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Abstract

Dizziness and vertigo are common complaints in the general population, affecting yearly

15-20% of adults and 5-25% of children of school age and having considerable impact on

everyday life. As the assessment of peripheral vestibular deficits is challenging, it is crucial

to dispose of techniques to provide clinicians support for the correct diagnosis.

The aim of this dissertation is therefore to apply in the clinical context cutting-edge diag-

nostic tools for the easy, quick and reliable assessment of peripheral vestibular impairments

and the related functionality.

Traditional techniques for the evaluation of semicircular canals, such as the caloric test, the

rotational test or the search-coil Head Impulse Test, present several disadvantages, being

unpleasant, expensive, time-consuming, not always available at the bedside or appropriate

for any group of patients. Additionally, testing the vestibular system at low frequencies,

such as in the caloric test, does not cover the physiologically relevant range. The video

Head Impulse Test (vHIT) represents an alternative to indirectly evaluate semicircular

canals’ function, stimulating the vestibulo-ocular reflex (VOR) with high-frequency head

rotations and measuring the resulting eye and head movements. The first study reported

in this dissertation extends the potentiality of the vHIT, assessing its feasibility in a group

of healthy children and validating its use as a simple and well-tolerated bedside test for

the vestibular screening of the pediatric population.

The quantitative outcomes of the vHIT, however, do not always reflect functionality, i.e.,

how efficient is the VOR in stabilizing the visual scene during head perturbations. This

represents the starting point for the development of tests whose aim is to assess the subjec-

tive perception of this ability. Among the most recently introduced techniques, the Head



Abstract viii

Impulse Testing Device (HITD) quantifies, without recording eye movements, patient’s

reading abilities while performing high-frequency passive head rotations during equally

challenging visual stimuli. The second section introduces and validates a new diagnostic

tool, the Head Impulse Testing Device-Functional Testing (HITD-FT), which combines

the HITD with eye movements recording. The HITD-FT is tested on healthy participants,

whose vestibular functionality is transiently impaired by opioid administration. The work

assesses the combined effect of VOR and re-fixation saccades on gaze stabilization during

high-frequency passive head rotations. Moreover, it describes the role of covert re-fixation

saccades on image stabilization and in enhancing overall dynamic vision. The HIDT-FT

is furthermore exploited within the context of this dissertation to monitor the overall dy-

namic visual performance of vestibular patients during rehabilitation.

The same experimental set-up, with healthy subjects undergoing opioid administration, is

lately also exploited to explore the causes underlying post-operative nausea and vomiting,

whose mechanism is still not completely understood. Preliminary studies suggest that opi-

oids, acting on semicircular canals, generate a mismatch between the altered canals’ inputs

and other non-consistently altered sensory inputs, triggering nausea and vomiting. The

here reported study investigates whether the mismatch between semicircular canals’ inputs

and other vestibular sensory inputs, or the mismatch between vestibular and visual inputs,

are clinically relevant. A better understanding of this mechanism, i.e. that intra-vestibular

mismatches have a particular importance, can help reducing the unpleasant side effects

and improve pain management with opioids.



Zusammenfassung

Schwindelsyndrome sind häufig. Sie betreffen jährlich 15-20% der Erwachsenen und 5-

25% der Schulkinder und haben erhebliche Auswirkungen auf den Alltag. Die Beurteilung

peripherer vestibulärer Defizite ist eine Herausforderung. Daher ist es entscheidend, Meth-

oden zur Verfügung zu haben um Mediziner bei der Diagnosestellung zu unterstützen.

Ziel dieser Doktorarbeit ist es, innovative Diagnose-Tools zur einfachen, schnellen und zu-

verlässigen Beurteilung der Funktion des vestibulären Systems in die Klinik zu übertragen.

Traditionelle Methoden zur Evaluation der Bogengänge wie Kalorik, Drehstuhltest oder

der Search-Coil-Kopfimpulstest haben mehrere Nachteile: sie sind unangenehm, teuer,

zeitaufwändig, nicht am Krankenbett verfügbar oder eignen sich nicht für jede Patienten-

gruppe. Die Untersuchung des vestibulären Systems im Niederfrequenzbereich wie bei der

Kalorik deckt zudem nicht den physiologisch relevanten Bereich ab. Der videobasierte

Kopfimpuls-Test (vHIT) ist dafür eine Alternative. Durch Stimulation des vestibulo-

okulären Reflexes (VOR) mit Hochfrequenz-Kopfdrehungen und Messung von Auge- und

Kopfbewegung wird dabei indirekt die Funktion der Bogengänge untersucht. Die erste

Studie dieser Doktorarbeit erweitert die Anwendung des vHITs; seine Durchführbarkeit

wird bei gesunden Kindern geprüft. Er stellt sich als einfacher und gut verträglicher „Bed-

side Test“ für das vestibuläre Screening bei Kindern heraus.

