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Summary

The ground under our feet appears to be rock-solid. But on geophysical time-scales, ranging
over millions of years, the material of the Earth’s mantle acts like a highly viscous fluid that
is driven by temperature contrasts. Due to the time-scales, this convection process can only
be captured through computer simulations. Starting from simplified models decades ago, to
ever more sophisticated models, these simulations provide a lot of insight in the behavior
of the Earth. But still, there is an ongoing demand for more complex models with higher
resolutions. In view of the up-coming exascale supercomputer generation there seems to
be an almost infinite amount of compute power available that facilitates these simulations.
However, the utilization of such tremendous compute capacities requires the re-thinking and
re-design of existing algorithms and software.

For instance, traditional finite element implementations that store the system matrix
have limitations due to their high memory traffic and storage requirements. This is especially
true for large scale geophysical simulations where Earth’s length scales dictate resolutions
that yield systems of up to ten trillion O(1013) unknowns. This can easily exceed the stor-
age capacities of even modern supercomputers. Furthermore, on modern high-performance
architectures memory throughput and latency is more critical than the number of floating-
point operations. Therefore matrix-free concepts provide an attractive alternative. These
approaches perform matrix-vector multiplication locally where the contributions of the ma-
trix are computed on-the-fly and directly multiplied with the local vector. Compared to a
stored-matrix implementation this reduces the memory footprint drastically. Such matrix-free
techniques are especially well suited for block-structured uniform grids. In this thesis we will
build on the hierarchical hybrid grids framework and develop novel methods for an efficient
on-the-fly operator assembly. In particular they are designed to tackle two challenges that
arise in geophysical simulations: 1) variable viscosity and 2) curved domains that cannot be
accurately represented by hybrid grids.

Our first approach shows an efficient method to include variable material parameters, like
viscosity. This is based on an appropriate scaling of a constant reference operator with the
variable coefficients. We will present an extensive mathematical discussion and demonstrate
the efficiency for a large scale application.

The second approach deals with curved geometries, like the spherical shell. Here, the
exact finite element operator is approximated by low order polynomials. This significantly
improves the performance of the hierarchical hybrid grids concept on non-polyhedral domains.
Its accuracy is demonstrated through numerical experiments. Moreover, a modification for
complex systems of PDEs is shown. This enables us to run complex geophysical simulations
at unprecedented global resolutions of the Earth’s mantle close to 1 km. We will use this new
method to study the effects of lateral viscosity variations on Earth’s dynamic topography.

The proposed methods are incorporated in the prototype of our mantle convection frame-
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work and allow researchers to run their models at unprecedented global resolution. This will
foster a deeper understanding of our planet.



Chapter 1

Introduction

While to us as human beings the ground on which we walk may appear ’rock-solid’ the surface
of our planet is actually in constant albeit very slow motion. The continental plates move
at a rate of centimeters per year. The reason for this movement are enormous forces acting
deep below our feet. Convective processes in the Earth’s mantle help the planet to rid itself
of excess energy that is either left from the time of its formation or generated by continued
radioactive decay. The mantle is a layer of Earth starting from below the crust at roughly
60 km and extending down to the core-mantle-boundary at a depth of about 3 000 km. On
geologic time-scales the rocks inside the mantle behave like a highly viscous fluid. A single
overturn of the material in the mantle takes about 100 mio. years [1].

A detailed understanding of these processes is of fundamental interest to geophysics, as
they are the driving force behind phenomena such as mountain building, back-arc volcanism
and finally earthquakes. While the basic principles are those of fluid dynamics and, thus,
well understood [2, 3, 4], there are essential details and parameters of mantle convection that
are only poorly known [5]. Key among these is the (dynamic) viscosity which describes the
rheology of the mantle.

The interior of the Earth is not directly accessible to us. What we know about the inner
structure of our planet is derived from indirect observations and inverse reconstructions, such
as measurements of the Earth’s Geoid or Seismic Tomography [6, 7]. Consequently many re-
search questions can only be studied through numerical simulation. Therefore, computational
techniques have for a long time played an important role in geophysics [8, 9, 10, 11, 12].

But there is a constant demand for ever more realistic models. For instance non-linear
rheology models with abrupt viscosity changes of several orders of magnitude [13]. Such
models need extremely high spatial resolution that significantly increases the computational
cost. Another current trend is to perform adjoint simulations in order to link uncertain
geodynamic modeling parameters to geologic observables, see e.g. [14]. These models need to
propagate back and forth in time multiple times, which also increases the computational cost
by another order of magnitude.

In order to run such simulations in an affordable amount of time, we need efficient software
that relies on the following components: 1) availability of high-performance compute infras-
tructure; 2) sophisticated numerical algorithms; 3) efficient implementation that scales up to
millions (and beyond) compute cores on a highly heterogeneous hardware where processing
units are combined with accelerators like graphics processing units, see section 1.3

The former seems to be readily given by current and future supercomputers. Especially
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in the era of exascale, i.e. supercomputers that can perform more than 1018 floating-point
operations per second, there will be a sheer infinite amount of compute power available. The
first exascale supercomputer, Tianhe-3 in China, is planned to start operation in 2020 [15].
However, in order to make use of this power, the latter two points must be synchronized.
In other words, the convergence of numerical algorithms is as important as their efficient,
hardware-aware implementation and scalability. This requires the re-thinking and re-design
of established methods, as well as an implementation tailored to the targeted architecture.

In this thesis we will tackle some of these challenges to advance the development of exa-
ready mantle convection software. This is essential to improve our understanding of Earth’s
mantle processes.

1.1 Geophysical model

The mathematical model of mantle convection is based on the principles of conservation of
momentum, mass and energy. Due to the very slow motion of the fluid, the Coriolis force and
inertial terms are insignificant and can be neglected. A detailed explanation can be found in
[2]. Thus, the governing equations read as

divσ + ρg = 0 (1.1)

∂tρ+ div(ρu) = 0 (1.2)

∂t(ρe) + div(ρeu) + div q−H − σ : ε̇ = 0 . (1.3)

Here u represents velocity, ρ density, g gravitational acceleration, e internal energy, H volu-
metric radiogenic heat production rate and q heat flux per unit area. The terms σ and ε̇ are
the stress and rate of strain tensor, respectively. These are coupled to each other, to velocity
and to pressure p via

σ = 2µ

(
ε̇− tr ε̇

3
I

)
− pI , ε̇ =

1

2

(
∇u + (∇u)T

)
, (1.4)

where I represents identity and µ dynamic viscosity, see also [16]. We highlight that the
viscosity is the great unknown of the mantle properties. It depends on pressure, temperature,
and even on the flow velocities yielding a non-linear rheology.

The density can be split into two contributions ρ = ρref + ρ̂ where ρref is the radial
background density and ρ̂ describes three-dimensional deviations from the background density
due to either: variations in thermal properties, or chemical composition. The deviations ρ̂
are relatively small compared to the background density and, thus, can be ignored in the
continuity equation (1.2). Moreover, the background density is derived from the time-constant
hydrostatic pressure such that its time derivative will be zero. For ∂tρ = 0, the propagation of
acoustic waves is not possible. This motivates the name anelastic approximation [17], which
is given as

div(ρrefu) = 0 .

Like density, also the pressure can be split into two contributions p = ps + p̂ with hy-
drostatic pressure ps and dynamic pressure p̂. In the momentum equation the background
density only influences the hydrostatic pressure via

∇ps = ρrefg .
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Thus, convection is solely driven by the density variations ρ̂ and it cannot be neglected in (1.1).
However, the presence of ρref adds an additional complexity for the numerical solution of

the system (1.1), (1.2). In particular, it prevents symmetry as the gradient of the pressure
from (1.1) is not adjoint to the divergence term div(ρrefu) of (1.2). Depending on how it is
treated numerically this will significantly impact the performance of the numerical solver. For
instance, the right choice of preconditioner for the non-symmetric Stokes system is unclear.
A detailed discussion goes beyond the scope of this thesis and we refer to e.g. [12]. Therein,
different approaches are discussed and tested.

For this thesis we will use another common approximation that is similar to the anelastic
one and additionally assumes a constant ρref in the continuity equation. This is also motivated
by the fact, that the lateral density deviations are very small compared to the background
density, thus locally the fluid is quasi-incompressible. This Boussinesq approximation is widely
used in mantle convection simulations, e.g. in [11, 18], and yields for the continuity equation

div(u) = 0 .

This also simplifies divσ in (1.1) to

divσ = div (2µε̇)−∇p .

For both, anelastic and Boussinesq approximation there is no explicit time-dependence
in the momentum and continuity equation. This results in the following generalized Stokes
problem

−div (2µε̇) +∇p = ρg

div(u) = 0
(1.5)

that models the stationary flow-field for a given buoyancy term ρg.
The time-dependent energy equation (1.3) can be re-cast in terms of temperature T

cpρ∂tT − αT∂tp+ cpρu · ∇T − αTu · ∇p− div(k∇T )−H − σ : ε̇ = 0 (1.6)

with cp, α, k being the specific heat capacity, thermal expansivity and thermal conductivity.
Note, that the explicit time-dependence of the model is contained solely in the advection-

dominated energy equation (1.6) and enters the generalized Stokes part via changes in the
buoyancy term that is described by an equation of state. The equation of state relates density
to pressure and temperature ρ = ρ (p, T ). The exact details of this relation vary between
models as the chemical composition and mineralogy of the mantle is still an open question.

In a numerical scheme, the Stokes system will be decoupled from the energy equation and
both parts will be solved iteratively. While the temporal discretization of the energy equation
must be treated with care, see e.g. [12, 19] and the references therein, the computationally
most intensive part is the solution of the generalized Stokes problem (1.5) one or more times
per time-step. Several solves per time-step may be necessary in case of a non-linear model.
Thus, in this thesis we will focus on the efficient solutions of the Stokes part as this is the
crucial component for the overall performance. For time-dependent simulations with our
software we refer to [16, 20].

A standard discretization of the generalized Stokes problem, e.g. with the finite element
(FE) method as in [19, 20], leads to an algebraic system of the form

[
A BT

B −C

] [
u
p

]
=

[
f
g

]
. (1.7)
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6 C. Burstedde et al.

Figure 2. Illustration of adaptive discretization of the mantle. Shown are
five of the six caps of the cubed sphere. Each cap consists of 2 × 2 appropri-
ately mapped octrees that are adaptively subdivided into octants (the mesh
elements). This subdivision matches the mantle geometry which produces
caps that are roughly twice as wide as high. The connectivity between the
overall 24 octrees and the parallel distribution of elements is managed by
the forest-of-octree library p4est (Figure published under licence in Journal
of Physics: Conference Series by IOP Publishing Ltd., doi:10.1088/1742-
6596/180/1/012009).

The space-filling curve is first connected through all 24 octrees and
then split into pieces of equal length, which extends the z-order
parallel partitioning scheme to the forest of octrees. An octree may
be split between multiple processors, and a processor may store parts
of more than one octree, depending on the number of processors
and elements. In the Rhea code, we interface to the scalable parallel
forest-of-octree AMR implementation p4est (Burstedde et al. 2011)
that provides all mesh management operations.

We analytically map the forest of octrees into the spherical shell
by a smooth transformation. A necessary condition for this map is
the preservation of aspect ratio. Because an octree is a perfect cube,
we demand that each octant is transformed into a mesh element of
similar width and height. To reconcile this criterion with the fact
that the domain is spherical, and the surface area of the core–mantle
boundary is smaller than the outside surface area of the earth, we
implement an exponential grading of the mesh with the radius. The
mapping from the octree coordinates ξ , η ∈ [ − 1, 1], ζ ∈ [0, 1]
(which reflects the construction from 2 × 2 × 1 octrees) to the cap
oriented in +z direction is given by

z = (R/RCMB)ζ−1√
tan2(πξ/4) + tan2(πη/4) + 1

,

x = z tan(πξ/4), y = z tan(πη/4).

The 5 remaining caps are created by permuting x, y and z and
changing signs as appropriate. The grading in radial direction is
derived as the solution of a 1-D ordinary differential equation that
relates the octree-ζ -component to the non-dimensionalized radius.
We abbreviate this transformation as x = x(ξ ). An illustration of
the discretization of the mantle by this mapped forest of octrees is
shown in Fig. 2.

4.2 Handling of non-conforming meshes

Rhea uses a continuous trilinear finite element discretization to rep-
resent all variables. A field such as the temperature is approximated
by a linear combination of basis functions that in our case are trilin-
ear, that is defined as tensor products of linear functions in the three
space dimensions. Our meshes are non-conforming, which means
that adjacent elements can have different sizes and the endpoints
of neighbouring faces or edges need not coincide; see Fig. 3. This
results in nodes that are ‘hanging’, that is that do not correspond to
element basis functions on all adjacent elements. To enforce global
continuity of finite element functions, the space of element-local
basis functions must be restricted to a continuous subset. This can
be done through algebraic constraints as outlined next.

Let us introduce local basis functions on each element e, de-
noted by ψ e

i (x), i ∈ {1, . . . 8}. We choose nodal basis functions that
assume the value 1 at exactly one of the eight nodes xe

j of the el-
ement, ψ e

i (xe
j ) = δi j . These element-local basis functions are zero

outside of the element. A function that is trilinear on each element
but possibly discontinuous between elements can be represented
by element-local coefficients ce

i as f (x) = ∑
e,i ce

i ψ
e
i (x). Vector-

valued functions such as the velocity field and force term are repre-
sented by coefficients ce

i ∈ R3; we do not use spherical coordinates
or other non-Cartesian coordinate systems.

To fully specify the element-local basis functions ψ e
i (x), we take

into account both the transformation from the octree coordinates
ξ = (ξ, η, ζ )� into physical coordinates x(ξ ) and the scaled shift
ξ = ξ e(r) from the reference element r = (r, s, t)� ∈ [−1, 1]3 into
the octant that corresponds to element e, covering a cubic subvolume
Ve of octree coordinate space. Combined with a tensor-product
ansatz for three space dimensions, this yields

ψ e
i (x) = ψ e

i (x(ξ e(r))) = �1,i (r )�2,i (s)�3,i (t) =
(∏

d
�d,i

)
(r).

The linear basis functions �d, i are 1 at one end of the reference
interval and zero on the other, based on the coordinate direction d
and the corner number i.

Adaptive refinement and coarsening produces non-conforming
meshes where nodes of one element are not necessarily nodes of
a neighbouring element but may instead be hanging (see Fig. 3).
Continuity of the trilinear representation can be enforced by identi-
fying only the non-hanging nodes with global independent degrees
of freedom gn, where n ∈ {1, . . . , N} and N is the number of

Figure 3. Illustration of a hanging face in a non-conforming adaptive dis-
cretization. The values of a variable field at the hanging nodes h1, h2, h3

are computed from the values at a1, a2, a3, a4 through interpolation. For
instance, for the edge-hanging node h1 the value is given by the mean of the
values at a2 and a3; similarly, the value at the face-hanging node h3 is given
by the mean of a1, a2, a3, a4.
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Figure 1.1: Different meshes for thick spherical shell. (Left) Icosahedral mesh from TerraNeo teachlet [28].
(Center) Cubed sphere from [27]. (Right) Yin-Yang grid from [29].

Here, A represents the discrete viscous operator −div (2µε̇), BT a discrete gradient and
B the discrete divergence. Note, that for standard ansatz functions and no-outflow boundary
conditions, as prescribed in global convection models, the latter two operators are adjoint to
each other. The C block might represent a stabilization term, that is needed only, if the ansatz
functions for velocity and pressure are not inf-sup stable, see [20] for an example. Vectors u
and p contain the coefficients of the discrete velocity and pressure, while f and g represent the
discrete right-hand sides, potentially including contributions from the boundary conditions.
A detailed analysis of the finite element theory is given in e.g. [21], and, in particular for the
Stokes system, in [22, 23].

In geodynamic models the mantle is typically represented as a thick spherical shell. It
is commonly discretized either using an icosahedral mesh [24, 25], a Yin-Yang grid [26] or
a (modified) cubed sphere [19, 27]. A representative selection of these different meshes is
shown in Fig. 1.1. In the TerraNeo software (section 1.5) the icosahedral approach based
on tetrahedral elements is used. Both, cubed sphere and Yin-Yang use hexahedral elements
instead.

1.2 State of the art convection frameworks

The history of numerical simulations in geodynamics dates back to the 70’s [8, 30] starting with
simplistic two-dimensional models. The first three-dimensional global convection models were
presented in the 80’s [9, 31] that were able to produce Earth-like planforms but for simplistic
rheologies and at low Rayleigh numbers. Another decade later, parallel computations became
feasible and pushed the development of numerical models [3, 10] approaching the dynamical
regime of the Earth’s mantle. Since then, many more mantle convection codes evolved [11,
26, 32, 33, 34]. The current state of the art mantle convection software is exemplified through
[12, 13, 27].

1.2.1 Model complexities and numerical challenges

The complexity of global convection models arises from the large contrast in length scales
ranging from the Earth’s radius of ∼ 6371 km, mantle super-plumes spreading over hundreds
of kilometers, tectonic plates with thickness ∼ 50 km, shear zones at plate boundaries of a
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few kilometers, down to thin plumes of less than 1 km thickness. Further challenges arise
through the model complexity that involves compressibility effects, non-linear rheology with
lateral variations and discontinuous coefficients, abrupt changes of material properties at
phase boundaries and transportation of chemical heterogeneities, see e.g. [12]. In the following
we will discuss these challenges in more detail.

The characteristic number in mantle convection simulations is the Rayleigh number Ra
that determines the vigor of convection in the system. Essentially it is the ratio of buoyancy
force and thermal as well as viscous dissipation, see e.g. [2]. For low Rayleigh numbers
the convection is dominated by diffusion, while for high values it is advection-dominated.
Furthermore, the Rayleigh number characterizes the thickness of thermal boundary layers that
develop at the top and bottom boundary of the spherical shell as well as along rising plumes
and down-wellings. The thickness ∆l of a thermal boundary layer scales as ∆l ∼ 1/ 3

√
Ra [4,

chapter 8]. In particular, plumes will become thinner and more distinct for high Rayleigh
numbers. Within a numerical simulation, a resolution h < ∆l that resolves these thermal
layers is required. For an assumed value of Ra = 109 for the Earth’s mantle, ∆l will be
around ∼ 3 km.

Furthermore, in geophysical models sudden changes in material properties can happen.
For instance, steep temperature gradients between cold, subducting slabs and hot mantle
material also yield abrupt changes in the temperature-dependent viscosity of several orders
of magnitudes [35, 36]. Also at the transition zone between the asthenosphere, which is
a mechanically weak layer in the uppermost part of the mantle, and the lower mantle the
viscosity changes by several orders of magnitude, see e.g. [37] and the models considered in
sections 4.5 and 5.4. Moreover, at phase transitions the mineralogical stability field of the
material changes due to small variations in temperature and pressure. This yields abrupt
changes of mineralogical composition of the material, and thus, of its viscosity and density
[38, 39, 40]. Another aspect of phase transitions are sudden changes of internal energy of the
material where latent heat is consumed or released. This must be treated carefully in the
energy equation, see [12].

In order to numerically resolve such phenomena we need models with extremely high
spatial resolutions in the range of ∼1 km, or even less. For a global 3D-model this yields
systems with 1012− 1013 degrees of freedom (DoFs). As a consequence, most modern mantle
convection codes [12, 13, 27] employ adaptive mesh refinement (AMR). The idea is to use
a coarse global resolution and refine the mesh locally to increase the resolution in specific
regions, e.g. in regions with high temperature gradients, see also Fig. 1.1 (center). While this
drastically reduces the number of overall DoFs, it produces significant overhead in terms of
mesh handling, dynamic data structures and load balancing. Furthermore, the regions of steep
temperature gradients will vary within a dynamic simulation and there is the frequent need
of mesh adaptation and re-partitioning of DoFs across compute cores to ensure a good load
balance. This becomes especially expensive for massively parallel simulations. Nevertheless,
many recent studies successfully employed AMR techniques for large scale global convection
simulations [12, 19, 24, 27, 34, 41, 42, 43]. Most prominent, [13] presented a static simulation
with ∼ 6 · 1011 DoFs for a mesh that was refined locally down to 75 m. They demonstrated
weak and strong scalability on up to 1.5 million cores, however, without the need for dynamic
adaptation of the mesh.

The viscosity is not only subject to sudden changes due to variations in pressure and
temperature, but it also depends on the strain rate, and thus the velocity. For instance
dislocation creep leads to viscosity variations depending on the second invariant of the strain
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rate tensor. Dislocation creep primarily appears in regions of high stresses, like around
subducting slabs [2]. This yields a non-linear relation in the Stokes system as µ = µ(u).
Typically, a non-linear system is solved through an outer iteration of e.g. Newton or Picard
type [44] which requires multiple solves of the Stokes system. As the Stokes system is already
the dominating factor, the overall cost basically scale with the number of outer iterations.
In [13] they use an inexact Newton-Krylov method to solve a static, non-linear system with
viscosity contrasts of up to six orders of magnitude.

Another challenge is to include compressibility effects in the mass equation (1.2), i.e.
div(ρu). In case that ρ depends on the solution variables also the mass equation will be non-
linear. This can be circumvented through the anelastic approximation where ρ is replaced
by the radial background density ρref. But for both cases, the divergence term is not adjoint
to the gradient term of the momentum equation (1.1), and thus, the Stokes system is no
longer symmetric. In [12] the challenges that arise with compressibility and possible solutions
are discussed. In particular, a compressibility formulation, that re-writes the mass equation
based on geophysical arguments, is shown.

Furthermore, transportation of certain quantities, like chemical composition along the
flow field has to be considered. This can be done either via a particle-in-cell method [45], or
through a field-based approach where the quantities of interest are advected along the flow
field similar to the temperature, but without diffusion, [12]. In [12] a dynamic 3D simulation
with AMR and local resolution of 23 km that includes many of the model complexities, like
compressibility, temperature-dependent viscosity and tracking of chemical heterogeneities, is
shown on 1 536 CPUs.

While all of these codes and examples [12, 13, 27] demonstrate impressively what is achiev-
able today, it is not yet possible to tackle high spatial resolutions combined with all of the
model complexities at once, especially within a dynamic simulation. And it remains debated
if the AMR approach is suitable for exascale in case of dynamic mesh adaptation. We pursue
another approach based on a global refinement of the Earth’s mantle. In [20] it was already
shown that a global resolution of 1 km is feasible for an isoviscous setting. For our new
mantle convection framework, we will build on this approach and extend it by some of the
aforementioned model complexities.

1.2.2 State of the art numerical solvers

For the numerical solution of the indefinite Stokes system (1.7) most modern convection codes
employ multigrid (MG) solvers that are known to yield mesh independent convergence rates
[46, 47]. Typically they are used to approximate the application of the inverse of the elliptic
operator A within an outer iteration. Such an outer iteration can be either a SchurCG solver
[48], as used in [20], or a Krylov subspace method like MINRES and GMRES [44], that are
used in [27] and [19], respectively. In [20] the system with a global resolution of 1 km was
solved with a geometric multigrid (GMG) solver and the scalability of the GMG solver was
demonstrated on up to 9·105 parallel threads. While in [19, 27] an algebraic multigrid (AMG)
was used due to its advantage to adjust for adaptively refined meshes. Highly optimized
AMG implementations, like BoomerAMG from the hypre library [49] have also proven their
scalability up to hundreds of thousands of cores. The disadvantage of AMG compared to
GMG is the high setup cost and tricky tuning of the many parameters. Furthermore, AMG
methods are not suited for the matrix-free concepts described in section 1.4 as they need the
matrix entries to define the operator on the coarser levels. In [13] a novel hybrid spectral-
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geometric-algebraic multigrid (HMG) is proposed that scales up to 1.5 million cores.
An alternative is to use multigrid for the full Stokes system. Due to the indefiniteness

of the system, specialized smoothers are required. In [50] an all-at-once geometric multigrid
solver using Uzawa-type smoothers is presented and its superior performance compared to a
SchurCG and preconditioned MINRES solver is shown. Therein, a system with unprecedented
number of O(1013) DoFs is solved within a couple of minutes. For this thesis the Uzawa-type
MG solver (UMG) will be the default solver for the Stokes system.

1.3 Challenges in high-performance computing for exascale

In this section we will give an overview of current state of the art high-performance computing
(HPC) architectures and discuss the challenges for software design that arise on the road to
exascale computing. Such an exascale supercomputer will be able to perform more than 1018

floating-point operations per second (FLOPs/s).

1.3.1 High-performance computing systems

A typical HPC system is composed of a large amount of compute-nodes that are organized
in a cluster and connected through a high-speed network. On these nodes one or multiple
processing units are installed. Commonly these are so-called core processing units (CPU).
Modern CPUs are equipped with multiple instances of compute units (cores) on which the
computations are executed. Such CPUs with multiple cores are called multi-core processors.

Instead of only installing CPUs on one node, there is a trend to use hybrid nodes that
combine CPUs with graphics processing unit (GPU) accelerators. Such GPUs have thousands
of compute units and provide much higher throughput in terms of FLOPs/s, but compared to
CPUs they also have less memory and longer latencies to access this memory. For instance, on
the Summit supercomputer at ORNL [51] each node is equipped with two IBM Power9 CPUs
and six NVIDIA Tesla V100 GPU accelerators. Recently, it crested the number one position
in the TOP500 [52] list (June 2018) with an impressive peak performance of 122 PFLOPs/s,
i.e. 1.2 · 1017 operations per second, or about 0.12 Exa-FLOPs/s.

Instead of this hybrid setting, another possibility are many-core CPUs like the SW26010
CPU of the TaihuLight supercomputer in Wuxi, China, that follows Summit in the TOP500
list. The SW26010 CPU is a homegrown chip of the Chinese National Research Center of
Parallel Computer Engineering & Technology with 260 compute cores. A description of the
system, recent achievements and a discussion of the challenges that arise with this architecture
can be found in, e.g., [53, 54].

Other many-core CPUs like the Intel Xeon Phi Knights Landing (KNL) are also used in
HPC systems, like on Cori at NERSC [55]. In [56] a comparison of the performance on Intel
Haswell and KNL is shown. However, Intel recently announced that there will be no successor
of KNL.

Besides the many choices for node setup, also the types of nodes within one HPC system
can vary. For instance, on the Piz Daint system at CSCS [57] there are compute nodes of
type XC50 that are equipped with one CPU (Intel Xeon E5-2690 v3) and one GPU (NVIDIA
Tesla P100) and nodes of type XC40 with two CPUs (Intel Xeon E5-2695 v4).

Looking at the current TOP500 list, there is a clear trend to such highly heterogeneous
configurations with hybrid nodes. While such configurations provide the highest (theoretic)
peak performances, they also pose a great challenge for the design of algorithms and their
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implementation. For instance, parts of the code that require a lot of memory accesses should
preferably be executed on the CPU, while other parts with large number of arithmetic op-
erations should be performed on the GPU. But a proper selection of the ratio of CPU and
GPU computation is a fairly non-trivial task [58]. Furthermore, in order to achieve the best
possible performance, it is also essential to optimize the implementation with respect to the
specific hardware and exploit its advantages [59]. In section 3.5 we will present a detailed
description of such a node-level optimization. However, this requires an in-depth knowledge
of the characteristics of the specific architecture and can consume a significant amount of de-
veloping time. This has to be done not only for a CPU version, and a GPU version, but also
for each different type of processor. If this is done manually, it can become a very tedious and
error prone task. So there is also a trend to use automatic code generation approaches that
generate optimized code for some given hardware. This is a field of active research and we
refer to [60, 61] for some recent developments in the area of climate and weather simulations.

Another important aspect in HPC is the communication that takes place between different
cores within the cluster. In a typical parallel computation the workload is distributed over
all cores, where each core takes care of a subset of DoFs. Inside each subset computation
can be performed independently of all other cores. However, on the interfaces between two
different subsets information must be exchanged frequently to keep all values up to date.
Thus, the two cores have to communicate with each other. This can be either of intra-node
type where information is exchanged only between cores within one node that share some
common memory, or of inter-node type where the communication happens between remote
nodes and data must be send through the network connections. Another example is the
computation of a scalar product where information of all subsets must be gathered to form
one final result. Therefore, all cores have to send information to one master-core. Naturally,
the cost (time) for such communication becomes higher the more cores are involved, as more
data needs to be transferred through the network at the same time. In the worst case, an
all-to-all communication takes place where each core communicates with all other cores. This
cost scales with the squared number of cores. This has been an issue in HPC since the
beginning of parallel computing, and will become ever more important the more cores are
used. Nowadays the largest simulations include up to 10 mio. cores [53]. And this will increase
by another order of magnitude for exascale. This is a critical factor and communication should
be avoided as much as possible. Therefore, we also investigate in section 4.5 the percentage
of communication and computation for our application.

Additionally, for the different types of communication also different choices for the parallel
programming model exist. For the shared memory intra-node communication commonly
either MPI or OpenMP is used, while the distributed-memory inter-node communication is
realized via MPI. Also a hybrid approach of MPI and OpenMP is possible and widely used.
In case that GPUs are involved, the programming model is further enriched by OpenCL or
CUDA. The right choice of the parallel programming model is not trivial and can significantly
influence the performance.

Furthermore, with the increase of compute cores, also the probability that one of them
fails, increases. This could either be a hard failure where some node crashes that is noticed
immediately, or a soft failure, like a bit-flip, that happens silently. In such cases so-called fault-
tolerant strategies are necessary to recover the current state without re-starting the whole
simulation. These may be either hardware-based, software-based or algorithm-based. While
traditional approaches like checkpointing are rather expensive, algorithm-based approaches
can be very attractive. For a current discussion we refer to [62] and the references therein.
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Especially for exascale supercomputers such failures may happen considerably often and then
resilient algorithms will be essential.

Also energy consumption is an issue. For instance, the power-consumption of Summit is
comparable to that of on average 8 100 US households [63]. Therefore, to save energy, and
thus, cost, some of the compute cores may be clocked at lower frequencies. But this adds
another level of heterogeneity to the overall system and the node-level optimized code needs
to be adapted to this new clock-frequency.

1.3.2 Node-level performance

In the following we will discuss the architecture of modern CPUs, its bottlenecks and the
challenges to optimize code on the node-level. A detailed description of CPU architecture
and node-level performance engineering is given in [64]. For the examples we will mostly refer
to the SuperMUC system at LRZ [65]. Most of the computations for this thesis were executed
on that system. A detailed description can be found in section 4.5 (Phase 1) and 3.6 (Phase
2).

Modern processors are highly complex devices: for instance they allow hyper-threading
where each physical core behaves like two logical cores. Hyper-threading provides two sets
of registers such that on each physical core two independent threads can run simultaneously.
Both of the logical cores share the same arithmetic execution unit which could increase the
performance by keeping the execution pipeline (see below) more busy than a single thread
can do. Note, that hyper-threading differs from oversubscription where more threads are
running than the number of (logical) cores. Furthermore, additions and multiplications can
be performed simultaneously on one core, called fused multiply add (FMA). Additionally,
modern CPUs are optimized for vectorization where the same instruction is executed on
multiple data (SIMD) to reduce latency. Moreover, in order to perform one floating-point
operation (instruction) the processing unit needs a certain number of cycles. To reduce the
time for one FLOP most modern CPUs employ the pipelining concept, where the instruction
is split into small stages. Each stage takes one cycle and can be executed in parallel. Thus,
assuming that one instruction takes five cycles, by pipelining a new instruction can be started
after the first stage of the previous instruction is executed. Then, instead of one output every
five cycles, a filled pipeline produces an instruction output after each cycle. In case of a
perfect pipeline, the theoretic number of arithmetic operations that a core can perform per
second (FLOPs/s) is given by its clock-frequency. Typical values of this peak performance
are somewhere around 3 GHz. For instance the Intel Haswell processor as used in SuperMUC
Phase 2 is regularly clocked at 2.6 GHz and in turbo-mode at 3.6 GHz.

