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1. Summary 
 

The nerve growth factor family of neurotrophins consists of four well-studied 

members: Nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), 

neurotrophin 3 (NT-3) and neurotrophin 4 (NT-4). Neurotrophins are essential for the 

development, survival and maintenance of the nervous system. There is increasing 

evidence that neurotrophins and their receptors may have functions in the immune 

system. Nerve growth factor receptor (NGFR, p75NTR, TNFRSF16, CD271), encoded 

by NGFR gene, is the only receptor with the ability to signal in response to all 

neurotrophins. Although p75NTR has been intensively investigated under 

neurobiological aspects, little is known about its role in the immune system. 

The aim of this study was to quantify the expression of p75NTR in isolated 

populations of immune cells and in immune organs as well as to learn about its 

possible functions in the immune system using knockout mice. 

We identified, full-length transcripts of NGFR in human immune organs and in 

various immune cell subsets. In adenoids and tonsils NGFR gene was expressed 

comparable to CNS levels. Immunostaining with specific mAbs showed p75NTR on 

follicular dendritic cells and on a subset of germinal centre B cells. The study was 

further expanded to investigate human conditions that are known to be prone to 

formation of extranodal follicles. Expression of p75NTR in extranodal follicles of 

Hashimoto’s Thyroiditis (HT) and Follicular B cell Lymphoma suggests p75NTR 

mediated functions during  autoimmune diseases and malignancy. 

Conducting experiments on p75NTR exon 4 deficient animals was the final step 

of this project. Mice were immunized with three different antigens that served to 

induce germinal centre reaction, primary and memory response in terms of Ig 

production. Deletion of p75NTR did not cause any major alterations in immune cell 

compartments and memory response compared to wild type mice; on the other hand 

increased production of antigen specific IgM and elevated number of germinal 

centres in the spleen were observed in deficient animals. 

In conclusion the expression of p75NTR in normal lymphatic tissue suggests a 

role in the adaptive immune system. In vivo studies performed with p75NTR exon 4 

knockout mice indicate a modulatory role in selection, survival and maturation 

process of IgM memory B cells and/or IgM plasma cells. 
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2. Introduction 

 
The fate of cells is genetically programmed and under normal circumstances, 

each cell follows its program and performs the relevant function as much as the 

organism needs its contribution. In some special situations, strong effector signals 

coming from extracellular sources have the ability to initiate gene transcription to 

promote the cells to a much more capable state in many ways, as required by the 

organism. These factors and their respective receptors differ from each other among 

various cell types. Some of these proteins are secreted and can initiate target cells 

distributed in distant locations, while others need cell-to-cell interaction to exert their 

functions. Expression profiles of the receptors and ligands are determined by the 

actual status of the relevant tissue system. These factors may be referred as 

hormones, growth factors, trophic factors or cytokines depending on their target cell, 

the tissue they have been secreted or to the compartment where their functional 

characteristics were initially identified. As scientists go deeper in their investigations, 

growth factor families become much closer to each other, in some cases sharing 

receptors or ligands. 

In this context p75 neurotrophin receptor (p75NTR) could be a good example. It 

is a low affinity receptor that all members of the nerve growth factor (NGF) family of 

neurotrophins (NT) can signal through (Radeke et al., 1987; Rodriguez-Tebar et al., 

1992); structurally it is a member of tumour necrosis factor receptor superfamily 

(TNFRSF) (Hempstead and Chao 1989). Moreover, p75NTR has the ability to form 

receptor complexes with many different membrane proteins such as tropomyosin 

receptor kinase (Trk), Nogo and Sortilin receptors, leading to formation of high affinity 

targets for various ligands. There are many examples where a well-known growth 

factor turns out to be used or produced also by many other cell types. NGF itself can 

be considered a good example. It is synthesized in the hypothalamus, pituitary gland, 

thyroid gland, testes, and the epididymis, moreover various cell types including 

vascular smooth muscle cells, fibroblasts and some immune cells, also express it 

(Calzà et al., 1997). 

The vast majority of neuronal cell populations in the mammalian brain are 

formed prenatally, but still, some parts of the adult brain have the ability to 

regenerate by developing new neurons from neural stem cells. NTs are the key 
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factors that help to stimulate and control neurogenesis. Currently, in mammals, the 

NGF family of neurotrophic factors consist of four members: NGF (Levi-Montalcini, 

1987), BDNF (Brain derived neurotrophic factor) (Barde et al., 1982; Leibrock et al., 

1989), NT-3 (Neurotrophin 3) (Ernfors et al., 1990; Hohn et al., 1990; Maisonpierre et 

al., 1990, Rosenthal et al., 1990) and NT-4/5 (Neurotrophin 4/5) (Berkemeier et al., 

1991). NTs are synthesized as precursor proteins, then modified to mature forms and 

secreted. NTs form dimers to act through neurotrophin receptors. In the mature 

protein, half of the amino acid residues are common to all neurotrophins and they all 

share six cysteine residues at identical positions. This leads to the formation of the 

disulfide bridges and the similar tertiary structure of the molecules. The neurotrophins 

are able to form stable heterodimers in vitro (Jungbluth et al., 1994), but in vivo role 

of these NT heterodimers is not known. 

The NGF family of neurotrophins has been shown to modulate different 

functions in the nervous system. The main tasks of the NTs are: enhanced survival of 

neurons, development and maintenance of central and peripheral nervous system 

regulating the balanced release of neurotransmitters, dendrite growth and axonal 

regeneration after injury (Levi-Montalcini, 1987; Sendtner et al., 1992; Thoenen, 

1995; Lewin and Barde, 1996; Sawai et al., 1996; Barde, 1997; Semkova and 

Krieglstein, 1999). 

 

2.1 Neurotrophic factors 

2.1.1 Nerve growth factor (NGF) 

NGF is the member that the whole family was named after. It was identified 

more than a half century ago (Levi-Montalcini, 1952). The essential role of NGF is 

neuronal survival and development (Levi-Montalcini, 1987). NGF performs many 

other roles in the nervous system such as repair, regeneration, maintenance and 

protection of sympathetic and sensory neurons.  Mice lacking a functional NGF gene 

do not possess small diameter sensory neurons and sympathetic postganglionic 

neurons and die shortly after birth (Crowley et al., 1994). Newborn animals injected 

with anti-NGF antibodies, loose permanently the majority of sympathetic ganglion 

cells (Goedert et al., 1978). NGF is a 130-140-kDa complex composed of α, β and γ 

subunits (Bax et al., 1993). The biological activity is due to the β subunit (Fahnestock, 

1991); therefore the name βNGF is being used for this protein. Two β subunits 
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homodimerize to form the 26-kDa-polypeptide dimer (Ibanez, 1998; McDonald et al., 

1991). The βNGF gene is located on chromosome 1 in humans (Francke et al., 1983) 

and encodes a 34-kDa precursor also called pre-proNGF. An initial cleavage forms 

proNGF. A secondary enzymatic process by a furin or pro-convertase, leads to the 

formation of the mature and biologically active βNGF (Fahnestock, 1991; Chao, 

2003). Human and mouse proteins show 90% homology (Ullrich et al., 1983). 

NGF can signal through both TRKA and p75NTR that translate into activation of 

various signaling pathways depending on the TRKA-p75NTR ratio. 

 

2.1.2 Brain derived neurotrophic factor (BDNF) 

BDNF is the second member of the NGF family. As its name indicates, BDNF 

was originally found in brain tissue (Yves-Alain Barde, 1982). BDNF exerts its 

function mostly on certain neurons of the central nervous system (CNS) and 

peripheral nervous system (PNS). BDNF supports the survival of primary sensory 

neurons that are not responsive to NGF. BDNF has a trophic action on retinal, 

cholinergic, and dopaminergic neurons, and in the peripheral nervous system it acts 

on both motor and sensory neurons. BDNF does not only support existing neurons, 

but also promotes growth and differentiation of newly developing neurons through 

TrkB and p75NTR. 

The most obvious phenotype of BDNF knockout mouse is the lack of proper 

coordination of movement and balance. Morphologically, there is no reduction in size 

of cochlear ganglia, motor neurons of facial nucleus or lumbar spinal cord. On the 

contrary the volume of nodose-petrosal complex, vestibular and trigeminal ganglia 

were found to be reduced. Mice fail to thrive beyond postnatal day 8 and die around 3 

weeks of age. 

 

2.1.3 Neurotrophin 3 (NT-3) 

NT-3 was discovered due to its high resemblance to NGF and BDNF (Hohn et 

al., 1990) and it is encoded by Ntf3 gene. The obvious function of NT-3 is to support 

the survival and differentiation of existing neurons; additionally it promotes growth 

and differentiation of newly developing neurons and synapses. Activating TRKC, 

TRKB and p75NTR, NT-3 is considered special because it can potentially act on more 

target cells than any other NT. 
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The ligand dependent activation of TRKC by NT-3 prevents the myelination 

process. During the developmental phase of glial proliferation and elongation, NT-3 

levels decrease whereas TRKC and p75NTR remain constant. With the initiation of 

myelination, NT-3 protein levels drop to undetectable amounts, stopping the 

inhibitory action (Cosgaya et al., 2002). 

Ntf3 deficient mice showed severe movement defects of the limbs, and the 

majority died shortly after birth (Ernfors et al., 1994). It was observed that 

considerable portions of peripheral sensory and sympathetic neurons were lost, 

whereas motor neurons were not affected. A quantitative analysis revealed that the 

number of muscle spindles in heterozygous mice was half of that of control mice. 

When NT-3 was inactivated in embryonic stem cells (ESC), homozygous knockouts 

completely lacked peripheral sense (Tessarollo et al., 1994). In the same model, 

knockout animals exhibited severe neurological dysfunction. A loss of muscle 

sensory neurons has been observed in targeted mutation of Ntf3 in mouse (Klein et 

al., 1994). Additionally, perinatal death seen in Ntf3 deficient mice is presumably due 

to the essential role of NT-3 in heart development (Donovan et al., 1996). 
 
2.1.4 Neurotrophin 4 (NT-4) 

NT-4 has not been as extensively studied as the rest of the family. It is 

encoded by Ntf4 gene. There are several points about NT-4 that make this 

neurotrophin look different than others. NT-4 expression is ubiquitous and its 

modulation seems to be independent from environmental factors (Ip et al., 1992), but 

dependent on p75NTR for competent signaling (Rydén et al., 1995), as well as 

neuronal retrograde transport (Curtis et al., 1995). 

Ntf4 deficient mice examined so far have only minor cellular deficits (loss of 

sensory neurons in the nodose-petrosal and geniculate ganglia) and develop 

normally after birth (Conover et al., 1995; Liu et al., 1995). A detailed examination of 

the learning and memory functions of Ntf4 deficient mice with the use of fear 

conditioning, revealed significant deficits in mutant animals at 2 and 24 hours after 

training, on the other hand the result for 30 minutes was similar. Experiments on 

slices prepared from hippocampus revealed a decrease in long-term potentiation (Xie 

et al., 2000). NT-4 can signal through both TRKB and p75NTR. 
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2.1.5 Pro-Neurotrophins 

Members of the NGF family of neurotrophins are processed intracellularly from 

immature precursors called proneurotrophins (ProNT). At the initial phase ProNTs 

have been considered inactive precursors. Further investigation in recent years 

demonstrated that this is not the exact situation. ProNGF has been identified as the 

predominant form of NGF in many tissues and it turned out to be a biologically 

important molecule (Lee et al., 2001; Fahnestock et al., 2001; Pedraza et al., 2005; 

and Reinshagen et al., 2000). 

ProNGF and proBDNF were shown to be cleaved extracellularly, following 

their secretion. The process is performed by numerous proteolytic enzymes including 

furin, plasmin and MMPs (Lee et al., 2001). 

ProNGF is the best-studied pro-neurotrophin. It is the high-affinity ligand for 

p75NTR-Sortilin receptor complex and it induces apoptosis in neurons (Nykjaer et al., 

2004). Moreover, proNGF mediates cell death of oligodendrocytes following spinal 

cord injury in vivo (Beattie et al., 2002). Additionally, proNGF has been suggested to 

be responsible for the neurodegeneration that occurs in the brains of Alzheimer’s 

disease patients (Pedraza et al., 2005). These new findings have brought an 

increased complexity to the NT research. 

 

2.2 Neurotrophic factor receptors 

P75NTR and Trk receptor family are the two types of receptors responsible for 

transducing neurotrophin signals. They have different structural components to 

activate downstream signaling pathways. P75NTR and Trk receptors were 

denominated as low- and high-affinity receptors as they have dissociation constants 

of 10−9 M and 10−11 M respectively for mature NGF (Lewin and Barde, 1996; 

Friedman and Greene, 1999). Recent studies on “so called” low-affinity receptor 

p75NTR and high affinity Trk receptors revealed that the presence of both type 

receptors is required on the same cell for establishment of real high affinity sites for 

the neurotrophins (Hempstead et al., 1991, Bibel et al., 1999, Roux and Barker, 

2002). As a pan-neurotrophin receptor, p75NTR can be triggered by all members of 

the NGF family (Rodríguez-Tebar et al., 1990, 1992; Hempstead, 2002). On the other 

hand, each Trk receptor has a preferential ligand that binds with higher affinity. 
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Another crucial difference between these two receptor types is the lack of a catalytic 

tyrosine kinase domain in p75NTR. 

 
2.2.1 P75NTR the orphan TNF receptor 

The p75NTR is the first receptor that has been identified as NGF receptor. It is a 

75-kDa glycoprotein (Huebner et al., 1986) and has four cysteine-rich regions (CRR) 

in the extra cellular domain (ECD). P75NTR belongs to the family of TNF receptors, 

which contains many receptors as CD40, OX-40, FAS and BAFF-R that are all 

indispensable for immune system functions. This family of receptors is mainly 

distinguished with their multiple CRRs for ligand binding, a single pass 

transmembrane domain and a non-catalytic cytoplasmic domain (Locksley et al., 

2003). Although being a member of TNFR superfamily, a TNF ligand for p75NTR has 

not been identified so far. The sequences of four CRRs are responsible for the 

negatively charged structure and for binding of all neurotrophins of the NGF family to 

the receptor (Chapman and Kuntz, 1995), with similar affinities (Rodríguez-Tebar et 

al., 1990, 1992; Hempstead, 2002). 

P75NTR protein has three major domains that interact with ligands, co-

receptors or adapter proteins: Neurotrophin binding domain, intracellular juxta-

membrane domain and death domain. The neurotrophin-binding domain is 

composed of three cysteine rich regions coded by exon 3. Both intracellular juxta-

membrane domains coded by exon 5 and death domain coded by exon 6 play 

important roles to substitute for the lack of a catalytic domain. They provide binding 

sites for recruiting adapter proteins required for downstream signaling. There is only 

one transcript variant reported so far, which lacks exon 3, coding for the neurotrophin 

binding domain. This short isoform is not able to bind to neurotrophins but can 

interact with Trk receptors. It is called s-p75 and had only been reported to exist in 

mice (von Schack et al., 2001, Ibanez, 2002). Neurotrophins and Trk receptors 

always form dimeric molecules whereas p75NTR can form dimers as well as trimers 

similar to other members of the TNF receptor superfamily (Anastasia et al., 2015). 

