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Summary

Most university courses in mathematics programs are characterized by a strong focus on the
axiomatic nature of mathematics, and thus also on proof as the central scientific method of
mathematics (Selden, A. & Selden, 2008). Lecturers write proofs on the blackboard, students
attempt to demonstrate their understanding and skills by proving theorems on their own or in
collaboration with others. However, there is often little systematic discussion in these courses
on how new mathematical conjectures can be generated and on how proofs are constructed
(Alcock, 2010). Students’ experiences with conjecturing and proving in schools or in university
mathematics courses often lead them to “consider proof as a static product rather than a
negotiated process that can help students justify and make sense of mathematical ideas”
(Otten, Bleiler-Baxter, & Engledowl, 2017, p. 112). Yet, several authors (e.g., Epp, 2003; Savic,
2015a; Selden, A. & Selden, 2008) have hypothesized that often only little time can be devoted
to illustrate students which strategies and processes may help to step through the proof
construction process and to recover from proving impasses. Furthermore, the knowledge
about what characterizes proof processes that lead to a successful outcome (i.e., an

acceptable mathematical proof [according to local acceptance criteria]) is rare.

To approach this issue, an extensive systematic literature search was conducted to summarize
common claims and empirical findings about promising conjecturing and proving processes.
126 articles that focussed on conjecturing and proving were clustered using a topic modeling
method. The algorithm identified 17 different topics. The most representative papers for each
topic, in total 45 papers, were qualitatively analysed with regard to their research perspectives
on which they were based and their claims and findings about the processes that are needed
to successfully generate conjectures and construct proofs. This combination of statistical
clustering and qualitative analyses allowed a systematic categorization of claims and empirical
findings about successful conjecturing and proving processes in the literature. Based on this
review, a set of characteristics of conjecturing and proving processes, that are assumed or

reported to be crucial for success, is proposed.

For the further analysis of such process characteristics, we started from a model differentiating
students’ prerequisites they bring to bear on the proving situation, the conjecturing and proving
processes they engage in, and the quality of the resulting product. The main question of the
empirical work in this dissertation was, which process characteristics influence the quality of
the final product (the formulated conjecture and constructed proof), and in which way they
mediate the impact of students’ prerequisites on this product. Specifically, we distinguished
between individual-mathematical and social-discursive process characteristics of conjecturing
and proving. These process characteristics were extracted from prior research in mathematics

education or in educational psychology or in the Learning Sciences.



The central aim of this dissertation was to develop an instrument for assessing (prospective
undergraduate) mathematics students’ conjecturing and proving processes in collaborative
situations. A high-inference rating scheme with seven scales, based on theoretical
considerations and on rating guidelines adapted from educational research was designed. The
rating scheme was evaluated in a study with N=98 prospective undergraduate students
working in dyads on an open-ended conjecturing and proving task. The results of the empirical
study with regard to the basic analyses showed that collaborative conjecturing and proving
processes could be rated with sufficient reliability and that the structure of the data
corresponded to the underlying theoretical assumption that two dimensions, one related to
individual-mathematical and one related to social-discursive process characteristics can be
distinguished. The in-depth analyses pointed out that individual-mathematical process
characteristics were predictive for the quality of the resulting product and mediated the relation

between prerequisites (students’ prior knowledge on proof) and the quality of the product.

In this way, the dissertation contributes to the scientific debate on how to assess (mathematical
argumentation) skills (e.g., Blomeke, Gustafsson, & Shavelson, 2015; Koeppen, Hartig,
Klieme, & Leutner, 2008) and provides theoretical and empirical insights on individual-
mathematical and social-discursive process characteristics that describe the quality of

collaborative conjecturing and proving processes.



Zusammenfassung

Die meisten universitdren Mathematikveranstaltungen zeichnen sich durch einen starken
Fokus auf den axiomatischen Charakter der Mathematik und damit auch auf das Beweisen als
zentrale wissenschaftliche Methode der Mathematik aus (Selden, A. & Selden, 2008). Die
Dozierenden schreiben Beweise an die Tafel, die Studierenden versuchen, ihr Verstandnis
und ihre Fahigkeiten darzulegen, indem sie Theoreme alleine oder in Zusammenarbeit mit
anderen beweisen. In diesen Veranstaltungen wird jedoch haufig wenig systematisch
diskutiert, wie neue mathematische Vermutungen gefunden und wie Beweise konstruiert
werden konnen (Alcock, 2010). Die Erfahrungen der Studierenden mit Vermutungen und
Beweisen, die sie wahrend ihrer Schulzeit oder auch innerhalb der universitaren
Veranstaltungen gesammelt haben, fiihren sie oft dazu, den Beweis als statisches Produkt zu
betrachten und nicht als ausgehandelten Prozess, mit dessen Hilfe mathematische ldeen
begriindet und verstanden werden kdnnen (Otten, Bleiler-Baxter & Engledowl, 2017, S. 112).
Mehrere Autoren (u.a., Epp, 2003; Savic, 2015; Selden, A. & Selden, 2008) haben jedoch die
Hypothese aufgestellt, dass oft nur wenig Zeit aufgewendet werden kann, um den Lernenden
Zu zeigen, welche Strategien und Prozesse dabei helfen kdnnen, Beweise zu generieren und
Fehlwege zu Uberwinden. AuRerdem fehlt es noch an belastbarem Wissen dartber, was
Beweisprozesse charakterisiert, die zu einem erfolgreichen Ergebnis fiihren (d.h. zu einem

akzeptablen mathematischen Beweis [gemal den lokalen Akzeptanzkriterien]).

Um diese Problematik anzugehen, wurde eine umfangreiche systematische
Literaturrecherche durchgefiihrt, die die weit verbreiteten Behauptungen und empirischen
Befunde zu vielversprechenden Conjecturing- und Beweisprozessen zusammenfasst. 126
Artikel, die sich auf Vermutungen und Beweise fokussieren, wurden mithilfe einer
»1 hemenmodellierungsmethode® zu einzelnen Themenstrangen geclustert. Mithilfe des
Algorithmus konnten 17 verschiedene Themenstrange identifiziert werden. Die fir jeden
Themenstrang reprasentativsten Artikel, insgesamt 45 Artikel, wurden hinsichtlich ihrer
Forschungsperspektiven und ihrer Behauptungen und Erkenntnisse tber die Prozesse, die zur
erfolgreichen Formulierung von Vermutungen und zur Generierung von Beweisen erforderlich
sind, qualitativ analysiert. Diese Kombination aus statistischem Clustering und qualitativen
Analysen ermdglichte eine systematische Kategorisierung von Behauptungen und
empirischen Befunden Uber erfolgreiche Conjecturing- und Beweisprozesse in der Literatur.
Basierend auf dieser Kategorisierung wird eine Reihe von Merkmalen von Conjecturing- und
Beweisprozessen prasentiert, von denen angenommen oder berichtet wird, dass sie flr den

Erfolg entscheidend sind.

Grundlage fir die weitere Analyse derartiger Prozessmerkmale stellte ein Modell dar, welches

zwischen den individuellen Voraussetzungen, den Conjecturing- und Beweisprozessen sowie



der Qualitéat des daraus resultierenden Produkts unterscheidet. Dem empirischen Teil dieser
Dissertation liegt die zentrale Frage zugrunde, welche Prozessmerkmale pradiktiv fur die
Qualitdt des Beweisproduktes sind (die Qualitat der formulierten Vermutung und des
konstruierten Beweises) und inwiefern diese Prozessmerkmale den Einfluss der individuellen
Voraussetzungen auf die Qualitdt des Produktes mediieren. Insbesondere wurde in diesem
Projekt zwischen individuell-mathematischen und sozial-diskursiven Prozessmerkmalen des
Conjecturings und Beweisens unterschieden. Diese Prozessmerkmale wurden aus friheren
Forschungsarbeiten aus dem Bereich der Mathematikdidaktik, der Psychologie oder den

Learning Sciences abgeleitet.

Zentrales Ziel dieser Dissertation war die Entwicklung eines Analyseinstruments zur
Beurteilung der kooperativen Conjecturing- und Beweisprozesse von (zukunftigen)
Mathematikstudierenden in Hinblick auf individuell-mathematische und sozial-diskursive

Prozessmerkmale.

Es wurde ein hoch-inferentes Bewertungsschema mit sieben Ratingskalen entwickelt, das auf
theoretischen Uberlegungen und Bewertungsrichtlinien basiert, die aus der Bildungsforschung
abgeleitet und adaptiert wurden. Das Bewertungsschema wurde im Rahmen einer Studie mit
N = 98 Studienanfanger/- innen, die in Dyaden an einer offenen Conjecturing- und
Beweisaufgabe arbeiteten, eingesetzt. Die Ergebnisse der empirischen Studie im Hinblick auf
die Basisanalysen zeigten, dass kooperative Conjecturing- und Beweisprozesse hinreichend
zuverlassig bewertet werden kénnen und dass die Struktur der Daten der zugrundeliegenden
theoretischen Annahme entsprach, dass zwei Dimensionen, eine die sich auf die individuell-
mathematischen Prozessmerkmale und eine die sich auf die sozial-diskursiven
Prozessmerkmale bezieht, unterschieden werden kdnnen. Die weiteren Analysen zeigten auf,
dass die individuell-mathematischen Prozessmerkmale fur die Qualitat des resultierenden
Produkts pradiktiv waren und die Beziehung zwischen den Voraussetzungen (dem Vorwissen

der Studierenden Uber Beweise) und der Qualitat des Produkts mediiert haben.

Auf diese Weise tragt die Dissertation zur wissenschaftlichen Debatte, wie (mathematische
Argumentations-) Kompetenzen beurteilt werden kénnen, bei (u.a., Blomeke, Gustafsson &
Shavelson, 2015; Koeppen, Hartig, Klieme & Leutner, 2008) und liefert theoretische und
empirische Einblicke zu individuell-mathematischen und sozial-diskursiven
Prozessmerkmalen, die die Qualitdt von kooperativen Conjecturing- und Beweisprozessen

beschreiben.
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General Introduction

1 General Introduction

In the secondary and especially in the tertiary education, conjecturing and proving as specific
types of mathematical argumentation are central activities. Producing a conjecture and an
acceptable mathematical justification for it has shifted into the focus of mathematics curricula
worldwide (e.g., Common Core State Standards Initiative, 2010). However, the ability to
construct arguments for or against mathematical claims and to formulate new conjectures are
a challenging demand for students at all educational levels. Much of the research on proof
construction in the context of mathematics education has been concerned with difficulties
students encounter (e.g., Epp, 2009; Moore, 1994; Selden, A. & Selden, 2008) or cognitive
resources that are found to affect students’ proving performance (e.g., Ufer, Heinze, & Reiss,
2008; Weber, 2001). Understanding how to develop the key insights that are needed to
construct a proof (e.g., Raman, 2003) and how to write them down (e.g., Selden, A. & Selden,
2009) have always been considered as important goals by mathematics educational

researchers and teachers (Stylianides, G. J., Stylianides, & Weber, 2017).

There is a general interest in studying the processes involved in learning and problem solving
in advanced mathematics (Dreyfus, 2002) and, in particular, examining the complex cognitive
processes related to proof construction (Cai, Mamona-Downs, & Weber, 2005). One reason
for that is to generate theoretical knowledge about the mental and physical processes high-
achieving students or mathematicians engage in during proof construction, and to understand

why they are employing a specific strategy or process (Selden, A., McKee, & Selden, 2010).

Some practical issues also guide this strand of research: For instance, teachers of advanced
mathematics courses should become more conscious of which process characteristics
determine the success of conjecturing and proving, and explicitly introduce those processes
that appear to be relevant in their teaching (cf. Selden, J. & Selden, 2015). Furthermore,
scaffolds to foster mathematical argumentation skills such as heuristic worked examples or
collaboration scripts that have been developed in the past are mainly based on expert-models
(e.g., Kollar et al., 2014; Schwaighofer et al., 2017). Yet, before creating such learning
environments and introducing process characteristics in lectures, it might be essential to find
out where novice students actually require support in the first place, and which of their
processes have to be encouraged most. Several researchers claim that the processes used
by novices differ from those used by experts (e.g., Nadolski, Kirschner, & van Merriénboer,
2006). From this point of view, it is important to figure out what the components of successful
conjecturing and proving processes of novice students are and how they are related to each

other.
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In this dissertation, we reviewed literature with regard to the process characteristics that are
considered to be relevant for success from a theoretical perspective (study | — research review)
and analysed the conjecturing and proving processes of novice students (study Il & study Il —
empirical studies). Moreover, we were interested in studying to what extent these process

characteristics depend on students’ prerequisites.

It is widely agreed that conjecturing and proving are complex skills including processes such
as generating hypotheses from examples (e.g., Ellis et al., 2017; Koedinger, 1998; Philipp,
2012) or finding a chain of claims that can be worked out to a deductive proof (e.g., Boero,
1999; Stylianides, A. J., 2007). These processes can be described as individual-mathematical
ones. Since mathematical knowledge generation is often embedded in social contexts (e.g.,
seminars, classrooms, or small collaborative settings), participating successfully in
mathematical debates is vital for conjecturing and proving as well (Vidakovic & Martin, 2004).
Thus, conjecturing and proving skills comprise individual-mathematical and social-discursive
process characteristics (Kollar et al., 2014). Even though critical elements of substantial
collaborative argumentation processes have been put forward in several domains (e.g., Chi &
Wylie, 2014; Weinberger & Fischer, 2006) and in mathematics education (e.g., Mueller,
Yankelewitz, & Maher, 2012; Pease, A. & Martin, 2012), there is still limited knowledge about
the structural relationship between individual-mathematical and social-discursive process
characteristics. Moreover, empirical findings about which process characteristics positively
influence the quality of the resulting product (i.e., the produced conjecture and proof) on the
one hand and about their relation to prior knowledge on proof on the other hand, are rare.

The central aim of this dissertation project was to develop an instrument to describe the
process quality of collaborative mathematical argumentation and proving and to use this
instrument to identify key characteristics of successful conjecturing and proving processes in

collaborative situations.

To form a solid theoretical base for this dissertation, Chapter 2 summarizes the state of
research on conjecturing and proving in the context of the transition from secondary to tertiary
mathematics education, and defines how central concepts and terms including argumentation,
conjecturing, and proving are understood here in this thesis. Section 2.4 presents the central
model that serves as a basis for our empirical research, which distinguishes between
prerequisites, processes, and performance (respectively the quality of the final product). In
Chapter 3, we discuss the motivations behind the identification of individual-mathematical and
social-discursive process characteristics. The resulting overall research questions and aims of

this dissertation project are described in Chapter 4.

Chapter 5 includes a literature review. The purpose of this review is (i) to organize and analyse

past research on conjecturing and proving (processes) and (ii) to categorize common claims
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and empirical findings about successful conjecturing and proving processes. Using a topic
modeling method, which allows to cluster a collection of documents by implementing a
statistical algorithm (for discovering the latent semantic structures within these documents),
we identified 17 topics within the literature on conjecturing and proving. Results indicate that
the literature on conjecturing and proving covers topics that are related to the proving as
problem-solving, proving as convincing, and proving as a socially-embedded activity
perspective (cf. Stylianides, G. J. et al., 2017) as well as topics that refer to the discovery
perspective on proof or on automatic theorem proving. Categories of successful conjecturing
and proving processes are extracted from studies’ reports on how successful mathematicians,
university students, or high-achieving college students employ specific proving processes and
from claims about which proving processes are assumed to be crucial for the success. We
distinguish between categories of sub-goals within conjecturing and proving processes
necessary for success and categories of process characteristics that are assumed to be helpful
in achieving these sub-goals. The analysis yields a broad range of categories of sub-goals
such as developing a strong understanding of the statement to be proved/ estimation of the
truth, resolving fixations, or translating less formal to formal arguments as well as categories
of process characteristics such as varying examples systematically, considering boundary
cases, using formal symbols and algebraic representations, or applying the trial-and-error

strategy.

