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Preface

The impact of climate and geography on economic outcomes has long been a controversial
topic in the scientific debate. Initially, the debate was concerned with determining the
relative importance of geography as fundamental factor of development (e.g. Acemoglu
et al., 2001, Diamond, 1999, Sachs, 2003, Gallup et al., 1999, Rodrik et al., 2004). Since
then the literature about the role of geography and climate for economic outcomes has
moved from the cross-sectional perspective to analyses of shorter-term weather variability
within countries or smaller spatial units which allowed for refined identification strategies.
With this new strand of literature, which Dell et al. (2014) refer to as “The New Cli-
mate–Economy Literature”, the perception of climate as merely fixed (pre-)condition to
economic development has shifted to a perception of climate as a varying factor. This
perception reflects two trends that are shaping the current debate. First, the climatic and
environmental parameters are in fact changing, and this change is currently taking up pace.
Global average surface temperature shows a warming of 0.85◦ Celsius over the period 1880
to 2012 causing more frequent weather extremes and significant environmental adjustments
(IPCC, 2014). Second, rapidly advancing satellite and imaging technologies improve the
measurement of environmental and climatic variables and thus make its changing nature
more salient.

At the same time these improvements create new opportunities to study the impact of
environmental and climatic changes on economic outcomes. In recent years the literature
has considerably been fueled by advances in the use of spatially disaggregated climatic data
at higher frequencies and complementing geo-coded datasets on outcome variables. Central
insights of existing research relate to proving the impact of climatic and environmental
factors on outcomes such as economic growth (Dell et al., 2012), agricultural output (Burke
and Emerick, 2016) or conflict (Burke et al., 2015a) among other outcomes. Further, the
effects are shown to be quite heterogeneous across regions. On the one hand, the effects
depend on the prevalent climatic conditions. For instance Burke et al. (2015b) reveal a
non-linearity regarding the impact of temperature on income. On the other hand, the socio-
economic environment seems to matter as well. Dell et al. (2012) show that the impact
of rising temperatures on economic growth differs strongly by countries’ income levels.
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The literature has recently started to disentangle the underlying factors and mechanisms
of these observations in more detail, with findings relating to more specific strands of
literature for the respective outcomes.

This dissertation contributes to this research in different dimensions. In particular, the
spectrum of analysis covers the impact of temperature extremes, longer term warming and
land degradation on conflict in chapter 1 and chapter 2, the impact of natural disasters
on income levels in chapter 3 and the effect of water pollution on health in chapter 4.
This dissertation aims at a precise identification of these impacts and a better understand-
ing of the interplay between the environmental factors with economic, institutional and
demographic traits in shaping the socio-economic outcomes. To achieve these goals this
dissertation uses a variety of econometric approaches and presents new applications for the
use of high-resolution data.

The first two chapters contribute to the debate on whether climate change and global
warming cause civil conflicts. The two chapters are also methodologically linked as they
both build on high-frequency high-resolution data. In chapter 1 Uwe Sunde and I analyze
the effect of monthly temperature shocks and longer term changes on the risk of civil con-
flicts in Africa. The analysis of monthly data for 4826 grid cells of 0.75o latitude×longitude
over the period 1997-2015 documents a positive effect of the occurrence of temperature ex-
tremes on conflict incidence. These effects are larger the more severe the extremes in terms
of duration, and are larger in densely populated regions, in regions with lower agricultural
productivity, and in regions with more pronounced land degradation. The results also
point towards heterogeneity of the effect with respect to the type of violence and towards
the crucial role of population dynamics. Regions experiencing a decline or outflow of pop-
ulation exhibit different conflict types in response to temperature extremes than regions
experiencing population increase or inflows. These findings hint to different mechanisms
being in place which might reconcile some of the contradictory findings documented in
the literature. Considering the role of changes in the frequency of extreme events in a
long-differences analysis and applying a generalized differences-in-differences strategy de-
livers evidence for a positive effect of a gradual increase in the frequency of extreme events
on conflict. This chapter illustrates that global warming and the related increase in ex-
tremes can impact conflict, which constitutes a major barrier of development. It seems
that beyond a reaction to short-term shocks, societies did not adapt yet to changes. This
chapter therewith contributes to the debate by providing novel evidence on the role of ex-
treme temperature events for armed conflict based on an analysis for the entire continent
of Africa.

Chapter 2 takes a closer look at land degradation which is oftentimes discussed as a
consequence of climate change and focuses on the Sahel region. In the previous chapter
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land degradation is shown to be an interacting factor strengthening the adverse impact that
temperature extremes have on conflict. The analysis of this chapter aims at identifying
the main effects of land degradation on conflict. For this purpose it builds on a time-
varying measure that is constructed from satellite data. This allows for an analysis of
monthly shocks and longer term changes on a 0.75 degree grid in the period 2000-2012.
Moreover it allows isolating the external climate driven components of land degradation
by instrumenting vegetation barrenness with monthly precipitation levels. The residual of
precipitation based predictions is commonly interpreted as "human component". Thus, to
shed light on the human component of land degradation I analyze the effect of the residual
on conflict separately. The results of the analysis unfold a positive effect of vegetation
barrenness on conflict which is driven by rainfall shortages. Beyond, the effect shows to be
most strongly pronounced where societies most heavily depend on agricultural productivity.
Further the findings unfold an effect heterogeneity with respect to the involved types of
conflict and the seasonality of their occurrence. Taken together, the findings point towards
a mechanism that works through tightened resource competition in the face of lowered
agricultural productivity. Turning towards the longer term implications, the results of the
long-difference analysis suggest a positive effect of land degradation on conflicts related
to agriculture and pastoralism. Whereas chapter 1 focuses on temperature extremes, the
findings of this chapter are more closely related to the literature that analyses the effect
of precipitation shortages and drought on conflict. In this vein the findings of this chapter
confirm a link between weather variability and conflict. In particular, the analysis provides
new evidence for the role of vegetation dynamics as intermediary between precipitation
variability and conflict.

The third chapter which is based on joint work with Florian Englmaier, Till Stowasser
and Uwe Sunde turns towards countries’ exposure to natural disasters and the effect on
countries’ income levels. Natural disasters in this analysis include hurricanes, earthquakes,
floods and alike. By the design of the empirical analysis the first two chapters do not deal
with the role of institutional factors as crucial determinants of how severely societies are
affected by weather extremes. In contrast, the setting of this chapter uses country-year
data for the period 1980-2011 and takes a global perspective with a sample of 127 countries.
This enables an analysis of the mitigating role of institutions in linking natural disasters
and income. In particular this chapter aims to understand the role of private insurance
markets and their interplay with public institutions in shaping countries’ resilience to nat-
ural disasters. Employing comprehensive data on natural disasters and related losses as
well as on global insurance penetration rates the findings indicate that private insurance
markets accommodate the negative effects of natural catastrophes in developed countries
whereas they turn out to be ineffective in developing countries. The results further reveal
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that this pattern masks the role of deficient institutional quality in preventing insurance
to unfold full efficiency. This implies that insurance and a stable, well-institutionalized en-
vironment complement each other in mediating the negative disaster shocks. This chapter
provides new insights on the negative effect of natural catastrophes on economic devel-
opment. In particular, it highlights another dimension of interacting mechanisms linking
climate to economic outcomes.

Chapter 4 which is based on joint work with Marie Lechler shifts the focus to another
environmental issue that affects economic outcomes as well. In particular, it turns towards
the impact of industrial and urban water pollution on health of children living along the
Nile in Egypt. Methodologically this chapter returns to the use of disaggregated data.
Specifically, we collect geo-coded data for industrial plants, population density and urban
hotspots as well as individual health outcomes of children living in households along the
Nile. We find that children living in households downstream to urban areas suffer from
higher risks of disease than children living upstream. Information on the opening date
of industrial plants allows us to perform a difference-in-difference analysis regarding the
health effect of industrial pollution on health outcomes. We also find strong negative health
effects of industrial plants on children living downstream while children living upstream
remain unaffected. The results further reveal that the negative health effect on the down-
stream population can be mitigated by access to clean drinking water. The results indicate
detrimental impacts of water pollution and advise the sensible design and enforcement of
environmental regulations as well as an improved provision of the access to adequate water
resources to households. This chapter provides further evidence regarding the interplay
between human actions and environmental conditions in shaping development outcomes.

The four essays in this thesis are self contained. Each chapter is followed by an appendix
whereas a consolidated bibliography is contained at the end of the thesis.



Chapter 1

Temperature Extremes, Global Warming
and Armed Conflict:
New Evidence from High Resolution Data

Amid the diverse social and political causes, the Darfur conflict began as an
ecological crisis, arising at least in part from climate change. (...) It is no
accident that the violence in Darfur erupted during the drought. (...) For
the first time in memory, there was no longer enough food and water for all.
Fighting broke out. (...) Any peace in Darfur must be built on solutions that
go to the root causes of the conflict.
(Ban Ki Moon, 2007)

Most of today’s conflicts are still essentially internal. (...) They are fuelled by
competition for power and resources, inequality, marginalization and exclusion,
poor governance, weak institutions, sectarian divides. They are exacerbated by
climate change, population growth and the globalization of crime and terrorism.
(Antonio Guterres, 2017)

This chapter is based on joint work with Uwe Sunde.
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1.1 Introduction

Climate change and civil conflict belong to the greatest challenges for developing countries,
especially in Africa. Official statements, such as those by UN Secretary Generals Ban Ki
Moon and Antonio Guterres, are explicit about the detrimental roles played by these phe-
nomena, as well as their interlinkages. A look at the data confirms the increasing prevalence
of both. For instance, Figure 1.1 illustrates the trend in temperature, exemplified by the
average temperature per month (Panel (a)) and the prevalence of extreme temperature
events in a month, measured by the incidence of deviations from calendar month specific
means for a given grid cell exceeding the 95th percentile of deviations (Panel (b)). The
data reveal a clear increase in both, temperature and in the frequency of extreme events
over the past three decades. Over the the past two decades, conflict incidence has increased
starkly (Panel (c)). Figure 1.2 depicts the dynamics in temperature extremes and conflict
over the period 1997-2015 for a map of Africa in grid cells of 0.75o latitude/longitude.
Conflict seems to have increased relatively more in regions that experienced a more pro-
nounced increase in the prevalence of temperature extremes, which is suggestive of an
interrelation.1 This paper explores the question whether weather extremes and climate
change, reflected by the frequency of events of extreme temperature which is commonly
viewed as a symptom of global warming, is relevant for the outbreak of violent conflict at
the disaggregate level.
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Figure 1.1: Dynamics of Temperature, Extreme Temperature and Conflict in Africa
This figure shows the monthly evolution of temperature, extremes and conflict. Additionally, it plots
fractional-polynomial predictions with 95% confidence intervals. Temperature extremes are coded
as 1 if the absolute temperature deviation from month-specific means for a given cell (calculated
from the training period 1979-1996) exceeds the 95 percentile threshold, and 0 otherwise. See
Section 3.2 for a detailed data description.

1Figure 1A.1 in the Appendix depicts the corresponding map for dynamics in average temperature and
conflict over the period 1997-2015. See Section 3.2 and Table 1A.1 for details on data, data sources and
variable construction.



Temperature Extremes, Global Warming and Armed Conflict 7

Figure 1.2: Dynamics of Temperature Extremes and Conflict Incidence
This figure plots quintiles of changes in the average occurrence of temperature extremes from the
first half of the panel (1997-2006) to the second half of the panel (2006-2015) together with the cells
belonging to the highest quintile of changes in average conflict incidence from the first half to the
second half of the panel.

The question whether climate change and global warming cause conflicts has fueled a
heated debate that has been ongoing for years. One branch of the existing academic lit-
erature has pointed at evidence that supposedly shows that weather and climate variation
cause conflicts, mainly as consequence of increased resource pressure due to a deteriora-
tion in the conditions for agricultural production. Another branch of the literature has
disavowed this conclusion by arguing that increased conflict was mainly a problem of insti-
tutional failure, whose consequences become aggravated in the face of increased environ-
mental pressure as well as rapid globalization. Among the reasons for the lack of consensus
in the scientific literature have been methodological issues, such as sampling bias, and the
heterogeneity in the narratives about the triggers of incidences of conflict and the lack of
evidence regarding the channels, which is related to the fact that most of the evidence at
the core of this debate is at annual frequencies and at the country or region level. In light
of this, official statements, such as those by Ban Ki Moon or Antonio Guterres, both UN
Secretary General officials, usually avoid specific statements about causality.

This paper provides novel evidence about the role of extreme weather events related
to climate change for conflict and contributes to the debate in several ways. In terms of
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data, the use of high-frequency high-resolution data for the entire continent of Africa allows
isolating the role of weather extremes as triggers of conflict with greater precision than the
previous literature and without restricting to particular areas that are more or less conflict
prone, thus avoiding sampling bias. In particular, the analysis is based on monthly tem-
perature and precipitation information for 4826 grid cells of 0.75o latitude×longitude over
the period 1997-2015 and isolates the role of weather extremes for the incidence of violent
conflict events. In contrast to previous studies on extreme weather events, we consider
deviations from long-run cell-specific and calender month-specific average conditions.

We find a significantly positive effect of temperature extremes on conflict incidence for
both, an increase in the average number of extreme weather events and a longer duration
in terms of months. The effect on conflict of extreme events that last for two months is
found to be quantitatively larger than the effect of events that last for one month only.
There is also some indicative evidence that this effect is non-monotonic for events that
last even longer. The quality of the data also allows for a detailed investigation of the
underlying mechanisms. Among the narratives that have been mentioned in the literature,
climate-related shocks to agricultural productivity and conflict for resources have been the
most prominent. The analysis documents that temperature extremes have a particularly
strong effect in densely populated areas and areas with low agricultural productivity.

Recent work has pointed at the role of migration in the context of climate change and
conflict. When investigating the role of migration and population dynamics, our results
reveal that temperature extremes have an effect on conflict mainly in areas that are loosing
population or that are growing rapidly, not so much in areas with fairly stable populations.
However, the types of observed conflicts turn out to differ systematically across areas that
lose population and those that gain population, providing novel insights to the mechanisms
linking weather extremes and conflict. Weather extremes appear to trigger mainly battles
involving territorial changes and conflicts in rural and agricultural contexts in cells that
experience out-migration and population loss. The results further show that land degra-
dation is a critical factor for the link between temperature extremes and conflict with the
effect of temperature extremes being much stronger in regions with greater degradation.
These findings deliver novel evidence that is consistent with a mechanism working through
the loss of agricultural productivity, in line with some of the conflict narratives that have
been debated in the literature. At the same time, we find that temperature extremes are
linked to riots and battles without territorial changes in areas that experience immigration
and fast (presumably migration-related) population growth.

The analysis concludes by turning to the implications of global climate change, which
is typically associated with a greater frequency and longer duration of extreme weather
events. Considering the role of changes in the frequency of extreme events in a long-
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differences analysis and applying a generalized difference-in-differences strategy delivers
evidence for a positive effect of a gradual increase in the frequency of extreme events on
conflict. This sheds new light on the debate about the consequences of climate change for
conflict. Our findings indicate that societies do not seem to have adjusted to an increasing
frequency of extremes over the observed time period. Further, the societal vulnerability to
short-run climatic shocks is mirrored in the long-run results.

Contribution to the Literature. This paper contributes to the debate about the
role of weather variability and climate change for conflict, which has mainly focused on
Africa. Proponents of the role of climate for conflict reported evidence pointing at a strong
link between high temperatures or drought in a year and the occurrence of civil conflict
(Burke, Miguel, Satyanath, Dykema, and Lobell, 2009; Burke, Dykema, Lobell, Miguel,
and Satyanath, 2010; Burke, Miguel, Satyanath, Dykema, and Lobell, 2010), while crit-
ics pointed to methodological problems and structural factors being responsible for these
results (Buhaug, 2010b; Buhaug, Hegre, and Strand, 2010; Buhaug, 2010a). This litera-
ture concentrated on large-scale conflicts and used annual data at the country level. More
recent work used refined identification strategies and also considered small-scale conflicts,
but still delivered no consensus about the role of climate, see Burke, Hsiang, and Miguel
(2015a) for a recent survey.2 Our work complements this literature by considering the
role of weather extremes at a much higher frequency and with grid-level data of higher
resolution, as well as by providing evidence for effect heterogeneity that allows insights
regarding the underlying mechanisms.

In this dimension, our work is closely related to studies that use grid cells to analyze
the effect of weather shocks like drought or temperature and precipitation extremes on
conflict. There are several studies that use latitude-longitude grids (or other fine spatial
units) as unit of observation and rely on annual variation for identification. Recent work by
Harari and Ferrara (2018) studies the effects of drought during particularly critical phases
of the crop cycle and finds evidence for a positive effect on annual conflict incidence at
the 1◦ grid level. Using spatially defined ethnic homelands as unit of observation, recent
work by von Uexkull, Croicu, Fjelde, and Buhaug (2016) analyzes the impact of growing
season drought in Africa and Asia and documents a positive impact for agriculturally
dependent and politically excluded groups on violence. This finding relates to Fjelde and
Uexkull (2012) who document an effect of rainfall anomalies on communal conflict that is
amplified in the presence of economic and political marginalization. Theisen, Holtermann,

2This ongoing debate includes work that finds evidence for a role of climate for conflict (Hsiang, Meng,
and Cane, 2011; Hsiang, Burke, and Miguel, 2013; Hsiang and Meng, 2014), and work that questions the
empirical validity of such a role (Theisen, 2012; Theisen, Holtermann, and Buhaug, 2012; Gleditsch, 2012;
Hegre, Buhaug, Calvin, Nordkvelle, Waldhoff, and Gilmore, 2016).
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and Buhaug (2012) study the impact of drought on conflict for the African continent
at the 0.5◦ grid level, but attribute the cause of conflict to sociopolitical factors rather
than weather shocks. Further, Theisen (2012) conducts an analysis at the 0.25◦ grid level
for Kenya and finds the cause of conflict to be political motives rather than agricultural
scarcities.3

The present paper is most closely related to studies that employ grid level data and
rely on high frequency data for identification. These include work by O’Loughlin et al.
(2012) who analyze the impact of temperature- and precipitation anomalies on a 1◦ degree
grid in East Africa. In a follow-up study, O’Loughlin, Linke, and Witmer (2014) expand
their sample to sub-Saharan Africa. This study documents a significantly positive impact
of high temperature anomalies on conflicts that differs across sub-regions and types of con-
flict, whereas they do not find a significant effect of precipitation anomalies. Further, they
assess the quantitative importance of this effect to the impact of political, economic and
geographic factors. Maystadt, Calderone, and You (2015) use quarterly data at the 0.5◦

grid level for the case of Sudan and Maystadt and Ecker (2014) analyze the monthly im-
pact on Somalian administrative regions.4 Almer, Laurent-Lucchetti, and Oechslin (2017)
investigate the role of monthly variation in water scarcity, using an index of evaporation
and drought, for local riots. Our paper complements these works by providing an analysis
that is based on detailed weather information on the grid-cell level for the entire continent
of Africa at a monthly frequency, thereby mitigating concerns about selective sampling
(Adams, Ide, Barnett, and Detges, 2018). Moreover, our analysis digs deeper into hetero-
geneity of the effects, in particular the types of conflict affected by temperature extremes,
the role of population dynamics, the relevance of agricultural productivity and land degra-
dation, and long-run patterns relating the analysis to the debate on global warming. Our
work also complements recent work by Cervellati, Esposito, Sunde, and Valmori (2017)
who use monthly data for a 1◦ grid for the entire continent of Africa to explore the role
of weather fluctuations that affect the exposure of the local population to malaria as po-
tential channel leading to increased violence. Instead of disease, our evidence focuses on
mechanisms related to agricultural productivity and population dynamics.

Moreover, our analysis relates to the literature on the long-run variability in the context
of climate change. In this dimension, it follows the suggestion by Burke, Hsiang, and Miguel
(2015a) pointing to the need for more comprehensive evidence for the climate-conflict link
from a long-run perspective. We add to that in terms of an expansion of the sample
from East Africa to the entire African continent over a more recent time period, and in

3Hsiang, Burke, and Miguel (2013) dispute the finding that temperature has no significant effect on
conflict by criticizing the methodology used by Theisen (2012).

4 Crost et al. (2015) provide related evidence for the Philippines.
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terms of methodology. Specifically, we extend the focus from considering trends of average
temperature to trends of temperature extremes, documenting the driving force of conflict
risk to be latter. We substantiate the long-difference results by applying a generalized
difference-in-differences design which relaxes the restrictive assumption about common
pre-trends. Further, our results add new insights regarding societal vulnerability towards
increases in temperature (extremes) in the long run.