ProNGF binds to p75NTR with high affinity and induces apoptosis (Lee et al., 

2001, Beattie et al., 2002). A 95-kDa co-receptor called Sortilin (encoded by SORT1 

gene) is required for induction of apoptosis by formation of a high affinity receptor 

complex with p75NTR (Nykjaer et al., 2004). This apoptotic effect mediated by the 
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p75NTR – Sortilin complex and proNGF is not unique; proBDNF leads to similar 

consequences (Teng et al., 2005). Additional to p75NTR - Trk and NT-proNT ratios, 

the presence or absence of sortilin on the same cell that expresses p75NTR will also 

determine cell fate. In fact, the inhibition of sortilin, specifically in p75NTR expressing 

neurons, suppresses proNT mediated apoptotic action (Lu et al., 2005).  

Activation of the p75NTR by NTs and proNTs induces recruitment of several 

adapter proteins that promote cell survival as well as apoptosis (Hempstead and 

Salzer, 2002), these adapter proteins are widely shared among other members of 

TNFR superfamily. TRAF6, NRIF, NRAGE, NADE, IRAK and SC-1 have been 

identified as adapter proteins interacting with intracellular domains of p75NTR (Fig. 

2.2, reviewed by Arévalo and Wu 2006). 

 
Figure 2.2 
Overview of neurotrophin or pro-neurotrophin mediated signaling through p75NTR. Many adapter 
proteins can be recruited to the p75 intracellular domain. TRAF6, NRIF, NRAGE, NADE, IRAK and 
SC-1 can interact with p75-ICD. Initiation of various pathways through different adapter molecules 
results in a range of effects including axonal growth, growth cone collapse, survival, and apoptosis or 
cell cycle arrest. Trk receptor signaling may block cell death signaling through p75NTR. Modified from 
Arévalo and Wu 2006. 
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TNF ligands and receptors are processed by proteases, yielding soluble effector 

proteins or intracellular signaling elements. As being a member of TNFR superfamily, 

p75NTR carries a similar feature. A ligand independent α-secretase cleavage of 

p75NTR leads to a soluble p75 fraction called p75ECD (extracellular domain) and a 

membrane bound fraction called p75ICD (intracellular domain) (DiStefano and 

Johnson, 1988; Zupan et al., 1989; Barker et al., 1991; DiStefano et al., 1993). 

Accumulation of p75ICD promotes cell death. A consecutive γ-secretase cleavage of 

p75ICD yields an intracellular fragment with nuclear functions (Kanning et al., 2003). 

α-secretase or γ-secretase cleavage of p75NTR activates different intracellular 

signaling pathways (Vicario et al., 2015). The α-secretase enzyme cleaving p75NTR is 

called TACE (Tumour necrosis factor α converting enzyme). There are a number of 

studies reporting that interaction of p75NTR with other proteins like sortilin (Skjeldal et 

al., 2012), Trk receptors (Ceni et al., 2010) and myelin associated ligands 

(Domeniconi et al., 2005) influence its proteolytic cleavage. Recent research showed 

that the ectodomain of p75NTR has neuroprotective role against amyloid-beta plaque 

toxicity during Alzheimer’s disease (Yao X-Q et al., 2015). 

Modulation of axonal growth depends on different ligands and adapter 

proteins that interact with p75NTR. While neurotrophin signaling promotes axonal 

growth, myelin-derived growth inhibitors lead to growth cone collapse. Neurotrophins 

have also roles on regulation of RhoA, which has the ability to manage the 

organization of the actin cytoskeleton in many cell types (Jaffe and Hall, 2005). 

Tuning of the axonal growth through p75NTR-RhoA pathway is not restricted to 

neurotrophins. A triple receptor complex formed by p75NTR, sortilin and NGR (Nogo 

receptor, encoded by RTN4R gene) is also responsible for mediating inhibitory 

signals for axonal outgrowth. Identified ligands for this complex are myelin-associated 

glycoprotein (MAG), and oligodendrocyte myelin glycoprotein (OMgp) (Wang et al., 

2002; Wong et al., 2002; Mi et al., 2004). It has also been shown that functional 

LINGO1-p75NTR-NGR complexes formed in the plasma membrane and LINGO1 

interacts with intracellular membrane compartments of p75NTR (Meabon et al., 2015). 

Recently, several studies linked p75NTR expression to cancer stem cells (Dirks 

F. 2010). It was reported that NGF/proNGF/p75NTR signaling plays a critical role in 

cancer stem cell self-renewal and plasticity regulation in breast cancer (Tomellini et 

al., 2015) and melanoma-initiating cells express p75NTR (Boiko et al., 2010). 



Introduction 10 

Moreover, p75NTR is shown to be a marker for tumor-initiating cells in squamous cell 

carcinoma (Murillo-Sauca 2014). 

There is a wide range of functions that have been associated to p75NTR, but 

the complete signaling pathways and complexity of the involving adapter proteins 

stand as difficult task to solve for the scientists. 

P75NTR proves itself to be a unique receptor in many ways:  

• Although being a member of the TNFR superfamily, there is no TNF ligand 

associated with p75NTR yet. 

• P75NTR can signal in the presence of all four known neurotrophins. 

• P75NTR and sortilin form a high affinity receptor complex for proNTs. 

• P75NTR undergoes α− and γ-secretase mediated shedding, resulting in 

bioactive intracellular fragments. 

• P75NTR forms a receptor complex with NGR and LINGO1 for myelin-derived 

growth inhibitors like myelin-associated glycoprotein (MAG), and 

oligodendrocyte myelin glycoprotein (OMgp). 

• P75NTR is a stem cell marker for a variety of cancers. 

• Diversity in functions: 

- Promote survival – Induce apoptosis 

- Neurite outgrow – Growth cone collapse 

- Mediate differentiation 

- Enhance proliferation 

- Facilitate myelination 

(Cosgaya et al., 2002, Yamauchi et al., 2004, Du et al., 2006) 

 
2.2.2 Trk family of neurotrophin receptors 

The protein tyrosine kinase Trk receptors TRKA, TRKB and TRKC act as 

specific, high-affinity neurotrophin receptors. Each of the Trk family members shows 

a preferential ligand binding ability to NTs (Ip et al., 1993). TRKA is the preferred 

receptor for NGF (Kaplan et al., 1991; Klein et al., 1991), but has a lower affinity for 

NT-3 or NT4/5. Both BDNF and NT-4 can bind to TRKB. TRKC has a unique ligand, 

NT-3 (Lamballe et al., 1991), but on the other hand NT-3 can also bind to TRKB with 

a low affinity (Klein et al., 1991; Ip et al., 1992) (Fig. 2.1). 
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Figure 2.1 
Overview of Trk receptors and their preferential neurotrophin ligands. 
Trk receptors have three leucine-rich regions (LRR) and two Ig like domains mapped in the 
extracellular part. The tyrosine kinase domain is located in the intracellular section. Trk Family 
members share around 50% of their amino acid sequence. NGF selectively binds to TrkA, BDNF and 
NT-4 to TrkB, finally NT-3 to TrkC. Modified from Arévalo and Wu 2006. 
 

All three Trk receptors harbour a cytosolic domain whose tyrosine-kinase 

activity is essential for the signal transduction. On the extracellular part they carry 

three leucine rich regions (LRR) and two Ig like C2 type domains (Ig-C2). They have 

a single pass trans-membrane domain coupled with a kinase domain. Neurotrophin 

binding occurs through the Ig-C2 domains (Perez et al., 1995). In situations when 

there is no interaction with a neurotrophin, the Ig-C2 domains prevent dimerization of 

the Trk receptors and auto-phosphorylation of the tyrosine kinases (Arevalo et al., 

2000). Trk receptors carry structural similarities to each other; they have around 50% 

amino acid homology. 

The main components of Trk receptor downstream signaling pathway are 

phospholipase C-gamma (PLC-γ), phosphodityl-insitol 3-kinase (PI3-kinase) and 

SHC adapter proteins. PLC-γ catalyzes the hydrolysis of membrane phospholipids to 

generate inositol triphosphate (IP3), which is responsible of activating pathways to 

induce changes in intracellular Ca2+, pH, cytoskeletal functions and gene 

transcription. PI3-kinase produces phosphoinositides that activate AKT protein 

kinase, which results in growth factor mediated cell survival. SHC adapter proteins, 

when phosphorylated by tyrosine kinases, activate RAS and MAP-kinase pathways 

that in turn activate nuclear transcription factors. 
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2.2.2.a TRKA 

The TrkA receptor is encoded by NTRK1 gene located on chromosome 1 

(Martin-Zanca et al., 1986). It is a 140-kDa trans-membrane protein possessing a 

tyrosine-kinase domain in the intracellular part. Another key domain of TRKA is the 

NT binding domain that harbors two Ig-like domains that are involved in NGF 

selectivity and binding (Wiesmann et al., 1999). The expression profile of the TRKA 

receptor is widely spread throughout the nervous system (Muragaki et al., 1995). 

Receptor homo-dimerization is required for tyrosine kinase activation; this 

occurs when NGF binds to the receptor, initiating transphosphorylation (Kaplan et al., 

1991). This activation involves a group of proteins playing key roles for the cellular 

functions:  RAS, phospholipase C (PLC), protein kinases C (PKC) and phosphatidyl-

inositol-3 kinase (PI3) (Obermeier et al., 1993a,b; Melamed et al., 1999; York et al., 

2000). The mitogen-activated protein kinase (MAPK) pathways are activated next 

(Kaplan and Miller, 1997). NGF activation of the TrkA receptor inhibits apoptosis and 

induces cell proliferation, differentiation and survival (Levi-Montalcini, 1987; Levi 

Montalcini et al., 1995; Aloe et al., 1997; Bonini et al., 2002). 

 
2.2.2.b TRKB 

Identification of TRKB was based on its similarity to TRKA. Human TRKB is 

encoded by NTRK2 gene that consists of 24 exons (Yeo et al., 2004). TRKB protein 

is a single pass transmembrane protein of 822 amino acid residues and the peptide 

sequence is found to be 49% homologue to TRKA and 55% to TRKC.  TRKB is 

known as high affinity receptor for BDNF and both together they regulate short-term 

synaptic functions and long-term potentiation of brain synapses. There are three 

TRKB isoforms in mammals. The full-length TRKB has the typical tyrosine kinase 

activity, which can transduce BDNF and NT-3 signals to a lesser degree. The two 

other truncated isoforms are sharing the same extracellular and trans-membrane 

domains but showing differences in the intracellular part. These isoforms are named 

as TK-T1 and TK-T2. Additional to splice isoforms, there are also TRKB extracellular 

deletions, leading decreased responsiveness to BDNF and restriction of NT-3 and 

NT-4 activation (Kristen et al., 1999). 
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The first generation of a Ntrk2 deficient mouse allowed scientists to observe 

neuronal deficiencies in central and peripheral nervous systems (Klein et al., 1993). 

Observations were limited to prenatal period and postnatal day 1, which is the point 

the animals die. Although this knockout served well for understanding the TRKB 

receptor functions, its impact during postnatal neuronal development was still an 

open question. The Cre-loxP recombination technique has been used to generate 

animals that lack TRKB expression in the forebrain (Minichiello et al., 1999). These 

mice were viable and did not show major morphologic alterations.  They were, 

however, highly impaired in learning under stress conditions (Minichiello et al., 1999). 

In following years, animal models with disrupted phospholipase C docking site or 

SHC domain helped better understanding the TRKB functions. PLCγ disruption 

caused weakened hippocampal long-term potentiation (LTP). In case of SHC 

disruption, the process had no effect on LTP, but a reduction of MAPK activation was 

observed on those neurons that had been stimulated with BDNF (Minichiello et al., 

2002). 

 
2.2.2.c TRKC 

TRKC is coded by NTRK3 gene and it is the third member of the Trk family is 

preferentially expressed in the brain (Lamballe et al., 1991), mRNA specific 

hybridisation showed distributed expression in the hippocampus, cerebral cortex, and 

the granular cell layer of the cerebellum. TRKC protein has a molecular weigh of 145-

kDa. TRKC is the high affinity receptor for NT-3 and does not engage with NGF or 

BDNF. 

Schwann cell function during the development and regeneration of the 

peripheral nervous system is highly dependent on neurotrophic factor signaling. 

Although neurotrophins are known to be the key mediators for myelination, 

abundance of various neurotrophins and the distribution of neurotrophin receptors 

are crucial for proper myelination. In this context TRKC-NT3 signaling has rather an 

inhibitory effect whereas p75NTR-BDNF enhances myelination (Cosgaya et al., 2002). 
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2.3 Ngfr knockout mice 

Two different knockout mouse models for p75NTR have been developed so far. 

The first model is generated by deletion of exon 3 of Ngfr, coding for the three 

cystein-rich regions forming the neurotrophin-binding domain (Lee et al., 1992). The 

exon 3 knockout mice still express a p75 protein variant (s-p75) consisting of one 

cysteine-rich domain, stalk domain, transmembrane domain and intracellular domain. 

Intensive PCR analysis performed on human, mouse, rat and chicken revealed that 

s-p75 is conserved across species. Primary Schwann cells obtained from p75NTR 

exon 3 knockout mice still express the s-p75 variant that cannot bind neurotrophins 

but interacts with Trk receptors (von Schack et al., 2001). 

Another p75NTR knockout mouse has been generated by targeting exon 4, 

therefore it lacks the transmembrane domain (von Schack et al., 2001). In 2004, Paul 

et al. reported that a functional fragment of p75NTR is still produced in exon 4 

knockout mice. When overexpressed, this fragment associates with the membrane 

and it is able to trigger an apoptotic signal (Paul et al., 2004). Both p75NTR exon 3 and 

exon 4 knockout mice are suitable to investigate NT dependent functions of p75NTR 

but there is still a need for a knockout model for the investigation of NT independent 

functions. 

 

2.3.1. P75NTR exon 3 knockout mouse 

P75NTR exon 3 KO mice (Lee et al., 1992) are viable but smaller than wild-type 

littermates. Increased skin infections, loss of nails and hair follicles at distal 

extremities have been observed as major phenotype. KO mice lack 50% of sensory 

neurons that require more NGF for survival due to 2-3 fold decreased sensitivity to 

NGF. Loss of sensory neurons mainly translated to a decreased innervation of the 

skin. Similarly, impaired heat sensitivity is consistent with decreased cutaneous 

innervation. Further defects include lack of 40% of dorsal root ganglia (DRG) neurons 

and Schwann cells; the cross-section of the sciatic nerve is 40% smaller.  

 

2.3.2. P75NTR exon 4 knockout mouse 

P75NTR exon 4 KO mice (von Schack et al., 2001) were generated after the 

discovery of s-p75, in order to achieve a complete knockout model. In general exon 4 
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KO mice show a more drastic phenotype compared to exon 3 KO mice. They are 

much smaller than WT mice especially during postnatal period. About 40% do not 

survive beyond the prenatal period. Most of blood vessels have thin walls and leak 

blood. The exon 4 KO mice lack 54% of DRG neurons and 61% of the Schwann 

cells. The cross-section of the sciatic nerve is significantly (54%) smaller compared to 

WT. 

 

2.4 Neurotrophic factors and the immune system 

In parallel to the identification of the complete family of neurotrophins and 

receptors, an intense scientific work was allocated to solve the functional puzzle of 

this growth factor family and their receptors. Secreted neurotrophins also play 

important roles during sympathetic innervation. In this context NGF is shown to take 

part in the innervation of the lymphoid organs (Kannan et al., 1994, 1996). Cells 

expressing NTs and NTRs were partially mapped. In the immune system NTs and 

NTRs were prominently expressed in some cell subsets of primary and secondary 

lymphoid organs (Morgan et. al., 1989; Ciriaco et al., 1996; Aloe et al., 1999; 

Hannestad et al., 1995, 1997). 