Die quantitativen vHIT Ergebnisse alleine spiegeln nicht immer wider, wie gut das Se-

hen während Kopfbewegung stabil gehalten wird. Dies war Ausgangspunkt für die En-

twicklung von Tests zur subjektiven Wahrnehmung dieser Funktion. Eine neue Methode

auf diesem Gebiet, der Head Impulse Testing Device (HITD), untersucht - ohne Mes-

sung der Augenbewegungen - die Lesefähigkeit anspruchsvoller visueller Stimuli während
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passiven Hochfrequenz-Kopfimpulsen. Im zweiten Teil der Doktorarbeit wird ein inno-

vatives Diagnose-Tool – Head Impulse Testing Device – Functional Testing (HIDT-FT)

– eingeführt und validiert. Der Test kombiniert HIDT mit Augenbewegungsmessung.

Der HITD-FT wird an gesunden Probanden geprüft, deren vestibuläre Funktion mit Opi-

oiden vorübergehend beeinträchtig ist. Die Studie untersucht den kombinierten Effekt von

VOR und Re-Fixationsakkaden auf die Blickstabilisierung während passiver Hochfrequenz-

Kopfimpulsen. Außerdem wird die Rolle sogenannter verdeckter (covert) Re-Fixationsakkaden

bei der Bildstabilisierung und beim dynamischen Sehen geprüft. Der HITD-FT wird im

Rahmen der Doktorarbeit zudem erfolgreich zur Dokumentation des dynamischen Sehens

bei der Rehabilitation vestibulärer Patienten eingesetzt.

Zum Schluss wird ein ähnlicher Versuchsaufbau mit Gabe von Opioiden bei Gesunden

benutzt, um der Ursache von postoperativer Übelkeit und Erbrechen näher zu kommen,

deren Mechanismus bisher nicht gut verstanden ist. Vorarbeiten legen nahe, dass Opiate

eine Wirkung auf die Bogengänge haben und dass so eine Inkongruenz zwischen geän-

derten Bogengangs-Eingängen und nicht konsistenten geänderten anderen sensorische In-

puts entsteht, die zu Übelkeit und Erbrechen führt. Die hier vorgelegte Arbeit untersucht,

ob die Inkongruenz zwischen Bogengangsinformation und anderen vestibulären Sensoren

oder die zwischen vestibulärem und visuellem Eingang klinisch relevant ist. Das Verständ-

nis, dass intra-vestibuläre Inkongruenzen vor allem von Bedeutung sind, kann helfen diese

unangenehmen Nebenwirkungen zu reduzieren und die Schmerzbehandlung mit Opiate zu

verbessern.



Introduction

Chapter 1

Introduction

Vertigo and dizziness are cardinal symptoms of vestibular disorders. Often associated with

vegetative symptoms, they are among the most common complaints in medicine, affecting

approximately 15-20% of the adult population [1] and 5-25% of children of school age [2–4]

per year. They are one of the most frequent causes of emergency department visits [5].

Vertigo and dizziness have a considerable impact on everyday life, limiting social activities

and correlating with anxiety and depression (for review see [6]). However, the correct di-

agnosis of vestibular dysfunctions is often challenging, as the patient’s report of vestibular

symptoms is highly subjective and as dizziness and vertigo can be the expression of dif-

ferent underlying pathological conditions. The assessment of patients complaining about

vertigo and dizziness is usually performed complementing patients’ history with vestibu-

lar instrumental examinations. The availability of reliable testing techniques, quick and

exploitable at the bedside, is therefore crucial to provide clinicians support for the correct

and prompt diagnosis of vestibular impairment.

The vestibular system is responsible for the sense of balance, providing, together with vi-

sion and proprioception, information about self-motion and self-orientation, and about the

position of the body in relation to the environment. In the peripheral vestibular system,

situated inside each inner ear, two main structures can be distinguished: three semicircular

canals (anterior, posterior and horizontal), associated to the three extra-ocular muscles,

and two otolith organs, utricle and saccule. The semicircular canals are sensitive to the

three components of head angular acceleration, while the otolith organs sense linear accel-

1
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eration and gravity [7].

To investigate the correct functionality of the peripheral vestibular structures, medical doc-

tors can choose among different instrumental examinations. Traditional vestibular tests

for the evaluation of semicircular canals’ function are the caloric test and the rotational

test.

The caloric test, introduced by Robert Bárány [8], consists of bithermal irrigation of each

ear canal with warm (44◦) and cold (30◦) air or water, in order to elicit vestibular nys-

tagmus, thus involuntary rhythmic eye movements. It corresponds to a single, very low

frequency (0.003 Hz) vestibular stimulation [9]. The response, i.e. the maximum velocity

of the slow-phase of nystagmus, determines if there is a significant asymmetry between

the two sides (quantified with the Jongkees formula [10]). The caloric test reliably de-

tects unilateral vestibular dysfunctions but it is less appropriate in case of bilateral deficit.

Moreover, it is less applicable in case of partial occlusion of the ear canal, where a reduced

response may be caused by inadequate irrigation [11]. The stimulation can elicit nausea

and dizziness, and may lead to tympanic membrane perforation or external otitis [12].

The caloric test is not available at the bedside, and takes approximately 30 minutes to be

completed.

