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Preface

This volume was prepared by Thomas Steinwachs while he was working at the ifo Center for
International Economics. It was completed in September 2018 and accepted as a doctoral dis-
sertation by the Department of Economics at the University of Munich (LMU). It is a collection
of four self-contained essays which are included as separate chapters.

Each chapter considers the spatial dimension of economic processes in applied empirical
work, concerning measurement, data handling and econometric methodology. Chapter 1
applies an econometric gravity analysis to bilateral trade flows to assess how successful the
European Schengen Agreement has been in boosting international trade. It proposes a new
indicator variable to account for the plurilateral agreement’s spatial dimension. Chapter
2 provides a gravity analysis of international migration flows to investigate the impact of
natural disasters on themovement of people between countries. It employs spatially mapped
geographic data on the physical intensity of natural disasters. Chapter 3 zooms in on the local
growth e�ects of natural disasters and assesses the associated diversion of economic activity
across space. For this purpose, it introduces a new database combining physical intensities of
geological andmeteorological eventswith night-light emissions at spatially disaggregatedgrid
cells. Chapter 4 further investigates the role of spatial connectivity for spillover transmission,
exploiting geographic information on country borders and road networks.

Keywords: Trade Integration, European Integration, Schengen Agreement, Gravity
Model, Natural Disasters, International Migration, Income Group Hetero-
geneity,Weather Shocks, Night-Light Emission, Growth, Spatial Spillovers,
Grid Cell Analysis
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Introduction

This dissertation is a collection of four self-contained essays which are included as separate

chapters. Each chapter addresses a distinct research question in the area of international

economics and provides an independent piece of research, including its own introduction,

conclusion and appendix. Despite this independence, all chapters emerge from a continuous

research agenda and feature numerous links regarding methodology, research objectives and

findings.

The overarching theme is to consider the spatial dimension of economic processes in applied

empirical work, concerning measurement, data handling and econometric methodology. In

a nutshell, Chapter 1 provides a new indicator to account for the spatial dimension of the

plurilateral Schengen agreement in bilateral trade flow analysis. Chapter 2 employs spatially

mapped geographic data on natural disasters in a gravity analysis of international migration.

Chapter 3 introduces a new database combining physical intensities of geological and meteo-

rological events with night-light emissions at spatially disaggregated grid cells and assesses

the importance of spatial spillover e�ects. Finally, Chapter 4 exploits geographic informa-

tion on country borders and road networks to investigate the role of spatial connectivity for

spillover transmission. All chaptersmakeheavy use of geographic information systems (GIS) to

enrich the existing academic literature by exploring and providing new sources of geographic

data. Moreover, they all share the guiding idea of exploiting exogenous treatment variation in

large panel data analysis to obtain insights on fundamental economic mechanisms.

Methodologically, the first two essays both fall into the category of empirical gravity analysis

and investigate trade and migration flows between country pairs. Metaphorically named

a�er Newton’s Law of Universal Gravitation, the gravity model of international economics

explains bilateral transactions between observational units based on their economic masses

and the transaction frictions between them. Dating back to Tinbergen (1962), the empirical

gravity model was long lacking theoretical foundations. Over the last two decades, a large

body of literature successively added structural underpinning, most influentially Eaton and

Kortum (2002) and Anderson and Van Wincoop (2003). Finally, Arkolakis et al. (2012) show

that a wide range of trademodels with constant elasticity of substitution can give rise to an

1



Introduction

empirically testable gravity equation. Head andMayer (2014) describe the gravitymodel as the

workhorsemodel for empirical analysis in the field of international economics. A very detailed

best-practice guide to structural gravity model applications has recently been provided by

Yotov et al. (2016).

The second two essays share a di�erent methodological foundation, relying on spatial econo-

metric panel modeling techniques to analyze local economic growth impacts and spillover

e�ects at a very fine spatial resolution. Following Costinot et al. (2016), the globe is partitioned

into fields along latitude and longitude. This leads to an arbitrary grid cell layout which may

intersect true economic units. If the resolution of these cells is su�iciently high, this arbitrary

intersection of economic units may give rise to substantial interdependencies between nearby

observational units. As a result, the no-interference (Cox, 1958) component of the stable unit

treatment value assumption (SUTVA; Rubin, 1980), according towhich the potential outcomes

of any observational unit are una�ected by treatment assignment to every other unit by as-

sumption, is very likely violated. One class of models addressing this issue is provided by the

field of Spatial Econometrics and has hitherto mostly been applied in the area of Economic

Geography. The general idea is to define a spatial weights matrix which models relationships

between neighboring observational units. Thismatrix can then be used to explicitly control for

the treatment of neighbors as well as for spatially autoregressive processes in the dependent

variable, in the residuals, or both. A very comprehensive overview is provided by LeSage and

Pace (2009). In particular, Chapters 3 and 4 of this dissertation hold cases of application for

the Spatial Lag of X (SLX) and the Spatial Durbin (Error) Model (Anselin, 2013; Halleck Vega and

Elhorst, 2015), which share the advantage that they allow an explicit assessment of spillover

e�ects induced by the treatment of neighboring observational units.

Chapter 1 explores the trade e�ects of the European Schengen Agreement. The Schengen

Agreement is an important milestone in the European integration process. By successively

abolishing border controls between member countries, its purpose is to facilitate the free

movement of people and the unobstructed flow of goods and services across intra-European

borders. The European refugee crisis of 2015 has led to temporary suspensions of the Schen-

gen Agreement at a number of border crossings, especially along the so-called Balkan Route.

In the associated policy debate on the Agreement’s overall adequacy, it is important to con-

sider theeconomic gains causedby theagreement,whichwouldbeat stake if itwere abolished

permanently.
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To contribute to this debate, Chapter 1 applies an econometric gravity analysis to bilateral

trade flows to assess how successful the Schengen Agreement has been in achieving its

goals. Unlike earlier analyses, this study respects that Schengen has an important geographic

component. A country’s Schengenmembership status does not only concern its own cross-

border transactions. In addition, it also a�ects trade between third countries passing its

territory in transit, by altering the relative number of checked borders crossed en route. Thus,

by introducing a count variable of Schengen border crossings associated with bilateral trade

flows, this study acknowledges that Schengenmay treat di�erent country pairs di�erently,

depending on their relative geographical location. Moreover, it is shown that it is crucial

to carefully control for other elements of European integration, such as membership in the

customs union, the single market or the currency union, and to factor in countries’ trade

with themselves. Findings suggest that Schengen has boosted trade by about 2.81% on

average, on top of the EU’s trade e�ects (equivalent to a drop in tari�s between 0.46 and

1.02 percentage points). Trade creation e�ects for services are stronger than for goods, but

estimates feature larger parameter uncertainty. Peripheral countries benefitmore than central

ones and even outsiders to the agreement gain if their trade routes are a�ected. While the

Schengen Agreement has economically significant trade e�ects, this chapter also shows that

other aspects of EU integration matter evenmore. Estimates establish a clear hierarchy, with

the customs union and single market being the most important contributors, followed by

other regional trade agreements (RTAs), then the Euro currency union and finally Schengen.

While the first chapter focuses on trade flows and is motivated by a policy response to the

cross-border movement of people, Chapter 2 is dedicated to international migration itself.

More specifically, it investigates the impact of natural disasters on bilateral migration flows

between countries. In line with the Chapter 1, it employs a structural gravity analysis. Climate

research suggests that global warming will increasingly lead to more frequent and more

extreme natural disasters (e.g., IPCC, 2012). According to Oxfam figures, an estimated 243

million people are a�ected by natural disasters per year. One potential adaptation strategy to

the humanitarian and economic consequences of natural disasters is migration. While not all

of the a�ectedmove across borders, intra-national migration towards urban areas (e.g., as a

response to rural aridification or crop failure) may put urban wages under pressure and thus

also induce international migration as a secondary e�ect. While developing economies tend

to be heavily a�ected by natural disasters, inhabitants are o�en liquidity constrained and least

able to insure themselves or adopt alternative adaptation strategies. Moreover, migration
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towards industrialized nations o�en is not feasible for people from developing countries due

to increasingly strict immigration policies. For these reasons, it is ex-ante unclear whether

and under what circumstances natural disasters induce international migration from amacro

perspective.

TheaimofChapter 2 is to address this questionempirically. A stylized theoretical gravitymodel

of migration is constructed which includes natural disasters as random shocks. To estimate

thismodel, exogenousdata on thephysical intensities of geological andmeteorological events

at the country level from1980 to 2010 is deployed. This data is combinedwith theWorldBank’s

Global Bilateral Migration Database which provides decennial migrant stocks from census

data for all countries in the world. Estimates suggest that disaster events at origin on average

lead to a 1.7% increase in bilateral migration. Considering heterogeneity across income

groups, findings show that particularly middle-income countries experience significant push

and pull e�ects of natural disasters on migration: Disasters at origin on average lead to an

increase of outward international migration by 1.4%, while disasters at potential destinations

reduce inwardmigration by 11.5%, evaluated at themean. For low income countries, there

is no evidence that natural disasters induce people to migrate internationally, potentially

due to binding economic constraints. For high-income countries, estimates suggest that

outmigration declines a�er natural disasters. This is in line with the hypothesis that typically

high insurance penetration rates in these countries may cause incentives to stay as insured

capital is upgraded a�er a disaster. All in all, comparing overall findings to studies on intra-

national migration (e.g., Barrios et al., 2006; Beine and Parsons, 2015), the evidence that

natural disasters a�ect international migration is relatively limited.

Chapter 3 therefore leaves the realm of country level analysis and zooms in on the e�ects of

natural disasters and potential relocation mechanisms at spatially disaggregated grid cell

units. The objective of this chapter is to analyze local growth e�ects of natural disasters and

to assess the associated diversion of economic activity across space. Most disasters are very

local events which should have specific e�ects on local economic growth. Hence, assessing

their economic impacts in country-level analysis may lead to biased results. Moreover, correct

identification of local average treatment e�ects is further complicated by the possibility that

local shocks may shi� production and consumption to neighboring locations. In Chapter 3, a

new geo-coded database on geological andmeteorological events (GAME) is introduced and

matched with annual data on global night-light emissions, covering about 24,000 grid cells in
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197 countries for the years 1992-2013.1 Night-lights data has seen increasing popularity in

recent economic literatureandhasbecomeanestablishedproxy for economicactivity (cf. Chen

and Nordhaus, 2011; Henderson et al., 2012). This chapter adopts this proxy as a dependent

variable, interpreting variations in light emissions as reflecting changes in economic activity.

Spatial econometric panel methods are applied to account for interdependencies between

locations and to explicitly estimate spatial spillover e�ects.

Findings convey evidence for pronounced local average treatment e�ects and strong spa-

tial spillovers, particularly for weather shocks: Main results show a reduction in night-time

lights a�er storms, cold waves and extreme precipitation events. Evaluated at the average

estimated lights-to-GDP growth elasticity, a one standard deviation increase in wind speeds,

excessive precipitation or cold waves leads to a reduction in income growth of 0.33, 0.17 or

0.25 percentage points, respectively. Inter-temporal persistence of this e�ect is heterogeneous

across disaster types. Moreover, these types exhibit strong evidence for positive local spillover

e�ects towards nearby locations within an 80 km radius, suggesting that local specialization

patterns are governed by substitution rather than by complementarity. Droughts exhibit a

distinguished pattern. As they mostly a�ect agricultural outcomes, they do not seem to be

negatively associated with growth in local light emissions. Instead, they exhibit negative

spatial spillover e�ects. Using a Machine Learning approach to classify cells by land-use, it

is shown that these spillovers are largely driven by the channel from rural towards nearby

urban cells. Overall, results suggest that spatial shi�s of economic activity a�er a natural

disaster are a rather local phenomenon, stressing the importance of local adaptation policies.

Moreover, findings provide evidence for substantial heterogeneity across income groups and

world regions. In particular, results are mainly driven by cells in low- and middle-income

economies. This finding is reminiscent of Chapter 2, which alluded to the possibility that high

insurance penetration in high income countries might act as a hedging device against the

need to relocate.

Chapter 4 dives deeper into the understanding of spillover propagation by examining the

intermediating impact of spatial connectivity between locations. As shown in the third chapter,

natural disasters may give rise to positive local spillover e�ects towards nearby locations,

suggesting that substitution e�ects outweigh complementarity e�ects on average. The ability

1The underlying Gridded GAME database constructed by the author spans from 1979 to 2014 at monthly
frequency. The time-scope and frequency chosen in this chapter is constrained by the availability of appropriate
covariates.

5



Introduction

to divert economic activity towards less a�ected surroundings has implications for a location’s

potential to mitigate or adapt to the humanitarian and economic consequences of natural

disasters. Theory suggests that well-connected locations should find it easier to respond to

shocks by importing more from other national regions or from abroad or by allowing people

to escape the consequences of a disaster by relocating to less a�ected places.

While Chapter 3 largely ignores such connectivity considerations, they are the main objective

of Chapter 4. Economic connectivity between grid cells can be driven by various aspects of

economic life. A set of factors is provided by the gravity literature in international economics,

to which the first two chapters of this dissertation contribute. Gravity models usually rely on

bilateral proximity controls for given country pairs, such as distance. Moreover, international

borders by themselves are a known obstacle to the free movement of goods and people (cf.

Chapter 1). Another potential intermediating factor suggested by the literature on transport

networks is the availability of roads infrastructure.

To explicitly examine potential transmission channels governing a location’s connectivity with

its neighbors, the empirical spatial panel framework introduced in Chapter 3 is extended. For

this purpose, available geographic data on country borders and roads networks is exploited.

Estimates suggest that short run relocation of economic activity is subject to a border e�ect.

Spatial spillovers in the base period are driven by cells within national boundaries, whereas

a�er one year there is no evidence for statistically significant di�erences between domestic

and foreign spillovers. For wind and extreme precipitation events, domestic neighbors are on

average the exclusive source of statistically significant spillover e�ects. For droughts and cold

waves, spillovers from foreign locations alsomatter, butmagnitudes of domestic spillovers are

about 2.5 times and 1.5 times the size respectively. This suggests that international borders

imply higher trade and migration costs, hampering the short-run relocation of economic

activity across international borders compared to relocation within countries. Concerning the

movementof goods, this finding is reminiscentofChapter 1whichexplicitly examines the trade

e�ects of border controls. With respect to the movement of people, the finding that diversion

of economic activity a�er natural disasters is largely confined within national boundaries is

in line with Chapter 2 which only finds limited evidence for international migration due to

natural disasters.

In addition to national borders, estimates suggest that the overall availability of roads, and

major roads connectivity di�erences play a very important role for the propagation of spatial
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spillover e�ects and hence potentially matter for the mitigation of disaster consequences.

Spillovers from cells that feature a connection by at least onemajor road are the sole driver of

spatial spillovers for extreme precipitation events and feature spillover e�ects for droughts

and cold waves that are 1.9 times and 3.5 times as strong as spillovers from cells that lack

such a connection. Exploiting heterogeneity in the roads connectivity in terms of distance and

the number of connections available, results suggest that connectivity di�erences at smaller

margins seem less crucial, whereas the overall availability of roads as well as connectivity

di�erences at larger margins (i.e., upper vs. lower 50%) play a very important role.
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1 The Trade E�ects of Border Controls: Evidence from
the European Schengen Agreement∗

1.1 Introduction

The Schengen Agreement is seen as an important milestone in the European integration

process. In this paper, it is tested econometrically whether the agreement has indeed fulfilled

the promises. More precisely, it is asked whether Schengen has significantly spurred trade in

goods and services amongst its members.

The agreement has abolished regular identity checks at internal EU borders, allowing them

only in emergency situations and for limited periods of time. Schengen also sets out the

modalities of cooperation in border-related police work. The agreement was signed in 1985

in the Luxembourg town of Schengen by Belgium, the Netherlands, Luxembourg, France,

and Germany. In 1995, it was first enforced amongst seven countries (the above-mentioned

five plus Spain and Portugal). The Schengen area has grown over time and today covers

26 countries. The EUmembers Bulgaria, Croatia, Cyprus, Ireland, Romania and the United

Kingdom do not participate in Schengen while the non-EU countries Iceland, Norway, and

Switzerland are part of it.

The Schengen Agreement is part and parcel of the complex European integration process. It

complements the European customs union and single market, and the monetary union. By

ending border controls, Schengen facilitates and accelerates the crossing of borders within

Europe and delivers very tangible benefits for millions of travelers and commuters. Ademmer

∗This chapter is based on joint work with Gabriel Felbermayr and Jasmin Gröschl. It is based on the
published article “The Trade E�ects of Border Controls: Evidence from the European Schengen Agreement”,
JCMS: Journal of Common Market Studies 56(2), 2018, 335–351. This is a revised version of a joint work-
ing paper that circulated under ERIA Discussion Paper 2016-36, 2017 and ifo Working Paper No. 213, 2016.
This Article has emanated from the authors’ policy consulting work commissioned in parts by the German
Federal Ministry for Economic A�airs and Energy, published in ifo Forschungsberichte 73, 2016. Findings
have been featured in “Handelse�ekte von Grenzkontrollen”, ifo Schnelldienst 69(05), 2016 and the blog ar-
ticle “Trade costs of border controls in the Schengen area”, VOX – CEPR Policy Portal, January 27, 2016, https:
//voxeu.org/article/trade-costs-border-controls-schengen-area. Grateful thanks apply to Hans-
Werner Sinn, Yoto Yotov and Jeromin Zettelmeyer and seminar participants in Munich, Vienna and Yogyakarta
for comments and suggestions.
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et al. (2015) argue that the reduction of waiting times at borders reduces trade costs, which

should stimulate cross border exchange and the mobility of service providers as well as of

consumers.1 Tighter regional integration should yield welfare benefits for citizens. Conversely,

the reintroduction of identity checks at internal Schengen borders as one consequence of

the European refugee crisis of 2015 may jeopardize these gains.2 The goal of this paper is

to estimate the trade-creating e�ects of Schengen in order to shed light on the size of the

benefits at stake when ending the agreement as a whole.3

To this end, it is important to acknowledge a special characteristic of the Schengen Agreement.

Unlike the customs union, the single market, Eurozonemembership or other regional trade

agreements (RTAs), which all have a clear bilateral scope, the Schengen Agreement has an

obvious and important spatial dimension. Land-borne trade flows between two countries

in Europe may cross only one internal border (e.g., France - Germany) or up to eight of them

(e.g., Portugal - Finland). Hence, Schengenmembership treats country pairs heterogeneously,

depending on the number of internal Schengen borders crossed. This feature is ignored in

the small existing literature, which treats Schengen analogously to trade agreements and

currency unions, e.g., Davis and Gi� (2014) or Chen and Novy (2011).

Moreover, land-borne trade between two Schengen outsiders (e.g., Romania and the UK)

or between Schengen outsiders and insiders (e.g., Turkey and Germany) can also benefit

from the agreement as goods transit through Schengen space.4 Combining GIS data with

information from Google Maps, the number of Schengen borders crossed by truck (and ferry)

along the shortest road distance between trading partners are counted. This count variable is

the measure of interest.

1Clearly, trade gains are not the only motivation for Schengen or European integration more broadly (see
Baldwin et al., 2008).

2Monar (2014) o�ers a discussion of the ‘Regulation (EU) 1051/2013 on common rules for the temporary
re-introduction of border control at internal borders in exceptional circumstances’. Trauner and Ripoll Servent
(2016) argue that it is unclear whether the refugee crisis will strengthen or weaken the Schengen area in the long
run.

3Theestimatespresented in thiswork imply long-rune�ects of undoingSchengen, assuming that checkpoint
conditions equivalent to the pre-Schengen era are re-established. The data used does not allow isolating the
e�ects of temporary exemptions. Since the Agreement’s implementation, border infrastructure and personnel
have been built back whereas trade flows have grown considerably. Enforcing temporary exemptions where
check-point conditions are worse than before Schengen suggests higher short-run e�ects than the presented
long-run estimates suggest.

4Typically, econometric analysis of bilateral tradedata assumes that third countries are a�ectedonly through
general equilibrium e�ects by bilateral trade integration. Schengen is an example where third countries are
directly a�ected through shorter transit times. The authors are grateful to a referee for pointing this out.
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In contrast to existing studies, services trade or internal trade flows are not excluded. This

study makes progress by (i) using a more accurate definition of treatment, (ii) employing

the most recent andmost adequate data, and (iii) making full use of newest methodological

advances, while strictly adhering to the predicaments of structural gravity theory as laid out

in Head and Mayer (2014).

The contributionof this paper is threefold: First, applying state-of-the artmethods, an accurate

partial equilibrium quantification of the trade (and trade cost) e�ects of Schengen can be

provided. Flows of goods crossing a single Schengen border increase by 2.6%while services

flows go up by 4.1% on average (equivalent to a drop in a tari� by 0.37 and 0.80 percentage

points, respectively). Second, the trade e�ects of subsequent steps of European regional

integration are consistently compared. Mutual EUmembership increases trade in goods by

122.6% (53.2% for the Customs Union and 69.4% for the Single Market) and in services by

39.8% for all countries that have joined the EU a�er 1995. Other RTAs established a�er 1995

boost trade by an additional 35.3% in goods and 20.2% in services. The common adoption

of the Euro in addition to EUmembership is again more important for goods trade (15.3%)

than for services trade (8.8%). So, Schengen is comparatively less important. Third, exploiting

its spatial dimension, this study shows that the trade cost e�ects of Schengen vary between

0.17 percentage points for Ireland to 0.83 percentage points for Estonia, and that Schengen

outsiders such as Turkey or Russia can benefit substantially (0.51 and 0.36 percentage points,

respectively).

1.2 Empirical Model

Head and Mayer (2014) show that for a broad class of general equilibrium trade models with

constant elasticity of substitution aggregation gives rise to a gravity equation of the following

form:

Xs
ij,t =

Y s
i,tE

s
j,t

Y s
t

·
(
1 + τ sij,t

)−σs ( φsij,t
Ωs
i,tΩ

s
j,t

)1−σs

, (1.1)

whereXs
ij,t is the value of exports of country i to country j in sector s at time t, Y s

i,t is country

i’s value of production in sector s ∈ {G,S, T} for goods, services, and total trade, respectively.
Es
j,t is country j’s expenditure in sector s, Y s

t is the value of global output, 1 + τ sij,t is an ad

valorem tari� factor, φsij,t ≥ 1measures bilateral non-tari� “iceberg” trade costs, and σs > 1 is
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the sectoral elasticity of substitution.5 In the literature, 1− σs is o�en referred to as “the trade
elasticity”. The terms Ωs

i,t and Ωs
j,t are called “multilateral resistance” terms. They account

for the e�ects of third countries’ trade costs on i’s exporting and on j’s importing behavior.

These terms are generally unobserved and depend on bilateral trade costs between all trading

partners worldwide.

Non-tari� trade costs φsij,t cannot be directly measured in the data but must be estimated.

Suppressing sectoral indices to avoid cluttering, common practice is followed to specify

φij,t =
∏

`

(
T `ij,t

)δ̃` · exp
(
β̃Schengenij,t +

∑
k
α̃kZk

ij,t

)
, (1.2)

where T `ij,t denotes a trade cost shi�er ` unrelated to policy (such as geographical or cultural

distance). Zk
ij,t is an indicator variable capturing whether i and j are both taking part in an

integration program k (such as the customs union, the single market, the monetary union, or

any other RTAs.

Substituting (1.2) into (1.1) and assuming that other trade costsTs
ij are time-invariant, the

estimation equation can be written

Xij,t = exp
[
βSchengenij,t − σ ln (1 + τij,t) +

∑
k
αkZk

ij,t + νij + νi,t + νj,t

]
+ εij,t, (1.3)

where β ≡ (1− σ) β̃, αk ≡ (1− σ) α̃k, and εij,t is a random disturbance. The terms νij , νi,t,

and νj,t are country-pair, and year specific importer and exporter fixed e�ects, respectively.

Their presence implies that time-invariant country-pair specific determinants of sectoral trade

flows drop out of the equation. Moreover, they fully control for all exporter- and importer-

specific time-varying determinants of trade (such as Yi,t, Ej,t,Ωi,t,Ωj,t).

Except Russia and China, all countries in the sample are WTO members. Therefore, they

apply the same tari� to all trade partners (most-favored nation principle, MFN), except in the

case of a preferential trade agreement. Since those are controlled for explicitly, in principle,

the MFN tari� tj,t could be included into the regression. σG could be identified even in the

5Tari�s and non-tari� trade costs enter expression 1.1 with di�erent exponents. The reason is that iceberg
trade costs assume that φsij,t ≥ 1 units of a good must be produced in country i for one unit to arrive for
consumption in country j. The fraction φsij,t − 1melts away in transit (Samuelson, 1954). Hence, in contrast
to tari�s, higher non-tari� trade costs increase the physical quantity of goods to be shipped. This lowers (in
absolute values) the elasticity of exports (price times quantity) with respect to φsij,t compared to the one with
respect to 1 + τsij,t.
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presence of the νj,t fixed e�ects due to the presence of intranational trade (for which τj,t = 0);

see Piermartini and Yotov (2016). The regressions presented go one step further. It is set

tij,t = τj,t × EXTRAij , whereEXTRAij is a binary variable taking value 1 except if j = i

or when i and j are both part of the EU. This way, σG is identified on the variance between

intra- and international trade flows, and between EU and non-EU flows. As a side e�ect,

this specification extracts the tari�-component of EU integration (the customs union e�ect),

leaving the non-tari� component (the single market e�ect). The authors refrain from doing

the same for other RTAs.6

The use of such a saturated model has several advantages. First, it provides some immuniza-

tion against omitted variable bias as time-invariant bilateral or time-dependent country-level

factors a�ecting trade, which are not modeled by (1.1), are accounted for. Second, it takes

away the need to approximate (or iteratively simulate) the multilateral resistance terms and

to collect sectoral output data (which are not always available in good quality). Third, the

inclusion of bilateral fixed e�ects νij is a defense against possible endogeneity concerns; see

below.

This study is interested in unbiased estimates of σ, αk and, in particular, β. Contrary to the

literature, Schengenij,t isnot defined as abinary variable taking value 1 if country i and country

j have both ratified the Schengen Agreement. Such a definition mis-measures the treatment

andmisses systematic treatment heterogeneity: A land-borne trade flow in Europe from i to

j may cross one, two, or up to eight internal Schengen borders.7 Moreover, the pair ij may

benefit from lower transit costs, even if i and/or j are outsiders to Schengen. Therefore, a

count variable Schengenij,t = {1, . . . , 8} is used, registering the number of Schengen border
crossings that land-borne trade between i and j involves.8

Theexisting literature (e.g., Davis andGi�, 2014) is largely silent on thepossibility that selection

of country pairs into Schengen may not be random. The estimate of β would be upward

biased if trade shocks εij,t > 0 increase the odds of a trade route connecting i and j to be

6Clearly, the elasticity σs can be estimated for goods trade only since services trade is not subject to any
tari�s. It should not be over-interpreted, because its identification rests only on very few observations.

7Evidence from France suggests that about three quarters of intra-European trade is land-borne; see www.
statistiques.developpementdurable.gouv.frntransportsn873.html.

8Rather than assuming linearity in the e�ect of Schengen borders, an array of indicator variables could
have been specified, each taking the value of unity if one, two, three, ..., Schengen borders are crossed and zero
else. However, it turns out that this strategy makes clean identification harder as the e�ects of a further seven
variables would have to be estimated.
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a�ected by Schengen. However, joining a plurilateral agreement such as Schengen is not a

bilateral decision, and transportation costs between countries i and j dependon theSchengen

status of transit countries. Thus, reverse causality may not be a major issue (for further

treatment of potential endogeneity see the robustness section). Nonetheless, country-pair

fixed e�ects νij are included to account for all time-invariant determinants that might jointly

a�ect Schengenij,t andXij,t. This also addresses omitted variable bias and the endogeneity

of other policy variablesZk
ij,t, such as EU, Eurozone, or RTAmembership, – controls that are

crucial to identify an unconfounded treatment e�ect β (see, e.g., Baier and Bergstrand, 2007).

It is important to acknowledge that the structural gravity equation (1.1) implies that the

analysis should not only include international trade but also intranational trade, for which

i = j (see, e.g., Anderson and Yotov, 2015). Inference based on international flows alone is

likely to lead to biased estimates. Yotov (2012), Dai et al. (2014), and Bergstrand et al. (2015)

prove the importance of this issue in theory and also document the quantitative relevance of

including own trade in the ex post evaluation of trade policy.

Equation (1.1) is estimated by Poisson Pseudo Maximum Likelihood (PPML) methods as rec-

ommended by Santos Silva and Tenreyro (2006, 2011) and Head and Mayer (2014). Standard

errors allow for clustering at the country-pair level. Identification relies on the time variation

within country pairs with di�erent exposure to mutual EU, RTA, or EMUmembership and the

number of Schengen borders relative to the total number of borders crossed (the latter is

captured by the bilateral fixed e�ect νij).

Before moving on, expectations about the trade e�ects of Schengen are briefly sketched. If

border controls are abolished, waiting times and associated uncertainty are reduced such that

international trade costs decline. Hence, trade-creating e�ects of Schengen are expected to be

larger, the more Schengen borders a trade flow crosses. Other steps of European integration –

customs union, single market, monetary union – target trade costs more directly, are more

comprehensive, and therefore have more pronounced trade e�ects than Schengen. Ideally a

clear ranking of trade-creating e�ects should emerge. Moreover, the services sector is more

strongly a�ected by Schengen thanmanufacturing, as easing the movement of people is a

necessary precondition for many services to be provided.
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1.3 Data

Thedatausedcomprise yearlybilateral informationongoodsandservices trade flowsbetween

and within countries, and sectoral output and expenditure data from the World Input-Output

Database (WIOD), described by Timmer et al. (2015). The data capture 40 countries and the

years 1995 to 2011, resulting in 40× 40× 17 = 27, 200 observations per sector. Geographical

and historical variables stem fromCEPII. Information on RTAs come from theWTO.9MFN tari�s

are taken from the World Integrated Trade Solutions (WITS-TRAINS) database.

Data on the successive accession of countries to the Schengen Agreement stem from the

European Commission.10 GIS data are combined with information from Google Maps to count

the number of Schengen borders crossed by truck (and ferry) moving from economic centers

of i to j in year t.

From an econometric point of view, the o�en bemoaned variable geometry of Europe is an

advantage. It allows using panel econometrics to disentangle the di�erent trade e�ects of EU,

Eurozone, and Schengenmembership and of other trade agreements (e.g., EU-Turkey customs

union, or pre-accession treaties). While all EMU countries are EUmembers and estimated EMU

e�ects must therefore be interpreted as additional to EU e�ects, this relationship constitutes

the only strict subset to consider. First, not all EUmembers belong to Schengen or the EMU.

Second, not all EMU members are part of Schengen and vice versa, and they have ratified

the agreement at di�erent times. Third, some Schengen countries are not part of the EU

and, the way the Schengen variable is constructed, it directly a�ects also outsiders to both

Schengenand theEU (e.g., TurkeyandRussia).11 While variablegeometryhelpswith separately

identifying the trade e�ects of overlapping integration steps, one caveat must be kept in

mind: the e�ects are identified through country pairs switching status; e.g., the single market

coe�icient reflects the e�ects of newmembers joining the EU in the period of observation

(e.g., the 10 middle and eastern European countries, plus Romania and Bulgaria.)

9The RTA gateway is accessible via http://rtais.wto.org/UI/PublicMaintainRTAHome.aspx.
10Starting with seven countries in 1995, the agreement was joined by Italy and Austria in 1997, Greece in

2000, Denmark, Finland, Iceland, Norway, and Sweden in 2001, the Czech Republic, Estonia, Hungary, Latvia,
Lithuania, Malta, Poland, Slovakia, and Slovenia in 2007, Switzerland in 2008. The EUmembers Bulgaria, Croatia,
Cyprus, Ireland, Romania and the United Kingdom do not participate in Schengen, while the non-EU countries
Iceland, Norway, and Switzerland do.

11Note that the estimated Schengen e�ect can be interpreted individually even if non-EU Schengen countries
are not included in WIOD.
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Since WIOD goes back exactly until 1995, the e�ects Schengen has on its founding members

are absorbed by the country pair fixed e�ects, such that estimates are driven exclusively by

the 19 countries that have joined the Agreement over time. Similarly, the EU estimate is driven

by those countries that have joined the EU a�er 1995. The same logic applies to the e�ects of

RTAs that have entered into force before the period of investigation. The Euro became a real

currency subject to a single monetary policy only in 1999 such that the EMU estimate fully

captures the Euro e�ect.

Figure 1.1 : Total EU-27 Trade in bn. US Dollar along the Number of Schengen Borders Crossed, 2011
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Note: Distribution of EUmembers’ trade according to number of Schengen borders crossed in a bilateral relation.
RoW denotes rest of the world.

Figure 1.1 shows how exports and imports of EU-27 countries are distributed across country-

pairs involving the crossing of one to eight Schengen borders.

In 2011, 35% of goods trade of EU-27 countries crosses one Schengen border. The shares are

17%, 7%, and 3% for two, three or more than three borders, respectively. For services trade

the shares are 21%, 13%, 7%, and 3%, respectively. The residual originates from outside the

EU-27.12 Extra-Schengen air-borne trade is unlikely to benefit from the Schengen Agreement;

12Note that RoW includes all trade beyond the 40 countries distinguished by WIOD. This comprises countries
such as Norway, Switzerland, Iceland, and the Balkan, including Croatia. Gravity estimation results are thus
slightly downward biased. Not considering RoW in calculating ad-valorem tari� equivalents would induce
an upward bias. Including WIOD’s RoW aggregate in ad-valorem tari� analysis implies opting for the more
conservative approach given the null that Schengen does not a�ect trade flows.
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sea-borne trade, however, may well benefit, as goods are shipped frommajor seaports to

consumers (see robustness checks).

1.4 Results

1.4.1 Baseline Results

Table 1.1 provides results for total, goods, and services trade. The regression models follow

equation (1.1). They show that the e�ect of Schengen is substantially overestimated when

failing to control for other elements of EU integration. Moreover, controlling for MFN tari�s in

regressions for goods trade, an estimate of the tari� elasticity equal to -2.4 is obtained. By

construction, explicitly controlling for MFN tari�s only changes the e�ect of EU integration.

Column (4) provides the e�ect of the EU inclusive of tari� elimination, column (5) exclusive of

it. This di�erence can be exploited to separate the e�ects of the customs union from that of

the single market.

Table 1.1 : The Impact of Schengen on Bilateral Exports (1995 - 2011)

Dependent Variable: Bilateral Exports

Total Trade Goods Services

(1) (2) (3) (4) (5) (6) (7)

Schengen 0.054*** 0.0003 0.106*** 0.026*** 0.026*** 0.067*** 0.040*
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02)

Both EU 0.617*** 0.800*** 0.527*** 0.335***
(0.07) (0.07) (0.11) (0.08)

Both Euro 0.030 0.137*** 0.142*** 0.084*
(0.02) (0.03) (0.03) (0.04)

Other RTA 0.250*** 0.294*** 0.302*** 0.184**
(0.07) (0.06) (0.07) (0.07)

Tari� −2.443***
(0.57)

Note: ***, **, * denote significance at the 1%, 5%, 10% levels, respectively. All models estimated using Poisson Pseudo
Maximum Likelihood (PPML) methods. Robust standard errors (in parentheses) allow for clustering at the country-pair
level. Pair as well as year specific importer and exporter fixed e�ects included but not reported. Number of observations:
27,200.

Figure 1.2 provides a quantitative interpretation based on the results on Table 1.1. The e�ect

of a single Schengen border between a country pair leads, on average, to an increase in goods

trade of about 2.6% and in services trade of 4.1%.13

13Estimated coe�icients are translated by calculating%∆Xs = 100× [eβ
s − 1].
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The figure shows very clearly that other steps of EU integration have led to substantially

more trade creation than Schengen. Mutual EUmembership proves most important for trade

integration. The cumulative e�ects of the customs union and the single market increased

trade in services by 39.8% and goods trade by 122.6%. The latter can be split up into a customs

union e�ect of 53% and a single market e�ect of 69%.14 Other RTAs boost trade in services

by 20.2% and trade in goods by 35.3%. The mutual adoption of the Euro in addition to EU

membership is more important for goods trade (15.3%) than for services trade (8.8%).

Figure 1.2 : Trade Creation E�ects and Implied Ad Valorem Tari� Equivalents of Integration Policies
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Note: Calculations based on Table 1.1

To express these estimates as ad valorem tari� equivalents (AVTEs), the elasticity of substitu-

tion σs is needed.15 Two consistent external estimates are borrowed from Egger et al. (2012),

who report σ̂G = 7.9849 and σ̂S = 5.9591. For goods trade, the MFN result also suggests an

internal elasticity of substitution estimate σ̂G = 2.443 ; for services, however, σS cannot be

estimated due to the lack of tari�s. Note that the internal elasticity estimate is identified only

via a relatively low number of observations. Its magnitude is thus substantially smaller com-

pared to the literature and yields high AVTEs. Moreover, it cannot be compared consistently

to the external services elasticity of substitution. It therefore will only be used for illustrative

purposes, calculating intervals for ad valorem tari� equivalents for the baseline results, but

resort to the consistent external estimates by Egger et al. (2012) for any further analyses.
14Egan and Guimarães (2017) show that the Single Market still holds unrealized potential, as trade impedi-

ments continue to elicit business complaints and governments shield specific domestic industries from increased
competition.

15%AVTEs = 100× [(eβ
s

)(1/(1−σs)) − 1].
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The right hand side of Figure 1.2 depicts ad valorem tari� equivalents to the estimated trade

e�ects. The combined EU e�ect equals a tari� reduction of 6.5 percentage points for services.

The corresponding combined EU e�ect for goods trade (not depicted) ranges from 10.8 (using

the elasticity of substitution by Egger et al., 2012) to 42.6 (using own estimate) percentage

points. The separated customs union e�ect on goods trade corresponds to an AVTE between

5.9% and 25.6%, and the singlemarket implied AVTE lies between 7.3% and 30.6%, depending

on the chosen elasticity. The RTA e�ects are equivalent to a tari� reduction of 3.6 percentage

points for services and between 4.2 and 18.9 percentage points for goods. Commonmember-

ship in the Euro Area implies trade e�ects equivalent to a reduction in tari�s of 1.7 percentage

points for trade in services and 2.0 to 9.4 percentage points for trade in goods. Finally, one

additional Schengen border is equivalent to a reduction in tari�s of 0.8 percentage points for

trade in services and 0.37 to 1.8 percentage points for trade in goods.

Obtained findings add to the literature on the trade e�ects of European integration. However,

this literature o�en does not control for the e�ects of the Schengen Agreement, which may

bias the estimated e�ects of EU or Eurozonemembership. To the largest extent, it also neither

disaggregates between goods and services trade, nor does it incorporate domestic trade flows.

The literature has produced very heterogeneous estimates of the trade e�ects of the Euro.16

As pointed out by Baldwin et al. (2008), earlier papers su�ered frommisspecified economet-

ric models; avoiding these pitfalls and applying state-of-the-art modeling techniques, very

plausible estimates are generated.

To compare the overall trade e�ect of the Schengen Agreement to those of the EU, the Eu-

rozone, or other RTAs, it must be considered that the total pair-level e�ect of the Schengen

Agreement increases with the number of borders crossed between trade partners. To evaluate

this in more detail, it is taken into account that country pairs di�er with respect to the number

of Schengen borders crossed by bilateral land-borne trade. When two internal borders are in-

volved, the AVTE for goods amounts to 0.74%;17 with three border crossings, the AVTE is 1.11%,

and so forth; analogously for services trade. Accounting for the di�erent trade structures of

all EU-27 country pairs, the total average trade creating e�ect of Schengen is 2.81%, corre-

sponding to an AVTE of between 0.46% and 1.02% (applying σT1 = 7.1948 and σT2 = 3.8144,

16See the work of Micco et al. (2003), Flam and Nordström (2006) Baldwin and Taglioni (2007), Bun and
Klaassen (2007). Berger and Nitsch (2008), Bergin and Lin (2012) and Camarero et al. (2014).

17100 × [(e2·β)(1/(1−σ)) − 1], using the elasticity of substitution by Egger et al. (2012). Applying an own
elasticity estimate for goods trade increases goods AVTEs about fivefold.

19



1 The Trade E�ects of Border Controls: Evidence from the European Schengen Agreement

an EU-27 sector-share weighted mean of σS and σG1 or σG2 respectively.).18 Hence, the average

trade creation induced by the Schengen Agreement alone is relatively low compared to the

EU, the Euro, and other RTAs.19

1.4.2 Heterogeneity Across Member States

Clearly, diverse countries will be a�ected di�erently by Schengen, simply because geography,

history, and specialization patterns imply that countries are heterogeneous with respect to

the average number of Schengen borders that typical trade flows need to cross. To illustrate

this, every country has its own break-down analogous to Figure 1.1. Calculating average

AVTEs for available (geographically) European countries,20 findings show that peripheral

countries such as Estonia, Latvia, and Finland display the highest AVTEs (0.83%, 0.81%, and

0.80% respectively, see Appendix Table A.5 for details). These countries typically trade across

several internal Schengen borders. At the lower end, geographically central economies such

as Germany or France display smaller AVTEs (0.34% each). Ireland, whosemain trade partners

are the Schengen outsiders UK and US, features the lowest AVTE with 0.17%. Interestingly,

Figure 1.3 shows that Schengen outsiders such as Russia or Turkey benefit from the removal

of internal border controls, too. Their average trade costs savings from Schengen amount to

0.20% and 0.32% for goods and 0.57% and 1.08% for services trade, respectively.

Obviously, the overallmagnitude of reported AVTEs depends on the assumedunderlying trade

elasticities, which have been taken from Egger et al. (2012) to ensure comparability across

sectors. As a sensitivity check, a uniform elasticity of substitution of 6 is assumed instead and

AVTEs are calculated again. Clearly, assuming a higher (lower) elasticity of substitution for

services (goods and total) trade, leads to lower (higher) AVTEs. Qualitatively, the key findings

remain unchanged; see Table A.6 in the Appendix for details.

Overall, results suggest an ad valorem tari� equivalent markedly below the 3% assumed by

Aussilloux and Le Hir (2016) or Boehmer et al. (2016), and Schengen e�ects for goods trade are

18In the data used, 61% of EU-27 trade is in goods, 39% in services.
19The authors believe that a Schengen AVTE of below 1% is entirely plausible. Schengen does speed up the

flow of tra�ic, but e�ects should not be overstated. Evidence from the US-Canadian border suggests that waiting
times for trucks are about 20 minutes on average (see Appendix, Table A.4). With an average transportation cost
margin of about 10% (Anderson and VanWincoop, 2004), such a tari� equivalent implies that identity checks
increase transportation costs by at most 10%. The 3% tari� equivalent used in Aussilloux and Le Hir (2016) and
Boehmer et al. (2016) would, in turn, imply an increase in transportation costs by an implausible 30%.

20Numbers are averages across sectors and trade partners.
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Figure 1.3 : Average Share of Trade A�ected by Schengen and Associated Tari� Equivalents
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Note: Average tari� equivalents of membership to the Schengen Agreement, assuming sectoral trade elasticities
provided by Egger et al. (2012).

clearly below the significantly larger long-run gravity estimates of previous studies such as

Chen and Novy (2011), Davis and Gi� (2014), or Aussilloux and Le Hir (2016). This implies that

the spatial dimension and thus the number of Schengen borders to cross along the transit

routematters for the identification of the Schengen e�ect and is preferable over using a simple

indicator variable.

1.5 Robustness Analysis

Table 1.2 reports a number of robustness checks. Each row shows the estimated Schengen

e�ects obtained by departing from some of the choices made in the baseline specification

underlying the results reported in Table 1.1.21 For goods trade, column (2) does not control

for MFN tari�s, while column (3) does.

First, Panel A of Table 1.2 varies the sample. In the baseline model, products which are most

likely transported by pipeline, ship or train (gas, petrol, mining & quarrying products) have

21Tables A.7 - A.16 in the Appendix provide full details.
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Table 1.2 : Robustness: Schengen E�ects in Alternative Models

Dependent Variable: Bilateral Exports

Total Trade Goods (S1) Goods (S2) Services

(1) (2) (3) (4)

PANEL A: Alternative Sample Composition
[1] Including mining, gas, petrol 0.007 0.035*** 0.034*** 0.040*

(0.01) (0.01) (0.01) (0.02)
[2] Excluding main bilateral trade partners −0.003 0.017*** 0.017*** 0.043**

(0.01) (0.01) (0.01) (0.02)
[3] Intracontinental trade only (European Sample) 0.005 0.034*** 0.034*** 0.057***

(0.01) (0.01) (0.01) (0.02)

PANEL B: Alternative Measurement of Treatment
[4] Treating intercontinental trade flows 0.024** 0.050*** 0.048*** 0.073***

(0.01) (0.01) (0.01) (0.03)
[5] Schengen as binary variable [0;1] 0.030** 0.070*** 0.072*** 0.065

(0.01) (0.02) (0.02) (0.04)
[6] Chen and Novy (2011) indicator [0;0.5;1] 0.161*** 0.254*** 0.247*** 0.300***

(0.03) (0.03) (0.03) (0.06)

PANEL C: Alternative Econometric Choices
[7] Pooled over sectors 0.0003 0.026*** 0.026*** 0.040**

(0.01) (0.01) (0.01) (0.02)
[8] Baier and Bergstrand (2009) MR-Terms 0.005 0.037*** 0.038*** 0.034

(0.01) (0.01) (0.01) (0.02)
[9] No bilateral fixed e�ects −0.130 −0.084 −0.128*** −0.148

(0.08) (0.07) (0.06) (0.09)

PANEL D: Heterogeneity
[10] Schengen Bin [1] 0.026 0.084*** 0.089*** −0.048

(0.02) (0.02) (0.02) (0.06)
Schengen Bin [2] 0.036 0.113*** 0.117*** −0.012

(0.02) (0.03) (0.03) (0.07)
Schengen Bin [3; 8] 0.054* 0.140*** 0.138*** 0.169*

(0.03) (0.03) (0.03) (0.09)

Note: Specification 1 (S1) does not explicitly control for tari�s, while specification 2 (S2) does. ***, **, *, denote
significance at the 1%, 5%, and 10% level, respectively. Robust clustered standard errors reported in parentheses. For
details see Tables A7 - A16 in the Appendix. Default estimation technique is PPML (unless stated otherwise).

been excluded. Including them, the e�ect of a Schengen border on bilateral goods exports

increases from an AVTE of 0.37% to an AVTE of 0.50% (0.49%) in column (2) (column (3)); see

row [1].22 This can be taken as evidence that at least some of the sectoral trade is carried by

trucks (e.g., coal, earths, metal). The AVTEs of the EU, the Eurozone, and other RTAs remain

very similar to the previous findings.

22Assuming σG = 7.9849.
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In row [2], potential endogeneity concerns are addressed by excluding the three most impor-

tant trade partners of each country from the sample, as trade shocks pertaining to them could

have driven the decision to join the Schengen area. The results support the previous findings.

The exclusion of important trade partners reduces the magnitude of a Schengen border on

goods trade to an AVTE of 0.24%, while it slightly increases the magnitude on services trade

to 0.87%.23 Themagnitudes of the EU, the Eurozone, or other RTA e�ects are reduced.24

Row [3] focuses on intracontinental European trade only (treating Turkey and Russia as geo-

graphical Europe). Results remain very similar to the baseline results. As expected, coe�icients

increase slightly in magnitude, as all extra-continental trade flows are excluded from the sam-

ple. Focusing on intra-continental European trade only leads to an AVTE on goods trade of

0.49% and 1.14% on services trade. Similarly, the EU, the Euro area, and further RTA e�ects

increase in magnitude.