Chapter 6 provides an extensive description of the development of the high-inference rating
scheme that was designed to assess (undergraduate) mathematics students’ collaborative
conjecturing and proving processes. In this chapter, it is reported how process characteristics
were deduced from the literature and operationalized, how the quality levels of each rating

scale were defined, and how the rater training was structured and conducted.

Chapter 7 and Chapter 8 comprise two analyses of one empirical study that is based on the
data of N=98 prospective university mathematics students participating in a voluntary
preparatory course. For the analyses, a set of 49 recordings of dyadic collaboration processes

is used, taking verbal and written contributions of all participants into account.

The first analysis (presented in Chapter 7) investigates the empirical structure of individual-
mathematical and social-discursive process characteristics, which were inferred from the
literature. Results indicate that collaborative conjecturing and proving processes can be
described by a two-dimensional construct, comprising either mostly individual-mathematical or

mostly social-discursive process characteristics.

The second analysis (described in Chapter 8) focuses on the predictive power of individual-
mathematical and social-discursive process characteristics. The theory-based process

characteristics were validated against the quality of the produced conjectures and proofs as
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the resulting outcome of students’ collaborative conjecturing and proving processes.
Furthermore, the students’ prior knowledge on proof has been taken into account. Results
show that the individual-mathematical component of collaborative conjecturing and proving
processes is predictive for the quality of the resulting outcome. Especially, generating accurate
and structurally sound arguments during the collaborative proving discourse can be considered
as key characteristics of successful collaborative conjecturing and proving processes. At the

end of this dissertation, a summary of the main findings is given.

In Chapter 9, limitations and implications for research and teaching are discussed.
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2 State of research

2.1 The transition phase

The empirical study of this dissertation is situated in the transition phase from secondary to
tertiary mathematics education. Before reviewing definitions and models of mathematical
argumentation, conjecturing and proving and formulating the specific research questions of
this dissertation, the following three sections present how the character of the learning domain
mathematics changes at the transition from secondary school to university mathematics, how
the focus on formal concepts and proofs increases, and what students’ difficulties with proof

construction are.

2.1.1 Teaching and learning of mathematics at school and at university — challenges
at the transition

Mathematics educational researchers have publishing work that deals with mathematics
learning and teaching at the university level with a specific focus on the challenges at the
transition phase from school to university for more than 20 years (Artigue, 2001). In particular,
the high drop-out rates in mathematics-related academic study programs (e.g., Dieter, 2012)
urged researchers to pay more attention to the discrepancies between the two educational
systems and the resulting difficulties students encounter (e.g., Artigue, 2001; Heublein, 2014;
Kosiol, Rach, & Ufer). It has been reported that the different teaching styles, learning contexts,
and assessment strategies contribute to the transitional gap between the secondary and
academic sector (Thomas, M. O. J. & Klymchuk, 2012).

Thomas and Klymchuk (2012) have hypothesized that the large course sizes at university
might be one factor that leads to less interaction and communication with students. In
comparison to school, the teaching style at university is more teacher-centred and the time to
“do’ problems” (p. 289) is limited. It can be said that it is more difficult for students to ask
individual questions (Thomas, M. O. J. & Klymchuk, 2012) and that the amount of personal
attention students get from their teachers decreases extremely compared to the school context
(Gruenwald, Klymchuk, & Jovanoski, 2004).

In general, the academic field is characterized by a high-degree of self-learning phases.
University students have to take great responsibility for their own learning, acquire self-
regulative techniques as well as elaboration strategies (Rach, 2014; Rach & Heinze, 2011).
The type of problems students have to deal with changes as well. Secondary school tasks are
frequently split into simpler sub-tasks and provide hints that may encourage students to
develop a solution (Praslon, 2000). Furthermore, most of the tasks students have to work on

are routine problems that are analogous to those already demonstrated by the teacher and
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that do not involve any conceptual obstacles, so that they can be described as tasks with a
low cognitive potential (Jordan et al., 2008). Such problems constitute exercises and might not
be regarded as problem-solving tasks (Selden, A. & Selden, 2013b). At university, applying
routines is usually not sufficient as the problems that students face are more complex
(Gruenwald et al., 2004).

The survey of de Guzméan, Hodgson, Robert, and Villani (1998) pointed out that a large
proportion of university students regret that the lectures do not follow a particular textbook and
that concrete examples are rarely given. From students’ perspective, the teaching style at the
university is often too abstract. They miss backboard drawings or hand-out notes with detailed
explanations. Informal content is presented as well, but mainly only orally. It could be observed
that students typically copy written content, but not necessarily oral comments in their notes
(Fukawa-Connelly, Weber, & Mejia-Ramos, 2017; Weber, Fukawa-Connelly, Mejia-Ramos, &
Lew, 2016)

Regarding the assessment culture at school, the research survey by Thomas and Klymchuk
(2012) has demonstrated that there are a lot of internal (and external) assessments and much
more emphasis on passing the exams than on learning to understand. They reported that some
school teachers have the impression that they only teach to assessments. Furthermore, the
results of their survey demonstrated that most students prefer the assessment methods at the
tertiary level for several reasons such as questions are more to the point and without
hierarchical style, and also the precision of solutions is rewarded. Yet, as reported in
Gruenwald et al. (2004), university lecturers see the necessity for changing the assessment
style at university as well. Some of them suggest to demand weekly tests and oral exams as
both methods may allow to give students a more detailed feedback than just written exams at
the end of the semester. Kahn and Hoyles (1997) claimed that there has already been made

a change towards more continuous assessments.

Based on the assumption that students and expert mathematicians view advanced
mathematics from different perspectives, Weber et al. (2016) suggested that it has to be clearly
communicated to students what they should know and learn from the lectures they attend. The
results of the study of Gruenwald et al. (2004) supported that it is not always obvious to the
students what is expected of them. More attention needs to be paid to the communication on
how to achieve the goals required to pass academic mathematics courses. Even at school,
rules and social-mathematical norms are often not clearly discussed. Thus, students have
problems to decide whether a proof is valid or not, or what is accepted as explanation. They

do not feel responsible for these aspects of mathematics (e.g., Dreyfus, 2002; Gueudet, 2008).

University students have to take more responsibility for their own learning (e.g., Rach & Heinze,

2011) and learn to recover quickly from failures and disappointments (Selden, A. & Selden,
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2013a). Schiefele, Streblow, and Brinkmann (2007) concluded that personal traits such as
intrinsic learning motivation, self-confidence, persistency, social skills, and the ability to cope
with performance-related pressure also need to be taken into account when focusing on the
discontinuity phenomena of mathematics students during their transition from secondary to
tertiary education.

The most relevant aspect contributing to the transitional gap is that faculty members of
academic mathematics courses place high value on formal concepts, accuracy, and deductive
proofs (e.g., Thomas, M. O. J. & Klymchuk, 2012). These features characterize mathematics
as a scientific discipline. In the following section, it is described how mathematics is presented
at school, and how mathematics is taught at university from a scientific perspective with a

specific emphasize on proofs and formal representations.

2.1.2 The character of mathematics at school and at university and the role of proof

Epp (2003) and Gueudet (2008) described what happens during the secondary-tertiary
transition by using the metaphor that novice students often feel like a foreigner entering a new
world, or at least a new country in which a different language is spoken and other laws are
effective. These are the language and rules that mathematicians use to construct and

communicate proofs.

In the secondary school, there is a specific focus on technical aspects such as manipulating
algebraic expressions, calculating derivatives, and applying formulas. Concepts and
procedures are considered as tools for describing more or less real life situations and solving
everyday problems (e.g., Vollstedt, Heinze, Gojdka, & Rach, 2014). According to this, topics
such as fractions, percentages and area calculations, which are rarely of interest from a
scientific point of view, have a high priority in the school syllabus (Rach & Heinze, 2011).
School mathematics can be described as very mechanical and situational (Gruenwald et al.,
2004). Some researchers assumed that students often succeed in school mathematics by
employing an algorithm without understanding the concepts beyond (e.g., Guzman et al., 1998;
Tall, 1991). Furthermore, some authors from university mathematics education have critically
remarked that the teaching style at school encourages students to learn disjointed facts and
procedures, and push the theory into the background (Gruenwald et al., 2004). Aspects that
characterize mathematics as a scientific discipline (e.g. building a coherent and consistent
theory, deductive proofs, and formal definitions) are rather underrepresented, even in a
propaedeutic form, and only sporadically implemented in the school curriculum (Rach &
Heinze, 2011). Therefore, students may experience substantial difficulties, when entering the
tertiary level (Guzman et al., 1998). The gap between school and university mathematics can

be considered as a great leap from empirical to abstract mathematics, from less formal to
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formal representations (Nardi, 1996). Students have to learn an entirely new way of thinking
(Tall, 1991). Moore (1994) claimed that students are inadequately prepared for the rigor and
accuracy that is expected from them at the university. Some authors hypothesized that
students have little idea of what mathematics is, when entering academic mathematics
courses, and that they take the view that it is solely an extension of school mathematics
(Hoyles, Newman, & Noss, 2001; Nardi, 1996).

The teaching content at the university is organized and demonstrated in a specific axiomatic
and rigorous way, and comprises formally defined abstract concepts, theorems, logical
deductions, and proofs. The lectures follow a specific consistent shape, the so called DTP
(Definition-Theorem-Proof) structure (Engelbrecht, 2010; Hoyles et al., 2001). Therefore,

proofs achieve a new and important status at the tertiary level (Guzman et al., 1998).

In the study of Harel and Sowder (1998), university students’ proving attempts have been
categorized. They identified that most students evaluate the validity of a proof by referring to
external factors or an external authority. Analytical proof schemes, where conviction relies on
logical deduction were rarely observed. It has been shown that only the minority of
mathematics students are able to construct a coherent chain of arguments that is accepted as
proof by the mathematical community (e.g., Gueudet, 2008; Moore, 1994). Proofs at the tertiary
level tend to be more complex, and have to be based on formal definitions and previously
established theorems (Selden, A. & Selden, 2009). Students have to develop a deep and
conscious knowledge of the logical principles involved, and being able to employ them (Epp,
2003). Informal and empirical arguments such as examples, which are often accepted as
justification for a statement in the context of school mathematics, can still be used to explore
the problem situation initially and to think things through, but finally such intuitive or informal
reasoning must be made more formal and precise for communication and presenting purposes
in the context of university mathematics (Hanna, Jahnke, & Pulte, 2010; Selden, A. & Selden,
2009).

Even though there is a strong emphasis on enhancing students’ creativity and informal
conceptual understanding (Selden, A. & Selden, 2009), university students are mainly
assessed on their ability to produce formal mathematics. Consequently, university students
frequently assume that formal aspects are superior to all other aspects of mathematics. For
instance, they focus more on using formal symbols than constructing a coherent chain of
arguments (Weber et al., 2016).

From the findings reported in the literature and presented in the two last sections, we conclude
that the transition from secondary to tertiary mathematics education is a challenging phase for

most students. Reasons for that have been attributed to changes in the learning and teaching
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culture, in the assessment methods, in the character of mathematics taught, and in particular

in the role of proofs.

2.1.3 Students’ difficulties with proofs

It is well known that many students have difficulties in generating conjectures and constructing
proofs. This is hypothesized to be one reason for the high dropout rates, as students' proofs
are used as an important component in evaluating and grading their understanding and
performance in content courses, such as real analysis or linear algebra (Selden, A. et al.,
2010). Students’ difficulties related to conjecturing and proving at different educational levels
have been identified and discussed by a number of researchers (e.g., Epp, 2009; Koedinger,
1998; Moore, 1994; Selden, A. & Selden, 2008; Selden, A. & Selden, 2011). In the following
section, we summarize the main findings about students’ conjecturing and proving difficulties

that have been observed and documented in the literature.

Several researchers reported that undergraduate students tend to focus more on procedures
than on content, more on formal aspects than on understanding the concepts involved (e.g.,
Moore, 1994). This could be a result of the teaching-style they have experienced at the
secondary level. Memorizing and imitating proofs may lead students to face problems, not only
with producing proofs, but even with recognizing what a proof is (Chazan, 1993; Moore, 1994;
Raman, 2003). It has been observed that students often fail to discover, interpret, or use
theorems on their own (Selden, A. & Selden, 2008; Weber, 2001). Some students already
struggle with reviewing their notes if there are any relevant lemmas or theorems they could
apply. They are prone to proceed directly from the definitions involved and write the entire
definition into a proof, rather than just saying that the definition applies to a particular
mathematical object. The distinction between using a definition and examining whether an
object satisfies a definition remains unclear for them. These difficulties influence students’

ability to handle the problem-solving aspects of proofs (Selden, A. & Selden, 2011).

Furthermore, students often do not know how to begin and end, for instance, direct or
contradiction proofs (Moore, 1994; Selden, A. & Selden, 2011), or what to do next (Selden, A.
et al., 2010). They have problems with applying standard proving techniques and with
unpacking the logical structure of (informally stated) theorems. These are considered as some

of the reasons why they are not able to structure proofs (e.g., Selden, A. & Selden, 2011).

A further category of proving difficulties involves that some students do not recognize the
constraints of empirical or authoritative evidence (Stylianides, G. J. & Stylianides, 2009). It is
claimed that mathematics researcher, lecturers and students have disparate views on
mathematics and thus, their conceptions of what constitutes evidence and justification in

mathematics may differ (e.g., Thomas, M. O. J. & Klymchuk, 2012). The study of Martin and
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Harel (1989) has shown that many pre-service teachers accepted empirical or even incorrect
arguments as proofs. Coe and Ruthven (1994) investigated the proof practices and constructs
of advanced mathematics students that followed a reform-based curriculum and also found out
that students predominantly prefer empirical proof strategies.

Transforming informal into formal arguments represents a further challenge (Zazkis, Weber, &
Mejia-Ramos, 2016). Students’ difficulties in using formal-symbolic notations and the specific
mathematical language are well documented in the literature. These include problems such as
taking the scope (Epp, 2003) and order of quantifiers into account (Dubinsky & Yiparaki, 2000),
understanding that the value of a variable can be arbitrary, but fixed and does not change its

value within one algebraic expression (Epp, 2003).

Besides these mathematical difficulties, Selden, A. and Selden (2011) also cited some
difficulties, such as the incorrect copying of a definition from the blackboard or the incorrect
articulation of notations and terms when reading or explaining a proof in one’s one words,

which they summarized as “non-mathematical proving difficulties” (p. 678).

In general, the descriptions of students’ difficulties provide insights at the process level (though
sometimes derived from students' written proof attempts). Unfavourable sub-processes or sub-
processes that are often not handled correctly have been discussed. Yet, would it be more
promising to look at the processes that actually lead to success or that make the difference
between successful and less successful proving processes? In this dissertation, we will focus
on and investigate the process characteristics that are assumed to be crucial for success.
Furthermore, as the success of proving processes are primarily determined by their outcomes,

we take the quality of the resulting product into account as well.

For better understanding the difficulties and obstacles that students face in relation to proof,
researchers have begun to search for the origins and sources of such difficulties (Mariotti,
2006). In Chapter 2.2.3, we will present the cognitive and affect-motivational resources that
have been considered as prerequisites that may have an important influence on the proving

performance (on the quality of the resulting proof product).

2.2 Argumentation, conjecturing and proving

In this chapter, the concepts of conjecturing and proving are described from an individual and
social-discursive perspective. We consider the characterizations of argumentation,
conjecturing and proving in mathematics and their relationships (section 2.2.1). We provide an
overview of the context- and personal-specific factors that have been discussed in the literature
(section 2.2.2 and section 2.2.3) and introduce different approaches to conceptualize

mathematical argumentation skills (section 2.2.4). Different models of argumentation and the
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proof construction process (section 2.2.5) are presented and compared in terms of what we
already know about conjecturing and proving processes. We derive gaps and open questions
from the current state of research on conjecturing and proving. Since conjecturing and proving
are often embedded in social contexts, we also refer to the social-discursive perspective on
mathematical argumentation and discuss the role of peer collaboration within conjecturing and
proving activities (section 2.2.6). We conclude with a short summary presenting our research
model.