However, the clock-frequency is not the only factor that determines the performance, and
in fact, it is also not the dominant one. In order to perform arithmetic operations, first data
must be loaded from the memory system into the core’s register. The registers are small and
can hold only a very limited amount of bytes. The access to the main memory (DRAM)
system is terribly slow compared to the number of FLOPs that the CPU can perform. Thus,
the CPU is idle for most time as it has to wait until some new data is loaded. Therefore,
a hierarchy of memory sub-systems was introduced [66]. Nowadays this hierarchy consists
of three levels, called L1, L2 and L3 cache. These caches have much less storage capacities
than the main memory, but significantly faster bandwidth. The bandwidth is given in bytes
per second and defines how fast data can be transferred. Also the latency, which is an initial
waiting time until data can flow is much shorter. The L1 cache provides the highest bandwidth
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of the three cache levels and the smallest storage capacities, while the L3 cache is the largest
one, but with lowest bandwidth. Concretely one can imagine that the L1 cache is closest to
the core, while the DRAM is farthest away. The closer the data is, the faster it can be loaded
into the register. In order to keep the administration overhead low, the storage capacities of
the cache must be small.

Thus, there are two factors that determine the performance: the clock-frequency of the
processor and the memory bandwidth. A popular tool to model the performance of a code is
the roofline model [67]. It is based on the two potentially restricting factors and defines upper
bounds for the maximal achievable performance for a given algorithm. The original model
only includes the transfer rates from main memory. This implies that within the caches data
is transferred at infinite speed, which yields a model where the bounds are too optimistic. In
[68] an extension is proposed to include also cache levels. An illustration of this cache-aware
roofline model is shown in Fig. 1.2.

The abscissa shows the arithmetic intensity which is the number of operations that are
performed for each byte that is loaded into the register. The arithmetic intensity is given in
FLOPs per byte and its value is determined by the implemented algorithm. On the ordinate
the performance in terms of FLOPs/s is shown. Depending on the overall number of FLOPs
that are required to get the final result, a code with lower performance may yield shorter
run-times, see e.g. the discussion in [69]. But in general, for a fixed algorithm, the goal is to
achieve the highest possible performance in terms of FLOPs per second.

Whether the performance is limited by the processor’s peak performance or by the band-
width depends on the arithmetic intensity. For the former, the code is said to be compute
bound. In this case one could try to modify the algorithm such that the number of operations
is reduced. This would be an algorithmic optimization, e.g. as we do in chapter 2, but from
an implementational point-of-view running at processor’s peak performance is the best one
could get.

On the other side, in most situations the intensity will be lower such that the performance
is limited by the memory throughput (memory bound). In the model four lines are drawn,
each with a fixed slope in byte/s. This slope represents the bandwidth of the respective
memory layer. Thus, for a given intensity value, the location of the data will significantly
influence the performance. For instance, for an intensity of 0.1, if the data has to be loaded
from the main memory the maximal performance will be ∼0.2 GFLOPs/s. However, if the
data is already in the L1 cache, the maximal performance will be ∼20 GFLOPs/s, thus
potentially 100× faster. For simplicity we will not distinguish between the three cache levels
in the following, but only between cache and DRAM. Of course, all arguments also hold true
for the different cache levels.

Consequently, it is preferable to perform operations on data that is already loaded into
the cache. The problem is that its capacities are small, and old data that has not been used
for some time will get evicted when new data must be loaded. Thus, the goal is to design
code such that as much data as possible can be re-used as long as it is still in the cache.
If data is used from the cache it is called a cache hit, otherwise a cache miss. In order to
increase the probability of cache hits, whenever some value is loaded, also the values that are
stored next to it in the respective memory layer are loaded. This is called a cache line and
its size depends on the architecture. Here, the assumption is that values which are stored
consecutively in memory will most likely be needed in some successive computation. For the
discussion in section 3.5 cache lines will serve as the base unit where one cache line consists of
eight double-precession values. Another technique that reduces latency is cache prefetching
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Figure 1.2: Illustration of cache-aware roofline model. Processors peak performance (double precision vec-
torized FMA) and the four bandwidths (L1, L2, L3 and DRAM) form four different rooftops. These values
were measured for a benchmark application on Phase 2 [69]. For a fixed intensity (that is determined by the
implemented algorithm) the maximal performance is exemplified for two cases: a) data resides in L1 cache b)
data must be loaded from DRAM.

where cache lines are loaded ahead of the actual computation. This is done on the compiler
level.

For stencil-based applications, as used in this thesis, an often used term is the so-called
layer condition [70]. It is said to be satisfied if all values, except one, that are touched by the
stencil are already in the cache. For instance, in 2D for a standard 5-point stencil, exactly
two lines of the grid must be kept in memory to fulfill the condition. Then, for a row-based
south to north grid traversal all values except for the northern one have already been used
in a previous stencil update, but were not yet evicted from the cache. In section 3.5.1 this
condition is used for the 3D case where one layer corresponds to one plane.

The modified roofline model is still a simplification. For instance it does not include
overlapping of computation and load operations, which requires even more detailed models
like the execution-cache memory (ECM) model [71] that is used in section 3.5. Nevertheless,
the roofline model gives a good intuition of the observed performance and the potential
bottlenecks.

On modern processors, the L1 and L2 cache are exclusively owned by the respective core.
That means that for instance core #0 cannot access the L2 cache of core #1, and vice versa.
For the L3 cache and DRAM this is different and they are shared among all cores of one
processor. Note, that there are also architectures with non-shared L3, see e.g. [64]. The main
memory is organized in NUMA (non-uniform memory access) domains [72, 73]. In the NUMA
architecture CPUs are directly attached to their local memory to provide fast accesses, and
compared to UMA (uniform memory access) architectures, multiple CPUs can simultaneously
access the memory. Remote access to memory on other CPUs is also possible, however, then
latencies increase by up to 50% [72]. Typically, a NUMA node consists of one CPU and its
associated local memory. If the system is configured in so-called cluster-on-die (CoD) mode,
each NUMA node is further split into two groups. In Fig. 1.3 the topology of one Haswell
compute node is shown: it consists of two processors each with 14 cores. The system is
running in CoD mode where seven cores form one NUMA domain. The L1 and L2 caches are
private to each core, while the L3 and DRAM is shared between seven cores.

In the above paragraph we deliberately used the term processor’s peak performance. This
peak value scales linearly with the number of cores and the clock-frequency. When increas-
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Figure 1.3: Topology of one Haswell node of SuperMUC Phase 2, taken from [65].

ing the core count on one processor, then shared resources can become a bottleneck. The
bandwidth of L3 cache scales also linearly with the number of cores, thus the only critical
resource is DRAM bandwidth. When multiple cores simultaneously read from main memory
such that the memory interface is continuously occupied the bandwidth will saturate and
limit the overall memory throughput. In Fig. 3.13 this effect is illustrated for one NUMA
domain on SuperMUC Phase 2. However, we remark that the saturation effect is rather low
in this case due to the node-level optimizations performed.

As a consequence, in order to optimize code, all of these aspects, like vectorization, pipelin-
ing, layer condition, saturation effects, etc. are important and need to be considered, see
e.g [59, 70]. Especially, in most cases memory throughput and memory access latency are
more critical than the number of floating-point operations.

1.4 Matrix-free finite element concepts

Finite element (FE) discretizations of a PDE lead to a system of equations of the form

Ax = f (1.8)

that has to be solved. For the general FE theory we refer to e.g. [21] and a concrete example
for the Laplace operator is given in section 3.2.2.

We first introduce the following notation: Let {φi, i = 1, . . . , n} be the set of all basis
functions of a suitable finite element space, where n is the number of DoFs. Furthermore, i, j
are indices for global DoFs, whereas iloc, jloc are the associated local indices w.r.t. element t of
the FE triangulation. For local indices the basis functions are denoted as φiloc . The mapping
from the unit reference element t̂, that is used for quadrature, is defined by the Jacobian Jt.
We further denote by {φ̂i, i = 1, . . . ,m} the set of basis functions on the reference element.
Here, m depends on the dimension and the order of the finite elements.

In classical FE codes, first the n× n system matrix A will be assembled and stored. The
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entries of the system matrix A are defined by the bilinear form a(·, ·) that stems from the
PDE operator and it is Aij = a(φi, φj).

The result of a(φi, φj) will be non-zero only for combinations of basis function φi, φj that
have a common support, i.e. that share at least one element. So, most of the entries of A
will be zero. In fact, for a scalar operator with linear finite elements on regular tetrahedral
meshes there will be exactly 15 non-zero entries per row. For boundary nodes this may vary
depending on type of boundary conditions, but on average, only 15n out of n2 matrix entries
are non-zero. Such a matrix is called sparse and there exist special formats to store only
the non-zero values, which significantly reduces the memory requirements. For instance the
Compressed Row Storage (CRS) format that stores all non-zero entries within an array, and
within a second array the associated column indices. Both of these arrays have 15n entries.
In case that n is large the indices must be stored in 64-bit integer format to avoid integer
overflow. Additionally, also pointers that indicate the beginning of a new row must be stored,
which adds another n values. Overall, it requires 31n · 8 bytes to store the matrix A in the
CRS format for this particular discretization.

The assembly of the matrix A, which means the computation of its entries, is typically
performed through a loop over all elements. On each element t the local element matrix Et

can be assembled via Etilocjloc = at(φiloc , φjloc). Here, at(·, ·) is the same bilinear as a(·, ·) where
the integration is restricted to element t. Concretely, for the Laplacian this reads as

Etilocjloc =

∫

t
∇φiloc · ∇φjloc

The integral is computed numerically via a suitable quadrature rule on the reference
element, see (1.10). We highlight that this integration is the most expensive part of the
assembly procedure. But, as the matrix is stored in memory it has to be done only once. In
a similar way, also the right-hand side f of the discrete system can be assembled.

After the assembly procedure, the system (1.8) can be solved, typically with an itera-
tive solver like multigrid or a Krylov subspace method. In every iterative solver (sparse)
matrix-vector products (MVP) must be frequently applied which constitutes the most com-
pute intense part within an iterative solver. The disadvantage of this approach is that for
each MVP all matrix entries must be read from memory. If n is small, than the values may be
kept in the cache, but for larger n these values come from main memory. And as each entry
is needed exactly once per MVP, there is also no re-use of the data. In fact, the arithmetic
intensity of the stored matrix MVP is very low and, as we discussed in section 1.3, memory
throughput and memory access are the limiting factor, such that these codes are strictly
memory bound. This is verified in e.g. [69].

Furthermore, for a standard CRS format also indirect addressing for the position of the
non-zero entries must be performed, which can further slow down the performance. Finally,
the storage requirements also limit the size of problems that can be simulated. For instance,
the system considered in section 4.5, with 1.1·1012 DoFs needed more than 500 TB to store all
non-zero matrix entries, and another 500 TB to store the 64-bit integer indices. This exceeds
by large the memory capacities of even modern supercomputer systems. For comparison, the
available memory of the SuperMUC Phase 2 system is only about 194 TB. Note, that for this
example there are four DoFs associated with each mesh node, and thus, there are on average
15 · 4 non-zero entries per row.

To circumvent these issues, a current trend in modern high-performance codes is to use
matrix-free techniques. These approaches do not assemble the full system matrix, but rather
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perform the MVP locally on-the-fly.
Therefore, we recapitulate, that a MVP with the system matrix A involves two steps:

first a summation of the local contributions Et over all elements to assemble A, and then a
multiplication with the vector. According to the law of distribution, these two steps can also
be switched. On each element the local element matrix Et can be directly multiplied with
the corresponding vector entries and its result added to the final vector. In particular, the
MVP v = Au can be expressed as

vi =
∑

t∈N (i)

m∑

jloc=1

Etilocjlocujloc (1.9)

where N (i) is the set of elements including DoF i. One of the first paper that describes this
element-by-element (EBE) approach is [74]. The local element matrices Et could either be
stored, which also produces a large memory footprint, or they can be computed on-the-fly.
Due to the high memory requirements or the expensive on-the-fly computation this approach
is not widely used on unstructured meshes. Nevertheless, on structured meshes the same Et

can be used for all elements of the same shape, thus have to be computed and stored only for
a small subset of elements. We note that this is quite similar to the approach that we will
use within this thesis. A variable material parameter could either be included directly in Et,
or by an appropriate scaling of the contributions of the local element matrices as developed
in chapter 2. The EBE approach has been successfully applied on hexahedral meshes with
tri-linear finite elements, see e.g. [75].

Another matrix-free approach is to fuse the local MVP directly with the numerical quadra-
ture of the weak form, instead of assembling the local element matrices [76]. We will discuss
this approach for the prototype Laplace operator with material parameter k ≡ 1. To this end
we recapitulate that the computation of Et involves an integral that is computed through a
numerical quadrature formula which is defined by its quadrature weights wq and quadrature
points xq. This is performed on the reference element t̂ and we denote by x̂q the corresponding
quadrature point on the reference element. Thus,

Etilocjloc =
∑

q

(
J−Tt (x̂q)∇φ̂iloc(x̂q) · J−Tt (x̂q)∇φ̂jloc(x̂q)

)
wq| det(Jt)| (1.10)

We note that this formula is similar to (4) from section 4.3. There, linear finite elements are
considered for which the quadrature points are identical to the four nodes of one element with
uniform quadrature weights.

Then, the two steps (1.9) and (1.10) can be merged into one form

vi =
∑

t∈N (i)

∑

q

(
J−Tt (x̂q)∇φ̂iloc(x̂q) · ∇uh(xq)

)
wq|det(Jt)| (1.11)

with ∇uh(xq) = J−Tt (x̂q)
∑m

jloc=1∇φ̂jloc(x̂q)ujloc and uh(xq) =
∑m

jloc=1 φ̂jloc(x̂q)ujloc the local
FE interpolation at point xq. The gradients of the basis functions on the reference element
and the inverse of the Jacobian for all quadrature points can be pre-computed and stored at
low memory cost such that (1.11) can be evaluated on-the-fly very efficiently. Compared to
a classical CRS implementation this method tends to be compute bound [77] and for higher
order elements it is significantly faster than the stored matrix approach [76, 78]. In principle
it works for arbitrarily shaped elements, but for tensor-product spaces the efficiency of the
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sum evaluation over q can be improved through sum factorization. This sum factorization is
more efficient the higher the order, but it does not pay off for linear elements [76]. In fact,
in this case the CRS method is even faster. For higher order elements (> 2), this matrix-free
approach has been widely used, see e.g. [76, 77, 78, 79, 80].

In this thesis, we will build on a different matrix-free approach for low-order finite elements
on hybrid hierarchical grids with tetrahedral elements. This provides more flexibility than
uniform hexahedral elements that are necessary for an efficient EBE approach. In contrast to
the element-based approaches discussed above, we employ a node-based approach that uses
so-called stencils similar to finite differences. We will explain this approach in more detail in
the next section 1.5, where we also discuss its advantages and, in particular, its disadvantages.
Within this thesis, we will develop two novel node-based matrix-free approaches to overcome
these disadvantages.

1.5 TerraNeo - A prototype mantle convection framework

This thesis is part of the TerraNeo project, funded by the DFG Priority Programme on
Exascale Computing (SPPEXA) [81]. The ambitious goal of TerraNeo is to provide a new
high-performance community code for mantle convection simulations. Compared to other
state of the art convection codes that are based on pre-existing libraries, TerraNeo is a com-
plete re-design and re-implementation of its predecessor TERRA [9, 10, 36]. Notable examples
for such libraries are the DEAL.II library [82, 83] for finite element discretization, the Trilinos
package [84] for scalable linear algebra operations, as well as p4est [42] for parallel adaptive
mesh refinement and management.

TerraNeo is carefully implemented and optimized for high-performance computing
(HPC) in order to exploit the tremendous compute capacities of the soon-to-come exascale
systems. Furthermore, it uses tetrahedral elements which provide more flexibility in the
geometries that can be used than hexahedral elements.

While TerraNeo is still in its development phase, its concepts are based on the Hierarchical
Hybrid Grids (HHG) software framework [16, 20, 85, 86] for low order finite elements. A
flexible extension of the HHG concept for higher-order elements is given by [87]. The HHG
framework serves as the prototype for our mantle convection software. During the course
of the project, many new ideas and features were added to HHG such that it evolved to a
full mantle convection framework for geophysical research. For instance, [37] employs HHG
to investigate the effect of asthenosphere thickness on flow velocities. And in chapter 5 we
will show the influence of lateral viscosity variations on dynamic topography. Thus, it can
be seen as the zero-th version of TerraNeo. All concepts and results within this thesis were
obtained with HHG. Here, we will give a brief overview of HHG and discuss its advantages and
disadvantages. A more detailed description is given in sections 3.2.3, 4.2 and the references
therein. The basic idea of HHG is that it combines the flexibility of an unstructured mesh with
the superior performance of structured refinement. More precisely, the domain Ω is discretized
by an initial tetrahedral macro triangulation T0. These macro elements are grouped into
geometric primitive classes, namely vertices, edges, faces and volumes. Each primitive class
will be further refined following the rules of [88]. This generates a structured hierarchy of
uniformly refined meshes T = {T` : ` = 0, 1, 2, . . . , L}. Note, on T0 there exist only DoFs
on vertex primitives. On T1 DoFs on edges are generated, and only from T2 there are DoFs
associated with face and volume primitives.
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The primitives also serve as containers with array-like data structures to store the asso-
ciated nodal degrees of freedom. This contiguous memory layout provides extremely efficient
memory accesses without the need for indirect addressing. The containers can be distributed
via MPI, where each primitive is uniquely owned by one MPI rank. Updates between two
adjacent primitives on different ranks are performed via ghost layer exchanges.

Due to the embedding of multiple mesh levels, the HHG concept is naturally suited for
geometric multigrid solvers [20, 50]. The most compute intense components of a MG solver
are the residual computation, smoothing and the coarse grid solver. For the latter one could
either choose a suitable Krylov subspace solver like preconditioned MINRES, or, due to the
unstructuredness of the macro mesh an algebraic multigrid. In case that the coarse grid
is not too large, also a sparse direct solver may be considered. For this an extension was
implemented in HHG to link with the external library PETSc [89] that provides a easy way
to switch between different numerical solvers. For instance the BoomerAMG from the hypre
library [49], or the direct solver MUMPS [90]. All of these choices have their own advantages,
but also disadvantages, and it is still a field of active research which solver should be taken
[91]. Nevertheless, also the HHG internal Krylov subspace solver provides reasonably good
performance, as shown for instance by the results in section 4.5. Thus we will not further
dwell on the discussion about the coarse grid solver and employ only HHG internal solvers.

The residual application corresponds to a sparse matrix-vector multiplication plus one
additional subtraction, r = f − Au. In HHG a node-based matrix-free concept is employed
for linear finite elements. Note that for linear finite elements the DoFs are directly located
at the nodes. The MVP is performed as follows: first, for each node the contributions of the
attached local elements are combined on-the-fly to assemble so-called stencils. Let sij be the
stencil weight that connects nodes i and j. It can be computed by

sij =
∑

t∈N (i,j)

Etilocjloc . (1.12)

Here, N (i, j) is the set of elements with common nodes i and j. For our discretization we have
in general 15 stencil weights per node. Fig. 1.4 illustrates the stencil pattern and all elements
involved for its assembly. These stencils represent matrix entries of the corresponding matrix
row. In the next step, the stencil weights are multiplied with the associated vector entries.
Afterwards, all products are accumulated and subtracted from the right-hand side f . Then,
the residual application can be expressed as

ri = fi −
15∑

j=1

sijui .

The big advantage of this approach is, that on block-wise uniform meshes the stencils
do not have to be re-computed and can be re-used for the vast majority of points. In par-
ticular, the structured refinement of the primitives generates only six different classes of
sub-tetrahedra for each primitive. Furthermore, the types of sub-tetrahedra adjacent to one
node will be identical for all points within one macro element. This yields the same stencil
values for all points. Consequently, (1.12) has to be evaluated only once per macro element,
and the stencil weights sij can be stored and re-used. For example, for a volume primitive on
level l = 8 there are 2.7 ·106 nodes. But instead of computing 2.7 ·106 stencils on-the-fly, only
one stencil has to be computed and can be used for all of the 2.7 ·106 nodes. This significantly
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Figure 1.4: Three types of sub-tetrahedra (the three pictures on the left) and 15-point stencil (right), see also
Fig. 3.3. Each type includes two congruency classes of sub-tetrahedra.

reduces the number of operations, and also the amount of bytes that have to be loaded. In
fact, the stencils, and thus in principle the full matrix can be kept in the L1 cache.

Similarly to the residual, also the smoother can be expressed in stencil form. In particular,
one sweep of the Uzawa-smoother is carried out by a combination of Gauss-Seidel (GS) sweeps
of the operators A,C and applications of B and BT , see [50] for details. The main difference
between the residual and smoother application is that the GS smoother requires the inverse
of the central stencil value that can be easily computed in a node-based approach. Note, for
element-based implementations this is not straight-forward as the central stencil entry includes
information of all neighboring elements. In particular, it is the negative sum of all other stencil
entries. An alternative is to use polynomial smoothers like the Chebychev smoother. A current
discussion of different multigrid smoother for massively parallel applications is given in [92].
We further remark that due to the HHG communication pattern between primitives some
dependencies are neglected such that low-order primitives can have points that are updated
in a Jacobi-like fashion yielding a hybrid GS update scheme. As shown in [85] this does not
effect the multigrid convergence.

The fast performance of HHG was already mentioned several times, for instance it solved
a system O(1013) with DoFs [50]. In [86] a detailed hardware-aware performance analysis
is presented that quantifies the performance of HHG in a qualitative manner, and not just
by giving some speed-up values. In particular, the performance is measured in the so called
parTME metric that takes into account algorithmic scalability, node-level performance and
parallel efficiency. Those three are exactly the components, as we already highlighted in the
introduction part of chapter 1, that are essential for an exa-ready software.

However there are two caveats that we did not mention so far. First, the efficiency of the
matrix-free concept is based on the assumption that FE stencils do not change within one
macro element. But this does not hold true in case of PDEs with variable coefficients, like the
viscosity µ that enters the elliptic operator A. In that case, (1.12) must include the variable
coefficient µ and then reads as

sij =
∑

t∈N (i,j)

Etilocjloc µ̄t (1.13)

where µ̄t is the element averaged viscosity. Note, that for linear FE we can use a vertex based
quadrature rule with uniform weights to compute the integral over µ on each element, see
also (4) from section 4.3. Then, for a viscosity µ that is not constant within a macro element,
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also the stencils will vary within this macro element. Consequently the stencils have to be
re-assembled for each node on-the-fly. The contributions of the local element matrices Et

only depend on the shape of the local sub-tetrahedra which is independent of µ. Thus, there
are still only six different classes of sub-tetrahedra and for those the contributions Et can be
pre-computed and stored. In fact, they require only 768 byte1 and fit easily into the L1 cache.
Therefore, the expensive on-the-fly computation of Et can be avoided. But still, compared to
the case of block-wise constant µ, the additional evaluation of the sum in (1.13) is necessary
for variable coefficients. By employing the elimination of common sub-expressions [93] the
number of additional operations can be reduced, but overall this impacts the performance by
a factor of about 4×, see e.g. [86]. In chapter 2 we will present a new method that is 3× more
efficient.

The second, even more problematic point is the geometry. So far, we assumed that the
geometry is sufficiently approximated by the macro mesh. This works well for polyhedral
domains. But it does not hold true for a spherical domain like the Earth’s mantle. Let ΩS be
the original spherical shell domain. No matter how often the initial macro mesh T0 is refined,
all fine grid nodes will always be part of the convex hull of T0. In other words, refining the
mesh will not improve the geometry approximation. To this end a geometry projection of
all fine grid points was implemented in HHG [94] such that all surface points are projected
outwards onto the spherical surface. For interior points a similar projection is performed
such that all points form concentric layers. This can be done in a pre-processing step and
ensures that ∪T∈T`T → ΩS for ` → ∞. But it comes at the cost that sub-tetrahedra, and
consequently the stencil values will vary for each individual node. An illustration is shown
in Fig. 3.1 and 3.2. As a consequence, there is no information that can be re-used and all
stencil values have to be re-computed on-the-fly. In particular, this includes the expensive
on-the-fly evaluation of Et via quadrature. So, coming back to our previous example, instead
of computing just one stencil and use it 2.7 · 106 times, an expensive computation has to be
performed for each of the 2.7 · 106 nodes, which has to be done in each smoothing step and
for each residual application. In section 3.6 we show that this literally kills the performance
by a factor of 100×. In chapter 3 an efficient method for curved geometries will be presented.

1.6 Objective of the thesis

The hybrid grids concept provides several advantages compared to other state of the art con-
vection software that build on AMR techniques. Especially there is no need for complex mesh
handling and re-partitioning, which will become particularly expensive for exascale compu-
tations. Furthermore, it is based on a matrix-free concept with very low memory footprint.
However, in the previous section we also identified two issues with this concept. These rep-
resent two major roadblocks for TerraNeo to become a full, exa-ready mantle convection
software.

Within this thesis, we will develop new matrix-free approaches that tackle both of these
roadblocks. In chapter 2 we will introduce a stencil scaling approach in which pre-computed
reference stencils are scaled on-the-fly with the appropriate viscosity values. A rigorous
mathematical analysis will be presented and the performance will be discussed in terms of
reduced number of operations as well as in terms of memory traffic. Overall, we achieve
a performance improvement of 3× compared to the existing approach. In chapter 3 we will

1Et is a 4× 4 matrix and there are six different classes of sub-tetrahedra. Thus, 6× 4× 4× 8 byte.
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present a novel approach for an efficient stencil assembly on curved domains. It is based on an
approximation of the original stencils by low order polynomials. The method greatly improves
the performance and almost achieves the time-to-solutions of the original HHG approach,
with the advantage of a correct geometry approximation. The accuracy of the polynomial
approximation is numerically tested and verified. This novel method will be extended in
chapter 4 to the full Stokes system including variable viscosity values. Its performance and
scalability is investigated for a realistic geophysical application scenario. In chapter 5 we
present benchmark results for this new method and investigate the effect of lateral viscosity
variations on dynamic topography. The global resolution used in these simulations is less
than 1.5 km. A summary and outlook will be given in chapter 6.
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Chapter 2

Stencil scaling approach for variable
coefficient operators

This chapter includes parts of a manuscript that was published in the SIAM Journal on
Scientific Computing in 2018 [1]. We will present here all necessary lemmata to develop the
theory. For the proofs we refer the interested reader to the full manuscript.

In this chapter we introduce a new operator that is obtained by appropriately scaling
the reference stiffness matrix from the constant coefficient case. Assuming sufficient regu-
larity, an a priori analysis shows that solutions obtained by this approach are unique and
have asymptotically optimal order convergence in the H1- and the L2-norm on hierarchical
hybrid grids. For the pre-asymptotic regime, we present a local modification that guarantees
uniform ellipticity of the operator. Cost considerations show that our novel approach requires
roughly one third of the floating-point operations compared to a classical finite element as-
sembly scheme employing nodal integration. Our theoretical considerations are illustrated by
numerical tests that confirm the expectations with respect to accuracy and run-time. A large
scale application with more than a hundred billion (1.6 ·1011) degrees of freedom executed on
14 310 compute cores demonstrates the efficiency of the new scaling approach.

In mantle convection simulations this method will be applied for the elliptic operator A of
the Stokes system that includes the viscosity µ as PDE coefficient. This chapter establishes
the method for a Darcy type PDE. An extension to the Stokes system is possible, but the
treatment of the cross-coupling terms will require special care that goes beyond the scope of
this thesis.

2.1 Motivation of scaling approach

Let us now consider the setting of an elliptic PDE with piecewise smooth variable coefficients,
assuming that the macro mesh resolves jumps in the coefficients. In this case, a standard finite
element formulation is based on quadrature formulas and introduces a variational crime. Ac-
cording to [2, 3], there is flexibility how the integrals are approximated without degenerating
the order of convergence.

For this chapter, we restrict ourselves to the lowest order case of conforming finite elements
on simplicial meshes. Then the most popular quadrature formula is the one point Gauss
rule which in the simplest case of div(k∇u) as PDE operator just weights the element based
reference stiffness matrix of the Laplacian by the factor of k(xT ) where xT is the barycenter of
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the element T . Alternatively, one can select a purely vertex-based quadrature formula. Here,
the weighting of the element matrix is given by

∑d+1
i=1 k(xiT )/(d + 1), where d is the space

dimension and xiT are the vertices of element T . Using a vertex-based quadrature formula
saves function evaluations and is, thus, attractive whenever the evaluation of the coefficient
function is expensive and it pays off to reuse once computed values in several element stiffness
matrices. Note that reusing barycentric data on general unstructured meshes will require
nontrivial storage schemes.

In the case of variable coefficient functions, stencil entries can vary from one mesh node
to another. The number of possibly different stencils within each macro element becomes
1
d!2

d` +O(2(d−1)`), where ` is the number of uniform refinement steps for HHG. Now we can
resort to two options: Either these stencils are computed once and then saved, effectively
creating a sparse matrix data structure, or they are computed on-the-fly each time when they
are needed. Neither of these techniques is ideal for extreme scale computations. While for
the first option O(2d`) extra memory is consumed and extensive memory traffic occurs, the
second option requires re-computation of O(2d`) local contributions.

The efficiency of a numerical PDE solver can be analyzed following the textbook paradigm
[4] that defines a work unit (WU) to be the cost of one application of the discrete operator
for a given problem. With this definition, the analysis of iterative solvers can be conducted in
terms of WU. Classical multigrid textbook efficiency is achieved when the solution is obtained
in less than 10 WU. For devising an efficient method it is, however, equally critical to design
algorithms that reduce the cost of a WU without sacrificing accuracy. Clearly, the real life
cost of a WU depends on the computer hardware and the efficiency of the implementation, as
e.g., analyzed for parallel supercomputers in [5]. On the other side, matrix-free techniques, as
the one proposed in this chapter, seek opportunities to reduce the cost of a WU by a clever
rearrangement of the algorithms or by exploiting approximations where this is possible; see
e.g., also [6].

These preliminary considerations motivate our novel approach to reduce the cost of a
WU by recomputing the surrogate stencil entries for a matrix-free solver more efficiently. We
find that these values can be assembled from a reference stencil of the constant coefficient
case which is scaled appropriately using nodal values of the coefficient function. We will
show that under suitable conditions, this technique does not sacrifice accuracy. However,
we also demonstrate that the new method can reduce the cost of a WU considerably and in
consequence helps to reduce the time-to-solution.

The rest of this chapter is structured as follows: In section 2.2, we define our new scaling
approach. The variational crime is analyzed in section 2.3 where optimal order a priori re-
sults for the L2- and H1-norm are obtained. In section 2.4, we consider modifications in the
pre-asymptotic regime to guarantee uniform ellipticity. Section 2.5 is devoted to the repro-
duction property and the primitive concept which allows for a fast on-the-fly reassembling in
a matrix-free software framework. In section 2.6, we discuss the cost compared to a standard
nodal based element-wise assembling. Finally, in section 2.7 we perform numerically an accu-
racy study and a run-time comparison to illustrate the performance gain of the new scaling
approach.
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2.2 Problem setting and definition of the scaling approach

We consider a scalar elliptic partial differential equation of Darcy type, i.e.,

−div K∇u = f, in Ω, tr u = 0 on ∂Ω

where tr stands for the boundary trace operator and f ∈ L2(Ω). Here Ω ⊂ Rd, d = 2, 3, is a
bounded polygonal/polyhedral domain, and K denotes a uniformly positive and symmetric
tensor with coefficients specified through a number of functions km, m = 1, . . . ,M , where
M ≤ 3 in 2D and M ≤ 6 in 3D due to symmetry.