As an alternative, rotational testing is performed. Here, whole-body rotations are applied

while the subject sits on a rotating chair and compensatory movements of the eyes with

respect to the head rotation are analyzed. Test execution lasts approximately 45 minutes

to one hour. As the stimuli are computerized, they can be precisely applied and different

frequencies can be tested. As the rotations affect both ears simultaneously, the rotating

test is useful to determine the presence of a bilateral impairment but it is less reliable in

case of unilateral vestibular deficit [11, 13]. Moreover, rotational chairs are expensive and

require an appropriate setting, only available in some specialized structures. As described,

none of the considered techniques for the evaluation of semicircular canal are easy to apply,

quick and mobile.

In 1988, Halmagyi and Curthoys introduced the Head Impulse Test (HIT), or Head Thrust

Test, the first clinical bedside test for the assessment of semicircular canal function [14],

2
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exploiting the mechanisms driving the vestibulo-ocular reflex. The vestibulo-ocular reflex

(VOR) is the reflex that triggers compensatory eye movements in response to head pertur-

bations, especially during locomotion, to maintain clear vision by stabilizing the image of

a stationary object on the retina. The VOR can respond both to the rotational component

of the head movements (angular VOR, mediated by the semicircular canals) and to the

linear component (translational VOR, mediated by the otolith organs) [7,15]. Throughout

this dissertation, the term VOR refers to the angular vestibulo-ocular reflex. Other visu-

ally mediated mechanisms, such as the optokinetic reflex and smooth pursuit, cooperate

in stabilizing images on the retina, but only the VOR is fast enough to promptly react to

natural head movements [7]. In case of a lesion, after the acute phase, the vestibular sys-

tem adapts to the new pathological condition and relies on the available visually mediated

mechanisms to stabilize gaze; these compensatory mechanisms are particularly effective

in stabilizing the visual scene at low frequencies. Vestibular stimulation applied during

caloric or rotational tests (<1 Hz) is then inadequate in detecting vestibular deficits. On

the other hand, in case of abrupt, high-frequency (>1.5 Hz), unpredictable head movements

as applied in HIT, visually mediated mechanisms are too slow, and therefore ineffective,

to compensate for the deficient VOR; to stabilize gaze, subjects have to trigger re-fixation

saccades, unveiling consequently the VOR impairment [7, 14]. Stimuli characterized by

high-frequency components are moreover physiologically similar to movements performed

during everyday activities [16], such as walking [17]. It is therefore behaviorally relevant

to assess the VOR in this particular frequency range. For these reasons, challenging the

VOR at high frequencies is the most reliable way to indirectly evaluate semicircular canals’

function. The HIT consists of applying passive head rotations to the left and the right in

the plane of a pair of semicircular canals while the subject is instructed to fixate a target at

eye level, and to observe the resulting eye movements. The standard evaluation is usually

limited to the horizontal semicircular canals, as the responses are easily and reliably deter-

mined [11], even if vertical semicircular canals function can also be tested [18]. The applied

head rotations are unpredictable in time and direction, in order to prevent anticipatory

movements, and characterized by high-acceleration (2000-7000◦/s2) and small-amplitude

3
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Figure 1.1: Simplified neural mechanism for horizontal vestibulo-ocular reflex
(VOR). The horizontal semicircular canals (hSCC) on both sides detect a head rotation
to the right and trigger the VOR. They send impulses through the vestibular nerve to the
vestibular nuclei (VN), which project to the contralateral oculomotor nuclei (ON). While
one side is excited (dark grey, solid lines), the other is inhibited (light grey, dashed lines).
The oculomotor nuclei drive eye muscle activity via the oculomotor nerve. As a result, the
eyes move to the opposite direction of the detected head rotation.

(10◦-20◦). The tested frequencies are in the range 5-7 Hz, physiologically corresponding to

head movements performed during everyday activities [16, 19]. In the physiologically in-

tact VOR, as soon as the vestibular organs detect the head rotation towards one direction,

from the vestibular nuclei excitatory signals are sent to the oculomotor nuclei to stimulate

the corresponding extra-ocular muscles, generating a perfect compensatory rotation of the

eyes towards the opposite direction of the detected head movement (for a schematic rep-

resentation, see Figure 1.1). Gaze is stable on the designed target [7, 20] (Figure 1.2,

panel A). If the VOR is impaired, the eyes move partially in the same direction of the

head during the rotation, forcing the patient to generate a re-fixation saccade, i.e., a quick

eye movement that brings the eyes closer to the target. In this case, both the residual

VOR and the re-fixation saccades act synergistically to stabilize gaze [7] (Figure 1.2,

panel B). Re-fixation saccades can occur either while the head is still rotating, therefore

4
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Re-fixation saccades

covert overt

A B

0 100 200 300
Time [ms]

V
el

oc
ity

 [°
/s

]

0

-100

-200

-300

100

200

300 Eye
Head

0 100 200 300

Time [ms]

-300

-200

-100

0

100 200 300

100

200

300

0

Time [ms]

0

100

200

300

-100

-200

-300

Figure 1.2: Intact and impaired vestibulo-ocular reflex (VOR).
A) When the head is rotated towards one direction, the intact VOR drives a perfect
compensatory rotation of the eyes towards the opposite direction. Gaze is stable on the
designed target. Eye movements perfectly mirror head movements (below).
B) If the VOR is impaired, the eyes move partially in the same direction of the head
during the rotation, forcing the patient to generate a re-fixation saccade to bring the eyes
back on target. Re-fixation saccades (below) can occur during the head movement (covert
saccades), or after it (overt saccades).

with a shorter latency (covert saccades [21]) or only after the head movement (overt sac-

cades), and are considered an indirect sign of impaired semicircular canal function, with

re-fixation saccades present with head rotations to the side of the lesion. Only overt, not

covert, re-fixation saccades are visible to the naked eye [21]. As covert saccades cannot be

detected in the clinical examination, they lead to false negative results; as a result, vestibu-

lar dysfunction is missed. With the clinical HIT it is thus possible to identify and lateralize

the presence of a vestibular impairment, but not to provide an objective measure of VOR

function or of the characteristics of the corrective saccades, whose evaluation depends on

the subjective visual observation of the clinician [22].