In line with conjectures formulated in the existing literature (see, e.g., the survey by
Exenberger and Pondorfer, 2013), our findings also indicate the prevalence of coexisting
mechanisms taking effect in different contexts. We find conflict risk to increase in regions
with declining population and high levels of land degradation, involving conflicts related
to territory, agriculture and pastoralism. Therefore, in terms of mechanisms, our study
complements work that argues via the loss of agricultural productivity as potential chan-
nel, including work by Harari and Ferrara (2018) and recent evidence for ethnicity-related
conflict (Sarsons, 2015; von Uexkull, Croicu, Fjelde, and Buhaug, 2016). Also, our work
complements evidence by Raleigh and Urdal (2007) or Hendrix and Glaser (2007) who
point out environmental degradation as a critical factor for the link between climate and
conflict, although this literature relies on cross-sectional analysis or time series at an an-
nual frequency. Using cross-sectional data only, Raleigh and Urdal (2007) emphasize the
importance of analyzing the relationship between demography and environmental variables
in shaping the risk of civil conflict by considering an interaction between population and
land degradation. The present study broadens this focus by analyzing the interplay be-
tween climate and population dynamics, and between climate and land degradation, in
shaping the risk of differential types of conflict within an extensive panel analysis. Our
findings indeed suggest that climatic extremes fuel conflict risk in the face of adverse envi-
ronmental conditions. Further, our finding of weather extremes leading to different types
of conflict in regions with different population dynamics in terms of population growth
and in-migration hints to different mechanisms being responsible for this result. The re-
sults thereby reconcile some of the contradictory findings documented in the literature,
e.g., by Theisen (2012). In highlighting the role of population dynamics and migration for
different conflict patterns, our work also complements recent work by Bosetti, Cattaneo,
and Peri (2018) and Owain and Maslin (2018) that focuses on conflict-related migration
between countries. In this respect, our work also contributes to the literature on climate
migration and the links between environment, migration and conflict surveyed by Brzoska
and Froehlich (2016).

The remainder of the paper is structured as follows. Section 3.2 describes the data
sources and the construction of the data set used in the analysis. Section 1.3 presents
the results for the short-run effects of the occurrence of temperature extremes on conflict
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incidence. Section 1.4 turns to a long-differences analysis of the effect of a gradual increase
in the frequency of extreme events on conflicts. Section 3.4 concludes the analysis with a
brief discussion of the results.

1.2 Data

To analyze the impact of temperature shocks and long-run warming on conflict risk we
construct a monthly data set for Africa for the period 1997 to 2015 for 4826 grid cells of
0.75◦ latitude and longitude.

Monthly time series for temperature and precipitation are obtained from the Era In-
terim reanalysis data set provided by the European Centre for Medium Run Weather
Forecast (ECMWF).5 Reanalysis of meteorological data ensures very high data quality by
combining the strengths of all available meteorological sources. Data inputs ranging from
modern radiometric measurements by satellites to local weather stations, buoys or aircrafts
are comprised by using a stable assimilation scheme. This guarantees temporally and spa-
tially consistent estimates of the weather state and alleviates the concern that the extent
of measurement error resulting, for instance, from unevenly distributed weather stations is
correlated with omitted factors.

Our main explanatory variable is a binary measure for temperature extremes that
is constructed from the monthly time series of temperature in each available grid cell.
As the climate data is available from 1979 whereas the geo-coded conflict data is only
available from 1997, we use the period 1979-1996 as training period for the construction
of temperature extremes. Accordingly, the period 1997-2015 serves as estimation period.
For the training period we calculate, for each grid cell, calendar month-specific means and
define a grid-cell and calender-month specific threshold at the 95 percent percentile of
absolute deviations from these means. Based on this threshold, we create a binary variable
for the estimation period that takes on the value 1 if a deviation exceeds this threshold.
The advantage of this approach is that the mean that serves as basis to construct the
extremes stays constant over the estimation period. This avoids that the temperature
extremes are by construction related to variation during the period of interest, allowing for
a transparent benchmark and an investigation of long-run trends. Further, by looking at
deviations from calendar month-specific means we explicitly abstract from seasonal climate
effects. Otherwise, most of the extremes would be found in the hot season whereas there
would not be much variation in the remaining year. This methodology is based on the

5See Dee et al. (2011) for details. We use data on synoptic monthly means of precipitation and average
temperature at time 0:00 and time 12:00 (step 12). To obtain total precipitation for one month we sum up
the values of both times and multiply that sum by the number of days in the respective month.
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assumption that a deviation from the long-run normal conditions can have a disruptive
impact in any month. It is therefore the variation relative to the normal conditions, and
not an absolute weather event, that is modeled as extreme event and hypothesized as
potential trigger of violence.

This approach constitutes a key difference to previously used measures of extreme
events as most studies based their definition of temperature (precipitation) anomalies on
deviations from long-run means independently of the (calendar) month. For instance,
O’Loughlin, Witmer, Linke, Laing, Gettelman, and Dudhia (2012) and O’Loughlin, Linke,
and Witmer (2014) define extreme events as +/- 1 or 2 SDs of the long-term means.
Also see Maystadt, Calderone, and You (2015), Fjelde and Uexkull (2012), Raleigh and
Kniveton (2012) for similar approaches. More complex drought indices, like the PDSI or
SPEI, that have been used in the literature also reflect absolute variation and are therefore
not suitable for the purposes of the present application, which tries to explicitly analyze
the impact of global warming and related temperature extremes.

By construction, the frequency of extremes in the training period is 5 percent. In the
estimation period this frequency is higher (11 percent), which already indicates the warm-
ing observable over the sample period that comes along with a rise in average temperature
and a corresponding shift in the distribution. Further, it is notable that an increase of
the intra-annual variance elevates the tails of the distribution and thereby the evolution
of extremes (see Figure 1A.3). Precipitation declines on average over the sample period
and therefore low precipitation extremes and drought increase in frequency while the intra-
annual standard deviation declines.

The dependent variable is a binary conflict indicator that switches on if at least one
conflict has taken place in a given grid and month. Geo-coded data on civil conflict is
obtained from the Armed Conflict Location and Event Database (ACLED). The ACLED
data set provides locations of conflicts within all African countries since 1997 (Raleigh,
Linke, Hegre, and Karlsen, 2010). Events involve a range of actors, including rebels,
governments, militias, armed groups, protesters and civilians. The two main categories
contained in the database are battles and riots. Riots are usually (non-violent or violent)
demonstrations against the government. In some cases the target might also be private
entities like businesses. Battles are defined as violent events between two groups. One of
the groups might be the government but it might also be that two non governmental groups
fight against each other. Battles are further split into battles that result in changes of the
contested territory and battles that do not affect territorial changes. The categorization of
conflicts related to agriculture or pastoralism is based on key word search in informational
notes that are included in the database for each incidence.6 Besides, we generate a category

6Agropastoral conflicts are based on the following keywords in the contextual notes: “farm”, “crop”,
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for rural conflicts based on the geographic location of their emergence. Conflicts are defined
as rural regional conflicts if they take place outside of large agglomerations.7

To proxy agricultural productivity we employ the "Caloric Suitability Index" developed
by Galor and Özak (2016). In contrast to previously used, weight-based measures of agri-
cultural suitability, this index takes the caloric return of agricultural yields into account.
This permits a straightforward comparison of output across regions. The Caloric Suitabil-
ity Index is based on data for potential crop yields from the Global Agro-Ecological Zones
project (GAEZ) by the Food and Agricultural Organization (FAO) which are transformed
into caloric output using information on the caloric content of the respective crops. Esti-
mates of potential yields are based on agro-climatic factors which ensures exogeneity with
respect to to human intervention. Further, the caloric suitability measure constitutes a
long-term, time invariant estimate and therefore remains unaffected by the evolution of
climate.

Information on the exposure to land degradation comes from the World Atlas of Deserti-
fication (UNEP, 1992). The data on soil degradation contained in the Atlas is adopted from
the Global Assessment of Human-induced Soil Degradation (GLASOD) project, funded by
the United Nations Environment Program (UNEP) and coordinated at the International
Soil Reference and Information Centre (ISRIC). Soil degradation is assessed and averaged
over the recent past (5 to 10 years) at the time of its compilation in 1990. The measure of
soil degradation is based on ratings by a large number of soil scientists that are specialists
for their respective geographical regions. This expert rating classifies the extent of soil
degradation into 5 categories (0-4). For instance, category 0 implies that there is no sign
of present degradation whereas category 5 implies extreme degradation with the terrain
being irreclaimable.

Demographic data on population density, population growth and net migration are
obtained from the Gridded Population of the World Database (CIESIN, 2016). This data
is provided in 5-year intervals (1995, 2000, 2005, 2010 and 2015). To be able to use these
data in a time-varying specification, we linearly interpolate the population density data
between these points in time on an annual basis. Population growth rates are calculated
as log difference between population density levels in 1995, 2000, 2005, 2010 and 2015
and accordingly reflect 5-year growth rates. These growth rates are also interpolated at an
annual level. Information on net migration takes birth rates and death rates into account by
substracting the natural increase in population from the change in population density, and
therefore reflects the number of people migrating into a grid. Net migration information

“cattle”, “herd”, “grazing”, “nomad”, “pasture”, “water”.
7This categorization is based on cities defined by the "World Cities Database" and considers cities with

at least 100k inhabitants. The city area is approximated by a 5km buffer around the city center.
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is available for the period 1990-2000.
Details about data sources and variable construction are contained in the Appendix in

Table 1A.1 while Table 1A.2 presents summary statistics for the main variables.

1.3 Weather Extremes and Conflict

1.3.1 Empirical Framework

This section presents results for the short-run effects of the occurrence of weather extremes
on conflict incidence. The empirical framework models conflict in grid cell i in month t as

ci,t = α+ βTEi,t + δXi,t + νi + νt + νm + νm·E + νi·T + εi,t , (1.1)

where ci,t is the incidence of a conflict event in grid cell i in month t, TEi,t is the prevalence
of a temperature extreme in grid cell i in month t as described in the previous section, and
Xi,t is a vector of weather controls, which include, in particular, the average temperature
and precipitation in a cell during a given month. The empirical model accounts for time
invariant heterogeneity across grid cells by ways of grid cell fixed effects νi, and for time-
specific waves in conflict incidence by including fixed effects for each year of the observation
period, νt, as well as for month-of-year (calender month) fixed effects νm. In addition, more
extensive specifications account for country-specific time-varying factors by the inclusion
of country-specific year fixed effects νi·T , or month effects that are allowed to vary by the
location relative (in terms of North or South) to the equator, νm·E . The error term εi,t

allows for clustering within cells, as well as for spatial clustering among neighboring cells
(Conley robust standard errors) in some of the robustness checks.8

The identification of the coefficient of interest β relies on the assumption that the
occurrence of a weather extreme, TEi,t, in a cell and month is exogenous to the occurrence
of a conflict event in this cell during this month. The data on weather events is from
reanalysis data based on raw data from different sources, including in particular satellite
data as described above. Variation in this variable relative to a threshold for extreme
events that is based on the 95% interval in the pre-analysis period 1979-1997 is therefore not
systematically influenced by the occurrence of (small-scale) conflict. Hence, the identifying
assumption is that Variation in TEi,t, conditional on the set of controls, is exogenous to
conflict incidence is plausibly satisfied.

8When adjusting the standard errors for spatial dependency along the lines Conley (1999) and Conley
(2008). The distance cut-off for spatial contiguity is 200km (and thus includes two neighbouring grid cells
in each direction) and the lag cut-off is 20. The results are robust to alternative specifications.
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1.3.2 Baseline Results

Table 3.2 displays the results for different specifications of the empirical model, with grid
cell fixed effects in Column (1), grid and year fixed effects in Column (2), additional calen-
der month effects by hemisphere in Column (3), and with country-specific year effects in
Column (4). Across all specifications, the occurrence of an extreme temperature event im-
plies a significantly higher likelihood of the incidence of a violent event. Quantitatively, the
effect in Columns (2)-(4) corresponds to an increase in the likelihood of conflict incidence
in a given month and cell of 0.002, or approximately 7% compared to the unconditional
mean of 0.03. In line with earlier results on the role of rainfall on conflict in mainly agri-
cultural regions (Miguel, Satyanath, and Sergenti, 2012; Harari and Ferrara, 2018), the
results also indicate that a shortage of rain increases conflict incidence, presumably due
to resource constraints. It is worth noting, however, that these earlier studies effectively
used variation at the yearly level, or variation in rainfall during particular seasons of the
year (in particular growing seasons), whereas the present application accounts for recur-
rent heterogeneity in conflict activity during neuralgic months by the inclusion of year and
calender month fixed effects. In this sense, the results complement these earlier findings,
while pointing at an independent significant effect of weather extremes. The finding that
temperature extremes are associated with higher conflict risk confirms previous findings,
particularly by O’Loughlin, Linke, and Witmer (2014), using a refined measure of tem-
perature extremes and considering a sample that includes the entire African continent.
Moreover, the variation in temperature extremes contains relevant information for conflict
incidence in terms of predictive power.9

The estimates for the baseline specification correspond to the effect of an extreme
weather event in a given month on conflict incidence. One might suspect that the duration
of this extreme is not irrelevant for the implications for conflict. In order to explore the
sensitivity of the results with respect to the length of extreme events, we estimated an
extended model, where the prevalence of extreme events was decomposed into events that
lasted for exactly one month, for exactly two months, or three or more months. Table 1.2
presents the corresponding results. The findings indeed suggest that the effect of extreme
weather events on conflict is non-linear in the length of the extreme weather events. The
effect is larger for extreme events that last for two months than for events that last only
one month, presumably due to the greater impact on distress and hardship associated with
extended extreme events. On the other hand, events that last for three months or longer
do not seem to have an independent effect, probably because of possibilities to cope with
prolonged extreme events or other reactions of adjustment, relief, or adaptation. Generally,

9See the ROC-curve in Figure 1A.4.
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Table 1.1: Baseline Results: Extreme Temperature Events and Conflict

(1) (2) (3) (4)

Dep. var.: incidence civil conflict
Extreme Event 0.525∗∗∗ 0.197∗∗∗ 0.191∗∗∗ 0.165∗∗∗

(0.0626) (0.0588) (0.0596) (0.0563)

Temp (mean) 0.00650∗∗∗ 0.00250 0.00381 0.00284
(0.00240) (0.00238) (0.00323) (0.00325)

Prec (mean) -0.00196∗∗∗ -0.00119∗∗∗ -0.00112∗∗∗ -0.00110∗∗∗

(0.000287) (0.000280) (0.000289) (0.000273)
Adjusted R2 0.000 0.016 0.016 0.244
N 1100328 1100328 1100328 1100328
Grid 4826 4826 4826 4826
Grid FE X X X X
Time FE X X X
Month FE X X
Month×Equator FE X X
Country×Year FE X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the inci-
dence of a conflict event in a given cell and month. All coefficients are multiplied by 100. Clustered
standard errors at grid level in parentheses. ***/**/* indicate significance at 1%/5%/10%, respec-
tively.

the length of extreme events may trigger two opposing effects that are reflected in these
results. On the one hand, the severity of distress increases with the endurance of the shock
which in turn aggravates it’s impact on conflict risk. On the other hand, societies may
start to react to the shock and implement coping strategies. Further, it is conceivable
that weather shocks do not turn into civil conflict instantaneously. Of course the time
span of reaction depends on the mechanism in place; relevant factors might for instance be
the speed of bio-geographic transformation processes, or, depending on the conflict type,
the formation process of conflict. All variables are measured as monthly means, hence
it is conceivable that the (main) reaction to the weather shock is captured if including a
second month in the analysis. Figure 1A.5 shows the effect of temperature extremes that
have been going on since t=1 to t=7 months with estimation results shown in Table 1A.4.
It shows that the temperature extremes unfold their impact on conflict most strongly in
the second month. These results also document, however, that the baseline specification
delivers a conservative estimate of the effect of extreme weather events on conflict.

Instead of estimating the effect on any conflict event, one might wonder about the
potential heterogeneity in the effect of weather extremes on conflicts of different types. To
investigate this conjecture, we replicate the analysis while restricting attention to particular
conflict types. In particular, using the categorizations and narratives supplied with the
ACLED data, we consider battles resulting in a change of contested territory, battles
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Table 1.2: Baseline Results: Extreme Temperature Events of Different Lengths

(1) (2) (3) (4)

Dep. var.: incidence civil conflict
One Month Extreme 0.137∗ 0.148∗∗

(0.0703) (0.0705)

Two Months Extreme 0.486∗∗∗ 0.498∗∗∗

(0.147) (0.147)

Three or more Months Extreme -0.0219 0.00831
(0.117) (0.117)

Adjusted R2 0.016 0.016 0.016 0.016
N 1100328 1100328 1100328 1100328
Grid 4826 4826 4826 4826
Grid FE X X X X
Time FE X X X X
Month FE X X X X
Month×Equator FE X X X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the
incidence of a conflict event in a given cell and month. All regressions include average temperature
and precipitation levels as controls. All coefficients are multiplied by 100. Clustered standard errors
at grid level in parentheses. ***/**/* indicate significance at 1%/5%/10%, respectively.

without changes of territory, conflicts involving farmers and/or pastoralist (agropastoral
conflicts), conflicts occurring in rural areas, and riots. To gain some overview, we replicate
the analysis for the entire sample. The corresponding results are shown in Table 1.3.
Weather extremes mainly show a positive effect on territorial conflicts and conflicts in
agricultural/rural areas.

Interacting Factors: Population Density and Caloric Suitability. One problem
pervading the existing literature on the effects of climate for conflict is the lack of a common
and coherent narrative underlying the evidence. One reason for this lack might be the
fact that climate or weather extremes affect individuals in different ways depending on
the respective living environment. In the following, we explore the role of some of the
interacting factors that have been mentioned in the discussion.

The existing literature suggests that extreme weather events have particularly devas-
tating effects on health and resources in areas in which the population exhibits a high
degree of vulnerability due to low resilience. Such areas are typically associated with high
population density and low agricultural productivity. In order to test this conjecture, we
consider an extended specification in which the effect of weather extremes on conflict is
allowed to vary with population density or the suitability of the soil for food production,
as measured by the potential caloric yield per unit of land. The corresponding results are



Temperature Extremes, Global Warming and Armed Conflict 19

Table 1.3: Baseline Results: Extreme Temperature Events and Conflict Types

(1) (2) (3) (4) (5)
Battle (terr) Battle (non-terr) Agropastoral Rural Region Riot

Extreme Event 0.147∗∗∗ 0.000455 0.0508∗∗∗ 0.179∗∗∗ 0.0184
(0.0405) (0.0115) (0.0167) (0.0560) (0.0195)

Adjusted R2 0.003 0.000 0.003 0.013 0.002
N 1100328 1100328 1100328 1100328 1100328
Grid 4826 4826 4826 4826 4826
Grid FE X X X X X
Time FE X X X X X
Month FE X X X X X
Month×Equator FE X X X X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the
incidence of a conflict event in a given cell and month. All regressions include average temperature
and precipitation levels as controls. All coefficients are multiplied by 100. Clustered standard errors
at grid level in parentheses. ***/**/* indicate significance at 1%/5%/10%, respectively.

contained in Table 1.4. In fact, weather extremes exhibit a greater effect in areas with high
population density. Likewise, the effect is amplified in areas where the caloric suitability
of the soil is comparably low. Both effects are present in isolation as well as when added
jointly in the same specification.10

The fact that permanent agricultural scarcity or high population pressure significantly
weakens the resilience to climatic shocks points towards a channel that works through
rising agricultural scarcity in the face of extreme climatic conditions. This hypothesis is
supported by the finding that particularly conflicts in a rural and agricultural context or
conflicts involving territorial changes are particularly sensitive to the occurrence of weather
extremes. One facet of this mechanism might be climatic stress in the growing season of
grid specific crops which translates into increasing annual conflict risk (Harari and Ferrara,
2018). However, also alternative mechanisms are conceivable such as battles over fruitful
land or over water resources that may occur in any months of the year. To take a closer look
at this nexus we estimated empirical models with more extensive specifications including
cell-year-specific fixed effects into the regressions. The results reveal that indeed part of
the effect of monthly temperature extremes on conflict risk is accounted for by grid-specific
annual factors.11 This finding is consistent with a mechanism as outlined above or might

10Notice that the main effect of soil suitability, which is a time-invariant variable, is absorbed by the
cell fixed effects. The algorithm on which the population density data are based has changed in 2005 (from
v3 to v4, see CIESIN, 2016). To account for this change in the variable construction, we replicated the
estimation with a more flexible specification that additionally includes an interaction term of extremes with
an indicator variable that reflects the timing of this change. The results are shown in Table 1A.5 in the
Appendix and suggest that the main results remain unaffected.

11Table 1A.6 in the Appendix shows the corresponding results for an extended specification of Table 1.4
and a substantial increase in the variation explained by the empirical model.
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indicate a grid-specific trend of climate and conflict pointing towards potential long-run
consequences of global warming. This will be subject of analysis in Section 1.4. Notably,
even in this highly restrictive specification that accounts for grid-year-specific fixed effects,
temperature extremes retain an effect on conflict that remains statistically significant and
quantitatively relevant, in particular when accounting for regional vulnerability in terms
of high population pressure.

Table 1.4: Extreme Temperature Events and Conflict:
The Role of Population and Productivity

(1) (2) (3)

Dep. var.: incidence civil conflict
Extreme Event 1.161∗∗∗ 0.400∗∗∗ 2.653∗∗∗

(0.222) (0.0829) (0.402)

ln Pop. Density -1.109∗∗∗ -1.121∗∗∗

(0.246) (0.245)

Extreme Event×ln Pop. Density 0.191∗∗∗ 0.352∗∗∗

(0.0353) (0.0535)

Extreme Event×Caloric Suitability -0.000245∗∗∗ -0.000795∗∗∗

(0.0000755) (0.000131)
Adjusted R2 0.016 0.016 0.016
N 1085604 1099188 1085292
Grid 4814 4821 4811
Grid FE X X X
Time FE X X X
Month FE X X X
Month×Equator FE X X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the
incidence of a conflict event in a given cell and month. All regressions include average temperature
and precipitation levels as controls. All coefficients are multiplied by 100. Clustered standard errors
at grid level in parentheses. ***/**/* indicate significance at 1%/5%/10%, respectively.