2.2.1 Defining key terms

2.2.1.1 Different perspectives on proof

The terms argumentation, conjecturing, and proving have been used in different ways. Even
though several researchers and curriculum frameworks emphasize the importance of
argumentation and proving throughout the grades (e.g., Common Core State Standards
Initiative, 2010; Hanna, 1995, 2000), there are various views on how proof (the corresponding
concept to the activity of proving) can be defined (Mariotti, 2006; Stylianides, A. J., 2007), and
how it is related to conjecturing and argumentation (e.g., Pedemonte, 2007). From a
mathematical perspective, proofs are associated with formal definitions and theorems (the use
of already established mathematical results), and logical deductions that interlink the
assumptions (that are regarded as true) with the conclusions (e.g., Healy & Hoyles, 2000).
Griffiths (2000) stated that “a mathematical proof is a formal and logical line of reasoning that
begins with a set of axioms and moves through logical steps to a conclusion” (p. 2). In
mathematics curricula all over the world, (deductive) reasoning is considered as a crucial
learning goal and refers “to this family of activities that are frequently involved in the
development of proofs: identifying patterns, making conjectures, and providing arguments -
both proofs and arguments that do not meet the standard of proof” (Stylianides, G. J., 2010,
p. 39). As already noticed by Balacheff (1991), most characterizations of proof point mainly to
the logical structure of proofs. Different types of proofs can be distinguished with regard to the
underlying logical structure, the proving techniques that have been applied to develop a proof
(e.g., proof by exhaustion, proof by mathematical induction, proof by contradiction), and to the
type of claims that have to be proven (e.g., existence proofs) (Hanna, Villiers, & International
Program Committee, 2008). Besides of establishing the truth or falsity of an assertion (proof
as a means of verification/falsification) and organizing results into a deductive system
consisting of axioms, concepts and theorems (proof as a means of systematization), proofs
can serve a broad range of functions such as providing insight into why an assertion is true or
false (proof as a means of explanation) or leading to new results (proof as a means of

discovery). Other functions that proofs can fulfil are tackling a (new) intellectual challenge and
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providing satisfaction afterwards (proof as a means of intellectual challenge) as well as
reporting and disseminating mathematical knowledge (proof as a means of communication).
In this dissertation, we mainly focus on the functions of proofs related to verification,
systematization and communication (Villiers, 1999).

Mariotti (2006) pointed to the cognitive side of mathematics and in particular of proofs, and to
their integration into a social context. She emphasized that after a successive phase of
(empirically) discovering and systematizing ideas and arguments, a phase follows in which the
body of developed knowledge is made accessible to the scientific community. In that sense,
the creative phase of discovery and systematization describes the cognitive dimension, and
the phase of communication refers to the social side of proof. The quote "...it appears that
proof is a form of discourse, a means of communication among people doing mathematics"
(bold added) (Volmink, 1990; as cited in Villiers, 1999) underlines the importance of the social
side of proof. Manin’s (1977) statement that “a proof becomes a proof after the social act of
accepting it as a proof” (p. 48) is consistent “with the conceptualization of proofs as
nonabsolute objects” (Stylianides, A. J., 2007, p. 298).

Having these different conceptualizations of proof in mind, we go along with the definition
proposed by Stylianides, A. J. (2007, p. 291), describing proof in the following way:

“Proof is a mathematical argument, a connected sequence of assertions for or against a

mathematical claim, with the following characteristics:

1. It uses statements accepted by the classroom community (set of accepted

statements) that are true and available without further justification;

2. It employs forms of reasoning (modes of argumentation) that are valid and known to,

or within the conceptual reach of, the classroom community; and

3. Itis communicated with forms of expression (modes of argument representation) that
are appropriate and known to, or within the conceptual reach of, the classroom

community.”

Even though the definition originally emerged in the context of proofs at the secondary
mathematics education, it is also transferable to the context of university mathematics. In this
way, the classroom community consists of mathematicians such as professors and lecturers
as well as of mathematics students. We conclude that proofs in mathematics, as deductive
chains of arguments that are based on true statements, valid forms of reasoning, and
appropriate forms of representations, are context-dependent (Thurston, 1998). Furthermore,
we interpreted the term valid as an expression for the fact that the validity of a proof is usually
determined by certain criteria defined by the corresponding mathematical community. Such

criteria include sociomathematical norms (Yackel & Cobb, 1996) and values (Dawkins &
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Weber, 2017). According to Stylianides, G. J. et al. (2017) the activity in search for a proof is
called proving.

Yet, what are the common aspects between argumentation and proving, and why is it important
to take the differences between them into account? The debate about what constitutes a
mathematical proof leads directly to the question of the relationships between conjecturing,

proving, and argumentation.

2.2.1.2 Therelationships between proving, conjecturing and argumentation

Before clarifying the relationship, we want to present different perspectives on mathematical

argumentation.

Delineating the terms argumentation, argument, conjecturing and proving

As with the concept of proof, there is no universally accepted definition of argumentation in
mathematics education (Pedemonte, 2007). Argumentation is used for both describing “the
process which produces a logically connected (but not necessarily deductive) discourse about
a given subject [...] and the text produced by that process” (Douek, 2007, p. 169). The process
of producing a logically connected discourse comprises phases of identifying reasons, making
inductions, drawing conclusions and applying them to the subject the discourse focuses on.
An argumentation is a sequence of arguments (including drawings, examples, verbal
arguments etc.) and inferences, whereas an argument represents a reason or a structured
chain of reasons for or against a statement or opinion (e.g., Douek, 2007; Hornikx & Hahn,
2012; Toulmin, 1958). Argumentations (or arguments) are either produced individually (for
instance, in a written form) or produced orally embedded in a social context (Douek, 1999).

Some authors emphasized the discursive character of argumentation (e.g., Alibert & Thomas,
1991). In comparison to proof, argumentation with its non-constraining character (Perelman,
1979) leaves some degree of freedom regarding the type of inferences (inductive, abductive,
deductive) chosen (Douek, 1999; Pedemonte, 2008). It usually takes place informally and
incidentally within mathematicians to refine, discuss or communicate mathematical
problems and outcomes. Some general objective criteria must be applied to the product under

discussion in order to become accepted as a proof (Heinze, 2010).

From this perspective, argumentation incorporates the construction of conjectures and proofs
(Pedemonte & Buchbinder, 2011). Pedemonte (2007) termed the argumentation that
contributes to the construction of a conjecture a “constructive argumentation” and the
argumentation that justifies a conjecture a “structurant argumentation” (p. 390). Analogous to

these terms, we use the notations of conjecturing respectively proving.
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Different perspectives on the relationships

In the past, the relationships between argumentation, conjecturing and proving has been
discussed from different points of view (Stylianides, 2007). Some researchers follow the work
of Garuti, Boero, and Lemut (1998) by considering “the phenomenon of (possible) continuity
between the production of a conjecture and the construction of its proof”’ (Boero, 1999; p. 5-6).
This continuity is termed cognitive unity. It highlights that an argumentation in which a
conjecture is produced can be extended to construct a proof by organizing the previously
generated arguments into a deductive chain. It is based on the assumption that there is a close
link between the nature of objects, the relations between objects, and the inferences used in
both as well as the mental cognitive activities that arise during the conjecturing phase and the
proving phase. Some researchers argue that proof is more “accessible” for students if some
informal arguments such as drawings, examples, or theorems related to the proof have already
been explored in the argumentation supporting the conjecture (cf. Pedemonte & Buchbinder,
2011).

Boero, Garuti, and Lemut (2007) observed that the dynamic conjecturing processes that led to
the production of a conjecture can serve as thread, which has to be identified and then can be
followed to build up a proof. Even though they pointed to the similarities between the processes
of exploration performed during the conjecturing phase and during the proving phase, they
remarked that the dynamic exploration differs in its function within these two phases: on the
one hand it serves as support to the selection and the specification of the conjecture, on the
other hand it reinforces the logical connection that has been made between the single

arguments.

In contrast to this perspective, some researchers recommend to distinguish between the
concepts of mathematical argumentation and argumentation in mathematics and consider
argumentation as an “epistemological obstacle to the learning of mathematical proof”
(Balacheff, 1999, p. 7), whereas others emphasize that there is a “structural gap” between
argumentation and proof (e.g., Duval, 1995) as in argumentation inferences are related to the
content while proofs usually have a deductive structure (i.e., claims are deduced from data by
applying inference rules) (Pedemonte, 2008). However, Pedemonte (2007) claimed that
argumentation and proof can have the same structure, but that this “structural continuity” does
- depending on the mathematical domain in which the two processes of argumentation and

proving are performed - not always favour proof construction.
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The activity of conjecturing

Regarding the term conjecturing, Koedinger (1998) developed a cognitive model of
conjecturing that defines the processes of discovering, recalling, and problem solving as the
superordinate goals, and conjecture generation and argumentation for or against it as the two
major sub-goals of conjecturing (see Figure 1). This model suggested that conjecture
generation and argumentation (including inferences that are based on inductive or deductive
arguments) are connected to each other via the investigation of examples and
counterexamples. Furthermore, it indicated that a proof itself also served as a mean to discover
new conjectures, even though the discovery of a conjecture usually constitutes the result of
inductive reasoning strategies. Lin, F. L., Yang, Lee, Tabach, and Stylianides G. (2012) point
out that conjecturing captures the observation from examples, the construction of new
knowledge, the transformation of prior knowledge, and the reflection on the conjectured

constructs as well as on the conjecturing processes itself.

Since there is no widely agreed definition of conjecturing, we conceptualize it as the activity
that a student or mathematician engages in to find, explore, and formulate a conjecture,
including the processes of generating (counter-) examples, searching for patterns, extending
a set of examples into a general argument (informal induction), testing the conjecture’s

limitations, and presenting it to colleagues or teachers.

| DISCOVER, RECALL, OR SOLVE |

GEMERATE CONJECTURE ARGUE

Make Analogies Find Examples

State Conjecture Find Counterexamples

Prove

w

INVESTIGATE DEDUCE

Model Formulate Premises &

Measure Conclusions

Induce Chain Prior Conjectures

Figure 1: The goal structure for conjecturing and argumentation skills (Koedinger, 1998)

Toulmin’s model as a tool to compare argumentation and proof

Toulmin’s model constitutes the most common approach to represent the whole structure of
an argumentation. We will briefly introduce it: In Toulmin’s basic model, any argument
consisted of three elements: claim (C): it is the assertion or an opinion of a speaker, data (D):
these are the facts that justify the claim, warrant (W): it is the inference rule, which links the
data to the claim and gives the data general support (cf. Toulmin, 1958). The model

demonstrates that a speaker usually starts an argument by proposing a claim. In a next step,
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the speaker uses data to justify the claim and the warrant, as a general valid rule, to support

the specific data that lead to the claim (see Figure 2).

Three further elements may be necessary to describe the whole structure of an argument
depending on the situation (Toulmin, 1958): A backing to strengthen the warrant, a qualifier
that shows the degree of confidence in the claim or in the conclusion, and a rebuttal that

expresses exceptions or conditions for the validity of a claim.

In the past, several studies have used Toulmin’s model to evaluate and compare students’
argumentations and their proofs (cf. Pedemonte, 2007; 2008) or to investigate aspects of
mathematical learning with regard to explanation, justification, and argumentation in
mathematics classrooms (e.g., Krummheuer, 1995; Yackel, 2001). We agree that Toulmin's
model is an appropriate method that can be used to analyse both the structure of an
argumentation that has already been constructed as well as how argumentation structures are

developed during proving processes and peer collaboration.

Data (D) > Claim (C)

Warrant (W)

Figure 2: Toulmin’s basic model. Visualizing the structure of an argument.

Summary

The presented debate demonstrated that different definitions of and perspectives on the
relationship between proving, conjecturing, and argumentation “compete” with each other.
Since Stylianides, G. J. et al. (2017) invite all researchers to be more explicit about the

definitions one uses, we specify our perspectives on these three concepts as follows:

In this thesis, we consider conjecturing and proving as certain types of mathematical
argumentation. Following Otten et al. (2017) and the definition of proof outlined by Stylianides,
G. J. et al. (2017), a proof consists of a deductive chain of arguments using already stated
definitions or propositions that determine a mathematical claim. In mathematics, proof is
deductive, but the processes of attempting to construct a proof (what we call proving) as well
as to discover and formulate a conjecture (what is termed conjecturing) are often characterized
by informal, empirical argumentation. Conjecturing and proving processes incorporate several
mental and physical actions (Selden, A. et al., 2010). Furthermore, we follow the

conceptualization of argumentation proposed by Kollar et al. (2014) that is based on the
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assumption that argumentation, and thus also conjecturing and proving, comprise an
individual-mathematical and a social-discursive component. From this perspective, the
individual-mathematical component is related to phases of exploration and systematization (cf.
Boero, 1999; Selden & Selden, 1995). The social-discursive component refers to the
generation and exchange of well-warranted arguments (cf. Kollar, Fischer, & Slotta, 2007;
Leitdo, 2000) as well as to the social process of accepting these arguments as proof (cf.
Heinze, 2010; Yackel & Cobb, 1996). Supposing that conjecturing and proving are interrelated
and an important mechanism in constructing new knowledge, it seems to be an effective
teaching strategy not to provide students with an initial conjecture, but to present open-ended
problems that allow them to formulate their own conjectures, and then to prove those

conjectures (Lin et al., 2012).

2.2.2 Situations in the context of mathematical argumentation

Mathematical argumentation activities and the outcomes of these activities occur in different
(learning-) situations, which may explain why there exist various definitions of and perspectives

on argumentation.

Situations in the context of mathematical argumentation include the social environment in
which the argumentative discourse is embedded, the content area and the type of task that
represent the argumentation problem, as well as the complexity of the task that determines

which argumentative activities have to be employed to solve the task.

2.2.2.1 The social environment

The social environment comprises the mathematical community that often allocates a specific
role to argumentation and proof, sets up learning goals in the context of mathematical
argumentation, and establishes criteria and norms to which the acceptability of a proof is
adhered.

There are distinct views on the role of argumentation and proof within mathematical learning
and what makes a proof acceptable (Hanna, 2000). It can be assumed that a person behaves
differently in the case of being requested to construct a proof to explain a mathematical
statement than in the case of being requested to construct a proof to discover a statement.
Moreover, the criteria and norms about what makes a proof acceptable depend on what
educators and mathematicians expect from their students or peers. These influence
mathematical practice (in particular, all activities that mathematicians engage in with regard to
poof, including proof construction, proof reading, and proof presentation) and the teaching of
proof in mathematics education. Yackel and Cobb (1996) introduced the notion of

sociomathematical norms. These are normative aspects that emerged interactively and
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regulate mathematical argumentation. Sociomathematical norms determine “what counts as
an acceptable mathematical explanation and justification” (p. 461) and are defined by the
corresponding mathematical community. The taken-as-shared basis that has been established
within this community includes these sociomathematical norms and serves as background that
set which data and warrants legitimize one’s conclusions. Dawkins and Weber (2017) claimed
that norms of proof mirror some of the features that mathematicians suspect to be necessary
or desirable in the generation of new mathematical knowledge. In their paper, they considered
the following four values: “(1) Mathematical knowledge is justified by a priori arguments. (2)
Mathematical knowledge and justifications should be a-contextual and specifically be
independent of time and author. (3) Mathematicians desire to increase their understanding of

mathematics. (4) Mathematicians desire a set of consistent proof standards” (p. 128).

