs on the right depict the average expression of the 

investigated acetylation levels of five or three independent experiments. While the increase of 

H3K9ac and H3K56ac was statistically not significant (p = 0.0530 and p = 0.1891), increase of 

acetylations at H4K16 showed a statistically significant increase of about 100% (p = 0.0035). 

To exclude general effects on the expression of the histones H3 and H4 after Jarid1A-

depletion, I also checked for potential alterations in the expression of the core histone proteins 

by Western blotting (Figure 13B). The amounts of H3 and H4 remain unaffected after the 

Jarid1A knockdown.     
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Figure 13: Depletion of Jarid1A results in histone hyperacetylation 

(A) Increase of H4K16ac, H3K9ac, and H3K56ac in whole cell protein extracts of HeLa cells after 

siRNA transfection. Western blot images show levels of the histone modifications in cells transfected 

with scrambled siRNA (scr) and Jarid1A A1+A3 siRNA. Graphs indicate the means (+/- SD) from 5 

independent experiments for H4K16ac and 3 independent experiments for H3K9ac and H3K56ac 

after quantitative analysis of Western blots. The effect of H4K16ac is statistically significant (p = 

0.0035).  

(B) The amounts of the histones H3 and H4 in whole-cell extract are not affected by down-regulation 

of Jarid1A. Indicated are means (+/- SD) from 3 experiments. 

4.1.4 Chromatin accessibility is not affected after Jarid1A-depletion 

Next, the impact of histone hyperacetylation on the global structure of chromatin had to be 

investigated. Histone hyperacetylation may lead to a more open chromatin structure that can 

have several consequences in cellular processes possibly influencing transcriptional 

regulation and disturbing interaction of chromatin with chromatin-binding proteins (Perry and 

Chalkley 1981; Shogren-Knaak et al. 2006).   

To study the influence of the hyperacetylation after Jarid1A depletion on the global structure 

of chromatin, nuclei can be partially digested with micrococcal nuclease (MNase). MNase is 

an enzyme derived from Staphylococcus aureus that is able to digest nucleic acids by cutting 

the DNA between nucleosomes in the region of the linker histone H1 (Telford et al. 1989). 

Dependent on the sensitivity of the chromatin to the MNase, it allows drawing conclusions 

about the chromatin compaction. 72 h after siRNA transfection nuclei of Jarid1A depleted cells 

and control transfected cells were isolated, digested with MNase and purified DNA was loaded 
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onto an agarose gel. A ladder of DNA fragments according to mono-, di-, trinucleosomes, and 

so on, is visible on the gel (Figure 14). The longer the nuclei were digested with MNase, the 

smaller are the resulting oligonucleosomes. Both samples show similar sensitivity to MNase 

digestion suggesting no or minor global effect of the observed hyperacetylation on chromatin 

accessibility.   

       

 

Figure 14: MNase accessibility is not affected by Jarid1A depletion  

Analysis of chromatin accessibility by MNase digestion of isolated nuclei. After different incubation 

periods with 0.5 U MNase, comparable amounts of partially digested DNA were loaded onto an 

agarose gel. The emerging ladder of mono- and oligonucleosomes is comparable in Jarid1A 

A1+A3 and scr transfected cells indicating regular nucleosome distribution in bulk chromatin after 

Jarid1A depletion. 

4.1.5 Depletion of Jarid1A enhances radiosensitivity 

It was observed by our group that Jarid1A accumulates at laser-induced damage sites and 

preliminary results further suggested higher radiosensitivity in Jarid1A knockdown cells (Seiler 

et al. 2011; Penterling 2013). The additional observation that Jarid1A-depletion influences 

histone acetylation levels intensifies this assumption, even without indications for notable 

global changes in chromatin structure. Treatment of cells with HDAC inhibitors (HDACi) 
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leading to histone hyperacetylation is often linked to radiosensitization (Kim et al. 2010). 

Especially the use of low concentrations of HDACi, where the only evident effect is chromatin 

hyperacetylation, suggests a direct influence of hyperacetylation on radiation sensitivity 

(Karagiannis et al. 2007). 

To investigate the influence of Jarid1A-downregulation on cell survival after x-irradiation, 

colony forming experiments were performed. Differently transfected HeLa cells were irradiated 

with 0 Gy, 2 Gy, 5 Gy and 10 Gy 72 h after siRNA transfection and incubated for 10 days. 

Figure 15 shows the average cell survival of the untransfected control, and of cells transfected 

with scr siRNA and with Jarid1A A1+A3 siRNA depending on the dose of irradiation. In Figure 

15 a clear and statistically significant radiosensitization can be observed after Jarid1A 

depletion compared to untransfected cells (p < 0.0001) and to control-transfected cells (p = 

0.0025) (Braselmann et al. 2015) within 3 independent colony forming experiments. The data 

confirm recent observations and demonstrate clearly that the demethylase Jarid1A is important 

for the cellular resistance to radiation damage. Sensitization was also observed after 

transfection with each of the Jarid1A siRNAs alone (A1 and A3), thus ruling out off-target 

effects (see Appendix C, Figure C).  

 

 

Figure 15: Depletion of Jarid1A enhances radiosensitivity  

Survival fraction of the differently treated HeLa cells irradiated at 72 h after siRNA transfection. Cells 

were irradiated with 0 Gy, 2 Gy 5 Gy or 10 Gy x-rays and incubated for 10 days before fixation and 

methylene blue staining of colonies. For every dose the mean value of the cell survival (+/- SD) of 3 
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independent colony forming assays is shown. Data were fitted with a linear-quadratic model and 

statistical significance was determined by F test. After Jarid1A depletion, survival is significantly 

reduced as compared to scr siRNA transfected cells (p = 0.0025) and untransfected controls (p < 

0.0001). 

4.1.6 Investigation of factors possibly responsible for the observed enhanced 

radiosensitvity after Jarid1A knockdown 

Having shown that Jarid1A depletion sensitizes cells to radiation, the impact of Jarid1A 

knockdown on damage response and DSB repair needs to be investigated. For this, cell cycle 

distribution and recruitment of Jarid1A to chromatin after irradiation with x-rays was studied. I 

additionally analysed the recruitment and dissociation of repair foci after irradiation of Jarid1A-

depleted cells via induction of DSBs with the ion microbeam and investigated I-SceI-induced 

DSB repair reporter assay to exclude disturbance of the DNA DSB repair pathway choice.     

4.1.6.1 Cell cycle checkpoint and apoptosis 

First, cell cycle distribution of Jarid1A depleted cells compared to control transfected cells after 

irradiation with x-rays was analysed. Radiation generally induces cell cycle arrest to guarantee 

repair of damage prior to mitosis (Jeggo and Löbrich 2006). The phase the cell cycle arrest 

occurs depends on the p53 status of the cell line. Cell lines with a stably expressed p53 

generally arrest in G1/S phase, while cells with mutant p53 tend to arrest in G2/M phase of the 

cell cycle (Halacli et al. 2013). Due to infection with HPV18, p53 status is compromised in HeLa 

cells (Scheffner et al. 1990). Figure 16 shows cell cycle distribution directly, 24 h and 48 h after 

irradiation with 5 Gy x-rays. Scr and Jarid1A A1+A3 transfected cells both feature a clear G2 

phase arrest 24 h after irradiation. Regular cell cycle distribution is achieved 48 h after 

irradiation in both samples. No accumulation of sub-G1 DNA is evident, indicating poor 

apoptosis induction in both samples. 
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Figure 16: Depletion of Jarid1A does not affect cell cycle checkpoints 

Consistent cell cycle distribution after down-regulation of Jarid1A and irradiation with 5 Gy x-rays. 

72 h after siRNA transfection, cells were irradiated. Directly, 24 h and 48 h after irradiation HeLa 

cells were harvested, stained with PI and analysed by flow cytometry. Experiment was performed 

in triplicates for every treatment and time point. Exemplary cell cycle distributions are displayed. The 

x-axis shows fluorescence of propidium iodide, the y-axis the cell count. 

4.1.6.2   No accumulation of Jarid1A at chromatin after irradiation 

It has been reported previously that Jarid1A visibly accumulates at laser-induced γH2AX sites, 

but not at ion-induced γH2AX foci (Seiler et al. 2011). Laser irradiation results in extremely 

high local damage load, hence often enabling visualization of factors at damage sites that 

cannot be detected after irradiation with other, more physiological sources. An additional 

disadvantage is that the laser-induced damage is poorly characterized and often leads to 

misrepresentation of the recruitment analysis to the damage (Reynolds et al. 2013). To verify 

the accumulation of Jarid1A at irradiation-induced damage sites, subcellular protein 

fractionation was performed after irradiation with 5 Gy x-rays. Different protein fractions were 

used for Western blotting. Figure 17 displays the detection of Jarid1A and respective 

characteristic proteins for the subcellular fractions. As expected, γH2AX is detected only in the 

chromatin-bound fraction and the amount is much stronger after irradiation. Tubulin and 

HDAC3 served as controls for the soluble nuclear fraction and the cytoplasmic fraction. The 

large isoform of Jarid1A is almost exclusively found in the nucleus, while the small isoform can 

also be found in the cytoplasmic fraction. There is no enhanced recruitment of Jarid1A to the 
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chromatin after irradiation with 5 Gy. Under comparable conditions, enhanced chromatin 

binding was reported for Jarid1B (Li et al. 2014). 

 

 

Figure 17: No enhanced accumulation of Jarid1A at chromatin after irradiation  

1 h after irradiation of HeLa cells with 5 Gy of x-rays cytoplasmic, soluble nuclear and chromatin-

bound protein fractions were extracted and used for Western blotting analysis with the indicated 

antibodies. HDAC3 and Tubulin are characteristic for the respective protein fractions serving as 

control for proper fractionation, while γH2AX functions as control for the irradiation and for the 

chromatin-bound fraction simultaneously. After irradiation amount of Jarid1A in the respective 

fractions remains constant. Displayed is an exemplary Western Blotting image (experiment was 

performed two times). 

4.1.6.3   Recruitment and dissociation of repair foci is not affected 

Chromatin modification and remodeling play a crucial role in DNA damage repair and have to 

be tightly coordinated with DNA damage factors. Among histone modifications, acetylations 

gained more and more attention regarding their importance in DNA damage response (Li et al. 

2010; Hsiao and Mizzen 2013; Ikura et al. 2015). Both, acetylation and deacetylation at H4K16 

was observed after damage induction (Murr et al. 2005; Li et al. 2010; Neumayer and Nguyen 

2014;). The prevalent model is a loss of acetylation at H4K16 directly after damage induction, 

followed by increased acetylation at later time points. Deacetylation of H4K16 promotes 53BP1 

binding, thus leading to NHEJ and suppressing repair by HR. Hence, one would expect that 

increased acetylation of H4K16 may interfere with 53BP1 recruitment to radiation-induced 

damage sites, as shown after HDACi treatment (Tang et al. 2013). Thus, recruitment and 

dissociation of repair factors was investigated after Jarid1A knockdown and associated 

increase in H4K16ac. Previous results revealed regular formation and resolution of γH2AX foci 
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at ion-induced DSBs after knockdown of Jarid1A. Kinetics of the damage response proteins 

53BP1 and Rad51 also seemed ordinary (Penterling 2013). To verify these observations, 

repair kinetics of 53BP1, Rad51 and BRCA1, including foci formation and dissociation, were 

monitored via immunofluorescence in Jarid1A-depleted cells after induction of DSBs by ion 

microirradiation. Irradiation was performed in a small angle (10°) with 55 MeV carbon ions 72 

h after siRNA transfection. Cells were fixed at the indicated time points after irradiation and 

immunofluorescence was performed. Foci formation of all factors was tested at 1 h after 

irradiation. To account for possibly slower recruitment of Rad51, this protein was also 

assessed after 3 h. Figure 19 shows epifluorescence images of randomly chosen cells after 

immunofluorescence with BRCA1 (A), Rad51 (B), and 53BP1 (C). γH2AX was used as marker 

for DSBs in all samples. Images show regular accumulation of 53BP1, Rad51 and BRCA1 at 

γH2AX sites at all tested time points. Quantification was done by dividing cells with γH2AX 

tracks into 3 groups. The protein of interest showed either a total, a partial or no colocalization 

with γH2AX. Control transfected and Jarid1A depleted cells showed no differences in the 

distribution of these 3 groups with the indicated antibodies and fixation time points after 

irradiation. Besides the time points 1 h and 3 h that showed no differences between src siRNA 

and Jarid1A siRNA transfected samples, we also investigated early time points (5 min, see 

Figure 18C), where a full colocalization of 53BP1 and yH2AX is not yet given due to ongoing 

recruitment of 53BP1. These early time points did also not point towards different repair 

kinetics of scr siRNA compared to Jarid1A siRNA transfected samples. Recruitment analysis 

reveals that depletion of Jarid1A and concomitant hyperacetylation of H4K16 does not affect 

recruitment of 53BP1 and BRCA1 at ion irradiation-induced damage sites. Furthermore, down-

stream recombinational repair steps seem not to be affected as shown by Rad51 recruitment. 

There were also no visible differences in the early steps of DSB detection and signaling, since 

γH2AX foci formation after carbon ion or x-irradiation happens similarly fast in Jarid1A depleted 

and control cells. The formation of foci after irradiation with carbon ions was evaluated 5 min 

(see Appendix D, Figure D panel A) and 2 min (Figure D panel B) after irradiation. Because of 

the experimental set-up, the shortest time that can be studied post-irradiation is 2 min. Also 

after this short time, no evident difference in γH2AX formation could be found. 15 minutes after 

x-irradiation, γH2AX foci have comparable brightness in both samples as well (Appendix D, 

Figure D panel C). Because of these observations, I  conclude that Jarid1A is not involved in 

the pathways regulating the accumulation of DSB repair factors at damage sites, even if it has 

an influence on the cellular H4K16 acetylation level.  
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Figure 18: Formation of radiation-induced protein foci is not affected by depletion of Jarid1A 
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Detection of repair foci in scr or Jarid1A A1+A3 siRNA transfected HeLa cells after ion 

microirradiation. 72 h after transfection cells were irradiated in a small angle (10°) with 55 MeV carbon 

ions. After incubation, cells were fixed and indirect immunofluorescence was performed to detect the 

foci formation of BRCA1 and γH2AX (A), Rad51 and γH2AX (B) or 53BP1 and γH2AX (C). For 

quantitative evaluation, cells with γH2AX tracks were divided in 3 groups, depending on whether the 

protein of question formed foci that overlapped with γH2AX foci in the whole track, or occasional foci 

that overlapped with some of the γH2AX foci in the track, or no overlapping foci. Indicated are means 

(+/- SEM) from at least 50 evaluated cells. Displayed are exemplary epifluorescence images. Scale 

bars in the images represent 10 µm. Experiment was performed two times during different beam 

times. 

 

Disturbed dissociation of damage response factors from the damage sites after knockdown of 

Jarid1A was also conceivable. I therefore monitored γH2AX, 53BP1 and Rad51 by 

immunofluorescence for longer periods of time after irradiation with x-rays (up to 48 h) and 

determined the number of residual foci (Figure 19), which represents a frequently used method 

for estimation of DSB repair efficiency (Löbrich et al. 2010). Spontaneous foci formation is not 

increased in Jarid1A depleted cells as seen by the number of foci in unirradiated cells (0 Gy). 

The number of γH2AX and Rad51 foci is similar in Jarid1A knockdown cells and control 

transfected cells at all analysed time points implicating ordinary recruitment and dissociation 

kinetics. For 53BP1 slight differences are seen, which seem, however, not to affect Rad51 

recruitment and overall repair as judged by resolution of H2AX foci. From the fact that the 

number of γH2AX foci 48 h after x-irradiation with 5 Gy in Jarid1A-depleted and control cells 

returned almost to the level of unirradiated cells, it may be concluded that the repair of the 

DSBs was regularly accomplished.  

Despite H4K16 hyperacetylation, the results show no evidence for disturbed DSB repair in 

Jarid1A depleted cells as shown by monitoring the most common DSB repair factors at 

different time points after irradiation, both with low-LET x-rays and high-LET ions and 

spontaneous damage foci before damage induction.  
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Figure 19: Dissociation of radiation-induced protein foci is not affected by depletion of 

Jarid1A 

Detection of repair foci in scr or Jarid1A A1+A3 siRNA transfected HeLa cells after x-irradiation. 

Mean background and residual foci number (+/- SEM) of γH2AX, 53BP1 and Rad51 in at least 20 

cells after 5 Gy X-rays. Cells were fixed before and 4 h, 24 h or 48 h after irradiation and indirect 

immunofluorescence was performed. Semi-automatic detection and characterization of 

spontaneous and residual γH2AX foci in the cells was performed by using the PlugIn FociPicker3D. 

4.1.6.4 DNA DSB reporter assay 

To verify that DSB repair is not reduced in Jarid1A-depleted cells, repair efficiency of NHEJ 

and HR was analysed directly after Jarid1A depletion by using plasmid-based DSB repair 

assay. Efficient repair of I-SceI-induced DSB leads to expression of GFP that can be detected 

by flow cytometry (Mansour et al. 2008 and 2010). The reporter plasmids pEJ and pGC were 

used to monitor NHEJ and HR events, respectively, by stable integration in the same HeLa 

cell isolate as used for the other experiments described here. 

After transfection of the I-SceI expression plasmid, the number of GFP-expressing cells 

increased 16.2-fold in HeLa pEJ and 11.8-fold in HeLa pGC cells (Figure 20) indicating recent 

DSB repair. Comparable frequencies of productive DSB repair events were observed after 

transfection with scr siRNA, Jarid1A A1+A3 siRNA and no siRNA transfection (Figure 20). 
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These results substantiate that depletion of Jarid1A under the conditions used in this work 

does not reduce DSB repair efficiency, nor does it change pathway use. 

 

 

 

 

Figure 20: Repair of endonuclease-induced DSB via NHEJ or HR after are not affected by 

depletion of Jarid1A 

Relative number of GFP expressing cells, normalized to the frequency in untransfected HeLa pEJ (left 

panel) and pGC (right panel) control cells, after transfection of I-SceI expression plasmid into untreated 

cells and cells treated with scr siRNA or Jarid1A A1+A3 siRNA. Graph displays the mean results +/- 

SEM of 5 independent experiments each with 20000 analysed cells.  