 

2.4.1 NGF 

NGF is constitutively expressed in the thymus; mostly in the medulla (Katoh-

Semba et al., 1993; Aloe et al., 1997; Turrini et al., 2001) and a role for NGF through 

p75NTR and TrkA during the T cell development in the thymus has been suggested 

(Marinova et al., 2003). NGF increased the transcription of IL-6 in thymic epithelial 

cells (Screpanti et al., 1992). 

Mast cells (Leon et al., 1994) and T cells have been shown to produce NGF 

(Ehrhard et al., 1993; Santambrogio et al., 1994; Lambiase et al., 1997), but the level 

of NGF expression is highly dependent on T cell activation (Ehrhard et al., 1993, 

Moalem et al., 2000). Both CD4+ and CD8+ populations produce NGF. The level of 

NGF expression is reported to increase following antigen stimulation, especially in 

the Th2 subset (Santambrogio et al., 1994, Van Eden et al., 2002). 

NGF has also ability to increase survival of memory B cells (Rubartelli et al., 

1996) and has been reported to rescue B cells from experimentally induced 

apoptosis (Kronfeld et al., 2002, Torcia et al., 1996 and 2001). Similarly, NGF 
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increases survival of macrophages (Garaci et al., 1999) and monocytes (la Sala et 

al., 2000). Moreover, NGF has been shown to synergetically act with granulocyte-

macrophage colony stimulating factor (GM-CSF) to promote human basophilic cell 

differentiation (Tsuda et al 1991) and to support hemopoietic stem cell development 

(Chevalier et al., 1994, Auffray et al., 1996). In the mouse, NGF acted as a 

chemotactic agent on macrophages (Kobayashi et al., 2001) and mast cells (Sawada 

et al., 2000) 

NGF has been considered as a potential biomarker following several studies 

that were performed in this context. An increased serum level of NGF is found to be 

quite common during allergic diseases (Frossard et al., 2004), autoimmune disorders 

(Aloe and Tuveri. 1997, Arredondo et al., 2001), other inflammatory cases (Stanisz 

M. and Stanisz J. 2000) and stress (Aloe et al., 1994). 

Another cell type that is responsive to NGF are bone marrow stromal cells 

(Rezaee et al., 2010). It is reported that they increase IL-6 expression by activation of 

ERK and p38 MAPK, but not NFκB. 

Recently, it has been shown that NGF attenuates the inflammatory response 

in LPS activated monocytes by inhibiting production of proinflammatory cytokines, 

including IL-1β, IL-6, and TNF-α and by inducing IL-10 and IL-1Ra through TRKA 

receptor (Prencipe et al., 2014).  

 

2.4.2 BDNF 

Within the immune system, the presence of BDNF has been first shown in the 

thymus (Laurenzi et al., 1994; Yamamoto et al., 1996; Timmusk et al., 1999). The 

main source of BDNF was found to be the stromal cells (Maroder et al., 1996). TrkB 

receptor expression was reported on immature thymocytes (Maroder et al., 1996). 

Both CD4+ and CD8+ T cells were reported to transcribe BDNF mRNA and to 

produce biologically active BDNF (Braun et al., 1999; Kerschensteiner et al., 1999). 

BDNF was reported to modulate cytokine expression of PBMCs through Trk 

receptors. Additionally antigen specific T cells had a change in the expression pattern 

of IL-4, TGFβ, TNFα and INFβ (Bayas et al., 2003). 

Recently, a developmental block in the Pre-BII stage in B cells has been 

reported in BDNF knockout mouse (Schuhmann et al., 2005), leading to significant 

reduction of the B cells in the bone marrow, spleen and blood. 
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Moreover, BDNF have found to be produced and used by thymic epithelial 

cells (TEC) and immune cells in the thymus (Berzi et al., 2008), suggesting a role for 

T cell proliferation and TEC turnover. 

 

2.4.3 NT-3 and NT-4 

Compared NGF and BDNF, NT-3 and NT-4 were not as deeply investigated in 

the immune system. Both NT-3 and NT-4 were reported to exist at both mRNA and 

protein level in the thymus (Laurenzi et al., 1994, Timmusk et al., 1993, Katoh-

Semba et al., 1996). Additionally, NT-3 protein has been detected in the spleen 

(Zhou & Rush, 1993; Katoh-Semba et al., 1996). NTF3 and NTF4 transcripts were 

reported in CD4+ and CD8+ T cells (Moalem et al., 2000). At protein level, B cells 

were shown to produce NT-3 (Besser and Wank, 1999). 

 

2.4.4 P75NTR 

As being able to conduct signals in the presence of all of the NTs and pro-

NTs, p75NTR can be considered as an important marker for cells that could respond to 

NTs. In the thymus, p75NTR was found to be expressed by dendritic cells (Parrens et 

al., 1999; García-Suárez et al., 2001) and by medullary epithelial cells (Lomen-

Hoerth & Shooter, 1995).  

The spleen shows a rather compartmentalized expression of p75NTR in follicles 

(Labouyrie et al., 1997). In human tonsils and adenoids, p75NTR is also present in 

lymphoid follicles, mainly expressed by follicular dendritic cells (FDC) and 

lymphocytes (Chesa et al., 1988; Brodie and Gelfand, 1992; Pezzati et al., 1992). 

Additionally, periarteriolar macrophages and dendritic cells are reported to be positive 

for p75NTR (Pezzati et al., 1992; Bull et al., 1998; García-Suárez et al., 1997; 

Labouyrie et al., 1997). P75NTR expression was also located in blood vessels, in the 

Schwann cells of nerve endings and in the basal epithelium of the mucosa (Esteban 

et. al. 1995). 

The expression of p75NTR by T cells (Kittur et al., 1992; Ehrhard et al., 1993) 

and by B cells is controversial (Brodie et al., 1996, Schenone et al., 1996).  The 

expression pattern for the T cell and B cell lineages under different activation 

conditions has never been completely elaborated. There are many conflicting reports 
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about the expression of NTs and NTRs, mainly due to the variations between 

targeted cell population and their stage of activation or maturation.  

In 2008, Berzi and colleagues revealed that p75NTR is expressed by thymic B 

cells and thymic epithelial cells (TEC) in healthy adult human thymus. In the same 

study, p75NTR and BDNF were reported to be colocalized on the proliferating B cells 

in the germinal centre of the hyperplastic thymus. 

Recently it has been reported that plasmocytoid dendritic cells express p75NTR 

but not Trk receptors (Bandola et al., 2017) and demonstrated p75NTR - NGF driven 

regulation of T cell priming and cytokine production. 

 

2.4.5 Trk Receptors 

Trk receptors were discovered shortly after p75NTR and this finding initiated a 

massive research concerning their functions in different organ systems. The 

discovery of the thymus specific splice variants of TrkA (Dubus et al., 2000) 

strengthened the idea of NTs having broader functions in the thymus.  

Transcripts of full-length (Laurenzi et al., 1994; García-Suárez et al., 2002) 

and truncated isoforms of Ntrk2 have been reported in the thymus (Lomen-Hoerth & 

Shooter, 1995). TRKB protein been detected in thymocytes (Maroder et al., 1996; 

Besser & Wank, 1999; García- Suárez et al., 2002), in stromal cells and in 

macrophages (García-Suárez et al., 1998, 2002, Levanti et al., 2001, Rezaee et al., 

2010). On the other hand, protein expression of TRKC has never been reported. 

In the human spleen, TRKA and TRKB were reported to be expressed, mainly 

by the FDCs (Labouyrie et al., 1997). TRKB was also detected in the splenic 

macrophages (Shibayama & Koizumi, 1996). 

In peripheral blood, mainly T cell populations express TRKB, both isoforms 

have been detected on CD4+ T cells (Besser & Wank, 1999) and CD3+ T cells (Berzi 

et al., 2008). Similar to the NT production, TRKB expression level depends on the 

different developmental stages of T cell populations (Maroder et al., 1996, 2000). 

TrkA expression in B cells is controversial, it has been reported to exist in B cells 

(Melamed et al., 1996; Torcia et al., 1996; D’Onofrio et al., 2000), but on the other 

hand Schenone et al., (1996) stated that neither mRNA, nor protein for TRKA exists 

in B cells. Recent studies confirm the TRKB expression on B cells (Besser & Wank 

1999, D’Onofrio et al., 2000, Berzi et al., 2008). TRKA has been detected on 
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monocytes and LPS activation induces its expression (Ehrhard et al., 1993a, 1993b; 

Prencipe et al., 2014). On the other hand, TRKA expression is found to be down 

regulated during differentiation to macrophages in-vitro (Ehrhard et al., 1993). 

In summary, the NGF-TRKA pair, as being the most studied receptor-ligand 

pair, might function in the immune system. Although there are examples of functions 

concerning both T and B cell biology, each different immune subset seems to bear a 

unique set of NTs and their receptors. 
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3. Objectives 

 
This study was undertaken with the following objectives. 

 

1. To identify immune cell subsets expressing p75NTR in blood and immune 

organs and to determine whether p75NTR expression changes in response to 

immune cell activation/maturation. 

 

2. To investigate p75NTR in follicular B cell lymphoma and in extranodal 

lymphoid follicles occurring in autoimmune Hashimoto’s Thyroiditis. 

 

3. To learn about a possible role of p75NTR in the regulation of humoral 

immunity by studying p75NTR exon 4 knockout mice. 
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4. Material and Methods 

 
4.1 Materials 
4.1.1 Buffers and reagents 
a. Main buffers 

Phosphate buffered saline (1X PBS), pH 7.4  
9.1 mM Na2HPO4 

1.7 mM NaH2PO4  

150 mM NaCl 

 
Tris buffered saline (1X TBS) 
10 mM Tris-HCl, pH 8.0 

150 mM NaCl 

 

b. ELISA buffers 
ELISA coating buffer, pH 9.6 
15 mM Na2CO3  

35 mM NaHCO3 

 
ELISA washing buffer  
1X PBS + 0.05% Tween-20 

 

ELISA blocking buffer 
1X PBS + 2-10% FCS 
 
ELISA substrate buffers 

1- 20 mM Na2HPO4 +10 mM C6H8O7 (Cirtic acid)  

Immediately before use, add 1/1000 v/v 3% H2O2 and 1-2 g OPD  

(O-Phenylenediamine), pH 4 – 4,5. Read at 492 nm 

2- TMB (Tetra-methyl-benzidine) substrate solution (Sigma) 

Filters: Read 450 nm, reference 550 nm 
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ELISA stop solution 
1 or 2 M H2SO4 

 

c. RNA-DNA-PCR buffers 
TAE Buffer (Tris-Acetate-EDTA) 50x 
242 g Tris base 

57.1 ml Acetic acid 

100 ml 0.5 M EDTA 

 Add distilled water to 1 liter and adjust pH to 8.5 

 

Lysis Buffer: RNA extraction from FFPE tissue 
1 M Tris-HCl 

0.5 M EDTA 

10% SDS 

pH 8 

Add 20 mg/ml Proteinase K (Sigma), (Add fresh before use)  

 

Tail digestion buffer 

100 mM Tris-HCl, pH 8.5 

200 mM NaCl 

5 mM EDTA 

0.2% SDS 

100 µg/ml Proteinase K (Sigma), (Add fresh before use) 

 
d. FACS buffers/reagents 

FACS buffer (staining/washing) 
1X PBS + 2% heat-inactivated FCS 

 
Cell permeabilization buffer 

1X PBS + 1% heat-inactivated FCS + 0.1% (w/v) saponin (Sigma), pH 7.4 
 
Propidium Iodide solution 
1 mg/ml in 1X PBS 
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e. Immuno-staining buffers 

Cell/Tissue section fixing solution - 4% PFA  

Paraformaldehyde 4% (w/v) in 1X PBS, pH 7.4 

 
Endogenous peroxidase activity stopping solution 
3% H2O2 in methanol 

 
Blocking buffer 
1X PBS + 10% heat-inactivated FCS + 5% serum from secondary antibody host 

animal. 

 
f. Cell culture reagents 
Cell culture medium 
RPMI 1640 (Gibco) 

1% Pen-strep (Penicillin G 10,000 units/ml; streptomycin 10,000 µg/ml; Gibco) 

5% or 10% heat-inactivated fetal calf serum (FCS) 

 
Red blood cells (RBC) lysis buffer 

0.83% ammonium chloride in PBS or RBC lysis solution (Qiagen) 
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4.1.2 Antibodies 

Antibodies (anti-human) for FACS and immunohistochemistry 
Target (Human) Manufacturer Label Clone Method/Concentration 

P75NTR BD None/Biotin C40-1457 IHC, IF (fz, ffpe) *, 1-10 µg/ml 

P75NTR BD PE C40-1457 FACS, 2.5 µg/m 

P75NTR Sigma None ME 20.4 FACS, IHC (fz), 1-1 0µg/ml 

FDC DAKO None CNA.42 IHC, IF (fz, ffpe), 10 µg/ml 

BDNF R&D None 35928 IHC, IF (fz), 10 µg/ml 

TRKB R&D None 72509 IHC, IF (fz), 10 µg/ml 

CD4 BD FITC/PerCP RPA-T4 FACS 1/25 – 1/50 

CD8 BD FITC/PerCP RPA-T8 FACS 1/25 – 1/50 

CD14 BD FITC/PerCP M5E2 FACS 1/25 – 1/50 

CD19 DAKO FITC HD37 FACS 1/25 – 1/50 

CD20 BD FITC/PerCP L27 FACS 1/25 – 1/50 

CD21 DAKO FITC 1F8 IHC, IF (fz, ffpe), 1-10 µg/ml 

CD27 BD FITC M-T271 FACS  1/50 

CD38 BD FITC HIT2 FACS 1/50 

CD56 BD None MY31 FACS 1/25 – 1/50 

CD77 BD FITC B5B FACS 1/50 

CD79a DAKO None CJB117 IHC, IF (fz, ffpe), 1-10 µg/ml 

IgM BD FITC G20-127 FACS 1/25 – 1/50 

IgD BD FITC IA6-2 FACS 1/25 – 1/50 

 
Isotype controls 
Isotype Manufacturer Label Method/Concentration 

Mouse IgG1 BD FITC/PE/PerCP FACS 1/25 – 1/50 

Mouse IgG2a BD FITC/PE/PerCP FACS 1/25 – 1/50 

Mouse IgG2b BD FITC/PE/PerCP FACS 1/25 – 1/50 

Mouse IgM DAKO None IHC, IF (fz, ffpe), 1-10 µg/ml 

Mouse IgG1 DAKO None/Biotin IHC, IF (fz, ffpe), 1-10 µg/ml 

                                                
* fz: frozen, ffpe: formalin fixed paraffin embedded, IHC: Immunohistochemistry, IF: Immunolorescence 
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Antibodies (anti-mouse) for immunohistochemistry 
Target (Mouse) Manufacturer Label Clone Method/Concentration 

P75NTR Serotec None ab8874 IHC, IF (fz)*, 0.1-1 µg/ml  

IgM Jackson Cy5 - IF (fz), 1-10 µg/ml 

IgD eBiosciences Biotin 11-26c IF (fz), 1-10 µg/ml 

B220 BD FITC RA3-6B2 IF (fz), 1-10 µg/ml 

FDC BD None FDC-M1 IHC, IF (fz), 10 µg/ml 

CD4 Invitrogen Alexa-488 RM4-5 IF (fz), 1-10 µg/ml 

CD8 Invitrogen Alexa-488 5H10 IF (fz), 1-10 µg/ml 

 
Antibodies (anti-mouse) for ELISA 
Target (Mouse) Manufacturer Label Clone Method/Concentration 

