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1  Summary  

Chaperonins	 are	 ubiquitous	 and	 essential	 molecular	 chaperones	 present	 in	 all	 domains	 of	 life.	 The	

eukaryotic	 cytosolic	 chaperonin	 TRiC	 is	 a	 large	 hetero-oligomeric	 complex	 of	 almost	 1	 MDa,	 which	

consists	 of	 two	 stacked	 rings	 of	 eight	 paralogous	 subunits	 each.	 TRiC	 uses	 conformational	 cycling	

controlled	by	ATP	hydrolysis	 to	assist	 in	 the	 folding	and	maturation	of	approximately	10%	of	cytosolic	

proteins.	Although	TRiC	was	discovered	 in	the	early	1990s,	many	aspects	of	 its	mechanism	of	function	

and	its	role	in	the	molecular	chaperone	network	remain	to	be	clarified.		

In	the	present	work,	the	TRiC	subunit	topology	in	the	complex	was	elucidated	by	a	new	approach,	which	

combines	 chemical	 crosslinking	 and	mass	 spectrometry	 to	 identify	molecular	 contacts	 (Leitner	 et	 al.,	

2012).	Crosslinked	 inter-subunit	peptides	were	mapped	onto	 the	structure	of	 the	paralogous	archaeal	

chaperonin	 thermosome.	Possible	 relative	 subunit	 arrangements	were	 inferred	based	on	 the	distance	

restraints	imposed	by	the	employed	crosslinker.	Independent	and	self-consistent	data	sets	for	yeast	and	

bovine	TRiC	lead	to	an	unambiguous	assignment	of	the	TRiC	subunit	topology.	The	complex	has	overall	

two-fold	 symmetry	with	 two	 homo-typic	 contacts	 between	 the	 rings.	 Importantly,	 based	 on	 the	 new	

topology,	 the	 TRiC	 complex	 exhibits	 functional	 asymmetry	 with	 a	 segregation	 of	 subunits	 with	 net	

positive	and	negative	cavity	surface	charges	and	high	and	low	ATP	hydrolysis	activity	into	opposing	half-

rings,	respectively.		

Substrate	folding	by	the	chaperonin	 is	relying	on	transient	encapsulation	within	the	TRiC	cavity,	which	

can	accommodate	proteins	up	to	70	kDa.	The	present	work	presents	experimental	evidence	for	partial	

encapsulation	of	over-sized	substrates	by	TRiC	(Russmann	et	al.,	2012).	Folding	of	model	substrates	such	

as	 fusion	proteins	of	 actin,	 an	obligate	 chaperonin	 substrate,	 and	green	 fluorescent	proteins	 (27	kDa)	

and	 the	 natural	 multi-domain	 substrate	 hSnu114	 (109	 kDa)	 via	 transient	 TRiC	 encapsulation	 was	

analyzed	 by	 protease	 protection.	 These	 experiments	 suggest	 that	 TRiC	 can	 mediate	 folding	 of	 large	
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proteins	by	segmental	or	domain-wise	encapsulation.	In	the	case	of	hSnu114,	a	structural	homologue	of	

eukaryotic	elongation	 factor	2	 (eEF2),	 selective	encapsulation	of	C-terminal	 fragments	with	up	 to	∼35	

kDa	was	found,	presumably	reflecting	a	stepwise	folding	mechanism.		

Finally,	 we	 elucidated	 the	 function	 of	 Hgh1/FAM203,	 a	 conserved	 eukaryotic	 protein	 of	 45	 kDa	

associated	with	TRiC	 in	human	cells.	We	found	that	the	orthologous	Hgh1	acts	–	 in	collaboration	with	

TRiC–	as	a	specialized	chaperone	in	the	biogenesis	of	the	multi-domain	protein	eEF2	in	budding	yeast.	In	

the	absence	of	Hgh1,	 a	 substantial	 fraction	of	newly	 synthesized	Eft,	 the	 yeast	orthologue	of	 eEF2,	 is	

degraded	or	aggregates,	indicating	increased	Eft	misfolding.	We	solved	the	crystal	structure	of	Hgh1	and	

analyzed	the	interaction	of	wildtype	and	mutant	Hgh1	with	Eft.	These	experiments	revealed	that	Hgh1	is	

an	 armadillo	 repeat	protein	 that	binds	 via	 a	bipartite	 interface	 to	 the	 central	 domain	 III	 of	 Eft,	which	

hydrogen-deuterium	exchange	experiments	demonstrated	 to	be	 the	most	 dynamic	domain	 in	mature	

Eft.	Hgh1	binding	 to	 Eft	 folding	 intermediates	 prevents	 aberrant	 interactions	 and	 recruits	 TRiC	 to	 the	

complex.	TRiC	likely	facilitates	the	folding	of	the	domains	VI	and	V	in	Eft,	which	are	C-terminal	to	domain	

III.	These	domains,	however,	fold	stably	only	in	the	context	of	the	full-length	protein,	likely	after	the	N-

terminal	 domains	 G,	 G’	 and	 II	 have	 assumed	 their	 native	 structure.	 Eft	 folding	 is	 completed	 upon	

dissociation	of	TRiC	and	Hgh1.		
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2  Introduction 

	

2.1  What is  a protein?  

Proteins	 are	 biologically	 active	 linear	 polymers	 of	 amino	 acids	 connected	 by	 peptide	 bonds.	 After	

synthesis	at	the	ribosome,	the	elongated	polypeptide	chain	has	to	fold	into	a	defined	three-dimensional	

structure,	its	native	state,	in	order	to	be	functional.	Proteins	are	abundant	in	all	domains	of	life	and	carry	

out	essential	tasks	including	signaling,	transport	and	metabolism.		

	

2.2  Protein Folding  

Christian	Anfinsen	pioneered	studies	on	protein	folding	in	the	1950s	(Anfinsen,	1973).	He	found	that	a	

small	 denatured	 protein	will	 spontaneously	 refold	 to	 its	 native	 state	 after	 removal	 of	 the	 denaturing	

agent.	He	concluded	that	the	native	state	of	a	protein	is	its	conformation	of	lowest	free	energy,	which	is	

solely	determined	by	its	amino	acid	sequence	and	which	can	be	reached	without	help	of	any	additional	

external	 factors.	 Multiple	 weak,	 non-covalent	 interactions	 guide	 the	 folding	 process	 (Brockwell	 and	

Radford,	2007).	Initially,	mainly	hydrophobic	interactions	drive	chain	collapse	and	burial	of	hydrophobic	

side	chains	inside	the	protein	core	thereby	restricting	the	conformational	space	that	must	be	searched	

upon	folding	(Dinner	et	al.,	2000).	This	hydrophobic	collapse	is	followed	by	more	subtle	rearrangements	

optimizing	 hydrogen-bonding,	 van-der-Waals	 interactions	 and	 salt	 bridges.	 For	many	 proteins	 folding	

occurs	fast	at	timescales	of	milliseconds	or	less	(Brockwell	and	Radford,	2007;	Dobson	et	al.,	1998).	This	

indicates	that	the	folding	process	must	be	directed	and	kinetically	driven,	rather	than	a	simple	scanning	

of	all	possible	conformations	(Levinthal,	1968).	Instead	of	following	a	precise	folding	path,	proteins	are	

thought	to	explore	funnel	shaped	potential	energy	landscapes	(Figure	1)	(Dobson	et	al.,	1998).		
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Figure	1:	 Folding	or	 aggregation?	Potential	 energy	 landscape	 showing	possible	 fates	 of	 an	unfolded	polypeptide	

chain	 traveling	 downhill.	 Productive	 intramolecular	 interaction	 leading	 to	 the	 native	 state	 shown	 in	 green.	

Unproductive	 non-native	 interactions	 leading	 to	 aggregation	 shown	 in	 red.	 Molecular	 chaperones	 promote	

productive	interactions	and	prevent	non-native	contacts.	Figure	adapted	from	(Kim	et	al.,	2013).		

For	 larger	 proteins	 containing	 several	 domains	 and	 complex	 folds,	 the	 energy	 landscape	 towards	 the	

thermodynamically	favored	native	state	is	often	rugged	and	presents	local	energy	minima.	The	presence	

of	these	energy	wells,	which	can	be	interpreted	as	kinetically	trapped	folding	intermediates,	slow	down	

the	 folding	 process	 as	 they	 are	 at	 least	 transiently	 populated	 along	 the	 way	 to	 the	 native	 state	

(Brockwell	 and	 Radford,	 2007;	 Dinner	 et	 al.,	 2000).	 A	 folding	 intermediate	 presents	 non-native	

interactions,	which	must	either	be	resolved	prior	to	correct	folding	or	lead	to	misfolding.	Partially	folded	

or	 misfolded	 proteins	 typically	 expose	 hydrophobic	 or	 unstructured	 residues	 which	 may	 lead	 to	

aggregation	 (Figure	1)	 (Chiti	 and	Dobson,	2006).	 Even	natively	 folded	proteins	may	 tend	 to	aggregate	

upon	subtle	changes	in	the	physiological	environment	since	their	folded	states	are	often	only	marginally	

stable	 and	 represent	 a	 compromise	 between	 thermodynamic	 stability	 and	 conformational	 flexibility	
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(Gershenson	 et	 al.,	 2014).	 Aggregation	 is	 largely	 driven	 by	 hydrophobic	 forces	 and	 is	 concentration	

dependent.	 Although	 aggregates	 are	 thought	 to	 form	mostly	 amorphous	 structures,	 some	non-native	

proteins	 also	 give	 rise	 to	 highly	 structured	 amyloid	 fibrils	 which	 are	 found	 in	 the	 context	 of	 many	

neurodegenerative	diseases	(Figure	1)	(Chiti	and	Dobson,	2006).		

	

2.3  Molecular chaperones 

Anfinsen’s	findings	of	spontaneous	protein	folding	without	external	aid	apply	stringently	only	for	small	

single-domain	proteins.	Larger	and/or	multi-domain	proteins	often	fold	inefficiently	and	need	assistance	

by	 molecular	 chaperones	 to	 fold	 efficiently	 and	 on	 a	 biologically	 relevant	 time	 scale.	 Moreover,	 the	

physiological	 conditions	 of	 protein	 folding	 inside	 a	 living	 cell	 hardly	 compare	 to	 the	 situation	 in	

Anfinsen’s	 test	 tube	 (Gershenson	 and	Gierasch,	 2011).	 First,	 the	 situation	 in	 the	 cytosol	 is	 ultimately	

more	 complex	 because	 many	 different	 polypeptides	 fold	 at	 the	 same	 time.	 In	 addition,	 one	 major	

difference	is	that	in	vivo	proteins	are	synthesized	by	ribosomes	in	a	vectorial	manner	–	a	process	called	

translation.	 Ribosome-associated	 (nascent)	 polypeptide	 chains	 cannot	 assume	 their	 native	

conformations	until	an	independent	folding	unit,	a	domain	(ca.	50-300	amino	acids),	has	emerged	from	

the	 ribosomal	 exit	 tunnel	 (Zhang	 and	 Ignatova,	 2011).	 Finally,	 the	 high	 protein	 concentration	 in	 the	

cytosol	 (300-400	 mg/ml)	 leads	 to	 molecular	 crowding	 and	 excluded	 volume	 effects	 favoring	 the	

accumulation	of	misfolded	states	and	aggregation	(Ellis	and	Minton,	2006).		

A	complex	network	of	molecular	chaperones	exists,	which	prevents	aberrant	interactions	of	non-native	

chains,	folding	intermediates	and	misfolded	states,	and	has	a	critical	role	in	maintaining	the	integrity	of	

the	 cellular	 proteome	 (recently	 reviewed	 by	 (Balchin	 et	 al.,	 2016)).	 A	 molecular	 chaperone	 can	 be	

defined	 as	 any	 protein	 interacting,	 stabilizing	 or	 helping	 another	 protein	 to	 attain	 its	 functional	 state	

without	being	part	of	 its	 final	 structure	 (Hartl,	 1996).	Many	chaperones	are	 referred	 to	as	heat	 shock	
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proteins	(Hsps)	because	they	are	upregulated	upon	heat	stress.	The	Hsps	are	divided	into	evolutionary	

conserved	families	according	to	their	molecular	weight:	Hsp40s,	Hsp60s,	Hsp70s,	Hsp90s,	Hsp100s	and	

the	small	Hsps.	Chaperones	recognize	exposed	hydrophobic	segments,	a	characteristic	 feature	of	non-

native	proteins	in	general,	explaining	their	broad	substrate	selectivity.	These	interactions	maintain	non-

native	proteins	soluble	and	in	a	folding-competent	state.	ATP	and	specific	co-chaperones	regulate	cycles	

of	substrate	binding	and	release	in	the	ATP-dependent	molecular	chaperones	Hsp60,	Hsp70,	Hsp90	and	

Hsp100.	Molecular	 chaperones	may	not	 only	 prevent	 intermolecular	 aggregation,	 but	 also	 prevent	 or	

reverse	 intramolecular	misfolding.	 Beyond	 their	 role	 in	 de-novo	 protein	 folding,	 chaperones	 are	 also	

involved	in	many	other	aspects	of	proteome	maintenance,	such	as	macromolecular	complex	assembly,	

protein	 transport	 and	 degradation,	 aggregate	 dissociation	 and	 refolding	 of	 stress-denatured	 proteins	

(Hartl	and	Hayer-Hartl,	2002;	Kim	et	al.,	2013).		

The	general	chaperone	pathways	for	de-novo	protein	folding	are	conserved	in	all	domains	of	life	(i.e.	in	

bacteria,	 archaea	 and	 eukarya)	 (Figure	 2).	 Folding	 usually	 initiates	 co-translationally	 in	 the	 cytosol	 as	

soon	 as	 the	 nascent	 chain	 protrudes	 from	 the	 ribosome	 exit	 tunnel.	 The	 exit	 tunnel	 restricts	 the	

conformational	space	of	the	growing	polypeptide	chain	but	is	large	enough	to	allow	the	formation	of	α-

helices	 or	 small	 tertiary	 structure	 elements	 (Wilson	 and	 Beckmann,	 2011).	 In	 polysomes,	 neighboring	

exit	 tunnels	 point	 away	 from	 one	 another	 so	 as	 to	 minimize	 interactions	 between	 growing	 nascent	

chains	 that	would	 lead	 to	 aggregation	 (Brandt	 et	 al.,	 2010;	 Brandt	 et	 al.,	 2009).	 Trigger	 factor	 (TF)	 in	

bacteria	and	nascent-chain-associated	complex	 (NAC)	 in	eukarya	are	 the	 first	 chaperones	 to	meet	 the	

nascent	 chains,	 respectively.	 Subsequently,	 members	 of	 the	 canonical	 Hsp70	 family	 (DnaK	 in	

prokaryotes,	 Hsp70	 in	 eukarya)	may	 bind	 the	 nascent	 chain,	 however	without	 directly	 contacting	 the	

ribosome	(Calloni	et	al.,	2012).	An	exception	is	the	ribosome-associated	complex	(RAC)	in	budding	yeast,	

consisting	 of	 Ssz1	 (a	 non-canonical,	 specialized	Hsp70	 homologue)	 and	 zuotin	 (a	 specialized	 J-domain	

protein	that	binds	the	ribosome),	which	cooperates	with	the	ribosome-binding	Hsp70	 isoforms	Ssb1/2	
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(Preissler	 and	Deuerling,	 2012).	 Prefoldin,	which	 is	 absent	 in	 bacteria,	 is	 another	 chaperone	 that	 can	

bind	nascent	 chains	 co-translationally.	Nascent	 chain-binding	 chaperones	delay	 chain	 compaction	and	

prevent	non-native	interactions	until	a	nucleus	for	productive	folding	is	generated.		

	

Figure	2:	Molecular	chaperones	 involved	 in	de-novo	 folding	 in	 the	cytosol.	a)	 In	bacteria,	 interaction	with	 trigger	

factor	 (TF)	 is	 sufficient	 for	 folding	 of	 ca	 70%	of	 the	 proteome.	Another	 20%	 fold	 to	 completion	 using	 the	Hsp70	

system	 compromising	 DnaK	 (Hsp70),	 DnaJ	 (Hsp40)	 and	 nucleotide	 exchange	 factor	 GrpE.	 Finally,	 10-15%	 of	 the	

newly	made	proteins	are	substrate	of	the	chaperonin	GroEL	with	 its	co-chaperone	GroES.	b)	 In	archaea,	nascent-

chain-associated	 complex	 (NAC)	 is	 the	 ribosome-bound	 chaperone.	 Prefoldin	 (PFD)	 may	 bind	 clients	 co-

translationally	 and	 facilitate	 their	 transfer	 to	 a	 chaperonin	 called	 thermosome.	 c)	 In	 eukarya,	 nascent	 chains	

interact	with	NAC	or	ribosome-associated	complex	(RAC)	in	fungi	(insert).	Downstream	of	the	ribosome,	the	Hsp70	

system	and	PFD	receive	clients	assisting	their	folding	or	providing	access	to	the	Hsp90	system	or	to	the	chaperonin	

TRiC/CCT	(Tcp1	containing	Ring	Complex	/Chaperonin	Complex	containing	Tcp1).	TRiC/CCT	may	bind	nascent	chains	

co-translationally	and	support	domain-wise	folding.	Figure	adapted	from	(Kim	et	al.,	2013).	

The	 different	 chaperone	 families	 interact	 directly	 or	 cooperate	 with	 specific	 adapter	 proteins	 (e.g.	

Hop/Sti1,	 which	 connects	 Hsp70	 and	 Hsp90)	 to	 ensure	 that	 the	 unfolded	 client	 protein	 does	 not	

undergo	 premature	 aggregation	 (Figure	 2)	 (Hartl	 and	 Hayer-Hartl,	 2002;	 Kirschke	 et	 al.,	 2014).	 The	
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Hsp70	system	thereby	serves	as	a	central	hub	receiving	clients	co-translationally,	promoting	their	folding	

directly	or	 keeping	 them	 in	 a	 folding-competent	 state	 (Calloni	 et	 al.,	 2012;	Mayer,	 2013).	Hsp70	 then	

permits	access	of	the	substrates	to	the	more	specialized	downstream	chaperones	such	as	Hsp90	or	the	

chaperonins	 (also	 referred	 to	 as	 Hsp60)	 or	 alternatively	 relieves	 the	 cell	 from	 terminally	 misfolded	

proteins	 by	 providing	 a	 connection	 to	 the	 degradation	 system	 (e.g.	 via	 the	 E3	 ubiquitin-ligase	 CHIP,	

which	directly	interacts	with	Hsp70	and	Hsp90)	(Zhang	et	al.,	2015).	In	many	archaeal	species	which	lack	

the	Hsp70	system,	prefoldin	is	thought	to	take	over	some	of	these	tasks	(Hartl	and	Hayer-Hartl,	2002).		

	

2.4  The Hsp90 chaperone system  

Hsp90	is	an	essential	key	regulator	of	protein	homeostasis	(proteostasis),	both	under	normal	conditions	

and	upon	stress.	 Indeed,	Hsp90	 is	one	of	 the	most	abundant	proteins	 in	 the	eukaryotic	 cytosol	under	

physiological	conditions	(Schopf	et	al.,	2017).	Budding	yeast	and	vertebrates	contain	two	Hsp90	genes	

named	HSC82	and	HSP82	in	S.	cerevisiae	and	HSP90α	and	HSP90β	in	H.	sapiens,	respectively	(Chen	et	al.,	

2006).	Hsc82	and	Hsp90β	are	constitutively	expressed,	while	Hsp82	and	Hsp90α	are	heat	inducible.	The	

function	 of	 Hsp90	 can	 be	 described	 as	 a	 conformational	 regulator,	 which	 evolved	 to	 control	 protein	

function	and	activity.	It	does	so	by	facilitating	the	formation	of	specific	active	conformations	in	the	case	

of	client	kinases	(Boczek	et	al.,	2015),	by	helping	in	the	assembly	of	multiprotein	complexes	such	as	the	

kinetochore	 complex	 (Kitagawa	 et	 al.,	 1999)	 and	 by	 promoting	 ligand	 binding	 to	 receptors,	 such	 as	

steroid	hormone	receptors	(SHR)	(Kirschke	et	al.,	2014).		

Hsp90	is	a	homodimer	and	dimerization	is	essential	for	its	function	in	vivo	(Wayne	and	Bolon,	2007).	The	

Hsp90	monomer	 is	composed	of	an	N-terminal	Nucleotide	Binding	Domain	NTD	(ca	25	kDa),	a	Middle	

Domain	MD	(ca	40	kDa)	and	a	C-terminal	Dimerization	Domain	CTD	(ca	12	kDa).	A	flexible	and	charged	

linker	 connects	 NBD	 and	MD.	 The	 complex	 conformational	 cycle	 of	 Hsp90	 (Figure	 3)	 is	 regulated	 by	

binding	and	release	of	nucleotides,	clients	and	cofactors	(Balchin	et	al.,	2016).	In	absence	of	nucleotide,	
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the	chaperone	adopts	a	v-shaped	open	conformation.	Binding	of	ATP	to	the	NTD	leads	to	closure	of	a	

lid-segment	that	locks	the	nucleotide	in	place.	Further	conformational	changes	induce	NTD	dimerization	

and	then	association	with	the	MD,	leading	to	the	formation	of	a	twisted	closed	state.	This	conformation	

is	 capable	 of	 ATP	 hydrolysis.	 After	 ATP	 hydrolysis	 and	 nucleotide	 release,	 Hsp90	 reverts	 to	 the	 open	

state	(Balchin	et	al.,	2016;	Schopf	et	al.,	2017).		

	

Figure	3:	The	conformational	cycle	of	Hsp90.	Hsp90	functions	as	a	dimer.	Each	protomer	consists	of	an	N-terminal	

domain	 (NTD),	 a	middle	 domain	 (MD)	and	a	C-terminal	 dimerization	domain	 (CTD).	 The	Hsp90	dimer	adopts	 an	

open	conformation	in	the	absence	of	nucleotide	binding.	ATP	binding	induces	closure	of	lid	segments	and	then	NTD	

dimerization.	 Association	 of	 the	 dimerized	NTDs	with	 the	MD,	which	 contributes	 catalytic	 residues,	 induces	 ATP	

hydrolysis	 in	 the	 closed	 twisted	 state.	 After	 nucleotide	 release,	 Hsp90	 reverts	 to	 the	 open	 conformation.	 The	

progression	 through	 the	 conformational	 cycle	 converts	 the	 bound	 substrate	 from	 an	 inactive	 to	 an	 active	

conformation.	Adapted	from	(Balchin	et	al.,	2016).			

Eukaryotic	Hsp90	cooperates	with	a	 large	set	of	cochaperones	that	regulate	ATPase	activity	and	client	

recruitment.	 This	 is	 in	 stark	 contrast	 to	 the	 bacterial	 homologue	 of	 Hsp90,	 HtpG,	 which	 functions	

independently	 of	 cofactors	 (Ratzke	 et	 al.,	 2012).	 Cochaperones	 act	 at	 various	 stages	 along	 the	Hsp90	
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cycle	 and	 in	 some	 cases	 form	 mixed	 complexes	 with	 the	 chaperone	 (Li	 et	 al.,	 2011).	 While	 some	

cochaperones	 compete	 for	 identical	 binding	 sites,	 other	 cochaperones	 can	 bind	 simultaneously	 or	

synergistically.		

The	cochaperones	Hop	and	Cdc37	stabilize	 the	open	conformation	of	 the	Hsp90	dimer,	which	 inhibits	

ATP	 hydrolysis	 and	 facilitates	 client	 binding.	Hop	 (Sti1	 in	 yeast)	 organizes	 the	 transfer	 of	 clients	 from	

Hsp70	to	Hsp90	(Kirschke	et	al.,	2014).	Cdc37	is	a	specific	cofactor	for	kinase	clients	(Boczek	et	al.,	2015).	

In	contrast	to	Hop	and	Cdc37,	Aha1	and	its	homologue	Hch1	accelerate	ATP	hydrolysis	by	facilitating	the	

transition	to	the	closed	state	(Armstrong	et	al.,	2012;	Koulov	et	al.,	2010).	The	cochaperone	p23	(Sba1	in	

yeast)	acts	in	the	later	stages	of	the	chaperone	cycle,	by	stabilizing	NTD	dimerization	and	inhibiting	ATP	

hydrolysis	 (Li	 et	 al.,	 2011).	 p23	 is	 important	 for	 steroid	 hormone	 receptor	 (SHR)	 maturation.	 Many	

additional	 Hsp90	 cochaperones	 contain	 tetratricopeptide	 repeat	 (TPR)	 domains	 that	 recognize	 the	

sequence	motif	MEEVD	at	the	Hsp90	C-terminus.	Some	of	these	cochaperones,	such	as	Cyp40	(Cpr6	and	

Cpr7	in	yeast),	contain	additional	peptidyl-prolyl-isomerase	(PPIase)	domains	(Mayr	et	al.,	2000).	Yeast	

contains	 three	 essential	Hsp90	 cochaperones:	 Cdc37,	 Cns1	 and	 Sgt1.	While	 the	 function	 of	 Cdc37	 for	

maturation	of	 kinases	 is	well	 established,	 the	 roles	 of	 Sgt1	 and	Cns1	 are	 less	 clear.	 Sgt1	 seems	 to	be	

involved	in	yeast	kinetochore	assembly.	The	function	of	Cns1	partially	overlaps	with	that	of	the	PPIase	

cochaperone	Cpr7.	Cns1	overexpression	can	 rescue	slow	growth	and	reduced	Hsp90	activity	observed	

upon	 CPR7	 deletion.	 Moreover,	 both	 cochaperones	 seem	 to	 be	 able	 to	 interact	 directly	 with	 one	

another	and	with	the	Hsp90	dimer.	It	was	speculated,	that	both	chaperones	are	involved	in	a	common	

essential	function	that	remains	to	be	defined(Tesic	et	al.,	2003).		

	

2.5  The chaperonins 

The	multi-subunit	 cylindrical	 chaperonins	are	unique	among	 the	 chaperone	 families	because	 they	 can	

enclose	 a	 single	 substrate	 molecule	 inside	 their	 central	 cavity,	 allowing	 it	 to	 fold	 unimpaired	 by	
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aggregation	 (Hartl,	 1996;	 Hayer-Hartl	 et	 al.,	 2016).	 Chaperonin	 substrates	 have	 been	 identified	 in	

bacteria,	archaea	and	eukaryotes,	revealing	a	similar	fraction	(between	5%	and	15%)	of	the	total	cellular	

protein	content	to	interact	with	the	respective	chaperonins	(Dekker	et	al.,	2011;	Hirtreiter	et	al.,	2009;	

Kerner	 et	 al.,	 2005;	 Yam	et	 al.,	 2008).	 In	 all	 domains	of	 life,	 several	 essential	 proteins	 are	 among	 the	

potential	chaperonin	substrates,	explaining	the	general	necessity	 for	chaperonins.	Chaperonins	can	be	

divided	 in	 two	 distantly	 related	 groups	 (Kim	 et	 al.,	 2013).	 Group	 I	 chaperonins	 exist	 in	 the	 bacterial	

cytosol	and	the	 inner	compartment	of	organelles	 likely	derived	 from	endosymbiontic	bacteria,	 i.e.	 the	

mitochondrial	matrix	(Hsp60)	and	the	chloroplast	stroma	(Cpn60).	Group	II	chaperonins	occur	in	archaea	

(thermosome)	 and	 in	 the	 eukaryotic	 cytosol	 (TRiC/CCT)	 (Horwich	 et	 al.,	 2007).	 Cytosolic	 group	 I	

chaperonins	as	well	as	mitochondrial	Hsp60s	are	thermally	inducible	heat	shock	proteins	(Hartl,	1996).	

Archaeal	 chaperonins	 are	 also	 members	 of	 the	 heat	 shock	 regulon,	 being	 transcribed	 under	 all	

conditions	but	 strongly	up-regulated	upon	heat	 shock	 (Gutsche	et	al.,	1999).	Thermosomes	are	highly	

abundant	 and	 can	 constitute	 up	 to	 1-2%	 of	 total	 cell	 protein	 under	 basal	 conditions	 (Horwich	 et	 al.,	

2007).	 In	 contrast	 to	 the	archaeal	 thermosomes,	 TRiC	 is	 less	 abundant	 (Horwich	et	 al.,	 2007)	 and	not	

upregulated	upon	stress,	which	 is	consistent	with	a	role	 in	 the	de-novo	folding	of	a	discrete	subset	of	

client	proteins.		

All	 chaperonins	 share	 a	 common	 general	 architecture	 of	 two	 rings	 of	 seven	 to	 nine	 60	 kDa	 subunits,	

stacked	back-to-back.	Sequence	and	fold	of	the	chaperonin	subunits	are	highly	conserved,	consisting	of	

three	nested	domains,	called	equatorial,	 intermediate	and	apical	domain	(Figure	6B+C).	The	equatorial	

domain	harbors	the	ATP	binding	pocket	and	mediates	most	of	the	contacts	within	a	ring	and	all	of	the	

contacts	between	rings	 (Braig	et	al.,	1994;	Ditzel	et	al.,	1998).	The	apical	domains	contain	 the	binding	

site	for	the	substrate	protein.	Chaperonins	are	“molecular	machines”,	which	employ	ATP	hydrolysis	to	

power	extensive	conformational	changes	that	switch	the	chaperonin	from	an	open	substrate	receptive	

state	to	a	closed	substrate	encapsulated	state.		
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Substrate	 recognition	 by	 the	 chaperonins	 occurs	 in	 the	 open	 state	 at	 a	 location	of	 the	 apical	 domain	

facing	towards	the	central	cavity.	In	thermosomes,	this	region	exposes	hydrophobic	residues,	similar	to	

the	 substrate	 binding	 site	 in	 bacterial	 chaperonins	 (Gomez-Puertas	 et	 al.,	 2004).	 Thus,	 both	

thermosomes	 and	 group	 I	 chaperonins	 appear	 to	 recognize	 substrates	 by	 exposed	 hydrophobic	

segments	 (Douglas	et	al.,	2011;	Horwich	et	al.,	2007;	Pereira	et	al.,	2010).	Consistently,	 thermosomes	

can	successfully	fold	or	prevent	aggregation	of	several	GroEL	model	substrates	 in-vitro	 (such	as	citrate	

synthase,	GFP	or	rhodanese)	(Iizuka	et	al.,	2004;	Kusmierczyk	and	Martin,	2003).	The	putative	substrate	

binding	 sites	 in	 TRiC	 seem	 to	 rely	 on	 a	 mixture	 of	 hydrophobic	 as	 well	 as	 charged	 and	 hydrophilic	

interactions	 and	may	 allow	 for	 a	more	 elaborate	 substrate	 recognition	mechanism	 (Joachimiak	 et	 al.,	

2014).	The	best-characterized	TRiC	substrates	are	 the	cytoskeletal	proteins	actin	and	tubulin.	Notably,	

both	 actin	 and	 tubulin	 are	 strictly	 dependent	 on	 TRiC	 and	 cannot	 be	 folded	 by	 any	 other	 chaperone	

system	(Tian	et	al.,	1995).		

	

2.5.1 The group I  chaperonin GroEL 

The	paradigm	for	group	I	chaperonins	is	GroEL	from	the	bacterium	Escherichia	coli.	The	800	kDa	GroEL	

complex	 is	 built	 from	 two	 staggered	 homo-heptameric	 rings	 and	 cooperates	 with	 the	 cochaperone	

GroES,	which	 consists	 of	 a	 homo-heptameric	 ring	 of	 ~10	 kDa	 subunits	 (Hsp10).	GroES	 forms	 a	 dome-

shaped	lid	which	cycles	on	and	off	the	ends	of	the	GroEL	cylinder	(Figure	4)	(Saibil	et	al.,	2013).		

The	 individual	 GroEL	 subunits	 are	 composed	 of	 an	 equatorial	 ATPase	 domain,	 an	 intermediate	 hinge	

domain	and	an	apical	substrate	binding	domain	forming	the	entrance	to	the	GroEL	cavity	of	~45	Å	width	

(Figure	 4)	 (Saibil	 et	 al.,	 2013;	 Walter	 and	 Buchner,	 2002).	 Substrate	 binding	 occurs	 via	 hydrophobic	

residues	lining	a	surface	cleft.	Two	or	more	apical	domains	interact	with	a	substrate	that	is	in	a	collapsed	

compact	state	without	tertiary	structure,	termed	a	“molten	globule”	 (Elad	et	al.,	2007).	The	binding	to	
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GroEL	 prevents	 aggregation	 of	 such	 species,	 while	 folding	 depends	 on	 encapsulation	 of	 isolated	

substrate	by	binding	of	 the	GroES	cochaperone	 (Hartl	and	Hayer-Hartl,	2002;	Hayer-Hartl	et	al.,	2016;	

Tang	et	al.,	2006).	

	

Figure	4:	Structure	of	the	bacterial	chaperonin	GroEL/ES.	Crystal	structure	of	the	asymmetrical	GroEL/ES	complex	

with	one	subunit	of	both	rings	highlighted	in	color.	Structure	of	individual	subunits	are	shown	next	to	the	complex.	

Direct	comparison	of	open	and	closed	state	shows	dramatic	structural	reorganization	of	GroEL	in	the	course	of	its	

functional	 cycle.	 Equatorial,	 intermediate	 and	 apical	 domains	 are	 depicted	 in	 blue,	 yellow	 and	 red,	 respectively.	

GroES	is	highlighted	in	purple.	Figure	adapted	from	(Balchin	et	al.,	2016).	

Folding	occurs	during	a	complex	functional	cycle,	which	is	regulated	by	the	binding	and	hydrolysis	of	ATP	

in	 the	 GroEL	 subunits	 (Figure	 5).	 The	 Michaelis-Menten	 curve	 shows	 positive	 cooperativity	 in	 ATP	

hydrolysis	within	one	ring,	but	negative	cooperativity	between	the	two	rings,	suggesting	that	only	one	

ring	is	active	at	a	time.	GroES	binding	slows	ATP	hydrolysis.	The	conventional	model	of	GroEL	function	

thus	proposes	that	the	two	rings	function	alternatingly	as	folding	chambers	in	a	two-stroke	mechanism	

(Hartl,	1996;	Hayer-Hartl	et	al.,	2016;	Horwich	et	al.,	2007).	First,	7	ATP	molecules	bind	cooperatively	to	

a	 substrate-loaded	 GroEL	 ring.	 Next,	 the	 GroES	 heptamer	 closes	 the	 cavity	 and	 stabilizes	 major	

conformational	 changes	 in	 GroEL	 (Saibil	 et	 al.,	 2013).	 As	 a	 result,	 the	 cavity	 volume	 increases	 from	

~85000	Å3	 (GroEL	cavity	alone)	 to	~175000	Å3	 (GroEL-GroES	cavity)	and	 the	physical	properties	of	 the	

inner	GroEL	wall	change	from	hydrophobic	to	hydrophilic	(Hayer-Hartl	et	al.,	2016;	Xu	et	al.,	1997).	The	
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cavity	volume	is	sufficiently	large	to	encapsulate	a	60	kDa	protein.	GroES	inserts	its	“mobile	loops”	into	

the	substrate	binding	site	of	GroEL,	releasing	the	unfolded	substrate	from	the	cage	wall	into	the	cavity	

where	 it	may	 undergo	 conformational	 rearrangements	 required	 to	 reach	 its	 native	 state.	 Folding	 can	

proceed	inside	the	closed	and	cis-ring	(the	ring	now	active)	until	all	ATP	are	hydrolyzed	to	ADP	(~6	sec	at	

25°C	 and	 ~2	 sec	 at	 37°C)	 (Hayer-Hartl	 et	 al.,	 2016).	 Finally,	 binding	 of	 ATP	 to	 the	 opposite	 trans-ring	

sends	an	allosteric	signal	to	the	cis-ring	inducing	dissociation	of	GroES	(Horwich	et	al.,	2007).	This	opens	

the	cavity	so	that	the	substrate	can	exit.	In	case	of	incomplete	folding	or	misfolding,	the	substrate	may	

rebind	 to	 undergo	 a	 subsequent	 round	 of	 encapsulation.	Whether	 the	 two	 folding	 chambers	 strictly	

follow	the	sequential	mechanism	described	above	or	may	be	active	at	 the	same	time	 is	a	question	of	

ongoing	research	(Hayer-Hartl	et	al.,	2016;	Taguchi,	2015).		

	

Figure	5:	Functional	 cycle	of	GroEL/ES.	Substrate	binds	 to	empty	GroEL	cis-ring	as	 compact	 folding	 intermediate.	

Cooperative	binding	of	7	ATP	to	precedes	the	closure	of	the	cis-cavity	by	GroES-Heptamer.	Substrate	is	released	into	

the	 folding	 chamber	 and	 is	 free	 to	 fold	 for	 the	 time	 required	 to	 hydrolyze	 all	 ATP	 to	 ADP.	 ATP	 binding	 to	 the	

opposite	trans-ring	dissociates	GroES	and	releases	the	substrate	regardless	of	its	folding	state.	Figure	adapted	from	

(Kim	et	al.,	2013).	

Approximately	 250	 GroEL	 substrates	 have	 been	 identified	 in	 E.	 coli,	 many	 comprising	 domains	 with	

complex	α+β	or	α/β	topologies	(e.g.	TIM	barrel	fold)	(Houry	et	al.,	1999;	Kerner	et	al.,	2005).	These	folds	

contain	 many	 non-local,	 long-range	 interactions	 and	 would	 fold	 slowly	 in	 free	 solution,	 populating	
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kinetically	trapped	and	aggregation	prone	intermediates	for	prolonged	times.	However,	which	features	

precisely	render	a	substrate	GroEL-dependent	is	not	completely	understood	(Hayer-Hartl	et	al.,	2016).		

Improvement	of	substrate	folding	by	GroEL	can	be	mechanistically	explained	by	the	chaperonin	acting	

like	a	passive	“Anfinsen	cage”,	which	prevents	aggregation	by	isolating	the	unfolded	substrate	from	the	

crowded	 environment	 thereby	 providing	 “infinite	 dilution”	 (Ellis,	 1994;	 Hayer-Hartl	 et	 al.,	 2016).	 This	

would	 increase	the	yield	of	the	folding	reaction.	For	several	model	substrates,	however,	 in	addition	to	

increased	folding	yields,	an	acceleration	of	folding	is	also	observed,	which	points	to	a	more	active	role	of	

GroEL	in	modulating	the	complex	energy	landscapes	of	folding	(Chakraborty	et	al.,	2010;	Georgescauld	

et	al.,	2014;	Gupta	et	al.,	2014;	Tang	et	al.,	2006).	One	explanation	for	this	rate	acceleration	would	be	

that	steric	confinement	inside	the	GroEL	cavity	prevents	formation	of	non-productive,	expanded	folding	

intermediates,	thereby	reducing	their	entropy	(Chakraborty	et	al.,	2010)	and	guiding	them	along	paths	

avoiding	kinetic	traps	(Georgescauld	et	al.,	2014).	 In	agreement	with	this,	reducing	the	conformational	

space	of	a	model	protein	by	the	introduction	of	disulfide	bonds	lead	to	a	similar	acceleration	of	folding	

as	 its	confinement	 inside	the	GroEL	cavity	 (Chakraborty	et	al.,	2010).	 In	addition	to	the	cavity	volume,	

also	the	flexible	C-termini	of	the	GroEL	subunits	and	the	negatively	charged	residues	of	the	cage	wall	are	

critical	for	the	observed	acceleration	(Hayer-Hartl	et	al.,	2016).	The	charges	may	induce	a	local	network	

of	ordered	water	molecules	which	in	turn	increase	the	efficiency	of	hydrophobic	collapse	(England	et	al.,	

2008).	 Additionally,	 acceleration	 of	 folding	 might	 result	 from	 iterative	 annealing,	 which	 describes	 a	

remodeling	of	 folding	 intermediates	upon	 initial	binding.	According	 to	 this	model,	 the	ATP-dependent	

movements	of	GroEL	apical	domains	exert	a	stretching	force	onto	the	substrate	which	might	break	non-

native	 contacts	 in	 kinetically	 trapped	 intermediates	 (Lin	 et	 al.,	 2008).	 However,	 the	 significance	 of	

iterative	annealing	remains	unclear	because	a	single	round	of	encapsulation	shows	the	same	rate	and	

yield	of	folding	for	some	model	substrates	(Chakraborty	et	al.,	2010;	Tang	et	al.,	2006).	 In	general,	the	
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distinct	mechanistic	principles	are	not	mutually	exclusive	but	may	contribute	to	different	extent	to	the	

folding	of	different	substrates.			

	

2.5.2 Architecture of group I I  chaperonins  

Group	 II	 chaperonins	 share	 the	 common	 chaperonin	 architecture	 of	 two	 rings	 arranged	 back-to-back	

and	 enclosing	 two	 folding	 chambers.	 The	 individual	 rings	 however	 comprise	 not	 seven	 subunits	 like	

GroEL	but	eight	or	 in	 some	archaea	nine	protomers	 (Gutsche	et	al.,	1999).	 Importantly,	most	group	 II	

chaperonins	 are	 hetero-oligomeric	 with	 the	 archaeal	 thermosomes	 having	 up	 to	 three	 paralogous	

subunits,	culminating	 in	the	eukaryotic	Tcp1	containing	ring	complex	(TRiC,	also	referred	to	as	CCT	for	

chaperonin	complex	containing	Tcp1)	being	composed	of	eight	distinct	subunits.	Compared	to	group	 I	

chaperonins,	group	II	chaperonins	have	a	~30	amino	acid	insertion	in	the	apical	domain,	which	forms	an	

iris-like	lid	in	the	closed	conformation	and	renders	group	II	chaperonins	independent	of	a	GroES-like	co-

chaperone	 (Figure	 6).	 Furthermore,	 the	 inter-ring	 contacts	 are	 different	 between	 the	 two	 chaperonin	

groups.	 While	 the	 two	 rings	 of	 group	 I	 chaperonins	 are	 arranged	 in	 a	 staggered	 fashion	 where	 one	

subunit	 is	 contacting	 two	subunits	of	 the	opposite	 ring	 (Braig	et	al.,	1994),	 the	 rings	are	organized	 in-

phase	with	subunits	right	on	top	of	one	another	in	the	case	of	group	II	chaperonins	(Ditzel	et	al.,	1998).	

These	 different	 inter-ring	 contacts	 suggest	 a	 divergent	 inter-ring	 signaling	 mechanism	 for	 the	 two	

chaperonin	groups.	Rather	recently,	a	 third	group	of	chaperonins	has	been	described	(Techtmann	and	

Robb,	2010).	These	group	III	chaperonins	are	found	in	certain	bacteria.	However,	they	share	the	general	

structural	features	of	archaeal	chaperonins,	including	eight	instead	of	seven-membered	rings	and	an	in-

built	lid.		
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Figure	6:	Group	II	chaperonins.	A)	Crystal	structure	of	the	closed	TRiC	complex	shown	in	space-filling	representation.	

One	 subunit	 in	 each	 ring	 is	 depicted	 schematically,	 highlighting	 the	 inter-ring	 contact	 sites.	 B+C)	 comparison	 of	

isolated	subunits	of	GroEL/ES	(B)	and	TRiC	(C)	both	in	the	closed	state.	The	group	II	chaperonin	subunit	has	an	α-

helical	 extension	missing	 in	GroEL.	 (D)	 Arrangement	 of	 apical	 domains	 in	 the	 closed	 form	 of	 the	 Thermoplasma	

acidophilum	 thermosome	 structure.	 A	 top	 view	 is	 shown.	 The	 α-helical	 extensions	 form	 an	 iris-like	 lid.	 A+B+C	

adapted	from	(Balchin	et	al.,	2016),	D	adapted	from	(Spiess	et	al.,	2004)	

	

2.5.3 Structures of group I I  chaperonins in different nucleotide states 

The	 first	 group	 II	 chaperonin	 structure	 was	 the	 hetero-oligomeric	 thermosome	 of	 the	 archaeon	

Thermoplasma	acidophilum,	which	was	solved	in	the	closed	conformation	(Ditzel	et	al.,	1998)	(Figure	6).	

In	the	structure,	the	chaperonin	cavities	are	closed	by	formation	of	a	mixed	8-stranded	β-barrel	around	

the	 apical	 pore	 at	 both	 ends	 of	 the	 chaperonin.	 The	 tight	 interactions	 of	 the	 iris-like	 lid	 stabilize	 the	

closed	conformation	and	at	 the	same	 time	control	 inter-ring	communication	 (Reissmann	et	al.,	2007).	

The	lids	close	over	two	cavities	of	~	130	000	Å³	each,	large	enough	to	encapsulate	a	polypeptide	of	up	to	

~50	kDa	(Ditzel	et	al.,	1998).		

In	the	following	years,	many	structural	studies	were	executed	on	archaeal	 thermosomes	as	well	as	on	

the	 eukaryotic	 TRiC	 complex,	 which	 lead	 to	 well-resolved	 X-ray	 and	 cryo-EM	 structures	 in	 different	

nucleotide	states	(Cong	et	al.,	2010;	Cong	et	al.,	2012;	Dekker	et	al.,	2011;	Douglas	et	al.,	2011;	Huo	et	

al.,	2010;	Munoz	et	al.,	2011;	Pereira	et	al.,	2010;	Zhang	et	al.,	2011).	In	the	nucleotide-free	apo-state,	
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the	 group	 II	 chaperonins	 adopt	 an	open	 conformation,	where	 the	 apical	 domains	do	not	 contact	 one	

another	(Figure	7)	(Douglas	et	al.,	2011;	Huo	et	al.,	2010;	Pereira	et	al.,	2010;	Reissmann	et	al.,	2007).	

Binding	of	ATP	 induces	a	half-closed	 conformation,	 caused	by	a	~45°	 rigid	body	 rotation	of	 the	apical	

domains	 leading	 to	 the	 so-called	 pre-hydrolysis	 state	 (Zhang	 et	 al.,	 2011).	 Full	 closure	 requires	 ATP	

hydrolysis,	and	–in	contrast	to	GroEL–	non-hydrolyzable	ATP	analogs	are	not	sufficient	to	induce	stable	

lid	 formation	(Meyer	et	al,	2003).	The	fully	closed	group	II	chaperonin	complex	can	only	be	generated	

upon	 stabilization	 of	 the	 trigonal	 bi-pyramidal	 transition-state	 of	 ATP	 hydrolysis,	 usually	 provided	 by	

incubation	with	ADP	or	ATP	and	aluminum	fluoride	(AlFx)	(Chabre,	1990;	Melki	et	al,	1997;	Meyer	et	al,	

2003).		

The	 chaperonin	 of	 Methanococcus	 maripaludis	 (MmCpn)	 serves	 as	 a	 valuable	 model	 for	 group	 II	

chaperonins	 because	 its	 homo-oligomeric	 nature	 enables	 the	 simple	 introduction	 of	 mutations	 or	

deletions.	Figure	7	shows	structures	of	a	lid-less	version	of	the	chaperonin	of	MmCpn	in	ATP-free,	ATP-

bound	and	ATP-hydrolysis	states	solved	by	cryo-EM	(Zhang	et	al.,	2011).		

	

Figure	 7:	 The	 chaperonin	 of	 M.	 maripaludis	 (MmCpn)	 in	 different	 nucleotide	 states,	 namely	 from	 left	 to	 right	

nucleotide-free	state,	ATP-bound	state	and	ATP-hydrolysis	state.	The	ATP-bound	state	shows	a	slight	inward	tilt	of	

the	 apical	 domains	 compared	 to	 the	 ATP-free	 state,	 however	 the	 chaperonin	 clearly	 remains	 in	 an	 open	

conformation.	Only	the	ATP-hydrolysis	state	is	fully	closed.	Structures	taken	from	(Zhang	et	al.,	2011).		
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2.5.4 Structure of the eukaryotic TRiC complex  

Structure	determination	of	the	highly	complex	TRiC	chaperonin	was	a	challenging	endeavor,	but	at	the	

outset	crystal	structures	of	TRiC	in	the	open	state	(Munoz	et	al.,	2011)	and	in	the	closed	state	(Dekker	et	

al.,	2011)	as	well	as	a	high	resolution	cryo-EM	structure	of	closed	TRiC	(Cong	et	al.,	2010)	were	available	

(Figure	8).	In	general,	the	structures	are	similar	to	thermosome	structures	in	the	open	and	closed	states	

(Skjaerven	 et	 al.,	 2015).	 However,	 the	 hetero-oligomeric	 nature	 of	 TRiC	 is	 reflected	 by	 certain	

asymmetries.	The	TRiC	crystal	structure	in	the	open	state	for	example	shows	all	apical	domains	of	one	

ring	adopting	different	 conformations	 (Munoz	et	al.,	 2011).	 In	 the	 second	 ring,	 six	apical	domains	are	

disordered	due	to	structural	flexibility.	The	apical	domains	are	not	separated	as	they	are	in	the	MmCpn	

structure	 but	 certain	 apical	 domains	 contact	 each	 other	 (Figure	 8A).	Moreover,	 symmetry	 analysis	 of	

high-resolution	cryo-EM	data	suggest,	that	during	the	transition	to	the	closed	state,	neighboring	apical	

domains	undergo	pairwise	association	(Cong	et	al.,	2012).	

Similarly,	the	closed	state	of	TRiC	exhibits	asymmetric	features.	The	iris-like	lid,	which	seals	the	cavities,	

does	not	form	a	perfect	circle	but	a	slightly	asymmetric	arrangement	(Dekker	et	al.,	2011).	In	contrast	to	

other	chaperonin	structures,	the	N-terminus	of	one	subunit	(CCT4)	is	located	on	the	outside	of	the	cavity	

and	 the	 subsequent	 linker	 to	 the	 first	 secondary	 structure	 element	 threads	 through	 the	 inter-ring	

interface	 in	 the	 crystallographic	 model	 (Dekker	 et	 al.,	 2011).	 Importantly,	 the	 N-termini	 of	 all	 other	

subunits	reside	inside	the	cavity,	as	do	the	N-termini	of	thermosome	and	GroEL	subunits.		
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Figure	8:	Overview	of	TRiC	structures.	A)	TRiC	crystal	structure	in	the	open	state	at	5.5	Å	resolution.	B)	TRiC	crystal	

structure	in	the	closed	state	at	3.8	Å	resolution.	C)	Symmetry-free	cryo-EM	reconstruction	of	asymmetric	ADP-AlFx	

state	and	symmetric	ATP-AlFx	state	at	10-14	Å	 resolution.	A+B	adapted	 from	(Skjaerven	et	al.,	2015),	C	adapted	

from	(Cong	et	al.,	2012).			

Structural	 analysis	 of	 group	 II	 chaperonins	 mostly	 revealed	 complexes	 with	 both	 rings	 in	 the	 same	

conformation,	 leading	 to	 symmetrically	 open,	 half-open	 or	 closed	 complexes.	 However,	 Cong	 et	 al.	

succeeded	 in	 following	 TRiC	 along	 its	 ATP-driven	 conformational	 cycle	 by	 symmetry-free	 cryo-EM	

reconstructions	(Cong	et	al,	2012).	In	addition	to	the	states	characterized	for	MmCpn	earlier,	they	also	

analyzed	an	ADP-state	and	an	ADP-AlFx	state.	While	TRiC	remains	open	upon	binding	of	ADP,	incubation	

with	ADP	and	AlFx	lead	to	an	asymmetric	TRiC	complex	with	one	ring	open	and	one	ring	closed	(Figure	

8C).	 Incubation	with	 ATP	 and	AlFx	 lead	 to	 the	 fully	 closed	 complex.	 Further	 evidence	 for	 asymmetric	

group	 II	 chaperonin	 complexes	 analogous	 to	 the	 GroEL/ES	 bullet	 complex	 comes	 mainly	 from	 low	

resolution	EM	reconstructions	and	small-angle	X-ray	scattering	(SAXS)	data	(Clare	et	al.,	2008;	Llorca	et	

al.,	 1999b;	Meyer	et	 al.,	 2003;	 Schoehn	et	 al.,	 2000).	 Biochemical	 studies	 show	evidence	 for	negative	
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inter-ring	 cooperativity,	 which	 suggests	 that	 asymmetric	 complexes	 might	 be	 the	 physiologically	

relevant	species	(Kafri	et	al.,	2001;	Reissmann	et	al.,	2007).	

	

2.5.5 Allosteric transit ions in the functional cycle of group I I  chaperonins  

The	 transitions	 between	 the	 different	 nucleotide	 states	 describe	 the	 chaperonin’s	 functional	 cycle,	

which	 is	 strictly	 dependent	 on	 synchronized	 movements	 of	 the	 individual	 chaperonin	 subunits.	

Consequently,	 chaperonins	 are	 highly	 allosteric	molecular	machines.	 The	 subunits	 of	 one	 ring	 form	 a	

functional	unit	coupled	by	positive	cooperativity	in	ATP	binding	(Horovitz	et	al.,	2001;	Reissmann	et	al.,	

2007).	 Beyond	 this,	 there	 is	 negative	 allosteric	 regulation	 across	 the	 rings,	 which	 forces	 the	 two	

hemispheres	 of	 the	 chaperonin	 to	 function	 alternately	 similar	 to	 a	 ‘two-stroke’	 engine	 (Bigotti	 et	 al.,	

2006;	Kafri	et	al.,	2001)	(Figure	9).	This	special	allosteric	behavior	is	observed	in	both	group	I	and	group	

II	chaperonins	(Bigotti	et	al.,	2006;	Horovitz	et	al.,	2001;	Kafri	et	al.,	2001;	Reissmann	et	al.,	2007)	and	is	

referred	to	as	nested	cooperativity.		

	

Figure	9:	The	functional	cycle	of	group	II	chaperonins.	Eight	ATP	bind	cooperatively	to	one	ring	of	the	chaperonin	(+)	

while	binding	to	the	second	ring	is	inhibited	(-).	Subsequent	ATP	hydrolysis	in	the	cis	ring	leads	to	ring	closure.	Re-
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opening	of	the	 lid	appears	to	be	the	rate-limiting	step	of	the	conformational	cycle	 (Bigotti	et	al.,	2006),	probably	

because	it	involves	dissociation	of	the	very	stable	β-barrel	at	the	apex.	Due	to	negative	inter-ring	cooperativity,	ATP	

hydrolysis	 in	the	trans-ring	can	only	proceed	once	the	products	of	ATP	hydrolysis	(ADP	+	Pi)	have	left	the	cis-ring.	

Figure	adapted	from	(Reissmann	et	al.,	2007).	

Although	 the	 allosteric	 behavior	 is	 similar	 for	 both	 chaperonin	 groups,	 there	 are	major	 differences	 in	

how	ATP	binding	and	hydrolysis	regulate	the	functional	cycle.	In	GroEL,	ATP	binding	causes	a	clockwise	

rotation	and	upwards	tilt	of	the	apical	domain	leading	to	the	conformation	stabilized	by	GroES	binding	

and	consequently	to	closure	of	the	cavity.	These	movements	can	only	be	realized	without	steric	clashes	

when	all	GroEL	apical	domains	move	simultaneously	in	a	concerted	manner	(Ma	et	al.,	2000).	In	group	II	

chaperonins,	 the	 apical	 domains	move	 in	 a	 counterclockwise	 rotation	 followed	 by	 a	 tilt	 of	 the	 entire	

subunit	 towards	 the	 center	 of	 the	 cavity	 (Zhang	 et	 al.,	 2010a;	 Zhang	 et	 al.,	 2011).	 This	 large	 rocking	

motion	of	the	equatorial	domain	is	only	possible	when	the	subunits	are	arrangemend	in	phase.	In	GroEL,	

the	 staggered	 arrangement	 more-or-less	 locks	 the	 equatorial	 domains	 in	 place	 and	 major	

conformational	rearrangements	are	observed	mostly	in	the	intermediate	and	apical	domains	(Ma	et	al.,	

2000).	Finally,	structures	of	 the	open	state	group	 II	chaperonin	show	no	structural	constraints	 to	non-

concerted	 intra-ring	conformational	 changes.	 Instead,	at	 least	 for	TRiC	 there	 is	experimental	evidence	

for	 a	 sequential	mechanism	 for	 cavity	 closure	 (Lin	 and	Sherman,	 1997;	Munoz	et	 al.,	 2011;	Rivenzon-

Segal	et	al.,	2005).		

The	in-built	lid	has	a	special	function	in	regulating	the	functional	cycle	of	group	II	chaperonins.	Deletion	

of	 the	 helical	 protrusion	 in	 MmCpn	 leads	 to	 loss	 of	 both	 intra-ring	 and	 inter-ring	 cooperativity	

(Reissmann	et	al.,	2007).	A	lid-less	mutant	of	TRiC	hydrolyzes	ATP	and	binds	unfolded	model	substrates	

like	wildtype,	however,	 there	 is	no	productive	 folding	 (Reissmann	et	al.,	 2007).	 Taken	 together,	 these	

results	indicate	that	the	helical	protrusions	do	not	simply	close	the	cavity,	but	are	deeply	integrated	into	

the	allosteric	network	of	 group	 II	 chaperonins.	 They	 couple	 the	ATP	hydrolysis	 reaction	 to	productive	
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substrate	 folding,	 overall	 exhibiting	 similar	 functions	 to	 GroES	 in	 the	 functional	 cycle	 of	 group	 I	

chaperonins.			

2.5.6 Evolution of subunit special ization in group I I  chaperonins  

The	present	diversity	of	group	 II	 chaperonin	subunits	probably	arose	by	a	process	of	gene	duplication	

and	differentiation.	In	the	archaeal	lineages,	gene	duplication,	loss	and	conversion	was	a	frequent	event	

and	 lead	 to	 appearance	 of	 multiple	 chaperonin	 subunits	 (Archibald	 et	 al.,	 2001).	 Defined	 hetero-

oligomer	formation	is	thought	to	be	enabled	by	a	mutation	in	the	intra-ring	subunit	interface,	followed	

by	compensatory	mutations	in	the	adjacent	subunit.	Importantly,	the	archaeal	apical	domains,	which	are	

responsible	 for	 substrate	 recognition,	are	subject	 to	significant	gene	conversion,	arguing	 for	a	general	

client	 selectivity	 shared	 by	 all	 chaperonin	 subunits.	 All	 fully	 sequenced	 archaeal	 genomes	 encode	 at	

least	 one	 thermosome	 subunit	 and	 sometimes	 additional	 genes	 for	 group	 I	 chaperonins	 are	 present	

(Lund,	2011).	Interestingly,	a	few	group	II	chaperonin	genes	are	also	found	in	bacterial	genomes.		

Similar	gene	duplication	processes	lead	to	the	formation	of	the	eukaryotic	TRiC	complex.	Multiple,	rapid	

gene	 duplication	 events	 occurred	 early	 in	 the	 eukaryotic	 evolution	 and	 gave	 rise	 to	 eight	 paralogous	

subunits	 (Archibald	 et	 al.,	 2001;	 Kubota	 et	 al.,	 1995).	 The	 paralogous	 subunits	 are	 described	 by	 the	

Greek	letters	α,	β,	γ,	δ,	ε,	ζ,	η	and	θ	in	mammalian	TRiC	and	by	the	numbers	1-8	in	yeast	TRiC	(Kubota	et	

al.,	 1995;	 Stoldt	 et	 al.,	 1996).	 Interestingly,	 the	 degree	 of	 sequence	 conservation	 between	 the	

paralogous	subunits	of	one	species	(~	30%	sequence	identity)	(Kubota	et	al.,	1995)	is	much	lower	than	

the	sequence	conservation	of	orthologous	subunits	(~	95%	within	mammals,	~60%	between	mammals	

and	yeast)	(Kim	et	al.,	1994).	Among	the	paralogous	subunits,	the	equatorial	domains	are	well	conserved	

while	most	 sequence	divergence	occurs	 in	 the	apical	 domains	 (Kim	et	 al.,	 1994).	 Taken	 together,	 this	

suggests	 non-redundant	 functions	 of	 the	 individual	 subunits	 in	 the	 hetero-oligomeric	 ring,	 probably	

specialization	 in	 substrate	 binding	 by	 the	 apical	 domains.	 All	 eight	 TRiC	 subunits	 are	 individually	
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essential	in	budding	yeast	and	probably	occupy	a	fixed	position	in	the	octameric	ring	(Stoldt	et	al.,	1996).	

As	 many	 obligate	 TRiC	 substrates	 are	 only	 found	 in	 eukaryotes,	 it	 is	 very	 likely	 that	 TRiC	 and	 its	

substrates	co-evolved	(Archibald	et	al.,	2001).		

2.5.7 Arrangement of subunits in the TRiC complex  

The	 order	 of	 the	 subunits	 in	 the	 TRiC	 complex	 was	 unknown	 at	 the	 outset	 of	 this	 project.	 The	

crystallographic	as	well	as	cryo-EM	data	on	TRiC	were	of	 insufficient	resolution	for	a	precise	sequence	

assignment.	Since	the	backbone	traces	for	all	subunits	are	highly	similar,	the	individual	subunits	cannot	

be	assigned	based	on	the	current	structural	data	alone.	

Several	groups	proposed	subunit	arrangements	for	TRiC.	The	original	proposal	for	the	intra-ring	subunit	

order	 was	 based	 on	 2D-electrophoresis	 and	 western-blot	 analysis	 of	 TRiC	 “micro-complexes”	 of	 2-3	

subunits,	under	the	assumption	that	TRiC	would	first	split	into	single	rings	(Liou	and	Willison,	1997).	The	

proposed	arrangement	was	the	basis	for	many	subsequent	structural	studies	(Llorca	et	al.,	2000;	Llorca	

et	al.,	1999a;	Martin-Benito	et	al.,	2004;	Rivenzon-Segal	et	al.,	2005).	Martin-Benito	et	al.	(Martin-Benito	

et	 al.,	 2007)	 determined	 cryo-EM	 structures	 of	 TRiC	 in	 complex	 with	 subunit-specific	 antibodies	 and	

proposed	that	the	inter-ring	interface	would	contain	no	homotypic	contacts,	i.e.	no	two	subunits	of	the	

same	kind	contacting	each	other	(Figure	10A).	This	model	was	challenged	by	subsequent	cryo-EM	and	X-

ray	structures	of	TRiC	at	4.0	Å	and	3.8	Å	resolution,	respectively	(Cong	et	al.,	2010)	(Dekker	et	al.,	2011).	

Both	 models	 propose	 two	 homotypic	 (i.e.	 between	 two	 identical	 subunits)	 inter-ring	 contacts,	 but	

involving	 different	 pairs	 of	 identical	 subunits	 (Figure	 10B+C).	While	 the	 crystal	 structure	 followed	 the	

original	proposal	for	the	intra-ring	arrangement,	the	model	based	on	the	cryo-EM	data	had	a	completely	

new	intra-	and	inter-ring	configuration.			
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Figure	 10:	 Schematic	 representation	 of	 proposed	 TRiC	 arrangements	 	 A)	 Subunit	 order	 in	 the	 initial	model.	 The	

intra-ring	order	was	based	on	the	data	from	Liou	and	Willison,	1997	(Liou	and	Willison,	1997),	and	the	 inter-ring	

register	 on	 the	 cryoEM	 density	 of	 TRiC-antibody	 complexes	 by	Martin-Benito	 et	 al.,	 2007	 (Martin-Benito	 et	 al.,	

2007).	B)	Subunit	order	in	the	crystallographic	model	by	Dekker	et	al.,	2011	(Dekker	et	al.,	2011),	with	homo-typic	

contacts	of	subunits	6-6	and	4-4.	C)	Newer	model	based	on	single-particle	cryoEM	and	chemical	crosslinking,	which	

was	proposed	by	Cong	et	al.,	2010	(Cong	et	al.,	2010).	Here	the	homo-typic	contacts	are	formed	between	subunits	

8-8	and	1-1.			

	

2.5.8 Substrate binding and recognition by TRiC 

While	 substrate	 recognition	 in	 GroEL	 and	 thermosomes	 relies	 on	 hydrophobic	 interactions,	 a	 more	

elaborated	substrate	recognition	mechanism	was	proposed	for	the	eukaryotic	TRiC	complex.	In	TRiC,	the	

putative	substrate	binding	sites	are	located	in	the	apical	domain,	in	a	groove	between	helices	10	and	11	

(Figure	11)	(Joachimiak	et	al.,	2014;	Pereira	et	al.,	2010;	Spiess	et	al.,	2006),	which	corresponds	to	the	

substrate	binding	site	identified	in	GroEL	between	the	helices	H	and	I	(Chen	and	Sigler,	1999).	The	eight	

paralogous	 TRiC	 subunits	 show	 great	 sequence	 divergence	 and	 comprise	 subunits	 with	 a	 mixture	 of	

hydrophobic	as	well	as	charged	and	hydrophilic	residues	(Gomez-Puertas	et	al.,	2004;	Joachimiak	et	al.,	

2014;	Pappenberger	et	al.,	2002;	Spiess	et	al.,	2006;	Yebenes	et	al.,	2011).	The	differential	layout	of	the	

substrate	binding	 sites	 lead	 to	 the	hypothesis,	 that	 specific	 TRiC	 subunits	 interact	with	 specific	motifs	

exposed	 by	 the	 substrate	 molecules.	 Remarkably,	 exchanging	 the	 substrate	 binding	 motifs	 between	

different	TRiC	subunits	suffices	to	confer	specificity	for	a	given	substrate	motif	(Spiess	et	al.,	2006).	For	

stable	substrate	binding,	several	simultaneous	interactions	of	this	kind	appear	to	be	required,	as	seen	in	
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the	EM	structures	of	 TRiC	 in	 complex	with	actin	and	 tubulin	 (Llorca	et	 al.,	 2000;	 Llorca	et	 al.,	 1999a).	

Among	all	subunits,	CCT2	harbors	the	most	nonpolar	classical	‘chaperone-like’	binding	surface,	and	was	

found	to	be	crosslinked	to	several	full-length	substrates	(Joachimiak	et	al.,	2014).	The	unique	sequence	

divergence	observed	for	TRiC	apical	domains	expands	the	range	of	possible	recognition	motifs	beyond	

the	 simple	 hydrophobic	 pattern	 found	 for	 thermosomes	 and	 group	 I	 chaperonins	 and	 allows	 for	

recognition	of	structurally	diverse	substrates	(Spiess	et	al.,	2004).		

Another	region	of	TRiC	interacting	with	the	substrate	is	the	so-called	sensor	loop	(Munoz	et	al.,	2011).	

This	loop	is	located	deep	inside	the	cavity	at	the	top	of	the	equatorial	domain	and	connects	to	the	ATP	

binding	 pocket.	 This	 is	 consistent	with	 the	 structures	 of	 TRiC	 in	 complex	with	 the	 substrates	 tubulin,	

Vid27	and	2ABG	(Gavin	et	al.,	2006;	Herzog	et	al.,	2012;	Munoz	et	al.,	2011),	which	show	chaperonin-

substrate	interactions	at	the	bottom	of	the	cavity.	The	sensor	loop	forms	a	beta	sheet	together	with	the	

N-	 and	 C-terminal	 segments	 of	 the	 neighboring	 chaperonin	 subunit	 (Figure	 11).	 The	N-	 and	 C-termini	

were	 suggested	 to	 be	 involved	 in	 protein	 folding	 by	 GroEL	 (Tang	 et	 al.,	 2006)	 and	 thermosomes	

(Bergeron	et	al.,	2009;	Zhang	et	al.,	2010a).	It	was	hypothesized	that	via	this	sensor	loop	substrate	and	

ATP	 binding	 could	 be	 coordinated	 (Munoz	 et	 al.,	 2011)	 or	 –	 in	 an	 even	more	 intricate	model	 –	 that	

conformational	 changes	 by	 ATP	 hydrolysis	 could	 be	 transmitted	 onto	 the	 substrate	 thereby	 actively	

promoting	 its	 folding	 (Llorca	 et	 al.,	 2001;	 Stuart	 et	 al.,	 2011).	 Indeed,	 FRET	 (Fluorescence	 Resonance	

Energy	Transfer)	measurements	show	substantial	structural	rearrangements	of	actin	not	only	upon	actin	

binding	 to	 TRiC	 but	 also	 upon	 ATP	 binding	 to	 TRiC	 (Villebeck	 et	 al.,	 2007).	 Remarkably,	 these	

rearrangements	are	not	seen	with	GroEL,	which	can	bind	actin	but	does	not	support	its	folding	(Balchin	

et	al.,	2018;	Tian	et	al.,	1995).	Thus,	TRiC	and	GroEL	influence	the	folding	landscape	of	their	substrates	in	

different	ways.		
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Figure	11:	Details	of	the	group	II	chaperonin	subunit.	A)	Structure	of	isolated	subunit	of	MmCpn	in	open	and	closed	

state.	Approximate	positions	of	 the	 substrate	binding	 site	and	 the	ATP	binding	 site	 are	 indicated	as	orange	 star	

(below	the	protrusion	helix)	and	blue	oval	(in	the	equatorial	domain	below	helix	14	(H14)),	respectively.	B)	Subunit	

interface	in	the	equatorial	domain	indicating	how	the	ß-strands	of	the	sensor	loop	interact	with	N-	and	C-termini	of	

the	neighboring	subunit	 (blue).	C)	Cryo-EM	reconstitution	of	TRiC-tubulin	complex.	The	TRiC	subunit	 is	contacting	

the	 substrate	 molecule	 with	 its	 apical	 domain	 and	 the	 sensor	 loop.	 Also	 the	 proximity	 of	 sensor	 loop	 and	 ATP	

binding	pocket	is	evident.	A+B	modified	from	(Skjaerven	et	al.,	2015),	C	adapted	from	(Munoz	et	al.,	2011).			

There	is	controversy	about	the	degree	of	folding	which	substrates	have	acquired	before	interacting	with	

TRiC.	TRiC-bound	actin	 is	highly	protease	sensitive	 (Meyer	et	al.,	2003)	and	the	TRiC	binding	motifs	of	

VHL	 protein	 (von	 Hippel	 Lindau	 tumor	 suppressor)	 become	 buried	 in	 the	 protein	 core	 upon	 folding	

(Feldman	et	al.,	2003),	which	argues	for	a	 largely	unstructured	state	of	these	substrates.	On	the	other	

hand,	 especially	 EM	 structures	 of	 TRiC-substrate-complexes	 suggest	 that	 substrates	 have	 acquired	 a	
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compact	structural	state	(Balchin	et	al.,	2018;	Munoz	et	al.,	2011;	Yebenes	et	al.,	2011)	and	are	bound	to	

TRiC	in	a	quasi-native	conformation	(Llorca	et	al.,	2000).	Analysis	of	this	question	is	complicated	by	the	

fact,	 that	 in-vivo,	 TRiC	 cooperates	 with	 a	 multitude	 of	 cellular	 factors	 which	 may	 stabilize	 substrate	

conformations	not	existing	in	reconstituted	systems.		

	

2.5.9 TRiC substrates 

Although	 TRiC	was	 initially	 believed	 to	 serve	 exclusively	 in	 actin	 and	 tubulin	 folding	 (Sternlicht	 et	 al.,	

1993),	 numerous	 non-cytoskeletal	 TRiC	 substrates	 are	 known	 today	 (Spiess	 et	 al.,	 2004).	 They	 are	

involved	 in	 various	 cellular	 processes	 including	 cell	 cycle	 regulation	 (e.g.	 cyclin	 E1,	 CDC20,	 CDH1),	

protein	 trafficking	 (e.g.	myosin	heavy	 chain)	and	chromatin	modification	 (e.g.	by	histone	deacetylases	

HDAC3).	While	GroEL	 substrates	are	generally	of	 lower	 than	average	abundance	 (Kerner	et	al.,	2005),	

some	 TRiC	 substrates,	 e.g.	 actin	 but	 also	 eEF2	 (eukaryotic	 elongation	 factor	 2),	 are	 among	 the	most	

highly	 expressed	 eukaryotic	 proteins	 -	 even	 though	 TRiC	 itself	 is	 only	 present	 at	 moderate	 levels	 in	

budding	 yeast	 (10	 times	more	eEF2	 than	TRiC;	 TRiC	present	 in	 1.8	 x	 104	 copies	per	 cell)	 (Kulak	 et	 al.,	

2014).		

Proper	 TRiC	 function	 also	 has	 important	 implications	 for	 health	 and	 disease.	 For	 instance,	 the	 TRiC	

substrate	 proteins	 p53,	 von	 Hippel	 Lindau	 tumor	 suppressor	 (VHL),	 and	 STAT3	 link	 TRiC	 to	 cancer	

(Feldman	 et	 al.,	 2003;	 Lopez	 et	 al.,	 2015).	 In	 addition,	 TRiC	 function	 is	 associated	 with	

neurodegenerative	diseases	as	TRiC	binds	 the	N-terminal	 fragment	of	huntingtin,	 the	protein	which	 is	

mutated	 in	Huntington’s	disease.	 In	model	 systems	TRiC	modulates	huntingtin	 aggregation	properties	

and	 reduces	 its	 cytotoxicity	 (Behrends	 et	 al.,	 2006;	 Tam	 et	 al.,	 2006).	 Finally,	 several	 viral	 proteins	

require	TRiC	for	folding	or	virus	assembly.	Consequently,	downregulation	of	TRiC	impairs	replication	of	

several	important	human	pathogens	including	hepatitis	C	virus	and	HIV	(Lopez	et	al.,	2015).		
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Although	 the	 list	 of	 potential	 TRiC	 substrates	 keeps	expanding,	 a	 clear	 structural	 or	 sequence	 feature	

that	marks	stringent	TRiC	substrates	remains	elusive.	One	major	structural	motif	shared	by	several	TRiC	

substrate	proteins	is	a	WD40	domain,	which	consists	of	β-blades	forming	a	propeller	structure	(Lopez	et	

al.,	 2015;	 Spiess	et	 al.,	 2004;	Yam	et	al.,	 2008).	Among	others,	 this	element	 can	be	 found	 in	 the	TRiC	

substrates	 telomerase	 co-factor	 TCAB1,	 in	 the	 cell	 cycle	 regulators	 CDC20	 and	 CDH1	 and	 in	 the	 Gß	

subunit	of	G-protein	signaling	complexes	(Camasses	et	al.,	2003;	McLaughlin	et	al.,	2002)	(Freund	et	al.,	

2014).	Apparently,	TRiC	assistance	 is	 required	to	 form	the	 final	ß-propeller	structure,	which	 is	entirely	

composed	of	anti-parallel	ß-strands.	ß-sheet-rich	structures	have	notorious	 folding	difficulties	because	

correct	interactions	between	non-contiguous	sequences	need	to	be	established	accurately.	This	requires	

long	 search	 times,	 giving	 rise	 to	 long-lived	 folding	 intermediates,	which	are	prone	 to	 aggregation	and	

misfolding	(Plaxco	et	al.,	1998).	TRiC	may	facilitate	folding	of	these	complicated	structures	by	preventing	

kinetically	 trapped	 non-productive	 states,	 which	 in	 this	 special	 case	 may	 include	 preventing	 strand-

swapping	between	domains	(Spiess	et	al.,	2004).		

Another	mechanistic	aspect	of	TRiC	folding	is	the	release	of	the	folded	substrate,	which	in	many	cases	is	

coupled	to	the	availability	of	binding	partners.	Many	TRiC	substrates	are	subunits	of	homo-	or	hetero-

oligomeric	 complexes	 (Yam	 et	 al.,	 2008).	 Functionality	 of	 the	 substrate	 is	 not	 only	 dependent	 on	 its	

proper	 folding	but	 also	on	 its	 correct	 incorporation	 into	a	higher	order	 assembly,	 as	 it	 is	 the	 case	 for	

tubulin,	 CDC20	or	 VHL	 (Camasses	 et	 al.,	 2003;	 Feldman	et	 al.,	 2003;	 Lopez-Fanarraga	 et	 al.,	 2001).	 In	

these	cases,	TRiC	prevents	the	premature	release	of	unassembled	components	and	thereby	constitutes	

a	major	quality	control	mechanism	for	quaternary	interactions.		

Finally,	 an	 important	 characteristic	 of	 the	 ensemble	 of	 putative	 TRiC	 substrates	 is	 its	 great	 variety	 in	

sizes.	 Numerous	 TRiC	 substrate	 proteins	 are	 larger	 than	 70	 kDa	 and	 these	 are	 typically	multi-domain	

proteins	(Dekker	et	al.,	2008;	Yam	et	al.,	2008).	The	TRiC	cavity	has	roughly	the	same	dimensions	as	the	

GroEL/ES	 cavity	 and	 is	 ~180,000	 Å3	 large	 (Cong	 et	 al.,	 2012).	 This	 is	 large	 enough	 to	 accommodate	
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substrates	up	to	70	kDa	molecular	weight.	The	majority	of	GroEL	substrates	are	smaller	than	50	kDa	and	

likely	 can	be	 fully	encapsulated	 (Houry	et	al.,	1999;	Kerner	et	al.,	2005).	Only	a	 small	 subset	of	GroEL	

substrates	is	larger	than	70	kDa	and	apparently,	these	interactions	are	either	non-productive	for	folding	

(Kerner	 et	 al.,	 2005)	 or	 originate	 from	 cycles	 of	 binding	 and	 release	without	 encapsulation	 by	 GroES	

(Chaudhuri	et	al.,	2001).	In	contrast,	TRiC	might	function	by	enclosing	only	those	domains	that	critically	

depend	on	it	for	folding.	The	closed	lid	of	the	TRiC	complex	has	a	central	opening	of	approximately	5	Å,	

which	 might	 be	 wide	 enough	 to	 accommodate	 an	 extended	 linker	 sequence	 connecting	 structured	

domains.	A	domain-wise	folding	mechanism	could	also	act	co-translationally.	In	this	context,	TRiC	might	

delay	folding	or	prevent	misfolding	of	an	early	domain	until	later	domains	critically	required	for	proper	

folding	 of	 the	 protein	 as	 a	whole	 have	 emerged	 from	 the	 ribosome.	 Indeed,	 TRiC	 binding	 to	 nascent	

chains	has	been	reported	(Etchells	et	al.,	2005;	Frydman	et	al.,	1994).	However,	clear	evidence	whether	

partial	encapsulation	can	occur	and	whether	this	results	in	productive	folding	is	missing.		

	

2.5.10 Co-chaperones and regulators of TRiC activity  

As	a	molecular	chaperone,	TRiC	is	tightly	integrated	into	the	cellular	network	of	protein	quality	control	

factors,	 serving	 as	 a	 network	 hub.	 TRiC	 receives	 unfolded	 or	 misfolded	 proteins	 and	 promotes	 their	

folding	 directly.	 In	 addition,	 TRiC	 might	 hand	 over	 potentially	 aggregation-prone	 intermediates	 to	

appropriate	 downstream	 systems,	 which	 may	 include	 transfer	 to	 the	 ubiquitin-proteasome	 system	

(Balchin	et	al.,	2016;	Buchberger	et	al.,	2010;	Guerrero	et	al.,	2008).	Obviously,	 this	 task	demands	 for	

numerous	 physical	 interactions	 with	 non-substrate	 proteins.	 Upstream	 chaperones	 can	 modulate	

substrate	presentation	to	the	chaperonin	and	adjust	substrate	flux	to	the	needs	of	the	cell.	For	instance,	

Hsp70	 (Cuellar	 et	 al.,	 2008;	 Melville	 et	 al.,	 2003)	 and	 the	 hexameric	 jellyfish-like	 prefoldin	 complex	

(Geissler	 et	 al.,	 1998;	 Vainberg	 et	 al.,	 1998)	 were	 shown	 to	 physically	 interact	 with	 the	 chaperonin.	
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Prefoldin	 acts	 as	 a	 holdase,	 which	 stabilizes	 folding	 intermediates	 against	 aggregation.	 Hydrophobic	

patches	at	 the	 tips	of	 six	 long	coiled-coil	 “tentacles”	bind	unfolded	clients	 (Lundin	et	al.,	2004).	These	

tips	 are	 also	 thought	 to	make	 contact	 to	 the	 chaperonin,	probably	handing	over	 the	bound	 substrate	

from	 the	 prefoldin	 cavity	 into	 the	 cylindrical	 chaperonin	 (Martin-Benito	 et	 al.,	 2002).	 Yeast	 mutants	

lacking	functional	prefoldin	exhibit	defects	 in	actin	and	tubulin	folding	(Geissler	et	al.,	1998;	Siegers	et	

al.,	1999).	In	contrast,	the	loss	of	prefoldin	is	embryonically	lethal	in	the	nematode	worm	Caenorhabditis	

elegans	 (Lundin	 et	 al.,	 2008),	 and	 prefoldin	 knock-out	mice	 die	 five	weeks	 after	 birth	 due	 to	 various	

abnormalities	caused	by	cytoskeletal	defects	(Cao	et	al.,	2008).	Together,	TRiC	and	prefoldin	are	part	of	

an	important	folding	pathway	for	cytoskeletal	proteins	and	possibly	other	substrates.			

Some	 TRiC	 interactors	 serve	 as	 co-chaperones	 that	 cooperate	 with	 TRiC	 to	 ensure	 optimal	 client	

processing.	An	example	for	assistance	downstream	of	TRiC	are	the	five	tubulin	folding	cofactors	CoA-E	

which	 are	 required	 for	 the	 assembly	of	α-tubulin	 and	ß-tubulin	 (both	monomers	 are	 TRiC	 substrates)	

into	 α/ß-tubulin	 hetero-dimers,	which	 are	 the	 building	 block	 of	microtubules	 (Lopez-Fanarraga	 et	 al.,	

2001).	 Another	 group	 of	 TRiC	 co-chaperones	 are	 the	 phosducin-like	 proteins	 (PhLPs),	 which	 can	 be	

subdivided	in	three	homologous	families	called	PhLP1,	PhLP2	and	PhLP3	(Willardson	and	Howlett,	2007).	

All	PhLPs	have	been	shown	to	interact	with	the	TRiC	chaperonin	(McLaughlin	et	al.,	2002;	Stirling	et	al.,	

2006;	Stirling	et	al.,	2007).	PhLP1	seems	to	be	primarily	involved	in	the	incorporation	of	the	Gß	subunit	

into	 heterotrimeric	 G-proteins	 in	 metazoans,	 while	 PhLP2	 and	 PhLP3	 function	 in	 actin	 and	 tubulin	

biogenesis	(Willardson	and	Howlett,	2007).	Cryo-EM	reconstitution	of	the	PhLP1-TRiC	complex	suggest	a	

similar	 interaction	 as	 observed	 for	 the	 prefoldin-TRiC	 complex	 (Martin-Benito	 et	 al.,	 2004).	 The	 two	

domains	of	PhLP1	contact	two	juxtaposed	apical	domains	in	the	chaperonin	ring,	thereby	spanning	one	

end	of	the	cylinder,	possibly	facilitating	the	exchange	of	a	bound	substrate.	In	the	yeast	S.	cerevisiae,	the	

PhLP2	 homologue	 Plp2	 is	 essential	 and	 temperature-sensitive	 alleles	 show	 defects	 in	 TRiC-regulated	

processes	such	as	actin	and	tubulin	function	and	cell	cycle	regulation	(Stirling	et	al.,	2007).	Deletion	of	
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the	PhLP3	homologue	Plp1	seems	to	primarily	interfere	with	tubulin	biogenesis	(Lacefield	and	Solomon,	

2003;	Stirling	et	al.,	2006).		