4.1.7 Intensity correlation analysis  

The initial interest in the histone demethylase Jarid1A was motivated by the observation that 

H3K4me3/me2 and elongation-active RNA polymerase II (RNA Pol II Ser2) is removed at 

chromatin regions decorated by γH2AX after ion microirradiation (Seiler et al. 2011). Due to its 

capacity to remove tri- and dimethylations from H3K4 and its interaction with chromatin 

remodeling factors, Jarid1A seemed to be a suitable candidate to be responsible for the loss 

of methylations at the damage sites. Previous results suggested that knockdown of Jarid1A 

has no influence on the loss of H3K4me3 and RNA Pol II Ser2 at damage sites (Penterling 

2013). Here, these observations should be verified and the influence of alternative factors on 

the loss of H3K4me3 at γH2AX decorated chromatin regions should be investigated, including 

the closely related demethylase Jarid1B and important damage signalling factors like ATM, 

ATR and PARP1.     
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4.1.7.1 Jarid1A is not responsible for radiation-induced loss of H3K4me3 at γH2AX-

decorated chromatin domains  

To verify our preliminary results, HeLa cells were irradiated with carbon ions in a line pattern 

at the ion microirradiation facility SNAKE 72 h after transfection with scr or Jarid1A siRNA. At 

1 h after irradiation, underrepresentation of H3K4me3 and RNA Pol II Ser2 at damage sites is 

comparable in both samples (Figure 21A and 21B), indicated by predominantly pink signals in 

the map, where the product of the differences from the mean is displayed (PDM map). In the 

PDM maps areas highlighted in pink show negative correlation of the pixels from both 

channels, green signals indicate positive correlation and black signals display random 

distribution of pixels. At high pixel intensities PDM plots skew to negative values demonstrating 

negative correlation, as well as the scatter plots display anti-correlation between H3K4me3 

and γH2AX (Figure 21A) and between RNA Pol II Ser2 and 53BP1 (Figure 21B), respectively. 

The plot profiles gained by measuring signal intensities in the respective channels along the 

indicated lines also demonstrate underrepresentation of H3K4me3 and active RNA Pol II Ser2 

at damage sites. Unfortunately, with the method that was used here, a quantitive analysis of 

the intensity correlation was not possible. I conclude, however, that depletion of Jarid1A does 

not lead to major disturbance of H3K4me3 demethylation at damage sites and radiation-

induced transcriptional silencing at chromatin regions decorated by γH2AX/53BP1.  

During the course of this thesis it was reported that the demethylase Jarid1B accumulates at 

damage sites in a PARP1-dependent manner and that its depletion leads to deficiencies in the 

DSB repair after ionizing radiation and to reduced loss of H3K4me3 at DSB regions (Li et al. 

2014). Unfortunately, I could not study the effects of siRNA-mediated knockdown of Jarid1B in 

our system. Under a variety of experimental conditions, there was either no visible reduction 

of Jarid1B on the protein level after siRNA transfection or cells detached rapidly once Jarid1B 

levels were strongly reduced (data not shown). Incubation of cells with PBIT, a recently 

identified inhibitor of Jarid1B (Sayegh et al. 2013), had no effect on the methylation levels of 

H3K4 in our lab. Although the substance was tested at different concentrations and in different 

cell lines, there was no evidence for inhibition of Jarid1B, as indicated by consistent H3K4me3 

level in immunofluorescence and Western Blotting experiments (see Western Blot images in 

Appendix E, Figure E.1). Nevertheless, we performed intensity correlation analysis of 

H3K4me3 and γH2AX in cells treated with 15 µM PBIT 72 h prior to irradiation with single ions 

in a line pattern. Loss of H3K4me3 at γH2AX-decorated domains was still visible (see Appendix 

E, Figure E.2).       
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Figure 21: Depletion of Jarid1A does not disturb H3K4me3 demethylation and loss of RNA 

Pol II Ser2 at damage sites  



Results 

67 
 

HeLa cell transfected with scr or Jarid1A A1+A3 siRNAs were subject to ion microirradiation with 

single carbon ions applied in line patterns (lateral distance between single ion hits 1 µm, distance 

between “lines” 5 µm). Cells were incubated for 1 h before fixation and indirect immunofluorescence 

detection of γH2AX and H3K4me3 (A) or elongation-proficient RNA Pol II Ser2 (B). Correlation 

analysis was done as described in chapter 3.3.1. In all panels the top rows show single slices of 3D 

microscopic images (red channel, green channel and merge). In addition, to determine positive or 

negative correlation between signal intensities in both channels for each pixel, the product of the 

mean (PDM) map is shown. In the PDM maps, negative correlation at positions of γH2AX foci is 

visualized by pink signals; positive correlation is shown by green signals, whereas black indicates 

random distribution of both signals. In the second row of each panel, plots of signal intensity vs. PDM 

in the respective channels and the corresponding intensity scatter plots are shown. PDM plots 

skewed to negative values demonstrate anti-correlation. In the third row, profiles of the signal 

intensities along the indicated lines also demonstrate underrepresentation of H3K4me3 and active 

RNA Pol II at damage sites. Displayed are exemplary epifluorescence images. Experiment was 

performed three times during different beam times. 

4.1.7.2 ATM, ATR and PARP1 are not responsible for radiation-induced loss of 

H3K4me3 at γH2AX-decorated chromatin domains 

To identify the factors responsible for the observed loss of H3K4me3 at ion-induced γH2AX 

foci, I used small molecule inhibitors to inhibit the important damage signalling factors ATM, 

ATR and PARP1. Each of them is involved in the early steps of damage signalling and may be 

responsible for the rapidly emerging loss of H3K4me3 at damage sites. Especially PARP1 

represents a suitable candidate to be involved in transcriptional silencing of the damaged 

region, because of the before mentioned involvement of Jarid1B in the damage response in a 

PARP1-dependent manner (Li et al. 2014).  

HeLa cells were irradiated with carbon ions in a 5 x 5 µm matrix pattern at the ion 

microirradiation facility SNAKE 72 h after inhibition of ATR, ATM and PARP1 with the 

respective inhibitor. I chose irradiation in matrix pattern, as this allows an even clearer visible 

pattern than irradiation in line patterns. At 1 h after irradiation, underrepresentation of 

H3K4me3 at γH2AX regions is visible in the controls treated with DMSO and in the cells treated 

with the particular inhibitors (Figure 22 and Appendix, Figure E.2 and E.3). This is shown by 

predominantly pink signals in the PDM map that highlight areas of negative correlation. After 

inhibition of ATM by KU-60019 (Figure 22A), inhibition of PARP1 by Olaparib (Figure 22B) and 

inhibition of ATR by VE-821 (see Appendix E, Figure E.3), PDM plots skew to negative values 

at high γH2AX pixel intensities, demonstrating negative correlation, and the scatter plots also 

display anti-correlation between H3K4me3 and γH2AX. The plot profiles gained by measuring 

signal intensities in the respective channels along the indicated lines also demonstrate 
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underrepresentation of H3K4me3 and γH2AX. Figure 22C demonstrates the proper inhibition 

of ATM and PARP1 as shown by reduction at the damage site of phosphorylated Chk2 1 h 

and XRCC1 3 min after irradiation with single ions, respectively. Similar exposure times were 

used for the comparison of the single signals after treatment with DMSO or inhibitors. The 

disturbed accumulation of pChk2 is a direct consequence of the inhibition of the kinase ATM, 

while absent accumulation of XRCC1 can be traced to the inhibition of the catalytic activity of 

PARP1. Potent inhibition of ATM with KU-60019 is also reflected by a reduction in size and 

intensity of γH2AX foci (see Figure 22A and 22C), as ATM, together with ATR, is responsible 

for phosphorylation of γH2AX. I failed to prove the inhibition of the kinase ATR, as the anti-

pChk1antibody showed neither signals in the control cells nor in the cells treated with VE-821 

(data not shown). I conclude that inhibition of ATM or PARP1 has no major effect on 

demethylation of H3K4me3 at damage sites and radiation-induced transcriptional silencing at 

chromatin regions decorated by γH2AX. Concerning the potential involvement of ATR, a final 

statement is not possible at the moment.   
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Figure 22: Inhibition of ATM or PARP1 does not disturb H3K4me3 demethylation at damage 

sites  

HeLa cells were treated with (A) 10 µM KU-60019 for ATM inhibition and with (B) 10 µM Olaparib 

for PARP1 inhibtion 1 h prior to irradiation. DMSO was used as control. Cells were exposed to ion 

microirradiation with single carbon ions applied in a 5 µm x 5 µm matrix pattern. Cells were 

incubated for 1 h before fixation and indirect immunofluorescence detection of γH2AX and 

H3K4me3. Correlation analysis was done as described in chapter 3.3.1. In all panels the top rows 

show single slices of 3D microscopic images (red channel, green channel and merge). In addition, 
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to determine positive or negative correlation between signal intensities in both channels for each 

pixel, the product of the mean (PDM) map is shown. In the PDM maps, negative correlation at 

positions of γH2AX foci is visualized by pink signals; positive correlation is shown by green signals, 

whereas black indicates random distribution of both signals. In the second row of each panel, plots 

of signal intensity vs. PDM in the respective channels and the corresponding intensity scatter plots 

are shown. PDM plots skewed to negative values demonstrate anti-correlation. In the third row, 

profiles of the signal intensities along the indicated lines also demonstrate underrepresentation of 

H3K4me3 at damage sites.  

(C) Decreased signal of pChk2 and XRCC1 after indirect immunofluorescence in HeLa cells treated 

with KU-60019 or Olaparib. Microscopic images were obtained at comparable exposure times and 

display γH2AX as damage marker in the left row, pChk2 or XRCC1 in the middle row and merged 

signals on the right.  

4.1.8 Gene expression changes after Jarid1A depletion 

As an H3K4me3 demethylase Jarid1A is expected to have a major influence on regulation of 

transcription. Depletion of Jarid1A has been connected to deregulation of developmentally 

regulated or cell cycle specific genes (Benevolenskaya et al. 2005; Chicas et al. 2012; 

Nishibuchi et al. 2014). Since there was neither a hint at disturbed cell viability and cell growth 

nor impaired recruitment of damage response and DSB repair proteins initiated by depletion 

of Jarid1A in our experiments, differences in radiosensitivity may result from different 

transcriptional responses to radiation insults. Therefore the transcription response in Jarid1A 

knockdown cells was compared to untransfected and control transfected Hela cells with and 

without irradiation by gene expression microarray analysis. To increase the validity four 

biological replicates were analysed for every condition - control, scr siRNA and Jarid1A A1+A3 

siRNA, 0 Gy and 5 Gy respectively.  

Table 12 shows the number of genes with significantly altered expression when comparing the 

different transfected cells without radiation. After knockdown of Jarid1A mRNA levels of 1731 

genes were significantly altered, when comparing to scr transfected cells. Only genes with a 

fold-change of at least 1.5 and a p-value < 0.05 are included. Of these, 959 genes (55.4%) 

were down-regulated and 772 genes (44.6%) were up-regulated after Jarid1A depletion. When 

comparing unirradiated knockdown cells to untransfected cells, 400 genes (58.5%) were down-

regulated and 284 genes (41.5%) were up-regulated. A similar proportion of up- and down-

regulated genes after Jarid1A depletion in HeLa cells was observed in gene expression 

microarray analysis by Nishibuchi and colleagues (Nishibuchi et al. 2014). Comparison of 

mRNA levels of scr transfected cells with untransfected cells reveals 381 significantly altered 

genes. Efficient depletion of Jarid1A on mRNA level was verified via qRT-PCR (data not 

shown).  
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Table 12: Numbers of genes with significantly altered gene expression in microarray analysis in 

the different transfected cells without radiation  

 Comparison 

Jarid1A A1+A3 to scr 

Comparison 

Jarid1A A1+A3 to contr 

Comparison 

scr to contr 

Altered genes 1731 648 381 

Up-regulated 

genes 

772      

(44.6%) 

248 

(38.3%) 

186 

(48.8%) 

Down-regulated 

genes 

959     

(55.4%) 

400 

(61.7%) 

195 

(51.2%) 

 

Pathway enrichment analysis by Reactome (http://www.reactome.org) revealed 6 significantly 

(FDR ≤ 0.05) deregulated pathways of various hierarchical levels when comparing cells treated 

with Jarid1A A1+A3 siRNA and scr siRNA. The affected deregulated pathways play a role in 

level 1 pathways “Extracellular matrix organization” or “Metabolism” and are listed in Table 13. 

Responsible for the affected extracellular matrix (ECM) organization are mostly deregulated 

genes that express integrines, collagens and lamins. Modified expression of genes expressing 

kinases, like PRKAA2, PRKCA or MVK and of genes expressing (parts of) transferases or 

transporters, like e.g. SPTLC3, ABCC1, ABCC3, ABCG1, provoke deregulated metabolism 

pathways. Similar pathways are also affected when comparing Jarid1A-depleted cells to 

untransfected cells. Additionally, some signal transduction pathways and two pathways related 

to the immune system are involved (see Appendix F, table F.1). The impact on signal 

transduction pathways is also referable to the deregulation of kinases mentioned above.  

Table 13: Significantly deregulated pathways revealed by Reactome pathway enrichment 

analysis after Jarid1A depletion in unirradiated cells (p < 0.05; FDR < 0.05). Bold face: level 1, 

normal font: level 2; blue: Metabolism, pink: Extracellular matrix organization 

Gene Set Deregulated 

genes in Gene 

Set [%] 

Genes 

Metabolism 11.54 ABCB7, ABCC1, ABCC3, ABCG1, ABHD5, ACACA, ACAT1, 

ACSL3, ACSL4, ADA, ADSS, AGL, AGPAT2, AGPS, AGT, AK5, 

ALDH4A1, ALDH6A1, AMPD2, AOX1, APIP, AQP1, ARF1, ASS1, 

AZIN1, B4GALT4, BCAT2, BCKDHA, BCKDHB, BDH1, CA12, 

CA2, CACNA1A, CAT, CBR1, CDK19, CERS2, CGA, CHST11, 

CHSY3, CIAO1, CKMT1A, COL4A3BP, CSGALNACT1, CSPG5, 

CTGF, CYCS, CYP24A1, CYP2R1, CYP2U1, DCK, DCN, 

DECR1, ETNK1, FAH, G6PC3, GATM, GBA, GCGR, GCLC, 

GCLM, GDA, GLA, GLCE, GLIPR1, GLS, GM2A, GNB5, GNG11, 

GPAT2, GPC5, GPD1L, GPD2, GPX1, GYG1, HACL1, HADHB, 
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HAS2, HEXA, HPD, HS6ST1, HS6ST2, HSD17B12, HSD17B7, 

IDH3B, INPP5A, ISYNA1, ITPR1, LBR, LDLRAP1, LIPE, 

LPCAT2, LRPPRC, LTA4H, MAPKAPK2, MBOAT2, MCCC1, 

MED13, MED26, MGLL, MLXIPL, MMACHC, MTHFR, MTMR2, 

MTR, MVD, MVK, NADK, NCOA3, NCOR1, NDUFA10, NDUFA7, 

NDUFB1, NDUFB5, NDUFC2, NNMT, NOSTRIN, NPAS2, 

NT5C3A, NT5E, NUDT4, NUP43, OCRL, PCBD1, PCCB, PDK2, 

PDK4, PDP2, PGAM1, PGLS, PHKA2, PHYH, PIP4K2A, 

PLA2G4A, PLD1, POM121, PPIP5K2, PRKAA2, PRKAR1A, 

PRKAR2A, PRKCA, PSAP, PSAT1, PSMB2, PSMB9, PSMC5, 

PTGES, PTGS1, PYGB, QPRT, RAP1A, SAT1, SDC4, SDHD, 

SEC23A, SEC24A, SEC24D, SGMS1, SGMS2, SLC25A32, 

SLC25A6, SLC27A2, SLC35B2, SLC35D2, SLC44A1, SMOX, 

SMPD1, SMPD4, SPHK1, SPTLC3, SREBF2, ST3GAL4, STS, 

SULT4A1, TBL1X, TEAD4, TMLHE, UGDH, UQCR10, UQCRH, 

WASL 

Metabolism of lipids 

and lipoproteins 

13.68 ABCC1, ABCC3, ABCG1, ABHD5, ACACA, ACAT1, ACSL3, 

ACSL4, AGPAT2, AGPS, AGT, ARF1, BDH1, CBR1, CDK19, 

CERS2, CGA, COL4A3BP, CTGF, CYP24A1, CYP2R1, CYP2U1, 

DECR1, ETNK1, GBA, GLA, GLIPR1, GM2A, GPAT2, GPD1L, 

GPD2, GPX1, HACL1, HADHB, HEXA, HSD17B12, HSD17B7, 

LBR, LDLRAP1, LIPE, LPCAT2, LTA4H, MAPKAPK2, MBOAT2, 

MED13, MED26, MGLL, MTMR2, MVD, MVK, NCOA3, NCOR1, 

NPAS2, OCRL, PCCB, PHYH, PIP4K2A, PLA2G4A, PLD1, 

PRKAA2, PSAP, PTGES, PTGS1, SEC23A, SEC24A, SEC24D, 

SGMS1, SGMS2, SLC27A2, SLC44A1, SMPD1, SMPD4, 

SPHK1, SPTLC3, SREBF2, STS, TBL1X, TEAD4 

Extracellular matrix 

organization 

16.35 ADAM17, ADAMTS8, BMP2, COL15A1, COL16A1, COL18A1, 

COL25A1, COL27A1, COL4A3, COL4A4, COL5A1, COL7A1, 

COL8A1, COL9A3, COLGALT1, CTSL, DCN, F11R, FGF2, 

FURIN, ITGA1, ITGA11, ITGA5, ITGAE, ITGAV, ITGB4, LAMA1, 

LAMA4, LAMB1, LAMB3, LAMC1, LOXL1, LOXL4, LTBP3, 

MFAP3, MFAP5, MMP24, PCOLCE, PLOD2, PRKCA, SDC4, 

TGFB3, TRAPPC4 

Laminin interactions 39.13 COL18A1, ITGA1, ITGAV, ITGB4, LAMA1, LAMA4, LAMB1, 

LAMB3, LAMC1 

Collagen formation 22.09 COL15A1, COL16A1, COL18A1, COL25A1, COL27A1, COL4A3, 

COL4A4, COL5A1, COL7A1, COL8A1, COL9A3, COLGALT1, 

CTSL, ITGB4, LAMB3, LOXL1, LOXL4, PCOLCE, PLOD2 

Assembly of collagen 

fibrils and other 

multimeric structures 

25.93 COL15A1, COL18A1, COL27A1, COL4A3, COL4A4, COL5A1, 

COL7A1, COL8A1, CTSL, ITGB4, LAMB3, LOXL1, LOXL4, 

PCOLCE 
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The significant modifications in gene expression after irradiation with 5 Gy and 2 h post-

irradiation incubation are shown in Table 14. In untransfected cells, irradiation led to 

significantly altered mRNA levels in 245 genes, of which 117 genes (47.8%) were up-regulated 

and 128 (52.2%) were down-regulated. SiRNA transfected cells (scr and Jarid1A A1+A3) show 

down-regulation of more than 75% of genes. In all samples, the number of deregulated genes 

after irradiation is rather low. Generally p53 is the key regulator of the transcriptional response 

to irradiation (Rashi-Elkeles et al. 2014). Due to inactivated p53 in HeLa cells it is not surprising 

that the number of significantly deregulated genes is comparably low.  