Alternative Measures and Estimation Methods. The analysis so far has focused
on extreme weather events in terms of temperature. Much of the existing literature has
instead focused on rainfall and droughts. Additional results for alternative specifications
of extreme events that focus on either low precipitation or droughts deliver qualitatively
similar results.12 In light of the research question underlying this paper – whether climate

12See Tables 1A.7 and 1A.8 for the main effects and for the results regarding population density and
caloric suitability. See Table 1A.9 for results when including all weather variables in one specification. See
Figure 1A.2 for the evolution of precipitation (extremes) and conflict over time. We do however find that
the effect of low precipitation extremes and drought is more sensitive to the inclusion of time fixed effects,
an issue that has been discussed previously by Couttenier and Soubeyran (2014).
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change and global warming cause conflicts – we concentrate attention on the effects of
extreme temperature events in the remainder of the analysis.

We analyze whether the relationship between temperature extremes and civil conflict is
robust to different specifications. First, we investigate the effects of temperature extremes
on conflict along the intensive margin. In particular, we consider the effect on the number
of conflict incidences as well as the number of conflict-related fatalities. Temperature
extremes have a significantly positive effect on both measures, indicating that beyond being
a trigger for conflict at the extensive margin, temperature extremes also affect the severity
of conflicts. This implies that ongoing conflicts can be aggravated by the appearance
of climatic shocks.13 To investigate this issue in more detail, we analyze the impact on
conflict onsets separately from that on incidence by setting the conflict measure to 1 in
the month of the onset of a new conflict, and 0 otherwise. While the results point to an
overall significant impact, the effect is quantitatively smaller and statistically insignificant
for some specifications, which suggest that part of the effect is related to the prolongation
of ongoing conflict.14 The estimation of average marginal effects using a logit model also
confirms the baseline results. Finally, to correct for spatial auto-correlation of the residuals
we employ Conley-robust standard errors.15

1.3.3 Additional Results

The Role of Population Dynamics. The previous findings suggest that temperature
extremes affect individuals differently in different environments. This implies that extreme
events might exhibit interactions with local conditions, reflecting different living conditions
and resilience, which might be related to population dynamics and migration patterns.
In particular, the occurrence of weather extremes in environments in which people are
forced to move away from their homes might create different tensions than in regions that
attract population inflows. Obviously, weather extremes might affect conflict in different
ways and through different mechanisms, leading to potentially complicated and multi-
faceted patterns of effects and narratives. To investigate this issue, we consider population
dynamics in terms of population growth and migration as factors that might interact with
weather extremes, thereby providing further insights regarding the vulnerability of regions
towards climatic shocks.

In an attempt to address this issue, we replicate the previous analysis but group the
grid cells by their population dynamics in terms of population density, population growth,
or net migration. The split by quartiles of population density effectively constitutes a

13See Table 1A.12.
14See Table 1A.10.
15See Table 1A.12.
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different way of replicating the analysis of Table 1.4. To avoid the potential concern
that population dynamics are simultaneously influenced by temperature extremes in the
estimation month we base the sample splits on pre-annual values of population density
and population growth, while migration data comes mostly from the pre-analysis period
(1990 to 2000). This avoids having to consider the potential feedbacks of conflicts on other
causes of population growth and migration and allows focusing attention to the exploration
of the effect of climatic distress caused by temperature extremes in the face of differential
population dynamics.

The findings, shown in Panel A of Table 1.5, reveal a non-linear effect for cells charac-
terized by different population density. In particular, we find a positive effect of weather
extremes on conflict in the most densely populated quartile of cells. In contrast, the find-
ings indicate that weather extremes have no effect on conflict in cells belonging to the three
other quartiles.

Panels B and C adopt a more dynamic perspective by focusing on the heterogeneity
in the effect by population dynamics. In Panel B of Table 1.5, the cells are split into
quartiles by population growth. While this can include any reasons for population growth,
i.e., fertility, mortality and migration, this setting delivers additional insights into the
vulnerability and crowding that might be the key factor that leads to an effect of weather
extremes on conflict. The results reveal a different picture than those obtained when
considering heterogeneity in the level of population density. In particular, when considering
population growth, the effect of weather extremes turns out to be u-shaped. The effect
is effectively zero (and even negative but insignificant) in the two intermediate quartiles,
whereas weather extremes appear to have a significantly positive effect on conflict in the
quartiles with the lowest and the highest rates of population growth.

In order to identify the role of migration, Panel C of Table 1.5 presents results for a
sample split by net migration rates. The results document a similarly u-shaped pattern,
although the effect is significantly positive only for the lowest quartile, and positive but
insignificant for the highest quartile. Note that the results are not affected by ongoing
conflict events, as documented by results for an extended specification that includes lagged
conflict incidence as control variable.16

These findings are consistent with completely different narratives and mechanisms for
cells characterized by different population dynamics. Areas with the highest rates of pop-
ulation growth or net migration are likely to be destination areas for refugees, which are
presumably also areas of higher density. In these areas, weather shocks might also consti-
tute a major threat to the provision with resources, thereby triggering conflicts. Also, it
is conceivable that the areas with the lowest population growth or lowest (most negative)

16See Table 1A.13 in the Appendix.



Temperature Extremes, Global Warming and Armed Conflict 23

net migration are areas where where conflicts are most sensitive to temperature extremes.
Likewise, these are the areas that individuals might see themselves forced to leave in the
face of environmental shocks and emerging subsistence constraints.

Table 1.5: Extreme Temperature Events and Conflict:
The Role of Population Dynamics

Dependent Variable: Conflict Incidence
Quartile Q1 Q2 Q3 Q4

Panel A: Population Density
Extreme Event 0.00537 -0.134 0.198 0.332∗∗

(0.0396) (0.0820) (0.130) (0.168)

Adjusted R2 0.003 0.010 0.018 0.030
N 257616 257424 257508 257100
Grid 1326 1506 1566 1402

Panel B: Population Growth
Extreme Event 0.424∗∗∗ 0.159 -0.136 0.224∗∗

(0.133) (0.124) (0.0985) (0.114)

Adjusted R2 0.015 0.023 0.012 0.004
N 257088 256812 256896 257004
Grid 2415 2949 2999 2621

Panel C: Net Migration
Extreme Event 0.546∗∗∗ -0.0879 -0.00494 0.161

(0.157) (0.0969) (0.0607) (0.131)

Adjusted R2 0.027 0.014 0.004 0.019
N 273828 274056 273828 274056
Grid 1201 1202 1201 1202

Grid FE X X X X
Time FE X X X X
Month FE X X X X
Month×Equator FE X X X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the in-
cidence of a conflict event in a given cell and month. All regressions include average temperature
and precipitation levels as controls. The assignment to quartiles related to population density and
population growth is based on values from the respective previous year. All coefficients are multi-
plied by 100. Clustered standard errors at grid level in parentheses. ***/**/* indicate significance
at 1%/5%/10%, respectively.

The previous findings indicate that the effect of weather extremes on conflict incidence
might exhibit a different intensity depending on the concrete environment, as reflected by
the respective population dynamics. To investigate whether there is also heterogeneity
regarding the type of conflicts that are triggered by weather extremes in different envi-
ronments, we replicated the analysis for different conflict types while distinguishing cells
by population dynamics. The corresponding results, which are shown in Table 1A.14 in
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the Appendix, document that the pattern of the pooled analysis is largely confirmed when
considering the quartiles of cells that grow least in terms of population or experience the
greatest level of out-migration (Panels A and C). In contrast, in cells that grow in terms
of population or experience in-migration, weather extremes have weaker effects on battles
involving territorial changes or rural conflicts, but instead are associated with the outbreak
of non-territorial battles and riots (Panels B and D). This heterogeneity in conflict types
substantiates the conjecture that differential mechanisms are in place that link tempera-
ture shocks to the outbreak of conflict, depending on the local circumstances in terms of
population dynamics.

Land Degradation. One factor that is often discussed as potential driver of migration
and that has received revived interest in the context of climate change is environmental
degradation. To investigate whether environmental stress relates to the vulnerability found
for cells with the lowest population growth or migration we first look at the relationship
between land degradation and population growth or net migration, respectively. Figure
1.3 illustrates this relationship. The plot suggests that indeed areas with greater land
degradation in the sense of sensitivity of soil productivity experience lower population
growth and more out-migration in the following decade.

To explore this aspect in more detail, we repeat the analysis by allowing for differential
effects of weather extremes in cells with different degrees of land degradation in our anal-
ysis. Table 1.6 presents the corresponding estimates. The results document that weather
extremes mainly affect conflict in cells with higher degrees of land degradation, supporting
the vulnerability hypothesis and pointing towards a connection between the effects found
in the first quartile of population growth or migration and environmental degradation. In
additional results for specifications that also distinguish between different conflict types
and account for for regions with low and high levels of land degradation, respectively, the
pattern of the pooled analysis is largely confirmed.17 The results also show that this is
particularly the case for grid cells that experienced strong land degradation. Here the effect
corresponds closely to the findings for grid cells with low population growth or net migra-
tion where battles involving changes of territory, conflicts in the context of agriculture and
pastoralism and in rural regions are significantly affected by temperature shocks. Overall,
the results suggest that the effect found in the lower tail of the distribution of population
dynamics might be related to scarcities arising from declines in agricultural production.
In contrast, the effect found in the upper tail of the distribution of population dynamics
seems to unfold in a different context, potentially involving greater vulnerability arising
from increased population pressure.

17The results are shown in Table 1A.15 in the Appendix.
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Figure 1.3: Land Degradation and Population Dynamics
This figure plots population density and net migration relative to the degree of land degradation.
Severity of land degradation is rounded to the closest decimal level (0.1). Population growth (over
the period 1990-2000) and net migration (over the period 1990-2000) are then averaged for each
bin. The marker size corresponds to the number of grid-month observations in each bin. The figure
is based on a sample that excludes cells that are outliers in terms of population growth or net
migration (measured by the 95th percentile).

Table 1.6: Extreme Temperature Events and Conflict: The Role of Land Degradation

(1) (2) (3)
All High Degradation Low Degradation

Dep. var.: incidence civil conflict
Extreme Event -0.0529 0.306∗∗∗ 0.0458

(0.0773) (0.0943) (0.0717)

Extreme Event×Land Degradation 0.249∗∗∗

(0.0647)
Adjusted R2 0.016 0.020 0.011
N 1066356 558600 541728
Grid 4677 2450 2376
Grid FE X X X
Time FE X X X
Month FE X X X
Month×Equator FE X X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the inci-
dence of a conflict event in a given cell and month. All regressions include average temperature and
precipitation levels as controls. The sample split into grids with high- and low land degradation is
based on the median value of land degradation in 1990. All coefficients are multiplied by 100. Clus-
tered standard errors at grid level in parentheses. ***/**/* indicate significance at 1%/5%/10%,
respectively.



26 Temperature Extremes, Global Warming and Armed Conflict

1.4 Long-Run Trends: Climate Change and Conflict

The results so far document that the occurrence of weather extremes is associated with
the incidence of violent conflict events in high-resolution data of monthly frequency and
a narrowly defined spatial environment of grid cells of 0.75o latitude and longitude. As
discussed in the Introduction, however, the frequency and severity of extreme weather
events seems to have increased over the past three decades. Figure 1.4 provides additional
evidence for this by plotting the average number of extreme temperature events per month
at the grid cell level, weighted by the duration of the respective extreme events. The figure
shows that the frequency of events as well as the duration of these events have increased.
In light of the results presented in the last section, this suggests that climate change might
have considerable consequences for the incidence of conflict. In contrast to being exposed
to short-run fluctuations, societies may adapt to gradually moving levels of temperature
or extremes. But it might also be the case that the effect exacerbates, for instance when
the underlying vulnerability due to ongoing environmental degradation rises. In order to
investigate this issue in more detail, this section presents the results of a long-run analysis
of trends in temperature extremes and conflict incidence.
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Figure 1.4: Dynamics of Extreme Temperature Events in Africa
This figure plots the average annual number of extreme temperature events across all cells by year, weighted
by the average length of extreme events in terms of consecutive months. See Section 3.2 for a detailed data
description.
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1.4.1 Empirical Framework

The analysis is based on variation in the long-run trends of extreme temperature events
and conflict incidence over the observation period 1997-2015. We conduct two sets of
analyses that are based on the logic of a difference-in-differences (DiD) approach in long
differences and a generalization thereof. The baseline empirical framework underlying
the long-differences analysis splits the data into two equally long observation periods,
1997(1)-2006(6) and 2006(7)-2015(12) and computes the difference in the average incidence
of conflict in a cell and relates it to the difference in the average incidence of extreme
temperature events. In particular, with Ci,1 denoting the average conflict incidence in grid
cell i during the first half of the observation period (1997-2006), and Ci,2 denoting the
average conflict incidence in the same grid cell during the second half of the observation
period (2006-2015), the (long) difference in conflict incidence in cell i is given by DCi =
Ci,2 − Ci,1.18 This difference in conflict incidence is then related to the long difference in
weather extremes, which is computed analogously as the difference in the average frequency
of extreme temperature events in grid cell i during the second half of the observation period,
TEi,2, relative to the corresponding average during the first half of the observation period,
TEi,1, as DTEi = TEi,2 − TEi,1. The long-difference estimation is then based on the
empirical model

DCi = α+ γDTEi + φr + φc + εi , (1.2)

where the empirical specification includes controls for climate zone fixed effects φr and
country fixed effects φc. This setting corresponds to a difference-in-differences (DiD) esti-
mator using long differences.19 In essence, this specification corresponds to the graphical
illustration in Figure 1.2. The identification of the coefficient of interest, γ, relies on the
assumption of a common trend in conflict, α, across all cells within a given climate zone
and country.20

To relax the common trend assumption, we also apply a generalized version of this long-
differences estimator that is based on differences over three time periods. In particular,
we repeat the analysis by dividing the observation period into three sub-periods (1997-

18Averages are calculated over the entire first half of the estimation period (9.5 years) instead of restrict-
ing to observations at arbitrary short time windows at the beginning and end of the panel. This reduces the
concern of averages being driven by outlying years in terms of conflict incidence or climate. However, the
results are robust to alternative specifications. See for instance table 1A.18 and 1A.20 for an alternative
specification using a 7-year window or table 1A.19 and 1A.21 using a 8-year window at the beginning and
end of the sample period to construct averages for the long-difference estimation.

19A similar approach is applied by Dell, Jones, and Olken (2012) who analyze the impact of differences
in temperature on differences economic growth in the long run.

20Note that without controls for climate zone and country fixed effects, the estimation of (1.2) is equiv-
alent to a regression in levels of Ci,t on TEi,t, t = 1, 2, with the inclusion of cell fixed effects.
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2002, 2003-2008, 2009-2015), and computing the respective differences DCi,t and DTEi,t.
Since there are three sub-periods, this allows computing two differences per cell i and,
consequently, estimating an extended model in differences that includes cell fixed effects
µi and a trend component I23 that reflects the differences between the second and third
sub-period. The generalized long difference model is then estimated as

DCi,t = µi + γDTEi,t + ψI23 + εi,t . (1.3)

1.4.2 Results

Panel A of Table 1.7 presents the results for the long-differences specification (1.2). The
results show separate estimates for the effect of variation in the frequency of extreme
temperature events over the two sub-periods, and of the long difference in temperature,
as well as both.21 The results show that cells that experienced a stronger increase in
temperature extremes, or in temperature, also experienced a more pronounced increase in
conflict incidence. This finding indicates that societies do not fully adapt to slowly changing
levels of mean temperature or extreme events. The results for the joint specification in
Column (3) further indicate that the increase in weather extremes exhibits the stronger
and more robust effect.

In order to explore the robustness of these results with respect to potentially differ-
ent trends in climate and conflict at the grid-level, we also estimated the model for long
differences across three sub-periods (1997-2002, 2003-2008, 2009-2015) applying the Gen-
eralized DiD model (1.3). The respective results are presented in Panel B of Table 1.7. By
considering three periods, the model effectively accounts for grid-specific trends in conflict
incidence and thus identifies how this trend is affected by trend changes in weather ex-
tremes (and temperature), thereby relaxing the common trend assumption underlying the
DiD estimator with only two time periods in Panel A. The results indicate that there is
an increase in the frequency of conflict incidence over time, as reflected by the trend coef-
ficient ψ for I23 = 1. More importantly, even beyond grid-specific trends and this overall
trend increase, a rise in the incidence of temperature extremes is related to rising conflict
incidence in the long run. The results in Table 1.7 Column (3) indicate that an increase in
the frequency of temperature extremes (reflected by an increase in differences of long-run
averages by 1) leads to an increase in the frequency of conflicts by 0.084 or 0.042, respec-
tively. For the latter, this corresponds to twice the unconditional mean of the increase in
conflict incidence in terms of differences of long-run averages, which is 0.018. This implies
that the coefficients of the long-run analysis are considerably larger in magnitude than the

21Long differences in temperature have been computed analogously to long differences in conflicts and
extreme events.
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coefficients found in the short-run analysis.
Additional results obtained for a Generalized DiD model that allows for time-varying

trends within countries and climate zones confirm these findings.22 In further analyses, we
also investigated whether the effect of climate change in terms of an increasing frequency
of weather extremes and mean temperatures becomes more pronounced over time, i.e.
whether the effect of climate change on conflict becomes stronger in the later sub-periods.
Although the estimates indicate a positive coefficient of the impact of extremes on conflict
in later sub-periods, the effects turn out to be statistically insignificant when including
region-specific time-varying trends.23 Hence, while we find evidence for an increase in the
frequency of weather extremes leading to an increase in the frequency of conflict incidence,
we find no evidence that this effect becomes stronger over time.

Table 1.7: Extreme Weather Events and Conflict: Long Differences

Dependent Variable: Diff Conflict Incidence
Panel A: DiD (Two Periods)

Diff Extreme Event 0.0951∗∗∗ 0.0838∗∗∗

(0.0220) (0.0272)

Diff Temp 0.0188∗∗∗ 0.00537
(0.00584) (0.00719)

r2 0.219 0.217 0.219
N 4826 4826 4826
Climate Zone Trend X X X
Country Trend X X X

Panel B: GDD (Three Periods)
Diff Extreme Event 0.0206 0.0416∗∗

(0.0147) (0.0182)

Diff Temp -0.00189 -0.0106
(0.00638) (0.00811)

I23=1 0.0312∗∗∗ 0.0315∗∗∗ 0.0306∗∗∗

(0.00157) (0.00158) (0.00168)
r2 0.527 0.527 0.527
N 9652 9652 9652
Grid Trend X X X

Panel A: OLS estimation results. The dependent variable is the difference in the average incidence
of conflict events in a given cell and month between 1997-2006 and 2006-2015, (DCi), with one
observation per grid cell. Panel B: OLS fixed effects estimation results. The dependent variable is
the difference in the average incidence of conflict events in a given cell and month between 1997-2002
and 2003-2008, and between 2003-2008 and 2009-2015, (DCi,t), with two observations per grid cell.
See text for details. ***/**/* indicate significance at 1%/5%/10%, respectively.

Table 1A.17 replicates the analysis while allowing for heterogeneity in the effect by

22See Panel A of Table 1A.16 in the Appendix for the results.
23See Panel B of Table 1A.16 in the Appendix for the results.
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agricultural productivity, population density, land degradation, population growth, net mi-
gration and absolute changes in population density. By and large, the results mirror those
obtained with month-by-month variation. In particular, the increase in weather extremes
entails particularly strong increases in conflict incidence in areas with low agricultural pro-
ductivity, high population density, population density changes, and high vulnerability of
agricultural production as reflected by greater land degradation. The main effect of the
increase in weather extremes remains large and significant across all specifications.

1.5 Discussion

This paper provides novel evidence for the role of climate change reflected by the frequency
of temperature extremes for violent conflict in Africa. Estimations based on a fine spatial
resolution of 0.75◦ latitude and longitude and month-by-month variation document a pos-
itive effect of the occurrence of temperature extremes on conflict incidence. These effects
increase with the severity of the extreme in terms of its duration, and are larger in highly
densely populated regions, in regions with lower agricultural productivity, as measured by
potential caloric yield, and in regions with more pronounced land degradation. The results
also point towards heterogeneity in the effect regarding the type of violence and a crucial
role of population dynamics. Regions experiencing an outflow of population exhibit differ-
ent types of conflict in response to weather extremes than regions experiencing population
inflows.

The findings of this paper also contribute to the debate about the role of climate change
for conflict by documenting a link between the increase in the frequency and severity of
extreme temperature events and conflict, using a (generalized) difference-in-differences
approach spanning almost two decades, from 1997-2015. The results resemble those ob-
tained for short-run variability in the sense that regions with a higher increase in extreme
temperature events are shown to have experienced a larger increase in the incidence of vio-
lence. Also the differential effects with respect to population density, population dynamics,
agricultural suitability and land degradation are confirmed, as well as the robustness to
differential trends in regions that experience different severity of climate change.