Second, Panel B looks at alternative measurements of treatment. In row [4], intercontinental

trade of third countries with Schengenmembers is assumed to cross, on average, one internal

Schengen border. While extra-Schengen air-borne trade is unlikely to benefit from Schengen,

sea-borne trademaywell benefit, as goods are transported frommajor seaports to the interior

of the continent.25 As expected, treating intercontinental trade by one Schengen border on

average slightly inflates estimates and leads to statistically significant estimates for total

trade. Findings suggest AVTEs of 0.39% for total trade,26 0.71% (0.68%) for goods in column (2)

(column (3)), and 1.46% for services. All other controls remain similar in magnitude relative to

the baseline results.

Row [5] employs a binary Schengen indicator as in Davis and Gi� (2014) or Aussilloux and

Le Hir (2016). This more than doubles the estimated Schengen e�ect. In addition, the trade

23Assuming σS = 5.9591.
24Note that these estimates are subject to sample selection bias. The direction of the bias depends on the

systematic characteristics of the trade partners dropped.
25Note that no information on transport modes for global trade, or even trade within Europe, is available.

Hence, assuming an average of one border crossing for trade that does not originate in geographical Europe
only provides an approximation of treated intercontinental trade values.

26Assuming σT = 7.1948.
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e�ect on services trade is now less accurately measured.27 The trade e�ects of the EU, the

Euro, and other RTAs remain close to the baseline findings.

Similarly, coding whether both, one or none of the trade partners are Schengen members

(Schengen = 0, 0.5, 1), as in Chen and Novy (2011), strongly inflates the Schengen estimates

(row [6]), suggesting an AVTE of 3.6% (3.5%) for goods in column (2) (column (3)) and of 5.9%

for services trade. Comparing these estimates to theones obtainedusing thenewly introduced

treatment measure suggests that ignoring the geographic features of the Schengen area leads

to an overestimation of the Schengen Agreement’s trade e�ects. Recall that, accounting for

the di�erent trade structures of all EU-27 country pairs, the total average trade creating e�ect

of Schengen obtained using themore exact measure of treatment is 2.81%, i.e., an AVTE of

only 0.46%.

Panel C varies econometric choices. Row [7] pools over all 35 sub-sectors (see Table A.3 in

the Appendix) instead of aggregating trade, with standard errors allowing for clustering at

the country-pair–subsector level.28 This increases the number of observations from 27,200

to 380,800 for goods and to 514,539 for services trade. Next to country pair fixed e�ects,

year specific importer, exporter, and sector fixed e�ects are applied.29 This choice leaves the

baseline results given in Table 1.1 virtually unchanged in terms of sign, magnitude, and level

of significance.

In the following, theconsequencesofdeviating fromthepreferredandstate-of-the-artmethod-

ology is examined. Findings show that these choices make it harder to disentangle the trade

e�ects of integration, not only for Schengen but also for other measures such as the EU or

RTAs. In row [8], a di�erent approach in controlling for multilateral resistance is pursued.

Instead of using year specific importer and exporter fixed e�ects, Baier and Bergstrand (2009)

are followed by using a Taylor Series expansion to explicitly control for unobserved multi-

lateral resistances. This strategy requires controlling additionally for exporter supply and

importer demand, which is extracted fromWIOD. A vectorMRs
ij,t is constructed that contains

27Note that this binary Schengen indicator disregards the geographical component of Schengen but simply
measures the average trade e�ect of both trade partners being Schengenmembers, whereas the study at hand
measures the average trade e�ect of one Schengen border en route between two countries. By accounting for
the spatial distribution of Schengen borders, the introduced treatment measure allows amore sophisticated
disentanglement of the actual border e�ects at work.

28Multi-way clustering addresses intraclass correlation at the subsectoral and at the country pair level,
hedging against the risk of inflating Type I error rates.

29Choosing country pair-sector fixed e�ects and year specific importer and exporter fixed e�ects instead
does not change the results.
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first-order approximations of the termsΩs
i,t andΩs

j,t for all types of trade costs.30 This change

in methodology only marginally increases the estimated Schengen e�ect for goods trade

and slightly decreases that for services trade, leading to a lower level of significance on the

latter. This is also true for the EU, the Euro, and the RTA trade e�ects. Nevertheless, the overall

order of magnitude of the estimated coe�icients remains very similar and thus leaves the key

findings unchanged.

Failure to control for time-invariant determinants that might jointly a�ect trade integration

(i.e., Schengen, EU, Euro, RTAs) and export volumes gives rise to omitted variable bias and

potential endogeneity of policy variables. In row [9], bilateral fixed e�ects are replaced by

explicit trade cost proxies, such as bilateral distance, dummies for adjacency, intranational

trade, and common language. As expected, this leads to implausible e�ects not only on

Schengenmembership, but also on all other trade policy variables – except for the Eurozone.

This result is reminiscent of Baier and Bergstrand (2007), who show that bilateral fixed e�ects

are a crucial ingredient in the identification of causal e�ects of trade agreements because

common but unobserved time-invariant determinants of both trade and the conclusion of

agreements lead to biased estimates if they are not accounted for.

Finally, Panel D actually tests the heterogeneous e�ects of the Schengen Agreement, addition-

ally to calculating them for all countries in the sample in the previous section. To approach

this, the Schengen variable is broken into subsets based on the number of borders crossed.

Bins are taken, containing observations with one Schengen border, observations with two

Schengen borders, and thosewith three ormore (up to eight) Schengen borders.31 Zero Schen-

gen borders are the reference category. Similar to the baseline specification, the heterogeneity

across the number of Schengen borders to be crossed is best identified for goods trade, as

these are generally the most stable results – total trade faces an aggregation bias and services

trade results are only marginally statistically significant. Positive e�ects are found for total

trade, but only the e�ect on three or more Schengen borders is statistically significant on the

30More precisely, multilateral resistance terms are calculated based on a linearized version of the canonical
trade model that underlies equation (1.1). They are calculated for any trade cost proxy φij asMR_φsij,t =[(∑

k=1 λ
s
k,tφik

)
+
(∑

m=1 δ
s
m,tφmj

)
−
(∑

k=1

∑
m=1 λ

s
k,tδ

s
m,tφkm

)]
, where δsm,t denotes countrym’s share

in total world supply, Ssm,t/Sst in sector s, and λsk,t is an analogously defined sectoral demand share. φij can be
the log of distance, an adjacency dummy, a dummy for intranational trade, or various trade policy dummies
governing the membership of a pair in Schengen, the EU, the Eurozone, or other RTAs.

31The data include relatively little observations with more than 3 Schengen borders. This leads to issues
when trying to identify e�ects empirically for these observations. They are thus combined in one bin, which can
be seen as an additional exercise to calculate the heterogeneous e�ects separately.
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10% level. Similarly, positive and statistically significant e�ects are found on goods trade, the

size of themmonotonically depending on the number of borders crossed. While Schengen

increased trade for pairs with one border by 9.2%, those with two borders already experience

a trade increase by 12.3% and the trade of country pairs with three or more borders increased

on average by 15%. For services this again looks di�erent. While a statistically significant

e�ect for one or two borders relative to zero borders cannot be identified, three or more

borders exert a statistically significant e�ect and increase services trade for these pairs by

18.4%. The stronger e�ect on services than on goods for many Schengen borders is again not

surprising, as Schengen also promotes the mobility of individuals, which is more important

for the cross-border provision of services than of goods andmight be evenmore relevant for

pairs with many Schengen borders. Overall, this shows that – due to the skewed distribution

of the number of Schengen borders – it is not easy to empirically identify the heterogeneity

across countries, particularly for services trade.

1.6 Conclusion

This paper analyzes the impact of the Schengen Agreement on trade in goods and services. It

contributes to the literature by recognizing the spatial structure of the Schengen treatment,

fully accounting for other European integration steps, and taking transit routes and thenumber

of Schengen borders to be crossed en route into account.

Using amore accurate definition of the Schengen treatment andmaking full use of the newest

methodological advances, obtained PPML results imply a ranking of trade policy e�ects.

Schengen significantly helps fostering trade integration in goods and services trade, namely

by 2.6% and 4.1% per Schengen border, respectively, in the preferred specification. Drawing

on structural estimates of the sectoral elasticity of substitution by Egger et al. (2012), this

equals an ad valorem tari� equivalent of 0.37% in goods trade and 0.80% in services trade.

The total average trade creation e�ect of Schengen is about 2.81%, corresponding to a drop

in tari�s of about 0.46 percentage points.

Quite plausibly, in comparison with EU and Eurozone membership, and with other RTAs,

the average trade creation induced by the Schengen Agreement alone is relatively low. EU

membership boosts trade in goods by 122.6% (53.2% due to the customs union and 69.4%

due to the single market) and in services by 39.8%, respectively. Other RTAs increase trade in
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goods by an additional 35.3%and in services by 20.2%. Commonmembership in the Eurozone

is again more important for goods trade than for services trade, 15.3% and 8.8%, respectively.

Substantial heterogeneity is found across countries, because geography, history, and special-

ization patterns imply that countries are heterogeneous with respect to the average number

of Schengen borders that their trade flows need to cross. Peripheral countries benefit most

from Schengen. Interestingly, through transit e�ects, Schengen outsiders also benefit from

the removal of border controls within the Schengen area.

Finally, although the trade promoting e�ects of Schengen seem relatively small compared to

other integration measures, abolishing the Schengen area implies bearing further cost which

are not as easily quantifiable. The free movement of people can be considered a climax in the

ongoing process of European integration which, if forfeited, might jeopardize the European

idea and many of its political achievements. In this context, a question to be addressed in

future research should bewhether an ongoing European integration process could be ensured

in spite of (rather than because of) ending the Schengen Agreement.
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Appendix A.1 Supplementary Appendix

A.1.1 Supplementary Tables

Table A.1 : Summary Statistics

variable N mean sd max min

Exportsij,t 27,200 20.39 272.13 12,385.98 0.00
Schengenij,t 27,200 0.79 1.31 8.00 0.00
Schengenij,t (S = 1) 27,200 0.99 1.25 8.00 0.00
Schengenij,t [0;1] 27,200 0.13 0.34 1.00 0.00
Schengenij,t [0;0.5;1] 27,200 0.34 0.35 1.00 0.00
Both EUij,t 27,200 0.26 0.44 1.00 0.00
Both Euroij,t 27,200 0.08 0.27 1.00 0.00
Other RTAij,t 27,200 0.23 0.42 1.00 0.00
ln(Supplyi,t) 27,200 13.03 1.82 17.06 8.78
ln(Demandj,t) 27,200 12.33 1.82 16.54 8.26
ln(Distanceij) 27,200 8.03 1.14 9.81 2.13
Adjacencyij 27,200 0.06 0.23 1.00 0.00
Common Languageij 27,200 0.05 0.22 1.00 0.00
Colonyij 27,200 0.04 0.19 1.00 0.00
Colony post 1945ij 27,200 0.01 0.12 1.00 0.00
Same Countryij 27,200 0.02 0.14 1.00 0.00
ln(MFNij,t) 27,200 0.08 0.09 0.50 0.00

Note: Summary statistics for the complete sample and total trade.
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Table A.2 : WIOD Country List

ISO Code Country

AUS Australia
AUT Austria
BEL Belgium
BGR Bulgaria
BRA Brazil
CAN Canada
CHN China, People’s Rep. of
CYP Cyprus
CZE Czech Republic
DEU Germany
DNK Denmark
ESP Spain
EST Estonia
FIN Finland
FRA France
GBR United Kingdom
GRC Greece
HUN Hungary
IDN Indonesia
IND India
IRL Ireland
ITA Italy
JPN Japan
KOR Korea
LTU Lithuania
LUX Luxembourg
LVA Latvia
MEX Mexico
MLT Malta
NLD Netherlands
POL Poland
PRT Portugal
ROM Romania
RUS Russia
SVK Slovak Republic
SVN Slovenia
SWE Sweden
TUR Turkey
TWN Taiwan
USA United States
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Table A.3 : WIOD Sector List

Sector ISIC rev.3 Description

C01 AtB Agriculture, Hunting, Forestry and Fishing
C02 C Mining and Quarrying
C03 15t16 Food, Beverages and Tobacco
C04 17t18 Textiles and Textile Products
C05 19 Leather, Leather and Footwear
C06 20 Wood and Products of Wood and Cork
C07 21t22 Pulp, Paper, Paper , Printing and Publishing
C08 23 Coke, Refined Petroleum and Nuclear Fuel
C09 24 Chemicals and Chemical Products
C10 25 Rubber and Plastics
C11 26 Other Non-Metallic Mineral
C12 27t28 Basic Metals and Fabricated Metal
C13 29 Machinery, Nec
C14 30t33 Electrical and Optical Equipment
C15 34t35 Transport Equipment
C16 36t37 Manufacturing, Nec; Recycling
C17 E Electricity, Gas and Water Supply
C18 F Construction
C19 50 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel
C20 51 Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles
C21 52 Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods
C22 H Hotels and Restaurants
C23 60 Inland Transport
C24 61 Water Transport
C25 62 Air Transport
C26 63 Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies
C27 64 Post and Telecommunications
C28 J Financial Intermediation
C29 70 Real Estate Activities
C30 71t74 Renting of M&Eq and Other Business Activities
C31 L Public Admin and Defense; Compulsory Social Security
C32 M Education
C33 N Health and Social Work
C34 O Other Community, Social and Personal Services
C35 P Private Households with Employed Persons
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Table A.4 : Waiting time for commercial vehicles and tra�ic volume at US–Canadian border checkpoints, 2014

Border Station

Waiting time (minutes)

# vehicles Station sharemean min max

ME: Calais 0 0 0 62,352 1.1%
ME: Houlton 1 0 6 84,043 1.4%
ME: Jackman 0 0 0 84,755 1.5%

ME: Madawaska 3 0 15 19,238 0.3%
MI: Detroit 20 10 30 1,600,000 27.6%

MI: Port Huron 7 0 37 778,268 13.4%
MI: Sault Ste. Marie 5 0 15 38,932 0.7%
MN: Intertiol Falls 0 0 0 16,528 0.3%
MT: Sweetgrass 20 10 45 145,803 2.5%

ND: Pembi 18 12 36 229,079 3.9%
NY: Alexandria Bay 15 NA NA 192,551 3.3%

NY: Bu�.-Niagara Falls 24 11 36 962,076 16.6%
NY: Champ.-Rouses Pt. 45 NA NA 285,195 4.9%

NY: Massena 0 0 0 23,188 0.4%
NY: Ogdensburg 10 NA NA 37,726 0.7%
VT: Derby Line 20 NA NA 97,836 1.7%

VT: Highgate Springs 15 NA NA 93,914 1.6%
VT: Norton 0 0 0 11,161 0.2%
WA: Blaine 8 0 0 367,994 6.3%
WA: Lynden 10 NA NA 41,580 0.7%

WA: Point Roberts 10 NA NA 18,121 0.3%
WA: Sumas 25 10 100 149,361 2.6%

Other NA NA NA 462,508 8.0%

Weighted Mean / Sum 18 5,802,209 100%
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Table A.5 : Ad Valorem Tari� Equivalents due to Schengen, by Country

Country Ad Valorem Tari� Equivalents Share of Schengen Trade

Goods Services Total Trade Goods Services Total Trade
σG1 = 7.9849 σG2 = 2.443 σS = 5.9591 σT1 = 7.1948 σT2 = 3.8144

EST 0.63% 3.08% 1.20% 0.83% 1.83% 68.87% 52.50% 61.04%
LVA 0.64% 3.15% 1.09% 0.81% 1.80% 67.76% 50.20% 57.51%
FIN 0.67% 3.26% 1.12% 0.80% 1.76% 52.29% 43.26% 49.35%
MLT 0.42% 2.05% 1.15% 0.74% 1.65% 51.16% 59.95% 56.52%
PRT 0.64% 3.14% 0.97% 0.74% 1.64% 79.40% 58.41% 70.27%
HUN 0.60% 2.94% 1.03% 0.72% 1.60% 73.13% 55.39% 67.53%
SVK 0.53% 2.60% 0.96% 0.65% 1.43% 79.37% 69.53% 76.60%
SWE 0.58% 2.84% 0.73% 0.62% 1.38% 60.83% 36.08% 50.36%
ESP 0.47% 2.29% 0.94% 0.62% 1.37% 67.12% 58.03% 63.36%
ROM 0.48% 2.36% 0.80% 0.59% 1.30% 57.13% 42.77% 50.03%
SVN 0.51% 2.47% 0.78% 0.59% 1.30% 73.98% 53.29% 67.00%
BEL 0.44% 2.14% 0.81% 0.56% 1.24% 74.40% 59.89% 68.12%
POL 0.47% 2.30% 0.77% 0.56% 1.24% 72.23% 49.66% 64.60%
ITA 0.44% 2.13% 0.83% 0.55% 1.22% 60.68% 48.83% 56.53%
NLD 0.47% 2.29% 0.69% 0.54% 1.19% 72.05% 45.39% 59.77%
TUR 0.32% 1.58% 1.08% 0.51% 1.13% 40.60% 59.00% 46.10%
CZE 0.40% 1.97% 0.76% 0.49% 1.08% 75.69% 60.18% 72.01%
LUX 0.46% 2.26% 0.60% 0.48% 1.06% 86.06% 42.98% 47.30%
DNK 0.44% 2.17% 0.56% 0.47% 1.03% 69.89% 38.09% 50.05%
LTU 0.57% 2.80% 0.44% 0.45% 1.00% 78.92% 28.26% 45.45%
BGR 0.35% 1.73% 0.63% 0.45% 0.99% 47.00% 37.70% 42.83%
AUT 0.37% 1.80% 0.62% 0.45% 0.99% 72.71% 50.68% 64.16%
CYP 0.36% 1.75% 0.52% 0.41% 0.91% 44.87% 28.53% 32.81%
GBR 0.30% 1.46% 0.58% 0.41% 0.90% 45.58% 38.03% 41.22%
GRC 0.36% 1.75% 0.48% 0.39% 0.86% 45.04% 28.27% 32.67%
RUS 0.20% 0.99% 0.57% 0.36% 0.81% 30.71% 33.99% 32.68%
DEU 0.30% 1.46% 0.43% 0.34% 0.75% 60.02% 42.55% 55.85%
FRA 0.29% 1.42% 0.44% 0.34% 0.74% 58.87% 39.88% 52.89%
IRL 0.14% 0.69% 0.22% 0.17% 0.37% 23.79% 15.96% 19.62%

EU 27 Mean 0.46% 2.23% 0.75% 0.55% 1.21% 63.66% 45.71% 54.65%
EU 27 Median 0.46% 2.26% 0.76% 0.55% 1.22% 67.76% 45.39% 56.52%
EU 27 0.38% 1.86% 0.64% 0.46% 1.02% 62.03% 43.92% 54.96%

Note: Sorted by Total AVTE in descending order. AVTEs have been calculated dependent on each country’s trade volumes of goods and
services trade across the number of Schengen borders. The counterfactual trade volumes have been calculated respective of estimated
Schengen e�ects from the gravity estimation. AVTEs result from the di�erence in counterfactual (cf) to observed (obs) trade, assuming
σG1 = 7.9849, σS1 = 5.9591 structurally estimated by Egger et al. (2012), σG2 = 2.443 (goods elasticity of substitution estimate from own
analysis) and σT1 = 7.1948, σT2 = 3.8144 (EU-27 sector-share weightedmean of σS and σG1 or σG2 respectively), for goods, services, and
total trade: (Xs,cf/Xs,obs)(1/σs) − 1∀ s ∈ {G,S, T}.
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Table A.6 : Average Tari� Equivalents due to Schengen, by Country

Country Average Tari� Equivalents Share of Schengen Trade
(σ = 6) in Total Trade

Goods Services Total Trade Goods Services Total Trade

EST 0.88% 1.19% 1.03% 68.87% 52.50% 61.04%
LVA 0.90% 1.08% 1.01% 67.76% 50.20% 57.51%
FIN 0.93% 1.11% 0.99% 52.29% 43.26% 49.35%
MLT 0.59% 1.14% 0.92% 51.16% 59.95% 56.52%
PRT 0.90% 0.96% 0.92% 79.40% 58.41% 70.27%
HUN 0.84% 1.02% 0.90% 73.13% 55.39% 67.53%
SVK 0.74% 0.95% 0.80% 79.37% 69.53% 76.60%
SWE 0.81% 0.72% 0.77% 60.83% 36.08% 50.36%
ESP 0.66% 0.93% 0.77% 67.12% 58.03% 63.36%
ROM 0.68% 0.79% 0.73% 57.13% 42.77% 50.03%
SVN 0.71% 0.78% 0.73% 73.98% 53.29% 67.00%
BEL 0.61% 0.80% 0.69% 74.40% 59.89% 68.12%
POL 0.66% 0.77% 0.69% 72.23% 49.66% 64.60%
ITA 0.61% 0.83% 0.69% 60.68% 48.83% 56.53%
NLD 0.66% 0.69% 0.67% 72.05% 45.39% 59.77%
TUR 0.45% 1.07% 0.63% 40.60% 59.00% 46.10%
CZE 0.57% 0.75% 0.61% 75.69% 60.18% 72.01%
LUX 0.65% 0.59% 0.60% 86.06% 42.98% 47.30%
DNK 0.62% 0.55% 0.58% 69.89% 38.09% 50.05%
LTU 0.80% 0.44% 0.56% 78.92% 28.26% 45.45%
BGR 0.50% 0.63% 0.55% 47.00% 37.70% 42.83%
AUT 0.52% 0.61% 0.55% 72.71% 50.68% 64.16%
CYP 0.50% 0.51% 0.51% 44.87% 28.53% 32.81%
GBR 0.42% 0.57% 0.51% 45.58% 38.03% 41.22%
GRC 0.50% 0.48% 0.48% 45.04% 28.27% 32.67%
RUS 0.28% 0.57% 0.45% 30.71% 33.99% 32.68%
DEU 0.42% 0.43% 0.42% 60.02% 42.55% 55.85%
FRA 0.41% 0.43% 0.42% 58.87% 39.88% 52.89%
IRL 0.20% 0.22% 0.21% 23.79% 15.96% 19.62%

EU 27 Mean 0.64% 0.74% 0.68% 63.66% 45.71% 54.65%
EU 27 Median 0.65% 0.75% 0.69% 67.76% 45.39% 56.52%
EU 27 0.53% 0.63% 0.57% 62.03% 43.92% 54.96%

Note: Sorted by Total AVTE in descending order. AVTEs have been calculated dependent on
each country’s trade volumes of goods and services trade across the number of Schengen
borders. The counterfactual trade volumes have been calculated respective of estimated
Schengen e�ects from the gravity estimation. AVTEs result from the di�erence in counterfac-
tual (cf) to observed (obs) trade, assuming σ = 6: (Xcf/Xobs)(1/σ) − 1.
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Table A.7 : The Impact of Schengen on Bilateral Exports, including all Sectors (1995 - 2011)

Dependent Variable: Bilateral Exports

Total Trade Goods Services

(1) (2) (3) (4) (5) (6) (7)

Schengenij,t 0.061*** 0.007 0.109*** 0.035*** 0.034*** 0.067*** 0.040*
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02)

Both EUij,t 0.592*** 0.744*** 0.475*** 0.335***
(0.07) (0.07) (0.10) (0.08)

Both Euroij,t 0.054** 0.147*** 0.152*** 0.084*
(0.02) (0.03) (0.03) (0.04)

Other RTAij,t 0.236*** 0.268*** 0.268*** 0.184**
(0.06) (0.06) (0.07) (0.07)

MFNij,t −2.342***
(0.50)

Note: ***, **, * denote significance at the 1%, 5%, 10% level, respectively. Robust clustered standard errors reported
in parentheses. Pair as well as year specific importer and exporter fixed e�ects included but not reported. Number of
observations: 27,200.

Table A.8 : Endogeneity of Schengen and Bilateral Exports, excluding Gas, Fuel, Coke, Mining & Quarrying and
the 3 Most Important Trade Partners (1995 - 2011)

Dependent Variable: Bilateral Exports

Total Trade Goods Services

(1) (2) (3) (4) (5) (6) (7)

Schengenij,t 0.041*** −0.003 0.085*** 0.017** 0.017** 0.075*** 0.043**
(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

Both EUij,t 0.607*** 0.710*** 0.493*** 0.342***
(0.07) (0.07) (0.09) (0.07)

Both Euroij,t −0.026 0.067** 0.071** 0.087*
(0.03) (0.03) (0.03) (0.05)

Other RTAij,t 0.250*** 0.170*** 0.163*** 0.144**
(0.07) (0.06) (0.06) (0.06)

MFNij,t −1.818***
(0.50)

Note: ***, **, * denote significance at the 1%, 5%, 10% level, respectively. Robust clustered standard errors reported in
parentheses. Pair as well as year specific importer and exporter fixed e�ects included but not reported. All specifications
exclude the 3 most important trade partners of each country. Number of observations: 25,160.
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Table A.9 : The Impact of Schengen on Bilateral Exports, excluding Gas, Fuel, Coke, Mining & Quarrying,
European Sample (1995 - 2011)

Dependent Variable: Bilateral Exports

Total Trade Goods Services

(1) (2) (3) (4) (5) (6) (7)

Schengenij,t 0.061*** 0.005 0.120*** 0.034*** 0.034*** 0.081*** 0.057***
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02)

Both EUij,t 0.993*** 1.380*** 1.423*** 0.471***
(0.10) (0.10) (0.10) (0.16)

Both Euroij,t 0.033 0.155*** 0.155*** 0.081**
(0.02) (0.03) (0.03) (0.04)

Other RTAij,t 0.617*** 0.843*** 0.843*** 0.342**
(0.10) (0.09) (0.09) (0.16)

MFNij,t 0.361
(0.36)

Note: ***, **, * denote significance at the 1%, 5%, 10% level, respectively. Robust clustered standard errors reported
in parentheses. Pair as well as year specific importer and exporter fixed e�ects included but not reported. Number of
observations: 14,297.

Table A.10 : The Impact of Schengen on Bilateral Exports, excluding Gas, Fuel, Coke, Mining & Quarrying,
Intercontinental Trade with one Schengen Border (1995 - 2011)

Dependent Variable: Bilateral Exports

Total Trade Goods Services

(1) (2) (3) (4) (5) (6) (7)

Schengenij,t 0.072*** 0.024*** 0.122*** 0.050*** 0.048*** 0.094*** 0.073***
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02)

Both EUij,t 0.594*** 0.779*** 0.508*** 0.298***
(0.07) (0.07) (0.11) (0.09)

Both Euroij,t 0.021 0.129*** 0.135*** 0.074*
(0.02) (0.03) (0.03) (0.04)

Other RTAij,t 0.249*** 0.293*** 0.301*** 0.181**
(0.07) (0.06) (0.07) (0.07)

MFNij,t −2.433***
(0.57)

Note: ***, **, * denote significance at the 1%, 5%, 10% level, respectively. Robust clustered standard errors reported
in parentheses. Pair as well as year specific importer and exporter fixed e�ects included but not reported. Number of
observations: 27,200.
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Table A.11 : The Impact of Schengen on Bilateral Exports, excluding Gas, Fuel, Coke, Mining & Quarrying,
Dummy (1995 - 2011)

Dependent Variable: Bilateral Exports

Total Trade Goods Services

(1) (2) (3) (4) (5) (6) (7)

Schengen [0;1] 0.148*** 0.030** 0.252*** 0.070*** 0.072*** 0.134*** 0.065
(0.02) (0.01) (0.03) (0.02) (0.02) (0.04) (0.04)

Both EUij,t 0.602*** 0.788*** 0.514*** 0.344***
(0.07) (0.07) (0.11) (0.08)

Both Euroij,t 0.023 0.130*** 0.134*** 0.083*
(0.02) (0.03) (0.03) (0.04)

Other RTAij,t 0.250*** 0.295*** 0.302*** 0.184**
(0.07) (0.06) (0.07) (0.07)

MFNij,t −2.444***
(0.57)

Note: ***, **, * denote significance at the 1%, 5%, 10% level, respectively. Robust clustered standard errors reported
in parentheses. Pair as well as year specific importer and exporter fixed e�ects included but not reported. Number of
observations: 27,200.

Table A.12 : The Impact of Schengen on Bilateral Exports, excluding Gas, Fuel, Coke, Mining & Quarrying,
Indicator (1995 - 2011)

Dependent Variable: Bilateral Exports

Total Trade Goods Services

(1) (2) (3) (4) (5) (6) (7)

Schengen [0;0.5;1] 0.306*** 0.161*** 0.493*** 0.254*** 0.247*** 0.346*** 0.300***
(0.03) (0.03) (0.05) (0.03) (0.03) (0.05) (0.06)

Both EUij,t 0.559*** 0.738*** 0.469*** 0.260***
(0.07) (0.07) (0.11) (0.09)

Both Euroij,t 0.011 0.118*** 0.124*** 0.065
(0.02) (0.03) (0.03) (0.04)

Other RTAij,t 0.247*** 0.291*** 0.299*** 0.177**
(0.07) (0.06) (0.07) (0.07)

MFNij,t −2.426***
(0.57)

Note: ***, **, * denote significanceat the1%, 5%, 10% level, respectively. Robust clustered standarderrors reported inparentheses.
Pair as well as year specific importer and exporter fixed e�ects included but not reported. Number of observations: 27,200.
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Table A.13 : The Impact of Schengen on Bilateral Exports, excluding Gas, Fuel, Coke, Mining & Quarrying,
Pooled over Sectors (1995 - 2011)

Dependent Variable: Bilateral Exports

Total Trade Goods Services

(1) (2) (3) (4) (5) (6) (7)

Schengenij,t 0.054*** 0.0003 0.106*** 0.026*** 0.026*** 0.067*** 0.040*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

Both EUij,t 0.617*** 0.800*** 0.527*** 0.335***
(0.08) (0.10) (0.11) (0.08)

Both Euroij,t 0.030 0.137*** 0.142*** 0.084*
(0.02) (0.03) (0.03) (0.04)

Other RTAij,t 0.250*** 0.294*** 0.302*** 0.184**
(0.08) (0.09) (0.10) (0.07)

MFNij,t −2.443***
(0.40)

Observations 897,600 897,600 380,800 380,800 380,800 514,539 514,539

Note: ***, **, * denote significance at the 1%, 5%, 10% level, respectively. Robust clustered standard errors reported in
parentheses. Pair as well as year specific importer, exporter, and sector fixed e�ects included but not reported.

Table A.14 : The Impact of Schengen on Bilateral Exports, excluding Gas, Fuel, Coke, Mining & Quarrying, Baier
and Bergstrand (2009) MR-Terms (1995 - 2011)

Dependent Variable: Bilateral Exports

Total Trade Goods Services

(1) (2) (3) (4) (5) (6) (7)

Schengenij,t 0.060*** 0.005 0.118*** 0.037*** 0.038*** 0.060*** 0.034
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02)

Both EUij,t 0.651*** 0.818*** 0.653*** 0.330***
(0.09) (0.09) (0.11) (0.09)

Both Euroij,t 0.029 0.124*** 0.126*** 0.079*
(0.03) (0.03) (0.03) (0.05)

Other RTAij,t 0.275*** 0.322*** 0.313*** 0.168**
(0.08) (0.08) (0.08) (0.08)

MFNij,t −1.350**
(0.55)

ln Supplyi,t 0.651*** 0.649*** 0.740*** 0.736*** 0.751*** 0.554*** 0.550***
(0.07) (0.07) (0.07) (0.07) (0.06) (0.09) (0.09)

ln Demandj,t 0.438*** 0.439*** 0.407*** 0.401*** 0.394*** 0.445*** 0.453***
(0.07) (0.07) (0.08) (0.08) (0.07) (0.09) (0.09)

Note: ***, **, *, denote significance at the 1%, 5%, and 10% level, respectively. Robust clustered standard errors reported in
parentheses. Pair, country, and time fixed e�ects included but not reported. All specifications include Baier and Bergstrand
(2009) multilateral resistance terms for all trade costs. Number of observations: 25,857.
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Table A.15 : The Impact of Schengen on Bilateral Exports, excluding Gas, Fuel, Coke, Mining & Quarrying, PPML
without bilateral fixed e�ects (1995 - 2011)

Dependent Variable: Bilateral Exports

Total Trade Goods Services

(1) (2) (3) (4) (5) (6) (7)

Schengenij,t −0.437*** −0.130 −0.196*** −0.084 −0.139** −0.655*** −0.148
(0.06) (0.08) (0.05) (0.07) (0.06) (0.09) (0.09)

Both EUij,t −1.098*** −0.496*** −0.923*** −1.661***
(0.19) (0.16) (0.15) (0.22)

Both Euroij,t 0.299*** 0.212** 0.252*** 0.277
(0.12) (0.09) (0.09) (0.19)

Other RTAij,t −1.415*** −0.975*** −0.449** −2.376***
(0.16) (0.15) (0.20) (0.21)

MFNij,t −8.873***
(1.74)

ln Distanceij −2.314*** −2.211*** −2.011*** −1.957*** −1.569*** −2.723*** −2.537***
(0.06) (0.06) (0.06) (0.06) (0.06) (0.09) (0.07)

Adjacencyij −1.710*** −0.888*** −0.970*** −0.518*** −0.402*** −3.209*** −1.616***
(0.12) (0.15) (0.10) (0.16) (0.14) (0.26) (0.19)

Common Languageij 0.064 0.279* 0.194 0.336** 0.062 0.513* 0.686***
(0.25) (0.16) (0.24) (0.15) (0.18) (0.26) (0.19)

Colonyij 0.318 0.039 0.142 −0.023 −0.135 0.713*** 0.210
(0.21) (0.18) (0.18) (0.17) (0.17) (0.25) (0.20)

Colony post 1945ij −0.877** −0.758* −0.732* −0.644 0.751* −1.395*** −1.172**
(0.43) (0.40) (0.43) (0.41) (0.43) (0.52) (0.46)

Same Countryij −0.757* −0.504** −0.855** −0.618*** 0.254 −1.207** −0.931*
(0.40) (0.22) (0.41) (0.23) (0.23) (0.56) (0.50)

Note:***, **, * denote significance at the 1%, 5%, 10% level, respectively. Robust clustered standard errors reported in parentheses.
Pair as well as year specific importer and exporter fixed e�ects included but not reported. Number of observations: 27,200.
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Table A.16 : The Impact of Schengen on Bilateral Exports estimated in Bins (1995 - 2011)

Dependent Variable: Bilateral Exports

Total Trade Goods Services

(1) (2) (3) (4)

Schengen Bin [1] 0.026 0.084*** 0.089*** −0.048
(0.02) (0.02) (0.02) (0.06)

Schengen Bin [2] 0.036 0.113*** 0.117*** −0.012
(0.02) (0.03) (0.03) (0.07)

Schengen Bin [3; 8] 0.054* 0.140*** 0.138*** 0.169*
(0.03) (0.03) (0.03) (0.09)

Both EU 0.601*** 0.778*** 0.504*** 0.331***
(0.07) (0.07) (0.11) (0.08)

Both Euro 0.024 0.129*** 0.134*** 0.088**
(0.02) (0.03) (0.03) (0.04)

Other RTA 0.250*** 0.294*** 0.302*** 0.184**
(0.07) (0.06) (0.07) (0.07)

Tari� −2.450***
(0.57)

Note: ***, **, * denote significance at the 1%, 5%, 10% level, respectively. Robust
clustered standard errors reported in parentheses. Pair as well as year specific im-
porter and exporter fixed e�ects included but not reported. Number of observations:
27,200.
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2 Do Natural Disasters Cause International Migration?∗

2.1 Introduction

According to the UN-DESA 2016 report onmigration, 244 million international migrants are

living in the world in 2015. 157million of these stem frommiddle-income countries, with their

numbers risingmore rapidly than those fromother incomegroups. Related to this, the amount

of people a�ected by natural disasters stands at an estimated number of 243million per year.1

The reports by the IPCC (2012), by the World Bank (2012) and the Stern Review (Stern, 2006)

particularly accentuate that climate change and natural disasters have become serious issues

that are global in their consequences. If globalwarmingprogresses, it will become increasingly

impossible to sustain livelihoods in some regions so that the numbers of those needing to

relocate permanently will continue to increase (Stern, 2006; Marchiori and Schumacher, 2011;

IPCC, 2012; Economist, 2012). Historically, the vast bulk of relocation of people caused by

natural disasters has occurred within nations.2 Even though not all of the a�ected move

across borders, international migration might provide a potential adaptation mechanism in

the presence of natural disasters (McLeman and Smit, 2006; Tacoli, 2009; Barnett and Webber,

2010; Marchiori and Schumacher, 2011).

On these grounds, the impact of increasingly extreme natural disasters on the worldwide

relocation of people is one of the major potentially problematic issues that need scrutiny.

Knowledge remains limited on the factors at work involving disasters as a cause of interna-

∗This chapter is based on joint work with Jasmin Gröschl. It is based on the published article “Do Natural
Hazards Cause International Migration?”, CESifo Economic Studies 63(4), 2017, 445–480. This is a revised version
of a joint working paper that circulated under CESifo Working Paper No. 6145, October 2016. Parts of this article
are based on the chapter “Climate Change and the Relocation of Population” in Jasmin Gröschl (2013), “Gravity
Model Applications and Macroeconomic Perspectives”, ifo Beiträge zur Wirtscha�sforschung 48. Thanks apply
to Michel Beine, Ilan Noy, Max Steinhardt, and workshop participants of the CESifo Venice Summer Institute
on Climate Change and Migration, EEA 2016 in Geneva, ETSG 2016 in Helsinki and the International Economics
workshop 2016 in Göttingen for comments and suggestions.

1This figure is provided by Oxfam (2009), "Forecasting the numbers of people a�ected annually by natural
disasters up to 2015". Other studies suggest even higher numbers, finding that 135 million are at risk due to
desertification alone (INCCCD, 1994), while 200 million are at jeopardy due to sea-level rise (Myers and Myers,
2002).

2In this context, previous research found an e�ect of disasters in particular on migration from rural to urban
areas within national boundaries (Barrios et al., 2006; Beine and Parsons, 2015).
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tionalmigration. One potential strategy in copingwith temporary events, such as earthquakes,

might be temporary relocation. However, disasters related to climate changemight lead to

more permanentmigration, as these eventsmay strip individuals from their basis of existence.

Two channels advocated by Marchiori and Schumacher (2011) may cause permanent relo-

cation as an adaptation mechanism. First, if amenities at home change or more infectious

diseases occur, this may directly lead to higher emigration abroad. Second, crop failure or

aridification in rural areas force people to migrate to urban regions, which puts urban wages

under pressure andmight thus lead to higher international migration. The rural poor in devel-

oping economies are most a�ected by natural disasters. By contrast, they are o�en liquidity

constrained and least able to insure themselves or adopt alternative adaptation strategies.

Moreover unfettered migration to the global North is not always possible as industrialized na-

tions get increasingly tough onmigrants with stricter immigration policies (Boeri and Brücker,

2005).3

The aim of this paper is to assess whether natural disasters induce international migration

from amacro perspective. It relates to the literature on the determinants of migration4, to the

general empirical literature on bilateral migration5, and to the more specific subcategory on

the relation betweenmigration and natural disasters or climate change. Empirical research

is o�en regionally constrained. Naudé (2010) and Drabo and Mbaye (2015) investigate the

relation between disasters and internationalmigration fromSub-Saharan Africa or developing

countries toOECDeconomies, respectively. They find that disasters cause outmigration. Other

studies look at single extreme disasters to evaluate their impact on migration. Ambrosetti

and Petrillo (2016) examine intra-national migration flows a�er L’Aquila’s earthquake of 2009,

finding a strong increase of outflows from L’Aquila to other provinces and close regions. Yet

another branch of literature focuses only on certain disaster types. Reuveny andMoore (2009),

Coniglio and Pesce (2015), and Backhaus et al. (2015) use a gravity framework to analyze the

role of origin country climate anomalies on international migration to OECD countries. Their

results suggest that an increase inweather-related shocks in the origin increases outmigration.

Beine and Parsons (2015) use a comprehensive data set of global migration for 1960 to 2000.

They find little direct e�ects of climate anomalies or disasters on international migration, but

rather on migration from rural to urban areas. In a more recent paper, Beine and Parsons
3For a survey on the measurement, determinants and outcomes of migration policies, see Ortega and Peri

(2015) and further contributions in that issue.
4Important contributions are Sjaastad (1962); Borjas (1987, 1989); Mincer (1978); Stark (1991).
5Studies include Lewer and Van den Berg (2008); Pedersen et al. (2008); Letouzé et al. (2009); Ortega and

Peri (2009); Mayda (2010); Beine et al. (2011), to name a few.
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(2017) find some evidence of weather conditions on the variation in bilateral migrant stocks,

suggesting that disasters a�ect credit constraints of individuals, deterring emigration from all

origin countries but spurring emigration to neighboring countries. For middle-income origins,

they find that natural disasters foster emigration to former colonial powers. Notably, Beine

and Parsons (2017) highlight the importance of how di�erences in modeling climate change

can lead to di�ering results.

A range of promising approaches to identify the link between disasters andmigration exists,

but the underlying data used in seeking answers o�en has its drawbacks6, which makes it

di�icult to generalize results and policy implications. As recapitulated by Mbaye and Zim-

mermann (2015) in a literature review, e�ects of environmental disasters on migration range

from positive to neutral to negative outcomes. Above all, most of the empirical literature

su�ers from twomajor problems. First, they exclude migration towards non-OECD countries,

which might induce a large measurement error. According to the Global Bilateral Migration

Database, migration to non-OECD countries accounts for 51% of international migration.

Piguet et al. (2011) note that disasters are unlikely to a�ect migration in rich and politically

stable economies. Exceptions that also include non-OECD destinations are Beine and Parsons

(2015, 2017), who find little e�ect of climate change on migration, and Cattaneo and Peri

(2016), who find in amonadic regression that higher temperature increasesmigration to urban

areas andmiddle-income countries, while poor countries are liquidity constrained. Second,

studies have o�en used information on the incidence of disasters from databases drawn from

insurance records or news. This introduces severe reporting and endogeneity biases, as both,

insurance penetration and damage caused are correlated with development, which in turn

a�ects migration patterns (for a detailed discussion, see Felbermayr and Gröschl, 2014).

In this paper, a stylized theoretical gravity model of migration is constructed based on deriva-

tions by Anderson (2011) and natural disasters are included as randomshocks. To estimate the

implications of this model, a conditional fixed e�ects Poisson Pseudo Maximum Likelihood

approach advocated by Santos Silva and Tenreyro (2006) is followed. This paper o�ers two

contributions beyond recent work: (i) it explicitly estimates the time-variant part of multi-

lateral resistance (MR)7 in bilateral migration, thereby allowing disasters in the origin and

the destination to vary in impact; and (ii) it deploys updated and extended natural disaster

6Empirical economists face a lack of observational data and definitions for migration and disasters.
7MR terms are adapted to the setup from the derivations of Baier and Bergstrand (2009) using a Taylor series

expansion.
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data from ifo GAME, based on exogenous intensity measures, solving the endogeneity and

reporting problems of insurance- and news-based disaster data.

Bilateral migration data provided by the World Bank is constructed from decennial census

information which captures temporary migration only to a very limited extend. Any kind of

migration that takes place and is reverted within the ten years between two census rounds

is excluded, as these short-term migrants do not show up in census stocks. Moreover, the

data extends almost exclusively to legal immigrants.8 Therefore, the presented results hold

almost only for legal medium to long-run international migration. Even though temporary or

short-termmigration present a very valid coping strategy in face of natural disasters, it cannot

be captured with the available world-wide data.

Obtained results suggest little evidence for an impact of natural disasters on medium to long-

term international migration. Using the full sample and considering the timing of events

combinedwithmigration decisions, findings suggest that amean event at origin leads to 1.7%

more bilateral migration. The identification of statistically significant e�ects becomes very

noisy if timing is not considered. Moreover, decomposing disasters by type does not yield

evidence for a clear pattern. When countries are distinguished by income levels, heterogeneity

across groups is found. There is no evidence that individuals from low-income countries mi-

grate internationally if struck by natural disasters. International migration or other adaptation

strategies may not be feasible for financially constrained individuals (see also Cattaneo and

Peri, 2016 and Beine and Parsons, 2017). If high-income countries experience disasters, their

outmigration declines, possibly due to high insurance penetration rates. These may cause

incentives to stay as insured capital is upgraded a�er a disaster. Middle-income countries

show a clear pattern of migration due to disasters - which lead to international migration of

1.4%, while those at potential destinations decrease migration by 11.5%, both evaluated at

the mean. Hence, examining the e�ect of natural disasters onmigration using a full sample

may lead to aggregation bias.

The remainder of the paper is structured as follows. Section 2.2 provides a theoretical gravity

model of migration. Section 2.3 describes details on the empirical strategy and section 2.4

addresses the data. Section 2.5 provides results and a sensitivity analysis. The last section

concludes.
8The exact implications of this for the results remain unclear: Undocumentedmigrants may bemoremobile

a�er an exogenous shock but are also more likely to be financially constrained, potentially favoring less costly
internal migration.
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2.2 A Gravity Model of Migration

To provide a simple theoretical motivation for estimating bilateral migration in a gravity

framework, Anderson (2011) is followed. The decision tomigrate is, in contrast to the decision

to export, characterized by the choice over a discrete number of alternative locations on a

global scale. The costs of migration are common to all migrants within a particular bilateral

link, albeit migration costs may have an idiosyncratic component reflecting individual costs

or utility frommoving.

Consider a multi-country framework where i, j = 1, · · · , C denote countries, h = 1, · · · , H
denotes individuals, and t denotes time. Each individual h has an idiosyncratic component of

utility frommigrating, ξijh,t, which is unobservable and independently distributed across indi-

viduals with an iid extreme value distribution. In addition, individuals face costs of migration,

which are the same for all workers thatmigrate in a particular migration corridor, κij,t = κji,t.9

Migration costs constitute an iceberg cost factor κij,t ≥ 1 and κii,t = 1 at time t. Migration

costs are a function of several factors, comprising time-invariant costs from themove, such as

cultural proximity (common language, common colonizer), or geographic location (distance,

common border), and time-variant factors, such as networks (stock of migrants), regional net-

works (regional trade agreements), immigration policies, political ties between country-pairs,

or benevolence of welfare states in receiving countries. Moreover, migration costs may also

follow a common time trend t.

When a natural disaster strikes, it damages and destroys both physical and human capital. It

follows that disasters a�ect the migration decision by reducing the productivity of labor. By

this they a�ect wages and eventually also the movement of population.10 Natural disasters

are formally introduced as random shocks Φ, where Φ ≥ 1.11 The occurrence of random

9Note that migration costs may as well vary by skill levels. Migration costs could be lower for skilled workers
and increase with decreasing skill level. Individuals with low skill levels may benefit more frommigrating but
also face relatively higher migration costs given their lower income and potential liquidity constraints they face
in situations where they cannot save or borrow enough to pay the costs of migration. On the other hand, migrant
networks may increase with skill and thus lead to lower migration costs for the more highly skilled. This implies
selectionmechanisms by skill, which thismodel abstracts from due to a disability to test implications empirically
on the basis of available global migration data that does not allow distinguishing migrants by skill level.