Table 14: Numbers of significantly altered genes in gene expression microarray analysis in the 

different transfected cells 2 h after irradiation with 5 Gy 

 Comparison 

untransfected  cells  

0 Gy to 5 Gy 

Comparison 

scr transfected cells 

 0 Gy to 5 Gy 

Comparison 

Jarid1A transfected 

cells 0 Gy to 5 Gy 

Altered genes 245 93 208 

Up-regulated 

genes 

117 

(47.8%) 

20 

(21.5%) 

51 

(24.5%) 

Down-regulated 

genes 

128 

(52.2%) 

73 

(78.5%) 

157 

(75.5%) 

 

In untransfected cells Reactome analysis indicates 9 pathways that are significantly 

deregulated after irradiation, all of them belonging to the level 1 pathways “Cell Cycle” and 

“Cellular responses to stress” (see Table 15). According to the overlap of deregulated genes, 

similar pathways are affected when analyzing the effects of irradiation in control transfected 

HeLa cells after irradiation with 5 Gy. The two level 2 pathways of “Programmed cell death” 

and “Signal Transduction” are additionally affected after irradiation with 5 Gy in scr transfected 

cells (see Appendix F, table F.2). Besides the pathways “Cell Cycle” and “Cellular responses 

to stress” Jarid1A depleted cells show also deregulation of the level 1 pathway “Immune 

system” mostly due to deregulation of toll-like receptor cascades (see table 16). A deregulation 

of apoptosis related pathways could only be observed in the control transfected cells. Table 

F.2 shows that the impact on this pathway is referable to the deregulation of three genes 

encoding proteins of the histone H1 family - HIST1H1A, HIST1H1D and HIST1H1E. The same 

three genes are also deregulated in untransfected cells and Jarid1A depleted cells, but the 

pathway is not significantly affected there.     

Rashi-Elkeles et al. (2014) showed that inactivation of p53 compromises almost the whole 

transcriptional response to irradiation, both on the levels of induction and repression. Several 

pathways generally found responsive to irradiation, such as apoptosis, show only modest 
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deregulation in our study presumably because of the lack of p53 activity. Most affected 

pathways rely on the before mentioned deregulated expression of histone and M-phase genes 

that are predominantely associated with cell cycle control and general response to stress like 

senescence. These pathways are deregulated in all samples after irradiation independent of 

siRNA transfection. Deregulation of genes encoding cell cycle factors, in particular down-

regulation of factors involved in M-phase, is a typical and well-described response to irradiation 

(Crawford and Piwnica-Worms 2001, Landsverk et al. 2011). Comprisingly, the gene 

expression patterns after irradiation of the different transfected cells are very similar. 

Table 15: Significantly deregulated pathways revealed by Reactome pathway enrichment 

analysis in untransfected cells after irradiation (p < 0.05; FDR < 0.05). Bold face: level 1, normal 

font: level 2, slanted font: level 3 and higher; green: Cell Cycle, red: Cellular responses to stress 

Gene Set Deregulated 

genes in Gene 

Set [%] 

Genes 

DNA 

Damage/Telomere 

Stress Induced 

Senescence 

15.52 CCNA2, HIST1H1A, HIST1H1D, HIST1H1E, HIST1H2AD, 

HIST1H2BO, HMGA2, POT1, RAD50 

Cell Cycle 4.47 AJUBA,  AURKA, BORA, CCNA2, CCNB1, CDCA8, CDKN2C, 

CENPA, CENPE, CENPL, CNTRL, DBF4, HIST1H2AD, 

HIST1H2BO, HJURP, LMNA, MCM3, NCAPD2, NEK2, OPTN, 

POT1, RAD50, SMC1A 

Cell Cycle,  Mitotic 4.5 AJUBA, AURKA, BORA, CCNA2, CCNB1, CDCA8, CDKN2C, 

CENPA, CENPE, CENPL, CNTRL, DBF4, HIST1H2AD, 

HIST1H2BO, LMNA, MCM3, NCAPD2, NEK2, OPTN, SMC1A 

Cellular Senescence 7.59 CCNA2, CDKN2C, HIST1H1A, HIST1H1D, HIST1H1E, 

HIST1H2AD, HIST1H2BO, HMGA2, IL6, NFKB1, POT1, RAD50 

Cellular responses to 

stress 

6.05 CCNA2, CDKN2C, HIST1H1A, HIST1H1D, HIST1H1E, 

HIST1H2AD, HIST1H2BO, HMGA2, IL6, NFKB1, POT1, RAD50, 

SERPINH1, SOD1, SOD2 

Formation of 

Senescence-

Associated 

Heterochromatin Foci 

(SAHF) 

23.53 HIST1H1A, HIST1H1D, HIST1H1E, HMGA2 

Regulation of PLK1 

Activity at G2/M 

Transition 

8.75 AJUBA, AURKA, BORA, CCNB1, CNTRL, NEK2, OPTN 

G2/M Transition 7.02 AJUBA, AURKA, BORA, CCNA2, CCNB1, CNTRL, NEK2, OPTN 

Mitotic G2-G2/M 

phases 

6.9 AJUBA, AURKA, BORA, CCNA2, CCNB1, CNTRL, NEK2, OPTN 
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Table 16: Significantly deregulated pathways revealed by Reactome pathway enrichment 

analysis in Jarid1A depleted cells after irradiation (p < 0.05; FDR < 0.05). Bold face: level 1, normal 

font: level 2, slanted font: level 3 and higher; green: Cell Cycle, red: Cellular responses to stress, orange: 

Immune system 

Gene Set Deregulated 

genes in Gene 

Set [%] 

Genes 

Cell Cycle, Mitotic 8.56 AURKA, BORA, CASC5, CCNA2, CCNB1, CCNE2, CDC20, 

CDC25A, CDCA8, CDK11A, CDK11B, CDKN1A, CDKN2D, 

CENPA, CENPE, CENPF, CENPL, CNTRL, HIST1H2AB, 

HIST1H2AC, HIST2H3A, HSP90AA1, INCENP, KIF18A, KIF23, 

NDC80, NDE1, NEK2, NEK9, ORC2, SET, SGOL1, SMC1A, 

SMC4, SPDL1, STAG2, TAOK1, UBE2C 

Cell Cycle 7.57 AURKA,  BORA, CASC5, CCNA2, CCNB1, CCNE2, CDC20, 

CDC25A, CDCA8, CDK11A, CDK11B, CDKN1A, CDKN2D, 

CENPA, CENPE, CENPF, CENPL, CNTRL, HIST1H2AB, 

HIST1H2AC, HIST2H3A, HSP90AA1, INCENP, KIF18A, KIF23, 

NDC80, NDE1, NEK2, NEK9, ORC2, SET, SGOL1, SMC1A, 

SMC4, SPDL1, STAG2, TAOK1, TERF1, UBE2C 

M Phase 9.4 CASC5, CCNB1, CDC20, CDCA8, CENPA, CENPE, CENPF, 

CENPL, HIST1H2AB, HIST1H2AC, HIST2H3A, INCENP, KIF18A, 

KIF23, NDC80, NDE1, NEK9, SET, SGOL1, SMC1A, SMC4, 

SPDL1, STAG2, TAOK1, UBE2C 

Mitotic Prometaphase 16.67 CASC5, CCNB1, CDC20, CDCA8, CENPA, CENPE, CENPF, 

CENPL, INCENP, KIF18A, NDC80, NDE1, SGOL1, SMC1A, 

SMC4, SPDL1, STAG2, TAOK1 

Mitotic M-M/G1 phases 8.67 CASC5, CCNB1, CDC20, CDCA8, CENPA, CENPE, CENPF, 

CENPL, HIST1H2AB, HIST1H2AC, HIST2H3A, INCENP, KIF18A, 

KIF23,NDC80,NDE1,NEK9,ORC2,SET,SGOL1,SMC1A,SMC4,S

PDL1,STAG2,TAOK1,UBE2C 

Resolution of Sister 

Chromatid Cohesion 

17 CASC5, CCNB1, CDC20, CDCA8, CENPA, CENPE, CENPF, 

CENPL, INCENP, KIF18A, NDC80, NDE1, SGOL1, SMC1A, 

SPDL1, STAG2, TAOK1 

Separation of Sister 

Chromatids 

10.56 CASC5, CDC20, CDCA8, CENPA, CENPE, CENPF, CENPL, 

INCENP, KIF18A, NDC80, NDE1, SGOL1, SMC1A, SPDL1, 

STAG2, TAOK1, UBE2C 

Mitotic Anaphase 9.88 CASC5, CDC20, CDCA8, CENPA, CENPE, CENPF, CENPL, 

INCENP, KIF18A, NDC80, NDE1, SGOL1, SMC1A, SPDL1, 

STAG2, TAOK1, UBE2C 

Mitotic Metaphase and 

Anaphase 

9.83 CASC5, CDC20, CDCA8, CENPA, CENPE, CENPF, CENPL, 

INCENP, KIF18A, NDC80, NDE1, SGOL1, SMC1A, SPDL1, 

STAG2, TAOK1, UBE2C 



Results 

78 
 

G2/M Transition 10.53 AURKA, BORA, CCNA2, CCNB1, CDC25A, CDK11A, CDK11B, 

CENPF, CNTRL, HSP90AA1, NDE1, NEK2 

Mitotic G2-G2/M 

phases 

10.34 AURKA, BORA, CCNA2, CCNB1, CDC25A, CDK11A, CDK11B, 

CENPF, CNTRL, HSP90AA1, NDE1, NEK2 

Cellular Senescence 7.59 CCNA2, CCNE2, CDKN1A, CDKN2D, HIST1H1A, HIST1H1D, 

HIST1H2AB, HIST1H2AC, HIST2H3A, IL6, TERF1, UBE2C 

DNA 

Damage/Telomere 

Stress Induced 

Senescence 

13.79 CCNA2, CCNE2, CDKN1A, HIST1H1A, HIST1H1D, HIST1H2AB, 

HIST1H2AC, TERF1 

Senescence-

Associated Secretory 

Phenotype (SASP) 

10.67 CCNA2, CDKN1A, CDKN2D, HIST1H2AB, HIST1H2AC, 

HIST2H3A, IL6, UBE2C 

Cellular responses to 

stress 

5.24 CCNA2, CCNE2, CDKN1A, CDKN2D, HIST1H1A, HIST1H1D, 

HIST1H2AB, HIST1H2AC, HIST2H3A, HSP90AA1, IL6, TERF1, 

UBE2C 

Condensation of 

Prophase 

Chromosomes 

14.63 CCNB1, HIST1H2AB, HIST1H2AC, HIST2H3A, SET, SMC4 

MyD88-independent 

cascade 

8.6 BIRC3, DUSP6, HMGB1, IRAK2, NFKB2, NFKBIA, TICAM1, 

UBE2V1 

TRIF-mediated 

TLR3/TLR4 signaling 

8.6 BIRC3, DUSP6, HMGB1, IRAK2, NFKB2, NFKBIA, TICAM1, 

UBE2V1 

Toll Like Receptor 3 

(TLR3) Cascade 

8.6 BIRC3, DUSP6, HMGB1, IRAK2, NFKB2, NFKBIA, TICAM1, 

UBE2V1 

Centrosome 

maturation 

9.72 CCNB1, CDK11A, CDK11B, CNTRL, HSP90AA1, NDE1, NEK2 

 

Since pathway analysis did not hint at great differences in transcriptional radiation response 

between Jarid1A depleted cells and controls, I next investigated the most deregulated genes. 

The Venn diagram displays the remarkably great overlap of the 50 most deregulated genes in 

control, scr and Jarid1A A1+A3 cells, each with the same direction of alteration (see Figure 

23). Down-regulation of the M-phase genes CDCA8, BORA, AURKA, CCNB1, CENPA, 

FAM83D and GAS2L3 was seen in all samples after irradiation. Simultaneously, genes 

involved in inflammatory response, like CXCL1, CXCL2, CXCL3, IL6, NFKBIA, CCL2 and 

NFKB2 were up-regulated after irradiation. This list contains several genes that belong to a 

small cluster of genes previously shown to be up-regulated after irradiation in a p53-

independent manner like BIRC3, NFKB2, NFKBIA or TNFAIP3 (Rashi-Elkeles et al. 2014). 
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Figure 23: Overlap of deregulated genes in different transfected HeLa cells 2 h after irradiation 

with 5 Gy  

Venn diagram displaying commonly and exclusively differentially expressed genes of the 50 most 

deregulated genes in control cells, scr siRNA and Jarid1A A1+A3 siRNA transfected cells 2h after 

irradiation with 5 Gy. 

The heat map in FigureFigure 24 shows a two-dimensional hierarchical clustering based on 

the list of the 50 most significantly deregulated genes between control cells, cells transfected 

with scr siRNA and Jarid1A A1+A3 siRNA with and without irradiation. The heat map 

represents expression intensities by red and green signals, for high and low intensities, 

respectively. Black signals indicate medium intensities. This hierarchical clustering is used to 

realise how the microarray samples and the deregulated genes group together based on 

similarity of features. On top and on the left of the heat map a dendrogram illustrates the 

arrangement of the clusters produced by hierarchical clustering. The further the distance of the 

fusion of two clusters is on the top dendrogram the greater are the differences between the 

clusters. The dendrogram on the left clusters genes with similar behaviors in the experiment, 

while the dendrogram on top clusters the different treated samples due to their expression of 

the affected genes. Control samples and scr samples, while in general forming separate 

clusters, are clearly separated form the Jarid1A-depleted cells. Clustering of unirradiated 

samples (ctrl_0, scrmbld_0 and kd_0) versus irradiated samples (ctrl_5, scrmbld_5 and kd_5) 

is only partially seen, again hinting at the small effect irradiation had on the gene expression 

pattern.  
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Figure 24: Heat map and hierarchical clustering of the 50 most significantly deregulated genes 

in the different treated samples in microarray analysis 

Clustering of control samples (ctrl), scr transfected samples (scrmbld) and Jarid1A A1+A3 transfected 

samples (kd) after irradiation with 0 Gy and 5 Gy (_0, _5) based on expression of the most significantly 

deregulated genes in microarray analysis. For each condition, 4 replicates were investigated. 

Deregulated genes are listed on the right side of the heat map, while they are clustered beneath the 

map via a dendrogram. Unchanged gene expression is displayed in black, up-regulated gene expression 

in red and down-regulated gene expression in green. On top of the heat map a dendrogram visualizes 

the formed clusters of the different treated samples and their similarities. The further the distance of the 

fusion of two clusters is, the more different is the expression of the 50 genes in the clusters.  

To reveal genes that are specifically deregulated in the Jarid1A knockdown cells after 

irradiation, mutual deregulated genes after knockdown in comparison to control and scr siRNA 

transfected cells after irradiation were defined. Thereby the direction of alteration was 



Results 

81 
 

considered and genes also deregulated in unirradiated cells were excluded. This results in 566 

genes that were only found significantly deregulated after Jarid1A knockdown plus irradiation. 

Of these, 187 were up-regulated and 379 were down-regulated. Pathway enrichment analysis 

with solely these deregulated genes yields 3 affected pathways: The level 1 pathway 

“Extracellular matrix organization” and the associated level 2 pathway “Beta1 integrin cell 

surface interactions”. The deregulation of these pathways is mainly based on deregulation of 

genes that express collagens, lamins and integrins. Additionally, a third affected level 3 

pathway “Complement and coagulation cascades” is involved in Jarid1A knockdown cells after 

irradiation (see Table 17), but with only a few affected genes. Generally, the proportion of 

deregulated genes in the Gene Set of the three respective pathways is relatively low with 

2.65% of differentially expressed genes in the pathway “Extracellular matrix organization” and 

< 1% in the pathways “Beta1 integrin cell surface interactions” and “Complement and 

coagulation cascades”. It has, nevertheless, to be mentioned that especially the deregulation 

of genes of the ECM organization and beta integrin signalling can have an immense influence 

on DNA damage response. Dickreuter et al. (2016) postulate a regulatory function for β1 

integrines in the repair of radiation-induced DSB. In our microarray analysis some genes 

encoding alpha integrines are markedly down-regulated. Integrins are heterodimers formed 

through association of an alpha integrine with a beta integrine (Hynes 2002). Consequently, 

down-regulation of one type of integrine might have an influence on the other type. Genes 

encoding collagens are either up- or down-regulated in the gene expression microarray 

analysis after Jarid1A-knockdown and irradiation, making it hard to correctly estimate the 

consequences on ECM organization.  

Table 17: Unique deregulated pathways revealed by Reactome pathway enrichment analysis in 

Jarid1A depleted cells after irradiation (p < 0.05; FDR < 0.05). Bold face: level 1, normal font: level 

2, slanted font: level 3 and higher; pink: Extracellular matrix organization, orange: Immune system 

Gene Set Deregulated 

genes in Gene 

Set [%] 

Genes 

Extracellular matrix 

organization 

2.65 COL16A1, MMP24, FGF2, COL7A1, COL15A1, TGFB3, TGFB1, 

MFAP3, MFAP5, LOXL4, DCN, COL9A3, COL8A1, COL4A4, 

COL5A2, CD44, ITGA11, COL18A1, LAMA3, ADAM17, ITGAV, 

ITGA5, CTSL 

Beta1 integrin cell 

surface interactions 

0.67 COL7A1, COL4A4, COL5A2, ITGA11, COL18A1, LAMA3, PLAU, 

CD14, ITGAV, ITGA5 

Complement and 

coagulation cascades 

0.70 C4B, C3, THBD, C4BPB, CFH, BDKRB2, PLAT, CD55, PLAU, 

PROC 
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A selection of genes related to pathways involved in stress/ damage response or DNA repair 

with at least a 1.5-fold increased or decreased expression exclusively in Jarid1A depleted cells 

after irradiation are listed in Table 18 with their known functions. Within the scope of a research 

course (Babushku 2016) and additional experiments performed by the technical lab assistant 

Claudia Böhland the expression of these genes was analysed in control and Jarid1A-depleted 

cells on protein level to check for potential variances in the expression after irradiation. The 

selected genes are either involved in stress and damage response (PARP1, HSP90) or/and in 

cell cycle and transcriptional regulation (CENPF, INCENP, NFKBIE, SMC1A, YBX1). None of 

the just mentioned genes showed a distinct up- or downregulation on protein level as indicated 

by Western Blotting. The results for CENPF, PARP1 and NFKBIE can be viewed in Appendix 

F, Figure F.1 (the rest of the data is not shown here as no changes on the protein level are 

visible at all). Additionally, the observed down-regulation of KDM5B in Jarid1A knockdown cells 

in the microarray analysis was reassessed on protein level and could not be verified.   