IgG1 BD Biotin A85-1 ELISA detection 1 µg/ml 

IgG1 BD None A85-3 ELISA coating 1 µg/ml 

IgG2a/2b BD Biotin R2-40 ELISA detection 1 µg/ml 

IgG2a  BD None R11-89 ELISA coating 1 µg/ml 

IgG2b  BD None R9-91 ELISA coating 1 µg/ml 

IgM BD Biotin R6-60.2 ELISA detection 1 µg/ml 

IgM BD None II/41 ELISA coating 1 µg/ml 

IgG Jackson None Goat  ELISA detection 1 µg/ml 

IgG Jackson HRP Goat ELISA coating 1 µg/ml 

IgM Jackson None Goat ELISA detection 1 µg/ml 

IgM Jackson HRP Goat ELISA coating 1 µg/ml 

                                                
* fz: frozen, ffpe: formalin fixed paraffin embedded, IHC: Immunohistochemistry, IF: Immunolorescence 
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Antibodies (anti-mouse) for FACS 
Target (Mouse) Manufacturer Label Clone Method/Concentration 

Specificity Company Label Clone FACS 0.5 µg/ml 

CD11b Pharmingen PE M1/70 FACS 0.5 µg/ml 

CD19 Pharmingen FITC 1D3 FACS 0.5 µg/ml 

CD19 Pharmingen PE 1D3 FACS 0.5 µg/ml 

CD45R/B220 Pharmingen PerCP RA3-6B2 FACS 0.5 µg/ml 

CD8a Pharmingen APC 53-6.7 FACS 0.5 µg/ml 

CD4 Pharmingen PerCP RM4-5 FACS 0.5 µg/ml 

CD25 Pharmingen PE 3C7 FACS 0.5 µg/ml 

CD62L Pharmingen Biotin MEL-14 FACS 0.5 µg/ml 

IgMb Pharmingen FITC, PE AF6-78 FACS 0.5 µg/ml 

MHC Class II I-A/I-E Pharmingen Biotin 2G9 FACS 0.5 µg/ml 

FAS Pharmingen PE Jo2 FACS 0.5 µg/ml 
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4.1.3 PRIMERS AND PROBES 

a. Conventional PCR primers 
Human GAPDH - Reference gene (RG). 
Forward primer:  5’-GAAGGTGAAGGTCGGAGTC-3’ 

Reverse primer:  5’-GAAGATGGTGATGGGATTTC-3’ 

Amplicon length:  326 bp 

 
Human NGFR Death domain 

Forward primer:  5’-AAAACTCCACAGCGACAGTGGC-3’  

Reverse primer:  5’-AGTGGACTCACTGCACAGACTC-3’ 

Amplicon length:  369 bp 

 

Human NGFR Intracellular domains 

Forward primer:  5’-GCCTTGTGGCCTACATAGCCTT-3’  

Reverse primer:  5’-AGTGGACTCACTGCACAGACTC-3’ 

Amplicon length:  473 bp 

 

Human NGFR Neurotrophin binding and stalk domains 

Forward primer:  5’-CCGTGTGTGAGCCCTGCCTGGA-3’ 

Reverse primer:  5’-AAGGCTATGTAGGCCACAAGGC-3’ 

Amplicon length:  656 bp 

 
Human NTRK1 
Forward primer:  5’-ATGTCACCAGTGACCTCAACAG-3’  

Reverse primer:  5’-GTGGAGAAGAAGGACGAAACAC-3’  

Amplicon length:  485 bp 

 

b. Quantitative TaqMan PCR primers and probes 
Human NGFR  

Forward primer:  5’-CCTGGCTGCTGTGGTTGTG-3’ 

Reverse primer:  5’-CTGTTGGCTCCTTGCTTGTTCT-3’ 

Probe:   5’-FAM-CCTACATAGCCTTCAAGAGGTGGAACAGCTG-TAMRA-3’ 
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Human NTRK1  

Forward primer:  5’- GAAGAGTGGTCTCCGTTTCGTG -3’ 

Reverse primer:  5’- GAGAGAGACTCCAGAGCGTTGAAG -3’ 

Probe:   5’-FAM-ACTCCTCGGCTCAGTCGCCTGAATCTCT-TAMRA-3’ 

 

Human NTRK2 

Forward primer:  5’-AGGAGAAGATCAAGATTCTGTCAA-3’ 

Reverse primer:  5’-GGTCTGAGGTTGGAGATTCG-3’ 

Probe:   5’-FAM-ACTGTGCATTTTGCACCAACTATCACATTTCT-TAMRA-3’ 

 

Human NTRK3  
Forward primer:  5’-GACAATGGCTTCACCCTGAC-3’ 

Reverse primer:  5’-CAGCTCAGGCTCCTCCAG-3’ 

Probe:   5’-FAM-ATGCCAGTGTTGCCCTCACTGTCTACTATC-TAMRA-3’  

 

Human CD79A 
Forward primer:  5’-CACCAAGAACCGAATCATCACA-3’ 

Reverse primer:  5’-GAGATGTCCTCATACATGGAGCA-3’ 

Probe:   5’-FAM-TCGTCCAGGTTCAGGCCTTCATAAAGGTT-TAMRA-3’ 

 

Human GAPDH  
Forward primer:  5’-GAAGGTGAAGGTCGGAGTC-3’ 

Reverse primer:  5’-GAAGATGGTGATGGGATTTC-3’ 

Probe:   5’-FAM-CAAGCTTCCCGTTCTCAGCC-TAMRA-3’ 

 

PPIA (peptidyl-prolyl isomerase A - cyclophilin A), GAPDH, BDNF, SORT1 

(Sortilin), RTN4R (Nogo Receptor) primers and probes were purchased from Applied 

Biosystems. Other primers and probes are self designed using Primer3 (Steve Rozen 

and Helen J. Skaletsky 2000) and Primer Express v1.0 (Applied Biosystems). All 

primer/probe sequences are controlled for self-complimentarity or possible 

interactions with each other. Designed primers are tested with conventional PCR 

experiments to amplify from cDNA but not genomic DNA. 
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4.2 Methods 
 
4.2.1 Cell preparations 

Experiments were performed with freshly isolated human peripheral blood 

mononuclear cells (PBMCs). 2x106
 cells per ml were used for all functional assays. 

 

4.2.2 Cell separations 

1. PBMCs were separated into different subtypes as CD4+
 and CD8+ T 

lymphocytes, CD19+ B lymphocytes, CD56+ Natural Killer (NK) cells and CD14+ 

monocytes using magnetic beads by positive or negative selection (Dynal or Miltenyi 

Biotec/MACS). The purity of the isolated cell types was between 90-96% for different 

cell populations as determined by FACS analysis (BD FACSCalibur). 

2. Adenoid B cell isolation: Fresh adenoids were cut into 2x2 mm pieces and 

the pieces were passed through 40 or 70 µm cell strainer (BD Falcon). Mononuclear 

cells (MNCs) were isolated by density gradient centrifugation (Pancoll, PAN Biotech). 

B cells were separated using CD19 positive cell isolation kit (Dynal or Miltenyi 

Biotec/MACS). 

 

4.2.3 Cell activation / stimulation 

PBMCs or subpopulations were activated with different mitogens or cytokines 

to analyze various responses as proliferation, differentiation, modulation of 

expression pattern of some proteins (cytokines/receptors, CD markers etc.). 

T cell activation 

1. ConA (Sigma): final concentration 10 µg/ml. 

2. PMA + Ionomycin (Sigma) PMA: final concentration 3 ng/ml, Ionomycin: 

final concentration 300 ng/ml. 

3. Anti-CD3 (Dako) 1 µg/ml 

B cell activation 
1. SAC (Staphylococcus Aurous Cowan 1 antigen) (Calbiochem) Dilution: 1:7500. 

2. CD40L (R&D) 

3. PWM (Pokeweed mitogen) (Sigma): final concentration 5 µg/ml. 

4. LPS (Only for mouse B cells) 
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Monocyte activation 
After 24 hr in culture monocytes were activated as follows. 

LPS (Lipopolysaccharides from E.coli) (Sigma), final concentration 300 ng/ml. 

1. IFN-γ (Interferon-gamma) (Roche), final concentration 100 U/ml. 

2. TNF-α (Tumor Necrosis Factor-α) (Roche), final concentration 50-100 U/ml. 

3. GM-CSF (Granulocyte–Macrophage Colony Stimulating Factor) (R&D), final 

concentration 250 ng/ml. Culture 7-9 days for macrophage differentiation. 
 

4.2.4 Cell lines 

Cell lines were used as positive controls for protein and mRNA expression of 

p75NTR; they were also used to test functional effects of NTs and ProNTs. Cell lines 

were cultured in 25 or 75 cm2
 Falcon flasks with 5%-10% FCS (Gibco), in RPMI 

(Gibco) medium + 1% penicillin (50-100 U/ml)/streptomycin (50-100 µg/ml). Incubator 

settings were 37°C, 95% humidity, 5% CO2. 

SH-SY5Y - Human neuroblastoma clonal sub-line of the neuroepithelioma cell 

line SK-N-SH that had been established in 1970 from the bone marrow biopsy of a 4-

year-old girl with metastatic neuroblastoma. 

SK-N-MC - Human neuroblastoma established from the supraorbital 

metastasis of a neuroblastoma of a 14-year-old girl in 1971. 

REH - Human B cell precursor leukemia established from the peripheral blood 

of a 15-year-old girl with acute lymphoblastic leukemia. 

 
4.2.5 FACS analysis 

For intracellular staining, cells were fixed and permeabilized using cell 

permeabilization buffer. Dead cells and debris were excluded from the analysis by 

Via-Probe (BD) or forward/side scatter settings. Data were analysed with CellQuest 

(BD Biosciences) or FlowJo flow cytometry analysis software (Tree Star, Inc.). 

 
4.2.6 ELISA 

ELISAs were used to measure cytokines (IL-6 and MCP-1) produced by immune 

cells or serum immunoglobulin (IgG1, IgG2a, IgG2b, IgM, IgE, IgA, IgG or total Ig) 

levels of mice. 
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4.2.7 RNA Extraction 
RNA Extraction from formalin fixed paraffin embedded material using Trizol 

- Collect 10 sections each 4 µm thick in a 2 ml RNase free tube 

- De-paraffinize: Wash 2x10 min xylene, 100%, 90%, and 70% ethanol 5 min 

- Place the tubes (caps open) in heat block 37°C for 10-15 min to evaporate ethanol 

- Add 200 µl lysis buffer; incubate overnight (16 hours) at 56°C 

- Add 1 ml Trizol (for 200 µl lysis buffer); incubate for 5 min at room temperature (RT) 

- Add 200 µl chloroform, shake vigorously for 15 sec and incubate 15 min at RT 

- Centrifuge 15 min, 11000 rpm*, at 4°C, take upper aqueous phase in a new tube 

- Add 0.5 ml isopropanol and mix well, incubate 10 min at RT 

- Centrifuge 10 min, 11000 rpm*, at 4°C 

- Remove supernatant, wash pellet with 1 ml 75% ethanol and vortex 

- Centrifuge 5 min, 8500 rpm*, at 4°C 

- Remove SN, air dry the pellet for 5-10 min 

- Add water to dissolve RNA, heat to 56°C if necessary 

 
RNA Extraction from fresh cells or frozen material with Qiagen RNeasy kit 
- Add 600 µl buffer RLT for 5-10 million cells or 10-15 sections each 10 µm thick, mix 

and eliminate visible debris by pipetting, do not vortex. 

- Transfer lysate to QIAshredder column spin 14000 rpm*, 2 min at RT 
*- Add 600 µl 70% ethanol to lysate and mix with pipetting 

- Transfer 600 µl of this solution to RNeasy column, spin 10000 rpm*, 20 sec at RT, 

discard follow-through (dft) 

- Transfer remaining 600 µl to RNeasy column; spin 10000 rpm*, 20 sec at RT, dft 

- Add 350 µl buffer RW1 to column; spin 10000 rpm*, 20 sec at RT, dft 

- Add 80 µl DNase solution (70 µl Buffer RDD + 10 µl DNase) incubate 15 min at RT 

- Add 350 µl buffer RW1 to column; spin 10000 rpm*, 20 sec at RT, dft 

- Use new collection tube; add 500 µl Buffer RPE, spin 10000 rpm*, 20 sec at RT, dft  

- Add 500 µl buffer RPE and spin 10000 rpm*, 2 min at RT, dft 

- Use 1.5 ml tube to place the column, add 20-40 µl water directly on membrane and 

spin 10000 rpm*, 1 min at RT 

                                                
* Centrifuge used: Eppendorf 5417R 
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RNA concentration was determined by measuring the absorption at 260nm 

and 280nm. A280 is used as a measure of impurity of DNA (A280/A260 should be 

between 1.8 and 2.0). Spectrometers used: Nanodrop and Eppendorf photometer. 

 

4.2.8 Reverse transcription 
Complimentary DNA (cDNA) was synthesized using the reverse transcriptase 

kit (MML-V, Promega), according to manufacturer’s protocol. 

 

4.2.9 PCR (polymerase chain reaction) analysis 
The cDNA obtained after reverse transcription reaction is used for PCR. 

Electrophoresis of PCR products was done using 1.5% agarose gels. For sequencing 

reactions, DNA amplified by PCR was purified using PCR purification kit (Qiagen) 

according to the manufacturer’s protocol. Sequencing of purified DNA from PCR 

products were performed by Sequiserve, Martinsried. 

 

4.2.10 Quantitative PCR 

Quantitative PCR was performed on the GeneAmp5700 or GeneAmp7300 

(Applied Biosystems-ABI) using the qPCR Core kit and UNG (Uracyl-N-glycosylase 

for carry-over prevention) (both Eurogentec). The reaction volume was 25 µl 

containing 25 – 50 ng RNA converted to cDNA. For all reactions an annealing 

temperature of 60ºC has been considered for reverse and forward primers and 70ºC 

for probes. For detection of target genes, primers and probes were designed and 

were tested for efficiency, additionally; genomic DNA has been used as a template to 

confirm that it is not amplified (Refer to primer/probe table for complete list of gene 

expression assays). GAPDH and PPIA (Cyclophilin A) were selected as reference 

genes (RG). Relative quantification were calculated using the formula: %RG = 100 × 

2(-ΔCt), where ΔCt is the differende between cycle threshold values of RG and gene of 

interest (GOI). Combined standard deviation (Sd) of RG and GOI were calculated 

using the formula based on Muller et al. (2002). 

Sd = 100 × (2Ct RG/2Ct GOI) × ((LN2 × Sd RG)2 + (LN2 × Sd GOI)2)1/2 
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4.2.11 Immunohistochemistry 

Materials that were used for immunohistochemistry: 

Human:  - Frozen tonsil, adenoid and spleen. 

- Formalin fixed paraffin embedded adenoid, healthy thyroid, 

Hashimoto’s Thyroiditis and follicular B cell lymphoma cases. 

Mouse: - Frozen spleen, frozen lymphnode. 

 

For frozen material, Superfrost (Menzel) slides were used. 10µm frozen 

sections were air dried and fixed with 4% PFA, incubated in Methanol + 3% H2O2 to 

stop endogenous peroxidase activity, washed with 1X PBS, and blocked with 10% 

FBS + 5% serum from secondary antibody host species in 1X PBS. Sections 

incubated with primary antibodies for 1 hour at room temperature and washed with 

1X PBS. PAP or sABC amplification and DAB development step (all from Dako) 

performed according to the manufacturer’s protocol. Hemalaun (Merck) has been 

used for nuclear counterstaining. Aqueous mounting medium (Dako) and cover slips 

(Menzel) used to finish preparation. 