The results help reconciling some of the open issues in the literature. The results
provide evidence in line with the introductory quotes of UN secretary generals Ban Ki
Moon and Antonio Guterres. In particular, the heterogeneity of the effects is consistent
with different narratives for outbreaks of violence in the context of weather shocks or cli-
mate change that have been argued to be inconsistent with monocausal views of climate
change affecting conflict. Moreover, the results illustrate the central role of interacting
mechanisms, in particular population dynamics, migration, and environmental degrada-
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tion, in linking weather shocks or climate change to violent conflict and different types of
violent events. However, by the design of the empirical analysis using high-frequency and
high-resolution data, the analysis does not provide direct evidence for the role of institu-
tions or institutional failures for the nexus between climate and conflict. Future work is
needed to isolate institutional aspects and options for policy in containing and avoiding
climate-driven conflict.
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1.A Appendix

Table 1A.1: Data Sources and Variable Construction

Source Variable Specification

Climate

1.

European Centre for Medium-Range
Weather Forecasts (ECMWF) Era-Interim
dataset Dee et al. (2011)
1979-2014; 0.75°

Temp Monthly mean temperature in degree celsius
Prec Monthly mean precipitation in mm (litre

per sqm)
Extreme Monthly binary indicator

95% pctile of deviations from month
specific means in 1979-1997. All
temperatures in 1997-2015 above threshold
are classified as extremes.

Extreme Prec Low Monthly binary indicator
Definition according to temp extreme for
low precipitation

Drought Monthly binary indicator
Extreme = 1 & Extreme Prec Low =1

Conflict

2. ACLED (Raleigh, Linke, Hegre, and
Karlsen, 2010)

Incidence Monthly binary indicator for conflict of any
type

Type:
Battle (territory) Battle-Non-state actor overtakes territory

Battle-Government regains territory
Battle (non-territory) Battle-No change of territory
Riot and Protest Riots/Protests
Agropastoral Keywords in contextual notes: “farm”

“crop” “cattle” “herd” “grazing” “nomad”
“pasture” “water”

Location:
Rural Outside of city area (5km buffer). City is

defined by "World Cities Database"
(Includes cities above 100k inhabitants like
national capitals, provincial capitals, major
population centers, and landmark cities)

Cell-specific Characteristics

3. (Galor and Özak, 2016) Caloric Suitability Post 1500
Caloric yield in 1000 million kilo calories
per hectar per year

4. World ATLAS of Desertification (UNEP,
1992)

Severity Land
Degradation

Grid mean of severity index [0,4]

5. Climate Zones Dry: Arid, semi-arid, Tropical: Tropical
dry, tropical wet, Temperate: Humid
subtropical, mediterranean, highlands,
marine

Demographic Characteristics

6. Gridded Population of the World (GPW),
v3 (1995, 2000) and v4 (2005, 2010, 2015),
(CIESIN, 2016)

Population Density Annual interpolation from data in 1995,
2000, 2005, 2010, 2015.
1000 per square kilometer

Population Growth Annual interpolation from 5-year growth
rates in 1995, 2000, 2005, 2010, 2015.
Growth rates are calculated from
population data (e.g. popgrowth_2000 =
(pop_2000-pop_1995)/pop_1995

Quartiles Interpolated value of population
density/growth in L12 falls into quartile
threshold in L12.

7. Global Estimated Net Migration Grids by
Decade, v1,
(CIESIN, 2016)

Net Migration 1990-2000 Population in time period 2 is substracted
from the population in time period 1, and
then the natural increase (births minus
deaths) is substracted.
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Table 1A.2: Summary Statistics

Mean SD Min P95 Max Obs
Incidence Conflict 0.03 0.18 0.00 0.00 1.00 1,100,328
Temperature (degree Celsius) 24.80 5.50 2.80 34.32 41.97 1,100,328
Temperature Extreme 0.11 0.32 0.00 1.00 1.00 1,100,328
Pop. Density (in 1000 per sqkm) 0.04 0.13 0.00 0.15 4.97 1,087,428
Pop. Growth (5-year, in 100 percent) 0.34 8.67 -1.00 0.60 944.06 1,085,076
Net Migration (per sqm, 1990-2000) -0.77 5.63 -97.45 2.40 47.67 1,095,768
Caloric Suitability (calories/hectar, year) 901.73 810.94 0.00 2140.42 2784.73 1,099,188
Severity Land Degradation Index [0,4] 1.00 0.98 0.00 3.00 4.00 1,066,356

Table 1A.3: Lagged Extremes

(1) (2) (3) (4)

Dep. var.: incidence civil conflict
L.Extreme Event 0.517∗∗∗ 0.195∗∗∗ 0.177∗∗∗ 0.160∗∗∗

(0.0642) (0.0604) (0.0607) (0.0597)

Temp (mean) 0.00836∗∗∗ 0.00402∗ 0.00597∗ 0.00419
(0.00245) (0.00242) (0.00325) (0.00334)

Prec (mean) -0.00222∗∗∗ -0.00130∗∗∗ -0.00124∗∗∗ -0.00135∗∗∗

(0.000289) (0.000282) (0.000291) (0.000289)
Adjusted R2 0.000 0.016 0.016 0.065
N 1095502 1095502 1095502 1027856
Grid 4826 4826 4826 4528
Grid FE X X X X
Time FE X X X
Country×Year FE X
Month FE X X
Month×Equator FE X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the inci-
dence of a conflict event in a given cell and month. All coefficients are multiplied by 100. Clustered
standard errors at grid level in parentheses. ***/**/* indicate significance at 1%/5%/10%, respec-
tively.
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Figure 1A.1: Dynamics of Average Temperature and Conflict Incidence
This figure plots quintiles of changes in the average temperature from the first half of the panel
(1997-2006) to the second half of the panel (2006-2015) together with the cells belonging to the
highest quintile of changes in average conflict incidence from the first half to the second half of the
panel.
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Figure 1A.2: Dynamics of Precipitation, Extreme Precipitation Events and Conflict
This figure shows the monthly evolution of precipitation, low precipitation extremes and conflict.
Additionally, it plots fractional-polynomial predictions with 95% confidence intervals. Precipitation
extremes are coded as 1 if the absolute precipitation deviation from month-specific means for a
given cell (calculated from the training period 1979-1996) falls below the 5 percentile threshold,
and 0 otherwise. See Section 3.2 for a detailed data description.
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Figure 1A.3: Trend of Intra-Annual SD of Temperature and Precipitation

Figure 1A.4: ROC Curve Baseline Model
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Figure 1A.5: Length of Extreme Events
This figure plots the effect of extreme events of various duration on conflicts as shown in Table
1A.4. Extremes may be ongoing after the respective period.
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Table 1A.4: Length of Extreme Periods

(1)

Dep. var.: incidence civil conflict
t_1 0.209∗∗∗

(0.0622)

t_2 0.308∗∗∗

(0.118)

t_3 0.272
(0.171)

t_4 -0.420∗

(0.220)

t_5 -0.168
(0.313)

t_6 -0.766
(0.483)

t_7 -0.437
(0.544)

Temp (mean) 0.00341
(0.00323)

Prec (mean) -0.00112∗∗∗

(0.000289)
Adjusted R2 0.016
N 1100328
Grid 4826
Grid FE X
Time FE X
Country×Year FE
Month FE X
MonthtimesEquator FE X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the
incidence of a conflict event in a given cell and month. All coefficients are multiplied by 100. Length
of extreme periods in months. Clustered standard errors at grid level in parentheses. ***/**/*
indicate significance at 1%/5%/10%, respectively.
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Table 1A.5: Gridded Population of the World (GPW), v4, 2005-2015

(1)

Dep. var.: incidence civil conflict
Extreme Event 0.717∗∗∗

(0.222)

ln Pop. Density -1.110∗∗∗

(0.246)

Extreme Event×ln Pop. Density 0.182∗∗∗

(0.0350)

v42005 6.748∗∗∗

(0.293)

Extreme Event×v42005 0.580∗∗∗

(0.124)
Adjusted R2 0.016
N 1085604
Grid 4814
Grid FE X
Time FE X
Month FE X
Month×Equator FE X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the
incidence of a conflict event in a given cell and month. All regressions include average temperature
and precipitation levels as controls. All coefficients are multiplied by 100. v42005 corresponds
to a binary indicator that takes value 0 for the period pre 2005 (for v3 of the GPW data), and
1 thereafter (for v4). Clustered standard errors at grid level in parentheses. ***/**/* indicate
significance at 1%/5%/10%, respectively.
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Table 1A.6: Grid × Year Fixed Effects

(1) (2) (3) (4)

Dep. var.: incidence civil conflict
Extreme Event 0.0508 0.298∗ 0.0761 0.584∗∗

(0.0518) (0.175) (0.0570) (0.256)

Extreme Event×ln Pop Density 0.0478∗ 0.0790∗∗

(0.0263) (0.0342)

Extreme Event×Caloric Suitability -0.0000300 -0.000152∗

(0.0000635) (0.0000852)
Adjusted R2 0.368 0.371 0.371 0.368
N 1100328 1085604 1099188 1085292
Grid 4826 4814 4821 4811
Grid FE X X X X
Time FE X X X X
Month FE X X X X
Month×Equator FE X X X X
GridtimesYear FE X X X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the incidence of
a conflict event in a given cell and month. All regressions include average temperature and precipitation
levels as controls. All coefficients are multiplied by 100. The main effect of population density is omitted
because population density varies at yearly level. Clustered standard errors at grid level in parentheses.
***/**/* indicate significance at 1%/5%/10%, respectively.
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Table 1A.9: Extreme Events and Conflict: Extended Specification

(1) (2) (3) (4)

Extreme Event 0.545∗∗∗ 0.290∗∗∗ 0.289∗∗∗ 0.205∗∗∗

(0.0686) (0.0656) (0.0665) (0.0631)

Extreme Prec Low 0.271∗∗∗ 0.0963 0.0950 0.0519
(0.0757) (0.0738) (0.0747) (0.0706)

Drought -0.270∗∗ -0.396∗∗∗ -0.408∗∗∗ -0.180
(0.130) (0.130) (0.130) (0.128)

Temp (mean) 0.00630∗∗∗ 0.00264 0.00376 0.00284
(0.00240) (0.00238) (0.00323) (0.00325)

Prec (mean) -0.00199∗∗∗ -0.00119∗∗∗ -0.00112∗∗∗ -0.00110∗∗∗

(0.000290) (0.000283) (0.000291) (0.000275)
Adjusted R2 0.000 0.016 0.016 0.052
N 1100328 1100328 1100328 1100328
Grid 4826 4826 4826 4826
Grid FE X X X X
Time FE X X X
Country×Year FE X
Month FE X X
Month×Equator FE X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the incidence of
a conflict event in a given cell and month. All coefficients are multiplied by 100. Clustered standard errors
at grid level in parentheses. ***/**/* indicate significance at 1%/5%/10%, respectively.

Table 1A.10: Onset of Conflicts

(1) (2) (3) (4)

Extreme Event 0.0657 0.388∗∗∗ 0.150∗∗∗ 0.924∗∗∗

(0.0439) (0.141) (0.0511) (0.212)

ln Pop. Density -0.326∗∗∗ -0.330∗∗∗

(0.0819) (0.0818)

Extreme Event×ln Pop. Density 0.0647∗∗∗ 0.123∗∗∗

(0.0213) (0.0280)

Extreme Event×Caloric Suitability -0.0000986∗ -0.000285∗∗∗

(0.0000531) (0.0000721)
Adjusted R2 0.004 0.004 0.004 0.004
N 1100328 1085604 1099188 1085292
Grid 4826 4814 4821 4811
Grid FE X X X X
Time FE X X X X
Month FE X X X X
Month×Equator FE X X X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the incidence of a
conflict event in a given cell and month. All regressions include average temperature and precipitation levels
as controls. All coefficients are multiplied by 100. Clustered standard errors at grid level in parentheses.
***/**/* indicate significance at 1%/5%/10%, respectively.
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Table 1A.11: Alternative Specification 1

(1) (2) (3) (4)

Extreme Event pct95 0.337∗∗∗ 0.0327 0.0417 0.0822
(0.0692) (0.0677) (0.0694) (0.0689)

Temp (mean) 0.00456∗ 0.00335 0.00486 0.00271
(0.00258) (0.00254) (0.00347) (0.00346)

Prec (mean) -0.00214∗∗∗ -0.00129∗∗∗ -0.00121∗∗∗ -0.00115∗∗∗

(0.000289) (0.000281) (0.000291) (0.000274)
Adjusted R2 0.000 0.016 0.016 0.052
N 1100328 1100328 1100328 1100328
Grid 4826 4826 4826 4826
Grid FE X X X X
Time FE X X X
Country×Year FE X
Month FE X X
Month×Equator FE X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the incidence
of a conflict event in a given cell and month. All coefficients are multiplied by 100. In this specification,
extreme events are coded as 1 if monthly temperature exceeds the 95 percentile threshold of the grid-
(but not calendar month) specific temperature distribution. Clustered standard errors at grid level in
parentheses. ***/**/* indicate significance at 1%/5%/10%, respectively.

Table 1A.12: Alternative Specification 2

(1) (2) (3) (4)
Number Conflicts Number Fatalities Logit Conley SE

Extreme Event 1.089∗∗∗ 29.47∗ 0.890∗∗ 0.191∗∗∗

(0.358) (17.60) (0.437) (0.0680)
N 1100328 1100328 580716 1100328
Grid 4826 4826 . .
Grid FE X X X X
Time FE X X X X
Month FE X X X X
Month×Equator FE X X X X
Country×Year FE

The dependent variable is the number of conflicts in a given cell and month in Column (1), the number
of fatalities in a given cell and month in Column (2), the incidence of a conflict event in a given cell and
month in Columns (3) and (4). OLS (linear probability model) estimation results in Columns (1), (2) and
(4), marginal effects of Logit estimates in Column (3). All regressions include average temperature and
precipitation levels as controls. All coefficients are multiplied by 100. Clustered standard errors at grid
level in parentheses in Columns (1)-(3). ***/**/* indicate significance at 1%/5%/10%, respectively.
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Table 1A.13: Lagged Conflict as Control

Dependent Variable: Diff Conflict Incidence
Quartile Q1 Q2 Q3 Q4

Panel A: Population Density
L.Incidence 20.73∗∗∗ 21.04∗∗∗ 25.08∗∗∗ 23.02∗∗∗

(2.982) (1.201) (1.068) (0.784)

Extreme Event -0.000311 -0.121 0.111 0.240
(0.0370) (0.0755) (0.117) (0.153)

Adjusted R2 0.046 0.053 0.079 0.082
N 256274 255858 255887 255684
Grid 1326 1506 1566 1402

Panel B: Population Growth
L.Incidence 21.06∗∗∗ 24.43∗∗∗ 18.28∗∗∗ 18.80∗∗∗

(1.126) (1.118) (0.908) (1.217)

Extreme Event 0.327∗∗∗ 0.0472 -0.154 0.170
(0.123) (0.110) (0.0942) (0.105)

Adjusted R2 0.059 0.081 0.045 0.039
N 253903 252613 252414 253397
Grid 2415 2949 2999 2621

Panel C: Net Migration
L.Incidence 25.07∗∗∗ 23.84∗∗∗ 22.21∗∗∗ 25.16∗∗∗

(0.926) (1.094) (2.105) (1.083)

Extreme Event 0.433∗∗∗ -0.103 -0.0249 0.0882
(0.140) (0.0881) (0.0553) (0.116)

Adjusted R2 0.088 0.069 0.052 0.081
N 272627 272854 272627 272854
Grid 1201 1202 1201 1202

Grid FE X X X X
Time FE X X X X
Month FE X X X X
Month×Equator FE X X X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the incidence of a
conflict event in a given cell and month. All regressions include average temperature and precipitation levels
as controls. All coefficients are multiplied by 100. Clustered standard errors at grid level in parentheses.
***/**/* indicate significance at 1%/5%/10%, respectively.
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Table 1A.14: Extreme Temperature Events and Conflict Types: Sample Splits

Dependent Variable: Conflict Incidence
Conflict Type Battle (terr) Battle (non-terr) Agropastoral Rural Region Riot

(1) (2) (3) (4) (5)
Panel A: Population Growth 1st Quartile

Extreme Event 0.190∗∗ 0.0324∗ 0.0907∗∗ 0.309∗∗∗ -0.0117
(0.0846) (0.0186) (0.0375) (0.117) (0.0361)

Adjusted R2 0.002 0.000 0.002 0.013 0.001
N 257088 257088 257088 257088 257088
Grid 2415 2415 2415 2415 2415

Panel B: Population Growth 4th Quartile
Extreme Event 0.148∗ -0.00709 0.0633∗∗ 0.210∗ 0.0884∗∗

(0.0807) (0.0257) (0.0282) (0.111) (0.0406)
Adjusted R2 0.001 0.001 0.000 0.003 0.002
N 257004 257004 257004 257004 257004
Grid 2621 2621 2621 2621 2621

Panel C: Net Migration 1st Quartile
Extreme Event 0.386∗∗∗ -0.0264 0.0648 0.452∗∗∗ -0.0480

(0.111) (0.0286) (0.0408) (0.148) (0.0470)
Adjusted R2 0.006 0.001 0.005 0.024 0.005
N 273828 273828 273828 273828 273828
Grid 1201 1201 1201 1201 1201

Panel D: Net Migration 4th Quartile
Extreme Event 0.135∗ 0.0557∗∗ 0.0840∗∗ 0.183 0.0850∗

(0.0792) (0.0280) (0.0332) (0.117) (0.0509)
Adjusted R2 0.002 0.000 0.002 0.013 0.003
N 273828 273828 273828 273828 273828
Grid 1201 1201 1201 1201 1201

Grid FE X X X X X
Time FE X X X X X
Month FE X X X X X
Month×Equator FE X X X X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the incidence of a
conflict event in a given cell and month. All regressions include average temperature and precipitation levels
as controls. All coefficients are multiplied by 100. Clustered standard errors at grid level in parentheses.
***/**/* indicate significance at 1%/5%/10%, respectively.
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Table 1A.15: Extreme Temperature Events and Conflict Types: The Role of Land
Degradation

Dependent Variable: Conflict Incidence
Conflict Type Battle (terr) Battle (non-terr) Agropastoral Rural Region Riot

(1) (2) (3) (4) (5)
Panel A: Low Land Degradation

Extreme Event 0.0495 -0.0167 0.0438∗∗ 0.0446 0.0206
(0.0511) (0.0157) (0.0191) (0.0674) (0.0229)

Adjusted R2 0.003 0.000 0.001 0.009 0.002
N 541728 541728 541728 541728 541728
Grid 2376 2376 2376 2376 2376

Panel B: High Land Degradation
Extreme Event 0.224∗∗∗ 0.0179 0.0521∗ 0.280∗∗∗ 0.00898

(0.0632) (0.0172) (0.0273) (0.0884) (0.0316)
Adjusted R2 0.004 0.001 0.004 0.017 0.003
N 558600 558600 558600 558600 558600
Grid 2450 2450 2450 2450 2450

Grid FE X X X X X
Time FE X X X X X
Month FE X X X X X
Month×Equator FE X X X X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the incidence of a
conflict event in a given cell and month. All regressions include average temperature and precipitation levels
as controls. All coefficients are multiplied by 100. Clustered standard errors at grid level in parentheses.
***/**/* indicate significance at 1%/5%/10%, respectively.
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Table 1A.16: Timing of Long-Run Effect

Dependent Variable: Diff Conflict Incidence
Panel A: GDD (Three Periods)

Diff Extreme Event 0.0852∗∗∗ 0.0962∗∗∗

(0.0154) (0.0184)

Diff Temp 0.0109∗∗ -0.00557
(0.00436) (0.00519)

r2 0.224 0.221 0.224
N 9650 9650 9650
Climate Zone Trend X X X
Country Trend X X X

Panel B: GDD (Three Periods) Time Effects
Diff Extreme Event 0.0723∗∗∗ 0.0871∗∗∗

(0.0196) (0.0196)

I23=1*Diff Extreme Events 0.0232 0.0137
(0.0301) (0.0363)

Diff Temp 0.00622 -0.00638
(0.00515) (0.00525)

I23=1*Diff Temp 0.0124 0.00325
(0.00935) (0.0117)

r2 0.224 0.222 0.224
N 9650 9650 9650
Climate Zone Trend X X X
Country Trend X X X

OLS fixed effects estimation results. The dependent variable is the difference in the average incidence of
conflict events in a given cell and month between 1997-2002 and 2003-2008, and between 2003-2008 and
2009-2015, (DCit), with two observations per grid cell. See text for details. Clustered standard errors at
grid level in parentheses. ***/**/* indicate significance at 1%/5%/10%, respectively.
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Table 1A.18: Long Run: Robustness 7-Year Window

(1) (2) (3)

Dep. var.: diff civil conflict incidence
Diff Extreme 0.0934∗∗∗ 0.0659∗∗

(0.0205) (0.0262)

Diff Temp 0.0232∗∗∗ 0.0120∗

(0.00558) (0.00714)
r2 0.224 0.223 0.224
N 4826 4826 4826
Climate Zone Trend X X X
Country Trend X X X

OLS estimation results. The dependent variable is the difference in the average incidence of conflict events
in a given cell and month between 1997-2004 and 2008-2015, (DCi), with one observation per grid cell.
See text for details. Clustered standard errors at grid level in parentheses. ***/**/* indicate significance
at 1%/5%/10%, respectively.