Table 18: Selection of significantly deregulated genes in Jarid1A depleted cells after irradiation 

(p < 0.05) that are assumed to play a role in stress/ damage response or DNA repair with at least 

1.5-fold increased or decreased expression in the gene expression microarray analysis. 

Significantly deregulated genes 

after Jarid1A depletion 

Fold 

change 

Function (https://www.ncbi.nlm.nih.gov/gene) 

CENPF       ↓ 1.6 encodes a protein that associates with the centromere-

kinetochore complex; may play a role in chromosome 

segregation during mitotis 

SMC1A       ↓ 2.0 encodes a protein important for functional kinetochores; 

protein interacts with BRCA1, indicating a potential role in 

DNA repair 

PARP1       ↓ 1.8 encodes a chromatin-associated enzyme, which modifies 

various nuclear proteins by poly(ADP-ribosyl)ation; 

involved in regulation of various important cellular 

processes, including damage repsonse  

HSP90AA1 ↓ 1.7 encodes an inducible molecular chaperone that functions 

as a homodimer 

NFKBIE      ↑ 2.3 encodes a protein that binds to components of NF-kappa-

B, trapping the complex in the cytoplasm and preventing it 

from activating genes in the nucleus 

KDM5B      ↓ 1.8 encodes a histone demethylase that belongs to the Jarid1  

family of histone demethylases; protein is capable of 

demethylating lysine 4 of histone H3 and plays a role in 

transcriptional repression 
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INCENP     ↓ 1.7 encodes a chromosomal passenger protein  

crucial for multiple events that mediate chromosome  

separation during mitosis (Carmena and Earnshaw 2006) 

YBX1         ↓ 1.8 encodes a highly conserved cold shock domain protein; 

protein has been implicated in numerous cellular 

processes including regulation of transcription and  DNA 

repair 

 

In conclusion, the results of the microarray analysis reveal a relative small effect of x-irradiation 

on the gene expression in HeLa cells (independent from siRNA transfection). With regard to 

the different treatment of cells with siRNA, some differences in the gene expression pattern 

can be observed both with and without irradiation. In unirradiated cells Reactome pathway 

enrichment analysis reveals several pathways affected after Jarid1A depletion compared to 

the controls. This is not surprising as the demethylase directly influences the chromatin 

structure by removing tri- or di-methylations from H3K4 and is thereby involved in regulation 

of transcritption. Analyzing exclusively the gene expression changes in Jarid1A-knockdown 

cells after irradiation revealed some differentally expressed genes of the ECM organization 

and the complement/coagulation cascades. As only very few genes of this pathway are 

affected, the consequences of this observation should be negligible. Further, distinct DNA 

damage response genes found in the microarray analysis to be differentially expressed after 

knockdown and irradiation showed no differential expression on protein level. In line with the 

previous results of my work, gene expression microarray analysis indicates no obvious 

influence of the Jarid1A-depletion on genes or pathways directly involved in DSB repair or 

cellular responses to stress. Unfortunately, it gives also no further hints at the mechanistic 

basis of the increased radiosensitivity observed after Jarid1A depletion. 

 

4.2 Influence of 2-HG incubation on histone modifications and cell behaviour  

As the inhibition of the demethylase Jarid1B with the established inhibitor PBIT failed in my 

experiments and other Jarid1B inhibitors were not known during the experimental phase of this 

thesis, I decided to use an unspecific inhibitor of α-ketoglutarate (α-KG)-dependent 

demethylases. To analyse the effects of the unspecific inhibition of α-KG-dependent JmjC 

demethylases on the level of histone methylation, glioblastoma cell lines were treated with the 

cell permeable ester of R-2-HG. Glioblastoma cells were used to reveal the most effective 

incubation condition, as many reports about successful inhibition of α-KG-dependent 

demethylases by R-2-HG in glioblastoma cells exist (Xu et al. 2011; Dang et al. 2009). R-2-

HG mimics the mutation in the enzyme IDH1 by directly inhibiting α-KG-dependent 
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dioxygenases. As the prognosis for glioblastomas with IDH mutations is quite favourable, a 

therapeutic benefit by the use of R-2-HG is conceivable. I incubated the glioblastoma cell lines 

A172 and U-87 MG with different concentrations of R-2-HG and investigated the effects on the 

histone modifications H3K4me3 and H3K9me3, as well as on proliferation and migratory 

behaviour, as glioma cells with IDH mutations exhibit decreased growth and migratory 

behaviour (Li et al. 2013) 

Different concentrations of the cell permeable ester of R-2-HG and the respective 

concentrations of DMSO as control were added to A172 and U-87 MG cells. In the literature 

the concentrations of R-2-HG to obtain an effect in histone demethylase inhibition varied from 

0.1 mM to 10 mM (Xu et al. 2011; Reitman et al. 2014). Since Reitman et al. 2014 showed in 

HTC116 cells that treatment with 0.1 mM R-2HG results in the same level of intracellular R-

2HG as produced in knock-in IDH1 mutant cells, I decided to investigate concentrations from 

0.01 mM to 1.0 mM. After adding R-2-HG, cells were incubated for 7 days as described in the 

literature (Reitmann et al. 2014). I analysed the levels of H3K4me3 and H3K9me3 by Western 

Blotting experiments with whole cell protein extracts after the incubation period with R-2-HG. 

Western Blot images in Figure 25 show the expression of the H3K4me3 levels (Figure 25A 

and B) and H3K9me3 levels (Figure 25C and D) in the differently treated cells. Influence of 

higher concentrations of R-2-HG from 0.05 mM to 1.0 mM was tested in three to five 

independent experiments. The average level of the respective histone modification is depicted 

in the diagrams below each Western Blotting image. Tri-methylation at H3K4 was neither 

markedly increased in A172 cells (Figure 25A) nor in U-87 MG cells (Figure 25B) at any tested 

concentration of R-2-HG. Apparently, Jarid1 histone demethylases are not affected by 

incubation with the R-2-HG cell permeable ester at concentrations from 0.01 mM to 1.0 mM in 

A172 and U-87 MG cells. It has to be mentioned that α-ketoglutarate-dependent histone 

demethylases exhibit distinct sensitivity to R-2-HG. While the H3K9me3 and H3K36me3 lysine 

demethylase KDM4C (JMJD2C) shows half-maximal inhibitory concentration (IC50) values of 

80 µM, IC50 values for the H3K9me3/me2 and H3K36me3 lysine demethylase KDM4A 

(JMJD2A) is 25 µM in HCT116 cells (Chowdhury et al. 2011). Possibly, the family of H3K9me3 

histone demethylases KDM4 (JMJD2) is generally more sensitive to treatment with 2-R-HG 

than the KDM5 family. I therefore also analysed the levels of H3K9me3 in A172 and U-87 MG 

cells after 7 days incubation with cell permeable R-2-HG ester, using the same concentrations 

as before. Tri-methylation at H3K9me3 was also neither markedly increased in A172 cells 

(Figure 25C) nor in U-87 MG cells (Figure 25D) at any tested concentration of R-2-HG. 

H3K9me3 histone demethylases in A172 and U-87 MG cells are not affected by incubation 

with the R-2-HG cell permeable ester at concentrations from 0.01 mM to 1.0 mM.  
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Since the sensitivity to R-2-HG might be cell-line specific, I also treated HTC116 cells with 0.1 

mM R-2-HG. As reported by Reitman et al. (2014) this results in a similar level of intracellular 

R-2HG produced in knock-in IDH1 mutant HTC116 cells. However, our Western Blotting 

experiments in HTC116 cells also did not show increased H3K9me3 or H3K4me3 levels in the 

cells (see Appendix G, Figure G). As investigated by levels of histone modifications, I failed to 

achieve an inhibition of α-KG-dependent JmjC demethylases in U-87 MG, A172 and HTC116 

cells with our tested concentrations of cell permeable R-2-HG.  
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Figure 25: H3K4me3 and H3K9me3 levels in glioblastoma cell-lines after incubation with 

different concentrations of R-2-HG remains unchanged 

Steady levels of H3K4me3 in A172 cells (A) and U-87 MG cells (B) as well as H3K9me3 in A172 cells 

(C) and U-87 MG cells (D) after incubation with different concentrations of R-2-HG. Western blot 

images show levels of H3K4me3 and H3K9me3, respectively, in glioblastoma cells treated with R-2-

HG from 0.01 mM to 1.0 mM. 1% of DMSO was used as control corresponding to the DMSO 

concentration in the sample treated with 1.0 mM R-2-HG (for lower R-2-HG concentrations DMSO 

concentration was reduced accordingly). Graphs display the normalized average amount (+/- SD) of 

H3K4me3 and H3K9me3 protein after R-2-HG treatment for 7 days, as determined by quantitative 

analysis of Western blots of protein extracts obtained in three to five independent experiments with 

concentrations of R-2-HG from 0.05 mM to 1.0 mM.  

 

In addition, I investigated the effect of R-2-HG on cell proliferation and migration. Glioblastoma 

are one of the most aggressive forms of cancer due to their highly invasive behaviour 

(Naumann et al. 2013; Rolon-Reyes et al. 2015). However, for glioma cells with IDH mutations 

decreased growth and migratory behaviour is characteristic (Li et al. 2013). For investigation 

of the cell growth of A172 cells, I accomplished growth curves with untreated cells, cells treated 

with 0.05 mM R-2-HG and cells treated with 0.05% DMSO. R-2-HG or DMSO was added 6 

days before seeding and again after seeding of the cells for the growth curves. Afterwards, 

cells were harvested and counted every 24 h for 7 days. Figure 26A displays the cell growth 
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over time of the different treated glioblastoma cells. Incubation of cells with the used R-2-HG 

concentration seems to have no influence on the cell proliferation.  

The impact of the substance on the migratory behaviour was examined by wound healing 

assays. As cells with IDH mutations show better therapeutic efficacy of tumor therapies such 

as radio- and chemotherapy (Yan et al. 2009; Cairncross et al. 2014), a possible explanation 

would be a reduced migration potential. To investigate this, U-87 MG cells were used as they 

are known to migrate really fast (Li et al. 2016). Additionally, the concentration of R-2-HG was 

increased tenfold compared to the cellular growth experiment. U-87 MG cells treated with 0.5 

mM R-2-HG or 0.5% DMSO for 7 d were seeded into culture inserts. Furthermore, 0.5 mM 

fresh R-2-HG was added to the cells. To compare the migratory capacity, the insert was 

removed on the next day and migration into the “wound” was microscopically monitored every 

30 min for 8 h. Figure 27B illustrates the migration into the gap of control and 2-HG treated 

cells. There is no visible difference between the movement of the DMSO-treated control cells 

and the R-2-HG treated cells, as shown by the photographies. Even the evaluation of the 

colonized area over time represented in the graph of the Figure 26B indicates similar velocity 

of cell migration. Taken together, both the data of the cellular growth curves and the wound 

healing assays, R-2-HG seems not to interfere with cell proliferation or migration of the 

glioblastoma cell lines under the conditions I used. It remains to be elucidated why others see 

an effect on α-KG dependent histone demethylases and on cellular growth properties of 

glioblastome cell lines with similar concentrations of 2-HG.      
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Figure 27: Cellular growth and migration behaviour is not influenced in A172 and U-87MG cells 

after incubation with R-2-HG 

(A) Cell numbers of A172 cells untreated (in blue), treated with 0.5% DMSO (red) and treated with 0.5 

mM R-2-HG plotted logarithmically against the time (in h). 0.5% of DMSO was used as control 

corresponding to the DMSO concentration in the sample treated with 0.5 mM R-2-HG. Data represent 

means ± SD of three independent experiments.  

(B)  Representative photographs of cell migration into the wounds (cell-free gaps) 0 min, 240 min and 

480 min after removing the silicon-strip culture dish inserts. The upper row shows U-87 MG cells treated 

with 0.5% DMSO and the lower row U-87 MG cells treated with 0.5 mM R-2-HG for 7 days. 0.5% of 

DMSO was used as control corresponding to the DMSO concentration in the sample treated with 0.5 

mM R-2-HG. The graph displays the colonized area within 480 min in the presence or absence of 0.5 

mM R-2-HG by analyzing the photographies of every 30 min.  
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5 Discussion 

5.1 Impact of Jarid1A depletion on cellular viability and proliferation 

In the present work I investigated the role of histone demethylase Jarid1A in cell proliferation 

and radiation response by siRNA-mediated depletion of Jarid1A. All experiments were 

performed 72 h after transfection with Jarid1A siRNA under comparable levels of averagely 

25% residual amount of protein. The lysine specific histone demethylase Jarid1A removes tri- 

and di-methylations at histone H3K4 frequently found at promoter regions of actively 

transcribed genes (Soares et al. 2017) and plays a crucial role in controlling transcription and 

chromatin organization (Dimitrova et al. 2015). Jarid1A is overexpressed in several human 

cancers and its overexpression is implicated in drug resistance (Itoh et al. 2015; Gale et al. 

2016), making the enzyme an interesting potential target for cancer therapy. The precise 

biological function is, however, largely uncharacterized. Research findings regarding its role in 

cell proliferation are quite contradictory. Jarid1A was described to be involved in senescence 

pathways, both positively and negatively. In hepatocellular carcinoma cells, Liang and 

colleagues observed significant upregulation of the cyclin-dependent kinase inhibitors p21 and 

p27, suppression of cell proliferation and induction of senescence after siRNA-mediated 

knockdown of Jarid1A (Liang et al. 2013). Collected data of other groups describe a reduction 

of cell growth or/and increased senescence-associated β-galactosidase activity after 

knockdown of Jarid1A in different cell lines and also support the assumption of an anti-

senescent role of the demethylase (Benevolenskaya et al. 2005; Zeng et al. 2010; Teng et al. 

2013). I note, however, that several reports on growth inhibition after knock-down of Jarid1A 

apparently used wrong siRNAs that would affect RBP2 retinol-binding protein 2 rather than 

Jarid1A, which is occasionally also called RBP2 retinoblastoma binding protein 2 (Wang et al. 

2013; Qi et al. 2014; Qiao et al. 2015). Others, however, observed in lung cancer cells a regular 

cell proliferation after shRNA-mediated knockdown of Jarid1A (Sharma et al. 2010). 

Development of Jarid1A knock-out mice proceeds quite normally with only minor defects in the 

hematopoietic system, arguing against a general strong reduction of cell proliferation upon 

Jarid1A depletion (Klose et al. 2007). Some researchers even claim a pro-senescent role for 

Jarid1A in senescence regulation: Chicas and colleagues report that H3K4me3 demethylation 

by Jarid1A and Jarid1B at target genes of the tumor suppressor protein retinoblastoma triggers 

gene silencing in senescent fibroblast cells. After depletion of Jarid1A senescence could be 

partially inhibited (Chicas et al. 2012).  

No influence on cell growth or proliferation was visible in any of our tested cell lines after 

depletion of Jarid1A. This was shown by short-term viability experiments in HeLa, U2OS and 

MCF-7 cells and additionally in a long-term viability experiment for HeLa cells. Cell cycle 
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analysis also showed a regular distribution of phases within the cell cycle after Jarid1A 

knockdown. Normal cell cycle progression after depletion of Jarid1A was also described by 

Gong and colleagues (Gong et al. 2017). I additionally studied the expression of p21 after 

depletion of Jarid1A - a characteristic mediator of cellular senescence that was found 

increased in some publications mentioned before. Expression of p21 in HeLa and U2OS cells 

was slightly decreased after Jarid1A depletion, but the protein levels in both of these cell lines 

may be too low to make a final statement. The level of p21 is generally low in HeLa cells as 

this cell line shows enhanced degradation of the tumor suppressor protein p53 which leads to 

an instabilized p21 that is also rapidly degraded (Scheffner et al, 1990). Protein levels of p21 

in U2OS cells are low due to a reduced translation of p21 mRNA (Chang and Eastman, 2012). 

MCF-7 cells, which exhibit regular p21 expression, show a slight increase in p21 expression 

after Jarid 1A knockdown, which, however, did not impact on cell viability or proliferation. 

Therefore, the inability to observe senescence in the cells used here cannot solely be attributed 

to deficiencies in the p53-p21 pathway. Another potential explanation for the lack of 

senescence could be insufficient down-regulation of Jarid1A.  Depletion was quite efficient in 

our experiments and lead to a reduction by about 75%. Comparable levels of depletion were 

described in the publications mentioned above. In addition, considerable increase of cellular 

H3K4me3 levels was observed (see next chapter) indicating restricted functional activities of 

the demethylase. It has been suggested that depletion of the demethylase leads to reduced 

cell proliferation only in cell lines overexpressing Jarid1A: Data of Hou and colleagues 

demonstrate reduced proliferation in cells with Jarid1A amplification, while they see no effect 

on proliferation in cells with regular expression after Jarid1A knockdown (Hou et al. 2012). I 

could not observe differences in the protein level of Jarid1A among the cell lines I used - HeLa, 

MCF-7 and U2OS. They all exhibit a comparable expression of the demethylase and respond 

similarly to the knockdown via siRNA transfection.  

 

5.2 Alterations in the level of histone modifications after Jarid1A-knockdown 

The siRNA-mediated knockdown leads to an increase of global trimethylation of H3K4 by about 

70%. Similar increases of global H3K4me3 after Jarid1A depletion were reported by others 

(Christensen et al. 2007; Pasini et al. 2008; Beshiri et al. 2012; Hou et al. 2012). This verifies 

efficient functional depletion of the enzymatic activity of Jarid1A, even if it cannot be excluded 

that residual Jarid1A partly retains some of its important cellular functions. It is conceivable 

that other members of the Jarid1 family can compensate the depletion of Jarid1A. Especially 

Jarid1B is assumed to have redundant functions to Jarid1A (Chicas et al. 2012; Islam et al. 

2014). Some publications show similar increases of global H3K4 trimethylation after depletion 
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of Jarid1B like I observed for depletion of Jarid1A (Xie et al. 2011; Klein et al. 2014). However, 

Outchkourov and colleagues report that knockdown of Jarid1C does not affect global 

H3K4me3 levels (Outchkourov et al. 2013). There is no information about the impact of Jarid1D 

depletion on H3K4me3 levels, as this member is generally scarcely investigated. In any case, 

the drastic increase of H3K4me3 after Jarid1A depletion shows that other Jarid1 demethylases 

cannot fully compensate for Jarid1A. So far, a systematic comparison of the role of the different 

members of the Jarid1 protein family for global H3K4me3 levels is lacking.  