For formalin fixed and paraffin embedded material, 4 - 7 µm thick sections 

were prepared on Superfrost/Plus (Menzel) slides. After deparaffinization step 

(incubation of sections 2 times for 10 minutes in xylene followed by 5 minutes in 

100%, 90%, 70% and 50% ethanol), slides were washed with 1X PBS. For epitope 

retrieval, slides were kept in 95°C citrate buffer (10 mM, pH 6.0) for 20 minutes. All 

washing, blocking, antibody incubation and developing steps performed similar to 

cryosection preparations. 

 

4.2.12 Immunofluorescence – Confocal microscopy 

All of the section preparation, fixing, washing, blocking and antibody 

incubation steps were performed as described above in immunohistochemistry 

section. As secondary antibodies, goat anti-mouse Alexa488 and Alexa594 

(Molecular probes), goat anti-mouse (Fab) CY3 and CY5 (Jackson Labs), 

streptavidin CY5 (Jackson Labs) were used. The nuclei were counterstained with 1 

µg/ml DAPI (Sigma-Aldrich). As isotype control, mouse IgG1 (Dako Cytomation, 

Sigma-Aldrich) and mouse IgM (Cymbus, Dako Cytomation) were used. Confocal 
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images were taken with a DM-IRE2 laser scanning microscope (Leica) using Leica 

confocal software version 2.61, Build 1537. 

 
4.2.13 Laser capture microdissection (LCM) 

10 µm cryostat sections from freshly frozen adenoids were mounted on PET-

slides (P.A.L.M Microlaser). Slides were dried for 30 min at RT protected from air 

current or dust and 30 min at 37°C, and stored at -80°C. For LCM, sections were 

rehydrated with DEPC-PBS for 10 min. In order to visualize lymphoid follicles, 

nuclear stainings were performed with Hemalaun (Merck) for 5 seconds; slides were 

rinsed in DEPC water and stored in closed containers with silica-gel (Merck). Dense 

nuclear stainings of the mantel zone were used to guide the laser beam around 

follicles (Fig. 4.2). 10 µl RNase free filter tips were used to collect the dissected 

material because the areas were too big to be catapulted by laser pressure. 

Collected material was carefully placed in a tube and stored on dry ice/-80°C until 

RNA isolation with phenol-chloroform extraction method. 

 

  
Figure 4.2 
Dense Hemalaun staining of the mantel zone served as a border for the laser. 
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4.2.14 Animals 
 Animals with C57BL/6 background were used in the study. P75NTR (Ngfr) exon 

IV knockout (von Schack et al., 2001) and wild type mice were imported from MRC 

Toxicology Unit, University of Leicester, United Kingdom. All mice were maintained in 

the conventional and SPF animal facilities of Max-Planck-Institute of Neurobiology, 

Martinsried, Germany. Mice will be noted as wild type (WT) and knockout (KO) for 

wild type and p75NTR exon IV knockout mice respectively 

 

Table 4.1 List of mice used for experiments 

 

Wild type mice    Knockout mice 
 

Sex ID. 
Number 

Ear 
marking 

Birth 
date 

 Sex ID. 
Number 

Ear 
marking 

Birth 
date 

M 10.1.2 LEM 07.04.06  F 7.1.7 REM 06.03.06 
M 10.1.4 2REM 07.04.06  F 7.1.8 LEM 06.03.06 
F 10.1.5 REM 07.04.06  F 7.1.9 BEM, 06.03.06 
F 10.1.6 LEM 07.04.06  M 8.1.1 REM 25.03.06 
F 10.2.9 BEM 03.05.06  M 8.1.2 LEM 25.03.06 
F 10.2.10 2REM 03.05.06  M 8.1.3 BEM 25.03.06 
F 9.3.10 BEM 20.05.06  F 8.1.4 REM 25.03.06 
F 9.3.10 3R2LEM 20.05.06  F 8.1.5 LEM 25.03.06 
F 6.6.3 REM 20.05.06  M 7.2.2 LEM 12.05.06 
F 6.6.4 LEM 20.05.06  M 7.2.4 2REM 12.05.06 
M 9.3.1 REM 20.05.06  M 7.2.5 2LEM 12.05.06 
M 9.3.3 1R2LEM 20.05.06  M 7.3.1 REM 09.06.06 
M 9.3.2 LEM 20.05.06  M 7.3.2 LEM 09.06.06 
M 10.3.2 2LEM 31.05.06  M 7.3.3 BEM 09.06.06 
M 10.3.5 2L1REM 31.05.06  F 7.3.4 REM 09.06.06 
M 11.2.5 2LEM 15.06.06  F 7.3.5 LEM 09.06.06 
M 11.2.3 BEM 15.06.06  F 7.3.6 BEM 09.06.06 

 

(LEM: Left ear marking. REM: Right ear marking. BEM: Both ear marking.) 

 
4.2.16 Genotyping 

 KO mice were genotyped by conventional PCR method using primers as 

described by von Schack et al., 2001. Genomic DNA has been extracted from a small 

piece of tail that was clipped after weaning. 
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PCR Primers 
1. 5’-AAGGGGCCACCAAAGAACGG-3’ 

2. 5’-TGTTGGAGGATGAATTTAGGG-3’ 

3. 5’-GATGGATCACAAGGTCTACGC -3’ 

 
Gel electrophoresis 

10 µl template and 2 µl 6x loading buffer were pipeted to each well of a 1.5% 

agarose gel. Run was performed for 40 min at 70 V. Expected product sizes are 500 

bp and 350 bp for wild type and knockout respectively (Fig. 4.3).  

 

 
Figure 4.3 
Genotyping of Ngfr genes by PCR: the 500 bp fragment is 
derived from the wild type and 350 bp band from the mutant 
gene. In case of two bands, the mouse is heterozygous. 

 
 

4.2.17 Immunization 

Sheep red blood cells (SRBC) 
Sheep red blood cell immunization is a well-established method for the 

induction of a strong germinal centre response. Purified SRBC (Fiebig 

Nährstofftechnik, Idstein, Germany) were injected at 5x109 cells/ml in PBS intra-

peritoneally (i.p.). A total volume of 200 µl (1x109 SRBC) was injected to each animal. 

Non-immunized and 7, 14, 21 day immunized WT and KO mice were used for 

experiments. 
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Virus like particles (VLP) 
Virus like particles (VLP) of cytomegalovirus (CMV) occur during viral 

replication in cell culture. VLP lack DNA and only contain fragments of capsid, so 

they are not infectious. VLP were applied intravenous and 5 µg VLP in 200 µl PBS 

(25 µg/ml) used for a single immunization. A booster injection was done 60 days later 

and a concentration of 10 µg/ml has been used. Another group of mice was 

immunized to monitor the primary Ig response. A VPL concentration of 10 µg/ml was 

used for this purpose. 

To obtain VLPs, human foreskin fibroblasts (HFF) were infected with human 

CMV and kept in the incubator for approximately 10 days. Later, supernatant was 

ultracentrifuged (10–40% sucrose density gradient centrifugation at 94.500 g for 60 

min, the band material was collected and pelleted by centrifugation at 155.000 g for 

60 min); virions, dense bodies and non-infectious particles were separated using a 

sodium-tartrate-gradient (Talbot and Almeida, 1977). VLPs were kindly provided by 

Prof. Thomas Winkler (University of Erlangen). 

The utilization of VLP for the immunization has two main advantages. Firstly, 

VLP do not require being co-injected with an adjuvant, leading to a more specific 

response, and secondly, the availability of capsid glycoprotein-B allows very sensitive 

ELISA detection of antigen specific antibodies. 

 
Ovalbumin (OVA) 

Ovalbumin was emulsified in complete Freund's adjuvant (CFA). The final 

concentration was 1 µg/ml and the injections were done subcutaneously (s.c.), 100 µl 

per mice. A booster injection was done 60 days later and a concentration of 1 µg/ml 

used. For the booster injection incomplete Freund's adjuvant (IFA) was used as 

adjuvant. Additional to boosting assay, a second group of mice was immunized for a 

primary Ig response. A concentration of 1 µg/ml OVA+CFA was used for this 

purpose. 
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4.2.18 Serum collection 

Mice were bled by retro-orbital puncture and blood was collected with a glass 

capillary. Samples were kept overnight at 4°C. Serum was collected after 

centrifugation at 4°C / 1 g for 10 min and stored at -20°C until further analysis. 

 

4.2.19 Isolation of splenocytes 

Spleens of KO and WT mice were homogenized and passed through 40 µm 

cell strainers (BD). Cells were centrifuged and red blood cells (RBCs) were 

eliminated by RBC lysis buffer (Qiagen). After recovery of the isotonicity, isolated 

splenocytes were counted and prepared for FACS analysis. 

 
4.2.20 Statistical analysis 

Data are represented as the mean (or average) of at least three values (actual 

number of biological samples and repeated experiments are always indicated below 

each figure). 

Error bars represent either standard deviation (Sd) or standard error of the 

mean (SEM), calculated as following: SEM = Sd / √n. For calculation of statistical 

significance, Mann-Whitney u-test or Student T-test has been used (paired, two-

tailed). P values smaller than 0.01 were considered as highly significant and marked 

with two asterisks (**) and P values smaller than 0.05 were considered as significant 

and marked with one asterisk (*). Statistical calculations were made by Microsoft 

Excel or GraphPad Prizm v4.0. 
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5. RESULTS 

 

5.1. Human study 

Studies focussing on p75NTR are addressed to central and peripheral 

nervous systems in most of the cases, where neurotrophins and neurotrophin 

receptors are expressed constitutively and have their main functions. Very 

detailed expression profiles for various cell types localized in anatomically distinct 

areas of CNS and PNS have been done. When scientists investigated other 

organ systems, tissues or cells, new candidates that can secrete or respond to 

NTs have emerged. There are many reports about the expression of the NGF 

family of neurotrophic factors and their receptors in immune cells and organs, 

dated back to the initial period when the NTs and NTRs were newly identified. 

Unfortunately, it is hard to deduce a clear expression profile due to inconsistency 

among publications. The lack of highly specific monoclonal antibodies or 

advanced detection techniques was the main drawback. Therefore it was 

necessary to investigate the expression pattern on each immune cell subset, 

both at the transcript and protein level. Three different primer pairs and three 

different monoclonal antibodies against human p75NTR were used in this study. 

 

5.1.1 All exons encoding the functional domains of p75 NTR are expressed in 

PBMCs and immune organs 

P75NTR protein has three major domains that interact with ligands or 

adapter proteins. The neurotrophin binding domain, intracellular juxta-membrane 

domain and the death domain (Fig 5.1A). Two different sets of primers were used 

to detect coding regions of the transcript for functional domains (Fig 5.1A). 

Resting and activated immune cell subsets possess all functional domains coded 

by NGFR gene. Similar result was obtained for adenoid and tonsil (Fig 5.1B). S-

p75 or any other splice variants were not detected in PBMCs or immune organs. 

This short isoform is called s-p75 and had only been reported in mouse (von 

Schack et al., 2001, Ibanez 2002). 
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Figure 5.1:  
Immune cell subsets and immune organs transcribe full-length p75NTR. P75NTR gene transcript 
consists of 6 exons (A); Exon 1: Signal peptide. Exon 2: Cysteine rich domain 1 (CRD). Exon 3 
CRD 2-3-4 also called as neurotrophin binding domain (NTBD). Exon 4: Stalk domain (SD) and 
trans-membrane domain (TMD). Exon 5: Juxta-membrane domain (JMD). Exon 6: Death domain 
(DD). Amplicon-1: 656 bp coding NTBD, SD and TMD; Amplicon-2 473 bp coding JM and DD. 
Various immune cell subsets express p75NTR (B) Lanes: 1. CD4+ T cells, 2. CD4+ T cells + PMA-
Ionomycin, 3. CD8+ T cells, 4. CD8+ T cells + PMA-ionomycin, 5. CD56+ NK cells, 6. CD56+ NK 
cells + IL2, 7. CD19+ B cells, 8. CD19+ B cells + pokeweed mitogen (PWM), 9. adenoid CD19+ B 
cells, 10. adenoid CD19+ B cells + PWM, 11. monocytes, 12. monocytes + LPS, 13. 
macrophages, 14. macrophages + LPS and immune organs 17. Tonsil and 18. adenoid transcribe 
full-length p75NTR gene. Peripheral nerve (lane 19) and CNS (lane 20) tissues were used as 
positive control. Lane 15 is no template control and lane 16 is genomic DNA control. 
Activation/stimulation period was 24 hour. There was no signal on the 250 bp marked with the 
white arrow (B, upper panel, left side), concluding that there is no detectable expression of s-p75 
in immune cells and organs. Any other immune specific splice variant could not be detected. 
 

5.1.2 Expression of p75 NTR in PBMCs  

In order to better identify the distribution of p75NTR expression on various 

cell subsets, PBMCs were magnetically separated to obtain highly purified cell 

populations (with a minimum purity of 91%, data not shown). CD4+ T cells, CD8+ 

T cells, CD14+ monocytes, CD19+ B cells and CD56+ NK cells (Natural killer) 

were analysed for p75NTR expression ex vivo, and in culture in a resting or 

activated state. In all cell subsets, p75NTR expression was detectable by PCR 

analysis (Fig 5.1B). FACS analysis was performed to assess corresponding 

protein expression levels in each subset (Fig 5.3). In total, 4%, 16% and 20% of 
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CD4+, CD8+ and CD56+ cells expressed p75NTR respectively, whereas monocytes 

and B cells did not show any reactivity by FACS (Table 5.1) with two different 

monoclonal antibodies against p75NTR.  

 
Table 5.1  

The percentage of p75NTR positive cells in PBMC. 

 
In unseparated PBMCs, 8% of the cells are p75NTR positive. The main population forming this 
group are CD4+, CD8+ T cells and CD56+ NK cells. After lineage marker specific cell isolation, 
these subsets were further analysed individually.  20% of CD56+ NK cells, 16% of CD8+ T cells 
and 4% of CD4+ T cells were found to express p75NTR. 

 

Quantitative PCR analysis showed that P75NTR mRNA expression was 

enhanced upon T cell activation (Fig 5.2). B cells and monocytes only had very 

low expression and an upregulation was not observed following activation (Fig. 

5.2). A weak induction was detected observed NK cells following IL-2 stimulation. 

Induction of p75NTR in CD4+, CD8+ and CD56+ cells were confirmed by flow 

cytometry (Fig. 5.3). 

 

Figure 5.2 
Expression of p75NTR in immune cell populations has been analysed by TaqMan PCR. In 
peripheral blood CD8+ T cells and CD56+ NK cells are the main cell populations expressing 
p75NTR. PMA-Ionomycin activation (24 h) of CD8+ and CD4+ T cells resulted in induced 
expression of p75NTR. With IL-2 stimulation (24 h), just a slight induction of p75NTR 
expression in CD56+ NK cells were observed. Monocytes and macrophages had a low 
basal expression, which does not change upon activation (24 h) with LPS or IFNγ (data not 
shown). One representative result out of 2-7 independent experiments is shown. Columns 
represent p75NTR relative mRNA expression to reference gene (Cyclophilin A). Error bars 
indicate combined standard deviation of reference gene and p75NTR, calculated using 
replicates. 