For the Darcy operator with a scalar uniform positive permeability, i.e., −div(k∇u),
we can set M = 1 and k1 := k. The above setting also covers blending finite elements
approaches [7]. Here K is related to the Jacobian of the blending function. For example,
if the standard Laplacian model problem is considered on the physical domain Ωphy but the
actual assembly is carried out on a reference domain Ω := Φ(Ωphy), we have

a(v, w) =

∫

Ωphy

∇vphy · ∇wphy dxphy =

∫

Ω
∇v · (DΦ)(DΦ)>

|det DΦ| ∇w dx, (2.1)

where DΦ is the Jacobian of the mapping Φ, and vphy := v ◦ Φ, wphy := w ◦ Φ.

2.2.1 Definition of our scaling approach

The weak form associated with the partial differential equation is defined in terms of the
bilinear form a(v, w) :=

∫
Ω∇v ·K∇w dx, and the weak solution u ∈ V0 := H1

0 (Ω) satisfies:

a(u, v) = (f, v), v ∈ V0.

This bilinear form can be affinely decomposed as

a(v, w) :=
M∑

m=1

am(v, w), am(v, w) :=

∫

Ω
km(x)(Dmv,Dmw) dx, v, w ∈ V := H1(Ω)

(2.2)

where Dm is a first order partial differential operator and (·, ·) stands for some suitable inner
product. In the case of a scalar permeability we find D1 := ∇ and (·, ·) stands for the scalar
product in Rd. While for (2.1) in 2D one can, as one alternative, e.g. define

k1 := (K11 −K12) , k2 := K12 , k3 := (K22 −K11) ,

D1 := ∇ , D2 := ∂/∂x + ∂/∂y , D3 := ∂/∂y ,

where K = (Kij) and the same scalar product (·, ·) as above. Note that this decomposition
reduces to the one in case of a scalar permeability, i.e. for K = diag(k, k).

Let TH , H > 0 fixed, be a possibly unstructured simplicial triangulation resolving Ω.
We call TH also macro-triangulation and denote its elements by T . Using uniform mesh
refinement, we obtain Th/2 from Th by decomposing each element into 2d sub-elements, h ∈
{H/2, H/4, . . .}; see [8] for the 3D case. The elements of Th are denoted by t. The macro-
triangulation is then decomposed into the following geometrical primitives: elements, faces,
edges, and vertices. Each of these geometric primitives acts as a container for a subset
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of unknowns associated with the refined triangulations. These sets of unknowns can be
stored in array-like data structures, resulting in a contiguous memory layout that conforms
inherently to the refinement hierarchy; see [5, 9]. In particular, the unknowns can be accessed
without indirect addressing such that the overhead is reduced significantly when compared
to conventional sparse matrix data structures. Associated with Th is the space Vh ⊂ V
of piecewise linear finite elements. In Vh, we do not include the homogeneous boundary
conditions. We denote by φi ∈ Vh the nodal basis functions associated to the i-th mesh node.
Node i is located at the vertex xi. For vh :=

∑
i νiφi and wh :=

∑
j χjφj , we define our scaled

discrete bilinear forms ah(·, ·) and ahm(·, ·) by

ah(vh, wh) :=

M∑

m=1

ahm(vh, wh), (2.3a)

ahm(vh, wh) :=
1

4

∑

T∈TH

∑

i,j

(km|T (xi) + km|T (xj))(νi − νj)(χj − χi)
∫

T
(Dmφi, Dmφj) dx.

(2.3b)

This definition is motivated by the fact that am(vh, wh) can be written as

am(vh, wh) =
1

2

∑

T∈TH

∑

i,j

(νi − νj)(χj − χi)
∫

T
km(x)(Dmφi, Dmφj) dx. (2.4)

Here we have exploited symmetry and the row sum property. It is obvious that if km is a
constant restricted to T , we do obtain ahm(vh, wh) = am(vh, wh). In general however, the
definition of ah(·, ·) introduces a variational crime and it does not even correspond to an
element-wise local assembling based on a quadrature formula. We note that each node on ∂T
is redundantly existent in the data structure and that we can easily account for jumps in the
coefficient function when resolved by the macro-mesh elements T .

Similar scaling techniques have been used in [10] for a generalized Stokes problem from
geodynamics with coupled velocity components. However, for vectorial equations such a
simple scaling does asymptotically not result in a physically correct solution. For the compu-
tation of integrals on triangles containing derivatives in the form of (2.2), cubature formulas
of the form (2.3b) in combination with Euler-MacLaurin type asymptotic expansions have
been applied [11, Table 1].

Remark 1 At first glance the Definition (2.3b) might not be more attractive than (2.4) re-
garding the computational cost. In a matrix-free approach, however, where we have to re-
assemble the entries in each matrix call, (2.3b) turns out to be much more favorable. In order
to see this, we have to recall that we work with hybrid hierarchical meshes. This means that
for each inner node i in T , we find the same entries in the sense that

∫

T
(Dmφi, Dmφj) dx =

∫

T
(Dmφl, Dmφxj+δx) dx.

Here we have identified the index notation with the vertex notation, and the vertex xl is
obtained from the vertex xi by a shift of δx, i.e., xl = xi + δx. Consequently, the values of∫
T (Dmφi, Dmφj) dx do not have to be re-computed but can be efficiently stored.
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For simplicity of notation, we shall restrict ourselves in the following to the case of the
Darcy equation with a scalar uniformly positive definite permeability; i.e., M = 1 and drop
the index m. However, the proofs in section 2.3 can be generalized to conceptually the same
type of results for M > 1. In section 2.7.3, we also show numerical results for M = 6 in 3D.

2.2.2 Stencil structure

We exploit the hierarchical grid structure to save a significant amount of memory compared
to classical sparse matrix formats. Any direct neighbor xj ∈ NT (xi) can be described through
a direction vector wj such that xj = xi + wj . The regularity of the grid in the interior of a
macro element T implies that these vectors remain the same, when we move from one node to
another node. Additionally, for each neighbor xj ∈ NT (xi)\{xi} there is a mirrored neighbor
x′j of xi reachable by wj = −wj′ ; see Fig. 2.1.

Let ni = |NT (xi)| denote the stencil size at mesh node xi. We define the stencil ŝTxi ∈ Rni

associated to the i-th mesh node xi restricted on T as

(ŝTxi)j :=

∫

T
(∇φxi+wj ,∇φxi) dx .

The symmetry of the bilinear form yields

(ŝTxi)j = (ŝTxi+wj
)j′ .

We recall that for each mesh node xi we have ni ≤ 7 in 2D and ni ≤ 15 in 3D. Out of these
entries only 3 in 2D and 7 in 3D have to be computed since the remaining ones follow from
symmetry arguments and the observation that

∑
j(ŝ

T
xi)j = 0.

1′ 0 1

3 2

2′ 3′

6 7

5 4

4′ 5′
7′ 6′

Figure 2.1: From left to right: Exemplary local indices j and their corresponding direction vectors of a 15
point stencil in 3D; Six elements attached to one edge; Four elements attached to one edge

Due to the hierarchical hybrid grid structure, two stencils ŝTxi1
and ŝTxi2

are exactly the
same if xi1 and xi2 are two nodes belonging to the same primitive; i.e., we find only 15 different
kinds of stencils per macro element in 3D, one for each of its 15 primitives (4 vertices, 6 edges,
4 faces, 1 volume), and 7 in 2D. This observation allows for an extremely fast and memory-
efficient on-the-fly (re)assembly of the entries of the stiffness matrix in stencil form. For
each node xi in the data structure, we save the nodal values of the coefficient function k.
With these considerations in mind, the bilinear form (2.3b) can be evaluated very efficiently
and requires only a suitable scaling of the reference entries; see section 2.6 for detailed cost
considerations.
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2.3 Variational crime framework and a priori analysis

In order to obtain order h and h2 a priori estimates of the modified finite element approx-
imation in the H1- and L2-norm, respectively, we analyze the discrete bilinear form. From
now on, we assume that k|T ∈ W 2,∞(T ) for each T ∈ TH . Moreover, we denote by ‖ · ‖0
the L2-norm on Ω and ‖ · ‖∞ := supT∈TH ‖ · ‖∞;T defines a broken L∞-norm. We recall that
the coefficient function is only assumed to be element-wise smooth with respect to the macro
triangulation. Existence and uniqueness of a finite element solution uh ∈ Vh ∩ V0 of

ah(uh, vh) = f(vh), vh ∈ Vh ∩ V0

is given provided that the following assumption (A1) holds true:

(A1) ah(·, ·) is uniformly coercive on Vh ∩ V0

(A2) |a(vh, wh)− ah(vh, wh)| . h‖∇k‖∞‖∇vh‖0‖∇wh‖0, vh, wh ∈ Vh
Here and in the following, the notation . is used as abbreviation for ≤ C, where C < ∞ is
independent of the mesh-size h. The assumption (A2), if combined with Strang’s first lemma,
yields that the finite element solution results in O(h) a priori estimates with respect to the
H1-norm; see, e.g., [2, 3]. We note that for h small enough, the uniform coercivity (A1)
follows from the consistency assumption (A2), since for vh ∈ Vh

ah(vh, vh) ≥ a(vh, vh)− |ah(vh, vh)− a(vh, vh)| ≥ C(1− ch)‖∇vh‖20.

Remark 2 As it is commonly done in the finite element analysis in unweighted Sobolev
norms, we allow the generic constant C to be dependent on the global contrast of k defined
by supΩ k/ infΩ k. Numerical results, however, show that the resulting bounds may be overly
pessimistic for coefficients with large global variations. In [12] and the references therein,
methods to improve the bounds in this case are presented. The examples show that the bounds
may be improved significantly for coefficients with a global contrast in the magnitude of about
105. We are mainly interested in showing alternative assembly techniques to the standard
finite element method and in comparing them to the well-established approaches in standard
norms. Moreover, in our modification only the local variation of the coefficient k is important,
therefore we shall not work out these subtleties here.

2.3.1 Abstract framework for L2-norm estimates

Since (A2) does not automatically guarantee optimal order L2-estimates, we employ dual-
ity arguments. To get a better feeling on the required accuracy of ah(·, ·), we briefly recall
the basic steps occurring in the proof of the upper bound. As it is standard, we assume
H2-regularity of the primal and the dual problem. Restricting ourselves to the case of ho-
mogeneous Dirichlet boundaries, the dual PDE and boundary operators coincide with the
primal ones. Let us denote by Phu the standard Galerkin approximation of u, i.e., the finite
element solution obtained as the solution of a discrete problem using the bilinear form a(·, ·).
It is well-known that under the given assumptions ‖u − Phu‖0 = O(h2). Now, to obtain an
L2-estimate for uh, we consider the dual problem with uh − Phu on the right-hand side. Let
w ∈ V0 be the solution of a(v, w) = (uh − Phu, v)0 for v ∈ V0. Due to the standard Galerkin
orthogonality, we obtain

‖uh − Phu‖20 = a(uh − Phu,w) = a(uh − Phu, Phw) = a(uh, Phw)− ah(uh, Phw). (2.5)
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This straightforward consideration shows us that compared to (A2), we need to make stronger
assumptions on the mesh-dependent bilinear form ah(·, ·). We define (A3) by

(A3) |a(vh, wh)− ah(vh, wh)| . h2‖Hk‖∞‖∇vh‖0‖∇wh‖0 + h‖∇k‖∞‖∇vh‖0;Sh
‖∇wh‖0;Sh

,

where Hk denotes the Hessian of k and Sh := ∪T∈THSh(T ) with Sh(T ) := {t ∈ Th; ∂t∩ ∂T 6=
∅}; see Fig. 2.2 for a 2D illustration. The semi-norm ‖·‖0;Sh

stands for the L2-norm restricted
to Sh.

Figure 2.2: Elements in Sh(T ) (left) and Sh (right) for d = 2

Lemma 1 Let the problem under consideration be H2-regular, h be sufficiently small and
(A3) be satisfied. Then we obtain a unique solution and optimal order convergence in the H1-
and the L2-norm, i.e.,

‖uh − u‖0 + h‖∇(uh − u)‖0 . h2(‖Hu‖0 + ‖Hk‖∞‖∇u‖0 + ‖∇k‖∞(‖∇u‖0 + ‖Hu‖0)).
(2.6)

Proof 1 see [1];

2.3.2 Verification of the assumptions

It is well-known [2] that assumptions (A1)-(A3) are satisfied for the bilinear form

ãh(uh, vh) :=
∑

t∈Th

|t|
d+ 1

d+1∑

i=1

k|t(xti)∇uh|t(xti) · ∇vh|t(xti) =
∑

t∈Th
k̄t

∫

t
∇uh · ∇vh dx, (2.7)

Here xti denotes the vertices of the d-dimensional simplex t, i.e., we approximate the integral

by a nodal quadrature rule and k̄t := (
∑d+1

i=1 k|t(xti))/(d+ 1). Thus, to verify the assumptions
also for ah(·, ·), it is sufficient to consider ah(vh, wh)− ãh(vh, wh) in more detail with ah(·, ·)
given by (2.3). Let

Ât :=




at1,1 at1,2 . . . at1,d+1

at1,2 at2,2 . . . at2,d+1
...

...
...

at1,d+1 at2,d+1 . . . atd+1,d+1


 , Kt :=




kt1,1 kt1,2 . . . kt1,d+1

kt1,2 kt2,2 . . . kt2,d+1
...

...
...

kt1,d+1 kt2,d+1 . . . ktd+1,d+1


 ,

be the local stiffness matrix associated with the nodal basis functions φti, i.e., ati,j :=
∫
t∇φti ·

∇φtj dx and the local coefficient function with kti,j := 1
2(k|t(xti)+k|t(xtj)), i 6= j. The diagonal

entries of Kt are defined differently as

kti,i :=
−1

ati,i

∑

j 6=i
kti,ja

t
i,j . (2.8)
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We introduce the component-wise Hadamard product between two matrices as (B ◦ C)ij :=
BijCij and define the rank one matrix K̃t by (K̃t)ij := k̄t.

Due to the symmetry of Ât and the fact that the row sum of Ât is equal to zero, we
can rewrite the discrete bilinear forms. With vh, wh ∈ Vh, we associate locally elements
vt,wt ∈ Rd+1 with (vt)i := vh(xti), (wt)i := wh(xti). We recall that if vh, wh ∈ Vh ∩ V0 and xti
is a boundary node, then vh(xti) = 0 = wh(xti).

Lemma 2 The bilinear forms given by (2.3) and (2.7) have the algebraic form

ah(vh, wh) =
1

2

∑

t∈Th

d+1∑

i,j=1

((vt)i − (vt)j) (Kt ◦ Ât)ij ((wt)j − (wt)i) , vh, wh ∈ Vh, (2.9)

ãh(vh, wh) =
1

2

∑

t∈Th

d+1∑

i,j=1

((vt)i − (vt)j) (K̃t ◦ Ât)ij ((wt)j − (wt)i) , vh, wh ∈ Vh. (2.10)

Proof 2 see [1];

The implication of this lemma for large scale simulations cannot be underestimated. In
2D, the number of different edge types per macro element is three while in 3D it is seven
assuming uniform refinement. All edges in 3D in the interior of a macro element T share only
four or six elements; see Fig. 2.1. We have three edge types that have four elements attached
to them and four edge types with six adjacent elements.

The algebraic formulations (2.10) and (2.9) allow us to estimate the effects of the varia-
tional crime introduced by the stencil scaling approach.

Lemma 3 Assumptions (A2) and (A3) hold true.

Proof 3 see [1].

2.4 Guaranteed uniform coercivity

While for our hierarchical hybrid mesh framework the assumptions (A2) and (A3) are satis-
fied and thus asymptotically, i.e., for h sufficiently small, also (A1) is satisfied, (A1) is not
necessarily guaranteed for any given mesh Th.

Lemma 4 If the matrix representation of the discrete Laplace operator is an M-matrix, then
the scaled bilinear form ah(·, ·) is positive semi-definite on Vh × Vh for k globally smooth.

Proof 4 see [1];

Remark 3 In 2D it is well-known [13] that if all elements of the macro mesh have no obtuse
angle, then Âh is an M-matrix and we are in the setting of Lemma 4.
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2.4.1 Pre-asymptotic modification in 2D based on (A2)

Here we work out the technical details of a modification in 2D that guarantees uniform
ellipticity assuming that at least one macro element T has an obtuse angle. Our modification
yields a linear condition on the local mesh-size depending on the discrete gradient of k. It only
applies to selected stencil directions. In 2D our 7-point stencil associated with an interior fine
grid node has exactly two positive off-center entries if the associated macro element has an
obtuse angle. We call the edges associated with a positive reference stencil entry to be of gray
type. With each macro element T , we associate the reference stiffness matrix ÂT . Without
loss of generality, we assume that the local enumeration is done in such a way that the largest
interior angle of the macro element T is located at the local node 3, i.e., if T has an obtuse
angle then aT1,2 > 0, aT1,3 < 0, and aT2,3 < 0 and otherwise aTi,j ≤ 0, 1 ≤ i < j ≤ 3. By λTmin we
denote the smallest non-degenerated eigenvalue of the generalized eigenvalue problem

ÂTx :=



aT1,1 aT1,2 aT1,3
aT1,2 aT2,2 aT2,3
aT1,3 aT2,3 aT3,3


x = λ




2 −1 −1
−1 2 −1
−1 −1 2


x, x ∈ R3.

We note that both matrices in the eigenvalue problem are symmetric, positive semi-definite
and have the same one dimensional kernel and thus λTmin > 0.

Let e be a gray type edge. For each such edge e, we possibly adapt our approach locally.
We denote by ωe;T the element patch of all elements t ∈ Th, such that t ⊂ T and e ⊂ ∂t.
Then we define

ke;min := min
ẽ∈Eeh

kẽ, kẽ :=
1

2
(k|T (xẽ1) + k|T (xẽ2))

where Eeh is the set of all edges being in ω̄e;T , and xẽ1 and xẽ2 are the two endpoints of ẽ. In
the pre-asymptotic regime, i.e., if

(ke − ke;min)aT1,2 > ke;minλ
T
min (MA2)

we replace the scaling factor ke = 1
2(k|T (xe1) + k|T (xe2)) in definition (2.3) by

kmod
e := ke;min

(
1 +

λTmin

aT1,2

)
.

Then it is obvious that ke;min < kmod
e < ke. We note that 2aT1,2 is the value of the 7-point

stencil associated with a gray edge and thus trivial to access.

Lemma 5 Let the bilinear form be modified according to (MA2), then it is uniformly positive
definite on Vh ∩ V0 × Vh ∩ V0 for all simplicial hierarchical meshes.

Proof 5 see [1];

Remark 4 From the proof it is obvious that any other positive scaling factor less or equal to
kmod
e also preserves the uniform ellipticity.

Remark 5 We can replace in the modification criterion the local condition (MA2) by

lT 2−(`+1)‖∇k‖L∞(ωe;T )a
T
1,2 ≥ inf

x∈ω̄e;T

k(x)λTmin,
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where Th is obtained by ` uniform refinement steps from TH , and lT is the length of the second
longest edge in T . Both these criteria allow a local marking of gray type edges which have to
be modified. To avoid computation of ke;min each time it is needed, and thus further reducing
computational cost, we set the scaling factor for all gray type edges in a marked T to

1

2
(kmin(xe1) + kmin(xe2)), kmin(xi) := min {k(xj) |xj ∈ NT (xi)} (2.11)

where NT (xi) denotes the set of all mesh nodes that are connected to node xi via an edge and
belonging to the macro element T̄ including xi itself. The quantity kmin can be pre-computed
for each node xi once at the beginning and stored as a node based vector such as k is. For
non-linear problems where k depends on the solution itself, kmin can be updated directly after
the update of k.

The presented pre-asymptotic modification based on (A2) yields a condition on the local
mesh-size and only affects edge types associated with a positive stencil entry. However, the
proof of (A3) shows that a condition on the square of the mesh-size is basically sufficient to
guarantee (A1). This observation allows us to design an alternative modification yielding a
condition on the square of the local mesh-size and involving the Hessian of k, except for the
elements which are in Sh. However, in contrast to the option discussed before, we possibly
also have to alter entries which are associated with negative reference stencil entries, and
therefore we do not discuss this case in detail. It is obvious that for piecewise smooth k there
exists an `0 such that for all refinement levels ` ≥ `0 no local modification has to be applied.
This holds true for both types of modifications. Thus, all the a priori estimates also hold
true for our modified versions. Since we are interested in piecewise moderate variations of k
and large scale computations, i.e., large `, we assume that we are already in the asymptotic
regime, i.e., that no modification has to be applied for our 3D numerical test cases, and we
do not work out the technical details for the modifications in 3D.

2.4.2 Numerical counter example in the pre-asymptotic regime

In the case that we are outside the setting of Lemma 4, it is easy to come up with an example
where the scaled bilinear form is not positive semi-definite, even for a globally smooth k. For
a given mesh size h, one can always construct a k with a variation large enough such that the
scaled stiffness matrix has negative eigenvalues.

Here we consider a 2D setting on the unit square with an initial mesh which is not
Delaunay; see left part of Fig. 2.3. For the coefficient function k, we use a sigmoid function
defined as

k(x, y;m, η) =
η

1 + exp(−m(y − x− 0.2))
+ 1,

with m = 50 which yields a steep gradient. Further, we vary the magnitude of k by setting
η ∈ {1, 10, 100, 1000}.

Now, we assemble the global stiffness matrix and report in Tab. 2.1 for the different choices
of η its minimal and maximal eigenvalue over a sequence of uniform refinement steps. We
show the eigenvalues for our scaling approach (2.3) with and without modification (MA2)
and for the standard nodal integration assembly (2.7). We find that for η > 100 the stiffness
matrix of the scaling approach has negative eigenvalues in the pre-asymptotic regime. In these
cases three or four refinement steps are required, respectively, to enter the asymptotic regime.
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Table 2.1: Minimal and maximal eigenvalues of the global stiffness matrix A. Italic entries highlight application
of (MA2).

scaling approach

λA
min λA

max

η \ ` 0 1 2 3 4 5 0 1 2 3 4 5

1 2.7 0.72 0.18 0.046 0.011 0.0029 9.1 13.3 15.1 17.4 19.8 21.3
10 2.8 0.89 0.24 0.063 0.016 0.0039 40.0 69.3 80.7 93.2 108 116

100 -8.9 -10.6 -5.5 0.066 0.018 0.0045 353 633 739 853 985 1066
1000 -128 -148 -94.5 -3.0 0.019 0.0049 3486 6265 7317 8450 9759 10562

scaling approach modified with (MA2)

λA
min λA

max

η \ ` 0 1 2 3 4 5 0 1 2 3 4 5

1 2.7 0.72 0.18 0.046 0.011 0.0029 9.1 13.3 15.1 17.4 19.8 21.3
10 3.8 1.1 0.26 0.063 0.016 0.0039 40.8 69.4 80.7 93.2 108 116

100 4.0 1.3 0.30 0.072 0.018 0.0045 364 634 739 853 985 1066
1000 4.4 1.3 0.33 0.078 0.019 0.0049 3598 6278 7321 8453 9759 10562

standard nodal integration

λA
min λA

max

η \ ` 0 1 2 3 4 5 0 1 2 3 4 5

1 2.8 0.72 0.18 0.046 0.011 0.0029 9.0 12.8 14.7 17.1 19.7 21.2
10 5.7 1.3 0.27 0.065 0.016 0.0040 36.6 64.9 78.4 90.7 107 116

100 27.7 1.8 0.34 0.076 0.018 0.0045 316 590 717 829 977 1064
1000 247 1.9 0.38 0.084 0.020 0.0049 3116 5840 7104 8211 9682 10549

However, the positive definiteness of the matrix can be recovered on coarser resolutions if
(MA2) is applied. Asymptotically, the minimal or maximal eigenvalues of all three approaches
tend to the same values.

In Fig. 2.3, we illustrate the action of the modification and show how the region of elements
where it has to be applied is getting smaller and finally vanishes with increasing number of
refinement steps. To further illustrate how the region that is affected by (MA2) changes, we
show a second example where all initial elements have an obtuse angle. The underlying color
bar represents the coefficient function k with η = 1000 for the first (left), and η = 100 for the
second (right) example. The location of the steepest gradient of k is marked by a dashed line.
Note that the gradient of k is constant along lines parallel to the dashed one. For all edges
that are modified by (MA2) the adjacent elements are shown. The color intensity refers to
the refinement level and goes from bright (initial mesh) to dark.

2.4.3 The sign of the stencil entries in 3D

In contrast to the 2D setting, a macro-mesh with no obtuse angle does not yield that Âh is
an M-matrix. Here the uniform refinement rule yields that for each macro element three sub-
classes of tetrahedra (gray, blue, green) exist. To each of these we associate one interior edge
type (gray, blue, green) defined by not being parallel to any of the six edges of the respective
tetrahedron type. Fig. 2.4 shows the sub-classes and as example the gray edge type. The
coloring of the sub-classes is up to now arbitrary. We always associate the gray color with
the macro element and call the associated interior edge, a gray type edge. The interior edges
associated with the blue and green elements are called blue and green type edges, respectively.
All other remaining edges are by notation red type edges. If the macro element T has no obtuse
angle between two faces, then it follows from [14, 15] that the reference stencil entries, i.e., the
entries associated with the Laplace operator, associated with gray type edges have a positive
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Figure 2.3: Application of (MA2): Mesh with two critical macro elements used for Tab. 2.1 (left) and mesh
where all macro elements have an obtuse angle (right).

Figure 2.4: Uniform refinement of one macro element T (left) into three subclasses (middle); gray edge between
blue and green sub-tetrahedra (right).

sign; see Fig. 2.5. However, it can be shown by some simple geometrical considerations that
not both, green and blue type edges, can have a positive sign. If one of these has a positive
sign, we call this the blue- and the other one the green-type edge. Conversely, if both have
a negative sign, the coloring is arbitrary. In case the macro element T has no obtuse angle,
the sign associated with all red type edges is automatically not positive. Thus, we find for
such elements in our 15-point stencil either two or four positive off-diagonal entries. Then a
modification similar to the one proposed for the 2D case can be now applied to the edges of
gray and possibly blue type. The situation can be drastically different if the macro element
T has an obtuse angle between two faces. In that case, we find up to four edge directions
which carry a positive sign in the stencil.

2.5 Reproduction property and primitive concept

As already mentioned, our goal is to reduce the cost of a WU and the run-times while
preserving discretization errors that are qualitatively and quantitatively on the same level as
for standard conforming finite elements. Here we focus on the 3D case, but similar results
can be obtained for the 2D setting. The a priori bounds of Lemma 1 do not necessarily
guarantee that for an affine coefficient function k and affine solution u the error is equal to
zero. In the upper bound (2.6) a term of the form ‖∇k‖∞‖∇u‖0 remains. A closer look at
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(a) Unit reference tetrahedron:
x1 = (0, 0, 0), x2 = (1, 0, 0)
x3 = (0, 1, 0), x4 = (0, 0, 1)

-2.9e-01 +2.4e+00 -2.9e-01
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-5.9e-02 -2.9e-01
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(b) Regular tetrahedron:
x1 = (1, 0,−1/

√
2) , x2 = (−1, 0,−1/

√
2)

x3 = (0, 1,+1/
√
2) , x4 = (0,−1,+1/

√
2)

Figure 2.5: Stencil entries colored by their sign at an inner node of two times refined tetrahedra, each without
any obtuse angles between faces. On the left (A), the stencil of the unit reference tetrahedron and on the
right (B), the stencil of a regular tetrahedron is depicted. The gray edge corresponds to the interior edge
through 1

2
(x1 + x3) and 1

2
(x2 + x4). The green edge is the one in direction between x1 and x3 and the blue

one in direction between x2 and x4. All other edge directions are marked in red.

the proof (see [1]) reveals that this non-trivial contribution can be traced back to the terms
associated with nodes on the boundary of a macro element. This observation motivates us to
introduce a modification of our stencil scaling approach. As already mentioned, all nodes are
grouped into primitives and we have easy access to the elements of these primitives. Recall
that ãh(·, ·) defined as in (2.7) is associated with the standard finite element approach with
nodal quadrature. Let us byWV ,WE , andWF denote the set of all nodes associated with the
vertex, edge, and face primitives, respectively. Now we introduce a modified stencil scaling
approach, cf. (2.3) and (2.7),

ah;I(vh, φi) :=

{
ãh(vh, φi), i ∈ I
ah(vh, φi) i 6∈ I . (2.12)

Replacing ah(·, ·) by ah;I(·, ·) with I ⊂ W :=WV ∪WE ∪WF still yields that all node stencils
associated with a node in a volume primitive are cheap to assemble. The number of node
stencils which have to be more expensively assembled grow only at most with 4` while the
total number of nodes grows with 8`.

Remark 6 The modification (2.12) introduces an asymmetry in the definition of the stiff-
ness matrix to which multigrid solvers are not sensitive. Moreover, the asymmetry tends
asymptotically to zero with O(h2).

Lemma 6 Let I = W or I = WV ∪ WE, then an affine solution can be reproduced if k is
affine, i.e., uh = u.

Proof 6 see [1];
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Used bilinear form to Discretization error
define FE approximation in discrete L2-norm

ãh(·, ·) standard FE 3.85104e-15
ah;I(·, ·), I =W 2.10913e-15
ah;I(·, ·), I =WV ∪WE 1.75099e-15
ah;I(·, ·), I =WV ∪WF 6.82596e-04
ah;I(·, ·), I =WE ∪WF 9.19145e-07
ah;I(·, ·), I =WV 6.82032e-04
ah;I(·, ·), I =WE 9.17523e-07
ah(·, ·) stencil scaling 6.81942e-04

Table 2.2: Reproduction property

To illustrate Lemma 6, we consider a 3D example on the unit cube Ω = (0, 1)3. We use as
solution u(x, y, z) = −7x+y+3z and k(x, y, z) = 2x+3y+5z+1 for the coefficient function.
The standard finite element solution reproduces the exact solution up to machine precision.
We test the influence of the stencil scaling approach on different sets of primitives. In Tab. 2.2,
we report the discretization error in the discrete L2-norm for different combinations. Note
that the macro triangulation of the unit cube consists of 12 tetrahedral elements and of
one non-boundary macro vertex at (0.5, 0.5, 0.5). These considerations show that the choice
I = WV ∪ WE is quite attractive. The number of stencils which have to be expensively
evaluated grows only with 2` while we still can guarantee the reproduction property for an
affine solution in the case of an affine coefficient function.

2.6 Cost of a work unit

The stencil scaling has been introduced as means to reduce the cost of a WU and thus help
to design less expensive and thus more efficient PDE solvers. We will first employ a cost
metric based on operation count. While we are aware that real run-times will be influenced
by many additional factors, including e.g. the quality of the implementation, compiler set-
tings, and various hardware details, the classic measure still provides useful insight. Another
important aspect that we will address here is the question of memory accesses. A more tech-
nical hardware-aware performance analysis, as conducted in [5] to evaluate the efficiency on
real computers, is beyond our current scope. Since asymptotically the contributions from the
element primitives dominate the cost, we restrict ourselves to the study of stencils for nodes
located in the interior of a macro element T .

2.6.1 Cost for stencil scaling

Let ŝTi be the 15-point stencil associated with the Laplacian at an inner node i of T which is
independent of the node location within T . Recall that the scaled stencil is given by

sTij :=
1

2

(
κ(xi) + κ(xj)

)
ŝTij , ∀j ∈ NT (i) \ {i} , sTii := −

∑

j∈NT (i)\{i}
sTij

where κ(xi) represents either the value of the parameter k at node xi or a modified version
of it as suggested in (2.11). Note that this definition is the direct translation of the approach
described in section 2.2.1 from the bilinear form to the pure stencil. Assuming that the
constant 1/2 factor is incorporated into the stencil ŝTi at setup and taking into account the



2.6 Cost of a work unit 43

number of edges emanating from xi, being six in 2D and 14 in 3D, we can compute the
non-central stencil entries with 12 and 28 operations, respectively. The computation of the
central entry via the zero row-sum property takes 5 and 13 additions, respectively. This is
summarized in Tab. 2.3.