Vestibular tests measuring simultaneously eye and head movements during HIT aim to

overcome this limit. After first attempts in documenting the presence of re-fixation saccades

during HIT using electronystagmography [23], the search-coil in magnetic-field recording
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technique became the gold standard for recording eye and head movements [20] while

performing HIT. This method allows both to quantify the VOR deficit and to unveil the

presence of re-fixation saccades [20, 21, 24–26]. The search-coil technique has however the

disadvantage of requiring the subject to wear an uncomfortable special contact lens during

the test upon administration of topical anesthetics, and is time-consuming, expensive and

not recommended for acute patients [22]. Also, it is not suitable for a bedside examina-

tion [27]. A valid and more comfortable alternative is represented by the videooculography

(VOG), that allows the recording of eye movements in three dimensions by detection of the

pupil through an infrared camera mounted on dedicated goggles, combined with inertial

sensors to record head motion. The use of VOG while performing HIT is referred to as

video Head Impulse Test, or vHIT. The vHIT allows the vestibular testing by monitoring

eye movements through a high-speed video camera and simultaneously sensing head move-

ments through inertial sensors [22]. The VOR performance is quantitatively evaluated

calculating the gain, computed as the ratio between eye and head velocities during a given

period of time after the onset of the head rotation, and phase shift, the offset in the timing

of eye movement relative to head motion. A gain of one and a phase shift of 180◦ indicate

intact VOR function. As VOR gain is permanently reduced in response to impulses toward

the impaired side, a gain value below 0.79 is considered sign of a deficient VOR on that side

( [19] and in analogy to [28]). In addition to gain, it is also possible to identify covert and

overt re-fixation saccades, analyzing each side separately [19]. vHIT performances about

the reliable detection of semicircular canals’ dysfunctions and about the estimation of the

VOR gain are comparable to those of the search coil technique [22,29,30], avoiding however

the related discomfort. The system is easy to use and provides immediate results via the

automated analysis software [22]. The examination is quick (approximately 5-10 minutes),

and non-invasive. The light equipment allows also the testing at the bedside [19]. vHIT is

an innovative and new technique, whose application in the clinical context has only recently

spread. Still few years ago, there was only limited experience in the validation of vHIT in

healthy adults [27], in older individuals [29] and in vestibular patients [19]. Recently, it has

been exploited also in the clinical set-up to discriminate between central and peripheral

6
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deficits [31] and to characterize compensatory saccades in patients after cochlear implant

surgery [32] and covert anti-compensatory quick-eye movements (CAQEM) in vestibular

patients [33]. There was however no experience in performing vHIT in difficult clinical

situations. The main goal of the works reported in this dissertation is therefore to adapt

this well suited system to be exploited in critical patients’ populations or challenging clin-

ical settings, and, additionally, to deepen the understanding of the peripheral vestibular

system.

The first study included in this dissertation (Chapter 2, [34]) translates the use of the

vHIT to the pediatric population. Children and adolescents represent a critical and of-

ten neglected subgroup of patients, although vestibular related disorders are common not

only among adults, but also in childhood. According to epidemiological studies the yearly

prevalence of vertigo and dizziness in children of school age is 5-25% [2–4], often associated

with other disturbances, such as migraine-equivalents [35,36]. A fully functional vestibular

system plays a fundamental role, together with the visual system and proprioception, for

the development of balance and gross motor function in children [37]; missed vestibular

deficiency in childhood can therefore have serious and significant repercussions in adult-

hood [11]. Congenital or acquired vestibular dysfunction may indeed lead to impaired

motor development (delays in the acquisition of head control, sitting and independent

walking compared to healthy children of the same age [38–43] and inadequate postural

control [37]). Children with vestibular problems represent also a significant part of the

population with learning problems [44]: vestibular deficit can affect cognitive development,

leading to inattentiveness, limited concentration and avoiding behaviors, often associated

with psychiatric problems [43]. Due to the close connection between vestibular and visual

system, a vestibular deficit may also compromise eye motor control, interfering with the

alternation of saccadic movements and fixations required for reading [45], impairing visual

acuity and, consequently, reading acuity [46]. The correct identification of a vestibular

deficit at early stages is crucial for a prompt and adequate motor intervention plan; early

vestibular rehabilitation, teaching children how to substitute the missing vestibular func-

tion with other sensor and motor strategies, could prevent or reduce later problems [40]. In