	

2.6  The uncharacterized protein Fam203/Hgh1  

A	recent	genome-wide	interaction	screen	in	HeLa	cells	(Hein	et	al.,	2015)	identified	the	uncharacterized	

protein	Fam203	as	a	TRiC	interactor.	Fam203	exhibited	binding	dynamics	similar	to	PhLPs,	and	was	thus	

suggested	to	perform	a	regulatory	function.	Homologues	of	the	45	kDa	Fam203	are	present	throughout	

the	 eukaryotic	 tree,	 which	 probably	 indicates	 a	 conserved	 function.	 The	 yeast	 homologue	 Hgh1	 is	 a	

protein	of	 intermediate	overall	 abundance	 (Kulak	et	al.,	2014).	Hgh1	was	 shown	 to	physically	 interact	

with	the	TRiC	subunit	Cct6	and	the	eukaryotic	elongation	factor	2	homologue	Eft	in	a	proteomics	screen	

(Gavin	et	al.,	2006).	The	interaction	between	Hgh1	and	Eft	was	confirmed	in	an	independent	proteome-

wide	study	(Krogan	et	al.,	2006).	Eft	 is	the	yeast	orthologue	of	eEF2,	an	essential	and	highly	abundant	

elongation	 factor	 (see	 chapter	2.7).	 In	S.	 cerevisiae,	 Eft	 is	 encoded	by	 two	genes,	EFT1	 and	EFT2,	 and	

simultaneous	deletion	of	both	genes	is	lethal	(Perentesis	et	al.,	1992).		

While	deletion	of	HGH1	does	not	 impair	growth	 (Rodriguez-Pena	et	al.,	1998),	deletion	of	both	HGH1	

and	 EFT2	 causes	 a	 synthetic	 growth	 defect,	 implying	 a	 functional	 relation	 between	 Eft	 and	 Hgh1	

(Costanzo	et	 al.,	 2010).	Deletion	of	HGH1	 triggers	 a	mild	heat	 shock	 response,	 indicative	of	 increased	

protein-folding	stress	 in	 the	cytosol	 (Brandman	et	al.,	2012)	 .	Moreover,	 the	absence	of	Hgh1	renders	

yeast	cells	sensitive	to	the	Hsp90	inhibitor	Macbecin	(McClellan	et	al.,	2007),	and	the	combined	deletion	

of	HGH1	and	components	of	the	Hsp90	machinery,	such	as	CPR7,	HCH1,	HSC82,	HSP82	and	STI1,	causes	

a	synthetic	growth	defect	(Brandman	et	al.,	2012;	Costanzo	et	al.,	2010).	Hgh1	interacts	directly	with	the	

essential	Hsp90	cochaperone	Cns1	(Gavin	et	al.,	2006;	Schlecht	et	al.,	2012;	Tarassov	et	al.,	2008).	Thus,	
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Hgh1	 appears	 be	 tightly	 linked	 to	 the	 cellular	 chaperone	 network	 (Rizzolo	 et	 al.,	 2017;	 Rizzolo	 et	 al.,	

2018).	However,	the	precise	function	of	Fam203/Hgh1	remains	unclear.		

	

2.7  eEF2: Eukaryotic elongation factor 2  

During	 the	 ribosomal	 elongation	 cycle	 of	mRNA	 translation,	 amino	 acids	 are	 covalently	 linked	 to	 the	

growing	 polypeptide	 chain	 in	 the	 specific	 sequence	 encoded	 by	 the	 sequence	 of	 three-nucleotide	

codons	in	the	mRNA	chain.	The	following	amino	acid	is	delivered	to	the	ribosomal	A-site	by	elongation	

factor	1	(EF1)	in	the	form	of	an	aminoacyl-tRNA.	Correct	codon-anticodon	matching	is	communicated	to	

the	ribosomal	peptidyl	 transferase	center	 (PTC),	which	catalyzes	peptide	bond	formation	between	the	

last	 residue	 in	 the	 peptidyl-tRNA	 and	 the	 newly	 docked	 aminoacyl-tRNA.	 As	 a	 result,	 the	 extended	

polypeptide	chain	is	transferred	from	the	P-site	to	the	A-site	and	an	empty	tRNA	is	left	behind	in	the	P-

site.	Ratcheting	of	the	ribosomal	subunits	then	leads	to	a	hybrid-state,	where	the	acceptor	ends	of	the	

tRNAs	 contact	 the	 E	 and	 P-sites	 and	 the	 anticodon	 loops	 contact	 the	 P	 and	 A-sites,	 respectively.	

Resolution	 of	 this	 hybrid	 state	 to	 the	 canonical	 E	 and	 P-sites	 is	 called	 translocation	 and	 requires	 the	

activity	 of	 elongation	 factor	 2	 (EF2).	 Binding	 of	 EF2	 is	 thought	 to	 stabilize	 the	 hybrid-state,	 while	

conformational	changes	induced	by	GTP	hydrolysis	unlock	the	ribosome.	As	a	result,	the	empty	tRNA	has	

now	 reached	 the	 E-site	 where	 it	 can	 exit	 the	 ribosome	 and	 the	 elongated	 peptidyl-tRNA	 chain	 has	

moved	back	 to	 the	P-site,	 resulting	 in	an	empty	A-site.	Translation	can	proceed	with	 the	next	cycle	of	

elongation	(for	details	see	reviews	(Voorhees	and	Ramakrishnan,	2013)	and	(Dever	and	Green,	2012)).		

EF2	is	a	93	kDa	multi-domain	GTPase	that	is	essential	and	highly	conserved	in	sequence	and	structure.	

For	each	elongation	cycle	of	 the	growing	nascent	 chain,	one	EF2	molecule	binds	 to	 the	 ribosome	and	

hydrolyzes	one	GTP.	Bacterial	 EF-G,	 archaeal	 aEF2	and	eukaryotic	 eEF2	 share	 similar	 overall	 structure	

composed	of	six	structured	domains	(G,	G’,	II,	III,	IV	and	V)	with	the	GTP-binding	pocket	being	located	in	
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the	 first	 domain	 (Noble	 and	 Song,	 2008)	 (Figure	 12).	 During	 the	 translocation	 step,	 EF-G	 undergoes	

extensive	conformational	changes	(Lin	et	al.,	2015).	Likewise,	substantial	conformational	differences	are	

found	between	 the	 crystal	 structures	of	 yeast	eEF2	alone	and	 in	 complex	with	 the	antibiotic	 Sordarin	

(Jorgensen	et	al.,	2003).		

	

Figure	12:	Crystal	 structures	of	yeast	eEF2	 in	 the	apo-state	 (left)	and	sordarin-bound	state	 (right).	The	structures	

are	aligned	by	their	N-terminal	GTP-binding	modules,	comprising	domains	G,	G’	and	II	(dark	blue,	cyan	and	green).	

The	domain	structure	is	color-coded	and	shown	schematically	below.	Figure	modified	from	(Jorgensen	et	al.,	2003).		

In	 contrast	 to	 its	 prokaryotic	 homologue	 EF-G,	 archaeal	 aEF2	 and	 eukaryotic	 eEF2	 both	 carry	 a	

characteristic	 and	 unique	 posttranslational	 modification	 called	 diphthamide.	 A	 conserved	 histidine	

residue	at	the	tip	of	domain	 IV	(H699	 in	yeast,	H715	 in	mammals)	 (Figure	12)	 is	modified	by	the	step-

wise	and	coordinated	action	of	seven	conserved	proteins	called	Dph1-Dph7	(Su	et	al.,	2013).	In	archaea,	

diphthamide	group	synthesis	initiates	on	fully	folded	elongation	factor	2	(Zhang	et	al.,	2010b).	Cryo-EM	

reconstitutions	 of	 eEF2-ribosome	 complexes	 show	 that	 the	 tip	 of	 domain	 IV	 points	 to	 the	 ribosomal	

decoding	center,	 suggesting	 that	 the	diphthamide	modification	 improves	 translation	 fidelity	 (Spahn	et	
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al.,	 2004).	 Indeed,	 yeast	 mutants	 missing	 diphthamide	 show	 increased	 sensitivity	 to	 translation	

inhibitors	 and	 especially	 increased	 -1	 frameshifting	 (Ortiz	 et	 al.,	 2006).	 However,	 the	 diphthamide	

modification	in	eEF2	is	not	strictly	required	for	cell	growth	(Kimata	and	Kohno,	1994;	Phan	et	al.,	1993).	

The	 diphthamide	 group	 is	 the	 cellular	 target	 for	 several	 bacterial	 toxins,	 such	 as	 exotoxin	 A	 from	 P.	

aeruginosa	 and	 diphtheria	 toxin	 from	C.	 diphtheriae.	 These	 toxins	 inactivate	 eEF2	 by	 transferring	 the	

ADP-ribosyl	 moiety	 from	 NAD+	 onto	 the	 diphthamide	 imidazole,	 which	 results	 in	 inhibition	 of	 mRNA	

translation	and	cell	death	 (Yates	et	 al.,	 2006).	 Furthermore,	 activity	of	eEF2	 in	mammals	 is	negatively	

regulated	 via	 phosphorylation	 by	 eEF2	 kinase,	 enabling	 reversible	 inactivation	 for	 translational	

regulation	(Kenney	et	al.,	2014).		

	

3  Aim of this  study 

Chaperonins	are	ubiquitous	and	essential	in	all	domains	of	life.	While	the	bacterial	GroEL/ES	chaperonin	

system	has	been	well	characterized,	fundamental	aspects	of	its	eukaryotic	counterpart,	TRiC,	remained	

unexplored.		

To	resolve	the	discrepancies	between	the	models	for	the	arrangement	of	the	eight	subunits	in	the	TRiC	

rings,	we	 first	 set	out	 to	determine	 the	 subunit	 topology	 in	TRiC	by	 the	novel	 approach	of	 combining	

chemical	crosslinking	with	mass	spectroscopy	(XL-MS).	Furthermore,	we	addressed	the	open	question	of	

how	TRiC	may	promote	folding	of	substrates	too	large	to	be	encapsulated	entirely	inside	the	TRiC	cavity.	

Finally,	we	explored	the	structure	and	function	of	the	putative	TRiC	cochaperone,	Fam203/Hgh1.		
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4  Results /  Publications 

4.1  Paper I :  The molecular architecture of the eukaryotic chaperonin 
TRiC/CCT.  
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SUMMARY

TRiC/CCT is a highly conserved and essential chap-
eronin that uses ATP cycling to facilitate folding of
approximately 10% of the eukaryotic proteome.
This 1 MDa hetero-oligomeric complex consists of
two stacked rings of eight paralogous subunits
each. Previously proposed TRiC models differ sub-
stantially in their subunit arrangements and ring
register. Here, we integrate chemical crosslinking,
mass spectrometry, and combinatorial modeling to
reveal the definitive subunit arrangement of TRiC.
In vivo disulfide mapping provided additional valida-
tion for the crosslinking-derived arrangement as
the definitive TRiC topology. This subunit arrange-
ment allowed the refinement of a structural model
using existing X-ray diffraction data. The structure
described here explains all available crosslink exper-
iments, provides a rationale for previously unex-
plained structural features, and reveals a surprising
asymmetry of charges within the chaperonin folding
chamber.

INTRODUCTION

The eukaryotic chaperonin TRiC/CCT (hereafter, TRiC) is essen-
tial for cell survival, employing ATP hydrolysis to fold !10% of
the proteome (Yam et al., 2008), including many essential pro-
teins, such as cytoskeletal components and cell cycle regulators
(Hartl et al., 2011; Spiess et al., 2004). The folding of many of
these substrates is strictly dependent on TRiC. The TRiC
subunits are related to the simpler archaeal chaperonin, the ther-
mosome (Ditzel et al., 1998; Pereira et al., 2010; Shomura et al.,
2004). Most thermosomes and TRiC consist of two 8-membered
rings that are stacked back-to-back. Many archaeal species

have just one thermosome gene (Zhang et al., 2010). In stark
contrast, the eukaryotic complex consists of eight different but
related subunits (CCT1 to CCT8), all of which are essential in
yeast. The subunit specialization occurred very early in
eukaryote evolution (Archibald et al., 2001) and is conserved to
such an extent that the sequence identity between orthologous
mammalian and yeast subunits of the same type is nearly
60%, whereas the sequence identity between paralogous
subunits in the same organism is only about 30%. Each of the
eight TRiC subunitsmay differ in substrate specificity; as a result,
nonnative polypeptides engage the chaperonin through combi-
natorial interaction with selected subunits (Feldman et al.,
2003; Llorca et al., 2001; Muñoz et al., 2011; Spiess et al.,
2006). This mode of recognition dictates the topology of bound
substrates, thereby influencing their folding trajectory (Douglas
et al., 2011).
The original proposition for the TRiC subunit arrangement

came from a western blot analysis of low-molecular-weight
subcomplexes found in very low amounts in crude mammalian
cell extracts (Liou and Willison, 1997). Similar electrophoretic
mobility was used to infer neighbors in the intact complex.
Although these low abundance entities were never characterized
further, they remain the foundation for a large body of structural
work on TRiC (Llorca et al., 1999, 2000; Martı́n-Benito et al.,
2004, 2007; Rivenzon-Segal et al., 2005), including the recent
crystal structure of the closed conformation (Dekker et al.,
2011). Under the assumption that the fragmentation was always
preceded by dissociation into single rings, the incomplete data
(subunit q was apparently not part of any microcomplex) were
consistent with the proposed arrangement, CCT 6-5-1-7-4-8-
3-2 (i.e., TCP z-ε-a-h-d-q-g-b). Later electron microscopy (EM)
studies of TRiC with bound subunit-specific antibodies seemed
to confirm this arrangement (Martı́n-Benito et al., 2007). Because
of the complexity of the problem, the data employed was sparse,
and the assignment of the subunits was only possible under far-
reaching assumptions. The inherent ambiguity of the antibody
decoration approach is underscored by the inability to predict
the correct interring register, even from three-dimensional (3D)
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reconstructions of such complexes (Martı́n-Benito et al., 2007).
Unfortunately, the quality of the subsequent electron micros-
copy and X-ray crystallographic data was not sufficient to
unequivocally establish the correct subunit arrangement (Cong
et al., 2010; Dekker et al., 2011; Martı́n-Benito et al., 2007).
Understanding the architecture and detailed mechanism of

large multisubunit complexes is commonly limited by this
inability to obtain high-resolution structural information. In the
absence of atomic resolution data, orthogonal structural infor-
mation is needed for accurate interpretation. An emerging struc-
ture determination technique that has the potential to obtain a
highly redundant three-dimensional map of constraints is cross-
linking coupled with mass-spectrometry (XL-MS; reviewed in
Leitner et al., 2010; Rappsilber, 2011). In this approach, the
native protein complex is incubated with a crosslinking reagent
capable of forming specific covalent bonds with exposed and
frequently occurring side chains. Most commonly, amine-reac-
tive reagents, such as disuccinimidyl suberate (DSS), for cross-
linking of lysine residues are used, although a variety of reagents
have been introduced (Petrotchenko and Borchers, 2010). Next,
the complex is proteolytically digested and subjected to MS
analysis for identification of the crosslinked peptides (Figure 1A).
The crosslinked anchor sites provide a comprehensive three-
dimensional map as a framework for molecular modeling. Previ-

ously, the application of the XL-MS approach had been limited to
individual proteins and small complexes (reviewed by Sinz,
2006). Recent advances in MS instrumentation and the develop-
ment of more powerful analysis software have permitted the
application of XL-MS to a number of increasingly complex
assemblies (Bohn et al., 2010; Chen et al., 2010; Maiolica
et al., 2007; Schulz et al., 2007). Multisubunit complexes studied
by XL-MS include the 26S proteasome (Bohn et al., 2010; Lasker
et al., 2012), eukaryotic RNA polymerases (Chen et al., 2010),
and the ribosome (Lauber and Reilly, 2011).
We used the XL-MS approach to investigate the order and

orientation of the 16 subunits in the 1 MDa complex TRiC/CCT.
Structural data of TRiC has been obtained at near-residue reso-
lution, 4.0 and 3.8 Å, by single-particle averaging cryo-electron
microscopy (cryo-EM) and X-ray crystallography (Cong et al.,
2010; Dekker et al., 2011). The derived models agree in that
both rings have a specific subunit order and that the two rings
are related by 2-fold symmetry, creating two homomeric
contacts across the equator. However, the proposed subunit
orders completely disagree (CCT 6-5-1-7-4-8-3-2 vs. CCT
8-4-5-7-1-6-2-3 for Dekker et al., 2011 and Cong et al., 2010,
respectively). Here, we resolve this issue by the orthogonal
XL-MS approach and present the definite model for the TRiC/
CCT structure.

Figure 1. Mass Spectrometry Analysis of Crosslinked TRiC Yields Specific Intersubunit Crosslinks
(A) TRiCwas incubated with or without nucleotide to generate the desired conformational state, treated with crosslinking reagent, and proteolyzed to generate an

ensemble of crosslinked and noncrosslinked peptides. Crosslinked peptides were chromatographically enriched and analyzed by LC-MS-MS. The identity of the

peptides and anchor lysine residues was determined using xQuest (Rinner et al., 2008). Validated crosslinks were used for TRiC model building.

(B) Summary of crosslinks identified using TRiC purified from two different species, bovine (bTRiC) and yeast (yTRiC).

(C) Cryo-EM imaging evidence for the structural integrity of crosslinked TRiC in the apo (left), ATP (middle), and ATP+AlFx (right) states. (Top and bottom panels)

Representative cryo-EM images and corresponding characteristic top and side views of the reference-free 2D class averages of the crosslinked TRiC; numbers of

raw particle images used to derive the averages are indicated.

(D and E) SDS- (D) and native-PAGE (E) analysis of bTRiC in indicated nucleotide states without (lanes 1–3) or with (lanes 4–6) crosslinking.

See also Figure S1 and Table S2.
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RESULTS

Crosslinking Tandem Mass Spectrometry Approach
Our experimental strategy (Figure 1A) exploited recent advances
in chemical crosslinking combined with mass spectrometry (Rin-
ner et al., 2008) to identify residues in close spatial proximity in
functionally competent TRiC/CCT complexes. These distance
constraints then guided the selection of the most likely subunit
arrangement by molecular modeling. The number of distance
constraints was maximized by applying this strategy to TRiC
purified from two evolutionary distant organisms, Bos taurus
and Saccharomyces cerevisiae (bTRiC and yTRiC). At the
peptide level, the complexes from each species are expected
to yield virtually unrelated tryptic cleavage products. Further-
more, approximately 40% of the surface lysine positions avail-
able for crosslinking are scrambled between the bovine and
yeast orthologs, resulting in an improved sampling of the subunit
surfaces (Table S1 available online).

The conformation of nucleotide-free TRiC is highly heteroge-
neous, resulting in greater structural ambiguity. ATP hydrolysis
leads to a more compact state, whereby a built-in lid closes
over the central TRiC folding chamber (Meyer et al., 2003). To
facilitate the subsequent modeling analysis, TRiC was cross-
linked following incubation with ATP or ATP+AlFx; both condi-
tions induce the closed conformation for which highly reliable
structural models derived from archaeal chaperonins exist (Dit-
zel et al., 1998; Pereira et al., 2010; Shomura et al., 2004). Native
protein complexes were incubated with two different isotopically
labeled forms of DSS (Müller et al., 2001), which crosslinks
exposed primary amino groups found in lysine side chains and
polypeptide N-termini. The complex was then digested with
trypsin, and samples enriched for crosslinked peptides (Leitner
et al., 2012) were analyzed by capillary liquid chromatography
tandem mass spectrometry (LC-MS-MS), and the resulting
complex fragment ion spectra were assigned to the correspond-
ing peptide sequences using xQuest (Rinner et al., 2008; Fig-
ure 1A). Under our experimental conditions, the extent of lysine
modification approached saturation. For example, yTRiC has
a total of 334 lysines, and of these, 151 were involved in cross-
links in the corresponding ATP-AlFx data set. Furthermore,
many crosslinks were identified by multiple peptide pairs. Over-
all, we identified 997 peptide pairs across all experiments
with an estimated false discovery rate (FDR) of less than 5%
(Figure 1B and Table S2). They consisted of 423 heterotypic
crosslinks, that is, crosslinks between different subunits in the
TRiC complex, and 574 homotypic crosslinks, that is, crosslinks
within the same subunit or between two identical subunits. Of
the 423 heterotypic crosslinks, 302 mapped to likely ordered
parts of the subunit homology models; these were used for
determining the overall topology of the complex (see Mapping
of the crosslinks onto structural model section and Figure S2A).
The remainder mapped primarily to the unstructured N- and
C-terminal tails (Figure S2A).

Integrity of the Complex during Crosslinking
To verify that the complex integrity was not affected by crosslink-
ing, we assessed the conformation of crosslinked and native
TRiC by EM and gel electrophoresis (Figures 1C–1E and S1).
bTRiC samples incubated with or without ATP or ATP+AlFx

were analyzed before and after DSS treatment. Two-dimensional
class averages of cryo-EM single particles of TRiC indicated
that the conformations before (Cong et al., 2010) and after cross-
linking were virtually indistinguishable at low resolution (Fig-
ure 1C, bottom panel). Thus, TRiC integrity was not detectably
compromised by crosslinking. SDS-PAGE of DSS-crosslinked
TRiC yielded high-molecular-weight species consistent with
full crosslinking of all TRiC subunits (Figure 1D). DSS-treated
TRiC migrated as a single band in native gels, indicating the
stabilization of a coherent complex population (Figure 1E). The
faster migration of DSS-treated TRiC is expected due to the
overall reduction in charge by the crosslinker. Of note, the ATP
and ATP+AlFx-induced closed states exhibited a characteristic
mobility shift, consistent with the cryo-EM analysis. Similar
results were obtained for yTRiC (Figure S1). We conclude that
that the crosslinks identified in this study are derived from struc-
turally intact chaperonin complexes.

Mapping of the Crosslinks onto a Structural Model
The identified intermolecular crosslinks were next employed as
spatial constraints to derive the most likely TRiC/CCT subunit
arrangement (Figures 2 and S2). Homology models were first
generated for each of the eight subunits using the crystal struc-
ture of the related archaeal chaperonin from Methanococcus
maripaludis in the nucleotide-bound state (Pereira et al., 2010).
The crosslinked lysine positions obtained in the ATP and ATP+
AlFx-induced states were then mapped onto the homology
models. Of note, only heterotypic crosslinks that mapped to
ordered parts of the structure were used in the subsequent
calculations to evaluate the compatibility of different geometries
between two different subunits [i.e., crosslinks involving residues
in loops of unclear conformation and flexible tails were discarded
(see Experimental Procedures and Figure S2A)]. Importantly,
identical results were obtained using other archaeal group II
chaperonin structures as templates (see Application of XL-MS
analysis to the dynamic open state of TRiC; Figure S3). For
each pair of crosslinked subunits, the fifteen possible pairwise
orientations in the hexadecamer were generated (Figure S2B),
and the respective lysine distances were calculated (Figures
S2C and S2D). The contour length between two Ca atoms of
DSS-crosslinked lysines is approximately 24 Å (Müller et al.,
2001). We applied a slightly longer Ca-Ca distance cutoff of
30 Å to account for protein dynamics and potential model inac-
curacies (see also Application of XL-MS analysis to the dynamic
open state of TRiC; Figure S3). We also checked whether these
crosslinks were physically possible, eliminating any crosslinks
that would traverse the protein core. For the complexes of
both species, the same unique TRiC/CCT subunit order, namely
CCT 6-8-7-5-2-4-1-3 (Figure 2A; i.e., TCP z-q-h-ε-b-d-a-g), was
obtained. Both rings are related by 2-fold symmetry, as pre-
dicted by previous structural analysis, with CCT6/z and
CCT2/b engaging in homotypic interring contacts. This subunit
arrangement, determined by XL-MS, was thus independently
determined from two unrelated data sets for TRiC, from two
evolutionarily distant species (Figures 2A and 2B). Of note, the
heterotypic crosslinked peptides were different in yTRiC and
bTRiC; this likely reflects the variability of surface exposed
lysines in the two TRiC complexes (Figures 2C and 2D). The
set of unambiguous crosslinks was complete for the closed
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conformation of yTRiC. Every directional intraring neighbor-pair
relationship and the interring register were established by
individual crosslinks (Figure 2B). For bTRiC, only one intraring
neighbor pair (CCT5-CCT7) relationship was not directly estab-
lished by crosslinks (Figure 2A). In case of the closed con-
formation data set of yTRiC, each intraring subunit contact was
established by at least four different crosslinked peptide pairs.
Thus, a wrong assignment of any individual neighbor-pair rela-
tionship at an FDR of 5% is highly unlikely (probability 6.25 3
10!6 or less). This shows that the assignment must be correct
beyond a reasonable doubt.

Combinatorial Analysis of Distance Constraints
The statistical significance of the arrangement determined by
XL-MS as the unique solution to the experimental distance
constraints was further investigated by an unbiased combinato-
rial approach that determined the number of constraints satisfied
for each of the 40,320 possible subunit arrangements (see
Experimental Procedures for details). This approach explicitly

Figure 2. Mass Spectrometry-Derived
Constraints Reveal the TRiC Subunit
Arrangement
(A and B) Subunit arrangement for (A) bTRiC and

(B) yTRiC derived from data sets for the closed

state. CCTx subunits are shown as black

numbers. The total number of heterotypic cross-

links supporting this arrangement is denoted in

red.

(C and D) Surface representation of the bTRiC and

yTRiC complexes, showing the surface distribu-

tion of lysines (shown in red; see also Table S1);

CCT2 (cyan) and CCT6 (pink) are highlighted for

orientation.

(E–G) Combinatorial analysis of the heterotypic

crosslinking constraints. A histogram showing the

distribution of numbers of constraints satisfying

the 30 Å cutoff in each conceivable arrangement

for closed bTRiC (E), closed yTRiC (F), and the

combined data sets (G). (Inset) Right tail of the

distribution. The XL-MS arrangement satisfies

the largest number of constraints (indicated by red

arrow), which are 54 of 64 and 84 of 102 crosslinks

for the bTRiC and yTRiC closed-state data sets,

respectively; that is, 138 of a total 166 for the

combined closed-state data sets. The XL-MS

p-value indicates statistical significance over the

second-best arrangement. The previously pro-

posed arrangements (Cong et al., 2010; Dekker

et al., 2011) are consistent with only 17 (green) and

23 (yellow) of the 166 crosslinks in the combined

bTRiC and yTRiC closed-state data sets.

See also Figure S2 and Tables S1 and S3.

evaluated the ambiguity of several plau-
sible pairs of subunit orientations
satisfying a given distance cutoff (see
Experimental Procedures for details;
Figure 2 and Table S3). The distribution
of arrangements satisfying these con-
straints is shown for both the individual
(Figures 2E and 2F) and the combined

closed TRiC data sets (Figure 2G) and demonstrates that the
arrangement determined by XL-MS is the only subunit ordering
that can explain the majority of the heterotypic crosslinks, satis-
fying 85% (Figure 2E) and 82% (Figure 2F) of the crosslinks for
the individual data sets and 83% for the combined data set (Fig-
ure 2G). The secondary solutions (see Table S3 and Experi-
mental Procedures for details) are significantly worse than the
XL-MS determined arrangement; indeed, the correctness of
the XL-MS determined arrangement is statistically significant,
relative to the second-best arrangement, with p-values of 2 3
10!4 and <10!5, respectively, for the bovine and yeast data
sets. Combining the yTRiC and bTRiC data increased the
statistical significance of the XL-MS determined arrangement
(p-value <10!6; Figure 2G) with respect to the second-best
arrangement. Importantly, the previously proposed TRiC subunit
arrangements (Cong et al., 2010; Dekker et al., 2011) explain only
a minor fraction (10% and 13%, respectively) of the observed
crosslinks (Figure 2G) and thus are essentially incompatible
with our extensive crosslink data set.
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Application of XL-MS Analysis to the Dynamic Open
State of TRiC
To assess whether the XL-MS and modeling strategy can be
applied to structurally less well-defined complexes, we next
analyzed crosslinks obtained for the more flexible open state
of TRiC without nucleotide using the coordinates of the open
state of Mm-Cpn as a model (Pereira et al., 2010; Figure 3). For
both bTRiC and yTRiC, a similar number of identified peptide
pairs was obtained as in the closed state (Figures 1E and S2A),
but fewer constraints passed the 30 Å distance cutoff, particu-
larly for the highly dynamic apical domains (Figure 3A, yellow
lines). To account for the increased flexibility of the open state
and the lower confidence level of available structural models,
the distribution of matching crosslinks over the considered
models was computed using a 36 Å distance cutoff (Figures
3B–3D). This analysis also yielded the XL-MS determined
arrangement as the best solution, satisfying 75% of the cross-
links (p-values 3.43 10!3, 6.13 10!3, and 0.17 for the combined
yTRiC and bTRiC data sets, respectively; see Figures 3B–3D,
Table S3, and the Experimental Procedures for details), high-
lighting the power of our cross-species strategy to model the
subunit topology even for structurally flexible, less well-charac-
terized complexes. As shown below (Figure S8), these larger
distances likely reflect inadequacies of our initial homology
model.

To systematically explore how the choice of template and
distance cutoff influences our analysis, we next computed the

Figure 3. Global Analysis of Mass Spec-
trometry-Derived Constraints for TRiC in
the Open Conformation
(A) Mapping the crosslinked lysines (yellow lines)

onto open-state models of bTRiC or yTRiC

(colored as in Figures 2C and 2D). The crosslinks

preferentially map to the equatorial domains,

consistent with increased flexibility of the apical

domains in the open state.

(B–D) Combinatorial analysis of heterotypic

crosslinking constraints from open conformation

data. The number of constraints satisfying the 36 Å

cutoff in each conceivable arrangement is shown

as a histogram for (B) combined open bTRiC and

yTRiC, (C) open bTRiC, and (D) open yTRiC data

sets. (Inset) Right tail of the distribution. The

XL-MS arrangement satisfies the largest number

of constraints (indicated by red arrow); for the

three respective data sets these are 102 of 136

(combined), 25 of 36 (bTRiC), and 77 of a total of

100 (yTRiC). The p-value indicates statistical

significance of XL-MS over the second-best

arrangement. The previously proposed arrange-

ments (Cong et al., 2010; Dekker et al., 2011) are

consistent with only ten (green) and eleven (yellow)

of the 136 crosslinks in the combined bTRiC and

yTRiC closed-state data sets.

See also Figure S3 and Table S3.

number of satisfied constraints as a
function of distance using the different
available group II chaperonin structures
as templates (Figure S3; Ditzel et al.,

1998; Pereira et al., 2010; Shomura et al., 2004). For the closed
data sets, this analysis indicated a clear convergence between
24 and 30 Å (Ditzel et al., 1998; Pereira et al., 2010; Shomura
et al., 2004; Figures S3B–S3F). Notably, the quality of the optimal
arrangement was not sensitive to the exact structural group II
chaperonin template employed to build the models (Figure S3).
For longer distance cutoffs, the number of satisfied constraints
approached the total number of constraints but decreased
the discrimination between the optimal arrangement and the
median of random solutions (data not shown), supporting our
choice of distance cutoff (Figures S3B–S3F).

The Refined XL-MS Structural Model
Prior attempts to generate an accurate structural model for
TRiC/CCT were confounded by the low resolution of available
cryo-EM and X-ray data. The previous cryo-EM model was
based on the visual analysis of density features in the apical
domains (Cong et al., 2010). Reanalysis of these cryo-EM data
(Cong et al., 2010) with more quantitative and statistical proce-
dures (see Table S4) suggests that the quality of the map
suffices for rough backbone tracing but lacks the resolvability
to distinguish the highly similar TRiC subunits, so this previous
interpretation has to be revoked. The interpretation of X-ray
diffraction data from the closed conformation suffers from
model bias since no experimental phases are available. We
refined a structural model representing the XL-MS determined
subunit arrangement against these X-ray diffraction data,
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carefully avoiding overt model bias (see the Supplemental
Experimental Procedures for details; Dekker et al., 2011). Our
final XL-MS structural model has clearly improved refinement
statistics and model geometry compared to the published
model based on the original subunit topology (Table 1). Strik-
ingly, unanticipated features of the refined XL-MS-based
structure provide a rationale for several crosslinks mapping to
regions not included in the homology model. Indeed, the refined
XL-MS-derived structure could explain approximately 94%
of heterotypic (Figures 4A and 4B) and 97% of homotypic
(data not shown) crosslinks, according to the 30 Å criterion.
This is much better than the thermosome-based homology
models. Thus, the XL-MS-based structure explains virtually all
experimentally obtained crosslinks; the fraction of outliers
corresponds to the 5% FDR for the MS assignment.The XL-
MS-derived structure is also more plausible with regard to
TRiC sequence features. Our structure accounts for several
large insertions unique to individual TRiC subunits, which are
well-defined in the electron density. For instance, CCT6 has
a unique 10-residue insertion after helix a8 (residues 282–291),
which elongates this helix by two turns (Figures 4C and 4D).
This feature is clearly discernible in unbiased difference maps
(Figures 4D and S4A). The XL-MS model furthermore explains
structurally defined distinctive insertions in CCT4 (residues
291–295 and 371–374), CCT1 (residues 341–345 and 484–

495), and CCT6 (residues 481–485; Figures 4C, 4D, and S4B
and not shown). In the construction of the Dekker model, these
aberrant density features, which are clearly present in the map,
had been mostly ignored (Figure S4).
Another striking finding of our model is that most of the

N-termini preceding strand b1 are resolved in the density. This
revealed two unexpected features, which were validated by
crosslinking data. First, we find in our model that CCT4 is the
single subunit that has an outward pointing N-terminal density
in the map (Figure 5A). In contrast, CCT5 was the corresponding
subunit with an outward pointing N-terminus in the original
model (Dekker et al., 2011). Strikingly, CCT4 is the only CCT
subunit that has a conserved proline at the N-terminal junction
to helix a1 (Figures 5B, 5C, and S5A). This provides an evolu-
tionary and structural rationale for why CCT4 is the only CCT
subunit with an outward-pointing N-terminus, explaining the
aberrant density (Figure 5A). In contrast, CCT5 has a glycine at
this position, as do most other TRiC subunits and archaeal
subunits (Figure 5C), all of which have inward pointing N-termini
(Figure 5A). Of note, the outward conformation of the CCT4
N-terminus is strongly corroborated by a series of crosslinks
within our data set, establishing contacts of K12 and K14 to
residues on the complex exterior (Figure 5D). These crosslinks
are incompatible with an inward-facing N-terminus but are
entirely consistent with the subunit docking and the CCT4
sequence data. Similarly, crosslinks between the N-terminus
of CCT5 and residues on the cavity walls support the location
of the CCT5 N-terminus inside the complex (Figure 5E).
Altogether, these observations ascertain the validity of the
XL-MS model.
The XL-MS-based TRiC structure also provides unanticipated

insights into interring interactions between the N-termini of
CCT1 and CCT8. In the crystal structure there is an extensive
direct interaction between the N-termini of the CCT8 subunits
across the equator (Figure S5B). Perhaps these unique structural
features help to correctly establish the subunit topology in
TRiC by stabilizing the ring-ring interface. They might also
contribute to allosteric rearrangements during the functional
cycle. The extensive interactions between the CCT8 N-termini
are consistent with previous crosslinking and 2D gel data
(Cong et al., 2010), which had suggested direct contacts
between CCT8 subunits (Figures S5C and S5D). Indeed, all
the crosslinks observed in Cong et al., 2010, which by them-
selves are insufficient to unambiguously determine the correct
arrangement, are fully consistent and explained by the XL-MS
architecture.

In Vivo Validation of XL-MS Architecture Using Disulfide
Mapping
To independently validate the intraring subunit order and inter-
ring subunit register determined by XL-MS, we next employed
in vivo near-neighbor disulfide engineering (Figures 6 and S6).
The XL-MS-determined arrangement predicts that subunits
CCT2 and CCT6 form interring homotypic contacts (Figures
2A, 2B, and 6A). Previous models predict homotypic contacts
for either CCT4 and CCT6 (Dekker et al., 2011) or CCT1 and
CCT8 (Cong et al., 2010; Figure 6A). We engineered cysteine
pairs at residues predicted to be proximal (Ca-Ca < 6 Å) in a ho-
motypic interring interface, thus permitting disulfide bond

Table 1. Crystallographic Refinement Statistics and Model
Geometry

Model

3P9D +

3P9E

XL-MS

(Refmac,

NCS, No TLS)

XL-MS

(Refmac,

NCS, TLS)

Resolution limits 30 – 3.8 30 – 3.8 30 – 3.8

Rwork/Rfree 0.3178/

0.3513

0.2696/

0.3279

0.2568/

0.3046

Figure of merit 0.672 0.715 0.751

Number of atoms

Protein 110,444 119,056 119,056

Ligand/ion 784 1,024 1,024

Water 7 0 0

Average B factors

Protein (Å2) 141 125 139

Ligand /ion (Å2) 130 103 123

Water (Å2) 43 – –

rmsds

Bonds (Å) 0.012 0.007 0.007

Angles (!) 0.986 1.052 1.068

Ramachandran plot

% Preferred (Coot) 85.8 89.5 90.1

% Outliers (Coot) 4.68 3.16 2.89

Number non-Proline cis

peptides

184 0 0

To allow a fair comparison with the original model (Dekker et al., 2011;

PDB codes 3P9E and 3P9D), the XL-MS model was also refined without

TLS B-factor parameterization (middle column). The statistics for the

Dekker model were determined by Refmac using the default values

from CCP4i.

Structure

Structure of TRiC/CCT

Structure 20, 814–825, May 9, 2012 ª2012 Elsevier Ltd All rights reserved 819



formation (Figures 6B and 6C). Importantly, the yTRiC interring
interface is otherwise free of cysteines. The CCTx-(Cys)2 genes
supported normal growth of yeast lacking the corresponding
wild-type gene (Figure S6A). Disulfide crosslinking of TRiC ob-
tained from CCTx-(Cys)2 cells was induced by oxidation with
CuCl2 (Figures 6D and S6D). As predicted by the XL-MS-based
model, disulfide-crosslinked dimers occurred in a time- and
oxidant-dependent manner only in TRiC from CCT2-(Cys)2 and
CCT6-(Cys)2 cells (Figures 6E and 6F). No such dimers were
observed for CCT1-(Cys)2, CCT4-(Cys)2, and CCT8-(Cys)2
(Figures 6F, 6H, and 6I), indicating that these subunits do not
form homotypic contacts in TRiC. In conjunction with the wealth
of evidence from the crosslinking distance constraints and
crystallographical analysis, this orthogonal in vivo approach
definitively validates the XL-MS-derived arrangement as the
correct topology of TRiC across eukaryotes.

DISCUSSION

Previous attempts to define the TRiC topology have been mired
in controversy because of the pseudosymmetry of the complex
and confounded by methodological limitations. To resolve this
long-standing problem, we developed and applied a crosslinking
tandem mass spectrometry approach to generate two complete
and self-consistent sets of constraints to model the topology of
the eukaryotic chaperonin TRiC. These data unambiguously
assign the intraring subunit order in the TRiC complex and inval-

idate the previously proposed arrangements. Importantly, the
XL-MS-derived model is also consistent with previous crosslink-
ing data (Figure S5) and likely compatible with the subunit
spacing derived from 3D cryo-EM reconstructions of TRiC deco-
rated with antibodies (Martı́n-Benito et al., 2007).
Importantly, the prior models of TRiC are entirely incompatible

with our data, because their subunit orders diverge significantly
from ours (Cong et al., 2010; Dekker et al., 2011). Figure 7 shows
the crosslinks obtained from the closed conformation of yTRiC or
bTRiC mapped onto the three respective final structure models.
It is evident that, whereas the XL-MS model explains !95% of
the obtained crosslinks, only a small fraction of the crosslinks
fit the previous models. The few consistent intersubunit cross-
links locate close to the apical pore, where all eight subunits
meet, that is, these ambiguous crosslinks fit to the majority of
conceivable subunit topologies. In contrast, XL-MS data is con-
sistent with the previously reported crosslinking data from Cong
et al., 2010, which alone cannot discriminate between the Cong
et al., 2010, and XL-MS-derived models (Figure S5).
The subunit docking into the density of the original crystallo-

graphic yTRiC model seemed to be corroborated by antibody
binding to a FLAG epitope fused to the exposed N-terminus of
CCT5 in the presence of ATP (Dekker et al., 2011). However,
yeast has an anomalously long CCT5 N-terminal peptide that
could easily reach out from the cavity through the apical opening
(Figure S7). Because pore closure in TRiC is not stringently
induced by the addition of only ATP, it allows transient exposure

Figure 4. Crossvalidation of Crystal Structure and Crosslink Data for yTRiC
(A) Distance distribution for the closed-state yTRiC heterotypic crosslink data set. The median heterotypic Ca-Ca crosslink distance in the model is 16.4 Å.

(B) Heterotypic crosslink Ca pair distances for inter- and intraring subunit pairings observed in the refined XL-MS-based crystal structure. The crosslinks

compatible with the XL-MS arrangement are highlighted in blue; crosslinks mapping to the gray box exceed the cutoff.

(C) Alignment showing unique insertions in yTRiC subunits CCT6 and CCT4.

(D) Unbiased 2Fo-Fc electron density for these insertions at 1 s. The thermosome structure is shown in black for comparison.

See also Figure S4 and Table S4.
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to the antibody, which would explain the reported experimental
result. Our crosslinking data on the closed conformation of
yTRiC unambiguously show that the N-terminus of CCT4 is
located on the exterior surface of the complex, close to the
equator of the complex (Figure 5D), whereas the N-terminal
segment of CCT5 was involved in crosslinks to the interior (Fig-
ure 5E). Taken together with the conserved proline in the CCT4
N-terminus, this provides strong evidence for the XL-MS model
and against the Dekker subunit docking.
The XL-MS-derived model of the eukaryotic chaperonin

uncovers unexpected structural features instrumental to under-
stand its function. Strikingly, it shows that the conserved and
highly charged surface of the closed chamber of TRiC has a
conspicuous segregation of positive and negative charges

contributed by subunits CCT5-2-4 and CCT3-6-8, respectively,
and results in a bipolar distribution within the folding chamber
(Figures 8A and 8B). The high conservation of the inner surface
suggests functional importance in the folding of encapsulated
substrate proteins (Figure 8C). Indeed, the bacterial chaperonin
GroEL has a negatively charged chamber that is critical for
folding (Tang et al., 2008). In comparison, the charge patterning
on the outside surface of TRiC is less conserved (Figures 8D–8F).
The least conservation within the chamber occurs at the inter-
face between the positive and negative hemispheres, likely
reflecting interspecies variation in the charge asymmetry bound-
aries (see arrow in Figure 8C).
An interesting feature that is shared between the EM and

X-ray structures of the open TRiC conformations is pairwise

Figure 5. Features of the TRiC Crystal Structure Model Based on the XL-MS Subunit Order
(A) Electron density for XL-MS crystal structure model. The view from the equator shows the cavity of one ring. The final 2Fo-Fc density at 1.5 s is shown as

meshwork. The N-terminal b strands of TRiC subunits 1, 2, 3, 5, 6, 7 and 8 are highlighted by arrows. The N-terminus of CCT4 (cyan) is inserted between CCT4 and

CCT2. Please note that side-chain density is hardly visible at all and thus cannot be used for sequence docking.

(B) Superposition of the yeast TRiC subunits, highlighting the aberrant CCT4 geometry at the N-terminus (cyan).

(C) Alignment of the N-terminal sequences of the thermosome and the yTRiC subunits. The junction residue between bA and a1 is shown in italics, highlighting

residues compatible (green) or incompatible (red) with the thermosome geometry. The sharp transition is also facilitated by small helix residues facing the

b strands, as observed in CCT6. Numbering and secondary structure elements refer to the thermosome structure (PDB code 1Q2V; Shomura et al., 2004).

(D) Validation of the CCT4 N-terminus geometry by crosslinking. The location of the CCT4 N-terminal tail (dashed box) is corroborated by specific crosslinks to

residues on the outside surface. The backbones of CCT2, CCT4, and CCT5 are shown in blue, cyan, and green, respectively. The Ca atoms of lysines are shown

as spheres, and crosslinks in between lysine Ca atoms are shown by dashed lines. The distance between lysine Ca’s is denoted in Å.

(E) Localization of the CCT5 N-terminus in the cavity by crosslinking. The location of the CCT5 N-terminal tail (dashed box) is corroborated by specific crosslinks

to residues on the cavity surface. CCT1 and CCT5 are indicated in magenta and green, respectively.

See also Figure S5.
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association of the apical domains, yielding a 4-fold pseudosym-
metry (Cong et al., 2011; Muñoz et al., 2011; Figure S8). This is
also apparent in our open conformation data sets. In the yTRiC
data set, we find multiple crosslinks between the apical domains
of CCT1-3 (four crosslinks), CCT6-8 (two crosslinks), CCT7-5
(three crosslinks), and CCT2-4 (six crosslinks) but only one or
no crosslinks for the other apical intraring pairs. The pattern is
less pronounced in the bTRiC open-state data set. These
open-state apical domain contacts may help propagate allo-
steric rearrangements throughout the ring (Reissmann et al.,
2007; Rivenzon-Segal et al., 2005).

In the light of the XL-MS-derived topology, earlier data on
CCT-substrate and CCT-cofactor complexes will have to be re-
interpreted (Dekker et al., 2011; Llorca et al., 1999, 2000; Muñoz
et al., 2011; Cuéllar et al., 2008; Martı́n-Benito et al., 2004). Here,
we examine only the crystallographic information on tubulin

binding (Muñoz et al., 2011). The position of the 2-fold interring
axis cannot be directly derived from the crystal structure of the
TRiC-tubulin complex because of extensive disorder in one
ring (Muñoz et al., 2011). However, comparison with the EM
structure of TRiC in the open conformation (Cong et al., 2011)
suggests that the subunit with the most retracted apical domain
orients perpendicular to the axis (subunit 3 in Cong et al., 2011,
chain G in Muñoz et al., 2011), that is, should be assigned
either CCT1 or CCT7, and consequently the tubulin density sits
on top of the axis. The reported crosslink between tubulin
and the C terminus of CCT2 (Muñoz et al., 2011) suggests that
tubulin interacts with the equatorial domains of TRiC subunits
CCT5-2-4 and the aberrant apical domain belongs to CCT7
(Figure S8B). Interestingly, tubulin appears to bind near the
negatively charged region of the cavity. In contrast, we could
not detect meaningful density for actin in the cavity of the

Figure 6. In Vivo Validation of the Interring Register Using Disulfide Crosslinking
(A) Different TRiC models predict distinct pairs of homotypic contacts. XL-MS (this study) proposes CCT2 and CCT6 interring pairs; previous studies proposed

CCT1 and CCT8 (Cong et al., 2010) or CCT4 and CCT6 pairs (Dekker et al., 2011).

(B) Model of the interring interface highlighting residues substituted by cysteines for disulfide bond formation.

(C) Summary of relevant cysteine replacements and inter-Cys distances. All CCTx-(Cys)2 subunits support wild-type growth (Figure S6).

(D) Near-neighbor disulfide mapping. Symmetrically related cysteine pairs will form disulfide bonds under oxidizing conditions (CuCl2), which are reversed with

the reducing agent DTT.

(E–I) Incubation under oxidizing conditions reveals that subunits CCT2-(Cys)2 and CCT6-(Cys)2 formDTT-sensitive disulfide dimers, whereasWT subunits and the

(Cys)2 variants of subunits CCT4, CCT1, and CCT8 do not.

See also Figure S6.
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closed-state crystal structure, unlike previously reported (Dek-
ker et al., 2011). This suggests that TRiC-associated actin
present in the crystal may be poorly ordered.
The unequivocal solution to the TRiC/CCT topology will prove

critical to understand its assembly, mechanism, and allosteric
regulation. The XL-MS-derived model reveals a surprising
degree of asymmetry in this ring-shaped chaperonin, for the
surface properties of the chamber, and probably also for allo-
steric transitions and substrate binding. The conserved hetero-
oligomeric structure of TRiC provides the structural basis for
these asymmetric features. This study highlights the power of
mass-spectrometry-guided approaches to facilitate structural
modeling of hetero-oligomeric complexes. Accurate model
building of many large dynamic macromolecular complexes
using data fromX-ray crystallography and cryo-EM alone is often
extremely difficult. The successful application to the challenging
case of the pseudosymmetrical TRiC/CCT suggests that XL-MS,
in combination with low-resolution structural data and computa-
tional modeling can reveal the topology of other complexes,
even if they consist of highly homologous subunits.

EXPERIMENTAL PROCEDURES

bTRiC was purified as described previously (Feldman et al., 2003); yTRiC was

affinity-purified using His6- and Strep-tagged Plp2p, followed by Heparin

affinity and Superose-6 size exclusion chromatography. DSS-treated TRiC

complexes were characterized by SDS-PAGE, native-PAGE, and cryo-EM

2D class averages to confirm the structural integrity of the crosslinked

complex. DSS-crosslinked TRiC samples were treated with trypsin, enriched

for crosslinked peptides by size exclusion chromatography, and analyzed by

tandem mass spectrometry. Crosslinked peptides were identified by xQuest

(Rinner et al., 2008). The anchor lysine residues were mapped onto homology

models of bTRiC and yTRiC subunits arranged in all pairwise subunit combina-

tions (representing 15 possible spatial orientations), and Ca-Ca distances

were computed. The distance matrix was used to evaluate all possible

arrangements of the hexadecameric complex and deduce the best arrange-

ment. A parametric bootstrap test was used to evaluate the significance of

the best with respect to the second-best arrangements as simulated accord-

ing to a binomial distribution function. Plasmids of the indicated yTRiC

subunits containing introduced cysteine pairs (Cys)2 at putative homotypic

interface contacts were inserted in the respective cctxD by plasmid shuffling;

the corresponding TRiC complexes were tested for the formation of specific

disulfide bonds using SDS-PAGE and western blot. The XL-MS topology

model was refined against the deposited crystal structure factors (Dekker

et al., 2011) using Refmac (Murshudov et al., 1997). For manual model editing,

Coot was employed (Emsley and Cowtan, 2004). Ortholog CCT sequences

were retrieved from the National Center for Biotechnology Information (Sayers

et al., 2009) and aligned using ClustalW (Thompson et al., 1994); the conserva-

tion scores were calculated using Rate4site (Pupko et al., 2002), mapped onto

the XL-MS structure using Consurf (Ashkenazy et al., 2010), and visualized

using Pymol (http://www.pymol.org).
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Atomic coordinates for the refined XL-MS-derived structure of the yeast TRiC
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Cuéllar, J., Martı́n-Benito, J., Scheres, S.H., Sousa, R., Moro, F., López-Viñas,
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Figure S1. Yeast TRiC/CCT structural integrity is not compromised by DSS 
crosslinking, related to Figure 1. (A) Non-denaturing gradient PAGE analysis of yeast 
TRiC/CCT in presence or absence of ATP+AlFx during exposure to DSS crosslinking 
reagent. DMSO was used as negative control. Incubation with DSS results in increased 
electrophoretic mobility, probably because each modification of a lysine residue 
removes a positive charge from TRiC. In complex with ATP+AlFx, TRiC undergoes a 
compaction to the closed conformation, resulting in considerably increased 
electrophoretic mobility. Protease digestion and mass spectrometry analyses were 
carried out after exposure to DSS for 30 min under the same conditions. (B) SDS-PAGE 
analysis of the same samples. The eight TRiC/CCT subunits form a stack of bands at 
a60 kDa apparent molecular weight. Treatment with DSS diminished the intensity of 
these bands. The crosslinking products mostly exceeded the size range and were not 
resolved at the top of the gel. Selected molecular weight marker bands are indicated. 
(C) Negative stain electron microscopy (EM) analysis of crosslinked TRiC/CCT. 
Samples of apo-TRiC with or without DSS treatment for 30 min were analyzed by uranyl 
acetate negative stain EM. The scale bar indicates 20 nm. No gross morphological 
differences were observed between samples, suggesting continuing structural integrity. 
Close inspection of the grid further showed no evidence for frequent crosslinking 
between complexes.  
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Figure S2. Scheme for derivation of distance constraints from crosslinked 
peptides, related to Figure 2. (A) Only heterotypic crosslinks that map to structured 
parts of the models are used in the subsequent modeling (shown in bold for each 
dataset). Heterotypic crosslinks involved in at least one flexible tail are shown in italics. 
(B) Illustration of the 15 possible orientations for two crosslinked subunits. Subunit “A” 
(orange) is positionally fixed while “b” (green) is placed at each of the remaining 15 
positions. Subunit “b” is in the same position as “A” only in homotypic crosslinks (faint 
first option). (C) A Flow scheme summarizing the general analysis procedure that 
converts crosslinks to distance constraints (see Methods for detail). (D) Scheme 
illustrating a simplified scenario to derive constraints from mass spectrometry 
crosslinking data. The crosslinked peptides were mapped onto the correct subunit and 
the distance was computed for all pairwise orientations of two subunits. For simplicity 
we illustrate the local nearest neighbor distances (five pairwise orientations). Using 30 Å 
as a general cut-off guide, we determine the preferred orientation for each crosslinked 
peptide by comparing the distances for all orientations. The preferred spatial pairings 
based on these data were then combined to generate a model consistent with the 
constraints.  
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Figure S3. Satisfied constraint profiles for each dataset saturate at a distance 
consistent with the physical crosslinker length, related to Figure 3. (A) Schematic 
illustration of the physical CDLys-DSS-CDLys length. Satisfied constraint profiles for: (B) 
bovine TRiC (+ATP), (C) bovine TRiC (+ ATP+AlFx), (D) yeast TRiC (+ ATP+AlFx), (E) 
bovine TRiC (-ATP) and (F) yeast TRiC (-ATP). The satisfied constraint profile is 
independent of alignment template used (3KFB, 1A6E and 1Q3Q (Ditzel et al., 1998; 
Pereira et al., 2010; Shomura et al., 2004), shown in blue, green and red, respectively). 
The profile saturates at a value that approximates the extended crosslink length of 30 Å, 
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which takes into account for the local structural dynamics and approaches the total 
number of crosslinks (purple dotted line). 
 
 

 
 
Figure S4. Agreement of the XL-MS model with features of the Dekker density, 
related to Figure 4. (A-C) Refmac was used to calculate weighted electron density maps 
with phases derived from the Dekker model. 2Fo-Fc density at 1.1 σ is shown in blue; 
positive Fo-Fc difference density at 3 σ indicating missing segments is shown in green.  
The XL-MS and Dekker model are shown as backbone traces as indicated. Panels A 
and B correspond to the portions used for subunit docking that are shown in Figure 5B 
of the main text.  In the portion shown in panel C, the Liou/Dekker topology requires a 
five residue insertion between residues 255 and 261 present in CCT5 (loose ends), 
while there is strikingly well-defined density indicating a short connection, as predicted 
for the XL-MS topology.  There are many more examples for a rather uncritical attitude 
of the creators of the original model towards aberrant density features with respect to 
the Liou/Dekker topology. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 6

 
 
 
 

 
 
Figure S5. XL-MS structural features are consistent with existing and previous 
crosslinking data (Cong et al) , related to Figure 5. (A) Sequence alignment of CCT4 
sequences highlights the conservation of the proline residue (indicated by an arrow) 
responsible for the outward-facing N-terminus.  Numbering and secondary structure 
elements refer to the TRiC model. The conserved residue Phe11 makes a hydrophobic 
contact in the channel between TRiC subunits. (B) The CCT8 N-termini in the XL-MS 
model form inter-ring interactions. A hemisphere of the XL-MS structural model 
containing subunits CCT7, CCT8, CCT6 and CCT3 is shown in surface and colored 
grey, magenta, orange and blue, respectively. CCT8 tails are shown as spacefill 
(dashed box). (C-D) As described in Cong et al, bTRiC complexes were formaldehyde 
treated and separated on a 2D gel, spots were excised from the gel and analyzed by 
mass spectrometry to identify the TRiC subunits present in each spot as shown. This 
approach, however, did not reveal the specific site of crosslink. The eight identified 
crosslinked pairings (spots A-I) in this formaldehyde-based experiment are fully 
consistent with the XL-MS model explaining all (8 unique pairings) observed crosslinks 
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even the observed CCT-CCT8 crosslink, which is explained by the direct contact of the 
N-terminal tails of CCT8 in the XL-MS structural model.  

 
 
 
Figure S6. CCTx (Cys)2 subunits are incorporated into the TRiC complex and 
support viability, related to Figure 6.  (A) The CCTx (Cys)2 mutants are able to 
complement the deletion of the respective wild-type gene. (B) Scheme to isolate CCTx 
(Cys)2-containing TRiC. (C) High molecular weight fractions were analyzed on a non-
denaturing PAGE gel.  The genetically modified CCTx (Cys)2 containing subunit is 
incorporated into the TRiC complex. (D) The sucrose cushion samples were treated 
with an oxidizing reagent and time points were collected at 0, 15 and 30 min and 30 min 
in the presence of DTT. The samples were analyzed on an SDS-PAGE gel and 
monitored for the formation of a higher molecular weight crosslinked species. 
 
 
 
 
 
 
 
 
 



 9 



 10

 
 
Figure S7. Sequence alignment of yeast CCT paralogs and the thermosome 
sequence, related to Figure 7. Numbering and secondary structure elements refer to 
the thermosome model(Shomura et al., 2004). 
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Figure S8. Schematic representation of substrate interaction surfaces from 
previous structural structures, related to Figure 8.  Presumed subunit order in (A) the 
symmetry-free cryoEM map of open TRiC (Cong et al., 2011) and a schematic (B) of the 
X-ray crystal structure of the TRiC-tubulin complex (Munoz et al., 2011).  Only the apical 
domains are shown, highlighting the four-fold pseudo symmetry. Red lines and numbers 
denote inter-apical domain crosslinks in the datasets to the open forms of yTRiC (red) 
and bTRiC (blue).  
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Supplemental Tables 

 

Table S1: Lysine variability between orthologous TRiC subunits indicates 

approximately 40% of the lysines in each sequence are positionally variable, 

related to Figure 2.  

 

 

subunit 

Lysine Positions

e %variable aTotal 

bovine 

bTotal 

yeast 

Conserved 

positions 

cvariable

bovine 

dvariable 

yeast 

CCT1 41 39 22 19 17 45 

CCT2 41 39 25 16 14 38 

CCT3 39 35 24 15 11 35 

CCT4 39 39 20 19 19 49 

CCT5 48 44 30 18 14 35 

CCT6 34 47 25 9 22 38 

CCT7 39 39 27 12 12 31 

CCT8 41 36 18 23 18 53 

eCalculated as the ratio between the variable lysine positions (sum of cbovine and 

dyeast) and all lysine positions (sum of bovinea and yeastb). 

 

 

Table S2: Overview of all assigned crosslinks, related to Figure 1.  

See attached excel file
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Table S3. Statistical analysis of crosslinking datasets, related to Figures 2 and 3. 

 

Dataseta nb Arrngmt. 

rank 

Tpc Min 1st. 

Qu. 

Median Mean 3rd. 

Qu. 

Max p-value

Closed 

bovine 

60 1 

2 

50 

44 

41 

35 

47 

42 

49 

43 

48.5 

43.4 

50 

45 

55 

50 

2e-4 

Closed 

yeast 

 

97 1 

2 

79 

68 

68 

57 

75 

66 

77 

68 

76.9 

67.5 

78 

69 

85 

78 

<1e-5

Closed 

combined 

 

157 1 

2 

129 

112 

113 

98 

123 

109 

125 

111 

125.4

110.9

127 

113 

137 

126 

<1e-6

Open 

bovine 

 

34 1 

2 

23 

21 

17 

14 

22 

20 

23 

21 

22.9 

21.2 

24 

22 

29 

27 

0.17 

Open 

yeast 

 

95 1 

2 

72 

66 

61 

56 

69 

64 

71 

66 

70.6 

65.6 

72 

67 

80 

75 

6e-3 

Open 

combined 

 

129 1 

2 

95 

87 

81 

76 

92 

85 

94 

87 

93.65

86.84

95 

89 

104 

96 

<3.4e-3

 

aError distributions for the best and 2nd best arrangement (see arrangement rank) were 

calculated according to a binomial distribution where the true independent crosslinksb 

(n) are detected as constraints fulfilled with a probability pT=0.85 and pF=0.10.  The 

distribution was centered at the tp values. 
bnumber of independent constraints.  
ctrue positives.  



 14

 

 

Table S4. Fitting scores comparing the four refined Rosetta models to the cryo-

EM map (EMDB accession number 5148), related to Figure 4.  

 

Models -FRC MPE -CCC Chimera 

XL-MS-1 -0.658 0.857 -0.538 0.704 

XL-MS-2 -0.660 0.860 -0.541 0.706 

Cryo-EM -0.662 0.850 -0.541 0.705 

Random -0.669 0.846 -0.543 0.723 

 

Three EMAN2 fitting scores including FRC (Fourier Ring Correlation), MPE (Mean 

Phase Error), and CCC (Cross Correlation Coefficient) in addition to the Chimera 

similarity fitting score were calculated. Other than the Chimera score, lower value of the 

scores indicates better fit between the model and the cryo-EM map. XL-MS-1 and XL-

MS-2 refer to the two models following the same XL-MS ordering, but related to each 

other with a 180º in-plane rotation due to the degeneracy of the two-fold symmetry axis. 

Cryo-EM and Random refer to the model following the original cryo-EM ordering and a 

random CCT subunit ordering, respectively. In each scoring criteria, the difference is 

within the fitting error bars. These imply that the cryo-EM map is not well resolved 

enough to derive a unique atomic model. 

The proposed XL-MS ordering also conflicts with the cryo-EM structure-based 

ordering(Cong et al., 2010). At the time, it appeared that the density provided sufficient 
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constraints for an unambiguous subunit assignment and the resulting model was 

consistent with a limited set of cross-linking data. The conflict presented by the XL-MS 

data prompted several additional attempts at full atom modeling of all subunits. We 

tested the cryo-EM and the new XL-MS derived orderings, as well as a random ordering 

to serve as a baseline. While these new results show that the cryo-EM based ordering 

still produces a marginally better score than the new proposed ordering, more 

significant is that the random ordering produces a score which is marginally better than 

either of the proposed orderings. The relative similarity of the scores for all of the refined 

models suggests that the cryo-EM map simply does not have sufficient resolution to 

discriminate between the various orderings, and the previously published map-derived 

ordering likely results from an over-interpretation of the available data. This is not to say 

that the cryo-EM map is in any way inaccurate, simply that the subunit homology is too 

strong to permit unambiguous assignment based on a 4 Å resolution map alone.
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Supplementary Movie 1, related to Figure 7. 

Movie showing the location of the crosslinks within one ring and between the two rings 

in the closed conformation of yeast TRiC. A sideview of the lower half of TRiC is shown, 

and the complex is slowly revolving around the pseudo-eightfold axis (vertical). The 

subunit backbones from the crystal structure of yeast TRiC are shown as coils. The α 

subunit CCT1 is indicated in purple, the β subunit CCT2 in blue, the J subunit CCT3 in 

yellow-green, the G subunit CCT4 in cyan, the H subunit CCT5 in green, the ] subunit 

CCT6 in red, the K subunit CCT7 in yellow and the T subunit CCT8 in orange. 

Crosslinked lysines below the 30 Å distance cut-off are represented as dotted lines. 

Within the ring, heterotypic and homotypic crosslinks are shown in pink and grey, 

respectively. At the ring-ring interface, heterotypic and homotypic crosslinks are shown 

in white and pale yellow, respectively. 
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Supplemental Experimental Procedures 

 

Purification of TRiC from B. taurus and S. cerevisiae 

Bovine TRiC was purified as described previously (Feldman et al., 2003). TRiC from S. 

cerevisiae was purified using a four-step chromatographic method, which takes 

advantage of its strong interaction with Plp2p. All steps were performed at 4 qC. Yeast 

cells were suspended in buffer YN (50 mM HEPES-NaOH pH 7.4, 200 mM NaCl, 5 mM 

MgCl2, 10 % glycerol, 20 mM imidazole, 10 mM β-mercaptoethanol, 1 mM PMSF, and 

Complete protease inhibitor cocktail (Roche Diagnostics, Freiburg, Germany)) and lyzed 

using a bead beater (BioSpec Products, Bartlesville, OK, USA). Cell debris was 

removed by sequential centrifugation steps at 3000 g and 18600 g. The clear 

supernatant was subsequently incubated for 1 h with Ni2+-Chelating Sepharose (GE 

Healthcare, München, Germany) beads, which were decorated with Plp2p bearing a 

combined 6xHis and Strep-tag II. The beads were collected in a column, washed with a 

step gradient of buffer YN containing increasing amounts of imidazole (20 / 50 / 100 

mM). Bound TRiC was then eluted together with Plp2p using buffer YN containing 250 

mM imidazole. The Plp2p-TRiC containing fractions were merged and applied to a 

Strep-Tactin column (IBA). This column was extensively washed with buffer YS (50 mM 

HEPES-NaOH pH 7.4, 200 mM NaCl, 1 mM EDTA, 10 % glycerol,  and 1 mM DTT). 

Bound proteins were subsequently eluted with buffer YS containing 2.5 mM 

desthiobiotin. To separate Plp2p from TRiC, the protein-containing fractions were 

applied on Heparin resin (GE Healthcare). Unbound Plp2p was washed away with 
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buffer YH (20 mM HEPES-NaOH pH 7.4, 10 mM MgCl2, 10 mM CaCl2, 10 % glycerol, 

10 mM β-mercaptoethanol). TRiC was eluted with a linear salt gradient from 200 mM to 

1000 mM NaCl in buffer YH. As final step, the TRiC-containing fractions were subjected 

to size exclusion chromatography on Superose 6 (GE Healthcare), which was 

developed with buffer YSEC containing 10 mM HEPES-NaOH pH 7.4, 200 mM NaCl, 5 

mM MgCl2, 10 % glycerol and 1 mM DTT. The TRiC-containing fractions were merged, 

concentrated to 2 g l-1 by ultrafiltration and snap-frozen in liquid nitrogen for storage at -

80 qC.  

 

Non-denaturing PAGE and SDS-PAGE of crosslinked samples 

A purified 1 µM TRiC sample was incubated in 30 mM HEPES-KOH pH 7.4, 100 mM 

KCl, 10 mM MgCl2, 10% glycerol and 1 mM DTT in the presence of 1 mM ATP, 1 mM 

EDTA or 1 mM ATP/5 mM NaF and 5 mM AlNO3 for 20 minutes at 30 °C. The DSS 

crosslinker (dissolved at 25 mM in dimethyl formamide) was subsequently added to 

each reaction to an initial 1 mM concentration and then incubated for another 30 

minutes at 35 oC.  Excess DSS was quenched by addition of ammonium hydrogen 

carbonate to 50 mM and incubated at 37 °C for 30 min.  For the SDS-PAGE analysis 

the samples were spun, mixed with 4X SDS sample buffer, boiled for 5 minutes and 

resolved on a 12% SDS-PAGE gel. For the non-denaturing PAGE the samples were 

spun, mixed with native gel sample buffer and loaded onto a 4% non-denaturing gel. 

 

CryoEM 2D analysis of crosslinked TRiC samples 
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The cross-linked TRiC in the apo, ATP and ATP+AlFx states were frozen in vitreous ice 

on 400 mesh R1.2/1.3 Quantifoil grids, respectively using a procedure previously 

described (Cong et al., 2011). All the images were collected on a Gatan 4kx4k CCD 

camera at ~60,000 microscope magnification in the JEM2010 (for apo and ATP+AlFx 

states) and JEM2200FS (for ATP state) electron microscopes. 3780, 2319, and 8941 

particle images were boxed out for apo, ATP, and ATP+AlFx state, respectively (Figure 

1C), using e2boxer.py from EMAN2 (Tang et al., 2007).  Furthermore, we carried out 

the reference-free 2D image analysis on the boxed-out particle images using 

refine2d.py from EMAN1 (Ludtke et al., 1999).  The resulting class averages are shown 

in Figure 1C. Comparing with the normal TRiC complex in the apo and nucleotide 

bound states (Cong and Ludtke, 2010; Cong et al., 2011), this analysis demonstrates 

that the cross-linked TRiC can still form the normally appearing TRiC complex. 

 

Crosslinking, sample processing and LC-MS/MS analysis. 

Both bovine and yeast TRiC complexes were crosslinked in both the open state (in 

absence of ATP) as well in a closed state in the presence of ATP, aluminum and 

fluoride ions (AlFx state, prepared according to (Meyer et al., 2003)). In addition bovine 

TRiC was crosslinked in the presence of ATP alone. In all cases, TRiC preparations 

were crosslinked at a total protein concentration of 1 – 1.5 mg ml
-1

 using 50 – 100 µg 

starting material. The crosslinking buffer was 20 mM HEPES-KOH (pH 7.4) containing 

50 mM NaCl, 5 mM MgCl2, 0.1 mM EDTA, and 1 mM DTT (for bovine TRiC) or 100 mM 

potassium acetate, 5 mM magnesium acetate, and 1 mM DTT for yeast TRiC. The 

crosslinking reaction was initiated by adding disuccinimidyl suberate stock solution (25 
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mM DSS-d0 and –d12, Creative Molecules) in DMF to a final concentration of 1 mM. 

Samples were incubated at 37 °C for 30 – 60 minutes. Excess reagent was quenched 

by addition of ammonium hydrogen carbonate to 50 mM and incubation at 37 °C for 30 

min. 

After the quenching step, samples were evaporated to dryness in a vacuum centrifuge 

and resuspended in 8 M urea. Proteins were reduced with 2.5 mM TCEP (37 °C, 30 

min) and alkylated with 5 mM iodoacetamide (30 min, room temperature, protected from 

light). The sample solutions were diluted to 1 M urea with 50 mM ammonium hydrogen 

carbonate and trypsin (Promega) was added at an enzyme-to-substrate ratio of 1:50. 

Proteolysis was carried out at 37 °C overnight followed by acidification with formic acid 

to 2% (v/v).  Samples were then purified by solid-phase extraction using Sep-Pak tC18 

cartridges (Waters) according to standard protocols. 

Samples were fractionated by size exclusion chromatography (SEC) on a Superdex 

Peptide column as described elsewhere (Leitner, 2012). Two fractions collected from 

SEC were evaporated to dryness and reconstituted in water/acetonitrile/formic acid 

(95:5:0.1, v/v/v) to a final concentration of approximately 0.5 µg µl-1. 2 µl each were 

injected for duplicate LC-MS/MS analyses on an Eksigent 1D-NanoLC-Ultra HPLC 

system coupled to a Thermo LTQ Orbitrap XL system. Peptides were separated on self-

packed New Objective PicoFrit columns (11 cm x 0.075 mm I.D.) containing Magic C18 

material (Michrom, 3 um particle size, 200 Å pore size) at a flow rate of 300 nl min-1 and 

using the following gradient. 0-5 min = 5 %B, 5-95 min = 5-35 %B, 95-97 min = 35-95 

%B and 97-107 min = 95 %B, where A = (water/acetonitrile/formic acid, 97:3:0.1) and B 

= (acetonitrile/water/formic acid, 97:3:0.1). The mass spectrometer was operated in 
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data-dependent mode by selecting the five most abundant precursor ions (m/z 350-

1600, charge state 3+ and above) from a preview scan and subjecting them to collision-

induced dissociation (normalized collision energy = 35%, 30 ms activation). Fragment 

ions were detected at low resolution in the linear ion trap. Dynamic exclusion was 

enabled (repeat count 1, exclusion duration 30 s). 

 

Data analysis of mass spectrometry data 

Thermo .raw files were converted into the open .mzXML format using msconvert 

(proteowizard.sourceforge.net) and analyzed using an in-house version of xQuest 

(Rinner et al., 2008). Spectral pairs with a precursor mass difference of 12.075321 Da 

were extracted and searched against the respective FASTA databases containing the 

eight subunits of TRiC. 

xQuest settings were as follows: Maximum number of missed cleavages (excluding the 

crosslinking site) = 2, peptide length = 5-50 amino acids, fixed modifications = 

carbamidomethyl-Cys (mass shift = 57.021460 Da), mass shift of the light crosslinker = 

138.068080 Da, mass shift of mono-links = 156.078644 and 155.096428 Da, MS1 

tolerance = 10 ppm, MS2 tolerance = 0.2 Da for common ions and 0.3 Da for crosslink 

ions, search in ion-tag mode. 

Post-search manual validation and filtering was performed using the following criteria: 

xQuest score > 16, mass error between -4 and +7 ppm, %TIC > 10, and a minimum 

peptide length of six amino acids. In addition, at least four assigned fragment ions (or at 

least three contiguous fragments) were required on each of the two peptides in a 

crosslink. 
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Homology model building 

Comparative homology models were built from parent PDB’s detected by PDB-BLAST 

and aligned by the K*Sync alignment method (Chivian and Baker, 2006).  Loop regions 

were assembled from fragments and optimized to fit the aligned template structure. We 

then used the Rosetta Software package for iterative backbone optimization and loop 

modeling routines to generate the final models.  However, in specific instances we 

were unable to successfully find acceptable torsional angles to close the loops in some 

of the models.  Generally, the structural template that was used to construct each of 

the CCT models was based on a homologous thermosome group II chaperonin (PDB 

codes: 3KFB, 1A6E or 1Q3Q) (Ditzel et al., 1998; Pereira et al., 2010; Shomura et al., 

2004) whose sequence identity to each of the eight CCT subunits ranges between 30-

50%, as such the corresponding domain confidence score for each model is high (3) 

and is proportional to the E-value (conf= -log(e-val)(Chivian and Baker, 2006). For this 

sequence identity regime the homology models we have generated should capture the 

structural features that are conserved amongst chaperonins especially in regions of 

higher sequence similarity such as the active site. 

 

Generation of pairwise subunit orientations and distance constraints 

The coordinates for the experimentally determined archeal chaperonin crystal structures 

were acquired from the RSCB and the corresponding symmetry mates were generated 

to build an intact holo chaperonin structure using a symmetry Python pymol plugin.  This 

was carried out for a series of experimentally determined templates crystallized in 

different nucleotide states (PDB codes: 1Q3Q/3KFK/3KFB/1A6E) (Ditzel et al., 1998; 
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Pereira et al., 2010; Shomura et al., 2004).  We then set a single subunit in the holo 

chaperonin structure as a reference and generated all exhaustive pairs of homology 

models of bovine and yeast CCT subunits (CCT1-CCT8) between the reference 

orientation and all of its 15 neighbors by aligning the Cα coordinates of each homology 

model to the coordinates of the respective subunit in the intact holo-complex. Because 

the chaperonin subunits exhibit significant structural and sequence similarity we carried 

out Cα-atom structural alignments using a Python plugin in Pymol. Next, we mapped the 

peptide fragments with the identified lysine residue from each crosslinked peptide pair 

to the corresponding sequence on each homology model and computed a LyscctxCα-

LyscctyCα distance for all 15 orientations for each inter-subunit crosslink (16 possible 

orientations for the intra-subunit crosslinks to evaluate homotypic contacts between the 

two rings) to generate a distance matrix for an entire crosslink dataset. In instances 

where crosslinked peptide fragments map to regions not modeled in the CCT subunit 

homology models (i.e. regions significantly different from the structural template used to 

generate the homology model such as loops, C-terminal and N-terminal tails), these 

crosslinks were not further evaluated. This analysis was carried out using a series of 

different crystal structures of archaeal chaperonins as alignment templates; the resulting 

distance dependence on the constraints is largely independent of template. Homotypic 

crosslinks were used to validate the inter ring register by identifying homotypic contacts 

across the two rings that fall below the 30 Å (closed state) or 36 Å (open state) 

threshold using the intra ring order identified in XL-MS. The homotypic crosslink data, 

both in the combined closed and open state, were evaluated for consistency for intra 

subunit distances and inter subunit distances consistent with homotypic subunit 
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contacts across the two rings (data not shown). Using the refined crystal structure of 

yeast TRiC based on the XL-MS arrangement, we additionally computed how many 

heterotypic and homotypic crosslinks are consistent with the model and what is the 

crosslink distance distribution. 

 

Global analysis of crosslink derived constraints 

We enumerated all possible double-ringed arrangements based on two assumptions: 1) 

total number of eight membered rings (containing 8 unique subunits) can be 

exhaustively described using 7! unique combinations due to the periodicity of the rings 

and 2) in any given complex the two rings are identical resulting in 8 possible ways of 

assembling a unique ring arrangement.  These assumptions reduce the number of 

possible hexadecameric complexes to 8! unique arrangements.  The spatial relationship 

of each subunit within an arrangement is assigned using a numerical descriptor and 

each arrangement is evaluated in the context of the derived distance matrix.  Each 

spatial arrangement for a given crosslinked-peptide pair that falls below a set distance 

threshold is counted as a satisfied constraint and if it falls above it is counted as a 

violated constraint.  The number of satisfied constraints is tallied for each arrangement 

and represented in a histogram.  Using this approach if a particular crosslink satisfies 

two separate spatial orientations these are treated separately and count as satisfied 

constraints in the two arrangements, thus the contribution of crosslinks that satisfy more 

than one spatial orientation is reduced. 
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Statistical analyses 

The simulation data were generated according to a binomial distribution where the true 

independent crosslinks are detected as constraints fulfilled with a probability pT = 0.85 

and false positives occur at a rate pF = 0.10 and evaluated using a parametric bootstrap 

test. Under this very conservative model with a high false positive bias, we generate 

error distributions of the number of observed constraints for the best and second best 

arrangement for each independent dataset utilizing only independent constraints and 

assuming these conservative probabilities (pT = 0.85 and pF = 0.10). Comparing the 

error distributions for the best and the second best arrangement for each dataset we 

can evaluate the p-value to assess the probability that the XL-MS solution (i.e. one that 

fulfills the most constraints) is significant.    

 

Disulfide engineering 

Plasmid Generation: Wild type CCT1-HA, CCT2-HA, CCT4-HA, CCT6-HA and CCT8-

HA were cloned into a pCu426 plasmid containing the uracil (URA3) auxotrophic marker 

(Tam et al., 2006).  The CCTx(Cys)2 mutants were generated using QuikChange 

(Stratagene) from wild type plasmids (LEU) with endogenous promoters: pAB CCT1, 

pAB CCT2, pAB CCT4, pAB CCT6, pAB CCT8 (Kabir et al., 2005). The following 

double cysteine mutants were generated: CCT1(Cys)2: K119C/S470C, CCT2(CYS)2: 

S113C/S453C, CCT4(Cys)2: K113C/S462C, CCT6(Cys)2: G112C/L467C and 

CCT8(Cys)2: M120C/N472C. 

Strain Construction: pCu CCT1-HA (URA3), pCu CCT2-HA (URA3), pCu CCT4-HA 

(URA3), pCu CCT6-HA (URA3) and pCu CCT8-HA (URA3) plasmids were transformed 
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into the respective heterozygous CCTx haploid deletion strain (background MATa/α 

his3∆1/his3∆1 leu2∆0/leu2∆0 met15∆0/MET15 lys2∆0/LYS2 ura3∆0/ura3∆0; Winzeler 

1999) before sporulation and tetrad dissection.  Verified haploid strains containing the 

pCu CCTx (URA3) and deleted for the corresponding cctx gene were then transformed 

with a pAB CCTx (LEU) plasmid containing the appropriate CCTx(Cys)2 mutation.  

Counter-selection against wild type pCu CCTx with plates containing 5-fluoroorotic Acid 

(5’FOA) –LEU allowed the mutant plasmids to be expressed without wild type CCTx 

present.  In addition, counter-selection was also confirmed by the absence of growth 

when replica-plated onto –URA plates after 5’FOA counter-selection.     

Viability Assays: Yeast were resuspended in water to an OD600 of 0.08 and serially 

diluted 10-fold four times before spotting 10 µl of each dilution onto appropriate media.  

All plates contained glucose as the primary sugar source. The plates were incubated at 

30oC for 48 hours before scanning. 

Disulfide crosslinking: 25 ml culture of yeast was harvested at OD600 = 1.0, pelleted and 

washed with water.  The rinsed pellet was resuspended in 500 µl of Lyticase Buffer (1.2 

M sorbitol, 50 mM Tris-HCl pH 8.0, 0.5 mM MgCl2, 30 mM DTT), incubated in 25 oC for 

15 minutes and spun at 6000 rpm for 1 minute. The pellet was resuspended with 500µl 

Lyticase Buffer and 100 µl lyticase (ref) and incubated at 30oC for 30 minutes.  The 

reaction was spun at 6000 rpm for 1 minute and washed twice with Lyticase Buffer. The 

final pellet was resuspended with 150 µl of chilled Lysis Buffer (50 mM HEPES pH 7.5, 

150 mM NaCl, 1 mM EDTA, 0.1% Triton-X100, and protease cocktail (100 µg/ml 

Pepstatin A, 75 µg/ml Leupeptin, 10 mM Benzamidine, 100 µg/ml Aprotinin, 2 mM 

AEBSF).  The reactions were vortexed three times for 30 seconds, spun at 14,000 rpm 
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for 10 min at 4oC and the supernatant was used in the subsequent crosslinking 

reactions. 

Yeast lysates were treated with 250 uM CuCl2 and incubated at 2 5oC.  Throughout the 

30 minute time course, aliquots were removed and the reactions were quenched using 

a final concentration of 10 mM sodium iodoacetate and 50 mM N-ethyl maleimide. The 

crosslinked samples were mixed with 6X SDS sample buffer (without reducing agent), 

incubated at 95 °C for 3 min and spun at 13000 rpm for 5 minutes and resolved on a 

10% SDS-PAGE.  For the reduced sample control, a final concentration of 100 mM DTT 

was added and the samples were incubated at 25 oC for 10 minutes, followed by the 

addition of 6X SDS sample buffer, incubated at 95 °C for 3 min and spun at 13000 rpm 

for 5 minutes prior to loading. The 10% SDS-PAGE gels were subsequently transferred 

onto a 0.2 µm nitrocellulose membrane and blocked with 3% BSA in TBS-Tween.  

CCT1 was detected with a rabbit polyclonal antibody.  CCT2-HA, CCT4-HA, and CCT8-

HA, were detected with a mouse HA-antibody (Covance MMS-150R).  CCT6 was 

detected with a rabbit polyclonal antibody (kind gift from Dr. Sherman).  The primary 

antibodies were detected with a goat anti-mouse IRDye800 or goat anti-rabbit 

IRDye700 secondary antibody, scanned and processed with an Odyssey imager using 

software from LI-COR Biosciences. 

 

Model refinement against the cryo-EM density map 

We tested the XL-MS ordering against the cryo-EM density map (Cong et al., 2010). 

Starting from the homology models (Booth et al., 2008) for each of the eight subunits, 

we generated four models of the entire TRiC complex: one following our original cryo-
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EM derived subunit-ordering (Cong et al., 2010), two based on the XL-MS ordering 

because of the degeneracy of the two-fold symmetry axis, and the last one from a 

random CCT subunit ordering. For each ordering, the all-atom homology model of each 

individual subunit of the complex was refined with the cryo-EM density restraints by 

utilizing the Rosetta relax protocol incorporating the density-fitting function (DiMaio et 

al., 2009). From the 16 generated models, the one with the best Rosetta score was 

chosen to present that specific subunit. Here the Rosetta score incorporates both the 

stereochemistry and the fit-to-density scores. This leads to a refined model for each 

ordering composed by the top-ranking model for individual subunits. 