We next compare the cost for the stencil scaling approach to an on-the-fly computation
based on classic FEM techniques which, however, exploits the advantages of hierarchical
hybrid grids, see also [16].

Remark 7 The cost to approximate the stencil coefficients with the two-scale interpolation
method that will be introduced in chapter 3 amounts to q operations per stencil entry when
the polynomial degree is chosen as q. When the coefficients are locally smooth, q = 2 delivers
good results. The cost of this method becomes 2 × 7 = 14 operations in 2D, and 2 × 15 = 30
operations in 3D, respectively. This is slightly cheaper than the stencil scaling of this chapter.
However, the stencil scaling approach yields asymptotic optimality for all choices of macro
mesh sizes, while the two-scale approach relies on a proper combination of macro scale and
fine scale.

2.6.2 Cost of the on-the-fly computation for the classical FEM

Employing the bilinear form (2.7) we can write the stencil coefficients as

s̃Tij = ãh(φj , φi) =
∑

t∈T e;T
h

d+1∑

`=1

k(xt`)

(d+ 1)
∇φjt · ∇φit |t| =

∑

t∈T e;T
h

(Et)it,jt

d+1∑

`=1

k(xt`) (2.13)

where

(Et)it,jt :=
1

(d+ 1)

∫

t
∇φjt · ∇φit dx

denotes the local stiffness matrix including the volume averaging factor 1/(d+1). The regularity
of the mesh inside a macro element implies that there exist only a fixed number of differently
shaped elements t. Thus, we can compute stencil entries on-the-fly from one (2D) or three
(3D) pre-computed stiffness matrices and the node-based coefficient values1. In 2D, always
six elements t are attached to an interior node. Summing nodal values of k for each element
first would require 12 operations. Together with the fact that two elements are attached to
each edge, computing all six non-central stencil entries via (2.13) would then require a total
of 30 operations. This number can be reduced by eliminating common sub-expressions. We
pre-compute the values

k(xi) + k(j2) , k(xi) + k(j4) , k(xi) + k(j6) ,

i.e., we sum k for the vertices at the ends of the edges marked as dashed in Fig. 2.6. Then,
we obtain

∑3
`=1 k(xt`) by adding the value of k at the third vertex of t to the pre-computed

expression. In this fashion, we can compute all six sums with 9 operations and obtain a total
of 27 operations for the non-central entries.

The situation in 3D is more complicated. This stems mainly from the fact that the number
of elements sharing the edge from node i to node j is no longer a single value as in 2D. Instead

1Note that in our HHG implementation, we use six element-matrices as this is advantageous with respect
to local to global indexing; see [17] for details.
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j1 j2

j3

j4
j5

j6

Figure 2.6: Neighborhood of node i and edges [dashed] selected for common sub-expression elimination.

we have in 3D that |T e;Th | = 4 for the gray, blue, and green type edges that emanate from

node i, while |T e;Th | = 6 for the remaining 8 red type edges. Thus, for the computation of the
non-central stencil entries we obtain the cost

6(4 + 3) + 8(6 + 5) + 40 = 170 .

The summand 40 represents the operations required for summing the nodal k values employing
again elimination of common sub-expressions; see [16] for details. Assembling the central entry
involves contributions from 6 elements in 2D and 24 in 3D. Thus, executing this via (2.13)
cannot require less operations than using the row-sum property.

2.6.3 Cost of stencil application

The cost of the application of the assembled stencil is independent of the approach to compute
the stencil. Using the first expression in

sTi v =
∑

j∈NT (i)

sTijv(xj) =
∑

j∈NT (i)\{i}
sTij(v(xj)− v(xi))

results in 13 operations in 2D and 29 in 3D. Exploiting the row-sum property avoids computing
the central entry, but increases the cost for the stencil application, cf. second expression, so
that in total only a single operation is saved. Tab. 2.3 summarizes the results of this section.
We observe that assembling the stencil and applying it once in the scaling approach requires
in 2D only about 2/3 and in 3D about 1/3 of the operations compared to a classical on-the-fly
variant.

approach dimension non-central entries central entry assembly + application

stencil scaling
2D 6 add / 6 mult 5 add / 0 mult 17 add / 12 mult
3D 14 add / 14 mult 13 add / 0 mult 41 add / 28 mult

on-the-fly FEM
2D 15 add / 12 mult 5 add / 0 mult 26 add / 18 mult
3D 98 add / 72 mult 13 add / 0 mult 125 add / 86 mult

Table 2.3: Comparison of operation count for assembling and applying the stencil using either stencil scaling
or on-the-fly assembly.

In 3D, the stencil scaling approach results in a total of 69 operations per node, and is thus
only 2.4 times more expensive than the constant-coefficient case treated in e.g. [17]. The 69
operations save a factor of 3 compared to the 211 operations per node for the conventional,
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yet highly optimized on-the-fly assembly and roughly an order of magnitude when compared
with unoptimized variants of on-the-fly-assembly techniques.

To which extent a factor three savings in floating point operations will be reflected in
run-time (or other practical cost metrics, such as e.g., energy consumption), depends on
many details of the hardware and system software. For instance, we note that in the above
algorithms, the addition and multiplication operations are not ideally balanced and they
do not always occur such that the fused multiply-add operations of a modern processor
architecture can be used. Furthermore, advanced optimizing compilers will restructure the
loops and will attempt to find a scheduling of the instruction stream that avoids dependencies.
Thus, in effect, the number of operations executed on the processor may not be identical to
the number of operations calculated from the abstract algorithm or the high level source
code. Nevertheless, though the operation count does not permit a precise prediction of the
run-times, we will see in the following that our effort to reduce the number of operations pays
off in terms of accelerated execution.

2.6.4 Memory accesses

One other key aspect governing the performance of any algorithm is the number of read and
write operations it needs to perform and their pattern with respect to spatial and temporal
locality. The influence of these properties results from the large disparity between peak
floating point performance of modern CPUs and the latency and bandwidth limitation of
memory access. All modern architectures employ a hierarchy of caches [18, 19] that helps
accellerate memory access but that also make an a-priori prediction of run-times quite difficult

As in the previous subsections for the number of operations, we will perform here a high-
level analysis of memory traffic. Experimental results can be found in [1]. As a baseline we
are including in our consideration not only the on-the-fly and the stencil scaling approach,
but also a stored stencil version. For the latter we assume that in a setup phase the stencil
for each node was assembled, by whatever method, and then stored. For the stencil applica-
tion the weights of the local stencil are then loaded from main memory and applied to the
associated degrees of freedom. Since the stencil weights correspond to the non-zero matrix
entries of the corresponding row, this would be the HHG analogue of performing a sparse
matrix-vector multiplication with a matrix stored in a standard sparse storage format, such
as e.g. Compressed Row Storage (CRS). Note, however, that due to the structuredness of the
mesh inside a volume primitive, less organizational overhead and indirections are required
than for a sparse matrix format. Most importantly we do neither need to store nor transfer
over the memory system any information on the position of the non-zero matrix entries.

For this article we do not study the full details of algorithmic optimization for best usage of
the memory sub-system. Instead, we are going to compare two idealized cases. These are the
optimistic version, in which we assume perfect re-use of each data item loaded to the caches
and a pessimistic version, where there is no re-use at all. Any actual implementation will
lie somewhere in between these two cases and the closeness to one of them being determined
by algorithmic properties and the quality of its implementation. Furthermore, we will only
consider the 3D problem.

Common to all three approaches under consideration is that, in order to apply the local
stencil and compute the residuum at a node, they need to load the DoFs at the node and its 14
neighbors and the value of the right-hand side at the node itself. After the stencil application,
the resulting nodal value must be written back. Thus, we are not going to inspect these parts
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Table 2.4: Cost of the three different approaches measured in total bytes loaded for computation of stencil
weights, assuming the use of the IEEE binary64 data-type.

approach optimistic pessimistic

stored stencils 120N 120N
on-the-fly FEM 768 + 8N 768 + 120N
stencil scaling 112 + 8N 112 + 120N

of the stencil application and also neglect questions of write-back strategies for the caches.

With respect to the stencil weights the situation is, of course, a different one. Let us
start with the stored stencil approach. We denote by N the number of DoFs inside a single
volume primitive. In 3D a scalar operator using our discretization is represented by a 15-
point-stencil. This structure is invariant inside the volume primitive due to the regular mesh
structure. Hence, we obtain for the total number of data items to be loaded from memory
Nstored = 15N .

In the on-the-fly assembly we start by loading the six pre-computed element matrices,
which are in R4×4 for the 3D case. Note that these are loaded only once when the first node
of the volume primitive is treated and can stay in the L1 cache during the complete loop
over the volume primitive as they only occupy 768 bytes. Assembling the local stencil from
these matrices requires information on the coefficient function k. Assuming perfect re-use
of the nodal k information, i.e. each nodal value needs to be loaded only once, we obtain
N opt

fly = 6 × (4 × 4) + N = 96 + N . In the pessimistic case, where we assume absolutely no
cache effects, we need to reload neighboring k values each time we update another node. This
gives us 15N load operations per node resulting in N pes

fly = 96 + 15N .

Finally we consider the stencil scaling approach. Here it is sufficient to load once the 14
non-central weights of the reference stencil ŝ for the volume primitive2. These are 112 bytes
and the values can, as in the on-the-fly approach, remain in the L1 cache. The non-central
weights are then scaled depending on the neighboring k values, while its central weight is
derived using the zero-sum property. This gives us N opt

scale = 14 +N and N pes
scale = 14 + 15N .

Table 2.4 sums up our results. Comparing the entries for the stored stencil approach to the
pessimistic bounds for the other two approaches we find the same pre-factors for N plus small
constant terms. One should note, however, that in the case of the stored stencils approach
there will be no temporal cache effects when we proceed from one node to the next, since
the stencil values/row entries cannot be re-used. In the two other approaches, we expect to
see positive cache effects due to temporal and spatial re-use of some values of the coefficient
function k, i.e. results closer to N opt. This can be seen in the comparisons in [1].

2.7 Numerical accuracy study and run-time comparison

In this section, we provide different numerical results which illustrate the accuracy and run-
time of the new scaling approach in comparison to the element-wise finite element assembling
based on nodal integration within a matrix-free framework. We consider different cases such as
scalar and tensorial coefficient functions k and the scenario of a geometry mapping. Through-

2The current HHG implementation for technical reasons assembles the stencil from the pre-computed ele-
ment matrices also in this case, so the constant term in the memory access is the same 768 bytes as for the
on-the-fly approach.
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out this section, we denote the time-to-solution by tts and by relative tts always mean the
ratio of the time-to-solution of the stencil scaling approach with respect to the nodal inte-
gration. From our theoretical considerations for one stencil application from Tab. 2.3, we
expect a relative tts of roughly one third. Further, we denote the estimated order of con-
vergence by eoc and the asymptotic convergence rates of the multigrid solver by ρ defined

as ρ =
(
r(i∗)/r(5)

)1/i∗−5
where r(i) is the L2 residual at iteration i, and i∗ the final iteration

of the solver. Each of the following 3D computations was conducted on SuperMUC Phase
2 using the Intel 17.0 compiler together with the Intel 2017 MPI library. For all runs, we
specify the compiler flags -O3 -march=native -xHost. Note that the serial runs using only
a single compute core are not limited to run on large machines like SuperMUC but can also
be run on usual modern desktop workstations with enough memory. The peak memory usage
by our largest serial run was at about 4.46 GiB.

2.7.1 A quantitative comparison in 2D for a scalar permeability

In this example, we consider as domain the unit-square Ω = (0, 1)2 and use a non-polynomial
manufactured solution

u(x, y) =
x4y

xy + 1
.

We employ as coefficient function k(x, y;m) = 2 + sin(mπx) sin(mπy) with m ∈ {2, 4, 8}.
The right-hand side is computed by inserting the above definitions into the equation. This
construction has the advantage that we can study the effect of the magnitude of ∇k in
a systematic fashion by adjusting m. We perform a study on a regular triangular mesh
comparing errors of the discrete solutions obtained by two standard Galerkin finite element
approaches and our proposed scaling approach. The error norms are approximated using a 5th
order quadrature rule, while we use a 2nd order scheme to evaluate the weak right-hand side.
Results are listed in Tab. 2.5. Here, un

h denotes the approximation obtained by employing a
nodal quadrature rule resulting in bilinear form (2.7), while ub

h uses a quadrature rule that
evaluates k at the triangle’s barycenter.

2.7.2 A quantitative comparison in 3D for a scalar permeability

As a second test, we consider a non-linear solution similar to the 2D tests in the previous
section

u =
x3y + z2

xyz + 1
,

with a parameter dependent scalar coefficient function k(x, y, z;m) = cos(mπxyz) + 2 on the
unit-cube Ω = (0, 1)3 discretized by six tetrahedra. Here, and in the second 3D example below,
the weak right-hand side is computed by interpolating the right-hand side associated with our
manufactured solution into our finite element ansatz space and subsequent multiplication with
the mass matrix. The L2 error is approximated by a discrete version, i.e. an appropriately
scaled nodal L2 error. While more advanced approaches could be used here, the ones chosen
are completely sufficient for our purpose, which is to demonstrate that our stencil scaling
approach behaves analogously to a classical FE approach. We employ a multigrid solver with
a V(3,3) cycle on a single compute core and stop after 10 multigrid iterations, i.e., i∗ = 10,
which is enough to reach the asymptotic regime. In Tab. 2.6, we report convergence of the
discretization error for the three approaches, i.e., classical FE with nodal integration, stencil
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scaling on volumes and faces, but classical FE assembly on edges and vertices, and stencil
scaling on all primitives. The refinement is given by L where L = −2 denotes the macro
mesh. We observe quadratic convergence of the discrete L2 error for all three approaches and
a relative tts of about 32% on level L = 6.

2.7.3 A quantitative comparison in 3D for a permeability tensor

As a third test, we consider a full symmetric and positive definite permeability tensor K with
non-linear components. The off-diagonal components are negative or zero:

K =



x2 + 2y2 + 3z2 + 1 −y2 −z2

−y2 2x2 + 3y2 + z2 + 1 −x2

−z2 −x2 3x2 + y2 + 2z2 + 1




The manufactured solution is set to

u =
x4y + 2z

xyz + 1
,

and we consider as domain the unit-cube discretized by twelve tetrahedra. We employ the
same multigrid solver as in the previous subsection on a single compute core, but stop the
iterations if the residual is reduced by a factor of 10−9. We denote the final iteration by i∗.
The results for the classical FE approach and the stencil scaling approach on volumes and
faces with classical FE assembly on edges and vertices are reported in Tab. 2.7. We observe
quadratic convergence of the discrete L2 error for both approaches and a relative tts of 31%
on our finest level L = 6. Note that, as in Tab. 2.6, the relative tts exhibits a slightly non-
monotonic behaviour. This stems from the fact that different types of primitives (e.g. faces
and volume) have a different tts behaviour for increasing L and profit differently from the

midpoint integration nodal integration stencil-approach

L ‖u− ub
h‖0 eoc |u− ub

h|1 eoc ‖u− un
h‖0 eoc |u− un

h|1 eoc ‖u− us
h‖0 eoc |u− us

h|1 eoc

m = 2

0 3.75e-03 0.00 9.13e-02 0.00 3.25e-03 0.00 9.15e-02 0.00 3.34e-03 0.00 9.14e-02 0.00
1 9.61e-04 1.96 4.60e-02 0.99 8.59e-04 1.92 4.61e-02 0.99 8.65e-04 1.95 4.61e-02 0.99
2 2.42e-04 1.99 2.31e-02 1.00 2.18e-04 1.97 2.31e-02 1.00 2.18e-04 1.98 2.31e-02 1.00
3 6.06e-05 2.00 1.15e-02 1.00 5.50e-05 1.99 1.15e-02 1.00 5.48e-05 2.00 1.15e-02 1.00
4 1.51e-05 2.00 5.77e-03 1.00 1.37e-05 2.00 5.78e-03 1.00 1.37e-05 2.00 5.78e-03 1.00

m = 4

0 3.61e-03 0.00 9.25e-02 0.00 3.64e-03 0.00 9.32e-02 0.00 3.54e-03 0.00 9.36e-02 0.00
1 9.14e-04 1.98 4.62e-02 1.00 1.02e-03 1.83 4.70e-02 0.99 9.40e-04 1.91 4.67e-02 1.00
2 2.30e-04 1.99 2.31e-02 1.00 2.81e-04 1.87 2.33e-02 1.02 2.43e-04 1.95 2.31e-02 1.01
3 5.77e-05 2.00 1.15e-02 1.00 7.27e-05 1.95 1.15e-02 1.01 6.13e-05 1.98 1.15e-02 1.00
4 1.44e-05 2.00 5.78e-03 1.00 1.83e-05 1.99 5.78e-03 1.00 1.53e-05 2.00 5.78e-03 1.00

m = 8

0 4.06e-03 0.00 1.01e-01 0.00 4.71e-03 0.00 1.07e-01 0.00 4.47e-03 0.00 1.03e-01 0.00
1 9.16e-04 2.15 4.87e-02 1.06 1.14e-03 2.04 5.09e-02 1.08 1.09e-03 2.04 5.23e-02 0.98
2 2.32e-04 1.98 2.35e-02 1.05 4.02e-04 1.51 2.55e-02 1.00 3.29e-04 1.73 2.44e-02 1.10
3 5.97e-05 1.96 1.16e-02 1.02 1.21e-04 1.73 1.20e-02 1.08 8.80e-05 1.90 1.17e-02 1.06
4 1.50e-05 1.99 5.78e-03 1.01 3.20e-05 1.92 5.84e-03 1.04 2.24e-05 1.97 5.80e-03 1.02

Table 2.5: Results for a regular triangular mesh. Here, L denotes the (uniform) refinement level and eoc the
estimated order of convergence.
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nodal integration scale Vol+Face scale all

L DoF error eoc ρ error eoc ρ rel.
tts

error eoc ρ rel.
tts

m = 3

1 3.43e+02 2.46e-03 – 0.07 2.42e-03 – 0.06 1.13 2.51e-03 – 0.07 0.70
2 3.38e+03 7.06e-04 1.80 0.13 5.97e-04 2.02 0.12 0.45 6.05e-04 2.05 0.12 0.45
3 2.98e+04 1.80e-04 1.97 0.16 1.46e-04 2.03 0.15 0.34 1.47e-04 2.05 0.15 0.28
4 2.50e+05 4.46e-05 2.01 0.18 3.59e-05 2.02 0.15 0.30 3.59e-05 2.03 0.15 0.29
5 2.05e+06 1.11e-05 2.01 0.17 8.88e-06 2.01 0.14 0.31 8.88e-06 2.02 0.14 0.32
6 1.66e+07 2.75e-06 2.01 0.16 2.21e-06 2.01 0.13 0.32 2.21e-06 2.01 0.13 0.32

m = 8

1 3.43e+02 3.17e-03 – 0.07 5.43e-03 – 0.09 1.33 5.21e-03 – 0.08 0.70
2 3.38e+03 1.50e-03 1.08 0.15 1.54e-03 1.82 0.15 0.53 1.56e-03 1.74 0.15 0.45
3 2.98e+04 4.83e-04 1.63 0.19 4.04e-04 1.93 0.17 0.31 4.06e-04 1.94 0.16 0.36
4 2.50e+05 1.31e-04 1.89 0.19 1.01e-04 1.99 0.16 0.30 1.02e-04 2.00 0.17 0.29
5 2.05e+06 3.32e-05 1.98 0.20 2.52e-05 2.01 0.16 0.31 2.53e-05 2.01 0.17 0.32
6 1.66e+07 8.30e-06 2.00 0.21 6.29e-06 2.01 0.16 0.33 6.29e-06 2.01 0.16 0.32

Table 2.6: 3D results in the case of a scalar coefficient function with errors measured in the discrete L2-norm.

scaling approach. For large L, tts is dominated by the work performed on the volume DoFs
as is the relative tts between two approaches. A test with a single macro tetrahedron showed
a monotonic behaviour for the relative tts.

2.7.4 Application to a blending setting and large scale results

To demonstrate the advantages of our novel scaling approach also for a more realistic scenario,
we consider an example using a blending function, as mentioned in section 2.2. To this end,
we consider a half cylinder mantle with inner radius r1 = 0.8 and outer radius r2 = 1.0, height
z1 = 4.0 and with an angular coordinate between 0 and π as our physical domain Ωphy. The
cylinder mantle is additionally warped inwards by w(z) = 0.2 sin (zπ/z1) in axial direction.
The mapping Φ : Ωphy → Ω is given by

Φ(x, y, z) =



√
x2 + y2 + w(z)

arccos (x/
√
x2+y2)

z




nodal integration scale Vol+Face rel.
L DoF error eoc ρ error eoc ρ tts

1 8.55e+02 1.92e-03 – 0.07 2.21e-03 – 0.07 0.60
2 7.47e+03 4.40e-04 2.13 0.16 5.19e-04 2.09 0.16 0.35
3 6.26e+04 1.06e-04 2.05 0.24 1.27e-04 2.03 0.24 0.25
4 5.12e+05 2.60e-05 2.02 0.30 3.15e-05 2.01 0.30 0.26
5 4.15e+06 6.47e-06 2.01 0.35 7.86e-06 2.00 0.35 0.30
6 3.34e+07 1.61e-06 2.00 0.37 1.96e-06 2.00 0.37 0.31

Table 2.7: 3D results in the case of a tensorial permeability with discretization errors measured in the discrete
L2-norm.
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Figure 2.7: Macro mesh of the reference domain Ω (left) and analytic solution u (right) mapped to the physical
domain Ωphy.

nodal integration scale Vol+Face rel.
L DoF error eoc ρ tts error eoc ρ tts tts

1 4.7e+06 2.43e-04 - 0.522 2.5 2.38e-04 - 0.522 2.0 0.80
2 3.8e+07 6.00e-05 2.02 0.536 4.2 5.86e-05 2.02 0.536 2.6 0.61
3 3.1e+08 1.49e-05 2.01 0.539 12.0 1.46e-05 2.01 0.539 4.5 0.37
4 2.5e+09 3.72e-06 2.00 0.538 53.9 3.63e-06 2.00 0.538 15.3 0.28
5 2.0e+10 9.28e-07 2.00 0.536 307.2 9.06e-07 2.00 0.536 88.9 0.29
6 1.6e+11 2.32e-07 2.00 0.534 1822.2 2.26e-07 2.00 0.534 589.6 0.32

Table 2.8: Results for large scale 3D application with errors measured in the discrete L2-norm.

with the reference domain Ω = (r1, r2)×(0, π)×(0, z1). Using (2.1), it follows for the mapping
tensor K

K =
(DΦ)(DΦ)>

|det DΦ| =
√
x2 + y2



w′(z)2 + 1 0 w′(z)

0 1/x2+y2 0
w′(z) 0 1


 .

Obviously, this tensor is symmetric and positive definite. In addition to the geometry blend-
ing, we use a variable material parameter a(x, y, z) = 1 + z. On the reference domain Ω this
yields the PDE −div aK∇u = f . As analytic solution on the reference domain we set

u(x̂, ŷ, ẑ) = sin

(
x̂− r1

r2 − r1
π

)
cos (4ŷ) exp (ẑ/2) .

The analytic solution mapped to the physical domain is illustrated in the right part of Fig. 2.7.

For our numerical experiments, we employ a macro mesh composed of 9540 hexahedral
blocks, where each block is further split into six tetrahedral elements; see Fig. 2.7 (left). The
resulting system is solved using 14 310 compute cores, i.e., we assign four macro elements per
core. For the largest run we have a system with O

(
1011

)
DoF. We employ a multigrid solver

with a V(3,3) cycle. The iteration is stopped when the residual has been reduced by a factor
of 10−8. In Tab. 2.8, we report the resulting discretization error, the asymptotic multigrid
convergence order ρ, and the time-to-solution.
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These results demonstrate that the new scaling approach maintains the discretization
error, as is expected on structured grids from our variational crime analysis, as well as the
multigrid convergence rate. For small L we observe that the influence of vertex and edge
primitives is more pronounced as the improvement in time-to-solution is only small. But for
increasing L this influence decreases and for L > 4 the run-time as compared to the nodal
integration approach is reduced to about 30%.
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Chapter 3

A two-scale approach for efficient
on-the-fly operator assembly in
massively parallel high performance
multigrid codes
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It presents a novel approach for an efficient on-the-fly FE stencil assembly technique on
curved domains. The approach is based on a low-order polynomial approximation of the
exact FE stencils. This method is perfectly suited for the spherical shell domain used in
mantle convection simulations and yields significant performance improvements of up to 50×
speed-up compared to a traditional FE stencil assembly scheme.
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Large scale matrix-free finite element implementations save memory and are often 
significantly faster than implementations using classical sparse matrix techniques. They 
are especially well suited for massively parallel geometric multigrid solvers in combination 
with hierarchical hybrid grids on polyhedral domains. In the case of constant coefficients, 
the number of different stencil entries depends only on the coarse grid and does not 
increase with the number of refinement levels. However, for non-polyhedral domains 
the situation changes. Then even for the Laplace operator, the element mapping leads 
to fine grid stencils that can vary from grid point to grid point. Traditional matrix-free 
techniques that are based on an element-wise assembly then result in a considerably 
increase in computational cost. To compensate for this shortcoming, we introduce a new 
two-scale approach that uses a surrogate operator. It exploits a piecewise polynomial 
approximation of the entries of the stencil of the fine grid operator with respect to 
the coarse mesh size. The low-cost evaluation of these surrogate polynomials results 
in an efficient stencil assembly on-the-fly for non-polyhedral domains. We discuss and 
illustrate numerically two-scale a priori bounds. The accuracy of the approximate solution 
can be further improved if combined with a double discretization technique. A careful 
performance analysis in combination with a hardware–aware code optimization based 
on the Execution–Cache–Memory model yields a significant speed up. Weak and strong 
scaling results illustrate the potential of this new two-scale approach within large scale 
PDE simulations.
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1. Introduction

Classical low order finite elements for the numerical approximation of partial differential equations are well-established 
for highly efficient and massively parallel implementations. However large scale applications require a careful, memory 
aware realization.

While developing more efficient sparse matrix techniques is an active field of research, see e.g. [27,20,15], pre-computing 
and storing the entries of the element matrix inevitably requires an order of magnitude more memory than just storing the 
solution and right hand data vectors. Moreover the frequent access to the matrix coefficients produces massive memory 
traffic in the solution phase of the algebraic system, [11]. Transferring large amounts of data from memory to the CPU is 
considered to be a critical cost factor, e.g. in terms of energy consumption. Memory caching as well as spatial and temporal 
blocking techniques can only partly alleviate this problem [16,26]. Although the consequences of these simple considerations 
can be most easily grasped for extreme scale computing on super-computers, they also affect the feasibility of moderate to 
large scale simulations on mid-size clusters.

Let us consider an extreme scale example from geophysics. The global resolution of the earth’s mantle with 1 km already 
leads to a mesh with 1012 nodes. Then the solution vector for a scalar PDE operator requires 8 TByte of memory. Such 
a large vector still fits well in the aggregate memory of current peta-scale supercomputers. This becomes different, when 
we consider storing the system matrix. Then, even in classical compressed row storage (CRS) format, see e.g. [4], such a 
matrix with its on average 15 non-zeros per row will require 240 TByte of storage. For most super-computers of today this 
is beyond their limits.

To avoid the bottleneck of storing huge matrices, so-called matrix-free approaches [33,9,1,28,30] must be employed 
when possible. Here either all matrix entries are re-computed on-the-fly when needed, or matrix–vector-products are eval-
uated on-the-fly using efficient quadrature approaches for the local contributions. On polyhedral domains, simple on-the-fly 
assembly routines can be developed that make use of the similarity of the finite elements in the refinement hierarchy. 
However, the situation is more complex for non-polyhedral domains. A naïve approach which ignores the physically cor-
rect domain and resolves the geometry only with respect to a fixed coarser mesh will result in a reduced accuracy and 
asymptotically in a loss of convergence.

Resolving the geometry by nodal low order interpolation and using affine element mappings, gives optimal order results 
for linear finite elements. However, resolving the geometry more and more accurately with increasing refinement level 
is computationally expensive, since now the refinement process generates new non-similar elements and thus the local 
assembly process cannot benefit to the full extent from the uniform refinement structure. These fundamental observations 
are the reason why current matrix-free codes reach significantly better performance on polyhedral domains than in more 
general geometries. In many real-life applications, e.g., from structural mechanics, fluid dynamics, or geophysics, curved 
boundaries of the computational domain have to be taken into account see e.g. [14,7,25,23]. We refer to [2,3,5,17,31,35] for 
state of the art massively parallel solvers and large scale applications.

The main contribution of this article is a novel technique that improves the performance of matrix-free techniques in 
the case of complex geometries and curved boundaries without sacrificing accuracy. To achieve this, we will propose and 
analyze a new two-scale combination of polynomial approximation with finite element discretization.

The outline of the paper is as follows: We start with the formulation of the model problem, posed on a thick spherical 
shell, and a brief discussion of hybrid hierarchical grids in Sec. 2. In Sec. 3 we introduce the new two-scale method based 
on a higher order polynomial approximation of the low order finite element stencil. We discuss two different variants using 
standard nodal interpolation and least square fitting techniques and comment on a priori estimates. In Sec. 4 we focus on a 
study of the numerical accuracy and cost considerations. The influence of the polynomial degree in the stencil approximation 
on the accuracy as well as the effect of a double discretization [12, Section 10.2] used for residual computation and smoother 
application is illustrated. Sec. 5 is devoted to the kernel optimization as it is essential for large scale high performance 
computations. The analysis is based on an enhanced Execution–Cache–Memory (ECM) model. In Sec. 6 we present weak 
and strong scaling results on a current peta-scale architecture. Finally, in Sec. 7 we extend our model problem to two 
alternative geometries and illustrate by this the flexibility of the approach.

2. Model problem and hybrid hierarchical meshes

Matrix-free implementations of finite element schemes for partial differential equations are attractive on modern hetero-
geneous architectures. However, special care is required in the case of PDEs on domains with curvilinear boundary surfaces 
or interfaces. Here we propose a novel two-scale scheme that is perfectly suited to large scale matrix-free geometric multi-
grid solvers for low order conforming finite element discretizations.

2.1. Model problem

We consider the Laplace equation with homogeneous Dirichlet boundary conditions on a spherical shell as our model 
problem

−�u = f in � and u = 0 on ∂� (1)

3.1 Introduction 57
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Fig. 2.1. Approximation of a spherical shell with T−1 (left) and T̃−1 (center). In the right plot the discretization error of the numerical experiments carried 
out in Sec. 4 is shown over a sequence of refinement levels L. While T̃� is linked to �� which approximates � with higher accuracy the larger � is, 
T� is associated with a fixed �H independent of �. Thus, the discretization error is almost independent of � and completely dominated by the domain 
approximation error of �H .

where � := {(x, y, z) ∈ R3 : r2
1 < x2 + y2 + z2 < r2

2} with 0 < r1 < r2 and f ∈ L2(�). But we point out that our approach can 
be also applied for more complex systems of PDEs, variable coefficients PDEs and more general geometries.

The standard Galerkin formulation of (1) reads as: find u ∈ H1
0(�) which satisfies

a(u, v) = ( f , v) ∀v ∈ H1
0(�) (2)

where the bilinear and linear forms are given by

a(u, v) := 〈∇u,∇v〉� , ( f , v) := 〈 f , v〉� ,

for all u, v ∈ H1
0(�).