PBMC CD4+ CD8+ CD14+ CD19+ CD56+ 
8% 4% 16% <1% 0% 20% 
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Figure 5.3 
P75NTR expression in T cells is induced upon activation. FACS analysis of magnetically separated 
cell populations: After activation of CD4+ and CD8+ T cells with PMA+Ionomycin for 24 h, p75NTR 
expression is induced on both T cell populations, especially on CD8+ T cells. Values in the inner 
corners indicate percentage of cells in respective quadrant. One representative result out of 3 
independent experiments is shown. Values located on the corner of each quadrant represent 
percentage of cells in respective area. Representative result out of 4 independent experiments. 
 
 
5.1.3 P75NTR mRNA levels of immune organs vs CNS tissue 

After mapping the p75NTR expression of human PBMC subsets, mRNA 

levels of immune organs were compared to CNS tissue. Various regions of 

human CNS (grey matter, white matter, cerebellum and cortex) were used to 

extract RNA and prepare cDNA. Adenoid, tonsil and spleen samples were 

analysed and they had similar mRNA level compared to CNS tissue (Fig 5.4).  

The lowest amount of transcript was observed in PBMC. 
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Figure 5.4 
P75NTR mRNA levels in CNS and immune organs were compared by TaqMan PCR. 
CNS and immune organs expressed similar levels of p75NTR. Data points of CNS 
represent different sample preparations from cortex (n=3), white matter (n=3), grey 
matter (n=3) and cerebellum (n=2). All CNS tissue were obtained from 3 
individuals. Ananlyzed immune organs are spleen (n=1) adenoid (n=2) and tonsil 
(n=2). PBMCs were obtained from blood of healthy donors (n=3). PPIA (Cyclophilin 
A) was used as reference gene. 
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5.1.4 Expression of p75 NTR on adenoid B cells 

In order to identify the source of p75NTR expression in secondary lymphoid 

organs, a series of experiments were conducted. First, mononuclear cells (MNC) 

from fresh human adenoids were isolated by density gradient method and 

analysed by FACS. About 11% of total adenoid MNCs were positive for p75NTR. 

Almost all p75NTR positive cells were identified as B cells (Fig. 5.5). Among other 

mononuclear cells, a detectable signal was obtained only from CD8+ cells (1% 

positive; data not shown).  
A 

 
Figure 5.5 
Peripheral blood CD19+B cells do not express p75NTR, but a subset of adenoid B cells 
does (A). 10% of unseparated adenoid cells express p75NTR. Quantitative PCR 
analysis of purified blood and adenoid B cells showed similar results (B), n=3 for both 
groups. Represantative FACS figures from one experiment out of 3. Error bars 
represent combined standart deviation of reference gene PPIA (Cyclophilin A) and 
p75NTR. 

B 
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 In order to classify p75NTR expressing adenoid B cells, further surface 

staining of purified CD19+ cells using antibodies directed against well-defined B 

cell markers were performed (Fig. 5.6). 

 

 
Figure 5.6 
CD19+ B cells were isolated from fresh adenoids and analysed by flow cytometry for the 
expression of p75NTR. About 16% of magnetically purified CD19+ adenoid B cells express 
p75NTR. In order to better classify p75NTR+ cells, IgM+, IgD+, CD27+ (memory B cells), CD38+ 
(germinal centre B cells) and CD77+ (centroblasts) cells were analysed. The majority of 
p75NTR+ cells express CD38 and not CD77. About 50% of p75NTR+ cells are also positive for 
IgM, IgD or CD27. Mouse IgG1 isotype control used to determine quadrant positions for 
CD38 and CD27, mouse IgG2a isotype control (not shown) used for IgM and IgD, mouse 
IgM isotype control (not shown) used for CD77. A representative result from 3 independent 
experiments is presented. Values on the corner of each quadrant represent percent of cells 
in each quadrant. 

 
 

Membrane proteins representing different maturation stages of the 

adenoid B cells were targeted in parallel with p75NTR. P75NTR was distributed on 

memory B cells (CD27+), germinal centre B cells (CD38+), IgM+ B cells and IgD+ 

B cells. On the other hand plasma cells (CD138+) (data not shown) and 

centrocytes (CD77+) were negative. With the selection of B cell markers that 

were used, it was not possible to identify a unique p75NTR expressing population. 

From the expression pattern, we deduce that p75NTR is present on a subset of 
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GC B cells and since CD77+ centroblasts are negative, the receptor is present 

during later stages of maturation. 

 

5.1.5 p75NTR expression in lymphoid organs 

 In order to map the distribution of p75NTR expression in human immune 

organs, we used frozen and formalin fixed paraffin embedded (FFPE) material 

and two different mAbs. Both mAbs against p75NTR showed a very similar 

staining pattern of germinal centres in tonsils and adenoids (Fig 5.7). In parallel 

with our flow cytometry results, we could not observe specific p75NTR staining in 

the T cell area. 

 
Figure 5.7 
Immunohistological staining of tonsil cryosections were performed with two different mAbs 
against p75NTR. Mouse PAP system (Dako) for signal enhancement, hemalaun counterstaining 
and DAB (Di-amino benzidine - Sigma-Aldrich) substrate were used for visualization. Mouse IgG1 
isotype did not show any sign of unspecific staining (A). MAb C40-1457 (BD biosciences) was 
used in B and mAb ME 20.4 (Sigma-Aldrich) in C and D. Scale bars represent 200 µm in A, B, C 
and 25 µm in D. 

 

Formalin fixed and paraffin embedded (FFPE) material is more instructive 

when visualized because tissue integrity is better preserved. Apart from lymph 
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follicles, basal layer of the squamus epithelium stained positively for p75NTR. 

Additionally, an immunostaining for p75NTR of spleen cryosections was 

performed. A relatively weak signal was detected in follicles, again on some 

lymphocytes and FDC like structures, additionally, central arterioles, other blood 

vessels and splenic macrophages were positive for p75NTR (Fig 5.8). 

 

 
Figure 5.8 
FFPE adenoid tissue (A) and frozen sections of human spleen (B) were probed with a mAb 
against p75NTR (C40-1457). In FFPE adenoid sections additional to the strong follicle staining, 
the basal layer of the squamus epithelium stained positively as shown with black arrow. 
Immunohistological analysis of human spleen showed a different pattern of p75NTR. Marginal 
zone macrophages (m) surrounding the white pulp of splenic nodule, central arterioles in splenic 
nodule (ca), trabecullar artery (ta) stained strongly and cells in the red pulp (rp), presumably 
macrophages and dendritic cells were also positive. Follicular signal (f) in the white pulp was 
rather weak compared to adenoid. Scale bar: 200 µm. 
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Figure 5.9 
Double immunofluorescence assays were performed in human adenoid tissue. A mAb 
to CD21 (clone 1F8) was used as an FDC marker (A) in combination with p75NTR 
antibody (C40-1457) (B) and DAPI nuclear staining. In the overlaid picture (C) double 
positive FDC like structures (arrows) and single p75NTR stained lymphocytes (arrow 
heads) were present. 

 

For the determination of p75NTR expression on different cell types, double 

immunofluorescence technique was used.  Thereby p75NTR could be localized to 

FDC. Additionally, single p75NTR positive cells that were negative for the FDC 

marker were also detected in germinal centres. As a conclusion, FDC and some 

lymphocytes were identified as p75NTR expressing components of lymph follicles 

(Fig 5.9).  

 

5.1.6 Expression of BDNF in lymphoid follicles 

Looking for ligands of p75NTR, we identified BDNF in lymphoid follicles. 

Double labeling showed that BDNF co-localizes to both B cells (CD20+) and FDC 

(CD21+) (Fig. 5.10).  
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Figure 5.10 
BDNF is present in lymphoid follicles. Adenoid cryo-sections were probed with the BDNF specific 
mAb antibody (clone 35928), in parallel with anti-CD21 (clone 1F8) and anti-CD20  (clone L27) 
mAbs as markers for B cells and FDC respectively. A clear staining of lymphoid follicles has been 
observed. Double immuno-fluorescence stainings confirmed co-expression of BDNF with CD21 
and CD20.  
 

Since TrkB is considered as the high affinity receptor for BDNF, immuno-

staining using antibodies against TrkB receptor were also performed. The 

expression was detected more prominently outside of the follicular area, in the T 

cell zone (Fig.  5.11), additionally some macrophages and a weak staining on 

FDC like structures and lymphocytes. The expression pattern of p75NTR and TrkB 

is the opposite: p75NTR is the prominent NT receptor in the lymphoid follicles (B 

cells and FDC) while TrkB seems to be responsible for BDNF signaling outside of 

the follicles (T cells). 
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Figure 5.11 
TrkB expression (brown staining) in human adenoid is more prominent in the T cell area (Tc), 
outside of lymphoid follicle (f) (Monoclonal Anti-human TrkB, clone 72509). Weak expression within 
the follicular area (f) originates from FDCs, lymphocytes and marginal zone macrophages (m). 50x 
magnification, scale bar: 200 µm on the left and 200x magnification, scale bar: 50 µm on the right. 
Hemalaun used as nuclear staining. 
 
 

In order to assess the distribution of BDNF, NGFR and NTRK2 mRNA 

expression in adenoids, frozen sections of adenoids were used for laser micro- 

dissection.  In order to protect RNA integrity, only a fast nuclear staining was 

done by hemalaun to visualize follicles. Dense nuclear staining of the B cell 

population of the mantel zone provided a guideline for the laser beam (1). Similar 

cutting patterns were repeated to collect material from T cell area. After RNA 

extraction from the dissected material, cDNA synthesis and finally for quantitative 

PCR were performed. Obtained results were in accordance with immunostaining. 

BDNF and NGFR transcripts were more abundant in follicles than in T cell area 

and vice versa for NTRK2 (Fig. 5.12).  

                                                
1 Refer to figure 4.3 in Materials and Methods section for additional details about laser microdissection. 
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Figure 5.12 
The mRNA analysis of laser microdissected lymphoid follicles. 10 µm thick frozen human 
adenoid sections were placed on PET slides and dried under RNase free conditions. A fast 
hemalaun staining was performed to visualize lymphoid follicles due to high B cell intensity in 
the mantel zone. 20 tissue pieces obtained from T cell area and 20 lymphoid follicles were 
pooled from three different adenoid samples. Collected material was used for RNA isolation, 
reverse transcription and quantitative TaqMan PCR. Error bars represent combined standart 
deviation of reference gene (GAPDH) and gene of interest. 

 
 
5.1.7 P75NTR is present in extranodal follicles of Hashimoto’s Thyroiditis 

It is well known that extranodal follicles develop during several 

autoimmune diseases like rheumatoid arthritis (RA) or Hashimoto’s thyroiditis 

(HT) (Fig. 5.13). In HT, the immune system attacks the thyroid cells and various 

auto-antibodies against thyroid peroxidase, thyroglobulin and thyrotropin 

receptors may be present in the patient’s sera. Prolonged autoimmune attack to 

the thyroid usually causes hypothyroidism. One of the major characteristics of the 

disease is the occurrence of extranodal lymph follicles in the thyroid tissue (Fig. 

5.13). 
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Figure 5.13 
Several extranodal follicles within the thyroid in Hashimoto’s Thyroiditis. Normal histological 
pattern of thyroid structure is distinguishable on the upper right area in hematoxylin eosin (HE) 
stained tissue section (A). Dense lymphocyte population infiltrated the tissue. Follicular dendritic 
cells in extranodal lymph follicles were stained by p75NTR antibody (C40-1457) (B). P75NTR 
antibody does not stain B cells in paraffin embedded material. (50x magnification) Serial sections 
of extranodal follicles were stained with P75NTR, FDC (CNA.42) and CD79α (CJB117) specific 
mAbs. Mouse IgG1 isotype Ab did not cause any background signal (C). P75NTR staining (E) was 
concentrated in follicular region, similar to adenoid lymph follicles.  Further immuno-stainings for 
B cells (D) and FDCs (F) contributed in understanding the morphology of extranodal follicles. 
Scalebars: A and B 400 µm; C, D, E and F 200 µm. 
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The expression of p75NTR in extranodal follicles has not been reported 

before. For this purpose we compared thyroid tissue samples from healthy 

indiviuals (n=5) and from patients with Hashimoto thyroiditis (n=5). We used both 

immuno-histochemistry and quantitative PCR to access the expression profile of 

p75NTR in extranodal follicles. For all experiments formalin fixed and paraffin 

embedded material was used. Initially, extranodal follicles were identified 

morphologically and then by applying established FDC and B cell markers. Two 

different mAbs against p75NTR performed similarly and showed reactivity with 

FDC like structures (Fig. 5.13). 

A quantitative PCR of 5 HT cases and 5 healthy thyroids showed that 

p75NTR is upregulated in HT (Fig. 5.14). 

 

 
Figure 5.14 
The transcript level of p75NTR was significantly higher in HT samples as compared to 
control thyroid (p<0.05). CD79A was used to mirror B cell presence in the thyroid as a 
positive control for HT. Scale is individually adjusted for each graph, n=5 for each group. 
Cyclophilin A was used as reference gene. Error bars indicate SEM. (* p<0.05, ** p<0.01, 
Mann-Whitney U-test.   

 
 

5.1.8 P75NTR expression in follicular B cell lymphomas 

Another human disease with extranodal follicles is follicular B cell 

lymphoma. BCL-2 translocation is the main feature of the follicular B cell 

lymphoma.  

BCL-2 is located in the membrane of the endoplasmic reticulum (ER), 

nuclear envelope, and in the outer membranes of the mitochondria (Hockenbery 

et al., 1990). In malignant B cells, the region of chromosome 18 containing the 

BCL-2 locus has undergone a reciprocal translocation with the antibody heavy 
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chain locus of chromosome 14 (Pegoraro et al., 1984). This (14;18) translocation 

places the BCL-2 gene close to the heavy chain gene enhancer, which is very 

active in B cells. As a result, BCL-2 protein is expressed at high levels in these 

cells, suppressing initiation of the apoptosis process (Williams 1991). 

 
Figure 5.15 
Immunohistological analysis of follicular lymphoma cases. Serial sections were prepared from 5 
samples of follicular lymphoma cases. The signals from P75NTR (clone C40-1457) and FDC 
marker (clone CNA42) were co-localized. 200x magnification of the same location had been 
investigated in order to observe any morphology that might be related to either FDC or other 
follicular component. In all of the five follicular lymphoma cases, similar observations were 
recorded. 50x magnification, scale bar: 200 µm on the left and 200x magnification, scale bar: 50 
µm on the right. Hemalaun was used for nuclear staining. 
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5.2. Animal study 

5.2.1 P75NTR expression in mouse spleen 

In wild type mice, strong expression of p75NTR was observed in the 

lymphoid follicles (Fig. 5.16) and the expression pattern in the mouse spleen and 

lymph nodes showed great resemblance to human tonsil/adenoids. 

As an initial step, before starting a detailed investigation of the immune 

phenotype of Ngfr exon 4 knockout mice (will be referred as KO or p75NTR KO), a 

series of immunohistological experiments were performed in order to confirm the 

complete deletion on protein level. As expected, anti-p75NTR antibody did not find 

any target in the spleen sections of p75NTR KO mouse  (Fig. 5.16). 