10Note that natural disasters could also a�ect migration costs directly, such that migration costs would
increase with natural disasters as, for instance, infrastructure or amenities get destroyed. This would make
migration more costly and less likely. Here, it is abstained frommodeling a direct e�ect; instead it is considered
that disasters changemultilateral resistance of countries, thus assuming an implicit e�ect onmigration costs.

11Random shocks may also incorporate civil or international war, changes in governance from autocracy to
democracy or vice versa, etc.
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shocks and the damage they cause are assumed to be idiosyncratic across locations. Random

shocks have a transitive e�ect on labor productivity as they suddenly shi� demand and/or

supply structures. Let the wage net of migration costs and net of random shocks to labor

productivity in the destination bewj,t/(κij,tΦj,t), wherewj,t denotes the wage in destination

j at time t, and wage net of the labor productivity shock at home is wi,t/Φi,t, where wi,t
denotes the wage at origin i at time t and κii,t = 1. Then, an individual h migrates if the

utility from migrating to some destination j at time t is larger than from staying at home,

(wj,t/(κij,tΦj,t)) ξijh,t ≥ wi,t/Φi,t.12

To evaluate migration, suppose expected utility is a logarithmic constant relative risk aver-

sion (CRRA) CES function.13 Specifically, the observable component of log-linear utility from

migrating is

lnuij,t = lnwj,t − lnκij,t − ln Φj,t − [lnwi,t − ln Φi,t].
14 (2.1)

Note that individual decisions can be aggregated up to a representative individual (McFadden,

1974), as migrants are assumed to be homogeneous except for the random term ξijh,t. To

retrieve a tractable gravity equation, it is assumed that the aggregated level of the discrete

choice probability is equal tomigration flows fromsource i to destination j at time t. Aggregate

bilateral migration is then given as

Mij,t = P (uij,t)Ni,t, (2.2)

12The average expected gain in utility from not migrating (remaining in i) is zero for individuals that choose
to stay in the origin (Ortega and Peri, 2009). wi,t andΦi,t are constant across all destinations.

13The CES utility function is given as uij,t = 1
σ−1

(
wj,t/(κij,tΦj,t)

wi,t/Φi,t

)σ−1

, where σ is the elasticity of substitu-
tion for wages in di�erent locations (also called the coe�icient of relative risk aversion). Compared to partial
equilibrium RandomUtility Maximization (RUM) models – an alternative theoretical foundation used widely in
the migration literature (see Beine et al. (2016) for a discussion and related literature) –, the approach presented
in this paper features a similar setup, yields a similarly tractable gravity equation, but allows theoretically tracing
the wage e�ects of natural disasters, which drive the migration decision. Simultaneously, it allows accounting
for countervailing general equilibrium labor market e�ects induced by changes in the labor stocks.

14Utilitymay also be derived from country characteristicsC that denote benefits such as public infrastructure,
amenities, the welfare state etc. (see for instance Beine and Parsons (2015) for a more detailed discussion). Here,
these benefits are not specifically modeled as no particular attention is devoted to country specific factors which
do not alter the prediction of the random shock variable. The role of these factors for migration is considered by
country dummies (time-invariant) and by controls and MR terms (time-varying) in the empirical section.
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where the population in the source country takes a decision on migration and, with ξijh,t
following an iid extreme value distribution, the probability P (uij,t)

15 is given by

P (uij,t) = P (uij,t = m
k

axuik,t) =
euij,t∑
k e

uik,t
for ik 6= ij. (2.3)

Since theΦ’s and κ’s enter themodel multiplicatively through their e�ect on wages, they com-

bine into a shock-cost measure θij,t that represents both migration costs and random shocks

from natural disasters or similar factors on labor productivity.16 Both migration costs and

random shocks to labor productivity operate in combination with given wages to generate the

allocation of migrants. The combined shock-cost measure is then given as θij,t = κij,tΦj,t/Φi,t.

With logarithmic utility, the structure of the migration equation corresponds to

Mij,t =
(wj,t/θij,t)

σ−1∑
k(wk,t/θik,t)

σ−1
Ni,t. (2.4)

To derive a tractable gravity equation, define Γi,t ≡
∑

k(wk,t/θik,t)
σ−1 and specify the ag-

gregated labor market clearing condition asNj,t ≡
∑

iMij,t. The clearing condition is then

Nj,t = wσ−1
j,t

∑
i(θ

1−σ
ij,t /Γi,t)Ni,t. In equilibrium, wages are

wσ−1
j,t =

Nj,t

NtΓj,t
(2.5)

with total world population Nt ≡
∑

iNi,t ≡
∑

j Nj,t and Γj,t =
∑

i

θ1−σij,t

Γi,t

Ni,t
Nt
. Substituting

for the equilibrium wage in equation (2.4) using equation (2.5) yields the tractable gravity

specification of migration

Mij,t =
Ni,tNj,t

Nt

(
θij,t

Γ̃i,tΓ̃j,t

)1−σ

, (2.6)

with the outward migration friction price index Γ̃i,t =

[∑
j
Nj,t
Nt

(
θij,t
Γ̃j,t

)1−σ
]1/1−σ

and the in-

ward migration friction price index of Γ̃j,t =

[∑
i
Ni,t
Nt

(
θij,t
Γ̃i,t

)1−σ
]1/1−σ

.

15For examples of bilateral migration discrete choice models that build on a multinomial logit function, see
Beine et al. (2011), Grogger and Hanson (2011), Gibson and McKenzie (2011) or Beine and Parsons (2015).

16This useful simplification follows Anderson (2009) and is exploited in what follows. It can be decomposed
at any point into its components.
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To make the impact of random shocks visible in the gravity equation of migration, θij is

decomposed. This gives

Mij,t =
Ni,tNj,t

Nt

(
κij,t

Γ̃i,tΓ̃j,t

)1−σ

Φσ−1
i,t Φ1−σ

j,t , (2.7)

and multilateral resistance terms are Γ̃i,t =

[∑
j
Nj,t
Nt

(
κij,t
Γ̃j,t

)1−σ (
Φj,t
Φi,t

)1−σ
]1/1−σ

and Γ̃j,t =[∑
i
Ni,t
Nt

(
κij,t
Γ̃i,t

)1−σ (
Φj,t
Φi,t

)1−σ
]1/1−σ

.

The first term of equation (2.7) denotes bilateral migration in a world without frictions, where

migrants are found in equal shares relative to the population in all destinations. The second

term denotes the impact of frictions in a world that entails costs to migration. The larger

bilateral migration costs κij,t, the lower are migration flows. Albeit, in a world in which mi-

grants choose from a set of alternative destinations, migration also depends onmultilateral

resistance, which captures worldwide bilateral migration costs. The third term indicates that

random shocks to labor productivity in the origin and in the receiving country a�ectmigration.

The larger the shock in the originΦi,t, the higher are migration flows. The larger the shock in

the destination j at time t, the lower are migration flows.

2.3 Empirical Strategy

To test the predictions of the previous section regarding the e�ect of disasters on bilateral

migration patterns, a fully fledged gravity model is outlined on a panel of bilateral migration

and primary disaster data. Estimating an augmented gravity specification, it is examined how

natural disasters in the origin (Φi,t) and in the destination (Φj,t) a�ect bilateral migration rates

(Mij,t/Nii,t).

To get an estimable equation onmigration rates, logs are taken of equation (2.7) to obtain

ln
Mij,t

Nii,t
= (1− σ) lnκij,t + (σ − 1) ln Γ̃i,t + (σ − 1) ln Γ̃j,t + (σ − 1) ln Φi,t + (1− σ) ln Φj,t.

17 (2.8)

17Note thatNt is constant, lnNj,t is omitted, and lnNi,t is transformed to lnNii,t (thenon-migrantpopulation
of i) to obtain migration rates as the dependent variable rather thanmigration flows. Mayda (2010); Beine and
Parsons (2015) are followed by using migration rates.
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As discussed earlier in Section 2.2, migration costs comprise time-invariant and time-variant

components. The cost function is modeled empirically as

κij,t = g(ln(DISTij), ADJij, LANij,COLij,RTAij,t,MigStockij,t−1, νt, νi, νj) (2.9)

which is a function of controls for time-invariant historical or cultural country characteristics,

such as bilateral distance ln(DISTij), adjacency ADJij , common language LANij , and colonial

heritage COLij . The cost function also comprises time-varying components, such as regional

trade agreements RTAij,t that account for the fact that more integrated countries or regions

might also experience higher migration flows.18 MigStockij,t−1 is the stock of migrants from

country i residing in j at time t − 1, which captures network e�ects.19 νt are time specific

dummies that account for common trends. νi and νj are a complete collection of origin and

destination country dummies which account for all time-invariant country characteristics.

Multilateral resistance (MR) terms have a time-invariant and a time-variant component. While

the time-invariant component of MR is fully captured by origin and destination country fixed

e�ects, the time-variant component of MR is captured by Γ̃i,t and Γ̃j,t in equation (2.8).20 As

in the traditional gravity model, price indexes are computable oncemigration costs κij,t are

constructed econometrically.

Zero bilateral migration flows make up about 65% of observations. To account for these zero

migration flows and to correct for heteroskedastic error terms, a conditional fixed e�ects (FE)

PoissonPseudoMaximumLikelihood (PPML) approach is chosen, as advocatedbySantos Silva

and Tenreyro (2006).21 Based on equation (2.8), a gravity equation is estimated of the form

18The RTA variable incorporates free trade agreements, currency unions and customs unions.
19The recent literature on migration is followed, which identifies migrant networks to promote bilateral

migration flows, trade and capital flows (Rauch and Trindade, 2002; Munshi, 2003; Kugler and Rapoport, 2007;
Docquier and Lodigiani, 2010; Bertoli and Fernández-Huertas Moraga, 2012; Patel and Vella, 2013; Docquier et al.,
2014). In particular, Beine et al. (2011) find that migrant networks significantly increase migration flows to OECD
countries. To address potential endogeneity concerns pointed out by Munshi (2014), laggedmigration stocks are
excluded as a robustness check from the baseline specification.

20Ideally, the time-variant component of MR is controlled for using time-varying country fixed e�ects. Since
the disaster variables are country-time specific, this approach is unfeasible. The fixed e�ects would pick up the
variation in the variables of interest.

21If zeros are prevalent in the data and error terms are heteroskedastic, PPML generates consistent estimates
even when the underlying distribution is not strictly Poisson.
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Mij,t

Nii,t

= exp[α1Φi,t + α2Φj,t + α3 ln(GDPj,t/GDPi,t) + α4Civil Wari,t + α5Civil Warj,t

+α6κij,t +α7MRij,t] + εij,t (2.10)

where Mij,t

Nii,t
is the decennial bilateral migration rate calculated as the migration flow from i to

j at decade t divided by the domestic non-migrant population in country i. Φi,t (Φj,t) capture

the physical intensity of natural disasters in the origin (destination) in a given decade. These

may be included as an index variable or separately for specific types (see data section for

more detail). As common in themigration-disaster literature, two country specific controls

that vary over time are included directly. GDPj,t/GDPi,t is the ratio of destination to origin

decennial average per capita GDP and proxies average wage di�erences. Civil Warn,t with

n = i, j are count variables of the number of years in which civil wars took place in the

source or the receiving country, respectively, within the last 10 years of observation. κij,t
is a vector of migration costs as outlined in equation (2.9). It represents time constant and

time-varying costs including a complete collection of origin and destination country dummies

and time specific fixed e�ects. The constructed MR termsMRij,t = Γ̃i,t, Γ̃j,t capture the

time-variant component of multilateral resistance (e.g., immigration policies or benevolence

of the welfare state). MR indices are derived from a first-order Taylor series expansion of

the gravity equation following Baier and Bergstrand (2009). MR terms are approximated

based on distance (MRDISTij,t), adjacency (MRADJij,t), common language (MRLANij,t), colonial

relationship (MRCOLij,t), and RTAs (MRRTAij,t) which are weighted by population over world

population (a proxy for a country’s relative migrant potential). For details see Appendix

B.1.1. This econometric approach allows controlling simultaneously for the direct e�ects of

disasters in the sourceand thedestination country and for time-varying country characteristics

absorbed in the MR terms. εij,t is an additive error term.

Themodel suggests that α1 is positive such that disasters in the origin inducemigration out

of a�ected countries, while α2 is negative indicating that disasters in potential destinations

reduce migration. This theoretical prediction is brought to the data in the next section.
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2.4 Data

2.4.1 International Migration

Two data sets are combined. The Global Migrant Origin Database (Version 4, 2007) provided

by the World Bank reports bilateral migration stocks (based primarily on the foreign-born

concept) in intervals of 10 years from 1960 to 2000 for 226 countries. The data set combines

census and population register records to construct decennial matrices corresponding to

the last five completed census rounds. Data for 2010 are also provided by the World Bank

and updates data by Ratha and Shaw (2007) as described in the Migration and Remittances

Factbook 2011 (see Canuto and Ratha, 2011). The 2010 data set also uses the foreign-born

concept and similar sources andmethods as the 1960-2000 data.

To calculate bilateral decennial migration rates, the di�erence between contiguous bilateral

migrant stocks are taken to approximate migration flows, which are then divided by the non-

migrant origin population (following Beine and Parsons, 2015). Non-migrant origin population

is constructed as the country’s total population (according to WDI) minus the sum of immi-

grants in that country. In some cases, migration stocks shrink over the observed time period,

which leads to negative values. As the exact reason of the decrease in migration stocks is not

clear, all negative values are ignored by setting them to zero, implicitly assuming that migrant

stocks decrease due to mortality.22

In the sample, zero bilateral migration flows make up about 65% of observations. To account

for these zero migration flows and a potentially heteroskedastic error structure, a FE PPML

model is estimated. Still, observations are lost due tomissing data for migration rates, control

variables and natural disasters, preserving 66,673 observations for estimation. These pre-

served observations spread over all three decades (17,556 observations for 1981–1990, 24,806

for 1991–2000, and 24,311 for 2001–2010) and across 162 countries as listed in Appendix B.1.2,

Table B.3. Hence, su�icient variation can be expected in the data.23

22This strategy is in line with the literature. The actual reasons for negative di�erences between subsequent
bilateral migrant stocks are related to the underlying issue that migration flows converted from stocks do not
factor out stock changes due tomortality, returnmigration or migration to a third country (see Beine et al., 2016).
The data does not allow disentangling the true drivers of negative stock di�erences.

23The loss of data is commonly known in the literature. For example Beine and Parsons (2015), the paper
most closely related to this study, have similar observation numbers spread over four decades from 1960-2000.
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Table B.1 in Appendix B.1.2 includes summary statistics for the migration rate. The decennial

migration rate ranges between 0% and 50% of the total non-migrant origin population at the

beginning of the respective decade. Due to the large number of zero migration flows, the

meanmigration rate is 0.02%. For a deeper understanding of the dimension of international

migration, the table also includes figures for the underlying decennialmigration flows, ranging

from 0 to 4,705,677 people, with a mean of 1,726. The maximummigration flow is observed

fromMexico to theUnitedStatesbetween1990and2000andcorresponds toamigration rateof

6% of the Mexican non-migrant population at the beginning of 1990. Themaximummigration

rate of 50% is observed from Brunei to India between 1980 and 1990 and corresponds to a

decennial migration flow of 71,089 people.

While temporary international migration may pose a valid mechanism for adapting to transi-

tory natural disasters, it must be emphasized that the decennial World Bank data includes

such short-term migrants only to a very limited extent. Results almost exclusively rely on

medium to long-run international migration, which excludes any kind of migration that takes

place and is reverted within the ten years between two census rounds, as these short-term

migrants are not captured in the census stocks. The data does not allow identifying the share

of temporary vs. long-runmigrants. Moreover, the World Bank data relies on o�icial census

data, hence undocumentedmigrants are not included. Finally, note that a large number of

bilateral migrant stocks in the data are estimated rather than observed, such that attenuation

due to measurement error may pose an inherent issue.24

2.4.2 Natural Disasters

This study uses natural disaster data from the ifo GAME database on geological andmeteo-

rological events, first introduced by Felbermayr and Gröschl (2014). The database contains

physical intensities of earthquakes, volcanic explosions, storms, droughts, floods, and temper-

ature anomalies on a monthly basis from 1979 to 2014 for 232 countries.25 The data included

in ifo GAME stem from various primary sources and come in two di�erent types of geo-coding

requiring di�erent treatment: (a) non-gridded disasters (volcanoes, hurricanes, and earth-

24This implies that presented results only hold for more permanent (long-term)migration, whereas no claims
can be inferred about temporary or short-termmigration, which still might present a very valid coping strategy
in face of transit natural disasters.

25An earlier version of the Ifo GAME data base ranging from 1979 to 2010, covering 188 countries, and
using slightly di�erentmappingprocedures is currently available athttp://www.cesifo-group.de/ifoHome/
research/Departments/International-Trade/Ifo_GAME.html.
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quakes) are aggregated to the country level by directly mapping the data to all countries

within a radial geodesic bu�er around the exact disaster geo-location;26 (b) gridded data

(temperatures, precipitation, SPEI) are aggregated to the country level by calculating area-

weighted arithmetic means. The exact data sources as well as the respective spatio-temporal

aggregation procedures and index choices are described in detail below; descriptive statistics

are shown in Figure 2.2.

Earthquakes. A country’s earthquake hazard is measured by its maximum earthquake

magnitude. Physical earthquake magnitudes from the Incorporated Research Institutions for

Seismology (IRIS) are mapped to each country within 150 km of the respective epicenter. The

data is aggregated to the decennial level by collapsing maximum earthquake magnitudes

across all months. The resulting earthquake magnitude is distributed between 0 and 10, with

a mean of 5.9 and a standard deviation of 1.9 (compare Figure 2.2).

Volcanic Explosions. A country’s volcanic activity is measured by its maximum volcanic

explosivity index (VEI). The VEI is obtained from the Smithsonian Global Volcanism Program

and mapped to each country within 50 km of the respective volcano’s geo-location. It is

aggregated to the decennial level for each country by collapsing it to its respective maximum

across all months. Resulting VEIs are distributed between 0 and 6, with a mean of around 0.4

and a standard deviation of 1.1 (compare Figure 2.2).

Storms. In order to measure storms, a country’s maximum combined wind speed from

two data sources is used. Hurricane wind speeds in knots at the exact locations and paths of

hurricane centers come from the International Best Track Archive for Climate Stewardship

(IBTrACS) v03r07, provided by the World Meteorological Organization (WMO) and the US

NationalOceanic andAtmospheric Administration (NOAA). Hurricanewind speeds aremapped

to each country within a 100 km range of the respective hurricane eye. Wind speeds of winter

or summer storms in knots stem from weather station data of the Global Summary of the

26Not knowing the true spatial extent of natural disasters poses a potential problem. Volcanoes are very
local events, but gas plumes can have extensive impact. Also, the true geographic extent of earthquakes and
hurricanes is not easy to predict given only their magnitude and location at center. In addition, geological,
meteorological and surface characteristics matter. This study thus relies on approximations from the literature,
as the prediction of the true spatial extent of disaster events lies beyond the scope of this paper.
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Day (GSOD) statistics, which report wind speeds measured at terrestrial weather stations

worldwide by the exact geo-location of the respective station. To obtain a decennial measure

for each country, maximumwind speeds are collapsed across all months. Resulting combined

wind speed is distributed between 16 and 165 knots, with a mean of 78.3 and a standard

deviation of 29.8 (compare Figure 2.2).

Temperature. Extreme temperature is measured by the absolute mean temperature dif-

ference from the long-run monthly mean. Monthly mean land surface air temperatures in

degrees Celsius at 0.5° x 0.5° latitude-longitude grid cell levels come from the Climate Pre-

diction Center of the National Centers for Environmental Prediction. The data combine and

interpolate information collected from the Global Historical Climatology Network Version

2 (GHCN) and the Climate Anomaly Monitoring System (CAMS). Spatially aggregating grid

cell data addresses two caveats. First, coordinates of measuring points are located at grid

cell centers which means that (a) small countries may not have any measuring points within

their geographic boundaries, and (b) for larger countries, measuring points in border regions

may concern only a relatively small aerial fraction. Second, fixed-degree grid cells feature

varying metric area along latitudes due to the earth’s curvature. Hence, measuring points

more remote from the equator a�ect smaller land area. The following procedure is applied to

address both caveats: First, each country i is split into fractions frac by grid cells. Second,

Figure 2.1 : 2.5° Grid Cell Aggregation Example

Source: Esri, own calculations.

geodesic land area a in km2 is calculated for each fraction in a cell. At any point in time t,

values of each measuring point are added to all fractions within its respective cell, as they

constitute the best proxy available in their respective grid cell (compare Figure 2.1). Finally,

gridded observations are aggregated to the country level by calculating a weighted mean

using each country’s geodesic land area within a grid cell as analytic weights:
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x̄∗
i,t

=

∑
frac∈i

aifrac · x
i,t
frac∑

frac∈i
aifrac

(2.11)

Then, the di�erences between monthly mean temperatures and the long-run (1979-2014)

monthly mean is calculated for each country. To match the decennial data, temperature

di�erences are collapsed across all months in a decade. In order to treat heat and cold waves

alike, absolute values of the measure are taken (see also Felbermayr and Gröschl, 2014). The

absolute temperature di�erence is distributed between 0 and 1.4 degrees Celsius, with amean

of 0.3 and a standard deviation of 0.2 (compare Figure 2.2).

Precipitation. Excessive precipitation, which might exceed percolation and sewage capaci-

ties, is captured by the positive maximum precipitation di�erence from the long-run monthly

mean. Monthly mean precipitation in mm/day at 2.5° x 2.5° latitude-longitude grid cell level

are obtained from the National Aeronautics and Space Administration (NASA) Global Monthly

Merged Precipitation Analyses of the Global Precipitation Climatology Project (GPCP) Ver-

sion 2.2, which combines and harmonizes observations from satellites and weather stations

(gauges). The gridded observations are aggregated to the country level in the same way as for

temperatures (see equation (2.11)). For each country, the di�erences between monthly mean

precipitation and the long-run (1979-2014) monthly mean is calculated. For the decennial

level, maximum precipitation di�erences across all months in a decade are used. To avoid

picking up the e�ect of potential droughts, only positivemaxima are considered. The resulting

indicator is distributed between 0.1 and 21.2, with a mean of 4.2 and a standard deviation of

2.9 (compare Figure 2.2).

Droughts. Droughts are approximated by the negative mean of the Standardized Preci-

pitation-Evapotranspiration Index (SPEI) computed at a time-scale of 9 months.27 Monthly

mean precipitation in mm/day at 0.5° x 0.5° latitude-longitude grid cell level are obtained

from the Climatic Research Unit of the University of East Anglia (CRU TS v3.23). While this

data set is based on weather stations, its longer time-scope and the availability of information

27The SPEI is specifically designed to quantify andmonitor droughts according to their intensity and duration
(Vicente-Serrano et al., 2010). It takes the amount of rainfall at given locations as well as the evapotranspiration
into account and thus is an advancement of the Standardized Precipitation Index (compare McKee et al., 1993).
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on evapotranspiration are necessary ingredients to calculate the SPEI. The climatic water

balance (precipitation minus potential evapotranspiration) is calculated at grid cell level for

each month. The water balance is then standardized for each grid cell by use of a log-logistic

distribution function (applying an unbiased Probability Weighted Moments method).28 The

SPEI is standardized with zero mean and a standard deviation of one, where negative values

indicate a drought. The gridded SPEIs are aggregated to the country level by use of equation

(2.11). To get to the decennial level, SPEI values are collapsed to their mean across all months,

taking only negative values in absolute terms into account. The resulting SPEI indicator is

distributed between 0 and 1.2, with a mean of 0.1 and a standard deviation of 0.2 (compare

Figure 2.2).

Figure 2.2 : Kernel Densities of Disaster Indicators
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28Data from the current month and of the respective past nine months are used, giving all months the same
weight and taking 1901-2014 as a reference period for obtaining the distribution parameters.
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Distribution Across Income Groups. The above indicators are compared across income

groups in Figure B.1 in the Appendix. It can be seen that earthquakes are more common

amongmiddle-income countries with a meanmagnitude of 6.5, than in high- or low-income

regions. Volcanic explosions also mostly spread across middle-income countries, while there

is very little volcanic activity in low-income countries, but quite some activity in high-income

groups with a lower standard deviation but a higher mean of 0.5. Storms have the lowest

mean density (61.8 knots) in low-income regions with some spread especially at the higher

end (>100 knots). Middle-income countries have a higher mean (75.7) but experience more

storms in the upper tail, while high-income countries have the highest mean with 85.4 knots.

Contrasting this, temperature di�erences are quite evenly distributed across income groups,

as are di�erences in excess precipitation where middle-income and especially high-income

countries experience a long tail. Droughtsmeasured at absolute negative SPEI levels aremore

prevalent in low-income countries with a mean of 0.3 but less spread than in middle-income

regions (standard deviation of 0.2).

Disaster Index. A combination of four di�erent disaster indices is used. The simplest one

combines all types of disaster intensity measures into an index variable, Disaster Indexi,t =

Quakei,t + Volcanoi,t + Stormi,t +∆ Precipitationi,t + Droughti,t+∆ Temperaturei,t, using an

equal weights scheme. Moreover, an index weighted by the inverse of the standard deviation

of each disaster type within a country is considered (compare Felbermayr and Gröschl, 2014).

This is guidedby the ideaofprecisionweights, such thatnoonedisaster componentdominates

themovement of the index. Finally, the timedimension is also taken into account byweighting

each physical intensity with a probability obtained from a normal distribution f(x) = N(0; 1)

which is fit over 120 months in a decade.29 This way, disaster magnitudes are onset weighted

at themonthly level, such that events which occur earlier or later within a decade get a smaller

weight than events occurring in the middle of a decade when aggregating to the decennial

level. The rational for using a bell-shaped onset weighting scheme is that the e�ect of natural

disasters that occurred at the beginning of the decademay already have smoothed out before

the next census, whereas events occurring at the very end of a decade might not yet show

an e�ect in the census as it takes some time for people to adjust. This approach is adapted

to this framework based on an idea by Noy (2009), who studies the impact of disasters on

macroeconomic output over a year and linearly adjusts disasters by onset month to account
29The distribution is shi�ed such that the first and the lastmonth each correspond to f(-3) and f(3) respectively

and then re-scale such thatmax[f(x)] = 1, ensuring a maximum probability-weight of 1.
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for their occurrence during the observed year. Again, the simple and the inverse standard

deviation weighted index are used with and without with onset weighting.

As the impact of a disaster on the economymight depend on the disaster intensity relative

to the size of the economy, Skidmore and Toya (2002) are followed by scaling all respective

disaster variables by land area. This is potentially important, because it alleviates biases

resulting from spatial aggregation. On the one hand, larger countries ceteris paribus have a

higher chance of being hit by a disaster of a given magnitude. On the other hand, the larger a

country is the less likely will a natural disaster at a given location within that country have a

statistically significant impact on inward or outwardmigration. Descriptive statistics on the

various disaster indices can be found in Table B.1 in the Appendix.

2.4.3 Controls

Data on population size and GDP per capita stem from the World Bank’s World Development

Indicators (WDI). Information on civil wars are taken from the Intra-State War Data (v4.1) of

the Correlates of War Project. Themeasure used is the total number of years involving civil

wars within the last 10 years of the reported migration observation. Geographic and cultural

linkages – distance, common border, common language, colonial relation – as well as land

area in square kilometers are taken from the CEPII Geographic and Bilateral Distance Database

(2011). Information on regional trade agreements comes from the RTA-Gateway of the WTO.30

Countries’ income groups are defined along 2014 World Bank Gross National Income per

capita, using the World Bank Atlas Method.

2.5 Results

This section presents results on the impact of aggregated natural disasters and disaggregated

disaster types onmedium to long-runmigration patterns. An examination of heterogeneity

across income groups and a sensitivity analysis are also provided.

2.5.1 Baseline Results

Table 2.1 reports the baseline results. All regressions include origin and destination country

fixed e�ects, year dummies and respective MR terms. Each column uses a di�erent specifica-
30The RTA gateway is accessible via http://rtais.wto.org/UI/PublicMaintainRTAHome.aspx.
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tion of the physical disaster intensity index as described in Section 2.4. All disaster indicators

are divided by the log land area to account for size di�erences of countries.31

Across all four specifications, control variables are consistent in sign, overall magnitude,

and level of significance. According to column (1), one additional year of civil war at the

origin country implies an increase in the bilateral migration rate by 5.7% over a decade.32

Conversely, one additional year of civil war at destination leads to a decline in the bilateral

inward migration rate by 23% over a decade. Presence of a mutual regional trade agreement,

a proxy for regional networks, increases the bilateral migration rate by 31.3%. The controls for

cultural proximity are also in line with the gravity literature onmigration. If bilateral distance

increases by 10%, bilateral migration decreases by 7.5%. The presence of a common o�icial

language or common colonial history boost bilateral migration by 65.7% or 60% respectively.

Wage di�erences, proxied by the log ratio of destination over origin GDP per capita, show a

positive but not statistically significant e�ect. Moreover, a 10% increase in the lagged bilateral

migrant stock, a proxy for network e�ects, implies an increase in the bilateral migration rate

by 3.6%. The e�ect is slightly smaller than the estimated 4% by Beine and Parsons (2015)

and lower than the 6.5% estimated by Beine et al. (2011), who use di�erent time and country

samples.33

Thephysical intensity disaster index itself showsmixed results across specifications. In column

(1), the simple physical intensity disaster index is used, which sums up the physical intensities

across all disaster types. Using this indicator, no statistically significant evidence for a causal

e�ect of natural disasters on the bilateral migration rate is found. In column (2), the disaster

index weighted by its inverse standard deviation is used to ensure that the entire index is not

driven by variation in only one disaster type. Using this indicator, estimates imply a counter-

intuitive negative push e�ect, suggesting that natural disasters at origin have overall led to a

decline in the decennial bilateral migration rate.34 Timing of the migration decision related to

natural disasters might play an important role. Hence, disasters happening at the beginning
31Note that similar results are obtained without scaling by log land area.
32%∆Mig.Rate = 100× [eβ − 1]
33Munshi (2014) points at endogeneity concerns of using the lagged bilateral migration stock as a network

variable, since it could, for example, reflect unobserved demand shocks or matching skills available at the
origin and needed at the destination. Bilateral fixed e�ects are not used in the preferred specification, since
the migration data only covers three decennial waves and thus within-group variation is limited. Instrumental
variable methods are not considered because network e�ects are not the focus of this paper. As a robustness
check, it is therefore shown that the exclusion of lagged migration stocks does not a�ect the results on the
natural disaster variables, see Appendix B.1.2, Table B.4.

34As shown in part 2.5.3 of this section, this e�ect is driven by high-income origin countries.
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Table 2.1 : Baseline Results

Dependent Variable: Migration Rateij,t
basic onset weighted

simple sd weighted simple sd weighted
(1) (2) (3) (4)

Disaster Indexi,t −0.111 −0.009*** −0.060 0.004***
(0.09) (0.00) (0.11) (0.00)

Disaster Indexj,t 0.025 −0.002 0.012 −0.013
(0.11) (0.01) (0.14) (0.01)

Controls

ln
(
GDP p.c.j,t/GDP p.c.i,t

)
0.168 0.206 0.175 0.201
(0.23) (0.23) (0.23) (0.23)

Civil Wari,t 0.055** 0.058** 0.042* 0.060**
(0.03) (0.03) (0.03) (0.03)

Civil Warj,t −0.261** −0.259** −0.258** −0.258**
(0.11) (0.11) (0.11) (0.11)

RTAij,t 0.272** 0.290** 0.291** 0.294**
(0.12) (0.12) (0.12) (0.12)

ln
(
Mig. Stockij,t−1 + 1

)
0.357*** 0.357*** 0.358*** 0.357***
(0.03) (0.03) (0.03) (0.03)

ln (Distanceij) −0.748*** −0.747*** −0.743*** −0.744***
(0.08) (0.08) (0.08) (0.08)

Contiguityij 0.381** 0.380** 0.371** 0.377**
(0.16) (0.16) (0.16) (0.16)

Common Languageij 0.505*** 0.505*** 0.501*** 0.508***
(0.11) (0.11) (0.11) (0.11)

Colonyij 0.470*** 0.467*** 0.463*** 0.471**
(0.17) (0.17) (0.17) (0.17)

Log-Likelihood −73.980 −74.024 −73.895 −74.013
Observations 66,673 66,673 66,673 66,673

Note: ***, **, * denote significance at the 1%, 5% and 10% level, respectively. Constant, origin, destina-
tion and decade fixed e�ects and MR terms are included but not reported. Natural disasters are scaled
by log land area. Robust standard errors reported in parentheses.

or towards the end of the decade might not induce migration counting into the decennial

census rounds. In columns (3) and (4), the time dimension is thus taken into account, using

a bell-shaped onset-weighting scheme as explained in Section 2.4. Using the simple onset

weighted index still does not yield any statistically significant evidence (column 3). However, if

onset weighting is combined with the disaster index weighted by inverse standard deviations

in column (4), a positive and statistically significant push e�ect emerges, suggesting that

natural disasters at origin have overall led to an increase in the bilateral migration rate by

1.68% (evaluated at the mean). Pull e�ects are negative but not statistically significant.
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The latter finding implies that the timingofmigrationdecisions combinedwith natural disaster

events plays an important role for the identificationofmigration responses tonatural disasters.

Column (4) is thus taken as the default specification.35

2.5.2 Heterogeneity Across Disaster Types

As a next step, intensities of all disaster types are used simultaneously.36 Again, all physical

intensity measures are weighted by log land area, but very similar results are obtained if not

done so.

Table 2.2 shows the coe�icients for each physical intensity type. If basic intensity measures

are used, no statistically significant evidence for causal e�ects is found (column (1)). Using

onset weighting in column (2) reveals positive push e�ects of volcanic explosions, suggesting

that volcanic events at origin boost the decennial bilateral outwardmigration rate by 7.9%

(evaluated at the mean). Also, a counter-intuitive positive pull e�ect for earthquakes in

destinations is obtained, suggesting that people migrate more towards earthquake-prone

countries. This result may be driven bymiddle-income countries, which are more prone to

earthquakes (compare Figure B.1) but are also preferred destinations for migrants from low-

and other middle-income countries. One reasoning might be that even though earthquakes

destroy a lot of capital, the migrants might still be better o� due to reconstruction purposes

that might create new jobs (particularly in high- or top-middle income countries with high

insurance and investment rates). Evidence for the e�ects of other disaster types cannot be

pinned down. Findings on controls (not shown in the Table) are similar with respect to signs,

magnitudes, and levels of significance as in the baseline specification in Table 2.1.

2.5.3 Heterogeneity Across Origin Country Groups

Migration responses of individuals are likely to di�er systematically across countries depend-

ing on income characteristics. On the one hand, individuals in poor countries may notmigrate

internationally a�er a disastrous event, because they are liquidity constrained (see Cattaneo

and Peri, 2016). On the other hand, high-income countries usually feature high insurance

35While onset weighting can only proxy for the timeliness of adjustment, the exact shape of the actual onset
response function requires further research, which lies beyond the scope of this paper.

36Using all physical intensities simultaneously might induce multicollinearity into the regression as, e.g.,
temperature is also used as a component of potential evapotranspiration in calculating the SPEI. However, if
temperature events are omitted from the regression, this does not change the results.
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Table 2.2 : Heterogeneity Across Disaster Types

Dependent Variable: Migration Rateij,t
basic onset weighted
(1) (2)

Earthquakei,t 0.643 −0.451
(0.48) (0.65)

Earthquakej,t 0.631 2.434***
(0.77) (0.71)

Volcanic Explosioni,t 2.144 2.452**
(1.46) (1.24)

Volcanic Explosionj,t 1.565 −1.442
(2.06) (1.09)

Windspeedi,t −0.120 −0.044
(0.08) (0.11)

Windspeedj,t 0.038 0.000
(0.10) (0.13)

∆ Precipitationi,t 0.235 0.384
(0.36) (0.50)

∆ Precipitationj,t −1.058 −0.797
(1.05) (0.76)

∆ Temperaturei,t 0.120 4.373
(3.96) (7.44)

∆ Temperaturej,t −2.434 −15.279
(6.95) (15.70)

Drought (SPEI)i,t −5.300 2.076
(3.42) (6.63)

Drought (SPEI)j,t −1.014 6.467
(4.94) (8.97)

Log-Likelihood −73.882 −73.743
Observations 66,673 66,673

Note: ***, **, * denote significance at the 1%, 5% and 10% level,
respectively. Constant, origin, destination and decade fixed e�ects
and MR terms are included but not reported. Natural disasters are
scaled by log land area. Robust standard errors reported in paren-
theses. Controls included as in Table 2.1.

penetration rates. Thus, individuals from high-income countries may not see the need to

migrate if losses from natural disasters are insured. In fact, crop yield destruction can easily

be compensated by high-income countries via imports (as they are o�en financially open),

whereas insured damages in built structures and capital assets may even result in a growth-

propagating replacement with new, higher quality or more innovative substitutes. This might

in turn boost individuals’ expected earnings and therefore may lead to a decline in outward

migration. In line with this reasoning, finding evidence for a significant migration response

to natural disasters by liquidity constrained low-income countries should not be expected,

whereas insured high-income countriesmay either show no or even a negative e�ect for disas-
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ters at origin. Middle-income countries, where individuals have the financial means tomigrate

but insurance penetration rates are rather low are thus most likely to exhibit international

migration in case of natural disasters. Consequently, pooling over all country pairs across all

origin income groups might induce aggregation bias in the baseline regression.

Table 2.3 : Heterogeneity Across Origin Country Income Groups

Dependent Variable: Migration Rateij,t
Low-Income Origins Middle-Income Origins High-Income Origins

basic onset weighted basic onset weighted basic onset weighted
(1) (2) (3) (4) (5) (6)

Disaster Indexi,t −0.011 0.039 −0.001 0.003*** −0.010** −0.037
(0.03) (0.08) (0.02) (0.00) (0.00) (0.04)

Disaster Indexj,t 0.005 −0.001 −0.015** −0.030* −0.001 −0.015
(0.02) (0.01) (0.01) (0.02) (0.01) (0.02)

Controls

ln
(
GDP p.c.j,t/GDP p.c.i,t

)
0.895** 0.801* 0.370 0.369 −0.322 −0.540
(0.45) (0.45) (0.23) (0.23) (0.42) (0.41)

Civil Wari,t −0.052 −0.050 0.050* 0.043 0.172 0.158
(0.04) (0.04) (0.03) (0.03) (0.21) (0.20)

Civil Warj,t −0.179* −0.177* −0.019 −0.027 −0.477*** −0.484***
(0.10) (0.10) (0.04) (0.04) (0.13) (0.13)

RTAij,t 0.577** 0.523** 0.173 0.213 0.705*** 0.714***
(0.27) (0.26) (0.17) (0.18) (0.23) (0.23)

ln
(
Mig. Stockij,t−1 + 1

)
0.386*** 0.390*** 0.372*** 0.371*** 0.249*** 0.247***
(0.04) (0.04) (0.05) (0.04) (0.05) (0.05)

ln (Distanceij) −0.488*** −0.481*** −0.780*** −0.776*** −0.694*** −0.696***
(0.12) (0.12) (0.10) (0.10) (0.11) (0.11)

Contiguityij 1.111*** 1.103*** 0.521*** 0.506*** 0.130 0.121
(0.22) (0.21) (0.16) (0.16) (0.36) (0.35)

Common Languageij 0.240* 0.243* 0.881*** 0.876*** 0.139 0.141
(0.14) (0.15) (0.14) (0.14) (0.29) (0.29)

Colonyij 0.580 0.543 0.313 0.346* 0.709*** 0.723***
(0.39) (0.38) (0.21) (0.21) (0.25) (0.25)

Log-Likelihood −8.183 −8.179 −38.895 −38.905 −24.749 −24.759
Observations 11,302 11,302 33,080 33,080 22,291 22,291

Note: ***, **, * denote significance at the 1%, 5% and 10% level, respectively. Constant, origin, destination, and decade fixed e�ects and MR terms are
included but not reported. Natural disaster indicator components are weighted with their inverse standard deviation. Natural disasters are scaled by
log land area. Robust standard errors reported in parentheses.

Table 2.3 tests this hypothesis and shows estimates by origin country income groups.37

Columns (1) and (2) contain the results for low-income origin countries only. In line with

the liquidity-constraint hypothesis (see also Beine and Parsons, 2017), no statistically sig-

nificant evidence for migration e�ects of the disaster indices is found. Columns (3) and (4)

contain the results for middle-income origins. Evaluated at the mean, the basic result in

37For descriptives on the distributions of natural disaster types across low-, middle- and high-income coun-
tries see Figure B.1 in Appendix B.1.2.
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column (3) suggests a negative and statistically significant pull e�ect of disasters in poten-

tial destinations of -7.3%; (100 × [e−0.015·5.075 − 1]). If the time dimension is considered

in column (4), disasters in the origin increase migration by 1.4% (evaluated at the mean;

(100 × [e0.003·4.529 − 1]) whereas disasters in the destination have a negative pull e�ect of

-11.5% at themean; (100× [e−0.030·4.085−1]). Thus, push and pull e�ects are largely in linewith

priors for the group of middle-income origin countries. Again, timing is important to identify

causal e�ects. Columns (5) and (6) show results for high-income origins. A negative and statis-

tically significant push e�ect of natural disasters is observed for the basic index in column

(5). This finding is in line with the hypothesis that natural disasters might potentially hamper

outward migration from high-income countries due to positive income e�ects resulting from

the replacement of insured losses. Moreover, given the absence of evidence for significant

push e�ects for low- and middle-income country groups in columns (1) and (3), it follows that

high income origin countries do drive the negative push e�ects in column (4) of Table 2.1. If

weighting by onset month in column (6), the evidence for this e�ect again vanishes.

The result thatmiddle-incomecountries showapositive and statistically significantpushe�ect

of natural disasters on bilateral migration is in line with findings frommonadic regressions

by Cattaneo and Peri (2016). Interestingly, control variables also show heterogeneity across

income groups: While there is no evidence that overall wage di�erences, proxied by relative

GDPper capita, play a significant role for thedecision tomigrate frommiddle- andhigh-income

countries, they significantly drive migration from low-income countries. A 10% increase in

the per capita GDP ratio implies a nearly proportionate increase in the bilateral migration

rates from low-income countries by 8–9%. Moreover, armed conflicts in the destination have

a very strong deterring e�ect on potential migrants from high-income countries (who seem to

have a strong preference for safety), a small but significantly positive e�ect for low-income

countries (for whom othermotives, like escaping poverty, might be dominant), and a negative

but non-significant e�ect for middle-income countries. A similar ranking, albeit with less

pronounced di�erences in magnitude, arises for RTAs. Contiguity, on the other hand, plays

the strongest role for low-income countries, with more than three times the e�ect on the

migration rate than for middle-income countries. There is no evidence for adjacency to play

a role for high-income countries. This finding supports the hypothesis that migrants from

poorer countries are on average more financially constrained, as moving to neighboring

countries implies lower migration cost. Common language is important for middle-income

countries, more than doubling the bilateral migration rate, but there is no evidence that it
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a�ects migration for high-income economies. On the other hand, colonial relationships are of

major importance for high-income origins, but less so for low- andmiddle-income economies.

Finally, diasporas are equally important for low- andmiddle-income, but less for high-income

countries.

It can be concluded that heterogeneity in migration behavior exists across income groups

of countries. This leads to aggregation bias if considered jointly andmay be responsible for

some counterintuitive or absent evidence (e�ects level out) presented earlier in this paper.

2.6 Robustness Analysis

Migration might only take place if major events drive people out of their home country, while

small scale events may not exert an e�ect on international migration. As a first check, the

disaster intensity index is thus re-constructed using only the top two standard deviations of

the disaster type indicators while setting smaller events to zero. This way, the disaster variable

captures major events only. Table 2.4 column (1) shows that this modification does not lead

to statistically significant estimates.38

As noted earlier, it might take some time for people to react to disasters and to come up

with the decision to migrate, particularly across international borders. Thus, an alternative

approach is chosen as a second check. Instead of applying a bell-shaped onset weighting

scheme, all disasters that took place within two years before each census are excluded from

the disaster index. The results are shown in Table 2.4 column (2). Again, the disaster index

does not show evidence for a significant impact on the bilateral migration rate, but might also

not consider timing properly.39

The frequency rather than the intensity might matter for the migration decision. The disaster

variable is changed from physical intensities capturing the strength of disastrous events to

a count variable capturing their frequency. For each disaster type, the number of months

within a decade is counted in which an event beyond a specified threshold40 has occurred.

This number is then summed up over all types and transformed into an inverse weighted

38If the simple instead of the sd-weighted index is used, results do not change.
39Again, using the simple instead of the sd-weighted index does not change this result.
40Chosen thresholds are given in Appendix B.1.2, Table B.2.
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Table 2.4 : Sensitivity Analysis

Dependent Variable: Migration Rateij,t (log in OLS)

Exclude Disasters (Intensity) Disaster Frequency (Count) OLS (Intensity) Heckman Selection (Intensity)

< Max -2 sd Census -2 Years basic onset weighted basic onset weighted Probit, onset weighted OLS, onset weighted
(1) (2) (3) (4) (5) (6) (7) (8)

Disaster Indexi,t −0.334 −0.005 −0.038 −0.013 0.000 0.000 0.000 0.000
(0.38) (0.02) (0.05) (0.12) (0.00) (0.00) (0.00) (0.00)

Disaster Indexj,t 0.028 0.001 0.018 −0.039 −0.002 −0.006 −0.002*** −0.006
(0.07) (0.01) (0.06) (0.14) (0.00) (0.00) (0.00) (0.00)

Controls

ln
(
GDP p.c.j,t/GDP p.c.i,t

)
0.210 0.238 0.216 0.214 0.117** 0.117** 0.008 0.109**
(0.23) (0.22) (0.24) (0.23) (0.05) (0.05) (0.03) (0.05)

Civil Wari,t 0.052** 0.056** 0.055** 0.059** 0.005 0.006 0.006 0.005
(0.03) (0.03) (0.03) (0.03) (0.01) (0.01) (0.00) (0.01)

Civil Warj,t −0.260** −0.277** −0.259** −0.259** 0.015 0.015 −0.022*** 0.018*
(0.12) (0.11) (0.11) (0.11) (0.01) (0.01) (0.00) (0.01)

RTAij,t 0.290** 0.310** 0.290** 0.279** −0.066** −0.064** 0.064*** −0.065**
(0.12) (0.12) (0.12) (0.12) (0.03) (0.03) (0.02) (0.03)

ln
(
Mig. Stockij,t−1 + 1

)
0.358*** 0.354*** 0.357*** 0.357*** 0.590*** 0.590*** 0.033*** 0.584***
(0.03) (0.03) (0.03) (0.03) (0.01) (0.01) (0.00) (0.01)

ln (Distanceij) −0.745*** −0.719*** −0.746*** −0.748*** −0.521*** −0.520*** −0.283*** −0.475***
(0.08) (0.08) (0.08) (0.08) (0.02) (0.02) (0.01) (0.02)

Contiguityij 0.373** 0.450*** 0.379** 0.378** 0.457*** 0.458*** 0.027 0.454***
(0.17) (0.15) (0.16) (0.16) (0.07) (0.07) (0.06) (0.07)

Common Languageij 0.506*** 0.480*** 0.504*** 0.506*** 0.384*** 0.383*** 0.167*** 0.349***
(0.11) (0.11) (0.11) (0.11) (0.03) (0.03) (0.02) (0.03)

Colonyij 0.469*** 0.488*** 0.472*** 0.467*** 0.007 0.009 −0.014 0.011
(0.17) (0.17) (0.17) (0.17) (0.09) (0.09) (0.07) (0.09)

Common Religionij 0.234***
(0.03)

ρ −0.239***
(0.07)

σ 0.352***
(0.01)

Log-Likelihood/R2 −74.013 −73.122 −74.019 −74.022 0.783 0.783 -68,899.91
Observations 66,673 66,048 66,673 66,673 23,255 23,255 65,386

Note: ***, **, * denote significance at the 1%, 5% and 10% level, respectively. Physical intensity indicator components are weighted with their inverse standard deviation. Natural disasters are scaled by log land
area. Constant, origin, destination, and decade fixed e�ects and MR terms are included but not reported. Robust standard errors reported in parentheses.
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index. Columns (3) and (4) in Table 2.4 show that the disaster frequency does not imply any

evidence for statistically significant push or pull e�ects, whether or not timing is considered.