Table 1A.19: Long Run: Robustness 8-Year Window

(1) (2) (3)

Dep. var.: diff civil conflict incidence
Diff Extreme 0.0774∗∗∗ 0.0597∗∗

(0.0202) (0.0257)

Diff Temp 0.0179∗∗∗ 0.00782
(0.00552) (0.00703)

r2 0.219 0.218 0.219
N 4826 4826 4826
Climate Zone Trend X X X
Country Trend X X X

OLS estimation results. The dependent variable is the difference in the average incidence of conflict events
in a given cell and month between 1997-2005 and 2007-2015, (DCi), with one observation per grid cell.
See text for details. Clustered standard errors at grid level in parentheses. ***/**/* indicate significance
at 1%/5%/10%, respectively.
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Chapter 2

Land Degradation and Armed Conflict:
Evidence from the Sahel

2.1 Introduction

According to the Intergovernmental Panel of Climate Change (IPCC) global warming
contributes to the degradation of the environment and thus to a sustained loss of the
productive capacity of soils (IPCC, 2017). This evolution constitutes a threat to global
food supply and is therefore of major relevance when discussing the implications of climate
change for society. What is more, the issue of land degradation and the resulting scarcities
are discussed as crucial drivers of conflict in the public debate.

The debate focuses on the Sahel region where the climate is exceptionally dynamic
and unpredictable. The region experienced several severe droughts in the 70s and 80s that
were largely unexpected given relatively abundant rainfall in the 50s and 60s (Giannini,
Biasutti, and Verstraete, 2008). The chain of droughts jointly with excessive land use
steadily dried up the landscape and caused a narrative of ongoing land degradation. The
United Nations Convention to Combat Desertification (UNCCD) was founded in 1994 to
counteract the initial adverse development. In 2007 it launched the “Great Green Wall
Initiative” - a project that aims to restore Africa’s degraded landscapes and to avoid a
further spread of desert by planting a 8000km long vegetation belt from the east- to the
west coast. Although recent evidence points towards an average "regreening" of the Sahel
land degradation still constitutes a major concern in many regions. At the same time the
Sahel suffers from frequent and disruptive conflicts with many of them being observed in
times of climatic stress.

In this study I analyze the effect of vegetation dynamics on civil conflict in the Sahel.
The main explanatory variable, vegetation barrenness, is constructed as a reversed scale
from the Net Difference Vegetation Index (NDVI) which commonly serves as proxy for the
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greenness or productivity of vegetation. The NDVI is retrieved from satellite spectral re-
flectance measurements and therefore available at extremely high resolution and frequency
which makes it unique for the purpose of this study. For the short-run analysis I estimate
the monthly impact of vegetation barrenness on conflict incidence on a 0.75◦ grid within
the period 2000-2012. Further, to isolate external climate driven components of land degra-
dation I instrument vegetation barrenness with monthly precipitation levels. The residual
of precipitation based predictions is commonly interpreted as "human component" in the
literature that discusses the causes of land degradation (Herrmann, Anyamba, and Tucker,
2005). The productivity of vegetation may also be altered by anthropogenic impacts such
as forestation, irrigation systems, the use of pesticides, cropland expansion etc.. Thus,
to shed light on the human component of land degradation I analyze the effect of the
residual on conflict incidence separately. The results unfold a positive effect of vegetation
barrenness on conflict which is driven by rainfall shortages.

Further, I analyze regional and temporal characteristics that shape the vulnerability
towards environmental shocks. I find that regions with extremely high densities of culti-
vation and pastoralism, scarce water resources or ethnic division react most strongly to
vegetation barrenness shocks. Further the findings indicate that especially conflicts related
to agriculture, pastoralism or territorial changes are involved. Looking at effect hetero-
geneity across seasons further shows that the effect mainly unfolds in the rainy season and
during months of seasonal pastoralist movement.

Then I turn to the long-run implications of these findings in a long-difference analysis.
The results suggest that regions facing more severe land degradation become more prone
to conflicts related to agriculture or pastoralism in the long run. Reflecting results of the
short-run analysis, the overall positive effect of land degradation on conflict is driven by
declining rainfall. To shed more light on environmental factors that may impact conflict
risk in the long run I further consider the effect of three different types of land cover changes
on conflict incidence (forestation, grassland- and cropland expansion). I find indications
that cropland expansions are related to rising conflict risk.

There are several contributions of this study to the literature. First, this study con-
tributes to the literature that analyzes the effect of land degradation on conflict risk. It
adds to this literature by employing a time-varying measure of land degradation, allow-
ing to analyze the impact at monthly frequency as well as in a long-difference framework.
Further, in contrast to previous studies the vegetation barrenness index employed in this
analysis is based on satellite data which provides an external and very fine scaled mea-
sure. Second, the findings add to previous research that analyzes the impact of drought or
precipitation shortages on conflict risk. In contrast to common drought indices vegetation
barrenness is a more direct way to describe the productivity of land, which in turn may
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be disentangled into its climate and human-induced components. Therewith the present
study emphasizes the role of vegetation as intermediary between climate and conflict and
documents a positive effect of low plant productivity on conflict at the monthly level. Fi-
nally, the fine scale of the data allows for an analysis of regional and temporal factors
shaping the vulnerability towards the environmental shocks. This adds new insights re-
garding a mechanism linking weather variability to conflict which is triggered by the loss
of agricultural productivity.

This study relates to the concept of supply-induced scarcity which is in this case in-
duced by changing supply of fruitful vegetation.1 According to Collier and Hoeffler (1998,
2002, 2004) rising scarcity translates into conflict as follows. When individuals encounter
lower economic returns from their activity, the opportunity costs of engaging into conflict
decline, i.e. lower income thus increases the incidence of civil conflict. In the present study
vegetation barrenness serves as a proxy for agricultural productivity of land. Accordingly,
a decline in the fruitfulness of soil results in lower economic returns from production. A
related line of arguments states that higher resource scarcity intensifies competition that
can eventually lead to the outbreak of violent conflict. Further, several studies argue,
among them Homer-Dixon (1999), that climate-induced scarcity puts additional stress on
societies that interacts with societal traits to trigger the outbreak of civil conflicts.

The literature regarding the effect of environmental degradation on conflict risk reveals
mixed evidence. Hendrix and Glaser (2007) analyse the impact of environmental factors
such as freshwater resources, types of agriculture and land degradation on conflict in Sub-
Saharan Africa at the country-year cell level. They do not find a significant impact of land
degradation on conflict. Hauge and Ellingsen (1998) despite employing a similar approach,
document a significantly positive impact of land degradation on conflict. Raleigh and
Urdal (2007) analyze the impact of land degradation on conflict on a more disaggregated
scale and perform a global cross-section analysis on a 100km×100km grid. They show
that higher levels of land degradation are related to an increased conflict risk. The studies
cited above employ expert rating data on land degradation from the Global Assessment
of Human-induced Soil Degradation (GLASOD) project. Soil degradation is measured
statically and provided on a discrete scale from 0 to 4. Thus, the present study adds to
this literature by providing new evidence from a time-varying, external and very fine scaled
measure. The results obtained from a month-based analysis confirm a significantly positive
impact of vegetation barrenness on the incidence of conflicts. Further, the analysis adds
new insights on the long-run perspective, suggesting a positive effect of climate-induced
land degradation on conflicts related to agriculture and pastoralism.

1Homer-Dixon (1999) distinguish supply-induced scarcity (e.g. land degradation), demand-induced
scarcity (e.g. population growth) and structural scarcity (e.g. unequal distribution).



54 Land Degradation and Armed Conflict

There are several studies that analyze the impact of drought or precipitation anomalies
on civil conflict pointing towards the loss of agricultural productivity as a trigger of con-
flict. These studies relate to a more general controversy debating the causal pathway from
different climatic variables to conflict.2 By its econometric approach the present study is
more deeply rooted in this strand of literature. Harari and Ferrara (2018) use a 1◦x1◦ grid
for Africa and find that a drought occuring during the growing season of a location specific
crop increases the risk of conflict. Almer, Laurent-Lucchetti, and Oechslin (2017) build on
the approach by Harari and Ferrara (2018) using a 0.5◦x0.5◦ grid to analyze the impact
of drought on smaller scale conflicts. They find that unusually dry months increase the
incidence of riots in Sub-Saharan Africa. Further, they find that the effect is particularly
pronounced where water resources are limited. Von Uexcull et al. (2016) focus on locations
of politically relevant ethnic groups in Asia and Africa as unit of observation and approve
that growing season droughts have a positive impact on conflict. The documented effect
unfolds in the presence of poverty, political exclusion or high agricultural dependence.
Maystadt, Calderone, and You (2015) analyze the impact of quarterly temperature and
precipitation anomalies on civil conflict in North- and South Sudan on a 0.5◦x0.5◦ grid.
They find the positive effect on conflict to be most pronounced in areas with high livestock
density or the presence of pastoral and agro-pastoral ethnic groups, referring to a history
of conflicts between groups of herders and farmers over fruitful land. Mitigating factors are
found to be availability of water resources and alluvial soil. Hendrix and Salehyan (2012)
find that extreme deviations in rainfall increase the risk of political conflict and argue via
an increased pressure on agricultural production. The present study documents a positive
impact of precipitation driven vegetation barrenness on conflict risk. Therewith it confirms
previous findings linking precipitation shortages to conflict and at the same time points
towards the role of vegetation as intermediate factor. Further, the findings complement
previous research by showing up regional and temporal factors shaping the vulnerability to-
wards the environmental shocks. In this dimension, the findings reemphasize a mechanism
that works through declining agricultural productivity.

The remainder of this paper is structured as follows. Section 2.2 describes the com-
pilation of the data set as well as specifications of the main variables of interest. Section
2.3 presents results of the month-based analysis. Section 2.4 presents results from the
long-differences analysis. Section 2.5 concludes the analysis with a discussion.

2For a more detailed description of this literature see Section 1.1.
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2.2 Data

In order to analyze the impact of vegetation barrenness on conflict I construct a data set
for 156 months from 2000-2012 for 558 grids of size 0.75◦ within the Sahel.

The main explanatory variable is constructed from the Net Difference Vegetation Index
(NDVI), which is the most widely used index in the remote sensing literature to proxy
vegetation greenness and the overall performance of the ecosystem (Herrmann, Anyamba,
and Tucker, 2005). I employ NDVI data from NASAs Vegetation Index Products (NASA,
2015). The NDVI is defined as the ratio of visible light to near infrared light that is reflected
by vegetation and collected by satellites.3 The idea behind this ratio is that healthy
vegetation absorbs most of the visible light that reaches it in the process of photosynthesis
and emits near infrared light. In contrast, sparse vegetation reflects more visible light and
less near infrared light. Accordingly, no greenness at all gives a value of 0 and values close
to 1 indicate a very high density of green leaves. In this sample the NDVI ranges from
0.14 to 0.90. For ease of interpretation and a better semantic fit to the debate regarding
land degradation and conflict I reverse the scale by substracting it from one. The resulting
variable is from now on called "vegetation barrenness". The vegetation barrenness index
also lies between 0 and 1, with 0 indicating no barrenness and 1 indicating complete
barrenness.4 Further, in this study I employ the term "land degradation" for a positive
trend of vegetation barrenness, i.e. a negative trend of the NDVI.5

Figure 2.1 shows deciles of average barrenness over the sample period for all grids in
the study area. The area spreads between 11.625◦ and 20.625◦ latitude and -16.875◦ and
39.375 ◦ longitude. Barrenness exhibits a relatively high latitudinal spatial correlation, i.e.
grids further northern towards the Sahara yield more barren soil on average. The Sahel
countries involve (from west to east) Mauritania (8.21% of the sample), Mali (18.21%),
Niger (23.21%), Chad (13.57%) and the Republic of Sudan (24.30%). At the northern
border Algeria intersects partly and to the southern border Burkina Faso, Eritrea, Senegal,
Nigeria, Ethiopia intersect with less than 5% of the sample.

3Specifically, the NDVI is calculated by the following formula: NDV I = (NIR− V IS)/(NIR+ V IS)
where NIR stands for near infrared light (0.7 to 1.1 µm) and VIS stands for visible light (0.4 to 0.7 µm).

4An increase of the NDVI within one grid may arise through the extensive margin (for instance expan-
sion of cropland or forest) or through the intensive margin (for instance more productive crops through the
use of fertilizers). For both cases it holds that an increase in the NDVI approximates the overall productive
capacity within the grid.

5The literature provides different definitions of the term "land degradation". For instance, Stocking
(2001) define land degradation as "...the temporary or permanent decline in the productive capacity of
the land, and the diminution of the productive potential, including its major land uses (e.g. rainfed
arable, irrigation, forests), its farming systems (e.g. smallholder subsistence), and its value as an economic
resource."
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Figure 2.1: Average of Vegetation Barrenness 2000-2012
This figure plots deciles of the average vegetation barrenness index across cells over the sample period
2000-2012. The vegetation barrenness index is constructed as 1-NDVI. See text of Section 2.2 for details.

The soil properties which determine how efficiently rain is translated into fruitful veg-
etation vary widely across regions and depend on a range of climatic and anthropogenic
impact factors. Therefore, vegetation barrenness should not be considered equal to pre-
cipitation or drought. For instance, consider a situation where precipitation turns sandy
soil into mud. Whereas the vegetation barrenness index remains equal to 1 and the land
is indicated to be unproductive, the implications from precipitation levels or common
drought indices are the opposite. Thus, looking at (deviations from) average rainfall
patterns and looking at vegetation barrenness does not necessarily catch the same phe-
nomenon. Several recent studies in the context of civil conflicts have used the Standardized
Precipitation-Evapotranspiration Index (SPEI). The SPEI reflects the difference between
monthly precipitation and potential evapotranspiration (PET), where the calculation of
the PET only requires monthly mean temperature as input (Vicente-Serrano, Beguería,
and López-Moreno, 2010). This clarifies that vegetation barrenness does not describe the
same phenomenon as common drought indices that are based on a set of climatic vari-
ables. Vegetation barrenness directly describes the productivity of land, which may be
disentangled into climatic and human-induced components.

Climatic data on monthly precipitation is obtained from the European Centre for
Medium-Range Weather Forecasts (ECMWF) Era-Interim data set (Dee et al., 2011).
The data is based on reanalysis which implies an unchanging assimilation scheme at a
regular time scale that comprises information from all available data sources. Reanalysis
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data is considered to be superior to weather station data but also to satellite data alone
because it exploits the strengths of all different sources. For instance, in the Sahel the
density of weather stations and rain gauges is rather sparse and the resulting measurement
error through spatial interpolation might be correlated to unobserved factors.

Data on civil conflict is obtained from The Armed Conflict Location and Event Data
Project (ACLED) (Raleigh, Linke, Hegre, and Karlsen, 2010). The dependent variable is
a binary variable that indicates the incidence of a civil conflict in a given grid-month cell.
The database classifies conflict incidences into different types. One major conflict type is a
"battle" which constitutes an armed dispute between two groups and might involve militia
groups or the government. For instance, this category might capture a battle between two
groups of pastoralists over contested grazing land. I further distinguish between battles
leading to a change of contested territory and those that do not. Another major type
of conflict are "riots" which are usually demonstrations against the government. I create
further conflict types of interest like "Agropastoral" and "Political" based on key word
search in the informational notes contained in the database.6

Data on ethnic diversity comes from "Geo-referencing of Ethnic Groups" (GREG)
project which provides a global set of polygons for ethnic territories (Weidmann, Rød,
and Cederman, 2010).7 Within the sample of this study there are 35 different ethnic
groups coded and there are on average 2.2 ethnicities present in one grid. To proxy for
ethnic diversity I create an indicator that switches on if there are at least two ethnicities
present within the grid.

To distinguish the different components of the land cover changes (forestation, grassland-
and cropland expansion) I employ satellite data on land cover. This data is obtained from
the Climate Change Initiative (CCI) of the European Space Agency (ESA, 2017) and is
extracted from 300mx300m resolution annual data. In 2017, the European Space Agency
released their new (and in terms of frequency and disaggregation unique) annual global
land cover time series from 1992 to 2015. The data provides 38 types of land cover that
are classified via remote sensing techniques. I subsume the specific categories to the super-
ordinate types "cropland", "forest" and "grassland" and calculate the share of the respective
type of land within the 0.75◦ grid.8 For instance, grids in the sample are on average covered

6In Section 1.3 we employ a similar approach to classify the respective conflict types. For the category
"Agropastoral" I search for the keywords "farm", "crop", "cattle", "herd", "grazing", "nomad", "pasture",
"water" within the informational notes. For the category "Political" I search for the keywords "president"
and "government".

7The GREG data is based on ethnographic and geographic maps contained in the Atlas Narodov Mira
(ANM, Bruk and Apenchenko, 1964). Much of the contained information is assembled by the Institute
of Ethnography at the USSR Academy of Sciences. Further, population census data and ethnographic
publications of government agencies are utilized for the construction of the maps.

8"Cropland" includes the original categories "rainfed cropland", "irrigated or post-flooded cropland"
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to 18% by cropland, to 3% by forest and to 21% by grassland.
To measure the intensity of pastoralist agriculture I employ data for cattle density from

the Gridded Livestock of the World (GLW) database (FAO, 2007). The data is based on
predictions from sub-national livestock census data and predictions from environmental
variables that determine the suitability for certain types of livestock holding. The data is
available on a 3 arc-minute grid resolution and measured time constantly with 2005 serving
as base year. To measure the density of sedentary agriculture I use the average share of
cropland in each grid, generated from ESA’s land cover time series.

Data on the availability of natural water resources comes from the "World Waterbodies"
database (ESRI Garmin International, 2016). This data provides a map of the lakes, seas
and rivers of the world and is compiled in the year 2016. As an alternative specification
I employ the average share of water over the sample period within each grid cell. Annual
data on the share of water is obtained from ESA’s land cover time series. The employed
measures do not capture devices creating additional water access such as wells or storage
systems, which constitutes a relevant target for future research. Table 2.1 shows the
summary statistics for the main variables.9

Table 2.1: Summary Statistics of Main Variables

Mean SD Min Max Obs

Vegetation Barrenness 0.719 0.098 0 1 87,360
Precipitation (in mm) 13.447 31.598 0 486 87,360
Conflict Incidence 0.017 0.130 0 1 87,360
Battle Incidence 0.008 0.091 0 1 87,360
Riot Incidence 0.003 0.051 0 1 87,360

2.3 Vegetation Barrenness and Conflict

2.3.1 Empirical Framework

This section presents the analysis of the short-run effects of vegetation barrenness on
conflict incidence. The methodology is related to the methodology as outlined in Section
1.3. Specifically, to analyze the impact of vegetation barrenness on conflict I estimate the

and "mosaic cropland". The category "forest" includes "broad leaved tree cover" (evergreen and deciduous),
"needle leaved tree cover" (evergreen and deciduous), "mixed leaf type", and "mosaic forest cover". Grassland
constitutes a separate category.

9Table 2A.2 reports summary statistics for all other variables.
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following model:

ci,t = α+ βV Bi,t + γci,t−1 + νi + νt + νm + νm·C + εi,t, (2.1)

where ci,t is a binary indicator for the incidence of a civil conflict in grid i and month
t and V Bi,t reflects the vegetation barrenness index in grid i and month t as defined in
the previous section. Accordingly, β is the coefficient of main interest as it represents the
effect that vegetation barrenness has on conflict incidence. The model further accounts
for lagged conflict incidence by the inclusion of ci,t−1.10 In the context of this study
the lagged dependent variable gains relevance beyond its auto-regressive impact as lagged
conflict incidence may be related to current vegetation outcomes. Further, the inclusion of
grid fixed effects, νi, accounts for any grid-specific factors such as the prevalent climate or
cultural and institutional traits. Common temporal impacts like global climate change or
political shocks are accounted for by year fixed effects νt. To account for seasonality, i.e.
systematic occurrences of vegetation barrenness and conflict in particular months of the
year, the model further includes month of year (calendar month) fixed effects νm. Further,
the model accounts for climate zone-specific calendar month effects, νm·C , which allow
seasonality to differ by climate zone.11 The standard errors εi,t are clustered at the grid
cell level but I show results for spatial clustering or bootstrapping of standard errors in
further robustness checks.

In the specification as outlined above the remaining variation comes from climate zone-
specific seasonal deviations of vegetation barrenness within the grid, beyond common time
effects. Thus, it abstracts from a spectrum of factors that might impact both, vegetation
barrenness and civil conflict. However, I do run more extensive specifications to check on
the robustness of estimates. In particular, to capture a common evolution in vegetation
barrenness and conflict, I include country-, climate zone- or grid-specific year fixed effects
into the regression and to account for seasonality at the finest possible spatial unit I include
grid-specific calendar month fixed effects.

The identification of the coefficient β relies on the assumption that monthly vegetation
barrenness in a given cell is exogenous to conflict occurrence of a conflict incidence in this
month. One remaining concern may be reverse causation in the impact month. Impor-
tantly, instrumenting vegetation barrenness by precipitation levels does not only serve for
decomposing land degradation into a climatic- and a human component. It also accounts

10The fixed effects estimator in combination with a lagged dependent variable leads to a mechanical
correlation between the transformed error term and the lagged dependent variable (Nickell, 1981). However,
Judson and Owen (1999) show that the asymptotic order of the resulting bias is 1/T which implies a
negligible magnitude of bias for T=156.

11The sample region entails three climate zones as defined by the Köppen climate classification scheme:
Arid, semi-arid and tropical dry.
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for potential reverse causation as monthly rainfall levels are plausibly exogenous to monthly
conflict occurrence.