7
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childhood, the diagnosis of the main symptoms of balance disorders or vestibular problems

is often not clear, because of the lack of standard specific tests for this age group [11] and

as the spectrum of the diagnosis is different than in adults [47]. Children are moreover

inexperienced in reporting vestibular complaints and inaccurate in describing how long a

vertigo attack lasts or which are the coexisting symptoms [48]. In addition to that, they

do not report the often concurrently related visual disturbances, as they are not aware of

the underlying problem [40]. Vestibular investigation techniques described for adults are

applied to children as well [11]. Children are nevertheless more likely prone to fear and

bad tolerate vestibular testing, because of the unpleasant enhanced vertigo and nausea,

or to be inattentive, leading to test termination before completing the evaluation. The

caloric test has been performed in very young children, but the elicited vertiginous sensa-

tion caused by ears irrigation is often frightening [12,13,49], impairing the execution of the

examination in up to 25% of the tested children [12]. The duration of about 30 minutes

represents also a limit in the feasibility of the test in small children. The rotational chair

could be considered as an alternative, even though also this test requires too long to keep

children attention [13] and should therefore sometimes been shortened [11]. Additionally,

children younger than 3 years old cannot sit on the chair on their own, becoming agitated,

often causing procedure termination [13]. The search-coil technique for eye movements

recording, moreover, being invasive, is also not well tolerated. To summarize, while the

early screening of the normal vestibular function becomes decisive in reassuring children

and parents about the normal vestibular function, it is essential to avoid invasive and bad-

tolerated investigations. The introduction of an easy and quick vestibular test optimized to

meet children’s needs would be necessary. The first described study assesses feasibility and

tolerance of vHIT in healthy children and adolescents. As outcome measures, normative

VOR gain values for the different age groups, as well as the presence of re-fixation saccades

and of CAQEM are reported.

vHIT nicely provides quantitative information about VOR gain and re-fixation saccades

behavior. However, these indicators do not always fully reflect the functionality of the

vestibular system, i.e. its efficacy in stabilizing the visual scene, and, as a consequence,

8
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the subjective perception of disability. The second publication reported in the disserta-

tion (Chapter 3, [50]) will then be focused on the assessment of vestibular functionality.

As previously illustrated, the main goal of the VOR is to stabilize images on the retina

in spite of head perturbation, thus to allow clear vision also during activities as walking,

where each step causes the image to be displaced on the retina [51]. If this mechanism

is compromised, causing retinal slippage of even few degrees per second [52, 53] the vision

is deteriorated. This impairment is especially relevant in patients affected by bilateral

vestibulopathy, where the VOR is unable to compensate for head movements during ev-

eryday movements [51, 54]. They complain indeed of oscillopsia [55], thus the illusionary

sensation of motion of stationary objects during head movement, which leads to visual

difficulties, accompanied by the sensation of disequilibrium and postural instability [54].

The visual discomfort is caused by a decrease in dynamic visual acuity (DVA), defined as

visual resolution during head perturbation with respect to the static condition, due to the

inefficient VOR compensation. Poor DVA, perceived as blurred vision, reduces the ability

of detecting details, for example while reading during motion [51], interfering with daily

activities, and, as a consequence, affecting negatively their quality of life [51,54]. These ob-

servations represent the starting point for the development of techniques whose aim is the

assessment of the peripheral vestibular system from a functional perspective, to investigate

how efficient is the VOR in gaze stabilization during head rotations, avoiding eye move-

ments recording. The first attempt was done assessing VOR during head rotations while

looking at a stationary visual target [56]. Several protocols were successively tested in this

direction, measuring subjects’ DVA, both exploiting active [57,58] and passive [59,60] head

movements and different types of visual stimuli [60, 61]. Passive head movements, follow-

ing the rationale of the HIT, are however more informative in the detection of a vestibular

dysfunction, as compensatory strategies such as adaptation (based on residual vestibular

inputs) and/or substitution (by vision or proprioception) are not available [62, 63]. Com-

puterized techniques represented a step forward in the optimization of the method, as the

selected visual stimulus could be synchronized with head velocity [57,58,64]. The test has

been further improved by selecting as visual stimuli Landolt rings in eight possible orien-
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tations and using an adaptive algorithm [65] to determine the DVA threshold [66]. The

explored techniques demonstrate that the DVA performance reflects VOR functionality and

it is a valid indicator of vestibular deficits, even though it does not always correlates with

the subjective perception of disability. Ramat et al. recently developed a new computer-

ized technique, the Head Impulse Testing Device (HITD [67,68]), whose aim is to assess the

peripheral vestibular function exploiting passive high-frequency (2000-6000◦/s2) head rota-

tions in spite of equally challenging visual stimuli. The test, focused on head movements’

characteristics, does not involve eye movements’ measurement. Such a tool is important

to assess patients’ subjective percept of impairment. Technical improvements to the HITD

were lately introduced [69], developing a new diagnostic tool, the Head Impulse Testing

Device- Functional Test (HITD-FT). The HIDT-FT combines the quantitative testing of

the VOR, performed through vHIT and the vestibular functional HITD [68]. It allows the

simultaneous recording of head and eye movements during HIT and to monitor display

timing of the visual stimuli and their temporal synchronization with the head movements

during DVA test. With a diagnostic tool that combines HITD with eye movements record-

ing, it is now possible, besides the quantitative and functional testing of the VOR, also to

assess the saccade behavior. In particular, it is possible to better understand the conse-

quences of triggering re-fixation saccades on image stabilization. As previously described,

if the VOR is impaired, some bilateral vestibular patients can trigger re-fixation saccades

during (covert saccades), or after (overt saccades), head movements [21]. The functional

implication of triggering covert re-fixation saccades has however never been investigated. It

has been hypothesized that short-latency re-fixation saccades, moving the eyes as quickly

as possible back on the target, could be beneficial in improving gaze stabilization, hence

reducing oscillopsia and facilitating reading in DVA tests.