In particular, value (2) has to be regarded critically. On the one hand, there is a consensus that
the values and norms that specify acceptability criteria depend on the mathematical
community. On the other hand, there is a demand that the correctness of the proof can be
evaluated independently from context and the person who created it. Mathematicians’ values

and norms apprise and limit to some extent how proving practice should proceed.

However, proofs in the context of school mathematics are not, and cannot be, replications of
proofs produced by expert mathematicians (e.g., Dawkins & Weber, 2017; Harel & Sowder,
1998; Weber, Inglis, & Mejia-Ramos, 2014). Within the framework of school mathematics,
some statements are expediently and publicly used without further justification. What kind of
statements can be used without further justification for the development of a proof, can vary

between classroom communities (Stylianides, A. J., 2007).

In addition to the expectations of the mathematical community (representing an institution) and
its established norms, against which arguments can be judged, it makes a huge difference
whether students engage in social discursive argumentation practices or whether
argumentation constitutes an individual activity. Social discursive argumentation practices
require collaborative argument construction, including the critical discussion of ideas with
others and the joint consideration of complex mathematical problems (Mueller et al., 2012).
Students have to learn to collaborate effectively and to use the “exploratory talk” constructively
(Mercer, Dawes, Wegerif, & Sams, 2004), since both can positively contribute to the
development of mathematical arguments (e.g., Mueller et al., 2012). Presenting arguments to
colleagues, evaluating colleagues' arguments, and trying to understand and learn from the

shared arguments is a central part of argumentation practice (Dawkins & Weber, 2017).

30



State of research

2.2.2.2 The content area, type and complexity of a task

Based on the findings of previous studies that knowledge of concepts, facts and procedures
connected to the specific content is a statistically significant predictor for students’ performance
in proof construction situations (e.g., Chinnappan, Ekanayake, & Brown, 2012; Sommerhoff,
Ufer, & Kollar, 2016; Ufer et al., 2008), it can be said that the specific content area of the proof
task plays a crucial role. In their study on proof schemes, Harel and Sowder (1998) started
from the assumption that the nature of the task influenced what the students focused on and
what processes they employed to gain certainty. The study of Mejia-Ramos and Inglis (2009)
was also grounded on the hypothesis that variations in the task contexts could affect different
behaviours. Their bibliographic study aimed to explore the different task-dependent
argumentative activities that were associated with the notion of proof. Three types of activities
could be distinguished with regard to the tasks that were frequently used in mathematical
practices: the construction of novel arguments, the reading of given arguments, and the
presentation of arguments. Each of these proof activities requires certain sub-processes
depending on the given conditions and the intended goals. Mejia-Ramos and Inglis (2009)
claimed that the comprehension of mathematical arguments (as a sub-process of argument
reading) and the presentation of arguments, or at least parts of them, are the main activities
involved in the assessment of undergraduate mathematics students’ argumentation skills.
However, these activities are often underrepresented within the literature. A complete
categorization of argumentation processes with regard to the given conditions and intended

gaols does not yet exist, but one could, for instance, include the conjecturing processes.

A further aspect that characterizes argumentation- or proof-situations is the complexity of a
task. Ufer, Heinze, and Reiss (2009) showed that proof construction problems that require
more than one step are usually more challenging for learners than one-step proofs. The
complexity of a task regulates whether automatized reasoning strategies could be applied or
whether an argument has to be constructed within the base of one’s conceptual knowledge.
For instance, multi-steps proofs require one’s ability to recall, apply and connect different

concepts and definitions, as well as planning and coordination processes.

mathematical community (e.g., sociomathematical norms)

type of task (e.g., proof construction: “proof that...”)

content area of the task (e.g., elementary number theory)

complexity of the task (e.g., multi-steps proof)

Figure 3: Situation-specific factors of mathematical argumentation and proof.
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We conclude that argumentation has always to be considered in the context of the situation in
which it is embedded for the following reasons: i) the success of argumentation is determined
by the norms and criteria that the mathematical community specifies ii) the processes as well
as the resources necessary for success depend on the content area, the type, and the
complexity of a task. Figure 3 summarizes all the situation-specific factors.

2.2.3 Individual resources

Current discussions in educational research emphasize the importance of modeling human
resources (including a person's stable and trainable skills and knowledge facets) that are
responsible for mastering certain argumentation or proof situations. Researchers are
interested in what knowledge facets are needed, and how various types of cognitive and affect-

motivational resources direct one’s proving processes (Selden, A., Selden, & Benkhalti, 2018).

The results of several researchers have indicated that argumentation respectively proving is a
knowledge-intensive activity (e.g., Chinnappan et al., 2012; Ufer et al., 2008). Ufer et al. (2008)
empirically investigated the impact of declarative and procedural geometrical knowledge as
well as mathematics-related problem-solving skills on students’ performance in proof
construction situations. The findings of their study pointed out that more than 40% of the
variance of students’ geometrical proof performance can be explained by these three cognitive
predictors. Weber (2001) focussed on another knowledge facet of argumentation skills. He
compared university students who had completed a course in abstract algebra with doctoral
students doing research on this content area. It was observed that the doctoral students were
able to make better use of strategic knowledge. The exploratory study of Weber and Alcock
(2004) supported this result. They discovered that the doctoral students were able to choose
a strategically better starting point to prove that two groups were isomorphic by examining the
algebraic properties that preserved by isomorphism, whereas the undergraduate students
immediately focused on the cardinality of these groups and thus were not able to construct a
proof. Weber and Alcock (2004) interpreted this observation as an indicator for the strong
impact of strategic knowledge on proving performance. The interview study of Heinze and
Reiss (2003) has demonstrated that methodological knowledge about proof schemes, proof
structures and the chain of conclusions, as a further cognitive resource, becomes particularly
important when students are requested to evaluate correct and incorrect proofs. Sommerhoff
(2017) investigated the impact of six underlying cognitive resources (conceptual and
procedural mathematical knowledge, strategic knowledge, methodological knowledge,
problem solving skills, metacognitive awareness, conditional reasoning skills) on students’
performance in proof validation and proof construction situations. Out of these six cognitive
resources, conceptual knowledge as well as strategic knowledge showed a significant

influence on the proof validation performance. Procedural and conceptual mathematical
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knowledge as well as strategic knowledge were predictive for the performance in proof
construction situations. The strong impact of procedural knowledge on proof construction
performance, but low relevance within proof validation made the major difference between
both situations. Since prior findings regarding the effects of methodological knowledge and
problem-solving skills could not be replicated in this study (cf. Chinnappan et al., 2012; Ufer et
al., 2008), it can be assumed that different argumentative situations (in particular, different

communities and content areas of tasks) require different cognitive resources.

Several researchers have conceptualized the activity of proof construction as a problem-
solving task (e.g., Furinghetti & Morselli, 2009; Weber, 2005). From this perspective, it appears
obvious to take metacognitive knowledge, beliefs, and self-regularity skills as further predictors
for the successful outcome into account (cf. Corte, Verschaffel, & Op't Eynde, 2000). Selden,
A. and Selden (2013b) also emphasized that beliefs about one’s own ability to succeed in a
specific situation as well as persistency (both affect-motivational resources) may play an
important role on the success of university students’ and mathematicians’ proof construction

processes.

Based upon these results, it can be expected that different cognitive resources (and affect-
motivational resources) shape students’ argumentation and proving processes as well as their
performance in argumentation tasks. However, maost researchers only have investigated the
impact of specific resources on students’ performance, disregarding the processes as a link

between them.

2.2.4 Conceptualizing mathematical argumentation skills

Mathematics students usually demonstrate their skills and what they have learned during the
semester by solving proving tasks (e.g., Selden, A. & Selden, 2008). Koedinger (1998) argued
that the performances on conjecturing and proving tasks are the results of specific skills and
knowledge facets. Therefore, students’ written proof attempts are used as an important
component in evaluating their skills and their conceptual understanding (Selden, A. et al.,
2010).

From this perspective, mathematical argumentation tasks respectively proof problems
determine the specific situational demands that can be mastered by individuals with a certain

level of mathematical argumentation skills (cf. Koeppen et al., 2008).

Following several researchers, we conceptualize mathematical argumentation skills as “latent
traits [...] [that] cannot be directly observed but have to be inferred from observable behavior”

(Blomeke et al., 2015, p. 3). Observable behaviour includes processes and performance in
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specific situations, which both can be judged against criteria to determine whether particular

levels of skills have been reached (cf. Blomeke et al., 2015; Koeppen et al., 2008).

Prior findings in research, based on quantitative (e.g., Chinnappan et al., 2012; Sommerhoff
etal., 2016; Ufer et al., 2008) and qualitative studies (e.g., Mejia-Ramos & Inglis, 2009; Selden,
A.etal., 2010; Selden, A. & Selden, 2013a) have shown that the performance in argumentation
tasks depends on several cognitive (e.g., Chinnappan et al, 2012; Sommerhoff et al, 2016;
Ufer et al., 2008) and affective-motivational resources (e.g., Selden, A. et al., 2010; Selden, A.
& Selden, 2013a), as well as on the situational demands (e.g., Mejia-Ramos & Inglis, 2009;
Sommerhoff, 2017).

Furthermore, it can be assumed that the resources students bring to an argumentative situation
guide the processes of generating arguments and proofs and that the performance is
influenced by both processes and resources (cf. Carlson & Bloom, 2005).

Figure 4 presents our general model of mathematical argumentation skills: In response to the
situational demands, underlying resources (learning prerequisites) are stimulated and used to
implement the argumentation processes (consisting of a sequence of goals, mental and
physical actions) that lead to the final product. The final product itself represents the

performance in the specific situation.

The argumentation skills (including cognitive and affective-motivational resources) and the
performance constitute a linked system, cobbled together by the argumentation processes that

may work as mediators.

argumentation skills
[

specific situation performance

cognitive
fidn processes product
- a sequence of goals & - conjecture
mental and physical actions proof

affective-motivational
resources

Figure 4: Conceptualization of mathematical argumentation skills.

In the past, several researchers have developed frameworks that describe the argumentation
processes and thus demonstrate how mathematicians execute throughout the proof
construction process (e.g., Boero, 1999; Schwarz, Hershkowitz, & Prusak, 2010). In the

following, we will present some of these frameworks.
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2.2.5 Argumentation processes

This section provides an overview about the frameworks and findings of previous research on
(mathematical) argumentation processes. As the focus in this dissertation is mainly on
conjecturing and proving (as specific types of argumentation), we will primarily discuss the

frameworks of proof construction that include phases of exploration and systematization.

2.2.5.1 The framework of scientific reasoning and argumentation

We start with a framework that is not specific to mathematics, but that covers current research
on and models of scientific reasoning and argumentation (SRA) from various scientific
disciplines. It is the framework proposed by Fischer et al. (2014) who suggested to differentiate
eight processes (that are called epistemic activities) to characterize reasoning and
argumentation in any kind of scientific discipline. These processes are termed: problem
identification, questioning, hypothesis generation, construction and redesign of artifacts,
evidence generation, evidence evaluation, drawing conclusions and communicating and

scrutinizing.

Out of these eight epistemic activities, one can argue that hypothesis generation, evidence
generation, evidence evaluation, drawing conclusions, and communicating and scrutinizing
are the core of argumentation and proof construction processes in the context of secondary
school and university mathematics. The framework describes these activities in the following
way:

o Hypothesis generation is the process of formulating a hypothesis (sometimes as a

possible answer to the question under study) with regard to obvious models, available
theoretical tools, or empirical evidence.

¢ Evidence generation comprises empirical and formal approaches to gather evidence.
However, within the domain of mathematics, empirical evidence generated by,
examining examples, constitutes only preliminary evidence. A deductive chain of
arguments has to be constructed to establish the validity of a statement based on the
definitions and axioms of a mathematical theory.

e Evidence evaluation is the process of assessing the degree to which an argument as
piece of evidence supports a particular claim by taking certain norms (e.g.,
sociomathematical norms) into account.

e Organizing and integrating different pieces of evidence as well as re-evaluating the
initial claim by critically analysing data and warrants are summarized as the activity of
drawing conclusions.

e Communicating and scrutinizing describes the process of sharing and presenting one’s
results. This last activity is strongly related to the social character of argumentation.

Mathematics researchers may also be confronted with the other three epistemic activities: For
instance, they may discover a discrepancy or shortcoming regarding the available explanation

of a specific mathematical problem (problem identification), they may formulate one or more
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initial questions as a driving force for their research (questioning), and they may create a
prototypical object or an axiomatic system that introduces a new mathematical structure
(construction and redesign of artifacts). It appears obvious that students are less faced with
these types of activities as they usually receive a concrete problem, a well-defined question
and are requested to apply and combine definitions and statements based on the axiomatic
system.

We conclude that the framework by Fischer et al. (2014) that is based on numerous theoretical
considerations provides a detailed picture of the activities (phases) that can occur in
mathematical argumentation and proof construction processes in different contexts, but does
not allow the derivation of hypotheses on how these activities have to be employed to achieve

high performance.

2.2.5.2 The four phases of problem-solving

Conceptualizing proving as problem solving (e.g., Weber, 2005) leads to the four phases
already outlined in Polya (1945): understanding the problem, devising a plan, carrying out the
plan, and looking back.

e Understanding the problem: implies to understand all the words used in stating the

problem, to recognise what one is asked to find or to show, to draw figures, and to
separate the various parts of the condition.

e Devising a plan: incorporates the finding of a connection between the givens and the
unknown as well as the choice of an appropriate strategy to solve the problem.

e Carrying out the plan: covers the processes of persisting with the plan that one has
chosen and discarding and choosing another plan if it continues not to work.

e Looking back: involves checking the results and thinking about whether the results
could have been derived otherwise.

This framework, which suggests strategies for attacking problems in mathematics classes, has
already been used in a slightly amended form to describe the processes involved in proof
construction (cf. Furinghetti & Morselli, 2009; Selden, J. & Selden, 1995; Selden, A. & Selden,
2009; VanSpronsen, 2008)

2.2.5.3 Frameworks of proof construction

Research that refers to the (possible) continuity between the production of a conjecture and
the construction of its proof is usually conceptually linked to the phase model proposed by
Boero (1999) that deals with the role of argumentation in the domain of mathematics and that

distinguishes between phases of exploration and systematization.
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2.2.5.4 Boeros’ expert model

This expert model consisted of six phases that are not intended to be interpreted as a linear
sequence.
e The first phase involves the exploration of the problem situation and the identification

of patterns. Processes associated with this phase are performed with the goal of
generating a conjecture.

e The formulation of the statement to be proved constitutes the second phase.

e Exploring the content by questioning the limits of the conjecture and by applying
semantic (or sometimes even syntactic) reasoning strategies represents the third
phase.

e The fourth phase is characterized by selecting appropriate arguments that serve as
supporting warrants for the conjecture as well as enchaining these arguments into a
coherent deductive line.

e Organizing the enchained arguments into a proof that meets the corresponding
mathematical community’s expectations and sociomathematical norms forms the fifth
phase.

o The process of achieving a completely formal proof is covered by the sixth phase which,
in most cases, is skipped either due to its irrelevance or impossibility within the context
of school or university mathematics.

Boero (1999) clarified that the occurrence of each phase depends on the context in which the
argumentation is embedded (including the culture, community and type of task), and
distinguished between the private side of mathematicians’ work (related to phase | and Il —
phases of exploration) and the public side (especially represented by phase Il, V, and VI —
phases of systematization). Moreover, he emphasized the importance of differentiating
between conjecturing and proving as processes on the one hand and theorems respectively
proofs as the resulting products on the other hand. Boero (1999) refers to the process-product
character of proof by claiming that a proof as the final product of one’s mathematical
argumentation processes has to meet certain formal criteria in order to be accepted as a proof,
but the conjecturing and proving processes used to generate this proof do not. Therefore, when
proving a conjecture, one can first generate an informal argument trying to convince oneself
about the validity of a conjecture and then use this informal argument as a substructure to
produce a proof (e.g., Garuti et al., 1998; Weber & Alcock, 2004).