2.3.2 Results

Baseline Results Table 2.2 presents the baseline results from the monthly panel re-
gressions. Column (1) shows the effect of vegetation barrenness on civil conflict of any
type whereas Column (2) and Column (3) show results for battles and riots, respectively.12

The incidence of battles increases significantly in more barren months whereas the effect
on overall conflict incidence or riots turns out to be insignificant. Quantitatively, if the
barrenness index changes from 0 to 1, i.e. from entirely fertile- to entirely barren soil, the
likelihood of battles rises by 0,01 or approximately 80% relative to the unconditional mean
of 0,017.

Table 2.2: Baseline Results: Vegetation Barrenness and Conflict

(1) (2) (3)
All Battle Riot

Vegetation Barrenness 0.0134 0.0128∗∗ -0.00861
(0.00950) (0.00579) (0.00557)

Adjusted R2 0.044 0.023 0.062
N 87360 87360 87360
Grid 560 560 560
Time FE X X X
Grid FE X X X
Month FE X X X
MonthXClimate FE X X X

OLS (linear probability model) fixed effects estimation results. The dependent variable is the incidence of
a conflict event in a given cell and month. Clustered standard errors at grid level in parentheses. ***/**/*
indicate significance at 1%/5%/10%, respectively. All regressions include lagged conflict as control.

Decomposition of Vegetation Barrenness In the next step, I decompose the vegeta-
tion barrenness index into a climate- and a human-induced component. The decomposition
of the NDVI into its components constitutes a key tool in the ongoing debate on the causes
of land degradation.13 There are two camps in this debate: The first one considers land
degradation as mainly climate-induced and therefore as a temporary phenomenon. The
other one sees the causes of land degradation in human impacts such as overuse- and mis-
management of soil (Herrmann, Anyamba, and Tucker, 2005). The statistic most widely
used to draw conclusions on human impacts is the residual trend of the NDVI, called RE-

12I subsume the category "Riots/Protests" as it is originally named in the ACLED database under the
term "Riots".

13The literature including Herrmann, Anyamba, and Tucker (2005) refers to trends in greening.
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STREND (Ibrahim, Balzter, Kaduk, and Tucker, 2015).14 I follow the methodology as
outlined in Herrmann, Anyamba, and Tucker (2005) and regress the vegetation barrenness
index on a 3-month average of precipitation (current and last two months). This method
reflects the first stage of an instrumental variable (IV) approach using precipitation as
instrument for vegetation barrenness.15 Accordingly, the prediction picks up the precip-
itation induced component of land degradation. Precipitation is by far the best climatic
predictor of vegetation barrenness, therefore, the literature encourages this simple version
of prediction. For completeness I discuss results including temperature into the prediction
in Section 2.3.3.

Moreover, it is plausible that climatic- and human impacts interact to some extent. For
instance, a human intervention to soil through the implementation of irrigation systems
may affect both, the residual and the efficiency by which rain is translated into green-
ness. This might lead to an overestimation of the human impact, while the estimation
for precipitation constitutes a lower bound. For comparability I stick to the methodology
provided by the literature, although it would be conceivable in further analysis to consider
interactions between the components.

To analyze the impact of the precipitation driven part of barrenness on conflict, I
employ precipitation as IV for vegetation barrenness and regress civil conflict on the linear
prediction from the 3-month average of precipitation. To analyze the impact of the human
driven part of barrenness on conflict, I regress civil conflict on the monthly residual. To
be able to single out the residual I estimate the IV stages "manually". Using the generated
prediction and residual in the second stage may mislead the degrees of freedom available.
Therefore I report checks on the computation method of standard errors in Section 2.3.3.16

Table 2.3 shows the estimated effects of both components on conflict risk. The effect of
the prediction from precipitation is significantly positive for the combined conflict category
and for battles. The effect of the residual on the other hand is insignificant for all conflict
types. This shows that the positive short-run effect observed in the combined vegetation
barrenness index is driven by the part that is predicted by rainfall. For all conflicts taken
together (Table 2.2, Column (1)) the positive effect of rainfall and the negative effect of the
residual seem to cancel out each other leading to an overall small and insignificant effect.

14Another concept is the Rain Use Efficiency (RUE), the ratio of the NDVI to precipitation. However,
this concept is less feasible when comparing values across space as the average product declines with
increasing precipitation and the RUE approaches infinity when precipitation is close to zero.

15The F-test statistic of this prediction is F = 257.97 with Prob > F = 0.0000. All control variables and
fixed effects of the second stage are included to the prediction.

16I employ bootstrapped standard errors upon estimating the second stage which rely on computational
resampling and therefore abstract from the degrees of freedom. Further, I run regressions for the prediction
from precipitation with Stata’s implemented 2SLS command.
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The finding that a loss in the productivity of vegetation (predicted by rainfall) increases
conflict is well in line with previous research that points out the impact of drought or
precipitation shortages on conflict risk. Harari and Ferrara (2018) show at the grid-year
level that drought unfolds a positive impact on conflict when it occurs during the growing
season of a grid-specific crop. This finding implies a mechanism that works through the
loss of agricultural yields. Thus, the estimated effects as presented in Table 2.3 potentially
entail a mechanism as outlined above. But the effect of vegetation barrenness on conflict
may also occur in contexts and times during the year other than the growing season, for
instance during seasonal movement of livestock when tensions between pastoralists and
sedentary farmers arise. In more extensive specifications as outlined in Section 2.3.3 I
include cell-year-specific fixed effects into the regression and find a significant effect of
vegetation barrenness on conflict, suggesting also other mechanisms being at work.

Table 2.3: Weather- and Human-Induced Components of Vegetation Barrenness

(1) (2) (3) (4) (5) (6)
All Battle Riot All Battle Riot

Veg. Barrenness (Prediction) 0.0545∗∗∗ 0.0357∗∗∗ -0.0103
(0.0176) (0.0134) (0.0112)

Veg. Barrenness (Residual) -0.00722 0.00267 -0.00715
(0.0118) (0.00672) (0.00782)

Adjusted R2 0.044 0.023 0.062 0.044 0.023 0.062
N 87360 87360 87360 87360 87360 87360
Grid 560 560 560 560 560 560
Time FE X X X X X X
Grid FE X X X X X X
Month FE X X X X X X
MonthXClimate FE X X X X X X

Column (1) through Column (3) show IV results with the 3-month (t, t-1 and t-2) average of precipitation
as instrument for vegetation barrenness. Column (4) through Column (6) show results for the effect of the
residual. The dependent variable is the incidence of a conflict event in a given cell and month. Clustered
standard errors at grid level in parentheses. ***/**/* indicate significance at 1%/5%/10%, respectively.
All regressions include lagged conflict as control.

2.3.3 Robustness Analysis

Before turning to the mechanisms in more detail, this section shows that the findings
remain valid for an extensive set of robustness checks. Some of the variations presented
already narrow the range of plausible explanations for the observed effects, leading up to
to Section 2.3.4.

To start with, data on conflict incidence as well as on precipitation levels is available
for a longer time frame than the NDVI monthly time series from which the vegetation
barrenness index is constructed (1997 to 2015 instead of 2000 to 2012). Therefore, estima-
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tions involving predictions from rainfall can be conducted for an extended time frame. To
analyze whether the results remain valid for the period 1997-2015, I replicate the estima-
tions of the prediction from precipitation on conflict for this period. The results indicate
an even stronger effect when considering this longer time horizon.17

Next, I adjust the prediction of vegetation barrenness by also including temperature.
The findings correspond quantitatively and qualitatively very closely to the baseline re-
sults.18 In fact, temperature adds positively but negligibly to the prediction of vegetation
barrenness. The within R-squared of the first stage regression rises by approximately 1.5
percent (from 0.72 to 0.73). Next, I predict vegetation barrenness with the 3-month aver-
age of precipitation of the previous year (t-12, t-13 and t-14). Due to the storage capacity
of soils, previous seasons’ rainfall still affects the current state of vegetation. At the same
time previous seasons’ rainfall cannot prompt current reactions related to conflict such as
for instance heavy rainfall preventing a riot. This rules out that this kind of mechanism is
driving the results. Of course, this approach does not account for other potential channels
that evenly work via impacts of past rainfall. The results unfold that coefficients remain
statistically significant and even slightly increase in magnitude.19

One main feature of the analysis is the use of monthly shocks instead of annual ag-
gregates. So far, to account for seasonality the estimation includes calendar month fixed
effects and climate zone-specific calendar month fixed effects. Identification thus relies on
the assumption that seasonal patterns such as particular crop-, rainfall and conflict cycles
are homogeneous within climate zones. To relax this assumption and to allow for the
finest possible spatial heterogeneity in this context, I include grid-specific calendar month
fixed effects. The results remain statistically significant and even increase in magnitude for
the prediction from precipitation. In contrast, the effect of overall vegetation barrenness
becomes statistically insignificant and the residual effect becomes more negative.20

Conflict risk is closely related to the institutional strength and the political situation
of a country. At the same time, environmental policies are oftentimes implemented at
the country level. An example is the engagement in the Great Green Wall Initiative
(GGWI) which is based on federal decisions. To account for country-specific time-varying
factors, I add country-specific year fixed effects to the regression. The positive effect
of vegetation barrenness on battles remains significantly positive and is comparable in
magnitude to the baseline result. Also the effect of the prediction from precipitation
remains statistically significant but slightly declines in magnitude. The impact of the

17See Table 2A.4. This also holds for a comparison of the reduced form estimates.
18See Table 2A.3.
19I employ the longer time period in this exercise as this analysis is exclusively performed for the

prediction. See Table 2A.5.
20See Table 2A.6, Column (4).
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residual remains insignificant.21

It might be even more plausible that common trends are attached to the climate zone,
especially in the case of the prediction from precipitation. To capture climate zone-specific
time-varying factors, I include climate zone-specific year fixed effect. The baseline effect
and the effect of the prediction from precipitation stay significantly positive and slightly
increase in magnitude. The impact of the residual remains insignificant.22 Overall, the
findings hint to some common evolution of vegetation barrenness and conflict within coun-
tries and within climate zones.

The common evolution in vegetation barrenness and conflict risk may be attached to
even finer spatial levels. For instance, different crop types may deliver different reflection
levels and at the same time relate to differential conflict risk. If bio-geographic factors (that
are constant over time) determine the crop type, the inclusion of grid fixed effects accounts
for this concern. It might however be conceivable that there is a time-varying component,
i.e. a common cause (e.g. migration) that alters the main crop type and conflict risk
at the same time. Note that for a systematic bias the direction of change in reflection
levels would systematically have to be the same as the direction of change in conflict levels
which seems to be unlikely. Nevertheless, I include grid-specific year fixed effects to check
for robustness. Given this very restrictive specification involving a vast number of fixed
effects which absorb much of the variation, particularly the coefficients from the prediction
from precipitation decline and standard errors increase. Notwithstanding, the baseline
results and the effect of the prediction from precipitation (long panel) remain significantly
positive.23

It might be the case that conflict itself affects the state of vegetation. For instance
if the vegetation deteriorates by enduring battles. This concern is however only relevant
for the baseline estimation and the residual, not for the prediction from precipitation. I
replicate the main results of these specifications and include lagged instead of current levels
of vegetation barrenness, controlling for lagged conflict at the same time. The effect of
the lagged variables turns out to be insignificant.24 However, it remains unclear whether
this is due to a bias in the baseline result or because the environmental shock unfolds an
immediate impact which is not visible in the following month.

Next I turn to a robustness analysis regarding the estimation of standard errors. One
concern is the spatial correlation of variables between grids which might lead to an under-
estimation of standard errors. I include Conley robust standard errors that account for
cross-sectional spatial correlation and also location-specific serial correlation in the esti-

21See Table 2A.6, Column (2).
22See Table 2A.6, Column (3).
23See Table 2A.6, Column (5).
24See Table 2A.7.
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mation of standard errors (Conley, 1999, 2008).25 The results indicate that the standard
errors do indeed increase slightly. However, the effect of the prediction from precipitation
remains statistically significant. In contrast, the baseline effect falls slightly below conven-
tional significance levels and the effect from the residual remains insignificant.26 Further,
I report results for estimations employing bootstrapped standard errors and regressions
applying Stata’s implemented 2SLS command to account for potential generated regressor
issues that might arise from the manually conducted instrumental variable calculation. It
shows that standard errors only vary slightly in these cases and the significance levels are
not affected.27

In the following, I explore the sensitivity of the results with respect to alternative
measures and the use of a non-linear estimator. As the effect of the residual has overall
turned out to be insignificant, I restrict this analysis to estimates involving the prediction
from precipitation. First I analyze the role of vegetation barrenness as trigger civil conflict
onset. In this specification only the starting month of a conflict episode is coded as 1
whereas all other months are coded as 0. The results indicate a significantly positive
impact on conflict onset, although the effect slightly declines compared as to the effect
on conflict incidence.28 This implies that the overall impact is to some extent, but not
exclusively, driven by prolonging ongoing conflicts. Further, I explore the intensive margin
of conflict incidence. The results reveal mixed evidence. The number of conflicts in a
grid cell in a given month turns out to be significantly affected by increasing vegetation
barrenness, while the number of related fatalities as another facet of the intensity of conflict
does not.29 I close the analysis by presenting results from the estimation of a Logit model.
The results confirm the baseline results.30

2.3.4 Vulnerability towards Vegetation Barrenness

In this section I am going to explore regional and temporal factors that shape the vulnera-
bility towards the environmental shocks. For this analysis, I focus on the part of barrenness
that is predicted by precipitation as this has turned out to be of major relevance, whereas
the residual remained without significant consequence for conflict risk.

The Sahel has a long history of herder-farmer conflicts or conflicts between different
groups of herders. These clashes have become more frequent in recent years (Moritz,

25I allow for a spatial correlation that decreases up to a cutoff of 200km and thus includes two neigh-
bouring grid cells in each direction. Serial correlation is accounted for across 20 time periods.

26See Table 2A.8.
27See Table 2A.9.
28See Table 2A.10.
29See Table 2A.10.
30see Table 2A.10.
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2010). One reason might be that herds are more often owned by urban investors with
insufficient knowledge on cultural conventions that traditionally organize property rights
(Oyama, 2014). Further, tensions might have intensified due to policies that favor settled
agriculture and expanding croplands (Oyama, 2014). At the core of these conflicts lies the
competition for resources. There are several case-studies documenting the prevalance of
land-use conflicts and studies that revise the causes for these conflicts in specific regional
contexts (e.g. Benjaminsen et al., 2012 or Benjaminsen and Ba, 2009). Conflicts may for
instance involve battles over grazing land and livestock or disputes on crop damage by
passing cattle in the course of seasonal herder movements. To explore the hypothesis that
agricultural resources are indeed involved in the emergence of conflict I first look at the
conflict type in more detail. I create the category "Agropastoral" that is based on key word
search in the informational notes for each incidence contained in the ACLED database.
The key words are extracted from articles on land degradation and conflict, particularly
Oyama (2014). A resulting note is for example:

"Farmers and herders fought each other. Farmers had seized cows grazing on their
lands. 6 people died in the clashes."

Further, I create a "placebo" category for political conflicts. Beyond, within the cate-
gory of battles I look at battles that lead to a change in the contested territory and battles
that do not lead to such a change. Panel A of Table 2.4 shows the estimation results
for the different types of conflict. It shows that the effect is most strongly pronounced
for agropastoral conflicts and battles involving changes of territory. The other categories,
which are mainly unrelated to agricultural production, do not react significantly to the
vegetation barrenness shock.

To further substantiate the argument that competition for agricultural resources re-
lates the barrenness shock to conflict I split the sample by the intensity of agricultural
production. Agricultural production may involve sedentary crop farming or pastoralism.
Thus, I look at the intensity of both categories separately and combined. The results are
shown in Panel B of Table 2.4. I proxy the intensity of pastoralism by the density of cattle
and proxy the intensity of farming with the share of cropland within the grid. Then I split
the sample into grids with high intensity of farming and pastoralism and those with low
intensity respectively.31

Further, I analyze whether the presence of large water resources moderates the impact

31The correlation between the two types of agriculture is very high within the sample (0.55). Therefore
there is only a very small number of grids that fall exclusively into the low/high category of one of the two
types. Table 2A.11 shows results for combined categories; i.e. both high, both low, one high and one low.
The effect is strongly pronounced and statistically significant where densities of both types of agriculture
are high.
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of monthly vegetation barrenness. I split the sample into grids containing freshwater
resources (like a river or a lake) and grids without freshwater resources. I also take into
account information on the share of water within the grid, obtained from satellite land
cover data, and split the sample at the median of this measure. The results in Panel C
of Table 2.4 unfold that the effect stems from regions with insufficient access to water
resources.

Table 2.4: Vulnerability towards Vegetation Barrenness:
Conflict Types, Land Use and Water Resources

Dependent Variable: Conflict Incidence
Panel A: Conflict Types

Battle (terr) Battle (non-terr) Agropastoral Political
Veg. Barrenness (Prediction) 0.0404∗∗∗ 0.00333 0.0150∗∗∗ 0.00890

(0.0155) (0.00468) (0.00541) (0.00690)
Adjusted R2 0.022 -0.000 0.002 0.005
N 87360 87360 87360 87360
Grid 560 560 560 560

Panel B: Livestock- and Farmland Density
Cattle Dense Cattle Sparse Agr. Dense Agr. Sparse

Veg. Barrenness (Prediction) 0.0459∗∗ -0.0499 0.0517∗∗ 0.00848
(0.0196) (0.0425) (0.0200) (0.0493)

Adjusted R2 0.047 0.042 0.044 0.050
N 43524 43524 41832 45216
Grid 279 279 269 290

Panel C: Water Scarcity
Source No Source Water>Med. Water<Med.

Veg. Barrenness (Prediction) 0.0362 0.0632∗∗∗ 0.0257 0.0649∗∗∗

(0.0312) (0.0184) (0.0223) (0.0242)
Adjusted R2 0.049 0.044 0.041 0.053
N 25116 61932 30444 56604
Grid 161 397 196 363

Grid FE X X X X
Time FE X X X X
Month FE X X X X
MonthXClimate FE X X X X

IV results using 3-month (t, t-1 and t-2) average precipitation as instrument for vegetation barrenness. In
Panel B, the sample is split into grids with sparse and dense presence of cattle- and farmland is based on
the median value of cattle density (measured in 2005) in Column (1) and (2) and the average value of the
share of cropland over the sample period 2000-2012 in Columns (3) and (4). The dependent variable is
the incidence of a conflict event in a given cell and month. In Panel C the sample is split into grids with
access to a major natural water source in Column (1) and no such source in Column (2) and with a share
of water above the median in Column (3) and below the median in Column (4). The dependent variable
is the incidence of a conflict event in a given cell and month. Clustered standard errors at grid level in
parentheses. ***/**/* indicate significance at 1%/5%/10%, respectively. All regressions include lagged
conflict as control.
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Conflicts in the Sahel oftentimes take place along ethnic lines that traditionally also
determine which type of agriculture is practiced. Therefore ethnic diversity in this context
may have two implications. First, differential and potentially competing systems of agri-
culture being in place. Second, the existence of boundaries along which property rights are
contested. To examine whether the effect of barrenness is amplified in ethnically diverse
regions I split the sample into grids that are ethnically diverse, i.e. in grids where more
than one ethnicity is present, and grids where only one ethnicity is present. The results
are shown in Table 2.5. I find that the effect in ethnically divided regions is twice as large
and statistically highly significant in contrast to grids with only one ethnicity.32

Table 2.5: Vulnerability towards Vegetation Barrennness: Ethnic Diversity

(1) (2)
Ethnic Diversity No Ethnic Diversity

Dep. var.: incidence
Veg. Barrenness (Prediction) 0.0722∗∗∗ 0.0324

(0.0228) (0.0246)
Adjusted R2 0.051 0.032
N 49452 37908
Grid 317 243
Time FE X X
Grid FE X X
Month FE X X
MonthXClimate FE X X

IV results using 3-month (t, t-1 and t-2) average precipitation as instrument for vegetation barrenness. The
dependent variable is the incidence of a conflict event in a given cell and month. The sample split is based
on the number of ethnic homelands being located present within the grid. At least two ethnicities within
a grid constitute "Ethnic Diversity". Clustered standard errors at grid level in parentheses. ***/**/*
indicate significance at 1%/5%/10%, respectively. All regressions include lagged conflict as control.

During the rainy season farmers grow and harvest their crops. The land is exclusively
used by them and any invasion is considered as offense. In contrast, in the dry season the
land may even be open to public use. This exemplifies that benefits are merely competed
for in the rainy season. Figure 2.2 shows the distribution of barrenness across months.
Table 2.6, Column (1) and Column (2), shows estimation results for the rain and the dry
season separately. It shows that in the rainy season increasing barrenness raises conflict
risk significantly. In contrast, in the dry season the effect turns out to be statistically
insignificant.