Here, in analogy to the approach of Colagiorgio et al. [69], the HIDT-FT has been adapted

to assess vestibular functionality in a challenging clinical context. The first aim of the

study was to validate the HIDT-FT as a useful tool to assess the synergic effect of VOR

and re-fixation saccades during high-acceleration head rotations; secondarily, to investigate

the function of covert saccades in stabilizing gaze and in enhancing dynamic vision. In do-
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ing that, a model of acute bilateral vestibular dysfunction was exploited; to transiently and

reversibly reduce VOR gain in healthy subjects the opioid remifentanil was administred.

It is indeed well-know that opioids affect the vestibular function [70–72]. Among them,

remifentanil was chosen as, besides side effects as nausea, vomiting, itching, and difficulties

in swallowing and in fixating, it also transiently affects the functionality of the vestibular

system by inducing down-beat nystagmus and by decreasing VOR gain [73].

The perioperative experimental setting and the opioid remifentanil were then lately ex-

ploited to address another critical question (Chapter 4, [74]), i.e. to investigate the

mechanisms of opioid-induced nausea and vomiting (OINV), one of the main reasons for

post-operative nausea and vomiting (PONV) [75, 76]. Opioids such as remifentanil play

a fundamental role in in pain management, but their side effects have a negative impact

on patient satisfaction [77] and on healthcare costs [78]. In particular, opioids’ triggering

effect on nausea and vomiting is still not completely understood. It has been suggested

that they have a direct effect on the emetic center in the brainstem [79] and that they

affect the vestibular function [70–72], being opioid receptors present in both the periph-

eral [80] and central vestibular structures [81], and thus mediating changes in the VOR

response. It has been recently shown that remifentanil compromises semicircular canals’

function, decreasing temporarily and reversibly horizontal VOR gain, assessed through the

vHIT [50,73]; movement enhances nausea during its administration, while resting reduces

it [73,82]. One possible explanation of this mechanism could be the mismatch between the

impaired semicircular canals input and other sensory inputs during head motion [73,82]. A

similar mismatch would be also the reason of motion sickness [83,84], where the information

coming from vision, vestibular and proprioceptive inputs are in conflict one with another,

and hence with what is expected. This discrepancy is emetogenic, with effect proportional

to the extent of the discrepancy and to the number of conflicting sensory inputs involved in

the mismatch [83]. The sensory discordance could be however attributed both to an inter-

sensory mismatch, with vision or proprioception, or to an intra-vestibular one, caused by

the conflict between the altered semicircular canal’s input and the non congruent otoliths’

information [83], as happens in space motion sickness [85]. The reported study wants to
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provide a deeper understanding of the mismatch mechanism, in particular considering the

role of vision as a trigger for these unpleasant side effects. Outcomes will be beneficial in

pain management with opioids.

1.1 Aim of the dissertation

The aim of this dissertation is to apply innovative vestibular function tests, i.e., the video

Head Impulse Test (vHIT) and the Head Impulse Testing Device – Functional Testing

(HITD-FT) in challenging clinical settings, translating these recently developed techniques

into clinical practice.

The final goal is to improve vestibular testing focused on the assessment of semicircular

canals’ function and to establish cutting-edge methods to both identify vestibular disor-

ders and evaluate the functional performance of the VOR. The vHIT and HITD-FT were

adjusted for use in critical groups, such as the pediatric population or patients with bi-

lateral vestibulopathy, and in critical settings as the operating room. Exploiting the same

experimental setting, it was also possible to better understand the interaction between

the vestibular system and the opioid remifentanil, providing relevant findings in the pain

management with opioids.

In the first publication, the use of vHIT has been translated to the pediatric population.

vHIT was validated in children and adolescents and normative VOR gain data for the

considered age groups were provided.

The second section shows how the HITD-FT can be exploited as a new diagnostic tool to

assess the combined effect of VOR and covert re-fixation saccades on overall gaze stabi-

lization, and to investigate the role of covert re-fixation saccades on dynamic vision. For

this purpose, an opioid model of vestibular dysfunction was used.

The same opioid, remifentanil, has been used in the third publication as a model to explore

the mechanisms causing OINV, focusing in particular on the role of vision.
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Chapter 5

Discussion

This dissertation illustrates how recent and innovative diagnostic tools for peripheral

vestibular testing are translated into clinical practice and how they are applied in chal-

lenging clinical settings. In addition, these techniques have been exploited to deepen the

understanding of relevant issues about the physiology of the vestibular system, such as the

functional role of covert re-fixation saccades and the influence of opioids on the vestibular

system.