Heinze and Reiss (2007) extended Boero’s model by adding the phase of acceptance by the

mathematical community to take the social act of proving (cf. Manin, 1977) into account.
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2.2.5.5 Proving as a problem-solving pathway

Furinghetti and Morselli (2009) adapted Polya’s problem solving framework to the process of
proof construction by regarding the proving process as a pathway including processes of
exploration and systematization and consisting of these four phases:

o They described the first phase as becoming acquainted with the given task by carefully
reading and reformulating the text that represents the proving problem and by
attempting to reach a logical understanding. Drawing pictures and generating examples
may be part of the reformulating processes that bridge to the phase of developing a
plan.

e The second phase involves the thoughtful choice of proving strategies, methods, and
representations. They emphasized the importance of finding a predictable
representation by switching from one representation to another and of going back to
previous steps to overcome deadlocks. Furinghetti and Morselli pointed to Weber and
Alcock (2004) by claiming that an arithmetic/ algebraic representation may be such a
predictable representation and thus the starting point for the syntactic proving strategy.

¢ The monitoring and use of proving strategies was regarded as the third phase: syntactic
proving strategies incorporate the application of definitions and procedures such as
manipulating symbols in an automatic-like style; semantic proving strategies are based
on meaningful instantiations to guide the formal inferences and require the transition
from informal to formal arguments (cf. Weber & Alcock, 2004).

e The fourth phase of the proving pathway was characterized as evaluation and reflection
phase including processes such as revising the employed proving strategy, checking
the chain of deductions inferred during the third phase, as well as refining the language
by the use of formal mathematical symbols.

This theoretical framework points to the relevance of self-regulatory activities (planning,
monitoring, and reflection) within proof construction. It was used to guide the analysis of the
written proof attempts of two unsuccessful mathematics students and helped to identify the

difficulties that students’ encountered in proving a statement.

2.2.5.6 Processes related to the formal-rhetorical and the problem-centered part of a

proof

Selden and Selden (1995) suggested to differentiate between the processes related to the

formal-rhetorical part and the processes related to the problem-centered part of a proof.

e The formal-rhetorical part of a proof consists of “unpacking and using the logical
structure of the statement of a theorem and associated definitions” (Selden, A. et al.,
2010, p. 200). This includes starting the proof by writing the premise at the beginning,
leaving space for the main body, and writing the conclusion at the end of the proof. The
following steps are unpacking the conclusion, selecting the relevant definitions, and
adapting the symbols used in the definitions to the theorem that has to be proven
(Selden, A. & Selden, 2011). Constructing a hierarchical structure of a proof can be
considered as calling a schema, and the processes involved are often executed
automatically (Selden, A. & Selden, 2009).

¢ Filling the space for the main body of the proof refers to the problem-centered part,
where some “exploration” and “brainstorming” processes gain in importance. They
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claimed that problem-solving strategies such as drawing diagrams, reflecting on the
results of prior activities, or trying to remember an example are employed to link
different concepts and to develop an idea for how to proceed (Selden, A. et al., 2010;
Selden, A. & Selden, 2011), both required to generate the problem-solving part of a
proof. Furthermore, they observed that there are propositions for which constructing
the hierarchical structure of a proof can be very useful in uncovering the "real problem"
to be solved in the remaining proof (Selden, A. & Selden, 2009).

In their teaching of proof, Selden, A. and Selden (2008) addressed this distinction of processes
related to the formal-rhetorical part and those related to the problem-solving part to overcome

students’ difficulties with proof construction and to enhance their proving performance.

The frameworks of proof construction related to problem solving suggest that much can be
gained by thinking about what may work and by reflecting on what has worked respectively not
worked. Furthermore, they point out that processes of systematization and exploration have to
be used to develop the structure and ideas that build a formal proof and thus, are conceptually

linked to Boero’s expert model.

2.2.5.7 The cognitive model of conjecturing

The cognitive model of conjecturing proposed by Koedinger (1998) consists of four
components: generate conjecture, investigate, argue, and deduce (see Figure 2). Conjectures
may be generated by the investigation of examples, by drawing analogies to familiar problems,
or even by deduction. These components may also be relevant for testing a conjecture and
generating evidence for or against it. Conjecture generation comprises identifying patterns and
commonalities between examples, ensuring that the conjecture is consistent with the empirical
evidence that has been created before, and affirming that it goes beyond simply replicating the
premise. Investigation involves exploring examples or, in content areas such as geometry,
constructing models, measuring objects such as segment lengths, angles, and areas, and
inducing any relationships that appear to be invariant. Argumentation describes the process of
generating empirical or deductive arguments. Deduction, as used in Koedinger's model, refers
to the formulation of conclusions and to the application of theorems in order to generate a

deductive chain from the givens to the conclusions.

Koedinger's model was developed to describe the observations of middle school students’
performance on a conjecturing task. According to the school context and geometric content
area, it primarily focusses on exploratory processes, but also includes formal-deductive

processes.

2.2.5.8 Summary

From the comparison of the frameworks presented above, we inferred that some of these

frameworks have been developed to enhance the teaching and learning of proof (the
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framework of Selden, J. and Selden (1995)) respectively problem solving (Polya, 1945). Other
frameworks have been created to describe school students (the framework by Koedinger,
1998), university students (the framework by Furinghetti and Morselli (2009)), and expert
mathematicians (the framework by Boero (1999)) proof construction processes or
argumentation activities (the framework by Fischer et al. (2014)).

The frameworks of proof construction have in common that they emphasize the crucial role of
dynamic exploration (cf. Boero et al, 1996) and systematization: Furinghetti and Morselli’s
work (2009) by comprising the phases of understanding the problem and developing a plan as
phases of exploration and carrying out the plan and looking back as phases of systematization;
Selden, J. and Selden (1995) by referring to the problem-centered part and the formal-
rhetorical part of a proof; Koedinger (1998) by introducing the components of conjecture
generation, investigation, and argumentation as exploratory activities and deduction as a
systematization activity; and Boero’s model (1999) by containing phases related to the private

side of a mathematician (phase | and IIl) and the public side (phase Il, V, and VI) .

During the epistemic activities of problem identification and evidence generation, explorative
processes such as studying and testing examples may occur as well (Fischer et al., 2014).
The dichotomy of proof suggested by Selden and Selden (1995), Koedinger’s model (1998),
as well as Borero’s model (1999) include phases of systematization, but they do not explicitly
bring up the processes of communicating and scrutinizing (cf. Fischer et al., 2014) respectively
of looking back (Polya, 1945).

These frameworks can be used to describe argumentation, conjecturing, and proving
processes. They demonstrate that argumentation processes are a sequence of sub-goals
(phases) including physical and mental actions. We conclude that phases of exploration and
systematization are required to communicate arguments precisely. Yet, what does a good
exploration phase or systemization phase look like? Regarding this question, we observed
some hints in the literature. For instance, we have inferred from the work of Koedinger (1998)
that testing a conjecture with multiple examples, searching for a counterexample, as well as
checking the inferences can be considered as characteristics that describe how conjecturing
processes should be. The framework of Furinghetti and Morselli (2009) also pointed to
individual quality features that characterize the proof construction process such as carefully

choosing appropriate representations or going back to previous steps in the case of impasses.

However, an overview of which process characteristics are actually relevant for the production
of an interesting conjecture (that goes beyond repeating the premise) and a correct and
normatively acceptable proof does not yet exist. Even though the success of argumentation
processes is determined by the quality of the final product, it is still unclear how “good”

argumentation processes can be described. We see the need (i) to summarize common claims
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and findings of previous research on good argumentation processes and (ii) to empirically
investigate which of the theory-based process characteristics are predictive for the quality of
the resulting product.

The frameworks outlined above mainly address the argumentation processes of a person
working individually. As argumentation is often embedded in social contexts (Balacheff, 1998;
Yackel & Cobb, 1996), one may argue that the social-discursive argumentation processes of
a person working in dyads or groups should also be taken into account when attempting to find
a set of process characteristics that describe good (collaborative) conjecturing and proving

processes.

2.2.6 Argumentation as a social practice —the role of collaboration

Some argumentation processes such as communicating and scrutinizing arguments are
social-discursive in nature, others such as generating hypothesis and evidence generation
may benefit from collaborative argumentation (cf. Fischer et al., 2014). When undergraduate
students learn to construct proofs, the social perspective on argumentation, including the social
nature of argumentation as well as the role of interaction and transactive reasoning, should be
considered as well (Blanton & Stylianou, 2014). In the first part of this section, we will describe
the social nature of argumentation and proof, followed by a section on the mechanisms of
collaboration that may (positively) influence the generation of mathematical arguments. To
approach this issue, we will expand our literature search to studies related to research in
educational psychology and the Learning Sciences (esp. Computer-Supported-Collaborative-

Learning research).

2.2.6.1 The social nature of argumentation

Besides their other functions, mathematical argumentation and proofs are means of
communication (e.g., Hanna, 1990; Villiers, 1999). Students or mathematicians engage in
proving to generate new knowledge and to justify or explain to their peers why a statement is
true. It is the teacher or the peer group that judges whether an argument is a proof (e.g., Manin,
1977; Stylianides, G. J. et al., 2017). Within this perspective, the focus tends to be on the social
processes that play a particular role in the acceptance of new results by the mathematical
community. Consequently, educators have started to pay more attention on the concept of
proof as a “convincing argument” (Hanna, 2000). It cannot be said that the processes of
ascertaining and persuading (Harel & Sowder, 1998), in the sense of removing one’s own and
others’ doubts (cf. Mariotti, 2006), as well as the social processes of evaluating the arguments
of others and checking their logical integrity make mathematics less objective or true; rather,
the modern view of the logical truth or validity of a mathematical statement relative to a

reference theory has to be taken (Ernest, 1998) and proofs have to be considered as
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arguments that meet the norms shared by the respective community. This means a proof is
always linked to the social context in which the proof occurs. It is a specific type of discourse,
a form of interaction that is based on shared meanings (cf. Villiers, 1999). Therefore, teachers
and instructors should give their students the opportunity to engage in the activity of proving
as it is practiced in the mathematical community, including using proof to raise debates about
the truth of a conjecture and to negotiate the meanings of concepts as well as (implicitly) the
criteria for an acceptable proof (e.g., Alibert & Thomas, 1991; Villiers, 1999). Encouraging
students to participate in mathematical discussions and to solve proof-related tasks
collaboratively, leads to the question of how collaboration can be effectively used as a resource
for generating proofs, and which characteristics make collaboration finally effective.

2.2.6.2 Mechanisms of collaboration

The phenomena of collaborative learning and problem solving and how they are influenced by
one’s cognitive and affect-motivational resources or by the use of collaboration scaffolds has
been put forward in psychology and the Learning Sciences research (esp. Computer-
Supported-Collaborative-Learning research) (e.g., Kopp & Mandl, 2011; Schwaighofer et al.,
2017; Stahl, 2010; Vogel et al., 2016; Webb, 1982; Weinberger & Fischer, 2006). There is
some evidence that collaborative learning or problem solving is not necessarily effective
(especially in unstructured leaning situations) (e.g., Andriessen & Schwarz, 2009; Gillies,
2004) or at least, an advantage over individual learning (e.g., Barron, 2003; Yetter et al., 2006).
Some experimental studies that directly compared the work of individuals and groups have
shown that groups often outperform the average individual, but not when the level of pooled
outcomes of “competent” individuals working alone were also taken into account (e.g.,
Schwartz, 1995). One reason might be that students often have problems engaging in deep-

elaborative discourses when working together (e.g., Kollar et al., 2007; Vogel et al., 2017).

Research has demonstrated that particularly argumentative dialogues are essential in
collaborative learning. Students that were instructed to engage in argumentative dialogues
during collaboration were found to reflect better conceptual understanding in evolutionary
theory than those who have not been instructed (Asterhan & Schwarz, 2007). Chi and Wylie
(2014) argued that some studies were not able to provide evidence for the advantages of
collaborative learning or problem solving on the reason that these studies did not distinguish
between individual dialogue and joint dialogue respectively interactive dialogue patterns. In
their paper, they emphasized that individuals can mainly benefit from dialogues when these
dialogues are truly interactive. Interactive (also called transactive (Teasley, 1997)) dialogues
involve the mutual exchange of ideas between the participants and lead to new ideas that go
beyond the ideas one would be able to generate alone. Within interactive dialogues, the

participants make substantive content-related contributions, such as generating arguments to
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support a position, asking critical questions, and elaborating on each other's comments. Webb
(1989) pointed out that the level of elaborated explanations is likely to be positively related to
one’s achievement. They claimed that providing highly elaborated explanations requires the
activities of clarifying and reorganizing the learning material that, in turn, may improve one’s
understanding. These assumptions are consistent with the model of Wecker and Fischer
(2014) indicating that the cognitive processes influence the social activities (see Figure 5).
However, it remains an empirical question to what extent individual-cognitive and social-

discursive processes are related to each other.

Regarding mathematical argumentation, Mueller et al. (2012) suggested a framework for
analysing collaborative mathematical argument construction by differentiating three types of
collaboration, namely co-construction, integration, and modification. Co-construction of
arguments implies that students collaborate in a back and forth manner by negotiating various
positions until a mathematical argument is jointly built. Integration occurs when the argument
of a learner is strengthened by assimilating the ideas and arguments produced by his or her
learning partners. The third type of collaboration is that of modification incorporating the
processes of challenging and evaluating the arguments of others. Results indicated that all
three modes of collaboration influence students’ building of mathematical arguments. The
study of Goos, Galbraith, and Renshaw (2002) showed that transactive reasoning in small
group peer discussions affected students’ metacognitive processes that are crucial for
mathematical problem solving. Similar to Goos et al. (2002), Blanton and Stylianou (2014)
found that tansactive reasoning in mathematics classroom discourses as a habit of interaction

encourage students’ proof construction processes and their proof understanding.

personal prerequisites learning partner 1
motivational resources \
cognitive resources _.’ cognitive processes ‘-. learning outcomes
situational prerequisites
social learning activities
instructional
support

social learning activities

cognitive resources cognitive processes learning outcomes

motivational resources

personal prerequisites learning partner 2

Figure 5: Interplay between personal and situational prerequisites, cognitive processes, and

social learning activities within collaborative learning (Wecker & Fischer, 2014).
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To identify the mechanisms and processes that make collaborative group settings effective,
the model proposed by Wecker and Fischer (2014) may provide a theoretical basis for such
analyses. This model aims to clarify how the learning outcomes of groups arise by focussing
on the interactions between personal and situational prerequisites, cognitive processes, and
social learning activities. Within this model, learners are considered as individuals that engage
in their own, private cognitive processes. These cognitive processes underlie motivational and
cognitive resources, and are influenced by situational context factors. One’s cognitive
processes have an impact on one’s learning outcomes as well as on one’s social activities that
contribute to the collaborative discourse. In addition, the model suggests that the social
learning activities of an individual affect the dyadic partner’s cognitive processes (see Figure
5).

We conclude that (mathematical) argumentation can be viewed as social practice rather than
a purely individual activity (cf. Fischer et al., 2014), especially from a perspective that
conceptualizes proving as means for generating and communicating mathematical knowledge
(e.g., de Villiers, 1990), and for establishing social norms with respect to proof (cf. Yackel &
Cobb, 1996). Findings of prior research have shown that argumentation processes can be
influenced by social interactions (e.g., Mueller et al., 2014; Wecker & Fischer, 2014).
Collaborative mathematical argumentation requires developing a shared understanding of the
proving problem and creating a common ground that provides the basis for the students’ (and
the teacher’s) collaborative work (Staples, 2007). Exchanging arguments mutually and
integrating the ideas of others appeared to be an important aspect of fruitful collaboration (e.g.,
Chi & Wylie, 2014; Mueller et al, 2014). From this point of view, it can be assumed that

mathematical argumentation processes may benefit from fruitful collaboration.