 

Crystal structure refinement 

For refinement of a model based on the XL-MS topology against the X-ray diffraction 

data from the Willison lab (Dekker et al., 2011), we started from a consensus model 

based on the thermosome crystal structure (PDB code 1Q2V (Shomura et al., 2004)). In 

this model, loop regions deviating in length between TRiC subunits and thermosome 

were deleted, and divergent residues were modeled as alanine. Positive difference 

density was apparent in all nucleotide binding pockets. Initial refinement with Refmac 

(Murshudov et al., 1997) yielded a model that agreed with the location of the homotypic 

contacts in the crystal lattice and the non-crystallographic symmetry between the 4 

octameric rings in the asymmetric unit from Dekker et al (Dekker et al., 2011) as judged 

by the subunit-to-subunit residual mean square deviations determined with Lsqman 

(Kleywegt, 1994)(<1 Å for identical vs. a2 Å for homologous subunits). Using this 

information, a Swiss-Model (Arnold et al., 2006) homology model of the octameric ring 
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having the XL-MS topology was superposed on the preliminary model, and refined with 

Refmac using non-crystallographic symmetry (NCS, using the MEDIUM setting in 

Refmac) restraints between the four copies of each subunit. The refinement statistics 

were slightly better for one of the two possible orientations of the XL-MS topology, with 

CCT2 (XL-MS) matching CCT6 (Dekker et al.). This initial homology model did not 

contain those loops, which differed in length from the thermosome structure. The 

difference density for these loops was largely consistent with the loop lengths expected 

for our model topology. Larger loops tended to be poorly ordered. After an initial round 

of manual model editing with Coot and a further refinement cycle, strong positive 

difference density for an alternative, outward facing arrangement of the N-terminus of 

CCT4 became apparent. Further distinctive features that were not in the initial 

thermosome model, and that agree with the backbone of the Dekker model, are the N-

terminus of CCT8, which reaches toward the opposite ring, and a large insertion in 

CCT1, residues 484-495. In subsequent refinement cycles, we additionally used the 

Translation-Libration-Screw (TLS) option of Refmac (Winn et al., 2003), defining 

individual TRiC subunits as TLS groups. Portions that were not discernible in the 2Fo-

Fc maps were not included into the model. Non-glycine residues facing solvent 

channels without discernible sidechain density were modeled as alanine. Cis peptide 

bonds were disallowed. In the Refmac refinement, the weighting term (keyword 

“MATRIX”) was manually adjusted to 0.004. Otherwise, the default parameters from the 

CCP4i GUI were used. The final statistics for our model are shown in the last column of 

Supplementary Table 4). For the calculation of the unbiased omit maps, residues 282-

293 and 289-296 in CCT6 and CCT4, respectively, were deleted in the model. After 
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applying random coordinate shifts up to 0.2 Å using PDBSET, these models were 

refined with REFMAC, and weighted 2Fo-Fc and Fo-Fc maps were calculated. 

The final model coordinates were deposited to the PDB database under accession 

codes 4D8R and 4D8Q. 

 

Conservation score calculations 

Bovine and yeast sequences for TRiC subunits were acquired from NCBI and aligned 

using ClustalW (Thompson et al., 1994). We also generated a large set of homologous 

sequences using the bovine sequence for each of the eight subunits as a query in a 

BLAST search (Altschul et al., 1990), these sequence lists were then curated to 

include a similar organism distribution for each paralog with the help of the KEGG 

Orthology database (Mao et al., 2005). To compute the per residue conservation 

scores we employed a Bayesian method implemented in Rate4site (Pupko et al., 

2002) and mapped onto the structures using Consurf (Ashkenazy et al., 2010). In brief 

an MSA file containing the query sequences (ie. 100 orthologous CCT sequences) and 

a template structural model were used as input (homology model above). The 

conservation scores derived using this metric correspond to the sites evolutionary rate. 

The output conservation scores are normalized so that the average score corresponds 

to 0 with a standard deviation of 1. The lowest score represents the most conserved 

position in a protein, however, it does not necessarily indicate absolute conservation, 

but rather indicates that this position is the most conserved in this specific protein 

calculated using a specific MSA. To visually illustrate the surface conservation across 
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orthologs, we used pymol to color code the conservation values onto the XL-MS 

refined yeast structure. 
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The eukaryotic chaperonin, TRiC/CCT (TRiC, TCP-1 ring complex;
CCT, chaperonin containing TCP-1), uses a built-in lid to mediate
protein folding in an enclosed central cavity. Recent structural data
suggest an effective size limit for the TRiC folding chamber of ∼70
kDa, but numerous chaperonin substrates are substantially larger.
Using artificial fusion constructs with actin, an obligate chaperonin
substrate, we show that TRiC can mediate folding of large proteins
by segmental or domain-wise encapsulation. Single or multiple
protein domains up to ∼70 kDa are stably enclosed by stabilizing
the ATP-hydrolysis transition state of TRiC. Additional domains,
connected by flexible linkers that pass through the central opening
of the folding chamber, are excluded and remain accessible to
externally added protease. Experiments with the physiological
TRiC substrate hSnu114, a 109-kDa multidomain protein, suggest
that TRiC has the ability to recognize domain boundaries in par-
tially folded intermediates. In the case of hSnu114, this allows the
selective encapsulation of the C-terminal ∼45-kDa domain and
segments thereof, presumably reflecting a stepwise folding mech-
anism. The capacity of the eukaryotic chaperonin to overcome the
size limitation of the folding chamber may have facilitated the
explosive expansion of the multidomain proteome in eukaryotes.

folding cage | molecular chaperone | Snu114 homolog | 116 kDa U5 small
nuclear ribonucleoprotein component

It is now widely accepted that many newly synthesized poly-
peptides require assistance from molecular chaperones to

reach their folded states efficiently and at a biologically relevant
time scale. The discovery and mechanistic analysis of the chap-
eronins, a class of molecular chaperones forming 800 to 1,000-
kDa double-ring structures, was important in shaping this view
(1–4). The chaperonins are essential, ATP-regulated macromo-
lecular machines that function as nano-cages for single protein
molecules to fold in isolation, unimpaired by aggregation.
Two distantly related groups of chaperonins are distinguished

(4–6): members of group I, also called Hsp60s, occur in eubac-
teria, mitochondria, and chloroplasts. They have seven ∼60-kDa
subunits per ring and cooperate with detachable, lid-shaped
cofactors (Hsp10 proteins), which function in closing and opening
the Hsp60 folding chamber. Group II chaperonins are found in
archaea and the eukaryotic cytosol. Their rings are usually homo-
or heterooligomers of eight subunits. Unlike the Hsp60s, they
function independently of Hsp10 cofactors and instead have an
in-built lid consisting of finger-like extensions protruding from
the apical domains of the chaperonin subunits.
The paradigm group I chaperonin system is the homooligo-

meric GroEL protein of Escherichia coli and its lid-factor GroES
(reviewed in refs. 4, 6, and 7). The apical domains of the GroEL
subunits expose hydrophobic amino acid residues, which recog-
nize solvent-exposed hydrophobic regions in unfolded substrate
proteins. Binding of ATP and GroES causes an extensive con-
formational rearrangement, resulting in the substrate protein to
be displaced into the central cavity and encapsulated under the

hood of GroES. The hydrophobic binding regions on GroEL are
buried in the complex with GroES, and the inner surface of the
chaperonin cavity becomes hydrophilic, providing an environment
permissive for folding. Encapsulated protein is released when
GroES dissociates from GroEL after ∼10 s, a reaction that is
regulated by the GroEL ATPase.
According to cryo-EM and crystal structures, the GroEL-

GroES folding cage can accommodate proteins of up to ∼70-
kDa molecular mass (8, 9). Indeed, the majority of bona fide
GroEL substrates are smaller than 50 kDa (10–12), consistent with
an average size of soluble E. coli proteins of ∼35 kDa (Fig. S1).
Only a small number of proteins >70 kDa have been reported
to interact with GroEL, but these interactions were either non-
productive for folding (12) or used a mechanism of GroEL
binding and release without encapsulation by GroES (13). In
contrast to prokarya, eukaryotic cells contain a substantially greater
number and fraction of multidomain proteins (14), enabling
increased structural and functional diversity as well as more
complex regulation. Approximately 70% of all eukaryotic pro-
teins are predicted to contain two or more domains (15). Com-
pared with bacteria, the average polypeptide size is increased to
∼55 kDa, and 25% of cytosolic proteins in yeast exceed 70 kDa
in size (Fig. S1) (16). Interestingly, the eukaryotic group II
chaperonin TRiC/CCT (TRiC, TCP-1 ring complex; CCT,
chaperonin containing TCP-1) has been shown to interact with
numerous proteins >70 kDa, both in mammalian cells and yeast
(17, 18) (Fig. S1). However, the folding chamber of TRiC is
equivalent in size to that of GroEL-GroES (19–21). How then
does TRiC assist the folding of proteins that exceed the apparent
size limit of its cavity?
The TRiC chaperonin complex consists of eight distinct,

paralogous subunits per ring, which are arranged in a precise
orientation (22, 23). These subunits have been highly conserved
during evolution from a simpler archaeal precursor (24). They
differ in their apical binding regions and are thought to adapt the
eukaryotic chaperonin to a range of substrates (25, 26), including
many essential components such as the cytoskeletal proteins actin
and tubulin, and cell cycle regulators (18, 27–30). Interestingly,
many of these proteins have complex domain topologies with
a pronounced β-sheet propensity (18), a property that is also
characteristic of the substrates of archaeal group II chaperonins
(31). Similar to GroEL-GroES, TRiC alternates between open
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and closed conformations in an ATP-regulated manner (19–21,
32–36). In contrast to GroEL, however, the closed conformation
is induced by formation of the ATP hydrolysis transition state,
which can be artificially stabilized by addition of ATP·AlFx (33).
Lid closure is mediated by a camera iris-like rearrangement of
the apical subunit extensions (37), inducing formation of an
eight-stranded β-barrel structure at the apical pore. The resulting
cavity would be large enough to enclose proteins of up to ∼70
kDa (20, 21) but not the numerous larger substrates. TRiC might
thus encapsulate only those domains of modular proteins that
critically require it for folding. The central opening in the closed
TRiC complex has a diameter of ∼5 Å and thus could accom-
modate extended linker sequences connecting structured domains
in many multidomain proteins.
Here we investigated whether such partial encapsulation of

multidomain proteins by TRiC can occur, and how it is accom-
plished. We explored the functional size of the TRiC cavity using
fusion proteins composed of the TRiC-dependent protein actin
and variants of GFP. Depending on the sequence context of the
actin “domain”, these proteins fold to the native state in a TRiC-
dependent manner. In the presence of ATP·AlFx, protein frag-
ments up to ∼70 kDa are protected from protease digestion by
TRiC, indicating transient encapsulation by the chaperonin
during the folding reaction. We show further that a physiological

multidomain substrate, hSnu114, which exceeds the chaperonin
cavity size considerably, is partially encapsulated. In this case,
TRiC selects C-terminal segments of the protein up to ∼45 kDa
for encapsulation, whereas the N-terminal ∼65 kDa of the pro-
tein are excluded from the cavity.

Results
TRiC Mediates the Folding of Actin in the Context of Fusion Proteins.
The folding of the 42-kDa cytoskeletal protein actin is strictly
TRiC-dependent, as shown both in vitro and in vivo (28, 38–40).
Native actin binds to DNase I (39, 41, 42), providing a conve-
nient folding assay. To investigate whether actin folding by TRiC
can occur when actin is part of larger multidomain proteins, we
generated fusion proteins of actin with GFP or with GFP and
blue fluorescent protein (BFP) (Fig. 1A). The three “domains,”
actin (A), GFP (G), and BFP (B), were arranged in different orders
connected by flexible glycine-alanine-serine linker sequences of 15–
18 residues. A BFP-GFP construct (BG) served as a control protein.
To investigate the folding of the actin fusion proteins, we

expressed the respective constructs in vitro in rabbit reticulocyte
lysate (RRL) in the presence of [35S]-methionine ([35S]-Met).
RRL contains the components of the Hsp70 chaperone system
(Hsc70/Hsp40) as well as TRiC and its cofactor prefoldin in
functional form (39). Fractionation of RRL by centrifugation
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showed that the full-length proteins of all fusion constructs were
soluble (Fig. 1B). Retention on DNase I affinity beads after
translation was used to estimate the fraction of natively folded
actin in the context of the different fusion proteins (Fig. 1C).
Additionally, we estimated the efficiency of actin folding according
to the abundance of a C-terminal protease-resistant actin frag-
ment of ∼35 kDa (residues 48 to the actin C terminus, residue
375), produced by digestion with proteinase K (PK) (Fig. 1D).
This fragment is only generated upon digestion of native or na-
tive-like actin (43) but not upon digestion of folding-deficient
actin carrying the mutation G150P (44) (Fig. S2).
The vast majority of actin was properly folded upon expression

in RRL, as judged by DNase I binding of full-length protein and
production of the ∼35-kDa fragment (Fig. 1E). The actin domain
of the fusion proteins GA, AG, and BGA also folded, albeit with
lower efficiency than actin alone. This is consistent with the
reported coassembly of GFP-actin and actin-GFP fusion proteins
with wild-type actin into cytoskeletal filaments in various eukary-
otic cells (45), including yeast (46) and neurons (47). The esti-
mated folding yield for the fusion proteins was generally higher
when judged by the intensity of the protease-resistant ∼35-kDa
fragment, suggesting that the fusion partners hindered access of
the actin moiety to the DNase I beads (Fig. 1 D and E). (Note that
this effect is not due to the production of the ∼35-kDa fragment
from prematurely terminated polypeptide chains, because for GA
these would not contain complete, foldable actin.) Earlier studies
suggested that correct localization of the actin C terminus close to
the N terminus (48) occurs late in the folding process and requires
flexibility of the terminal segments (49, 50). The lower folding
efficiency of AG compared with GA may thus be due to the GFP
moiety reducing the mobility of the actin C terminus. Consistent
with this interpretation, no significant actin folding was observed
for the BAG fusion construct, although the fusion protein BGA
still folded with detectable efficiency.
To confirm that actin folding of the fusion proteins was TRiC-

dependent, we depleted TRiC from RRL by complex formation
with immobilized human phosducin-like protein 1, a known high-
affinity interactor of TRiC (51). As expected, retention of actin
and GA on DNase I beads was lost or strongly reduced when
TRiC was depleted by ∼90% but was restored upon readdition of
purified bovine TRiC (Fig. S3).
These results demonstrate that TRiC is able to assist actin

folding in the context of an N-terminal or C-terminal fusion
protein. Folding is prevented, however, when both chain termini
of actin are joined to fluorescent protein domains.

Partial Protein Encapsulation by TRiC. To analyze the mechanism by
which TRiC enables the folding of actin segments in the context
of the fusion proteins, we established a protease protection assay
to measure protein encapsulation in the TRiC cavity. The closed
form of TRiC is resistant to PK. It is generated during ATP
hydrolysis and can be stabilized by AlFx (in the presence of ATP)
to capture the transition state of ATP hydrolysis (33, 52) (Fig. 2
A and B). In contrast, the apical domains of the TRiC subunits
are cleaved by PK in the open state, giving rise to a characteristic
pattern of 25- to 37-kDa fragments on SDS/PAGE (33, 53) (Fig.
2B). The resulting complex remains assembled under non-
denaturing conditions but is unable to encapsulate and fold actin,
indicating that folding requires lid closure (33, 37). The open and
closed conformations of TRiC can be separated by native PAGE,
where the more compact, closed conformation migrates faster
(Fig. 2C).
Analysis of actin translation reactions by native PAGE showed

[35S]-Met labeled product comigrating with TRiC in the high
molecular weight region of the gel (Fig. 2D). Native actin
migrates in the low molecular weight region as a diffuse band
(54). The presence of full-length actin in the TRiC complex
was confirmed by excising the band from the native gel and

reanalyzing it by SDS/PAGE (Fig. 2E). Whereas in the untreated
translation reaction actin migrated with the open form of TRiC,
addition of ATP·AlFx converted the complex into the closed
form (Fig. 2D). Upon incubation of open TRiC with PK, actin
was no longer detectable, indicating the degradation of the
TRiC-bound protein. As reported previously (33), in the pres-
ence of ATP·AlFx, TRiC-bound actin was resistant to protease
degradation, indicating that the protein was stably encapsulated
inside the TRiC cavity (Fig. 2 D and E). Some incomplete trans-
lation products of actin, which are unable to fold, also accumu-
lated on TRiC and were protease protected in the closed complex.
BFP-GFP (BG) essentially did not interact with TRiC (Fig. 2 D
and E), indicating that binding of the actin fusion proteins to
TRiC was mediated by actin.
Next, we analyzed the encapsulation of the actin fusion pro-

teins by TRiC, as outlined in Fig. 3A. Protease treatment of
complete translation reactions in the absence of ATP·AlFx
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(60 min at 30 °C), followed by treatment with PK as described in Materials
and Methods. Reactions were analyzed by SDS/PAGE and Coomassie stain-
ing. (C) Analysis of TRiC by native PAGE and Coomassie staining. Samples
were treated as in B. Open TRiC migrates more slowly than the closed form.
The TRiC complex remains assembled after PK cleavage. (D) (Left) Native
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resulted in cleavage of the full-length fusion proteins and the
production of protease-resistant fragments of ∼35 kDa, derived
from folded actin, and of ∼25 kDa, representing folded BFP or
GFP (Fig. 3B). When the translation reactions were incubated
with ATP·AlFx before PK treatment, a fraction of the full-length
fusion proteins GA and AG was resistant against proteolysis
(Fig. 3B), suggestive of encapsulation by TRiC. However, the
BGA and BAG full-length products were degraded even in the
presence of ATP·AlFx. A protected band corresponding in size
to GA was generated from BGA but not from BAG (Fig. 3B).
Furthermore, protected fragments around 45 kDa were observed
when actin was the C-terminal domain of the fusion protein (GA
and BGA).
Folding intermediates of all actin fusion proteins fractionated

with the open form of TRiC on native PAGE and were largely
protease-sensitive (Fig. 3C). GA and AG also comigrated with
the closed form of TRiC in the presence of ATP·AlFx. This
material was not diminished by protease treatment, indicative of
efficient encapsulation (Fig. 3C). In contrast, TRiC-bound BGA
and BAG did not migrate as a uniform band in the presence of
ATP·AlFx. Treatment with protease after incubation with
ATP·AlFx reduced the amount of TRiC-associated radio-la-
beled protein derived from BGA and BAG. The protease-
protected material remaining showed the typical migration of
the closed TRiC complex, suggesting that segments of the
large fusion proteins exposed on the outside of the chaperonin
had been removed (Fig. 3C).

Reanalysis of the TRiC-bound material from the native gel by
SDS/PAGE confirmed that the TRiC-bound actin fusion pro-
teins were degraded in the absence of ATP·AlFx (Fig. 3D). Im-
portantly, in the presence of ATP·AlFx, most of the TRiC-bound
GA and AG was protected against protease degradation (Fig.
3D), confirming that the ATP·AlFx-mediated stabilization of GA
and AG observed in the complete translation reaction (Fig. 3B)
was due to encapsulation by TRiC. In addition, substantial
amounts of a protease-protected band corresponding in size to
actin were detected in case of GA, suggesting that in a fraction of
TRiC:GA complexes only actin (perhaps with various lengths of
linker segments) was encapsulated and not the complete GA
fusion protein (Fig. 3E). Selective encapsulation of the actin
moiety was not observed with AG, coinciding with the lower
folding efficiency of actin in AG (Fig. 1 D and E). The TRiC-
bound full-length proteins of BGA and BAG remained PK-
sensitive in the presence of ATP·AlFx, resulting in protected
fragments of ∼70 kDa and ∼45 kDa in case of BGA (Fig. 3D).
Thus, cleavage had occurred in the linker regions between BFP
and GFP and between GFP and actin, respectively (Fig. 3E). In
contrast, no defined protected fragments were generated from
BAG, demonstrating that this construct can neither be fully nor
partially encapsulated inside the TRiC cavity. The BAG-derived
radio-labeled material that remained associated with closed
TRiC after protease treatment (Fig. 3C) apparently represented
small peptide fragments that were not resolved by SDS/PAGE
(Fig. 3D). The cleaved GFP and BFP domains were not detected
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because they were removed by PK and no longer migrated with
the protease-treated chaperonin on the native gel.

Sizing the TRiC Cavity. The size of the fragments of the GA and
BGA fusions protected by TRiC matched the estimated holding
capacity of the closed TRiC cavity of ∼70 kDa (20). However, we
could not rule out that the folded, protease-resistant GFP
domain might protrude from the cavity, shielding the flexible
interdomain linker region from protease access. In this scenario
the volume capacity of the TRiC cavity may be overestimated.
To address this possibility, we generated a version of GA con-

taining a protease-sensitive mutant of GFP, lacking residues
3–38. This N-terminally truncated GFP (ΔN-GFP) (Fig. S4A) is
predicted to be defective in forming the stable GFP β-barrel and
hence should be degraded when protruding from the TRiC cavity.
Indeed, the ∼25-kDa band corresponding to protease-resistant
GFP was absent in the digestion pattern of ΔN-GA (Fig. S4B).
Formation of the protease-resistant actin fragment of ∼35 kDa
and DNase I binding were strongly diminished compared with
GA, suggesting a negative effect of ΔN-GFP on actin folding
(Fig. S5). However, when ATP·AlFx was added to the translation
reaction, protection of full-length ΔN-GA from PK digestion was
nevertheless observed (Fig. S4B). TRiC-bound ΔN-GA comi-
grated with the open and closed forms of the chaperonin (Fig.
S4C). Excision of the TRiC-bands from the native gel and
reanalysis by SDS/PAGE confirmed that full-length ΔΝ-GA was
indeed accommodated in a protease-protected topology by the
closed TRiC complex (Fig. S4D). Thus, TRiC is capable of en-
capsulating a complete protein of the size of ∼70 kDa. Of note,
the presence of proteolytic fragments in the presence of ATP·AlFx
(Fig. S4D) suggests that the fully occupied TRiC cavity is either
dynamic or cannot be locked in the closed conformation, pro-
viding transient access to added protease. This phenomenon
becomes apparent when the enclosed protein is unable to fold, as
in the case of ΔN-GA.

Partial Encapsulation of an Authentic Multidomain Substrate by TRiC.
Numerous substrate proteins of yeast and mammalian TRiC
exceed the 70-kDa size limit (17, 18) (Fig. S1). We expressed
selected homologs of these proteins from human cDNA libraries
in RRL (Table S1). The 109-kDa spliceosomal U5 subunit,
hSnu114, also known as snRNP116, exhibited high expression
levels and robust binding to TRiC, comparable to the actin fu-
sion proteins, and thus was analyzed in detail. hSnu114 is a close
sequence homolog of translation elongation factor 2 (eEF2)
(55), which has a complex, nested multidomain structure (56)
(Fig. 4A): domains G′ and V in eEF2 are inserted into domains
G and IV, respectively, resulting in a linear arrangement of four
globular domains with α/β structure. Compared with eEF2,
hSnu114 has an additional N-terminal extension of 112 pre-
dominantly acidic residues, which is predicted to be unstructured.
To probe the folding of hSnu114, we separately translated the

full-length protein (amino acids 1–972), the N-terminal part
(hSnu114 [1–580]) comprising the unstructured N terminus and
domains G, G′, and II, and a C-terminal part (hSnu114 [581–972])
comprising domains III, IV, and V (Fig. 4A). PK digestion of
complete translation reactions containing full-length hSnu114
(109 kDa) resulted in the formation of protease-resistant frag-
ments of ∼50, 55, and 95 kDa (Fig. 4B). A similar pattern of ∼50-
and 55-kDa fragments was observed for hSnu114 [1–580], whereas
hSnu114 [581–972] was completely degraded. Thus, whereas the
N-terminal 580-aa segment apparently contains stable, autono-
mously folded domains, the C-terminal 392-aa residues of hSnu114
are structured only in the context of the full-length protein. The
largest protease-resistant fragment of ∼95 kDa is consistent with
the removal of an unstructured N-terminal extension, as pre-
dicted. Addition of ATP·AlFx before PK treatment did not
significantly change the fragmentation pattern for full-length

hSnu114 and hSnu114 [1–580] when complete translation reac-
tions were analyzed (Fig. 4B). In contrast, hSnu114 [581–972]
was completely protease-protected upon addition of ATP·AlFx,
suggesting tight association with TRiC (Fig. 4B). Analysis of the
TRiC complex by sequential native PAGE and SDS/PAGE
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confirmed that full-length hSnu114 and hSnu114 [581–972]
bound efficiently to TRiC, whereas hSnu114 [1–580] bound only
weakly (Fig. 4 C and D). Indeed, the ∼45-kDa hSnu114 [581–972]
was completely encapsulated and protease protected by TRiC in
the presence of ATP·AlFx (Fig. 4D). Surprisingly, however, PK
treatment of full-length hSnu114 bound to TRiC in the presence
of ATP·AlFx did not result exclusively in the protected fragment
of ∼45 kDa that was observed with hSnu114 [581–972]. Instead,
a series of fragments with ∼15-, 20-, 27-, 37-, and 45-kDa mo-
lecular mass were trapped inside TRiC (Fig. 4D), which suggests
that the C-terminal segment has different folding properties
when in context with the TRiC-independent N-terminal domains
of the full-length protein. Interestingly, as in the case of the fusion
construct BGA (Fig. 3C), protease treatment resulted in faster
migration of the closed TRiC:hSnu114 complex in the native gel
(Fig. 4C). This suggests that portions of hSnu114 protruding from
the cage increase the hydrodynamic radius of the intact complex.
To confirm that the fragments of full-length hSnu114 encap-

sulated by TRiC were indeed derived from the C-terminal part
of the protein, we expressed versions of hSnu114 with either
N-terminal or C-terminal HA-epitope tags, HA-hSnu114 and
hSnu114-HA, respectively. Consistent with the disorder predicted
for the N terminus of hSnu114, HA-tagged fragments were absent
in HA-hSnu114 translation reactions after protease treatment in
the presence of ATP·AlFx, although initially full-length HA-
hSnu114 and incomplete translation products were clearly de-
tectable by anti-HA Western blotting (Fig. 5A). In contrast, we
detected HA-reactive protease-protected fragments of ∼15, 20,
27, and 37 kDa upon Western blot of an equally treated translation
reaction of the C-terminally tagged hSnu114-HA (Fig. 5A). The
same band pattern was observed when the TRiC-containing band
was excised from native PAGE (Fig. 5B) and reanalyzed by
Western blotting (Fig. 5C). Thus, TRiC encapsulates and pro-
tects C-terminal segments of hSnu114 presumably derived from
domains IV and V (Fig. 5D). These fragments seem to have a
strong TRiC binding motif in common, which is likely located in
the C-terminal 140 residues, as based on the smallest fragments
allowing encapsulation (Fig. 5D). This region contains multiple
β-strands, consistent with the finding that many TRiC substrates
are rich in β-sheet structure (18) (Fig. 5D).
To test whether the C-terminal 140 residue segment of hSnu114

competes with hSnu114 [581–972] for TRiC binding, we con-
structed a soluble fusion protein of maltose binding protein (MBP)
with hSnu114 residues 830–972. Addition of this protein to the
translation displaced hSnu114 [581–972] from TRiC and resulted
in its aggregation (Fig. S6). Displacement was ATP-dependent,
demonstrating that hSnu114 [581–972] is actively cycling on the
chaperonin and apparently incompetent to fold in the absence of
the N-terminal domains of hSnu114.

Discussion
Adaptation of TRiC to the Folding of Multidomain Proteins. The shift
toward larger multidomain proteins in eukaryotes must have
imposed evolutionary constraints both on the folding proteins as
well as the cellular folding machinery. This is due, at least in part,
to the need of preventing adjacent, concomitantly folding domains
from engaging in aberrant interactions with one another (14, 57).
Independent domain folding is facilitated by the sequential
emergence of folding units from the ribosome and their cotrans-
lational folding and requires chaperone assistance in many cases
(14, 58, 59). Specifically, long-lived domain folding intermediates
may need to be shielded by chaperones to facilitate the folding of
adjacent modules (Fig. 6). Our present results suggest that the
eukaryotic chaperonin TRiC/CCT plays an important role in
multidomain protein folding by enclosing parts of proteins too
large to be encapsulated in their entirety. This may allow the
efficient folding of certain domain topologies within the special-
ized physical environment of the chaperonin cavity and reduce

possible interdomain interference during folding. Partial protein
encapsulation is also consistent with reports that the eukaryotic
chaperonin can interact with nascent polypeptide chains and
mediate cotranslational folding in cooperation with the Hsp70
chaperone system (59, 60).
TRiC and other group II chaperonins use helical protrusions

from their apical domains that serve as a built-in lid, providing an
alternative to the detachable ring-shaped cofactors used by the
group I chaperonins (61, 62). Instead, closure in group II chap-
eronins occurs in an iris-like manner, whereby the tips of the
helical protrusions join, resulting in the formation of an apical
pore, wide enough for a single peptide strand (Fig. S7). There
is genetic as well as structural evidence for a sequential or
step-wise movement of the individual TRiC subunits during lid
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(A) Western blot analysis of HA-tagged fragments of hSnu114 protease-
protected by TRiC encapsulation. HA-hSnu114 and hSnu114-HA were
translated in RRL in the absence of radiolabeled amino acid. PK treatment
was performed in the presence of ATP·AlFx (see Fig. 3B), followed by SDS/
PAGE and Western blotting with anti-HA antibody. Protease-protected
fragments of hSnu114-HA are indicated. The positions of proteolytic frag-
ments and molecular weight markers are indicated as in Fig. 4B. (B) Native
PAGE analysis of TRiC:hSnu114-HA complexes. The experiment was per-
formed as in Fig. 3C, except that analysis was by anti-HA Western blotting.
(C) Anti-HA Western blot analysis of TRiC-bound translation products. TRiC-
bound material was excised from native PAGE gels and reanalyzed by SDS/
PAGE (see Fig. 3D). (D) Putative structures of hSnu114-HA fragments en-
capsulated by TRiC. C-terminal proteolytic fragments observed in A and C
were mapped on the structural model (Fig. 4A). Note that the hSnu114 se-
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imately to domains IV (red) and V (gray) (Fig. 4A).
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closure (35, 36, 63, 64). Thus, a flexibly attached folded domain,
itself not interacting with TRiC (such as GFP in the actin
fusions), might be excluded from the cavity, adopting a topology
in which the extended linker traverses the central channel (Fig.
6). Cotranslational folding of the GFP domain would then ex-
plain why the selective encapsulation of actin was more efficient
in the fusion construct GA than in AG (Fig. 3D). It is conceiv-
able that the pore exhibits some degree of flexibility. For ex-
ample, detachment of the helical protrusion from one of the
TRiC subunits might allow an expansion, without compromising
the geometry needed for sequential ATP hydrolysis within the
ring. A recent cryo-EM analysis of intermediates of the TRiC
conformational cycle suggests that one subunit, tentatively des-
ignated a3, might function as such a “hatch” (20). Although an
expanded pore might allow the encapsulation of an internal

segment of a multidomain protein, this was not observed with
actin fused between fluorescent protein domains. TRiC may thus
preferentially assist the folding of C-terminal or N-terminal
protein domains that tend to populate kinetically trapped inter-
mediates (Fig. 6). Whether the compositionally less complex
group II chaperonins of archaea already support domain-wise
protein encapsulation remains to be addressed, but it is con-
ceivable that this capacity was acquired only more recently in
evolution, along with the increase in the number of paralogous
chaperonin subunits.
The ability of TRiC to interact with parts of larger protein

structures may also help to explain its role in inhibiting the
growth of fibrillar aggregates formed by N-terminal fragments of
polyglutamine expanded huntingtin (65–67). In this case, TRiC
may cap the ends of protofibrils, thereby blocking growth by
monomer addition (65).

Partial Encapsulation of the Authentic TRiC Substrate hSnu114. Our
data indicate that the TRiC-dependent region of the 109-kDa
protein hSnu114 is located close to the C terminus. Notably,
rather than a single, well-defined domain, we found a series of
C-terminal fragments with approximate sizes of 15, 20, 27, 37,
and 45 kDa to be encapsulated by TRiC. The homology model of
hSnu114 predicts domain boundaries roughly 45, 37, and 15 kDa
from the C terminus, suggesting that TRiC preferably encloses
segments beginning at interdomain linkers. Such flexible sequen-
ces should be compatible with the steric constraints imposed by
the apical pore of TRiC (Fig. S7). The N-terminal domains of
hSnu114, comprising residues 1–580, may use folding assistance
by the Hsp70 chaperone system, which is known to functionally
cooperate with TRiC (59, 68).
Notably, the longest of the TRiC-encapsulated fragments was

unable to fold when removed from the context of the full-length
protein and was retained by the chaperonin. This suggests that
the N-terminal domains form a scaffold necessary to stabilize the
structure of the C-terminal region upon its release from TRiC.
Surprisingly, the two most prominent C-terminal fragments of 20
and 27 kDa do not coincide with the predicted domain structure
of hSnu114. This may suggest that the apical pore of TRiC can
select cryptic internal motifs, which either become structured only
in the context of the fully folded domain or occur in loop con-
nections at the surface. The detection of a series of C-terminal
fragments protected by the TRiC cavity may thus reflect
hSnu114 molecules at different stages of a folding process in
which C-terminal segments are added stepwise onto a scaffold
formed by the N-terminal domains. A global analysis of TRiC-
protected protein fragments by proteomics may provide in-
sight into the mechanisms by which the chaperonin assists
multidomain protein folding.

Materials and Methods
Detailed experimental procedures are provided in SI Materials and Methods.
Briefly, TRiC substrates were expressed in vitro using a coupled transcription-
translation RRL system in the presence of [35S]-Met. Folding of actin was
monitored using retention on immobilized DNase I and by following the
formation of a PK-resistant 35-kDa fragment of actin in SDS/PAGE. The
closed conformation of TRiC was induced by addition of AlFx [final con-
centrations 30 mM KF and 5 mM Al(NO3)3] (33), and substrate exposure was
probed with 2.9 μM PK (10 min on ice) followed by SDS/PAGE analysis. TRiC-
bound material was isolated by native PAGE using gels containing 6 mM KF
and 1 mM Al(NO3)3 and reanalyzed by SDS/PAGE.

ACKNOWLEDGMENTS. We thank the Max Planck Institute of Biochemistry
core facility for DNA sequencing and M. Hayer-Hartl for helpful discussion
and critical reading of the manuscript. This work was supported in part by
the Center for Integrated Protein Science Munich. F.R. and L.M. were sup-
ported by the International Max Planck Research School for Molecular and
Cellular Life Sciences, Munich.

ADP-P

+ ATP

ATPADP

ADP

+ Pi

ribosome

folding
intermediate

open
TRiC
cavity

closed
TRiC
cavity

native
product

1

2

34

co-translationally
folded domain

Fig. 6. Folding of multidomain proteins by TRiC. Hypothetical model for the
folding of a two-domain protein having a TRiC-dependent C-terminal do-
main, analogous to the GFP-actin fusion protein. Step 1, the N-terminal
domain is TRiC-independent and folds cotranslationally, presumably with
the aid of ribosome-associated chaperones and the Hsp70 system (59, 70).
Step 2, the folding intermediate containing a nonnative C-terminal domain
is stabilized against aggregation by Hsp70 or prefoldin and is posttransla-
tionally transferred to TRiC. Alternatively, TRiC may interact cotranslation-
ally with a chaperonin-dependent domain (59, 60). Step 3, the C-terminal
domain is encapsulated by TRiC upon ATP hydrolysis and is induced to fold in
the specialized physical environment of the chaperonin cavity (23). The iris-
like closing mechanism allows the flexible interdomain linker to protrude
through the apical pore. Step 4, upon opening of the TRiC cavity, the
substrate is either released as successfully folded, native protein or enters
another folding cycle.

21214 | www.pnas.org/cgi/doi/10.1073/pnas.1218836109 Rüßmann et al.



1. Ellis RJ (2003) Protein folding: Importance of the Anfinsen cage. Curr Biol 13(22):
R881–R883.

2. Gershenson A, Gierasch LM (2011) Protein folding in the cell: Challenges and progress.
Curr Opin Struct Biol 21(1):32–41.

3. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381(6583):
571–579.

4. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin:
Physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145.

5. Frydman J (2001) Folding of newly translated proteins in vivo: The role of molecular
chaperones. Annu Rev Biochem 70:603–647.

6. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding
and proteostasis. Nature 475(7356):324–332.

7. Saibil HR, Ranson NA (2002) The chaperonin folding machine. Trends Biochem Sci 27
(12):627–632.

8. Clare DK, Bakkes PJ, van Heerikhuizen H, van der Vies SM, Saibil HR (2009) Chaper-
onin complex with a newly folded protein encapsulated in the folding chamber.
Nature 457(7225):107–110.

9. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-
GroES-(ADP)7 chaperonin complex. Nature 388(6644):741–750.

10. Fujiwara K, Ishihama Y, Nakahigashi K, Soga T, Taguchi H (2010) A systematic survey
of in vivo obligate chaperonin-dependent substrates. EMBO J 29(9):1552–1564.

11. Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in
vivo substrates of the chaperonin GroEL. Nature 402(6758):147–154.

12. Kerner MJ, et al. (2005) Proteome-wide analysis of chaperonin-dependent protein
folding in Escherichia coli. Cell 122(2):209–220.

13. Chaudhuri TK, Farr GW, Fenton WA, Rospert S, Horwich AL (2001) GroEL/GroES-me-
diated folding of a protein too large to be encapsulated. Cell 107(2):235–246.

14. Netzer WJ, Hartl FU (1997) Recombination of protein domains facilitated by co-
translational folding in eukaryotes. Nature 388(6640):343–349.

15. Jacob E, Horovitz A, Unger R (2007) Different mechanistic requirements for pro-
karyotic and eukaryotic chaperonins: a lattice study. Bioinformatics 23(13):i240–i248.

16. Netzer WJ, Hartl FU (1998) Protein folding in the cytosol: Chaperonin-dependent and
-independent mechanisms. Trends Biochem Sci 23(2):68–73.

17. Dekker C, et al. (2008) The interaction network of the chaperonin CCT. EMBO J 27(13):
1827–1839.

18. Yam AY, et al. (2008) Defining the TRiC/CCT interactome links chaperonin function to
stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol 15
(12):1255–1262.

19. Cong Y, et al. (2010) 4.0-A resolution cryo-EM structure of the mammalian chaperonin
TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci USA 107(11):
4967–4972.

20. Cong Y, et al. (2012) Symmetry-free cryo-EM structures of the chaperonin TRiC along
its ATPase-driven conformational cycle. EMBO J 31(3):720–730.

21. Dekker C, et al. (2011) The crystal structure of yeast CCT reveals intrinsic asymmetry of
eukaryotic cytosolic chaperonins. EMBO J 30(15):3078–3090.

22. Kalisman N, Adams CM, Levitt M (2012) Subunit order of eukaryotic TRiC/CCT chap-
eronin by cross-linking, mass spectrometry, and combinatorial homology modeling.
Proc Natl Acad Sci USA 109(8):2884–2889.

23. Leitner A, et al. (2012) The molecular architecture of the eukaryotic chaperonin TRiC/
CCT. Structure 20(5):814–825.

24. Archibald JM, Blouin C, Doolittle WF (2001) Gene duplication and the evolution of
group II chaperonins: implications for structure and function. J Struct Biol 135(2):
157–169.

25. Amit M, et al. (2010) Equivalent mutations in the eight subunits of the chaperonin
CCT produce dramatically different cellular and gene expression phenotypes. J Mol
Biol 401(3):532–543.

26. Spiess C, Miller EJ, McClellan AJ, Frydman J (2006) Identification of the TRiC/CCT
substrate binding sites uncovers the function of subunit diversity in eukaryotic
chaperonins. Mol Cell 24(1):25–37.

27. Frydman J, et al. (1992) Function in protein folding of TRiC, a cytosolic ring complex
containing TCP-1 and structurally related subunits. EMBO J 11(13):4767–4778.

28. Gao Y, Thomas JO, Chow RL, Lee GH, Cowan NJ (1992) A cytoplasmic chaperonin that
catalyzes beta-actin folding. Cell 69(6):1043–1050.

29. Spiess C, Meyer AS, Reissmann S, Frydman J (2004) Mechanism of the eukaryotic chap-
eronin: Protein folding in the chamber of secrets. Trends Cell Biol 14(11):598–604.

30. Yaffe MB, et al. (1992) TCP1 complex is a molecular chaperone in tubulin biogenesis.
Nature 358(6383):245–248.

31. Hirtreiter AM, et al. (2009) Differential substrate specificity of group I and group II
chaperonins in the archaeon Methanosarcina mazei. Mol Microbiol 74(5):1152–1168.

32. Booth CR, et al. (2008) Mechanism of lid closure in the eukaryotic chaperonin TRiC/
CCT. Nat Struct Mol Biol 15(7):746–753.

33. Meyer AS, et al. (2003) Closing the folding chamber of the eukaryotic chaperonin
requires the transition state of ATP hydrolysis. Cell 113(3):369–381.

34. Muñoz IG, et al. (2011) Crystal structure of the open conformation of the mammalian
chaperonin CCT in complex with tubulin. Nat Struct Mol Biol 18(1):14–19.

35. Rivenzon-Segal D, Wolf SG, Shimon L, Willison KR, Horovitz A (2005) Sequential ATP-
induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 re-
vealed by EM analysis. Nat Struct Mol Biol 12(3):233–237.

36. Shimon L, Hynes GM, McCormack EA, Willison KR, Horovitz A (2008) ATP-induced
allostery in the eukaryotic chaperonin CCT is abolished by the mutation G345D in
CCT4 that renders yeast temperature-sensitive for growth. J Mol Biol 377(2):469–477.

37. Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J (2007) Essential function of the
built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat
Struct Mol Biol 14(5):432–440.

38. Chen X, Sullivan DS, Huffaker TC (1994) Two yeast genes with similarity to TCP-1 are
required for microtubule and actin function in vivo. Proc Natl Acad Sci USA 91(19):
9111–9115.

39. Stemp MJ, Guha S, Hartl FU, Barral JM (2005) Efficient production of native actin
upon translation in a bacterial lysate supplemented with the eukaryotic chaperonin
TRiC. Biol Chem 386(8):753–757.

40. Vinh DB, Drubin DG (1994) A yeast TCP-1-like protein is required for actin function in
vivo. Proc Natl Acad Sci USA 91(19):9116–9120.

41. Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the
actin:DNase I complex. Nature 347(6288):37–44.

42. Lazarides E, Lindberg U (1974) Actin is the naturally occurring inhibitor of de-
oxyribonuclease I. Proc Natl Acad Sci USA 71(12):4742–4746.

43. Kuznetsova IM, et al. (1999) Effect of self-association on the structural organization
of partially folded proteins: Inactivated actin. Biophys J 77(5):2788–2800.

44. McCormack EA, Llorca O, Carrascosa JL, Valpuesta JM, Willison KR (2001) Point mu-
tations in a hinge linking the small and large domains of beta-actin result in trapped
folding intermediates bound to cytosolic chaperonin CCT. J Struct Biol 135(2):
198–204.

45. Yoon Y, Pitts K, McNiven M (2002) Studying cytoskeletal dynamics in living cells using
green fluorescent protein. Mol Biotechnol 21(3):241–250.

46. Doyle T, Botstein D (1996) Movement of yeast cortical actin cytoskeleton visualized in
vivo. Proc Natl Acad Sci USA 93(9):3886–3891.

47. Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic
spines. Neuron 20(5):847–854.

48. Kabsch W, Holmes KC (1995) The actin fold. FASEB J 9(2):167–174.
49. Lee JY, Duan L, Iverson TM, Dima RI (2012) Exploring the role of topological frustration

in actin refolding with molecular simulations. J Phys Chem B 116(5):1677–1686.
50. Neirynck K, Waterschoot D, Vandekerckhove J, Ampe C, Rommelaere H (2006) Actin

interacts with CCT via discrete binding sites: A binding transition-release model for
CCT-mediated actin folding. J Mol Biol 355(1):124–138.

51. McLaughlin JN, et al. (2002) Regulatory interaction of phosducin-like protein with the
cytosolic chaperonin complex. Proc Natl Acad Sci USA 99(12):7962–7967.

52. Melki R, Cowan NJ (1994) Facilitated folding of actins and tubulins occurs via a nu-
cleotide-dependent interaction between cytoplasmic chaperonin and distinctive
folding intermediates. Mol Cell Biol 14(5):2895–2904.

53. Szpikowska BK, Swiderek KM, Sherman MA, Mas MT (1998) MgATP binding to the
nucleotide-binding domains of the eukaryotic cytoplasmic chaperonin induces con-
formational changes in the putative substrate-binding domains. Protein Sci 7(7):
1524–1530.

54. Frydman J, Hartl FU (1996) Principles of chaperone-assisted protein folding: Differ-
ences between in vitro and in vivo mechanisms. Science 272(5267):1497–1502.

55. Fabrizio P, Laggerbauer B, Lauber J, Lane WS, Lührmann R (1997) An evolutionarily
conserved U5 snRNP-specific protein is a GTP-binding factor closely related to the
ribosomal translocase EF-2. EMBO J 16(13):4092–4106.

56. Jørgensen R, et al. (2003) Two crystal structures demonstrate large conformational
changes in the eukaryotic ribosomal translocase. Nat Struct Biol 10(5):379–385.

57. Wright CF, Teichmann SA, Clarke J, Dobson CM (2005) The importance of sequence
diversity in the aggregation and evolution of proteins. Nature 438(7069):878–881.

58. Frydman J, Erdjument-Bromage H, Tempst P, Hartl FU (1999) Co-translational domain
folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat
Struct Biol 6(7):697–705.

59. Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU (1994) Folding of nascent polypeptide
chains in a high molecular mass assembly with molecular chaperones. Nature 370
(6485):111–117.

60. Etchells SA, et al. (2005) The cotranslational contacts between ribosome-bound na-
scent polypeptides and the subunits of the hetero-oligomeric chaperonin TRiC probed
by photocross-linking. J Biol Chem 280(30):28118–28126.

61. Zhang J, et al. (2010) Mechanism of folding chamber closure in a group II chaperonin.
Nature 463(7279):379–383.

62. Zhang J, et al. (2011) Cryo-EM structure of a group II chaperonin in the prehydrolysis
ATP-bound state leading to lid closure. Structure 19(5):633–639.

63. Lin P, Sherman F (1997) The unique hetero-oligomeric nature of the subunits in the
catalytic cooperativity of the yeast Cct chaperonin complex. Proc Natl Acad Sci USA
94(20):10780–10785.

64. Reissmann S, et al. (2012) A gradient of ATP affinities generates an asymmetric power
stroke driving the chaperonin TRIC/CCT folding cycle. Cell Rep 2(4):866–877.

65. Behrends C, et al. (2006) Chaperonin TRiC promotes the assembly of polyQ expansion
proteins into nontoxic oligomers. Mol Cell 23(6):887–897.

66. Kitamura A, et al. (2006) Cytosolic chaperonin prevents polyglutamine toxicity with
altering the aggregation state. Nat Cell Biol 8(10):1163–1170.

67. Tam S, Geller R, Spiess C, Frydman J (2006) The chaperonin TRiC controls polyglut-
amine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol
8(10):1155–1162.

68. Cuéllar J, et al. (2008) The structure of CCT-Hsc70 NBD suggests a mechanism for
Hsp70 delivery of substrates to the chaperonin. Nat Struct Mol Biol 15(8):858–864.

69. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Re-
pository and associated resources. Nucleic Acids Res 37(Database issue):D387–D392.

70. Kramer G, Boehringer D, Ban N, Bukau B (2009) The ribosome as a platform for co-
translational processing, folding and targeting of newly synthesized proteins. Nat
Struct Mol Biol 16(6):589–597.

Rüßmann et al. PNAS | December 26, 2012 | vol. 109 | no. 52 | 21215

BI
O
CH

EM
IS
TR

Y
IN
A
UG

UR
A
L
A
RT

IC
LE



Supporting Information
Rüßmann et al. 10.1073/pnas.1218836109
SI Materials and Methods
Plasmids and Constructs.Actin fusion constructs were expressed in
rabbit reticulocyte lysate (RRL) from a pET22b-based vector
under the control of a T7 promoter using the actin sequence
of Saccharomyces cerevisiae, Act1p. All actin fusion constructs
carried a C-terminal 6xHis-tag. The actin, blue fluorescent pro-
tein (BFP), and GFP domains were connected by flexible 15- to
18-aa linkers using the sequence SGSAASAAGAGEAAA (with
minor modifications). The GFP domains were based on the
GFPcycle3 sequence (1). BFP was lacking the cycle3 mutations
and carried the chromophore mutation Y66H (2). Protease-
sensitive GFP (ΔΝ-GFP) was created by deletion of amino
acids 3–38.
Plasmids encoding putative TRiC substrates (3, 4) were ob-

tained from Mammalian Gene Collection (MGC) human veri-
fied full-length cDNA libraries (imaGenes) and expressed under
the control of T7 (MYH1, THNSL1), T3 (EEF2,MMS19,MUC17),
or SP6 (TSHZ3, EFTUD2, UBA1, LARS, SKIV2L, KIF13A,
FASN, USP10, ATP6V0A1, COPB2, GANAB, SMARCC2,
NUP153, DYNC1H1) promoters in coupled RRL transcription–
translation reactions (Promega).
HA-hSnu114 and hSnu114-HA were expressed from a pET22b-

based vector under the control of a T7 promoter and carried an
HA tag (YPYDVPDYA) at theN or C terminus, respectively. HA-
hSnu114 carried a C-terminal and hSnu114-HA an N-terminal
FLAG-tag (DYKDDDDK) in addition.
Human phosducin-like protein 1 (PhLP1) carrying an N-terminal

6xHis-Tag was expressed from a pProEx-HTb construct.
MBP-hSnu114(830-972) was expressed from a pMal-c2-based

vector.

In Vitro Transcription–Translation Reactions. Proteins were expressed
in vitro in coupled RRL transcription–translation reactions using
TNT coupled reticulocyte lysate (Promega). The reactions were
performed in the presence of 10 μCi L-[35S]-Met (Perkin-Elmer)
and 1 μg plasmid DNA per 50 μL reaction for 60–90 min at 30 °C.
Translation was terminated before DNase I binding by incubation
with 10 U/mL apyrase (Sigma-Aldrich) for 2 min at 30 °C to en-
sure that no further translation or TRiC-mediated folding oc-
curred during the DNase I binding reaction. Apyrase treatment
was omitted before protease protection assays.
Solubility of translation products was analyzed by centrifuga-

tion of total translation lysate at 20,000 × g for 30 min at 4 °C.
Total, pellet, and supernatant fractions were analyzed by SDS/
PAGE and fluorography.

Protein Purification.TRiCwas purified from bovine testis essentially
as previously described (5, 6), with the following modifications.
Pooled fractions from HiTrap heparin (GE Healthcare) chro-
matography were further separated on a HiLoad Superdex 200
(GE Healthcare) gel filtration column. Fractions containing
the 1 MDa TRiC complex were pooled and concentrated to
4–5 mg protein/mL using Vivaspin (Sartorius) centrifugal
concentrators.
Human PhLP1 was expressed in Escherichia coli BL21 cells and

purified using a HisTrap Ni Sepharose column (GE Healthcare).
Imidazole was removed using a HiTrap desalting column. The
final protein concentration was ∼11 mg/mL, determined by ab-
sorbance at 280 nm.
MBP-hSnu114(830–972) was expressed in E. coli and purified

using Amylose Resin (New England Biolabs). The final pro-

tein concentration was ∼19 mg/mL, determined by absorbance
at 280 nm.

DNase I Binding Assay. Translation reactions were diluted 10-fold
with buffer [1× PBS, 5 mM EDTA, 1 mM DTT, 0.1% Tween 20,
and 1× Complete Protease Inhibitor Mixture (Roche)] before
incubation with DNase I (Roche) immobilized on CNBr-acti-
vated Sepharose 4B (GE Healthcare) for 120 min at 4 °C. After
washing the resin once with 500 μL buffer W1 [50 mM Tris·HCl
(pH 7.4), 150 mM NaCl, 5 mM EDTA, 1% Triton X-100], twice
with 500 μL buffer W2 [50 mM Tris·HCl (pH 7.4), 500 mM
NaCl, 5 mM EDTA, and 1% Triton X-100] and once with 500
μL buffer W3 (1× PBS) in a mini spin column, bound protein was
eluted with 2× SDS-loading buffer [4% (wt/vol) SDS, 20%
(vol/vol) glycerol, 5% (vol/vol) β-mercaptoethanol, and 120
mM Tris·HCl (pH 6.8)] by incubation at 95 °C for 2 min fol-
lowed by centrifugation at 16,100 × g for 2 min.

Estimating Actin Folding Efficiency from 35K Fragment. Actin fusion
proteins were transcribed and translated in RRL in the presence
of L-[35S]-Met at 30 °C for 90 min. Translation was stopped by
incubation with 110 μM cycloheximide (Sigma-Aldrich) at 30 °C
for 2 min. Proteinase K (PK) digest was carried out for 10 min on
ice with a final PK concentration of 83 μg/mL. Protease action
was stopped by incubation with 10 mM phenylmethane sulfo-
nylfluoride. Samples were analyzed by SDS/PAGE and fluorog-
raphy. Quantification of band intensities was done using AIDA
software version 4.15 (Raytest). The actin folding efficiency was
estimated from the ratio of the intensities of the 35K fragment
and the corresponding full-length protein corrected for the
number of methionines contained in the respective polypeptide.

Depletion of TRiC from Reticulocyte Lysate. PhLP1 (650 μg) was
incubated with 500 μL PBS containing 40 mg/mL Dynabeads
TALON (Dynal Biotech) for 2 h at 4 °C. After washing three
times with 1.5 mL PBS, the beads were incubated with 130 μL
coupled RRL for 2 h at 4 °C. Efficiency of depletion was ana-
lyzed by Western blotting using an antibody specific for CCTα
(Stressgen). Depleted RRL was used either directly for tran-
scription and translation or after supplementation with 1 μM
purified bovine TRiC.

Protease Protection by TRiC. Proteins were transcribed and trans-
lated in RRL in the presence of L-[35S]-Met as described above
(60 min at 30 °C). Samples were either treated with ATP·AlFx
[for a 50-μL reaction: 1.5 μL of 1 M KF, 1 μL of 250 mM Al
(NO3)3, and 0.5 μL of 100 mM ATP] or mock treated (for a 50-
μL reaction: 2.5 μL H2O and 0.5 μL of 100 mM ATP) for 30–60
min at 30 °C (7). PK digest was carried out for 10 min on ice with
a final PK concentration of 83 μg/mL. Protease action was stopped
by addition of PMSF to a final concentration of 10 mM.

Native PAGE. Proteins were separated by 5–13% (wt/vol) acryl-
amide gradient native PAGE essentially as previously described
(8). Native gels were run as Clear Native PAGE at 4 °C for 16–
18 h, initially at 100 V. The voltage was increased to 200 V when
the sample had entered the stacking gel. Including low concen-
trations of AlFx [6 mM KF, 1 mM Al(NO3)3] into the gel matrix
and running buffers resulted in stabilization of the closed con-
formation of TRiC during electrophoresis.

Protein Extraction from Native PAGE Slices. TRiC bands were vi-
sualized by Coomassie staining (identified using purified TRiC
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standard) and excised. The slices were incubated in 150 μL 2×
SDS loading buffer for 2 h at 68 °C with constant shaking at
1,400 rpm, followed by incubation at 95 °C for 10 min. The sample
was then centrifuged at 20,000 × g for 10 min. Proteins were
precipitated from the supernatant by incubation with sodium de-
oxycholate and trichloroacetic acid on ice. Precipitated proteins

were pelleted by centrifugation, washed once with ice-cold ace-
tone, pelleted again by centrifugation, and finally resuspended in
2× SDS loading buffer and analyzed by SDS/PAGE.

Bioinformatic Methods. Protein structures were displayed using
PyMOL (www.pymol.org).
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Fig. S1. Size distribution of substrate proteins of bacterial and eukaryotic chaperonins. (A) Size distributions of the E. coli and S. cerevisiae proteomes. (B) Size
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(B) Quantification of actin folding yield. The fraction of DNase I bound full-length translation product was quantified by densitometry. Averages ± SD from
three independent experiments are shown. DNase I binding of GA is set to 100%. (C) SDS/PAGE and fluorography of translation reactions containing GA and
GA-G150P before and after treatment with PK. The PK-resistant fragment of 35K derived from actin and the PK-resistant GFP domain are indicated. (D)
Quantification of the relative intensity of the PK-resistant actin fragment of 35K. Error bars represent SD values from three independent experiments. The
relative intensity of the 35K fragment of GA is set to 100%.

A

B

Untr
ea

ted

Dep
let

ed

CCTα

untreated RRL
TRiC-depleted RRL
TRiC-depleted RRL + TRiC

A GAN
or

m
al

iz
ed

 b
in

di
ng

 to
 D

N
as

e 
I

250%

200%

150%

100%

50%

0%

Fig. S3. TRiC-dependence of actin folding. (A) Folding of actin and actin fusion protein is TRiC-dependent. Folding efficiency of actin (A) and GFP-actin (GA)
was measured by DNase I retention assay as in Fig. 1 and Fig. S2. The fraction of full-length translation product retained on DNase I beads is shown for
unmodified RRL, TRiC-depleted RRL, and TRiC-depleted RRL supplemented with purified bovine TRiC. Error bars represent SD values for three independent
experiments. (B) Depletion of TRiC from RRL confirmed by Western blotting with anti-CCTα antibody.
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Fig. S7. The apical pore in the crystal structure of the closed TRiC complex. The peptide backbone of TRiC from S. cerevisiae [Protein Data Bank code 4D8Q (1)]
is shown in ribbon representation enveloped by the molecular surface. Side chains in the pore are shown in stick representation. Note that several flexible side
chains were disordered in the crystal and are thus shown in an arbitrary conformation. The lumen in the closed crystal structure would be wide enough for the
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Table S1. Putative multidomain substrate proteins of TRiC (1, 2)

Gene name Protein name Construct MW (kDa)

EEF2 eEF2 Full-length 95
TSHZ3 Teashirt 3 (Tsh3) Full-length 99
EFTUD2 snRNP116/hSnu114 Full-length 109
MMS19 MET18 Full-length 113
UBA1 ubiquitin-activating enzyme E1 Full-length 118
LARS Leucyl tRNA synthetase Full-length 135
SKIV2L Superkiller viralicidic activity 2-like protein Full-length 138
KIF13A Kinesin member 13A Full-length 199
MYH1 Myosin Full-length 223
FASN Fatty acid synthase Full-length 273
THNSL1 Aro1 Full-length 83
USP10 Ubp3 Full-length 87
ATP6V0A1 Stv1 Full-length 96
COPB2 Sec27 Full-length 102
GANAB Rot2 ∆N (1–97) 96
SMARCC2 Swi3 Full-length 133
NUP153 Nup1 Full-length 154
MUC17 Sla1 ∆N (1–3270) 128
DYNC1H1 Dyn1 ∆N (1–3658) 112

1. Dekker C, et al. (2008) The interaction network of the chaperonin CCT. EMBO J 27(13):1827–1839.
2. Yam AY, et al. (2008) Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol 15(12):

1255–1262.
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SUMMARY 

Eukaryotic elongation factor 2 (eEF2) is an abundant and essential component of the translation 

machinery. The biogenesis of this 93 kDa multi-domain protein is assisted by the chaperonin 

TRiC/CCT. Here we show in yeast cells that the highly conserved protein Hgh1 (FAM203 in 

humans) is a chaperone that cooperates with TRiC in eEF2 folding. In the absence of Hgh1, a 

substantial fraction of newly-synthesized Eft, the yeast ortholog of eEF2, is degraded or 

aggregates. We solved the crystal structure of Hgh1 and analyzed the interaction of wild-type 

and mutant Hgh1 with Eft. These experiments revealed that Hgh1 is an armadillo repeat protein 

that binds to the dynamic central domain III of Eft via a bipartite interface. Hgh1 binding recruits 

TRiC to the C-terminal Eft module and prevents unproductive interactions of domain III, 

allowing efficient folding of the N-terminal GTPase module. Eft folding is completed upon 

dissociation of TRiC and Hgh1. 

 

KEYWORDS 

Armadillo repeat, chaperonin, crystal structure, hydrogen-deuterium exchange, molecular 

chaperone, protein folding, protein translation 
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HIGHLIGHTS 

x Eukaryotic elongation factor 2 (eEF2) is a chaperone-dependent multi-domain protein.  

x Hgh1 functions as a chaperone for eEF2 and cooperates with the chaperonin TRiC. 

x The crystal structure shows that Hgh1 is a highly conserved armadillo repeat protein. 

x Hgh1 binds to domain III of eEF2 and recruits TRiC for eEF2 folding.  
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INTRODUCTION 

Eukaryotic cells invest extensively in their protein translation machinery. Ribosomal proteins 

and eukaryotic elongation factors 1 and 2 (eEF1 and eEF2) account for a13, 1.8 and 1.5% of 

total protein mass in S. cerevisiae, respectively (Liebermeister et al., 2014). eEF2, the eukaryotic 

ortholog of bacterial elongation factor EF-G, is a highly conserved GTPase that controls the 

translocation of mRNA during translation via GTP hydrolysis (Dever and Green, 2012). For each 

elongation cycle of the growing nascent chain, one eEF2 molecule binds to the ribosome and 

hydrolyzes one GTP. eEF2 is a protein of 93 kDa consisting of six domains (Figure 1A). The 

consecutive N-terminal GTPase domains G, G’ and II form a rigid block, while the C-terminal 

domains III–V undergo conformational rearrangements during the functional cycle (Jørgensen et 

al., 2003; Murray et al., 2016; Voorhees et al., 2014). At the apex of domain IV, eEF2 is post-

translationally modified with a diphthamide group (Figure 1A). This modification is also found 

in the archaeal elongation factor (Zhang et al., 2010); it serves to improve translation fidelity, but 

is not essential under normal growth conditions (Murray et al., 2016). 

Folding of eEF2 is assisted by the eukaryotic cytosolic chaperonin TRiC/CCT (for TCP-1 

ring complex/chaperonin containing TCP-1) (Dekker et al., 2008; Yam et al., 2008). TRiC, a 

hexadecameric double-ring complex of a1 MDa with ATPase activity, assists in the folding and 

maturation of a10% of cytosolic proteins (Thulasiraman et al., 1999), including the abundant 

cytoskeletal proteins actin and tubulin. TRiC substrates fold upon transient encapsulation in the 

chaperonin cavity, thereby avoiding aggregation of folding intermediates (Lopez et al., 2015). 

Proteomic analysis and genomic approaches identified 136 TRiC substrates in yeast (Dekker et 

al., 2008), with the eEF2 ortholog, Eft, being the TRiC client of highest cellular abundance 

(Kulak et al., 2014). Insights into the complex folding mechanism of eEF2 may be obtained from 
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the recent analysis of a close structural homolog, the splicesosome subunit hSnu114 (37% 

sequence identity with eEF2). Like eEF2, hSnu114 (109 kDa) exceeds the size limit of the TRiC 

chamber (a70 kDa), and folding was shown to occur by domain-wise encapsulation (Rüßmann et 

al., 2012). While an N-terminal fragment of hSnu114 comprising domains G, G’ and II folded 

independently of chaperonin, the C-terminal segment (domains III, IV and V) required 

encapsulation by TRiC, but reached stable structure only upon interaction with the N-terminal 

region in the context of the full-length protein (Rüßmann et al., 2012). 

The activity of TRiC in protein folding is supported by co-chaperones, which associate 

with the chaperonin. These include the hexameric prefoldin complex (GimC in yeast) and the 

phosducin-like proteins (PhLPs), which were proposed to aid the folding and maturation of the 

cytoskeletal proteins actin and tubulin, and the G-protein β-subunit, respectively (Lukov et al., 

2005; McCormack et al., 2009; McLaughlin et al., 2002; Siegers et al., 1999; Stirling et al., 

2006; Stirling et al., 2007). In addition, the human protein FAM203A/B was recently identified 

as a potential TRiC cofactor, based on its high abundance in pulldown fractions of TRiC (Hein et 

al., 2015). Homologs of the 45 kDa FAM203A/B are present throughout the eukaryotic tree, 

suggesting a conserved function. The yeast homolog, Hgh1, is a protein of intermediate overall 

abundance and was shown to interact with Eft and the TRiC subunit Cct6 in a proteomic screen 

(Gavin et al., 2006). The interaction between Hgh1 and Eft was confirmed in an independent 

proteome-wide study (Krogan et al., 2006). Notably, in yeast the essential Eft protein is encoded 

by two genes, EFT1 and EFT2, and deletion of either gene results in reduced Eft levels without 

an apparent growth defect (Perentesis et al., 1992; Veldman et al., 1994). While deletion of 

HGH1 does not impair growth (Rodriguez-Pena et al., 1998), deletion of both HGH1 and EFT2 

causes a synthetic growth defect, suggesting a functional relation between Eft and Hgh1 
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(Costanzo et al., 2010). Deletion of HGH1 triggers a mild heat shock response, indicative of 

increased protein-folding stress in the cytosol (Alford and Brandman, 2018; Brandman et al., 

2012). Moreover, hgh1' cells are sensitive to the Hsp90 inhibitor Macbecin (McClellan et al., 

2007), and the combined deletion of HGH1 and components of the Hsp90 machinery, such as 

CPR7, HCH1, HSC82, HSP82 and STI1, causes a synthetic growth defect (Costanzo et al., 2010; 

Kuzmin et al., 2018; McClellan et al., 2007). Hgh1 interacts directly with the essential Hsp90 

cochaperone Cns1 (Gavin et al., 2006; Schlecht et al., 2012; Tarassov et al., 2008). Thus, Hgh1 

appears to have an integral function in the cellular chaperone network (Rizzolo et al., 2017; 

Rizzolo et al., 2018). 

Here we show that Hgh1 serves as a chaperone in Eft folding. In its absence, a substantial 

fraction of newly-synthesized Eft misfolds and is either degraded or aggregates. Hgh1, Eft and 

TRiC form a ternary complex. Binding of Hgh1 to the structurally dynamic central domain III of 

Eft facilitates the interaction between Eft and TRiC. The crystal structure of Hgh1 revealed an 

armadillo repeat fold with conserved surface areas close to the N-terminus and at the concave 

face of the solenoid. Mutation of both sites abolished the interaction of Hgh1 with Eft, and 

expression of mutant Hgh1 failed to complement the slow-growth phenotype of the eft2'hgh1' 

double deletion strain. Together our results suggest that binding of Hgh1 masks domain III of 

Eft, avoiding the formation of misfolded species, and recruits TRiC to the C-terminal Eft 

module. 
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RESULTS 

Hgh1 is required for efficient Eft folding 

Deletion of the HGH1 gene in S. cerevisiae did not result in a growth defect (Figure 1B), 

consistent with previous findings (Rodriguez-Pena et al., 1998). To explore the genetic 

relationship of HGH1 and EFT2 in more detail, we deleted both genes simultaneously. Unlike 

the single-deletion strains, eft2'hgh1' cells exhibited a diminished growth rate (Costanzo et al., 

2010). This effect was particularly clear at the lower growth temperature of 20°C (Figure 1B). 

Deletion of HGH1 caused a a35% reduction in the level of Eft protein compared to wild-type 

(WT) cells (Figure 1C). While Eft was reduced by a60% in eft2' cells (Figure 1C) without 

causing a discernible growth defect, eft2'hgh1' cells contained only a25% of Eft relative to WT 

(Figure 1C), a level at which Eft is apparently limiting for growth (Figure 1B). Consistent with a 

role of Hsp90 in Eft folding, inhibition of Hsp90 with the specific inhibitor Macbecin reduced 

Eft to 62% in WT and to 26% in hgh1' cells (Figure 1D). Thus, the reported growth defect of 

hgh1' cells upon Hsp90 inhibition (McClellan et al., 2007) may be caused by insufficient Eft 

protein (Figure 1D). 

Fractionation of hgh1' cells showed that a substantial fraction of Eft was insoluble, 

indicative of misfolding and aggregation (Figure 1E). Thus, the decrease of total Eft in hgh1' 

cells might be due to degradation of misfolded protein. Preexistent Eft was stable for hours upon 

cycloheximide (CHX) shutoff, in line with earlier reports (Belle et al., 2006; Christiano et al., 

2014) (Figure 1F). Stability was preserved in hgh1' cells (Figure 1F), suggesting that Hgh1 is 

required for efficient Eft folding upon synthesis, rather than for conformational maintenance of 

Eft that has already folded. 
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eEF2 is a large multi-domain protein that is likely to fold in a domain-wise fashion. It 

consists of two structurally independent modules, an N-terminal GTPase module, residues 1–

482, comprising domains G, G’ and II, and a C-terminal module of residues 483–842, 

comprising domains III, IV and V (Figure 1A). We overexpressed the corresponding fragments 

(Eft-N and Eft-III+C, respectively) with C-terminal HA-tags, as well as a construct consisting of 

residues 566–842 (Eft-C), excluding domain III (Figure 2A). Eft-N was produced mostly in 

soluble form (Figure 2B). In contrast, Eft-III+C and Eft-C were insoluble (Figure 2B). Thus, Eft-

III+C is unable to fold independently, as observed previously for the corresponding fragment of 

the Eft homolog hSnu114 (Rüßmann et al., 2012), suggesting overall similar folding properties. 

Absence of Hgh1 in hgh1' cells had little influence on the solubility of the expressed Eft 

truncation mutants, whereas full-length Eft-HA was mostly insoluble in hgh1' cells (Figure 2C). 

Hgh1 may prevent misfolding of full-length Eft by blocking unproductive inter-domain 

interactions during folding. 

Eft was previously shown to be a substrate of the TRiC chaperonin (Dekker et al., 2008; 

Yam et al., 2008). To determine which part of Eft interacts with TRiC, we expressed the Eft 

truncation constructs either in WT yeast or in a strain in which TRiC subunit 2 (Cct2) contains 

an internal calmodulin-binding affinity tag (cct2-Int) (Pappenberger et al., 2006). Calmodulin 

affinity pulldowns and immunoblotting revealed a specific association of the folding-

incompetent Eft-III+C and Eft-C constructs with TRiC (Figure 2D, lanes 7 and 8), reminiscent of 

the interaction pattern of C-terminal fragments of hSnu114 with TRiC (Rüßmann et al., 2012). 

Eft-N and full-length Eft were non-specifically precipitated and were present in the TRiC 

pulldown at levels similar to the background control (Figure 2D, lanes 1, 2, 5 and 6). 
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Hgh1, Eft and TRiC from a ternary complex 

To determine whether Hgh1, Eft and TRiC form a ternary complex, we expressed Hgh1-FLAG 

and Eft2-HA under control of their natural promoters and analyzed their interactors using 

immunoprecipitation and quantitative label-free mass spectrometry (MS). Hgh1 pulldown with 

anti-FLAG coprecipitated TRiC and Eft, as shown by immunoblotting (Figure 3A). Mass 

spectrometric analysis, with anti-MYC pulldown as control, demonstrated a highly significant 

enrichment of all eight TRiC subunits in the anti-Hgh1 precipitate (Figure 3B). Eft had an 

intensity similar to the TRiC subunits. Hgh1 thus interacts, directly or indirectly, with Eft and 

TRiC. Besides the eukaryotic chaperonin, other cytosolic chaperones, including Hsp70 (Ssa1) 

and Hsp40 (Ydj1) as well as the AAA+ proteins Rvb1 and Rvb2 were enriched in the Hgh1 

pulldown. Ribosomal proteins were also enriched in the Hgh1 pulldown, while Hsp90 was below 

the significance threshold. In contrast, pulldown fractions of Eft showed no significant 

enrichment of TRiC and Eft, suggesting that only the small fraction of newly-synthesized Eft 

interacts with these chaperones (Figure S1). 

To determine whether Hgh1 interacts with Eft directly, we purified Hgh1-FLAG upon 

expression in E. coli and Eft2-HA upon expression in S. cerevisiae. The proteins did not stably 

interact in co-precipitation experiments. However, incubation with the lysine-reactive chemical 

crosslinker disuccinimidyl suberate (DSS) revealed a crosslink product of a180 kDa on SDS-

PAGE, which corresponded to covalently linked Hgh1-FLAG and Eft2-HA, as shown by 

immunoblotting (indicated by arrowheads in Figure 4A). This result is consistent with Hgh1 

interacting with a small fraction of non-native Eft that is in equilibrium with the native protein 

under the in vitro conditions. Indeed, purified Hgh1-FLAG, when used at concentrations 

exceeding endogenous Hgh1, also co-precipitated Eft from cell lysate (Figure 4A, lane 7). 
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Interestingly, the co-precipitated material also exhibited the characteristic band pattern of TRiC, 

suggesting the presence of a ternary complex of Hgh1, Eft and TRiC (Figure 4A, lane 7; 

compare Figure 3A, left). DSS crosslinking of this material produced an additional anti-FLAG 

positive band of a120 kDa (indicated by asterisk in Figure 4A, lane 16), presumably 

corresponding to crosslink products of Hgh1-FLAG with TRiC subunits. 

We further analyzed the interactions between purified Hgh1, Eft and TRiC by native gel 

electrophoresis (native-PAGE). TRiC migrates on native-PAGE as a high molecular weight 

complex, as detected by immunoblotting with anti-Tcp1 antibody (Figure 4B) (Leitner et al., 

2012). Hgh1-FLAG or Eft2-HA alone did not detectably interact with TRiC (Figure 4B, lanes 6 

and 11). However, when all three proteins were present, both Hgh1-FLAG and Eft-HA co-

migrated with TRiC (Figure 4B, lanes 8 and 12), indicating formation of a ternary complex. 

Thus, Hgh1 mediates the interaction of Eft with TRiC. 

 

Hgh1 binds a partially unfolded conformation of domain III of Eft 

To probe the binding site(s) for Hgh1 on Eft, we first investigated the influence of known Eft 

ligands on complex formation. The formation of crosslinking products between purified Hgh1 

and Eft was used as a readout. Binding of guanine nucleotide to domain G (Figure 1A) is known 

to influence the conformation of eEF2 switch region I (amino acids 25–73), which is partially 

disordered in available crystal structures (Bartish and Nygård, 2008). Addition of GDP, GTP or 

the non-hydrolysable analog GMP-PNP was of minimal effect on Eft–Hgh1 complex formation 

(Figure 5A), suggesting that Hgh1 does not interact with the regulatory elements of the 

nucleotide binding pocket in domain G. In contrast, complex formation was abolished in the 

presence of the fungal antibiotic Sordarin, which binds to the interface between domains III and 
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V (Figure 1A, lanes 5 and 10). This suggested that Hgh1 interacts with Eft at or near domains III 

and V. 

Next, we analyzed the molecular interface between Hgh1 and Eft using Eft truncation 

constructs. Truncations containing the C-terminal module (domains IV and V) were insoluble 

(Figure 2B). However, the N-terminal module of Eft (Eft-N; residues 1–482) could be purified in 

soluble form upon expression in yeast cells (Figure 2B). As judged from the circular dichroism 

(CD) spectrum, Eft-N is natively folded (Figure S2A). Of note, soluble expression of Eft-N in E. 

coli failed, suggesting that folding of this module depends on eukaryotic chaperones. The 

fragment corresponding to domain III (Eft-III; residues 483–565) was expressed in E. coli and 

purified from inclusion bodies. His6-tagged Eft-III was soluble upon dilution from denaturant, 

but was not natively folded (Figure S2B), presumably due to the presence of hydrophobic 

segments that are shielded upon interface formation with the other domains (Figure S2C). Eft-N 

did not interact with Hgh1, as judged by the crosslinking assay (Figure 5B, lane 13). However, 

we identified a clear crosslinking product between Hgh1 and Eft-III (Figure 5B, lane 14), blue 

arrowhead). Together with the finding that Sordarin prevented binding of Hgh1 to Eft, these 

results point to domain III as a major binding site of Hgh1. 

To understand how Hgh1 interacts with Eft, we analyzed the structural dynamics of Eft 

using hydrogen/deuterium exchange combined with mass spectrometry (H/DX). Backbone 

amide hydrogens are protected from exchange when involved in stable secondary structure, 

buried in the core of a folded protein or at a protein-protein interface (Engen and Smith, 2001; 

Wales and Engen, 2006). The degree of deuterium incorporation therefore correlates with 

structural flexibility. H/DX measurements were performed for Eft in the absence and presence of 

Sordarin or Hgh1 (Figure S3A). Sequence coverage was near-complete for all conditions. 
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Analysis of unbound Eft showed that most regions of Eft that are structured in the crystal lattice 

(PDB 1N0V) exchange deuterium slowly with the solvent (blue color in Figure 5C). However, 

we observed increased rates of H/D exchange for peptides mapping to domain III of Eft (red 

color in Figure 5C), indicating greater structural dynamics in this region than anticipated from 

the available structural data (Jørgensen et al., 2003). In the presence of Sordarin, which binds to 

the interface between domains III and V, deuterium incorporation into domain III was greatly 

diminished, consistent with structural stabilization of this domain (Figure 5D). Since Sordarin 

inhibits binding of Hgh1 (Figure 5A, lane 10), these data suggest that Hgh1 selectively 

recognizes a structurally dynamic conformation of domain III of Eft. 

Addition of Hgh1 in a 2-fold molar excess over Eft resulted in reduced deuterium 

incorporation into peptides 522–538 and 536–540, located in domain III of Eft (Figures 5E, F 

and S3B). This is consistent with a direct interaction between Hgh1 and domain III of Eft, and 

supports the crosslinking data (Figure 5B). We also observed significant protection of a short 

peptide in domain II comprising residues 433–438 (Figures 5E, F), suggesting that Hgh1 makes 

additional surface contacts in this region. 

Taken together, these results indicate that Hgh1 recognizes a non-native conformation of 

domain III in Eft. This conformation would be present during biogenesis of Eft, but is only 

transiently populated by the native protein at equilibrium, explaining the inefficient interaction 

between native Eft, Hgh1 and TRiC in vitro (Figure 4). 

 

Structure and mutational analysis of Hgh1 

To gain insight into the mechanism of Hgh1 function, we determined the crystal structure of 

Hgh1. Limited proteolysis with proteinase-K (Figure S4A), followed by mass spectrometry, 
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showed that the 31 C-terminal residues of the 394 residue protein were protease-sensitive and 

presumably unstructured, in agreement with their low sequence complexity and high negative 

charge (20 Asp/Glu residues). We obtained two crystal forms for Hgh1(1–363), which diffracted 

to 2.33 and 3.0 Å resolution, respectively, and solved the phase problem by Se–SAD at 2.7 Å 

resolution (Table S1). The experimental electron density map was readily interpretable (Figure 

S4B). Both crystal forms contain four independent copies of Hgh1 (Figure S4CD), which are 

conformationally very similar, with root mean square deviations of 0.06–0.53 Å for the matching 

CD positions 4–357 (Figure S4EF). Hgh1 has a curved tubular shape with dimensions of 40 x 50 

x 80 Å (Figure 6AB). The D-helical solenoid protein comprises four imperfect armadillo repeats, 

followed by two non-canonical 3-helix repeats. A pair of helices caps the N-terminal end of the 

solenoid. The helix repeats contain three substantial insertions layered onto the convex surface of 

the solenoid (Figure 6A, top). Insertion I, residues 131–156, containing a short E-hairpin, follows 

on helix H9 in armadillo repeat 3; insertion II, residues 203–209, is situated after helix H12 in 

armadillo repeat 4; and insertion III, residues 266–294, is placed after helix H16 and consists of 

two short helices. The contact areas between the insertions and the solenoids are largely 

hydrophobic, and thus these regions appear to be stably structured. 

Sequence homologs of Hgh1 exist throughout the eukaryotic tree (Figure S5). Two 

surface areas are conserved in all homologs, suggestive of protein-protein interaction interfaces 

(Figure 6B). One of these regions is located near the N-terminus forming the groove between 

helices H1 and H2; it comprises Glu7 and the hydrophobic residues Leu8, Phe11, Val19 and 

Ala23. The second conserved area is also mainly hydrophobic and extends along the concave 

face of the solenoid, with residues Arg197, Lys236, Asn237 and Phe240 forming a highly 

conserved cluster (Figure S4GH). In animal and fungal sequences, an additional area of high 
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surface conservation is found close to the C-terminus at the groove between helices H19 and 

H20, including residues Tyr326, Arg330, His333 and Val349. 

To functionally validate these putative contact regions, we introduced the triple-

mutations E7S/L8A/F11A (MutN), K236A/N237H/F240A (MutM) or Y326A/R330A/H333A 

(MutC) and purified the mutant proteins as soluble C-terminally FLAG-tagged proteins (Figure 

6C). In contrast to WT Hgh1, Hgh1-MutN did not form a detectable crosslinking product with 

Eft in vitro. Hgh1-MutM crosslinked less efficiently than WT. In contrast, Hgh1-MutC 

interacted like the WT protein (Figure 6D). As expected, the interaction with Eft was also 

abolished with the mutant Hgh1-MutN+M, combining the mutations in MutN and MutM (Figure 

6D). Note that Hgh1-MutN+M is stably folded at physiological temperature, as indicated by CD 

measurements (Figure S6AB). These results indicate that the spatially separated N-terminal and 

middle regions of Hgh1 both participate in binding to Eft sites. Pulldown of Hgh1-FLAG from 

cell extracts showed further that the interaction with TRiC correlated with the ability of the Hgh1 

variants to interact with Eft. Essentially no interaction with TRiC or Eft was detected with Hgh1-

MutN, and Hgh1-MutM showed reduced affinity for both TRiC and Eft. Mutation of site C did 

not affect the interaction between Hgh1 and TRiC or Eft2 (Figure 6E). This confirms that 

synergistic interactions between all three proteins underlie the formation of the ternary Eft-Hgh1-

TRiC complex. 

Next, we asked whether the physical interaction between Hgh1 and Eft is required for 

biological function in vivo. WT and mutant Hgh1 proteins were expressed with C-terminal HA-

tags in the eft2'hgh1' strain, and cell growth monitored (Figure 6F; Figure S6C). Expression of 

hgh1-MutN partially suppressed the growth defect of eft2'hgh1' cells, while expression of 

hgh1-MutM and hgh1-MutC restored normal growth (Figure 6F). In contrast, Hgh1-MutN+M 
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failed to complement the growth defect (Figure 6F). These results demonstrate that the 

interactions between Hgh1 and Eft observed by biochemical analysis in vitro are critical in vivo. 

The ability of Hgh1 to interact with non-native Eft is thus needed to restore concentrations of 

functional Eft to levels sufficient for normal growth. 

 

DISCUSSION 

Eukaryotic translation elongation factor 2, eEF2, is a highly abundant, 93 kDa protein with an 

intricate six-domain structure. Our data demonstrate that the conserved protein Hgh1 serves as a 

chaperone in the folding of the yeast eEF2 ortholog, Eft. Hgh1 binds mainly to the structurally 

dynamic domain III of Eft and appears to prevent aberrant intramolecular interactions that would 

otherwise slow the folding of the flanking domains. Additionally, Hgh1 recruits the chaperonin 

TRiC to the C-terminal Eft module. In the absence of Hgh1, a large fraction of Eft misfolds, 

resulting in aggregation or degradation (Figure 7). 