Fourth, deviating from using FE PPML as the preferred estimation technique, FE OLS results

are presented. Estimating OLS causes a loss of 43,418 observations for which the dependent

variable is zero. Columns (5) and (6) show that disasters do not exert a significant e�ect on

migration.41 One peculiarity of the OLS results is that significant negative e�ects are obtained

for RTAs. This finding occurs in OLS due to the lack of country-pair fixed e�ects, which causes

omitted variable bias (for an overview of the large body of trade gravity literature on this

topic, see Head and Mayer, 2014). If bilateral fixed e�ects are included, RTA e�ects become

insignificant, but the network variable reverses (see Appendix B.1.2, Table B.5). Since the

migration data only covers three decennial waves, the inclusion of bilateral fixed e�ects is

problematic as within-group variation is limited. This problem is aggravated byOLS compared

to PPML due to zero migration flows. Hence, Beine and Parsons (2015) are followed by exclud-

ing bilateral fixed e�ects and using direct gravity controls for common country characteristics

in all previous and prospective specifications.

Finally, a Heckman selection model is estimated to explore potential heterogeneity in the

adaptation mechanism at the extensive versus the intensive margin. In the absence of a

better instrument, the Helpman et al. (2008) common religion measure is used as a selection

variable. Results suggest that natural disasters in the destination country negatively a�ect the

probability to observe a non-zeromigration rate between a country pair (column (7)), whereas,

conditional on the probability that bilateral migration takes place, there is no evidence that

disasters have any statistically significant push or pull e�ects (column (8)). Conclusively,

natural disasters rather tend to a�ect migration at the extensive margin whereas there is no

evidence for an e�ect at the intensive margin.42

41Using the simple disaster index instead yields positive push and negative pull e�ects which are statistically
significant. However, this finding is not robust, potentially due to heteroskedastic error terms. A White test
proposed by Wooldridge (2003, pp. 268-269) for applications with lengthy regressors yields White’s special
Chi-Squared test statistic of 109.07 and a p-value of 2.1e-24. The Null hypothesis of homoskedasticity is rejected
such that estimated variances under OLS are biased. PPML, beyond solving the problem of zero dependent
variables, consistently estimates the gravity equation and is robust to measurement error and di�erent patterns
of heteroskedasticity (see Santos Silva and Tenreyro, 2006; Head and Mayer, 2014; Fally, 2015). Estimating FE
PPML based on the smaller OLS sample does not yield statistically significant disaster estimates.

42Note that Heckman results are not directly comparable to PPML, which nest the intensive and extensive
e�ects in one estimate while Heckman separates them.
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2.7 Conclusion

This paper aims to provide an answer to the question on the impact of natural disasters on

international migration. To motivate the empirical strategy, a stylized gravity framework

of bilateral migration is constructed, introducing disasters as random shocks. To test the

implications empirically, a full matrix of international migration available for increments of

10 years from 1980 to 2010 and disaster data based on intensity measures of geological and

meteorological events are employed. A conditional fixed-e�ects PPMLmodel is estimated to

address the issue of zeromigration flows and potentially heteroskedastic standard errors. The

gravity estimations are augmented by the use of explicit MR terms to control for unobservable

time-varying country characteristics.

PPML findings show little robust, if at all noisy evidence for push and pull e�ects of natural

disasters on medium to long-run international relocation. Findings convey evidence that

disaster intensity in the origin causes bilateral migration to increase by 1.7% (evaluated at

the mean). This e�ect can be identified only when considering the timing of events with

respect to themigration decision, using a bell-shaped onset weighting scheme. If timing is

neglected or alternative disaster measures are applied, this finding turns out not to be robust.

Decomposing natural disasters by type does not show evidence for a clear pattern of events.

Nevertheless, when distinguishing between origin income groups, substantial heterogeneity

can be found, suggesting that natural disasters have positive push and negative pull e�ects for

middle-income countries. These are neither financially constrained (as low-income countries),

nor do they show high insurance penetration rates (as high-income countries). As a result,

examining the e�ects of natural disasters onmigration using a full country sample may lead

to aggregation bias.

Finally, it cannot be ruled out that the mere aggregation of ten-year data smooths out a big

amount of information and makes identification of causal e�ects problematic. Above all,

temporary international relocation, which is a potential mechanism for adapting to transient

natural disasters, is not captured by the data. Also, a large number of bilateral migrant stocks

is estimated rather than observed, giving rise to attenuation bias as a consequence of mea-

surement error. These are potential reasons for the absence of causal evidence. Given these

migration data restrictions, the outlined findings must therefore be taken with caution.
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Appendix B.1 Supplementary Appendix

B.1.1 Supplementary Derivations

Details on the Taylor series expansion to obtain tractable MR terms estimated in the empirical

specifications. From the theoretical derivations in section 2.2, MR terms are given by

Γ̃i,t =

∑
j

δj,t

(
θij,t

Γ̃j,t

)1−σ
 1

1−σ

, (B.1)

Γ̃j,t =

∑
i

δi,t

(
θij,t

Γ̃i,t

)1−σ
 1

1−σ

, (B.2)

where δ isNi,t/Nt orNj,t/Nt, respectively.

The first order Taylor series expansion of any function f(xi), centered at x, is given by f(xi) =

f(x)+ [f ′(x)](xi−x). Baier and Bergstrand (2009) is followed by centering around symmetric

migration frictions θij,t = θ. Both sides of equation (B.1) are divided by a constant θ1/2:

Γ̃i,t/θ
1/2 =

[∑
j δj,t

(
θij,t/θ

1/2
)1−σ

/Γ̃1−σ
j,t

] 1
1−σ (B.3)

=

[∑
j δj,t (θij,t/θ)

1−σ /
(

Γ̃j,t/θ
1/2
)1−σ

] 1
1−σ

Define Γ̂i,t = Γ̃i,t/θ
1/2, θ̂ij,t = θij,t/θ, and Γ̂j,t = Γ̃j,t/θ

1/2. Substituting these in the previous

equation gives rise to

Γ̂i,t =

[∑
j

δj,t

(
θ̂ij,t/Γ̂j,t

)1−σ
] 1

1−σ

. (B.4)

It will later be useful to rewrite equation (B.4) as

e(1−σ) ln Γ̂i,t =
∑
j

eln δj,te(σ−1) ln Γ̂j,te(1−σ) ln θ̂ij,t , (B.5)

where e is the natural logarithm operator. In a world with symmetric migration costs θij,t = θ,

connoting θ̂ij,t = 1, the latter implies

Γ̂1−σ
i,t =

∑
j

δj,tΓ̂
σ−1
j,t (B.6)
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multiplying both sides by Γ̂σ−1
i,t yields

1 =
∑
j

δj,t(Γ̂i,tΓ̂j,t)
σ−1. (B.7)

As noted in Feenstra (2004, p.158, footnote 11), the solution to this equation is Γ̂i,t = Γ̂j,t = 1.

For this reason, under symmetric migration costs θ̂ij,t = Γ̂i,t = Γ̂j,t = 1 and Γi,t = Γj,t = θ1/2.

A first-order log-linear Taylor series expansion of Γ̂i,t from equation (B.5), analogue for Γ̂j,t,

centered at θ̂ = Γ̂i,t = Γ̂j,t = 1 yields

ln Γ̃i,t = −
∑
j

δj,t ln Γ̃j,t +
∑
j

δj,t ln θij,t (B.8)

and

ln Γ̃j,t = −
∑
i

δi,t ln Γ̃i,t +
∑
i

δi,t ln θij,t. (B.9)

Using d
[
e(1−σ) ln x̂

]
/d[ln x̂] = (1− σ)e(1−σ) ln x̂, somemathematical manipulation and assum-

ing symmetry of migration costs, a solution to the above equations is

ln Γ̃i,t =

[∑
j

δj,t ln θij,t −
1

2

∑
k

∑
m

δk,tδm,t ln θkm,t

]
(B.10)

and

ln Γ̃j,t =

[∑
i

δi,t ln θij,t −
1

2

∑
k

∑
m

δk,tδm,t ln θkm,t

]
, (B.11)
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where multilateral resistances are normalized by (the square root of) population weighted

average migration frictions (the combined shock-cost measure).

In the empirical specification MR terms are calculated as

MRDISTij,t =

[(
C∑
k=1

δk,t(lnDistik + Φk,t − Φi,t)

)
(B.12)

+

(
C∑

m=1

δm,t(lnDistmj + Φj,t − Φm,t)

)

−

(
C∑
k=1

C∑
m=1

δk,tδm,t(lnDistkm + Φm,t − Φk,t)

)]
,

MRADJij,t =

[(
C∑
k=1

δk,t(Adjik + Φk,t − Φi,t)

)
(B.13)

+

(
C∑

m=1

δm,t(Adjmj + Φj,t − Φm,t)

)

−

(
C∑
k=1

C∑
m=1

δk,tδm,t(Adjkm + Φm,t − Φk,t)

)]
,

where δ denotes a states’ share of population over ’total’ world population, Nk,t/Nt and

Nm,t/Nt.

MR terms for RTA, Colony and Common Language are calculated analogously.
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B.1.2 Supplementary Tables

Table B.1 : Summary Statistics, PPML, Full Sample

mean sd min max

Migration Rateij,t 0.0002 0.003 0 0.500

Migration Flowij,t 1,726 28,712 0 4,705,677

Aggregate Disaster Indices
Disaster Indexi,t 7.370 2.842 1.616 19.557

Disaster Indexj,t 7.421 2.855 1.616 19.557

Disaster Indexi,t, onset weighted 5.777 2.247 0.767 15.522

Disaster Indexj,t, onset weighted 5.813 2.256 0.767 15.522

Disaster Indexi,t, sd weighted 5.096 21.526 0 322.040

Disaster Indexj,t, sd weighted 5.102 22.082 0 322.040

Disaster Indexi,t, onset, sd weighted 4.156 14.855 0 533.030

Disaster Indexj,t, onset, sd weighted 4.196 15.113 0 533.030

Disaster Indexi,t, major 1.873 4.061 0 17.709

Disaster Indexj,t, major 1.896 4.101 0 17.709

Disaster Indexi,t, census -2yrs 7.130 2.749 1.621 19.305

Disaster Indexj,t, census -2yrs 7.182 2.764 1.621 19.305

Disaster Countsi,t 14.137 6.144 2.565 33.542

Disaster Countsj,t 14.152 6.199 2.565 33.542

Disaster Countsi,t, onset 5.880 2.528 0.710 13.827

Disaster Countsj,t, onset 5.886 2.550 0.710 13.827

Disaster Types (basic)
Earthquakei,t 0.511 0.158 0 0.947

Earthquakej,t 0.510 0.160 0 0.947

Volcanic Explosioni,t 0.042 0.093 0 0.476

Volcanic Explosionj,t 0.043 0.093 0 0.476

Windspeedi,t 6.455 2.641 1.133 17.709

Windspeedj,t 6.502 2.649 1.133 17.709

∆ Precipitationi,t 0.329 0.278 0.008 2.936

∆ Precipitationj,t 0.333 0.282 0.008 2.936

∆ Temperaturei,t 0.023 0.018 2.1e-05 0.115

∆ Temperaturej,t 0.023 0.018 2.1e-05 0.115

Drought (SPEI)i,t 0.012 0.018 0 0.127

Drought (SPEI)j,t 0.012 0.018 0 0.127

Continued on next page
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Table B.1 – continued from previous page

mean sd min max

Disaster Types (onset weighted)
Earthquakei,t 0.418 0.155 0 0.792

Earthquakej,t 0.418 0.155 0 0.792

Volcanic Explosioni,t 0.031 0.072 0 0.311

Volcanic Explosionj,t 0.0315 0.073 0 0.311

Windspeedi,t 5.094 2.127 0.119 13.899

Windspeedj,t 5.127 2.135 0.119 13.899

∆ Precipitationi,t 0.218 0.198 0.006 1.404

∆ Precipitationj,t 0.221 0.199 0.006 1.404

∆ Temperaturei,t 0.011 0.008 9.9e-05 0.048

∆ Temperaturej,t 0.011 0.008 9.9e-05 0.048

Drought (SPEI)i,t 0.005 0.009 0 0.072

Drought (SPEI)j,t 0.005 0.009 0 0.072

Controls
ln
(
GDP p.c.j,t/GDP p.c.i,t

)
0.028 2.187 −6.149 6.149

Civil Wari,t 0.729 1.947 0 10

Civil Warj,t 0.721 1.948 0 10

RTAij,t 0.169 0.375 0 1

ln
(
Mig. Stockij,t−1 + 1

)
2.608 3.084 0 16.053

ln (Distanceij) 8.718 0.774 2.349 9.894

Contiguityij 0.021 0.143 0 1

Common Languageij 0.147 0.354 0 1

Colonyij 0.013 0.114 0 1

Note: 66,673 Observations, all disaster variables are land area weighted.
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Figure B.1 : Kernel Densities of Disaster Indicators by Country Income Groups
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Note: Observations are at decennial level. Zeros excluded for earthquakes and volcanic explosions.

Table B.2 : Standard Thresholds for Disaster Count Variables

Count Indicator Intensity Measure Bound Minimum Event Type

Earthquakes maximummagnitude ≥ 4 felt shaking of the earth with light
damage caused to buildings and
structures

Storms maximum sustained wind speed ≥ 64 knots some damage to buildings and trees,
extensive damage to to power lines and
poles
(Cat. 1 on Sa�ir-Simpson Hurricane
Scale)

Volcanoes maximum Volcanic Explosivity Index (VEI) ≥ 1 light eruption with ejecta volume>
10,000m3

Extreme Precipitation positive di�erence of monthly mean
precipitation frommonthly long-run
mean

≥ 1.5 mm/day excess-rain anomaly

Extreme Temperatures absolute di�erence of monthly mean
temperature frommonthly long-run
mean

≥ 1.5°C temperature anomaly

Droughts mean Standardized Precipitation
Evapotranspiration Index (SPEI)

≤ 0 mild drought (Vicente-Serrano et al.,
2010)
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Table B.3 : Countries in PPML Specification

Case numbers Case numbers

Origin Destination Origin Destination

Afghanistan 151 0 Kuwait 307 318

Albania 439 450 Kyrgyzstan 439 450

Algeria 440 289 Lao People’s Democratic Rep. 439 450

Angola 439 450 Latvia 307 318

Argentina 439 450 Lebanon 440 289

Armenia 307 318 Lesotho 439 450

Australia 439 450 Liberia 439 450

Austria 439 450 Libya 307 318

Azerbaijan 307 318 Lithuania 307 318

Bahamas 439 450 Luxembourg 439 450

Bahrain 439 450 Madagascar 439 450

Bangladesh 439 450 Malawi 439 450

Belarus 307 318 Malaysia 439 450

Belgium 439 450 Mali 439 450

Belize 439 450 Mauritania 439 450

Benin 439 450 Mauritius 439 450

Bhutan 150 161 Mexico 439 450

Bolivia (Plurinational State) 439 450 Mongolia 439 450

Bosnia and Herzegovina 307 318 Morocco 440 289

Botswana 440 289 Mozambique 439 450

Brazil 439 450 Namibia 439 450

Brunei Darussalam 439 450 Nepal 439 450

Bulgaria 439 450 Netherlands 439 450

Burkina Faso 439 450 New Zealand 439 450

Burundi 439 450 Nicaragua 439 450

Cambodia 307 318 Niger 439 450

Cameroon 439 450 Nigeria 439 450

Canada 439 450 Norway 439 450

Central African Rep. 439 450 Oman 439 450

Chad 439 450 Pakistan 440 289

Chile 439 450 Panama 439 450

China 440 289 Papua New Guinea 439 450

China, Hong Kong (SAR) 439 450 Paraguay 439 450

Colombia 439 450 Peru 439 450

Continued on next page
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Table B.3 – continued from previous page

Case numbers Case numbers

Origin Destination Origin Destination

Congo 439 450 Philippines 439 450

Costa Rica 439 450 Poland 307 318

Croatia 307 318 Portugal 439 450

Cuba 439 450 Puerto Rico 439 450

Cyprus 439 450 Qatar 150 161

Czech Rep. 307 318 Rep. of Korea 439 450

Côte d’Ivoire 439 450 Rep. of Moldova 439 450

Democratic Rep. of the Congo 440 289 Romania 307 318

Denmark 439 450 Russian Federation 439 450

Djibouti 307 318 Rwanda 439 450

Dominican Rep. 439 450 Saudi Arabia 439 450

Ecuador 439 450 Senegal 439 450

Egypt 439 450 Sierra Leone 439 450

El Salvador 439 450 Singapore 439 450

Equatorial Guinea 307 318 Slovakia 307 318

Eritrea 308 157 Slovenia 307 318

Estonia 307 318 Solomon Islands 307 318

Ethiopia 439 450 South Africa 439 450

Fiji 439 450 Spain 439 450

Finland 439 450 Sri Lanka 439 450

France 439 450 Sudan 439 450

Gabon 439 450 Suriname 439 450

Gambia 439 450 Swaziland 439 450

Georgia 439 450 Sweden 439 450

Germany 439 450 Switzerland 439 450

Ghana 440 289 Tajikistan 439 450

Greece 439 450 Thailand 439 450

Guatemala 439 450 TFYR of Macedonia 307 318

Guinea 439 450 Togo 439 450

Guinea-Bissau 439 450 Trinidad and Tobago 439 450

Guyana 439 450 Tunisia 439 450

Haiti 307 318 Turkey 439 450

Honduras 439 450 Turkmenistan 439 450

Hungary 307 318 Uganda 439 450

Iceland 439 450 Ukraine 439 450

Continued on next page
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Table B.3 – continued from previous page

Case numbers Case numbers

Origin Destination Origin Destination

India 439 450 United Arab Emirates 150 161

Indonesia 439 450 United Kingdom 439 450

Iran (Islamic Rep.) 439 450 United Rep. of Tanzania 439 450

Iraq 439 450 United States of America 439 450

Ireland 439 450 Uruguay 439 450

Israel 439 450 Uzbekistan 439 450

Italy 439 450 Vanuatu 439 450

Jamaica 439 450 Venezuela (Bolivarian Rep.) 439 450

Japan 439 450 Viet Nam 440 289

Jordan 439 450 Yemen 307 318

Kazakhstan 307 318 Zambia 439 450

Kenya 439 450 Zimbabwe 439 450

Note: Case numbers extracted from post-estimation sample tabulation.
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Table B.4 : Baseline Results, Not Controlling for Migrant Networks

Dependent Variable: Migration Rateij,t
basic onset weighted

simple sd weighted simple sd weighted
(1) (2) (3) (4)

Disaster Indexi,t −0.112 −0.010*** −0.061 0.004***
(0.09) (0.00) (0.11) (0.00)

Disaster Indexj,t 0.018 −0.001 0.001 −0.008
(0.10) (0.01) (0.14) (0.01)

Controls

ln
(
GDP p.c.j,t/GDP p.c.i,t

)
0.239 0.282 0.240 0.271
(0.22) (0.22) (0.22) (0.22)

Civil Wari,t 0.037 0.039 0.025 0.042
(0.03) (0.03) (0.03) (0.03)

Civil Warj,t −0.203** −0.200** −0.198** −0.199**
(0.08) (0.08) (0.08) (0.08)

RTAij,t 0.617*** 0.629*** 0.634*** 0.632***
(0.12) (0.12) (0.12) (0.12)

ln (Distanceij) −1.309*** −1.311*** −1.309*** −1.309***
(0.08) (0.08) (0.08) (0.08)

Contiguityij 0.903*** 0.901*** 0.897*** 0.900***
(0.18) (0.18) (0.18) (0.18)

Common Languageij 1.017*** 1.016*** 1.015*** 1.019***
(0.16) (0.16) (0.16) (0.16)

Colonyij 1.434*** 1.436*** 1.435*** 1.438***
(0.20) (0.20) (0.20) (0.20)

Log-Likelihood −76.644 −76.685 −76.577 −76.675
Observations 66,673 66,673 66,673 66,673

Note: ***, **, * denote significance at the 1%, 5% and 10% level, respectively. Constant, origin, destina-
tion and decade fixed e�ects and MR terms are included but not reported. Natural disasters are scaled
by log land area. Robust standard errors reported in parentheses.
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Table B.5 : OLS, Full Sample, 1980-2010, Bilateral Fixed E�ects

Dependent Variable: Migration Rateij,t
basic onset weightd

simple sd weighted simple sd weighted
(1) (2) (3) (4)

Disaster Indexi,t 0.059** −0.062 0.070* 0.106
(0.03) (0.08) (0.04) (0.08)

Disaster Indexj,t −0.174*** −0.196** −0.070* 0.269***
(0.03) (0.08) (0.04) (0.09)

Controls

ln
(
GDP p.c.j,t/GDP p.c.i,t

)
0.371*** 0.398*** 0.419*** 0.415***
(0.06) (0.06) (0.06) (0.06)

Civil Wari,t 0.011 0.010 0.008 0.012
(0.01) (0.01) (0.01) (0.01)

Civil Warj,t 0.027*** 0.026*** 0.032*** 0.033***
(0.01) (0.01) (0.01) (0.01)

RTAij,t −0.052 −0.049 −0.050 −0.043
(0.06) (0.06) (0.06) (0.06)

ln
(
Mig. Stockij,t−1 + 1

)
−0.114*** −0.121*** −0.122*** −0.125***
(0.01) (0.01) (0.01) (0.01)

R2(within) 0.079 0.071 0.071 0.071
Observations 23,255 23,255 23,255 23,255

Note: ***, **, * denote significance at the 1%, 5% and 10% level, respectively. Constant, bilateral and
decade fixed e�ects, and MR terms are included but not reported. Robust standard errors reported in
parentheses.
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3 Shedding Light on the Spatial Di�usion of Disasters∗

3.1 Introduction

A large body of research suggests that global warming is a reality and that it will result in more

frequent andmore extreme natural disasters; see IPCC (2014) for a synthesis report. Hence, it

is important to improve the understanding of the economic consequences of natural disasters

around the globe. This paper provides an attempt at measuring the average impact on local

economic activity of various types of meteorological and geological events and their spatial

spillovers.

While the direct material destruction and the toll on human lives caused by disasters are all

too evident, measuring their economic consequences is prone to di�iculties. Early papers

have investigated the relation between direct disaster damages, deaths, and economic de-

velopment (see e.g. Kahn, 2005; Anbarci et al., 2005). Building on these, a growing literature

predominantly uses aggregated cross-country data to investigate the e�ect of natural dis-

asters on economic growth.1 Findings depend heavily on the type of disaster data, country

sample, and the types of disasters studied (Raddatz, 2007; Cavallo et al., 2013; Felbermayr

and Gröschl, 2014).

Several data and specification issues explain the ambiguity of findings. First, many studies

use information on the incidence of natural disasters from databases drawn from insurance

records or news.2 This introduces severe reporting, selection and endogeneity biases, as both

insurance penetration and damage caused are correlated with development (Felbermayr

and Gröschl, 2014). In addition, such data lack information on physical intensities of events

∗This chapter is based on joint work with Gabriel Felbermayr, Jasmin Gröschl, Mark Sanders and Vincent
Schippers. It is based on the article “Shedding Light on the Spatial Di�usion of Disasters”, CESifo Working Paper
No. 7146, July 2018. Grateful thanks apply to Ilan Noy, Wouter Botzen and participants at FIWWorkshop on Inter-
national Economic Networks Vienna, Development Economics and Policy Conference Zurich, IOSE St.Petersburg,
EGIT Düsseldorf, ETSG Florence, IO and Trade Seminar at LMU Munich, Seminar at Victoria University Wellington,
Workshop on Geodata and Economics Braunschweig and the Conference on Environmental Economics in Orléon
for useful comments and suggestions.

1For comprehensive literature reviews, see Cavallo and Noy (2011) and Klomp and Valckx (2014).
2For example, this is the case for the o�en used EM-DAT data base or the data provided by Munich-Re, the

world’s largest reinsurance firm.
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that have not caused su�icient damage to qualify as a disaster (Strömberg, 2007). To tackle

these issues, Felbermayr and Gröschl (2014) proposed and collected a database with infor-

mation on the exogenous physical intensities of geological andmeteorological events from

primary sources at the country-level.3 Their evidence clearly suggests a negative impact, with

a substantial growth penalty for the worst 5% of shocks.

Most papers conduct their analysis at the country level. However, mapping natural events to

countries of heterogeneous size can result in measurement error and attenuation bias (Noy,

2009). By aggregating local events data to the country level, important information is lost.

First, similar events causing similar damage and impact on income show up as a major shock

in a small island state’s gross domestic product (GDP), whereas they might go unnoticed in a

large country.4 Second, the di�erence between an event striking a densely populated coastal

region or an empty desert is lost, particularly in countries with a large territory. Third, in large

economies, geographic spillover e�ects may disguise the full local treatment e�ect. Hence,

regressing country level GDP (growth) on aggregate indicators of local natural events might

yield biased estimates.

The challenge is to find a proxy of local economic activity at the same level of geographical de-

tail as the meteorological and geological data.5 Satellite technology has produced numerous

data products that contain information on human presence and activity at a very fine level of

spatial resolution. Recent papers have started to explore these data; for a survey see Donald-

son and Storeygard (2016). Night-time light emissions have been shown to strongly correlate

with economic activity (see Henderson et al., 2012; Nordhaus and Chen, 2015; Pinkovskiy

and Sala-i Martin, 2016). While Henderson et al. (2012) investigate the informational value

of night-lights in estimating economic growth at the country level, an emerging literature

investigates even smaller sub-national units: Michalopoulos and Papaioannou (2013, 2014)

focus on ethnic homelands, Hodler and Raschky (2014) on sub-national administrative units,

3https://www.cesifo-group.de/ifoHome/facts/EBDC/Ifo-Research-Data/Ifo_GAME_Dataset.
html.

4For example, Strobl (2011) illustrates that, in the United States, hurricane e�ects wash out at the state level
and evenmore so at the national level, leaving no trace in economic growth rates.

5While industrialized countries record income and production for sub-national administrative units, the
same data is scarce for most other countries. The G-Econ project provides gross product per capita data at a
1° ×1° cell level. It uses gross product data for the lowest available political subdivision. For most low-income
countries, this unit remains the national level, such that regional income estimates are largely driven by (an o�en
estimated) population distribution. This methodology leaves serious GDPmeasurement problems unaddressed
for a substantial part of the globe. As discussed by Henderson et al. (2012), national accounts are particularly
weak in low-income countries.
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Storeygard (2016) on cities, Henderson et al. (2017) on uniform grid cells and Bleakley and

Lin (2012) on locations along rivers as natural features. The broad consensus is that growth

in remotely sensed night-time light provides a very useful proxy for GDP growth over the

long-run but also accurately tracks short-run fluctuations in economic growth.

Using night-lights as a proxy for economic activity has at least three benefits for this research:

First, while growth in lights reflects growth in economic activity, measurement error in night-

lights is not correlated with the level of income per capita.6 Second, night-light information is

available for all countries at a standard geographic resolution.7 Third, GDP per capita statistics

fail to account for an o�en sizable informal economy.8 In addition, natural disasters tend to

a�ect the poorest members of society, who are o�en active in the informal economy and

whose activity is hard to measure (for an excellent discussion, see World Bank and United

Nations, 2010). Yet, being able to capture (part of) the informal sector is important to identify

the true e�ect of natural extreme events.

This study is not the first one using night-lights to assess disaster impacts at the local level.

Bertinelli and Strobl (2013) and Elliott et al. (2015) study direct hurricane and typhoon impacts

on light emission. They find reduced local light growth caused by hurricanes in the Caribbean

and typhoons in coastal China, respectively, where the size of the e�ect found is twice as large

compared to using GDP data at the country level. Although both papers are limited in regional

focus and evaluate the impact of a specific disaster type, their findings strengthen the case

for assessing disaster impacts at the local level and and propose night-light emissions as a

suitable proxy. In this paper, the empirical analysis is extended to 24,000 geographical units of

0.5°×0.5° in 197 countries over 22 years and a wide array of di�erent natural events is studied.

Zooming in on the grid cell level risks violating the standard assumption that errors are

uncorrelated across units of observation. Especially weather shocks have a spatial extent,

o�ena�ectingmultiple locationsatonce. Even though there is variationacross these locations,

exogenous treatment ispotentially spatially correlated. If spatial spillover e�ects existbetween

6This is especially relevant for studying economic impacts in developing countries, where measurement
error on the o�icial GDP statistics is large. Henderson et al. (2012) use night-lights to find improved measures of
income growth statistics for countries with low quality national accounts.

7Thus a number of low-income countries can be included that provide no national account GDP statistics
(i.e., Myanmar or Somalia), while these countries frequently do experience extreme natural events. This avoids
selection bias stemming from samples limited by availability of national accounts for GDP statistics.

8See, e.g., Schneider and Enste (2000); Schneider (2005) for worldwide estimates on the informal economy
and Tanaka and Keola (2017) for a study using night lights data to identify the informal sector.
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neighboring locations, the treatment of neighborsmay have explanatory power, such that not

explicitly modeling the spatial relationship gives rise to correlated errors and causes omitted

variable bias. Another issue arises if exogenous shocks had a spatial correlation structure

which is imperfectly captured by the disaster data. While somemeasurement error is certainly

present, there is no evidence for a systematic spatial pattern. However, there may still be

other omitted variables such as trade or migration between cells which imply that errors may

be spatially correlated even if the treatment of neighbors is controlled for and the intensity

of natural disasters has no systematic measurement error. Hence, the grid cell approach

requires an explicit modeling of spatial treatment spillovers and of spatial autocorrelation

in the residuals. The direction of these spatial spillovers depends, amongst other things, on

specialization patterns: if a neighboring region specializes in similar industries, economic

activity may shi� towards it. If a neighboring region specializes in down-stream or up-stream

industries, it may well be hurt by the shock. Hence, the relationship between the two regions

may be governed by complementarity or by substitution e�ects.9 This paper does not explore

the exact mechanisms through which such spillovers arise, but makes a first attempt to

empirically measure them.

In sum, this paper takes the analysis of economic impacts of natural disasters to global uniform

grid cell data and evaluates the local economic e�ects of natural shocks. For this, a large data

set of geological and meteorological events (ifo GAME Database) is updated and matched

with available data on night-time light emissions as a proxy for economic activity. Following

Costinot et al. (2016), the globe is partitioned into fields along latitude and longitude. Along

with economic variables, various disaster types (storms, extreme precipitation, droughts, cold

waves, and earthquakes) are mapped to specific grid cells using geographical information

systems. In this paper, a balanced panel of 24,184 grid cells is created with a resolution of

0.5°×0.5° (approximately 55×55 km at the equator) spread across 197 countries from 1992 to

2013. Using spatial econometric panel techniques, the impact of various types of events on

the growth of night-time light emissions is estimated, controlling for cell population, a set of

year- and cell fixed e�ects and accounting for spatial autocorrelation in the error term.

Main results show a reduction in night-time lights a�er storms, cold waves and extreme

precipitation events. For these types of events, there is strong evidence for positive spatial

spillover e�ects within an 80 km radius. At the mean, e�ects are moderate and range in

9This logic is well known from the international trade literature, see Hsieh and Ossa (2016) for a recent
application.
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the order of 0.1-0.3 percentage points. At the extremes of the disaster measures, e�ects are

pronounced and amount to several percentage points reduction in light growth in the short

run. More specifically, evaluated at the average estimated lights-to-GDP growth elasticity,

a one standard deviation increase in wind speeds leads to a reduction in income growth of

0.33 percentage points. With a time lag, the local e�ect is four times as large and spillovers

from one cell increase local lights growth by 0.08 percentage points, corresponding to an

income growth spillover of 0.13 percentage points for a one standard deviation increase in

wind. Similarly, a one standard deviation increase in excessive precipitation and cold waves

decrease income growth by 0.17 and 0.25 percentage points, respectively. With a time lag,

excessive precipitation increases income growth by 0.12 percentage points, while the e�ect of

cold spells persists to be negative by 0.11 percentage points. Associated contemporaneous

spillovers amount to 0.03 and 0.07 percentage points, respectively. As droughts mostly a�ect

agricultural outcomes, they do not seem to be associated with light emissions. Short-run

negative spatial spillovers of these events are largely driven by rural rather than urban cells,

suggesting that droughts cause indirect damages in rural economies.

Assessment of alternative spillover specifications indicates that disaster spillovers are a rather

local phenomenon. This implies that adaptation policies aiming at supporting the temporary

relocation of economic activity a�er a natural disaster should appreciate the very local nature

of shock e�ects and associated spillovers. An extension to the empirical framework shows

that there is evidence for heterogeneity across income groups andworld regions. In particular,

results are mainly driven by cells in low- andmiddle-income economies.

Results are robust to top- and bottom-coding, increasing the spatial radius, the temporal

aggregation method, and controlling for time-varying country characteristics.

The remainder of the paper is organized as follows: Section 3.3 describes the econometric

methodology. In section 3.2, data sources and the construction of the data set are discussed.

Section 3.4 presents baseline results and shows the existence of both local treatment e�ects as

well as spillovers to neighboring cells. Section 3.5 assesses the relevance of disaster spillovers

across longer distances. Section 3.7 o�ers an extension to the baseline framework, zooming

in on the heterogeneity of e�ects across income groups and world regions. Finally, results are

tested with respect to a number of measurement and specification variations in Section 3.6.

The last section concludes.
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3.2 Measuring Economic Activity and Natural Disasters at the
Cell Level

3.2.1 Light Emissions

First, the dependent variable, growth in night-time light emissions, which is taken as a proxy

for local economic activity, is described. The data stem from the US Air Force DefenseMeteoro-

logical Satellite Program (DMSP). They comprise yearly composite satellite images fromwhich

the yearly mean luminosity of each pixel can be extracted as a digital number (DN).10 To align

the data with the overall setup, all lights pixels that do not cover land surface are excluded11

and the literature is followedbymasking all pixelswithin gas flaring zones identified by Elvidge

et al. (2009b).12 Similarly, areas around volcanoes are masked.13

In addition, years in which more than one composite night-light image is available are dealt

with. As the on-board sensors degrade over time, the DMSP launches a new satellite every 3

to 6 years. In 12 of the 22 available years, two satellites were in orbit simultaneously. In these

cases, the satellite with the best coverage of valid nights per pixel in a given year is selected

on the basis of each respective satellite-year layer’s summary statistics.14 If the number of

10Appendix C.1.1 provides supplementary information on data generation and graphical illustration.
11Even though substantial presence of light at sea exists (e.g., fishing boats or oil rigs), this economic activity

cannot directly be attributed to any location on land and is therefore excluded. Further, natural disasters a�ect
light emission at sea di�erently from that on land. At sea, lights may bemobile and seafaring may be ceased
temporarily.

12The DMSP Operational Linescan System instruments record gas flares (typically resulting from gas disposal
at oil production sites) as heavily over-glowing areas that di�er markedly from areas with lights of electric origin.
This a�ects approximately 2,300 grid cells; 0.89% of global land area.

13Volcanic eruptions show up in light data if they involve prolonged lava flows. If they are short-lived, they are
excluded from the annual stable lights products by default. Some volcanoes (e.g., Etna in Italy and Popocatepetl
in Mexico), however, show presence of lava flows throughout the entire period observed (1992-2013). Persistent
light at all known volcanic locations is approximately circular with a consistent radius of 3 to 5 km. Consequently,
these zones are masked from the light data. Two areas with lava flows near to Kilauea (Hawaii) and Nyiranongo
(Congo, DRC) are maskedmanually to account for their spatial size and shape.

14Typically, the lights literature takes the simple average of these images (see, e.g., Chen and Nordhaus, 2011;
Henderson et al., 2012; Pinkovskiy and Sala-i Martin, 2016). However, data availability (the number of valid nights
that led to pixel construction) can be quite di�erent across satellite-years. This introduces missing observations
even if one satellite contains valid information. It also generates potentially spurious mean pixel values in which
underlying valid nights enter the final mean with inconsistent weight or may be double-counted. Satellite-year
inspection leads to selecting the layer from the respective youngest satellite with only one exception. There is a
clear time-trend in the average number of valid nights, which steadily improves as new satellites are launched
(see Table C.3 in the Appendix).
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valid nights for a radiance pixel is zero, it is masked from the data. The prepared night-light

layers are aggregated to mean light intensity for the 0.5°×0.5° grid cells.15

To translate light changes into economic magnitudes, Henderson et al. (2012) and Storeygard

(2016) estimate lights-to-GDP growth elasticities at the country and the Chinese prefecture

level, respectively. For both levels of aggregation, they find an elasticity of approximately

0.3. Following their approach allows obtaining an elasticity for the specific sample used in

this research: Grid-cell data can be aggregated to the country level using area-weights for the

spatial aggregation. Then, the natural logarithm of country level GDP in real currency units is

regressed on the log of aggregate night-light intensity and a full set of country and time fixed

e�ects.

Using the full time-span from 1992 to 2013 and the set of 197 countries, estimates suggest

an aggregate lights-to-GDP growth elasticity of 0.37. The withinR2 is equal to 0.273, so that

time variation in light emissions explains more than a quarter of the variation in GDP within a

country over time. Moreover, the country level elasticity of lights to the population density

(0.10) is not significantly di�erent from the elasticity of GDP to the population density (0.13).16

In line with recent literature connecting population density to total factor productivity (TFP)

at the grid cell level (Desmet et al., 2018), this finding fosters the adequacy of light emissions

as a proxy for gridded economic activity. Figure 3.1 compares grid cell level lights growth to

country level GDP growth over time. Even without adjusting for potential systematic measure-

ment error in the lights data, which will be taken care of econometrically, the plots indicate

substantial variation across time and provide suggestive evidence for the co-movement of

light and economic activity across the world.

3.2.2 Natural Disasters

The independent variables of interest measure the physical intensities of geological and

meteorological events. Starting fromFelbermayr andGröschl (2014), a newdata set ofmonthly

observations is compiled from various sources at 0.5° by 0.5° grid cell resolution for the

entire globe, named the Gridded GAME (geological and meteorological events) Database. The
15Additionally the number of top-coded (DN63) and bottom-coded (DN0) pixels in each cell are recorded. For

robustness, top- or bottom-coded pixels are excluded in Section 3.6.1.
16One needs to bear in mind that this correlation is obtained by aggregating data to the country-level; this

biases the strength of the lights-GDP link downwards. Detailed results are shown in Table C.4 in the Appendix. If
the regression is restricted to the same time frame as Henderson et al. (2012), the obtained elasticity is 0.35 and
the withinR2 is 0.240.
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Figure 3.1 : Growth in Lights vs. Growth in GDP

Note: Jitter-plots represent annual light growth at the cell level by country. Line-plots represent annual country
level GDP growth, scaled by factor 0.2.

database covers the period 1979–2014 and captures earthquakes, storms, droughts, extreme

precipitation and extreme temperature events.17 While this research will ultimately be at

the annual level, it is quintessential to collect primary intensity data at the monthly level

for climatic and meteorological events, the lowest common level of disaggregation. This

allows accounting for local seasonality in meteorological and climatic patterns. The main

objective is to identify extreme events, which by construction implies identifying anomalies

from local conditions. The climate science literature is followed in defining anomalies as

17Note that the Gridded GAME data includes records on volcanic eruptions and accompanying Volcanic
Explosivity Index (VEI), but since continuous presence of lava at the surface emits light that is captured in the
night-light data, no use can bemade of this measure in the present study.
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(extreme) deviations frommonthly means for an individual cell (see Kraus, 1977; Nicholson,

1986).

Data from the Incorporated Research Institutions for Seismology (IRIS)18 is used to measure

the locations of epicenters andmagnitudes of earthquakes.19 IRIS collects data from a vast

number of seismological institutions around the world and provides global coverage. Maxi-

mum earthquake magnitudes observed at epicenter locations are mapped to the respective

grid cell within a given month. As IRIS provides global coverage, any missing values are set to

zero.

Data on extreme precipitation events is also collected. These events may cause damage,
when precipitation exceeds the local percolation capacities.20 Monthly precipitation in mil-

limeters stems from the University of East Anglia Climatic Research Unit Time-Series (CRU

TS 3.23).21 The data set is based on gauge data by weather stations. As precipitation can be

discontinuous in time and fractal in space, climate scientists apply sophisticated reanaly-

sis methods to produce high-quality estimates for monthly precipitation covering all land

areas (excluding Antarctica) at 0.5° resolution (see Harris et al., 2014). CRU compiles and

homogenizes station data from numerous sources into a consistent format, assessing global

precipitation variability and additional variables that allow the derivation of drought indices,

such as the Standardized Precipitation-Evapotranspiration Index (SPEI). To identify extreme

precipitation events by cell at the monthly level, location-specific seasonality and systematic

spatial di�erences are taken into account. Following the climatological literature, standard-

ized anomalies are calculated by subtracting the long-run (1979-2014) mean precipitation

observed in a cell for a given month and standardizing it with the corresponding cellular

long-run standard deviation for that month:

γpreci,m,y =
xpreci,m,y − x̄

prec
i,m

σpreci,m

, where i = cell,m = month, y = year.

18http://service.iris.edu/fdsnws/event/docs/1/builder/
19Magnitudes provided (e.g., Richter Scale, Moment Magnitude) di�er across earthquakes, but all follow a

logarithmic scale, are valid in their respective range and can be compared with each other.
20Information on flood events (their extent and depth) at the grid cell level, as provided by the Dartmouth

Flood Observatory, would be preferred, but no such data is available with global and consistent coverage.
Kocornik-Mina et al. (2015) use maps of 53 selected large floods to study their impact on economic activity at a
very fine 1×1 km resolution. Their estimates suggest economic e�ects in a similar order of magnitude as the
ones found by this study and exhibit the same dynamic pattern.

21http://browse.ceda.ac.uk/browse/badc/cru/data/cru_ts/cru_ts_3.23/data.
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This indicator measures both positive and negative precipitation extremes. As extreme precip-

itation events which potentially exceed local percolation capacities are of particular interest,

the constructed monthly precipitation indicator is censored at zero.22 The resulting mea-

sure records the positive deviation of precipitation from the long-run monthly mean in a cell

accounted in units of standard deviation from its mean.

To capture droughts, the SPEI is calculated from gridded data on precipitation (PRE) and

potential evapotranspiration (PET) contained in the CRU TS 3.23 data set. This takes into ac-

count the amount of water coming in (precipitation) and the amount lost (evapotranspiration),

resulting in a climatic water balance for each cell in a given month. (Vicente-Serrano et al.,

2010) is followed23 to construct a cell-specific monthly SPEI that has a zero mean, a standard

deviation of one and is theoretically unbounded. Negative values indicate drought events,

hence, a zero-censored version of the constructed indicator is used.24 Hot weather condi-

tions enter the SPEI as part of potential evapotranspiration. The drought indicator therefore

includes heat waves to the extent that they are accompanied by dry conditions.

Coldwaves can causemajor disruption to both social and economic activity. To capture these
events, gridded 0.5° resolution land surface temperature in degrees Celsius is used25, compiled

by the Climate Prediction Center (CPC) of the National Oceanic and Atmospheric Adminis-

tration (NOAA). This data set combines two large sources of station observations collected

from the Global Historical Climatology Network (GHCN) v2 and the Climate Anomaly Moni-

toring System (CAMS).26 To obtain global spatio-temporal coverage and consistency, unique

reanalysis methods are applied to the source data (see Fan and Van den Dool, 2008). Again,

the grid cell resolution is perfectly consistent with Gridded GAME such that observations are

merged by longitude and latitude of cells’ geographic centers. Cell-specific low temperature

events at the monthly level are identified as standardized anomalies, analogous to extreme

precipitation events, by taking location-specific seasonality and systematic spatial di�erences

in the climatology into account. Hence, temperature is normalized by subtracting the long-run

22The uncensored precipitationmeasure is recorded in the Gridded GAME database. While negative index
values might hint at droughts, a more sophisticated index proposed in the hydrological literature is used.

23The climatic water balance (PRE−PET) is standardized for each cell with a log-logistic distribution function,
applying the unbiased probability weighted moments method to data from the current and the respective past
n− 1months with n ∈ [1, 3, 6, 9, 12]. The reference period to obtain the distribution parameter is 1901–2014.

24The converse argument that positive values represent extreme precipitation events is, however, not true.
25Mean surface temperatures provided in Kelvin is converted to Celsius: °C = °K− 273.1
26http://www.esrl.noaa.gov/psd/data/gridded/data.ghcncams.html.
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(1979-2014) mean temperature observed in a cell for a givenmonth and standardizing this

deviation by the cell long-run standard deviation for that month:

γtempi,m,y =
xtempi,m,y − x̄

temp
i,m

σtempi,m

, where i = cell,m = month, y = year.

This indicator reflects bothpositive andnegative temperature extremes. To isolate information

on cold wave treatment, positive monthly anomalies are censored and negative ones are

expressed in absolute terms. The resulting cold wave indicator records negative deviations

of surface temperature from the long-run monthly mean at the cell, accounted in units of

standard deviation from this mean.

To examine storms, a combinedmeasure is created using information onmaximummonthly

sustained wind speeds from two distinct sources. The International Best Track Archive for Cli-

mate Stewardship (IBTrACS) Version v03r0927 conveys information onmoving center-locations

with respective wind speeds of tropical cyclones. The Global Summary of the Day (GSOD)

statistics28 contain wind speedsmeasured at weather stations. The lack of gridded data poses

a challenge: The spatial spillover analysis requires a panel which is balanced and provides at

least one neighbor per grid cell. Given the impermanence of cyclones and both the uneven

spatial distribution and inter-temporal fluctuation of stations, readily available wind speed

data is insu�icient to provide these ingredients.29 Moreover, available point-location data

does not accommodate the spatial dimension of storms. Consequently, two types of spatial

interpolation techniques are applied. A wind field model provided and described in detail by

Geiger et al. (2017) is used to generate continuous griddedwind field cells from IBTrACS, which

provides distributions of surface wind speeds around hurricane centers. The model uses all

available information on wind speed, pressure and direction to compute sustained winds

speeds thatmost likely occurred in cells surrounding available data points. Figure 3.2 presents

hurricane Katrina as an example of how raw data are transformed to a wind field. To capture

summer and winter storms, cells are filled with gridded non-cyclone wind speeds. GSOD

27http://www.ncdc.noaa.gov/oa/ibtracs/index.php?name=ibtracs-data.
28ftp://ftp.ncdc.noaa.gov/pub/data/gsod.
29Balancing reduces the sample to cells with at least one station or hurricane center in every period. Simply

setting cellswithmissingwind speed information to zero inducesmeasurement error as a truemonthlymaximum
wind speed of zero is very unlikely. Figure C.2 in the Appendix visualizes observational losses resulting from
balancing if wind speeds are not interpolated.
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Figure 3.2 : Hurricane Katrina – IBTrACS (l.) vs. Wind Field (r.)

data are combined with a global kriging spatial interpolation algorithm (see Krige, 1951).30

Finally, a combined wind speed measure is constructed, which prefers wind field information

on hurricanes, cyclones or typhoons – if any such event has a�ected the cell – to the cell’s

kriged station wind speed. The resulting wind speed indicator is themaximum sustainedwind

speed for a cell-month combination, measured in knots.