Summary

In this thesis, we restrict ourselves to (collaborative) conjecturing and proving processes as
specific types of argumentation. These processes are employed with the aim to generate
hypotheses and to construct subsequent proofs. Other proof-related activities such as proof
reading or proof presentation (cf. Mejia-Ramos & Inglis, 2009) were not investigated. We
propose a model of mathematical argumentation skills that differentiates between learning
prerequisites, argumentation processes, and the final product. Following the framework
proposed by Blomeke et al. (2015), we assume that argumentation skills can be inferred from
the argumentation processes and the final product representing the argumentation
performance in a specific situation. Based on the model of Wecker and Fischer (2014) as well
as on the theoretical considerations in Stahl (2010), we suppose that students working in
collaborative dyads are active as individuals, as group participants, and as members of a

broader community (e.g., the mathematics university community). From this perspective,
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students who are active as individuals are expected to employ their own individual-
mathematical processes such as generating examples, formulating conjectures, applying
definitions, selecting appropriate arguments, and organizing these arguments into a deductive
chain. Students as group participants may share many of these processes with their learning
partners. Therefore, social-discursive processes such as explaining one’s own ideas and
evaluating the arguments of others seem to be crucial as well. The mathematical community
has created and accepted some criteria that are important for assessing the products of
conjecturing and proving processes. The quality of these products determine the success of
argumentation processes. We assume that the final products (i.e. the generated conjecture
and proof) are directly affected by one’s learning perquisites (that comprise several cognitive
and affect-motivational resources) and that individual-mathematical and social-discursive
processes work as mediating elements between the learning prerequisites on the one hand

and the final products on the other hand.
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3 The motivations behind defining process characteristics of collaborative

conjecturing and proving

This thesis is mostly about the processes of conjecturing and proving and also takes the final
product (i.e. the formulated conjecture and generated proof) into account. We focus on the
process-product correlation with the aim to identify and define process characteristics of
collaborative conjecturing and proving that are relevant for the success. In this chapter the
following questions should be answered: Why would researchers be interested in process
characteristics of conjecturing and proving? Which added value for research and practice can
be expected? We will briefly describe several motivational aspects for defining process

characteristics of collaborative conjecturing and proving form different perspectives.

Based on the assumptions of Meier et al. (2007) who developed a framework for assessing
the quality of computer-supported collaboration processes, we suppose that researchers with
interest in studying collaborative conjecturing and proving processes strive to answer three
basic questions: 1) which characteristics of collaborative conjecturing and proving processes
are relevant for success and 2) should therefore be observed? And 3) to what extend can
different directly observable process characteristics be related to learning prerequisites?

3.1 Expanding theoretical knowledge about conjecturing and proving processes

The first aspect refers to expanding the theoretical knowledge about conjecturing and proving
processes: In the past, many studies of argumentation and proof have examined errors and
misconceptions in students’ written proof attempts. Overall, students’ proving performance at
the secondary and tertiary level is primarily found to be weak. Selden, A. and Selden (2008)
claimed that we need to know more than that a student can, or cannot, prove a specific theorem
in a certain content area by, for instance, induction, deduction or contradiction. Mejia-Ramos
and Inglis (2009) critically notated that the knowledge about students’ proof-related activities
is rare. It is still an open question what the relationships between proofs (as products) and the
processes that mathematicians use to construct these products are (Douek, 2007). In general,
there seems to be a need for a comprehensive view on conjecturing and proving in an effort
to understand students’ difficulties and the sources of these difficulties on the one hand, as
well as the processes that positively influence students’ conjecturing and proving performance
on the other hand (cf. Harel & Sowder, 2007).

The performance in form of the resulting product can be evaluated relatively clearly according
to certain criteria (cf. Miller, Infante, & Weber, 2018). This gives rise to the question of which
process characteristics are associated with high-quality proof products and thus describe good
(collaborative) conjecturing and proving processes. Furthermore, prior research has shown

that the quality of the proof product strongly depends on learning prerequisites (e.g., Ufer et
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al., 2008). From this perspective, it is important to find out to what extent the process
characteristics of conjecturing and proving mediate the relationship between learning
prerequisites and the quality of the final product.

We refer to these process characteristics as individual-mathematical process characteristics
of (collaborative) conjecturing and proving. Theoretical knowledge about individual-
mathematical process characteristics could provide the basis for developing a model of good
conjecturing and proving processes that researchers may use for further (empirical)
investigations. As already discussed in previous chapters, conjecturing and proving are often
regarded as social activities. Therefore, to identify which peer collaboration characteristics may
be crucial for proof construction when proving is situated in a social context may open up new
venues for research on the mechanism of learning mathematical argumentation and proof in
and from peer collaboration (cf. Asterhan & Schwarz, 2009). We call the peer collaboration
characteristics related to proof construction as social-discursive process characteristics of
collaborative conjecturing and proving. To sum up, inferring process characteristics from the
literature and defining those that are assumed to be observable and relevant for the success
might be a starting point for following empirical analyses.

3.2 Using process characteristics to measure argumentation skills

The second aspect comprises the approach of using process characteristics to gain insight
into students’ or mathematicians’ underlying argumentation skills. Since reaching a high
reliability of assessing skills on performance-related tasks usually requires a huge number of
items (e.g., Bldomeke et al., 2015; Koeppen et al., 2008), it might be interesting to find out which
characteristics of conjecturing and proving processes (beyond the final product) provide
additional information about students’ underlying argumentation skills. Argumentations skills
as latent constructs cannot be directly observed but may be inferred from observable process
characteristics of collaborative conjecturing and proving (cf. Blomeke et al., 2015). This means
that process data could be examined to receive a more complete analysis of student’s
argumentation skills or to find out how students develop argumentation skills. A resulting
guestion is how these process characteristics should be assessed (employing what kind of

instrument) and how they can be operationalized.

In the literature, two types of measurements are distinguished: Processes can be measured
and assessed at the same time they are occurring or as verbal or written representations of an
activity taking place at an earlier date (cf. Shernoff & Kratochwill, 2003). It would be very
instructive to have research on how school students, (advanced) university mathematics
students, or expert mathematicians actually generate conjectures and proofs in real time to

understand the temporal sequence of or the interplay between different processes. Even
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though such kind of studies already exist (e.g., Savic, 2015b), the research on conjecturing
and proving processes based on real-time observations are comparatively rare (Selden, A.
& Selden, 2013b). Most results about argumentation skills are inferred from written solutions.
For instance, the research group around Reiss (e.g., Heinze, Cheng, Ufer, Lin, & Reiss, 2008b;
Heinze, Reiss, & Franziska, 2005) studied the geometry-proof skills and conceptions of high
school students by conducting multiple longitudinal surveys. The empirical results of these
studies were derived from students’ written responses to geometric test items. Students’
written proof products were also used to identify mistakes and misconceptions (Selden, J.,
Benkhalti, & Selden, 2014) or to infer actions that might be beneficial for the construction of
proofs (e.g., Selden, A. et al., 2010; Selden, A. et al., 2018).

We do not want to claim that analysing written responses to test items is detrimental because
different types of proof (that are required to answer these items) may correspond to different
skills and processes needed to create them (Selden, A. & Selden, 2008). Furthermore, the
guality of the written proofs as results of the processes determines the success and thus the
guality of these processes. Therefore, we assume that taking processes and the final product
into account may be a promising approach for assessing mathematical argumentation skills.
We propose an analytic model to measure argumentation skills (see Figure 6): argumentation
processes that are enacted within a specific situational context become observable in the form
of diverse process characteristics, learning prerequisites are represented by an individual’s
prior knowledge on proof, and the final product represents the individual’s argumentation
performance. The methods to measure each component may include real-time observations
of the processes (assessed along diverse process characteristics), written proofs as
representations of the final product (evaluated against diverse product criteria), and proof items
presented in form of a paper-pencil test to capture prior knowledge on proof (respectively

(learning-) prerequisites).

argumentation skills

specific situation performance

cognitive
resources processes product
a sequence of goals & conhjecture
affective motivational mental and physical actions proof
resources
prior knowledge Process assessment of the
on proof characteristics quality of the product

Figure 6: An analytic framework for measuring argumentation skills.
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3.3 Using process characteristics as a diagnostic tool

The third aspect points to using process characteristics as a diagnostic tool in order to detect
students’ main deficiencies concerning the formulation of conjectures and the construction of
proofs. Knowing which process characteristics are crucial for the success may help to identify
where support is actually needed (Meier, Spada, & Rummel, 2007). Adaptive interventions and
scaffolds to encourage students’ (collaborative) conjecturing and proving skills may be
developed on the basis of this knowledge. It allows to design tasks that may optimize the
learning results by purposefully promoting and scaffolding those process characteristics that
deemed to be important (cf. Schwartz, 1995). Consequently, students’ may build awareness
of the process characteristics that are considered to be responsible for successfully formulating
conjectures and constructing proofs. This perspective conceptualizes process characteristics
of collaborative conjecturing and proving as potential predictors of the quality of the resulting
product (the quality of the formulated conjecture and generated proof). The additional focus on
social-discursive process characteristics may even make it possible to stimulate fruitful
collaboration patterns, which in turn may enhance the individual-mathematical process
characteristics (cf. Mueller et al., 2015).
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4  Aims and research questions of the three studies

As there is a general consensus on the importance of proofs in university mathematics, and in
school mathematics (e.g., Harel & Sowder, 2007; Stylianides, A. J., 2007; Stylianides, G. J. et
al., 2017), conjecturing and proving represent a major line in mathematics educational
research (Sommerhoff, Ufer, & Kollar, 2015). Although the amount of research appears to
provide a comprehensive view on conjecturing and proving, available empirical results about
the activities involved that characterize good collaborative conjecturing and proving processes
are rather weak. In the past, most studies about conjecturing and proving processes were
based on small sample sizes using qualitative methods (e.g., Ellis et al., 2017; Savic, 2015b;
Zazkis et al., 2016, 2015). Models of proof construction were inferred from introspective (e.g.,
Polya, 1945) or observational methods (e.g., Boero, 1999; Schwarz et al., 2010; Selden, J.
& Selden, 1995)and were mainly premised on theoretical assumptions. In addition, most of
these studies or models do not explicitly refer to the process-product character of proof (with
the exception of Boero’s model (1999)) or to collaboration. Until now, research on what
constitutes “good” collaborative conjecturing and proving processes has not been specific
enough to describe students’ interactions during poof construction in terms of process
characteristic that are relevant for the successful outcome (i.e. an interesting conjecture and a

correct and normatively acceptable proof).

Building on both the conceptualization of mathematical argumentation skills as consisting of
an individual-mathematical and social-discursive component as well as the process-product
character of proof, the primary goal of this dissertation is to develop an instrument to describe
and analyse collaborative conjecturing and proving processes from a mathematics educational
and more domain-general social-discursive perspective on argumentation. We will use this
instrument to study the “black box” of collaborative conjecturing and proving by addressing the
two questions: "What is happening during the process of proof construction?" and "How do
learning prerequisites affect individual-mathematical and social-discursive processes that may

lead to a successful outcome?"

Yet, before developing such an instrument, it is important to know (1) which individual-
mathematical and social-discursive activities are considered as process characteristics that
constitute good (collaborative) conjecturing and proving processes from a theoretical point of
view based on current literature. Study | (Chapter 5) is a literature review that approaches this
issue and summarizes common claims and findings about conjecturing and proving processes.
More specifically, this literature review aims to answer the following questions: (1.1) Which
theoretical perspectives in mathematics-related educational research conceptualize
characteristics of good conjecturing and proving processes? Do researchers discuss good

conjecturing and proving processes from the proving as problem-solving, proving as
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convincing, or proving as a socially-embedded activity perspective? (1.2) Which conjecturing
and proving processes are considered to be crucial for the production of interesting conjectures
and normatively acceptable proofs? (1.3) Which of these proving processes are reported as
more general sub-goals within conjecturing and proving? And which process characteristics
are assumed to be helpful to achieve these goals? The results of these research question
serve as theoretical foundation for defining a set of process characteristics of (collaborative)

conjecturing and proving.

Further goals of this dissertation are to find out (2.1) how can such process characteristics be
operationalized in the context of collaborative proving and conjecturing processes? Is it
feasible to measure individual-mathematical and social-discursive process characteristics of
collaborative conjecturing and proving reliably? This research issue requires the development
of an instrument (including the operationalization of process characteristics inferred from
mathematics educational and psychology research). This instrument could be used (2.2) to
analyse the empirical structure of individual-mathematical and social-discursive process
characteristics and to find out whether coherent dimensions of process quality can be
identified, (2.3) to study to what extent both learners contribute equally to the performance of
these process characteristics, and (3) to examine the mutual relations between prerequisites,

process characteristics, and proof performance.

To investigate these broad range of research issues, we conduct an empirical study situated
at the transition phase from secondary to tertiary education. This empirical study is broken
down in two sub-analyses (Study Il and Study IIl). Furthermore, this dissertation provides a
“technical report” (Chapter 6) that presents the development of a high-inference coding
instrument, a description of the rating scales and of the coding procedure, as well as a short

explanation why we used this type of methodology.

Study Il (Chapter 7) focuses on aspect (2.1) by systematizing and operationalizing a set of
seven theory-based process characteristic of collaborative conjecturing and proving
processes. Most centrally, this study provides data on the empirical structure (2.2) of the
extracted process characteristics for one exemplary conjecturing and proving task. In addition,
this study addresses aspect (2.3) by considering the relatedness of students working
collaboratively within one dyad on this conjecturing and proving task. Consequently, study Il
aims to answer the following research questions: (2.1) Can we find reliable process
characteristics for the individual-mathematical and social-discursive component of
conjecturing and proving? (2.2) How are individual- mathematical and social-discursive
process characteristics of conjecturing and proving interrelated? Can two dimensions of
conjecturing and proving processes, one related to the individual-mathematical and one

related to the social-discursive component of mathematical argumentation, empirically
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distinguished from one another? (2.3) Do students working collaboratively on a conjecturing
and proving task contribute equally to the quality of conjecturing and proving processes? What
is the adequate level of analysis (individual vs. group) for investigating collaborative
conjecturing and proving processes?

Study Il (Chapter 8) approaches research issue (3) by analysing the relationships between
the process characteristics of conjecturing and proving, the quality of the resulting product, and
the learning prerequisites (operationalized as prior knowledge on proof). In this study, we apply
the analytic framework that we have introduced in chapter 3 and strive to answer the following
research questions: (3.1) Which component and process characteristics of collaborative
conjecturing and proving are predictive for the quality of the resulting product? (3.2) Do prior
knowledge on proof affect the quality of conjecturing and proving processes? (3.3) Do
individual-mathematical process characteristics mediate the impact of prior proof knowledge

on proof on the final product?

This dissertation concludes (Chapter 9) by comparing and summarizing the findings of the
three studies. Limitations and strengths as well as implications for further research projects
were discussed. Last, all the findings will be considered in light of some practical implications.

52



Study |

5 Study |

What are process characteristics of successful conjecturing and proving

processes? Common claims and findings in research

5.1 Abstract

Identifying the processes that are needed to construct proofs and understanding the actions
of those who are (finally) successful in conjecturing and proving are essential to foster students’
mathematical argumentation skills. Even though proof and proving are regarded as important
in all phases of mathematics education, it seems that there exists more literature on the
deficiencies students have than on those characteristics of conjecturing and proving that relate
to the successful generation of conjectures and the construction of proofs. The purpose of this
literature review is to analyse, categorize, and synthesize past research on conjecturing and
proving under these considerations. First, different research perspectives on conjecturing and
proving processes as well as the methodological orientation of the underlying studies are
presented. We summarize claims and findings of the most representative articles on each
research perspective, and analyse the processes that are assumed or reported to be crucial
for success. Second, we propose a set of process characteristics that can be considered as
indicators of successful conjecturing and proving processes from a theoretical and sometimes
even an empirical point of view. Based on the theoretical integration and categorization of

findings, we suggest directions for future investigations and practical implications.