The aim of the first publication is to adjust the vHIT for use in the pediatric population

and to assess its tolerance among children and adolescents. As dizziness and vertigo are

common in childhood [1], early vestibular screening is extremely important to prevent mo-

tor and cognitive development delays [2,3]. The accurate diagnosis of vestibular disorders

can be even more challenging than in adults, because of their incapability of reporting

symptoms and as traditional vestibular examinations, such as caloric or rotational tests,

not optimized for testing children, are often bad tolerated [4]. In the reported study, the

peripheral vestibular function is assessed with vHIT in 44 healthy children between 4 and

18 years of age. The outcomes considered are VOR gain, presence of re-fixation saccades

and presence of CAQEM. As shown, vHIT nicely provides quantitative information about

VOR gain and assesses the presence of saccades, indicators of vestibular impairment. Nor-

mative proposed VOR gain ranges for the different age groups are 0.79-1.08 (4-7 years old,

early childhood), 0.85-1.06 (8-11 years old, middle childhood) and 0.86-1.06 (12-18 years

old, late childhood). Being non-invasive, easy to perform and allowing a quick testing
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procedure (5-10 minutes), vHIT offers several advantages compared to traditional testing

techniques. It provokes less distress and anxiety even in small children and it does not

elicit vertigo or nausea as it could happen during caloric or rotational tests: none of the

children that participated in the study reported any discomfort and all of them were able

to complete the test without encountering any particular problem. To conclude, this study

shows that the vHIT represents a valid alternative to traditional vestibular examinations

in children and adolescents and it is a useful diagnostic screening test for complementing

any assessment of vestibular developmental evaluation.

In the second proposed study, the newly developed HITD-FT has been introduced as a

useful tool to document the combined effect of residual VOR and re-fixation saccades on

dynamic visual acuity, evaluated as reading performance, during passive high-acceleration

head rotations. The HITD-FT is tested on a group of fourteen healthy participants, whose

vestibular functionality is pharmacologically impaired to obtain a model of acute vestibu-

lar failure. The bilateral vestibular deficit is transiently and reversibly induced using an

opioid in a controlled perioperative environment. Remifentanil, a potent ultra-short-acting

synthetic opioid analgesic drug, was chosen for his well-known pharmacokinetics [5]. The

testing procedure is based on the approach of Colagiorgio et al. [6]. Participants are tested

before and during remifentanil administration, and the considered outcomes are VOR gains

and rate of correct answers in the functional test (HITD-FT score) in the two conditions.

Results show that remifentanil does affect the peripeheral vestibular system, decreasing

VOR gain and, as a consequence, also the ability of correctly recognizing the displayed

visual stimuli. The HITD-FT nicely reflects this correlation, detecting both gain changes

and reduced dynamic visual acuity (HITD-FT score). Moreover, the test also assesses

the impact of covert saccades on the resulting visual performance, showing that covert

re-fixation saccades, bringing quickly eyes back on the displayed visual stimulus, indeed

reduce retinal slippage and improve dynamic vision. To summarize, the HITD-FT is an

innovative and efficient method to document gaze stabilization and covert re-fixation sac-

cades and to assess overall dynamic visual performances. In contrast with other DVA tests,

it challenges the vestibular system with head movements close to everyday experience [7,8],
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providing a direct measure of vestibular functionality, related to the subject’s impairment

in daily life.

In the third section, the opioid remifentanil is again exploited in the operating room to bet-

ter understand the mechanisms causing opioid-induced nausea and vomiting (OINV), one

of the main reasons behind post-operative nausea and vomiting (PONV) [9,10]. The study

wants to disentangle the origin of this conflict, with focus on the relevance of visual input.

In particular, the goal is to understand whether the visuo-vestibular mismatch is relevant

in generating nausea and vomiting, validating the suggestion of closing the eyes, in addition

to avoiding head movements. Fourteen healthy subjects experienced remifentanil infusion

twice, once blindfolded and once with eyes open, with head and trunk passively moved

during opioid administration. Motion-dependent nausea and vomiting are assessed before

administration, 30 minutes after administration, and after subjects being moved. Findings

show that vision is not the major responsible for OINV, being nausea during opioid ad-

ministration triggered by movement and avoided by rest in all subjects, independently of

visual input. This suggests that, more likely, the relevant trigger for the mismatch is an

intra-sensory discordance between the differently altered semicircular canals and otoliths

inputs. As previously shown [11], therefore, avoiding head movements is a good clinical

practice to prevent or reduce OINV after transient opioid administration, while closing the

eyes seems less relevant.

5.1 Further applications

As described, the HITD-FT provides information about patients’ overall visual perception

during head motion, thus the combined effect of VOR and re-fixation saccades. This more

readily reflects everyday life’s performances than the quantitative measure of the VOR

gain alone. These properties make the HITD-FT a good tool to monitor the effect of

vestibular rehabilitation, where overall dynamic visual performance matters, and to design

rehabilitation programs accordingly. In the course of this dissertation, the HITD-FT has
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been then further exploited in such a context; in particular, it was applied for the follow-up

of patients affected by chronic bilateral vestibulopathy.