As night-lights are provided annually, the monthly physical intensities are aggregated to an

annual intensity indicator for each type. Indicators distributed around zero need to be split,

such that extreme events from both tails do not cancel out. Measures of cold waves and

droughts need no further adjustment, except censoring positive index values in the monthly

data. To aggregate extreme precipitation, negative index values of the monthly precipitation

measure are censored.

A straightforward aggregation approach would be to take the simple mean over all monthly

observations in a cell for each calendar year. This would, however, introduce measurement

error and bias, as all monthly observations within each year would be given the same weight.

Consequently, a disaster that occurred earlier in a year may have had a di�erent impact, with

30Haslett and Ra�ery (1989) were the first to adopt kriging to a wind speed context by modeling the spatial
distribution of Irish wind power resources using historical wind speed data. Using daily European climate data,
Hofstra et al. (2008) show that kriging performs best out of six interpolationmethods. Kriged predictions are
based on the aerial (semi-)variance in wind speeds across locations in relation to the distance between locations.
These predictions convey more information about the spatial persistence of observed values than alternative
interpolation methods, e.g., inverse distance weighting, where a linear decay across space is imposed as a
structural assumption. The exact procedure is described in detail in Appendix C.1.2.

92



3 Shedding Light on the Spatial Di�usion of Disasters

respect to the number of months in which luminosity has been captured by the satellites

a�er the event, than one that happened later. To take this dynamic relationship into account,

a rolling-windowweightedmean for each type is calculated, weighting it by the number of

months it a�ected luminosity. This ensures a uniform take on potential disaster impacts,

allowing all realizations to a�ect light growth for 12 consecutivemonths.31 The final indicators

capture weighted annual averages of the monthly indicator values from the Gridded GAME

database, reflecting disaster intensity by cell and year. Figure 3.3 describes the distributions

of aggregated variables.

Figure 3.3 : Kernel Densities of Annual Aggregate Physical Intensities

0.000

0.025

0.050

0.075

10 20 30 40

Annual average maximum monthly
 sustained wind speed (in kt)

Wind Speeds

0

1

2

0.0 0.5 1.0 1.5
Annual average positive deviation of

 precipitation from long−run monthly mean
 over long−run monthly sd (in sd)

Precipitation

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0
Annual average negative Standardized

 Precipitation−Evapotranspiration
 Index (SPEI3, absolute)

Droughts

0

2

4

6

0.0 0.5 1.0
Annual average negative deviation of

 temperature from long−run monthly mean
 over long−run monthly sd (in sd, absolute)

Cold Waves

0.0

0.5

1.0

1.5

0 1 2 3 4 5

Annual average monthly maximum
 magnitude (non−zeroes)

Earthquakes

Note: Density distributions of aggregate annual physical intensities. All measures are reported over the full
sample, except earthquakes, for which the density over the non-zero magnitudes is reported. Note that 80% of
cell-years show zero earthquake magnitude in the full sample.

31It must be recognized that, in principle, longer lasting disaster impacts are possible. These are taken into
account by including a temporal lag of the treatment variable into the regressions. In the robustness section,
results are provided which use the simple annual mean as an alternative.
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Note that by construction of the weighted annual average, the range of the distributions is

smaller than at themonthly level. Table 3.1 provides examples of natural events and illustrates

how these are reflected in the yearly aggregates in comparison to the monthly input data.

Corresponding cell means and cell standard deviations of the yearly aggregate measure are

provided. The examples show that extreme events lie way above the cell means and in the

tail of the cell-specific distributions. Full summary statistics on yearly aggregates for the

estimation sample are provided in Table C.2 in the Appendix.

Table 3.1 : Representation of Natural Events in the Monthly Data vs. the Yearly Aggregates

Event Date Place Lat Lon Month Year C-Mean C-SD

Hurricane Katrina 08/2005 New Orleans, USA 28.75 -89.25 138 kt 38.3 kt 28.9 kt 3.4
Odisha Cyclone 10/1999 Odisha, India 19.75 86.25 128 kt 24.8 kt 17.8 kt 3.2

Haiti Earthquake 01/2010 Haiti 18.25 -72.25 7.7 1.3 0.2 0.3
Kobe Earthquake 01/1995 Kobe, Japan 34.75 135.25 7.3 3.8 2.1 0.8

Extreme Rain & Flash-Flood +
Heavy Prec. (Ohio Winterstorm)

06/2013
12/2013

Maryville, Missouri, USA 35.75 -83.75
2.66
4.16

1.52 0.43 0.35

Torrential Rains 11/1994 Kairo/Nile Valley, Egypt 30.25 32.25 4.56 0.56 0.23 0.15

UK Record Winter 12/2010 Country-Wide, UK 55.25 -2.25 2.30 0.67 0.43 0.09
Heavy Coldwave 07/2003 Cuzco Region, Peru -12.75 -71.25 2.04 0.59 0.49 0.11

Drought (prolonged) 01/2012 Country-Wide, Mexico 20.25 -104.25 1.63 0.80 0.52 0.17
Drought (prolonged) 02/1992 Country-Wide, Zimbabwe -21.25 31.75 2.89 1.38 0.44 0.40

Note: Columns Lat and Lon represent geographic coordinates of grid cell centroids for reported values. Month represents maximum index
realizations of respective events in the monthly raw data, observed in the month of occurrence. Year represents the corresponding (simple
mean) aggregate over 12 months of the year. C-Mean and C-SD refer to cell-specific distributions of yearly aggregates.

The structure of the disaster intensity variables combined with the fixed e�ects approach

allows letting the data decide which cell-specific events are extreme.32 It is indeed these

(extreme) deviations that form disaster events this research is ultimately interested in.33

3.2.3 Population

A key control variable, population at the pixel level, stem from the Gridded Population of the

World (GPW) collection provided by the Center for International Earth Science Information

Network (CIESIN). The data contain 5-year target estimates based on census inputs gathered

at the lowest administrative units available, which are redistributed from their administrative

32Note that the fixed e�ects essentially demean the measures, leaving deviations from the cell-mean as the
source of disaster identification.

33Note that point estimates on the respective disaster variables cannot be directly compared as measures
are based on di�erent units of account.
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census boundaries to a uniform pixel grid by using aerial weights.34 Pixel data are aggregated

to grid cell units by summing population numbers within each cell. To interpolate the years

between the given 5-year periods, exponential population growth is assumed.

3.3 Empirical Strategy

The aim of this research is to identify the local average treatment e�ect of various types of

natural events at the grid level. This requires accounting for the spatial structure of the data

both conceptually and econometrically. A grid cell approach is taken with 0.5°×0.5° resolution.

This coincides with primary data records onmeteorological and climatological events and

provides a natural starting point. Superimposing this arbitrary layout has the advantage that

it intersects with actual economic units that may show a high connectivity and clustering.

Observational units are therefore entirely exogenous.35

A first somewhat naive approach that ignores potential spillovers and the spatial structure of

error terms is a simple panel fixed e�ects growth estimation, in which within-cell variation of

year-to-year growth in average night-light emission is related to the intensity of events in that

year:36

∆`t = `t−1γ +Dtβ
0 +Xtδ

0 + ν + π + ut (3.1)

where theK × 1 vector∆`t captures the growth rate in night-light emissions expressed in

yearly changes of the logarithm of mean night-light intensity `t ≡ ln
(
lightt

)
for each of the

K grid cells,∆`t ≡ `t−`t−1. The disaster treatment variableDt is aK×P matrix of physical
intensities (and temporal lags) andXt is aK×N matrix ofN control variables (population) at

thegrid cell level in year t. π denotesa full set of year fixede�ects to captureglobal trends, such

34Note that the GPW data applied here is not constructed using lights as an input factor; contrary to the
widely-used GRUMP population data that make use of night-light emissions to redistribute population counts
across pixels.

35An alternative would be to conduct estimations at the sub-national level on administrative divisions.
Economic data (e.g., income inequality) are available as control variables for some countries. However, these
variables are almost always correlated with night-lights, if not (partly) constructed using them. Moreover,
administrative units across the globe di�er tremendously in size and reflect geographic and demographic
conditions as well as political decisions, which are o�en determinants of night-lights themselves or jointly
determined with it.

36As more detailed data become available, a higher level of temporal detail may be an alternative. But
studying annual averages ensures that not only short-run power outages are captured (a channel through which
disaster eventsmight a�ect night-light emissions) such that the focus is on longer lasting impacts on the emission
of night-light throughout the year.
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as technological progress, energy costs, and the global business cycle.37 Moreover, year fixed

e�ects address systematic time variation in the measurement of light emissions. On-board

gain settings of sensors vary across and within satellites over time and with satellite age – yet,

these e�ects are not documented. Accordingly, raw satellite data is not calibrated and direct

comparison of light intensities over timewould therefore be problematic. This issue is tackled

by following Henderson et al. (2012) and Chen and Nordhaus (2011) who propose to include

time fixed e�ects. ν denote cell fixed e�ects controlling for time-constant local unobservable

variables. Cell fixed e�ects absorb location-specific baseline risk, which determines to what

extent disasters occur unexpectedly and may thus a�ect economic responses to shocks.

Consequently, identification relies on unexpected variation in the physical intensity measure.

How night-light growth reflects GDP growth may be structurally related to historical, cultural

and political di�erences in the use of light. In addition, night-light emission patterns may be

systematically driven by land use. Areas dominated by agricultural use emit little to no light

as they grow (Keola et al., 2015). To the extent that these di�erences and land use patterns

are time-invariant, they are captured by cell fixed e�ects. Cell fixed e�ects also control for

inherent systematic measurement error in night-lights across latitude (e.g., due to stray light,

aurora, and the solar cycle) and for overall topography and other unobserved geographic

determinants. This basic model is explored first to take the analysis from national to the grid

cell level and to show very basic correlations.

However, the spatial dependence of both night-light growth and disaster intensity requires

relaxing the traditional independence assumption, o�en implicitly applied in most work in

this field. As cells intersect true economic units (e.g., cities or metropolitan areas), this makes

them spatially dependent by construction. Also, weather shocks typically do not account

to only single cells but have a spatial extent of their own. Thus, despite treatment variation

across space within this extent, exogenous shocks are correlated with shocks in neighboring

cells. In addition, night-light growth in one cell is not orthogonal to disasters occurring in

neighboring cells due to potential spillover e�ects. Hence, treatment of neighbors may have

explanatory power and is correlated with own treatment, which leads to omitted variable

bias.

37In the sensitivity analysis, it is shown that results remain robust when including country-specific year-
e�ects. While this allows to control for time-varying country characteristics (e.g. institutions, policies or overall
infrastructure), it tremendously reduces the degrees of freedom and restricts identification to countries beyond
a critical geographic size.
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To avoid this bias and account for spatial dependence, the idea is to simultaneously model

local treatment e�ects and spillover e�ects to neighboring cells. Therefore, a spatial Durbin

error model (SDEM) (see Anselin, 2013; Halleck Vega and Elhorst, 2015) with cell and year

fixed e�ects is chosen.38 In this model, the dependent variable may not only depend on own

covariates but also on the covariates of neighboring units. This implies that natural shock

events not only a�ect light growth in the cells in which they are recorded, but also indirectly

a�ect light growth in neighboring cells. A fully specified spatial panel model is estimated of

the form:

∆`t = `t−1γ +Dtβ
0 +Xtδ

0 +W rDtβ
1 +W rXtδ

1 + ν + π + ut (3.2)

ut = ρW rut + εt.

whereW r is a time-invariantK ×K dimensional spatial weights matrix, which allows ac-

counting for spatial spillovers. It is specified as binary and isotropic, meaning that its elements

are equal to one for all neighboring cells within the spatial radius r around a given cell’s cen-

ter and discretely drop to zero for all cells beyond that radius, as recommended by Conley

(2008).39 In the baseline specification, a geodesic radius r of 80 km is chosen. This implies

that e�ectively eight adjacent cells are considered neighbors at the equator. Using a constant

metric distance ensures that the geographic area of neighbors remains constant over latitude.

This leads to the inclusion of a larger number of cells along the longitudinal axis the further

one moves away from the equator.40 Gibbons et al. (2015) discuss requirements of imposing

structure on the spatial process to disentangle treatment e�ects from direct spillovers in

the dependent variable. The cuto� choice is to some extent arbitrary and it is not formally

testable.41 By interacting determinants withW r, spatial lags are obtained. The inclusion of

spatial lags – similar to the inclusion of temporal lags in time-series – allows local outcomes

to depend not only on local treatment but also on the treatment of neighbors. β1 and δ1 are

38As it is reasonable to assume that spatial spillovers from natural events are confined in their geographical
extent, local rather than global spillovers are modeled explicitly. This study therefore prefers the SDEM over the
more o�en used spatial Durbin model (SDM) specification. For a discussion, see Halleck Vega and Elhorst (2015).
Section 3.5 discusses SDM as an alternative specification.

39This structure imposes a strict balancing restriction on the panel such that the same set of neighbors is
used for a specific cell across all 21 years in the sample.

40Due to the curvature of the earth, the metric length of 0.5° longitude decreases with latitudinal distance to
the equator, whereas the metric length of 0.5° latitude remains approximately constant.

41To test whether results are sensitive to the spatial radius chosen for the weights matrix, the distance cuto�
is increased in Section 3.5 to r = 160 km.
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thus average local spillover e�ects of amarginal change in the respective explanatory variable

in one neighboring cell.

Following the econometric literature, spatial clustering and spillovers in unobserved charac-

teristics are accounted for by allowing for spatial auto-correlation in the error termut. This is

crucial due to potentially high connectivity and clustering of observed values in the spatially

disaggregated data and to account for the fact that residual spatial auto-correlation (RSA)

may reflect unobserved natural or economic processes. Superimposing an arbitrary grid

cell layout implies that cells need not be independent from each other, as cell borders may

intersect true economic units (i.e., urban settlements) and share national or regional business

cycles and institutions. While the imposed spatial structure accounts partially for the true

spatial dependence, it must still be corrected for RSA, which otherwise may bias the spatial

estimates.

The Global Moran’s I test (Moran, 1950) allows testing for residual auto-regressive processes

(ut = ρW rut + εt).42 In a spatial lag of X (SLX) regression with two-way cell and time fixed

e�ects, a positive and statistically significant test is observed for all disaster categories, see

Table C.5. Hence, the Null is rejected in favor of positive RSA (i.e., spatial clustering). Thus,

the SDEM is preferred over the more parsimonious SLX specification. To account for RSA,

Baltagi et al. (2007) type spatial auto-correlation in the residuals is applied.43 Tomodel RSA

and to address non-linearity in ρ, the Maximum-Likelihood approach for spatial panel models

provided by Millo and Piras (2012) and Millo (2014) is used. This allows consistent estimation

of the local economic impact of natural disasters together with spillover e�ects to neighboring

locations.

42It takes the following form

I =
N

W
·
∑
c

∑
j wcj(xc − x̄)(xj − x̄)∑

c(xc − x̄)2
.

The Null of no residual spatial auto-correlation equalsE(I) = −1
N−1 .

43An SLX model excluding the spatial error component is also estimated. Results are shown in Tables C.6
to C.8 in the Appendix. Furthermore, an ordinary least squares (OLS) model is estimated with standard errors
adjusted for spatial clustering following the procedure implemented by Hsiang (2010), see Table C.17.
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3.4 Main Results

In this section, a parsimonious panel fixed e�ects model is taken as a starting point to then

show howmodeling the spatial dependence of grid cells changes local treatment e�ects. In

later sections, robustness checks are presented and heterogeneity in income groups and

across world regions is explored.

3.4.1 Explorative Results

Following Bertinelli and Strobl (2013) and Elliott et al. (2015), the point of departure is a

simple ordinary least squares (OLS) model including cell and year fixed e�ects, as described

in the methodology section. Extreme precipitation is taken as an example, as this showsmost

explicitly howmodeling spatial spillovers a�ects the results. Results are presented in Table

3.2, columns (1) to (4). Not accounting for spatial dependence and spatial autocorrelation in

the simple panel fixed e�ects setting suggests a positive and statistically significant e�ect of

precipitation on night-light growth in column (1). This is a counterintuitive finding reminiscent

of earlier results in the literature; see Felbermayr and Gröschl (2014) for a discussion. Con-

trols, such as initial light levels and population show expected negative and positive results,

respectively.

As spatial dependence between grid cells is present, spatial spillovers in production and

consumption may a�ect surrounding locations. Thus, in column (2), Halleck Vega and Elhorst

(2015) are followed by estimating an SLXmodel, which includes the spatial weights matrix

but does not account for residual spatial autocorrelation. The local average treatment e�ect

turns substantially negative and highly significant, while simultaneously a positive coe�icient

estimate for the spatial spillover of extreme precipitation is found. Hence, the local impact

of extreme precipitation is negative, but a cell’s night-light growth is positively a�ected by

extreme precipitation events in neighboring cells.44 Point estimates on lagged night-light

intensity and population remain stable and highly significant. Next, a temporal lag is added

to the SLXmodel to allow for dynamic e�ects in column (3). For lagged local treatment and

44Note that Bertinelli andStrobl (2013) andElliott et al. (2015) investigate potential spatial spillovers. However,
rather than allowing for direct spillovers, they average disaster intensity over the set of a cell and a range of
its neighbors. Both studies find little evidence for spatial spillovers, while this study finds strong evidence in
favor of their existence. Note that the the size of grid cells (0.5°compared to 1 km2) is considerably larger. Spatial
spillovers in this approach are thus estimated over a much longer distance, while their spillovers would be part
of the local treatment e�ect in this approach.
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spatial spillovers, highly significant point estimates suggest a reversal of respective e�ects in

the year of occurrence. This indicates that spillovers are, on average, temporary and recovery

occurs within two years.

Table 3.2 : Model Buildup: Impact of Precipitation and Wind on Light Growth

Dependent Variable:∆ ln(lightst)

precip. wind

(1) (2) (3) (4) (5) (6) (7) (8)

disastert 0.0115*** −0.0613*** −0.0752*** −0.0310*** −0.0051*** −0.0102*** −0.0010 −0.0020**
(0.0029) (0.0078) (0.0081) (0.0070) (0.0003) (0.0009) (0.0010) (0.0009)

disastert−1 0.0481*** 0.0219*** −0.0143*** −0.0090***
(0.0077) (0.0069) (0.0010) (0.0009)

W · disastert 0.0114*** 0.0138*** 0.0049*** 0.0008*** −0.0002 0.0000
(0.0011) (0.0011) (0.0013) (0.0001) (0.0001) (0.0002)

W · disastert−1 −0.0079*** −0.0021 0.0015*** 0.0008***
(0.0011) (0.0013) (0.0001) (0.0002)

ln(popt) 0.0412*** 0.0250*** 0.0250*** 0.0257*** 0.0404*** 0.0238*** 0.0236*** 0.0247***
(0.0028) (0.0027) (0.0027) (0.0013) (0.0028) (0.0027) (0.0027) (0.0013)

W · ln(popt) 0.0149*** 0.0149*** 0.0112*** 0.0145*** 0.0143*** 0.0108***
(0.0009) (0.0009) (0.0006) (0.0008) (0.0008) (0.0006)

ln(lightst−1) −0.4090*** −0.4123*** −0.4122*** −0.4367*** −0.4109*** −0.4146*** −0.4152*** −0.4387***
(0.0032) (0.0032) (0.0032) (0.0011) (0.0032) (0.0032) (0.0032) (0.0011)

ρ 0.0672*** 0.0672***
(0.0000) (0.0000)

Method OLS SLX SLX SDEM OLS SLX SLX SDEM
Observations 502,026 502,026 502,026 502,026 507,864 507,864 507,864 507,864

Note: ***, **, * denote significance at the 1%, 5% and 10% level. Specifications (1) to (3) and (5) to (7) are estimated by panel OLS, (4) and
(8) is estimated by Maximum Likelihood. Standard errors (in parentheses) allow for heteroskedasticity and clustering at the cell level in
specifications (1) to (3) and (5) to (7). Cell and year fixed e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities
reflect time-weighted rolling averages over 12 subsequent monthly observations.

The spatial spillovers modeled capture spatial dependence only partially due to the fact that

grid cells may intersect with metropolitan areas along their arbitrary borders. Night-light

growth is thus expected to be spatially correlated across contingent cells due to unobserved

characteristics which also follow a spatial pattern, so residual spatial autocorrelation remains

a concern.45 Therefore, in column (4), the preferred SDEMmodel is estimated, which augments

the SLX model with Baltagi-type spatial errors. Point estimates on both local and spillover

e�ects are substantially reduced in size but remain qualitatively similar. Note that the lagged

spillover e�ect of extreme precipitation turns insignificant in the SDEM specification. The

spatially auto-regressive parameter ρ is positive and highly statistically significant, which is in

line with the results of Moran’s I test.

45Absence of RSA is rejected in the SLX model for all disaster types in a Moran’s I test, with evidence for
positive spatial autocorrelation implying spatial clustering patterns.
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To compare obtained estimates with existing grid level studies, the storm indicator is specifi-

cally taken under consideration (see Table 3.2, columns (5) to (8)). In line with Bertinelli and

Strobl (2013) and Elliott et al. (2015), local average treatment e�ects remain consistently nega-

tive across allmodel specifications (also in the lags). Note, however, that the point estimate for

the SDEM specification (column (8)) is more than half the size of that in the OLS specification

(column (5)). Contrary to the aforementioned studies, this research finds evidence for positive

and statistically significant spatial spillovers. The fact that spillovers show up significantly

only in the lagged periodmay be consistent with results by Bertinelli and Strobl (2013) and

Elliott et al. (2015) that suggest absence of spatial spillovers in the contemporaneous year.

Results for all other disaster categories are reported in Tables C.6 to C.8 in the Appendix.

Substantial di�erences between the estimated local average treatment e�ect in OLS versus

SLX models are found for all disaster categories, and they may vary qualitatively in terms

of estimated signs and lagged e�ects. For all categories but earthquakes, evidence for the

presence of spatial spillovers is found. For droughts, themirror image of precipitation patterns

is obtained, with a negative local treatment e�ect in theOLS, but a sign reversal when allowing

for spatial spillovers. Coldwaves behave like precipitation, with the sign of the e�ect reversing

whenmoving from the simple framework to allowing for spatial spillovers. For earthquakes,

the size of the positive estimate is reduced togetherwith significance levels whenmoving from

OLS to SLX and subsequently to SDEM, but a positive local treatment e�ect remains. There

is no evidence for consistent spatial spillovers. A reason may be substantial measurement

error in the spatial extent of earthquakes and in their precise location. Reported epicenters

o�en lie at the outer edge of an earthquake’s fault rather than at the center of distributed

groundmovement. Furthermore, capturing negative light growth e�ects of earthquakes in the

yearly response variable might generally be unfeasible: Earthquakes are sudden and short-

lived, while temporary relocation of activity into the open, such as evacuation to emergency

camps, as well as reconstruction and building sites tend to increase rather than dampen light

emissions. Post-impact stimuli to the reconstruction sector are common and are frequently

reported (see, e.g., Chang, 2010; Hallegatte and Przyluski, 2010). In addition, duration of the

reconstruction phase varieswidely, depending on financial and technical constraints (see, e.g.,

Ghil et al., 2011). For these reasons, further discussion of earthquake results is disregarded in

the following. Instead, focus is put on weather shocks, which can be measured with much

higher precision in this setup.
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3.4.2 Baseline Results

The previous section clearly established the SDEMmodel as the preferred specification. Table

3.3 presents results for each type of weather shock.

Table 3.3 : Baseline Results

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0020** −0.0310*** 0.0083* −0.0762***
(0.0009) (0.0070) (0.0048) (0.0153)

disastert−1 −0.0090*** 0.0219*** 0.0005 −0.0326**
(0.0009) (0.0069) (0.0047) (0.0149)

W · disastert 0.0000 0.0049*** −0.0044*** 0.0218***
(0.0002) (0.0013) (0.0009) (0.0027)

W · disastert−1 0.0008*** −0.0021 0.0010 −0.0195***
(0.0002) (0.0013) (0.0009) (0.0026)

ln(popt) 0.0247*** 0.0257*** 0.0276*** 0.0244***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0108*** 0.0112*** 0.0115*** 0.0106***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4387*** −0.4367*** −0.4329*** −0.4379***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations.

Baseline results suggest that storms, extreme precipitation events and cold waves have nega-

tive and statistically significant local average treatment e�ects. Within a geodesic radius of

80 km, significantly positive spatial spillover e�ects of these event types are observed. This

suggests that exogenous shocks lead to a deflection of economic activity towards less a�ected

neighboring regions. Persistence or reversal of treatment e�ects over time is heterogeneous

across disaster types.

Extremewinds that increase the yearly wind speedmeasure by one knot are associated with a

decline in lights growth of 0.2 percentage points on average. Applying the light-to-GDP growth

elasticity documented in Section 3.2.1, a one standard deviation increase in the yearly wind

speed measure leads to a reduction of income growth below its local growth path by 0.33
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percentage points on average.46 Interestingly, a large proportion of the growth impact only

kicks in with a time-lag. A�er one period, an increase in the yearly wind speedmeasure by one

knot reduces lights growthby 0.9 percentagepoints. This implies that a one standarddeviation

increase in wind speeds reduces economic growth in a�ected cells by 1.49 percentage points.

On average, spatial spillover e�ects of storms are insignificant in the baseline period. A�er one

period, a positive spillover e�ect is found which suggests an increase in local lights growth by

0.08 percentage points if in one of the neighboring cells the yearly mean wind speed is driven

up by one knot – implying an increase in income growth by 0.13 percentage points for a one

standard deviation increase in wind.47

Monthly extreme precipitation may exceed local percolation capacities and potentially cause

flooding. A precipitation event that increases the yearly precipitationmeasure byone standard

deviation reduces local income growth by 0.17 percentage points. One period later, recovery

leads to a higher growth in local income by 0.12 percentage point increase in local income

growth for a one standard deviation increase in the yearly rainfall measure. A one standard

deviation increase in extreme precipitation events in one neighboring cell within 80 km leads

on average to spillovers increasing local income growth by 0.03 percentage points. Finally,

there is no significant evidence that spatial spillovers persist longer than one period a�er an

extreme precipitation event.

Given that droughts primarily a�ect agricultural outcomes but agricultural production is not

associated with light emission in most parts of the world, finding evidence for a negative

local impact of droughts on the light-based outcome proxy is not to be expected. In fact,

while night-lights typically reflect industrial and services sectors (Doll et al., 2006; Ghosh et al.,

2010), as mentioned earlier, agriculture (and forestry) emit less or no visible light as they grow

(Keola et al., 2015). From amacroeconomic perspective, agricultural production also reflects

intermediary inputs to light-emitting industry production and to general consumption.48

However, while agriculture may be reflected through consumption and intermediary industry

output at the country level, the observational units defined for this analysis are less likely

to capture such negative secondary e�ects due to the high geographic resolution. Instead,
46The GDP growth e�ect of a one standard deviation increase in the annual windmeasure (4.49) corresponds

to a wind speed estimate of -0.0020, multiplied by 100 and translated using the lights-to-GDP growth rate
elasticity of 0.37: [−0.0020 · 100] · 0.37 · 4.49 = −0.33

47If a storm hits multiple cells simultaneously, aggregate spillovers from the neighborhood accumulate.
48Wu et al. (2013) use aggregate night-lights at country level to estimate the extent to which night-time lights

implicitly reflect agricultural production. In a sample of 169 countries observed from 1995 to 2009, their results
suggest that the agricultural sector accounts for 25% of total light radiance.
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it is more likely that droughts in rural areas reduce consumption and intermediary industry

output in nearby urban areas, located in neighboring cells. Consequently, negative spatial

spillovers are expected to be driven by droughts in mostly rural rather than urban cells.

This hypothesis is supported by the data. Estimates suggest that income growth is reduced

on average by 0.04 percentage points for each neighboring 0.5° grid cell within a range of 80

km that experiences a one standard deviation increase in drought.To test the hypothesis that

this e�ect is driven by spillovers from rural to urban cells, an unsupervised machine learning

algorithm is combinedwith thepixel-level landusedata fromtheModerateResolution Imaging

Spectroradiometer (MODIS) 500-mmapof global urbanextent (Schneider et al., 2009)provided

by the Food and Agriculture Organization of the United Nations (FAO), to classify the data into

0.5°×0.5° cells that are predominantly urban (i.e., residential) or non-urban (see Appendix

C.1.4 for more details).49 Table C.1 in the Appendix shows a decomposition of the direct and

spillover e�ects of droughts along this classification. Results suggest that negative spillovers

from non-urban to urban cells drive the aggregate spillover, with magnitudes about twice as

large as within non-urban neighborhoods. Spillovers within pairs of non-urban cells persist,

however, potentially due to residual urban structures in cells classified as non-urban. As

expected, no evidence is found for spillovers from urban to non-urban cells and only weak

spillovers are found within urban neighborhoods. The positive direct e�ect is nearly three

times as large in urban compared to non-urban cells.

A one standard deviation increase in cold waves reduces income growth by 0.25 percentage

points in the base period and by 0.10 percentage points a�er one period. Corresponding

spillovers suggest that economic activity is shi�ed to neighboring locations in the current year,

increasing their income growth on average by 0.07 percentage points. The spillover e�ect of

cold waves does not persist over time; instead a sign reversal in a similar order of magnitude

is observed.

Control variables consistently show expected signs and significance levels for all weather

shocks. A 1% population increase is associated with an increase in lights growth of 2.5 per-

centage points on average, which implies an increase in GDP growth of 0.9 percentage points.

49A simple classification approach is also provided, which does not depend onmachine learning for classifi-
cation. This classification gives a 10% share of urban cells, instead of 5% obtained by the clustering approach. It
holds similar results. Note that in both cases classification provides an indication of a cell’s key type, but does
not imply that a cell is exclusively urban or non-urban.
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If population in a neighboring cell increases by 1%, local lights grow by 1.1 percentage points,

with an average increase in GDP growth of 0.4 percentage points.

Figure 3.4 : Percentile Light Growth E�ects of Natural Disasters

−8

−4

0

4

0 10 20 30 40 50 60 70 80 90 100

Wind speeds

C
ha

ng
e 

in
 li

gh
t g

ro
w

th
 

 (
pe

rc
en

ta
ge

 p
oi

nt
s)

−8

−4

0

4

0 10 20 30 40 50 60 70 80 90 100

Precipitation
C

ha
ng

e 
in

 li
gh

t g
ro

w
th

 
 (

pe
rc

en
ta

ge
 p

oi
nt

s)

−8

−4

0

4

0 10 20 30 40 50 60 70 80 90 100

Droughts

C
ha

ng
e 

in
 li

gh
t g

ro
w

th
 

 (
pe

rc
en

ta
ge

 p
oi

nt
s)

−8

−4

0

4

0 10 20 30 40 50 60 70 80 90 100

Cold waves

C
ha

ng
e 

in
 li

gh
t g

ro
w

th
 

 (
pe

rc
en

ta
ge

 p
oi

nt
s)

Note: Contemporaneous change in night-light growth as estimated in Table 3.3, as a function of percentile
realizations of the respective demeaned intensity measures (i.e., surprise realizations). 95% confidence interval
is plotted in shaded gray.

Next, the distribution of weather shocks is explored to evaluate growth e�ects at di�erent

realizations of respective indicators. Figure 3.4 shows contemporaneous growth e�ects along

the di�erence in disaster intensity from its long run cell mean.50 In line with Felbermayr and

Gröschl (2014), a non-linear shape of growth e�ects is found for all disaster types. This strongly

resembles modeling results on the non-linear relation between physical intensity and asset

losses or output losses (Hallegatte et al., 2007;Hallegatte, 2008). For all types, the 95%smallest

realizations of intensity measures imply a reduction in light growth of less than 1 percentage

point.51 The worst 5% of realizations show substantially larger e�ects, with extreme shocks

being located in the top 1% of realizations. The top 1% of storms decrease light growth by

50Disaster intensities are demeaned to calculate quantile impacts. The empirical fixed e�ects strategy iden-
tifies on surprise realizations of treatment variables. Non-demeaned physical intensities exhibit clustering of
non-surprises especially within the lower quantile. Since these do not contribute to identification, demeaning is
used to avoid overdrawing growth e�ects.

51Lower percentiles ultimately constitute positive surprise events.
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more than 1 percentage point, while the top 1% realizations of extreme precipitation are

associated with a reduction in light growth of more than 2 percentage points. The top 1% of

cold waves are associated with more than 3 percentage points lower light growth. Drought

e�ects should be treated with caution due to the features discussed above. For completeness,

positive drought e�ects are equallymore sizable for the largest 1%, but onlyweakly significant.

3.5 Assessing spillovers across longer distances

The baseline specification models spillover e�ects from natural disasters as local phenomena

that matter within a spatial radius of 80 km around a treated location. Knowing whether this

local notion of disaster spillovers is appropriate matters for assessing the adequacy of the

econometric strategy. Moreover, understanding if disaster spillovers are a local phenomenon

most relevant across short distances or a global one showing repercussions also over long

distances has important implications for policies targeted at strengthening a location’s adap-

tation capacities. This section examines the relevance of spillovers across longer distances by

conducting two exercises.

First, Panel A of Table 3.4 addresses the choice of the cuto� distance for the weighting matrix

by doubling the spatial radius around treated locations to 160 km.52 If spillovers frommore

remote locations matter less than those originating from closer ones, the spillover estimate

should decline in magnitude relative to the baseline specification, suggesting a lower average

spillover e�ect from treating one cell within the local neighborhood.

Results suggest that doubling the neighborhood radius has little e�ect on local average

treatment e�ects. However, average local spillovers broadly show a substantial decline in

magnitude.53 Hence, adding cells beyond 80 km to the local neighborhood drives down the

average spillover e�ect per cell observed within this neighborhood. This indicates that spatial

spillovers of weather shocks are local phenomena that decline with distance, complying with

Tobler’s first law of geography (Tobler, 1970).

Second, Panel B of Table 3.4 turns to a global spillover model, allowing spillovers to occur

also beyond a cell’s local neighborhood. In principle, if a disaster strikes in a cell, this may

have an impact on its direct surroundings, which in turn spills over to the surroundings’

52A radius of 160 km e�ectively captures the second order neighbors of a cell at the equator.
53Table C.9 in the Appendix shows full results.
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surroundings. Themechanics of the global spillover model allow spillovers to propagate from

one neighborhood to the next, as long as these neighborhoods are contiguously connected.

Thus far, local spillover e�ects have been estimated through SDEM or SLX models, which do

not allow for such a spillover propagation beyond the local neighborhood. One advantage of

these models is that estimated coe�icients on spatially lagged explanatory variables can be

interpreted directly and in terms of local spillover e�ects attributed exclusively to exogenous

variation within a defined neighborhood. An alternative approach, which has o�en been used

in the applied empirical literature, is the spatial Durbin model (SDM) with a spatially autocor-

related dependent variable rather than a spatial error structure. As discussed by Halleck Vega

and Elhorst (2015) and Anselin (2013), this model class implies a global notion of spillover

e�ects. With global spillovers, estimates on spatially laggeddependent variables do not reflect

only exogenous spillovers from the defined neighborhood, but they structurally represent

both exogenous and endogenous spillovers, with the latter resulting as general equilibrium

(GE) e�ects from the propagation of external e�ects across all contiguous locations in the

universe. The degree to which spillovers are propagated is captured by a spatial multiplier.54

A potential advantage of the latter approach is that it explicitly enforces “global” compliance

with the stable unit treatment value assumption (SUTVA) by allowing observational units

not only to interfere within an exogenously defined neighborhood, but across all contiguous

locations.55 The disadvantage, however, is that exogenous local and endogenous global GE

spillover components cannot be disentangled. In this context, allowing for a propagation of

exogenous weather shocks across all contiguous cells seems inadequate given the goal of

explaining local phenomena at a very disaggregated level. Generally, SDM coe�icients on the

direct and the spatially laggedexplanatory variables cannotbe interpreted in a straightforward

way.56 Following this, an assessment is provided of how findings are a�ected in a global

spillover model estimated by maximum likelihood techniques:

∆`t = `t−1γ + λW r∆`t +Dtβ
0 +Xtδ

0 +W rDtβ
1 +W rXtδ

1 + ν + π + εt (3.3)

54Contiguity implies that some overlap between the spatial neighborhoods of two given cells in theW r

matrix must exist.
55Explicit SUTVA enforcement in local spillover models is confined to observational units defined as local

neighbors, implying that SUTVA compliance beyond the local neighborhoods holds by assumption. The similarity
of point estimates presented for SDM and SDEM specifications provides support that SUTVA violation is not a
concern in the baseline model.

56As discussedbyHalleck Vega andElhorst (2015), thismethodological peculiarity ismostly ignored in applied
research.
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Table 3.4, Panel B shows estimates consistent in sign and overall magnitude with the baseline

specification but conveying a di�erentmeaning.57 To properly disentangle direct and spillover

e�ects, coe�icients need to be translated applying the spatial multiplier (I − λW )−1 =

I + λW + λ2W 2 + λ3W 3 + . . . , such that the direct e�ect is reflected in the diagonal

and the spillover in the o�-diagonal elements of (I − λW )−1[β0 + Wβ1], where λ is the

spatial autoregressive coe�icient fromequation (3.3), governing the degree towhich spillovers

propagate across space. The mean direct e�ect, obtained by averaging over all diagonal

elements, is provided in square brackets. This mean e�ect corresponds to the local average

treatment e�ect obtained by the local spillover specification in the SDEM baseline.

For direct e�ects, translated coe�icients are similar to point estimates. In contrast, the in-

terpretation of translated spillover coe�icients in square brackets is very di�erent from the

local spillover baseline. The row-wise mean across all connected (non-sparse) o�-diagonal

elements captures how a cell is a�ected on average by treatment of any other cell which is

part of its contiguously connected spatial neighborhood, also beyond the imposed radius of

80 km.

If neighborhoodsare spatiallydisconnectedbygaps larger than80km, thedesiredpropagation-

e�ect is interrupted. This is o�en the case across oceans, seas, largemountain ranges, deserts,

and other uninhabited areas. Comparison with Figures C.7-C.10 shows that, even though the

term “global spillovers” might suggest otherwise, the cells in the sample are quite far from

being contiguously connected around the world such that the global spillovers reported do

not reflect a world-wide propagation but rather a “regional” one. Above all, the extent of such

contiguous regions is heterogeneous across space and hardly tractable.

Nevertheless, for some parts of the world, contiguous areas are of considerable size. The

small estimate for λ indicates that spillovers phase out quickly across space when applying

the spatial multiplier. As a consequence, the meanmagnitude by which a cell is a�ected by

any other cell in its contiguous neighboring region is, on average, vanishing across space

compared to the local spillover e�ects from only the next-door neighbors, estimated in the

baseline. These findings are in line with the conclusion drawn from Panel A and essentially

support the choice of a local spillover specification to be adequate, both due to the lack

of spatial contiguity in the data and given the strong phasing-out of e�ects across longer

distances.

57Table C.10 in the Appendix shows full global spillover results.
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Table 3.4 : Spillovers Across Longer Distances

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

PANEL A: Radius r=160km
disastert −0.0016** −0.0249*** 0.0125*** −0.0849***

(0.0007) (0.0057) (0.0041) (0.0136)
disastert−1 −0.0052*** 0.0158*** −0.0075* −0.0129

(0.0007) (0.0057) (0.0040) (0.0133)
W · disastert 0.0000 0.0008** −0.0015*** 0.0061***

(0.0000) (0.0004) (0.0003) (0.0009)
W · disastert−1 0.0001* 0.0000 0.0005* −0.0060***

(0.0000) (0.0004) (0.0003) (0.0008)

PANEL B: Global Spillovers
disastert −0.0046*** −0.0279*** −0.0016 −0.0974***

[−0.0044] [−0.0259] [−0.0029] [−0.0794]
(0.0007) (0.0060) (0.0041) (0.0122)

disastert−1 −0.0095*** 0.0198*** 0.0017 −0.0858***
[−0.0093] [0.0189] [0.0017] [−0.0908]
(0.0007) (0.0059) (0.0041) (0.0119)

W · disastert 0.0005*** 0.0037*** −0.0010* 0.0217***
[0.0000] [0.0001] [−0.0001] [0.0010]
(0.0001) (0.0009) (0.0006) (0.0017)

W · disastert−1 0.0008*** −0.0021** −0.0001 0.0015
[0.0000] [−0.0001] [0.0000] [−0.0003]
(0.0001) (0.0009) (0.0006) (0.0017)

λ 0.0671*** 0.0671*** 0.0675*** 0.0671***
(0.0000) (0.0000) (0.0000) (0.0000)

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All Panel A is
SDEM, Panel B is SDM. All regressions are estimated by Maximum Likelihood.
Standard errors in parentheses. Cell and year fixed e�ects included but not
reported in all specifications. Spatial radius is r=160 km in Panel A and r=80km
in Panel B. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations. Global Spillovers show average e�ects
translated with spatial multiplier in square brackets. Full results are shown in
Tables C.9 and C.10 in the Appendix.

Finally, the result that relocation of economic activity a�er a natural disaster is a rather local

phenomenon disappearing over longer distances has policy implications. Policymakersmight

intend to increase a location’s adaptation capacity by strengthening its economic linkages

(e.g., via infrastructure investments) to allow for easier short term shi�s of economic activity

across space.58 In this case, strengthening local links across shorter distances seems to be

more relevant than policies targeted at longer distances.

58Identification of the the role of specific transmission channels for local spillovers are le� for future research.
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3.6 Robustness Analysis

Next, issues related tomeasurement andalternative specifications thatmaya�ect thebaseline

results are explored. A summary of robustness results is shown in Table 3.5.

3.6.1 Sensitivity to Top- and Bottom-Coding

DMSP satellite sensors are subject to saturation, resulting in top-coding of pixels for which

light emission is at or above the sensor’s detection saturation level.59 Pixels are top-coded at

DN63 and are mainly found in urban centers. The share of top-coded pixels ranges from zero

in some low and middle income economies — but also in sparsely populated high income

countries (e.g., Canada) — to around 2.5% for small but densely populated high income areas

(e.g., the Netherlands, Belgium). Notable exceptions are Singapore and Hong Kong, both

small and densely populated, and two small island states (Malta and Trinidad and Tobago).

There, the share of top-coded cells runs close to or within the double digits as a substantial

part is urban built-up area.60

Top-codingmay be a concern for identification if the change in night-time lights due to a shock

happens beyond the saturation level of the satellite sensor. To account for this, pixels which

are top-coded at least once during the observed time period are masked. None of the 0.5°

cells are fully top-coded, while 8% of cells in the sample contain some fraction of top-coded

pixels. The mean degree of top-coding is 3.7% (sd 8.4%) and for 99% of these cells top-coding

is below 50% of land area. As top-coded pixels are unresponsive to shocks as long as light

levels remain beyond the satellite sensor saturation threshold, excluding these should – if

anything – lead to larger point estimates. Table 3.5, Panel A shows that results are robust to

excluding top-coding from the data, with all disaster models showing point estimates almost

identical to the baseline results.61

Bluhm and Krause (2017) suggest that satellite sensor saturation starts already at pixel values

as low as DN55. While changes in the DN55-DN62 range can still be measured, larger mea-

surement error might be present in this range with a structural downward bias on recorded

59BluhmandKrause (2017) propose amethod to impute “true” light values for top-codedpixels by assuming a
Pareto distribution on top lights. Although this approachmay be of great value to the general literature, imputed
measures cannot be used for studying shocks on its values.

60Gas flaring introduces areas with top-coded pixels into the raw data. These are masked by default, as
described in the Appendix Section 3.2.1.

61Table C.11 in the Appendix shows full results.
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versus true brightness. If this is the case, growth in night-light intensity is underestimated in

the upper range of pixel values, which in practice a�ects mostly urban centers.62 Applying the

top-coding approach to pixel values above DN55, point estimates are similar to the baseline.63

Data quality concerns also exist at the lower end of recorded light intensity. Henderson

et al. (2012) discuss the underrepresentation of pixels below DN3. To tackle this, all pixels

below DN3 are set to zero. Estimates suggest that the baseline results are robust in Panel

B, Table 3.5 – except the contemporaneous treatment e�ect of storms turns insignificant.64

Elvidge et al. (2009b) discuss in their methodology on the identification of gas flaring that

pixel values below DN8 should potentially be ignored to “eliminate background noise present

in the products”. While the number of pixels below DN3 a�ects 0.1% of pixels in the data,

the share of pixels between DN1 and DN8 is 7.5%. Masking all pixels in this range a�ects

23% of grid cells and eliminates all low-lit areas.65 As this likely introduces sample selection,

the following results should be interpreted with caution. For storms, contemporaneous

treatment turns insignificant, lagged and spillover e�ects stay robust. Results on excessive

precipitation are similar to the baseline when excluding low lit areas. For droughts, the

contemporaneous positive treatment e�ect turns insignificant, while the lag and spillover

structure remain unchanged. As droughts mainly a�ect rural areas – typically low lit – the

absence of a local treatment e�ect indeed suggests that it is not possible to measure these

local e�ects in light growth. For cold waves, contemporaneous treatment turns insignificant,

while lagged treatment and spillover e�ects are robust. Overall, result remain broadly in line

when considering top- and bottom-coding of night-time light emission data.

3.6.2 Time-Varying Country Characteristics

The baseline specification accounts for all time-constant unobservable cell characteristics

and overall global trends (technological change, business cycles). This leaves country-specific

fluctuations, such as country-wide policy decisions or institutional change, unaddressed.

Thus, country-year fixed e�ects are applied to absorb unobserved country-time specific

variation. Three mechanisms potentially a�ecting estimates are at play: (1) The smaller the

country and hence its number of cells, the larger the share of variation in a cell’s growth

62About 20 cells are lost when applying this wider masking range.
63Results are shown in Table C.12 in the Appendix.
64Table C.14 in the Appendix presents full results.
65See Table C.3 in the Appendix for summary statistics on the DN distribution of satellite-years. Full results

for setting all pixel values below DN8 to zero are presented in Table C.13 in the Appendix.
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rate that is absorbed by the country-year fixed e�ect; (2) within cell variation net of country-

specifics only allows for identification of local treatment to the extent that this treatment does

nota�ecta countryasawhole (e.g., eventswhichareparticularlydevastatingorgeographically

dispersed may not be reflected in treatment estimates); and (3) 3,927 degrees of freedom

are lost, potentially making identification more di�icult. (1) and (2) point to the fact that this

strategy favors larger countries over smaller ones and may work better for events that are

explicitly local by nature.66 It is known from the empirical literature that the most extreme

events canhavenegative consequences for economicgrowthat the country level (Cavallo et al.,

2013; Felbermayr and Gröschl, 2014). Therefore, point estimates are expected to attenuate.