2.2. Domain and finite element approximations

If a polyhedral domain is considered, the input mesh can be selected such that the domain is equal to the union of all 
elements of the mesh. Thus, the domain can be represented exactly. However, for our model domain of a spherical shell 
this is not possible when using tetrahedra that are affinely mapped from the reference tetrahedron T̂ with nodes (0, 0, 0), 
(1, 0, 0), (0, 1, 0) and (0, 0, 1). We use two different sequences of triangulations. Both of them are based on a possibly 
unstructured simplicial initial mesh T−2 of mesh size H defining �H := ∪T ∈T−2 T . Each element in T−2 is obtained by the 
affine mapping �T from T̂ , and the elements T of T−2 are named macro elements.

Following the successive regular refinement rules in [10], a hierarchy of uniformly refined triangulations T := {T�, � =
0, 1, . . . , L} is found. We point out that our notation guarantees that for every mesh in the sequence T each macro element 
has at least one inner node, i.e., a node not lying on its boundary. The level mesh size is given by h� = 2−(�+2)H and for 
each mesh T� ∈ T , we have �H = ∪T ∈T�

T . Consequently, the quality of the geometry approximation is fixed and does not 
improve with increasing the refinement level. This can e.g. be seen in Fig. 2.1.

Thus, we need a second sequence of meshes T̃ which is in the limit able to resolve �. Such a sequence can be con-
structed with the help of a global mapping � which is assumed to be globally continuous and satisfies �(�H ) = �. This 
global mapping is defined element-wise on each macro element T by �|T := �T with a blending function �T reflecting 
the domain of interest, i.e., � = ∪T ∈T−2�T (T ). (See Fig. 2.2.) In case of a polyhedral domain �T can be selected as identity 
and in more general, but piecewise smooth, settings we have ‖(�T − Id) ◦ �T ‖∞ = O(H2) characterizing the difference 
in the local domain approximation. We refer to [18] for an explicit proof in 2D, if �T is defined by a smooth surface 
representation.

The meshes T̃� of the new sequence T̃ are now given as the simplicial triangulation of the vertices of T� after mapping 
by �. The edge graphs of T̃ are topologically equivalent to the ones of T , i.e., the node connectivity remains unchanged. 
Under the assumption that � is a piecewise smooth bijection, T̃ satisfies a uniform shape regularity and standard a priori 
finite element estimates hold. Moreover the vertices of T̃� are also vertices of T̃�+1. However the midpoints of the edges on 
level � are, in general, not the new vertices on level � + 1. Consequently the arising sub-elements are not similar to one of 
the three sub-element classes which occur, if one tetrahedron is uniformly refined, see also Fig. 2.3.

Typically, low order finite element approximations are then based on the mesh sequence T̃ and not on T . The standard 
finite element space is defined as

V� = {v ∈ H1
0(��) : v|T ∈ P1(T ), ∀ T ∈ T̃�} ,

where �� := ∪T ∈T̃�
T . We point out that �� forms a sequence of domains approximating � and that due to the domain 

approximation there holds V� �⊂ V�+1 �⊂ H1
0(�). Thus, we are formally in a non-conforming setting, and in the a priori 

analysis variational crimes errors arise. The discrete Galerkin formulation of (2) then reads as: find u� ∈ V� that satisfies
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Fig. 2.2. Sketch of the different macro element mappings. In the reference domain (left) nodes are associated with the discrete indices (i, j, k). Here k
is fixed to get a 2D clipping, and we call it an index plane. Firstly the reference element T̂ is affinely mapped by �T onto a macro-element T (center). 
Secondly, the macro element T is mapped by �T to the blended element (right).

Fig. 2.3. 15-point stencil (right) and the three classes of sub-tetrahedra (the three pictures on the left). We note that refining a green or blue element does 
not yield a new class of sub-elements.

a�(u�, v�) = 〈 f , v�〉��
, ∀v� ∈ V� (3)

where a�(u�, v�) := 〈∇u�, ∇v�〉��
. Let {φI } be the nodal basis of V�; for simplicity we ignore in the notation of φI the level 

index �, if there is no ambiguity. Then this transforms to the algebraic system

L�u� = f� (4)

where u� denotes the vector of nodal values of the finite element approximations, i.e., u� = ∑
I (u�)IφI , and f� stands for the 

algebraic representation of the linear form (f�)I = 〈 f , φI 〉��
. As it is standard, the entries of (L�)I, J are given by a�(φI , φ J ). 

The standard matrix formulation (4) can be related to a representation of L� in stencil form, i.e., each line of the matrix is 
associated with a node I , and its non-zero entries form the weights of the associated node stencil sI .

2.3. Hybrid hierarchical mesh stencils

Massively parallel and highly scalable PDE software frameworks depend on a sophisticated data structure based on 
ghost layers. To reduce communication and memory traffic, the abstract concept of different hierarchical primitives can 
be applied. Here we use the hybrid hierarchical grids (HHG) framework which provides an excellent compromise between 
flexibility and performance [9,8,19]. While the coarse mesh can be completely unstructured, the fine mesh is obtained by 
uniform refinement following the rules given in [10]. Each element is refined into eight sub-elements each of which belongs 
to one of three different sub-classes, see the left of Fig. 2.3. All nodes of the triangulation can then be grouped into vertex, 
edge, face or volume primitives depending on their position with respect to the macro elements of the initial mesh T−2, see 
the right of Fig. 2.4. The vertex, edge and face primitives form the lower dimensional primitive classes and are associated 
with the surface/boundary of the macro elements. Such a structured block refinement then guarantees in the case of affine 
element mappings that the node stencils for partial differential equations with constant coefficients do not depend on the 
node location within one primitive. More precisely, for each macro element all volume primitive stencils are exactly the 
same and are given by a symmetric 15-point stencil, see the right of Fig. 2.3.

In large scale applications, the number of nodes in the volume primitive containers is significantly higher than the 
number of nodes in the lower dimensional primitive classes. It grows with O(23�) whereas the number of remaining 
nodes increases only with O(22�). Since we are interested in large scale simulations, the computational cost associated 
with the node stencils on the lower primitives is rather small compared to the cost associated with the nodes in the 
volume primitives. Thus we compute on-the-fly the node stencils for nodes in a lower dimensional primitive class in a 
straightforward way by re-assembling the contributions of local element matrices. Only the on-the-fly computation of the 
node stencils for nodes in a volume primitive class will be replaced by a surrogate stencil operator. We recall that the 
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Fig. 2.4. (Left) Layout of a typical low order 15 pt stencil, see also [8]; node symbols will become relevant in Sec. 5; (right) association of nodes to the 
vertex (large circle), edge (medium circle), face (square) and volume (small circle) primitives for a single macro-element.

volume primitives are associated with the interior of the macro elements. Let T ∈ T−2 be fixed, then we denote by M�

the set of all points at refinement level 0 � � � L that are in the interior of T . These nodes belong to the volume primitive 
associated with T . For � = 0 this consists of exactly one single point. The number n� of elements in M� is given by

n� = 1

6

(
2�+2 − 3

)(
2�+2 − 2

)(
2�+2 − 1

)
. (5)

Remark 1. We point out that all our techniques can also be applied to the construction of stencil entries associated with 
face and edge nodes. This is of interest in case of moderate level hierarchies.

For a fixed node I , the stencil weight for accessing another node J is given by a�(φI , φ J ) and will only be non-zero, if 
both nodes are connected by an edge in T� . In case of our uniform mesh refinement, the stencil weights can be identified 
by their cardinal directions w ∈ W = {be, bc, ..., mc}, where, as noted before, we have |W| = 15. The first character in w
denotes the bottom, middle and top plane whereas the second specifies the orientation within the plane, as illustrated in 
the left of Fig. 2.4. Then the stencil for node I can be represented by a vector sI = (a�(φI , φ Jbe ), . . . , a�(φI , φ Jmc )) in R15. We 
note that Jmc = I .

Moreover there exists a unique mapping between the nodes in M� and the set of index triples I� given by{
(i, j,k)

∣∣∣ 0 < i, j,k < 2�+2 − 2, i + j + k < 2�+2
}

.

Hence the node stencils on level � can be associated with a stencil function s : I� → R15, i.e. sI = s(i I , j I , kI ) where (i I , j I , kI )

is the index triple associated with node I . If � = Id then all sI , I ∈ M� are the same, i.e., s is a constant function. Moreover 
it is obtained by simple scaling from a reference stencil ŝ, i.e., sI = 2−� ŝ, I ∈ M� , with ŝ being the stencil associated with 
the single node in M0. This is not the case for our model domain. Here s is a non-constant function and consequently 
all stencil weights have to be computed on-the-fly. To do so for each node I ∈ M� , we have to consider the 24 tetrahedra 
adjacent to it and their associated local element matrices which can be different from element to element due to a general 
�. Thus this process, although linear with respect to n� , can be rather cost intense. For L = 6 we have to compute on-the-fly 
2, 731, 135 different stencils per macro element.

In Fig. 2.6, we illustrate the influence of � on the node stencil restricted to the index plane shown in Fig. 2.5. Note 
that for � = Id not only the element matrix but also the stencil is symmetric, i.e., opposite stencil entries, e.g., tw and be, 
are identical. While this kind of symmetry is not completely preserved in the more general case, it is still reflected. Hence, 
we show only seven stencil entries plus the central one in Fig. 2.6. One can clearly see that the stencil entries are smooth 
functions that can easily be approximated by polynomials. This observation motivates our new approach.

3. Two-scale approach

Our idea now is to replace the components of the exact stencil function s associated with a volume primitive node 
by surrogate polynomials of moderate order. More precisely, we consider for each cardinal direction w ∈ W a polynomial 
defined either by interpolation or alternatively by a discrete L2-best fit. We will only perform the replacement of the stencil 
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Fig. 2.5. Uniformly refined reference tetrahedron. Highlighted plane shows the location of nodal centers for the stencils visualized in Fig. 2.6 and Fig. 3.1. 
Black dots mark the ten sampling points for the IPOLY approach being introduced in Sec. 3.1.

function on levels � � 1 as on the coarsest level � = 0 a macro element has only one interior node with a single associated 
stencil.

3.1. Interpolation of stencils (IPOLY)

A tri-variate polynomial of degree less or equal to q can be represented as

p(i, j,k) =
∑

l,m,n=0
l+m+n�q

al,m,nλl,m,n(i, j,k) , (6)

where the λl,m,n form a basis. Solving for the coefficients a = (aq,0,0, ..., a0,0,0) ∈ Rmq , where

mq = 1

6
(q + 3)(q + 2)(q + 1) , (7)

of an interpolation polynomial in general leads to a linear system Aa = b with a Vandermonde-type matrix A ∈ Rmq×mq

and sampling values b ∈ Rmq . The special choice of a Lagrange interpolation basis yields A = Id. As example we consider 
the case q = 2. Here we have m2 = 10 and for sampling we use the quadratic nodal interpolation points of a shrunk macro 
element. More precisely we use the nodes with indices

(1,1,1),

(1,1,a), (1,a,1), (a,1,1),

(1,1,b), (1,b,1), (b,1,1), (1,b,b), (b,1,b), (b,b,1)

where a = 2�+2 − 3, b = 2�+1 − 1 as sampling points, see also Fig. 2.5.

3.2. Least-squares approximation (LSQP)

Applying an interpolation polynomial implies that the polynomial is exact at the sampling points, which elevates these 
points. Alternatively, we can use a discrete L2-best approximation polynomial. This leads to a system with an n� ×mq matrix, 
as we now use all points of M� as our sampling set S� . More generally, we define the coefficients a of the approximating 
polynomial as solution of the least-squares problem

a := argmin
z∈Rmq

‖Az − b‖2 , A ∈ R|S�|×mq , b ∈ R|S�| .

Each row of A is defined by the values of the basis functions λl,m,n evaluated at the corresponding sampling point. The 
choice S� = M� quickly becomes quite expensive, due to the fast growth of n� with �. Thus we also consider reduced 
sampling sets S� := Mm(�, j) with

m(�, j) := min{�,max{1, j}} (8)

where j may depend on �. The min–max definition guarantees that we neither exceed the largest possible set, i.e., M� on 
level �, nor go below M1. For simplicity of notation, we also denote Mm(�, j) by M j if there is no ambiguity.

We note that for q � 4 and any choice of S� = Mk with k ∈ {1, . . . , �} we have, by comparing (5) and (7), that n� � mq . 
Moreover, the spatial distribution of the nodes in the mesh guarantees full rank of A and consequently the least-squares 
problem has a unique solution.
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Fig. 2.6. Eight out of the 15 stencil values associated with the uniformly refined mesh series T (blue) and the projected series T̃ (red). Each subplot shows 
the stencil values of one w ∈ W for all fine grid nodes in the plane k = 7 of a macro element at refinement level � = 3. The horizontal axes give the i and 
j indices of the nodes, the vertical axis the stencil value. The fixed k index is chosen such that it contains the median node.
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3.3. IPOLY versus LSQP for quadratic surrogate polynomials

In a first test, we compare the difference between the least-squares technique for S� = M�−1 and the interpolation 
based approach, see Fig. 3.1. Note that, as in Fig. 2.6, the points visualized are chosen to be in the plane with k = 7. Hence 
the displayed corners are no sampling points for IPOLY. While the values of IPOLY are more accurate close to the boundary, 
the values of LSQP have a uniformly better fit.

In order to provide a more quantitative measure for the approximation accuracy, we introduce a metric for the overall 
fit. For w ∈ W we set

ew :=
(∑

(i, j,k)∈I�
[sw(i, j,k) − Pαsw(i, j,k)]2∑
(i, j,k)∈I�

sw(i, j,k)2

)1/2

,

where Pαsw , α ∈ {LSQP, IPOLY}, denotes one of the proposed surrogate polynomials associated with the cardinal direc-
tion w ∈ W . Obviously this metric corresponds to the discrete relative L2-norm of the error in approximating the w-th 
component of the stencil function s.

In Fig. 3.2, we illustrate the influence of the choice of the sampling set on LSQP and compare it to the IPOLY approach. 
Already for the relatively coarse macro mesh we observe a maximal deviation of no more then 12 percent. When the macro 
mesh size is halved, then also the error in the approximation is decreased by about a factor of two. For the finer macro 
mesh we observe two peaks. These result from the following. The blending function �T depends on the location of the 
macro element T within the spherical shell and different directions are distorted differently. The precise �T determines 
which w ∈ W are affected most strongly by the approximation.

Comparing LSQP and IPOLY we find that the relative error is smaller for LSQP for all sampling sets. Already for the 
smallest choice M1, i.e., n1 = 35, it is significantly better than IPOLY. This comes as no surprise, as the least-squares 
approach constructs a minimizer in the Euclidean norm. We note that M2, i.e., n2 = 455, is, in general, a good compromise 
between quality and problem size of the stencil approximation, in particular if the number of macro elements is already 
large.

3.4. Definition of the surrogate operator

We define our new two-scale finite element approximation as the solution of

LH,α,q
� uH,α,q

� = f� . (9)

Here, the superscripts mark the dependencies on the macro element size H , the degree q of the surrogate polynomial, 
and the selected approach α ∈ {IPOLY, LSQP}. For ease of notation, we replace the superscript triple by a tilde, i.e., we set 
L̃� := LH,α,q

� and similarly for uH,α,q
� .

As is the case with L� , each row of L̃� is associated with a node. In our approach, we replace for all nodes in a volume 
primitive the exact finite element stencil on level � by its surrogate polynomial approximation, i.e., instead of computing 
sw(i, j, k) on-the-fly, we evaluate the surrogate Pαsw(i, j, k). As already mentioned, the stencil entries associated with 
nodes on lower dimensional primitives are assembled on-the-fly in standard fashion.

Remark 2. We point out that, if �T = Id, T ∈ T−2, then both our approaches reduces to the standard one. Also, they can 
be applied selectively and switched on or off macro element-wise depending on the location of T within the domain or its 
shape. Additionally the choice of the polynomial degree can depend on T , and we can even use anisotropic orders reflecting 
the properties of the mapping �T .

Since we have one stencil weight for each of the 15 couplings w ∈ W , we use 15 different second order polynomials, 
described by 15 different sets of coefficients aw . The latter are computed in a setup phase. This, firstly, requires for each 
macro element and each level � � 1 the evaluation of mq (IPOLY) or |S�| (LSQP) stencils and then the solution of a linear or 
least-squares system.

Once the setup is completed, whenever the stencil for node I is to be applied, e.g. as part of a smoothing step in a 
multigrid method, or a residual computation, 15 polynomials of type (6) must be evaluated at this node to provide the 
surrogate stencil weights. At first glance, this does not seem to be any faster than a standard implementation. Recall, 
however, that within a typical matrix-free framework, the on-the-fly evaluation of the stencil involves costly operations 
such as the (re-)computation of local element matrices or the direct evaluation of weak forms via quadrature rules. The 
advantage of our approach is that the setup needs to be performed only once. The operator assembly itself reduces to 
polynomial evaluations. This also implies that the cost for the actual stencil application is the same for both, IPOLY and 
LSQP. Only in the setup phase is LSQP more expensive as more sampling points need to be evaluated and the minimization 
problem includes a larger system matrix.

Compared to a full stencil pre-calculation and storage scheme also the amount of required memory can be neglected. 
We only need 15mq L coefficients per macro element to fully describe the approximated stencils. Such a small number of 
coefficients can easily be stored even when the refinement depth L is large.
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Fig. 3.1. Difference between IFEM and IPOLY (green) or LSQP (black) for the same setting than in Fig. 2.6.
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Fig. 3.2. ew for IPOLY and LSQP with different choices for the sampling set. Left plot is for a macro mesh that consists of 60 elements, while in the right 
plot the macro mesh size is halved, resulting in 480 elements. For both we set L = 4.

Remark 3. Alternatively, one can think of using the same fine level surrogate polynomial to evaluate the stencils on the 
coarser meshes. A study of this idea and its effect on the multigrid convergence rate is beyond the scope of the paper.

We want to point out that in the application of the surrogate operator we loop over the indices (i, j, k) in a line-wise 
fashion. This implies that we can always fix two of the three indices and, consequently, only need to evaluate a 1D and not 
a 3D polynomial. This reduces the cost significantly as the 1D polynomial has fewer terms. Evaluation of the 1D polynomial 
itself can be accomplished very efficiently by using a hierarchical recursion formula. More precisely starting from a single 
direct evaluation of p̂(i) := Pαsw(i, j0, k0), we can evaluate the polynomial incrementally in terms of q basic operations. In 
computer graphics this technique is known as forward differencing [34,32].

Apart from its cost, the accuracy of a numerical scheme is, of course, of major importance. In this context we provide 
the following lemma related to the consistency of the discretization expressed by L̃� .

Lemma 1. The row sum property of the stencil∑
w∈W

sI
w = 0

is preserved by IPOLY and LSQP, when using identical polynomial order and sampling sets for all stencil weights.

Proof. We recall that the coefficients of both our approaches can formally be obtained by solving a system of normal 
equations. As A has full rank its solution is unique and

amc =
(

A� A
)−1

A�bmc = −
(

A� A
)−1

A� ∑
w∈W
w �=mc

bw = −
∑

w∈W
w �=mc

aw .

Thus, the row sum condition holds for the coefficients of the surrogate polynomials and, consequently, also for the stencil 
entries approximated by an evaluation of the polynomials at each node position. �

Finally, we recall that the matrix L� is symmetric, as a�(φI , φ J ) = a�(φ J , φI ). This property is not preserved by our 
approach, due to the fact that the polynomials are evaluated at the nodes. Let I be a node, and J be the neighboring node 
which is reached, if we move from I in cardinal direction w . By wo, we denote the opposite cardinal direction, i.e., if we 
move from J into the direction of wo then we recover I . In our approach, we find

(L̃�)I J = Pαsw(i I , j I ,kI )

(L̃�) J I = Pαswo(i J , j J ,k J ) .

To quantify this loss of symmetry, we measure it in the relative Frobenius norm. We consider

‖(L̃�|T )� − L̃�|T ‖F

‖L�|T ‖F

.

Here L̃�|T is the restriction of the global system matrix to one macro element. As expected, for both IPOLY and LSQP we 
find that the relative non-symmetry is in O(h�).

Remark 4. A symmetric matrix can also be recovered. One possibility is to define only seven cardinal directions, associated 
with the seven edge directions of a macro element. For this we identify the cardinal directions w and wo and evaluate the 
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surrogate polynomial at the center of the edge connecting two nodes. Note that in that case, we need to define the central 
stencil weight via the row sum condition. As we will see in Sec. 5, a direct evaluation of the row sum is more expensive 
than the evaluation of a surrogate polynomial of moderate order. Therefore we will not further consider this option.

3.5. Some remarks on a priori estimates

In this section, we will discuss the IPOLY and LSQP discretization errors in the L2-norm. Let u� and ũ� be the solution 
of (4) and (9), respectively, and u the exact solution of (1). Since L� is a positive definite operator, we can rewrite the 
surrogate operator L̃� as

L̃� = L�

(
Id + Hq+1 B̃�

)
.

For our heuristic considerations we assume that B̃� satisfies

‖B̃�‖ � Cq,α < ∞ , (10)

where ‖ · ‖ denotes the Euclidean norm. Our assumption is motivated by the presumed smoothness of the mapping �
described in Sec. 2.2, in combination with best approximation and interpolation results. We point out that the stencil values 
can be interpreted as a function depending on D�D��/| det D�| where D� is the Jacobian of �. Thus, an approximation 
with a polynomial of degree at most q results in an error of O(Hq+1). Moreover by construction we preserve the row 
sum property, and consequently the kernel of L� and L̃� is locally the same. The notation � is used for � C with an 
�, H-independent constant C < ∞.

Furthermore, we assume that H is chosen small enough such that Hq+1‖B̃�‖ < 1. By employing the properties of the 
Neumann series, we then obtain

L̃−1
� =

(
Id + Hq+1 B̃�

)−1
L−1

� =
[ ∞∑

k=0

(
−Hq+1 B̃�

)k
]

L−1
�

=
(

Id − Hq+1 B̃�

)
L−1

� + O
(

H2(q+1)
)

.

Neglecting the higher order terms, we arrive at

‖ũ� − u�‖2
0 � h3‖ũ� − u�‖2 = h3‖L−1

� f� − L̃−1
� f�‖2

� h3‖Hq+1 B̃�L−1
� f�‖2 � h3 H2(q+1)‖B̃�‖2‖u�‖2

� H2(q+1)‖B̃�‖2‖u�‖2
0 � H2(q+1)‖B̃�‖2‖ f ‖2

0 .

It is well known that under suitable regularity assumptions ‖u − u�‖0 � h2
�‖ f ‖0. Then the triangle inequality yields

‖u − ũ�‖0 �
(

h2
� + Hq+1

)
‖ f ‖0 � h2

�

(
1 + 4l+2 Hq−1

)
‖ f ‖0 . (11)

We note that the generic constants do depend on q, higher order derivatives of the mapping function � and α, the type of 
selected polynomial approximation.

Remark 5. Keeping H fixed and increasing � gives an asymptotically constant error not equal to zero. However, if a given 
pairing (h�, H) results in an error not dominated by the second term in (11), then this is also correct for any pairing of the 
form (h�+2k, H/2k) in the case of q = 3. Moreover for � � L and L fixed and for a macro mesh size H < H0, we also obtain 
optimal order results in h� , if q � 2. We note that H0 depends on L and q, but also on the data.

4. Evaluation of accuracy and cost

For our numerical studies, we employ model problem (1) with an exact solution given by

ū(x, y, z) = (r − r1)(r − r2) sin(10x) sin(4y) sin(7z)

where r = r(x, y, z) = (
x2 + y2 + z2

)1/2
. The right-hand side is set accordingly, and the homogeneous Dirichlet boundary 

conditions are automatically satisfied by ū. For the model domain that represents the Earth mantle we set r1 = 0.546 and 
r2 = 1. An illustration is given in the left plot of Fig. 4.1. The right plot shows the finite element error associated with the 
mesh sequence T . It is obviously dominated by the inaccurate boundary approximation of �H and is of second order in H .

To solve the discrete problem, we employ a stand-alone geometric multigrid solver. It uses a V(3, 3)-cycle with a lexico-
graphic hybrid Gauss–Seidel (GS) smoother, which also serves as coarse grid solver. The smoother is hybrid in the sense that, 
due to the HHG communication patterns between primitives, some dependencies are neglected and low-order primitives 
can have some points that are only updated in a Jacobi-like fashion, see [9] for details. However, the majority of points is 
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Fig. 4.1. Cut parallel to x, y-plane at z = −0.5. Exact solution ū (left), error ū − uIFEM (middle) and ū − ucons (right). On the boundary the error w.r.t. the 
solution ucons of the unprojected approach is equal to the exact ū as we impose zero Dirichlet boundary conditions. The maximal error of uIFEM is one 
order of magnitude smaller than that of ucons. The slight asymmetry visible in the middle plot results from the unstructuredness of the macro grid.

updated as in a standard GS scheme. Experiments with different numbers of smoothing steps have shown qualitatively the 
same results. Although new vertices on level � are not necessarily located at the midpoint of the edges on level � − 1, the 
node connectivity is not changed. Thus we apply the standard prolongation and restriction operators of a conforming low 
order finite element setting. The iteration is started with a random initial guess.

A standard geometric multigrid solver contains two operations which involve the application of the stencils. These are 
smoothing and residual computation for the coarse grid correction. Instead of applying either the stencil for L� or L̃� in 
both operations, it is also possible to apply a mixed formulation. This is a classical technique in the multigrid literature 
[12, Chapter 10.2] known as double discretization (DD). It consists in a combination of defect correction and multigrid [21]. 
Different from conventional defect correction, the higher order discretization is only used when computing the residuals for 
the coarse grid correction while the smoother is employed with the low order discretization. This has the effect that the 
multigrid algorithm combines two competing iterations having distinct fixed points and the combined iteration generally 
converges to neither of the two original limits. With this, the multigrid method becomes an integrated solver for the 
continuous problem that blends the properties of several discretizations. In particular it can be shown that under suitable 
conditions [21,12] the order of accuracy delivered by multigrid with double discretization is determined by the order of the 
discretization that is employed for the coarse grid correction. The discretization used in smoothing has only a mild effect. 
Therefore this technique can be used to design extremely efficient higher order solvers, since the complexity of a higher 
order discretization will affect the cost of each iteration of the linear multigrid solver only moderately.

We include this technique in our tests. For this we apply the less expensive surrogate operator L̃� for the relaxation 
sweeps, as those require less accuracy, and the exact one L� for residual computation. Using two different operators leads 
to two competing components in the multigrid method, as the smoother and the coarse grid correction aim to drive the 
iterate towards the algebraic solution of their respective operators. Hence in the double discretization approach, the algebraic 
convergence will typically suffer, and residual-based stopping criteria are inappropriate. Instead one should, e.g., check the 
sequence of updates for convergence to zero [12].

4.1. Accuracy of IPOLY and LSQP

For our numerical study, we will compare the standard Galerkin formulation with projected coordinates, termed IFEM, 
against the IPOLY and LSQP approaches. For the latter, we will also test the aforementioned double discretization technique. 
The resulting iterative schemes are denoted as IPOLY DD and LSQP DD. Besides this we will show finite element results for 
an unprojected approach (CONS), i.e. with a fixed �H . In order to further stress out the quality of the double discretization 
approach, we test it using this unprojected operator for smoothing, giving us CONS DD. If not explicitly mentioned oth-
erwise, all IPOLY and LSQP based results use quadratic polynomials. For LSQP we set j = 2 in m(�, j), i.e. S� = M2. Using 
computationally more expensive choices of S� did not yield any significant differences.

We start our tests with an initial mesh T−2 consisting of 60 macro elements and set L ∈ {1, . . . , 6}. To measure the 
discretization error, we introduce the discrete L2-norm

e := h
3/2

� ‖I�(ū) − v�‖2 ,

where I� denotes the nodal interpolation operator, and v� represents either the actual multigrid approximation or the final 
iterate of the employed scheme. This error is equivalent to the L2-error of the associated finite element functions. In order 
to be sure to have reached the asymptotic regime, we perform 10 multigrid cycles. Results for L = 5 are given in the left 
part of Fig. 4.2.

One can see that the discretization error for CONS clearly suffers from the insufficient resolution of the spherical geom-
etry. The errors for IPOLY and LSQP are roughly a factor of 10 and 50 smaller, respectively. We observe that LSQP performs 
better than IPOLY. This supports the observation from Sec. 3.2 that the stencils are uniformly better fitted. Note that, as 
was to be expected for a rather coarse input mesh (large H) and multiple refinements (large L), the error is dominated by 
the approximation error in the stencil s introduced by replacing its values by those of the surrogate polynomials. Using the 
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Fig. 4.2. Development of the error (left) and residual (right) in the iterates in discrete L2-norm for an input mesh of 60 macro tetrahedra and refinement 
level L = 5.

Fig. 4.3. Discretization error in discrete L2-norm for a sequence of refinement levels L for an input mesh of 60 macro tetrahedra.

double discretization scheme, however, allows to (almost) recover the discretization error of the IFEM approach. Here, both 
IPOLY DD and LSQP DD perform equally well and even CONS DD achieves very good results.

In the right part of Fig. 4.2, we provide the discrete L2-norms of the residuals. For IPOLY and LSQP these are based on 
the respective surrogate matrix. We observe that the convergence for the DD variants breaks down after a few iterations. 
As already indicated, this was to be expected due to the inconsistency in smoothing and residual computation. Whereas the 
residuals of all non-DD-scenarios show similar asymptotic convergence rates.

In Fig. 4.3, we show the discrete L2-error for increasing refinement levels. As expected, IFEM shows quadratic order 
convergence.

This is also satisfied by the DD approaches. But, as already mentioned before, this does not hold for IPOLY and LSQP. 
Nevertheless, we observe in the pre-asymptotic regime a second order error decay and only asymptotically, the error is 
dominated by the term in Hq+1, see also (11). For LSQP we observe second order for L � 3, while for IPOLY this is only the 
case for L � 2.

While DD shows excellent convergence, it also requires the application of the expensive operator L� . Although it is used 
only every seventh operator call, in case of a V(3, 3) cycle, it still dominates the time to solution. This can be seen in the 
scaling results in Sec. 6.

Motivated by the a priori estimates from Sec. 3.5, we further investigate the dependence of LSQP and IPOLY on the 
refinement level L, the macro mesh size H and the polynomial degree q. The above test setting describes the coarsest 
macro mesh with 60 elements. Further refinement in radial and tangential direction results in input meshes T−2 with 480, 
3,840 and 30,720 macro elements, respectively. The discretization error for IFEM, LSQP and IPOLY after 10 multigrid cycles 
is displayed in Table 4.1 for different numbers of macro elements and different polynomial degrees, q = 1, 2, 3.

As expected, we see in Table 4.1 a quadratic convergence for IFEM. For the other variants we observe that for a finer 
input mesh and for a higher polynomial degree, the accuracy obtained increases. Combinations for which eLSQP or eIPOLY

differ relatively by more than 10 percent from eIFEM are highlighted by italic table entries.
We find that for IPOLY and q = 1 the maximal feasible refinement level L is independent of H . While for q = 2 two 

refinements in H allow one more refinement in L. And for q = 3 those values form a diagonal, meaning that for each finer 
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Table 4.1
Discretization error for IFEM and IPOLY/LSQP (linear, quadratic and cubic) for 
different combinations of h� and H . Italic entries have a relative deviation from 
the reference eIFEM of more than 10 percent.