  Figure 5.16 
Cryosections from spleen of p75NTR KO and WT mice were probed with an anti-p75NTR antibody 
(ab8874) that targets the neurotrophin-binding domain of the receptor. In parallel, B220 
antibody (clone RA3-6B2) visualized B cells. WT spleen section showed a lymphoid follicle 
staining similar to the human adenoid/tonsils (upper panel), whereas KO sections lacked any 
signal from the anti-p75NTR antibody (lower panel). Absence of p75NTR did not affect formation of 
follicles. 
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5.2.2 Morphology and cellular composition of p75NTR KO mouse spleen 

A wide range of well defined markers that are associated with cellular or 

morphological compartments were used for comparison of WT and p75NTR KO 

mouse. A notable change in the morphology or the distribution of GC B cells and 

marginal zone B cells was similar in WT and KO mice. For the identification of 

different B cell subsets, IgM and IgD markers were used. Laminin antibody 

served for visualization of morphological structures (basic sinusoidal structure of 

the spleen, white and red pulp). Moma-1 and FDC-m1 antibodies were used for 

the identification of marginal zone macrophages and FDCs respectively. CD4 

and CD8 marked T cell areas, and finally FITC conjugated peanut agglutinin 

(PNA) was applied to locate germinal centres (Fig. 5.17) 

 

Figure 5.7 
Typical immunofluorescence staining of WT spleen in order to visualize cellular 
compartments. B220 (Red), CD4/8 (green) and laminin (blue) antibodies were used to 
visualize B and T cell areas and basement membrane components respectively (a), 
IgD (red), PNA (green) and IgM (blue) markers were included to see the distribution of 
different B cell subsets and germinal centres (b). Finally, using Moma-1 (red), it is 
possible to identify marginal zone macrophages and IgD+ B cells (blue). PNA (green) 
shows whether germinal centres exist or not (c). 
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Spleen sections taken from two sites of the spleen from p75NTR KO mouse 

showed similar morphology compared to WT (Fig. 5.18). Distribution of cellular 

compartments, the area and the shape of lymphoid follicles appeared to be 

normal in p75NTR KO mice.  

 
Figure 5.19   
Triple immunofluorescence staining of WT (right) and p75NTR KO (left) spleen sections 
were made using IgM (red), IgD (blue) and PNA (green) markers, in order to visualize 
distinct B cell compartments and germinal centres. There are no obvious morphological 
differences between p75NTR KO and WT spleens. The shape and size of lymphoid follicles 
are comparable; the organization of distinct cellular compartments seems not to be grossly 
affected by the deletion of p75NTR. 

. 
 
5.2.3 SRBC immunization of p75NTR KO mouse  

After the investigation of the WT and KO spleens under resting conditions, 

sheep red blood cell (SRBC) immunization was performed in order to induce a 

germinal centre response. Three time points were selected for analysis: 7, 14 

and 21 days. For each time point three WT and three KO mice were used. 

Similar to non-immunized animals, spleens of immunized ones did not show 

obvious morphological differences (Fig. 5.18). Germinal centre shapes and areas 

were compared and quantified. PNA was used as a GC marker in combination 

with anti-IgM and anti-IgD. 
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Figure 5.19   
Spleen cryosections from non-immunized and 7, 14, 21 day SRBC immunized WT and KO mice 
were stained with IgM, IgD and PNA markers to pinpoint germinal centres. Representative 
spleen sections of 7-day SRBC immunized animals are shown. Typically, a dense green PNA 
signal surrounded by a purple IgM staining shows a germinal centre (arrows). In the KO spleen 
(left), there are more germinal centres than in the spleen of the WT (right). 

 

For the quantification, sections from three distinct sites of the spleen were 

analysed for each mouse in a blind manner. In all of the three different time 

points after the immunization and in nonimmunized animals, p75NTR KO mice had 

more germinal centres per section, compared to wild type (Fig. 5.20). 

 

 
Figure 5.20   
Three WT and three p75NTR exon 4 KO mice were analysed for each time point. Three 
anatomically distant sections from each spleen were used for quantification of the GCs (nine 
sections were used for GC quantification per data point). KO animals have significantly more 
germinal centres per observed section compared to wild type on day 0,14 and 21 (error bars 
represent SEM, ∗: p<0,05 and ∗∗: p<0,01).  
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5.2.4 Cellular composition of p75NTR knockout mice 

In parallel with the experiments intended to compare the morphology of 

the spleen, a thorough analysis of splenocytes was performed to compare 

cellular distribution of the p75NTR KO mice compared to WT. A small portion of 

each spleen was used to isolate MNCs. 

 
Figure 5.21 
A total of three WT and thee KO mice were analysed for 
possible alterations in splenocyte compositions. There 
were no significant differences in T and B cell 
composition. Error bars represent standard deviation. 

 

Splenocytes were probed with a wide range of cell and state specific 

markers in combinations to allow quantitative comparison of different cell 

subsets. Differences that were observed between KO and WT animals (Fig. 5.21) 

were not statistically significant. All three B cell markers (B220, IgM, and IgD) 

showed the same pattern of expression throughout the immunization period (data 

not shown). 
 

5.2.5 Antibody production of p75NTR KO mice immunized with SRBC, VLP 

and OVA. 

Following the SRBC immunization that was performed to induce a strong 

GC response, further WT and KO mice were immunized with virus like particles 

(VLP) and ovalbumin (OVA). After SRBC immunization, blood sampling and 

serum preparation was done at day 7, 14 and 21. Total and antigen specific IgG 

and IgM levels were measured by ELISA (Fig. 5.22). 
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Figure 5.22 
Blood sampes were collected on at day 0, 7, 14 and 21 following the SRBC immunization. 
Serum samples (diluted 1:100 for IgM assay and 1:1000 for IgG assay) were analysed for 
total and SRBC specific IgG and IgM. There was no difference in total IgG and IgM levels, 
but SRBC specific IgM levels were higher in KO mice at day 7, 14 and 21 whereas SRBC 
specific IgG levels were different only on day 14 (o.d.: optical density, error bars 
represent standard deviation, n=3 for all groups, ∗: p<0,05 and ∗∗: p<0,01).  

 

There was no difference in total IgG and IgM amounts between WT and 

KO mice. When the amount of SRBC specific IgG and IgM were measured, KO 

mice had increased levels of SRBC specific IgM for all time points, and 

additionally SRBC specific IG on day 14 only. 

VLP immunization aimed to observe the memory function. Therefore 

primary Ig response was measured at day 7 and 14 after the initial immunization 

(Fig. 5.23). VLP specific IgM production was higher in p75NTR KO mice. There 

were no significant differences in VLP speific IgG levels. 
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Figure 5.23 
For quantifying primary VLP specific Ig production, blood was collected before 
immunization, as well as 7 and 14 days after immunization. Three KO and three WT mice 
were analysed for each time point, error bars stand for the standard deviation. The serum 
was diluted 1:100 for IgM and 1:1000 for IgG assays. VLP specific IgM production on day 7 
and 24 is higher in p75NTR KO mice whereas there was o diffrence in VLP specific IgG 
levels (n=3 for each group, ∗: p<0,05). 

 

For the quantification of the Ig response, a booster immunization was 

performed at day 60. Blood sampling was done before booster and 7 days after 

booster. First, serum samples were analysed for the total IgG and IgM content. 

No difference was observed between WT and KO (Fig. 5.24) after the initial and 

booster immunizations. Quantification of VLP specific Ig yielded a similar result to 

RBC immunization; VLP specific IgM titer was higher in KO mice during the 

primary and booster response while VLP specific IgG levels were similar (Fig. 

5.23 and 5.24). 

 
Figure 5.24 
Possible alterations in memory response due to the deletion of p75NTR were tested by a 
booster injection at day 60 followed by blood sampling at day 67. Total IgG and IgM 
production was found to be similar in KO and WT. VLP specific IgM production both before 
and after the booster immunization was significantly higher in KO mice compared to WT (n=3 
for all groups, ∗∗: p<0,01 and ∗∗∗: p<0.001, two tailed t-test, error bars stand for the standard 
deviation). The serum has been diluted 1:200 for IgM and 1:800 for IgG assays. 
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Finally, as a third antigen, OVA was injected to induce an immune 

response. Exactly the same time points for primary and booster immunizations 

were done as in VLP immunization. There was no difference between WT and 

KO in terms of total IgG and IgM both for primary (data not shown) and booster 

responses (Fig. 5.25). On the other hand, just like SRBC and VLP, OVA-specific 

IgM production was significantly higher in KO mice after initial (day 7) and 

booster injections (day 67) (Fig. 5.25). OVA specific IgG production was similar in 

WT and KO (data not shown). 

 

 
Figure 5.25 
OVA immunized mice were compared for primary Ig production; blood was collected 
before immunization and at day 7 and 14 after immunization. OVA specific IgM 
production was higher in p75NTR KO mice at day 7. Memory response was assessed 
by a booster injection at day 60 followed by blood sampling at day 67. OVA specific 
IgM production was significantly higher after booster at day 67 (n=3 for all groups, ∗: 
p<0,05, two tailed t-test). Serum dilution is 1:200 for day 0, 7 and 14, 1:400 for day 60 
and 67. 

 

Experiments performed with all three immunogens yielded parallel result in 

terms of antigen specific IgM production. Table 5.2 summarizes serum Ig 

quantification experiments performed by ELISA. Ig classes A and E were also 

tested and no difference has been observed between KO and WT (data not 

shown). 
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Table 5.2: Summary of the primary and secondary IgG and IgM response to 
the three applied antigens. 
 

 
Immunization!  

 
SRBC 

primary 

 
VLP  

primary 

 
VLP 

secondary 

 
OVA 

primary 

 
OVA 

secondary 

Total IgG KO = WT KO = WT KO = WT KO = WT KO = WT 

Total IgM KO = WT KO = WT KO = WT KO = WT KO = WT 

Antigen 
specific IgG 

KO > WT 
d14: p<0.05 

KO >= WT KO  = WT KO = WT KO = WT 

Antigen 
specific IgM 

 KO > WT 
 d7, 14: p<0.01 
 d21: p<0.05 

 KO > WT 
 d7, 14: p<0.05 
 

 KO > WT 
 d60: p<0.01 
 d67: p<0.001 

 KO > WT 
 d7: p<0.05 
 

 KO > WT 
 d67: p<0.05 
 

 
Table 5.2 
WT and KO mice were immunized with: Sheep red blood cells (SRBC), Ovalbumin (OVA) and 
virus like particles (VLP). Total and antigen specific IgG and IgM levels for primay response were 
measured 7, 14 and 21 days after first immunization. Secondary response was addressed 7 day 
following the secondary immunization done at day 60. Antigen specific IgM quantities were 
significantly higher in p75NTR knockout mice during both primary and secondary response against 
all three antigens used. Two tailed, paired student t-test was used for statistical analysis, n=3 for 
all groups. 
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6. Discussion 
 

The cells that form tissues need to properly communicate with each other for 

consistency of relevant functions. Although oligosaccharides, lipids, nucleotides or 

other small molecules act as signaling components, cell-to-cell signaling mainly relies 

on protein-protein interactions. In most cases, cells do communicate only with 

neighbouring cells depending on physical contact followed by interaction of surface 

receptors and membrane bound ligands (juxtacrine signaling). Additionally, cells may 

secrete factors that immediately act on themselves (autocrine signaling) or on distant 

cells (paracrine signaling). These soluble proteins have a wide range of roles from 

homeostasis to hormonal regulations. Neurotrophic factors and their receptors have 

many roles in this context. 

The strategy to investigate ligand receptor interaction is first to locate cells or 

tissues abundantly expressing those proteins and looking for immediate responses 

upon blockage or activation of signaling components. Accordingly, dated back to the 

initial period when the neurotrophins and neurotrophin receptors were newly 

identified, most of the studies were focussed to central and peripheral nervous 

system where these proteins have their main functions. Nevertheless, during 

following years, many studies have shown the expression of NGF family of 

neurotrophic factors and their receptors in other cells and organs, including several 

components of the immune system. This study is the first to systematically describe 

the dynamic expression of p75NTR on various human immune cell subsets. 

Ex vivo analysis of human peripheral blood lymphocytes revealed that CD56+ 

NK cells, CD8+ and CD4+ T cells express p75NTR and the expression level of both 

transcripts and proteins is induced upon activation. The increased level of p75NTR on 

human CD8+ T cells remained high up to 48 hours following activation, whereas the 

expression of CD4+ T cells went back to initial level (Data not shown). Since, T cells 

were previously reported to produce NGF (Ehrhard et al., 1993b; Santambrogio et al., 

1994; Lambiase et al., 1997) and BDNF (Besser and Wang, 1999, Kerschensteiner 

et al., 1999 and Berzi et al., 2008), it is worthwhile to consider autocrine or paracrine 

signaling in T cells through p75NTR, TRKA and TRKB. Herda et al. reported that CD4, 

CD8 T cells and NK cells express sortilin receptor and systemic deletion of sortilin 

resulted in a compromised immune response (Herda et al. 2012). It is possible that 

p75NTR-Sortilin receptor complex and proNGF/proBDNF mediated apoptosis play a 
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role in T cell functions. Thus, involvement of p75NTR signaling needs to be elaborated 

under this context. 

Following the increase in reports pointing out the presence of neurotrophin 

receptors and production of neurotrophic factors on different immune cell 

populations, scientist investigated inflammatory conditions involving the nervous 

system. Studies on EAE (experimental autoimmune encephalomyelitis) with Ngfr 

exon 4 knockout mice revealed a more severe disease course compared to WT mice 

(Copray et al., 2004). In parallel, an increased infiltration of T cells into the spinal cord 

has been reported (Küst et al., 2006). Concerning the T cell infiltration, a similar 

observation has been made during neuronal regeneration experiments involving 

peripheral transsection in a mouse model of facial nerve injury. In both Ngfr exon 3 

and exon 4 mutant mice models, absence of p75NTR led to an increased recruitment 

of CD3+ T lymphocytes in the axotomized facial motor nucleus (Gschwendtner et al., 

2003). In both EAE and facial nerve injury studies, researchers have not considered 

or discussed any possible outcomes of the absence of p75NTR expression in activated 

T cells and NK cells, which have the highest potential for infiltration upon injury or 

inflammation. 

It is clear that the ideal strategy to investigate the possible functions of a gene 

on an immune cell subset would rely on systems that allow selective deletion of that 

gene on a specific cell subset or lineage. To our knowledge, there is no study that 

has utilized conditional knockout mice, RNA silencing or inducible gene deletion 

systems to study functions of p75NTR in the immune system. This was a limitation for 

researchers but now there is a conditional p75NTR knockout line (Bogenmann, et al., 

2011), and it is also possible to engineer different experimental models by using 

CRISPR/Cas9 system (Huang et al., 2017). 

Apart from T cells and NK cells, the expression of p75NTR in peripheral blood B 

cells is an issue of concern since there are contradicting reports (Brodie et al., 1996, 

Schenone et al., 1996). In this study, less than 1% of peripheral blood B cells had 

p75NTR protein, just above the detection limit. On the other hand, a considerable 

expression of p75NTR was observed in magnetically isolated adenoid B cells. Further 

investigation of adenoid B cells that express p75NTR, revealed sub-populations 

bearing IgM, IgD, CD38 and CD27 but not CD77. These markers are differentially 

regulated in secondary lymphoid organs during arrival, selection, elimination, 

maturation and class-switch phases. Whether all of the B cells in the lymphoid 
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follicles express p75NTR during a certain phase of their selection/elimination process 

or the expression is only associated to specialized B cells remains unclear. 