Chronic bilateral vestibulopathy, whose prevalence in the USA is 28/100.000 [12], lead to

oscillopsia and postural instability and strongly impairs the quality of life of the affected

patients [5,12–14], increasing the risk of falls [12] and limiting their participation in social

activities [12, 15]. The prognosis is bad, with almost no improvements over the years

for more than the 80% of patients [16]. Vestibular rehabilitation is the only available

treatment, with up to 60% of patients affected by vestibular disorders improving after

physical therapy [17–19]. Evidence from eye-head control in vestibular impairment suggests

that that head movement is a relevant aspect of vestibular rehabilitation [20,21]. For this

reason, an innovative head-movement based intervention was specifically designed for the

treatment of chronic bilateral vestibulopathy. The aim of the study was to assess whether

rehabilitation exercises based on emphasized head movements enhance subjective visual

perception. Two chronic bilateral vestibular patients (men, 49 and 58 yeas old) were

recruited at the Dizziness Center for Vertigo and Balance Disorders (DSGZ) of the Munich

University Hospital. They were trained with two different rehabilitation programs of the

duration of 4 weeks each, spaced out by 4 weeks of wash-out. One intervention was based

on active Head Movement Emphasized (HME) rehabilitation, the second intervention on

Eye Movement Only (EMO) rehabilitation. In a double-blind crossover design, the patients

were randomly assigned to first undergo the EMO program and, after the wash-out, the

HME (Patient 1, Figure 5.1), or vice-versa. Before and after each intervention and

4 weeks after terminating the second intervention (follow-up), their improvements were

assessed through the HITD-FT. Patient 1 had an additional assessment 4 months after

having completed both rehabilitation programs. As outcomes, HIDT-FT scores before and

after HME rehabilitation were considered. Results show that HME treatment improved

dynamic visual perception in both patients, with HITD-FT scores increasing for Patient 1

from 0% to 60% and for patient 2 from 0% to 75% (Figure 5.1).

The findings suggest that head movements are indeed relevant for vestibular rehabili-

tation, and that HME rehabilitation represents a promising approach in the treatment of
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Figure 5.1: Head-movement emphasized (HME) rehabilitation in patients with
chronic bilateral vestibulopathy. Intervention design, HIDT-FT scores (black dots)
and vHIT gain for each session (Session 1-5) are shown. Patient 1 was trained with Eye
Movement Only (EMO) rehabilitation first, followed by 4 weeks of wash-out, and then
Head Movement Emphasized (HME) rehabilitation. He had an additional measurement
(Session 6), about 4 months after terminating the program. In a crossover design, patient
2 underwent first HME, and then EMO rehabilitation. HITD-FT increased after HME
rehabilitation for Patient 1 from 0% to 60%, and for Patient 2 from 0% to 75%. This
result indicates a strong improvement in dynamic visual perception.

28



Discussion

chronic bilateral vestibulopathy. These results have to be considered as part of a prelim-

inary study; it is necessary to test the effect of the HME intervention on a larger cohort

of patients and for a prolonged follow-up period, correlating HITD-FT scores with other

neurophysiological measurements and participation and quality of life measures. With the

outcomes provided by the HIDT-FT, it will also be possible to consider the contribution

of VOR and re-fixations saccades, respectively, in the improvement following HME reha-

bilitation. However preliminary, this study demonstrates that HITD-FT is an appropriate

tool also in the vestibular rehabilitation context, useful to easily assess visual perception

during head motion before and after interventions.

5.2 Implications for future research

In summary, the findings reported in this dissertation show how the most recent diagnostic

tools for peripheral vestibular testing, vHIT and HITD-FT, are adjusted to be exploited

in challenging group of patients and in critical clinical settings. As demonstrated, the

vHIT represents a cutting-edge diagnostic system to successfully assess the VOR also in

the pediatric population. The HITD-FT is an innovative tool that combines the quantita-

tive examination of the VOR together with the functional measurement of overall dynamic

visual performance. It is suitable to be exploited also at the bedside in the operating

room and in opioid-induced vestibular dysfunction. The final and combined goal is to

provide clinicians easy, well-tolerated and reliable tools for the comprehensive peripheral

vestibular evaluation and for the assessment of the VOR functionality in challenging clini-

cal situations. The proposed works can inspire future clinical studies. Both the vHIT and

the HIDT-FT have all the requisites to be extensively exploited for the screening and the

characterization of vestibular patients. This allows planning early and appropriate inter-

ventions and to design rehabilitation strategies dedicated to acute and chronic vestibular

patients. The combination of vHIT and HITD-FT can also be exploited to monitor pa-

tients from the acute phase throughout the recovery.

As shown, the proposed techniques vHIT and HITD-FT can additionally be exploited to
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deepen the understanding of the peripheral vestibular system. They help answering open

questions about the physiology of the vestibular system and its interaction with other sen-

sory inputs. In this dissertation two examples are reported. First, to investigate the role

of covert re-fixation saccades on gaze stabilization and of saccades’ behavior could be ben-

eficial in training patients to trigger cover re-fixation saccades, helpful for dynamic vision.

Second, a better comprehension of the effects of substances on the vestibular system, as

reported in this particular case for opioids, could eventually help reducing the related side

effects, improving the pain management with opioids and reducing post-operative nausea

and vomiting.
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