It is widely accepted that a cross-talk between histone modifications exists (Latham and Dent 

2007; Huang et al. 2010). Often histone demethylases and histone deacetylases, as well as 

histone acetyl transferases, are part of the same protein complex and coordinately regulate 

expression of specific genes by removing active histone marks and adding repressive histone 

marks and vice versa. Especially the interplay between the histone H3K4me1/2 demethylase 

LSD1 and histone deacetylation is well established. After treatment of cells with the HDAC 

inhibitor Trichostatin A, in addition to levels of acetylated histone H3 levels of H3K4me2 

increased, suggesting that HDAC activity is linked to LSD1 activity (Lee et al. 2006). On the 

other hand, depletion of LSD1 results in synergistic down-regulation of HDACs, thus leading 

to increased H3K4me2 levels and hyperacetylation at H4K16, H3K56 and H3K14 (Vasilatos 

et al. 2013; Yin et al. 2014). Potential crosstalk involving demethylases of the Jarid1 family is 

less well investigated, although physical interaction of Jarid1A with HDACs was shown 

(Hayakawa et al. 2007). Huang and colleagues reported that incubation of prostate cancer 

cells with HDAC inhibitors leads to reduced expression of LSD1 and all members of the Jarid1 

demethylase family. Dose dependent reduction of mRNA expression, as shown via qRT-PCR 

analysis, was accompanied by an increase of global H3K4me3 levels (Huang et al. 2010). 

Inhibition of Jarid1A after treatment with histone deacetylase inhibitors has also been observed 

by others and generates a phenotype similar to Jarid1A knockdown cells  (Sharma et al. 2010; 

Ganai et al. 2015). To our knowledge the effect of Jarid1A depletion on histone acetylation has 

not yet been investigated in detail. With its chromatin-binding PHD finger and ARID domains 

Jarid1A interacts with the SIN3 histone deacetylase co-repressor complex (Hayakawa et al. 

2007) and with the nucleosome remodeling and deacetylase (NuRD) complex (Nishibuchi et 

al. 2014). As Jarid1A is associated with HDAC1 and HDAC2 in both complexes, I decided to 

investigate acetylation levels of H4K16, H3K9 and H3K56 upon Jarid1A depletion, as these 

are known targets of this class of histone deacetylases (Dovey et al. 2010; Wu et al. 2014). I 

observed a significant increase of acetylation at H4K16 in Jarid1A knockdown cells, as well as 

strong hyperaceylation at H3K9 and H3K56, which however did not reach statistical 

significance. Reduced Jarid1A levels in the cell may perturb the recruitment of the SIN3 and 

the NuRD complex and thus lead to reduced activity of histone deacetylases at chromatin. It 
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is, however, also possible that enhanced activity of a histone acetyltransferase is responsible 

for the observed hyperacetylation at H3K9, H3K56 and H4K16. To gain more insights in the 

interplay between Jarid1A and histone deacetylation further experiments will be required.  

Histone hyperacetylation is generally assumed to result in decondensation of chromatin 

facilitating accessibility to transcription factors or repair proteins (Görisch et al. 2005). 

Especially acetylation at H4K16 was reported to interfere with DNA fiber compaction, leading 

to a rather open chromatin structure by reducing the inter-nucleosome interaction (Zhang et 

al. 2016). To study chromatin condensation I used the MNase assay, whereby the DNA is 

cleaved in the linker regions between the nucleosomes by micrococcal nuclease (Telford and 

Stewart 1989). The sensitivity of the DNA to the MNase is dependent on the grade of 

decondensation and can be investigated by partial MNase digestion (Liu et al. 2013). In my 

hands chromatin of control cells and of Jarid1A depleted cells showed a similar sensitivity to 

the MNase treatment. As the MNase assay is a rather insensitive method requiring broad 

changes in chromatin compaction, it is possible that the grade of histone hyperacetylation upon 

Jarid1A depletion is not sufficient to make the decondensation visible (Goodarzi et al. 2011). 

Other groups also reported that histone hyperacetylation does not translate into altered MNase 

digestion pattern (Perry and Chalkley 1981; Gilbert et al. 2007). Although reduced formation 

of compact chromatin fibres by acetylation of H4K16 was clearly demonstrated by certain 

groups (Shogren-Knaak et al. 2006; Dorigo et al. 2003, Zhang et al. 2016), it may not visibly 

influence chromatin compaction at all size scales of analyzed structures (Taylor et al. 2013). 

Even if no distinct alteration in the chromatin structure is visible, the impact of the observed 

hyperacetylation on cellular processes upon Jarid1A depletion may be wide-ranging.     

 

5.3 Influence on recruitment of DNA damage response factors and efficiency 

of DSB respair 

In general, histone hyperacetylation is associated with higher radiosensitivity and often HDACi 

are used in combination with irradiation to enhance the effect of radiotherapy in the treatment 

of cancer (Groselj et al. 2013). The effects of the HDAC inhibitors show a wide mode of action 

depending on the class of deacetylases they are inhibiting. E.g. inhibition of HDAC1 and 

HDAC2 or class III HDACs (sirtuines) can interfere with DNA damage signalling, DSB detection 

or DSB repair pathway choice by preventing successful detection of DSBs (van Meter et al. 

2016), by disturbing the effective activation of ATM (Thurn et al. 2013), or by influencing the 

expression of repair proteins like BRCA1 (Zhang et al. 2007; Kachhap et al. 2010). It was 

shown that H4K16 acetylation influences DSB repair pathway choice by diminishing 53BP1 

binding to the damage site, thus preventing repair by NHEJ and favouring repair by HR (Hsiao 
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et al. 2013; Tang et al. 2013). Others, however, observed that chromatin decondensation after 

HDACi treatment had no effect on 53BP1 recruitment (Khurana et al. 2014) or that 53BP1 

binding is even enhanced (Murr et al. 2006). Published data on BRCA1 recruitment to damage 

sites under conditions of HDAC inactivation are e.g. quite inconsistent. Some claim reduced 

BRCA1 foci formation at DSBs in cells with hyperacetylation (Fukuda et al. 2015), while others 

report an increased BRCA1 binding to chromatin after HDAC inhibition and associated 

hyperacetylation (Tang et al. 2013). Fukuda and colleagues could observe diminished binding 

of both 53BP1 and BRCA1, hinting at a disturbance of both NHEJ and HR repair of DSB in 

cells with enhanced H4K16 acetylation (Fukuda et al. 2015). 

I hypothesized that the significant enhancement of radiosensitivity in Jarid1A-depleted cells 

observed in this work after irradiation with x-rays could be associated with the hyperacetylation 

phenotype. I therefore investigated the influence of Jarid1A depletion on the recruitment of 

DNA damage response and repair proteins to DNA DSB induced by ionizing irradiation. I could 

not detect diminished recruitment or binding of 53BP1 or BRCA1 in Jarid1A depleted cells after 

irradiation with carbon ions in the immunfluorescence experiments. Similarly, the recruitment 

and foci formation of Rad51 at ion-induced DSBs was not affected by the hyperacetylation 

after Jarid1A knockdown. Analysis of the number of residual IRIF after prolonged repair 

incubation is a frequently used tool for assessing DSB repair efficiency (Löbrich et al. 2010; 

Bakr et al. 2015). Residual γH2AX foci at 24 h and 48 h after X-irradiation did not differ between 

cells transfected with scr siRNA or Jarid1A siRNA, suggesting that the increased radiation 

sensitivity of Jarid1A-depleted cells observed in our work cannot be explained by altered DSB 

repair efficiency. Also the number of residual 53BP1 and Rad51 foci did not differ between the 

samples, arguing against a difference in pathway use. To verify these observations I assessed 

the performance of NHEJ and HR by a plasmid-based DNA DSB repair assay. Via plasmid-

based repair assays it was shown by others that HR or/and NHEJ were affected after treatment 

with HDACi or depletion of HDACs (Miller et al. 2010; Koprinarova et al. 2011). I could not 

observe any influence on DSB repair, neither on HR nor NHEJ pathway, upon Jarid1A 

depletion in my experiments. I conclude that inspite of the hyperacetylation phenotype, 

recruitment, binding and elimination of the damage response and repair proteins investigated 

here were not influenced by Jarid1A depletion, nor was DSB repair. That means that histone 

hyperacetylation as seen after knockdown of Jarid1A may be not sufficient to fully phenocopy 

the effects of HDAC inactivation.  

To explain the observed discrepancies in the recruitment of DSB repair proteins, it has to be 

mentioned that the action of HDAC inhibitors is to a certain extent unspecific and not only 

histone acetylation if affected. Therefore, the many effects of HDACi treatment described in 

the literature cannot be compared directly with the effects of hyperacetylation on H4K16, H3K9 
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and H3K56 upon Jarid1A depletion. For example, the expression of Rad51 upon treatment 

with HDACis was shown to be decreased in different tumor cells (Kachhap et al. 2010; Krumm 

et al. 2016).  

A major part of the irradiation experiments performed here were conducted with a charged 

particle microbeam (SNAKE) that enables irradiation of cells with an exact number of particles 

where the linear energy transfer (LET) can be adjusted by the choice of the ion species and 

the ion energy (Hauptner et al. 2004). A microbeam with carbon ions was used for this issue 

as the linear energy transfer (LET) of these ions is increased compared to irradiation with 

photons. This results in increased damage density and facilitates specific detection of ionizing 

radiation-induced foci (IRIF). Along a track with 10 µm length about 30 DSB are formed through 

the nucleus, leading to clustered DSBs visually detectable as IRIF that form along the ion track 

with high reproducibility (Hauptner et al. 2006; Reindl et al. 2015). This is in contrast to laser-

microirradiation. Depending on the laser system and the conditions of irradiation, laser 

irradiation induces various types and amounts of DNA damage that cannot be clearly 

characterized (Bekker-Jensen 2006; Dinant et al. 2007). Even small deviations in the laser 

irradiation conditions can lead to discrepancies in the protein recruitment at the damage site 

(Cruz et al. 2016), which makes it difficult to gain reproducible and reliable results. Additionally, 

damage densities are extremly high. This can lead to detection of proteins at the damage site 

that in general are not foci-forming and would not be visibly recruited to the damage under 

physiological conditions (Seiler et al. 2011; Suzuki et al. 2011). Laser irradiation can also lead 

to unspecific chromatin alterations (Drexler and Ruiz-Gomez 2015). 

 

5.4 Responsible demethylases and damage response proteins for the loss of 

H3K4me3/me2 and of active RNA Polymerase II in γH2AX-decorated 

chromatin regions 

Enhanced radiosensitivity of Jarid1A-depleted cells could also be related to a function in 

demethylation of H3K4me3/2 in γH2AX-decorated chromatin regions (Seiler et al. 2011). The 

loss of H3K4me3/me2 and active RNA polymerase II at yH2AX foci after ion irradiation was 

not visibly attenuated by depletion of Jarid1A in my intensity correlation analysis experiments. 

As the mode of action of histone demethylases in the damage response is often dependent on 

early damage response proteins, like e.g. ATM or PARP1 (Mosammaparast et al. 2013; 

Khoury-Haddad et al. 2014; Cao et al. 2016), I additionally checked the behaviour of 

H3K4me3/me2 at yH2AX regions after inhibition of ATM, ATR and PARP1. Inhibition of these 

key damage response proteins did also not visibly impair the demethylation of H3K4me3/me2 

in γH2AX-decorated chromatin regions. It is, however, a major weakness of this work that with 
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the image analysis programs available I could not perform a quantitative analysis of the degree 

of anti-correlation between H3K4me3/2 (or active RNA Pol II) and γH2AX. I used the ICA 

introduced by Li and colleagues that defines positive and negative correlation by comparing 

the pixels of two different stained cellular structures (Li et al. 2004). Unfortunately this tool is 

only of limited usefulness in my experimental conditions, where the most of the cell nucleus is 

not stained and only a few pixels exist (yH2AX-foci), respectively only pixels with relatively low 

fluorescence intensity exist (H3K4me3). Positive or negative correlation of weak signals is 

scarcely considered. During the experimental phase of this thesis, no method to perform a 

quantitative intensity correlation analysis suitable for my purposes was available. Reindl and 

colleagues developed a modification of intensity correlation analysis (ICA), using a reduced 

version of the product of the differences from the mean (rPDM) to qualitatively and 

quantitatively analyze the spatial correlation of proteins that are present only in sub-regions of 

the cell (Reindl 2015; Reindl et al. 2017). But it is still questionable, if this method leads to 

reliable quantitative results for the conditions in my test-setup, where a correlation between a 

rather weak signal with a lot of pixel like the pan-nuclear histone modification H3K4me3 and a 

strong signal with just a few pixel like repair foci shall be investigated.  

Very recently, Gong and colleagues reproduced data from our lab (Seiler et al. 2011) showing 

visible accumulation of Jarid1A and loss of H3K4me3 at laser-induced damage sites (Gong et 

al. 2017). These authors also showed by ChIP a loss of H3K4me3 at FokI-induced damage 

sites which was attenuated (about 25% reduction compared to about 50% reduction) by knock-

down of Jarid1A. Loss of H3K4me3 at FokI-sites was also attenuated by treatment with the 

Jarid1 inhibitor CPI-4557, which inhibits Jarid1A, Jarid1B and Jarid1C in comparable manner 

(Vinogradova et al. 2016). In their hands, recruitment of Jarid1A and associated loss of 

H3K4me3 were dependent on PARylation by PARP1. In addition, Gong and colleagues 

observed reduced Rad51 foci formation at DSB sites and a reduction of HR repair events in 

DSB reporter constructs of about 50% (Gong et al. 2017).  

The discrepancy regarding the role of Jarid1A for loss of H3K4me3 may be explained by 

different methods used (IF vs ChIP) and it can be argued that a 25% difference may be difficult 

to detect without quantitative evaluation. On the other hand, the discrepancy regarding 

recruitment of DSB repair factors and completion of DSB repair events cannot be explained at 

the moment. In any case, the fact that loss of H3K4me3 is only incompletely attenuated by 

depletion of Jarid1A suggests the involvement of other Jarid1 demethylases. Indeed, Li and 

colleagues reported that H3K4me3 levels in the vicinity of enzyme-induced DSBs are largely 

regulated by the demethylase Jarid1B (Li et al. 2014). Functional overlap of Jarid1A and 

Jarid1B has been found in certain instances (Islam et al. 2011; Chicas et al. 2012), but the 

relative importance of these closely related demethylases in the DNA damage response has 
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not been systematically investigated and it may differ between different cell lines. As I failed to 

deplete Jarid1B via RNAi or to inhibit Jarid1B via PBIT, I could not verify these effects of 

Jarid1B depletion in my cells.  

   

5.5 Gene expression changes after Jarid1A depletion 

To reveal the reasons for the observed higher radiosensitivity after Jarid1A depletion, I 

investigated the influence of the knockdown on radiation-induced gene expression alterations. 

As Jarid1A is involved in transcriptional regulation by removing a histone modification linked 

to active transcription, it is generally considered to contribute to corepression. On the other 

hand, the observed hyperacetylation after Jarid1A-depletion may have a rather activating 

effect on the expression of various genes. 1731 differentially expressed genes after Jarid1A 

depletion were detected, of which 44.6% show up-regulation and 55.4% down-regulation. This 

is in accordance to the results of the microarray analysis of Nishibuchi and colleagues, who 

found a similar proportion of up- and downregulated genes in their experiments after siRNA-

mediated knockdown of Jarid1A (Nishibuchi et al. 2014). When comparing the results, there is 

a prominent difference in the number of deregulated genes after Jarid1A depletion. By 

comparison with control transfected cells, they found 435 genes, while I found 1731 genes 

significantly deregulated after knockdown of Jarid1A. A further look at their results shows only 

a small overlap between the deregulated genes in their experiment compared to our 

experiment. The performance of the microarray analysis was quite similar, but they used HeLa 

cells with different origin (Nishibuchi et al. 2014). According to pathway analysis, the most 

affected genes of the Jarid1A depletion in my hands are involved in cell metabolism and 

extracellular matrix organization. The effect of the deregulated pathways may probably be 

rather small as there was no evidence for influenced cell viability or proliferation after Jarid1A 

depletion in unirradiated cells in my experiments. The most significantly regulated genes 

Nishibuchi and colleagues found after Jarid1A and CHD4 depletion are associated with 

developmental processes like anatomical structure and tissue development. Nevertheless, 

similar to my results, regulation of cell migration was also among the significant deregulated 

pathways in their gene expression analysis (Nishibuchi et al. 2014).  

In addition, I looked at the transcriptional response to irradiation. It has to be mentioned that 

regulation of damage response and DNA repair is mainly regulated on the protein level rather 

than on the mRNA level as most DNA repair occurs quickly after damage induction (Lu et al. 

2006; Christmann and Kaina 2013). Still, a variety of genes are differentially expressed after 

treatment of cells with ionizing radiation as reaction to the induced DNA damage. Genes 

responsive to ionizing radiation are mostly involved in cell cycle regulation, apoptosis, cell 
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signalling, DNA damage response, metabolism and general stress induction (Tusher et al. 

2001; Jen and Cheung 2003). A large part of IR-responsive genes are either regulated by the 

transcription factor p53 or NF-κB (Rashi-Elkeles et al. 2014). As I performed the microarray 

analysis with p53-compromised HeLa cells, upregulation of p53-dependent genes like 

CDKN1A, CCNG1 or MDM2 could not be observed after irradiation of the cells (Tusher et al. 

2001; Macaeva et al. 2016). Some NF-κB-dependent genes generally found to be up-regulated 

after irradiation were induced in our different siRNA transfected HeLa cells. Additionally, many 

genes involved in the regulation of mitosis and in formation of the mitotic spindle were down-

regulated, e.g. Aurora A kinase, Cyclin B1 and some centromere proteins, which is quite typical 

as reaction of cells shortly after exposure to ionizing radiation (Kao et al. 1997; Mezentsev and 

Amundson, 2011). Correspondingly, pathway enrichment analysis of the irradiated HeLa cells 

displayed deregulation of cell cycle and cellular responses to stress, but not to programmed 

cell death or DNA repair independent from the transfected siRNA. To sum up, gene expression 

analysis indicates no differences in the pathways responsive to ionizing radiation between the 

control and the Jarid1A depleted cells.        