5.2 Introduction

A substantial amount of research studies have documented that constructing proofs remains
a persistent difficulty for students, even at the tertiary level (e.g., Moore, 1994; Selden, A.
& Selden, 2013b). Results of these studies have indicated that students make a variety of
mistakes in attempting to construct proofs, including conceptual, logical, formal, as well as
strategic errors (e.g., Selden, A. & Selden, 2008; Selden, A. & Selden, 2011). These difficulties
may lead students to deduce invalid inferences, use mathematical notations in incorrect ways,
or leave students unable to understand the concepts and definitions related to the proving
problems. Discovering the deficiencies students have and developing theory-based
explanations about how each of these errors could be prevented, can help to improve the

teaching and learning of proof.

Another approach that may facilitate the development of specific instructional methods and
tools to foster students’ mathematical argumentation skills is expanding the knowledge about
which processes have shown to be promising in constructing proofs. Thus, carefully analysing
the behaviour of those, who are successful in proving, could provide valuable insights into how

conjectures may be generated and (deductively) justified (Zazkis et al., 2015). Exposing
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students to the processes that high-performing students use to construct proofs and that have
been recognized to be crucial in various studies, as well as conveying them what can be done
to recover from proving impasses (cf. Savic, 2015a), may encourage students to overcome
their difficulties.

Over the last years, research on conjecturing and proving has matured and the size of
according literature is growing. Therefore, we see the need for systematizing the existing
knowledge base on conjecturing and proving processes. The main purpose of this review is to
identify common claims and findings about what constitutes “successful” conjecturing and
proving processes. We summarize the results of previous studies that describe how and with
what intentions specific proving processes are chosen, and analyse the studies’
recommendations on which process characteristics should be taught to students (in order to
support their conjecturing and proving skills). It is not expected to find an exhaustive set of
process characteristics that covers all processes that may lead to a successful outcome, since
the term “successful” in the context of conjecturing and proving may vary between different

(research) perspectives.

However, we assume that we are able to identify some more general activities within
conjecturing and proving processes, such as exploring the problem situation and identifying
appropriate arguments (cf. Boero, 1999) that are considered as necessary for the generation
of interesting conjectures and valid proofs from different research perspectives. We categorize
these activities that we call sub-goals within conjecturing and proving processes, and refer to
the single processes, procedures, and operations (process characteristics) that are reported
as being helpful in achieving these sub-goals. Our aim is to address multiple process
characteristics together with their intended goals in order to better understand how these
aspects of conjecturing and proving may be related to each other and contribute to a successful
outcome (e.g., a conjecture that goes well beyond replicating the premise (cf. Koedinger, 1998)
and a sustainable justification that explicitly accounts for why the produced conjecture must be
true (Stylianides, A. J., 2007).

In the following, we start with describing the research background before we present our

systematic literature review and our analyses.

5.3 Systematizing research perspectives on conjecturing and proving

Conjecturing and proving are complex mathematical processes that comprise different
cognitive (e.g., logical, conceptual and problem-solving) as well as social facets (e.g., Weber,
2005). Both activities can be viewed as a particular type of argumentation in mathematics
(Pedemonte, 2007). Stylianides, G. J. et al. (2017) distinguished “three broad research
perspectives in the area of proof” (p. 244), namely, proving as problem solving, proving as a

means of convincing oneself and others of the truth of a conjecture, and proving as a social
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activity. Within the problem-solving perspective, the generation of a conjecture and the
construction of a proof can be considered as tasks in which the learner is asked to find a
pattern, to formulate a conjecture, and to find an appropriate justification for it, without initially
knowing how to do so (Selden, A. & Selden, 2013a; Weber, 2004). Definitions, already
accepted theorems, and acceptable rules of inferences have to be applied to come from the
givens to the conclusions, and to evaluate the correctness of a proof. Researchers that
conceptualize proving as problem solving are interested in investigating the cognitive and
affect-motivational resources, strategies, and skills that are needed to successfully generate a
justification that demonstrates that a given statement is true (Stylianides, G. J. et al., 2017).

The illustration of how students think about what constitutes a convincing mathematical
argument represents the proving as convincing perspective. Harel and Sowder (1998)
categorized students’ beliefs about what could remove or create doubts about the truth of an
assertion by inducing the notion of proof schemes. Their proof schemes taxonomy
distinguished between external, empirical, and analytical proof schemes. From this
perspective, the nature, values, and norms of proofs (e.g., Dawkins & Weber, 2017) play an
important role. For instance, students’ beliefs that the formal-symbolic appearance of a proof
is an indispensable requirement for its acceptance may influence their proof-related behaviour
(e.g., Harel & Sowder, 1998). These students may prefer to construct proofs that are based on
strategies such as “unwrapping definitions” and “pushing symbols” (Furinghetti & Morselli,
2009). The research, which refers to the proving as convincing perspective, is less concerned
with the question of how valid and acceptable evidence can be developed, but provides an
analytic framework for researchers and educators to examine students’ norms related to
conviction. In contrast to the problem-solving perspective, which focuses primarily on
processes, the convincing perspective considers proof as a product (Stylianides, G. J. et al.,
2017).

Treating conjecturing and proving as social activities leads to the view that collaborative
argumentative settings provide excellent opportunities to discuss various types of arguments
(Yopp & Ely, 2016) and to debate on whether a constructed sequence of arguments constitutes
an acceptable mathematical proof (Alibert & Thomas, 1991). Since conjecturing and proving
within a social context are tools to communicate and generate mathematical knowledge (e.g.,
Harel & Sowder, 2007), analysing the studies that have focussed on how students or
mathematicians successfully engage in proving to justify or explain a claim to their peers and
to communicate their proving ideas, may give interesting insights into conjecturing and proving

processes.

Also Stylianides, G. J. et al. (2017), who used these three perspectives of proving as an

organizing structure for their research review, remarked that they identified studies that do not
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fully fit within one of these perspectives. Thus, there might be a broader range of perspectives
on proving that better captures the variety of studies that have been conducted in the past. In
this contribution, we aim to systematize empirical and theoretical research on conjecturing and
proving processes into “research topics” that share a common perspective on these processes.
Moreover, we will analyse whether studies from different research perspectives on proving
come to different conclusions about which conjecturing and proving processes are needed for
the successful generation of conjectures and proofs, and what characterizes promising proving
processes (promising in the sense that these processes might be helpful to achieve different
sub-goals within conjecturing and proving processes).

5.4 Proving processes

In the past, different models have been established that outline problem solving or, more
specifically, conjecturing and proving processes. Models that refer to problem solving usually
include the phases of understanding the problem, developing a plan, implementing this plan,
and looking back (cf. Carlson & Bloom, 2005; Polya, 1945). The frameworks that deal with
proof construction processes additionally emphasize phases that aim to explore the problem
situation and possible conjectures as well as phases of systematization (e.g., Boero, 1999;
Schwarz et al., 2010). These models are based on self-observations (e.g., Polya, 1945) or
emerged from the close observation of other mathematicians (e.g., Carlson & Bloom, 2005;
Schwarz et al., 2010). Even though these frameworks have been developed with the intention
that (beginning) students may try to implement the described phases and processes, they

primarily illustrate how (expert) mathematicians solve problems and write proofs.

Other researchers have also examined the proof-writing behaviour of mathematicians: For
instance, the study by Lockwood, Ellis, and Lynch (2016) demonstrated the various ways in
which mathematicians used examples to construct proofs. Assuming a continuity between
conjecturing and proving, several researchers attributed particular potential to proving
processes that are based on informal representations (e.g., Garuti et al., 1998; Sandefur,
Mason, Stylianides, & Watson, 2013) or on abductive reasoning (Pedemonte, 2008). However,
not all students seem to be able to translate their informal insights into a formal-symbolic
(Zazkis et al., 2016) or to link the meaning of objects they have used in their abductive
argumentations with the meaning of according objects in their deductive proofs (Pedemonte,
2008).

Using an expert-novice research paradigm, the study by Weber (2001) has shown that
successful mathematicians possess a large amount of strategic knowledge that undergraduate
students appeared to lack. This knowledge allowed the expert mathematicians to choose
adequate proof techniques according to the current situation. From this point of view, it remains

an open question to what extent students who have less experience with proof construction
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are able to employ the same processes that experienced mathematicians usually apply (cf.
Reif, 2008).

Another series of studies have started to investigate the approaches of students who were
successful in constructing proofs. Conducting task-based interviews with undergraduate
students, Gibson (1998) examined how they used diagrams to become familiar with novel
problems, to estimate the truth of statements, to develop proving ideas, and to communicate
these ideas. The study by Zazkis et al. (2015) analysed the proving behaviour of six highly-
successful mathematics majors. They observed a substantial variation in the strategies the
students used to construct proofs. Two main strategies (the targeted/ shotgun strategy) were

distinguished with regard to how plans were chosen in an attempt to find a solution.

Overall, literature suggests several ways of generating conjectures and constructing proof.
However, a common finding in the literature is that successful mathematical problem solvers
spend at least some time to think about which rules and theorems are likely useful to apply,
and whether they should or should not try to prove a theorem by, for instance, manipulating
symbols (e.g., Weber, 2001; Zazkis et al., 2015). In the past, numerous studies have identified
key traits and techniques that individuals exhibit while solving proof-related tasks (e.g.,
Sandefur et al., 2013; Weber, 2004). However, to design adequate learning environments and
to support students’ learning of proof, we need to know more than just “what works” - we also
need to know how and why a specific proving process should be employed. In this research
review, we aim to systematize the key traits and techniques that have been described in
several research studies and that we call process characteristics of conjecturing and proving

in terms of their intended goals.

5.5 The present study

The overall purpose of this review is to analyse the scientific discourse regarding
characteristics of successful mathematical conjecturing and proving processes. Based on 126
articles and research reports from 1976 to 2017, we start our investigations by using a
statistical clustering method (cf. McCallum, 2002) to describe the research topics and
methodological orientation of the included studies. Following the approach by Stylianides, G.
J. et al. (2017), we use the identified research topics, which constitute different perspectives
on conjecturing and proving, to structure our review. Another goal of this research review is to
summarize common claims and findings about aspects of the proving process that are
proposed to be crucial for a high proving performance and the learning of proof. Therefore, we
analysed the most representative articles on each identified topic (in total 45 articles and
research reports) with a specific focus on the sub-goals within conjecturing and proving
processes that are considered as necessary intermediate steps for the successful generation

of conjectures and the construction of proofs from different research perspectives. Having
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identified the sub-goals within conjecturing and proving processes, we explore the extent to
which each of these sub-goals has been researched so far in the field of mathematics
education. Furthermore, we are interested in the processes that are assumed or reported as
being helpful in achieving these sub-goals. These process characteristics are discussed in
relation to their intended goals in order to better understand how and why students or
mathematicians (successfully) employ a specific process.

Particularly, we aim to answer the following research questions:

1) Which research topics within the literature on conjecturing and proving can be identified
that represent common perspectives on these processes? Do researchers discuss
conjecturing and proving processes from the proving as problem-solving, proving as
convincing, or proving as a social activity perspective (as suggested by Stylianides et al.
2017)? What further perspectives on conjecturing and proving processes can be found?

2) Which processes are assumed to be relevant for successful proving performance? What
are common claims and descriptions about how mathematicians, mathematics majors, or
high-achieving college students construct proofs successfully?

In particular, we are interested in claims about how, and for what purposes, specific proving
processes are employed:
3) Which of these proving processes are reported as more general sub-goals within

conjecturing and proving? And which process characteristics are considered as being
helpful in achieving these sub-goals?

We explicitly do not strive to apply any kind of meta-analytical procedure based of effect-size
parameters, as we expect that many studies on conjecturing and proving do not report
guantitative findings. Furthermore, the studies as well as their conceptualizations and methods

will most likely be too heterogeneous to allow such a statistical summary.

5.6 Method

5.6.1 Literature search

To ensure a systematic approach, we followed a two-step-procedure to select articles and
research reports for our review: First, we conducted an extensive database search in
MathEduc, ERIC, and ScienceDirect for the keywords “proving” and “proof”. As these three
searches resulted in a total of 964533 hits, we decided to restrict our searches by using more
specific keywords in each of the three databases. We searched the MatheEduc collection for
all journal articles and research reports, which contained the keywords “proof construction”,

” o«

“proof production”, “proof writing

, “proving activities”, “proving strategy”, “proving strategies”,

“proving process”, “proving processes”, “successful proving” as well as “conjecturing” and
“deductive reasoning”. For ERIC and ScienceDirect “mathematics” was added as a second
key word by using the logical connection “AND”. Regarding the publication year and sources,

no restrictions were made.
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In a second step, we selected articles and research reports based on their abstracts and the

following criteria: Research reports and articles that ...

1) ... have been published in peer reviewed journals or proceedings;

2) ... report to focus on high-quality proving processes or on processes that are strongly
related to the production of conjectures and its proofs such as example generation;

3) ... contain theoretical claims or empirical findings about successful proving processes
or about how, and for what purposes, successful university mathematics students,
mathematicians, or high-achieving college students choose a specific process.

5.6.2 Topic modeling

Topic modeling is a method that allows to identify the research perspectives or, respectively,
topics that are present in a large collection of documents. It was applied to systematize our
selected literature on conjecturing and proving. In this method, a “topic” comprises a cluster of
words that usually occur together “in statistically meaningful ways” (Graham, Weingart, &
Milligan, 2012, p. 3) and is specified by a probability distribution over the respective words.
Inglis and Foster (2018) illustrated topic modeling as a method that builds upon the hypothesis
that any given document is a mixture of topics, and thus each document consists of words from

possible bags of words, with each bag representing a specific topic.

If this “bag-of-words-assumption” (Steyvers & Griffiths, 2007, p. 427) holds, it becomes
possible to mathematically parse a written text into the probable bags, and to define a
corresponding probability distribution. Even though topic modeling programs do not have any
knowledge about the meaning of words, ignore the order of words, and skip topic-independent
words such as “the” and “a”, they can be used on a corpus of literature to identify the topics
embedded in these documents, without analysing and reading them individually (Graham et
al., 2012; Inglis & Foster, 2018).

We followed the approach proposed by Inglis and Foster (2018). All of our articles and research
reports were stored as pdf-files and converted into .txt-files using ABBYY FineReader OCR
Pro. Copyright statements as well as information about the journal were removed as they do
not contribute to the content the documents contain. For our analysis, we used the command-
line topic-modeling program MALLET (version 2.0.8RC2; McCallum, 2002). This program
requires that the number of topics that the algorithm should detect has to be set by the user.
Therefore, the “perplexity” of a model with a given number of topics was calculated by running
the topic model program to a subset of the selected documents and evaluating the resulting fit
parameters. We went through this process repeatedly by systematically changing the number
of topics. Low perplexity values indicate good model fits. Increasing the number of topics leads
to the reduction of the perplexity, but at some point the interpretation of too many topics

becomes challenging. Thus, it is suggested to use a method comparable to Catells’s scree test
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(1966) for exploratory factor analysis. Inglis and Foster (2018, p. 477) propose to find “a point
at which the reduction in perplexity appears to ‘level off” and to select this point as the number
of topics the algorithm should identify. Once the number of topics has been determined, the
program was run again in order to return a defining list of words composing those topics.
Regarding research question (1), we interpreted each topic by analysing the defining list of
words and by studying the most representative articles or research reports on each topic (the
papers with the highest proportion of words from their corresponding topic). Then, we tried to
find meaningful descriptions for each of these topics and allocated these topics to the research
perspectives on proving as outlined by Stylianides, G. J. et al. (2017). The created topic model
served as an organizing structure for the further analyses and helped us to reduce the
complexity of our unstructured document collection of literature on conjecturing and proving.
Since we would not have been able to handle the deluge of data that would have resulted if
we had tried to read and interpret all the relevant literature on conjecture and proving, we have
limited the following in-depth analysis to 45 (of 51) articles that represent the range of topics

and perspectives found in the studies.