Seasonal movement of pastoralists optimizes livestock grazing over the year. Pastoral-
ists leave their homes at the end of the rainy season and come back at the start of the
rainy season (Thebaud, 2017). In the transition months there is an increased risk of con-
flict emergence as passing herds potentially feed on or destroy croplands, especially in the

32The results are replicated in table 2A.12 using alternative data on ethnicity from Murdock (1967).
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Figure 2.2: Vegetation Barrenness by Month
The figure shows average vegetation barrenness by calendar month. The rainy season is framed in solid
red lines. Transition months are defined as the first and the last month of the rainy season and are thus
graphically located between the solid and dashed red lines.

face of an increasing number of transhumance corridors being closed for other usage. I
additionally split the sample into transition months and other (dispersion) months. The
transition months are defined as the first and the last month of the rainy season as de-
picted in Figure 2.2. The estimation results are presented in Table 2.6, Column (3) and
Column (4). The effect appears to be relevant in both sub-periods. However, the effect
of barrenness during the transition months is larger than in dispersion months and even
larger than considering the whole rainy season. This unfolds an interesting non-linearity
with respect to the amount of rain as the transition months are located at the edges of the
rainy season where the amount of rain is relatively low.

The results presented in this section set a frame for potential mechanisms explaining the
observed effects. Given that vegetation barrenness affects conflict risk most severely where
societies rely on the productivity of soil, carry out sedentary- or pastoralist agriculture and
have insufficient access to other water resources when rain stays out, points towards rising
scarcity being at the core of dispute. Thinking about how this rising scarcity translates into
conflict, the results suggest that competition for available resources is involved, potentially
between groups defined by ethnicity or the type of agriculture.

2.4 Long-Run Trends: Land Degradation and Conflict

In this section I turn towards the long-run implications of the documented short-run results.
In particular, I address the question whether long-term changes in vegetation barrenness
are related to long-term changes in conflict risk. Figure 2.3 depicts the monthly evolution of
the vegetation barrenness index over the estimation period 2000-2012. Contrary to common
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Table 2.6: Vulnerability towards Vegetation Barrenness: Seasons

(1) (2) (3) (4)
Rain Dry Transition Dispersion

Dep. var.: incidence
Veg. Barrenness (Prediction) 0.0572∗∗ -0.109 0.219∗∗ 0.0449∗∗

(0.0274) (0.156) (0.0876) (0.0178)
Adjusted R2 0.050 0.038 0.061 0.043
N 43680 43680 14560 72800
Grid 560 560 560 560
Time FE X X X X
Grid FE X X X X
Month FE X X X X
MonthXClimate FE X X X X

IV results using 3-month (t, t-1 and t-2) average precipitation as instrument for vegetation barrenness.
According to seasons as depicted in Figure 2.2 estimation in Column (1) includes calendar months 6, 7, 8,
9, and 10, in Column (2) calendar months 1, 2, 3, 4, 5, 11, and 12, in Column (3) calendar months 6 and 10
and in Column (4) 1, 2, 3, 4, 5, 7, 8, 9, 11 and 12, respectively. The dependent variable is the incidence of
a conflict event in a given cell and month. Clustered standard errors at grid level in parentheses. ***/**/*
indicate significance at 1%/5%/10%, respectively. All regressions include lagged conflict as control.

perceptions of an ongoing desertification in the Sahel, average vegetation barrenness slightly
declines over the sample period.33 This observation is in line with recent research that
refutes an the prevalence of an irreversible and ongoing land degradation and rather finds
a "regreening of the Sahel" in terms of an overall positive trend of the NDVI (e.g. Tong
et al., 2017, , Hermann et al., 2005). Hermann et al. (2005) further discuss the spatial
heterogeneity in the extent of land degradation in the Sahel. The authors show that there
is a strong heterogeneity in trends within the Sahel, with some regions not experiencing
any considerable changes and some regions being exposed to strong positive or negative
trends in the NDVI. In essence, I exploit this spatial heterogeneity to estimate the effect
of land degradation on conflict risk in the long run.
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Figure 2.3: Evolution of Monthly Vegetation Barrenness 2000-2012

33This is mainly driven by a negative trend in the residual. See Figure 2A.1 for a graph depicting the
trend of the residual and the prediction from precipitation separately.
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2.4.1 Empirical Framework

The methodology of this section closely follows the strategy as outlined in Section 1.4.
It is based on the logic of a difference-in-differences (DiD) approach in long differences.34

The idea of this approach is to regress grid-specific differences in average conflict incidence
between the early and the late part of the panel on the respective differences in vegetation
barrenness. Specifically, I compute averages of conflict incidence in a cell for the first three
years of the panel (2000-2002) as denoted by Ci,1 and in the last three years of the panel
(2010-2012) as denoted by Ci,2.35 The long difference in conflict incidence in cell i is then
given by DCi = Ci,2 − Ci,1. The same procedure is applied to the vegetation barrenness
index which yields the long difference of average vegetation barrenness between the last
years of the panel and the first years of the panel (DV Bi = V Bi,2 − V Bi,1). Then I
estimate the following model:

DCi = α+ µDV Bi + φr + εi , (2.2)

where φr controls for climate zone-specific time trends and captures a common evolution
of land degradation and conflict within climate zones. εi constitutes the error term. The
coefficient of interest, µ, captures the effect that changes in vegetation barrenness yield
on changes in conflict incidence and relies on the common trend assumption across cells
within the given climate zones.

2.4.2 Results

Table 2.7 shows the long-run results for different types of conflicts. The results indicate that
cells experiencing a stronger increase in vegetation barrenness also experience a stronger
increase in the incidence of conflicts related to agriculture or pastoralism. The coefficients
estimating the impact on the other conflict types turn out to be statistically insignificant.
In particular, the result in Column (5) indicates that an increase in the extent of vegetation
barrenness in long differences by 1, i.e. an increase from zero to full vegetation barrenness,

34Given the availability of NDVI data I have only access to a shorter time period, so I refrain from a gen-
eralization of the difference-in-differences (DiD) to a generalized difference-in-differences (GDD) framework
as outlined in Section 1.4.

35I vary this time window in further robustness checks. See Table 2A.15 for an alternative specification
using a 4-year window at the beginning and end of the sample period. However, when expanding the
windows used for the long-difference calculation by more and more years, the standard errors increase as
the available variation in differences declines. When employing the full halfs of the sample even the effect
on agropastoral conflicts looses its statistical significance (see Table 2A.16). A longer time horizon would
be helpful to detect the medium- or long-run consequences of land degradation on conflict.
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leads to an increase in the frequency of conflicts by 0.063. This corresponds to a threefold
of the unconditional mean of the increment over time in conflict which is 0.0165.

Table 2.7: Land Degradation and Conflict: Long Differences

(1) (2) (3) (4) (5)
All Riot Battle (terr) Battle (no terr) Agropastoral

Diff Veg. Barrenness 0.0859 0.108 0.0240 0.00664 0.0637∗∗

(0.268) (0.0753) (0.165) (0.0204) (0.0263)
Adjusted R2 0.041 0.016 0.028 0.005 0.016
N 560 560 560 560 560
Climate Zone Trend X X X X X

OLS estimation results. The dependent variable is the difference in the average incidence of conflict events
in a given cell and month between 2000-2002 and 2010-2012, DCi, with one observation per cell. Robust
standard errors in parentheses. ***/**/* indicate significance at 1%/5%/10%, respectively.

Next, I consider the effect of long differences in the prediction from precipitation and
long differences in the residual separately.36 The results reveal that the overall impact of
land degradation on conflict, corresponding to Column (1) of Table 2.7, turns out to be
insignificant as it consists of a positive impact of predicted vegetation barrenness and a
negative impact of the residual. However, when including temperature into the prediction,
the negative effect of the residual becomes statistically insignificant.37 Thus, in contrast
to land degradation determined by climatic variables, the "human component" as defined
via the RESTREND methodology does not seem to unfold a significant impact on conflict
risk in the long run.

Besides the impact of precipitation, the inter-annual variation in vegetation dynamics
is mainly determined by land cover changes. So, to shed more light on a potential relation
between land degradation and conflict in the long run, I analyze the effect of changes in land
cover on changes in conflict risk.38 Among the different land cover types as described in
Section 2.2, the share of cropland yields the strongest negative correlation with vegetation
barrenness (-0.727), followed by forest cover (-0.279) and the share of grassland (-0.185).
Based on the methodology as outlined above, I calculate long differences for the respective
land cover types. Then I regress the changes in conflicts on land cover changes.39 The
results unfold that an increasing share of cropland seems to raise conflict risk in the long
run, which is in line with abundant narratives on disputes arising from closed transhumance

36See Table 2A.13.
37See Table 2A.14
38Begue et al. (2011) study the case of Mali and observe a strong positive trend of the NDVI for the

period 1982-2006 and that cropping contributed to the greening. Several other studies document an increase
in cropland in the Sahel in recent years and sketch a link to increasing greenness values (e.g. Nutini et al.,
2013).

39See Table 2A.17.
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corridors by cropland expansions or policies favoring sedentary over pastoralist agriculture
in the region. However, the positive impact of cropland is significant only at the 10 percent
level and should therefore be considered with some caution. However, this finding points
towards an underestimation of the effect of the human-induced component, as cropland
expansion has a positive impact on conflict risk and a negative impact on the vegetation
barrenness index. When including the difference of the residual and the difference of
the share of cropland jointly into the regression the effect of the residual change indeed
increases in magnitude and looses its statistical significance.40

2.5 Discussion

Many studies have tackled the question of whether climate change impacts the risk of
civil conflict. One phenomenon that is oftentimes related to changing climate is land
degradation. In the Sahel between 2000 and 2012 there is strong heterogeneity in the
extent of land degradation, although on average the region seems to have become slightly
greener. In this study I analyze the impact of monthly vegetation barrenness shocks and
medium-term land degradation on conflict risk on a 0.75◦ resolution grid in a month-to-
month and a long-difference framework between 2000 and 2012.

The findings indicate that in the short-run vegetation barrenness has a significantly
positive impact on conflict. Employing monthly precipitation levels as instrument for
vegetation barrenness unfolds that the short-run effect is merely driven by monthly rainfall
variability. The results further point towards stronger effects in regions where societies
strongly rely on the capacity of soil. This is the case for regions with high densities of settled
agriculture or pastoralism or those with scarce freshwater resources. Also the effects are
more pronounced in regions that are ethnically fractionalized which may imply competing
systems of agriculture being in place or the existence boundaries along which property
rights are contested. Further, the effects unfold in particular for types of conflict that
may plausibly arise through tightened competition for land resources - involving conflicts
related to agriculture or pastoralism or battles inducing territorial changes. Looking at
the heterogeneity across seasons reveals that conflict risk responds most strongly in the
rainy season and in months of seasonal pastoralist movement. In the long-run analysis I
find suggestive evidence that changes in barrenness increase the risk of conflicts related to
agriculture or pastoralism and that cropland expansions are positively related to conflict
risk. The analysis of impacts of the "human-induced component" of land degradation,
defined as the residual after the prediction from precipitation, does not deliver robust
results in the short- and in the long run.

40See Table 2A.17.
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This study sets different starting points to think about policy implications. Anthro-
pogenic global warming and its related impacts on local rainfall patterns are to a large
extent a consequence of global human activity such as aggregate CO2 emissions. Beyond
the difficulty to achieve and enforce global policy, the scientific community is still clarify-
ing the relationships and spatial dynamics of climatic and environmental variables. Taking
environmental shocks and changes as matter of fact suggests a reduction of societal vul-
nerability and the implementation of locally targeted adaption mechanisms. The human
impact on land degradation unfolds locally and in shorter time horizons which yields a
more tangible target for policy implications. But further research is needed to address the
interactions between climatic and human impacts in shaping the risk for conflict in more
detail. Moreover, the analysis of environmental dynamics over longer time horizons could
add valuable insights complementing the findings of the present study.
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2.A Appendix

Table 2A.1: Data Sources and Variable Construction

Source Variable Specification

Net Difference Vegetation Index (NDVI)

1. National Aeronautics and Space
Administration (NASA, 2015), Vegetation
Index Products

Vegetation Barrenness Monthly index [0,1], calculated as 1-NDVI.

Land Cover

2. European Space Agency (ESA, 2017), CCI
Land Cover Products

Share of Cropland
Share of Grassland
Share of Forest
Share of Water

Annual share of Land cover type within
grid calculated from 300m×300m raster.

Cell-specific Characteristics

2. Geo-referencing of Ethnic Groups (GREG)
(Weidmann, Rød, and Cederman, 2010)

Ethnic Diversity Binary indicator, equals 1 if there is more
than 1 ethnic territory within the grid, 0
otherwise.

World Waterbodies (ESRI Garmin
International, 2016)
Share of Water (ESA, 2017)

Water Resources Binary indicator, equals 1 if water source
available, 0 otherwise. Indicator created
from waterbody polygons.

3. Gridded Livestock of the World (GLW)
(FAO, 2007)

Pastoralism Estimated number of cattle per sqkm.

Conflict

2. ACLED (Raleigh, Linke, Hegre, and
Karlsen, 2010)

Incidence Monthly binary indicator for conflict of any
type.

Battle (territory) Monthly binary indicator for
Battle-Non-state actor overtakes territory
Battle-Government regains territory.

Battle (non-territory) Monthly binary indicator for battle-No
change of territory.

Riot and Protest Monthly binary indicator for riots/protests.

Agropastoral Monthly binary indicator for conflict based
on keyword match in contextual notes:
“farm”, “crop”, “cattle”, “herd”, “grazing”,
“nomad”, “pasture”, “water”.

Political Monthly binary indicator for conflict based
on keyword match in contextual notes:
“government”, “president”.
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Table 2A.2: Summary Statistics of Additional Variables

Mean SD Min Max Obs
Battle (Territorial Change) 0.008 0.090 0.000 1.000 87,360
Battle (no Territorial Change) 0.001 0.024 0.000 1.000 87,360
Agropastoral Conflict 0.001 0.029 0.000 1.000 87,360
Political Conflict 0.002 0.049 0.000 1.000 87,360
Ethnic Diversity (GREG) 0.566 0.496 0.000 1.000 87,360
Cattle Density (Number per sqkm) 0.000 0.015 0.000 1.000 87,373
Share of Cropland 0.183 0.271 0.000 0.986 87,373
Share of Grassland 0.207 0.249 0.000 0.925 87,373
Share of Forest 0.024 0.076 0.000 0.767 87,373
Share of Water 0.004 0.025 0.000 0.276 87,373
Water Source 0.291 0.454 0.000 1.000 87,373

Table 2A.3: Prediction accounting for Temperature

(1) (2) (3) (4) (5) (6)
All Battle Riot All Battle Riot

Veg. Barrenness (Prediction) 0.0573∗∗∗ 0.0344∗∗ -0.00835
(0.0175) (0.0135) (0.0101)

Residuals -0.0106 0.00230 -0.00823
(0.0121) (0.00715) (0.00775)

Adjusted R2 0.044 0.023 0.062 0.044 0.023 0.062
N 87360 87360 87360 87360 87360 87360
Grid 560 560 560 560 560 560
Time FE X X X X X X
Grid FE X X X X X X
Month FE X X X X X X
MonthXClimate FE X X X X X X

Column (1) through Column (3) show IV results with the 3-month (t, t-1 and t-2) average of precipitation
and temperature as instruments for vegetation barrenness. Column (4) through Column (6) show results
for the effect of the residual. The dependent variable is the incidence of a conflict event in a given cell
and month. Clustered standard errors at grid level in parentheses. ***/**/* indicate significance at
1%/5%/10%, respectively. All regressions include lagged conflict as control.

Table 2A.4: Extended Time Horizon

(1) (2)
2000-2012 1997-2015

Veg. Barrenness (Prediction) 0.0545∗∗∗ 0.0861∗∗∗

(0.0176) (0.0203)
Adjusted R2 0.044 0.092
N 87360 127120
Grid 560 560
Time FE X X
Grid FE X X
Month FE X X
MonthXClimate FE X X

IV results using the 3-month (t, t-1 and t-2) average of precipitation as instrument for vegetation bar-
renness. The dependent variable is the incidence of a conflict event in a given cell and month. Clustered
standard errors at grid level in parentheses. ***/**/* indicate significance at 1%/5%/10%, respectively.
All regressions include lagged conflict as control.
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Table 2A.5: Prediction from past Precipitation (t-12) to (t-14)

(1) (2) (3)
All Battle Riot

Veg. Barrenness (Prediction) 0.0775∗∗ 0.0722∗∗∗ -0.00977
(0.0347) (0.0260) (0.0154)

Adjusted R2 0.021 0.006 0.004
N 127120 127120 127120
Grid 560 560 560
Time FE X X X
Grid FE X X X
Month FE X X X
MonthXClimate FE X X X

IV results using 3-month average of precipitation in the previous year (t-12, t-13 and t-14) as instrument
for vegetation barrenness. The dependent variable is the incidence of a conflict event in a given cell
and month. Clustered standard errors at grid level in parentheses. ***/**/* indicate significance at
1%/5%/10%, respectively. All regressions include lagged conflict as control.
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Figure 2A.1: Evolution of Weather- and Human-Induced
Components of Vegetation Barrenness 2000-2012

This figure shows the monthly evolution of the predicted vegetation barrenness by precipitation in Panel
(a), which excludes year fixed effects for visualization. Panel (b) shows the monthly evolution of the
residual obtained from the prediction, i.e. the "human component" of land degradation.
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Table 2A.6: Alternative Specifications

FE Model Baseline Country-Year Climate-Year Grid-Month Grid-Year
(1) (2) (3) (4) (5)

Panel A: Baseline - Battles
Vegetation Barrenness 0.0128∗∗ 0.0138∗∗ 0.0146∗∗ -0.00222 0.0156∗∗

(0.00579) (0.00585) (0.00591) (0.0153) (0.00652)
Adjusted R2 0.132 0.135 0.134 0.123 0.193
N 87360 87360 87360 87360 87360
Grid 560 560 560 560 560

Panel B: Prediction from Rainfall - Incidence (1997-2015)
Veg. Barrenness (Prediction) 0.0861∗∗∗ 0.0529∗∗∗ 0.0861∗∗∗ 0.140∗∗∗ 0.0427∗∗

(0.0203) (0.0190) (0.0205) (0.0367) (0.0205)
Adjusted R2 0.238 0.247 0.243 0.231 0.349
N 127120 127120 127120 127120 127120
Grid 560 560 560 560 560

Panel C: Prediction from Rainfall - Incidence (2000-2012)
Veg. Barrenness (Prediction) 0.0545∗∗∗ 0.0375∗∗ 0.0660∗ 0.0660∗ 0.0394∗

(0.0176) (0.0184) (0.0365) (0.0365) (0.0211)
Adjusted R2 0.208 0.213 0.196 0.196 0.283
N 87360 87360 87360 87360 87360
Grid 560 560 560 560 560

Panel D: Residual - Incidence
Veg. Barrenness (Residual) -0.00722 0.00247 -0.00722 -0.0479∗∗ 0.00737

(0.0118) (0.0116) (0.0118) (0.0227) (0.0131)
Adjusted R2 0.208 0.213 0.203 0.196 0.283
N 87360 87360 87360 87360 87360
Grid 560 560 560 560 560

Grid FE X X X X X
Time FE X X X X X
Month FE X X X X X
Month×Equator FE X X X X X

Column (2) adds country-specific year fixed effects to the regression, Column (3) climate zone-specific year
fixed effects, Column (4) grid-specific (calendar) month fixed effects and Column (5) grid-specific year fixed
effects. Panel A: OLS (linear probability model) fixed effects estimation results. The dependent variable
is the incidence of a battle event in a given cell and month. Panel B and C: IV results using the 3-month
(t, t-1 and t-2) average of precipitation as instrument for vegetation barrenness. The dependent variable is
the incidence of any conflict in a given cell and month. Panel D: Results for the effect of the residual. The
dependent variable is the incidence of any conflict in a given cell and month. ***/**/* indicate significance
at 1%/5%/10%, respectively. All regressions include lagged conflict as control.
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Table 2A.7: Effect of Lagged Vegetation Barrenness

(1) (2) (3) (4) (5) (6)
All Battle Riot All Battle Riot

L.Vegetation Barrenness 0.0134 0.00893 -0.00910
(0.0108) (0.00672) (0.00606)

L.Incidence 0.200∗∗∗ 0.200∗∗∗

(0.0190) (0.0190)

L.Battle 0.145∗∗∗ 0.145∗∗∗

(0.0195) (0.0195)

L.Riot 0.246∗∗∗ 0.246∗∗∗

(0.0397) (0.0397)

L.Veg. Barrenness (Residual) -0.0000928 0.00594 -0.0129
(0.0135) (0.00917) (0.00845)

Adjusted R2 0.046 0.023 0.061 0.046 0.023 0.061
N 87360 87360 87360 87360 87360 87360
Grid 560 560 560 560 560 560
Time FE X X X X X X
Grid FE X X X X X X
Month FE X X X X X X
MonthXClimate FE X X X X X X

Results of OLS (linear probability model) estimates. The dependent variable is the incidence of a conflict
event in a given cell and month. Clustered standard errors at grid level in parentheses. ***/**/* indicate
significance at 1%/5%/10%, respectively. All regressions include lagged conflict as control.