Table 3.5, Panel C shows that results are qualitatively robust to the inclusion of country-year

fixed e�ects and show an overall decline in magnitudes.67 The local e�ect of storms turns

insignificant. Note that hurricanes, typhoons and cyclones form themost extreme events in

this category, which o�en hit small island states for which the cell e�ect is largely soaked up

in the country-year fixed e�ect. Extreme precipitation results prove robust, with the lagged

local treatment e�ect and current spatial spillovers somewhat reduced in size. The lagged

spatial spillover turns weakly significant suggesting a higher precision of estimation. Point

estimates on local treatment and spillover e�ects of droughts and cold waves are smaller –

droughts turn insignificant.

3.6.3 Simple Annual Mean

In this part, the aggregation method is changed by taking the simple annual mean over all

months within a year instead of the rolling average. Note that this may introduce systematic

measurement error and bias by weighting events which occurred later in the year with the

same weight as those that happened earlier. Table 3.5, Panel D shows very consistent results

for all types of weather shocks.68 While local treatment e�ects decrease slightly inmagnitudes

for storms, results are consistent for precipitation and increase by factor 2.9 for droughts and

by factor 1.2 for cold waves. Spillover e�ects are consistent for storms, decrease slightly for

precipitation and droughts and increase by one half for cold waves. Generally, results remain

unchanged in sign and significance levels.

66Note that droughts, for example, typically stretch over large areas implying that they may well be ongoing
in an entire country, albeit to a varying degree throughout its territory.

67For full results, see Table C.15 in the Appendix
68Table C.16 in the Appendix shows full results.
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Table 3.5 : Sensitivity Results

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

PANEL A: Top-Coding: Excluding Top-Coded Pixels
disastert −0.0019** −0.0329*** 0.0091* −0.0752***

(0.0009) (0.0070) (0.0048) (0.0152)
disastert−1 −0.0090*** 0.0222*** 0.0012 −0.0318**

(0.0009) (0.0069) (0.0048) (0.0149)
W · disastert 0.0000 0.0052*** −0.0046*** 0.0219***

(0.0002) (0.0013) (0.0009) (0.0027)
W · disastert−1 0.0008*** −0.0023* 0.0011 −0.0200***

(0.0002) (0.0013) (0.0009) (0.0027)

PANEL B: Bottom-coding: Setting Pixels <DN3 to Zero
disastert −0.0007 −0.0265*** 0.0082* −0.0852***

(0.0009) (0.0070) (0.0048) (0.0154)
disastert−1 −0.0106*** 0.0290*** 0.0015 −0.0291*

(0.0009) −0.0069 (0.0048) (0.0150)
W · disastert −0.0001 0.0042*** −0.0041*** 0.0242***

(0.0002) (0.0013) (0.0009) (0.0027)
W · disastert−1 0.0010*** −0.0022* 0.0007 −0.0217***

(0.0002) (0.0013) (0.0009) (0.0027)

PANEL C: Time Varying Country Characteristics
disastert 0.0004 −0.0312*** 0.0062 −0.0360**

(0.0010) (0.0070) (0.0049) (0.0179)
disastert−1 −0.0049*** 0.0117* 0.0009 −0.0390**

(0.0010) (0.0069) (0.0049) (0.0175)
W · disastert 0.0003** 0.0043*** −0.0041*** 0.0165***

(0.0002) (0.0013) (0.0009) (0.0029)
W · disastert−1 0.0009*** −0.0022* 0.0017* −0.0144***

(0.0002) (0.0013) (0.0009) (0.0028)

PANEL D: Simple Annual Mean of Disasters
disastert −0.0032*** −0.0289*** 0.0243*** −0.0613***

(0.0007) (0.0055) (0.0039) (0.0137)
disastert−1 −0.0064*** 0.0011 −0.0060 −0.0540***

(0.0007) (0.0055) (0.0038) (0.0133)
W · disastert −0.0002 0.0018* −0.0037*** 0.0337***

(0.0001) (0.0010) (0.0007) (0.0025)
W · disastert−1 0.0008*** 0.0030*** 0.0000 −0.0504***

(0.0001) (0.0010) (0.0007) (0.0019)

Note: ***, **, * denote significance at the 1%, 5%and10% level. All specifications
are SDEM and are estimated by Maximum Likelihood. Standard errors in paren-
theses. Cell and year fixed e�ects included but not reported in all specifications.
Cell and country-year fixed e�ects included for the time-varying country char-
acteristics analysis but not reported. Spatial radius is r=80 km. Yearly disaster
intensities reflect time-weighted rolling averages over 12 subsequent monthly
observations. Simple annual mean uses non-weightedmean over all monthly
observations within a year. Full results are shown in Tables C.11 to C.16 in the
Appendix.
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3.7 Extension: Heterogeneity

Up to this point, focus has been on the global average of local weather shock impacts. In a

next step, heterogeneity in income groups and across world regions is explored.

3.7.1 Income Groups

Cells are classified depending on whether they belong to high income or to low (andmiddle)

income countries.69 Equation (3.4) is an extension of the baseline model (3.2).

∆`t = `t−1γ +Dtβ
0 +Xtδ

0 +W rDtβ
1 +W rXtδ

1 (3.4)

+ [Dt × low]β2 + [W rDt × low]β3 + ν + π + ut

ut = ρW rut + εt.

It includes interaction terms of local disaster treatment and its spatial spillovers with a binary

indicator low. This indicator flags cells in low- and middle income countries, compared to
high income countries. Coe�icients β2 and β3 identify by howmuch the treatment e�ects of

cells in low andmiddle income countries di�ers from cells in high income countries, i.e., β0

and β1. Table 3.6 shows the combined e�ects obtained from these interaction regressions.

Estimates suggest that negative wind e�ects are driven by low income cells in the year of

occurrence and therea�er. The lagged negative e�ect in low income cells is nearly three times

as large as in high income cells. Positive lagged spillover e�ects occur in both types of cells,

but are 1.5 times stronger for those that are poorer. Negative treatment and positive spillover

e�ects for precipitation are entirely driven by low income cells. The positive local treatment

e�ect on droughts shows only in cells of low income countries, as does the negative spillover

e�ect. In linewith the baseline, coldwaves showa strong negative e�ect on light growth in low

income cells, associated with a positive spillover e�ect. In high income cells, cold waves lead

to more light growth in the period of occurrence and less therea�er, with negative spillovers

in the preceding year. Overall, there is evidence that the baseline local average treatment

and spillover e�ects are generally driven by cells in low andmiddle income countries. This

relates well to findings in the literature that developing and poor countries are particularly

vulnerable to the impact of extreme natural events (Raddatz, 2007; Noy and Nualsri, 2011).

69The binary categorization of income groups follows World Bank Lending Groups from year 2000. Cells in
high income countries account for 31% of the sample, cells in low andmiddle income countries account for 69%.
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Table 3.6 : Income Group Heterogeneity, Combined E�ects

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

high income

disastert −0.0015 0.0171 −0.0120 0.2442***
(0.0016) (0.0118) (0.0093) (0.0389)

disastert−1 −0.0042*** 0.0249** 0.0081 −0.0680*
(0.0015) (0.0117) (0.0092) (0.0384)

W · disastert −0.0001 0.0015 −0.0020 0.0077
(0.0003) (0.0021) (0.0016) (0.0059)

W · disastert−1 0.0006** −0.0040* 0.0029* −0.0224***
(0.0003) (0.0021) (0.0016) (0.0059)

low income

disastert −0.0021* −0.0534*** 0.0147*** −0.1133***
(0.0011) (0.0087) (0.0056) (0.0169)

disastert−1 −0.0119*** 0.0192** −0.0010 −0.0193
(0.0011) (0.0085) (0.0055) (0.0165)

W · disastert 0.0001 0.0064*** −0.0052*** 0.0191***
(0.0002) (0.0016) (0.0011) (0.0031)

W · disastert−1 0.0009*** −0.0007 0.0000 −0.0170***
(0.0002) (0.0016) (0.0010) (0.0030)

Observations 506,142 500,787 467,691 504,525

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Cell and year fixed
e�ects and controls as in baseline included but not reported. Spatial radius is
r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations. Estimates represent combined e�ects
from adding up cou�icients from the interaction terms, significance levels are
obtained with a two-sided t-test. Full regressions in Table C.18.

3.7.2 World Regions

Next, cells are categorized into world regions (see Figure C.13). Table 3.7 summarizes results

from a set of split-sample regressions. Overall, results show that specific weather shocks are

driven by some world regions. In line with the baseline, wind speeds show negative e�ects

on night-light growth in Europe, North America, Latin America and the Caribbean (LATAM),

as well as in South-East Asia and the Pacific (SEAP). Except for Europe, the lagged e�ect of

wind persists throughout the following year. Middle Eastern and Northern African (MENA) and

Central Asian cells show on average a positive e�ect in the year of occurrence and a negative

e�ect with a lag. Spillover e�ects are generally positive in subsequent years (except SEAP)

and positive in current years in North America and LATAM.
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Table 3.7 : Heterogeneity Across World Regions

Dependent Variable:∆ ln(lightst)

Europe North LATAM SEAP Central Asia SSA
America &MENA

wind

disastert −0.0034* −0.0076*** −0.0048** −0.0032* 0.0061** 0.0011
disastert−1 0.0042** −0.0064*** −0.0064*** −0.0080*** −0.0108*** −0.0011
W · disastert −0.0002 0.0007* 0.0012** −0.0001 0.0008 −0.0003
W · disastert−1 0.0005* 0.0011*** 0.0009* 0.0001 0.0020*** 0.0016*

prec.

disastert 0.0116 0.0026 −0.0659*** −0.0277* −0.0348** −0.0365
disastert−1 0.0046 0.0049 0.0483*** 0.0021 −0.0305* 0.0200
W · disastert 0.0033 0.0013 −0.0022 0.0014 0.0062** 0.0134*
W · disastert−1 0.0016 −0.0037 −0.0034 0.0078* −0.0042 0.0038

drought

disastert 0.0042 −0.0245*** 0.0373*** 0.0021 −0.0176 0.0102
disastert−1 0.0011 0.0049 −0.0493*** 0.0349*** 0.0221** 0.0454***
W · disastert −0.0077*** 0.0021 −0.0008 −0.0066** −0.0024 −0.0010
W · disastert−1 0.0006 0.0045** 0.0015 −0.0047* 0.0057*** −0.0076

cold

disastert 0.0906** 0.0256*** −0.1388*** 0.1020*** −0.2588*** 0.1513**
disastert−1 −0.0858* −0.1636*** −0.0140 0.1289*** −0.4732*** −0.0437
W · disastert 0.0295*** 0.0111 0.0117** −0.0104 0.0455*** −0.0080
W · disastert−1 −0.0283*** 0.0022 0.0086* −0.0021 −0.0196** −0.0152

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are SDEM and are estimated by Maximum
Likelihood. Cell and year fixed e�ects and controls as in baseline included but not reported. Spatial radius is r=80 km. Yearly
disaster intensities reflect time-weighted rolling averages over 12 subsequent monthly observations. Separate regressions
for each disaster type and region. Full regressions in Tables C.19 – C.24.

Negative e�ects from excessive precipitation occur in LATAM, SEAP, MENA and Central Asia. A

negative but statistically insignificant local treatment e�ect is found for Sub-Saharan Africa

(SSA). Positive spillover e�ects stem fromMENA, Central Asia and SSA.

Droughts reduce night-light growth in North America, while the positive baseline e�ect is

driven by Latin American and Caribbean cells. Negative spillovers of droughts show up in

Europe and SEAP. Already very dry regions, such as SSA or MENA show very little average

e�ects on droughts.

In Europe, North America, SEAP and SSA, cold waves show positive local e�ects on night-light

growth. While Europe and North America can generally a�ord the technology for coping with

the cold, SEAP, as well as SSA benefit from cooler weather as overall warmer regions. Negative

local e�ects fromcoldwaves stemsolely fromLATAM,MENAandCentral Asia. Positive spillover

e�ects from cold waves are driven by Europe, LATAM, MENA and Central Asia.
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3.8 Conclusion

This paper contributes to the emerging literature on the economic consequences of exogenous

extreme natural events by taking the debate to the local level, asking how their economic

e�ects propagate across space. Satellite night-time light data from 1992 to 2013 are used to

proxy for local economic activity, which are proven to be highly correlated with GDP growth,

and disaggregated seismologic, climatic andmeteorologic data on natural disaster events are

compiled. Available economic variables, such as light emission and population, are mapped

together with the various disaster types on a balanced 0.5°×0.5° grid covering the whole world.

Utilizingmaximum likelihood techniques, the impact of various types of exogenous shocks on

the growth of night-time light emissions is estimated in a spatial fixed e�ects setup, controlling

for cell population and spatial autocorrelation in the error term. This setup allows explicit

modeling and investigation of local average treatment e�ects but also of spatial spillover

e�ects in nearby locations. With this setup, theproblemof varying country sizes or subnational

entities as the unit of observation is eliminated.

Results are heterogeneous across the various disaster types. Baseline results show that storms,

cold waves and extreme precipitation events reduce local light growth and have positive con-

temporaneous or lagged spatial spillover e�ects within a geodesic radius of 80 km. Evaluated

along the lights-to-GDP growth elasticity, a one standard deviation increase in wind speeds

reduces contemporaneous income growth by 0.33 percentage points. In the next period, the

e�ect quadruples and local spillovers from treatment of one neighboring cell increase lights

growth by 1.48 percentage points. Likewise, a one standard deviation increase in excessive

precipitation or cold waves decreases current income growth by 0.17 or 0.25 percentage

points, respectively. In the next period, GDP growth increases on average by 0.12 percentage

points due to high precipitation, but persistently decreases by 0.11 percentage points a�er

a cold spell. Associated contemporaneous spillovers total 0.03 and 0.07 percentage points

per neighbor treated, respectively. The link between light emission and droughts is rather

weak as they mostly a�ect agricultural outcomes. Hence, negative spatial spillover e�ects of

droughts are largely driven by rural rather than urban cells. Due to measurement error in the

data or temporary relocation of activity into the open combined with reconstruction a�er an

earthquake, a consistent pattern for earthquake events cannot be identified.

An important policy implication can be inferred from the assessment of alternative spillover

specifications. Results suggest that that disaster spillovers are a rather local phenomenon,
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which implies that adaptation policies aiming at supporting the temporary relocation of

economic activity a�er a natural disaster should have a local focus. In an extension, some

heterogeneity of disaster impacts across world regions and across income groups is shown. In

particular, estimates suggest that cells in low andmiddle income countries drive the baseline

results.

Finally, results are largely robust to top- and bottom-coding, the spatial radius, the temporal

aggregation method, and the inclusion of time-varying country fixed e�ects.
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Appendix C.1 Technical Appendix

C.1.1 Background Information: DMSP Night-Lights Data

The United States Air Force DMSP satellites were originally used to detectmoonlit clouds, with

lights from human settlements being a byproduct that is recorded by the DMSP Operational

Linescan System sensor on-board. The sensor records light intensity with a DN between 0 and

63.

Satellites have been observing every location on the planet daily between 8.30 pm and 10

pm local time between 1992 and 2013. Each satellite orbits the earth 14 times a day and thus

ensures global coverage every 24 hours (Doll, 2008).

The satellites have a 3000 km swath, from which data of the center half is used to produce

images at a nominal resolution of 0.56 km. The data is smoothed on-board to produce an

average of 5×5 pixel blocks resulting in a data resolution of approximately 2.7 kilometers at the

equator. A�er smoothing, the data is delivered at a resolution of 30 arc seconds, representing

half aminute, or 1/120th of a degree. This gives data for approximately 0.86 square kilometers

at the equator, with surface area decreasing in absolute terms whenmoving away from the

equator.

The Earth Observation Group of NOAA then processes the raw data using an advanced al-

gorithm, which cleans the raw data as follows: lights from the center half of the 3000 km

swath are selected since these have better geo-location, are smaller and havemore consistent

radiometry (Earth Observation Group, 2016).

Sunlit data and glare are then excluded based on the solar elevation angle and similarly

moonlit data is excluded on basis of the moonlit half of the lunar cycle. Subsequently only

cloud-free observations are included and lighting features from the aurora are excluded from

the data (Baugh et al., 2010). The exclusion of lighting from auroral features, which concerns

high-latitude zones, a�ects approximately 10,000 people or 0.0002% of the world population

(Henderson et al., 2012).

Finally, ephemeral events such as forest fires and other background noise are removed to

produce stable average visible light products that reflect annual average human produced

light emission into space at a 30 arc second resolution between 65°South and 75°North (Earth
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Observation Group, 2016). The average number of valid nights for a given pixel in the satellite-

years is 39.2 (Keola et al., 2015) and typically ranges between 20 to 100 (Elvidge et al., 2009a).

The share of unlit pixels ranges from only 1% in the Netherlands to 99.47% and 99.89% for the

sparsely populated countries Mozambique and Canada (Henderson et al., 2012, p. 1000). A

contrasting example to Mozambique and Canada can be found when comparing Bangladesh

and the Netherlands. Both have high population density, Bangladesh having twice the density

of the Netherlands with an average of 1,080 people per square km between 1992-2008. Yet,

average light intensity – the average digital number per country – is only 2 for Bangladesh,

whereas it is 23.5 in the Netherlands (Henderson et al., 2012, p. 1000). With GDP per capita

(purchasing power parity, constant 2005 dollars) being 35 times higher in the Netherlands,

this indicates that light intensity informs not only about whether there is human life present

in a certain area, but also about these areas’ relative income per capita (see, e.g., Elvidge et al.,

2009b; Ghosh et al., 2010).

Figure C.1 : Night Light Emission of Europe and 0.5° Grid Cells

Note: Night light data cleaned and prepared as described. Raw data comes from satellite F182010.

Notwithstanding, a direct comparison of average light intensity can bemisleading when not

taking into account population size in a given area: The average light intensity of Canada is

lower than that of Bangladesh while income per capita is much higher in Canada. Moreover,

light usage per person may vary across countries due to cultural di�erences in night light use

and customs of timing of economic activity across day and night. This is why Henderson et al.

(2012) stress that night light intensity is better used as a proxy for income growth rather than

income levels. Hence, this approach is followed.
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C.1.2 Interpolation of Wind Speeds

Using the algorithm by Hiemstra et al. (2008), the data are first classified into bins by breaking

up distances d between all point locations of weather stations. For each distance bin d̄, the

cross-sectional empirical (or experimental) semi-variance of observedmaximumwind speeds

across its n observations at any given point in time is defined by equation (C.1). z(xi) is a

random function defining a set of random variables, representing the respective wind speeds

in any given location xi. By assumption, the correlation between two random variables

z(xi), z(xj) depends only on their bilateral spatial distance, irrespective of their location

(i.e., stationarity of the secondmoment of z(xi)). Thus, z(xi + d̄) captures the wind speed

realizations observed d̄ distance units away from location xi.

γ̂(d̄) =
1

2
· 1

n(d̄)

n(d̄)∑
i=1

(z(xi + d̄)− z(xi))
2 (C.1)

Since the empirical semi-variogram cannot be computed at all possible distances d, a model

function is fit for each period, for which parameters are fully determined by the data. The best

fit in linewith the experimental semi-variogram is achievedby theStein (1999) parametrization

of the Matérnmodel1 (C.2) with gamma function Γ and amodified Bessel functionKν . The

nugget (the intercept of the fit) is fixed at zero.2 σ2 is the so-called sill of the model, which

under stationarity of the secondmoment is simply an estimate of the variance V ar [z(xi)]. ν

and κ are non-negative smoothing and range parameters, respectively. All parameters are

determined by available global wind speed data for any given month.

γ(d) =


0 if |d| = 0

σ2

[
1− 1

2ν−1Γ(ν)

(
2 |d|
√
ν

κ

)ν
Kν

(
2 |d|
√
ν

κ

)]
if 0 < |d|, ν > 0

(C.2)

The resulting functional fit increases monotonically as a function of distance and is deployed

to spatially interpolate themaximumwind speed for any location on the global grid. Note that

this interpolation technique allows mapping recorded wind speeds to surrounding locations.

1Five di�erent variogrammodels (spherical, exponential, Gaussian, Matérn, and M. Stein’s parametrization
of the Matérn model) are tested. Note that the Matérn model includes the exponential model as a special case
and the Gaussian model as a limit case (ν lim inf).

2A zero nugget constrains deviation of predicted from observed values at very short distances.
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For areas that are very sparsely covered with weather stations, this inevitably results in a

smoothing e�ect over larger distances. Note that this introduces a downward bias in the

recorded wind speeds, such that obtained estimates may be considered a lower bound. Full

global coverage is achieved by using all stations within a geodesic search radius of 2,000 km as

predictors. Figure C.3 shows the semi-variogram obtained for June 2012. Figure C.4 visualizes

the corresponding spatially interpolated maximumwind speeds and Figure C.5 assesses the

fit of these predicted values, using a leave-one-out technique.

Figure C.2 : Balancing Wind Speeds

Note: Cells lost when balancing on non-interpolated wind speed data are shown in red.
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Figure C.3 : Semi-Variogram for June 2012
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Figure C.4 : Kriged MaximumWind Speed in June 2012
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Figure C.5 : Goodness of Fit for Kriged MaximumWind Speed in June 2012
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Note: Standard deviation of Krigedmaximumwind speed (in kt) in June 2012, obtained using the ‘leave one
out’ technique.

Figure C.6 : Inverse Distance Weighted MaximumWind Speed in June 2012
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C.1.3 Balancing

Figure C.7 : Balanced Panel - Wind and Earthquake

Note: Global distribution of grid cells preserved in balanced panel. Physical indicators used for balancing: Winds.
Red: Dropped because of zero absolute light emission in at least one period. Yellow: Dropped because of zero
population in at least one period. Green: Dropped because no neighbors found within 80 km radius, or because
of singleton country. Black: Preserved, i.e., balanced and consecutive with at least one neighbor each and at
least two cells per country. Number of years: 21. Number of preserved cells: 24,184.

Figure C.8 : Balanced Panel - Temperature

Note: Global distribution of grid cells preserved in balanced panel. Physical indicators used for balancing:
Temperature. Red: Dropped because of zero absolute light emission in at least one period and because of
missing values in the physical intensity measure. Yellow: Dropped because of zero population in at least one
period. Green: Dropped because no neighbors foundwithin 80 km radius, or because of singleton country. Black:
Preserved, i.e., balanced and consecutive with at least one neighbor each and at least two cells per country.
Number of years: 21. Number of preserved cells: 24,097.
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Figure C.9 : Balanced Panel - Precipitation

Note: Global distribution of grid cells preserved in balanced panel. Physical indicators used for balancing:
Precipitation. Red: Dropped because of zero absolute light emission in at least one period and because of
missing values in the physical intensity measure. Yellow: Dropped because of zero population in at least one
period. Green: Dropped because no neighbors foundwithin 80 km radius, or because of singleton country. Black:
Preserved, i.e., balanced and consecutive with at least one neighbor each and at least two cells per country.
Number of years: 21. Number of preserved cells: 23,906.

Figure C.10 : Balanced Panel - Drought

Note: Global distribution of grid cells preserved in balanced panel. Physical indicators used for balancing:
Drought. Red: Dropped because of zero absolute light emission in at least one period and because of missing
values in the physical intensity measure. Yellow: Dropped because of zero population in at least one period.
Green: Dropped because no neighbors found within 80 km radius, or because of singleton country. Black:
Preserved, i.e., balanced and consecutive with at least one neighbor each and at least two cells per country.
Number of years: 21. Number of preserved cells: 22,294.
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C.1.4 Rural/Urban Classification

To test thehypothesis that theobservednegative spillover e�ectsofdroughtsaremainlydriven

by treated non-urban (potentially rural/agricultural) cells that negatively a�ect nearby urban

(or residential) locations, cellsmust be classified intopredominantly urbanvs. non-urbanones.

For this purpose, the MODIS Land-use Data provided by the FAO for year 2001 is used. This

land-use data includes information on the extent of urban or crop areas at a spatial resolution

of 15 arc-seconds (i.e., roughly 500meters), obtained fromMODIS satellite imagery using a

supervised decision tree classification algorithmwith region-specific parameters (Schneider

et al., 2009). Urban land-use in particular comprises all human-constructed elements such

as buildings and roads, while crop land-use comprises all kinds of cultivated fields. Pixel

locations are defined according to the type of land-use they are dominated by (i.e., coverage

of at least 50% of a given pixel unit). In particular, urban areas follow a defined minimum

mapping unit approach, considering only contiguous patches of built-up land that are greater

than one square kilometer (i.e., at least four adjacent pixels.). This data is aggregated to

0.5°×0.5°grid cell units by computing the cell level shares of each land-use pixel type.

As a next step, testing the hypothesis requires classifying each cell as either “urban” or “non-

urban” in a mutually-exclusive fashion. Due to the presence of snow/ice and other vegetation,

crops and urban shares do not sum up to one at the cell level. Moreover, cells with a relatively

high share of urban pixels compared to the global distribution may simultaneously also have

a relatively high share of rural pixels, and vice versa. Consequently, it is unclear ex-ante, what

threshold should be imposed on land-use shares to make a binary distinction.

To solve this classification problem, an o�-the-shelve unsupervised machine leaning algo-

rithm provided by Scrucca et al. (2016) is applied, using three input components: The shares

of urban, crop, and snow-ice pixels (vs. other vegetation) per cell in year 2001. Using the

Bayesian Information Criteria (BIC), the algorithm picks the best fit across a range of classifi-

cation models. The algorithm chooses an ellipsoidal, equal volume and shape (EEV) Gaussian

finite mixture model fitted by expectation-maximization, to classify cells into three categories

representing cells that are mostly urban (1,038), mostly non-urban/rural (21,163), and none

(93). Thus, about 5% of ever-lit cells in the sample represent mostly urban areas. Figure C.11

depicts the classification outcome along the three input-dimensions.
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Figure C.11 : Rural/Urban Classification
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Note: Classification of Rural and Urban Cells in a Gaussian finite mixture model fitted by Expectation-
Maximization (EM) algorithm. Ellipsoidal, equal volume and shape (EEV) model with 3 input components:
Shares of urban, crop, and snow-ice pixels per cell in year 2001. All input components centered and scaled by
their standard deviation for e�iciency reasons. Log-Likelihood: 39,242.11, number of observations: 22,294 cells,
number of estimated parameters: 23, Bayesian Information Criteria (BIC): 78,253.94, Integrated Complete-data
Likelihood (ICL): 77,970.27. Best fit across rangeof classificationmodelsprovidedby ’mclust 5’ Rpackage (Scrucca
et al., 2016), using BIC as selection criterion. 21,163 cells classified as rural (red), 1,038 as urban/residential
(blue), 93 as none (green).

Figure C.12 depicts the distributions of key variables of interest for the obtained classes. The

top twographsarededicated to thedistributionof input components usedby the classification

algorithm. As it becomes clear, most cells classified as rural have no or only small urban pixel

shares. The reverse conclusion is not true however: The graph on the top right suggests that
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cells classified as urban may simultaneously have very high crop shares. This observation

seems reasonable, given the arbitrary layout of the grid cells combined with the fact that

cultivated croplands are o�en located in the outskirts of urban areas.

The lower two graphs turn to the distributions of the mean night light intensity (le�) and of

population (right). Neither of these two variables has been used as inputs for classification

but are relevant for empirical identification and shall thus serve to asses the class validity.

The plots suggest that both the mean night light intensity and the population size are overall

higher for urban than for rural cells, which can be considered a reasonable finding.

Finally, to o�er a more tractable alternative to the classification with non-supervised learning,

a “simple” selection rule is tested, which baldly classifies all cells as urban that have a share

of urban pixels which is larger than zero. This approach leads to about twice as many cells

being classified as urban, potentially including also those that have only very small urban

area. While it is reasonable to assume that about 10% urbanization at a global scale may be

too high, results are qualitatively similar.

To decompose the local average treatment and spillover e�ects of droughts according to cell

classification, the following model is estimated:

∆`t = `t−1γ +Dtβ
0 + [Dt × urban]β1 (C.3)

+W r
non-urbanDtβ

2 + [W r
non-urbanDt × urban]β3

+W r
urbanDtβ

4 + [W r
urbanDt × urban]β5

+Xtδ
0 +W rXtδ

1 + ν + π + ut

ut = ρW rut + εt.

W r
urban andW

r
non-urban representmutually exclusive subsets of neighborhoods. Since these sub-

sets potentially have systematic di�erences in the number of neighbors, spillover-components

are standard-normalized to allow direct comparison of coe�icient magnitudes. Results for

both classifiers (clustering and simple) are summarized in Table C.1.

Results suggest that negative spillovers from non-urban to urban cells drive the aggregate

spillover, with magnitudes about twice as strong as from non-urban to non-urban ones. This

supports the hypothesis that negative drought spillovers are driven by the rural-to-urban

channel. Spillovers within pairs of non-urban cells still persist, however, potentially due to
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Figure C.12 : Distribution of Cell Properties Across Rural/Urban Clusters
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Table C.1 : Comparison of Drought-E�ects Across Rural-Urban Neighborhoods

Dependent Variable:∆ ln(lightst)

clustering simple
di
re
ct
e�
ec
ts

non-urban cells

droughtt 0.0243*** 0.0227***
(0.0039) (0.0040)

droughtt−1 −0.0046 −0.0038
(0.0039) (0.0039)

urban cells

droughtt × urban 0.0593*** 0.0463***
(0.0172) (0.0123)

droughtt−1 × urban −0.0289* −0.0204*
(0.0172) (0.0123)

sp
ill
ov
er
e�
ec
ts

fr
om

no
n-
ur
ba
n
ce
lls

to non-urban cells

Wnon-urban · droughtt −0.0080*** −0.0079***
(0.0015) (0.0015)

Wnon-urban · droughtt−1 −0.0004 −0.0006
(0.0015) (0.0015)

to urban cells

Wnon-urban · droughtt × urban −0.0094* −0.0062*
(0.0051) (0.0036)

Wnon-urban · droughtt−1 × urban 0.0046 0.0037
(0.0051) (0.0036)

fr
om

ur
ba
n
ce
lls

to non-urban cells

Wurban · droughtt −0.0012 −0.0004
(0.0011) (0.0011)

Wurban · droughtt−1 −0.0005 −0.0005
(0.0011) (0.0011)

to urban cells

Wurban · droughtt × urban −0.0042** −0.0050***
(0.0019) (0.0019)

Wurban · droughtt−1 × urban 0.0034* 0.0025
(0.0019) (0.0019)

controls

ln(popt) 0.0276*** 0.0276***
(0.0014) (0.0014)

W · ln(popt) 0.0115*** 0.0115***
(0.0006) (0.0006)

ln(lightst−1) −0.4329*** −0.4329***
(0.0011) (0.0011)

ρ 0.0676*** 0.0676***
(0.0001) (0.0000)

Observations 468,174 468,174

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are SDEM and
are estimated by Maximum Likelihood. Standard errors in parentheses. Cell and year fixed e�ects
included but not reported. Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations.Wurban andWnon-urban represent mutually
exclusive subsets of neighborhoods. Spillover-Components standard-normalized to allow comparison
across subsets within regressions.
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residual urban structures in cells classified as non-urban. There is no evidence for spillovers

from urban to non-urban cells and only weak spillovers within urban neighborhoods. Finally,

the positive direct e�ect is nearly three times as large in urban cells compared to non-urban

ones. Notably also, the relevant spillover e�ects from non-urban to urban cells are about a

third higher with the machine-learning clustering approach than if the simple classification

rule is used. This suggests that the distinction between urban and non-urban cells provided by

machine-learning may bemore precise but is not exclusively driving the qualitative findings.
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Appendix C.2 Supplementary Appendix

C.2.1 Supplementary Descriptive Statistics

Table C.2 : Summary Statistics

statistic n mean st. dev. min max

∆ ln(lights) 507,864 0.045 0.392 −8.246 8.217
∆ ln(lights NTC) 468,111 0.046 0.394 −8.139 8.109
∆ ln(lights<=DN55) 507,528 0.048 0.402 −0.030 8.002
∆ ln(lights>=DN3) 507,024 0.045 0.397 −8.246 8.217
∆ ln(lights>=DN8) 390,957 0.045 0.483 −8.311 8.424
ln(lights) 507,864 0.264 1.724 −7.090 4.142
ln(lights NTC) 468,111 0.135 1.672 −7.090 4.093
ln(popt) 507,864 10.639 2.165 −14.390 16.822

time-weighted physical intensities
wind 507,864 20.766 4.486 5.478 46.528
cold 506,037 0.412 0.089 0.000 1.271
precip. 502,026 0.385 0.151 0.000 1.697
drought 468,174 0.387 0.242 0.000 2.305
earthq. 507,864 0.121 0.395 −0.189 5.002

simplemean of yearly physical intensities
wind 507,864 20.735 4.552 4.957 48.036
cold 506,037 0.410 0.093 0.000 1.372
precip. 502,026 0.386 0.182 0.000 1.841
drought 468,174 0.386 0.277 0.000 2.322
earthq. 507,864 0.120 0.405 −0.317 5.342

Figure C.13 : Specification of World Regions
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Table C.3 : Summary Statistics of Satellite-Years for Night-time Lights

Satellite-Year DN Cloud-Free
Nights

0 1–2 3–8 9–15 16–25 26–62 63 (Mean)

F101992 84.97% 0.00% 4.00% 1.89% 0.73% 0.85% 0.09% 15.2
F101993 86.34% 0.00% 6.19% 1.65% 0.70% 0.86% 0.00% 31.2
F101994 86.39% 0.00% 6.21% 1.58% 0.69% 0.89% 0.10% 14.7
F121995 84.97% 0.00% 6.26% 1.92% 0.84% 1.08% 0.10% 40.9
F121996 84.79% 0.00% 6.58% 1.82% 0.82% 1.04% 0.09% 40.2
F121997 84.81% 0.00% 5.90% 1.99% 0.85% 1.10% 0.11% 36.3
F121998 82.93% 0.00% 6.01% 2.25% 0.93% 1.18% 0.12% 40.2
F141999 78.35% 0.03% 7.65% 1.45% 0.66% 0.89% 0.08% 37.1
F152000 84.64% 0.00% 7.19% 2.31% 0.92% 1.15% 0.11% 48.7
F152001 81.82% 0.00% 7.49% 2.11% 0.89% 1.15% 0.09% 47.1
F152002 84.02% 0.00% 7.52% 2.19% 0.91% 1.19% 0.09% 53.4
F152003 82.19% 0.19% 8.24% 1.30% 0.63% 0.86% 0.06% 45.8
F152004 84.56% 0.52% 8.57% 1.27% 0.62% 0.89% 0.05% 53.9
F152005 83.91% 0.61% 8.90% 1.37% 0.69% 0.95% 0.06% 59.4
F152006 84.23% 0.56% 8.63% 1.36% 0.67% 0.96% 0.06% 51.6
F162007 84.16% 0.00% 8.16% 1.99% 0.87% 1.20% 0.09% 53.7
F162008 84.32% 0.00% 8.08% 1.92% 0.86% 1.19% 0.10% 47.4
F162009 85.55% 0.00% 6.74% 1.90% 0.87% 1.17% 0.12% 32.0
F182010 83.11% 0.00% 6.43% 3.39% 1.47% 1.87% 0.18% 54.6
F182011 83.56% 0.00% 7.85% 2.44% 1.06% 1.44% 0.14% 54.6
F182012 84.25% 0.00% 6.06% 2.89% 1.20% 1.59% 0.17% 49.4
F182013 84.61% 0.00% 6.16% 2.83% 1.16% 1.57% 0.16% 58.8

Note: Summary statistics are provided for post-cleaning night light satellite-years. Light pixels are considered only on-land, not in
gas-flaring zones and in vicinity of volcanoes (see Data Section). Exception: Themean number of cloud-free nights is constructed
using the raw data product, as downloaded from NOAA.

Table C.4 : Lights to GDP Growth Rate Elasticity

Dependent Variable: ln(GDP in const. LCU) ln(pop density)

ln(light) 0.348*** 0.369*** 0.097***
(0.092) (0.069) (0.015)

ln(GDP in const. LCU) 0.132***
(0.031)

adj. R2 0.999 0.998 0.997 0.997
withinR2 0.240 0.273 0.073 0.080
N 3,229 4,167 4,156 4,156

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All models use panel
OLS. Standard errors (in parentheses) are robust to heteroskedasticity. Country and
year fixed e�ects included but not reported. Years 1992-2008 in first column, 1992-2013
in remaining columns. 197 countries in sample.

Table C.5 : Test for Residual Spatial Autocorrelation

Global Moran’s I Test for regression residuals of SLXmodel

wind precip. drought cold

Sample Estimates
Observed Moran’s I 0.4466 0.4496 0.4530 0.4459
Expected Moran’s I −0.0001 −0.0001 −0.0001 −0.0001

Test Statistics
Moran’s I stat. s.d. 596.16 596.66 579.01 594.28
Two-sided p-value 2.2e-16 2.2e-16 2.2e-16 2.2e-16

Note: Global Moran’s I Test for spatial autocorrelation in the residuals of estimated
linear SLX models, compare column (3) of tables C.6–C.8. The Null Hypothesis of no
residual spatial autocorrelation (RSA) is overwhelmingly rejected. Observed Moran’s
I are positive throughout, suggesting positive RSA (i.e., spatial clustering).
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Figure C.14 : Kernel Densities of Monthly Physical Intensities
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Figure C.15 : Kernel Densities of Monthly Temperature and Precipitation (raw data)
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C.2.2 Supplementary Tables

Table C.6 : Model Buildup: Impact of Droughts on Light Growth

Dependent Variable:∆ ln(lightst)

(1) (2) (3) (4)

droughtt −0.0229*** 0.0262*** 0.0345*** 0.0083*
(0.0021) (0.0055) (0.0057) (0.0048)

droughtt−1 −0.0296*** 0.0005
(0.0058) (0.0047)

W · droughtt −0.0080*** −0.0099*** −0.0044***
(0.0008) (0.0008) (0.0009)

W · droughtt−1 0.0073*** 0.0010
(0.0008) (0.0009)

ln(popt) 0.0432*** 0.0267*** 0.0266*** 0.0276***
(0.0030) (0.0029) (0.0029) (0.0014)

W · ln(popt) 0.0149*** 0.0149*** 0.0115
(0.0009) (0.0009) (0.0006)

ln(lightst−1) −0.4054*** −0.4086*** −0.4084*** −0.4329***
(0.0033) (0.0033) (0.0033) (0.0011)

ρ 0.676***
(0.0000)

Method OLS SLX SLX SDEM
Observations 468,174 468,174 468,174 468,174

Note: ***, **, * denote significanceat the1%, 5%and10% level. Specifications (1),
(2), and (3) are estimated by panel OLS, (4) is estimated by Maximum Likelihood.
Standard errors (in parentheses) allow for heteroskedasticity and clustering at
the cell level in specifications (1), (2), and (3). Cell and year fixed e�ects included
but not reported. Spatial radius is r=80 km. Yearly disaster intensities reflect
time-weighted rolling averages over 12 subsequent monthly observations.

Table C.7 : Model Buildup: Impact of Cold Waves on Light Growth

Dependent Variable:∆ ln(lightst)

(1) (2) (3) (4)

coldt 0.0134** −0.1765*** −0.1227*** −0.0762***
(0.0068) (0.0184) (0.0194) (0.0153)

coldt−1 −0.0293* −0.0326**
(0.0176) (0.0149)

W · coldt 0.0323*** 0.0307*** 0.0218***
(0.0025) (0.0026) (0.0027)

W · coldt−1 −0.0229*** −0.0195***
(0.0024) (0.0026)

ln(popt) 0.0409*** 0.0236*** 0.0233*** 0.0244***
(0.0028) (0.0027) (0.0027) (0.0013)

W · ln(popt) 0.0148*** 0.0142*** 0.0106***
(0.0008) (0.0008) (0.0006)

ln(lightst−1) −0.4097*** −0.4141*** −0.4138*** −0.4379***
(0.0032) (0.0032) (0.0032) (0.0011)

ρ 0.0672***
(0.0000)

Method OLS SLX SLX SDEM
Observations 506,394 506,394 506,037 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. Specifications
(1), (2), and (3) are estimated by panel OLS, (4) is estimated by Maximum
Likelihood. Standard errors (in parentheses) allow for heteroskedasticity and
clustering at the cell level in specifications (1), (2), and (3). Cell and year fixed
e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster
intensities reflect time-weighted rolling averages over 12 subsequent monthly
observations.
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Table C.8 : Model Buildup: Impact of Earthquakes on Light Growth

Dependent Variable:∆ ln(lightst)

(1) (2) (3) (4)

earthq.t 0.0107*** 0.0055** 0.0038 0.0044**
(0.0018) (0.0022) (0.0023) (0.0022)

earthq.t−1 0.0032 0.0011
(0.0024) (0.0022)

W · earthq.t 0.0019*** 0.0008 0.0005
(0.0005) (0.0006) (0.0008)

W · earthq.t−1 0.0018*** 0.0015*
(0.0007) (0.0008)

ln(popt) 0.0406*** 0.0243*** 0.0243*** 0.0251***
(0.0028) (0.0027) (0.0027) (0.0013)

W · ln(popt) 0.0148*** 0.0147*** 0.0111***
(0.0008) (0.0008) (0.0006)

ln(lightst−1) −0.4101*** −0.4134*** −0.4134*** −0.4378***
(0.0032) (0.0032) (0.0032) (0.0011)

ρ 0.672***
(0.0000)

Method OLS SLX SLX SDEM
Observations 507,864 507,864 507,864 507,864

Note: ***, **, * denote significance at the 1%, 5% and 10% level. Specifica-
tions (1), (2), and (3) are estimated by panel OLS, (4) is estimated by Maximum
Likelihood. Standard errors (in parentheses) allow for heteroskedasticity and
clustering at the cell level in specifications (1), (2), and (3). Cell and year fixed
e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster
intensities reflect time-weighted rolling averages over 12 subsequent monthly
observations.

Table C.9 : Sensitivity of Baseline Results to Radius r=160km

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0016** −0.0249*** 0.0125*** −0.0849***
(0.0007) (0.0057) (0.0041) (0.0136)

disastert−1 −0.0052*** 0.0158*** −0.0075* −0.0129
(0.0007) (0.0057) (0.0040) (0.0133)

W · disastert 0.0000 0.0008** −0.0015*** 0.0061***
(0.0000) (0.0004) (0.0003) (0.0009)

W · disastert−1 0.0001* 0.0000 0.0005* −0.0060***
(0.0000) (0.0004) (0.0003) (0.0008)

ln(popt) 0.0245*** 0.0252*** 0.0264*** 0.0240***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0057*** 0.0059*** 0.0061*** 0.0055***
(0.0003) (0.0003) (0.0003) (0.0003)

ln(lightst−1) −0.4375*** −0.4360*** −0.4328*** −0.4371***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0220*** 0.0221*** 0.0226*** 0.0220***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 515,130 509,166 475,083 513,282

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius
is r=160 km. Yearly disaster intensities reflect time-weighted rolling averages
over 12 subsequent monthly observations.
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Table C.10 : Sensitivity of Baseline Results to Global Spillovers

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0046*** −0.0279*** −0.0016 −0.0974***
(0.0007) (0.0060) (0.0041) (0.0122)
[−0.0044] [−0.0259] [−0.0029] [−0.0794]

disastert−1 −0.0095*** 0.0198*** 0.0017 −0.0858***
(0.0007) (0.0059) (0.0041) (0.0119)
[−0.0093] [0.0189] [0.0017] [−0.0908]

W · disastert 0.0005*** 0.0037*** −0.0010* 0.0217***
(0.0001) (0.0009) (0.0006) (0.0017)
[0.0000] [0.0001] [−0.0001] [0.0010]

W · disastert−1 0.0008*** −0.0021** −0.0001 0.0015
(0.0001) (0.0009) (0.0006) (0.0017)
[0.0000] [−0.0001] [0.0000] [−0.0003]

ln(popt) 0.0228*** 0.0242*** 0.0256*** 0.0225***
(0.0014) (0.0014) (0.0015) (0.0014)
[0.0383] [0.0397] [0.0412] [0.0383]

W · ln(popt) 0.0116*** 0.0122*** 0.0121*** 0.0118***
(0.0004) (0.0004) (0.0005) (0.0004)
[0.0009] [0.0009] [0.0009] [0.0009]

ln(lightst−1) −0.3300*** −0.3270*** −0.3232*** −0.3289***
(0.0009) (0.0009) (0.0009) (0.0009)

λ 0.0671*** 0.0671*** 0.0675*** 0.0671***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 508,158 502,320 468,384 506,394

Note: ***, **, * denote significance at the 1%, 5%and10% level. All specifications
are SDM and are estimated by Maximum Likelihood. Standard errors in paren-
theses. Average e�ects translated with spatial multiplier in square brackets. Cell
and year fixed e�ects included but not reported. Spatial radius is r=80 km. Yearly
disaster intensities reflect time-weighted rolling averages over 12 subsequent
monthly observations.

Table C.11 : Sensitivity to Top-Coding: Excluding Top-Coded Pixels

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0019** −0.0329*** 0.0091* −0.0752***
(0.0009) (0.0070) (0.0048) (0.0152)

disastert−1 −0.0090*** 0.0222*** 0.0012 −0.0318**
(0.0009) (0.0069) (0.0048) (0.0149)

W · disastert 0.0000 0.0052*** −0.0046*** 0.0219***
(0.0002) (0.0013) (0.0009) (0.0027)

W · disastert−1 0.0008*** −0.0023* 0.0011 −0.0200***
(0.0002) (0.0013) (0.0009) (0.0027)

ln(popt) 0.0276*** 0.0286*** 0.0302*** 0.0273***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0113*** 0.0117*** 0.0119*** 0.0110***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4381*** −0.4360*** −0.4321*** −0.4373***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,780 501,942 468,111 505,953

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations. Dependent variable excludes top-coded
pixels.
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Table C.12 : Sensitivity to top-coding: masking all >DN55 pixels

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0019** −0.0359*** 0.0104** −0.0784***
(0.0009) (0.0070) (0.0048) (0.0153)

disastert−1 −0.0091*** 0.0227*** 0.0024 −0.0275*
(0.0002) (0.0069) (0.0047) (0.0150)

W · disastert 0.0000 0.0056*** −0.0049*** 0.0229***
(0.0002) (0.0013) (0.0009) (0.0027)

W · disastert−1 0.0008*** −0.0026** 0.0012 −0.0209***
(0.0002) (0.0013) (0.0009) (0.0027)

ln(popt) 0.0301*** 0.0311*** 0.0326*** 0.0299***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0114*** 0.0118*** 0.0120*** 0.0111***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4360*** −0.4338*** −0.4300*** −0.4352***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0676***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,528 501,795 468,048 505,764

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations.