Various genes are differentially expressed solely in Jarid1A-depleted cells 2 h after irradiation 

with a fold change of at least 1,5. Pathway enrichment analysis revealed extracellular matrix 

organization and connected beta integrin signalling as affected pathways attributable to 

deregulation of many genes encoding collagens, alpha integrines or other proteins that are 

somehow involved in ECM dynamics. The ECM is a complex, tightly regulated network and it 

plays an important role in the control of cell growth, survival and migration. Disturbance of its 

organization can have diverse effects on cells and provoke various diseases like tissue fibrosis 

and cancer (Lu et al. 2011). Recently it was observed that it can influence the radiation 

sensitivity of cells. Dickreuter and colleagues observed decreased activity of repair by classical 

NHEJ in HeLa cells as shown by NHEJ reporter assay and reduced expression of DNA repair 

proteins of NHEJ like Ku70 and components of the MRN complex upon β1 integrin inhibition 

(Dickreuter et al. 2016). In our reporter assays I could not see reduced repair via NHEJ upon 

Jarid1A depletion. This can be attributed to the fact that the expression of alpha and not of 

beta integrines occurs in cells after Jarid1A knockdown. Possibly, the impact of diminished 

expression of some alpha integrine subunits is negligible as more different alpha integrines 

than beta integrines exist (Takada et al. 2007). Anyway, deregulation of alpha integrines 

regarding radiation sensitivity and DNA repair is not yet investigated. In microarray analysis I 

also observed altered expression of genes expressing collagens after Jarid1A depletion. As 

some genes are up- and some genes are down-regulated, it is hardly possible to assess the 

consequences for the cells.  
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Pathway enrichment analysis with the genes solely deregulated in knockdown cells after 

irradiation gave no further hint at changes in damage response or DNA repair pathways. As 

enrichment analysis reveals only pathways, when a set of functionally-related genes is 

differentially expressed, I searched for single genes involved in DDR pathways with a 

significant modified expression after Jarid1A depletion and irradiation and investigated their 

expression on protein level. I found interesting genes like PARP1, HSP90AA1, NFKBIE, 

KDM5B, YBX1, INCENP, SMC1A and CENPF differentially expressed without a visible effect 

on regular cellular pathways. As revealed by Western Blotting all of them showed an ordinary 

protein expression. The changes on mRNA level are only about 1,6 - 2.0 fold increased or 

decreased, what might still be too low to have an influence on the protein level. It also has to 

be mentioned that Western Blot analysis may be a method too insensitive to confirm small 

potential differences in protein expression. Additionally, it is challenging to choose the 

appropriate time points to examine mRNA expression and the expression of related proteins. 

Often, irradiation-induced changes in gene expression can only be seen shortly after radiation-

insult, but it is hard to predict the time point of the impact on protein expression.     

The reliability of gene expression analysis via microarrays is widely discussed and remains 

questionable. The capabilities of microarray studies are limited due to fluctuating intracellular 

conditions, sample contaminations, the amplification process and many other experiment-

specific factors as well as statistical data processing (reviewed in Jaksik et al. 2015). Generally, 

well-planned experimental design and accurate data-analysis can overcome these issues 

(Draghici et al. 2006; Jaksik et al. 2015). On the subject of the grading of the reliability of our 

microarray analysis, the following conclusions can be drawn: On the one hand, the results of 

Nishibuchi and colleagues after Jarid1A depletion mentioned above show some differences to 

our results, although they used the same cell line and the same microarray platform (Nishibuchi 

et al. 2014). This may be referable to the heterogeneity of the HeLa cell line and potential 

differences in cell density, cell morphology or cell cycle phase before RNA isolation. 

Differences in statistical data processing can also explain deviations of the results. On the 

other hand, the results of the gene expression changes after irradiation of the HeLa cells 

correlates very well with data in the literature and with the compromised p53 status of the used 

HeLa cells indicating that I produced reliable data.  

However, many studies provide evidence that often a remarkable discrepancy between mRNA 

and protein levels in vitro and in vivo exist (in human cells as well as in tissues). Microarray or 

RNA sequencing methods indicate that only about 40% of protein levels are consistent with 

the measured mRNA expression (Lundberg et al. 2010; Vogel et al. 2010; Wilhelm et al. 2014). 

Even significant mRNA increases do not compulsively lead to an increase in protein expression 

as observed by Taquet and colleagues when studying mRNA and protein expression of 
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somatostatin and chemokine receptors in Crohn`s disease patients (Taquet et al. 2009). 

Consequently, mRNA expression does not reliably reflect the protein level in cells and is 

therefore just partly suitable for a prediction of the proteome.        

 

5.6 Influence of R-2-HG incubation on histone demethylases 

2-hydoxyglutarate produced by different tumor cells with IDH1/2 mutations inhibits α-KG-

dependent dioxygenases like histone demethylases and the TET family of 5-methlycytosine 

(5mC) hydroxylases (Figueroa et al. 2010; Xu et al. 2011). To study the effects on histone 

demethylation, I aimed to mimic the IDH1/2 mutation by adding a cell permeable ester of R-2-

HG directly to the cells. At the concentrations and incubations times used in different cell lines 

no visible inhibition of α-KG-dependent histone demethylases was detectable, as shown by 

steady levels of H3K4me3 and H3K9me3. By detection of H3K4me3 and H3K9me3 the 

inhibition of the KDM5/Jarid1 subfamiliy (KDM5A-KDM5D) and of the KDM4 subfamiliy 

(KDM4A-KDM4E) of demethylases should have been made visible (Cloos et al. 2008; Labbé 

et al. 2014). Several research groups reported that IDH1 mutations lead to increased histone 

methylations at H3K9, H3K27, H3K79 or H3K4 (Xu et al. 2011; Lu et al. 2012; Turcan et al. 

2012). What concentration of R-2-HG is needed to fully phenocopy the IDH mutation is not 

clear, since data in the literature are contoversial. Dang and colleagues showed that mutant 

isocitrate deydrogenase directly converts α-KG in 2-HG, which leads to an increase of 2-HG 

in the cell to around 5 mM 2-HG, while a cell with wildtype IDH1 only has trace amounts of 2-

HG (Dang et al. 2009). Reitmann and colleagues reported that a concentration of 0.1 mM of 

R-2-HG in the medium results in the same level of intracellular R-2HG as produced in knock-

in IDH1 mutant HTC116 cells (Reitmann et al. 2014). Generally, efficient concentration for 

inhibition of α-KG-dependent dioxygenases is dependent on the sensitivity of the respective 

enzyme against the oncometabolite and shows a broad variation from 0.1 mM to 10 mM 

(Reitmann et al. 2014; Lu et al. 2012; Oizel et al. 2015). HIF hydroxylases are not influenced 

at all by R-2-HG, when using the same concentration at which KDM4 demethylases are 

inhibited (Chowdhury et al. 2011). Lu and colleagues observed in their experiments a clear 

increase of the tri-methylation at H3K9 but not at H3K4 leading to the assumption that KDM4 

demethylases are more sensitive to R-2-HG than KDM5/Jarid1 demethylases (Lu et al. 2012). 

I assume that the sensitivity to R-2-HG is also dependent on the used cell line. I cannot exclude 

that the concentrations I used were too low to induce effective inhibition of the KDM4 and 

KDM5 histone demethylases in A172, U-87 MG and HTC116 cells. Further, the incubation 

times described in the literature are quite diverse and vary in the range from 6 h to 6 days 

(Reitmann et al. 2014; Li et al. 2015; Oizel et al. 2015; Chen et al. 2016).  I chose an incubation 
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time of 6 days, as stability experiments revealed that 2-HG is stable for at least 7 days in 

solution (Kalinina et al. 2012). Nevertheless, it is possible that R-2-HG is partly degraded in 

the cell cuture medium at 37°C. 

In my hands, growth properties and migration were not influenced after incubation of glioma 

cells with R-2-HG. Studies investigating cellular growth and migration behaviour of cells with 

IDH mutations show differing results. When introducing mutated IDH into IDH wild-type glioma 

cells, Bralten and colleagues observed a decrease in cell proliferation (Bralten et al. 2011), 

while others saw no differences in cell proliferation or migration between HT1080 cells 

expressing mutant IDH leading to accumulation of R-2-HG and HT1080 cells expressing an 

empty vector (Ma et al. 2015). Koivunen and colleagues were able to show enhanced 

proliferation and increased colony formation in normal cells after introduction of the IDH1 

mutation. It has to be mentioned that it took around 14 cell passages after transfection of the 

vector with the mutated IDH1 to make this observation (Koivunen et al. 2012).  

Within the scope of this thesis it was not possible to further analyse the effect of R-2-HG on 

glioblastoma cells. With short-term addition of R-2-HG to cells in culture it may be not possible 

to entirely mimic the IDH1 mutations in glioblastoma cells or only by adding a much higher 

concentration of the oncometabolite. Transfection of cells with a vector carrying the mutated 

IDH1 followed by a few cell passages might be a better tool to study the IDH1 mutation and 

the effect on Jarid1 demethyases. I additionally assume that efficacy of R-2-HG against 

different α-KG dioxygenases is cell line specific and also dependent on other cellular 

conditions. Generally, unspecific inhibitors like R-2-HG are not suitable to gain universally valid 

insights in the mechanistic of reprogramming of epigenetics and cellular metabolism.  

 

5.7 Conclusion and Outlook 

The present work intended to study the role of JmjC domain-containing family of histone 

demethylases on chromatin structure, as well as on DNA damage response and DSB repair 

upon irradiation with ionizing irradiation. Due to the loss of H3K4me3/me2 and a concomitant 

loss of active RNA polymerase II at γH2AX-decorated DNA damage sites induced by ionizing 

radiation and due to accumulation of Jarid1A at laser-induced damage sites (Seiler at al. 2011), 

my main focus was the demethylase Jarid1A. Collectively, the data presented here show 

increased hyperacetylation and increased radiosensitivity upon depletion of Jarid1A, while 

recruitment of DNA damage/DSB repair factors and the DSB repair via NHEJ and HR itself 

remain unaffected. The observed hyperacetylation and increased tri-methylation at H3K4 does 

neither obviously influence the higher chromatin order nor affect the recruitment of repair 

factors to sites of DSBs. As regulator of transcription Jarid1A knockdown deregulates gene 
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expression of various genes, especially genes encoding for transporters and transferases 

affecting cell metabolism. The consequences in unirradiated cells are marginal and have no 

influence on cell proliferation, growth properties or viability. Depletion of Jarid1A in irradiated 

cells induces some disturbance in pathways affecting the extracellular matrix organization. 

Additionally some changes in the expression of genes involved in damage response or/and in 

cell cycle and transcriptional regulation could be observed that are, however, not visible on 

protein level. Investigation of a possible role for Jarid1A in the loss of H3K4me3/me2 in γH2AX-

decorated chromatin regions and loss of active RNA polymerase II from these regions showed 

negative results. This is compatible with observations by Li and colleagues who found that 

H3K4me3 levels in the vicinity of enzyme-induced DSB are largely regulated by Jarid1B (Li et 

al. 2014). Controverse results were published very recently by Gong and colleagues, who 

found Jarid1A recruitment to laser-induced damage and failure of H3K4me3 loss associated 

with reduced recruitment of Rad51 upon Jarid1A depletion (Gong et al. 2017). I propose a 

model where Jarid1A and Jarid1B act in concert with other factors in chromatin remodeling 

and DSB repair after damage induction by ionizing radiation. Knockdown of solely the Jarid1A 

demethylase influences chromatin modifications and radiosensitivity without visibly affecting 

recruitment of repair proteins to ion-induced DSBs. Due to the lack of a specific potent Jarid1A 

inhibitor, the possibility of further effects occurring upon complete depletion of Jarid1A could 

not been tested here. Thus, the mechanistic basis of the significantly increased radiosensitivity 

seen upon depletion of Jarid1A remains to be elucidated. To give a final statement, inhibition 

of solely Jarid1A or Jarid1B should be performed. Unfortunately, development of specific cell 

permeable inhibitors against Jarid1 demethylases is very challenging. The catalytic site of 

JmjC domain-containing histone demethylases exhibits a close structural homology among 

different demethylase families. Consequently, inhibitors often block KDM4, KDM6 and KDM5 

demethylases simultaneously (Johansson et al. 2016; Taylor-Papadimitriou and Burchell 

2017). A lot of research is going on to find potent and more specific compounds (Gehling et al. 

2016; Horton et al. 2016; Labadie et al. 2016; Westaway et al. 2016). Design of specific 

inhibitors against a particular demethylase of the Jarid1 family is even more complex as the 

mode of action and the protein domains are nearly identical.  

Regarding the deregulation of Jarid1 demethylases in various diseases, especially numerous 

cancers (Hou et al. 2012; Teng et al. 2013; Yamamoto et al. 2014), a high need for specific 

inhibitors for research purposes and therapeutic usage persists. As epigenetic processes are 

reversible, enzyme-mediated processes have emerged as promising targets for cancer 

therapy. In recent years many studies had a focus on the interplay between epigenetic 

pathways and the DNA damage response for a better understanding of the mechanisms and 

to find targets for therapy (reviewed in Smits et al. 2014). Due to the observed radiosensitizing 
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effect after targeting Jarid1A, small molecule inhibitors in combination with radiotherapy could 

give rise to an effective therapeutic benefit in designated cancer diseases. Data from ongoing 

and future studies on the topic of the detailed roles of Jarid1 demethylases in repressive 

complexes, oncogenic signalling and DNA damage response as well as related epigenetic 

biomarkers for classification and diagnosis of associated diseases are required to develop new 

therapeutic approaches.  
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7 Abbreviations 

2-HG 2-hydroxyglutarate 

3D three-dimensional 

53BP1 p53-binding protein 1 

A488 Alexa fluorochrome 488 

α-KG α-ketoglutarate 

ATM Ataxia telangiectasia mutated 

ATP Adenosine triphosphate 

ATR Ataxia telangiectasia and Rad3 related 

bp Base pairs 

BRCA1 breast cancer type 1 susceptibility protein 

BSA bovine serum albumine 

Cdk1 Cyclin-dependent kinase 1 

Cy3 Cyanin 3 

DAPI 4’,6-diamidino-2-phenylindole 

DDR DNA damage response 

DEPC diethylpyrocarbonate 

DMEM Dulbecco`s modified eagle medium 

DNA Deoxyribo-nucleic acid 

DSB Double-strand break 

ECL Electrochemiluminescence 

ECM Extracellular matrix organization 

EDTA Ethylenediaminetetraacetic acid 

EtOH Ethanol 

FBS Fetal bovine serum 

γH2AX phosphorylated H2AX 

Gy Gray 

h Hour 

HAT Histone acetyltransferase  

HDAC Histone deacetylase 

HP1 Heterochromatin protein 1 

HR Homologous recombination 

HRP Horseraddish peroxidase 

ICA Intensity correlation analysis   

IDH1/2 isocitrate dehydrogenase 1/2 
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IF immunofluorescence 

IRIF Ionizing radiation-induced foci 

Jarid1A Jumonji-ARID protein 1a (synonyms: RBP2, KDM5A) 

Jarid1B Jumonji-ARID protein 1b (synonyms: PLU1, KDM5B) 

Jarid1C Jumonji-ARID protein 1c (synonyms: SMCX, KDM5C) 

Jarid1D Jumonji-ARID protein 1d (synonyms: SMCY, KDM5D) 

JmjC/JmjN Jumonji C/N domain-containing 

kDa Kilodalton 

KDM Lysine (K) demethylase 

mA Milliampere 

Mb Megabase 

MDC1 Mediator of DNA damage checkpoint 1  

MeV Megaelectronvolts 

min  Minute 

MRN Mre11-Rad50-Nbs1 complex 

mRNA messenger RNA 

µm Micrometer 

NADP Nicotinamide adenine dinucleotide phosphate 

NHEJ Non-homologous end joining 

nm Nanometer 

NuRD Nucleosome remodeling complex 

p.A. Pro analysi 

PARP1 Poly [ADP-ribose] polymerase 1 

pATM phosphorylated ATM 

PBS Phosphate buffered saline 

PCA Peptide competition assay 

pChk2  phosphorylated Chk2 

PCR Polymerase chain reaction  

PDM Product of the differences from the mean 

PFA  Paraformaldehyde 

PHD Plant homeo domain 

PTM post-translational modifications 

qRT-PCR Quantitative Real-Time-PCR 

RBP2 Retinoblastoma-binding protein 2 

RNA Ribonucleic acid 
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rpm Rounds per minute 