5.6.3 In-depth-analysis

In the in-depth analysis, we included the three most representative articles or research reports,
for each of the identified topics. First, we highlighted their claims and empirical findings about
any type of promising conjecturing and proving processes. These data were analysed using
“the synthesis of qualitative research approach” outlined by J. Thomas and Harden (2008) to
enhance transparency in the review process. Due to the fact that it is difficult to deal with the
guestion of what counts as data or - with regard to our review - as claim or finding when
analysing quantitative and especially qualitative research, we curbed this problem by focusing
mainly on the listed claims and findings in the text sections labelled as “results”, “findings”,
“discussion”, or “implications for teaching and learning”. Claims and findings in the abstracts
or in other text sections that appeared to be relevant as well and that were reported in a similar

way as in the text sections labelled as “results”,

findings”, “discussion”, or “implications for
teaching and learning” were also taken into account. In general, when deciding whether to
include a claim or finding in our analysis or not, we relied on the second and third criteria that
we already had defined and used when searching for relevant literature on conjecturing and

proving.

The synthesis approach proposed by Thomas, J. and Harden (2008) comprises three steps
that we adapted in the following way: (i) Free line-by-line coding of the claims and empirical
findings from the primary studies: The extracted data were analysed for meaning and content
during the coding. The developed codes were subsequently listed into a code book. This

procedure enabled us to translate the codes and concepts between the studies; (ii) Finding
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descriptive categories: The developed codes were examined for their meanings, and
reorganized into related categories; (iii) Generating analytical categories to directly address
the second and third research question: Each category was examined and compared to other
categories, in particular by searching for similarities and differences. The categories were
analysed by whether and how they report any theoretical relationship or empirical mechanism
between proving behaviour, and proving performance. Similar categories were merged into
higher-level, more abstract categories that sometimes went beyond the claims and findings of
the original studies. The step of going beyond the claims and findings of the original studies
incorporated, for example, our interpretation of which processes were rather described as sub-
goals within conjecturing and proving or as characteristics that might be helpful in achieving
these sub-goals. This step of the analysis led to a structured description of which proving
processes were considered as relevant for the successful generation of conjectures and

proofs.

The first two steps were mainly inductively. In the third step, most of the categories were
derived from the data, but we already had some categories in mind before we generated the
more abstract categories and therefore followed an approach that is partly inductive and partly
deductive. The more abstract categories we already had in mind were based on the phases
described in the existing frameworks of proof construction (cf. Boero, 1999; Schwarz et al.,
2010) or problem solving (cf. Carlson & Bloom, 2005; Polya, 1945). These pre-defined
categories, which we modified and refined throughout our in-depth analysis, were: exploring
the problem situation, organizing single inferences into a chain, communicating arguments,
and transforming informal into formal arguments as well as using informal representations,
generating examples, using formal symbols, or metacognitive processes. Besides these
categories, we were interested in finding new categories that were described either as sub-
goals within conjecturing and proving or as process characteristics that might be helpful in

achieving one or more of these sub-goals.

Table 1 sets out the dimensions that structure our in-depth analysis. An example of how claims

or empirical findings were coded and categorized is given in Table 2.
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Table 1: Dimensions that frame the in-depth analysis of claims and findings about promising conjecturing

and proving processes

Description

Type of sub-goals

Type of process

characteristics

The aim of this dimension is to identify the different sub-goals within conjecturing and proving
processes that have been researched in the field of mathematics education.

This dimension about the sub-goals within conjecturing and proving processes comprises the
intermediate steps that have been considered as necessary or, at least, as central for the
successful generation of conjectures and the construction of proofs from different research
perspectives. It addresses the reasons for choosing a specific proving process or procedure.

Processes that have been described as sub-goals within conjecturing and proving might be
placed in categories such as exploring the problem situation, organizing single inferences into a
chain, communicating arguments, transforming informal into formal arguments, ...

It might be that in some studies the sub-goals were not described in detail and more as latent
constructs, as if their meaning were obvious. In these cases, the sub-goals were also taken into
account.

The aim of this dimension is to identify the different processes that have been considered (or at
least can be interpreted as such by taking the context of the study into account) as being helpful
in achieving one or more of these sub-goals within conjecturing and proving processes. It
provides the basis for understanding how the use of a particular proving process or procedure
can work and thus contribute to a successful outcome.

Processes that have been described as process characteristics might be placed in categories
such as example generation, using informal representation systems, using formal symbols,
meta-cognitive processes, ...

The process characteristics are recognizable by the fact that they can be operationalized for
assessing purposes or discussed with students in a classroom environment to help alleviate
difficulties in proving tasks.
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Table 2: Coding examples of claims and findings from three studies. The study of by Savic (2015a) represents
the topic “problem-solving with a specific focus on processes, impasses, and incubation”, the study of by
Martinez, Brizuela, and Superfine (2011) represents the topic “modeling”, and the study of by Blanton and
Stylianou (2014) represents the topic “social/ collective argumentation”.

Claims and findings
(data)

Free-line-coding

Sub-goals

Process-characteristics

“Dr. B’s actions to
overcome his impasse
included moving on to
the next theorem,
creating
counterexamples, and
being interrupted by his
family, where, at lunch,
he had an insight that
turned out to be useful
for furthering his
proof.” (p. 74)

“Our intention was that
in producing a chain of
equivalent expressions,
students would use one
of the aspects of
algebra [...] to make
explicit something that
was implicit in the
initial algebraic
expression” (p. 36)

“... the number of
student transactive
utterances increased
from 27% to 64%,
suggests that they had
come to view proving
as a habit of mind that
involved explaining,
critiquing, justifying,
and so forth, as the
means to [...] negotiate
meanings for the
component parts of a
conjecture (e.g.,
“center” of a group).”
(p- 96)

processes to
overcome impasses,
including
incubation;

counterexamples,
moving on, doing
something else

manipulating
formal expressions,
making something
explicit, searching
for a new
expression

transactive
processes
(explaining,
critiquing,
justifying),
negotiating
meanings

recovering from impasses

exploration -

finding an adequate

representation for the

proof

generating a shared
understanding

generating examples: trying to create a
counterexample

incubation strategies in form of
domain-general problem-solving
strategies: moving on to the next task;
resting and “sleeping on it”

using and manipulating formal-
symbolic/ algebraic representations

transactive processes: explaining and
critiquing

5.7 Results

5.7.1 Main topics of the literature in the area of proof construction

Ouir first research question addressed the systemization of the literature on conjecturing and

proving into research topics that represent common perspectives on these processes. In
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particular, we were interested in identifying and refining the three research perspectives on
proving (proving as problem-solving, proving as convincing, or proving as a social activity) that
have been suggested by Stylianides, G. J. et al. (2017). To determine the optimal number of
topics for out topic modelling analysis, we used the perplexity of models with 5 to 35 topics.
The perplexity graph showed that a model with 17 topics was the most adequate approach for
presenting the literature on conjecturing and proving (Figure 7).
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Perplexity

2850
2800

2750

2700 ————

5 10 15 20 25 30 35
Number of Topics

Figure 7: The perplexity of topic models with varying numbers of topics (5 to 35 topics in jumps
of 1 or 2). The two lines represent linear approximations for the perplexity level above and below

the identified point 17, where the graph ‘levels off’.

The research topics determined by the algorithm, which serve as an organizing structure for
our research review, are listed in Table 3. These are the topics that would be most likely to
have led to the articles and research reports of our document collection on conjecturing and
proving. Table 3 also shows the names and perspectives that we allocated to the topics, the

defining list of words, as well as the average proportion of documents assigned to the topics.

In our collection of documents, we were able to detect all the three perspectives on proving
outlined by Stylianides, G. J. et al. (2017). Six of the identified topics were related to the
problem solving perspective, namely the “examples and conjecturing” topic, “the problem
solving with a specific focus on affects” topic, the “thinking processes” topic, the “informal
understanding” topic, the “problem solving with a specific focus on processes, impasses, and
incubation”, and the “types of reasoning (e.g., semantic/syntactic)” topic. Articles and research
reports that represented “the problem solving with a specific focus on affects” topic and
“problem solving with a specific focus on processes, impasses, and incubation” topic were

explicitly based on the problem-solving perspective. The documents that were assigned to the
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“examples and conjecturing” topic, “informal understanding” topic, or the “types of reasoning
(e.g., semantic/syntactic)” topic were implicitly linked to the problem-solving perspective as
they referred to the development and use of specific problem-solving strategies. Since
problem-solving tasks usually require complex thinking processes and therefore the use of
heuristic strategies that can, but do not necessarily, lead to a solution (Abel, 2003), it appeared
obvious to allocate these research topics to the problem-solving perspective as well.

The documents that mainly represented the “university level” topic or the “school students”
topic shared the convincing perspective on proof and, additionally, characterized proving as
an educational learning goal, which is central within different educational levels. They
categorized and described the different types of processes that school students,
undergraduates, or mathematicians used to construct proofs and to convince themselves or
the corresponding mathematical community. The proving as a social activity perspective was
covered by articles and research reports that had a high proportion of words from the “social/
collective argumentation” topic. Within this perspective, proving was conceptualized as an
activity that occurs in a social context. The documents that were clustered in one of the topics
that shared one of the three entrenched perspectives on proving have explicitly or implicitly
treated proving as a problem-solving, convincing, or a socially-embedded activity at the
expense of emphasizing the discovery function of conjecture generation and proof
construction. Both, the “geometry (conjecturing)” topic and the “modeling” topic were about
proof-related activities that could be used to generate new mathematical knowledge (within a
specific content area) and thus, pointed to the discovery function of proof. The perspective that
proof and proof-related activities serve as means to systematize mathematical knowledge was
taken up (besides other perspectives) in the literature that represented the “formal system”
topic. We were not able to find further perspectives on conjecturing and proving in the included

documents.

Five topics, “the nature of proof and teaching of proof’ topic, the “argumentation structure”
topic, the “geometry (proving)” topic, the “formal systems” topic, as well as the “abstract and
linear algebra” topic, could not be clearly attributed to one specific perspective on conjecturing
and proving, since the articles and research reports with the highest proportions of words from
(at least) one of these topics contributed to the conceptualization of conjecturing and proving
from different perspectives. The “nature of proof and teaching of proof’ topic captured the
literature on proving that provided a global view on proof-related activities by discussing the
goals and situations that may guide each of these activities. Although the topic could not be
attributed to one of the perspectives, the convincing perspective appeared to play an important
role within this topic. Regarding the “argument structure” topic, we observed that articles and
research reports that referred to this topic were concerned with the cognitive and structural

continuities and distances between argumentation and proof. This research issue seemed to
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be clearly related to the problem-solving as well as the discovery perspective. In the literature
that was most representative for the “geometry (proving)” topic, proof-related activities were
discussed with respect to the conceptual (content-specific) knowledge that is required to
achieve success on geometric proving tasks. From this point of view, it could be assigned to
the problem-solving perspective, but we have also identified the discovery and social activity
perspective within this kind of research. Articles and research reports with a high proportion of
words from the “formal system” topic took, as already mentioned, proving as a means for
systematizing knowledge perspective as well as the discovery perspective into account. The
“abstraction and linear algebra” topic included literature on proving, which focused on students’
knowledge about different linear algebra concepts, as well as literature that discussed methods
of theorem proving with abstraction. The latter referred to “the automatic theorem proving”
topic, a topic that has been identified as an independent branch of research. Due to the fact
that the literature related to the “abstraction and linear algebra” topic differed widely and thus
had no common theme, we were not able to assign a research perspective to this topic. The
articles and research reports on "automatic theorem proving" were excluded from further
analyses, as the focus of this literature review was on the mathematics educational literature

on conjecture and proving.

The topic modeling analysis showed that the included documents typically consisted
predominantly of words from topics with an overarching perspective on conjecturing and
proving, followed by words from topics with (in descending order) the problem-solving
perspective, the convincing perspective, the discovery perspective, and finally the perspective
on proving as a socially-embedded activity. Within the problem-solving perspective the
“‘example and conjecturing” topic appeared to be most popular, followed by the “problem-
solving with a specific focus on affects” topic. Regarding the topics that shared the convincing
perspective, the algorithm showed that words from the “university level” topic occurred slightly
more frequently than words from the “school students and school teacher” topic. Overall, the
literature on conjecturing and proving was composed of only a small proportion of words from
the “social/ collective argumentation” topic (Mproporion = 0.026) and thus only a few articles
explicitly shared the social activity perspective on proving. Most articles and research reports
seemed to consist of words from the “nature of proof and teaching of proof” topic

(Mproportion = 0.363), typifying the “overarching perspective on proof”.
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Table 3: The 17 topics and the defining list of words (the words that best characterize the corresponding
topic in order of probability) for each topic (sorted by their average proportion).

Perspective

Name of the topic

Similarities

Defining list of words

Average proportion

overarching (mostly
convincing)

convincing
perspective —

focusing on a
specific educational
level

convincing
perspective —

focusing on a
specific educational
level

problem-solving
perspective —

focusing on strategy
use

discovery
perspective —
focusing on a
specific content area

nature of proof
and teaching of
proof

university level

school students
and teachers

examples and
conjecturing

geometry
(conjecturing)

Identifying and
describing
different proof-
related activities
with respect to
their situations in
which they are
embedded, their
specific goals and
functions.

Several
approaches that
professional
mathematicians,
undergraduate, or
doctoral students
use to prove
theorems based
on the ideas they
find convincing or
(intuitively)
meaningful.

Assessing school
students’ and
school teachers’
proof
performance by
focusing on the
difficulties they
encountered, the
proof schemes
they used, and
their
understanding of
proofs and
refutations.

Using examples as
a powerful tool to
explore the
problem
situation, to
estimate the truth
and to justify
conjectures.

Generating new
knowledge (e.g.,
statements or
conjectures) in
the context of
geometry by

proof mathematics
mathematical students
research education proving
study reasoning teaching
proofs knowledge prove
student learning analysis
journal university
understanding case

students proof proofs weber
participants statement
undergraduates courses
group alcock writing asked
mathematics prove student
undergraduate
mathematicians strategies it's
statements

proof students teachers
number mathematics
mathematical arguments
reasoning argument numbers
deductive proofs set schemes
prime education statement
proposition study prospective

examples students conjecture
numbers number conjectures
true consecutive work
strategies mathematicians
general task case proving
cases stylianides insight
activity multiple

students fig conjecture case
geometry conjecturing proof
proofs conjectures deductive
point tasks design triangles
argumentation teacher

0.363

0.085

0.071

0.067

0.058
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problem-solving
perspective —

focusing on affective

and cognitive
resources

overarching (mostly
discovery and
problem-solving)

problem-solving
perspective —

focusing on strategy

use

problem-solving
perspective —

focusing on strategy

use

overarching (mostly
problem solving) -
focusing on a
specific content/
conceptual
knowledge

problem-solving
perspective —
focusing on
approaches to

problem solving

(especially, affect)

argumentation
structure

thinking processes

informal
understanding

geometry (proving)

problem solving
(esp. processes,
impasses,
incubation)

using (counter-)
examples or by
reflecting on and
utilizing already
constructed
proofs.

Studying the
interrelation
between affective
and cognitive
resources and
how they
influence one’s
problem-solving
behaviour.

Analysing the
cognitive
continuities and
structural
distances
between
argumentation
and proof.

Abstraction and
creative thinking
as central
components of
conjecturin