#mac el 60 480 3840 30720

eIFEM

L = 2 1.2e−03 3.5e−04 8.9e−05 2.2e−05
L = 3 3.4e−04 9.4e−05 2.2e−05 5.6e−06
L = 4 9.0e−05 2.3e−05 5.7e−06 1.4e−06
L = 5 2.2e−05 5.9e−06 1.4e−06 3.5e−07
L = 6 5.7e−06 1.5e−06 3.5e−07 8.9e−08

eIPOLY (q = 1)
L = 2 1.5e−03 4.1e−04 8.9e−05 2.2e−05
L = 3 2.1e−03 5.6e−04 1.1e−04 2.8e−05
L = 4 2.7e−03 7.3e−04 1.5e−04 3.8e−05
L = 5 3.1e−03 8.2e−04 1.8e−04 4.4e−05
L = 6 3.3e−03 8.7e−04 1.9e−04 4.7e−05

eIPOLY (q = 2)
L = 2 1.3e−03 3.6e−04 9.0e−05 2.3e−05
L = 3 5.9e−04 1.0e−04 2.3e−05 5.7e−06
L = 4 5.9e−04 6.3e−05 6.5e−06 1.5e−06
L = 5 6.5e−04 6.7e−05 3.4e−06 4.0e−07
L = 6 6.9e−04 7.1e−05 3.1e−06 1.7e−07

eIPOLY (q = 3)
L = 2 1.3e−03 3.6e−04 9.0e−05 2.3e−05
L = 3 4.0e−04 9.6e−05 2.3e−05 5.7e−06
L = 4 2.2e−04 2.7e−05 5.9e−06 1.4e−06
L = 5 2.1e−04 1.2e−05 1.6e−06 3.7e−07
L = 6 2.2e−04 9.9e−06 6.4e−07 1.0e−07

eLSQP (q = 1)
L = 2 1.3e−03 3.7e−04 9.0e−05 2.3e−05
L = 3 7.7e−04 1.4e−04 2.7e−05 6.4e−06
L = 4 8.0e−04 1.1e−04 1.5e−05 3.1e−06
L = 5 8.5e−04 1.2e−04 1.4e−05 2.8e−06
L = 6 8.8e−04 1.2e−04 1.5e−05 2.9e−06

eLSQP (q = 2)
L = 2 1.3e−03 3.6e−04 8.9e−05 2.3e−05
L = 3 3.9e−04 9.4e−05 2.3e−05 5.7e−06
L = 4 1.9e−04 2.5e−05 5.6e−06 1.4e−06
L = 5 1.8e−04 1.3e−05 1.4e−06 3.5e−07
L = 6 1.9e−04 1.3e−05 3.8e−07 8.2e−08

eLSQP (q = 3)
L = 2 1.3e−03 3.6e−04 8.9e−05 2.3e−05
L = 3 3.5e−04 9.4e−05 2.3e−05 5.7e−06
L = 4 1.0e−04 2.4e−05 5.7e−06 1.4e−06
L = 5 6.9e−05 5.8e−06 1.4e−06 3.5e−07
L = 6 7.3e−05 1.9e−06 3.3e−07 8.7e−08

H also L can be increased by one. For LSQP the results look even better. As a rule of thumb we observe that for LSQP the 
italic entries are shifted by at least one level down compared to IPOLY.

These observations confirm our theory that the discretization error is a combination of two parts: one fine scale part h2
�

and one depending on the coarse mesh size H , but being of higher order depending on the selected polynomial degree.
Real geophysical applications will typically be executed on HPC systems with O(105) cores. Each core will then manage 

at least one, but often also more than one macro element, imposing a small upper bound on H and thus a reasonable large 
bound on L. Hence, in these application we will be automatically in an (L, H)-parameter regime that does not exceed the 
critical L. Consequently our two-scale approach is perfectly suited for this kind of applications.

4.2. Cost considerations

Besides the quality of the approximation, we also have to consider its cost. We split our considerations into two parts, 
the cost for applying and the cost for setting up the surrogate operator. While our two approaches IPOLY and LSQP have 
different setup costs, the cost for the evaluation of the surrogate stencil operator is the same in both surrogate approaches. 
Moreover once the stencil weights are evaluated, the application of the actual stencil is independent of the chosen approach.
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Table 4.2
Number of FLOPs for a single stencil application in a 
Gauss–Seidel relaxation step for a scalar operator in 
HHG. For fair comparison DD cost is averaged over cheap 
smoothing and expensive residual computation.

Constant 29
IFEM (direct) 1353
IFEM (row sum) 1343
IPOLY/LSQP (naïve, q = 2) 378
IPOLY/LSQP (increment) 29 + 15q
CONS DD 1343+29ν

ν+1

4.2.1. Cost for operator evaluation
To give a quantitative idea Table 4.2 provides the number of FLOPs for a single Gauss–Seidel relaxation step, which 

involves the equivalent of one stencil application, see (13) below. We base our considerations, w.r.t. polynomial evaluation, 
on the incremental approach. Note that the traditional FLOPs measure can only give an impression on the arithmetic load 
of the different variants. The actual execution times depend on various implementation details, see also Sec. 5 where we 
discuss how to optimize the polynomial evaluation with respect to run-time.

For the constant case, we get in Table 4.2 the minimal value of 29 FLOPs, as the same pre-computed stencil can be 
used at all nodes. As mentioned above this cost for the stencil application remains the same in the other approaches. 
However, the extra cost for computing the proper finite element or surrogate stencil entries occur. As a small detail note 
that in the constant case HHG employs a multiplication with the reciprocal of the central stencil weight in (13) which gets 
pre-computed in the setup phase. For the other approaches we need to perform a floating point division, which is more 
costly.

Setting up the stencil in the IFEM approach with projected coordinates involves firstly computing for the current node the 
element matrices of its surrounding 24 elements. For this we use a C++ code that was auto-generated and optimized using 
the FEniCS Form Compiler (FFC), see [29], which results in 53 FLOPs per element matrix. Stencil weights are obtained by 
summing up the associated entries in the element matrices. In our 15-point-stencil, we have 6 weights belonging to edges 
attached to 4 neighboring elements and 8 weights belonging to edges attached to 6 neighboring elements, see Fig. 2.3. 
Hence, this results in 6 · 3 + 8 · 5 = 58 additions for computing the non-central stencil weights. The central weight can 
either be assembled in the same fashion (23 FLOPs) or via the row sum property (13 FLOPs). Altogether this leads to 
the cost of 1353 resp. 1343 FLOPs given in Table 4.2. Thus, this approach is nearly a factor of 50 more costly than the 
constant one. Though, to be fair, we remark that our implementation does not take into account the fact that each element 
matrix is shared by four nodes. However, exploiting this is not straightforward as the point-smoother we are considering 
here requires an assembled central stencil weight and re-using element matrices for different nodes introduces additional 
overhead to manage the related dependency information.

We now turn to our proposed surrogate stencils. Here we need to add on top of the cost for applying the stencil the 
evaluation of the polynomials to obtain its weights. If we employ the naïve approach, i.e., a straightforward evaluation with 
respect to its monomial basis representation, we end up with 378 FLOPs for a tri-variate quadratic polynomial. Here, we 
assumed the sum rule is employed for the central weight. This already gains a factor of 3.5 compared to IFEM, but still 
requires over ten times more FLOPs than in the constant case. Now, for the incremental approach, asymptotically, only two 
operations are needed for the evaluation of each polynomial. Thus, the total number of FLOPs decreases to 59, which is 
only about twice the optimal value of the constant setting. Note that in this case, evaluation of the central entry via its 
polynomial is, of course, cheaper than the sum rule. Using higher order polynomials of degree q, we asymptotically need q
operations and an additional cost factor of

C(q) = 1 + 15q

29
≈ 1 + q

2
. (12)

So the cubic IPOLY/ LSQP approach, overall, is a factor of 1.25 more expensive than the quadratic one.
To quantify the cost of a CONST double discretization approach in comparison with a pure IPOLY/ LSQP approach (q = 2), 

we take the average over one residual computation and a total of ν pre- and post-smoothing steps. For a typical choice of ν
ranging between 2 and 8 the resulting cost factor is roughly between 8 and 3. This demonstrates that DD is an option that 
should seriously be considered, but overall is still dominated by the expensive residual computation.

In order to reach for a fixed h an acceptable accuracy H and q have to be selected properly. If one is outside the accepted 
tolerance one can either decrease H or increase the polynomial degree. For smaller runs on workstations or on mid-sized 
clusters the latter may be the preferred choice in order to keep the number of macro elements as low as possible. Whereas 
for large scale simulation on high performance computers, quadratic polynomials seem most suitable. Here, H is decreased 
almost naturally as the number of cores that are to be used is coupled to the number of macro elements.

4.2.2. Cost for setup
We continue by considering the setup phase. This consists in the computation of the sampling values and the solution of 

the resulting linear systems for IPOLY or least-squares problems for LSQP. For the IPOLY approach with its small number of 
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Table 4.3
Number of sampling points |SL | for a single macro element on finest level (L = 5), sum of sampling 
points over all levels, time tsample for stencil computation at sampling points, tlinalg for computation of 
polynomial coefficients, tsetup for total setup, tcycle for a single V(3, 3)-cycle, pcycle percentage of tsetup

w.r.t. tcycle; for IFEM pcycle relates an IFEM to a LSQP cycle; for LSQP values depend on strategy m(�, j)
for choosing S�; times are given in seconds.

j |S L | ∑L
�=1 |S�| tsample tlinalg tsetup tcycle pcycle

IPOLY – 10 50 0.01 0.001 0.01 16.8 0.1%

2 455 1,855 0.52 0.02 0.56 16.8 3%
LSQP � − 1 39,711 44,731 11.06 0.37 11.53 16.8 67%

� 333,375 378,071 96.22 4.10 102.66 16.8 611%

IFEM – 333,375 378,071 – – – 872.8 5195%

sampling points and very low dimensional linear system we expect the cost to be negligible. In the LSQP approach, however, 
the situation might be different as problem size strongly varies with the choice of the sampling set S� .

To quantify this setup cost we report in Table 4.3 on run-times related to the setup phase and compare them to the 
execution time for a single V(3, 3)-cycle with our surrogate operator. For this we restrict ourselves to the case of quadratic 
polynomials and deliberately consider the worst case scenario of a monomial basis. Measurements were performed for a 
serial run on a single node on the SuperMUC cluster, cf. Sec. 6 for technical details. The code was compiled with the Intel 
Compiler version 15.0. Linear systems for IPOLY were solved using the DGESV routine of LAPACK, while for the least-squares 
problems in the LSQP case we used DGELS. In both cases the LAPACK implementation from the Intel Math Kernel Library 
(MKL) in version 11.3 was employed. The macro mesh consisted of 60 elements, and we used L = 5 levels of refinement. 
Reported values are the minimal ones over a collection of test runs.

Table 4.3 lists the size of the sampling set for the finest level and the total number of sampling points over levels 1 to L
for IPOLY and LSQP with different choices for m(�, j), see (8). The value tsample represents the time spent with computing 
stencil weights at the sampling points from the finite element formulation with projected coordinates. This was performed 
as described in Sec. 4.2.1 for the IFEM approach. The values tlinalg and tsetup give the time required for the solution of the 
linear systems resp. least-squares problems and the total time of the setup phase for computing the polynomial coefficients. 
The last two columns provide information to relate the cost of the setup to those for the evaluation and application of 
our surrogate operator. tcycle represents the run-time for a single V (3, 3)-cycle using, in the case of IPOLY and LSQP, the 
surrogate operator and pcycle gives the percentage of tsetup with respect to tcycle.

For comparison the last row shows for the IFEM approach the number of sampling points, the cost for a V (3, 3)-cycle 
using this operator and percentage of these cost compared to tcycle of the surrogate operator. Remember that in this ap-
proach there is no setup phase, but instead the stencils are re-computed on-the-fly for each stencil application. This must 
be done for every node which corresponds to LSQP using j = �.

Examining the results we see that, as expected, the cost for IPOLY is marginal, only 0.1% of the time required for a single 
V(3, 3)-cycle. This changes dramatically, when we employ for LSQP all available points M� on level � as sampling points, 
i.e., we choose j = � for m(�, j). However, already for j = (� − 1) this reduces to 67%, i.e., two thirds of one multigrid cycle. 
For m(�, j) ≡ 2 this reduces further to only 3% and this choice seems to be the optimal trade-off between accuracy and cost. 
We point out that the relative cost is measured with respect to one MG-cycle based on the surrogate operator evaluation.

Note that for all choices in the LSQP case the majority, between 90 and 95%, of the time for the setup phase is spent 
in the evaluation of the stencil weights at the sampling points and only the remaining fraction is required for solving the 
least-squares problems.

Our previous accuracy experiments had shown that even using a sampling set S� as coarse as M2 can give satisfactory 
results and thus the relative setup cost for our surrogate approaches is quite small compared to the total cost of the solver.

5. Kernel optimization

In Sec. 4, the run-time tcycle of a single V-cycle was measured in a serial setting. Comparing the measured 16.8 seconds 
to the 5.0 seconds required for a V-cycle with a constant stencil application shows that our straightforward implementation 
based on incremental polynomial evaluation underperforms. We exceed the theoretically expected cost factor given in (12)
by roughly a factor of 1.68.

Thus we now focus on a node-level performance analysis and a more sophisticated re-implementation of the surrogate 
polynomial application. As we are mainly interested in extreme scale simulations, this will be done for the quadratic case.

In the following, we study the optimization of the GS smoother in detail. Updating the value of the current iterative 
solution at node I can be formulated as

uI = 1

sI
mc

⎛⎝fI −
∑

w∈W\{mc}
sI

w uI w

⎞⎠ (13)
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and, naturally, involves all 15 stencil weights sI
w . Here I w stands for the node which is the closest one to I when we move 

in direction w . We will refer to this as a stencil-based update (SUP) below.
Our Gauss–Seidel smoother uses a lexicographic ordering. Within HHG this implies that the function values uI are 

updated in the following ordering, as shown in Fig. 2.4. We traverse the nodes of a volume primitive from west to east, 
going line by line from south to north and plane by plane from bottom to top. Hence, when updating the value at node I , 
the values at the neighboring nodes with indices bc, be, bnw , bn, ms, mse, and mw have already been updated during the 
current sweep, whereas values at nodes with indices me, mnw , mn, ts, tse, t w , and tc still need to be updated. Note that 
due to the hybrid nature of the smoother this is true for the majority of, but not for all nodes, as those near the boundary 
couple to lower dimensional primitives. Consequently, the only data dependency which must be considered during the 
update inside a line is uImw . This value is only available for updating uI after the update at the previous node, i.e., Imw , was 
computed. We further remark that due to the lexicographic ordering, the tc value is the only one that has not been touched 
in a previous update. Hence, it has not been loaded into the cache so far.

Our analysis revealed that the recursive dependency in (13) dominates the execution time for the update. Furthermore, 
it hinders certain optimizations, like vectorization, and thereby prohibits exploiting the full floating point performance of 
the core.

To circumvent this problem, the update formula (13) for all nodes within one line of the volume primitive is re-arranged. 
For this, we split it into a non-recursive and a recursive part uI = τ + ρ with

τ = 1

sI
mc

(
fI −

∑
w∈W

w /∈{mc,mw}

sI
w uI w

)
(14)

ρ = − 1

sI
mc

sI
mw uImw . (15)

Firstly, the non-recursive part τ is pre-computed and stored in a temporary array, tmp in Algorithm 1 below, large enough 
to hold the results for a complete line. As an incremental polynomial evaluation does not allow complete vectorization, we 
instead represent the stencil weights sd

w for d ∈ N0 as

sd
w = p̂w(0) + d δ p̂w(0) + (d − 1)d

2
δkw (16)

with p̂w(0) := Pαsw(0, j0, k0) and

δ p̂w(0) := dPαsw(i, j0,k0)

di

∣∣∣∣
i=0

+ δkw

2
,

δkw := d2Pαsw(i, j0,k0)

di2

∣∣∣∣
i=0

.

Here, the index d denotes the position of a node inside the current line, starting at 0. For the very first line, the values 
p̂w(0), δ p̂w(0) and δkw have to be initialized. For all further lines even these values are obtained by updates analogue to 
(16) in j or k direction, respectively.

For performance reasons, (14) is further split into two loops, where in the first all stencil elements in W1 are treated 
and then those in W2. The two sets are defined as

W1 = {me,mnw,mn, ts, tse, t w},
W2 = {tc,bc,be,bnw,bn,ms,mse}.

On the tested architecture, see below, this splitting avoids problems with register spilling, see e.g. [13]. The distribution of 
the sets is based on hardware dependent performance investigations as detailed in Sec. 5.1 and has no geometric meaning.

Now in a second step, the recursive part ρ , see (15), is computed and the stencil update completed by combining it with 
the pre-computed value τ stored in the temporary array. Unrolling this last loop by a factor of four or eight increases the 
performance on the evaluated hardware architecture.

The full pseudo code for the optimized GS smoother is displayed in Algorithm 1.

5.1. Single core performance

In the following, we will conduct a detailed performance investigation. This will be based on performance modeling and 
compared to actual measurements. Note that we do not include the initialization in line 2 of the algorithm and that the 
setup phase for computing the polynomials representing the weights of our surrogate operator is considered neither in the 
model nor in the measurements. The latter is justifiable as for reasonable choices of m(�, j) the cost is negligible.
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Algorithm 1 Optimized GS smoother.
1: for line (k, j, 0 : n − 1) ∈ TET do
2: initialize/update s0

w , δ p̂0
w

3: // setup stencils along line and store in tmp array tmp[d], tmp_mw[d], and tmp_mc[d], except recursive part mw.
4: for d = 0, ... n − 1 do // loop 1: vectorized
5: tmp[d] = f d ; tmp_mc[d] = 0
6: for w1 ∈ W1 do // completely unrolled
7: compute stencil weight sw1 // evaluate (16)
8: tmp[d] − = sd

w1
× ud

w1
, tmp_mc[d] − = sd

w1
9: end for

10: end for
11: for d = 0, ... n − 1 do // loop 2: vectorized
12: for w2 ∈ W2 do // completely unrolled
13: compute stencil weight sd

w2
// evaluate (16)

14: tmp[d] − = sd
w2

× ud
w2

, tmp_mc[d] − = sd
w2

15: end for
16: compute stencil weight sd

mw // evaluate (16)
17: tmp_mc[d] − = sd

mw , s0 = 1 / tmp_mc[d]
18: tmp_mw[d] = s0 ×sd

mw , tmp[d] = tmp[d] × s0
19: end for
20: // compute recursive part to finish application of the stencil(s)
21: for d = 0, ... n − 1 do // loop 3: 4- or 8-way unrolled
22: ud

mc = tmp[d] − tmp_mw[d] × ud
mw

23: end for
24: end for

Table 5.1
Cycle numbers reported by IACA for the three loops normalized to eight stencil-based 
updates. Given are the maximum values for each execution unit of a certain category. 
The reported duration of 40 cy from IACA for loop 3 is higher than the occupancy of the 
execution ports. This is due to the data dependencies, which hinder efficient instruction 
pipelining.

max FP division FP mul FP add load store

loop 1 22 0 20 20 22 2
loop 2 56 56 32 34 36 4
loop 3 40 0 4 4 12 8

Benchmarked system The execution is modeled for and evaluated on the Haswell based Intel Xeon E5-2695 processor with 
14 cores, which was configured in cluster on die mode, i.e. seven cores per NUMA domain. This is the same system as used 
in the SuperMUC Phase 2 cluster, on which the scaling experiments of Sec. 6 were conducted. The only difference is that 
the processor here was only clocked at 2.3 GHz instead of 2.6 GHz on the SuperMUC.

One core of the Intel Xeon comprises several execution ports, which can perform: floating point (FP) multiply & FP fused 
multiply add (FMA), FP addition & FP FMA, FP division, load, and store. Transferring a cache line between L1/L2 cache or 
L2/L3 cache takes 2 cycles (cy) on Haswell, respectively. As the system sustains 24.2 GiB/s memory bandwidth from one 
NUMA domain, it takes 5.7 cy at 2.3 GHz to transfer one cache line between L3 cache and memory.

Performance modeling Our performance analysis is based on the Execution–Cache–Memory (ECM) model [22]. In contrast 
to the simpler Roofline model [39], which only takes into account the (number of) floating point operations performed for a 
certain amount of data transferred between core and memory, the ECM model considers the complete path of the memory 
hierarchy including caches. Furthermore the complete execution inside the core is examined, which, besides floating point 
operations, includes also, e.g., address generation and register spilling. As in the actual memory hierarchy, data is transferred 
in the granularity of cache lines, the modeling is based on this unit. On the target architecture a cache line comprises 
64 bytes, which is for the stencil considered equivalent to eight updates. In the following, the modeling of the execution and 
the data transfers inside the memory hierarchy are outlined.

Modeling of execution For modeling the execution of the optimized implementation inside the core, the Intel Architecture 
Code Analyzer (IACA) is used, see [24]. The tool generates a scheduling of the instructions over the available execution 
ports on a certain micro-architecture for a given binary. This was also used to derive the optimal distribution of the two 
sets W1 and W2. Here it is assumed that all data can be fetched from L1 data cache. IACA can operate in two modes: 
throughput and latency. In throughput mode it is assumed that the considered loop iterations are independent and can 
overlap, while in latency mode, it is assumed that operations between iterations cannot overlap. Analyzing the three loops 
in our implementation with throughput mode resulted in the closest agreement of prediction and measurement.

The values reported by IACA for eight stencil-based updates, our base unit from above, on the Haswell micro-architecture 
are listed in Table 5.1 for the two vectorized loops (loop 1 and 2) as well as the loop containing the recursive component 
(loop 3). To ease the modeling process the initialization and setup of the stencil weights in line 2 of Algorithm 1 are not 
considered. Whereas loop 1 and 2 are limited by the occupancy of the execution ports, IACA reports for loop 3 as bottleneck 
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Fig. 5.1. Duration of the different phases involved during eight stencil-based updates as obtained by the ECM model. Shown are the durations of executing 
loop 1, 2, and 3, as well as the time spend with cache line transfers inside the memory hierarchy. For the loops the occupancy of the different execution 
ports are shown: multiplication/fused multiply add (mul/fma), addition/fused multiply add (add/fma), division (div), loads (ld), stores (st). Considered in 
neither model nor measurement is the setup of the initial stencil weights.

the loop latency with 40 cy. This indicates that due to data dependencies resulting from the recursion in loop 3 instructions 
cannot be fully pipelined and stall until their corresponding operands become available. A more detailed overview is pre-
sented in Fig. 5.1 which displays the occupancy of the execution units.

Modeling of cache and memory transfers The amount and duration of cache line transfers inside the memory hierarchy for 
eight stencil-based updates beyond L1 data cache are modeled manually. Those numbers depend on the refinement level �
of the macro tetrahedron, as it determines how many data items can be re-used from cache. If two planes of the tetrahedron 
fit concurrently into a cache level, i.e., the so called layer condition [37] is fulfilled, then only the leading stencil neighbor 
uI

tc must be loaded from a higher cache level, the last stencil neighbor uI
bc gets evicted, and the remaining neighbors can be 

fetched from this cache level. In our case, we focus on � = 5 and for simplicity consider the case where the layer condition 
is only fulfilled in L3 cache. For L1 and L2 cache we assume, that in each cache level only six rows of the tetrahedron, i.e., 
two rows from top, middle, and bottom plane each, can be kept concurrently.

With this assumptions between L1/L2 cache and L2/L3 cache five cache lines are transferred, respectively: one cache line 
from each plane containing uI

tc , uI
mn , and uI

bn is loaded (three loads), one cache line containing the corresponding element 
from the f array (one load), and the modified cache line containing uI

mc gets evicted (one store). As in L3 cache the layer 
condition is fulfilled, instead of three cache lines only the one for the top plane containing uI

tc must be loaded (one load). 
Everything else stays the same, which results in three cache line transfers. Concerning the arrays used for vectorization to 
store the temporary results, they are small enough to fit with the other data into L1 cache. Further the least recently used
cache policy, commonly used on current architectures, ensures that they get not evicted.

Results The timings resulting from the IACA analysis combined with the manual modeling of the data transfers in the 
memory hierarchy are summarized in Fig. 5.1. Note that this does not show an exact scheduling of the different execution 
phases and only sums up the duration of the different parts, which are involved during execution. The predicted duration 
of 132 cy for eight stencil-based updates by the ECM model is ≈ 15% off from the measurement of the executed kernel.

5.2. Socket performance

When increasing the core count the ECM model assumes that only shared resources can become a bottleneck. In the case 
of the benchmarked Haswell system this concerns the segmented L3 cache and the memory interface. However, the band-
width of the L3 cache scales linearly with the number of cores. Thus, only the memory interface could limit performance. 
Consequently the performance should increase linearly with the number of cores up to the point where the memory inter-
face becomes continuously occupied. The model prediction and the corresponding measurement are both shown in Fig. 5.2. 
The code does not saturate the memory bandwidth (green line with triangles) completely. This upper limit is given as ratio 
of the achievable memory bandwidth of 24.2 GiB/s with the bytes transferred between L3 and memory required for one 
stencil-based update. If the layer condition is fulfilled in L3 cache one stencil-based update requires 24 bytes: load of uI

tc , 
load of one element from f array, and eviction of updated uI

mc . Utilizing also the SMT thread of each core (single filled red 
square) increases performance slightly. This has two reasons. Firstly the memory interface is not continuously utilized and 
secondly still execution resources on each core are available. The resources are available because of pipeline bubbles, i.e., 
time slots with no operation in the execution pipeline, due to the division in loop 2 and the recursion in loop 3.
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Fig. 5.2. Performance of the optimized code (in MSUP/s, mega stencil-based updates per second) compared with the ECM model prediction.

Fig. 6.1. Run-times of one V(3, 3)-cycle. (Left) Weak scaling on SuperMUC. 16 macro elements are assigned to one core. The finest grid is fixed to L = 5, 
i.e. there are 3.3 · 105 DOFs per volume primitive. (Right) Strong scaling (solid) and parallel efficiency (dashed). The problem size is fixed to 12,960 macro 
elements and L = 5. In total there are 4.5 · 109 DOFs.

6. Weak and strong scaling

To demonstrate the performance and scalability of our approach, we perform weak and strong scaling runs on the 
supercomputer SuperMUC (Phase 2) that is ranked number 28 in the June 2016 TOP500 list. It is a Lenovo NeXtScale 
system with a theoretical peak performance of 3.58 PFLOPs/s. Each compute node consists of two Haswell Xeon E5-2697 v3 
processors where each processor is equipped with 14 cores running at 2.6 GHz. Per core 2.3 GiB of memory are provided, 
but typically only 2.1 GiB are available for applications. The nodes are connected via an Infiniband (FDR14) non-blocking 
tree.

For our runs we utilize the Intel C/C++ Compiler 15.0 with flags -O3 -CORE-AVX2 -fma and the Intel MPI library 5.0.
As mentioned before degree two polynomials for the IPOLY/LSQP approach provide the most efficient compromise be-

tween accuracy and computational cost in the HPC context. In Fig. 6.1 we present the run-times of one V(3, 3)-cycle for the 
different implementations. For reproducibility we take the minimum value out of ten cycles reflecting the best exploitation 
of the machine’s capabilities. We note that these minimal values are robust. For each of the 65 runs performed, 35 for weak 
scaling and 30 for strong scaling, at least six of the ten V-cycle run-times, and overall more than 90% are within a 10% 
deviation from the respective minimum value.

The CONS setting serves as minimal cost reference. IPOLY and LSQP differ only in the setup phase, so only LSQP is 
considered here. For this approach, we compare the straightforward implementation of the method with the optimized 
version from Sec. 5 termed LSQP OPT. To demonstrate the cost of a conventional assembly of the stencils also the IFEM case 
is shown. Furthermore the run-times for double discretization are given. Here the non-optimized LSQP implementation is 

3.6 Weak and strong scaling 75



34 S. Bauer et al. / Applied Numerical Mathematics 122 (2017) 14–38

Fig. 7.1. Macro mesh for the half cylinder mantle (left) and the curved pipe (center). On the right the relative mean error ew for one macro element for the 
cylinder mantle is given for L = 4.

chosen for the smoother and the conventional stencil assembly for residual. As this is dominated by the expensive residual, 
employing the optimized smoother does not lead to a significant improvement.

For the weak scaling, Fig. 6.1(left), we assign 16 macro elements to one core and fix the refinement level to L = 5 giving 
us 3.3 · 105 DOFs per volume primitive. The number of macro elements and cores varies from 240 to 122,880 and from 15 
to 7,680, respectively.

We observe that the IFEM method is even more expensive than the theoretical prediction from Table 4.2 indicated. 
This is due to additional memory accesses and function calls which are not considered in the flop count. The double 
discretization is about a factor of 7 slower than the non-optimized LSQP method. This is in line with the flop count for 
a V(3, 3)-cycle taking into account the aforementioned additional cost for the residual. The values for the straightforward 
implementation of the LSQP method reflect the serial run-time factor of (1.68 · C(2)) mentioned in Sec. 5. Our optimized 
version outperforms the cost factor C(2) ≈ 2, and the run-time increases by only a factor of 1.6 compared to the CONS case. 
Also it shows excellent weak scaling behavior.

For the strong scaling case, Fig. 6.1(right), we fix the problem size to 12,960 macro elements and set L = 5. In total this 
results in 4.5 · 109 DOFs. This also gives an upper bound for the number of cores that can be used. The lower bound is 
determined by the available memory of 2.1 GiB per core where we need about 100 bytes per DOF in our implementation.

Not surprisingly, the IFEM implementation shows the best parallel efficiency of above 90% even for the largest number 
of cores. Here, most of the time is spent with the cost intense on-the-fly stencil computation. Thus, increasing the amount 
of communication by increasing the number of cores does hardly affect the performance that scales almost linearly with 
the number of cores. This is also the case for the DD approach. Even though the computationally expensive residual occurs 
a factor of 7 less often then in the IFEM case, it is still the dominating factor. Whereas for the CONS and for the LSQP

implementations where the stencil is either already known or computed by an inexpensive evaluation of the surrogate 
polynomials, we clearly see the influence of communication for the runs with larger number of cores. But nevertheless the 
run-time even for the largest case of the optimized LSQP method is a factor of 10 or 55 faster than LSQP DD or IFEM, 
respectively, and only 1.8 times slower than the CONS reference. We point out that for the DD approaches, the expensive 
operator need only be used in the final few iterations and thus its cost within the solver can be further reduced.

7. Alternative curved geometries

To demonstrate the flexibility and robustness of our approach, we apply it to two alternative curved geometries. The first 
is a half cylinder mantle with inner radius r1 = 0.8 and outer radius r2 = 1.0, height z1 = 4.0 and with an angular coordinate 
between 0 and π . In axial direction the cylinder mantle is warped inwards by w(z) = 0.2 sin (zπ/z1). The second geometry 
is a curved pipe with radius one and an overall length of about 28.

For both settings it is easier to define the input mesh T−2 not on the domain itself. Instead we mesh a fitting hexahedron 
and then apply a global mapping � to this mesh, see Appendix A for details. T−2 is then regularly refined and the mapping 
applied to the new nodes.

Fig. 7.1 depicts the two coarse meshes after application of �, i.e. we show the mesh constructed from mapping the 
vertices of T−2. Note that these meshes involve thin and stretched macro tetrahedra. Since our multigrid method combines a 
point-smoother with full coarsening, its algebraic convergence rate will deteriorate. However, this is independent of whether 
we use IFEM or LSQP, as will be shown below, and could be fixed by standard multigrid techniques, see e.g. [38].

On the right of Fig. 7.1 we show the relative mean errors in the stencil weights for the case of the cylinder mantle and 
a macro element which was refined six times. Compared to the spherical shell scenario the error is much smaller. This can 
be attributed to the moderate curvature in the geometry.

For our experiments with the cylinder we employ an input mesh that gives us one hexahedral block of macro elements in 
radial direction, four in tangential and eight in axial direction, where each of these blocks is decomposed into six tetrahedral 
macro elements, see the left part of Fig. 7.1. This leads to macro elements of size Hr = 0.2, Ht = 0.79 and Hz = 0.5. For 
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Table 7.1
Discretization error in the L2-norm for IFEM and LSQP (q = 2) and 
ratio of the asymptotic multigrid convergence rates for half cylinder 
mantle.