Table C.13 : Sensitivity to Bottom-Coding: Setting Pixels <DN8 to Zero

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert 0.0009 −0.0145* −0.0032 −0.0208
(0.0011) (0.0084) (0.0058) (0.0186)

disastert−1 −0.0093*** 0.0215*** 0.0063 −0.1174***
(0.0011) (0.0083) (0.0058) (0.0183)

W · disastert −0.0011*** 0.0066*** −0.0040*** 0.0172***
(0.0002) (0.0017) (0.0012) (0.0035)

W · disastert−1 0.0004** −0.0031* −0.0015 −0.0206***
(0.0002) (0.0017) (0.0012) (0.0035)

ln(popt) 0.0201*** 0.0204*** 0.0236*** 0.0188***
(0.0019) (0.0019) (0.0020) (0.0019)

W · ln(popt) 0.0158*** 0.0161*** 0.0168*** 0.0150***
(0.0009) (0.0009) (0.0009) (0.0009)

ln(lightst−1) −0.3756*** −0.3738*** −0.3700*** −0.3742***
(0.0012) (0.0012) (0.0012) (0.0012)

ρ 0.0679*** 0.0680*** 0.0684*** 0.0679***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 390,957 388,227 362,607 390,201

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations.
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Table C.14 : Sensitivity to bottom-coding: setting pixels <DN3 to zero

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0007 −0.0265*** 0.0082* −0.0852***
(0.0009) (0.0070) (0.0048) (0.0154)

disastert−1 −0.0106*** 0.0290*** 0.0015 −0.0291*
(0.0009) −0.0069 (0.0048) (0.0150)

W · disastert −0.0001 0.0042*** −0.0041*** 0.0242***
(0.0002) (0.0013) (0.0009) (0.0027)

W · disastert−1 0.0010*** −0.0022* 0.0007 −0.0217***
(0.0002) (0.0013) (0.0009) (0.0027)

ln(popt) 0.0265*** 0.0275*** 0.0296*** 0.0262***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0108*** 0.0112*** 0.0116*** 0.0105***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4395*** −0.4376*** −0.4338*** −0.4388***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,024 501,228 467,460 505,197

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations.

Table C.15 : Sensitivity of Baseline Results to Time Varying Country Characteristics

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert 0.0004 −0.0312*** 0.0062 −0.0360**
(0.0010) (0.0070) (0.0049) (0.0179)

disastert−1 −0.0049*** 0.0117* 0.0009 −0.0390**
(0.0010) (0.0069) (0.0049) (0.0175)

W · disastert 0.0003** 0.0043*** −0.0041*** 0.0165***
(0.0002) (0.0013) (0.0009) (0.0029)

W · disastert−1 0.0009*** −0.0022* 0.0017* −0.0144***
(0.0002) (0.0013) (0.0009) (0.0028)

ln(popt) 0.0140*** 0.0145*** 0.0158*** 0.0140***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0040*** 0.0041*** 0.0044*** 0.0039***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4768*** −0.4759*** −0.4728*** −0.4764***
(0.0011) (0.0011) (0.0012) (0.0011)

ρ 0.0671*** 0.0671*** 0.0068*** 0.0671***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and country-year fixed e�ects (with nested year fixed e�ects)
included but not reported. Spatial radius is r=80 km. Yearly disaster intensities
reflect time-weighted rolling averages over 12 subsequent monthly observa-
tions.
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Table C.16 : Sensitivity of Baseline to Simple Annual Mean of Disasters

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0032*** −0.0289*** 0.0243*** −0.0613***
(0.0007) (0.0055) (0.0039) (0.0137)

disastert−1 −0.0064*** 0.0011 −0.0060 −0.0540***
(0.007) (0.0055) (0.0038) (0.0133)

W · disastert −0.0002 0.0018* −0.0037*** 0.0337***
(0.0001) (0.0010) (0.0007) (0.0025)

W · disastert−1 0.0008*** 0.0030*** 0.0000 −0.0504***
(0.0001) (0.0010) (0.0007) (0.0019)

ln(popt) 0.0247*** 0.0257*** 0.0276*** 0.0245***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0109*** 0.0113*** 0.0115*** 0.0107***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4385*** −0.4367*** −0.4329*** −0.4376***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifi-
cations are SDEM and are estimated by Maximum Likelihood. Standard errors
in parentheses. Cell and year fixed e�ects included but not reported. Spatial
radius is r=80 km. Yearly disaster intensities reflect non-weighted mean over all
monthly observations within a year.

Table C.17 : Spatial Error HAC Model following Hsiang (2010)

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0010 −0.0744*** 0.0342*** −0.1219***
(0.0014) (0.0112) (0.0080) (0.0275)

disastert−1 −0.0143*** 0.0477*** −0.0292*** −0.0301
(0.0014) (0.0108) (0.0079) (0.0253)

W · disastert −0.0002 0.0137*** −0.0098*** 0.0306***
(0.0002) (0.0019) (0.0013) (0.0043)

W · disastert−1 0.0015*** −0.0079*** 0.0072*** −0.0228***
(0.0002) (0.0018) (0.0013) (0.0041)

ln(popt) 0.0237*** 0.0250*** 0.0267*** 0.0234***
(0.0020) (0.0020) (0.0021) (0.0020)

W · ln(popt) 0.0142*** 0.0149*** 0.0149*** 0.0141***
(0.0011) (0.0011) (0.0012) (0.0011)

ln(lightst−1) −0.4153*** −0.4123*** −0.4085*** −0.4139***
(0.0035) (0.0035) (0.0037) (0.0035)

Observations 507,864 502,320 468,384 506,394

Note: ***, **, * denote significance at the 1%, 5%and10% level. All specifications
adapt the Spatial Error HAC Model methods by Conley (1999) as implemented
by Hsiang (2010). Standard errors (in parentheses) allow for heteroskedasticity,
spatial autocorrelation and temporal autocorrelation over 3 periods. Cell and
year fixed e�ects included but not reported. Spatial radius is r=80 km. Yearly
disaster intensities reflect time-weighted rolling averages over 12 subsequent
monthly observations.
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Table C.18 : Income Interaction

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

estimate combined estimate combined estimate combined estimate combined

disastert −0.0015 0.0171 −0.0120 0.2442***
(0.0016) (0.0118) (0.0093) (0.0389)

disastert−1 −0.0042*** 0.0249** 0.0081 −0.0680*
(0.0015) (0.0117) (0.0092) (0.0384)

W · disastert −0.0001 0.0015 −0.0020 0.0077
(0.0003) (0.0021) (0.0016) (0.0059)

W · disastert−1 0.0006** −0.0040* 0.0029* −0.0224***
(0.0003) (0.0021) (0.0016) (0.0059)

disastert × low income −0.0006 −0.0021* −0.0705*** −0.0534*** 0.0267** 0.0147*** −0.3575*** −0.1133***
(0.0019) (0.0011) (0.0146) (0.0087) (0.0108) (0.0056) (0.0423) (0.0169)

disastert−1 × low income −0.0076*** −0.0119*** −0.0057 0.0192** −0.0092 −0.0010 0.0484 −0.0193
(0.0019) (0.0011) (0.0144) (0.0085) (0.0107) (0.0055) (0.0416) (0.0165)

W · disastert × low income 0.0003 0.0001 0.0049* 0.0064*** −0.0032* −0.0052*** 0.0114* 0.0191***
(0.0003) (0.0002) (0.0026) (0.0016) (0.0019) (0.0011) (0.0067) (0.0031)

W · disastert−1 × low income 0.0003 0.0009*** 0.0033 −0.0007 −0.0029 0.0000 0.0054 −0.0170***
(0.0003) (0.0002) (0.0026) (0.0016) (0.0019) (0.0010) (0.0066) (0.0030)

ln(popt) 0.0247*** 0.0258*** 0.0277*** 0.0241***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0109*** 0.0112*** 0.0115*** 0.0103***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4366*** −0.4328*** −0.4382***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 506,142 500,787 467,691 504,525

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages
over 12 subsequent monthly observations.
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Table C.19 : Region: Europe

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0034* 0.0116 0.0042 0.0906**
(0.0018) (0.0161) (0.0129) (0.0442)

disastert−1 0.0042** 0.0046 0.0011 −0.0858*
(0.0018) (0.0160) (0.0128) (0.0442)

W · disastert −0.0002 0.0033 −0.0077*** 0.0295***
(0.0003) (0.0025) (0.0019) (0.0057)

W · disastert−1 0.0005* 0.0016 0.0006 −0.0283***
(0.0003) (0.0024) (0.0019) (0.0057)

ln(popt) −0.0002 0.0010 0.0076 −0.0008
(0.0054) (0.0055) (0.0062) (0.0055)

W · ln(popt) 0.0011 0.0023 0.0042** 0.0011
(0.0019) (0.0019) (0.0021) (0.0019)

ln(lightst−1) −0.5916*** −0.5919*** −0.5813*** −0.5918***
(0.0031) (0.0032) (0.0034) (0.0032)

ρ 0.0673*** 0.0673*** 0.0677*** 0.0673***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 70,539 69,447 61,236 70,014

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations.

Table C.20 : Region: North America

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0076*** 0.0026 −0.0245*** 0.0256***
(0.0020) (0.0132) (0.0091) (0.0428)

disastert−1 −0.0064*** 0.0049 0.0049 −0.1636***
(0.0020) (0.0130) (0.0090) (0.0421)

W · disastert 0.0007* 0.0013 0.0021 0.0111
(0.0004) (0.0027) (0.0019) (0.0073)

W · disastert−1 0.0011*** −0.0037 0.0045** 0.0022
(0.0004) (0.0027) (0.0019) (0.0072)

ln(popt) −0.0016 −0.0026 −0.0022 −0.0025
(0.0020) (0.0020) (0.0021) (0.0020)

W · ln(popt) 0.0013 0.0012 0.0007 0.0011
(0.0010) (0.0010) (0.0010) (0.0010)

ln(lightst−1) −0.5871*** −0.5960*** −0.5796*** −0.5865***
(0.0027) (0.0027) (0.0028) (0.0027)

ρ 0.0893*** 0.0894*** 0.0901*** 0.0892***
(0.0004) (0.0004) (0.0004) (0.0004)

Observations 100,653 100,254 94,479 100,485

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations.
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Table C.21 : Region: Latin America and Caribbean

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0048** −0.0659*** 0.0373*** −0.1388***
(0.0023) (0.0154) (0.0103) (0.0239)

disastert−1 −0.0064*** 0.0483*** −0.0493*** −0.0140
(0.0023) (0.0151) (0.0101) (0.0238)

W · disastert 0.0012** −0.0022 −0.0008 0.0117**
(0.0005) (0.0032) (0.0022) (0.0046)

W · disastert−1 0.0009* −0.0034 0.0015 0.0086*
(0.0005) (0.0032) (0.0022) (0.0046)

ln(popt) 0.0336*** 0.0378*** 0.0393*** 0.0339***
(0.0037) (0.0038) (0.0040) (0.0038)

W · ln(popt) 0.0178*** 0.0173*** 0.0166*** 0.0156***
(0.0020) (0.0020) (0.0021) (0.0020)

ln(lightst−1) −0.4516*** −0.4494*** −0.4474*** −0.4506***
(0.0028) (0.0028) (0.0029) (0.0028)

ρ 0.0788*** 0.0785*** 0.0784*** 0.0788***
(0.0008) (0.0008) (0.0008) (0.0008)

Observations 65,499 65,163 64,113 59,787

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations.

Table C.22 : Region: Sout-East Asia and Pacific

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0032* −0.0277* 0.0021 0.1020***
(0.0017) (0.0161) (0.0115) (0.0333)

disastert−1 −0.0080*** 0.0021 0.0349*** 0.1289***
(0.0016) (0.0159) (0.0112) (0.0324)

W · disastert −0.0001 0.0014 −0.0066** −0.0104
(0.0004) (0.0042) (0.0027) (0.0080)

W · disastert−1 0.0001 0.0078* −0.0047* −0.0021
(0.0004) (0.0042) (0.0027) (0.0078)

ln(popt) 0.0378*** 0.0388*** 0.0443*** 0.0378***
(0.0035) (0.0035) (0.0038) (0.0035)

W · ln(popt) 0.0062*** 0.0053** 0.0062*** 0.0065***
(0.0019) (0.0019) (0.0021) (0.0019)

ln(lightst−1) −0.4179*** −0.4119*** −0.4061*** −0.4166***
(0.0022) (0.0022) (0.0024) (0.0022)

ρ 0.0962*** 0.0966*** 0.0970*** 0.0963***
(0.0004) (0.0004) (0.0004) (0.0004)

Observations 112,560 110,523 100,821 112,056

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations.
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Table C.23 : Region: MENA and Central Asia

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert 0.0061** −0.0348** −0.0176 −0.2588***
(0.0026) (0.0161) (0.0108) (0.0496)

disastert−1 −0.0108*** −0.0305* 0.0221** −0.4732***
(0.0026) (0.0160) (0.0107) (0.0487)

W · disastert 0.0008 0.0062** −0.0024 0.0455***
(0.0005) (0.0032) (0.0022) (0.0081)

W · disastert−1 0.0020*** −0.0042 0.0057*** −0.0196**
(0.0005) (0.0031) (0.0022) (0.0080)

ln(popt) 0.0149*** 0.0160*** 0.0186*** 0.0146***
(0.0026) (0.0027) (0.0027) (0.0026)

W · ln(popt) 0.0101*** 0.0113*** 0.0116*** 0.0102***
(0.0011) (0.0011) (0.0012) (0.0011)

ln(lightst−1) −0.4306*** −0.4318*** −0.4332*** −0.4311***
(0.0022) (0.0022) (0.0022) (0.0022)

ρ 0.0797*** 0.0797*** 0.0828*** 0.0796***
(0.0001) (0.0001) (0.0002) (0.0001)

Observations 130,242 129,465 125,496 130,053

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations.

Table C.24 : Region: Sub-Sahara Africa

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

Disastert 0.0011 −0.0365 0.0102 0.1513**
(0.0034) (0.0281) (0.0183) (0.0618)

Disastert−1 −0.0011 0.0200 0.0454*** −0.0437
(0.0034) (0.0274) (0.0175) (0.0588)

W · Disastert −0.0003 0.0134* −0.0010 −0.0080
(0.0010) (0.0073) (0.0052) (0.0166)

W · Disastert−1 0.0016* 0.0038 −0.0076 −0.0152
(0.0010) (0.0072) (0.0048) (0.0158)

ln(popt) 0.0410*** 0.0444*** 0.0385*** 0.0453***
(0.0094) (0.0094) (0.0100) (0.0094)

W · ln(popt) −0.0007 −0.0040 −0.0077 −0.0072
(0.0048) (0.0047) (0.0050) (0.0052)

ln(lightst−1) −0.4132*** −0.4131*** −0.4180*** −0.4133***
(0.0044) (0.0045) (0.0046) (0.0044)

ρ 0.0802*** 0.0800*** 0.0815*** 0.0799***
(0.0014) (0.0014) (0.0014) (0.0014)

Observations 28,140 27,993 26,082 28,035

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed e�ects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations.
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4 Illuminating the Spatial Connectivity of Disasters∗

4.1 Introduction

The economic consequences of natural disasters and global warming have found soaring

attention in recent years. Anthropogenic climate change could increase the frequency and

severity of natural disasters which can result in dramatic economic shocks with consequences

onhumanandeconomicdevelopment. To copewith the e�ects of climate change in the future,

it is important to increase mitigation and adaptation capacities. Studying how past natural

disasters have shaped economic outcomes may provide important insights into potential

transmission channels to consider for reaching this objective.

A growing literature surveyed by Cavallo and Noy (2011) investigates the e�ect of natural

disasters on economic growth. Typically, studies either use highly aggregated cross-country

data (e.g., Felbermayr and Gröschl, 2013) or focus on very specific regions and episodes (e.g.,

Strobl, 2011). A number of problems have frequently occurred in the earlier literature. First,

studies typically use information on the incidence of natural disasters from databases drawn

from insurance records or news. This introduces reporting, selection and endogeneity biases,

as both insurance penetration and damage are correlated with development (see Kahn, 2005;

Toya and Skidmore, 2007; Felbermayr and Gröschl, 2014). To tackle these issues, Felbermayr

and Gröschl (2014) propose a database which collects information on the physical intensities

of geological and meteorological events from primary sources at country level. However,

disasters are o�en local events and similar disasters a�ect small countries very di�erently

from large ones (Noy, 2009). Mapping them to countries of heterogeneous size can result in

measurement error and attenuation bias.1

∗Grateful thanks apply to Vincent Stamer for able research assistance and to Andrew Bernard, Carsten Eckel,
Jasmin Gröschl, Yoto Yotov and participants of the 2018 Annual Congress of the German Economic Association
(Verein für Socialpolitik) for valuable comments and suggestions. The author gratefully acknowledges the
compute and data resources provided by the Leibniz Supercomputing Centre (www.lrz.de).

1By aggregating to the country level, the di�erence between an event striking a densely populated coastal
region or an empty desert is lost and countervailing treatment and geographic spillover e�ects may disguise the
true local treatment e�ect. Strobl (2011) illustrates for the U.S. that hurricane e�ects are netted out at the state
level and no e�ects are found on national economic growth rates.
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Recently, Felbermayr et al. (2018) have addressed these issues by extending the empirical

analysis to 24,000 geographical units in 197 countries over 21 years and by studying all natural

disasters of a wide range of types, using detailed measures of physical disaster intensity.

Employing satellite data on nighttime light emissions as a proxy for local economic activity

(cf. Storeygard, 2016; Henderson et al., 2012, 2017) and adopting a spatial econometric fixed

e�ects framework, the authors examine the local average treatment e�ects of natural disasters

at the subnational level and assess potential spillovers. They find strong evidence for negative

local average treatmente�ects and for thepresenceof spatial spillover e�ects. These spillovers

are positive on average, suggesting that the relationship between locations is dominated by

substitution e�ects rather than by complementarity.2 While their findings suggest that these

spilloversonaverageare local phenomenawhichphaseoutquicklyover longerdistances, their

estimates represent simple mean e�ects across all neighboring cells. The exact mechanisms

via which disaster e�ects propagate across space have been taken as a black box and are le�

open for research.

A key concern is the role of spillover propagation for mitigation and adaptation mechanisms

(cf. Fisher et al., 2012; Deschênes and Greenstone, 2012; Burke and Emerick, 2016). Evidence

on particular vehicles that facilitate mitigation include potential spillover determinants such

as trade or financial openness (Felbermayr andGröschl, 2014). Using a quantitative simulation

model with high-resolution data on agricultural productivity predictions, Costinot et al. (2016)

find that international trade attenuates the costs of climate change, but only weakly. Desmet

and Rossi-Hansberg (2015) analyze climate change impacts on the spatial distribution of

economic activity, trade, migration and welfare. Their results suggest that adaptation policies

interact with innovation and the spatial pattern of economic activity. Finally, local geographic

connectivity very likely plays a role in transmitting substitution or complementarity e�ects of

disasters and thus may have implications for a location’s mitigation and adaptation potential.

Theory suggests that well-connected locations should find it easier to respond to shocks by

importing more from other national regions or from abroad or by allowing people to escape

the humanitarian and economic consequences of a disaster by relocating to less a�ected

nearby places.

2If neighboring regions specialize in the same industries as the directly a�ected one, economic activity can
shi� towards them, increasing output or (in the absence of slack) the value of output there (see Hsieh and Ossa,
2016).
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This study aims to explicitly assess the role of connectivity for the transmission of economic

spillover e�ects at the grid cell level. Local spillover e�ects between two locations are likely

to be smaller the less connected these places are with one another. Economic connectivity

between grid cells can be driven by various aspects of economic life. A set of factors is pro-

vided by the gravity literature of international economics, which o�en uses bilateral proximity

controls for given country pairs. In this literature, it is a well established empirical fact that the

physical distance between two observational units reduces the amount of economic transac-

tions between them (McCallum, 1995; Obstfeld and Rogo�, 2000; Anderson and Van Wincoop,

2003). Furthermore, economic transactions are known to be negatively a�ected by the need

to cross national borders (Anderson and Van Wincoop, 2004; Chen, 2004). Another potential

intermediating factor is provided by the literature on transport networks, focusing on the

economic e�ects of the availability of highways (e.g., Banerjee et al., 2012; Faber, 2014). In a

night-lights based study, Storeygard (2016) examines how road networks in Africa a�ect sub-

national economic growth upon oil price shocks. Closely related to this study, Amarasinghe

et al. (2018) use a network model to examine how spatial spillovers from changes in mineral

prices propagate through African road networks. Hence, the role of international borders and

road networks for the transmission of spatial spillover e�ects in response to a natural disaster

seems worthwhile to explore also at a global scale.

In the following, the empirical spatial spillover framework used by Felbermayr et al. (2018) is

extended to unfold the black box of the spillover e�ects in a global analysis, by explicitly ex-

amining a selection of potential transmission channels which govern a location’s connectivity

with its neighbors. For this purpose, the cross-sectional variation in available geographic data

on country borders and roads is exploited. Diversion of economic activity away from a�ected

locations requires the mobility of goods and services or the mobility of people. The degree of

connectivity of a disaster-struck location therefore is likely to be a driver of observed spatial

spillovers. Good road networks can strengthen the e�ects, while limitations to connectivity

(e.g., international borders) may hamper them. First, international border spillover e�ects

are evaluated using information on the exact locations of country boundaries. Second, an

infrastructure-based proxy capturing the overall ease of travel between cells is constructed

using remote-sensed geographic information on road networks.

Estimates suggest that short run relocation of economic activity is subject to a border e�ect, a

finding reminiscent of the empirical gravity literature on international trade. Spatial spillovers

in the base period are driven by cells within national boundaries. For wind and extreme

149



4 Illuminating the Spatial Connectivity of Disasters

precipitation events, domestic neighbors are on average the exclusive sources of statistically

significant spillover e�ects. For droughts and cold waves, spillovers from foreign locations

also matter, but magnitudes of domestic spillovers are about 2.5 times and 1.5 times the

size respectively. This suggests that higher trade andmigration costs hamper the short-run

relocation of economic activity across international borders compared to relocation within

countries. A�er oneperiod, there is no evidence for statistically significant di�erencesbetween

domestic and foreign spillovers.

Moreover, higher connectivity along roads eases travel and lowers trade costs. Spillovers

from cells that feature a connection by at least onemajor road are the sole driver of spatial

spillovers for extreme precipitation events and feature spillover e�ects for droughts and cold

waves that are 1.9 times and 3.5 times as strong as spillovers from cells that lack such a

connection. Exploiting heterogeneity in the roads connectivity in terms of distance and the

number of connections available, those neighbors with a connectivity index above the local

neighborhood’s median are the dominant drivers of spatial spillovers for precipitation events

and cold waves, with no statistically significant di�erence for drought spillovers. Further

distinguishing local neighbors along thirtiles of their connectivity distribution showsmixed

evidence. All in all, results suggest that the overall availability of roads as well as connectivity

di�erences at larger margins (i.e., upper vs. lower 50%) play a very important role, whereas

connectivity di�erences at smaller margins seem less important.

The remainder of the paper is organized as follows: Section 4.2 describes the data used and

discusses the proposed indicator for roads connectivity in detail. Section 4.3 presents the

empirical strategy. Section 4.4 provides results, followed by a number of robustness checks in

Section 4.5. The final section concludes.

4.2 Data

This study combines two types of data: First, itmakes heavy use of theGriddedGAMEDatabase

on geological andmeteorological events, including yearly information on global night-light

emissions and population, as introduced by Felbermayr et al. (2018). Second, it matches this

information with spatial polygon data on country borders and roads to analyze the impact of

either factor on the transmission of spatial spillovers triggered by natural disasters. Section

4.2.1 briefly describes the gridded game data and its covariates. Sections 4.2.2 and 4.2.3 turn
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to the polygon data and describe in detail how a new grid-cell level indicator on roads connec-

tivity is extracted. Finally, section 4.2.4 presents descriptives and discusses the properties of

this new indicator.

4.2.1 Natural Disasters and Economic Activity

This papermakes use of the Gridded GAME Database on geological andmeteorological events

described in detail by Felbermayr et al. (2018). The database partitions the globe into fields

along latitude and longitude, an approach advocated by Nordhaus and Chen (2009) and

Costinot et al. (2016). The balanced panel data set comprises 24,184 raster grid cells with a

resolution of 0.5°×0.5° (approximately 55×55 km at the equator) spread across 197 countries

from 1992 to 2013. Along with economic variables, it provides physical intensities of various

weather shocks, namely wind speeds, extreme precipitation, droughts and cold waves. Wind

speeds are measured by a combined indicator reflecting the maximumwind speeds from cy-

clone wind fields and spatially interpolated non-cyclone winds. Extreme precipitation events

are identified by positive standardized precipitation anomalies above the local monthly long-

run averages. Droughts are defined by negative realizations of the Standardized Precipitation

Evapotranspiration Index (SPEI) which is a normalized indicator taking prolonged (3-month)

periods of dryness and simultaneous potential evapotranspiration of water from the ground

(e.g., due to heat) into account. Cold waves are identified by negative standardized temper-

ature anomalies below the local monthly long-run average climatology. To align with the

temporal resolution of the dependent variable, all monthly physical intensities are aggregated

to the yearly level by computing time-weighted averages over a rolling window allowing each

event to a�ect the outcome variable for exactly 12 months (compare Felbermayr et al., 2018).

Economic activity is used as the dependent variable, proxied by global night-light emissions,

as included in the Gridded GAME Database. The data are obtained in the form of yearly

composite satellite images from the US Air Force Defense Meteorological Satellite Program

(DMSP), fromwhich yearlymean light emissions can be extracted as a digital number (DN). The

manipulation steps taken to prepare this data for econometric disaster analysis are described

and discussed in detail by Felbermayr et al. (2018). In a nutshell, these steps include cropping

all o�-shore light pixels, masking misleading light sources like gas-flaring zones (Elvidge et al.,

2009b) and active volcanoes, selecting satellite sources by coverage quality for years in which

multiple satellites are available andmasking pixels from thedata forwhich the number of valid

nights is zero. Finally, night-light pixels are aggregated tomean light intensity at 0.5°×0.5° grid
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cell level. Night-light emission data has widely been used as a proxy for economic activity in

empirical economic analyses. Henderson et al. (2012) and Storeygard (2016) find lights-to-GDP

growth elasticity of around 0.3 at the country and the Chinese prefecture level, respectively.

Felbermayr et al. (2018) reproduce this findingwith thedata at handand in addition find strong

similarity between the elasticities of lights to population density and of GDP to population

density, fostering the adequacy of night-light emissions as a proxy for economic activity.

Grid cell level population is used as a control variable. 5-year target estimates at pixel level

are obtained from the Gridded Population of the World (GPW) project by the Center for Inter-

national Earth Science Information Network (CIESIN).3 Summing up all pixel values within

each cell yields grid cell level population numbers. These are interpolated exponentially to fill

in the gaps between given 5-year periods.

4.2.2 Border Connectivity

Tomeasurewhether neighboring cells belong to the sameor to a di�erent country, the gridded

dataset is mapped to countries along the 2011 global country boundaries defined in the high

resolutionBiogeoWorldMapShapeFile providedby theDepartmentof Environmental Science

and Policy at the University of California, Davis.4

One grid cell coincideswith atmost four countries. The empirical strategy discussed in Section

4.3 requires anunambiguousmappingbetweencells andcountries. Whereagrid cell intersects

more than one country, the main country is thus selected based on the relative size of its land

area within a cell.

4.2.3 Roads Connectivity

To measure the roads connectivity of grid cells, a new globally consistent indicator is con-

structed by feeding remote-sensed information on global road networks into a modified

Dijkstra (1959) search algorithm. Dijkstra’s algorithm solves the problem of finding the short-

est route between a start node and a goal node via an arbitrary number of intermediate nodes

connected by paths on a predefined network. Each path has a non-negative cost weight. In

the given case, nodes represent raster grid cells within a local neighborhood defined by a

3The data are based on census inputs collected at the lowest administrative units available, which are
redistributed from their administrative census boundaries to a uniform grid by using aerial weights.

4https://biogeo.ucdavis.edu/projects.html, downloaded July 29, 2016.
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constant metric search radius r. The cell in the neighborhood’s center defines the starting

node whereas all its neighbors serve as either intermediate or goal nodes. Paths represent

distances between all pairs of adjacent nodes connected by roads.

Geographic information on road networks is obtained from the Environmental Systems Re-

search Institute (Esri, 2016) who provide a globally consistent shape-file of important roads

according to the DeLormeWorld Base Map.5 It provides a global road network snapshot based

on satellite images collected between 1999 and 2008.6 The data includes 73,325 highways,

78,911 major roads, 3,373 local roads and 399 ferry connections.7

Since the separate road shapes are not always continuously connected, using them for direct

routing along their shape paths is not feasible, at least at a global scale. Moreover, non-

observed smaller road connections between the observed major roads are likely to exist.

Both issues are addressed by not using the roads shapes as routing paths directly. Instead,

the number of distinct roads leading from a cell to an adjacent neighbor is counted in terms

of intersections between road shapes and cell-border polygons. For each intersection, one

path is added to the network. Each path is associated with a distance proxy used as cost

weight. This proxy should reflect the overall distance between the two cells, also accounting

for potential intra-cell travel distance. Distances may vary across cells because of varying

metric correspondence to one degree longitude lon across latitude lat (a result of the globe’s

curvature) and because of smaller land area a typically associated with coastal cells.8

Hence, a cell’s idiosyncratic distance weight is defined by themean of its metric latitudinal

dimension and the ratio between this dimension and its land area. To further approximate

overall travel distance between two adjacent cells’ centroids, the average between their

5This map is compiled by Garmin International, Inc. (formerly DeLorme Publishing Company, Inc.) from
satellite imagery captured by Landsat 7 (Global Land Surveys 2000 and 2005) and the Shuttle Radar Topography
Mission (SRTM).

6Global consistency is a key prerequisite for this research. Many available roads shape-files (e.g., Open
Street Maps) are more detailed but have either strong coverage biases for certain regions of the world or are not
cleaned, such that non-reasonable road patterns emerge in some locations.

7Ferries constitute an important source of connectivity especially for islands and will be treated as roads
henceforth.

8While the longitudinal metric distance of 1° declines as onemoves further away from the equator along
latitudes, the latitudinal metric distance of 1° remains approximately constant at 110.57 km.
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individual distance weights is computed. This results in the following proxy for the bilateral

cell-distance dc of two adjacent cells:

dc =
1

4

2∑
i=1

(
ai km2

lati km
+ lati km

)
(4.1)

For each goal cell within a local neighborhood, the search algorithmconstructs a shortest-path

tree from the start cell via all viable routes within this neighborhood. At each iteration, the

algorithmpicks the unvisited nodewith the lowest distance dc, computes the distance through

it to each of its unvisited adjacent cells. If the distance to reach any of these cells along this

path is smaller than the one found in the previous iteration (or implied by the starting value),

it is updated. The search algorithm stops iterating once the shortest path from the start cell to

the goal cell has been found. The distance from the cell in the center to the goal cell is thus

the sum of the bilateral cell distances over all nodes which jointly define the shortest path,

d =
∑

c d
c.

If two adjacent cells are connected by multiple roads, this potentially increases the ease

of transport between them and allows transport diversion if one of these roads should be

congested or temporarily non-accessible. Thus, the number of roads should be reflected in the

connectivity measure produced. For this reason, the algorithm allows two adjacent cells to be

connected by multiple paths, whereby each path can only be part of one route for any pair of

cells. The connectivity measure is then calculated as a mean over the distances dk along the k

shortest routes. If less than k viable routes are identified for a connection between a given

start and goal pair, a constant penalty distance p is considered for eachmissing route. This

penalty equals the local neighborhood radius r plus half the neighborhood’s circumference

(p = r + πr) to represent the longest plausible geometric distance between the center of a

circle and a point on its domain when initially setting out by 180° into the opposite direction.9

The resulting indicator is defined as:

C = (1− d̄/p) , (4.2)

where d̄ = 1
k

∑k
k=1 dk is the mean distance along the k shortest routes and 1/p is the inverse

penalty for missing connections, which serves as a scaling factor. Consequently, C is con-

9Technically, p also serves as the starting value to be replaced on each routing iteration.
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strained to the [0, 1[ interval.10 For the baseline specification, k = 3 is defined to consider the

availability of up to three separate routes in the indicator.11 Finally, note that by confining

nodes to cells within a given search radius, asymmetries are introduced into the connectivity

matrix whenever a potential node that could lead to a shorter path between A and B lies just

outside the search radius around A but within the search radius around B. Since the econo-

metric strategy used requires symmetric weights matrices, asymmetric dyads are resolved by

using themean of the twodeviating connectivity values. Section 4.2.4 examines the properties

of the connectivity indicator constructed.

4.2.4 Descriptives

Figure 4.1 presents how themean connectivity of each cell within an 80 km radius is distributed

across the globe for the balanced estimation sample of economically active locations defined

by Felbermayr et al. (2018). It can be seen that substantial heterogeneity exists across and

within countries. Overall, local connectivity appears higher in highly developed countries, is

especially clustered aroundeconomic centers and shows anatural decay aroundmountainous

and desertified terrain and for islands which are disconnected by roads. These patterns are

plausible and support the adequacy of the constructed connectivity measure.

Figure 4.2a depicts the cross-sectional correlation between overall cell connectivity and ab-

solute economic activity at the end of the observed time period. The observed positive

correlation suggests that economic activity tends to cluster in locations which are on aver-

age well-connected with their local neighbors by roads. The plot also shows that there is a

significant amount of cells that are not connected by important roads butmay still exhibit sub-

stantial economic activity. These observations account for about one fi�h of the estimation

sample.

Figure 4.2b compares the distribution of economic activity of cells that are completely uncon-

nected bymajor roads within their local neighborhood (i.e., those with a zero connectivity

in panel 4.2a) with those that are positively connected with at least one of their neighbors.

10A connectivity of 1 by definition would apply only to the connectivity of each cell with itself, where distance
is zero. This case however is ruled out by the need to disentangle local average treatment from spillover e�ects,
which requires that a cell by itself must be excluded from its own set of neighbors. An index value of 0 is obtained
for d̄ = p, the longest possible mean distance.

11A smaller k implies that more weight is given to the shortest route. A higher k increases the right-skew of
the connectivity distribution as it raises the likelihood of penalties. Descriptives are provided in Section 4.2.4. As
part of the robustness checks in Section 4.5, k = 1 is considered as an alternative case.
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Figure 4.1 : Global Connectivity Distribution
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Note: Sources: Biogeo World Map Shape File (UC Davis), own calculations. Plotted values represent time-
constant mean connectivity index realizations of locations within their local neighborhoods (80 km radius) for all
observations included in the balanced estimation panel. Higher index values imply higher connectivity.

It can be seen that, while both distributions follow a bell-shape, connected cells comprise a

greater relative mass of cells with stronger absolute night-light emissions than unconnected

cells. Systematic di�erences in growth paths of connected versus unconnected cells can

be controlled for in panel analysis using location fixed e�ects. Nevertheless, investigating

potential di�erences in spillover e�ects originating in unconnected compared to connected

cells appears as an interesting exercise.

Figure 4.2c shows the kernel densities of the mean connectivity by continent. It can be seen

that the relative frequency of cells disconnected by roads is highest for South America andAsia.

These regions also exhibit the lowest proportion of highly-connected cells. Interestingly, the

proportion of disconnected cells in Africa is lower than in South America, Asia and also North

America. This implies that, once a location in Africa is su�iciently active to be reflected in the

night-light emissions data, its roads connectivity (in terms of overall travel distance and num-

ber of roads) within its local neighborhood is relatively good.12 What is more, North America

has a density function with two local maxima, representing the divide betweenmany highly

connected locations in the eastern states versusmany lowly to intermediately connected cells

in the west. Finally, the density function of Europe exhibits substantial le�-skew, pointing at

the continent’s very advanced infrastructure and interconnectedness. This heterogeneity in

12Note however that information on the quality of given roads is not available.
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Figure 4.2 : Connectivity Descriptives
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Note: Plotted ln(lights) represent absolute logarithmic values at the end of the observational period (2013).
Epanechnikov Kernel used to compute densities.

the connectivity distribution suggests that local rather than global summary statistics should

serve as a reference when distinguishing local neighbors by their level of connectivity. Oth-

erwise, identification will run the risk of capturing systematic di�erences across continents

rather than the (relative) connectivity of locations within their neighborhood.

Figure 4.3 zooms in on selected locations to visualize the bilateral connectivity of each sur-

rounding cell with the respective center-locations by example. Connectivity increases along

the red-green spectrumwith bright green representing the highest level of the connectivity

index. Transparent o�-center locations are not represented in the estimation panel due to the

lack of economic activity (usually hinterland, desert or on-sea locations).
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Figure 4.3 : Connectivity Examples
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Note: Sources: Esri, Garmin International, Inc., own calculations. Colors reflect connectivity of cell with cell in
the center. Transparent neighbors are excluded from the balanced estimation panel due to lack of economic
activity.

In the case of Sydney, the highest connectivity exists with the cell to theWest of the city center,

to which the city extends to a large part, and to the southern cell whichmostly contains ocean

but also features some economically active land area in its upper le� corner, which is closely

connected to the city center. The South-West of Sydney’s neighborhood contains the fairly
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connected suburban areas around Campbelltown. In the North of the city, connectivity is

lower. These cells mainly cover buildup areas in and beyond the Marramarra, Dharug, Yengo

and Wollemi National Parks which impose limitations on road access.

For Santiago de Chile, the tightest connections exist with the cells in the immediate South,

which includes parts of the city center and the connected towns San Bernardo and Puente

Alto. The cells to the West of the city are also well connected, including a high density of

small towns and linking Santiago de Chile to the seaside cities San Antonio in the south and

Valparaíso and Viña del Mar in the North. The cells to the East of the city feature a relatively

low connectivity, which is in line with them covering the hardly accessible Andeanmountain

range. For Denver on the other hand, the connections to the Rocky Mountains to the West, an

economically important area during the Colorado gold rush in the 19th century, are much

more pronounced than those leading into the Great Plains to the East.

To provide an example from the Middle East, Teheran is well-connected to the South, East and

West, whereas it adjoins the Varjin Protected Area in the north, which is crossed exclusively by

Chalus Road (visible in the top middle cell) which connects the capital to the Caspian Sea and

to numerous settlements along the way. Finally, Nairobi and Pretoria serve to demonstrate

the vast heterogeneity in terms of connectivity that can be found by comparing two African

capital cities. While Pretoria is very well connected within its neighborhood, especially to its

southern neighbor Johannesburg, the local neighborhood of Nairobi features a much less

developed roads infrastructure and even contains two cells for which no economic activity is

reflected in the night-lights data.

In general, holding the number of roads constant, corner cells tend towards lower connectivity

index values than rook-pattern neighbors simply due to overall longer average distances along

the diagonal. However, as shown by example of Denver and Teheran, variation in the number

of available road connections can also lead to corner cells with higher index realizations than

obtained for their contiguous rook-pattern counterparts.

Conclusively, the connectivity index provided is capable of generating plausible patterns in

line with natural geographic features. It can thus be considered an adequate proxy for the

true connectedness of locations.
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4.3 Empirical Strategy

To study the relationship between natural disasters and economic growth, an empirical

macroeconomic growth model à la Islam (1995) and Acemoglu et al. (2005) is used. Fel-

bermayr et al. (2018) show that not accounting for the spatial dependence structure of the

data results in omitted variable bias when analyzing the growth e�ects of natural disasters on

local economic activity. Therefore, this study closely follows up on their approach by adopting

amodified spatial Durbin error model (SDEM) with cell and year fixed e�ects.13 This allows

the dependent variable to be a�ected not only by own covariates but also by the covariates of

neighboring observational units.

A fully specified panel model is estimated:

∆`t = `t−1γ +Dtβ
0 +

k∑
i

(Ci �W r)Dtβ
i +Xtδ

0 +W rXtδ
1 + ν + π + ut (4.3)

ut = ρW rut + εt

where∆`t is a proxy for grid-cell level economic growth rates, measured by annual changes

in the natural logarithm of mean night-light intensity∆`t ≡ ln
(
lightt

)
− ln

(
lightt−1

)
.Dt

represents physical disaster intensities and temporal lags andXt contains controls.

ν is a vector of cell fixed e�ects controlling for time-constant local unobservables and required

to account for systematic cross-latitude measurement error in night-lights due to aurora, the

solar cycle, and stray light. Importantly, as pointed out by Felbermayr et al. (2018), these

fixed e�ects take out location-specific baseline risk which determines the extent to which

disasters occur unexpectedly. Thus, cell fixed e�ects restrict identification to the unexpected

componentof treatment variation, respecting that expectedevents shouldnota�ect economic

behaviorof rational agentswhichhavealready taken their occurrence intoaccount. Other time-

constant local characteristics comprise potential structural determinants of the relationship

between light use and GDP growth, such as political, cultural, historical and geographic

fundamentals. Since these fixed e�ects control for all time-constant structural fundamentals,

estimates obtained frommodel (4.3)must be interpreted in terms of percentage point changes

in economic activity above or below the local growth path.

13For a detailed description of the standard SDEM, see Anselin (2013) and Halleck Vega and Elhorst (2015).
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π represents a complete set of time fixed e�ects. These capture not only time variation in

unobserved global characteristics, such as technological progress and the global business

cycles, but are also required to control for systematic variation in the measurement of light

emissions over time: The capacity of sensors on board the satellites varies systematically as

they erode over their life-cycle or are replaced by newer models.14 To allow for inter-temporal

comparison of light intensities, Henderson et al. (2012) propose using time fixed e�ects to

control for systematic temporal variation in sensor capacity.15

W r is a time-invariant K × K dimensional spatial weights matrix with binary elements,

filtering all neighboring observational units from the data which lie within a spatial radius

r around a given location, as recommended by Conley (2008).16 A constant metric radius r

is chosen to ensure that the geodesic area of neighborhoods does not vary systematically

across latitude.17 In this study, r is set to 80 km, which e�ectively respects eight adjacent cells

at the equator.18

In principle, interactingW r with treatment variables allows controlling for the treatment of

neighbors and to explicitly assess associated spillovers. However, testing the more detailed

hypothesis whether those spillover e�ects are transmitted via a specific connectivity channel

demands for a more sophisticated approach. This demand is addressed in this study by

constructinga set ofk connectivitymatricesCi, i ∈ k. Eachmatrix consists of binary elements
assigning aweight of one to all neighbors satisfying a defined connectivity criterion and zero to

all others. With respect to the selection criteria, all connectivity matrices from a joint set used

to test a specific hypothesis must bemutually exclusive and collectively exhaustive (MECE)

relative to the universe of neighbors defined byW r. Each connectivity matrix is multiplied

element-wise withW r, such thatCi �W r provides a combined filter extracting groups of

neighboring cells within radius r that satisfy a common connectivity criterion i. Multiplying

14The rate of variation in sensor capacity is not documented.
15A di�erent approach is proposed by Elvidge et al. (2009b, 2014), who inter-calibrate the original pixel data

by normalizing all values to a base year for a reference area which they assume to have very little change in true
light emission throughout the entire observational period. The fixed e�ects approach is a superior alternative in
the sense that it does not require such assumptions on the stability of lights in any temporal or spatial window.

16This structure implies that the same set of neighbors must be used for each observational unit throughout
the entire period of analysis, i.e., the panel must be balanced.

17Themetric length of 0.5° longitude decreases with latitudinal distance to the equator due to earth’s curva-
ture, such that a varying number of cells are included into a neighborhood along the longitudinal axis.

18Felbermayr et al. (2018) extend this spatial radius to 160 km, finding that average spillovers from this greater
neighborhood are significantly smaller. This suggests that spatial spillovers from natural disasters are a rather
local phenomenon.

161



4 Illuminating the Spatial Connectivity of Disasters

variables with this filter produces group-specific spatial lags. βi thus reflects the average local

spillover e�ect of a marginal change in the natural disaster indicator in one neighboring cell

that falls into a given group i.

Note that thematrix multiplications that represent the spillover terms essentially produce

sums over treatments of particular groups of cells surrounding a location for which the de-

pendent variable captures variation in economic activity. This has two implications.

First, even though itmay seem suggestive, identification along a quasi di�erence-in-di�erence

specification that compares the spillovers from a certain category of neighboring cells to a le�-

out base category and a spillover term capturing the full set of neighbors is econometrically

unfeasible. In a standard di�erence-in-di�erence setup, identification relies on di�erences

across observations where each observation belongs to only one di�erence group and vari-

ation in the dependent variable across these groups is exploited. In the given framework,

this is clearly not the case. Instead, exogenous treatment of di�erent neighboring groups is

assumed to jointly a�ect the outcome of the same observational unit. This relationship can

only be captured by explicitly defining treatments of di�erent groups of neighbors as separate

explanatory factors of the same outcome, hence the use of multiple MECE spillover terms.

Second, the sums over di�erent groups of neighboring cells may follow di�erent distribu-

tions. To make coe�icient magnitudes directly comparable within the vector βi, the spillover

terms’ distributions must be harmonized. This is done by computing z-scores, i.e., standard-

normalizing all spillover terms by subtracting their arithmetic mean and dividing by their

respective standard deviation. Note that spillover coe�icient magnitudes from this specifica-

tion cannot be interpreted in terms of physical disaster intensity. Nevertheless, the procedure

serves its purpose by allowing testing for statistical equality of the spillover e�ects exerted

by di�erent groups of neighbors, using a Wald Chi-Squared Test. Also, the relation of both

coe�icients hinges at by howmuch the e�ects presented by Felbermayr et al. (2018) are driven

by particular channels.

It must be acknowledged that entries of the connectivity matrixCimay to some extent be

endogenous, e.g., in the case of roads connectivity. First, this problem is alleviated by the

use of cell fixed e�ects, which absorb all unobservable cell-specific links between economic

growth and connectivity. Moreover, the term of interest is notCi itself, but its interaction with

the disaster treatment variable. As shown by Nizalova and Murtazashvili (2016) and Beverelli
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et al. (2018), potential endogeneity vanishes upon interaction with an exogenous variable.

Hence, as Ci is multiplied with physical intensities of natural disasters, estimates will be

consistent if disaster intensities are uncorrelated with the elements ofCi or potential omitted

variables.19 This is the case, given the exogenous nature of the treatment variable.

Finally, the term ut allows for spatial auto-correlation in the residuals. Thus, model (4.3)

accounts for spatial clustering and spillovers in unobserved characteristics, which poten-

tially result from the fact that boundaries of superimposed grid cells arbitrarily intersect

true economic units such that neighboring cells may share common business cycles and

institutions.20

Thismodel is estimated using the spatial MaximumLikelihood fixed e�ects estimator provided

by Millo and Piras (2012) and Millo (2014).

4.4 Results

This section presents results on three di�erent aspects of connectivity. Section 4.4.1 explores

whether spillover e�ects are subject to the border e�ect known from the gravity literature

of international economics. Section 4.4.2 will assess the role of infrastructure by examining

whether the existence of important roads is driving spillover e�ects. Finally section 4.4.3

goes one step further by evaluating whether heterogeneity in roads connectivity, defined by a

combination of the number and the approximate length of available road links, is relevant for

explaining spillover magnitudes.

4.4.1 International Borders

In this section, the impact of country borders on the spillover e�ects of natural disasters is

isolated. If national boundaries pose a friction to the relocation of economic activity, it can be

expected that, at least in the short-run, spatial spillovers are confined within a country rather

than crossing national borders. For this purpose, the connectivity term from equation (4.3) is

19Beverelli et al. (2018) employ an instrumental variable (IV) estimator to re-assure that IV estimates are not
statistically di�erent from estimates obtained without instrumenting for potentially endogenous institutions,
which they use as an interaction variable.