The expression of p75NTR in the tonsil and adenoid was not confined only to B 

cells. When stained with additional surface markers, the presence of p75NTR on 

follicular dendritic cells was also confirmed. Follicular dendritic cells develop from 

putative mesenchymal precursors (Van Nierop et al., 2002), they attract and organise 

lymphoid cells by CXCL13 secretion (Vermi et al., 2008). Recently, p75NTR was 

established as a marker for human bone marrow mesenchymal stem cells (Álvarez-

Viejo et al., 2015). A prominent expression of p75NTR outside of the follicles was also 

observed along the basal layer of the squamous epithelium. Additionally, in spleen, 

p75NTR expression was distributed to lymph follicles, along central arterioles, splenic 

macrophages and endothelial lining at the border of white pulp. The follicular intensity 

of the immuno-staining shows variations from one follicle to another, probably due to 

the differences in the germinal centre reaction stage or the three dimensional 

localization of the section plane. 

These findings are in agreement with previous studies (Chesa et al., 1988, 

Brodie and Gelfand 1992, Pezzati et al., 1992) stating that p75NTR is primarily 

observed diffusely in the germinal centre cells, i.e. lymphocytes and FDCs (Burton et 

al., 1993, Hannestad et al., 1995, O. Garcia-Suarez et al., 1997, 1999 and Meada et 

al., 2002). Dendritic cells have also been reported to express p75NTR (Labouyrie et 

al., 1997, Bandola et al., 2017). 

As p75NTR signaling mainly relies on ligand binding, the next step was to 

identify a ligand in the tonsil/adenoids. Expression of BDNF but not NGF in lymph 

follicles has been confirmed on both protein and transcript level. Similar to p75NTR, 

BDNF protein was associated with both B cells and FDCs. Our collaboration partners 

Berzi et al., reported similar finding in hyperplastic thymus, additionally locating 

p75NTR on proliferating B cells. BDNF production in lymphoid follicles is of particular 

importance because Schuhmann et al. reported an impeded Pre-BII stage 

development in BDNF deficient mice (Schuhmann et al., 2005). In this context BDNF 

might be an important signaling molecule for B cell or FDC functions in germinal 

centres. Further analysis is required to determine which form of BDNF is expressed 

in the follicles, since our protein and transcript detection methods were not able to 

distinguish between BDNF and proBDNF. Since BDNF is a ligand for both p75NTR 

and TRKB, expression of TRKB receptor needed to be elucidated. 
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Immunohistochemical analysis showed that TRKB receptor was mainly expressed in 

the T cell area, in addition, marginal zone macrophages, FDCs and some 

lymphocytes, presumably B cells in follicles, were weakly positive as well. To be able 

to show the localised expression of p75NTR, TRKB and BDNF by quantitative PCR, 

laser microdissected lymphoid follicles and similar sized T-cell area were analysed. 

BDNF and p75NTR transcripts were more abundant in lymphoid follicles whereas TrkB 

was more prominent in the T cell area. It seems that TrkB is responsible for BDNF 

signaling outside of the follicles. Coexpression of p75NTR and BDNF in the follicles 

suggests a ligand dependent function through p75NTR. 

Apart from germinal centres in regular lymph follicles, extranodal follicles are 

found outside of immune organs during various chronic inflammatory conditions 

including autoimmune diseases, and follicular lymphomas in mucosa associated 

lymphoid tissue (MALT) or bronchus associated lymphoid tissue (BALT). In this 

study, extranodal follicles of autoimmune Hashimoto’s thyreoiditis and follicular B cell 

lymphoma were investigated for the expression of p75NTR on protein and transcript 

levels. Immunohistological analysis showed that p75NTR distribution in extranodal 

follicles is very similar to regular lymphoid follicles. Quantitative transcript analysis 

showed that in Hashimoto’s thyroiditis, p75NTR expression is significantly higher 

compared to healthy thyroid controls. We found similar results while assessing the 

presence of p75NTR in follicular B cell lymphomas. Monoclonal antibody clones C40-

1457 and ME 20.4 against human p75NTR provided robust FDC staining comparable 

with well-established markers CD21/1F8 and CNA.42, thus p75NTR could be used as 

a marker for healthy lymph follicles as well as autoimmune and malignant follicles. 

The expression of p75NTR on follicular dendritic cells might have therapeutical 

implications due to well-known apoptotic function through conserved death domain. 

Activation of cell-death signal by local delivery of recombinant ligands or mimicking 

molecules could be a used to eradicate malignant or autoimmune extranodal follicles.  

In order to assess in vivo functions of p75NTR in the immune system, further 

experiments were performed using p75NTR knockout mice. This study includes a 

detailed investigation of p75NTR exon 4 knockout mice for primary and secondary 

antibody response, memory function, germinal centre reaction and distribution of 

certain immune cell subsets. The strategy relies on the immunization of mice with 

three different antigens: Sheep red blood cells (SRBC), ovalbumin (OVA) and virus-

like particles (VLP) to observe the changes throughout the humoral immune 
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response. SRBC and OVA are T cell dependent antigens commonly used for 

studying antigen specific immune responses in mice. VLPs contain repetitive, high-

density displays of viral surface proteins that present conformational viral epitopes 

that can elicit strong T cell and B cell immune responses (Jegerlehner et al., 2002). 

As the main purpose of SRBC immunization was to induce a strong germinal 

centre response, we focused on histological analysis of the spleen by evaluation of 

cryosections stained with cardinal markers for relevant cell types. We did not find any 

remarkable morphological difference in germinal centre formations and distribution of 

cellular compartments. On the other hand, SRBC immunized p75NTR deficient 

animals had an increased number of germinal centres and increased total germinal 

centre area per analysed spleen section, compared to wild type mice. Considering 

well-established inhibitory role of p75NTR in the nervous system during axonal 

guidance by growth cone collapse or neuronal cell death, it is possible that lack of 

p75NTR in follicular dendritic cells or mesenchymal precursor cells might contribute to 

increased number of germinal centre formation. Following SRBC immunization, a 

gradual increase was observed in p75NTR mice for B220, IgM and IgD markers by 

flow cytometric analysis of splenocytes. Although the difference did not reach 

statistical significance compared to wild type mice, the raise in the number of 

germinal centres might be reflected to overall B cell counts. 

Analysis of serum for antibody production showed that p75NTR deficient mice 

have similar amount of total IgG and IgM. On the other hand, increased titers of 

antigen specific IgG and IgM were found compared to wild type mice. Interestingly, 

antigen specific IgM level were significantly higher for all time points, whereas 

antigen specific IgG level has reached significance at day 14 only. Immunization with 

OVA and VLP yielded similar results during primary response. Total IgG, total IgM 

and antigen specific IgG levels were similar while antigen specific IgM was elevated 

in p75NTR deficient mice compared to wild type. 

Elevated antigen specific IgM levels in p75NTR deficient mice following primary 

SRBC, OVA and VLP immunizations, suggest a role for p75NTR in B cell 

compartment. During the primary response, IgM is the first antibody produced by B 

cells upon exposure to antigen. The cells responsible for the initial production of 

antigen-specific IgM are splenic plasmablasts that are T-independent, and not found 

in germinal centres (Papillon et al., 2017). Later come the B cells that have 

undergone somatic hypermutation and selection but did not switch their isotype from 
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IgM to IgG or IgA. It is possible that p75NTR plays a role during elimination of less 

specific Ig-bearing centrocytes or later during class switching, in both case leading to 

elevated number of mature IgM+ cells and antigen specific IgM titer. 

To test the memory function, mice were challenged with VLP or OVA 60 days 

after primary immunization. Total and antigen specific serum IgG and IgM levels 

before and after booster injections were compared. In all cases, antigen specific IgM 

titer was higher in p75NTR deficient mice both before and after challenge. Existence of 

significantly elevated antigen specific IgM antibodies after challenge implies: 

1- Elevated antigen specific IgM after challenge might be due to the high IgM 

titer in p75NTR knockout mice before OVA or VLP challenge. It has been reported that 

administration of antigen specific IgM antibody together with antigen can highly 

enhance the immune response; this has been shown by immunizing mice with SRBC 

and anti-SRBC IgM antibodies (Heyman et al., 1982). 

2- The possibility of increased number of IgM memory cells or long living IgM 

plasma cells that have been generated after primary immunization. It is well known 

that these cells can persist for longer periods maintained in distinct immunological 

niches, in the absence of immunizing antigen (Maruyama et al., 2000) or supporting 

cytokines like BAFF (B-cell activating factor) and APRIL (A Proliferation-Inducing 

Ligand) (Benson et al., 2008). Within these niches, absence of p75NTR may lead to 

selective activation of Trk receptors on memory B cells, long living plasma cells, 

supporting epithelial and stromal cells. Concomitant phosphorylation of thyrosine 

kinases of Trk receptors initiate RAS and MAP kinase pathways, which in turn 

activate transcription factors promoting maintenance and survival. 

3- IgM memory cells reside in the spleen and reinitiate a germinal centre 

response after challenge (Dogan et al., 2009). IgM memory cells are also present in 

patients lacking germinal centres, but in reduced numbers, demonstrating partial T 

cell and germinal centre dependence (Tangye SG et al., 2007, 2009), implicating that 

more germinal centres yield more IgM memory cells. 

 Altogether, this is the first study showing that human peripheral blood T cells 

and NK cells express p75NTR, rendering them responsive to NGF family of 

neurotrophins and proneurotrophins. On the other hand peripheral blood B cells were 

negative for p75NTR. The effects of different neurotrophins on lymphocytes were 

reported and it is well known that NGF expression is elevated under inflammatory 
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conditions and lymphocytes are able to secrete NGF and BDNF as well, implicating 

both paracrine and autocrine signaling in the vicinity. 

As for human secondary lymphoid organs, p75NTR was detected in B cells and 

follicular dendritic cells.  Although it was not possible to link p75NTR expression to a 

single B cell subset with our settings, we detected a gradual expression associated to 

centrocyte selection and memory B cell maturation, whereas arriving centroblasts 

and mature plasma cells were negative for p75NTR. Strong immunoreactivity of 

p75NTR and BDNF in germinal centres that is associated to both follicular dendritic 

cells and B cells and more prominent TrkB expression in T cell area, left p75NTR as 

the primary receptor for neurotrophins signaling within germinal centres. 

In vivo experiments that were performed show that the immune system of the 

p75NTR deficient mice is fully capable and shows no significant sign of loss of 

function. Comparable total IgM, total IgG and antigen specific IgG levels upon 

independent immunizations with three different antigens, indicate that p75NTR 

signaling has no crucial function in adaptive immune response. Elevated number of 

germinal centres and antigen specific IgM concentrations indicate for a possible 

regulation through p75NTR. 

There is an increasing body of data suggesting that neurotrophins and 

neurotrophin receptors have key roles in the immune system. They are expressed in 

the close vicinity of inflammation and immune organs with a potential to trigger 

molecular mechanisms. It is worthwhile investigating neurotrophin signaling to better 

understand their role during inflammatory conditions. 
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8. Appendices 

 

8.1 Abbreviations 

AA Amino acid 
APC Antigen presenting cell 
APC Allophycocyanin 
BALT Bronchus associated lymphoid tissue 
BBB Blood brain barrier 
BDNF Brain derived neurotrophic factor 
BEM Both ear marking 
BMSC Bone marrow stromal cell 
CD Cluster of differentiation 
cDNA Complimentary DNA 
CFA Complete Freund’s adjuvant 
CMV Cytomegalovirus 
CNS Central nervous system 
CRD Cysteine rich domain 
CRR Cysteine rich region 
CT Cycle treshold 
CTLA-4 Cytotoxic T-lymphocyte-associated protein 4 
DAPI 4',6-diamidino-2-phenylindole 
DD Death domain 
DRG Dorsal root ganglia 
EAE Experimental autoimmune encephalomyelitis 
ECD Extracellular domain 
EGF Epidermel growth factor 
ER Endoplasmic reticulum 
ESC Embryonic stem cell 
FACS Fluorescence activated cell sorting 
FCS Fetal calf serum 
FDC Follicular dendritic cells 
FFPE Formalin fixed paraffin embedded 
FITC Fluorescein isothiocyanate 
GAPDH Glyceraldehyde-3-phosphate dehydrogenase 
Gb Glycoprotein B 
GC Germinal centre 
GM-CSF Granulocyte macrophage colony stimulating factor 
GOI Gene of interest 
HCMV Human cytomegalovirus 
HFF Human foreskin fibroblasts 
HSC Hemopoietic stem cell 
HT Hashimoto’s Thyroiditis 
i.p. Intraperitoneal 
i.v. Intravenous 
ICD Intracellular domain 
IFA Incomplete Freund's adjuvant 
IFNγ Interferon gamma 
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Ig Immunoglobulin 
IFNβ Interferon beta  
IP3 Inositol tri-phosphate 
IRAK Interleukin 1 receptor associated kinase 
JMD Juxta-membrane domain 
KO Knock-out 
LANGFR Low affinity nerve growth factor receptor 
LANR Low affinity neurotrophin receptor 
LCM Laser capture microdissection 
LEM   Left ear marking 
LLPC Long living plasma cell 
LPS Lipopolysaccharide 
LRR Leucine rich regions 
LTP Long term potentiation  
mAbs Monoclonal antibodies 
MAG Myelin associated glycoprotein 
MALT Mucosa associated lymphoid tissue 
MDGI Myelin derived growth inhibitors 
MMP Matrix metalloprotease 
MNCs Mononuclear cells  
MOG Myelin oligodendrocyte glycoprotein 
MS Multiple sclerosis 
NADE Neurotrophin associated death executor 
NGF Nerve growth factor  
NGFR Nerve growth factor receptor 
NGR Nogo receptor 
NK Natural Killer  
NRAGE Neurotrophin receptor-interacting MAGE homologue 
NRIF Neurotrophin receptor interacting factor 
NT Neurotrophin 
NTBD Neurotrophin binding domain 
NTR Neurotrophin receptor 
NTRK Neurotropic tropomyosin receptor kinase 
OMgp Oligodendrocyte myelin glycoprotein 
OVA Ovalbumin 
PAP Peroxidase anti-peroxidase 
PBMCs Peripheral blood mononuclear cells 
PB Peripheral blood 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
PE Phycoerythrin 
PerCP Peridinin chlorophyll protein 
PFA Paraformaldehyde  
PI3-kinase Phosphodityl-insitol 3-kinase 
PKC Protein kinases C  
PLC-γ Phospholipase C-gamma 
PNA Peanut agglutinin 
PNS Peripheral nervous system 
PPIA Peptidyl-prolyl isomerase A, Cyclophilin A 
ProNT Pro-neurotrophin 
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PWM Pokeweed mitogen 
qPCR Quantitative PCR 
RA Rheumatoid arthritis 
RBCs Red blood cells 
RG Reference gene 
REM Right ear marking 
RT Reverse Transcription 
s.c. Sub-cutaneous 
sABC Streptavidin-avidin biocomplex 
SAC Staphylococcus Aurous Cowan 1 
SD Stalk domain  
Sd Standard deviation 
SEM Standard error of the mean 
S-p75 p75 short isoform 
SRBCs Sheep red blood cells 
TACE TNFα converting enzyme 
TAE Tris-Acetate-EDTA 
TBS Tris buffered saline 
TCR T cell receptor 
TEC Thymic epithelial cells 
TGFβ Tumor growth factor beta 
TLR Toll-like receptor 
TMB Tetra-methyl-benzidine 
TMD Transmembrane domain 
TNFα Tumor necrosis factor alpha 
TNFR Tumor necrosis factor receptor 
TNFRSF Tumor necrosis factor receptor superfamily 
TRAF6 TNF recetor assocated factor 6 
Trk The protein tyrosine kinase 
VCAM-1 Vascular cell adhesion molecule1 
VLP Virus like particles 
WT Wild type 
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