Level eIFEM eLSQP
ρIFEM/ρLSQP

L = 1 7.125e−02 7.125e−02 1.00
L = 2 1.749e−02 1.749e−02 1.00
L = 3 4.305e−03 4.304e−03 1.00
L = 4 1.066e−03 1.066e−03 1.00
L = 5 2.653e−04 2.649e−04 1.00
L = 6 6.614e−05 6.719e−05 1.00

Table 7.2
Discretization error in the L2-norm for IFEM and LSQP (q = 2 and q = 3) and ratio of the asymptotic 
multigrid convergence rates for curved pipe.

Level eIFEM eLSQP (q = 2) ρIFEM/ρLSQP (q = 2) eLSQP (q = 3) ρIFEM/ρLSQP (q = 3)

L = 1 7.50e−05 7.50e−05 1.00 7.50e−05 1.00
L = 2 1.86e−05 1.86e−05 1.00 1.86e−05 1.00
L = 3 4.64e−06 4.67e−06 1.00 4.64e−06 1.00
L = 4 1.16e−06 1.41e−06 1.00 1.16e−06 1.00
L = 5 2.89e−07 9.87e−07 1.00 3.10e−07 1.00

testing the accuracy of the finite element solution based on the surrogate operator we use the following analytic solution, 
which is zero at the inner and outer radial boundary

u(x, y, z) = sin

(√
x2 + y2 + w(z) − r1

r2 − r1
π

)
cos

(
4 arccos

(
x√

x2 + y2

))
exp (z/2) . (17)

For the pipe T−2 is chosen such that along its course the pipe is split into 80 pieces. Each of these resulting disks is 
further divided into 8 × 8 blocks. Again, each block consists of 6 tetrahedral macro elements. In total this gives 30,720 
macro elements. For the circular shape we use in the interior a squared block of length 0.66 that is composed of 4 · 4 · 6
macro elements and in the outer region we use two circular layers. In order to get a smooth transition from the inner to 
outer region the curvature is continuously increased with radius. Note that this setting is comparable to the second column 
of Table 4.1 where we also used two radial layers to discretize the spherical shell. But this time we have a thicker circular 
layer with largest radial Hr ≈ 0.37 which makes this example more challenging. So we expect that the LSQP approach with 
quadratic polynomials will allow about 3 to 4 levels of refinement. To test this geometry we set the analytic solution

u(x, y, z) = sin(x) sin(y) sin(z). (18)

with non-homogeneous Dirichlet boundary conditions.
As described in Sec. 4, we use a geometric multigrid as iterative solver in combination with a residual based stopping 

criterion given by a reduction factor of 10−8. Table 7.1 shows the ratio of ρIFEM and ρLSQP , i.e. the convergence rates of 
the multigrid solver for both approaches. This was measured as ρ = (

r(10)/r(5)
)1/5

where r( j) denotes the norm of residual 
at iteration j. We see that, indeed, the convergence rate is not affected by choosing the surrogate operator. This is also 
reflected by the fact that for both discretizations the multigrid solver always requires the same number of V-cycle steps to 
satisfy the stopping criterion. Here, as in Sec. 6, the run-time required for LSQP was much smaller than that for IFEM.

The discretization error is evaluated with respect to the exact solution in the L2-norm for both discretizations and 
geometries. In Table 7.1, we compare the discretization errors for IFEM and LSQP. Even for the rather coarse mesh of the 
half cylinder mantle with anisotropic elements we observe no loss of accuracy at all for the first five levels. On level 6 the 
accuracy loss is smaller than 2%.

The second geometry is more challenging. On the one hand, it has a stronger curvature along its course. On the other 
the change of curvature within a mapped macro element is much stronger and increases in radial direction. To account for 
these additional complexities we had to increase the sampling set to S� = M� . Indeed, as predicted above, we find that our 
approach is exact almost up to L = 4 where the accuracy loss is about 20%, see Table 7.2. Even for cases L � 4 where the 
quadratic surrogate operator converges to a slightly different solution, the algebraic convergence of the multigrid solver is 
not affected. When we increase the polynomial degree of the surrogate operator, we can restore the exact discretization 
error with a relative deviation of less than 8% even for L = 5.

8. Conclusion and outlook

We introduced a novel two-scale approach for handling non-polyhedral domains in large scale simulations with matrix-
free finite elements. It is based on replacing the cost intensive on-the-fly computations of the node stencil by the evaluation 
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of a surrogate approximation polynomial of low order. Typically for large system size, second order polynomials already 
guarantee high enough accuracy and thus reduce the flop counts significantly. This technique can be combined for a further 
improvement of the numerical accuracy with the classical double discretization approach. Here the smoother in the multi-
grid algorithm employs cheap lower order stencils while the expensive high accuracy operators are only used to compute 
the residual for the coarse grid correction.

The accuracy of our approach was first examined theoretically by an a priori estimate and secondly verified by numerical 
experiments. The implementation was further optimized on the node-level and systematically analyzed by the ECM model. 
Excellent performance and scalability was demonstrated on the supercomputer SuperMUC. The approach is completely local 
with respect to the macro elements and open to general blending functions and geometries. Future work will include 
different partial differential equations such as the Stokes system, variable coefficients in the PDE and alternative stencil 
approximations preserving symmetry for the L̃ operator.
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Appendix A. Blending functions

In this appendix we give details of the initial macro mesh and blending functions � used for our three test geometries.

A.1. Spherical shell

The initial macro mesh T−2 is generated using an icosahedral approach well-known in meteorology and geodynamics. It 
is based on an icosahedral triangulation of the unit sphere, see e.g. [6,36], that is then mapped onto corresponding radial 
sub-layers of the thick spherical shell. This results in a mesh composed of prismatic elements consisting of two parallel 
planar triangles with vertices on neighboring spherical layers of the mesh. Their vertices are connected by radial grid 
lines R. For our purposes we split each prism into three tetrahedral macro elements. All three macro elements T generated 
from the same prism P use an identical blending function �T . The mapping itself is given by

�T (x) = x

|x| R(x) . (A.1)

The corresponding scaling factor R(x) is fixed in the following fashion. Each point x lies in a triangle parallel to the top and 
bottom one of P . The intersection of this triangle with the radial lines R determines R(x).

A.2. Half cylinder mantle

For this geometry we start with an initial triangulation T−2 of the hexahedron [r1, r2] ×[0, 1/2] ×[0, z1]. Note that these 
are the (scaled) cylindrical coordinates of the cylinder mantle. In this setting � can be defined globally by

�(x, y, z) =
⎛⎝(x − w(z)) cos(2π y)

(x − w(z)) sin(2π y)

z

⎞⎠ (A.2)

with w(z) = 0.2 sin(π z/z1) prescribing the curvature along z-direction.

A.3. Curved pipe

Here we start with an initial triangulation T−2 of the hexahedron given by [−√
2/2, 

√
2/2] × [−√

2/2, 
√

2/2] × [0, z1] with 
z1 = 20. In a first step this domain is mapped onto a cylinder by

ϕ(x, y, z) =
⎛⎝ϕx(x, y)

ϕ y(x, y)

z

⎞⎠ =:
⎛⎝ x̂

ŷ
ẑ

⎞⎠ (A.3)

To this end, we divide the square [−√
2/2, 

√
2/2]2 into an interior square �1 of size [−1/3, 1/3]2 and four outer trapezoidal 

regions �2 to �5. The top trapezoid is �2 and the others are numbered clock-wise. Then, we define on each region the 
mapping ϕi(x, y), 1 � i � 5, as:

78 3. Two-scale approach for efficient on-the-fly operator assembly



S. Bauer et al. / Applied Numerical Mathematics 122 (2017) 14–38 37

ϕ1(x, y) =
(

x
y

)
(A.4)

ϕ2(x, y) = y − √
2/2

1/3 − √
2/2

(
x
y

)
+ y − 1/3√

2/2 − 1/3

√
2y√

x2 + y2

(
x
y

)
(A.5)

ϕ3(x, y) = x − √
2/2

1/3 − √
2/2

(
x
y

)
+ x − 1/3√

2/2 − 1/3

√
2x√

x2 + y2

(
x
y

)
(A.6)

ϕ4(x, y) = y + √
2/2

−1/3 + √
2/2

(
x
y

)
+ y + 1/3

−√
2/2 + 1/3

−√
2y√

x2 + y2

(
x
y

)
(A.7)

ϕ5(x, y) = x + √
2/2

−1/3 + √
2/2

(
x
y

)
+ x + 1/3

−√
2/2 + 1/3

−√
2x√

x2 + y2

(
x
y

)
(A.8)

This gives a smooth transition from the inner block �1 where no transformation is done, to the outer blocks where the 
curvature is increased with |y| for �2,4 or |x| for �3,5, respectively.

In a second step we add the curvature along the pipe. The shape of the curved pipe is prescribed by the transla-
tion T (ẑ) = (

f (ẑ),0,0
)T

where f (ẑ) = (2ẑ − z1)3/1000. Additionally, for each ẑ the corresponding disk of the cylinder in 
x, y-plane is rotated such that it is perpendicular to the plane with normal vector 1/μ

(
f ′(ẑ),0,1

)T
, with the scaling factor 

μ = 1/
√

f ′(ẑ)2 + 1. This can be described by M(ẑ) 
(
x̂, ŷ,0

)T + (
0,0, ẑ

)T with a rotation matrix

M(ẑ) = 1

μ

⎡⎣ 1 0 f ′(ẑ)
0 μ 0

− f ′(ẑ) 0 1

⎤⎦
Finally, the global mapping � is given by

�(x, y, z) = M(z)ϕ(x, y,0) + T (z) + (0,0, z)T . (A.9)
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Chapter 4

A new matrix-free approach for
large-scale geodynamic simulations
and its performance

This chapter was published in the book series Lecture Notes in Computer Science in 2018
and reprinted by permission from Springer Customer Service Centre GmbH:
Springer Nature, Lecture Notes in Computer Science, vol 10861
A new matrix-free approach for large-scale geodynamic simulations and its performance,
Simon Bauer, Markus Huber, Marcus Mohr, Ulrich Rüde, Barbara Wohlmuth.
c© Springer International Publishing AG, part of Springer Nature, 2018
https://doi.org/10.1007/978-3-319-93701-4_2

In this chapter the LSQP method from chapter 3 will be extended to the full Stokes
system including variable viscosity coefficients. The method will be applied to a large scale
geophysical application with a global resolution of 1.7 km.
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Abstract. We report on a two-scale approach for efficient matrix-free
finite element simulations. The proposed method is based on surrogate
element matrices constructed by low-order polynomial approximations.
It is applied to a Stokes-type PDE system with variable viscosity as is a
key component in mantle convection models. We set the ground for a rig-
orous performance analysis inspired by the concept of parallel textbook
multigrid efficiency and study the weak scaling behavior on SuperMUC,
a peta-scale supercomputer system. For a complex geodynamical model,
we achieve a parallel efficiency of 95% on up to 47 250 compute cores.
Our largest simulation uses a trillion (O(1012)) degrees of freedom for a
global mesh resolution of 1.7 km.

Keywords: Two-scale PDE discretization
Massively parallel multigrid · Matrix-free on-the-fly assembly
Large scale geophysical application

1 Introduction

The surface of our planet is shaped by processes deep beneath our feet. Phenom-
ena like earthquakes, plate tectonics, crustal evolution up to the geodynamo are
governed by forces in the Earth’s mantle that transport heat from the interior of
our planet to the surface in a planetwide solid-state convection. For this reason,
the study of the dynamics of the mantle is critical to our understanding of how
the entire planet works.

There is a constant demand for ever more realistic models. In the case of
mantle convection models (MCMs), this includes, e.g., compressible flow formu-
lations, strongly non-linear rheologies, i.e., models in which the fluid viscosity

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10861, pp. 17–30, 2018.
https://doi.org/10.1007/978-3-319-93701-4_2
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depends not only on pressure and temperature, but also on the flow velocity, the
inclusion of phase transitions or the tracking of chemical composition. A discus-
sion of current challenges is, e.g., given in [15]. Another trend is the growing use
of MCMs to perform inverse computations via adjoint techniques in order to link
uncertain geodynamic modeling parameters to geologic observables and, thus,
improve our understanding of mantle processes, see e.g. [7]. These advanced
models require efficient software frameworks that allow for high spatial reso-
lutions and combine sophisticated numerical algorithms with excellent parallel
efficiency on supercomputers to provide fast time-to-solution. See [11,15,21] for
recent developments.

We will focus here on the most compute-intensive part of any MCM, which is
the solution of the generalized Stokes problem, where f represents the buoyancy
forces, u velocity, p pressure, T temperature and ν(u, T ) is the viscosity of the
mantle.

− div

[
1

2
ν
(
∇u + (∇u)

� )]
+ ∇p = f , div u = 0. (1)

Problem (1) needs to be solved repeatedly as part of the time-stepping and/or as
part of a non-linear iteration, if ν depends on u. Note that in (1) we assume an
incompressible fluid, as the best way to treat the compressibility of the mantle
is an open question, [15], outside the scope of this contribution.

Most current global convection codes are based on finite element (FE) dis-
cretizations, cf. [8,15,21]. While traditional FE implementations are based on the
assembly of a global system matrix, there is a trend to employ matrix-free tech-
niques, [2,4,17,19]. This is motivated by the fact that storing the global matrix
increases the memory consumption by an order of magnitude or more even when
sparse matrix formats are used. This limits the resolution and results in a much
increased memory traffic when the sparse matrix must be re-read from memory
repeatedly. Since the cost for data movement has become a limiting factor for all
high performance supercomputer architectures both in terms of compute time
and energy consumption, techniques for reducing memory footprint and traffic
must receive increased attention in the design of modern numerical methods.

In this contribution, we report on the prototype of a new mantle convec-
tion framework that is implemented based on Hierarchical Hybrid Grids (HHG)
[1,4,11,14]. HHG employs an unstructured mesh for geometry resolution which
is then refined in a regular fashion. The resulting mesh hierarchy is well suited to
implement matrix-free geometric multigrid methods. Multigrid techniques play
an important role in any large-scale Stokes solver, most commonly as precon-
ditioner for the momentum operator in a Krylov solver, or as inner solver in
a Schur complement approach. We employ a geometric Uzawa-type multigrid
solver that treats the full Stokes system all-at-once [12]. We present a new app-
roach that allows to assemble the resulting FE stencils in the case of curved
geometries and variable viscosity on-the-fly as a core component of matrix-free
multigrid solvers. It is based on a polynomial approximation of the local element
matrices, extending our work in [2].
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We will carry out a systematic performance analysis of our HHG-based
implementation and investigate parallel performance with respect to run-time,
memory consumption and parallel efficiency of this new numerical approach for
a real-world geophysical application. It will be investigated and tuned on the
SuperMUC peta-scale system of the Leibniz Supercomputing Center (LRZ).

2 Software Framework and Discretization

Here we consider the thick spherical shell Ω = {x ∈ R3 : rcmb < ‖x‖2 <
rsrf}, where rcmb and rsrf correspond to the inner and outer mantle boundary,
and ‖ · ‖2 denotes the Euclidean norm of a vector. By taking the Earth radius
as reference unit, we set rcmb = 0.55 and rsrf = 1. We discretize Ω by an
initial tetrahedral mesh T0 using a standard icosahedral meshing approach for
spherical shells, see e.g. [8]. From this we construct a family of semistructured
meshes T := {T�, � = 0, . . . , L} by uniform refinement up to level L ∈ N0. For
the finite element discretization of the Stokes system (1), we employ standard
conforming linear finite element spaces for velocity and pressure on T . While this
P 1–P 1 pairing is of computational interest, it is known to be unstable. We use
the pressure stabilization Petrov-Galerkin (PSPG) method [6] as stabilization
technique. Using standard nodal basis functions for the finite element spaces, we
obtain on each level � of the hierarchy a linear system of algebraic equations

L�

(
u�

p�

)
:=

(
A� G�

D� −C�

)(
u�

p�

)
=

(
f�
g�

)
, � = 0, . . . , L, (2)

where u� ∈ Rnu;� and p� ∈ Rnp;� . The dimensions of the velocity and the pressure
space are denoted by nu;� and np;�. For our considerations below, it is advan-
tageous to re-write (2) by sorting the vector of unknowns with respect to the
different types of degrees of freedom to expose the scalar building blocks of (2)

L� =

⎛
⎜⎜⎝

A11
� A12

� A13
� G1

�

A21
� A22

� A23
� G2

�

A31
� A32

� A33
� G3

�

D1
� D2

� D3
� −C�

⎞
⎟⎟⎠ ,

(
u�

p�

)
=

⎛
⎜⎜⎝

u1
�

u2
�

u3
�

p�

⎞
⎟⎟⎠ . (3)

In this representation, the upper left 3 × 3 substructure of blocks corresponds
to A� and is related to the divergence of the strain tensor in (1). The submatrix
D�, resulting from the discretization of the divergence operator in the continuity
equation, has a 1×3 block-structure, while G�, coming from the pressure gradient
in (1), has a 3 × 1 block-structure and our discretization yields D� = G�

� . The
stabilization C� term acts only on the pressure and, therefore, gives a 1×1 block.
It can be viewed as a discrete Laplacian operator acting on the pressure with
Neumann boundary condition. Note that, while it is obvious that A� depends
on the viscosity ν, it is also necessary to include ν−1 in the stabilization C�.

The mesh hierarchy T allows to construct an efficient geometric all-at-once
Uzawa multigrid method [12]. For solving the linear system (2), we apply multi-
grid V-cycles with three pre- and post-smoothing steps on level L and on each
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coarser level two extra smoothing steps are added. Using a Uzawa type smoother
then guarantees mesh-independent convergence, and we denote this type of
multigrid as Vvar(3, 3). As the multigrid method acts both on velocity and pres-
sure, the problem that needs to be solved on the bottom of the V-cycle is also of
the form (2). For this, we employ the preconditioned minimal residual method
(PMINRES). Our preconditioner has a block structure, where we apply a Jacobi
preconditioned conjugate gradient method to the velocity part and perform a
lumped mass matrix scaling on the pressure.

The HHG framework is a carefully designed and implemented high perfor-
mance finite element multigrid software package [3,12] which has already demon-
strated its usability for geodynamical simulations [1,22]. Conceptually, refine-
ment of the input mesh T0, which we call macro mesh, generates new nodes
on edges, faces and within the volume of the tetrahedra of the input mesh. In
HHG, these nodal values are organized by their geometric classification into a
system of container data-structures called primitives. The nodal values in the
interior of each macro tetrahedron are stored in a volume primitive, and simi-
larly the values on macro edges, faces and vertices in their respective primitives.
In this way, each nodal value is uniquely assigned to one primitive. Note that,
only starting with refinement level two, we get nodes to store in the volume
primitives. We use T2 as coarsest level in our multigrid solver. HHG’s approach
of splitting nodes between primitives of different geometric dimensionality nat-
urally integrates with distributed-memory parallelism. Primitives are enriched
by the nodal values of neighboring primitives in the form of ghost layer data-
structures and kept up-to-date by MPI-communication in case of off-process
dependencies, [3,4].

The structured refinement of the input mesh, employed in HHG, results in the
same types of tetrahedra being adjacent to each node within a certain primitive
type and, thus, identical coupling patterns for these nodes. For constant ν on
each macro tetrahedron, the discretization results also in the weights of these
coupling being constant when proceeding from one node of a primitive to the
next. This allows to use a constant stencil for all nodes in each volume primitive
in a matrix-free approach, resulting in a significantly improved performance of
computationally-intensive matrix-vector multiplications. In view of the system
matrix in (3), we can identify the non-zero entries of each row of each block by
a stencil and denote it by

sA;m,n
ij = (Amn

� )ij , sD;m
ij = (Dm

� )ij , sG;m
ij = (Gm

� )ij , sC
ij = (C�)ij ,

for row index i and column index j and m,n ∈ {1, 2, 3}. Within each volume
primitive each stencil reduces to 15 non-zero entries. In the following, we will
denote a stencil weight by sij , if there is no ambiguity. The full 15pt stencil at
node i will be written as si,:.

3 Efficient On-the-Fly Stencil Assembly

While the hybrid approach of HHG exhibits superior performance, its geome-
try approximation on curved domains such as the spherical shell, is limited in

86 4. Matrix-free approach for large-scale geodynamic simulations



A New Matrix-Free Approach for Large-Scale Geodynamic Simulations 21

the sense that no refined nodes reside on the actual boundary. To account for
this, in our implementation the fine grid nodes can be projected outwards onto
the spherical surface. Also all interior nodes are projected to form concentric
spherical layers. In a matrix-free framework, this comes at the cost that the FE
stencils have to be repeatedly re-assembled on-the-fly.

We briefly describe the assembly procedure. For brevity, we show this only
for A11

� from (3); the other entries are computed analogously. For linear FE the
stencil weight sij can be computed by

sij =
∑

t∈N (i,j)

J−�
t ∇φ̂iloc

· J−�
t ∇φ̂jloc

|det(Jt)|
∫

t

ν dx =
∑

t∈N (i,j)

Et
iloc,jloc

ν̄t (4)

where Jt is the Jacobian of the mapping from the reference element t̂,N (i, j) the
set of elements with common nodes i and j, Et ∈ R4×4 the local element matrix
on t, iloc the element local index of the global node i, and φ̂iloc

the associated
shape function. We can use a vertex based quadrature rule for the integral over
ν by summing over the four vertices of t with weights 1/4. This fits naturally to
the HHG memory layout where the coefficients νi are stored point-wise. Also
techniques for elimination of common sub-expressions can be employed, see [14].

A traditional matrix-free implementation requires to repeatedly evaluate (4)
on-the-fly. For the full 15pt stencil si,:, this involves the computation of Et on
each of the 24 elements adjacent to node i. Even though we use optimized code
generated by the FEniCS Form Compiler [18] for this task, it constitutes the
most expensive part in the stencil assembly procedure and severely reduces over-
all performance. We term this approach IFEM and it will serve as our baseline
for comparison. We remark that our implementation is node- and not element-
centric. A benefit of this is, e.g., that the central stencil weight, essential for
point-smoothers, is directly available. A disadvantage is that it performs redun-
dant operations as it does not take into account the fact that each element
matrix is shared by four nodes. We could slightly reduce the operation count by
computing only the i-th row of the matrix when dealing with node i. However,
this still involves the Jacobian of the reference mapping which gives the largest
contribution to the number of operations.

In order to recover the performance of the original HHG implementation also
on curved domains we recently proposed an alternative approach in [2] for block-
wise constant ν. It replaces the expensive evaluation of (4) with approximating
the values of sij by a low-order polynomial. The polynomial coefficients are com-
puted via a least-squares fit in a setup phase and stored. Hence we denote the
technique as LSQP. Later, whenever the stencil si,: is needed, one has to evaluate
15 polynomials at node i, one for each stencil weight. In [2] quadratic polyno-
mials gave the best compromise between accuracy and runtime performance
provided that the coarse scale mesh was fine enough. Furthermore, we showed
that this approximation does not violate the optimal approximation order of
the L2-discretization error for linear finite elements, provided that the pairing
of refinement depth L and macro mesh size H is selected carefully. Results for
the Laplace operator [2, Table 4.1] indicated that for eight levels of refinement
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the converted macro resolution of the spherical shell should be at least around
800 km. For the experiments carried out in Sect. 5, this is satisfied except for the
smallest run, though even there we find good results, see Table 2.

For our PDE problem (2), we have to deal with two additional challenges.
Firstly, instead of a scalar PDE operator as used in [2] we have a system of
PDEs. Secondly, we have to incorporate the non-constant viscosity in the elliptic
operators A� and C�. Conceptually, our discrete PDE system (3) consists of 4×4
operator blocks coupling the three velocity components and the pressure. Our
implementation allows to individually replace any of 16 suboperators by a LSQP
approximation. Here, we only report on the most compute time saving approach,
which is to replace all of the suboperators by the surrogates. We do this on all
levels T�, apart from the coarsest one � = 2. We remark that the polynomials
are evaluated at the nodal centers which leads to a small asymmetry in the
operators. In [2] we found this relative asymmetry to be in O(h). This does
not impact the algebraic convergence of the multigrid solver. However, it leads
to a small issue on the coarsest level. There LSQP uses the same matrix L2

as IFEM. That matrix is symmetric positive semi-definite with a trivial kernel.
Due to the asymmetry in our LSQP approach the restricted residual can include
contributions from that kernel, which we fix by a simple projection of the right-
hand side onto Im(L2) to avoid problems with our PMINRES solver.

How to accommodate variable viscosity is a more intricate problem. In addi-
tion to the geometry variation, which can be approximated by quadratic poly-
nomials as shown in [2], we also get variations due to the non-constant viscosity.
If these are smooth enough, LSQP still yields good results. For more complex
viscosity models, like in Sect. 5, with strong lateral variations a low order poly-
nomial approximation may lead to poor results. Also in time-dependent and/or
non-linear simulations where viscosity changes together with temperature and/or
velocity, we would need to regularly recompute the polynomial coefficients. We,
therefore, choose another approach. Recall that the most expensive part in (4)
is the computation of the 24 element matrices. Instead of directly approximat-
ing sij , one can also approximate the contributions of Et by quadratic polyno-
mials. That is we substitute the expensive Et

iloc,jloc
by an inexpensive polyno-

mial approximation Ẽt
iloc,jloc

in (4). The polynomial approximation then solely
depends on the geometry and is independent of the coefficients. Thus, it works
for all kinds of coefficients. To distinguish between the two variants, we denote
the original one as LSQPS and the new modified one as LSQPE. Note that due
to the linearity of the least-squares fit w.r.t. the input data, LSQPE yields the
same stencil weights as LSQPS in case of blockwise constant coefficients.

Each element matrix Et contributes four values to one stencil si,:. Thus,
in total the LSQPE version requires to define 4 · 24 quadratic polynomials per
macro element. For the full system (2) with general ν, we approximate the sten-
cils of A� and C� via LSQPE, while for G� and G�

� the faster LSQPS version is
used.
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4 Towards a Rigorous Performance Analysis

The LSQPS approach was shown in [2] to be significantly faster than the tra-
ditional IFEM implementation. A more fundamental performance study must
employ an absolute metric that does not rely on just quantifying the speed-up
with respect to an arbitrary baseline implementation. To account for the real
algorithmic efficiency and scalability of the implementation in relation to the rel-
evant hardware limitations, we follow [14] where the notion of textbook multigrid
efficiency [5] was extended to analyze massively parallel implementations. This
metric is known as parallel textbook multigrid efficiency (parTME) and relies on
detailed hardware performance models. While this goes beyond the scope of our
current contribution, this section will provide first results and lay the foundation
for further investigations.

The parTME metric is based on an architecture-aware characterization of a
work unit (WU), where one WU is defined as one operator application of the full
system. Here, we restrict ourselves to one scalar suboperator of (3). Conceptually,
the extension to the full system is straightforward. The operator application can
be expressed in terms of stencil based nodal updates ui ← ∑15

j=1 sijuj . The
number of such updates performed per unit time is measured as lattice updates
per second (Lup/s). This quantifies the primary performance capability of a given
computer system with respect to a discretized system. A careful quantification
of the Lup/s with an analytic white box performance model will often exhibit
significant code optimization potential, as shown in [14]. Equally important,
it provides absolute numbers of what performance can be expected from given
hardware. This is crucial for a systematic performance engineering methodology.
Our target micro-architecture is the eight-core Intel Sandy Bridge (SNB) Xeon
E5-2680 processor with clock frequency 2.7 GHz as used in SuperMUC Phase 1.
This processor delivers a peak performance of 21.6 double precision GFlops per
core, and 172.8 GFlops per chip. However, this is under the assumptions that
the code vectorizes perfectly for the Sandy Bridge AVX architecture, that the
multiply-add instructions can be exploited optimally, and that no delays occur
due to slow access to data in the different layers of the memory hierarchy.

We start with a classic cost count per update to derive an upper bound
for the maximal achievable Lup/s. Here, we will compare the versions IFEM,
LSQPS and LSQPE that are extensions of (CC) and (VC) for domains with
curved boundaries.

First, we briefly recapitulate the cost for (CC) and (VC) and refer to [14] for
details. On a blockwise regular mesh with constant coefficients, also the stencils
are blockwise constant. Thus, for (CC) only one single 15pt stencil is required
per block. This can be easily stored and loaded without overhead. Therefore, the
cost for one stencil based update is 14 add/15 mult. For variable coefficients, the
stencils have to be assembled on-the-fly. This requires the additional evaluation
of (4). In the (VC) implementation, one can exploit the fact that on a polyhedral
domain there exist only six different congruency classes of local elements. Thus,
again per block its contributions to (4) can be pre-computed.
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Table 1. Maximal and measured performance on one Intel SNB core

Kernel Domain Coefficients Add/Mult pmax
core Measured

CC Polyhedral Blockwise constant 14/15 720 MLup/s 176MLup/s

VC Polyhedral Variable 136/111 79.4 MLup/s 39.5 MLup/s

IFEM Curved Variable 1480/1911 5.7 MLup/s 0.7 MLup/s

LSQPS Curved Moderately variable 44/45 245 MLup/s 71.7 MLup/s

LSQPE Curved Variable 328/303 33.0 MLup/s 11.3 MLup/s

Now, we turn to curved domains. The LSQPS approach is the extension of
(CC) with the additional cost of 15 evaluations of a quadratic polynomial, one
for each stencil component. For the evaluation, we use the scheme described in [2]
that allows to evaluate a quadratic polynomial with 2 multiply-add operations.
We note that LSQPS can also be seen as an extension of (VC) for moderately
variable coefficients. For problems with strongly variable coefficients, we propose
either to use IFEM or the LSQPE approach. Different from (VC), the contri-
butions of the 24 neighboring element matrices must be re-computed on-the-fly.
For IFEM, we count 56 additions and 75 multiplications per element matrix.
The advantage of LSQPE is obvious, since only 4 polynomial evaluations, one
for each of the four contributions are required per element matrix. Again, this
can be achieved with 8 multiply-add operations. In Table 1, we report the total
number of operations for the different algorithms. Based on the operation count,
the processor peak performance provides an upper limit on the achievable per-
formance. In Table 1 we show these upper bounds as well as the measured values.
For (CC) and (VC) the values are taken from [14]. For the measurements, we
employed the Intel C/C++ Compiler 17.0 with flags -O3 -march=native -xHost.

Table 1 clearly shows that the peak rates are far from being obtained. For
the simpler kernels (CC) and (VC), we carefully analyzed the performance dis-
crepancy using the roofline and Execution-Cache-Memory models, see [14] and
the references therein. Reasons why the peak rates are not achieved, are the lim-
itations in bandwidth, but also bottlenecks that occur in the instruction stream
and CPU-internal memory transfers between the cache layers. A full analysis
for the advanced kernels is outside the scope of this contribution, but will be
essential in the future to exhibit the possible optimization potential. But even
the simple Flop count and the measured throughput values indicate the success
of LSQPS and LSQPE in terms of reducing operation count as compared to a
conventional implementation, such as IFEM. Similarly, the MLup/s show a sub-
stantial improvement. Both together, and the comparison with (CC) and (VC)
indicate that there may be further room for improvement.

5 Accuracy and Weak Scaling Results

In this section, we analyze the accuracy and scaling behavior of our implemen-
tation for a geophysical application. Our largest simulation run will be with a
global resolution of the Earth’s mantle of ∼1.7 km.
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System: We run our simulations on SuperMUC Phase1, a TOP500 machine at
the LRZ, Garching, Germany. It is an IBM iDataPlex DX360M4 system equipped
with eight-core SNB processors, cf. Sect. 4. Per core around 1.5 GB of memory
are available to applications. Two sockets or 16 cores form one compute node,
and 512 nodes are grouped into one island. The nodes are connected via an
Infiniband FDR10 network. In total, there are 147 456 cores distributed on 18
islands with a total peak performance of 3.2 PFlop/s. We used the Intel compiler
with options as in Sect. 4 and the Intel 2017.0 MPI library.