20By comparing the baseline SDEMmodel with a spatial lag of X (SLX) model and conducting Moran’s I test,
Felbermayr et al. (2018) show that accounting for residual spatial auto-correlation (RSA) is crucial in this context
to obtain unbiased spatial estimates.
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defined as
∑k

i C
i = Csame +Cdi�, whereCsame assigns a weight of one to all cells belonging

to the same country and a weight of zero to all others, whereasCdi� does the exact opposite.

Table 4.1 : Border E�ect

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0048*** −0.0295*** 0.0116** −0.0562***
(0.0009) (0.0069) (0.0047) (0.0133)

disastert−1 −0.0068*** 0.0181*** −0.0017 −0.0784***
(0.0009) (0.0068) (0.0046) (0.0130)

Csame �W r · disastert 0.0405*** 0.0071*** −0.0090*** 0.0240***
(0.0099) (0.0019) (0.0016) (0.0030)

Cdi� �W r · disastert −0.0006 −0.0005 −0.0036*** 0.0162***
(0.0100) (0.0016) (0.0012) (0.0034)

Csame �W r · disastert−1 0.0156 −0.0019 0.0021 −0.0120***
(0.0098) (0.0018) (0.0016) (0.0030)

Cdi� �W r · disastert−1 0.0332*** 0.0003 0.0036*** −0.0160***
(0.0099) (0.0016) (0.0012) (0.0033)

ln(popt) 0.0247*** 0.0257*** 0.0276*** 0.0243***
(0.0013) (0.0013) (0.0014) (0.0013)

W r · ln(pop)t 0.0109*** 0.0112*** 0.0115*** 0.0106***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4387*** −0.4367*** −0.4329*** −0.4380***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are
SDEM and are estimated by Maximum Likelihood. Standard errors in parentheses. Cell
and year fixed e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster
intensities reflect time-weighted rolling averages over 12 subsequentmonthly observations.
Ci �W r · disastert terms represent corresponding z-scores. Wald Chi-Squared Tests on
equality of spillover estimates provided in Table D.4.

Results are presented in Table 4.1. Estimates of the core variables are broadly in line with

the findings by Felbermayr et al. (2018). Results for wind speeds, extreme precipitation and

cold waves suggest negative local average treatment e�ects on the growth rate in economic

activity in the base period with heterogeneous persistence a�er one year. Spillover e�ects

for these events are overall positive in the treatment period, suggesting that substitution

e�ects outweigh complementarity of neighboring locations. Droughts show a di�erent behav-

ior, with a positive local average treatment e�ect and negative spillovers. Using amachine

learning classification approach, Felbermayr et al. (2018) show that this pattern is driven by a

rural/urban divide, according to which drought treatment of rural cells enacts a negative im-

pact on nearby urban locations. Population sizes of cells and their neighbors show a positive

impact on the growth in economic activity.
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Concerning the impact of national borders on the transmission of spillover e�ects, it can be

seen that for all disaster types regional economic linkages matter more than international

ones in the short-run. Hence, spillovers in the base period t aremore pronounced for domestic

neighboring cells than for cells in neighboring foreign countries. Domestic cells are the exclu-

sive driver of spillover e�ects for wind and precipitation events and also exhibit significantly

stronger e�ects than foreign cells for droughts and cold waves, with magnitudes about 2.5

times and 1.5 times the size, respectively. In the second period t− 1, statistically significant

e�ects can be also be observed for foreign neighbors.

Wald Chi-Squared Tests suggest that the similarity of spillover e�ects from domestic and

foreign cells is overwhelmingly rejected in the treatment period for all disaster types but

cannot be rejected for the temporal lags of spillovers. Test results are presented in Table D.4.

Thus, results provide evidence that short-run relocation of economic activity is mostly (if not

exclusively) domestic, while over longer periods country borders are overcome possibly by

international adaptation activities.21

4.4.2 Road Existence

In this section, the role of the general availability of transport infrastructure as a transmission

channel for spatial spillovers is assessed. For about one fi�h of observations in the sample the

data does not suggest any major roads to connect them to their neighbors. However, these

locations may still be subject to substantial economic activity, compare figure 4.2b. If the

availability of major roads plays a significant role in the transmission of disaster spillovers, ex-

ploiting this cross-sectional feature of the data should provide the corresponding evidence.22

The most straightforward way to assess the impact of infrastructure availability is to examine

whether treatment period spillovers from those neighbors that are connected by roads are

stronger than from those that are not. Moreover, if relocation of economic activity occurs

towards locations lacking direct connections by major roads, it must be assumed that this

relocation is more costly than it would be if locations had such a connection. Therefore, it can

21For example, international relocation of activity might take longer because cross-border transactions (i.e.,
international trade andmigration) may be subject to bureaucratic and knowledge constraints that do not or
to a lesser extent apply to domestic relocation. Where overcoming these constraints is a viable strategy, this
potentially involves some adjustment time.

22Even in the absence of observed roads, spatial spillovers could theoretically be transmitted via small roads
not captured by the data. Moreover, navigable waterways and railways could provide an alternative source of
connectivity, which is beyond the scope of this paper and le� for future research.
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be expected that relocation of economic activity to unconnected locations is more likely to be

reversed over time than for connected ones.

For this purpose, the connectivity term from equation (4.3) is defined as
∑k

i C
i = C roads +

Cno-roads, whereC roads assigns a weight of one to all neighbors connected by at least one road,

whereasCno-roads captures neighbors that lack such a connection. Results are presented in

Table 4.2.

Table 4.2 : Road Existence

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0012 −0.0301*** 0.0126*** −0.0338**
(0.0009) (0.0069) (0.0047) (0.0146)

disastert−1 −0.0062*** 0.0163** −0.0054 −0.0513***
(0.0009) (0.0068) (0.0047) (0.0144)

C roads �W r · disastert −0.0125 0.0106*** −0.0105*** 0.0280***
(0.0124) (0.0021) (0.0016) (0.0041)

Cno-roads �W r · disastert −0.0086 0.0008 −0.0055*** 0.0080**
(0.0120) (0.0019) (0.0014) (0.0040)

C roads �W r · disastert−1 0.0093 −0.0008 0.0021 −0.0212***
(0.0123) (0.0021) (0.0016) (0.0040)

Cno-roads �W r · disastert−1 0.0197* −0.0015 0.0059*** −0.0255***
(0.0119) (0.0019) (0.0014) (0.0040)

ln(popt) 0.0249*** 0.0258*** 0.0276*** 0.0244***
(0.0013) (0.0013) (0.0014) (0.0013)

W r · ln(pop)t 0.0109*** 0.0113*** 0.0116*** 0.0106***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4368*** −0.4329*** −0.4380***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are SDEM
and are estimated byMaximumLikelihood. Standard errors in parentheses. Cell and year fixed
e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities reflect
time-weighted rolling averages over 12 subsequentmonthly observations. Ci�W r ·disastert
terms represent corresponding z-scores. Wald Chi-Squared Tests on equality of spillover
estimates provided in Table D.5.

All four regressions show very similar e�ects for all control variables as in Table 4.1. Moreover,

direct treatment e�ects and their temporal lags are very similar, albeit with a loss of statistical

significance for wind speeds in the base period. Concerning disaster spillovers, results show

strong evidence that the availability of road connections is a key driver of the diversion of

economic activity across space upon disaster treatment. For extreme precipitation events, es-

timates suggest that the spatial disaster spillover in the treatment period is driven exclusively

by locations which are connected by roads. For droughts and cold waves, both connected and
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unconnected cells are represented in the spillover patterns. Therein, connected neighbors

account for drought and cold spillover e�ects twice andmore than three times themagnitude

of those from unconnected cells. For wind speeds, taking the existence of road connections

into account results in negative point estimates for disaster spillovers. This may hint at com-

plementarity rather than substitution e�ects to dominate the aggregate spillover. However,

these point estimates are not statistically significant and andmust therefore be taken with

caution. With one year time lag, spillover estimates feature sign reversals for all disaster types,

indicating that e�ects are to some extent reversed. In line with expectations, those reversals

appear stronger for locations that lack a direct roads connection.

Wald Chi-Squared Tests suggest that the similarity of spillover e�ects from connected and

unconnected cells is rejected in the treatment period for all disaster types but wind speeds.

It cannot be rejected for the temporal lags of spillovers with the exception of droughts. Test

results are presented in Table D.5.

4.4.3 Road Heterogeneity

This section attempts to provide a deeper understanding of the role of roads connectivity by

further exploiting the cross-sectional variation in connectivity index magnitudes. Given that

a higher connectivity of locations should simplify the relocation of economic activity upon

exogenous shocks, findings should reflect a positive relationship between roads connectivity

and spatial spillover e�ects not only for connected vs. unconnected locations, but also along

the connectivity distribution. The connectivity measure described in Section 4.2.3 increases

in inverse distance and in the number of up to 3 independent road connections to choose

from.23

To allow assessing the role of connectivity in the transmission of spillovers, neighbors are

classified into bins. For this matter it is important to define an appropriate selection crite-

rion. Thereby, a relative notion of connectivity is implicitly assumed. Choosing a global or

regional (beyond local) reference value induces a risk of undesired outcomes when construct-

ing connectivity bins. For example, spillovers from highly connected cells may e�ectively

23If more roads are available, economic ties between locations are very likely more tight and routing of
economic exchange can be diverted more easily if one connection is subject to destruction or congestion. Thus,
the algorithm used is searching for the three shortest routes and adds a penalty if only less than three routes
exist. The choice of this 3-routes-criterion is arbitrary. In the sensitivity analyses, it will therefore be relaxed,
such that only the length of the single shortest connection is considered.
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over-represent locations from Western Europe and the East Coast of the United States of

America. Since these locations also stand out in terms of other characteristics which can be

correlated with roads infrastructure, connectivity categories constructed using beyond-local

reference values may result in confounded estimates capturing regional di�erences in the

spillover mechanism due to unobserved characteristics rather than informing about the role

of roads.

To circumvent this caveat, relative connectivity classes should be defined locally such that

bins capture all neighboring cells by their relative connectivity compared to all other cells

within the same neighborhood.24 Therefore, the connectivity distribution within the local

neighborhood will serve as as a reference for binning. Because the number of local neighbors

is naturally limited by the fixed search radius, so is the number of bins to be constructed.

In a first step, two bins are considered, dividing neighbors into highly and lowly connected

ones,
∑k

i C
i = Chigh +C low. The splitting criterion is the median of the local distribution,

which ensures that each group can be represented in the neighborhood of each observational

unit and that both groups are approximately equal in size.25

Results are presented in Panel A of Table 4.3. Estimates of the direct local disaster treatment

e�ect are overall in line with the estimates obtained from previous specifications. Spillover

estimates suggest that disaster spillovers from neighbors with above median connectivity

are stronger than those from cells with belowmedian connectivity for extreme precipitation,

droughts and cold waves in the treatment period. Point estimates for wind speeds suggest

negative spillovers (complementarity) for highly connected neighbors and positive spillovers

(substitution) for lowly connected ones, albeit with a lack of statistical significance at the 10%

level. A�er one period, spillover estimates exhibit sign reversals, suggesting that relocation

of economic activity in the treatment period is partially temporary. To the extent that these

time lags are statistically significant, they are more pronounced for neighbors with a low con-

nectivity. This finding is in line with theoretical considerations, suggesting that transactions

across worse connections tend to bemore costly andmight therefore not be upheld over an

extended period.
24A neighboring location which is badly connected overall could still be relatively important for the spillover

mechanism, if other nearby places feature connections that are even worse. Section 4.2.4 illustrates the hetero-
geneous distribution of roads connectivity across and within countries.

25Cells that have a connectivity which is exactly equal to the median are classified as highly connected. If
however all cells in a neighborhood have a connectivity index of zero, these are defined as lowly connected.
Robustness Section 4.5.1 provides estimates using the local mean as an alternative selection criterion.
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Table 4.3 : Road Heterogeneity

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

PANEL A: Connectivity above and belowmedian
disastert −0.0025*** −0.0277*** 0.0133*** −0.0432***

(0.0009) (0.0069) (0.0047) (0.0141)
disastert−1 −0.0052*** 0.0211*** −0.0042 −0.0776***

(0.0009) (0.0068) (0.0047) (0.0138)
Chigh �W r · disastert −0.0051 0.0074*** −0.0067*** 0.0213***

(0.0088) (0.0015) (0.0012) (0.0028)
C low �W r · disastert 0.0141 0.0012 −0.0059*** 0.0102***

(0.0087) (0.0015) (0.0013) (0.0029)
Chigh �W r · disastert−1 −0.0030 −0.0018 0.0003 −0.0089***

(0.0087) (0.0015) (0.0012) (0.0028)
C low �W r · disastert−1 −0.0004 −0.0018 0.0042*** −0.0107***

(0.0086) (0.0015) (0.0013) (0.0028)

PANEL B: Connectivity thirtiles
disastert −0.0015* −0.0266*** 0.0135*** −0.0350**

(0.0009) (0.0069) (0.0047) (0.0145)
disastert−1 −0.0051*** 0.0217*** −0.0052 −0.0675***

(0.0009) (0.0069) (0.0047) (0.0142)
Chigh �W r · disastert −0.0017 0.0057*** −0.0058*** 0.0113***

(0.0089) (0.0015) (0.0012) (0.0031)
Cmedium �W r · disastert −0.0072 0.0031** −0.0028** 0.0130***

(0.0090) (0.0015) (0.0012) (0.0032)
C low �W r · disastert −0.0018 0.0005 −0.0054*** 0.0086***

(0.0090) (0.0015) (0.0012) (0.0030)
Chigh �W r · disastert−1 −0.0098 −0.0018 0.0002 −0.0049

(0.0088) (0.0015) (0.0012) (0.0030)
Cmedium �W r · disastert−1 0.0030 −0.0001 0.0012 −0.0078**

(0.0089) (0.0015) (0.0012) (0.0032)
C low �W r · disastert−1 0.0015 −0.0022 0.0041*** −0.0146***

(0.0089) (0.0015) (0.0012) (0.0030)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are SDEM
andare estimatedbyMaximumLikelihood. Standard errors in parentheses. Cell and year fixed
e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities reflect
time-weighted rolling averages over 12 subsequentmonthly observations. Ci�W r ·disastert
terms represent corresponding z-scores. Additional controls included but not reported. Full
results are shown in Tables D.2 and D.3 in the Appendix. Wald Chi-Squared Tests on equality
of spillover estimates provided in Tables D.6 and D.7.

Conducting Wald Chi-Squared Tests on the similarity of spillover e�ects from highly versus

lowly connected cells shows that similarity is rejected in the treatment period for all disas-

ter types except for droughts. In contrast, droughts feature the only statistically significant

spillover di�erence a�er one period. Test results are provided in Table D.6.

In a second step, the number of bins is increased to distinguish high, medium and low connec-

tivity neighbors,
∑k

i C
i = Chigh +Cmedium +C low. These are selected along the respective
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thirtiles of the local neighborhoods’ connectivity distributions. Results are presented in Panel

B of Table 4.3. Again, the spillover e�ects of wind speeds turn out statistically insignificant. For

the remaining disaster types, a mixed spillover pattern is observed. For extreme precipitation

events, a clear hierarchy emerges, with spillover magnitudes gradually declining from high

overmiddle to low connectivity neighbors. For drought events, spillovers are similar for highly

and lowly connected cells, but are only half as high for cells with a medium connectivity. Fi-

nally, cold wave spillovers are weakest for lowly connected neighbors and in a similar order of

magnitude for cells with a high andmiddle connectivity.26 Again, as far as time lags of spatial

spillovers have statistically significant estimates, these are more pronounced for neighbors

with a lower connectivity.

Pairwise Wald Chi-Squared Test results on the similarity of spillovers between groups show

mixed findings and are presented in Table D.7. Wind speeds do not show any statistically

significant di�erence. For precipitation events, significant di�erences exist between spillovers

from highly and lowly connected cells in the treatment period. Drought events stipulate

significant di�erences between intermediately and lowly connected origins in the treatment

period and for highly or intermediately connected cells compared to lowly connected cells

a�er one period. For cold waves, equality can only be rejected for the temporal lag and

between either highly or intermediately connected cells and lowly connected ones.

4.5 Robustness Analysis

In this section, a number of sensitivity checks are performed concerning the definition of

connectivity. First, the splitting criterion for the assessment of lowly vs. highly connected

neighbors is altered. Second, the sample composition is changed by removing observations

which feature insu�icient local neighbors to allow forming multiple groups. Finally, the

connectivity index is modified to not incorporate the number of connections but only the

length of the single shortest path.

4.5.1 Splitting Criterion: Local median vs. local mean

As a first check, the sensitivity of the results presented in Panel A of Table 4.3 with respect to

the selection criterion for dividing neighbors into highly and lowly connected ones shall be
26While the point estimate is larger for neighborswith amediumcompared to high connectivity, the di�erence

is not statistically significant.
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assessed. In the baseline, the median connectivity within the local neighborhood serves as a

cuto� criterion between the two categories in order to separate the top half of neighboring

observations from the bottom half. One advantage of this approach is that both neighboring

groups should approximately be equal in size. To check whether results are sensitive to the

exact definition of this reference criterion, the local median is replaced by the local arithmetic

mean.

Table 4.4 : Connectivity Above and Below Local Mean

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0025*** −0.0276*** 0.0131*** −0.0471***
(0.0009) (0.0069) (0.0047) (0.0143)

disastert−1 −0.0050*** 0.0211*** −0.0043 −0.0733***
(0.0009) (0.0068) (0.0047) (0.0140)

Chigh �W r · disastert −0.0056 0.0069*** −0.0072*** 0.0201***
(0.0090) (0.0015) (0.0012) (0.0029)

C low �W r · disastert 0.0145 0.0020 −0.0059*** 0.0143***
(0.0089) (0.0015) (0.0013) (0.0030)

Chigh �W r · disastert−1 −0.0052 −0.0019 0.0014 −0.0109***
(0.0089) (0.0015) (0.0012) (0.0029)

C low �W r · disastert−1 −0.0025 −0.0018 0.0034*** −0.0119***
(0.0088) (0.0015) (0.0013) (0.0029)

ln(popt) 0.0249*** 0.0257*** 0.0276*** 0.0243***
(0.0013) (0.0013) (0.0014) (0.0013)

W r · ln(pop)t 0.0109*** 0.0113*** 0.0115*** 0.0106***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4367*** −0.4329*** −0.4380***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5%and10% level. All specifications are SDEM
and are estimated by Maximum Likelihood. Standard errors in parentheses. Cell and year
fixed e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities
reflect time-weighted rolling averages over 12 subsequent monthly observations. Ci �
W r · disastert terms represent corresponding z-scores.

Results are shown in Table 4.4. All estimates remain qualitatively similar to Panel A of Table

4.3, with only small changes in magnitudes. Consequently, findings seem insensitive to the

exact definition of this cuto� criterion.

4.5.2 Sampling: Exclude cells with less than three neighbors

As a second check, a potentially relevant aspect of the sample composition is addressed. The

sample used to obtain the baseline estimates includes observations which feature only one
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or two neighbors. Analyzing the impact of heterogeneity along the local distribution of road

connectivity however requires constructing multiple neighbor groups. If, e.g., a cell has only

one neighbor and this neighbor has a connectivity of zero, it will always fall into the low group

whereas the high groupwill simply contain a zero value.27 Thismeans that the sample includes

observations for which the treatment of one or two neighbor groups is zero by construction,

simply because there are no neighbors to put into the respective bin. To assess whether this

feature entails methodological issues related to identification, all observations which have

less than three neighbors are excluded from the sample. This essentially removes cells which

belong to small islands or otherwise remote locations, which are potentially more likely to

appear in less developed countries (compare Figure 4.1). These observations account for

about 10% of the sample.

Results are presented in Table 4.5. Panel A provides estimates for the specification distinguish-

ing two groups of neighbors (high and low), Panel B distinguishes three groups (high, medium

and low). In terms of magnitudes, findings are overall similar to the respective baseline but

feature stronger local average treatment e�ects for cold waves. Qualitatively, findings do not

change. Thus, inclusion of cells with a very small number of neighbors and their implications

for the binning procedure does not seem to substantially a�ect overall results.28

27If the same neighbor has a non-zero connectivity, the requirement for the highly connected cell to have a
connectivity larger or equal the (non-zero) local median will put it into the highly connected category instead.

28Appendix Tables D.10 and D.11 provide additional estimates from a sample excluding only observations
with less than two neighbors. Results are very similar.
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Table 4.5 : Exclude Observations With Less Than Three Neighbors

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

PANEL A: Connectivity above and belowmedian
disastert −0.0025** −0.0211*** 0.0099* −0.0738***

(0.0011) (0.0080) (0.0056) (0.0184)
disastert−1 −0.0051*** 0.0282*** −0.0074 −0.0889***

(0.0011) (0.0079) (0.0055) (0.0182)
Chigh �W r · disastert −0.0078 0.0060*** −0.0056*** 0.0241***

(0.0089) (0.0015) (0.0012) (0.0030)
C low �W r · disastert 0.0099 0.0006 −0.0059*** 0.0134***

(0.0088) (0.0016) (0.0013) (0.0030)
Chigh �W r · disastert−1 −0.0032 −0.0025* 0.0003 −0.0073**

(0.0088) (0.0015) (0.0012) (0.0030)
C low �W r · disastert−1 −0.0027 −0.0035** 0.0053*** −0.0107***

(0.0087) (0.0015) (0.0013) (0.0030)

PANEL B: Connectivity thirtiles
disastert −0.0009 −0.0211*** 0.0104* −0.0583***

(0.0011) (0.0080) (0.0056) (0.0189)
disastert−1 −0.0051*** 0.0287*** −0.0084 −0.0717***

(0.0011) (0.0079) (0.0055) (0.0187)
Chigh �W r · disastert −0.0071 0.0045*** −0.0046*** 0.0121***

(0.0087) (0.0015) (0.0012) (0.0031)
Cmedium �W r · disastert −0.0095 0.0029* −0.0032*** 0.0155***

(0.0088) (0.0015) (0.0012) (0.0032)
C low �W r · disastert −0.0085 0.0002 −0.0054*** 0.0110***

(0.0093) (0.0016) (0.0013) (0.0033)
Chigh �W r · disastert−1 −0.0072 −0.0023 0.0003 −0.0053*

(0.0086) (0.0015) (0.0012) (0.0030)
Cmedium �W r · disastert−1 −0.0014 −0.0012 0.0017 −0.0068**

(0.0087) (0.0015) (0.0012) (0.0032)
C low �W r · disastert−1 0.0009 −0.0036** 0.0049*** −0.0155***

(0.0092) (0.0015) (0.0013) (0.0033)

Observations 459,669 453,831 421,953 457,947

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are SDEM
andare estimatedbyMaximumLikelihood. Standard errors in parentheses. Cell and year fixed
e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities reflect
time-weighted rolling averages over 12 subsequentmonthly observations. Ci�W r ·disastert
terms represent corresponding z-scores. Additional controls included but not reported. Full
results are shown in Tables D.8 and D.9 in the Appendix.
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4.5.3 Connectivity Index: Restrict to shortest connection

As a third check, the characteristics of the connectivity index are addressed. In the baseline,

the index considers themean distance of the three shortest connections, adding penalties

if only one or two connections are available. Thus, the baseline indicator accounts for both

distance and number of connections. In this section, this choice is revisited by dropping the

latter component from the indicator. Instead, only the distance along the single shortest route

will be considered. This choice potentially a�ects a cell’s position on the local connectivity

distribution andmay thus result in di�erent binning outcomes.

Results are presented in Table 4.6. Overall, results remain qualitatively similar. Coe�icient

magnitudes exhibit slight changes in Panel A, showing higher point estimates for spillovers

from highly connected cells and smaller e�ects for lowly connected neighbors in the base

period. This suggests that the importance of above-median relative to below-median connec-

tions increases if only the shortest route is considered, i.e., distance appears more important

than the number of connections. If classification distinguishes three categories in Panel B,

results show some di�erences to the baseline. The spillovers from intermediately connected

neighbors lose statistical significance for extremeprecipitationevents, attributing all spillovers

to highly connected neighbors. For droughts, a clear inverse pattern emerges, suggesting

that spillovers increase in length of the shortest route. This finding is very likely related to the

rural/urban divide. Felbermayr et al. (2018) find that negative spillovers of droughts mainly go

from rural towards urban cells. To the extent that this rural/urban divide is more pronounced

across relatively longer distances within the 80 km search radius, this relationship could be

reflected in the the simple road distance bins.
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Table 4.6 : Only Single Shortest Connection Considered

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

PANEL A: Connectivity above and belowmedian
disastert −0.0025*** −0.0280*** 0.0133*** −0.0410***

(0.0009) (0.0069) (0.0047) (0.0141)
disastert−1 −0.0052*** 0.0213*** −0.0042 −0.0775***

(0.0009) (0.0068) (0.0047) (0.0138)
Chigh �W r · disastert −0.0039 0.0082*** −0.0069*** 0.0221***

(0.0090) (0.0015) (0.0012) (0.0029)
C low �W r · disastert 0.0128 0.0006 −0.0057*** 0.0091***

(0.0088) (0.0015) (0.0013) (0.0029)
Chigh �W r · disastert−1 −0.0065 −0.0017 0.0003 −0.0092***

(0.0089) (0.0015) (0.0012) (0.0028)
C low �W r · disastert−1 0.0021 −0.0020 0.0042*** −0.0106***

(0.0087) (0.0015) (0.0013) (0.0028)

PANEL B: Connectivity thirtiles
disastert −0.0016* −0.0275*** 0.0130*** −0.0355**

(0.0009) (0.0070) (0.0048) (0.0144)
disastert−1 −0.0051*** 0.0221*** −0.0042 −0.0723***

(0.0009) (0.0069) (0.0047) (0.0141)
Chigh �W r · disastert −0.0060 0.0064*** −0.0039*** 0.0150***

(0.0104) (0.0017) (0.0013) (0.0036)
Cmedium �W r · disastert 0.0006 0.0021 −0.0047*** 0.0082**

(0.0105) (0.0017) (0.0013) (0.0038)
C low �W r · disastert −0.0015 0.0006 −0.0054*** 0.0085***

(0.0090) (0.0015) (0.0012) (0.0030)
Chigh �W r · disastert−1 −0.0108 −0.0017 −0.0012 0.0017

(0.0103) (0.0017) (0.0014) (0.0035)
Cmedium �W r · disastert−1 0.0052 −0.0002 0.0024* −0.0149***

(0.0104) (0.0016) (0.0013) (0.0037)
C low �W r · disastert−1 0.0021 −0.0023 0.0040*** −0.0136***

(0.0089) (0.0015) (0.0012) (0.0030)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are SDEM
andare estimatedbyMaximumLikelihood. Standard errors in parentheses. Cell and year fixed
e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities reflect
time-weighted rolling averages over 12 subsequentmonthly observations. Ci�W r ·disastert
terms represent corresponding z-scores. Additional controls included but not reported. Full
results are shown in Tables D.12 and D.13 in the Appendix.
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4.6 Conclusion

This study empirically investigates potential transmission channels of spatial spillovers caused

by natural disasters, asking how the relocation of economic activity is a�ected by international

borders and by available roads infrastructure. To answer this question, a global dataset

recently introduced by Felbermayr et al. (2018) is exploited, which provides detailedmeasures

of physical disaster intensity and local economic activity proxied by remotely-sensed night-

light emissions for 24,000 geographical units in 197 countries over 21 years. To examine a

selection of potential transmission channels for spillover e�ects, geographic data is used to

provide newmeasures of local connectivity.

Theoretically, necessary preconditions for economic activity to divert away from a�ected loca-

tions are the mobility of goods and services or the mobility of people. This mobility depends

on how connected locations arewith one another. Hence, observed spatial spillovers are likely

to be driven by the degree of connectivity of a disaster-struck location. Good road networks

can strengthen relocation e�ects, while limitations to connectivity (e.g., international borders)

may hamper them. In line with the literature on international transactions, empirical findings

in this study suggest that connectivity of grid cells is a main driver of spatial spillovers.

Results indicate that short run relocation of economic activity is subject to a border e�ect. As

the costs of relocation increases at international borders, spatial spillovers of natural disasters

concentrate on cells within national boundaries in the base period. Domestic neighbors are,

on average, the exclusive sources of statistically significant spillover e�ects ofwind speeds and

extreme precipitation events. For droughts and cold waves, estimates also suggest spillovers

from foreign locations, but domestic spillovers are about 2.5 times and 1.5 times as strong.

The di�erence between spillovers originating from domestic and foreign cells loses statistical

significance a�er one period.

In addition, connections along major transport routes also matter for the spillover pattern of

natural disasters, as higher connectivity via roads potentially eases travel and lowers trade

costs. Spillovers from cells connected by at least onemajor road are exclusively driving spatial

spillovers for extreme precipitation events. Moreover, spillover e�ects for droughts and cold

waves are 1.9 times and 3.5 times as strong for connected compared to unconnected cells.

Finally, heterogeneity in roads connectivity is exploited in terms of distance and the number of

connections available. Estimates suggest that those neighborswith a connectivity index above
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the local neighborhood’s median have stronger spatial spillovers for precipitation events

and cold waves. Further distinguishing neighbors along thirtiles of their local connectivity

distribution provides mixed evidence. All in all, results suggest that connectivity di�erences

at smaller margins seem less crucial whereas international borders, the overall availability of

roads and local connectivity di�erences at larger margins (i.e., upper vs. lower 50%) play a

very important role.
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Appendix D.1 Supplementary Appendix

D.1.1 Supplementary Descriptive Statistics

Table D.1 : Summary Statistics

statistic n mean st. dev. min max

∆ ln(lights) 507,864 0.045 0.392 −8.246 8.217
ln(lights) 507,864 0.264 1.724 −7.090 4.142
ln(popt) 507,864 10.639 2.165 −14.390 16.822

Physical Intensities
storm 507,864 20.766 4.486 5.478 46.528
precip. 502,026 0.385 0.151 0.000 1.697
drought 468,174 0.387 0.242 0.000 2.305
cold 506,037 0.412 0.089 0.000 1.271

Roads Connectivity Index (cross-section)
bilat. connectivity (3 routes) 169,626 0.326 0.230 0.000 0.913
mean connectivity (3 routes) 24,184 0.301 0.233 0.000 0.873
bilat. connectivity (1 route) 169,626 0.526 0.357 0.000 0.916
mean connectivity (1 route) 24,184 0.501 0.293 0.000 0.914

Note: Physical intensities represent time-weighted rolling averages over 12 subsequent
months. Time-constant connectivitymeasures are reported for one year. 21 yearly periods
included in the data.
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Table D.2 : Roads Connectivity Above and Below Median

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0025*** −0.0277*** 0.0133*** −0.0432***
(0.0009) (0.0069) (0.0047) (0.0141)

disastert−1 −0.0052*** 0.0211*** −0.0042 −0.0776***
(0.0009) (0.0068) (0.0047) (0.0138)

Chigh �W r · disastert −0.0051 0.0074*** −0.0067*** 0.0213***
(0.0088) (0.0015) (0.0012) (0.0028)

C low �W r · disastert 0.0141 0.0012 −0.0059*** 0.0102***
(0.0087) (0.0015) (0.0013) (0.0029)

Chigh �W r · disastert−1 −0.0030 −0.0018 0.0003 −0.0089***
(0.0087) (0.0015) (0.0012) (0.0028)

C low �W r · disastert−1 −0.0004 −0.0018 0.0042*** −0.0107***
(0.0086) (0.0015) (0.0013) (0.0028)

ln(popt) 0.0249*** 0.0258*** 0.0276*** 0.0244***
(0.0013) (0.0013) (0.0014) (0.0013)

W r · ln(popt) 0.0109*** 0.0113*** 0.0115*** 0.0106***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4367*** −0.4329*** −0.4380***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5%and10% level. All specifications are SDEM
and are estimated by Maximum Likelihood. Standard errors in parentheses. Cell and year
fixed e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities
reflect time-weighted rolling averages over 12 subsequent monthly observations. Ci �
W r · disastert terms represent corresponding z-scores.
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4 Illuminating the Spatial Connectivity of Disasters

Table D.3 : Roads Connectivity Thirtiles

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0015* −0.0266*** 0.0135*** −0.0350**
(0.0009) (0.0069) (0.0047) (0.0145)

disastert−1 −0.0051*** 0.0217*** −0.0052 −0.0675***
(0.0009) (0.0069) (0.0047) (0.0142)

Chigh �W r · disastert −0.0017 0.0057*** −0.0058*** 0.0113***
(0.0089) (0.0015) (0.0012) (0.0031)

Cmiddle �W r · disastert −0.0072 0.0031** −0.0028** 0.0130***
(0.0090) (0.0015) (0.0012) (0.0032)

C low �W r · disastert −0.0018 0.0005 −0.0054*** 0.0086***
(0.0090) (0.0015) (0.0012) (0.0030)

Chigh �W r · disastert−1 −0.0098 −0.0018 0.0002 −0.0049
(0.0088) (0.0015) (0.0012) (0.0030)

Cmiddle �W r · disastert−1 0.0030 −0.0001 0.0012 −0.0078**
(0.0089) (0.0015) (0.0012) (0.0032)

C low �W r · disastert−1 0.0015 −0.0022 0.0041*** −0.0146***
(0.0089) (0.0015) (0.0012) (0.0030)

ln(popt) 0.0249*** 0.0258*** 0.0276*** 0.0244***
(0.0013) (0.0013) (0.0014) (0.0013)

W r · ln(popt) 0.0109*** 0.0113*** 0.0115*** 0.0106***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4367*** −0.4329*** −0.4380***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are
SDEM and are estimated by Maximum Likelihood. Standard errors in parentheses. Cell
and year fixed e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster
intensities reflect time-weighted rolling averages over 12 subsequent monthly observations.
Ci �W r · disastert terms represent corresponding z-scores.

Table D.4 : Wald Chi-Squared Tests: Border E�ect

H0: Spillover fromCsame = Spillover fromCdi�

wind precip. drought cold

t
χ2 11.3060 12.4590 9.2987 3.8703

Pr(> χ2) 0.0008*** 0.0004*** 0.0023*** 0.0492**

t− 1
χ2 2.0979 1.0715 0.6962 1.0028

Pr(> χ2) 0.1475 0.3006 0.4041 0.3166

Note: ***, **, * denote significance at the 1%, 5% and 10% level. Tests based on
regressions presented in Table 4.1.
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4 Illuminating the Spatial Connectivity of Disasters

Table D.5 : Wald Chi-Squared Tests: Road Existence

H0: Spillover fromCroads = Spillover fromCno-roads

wind precip. drought cold

t
χ2 0.1266 29.3600 13.0480 32.5250

Pr(> χ2) 0.7220 0.0000*** 0.0003*** 0.0000***

t− 1
χ2 0.9441 0.1522 7.3717 1.5985

Pr(> χ2) 0.3312 0.6964 0.0066*** 0.2061

Note: ***, **, * denote significance at the 1%, 5% and 10% level. Tests based on
regressions presented in Table 4.2

Table D.6 : Wald Chi-Squared Tests: Road Heterogeneity (Two Groups)

H0: Spillover fromChigh = Spillover fromC low

wind precip. drought cold

t
χ2 3.4094 12.0510 0.2801 10.6170

Pr(> χ2) 0.06483* 0.0005*** 0.5967 0.0011***

t− 1
χ2 0.0626 0.0002 6.9959 0.2738

Pr(> χ2) 0.8025 0.9879 0.0082*** 0.6008

Note: ***, **, * denote significance at the 1%, 5% and 10% level. Tests based on
regressions presented in Panel A of Table 4.3.
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4 Illuminating the Spatial Connectivity of Disasters

Table D.7 : Wald Chi-Squared Tests: Road Heterogeneity (Three Groups)

wind precip. drought cold

PANEL A: H0: Spillover fromChigh = Spillover fromC low

t
χ2 0.0000 7.7980 0.0610 0.5153

Pr(> χ2) 0.9955 0.0052*** 0.8049 0.4728

t− 1
χ2 1.0815 0.0705 6.8460 6.6952

Pr(> χ2) 0.2984 0.7907 0.0089*** 0.0097***

PANEL B: H0: Spillover fromChigh = Spillover fromCmedium

t
χ2 0.1437 1.0921 2.1989 0.1056

Pr(> χ2) 0.7046 0.2960 0.1381 0.7452

t− 1
χ2 0.7891 0.4490 0.2374 0.3136

Pr(> χ2) 0.3744 0.5028 0.6261 0.5755

PANEL C: H0: Spillover fromCmedium = Spillover fromC low

t
χ2 0.2350 1.7678 2.7717 1.3112

Pr(> χ2) 0.6278 0.1836 0.0959* 0.2522

t− 1
χ2 0.0185 1.2671 3.7070 3.1560

Pr(> χ2) 0.8920 0.2603 0.0542* 0.0757*

Note: ***, **, * denote significance at the 1%, 5% and 10% level. Tests based on
regressions presented in Panel B of Table 4.3.
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4 Illuminating the Spatial Connectivity of Disasters

Table D.8 : Leaving Out Cells With Less Than Three Neighbors (2 Groups)

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0025** −0.0211*** 0.0099* −0.0738***
(0.0011) (0.0080) (0.0056) (0.0184)

disastert−1 −0.0051*** 0.0282*** −0.0074 −0.0889***
(0.0011) (0.0079) (0.0055) (0.0182)

Chigh �W r · disastert −0.0078 0.0060*** −0.0056*** 0.0241***
(0.0089) (0.0015) (0.0012) (0.0030)

C low �W r · disastert 0.0099 0.0006 −0.0059*** 0.0134***
(0.0088) (0.0016) (0.0013) (0.0030)

Chigh �W r · disastert−1 −0.0032 −0.0025* 0.0003 −0.0073**
(0.0088) (0.0015) (0.0012) (0.0030)

C low �W r · disastert−1 −0.0027 −0.0035** 0.0053*** −0.0107***
(0.0087) (0.0015) (0.0013) (0.0030)

ln(popt) 0.0198*** 0.0213*** 0.0231*** 0.0195***
(0.0015) (0.0015) (0.0016) (0.0015)

W r · ln(popt) 0.0097*** 0.0103*** 0.0104*** 0.0096***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4431*** −0.4415*** −0.4366*** −0.4424***
(0.0011) (0.0011) (0.0012) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 459,669 453,831 421,953 457,947

Note: ***, **, * denote significance at the 1%, 5%and10% level. All specifications are SDEM
and are estimated by Maximum Likelihood. Standard errors in parentheses. Cell and year
fixed e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities
reflect time-weighted rolling averages over 12 subsequent monthly observations. Ci �
W r · disastert terms represent corresponding z-scores.
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4 Illuminating the Spatial Connectivity of Disasters

Table D.9 : Leaving Out Cells With Less Than Three Neighbors (3 Groups)

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0009 −0.0211*** 0.0104* −0.0583***
(0.0011) (0.0080) (0.0056) (0.0189)

disastert−1 −0.0051*** 0.0287*** −0.0084 −0.0717***
(0.0011) (0.0079) (0.0055) (0.0187)

Chigh �W r · disastert −0.0071 0.0045*** −0.0046*** 0.0121***
(0.0087) (0.0015) (0.0012) (0.0031)

Cmedium �W r · disastert −0.0095 0.0029* −0.0032*** 0.0155***
(0.0088) (0.0015) (0.0012) (0.0032)

C low �W r · disastert −0.0085 0.0002 −0.0054*** 0.0110***
(0.0093) (0.0016) (0.0013) (0.0033)

Chigh �W r · disastert−1 −0.0072 −0.0023 0.0003 −0.0053*
(0.0086) (0.0015) (0.0012) (0.0030)

Cmedium �W r · disastert−1 −0.0014 −0.0012 0.0017 −0.0068**
(0.0087) (0.0015) (0.0012) (0.0032)

C low �W r · disastert−1 0.0009 −0.0036** 0.0049*** −0.0155***
(0.0092) (0.0015) (0.0013) (0.0033)

ln(popt) 0.0198*** 0.0213*** 0.0231*** 0.0196***
(0.0015) (0.0015) (0.0016) (0.0015)

W r · ln(popt) 0.0097*** 0.0103*** 0.0104*** 0.0096***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4431*** −0.4415*** −0.4366*** −0.4424***
(0.0011) (0.0011) (0.0012) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 459,669 453,831 421,953 457,947

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are SDEM
andare estimatedbyMaximumLikelihood. Standard errors in parentheses. Cell and year fixed
e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities reflect
time-weighted rolling averages over 12 subsequentmonthly observations. Ci�W r ·disastert
terms represent corresponding z-scores.
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4 Illuminating the Spatial Connectivity of Disasters

Table D.10 : Leaving Out Cells With Less Than Two Neighbors (2 Groups)

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0023** −0.0256*** 0.0147*** −0.0753***
(0.0010) (0.0075) (0.0052) (0.0161)

disastert−1 −0.0052*** 0.0284*** −0.0114** −0.0798***
(0.0010) (0.0074) (0.0051) (0.0158)

Chigh �W r · disastert −0.0079 0.0070*** −0.0067*** 0.0246***
(0.0089) (0.0015) (0.0012) (0.0029)

C low �W r · disastert 0.0116 0.0009 −0.0064*** 0.0145***
(0.0088) (0.0015) (0.0013) (0.0030)

Chigh �W r · disastert−1 −0.0024 −0.0026* 0.0011 −0.0083***
(0.0088) (0.0015) (0.0012) (0.0029)

C low �W r · disastert−1 −0.0014 −0.0029* 0.0054*** −0.0109***
(0.0087) (0.0015) (0.0013) (0.0029)

ln(popt) 0.0248*** 0.0257*** 0.0280*** 0.0242***
(0.0014) (0.0014) (0.0015) (0.0014)

W r · ln(popt) 0.0105*** 0.0110*** 0.0112*** 0.0104***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4418*** −0.4401*** −0.4366*** −0.4414***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 488,670 482,790 449,358 486,990

Note: ***, **, * denote significance at the 1%, 5%and10% level. All specifications are SDEM
and are estimated by Maximum Likelihood. Standard errors in parentheses. Cell and year
fixed e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities
reflect time-weighted rolling averages over 12 subsequent monthly observations. Ci �
W r · disastert terms represent corresponding z-scores.
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4 Illuminating the Spatial Connectivity of Disasters

Table D.11 : Leaving Out Cells With Less Than Two Neighbors (3 Groups)

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0010 −0.0255*** 0.0151*** −0.0638***
(0.0010) (0.0075) (0.0052) (0.0165)

disastert−1 −0.0051*** 0.0292*** −0.0121** −0.0668***
(0.0010) (0.0074) (0.0051) (0.0163)

Chigh �W r · disastert −0.0058 0.0059*** −0.0057*** 0.0134***
(0.0088) (0.0015) (0.0012) (0.0031)

Cmedium �W r · disastert −0.0086 0.0026* −0.0031*** 0.0151***
(0.0089) (0.0015) (0.0012) (0.0032)

C low �W r · disastert −0.0056 0.0005 −0.0059*** 0.0125***
(0.0092) (0.0015) (0.0013) (0.0032)

Chigh �W r · disastert−1 −0.0107 −0.0027* 0.0009 −0.0050*
(0.0088) (0.0015) (0.0012) (0.0030)

Cmedium �W r · disastert−1 0.0038 −0.0006 0.0017 −0.0076**
(0.0088) (0.0015) (0.0012) (0.0031)

C low �W r · disastert−1 0.0008 −0.0032** 0.0051*** −0.0152***
(0.0091) (0.0015) (0.0013) (0.0031)

ln(popt) 0.0248*** 0.0257*** 0.0280*** 0.0243***
(0.0014) (0.0014) (0.0015) (0.0014)

W r · ln(popt) 0.0105*** 0.0110*** 0.0112*** 0.0104***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4418*** −0.4401*** −0.4366*** −0.4413***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 488,670 482,790 449,358 486,990

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are SDEM
andare estimatedbyMaximumLikelihood. Standard errors in parentheses. Cell and year fixed
e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities reflect
time-weighted rolling averages over 12 subsequentmonthly observations. Ci�W r ·disastert
terms represent corresponding z-scores.
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4 Illuminating the Spatial Connectivity of Disasters

Table D.12 : Consider Only Shortest Connection (2 Groups)

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0025*** −0.0280*** 0.0133*** −0.0410***
(0.0009) (0.0069) (0.0047) (0.0141)

disastert−1 −0.0052*** 0.0213*** −0.0042 −0.0775***
(0.0009) (0.0068) (0.0047) (0.0138)

Chigh �W r · disastert −0.0039 0.0082*** −0.0069*** 0.0221***
(0.0090) (0.0015) (0.0012) (0.0029)

C low �W r · disastert 0.0128 0.0006 −0.0057*** 0.0091***
(0.0088) (0.0015) (0.0013) (0.0029)

Chigh �W r · disastert−1 −0.0065 −0.0017 0.0003 −0.0092***
(0.0089) (0.0015) (0.0012) (0.0028)

C low �W r · disastert−1 0.0021 −0.0020 0.0042*** −0.0106***
(0.0087) (0.0015) (0.0013) (0.0028)

ln(popt) 0.0249*** 0.0258*** 0.0276*** 0.0244***
(0.0013) (0.0013) (0.0014) (0.0013)

W r · ln(popt) 0.0109*** 0.0113*** 0.0115*** 0.0106***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4367*** −0.4329*** −0.4380***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5%and10% level. All specifications are SDEM
and are estimated by Maximum Likelihood. Standard errors in parentheses. Cell and year
fixed e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities
reflect time-weighted rolling averages over 12 subsequent monthly observations. Ci �
W r · disastert terms represent corresponding z-scores.
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4 Illuminating the Spatial Connectivity of Disasters

Table D.13 : Consider Only Shortest Connection (3 Groups)

Dependent Variable:∆ ln(lightst)

wind precip. drought cold

disastert −0.0016* −0.0275*** 0.0130*** −0.0355**
(0.0009) (0.0070) (0.0048) (0.0144)

disastert−1 −0.0051*** 0.0221*** −0.0042 −0.0723***
(0.0009) (0.0069) (0.0047) (0.0141)

Chigh �W r · disastert −0.0060 0.0064*** −0.0039*** 0.0150***
(0.0104) (0.0017) (0.0013) (0.0036)

Cmedium �W r · disastert 0.0006 0.0021 −0.0047*** 0.0082**
(0.0105) (0.0017) (0.0013) (0.0038)

C low �W r · disastert −0.0015 0.0006 −0.0054*** 0.0085***
(0.0090) (0.0015) (0.0012) (0.0030)

Chigh �W r · disastert−1 −0.0108 −0.0017 −0.0012 0.0017
(0.0103) (0.0017) (0.0014) (0.0035)

Cmedium �W r · disastert−1 0.0052 −0.0002 0.0024* −0.0149***
(0.0104) (0.0016) (0.0013) (0.0037)

C low �W r · disastert−1 0.0021 −0.0023 0.0040*** −0.0136***
(0.0089) (0.0015) (0.0012) (0.0030)

ln(popt) 0.0249*** 0.0258*** 0.0276*** 0.0244***
(0.0013) (0.0013) (0.0014) (0.0013)

W r · ln(popt) 0.0109*** 0.0113*** 0.0115*** 0.0106***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4367*** −0.4329*** −0.4380***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are SDEM
andare estimatedbyMaximumLikelihood. Standard errors in parentheses. Cell and year fixed
e�ects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities reflect
time-weighted rolling averages over 12 subsequentmonthly observations. Ci�W r ·disastert
terms represent corresponding z-scores.
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