The rather hydrophobic but structurally dynamic domain III of Eft is located between the 

N-terminal GTPase module and the C-terminal module of Eft that binds the ribosomal decoding-

center. Structural flexibility of this domain is probably functionally relevant, as the bacterial 

ortholog EF-G undergoes substantial conformational changes during polypeptide elongation on 

the ribosome (Lin et al., 2015). Consistent with this, domain III is also the binding site for the 

translocation inhibitors Fusidic acid and Sordarin. While functionally important, the flexibility of 

domain III is likely to interfere with the correct folding of the adjacent N- and C-modules, which 

are large (480 and 277 amino acids, respectively) and have complex folds that are stabilized by 

long-range interactions (Figure 1A). 
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We propose that Hgh1 interacts with domain III during translation of Eft (Figure 7, step 

1), consistent with the enrichment of ribosomal proteins in the Hgh1 pulldown fraction (Figure 

3B). The armadillo repeat structure of Hgh1 appears to be well suited for binding of extended 

hydrophobic substrate sequences at its concave face, similar to many other armadillo repeat 

proteins (Reichen et al., 2014). Hgh1 has an additional hydrophobic groove close to its N-

terminus, suggesting that discontinuous binding motifs in domain III may be recognized. This is 

in agreement with our H/DX data, showing protection by Hgh1 of residues 522–540. Indeed, in 

an extended conformation, this segment would be long enough to connect the binding sites in 

Hgh1. Binding of Hgh1 may fulfill a dual role in Eft folding: It prevents domain III from 

interfering with the folding of the N-module (Figure 7, step 1) and recruits TRiC for the folding 

of the C-terminal module (Figure 7, step 2). TRiC may recognize elements in domains III–V of 

Eft, which become exposed in the complex with Hgh1, in analogy to binding of C-terminal 

domains of hSnu114 by the chaperonin (Rüßmann et al., 2012). Our earlier experiments with this 

structural homolog of Eft revealed the encapsulation by TRiC of C-terminal fragments up to 37 

kDa (Rüßmann et al., 2012). Folding of the N-module of Eft (domains G, G’ and II), must be 

completed first, because the C-terminal domains III–V cannot fold stably in isolation. Folding of 

the N-module might be facilitated by the Hsp70 components Ssa1 and Ydj1, which were found 

to associate with Hgh1 in vivo. A further involvement of the Hsp90 system in N-module folding 

might explain the reduced Eft levels in presence of the Hsp90 inhibitor Macbecin. The reported 

interaction of Hgh1 with Cns1 may serve to recruit Hsp90 to the N-domain ((Gavin et al., 2006; 

Schlecht et al., 2012; Tarassov et al., 2008) and accompanying manuscript by Schopf et al.). 

TRiC-assisted folding of the C-module results in release of chaperonin (Figure 7, step 3) and 

structure formation in domain III finally induces Hgh1 dissociation, generating native Eft (Figure 
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7, step 4). While it is an intriguing possibility that Hgh1, by binding to domain III, coordinates 

the action of Hsp90 and TRiC in Eft folding, the two chaperone systems may also provide 

alternative and partially redundant chaperone pathways. 

In the absence of Hgh1, Eft folding becomes inefficient, leading to the build-up of 

folding intermediates, which are either cleared by degradation or aggregate. Because of the sheer 

mass of new Eft chains that are produced per cell duplication, these species are expected to 

engage a substantial fraction of the cellular chaperone arsenal. This extra burden on the cytosolic 

proteostasis machinery may explain the heat shock response observed in hgh1' cells (Brandman 

et al., 2012). In the absence of Hgh1, the load on the Hsp90 machinery increases, as evidenced 

by the sensitivity of hgh1' cells to the Hsp90 inhibitor Macbecin (McClellan et al., 2007) and 

the synthetic growth defects upon combined loss of Hgh1 and components of the Hsp90 

machinery (Costanzo et al., 2010). HGH1 also shows strong genetic interactions with genes 

encoding subunits Cog3 and Cog5–Cog8 of the Conserved Oligomeric Golgi (COG) complex 

(Costanzo et al., 2010), a vesicle tethering complex that requires Hsp90 for assembly (McClellan 

et al., 2007). Thus, the functional cooperation of Hgh1 and the Hsp90 system might extend 

beyond Eft biosynthesis. 

Whether FAM203 plays a role similar to Hgh1 in mammalian cells, remains to be 

confirmed. Interestingly, Hgh1/FAM203 homologs appear restricted to eukarya. It seems 

possible that eubacteria and archaea express proteins functionally equivalent to Hgh1 for the 

efficient folding of Eft orthologs EF-G and EF-2. 
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FIGURE LEGENDS 

 

Figure 1.  Characterization of the hgh1' deletion strain 

(A)  Structural model and domain structure of eEF2. The structural model is a composite of the 

cryoEM structure of a ribosome-bound eEF2:GMP-PCP complex (pdb code 5IT7) (Murray et al., 

2016) and the crystal structure of the S. cerevisiae eEF2 ortholog, Eft, in complex with the anti-

fungal compound Sordarin (pdb code 1N0U) (Jørgensen et al., 2003). The ligands are shown in 

space-filling representation. The domain structure is color-coded and shown schematically 

below. The diphthamide group is shown in stick representation. 

(B)  Synthetic growth defect upon deletion of HGH1 and EFT2. Dilution series of the parent WT 

strain BY4741 and hgh1', eft2' and eft2'hgh1' cells were spotted onto YPD agar and 

cultivated for 48 h at 20°C. 

(C)  Loss of HGH1 causes reduction in Eft levels. Protein levels of Eft were analyzed by 

immunoblotting in the yeast strains indicated. Cells were grown at 30°C. Phosphoglycerate 

kinase (Pgk1) served as a loading control. Eft levels were quantified by densitometry. Averages 

with standard deviations (SD) from three independent experiments are shown as % of WT 

control. 

(D)  Reduction of Eft levels upon Hsp90 inhibition. WT and hgh1' cells were grown for 3 h 

after addition of 40 PM Macbecin or DMSO alone, and Eft and Pgk1 levels analyzed by 

immunoblotting. Averages from three independent experiments with SD are shown. 

(E)  Partial insolubility of Eft in hgh1' cells. Log-phase WT and hgh1' cells were lysed by bead 

milling. Lysates were fractionated by centrifugation and Eft protein in total (T), soluble (S) and 
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pellet fraction (P) analyzed by immunoblotting. Bar graph shows the levels of insoluble Eft 

relative to total. Averages from three independent experiments with SD are shown. 

(F)  Stability of mature Eft in absence of HGH1. The levels of Eft in WT and hgh1' cells were 

monitored by immunoblotting at the indicated time points after inhibition of protein synthesis by 

0.1 mM cycloheximide (CHX). Averages from three independent experiments with SD are 

shown on the right. 

 

Figure 2.  Solubility of Eft truncation constructs and interaction with TRiC  

(A)  Schematic representations of Eft and Eft truncation constructs. 

(B–C)  Solubility of Eft truncation constructs in WT (B) and hgh1' cells (C). The indicated 

constructs were expressed with a C-terminal HA-tag at 30°C under control of the Gal promoter. 

Protein amounts in total (T), soluble (S) and pellet (P) fractions were analyzed by 

immunoblotting with anti-HA antibody. Pgk1 served as loading control. 

(D)  Association of Eft truncation constructs with TRiC. Eft constructs were expressed either in a 

strain harboring affinity-tagged TRiC (cct2–Int), or the parent WT strain. Soluble cell lysates 

were subjected to affinity chromatography, followed by immunoblotting with anti-HA antibody. 

Asterisk marks a cross-reactive band. Note that Eft-N binds non-specifically to the 

immunobeads. 

 

Figure 3.  Analysis of Hgh1 interactors 

(A)  SDS-PAGE analysis of proteins interacting with Hgh1-FLAG. Cells expressing Hgh1-

FLAG and Eft2-HA under control of their natural promoters were grown to late log-phase 

(OD600 a2). Soluble lysate was passed over anti-FLAG or anti-HA affinity resin, with anti-MYC 
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resin serving as background control. The anti-FLAG eluate was analyzed by SDS-PAGE and 

Coomassie staining and immunoblotting with anti-FLAG, anti-HA or anti-TCP1 antibodies. 

Representative results are shown. 

(B)  Volcano plot representation of Hgh1-FLAG interactors. The components of the anti-FLAG 

immunoprecipitates from three independent experiments were analyzed by label-free 

quantification using anti-MYC as background control. The proteins to the left and right of the 

solid lines were significantly depleted or enriched in the FLAG precipitates, respectively. Dark 

blue color indicates the eight subunits of the TRiC complex. Other chaperones are shown in 

purple. Ribosomal proteins are marked in cyan. Hgh1 and Eft are shown in green and red, 

respectively. See also Figure S1. 

 

Figure 4.  Formation of a ternary Hgh1:Eft:TRiC complex 

(A)  Detection of a complex between Hgh1-FLAG and native Eft-HA by chemical crosslinking 

with DSS. A Coomassie blue-stained SDS-PAGE gel and a corresponding immunoblot probed 

with anti-FLAG and anti-HA antibodies are shown. Hgh1-FLAG and Eft-HA at 2 PM each were 

present when indicated (lanes 1-6, 9-14 and 17-22, respectively). Proteins captured from yeast 

lysate with a large excess of recombinant Hgh1-FLAG were analyzed in lanes 7, 8, 15, 16 and 

23, 24. The Hgh1-FLAG:Eft-HA crosslink product is indicated by arrowheads. Asterisks mark 

putative crosslinking products with single TRiC subunits. 

(B)  Interactions of TRiC with Hgh1-FLAG and Eft-HA. Purified TRiC (2 PM hexadecamer) 

was mixed with Hgh1-FLAG and Eft-HA (each 2 PM) as indicated, and subsequently analyzed 

by native-PAGE and immunoblotting with anti-Tcp1, anti-FLAG and anti-HA antibodies. The 

position of the Hgh1-FLAG:Eft2-HA:TRiC complex is indicated by arrowheads. 
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Figure 5.  Hgh1 binds the structurally dynamic domain III of Eft 

(A)  Effect of Eft ligands on the interaction with Hgh1. Equimolar mixtures of Hgh1 and Eft (10 

PM each) in presence of GTP, GDP, GMP-PNP or Sordarin (2 mM each) were treated with 

DMSO (left) or DSS crosslinker (right). Reactions were analyzed by SDS-PAGE and Coomassie 

staining. Arrowhead indicates position of the crosslinking product. A representative gel is 

shown. 

(B)  Interaction of Hgh1 and Eft truncation constructs, Eft-N and Eft-III. The domain structure of 

Eft and Eft truncation constructs is indicated on top, together with a 3D-model of Eft in space-

filling mode. Proteins (2 PM each) were treated with DMSO (left) or DSS (right). Coomassie 

blue-stained SDS-PAGE gels are shown. Arrowheads in pink and cyan indicate crosslinking 

products of Eft and Eft-III with Hgh1, respectively. See also Figure S2. 

(C)  Structural dynamics of Eft. Deuterium incorporation into Eft during 10-1000 s exposure to 

deuteration buffer was analyzed by H/DX, followed by pepsin digest and mass spectrometry of 

peptides. Fractional deuterium incorporation into Eft peptides is mapped onto the crystal 

structure of Eft (Jørgensen et al., 2003). Increasing deuteration is shown as a gradient from blue 

to red. Dark grey color indicates missing sequences. Data for 300 s exposure to deuterium are 

shown. See also Figure S3. 

(D)  Reduced structural dynamics of domain III in the Eft-Sordarin complex. Eft was incubated 

with 0.2 mM Sordarin and processed as above. Differential deuterium incorporation relative to 

Eft alone is mapped onto the structure. Blue and red colors indicate decreased and increased 

deuterium incorporation, respectively. Bound Sordarin is shown in purple. Data for 300s 

exposure to deuterium are shown. 
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(E) Altered structural dynamics of Eft domain III in presence of Hgh1. Differential deuterium 

incorporation of Eft (2 PM) in presence of Hgh1 (4 PM) relative to Eft alone is shown for 300 s 

of deuterium exposure. Blue and red colors indicate decreased and increased deuterium 

incorporation, respectively. Peptides protected by Hgh1 are indicated. 

(F)  Deuterium uptake kinetics for peptides 433-438 (domain II), 522-538 (domain III) and 536-

540 (domain III), representing putative Hgh1 interaction sites. Time traces for Eft alone, the Eft-

Sordarin complex and Eft/Hgh1 are shown in black, pink and green, respectively. 

 

Figure 6.  Structure and mutational analysis of Hgh1 

(A)  Ribbon representation of the Hgh1 crystal structure. Two orthogonal views are shown. The 

three-helix repeat motifs are indicated in blue, cyan, green, yellow, orange and red, respectively. 

The N-terminal capping helices are shown in purple. Secondary structure elements and the three 

insertions (Ins1-3) into the helical solenoid structure are indicated. See also Figure S4. 

(B)  Surface conservation in FAM203 family proteins. The same views as in panel (A) are 

shown. A cyan-white-magenta color gradient indicates increasing surface conservation, based on 

the similarity score from the sequence alignment in Figure S5. Highly conserved residues are 

indicated. 

(C)  Location of mutation sites in the Hgh1 structure. Residues replaced with Ala in the mutant 

constructs MutN, MutM and MutC are indicated in purple, gold and red, respectively. 

(D)  Interaction of Hgh1 mutant proteins with Eft as detected by crosslinking. Equimolar 

mixtures (10 PM) of Hgh1 mutant protein and Eft were treated with DMSO (left) or DSS (right). 

Reactions were analyzed by SDS-PAGE and Coomassie staining. Arrowhead indicates position 

of crosslinking products. See also Figure S6. 
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(E)  Interaction of Hgh1-FLAG mutant proteins with TRiC. Purified mutant proteins were used 

in large (a6-fold) excess to capture Eft and TRiC from yeast lysate by anti-FLAG affinity 

chromatography. The eluted material was analyzed by SDS-PAGE and immunoblotting with 

anti-FLAG, anti-Tcp1 and anit-Eft. 

(F)  Complementation of growth defect of eft2'hgh1' cells with mutant Hgh1 constructs. WT 

and mutant Hgh1 were expressed in eft2'hgh1' cells under control of the ADH promoter. The 

growth phenotype was analyzed by dilution series on selective agar medium. See also Figure S6. 

 

Figure 7.  Hypothetical model for Hgh1 function in Eft biogenesis 

(1) Hgh1 (green) binds cotranslationally to domain III of Eft folding intermediates. The N-

domain of Eft may fold in a Hsp90-dependent manner (see accompanying paper by Schopf et 

al.). (2) Upon completion of Eft synthesis, Hgh1 recruits TRiC to the C-terminal domain of Eft. 

(3) The C-domain folds upon encapsulation in the TRiC cavity, followed by Eft release from 

TRiC. (4) The folded C-terminal domain stabilizes domain III, causing Hgh1 release and 

completing Eft folding. Hypothetical model based on data from this study as well as (Rüßmann 

et al., 2012). 
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STAR Methods 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Andreas Bracher (bracher@biochem.mpg.de). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Strains used in this study were S. cerevisiae BY4741 and YPH499 (Sikorski and Hieter, 1989). 

The genotypes of the strains and their mutant derivatives are listed in KEY RESOURCES 

TABLE. Cells were grown in YPD or synthetic complete (SC) medium at 30°C, unless 

otherwise noted. The respective media contained either 2% glucose (YPD, SC), or 1% 

raffinose/2% galactose (SCRaf/Gal). The amount of yeast cells used in the various experiments 

was defined as OD600·mL units (1 OD600·mL cells corresponds to the amount of yeast cells 

present in 1 mL of a culture with an OD600 of 1). 

 

METHODS DETAILS 

Molecular cloning 

Plasmids used in this study are listed in the KEY RESOURCES TABLE. Primers used for 

plasmid construction are listed in Table S2. DNA cloning was performed by DNA ligation using 

T4 DNA ligase (New England Biolabs). PCR was performed using Pfu DNA Polymerase 

(Promega) or Kod DNA Polymerase (Novagen). 

A DNA fragment encoding His6-Hgh1 was amplified from yeast genomic DNA of strain 

YPH499 (see KEY RESOURCES TABLE) by PCR using primers Hgh1-F and Hgh1-R and 
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cloned into the EheI and HindIII sites of pProEx-HtB (Life Technologies) to generate pProEx-

HtB-Hgh1. The amino acid sequence of the encoded His6-TEV tag is 

MSYYHHHHHHDYDIPTTENLYFQGALRGG. 

A DNA fragment encoding His6-Hgh1–FLAG was amplified from pProEx-HtB-Hgh1 by 

PCR using primers Hgh1-F and Hgh1-FLAG-R and cloned into the EheI and HindIII sites of 

pProEx-HtB (Life Technologies) to generate pProEx-HtB-Hgh1-FLAG. 

A DNA fragment encoding His6-Hgh1(1–363) was amplified from pProEx-HtB-Hgh1 by 

PCR using primers Hgh1(1-363)-F and Hgh1(1-363)-F and cloned into the EheI and HindIII 

sites of pProEx-HtB to generate pProEx-HtB-Hgh1(1–363). 

A DNA fragment encoding His6-Hgh1 was amplified from pProEx-HtB-Hgh1 by PCR 

using primers His-Hgh1overexpression-F and Hgh1-R and cloned into the SmaI and HindIII sites 

of p416gal (Mumberg et al., 1995) to generate p416gal-His6-TEV-Hgh1. 

A DNA fragment encoding His6-Eft was amplified from yeast genomic DNA of strain 

YPH499 (see KEY RESOURCES TABLE) by PCR using primers His-Eft-F and His-Eft-R and 

cloned into the EheI and XhoI sites of p416gal-His6-Hgh1 to generate p416gal-His6-TEV-Eft. 

A DNA fragment encoding His6-Eft-N was amplified from p416gal-His6-Eft by PCR 

using primers His-Eft-F and His-Eft(1-482)-R and cloned into the EheI and XhoI sites of 

pProEx-HtB to generate pProEx-HtB-Eft(1-482). 

A DNA fragment encoding His6-Eft-III was amplified from p416gal-His6-Eft by PCR 

using primers Eftforw483 and Eftrev565 and cloned into the EheI and XhoI sites of pProEx-HtB 

to generate pProEx-HtB-Eft(483-565). 
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A DNA fragment encoding Eft-HA was amplified from p416gal-His6-Eft by PCR using 

primers Eft-HA-F and Eft-HA-R and cloned into the SmaI and XhoI sites of p416gal (Mumberg 

et al., 1995) to generate p416gal-Eft-HA. 

A DNA fragment encoding His6-Eft-N was amplified from p416gal-His6-Eft by PCR 

using primers Eft-HA-F and His-Eft(1-482)-R and cloned into the EheI and XhoI sites of 

p416gal-His6-Eft to generate p416gal-His6-TEV-Eft(1-482). 

A DNA fragment encoding Eft-N-HA was amplified from p416gal-His6-Eft by PCR 

using primers Eft-HA-F and Eft482HA-R and cloned into the SmaI and XhoI sites of p416gal 

(Mumberg et al., 1995) to generate p416gal-Eft(1-482)-HA. 

A DNA fragment encoding Eft-III+C-HA was amplified from p416gal-His6-Eft by PCR 

using primers Eft2forw483 and Eft-R and cloned into the SmaI and MfeI sites of p416gal-Eft-

HA to generate p416gal-Eft(483-842)-HA. 

A DNA fragment encoding Eft-C-HA was amplified from p416gal-His6-Eft by PCR 

using primers Eft2forw566 and Eft-HA-R and cloned into the SmaI and XhoI sites of p416gal-

Eft-HA to generate p416gal-Eft(566-842)-HA. 

A DNA fragment encoding Hgh1-HA was amplified from pProEx-HtB-Hgh1 by PCR 

using primers Hgh1-HA-F and Hgh1-HA-R and cloned into the XbaI and HindIII sites of 

p415adh (Mumberg et al., 1995) to generate p415adh-Hgh1-HA. 

A DNA fragment encoding Hgh1mutN-FLAG (point mutations E7S/L8A/F11A) was 

amplified from pProEx-HtB-Hgh1 by PCR using primers Hgh1mutN-F and Hgh1-R and cloned 

into the EheI and HindIII sites of pProEx-HtB-Hgh1 to generate pProEx-HtB-Hgh1mutN-FLAG. 
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A DNA fragment encoding Hgh1mutN-HA was amplified from pProEx-HtB-Hgh1 by 

PCR using primers Hgh1mutN-HA-F and Hgh1-HA-R and cloned into the XbaI and HindIII 

sites of p415adh (Mumberg et al., 1995) to generate p415adh-Hgh1mutN-HA. 

The point mutations K236A/N237H/F240A were introduced into pProEx-HtB-Hgh1-

FLAG following the QuikChange protocol (Stratagene) using the primers Hgh1mutM-F and 

Hgh1mutM-R to generate pProEx-HtB-Hgh1mutM-FLAG. 

The point mutations K236A/N237H/F240A were introduced into p415adh-Hgh1-HA 

following the QuikChange protocol (Stratagene) using the primers Hgh1mutM-F and 

Hgh1mutM-R to generate p415adh-Hgh1mutM-HA. 

The point mutations Y326A/R330A/H333A were introduced into pProEx-HtB-Hgh1-

FLAG following the QuikChange protocol (Stratagene) using the primers Hgh1mutC-F and 

Hgh1mutC-R to generate pProEx-HtB-Hgh1mutC-FLAG. 

The point mutations Y326A/R330A/H333A were introduced into p415adh-Hgh1-HA 

following the QuikChange protocol (Stratagene) using the primers Hgh1mutN-F and Hgh1mutN-

R to generate p415adh-Hgh1mutC-HA. 

A DNA fragment encoding Hgh1mutN+M-FLAG (point mutations 

E7S/L8A/F11A/K236A/N237H/F240A) was amplified from pProEx-HtB-Hgh1mutM-FLAG by 

PCR using primers Hgh1mutN-F and Hgh1-R and cloned into the EheI and HindIII sites of 

pProEx-HtB-Hgh1 to generate pProEx-HtB-Hgh1mutN+M-FLAG. 

A DNA fragment encoding Hgh1mutN+M-HA was amplified from p415adh-

Hgh1mutM-HA by PCR using primers Hgh1mutN-HA-F and Hgh1-HA-R and cloned into the 

XbaI and HindIII sites of p415adh (Mumberg et al., 1995) to generate p415adh-Hgh1mutN+M-

HA. 
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To generate the internally tagged variant of CCT2, CCT2–Int, we first generated the 

plasmid pInt to facilitate the cloning procedure. The DNA sequence bearing two multiple cloning 

sites, MCS1 and MCS2, flanking the insertion sequence coding for a StrepII tag, the Calmodulin 

Binding Protein and a His8 tag, followed by the trp1 selection marker, DNA1, was synthesized 

by Geneart AG. This construct was cloned into the EheI and HindIII sites of pProEx-HtB (Life 

Technologies) to generate pInt. DNA sequences for the N- and C-terminal fragments of CCT2, 

amino acids 1–362 and 363–527, respectively, were amplified by PCR using the primer pairs 

CCT2N-F / CCT2N-R and CCT2C-F / CCT2C-R and inserted into MCS1 and MCS2 of pInt, 

using the BamHI / NotI and XhoI / PstI restriction site pairs, yielding the plasmid pInt-CCT2.  

All constructs were verified by DNA sequencing.  

 

Yeast strains 

Yeast strains used in this study are listed in the KEY RESOURCES TABLE. The hgh1Δ and 

eft2Δ strains were created by transforming strain BY4741 with a PCR-generated cassette using 

pFA6aKanMX4 (Wach et al., 1994) or pAG60 as a template and primers hgh1 KO-F/hgh1 KO-R 

or eft2KO-F/eft2KO-R, respectively. Transformants were selected by growth on media 

containing 300 μg mL-1 G418 or media lacking uracil, as appropriate, and confirmed by genomic 

PCR using external primers. 

The hgh1::hgh1-FLAG strain was created by transforming strain BY4741 with a PCR-

generated cassette using pFA6a-6GLY-FLAG-His3MX6 (Addgene) as a template and primers 

gen_Hgh1-FLAG-F/gen_Hgh1-FLAG-R. Transformants were selected by growth on media 

lacking histidine. 



38 

The eft2::eft2-HA and hgh1::hgh1-FLAG eft2::eft2-HA strains were created by 

transforming strains wild-type BY4741 and BY4741 hgh1::hgh1-FLAG with a PCR-generated 

cassette using pCY 3140-02 (Young et al., 2012) as a template and primers gen_Eft2-HA-

F/gen_Eft2-HA-R. 

Transformants were selected by growth on the respective selective media containing 300 

μg mL-1 Hygromycin B. 

The YPH499 cct2::CCT2–Int-trp1 strain was created by transforming the wild-type strain 

YPH499 with a PCR-generated cassette using the plasmid pInt-CCT2 as a template and primers 

CCT2int-F/CCT2int-R. Transformants were selected by growth on media lacking tryptophan. 

 

Preparation of cell extracts for immunoblot analysis 

Yeast strains were cultured at 30°C, unless noted otherwise. Log-phase cells (OD600 less than 

1.0) were used for experiments, except where indicated. 

Denaturing lysis 

Yeast culture (6.4 OD600 ·mL) was treated at a 10:1 ratio with trichloroacetic acid (TCA). The 

cells were transferred into 2 mL-siliconized tubes (Sigma) and flash-frozen in liquid nitrogen for 

storage. The thawed samples were centrifuged at 20,000 x g for 8 min at RT. The pellet was 

washed with 1 mL acetone (–20°C). The dry residue was re-suspended in 100 PL BB1 buffer 

(1% SDS, 6 M urea, 50 mM Tris-HCl pH 7.5, 1 mM EDTA) and 100 PL of 1 mm-glass beads 

were added. Cells were lysed by bead-milling with a MP-Beadbeater24 (2 x 40 s at 6.0 m s-1, 

intermitted cooling with ice). Subsequently, 1 mL IP buffer (50 mM Tris-HCl pH 8.0, 150 mM 

NaCl, 1% Triton X-100, 5 mM EDTA, 10 mM E-mercaptoethanol (β-ME)) supplemented with 1 
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mM phenylmethylsulfonyl fluoride (PMSF) and Complete protease inhibitor cocktail (Roche) 

were added. After centrifugation at 20,800 x g for 15 min at 4°C, the supernatant was collected. 

Native lysis and fractionation 

Yeast culture (13 OD600 · mL) was harvested by centrifugation at 5250 x g for 15 min. After 

transfer into 2 mL-siliconized tubes (Sigma), the cells were re-suspended in 500 Pl IP buffer 

supplemented with 125 U benzonase, 2 mg L-1 puromycin·2 HCl, 1 mM PMSF and Complete 

protease inhibitor cocktail. After addition of 300 PL 1mm-glass beads, the mixture was cooled 

on ice. The cells were lysed by bead-milling with a MP-Beadbeater24 (4 x 20 s at 6.0 m s-1, with 

intermittent cooling). Cell debris and glass beads were removed by sedimentation at 500 x g for 

1 min at 4°C. The lysate (50 PL) was split into soluble and pellet fractions by centrifugation at 

20,800 x g for 15 min at 4°C. The pellet was washed with 100 PL IP buffer and subsequently 

dissolved in 50 PL BB1 buffer. 

 

SDS-PAGE 

Protein samples were separated by electrophoresis on NuPAGE 4%–12% Bis-Tris SDS gels 

(Invitrogen) using NuPAGE MOPS SDS running buffer (Invitrogen) at 200 V. 

 

Native PAGE 

Protein samples were separated by electrophoresis on NuPAGE 3%–8% Tris-acetate protein gels 

(Invitrogen) using NPage buffer (50 mM Tris and 38 mM glycine) at 150 V at 4°C. 
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Immunoblotting 

Proteins were transferred from polyacrylamide gels to nitrocellulose (GE Healthcare) membranes 

in blotting buffer (25 mM Tris, 192 mM glycine, 20% methanol) at 250 mA. Membranes were 

washed in TBST buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.05% Tween-20) and blocked 

with 3% bovine serum albumine in TBST buffer for 1 h at room-temperature. Membranes were 

incubated with primary antibodies in TBST buffer overnight at 4°C and washed three times with 

TBST. Membranes were then incubated with secondary antibody for 1 h at room-temperature 

and again washed 3 times with TBST. Horseradish peroxidase (HRP)-conjugated (Bio-Rad, 

Dako or Sigma-Aldrich) secondary antibodies were used. Luminata Classico (Merck) was used 

as substrate of HRP. The ImageQuant LAS 4000 mini (GE Healthcare) was used for signal 

detection. Images were analyzed using AIDA software (Raytest). 

 

Immune precipitation and label-free quantification by MS 

The yeast strain yLM003 (BY4741 eft2::eft2-HA hgh1::FLAG-hgh1) was grown in 4 L YPD 

medium at 30°C in shaking flask culture to an OD600 of approximately 2.0–2.5. Cells were 

harvested by sedimentation at 4000 x g for 25 min at 4°C, yielding a20 g wet cell mass. The cell 

pellet was re-suspended in 40 mL ice-cold TRiC standard buffer (50 mM HEPES-NaOH, pH 7.4, 

150 mM NaCl, 5 mM MgCl2, 10% glycerol) supplemented with 100 U benzonase, 0.2 mM 1,4-

dithiothreitol (DTT), 1 mM PMSF and Complete protease inhibitor cocktail. Subsequently, 60 g 

1mm-glass beads were added to the ice-cooled cell suspension. Cells were lysed by bead-milling 

in an ice-cooled Microspec bead beater. Cellular debris was removed by centrifugation at 2000 x 

g and 40,000 x g for 20 min and 1 h, respectively, all at 4°C. The supernatant was split into three 

equal fractions, which were incubated with 250 Pl anti-FLAG, anti-HA or anti-Myc affinity 
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resin, respectively, for 1 h at 4°C on a rotating wheel. Subsequently, the resins were collected 

into chromatography columns and washed with 20 column volumes (CV) TRiC standard buffer. 

For protein elution, 1 CV 0.1 M glycine-HCl pH 3.0 was added, incubated at RT for 5 min and 

the flow-through collected into a tube containing 0.1 CV of 0.5 M Tris-HCl pH 8.0 and 1.5 M 

NaCl. This elution step was repeated three times. The resulting fractions 1–4 were analyzed by 

SDS-PAGE. Fractions 2 and 3 were used for mass spectrometry (MS) analysis. 

 

Sample preparation for mass spectrometry 

Proteins were digested using the filter-aided sample preparation (FASP) method, essentially as 

described (Wisniewski et al., 2011) without further fractionation. After tryptic digestion, 

peptides were desalted using homemade columns containing C18 Empore disks (Rappsilber et 

al., 2003). Peptides were eluted with 1% formic acid in 70% acetonitrile (ACN) and dried in a 

vacuum concentrator. 

 

LC-MS/MS and data analysis 

Tryptic peptides were dissolved in 5% formic acid solution and analyzed by nanoLC-MS/MS 

using an EASY-nLC 1200 nano liquid chromatography system (Thermo Fisher) coupled to a Q-

Exactive HF mass spectrometer (Thermo Fisher). Samples were injected onto a home-made 25 

cm silica reversed-phase capillary column (New Objective) packed with 1.9-µm ReproSil-Pur 

C18-AQ (Dr. Maisch GmbH). Samples were loaded on the column by the nLC autosampler at a 

flow rate of 0.5 µL per minute. No trap column was used. Peptides were separated by a 190-min 

gradient of 5–30% between buffer RPA (0.1% formic acid in water) and buffer RPB (0.1% 

formic acid in 80% acetonitrile) at a flow rate of 300 nL min
-1

. MS/MS analysis was performed 
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with standard settings using cycles of one high resolution (60000 FWHM setting) MS scan 

followed by MS/MS scans of the 15 most intense ions with charge states of 2 or higher at a 

resolution setting of 15000 FWHM. Protein identification and SILAC based quantitation was 

performed with MaxQuant (version 1.3.0.5) using default settings (Cox and Mann, 2008). The 

UNIPROT S. cerevisiae (strain ATCC 204508 / S288c) database (version 2014-04-06) was used 

for protein identification. MaxQuant uses a decoy version of the specified UNIPROT database to 

adjust the false discovery rates for proteins and peptides below 1%. Volcano Plots were 

calculated using Perseus software (version 1.6.0.7) (Tyanova et al., 2016) with FDR and s0 

settings of 0.05 and 2.0, respectively. 

 

Protein purification procedures 

All protein purification steps were performed at 4°C unless otherwise indicated. Protein 

concentrations in the final preparations were determined by absorbance at 280 nm. Purified 

protein samples were concentrated by ultrafiltration and snap-frozen in liquid nitrogen for 

storage at –80qC. 

His6-tagged Hgh1 constructs 

The respective pProEx-HtB plasmid was transformed into Escherichia coli Bl21 codon+ RIL 

cells. Cells were grown in lysogenic broth (LB) medium at 37°C to an OD600 = 0.7 and induced 

with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) for 4 h at 37°C (or overnight at 

20°C). The harvested cells were re-suspended in ice-cold buffer H (20 mM HEPES-NaOH pH 

7.4, 150 mM NaCl, 10 mM β-ME), which was supplemented with 10 mM imidazole and 1 mM 

PMSF. The cells were lysed by ultrasonication on ice. After removal of cell debris by 

centrifugation, the supernatant was applied to Ni2+-chelating Sepharose equilibrated in buffer H. 
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The column was washed with a step gradient of buffer H containing increasing amounts of 

imidazole (10 / 30 / 100 mM). The bound protein was eluted with 3 CVs buffer H containing 250 

mM imidazole. This was followed by overnight cleavage of the His6 moiety at 4°C with His6-

TEV protease. After transfer into buffer H containing 10 mM imidazole using a desalting 

column, the material was passed over the Ni-chelating Sepharose column and the flow-through 

collected. Finally, the concentrated flow-through was subjected to size exclusion 

chromatography (SEC) on Superdex 200 (GE Healthcare) in buffer H containing 1 mM DTT 

instead of β-ME. 

TRiC 

TRiC from S. cerevisiae was purified using a three-step chromatographic method modified from 

(Leitner et al., 2012), which takes advantage of the strong interaction of TRiC with Plp2. Yeast 

cells were suspended in buffer YN (50 mM HEPES-NaOH pH 7.4, 200 mM NaCl, 5 mM MgCl2, 

10% glycerol) containing 20 mM imidazole, 10 mM β-ME, 1 mM PMSF, and Complete protease 

inhibitor cocktail, and lysed using a bead beater (BioSpec Products, Bartlesville, OK, USA). Cell 

debris was removed by sequential centrifugation steps at 3000 x g and 18,600 x g. The clear 

supernatant was subsequently incubated for 1 h with Ni2+-chelating Sepharose beads, which were 

decorated with Plp2 bearing a His6-tag. The beads were collected in a column, and washed with a 

step gradient of buffer YN containing increasing amounts of imidazole (20/50/100 mM). Bound 

TRiC was then eluted together with Plp2 using buffer YN containing 250 mM imidazole. To 

separate Plp2 and substrates from TRiC, the protein-containing fractions were supplemented 

with 1 mM ATP and applied on Heparin resin (GE Healthcare). Unbound proteins were eluted 

with 5 CVs of buffer YH (20 mM HEPES-NaOH pH 7.4, 10 mM MgCl2, 10 mM CaCl2, 10% 

glycerol, 10 mM β-ME) supplemented with 100 mM NaCl and 1 mM ATP. Note that this 

procedure failed to remove all contaminating substrates as judged by SDS-PAGE. TRiC was 
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eluted with a linear salt gradient from 200 mM to 1000 mM NaCl in buffer YH. As a final step, 

the TRiC-containing fractions were subjected to SEC on Superose 6 (GE Healthcare), which was 

developed with buffer YSEC containing 10 mM HEPES-NaOH pH 7.4, 200 mM NaCl, 5 mM 

MgCl2, 10% glycerol and 1 mM DTT. The TRiC-containing fractions were merged, concentrated 

to 2 g L-1 by ultrafiltration and snap-frozen in liquid nitrogen for storage at –80qC. 

Eft-HA 

The yeast strain yLM003 (BY4741 eft2::eft2-HA) was grown in 3 L YPD medium to an OD600 of 

7.5. The cells were harvested by centrifugation, resulting in a cell pellet of 43 g wet weight. The 

cells were re-suspended in 100 mL buffer Q (20 mM Tris-HCl pH 7.6, 5 mM MgCl2, 10% 

glycerol, 1 mM DTT) supplemented with 300 mM KCl, 1 mM PMSF and Complete protease 

inhibitor cocktail and lysed by bead milling. After adjusting pH 7.4 with 1 M Tris base, the 

lysate was cleared by sequential centrifugation steps at 24,000 x g and 186,000 x g for 20 min 

and 1 h, respectively. The supernatant was diluted 1:1 with buffer Q and this mixture dialyzed 

against buffer Q containing 0.1 mM PMSF. The dialysate was cleared by ultracentrifugation at 

186,000 x g for 20 min. The supernatant was loaded onto a DEAE-Sepharose (GE Healthcare) 

column (80 mL CV) equilibrated with buffer Q supplemented with 50 mM KCl (Q50). Unbound 

material was eluted with 3 CVs Q50. Eft-HA was eluted with a linear gradient (10 CVs) from 50 

mM to 350 mM KCl in buffer Q. The pooled fractions containing Eft-HA were dialyzed against 

buffer Q supplemented with 30 mM KCl. The dialysate was applied to a MonoQ (GE 

Healthcare) column (20 mL CV). The column was washed with buffer Q50 until the absorbance 

at 280 nm returned to the baseline, followed by a wash with 3 CVs of buffer Q supplemented 

with 100 mM KCl. Two peaks of Eft-HA were eluted with a linear gradient (10 CVs) from 50 

mM to 300 mM KCl in buffer Q, at conductivities of 19.5–20.5 mS cm-1 and 22.3–23.3 mS cm-1, 
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respectively. The latter peak was further purified on Heparin Sepharose (GE Healthcare) using 

the same buffer system and SEC on Superdex 200 (GE Healthcare) in buffer YSEC (50 mM 

HEPES-NaOH, pH 7.4, 150 mM NaCl, 5 mM MgCl2, 10% glycerol, 1 mM DTT). 

His6-Eft-N 

BY4741 cells were transformed with p416Gal-His6-Eft(1-482). The transformed cells were 

grown on SC 'ura medium containing 2% Glucose. His6-Eft-N expression was induced by 

overnight growth on 6 L SC 'ura medium containing 2% galactose and 1% raffinose. The 

harvested cells were re-suspended in 100 mL buffer E (50 mM Tris-HCl pH 7.6, 300 mM KCl) 

supplemented with 10 mM imidazole, 10 mM β-ME, 1 mM PMSF and Complete protease 

inhibitor cocktail. The cells were lysed by bead milling, and cell debris was removed by 

centrifugation steps at 2000 x g and 24,000 x g. The lysate was applied to Ni2+-chelating 

Sepharose. The column was washed with a step gradient of imidazole in buffer E (10 mM/50 

mM/80 mM). His6-Eft-N was eluted with buffer E containing 250 mM imidazole. His6-Eft-N 

was further purified by SEC on Superdex 200 using buffer EMQ (20 mM Tris-HCl pH 7.6, 30 

mM KCl, 5 mM MgCl2, 10% glycerol, 1 mM DTT) and anion exchange chromatography on 

MonoQ using a gradient from 30 to 300 mM KCl in buffer EMQ. 

His6-Eft-III 

The plasmid pProEx-HtB-Eft(483-565) was transformed into E. coli Bl21 (DE3) cells. Cells 

were grown in 2 L LB medium at 37°C to OD600 = 0.7 and induced with 1 mM IPTG for 3 h at 

37°C. The cell pellet was re-suspended in 70 mL buffer L (50 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 10 mM β-ME) augmented with 25 mg lysozyme, 175 U benzonase and 1 mM PMSF. 

Cells were lysed by ultrasonication. The insoluble material was collected after sedimentation at 

40,000 x g for 25 min at 4°C. The inclusion bodies were washed twice by homogenization in 25 

mL buffer W (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5% Triton X-100, 10 mM β-ME) and 
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sedimentation at 40,000 x g. Subsequently, the inclusion bodies were washed in the same manner 

with buffer L. Finally, the pellet was homogenized in 10 mL buffer RS (8 M guanidinium-HCl 

pH 8.0, 10 mM β-ME), followed by centrifugation at 55,000 x g for 30 min at 4°C. His6-Eft-III 

in the supernatant was isolated by ion affinity chromatography under denaturing conditions on 

Ni2+-NTA Agarose (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 

 

Pulldown of Hgh1-FLAG from cell lysate 

The yeast strain yLM003 (BY4741 Eft2::Eft2-HA) was grown in 6 L YPD medium to an OD600 

of 7.0. Yeast cells (80 g) were suspended in 100 mL ice-cold buffer TSB (50 mM HEPES-NaOH 

pH 7.4, 150 mM NaCl, 5 mM MgCl2, 10% glycerol) supplemented with 1 mM PMSF, 0.5 mM 

DTT and Complete protease inhibitor cocktail. After bead mill lysis, cell debris was removed by 

centrifugation. Purified Hgh1–FLAG (10 mg) was added to the lysate, followed by incubation 

for 30 min at 4°C. Subsequently, anti-FLAG affinity resin (10 mL) was added, followed by 

further incubation (30 min). The resin was collected into a gravity-flow column and washed with 

20 CVs buffer TSB supplemented with 0.5 mM DTT. For recovery of the bound protein, the 

resin was incubated with 1 CV buffer TSB containing 0.5 mM DTT and 0.1 g L-1 FLAG peptide 

(Sigma) for 10 min, followed by draining and collecting of the eluate. This step was repeated 

three times. 

 

Chemical crosslinking 

Equimolar mixtures of Hgh1-FLAG/Eft-HA or Hgh1-FLAG/Eft-HA/TRiC in presence or 

absence of Eft ligands (2 mM) in buffer XL (20 mM HEPES-NaOH pH 7.4, 150 mM NaCl, 5 

mM MgCl2, 1 mM DTT) were prepared. These were mixed at a 25:1 ratio with either a solution 
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of 25 mM disuccinimidyl suberate (DSS) in DMSO or DMSO alone, followed by incubation at 

25°C for 30 min. Reactions were quenched by addition of 150 mM NH4HCO3. Samples were 

analyzed by SDS-PAGE or native-PAGE as indicated. 

 

Hydrogen/deuterium exchange–mass spectrometry 

Sample preparation 

Eft was prepared at 2 µM in HDX buffer (50 mM HEPES-NaOH pH 7.4, 150 mM NaCl, 5 mM 

MgCl2, 1 mM tris(2-carboxyethyl)phosphine (TCEP)) with or without 200 µM Sordarin or 4 µM 

Hgh1. To initiate the deuterium exchange reaction, 5 µL protein was added to 45 µL deuteration 

buffer (HDX buffer prepared in D2O) and incubated for different times (10, 30, 100, 300 or 1000 

s) at 20°C before quenching the reaction by addition of 50 µL ice cold quench buffer (100 mM 

sodium phosphate pH 2.1, 10 mM TCEP, 3 M guanidine HCl) to a final pH of 2.6. 

Peptide Mass Analysis and Data Processing 

Quenched samples were injected into a Waters ACQUITY UPLC M-class with H/DX via a 50 

µL sample loop. Proteins were digested using an Enzymate BEH-pepsin column (Waters) at a 

flow rate of 200 µL min-1 and temperature of 20°C. Peptides were trapped and desalted for 3 min 

at 100 µL min-1 before transfer to a 1.0 x 100 mm ACQUITY UPLC peptide CSH C18 column 

(Waters) held at 0°C. Peptides were eluted over 7 min with an 8-40% acetonitrile gradient in 

0.1% formic acid, pH 2.5. Mass analysis was performed on a Waters Synapt G2Si. T-wave ion 

mobility was used as an orthogonal peptide separation step between the UPLC and mass 

spectrometer (Iacob et al., 2008). Ion guide settings were adjusted to minimize gas-phase back 

exchange as described previously (Guttman et al., 2016). Peptides were identified by analyzing 

MSE data for 4-5 undeuterated control experiments using PLGS (Waters). Mass spectra were 

processed in DynamX (Waters) and peak selection was manually verified for all peptides. All 
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experiments were performed under identical conditions. Deuterium levels were therefore not 

corrected for back exchange and are reported as relative (Wales and Engen, 2006). Experiments 

were performed in triplicate, including at least two separate preparations of protein-protein or 

protein-ligand complexes where applicable. Errors of mass measurements were <0.2 Da. 

 

Circular dichroism spectroscopy 

Far-UV CD spectra as well as thermal transitions of proteins were measured with a Jasco J-715 

spectrometer equipped with a Peltier-thermostat using 0.1 cm cuvettes. Wavelength scans were 

recorded at 4°C, temperature scans at the indicated wavelength applying a temperature gradient 

of 60°C h-1. The proteins were analyzed at the indicated concentration in a buffer containing 50 

mM potassium phosphate pH 8.0. 

 

Crystallization 

Initial crystals of Hgh1(1-363) were obtained with the help of the MPIB Crystallization Facility 

by the sittting-drop vapor diffusion method using the Index crystallization screen (Hampton 

Research, Aliso Viejo, CA) at 4°C by mixing 100 nL sample with 100 nL reservoir. 

The final crystals of spacegroup P1 grew in a hanging drop vapor diffusion setup at 4°C from a 

mixture of 1 µL Hgh1(1-363) at 8.2 mg mL-1 and 1 µL precipitant containing 10% PEG-3350, 

0.2 M MgCl2, 0.1 M Tris-HCl pH 8.5 and 20 mM DTT. For cryoprotection, crystals were 

incubated in 17.5% PEG-3350, 7.5% glycerol, 0.2 M MgCl2, 0.1 M Tris-HCl pH 8.5 and 20 mM 

DTT and 20% PEG-3350, 15% glycerol, 0.2 M MgCl2, 0.1 M Tris-HCl pH 8.5 and 20 mM DTT 

for each 10 min, respectively, before flash-cooling in liquid nitrogen. 
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Crystals of spacegroup C2 grew in a hanging drop vapor diffusion setup at 4°C from a mixture of 

1 µL Hgh1(1-363) and 1 µL precipitant containing 16% PEG-3350, 0.1 M Na3-citrate and 20 

mM DTT. Crystals were stepwise transferred into 20% PEG-3350, 15% glycerol, 0.1 M Na3-

citrate and 20 mM DTT, followed by flash-cooling in liquid nitrogen. 

 

Structure solution and refinement 

X-ray diffraction data were collected by the oscillation method at beamlines ID29 and ID23-1 at 

European Synchrotron Radiation Facility (ESRF), Grenoble, France. In order to maximize data 

completeness in spacegroup P1, data were collected at two kappa angles, employing the 

minikappa goniometer head (Brockhauser et al., 2013). 

The data were integrated and scaled with XDS (Kabsch, 2010). Pointless (Evans, 2006), Aimless 

(Evans and Murshudov, 2013) and Truncate (French and Wilson, 1978), as implemented in the 

CCP4i interface (Collaborative Computational Project, 1994), were used to convert the data to 

CCP4 format. 

The structure of selenomethionine-labelled Hgh1(1-363) was solved by Se-single-wavelength 

anomalous diffraction (SAD) using the AutoSol pipeline as implemented in Phenix (Adams et 

al., 2010). Manual model building was performed with Coot (Emsley and Cowtan, 2004). The 

model was refined with Phenix (Adams et al., 2010). Anisotropic motions were modelled using 

Translation-Libration-Screw (TLS) parametrization. The crystals of native protein in spacegroup 

P1 were isomorphic. The final models contain four copies of Hgh1(1-363) each. 

The crystal structure of Hgh1(1-363) in space group C2 was solved by molecular replacement 

with Molrep (Vagin and Isupov, 2001). Coot was employed for manual model building (Emsley 

and Cowtan, 2004). The model was refined with Refmac5 using local non-crystallographic 
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symmetry (NCS) restraints and TLS parametrization (Murshudov et al., 1997). The final model 

contains four copies of Hgh1(1-363). Residues facing solvent channels with disordered 

sidechains were modelled as alanines. 

 

Structure analysis 

Coordinates were aligned with Lsqkab and Lsqman (Kleywegt and Jones, 1994). Figures were 

generated with the programs Pymol (http://www.pymol.org) and ESPript (Gouet et al., 1999). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

The relative levels of Eft in Figures 1C-F were quantified using AIDA software. Error bars 

represent standard deviation (SD) from three independent experiments. 

P values for volcano plots in Figures 3 and S1 were calculated by Student’s t test for proteins, 

which were detected by LS-MS/MS in three biological repeats. 

 

DATA AND SOFTWARE AVAILABILITY 

Accession Numbers 

Coordinates and structure factors reported in this manuscript have been deposited in the Protein 

Data Bank with accession codes 6HB1, 6HB2 and 6HB3. The full gels of Figures 1C-F, 2B-D, 

and 6E can be viewed at Mendeley Data (URL: https://doi.org/10.17632/sw9sxts73z.1). 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Anti-Rabbit IgG (whole molecule)-Peroxidase 
antibody produced in goat 

Sigma-Aldrich Cat. #A6154 

Goat anti-mouse IgG HRP conjugated Dako Cat. #P0447 
Mouse monoclonal anti-FLAG Sigma-Aldrich Cat. #F3165 
Mouse monoclonal anti-Pgk1 Life Technologies Cat. #459250 
Rabbit anti-Hgh1 antiserum This study N/A 
Rabbit anti-Tcp1 {Behrends, 2006 

#136} 
 – 

Rabbit polyclonal anti-eEF2 Aviva Cat. 
#ARP58457_P050 

Rat monoclonal anti-HA High Affinity, 3F10  Merck Cat. #ROAHAHA 
Bacterial and Virus Strains  
Escherichia coli Bl21 codon+ RIL Agilent Cat. #NC9122855 
Chemicals, Peptides, and Recombinant Proteins 
Benzonase Novagen Cat. #707416 
Complete protease inhibitor cocktail, EDTA-free Roche Cat. #05056489001 
Cycloheximide Sigma-Aldrich Cat. #C4859 
Disuccinimidyl suberate (DSS) d0/d12 Creative Molecules Cat. #001S 
EheI (SfoI) restriction enzyme Thermo Fisher 

Scientific 
Cat. #ER0441 

FLAG peptide Sigma-Aldrich Cat. #F3290 
Geneticin selective antibiotic (G418 sulfate) Thermo Fisher 

Scientific 
Cat. #11811031 

GMP-PNP Na salt Jena Bioscience Cat. #NU-401-50 
Hygromycin B Calbiochem Cat. #400051 
Kod hot start DNA polymerase Novagen Cat. #71086-3 
Macbecin I Tocris Cat. #3061 
NuPAGE 3-8% Tris-Acetate Protein Gels, 1.0 mm, 10-
well 

Invitrogen Cat. #EA0375BOX 

NuPAGE 4-12% Bis-Tris Protein Gels, 1.0 mm, 10-well Invitrogen Cat. #NP0321BOX 
NuPAGE 4-12% Bis-Tris Protein Gels, 1.0 mm, 15-well Invitrogen Cat. #NP0323BOX 
Pfu DNA polymerase Promega Cat. # M7745 
Puromycin dihydrochloride Gibco BRL Cat. #A11138 
Sordarin Sigma-Aldrich Cat. #S1442 
T4 DNA ligase New England Biolabs Cat. # M0202S 
TCEP Thermo Fisher 

Scientific 
Cat. #20491 

Critical Commercial Assays 
Bio-Rad Protein Assay Dye Reagent Concentrate Bio-Rad Cat. #500-0006 
Luminata Classico Merck Cat. #WBLUC0500 
Deposited Data 
Coordinates and structure factors: Hgh1(1-363) Se-SAD This study PDB: 6HBB 
Coordinates and structure factors: Hgh1(1-363), crystal 
form I 

This study PDB: 6HBA 

Coordinates and structure factors: Hgh1(1-363) , crystal 
form II 

This study PDB: 6HBC 



 

Immunoblot data: (Mendeley Data) This study doi:10.17632/sw9sxt
s73z.1 

Experimental Models: Organisms/Strains 
BY4741 MATD his3'1 leu2'0 lys2'0 ura3'0 EUROSCARF http://www.euroscarf

.de 
BY4741 hgh1'::KanMX4 This study yCLK14 
BY4741 eft2'::URA3 This study yCLK17 
BY4741 eft2'::URA3 hgh1'::KanMX4 This study yCLK19 
BY4741 hgh1::FLAG-hgh1-HIS3 This study yLM001 
BY4741 eft2::eft2-HA-hphMX4 This study yLM002 
BY4741 eft2::eft2-HA-hphMX4 hgh1::hgh1-FLAG-HIS3 This study yLM003 
YPH499 MATa ura3-52 lys2-801_amber ade2-
101_ochre trp1-∆63 his3-∆200 leu2-∆1 

(Sikorski & Hieter, 
1989) 

 – 

YPH499 cct2::CCT2-Int-TRP1 This study yLM004 
Oligonucleotides 
See Table S2 See Table S2 See Table S2 
Recombinant DNA 
pProEx-HtB Life Technologies  – 
pProEx-HtB-Hgh1 This study N/A 
pProEx-HtB-Hgh1-FLAG This study N/A 
pProEx-HtB-Hgh1mutN-FLAG This study N/A 
pProEx-HtB-Hgh1mutM-FLAG This study N/A 
pProEx-HtB-Hgh1mutN+M-FLAG This study N/A 
pProEx-HtB-Hgh1mutC-FLAG This study N/A 
pProEx-HtB-Hgh1(1-363) This study N/A 
pProEx-HtB-Eft(1-482) This study N/A 
pProEx-HtB-Eft(483-565) This study N/A 
pInt This study N/A 
p416gal (Mumberg et al., 1995)  – 
p416gal-His6-TEV-Eft This study N/A 
p416gal-His6-TEV-Eft(1-482) This study N/A 
p416gal-Eft-HA This study N/A 
p416gal-Eft(1-482)-HA This study N/A 
p416gal-Eft(483-842)-HA This study N/A 
p416gal-Eft(566-842)-HA This study N/A 
p416gal-His6-TEV-Hgh1 This study N/A 
p415adh (Mumberg et al., 1995)  – 
p415adh-Hgh1-HA This study N/A 
p415adh-Hgh1mutN-HA This study N/A 
p415adh-Hgh1mutM-HA This study N/A 
p415adh-Hgh1mutN+M-HA This study N/A 
p415adh-Hgh1mutC-HA This study N/A 
pFA6aKanMX4 {Wach, 1994 #135}  – 
pAG60 Addgene Cat. #35128 
pFA6a-6GLY-FLAG-His3MX6 Addgene Cat. #20750 
pCY 3140-02 {Young, 2012 #103}  – 
Software and Algorithms 



 

AIDA software v4.27.039 Raytest https://www.raytest.c
om/downloads/aida-
imageanalyzer. 
html 

Aimless {Evans, 2013 #71} http://www.ccp4.ac.u
k/html/aimless.html 

CCP4i {Collaborative 
Computational Project, 
1994 #77} 

http://www.ccp4.ac.u
k/ccp4i_main.php 

Clustal Omega {Sievers, 2011 #78} https://www.ebi.ac.u
k/Tools/msa/clustalo/ 

Coot {Emsley, 2004 #69} https://www2.mrc-
lmb.cam.ac.uk/perso
nal/pemsley/coot/ 

DSSP {Kabsch, 1983 #110} – 
DynamX 3.0 Waters N/A 
ESPript {Gouet, 1999 #76} http://espript.ibcp.fr/

ESPript/ESPript/ 
Lsqman {Kleywegt, 1994 #73} http://xray.bmc.uu.se

/usf/lsqman_man.ht
ml 

MaxQuant v1.3.0.5 
 

(Cox & Mann, 2008) http://www.coxdocs.
org/doku.php?id=ma
xquant: 
common:download_
and_installation#dow
nload_ 
and_installation_gui
de 

MolProbity {Chen, 2010 #131} https://www.phenix-
online.org/document
ation/reference/molp
robity_tool.html 

Molrep {Vagin, 2001 #75} http://www.ccp4.ac.u
k/html/molrep.html 

Perseus v1.6.0.7 {Tyanova, 2016 #139} http://www.coxdocs.
org/doku.php?id=per
seus:start 

Phenix {Adams, 2010 #66} https://www.phenix-
online.org/ 

PLGS 3.0 Waters N/A 
Pointless {Evans, 2006 #70} http://www.ccp4.ac.u

k/html/pointless.html 
ProtScale  https://web.expasy.o

rg/protscale 
Pymol  http://www.pymol.org 
Refmac5 {Murshudov, 1997 

#74} 
http://www.ccp4.ac.u
k/html/refmac5.html 

Spectra Manager v2.12.00  https://jascoinc.com/
products/spectrosco
py/spectroscopy-
software/ 

Truncate {French, 1978 #72} http://www.ccp4.ac.u
k/html/truncate.html 



 

XDS {Kabsch, 2010 #68} http://xds.mpimf-
heidelberg.mpg.de/ 

Other 
ACQUITY UPLC peptide CSH C18 column, 1.7 μm, 
2.1.0 x 150 mm 

Waters Cat#186006938 

ACQUITY UPLC peptide CSH Vanguard pre-column Waters Cat#186006939 
Anti-c-MYC agarose Pierce Cat. #20168 
Anti-DYKDDDDK G1 affinity resin Genscript Cat. #L00432 
Anti-HA agarose resin Pierce Cat. #26181 
Calmodulin Sepharose 4B GE Healthcare Cat. #17052901 
Chelating Sepharose Fast Flow GE Healthcare Cat. #17-0575-01 
DEAE-Sepharose Fast Flow GE Healthcare Cat. #17070901 
Enzymate pepsin column Waters Cat#186007233 
HiTrap Heparin HP 5 x 5 ml GE Healthcare Cat. #17040703 
Index HT  Hampton Research Cat. #HR2-134 
Mono Q HR16/10 GE Healthcare Cat. #17050601 
Ni-NTA Agarose Qiagen Cat. #30230 
Superdex 200 GE Healthcare Cat. #28990944 
Superose 6 GE Healthcare Cat. #17517201 
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Supplementary Information 
 

 

Chaperone Function of Hgh1 in the Biogenesis of Eukaryotic Elongation Factor 2. 

Leonie Mönkemeyer, Courtney L. Klaips, David Balchin, Roman Körner, F. Ulrich Hartl and Andreas Bracher. 

Max-Planck Institute of Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany. 
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Supplementary Figures 

 

 
 

Figure S1.  Mass-spectrometric analysis of Eft-interacting proteins.  Related to Figure 3.  A Volcano plot representation of the Eft2-HA interactors 
is shown. The components of the anti-HA and anti-MYC immune precipitates from three independent experiments were analyzed by label-free 
quantification. The proteins to the left and right of the solid lines were significantly depleted or enriched in the anti-HA precipitates, respectively. Enriched 
ribosomal subunits are marked in cyan. TRiC subunits and Hgh1 are poorly enriched. These are highlighted in dark blue and green color, respectively. 
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Figure S2.  Properties of purified Eft truncation proteins.  Related to Figure 5.  (A)  CD spectrum and secondary structure composition of His6-
tagged Eft-N. The spectrum was recorded at 4°C. The diagrams show the secondary structure compositions as derived from the Eft crystal structure 
(pdb code 1N0U {Jørgensen, 2003 #54}) and the CD spectrum, respectively. The fractions of helix and sheet structure are based on the secondary 
structure assignment in the Eft crystal structure using the program DSSP {Kabsch, 1983 #110}; CD spectrum deconvolution was performed with the 
program CONTIN {Provencher, 1982 #115} as implemented in Spectra Manager (Jasco).  (B)  CD spectrum and secondary structure element 
composition of His6-tagged Eft-III. The spectrum was recorded at 4°C. The secondary structure assignment was as above.  (C)  Hydropathy plot for Eft-
III. The hydropathy score for the Eft-III sequence was calculated using a gliding frame of nine residues {Kyte, 1982 #113}. Segments above the dashed 
line are predominantly hydrophobic. The plot was generated with the ProtScale program. (https://web.expasy.org/protscale). 
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Figure S3.  H/DX Analysis of Eft.  Related to Figure 5.  (A)  Peptide coverage of Eft in H/DX experiments. The detected pepsin fragments of Eft are 

shown as blue bars underneath the Eft sequence.  (B)  Deuterium uptake kinetics for selected peptides covering Eft domain III. Peptides for the adjacent 

regions, residues 472–485 and 566–578, are shown for comparison. The time traces for Eft alone, the Eft-Sordarin complex and Eft/Hgh1 are shown in 

black, pink and green, respectively. 
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Figure S4.  Crystal structure of Hgh1.  Related to Figure 6.  (A)  Identification of structured core of Hgh1 by limited proteolysis. Hgh1 at 3 µM was 
treated with increasing concentrations of Proteinase-K (0, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.52 and 5.12 µg mL-1) for 60 min on ice. The protease 
reaction was stopped by addition of 4 µM phenylmethylsulfonyl fluoride. Reactions were analyzed by SDS-PAGE and Coomassie staining. The band at 
approximately 40 kDa in the rightmost lane was identified as Hgh1(1–363) by MS analysis.  (B)  Experimental electron density map. The map calculated 
with the Se-SAD phases after density modification is shown in isosurface representation at 1.5 V. The final model of selenomethionine labeled Hgh1 is 
superposed. On the left, the complete asymmetric unit is shown. On the right, the boxed area is magnified.  (C–D)  Asymmetric units of the crystals of 
spacegroups P1 (C) and C2 (D), respectively. The protein chains are shown in ribbon representation. Each chain has a unique color. The contact 
between the Hgh1 C-termini is observed in both crystal forms.  (E–F)  Superposition of the independent Hgh1 copies in the crystal lattices. The eight 
molecules are shown as wireframe models. The same views as in Figure 6A are shown.  (G–H)  Surface properties of Hgh1. Hgh1 is shown in surface 
representation with hydrophobic sidechains, negatively and positively charged groups highlighted in yellow, blue and red, respectively. The same views 
as in Figure 6A are shown. 
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Figure S5.  Alignment of Hgh1/Fam203 sequences.  Related to Figure 6.  Amino acid sequences of a representative set of Hgh1/Fam203 homologs 
were aligned using the EBI Clustal-Ω server {Sievers, 2011 #78}. Secondary structure elements for Hgh1 from Saccharomyces cerevisiae are indicated 
above the sequences. The Hgh1 helical repeat structure is indicated by the coloring of secondary structure elements. The sequences from fungi (1), 
plants (2), protists (3) and animals (4) are grouped separately. Similar residues are shown in red and identical residues in white on a red background. 
Blue frames indicate homologous regions. The consensus sequence is shown at the bottom. Asterisks below the sequence indicate mutations in Hgh1 
analyzed in this study (Figure 6C). The Uniprot accession codes for the sequences are: P48362, Saccharomyces cerevisiae; Q10498, 
Schizosaccharomyces pombe; Q7SA64, Neurospora crassa; D8SRW6, Selaginella moellendorffii; Q338F8, Oryza sativa; Q9M9T2, Arabidopsis 
thaliana; D0NXG5, Phytophthora infestans; Q76NW7, Dictyostelium discoideum; A9UZU4, Monosiga brevicollis; Q9VBG6, Drosophila melanogaster; 
B3RJZ9, Trichoplax adhaerens; Q9BTY7, Homo sapiens. 
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Figure S6.  Analysis of the Hgh1 mutant proteins.  Related to Figure 6.  (A)  CD spectra of wildtype Hgh1 and Hgh1(MutN+M) proteins. The spectra 
were recorded at 4°C.  (B)  Melting curves of wildtype Hgh1 and Hgh1(MutN+M) proteins. The CD signal at 222 nm wavelength was monitored. 
Temperature was increased at a rate of 1°C min-1. The fitted values for the melting points of Hgh1 and Hgh1(MutN+M) were 47.6 and 43.5°C, 
respectively.  (C)  Complementation of growth phenotype of eft2'hgh1' cells with mutant Hgh1 constructs. WT and mutant Hgh1 were expressed in 
eft2'hgh1' cells under control of the ADH promoter. The protein level of Hgh1-HA was analyzed by immunoblotting. Phosphoglycerate kinase (Pgk1) 
served as a loading control. 
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SUPPLEMENTARY TABLES 

 

Table S1.  Crystallographic Data Collection and Refinement Statistics 

Dataset Se-SAD Crystal form I Crystal form II 
Space group P1 P1 C2 
Cell dimensions    

  a, b, c (Å) 80.4, 87.2, 88.7 80.2, 86.4, 88.4 191.8, 69.6, 206.9 
  D, E, J (°) 118.1, 106.0, 99.5 118.45, 105.8, 99.2 90, 93.8, 90 
Wavelength (Å) 0.97895 0.97895 1.00800 
Resolution (Å) 44.75 – 2.7 (2.78 – 2.7)* 44.20 – 2.33 (2.37 – 2.33) 47.96 – 3.0 (3.09 – 3.0) 
Rmerge 0.193 (1.528) 0.108 (0.911) 0.104 (0.772) 
I/σI 13.3 (2.7) 11.5 (1.9) 9.8 (1.5) 
Completeness (%) 99.1 (93.9) 98.8 (91.2) 99.3 (95.0) 
Redundancy 13.8 (11.6) 6.9 (4.8) 3.4 (3.5) 
Refinement    

Resolution (Å) 30 – 2.7 30 – 2.33 30 – 3.0 
No reflections 104053 79858 52041 
Rwork / Rfree 0.190 / 0.214 0.177 / 0.226 0.220 / 0.230 
Number of atoms    

  Protein 23137 23165 11489 
  Cl

-
 ion 1 3 - 

  Water 72 403 - 
B-factors    

  Protein 68.7 63.5 73.9 
  Cl

-
 ion 51.6 126.6 - 

  Water 53.2 50.4 - 
R.m.s. deviations    

  Bond length (Å) 0.004 0.003 0.005 
  Bond angles (°) 0.759 0.683 0.954 

*  Values in parenthesis for outer shell. 
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RESOURCE TABLES 

 

Table S2.  Oligonucleotides 

 

Name DNA Sequence 
hgh1 KO-F AATTAAAAATAGCTCAAAAAAATCAACAAAAAATTGAGTGcagctgaagcttcgtacgc 

hgh1 KO-R TATACAATTCTATGCTATGTGAACTGTCCTTGAAAGTGACgcataggccactagtggatctg 

eft2 KO-F ACTCAAAGACCACAAACACAAACTATAACATAATTGCAAGcagctgaagcttcgtacgc 

eft2 KO-R AACTGAAAAAGTTAAATAATTAAAAATTGTTTAACCATTCgcataggccactagtggatctg 

Hgh1-F phospho-GCCCtCCGCGGtggaATGACTTCACAATTGAATGAATTAGTGGAATTTCTGC 

Hgh1-R CCCaagcttCTAGGCCACTTCGACAATTTCATCTTCTTCG 

Hgh1-FLAG-R CCCaagcttCTActtgtcatcgtcatccttgtaatcGGCCACTTCGACAATTTCATCTTCTTCG 

Hgh1mutN-F phospho-GCCTCTAGA ATGACTTCACAATTGAATtcagcaGTGGAAgctCTGCATTCACCACAA 

Hgh1mutN-HA-
F 

P-GCCTCTAGA ATGACTTCACAATTGAATtcagcaGTGGAAgctCTGCATTCACCACAA 

Hgh1mutM-F GTCGCTTCCACAATTgcacATTCCCTAgctGATTCTGAAACTCAT 

Hgh1mutM-R ATGAGTTTCAGAATCAGCTAGGGAATGTGCAATTGTGGAAGCGAC 

Hgh1mutC-F AGAGACAAGTCCGTTgctCCACTAGTGgctGAGCTGgctAAAAACGTTGAGAAT 

Hgh1mutC-R ATTCTCAACGTTTTTAGCCAGCTCAGCCACTAGTGGAGCAACGGACTTGTCTCT 

His-Hgh1 
overexpression-
F 

phospho-gggATGTCGTACTACCATCACCATCACCATC 

Hgh1(1-363)-F phospho-GCCCGCGGtgga ATGACTTCACAATTGAATGAATTAGTGGAATTTCTGC 

Hgh1(1-363)-R CCCaagctt CTA TTCCACTGCTCCCGCACCTGG 

Hgh1-HA-F ctag tctaga ATGACTTCACAATTGAATGAATTAGTGGAATTTCTGC 

Hgh1-HA-R 
(p415adh) 

CCCaagcttCTA AGCGTAATCTGGAACATCGTATGGGTA GGCCACTTCGACAATTTCATCTTCTTCG 

His-Eft-F phospho-gccATGGTTGCTTTCACTGTTGACCAAATGCG 

His-Eft-R CCGctcgagTTACAATTTGTCGTAATATTCTTGCCAGCCTGG 

His-Eft(1-482)-
R 

CCG CTCGAG TTA TTTCATGACCTTCATGTTGTGAGCAGTTTCAC 

Eft-T56D-F ggtgaagctcgtttcGACgataccagaaaggat 

Eft-T56D-R atcctttctggtatcGTCgaaacgagcttcacc 

Eft-HA-F phospho-ggg ATGGTTGCTTTCACTGTTGACCAAATGCG 

Eft-HA-R CCGCTCGAGTTAAGCGTAATCTGGAACATCGTATGGGTACAATTTGTCGTAATATTCTTGCCAGCCTGG 

gen_Hgh1-
FLAG-F 

GAAGAAGATGACGACGAAGAAGATGAAATTGTCGAAGTGGCC GGGGGAGGCGGGGGTGGA 

gen_Hgh1-
FLAG-R 

GTATTATACAATTCTATGCTATGTGAACTGTCCTTGAAAGTGAC GAATTCGAGCTCGTTTAAAC 

gen_Eft2-HA-F GGTATGAAGGAAGAAGTTCCAGGCTGGCAAGAATATTACGACAAATTG GGTGACGGTGCTGGTTTA 

gen_Eft2-HA-R CGACAAAAACTGAAAAAGTTAAATAATTAAAAATTGTTTAACCATTC ATCGATGAATTCGAGCTCG 

CCT2int-F GACCAAGAACCGCCAATAGACAACATATG TCCATGGAAAAGAGAAG 

CCT2int-R GGCGGTTTATTATTTTCGAGGTATATCCTAAATATG TACGACTCACTATAGGG 

Eft2forw483 phospho-gccatgTTCTCTGTCTCTCCAGTTGTGCAAGTCGC 

Eft2rev565new ggggggCTCGAGttaTTCTCTGTAAGCGACAACTGGTGGGG 

Eft482HA-R CCGCCG CTCGAG TTA AGCGTAATCTGGAACATCGTATGGGTA 
TTTCATGACCTTCATGTTGTGAGCAGTTTCAC 

Eft2forw566 phospho-gccatgACTGTTGAAAGTGAATCTTCTCAAACTGCTTTGTCC 
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CCT2N-F cgc ggatcc ATGAGTGTACAGATATTTGGAGACCAGGTTAC 

CCT2N-R aagaaaaaa gcggccgc c ACCAGCTTTGCAACCACTAAACTTCAAGAATG 

CCT2C-F ccg ctcgag c GAAGCTTGTACCATCGTCCTAAGAGGT 

CCT2C-R aaaa ctgcag TTACATATGTTGTCTATTGGCGGTTCTTGGTC 

DNA1 TTAATTAAGGCGCCCATATGGGATCCGGTGATCGATCTGCGGCCGCCTCCGGAATTCAAG 
CAGGCCTCGGTAAGACGAGCTCAACTAGTCAAGGGTCGACTGGGAGCGGGAGCGGATGGA 
GCCACCCGCAGTTCGAAAAAGGTTCTGGTAAGAGAAGATGGAAAAAGAATTTCATAGCCG 
TCTCAGCAGCCAACCGCTTTAAGAAAATCTCATCCTCCGGGGCACTTGGGTCCGGGCATC 
ATCACCACCATCATCACCACGGCTCGGGGTCTCGAGGAGCATGCGGTACCTCTAGATTCG 
AAGCTAGCTAGCTGCAGGGAACGATCATTCACTATATATATATCAATTTATATATACGTA 
TGTGTAATTGAAGAAAGATACGTTTTTTCCTCTATTGAGAGGCCTGCTGGATGAATAGCT 
TTACCTTTTCTAAATCCTTGATACCATCAGTCTCTACTCCTCCACTTACATCGACACCAA 
TCGCATTTGGTAACATATTAATGGCAACAGAAACGTTATCAGGATTCAATCCACCAGCGA 
TAATGAATTTTATCTCGGGATGACTTGCAGACCAACTGGAAATTGCACTCCAATTCAATT 
TCTCACCAGTGCCACCTTCACCAGAATCGAACAACGTCAGCACATTGTCTACGTGTTCAT 
ACAGGTCCAGTAGTAATTCACAATCCTGTGGGAACTGGAACCTCTTAATGATTGGAATTG 
AAGATGGGATCAAAGATCTGTATTCTTTAATATCTTCATCTCCATGTAATTGTATCACAT 
CCAAATTATATTCGTGGTACAGTTGAAGGACATCATCAACGGACTGATTTCTAAACACCC 
CGACCAATTTAGTACCTTTCACGTTCTCTTGTTGGTGAACAGCAGTTGAAATACCTTTCG 
CAACAGATGAGTCAATGGTTCTTTTCCTACCGGGAACACAAATGATACCTAAGTAATCAG 
CACCATCATCCACAGCAGTCTTTGCAGCTTCAACGGTTTGCAAACCACACACTTTAACGA 
GCATCACAGTAGATTTCGCAAGAGGGTAGCTCGCTCAGAGTACCCAAGTAAATGATTAGT 
AAACTGATGTTTGATAGTTCAATTTTTCAATGAAATAACCTTATATTAAAATTGATATTA 
CTATTATACAAAAATAAAGAATAAAGGATTTGAGTTTATACATAAAATACCATTATTATT 
TGTTCAGTGAGAGATACCGGGGTATATGGGATGTGTGTAGTGATACCATGCAATCATGTA 
TCAAACATGGGCCCGGTACCCAATTCGCCCTATAGTGAGTCGTAAAGCTTGGCGCGCC 
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ĂƌƌĂŶŐĞŵĞŶƚ�ŽĨ�ƚŚĞ�ƐƵďƵŶŝƚƐ�ŝŶ�ƚŚĞ�ĐŽŵƉůĞǆ͘�/ŶƚĞƌŵĞĚŝĂƚĞ�ƌĞƐŽůƵƚŝŽŶ�;ϱ͘ϱ�ʹ�ϯ͘ϴ��Ϳ�ƐƚƌƵĐƚƵƌĞƐ�ŽĨ�ƚŚĞ�dZŝ��

ĐŽŵƉůĞǆ�ǁĞƌĞ�ĂǀĂŝůĂďůĞ�;�ŽŶŐ�Ğƚ�Ăů͕͘�ϮϬϭϬ͖��ĞŬŬĞƌ�Ğƚ�Ăů͕͘�ϮϬϭϭ͖�DƵŶŽǌ�Ğƚ�Ăů͕͘�ϮϬϭϭͿ͕�ƌĞǀĞĂůŝŶŐ�ƚŚĞ�ƚĞƌƚŝĂƌǇ�

ƐƚƌƵĐƚƵƌĞ͕� ďƵƚ� ƚŚĞ� ĚĞƚĂŝůƐ� ŝŶ� ƐŝĚĞ� ĐŚĂŝŶ� ĚĞŶƐŝƚǇ� ƌĞƋƵŝƌĞĚ� ĨŽƌ� ƵŶĞƋƵŝǀŽĐĂů� ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ� ŽĨ� ŝŶĚŝǀŝĚƵĂů�

ƐƵďƵŶŝƚƐ� ǁĞƌĞ� ŵŝƐƐŝŶŐ͘� tĞ� ƐŽůǀĞĚ� ƚŚŝƐ� ƉƌŽďůĞŵ� ďǇ� ĂŶ� ŽƌƚŚŽŐŽŶĂů� ĂƉƉƌŽĂĐŚ� ŽĨ� ĐŽŵďŝŶŝŶŐ� ĐŚĞŵŝĐĂů�

ĐƌŽƐƐůŝŶŬŝŶŐ�;y>Ϳ�ǁŝƚŚ�ŵĂƐƐ�ƐƉĞĐƚƌŽŵĞƚƌǇ�;D^Ϳ�ĂŶĂůǇƐŝƐ͕�ǁŚŝĐŚ�ŚĂƐ�ďĞĞŶ�ĚĞǀĞůŽƉĞĚ�ŽǀĞƌ�ƚŚĞ�ůĂƐƚ�ĚĞĐĂĚĞ�

;>ĞŝƚŶĞƌ�Ğƚ�Ăů͕͘�ϮϬϭϲ͖�>ŝƵ�ĂŶĚ�,ĞĐŬ͕�ϮϬϭϱͿ͘�dŚĞ�y>ͲD^�ĂƉƉƌŽĂĐŚ�ƉƌŽǀŝĚĞĚ�ƌĞƐŝĚƵĞͲƐƉĞĐŝĨŝĐ�ŝŶĨŽƌŵĂƚŝŽŶ�ŽŶ�

ĐƌŽƐƐůŝŶŬĞĚ�ƉĞƉƚŝĚĞƐ͕�ǁŚŝĐŚ�ĐŽƵůĚ�ďĞ�ƵƐĞĚ�ƚŽ�ĚĞĨŝŶĞ�ƚŚĞ�ƐƵďƵŶŝƚ�ƚŽƉŽůŽŐǇ�ďĂƐĞĚ�ŽŶ�ƚŚĞ�ƐƚƌƵĐƚƵƌĂů�ŵŽĚĞů�



Ͳ�ϭϴϬ�Ͳ��
�

ŽĨ� ƚŚĞ� ƉĂƌĂůŽŐŽƵƐ� ƚŚĞƌŵŽƐŽŵĞ� ĐŽŵƉůĞǆ� ĂŶĚ� ŬŶŽǁŶ� ĚŝƐƚĂŶĐĞ� ƌĞƐƚƌĂŝŶƚƐ� ĨŽƌ� ƚŚĞ� ĞŵƉůŽǇĞĚ� ĐƌŽƐƐůŝŶŬĞƌ�

;^ŚŽŵƵƌĂ�Ğƚ�Ăů͕͘�ϮϬϬϰͿ͘�dǁŽ�ŝŶĚĞƉĞŶĚĞŶƚ�ĂŶĚ�ƐĞůĨͲĐŽŶƐŝƐƚĞŶƚ�ĚĂƚĂ�ƐĞƚƐ�ĨŽƌ�ǇĞĂƐƚ�ĂŶĚ�ďŽǀŝŶĞ�dZŝ��ǁĞƌĞ�

ŽďƚĂŝŶĞĚ͕�ǁŚŝĐŚ�ĐŽŶĐůƵƐŝǀĞůǇ�ƉƌŽǀŝĚĞĚ�ĂŶ�ƵŶĂŵďŝŐƵŽƵƐ�ĂƐƐŝŐŶŵĞŶƚ�ŽĨ�ƚŚĞ�dZŝ��ƐƵďƵŶŝƚ�ƚŽƉŽůŽŐǇ͘��

�

&ŝŐƵƌĞ�ϭϯ͗�^ƵďƵŶŝƚ�ŽƌĚĞƌ�ŽĨ�ƚŚĞ�dZŝ��ĐŽŵƉůĞǆ�ĂĐĐŽƌĚŝŶŐ�ƚŽ�>ĞŝƚŶĞƌ�Ğƚ�Ăů͘�>ĞĨƚ�ƉĂŶĞů�ƐŚŽǁƐ�ƚŽƉ�ǀŝĞǁ�ŽĨ�ĐůŽƐĞĚ�dZŝ��

ƐƚƌƵĐƚƵƌĞ�ŝŶĚŝĐĂƚŝŶŐ�ƚŚĞ�ƐƵďƵŶŝƚ�ŽƌĚĞƌ�ŝŶ�ĞĂĐŚ�ƌŝŶŐ͗���d�ϲͲϴͲϳͲϱͲϮͲϰͲϭͲϯ͘�/Ŷ�ƚŚĞ�ƌŝŐŚƚ�ƉĂŶĞů͕�ƚŚĞ�ĐŽŵƉůĞǆ�ŝƐ�ƚƵƌŶĞĚ�ďǇ�

ϵϬŽ� ƚŽ� ƐŚŽǁ� ƚŚĞ� ŚŽŵŽƚǇƉŝĐ� ĐŽŶƚĂĐƚ� ŽĨ� ��dϮ� ƐƵďƵŶŝƚƐ� ĂĐƌŽƐƐ� ƚŚĞ� ƌŝŶŐƐ͘� dŚĞ� ƐĞĐŽŶĚ� ŚŽŵŽƚǇƉŝĐ� ĐŽŶƚĂĐƚ� ŝŶǀŽůǀŝŶŐ�

ƐƵďƵŶŝƚƐ���dϲ�ŝƐ�ŚŝĚĚĞŶ�ŽŶ�ƚŚĞ�ďĂĐŬ�ŽĨ�ƚŚŝƐ�ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ͘�KǀĞƌĂůů͕�ƚŚĞ�dZŝ��ƐƚƌƵĐƚƵƌĞ�ŚĂƐ�ϮͲĨŽůĚ�ƐǇŵŵĞƚƌǇ͘�&ŝŐƵƌĞ�

ŵŽĚŝĨŝĞĚ�ĨƌŽŵ�;>ĞŝƚŶĞƌ�Ğƚ�Ăů͕͘�ϮϬϭϮͿ��

�ĐĐŽƌĚŝŶŐ�ƚŽ�ŽƵƌ�ŵŽĚĞů͕�ƚŚĞ�ƐƵďƵŶŝƚ�ŽƌĚĞƌ�ŝŶ�ĞĂĐŚ�ƌŝŶŐ�ŝƐ���d�ϲͲϴͲϳͲϱͲϮͲϰͲϭͲϯ͘�DŽƌĞŽǀĞƌ͕�ƚŚĞ�dZŝ��ĐŽŵƉůĞǆ�

ĞǆŚŝďŝƚƐ�ƚǁŽ�ŚŽŵŽƚǇƉŝĐ�ĐŽŶƚĂĐƚƐ�ĂĐƌŽƐƐ�ŝƚƐ�ĞƋƵĂƚŽƌ�;��dϮ�ĂŶĚ���dϲͿ�ĂŶĚ�ŚĂƐ�ŽǀĞƌĂůů�ƚǁŽͲĨŽůĚ�ƐǇŵŵĞƚƌǇ�

;&ŝŐƵƌĞ�ϭϯͿ͕�ĐŽŶƐŝƐƚĞŶƚ�ǁŝƚŚ�ĂǀĂŝůĂďůĞ�ĐƌǇŽͲ�D�;�ŽŶŐ�Ğƚ�Ăů͕͘�ϮϬϭϬͿ�ĂŶĚ�ĐƌǇƐƚĂůůŽŐƌĂƉŚŝĐ�ĚĂƚĂ�;�ĞŬŬĞƌ�Ğƚ�Ăů͕͘�

ϮϬϭϭͿ͘�^ƵƌƉƌŝƐŝŶŐůǇ͕�ŽƵƌ�ƐƵďƵŶŝƚ�ĂƌƌĂŶŐĞŵĞŶƚ�ŝƐ�ǀĞƌǇ�ĚŝĨĨĞƌĞŶƚ�ĨƌŽŵ�Ăůů�ƉƌĞǀŝŽƵƐůǇ�ƉƌŽƉŽƐĞĚ�ŵŽĚĞůƐ�ĂŶĚ�

ƚŚĞƐĞ�ĞĂƌůŝĞƌ�ŵŽĚĞůƐ�ŝŶ�ƚƵƌŶ�ĂƌĞ�ĞŶƚŝƌĞůǇ�ŝŶĐŽŵƉĂƚŝďůĞ�ǁŝƚŚ�ŽƵƌ�ĐƌŽƐƐůŝŶŬŝŶŐ�ĚĂƚĂ͘�,ŽǁĞǀĞƌ͕�ŽƵƌ�ŵŽĚĞů�ŝƐ�

ĐŽƌƌŽďŽƌĂƚĞĚ�ďǇ�ƉƌĞǀŝŽƵƐ�ĐƌŽƐƐůŝŶŬŝŶŐ�ĚĂƚĂ�;�ŽŶŐ�Ğƚ�Ăů͕͘�ϮϬϭϬͿ�ĂŶĚ�ƚŚĞ�ƐƵďƵŶŝƚ�ƐƉĂĐŝŶŐ�ĚĞƌŝǀĞĚ�ĨƌŽŵ�ĐƌǇŽͲ

�D�ƌĞĐŽŶƐƚŝƚƵƚŝŽŶƐ�;DĂƌƚŝŶͲ�ĞŶŝƚŽ�Ğƚ�Ăů͕͘�ϮϬϬϳͿ͘�dŚŝƐ�ƐŚŽǁƐ�ƚŚĂƚ�ƉƌĞǀŝŽƵƐ�ĚĂƚĂ�ǁĞƌĞ�ƐŝŵƉůǇ�ŝŶƐƵĨĨŝĐŝĞŶƚ�ĨŽƌ�

Ă� ĚĞĨŝŶŝƚŝǀĞ� ƚŽƉŽůŽŐǇ� ĂƐƐŝŐŶŵĞŶƚ͘� /ŵƉŽƌƚĂŶƚůǇ͕� ŽƚŚĞƌ� ƐƚƵĚŝĞƐ� ŝŶĚĞƉĞŶĚĞŶƚůǇ� ĐŽŶĨŝƌŵĞĚ� ƚŚĞ� ƐƵďƵŶŝƚ�

ĂƌƌĂŶŐĞŵĞŶƚ�ŝŶ�ƚŚĞ�ŵŽĚĞů�ŽĨ�dZŝ��;,ĞƌǌŽŐ�Ğƚ�Ăů͕͘�ϮϬϭϮ͖�<ĂůŝƐŵĂŶ�Ğƚ�Ăů͕͘�ϮϬϭϮ͖�<ĂůŝƐŵĂŶ�Ğƚ�Ăů͕͘�ϮϬϭϯ͖��ĂŶŐ�

Ğƚ� Ăů͕͘� ϮϬϭϲͿ͘�DŽƌĞŽǀĞƌ͕� ďĞĐĂƵƐĞ�ŽĨ� ŝƚƐ�ǁĞůůͲĚĞĨŝŶĞĚ� ƚŽƉŽůŽŐǇ͕� ƚŚĞ�dZŝ�� ĐŽŵƉůĞǆ�ŚĂƐ�ďĞĐŽŵĞ�Ă�ŵŽĚĞů�

ƐǇƐƚĞŵ�ĨŽƌ�ŽƉƚŝŵŝǌŝŶŐ�ĐƌŽƐƐůŝŶŬŝŶŐ�ƉƌŽĐĞĚƵƌĞƐ�ĂŶĚ�ƉƌŽƚŽĐŽůƐ�;>ĞŝƚŶĞƌ�Ğƚ�Ăů͕͘�ϮϬϭϰ͖�tĂůǌƚŚŽĞŶŝ�Ğƚ�Ăů͕͘�ϮϬϭϱͿ͘��
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�

ϱ͘ϭ͘ϭ� dŚĞ�dZŝ��ĐŽŵƉůĞǆ�ĞǆŚŝďŝƚƐ�ƐƚƌŝŬŝŶŐ�ĨƵŶĐƚŝŽŶĂů�ĂƐǇŵŵĞƚƌǇ��

dŚĞ�ĐƵƌƌĞŶƚ�ŵŽĚĞů�ƌĞǀĞĂůƐ�Ă�ƐƚƌŝŬŝŶŐ�ƐĞŐƌĞŐĂƚŝŽŶ�ŽĨ�ƉŽƐŝƚŝǀĞůǇ�ĂŶĚ�ŶĞŐĂƚŝǀĞůǇ�ĐŚĂƌŐĞĚ�ƐƵƌĨĂĐĞƐ�ǁŝƚŚŝŶ�ƚŚĞ�

ĨŽůĚŝŶŐ�ĐŚĂŵďĞƌ�ŽĨ�dZŝ�͘�dŚŝƐ�ďŝƉŽůĂƌ�ĐŚĂƌŐĞ�ĚŝƐƚƌŝďƵƚŝŽŶ�ŝƐ�ŚŝŐŚůǇ�ĐŽŶƐĞƌǀĞĚ�ŝŶ�ƚŚĞ�ŝŶĚŝǀŝĚƵĂů�dZŝ��ƐƵďƵŶŝƚ�

ƐĞƋƵĞŶĐĞƐ� ĂĐƌŽƐƐ� ƚŚĞ� ĞƵŬĂƌǇŽƚŝĐ� ƚƌĞĞ͘� WŽƐŝƚŝǀĞ� ĂŶĚ� ŶĞŐĂƚŝǀĞ� ƐƵƌĨĂĐĞ� ĐŚĂƌŐĞƐ� ĂƌĞ� ĐŽŶƚƌŝďƵƚĞĚ� ďǇ� ƚŚĞ�

ƐƵďƵŶŝƚƐ���dϱͲϮͲϰ�ĂŶĚ���dϯͲϲͲϴ͕�ƌĞƐƉĞĐƚŝǀĞůǇ͘�dŚŝƐ�ĐŽŝŶĐŝĚĞƐ�ǁŝƚŚ�ƚŚĞ�ƚǁŽͲĨŽůĚ�ƐǇŵŵĞƚƌǇ�ĂǆŝƐ�ŐĞŶĞƌĂƚĞĚ�

ďǇ�ƚŚĞ�ŚŽŵŽƚǇƉŝĐ�ĐŽŶƚĂĐƚƐ�ŝŶ�ƐƵďƵŶŝƚƐ���dϮ�ĂŶĚ���dϲ�;&ŝŐƵƌĞ�ϭϰͿ͘�,ĞŶĐĞ͕�ƚŚĞ�ĞŶƚŝƌĞ�ƉĂƌƚŝĐůĞ�ŝƐ�ĨŽƌŵĞĚ�ďǇ�

ƚǁŽ�ŚĞŵŝƐƉŚĞƌĞƐ�ǁŝƚŚ�ƐĞŐƌĞŐĂƚĞĚ�ƐƵƌĨĂĐĞ�ĐŚĂƌŐĞƐ�ĂƌƌĂŶŐĞĚ�ŝŶ�ƉŚĂƐĞ͘�dŚĞ�ƐƵďƵŶŝƚ�ƐƵƌĨĂĐĞƐ�Ăƚ�ƚŚĞ�ũƵŶĐƚŝŽŶ�

ŽĨ� ƚŚĞ� ƚǁŽ�ŚĞŵŝƐƉŚĞƌĞƐ�ƐŚŽǁ� ůĞƐƐ�ĐŽŶƐĞƌǀĂƚŝŽŶ͕�ǁŚŝĐŚ�ƐƵŐŐĞƐƚƐ� ŝŶĐƌĞĂƐĞĚ� ŝŶƚĞƌƐƉĞĐŝĞƐ�ǀĂƌŝĂƚŝŽŶƐ͘�dŚĞ�

ĐŚĂƌŐĞ� ƐĞƉĂƌĂƚŝŽŶ� ŝŶƐŝĚĞ� ƚŚĞ� ĐĂǀŝƚǇ� ŵŝŐŚƚ� ďĞ� ĨƵŶĐƚŝŽŶĂůůǇ� ŝŵƉŽƌƚĂŶƚ� ŝŶ� ĂĨĨĞĐƚŝŶŐ� ĨŽůĚŝŶŐ� ƚƌĂũĞĐƚŽƌŝĞƐ͘�

/ŶĚĞĞĚ͕�ƚŚĞ�ŶĞŐĂƚŝǀĞ�ĐŚĂƌŐĞƐ�ŝŶƐŝĚĞ�ƚŚĞ�'ƌŽ�>�ĨŽůĚŝŶŐ�ĐĂǀŝƚǇ�ǁĞƌĞ�ƐŚŽǁŶ�ƚŽ�ďĞ�ƌĞůĞǀĂŶƚ�ĨŽƌ�ƉƌŽĚƵĐƚŝǀĞ�

ĨŽůĚŝŶŐ�;dĂŶŐ�Ğƚ�Ăů͕͘�ϮϬϬϴͿ͘��ůƚŚŽƵŐŚ�ŵƵƚĂŶƚ�'ƌŽ�>�ǁŝƚŚ�ǌĞƌŽ�ŶĞƚ�ĐŚĂƌŐĞ�ŝŶƐŝĚĞ�ƚŚĞ�ĐĂǀŝƚǇ�ƐƵƌĨĂĐĞ�ǁĂƐ�ĂďůĞ�

ƚŽ�ďŝŶĚ�ĂŶĚ�ĞŶĐĂƉƐƵůĂƚĞ�Ă�ŵŽĚĞů�ƉƌŽƚĞŝŶ�ůŝŬĞ�ǁŝůĚƚǇƉĞ�ĐŚĂƉĞƌŽŶŝŶ͕�ƚŚĞƌĞ�ǁĂƐ�ŶŽ�ĂĐĐĞůĞƌĂƚŝŽŶ�ŽĨ�ĨŽůĚŝŶŐ�

;�ŚĂŬƌĂďŽƌƚǇ�Ğƚ�Ăů͕͘�ϮϬϭϬ͖�dĂŶŐ�Ğƚ�Ăů͕͘�ϮϬϬϲͿ͘��

��ƐĞĐŽŶĚ�ůĂǇĞƌ�ŽĨ�ĂƐǇŵŵĞƚƌǇ�ďĞĐŽŵĞƐ�ĂƉƉĂƌĞŶƚ�ǁŚĞŶ�ĂŶĂůǇǌŝŶŐ�ƚŚĞ��dW�ďŝŶĚŝŶŐ�ĂĨĨŝŶŝƚǇ�ŽĨ�ƚŚĞ�ĚŝĨĨĞƌĞŶƚ�

dZŝ��ƐƵďƵŶŝƚƐ͘�^ǇƐƚĞŵĂƚŝĐ�ŵƵƚĂƚŝŽŶ�ŽĨ�ƌĞƐŝĚƵĞƐ�ŝŵƉŽƌƚĂŶƚ�ĨŽƌ��dW�ďŝŶĚŝŶŐ�ĂŶĚ�ŚǇĚƌŽůǇƐŝƐ�ŝŶ�ƚŚĞ�ĚŝĨĨĞƌĞŶƚ�

dZŝ��ƐƵďƵŶŝƚƐ�ƐƵŐŐĞƐƚĞĚ�ƚŚĂƚ�ƚŚĞƐĞ�ĂĐƚŝǀŝƚŝĞƐ�ĂƌĞ�ĐƌŝƚŝĐĂů�ŝŶ���dϭ͕���dϮ͕���dϰ�ĂŶĚ���dϳ�ďƵƚ�ŶŽƚ�ŶĞĞĚĞĚ�ŝŶ�

ƐƵďƵŶŝƚƐ� ��dϲ� ĂŶĚ� ��dϴ� ĨŽƌ� ƐƵƌǀŝǀĂů� ŽĨ� ďƵĚĚŝŶŐ� ǇĞĂƐƚ� ƵŶĚĞƌ� ƐƚƌĞƐƐ� ĐŽŶĚŝƚŝŽŶƐ� ;�ŵŝƚ� Ğƚ� Ăů͕͘� ϮϬϭϬͿ͘�

�ƉƉĂƌĞŶƚůǇ͕�ŽŶůǇ�ĨŽƵƌ�ŽĨ�ƚŚĞ�ĞŝŐŚƚ�ƐƵďƵŶŝƚƐ�ŝŶ�dZŝ��ďŝŶĚ�ĂŶĚ�ŚǇĚƌŽůǇǌĞ��dW�ƵŶĚĞƌ�ƉŚǇƐŝŽůŽŐŝĐĂů�ĐŽŶĚŝƚŝŽŶƐ�

;:ŝĂŶŐ�Ğƚ�Ăů͕͘�ϮϬϭϭ͖�ZĞŝƐƐŵĂŶŶ�Ğƚ�Ăů͕͘�ϮϬϭϮͿ͘�dŚĞ�ƐƵďƵŶŝƚƐ���dϱ�ĂŶĚ���dϰ�ǁĞƌĞ�ĨŽƵŶĚ�ƚŽ�ŚĂǀĞ�ƚŚĞ�ŚŝŐŚĞƐƚ�

�dW�ŚǇĚƌŽůǇƐŝƐ�ĂĐƚŝǀŝƚǇ͕�ǁŚŝůĞ�ƚŚĞ�ƐƵďƵŶŝƚƐ���dϮ�ĂŶĚ���dϭ�ƐŚŽǁĞĚ�ŝŶƚĞƌŵĞĚŝĂƚĞ��dW�ŚǇĚƌŽůǇǌŝŶŐ�ĂĐƚŝǀŝƚǇ͘�

�ƌŽƐƐůŝŶŬŝŶŐ�ǁŝƚŚ�Ă�ƉŚŽƚŽͲĂĐƚŝǀĂƚĞĚ��dW�ĂŶĂůŽŐ�ƐŚŽǁĞĚ�ƚŚĂƚ�ƐƵďƵŶŝƚƐ���dϯͲϲͲϴͲϳ�ĂƌĞ�ƉŽŽƌ��dW�ďŝŶĚĞƌƐ�

;ZĞŝƐƐŵĂŶŶ�Ğƚ�Ăů͕͘�ϮϬϭϮͿ͘�^ƚƌŝŬŝŶŐůǇ͕�ƚŚĞ�ƐƵďƵŶŝƚƐ�ǁŝƚŚ�ŚŝŐŚ�ĂŶĚ�ůŽǁ��dW�ŚǇĚƌŽůǇƐŝƐ�ĂĐƚŝǀŝƚǇ͕���dϱͲϮͲϰͲϭ�ĂŶĚ�

��dϯͲϲͲϴͲϳ͕�ĨŽƌŵ�ĐŽŶƚŝŐƵŽƵƐ͕�ũƵǆƚĂƉŽƐĞĚ�ďůŽĐŬƐ�ŝŶ�ƚŚĞ�ƌŝŶŐƐ�ŽĨ�ƚŚĞ�ƉƌĞƐĞŶƚ�dZŝ��ŵŽĚĞů͕�ƐŝŵŝůĂƌůǇ�ƚŽ�ƚŚĞ�

ƐĞŐƌĞŐĂƚŝŽŶ�ŽĨ�ĐŚĂƌŐĞƐ�;&ŝŐƵƌĞ�ϭϰͿ͘�,ŝŐŚͲ�ĂŶĚ�ůŽǁͲĂĨĨŝŶŝƚǇ�ŚĞŵŝƐƉŚĞƌĞƐ�ĂƌĞ�ŵŽƐƚůǇ�ŝŶ�ƌĞŐŝƐƚĞƌ�ďĞƚǁĞĞŶ�ƚŚĞ�



Ͳ�ϭϴϮ�Ͳ��
�

ƌŝŶŐƐ͕� ƐƚĂŐŐĞƌĞĚ�ŽŶůǇ�ďǇ�ŽŶĞ� ƐƵďƵŶŝƚ͘� dŚĞ�ĂƐǇŵŵĞƚƌŝĐ��dW�ƵƚŝůŝǌĂƚŝŽŶ�ŽĨ� ƚŚĞ�ĚŝĨĨĞƌĞŶƚ� dZŝ�� ƐƵďƵŶŝƚƐ� ŝƐ�

ĐŽŶƐĞƌǀĞĚ�ĨƌŽŵ�ǇĞĂƐƚ�ƚŽ�ŵĂŵŵĂůƐ�;ZĞŝƐƐŵĂŶŶ�Ğƚ�Ăů͕͘�ϮϬϭϮͿ͘��

�

&ŝŐƵƌĞ�ϭϰ͗��ƐǇŵŵĞƚƌǇ�ŝŶ�ƚŚĞ�dZŝ��ĐŚĂƉĞƌŽŶŝŶ͘��Ϳ�^ĐŚĞŵĂƚŝĐ�ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ�ƐŚŽǁŝŶŐ�ƐƵďƵŶŝƚƐ�ǁŝƚŚ�ŚŝŐŚ�ĂŶĚ�ůŽǁ��dWͲ

ĂĨĨŝŶŝƚǇ�ŝŶ�ĚĂƌŬ�ĂŶĚ�ůŝŐŚƚ�ŐƌĞĞŶ͕�ƌĞƐƉĞĐƚŝǀĞůǇ͕�ĂŶĚ�ƐƵďƵŶŝƚƐ�ǁŝƚŚ�ĂĐŝĚŝĐ�ĂŶĚ�ďĂƐŝĐ�ƐƵƌĨĂĐĞ�ĨĂĐŝŶŐ�ƚŚĞ�ĐĂǀŝƚǇ�ŝŶ�ƌĞĚ�ĂŶĚ�

ďůƵĞ͕�ƌĞƐƉĞĐƚŝǀĞůǇ͘��ƌƌŽǁƐ�ŝŶĚŝĐĂƚĞ�ŚŽŵŽƚǇƉŝĐ�ƐǇŵŵĞƚƌǇ�ĐŽŶƚĂĐƚƐ�ŽĨ�ƚŚĞ�dZŝ��ƐƵďƵŶŝƚ�ĂƌƌĂŶŐĞŵĞŶƚ͘��н�Ϳ�^ĐŚĞŵĂƚŝĐ�

ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ�ƐŚŽǁŝŶŐ�ƚŚĞ�ŚĞŵŝƐƉŚĞƌĞƐ�ĂĐĐŽƌĚŝŶŐ�ƚŽ��dWͲĂĨĨŝŶŝƚǇ�;�Ϳ�ĂŶĚ�ƐƵƌĨĂĐĞ�ĐŚĂƌŐĞ�;�Ϳ�ŝŶ�ƚŚĞ�ĐŽŶƚĞǆƚ�ŽĨ�ƚŚĞ�

ĂƐƐĞŵďůĞĚ�ƚǁŽͲƌŝŶŐ�ĐŚĂƉĞƌŽŶŝŶ͘�WĂŶĞů���ŵŽĚŝĨŝĞĚ�ĨƌŽŵ�;^ŬũĂĞƌǀĞŶ�Ğƚ�Ăů͕͘�ϮϬϭϱͿ͘��

<ĂůŝƐŵĂŶ�Ğƚ�Ăů͘�ƐƵŐŐĞƐƚĞĚ�ƚŚĂƚ�ƚŚĞ�ůŽǁ��dWͲĂĨĨŝŶŝƚǇ�ŚĞŵŝƐƉŚĞƌĞ�ŵŝŐŚƚ�ďĞ�ƉƌŝŵĂƌŝůǇ�ŝŶǀŽůǀĞĚ�ŝŶ�ƐƵďƐƚƌĂƚĞ�

ďŝŶĚŝŶŐ�;<ĂůŝƐŵĂŶ�Ğƚ�Ăů͕͘�ϮϬϭϯͿ͘�ZĞůǇŝŶŐ�ŽŶ�Ă�ĐŽŵƉƵƚĂƚŝŽŶĂů�ĂůŐŽƌŝƚŚŵ�ĂŶĂůǇǌŝŶŐ�ĐƌǇƐƚĂůůŽŐƌĂƉŚŝĐ�ZͲǀĂůƵĞƐ͕�

ƚŚĞǇ�ĂƐƐŝŐŶ�ƌĞƐŝĚƵĂů�ĚĞŶƐŝƚŝĞƐ�ŝŶ�ƚŚĞ�ĐƌǇƐƚĂů�ƐƚƌƵĐƚƵƌĞƐ�ŽĨ�ŽƉĞŶ�ĂŶĚ�ĐůŽƐĞĚ�dZŝ��ĂƐ�ďŽƵŶĚ�ƚƵďƵůŝŶ�ĂŶĚ�ĂĐƚŝŶ͕�

ƌĞƐƉĞĐƚŝǀĞůǇ͕�ǁŚŝĐŚ�ĐŽŶƚĂĐƚ�ƚŚĞ�dZŝ��ƐƵďƵŶŝƚƐ���dϯͲϲͲϴ�ĂŶĚ�ŚĞŶĐĞ�ƚŚĞ�ůŽďĞ�ǁŝƚŚ�ůŽǁ��dW�ĂĨĨŝŶŝƚǇ͘�dŚĞǇ�

ĐŽŶĐůƵĚĞ�ƚŚĂƚ�dZŝ��ŝƐ�ƉĂƌƚŝƚŝŽŶĞĚ�ŝŶƚŽ�ĂŶ��dWͲďŝŶĚŝŶŐ�ĂŶĚ�Ă�ƐƵďƐƚƌĂƚĞ�ďŝŶĚŝŶŐ�ůŽďĞ�;<ĂůŝƐŵĂŶ�Ğƚ�Ăů͕͘�ϮϬϭϯͿ͘�

/Ŷ�ƚŚĞ�ŵĞĂŶƚŝŵĞ͕�ŚŽǁĞǀĞƌ͕�:ŽĂĐŚŝŵŝĂŬ�Ğƚ�Ăů͘�ĂŶĂůǇǌĞĚ�ƐĞǀĞƌĂů�ƐƵďƐƚƌĂƚĞƐ�ďŝŶĚŝŶŐ�ƚŽ�dZŝ��ĂƉŝĐĂů�ĚŽŵĂŝŶƐ�

ĂŶĚ�ĨŽƵŶĚ�ŵĂŶǇ�ŽĨ�ƚŚĞŵ�ŝŶƚĞƌĂĐƚŝŶŐ�ǁŝƚŚ�ƚŚĞ�ƐƵďƵŶŝƚ���dϮ�;:ŽĂĐŚŝŵŝĂŬ�Ğƚ�Ăů͕͘�ϮϬϭϰͿ͘�&ƵƌƚŚĞƌŵŽƌĞ͕�ƚŚĞ�

�Žǆϭ�ŵŽƚŝĨ�ŽĨ�s,>�ǁĂƐ�ĞĂƌůŝĞƌ�ĚĞƐĐƌŝďĞĚ�ƚŽ�ďŝŶĚ�ƚŽ�ƚŚĞ�ĂƉŝĐĂů�ĚŽŵĂŝŶ�ŽĨ���dϭ�;^ƉŝĞƐƐ�Ğƚ�Ăů͕͘�ϮϬϬϲͿ͘��ŝŶĚŝŶŐ�



Ͳ�ϭϴϯ�Ͳ��
�

ŽĨ��ĐƚŝŶ�ƚŽ�dZŝ��ǁĂƐ�ĂŶĂůǇǌĞĚ�ŝŶ�ĚĞƚĂŝů�ďǇ��ĂůĐŚŝŶ�Ğƚ�Ăů͘�ĂŶĚ�ƌĞǀĞĂůĞĚ�ŝŶŝƚŝĂů�ďŝŶĚŝŶŐ�ŽĨ�ŶŽŶͲŶĂƚŝǀĞ�ĂĐƚŝŶ�ƚŽ�

ƚŚĞ� ĐŽŶƐĞĐƵƚŝǀĞ� dZŝ�� ƐƵďƵŶŝƚƐ� ��dϰͲϮͲϱͲϳͲϴ͕� ĐŽŵƉƌŝƐŝŶŐ� ƐƵďƵŶŝƚƐ� ŽĨ� ƚŚĞ� ŚŝŐŚ� ĂŶĚ� ůŽǁ� �dWͲĂĨĨŝŶŝƚǇ�

ŚĞŵŝƐƉŚĞƌĞƐ�;�ĂůĐŚŝŶ�Ğƚ�Ăů͕͘�ϮϬϭϴͿ͘��Ŷ�ĞǆĐůƵƐŝǀĞ�ĚŝƐƚŝŶĐƚŝŽŶ�ŽĨ��dW�ĂŶĚ�ƐƵďƐƚƌĂƚĞ�ďŝŶĚŝŶŐ�ůŽďĞƐ�ƚŚĞƌĞĨŽƌĞ�

ƐĞĞŵƐ�ƵŶůŝŬĞůǇ͘��

dŚĞ�dZŝ��ƐƵďƵŶŝƚ�ƚŽƉŽůŽŐǇ�ŝƐ�ƚŚĞ�ďĂƐŝƐ�ĨŽƌ�ƚŚĞ�ƐĞŐƌĞŐĂƚŝŽŶ�ŽĨ�ĞŶǌǇŵĞ�ĂĐƚŝǀŝƚǇ�ĂŶĚ�ƐƵƌĨĂĐĞ�ƉƌŽƉĞƌƚŝĞƐ�ŝŶ�ƚŚĞ�

ƉĂƌƚŝĐůĞ͘�dŚĞ�ŚĞƚĞƌŽͲŽůŝŐŽŵĞƌŝĐ�ŶĂƚƵƌĞ�ŐĞŶĞƌĂƚĞƐ�ĐŚĞŵŝĐĂů�ĂŶĚ�ĨƵŶĐƚŝŽŶĂů�ĂƐǇŵŵĞƚƌŝĞƐ�ĂďƐĞŶƚ� ŝŶ�ŽƚŚĞƌ�

ĐŚĂƉĞƌŽŶŝŶƐ͘�WŽƐƐŝďůǇ͕�ƚŚŝƐ�ŵĂǇ�ďĞ�ƚŚĞ�ƐŽƵƌĐĞ�ĨŽƌ�ƚŚĞ�ƵŶŝƋƵĞ�ĂďŝůŝƚǇ�ŽĨ�dZŝ��ƚŽ�ĨŽůĚ�ƐƵďƐƚƌĂƚĞƐ�ǁŚŝĐŚ�ĐĂŶŶŽƚ�

ďĞ�ĨŽůĚĞĚ�ďǇ�ĂŶǇ�ŽƚŚĞƌ�ĐŚĂƉĞƌŽŶŝŶ�Žƌ�ĐŚĂƉĞƌŽŶĞ�ƐǇƐƚĞŵ�;dŝĂŶ�Ğƚ�Ăů͕͘�ϭϵϵϱͿ͘��

�

ϱ͘ϭ͘Ϯ� /ŵƉůŝĐĂƚŝŽŶƐ�ĨŽƌ�dZŝ��ĨƵŶĐƚŝŽŶ��

dŚĞ� ŚĞƚĞƌŽͲŽůŝŐŽŵĞƌŝĐ� ŶĂƚƵƌĞ�ŽĨ� dZŝ�� ĚŝƐƚŝŶŐƵŝƐŚĞƐ� ŝƚ� ĨƌŽŵ�ŽƚŚĞƌ� ĐŚĂƉĞƌŽŶŝŶƐ͕� ĞŶĂďůŝŶŐ� ƚŚĞ�ĚĞƐĐƌŝďĞĚ�

ĂƐǇŵŵĞƚƌŝĞƐ� ŝŶ� �dW� ƵƚŝůŝǌĂƚŝŽŶ� ĂŶĚ� ŶĞƚ� ƐƵƌĨĂĐĞ� ĐŚĂƌŐĞ� ĚŝƐƚƌŝďƵƚŝŽŶ͕� ǁŚŝĐŚ� ĂƌĞ� ůŝŬĞůǇ� ĨƵŶĚĂŵĞŶƚĂů�

ĐŽŵƉŽŶĞŶƚƐ�ŽĨ�ŝƚƐ�ĨŽůĚŝŶŐ�ŵĞĐŚĂŶŝƐŵ͘�tĞ�ĐĂŶ�ŶŽǁ�ŝŶƚĞŐƌĂƚĞ�ƚŚĞƐĞ�ŝŵƉŽƌƚĂŶƚ�ĨŝŶĚŝŶŐƐ�ŝŶƚŽ�ĂŶ�ŝŵƉƌŽǀĞĚ�

ŵŽĚĞů�ĨŽƌ�ƚŚĞ�ĨƵŶĐƚŝŽŶĂů�ĐǇĐůĞ�ŽĨ�dZŝ��;&ŝŐƵƌĞ�ϭϱͿ͘��



Ͳ�ϭϴϰ�Ͳ��
�

�

&ŝŐƵƌĞ�ϭϱ͗�dZŝ��ĨŽůĚŝŶŐ�ŵĞĐŚĂŶŝƐŵ͘���ŶŽŶͲŶĂƚŝǀĞ�ƐƵďƐƚƌĂƚĞ�;Ğ͘Ő͘�ĂĐƚŝŶͿ�ďŝŶĚƐ�ĂƐǇŵŵĞƚƌŝĐĂůůǇ�ƚŽ�ƐĞůĞĐƚŝǀĞ�dZŝ��ĂƉŝĐĂů�

ĚŽŵĂŝŶƐ�;��dϰͲϮͲϱͲϳͲϴͿ�ƚŚĞƌĞďǇ�ĂĚŽƉƚŝŶŐ�Ă�ĚŝƐƚŝŶĐƚ�ƚŽƉŽůŽŐǇ͘��ŝĨĨĞƌĞŶƚŝĂů��dW�ďŝŶĚŝŶŐ�ĂĨĨŝŶŝƚŝĞƐ�ŝŶ�ƚŚĞ�ŝŶĚŝǀŝĚƵĂů�dZŝ��

ƐƵďƵŶŝƚƐ�ŐĞŶĞƌĂƚĞ�ĂŶ�ĂƐǇŵŵĞƚƌŝĐ�ƉŽǁĞƌ�ƐƚƌŽŬĞ͕�ǁŚŝĐŚ�ƚƌŝŐŐĞƌ�ƐĞƋƵĞŶƚŝĂů�ƌŝŶŐ�ĐůŽƐƵƌĞ�ĐŽŶĐŽŵŝƚĂŶƚůǇ�ǁŝƚŚ�ƐĞƋƵĞŶƚŝĂů�

ƐƵďƐƚƌĂƚĞ�ƌĞůĞĂƐĞ�;ĨƌŽŵ�ƐƵďƵŶŝƚƐ���dϮ�ĂŶĚ���dϱͿ͘��ĨƚĞƌ�ĨƵůů�ĞŶĐĂƉƐƵůĂƚŝŽŶ͕�ƚŚĞ�ƐƵďƐƚƌĂƚĞ�ĨŽůĚƐ�ƚŽ�ĐŽŵƉůĞƚŝŽŶ�ŐƵŝĚĞĚ�

ďǇ�Ă�ĐŚĂƌŐĞͲƐĞŐƌĞŐĂƚĞĚ�ĂƐǇŵŵĞƚƌŝĐ�ĨŽůĚŝŶŐ�ĐŚĂŵďĞƌ͘�&ŝŐƵƌĞ�ŵŽĚŝĨŝĞĚ�ĨƌŽŵ�;�ĂůĐŚŝŶ�Ğƚ�Ăů͕͘�ϮϬϭϲͿ�ǁŝƚŚ�ŝŶĨŽƌŵĂƚŝŽŶ�

ĂďŽƵƚ�ĂĐƚŝŶ�ĨŽůĚŝŶŐ�ĨƌŽŵ�;�ĂůĐŚŝŶ�Ğƚ�Ăů͕͘�ϮϬϭϴͿ�

dŚĞ�ƉƌŽĐĞƐƐ� ŝƐ� ŝŶŝƚŝĂƚĞĚ�ďǇ� ƚŚĞ�ďŝŶĚŝŶŐ�ŽĨ� Ă� ĨŽůĚŝŶŐ� ƐƵďƐƚƌĂƚĞ� ƚŽ�dZŝ�� ŝŶ�Ă�ĚĞĨŝŶĞĚ� ƚŽƉŽůŽŐǇ͘� dŚĞ�ĞŝŐŚƚ�

ƉĂƌĂůŽŐŽƵƐ� dZŝ�� ƐƵďƵŶŝƚƐ� ĚŝĨĨĞƌ� ŝŶ� ƚŚĞŝƌ� ƐƵďƐƚƌĂƚĞ� ƌĞĐŽŐŶŝƚŝŽŶ� ƉƌŽƉĞƌƚŝĞƐ� ;:ŽĂĐŚŝŵŝĂŬ� Ğƚ� Ăů͕͘� ϮϬϭϰͿ͘�

^ƉĞĐŝĨŝĐĂůůǇ͕� ƚŚĞ� ĂƉŝĐĂů� ĚŽŵĂŝŶƐ� ƉƌŽǀŝĚĞ� Ă� ŵŽĚƵůĂƌ� ƐĞƚ� ŽĨ� ďŝŶĚŝŶŐ� ƐƵƌĨĂĐĞƐ� ŝŶƚĞŐƌĂƚŝŶŐ� ƉŽůĂƌ� ĂŶĚ�

ŚǇĚƌŽƉŚŽďŝĐ� ĐŽŶƚƌŝďƵƚŝŽŶƐ� ƚŚĂƚ� ĂůůŽǁ� Ă� ĐŽŵďŝŶĂƚŽƌŝĂů� ƌĞĐŽŐŶŝƚŝŽŶ� ŽĨ� ƐƵďƐƚƌĂƚĞ� ƉŽůǇƉĞƉƚŝĚĞƐ͘� DŽƐƚ�

ƉƌŽďĂďůǇ͕�ŵƵůƚŝƉůĞ� ůŽǁͲĂĨĨŝŶŝƚǇ� ĐŽŶƚĂĐƚƐ� ƚŽ�ĚŝĨĨĞƌĞŶƚ� ĂƉŝĐĂů� ĚŽŵĂŝŶƐ�ĂƌĞ�ŶĞĐĞƐƐĂƌǇ� ĨŽƌ� ƐƚĂďůĞ� ƐƵďƐƚƌĂƚĞ�

ďŝŶĚŝŶŐ͘�dŚŝƐ�ŝƐ�ŝŶ�ĂŐƌĞĞŵĞŶƚ�ǁŝƚŚ�ĞĂƌůǇ�ĐƌǇŽͲ�D�ƌĞĐŽŶƐƚŝƚƵƚŝŽŶƐ�ŽĨ�dZŝ�ͲƐƵďƐƚƌĂƚĞ�ĐŽŵƉůĞǆĞƐ�;>ůŽƌĐĂ�Ğƚ�

Ăů͕͘� ϮϬϬϬ͖� >ůŽƌĐĂ�Ğƚ� Ăů͕͘� ϭϵϵϵĂͿ�ĂŶĚ�ǁŝƚŚ� ƚŚĞ� ƌĞĐĞŶƚ� ĂŶĂůǇƐŝƐ�ŽĨ� ƚŚĞ�dZŝ�ͲĂĐƚŝŶ� ĐŽŵƉůĞǆĞƐ�ďǇ�ŚǇĚƌŽŐĞŶͲ

ĚĞƵƚĞƌŝƵŵ� ĞǆĐŚĂŶŐĞ� ;,ͬ�ͲyͿ� ;�ĂůĐŚŝŶ� Ğƚ� Ăů͕͘� ϮϬϭϴͿ͘� dŚĞ� ĚŝƐƚƌŝďƵƚŝŽŶ� ŽĨ� ƐƵďƵŶŝƚͲƐƉĞĐŝĨŝĐ� ƐƵďƐƚƌĂƚĞ�

ŝŶƚĞƌĂĐƚŝŽŶƐ�ŝŵƉŽƐĞƐ�Ă�ŐůŽďĂů�ƚŽƉŽůŽŐǇ�ŽŶ�ƚŚĞ�dZŝ�ͲďŽƵŶĚ�ƉŽůǇƉĞƉƚŝĚĞ͘��

�ĨƚĞƌ�ƐƚĂďůĞ�ƐƵďƐƚƌĂƚĞ�ďŝŶĚŝŶŐ͕�ƚŚĞ�ĂƐǇŵŵĞƚƌŝĐ��dW�ƵƚŝůŝǌĂƚŝŽŶ�ŽĨ�ƚŚĞ�ƐƵďƵŶŝƚƐ�ŝŶ�ƚŚĞ�ŚĞƚĞƌŽͲŽůŝŐŽŵĞƌŝĐ�ƌŝŶŐ�

ŝŶŝƚŝĂƚĞƐ�Ă�ŚŝŐŚůǇ�ĂƐǇŵŵĞƚƌŝĐ�ƉŽǁĞƌ�ƐƚƌŽŬĞ�;ZĞŝƐƐŵĂŶŶ�Ğƚ�Ăů͕͘�ϮϬϭϮͿ͘��dW�ŚǇĚƌŽůǇƐŝƐ�ŝƐ�ŝŶŝƚŝĂƚĞĚ�ŝŶ�ƚŚĞ�ŚŝŐŚͲ

�dWͲĂĨĨŝŶŝƚǇ� ůŽďĞ� ĂŶĚ� ƚŚĞŶ� ƉƌŽƉĂŐĂƚĞƐ� ƚŚƌŽƵŐŚ� ƚŚĞ� ĞŶƚŝƌĞ� ƌŝŶŐ͕� ƐƵŐŐĞƐƚŝŶŐ� Ă� ƐĞƋƵĞŶƚŝĂů� Žƌ� ƉĂƌƚŝĂů� ƌŝŶŐ�



Ͳ�ϭϴϱ�Ͳ��
�

ĐůŽƐƵƌĞ�ŵĞĐŚĂŶŝƐŵ͕�ǁŚŝĐŚ�ǁĂƐ�ĂůƌĞĂĚǇ�ƉƌŽƉŽƐĞĚ�ďĂƐĞĚ�ŽŶ�ĞĂƌůŝĞƌ�ŽďƐĞƌǀĂƚŝŽŶƐ�;>ŝŶ�ĂŶĚ�^ŚĞƌŵĂŶ͕�ϭϵϵϳ͖�

ZŝǀĞŶǌŽŶͲ^ĞŐĂů�Ğƚ�Ăů͕͘�ϮϬϬϱͿ͘�dŚĞ�ƐƵďƵŶŝƚ���dϰ� ŝƐ�ŵŽƐƚ� ƐĞŶƐŝƚŝǀĞ� ƚŽǁĂƌĚƐ�ŵƵƚĂƚŝŽŶƐ�ŽĨ� ŝƚƐ��dW�ďŝŶĚŝŶŐ�

ƉŽĐŬĞƚ� ĂŶĚ� ǁĂƐ� ĂƐƐŝŐŶĞĚ� ƚŚĞ� ŚŝŐŚĞƐƚ� �dW� ĂĨĨŝŶŝƚǇ� ;ZĞŝƐƐŵĂŶŶ� Ğƚ� Ăů͕͘� ϮϬϭϮͿ͘� dŚŝƐ� ��dϰ� ƐƵďƵŶŝƚ� ŵĂǇ�

ƚŚĞƌĞĨŽƌĞ� ŝŶŝƚŝĂƚĞ� ƚŚĞ�ƉŽǁĞƌ�ƐƚƌŽŬĞ͘�KĨ�ŶŽƚĞ͕� ŝŶ�ŽƵƌ�ŶĞǁůǇ�ƌĞĨŝŶĞĚ�ŵŽĚĞů�ŽĨ� ƚŚĞ�dZŝ��ƐƚƌƵĐƚƵƌĞ͕� ƚŚĞ�EͲ

ƚĞƌŵŝŶŝ�ŽĨ�ƚŚĞ���dϰ�ƐƵďƵŶŝƚƐ�ĂƌĞ�ůŽĐĂƚĞĚ�ŽƵƚƐŝĚĞ�ƚŚĞ�ĐĂǀŝƚǇ�;>ĞŝƚŶĞƌ�Ğƚ�Ăů͕͘�ϮϬϭϮͿ͘�dŚĞ�EͲ�ĂŶĚ��ͲƚĞƌŵŝŶŝ�ŽĨ�

ŽƚŚĞƌ�ƐƵďƵŶŝƚƐ�ĂƌĞ�ĨŽƌŵŝŶŐ�ŵŝǆĞĚ�ĨŽƵƌͲƐƚƌĂŶĚĞĚ�ƘͲƐŚĞĞƚƐ�ůŝŶŝŶŐ�ƚŚĞ�ŝŶŶĞƌ�ǁĂůů�ŽĨ�ƚŚĞ�ĐĂǀŝƚǇ͘�dŚĞƐĞ�ƘͲƐŚĞĞƚƐ�

ĂůƐŽ� ŝŶǀŽůǀĞ�ƚŚĞ�ƉƌŽǆŝŵĂů�ƐĞŶƐŽƌ� ůŽŽƉ͕�ǁŚŝĐŚ�ĐŽŵŵƵŶŝĐĂƚĞƐ�ǁŝƚŚ� ƚŚĞ�ƌĞƐƉĞĐƚŝǀĞ��dWͲďŝŶĚŝŶŐ�ƐŝƚĞ�Ăƚ� ŝƚƐ�

ďĂƐĞ� ;DƵŶŽǌ�Ğƚ�Ăů͕͘�ϮϬϭϭͿ͘� /ƚ� ŝƐ� ĐŽŶĐĞŝǀĂďůĞ� ƚŚĂƚ��dWͲŝŶĚƵĐĞĚ�ĐŽŶĨŽƌŵĂƚŝŽŶĂů�ĐŚĂŶŐĞƐ�ĂƌĞ� ƚƌĂŶƐŵŝƚƚĞĚ�

ƚŚƌŽƵŐŚ�ƚŚŝƐ�ƚŝŐŚƚ�ŝŶƚĞƌĂĐƚŝŽŶ�ŶĞƚǁŽƌŬ�ĂŶĚ�ƚŚĂƚ�ƚŚĞ�ĚĞǀŝĂƚŝŽŶ�Ăƚ�ƐƵďƵŶŝƚ���dϰ�ŵĂǇ�ŝŵƉŽƐĞ�ƚŚĞ�ĚŝƌĞĐƚŝŽŶ�

ŽĨ�ƚŚĞ�ƉƌŽƉĂŐĂƚŝŽŶ�ŽĨ�ƌŝŶŐ�ĐůŽƐƵƌĞ�;��dϰo��dϭo��dϯo͙Ϳ͘���dϰ�ŝƐ�ƚŚĞ�ĚŝƌĞĐƚ�ŶĞŝŐŚďŽƌ�ŽĨ���dϮ͕�ǁŚŝĐŚ�

ǁĂƐ�ƐŚŽǁŶ�ƚŽ�ďĞĂƌ�ƚŚĞ�ŵŽƐƚ�ŚǇĚƌŽƉŚŽďŝĐ�ƐƵďƐƚƌĂƚĞͲďŝŶĚŝŶŐ�ƐŝƚĞ�ĂŶĚ�ŵĂǇ�ƐĞƌǀĞ�ĂƐ�Ă�ŐĞŶĞƌĂů�ĂŶĐŚŽƌ�ƐŝĚĞ�

ĨŽƌ�ƵŶĨŽůĚĞĚ�ƐƵďƐƚƌĂƚĞƐ͕�ǁŚŝůĞ�ƐƉĞĐŝĨŝĐŝƚǇ� ŝƐ�ƉƌŽǀŝĚĞĚ�ďǇ�ĂĚĚŝƚŝŽŶĂů�dZŝ�� ŝŶƚĞƌĂĐƚŝŽŶƐ� ;:ŽĂĐŚŝŵŝĂŬ�Ğƚ�Ăů͕͘�

ϮϬϭϰͿ͘�/ŶŝƚŝĂƚŝŽŶ�ŽĨ�ƌŝŶŐ�ĐůŽƐƵƌĞ�Ăƚ�ƚŚĞ�ƐƵďƵŶŝƚ���dϰ�ǁŽƵůĚ�ĐĂƵƐĞ�ŝƚƐ�ƐƵďƐƚƌĂƚĞͲƌĞůĞĂƐĞͲůŽŽƉ�ƚŽ�ŝŶƐĞƌƚ�ŝŶƚŽ�

ƚŚĞ�ƐƵďƐƚƌĂƚĞ�ďŝŶĚŝŶŐ�ƐŝƚĞ�ŽĨ���dϮ�ĂŶĚ�ĞũĞĐƚ�ƚŚĞ�ƐƵďƐƚƌĂƚĞ�ďŽƵŶĚ�ƚŚĞƌĞ�;�ŽƵŐůĂƐ�Ğƚ�Ăů͕͘�ϮϬϭϭͿ͘�dŚĞƌĞďǇ͕�ƚŚĞ�

ŵŽƐƚ�ŚǇĚƌŽƉŚŽďŝĐ�ƉĂƌƚ�ŽĨ�ƚŚĞ�ďŽƵŶĚ�ƐƵďƐƚƌĂƚĞ�ǁŽƵůĚ�ďĞ�ƌĞůĞĂƐĞĚ�ĨŝƌƐƚ͘�/ŶĚĞĞĚ͕�ƚŚŝƐ�ŝƐ�ŝŶ�ĂŐƌĞĞŵĞŶƚ�ǁŝƚŚ�

ƚŚĞ�ƌĞĐĞŶƚ�ĨŝŶĚŝŶŐƐ�ĂďŽƵƚ�dZŝ�ͲŵĞĚŝĂƚĞĚ�ĂĐƚŝŶ�ĨŽůĚŝŶŐ͕�ǁŚŝĐŚ�ƐŚŽǁ�Ă�ƉĂƌƚŝĂů�ƌĞůĞĂƐĞ�ŽĨ�ĂĐƚŝŶ�ĨƌŽŵ�ƐƵďƵŶŝƚƐ�

��dϮ�ĂŶĚ���dϱ�ƵƉŽŶ��dW�ďŝŶĚŝŶŐ�;�ĂůĐŚŝŶ�Ğƚ�Ăů͕͘�ϮϬϭϴͿ͘��

hƉŽŶ��dWͲŝŶĚƵĐĞĚ� ůŝĚͲĐůŽƐƵƌĞ͕� ƚŚĞ�ƐƵďƐƚƌĂƚĞ� ŝƐ� ƌĞůĞĂƐĞĚ� ŝŶƚŽ� ƚŚĞ�ĐĂǀŝƚǇ� ;�ŽƵŐůĂƐ�Ğƚ�Ăů͕͘�ϮϬϭϭͿ͘��Ɛ� ƌŝŶŐͲ

ĐůŽƐƵƌĞ�ƉƌŽďĂďůǇ�ƉƌŽĐĞĞĚƐ�ƐĞƋƵĞŶƚŝĂůůǇ͕�ŝƚ�ŝƐ�ůŝŬĞůǇ�ƚŚĂƚ�ĂůƐŽ�ƚŚĞ�ŝŶĚŝǀŝĚƵĂů�dZŝ�ͲƐƵďƐƚƌĂƚĞ�ŝŶƚĞƌĂĐƚŝŽŶƐ�ĂƌĞ�

ĚŝƐƌƵƉƚĞĚ�ƐĞƋƵĞŶƚŝĂůůǇ͘�dŚŝƐ�ŵĂǇ�ĂůůŽǁ�ĐĞƌƚĂŝŶ�ƐƵďĚŽŵĂŝŶƐ� ƚŽ� ĨŽůĚ͕�ǁŚŝůĞ�ŽƚŚĞƌƐ�ĂƌĞ�Ɛƚŝůů�ďŽƵŶĚ� ƚŽ� ƚŚĞ�

ĐŚĂƉĞƌŽŶŝŶ͕�ƚŚĞƌĞďǇ�ĐƌŝƚŝĐĂůůǇ�ŝŶĨůƵĞŶĐŝŶŐ�ƚŚĞ�ĨŽůĚŝŶŐ�ƉĂƚŚǁĂǇ�ŽĨ�ƚŚĞ�ƐƵďƐƚƌĂƚĞ͘��Ɛ�ƚŚĞ�ďŝŶĚŝŶŐ�ŵŽĚĞ�ƚŽ�

dZŝ��ĨŽƌ�Ă�ŐŝǀĞŶ�ƐƵďƐƚƌĂƚĞ� ŝƐ� ůŝŬĞůǇ�ǀĞƌǇ�ƐƉĞĐŝĨŝĐ͕�ƐƵďƐƚƌĂƚĞ�ĞŶĐĂƉƐƵůĂƚŝŽŶ�ďĞĐŽŵĞƐ�Ă�ŚŝŐŚůǇ�ĚĞĨŝŶĞĚ�ĂŶĚ�

ĐƵƐƚŽŵŝǌĞĚ�ƉƌŽĐĞƐƐ͘�dŚŝƐ� ŝƐ� ĨƵƌƚŚĞƌ�ĞŵƉŚĂƐŝǌĞĚ�ďǇ� ƚŚĞ�ĐŚĂƌŐĞ�ƐĞŐƌĞŐĂƚŝŽŶ� ŝŶƐŝĚĞ� ƚŚĞ� ĨŽůĚŝŶŐ�ĐŚĂŵďĞƌ͕�



Ͳ�ϭϴϲ�Ͳ��
�

ǁŚŝĐŚ�ƉƌŽǀŝĚĞƐ�ĚŝĨĨĞƌĞŶƚ�ĞŶǀŝƌŽŶŵĞŶƚĂů�ĞĨĨĞĐƚƐ�ŽŶ�ƚŚĞ�ĨŽůĚŝŶŐ�ƚƌĂũĞĐƚŽƌǇ�ĚĞƉĞŶĚŝŶŐ�ŽŶ�ǁŚĞŶ�ĂŶĚ�ǁŚĞƌĞ�

Ă�ƐƵďƐƚƌĂƚĞ�ŝƐ�ƌĞůĞĂƐĞĚ�;>ĞŝƚŶĞƌ�Ğƚ�Ăů͕͘�ϮϬϭϮͿ͘��

tĞ� ŽŶůǇ� ďĞŐŝŶ� ƚŽ� ƵŶĚĞƌƐƚĂŶĚ� ƚŚĞ� ŵĂŶŝĨŽůĚ� ůĞǀĞůƐ� Ăƚ� ǁŚŝĐŚ� dZŝ�� ĐĂŶ� ƉƌŽŵŽƚĞ� ƉƌŽĚƵĐƚŝǀĞ� ĨŽůĚŝŶŐ� ĨŽƌ�

ƐƚƌƵĐƚƵƌĂůůǇ�ĚŝǀĞƌƐĞ�ĂŶĚ�ƚŽƉŽůŽŐŝĐĂůůǇ�ĐŽŵƉůĞǆ�ƐƵďƐƚƌĂƚĞƐ͘�,ŽǁĞǀĞƌ͕�ƌĞǀĞĂůŝŶŐ�dZŝ�͛Ɛ�ŝŶŚĞƌĞŶƚ�ĂƐǇŵŵĞƚƌŝĐ�

ƉƌŽƉĞƌƚŝĞƐ�ĚĞĐŝƐŝǀĞůǇ�ĂĚǀĂŶĐĞĚ�ŽƵƌ�ƵŶĚĞƌƐƚĂŶĚŝŶŐ�ŽĨ�ŝƚƐ�ĐŽŵƉůĞǆ�ĨŽůĚŝŶŐ�ŵĞĐŚĂŶŝƐŵ͘��

�

ϱ͘Ϯ� DƵůƚŝͲĚŽŵĂŝŶ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ��

�Ŷ� ĞƐƐĞŶƚŝĂů� ĂƐƉĞĐƚ� ŽĨ� dZŝ�ͲĚĞƉĞŶĚĞŶƚ� ƉƌŽƚĞŝŶ� ĨŽůĚŝŶŐ� ŝƐ� ƚƌĂŶƐŝĞŶƚ� ƐƵďƐƚƌĂƚĞ� ĞŶĐĂƉƐƵůĂƚŝŽŶ� ŝŶƐŝĚĞ� ƚŚĞ�

ĐĞŶƚƌĂů�ĐĂǀŝƚǇ�;ZĞŝƐƐŵĂŶŶ�Ğƚ�Ăů͕͘�ϮϬϬϳͿ͘�,ŽǁĞǀĞƌ͕�ƚŚĞ�ǀŽůƵŵĞ�ŽĨ�ƚŚŝƐ�ĐĂǀŝƚǇ�ŝƐ�ůŝŵŝƚĞĚ͘�zĞƚ͕�ƐĞǀĞƌĂů�ůĂƌŐĞ�

ƐƵďƐƚƌĂƚĞƐ�ĞǆŝƐƚ�ǁŚŝĐŚ�ĐůĞĂƌůǇ�ĞǆĐĞĞĚ�ƚŚĞ�ĐĂƉĂĐŝƚǇ�ŽĨ�ƚŚĞ�ĐŚĂŵďĞƌ�;^ƉŝĞƐƐ�Ğƚ�Ăů͕͘�ϮϬϬϰͿ͘���ƉŽƐƐŝďůĞ�ƐŽůƵƚŝŽŶ�

ĨŽƌ�dZŝ�ͲĂƐƐŝƐƚĞĚ�ĨŽůĚŝŶŐ�ŽĨ�ƚŚĞƐĞ�ůĂƌŐĞ�ƐƵďƐƚƌĂƚĞƐ�ŝƐ�ƉĂƌƚŝĂů�ĞŶĐĂƉƐƵůĂƚŝŽŶ�ŽĨ�dZŝ�ͲĚĞƉĞŶĚĞŶƚ�ĚŽŵĂŝŶƐ͘��

�ŽŵĂŝŶͲǁŝƐĞ�ƉƌŽƚĞŝŶ� ĨŽůĚŝŶŐ� ŝƐ� ŽĨ� ƐƉĞĐŝĂů� ŝŵƉŽƌƚĂŶĐĞ� ĨŽƌ� ĞƵŬĂƌǇŽƚŝĐ� ĐĞůůƐ͕� ŝŶ�ǁŚŝĐŚ� ƌŽƵŐŚůǇ� ϳϬй�ŽĨ� Ăůů�

ƉƌŽƚĞŝŶƐ�ĂƌĞ�ŵƵůƚŝͲĚŽŵĂŝŶ�ƉƌŽƚĞŝŶƐ�;,ĂŶ�Ğƚ�Ăů͕͘�ϮϬϬϳͿ͘���ƚǇƉŝĐĂů�ĚŽŵĂŝŶ�ƐƉĂŶƐ�ϱϬͲϯϬϬ�ĂŵŝŶŽ�ĂĐŝĚƐ�;EĞƚǌĞƌ�

ĂŶĚ�,Ăƌƚů͕�ϭϵϵϴͿ͕�ǁŚŝĐŚ�Ĩŝƚ�ƚŚĞ�ĐĂǀŝƚǇ�ƐŝǌĞ�ǀĞƌǇ�ǁĞůů�ŝŶ�ĐĂƐĞ�ŽĨ�Ă�ŐůŽďƵůĂƌ�ĨŽůĚ͘��ŽŵĂŝŶͲǁŝƐĞ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�

ŝƐ�ƉƌŽďĂďůǇ�ĨĂĐŝůŝƚĂƚĞĚ�ďǇ�ǀĞĐƚŽƌŝĂů�ƉƌŽƚĞŝŶ�ƐǇŶƚŚĞƐŝƐ�Ăƚ�ƚŚĞ�ƌŝďŽƐŽŵĞ͘�tŚŝůĞ�ĐŽŵƉĂĐƚ�ĚŽŵĂŝŶƐ�ŵĂǇ�ĨŽůĚ�

ƐƉŽŶƚĂŶĞŽƵƐůǇ͕� ĞƐƉĞĐŝĂůůǇ� ůŽŶŐͲůŝǀĞĚ� ĚŽŵĂŝŶ� ĨŽůĚŝŶŐ� ŝŶƚĞƌŵĞĚŝĂƚĞƐ� ƌĞƋƵŝƌĞ� ƐŚŝĞůĚŝŶŐ� ĨƌŽŵ� ĂďĞƌƌĂŶƚ�

ŝŶƚĞƌĂĐƚŝŽŶƐ� ƉƌŽǀŝĚĞĚ� ďǇ� ĐŚĂƉĞƌŽŶĞƐ� ;&ƌǇĚŵĂŶ� Ğƚ� Ăů͕͘� ϭϵϵϰͿ͘� KƵƌ� ƌĞƐƵůƚƐ� ƐƵŐŐĞƐƚ� ƚŚĂƚ� ƚŚĞ� ĞƵŬĂƌǇŽƚŝĐ�

ĐŚĂƉĞƌŽŶŝŶ� dZŝ�� ƉůĂǇƐ� ĂŶ� ŝŵƉŽƌƚĂŶƚ� ƌŽůĞ� ŝŶ�ŵƵůƚŝͲĚŽŵĂŝŶ� ƉƌŽƚĞŝŶ� ĨŽůĚŝŶŐ͘�tĞ� ĚĞŵŽŶƐƚƌĂƚĞ� ƚŚĂƚ�ǁŝƚŚ�

ŵŽĚĞů�ƐƵďƐƚƌĂƚĞƐ�ƐƵĐŚ�ĂƐ�ĨƵƐŝŽŶ�ƉƌŽƚĞŝŶƐ�ŽĨ�ĂĐƚŝŶ�ĂŶĚ�ŐƌĞĞŶ�ĨůƵŽƌĞƐĐĞŶƚ�ƉƌŽƚĞŝŶƐ�ĂŶĚ�ƚŚĞ�ŶĂƚƵƌĂů�ŵƵůƚŝͲ

ĚŽŵĂŝŶ� ƐƵďƐƚƌĂƚĞ� Ś^ŶƵϭϭϰ� ;ϭϬϵ� Ŭ�ĂͿ͕� ĞŶĐĂƉƐƵůĂƚŝŽŶ� ŽĨ� ƐĞůĞĐƚĞĚ� ĚŽŵĂŝŶƐ� ďǇ� dZŝ�� ŽĐĐƵƌƐ� ǁŚŝůĞ� ƚŚĞ�

ƌĞŵĂŝŶĚĞƌ�ŽĨ�ƚŚĞ�ƉƌŽƚĞŝŶ�ƉƌŽƚƌƵĚĞƐ�ƚŚƌŽƵŐŚ�ƚŚĞ�ŽĐƵůƵƐ�ŽĨ�ƚŚĞ�ŝƌŝƐͲůŝŬĞ�ůŝĚ�;ZƵƐƐŵĂŶŶ�Ğƚ�Ăů͕͘�ϮϬϭϮͿ͘��

�



Ͳ�ϭϴϳ�Ͳ��
�

ϱ͘Ϯ͘ϭ� WĂƌƚŝĂů�ĞŶĐĂƉƐƵůĂƚŝŽŶ�ďǇ�ƐĞƋƵĞŶƚŝĂů�ĐůŽƐƵƌĞ�ŽĨ�ƚŚĞ�ŝƌŝƐͲůŝŬĞ�ůŝĚ��

dZŝ��ďĞůŽŶŐƐ� ƚŽ� ƚŚĞ�ŐƌŽƵƉ� //� ĐŚĂƉĞƌŽŶŝŶƐ�ĂŶĚ� ƚŚĞƌĞĨŽƌĞ�ŚĂƐ�ĂŶ� ŝŶͲďƵŝůƚ� ƐŚƵƚƚĞƌ�ŵĞĐŚĂŶŝƐŵ� ĨŽƌŵĞĚ�ďǇ�

ŚĞůŝĐĂů� ƉƌŽƚƌƵƐŝŽŶƐ͕� ǁŚŝĐŚ� ĂĚŽƉƚ� ĂŶ� ŝƌŝƐͲůŝŬĞ� ůŝĚ� ƐƚƌƵĐƚƵƌĞ� ƵƉŽŶ� �dWͲŚǇĚƌŽůǇƐŝƐ͘� &ƵƌƚŚĞƌŵŽƌĞ͕� ƚŚĞ�

ĂƐǇŵŵĞƚƌŝĐ��dW�ƵƚŝůŝǌĂƚŝŽŶ�ŝŶ�ƚŚĞ�ŚĞƚĞƌŽͲŽůŝŐŽŵĞƌŝĐ�dZŝ��ƌŝŶŐƐ�ƐƚƌŽŶŐůǇ�ƐƵƉƉŽƌƚƐ�Ă�ƐĞƋƵĞŶƚŝĂů�ŵĞĐŚĂŶŝƐŵ�

ŽĨ� ĐĂǀŝƚǇ� ĐůŽƐƵƌĞ� ;>ŝŶ� ĂŶĚ� ^ŚĞƌŵĂŶ͕� ϭϵϵϳ͖� ZĞŝƐƐŵĂŶŶ�Ğƚ� Ăů͕͘� ϮϬϭϮ͖� ZŝǀĞŶǌŽŶͲ^ĞŐĂů� Ğƚ� Ăů͕͘� ϮϬϬϱͿ͘� dŚĞƐĞ�

ĨĞĂƚƵƌĞƐ� ĂƌĞ�ǁĞůů� ĐŽŵƉĂƚŝďůĞ�ǁŝƚŚ� Ă� ƉƌŽĐĞƐƐ� ŽĨ� ƉĂƌƚŝĂů� ĞŶĐĂƉƐƵůĂƚŝŽŶ͗� dŚĞ� ĂƉŝĐĂů� ĚŽŵĂŝŶƐ� ŝŶ� ƚŚĞ� dZŝ��

ƐƵďƵŶŝƚƐ�ŵŽǀĞ�ƐĞƋƵĞŶƚŝĂůůǇ�ƚŽǁĂƌĚƐ�ƚŚĞ�ĐĞŶƚƌĂů�ĂǆŝƐ͕�ƚŚĞƌĞďǇ�ĞŶĐůŽƐŝŶŐ�Ă�ƐĞůĞĐƚĞĚ�;ƐƵďͿͲĚŽŵĂŝŶ͕�ǁŚŝůĞ�ĂŶ�

ŝŶƚĞƌͲĚŽŵĂŝŶ�ůŝŶŬĞƌ�ƉŽůǇƉĞƉƚŝĚĞ�ƚŚƌĞĂĚƐ�ƚŚĞ�ĂƉŝĐĂů�ƉŽƌĞ͘���ƐŝŵŝůĂƌ�ƐĐĞŶĂƌŝŽ�ǁŽƵůĚ�ŶŽƚ�ďĞ�ƉŽƐƐŝďůĞ�ĨŽƌ�Ă�

ƐǇƐƚĞŵ�ƵƐŝŶŐ�Ă�ĚĞƚĂĐŚĂďůĞ�'ƌŽ�^ͲůŝŬĞ�ůŝĚ͘��

dŚĞ� ƉƌĞĐŝƐĞ� ďŽƵŶĚĂƌŝĞƐ� ŽĨ� ƚŚĞ� ĞŶĐĂƉƐƵůĂƚĞĚ� ĨƌĂŐŵĞŶƚ� ĚŽ� ŶŽƚ� ƐĞĞŵ� ƚŽ� ďĞ� ƐƚƌŝĐƚůǇ� ĚĞĨŝŶĞĚ͘� WƌŽƚĞĂƐĞ�

ƉƌŽƚĞĐƚŝŽŶ�ĞǆƉĞƌŝŵĞŶƚƐ�ǁŝƚŚ� ƚŚĞ�ŶĂƚƵƌĂů� ƐƵďƐƚƌĂƚĞ� Ś^ŶƵϭϭϰ� ƌĞǀĞĂůĞĚ�ŵƵůƚŝƉůĞ� ĞŶĐĂƉƐƵůĂƚŝŽŶ�ƉƌŽĚƵĐƚƐ�

ǁŝƚŚ� ƐŝǌĞƐ� ďĞƚǁĞĞŶ� ϭϱ� Ŭ�Ă� ĂŶĚ� ϰϱ� Ŭ�Ă͘� �ůƐŽ� ĨŽƌ� ƚŚĞ� ĚĞƐƚĂďŝůŝǌĞĚ� ȴEͲ'&WͲĂĐƚŝŶ� ĨƵƐŝŽŶ� ƉƌŽƚĞŝŶƐ͕�

ŚĞƚĞƌŽŐĞŶĞŝƚǇ� ŽĨ� ƚŚĞ� dZŝ�ͲĞŶĐĂƉƐƵůĂƚĞĚ� ĨƌĂŐŵĞŶƚƐ� ǁĂƐ� ŽďƐĞƌǀĞĚ͘� dŚĞ� ƐĞŐŵĞŶƚ� ďĞŝŶŐ� ƵůƚŝŵĂƚĞůǇ�

ĞŶĐĂƉƐƵůĂƚĞĚ�ŝƐ�ƉƌŽďĂďůǇ�ƚŚĞ�ƌĞƐƵůƚ�ŽĨ�Ă�ĐŽŵƉůĞǆ�ŝŶƚĞƌƉůĂǇ�ďĞƚǁĞĞŶ�ĐŽŶĨŽƌŵĂƚŝŽŶĂů�ĚǇŶĂŵŝĐƐ�ŽĨ�ƚŚĞ�dZŝ��

ĐŽŵƉůĞǆ�ĂŶĚ�ŽĨ�ƚŚĞ�ƐƵďƐƚƌĂƚĞ͘�dŚĞ�dZŝ��ĐŽŵƉůĞǆ�ĚŝƐƉůĂǇƐ�Ă�ŚŝŐŚ�ĚĞŐƌĞĞ�ŽĨ�ƐƚƌƵĐƚƵƌĂů�ĨůĞǆŝďŝůŝƚǇ�ŶŽƚ�ŽŶůǇ�ŝŶ�

ŝƚƐ�ŽƉĞŶ�ƐƚĂƚĞ�;DƵŶŽǌ�Ğƚ�Ăů͕͘�ϮϬϭϭͿ�ďƵƚ�ƉƌŽďĂďůǇ�ĂůƐŽ�ĂůŽŶŐ�ŝƚƐ�ƚƌĂŶƐŝƚŝŽŶ�ƚŽ�ƚŚĞ�ǁĞůůͲĚĞĨŝŶĞĚ�ĐůŽƐĞĚ�ƐƚĂƚĞ͘�

�ƌǇŽͲ�D� ƌĞĐŽŶƐƚŝƚƵƚŝŽŶƐ� ŽĨ� ƐĞǀĞƌĂů� ŝŶƚĞƌŵĞĚŝĂƚĞƐ� ŝŶ� ƚŚĞ� ĐŽŶĨŽƌŵĂƚŝŽŶĂů� ĐǇĐůĞ� ŽĨ� dZŝ�� ƐƵŐŐĞƐƚ� ŚŝŐŚůǇ�

ŝŶĚĞƉĞŶĚĞŶƚ�ŵŽǀĞŵĞŶƚƐ�ŽĨ�ŝŶĚŝǀŝĚƵĂů�dZŝ��ƐƵďƵŶŝƚƐ�;�ŽŶŐ�Ğƚ�Ăů͕͘�ϮϬϭϮ͖��ĂŶŐ�Ğƚ�Ăů͕͘�ϮϬϭϲͿ͘�&ƵƌƚŚĞƌŵŽƌĞ͕�

ƚŚĞ�ŶŽƚͲǇĞƚ�ĨŽůĚĞĚ�ƐƵďƐƚƌĂƚĞ�ŝƐ�ĂƐƐƵŵĞĚ�ƚŽ�ďĞ�ƐƚƌƵĐƚƵƌĂůůǇ�ŚŝŐŚůǇ�ĚǇŶĂŵŝĐ͘��ĞƉĞŶĚŝŶŐ�ŽŶ�ƚŚĞ�ĂĐĐĞƐƐŝďŝůŝƚǇ�

ŽĨ�ďŝŶĚŝŶŐ�ŵŽƚŝĨƐ�ŽŶ�dZŝ��ĂŶĚ�ŽŶ�ƚŚĞ�ƐƵďƐƚƌĂƚĞ�Ăƚ�ĂŶǇ�ŐŝǀĞŶ�ƚŝŵĞ͕�ƚŚĞ�ƚŽƉŽůŽŐǇ�ŽĨ�ƚŚĞ�ďŽƵŶĚ�ƐĞŐŵĞŶƚ�ŵĂǇ�

ĐŚĂŶŐĞ͘��ĞǇŽŶĚ�ƚŚĂƚ͕�ƚŚĞ�ƐĞŐŵĞŶƚƐ�ŽĨ�ƚŚĞ�ŵƵůƚŝͲĚŽŵĂŝŶ�ƉƌŽƚĞŝŶ͕�ǁŚŝĐŚ�ĚŽ�ŶŽƚ�ƌĞƋƵŝƌĞ�dZŝ��ĨŽƌ�ĨŽůĚŝŶŐ͕�

ǁŝůů�ƉƌŽĐĞĞĚ�ƚŽ�ƚŚĞŝƌ�ĨŽůĚĞĚ�ƐƚĂƚĞƐ�ƚŚĞƌĞďǇ�ĂĨĨĞĐƚŝŶŐ�ƚŚĞ�ĨůĞǆŝďŝůŝƚǇ�ŽĨ�ƚŚĞ�ŝŶƚĞƌͲĚŽŵĂŝŶ�ůŝŶŬĞƌƐ͕�ǁŚŝĐŚ�ŚĂƐ�

ƚŽ� ƚŚƌĞĂĚ� ƚŚƌŽƵŐŚ� ƚŚĞ� ŽĐƵůƵƐ� ŽĨ� ƚŚĞ� ůŝĚ� ĨŽƌ� ƐƵĐĐĞƐƐĨƵů� ƉĂƌƚŝĂů� ĞŶĐĂƉƐƵůĂƚŝŽŶ͘� �ůů� ƚŚĞƐĞ� ĨĂĐƚŽƌƐ� ŵĂǇ�

ĐŽŶƚƌŝďƵƚĞ�ƚŽ�ŚĞƚĞƌŽŐĞŶĞŝƚǇ�ŝŶ�ƚŚĞ�ĚĞŐƌĞĞ�ŽĨ�ĞŶĐĂƉƐƵůĂƚŝŽŶ͘�/ŵƉŽƌƚĂŶƚůǇ͕�ƚŚŝƐ�ĚŽĞƐ�ŶŽƚ�ŵĞĂŶ�ƚŚĂƚ�ƌĂŶĚŽŵ�



Ͳ�ϭϴϴ�Ͳ��
�

ƐĞŐŵĞŶƚƐ�ǁŝůů�ďĞ�ĞŶĐĂƉƐƵůĂƚĞĚ͕�ďƵƚ� ƚŚĂƚ�Ă� ƌĂŶŐĞ�ŽĨ�ĚĞĨŝŶĞĚ�ĞŶĐĂƉƐƵůĂƚŝŽŶ�ƉƌŽĚƵĐƚƐ� ŝƐ�ƉŽƐƐŝďůĞ͘�WĂƌƚŝĂů�

ĞŶĐĂƉƐƵůĂƚŝŽŶ�ƌĞƋƵŝƌĞƐ�ƚŚĞ�ĂƉŝĐĂů�ƉŽƌĞ�ƚŽ�ĞǆŚŝďŝƚ�Ă�ĐĞƌƚĂŝŶ�ĚĞŐƌĞĞ�ŽĨ�ĨůĞǆŝďŝůŝƚǇ͘�/Ŷ�Ă�ƉĂƌƚŝĂů�ĞŶĐĂƉƐƵůĂƚŝŽŶ�

ĞǀĞŶƚ͕�ƚŚĞ�ŝƌŝƐ�ŵĂǇ�ŶŽƚ�ĂůǁĂǇƐ�ĐůŽƐĞ�ĐŽŵƉůĞƚĞůǇ͕�ďƵƚ�ĂŶ�ĞǆƚĞƌŶĂů�ĨŽůĚĞĚ�ĚŽŵĂŝŶ�ŵĂǇ�ĂĐƚ�ĂƐ�Ă�ƉůƵŐ�ƚŽ�ƐĞĂů�

ƚŚĞ�ĐĂǀŝƚǇ�ĞŶŽƵŐŚ�ƚŽ�ƉƌĞǀĞŶƚ�ƉƌŽƚĞĂƐĞ�ĂĐĐĞƐƐ�ƚŽ�ƚŚĞ�ĞŶĐĂƉƐƵůĂƚĞĚ�ƐĞŐŵĞŶƚ͘��ĞǇŽŶĚ�ƚŚŝƐ͕�ƚŚĞ�ƉƌŽƚĞĂƐĞͲ

ƐĞŶƐŝƚŝǀĞ� ŚĞůŝĐĂů� ƉƌŽƚƌƵƐŝŽŶƐ� ŽĨ� dZŝ�� ƐƵďƵŶŝƚƐ� ;ZĞŝƐƐŵĂŶŶ� Ğƚ� Ăů͕͘� ϮϬϬϳͿ� ĂƌĞ� ƉƌŽƚĞĐƚĞĚ� ĨƌŽŵ� ĚŝŐĞƐƚŝŽŶ�

ƐƵŐŐĞƐƚŝŶŐ�ƚŚĂƚ�ƚŚĞ�ŝŶĚŝǀŝĚƵĂů�ƐƵďƵŶŝƚƐ�ĂĚŽƉƚ�Ă�ĐŽŶĨŽƌŵĂƚŝŽŶ�ƐŝŵŝůĂƌ�ƚŽ�ƚŚĞ�ĐůŽƐĞĚ�ƐƚƌƵĐƚƵƌĞƐ͘��

�

ϱ͘Ϯ͘Ϯ� WŽƐŝƚŝŽŶĂů�ĞĨĨĞĐƚƐ�ŽŶ�dZŝ�ͲĚĞƉĞŶĚĞŶƚ�ĚŽŵĂŝŶƐ��

WĂƌƚŝĂů� ĞŶĐĂƉƐƵůĂƚŝŽŶ� ďǇ� dZŝ�� ŵĂǇ� ŽĐĐƵƌ� ƉŽƐƚͲƚƌĂŶƐůĂƚŝŽŶĂůůǇ� Žƌ� ĐŽͲƚƌĂŶƐůĂƚŝŽŶĂůůǇ͕� ĚĞƉĞŶĚŝŶŐ� ŽŶ� ƚŚĞ�

ƉŽƐŝƚŝŽŶ�ŽĨ�ƚŚĞ�dZŝ�ͲĚĞƉĞŶĚĞŶƚ�ĚŽŵĂŝŶ�ŝŶ�ƚŚĞ�ƐƵďƐƚƌĂƚĞ͘��ŽͲƚƌĂŶƐůĂƚŝŽŶĂů�ĨŽůĚŝŶŐ�ŽĨ�ĂŶ�EͲƚĞƌŵŝŶĂů�ĚŽŵĂŝŶ�

ďǇ�dZŝ��ŝƐ�ƐƵƉƉŽƌƚĞĚ�ďǇ�ƌĞƉŽƌƚƐ�ŽŶ�ďŝŶĚŝŶŐ�ŽĨ�dZŝ��ƚŽ�ŶĂƐĐĞŶƚ�ĐŚĂŝŶƐ�;�ƚĐŚĞůůƐ�Ğƚ�Ăů͕͘�ϮϬϬϱ͖�&ƌǇĚŵĂŶ�Ğƚ�Ăů͕͘�

ϭϵϵϰͿ͘�dŚĞ�ĞŶĐĂƉƐƵůĂƚŝŽŶ�ŽĨ�Ă�ĚŽŵĂŝŶ�ƐƵƌƌŽƵŶĚĞĚ�ďǇ�ŽƚŚĞƌ�ĚŽŵĂŝŶƐ�Žƌ�ůŽĐĂƚĞĚ�Ăƚ�ƚŚĞ��ͲƚĞƌŵŝŶƵƐ�ƐĞĞŵƐ�

ƚŽ�ďĞ�ƐƚƌŽŶŐůǇ�ŝŶĨůƵĞŶĐĞĚ�ďǇ�ƚŚĞ�ĚŽŵĂŝŶ�ĐŽŶƚĞǆƚ͘��ůƚŚŽƵŐŚ�Ăůů�ĞŶĐĂƉƐƵůĂƚŝŽŶ�ƉƌŽĚƵĐƚƐ�ŽĨ�Ś^ŶƵϭϰϰ�ǁĞƌĞ�

ƐŚŽǁŶ�ƚŽ�ĐŽŶƚĂŝŶ�ƚŚĞ��ͲƚĞƌŵŝŶĂů�ƉĞƉƚŝĚĞ͕�ƚŚĞ�ĨƌĂŐŵĞŶƚ�ůĞŶŐƚŚ�ĚŝĨĨĞƌĞĚ�ĚĞƉĞŶĚŝŶŐ�ŽŶ�ǁŚĞƚŚĞƌ�ƚŚĞ�ĞŶƚŝƌĞ�

ƉƌŽƚĞŝŶ�Žƌ�ƚŚĞ�ĨƌĂŐŵĞŶƚ�ĐŽŶƚĂŝŶŝŶŐ�ƚŚĞ��ͲƚĞƌŵŝŶĂů�ĚŽŵĂŝŶƐ�///Ͳs/�ǁĂƐ�ƉƌŽĐĞƐƐĞĚ͘�DŽƌĞŽǀĞƌ͕�ƚŚĞ�ĞĨĨŝĐŝĞŶĐǇ�

ŽĨ� ĂĐƚŝŶͲĨŽůĚŝŶŐ�ǁĂƐ� ĚĞƉĞŶĚĞŶƚ� ŽŶ� ƚŚĞ� ƉŽƐŝƚŝŽŶ� ŽĨ� ƚŚĞ� ĂĐƚŝŶ� ƐĞŐŵĞŶƚ� ŝŶ� ƚŚĞ� ĨƵƐŝŽŶ� ƉƌŽƚĞŝŶ͗� dŚĞ� ĂĐƚŝŶ�

ƐĞŐŵĞŶƚ�Ăƚ�ƚŚĞ��ͲƚĞƌŵŝŶĂů�ĞŶĚ�ĨŽůĚĞĚ�ŵŽƌĞ�ĞĨĨŝĐŝĞŶƚůǇ�ƚŚĂŶ�Ăƚ�ƚŚĞ�EͲƚĞƌŵŝŶĂů�ĞŶĚ͘�KƵƌ�ƌĞƐƵůƚƐ�ƐƵŐŐĞƐƚ�ƚŚĂƚ�

ƚŚĞ� EͲƚĞƌŵŝŶĂů� ƉƌŽƚĞŝŶ� ƐĞŐŵĞŶƚƐ� ƐŝŐŶŝĨŝĐĂŶƚůǇ� ĂĨĨĞĐƚ� ƚŚĞ� ĞŶĐĂƉƐƵůĂƚŝŽŶ� ƉƌŽĐĞƐƐ͘� �� ĨŽůĚĞĚ� EͲƚĞƌŵŝŶĂů�

ĚŽŵĂŝŶ�ŵĂǇ�ƌĞƐƚƌŝĐƚ�ƚŚĞ�ĨůĞǆŝďŝůŝƚǇ�ŽĨ�dZŝ�ͲƐƵďƐƚƌĂƚĞ�ĐŽŵƉůĞǆĞƐ͕�ƚŚĞƌĞďǇ�ĨĂĐŝůŝƚĂƚŝŶŐ�ƚŚĞ�ƐĞůĞĐƚŝǀĞ�ďŝŶĚŝŶŐ�

ŽĨ� ƚŚĞ�ƐĞŐŵĞŶƚ�ĐŽŶƚĂŝŶŝŶŐ�ƚŚĞ�dZŝ�ͲĚĞƉĞŶĚĞŶƚ�ĚŽŵĂŝŶ͘��ĞǇŽŶĚ�ƚŚŝƐ͕�Ă� ĨŽůĚĞĚ�EͲƚĞƌŵŝŶĂů�ĚŽŵĂŝŶ�ŵĂǇ�

ƐĞƌǀĞ�ĂƐ�Ă�ƐĐĂĨĨŽůĚ�ĨŽƌ�ƉƌŽŐƌĞƐƐŝǀĞ�ĂƐƐĞŵďůǇ�ŽĨ�ĨƵƌƚŚĞƌ�ƉĂƌƚƐ�ŽĨ�Ă�ŵƵůƚŝͲĚŽŵĂŝŶ�ƉƌŽƚĞŝŶ͘�KĨ�ŶŽƚĞ͕�ĨŽůĚŝŶŐ�ŽĨ�

ĂĐƚŝŶ�ĨĂŝůĞĚ�ǁŚĞŶ�ŝƚ�ǁĂƐ�ƉůĂĐĞĚ�ďĞƚǁĞĞŶ�dZŝ�ͲŝŶĚĞƉĞŶĚĞŶƚ�'&W�ĚŽŵĂŝŶƐ�ŝŶ�ƚŚĞ�ĨƵƐŝŽŶ�ƉƌŽƚĞŝŶ͘�dŚŝƐ�ƐƵŐŐĞƐƚ�

ƚŚĂƚ�ƐĞůĞĐƚŝŽŶ�ŽĨ� ŝŶƚĞƌŶĂů�ĚŽŵĂŝŶƐ�ĨŽƌ�ƉĂƌƚŝĂů�ĞŶĐĂƉƐƵůĂƚŝŽŶ�ŝƐ�ĚŝĨĨŝĐƵůƚ͘� /Ĩ�ƐƵĐŚ�ƐƵďƐƚƌĂƚĞƐ�ĞǆŝƐƚ͕� ŝŶƚĞƌŶĂů�



Ͳ�ϭϴϵ�Ͳ��
�

dZŝ�ͲĚĞƉĞŶĚĞŶƚ� ĚŽŵĂŝŶƐ�ǁŽƵůĚ� ƌĞƋƵŝƌĞ� ŚŝŐŚůǇ� ƐƉĞĐŝĂůŝǌĞĚ� ŝŶƚĞƌͲĚŽŵĂŝŶ� ůŝŶŬĞƌƐ͕�ǁŚŝĐŚ�ǁŽƵůĚ� ŶĞĞĚ� ƚŽ�

ƐŝŵƵůƚĂŶĞŽƵƐůǇ�ƚƌĂǀĞƌƐĞ�ƚŚĞ�ŶĂƌƌŽǁ�ĞŶƚƌĂŶĐĞ�ƉŽƌĞ�ŽĨ�ƚŚĞ�ĨŽůĚŝŶŐ�ĐŚĂŵďĞƌ͘��

�

ϱ͘Ϯ͘ϯ� dŚĞ�ĨŽůĚŝŶŐ�ŽĨ�ƚŚĞ�ŶĂƚƵƌĂů�ƐƵďƐƚƌĂƚĞ�Ś^ŶƵϭϭϰ�

dŚĞ�ϭϬϵ�Ŭ�Ă�ƉƌŽƚĞŝŶ�Ś^ŶƵϭϭϰ͕�ĂůƚĞƌŶĂƚŝǀĞůǇ�ƌĞĨĞƌƌĞĚ�ƚŽ�ĂƐ�ƐŶZWEϭϭϲ�;zĂŵ�Ğƚ�Ăů͕͘�ϮϬϬϴͿ͕�ŝƐ�Ă�ƌĞŐƵůĂƚŽƌǇ�

ƐƵďƵŶŝƚ�ŽĨ�ƚŚĞ�ŚƵŵĂŶ�ƐƉůŝĐĞŽƐŽŵĞ�;&ƌĂǌĞƌ�Ğƚ�Ăů͕͘�ϮϬϬϴͿ͘�/ƚ�ĚŝƐƉůĂǇƐ�ŚŝŐŚ�ƐĞƋƵĞŶĐĞ�ĂŶĚ�ƐƚƌƵĐƚƵƌĂů�ŚŽŵŽůŽŐǇ�

ƚŽ�ĞƵŬĂƌǇŽƚŝĐ�ĞůŽŶŐĂƚŝŽŶ�ĨĂĐƚŽƌ�Ϯ�;Ğ�&ϮͿ�;&ĂďƌŝǌŝŽ�Ğƚ�Ăů͕͘�ϭϵϵϳͿ͘�ZĞĐĞŶƚůǇ͕�ŚŝŐŚͲƌĞƐŽůƵƚŝŽŶ�ĐƌǇŽ�D�ƐƚƌƵĐƚƵƌĞƐ�

ŽĨ� ƚŚĞ�ƐƉůŝĐĞŽƐŽŵĞ�ďĞĐĂŵĞ�ĂǀĂŝůĂďůĞ͕�ǁŚŝĐŚ�ƐŚŽǁ�ƚŚĞ�ǇĞĂƐƚ�ŚŽŵŽůŽŐ�ŽĨ�Ś^ŶƵϭϭϰ͕�^ŶƵϭϭϰ� ;zĂŶ�Ğƚ�Ăů͕͘�

ϮϬϭϱͿ͘� Ś^ŶƵϭϭϰ� ŚĂƐ� Ă� ĐŽŵƉůĞǆ� ŶĞƐƚĞĚ�ŵƵůƚŝͲĚŽŵĂŝŶ� ƐƚƌƵĐƚƵƌĞ� ;&ŝŐƵƌĞ� ϭϲͿ� ;:ŽƌŐĞŶƐĞŶ� Ğƚ� Ăů͕͘� ϮϬϬϯͿ͘� /Ŷ�

ĐŽŶƚƌĂƐƚ� ƚŽ� Ğ�&Ϯ͕� Ś^ŶƵϭϭϰ� ŚĂƐ� ĂŶ� EͲƚĞƌŵŝŶĂů� ĞǆƚĞŶƐŝŽŶ� ŽĨ� ϭϭϮ� ƌĞƐŝĚƵĞƐ͕� ǁŚŝĐŚ� ǁĂƐ� ƉƌĞĚŝĐƚĞĚ� ƚŽ� ďĞ�

ƵŶƐƚƌƵĐƚƵƌĞĚ�ŽƵƚƐŝĚĞ�ŽĨ�ƚŚĞ�ĐŽŶƚĞǆƚ�ŽĨ�ƚŚĞ�ƐƉůŝĐĞŽƐŽŵĞ͘�/ŶŝƚŝĂůůǇ�ŝĚĞŶƚŝĨŝĞĚ�ĂƐ�Ă�dZŝ��ŝŶƚĞƌĂĐƚŽƌ�ŝŶ�Ă�ŚŝŐŚͲ

ƚŚƌŽƵŐŚƉƵƚ�ƐĐƌĞĞŶ�;zĂŵ�Ğƚ�Ăů͕͘�ϮϬϬϴͿ͕�ƐƚĂďůĞ�ďŝŶĚŝŶŐ�ŽĨ�Ś^ŶƵϭϭϰ�ƚŽ�dZŝ��ŝŶ�ƌĂďďŝƚ�ƌĞƚŝĐƵůŽĐǇƚĞ�ůǇƐĂƚĞ�ǁĂƐ�

ĐŽŶĨŝƌŵĞĚ͘�EĞǆƚ͕�ƚŚĞ�ĨŽůĚŝŶŐ�ďĞŚĂǀŝŽƌ�ŽĨ�Ś^ŶƵϭϭϰ�ǁĂƐ�ĂŶĂůǇǌĞĚ�ŝŶ�ĚĞƚĂŝů�ďǇ�ĂƉƉůǇŝŶŐ�ĐŽŵďŝŶĂƚŝŽŶƐ�ŽĨ�dZŝ��

ĞŶĐĂƉƐƵůĂƚŝŽŶ�ĂŶĚ�ƉƌŽƚĞĂƐĞ�ƉƌŽƚĞĐƚŝŽŶ�ĂƐƐĂǇƐ͘��

�

&ŝŐƵƌĞ�ϭϲ͗�^ƚƌƵĐƚƵƌĂů�ŵŽĚĞů�ĨŽƌ�Ś^ŶƵϭϭϰ͘�hƉƉĞƌ͗�WƌĞĚŝĐƚĞĚ�ĚŽŵĂŝŶƐ�ŽĨ�Ś^ŶƵϭϭϰ�ďĂƐĞĚ�ŽŶ�ŚŽŵŽůŽŐǇ�ƚŽ�Ğ�&Ϯ͘�dŚĞ�

ĚŽŵĂŝŶƐ�ĂƌĞ�ŶĂŵĞĚ�ĂĐĐŽƌĚŝŶŐ�ƚŽ�Ğ�&Ϯ�ŶŽŵĞŶĐůĂƚƵƌĞ͘�ZĞƐŝĚƵĞ�ŶƵŵďĞƌŝŶŐ�ƌĞĨĞƌƐ�ƚŽ�Ś^ŶƵϭϭϰ�ƐĞƋƵĞŶĐĞ͘�>ŽǁĞƌ͗�



Ͳ�ϭϵϬ�Ͳ��
�

^ƚƌƵĐƚƵƌĂů�ŵŽĚĞů�ŽĨ�Ś^ŶƵϭϭϰ�ďĂƐĞĚ�ŽŶ�ĐƌǇƐƚĂů�ƐƚƌƵĐƚƵƌĞ�ŽĨ�Ğ�&Ϯ�ĨƌŽŵ�^͘�ĐĞƌĞǀŝƐŝĂĞ�;:ŽƌŐĞŶƐĞŶ�Ğƚ�Ăů͕͘�ϮϬϬϯͿ͘�&ŝŐƵƌĞ�

ĂĚĂƉƚĞĚ�ĨƌŽŵ�;ZƵƐƐŵĂŶŶ�Ğƚ�Ăů͕͘�ϮϬϭϮͿ͘��

dŚĞ�ĚĂƚĂ�ĐŽŶĨŝƌŵ�ƚŚĂƚ�ƚŚĞ�ϭϭϮͲƌĞƐŝĚƵĞ�EͲƚĞƌŵŝŶĂů�ĞǆƚĞŶƐŝŽŶ�ŝƐ�ůĂƌŐĞůǇ�ƵŶƐƚƌƵĐƚƵƌĞĚ͕�ĂƐ�ŝƚ�ŝƐ�ƌĞĂĚŝůǇ�ĚŝŐĞƐƚĞĚ�

ƵƉŽŶ�ĂĚĚŝƚŝŽŶ�ŽĨ�ƉƌŽƚĞĂƐĞ͘�dŚĞ�ĨŽůůŽǁŝŶŐ�EͲƚĞƌŵŝŶĂů�ƉĂƌƚ�ƵƉ�ƚŽ�ƌĞƐŝĚƵĞ�ϱϴϬ�ĂƉƉĂƌĞŶƚůǇ�ĐŽŶƚĂŝŶƐ�ĚŽŵĂŝŶƐ�

ƚŚĂƚ� ĨŽůĚ� ĞĨĨŝĐŝĞŶƚůǇ� ŝŶ� ƌĂďďŝƚ� ƌĞƚŝĐƵůŽĐǇƚĞ� ůǇƐĂƚĞ͘� �ůƚŚŽƵŐŚ� ƚŚĞƐĞ� EͲƚĞƌŵŝŶĂů� ĚŽŵĂŝŶƐ� ĂƌĞ� ƌĞƐŝƐƚĂŶƚ� ƚŽ�

ƉƌŽƚĞĂƐĞ�ĚŝŐĞƐƚ�ǁŝƚŚŽƵƚ�ĞŶĐĂƉƐƵůĂƚŝŽŶ͕�ƐŽŵĞ�ŽĨ�ƚŚĞ�EͲƚĞƌŵŝŶĂů�ĐŽŶƐƚƌƵĐƚ�Ś^ŶƵϭϭϰ�΀ϭʹϱϴϬ΁�ĐŽͲŵŝŐƌĂƚĞƐ�

ǁŝƚŚ�ĐůŽƐĞĚ�dZŝ�͕� ŝŶĚŝĐĂƚŝŶŐ� ƚŚĂƚ� ŝƚ� ƚƌĂŶƐŝĞŶƚůǇ� ŝŶƚĞƌĂĐƚƐ�ǁŝƚŚ� ƚŚĞ�ĐŚĂƉĞƌŽŶŝŶ͘�dŚĞ��ͲƚĞƌŵŝŶĂů� ĐŽŶƐƚƌƵĐƚ�

Ś^ŶƵϭϭϰ�΀ϱϴϭʹϵϮϳ΁�ŝƐ�ŚŝŐŚůǇ�ƐĞŶƐŝƚŝǀĞ�ƚŽ�ĚŝŐĞƐƚŝŽŶ�ƵŶůĞƐƐ�ƉƌŽƚĞĐƚĞĚ�ǀŝĂ�ĞŶĐĂƉƐƵůĂƚŝŽŶ�ďǇ�dZŝ�͘�Ś^ŶƵϭϭϰ�

΀ϱϴϭʹϵϳϮ΁�ŝƐ�ĂƉƉĂƌĞŶƚůǇ�ŝŶĐŽŵƉĞƚĞŶƚ�ƚŽ�ĨŽůĚ�ƐƚĂďůǇ�ŽƵƚƐŝĚĞ�ƚŚĞ�ĐŽŶƚĞǆƚ�ŽĨ�ƚŚĞ�ĨƵůůͲůĞŶŐƚŚ�ƉƌŽƚĞŝŶ͕�ĂŶĚ�ƚŚƵƐ�

ƉĞƌŵĂŶĞŶƚůǇ�ĐǇĐůĞƐ�ŽŶ�ĂŶĚ�ŽĨĨ�ƚŚĞ�ĐŚĂƉĞƌŽŶŝŶ͘��ƵƌŝŶŐ�ƉĂƌƚŝĂů�ĞŶĐĂƉƐƵůĂƚŝŽŶ�ŽĨ�ƚŚĞ�ĨƵůůͲůĞŶŐƚŚ�Ś^ŶƵϭϭϰ�΀ϭʹ

ϵϳϮ΁͕��ͲƚĞƌŵŝŶĂů� ƐĞŐŵĞŶƚƐ�ŽĨ� ǀĂƌŝŽƵƐ� ƐŝǌĞƐ�ĂƌĞ�ƉƌŽƚĞĐƚĞĚ� ĨƌŽŵ�ƉƌŽƚĞŽůǇƐŝƐ͘� dŚĞ� ƐŝǌĞ�ŽĨ� ƚŚĞ� ƐĞůĞĐƚĞĚ��Ͳ

ƚĞƌŵŝŶĂů�ĨƌĂŐŵĞŶƚƐ�ƌŽƵŐŚůǇ�ŵĂƚĐŚĞƐ�ƉƌĞĚŝĐƚĞĚ�ĚŽŵĂŝŶ�ďŽƵŶĚĂƌŝĞƐ͘�dŚŝƐ�ŝƐ�ĐŽŶƐŝƐƚĞŶƚ�ǁŝƚŚ�ŵĂŝŶůǇ�ĨůĞǆŝďůĞ�

ŝŶƚĞƌͲĚŽŵĂŝŶ� ůŝŶŬĞƌƐ�ďĞŝŶŐ�ĂďůĞ� ƚŽ�ŵĞĞƚ� ƚŚĞ�ƐƚĞƌŝĐ�ĐŽŶƐƚƌĂŝŶƚƐ� ŝŵƉŽƐĞĚ�ďǇ� ƚŚĞ�ĂƉŝĐĂů�ƉŽƌĞ͘���ĐŽŵŵŽŶ�

ƐƚƌŽŶŐ�dZŝ��ďŝŶĚŝŶŐ�ŵŽƚŝĨ�ŝŶ�Ś^ŶƵϭϭϰ�ŵƵƐƚ�ďĞ�ůŽĐĂƚĞĚ�ŝŶ�ƚŚĞ��ͲƚĞƌŵŝŶĂů�ϭϰϬ�ƌĞƐŝĚƵĞƐ͕�ĂƐ�ũƵĚŐĞĚ�ĨƌŽŵ�ƚŚĞ�

ƐŵĂůůĞƐƚ� ĞŶĐĂƉƐƵůĂƚĞĚ� ĨƌĂŐŵĞŶƚ͘� dŚĞ� ƐĞƚ� ŽĨ� ŵƵůƚŝƉůĞ� �ͲƚĞƌŵŝŶĂů� ĨƌĂŐŵĞŶƚƐ� ŽďƐĞƌǀĞĚ� ŵĂǇ� ƌĞĨůĞĐƚ�

ƉƌŽŐƌĞƐƐŝǀĞ�ƐƚĂŐĞƐ�ŽĨ�ĨŽůĚŝŶŐ�ǁŝƚŚ�ƐƵďƐĞƋƵĞŶƚ�ĨŽůĚŝŶŐ�ƵŶŝƚƐ�ďĞŝŶŐ�ĂĚĚĞĚ�ƚŽ�ƚŚĞ�EͲƚĞƌŵŝŶĂů�ĨŽůĚŝŶŐ�ƐĐĂĨĨŽůĚ͘��

�

ϱ͘ϯ� �ŚĂƉĞƌŽŶĞ�ĨƵŶĐƚŝŽŶ�ŽĨ�,ŐŚϭ�ŝŶ�ƚŚĞ�ďŝŽŐĞŶĞƐŝƐ�ŽĨ�Ğ�&Ϯ�

,ŐŚϭ�ŝƐ�ƚŚĞ�ǇĞĂƐƚ�ŚŽŵŽůŽŐƵĞ�ŽĨ�&ĂŵϮϬϯ͕�Ă�ĐŽŶƐĞƌǀĞĚ�ĞƵŬĂƌǇŽƚŝĐ�ƉƌŽƚĞŝŶ�ŽĨ�ϰϱ�Ŭ�Ă͕�ǁŚŝĐŚ�ǁĂƐ�ƉƌŽƉŽƐĞĚ�

ƚŽ� ƌĞŐƵůĂƚĞ� dZŝ�� ĨƵŶĐƚŝŽŶ� ;,ĞŝŶ�Ğƚ� Ăů͕͘� ϮϬϭϱͿ͘� >ĂƌŐĞͲƐĐĂůĞ�ƉŚǇƐŝĐĂů� ĂŶĚ�ŐĞŶĞƚŝĐ� ŝŶƚĞƌĂĐƚŝŽŶ� ƐĐƌĞĞŶƐ�ŚĂĚ�

ůŝŶŬĞĚ�,ŐŚϭ�ƚŽ�ƚŚĞ�ǇĞĂƐƚ�ŽƌƚŚŽůŽŐƵĞ�ŽĨ�ĞƵŬĂƌǇŽƚŝĐ�ĞůŽŶŐĂƚŝŽŶ�ĨĂĐƚŽƌ�Ϯ͕��Ĩƚ�;�ŽƐƚĂŶǌŽ�Ğƚ�Ăů͕͘�ϮϬϭϬ͖�'ĂǀŝŶ�Ğƚ�

Ăů͕͘�ϮϬϬϲ͖�<ƌŽŐĂŶ�Ğƚ�Ăů͕͘�ϮϬϬϲͿ͘��Ĩƚ�ŝƚƐĞůĨ�ǁĂƐ�ĐŽŶƐŝƐƚĞŶƚůǇ�ĨŽƵŶĚ�ĂƐ�dZŝ��ƐƵďƐƚƌĂƚĞ�;�ĞŬŬĞƌ�Ğƚ�Ăů͕͘�ϮϬϬϴ͖�zĂŵ�

Ğƚ�Ăů͕͘�ϮϬϬϴͿ�ĂŶĚ�ĐŽŶƐƚŝƚƵƚĞƐ�ƚŚĞ�dZŝ��ĐůŝĞŶƚ�ŽĨ�ŚŝŐŚĞƐƚ�ĐĞůůƵůĂƌ�ĂďƵŶĚĂŶĐĞ�ŝŶ�ƚŚĞ�ǇĞĂƐƚ�ĐǇƚŽƐŽů�;<ƵůĂŬ�Ğƚ�Ăů͕͘�

ϮϬϭϰͿ͘�KƵƌ�ƌĞƐƵůƚƐ�ĚĞŵŽŶƐƚƌĂƚĞ�ƚŚĂƚ�,ŐŚϭ�ŝƐ�Ă�ƐƉĞĐŝĨŝĐ�ĐŚĂƉĞƌŽŶĞ�ĨŽƌ�ĚĞͲŶŽǀŽ�ĨŽůĚŝŶŐ�ŽĨ��Ĩƚ͘�,ŐŚϭ�ďŝŶĚƐ�



Ͳ�ϭϵϭ�Ͳ��
�

ƚŽ�ĚŽŵĂŝŶ�///�ŽĨ��Ĩƚ�ĂŶĚ�ƚŚĞƌĞďǇ�ĂƉƉĞĂƌƐ�ƚŽ�ƉƌĞǀĞŶƚ�ĂďĞƌƌĂŶƚ�ŝŶƚĞƌĂĐƚŝŽŶƐ͘�DŽƌĞŽǀĞƌ͕�,ŐŚϭ�ƌĞĐƌƵŝƚƐ�dZŝ��

ƚŽ� ƚŚĞ� �Ĩƚ� �ͲƚĞƌŵŝŶĂů� ĚŽŵĂŝŶƐ͕� ǁŚŝĐŚ� ƌĞƋƵŝƌĞ� dZŝ�� ŝŶƚĞƌĂĐƚŝŽŶ� ĨŽƌ� ĨŽůĚŝŶŐ͘� /Ŷ� ƚŚĞ� ĂďƐĞŶĐĞ� ŽĨ� ,ŐŚϭ͕� Ă�

ƐŝŐŶŝĨŝĐĂŶƚ�ƉŽƌƚŝŽŶ�ŽĨ��Ĩƚ�ŵŝƐĨŽůĚƐ͕�ƌĞƐƵůƚŝŶŐ�ŝŶ�ĂŐŐƌĞŐĂƚŝŽŶ�Žƌ�ƉƌĞŵĂƚƵƌĞ�ĚĞŐƌĂĚĂƚŝŽŶ͘��

�

ϱ͘ϯ͘ϭ� ^ƚƌƵĐƚƵƌĞ�ĂŶĚ�ĚǇŶĂŵŝĐƐ�ŽĨ��Ĩƚ��

�Ĩƚ�ŝƐ�Ă�ϵϯ�Ŭ�Ă�ŚŝŐŚůǇ�ĂďƵŶĚĂŶƚ�ŵƵůƚŝͲĚŽŵĂŝŶ�ƉƌŽƚĞŝŶ͘�/ƚ�ĐŽŶƐŝƐƚƐ�ŽĨ�Ɛŝǆ�ĚŽŵĂŝŶƐ͕�ǁŚŝĐŚ�ĂƌĞ�ĂƌƌĂŶŐĞĚ�ŝŶ�Ă�

ĐŽŵƉůĞǆ�ŶĞƐƚĞĚ�ƚŽƉŽůŽŐǇ�;&ŝŐƵƌĞ�ϭϳͿ͘��ŽŵĂŝŶƐ�'͛�ĂŶĚ�s�ĂƌĞ�ŝŶƐĞƌƚĞĚ�ŝŶƚŽ�ĚŽŵĂŝŶƐ�'�ĂŶĚ�/s͕�ƌĞƐƉĞĐƚŝǀĞůǇ͕�

ƐŽ�ƚŚĂƚ�ĚƵƌŝŶŐ�ĨŽůĚŝŶŐ�ƌĞƐŝĚƵĞƐ�ĨĂƌ�ĂƉĂƌƚ�ŝŶ�ƚŚĞ�ƐĞƋƵĞŶĐĞ�ŚĂǀĞ�ƚŽ�ĐŽŵĞ�ŝŶƚŽ�ĐůŽƐĞ�ƉƌŽǆŝŵŝƚǇ�ƚŽ�ĞƐƚĂďůŝƐŚ�

ĐŽƌƌĞĐƚ�ĐŽŶƚĂĐƚƐ͘��



Ͳ�ϭϵϮ�Ͳ��
�

�

&ŝŐƵƌĞ� ϭϳ͗� ^ƚƌƵĐƚƵƌĞ�ĂŶĚ�ĚŽŵĂŝŶ�ŽƌŐĂŶŝǌĂƚŝŽŶ�ŽĨ� �Ĩƚ͘� dŚĞ��Ĩƚ�ŵŽĚĞů� ŝƐ� Ă� ĐŽŵƉŽƐŝƚĞ�ŽĨ� ƚŚĞ� ĐƌǇŽ�D� ƐƚƌƵĐƚƵƌĞ�ŽĨ� Ă�

ƌŝďŽƐŽŵĞͲďŽƵŶĚ�Ğ�&Ϯ͗'DWͲW�W�ĐŽŵƉůĞǆ� ;DƵƌƌĂǇ�Ğƚ�Ăů͕͘�ϮϬϭϲͿ�ĂŶĚ� ƚŚĞ�ĐƌǇƐƚĂů� ƐƚƌƵĐƚƵƌĞ�ŽĨ� ƚŚĞ�^͘� ĐĞƌĞǀŝƐŝĂĞ�Ğ�&Ϯ�

ŽƌƚŚŽůŽŐƵĞ͕��Ĩƚ͕�ŝŶ�ĐŽŵƉůĞǆ�ǁŝƚŚ�ƚŚĞ�ĂŶƚŝͲĨƵŶŐĂů�ĐŽŵƉŽƵŶĚ�ƐŽƌĚĂƌŝŶ�;:ŽƌŐĞŶƐĞŶ�Ğƚ�Ăů͕͘�ϮϬϬϯͿ͘�dŚĞ�ĚŽŵĂŝŶ�ƐƚƌƵĐƚƵƌĞ�ŝƐ�

ĐŽůŽƌͲĐŽĚĞĚ�ĂŶĚ�ƐŚŽǁŶ�ƐĐŚĞŵĂƚŝĐĂůůǇ�ďĞůŽǁ͘��ĚĚŝƚŝŽŶĂůůǇ͕�ƚŚĞ��Ĩƚ�ƚƌƵŶĐĂƚŝŽŶ�ĐŽŶƐƚƌƵĐƚƐ�ƵƐĞĚ�ŝŶ�ƚŚĞ�ƐƚƵĚǇ�ĂƌĞ�ƐŚŽǁŶ͘�

&ŝŐƵƌĞ�ŵŽĚŝĨŝĞĚ�ĨƌŽŵ�;DŽŶŬĞŵĞǇĞƌ�Ğƚ�Ăů͕͘�ϮϬϭϴͿ͘��

dŚĞ�Ɛŝǆ�ĚŽŵĂŝŶƐ�ŽĨ��Ĩƚ�ĨŽƌŵ�ƚǁŽ�ƌŝŐŝĚ�ďůŽĐŬƐ͗�dŚĞ�EͲƚĞƌŵŝŶĂů�ŵŽĚƵůĞ͕��ĨƚͲE�;ƌĞƐŝĚƵĞƐ�ϭͲϰϴϮͿ͕�ĐŽŵƉƌŽŵŝƐĞƐ�

ĚŽŵĂŝŶƐ�'͕�'͕͛�ĂŶĚ�//�ĂŶĚ�ĐŽŶƚĂŝŶƐ�ƚŚĞ�'dW�ďŝŶĚŝŶŐ�ƐŝƚĞ͘�dŚĞ��ͲƚĞƌŵŝŶĂů�ŵŽĚƵůĞ͕��ĨƚͲ��;ƌĞƐŝĚƵĞƐ�ϱϲϲͲϴϰϮͿ͕�

ĐŽŵƉƌŽŵŝƐĞƐ� ĚŽŵĂŝŶƐ� /s� ĂŶĚ� s� ĂŶĚ� ƌĞĂĐŚĞƐ� ŝŶƚŽ� ƚŚĞ� ĚĞĐŽĚŝŶŐ� ĐĞŶƚĞƌ� ƵƉŽŶ� ƌŝďŽƐŽŵĞ� ďŝŶĚŝŶŐ͘� hƉŽŶ�

ƚƌĂŶƐůĂƚŝŽŶ͕�ůĂƌŐĞ�ƐƚƌƵĐƚƵƌĂů�ƌĞĂƌƌĂŶŐĞŵĞŶƚƐ�ŽĨ�ƚŚĞ��ͲŵŽĚƵůĞ�ƌĞůĂƚŝǀĞ�ƚŽ�ƚŚĞ�EͲŵŽĚƵůĞ�ŽĐĐƵƌ͘�dŚĞ�EͲ�ĂŶĚ�

�ͲŵŽĚƵůĞƐ�ĂƌĞ�ĐŽŶŶĞĐƚĞĚ�ǀŝĂ�ĚŽŵĂŝŶ�///�ŽĨ��Ĩƚ�;�ĨƚͲ///Ϳ͘�KƵƌ�,�Ͳy�ŵĞĂƐƵƌĞŵĞŶƚƐ�ƌĞǀĞĂůĞĚ�ƚŚĂƚ�ĚŽŵĂŝŶ�///�

;ƌĞƐŝĚƵĞƐ�ϰϴϯͲϱϲϱͿ�ŝƐ�ƐƚƌƵĐƚƵƌĂůůǇ�ŵŽƌĞ�ĚǇŶĂŵŝĐ�ƚŚĂŶ�ƚŚĞ�ŽƚŚĞƌ�ĚŽŵĂŝŶƐ͘�DŽƌĞŽǀĞƌ͕�ǁĞ�ĨŝŶĚ�ƚŚĂƚ��ĨƚͲ///�ŝƐ�

ŶŽƚ�ŶĂƚŝǀĞůǇ�ĨŽůĚĞĚ�ŝŶ�ŝƐŽůĂƚŝŽŶ͘�dŚŝƐ�ƐŵĂůů�ĚŽŵĂŝŶ�;ϴϮ�ĂŵŝŶŽ�ĂĐŝĚƐͿ�ĐŽŶƚĂŝŶƐ�ƐĞǀĞƌĂů�ŚǇĚƌŽƉŚŽďŝĐ�ƌĞƐŝĚƵĞ�



Ͳ�ϭϵϯ�Ͳ��
�

ƐĞŐŵĞŶƚƐ͕�ǁŚŝĐŚ�ŵĂǇ�ĨŽƌŵ�ŝŶƚĞƌĨĂĐĞƐ�ǁŝƚŚ�ŽƚŚĞƌ�ĚŽŵĂŝŶƐ�ŝŶ�ƚŚĞ�ĨƵůůͲůĞŶŐƚŚ�ƉƌŽƚĞŝŶ͘�&ůĞǆŝďŝůŝƚǇ�ŽĨ�ĚŽŵĂŝŶ�

///�ĐŽŶŶĞĐƚŝŶŐ�ƚŚĞ�ƌĂƚŚĞƌ�ƌŝŐŝĚ�ŵŽĚƵůĞƐ��ĨƚͲE�ĂŶĚ��ĨƚͲ��ŵŝŐŚƚ�ďĞ�ĨƵŶĐƚŝŽŶĂůůǇ�ŝŵƉŽƌƚĂŶƚ͘�^ƚĂďŝůŝǌĂƚŝŽŶ�ŽĨ�

ƚŚŝƐ�ĚŽŵĂŝŶ͕�ĂƐ�ŝŶĚƵĐĞĚ�ďǇ�ďŝŶĚŝŶŐ�ŽĨ�^ŽƌĚĂƌŝŶ�;&ŝŐƵƌĞ�ϭϳͿ�Žƌ�ĨƵƐŝĚŝĐ�ĂĐŝĚ͕�ŝŶŚŝďŝƚƐ��Ĩƚ�ĨƵŶĐƚŝŽŶ͘�tŚŝůĞ�ďĞŝŶŐ�

ĨƵŶĐƚŝŽŶĂůůǇ� ŝŵƉŽƌƚĂŶƚ� ƚŽ� ĂůůŽǁ� ůĂƌŐĞ� ĐŽŶĨŽƌŵĂƚŝŽŶĂů� ĐŚĂŶŐĞƐ� ƌĞƋƵŝƌĞĚ� ŝŶ� ƚŚĞ� ŵŽůĞĐƵůĞ͕� ƚŚĞ� ŝŶƚƌŝŶƐŝĐ�

ĨůĞǆŝďŝůŝƚǇ�ŽĨ�ĚŽŵĂŝŶ�///�ŵĂǇ�ŝŶƚĞƌĨĞƌĞ�ǁŝƚŚ�ĨŽůĚŝŶŐ�ŽĨ�ƚŚĞ�ƚŽƉŽůŽŐŝĐĂůůǇ�ĐŽŵƉůĞǆ�ĨůĂŶŬŝŶŐ�ŵŽĚƵůĞƐ��ĨƚͲE�ĂŶĚ�

�ĨƚͲ�͘��

�

ϱ͘ϯ͘Ϯ� ,ŐŚϭ�ďŝŶĚƐ�ƚŽ��Ĩƚ�ĚŽŵĂŝŶ�///�

tĞ� ĨŝŶĚ� ƚŚĂƚ�,ŐŚϭ� ďŝŶĚƐ� ƚŽ� ĚŽŵĂŝŶ� ///� ŽĨ� �Ĩƚ͕� ĂƐ� ũƵĚŐĞĚ� ďǇ� ŽƵƌ� ĐƌŽƐƐůŝŶŬŝŶŐ� ĂŶĚ� ŚǇĚƌŽŐĞŶͲĚĞƵƚĞƌŝƵŵ�

ĞǆĐŚĂŶŐĞ�;,�ͲyͿ�ƌĞƐƵůƚƐ͘�dŚŝƐ�ŝŶƚĞƌĂĐƚŝŽŶ�ƉƌŽďĂďůǇ�ŽĐĐƵƌƐ�ĐŽͲƚƌĂŶƐůĂƚŝŽŶĂůůǇ͕�ĂƐ�ƐŽŽŶ�ĂƐ�ĚŽŵĂŝŶ�///�ŽĨ��Ĩƚ�

ĞŵĞƌŐĞƐ�ĨƌŽŵ�ƚŚĞ�ƌŝďŽƐŽŵĂů�Ğǆŝƚ�ƚƵŶŶĞů͘�dŚŝƐ�ŝƐ�ĐŽŶƐŝƐƚĞŶƚ�ǁŝƚŚ�ƚŚĞ�ĞŶƌŝĐŚŵĞŶƚ�ŽĨ�ƌŝďŽƐŽŵĂů�ƉƌŽƚĞŝŶƐ�ƵƉŽŶ�

,ŐŚϭͲ&>�'� ƉƵůůͲĚŽǁŶ͘� dŚĞ� ƐƚƌƵĐƚƵƌĞ� ŽĨ� ,ŐŚϭ͕� ǁŚŝĐŚ� ǁĞ� ƐŽůǀĞĚ� ďǇ� yͲƌĂǇ� ĐƌǇƐƚĂůůŽŐƌĂƉŚǇ͕� ƌĞǀĞĂůƐ� ĂŶ�

ĂƌŵĂĚŝůůŽ�ƌĞƉĞĂƚ�ĨŽůĚ͘�WƌŽƚĞŝŶƐ�ǁŝƚŚ�ƚŚŝƐ�ĐƵƌǀĞĚ�DͲŚĞůŝĐĂů�ƚŽƉŽůŽŐǇ�ŚĂǀĞ�ďĞĞŶ�ĨŽƵŶĚ�ƚŽ�ŝŶƚĞƌĂĐƚ�ǁŝƚŚ�ĂŶ�

ĞǆƚĞŶĚĞĚ�ƉĞƉƚŝĚĞ�ŽĨ�ƚŚĞŝƌ�ŝŶƚĞƌĂĐƚŝŽŶ�ƉĂƌƚŶĞƌ�ǀŝĂ�ŚǇĚƌŽƉŚŽďŝĐ�ƌĞƐŝĚƵĞƐ�ĂůŽŶŐ�ƚŚĞŝƌ�ĐŽŶĐĂǀĞ�ĨĂĐĞ�;ZĞŝĐŚĞŶ�

Ğƚ�Ăů͕͘�ϮϬϭϰͿ͘�dŚĞ�ĐŽŶĐĂǀĞ�ĨĂĐĞ�ŝŶ�,ŐŚϭ�ŚĂƌďŽƌƐ�Ă�ĐŽŶƐĞƌǀĞĚ�ƐƵƌĨĂĐĞ�ĂƌĞĂ�ƚŚĂƚ�ĐŽŶƚƌŝďƵƚĞƐ�ƚŽ�ƚŚĞ�ŝŶƚĞƌĂĐƚŝŽŶ�

ǁŝƚŚ� �Ĩƚ͕� ĂƐ� ƐŚŽǁŶ� ďǇ�ŵƵƚĂƚŝŽŶ͘� >ŝŬĞǁŝƐĞ͕� Ă� ĐŽŶƐĞƌǀĞĚ� ƐƵƌĨĂĐĞ� ŐƌŽŽǀĞ� ĐůŽƐĞ� ƚŽ� ƚŚĞ� ,ŐŚϭ�EͲƚĞƌŵŝŶƵƐ�

ĐŽŶƚƌŝďƵƚĞƐ�ƚŽ��Ĩƚ�ďŝŶĚŝŶŐ͘�KƵƌ�,�Ͳy�ĂŶĂůǇƐŝƐ�ŝŶĚŝĐĂƚĞƐ�ƚŚĂƚ�ƚŚĞ�,ŐŚϭ�ďŝŶĚŝŶŐ�ƐŝƚĞ�ŽŶ��Ĩƚ�ĐŽŵƉƌŝƐĞƐ�ƌĞƐŝĚƵĞƐ�

ϱϮϮͲϱϰϬ͕�ůŽĐĂƚĞĚ�ŝŶ��ĨƚͲ///͘� /Ŷ�ĂŶ�ĞǆƚĞŶĚĞĚ�ĐŽŶĨŽƌŵĂƚŝŽŶ͕�ƚŚŝƐ�ƉĞƉƚŝĚĞ�ǁŽƵůĚ�ďĞ�ůŽŶŐ�ĞŶŽƵŐŚ�ƚŽ�ĐŽŶƚĂĐƚ�

ďŽƚŚ�ďŝŶĚŝŶŐ�ƐŝƚĞƐ�ŝŶ�,ŐŚϭ͘�KĨ�ŶŽƚĞ͕�ŝŶ�ƚŚĞ�,�Ͳy�ŵĞĂƐƵƌĞŵĞŶƚ͕��Ĩƚ�ƐĞƋƵĞŶĐĞ�ϱϮϮͲϱϰϬ�ŝƐ�ƌĞƉƌĞƐĞŶƚĞĚ�ďǇ�

ƐĞǀĞƌĂů� ƐŵĂůůĞƌ� ƉĞƉƚŝĚĞƐ͕� ǁŚŝĐŚ� ƐŚŽǁ� ĚŝƐƚŝŶĐƚ� ĚĞƵƚĞƌŝƵŵ� ŝŶĐŽƌƉŽƌĂƚŝŽŶ� ƌĂƚĞƐ͘� ^ŽŵĞ� ƌĞƐŝĚƵĞƐ� ĂƉƉĞĂƌ�

ƐƚƌŽŶŐůǇ�ƉƌŽƚĞĐƚĞĚ͕�ǁŚŝůĞ�ŽƚŚĞƌƐ�ĂƌĞ�ŵŽƌĞ�ĚǇŶĂŵŝĐ͘�dŚŝƐ�ŝƐ�ĐŽŶƐŝƐƚĞŶƚ�ǁŝƚŚ�Ă�ďŝͲƉĂƌƚŝƚĞ�ďŝŶĚŝŶŐ�ŝŶƚĞƌĨĂĐĞ�

ŽŶ�,ŐŚϭ͘�



Ͳ�ϭϵϰ�Ͳ��
�

/ŶƚĞƌĞƐƚŝŶŐůǇ͕�ĚŽŵĂŝŶ�///�ƐĞĞŵƐ�ƚŽ�ƚƌĂŶƐŝĞŶƚůǇ�ƵŶĨŽůĚ�ŝŶ�ŵĂƚƵƌĞ��Ĩƚ�ĞŶĂďůŝŶŐ�ďŝŶĚŝŶŐ�ŽĨ�,ŐŚϭ�ƚŽ�ĨƵŶĐƚŝŽŶĂů�

�Ĩƚ͘� /Ŷ� ǀŝƚƌŽ� ƚŚŝƐ� ,ŐŚϭͲ�Ĩƚ� ĐŽŵƉůĞǆ� ŝƐ� ƵŶƐƚĂďůĞ� ĂŶĚ� ǁĂƐ� ĚĞƚĞĐƚĞĚ� ŽŶůǇ� ďǇ� ĐƌŽƐƐůŝŶŬŝŶŐ͘� /Ŷ� ǀŝǀŽ͕� ƚŚŝƐ�

ŝŶƚĞƌĂĐƚŝŽŶ�ŝƐ�ƉƌĞƐƵŵĂďůǇ�ŶĞŐůŝŐŝďůĞ�ďĞĐĂƵƐĞ�ĐĞůůƵůĂƌ�ůĞǀĞůƐ�ŽĨ�,ŐŚϭ�;ϱ͘ϲ�ǆ�ϭϬϯ�ĐŽƉŝĞƐ�ƉĞƌ�ĐĞůůͿ�ĂƌĞ�ůŽǁ�ŝŶ�

ĐŽŵƉĂƌŝƐŽŶ�ƚŽ��Ĩƚ�;ϭ͘ϴ�ǆ�ϭϬϱ�ĐŽƉŝĞƐ�ƉĞƌ�ĐĞůůͿ�;<ƵůĂŬ�Ğƚ�Ăů͕͘�ϮϬϭϰͿ͘�dŚŝƐ�ƐƵŐŐĞƐƚƐ�ƚŚĂƚ�ƚŚĞ�ĐĞůůƵůĂƌ� ůĞǀĞů�ŽĨ�

,ŐŚϭ�ŝƐ�ĐĂƌĞĨƵůůǇ�ƌĞŐƵůĂƚĞĚ͘�/ŶĚĞĞĚ͕�,ŐŚϭ�ŽǀĞƌĞǆƉƌĞƐƐŝŽŶ�ƐĞĞŵĞĚ�ƚŽ�ƌĞĚƵĐĞ�ĐĞůůƵůĂƌ�ĨŝƚŶĞƐƐ�ŝŶ�Ă�ůĂƌŐĞͲƐĐĂůĞ�

ƐƵƌǀĞǇ�;zŽƐŚŝŬĂǁĂ�Ğƚ�Ăů͕͘�ϮϬϭϭͿ͘��

dŚĞ�ďŝŶĚŝŶŐ�ŽĨ�,ŐŚϭ�ƚŽ�ƚŚĞ�ŚǇĚƌŽƉŚŽďŝĐ�ĂŶĚ�ŝŶƚƌŝŶƐŝĐĂůůǇ�ĨůĞǆŝďůĞ�ĚŽŵĂŝŶ��ĨƚͲ///�ŵĂǇ�ƐƚĂďŝůŝǌĞ��Ĩƚ�ĨŽůĚŝŶŐ�

ŝŶƚĞƌŵĞĚŝĂƚĞƐ�ĂŶĚ�ƉƌĞǀĞŶƚ�ƉƌĞͲŵĂƚƵƌĞ�ƵŶƉƌŽĚƵĐƚŝǀĞ� ŝŶƚĞƌĂĐƚŝŽŶƐ͘�dŚŝƐ�ŵĂǇ�ƐĞƌǀĞ�ƚŽ�ŬĞĞƉ�ƚŚĞ�ĐŽŵƉůĞǆ�

ŵŽĚƵůĞƐ��ĨƚͲE�ĂŶĚ��ĨƚͲ��ĂƉĂƌƚ�ĂŶĚ�ĨĂĐŝůŝƚĂƚĞ�ƉƌŽŐƌĞƐƐŝŽŶ�ƚŽ�ƚŚĞŝƌ�ŶĂƚŝǀĞ�ƐƚĂƚĞƐ͘��ĚĚŝƚŝŽŶĂůůǇ͕�ǁĞ�ƐƵŐŐĞƐƚ�

ƚŚĂƚ�,ŐŚϭ�ƌĞĐƌƵŝƚƐ�ĨƵƌƚŚĞƌ�ŵĞŵďĞƌƐ�ŽĨ�ƚŚĞ�ĐŚĂƉĞƌŽŶĞ�ŶĞƚǁŽƌŬ�ƚŽ�ĂƐƐŝƐƚ�ŝŶ�ƚŚĞ�ĨŽůĚŝŶŐ�ŽĨ��Ĩƚ͘�

�

ϱ͘ϯ͘ϯ� ,ŐŚϭ�ĨĂĐŝůŝƚĂƚĞƐ�ƚŚĞ�ƌĞĐƌƵŝƚŵĞŶƚ�ŽĨ�ŵŽůĞĐƵůĂƌ�ĐŚĂƉĞƌŽŶĞƐ�ƚŽ��Ĩƚ�ĨŽůĚŝŶŐ�ŝŶƚĞƌŵĞĚŝĂƚĞƐ�

,ŐŚϭ�ŵĂǇ�ƐĞƌǀĞ�Ă�ĚƵĂů�ĨƵŶĐƚŝŽŶ�ŝŶ��Ĩƚ�ĨŽůĚŝŶŐ͗�/ƚ�ŵŝŐŚƚ�ƉƌĞǀĞŶƚ�ĚŽŵĂŝŶ�///�ĨƌŽŵ�ŝŶƚĞƌĨĞƌŝŶŐ�ǁŝƚŚ�ƚŚĞ�ĨŽůĚŝŶŐ�

ŽĨ�ƚŚĞ�EͲ�ĂŶĚ��ͲƚĞƌŵŝŶĂů�ŵŽĚƵůĞƐ�ŝŶ��Ĩƚ�ĂŶĚ�Ăƚ�ƚŚĞ�ƐĂŵĞ�ƚŝŵĞ�ƌĞĐƌƵŝƚ�ĂĚĚŝƚŝŽŶĂů�ĐŚĂƉĞƌŽŶĞƐ�ƚŽ��Ĩƚ�ĨŽůĚŝŶŐ�

ŝŶƚĞƌŵĞĚŝĂƚĞƐ͘� dŚĞ� dZŝ�� ĐŽŵƉůĞǆ� ƐĞĞŵƐ� ƚŽ� ďĞ� ƌĞĐƌƵŝƚĞĚ� ƚŽ� ĞůĞŵĞŶƚƐ� ŝŶ� ƚŚĞ� �ͲƚĞƌŵŝŶĂů� �Ĩƚ� ĚŽŵĂŝŶƐ͘�

/ŵƉŽƌƚĂŶƚůǇ͕�ƚŚĞ�ƚƌƵŶĐĂƚĞĚ�ĐŽŶƐƚƌƵĐƚƐ��ĨƚͲ��ĂŶĚ��ĨƚͲ///н��ĐĂŶŶŽƚ�ĨŽůĚ�ƐƚĂďůǇ�ŝŶ�ŝƐŽůĂƚŝŽŶ�ďƵƚ�ƌĞŵĂŝŶ�dZŝ�Ͳ

ďŽƵŶĚ�Žƌ�ĂŐŐƌĞŐĂƚĞ͘�dŚŝƐ�ŝƐ�ĂŶĂůŽŐŽƵƐ�ƚŽ�ƚŚĞ�ďĞŚĂǀŝŽƌ�ŽďƐĞƌǀĞĚ�ĨŽƌ�ƚŚĞ�ƐƚƌƵĐƚƵƌĂů�ŚŽŵŽůŽŐƵĞ�Ś^ŶƵϭϭϰ�

;ZƵƐƐŵĂŶŶ� Ğƚ� Ăů͕͘� ϮϬϭϮͿ͘� �ŶĂůǇƐŝƐ� ŽĨ� Ś^ŶƵϭϭϰ� ƌĞǀĞĂůĞĚ� ƚŚĂƚ� �ͲƚĞƌŵŝŶĂů� ĨƌĂŐŵĞŶƚƐ� ƵƉ� ƚŽ� ϯϳ� Ŭ�Ă�ǁĞƌĞ�

ĞŶĐĂƉƐƵůĂƚĞĚ�ďǇ�dZŝ��ĂŶĚ�ƚŚĂƚ�ʹ�ĂƐ�ŝŶ�ƚŚĞ�ĐĂƐĞ�ŽĨ��Ĩƚ�Ͳ�ƚŚĞ��ͲƚĞƌŵŝŶĂů�ŵŽĚƵůĞ�ǁŽƵůĚ�ŽŶůǇ�ĨŽůĚ�ƐƚĂďůǇ�ŝŶ�ƚŚĞ�

ĐŽŶƚĞǆƚ�ŽĨ�ƚŚĞ�ĨƵůůͲůĞŶŐƚŚ�ƉƌŽƚĞŝŶ͘��

dŽ�ĂůůŽǁ�ĞĨĨŝĐŝĞŶƚ�ƐƚƌƵĐƚƵƌĂů��Ĩƚ�ŵĂƚƵƌĂƚŝŽŶ͕�ƚŚĞ�EͲŵŽĚƵůĞ�ƉƌŽďĂďůǇ�ŵƵƐƚ�ĐŽŵƉůĞƚĞƐ�ĨŽůĚŝŶŐ�ĨŝƌƐƚ͘�,ŽǁĞǀĞƌ͕�

ƚŚĞ�EͲŵŽĚƵůĞ�ĂůƐŽ�ƐĞĞŵƐ�ƚŽ�ƌĞƋƵŝƌĞ�ĂƐƐŝƐƚĂŶĐĞ�ďǇ�ĞƵŬĂƌǇŽƚŝĐ�ĐŚĂƉĞƌŽŶĞƐ͘�KƵƌ�ĂƚƚĞŵƉƚƐ�ƚŽ�ĞǆƉƌĞƐƐ��ĨƚͲE�

ŝŶ��͘�ĐŽůŝ� ĨĂŝůĞĚ�ƚŽ�ƉƌŽĚƵĐĞ�ƐŽůƵďůĞ�ƉƌŽƚĞŝŶ͘�dŚĞ�,ƐƉϳϬ�ƐǇƐƚĞŵ�ŵĂǇ�ďĞ�ŝŶǀŽůǀĞĚ�ŝŶ�ƚŚĞ�ĨŽůĚŝŶŐ�ŽĨ�ƚŚĞ�EͲ



Ͳ�ϭϵϱ�Ͳ��
�

ƚĞƌŵŝŶĂů�ĚŽŵĂŝŶƐ͕�ĂƐ�ƚŚĞ�ǇĞĂƐƚ�,ƐƉϳϬ͕�^ƐĂϭ͕�ĂŶĚ�ŝƚƐ�ĐŽĨĂĐƚŽƌ͕�zĚũϭ͕�ǁĞƌĞ�ĨŽƵŶĚ�ƚŽ�ĂƐƐŽĐŝĂƚĞ�ǁŝƚŚ�,ŐŚϭ�ŝŶ�

ǀŝǀŽ͘��ŶŽƚŚĞƌ�ĐĂŶĚŝĚĂƚĞ�ĨŽƌ�ĨŽůĚŝŶŐ�ƚŚĞ�EͲŵŽĚƵůĞ�ŝƐ�,ƐƉϵϬ͘�dŚĞ�ĂĐƚŝǀŝƚǇ�ŽĨ�ƚŚĞ�,ƐƉϵϬ�ƐǇƐƚĞŵ�ƐĞĞŵƐ�ƚŽ�ďĞ�

ŝŵƉŽƌƚĂŶƚ�ĨŽƌ��Ĩƚ�ĨŽůĚŝŶŐ͕�ďĞĐĂƵƐĞ�ĐĞůůƵůĂƌ��Ĩƚ�ůĞǀĞůƐ�ĂƌĞ�ƐŝŐŶŝĨŝĐĂŶƚůǇ�ƌĞĚƵĐĞĚ�ƵƉŽŶ�ƚƌĞĂƚŵĞŶƚ�ŽĨ�ĐĞůůƐ�ǁŝƚŚ�

ƚŚĞ� ƐƉĞĐŝĨŝĐ�,ƐƉϵϬ� ŝŶŚŝďŝƚŽƌ�DĂĐďĞĐŝŶ͘���ĚŝƌĞĐƚ� ŝŶƚĞƌĂĐƚŝŽŶ�ďĞƚǁĞĞŶ� ƚŚĞ�ĞƐƐĞŶƚŝĂů�,ƐƉϵϬ� ĐŽĐŚĂƉĞƌŽŶĞ�

�ŶƐϭ�ĂŶĚ�,ŐŚϭ�ŵĂǇ�ŚĞůƉ�ƌĞĐƌƵŝƚŝŶŐ�,ƐƉϵϬ�ƚŽ��Ĩƚ�ĨŽůĚŝŶŐ�ŝŶƚĞƌŵĞĚŝĂƚĞƐ�;'ĂǀŝŶ�Ğƚ�Ăů͕͘�ϮϬϬϲ͖�^ĐŚůĞĐŚƚ�Ğƚ�Ăů͕͘�

ϮϬϭϮ͖�dĂƌĂƐƐŽǀ�Ğƚ�Ăů͕͘�ϮϬϬϴͿ͘��ŶƐϭ�ŝƐ�Ă�ŵƵůƚŝͲĚŽŵĂŝŶ�ƉƌŽƚĞŝŶ�ƚŚĂƚ�ŝŶƚĞƌĂĐƚƐ�ǀŝĂ�ŝƚƐ�dWZ�ĚŽŵĂŝŶ�ǁŝƚŚ�ƚŚĞ��Ͳ

ƚĞƌŵŝŶĂů���s��ƉĞƉƚŝĚĞ�ŽĨ�,ƐƉϵϬ� ;,ĂŝŶǌů�Ğƚ�Ăů͕͘�ϮϬϬϰͿ͘��ŽƚŚ� ƚŚĞƐĞ� ŝŶƚĞƌĂĐƚŝŽŶƐ�ĂƉƉĞĂƌ� ƚŽ�ďĞ�ĐŽŶƐĞƌǀĞĚ�

ďĞƚǁĞĞŶ�ƚŚĞ�ŚƵŵĂŶ�ŽƌƚŚŽůŽŐƵĞƐ�dd�ϰ�;�ŶƐϭͿ͕�&ĂŵϮϬϯ�;,ŐŚϭͿ�ĂŶĚ�,ƐƉϵϬ�;,ƵƚƚůŝŶ�Ğƚ�Ăů͕͘�ϮϬϭϳ͖�,ƵƚƚůŝŶ�Ğƚ�

Ăů͕͘�ϮϬϭϱ͖�<ƌŝƐƚĞŶƐĞŶ�Ğƚ�Ăů͕͘�ϮϬϭϮͿ͘��

dĂŬŝŶŐ� ƚŚĞƐĞ� ĨŝŶĚŝŶŐƐ� ƚŽŐĞƚŚĞƌ͕� Ă� ŵŽĚĞů� ĞŵĞƌŐĞƐ� ;&ŝŐƵƌĞ� ϭϴͿ� ŝŶ� ǁŚŝĐŚ� ,ŐŚϭ� ĂƐƐŝƐƚƐ� �Ĩƚ� ĨŽůĚŝŶŐ� ďǇ�

ĐŽŽƌĚŝŶĂƚŝŶŐ�ƚŚĞ�ĂĐƚŝŽŶ�ŽĨ�,ƐƉϵϬ�ĂŶĚ�dZŝ�͘�,ŐŚϭ�ĂŶĚ�dZŝ��ǁŽƵůĚ�ƐŚŝĞůĚ�ĚŽŵĂŝŶ�///�ĂŶĚ�ƚŚĞ��ͲŵŽĚƵůĞ�ŽĨ�

�Ĩƚ͕�ƌĞƐƉĞĐƚŝǀĞůǇ͕�ƵŶƚŝů�ƚŚĞ�EͲŵŽĚƵůĞ�ŝƐ�ŶĂƚŝǀĞůǇ�ĨŽůĚĞĚ͘�/Ŷ�ƚŚĞ�ŶĞǆƚ�ƐƚĞƉ͕�dZŝ��ĂƐƐŝƐƚƐ�ƚŚĞ�ĨŽůĚŝŶŐ�ŽĨ�ƚŚĞ��Ͳ

ŵŽĚƵůĞ͕� ĨŽůůŽǁĞĚ� ďǇ� ƌĞůĞĂƐĞ� ŽĨ� ƚŚĞ� ĐŚĂƉĞƌŽŶŝŶ͘� ^ƚƌƵĐƚƵƌĞ� ĨŽƌŵĂƚŝŽŶ� ŝŶ� ĚŽŵĂŝŶ� ///� ĨŝŶĂůůǇ� ƚƌŝŐŐĞƌƐ� ƚŚĞ�

ƌĞůĞĂƐĞ�ŽĨ�,ŐŚϭ͘�,ƐƉϵϬ�ĂŶĚ�dZŝ��ŵŝŐŚƚ�ƚŚƵƐ�ƉƌŽĐĞƐƐ��Ĩƚ�ĨŽůĚŝŶŐ�ŝŶƚĞƌŵĞĚŝĂƚĞƐ�ƐĞƋƵĞŶƚŝĂůůǇ͘��ůƚŚŽƵŐŚ�ƚŚŝƐ�

ŝƐ�Ă�ƉůĂƵƐŝďůĞ�ƐĐĞŶĂƌŝŽ͕�ďŽƚŚ�ĐŚĂƉĞƌŽŶĞ�ƐǇƐƚĞŵƐ�ŵĂǇ�ĂůƐŽ�ƉƌŽǀŝĚĞ�ĂůƚĞƌŶĂƚŝǀĞ�Žƌ�ƉĂƌƚŝĂůůǇ�ƌĞĚƵŶĚĂŶƚ�ĨŽůĚŝŶŐ�

ƉĂƚŚǁĂǇƐ͘��

�

&ŝŐƵƌĞ�ϭϴ͗�DŽĚĞů�ĨŽƌ�,ŐŚϭͲĂƐƐŝƐƚĞĚ�ĨŽůĚŝŶŐ�ŽĨ��Ĩƚ͘�,ŐŚϭ�ďŝŶĚƐ�ƚŽ�ĚŽŵĂŝŶ�///͕�ƉƌŽďĂďůǇ�ĐŽͲƚƌĂŶƐůĂƚŝŽŶĂůůǇ�;ϭͿ͘��ĨƚĞƌ��Ĩƚ�

ƐǇŶƚŚĞƐŝƐ�ŝƐ�ĐŽŵƉůĞƚĞĚ͕�dZŝ��ŝƐ�ƌĞĐƌƵŝƚĞĚ�ƚŽ�ƚŚĞ��ͲŵŽĚƵůĞ�ŽĨ��Ĩƚ͘�;ϮͿ͘�/Ŷ�ƚŚŝƐ�ƐƚĂƚĞ͕�ĚŽŵĂŝŶ�///�ĂŶĚ�ƚŚĞ��ͲŵŽĚƵůĞ�ŝŶ��Ĩƚ�

ĂƌĞ�ĞĨĨĞĐƚŝǀĞůǇ� ƐŚŝĞůĚĞĚ� ƚŽ� ĨĂĐŝůŝƚĂƚĞ� ĨŽůĚŝŶŐ�ŽĨ� ƚŚĞ�EͲŵŽĚƵůĞ�ƵŶŝŵƉĂŝƌĞĚ�ďǇ�ĂďĞƌƌĂŶƚ� ŝŶƚƌĂŵŽůĞĐƵůĂƌ� ŝŶƚĞƌĂĐƚŝŽŶƐ͕�



Ͳ�ϭϵϲ�Ͳ��
�

ƉƌŽďĂďůǇ�ǁŝƚŚ�ĂƐƐŝƐƚĂŶĐĞ�ŽĨ�,ƐƉϵϬ͘� dZŝ�� ůĞĂǀĞƐ� ƚŚĞ� ĐŽŵƉůĞǆ�ĂĨƚĞƌ� ƐƵĐĐĞƐƐĨƵů� ĨŽůĚŝŶŐ�ŽĨ� ƚŚĞ��ͲŵŽĚƵůĞ� ;ϯͿ͘� &ŝŶĂůůǇ͕�

ĚŽŵĂŝŶ�///�ĂĚŽƉƚƐ�ŝƚƐ�ŶĂƚŝǀĞ�ĨŽůĚ�ĂŶĚ�,ŐŚϭ�ŝƐ�ƌĞůĞĂƐĞĚ�;ϰͿ͘�&ŝŐƵƌĞ�ĂĚĂƉƚĞĚ�ĨƌŽŵ�;DŽŶŬĞŵĞǇĞƌ�Ăƚ�Ăů͕͘�ϮϬϭϴͿ͘���

�

ϱ͘ϯ͘ϰ� �ďƐĞŶĐĞ�ŽĨ�,ŐŚϭ�ůĞĂĚƐ�ƚŽ��Ĩƚ�ŵŝƐĨŽůĚŝŶŐ��

/Ŷ� ƚŚĞ�ĂďƐĞŶĐĞ�ŽĨ�,ŐŚϭ͕� ƚŚĞ� ĨŽůĚŝŶŐ�ĞĨĨŝĐŝĞŶĐǇ�ŽĨ��Ĩƚ� ŝƐ� ƌĞĚƵĐĞĚ͘��Ĩƚ� ĨŽůĚŝŶŐ� ŝŶƚĞƌŵĞĚŝĂƚĞƐ�ĂĐĐƵŵƵůĂƚĞ͕�

ǁŚŝĐŚ�ĞǀĞŶƚƵĂůůǇ�ĂŐŐƌĞŐĂƚĞ�Žƌ�ĂƌĞ�ĐůĞĂƌĞĚ�ďǇ�ĚĞŐƌĂĚĂƚŝŽŶ͘�/ŵƉŽƌƚĂŶƚůǇ͕�,',ϭ�ŝƐ�ŶŽƚ�ĂŶ�ĞƐƐĞŶƚŝĂů�ŐĞŶĞ�ĂŶĚ�

ĐĞůůƐ�ƚŽůĞƌĂƚĞ�ůŽƐƐ�ŽĨ�,',ϭ�Ͳ�ĂŶĚ�ƚŚĞ�ƌĞƐƵůƚŝŶŐ�ĚĞĐƌĞĂƐĞ�ŝŶ��Ĩƚ� ůĞǀĞůƐ�Ͳ�ǁŝƚŚŽƵƚ�ĂƉƉĂƌĞŶƚ�ŐƌŽǁƚŚ�ĚĞĨĞĐƚ͘�

dŚƵƐ�ĐĞůůƐ�ĂƉƉĞĂƌ�ƚŽ�ƉƌŽĚƵĐĞ��Ĩƚ�ŝŶ�ĞǆĐĞƐƐ�ƚŽ�ǁŚĂƚ�ŝƐ�ƌĞƋƵŝƌĞĚ�ĨŽƌ�ŽƉƚŝŵĂů�ŐƌŽǁƚŚ�ŝŶ�ĐƵůƚƵƌĞ͘�/ŶĚĞĞĚ͕��Ĩƚ�

ŵĂŬĞƐ�ƵƉ�ϭ͘ϱй�ŽĨ�ƚŽƚĂů�ƉƌŽƚĞŝŶ�ŵĂƐƐ�ŝŶ�^͘�ĐĞƌĞǀŝƐŝĂĞ�;>ŝĞďĞƌŵĞŝƐƚĞƌ�Ğƚ�Ăů͕͘�ϮϬϭϰͿ͘�'ŝǀĞŶ�ƚŚĞ�ĐŽŵƉůĞǆŝƚǇ�ŽĨ�

�Ĩƚ� ĨŽůĚŝŶŐ͕� ĂůƚĞƌŶĂƚŝǀĞ� ĨŽůĚŝŶŐ� ƉĂƚŚǁĂǇƐ�ŵĂǇ� ĞǆŝƐƚ� ƚŽ� ĞŶƐƵƌĞ� ƚŚĞ� ĂůůŽĐĂƚŝŽŶ� ŽĨ� ƐƵĨĨŝĐŝĞŶƚ� �Ĩƚ� ĐĂƉĂĐŝƚǇ�

ƌĞƋƵŝƌĞĚ�ĨŽƌ�ǀŝĂďŝůŝƚǇ͘��

/ŶĞĨĨŝĐŝĞŶƚ� ĨŽůĚŝŶŐ� ŽĨ� ƚŚĞ� ŚŝŐŚůǇ� ĂďƵŶĚĂŶƚ� �Ĩƚ� ƉƌŽƚĞŝŶ� ĚƵĞ� ƚŽ� ĂďƐĞŶĐĞ� ŽĨ� ,ŐŚϭ� ƉƌŽďĂďůǇ� ĐŽŶƐƚŝƚƵƚĞƐ� Ă�

ĐŽŶƐŝĚĞƌĂďůĞ� ƐƚƌĞƐƐ� ƚŽ� ƚŚĞ� ĐĞůů͕� ĞƐƉĞĐŝĂůůǇ� ĚƵƌŝŶŐ� ƌĂƉŝĚ� ĐĞůů� ŐƌŽǁƚŚ͘� �� ƐƵďƐƚĂŶƚŝĂů� ƉĂƌƚ� ŽĨ� ƚŚĞ� ĐǇƚŽƐŽůŝĐ�

ĐŚĂƉĞƌŽŶĞƐ�ŵŝŐŚƚ�ďĞ�ŽĐĐƵƉŝĞĚ�ǁŝƚŚ�ĚĞͲŶŽǀŽ�ƐǇŶƚŚĞƐŝǌĞĚ��Ĩƚ͘�dŚŝƐ�ĨŽůĚŝŶŐ�ƐƚƌĞƐƐ�ŵĂǇ�ďĞ�ƚŚĞ�ĐĂƵƐĞ�ŽĨ�ƚŚĞ�

ŚĞĂƚ� ƐŚŽĐŬ� ƌĞƐƉŽŶƐĞ� ŽďƐĞƌǀĞĚ� ƵƉŽŶ� ĚĞůĞƚŝŽŶ� ŽĨ�,',ϭ� ;�ƌĂŶĚŵĂŶ� Ğƚ� Ăů͕͘� ϮϬϭϮͿ͘� ^ĞǀĞƌĂů� ŽďƐĞƌǀĂƚŝŽŶƐ�

ƐƵŐŐĞƐƚ�ƚŚĂƚ�ĚĞůĞƚŝŽŶ�ŽĨ�,',ϭ�ŝŶĐƌĞĂƐĞƐ�ƚŚĞ�ĐĞůůƵůĂƌ�ĚĞƉĞŶĚĞŶĐĞ�ŽŶ�,ƐƉϵϬ�;�ůĨŽƌĚ�ĂŶĚ��ƌĂŶĚŵĂŶ͕�ϮϬϭϴͿ͘�

&ŝƌƐƚ͕� ĐĞůůƐ� ĚĞůĞƚĞĚ� ĨŽƌ�,',ϭ� ĂƌĞ� ƐĞŶƐŝƚŝǀĞ� ƚŽ� ƚŚĞ� ,ƐƉϵϬ� ŝŶŚŝďŝƚŽƌ� DĂĐďĞĐŝŶ� ;DĐ�ůĞůůĂŶ� Ğƚ� Ăů͕͘� ϮϬϬϳͿ͘�

�ĚĚŝƚŝŽŶĂůůǇ͕�ƚŚĞ�ĐŽŵďŝŶĞĚ�ĚĞůĞƚŝŽŶ�ŽĨ�,',ϭ�ĂŶĚ�ƐĞǀĞƌĂů�ĐŽŵƉŽŶĞŶƚƐ�ŽĨ�ƚŚĞ�,ƐƉϵϬ�ƐǇƐƚĞŵ͕�ƐƵĐŚ�ĂƐ��WZϳ͕�

,�,ϭ͕�,^�ϴϮ͕�,^WϴϮ�ĂŶĚ�^d/ϭ͕�ĐĂƵƐĞƐ�Ă�ƐǇŶƚŚĞƚŝĐ�ŐƌŽǁƚŚ�ĚĞĨĞĐƚ�;�ŽƐƚĂŶǌŽ�Ğƚ�Ăů͕͘�ϮϬϭϬͿ͘��ĞůĞƚŝŽŶ�ŽĨ�,',ϭ�

ĨƵƌƚŚĞƌŵŽƌĞ�ĚŝƐƉůĂǇƐ�ŶĞŐĂƚŝǀĞ�ŐĞŶĞƚŝĐ�ŝŶƚĞƌĂĐƚŝŽŶƐ�ǁŝƚŚ�ƐƵďƵŶŝƚƐ�ŽĨ�ƚŚĞ��ŽŶƐĞƌǀĞĚ�KůŝŐŽŵĞƌŝĐ�'ŽůŐŝ�;�K'Ϳ�

ĐŽŵƉůĞǆ�;�ŽƐƚĂŶǌŽ�Ğƚ�Ăů͕͘�ϮϬϭϬͿ͕�Ă�ǀĞƐŝĐůĞ�ƚĞƚŚĞƌŝŶŐ�ĐŽŵƉůĞǆ�ƚŚĂƚ�ƌĞƋƵŝƌĞƐ�,ƐƉϵϬ�ĨŽƌ�ĂƐƐĞŵďůǇ�;DĐ�ůĞůůĂŶ�

Ğƚ�Ăů͕͘�ϮϬϬϳͿ͘�dŚŝƐ�ƐƵŐŐĞƐƚƐ�ƚŚĂƚ�,ƐƉϵϬ�ĐĂƉĂĐŝƚǇ�ďĞĐŽŵĞƐ�ůŝŵŝƚŝŶŐ�ĨŽƌ�ĐĞůů�ŐƌŽǁƚŚ�ǁŚĞŶ�,ŐŚϭ�ŝƐ�ĂďƐĞŶƚ͘�

tŚĞƚŚĞƌ� ƚŚĞ� ĨƵŶĐƚŝŽŶĂů� ĐŽŽƉĞƌĂƚŝŽŶ� ďĞƚǁĞĞŶ� ,ŐŚϭ� ĂŶĚ� ,ƐƉϵϬ� ĞǆƚĞŶĚƐ� ƚŽ� ŽƚŚĞƌ� ƉƌŽĐĞƐƐĞƐ� ƚŚĂŶ� �Ĩƚ�

ďŝŽŐĞŶĞƐŝƐ�ƌĞŵĂŝŶƐ�ƚŽ�ďĞ�ĞƐƚĂďůŝƐŚĞĚ͘����



Ͳ�ϭϵϳ�Ͳ��
�

ϲ� �ŽŶĐůƵƐŝŽŶ�ĂŶĚ�KƵƚůŽŽŬ�

hŶĚĞƌƐƚĂŶĚŝŶŐ�ƚŚĞ�ĂƌĐŚŝƚĞĐƚƵƌĞ�ŽĨ�ƚŚĞ�dZŝ��ĐŽŵƉůĞǆ�ŚĞůƉĞĚ�ŝŶ�ƵŶĚĞƌƐƚĂŶĚŝŶŐ�ƚŚĞ�ĂƐǇŵŵĞƚƌŝĐ�ƉƌŽƉĞƌƚŝĞƐ�

ŽĨ�ƚŚĞ�ĐŚĂƉĞƌŽŶŝŶ�ĐĂǀŝƚǇ�ĂŶĚ�ƉƌŽǀŝĚĞĚ�ŶĞǁ�ŝŶƐŝŐŚƚƐ�ŝŶƚŽ�ƚŚĞ�ĨŽůĚŝŶŐ�ŵĞĐŚĂŶŝƐŵ�ŽĨ�dZŝ�͘�sĞƌǇ�ƌĞĐĞŶƚůǇ͕�

�ĂůĐŚŝŶ�Ğƚ�Ăů͘�ƵƐĞĚ�,�Ͳy�ƚŽ�ĨŽůůŽǁ�ƚŚĞ�ĐŽŶĨŽƌŵĂƚŝŽŶĂů�ƉƌŽŐƌĞƐƐŝŽŶ�ŽĨ�ĂĐƚŝŶ�ĚƵƌŝŶŐ�dZŝ�ͲŵĞĚŝĂƚĞĚ�ĨŽůĚŝŶŐ�

;�ĂůĐŚŝŶ�Ğƚ�Ăů͕͘�ϮϬϭϴͿ͘�dŚŝƐ�ĂŶĂůǇƐŝƐ�ĐŽŶĨŝƌŵĞĚ�ƚŚĂƚ�ŶŽŶͲŶĂƚŝǀĞ�ĂĐƚŝŶ�ďŝŶĚƐ�ƚŽ�ƐĞǀĞƌĂů�dZŝ��ƐƵďƵŶŝƚƐ�ŝŶ�ĂŶ�

ĞǆƚĞŶĚĞĚ� ĐŽŶĨŽƌŵĂƚŝŽŶ͕� ĂŶĚ� ƚŚĂƚ� ƉĂƌƚŝĂů� ƌĞůĞĂƐĞ� ŽĨ� ƚŚĞƐĞ� ĐŽŶƚĂĐƚƐ� Ͳ� ŝŶĚƵĐĞĚ� ďǇ� ĂŶ� ĂƐǇŵŵĞƚƌŝĐ� �dW�

ƵƚŝůŝǌĂƚŝŽŶ�Ͳ�ŝƐ�ŝŵƉŽƌƚĂŶƚ�ƚŽ�ĚŝƌĞĐƚ�ƚŚĞ�ĨŽůĚŝŶŐ�ƉĂƚŚǁĂǇ͘�dŚŝƐ�ŝƐ�ƚŚĞ�ĨŝƌƐƚ�ĐŽŵƉƌĞŚĞŶƐŝǀĞ�ĂŶĂůǇƐŝƐ�ƌĞǀĞĂůŝŶŐ�

ŚŽǁ�ƚŚĞ�ƵŶŝƋƵĞ�ĨĞĂƚƵƌĞƐ�ŽĨ�dZŝ��ĐŽŶƚƌŝďƵƚĞ�ƚŽ�ƐƵĐĐĞƐƐĨƵů�ĨŽůĚŝŶŐ�ŽĨ�ĂŶ�ŽďůŝŐĂƚĞ�ƐƵďƐƚƌĂƚĞ͘�dŚĞ�ĞǆƚĞŶƚ�ƚŽ�

ǁŚŝĐŚ�ƚŚŝƐ�ŵĞĐŚĂŶŝƐŵ�ŝƐ�ƐƉĞĐŝĨŝĐ�ƚŽ�ĂĐƚŝŶ�ĨŽůĚŝŶŐ�ƌĞŵĂŝŶƐ�ƚŽ�ďĞ�ŝŶǀĞƐƚŝŐĂƚĞĚ͘��

�ƌŽƐƐůŝŶŬŝŶŐ�ĐŽƵƉůĞĚ�ƚŽ�ŵĂƐƐ�ƐƉĞĐƚƌŽŵĞƚƌǇ�ŝƐ�Ă�ŵĞƚŚŽĚ�ǁŝƚŚ�ŐƌĞĂƚ�ƉŽƚĞŶƚŝĂů�ƚŽ�ƌĞǀĞĂů�ŝŶƚĞƌĂĐƚŝŽŶƐ�ŝŶ�ůĂƌŐĞ�

ĐŽŵƉůĞǆĞƐ͘��ĞƚĂŝůƐ�ŽĨ�ƚŚĞ�ŝŶƐƚƌƵŵĞŶƚĂů�ƌĞƋƵŝƌĞŵĞŶƚƐ�ĂŶĚ�ĂŶĂůǇƐŝƐ�ƚŽŽůƐ�ĂƌĞ�ŶŽǁ�ƉƵďůŝĐůǇ�ĂǀĂŝůĂďůĞ�ĂŶĚ�ƚŚĞ�

ŵĞƚŚŽĚ� ŚĂƐ� ĂůƌĞĂĚǇ� ďĞĞŶ� ƵƐĞĚ� ƚŽ� ĂŶĂůǇǌĞ� ƚŚĞ� ƚŽƉŽůŽŐǇ� ŽĨ� ƌŝďŽƐŽŵĞƐ͕� ƉƌŽƚĞĂƐŽŵĞƐ� ĂŶĚ� ĐŚƌŽŵĂƚŝŶ�

ƌĞŵŽĚĞůĞƌƐ� ;>ĞŝƚŶĞƌ� Ğƚ� Ăů͕͘� ϮϬϭϲͿ͘� &ƵƌƚŚĞƌŵŽƌĞ͕� ƚŚĞ�ŵĞƚŚŽĚ� ĐĂŶ� ŶŽǁ� ďĞ� ĞǆƚĞŶĚĞĚ� ƚŽ� ƚŚĞ� ĂŶĂůǇƐŝƐ� ŽĨ�

ŵĞŵďƌĂŶĞ� ƉƌŽƚĞŝŶƐ͕� ŽĨ� ƉƌŽƚĞŝŶ� ŶĞƚǁŽƌŬƐ� ĂŶĚ� ƚŚĞŝƌ� ĐŚĂŶŐĞƐ� ƵƉŽŶ� ƉĞƌƚƵƌďĂƚŝŽŶƐ� Žƌ� ĞǀĞŶ� ƚŽ� ǁŚŽůĞ�

ƉƌŽƚĞŽŵĞƐ͘��

tĞ�ĐŚĂƌĂĐƚĞƌŝǌĞĚ�ƚŚĞ�ĨƵŶĐƚŝŽŶ�ŽĨ�,ŐŚϭ͕�Ă�ĐŚĂƉĞƌŽŶĞ�ƚŚĂƚ�ĐŽŽƉĞƌĂƚĞƐ�ǁŝƚŚ�dZŝ��ŝŶ�ƚŚĞ�ďŝŽŐĞŶĞƐŝƐ�ŽĨ��Ĩƚ͘�

�Ŷ�ŝŶĚĞƉĞŶĚĞŶƚ�ƵŶƉƵďůŝƐŚĞĚ�ƐƚƵĚǇ�ďǇ�^ĐŚŽƉĨ�Ğƚ�Ăů͘�ƐƵŐŐĞƐƚƐ�ƚŚĂƚ�,ŐŚϭ�ŵŽƌĞŽǀĞƌ�ƌĞĐƌƵŝƚƐ��ŶƐϭ�ĂŶĚ�,ƐƉϵϬ�

ƚŽ��Ĩƚ�ĨŽůĚŝŶŐ�ŝŶƚĞƌŵĞĚŝĂƚĞƐ�;ƉĞƌƐŽŶĂů�ĐŽŵŵƵŶŝĐĂƚŝŽŶͿ͘��ůƚŚŽƵŐŚ�ŽƵƌ�ƐƚƵĚǇ�ƌĞǀĞĂůĞĚ�ŝŵƉŽƌƚĂŶƚ�ŝŶƐŝŐŚƚƐ�

ŝŶƚŽ��Ĩƚ�ĨŽůĚŝŶŐ͕�ǁĞ�ĚŽ�ŶŽƚ�ǇĞƚ�ĨƵůůǇ�ƵŶĚĞƌƐƚĂŶĚ�ƚŚĞ�ĨŽůĚŝŶŐ�ƉĂƚŚǁĂǇ�ŽĨ�ƚŚŝƐ�ĐŽŵƉůĞǆ�ƉƌŽƚĞŝŶ͕�ĞƐƉĞĐŝĂůůǇ�

ƌĞŐĂƌĚŝŶŐ�ƚŚĞ�ƌĞůĂƚŝǀĞ�ĐŽŶƚƌŝďƵƚŝŽŶƐ�ŽĨ�dZŝ��ĂŶĚ�ƚŚĞ�,ƐƉϵϬ�ƐǇƐƚĞŵ͘�/ƚ�ǁŝůů�ďĞ�ŝŶƚĞƌĞƐƚŝŶŐ�ƚŽ�ƐĞĞ�ǁŚĞƚŚĞƌ�

&ĂŵϮϬϯ�ŝŶ�ŵĂŵŵĂůŝĂŶ�ĐĞůůƐ�ĨƵŶĐƚŝŽŶƐ�ŝŶ��Ĩƚ�ĨŽůĚŝŶŐ�ŝŶ�Ă�ŵĂŶŶĞƌ�ƐŝŵŝůĂƌ�ƚŽ�,ŐŚϭ͘��

DŽƌĞ�ŐĞŶĞƌĂůůǇ͕�ĂůƚŚŽƵŐŚ�ŵƵůƚŝͲĚŽŵĂŝŶ�ƉƌŽƚĞŝŶƐ�ůŝŬĞ��Ĩƚ�ĐŽŵƉƌŝƐĞ�Ă�ůĂƌŐĞ�ĨƌĂĐƚŝŽŶ�ŽĨ�ƚŚĞ�ŬŶŽǁŶ�ĞƵŬĂƌǇŽƚŝĐ�

ƉƌŽƚĞŽŵĞƐ͕�ƚŚĞŝƌ�ďŝŽŐĞŶĞƐŝƐ�ƉĂƚŚǁĂǇƐ�ƌĞŵĂŝŶ�ǀŝƌƚƵĂůůǇ�ƵŶĞǆƉůŽƌĞĚ͘�/Ŷ�ǀŝƚƌŽ�ƚƌĂŶƐůĂƚŝŽŶ�ǁŝƚŚ�ƌĞĐŽŶƐƚŝƚƵƚĞĚ�



Ͳ�ϭϵϴ�Ͳ��
�

ĐŽŵƉŽŶĞŶƚƐ�ǁŽƵůĚ�ƉƌŽďĂďůǇ�ďĞ�ďĞƐƚ�ƐƵŝƚĞĚ�ƚŽ�ƵŶĚĞƌƐƚĂŶĚ��Ĩƚ�ĨŽůĚŝŶŐ�ŝŶ�ŵŽƌĞ�ĚĞƚĂŝů͘�dŚĞ�WhZ��ƐǇƐƚĞŵ�

ĐŽŶƚĂŝŶŝŶŐ�ƚŚĞ�ƉƌŽŬĂƌǇŽƚŝĐ�ƚƌĂŶƐůĂƚŝŽŶ�ŵĂĐŚŝŶĞƌǇ�;^ŚŝŵŝǌƵ�Ğƚ�Ăů͕͘�ϮϬϬϲͿ�ĐŽƵůĚ�ďĞ�ĂƵŐŵĞŶƚĞĚ�ǁŝƚŚ�dZŝ��ĂŶĚ�

,ŐŚϭ�ĂŶĚ�ƉŽƐƐŝďůǇ�ŽƚŚĞƌ�ĞƵŬĂƌǇŽƚŝĐ�ĨĂĐƚŽƌƐ�ƚŚĂƚ�ƉĂƌƚŝĐŝƉĂƚĞ�ŝŶ��Ĩƚ�ĨŽůĚŝŶŐ͕�ƐƵĐŚ�ĂƐ��ŶƐϭ�ĂŶĚ�,ƐƉϵϬ͘��ŝŶĚŝŶŐ�

ŽĨ�'dW�ĂŶĚ�^ŽƌĚĂƌŝŶ�ƚŽ�ƚŚĞ�EͲƚĞƌŵŝŶĂů�ĂŶĚ��ͲƚĞƌŵŝŶĂů��Ĩƚ�ŵŽĚƵůĞ͕�ƌĞƐƉĞĐƚŝǀĞůǇ͕�ĐŽƵůĚ�ƐĞƌǀĞ�ĂƐ�Ă�ƌĞĂĚ�ŽƵƚ�

ĨŽƌ� ƉƌŽƉĞƌ� ĨŽůĚŝŶŐ� ŽĨ� ƚŚĞƐĞ� ƐĞŐŵĞŶƚƐ͘� ^ŝŵŝůĂƌůǇ͕�ŵŽŶŝƚŽƌŝŶŐ� ƚŚĞ� ŝŶƚĞƌĂĐƚŝŽŶ� ŽĨ� �Ĩƚ� ǁŝƚŚ� ƚŚĞ� ƌŝďŽƐŽŵĞ͕�

ƉŚŽƐƉŚŽƌǇůĂƚŝŽŶ�ďǇ�Ğ�&Ϯ�ŬŝŶĂƐĞ�ĂŶĚ�ŵŽĚŝĨŝĐĂƚŝŽŶ�ďǇ� ƚŚĞ�ĚŝƉŚƚŚĂŵŝĚĞ�ŵĂĐŚŝŶĞƌǇ�ŵŝŐŚƚ�ƉƌŽǀŝĚĞ�ƵƐĞĨƵů�

ƉƌŽďĞƐ�ŽĨ�ƚŚĞ��Ĩƚ�ĨŽůĚŝŶŐ�ƐƚĂƚƵƐ͘�

�

ϳ� ZĞĨĞƌĞŶĐĞƐ�

�ůĨŽƌĚ͕��͘�͕͘�ĂŶĚ��ƌĂŶĚŵĂŶ͕�K͘�;ϮϬϭϴͿ͘�YƵĂŶƚŝĨŝĐĂƚŝŽŶ�ŽĨ�,ƐƉϵϬ�ĂǀĂŝůĂďŝůŝƚǇ�ƌĞǀĞĂůƐ�ĚŝĨĨĞƌĞŶƚŝĂů�ĐŽƵƉůŝŶŐ�ƚŽ�
ƚŚĞ�ŚĞĂƚ�ƐŚŽĐŬ�ƌĞƐƉŽŶƐĞ͘�:��Ğůů��ŝŽů͘�
�ŵŝƚ͕�D͕͘�tĞŝƐďĞƌŐ͕�^͘:͕͘�EĂĚůĞƌͲ,ŽůůǇ͕�D͕͘�DĐ�ŽƌŵĂĐŬ͕��͘�͕͘�&ĞůĚŵĞƐƐĞƌ͕��͕͘�<ĂŐĂŶŽǀŝĐŚ͕��͕͘�tŝůůŝƐŽŶ͕�<͘Z͕͘�
ĂŶĚ� ,ŽƌŽǀŝƚǌ͕� �͘� ;ϮϬϭϬͿ͘� �ƋƵŝǀĂůĞŶƚ� ŵƵƚĂƚŝŽŶƐ� ŝŶ� ƚŚĞ� ĞŝŐŚƚ� ƐƵďƵŶŝƚƐ� ŽĨ� ƚŚĞ� ĐŚĂƉĞƌŽŶŝŶ� ��d� ƉƌŽĚƵĐĞ�
ĚƌĂŵĂƚŝĐĂůůǇ�ĚŝĨĨĞƌĞŶƚ�ĐĞůůƵůĂƌ�ĂŶĚ�ŐĞŶĞ�ĞǆƉƌĞƐƐŝŽŶ�ƉŚĞŶŽƚǇƉĞƐ͘�:�DŽů��ŝŽů�ϰϬϭ͕�ϱϯϮͲϱϰϯ͘�
�ŶĨŝŶƐĞŶ͕��͘�͘�;ϭϵϳϯͿ͘�WƌŝŶĐŝƉůĞƐ�ƚŚĂƚ�ŐŽǀĞƌŶ�ƚŚĞ�ĨŽůĚŝŶŐ�ŽĨ�ƉƌŽƚĞŝŶ�ĐŚĂŝŶƐ͘�^ĐŝĞŶĐĞ�ϭϴϭ͕�ϮϮϯͲϮϯϬ͘�
�ƌĐŚŝďĂůĚ͕� :͘D͕͘� �ůŽƵŝŶ͕� �͕͘� ĂŶĚ��ŽŽůŝƚƚůĞ͕�t͘&͘� ;ϮϬϬϭͿ͘� 'ĞŶĞ� ĚƵƉůŝĐĂƚŝŽŶ� ĂŶĚ� ƚŚĞ� ĞǀŽůƵƚŝŽŶ� ŽĨ� ŐƌŽƵƉ� //�
ĐŚĂƉĞƌŽŶŝŶƐ͗�/ŵƉůŝĐĂƚŝŽŶƐ�ĨŽƌ�ƐƚƌƵĐƚƵƌĞ�ĂŶĚ�ĨƵŶĐƚŝŽŶ͘�:�^ƚƌƵĐƚ��ŝŽů�ϭϯϱ͕�ϭϱϳͲϭϲϵ͘�
�ƌŵƐƚƌŽŶŐ͕� ,͕͘�tŽůŵĂƌĂŶƐ͕� �͕͘�DĞƌĐŝĞƌ͕� Z͕͘�DĂŝ͕� �͕͘� ĂŶĚ� >ĂWŽŝŶƚĞ͕� W͘� ;ϮϬϭϮͿ͘� dŚĞ� ĐŽͲĐŚĂƉĞƌŽŶĞ� ,ĐŚϭ�
ƌĞŐƵůĂƚĞƐ�,ƐƉϵϬ�ĨƵŶĐƚŝŽŶ�ĚŝĨĨĞƌĞŶƚůǇ�ƚŚĂŶ�ŝƚƐ�ŚŽŵŽůŽŐƵĞ��ŚĂϭ�ĂŶĚ�ĐŽŶĨĞƌƐ�ƐĞŶƐŝƚŝǀŝƚǇ�ƚŽ�ǇĞĂƐƚ�ƚŽ�ƚŚĞ�,ƐƉϵϬ�
ŝŶŚŝďŝƚŽƌ�EsWͲ�hzϵϮϮ͘�W>Ž^�KŶĞ�ϳ͕�ĞϰϵϯϮϮ͘�
�ĂůĐŚŝŶ͕��͕͘�,ĂǇĞƌͲ,Ăƌƚů͕�D͕͘�ĂŶĚ�,Ăƌƚů͕�&͘h͘�;ϮϬϭϲͿ͘�/Ŷ�ǀŝǀŽ�ĂƐƉĞĐƚƐ�ŽĨ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�ĂŶĚ�ƋƵĂůŝƚǇ�ĐŽŶƚƌŽů͘�
^ĐŝĞŶĐĞ�ϯϱϯ͕�ĂĂĐϰϯϱϰ͘�
�ĂůĐŚŝŶ͕� �͕͘�DŝůŝĐŝĐ͕� '͕͘� ^ƚƌĂƵƐƐ͕�D͕͘� ,ĂǇĞƌͲ,Ăƌƚů͕�D͕͘� ĂŶĚ� ,Ăƌƚů͕� &͘h͘� ;ϮϬϭϴͿ͘� WĂƚŚǁĂǇ� ŽĨ� �ĐƚŝŶ� &ŽůĚŝŶŐ�
�ŝƌĞĐƚĞĚ�ďǇ�ƚŚĞ��ƵŬĂƌǇŽƚŝĐ��ŚĂƉĞƌŽŶŝŶ�dZŝ�͘��Ğůů͘�
�ĞŚƌĞŶĚƐ͕� �͕͘� >ĂŶŐĞƌ͕� �͘�͕͘� �ŽƚĞǀĂ͕� Z͕͘� �ŽƚƚĐŚĞƌ͕� h͘D͕͘� ^ƚĞŵƉ͕�D͘:͕͘� ^ĐŚĂĨĨĂƌ͕� '͕͘� ZĂŽ͕� �͘s͕͘� 'ŝĞƐĞ͕� �͕͘�
<ƌĞƚǌƐĐŚŵĂƌ͕�,͕͘�^ŝĞŐĞƌƐ͕�<͕͘�Ğƚ�Ăů͘� ;ϮϬϬϲͿ͘��ŚĂƉĞƌŽŶŝŶ�dZŝ��ƉƌŽŵŽƚĞƐ�ƚŚĞ�ĂƐƐĞŵďůǇ�ŽĨ�ƉŽůǇY�ĞǆƉĂŶƐŝŽŶ�
ƉƌŽƚĞŝŶƐ�ŝŶƚŽ�ŶŽŶƚŽǆŝĐ�ŽůŝŐŽŵĞƌƐ͘�DŽů��Ğůů�Ϯϯ͕�ϴϴϳͲϴϵϳ͘�
�ĞƌŐĞƌŽŶ͕� >͘D͕͘� ^ŚŝƐ͕� �͘>͕͘� 'ŽŵĞǌ͕� >͕͘� ĂŶĚ� �ůĂƌŬ͕� �͘^͘� ;ϮϬϬϵͿ͘� ^ŵĂůů� ŵŽůĞĐƵůĞ� ŝŶŚŝďŝƚŝŽŶ� ŽĨ� Ă� 'ƌŽƵƉ� //�
ĐŚĂƉĞƌŽŶŝŶ͗�ƉŝŶƉŽŝŶƚŝŶŐ�Ă�ůŽŽƉ�ƌĞŐŝŽŶ�ǁŝƚŚŝŶ�ƚŚĞ�ĞƋƵĂƚŽƌŝĂů�ĚŽŵĂŝŶ�ĂƐ�ŶĞĐĞƐƐĂƌǇ�ĨŽƌ�ƉƌŽƚĞŝŶ�ƌĞĨŽůĚŝŶŐ͘�
�ƌĐŚŝǀĞƐ�ŽĨ�ďŝŽĐŚĞŵŝƐƚƌǇ�ĂŶĚ�ďŝŽƉŚǇƐŝĐƐ�ϰϴϭ͕�ϰϱͲϱϭ͘�
�ŝŐŽƚƚŝ͕�D͘'͕͘��ĞůůĂŵǇ͕�^͘Z͕͘�ĂŶĚ��ůĂƌŬĞ͕��͘Z͘�;ϮϬϬϲͿ͘�dŚĞ�ĂƐǇŵŵĞƚƌŝĐ��dWĂƐĞ�ĐǇĐůĞ�ŽĨ�ƚŚĞ�ƚŚĞƌŵŽƐŽŵĞ͗�
ĞůƵĐŝĚĂƚŝŽŶ�ŽĨ�ƚŚĞ�ďŝŶĚŝŶŐ͕�ŚǇĚƌŽůǇƐŝƐ�ĂŶĚ�ƉƌŽĚƵĐƚͲƌĞůĞĂƐĞ�ƐƚĞƉƐ͘�:�DŽů��ŝŽů�ϯϲϮ͕�ϴϯϱͲϴϰϯ͘�



Ͳ�ϭϵϵ�Ͳ��
�

�ŽĐǌĞŬ͕��͘�͕͘�ZĞĞĨƐĐŚůĂŐĞƌ͕�>͘'͕͘��ĞŚůŝŶŐ͕�D͕͘�^ƚƌƵůůĞƌ͕�d͘:͕͘�,ĂƵƐůĞƌ͕��͕͘�^ĞŝĚů͕��͕͘�<ĂŝůĂ͕�s͘Z͕͘�ĂŶĚ��ƵĐŚŶĞƌ͕�:͘�
;ϮϬϭϱͿ͘��ŽŶĨŽƌŵĂƚŝŽŶĂů�ƉƌŽĐĞƐƐŝŶŐ�ŽĨ�ŽŶĐŽŐĞŶŝĐ�ǀͲ^ƌĐ�ŬŝŶĂƐĞ�ďǇ�ƚŚĞ�ŵŽůĞĐƵůĂƌ�ĐŚĂƉĞƌŽŶĞ�,ƐƉϵϬ͘�WƌŽĐ�EĂƚů�
�ĐĂĚ�^Đŝ�h�^���ϭϭϮ͕��ϯϭϴϵͲϯϭϵϴ͘�
�ƌĂŝŐ͕�<͕͘�KƚǁŝŶŽǁƐŬŝ͕��͕͘�,ĞŐĚĞ͕�Z͕͘��ŽŝƐǀĞƌƚ͕��͘�͕͘�:ŽĂĐŚŝŵŝĂŬ͕��͕͘�,ŽƌǁŝĐŚ͕��͘>͕͘�ĂŶĚ�^ŝŐůĞƌ͕�W͘�͘�;ϭϵϵϰͿ͘�
dŚĞ��ƌǇƐƚĂůͲ^ƚƌƵĐƚƵƌĞ�ŽĨ�ƚŚĞ��ĂĐƚĞƌŝĂů��ŚĂƉĞƌŽŶŝŶ�'ƌŽĞů�Ăƚ�Ϯ͘ϴͲ�ŶŐƐƚƌŽŵ͘�EĂƚƵƌĞ�ϯϳϭ͕�ϱϳϴͲϱϴϲ͘�
�ƌĂŶĚŵĂŶ͕�K͕͘�^ƚĞǁĂƌƚͲKƌŶƐƚĞŝŶ͕�:͕͘�tŽŶŐ͕��͕͘�>ĂƌƐŽŶ͕��͕͘�tŝůůŝĂŵƐ͕��͘�͕͘�>ŝ͕�'͘t͕͘��ŚŽƵ͕�^͕͘�<ŝŶŐ͕��͕͘�^ŚĞŶ͕�
W͘^͕͘�tĞŝďĞǌĂŚŶ͕� :͕͘� Ğƚ� Ăů͘� ;ϮϬϭϮͿ͘� �� ƌŝďŽƐŽŵĞͲďŽƵŶĚ� ƋƵĂůŝƚǇ� ĐŽŶƚƌŽů� ĐŽŵƉůĞǆ� ƚƌŝŐŐĞƌƐ� ĚĞŐƌĂĚĂƚŝŽŶ� ŽĨ�
ŶĂƐĐĞŶƚ�ƉĞƉƚŝĚĞƐ�ĂŶĚ�ƐŝŐŶĂůƐ�ƚƌĂŶƐůĂƚŝŽŶ�ƐƚƌĞƐƐ͘��Ğůů�ϭϱϭ͕�ϭϬϰϮͲϭϬϱϰ͘�
�ƌĂŶĚƚ͕�&͕͘��ĂƌůƐŽŶ͕�>͘�͕͘�,Ăƌƚů͕�&͘h͕͘��ĂƵŵĞŝƐƚĞƌ͕�t͕͘�ĂŶĚ�'ƌƵŶĞǁĂůĚ͕�<͘�;ϮϬϭϬͿ͘�dŚĞ�dŚƌĞĞͲ�ŝŵĞŶƐŝŽŶĂů�
KƌŐĂŶŝǌĂƚŝŽŶ�ŽĨ�WŽůǇƌŝďŽƐŽŵĞƐ�ŝŶ�/ŶƚĂĐƚ�,ƵŵĂŶ��ĞůůƐ͘�DŽů��Ğůů�ϯϵ͕�ϱϲϬͲϱϲϵ͘�
�ƌĂŶĚƚ͕�&͕͘��ƚĐŚĞůůƐ͕�^͘�͕͘�Kƌƚŝǌ͕�:͘K͕͘��ůĐŽĐŬ͕��͘,͕͘�,Ăƌƚů͕�&͘h͕͘�ĂŶĚ��ĂƵŵĞŝƐƚĞƌ͕�t͘�;ϮϬϬϵͿ͘�dŚĞ�EĂƚŝǀĞ�ϯ��
KƌŐĂŶŝǌĂƚŝŽŶ�ŽĨ��ĂĐƚĞƌŝĂů�WŽůǇƐŽŵĞƐ͘��Ğůů�ϭϯϲ͕�ϮϲϭͲϮϳϭ͘�
�ƌŽĐŬǁĞůů͕��͘:͕͘�ĂŶĚ�ZĂĚĨŽƌĚ͕�^͘�͘�;ϮϬϬϳͿ͘�/ŶƚĞƌŵĞĚŝĂƚĞƐ͗�ƵďŝƋƵŝƚŽƵƐ�ƐƉĞĐŝĞƐ�ŽŶ�ĨŽůĚŝŶŐ�ĞŶĞƌŐǇ�ůĂŶĚƐĐĂƉĞƐ͍�
�Ƶƌƌ�KƉŝŶ�^ƚƌƵĐ��ŝŽů�ϭϳ͕�ϯϬͲϯϳ͘�
�ƵĐŚďĞƌŐĞƌ͕� �͕͘� �ƵŬĂƵ͕� �͕͘� ĂŶĚ� ^ŽŵŵĞƌ͕� d͘� ;ϮϬϭϬͿ͘� WƌŽƚĞŝŶ� ƋƵĂůŝƚǇ� ĐŽŶƚƌŽů� ŝŶ� ƚŚĞ� ĐǇƚŽƐŽů� ĂŶĚ� ƚŚĞ�
ĞŶĚŽƉůĂƐŵŝĐ�ƌĞƚŝĐƵůƵŵ͗�ďƌŽƚŚĞƌƐ�ŝŶ�ĂƌŵƐ͘�DŽů��Ğůů�ϰϬ͕�ϮϯϴͲϮϱϮ͘�
�ĂůůŽŶŝ͕�'͕͘��ŚĞŶ͕�d͕͘�^ĐŚĞƌŵĂŶŶ͕�^͘D͕͘��ŚĂŶŐ͕�,͘�͕͘�'ĞŶĞǀĂƵǆ͕�W͕͘��ŐŽƐƚŝŶŝ͕�&͕͘�dĂƌƚĂŐůŝĂ͕�'͘'͕͘�,ĂǇĞƌͲ,Ăƌƚů͕�
D͕͘�ĂŶĚ�,Ăƌƚů͕�&͘h͘�;ϮϬϭϮͿ͘��ŶĂ<�&ƵŶĐƚŝŽŶƐ�ĂƐ�Ă��ĞŶƚƌĂů�,Ƶď�ŝŶ�ƚŚĞ��͘�ĐŽůŝ��ŚĂƉĞƌŽŶĞ�EĞƚǁŽƌŬ͘��Ğůů�ZĞƉ�ϭ͕�
ϮϱϭͲϮϲϰ͘�
�ĂŵĂƐƐĞƐ͕��͕͘��ŽŐĚĂŶŽǀĂ͕��͕͘�^ŚĞǀĐŚĞŶŬŽ͕��͕͘�ĂŶĚ��ĂĐŚĂƌŝĂĞ͕�t͘�;ϮϬϬϯͿ͘�dŚĞ���d�ĐŚĂƉĞƌŽŶŝŶ�ƉƌŽŵŽƚĞƐ�
ĂĐƚŝǀĂƚŝŽŶ�ŽĨ�ƚŚĞ�ĂŶĂƉŚĂƐĞͲƉƌŽŵŽƚŝŶŐ�ĐŽŵƉůĞǆ�ƚŚƌŽƵŐŚ�ƚŚĞ�ŐĞŶĞƌĂƚŝŽŶ�ŽĨ�ĨƵŶĐƚŝŽŶĂů��ĚĐϮϬ͘�DŽů��Ğůů�ϭϮ͕�
ϴϳͲϭϬϬ͘�
�ĂŽ͕�^͕͘��ĂƌůĞƐƐŽ͕�'͕͘�KƐŝƉŽǀŝĐŚ͕��͘�͕͘�>ůĂŶĞƐ͕� :͕͘�>ŝŶ͕�Y͕͘�,ŽĞŬ͕�<͘>͕͘�<ŚĂŶ͕�t͘E͕͘�ĂŶĚ�ZƵůĞǇ͕�,͘�͘� ;ϮϬϬϴͿ͘�
^ƵďƵŶŝƚ� ϭ�ŽĨ� ƚŚĞ�ƉƌĞĨŽůĚŝŶ� ĐŚĂƉĞƌŽŶĞ� ĐŽŵƉůĞǆ� ŝƐ� ƌĞƋƵŝƌĞĚ� ĨŽƌ� ůǇŵƉŚŽĐǇƚĞ�ĚĞǀĞůŽƉŵĞŶƚ� ĂŶĚ� ĨƵŶĐƚŝŽŶ͘�
:ŽƵƌŶĂů�ŽĨ�ŝŵŵƵŶŽůŽŐǇ�ϭϴϭ͕�ϰϳϲͲϰϴϰ͘�
�ŚĂŬƌĂďŽƌƚǇ͕�<͕͘��ŚĂƚŝůĂ͕�D͕͘�^ŝŶŚĂ͕�:͕͘�^Śŝ͕�Y͘z͕͘�WŽƐĐŚŶĞƌ͕��͘�͕͘�^ŝŬŽƌ͕�D͕͘�:ŝĂŶŐ͕�'͘y͕͘�>Ăŵď͕��͘�͕͘�,Ăƌƚů͕�
&͘h͕͘�ĂŶĚ�,ĂǇĞƌͲ,Ăƌƚů͕�D͘�;ϮϬϭϬͿ͘��ŚĂƉĞƌŽŶŝŶͲ�ĂƚĂůǇǌĞĚ�ZĞƐĐƵĞ�ŽĨ�<ŝŶĞƚŝĐĂůůǇ�dƌĂƉƉĞĚ�^ƚĂƚĞƐ� ŝŶ�WƌŽƚĞŝŶ�
&ŽůĚŝŶŐ͘��Ğůů�ϭϰϮ͕�ϭϭϮͲϭϮϮ͘�
�ŚĂƵĚŚƵƌŝ͕�d͘<͕͘�&Ăƌƌ͕�'͘t͕͘�&ĞŶƚŽŶ͕�t͘�͕͘�ZŽƐƉĞƌƚ͕�^͕͘�ĂŶĚ�,ŽƌǁŝĐŚ͕��͘>͘�;ϮϬϬϭͿ͘�'ƌŽ�>ͬ'ƌŽ�^ͲŵĞĚŝĂƚĞĚ�
ĨŽůĚŝŶŐ�ŽĨ�Ă�ƉƌŽƚĞŝŶ�ƚŽŽ�ůĂƌŐĞ�ƚŽ�ďĞ�ĞŶĐĂƉƐƵůĂƚĞĚ͘��Ğůů�ϭϬϳ͕�ϮϯϱͲϮϰϲ͘�
�ŚĞŶ͕��͕͘��ŚŽŶŐ͕��͕͘�ĂŶĚ�DŽŶƚĞŝƌŽ͕��͘�;ϮϬϬϲͿ͘��ŽŵƉĂƌĂƚŝǀĞ�ŐĞŶŽŵŝĐƐ�ĂŶĚ�ĞǀŽůƵƚŝŽŶ�ŽĨ�ƚŚĞ�,^WϵϬ�ĨĂŵŝůǇ�ŽĨ�
ŐĞŶĞƐ�ĂĐƌŽƐƐ�Ăůů�ŬŝŶŐĚŽŵƐ�ŽĨ�ŽƌŐĂŶŝƐŵƐ͘��D��'ĞŶŽŵŝĐƐ�ϳ͕�ϭϱϲ͘�
�ŚĞŶ͕�>͕͘�ĂŶĚ�^ŝŐůĞƌ͕�W͘�͘�;ϭϵϵϵͿ͘�dŚĞ�ĐƌǇƐƚĂů�ƐƚƌƵĐƚƵƌĞ�ŽĨ�Ă�'ƌŽ�>ͬƉĞƉƚŝĚĞ�ĐŽŵƉůĞǆ͗�ƉůĂƐƚŝĐŝƚǇ�ĂƐ�Ă�ďĂƐŝƐ�ĨŽƌ�
ƐƵďƐƚƌĂƚĞ�ĚŝǀĞƌƐŝƚǇ͘��Ğůů�ϵϵ͕�ϳϱϳͲϳϲϴ͘�
�Śŝƚŝ͕�&͕͘�ĂŶĚ��ŽďƐŽŶ͕��͘D͘� ;ϮϬϬϲͿ͘�WƌŽƚĞŝŶ�ŵŝƐĨŽůĚŝŶŐ͕� ĨƵŶĐƚŝŽŶĂů�ĂŵǇůŽŝĚ͕�ĂŶĚ�ŚƵŵĂŶ�ĚŝƐĞĂƐĞ͘��ŶŶƵĂů�
ZĞǀŝĞǁ�ŽĨ��ŝŽĐŚĞŵŝƐƚƌǇ�ϳϱ͕�ϯϯϯͲϯϲϲ͘�
�ůĂƌĞ͕��͘<͕͘� ^ƚĂŐŐ͕� ^͕͘�YƵŝƐƉĞ͕� :͕͘� &Ăƌƌ͕�'͘t͕͘�,ŽƌǁŝĐŚ͕��͘>͕͘�ĂŶĚ�^Ăŝďŝů͕�,͘Z͘� ;ϮϬϬϴͿ͘�DƵůƚŝƉůĞ� ƐƚĂƚĞƐ�ŽĨ�Ă�
ŶƵĐůĞŽƚŝĚĞͲďŽƵŶĚ�ŐƌŽƵƉ�Ϯ�ĐŚĂƉĞƌŽŶŝŶ͘�^ƚƌƵĐƚƵƌĞ�ϭϲ͕�ϱϮϴͲϱϯϰ͘�
�ŽŶŐ͕�z͕͘��ĂŬĞƌ͕�D͘>͕͘�:ĂŬĂŶĂ͕�:͕͘�tŽŽůĨŽƌĚ͕��͕͘�DŝůůĞƌ͕��͘:͕͘�ZĞŝƐƐŵĂŶŶ͕�^͕͘�<ƵŵĂƌ͕�Z͘E͕͘�ZĞĚĚŝŶŐͲ:ŽŚĂŶƐŽŶ͕�
�͘D͕͘��ĂƚƚŚ͕�d͘^͕͘�DƵŬŚŽƉĂĚŚǇĂǇ͕��͕͘�Ğƚ�Ăů͘�;ϮϬϭϬͿ͘�ϰ͘ϬͲ��ƌĞƐŽůƵƚŝŽŶ�ĐƌǇŽͲ�D�ƐƚƌƵĐƚƵƌĞ�ŽĨ�ƚŚĞ�ŵĂŵŵĂůŝĂŶ�
ĐŚĂƉĞƌŽŶŝŶ�dZŝ�ͬ��d�ƌĞǀĞĂůƐ�ŝƚƐ�ƵŶŝƋƵĞ�ƐƵďƵŶŝƚ�ĂƌƌĂŶŐĞŵĞŶƚ͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���ϭϬϳ͕�ϰϵϲϳͲϰϵϳϮ͘�
�ŽŶŐ͕�z͕͘�^ĐŚƌŽĚĞƌ͕�'͘&͕͘�DĞǇĞƌ͕��͘^͕͘� :ĂŬĂŶĂ͕� :͕͘�DĂ͕��͕͘��ŽƵŐŚĞƌƚǇ͕�D͘d͕͘�^ĐŚŵŝĚ͕�D͘&͕͘�ZĞŝƐƐŵĂŶŶ͕�^͕͘�
>Ğǀŝƚƚ͕�D͕͘�>ƵĚƚŬĞ͕�^͘>͕͘�Ğƚ�Ăů͘�;ϮϬϭϮͿ͘�^ǇŵŵĞƚƌǇͲĨƌĞĞ�ĐƌǇŽͲ�D�ƐƚƌƵĐƚƵƌĞƐ�ŽĨ�ƚŚĞ�ĐŚĂƉĞƌŽŶŝŶ�dZŝ��ĂůŽŶŐ�ŝƚƐ�
�dWĂƐĞͲĚƌŝǀĞŶ�ĐŽŶĨŽƌŵĂƚŝŽŶĂů�ĐǇĐůĞ͘��D�K�:�ϯϭ͕�ϳϮϬͲϳϯϬ͘�



Ͳ�ϮϬϬ�Ͳ��
�

�ŽƐƚĂŶǌŽ͕�D͕͘��ĂƌǇƐŚŶŝŬŽǀĂ͕��͕͘��ĞůůĂǇ͕�:͕͘�<ŝŵ͕�z͕͘�^ƉĞĂƌ͕��͘�͕͘�^ĞǀŝĞƌ͕��͘^͕͘��ŝŶŐ͕�,͕͘�<ŽŚ͕�:͘>͕͘�dŽƵĨŝŐŚŝ͕�<͕͘�
DŽƐƚĂĨĂǀŝ͕�^͕͘�Ğƚ�Ăů͘�;ϮϬϭϬͿ͘�dŚĞ�ŐĞŶĞƚŝĐ�ůĂŶĚƐĐĂƉĞ�ŽĨ�Ă�ĐĞůů͘�^ĐŝĞŶĐĞ�ϯϮϳ͕�ϰϮϱͲϰϯϭ͘�
�ƵĞůůĂƌ͕�:͕͘�DĂƌƚŝŶͲ�ĞŶŝƚŽ͕�:͕͘�^ĐŚĞƌĞƐ͕�^͘,͕͘�^ŽƵƐĂ͕�Z͕͘�DŽƌŽ͕�&͕͘�>ŽƉĞǌͲsŝŶĂƐ͕��͕͘�'ŽŵĞǌͲWƵĞƌƚĂƐ͕�W͕͘�DƵŐĂ͕�
�͕͘��ĂƌƌĂƐĐŽƐĂ͕�:͘>͕͘�ĂŶĚ�sĂůƉƵĞƐƚĂ͕�:͘D͘�;ϮϬϬϴͿ͘�dŚĞ�ƐƚƌƵĐƚƵƌĞ�ŽĨ���dͲ,ƐĐϳϬ�E���ƐƵŐŐĞƐƚƐ�Ă�ŵĞĐŚĂŶŝƐŵ�ĨŽƌ�
,ƐƉϳϬ�ĚĞůŝǀĞƌǇ�ŽĨ�ƐƵďƐƚƌĂƚĞƐ�ƚŽ�ƚŚĞ�ĐŚĂƉĞƌŽŶŝŶ͘�EĂƚ�^ƚƌƵĐƚ�DŽů��ŝŽů�ϭϱ͕�ϴϱϴͲϴϲϰ͘�
�ĞŬŬĞƌ͕� �͕͘� ZŽĞ͕� ^͘D͕͘�DĐ�ŽƌŵĂĐŬ͕� �͘�͕͘� �ĞƵƌŽŶ͕� &͕͘� WĞĂƌů͕� >͘,͕͘� ĂŶĚ�tŝůůŝƐŽŶ͕� <͘Z͘� ;ϮϬϭϭͿ͘� dŚĞ� ĐƌǇƐƚĂů�
ƐƚƌƵĐƚƵƌĞ�ŽĨ�ǇĞĂƐƚ���d�ƌĞǀĞĂůƐ�ŝŶƚƌŝŶƐŝĐ�ĂƐǇŵŵĞƚƌǇ�ŽĨ�ĞƵŬĂƌǇŽƚŝĐ�ĐǇƚŽƐŽůŝĐ�ĐŚĂƉĞƌŽŶŝŶƐ͘��D�K�:�ϯϬ͕�ϯϬϳϴͲ
ϯϬϵϬ͘�
�ĞŬŬĞƌ͕� �͕͘� ^ƚŝƌůŝŶŐ͕� W͘�͕͘�DĐ�ŽƌŵĂĐŬ͕� �͘�͕͘� &ŝůŵŽƌĞ͕� ,͕͘� WĂƵů͕� �͕͘� �ƌŽƐƚ͕� Z͘>͕͘� �ŽƐƚĂŶǌŽ͕�D͕͘� �ŽŽŶĞ͕� �͕͘�
>ĞƌŽƵǆ͕�D͘Z͕͘�ĂŶĚ�tŝůůŝƐŽŶ͕�<͘Z͘�;ϮϬϬϴͿ͘�dŚĞ�ŝŶƚĞƌĂĐƚŝŽŶ�ŶĞƚǁŽƌŬ�ŽĨ�ƚŚĞ�ĐŚĂƉĞƌŽŶŝŶ���d͘��D�K�:�Ϯϳ͕�ϭϴϮϳͲ
ϭϴϯϵ͘�
�ĞǀĞƌ͕� d͘�͕͘� ĂŶĚ�'ƌĞĞŶ͕� Z͘� ;ϮϬϭϮͿ͘� dŚĞ� ĞůŽŶŐĂƚŝŽŶ͕� ƚĞƌŵŝŶĂƚŝŽŶ͕� ĂŶĚ� ƌĞĐǇĐůŝŶŐ� ƉŚĂƐĞƐ� ŽĨ� ƚƌĂŶƐůĂƚŝŽŶ� ŝŶ�
ĞƵŬĂƌǇŽƚĞƐ͘��ŽůĚ�^ƉƌŝŶŐ�,ĂƌďŽƌ�ƉĞƌƐƉĞĐƚŝǀĞƐ�ŝŶ�ďŝŽůŽŐǇ�ϰ͕�ĂϬϭϯϳϬϲ͘�
�ŝŶŶĞƌ͕��͘Z͕͘�^Ăůŝ͕��͕͘�^ŵŝƚŚ͕�>͘:͕͘��ŽďƐŽŶ͕��͘D͕͘�ĂŶĚ�<ĂƌƉůƵƐ͕�D͘�;ϮϬϬϬͿ͘�hŶĚĞƌƐƚĂŶĚŝŶŐ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�ǀŝĂ�
ĨƌĞĞͲĞŶĞƌŐǇ�ƐƵƌĨĂĐĞƐ�ĨƌŽŵ�ƚŚĞŽƌǇ�ĂŶĚ�ĞǆƉĞƌŝŵĞŶƚ͘�dƌĞŶĚƐ��ŝŽĐŚĞŵ�^Đŝ�Ϯϱ͕�ϯϯϭͲϯϯϵ͘�
�ŝƚǌĞů͕� >͕͘� >ŽǁĞ͕� :͕͘� ^ƚŽĐŬ͕� �͕͘� ^ƚĞƚƚĞƌ͕� <͘K͕͘� ,ƵďĞƌ͕� ,͕͘� ,ƵďĞƌ͕� Z͕͘� ĂŶĚ� ^ƚĞŝŶďĂĐŚĞƌ͕� ^͘� ;ϭϵϵϴͿ͘� �ƌǇƐƚĂů�
ƐƚƌƵĐƚƵƌĞ�ŽĨ�ƚŚĞ�ƚŚĞƌŵŽƐŽŵĞ͕�ƚŚĞ�ĂƌĐŚĂĞĂů�ĐŚĂƉĞƌŽŶŝŶ�ĂŶĚ�ŚŽŵŽůŽŐ�ŽĨ���d͘��Ğůů�ϵϯ͕�ϭϮϱͲϭϯϴ͘�
�ŽďƐŽŶ͕��͘D͕͘�^Ăůŝ͕��͕͘�ĂŶĚ�<ĂƌƉůƵƐ͕�D͘�;ϭϵϵϴͿ͘�WƌŽƚĞŝŶ�ĨŽůĚŝŶŐ͗���ƉĞƌƐƉĞĐƚŝǀĞ�ĨƌŽŵ�ƚŚĞŽƌǇ�ĂŶĚ�ĞǆƉĞƌŝŵĞŶƚ͘�
�ŶŐĞǁ��ŚĞŵ�/Ŷƚ��Ěŝƚ�ϯϳ͕�ϴϲϴͲϴϵϯ͘�
�ŽƵŐůĂƐ͕�E͘Z͕͘�ZĞŝƐƐŵĂŶŶ͕�^͕͘��ŚĂŶŐ͕�:͕͘��ŚĞŶ͕��͕͘�:ĂŬĂŶĂ͕�:͕͘�<ƵŵĂƌ͕�Z͕͘��ŚŝƵ͕�t͕͘�ĂŶĚ�&ƌǇĚŵĂŶ͕�:͘�;ϮϬϭϭͿ͘�
�ƵĂů� ĂĐƚŝŽŶ� ŽĨ� �dW� ŚǇĚƌŽůǇƐŝƐ� ĐŽƵƉůĞƐ� ůŝĚ� ĐůŽƐƵƌĞ� ƚŽ� ƐƵďƐƚƌĂƚĞ� ƌĞůĞĂƐĞ� ŝŶƚŽ� ƚŚĞ� ŐƌŽƵƉ� //� ĐŚĂƉĞƌŽŶŝŶ�
ĐŚĂŵďĞƌ͘��Ğůů�ϭϰϰ͕�ϮϰϬͲϮϱϮ͘�
�ůĂĚ͕� E͕͘� &Ăƌƌ͕� '͘t͕͘� �ůĂƌĞ͕� �͘<͕͘� KƌůŽǀĂ͕� �͘s͕͘� ,ŽƌǁŝĐŚ͕� �͘>͕͘� ĂŶĚ� ^Ăŝďŝů͕� ,͘Z͘� ;ϮϬϬϳͿ͘� dŽƉŽůŽŐŝĞƐ� ŽĨ� Ă�
ƐƵďƐƚƌĂƚĞ�ƉƌŽƚĞŝŶ�ďŽƵŶĚ�ƚŽ�ƚŚĞ�ĐŚĂƉĞƌŽŶŝŶ�'ƌŽ�>͘�DŽů��Ğůů�Ϯϲ͕�ϰϭϱͲϰϮϲ͘�
�ůůŝƐ͕�Z͘:͘�;ϭϵϵϰͿ͘�DŽůĞĐƵůĂƌ��ŚĂƉĞƌŽŶĞƐ�Ͳ�KƉĞŶŝŶŐ�ĂŶĚ��ůŽƐŝŶŐ�ƚŚĞ��ŶĨŝŶƐĞŶ��ĂŐĞ͘��Ƶƌƌ��ŝŽů�ϰ͕�ϲϯϯͲϲϯϱ͘�
�ůůŝƐ͕�Z͘:͕͘�ĂŶĚ�DŝŶƚŽŶ͕��͘W͘�;ϮϬϬϲͿ͘�WƌŽƚĞŝŶ�ĂŐŐƌĞŐĂƚŝŽŶ�ŝŶ�ĐƌŽǁĚĞĚ�ĞŶǀŝƌŽŶŵĞŶƚƐ͘��ŝŽů��ŚĞŵ�ϯϴϳ͕�ϰϴϱͲ
ϰϵϳ͘�
�ŶŐůĂŶĚ͕� :͕͘� >ƵĐĞŶƚ͕��͕͘� ĂŶĚ�WĂŶĚĞ͕�s͘� ;ϮϬϬϴͿ͘�ZĂƚƚůŝŶŐ� ƚŚĞ� ĐĂŐĞ͗� ĐŽŵƉƵƚĂƚŝŽŶĂů�ŵŽĚĞůƐ�ŽĨ� ĐŚĂƉĞƌŽŶŝŶͲ
ŵĞĚŝĂƚĞĚ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ͘��Ƶƌƌ�KƉŝŶ�^ƚƌƵĐ��ŝŽů�ϭϴ͕�ϭϲϯͲϭϲϵ͘�
�ƚĐŚĞůůƐ͕�^͘�͕͘�DĞǇĞƌ͕��͘^͕͘�zĂŵ͕��͘z͕͘�ZŽŽďŽů͕��͕͘�DŝĂŽ͕�z͕͘�^ŚĂŽ͕�z͕͘��ĂƌĚĞŶ͕�D͘:͕͘�^ŬĂĐŚ͕�t͘Z͕͘�&ƌǇĚŵĂŶ͕�:͕͘�
ĂŶĚ�:ŽŚŶƐŽŶ͕��͘�͘� ;ϮϬϬϱͿ͘�dŚĞ�ĐŽƚƌĂŶƐůĂƚŝŽŶĂů�ĐŽŶƚĂĐƚƐ�ďĞƚǁĞĞŶ�ƌŝďŽƐŽŵĞͲďŽƵŶĚ�ŶĂƐĐĞŶƚ�ƉŽůǇƉĞƉƚŝĚĞƐ�
ĂŶĚ�ƚŚĞ�ƐƵďƵŶŝƚƐ�ŽĨ�ƚŚĞ�ŚĞƚĞƌŽͲŽůŝŐŽŵĞƌŝĐ�ĐŚĂƉĞƌŽŶŝŶ�dZŝ��ƉƌŽďĞĚ�ďǇ�ƉŚŽƚŽĐƌŽƐƐͲůŝŶŬŝŶŐ͘�dŚĞ�:ŽƵƌŶĂů�ŽĨ�
ďŝŽůŽŐŝĐĂů�ĐŚĞŵŝƐƚƌǇ�ϮϴϬ͕�ϮϴϭϭϴͲϮϴϭϮϲ͘�
&ĂďƌŝǌŝŽ͕�W͕͘�>ĂŐŐĞƌďĂƵĞƌ͕��͕͘�>ĂƵďĞƌ͕�:͕͘�>ĂŶĞ͕�t͘^͕͘�ĂŶĚ�>ƵŚƌŵĂŶŶ͕�Z͘�;ϭϵϵϳͿ͘��Ŷ�ĞǀŽůƵƚŝŽŶĂƌŝůǇ�ĐŽŶƐĞƌǀĞĚ�
hϱ�ƐŶZEWͲƐƉĞĐŝĨŝĐ�ƉƌŽƚĞŝŶ�ŝƐ�Ă�'dWͲďŝŶĚŝŶŐ�ĨĂĐƚŽƌ�ĐůŽƐĞůǇ�ƌĞůĂƚĞĚ�ƚŽ�ƚŚĞ�ƌŝďŽƐŽŵĂů�ƚƌĂŶƐůŽĐĂƐĞ��&ͲϮ͘��D�K�
:�ϭϲ͕�ϰϬϵϮͲϰϭϬϲ͘�
&ĞůĚŵĂŶ͕��͘�͕͘�^ƉŝĞƐƐ͕��͕͘�,ŽǁĂƌĚ͕��͘�͕͘�ĂŶĚ�&ƌǇĚŵĂŶ͕� :͘� ;ϮϬϬϯͿ͘�dƵŵŽƌŝŐĞŶŝĐ�ŵƵƚĂƚŝŽŶƐ� ŝŶ�s,>�ĚŝƐƌƵƉƚ�
ĨŽůĚŝŶŐ�ŝŶ�ǀŝǀŽ�ďǇ�ŝŶƚĞƌĨĞƌŝŶŐ�ǁŝƚŚ�ĐŚĂƉĞƌŽŶŝŶ�ďŝŶĚŝŶŐ͘�DŽů��Ğůů�ϭϮ͕�ϭϮϭϯͲϭϮϮϰ͘�
&ƌĂǌĞƌ͕� >͘E͕͘� EĂŶĐŽůůŝƐ͕� s͕͘� ĂŶĚ� KΖ<ĞĞĨĞ͕� Z͘d͘� ;ϮϬϬϴͿ͘� dŚĞ� ƌŽůĞ� ŽĨ� ^ŶƵϭϭϰƉ� ĚƵƌŝŶŐ� ƉƌĞͲŵZE�� ƐƉůŝĐŝŶŐ͘�
�ŝŽĐŚĞŵ�^ŽĐ�dƌĂŶƐ�ϯϲ͕�ϱϱϭͲϱϱϯ͘�
&ƌĞƵŶĚ͕��͕͘��ŚŽŶŐ͕�&͘>͕͘�sĞŶƚĞŝĐŚĞƌ͕��͘^͕͘�DĞŶŐ͕��͕͘�sĞĞŶƐƚƌĂ͕�d͘�͕͘�&ƌǇĚŵĂŶ͕�:͕͘�ĂŶĚ��ƌƚĂŶĚŝ͕�^͘�͘�;ϮϬϭϰͿ͘�
WƌŽƚĞŽƐƚĂƚŝĐ�ĐŽŶƚƌŽů�ŽĨ�ƚĞůŽŵĞƌĂƐĞ�ĨƵŶĐƚŝŽŶ�ƚŚƌŽƵŐŚ�dZŝ�ͲŵĞĚŝĂƚĞĚ�ĨŽůĚŝŶŐ�ŽĨ�d���ϭ͘��Ğůů�ϭϱϵ͕�ϭϯϴϵͲϭϰϬϯ͘�
&ƌǇĚŵĂŶ͕�:͕͘�EŝŵŵĞƐŐĞƌŶ͕��͕͘�KŚƚƐƵŬĂ͕�<͕͘�ĂŶĚ�,Ăƌƚů͕�&͘h͘�;ϭϵϵϰͿ͘�&ŽůĚŝŶŐ�ŽĨ�ŶĂƐĐĞŶƚ�ƉŽůǇƉĞƉƚŝĚĞ�ĐŚĂŝŶƐ�ŝŶ�
Ă�ŚŝŐŚ�ŵŽůĞĐƵůĂƌ�ŵĂƐƐ�ĂƐƐĞŵďůǇ�ǁŝƚŚ�ŵŽůĞĐƵůĂƌ�ĐŚĂƉĞƌŽŶĞƐ͘�EĂƚƵƌĞ�ϯϳϬ͕�ϭϭϭͲϭϭϳ͘�



Ͳ�ϮϬϭ�Ͳ��
�

'ĂǀŝŶ͕��͘�͕͘��ůŽǇ͕�W͕͘�'ƌĂŶĚŝ͕�W͕͘�<ƌĂƵƐĞ͕�Z͕͘��ŽĞƐĐŚĞ͕�D͕͘�DĂƌǌŝŽĐŚ͕�D͕͘�ZĂƵ͕��͕͘�:ĞŶƐĞŶ͕�>͘:͕͘��ĂƐƚƵĐŬ͕�^͕͘�
�ƵŵƉĞůĨĞůĚ͕��͕͘�Ğƚ�Ăů͘�;ϮϬϬϲͿ͘�WƌŽƚĞŽŵĞ�ƐƵƌǀĞǇ�ƌĞǀĞĂůƐ�ŵŽĚƵůĂƌŝƚǇ�ŽĨ�ƚŚĞ�ǇĞĂƐƚ�ĐĞůů�ŵĂĐŚŝŶĞƌǇ͘�EĂƚƵƌĞ�ϰϰϬ͕�
ϲϯϭͲϲϯϲ͘�
'ĞŝƐƐůĞƌ͕�̂ ͕͘�̂ ŝĞŐĞƌƐ͕�<͕͘�ĂŶĚ�̂ ĐŚŝĞďĞů͕��͘�;ϭϵϵϴͿ͘���ŶŽǀĞů�ƉƌŽƚĞŝŶ�ĐŽŵƉůĞǆ�ƉƌŽŵŽƚŝŶŐ�ĨŽƌŵĂƚŝŽŶ�ŽĨ�ĨƵŶĐƚŝŽŶĂů�
ĂůƉŚĂͲ�ĂŶĚ�ŐĂŵŵĂͲƚƵďƵůŝŶ͘��D�K�:�ϭϳ͕�ϵϱϮͲϵϲϲ͘�
'ĞŽƌŐĞƐĐĂƵůĚ͕�&͕͘�WŽƉŽǀĂ͕�<͕͘�'ƵƉƚĂ͕��͘:͕͘��ƌĂĐŚĞƌ͕��͕͘��ŶŐĞŶ͕�:͘Z͕͘�,ĂǇĞƌͲ,Ăƌƚů͕�D͕͘�ĂŶĚ�,Ăƌƚů͕�&͘h͘�;ϮϬϭϰͿ͘�
'ƌŽ�>ͬ�^��ŚĂƉĞƌŽŶŝŶ�DŽĚƵůĂƚĞƐ�ƚŚĞ�DĞĐŚĂŶŝƐŵ�ĂŶĚ��ĐĐĞůĞƌĂƚĞƐ�ƚŚĞ�ZĂƚĞ�ŽĨ�d/DͲ�ĂƌƌĞů��ŽŵĂŝŶ�&ŽůĚŝŶŐ͘�
�Ğůů�ϭϱϳ͕�ϵϮϮͲϵϯϰ͘�
'ĞƌƐŚĞŶƐŽŶ͕��͕͘�ĂŶĚ�'ŝĞƌĂƐĐŚ͕�>͘D͘�;ϮϬϭϭͿ͘�WƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�ŝŶ�ƚŚĞ�ĐĞůů͗�ĐŚĂůůĞŶŐĞƐ�ĂŶĚ�ƉƌŽŐƌĞƐƐ͘��Ƶƌƌ�KƉŝŶ�
^ƚƌƵĐ��ŝŽů�Ϯϭ͕�ϯϮͲϰϭ͘�
'ĞƌƐŚĞŶƐŽŶ͕��͕͘�'ŝĞƌĂƐĐŚ͕� >͘D͕͘� WĂƐƚŽƌĞ͕��͕͘� ĂŶĚ�ZĂĚĨŽƌĚ͕� ^͘�͘� ;ϮϬϭϰͿ͘� �ŶĞƌŐǇ� ůĂŶĚƐĐĂƉĞƐ�ŽĨ� ĨƵŶĐƚŝŽŶĂů�
ƉƌŽƚĞŝŶƐ�ĂƌĞ�ŝŶŚĞƌĞŶƚůǇ�ƌŝƐŬǇ͘�EĂƚ��ŚĞŵ��ŝŽů�ϭϬ͕�ϴϴϰͲϴϵϭ͘�
'ŽŵĞǌͲWƵĞƌƚĂƐ͕� W͕͘� DĂƌƚŝŶͲ�ĞŶŝƚŽ͕� :͕͘� �ĂƌƌĂƐĐŽƐĂ͕� :͘>͕͘� tŝůůŝƐŽŶ͕� <͘Z͕͘� ĂŶĚ� sĂůƉƵĞƐƚĂ͕� :͘D͘� ;ϮϬϬϰͿ͘� dŚĞ�
ƐƵďƐƚƌĂƚĞ�ƌĞĐŽŐŶŝƚŝŽŶ�ŵĞĐŚĂŶŝƐŵƐ�ŝŶ�ĐŚĂƉĞƌŽŶŝŶƐ͘�:ŽƵƌŶĂů�ŽĨ�ŵŽůĞĐƵůĂƌ�ƌĞĐŽŐŶŝƚŝŽŶ�͗�:DZ�ϭϳ͕�ϴϱͲϵϰ͘�
'ƵĞƌƌĞƌŽ͕��͕͘�DŝůĞŶŬŽǀŝĐ͕�d͕͘�WƌǌƵůũ͕�E͕͘�<ĂŝƐĞƌ͕�W͕͘�ĂŶĚ�,ƵĂŶŐ͕�>͘�;ϮϬϬϴͿ͘��ŚĂƌĂĐƚĞƌŝǌĂƚŝŽŶ�ŽĨ�ƚŚĞ�ƉƌŽƚĞĂƐŽŵĞ�
ŝŶƚĞƌĂĐƚŝŽŶ�ŶĞƚǁŽƌŬ�ƵƐŝŶŐ�Ă�Yd�yͲďĂƐĞĚ�ƚĂŐͲƚĞĂŵ�ƐƚƌĂƚĞŐǇ�ĂŶĚ�ƉƌŽƚĞŝŶ�ŝŶƚĞƌĂĐƚŝŽŶ�ŶĞƚǁŽƌŬ�ĂŶĂůǇƐŝƐ͘�WƌŽĐ�
EĂƚů��ĐĂĚ�^Đŝ�h�^���ϭϬϱ͕�ϭϯϯϯϯͲϭϯϯϯϴ͘�
'ƵƉƚĂ͕� �͘:͕͘� ,ĂůĚĂƌ͕� ^͕͘�DŝůŝĐŝĐ͕� '͕͘� ,Ăƌƚů͕� &͘h͕͘� ĂŶĚ� ,ĂǇĞƌͲ,Ăƌƚů͕�D͘� ;ϮϬϭϰͿ͘� �ĐƚŝǀĞ� �ĂŐĞ�DĞĐŚĂŶŝƐŵ� ŽĨ�
�ŚĂƉĞƌŽŶŝŶͲ�ƐƐŝƐƚĞĚ�WƌŽƚĞŝŶ�&ŽůĚŝŶŐ��ĞŵŽŶƐƚƌĂƚĞĚ�Ăƚ�^ŝŶŐůĞͲDŽůĞĐƵůĞ�>ĞǀĞů͘�:�DŽů��ŝŽů�ϰϮϲ͕�ϮϳϯϵͲϮϳϱϰ͘�
'ƵƚƐĐŚĞ͕� /͕͘� �ƐƐĞŶ͕� >͘K͕͘� ĂŶĚ��ĂƵŵĞŝƐƚĞƌ͕� &͘� ;ϭϵϵϵͿ͘�'ƌŽƵƉ� //� ĐŚĂƉĞƌŽŶŝŶƐ͗�EĞǁ�dZŝ�;ŬͿƐ�ĂŶĚ� ƚƵƌŶƐ�ŽĨ�Ă�
ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�ŵĂĐŚŝŶĞ͘�:�DŽů��ŝŽů�Ϯϵϯ͕�ϮϵϱͲϯϭϮ͘�
,ĂŝŶǌů͕�K͕͘�tĞŐĞůĞ͕�,͕͘�ZŝĐŚƚĞƌ͕�<͕͘�ĂŶĚ��ƵĐŚŶĞƌ͕�:͘�;ϮϬϬϰͿ͘��ŶƐϭ�ŝƐ�ĂŶ�ĂĐƚŝǀĂƚŽƌ�ŽĨ�ƚŚĞ�^ƐĂϭ��dWĂƐĞ�ĂĐƚŝǀŝƚǇ͘�
dŚĞ�:ŽƵƌŶĂů�ŽĨ�ďŝŽůŽŐŝĐĂů�ĐŚĞŵŝƐƚƌǇ�Ϯϳϵ͕�ϮϯϮϲϳͲϮϯϮϳϯ͘�
,ĂŶ͕� :͘,͕͘��ĂƚĞǇ͕�^͕͘�EŝĐŬƐŽŶ͕��͘�͕͘�dĞŝĐŚŵĂŶŶ͕�^͘�͕͘�ĂŶĚ��ůĂƌŬĞ͕� :͘� ;ϮϬϬϳͿ͘�dŚĞ� ĨŽůĚŝŶŐ�ĂŶĚ�ĞǀŽůƵƚŝŽŶ�ŽĨ�
ŵƵůƚŝĚŽŵĂŝŶ�ƉƌŽƚĞŝŶƐ͘�EĂƚ�ZĞǀ�DŽů��Ğůů��ŝŽů�ϴ͕�ϯϭϵͲϯϯϬ͘�
,Ăƌƚů͕�&͘h͘�;ϭϵϵϲͿ͘�DŽůĞĐƵůĂƌ�ĐŚĂƉĞƌŽŶĞƐ�ŝŶ�ĐĞůůƵůĂƌ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ͘�EĂƚƵƌĞ�ϯϴϭ͕�ϱϳϭͲϱϳϵ͘�
,Ăƌƚů͕�&͘h͕͘�ĂŶĚ�,ĂǇĞƌͲ,Ăƌƚů͕�D͘�;ϮϬϬϮͿ͘�WƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�Ͳ�DŽůĞĐƵůĂƌ�ĐŚĂƉĞƌŽŶĞƐ�ŝŶ�ƚŚĞ�ĐǇƚŽƐŽů͗�ĨƌŽŵ�ŶĂƐĐĞŶƚ�
ĐŚĂŝŶ�ƚŽ�ĨŽůĚĞĚ�ƉƌŽƚĞŝŶ͘�^ĐŝĞŶĐĞ�Ϯϵϱ͕�ϭϴϱϮͲϭϴϱϴ͘�
,ĂǇĞƌͲ,Ăƌƚů͕�D͕͘��ƌĂĐŚĞƌ͕��͕͘�ĂŶĚ�,Ăƌƚů͕�&͘h͘�;ϮϬϭϲͿ͘�dŚĞ�'ƌŽ�>Ͳ'ƌŽ�^��ŚĂƉĞƌŽŶŝŶ�DĂĐŚŝŶĞ͗���EĂŶŽͲ�ĂŐĞ�
ĨŽƌ�WƌŽƚĞŝŶ�&ŽůĚŝŶŐ͘�dƌĞŶĚƐ��ŝŽĐŚĞŵ�^Đŝ�ϰϭ͕�ϲϮͲϳϲ͘�
,ĞŝŶ͕�D͘z͕͘�,ƵďŶĞƌ͕�E͘�͕͘�WŽƐĞƌ͕�/͕͘��Žǆ͕�:͕͘�EĂŐĂƌĂũ͕�E͕͘�dŽǇŽĚĂ͕�z͕͘�'ĂŬ͕�/͘�͕͘�tĞŝƐƐǁĂŶŐĞ͕�/͕͘�DĂŶƐĨĞůĚ͕�:͕͘�
�ƵĐŚŚŽůǌ͕� &͕͘� Ğƚ� Ăů͘� ;ϮϬϭϱͿ͘� �� ŚƵŵĂŶ� ŝŶƚĞƌĂĐƚŽŵĞ� ŝŶ� ƚŚƌĞĞ� ƋƵĂŶƚŝƚĂƚŝǀĞ� ĚŝŵĞŶƐŝŽŶƐ� ŽƌŐĂŶŝǌĞĚ� ďǇ�
ƐƚŽŝĐŚŝŽŵĞƚƌŝĞƐ�ĂŶĚ�ĂďƵŶĚĂŶĐĞƐ͘��Ğůů�ϭϲϯ͕�ϳϭϮͲϳϮϯ͘�
,ĞƌǌŽŐ͕�&͕͘�<ĂŚƌĂŵĂŶ͕��͕͘��ŽĞŚƌŝŶŐĞƌ͕��͕͘�DĂŬ͕�Z͕͘��ƌĂĐŚĞƌ͕��͕͘�tĂůǌƚŚŽĞŶŝ͕�d͕͘�>ĞŝƚŶĞƌ͕��͕͘��ĞĐŬ͕�D͕͘�,Ăƌƚů͕�
&͘h͕͘��ĂŶ͕�E͕͘�Ğƚ�Ăů͘� ;ϮϬϭϮͿ͘�^ƚƌƵĐƚƵƌĂů�ƉƌŽďŝŶŐ�ŽĨ�Ă�ƉƌŽƚĞŝŶ�ƉŚŽƐƉŚĂƚĂƐĞ�Ϯ��ŶĞƚǁŽƌŬ�ďǇ�ĐŚĞŵŝĐĂů�ĐƌŽƐƐͲ
ůŝŶŬŝŶŐ�ĂŶĚ�ŵĂƐƐ�ƐƉĞĐƚƌŽŵĞƚƌǇ͘�^ĐŝĞŶĐĞ�ϯϯϳ͕�ϭϯϰϴͲϭϯϱϮ͘�
,ŝƌƚƌĞŝƚĞƌ͕��͘D͕͘��ĂůůŽŶŝ͕�'͕͘�&ŽƌŶĞƌ͕�&͕͘�^ĐŚĞŝďĞ͕��͕͘�WƵǇƉĞ͕�D͕͘�sĂŶĚĞŬĞƌĐŬŚŽǀĞ͕�:͕͘�DĂŶŶ͕�D͕͘�,Ăƌƚů͕�&͘h͕͘�
ĂŶĚ�,ĂǇĞƌͲ,Ăƌƚů͕�D͘�;ϮϬϬϵͿ͘��ŝĨĨĞƌĞŶƚŝĂů�ƐƵďƐƚƌĂƚĞ�ƐƉĞĐŝĨŝĐŝƚǇ�ŽĨ�ŐƌŽƵƉ�/�ĂŶĚ�ŐƌŽƵƉ�//�ĐŚĂƉĞƌŽŶŝŶƐ�ŝŶ�ƚŚĞ�
ĂƌĐŚĂĞŽŶ�DĞƚŚĂŶŽƐĂƌĐŝŶĂ�ŵĂǌĞŝ͘�DŽů�DŝĐƌŽďŝŽů�ϳϰ͕�ϭϭϱϮͲϭϭϲϴ͘�
,ŽƌŽǀŝƚǌ͕��͕͘�&ƌŝĚŵĂŶŶ͕�z͕͘�<ĂĨƌŝ͕�'͕͘�ĂŶĚ�zŝĨƌĂĐŚ͕�K͘�;ϮϬϬϭͿ͘�ZĞǀŝĞǁ͗�ĂůůŽƐƚĞƌǇ�ŝŶ�ĐŚĂƉĞƌŽŶŝŶƐ͘�:�^ƚƌƵĐƚ��ŝŽů�
ϭϯϱ͕�ϭϬϰͲϭϭϰ͘�
,ŽƌǁŝĐŚ͕��͘>͕͘�&ĞŶƚŽŶ͕�t͘�͕͘��ŚĂƉŵĂŶ͕��͕͘�ĂŶĚ�&Ăƌƌ͕�'͘t͘�;ϮϬϬϳͿ͘�dǁŽ�ĨĂŵŝůŝĞƐ�ŽĨ�ĐŚĂƉĞƌŽŶŝŶ͗�WŚǇƐŝŽůŽŐǇ�
ĂŶĚ�ŵĞĐŚĂŶŝƐŵ͘��ŶŶƵ�ZĞǀ��Ğůů��Ğǀ��ŝ�Ϯϯ͕�ϭϭϱͲϭϰϱ͘�



Ͳ�ϮϬϮ�Ͳ��
�

,ŽƵƌǇ͕�t͘�͕͘�&ƌŝƐŚŵĂŶ͕��͕͘��ĐŬĞƌƐŬŽƌŶ͕��͕͘�>ŽƚƚƐƉĞŝĐŚ͕�&͕͘�ĂŶĚ�,Ăƌƚů͕�&͘h͘�;ϭϵϵϵͿ͘�/ĚĞŶƚŝĨŝĐĂƚŝŽŶ�ŽĨ�ŝŶ�ǀŝǀŽ�
ƐƵďƐƚƌĂƚĞƐ�ŽĨ�ƚŚĞ�ĐŚĂƉĞƌŽŶŝŶ�'ƌŽ�>͘�EĂƚƵƌĞ�ϰϬϮ͕�ϭϰϳͲϭϱϰ͘�
,ƵŽ͕�z͕͘�,Ƶ͕��͕͘��ŚĂŶŐ͕�<͕͘�tĂŶŐ͕�>͕͘��ŚĂŝ͕�z͕͘��ŚŽƵ͕�Y͕͘�>ĂŶĚĞƌ͕�'͕͘��ŚƵ͕�:͕͘�,Ğ͕�z͕͘�WĂŶŐ͕�y͕͘�Ğƚ�Ăů͘�;ϮϬϭϬͿ͘�
�ƌǇƐƚĂů�ƐƚƌƵĐƚƵƌĞ�ŽĨ�ŐƌŽƵƉ�//�ĐŚĂƉĞƌŽŶŝŶ�ŝŶ�ƚŚĞ�ŽƉĞŶ�ƐƚĂƚĞ͘�^ƚƌƵĐƚƵƌĞ�ϭϴ͕�ϭϮϳϬͲϭϮϳϵ͘�
,ƵƚƚůŝŶ͕��͘>͕͘��ƌƵĐŬŶĞƌ͕�Z͘:͕͘�WĂƵůŽ͕�:͘�͕͘��ĂŶŶŽŶ͕�:͘Z͕͘�dŝŶŐ͕�>͕͘��ĂůƚŝĞƌ͕�<͕͘��ŽůďǇ͕�'͕͘�'ĞďƌĞĂď͕�&͕͘�'ǇŐŝ͕�D͘W͕͘�
WĂƌǌĞŶ͕�,͕͘�Ğƚ�Ăů͘�;ϮϬϭϳͿ͘��ƌĐŚŝƚĞĐƚƵƌĞ�ŽĨ�ƚŚĞ�ŚƵŵĂŶ�ŝŶƚĞƌĂĐƚŽŵĞ�ĚĞĨŝŶĞƐ�ƉƌŽƚĞŝŶ�ĐŽŵŵƵŶŝƚŝĞƐ�ĂŶĚ�ĚŝƐĞĂƐĞ�
ŶĞƚǁŽƌŬƐ͘�EĂƚƵƌĞ�ϱϰϱ͕�ϱϬϱͲϱϬϵ͘�
,ƵƚƚůŝŶ͕��͘>͕͘�dŝŶŐ͕�>͕͘��ƌƵĐŬŶĞƌ͕�Z͘:͕͘�'ĞďƌĞĂď͕�&͕͘�'ǇŐŝ͕�D͘W͕͘�̂ ǌƉǇƚ͕�:͕͘�dĂŵ͕�̂ ͕͘��ĂƌƌĂŐĂ͕�'͕͘��ŽůďǇ͕�'͕͘��ĂůƚŝĞƌ͕�
<͕͘�Ğƚ�Ăů͘�;ϮϬϭϱͿ͘�dŚĞ��ŝŽWůĞǆ�EĞƚǁŽƌŬ͗���^ǇƐƚĞŵĂƚŝĐ��ǆƉůŽƌĂƚŝŽŶ�ŽĨ�ƚŚĞ�,ƵŵĂŶ�/ŶƚĞƌĂĐƚŽŵĞ͘��Ğůů�ϭϲϮ͕�ϰϮϱͲ
ϰϰϬ͘�
/ŝǌƵŬĂ͕�Z͕͘�^Ž͕�^͕͘�/ŶŽďĞ͕�d͕͘�zŽƐŚŝĚĂ͕�d͕͘��ĂŬŽ͕�d͕͘�<ƵǁĂũŝŵĂ͕�<͕͘�ĂŶĚ�zŽŚĚĂ͕�D͘�;ϮϬϬϰͿ͘�ZŽůĞ�ŽĨ�ƚŚĞ�ŚĞůŝĐĂů�
ƉƌŽƚƌƵƐŝŽŶ� ŝŶ� ƚŚĞ� ĐŽŶĨŽƌŵĂƚŝŽŶĂů� ĐŚĂŶŐĞ� ĂŶĚ� ŵŽůĞĐƵůĂƌ� ĐŚĂƉĞƌŽŶĞ� ĂĐƚŝǀŝƚǇ� ŽĨ� ƚŚĞ� ĂƌĐŚĂĞĂů� ŐƌŽƵƉ� //�
ĐŚĂƉĞƌŽŶŝŶ͘�dŚĞ�:ŽƵƌŶĂů�ŽĨ�ďŝŽůŽŐŝĐĂů�ĐŚĞŵŝƐƚƌǇ�Ϯϳϵ͕�ϭϴϴϯϰͲϭϴϴϯϵ͘�
:ŝĂŶŐ͕� z͕͘� �ŽƵŐůĂƐ͕� E͘Z͕͘� �ŽŶůĞǇ͕� E͘Z͕͘� DŝůůĞƌ͕� �͘:͕͘� &ƌǇĚŵĂŶ͕� :͕͘� ĂŶĚ� DŽĞƌŶĞƌ͕� t͘�͘� ;ϮϬϭϭͿ͘� ^ĞŶƐŝŶŐ�
ĐŽŽƉĞƌĂƚŝǀŝƚǇ�ŝŶ��dW�ŚǇĚƌŽůǇƐŝƐ�ĨŽƌ�ƐŝŶŐůĞ�ŵƵůƚŝƐƵďƵŶŝƚ�ĞŶǌǇŵĞƐ�ŝŶ�ƐŽůƵƚŝŽŶ͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���ϭϬϴ͕�
ϭϲϵϲϮͲϭϲϵϲϳ͘�
:ŽĂĐŚŝŵŝĂŬ͕�>͘�͕͘�tĂůǌƚŚŽĞŶŝ͕�d͕͘�>ŝƵ͕��͘t͕͘��ĞďĞƌƐŽůĚ͕�Z͕͘�ĂŶĚ�&ƌǇĚŵĂŶ͕�:͘�;ϮϬϭϰͿ͘�dŚĞ�ƐƚƌƵĐƚƵƌĂů�ďĂƐŝƐ�ŽĨ�
ƐƵďƐƚƌĂƚĞ�ƌĞĐŽŐŶŝƚŝŽŶ�ďǇ�ƚŚĞ�ĞƵŬĂƌǇŽƚŝĐ�ĐŚĂƉĞƌŽŶŝŶ�dZŝ�ͬ��d͘��Ğůů�ϭϱϵ͕�ϭϬϰϮͲϭϬϱϱ͘�
:ŽƌŐĞŶƐĞŶ͕�Z͕͘�Kƌƚŝǌ͕�W͘�͕͘��ĂƌƌͲ^ĐŚŵŝĚ͕��͕͘�EŝƐƐĞŶ͕�W͕͘�<ŝŶǌǇ͕�d͘'͕͘�ĂŶĚ��ŶĚĞƌƐĞŶ͕�'͘Z͘�;ϮϬϬϯͿ͘�dǁŽ�ĐƌǇƐƚĂů�
ƐƚƌƵĐƚƵƌĞƐ�ĚĞŵŽŶƐƚƌĂƚĞ� ůĂƌŐĞ� ĐŽŶĨŽƌŵĂƚŝŽŶĂů� ĐŚĂŶŐĞƐ� ŝŶ� ƚŚĞ�ĞƵŬĂƌǇŽƚŝĐ� ƌŝďŽƐŽŵĂů� ƚƌĂŶƐůŽĐĂƐĞ͘�EĂƚƵƌĞ�
ƐƚƌƵĐƚƵƌĂů�ďŝŽůŽŐǇ�ϭϬ͕�ϯϳϵͲϯϴϱ͘�
<ĂĨƌŝ͕� '͕͘� tŝůůŝƐŽŶ͕� <͘Z͕͘� ĂŶĚ� ,ŽƌŽǀŝƚǌ͕� �͘� ;ϮϬϬϭͿ͘� EĞƐƚĞĚ� ĂůůŽƐƚĞƌŝĐ� ŝŶƚĞƌĂĐƚŝŽŶƐ� ŝŶ� ƚŚĞ� ĐǇƚŽƉůĂƐŵŝĐ�
ĐŚĂƉĞƌŽŶŝŶ�ĐŽŶƚĂŝŶŝŶŐ�d�WͲϭ͘�WƌŽƚĞŝŶ�ƐĐŝĞŶĐĞ�͗�Ă�ƉƵďůŝĐĂƚŝŽŶ�ŽĨ�ƚŚĞ�WƌŽƚĞŝŶ�^ŽĐŝĞƚǇ�ϭϬ͕�ϰϰϱͲϰϰϵ͘�
<ĂůŝƐŵĂŶ͕�E͕͘��ĚĂŵƐ͕��͘D͕͘�ĂŶĚ�>Ğǀŝƚƚ͕�D͘�;ϮϬϭϮͿ͘�^ƵďƵŶŝƚ�ŽƌĚĞƌ�ŽĨ�ĞƵŬĂƌǇŽƚŝĐ�dZŝ�ͬ��d�ĐŚĂƉĞƌŽŶŝŶ�ďǇ�
ĐƌŽƐƐͲůŝŶŬŝŶŐ͕�ŵĂƐƐ�ƐƉĞĐƚƌŽŵĞƚƌǇ͕�ĂŶĚ�ĐŽŵďŝŶĂƚŽƌŝĂů�ŚŽŵŽůŽŐǇ�ŵŽĚĞůŝŶŐ͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���ϭϬϵ͕�
ϮϴϴϰͲϮϴϴϵ͘�
<ĂůŝƐŵĂŶ͕�E͕͘�̂ ĐŚƌŽĚĞƌ͕�'͘&͕͘�ĂŶĚ�>Ğǀŝƚƚ͕�D͘�;ϮϬϭϯͿ͘�dŚĞ�ĐƌǇƐƚĂů�ƐƚƌƵĐƚƵƌĞƐ�ŽĨ�ƚŚĞ�ĞƵŬĂƌǇŽƚŝĐ�ĐŚĂƉĞƌŽŶŝŶ���d�
ƌĞǀĞĂů�ŝƚƐ�ĨƵŶĐƚŝŽŶĂů�ƉĂƌƚŝƚŝŽŶŝŶŐ͘�^ƚƌƵĐƚƵƌĞ�Ϯϭ͕�ϱϰϬͲϱϰϵ͘�
<ĞŶŶĞǇ͕� :͘t͕͘�DŽŽƌĞ͕��͘�͕͘�tĂŶŐ͕�y͕͘�ĂŶĚ�WƌŽƵĚ͕��͘'͘� ;ϮϬϭϰͿ͘��ƵŬĂƌǇŽƚŝĐ�ĞůŽŶŐĂƚŝŽŶ�ĨĂĐƚŽƌ�Ϯ�ŬŝŶĂƐĞ͕�ĂŶ�
ƵŶƵƐƵĂů�ĞŶǌǇŵĞ�ǁŝƚŚ�ŵƵůƚŝƉůĞ�ƌŽůĞƐ͘��ĚǀĂŶĐĞƐ�ŝŶ�ďŝŽůŽŐŝĐĂů�ƌĞŐƵůĂƚŝŽŶ�ϱϱ͕�ϭϱͲϮϳ͘�
<ĞƌŶĞƌ͕�D͘:͕͘�EĂǇůŽƌ͕��͘:͕͘�/ƐŚŝŚĂŵĂ͕�z͕͘�DĂŝĞƌ͕�d͕͘��ŚĂŶŐ͕�,͘�͕͘�^ƚŝŶĞƐ͕��͘W͕͘�'ĞŽƌŐŽƉŽƵůŽƐ͕��͕͘�&ƌŝƐŚŵĂŶ͕��͕͘�
,ĂǇĞƌͲ,Ăƌƚů͕� D͕͘� DĂŶŶ͕� D͕͘� Ğƚ� Ăů͘� ;ϮϬϬϱͿ͘� WƌŽƚĞŽŵĞͲǁŝĚĞ� ĂŶĂůǇƐŝƐ� ŽĨ� ĐŚĂƉĞƌŽŶŝŶͲĚĞƉĞŶĚĞŶƚ� ƉƌŽƚĞŝŶ�
ĨŽůĚŝŶŐ�ŝŶ��ƐĐŚĞƌŝĐŚŝĂ�ĐŽůŝ͘��Ğůů�ϭϮϮ͕�ϮϬϵͲϮϮϬ͘�
<ŝŵ͕�^͕͘�tŝůůŝƐŽŶ͕�<͘Z͕͘�ĂŶĚ�,ŽƌǁŝĐŚ͕��͘>͘�;ϭϵϵϰͿ͘��ǇƐƚŽƐŽůŝĐ��ŚĂƉĞƌŽŶŝŶ�^ƵďƵŶŝƚƐ�,ĂǀĞ�Ă��ŽŶƐĞƌǀĞĚ��ƚƉĂƐĞ�
�ŽŵĂŝŶ�ďƵƚ��ŝǀĞƌŐĞĚ�WŽůǇƉĞƉƚŝĚĞͲ�ŝŶĚŝŶŐ��ŽŵĂŝŶƐ͘�dƌĞŶĚƐ��ŝŽĐŚĞŵ�^Đŝ�ϭϵ͕�ϱϰϯͲϱϰϴ͘�
<ŝŵ͕�z͘�͕͘�,ŝƉƉ͕�D͘^͕͘��ƌĂĐŚĞƌ͕��͕͘�,ĂǇĞƌͲ,Ăƌƚů͕�D͕͘�ĂŶĚ�,Ăƌƚů͕�&͘h͘�;ϮϬϭϯͿ͘�DŽůĞĐƵůĂƌ�ĐŚĂƉĞƌŽŶĞ�ĨƵŶĐƚŝŽŶƐ�
ŝŶ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�ĂŶĚ�ƉƌŽƚĞŽƐƚĂƐŝƐ͘��ŶŶƵ�ZĞǀ��ŝŽĐŚĞŵ�ϴϮ͕�ϯϮϯͲϯϱϱ͘�
<ŝŵĂƚĂ͕�z͕͘�ĂŶĚ�<ŽŚŶŽ͕�<͘�;ϭϵϵϰͿ͘��ůŽŶŐĂƚŝŽŶ�ĨĂĐƚŽƌ�Ϯ�ŵƵƚĂŶƚƐ�ĚĞĨŝĐŝĞŶƚ�ŝŶ�ĚŝƉŚƚŚĂŵŝĚĞ�ĨŽƌŵĂƚŝŽŶ�ƐŚŽǁ�
ƚĞŵƉĞƌĂƚƵƌĞͲƐĞŶƐŝƚŝǀĞ�ĐĞůů�ŐƌŽǁƚŚ͘�dŚĞ�:ŽƵƌŶĂů�ŽĨ�ďŝŽůŽŐŝĐĂů�ĐŚĞŵŝƐƚƌǇ�Ϯϲϵ͕�ϭϯϰϵϳͲϭϯϱϬϭ͘�
<ŝƌƐĐŚŬĞ͕��͕͘�'ŽƐǁĂŵŝ͕��͕͘�^ŽƵƚŚǁŽƌƚŚ͕��͕͘�'ƌŝĨĨŝŶ͕�W͘Z͕͘�ĂŶĚ��ŐĂƌĚ͕��͘�͘�;ϮϬϭϰͿ͘�'ůƵĐŽĐŽƌƚŝĐŽŝĚ�ZĞĐĞƉƚŽƌ�
&ƵŶĐƚŝŽŶ�ZĞŐƵůĂƚĞĚ�ďǇ��ŽŽƌĚŝŶĂƚĞĚ��ĐƚŝŽŶ�ŽĨ� ƚŚĞ�,ƐƉϵϬ�ĂŶĚ�,ƐƉϳϬ��ŚĂƉĞƌŽŶĞ��ǇĐůĞƐ͘��Ğůů�ϭϱϳ͕�ϭϲϴϱͲ
ϭϲϵϳ͘�



Ͳ�ϮϬϯ�Ͳ��
�

<ŝƚĂŐĂǁĂ͕�<͕͘� ^ŬŽǁǇƌĂ͕��͕͘��ůůĞĚŐĞ͕�^͘:͕͘�,ĂƌƉĞƌ͕� :͘t͕͘�ĂŶĚ�,ŝĞƚĞƌ͕�W͘� ;ϭϵϵϵͿ͘�^'dϭ�ĞŶĐŽĚĞƐ�ĂŶ�ĞƐƐĞŶƚŝĂů�
ĐŽŵƉŽŶĞŶƚ�ŽĨ�ƚŚĞ�ǇĞĂƐƚ�ŬŝŶĞƚŽĐŚŽƌĞ�ĂƐƐĞŵďůǇ�ƉĂƚŚǁĂǇ�ĂŶĚ�Ă�ŶŽǀĞů�ƐƵďƵŶŝƚ�ŽĨ�ƚŚĞ�^�&�ƵďŝƋƵŝƚŝŶ�ůŝŐĂƐĞ�
ĐŽŵƉůĞǆ͘�DŽů��Ğůů�ϰ͕�ϮϭͲϯϯ͘�
<ŽƵůŽǀ͕��͘s͕͘�>ĂWŽŝŶƚĞ͕�W͕͘�>Ƶ͕��͕͘�ZĂǌǀŝ͕��͕͘��ŽƉƉŝŶŐĞƌ͕�:͕͘��ŽŶŐ͕�D͘Y͕͘�DĂƚƚĞƐŽŶ͕�:͕͘�>ĂŝƐƚĞƌ͕�Z͕͘��ƌƌŽǁƐŵŝƚŚ͕�
�͕͘�zĂƚĞƐ͕�:͘Z͕͘�ϯƌĚ͕�Ğƚ�Ăů͘�;ϮϬϭϬͿ͘��ŝŽůŽŐŝĐĂů�ĂŶĚ�ƐƚƌƵĐƚƵƌĂů�ďĂƐŝƐ�ĨŽƌ��ŚĂϭ�ƌĞŐƵůĂƚŝŽŶ�ŽĨ�,ƐƉϵϬ��dWĂƐĞ�ĂĐƚŝǀŝƚǇ�
ŝŶ�ŵĂŝŶƚĂŝŶŝŶŐ�ƉƌŽƚĞŽƐƚĂƐŝƐ�ŝŶ�ƚŚĞ�ŚƵŵĂŶ�ĚŝƐĞĂƐĞ�ĐǇƐƚŝĐ�ĨŝďƌŽƐŝƐ͘�DŽůĞĐƵůĂƌ�ďŝŽůŽŐǇ�ŽĨ�ƚŚĞ�ĐĞůů�Ϯϭ͕�ϴϳϭͲϴϴϰ͘�
<ƌŝƐƚĞŶƐĞŶ͕��͘Z͕͘�'ƐƉŽŶĞƌ͕�:͕͘�ĂŶĚ�&ŽƐƚĞƌ͕�>͘:͘�;ϮϬϭϮͿ͘���ŚŝŐŚͲƚŚƌŽƵŐŚƉƵƚ�ĂƉƉƌŽĂĐŚ�ĨŽƌ�ŵĞĂƐƵƌŝŶŐ�ƚĞŵƉŽƌĂů�
ĐŚĂŶŐĞƐ�ŝŶ�ƚŚĞ�ŝŶƚĞƌĂĐƚŽŵĞ͘�EĂƚ�DĞƚŚŽĚƐ�ϵ͕�ϵϬϳͲϵϬϵ͘�
<ƌŽŐĂŶ͕�E͘:͕͘��ĂŐŶĞǇ͕�'͕͘�zƵ͕�,͕͘��ŚŽŶŐ͕�'͕͘�'ƵŽ͕�y͕͘�/ŐŶĂƚĐŚĞŶŬŽ͕��͕͘�>ŝ͕�:͕͘�WƵ͕�^͕͘��ĂƚƚĂ͕�E͕͘�dŝŬƵŝƐŝƐ͕��͘W͕͘�Ğƚ�
Ăů͘�;ϮϬϬϲͿ͘�'ůŽďĂů�ůĂŶĚƐĐĂƉĞ�ŽĨ�ƉƌŽƚĞŝŶ�ĐŽŵƉůĞǆĞƐ�ŝŶ�ƚŚĞ�ǇĞĂƐƚ�̂ ĂĐĐŚĂƌŽŵǇĐĞƐ�ĐĞƌĞǀŝƐŝĂĞ͘�EĂƚƵƌĞ�ϰϰϬ͕�ϲϯϳͲ
ϲϰϯ͘�
<ƵďŽƚĂ͕�,͕͘�,ǇŶĞƐ͕�'͕͘�ĂŶĚ�tŝůůŝƐŽŶ͕�<͘�;ϭϵϵϱͿ͘�dŚĞ��ŚĂƉĞƌŽŶŝŶ��ŽŶƚĂŝŶŝŶŐ�dͲ�ŽŵƉůĞǆ�WŽůǇƉĞƉƚŝĚĞͲϭ�;dĐƉͲ
ϭͿ� Ͳ�DƵůƚŝƐƵďƵŶŝƚ�DĂĐŚŝŶĞƌǇ��ƐƐŝƐƚŝŶŐ� ŝŶ�WƌŽƚĞŝŶͲ&ŽůĚŝŶŐ�ĂŶĚ��ƐƐĞŵďůǇ� ŝŶ� ƚŚĞ��ƵŬĂƌǇŽƚŝĐ��ǇƚŽƐŽů͘��Ƶƌ� :�
�ŝŽĐŚĞŵ�ϮϯϬ͕�ϯͲϭϲ͘�
<ƵůĂŬ͕�E͘�͕͘�WŝĐŚůĞƌ͕�'͕͘�WĂƌŽŶ͕�/͕͘�EĂŐĂƌĂũ͕�E͕͘�ĂŶĚ�DĂŶŶ͕�D͘�;ϮϬϭϰͿ͘�DŝŶŝŵĂů͕�ĞŶĐĂƉƐƵůĂƚĞĚ�ƉƌŽƚĞŽŵŝĐͲ
ƐĂŵƉůĞ�ƉƌŽĐĞƐƐŝŶŐ�ĂƉƉůŝĞĚ�ƚŽ�ĐŽƉǇͲŶƵŵďĞƌ�ĞƐƚŝŵĂƚŝŽŶ�ŝŶ�ĞƵŬĂƌǇŽƚŝĐ�ĐĞůůƐ͘�EĂƚ�DĞƚŚŽĚƐ�ϭϭ͕�ϯϭϵͲϯϮϰ͘�
<ƵƐŵŝĞƌĐǌǇŬ͕��͘Z͕͘�ĂŶĚ�DĂƌƚŝŶ͕�:͘�;ϮϬϬϯͿ͘�EƵĐůĞŽƚŝĚĞͲĚĞƉĞŶĚĞŶƚ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�ŝŶ�ƚŚĞ�ƚǇƉĞ�//�ĐŚĂƉĞƌŽŶŝŶ�
ĨƌŽŵ�ƚŚĞ�ŵĞƐŽƉŚŝůŝĐ�ĂƌĐŚĂĞŽŶ�DĞƚŚĂŶŽĐŽĐĐƵƐ�ŵĂƌŝƉĂůƵĚŝƐ͘�dŚĞ��ŝŽĐŚĞŵŝĐĂů�ũŽƵƌŶĂů�ϯϳϭ͕�ϲϲϵͲϲϳϯ͘�
>ĂĐĞĨŝĞůĚ͕�^͕͘�ĂŶĚ�^ŽůŽŵŽŶ͕�&͘�;ϮϬϬϯͿ͘���ŶŽǀĞů�ƐƚĞƉ�ŝŶ�ďĞƚĂͲƚƵďƵůŝŶ�ĨŽůĚŝŶŐ�ŝƐ�ŝŵƉŽƌƚĂŶƚ�ĨŽƌ�ŚĞƚĞƌŽĚŝŵĞƌ�
ĨŽƌŵĂƚŝŽŶ�ŝŶ�^ĂĐĐŚĂƌŽŵǇĐĞƐ�ĐĞƌĞǀŝƐŝĂĞ͘�'ĞŶĞƚŝĐƐ�ϭϲϱ͕�ϱϯϭͲϱϰϭ͘�
>ĞŝƚŶĞƌ͕� �͕͘� &ĂŝŶŝ͕� D͕͘� ^ƚĞŶŐĞů͕� &͕͘� ĂŶĚ� �ĞďĞƌƐŽůĚ͕� Z͘� ;ϮϬϭϲͿ͘� �ƌŽƐƐůŝŶŬŝŶŐ� ĂŶĚ�DĂƐƐ� ^ƉĞĐƚƌŽŵĞƚƌǇ͗� �Ŷ�
/ŶƚĞŐƌĂƚĞĚ�dĞĐŚŶŽůŽŐǇ�ƚŽ�hŶĚĞƌƐƚĂŶĚ�ƚŚĞ�̂ ƚƌƵĐƚƵƌĞ�ĂŶĚ�&ƵŶĐƚŝŽŶ�ŽĨ�DŽůĞĐƵůĂƌ�DĂĐŚŝŶĞƐ͘�dƌĞŶĚƐ��ŝŽĐŚĞŵ�
^Đŝ�ϰϭ͕�ϮϬͲϯϮ͘�
>ĞŝƚŶĞƌ͕��͕͘�:ŽĂĐŚŝŵŝĂŬ͕�>͘�͕͘��ƌĂĐŚĞƌ͕��͕͘�DŽŶŬĞŵĞǇĞƌ͕�>͕͘�tĂůǌƚŚŽĞŶŝ͕�d͕͘��ŚĞŶ͕��͕͘�WĞĐŚŵĂŶŶ͕�^͕͘�,ŽůŵĞƐ͕�
^͕͘� �ŽŶŐ͕� z͕͘�DĂ͕� �͕͘� Ğƚ� Ăů͘� ;ϮϬϭϮͿ͘� dŚĞ�ŵŽůĞĐƵůĂƌ� ĂƌĐŚŝƚĞĐƚƵƌĞ�ŽĨ� ƚŚĞ� ĞƵŬĂƌǇŽƚŝĐ� ĐŚĂƉĞƌŽŶŝŶ� dZŝ�ͬ��d͘�
^ƚƌƵĐƚƵƌĞ�ϮϬ͕�ϴϭϰͲϴϮϱ͘�
>ĞŝƚŶĞƌ͕��͕͘�:ŽĂĐŚŝŵŝĂŬ͕�>͘�͕͘�hŶǀĞƌĚŽƌďĞŶ͕�W͕͘�tĂůǌƚŚŽĞŶŝ͕�d͕͘�&ƌǇĚŵĂŶ͕�:͕͘�&ŽƌƐƚĞƌ͕�&͕͘�ĂŶĚ��ĞďĞƌƐŽůĚ͕�Z͘�
;ϮϬϭϰͿ͘� �ŚĞŵŝĐĂů� ĐƌŽƐƐͲůŝŶŬŝŶŐͬŵĂƐƐ� ƐƉĞĐƚƌŽŵĞƚƌǇ� ƚĂƌŐĞƚŝŶŐ� ĂĐŝĚŝĐ� ƌĞƐŝĚƵĞƐ� ŝŶ� ƉƌŽƚĞŝŶƐ� ĂŶĚ� ƉƌŽƚĞŝŶ�
ĐŽŵƉůĞǆĞƐ͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���ϭϭϭ͕�ϵϰϱϱͲϵϰϲϬ͘�
>ĞǀŝŶƚŚĂů͕��͘�;ϭϵϲϴͿ͘��ƌĞ�dŚĞƌĞ�WĂƚŚǁĂǇƐ�ĨŽƌ�WƌŽƚĞŝŶ�&ŽůĚŝŶŐ͘�:��Śŝŵ�WŚǇƐ�WĐď�ϲϱ͕�ϰϰͲн͘�
>ŝ͕� :͕͘� ZŝĐŚƚĞƌ͕� <͕͘� ĂŶĚ��ƵĐŚŶĞƌ͕� :͘� ;ϮϬϭϭͿ͘�DŝǆĞĚ�,ƐƉϵϬͲĐŽĐŚĂƉĞƌŽŶĞ� ĐŽŵƉůĞǆĞƐ� ĂƌĞ� ŝŵƉŽƌƚĂŶƚ� ĨŽƌ� ƚŚĞ�
ƉƌŽŐƌĞƐƐŝŽŶ�ŽĨ�ƚŚĞ�ƌĞĂĐƚŝŽŶ�ĐǇĐůĞ͘�EĂƚ�^ƚƌƵĐƚ�DŽů��ŝŽů�ϭϴ͕�ϲϭͲϲϲ͘�
>ŝĞďĞƌŵĞŝƐƚĞƌ͕�t͕͘�EŽŽƌ͕��͕͘�&ůĂŵŚŽůǌ͕��͕͘��ĂǀŝĚŝ͕��͕͘��ĞƌŶŚĂƌĚƚ͕�:͕͘�ĂŶĚ�DŝůŽ͕�Z͘�;ϮϬϭϰͿ͘�sŝƐƵĂů�ĂĐĐŽƵŶƚ�ŽĨ�
ƉƌŽƚĞŝŶ�ŝŶǀĞƐƚŵĞŶƚ�ŝŶ�ĐĞůůƵůĂƌ�ĨƵŶĐƚŝŽŶƐ͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���ϭϭϭ͕�ϴϰϴϴͲϴϰϵϯ͘�
>ŝŶ͕�:͕͘�'ĂŐŶŽŶ͕�D͘'͕͘��ƵůŬůĞǇ͕��͕͘�ĂŶĚ�^ƚĞŝƚǌ͕�d͘�͘�;ϮϬϭϱͿ͘��ŽŶĨŽƌŵĂƚŝŽŶĂů�ĐŚĂŶŐĞƐ�ŽĨ�ĞůŽŶŐĂƚŝŽŶ�ĨĂĐƚŽƌ�'�
ŽŶ�ƚŚĞ�ƌŝďŽƐŽŵĞ�ĚƵƌŝŶŐ�ƚZE��ƚƌĂŶƐůŽĐĂƚŝŽŶ͘��Ğůů�ϭϲϬ͕�ϮϭϵͲϮϮϳ͘�
>ŝŶ͕� W͕͘� ĂŶĚ� ^ŚĞƌŵĂŶ͕� &͘� ;ϭϵϵϳͿ͘� dŚĞ� ƵŶŝƋƵĞ� ŚĞƚĞƌŽͲŽůŝŐŽŵĞƌŝĐ� ŶĂƚƵƌĞ� ŽĨ� ƚŚĞ� ƐƵďƵŶŝƚƐ� ŝŶ� ƚŚĞ� ĐĂƚĂůǇƚŝĐ�
ĐŽŽƉĞƌĂƚŝǀŝƚǇ�ŽĨ�ƚŚĞ�ǇĞĂƐƚ��Đƚ�ĐŚĂƉĞƌŽŶŝŶ�ĐŽŵƉůĞǆ͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���ϵϰ͕�ϭϬϳϴϬͲϭϬϳϴϱ͘�
>ŝŶ͕��͕͘�DĂĚĂŶ͕��͕͘�ĂŶĚ�ZǇĞ͕�,͘^͘�;ϮϬϬϴͿ͘�'ƌŽ�>�ƐƚŝŵƵůĂƚĞƐ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�ƚŚƌŽƵŐŚ�ĨŽƌĐĞĚ�ƵŶĨŽůĚŝŶŐ͘�EĂƚ�
^ƚƌƵĐƚ�DŽů��ŝŽů�ϭϱ͕�ϯϬϯͲϯϭϭ͘�
>ŝŽƵ͕��͘<͕͘�ĂŶĚ�tŝůůŝƐŽŶ͕�<͘Z͘�;ϭϵϵϳͿ͘��ůƵĐŝĚĂƚŝŽŶ�ŽĨ�ƚŚĞ�ƐƵďƵŶŝƚ�ŽƌŝĞŶƚĂƚŝŽŶ�ŝŶ���d�;ĐŚĂƉĞƌŽŶŝŶ�ĐŽŶƚĂŝŶŝŶŐ�
d�WϭͿ�ĨƌŽŵ�ƚŚĞ�ƐƵďƵŶŝƚ�ĐŽŵƉŽƐŝƚŝŽŶ�ŽĨ���d�ŵŝĐƌŽͲĐŽŵƉůĞǆĞƐ͘��D�K�:�ϭϲ͕�ϰϯϭϭͲϰϯϭϲ͘�
>ŝƵ͕�&͕͘�ĂŶĚ�,ĞĐŬ͕��͘:͘�;ϮϬϭϱͿ͘�/ŶƚĞƌƌŽŐĂƚŝŶŐ�ƚŚĞ�ĂƌĐŚŝƚĞĐƚƵƌĞ�ŽĨ�ƉƌŽƚĞŝŶ�ĂƐƐĞŵďůŝĞƐ�ĂŶĚ�ƉƌŽƚĞŝŶ�ŝŶƚĞƌĂĐƚŝŽŶ�
ŶĞƚǁŽƌŬƐ�ďǇ�ĐƌŽƐƐͲůŝŶŬŝŶŐ�ŵĂƐƐ�ƐƉĞĐƚƌŽŵĞƚƌǇ͘��Ƶƌƌ�KƉŝŶ�^ƚƌƵĐƚ��ŝŽů�ϯϱ͕�ϭϬϬͲϭϬϴ͘�
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>ůŽƌĐĂ͕� K͕͘� DĂƌƚŝŶͲ�ĞŶŝƚŽ͕� :͕͘� 'ƌĂŶƚŚĂŵ͕� :͕͘� ZŝƚĐŽͲsŽŶƐŽǀŝĐŝ͕� D͕͘� tŝůůŝƐŽŶ͕� <͘Z͕͘� �ĂƌƌĂƐĐŽƐĂ͕� :͘>͕͘� ĂŶĚ�
sĂůƉƵĞƐƚĂ͕�:͘D͘�;ϮϬϬϭͿ͘�dŚĞ�ΖƐĞƋƵĞŶƚŝĂů�ĂůůŽƐƚĞƌŝĐ�ƌŝŶŐΖ�ŵĞĐŚĂŶŝƐŵ�ŝŶ�ƚŚĞ�ĞƵŬĂƌǇŽƚŝĐ�ĐŚĂƉĞƌŽŶŝŶͲĂƐƐŝƐƚĞĚ�
ĨŽůĚŝŶŐ�ŽĨ�ĂĐƚŝŶ�ĂŶĚ�ƚƵďƵůŝŶ͘��D�K�:�ϮϬ͕�ϰϬϲϱͲϰϬϳϱ͘�
>ůŽƌĐĂ͕�K͕͘�DĂƌƚŝŶͲ�ĞŶŝƚŽ͕�:͕͘�ZŝƚĐŽͲsŽŶƐŽǀŝĐŝ͕�D͕͘�'ƌĂŶƚŚĂŵ͕�:͕͘�,ǇŶĞƐ͕�'͘D͕͘�tŝůůŝƐŽŶ͕�<͘Z͕͘��ĂƌƌĂƐĐŽƐĂ͕�:͘>͕͘�
ĂŶĚ�sĂůƉƵĞƐƚĂ͕�:͘D͘�;ϮϬϬϬͿ͘��ƵŬĂƌǇŽƚŝĐ�ĐŚĂƉĞƌŽŶŝŶ���d�ƐƚĂďŝůŝǌĞƐ�ĂĐƚŝŶ�ĂŶĚ�ƚƵďƵůŝŶ�ĨŽůĚŝŶŐ�ŝŶƚĞƌŵĞĚŝĂƚĞƐ�
ŝŶ�ŽƉĞŶ�ƋƵĂƐŝͲŶĂƚŝǀĞ�ĐŽŶĨŽƌŵĂƚŝŽŶƐ͘��D�K�:�ϭϵ͕�ϱϵϳϭͲϱϵϳϵ͘�
>ůŽƌĐĂ͕�K͕͘�DĐ�ŽƌŵĂĐŬ͕��͘�͕͘�,ǇŶĞƐ͕�'͕͘�'ƌĂŶƚŚĂŵ͕�:͕͘��ŽƌĚĞůů͕�:͕͘��ĂƌƌĂƐĐŽƐĂ͕�:͘>͕͘�tŝůůŝƐŽŶ͕�<͘Z͕͘�&ĞƌŶĂŶĚĞǌ͕�
:͘:͕͘�ĂŶĚ�sĂůƉƵĞƐƚĂ͕�:͘D͘�;ϭϵϵϵĂͿ͘��ƵŬĂƌǇŽƚŝĐ�ƚǇƉĞ�//�ĐŚĂƉĞƌŽŶŝŶ���d�ŝŶƚĞƌĂĐƚƐ�ǁŝƚŚ�ĂĐƚŝŶ�ƚŚƌŽƵŐŚ�ƐƉĞĐŝĨŝĐ�
ƐƵďƵŶŝƚƐ͘�EĂƚƵƌĞ�ϰϬϮ͕�ϲϵϯͲϲϵϲ͘�
>ůŽƌĐĂ͕�K͕͘�^ŵǇƚŚ͕�D͘'͕͘��ĂƌƌĂƐĐŽƐĂ͕�:͘>͕͘�tŝůůŝƐŽŶ͕�<͘Z͕͘�ZĂĚĞƌŵĂĐŚĞƌ͕�D͕͘�^ƚĞŝŶďĂĐŚĞƌ͕�^͕͘�ĂŶĚ�sĂůƉƵĞƐƚĂ͕�
:͘D͘� ;ϭϵϵϵďͿ͘� ϯ�� ƌĞĐŽŶƐƚƌƵĐƚŝŽŶ� ŽĨ� ƚŚĞ� �dWͲďŽƵŶĚ� ĨŽƌŵ� ŽĨ� ��d� ƌĞǀĞĂůƐ� ƚŚĞ� ĂƐǇŵŵĞƚƌŝĐ� ĨŽůĚŝŶŐ�
ĐŽŶĨŽƌŵĂƚŝŽŶ�ŽĨ�Ă�ƚǇƉĞ�//�ĐŚĂƉĞƌŽŶŝŶ͘�EĂƚƵƌĞ�ƐƚƌƵĐƚƵƌĂů�ďŝŽůŽŐǇ�ϲ͕�ϲϯϵͲϲϰϮ͘�
>ŽƉĞǌͲ&ĂŶĂƌƌĂŐĂ͕�D͕͘��ǀŝůĂ͕�:͕͘�'ƵĂƐĐŚ͕��͕͘��Žůů͕�D͕͘�ĂŶĚ��ĂďĂůĂ͕�:͘�͘�;ϮϬϬϭͿ͘�ZĞǀŝĞǁ͗�ƉŽƐƚĐŚĂƉĞƌŽŶŝŶ�ƚƵďƵůŝŶ�
ĨŽůĚŝŶŐ�ĐŽĨĂĐƚŽƌƐ�ĂŶĚ�ƚŚĞŝƌ�ƌŽůĞ�ŝŶ�ŵŝĐƌŽƚƵďƵůĞ�ĚǇŶĂŵŝĐƐ͘�:�^ƚƌƵĐƚ��ŝŽů�ϭϯϱ͕�ϮϭϵͲϮϮϵ͘�
>ŽƉĞǌ͕�d͕͘��ĂůƚŽŶ͕�<͕͘�ĂŶĚ�&ƌǇĚŵĂŶ͕�:͘�;ϮϬϭϱͿ͘�dŚĞ�DĞĐŚĂŶŝƐŵ�ĂŶĚ�&ƵŶĐƚŝŽŶ�ŽĨ�'ƌŽƵƉ�//��ŚĂƉĞƌŽŶŝŶƐ͘�:�DŽů�
�ŝŽů�ϰϮϳ͕�ϮϵϭϵͲϮϵϯϬ͘�
>ƵŶĚ͕�W͘�;ϮϬϭϭͿ͘�/ŶƐŝŐŚƚƐ�ŝŶƚŽ�ĐŚĂƉĞƌŽŶŝŶ�ĨƵŶĐƚŝŽŶ�ĨƌŽŵ�ƐƚƵĚŝĞƐ�ŽŶ�ĂƌĐŚĂĞĂů�ƚŚĞƌŵŽƐŽŵĞƐ͘��ŝŽĐŚĞŵ�^ŽĐ�d�
ϯϵ͕�ϵϰͲϵϴ͘�
>ƵŶĚŝŶ͕� s͘&͕͘� ^ƌĂǇŬŽ͕�D͕͘�,ǇŵĂŶ͕��͘�͕͘� ĂŶĚ� >ĞƌŽƵǆ͕�D͘Z͘� ;ϮϬϬϴͿ͘� �ĨĨŝĐŝĞŶƚ� ĐŚĂƉĞƌŽŶĞͲŵĞĚŝĂƚĞĚ� ƚƵďƵůŝŶ�
ďŝŽŐĞŶĞƐŝƐ�ŝƐ�ĞƐƐĞŶƚŝĂů�ĨŽƌ�ĐĞůů�ĚŝǀŝƐŝŽŶ�ĂŶĚ�ĐĞůů�ŵŝŐƌĂƚŝŽŶ�ŝŶ��͘�ĞůĞŐĂŶƐ͘��ĞǀĞůŽƉŵĞŶƚĂů�ďŝŽůŽŐǇ�ϯϭϯ͕�ϯϮϬͲ
ϯϯϰ͘�
>ƵŶĚŝŶ͕�s͘&͕͘�^ƚŝƌůŝŶŐ͕�W͘�͕͘�'ŽŵĞǌͲZĞŝŶŽ͕�:͕͘�DǁĞŶŝĨƵŵďŽ͕�:͘�͕͘�KďƐƚ͕� :͘D͕͘�sĂůƉƵĞƐƚĂ͕� :͘D͕͘�ĂŶĚ�>ĞƌŽƵǆ͕�
D͘Z͘�;ϮϬϬϰͿ͘�DŽůĞĐƵůĂƌ�ĐůĂŵƉ�ŵĞĐŚĂŶŝƐŵ�ŽĨ�ƐƵďƐƚƌĂƚĞ�ďŝŶĚŝŶŐ�ďǇ�ŚǇĚƌŽƉŚŽďŝĐ�ĐŽŝůĞĚͲĐŽŝů�ƌĞƐŝĚƵĞƐ�ŽĨ�ƚŚĞ�
ĂƌĐŚĂĞĂů�ĐŚĂƉĞƌŽŶĞ�ƉƌĞĨŽůĚŝŶ͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���ϭϬϭ͕�ϰϯϲϳͲϰϯϳϮ͘�
DĂ͕�:͕͘�^ŝŐůĞƌ͕�W͘�͕͘�yƵ͕��͕͘�ĂŶĚ�<ĂƌƉůƵƐ͕�D͘�;ϮϬϬϬͿ͘���ĚǇŶĂŵŝĐ�ŵŽĚĞů�ĨŽƌ�ƚŚĞ�ĂůůŽƐƚĞƌŝĐ�ŵĞĐŚĂŶŝƐŵ�ŽĨ�'ƌŽ�>͘�
:�DŽů��ŝŽů�ϯϬϮ͕�ϯϬϯͲϯϭϯ͘�
DĂƌƚŝŶͲ�ĞŶŝƚŽ͕�:͕͘��ĞƌƚƌĂŶĚ͕�^͕͘�,Ƶ͕�d͕͘�>ƵĚƚŬĞ͕�W͘:͕͘�DĐ>ĂƵŐŚůŝŶ͕�:͘E͕͘�tŝůůĂƌĚƐŽŶ͕��͘D͕͘��ĂƌƌĂƐĐŽƐĂ͕�:͘>͕͘�ĂŶĚ�
sĂůƉƵĞƐƚĂ͕�:͘D͘�;ϮϬϬϰͿ͘�^ƚƌƵĐƚƵƌĞ�ŽĨ�ƚŚĞ�ĐŽŵƉůĞǆ�ďĞƚǁĞĞŶ�ƚŚĞ�ĐǇƚŽƐŽůŝĐ�ĐŚĂƉĞƌŽŶŝŶ���d�ĂŶĚ�ƉŚŽƐĚƵĐŝŶͲ
ůŝŬĞ�ƉƌŽƚĞŝŶ͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���ϭϬϭ͕�ϭϳϰϭϬͲϭϳϰϭϱ͘�
DĂƌƚŝŶͲ�ĞŶŝƚŽ͕�:͕͘��ŽƐŬŽǀŝĐ͕�:͕͘�'ŽŵĞǌͲWƵĞƌƚĂƐ͕�W͕͘��ĂƌƌĂƐĐŽƐĂ͕�:͘>͕͘�^ŝŵŽŶƐ͕��͘d͕͘�>ĞǁŝƐ͕�^͘�͕͘��ĂƌƚŽůŝŶŝ͕�&͕͘�
�ŽǁĂŶ͕� E͘:͕͘� ĂŶĚ� sĂůƉƵĞƐƚĂ͕� :͘D͘� ;ϮϬϬϮͿ͘� ^ƚƌƵĐƚƵƌĞ� ŽĨ� ĞƵŬĂƌǇŽƚŝĐ� ƉƌĞĨŽůĚŝŶ� ĂŶĚ� ŽĨ� ŝƚƐ� ĐŽŵƉůĞǆĞƐ�ǁŝƚŚ�
ƵŶĨŽůĚĞĚ�ĂĐƚŝŶ�ĂŶĚ�ƚŚĞ�ĐǇƚŽƐŽůŝĐ�ĐŚĂƉĞƌŽŶŝŶ���d͘��D�K�:�Ϯϭ͕�ϲϯϳϳͲϲϯϴϲ͘�
DĂƌƚŝŶͲ�ĞŶŝƚŽ͕�:͕͘�'ƌĂŶƚŚĂŵ͕�:͕͘��ŽƐŬŽǀŝĐ͕�:͕͘��ƌĂĐŬůĞǇ͕�<͘/͕͘��ĂƌƌĂƐĐŽƐĂ͕�:͘>͕͘�tŝůůŝƐŽŶ͕�<͘Z͕͘�ĂŶĚ�sĂůƉƵĞƐƚĂ͕�
:͘D͘�;ϮϬϬϳͿ͘�dŚĞ�ŝŶƚĞƌͲƌŝŶŐ�ĂƌƌĂŶŐĞŵĞŶƚ�ŽĨ�ƚŚĞ�ĐǇƚŽƐŽůŝĐ�ĐŚĂƉĞƌŽŶŝŶ���d͘��D�K�ƌĞƉŽƌƚƐ�ϴ͕�ϮϱϮͲϮϱϳ͘�
DĂǇĞƌ͕�D͘W͘�;ϮϬϭϯͿ͘�,ƐƉϳϬ�ĐŚĂƉĞƌŽŶĞ�ĚǇŶĂŵŝĐƐ�ĂŶĚ�ŵŽůĞĐƵůĂƌ�ŵĞĐŚĂŶŝƐŵ͘�dƌĞŶĚƐ��ŝŽĐŚĞŵ�^Đŝ�ϯϴ͕�ϱϬϳͲ
ϱϭϰ͘�
DĂǇƌ͕��͕͘�ZŝĐŚƚĞƌ͕�<͕͘�>ŝůŝĞ͕�,͕͘�ĂŶĚ��ƵĐŚŶĞƌ͕�:͘�;ϮϬϬϬͿ͘��Ɖƌϲ�ĂŶĚ��Ɖƌϳ͕�ƚǁŽ�ĐůŽƐĞůǇ�ƌĞůĂƚĞĚ�,ƐƉϵϬͲĂƐƐŽĐŝĂƚĞĚ�
ŝŵŵƵŶŽƉŚŝůŝŶƐ� ĨƌŽŵ� ^ĂĐĐŚĂƌŽŵǇĐĞƐ� ĐĞƌĞǀŝƐŝĂĞ͕� ĚŝĨĨĞƌ� ŝŶ� ƚŚĞŝƌ� ĨƵŶĐƚŝŽŶĂů� ƉƌŽƉĞƌƚŝĞƐ͘� dŚĞ� :ŽƵƌŶĂů� ŽĨ�
ďŝŽůŽŐŝĐĂů�ĐŚĞŵŝƐƚƌǇ�Ϯϳϱ͕�ϯϰϭϰϬͲϯϰϭϰϲ͘�
DĐ�ůĞůůĂŶ͕��͘:͕͘�yŝĂ͕�z͕͘��ĞƵƚƐĐŚďĂƵĞƌ͕��͘D͕͘��ĂǀŝƐ͕�Z͘t͕͘�'ĞƌƐƚĞŝŶ͕�D͕͘�ĂŶĚ�&ƌǇĚŵĂŶ͕� :͘� ;ϮϬϬϳͿ͘��ŝǀĞƌƐĞ�
ĐĞůůƵůĂƌ�ĨƵŶĐƚŝŽŶƐ�ŽĨ�ƚŚĞ�,ƐƉϵϬ�ŵŽůĞĐƵůĂƌ�ĐŚĂƉĞƌŽŶĞ�ƵŶĐŽǀĞƌĞĚ�ƵƐŝŶŐ�ƐǇƐƚĞŵƐ�ĂƉƉƌŽĂĐŚĞƐ͘��Ğůů�ϭϯϭ͕�ϭϮϭͲ
ϭϯϱ͘�
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�

DĐ>ĂƵŐŚůŝŶ͕�:͘E͕͘�dŚƵůŝŶ͕��͘�͕͘�,Ăƌƚ͕�^͘:͕͘�ZĞƐŝŶŐ͕�<͘�͕͘��ŚŶ͕�E͘'͕͘�ĂŶĚ�tŝůůĂƌĚƐŽŶ͕��͘D͘�;ϮϬϬϮͿ͘�ZĞŐƵůĂƚŽƌǇ�
ŝŶƚĞƌĂĐƚŝŽŶ�ŽĨ�ƉŚŽƐĚƵĐŝŶͲůŝŬĞ�ƉƌŽƚĞŝŶ�ǁŝƚŚ�ƚŚĞ�ĐǇƚŽƐŽůŝĐ�ĐŚĂƉĞƌŽŶŝŶ�ĐŽŵƉůĞǆ͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���ϵϵ͕�
ϳϵϲϮͲϳϵϲϳ͘�
DĞůǀŝůůĞ͕�D͘t͕͘�DĐ�ůĞůůĂŶ͕��͘:͕͘�DĞǇĞƌ͕��͘^͕͘��ĂƌǀĞĂƵ͕��͕͘�ĂŶĚ�&ƌǇĚŵĂŶ͕�:͘�;ϮϬϬϯͿ͘�dŚĞ�,ƐƉϳϬ�ĂŶĚ�dZŝ�ͬ��d�
ĐŚĂƉĞƌŽŶĞ� ƐǇƐƚĞŵƐ� ĐŽŽƉĞƌĂƚĞ� ŝŶ� ǀŝǀŽ� ƚŽ� ĂƐƐĞŵďůĞ� ƚŚĞ� ǀŽŶ�,ŝƉƉĞůͲ>ŝŶĚĂƵ� ƚƵŵŽƌ� ƐƵƉƉƌĞƐƐŽƌ� ĐŽŵƉůĞǆ͘�
DŽůĞĐƵůĂƌ�ĂŶĚ�ĐĞůůƵůĂƌ�ďŝŽůŽŐǇ�Ϯϯ͕�ϯϭϰϭͲϯϭϱϭ͘�
DĞǇĞƌ͕��͘^͕͘�'ŝůůĞƐƉŝĞ͕�:͘Z͕͘�tĂůƚŚĞƌ͕��͕͘�DŝůůĞƚ͕�/͘^͕͘��ŽŶŝĂĐŚ͕�^͕͘�ĂŶĚ�&ƌǇĚŵĂŶ͕�:͘�;ϮϬϬϯͿ͘��ůŽƐŝŶŐ�ƚŚĞ�ĨŽůĚŝŶŐ�
ĐŚĂŵďĞƌ�ŽĨ�ƚŚĞ�ĞƵŬĂƌǇŽƚŝĐ�ĐŚĂƉĞƌŽŶŝŶ�ƌĞƋƵŝƌĞƐ�ƚŚĞ�ƚƌĂŶƐŝƚŝŽŶ�ƐƚĂƚĞ�ŽĨ��dW�ŚǇĚƌŽůǇƐŝƐ͘��Ğůů�ϭϭϯ͕�ϯϲϵͲϯϴϭ͘�
DƵŶŽǌ͕� /͘'͕͘�zĞďĞŶĞƐ͕�,͕͘��ŚŽƵ͕�D͕͘�DĞƐĂ͕�W͕͘�^ĞƌŶĂ͕�D͕͘�WĂƌŬ͕��͘z͕͘��ƌĂŐĂĚŽͲEŝůƐƐŽŶ͕��͕͘��ĞůŽƐŽ͕��͕͘�ĚĞ�
�ĂƌĐĞƌ͕�'͕͘�DĂůƵŵďƌĞƐ͕�D͕͘�Ğƚ�Ăů͘�;ϮϬϭϭͿ͘��ƌǇƐƚĂů�ƐƚƌƵĐƚƵƌĞ�ŽĨ�ƚŚĞ�ŽƉĞŶ�ĐŽŶĨŽƌŵĂƚŝŽŶ�ŽĨ�ƚŚĞ�ŵĂŵŵĂůŝĂŶ�
ĐŚĂƉĞƌŽŶŝŶ���d�ŝŶ�ĐŽŵƉůĞǆ�ǁŝƚŚ�ƚƵďƵůŝŶ͘�EĂƚ�^ƚƌƵĐƚ�DŽů��ŝŽů�ϭϴ͕�ϭϰͲϭϵ͘�
DƵƌƌĂǇ͕� :͕͘� ^ĂǀǀĂ͕��͘'͕͘�^ŚŝŶ͕��͘^͕͘��ĞǀĞƌ͕�d͘�͕͘�ZĂŵĂŬƌŝƐŚŶĂŶ͕�s͕͘�ĂŶĚ�&ĞƌŶĂŶĚĞǌ͕� /͘^͘� ;ϮϬϭϲͿ͘�^ƚƌƵĐƚƵƌĂů�
ĐŚĂƌĂĐƚĞƌŝǌĂƚŝŽŶ�ŽĨ�ƌŝďŽƐŽŵĞ�ƌĞĐƌƵŝƚŵĞŶƚ�ĂŶĚ�ƚƌĂŶƐůŽĐĂƚŝŽŶ�ďǇ�ƚǇƉĞ�/s�/Z�^͘��ůŝĨĞ�ϱ͘�
EĞƚǌĞƌ͕� t͘:͕͘� ĂŶĚ� ,Ăƌƚů͕� &͘h͘� ;ϭϵϵϴͿ͘� WƌŽƚĞŝŶ� ĨŽůĚŝŶŐ� ŝŶ� ƚŚĞ� ĐǇƚŽƐŽů͗� ĐŚĂƉĞƌŽŶŝŶͲĚĞƉĞŶĚĞŶƚ� ĂŶĚ� Ͳ
ŝŶĚĞƉĞŶĚĞŶƚ�ŵĞĐŚĂŶŝƐŵƐ͘�dƌĞŶĚƐ��ŝŽĐŚĞŵ�^Đŝ�Ϯϯ͕�ϲϴͲϳϯ͘�
EŽďůĞ͕� �͘'͕͘� ĂŶĚ� ^ŽŶŐ͕� ,͘� ;ϮϬϬϴͿ͘� ^ƚƌƵĐƚƵƌĂů� ƐƚƵĚŝĞƐ� ŽĨ� ĞůŽŶŐĂƚŝŽŶ� ĂŶĚ� ƌĞůĞĂƐĞ� ĨĂĐƚŽƌƐ͘� �ĞůůƵůĂƌ� ĂŶĚ�
ŵŽůĞĐƵůĂƌ�ůŝĨĞ�ƐĐŝĞŶĐĞƐ�͗��D>^�ϲϱ͕�ϭϯϯϱͲϭϯϰϲ͘�
Kƌƚŝǌ͕� W͘�͕͘�hůůŽƋƵĞ͕�Z͕͘� <ŝŚĂƌĂ͕�'͘<͕͘� �ŚĞŶŐ͕�,͕͘� ĂŶĚ�<ŝŶǌǇ͕� d͘'͘� ;ϮϬϬϲͿ͘� dƌĂŶƐůĂƚŝŽŶ�ĞůŽŶŐĂƚŝŽŶ� ĨĂĐƚŽƌ�Ϯ�
ĂŶƚŝĐŽĚŽŶ�ŵŝŵŝĐƌǇ�ĚŽŵĂŝŶ�ŵƵƚĂŶƚƐ�ĂĨĨĞĐƚ�ĨŝĚĞůŝƚǇ�ĂŶĚ�ĚŝƉŚƚŚĞƌŝĂ�ƚŽǆŝŶ�ƌĞƐŝƐƚĂŶĐĞ͘�dŚĞ�:ŽƵƌŶĂů�ŽĨ�ďŝŽůŽŐŝĐĂů�
ĐŚĞŵŝƐƚƌǇ�Ϯϴϭ͕�ϯϮϲϯϵͲϯϮϲϰϴ͘�
WĂƉƉĞŶďĞƌŐĞƌ͕�'͕͘�tŝůƐŚĞƌ͕� :͘�͕͘�ZŽĞ͕�^͘D͕͘��ŽƵŶƐĞůů͕��͘:͕͘�tŝůůŝƐŽŶ͕�<͘Z͕͘� ĂŶĚ�WĞĂƌů͕� >͘,͘� ;ϮϬϬϮͿ͘��ƌǇƐƚĂů�
ƐƚƌƵĐƚƵƌĞ�ŽĨ�ƚŚĞ���dŐĂŵŵĂ�ĂƉŝĐĂů�ĚŽŵĂŝŶ͗�ŝŵƉůŝĐĂƚŝŽŶƐ�ĨŽƌ�ƐƵďƐƚƌĂƚĞ�ďŝŶĚŝŶŐ�ƚŽ�ƚŚĞ�ĞƵŬĂƌǇŽƚŝĐ�ĐǇƚŽƐŽůŝĐ�
ĐŚĂƉĞƌŽŶŝŶ͘�:�DŽů��ŝŽů�ϯϭϴ͕�ϭϯϲϳͲϭϯϳϵ͘�
WĞƌĞŝƌĂ͕�:͘,͕͘�ZĂůƐƚŽŶ͕��͘z͕͘��ŽƵŐůĂƐ͕�E͘Z͕͘�DĞǇĞƌ͕��͕͘�<ŶĞĞ͕�<͘D͕͘�'ŽƵůĞƚ͕��͘Z͕͘�<ŝŶŐ͕�:͘�͕͘�&ƌǇĚŵĂŶ͕�:͕͘�ĂŶĚ�
�ĚĂŵƐ͕� W͘�͘� ;ϮϬϭϬͿ͘� �ƌǇƐƚĂů� ƐƚƌƵĐƚƵƌĞƐ� ŽĨ� Ă� ŐƌŽƵƉ� //� ĐŚĂƉĞƌŽŶŝŶ� ƌĞǀĞĂů� ƚŚĞ� ŽƉĞŶ� ĂŶĚ� ĐůŽƐĞĚ� ƐƚĂƚĞƐ�
ĂƐƐŽĐŝĂƚĞĚ�ǁŝƚŚ�ƚŚĞ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�ĐǇĐůĞ͘�dŚĞ�:ŽƵƌŶĂů�ŽĨ�ďŝŽůŽŐŝĐĂů�ĐŚĞŵŝƐƚƌǇ�Ϯϴϱ͕�ϮϳϵϱϴͲϮϳϵϲϲ͘�
WĞƌĞŶƚĞƐŝƐ͕� :͘W͕͘� WŚĂŶ͕� >͘�͕͘� 'ůĞĂƐŽŶ͕� t͘�͕͘� >ĂWŽƌƚĞ͕� �͘�͕͘� >ŝǀŝŶŐƐƚŽŶ͕� �͘D͕͘� ĂŶĚ� �ŽĚůĞǇ͕� :͘t͘� ;ϭϵϵϮͿ͘�
^ĂĐĐŚĂƌŽŵǇĐĞƐ� ĐĞƌĞǀŝƐŝĂĞ� ĞůŽŶŐĂƚŝŽŶ� ĨĂĐƚŽƌ� Ϯ͘�'ĞŶĞƚŝĐ� ĐůŽŶŝŶŐ͕� ĐŚĂƌĂĐƚĞƌŝǌĂƚŝŽŶ�ŽĨ� ĞǆƉƌĞƐƐŝŽŶ͕� ĂŶĚ�'Ͳ
ĚŽŵĂŝŶ�ŵŽĚĞůŝŶŐ͘�dŚĞ�:ŽƵƌŶĂů�ŽĨ�ďŝŽůŽŐŝĐĂů�ĐŚĞŵŝƐƚƌǇ�Ϯϲϳ͕�ϭϭϵϬͲϭϭϵϳ͘�
WŚĂŶ͕� >͘�͕͘� WĞƌĞŶƚĞƐŝƐ͕� :͘W͕͘� ĂŶĚ� �ŽĚůĞǇ͕� :͘t͘� ;ϭϵϵϯͿ͘� ^ĂĐĐŚĂƌŽŵǇĐĞƐ� ĐĞƌĞǀŝƐŝĂĞ� ĞůŽŶŐĂƚŝŽŶ� ĨĂĐƚŽƌ� Ϯ͘�
DƵƚĂŐĞŶĞƐŝƐ� ŽĨ� ƚŚĞ� ŚŝƐƚŝĚŝŶĞ� ƉƌĞĐƵƌƐŽƌ� ŽĨ� ĚŝƉŚƚŚĂŵŝĚĞ� ǇŝĞůĚƐ� Ă� ĨƵŶĐƚŝŽŶĂů� ƉƌŽƚĞŝŶ� ƚŚĂƚ� ŝƐ� ƌĞƐŝƐƚĂŶƚ� ƚŽ�
ĚŝƉŚƚŚĞƌŝĂ�ƚŽǆŝŶ͘�dŚĞ�:ŽƵƌŶĂů�ŽĨ�ďŝŽůŽŐŝĐĂů�ĐŚĞŵŝƐƚƌǇ�Ϯϲϴ͕�ϴϲϲϱͲϴϲϲϴ͘�
WůĂǆĐŽ͕�<͘t͕͘�ZŝĚĚůĞ͕��͘^͕͘�'ƌĂŶƚĐŚĂƌŽǀĂ͕�s͕͘�ĂŶĚ��ĂŬĞƌ͕��͘�;ϭϵϵϴͿ͘�^ŝŵƉůŝĨŝĞĚ�ƉƌŽƚĞŝŶƐ͗�ŵŝŶŝŵĂůŝƐƚ�ƐŽůƵƚŝŽŶƐ�
ƚŽ�ƚŚĞ�ΖƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�ƉƌŽďůĞŵΖ͘��Ƶƌƌ�KƉŝŶ�^ƚƌƵĐƚ��ŝŽů�ϴ͕�ϴϬͲϴϱ͘�
WƌĞŝƐƐůĞƌ͕�^͕͘�ĂŶĚ��ĞƵĞƌůŝŶŐ͕��͘� ;ϮϬϭϮͿ͘�ZŝďŽƐŽŵĞͲĂƐƐŽĐŝĂƚĞĚ�ĐŚĂƉĞƌŽŶĞƐ�ĂƐ�ŬĞǇ�ƉůĂǇĞƌƐ� ŝŶ�ƉƌŽƚĞŽƐƚĂƐŝƐ͘�
dƌĞŶĚƐ��ŝŽĐŚĞŵ�^Đŝ�ϯϳ͕�ϮϳϰͲϮϴϯ͘�
ZĂƚǌŬĞ͕� �͕͘� EŐƵǇĞŶ͕�D͘E͕͘�DĂǇĞƌ͕�D͘W͕͘� ĂŶĚ� ,ƵŐĞů͕� d͘� ;ϮϬϭϮͿ͘� &ƌŽŵ� Ă� ƌĂƚĐŚĞƚ�ŵĞĐŚĂŶŝƐŵ� ƚŽ� ƌĂŶĚŽŵ�
ĨůƵĐƚƵĂƚŝŽŶƐ�ĞǀŽůƵƚŝŽŶ�ŽĨ�,ƐƉϵϬΖƐ�ŵĞĐŚĂŶŽĐŚĞŵŝĐĂů�ĐǇĐůĞ͘�:�DŽů��ŝŽů�ϰϮϯ͕�ϰϲϮͲϰϳϭ͘�
ZĞŝĐŚĞŶ͕��͕͘�,ĂŶƐĞŶ͕�^͕͘�ĂŶĚ�WůƵĐŬƚŚƵŶ͕��͘�;ϮϬϭϰͿ͘�DŽĚƵůĂƌ�ƉĞƉƚŝĚĞ�ďŝŶĚŝŶŐ͗�ĨƌŽŵ�Ă�ĐŽŵƉĂƌŝƐŽŶ�ŽĨ�ŶĂƚƵƌĂů�
ďŝŶĚĞƌƐ�ƚŽ�ĚĞƐŝŐŶĞĚ�ĂƌŵĂĚŝůůŽ�ƌĞƉĞĂƚ�ƉƌŽƚĞŝŶƐ͘�:�^ƚƌƵĐƚ��ŝŽů�ϭϴϱ͕�ϭϰϳͲϭϲϮ͘�
ZĞŝƐƐŵĂŶŶ͕�^͕͘�:ŽĂĐŚŝŵŝĂŬ͕�>͘�͕͘��ŚĞŶ͕��͕͘�DĞǇĞƌ͕��͘^͕͘�EŐƵǇĞŶ͕��͕͘�ĂŶĚ�&ƌǇĚŵĂŶ͕�:͘�;ϮϬϭϮͿ͘���ŐƌĂĚŝĞŶƚ�ŽĨ�
�dW�ĂĨĨŝŶŝƚŝĞƐ�ŐĞŶĞƌĂƚĞƐ�ĂŶ�ĂƐǇŵŵĞƚƌŝĐ�ƉŽǁĞƌ�ƐƚƌŽŬĞ�ĚƌŝǀŝŶŐ�ƚŚĞ�ĐŚĂƉĞƌŽŶŝŶ�dZ/�ͬ��d�ĨŽůĚŝŶŐ�ĐǇĐůĞ͘��Ğůů�
ZĞƉ�Ϯ͕�ϴϲϲͲϴϳϳ͘�
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ZĞŝƐƐŵĂŶŶ͕�^͕͘�WĂƌŶŽƚ͕��͕͘��ŽŽƚŚ͕��͘Z͕͘��ŚŝƵ͕�t͕͘�ĂŶĚ�&ƌǇĚŵĂŶ͕�:͘�;ϮϬϬϳͿ͘��ƐƐĞŶƚŝĂů�ĨƵŶĐƚŝŽŶ�ŽĨ�ƚŚĞ�ďƵŝůƚͲŝŶ�
ůŝĚ�ŝŶ�ƚŚĞ�ĂůůŽƐƚĞƌŝĐ�ƌĞŐƵůĂƚŝŽŶ�ŽĨ�ĞƵŬĂƌǇŽƚŝĐ�ĂŶĚ�ĂƌĐŚĂĞĂů�ĐŚĂƉĞƌŽŶŝŶƐ͘�EĂƚ�^ƚƌƵĐƚ�DŽů��ŝŽů�ϭϰ͕�ϰϯϮͲϰϰϬ͘�
ZŝǀĞŶǌŽŶͲ^ĞŐĂů͕��͕͘�tŽůĨ͕�^͘'͕͘�^ŚŝŵŽŶ͕�>͕͘�tŝůůŝƐŽŶ͕�<͘Z͕͘�ĂŶĚ�,ŽƌŽǀŝƚǌ͕��͘�;ϮϬϬϱͿ͘�^ĞƋƵĞŶƚŝĂů��dWͲŝŶĚƵĐĞĚ�
ĂůůŽƐƚĞƌŝĐ�ƚƌĂŶƐŝƚŝŽŶƐ�ŽĨ�ƚŚĞ�ĐǇƚŽƉůĂƐŵŝĐ�ĐŚĂƉĞƌŽŶŝŶ�ĐŽŶƚĂŝŶŝŶŐ�d�WͲϭ�ƌĞǀĞĂůĞĚ�ďǇ��D�ĂŶĂůǇƐŝƐ͘�EĂƚ�^ƚƌƵĐƚ�
DŽů��ŝŽů�ϭϮ͕�ϮϯϯͲϮϯϳ͘�
ZŝǌǌŽůŽ͕�<͕͘�,ƵĞŶ͕�:͕͘�<ƵŵĂƌ͕��͕͘�WŚĂŶƐĞ͕�^͕͘�sůĂƐďůŽŵ͕�:͕͘�<ĂŬŝŚĂƌĂ͕�z͕͘��ĞŝŶĞĚĚŝŶĞ͕�,͘�͕͘�DŝŶŝĐ͕��͕͘�^ŶŝĚĞƌ͕�:͕͘�
tĂŶŐ͕� t͕͘� Ğƚ� Ăů͘� ;ϮϬϭϳͿ͘� &ĞĂƚƵƌĞƐ� ŽĨ� ƚŚĞ� �ŚĂƉĞƌŽŶĞ� �ĞůůƵůĂƌ� EĞƚǁŽƌŬ� ZĞǀĞĂůĞĚ� ƚŚƌŽƵŐŚ� ^ǇƐƚĞŵĂƚŝĐ�
/ŶƚĞƌĂĐƚŝŽŶ�DĂƉƉŝŶŐ͘��Ğůů�ZĞƉ�ϮϬ͕�ϮϳϯϱͲϮϳϰϴ͘�
ZŝǌǌŽůŽ͕�<͕͘�<ƵŵĂƌ͕��͕͘�<ĂŬŝŚĂƌĂ͕�z͕͘�WŚĂŶƐĞ͕�^͕͘�DŝŶŝĐ͕��͕͘�^ŶŝĚĞƌ͕� :͕͘�^ƚĂŐůũĂƌ͕� /͕͘��ŝůůĞƐ͕�^͕͘��ĂďƵ͕�D͕͘�ĂŶĚ�
,ŽƵƌǇ͕�t͘�͘�;ϮϬϭϴͿ͘�^ǇƐƚĞŵƐ�ĂŶĂůǇƐŝƐ�ŽĨ�ƚŚĞ�ŐĞŶĞƚŝĐ�ŝŶƚĞƌĂĐƚŝŽŶ�ŶĞƚǁŽƌŬ�ŽĨ�ǇĞĂƐƚ�ŵŽůĞĐƵůĂƌ�ĐŚĂƉĞƌŽŶĞƐ͘�
DŽů�KŵŝĐƐ�ϭϰ͕�ϴϮͲϵϰ͘�
ZŽĚƌŝŐƵĞǌͲWĞŶĂ͕�:͘D͕͘��ŝĚ͕�s͘:͕͘�^ĂŶĐŚĞǌ͕�D͕͘�DŽůŝŶĂ͕�D͕͘��ƌƌŽǇŽ͕�:͕͘�ĂŶĚ�EŽŵďĞůĂ͕��͘�;ϭϵϵϴͿ͘�dŚĞ�ĚĞůĞƚŝŽŶ�
ŽĨ�Ɛŝǆ�KZ&Ɛ�ŽĨ�ƵŶŬŶŽǁŶ�ĨƵŶĐƚŝŽŶ�ĨƌŽŵ�^ĂĐĐŚĂƌŽŵǇĐĞƐ�ĐĞƌĞǀŝƐŝĂĞ�ĐŚƌŽŵŽƐŽŵĞ�s//�ƌĞǀĞĂůƐ�ƚǁŽ�ĞƐƐĞŶƚŝĂů�
ŐĞŶĞƐ͗�z'Zϭϵϱǁ�ĂŶĚ�z'Zϭϵϴǁ͘�zĞĂƐƚ�ϭϰ͕�ϴϱϯͲϴϲϬ͘�
ZƵƐƐŵĂŶŶ͕�&͕͘�^ƚĞŵƉ͕�D͘:͕͘�DŽŶŬĞŵĞǇĞƌ͕�>͕͘��ƚĐŚĞůůƐ͕�^͘�͕͘��ƌĂĐŚĞƌ͕��͕͘�ĂŶĚ�,Ăƌƚů͕�&͘h͘�;ϮϬϭϮͿ͘�&ŽůĚŝŶŐ�ŽĨ�
ůĂƌŐĞ�ŵƵůƚŝĚŽŵĂŝŶ�ƉƌŽƚĞŝŶƐ�ďǇ�ƉĂƌƚŝĂů�ĞŶĐĂƉƐƵůĂƚŝŽŶ�ŝŶ�ƚŚĞ�ĐŚĂƉĞƌŽŶŝŶ�dZŝ�ͬ��d͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���
ϭϬϵ͕�ϮϭϮϬϴͲϮϭϮϭϱ͘�
^Ăŝďŝů͕�,͘Z͕͘�&ĞŶƚŽŶ͕�t͘�͕͘��ůĂƌĞ͕��͘<͕͘�ĂŶĚ�,ŽƌǁŝĐŚ͕��͘>͘�;ϮϬϭϯͿ͘�^ƚƌƵĐƚƵƌĞ�ĂŶĚ��ůůŽƐƚĞƌǇ�ŽĨ�ƚŚĞ��ŚĂƉĞƌŽŶŝŶ�
'ƌŽ�>͘�:�DŽů��ŝŽů�ϰϮϱ͕�ϭϰϳϲͲϭϰϴϳ͘�
^ĐŚůĞĐŚƚ͕�h͕͘�DŝƌĂŶĚĂ͕�D͕͘�^ƵƌĞƐŚ͕�^͕͘��ĂǀŝƐ͕�Z͘t͕͘�ĂŶĚ�^ƚ�KŶŐĞ͕�Z͘W͘�;ϮϬϭϮͿ͘�DƵůƚŝƉůĞǆ�ĂƐƐĂǇ�ĨŽƌ�ĐŽŶĚŝƚŝŽŶͲ
ĚĞƉĞŶĚĞŶƚ�ĐŚĂŶŐĞƐ�ŝŶ�ƉƌŽƚĞŝŶͲƉƌŽƚĞŝŶ�ŝŶƚĞƌĂĐƚŝŽŶƐ͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���ϭϬϵ͕�ϵϮϭϯͲϵϮϭϴ͘�
^ĐŚŽĞŚŶ͕�'͕͘�,ĂǇĞƐ͕�D͕͘��ůŝĨĨ͕�D͕͘��ůĂƌŬĞ͕��͘Z͕͘�ĂŶĚ�^Ăŝďŝů͕�,͘Z͘�;ϮϬϬϬͿ͘��ŽŵĂŝŶ�ƌŽƚĂƚŝŽŶƐ�ďĞƚǁĞĞŶ�ŽƉĞŶ͕�
ĐůŽƐĞĚ�ĂŶĚ�ďƵůůĞƚͲƐŚĂƉĞĚ�ĨŽƌŵƐ�ŽĨ�ƚŚĞ�ƚŚĞƌŵŽƐŽŵĞ͕�ĂŶ�ĂƌĐŚĂĞĂů�ĐŚĂƉĞƌŽŶŝŶ͘�:�DŽů��ŝŽů�ϯϬϭ͕�ϯϮϯͲϯϯϮ͘�
^ĐŚŽƉĨ͕�&͘,͕͘��ŝĞďů͕�D͘D͕͘�ĂŶĚ��ƵĐŚŶĞƌ͕�:͘�;ϮϬϭϳͿ͘�dŚĞ�,^WϵϬ�ĐŚĂƉĞƌŽŶĞ�ŵĂĐŚŝŶĞƌǇ͘�EĂƚ�ZĞǀ�DŽů��Ğůů��ŝŽů�
ϭϴ͕�ϯϰϱͲϯϲϬ͘�
^ŚŝŵŝǌƵ͕�z͕͘�<ƵƌƵŵĂ͕�z͕͘�zŝŶŐ͕��͘t͕͘�hŵĞŬĂŐĞ͕�^͕͘�ĂŶĚ�hĞĚĂ͕�d͘�;ϮϬϬϲͿ͘��ĞůůͲĨƌĞĞ�ƚƌĂŶƐůĂƚŝŽŶ�ƐǇƐƚĞŵƐ�ĨŽƌ�
ƉƌŽƚĞŝŶ�ĞŶŐŝŶĞĞƌŝŶŐ͘�&��^�:�Ϯϳϯ͕�ϰϭϯϯͲϰϭϰϬ͘�
^ŚŽŵƵƌĂ͕�z͕͘�zŽƐŚŝĚĂ͕�d͕͘�/ŝǌƵŬĂ͕�Z͕͘�DĂƌƵǇĂŵĂ͕�d͕͘�zŽŚĚĂ͕�D͕͘�ĂŶĚ�DŝŬŝ͕�<͘�;ϮϬϬϰͿ͘��ƌǇƐƚĂů�ƐƚƌƵĐƚƵƌĞƐ�ŽĨ�ƚŚĞ�
ŐƌŽƵƉ�//�ĐŚĂƉĞƌŽŶŝŶ�ĨƌŽŵ�dŚĞƌŵŽĐŽĐĐƵƐ�ƐƚƌĂŝŶ�<^Ͳϭ͗�ƐƚĞƌŝĐ�ŚŝŶĚƌĂŶĐĞ�ďǇ�ƚŚĞ�ƐƵďƐƚŝƚƵƚĞĚ�ĂŵŝŶŽ�ĂĐŝĚ͕�ĂŶĚ�
ŝŶƚĞƌͲƐƵďƵŶŝƚ�ƌĞĂƌƌĂŶŐĞŵĞŶƚ�ďĞƚǁĞĞŶ�ƚǁŽ�ĐƌǇƐƚĂů�ĨŽƌŵƐ͘�:�DŽů��ŝŽů�ϯϯϱ͕�ϭϮϲϱͲϭϮϳϴ͘�
^ŝĞŐĞƌƐ͕�<͕͘�tĂůĚŵĂŶŶ͕�d͕͘�>ĞƌŽƵǆ͕�D͘Z͕͘�'ƌĞŝŶ͕�<͕͘�^ŚĞǀĐŚĞŶŬŽ͕��͕͘�^ĐŚŝĞďĞů͕��͕͘�ĂŶĚ�,Ăƌƚů͕�&͘h͘� ;ϭϵϵϵͿ͘�
�ŽŵƉĂƌƚŵĞŶƚĂƚŝŽŶ�ŽĨ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�ŝŶ�ǀŝǀŽ͗�ƐĞƋƵĞƐƚƌĂƚŝŽŶ�ŽĨ�ŶŽŶͲŶĂƚŝǀĞ�ƉŽůǇƉĞƉƚŝĚĞ�ďǇ�ƚŚĞ�ĐŚĂƉĞƌŽŶŝŶͲ
'ŝŵ��ƐǇƐƚĞŵ͘��D�K�:�ϭϴ͕�ϳϱͲϴϰ͘�
^ŬũĂĞƌǀĞŶ͕�>͕͘��ƵĞůůĂƌ͕�:͕͘�DĂƌƚŝŶĞǌ͕��͕͘�ĂŶĚ�sĂůƉƵĞƐƚĂ͕�:͘D͘�;ϮϬϭϱͿ͘��ǇŶĂŵŝĐƐ͕�ĨůĞǆŝďŝůŝƚǇ͕�ĂŶĚ�ĂůůŽƐƚĞƌǇ�ŝŶ�
ŵŽůĞĐƵůĂƌ�ĐŚĂƉĞƌŽŶŝŶƐ͘�&��^�ůĞƚƚĞƌƐ�ϱϴϵ͕�ϮϱϮϮͲϮϱϯϮ͘�
^ƉĂŚŶ͕��͘D͕͘�'ŽŵĞǌͲ>ŽƌĞŶǌŽ͕�D͘'͕͘�'ƌĂƐƐƵĐĐŝ͕�Z͘�͕͘�:ŽƌŐĞŶƐĞŶ͕�Z͕͘��ŶĚĞƌƐĞŶ͕�'͘Z͕͘��ĞĐŬŵĂŶŶ͕�Z͕͘�WĞŶĐǌĞŬ͕�
W͘�͕͘��ĂůůĞƐƚĂ͕�:͘W͕͘�ĂŶĚ�&ƌĂŶŬ͕�:͘�;ϮϬϬϰͿ͘��ŽŵĂŝŶ�ŵŽǀĞŵĞŶƚƐ�ŽĨ�ĞůŽŶŐĂƚŝŽŶ�ĨĂĐƚŽƌ�Ğ�&Ϯ�ĂŶĚ�ƚŚĞ�ĞƵŬĂƌǇŽƚŝĐ�
ϴϬ^�ƌŝďŽƐŽŵĞ�ĨĂĐŝůŝƚĂƚĞ�ƚZE��ƚƌĂŶƐůŽĐĂƚŝŽŶ͘��D�K�:�Ϯϯ͕�ϭϬϬϴͲϭϬϭϵ͘�
^ƉŝĞƐƐ͕��͕͘�DĞǇĞƌ͕��͘^͕͘�ZĞŝƐƐŵĂŶŶ͕�^͕͘�ĂŶĚ�&ƌǇĚŵĂŶ͕�:͘�;ϮϬϬϰͿ͘�DĞĐŚĂŶŝƐŵ�ŽĨ�ƚŚĞ�ĞƵŬĂƌǇŽƚŝĐ�ĐŚĂƉĞƌŽŶŝŶ͗�
ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ�ŝŶ�ƚŚĞ�ĐŚĂŵďĞƌ�ŽĨ�ƐĞĐƌĞƚƐ͘�dƌĞŶĚƐ�ŝŶ�ĐĞůů�ďŝŽůŽŐǇ�ϭϰ͕�ϱϵϴͲϲϬϰ͘�
^ƉŝĞƐƐ͕��͕͘�DŝůůĞƌ͕��͘:͕͘�DĐ�ůĞůůĂŶ͕��͘:͕͘� ĂŶĚ�&ƌǇĚŵĂŶ͕� :͘� ;ϮϬϬϲͿ͘� /ĚĞŶƚŝĨŝĐĂƚŝŽŶ�ŽĨ� ƚŚĞ�dZŝ�ͬ��d�ƐƵďƐƚƌĂƚĞ�
ďŝŶĚŝŶŐ�ƐŝƚĞƐ�ƵŶĐŽǀĞƌƐ�ƚŚĞ�ĨƵŶĐƚŝŽŶ�ŽĨ�ƐƵďƵŶŝƚ�ĚŝǀĞƌƐŝƚǇ�ŝŶ�ĞƵŬĂƌǇŽƚŝĐ�ĐŚĂƉĞƌŽŶŝŶƐ͘�DŽů��Ğůů�Ϯϰ͕�ϮϱͲϯϳ͘�
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^ƚĞƌŶůŝĐŚƚ͕�,͕͘�&Ăƌƌ͕�'͘t͕͘�^ƚĞƌŶůŝĐŚƚ͕�D͘>͕͘��ƌŝƐĐŽůů͕�:͘<͕͘�tŝůůŝƐŽŶ͕�<͕͘�ĂŶĚ�zĂĨĨĞ͕�D͘�͘�;ϭϵϵϯͿ͘�dŚĞ�ƚͲĐŽŵƉůĞǆ�
ƉŽůǇƉĞƉƚŝĚĞ�ϭ�ĐŽŵƉůĞǆ�ŝƐ�Ă�ĐŚĂƉĞƌŽŶŝŶ�ĨŽƌ�ƚƵďƵůŝŶ�ĂŶĚ�ĂĐƚŝŶ�ŝŶ�ǀŝǀŽ͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���ϵϬ͕�ϵϰϮϮͲ
ϵϰϮϲ͘�
^ƚŝƌůŝŶŐ͕�W͘�͕͘��ƵĞůůĂƌ͕�:͕͘��ůĨĂƌŽ͕�'͘�͕͘��ů�<ŚĂĚĂůŝ͕�&͕͘��ĞŚ͕��͘d͕͘�sĂůƉƵĞƐƚĂ͕�:͘D͕͘�DĞůŬŝ͕�Z͕͘�ĂŶĚ�>ĞƌŽƵǆ͕�D͘Z͘�
;ϮϬϬϲͿ͘�WŚ>Wϯ�ŵŽĚƵůĂƚĞƐ���dͲŵĞĚŝĂƚĞĚ�ĂĐƚŝŶ�ĂŶĚ�ƚƵďƵůŝŶ�ĨŽůĚŝŶŐ�ǀŝĂ�ƚĞƌŶĂƌǇ�ĐŽŵƉůĞǆĞƐ�ǁŝƚŚ�ƐƵďƐƚƌĂƚĞƐ͘�
dŚĞ�:ŽƵƌŶĂů�ŽĨ�ďŝŽůŽŐŝĐĂů�ĐŚĞŵŝƐƚƌǇ�Ϯϴϭ͕�ϳϬϭϮͲϳϬϮϭ͘�
^ƚŝƌůŝŶŐ͕�W͘�͕͘�^ƌĂǇŬŽ͕�D͕͘�dĂŬŚĂƌ͕�<͘^͕͘�WŽǌŶŝĂŬŽǀƐŬǇ͕��͕͘�,ǇŵĂŶ͕��͘�͕͘�ĂŶĚ�>ĞƌŽƵǆ͕�D͘Z͘�;ϮϬϬϳͿ͘�&ƵŶĐƚŝŽŶĂů�
ŝŶƚĞƌĂĐƚŝŽŶ�ďĞƚǁĞĞŶ�ƉŚŽƐĚƵĐŝŶͲůŝŬĞ�ƉƌŽƚĞŝŶ�Ϯ�ĂŶĚ�ĐǇƚŽƐŽůŝĐ�ĐŚĂƉĞƌŽŶŝŶ�ŝƐ�ĞƐƐĞŶƚŝĂů�ĨŽƌ�ĐǇƚŽƐŬĞůĞƚĂů�ƉƌŽƚĞŝŶ�
ĨƵŶĐƚŝŽŶ�ĂŶĚ�ĐĞůů�ĐǇĐůĞ�ƉƌŽŐƌĞƐƐŝŽŶ͘�DŽůĞĐƵůĂƌ�ďŝŽůŽŐǇ�ŽĨ�ƚŚĞ�ĐĞůů�ϭϴ͕�ϮϯϯϲͲϮϯϰϱ͘�
^ƚŽůĚƚ͕�s͕͘�ZĂĚĞŵĂĐŚĞƌ͕�&͕͘�<ĞŚƌĞŶ͕�s͕͘��ƌŶƐƚ͕�:͘&͕͘�WĞĂƌĐĞ͕��͘�͕͘�ĂŶĚ�^ŚĞƌŵĂŶ͕�&͘�;ϭϵϵϲͿ͘�ZĞǀŝĞǁ͗�dŚĞ��Đƚ�
ĞƵŬĂƌǇŽƚŝĐ�ĐŚĂƉĞƌŽŶŝŶ�ƐƵďƵŶŝƚƐ�ŽĨ�^ĂĐĐŚĂƌŽŵǇĐĞƐ�ĐĞƌĞǀŝƐŝĂĞ�ĂŶĚ�ŽƚŚĞƌ�ǇĞĂƐƚƐ͘�zĞĂƐƚ�ϭϮ͕�ϱϮϯͲϱϮϵ͘�
^ƚƵĂƌƚ͕�^͘&͕͘�>ĞĂƚŚĞƌďĂƌƌŽǁ͕�Z͘:͕͘�ĂŶĚ�tŝůůŝƐŽŶ͕�<͘Z͘�;ϮϬϭϭͿ͘���ƚǁŽͲƐƚĞƉ�ŵĞĐŚĂŶŝƐŵ�ĨŽƌ�ƚŚĞ�ĨŽůĚŝŶŐ�ŽĨ�ĂĐƚŝŶ�
ďǇ�ƚŚĞ�ǇĞĂƐƚ�ĐǇƚŽƐŽůŝĐ�ĐŚĂƉĞƌŽŶŝŶ͘�dŚĞ�:ŽƵƌŶĂů�ŽĨ�ďŝŽůŽŐŝĐĂů�ĐŚĞŵŝƐƚƌǇ�Ϯϴϲ͕�ϭϳϴͲϭϴϰ͘�
^Ƶ͕�y͕͘�>ŝŶ͕��͕͘�ĂŶĚ�>ŝŶ͕�,͘�;ϮϬϭϯͿ͘�dŚĞ�ďŝŽƐǇŶƚŚĞƐŝƐ�ĂŶĚ�ďŝŽůŽŐŝĐĂů�ĨƵŶĐƚŝŽŶ�ŽĨ�ĚŝƉŚƚŚĂŵŝĚĞ͘��ƌŝƚŝĐĂů�ƌĞǀŝĞǁƐ�
ŝŶ�ďŝŽĐŚĞŵŝƐƚƌǇ�ĂŶĚ�ŵŽůĞĐƵůĂƌ�ďŝŽůŽŐǇ�ϰϴ͕�ϱϭϱͲϱϮϭ͘�
dĂŐƵĐŚŝ͕�,͘�;ϮϬϭϱͿ͘�ZĞĂĐƚŝŽŶ��ǇĐůĞ�ŽĨ��ŚĂƉĞƌŽŶŝŶ�'ƌŽ�>�ǀŝĂ�^ǇŵŵĞƚƌŝĐ�Η&ŽŽƚďĂůůΗ�/ŶƚĞƌŵĞĚŝĂƚĞ͘�:�DŽů��ŝŽů�
ϰϮϳ͕�ϮϵϭϮͲϮϵϭϴ͘�
dĂŵ͕� ^͕͘� 'ĞůůĞƌ͕� Z͕͘� ^ƉŝĞƐƐ͕� �͕͘� ĂŶĚ� &ƌǇĚŵĂŶ͕� :͘� ;ϮϬϬϲͿ͘� dŚĞ� ĐŚĂƉĞƌŽŶŝŶ� dZŝ�� ĐŽŶƚƌŽůƐ� ƉŽůǇŐůƵƚĂŵŝŶĞ�
ĂŐŐƌĞŐĂƚŝŽŶ�ĂŶĚ�ƚŽǆŝĐŝƚǇ�ƚŚƌŽƵŐŚ�ƐƵďƵŶŝƚͲƐƉĞĐŝĨŝĐ�ŝŶƚĞƌĂĐƚŝŽŶƐ͘�EĂƚƵƌĞ�ĐĞůů�ďŝŽůŽŐǇ�ϴ͕�ϭϭϱϱͲϭϭϲϮ͘�
dĂŶŐ͕� z͘�͕͘� �ŚĂŶŐ͕� ,͘�͕͘� �ŚĂŬƌĂďŽƌƚǇ͕� <͕͘� ,Ăƌƚů͕� &͘h͕͘� ĂŶĚ�,ĂǇĞƌͲ,Ăƌƚů͕�D͘� ;ϮϬϬϴͿ͘� �ƐƐĞŶƚŝĂů� ƌŽůĞ� ŽĨ� ƚŚĞ�
ĐŚĂƉĞƌŽŶŝŶ�ĨŽůĚŝŶŐ�ĐŽŵƉĂƌƚŵĞŶƚ�ŝŶ�ǀŝǀŽ͘��D�K�:�Ϯϳ͕�ϭϰϱϴͲϭϰϲϴ͘�
dĂŶŐ͕�z͘�͕͘��ŚĂŶŐ͕�,͘�͕͘�ZŽĞďĞŶ͕��͕͘�tŝƐĐŚŶĞǁƐŬŝ͕��͕͘�tŝƐĐŚŶĞǁƐŬŝ͕�E͕͘�<ĞƌŶĞƌ͕�D͘:͕͘�,Ăƌƚů͕�&͘h͕͘�ĂŶĚ�,ĂǇĞƌͲ
,Ăƌƚů͕� D͘� ;ϮϬϬϲͿ͘� ^ƚƌƵĐƚƵƌĂů� ĨĞĂƚƵƌĞƐ� ŽĨ� ƚŚĞ� 'ƌŽ�>Ͳ'ƌŽ�^� ŶĂŶŽͲĐĂŐĞ� ƌĞƋƵŝƌĞĚ� ĨŽƌ� ƌĂƉŝĚ� ĨŽůĚŝŶŐ� ŽĨ�
ĞŶĐĂƉƐƵůĂƚĞĚ�ƉƌŽƚĞŝŶ͘��Ğůů�ϭϮϱ͕�ϵϬϯͲϵϭϰ͘�
dĂƌĂƐƐŽǀ͕�<͕͘�DĞƐƐŝĞƌ͕�s͕͘�>ĂŶĚƌǇ͕��͘Z͕͘�ZĂĚŝŶŽǀŝĐ͕�^͕͘�^ĞƌŶĂ�DŽůŝŶĂ͕�D͘D͕͘�^ŚĂŵĞƐ͕�/͕͘�DĂůŝƚƐŬĂǇĂ͕�z͕͘�sŽŐĞů͕�
:͕͘��ƵƐƐĞǇ͕�,͕͘�ĂŶĚ�DŝĐŚŶŝĐŬ͕�^͘t͘�;ϮϬϬϴͿ͘��Ŷ�ŝŶ�ǀŝǀŽ�ŵĂƉ�ŽĨ�ƚŚĞ�ǇĞĂƐƚ�ƉƌŽƚĞŝŶ�ŝŶƚĞƌĂĐƚŽŵĞ͘�^ĐŝĞŶĐĞ�ϯϮϬ͕�
ϭϰϲϱͲϭϰϳϬ͘�
dĞĐŚƚŵĂŶŶ͕�^͘D͕͘�ĂŶĚ�ZŽďď͕�&͘d͘�;ϮϬϭϬͿ͘��ƌĐŚĂĞĂůͲůŝŬĞ�ĐŚĂƉĞƌŽŶŝŶƐ�ŝŶ�ďĂĐƚĞƌŝĂ͘�WƌŽĐ�EĂƚů��ĐĂĚ�^Đŝ�h�^���
ϭϬϳ͕�ϮϬϮϲϵͲϮϬϮϳϰ͘�
dĞƐŝĐ͕�D͕͘�DĂƌƐŚ͕�:͘�͕͘��ƵůůŝŶĂŶ͕�^͘�͕͘�ĂŶĚ�'ĂďĞƌ͕�Z͘&͘�;ϮϬϬϯͿ͘�&ƵŶĐƚŝŽŶĂů�ŝŶƚĞƌĂĐƚŝŽŶƐ�ďĞƚǁĞĞŶ�,ƐƉϵϬ�ĂŶĚ�
ƚŚĞ�ĐŽͲĐŚĂƉĞƌŽŶĞƐ��ŶƐϭ�ĂŶĚ��Ɖƌϳ�ŝŶ�^ĂĐĐŚĂƌŽŵǇĐĞƐ�ĐĞƌĞǀŝƐŝĂĞ͘�dŚĞ�:ŽƵƌŶĂů�ŽĨ�ďŝŽůŽŐŝĐĂů�ĐŚĞŵŝƐƚƌǇ�Ϯϳϴ͕�
ϯϮϲϵϮͲϯϮϳϬϭ͘�
dŝĂŶ͕�'͕͘�sĂŝŶďĞƌŐ͕�/͘�͕͘�dĂƉ͕�t͘�͕͘�>ĞǁŝƐ͕�^͘�͕͘�ĂŶĚ��ŽǁĂŶ͕�E͘:͘�;ϭϵϵϱͿ͘�^ƉĞĐŝĨŝĐŝƚǇ�ŝŶ�ĐŚĂƉĞƌŽŶŝŶͲŵĞĚŝĂƚĞĚ�
ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ͘�EĂƚƵƌĞ�ϯϳϱ͕�ϮϱϬͲϮϱϯ͘�
sĂŝŶďĞƌŐ͕� /͘�͕͘� >ĞǁŝƐ͕�^͘�͕͘�ZŽŵŵĞůĂĞƌĞ͕�,͕͘��ŵƉĞ͕��͕͘�sĂŶĚĞŬĞƌĐŬŚŽǀĞ͕� :͕͘�<ůĞŝŶ͕�,͘>͕͘�ĂŶĚ��ŽǁĂŶ͕�E͘:͘�
;ϭϵϵϴͿ͘�WƌĞĨŽůĚŝŶ͕�Ă�ĐŚĂƉĞƌŽŶĞ�ƚŚĂƚ�ĚĞůŝǀĞƌƐ�ƵŶĨŽůĚĞĚ�ƉƌŽƚĞŝŶƐ�ƚŽ�ĐǇƚŽƐŽůŝĐ�ĐŚĂƉĞƌŽŶŝŶ͘��Ğůů�ϵϯ͕�ϴϲϯͲϴϳϯ͘�
sŝůůĞďĞĐŬ͕�>͕͘�DŽƉĂƌƚŚŝ͕�^͘�͕͘�>ŝŶĚŐƌĞŶ͕�D͕͘�,ĂŵŵĂƌƐƚƌŽŵ͕�W͕͘�ĂŶĚ�:ŽŶƐƐŽŶ͕��͘,͘�;ϮϬϬϳͿ͘��ŽŵĂŝŶͲƐƉĞĐŝĨŝĐ�
ĐŚĂƉĞƌŽŶĞͲŝŶĚƵĐĞĚ� ĞǆƉĂŶƐŝŽŶ� ŝƐ� ƌĞƋƵŝƌĞĚ� ĨŽƌ� ďĞƚĂͲĂĐƚŝŶ� ĨŽůĚŝŶŐ͗� Ă� ĐŽŵƉĂƌŝƐŽŶ� ŽĨ� ďĞƚĂͲĂĐƚŝŶ�
ĐŽŶĨŽƌŵĂƚŝŽŶƐ� ƵƉŽŶ� ŝŶƚĞƌĂĐƚŝŽŶƐ�ǁŝƚŚ�'ƌŽ�>� ĂŶĚ� ƚĂŝůͲůĞƐƐ� ĐŽŵƉůĞǆ� ƉŽůǇƉĞƉƚŝĚĞ� ϭ� ƌŝŶŐ� ĐŽŵƉůĞǆ� ;dZŝ�Ϳ͘�
�ŝŽĐŚĞŵŝƐƚƌǇ�ϰϲ͕�ϭϮϲϯϵͲϭϮϲϰϳ͘�
sŽŽƌŚĞĞƐ͕�Z͘D͕͘�ĂŶĚ�ZĂŵĂŬƌŝƐŚŶĂŶ͕�s͘�;ϮϬϭϯͿ͘�^ƚƌƵĐƚƵƌĂů�ďĂƐŝƐ�ŽĨ�ƚŚĞ�ƚƌĂŶƐůĂƚŝŽŶĂů�ĞůŽŶŐĂƚŝŽŶ�ĐǇĐůĞ͘��ŶŶƵ�
ZĞǀ��ŝŽĐŚĞŵ�ϴϮ͕�ϮϬϯͲϮϯϲ͘�
tĂůƚĞƌ͕�^͕͘�ĂŶĚ��ƵĐŚŶĞƌ͕�:͘�;ϮϬϬϮͿ͘�DŽůĞĐƵůĂƌ�ĐŚĂƉĞƌŽŶĞƐ�Ͳ��ĞůůƵůĂƌ�ŵĂĐŚŝŶĞƐ�ĨŽƌ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ͘��ŶŐĞǁ�
�ŚĞŵ�/Ŷƚ��Ěŝƚ�ϰϭ͕�ϭϬϵϴͲϭϭϭϯ͘�
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tĂůǌƚŚŽĞŶŝ͕�d͕͘�:ŽĂĐŚŝŵŝĂŬ͕�>͘�͕͘�ZŽƐĞŶďĞƌŐĞƌ͕�'͕͘�ZŽƐƚ͕�,͘>͕͘�DĂůŵƐƚƌŽŵ͕�>͕͘�>ĞŝƚŶĞƌ͕��͕͘�&ƌǇĚŵĂŶ͕�:͕͘�ĂŶĚ�
�ĞďĞƌƐŽůĚ͕�Z͘�;ϮϬϭϱͿ͘�ǆdƌĂĐƚ͗�ƐŽĨƚǁĂƌĞ�ĨŽƌ�ĐŚĂƌĂĐƚĞƌŝǌŝŶŐ�ĐŽŶĨŽƌŵĂƚŝŽŶĂů�ĐŚĂŶŐĞƐ�ŽĨ�ƉƌŽƚĞŝŶ�ĐŽŵƉůĞǆĞƐ�ďǇ�
ƋƵĂŶƚŝƚĂƚŝǀĞ�ĐƌŽƐƐͲůŝŶŬŝŶŐ�ŵĂƐƐ�ƐƉĞĐƚƌŽŵĞƚƌǇ͘�EĂƚ�DĞƚŚŽĚƐ�ϭϮ͕�ϭϭϴϱͲϭϭϵϬ͘�
tĂǇŶĞ͕�E͕͘�ĂŶĚ��ŽůŽŶ͕��͘E͘� ;ϮϬϬϳͿ͘��ŝŵĞƌŝǌĂƚŝŽŶ�ŽĨ�,ƐƉϵϬ� ŝƐ� ƌĞƋƵŝƌĞĚ� ĨŽƌ� ŝŶ�ǀŝǀŽ� ĨƵŶĐƚŝŽŶ͘��ĞƐŝŐŶ�ĂŶĚ�
ĂŶĂůǇƐŝƐ�ŽĨ�ŵŽŶŽŵĞƌƐ�ĂŶĚ�ĚŝŵĞƌƐ͘�dŚĞ�:ŽƵƌŶĂů�ŽĨ�ďŝŽůŽŐŝĐĂů�ĐŚĞŵŝƐƚƌǇ�ϮϴϮ͕�ϯϱϯϴϲͲϯϱϯϵϱ͘�
tŝůůĂƌĚƐŽŶ͕��͘D͕͘�ĂŶĚ�,ŽǁůĞƚƚ͕��͘�͘�;ϮϬϬϳͿ͘�&ƵŶĐƚŝŽŶ�ŽĨ�ƉŚŽƐĚƵĐŝŶͲůŝŬĞ�ƉƌŽƚĞŝŶƐ�ŝŶ�'�ƉƌŽƚĞŝŶ�ƐŝŐŶĂůŝŶŐ�ĂŶĚ�
ĐŚĂƉĞƌŽŶĞͲĂƐƐŝƐƚĞĚ�ƉƌŽƚĞŝŶ�ĨŽůĚŝŶŐ͘��ĞůůƵůĂƌ�ƐŝŐŶĂůůŝŶŐ�ϭϵ͕�ϮϰϭϳͲϮϰϮϳ͘�
tŝůƐŽŶ͕��͘E͕͘�ĂŶĚ��ĞĐŬŵĂŶŶ͕�Z͘� ;ϮϬϭϭͿ͘�dŚĞ�ƌŝďŽƐŽŵĂů�ƚƵŶŶĞů�ĂƐ�Ă� ĨƵŶĐƚŝŽŶĂů�ĞŶǀŝƌŽŶŵĞŶƚ� ĨŽƌ�ŶĂƐĐĞŶƚ�
ƉŽůǇƉĞƉƚŝĚĞ�ĨŽůĚŝŶŐ�ĂŶĚ�ƚƌĂŶƐůĂƚŝŽŶĂů�ƐƚĂůůŝŶŐ͘��Ƶƌƌ�KƉŝŶ�^ƚƌƵĐ��ŝŽů�Ϯϭ͕�ϮϳϰͲϮϴϮ͘�
yƵ͕� �͘,͕͘� ,ŽƌǁŝĐŚ͕� �͘>͕͘� ĂŶĚ� ^ŝŐůĞƌ͕� W͘�͘� ;ϭϵϵϳͿ͘� dŚĞ� ĐƌǇƐƚĂů� ƐƚƌƵĐƚƵƌĞ� ŽĨ� ƚŚĞ� ĂƐǇŵŵĞƚƌŝĐ� 'ƌŽ�>Ͳ'ƌŽ�^Ͳ
;��WͿ;ϳͿ�ĐŚĂƉĞƌŽŶŝŶ�ĐŽŵƉůĞǆ͘�EĂƚƵƌĞ�ϯϴϴ͕�ϳϰϭͲϳϱϬ͘�
zĂŵ͕��͘z͕͘�yŝĂ͕�z͕͘�>ŝŶ͕�,͘d͕͘��ƵƌůŝŶŐĂŵĞ͕��͕͘�'ĞƌƐƚĞŝŶ͕�D͕͘�ĂŶĚ�&ƌǇĚŵĂŶ͕�:͘�;ϮϬϬϴͿ͘��ĞĨŝŶŝŶŐ�ƚŚĞ�dZŝ�ͬ��d�
ŝŶƚĞƌĂĐƚŽŵĞ�ůŝŶŬƐ�ĐŚĂƉĞƌŽŶŝŶ�ĨƵŶĐƚŝŽŶ�ƚŽ�ƐƚĂďŝůŝǌĂƚŝŽŶ�ŽĨ�ŶĞǁůǇ�ŵĂĚĞ�ƉƌŽƚĞŝŶƐ�ǁŝƚŚ�ĐŽŵƉůĞǆ�ƚŽƉŽůŽŐŝĞƐ͘�
EĂƚ�^ƚƌƵĐƚ�DŽů��ŝŽů�ϭϱ͕�ϭϮϱϱͲϭϮϲϮ͘�
zĂŶ͕��͕͘�,ĂŶŐ͕�:͕͘�tĂŶ͕�Z͕͘�,ƵĂŶŐ͕�D͕͘�tŽŶŐ͕��͘�͕͘�ĂŶĚ�^Śŝ͕�z͘�;ϮϬϭϱͿ͘�^ƚƌƵĐƚƵƌĞ�ŽĨ�Ă�ǇĞĂƐƚ�ƐƉůŝĐĞŽƐŽŵĞ�Ăƚ�
ϯ͘ϲͲĂŶŐƐƚƌŽŵ�ƌĞƐŽůƵƚŝŽŶ͘�^ĐŝĞŶĐĞ�ϯϰϵ͕�ϭϭϴϮͲϭϭϵϭ͘�
zĂƚĞƐ͕�^͘W͕͘�:ŽƌŐĞŶƐĞŶ͕�Z͕͘��ŶĚĞƌƐĞŶ͕�'͘Z͕͘�ĂŶĚ�DĞƌƌŝůů͕��͘Z͘�;ϮϬϬϲͿ͘�^ƚĞĂůƚŚ�ĂŶĚ�ŵŝŵŝĐƌǇ�ďǇ�ĚĞĂĚůǇ�ďĂĐƚĞƌŝĂů�
ƚŽǆŝŶƐ͘�dƌĞŶĚƐ��ŝŽĐŚĞŵ�^Đŝ�ϯϭ͕�ϭϮϯͲϭϯϯ͘�
zĞďĞŶĞƐ͕�,͕͘�DĞƐĂ͕�W͕͘�DƵŶŽǌ͕�/͘'͕͘�DŽŶƚŽǇĂ͕�'͕͘�ĂŶĚ�sĂůƉƵĞƐƚĂ͕�:͘D͘�;ϮϬϭϭͿ͘��ŚĂƉĞƌŽŶŝŶƐ͗�ƚǁŽ�ƌŝŶŐƐ�ĨŽƌ�
ĨŽůĚŝŶŐ͘�dƌĞŶĚƐ��ŝŽĐŚĞŵ�^Đŝ�ϯϲ͕�ϰϮϰͲϰϯϮ͘�
zŽƐŚŝŬĂǁĂ͕� <͕͘� dĂŶĂŬĂ͕� d͕͘� /ĚĂ͕� z͕͘� &ƵƌƵƐĂǁĂ͕� �͕͘� ,ŝƌĂƐĂǁĂ͕� d͕͘� ĂŶĚ� ^ŚŝŵŝǌƵ͕�,͘� ;ϮϬϭϭͿ͘� �ŽŵƉƌĞŚĞŶƐŝǀĞ�
ƉŚĞŶŽƚǇƉŝĐ�ĂŶĂůǇƐŝƐ�ŽĨ�ƐŝŶŐůĞͲŐĞŶĞ�ĚĞůĞƚŝŽŶ�ĂŶĚ�ŽǀĞƌĞǆƉƌĞƐƐŝŽŶ�ƐƚƌĂŝŶƐ�ŽĨ�̂ ĂĐĐŚĂƌŽŵǇĐĞƐ�ĐĞƌĞǀŝƐŝĂĞ͘�zĞĂƐƚ�
Ϯϴ͕�ϯϰϵͲϯϲϭ͘�
�ĂŶŐ͕�z͕͘�:ŝŶ͕�D͕͘�tĂŶŐ͕�,͕͘��Ƶŝ͕��͕͘�<ŽŶŐ͕�>͕͘�>ŝƵ͕��͕͘�ĂŶĚ��ŽŶŐ͕�z͘�;ϮϬϭϲͿ͘�^ƚĂŐŐĞƌĞĚ��dW�ďŝŶĚŝŶŐ�ŵĞĐŚĂŶŝƐŵ�
ŽĨ�ĞƵŬĂƌǇŽƚŝĐ�ĐŚĂƉĞƌŽŶŝŶ�dZŝ��;��dͿ�ƌĞǀĞĂůĞĚ�ƚŚƌŽƵŐŚ�ŚŝŐŚͲƌĞƐŽůƵƚŝŽŶ�ĐƌǇŽͲ�D͘�EĂƚ�^ƚƌƵĐƚ�DŽů��ŝŽů�Ϯϯ͕�
ϭϬϴϯͲϭϬϵϭ͘�
�ŚĂŶŐ͕�'͕͘�ĂŶĚ�/ŐŶĂƚŽǀĂ͕��͘�;ϮϬϭϭͿ͘�&ŽůĚŝŶŐ�Ăƚ�ƚŚĞ�ďŝƌƚŚ�ŽĨ�ƚŚĞ�ŶĂƐĐĞŶƚ�ĐŚĂŝŶ͗�ĐŽŽƌĚŝŶĂƚŝŶŐ�ƚƌĂŶƐůĂƚŝŽŶ�ǁŝƚŚ�
ĐŽͲƚƌĂŶƐůĂƚŝŽŶĂů�ĨŽůĚŝŶŐ͘��Ƶƌƌ�KƉŝŶ�^ƚƌƵĐ��ŝŽů�Ϯϭ͕�ϮϱͲϯϭ͘�
�ŚĂŶŐ͕� ,͘Y͕͘� �ŵŝĐŬ͕� :͕͘� �ŚĂŬƌĂǀĂƌƚŝ͕� Z͕͘� ^ĂŶƚĂƌƌŝĂŐĂ͕� ^͕͘� ^ĐŚůĂŶŐĞƌ͕� ^͕͘�DĐ'ůŽŶĞ͕� �͕͘� �ĂƌĞ͕�D͕͘� Eŝǆ͕� :͘�͕͘�
^ĐĂŐůŝŽŶĞ͕� <͘D͕͘� ^ƚƵĞŚƌ͕��͘:͕͘� Ğƚ�Ăů͘� ;ϮϬϭϱͿ͘����ŝƉĂƌƚŝƚĞ� /ŶƚĞƌĂĐƚŝŽŶ�ďĞƚǁĞĞŶ�,ƐƉϳϬ�ĂŶĚ��,/W�ZĞŐƵůĂƚĞƐ�
hďŝƋƵŝƚŝŶĂƚŝŽŶ�ŽĨ��ŚĂƉĞƌŽŶĞĚ��ůŝĞŶƚ�WƌŽƚĞŝŶƐ͘�^ƚƌƵĐƚƵƌĞ�Ϯϯ͕�ϰϳϮͲϰϴϮ͘�
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