Setup: The icosahedral meshing approach for the spherical shell does not allow
for an arbitrary number of macro elements in the initial mesh and the smallest
feasible number of macros would be 60 already. Also we are interested in the
scaling behavior from typical to large scale scenarios. Thus, we perform exper-
iments starting on one island and scaling up to eight islands. We try to get as
close as possible to using the full number of nodes on each island, while keeping
the tangential to radial aspect ratio of the macro elements close to 1:1.

Inside a node, we assign two macro elements to each MPI process running
on a single core. As the memory consumption of our application is on aver-
age about 1.7 GB per core, we utilize only 12 of the 16 available cores per
node. These 12 cores are equally distributed on the two sockets by setting
I MPI PIN PROCESSOR LIST=0-5,8-13. A deep hierarchy with 8 levels of
refinement is used. This yields problem sizes with 1.3 · 1011 DoFs on 5 580 cores
(one island), 2.7 · 1011 DoFs on 12 000 cores (two islands), 4.8 · 1011 DoFs on
21 600 cores (four islands) and 1.1 · 1012 DoFs on 47 250 cores (eight islands).

Geophysical Model: In order to have a realistic Stokes-type problem (1) as
it appears in applications, we consider the following model. On the top of the
mantle we prescribe non-homogeneous Dirichlet boundary conditions, composed
of a no-outflow component and tangential components given by present day plate
velocity data from [20]. On the core-mantle boundary vanishing tangential shear
stress resulting in a free-slip condition is enforced.

In terms of viscosity, we employ a similar model as used in [9]. The vis-
cosity is the product of a smooth function depending on the temperature and
the radial position and a discontinuous function reflecting a viscosity jump in
radial direction due to an asthenospheric layer, a mechanically weak zone where
the viscosity is several orders of magnitude smaller than in the lower mantle.
The concrete thickness of the asthenosphere is unknown and subject to active
research, see e.g. [22]. Here, we choose the model from [22] with a thickness of
660 km as this depth is one of two transition zones of seismic wave velocities.
The viscosity model in non-dimensional form is given by

ν(x, T ) = exp

(
2.99

1 − ‖x‖2

1 − rcmb
− 4.61T

) {
1/10 · 6.3713d3

a for ‖x‖2 > 1 − da,

1 else.

where da = 660/R with the Earth radius R = 6371 (km). Finally, we used
present day temperature and density fields to compute the buoyancy term f and
the viscosity, see [7].

4.5 Accuracy and weak scaling results 91



26 S. Bauer et al.

Table 2. Results for one island scenario with 1.3·1011 degrees of freedom: differences in
the velocities inside the mantle obtained with IFEM and LSQP for different refinement
levels (left); characteristic velocities in cm/a for level 8 (right).

level discr. L2 max-norm

4 2.81·10−4 2.58·10−2

5 4.05·10−4 4.84·10−2

6 5.19·10−4 6.70·10−2

7 5.75·10−4 7.89·10−2

8 6.83·10−4 8.58·10−2

charac. velocities IFEM LSQP difference

avg. (whole mantle) 5.92 5.92 5.60·10−5

avg. (asthenosphere) 10.23 10.23 1.10·10−4

avg. (lower mantle) 4.48 4.48 1.12·10−4

max. (asthenosphere) 55.49 55.49 2.61·10−4

max. (lower mantle) 27.46 27.46 6.33·10−4

Accuracy: Before considering the run-time and scaling behavior of our new
LSQP approach, we demonstrate its applicability by providing in Table 2 a com-
parison to results obtained with IFEM. We observe that the differences are
sufficiently small in relation to typical mantle velocities and the uncertainties
in the parameters that enter the model. The fact that the differences slightly
grow with level reflects the two-scale nature of LSQP, as the finite element error
decreases with mesh size h of the finest level, while the matrix approximation
error is fixed by the mesh size H of the coarsest level, see also [2].

Memory Consumption: One important aspect in large scale simulations is
memory consumption. Ideally, it should stay constant in weak scaling runs, as
the number of DoFs per process remains the same. However, this is not always
the case, especially in large scale simulations, due to buffer sizes that scale with
the number of MPI ranks, see [10] for some examples.

To determine how strongly this affects our application, we measure the mem-
ory consumption per MPI process using the Intel MPI Performance Snapshot
(mps) tool [16]. In Fig. 1 (left), we report the mean and maximum memory
usage over all MPI processes. For each process, we assigned two volume prim-
itives. The difference between the mean and maximum value comes from the
different numbers of lower dimensional primitives attached to one process.

Fig. 1. Left: mean and max memory usage over all MPI processes. Right: percentage
of computation versus communication (non-overlapping).
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Table 3. Default and tuned Intel MPI DAPL settings (p = total no. of MPI processes.)

Environment variable Default Tuned

I MPI DAPL UD SEND BUFFER NUM 16 + 4p 8208

I MPI DAPL UD RECV BUFFER NUM 16 + 4p 8208

I MPI DAPL UD ACK SEND POOL SIZE 256 8704

I MPI DAPL UD ACK RECV POOL SIZE 512 + 4p 8704

I MPI DAPL UD RNDV EP NUM 4 2

For the default MPI buffer settings, we observe a significant linear increase
in the memory usage caused by MPI. As a result the eight islands case runs out
of memory. We therefore reduced the number of cores per node for this run to
10 resulting in configuration (B) (Table 4). Alternatively, one could decrease the
number of MPI ranks for the same problem size and core count by using hybrid
MPI/OpenMPI parallelism as done in [11]. This does, however, also not attack
the root of the problem. For this, we need to deal with the MPI library instead.

On an Infiniband cluster the Intel MPI library uses the Shared Memory
(SHM) transport mechanism for intra-node communication, while for inter-node
communication it uses the Direct Access Programming Library (DAPL). While
the UD (User Datagramm) version of DAPL is already much more memory con-
servative than the RC (Reliable Connection) version, the default buffer pool sizes
still scale with the number of MPI processes, [10]. This can be seen from the
default configuration values in Table 3. As suggested in [10], we set the internal
DAPL UD buffer sizes to the fixed values given in Table 3, leading to a sig-
nificant decrease of the memory consumption. The latter, now, shows almost
perfect weak scalability and allows to go to extreme scales. Compared to the all-
to-all communication scenarios shown in [10], we even see a much better scaling
behavior up to 47 250 MPI ranks. We also do not notice any performance loss.

Computation vs. Communication: Current supercomputers provide tre-
mendous computing capacities. This makes computations relatively cheap com-
pared to communication that gets more expensive, the more processes are used.
So, often communication is the bottleneck in high-performance codes.

To investigate the ratio of both, we again employ the Intel mps tool to mea-
sure the time for computation, i.e., mean time per process spent in the appli-
cation code versus time for MPI communication. The latter is the time spent

Table 4. Configurations used in our experiments; default is to use configuration (A).

Configuration Macro elements
per core

Cores
per node

# Cores
(8 islands)

# DoFs
(8 islands)

A 2 12 47 250 1.1 · 1012

B 2 10 40 500 9.1 · 1011

C 1 16 60 840 6.8 · 1011
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inside the MPI library. This tool also reports the MPI imbalance, i.e., the mean
unproductive wait time per process spent in the MPI library calls, when a pro-
cess is waiting for data. This time is part of the reported MPI communication
time. Here, a high percentage of computation is favorable, while the MPI imbal-
ance should be small. Note that we do not overlap computation and commu-
nication. Using overlapping communication does not improve the performance
significantly [13].

Besides our default configuration (A) and configuration (B), we consider a
third case (C) for the eight islands run. Here, we increase the number of cores per
node to the maximum of 16. This increases the total number of MPI processes to
60 840. To make this feasible, we assign one single macro element per rank. This
can be seen as the most critical run in terms of communication as it involves the
largest number of MPI processes.

The results are shown in Fig. 1 (right), where all initialization times are
excluded. We find only a slight increase of communication during weak scaling.
And even for the extreme cases the amount of communication is only about
25%. However, we also observe a relatively high MPI imbalance of around 20%.
This is partly due to the imbalance of lower dimensional primitives and could
be improved by a load balancing scheme that takes the cost of face primitives
into account. Changing the number of macro elements per MPI process (C), or
varying the number of cores per node (A, B) does hardly affect the results.

Parallel Efficiency: Finally, we report in Table 5 the time-to-solution. For these
runs, we switch off any profiling. The iteration is stopped when the residual is
reduced by 105 starting with a zero initial guess. For our geophysical application
such a stopping criterion is more than sufficient. The high viscosity jump in our
application makes the problem particularly difficult for the coarse grid (c.g.)
solver. Choosing the right stopping criterion is essential for the Uzawa multigrid
(UMG) convergence rate, while tuning it becomes quite tricky. It turned out
that a criterion based on a maximal iteration count is favorable compared to a
tolerance based criterion. In Table 5, we also report the best values we came up
with. We remark that for the two islands case we could not find an acceptable
number of c.g. iterations that reduced the UMG V-cycles below 10. For this run,

Table 5. Weak scaling results for geophysical application: Runtime w/ and w/o coarse
grid solver (c.g.) and no. of UMG iterations. Values in brackets show no. of c.g. itera-
tions (preconditioner/Minres). Parallel efficiency is shown for timings w/ and w/o c.g.
∗Timings and parallel efficiency are scaled to 7 UMG iterations.

Islands Cores DoFs Global
resolution

UMG
V-cycles

Time-to-
solution

Time-to-sol.
w/o c.g

Parallel
efficiency

1 5 580 1.3 · 1011 3.4 km 7 (50/150) 1347 s 1151 s 1.00/1.00

2 12 000 2.7 · 1011 2.8 km 10∗ (100/150) 1493 s 1183 s 0.90/0.97

4 21 600 4.8 · 1011 2.3 km 7 (50/250) 1468 s 1201 s 0.92/0.96

8 47 250 1.1 · 1012 1.7 km 8∗ (50/350) 1609 s 1209 s 0.83/0.95
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the element aspect ratio deviates most from 1:1. For all other simulations, the
UMG iterations are stable around 7. Note that for the largest simulation the
residual reduction was 9.9 · 104 after 7 iterations, so the stopping criterion was
only slightly missed. For a fair comparison of runtimes, we scaled all timings to 7
iterations. On up to eight islands, we find a parallel efficiency of 83%. Taking into
account that it includes the c.g. solver with its non-optimal complexity, this is an
excellent value. Examining the time-to-solution with the c.g. solver excluded, we
find an almost perfect parallel efficiency on up 47 250 cores of 95%. Compared to
the IFEM reference implementation, we observe for the smallest run a speed-up
of a factor larger than 20. In order to save core-h, and thus energy, we did not
perform such a comparison for the larger scenarios.

6 Outlook

We extended our LSQP approach to systems of PDEs with variable coefficients
and demonstrated that it is suitable for large scale geophysical applications.
A systematic performance analysis demonstrates the new matrix-free techniques
lead to substantial improvements compared to conventional implementations and
they indicate that there is potential for further improvement. In future work, we
will expand our study by detailed performance models for a rigorous performance
classification and optimization.
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Chapter 5

Dynamic topography

This chapter is part of a manuscript that was invited to the special issue of Journal of
Computational Science in 2019 [1]
Large-scale Simulation of Mantle Convection Based on a New Matrix-Free Approach, S. Bauer,
M. Huber, S. Ghelichkhan, M. Mohr, U. Rüde and B. Wohlmuth.

It is an extended version of the article from chapter 4. Here we present the novel parts of
the manuscript.

Earth’s topography is by no means constant. In fact, it is constantly changed by various
processes, e.g., erosion and sedimentation, or global isostatic adjustment. The latter being the
fact that on ’short’ time-scales Earth behaves elastically when a load is added on or removed
from its surface. The convection driven stresses from the mantle induce deflections on the
surface and core-mantle boundary (CMB) too, referred to as dynamic topography (see [2] for
a review).

Such surface deflections produce notable gravity anomalies [3]. Since early on, in lack of
direct measurements for surface dynamic topography, Geodynamicists use the equipotential
figure of the Earth to constrain rheological depth-dependence in the mantle [4, 5]. These
models take advantage of the semi-analytical solutions with propagator matrices [6]. Despite
the initial progress, the best fitting models are non-unique [7]. That is, a set of different
rheological depth-dependencies can be found to fit the gravitational observations equally
well.

Recently, there has been renewed efforts to quantify dynamic topography at present geo-
logical time [8], and its evolution as a proxy for mantle flow processes (see [9] and references
therein). These efforts can potentially further constrain rheology in the Earth’s mantle. How-
ever, the new results on dynamic topography have aroused a debate too. The focus of this
debate is on the amplitudes and spectrum of surface dynamic topography. Therefore, it is im-
portant to explore different mechanisms that can potentially affect the spectrum of dynamic
topography.

One of the often neglected parameters in global dynamic models is the lateral viscosity
variations (LVVs) induced by temperature variations in the mantle. This has been mainly be-
cause of complexities arising from mode coupling in propagator matrix technique. Fortunately,
our FE approach using LSQPE allows including orders of magnitude viscosity variations in
our models. In this chapter, we will use our approach to study the effects of LVVs in mantle
convection, and in particular the dynamic topography.

The essential part of a model for dynamic topography is the normal component of the
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stress tensor:
σsnn = nT

[
−ν
(
∇u+ (∇u)>

)
+ pI

]
n (5.1)

at the surface, denoted by s. In discrete form, this can be computed as

σsnn,` = (M s
` )−1 [(f` −A`u` −B`p`) n`]s , (5.2)

where M s
` is the lumped surface mass matrix. For the ease of notation, we will skip the index

` in the following. Let Vi = ∪t∈N (i,i)t̄, i.e., the closed union of all elements t sharing node i.
Then, for each boundary node i, the entry of M s

` is given by

(M s
` )ii =

1

3

∫

∂Ω∩Vi

1 ds. (5.3)

Similarly, we can also compute dynamic topography σcnn at the CMB. For a more detailed
derivation of (5.2), we refer to [10].

In the following section, we will first introduce a standard community benchmark for
dynamic topography. This benchmark will then be used this to verify our implementation
and demonstrate the LSQP approach yields trust-worthy results also in terms of normal
stresses. Finally, in Sec. 5.4 we will compare and discuss the dynamic topography for a model
with and without temperature dependent lateral viscosity variations at unprecedented global
resolution.

5.1 Benchmark Setup

We repeat the benchmark described in [10, 11, 12] and add an additional variant for a layered
viscosity profile with jump at 410 km depth.

In [11], results are shown with and without self-gravitation. As stated therein, self-
gravitation can be added in a post-processing step. Thus, we only consider cases without
self-gravitation here.

The buoyancy term, i.e., the right-hand side of the momentum part of (1.5), is given in
spherical coordinates by

T (r, φ, θ) = δ(r − r0)Y m
l (φ, θ).

Here, Y m
l denotes a spherical harmonic function of degree l and order m given by

Y m
l (φ, θ) = cos(mφ)plm(θ),

where

plm(θ) =

√
(2l + 1)(l −m)!

2π(1 + δm0)(l +m)!
Plm(θ)

are the normalized associated Legendre functions. For the benchmark, free-slip boundary
conditions are prescribed on the surface and the CMB. If a viscosity model is employed that
only shows radial variations, then this setup allows to compute a semi-analytical solution
based on a propagator matrix technique, see e.g. [13]. This can then be compared to the
solutions of the numerical model.

The main output of this benchmark are so-called kernels for topography and characteristic
velocity. These are generated the following way: for a fixed r0 in (5.5) the buoyancy is
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computed. That is, it is non-zero in exactly one radial layer. Then, for this buoyancy the
normal stress on the surface and CMB is computed. This can be represented by a spherical
harmonic expansion. Next, the spectral coefficients of this expansion for the chosen m, l are
computed. This gives one value of the kernel at depth r0.

Additionally, also the characteristic horizontal velocity U at the surface and CMB is
computed via

U2 =
1

r2

1

l(l + 1)

∫

A
‖u‖2 (5.4)

where the two dimensional domain A is either the surface, or the CMB area. Again, the
discrete form can be computed via the lumped mass matrix M s

` . Note, (5.4) defines U
modulo its sign. Thus, we follow the convention from [11] and set U to be negative on the
surface, and positive on the CMB.

Finally, this procedure is successively repeated for a different r0, sampling the whole
mantle.

5.2 Benchmark Implementation and Results

We are going to perform benchmark tests setting the order m to be equal to 0 and degrees
to be l ∈ {2, 5, 8, 15}. For the setup of the right-hand side, we need to preserve the integral
property of the δ-function, i.e.,

∫
Ω δ dx = 1. We set the nodal values of each layer rk as

δ(rk − r0) ≈
{

1 for rk = r0,

0 otherwise,
(5.5)

and integrate over the sphere with radius r0. More precisely, we apply to the values of layer r0

the two dimensional lumped mass matrix M r0
` . For the implementation of M r0

` , we proceed
on layer r0 as on the surface in (5.3). We remark that our approach is different to the
implementation of the δ-function of [10, 11], since there hexahedral meshes which are uniform
in radial direction are used. Then a simple scaling by the meshes is sufficient such that the
three dimensional mass matrix can be used for the setup.

For all test runs, the default configuration is to use 128 layers, which is twice as much
as used in [11]. Furthermore, if not explicitly mentioned otherwise, we always use the LSQP
approach.

In a first test, we set ν1 ≡ 1 and refer to this as Case 1. For the second test Case 2,
we consider a layered viscosity profile with a jump at 410 km depth, which is the location of
another seismic discontinuity, as opposed to the one at 660 km depth considered before

ν2(x) =

{
1/10 · 6.3713d3

b for ‖x‖2 > 1− db,
1 else.

Here, db = 410/R, which roughly yields a 150× fold viscosity jump. As this is an even higher
viscosity jump than for the example from Sec. 4.5 it becomes even more challenging for our
solver.

Note, that for both cases we have block-wise constant viscosity values. Thus, LSQPS

and LSQPE are equivalent and we choose the computationally more efficient LSQPS variant
here.
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Figure 5.1: Benchmark results for Case 1 (top panel) and Case 2 (bottom panel): Spectral coefficients of
surface and CMB topography, and characteristic horizontal velocities at surface and CMB (from left to right).
Dotted values show semi-analytical solution and solid lines the solution obtained with HHG.

The resulting kernels are shown in Fig. 5.1 together with the semi-analytical solutions
from the propagator matrix technique. For both test cases, we find very good agreement
between our solver and the semi-analytical solutions.

Furthermore, we perform convergence tests with increasing refinement depth against the
semi-analytical solution for a fixed radius r0, see Fig. 5.2. Here, we choose r0 to represent the
central layer of the mantle, i.e r0 = rsrf+rcmb/2. A similar analysis is presented in e.g. [10, 11],
whereas we use even finer resolutions. We find a quadratic convergence in all cases which
is in agreement with the literature. In some cases, we observe that higher spherical degrees
perform even better than expected. This can be seen, e.g., in the characteristic horizontal
surface velocities, where degree 8 is even better than degrees 2 and 5.

The results of this test are twofold. First, they verify the overall accuracy of our solver, and
secondly, they demonstrate that our LSQP approximation does not deteriorate its accuracy.

5.3 Scalability

The benchmark simulations were mostly carried out on SuperMUC Phase 1, but partially also
on the Hazel Hen system at HLRS, Stuttgart, Germany. The largest simulations in Sec. 5.4
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Figure 5.2: Relative errors with respect to semi-analytical solution at fixed depth r0 = rsrf+rcmb/2. (Top panel,
left to right) Surface and CMB topography. (Bottom panel, left to right) Characteristic horizontal velocities
at surface and CMB.

were performed on Hazel Hen on 75 810 compute cores. While the performance on SuperMUC
was already extensively discussed, we will present in this section also scaling results for Hazel
Hen together with a brief description of the hardware details.

Hazel Hen is a Cray XC40 system with Intel Xeon CPU E5-2680 v3 processors. The
processor compute nodes consist of two sockets, each with 12 cores that are clocked at 2.5 GHz.
Each node provides about 128 GB of memory and the nodes are connected via an Cray Aries
network. Overall, the Hazel Hen system combines 7 712 nodes, or 185 088 compute cores
respectively, within 41 cabinets and has a peak performance of 7.4 PFLOPs/s. Currently, it
is ranked number 27 in the TOP500 list (June 2018).

For the scaling runs, we will use the benchmark setup from test Case 1 for a fixed r0.
Furthermore, the refinement depth is set to L = 8 and one macro element is assigned per
MPI rank. The UMG solver stops after a residual reduction of 106. Even though the faster
LSQPS variant is applicable for this case, we use the LSQPE approach for the scaling runs,
as this variant will be used for the application scenarios in Sec. 5.4.

Results are shown in Tab. 5.1. The number of UMG cycles is asymptotically 7. For the
smallest two runs, slightly more iterations are necessary. For a fair comparing of the time-to-
solutions, all timings are rescaled, as before, to 7 iterations. We note that for this isoviscous
scenario the coarse grid solver needs only a few iterations, and its influence on the overall
time-to-solution is relatively small. Also on the Hazel Hen system the parallel efficiency of
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Table 5.1: Weak scaling results on Hazel Hen. Timings and parallel efficiency are scaled to 7 UMG iterations.

cores DoFs
UMG time-to- parallel

V-cycles solution efficiency

480 1.3 · 109 9 1 313 s 1.00
1 920 5.4 · 109 8 1 343 s 0.98
3 840 1.1 · 1010 7 1 341 s 0.98
8 640 2.4 · 1010 7 1 329 s 0.99

15 360 4.3 · 1010 7 1 344 s 0.98

98% on up to 15 360 cores is excellent.

5.4 Dynamic topography with lateral viscosity variations

To compute the Earth’s surface dynamic topography, we use a-priori thermodynamic prop-
erties and viscosity structure for the Earth’s mantle as input to our numerical scheme. First,
we convert a recent shear wave velocity tomography model [14], to temperature and density,
using a pyrolitic mantle mineralogical model. That is, converting to temperature and density,
we assume a purely thermal origin for seismic anomalies. As the isochemical assumption
does not hold in continental regions, we remove the fast seismic anomalies in the uppermost
300 km. The mineralogical model is derived by combining the most recent elastic model of
[15], with Q5, an adaptation of a mantle anelasticity model in [16]. To adapt the anelasticity
model to lower-mantle conditions we update the solidus temperature in [16] to [17]. Further,
we model three different viscosity scenarios for the Earth’s mantle:

Case A: This scenario has no lateral viscosity variations and serves as our reference case.
The radial viscosity profile is composed of three layers, namely lithosphere, asthenosphere and
the lower mantle. The lithosphere thickness is 100 km and that of the asthenosphere is set
to 410 km. The viscosity jump to the lower mantle is set according to the Haskell constraint,
µasth = 1/10 · 6.3713d3

b , see e.g. [18]. This is the same viscosity jump as in the benchmark
Case 2 from Sec. 5.2. For the ease of notation, we further introduce the scaled lithosphere
radius rL := 1 − 100/R and asthenosphere radius rA := 1 − (100+410)/R. Then, the reference
viscosity profile reads as

νA(x) =





1 rL 6 r,

µasth rA 6 r < rL,

1 else,

where ‖x‖2 = r.

Case B: Next, we add lateral viscosity variations in the uppermost ∼ 300 km. For this
purpose, we employed the continental lithospheric thickness model, TC1 [19]. Oceanic litho-
sphere is then modeled by a half space cooling model. As demonstrated in Fig. 5.6, thickness
of the lithosphere ranges from 20 km down to more than 350 km penetrating the astheno-
spheric layer. That is, while in Case A the lithosphere is a fixed channel, in Case B, its actual
shape varies between oceans and continents. To account for this, we remove the lithosphere
layer from our model in Case A, and prescribe its thickness via a 3D function, γ. That is, we
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Figure 5.3: Radial viscosity profiles for Cases A (red), B (black-dashed), and C (black-dotted). The lateral
variations in Cases B and C are visualized by the min/max values in each layer. In the upper mantle (um)
the profiles of B and C are identical (solid lines) and the lower mantle (lm) the dashed line shows the radial
profile of Case B, and the dotted min/max curves the temperature dependent variations of Case C. Values are
scaled with reference viscosity 1022 [Pa s].

define a scalar field γ ranging from 1 to 103. We set γ(x) = 103 for all points x that are part
of the lithosphere. Beneath the lithosphere the values drop from 103 to 1, smoothly as the
result of a lateral spectral Gaussian filtering as shown in Fig. 5.6.

νB(x, T ) = γ(x)

{
µasth rA 6 r,

1 else.

Case C: In our final test case, we also include lateral viscosity variations in the lower
mantle. Here, in addition to the a-priori radial profile described in Case A, the lateral vari-
ations are inferred from an exponential temperature dependence, consistent with laboratory
derived creep law [20]. In the upper mantle, the lateral variations are identical to case B. The
viscosity model reads as:

νC(x, T ) = γ(x)

{
µasth rA 6 r,

exp
(

∆µLM

(
1
T − 1

T0

))
else,

with radial reference temperature T0, and ∆µLM = 5.75. The value of ∆µLM is chosen
specifically to yield three orders of magnitude of variation in the lower mantle. Both, T0

and T are scaled by the maximum value of T . The shape of the three viscosity models is
illustrated in Fig. 5.3.

The simulations are carried out on Hazel Hen (Case A) and SuperMUC Phase 1 (B, C).
For simulations on SuperMUC, the setup is as described in Sec. 4.5, namely 1.1 · 1012 DoFs
on 47 250 cores with a global resolution of ∼1.7 km. On Hazel Hen, we had access to an
even larger number of cores that allowed us to run simulations with an unprecedented global
resolution of less than 1.5 km on 75 810 compute cores and 1.6 · 1012 DoFs. For visualization
and post-processing of the dynamic topographies, all results were interpolated to the same
longitude-latitude grid. In all cases, free-slip boundary conditions are imposed on surface and
CMB.



104 5. Dynamic topography

Figure 5.4: (Left column) Surface dynamic topography for Case: A - assuming an only radially varying
viscosity. B - with the addition of viscosity variations due to varying thickness of the lithosphere. C - with a
temperature-dependent viscosity structure, consistent with a creep law. (Right column) Differences in surface
dynamic topography w.r.t Case A.

Fig. 5.4 (left column) shows the results. Fig. 5.4-A is the modeled dynamic topography in
Case A, assuming only a depth-dependent viscosity. Mid-ocean ridges in the Indian, Pacific,
and Atlantic oceans are marked with positive topography, where seismic tomography images
asthenospheric warm upwellings. In the North-Atlantic realm, over Iceland, the surface is
positively deflected, respectively by ∼ 1000 m. The maximum positive dynamic topography
is located over the Afar region in Africa, and Pacific super-plume, with an amplitude of
∼ 2000 m. North and Central America are subsided by 1000 m, over the ancient Farallon
subduction system. Fig. 5.4-B shows the modeled surface deflection in Case B, including
lateral variations of viscosity due to lithospheric thicknesses. While the main features are
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similar to Case B, details are different. The extent of positive topography over Afar is now
extended southwards covering most of southeastern Africa, with amplitudes reaching up to
1000 m of change. The amplitudes are also raised over the Pacific Superswell. Northeastern
Africa, as well as Scandinavia in case B, are uplifted by 500 m. Fig. 5.4-C is the computed
dynamic topography in Case C, including an additional temperature-dependent viscosity in
the lower-most mantle. The only minor difference with respect to Case B, are the slight
increase of Pacific and African dynamic topography up to 2000 m.

Fig. 5.4 (right column) shows the difference in the modeled dynamic topography in Cases B
and C, with respect to the reference Case A. In case B, there is an increase in the positive signal
over southern Africa, reaching up to 700 m in western Zambia. In the North-Atlantic, there is
an excess dynamic topography of 200 m around Scandinavia and north-western Africa. The
same 200 m excess uplift is shown in the Pacific region. The subsidence over North-America
and the Mediterranean is amplified by ∼ 500 m, while the mid-ocean related uplift is 200 m
less in amplitude. In case C however, the differences with respect to case B are minor. In
case C, the uplift around Zimbabwe is amplified by 400 m w.r.t. case B. In the South-Atlantic,
the mid-ocean ridge related uplift is now less by around 200 m.
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5.5 Appendix: Supplementary Figures

Figure 5.5: (Left column) CMB dynamic topography for Case: A - assuming an only radially varying viscosity.
B - with the addition of viscosity variations due to varying thickness of the lithosphere. C - with a temperature-
dependent viscosity structure, consistent with a creep law. (Right column) Differences in CMB dynamic
topography w.r.t Case A.
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Figure 5.6: Lithospheric thicknesses
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Chapter 6

Outlook

In this thesis we proposed two novel approaches to accelerate matrix-free finite element im-
plementations. Both methods were implemented, profiled and optimized within the HHG
framework. The first approach employes an appropriate scaling of the constant coefficient
reference stencil, where the second one uses a polynomial surrogate operator. Originally de-
veloped to tackle two different problems, namely the inclusion of variable coefficients and the
efficient assembly on curved domains, both approaches are similar in their nature. Both vari-
ants introduce a variational crime in the bilinear form, and if the coefficient is interpreted as
blending function like in the example in section. 2.7.4, or vice versa, then both approaches can
be transformed to each other. The difference is that the LSQP approach relies on a two-scale
approximation, namely macro mesh size H and fine grid size h, the scaling approach is based
on the fine scale h only.

For the scaling approach (chapter 2) a detailed mathematical analysis is presented and
shows that the obtained solutions have asymptotically optimal order convergence in the H1-
and L2-norm. The advantage of this approach compared to the original implementation is
the 3× reduction of floating-point operations while the memory traffic remains the same.
Thus, this reduction directly transfers to 3× faster time-to-solution. Initially proposed for a
scalar operator, the next step is to extend this method to the Stokes system. Here additional
complexities arise due to the cross-coupling terms that need special treatment.

The two-scale approach (chapter 3), also termed LSQP, replaces the expensive on-the-fly
stencil assembly procedure by a low-cost polynomial evaluation. It was demonstrated that
for a suitable choice of the macro scale H and fine scale h this approximation does not violate
the L2 approximation order of the discretization error. Furthermore, the implementation
was optimized using advanced performance models. Weak and strong scaling results show
that it ultimately recovers the performance of the original HHG implementation, but on a
significantly more complex domain. We highlight that this approach is not limited to the
spherical shell geometry, and can be further expanded by using higher polynomial orders to
approximate even more complicated geometries.

The applicability of the LSQP method for real-world geophysical applications was demon-
strated in chapters 4 and 5. First, the scheme was extended to the full Stokes system and its
performance and scalability was extensively tested and profiled on up to ∼ 50 000 compute
cores. In chapter 5 we used this approach to study the effect of lateral viscosity variations on
dynamic topography. These simulations were performed at unprecedented global resolution
close to 1 km.
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To extend the scope of this study, one could also include non-linear rheologies in instan-
tanous models of the Earth’s mantle. This requires an outer solver where the polynomial
coefficients must be updated for each iteration. But as we have shown, this does not pose a
challenge for our LSQP approach as the polynomial setup only takes a fraction of the time
of one multigrid cycle. Another interesting aspect would be to use this approach for the
computationally intense adjoint simulations which will reduce run-times significantly. In par-
ticular, our invesigations of dynamic topography should be combined with retrodictions from
adjoint simulations. We already found an increase of amplitudes of ∼25% up to 50%, where
the dynamics of a time-dependent model can further amplify these amplitudes. Furthermore,
dynamic flow lines can significantly change the results, e.g. restored thermal anomalies may
appear at different locations, and the sign of the retrodicted dynamic topography can be
altered.

Ultimately, the examples in this thesis demonstrate that this approach is perfectly suited
for the targeted kind of simulations and should be an integral part of the newly developed
TerraNeo software.
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