RPMI Roswell park memorial institute cell culture medium 

RT Room temperature 

SD standard deviation 

shRNA Short/small hairpin RNA 

siRNA Small interfering RNA 

SNAKE  Superconducting Nanoscope for Applied Nuclear Experiments 

TA Tris-Acetate 

TAD Topologically associating domain 

TGS Tris-Glycine-SDS 

V Volt 
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9 Appendix 

9.1 Appendix A 

Sequences of used plasmids 

LOCUS pEJ 4845 bp DNA linear 

        1 tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg 
       61 cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt 
      121 gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca 
      181 atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc 
      241 aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta 
      301 catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac 
      361 catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg 
      421 atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg 
      481 ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt 
      541 acggtgggag gtctatataa gcagagctgg tttagtgaac cgtcagatcc gctagcgcta 
      601 ccggactcag atctcgagtc caccgagaca tctacttgat caatcgaaca ctgcggaatt 
      661 ctagggataa cagggtaatt aagcttctgc agaccatgga gattaccctg ttatccctac 
      721 cccggggata ctgacggtac ctcaataatc cgatcgaagt ctactgatcg aggatccacc 
      781 ggtcgccacc atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt 
      841 cgagctggac ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga 
      901 tgccacctac ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc 
      961 ctggcccacc ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga 
     1021 ccacatgaag cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg 
     1081 caccatcttc ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg 
     1141 cgacaccctg gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat 
     1201 cctggggcac aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa 
     1261 gcagaagaac ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt 
     1321 gcagctcgcc gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc 
     1381 cgacaaccac tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga 
     1441 tcacatggtc ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct 
     1501 gtacaagtaa agcggccgcg actctagatc ataatcagcc ataccacatt tgtagaggtt 
     1561 ttacttgctt taaaaaacct cccacacctc cccctgaacc tgaaacataa aatgaatgca 
     1621 attgttgttg ttaacttgtt tattgcagct tataatggtt acaaataaag caatagcatc 
     1681 acaaatttca caaataaagc atttttttca ctgcattcta gttgtggttt gtccaaactc 
     1741 atcaatgtat cttaaggcgt aaattgtaag cgttaatatt ttgttaaaat tcgcgttaaa 
     1801 tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa tcccttataa 
     1861 atcaaaagaa tagaccgaga tagggttgag tgttgttcca gtttggaaca agagtccact 
     1921 attaaagaac gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc 
     1981 actacgtgaa ccatcaccct aatcaagttt tttggggtcg aggtgccgta aagcactaaa 
     2041 tcggaaccct aaagggagcc cccgatttag agcttgacgg ggaaagccgg cgaacgtggc 
     2101 gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt 
     2161 cacgctgcgc gtaaccacca cacccgccgc gcttaatgcg ccgctacagg gcgcgtcagg 
     2221 tggcactttt cggggaaatg tgcgcggaac ccctatttgt ttatttttct aaatacattc 
     2281 aaatatgtat ccgctcatga gacaataacc ctgataaatg cttcaataat attgaaaaag 
     2341 gaagagtcct gaggcggaaa gaaccagctg tggaatgtgt gtcagttagg gtgtggaaag 
     2401 tccccaggct ccccagcagg cagaagtatg caaagcatgc atctcaatta gtcagcaacc 
     2461 aggtgtggaa agtccccagg ctccccagca ggcagaagta tgcaaagcat gcatctcaat 
     2521 tagtcagcaa ccatagtccc gcccctaact ccgcccatcc cgcccctaac tccgcccagt 
     2581 tccgcccatt ctccgcccca tggctgacta atttttttta tttatgcaga ggccgaggcc 
     2641 gcctcggcct ctgagctatt ccagaagtag tgaggaggct tttttggagg cctaggcttt 
     2701 tgcaaagatc gatcaagaga caggatgagg atcgtttcgc atgattgaac aagatggatt 
     2761 gcacgcaggt tctccggccg cttgggtgga gaggctattc ggctatgact gggcacaaca 
     2821 gacaatcggc tgctctgatg ccgccgtgtt ccggctgtca gcgcaggggc gcccggttct 
     2881 ttttgtcaag accgacctgt ccggtgccct gaatgaactg caagacgagg cagcgcggct 
     2941 atcgtggctg gccacgacgg gcgttccttg cgcagctgtg ctcgacgttg tcactgaagc 
     3001 gggaagggac tggctgctat tgggcgaagt gccggggcag gatctcctgt catctcacct 
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     3061 tgctcctgcc gagaaagtat ccatcatggc tgatgcaatg cggcggctgc atacgcttga 
     3121 tccggctacc tgcccattcg accaccaagc gaaacatcgc atcgagcgag cacgtactcg 
     3181 gatggaagcc ggtcttgtcg atcaggatga tctggacgaa gagcatcagg ggctcgcgcc 
     3241 agccgaactg ttcgccaggc tcaaggcgag catgcccgac ggcgaggatc tcgtcgtgac 
     3301 ccatggcgat gcctgcttgc cgaatatcat ggtggaaaat ggccgctttt ctggattcat 
     3361 cgactgtggc cggctgggtg tggcggaccg ctatcaggac atagcgttgg ctacccgtga 
     3421 tattgctgaa gagcttggcg gcgaatgggc tgaccgcttc ctcgtgcttt acggtatcgc 
     3481 cgctcccgat tcgcagcgca tcgccttcta tcgccttctt gacgagttct tctgagcggg 
     3541 actctggggt tcgaaatgac cgaccaagcg acgcccaacc tgccatcacg agatttcgat 
     3601 tccaccgccg ccttctatga aaggttgggc ttcggaatcg ttttccggga cgccggctgg 
     3661 atgatcctcc agcgcgggga tctcatgctg gagttcttcg cccaccctag ggggaggcta 
     3721 actgaaacac ggaaggagac aataccggaa ggaacccgcg ctatgacggc aataaaaaga 
     3781 cagaataaaa cgcacggtgt tgggtcgttt gttcataaac gcggggttcg gtcccagggc 
     3841 tggcactctg tcgatacccc accgagaccc cattggggcc aatacgcccg cgtttcttcc 
     3901 ttttccccac cccacccccc aagttcgggt gaaggcccag ggctcgcagc caacgtcggg 
     3961 gcggcaggcc ctgccatagc ctcaggttac tcatatatac tttagattga tttaaaactt 
     4021 catttttaat ttaaaaggat ctaggtgaag atcctttttg ataatctcat gaccaaaatc 
     4081 ccttaacgtg agttttcgtt ccactgagcg tcagaccccg tagaaaagat caaaggatct 
     4141 tcttgagatc ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa accaccgcta 
     4201 ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc tttttccgaa ggtaactggc 
     4261 ttcagcagag cgcagatacc aaatactgtc cttctagtgt agccgtagtt aggccaccac 
     4321 ttcaagaact ctgtagcacc gcctacatac ctcgctctgc taatcctgtt accagtggct 
     4381 gctgccagtg gcgataagtc gtgtcttacc gggttggact caagacgata gttaccggat 
     4441 aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac agcccagctt ggagcgaacg 
     4501 acctacaccg aactgagata cctacagcgt gagctatgag aaagcgccac gcttcccgaa 
     4561 gggagaaagg cggacaggta tccggtaagc ggcagggtcg gaacaggaga gcgcacgagg 
     4621 gagcttccag ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg ccacctctga 
     4681 cttgagcgtc gatttttgtg atgctcgtca ggggggcgga gcctatggaa aaacgccagc 
     4741 aacgcggcct ttttacggtt cctggccttt tgctggcctt ttgctcacat gttctttcct 
     4801 gcgttatccc ctgattctgt ggataaccgt attaccgcca tgcat 
// 

 

LOCUS pMCC-EGFP-P_(572) 6314 bp DNA linear    

        1 tcgataatga aagaccccac ctgtaggttt ggcaagctag cttaagtaac gccattttgc 
       61 aaggcatggg aaaaatacat aactgagaat agagaagttc agatcaaggt caggaacaga 
      121 gaaacaggag aatatgggcc aaacaggata tctgtggtaa gcagttcctg ccccgctcag 
      181 ggccaagaac agttggaaca ggagaattgg gccaaacagg atatctgtgg taagcagttc 
      241 ctgccccgct cagggccaag aacagatggt ccccagatgc ggtcccgccc tcagcagttt 
      301 ctagacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt 
      361 gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca 
      421 atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc 
      481 aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta 
      541 catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac 
      601 catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg 
      661 atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg 
      721 ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt 
      781 acggtgggag gtctatataa gcagagctcg tttagtgaac cgtcagatcg cctggagacg 
      841 ccatccacgc tgttttgacc tccatagaag acaccgggac cgatccagcc tcgaggaact 
      901 ggaaaaccag aaagttaact ggtaagttta gtctttttgt cttttatttc aggtcccgga 
      961 tcgaattgcg gccgcgaatt aagcttgcac gcgtcctaag gactagttcg cgagggccca 
     1021 tggtgagcaa gggcgaggag ctgttcaccg gggtggtgcc catcctggtc gagctggacg 
     1081 gcgacgtaaa cggccacaag ttcagcgtgt ccggcgaggg cgagggcgat gccacctacg 
     1141 gcaagctgac cctgaagttc atctgcacca ccggcaagct gcccgtgccc tggcccaccc 
     1201 tcgtgaccac cctgacctac ggcgtgcagt gcttcagccg ctaccccgac cacatgaagc 
     1261 agcacgactt cttcaagtcc gccatgcccg aaggctacgt ccaggagcgc accatcttct 
     1321 tcaaggacga cggcaactac aagacccgcg ccgaggtgaa gttcgagggc gacaccctgg 
     1381 tgaaccgcat cgagctgaag ggcatcgact tcaaggagga cggcaacatc ctggggcaca 
     1441 agctggagta caactacaac agccacaacg tctatatcat ggccgacaag cagaagaacg 
     1501 gcatcaaggt gaacttcaag atccgccaca acatcgagga cggcagcgtg cagctcgccg 
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     1561 accactacca gcagaacacc cccatcggcg acggccccgt gctgctgccc gacaaccact 
     1621 acctgagcac ccagtccgcc ctgagcaaag accccaacga gaagcgcgat cacatggtcc 
     1681 tgctggagtt cgtgaccgcc gccgggatca ctctcggcat ggacgagctg tacaagtaag 
     1741 aattcagctt ttaaaacagc tctggggttg tacccacccc agaggcccac gtggcggcta 
     1801 gtactccggt attgcggtac ccttgtacgc ctgttttata ctcccttccc gtaacttaga 
     1861 cgcacaaaac caagttcaat agaagggggt acaaaccagt accaccacga acaagcactt 
     1921 ctgtttcccc ggtgatgtcg tatagactgc ttgcgtggtt gaaagcgacg gatccgttat 
     1981 ccgcttatgt acttcgagaa gcccagtacc acctcggaat cttcgatgcg ttgcgctcag 
     2041 cactcaaccc cagagtgtag cttaggctga tgagtctgga catccctcac cggtgacggt 
     2101 ggtccaggct gcgttggcgg cctacctatg gctaacgcca tgggacgcta gttgtgaaca 
     2161 aggtgtgaag agcctattga gctacataag aatcctccgg cccctgaatg cggctaatcc 
     2221 caacctcgga gcaggtggtc acaaaccagt gattggcctg tcgtaacgcg caagtccgtg 
     2281 gcggaaccga ctactttggg tgtccgtgtt tccttttatt ttattgtggc tgcttatggt 
     2341 gacaatcaca gattgttatc ataaagcgaa ttggattgcg gccggccgcc acgaccggtg 
     2401 ccgccaccat cccctgaccc acgcccctga cccctcacaa ggagacgacc ttccatgacc 
     2461 gagtacaagc ccacggtgcg cctcgccacc cgcgacgacg tcccccgggc cgtacgcacc 
     2521 ctcgccgccg cgttcgccga ctaccccgcc acgcgccaca ccgtcgaccc ggaccgccac 
     2581 atcgagcggg tcaccgagct gcaagaactc ttcctcacgc gcgtcgggct cgacatcggc 
     2641 aaggtgtggg tcgcggacga cggcgccgcg gtggcggtct ggaccacgcc ggagagcgtc 
     2701 gaagcggggg cggtgttcgc cgagatcggc ccgcgcatgg ccgagttgag cggttcccgg 
     2761 ctggccgcgc agcaacagat ggaaggcctc ctggcgccgc accggcccaa ggagcccgcg 
     2821 tggttcctgg ccaccgtcgg cgtctcgccc gaccaccagg gcaagggtct gggcagcgcc 
     2881 gtcgtgctcc ccggagtgga ggcggccgag cgcgccgggg tgcccgcctt cctggagacc 
     2941 tccgcgcccc gcaacctccc cttctacgag cggctcggct tcaccgtcac cgccgacgtc 
     3001 gagtgcccga aggaccgcgc gacctggtgc atgacccgca agcccggtgc ctgacgcccg 
     3061 ccccacgacc cgcagcgccc gaccgaaagg agcgcacgac cccatgagct tcgatccaga 
     3121 catgataaga tacattgatg agtttggaca aaccacaact agaatgcagt gaaaaaaatg 
     3181 ctttatttgt gaaatttgtg atgctattgc tttatttgta accattataa gctgcaataa 
     3241 acaagttaac aacaacaatt gcattcattt tatgtttcag gttcaggggg aggtgtggga 
     3301 ggttttttaa agcaagtaaa acctctacaa atgtggtatg gctgattatg atcctgcctc 
     3361 gcgcgtttcg gtgatgacgg tgaaaacctc tgacacatgc agctcccgga gacggtcaca 
     3421 gcttgtctgt aagcggatgc cgggagcaga caagcccgtc agggcgcgtc agcgggtgtt 
     3481 ggcgggtgtc ggggcgcagc catgacccag tcacgtagcg atagcggagt gtagatcccc 
     3541 aacttgtcaa cctcatttca aaatgtatat agaaagccca aagacaataa caaaaatatt 
     3601 cttgtagaac aaaatgggaa agaatgttcc actaaatatc aagatttaga gcaaagcatg 
     3661 agatgtgtgg ggatagacag tgaggctgat aaaatagagt agagctcaga aacagaccca 
     3721 ttgatatatg taagtgacct atgaaaaaaa tatggcattt tacaatggga aaatgatgat 
     3781 ctttttcttt tttagaaaaa cagggaaata tatttatatg taaaaaataa aagggaaccc 
     3841 atatgtcata ccatacacac aaaaaaattc cagtgaatta taagtctaaa tggagaaggc 
     3901 aaaactttaa atcttttaga aaataatata gaagcatgcc atcatgactt cagtgtagag 
     3961 aaaaatttct tatgactcaa agtcctaacc acaaagaaaa gattgttaat tagattgcat 
     4021 gaatattaag acttattttt aaaattaaaa aaccattaag aaaagtcagg ccatagaatg 
     4081 acagaaaata tttgcaacac cccagtaaag agaattgtaa tatgcagatt ataaaaagaa 
     4141 gtcttacaaa tcagtaaaaa ataaaactag acaaaaattt gaacagatga aagagaaact 
     4201 ctaaataatc attacacatg agaaactcaa tctcagaaat cagagaacta tcattgcata 
     4261 tacactaaat tagagaaata ttaaaaggct aagtaacatc tgtggcaata ttgatggtat 
     4321 ataaccttga tatgatgtga tgagaacagt gacctgcagg catgcaagct agcttactgg 
     4381 cttaactatg cggcatcaga gcagattgta ctgagagtgc accatatgtc gggccgcgtt 
     4441 gctggcgttt ttccataggc tccgcccccc tgacgagcat cacaaaaatc gacgctcaag 
     4501 tcagaggtgg cgaaacccga caggactata aagataccag gcgtttcccc ctggaagctc 
     4561 cctcgtgcgc tctcctgttc cgaccctgcc gcttaccgga tacctgtccg cctttctccc 
     4621 ttcgggaagc gtggcgcttt ctcatagctc acgctgtagg tatctcagtt cggtgtaggt 
     4681 cgttcgctcc aagctgggct gtgtgcacga accccccgtt cagcccgacc gctgcgcctt 
     4741 atccggtaac tatcgtcttg agtccaaccc ggtaagacac gacttatcgc cactggcagc 
     4801 agccactggt aacaggatta gcagagcgag gtatgtaggc ggtgctacag agttcttgaa 
     4861 gtggtggcct aactacggct acactagaag gacagtattt ggtatctgcg ctctgctgaa 
     4921 gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg 
     4981 tagcggtggt ttttttgttt gcaagcagca gattacgcgc agaaaaaaag gatctcaaga 
     5041 agatcctttg atcttttcta cggggtctga cgctcagtgg aacgaaaact cacgttaagg 
     5101 gattttggtc atgagattat caaaaaggat cttcacctag atccttttaa attaaaaatg 
     5161 aagttttaaa tcaatctaaa gtatatatga gtaaacttgg tctgacagtt accaatgctt 
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     5221 aatcagtgag gcacctatct cagcgatctg tctatttcgt tcatccatag ttgcctgact 
     5281 ccccgtcgtg tagataacta cgatacggga gggcttacca tctggcccca gtgctgcaat 
     5341 gataccgcga gacccacgct caccggctcc agatttatca gcaataaacc agccagccgg 
     5401 aagggccgag cgcagaagtg gtcctgcaac tttatccgcc tccatccagt ctattaattg 
     5461 ttgccgggaa gctagagtaa gtagttcgcc agttaatagt gcgcaacgtt gttgccattg 
     5521 ctacaggcat cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc tccggttccc 
     5581 aacgatcaag gcgagttaca tgatccccca tgttgtgcaa aaaagcggtt agctccttcg 
     5641 gtcctccgat cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg gttatggcag 
     5701 cactgcataa ttctcttact gtcatgccat ccgtaagatg cttttctgtg actggtgagt 
     5761 actcaaccaa gtcattctga gaatagtgta tgcggcgacc gagttgctct tgcccggcgt 
     5821 caacacggga taataccgcg ccacatagca gaactttaaa agtgctcatc attggaaaac 
     5881 gttcttcggg gcgaaaactc tcaaggatct taccgctgtt gagatccagt tcgatgtaac 
     5941 ccactcgtgc acccaactga tcttcagcat cttttacttt caccagcgtt tctgggtgag 
     6001 caaaaacagg aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa 
     6061 tactcatact cttccttttt caatattatt gaagcattta tcagggttat tgtctcatga 
     6121 gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg cgcacatttc 
     6181 cccgaaaagt gccacctgac gtctaagaaa ccattattat catgacatta acctataaaa 
     6241 ataggcgtat cacgaggccc tttcgtcttc aagaattggt cgatcgacca attctcatgt 
     6301 ttgacagctt atca 
// 

 

LOCUS pCMV-I-SceI 5492 bp DNA linear    

        1 cccattcgcc attcaggctg cgcaactgtt gggaagggcg atcggtgcgg gcctcttcgc 
       61 tattacgcca gctggcgaaa gggggatgtg ctgcaaggcg attaagttgg gtaacgccag 
      121 ggttttccca gtcacgacgt tgtaaaacga cggccagtgc caagctgatc tatacattga 
      181 atcaatattg gcaattagcc atattagtca ttggttatat agcataaatc aatattggct 
      241 attggccatt gcatacgttg tatctatatc ataatatgta catttatatt ggctcatgtc 
      301 caatatgacc gccatgttga cattgattat tgactagtta ttaatagtaa tcaattacgg 
      361 ggtcattagt tcatagccca tatatggagt tccgcgttac ataacttacg gtaaatggcc 
      421 cgcctggctg accgcccaac gacccccgcc cattgacgtc aataatgacg tatgttccca 
      481 tagtaacgcc aatagggact ttccattgac gtcaatgggt ggagtattta cggtaaactg 
      541 cccacttggc agtacatcaa gtgtatcata tgccaagtcc gccccctatt gacgtcaatg 
      601 acggtaaatg gcccgcctgg cattatgccc agtacatgac cttacgggac tttcctactt 
      661 ggcagtacat ctacgtatta gtcatcgcta ttaccatggt gatgcggttt tggcagtaca 
      721 ccaatgggcg tggatagcgg tttgactcac ggggatttcc aagtctccac cccattgacg 
      781 tcaatgggag tttgttttgg caccaaaatc aacgggactt tccaaaatgt cgtaataacc 
      841 ccgccccgtt gacgcaaatg ggcggtaggc gtgtacggtg ggaggtctat ataagcagag 
      901 ctcgtttagt gaaccgtcag aattcagatc tggtaccacg cgtatcgata agcttgcatg 
      961 cctgcaggtc gacttatttc aggaaagttt cggaggagat agtgttcggc agtttgtaca 
     1021 tcatctgcgg gatcaggtac ggtttgatca ggttgtagaa gatcaggtaa gacatagaat 
     1081 cgatgtagat gatcggtttg tttttgttga tttttacgta acagttcagt tggaatttgt 
     1141 tacgcagacc cttaaccagg tattctactt cttcgaaagt gaaagactgg gtgttcagta 
     1201 cgatcgattt gttggtagag tttttgttgt aatcccattt accaccatca tccatgaacc 
     1261 agtatgccag agacatcggg gtcaggtagt tttcaaccag gttgttcggg atggtttttt 
     1321 tgttgttaac gatgaacagg ttagccagtt tgttgaaagc ttggtgtttg aaagtctggg 
     1381 cgccccaggt gattaccagg ttacccaggt ggttaacacg ttcttttttg tgcggcgggg 
     1441 acagtaccca ctgatcgtac agcagacata cgtggtccat gtatgctttg tttttccact 
     1501 cgaactgcat acagtaggtt ttaccttcat cacgagaacg gatgtaagca tcacccagga 
     1561 tcagaccgat acctgcttcg aactgttcga tgttcagttc gatcagctgg gatttgtatt 
     1621 ctttcagcag tttagagttc ggaccgaggt tcattacctg gttttttttg atgtttttcc 
     1681 cgcatagtca ggaacatcgt atgggtacat aaatcgtggg tcttctactt ttcgtttttt 
     1741 ttttggtggt gctgcgtgtt gtgcgtctgc tgttgcttcg tcgtctgatg atgatcccat 
     1801 agtggcggcg gatccgatcc cgggtggcat ccctgtgacc cctccccagt gcctctcctg 
     1861 gccctggaag ttgccactcc agtgcccacc agccttgtcc taataaaatt aagttgcatc 
     1921 attttgtctg actaggtgtc cttctataat attatggggt ggaggggggt ggtatggagc 
     1981 aaggggcaag ttgggaagac aacctgtagg gcctgcgggg tctattggga accaagctgg 
     2041 agtgcagtgg cacaatcttg gctcactgca atctccgcct cctgggttca agcgattctc 
     2101 ctgcctcagc ctcccgagtt gttgggattc caggcatgca tgaccaggct cagctaattt 
     2161 ttgttttttt ggtagagacg gggtttcacc atattggcca ggctggtctc caactcctaa 
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     2221 tctcaggtga tctacccacc ttggcctccc aaattgctgg gattacaggc gtgaaccact 
     2281 gctcccttcc ctgtccttct gattttaaaa taactatacc agcaggagga cgtccagaca 
     2341 cagcataggc tacctgccat ggcccaaccg gtgggacatt tgagttgctt gcttggcact 
     2401 gtcctctcat gcgttgggtc cactcagtag atgcctgttg aattgggtac gcggccagct 
     2461 tctgtggaat gtgtgtcagt tagggtgtgg aaagtcccca ggctccccag caggcagaag 
     2521 tatgcaaagc atgcatctca attagtcagc aaccaggtgt ggaaaagtcc ccaggctccc 
     2581 cagcaggcag aagtatgcaa agcatgcatc tcaattagtc agcaaccata gtcccgcccc 
     2641 taactccgcc catcccgccc ctaactccgc ccagttccgc ccattctccg ccccatggct 
     2701 gactaatttt ttttatttat gcagaggccg aggccgcctc ggcctctgag ctattccaga 
     2761 agtagtgagg aggctttttt ggaggcctag gcttttgcaa aaagctcctc gaggaactga 
     2821 aaaaccagaa agttaattcc ctatagtgag tcgtattaaa ttcgtaatca tggtcatagc 
     2881 tgtttcctgt gtgaaattgt tatccgctca caattccaca caacatacga gccggaagca 
     2941 taaagtgtaa agcctggggt gcctaatgag tgagctaact cacattaatt gcgttgcgct 
     3001 cactgcccgc tttccagtcg ggaaacctgt cgtgccagct gcattaatga atcggccaac 
     3061 gcgcggggag aggcggtttg cgtattgggc gctcttccgc ttcctcgctc actgactcgc 
     3121 tgcgctcggt cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt 
     3181 tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg 
     3241 ccaggaaccg taaaaggccg cgttgctggc gtttttccat aggctccgcc cccctgacga 
     3301 gcatcacaaa aatcgacgct caagtcagag gtggcgaaac ccgacaggac tataaagata 
     3361 ccaggcgttt ccccctggaa gctccctcgt gcgctctcct gttccgaccc tgccgcttac 
     3421 cggatacctg tccgcctttc tcccttcggg aagcgtggcg ctttctcaat gctcacgctg 
     3481 taggtatctc agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc 
     3541 cgttcagccc gaccgctgcg ccttatccgg taactatcgt cttgagtcca acccggtaag 
     3601 acacgactta tcgccactgg cagcagccac tggtaacagg attagcagag cgaggtatgt 
     3661 aggcggtgct acagagttct tgaagtggtg gcctaactac ggctacacta gaaggacagt 
     3721 atttggtatc tgcgctctgc tgaagccagt taccttcgga aaaagagttg gtagctcttg 
     3781 atccggcaaa caaaccaccg ctggtagcgg tggttttttt gtttgcaagc agcagattac 
     3841 gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggggt ctgacgctca 
     3901 gtggaacgaa aactcacgtt aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac 
     3961 ctagatcctt ttaaattaaa aatgaagttt taaatcaatc taaagtatat atgagtaaac 
     4021 ttggtctgac agttaccaat gcttaatcag tgaggcacct atctcagcga tctgtctatt 
     4081 tcgttcatcc atagttgcct gactccccgt cgtgtagata actacgatac gggagggctt 
     4141 accatctggc cccagtgctg caatgatacc gcgagaccca cgctcaccgg ctccagattt 
     4201 atcagcaata aaccagccag ccggaagggc cgagcgcaga agtggtcctg caactttatc 
     4261 cgcctccatc cagtctatta attgttgccg ggaagctaga gtaagtagtt cgccagttaa 
     4321 tagtttgcgc aacgttgttg ccattgctac aggcatcgtg gtgtcacgct cgtcgtttgg 
     4381 tatggcttca ttcagctccg gttcccaacg atcaaggcga gttacatgat cccccatgtt 
     4441 gtgcaaaaaa gcggttagct ccttcggtcc tccgatcgtt gtcagaagta agttggccgc 
     4501 agtgttatca ctcatggtta tggcagcact gcataattct cttactgtca tgccatccgt 
     4561 aagatgcttt tctgtgactg gtgagtactc aaccaagtca ttctgagaat agtgtatgcg 
     4621 gcgaccgagt tgctcttgcc cggcgtcaat acgggataat accgcgccac atagcagaac 
     4681 tttaaaagtg ctcatcattg gaaaacgttc ttcggggcga aaactctcaa ggatcttacc 
     4741 gctgttgaga tccagttcga tgtaacccac tcgtgcaccc aactgatctt cagcatcttt 
     4801 tactttcacc agcgtttctg ggtgagcaaa aacaggaagg caaaatgccg caaaaaaggg 
     4861 aataagggcg acacggaaat gttgaatact catactcttc ctttttcaat attattgaag 
     4921 catttatcag ggttattgtc tcatgagcgg atacatattt gaatgtattt agaaaaataa 
     4981 acaaataggg gttccgcgca catttccccg aaaagtgcca cctgacgcgc cctgtagcgg 
     5041 cgcattaagc gcggcgggtg tggtggttac gcgcagcgtg accgctacac ttgccagcgc 
     5101 cctagcgccc gctcctttcg ctttcttccc ttcctttctc gccacgttcg ccggctttcc 
     5161 ccgtcaagct ctaaatcggg gcatcccttt agggttccga tttagtgctt tacggcacct 
     5221 cgaccccaaa aaacttgatt agggtgatgg ttcacgtagt gggccatcgc cctgatagac 
     5281 ggtttttcgc cctttgacgt tggagtccac gttctttaat agtggactct tgttccaaac 
     5341 tggaacaaca ctcaacccta tctcggtcta ttcttttgat ttataaggga ttttgccgat 
     5401 ttcggcctat tggttaaaaa atgagctgat ttaacaaaaa tttaacgcga attttaacaa 
     5461 aatattaaca aaatattaac gtttacaatt tc 
// 
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9.2 Appendix B 

Comparable levels of Jarid1A in HeLa, U2OS and MCF-7 cells 

 

Figure B. 1: Decreased levels of Jarid1A in whole cell protein extracts of HeLa, MCF-7 and U2OS cells 

after siRNA transfection. Western blot images show levels of Jarid1A in untransfected cells (cont), in 

cells transfected with scrambled siRNA (scr) and in cells transfected with Jarid1A A1+A3 siRNA. The 

controls and scr siRNA transfected cells of all three cell lines show comparable levels of Jarid1A.  

 

 

Peptide competition assay of the antibody r-α-H3K4me3 (Abcam 8580) via 

Immunofluorescence 

 

Figure B. 2: X-fold change of mean exposure time with standard deviation in images, where primary 

antibody was incubated with different peptides. Primary H3K4me3 antibody was incubated with a 

100-fold molar excess of one of the above indicated peptides. Exposure time was measured in 

seven images of each condition and was normalized to exposure time of the control (no peptide). 

Only after incubation of the primary antibody with its specific peptide H3K4me3, exposure time is 

significantly increased. 
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Figure B. 3: Relative signals of H3K4me3 after incubation of the antibody with the different peptides 

are represented in the graph. Primary H3K4me3 antibody was incubated with a 100-fold molar 

excess of one of the above indicated peptides. Sample incubated with H3K4me3 antibody without 

peptide was used as control. The antibody is efficiently blocked by the peptides H3K4me2 and 

H3K4me3.  

 

 

 

  

0

50

100

150

200

250

300

350

H3K4me1 H3K4me2 H3K4me3 H3 cont

re
la

ti
v
e
 s

ig
n
a
l 
o
f 

H
3
K

4
m

e
3
 [
%

] 

peptide



Appendix 

137 
 

9.3 Appendix C 

Depletion of Jarid1A enhances radiosensitivity 

 

Figure C: Survival fraction of the differently treated HeLa cells irradiated at 72 h after siRNA 

transfection. Cells were irradiated with 0 Gy, 2 Gy 5 Gy or 10 Gy x-rays and incubated for 10 days 

before fixation and methylene blue staining of colonies.  
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9.4 Appendix D 

Early formation of γH2AX foci is not affected by depletion of Jarid1A. 
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Figure D: 72 h after transfection with scr or Jarid1A A1+A3 siRNA, HeLa cells were irradiated in a small 

angle configuration with 55 MeV carbon ions and fixed after 5 min (A) and 2 min (B), or irradiated with 

5 Gy X-rays and fixed after 15 min (C). Indirect immunofluorescence was performed to detect the foci 

formation of γH2AX. Numbers indicate microscopic exposure times, thus enabling direct comparison of 

signal intensities.  
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9.5 Appendix E 

No inhibition of Jarid1B after treatment of cells with different concentrations of PBIT as 

shown by steady H3K4me3 levels in Western Blotting experiments 

 

Figure E.1: Relative signals of H3K4me3 after 72 h incubation of HeLa cells with different concentrations 

of PBIT. DMSO was used as control.  
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Figure E.2: HeLa cells were treated with 15 µM of the Jarid1B inhibitor PBIT 72 h prior to irradiation. 

DMSO was used as control. Cells were exposed to ion microirradiation with single carbon ions 

applied in a 1 x 5 µm linear pattern. Cells were incubated for 1 h before fixation and indirect 

immunofluorescence detection of γH2AX and H3K4me3. Correlation analysis was done as 

described in chapter 3.3.1. In all panels the top rows show single slices of 3D microscopic images 

(red channel, green channel and merge). In addition, to determine positive or negative correlation 

between signal intensities in both channels for each pixel, the product of the mean (PDM) map is 

shown. In the PDM maps, negative correlation at positions of γH2AX foci is visualized by pink 

signals; positive correlation is shown by green signals, whereas black indicates random distribution 

of both signals. In the second row of each panel, plots of signal intensity vs. PDM in the respective 

channels and the corresponding intensity scatter plots are shown. PDM plots skewed to negative 

values demonstrate anti-correlation. In the third row, profiles of the signal intensities along the 

indicated lines also demonstrate underrepresentation of H3K4me3 at damage sites. 
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Inhibition of ATR by VE-821 does not disturb H3K4me3 demethylation γH2AX decorated 

damage sites 

 

Figure E.3: HeLa cells were treated with 10 µM VE-821 for ATR inhibition 1 h prior to irradiation. 

DMSO was used as control. Cells were exposed to ion microirradiation with single carbon ions 

applied in a 5 µm x 5 µm matrix pattern. Cells were incubated for 1 h before fixation and indirect 
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immunofluorescence detection of γH2AX and H3K4me3. Correlation analysis was done as 

described in chapter 3.3.1. In all panels the top rows show single slices of 3D microscopic images 

(red channel, green channel and merge). In addition, to determine positive or negative correlation 

between signal intensities in both channels for each pixel, the product of the mean (PDM) map is 

shown. In the PDM maps, negative correlation at positions of γH2AX foci is visualized by pink 

signals; positive correlation is shown by green signals, whereas black indicates random distribution 

of both signals. In the second row of each panel, plots of signal intensity vs. PDM in the respective 

channels and the corresponding intensity scatter plots are shown. PDM plots skewed to negative 

values demonstrate anti-correlation. In the third row, profiles of the signal intensities along the 

indicated lines also demonstrate underrepresentation of H3K4me3 at damage sites. 
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9.6 Appendix F 

Table F.1: Significantly deregulated pathways revealed by Reactome pathway enrichment 

analysis after Jarid1A depletion (compared to untransfected cells) in unirradiated cells (p < 0.05; 

FDR < 0.05). Bold face: level 1, normal font: level 2, slanted font: level 3 and higher; pink: Extracellular 

matrix organization, orange: Immune system, grey: Signal transduction 

Gene Set Deregulated genes 

in Gene Set [%] 

Genes 

Regulation of 

Complement cascade 

30.43 C3, C4A, C4B, C4BPB, CD55, CFH, CFHR3 

Assembly of collagen 

fibrils and other 

multimeric structures 

16.67 COL18A1, COL7A1, COL8A1, CTSL, CTSV, ITGB4, LAMB3, 

LOXL1, LOXL4 

Signaling by FGFR in 

disease 

9.94 ADCY9, AGO1, CASP9, CDKN1A, CUX1, FGF2, FGFR3, 

GSK3A, ITPR1, LRRFIP1, MAPK1, NRG1, PDE1C, PIK3R2, 

PRKCA, RPS6KB2, STAT5B 

Collagen formation 12.79 COL16A1, COL18A1, COL25A1, COL7A1, COL8A1, CTSL, 

CTSV, ITGB4, LAMB3, LOXL1, LOXL4 

VEGFR2 mediated cell 

proliferation 

24 ITPR1, MAPK1, PRKCA, PRKCB, SPHK1, VEGFA 

Downstream signal 

transduction 

9.68 ADCY9, AGO1, CASP9, CDKN1A, FGF2, FGFR3, GSK3A, 

ITPR1, MAPK1, NRG1, PDE1C, PIK3R2, PRKCA, RPS6KB2, 

STAT5B 

Extracellular matrix 

organization 

7.98 COL16A1, COL18A1, COL25A1, COL7A1, COL8A1, CTSL, 

CTSV, F11R, FGF2, ITGA11, ITGB4, LAMB3, LAMC1, 

LOXL1, LOXL4, MMP19, MMP24, NID1, PRKCA, SDC4, 

TNXB 

DAP12 signaling 9.49 ADCY9, AGO1, CASP9, CDKN1A, FGF2, FGFR3, GSK3A, 

ITPR1, MAPK1, NRG1, PDE1C, PIK3R2, PRKCA, RPS6KB2, 

VAV3 

Downstream signaling 

of activated FGFR 

9.79 ADCY9, AGO1, CASP9, CDKN1A, FGF2, FGFR3, GSK3A, 

ITPR1, MAPK1, NRG1, PDE1C, PIK3R2, PRKCA, RPS6KB2 

Signaling by PDGF 8.99 ADCY9, AGO1, CASP9, CDKN1A, FGF2, FGFR3, GSK3A, 

ITPR1, MAPK1, NRG1, PDE1C, PDGFC, PIK3R2, PRKCA, 

RPS6KB2, STAT5B 
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Table F.2: Significantly deregulated pathways revealed by Reactome pathway enrichment 

analysis in scr transfected cells after irradiation (p < 0.05; FDR < 0.05). Bold face: level 1, normal 

font: level 2, slanted font: level 3 and higher; green: Cell Cycle, red: Cellular responses to stress, blue: 

Programmed cell death, orange: Signal transduction 

Gene Set Ratio of Protein in 

Gene Set 

Genes 

Formation of 

Senescence-

Associated 

Heterochromatin Foci 

(SAHF) 

23.53 HIST1H1A, HIST1H1D, HIST1H1E, HMGA2 

DNA 

Damage/Telomere 

Stress Induced 

Senescence 

8.62 CDKN1B, HIST1H1A, HIST1H1D, HIST1H1E, HMGA2 

Activation of DNA 

fragmentation factor 

23.08 HIST1H1A, HIST1H1D, HIST1H1E 

Apoptosis induced 

DNA fragmentation 

23.08 HIST1H1A, HIST1H1D, HIST1H1E 

Cellular Senescence 3.8 CDKN1B, HIST1H1A, HIST1H1D, HIST1H1E, HMGA2, IL6 

Resolution of Sister 

Chromatid Cohesion 

5 CCNB1, CDCA8, CENPA, KIF18A, SGOL1 

Chemokine receptors 

bind chemokines 

7.27 CCL2, CXCL1, CXCL2, CXCL3 

Mitotic 

Prometaphase 

4.63 CCNB1, CDCA8, CENPA, KIF18A, SGOL1 

Cell Cycle, Mitotic 2.03 AURKA, BORA, CCNB1, CDCA8, CDKN1B, CENPA, KIF18A, 

NEK2, SGOL1 

Peptide ligand-

binding receptors 

3.16 CCL2, CXCL1, CXCL2, CXCL3, GALR3, UTS2R 
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Depletion of Jarid1A plus irradiation has no influence on expression of CENPF, PARP1 

and NFKBIE on the protein level.  
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Figure F: Western Blot images of (A) CENPF, PARP1 and (B) NFKBIE in HeLa untransfected 

cells, control transfected cells and Jarid1A depleted cells 2 h, 6 h and 24 h after irradiation with 5 

Gy. Graphs display the normalized average amount (+/- SD) of (A) CENPF, PARP1 and (B) 

NFKBIE determined by quantitative analysis of Western blots of protein extracts obtained in (A) 

three or (B) four independent experiments.  
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9.7 Appendix G 

H3K4me3 and H3K9me3 levels in HTC116 after incubation with different concentrations 

of R-2-HG remains unchanged. 

 

 

Figure G: Steady levels of H3K4me3 and H3K9me3 in HCT116 cells after incubation with 0.1 mM of R-

2-HG. Western blot images show levels of H3K4me3 and H3K9me3 in HCT116 cells treated with R-2-

HG for 6 days. 1% DMSO was used as control. Graph displays the normalized average amount (+/- SD) 

of H3K4me3 and H3K9me3 protein determined by quantitative analysis of Western blots of protein 

extracts obtained in three independent experiments. 
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