Table 2A.8: Conley Standard Errors

(1) (2) (3) (4) (5) (6)
Baseline Conley SE Baseline Conley SE Baseline Conley SE

Vegetation Barrenness 0.0128∗∗ 0.0128∗

(0.00579) (0.00737)

Veg. Barrenness (Prediction) 0.0545∗∗∗ 0.0545∗∗

(0.0176) (0.0246)

Veg. Barrenness (Residual) -0.00722 -0.00722
(0.0118) (0.0149)

Adjusted R2 0.023 0.021 0.044 0.039 0.044 0.039
N 87360 87360 87360 87360 87360 87360
Grid 560 . 560 . 560 .
Time FE X X X X X X
Grid FE X X X X X X
Month FE X X X X X X
MonthXClimate FE X X X X X X

Columns (1), (3) and (5) employ standard errors clustered at the grid level. Columns (2), (4) and (6) show
the respective results employing Conley robust standard errors. Spatial correlation is accounted for up to
a cutoff of 200km. Serial correlation is accounted for across 20 time periods. The dependent variable is
the incidence of a battle in Columns (1) and (2) and the incidence of any conflict in Columns (3) through
Column (6). ***/**/* indicate significance at 1%/5%/10%, respectively. All regressions include lagged
conflict as control.
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Table 2A.9: 2SLS and Bootstrapped Standard Errors

(1) (2) (3) (4) (5) (6)
BS HW BS (2SLS) HW (2SLS) BS Res HW Res

Veg. Barrenness (Prediction) 0.0545∗∗∗ 0.0545∗∗∗

(0.0204) (0.0176)

Veg. Barrenness (2SLS) 0.0545∗∗∗ 0.0545∗∗∗

(0.0186) (0.0178)

Veg. Barrenness (Residual) -0.00722 -0.00722
(0.0119) (0.0118)

Adjusted R2 0.038 0.044 0.038 0.044
N 87360 87360 87360 87360 87360 87360
Grid 560 560 560 560 560 560
Time FE X X X X X X
Grid FE X X X X X X
Month FE X X X X X X
MonthXClimate FE X X X X X X

"HW" indicates Huber-White standard errors clustered at the grid level, as employed in the baseline
regressions. "BS" indicates bootstrapped standard errors. In Columns (1) and (2) the instrumental vari-
able approach is conducted manually, Columns (3) and (4) employ Stata’s implemented 2SLS command.
Columns (5) and (6) document results for the residual. The dependent variable is the incidence of a
conflict event in a given cell and month. ***/**/* indicate significance at 1%/5%/10%, respectively. All
regressions include lagged conflict as control.

Table 2A.10: Conflict Onset, Intensive Margin and Logit

(1) (2) (3) (4)
Conflict Onset Number Conflicts Number Fatalities Logit

Veg. Barrenness (Prediction) 0.0419∗∗ 0.121∗∗ 0.0906 0.222∗∗∗

(0.0173) (0.0584) (3.151) (0.0523)
Adjusted R2 0.017 0.059 0.007
N 87360 87360 87360 35412
Grid 560 560 560 .
Time FE X X X X
Grid FE X X X X
Month FE X X X X
MonthXClimate FE X X X X

IV results with the 3-month (t, t-1 and t-2) average of precipitation as instrument for vegetation barrenness
in Column (1), (2) and (3), and marginal effects of Logit estimates in Column (4). In Column (1) the
dependent variable is the onset of a conflict in cell in a given month. In Column (2) the dependent variable
is the number of conflicts within a grid in a given month. In Column (3) the dependent variable is the
number of fatalities arising from conflict in a given cell and month. In Column (4) the dependent variable
is conflict incidence. ***/**/* indicate significance at 1%/5%/10%, respectively. All regressions include
lagged conflict as control.
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Table 2A.11: Cattle- and Cropland Density Matrix

(1) (2) (3) (4)
cuH caH cuL caL cuL caH cuH caL

Dep. var.: incidence civil conflict
Veg. Barrenness (Prediction) 0.0625∗∗∗ -0.0526 -0.0983 0.0922

(0.0223) (0.0509) (0.168) (0.141)
Adjusted R2 0.046 0.041 0.068 0.053
N 39852 39900 3828 3780
Grid 257 256 25 26
Time FE X X X X
Grid FE X X X X
Month FE X X X X
MonthXClimate FE X X X X

IV results using 3-month (t, t-1 and t-2) average precipitation as instrument for vegetation barrenness. The
dependent variable is the incidence of a conflict event in a given cell and month. "cuH caH" indicates high
density of cultivation and cattle, "cuL caL" low density of cultivation and cattle, "cuL caH" low density of
cultivation and high density of cattle and "cuH caL" high density of cultivation and low density of cattle.
Clustered standard errors at grid level in parentheses. ***/**/* indicate significance at 1%/5%/10%,
respectively. All regressions include lagged conflict as control.

Table 2A.12: Alternative Ethnicity Measure

(1) (2)
Ethnic Diversity No Ethnic Diversity

Dep. var.: incidence
Veg. Barrenness (Prediction) 0.0568∗∗∗ 0.0269

(0.0200) (0.0391)
Adjusted R2 0.052 0.021
N 56940 30420
Grid 365 195
Time FE X X
Grid FE X X
Month FE X X
MonthXClimate FE X X

IV results using 3-month (t, t-1 and t-2) average precipitation as instrument for vegetation barrenness.
The dependent variable is the incidence of a conflict event in a given cell and month. Data is obtained from
Murdock’s Ethnographic Atlas. "Ethnic Diversity" applies when at least two ethnic homelands are present
within the grid. Clustered standard errors at grid level in parentheses. ***/**/* indicate significance at
1%/5%/10%, respectively. All regressions include lagged conflict as control.
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Table 2A.13: Long Run: Weather- and Human-Induced Components of Land
Degradation

(1) (2) (3)

Diff Veg. Barrenness 0.0859
(0.268)

Diff Veg. Barrenness (Prediction) 0.315∗

(0.189)

Diff Veg. Barrenness (Residual) -0.191
(0.157)

Adjusted R2 0.041 0.045 0.043
N 560 560 560
Climate Zone Trend X X X

OLS estimation results. The dependent variable is the difference in the average incidence of conflict events
in a given cell and month between 2000-2002 and 2010-2012, DCi, with one observation per cell. Robust
standard errors in parantheses. ***/**/* indicate significance at 1%/5%/10%, respectively.

Table 2A.14: Long Run: Weather- and Human-Induced Components of Land
Degradation accounting for Temperature

(1) (2) (3)

Diff Veg. Barrenness 0.0859
(0.268)

Diff Veg. Barrenness (Prediction with Temp) 0.333
(0.212)

Diff Veg. Barrenness (Residual) -0.186
(0.172)

Adjusted R2 0.041 0.045 0.042
N 560 560 560
Climate Zone Trend X X X

OLS estimation results. The dependent variable is the difference in the average incidence of conflict events
in a given cell and month between 2000-2002 and 2010-2012, DCi, with one observation per cell. Robust
standard errors in parantheses. ***/**/* indicate significance at 1%/5%/10%, respectively.

Table 2A.15: Long Run: 4-Year Window

(1) (2) (3) (4) (5)
All Riot Battle (terr) Battle (no terr) Agropastoral

Diff Veg. Barrenness -0.0190 0.0432 -0.102 0.00301 0.0598∗∗∗

(0.245) (0.0845) (0.147) (0.0171) (0.0215)
Adjusted R2 0.035 0.013 0.023 0.006 0.021
N 560 560 560 560 560
Climate Zone Trend X X X X X

OLS estimation results. The dependent variable is the difference in the average incidence of conflict events
in a given cell and month between 2000-2003 and 2009-2012, DCi, with one observation per cell. Robust
standard errors in parantheses. ***/**/* indicate significance at 1%/5%/10%, respectively.
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Table 2A.16: Long Run: 7-Year Window

(1) (2) (3) (4) (5)
All Riot Battle (terr) Battle (no terr) Agropastoral

Diff Veg. Barrenness -0.0508 0.0816 -0.0538 -0.0237 -0.0208
(0.175) (0.0808) (0.129) (0.0215) (0.0277)

Adjusted R2 0.011 0.009 0.002 0.000 0.001
N 560 560 560 560 560
Climate Zone Trend X X X X X

OLS estimation results. The dependent variable is the difference in the average incidence of conflict events
in a given cell and month between 2000-2006 and 2007-2012, DCi, with one observation per cell. Robust
standard errors in parantheses. ***/**/* indicate significance at 1%/5%/10%, respectively.

Table 2A.17: Long Run: Land Cover Changes

(1) (2) (3) (4)

Diff Share Cropland 0.750∗ 0.557
(0.436) (0.508)

Diff Share Forest -0.0333 0.0190
(1.053) (1.009)

Diff Share Grassland 0.128 0.0443
(0.104) (0.102)

Diff Veg. Barrenness (Residual) -0.0611 -0.191 -0.193
(0.201) (0.158) (0.157)

Adjusted R2 0.045 0.045 0.041 0.041
N 560 560 560 560
Climate Zone Trend X X X X

OLS estimation results. The dependent variable is the difference in the average incidence of conflict events
in a given cell and month between 2000-2002 and 2010-2012, DCi, with one observation per cell. Robust
standard errors in parantheses. ***/**/* indicate significance at 1%/5%/10%, respectively.



Chapter 3

Resilience to Natural Disasters:
Insurance and Institutions

3.1 Introduction

The common perception regarding the key determinants of economic development is that
good institutions foster development while natural catastrophes constitute one of the key
impediments to development. However, a glance at the empirical literature reveals an
unresolved controversy about whether natural catastrophes indeed have significant and
persistent negative or positive effects on income, and under which circumstances these
effects unfold. As is discussed in more detail below, the existing evidence reveals a sur-
prisingly heterogeneous picture of the development consequences of natural catastrophes,
with institutions being one of the main determinants of the sign of the effect. Most of the
existing literature presents reduced form effects, with little evidence for the channels and
mechanisms that influence the effect of natural catastrophes on economic development.

This paper contributes to the debate by providing new evidence on the effect of nat-
ural catastrophes on economic development, and in particular on the determinants of the
sign of this effect. The analysis uses a comprehensive data set of natural catastrophes
as well as a measure of the damages caused by the catastrophes. This data has global
coverage on all natural disasters and related losses, thus allowing for an estimation of the
economic consequences of natural catastrophes by distinguishing the extensive and inten-
sive margin. The results suggest that the effect of natural catastrophes depends on the

This chapter is based on joint work with Florian Englmaier, Till Stowasser and Uwe Sunde. A brief
version of this Chapter is published as Breckner, Englmaier, Stowasser, and Sunde (2016), see https:
//doi.org/10.1016/j.econlet.2016.09.023. We are grateful to Munich Re’s NatCat Service for granting
access to comprehensive data on natural disasters and to Munich Re’s Economic Research Unit for the
provision of comprehensive data on insurance market penetration rates.

https://doi.org/10.1016/j.econlet.2016.09.023
https://doi.org/10.1016/j.econlet.2016.09.023
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access to insurance in the form of private insurance markets in combination with pub-
lic disaster relief. The findings demonstrate that private insurance markets and a stable,
well-institutionalized environment complement each other in accommodating the negative
effects of natural catastrophes. This implies that market forces and public institutional
infrastructure are both essential in providing economies with resilience against natural
catastrophes.

This paper makes several contributions to the existing literature, which has shown that
the impact of natural disasters on income depends on the type and severity of natural
disasters, as well as on the economic and institutional environment. In particular, almost
all studies using cross-country panel data find negative effects of natural disasters on income
in the short-run, in particular in developing countries and for severe disasters (Noy, 2009;
Hochrainer, 2009; Raddatz, 2009; Loayza, Olaberría, Rigolini, and Christiaensen, 2012;
Fomby, Ikedab, and Loayza, 2013), whereas there is some evidence that suggests a positive
effect on income in developed economies, see, e.g. Noy (2009). While the literature lacks
a coherent explanation for this finding, some suggest that this effect is mechanical as
reconstruction investment is part of GDP while the loss due to destruction of capital is
not (e.g. Tol and Leek, 1999). Some recent studies provide evidence that international
openness and access to finance can raise a country’s resilience to natural hazards, with
higher openness to trade, higher financial openness and more advanced financial markets
being attenuating factors that operate towards economic recovery in the aftermath of a
natural disaster (Noy, 2009; McDermott, Barry, and Tol, 2013; Felbermayr and Gröschl,
2014). Noy (2009) also suggests that higher levels of government spending belong to
the list, whereas higher foreign exchange reserves appear to worsen the disaster impact.
Our study adds to this a novel measure of insurance market development. This measure
reflects insurance market penetration based on micro level data and allows for a precise
measurement of the role of insurance for resilience to natural catastrophes. Von Peter,
von Dahlen, and Saxena (2012) present the first evidence that links the effect of natural
disasters to insurance markets and show that, when treating uninsured and insured losses
separately, uninsured disaster-related losses lead to income declines whereas there is no
negative effect for insured losses. While we have access to the same data, this paper
broadens the focus by considering insurance market penetration as control and as a further
mitigating factor.

A distinct strand of the literature suggests that particular institutional attributes are
relevant for mitigating the economic consequences of natural disasters, with countries with
more stable and more democratic regimes appearing to be more capable to withstand
the disaster shock (Noy, 2009; Cavallo, Galiani, Noy, and Pantano, 2013; Felbermayr and
Gröschl, 2014). Our paper provides an important link between the functioning of insurance
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markets in attenuating the effects of catastrophes and the institutional environment.
Most other published studies employ the Em-Dat disaster database with one exception

being Felbermayr and Gröschl (2014) who introduce the Geological and Meteorological
Events Database (GAME) to the literature. This data is based on measures of the physi-
cal attributes of disasters. We employ the NatCat database provided by MunichRe, which
constitutes the most comprehensive data set for disaster-related losses, including informa-
tion on whether the losses were insured or not. Only few other studies have used these data
in the context of macroeconomic resilience to natural disasters (von Peter, von Dahlen, and
Saxena, 2012; Felbermayr and Gröschl, 2014).

The remainder of the paper is structured as follows. Section 3.2 describes the data and
the empirical framework. Section 3.3 presents the main results and robustness analysis.
Section 3.4 concludes the analysis.

3.2 Data and Empirical Framework

3.2.1 Data

We construct a panel data set with yearly data for 129 countries for the period 1980 to
2011.1 Data on natural catastrophes is provided by the NatCat Service of the global
insurance- and reinsurance group MunichRe. The data set contains information on the
incidences of natural catastrophes on a global scale.2 The data further reports the disaster
types and also includes measures of the intensity of these catastrophes in terms of direct
monetary losses and the number of fatalities, and provides information on different kinds of
infrastructure assets affected. Of particular relevance for our analysis is the classification of
disasters into severity categories 0-4, which are defined according to fatality- and monetary
loss thresholds.3

The main advantage of the NatCat data over alternative data sets on natural catas-
trophes such as the publicly available Em-Dat data set which is employed in almost all
published studies, is their comprehensiveness as well as the assessment of losses caused by
the catastrophe. These loss data are of very high quality as they are essential for the esti-
mation of reinsurance liabilities and the adequate risk pricing of contracts by MunichRe,

1Due to missing observations for some countries, the panel is not balanced.
2Wirtz, Kron, Loew, and Steuer (2014) provide an extensive description of data bases on natural

disasters with a special focus on NatCat data.
3For instance, in order to be classified into category 4 in a high-income economy, a disaster must have

caused either 2.5 billion$ or 1000 fatalities. See Table 3A.1 for all threshold definitions. For classification,
losses are normalized by a normalization factor (current income to income in the respective year) which
accounts for inflation and the increase in values.
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which is the largest reinsurance company worldwide.4 The calculation of disaster-related
losses is mainly based on replacement and repair costs and draws on various sources, in-
cluding the insurance industry, scientific reports, weather services, news agencies, NGOs
and GOs. According to their own assessment, NatCat Service provides the most compre-
hensive natural catastrophe loss database in the world (NatCatService, 2014). The loss
data distinguishes between insured losses and economic (overall) losses. The accuracy of
loss data and the distinction between overall and insured losses makes the NatCat data
unique for the purpose of this study. For instance, the smallest loss registered in the Nat-
Cat database amounts to 4450 US$, while disasters need to meet specific severity criteria
before they are entered into alternative data bases, such as the Em-Dat database.5

In the empirical analysis, we employ two different specifications to capture natural
catastrophes. First, we code a binary measure for natural disasters which is 1 if a severe
disaster (category 4) occurred in country i, year t, and 0 otherwise. This measure only
exploits the extensive margin of a natural catastrophe occurrence. Because the majority
of events is related to relatively small losses that have ambiguous effects on income, we
code catastrophes to be severe events (category 4). Second, as a measure of catastrophe
intensity, we use the sum of direct losses caused by natural disasters in country i, year
t, normalized by the level of GDP (of the preceding year). This measure exploits the
intensive margin of disaster occurrence and makes use of the availability of high accuracy
loss data. Losses are normalized by GDP to set the catastrophe intensity in relation to
the country size. The weighted loss measure (losses per GDP) exhibits an outlier problem,
where in some rare cases losses can amount to twice the level of GDP in extremely small
countries. In particular, some small island states are affected in this respect. In order to
accommodate this problem, and to allow for a straightforward interpretation, the log of
the weighted loss is taken, which yields a rather normal distribution (see Figure 3.1). We
also only consider shares of losses exceeding 0.1 percent in the baseline analysis to rule out
that extremely small losses influence the estimated coefficients that can clearly not affect
aggregate income.6

Another innovation in this paper concerns the availability of data on the development
of insurance markets. In particular, the Economic Research Department of MunichRe
provided us with data on national insurance market penetration for a worldwide panel.
The availability of this data allows us to investigate whether access to insurance markets
can help mitigating the consequences of natural catastrophes on economic development.

4Source: Standard & Poors, see http://de.statista.com/statistik/daten/studie/188545.
5For instance, for a disaster to be entered into the Em-Dat database at least one of the following criteria

must be fulfilled: Ten or more people reported killed, hundred or more people reported affected, declaration
of a state of emergency or a call for international assistance.

6Figure 3A.1 depicts the evolution of the two measures for natural disasters over time.
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Figure 3.1: Histogram and Kernel Density Plot of Loss Measures
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The left panel depicts losses per GDP in absolute terms whereas the right panel depicts losses per GDP
in logs.

The main measure we employ is the insurance penetration rate, which is defined as the
annual sum of insurance premia paid in a country divided by the country’s GDP. We focus
on insurance premia excluding health- and life insurance. This leaves us with property-
and casualty insurance, which we consider as best proxy for insurance coverage in the case
of natural catastrophes. The availability of other insurance measures is used in further
robustness checks. In addition to the investigation of insurance penetration as a mitigating
factor, the availability of this measure enables us to account for the concern that the
effect of natural disasters on income might be upward biased if better developed insurance
markets correlate with both, the measurement (or selection) of disasters and the level of
development, as suggested by Felbermayr and Gröschl (2014), by including the insurance
penetration rate as control variable.

Figure 3.2 shows a map of the average insurance penetration rate across countries over
the observation period 1980-2014. Data on aggregate and per capita GDP, as well as
on population is obtained from the Worldbank’s Development Indicators (WDI). Data on
the capital stock and human capital in terms of a human capital index is taken from the
Penn World Tables 8.0 (Feenstra, Inklaar, and Timmer, 2015). The human capital index
draws on the database of Barro and Lee (2013) and reflects a function of the average years
of schooling for the population aged 15 or older. Data on institutions draws on several
sources. The two main indicators for institutional quality, civil liberties and political
rights, are obtained from Freedom House. Civil liberties involve feedom of expression
and belief, associational and organizaitonal rights, rule of law and personal autonomy



Resilience to Natural Disasters: Insurance and Institutions 89

without inference from the state. Political rights involve the quality of the electoral process,
political pluralism and participation as well as the functioning of the government.7 For
further robustness analysis, we employ a new measure of the quality of political institutions
provided by Kunčič (2014). This measure comprises different concepts of measuring the
well-functioning of political institutions to a new aggregate index. This provides us with a
measure of the higher order attributes which is the latent quality of political institutions.
Further, we employ the polity2 index from the polity4 database for robustness which
focuses on institutionalized democracy (Marshall, Gurr, and Jaggers, 2016). Codings of the
competitiveness of political participation, the openness and competitiveness of executive
recruitment, and constraints on the chief executive yield a scale moving from complete
autocracy to full democracy (-10,-10). Table 3.1 contains summary statistics of the main
variables used in the empirical analysis.8

Figure 3.2: Quintiles of Countries’ Average Insurance Penetration Rates, 1980-2014
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1.429389 - 2.101004 (32)
.8877631 - 1.429389 (32)
.5179915 - .8877631 (32)
.064335 - .5179915 (33)
No data (91)

3.2.2 Empirical Strategy

To investigate the effect of natural disasters on income we estimate the following empirical
model:

lnYi,t = α+ βlnYi,t−1 + γDISi,t + µXi,t−1 + νi + νt + νi·T + εi,t, (3.1)

7See https://freedomhouse.org/ for details. We use version 20 Dec 13, see (Teorell, Charron,
Dahlberg, Holmberg, Rothstein, Sundin, and Svensson, 2013).

8See Table 3A.1 for details on data, data sources and variable construction.

https://freedomhouse.org/
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Table 3.1: Summary Statistics - Estimation Sample

N Min Max Mean SD

Disaster(Cat4) 2,572 0.00 1.00 0.13 0.34
Disaster(Log Loss) 2,562 -2.30 4.41 -0.20 0.70
Insurance Penetration Rate 2,519 1.00 7.00 3.09 1.69
Civil Liberties 2,519 1.00 7.00 3.00 2.02
Political Rights 2,572 0.00 32.05 1.49 1.33
log GDP per Capita 2,572 -1.94 4.46 1.40 1.60
log Capital Stock 2,572 7.03 17.61 12.30 1.98
log Population 2,572 12.20 21.02 16.30 1.65
log Human Capital Index 2,572 0.12 1.29 0.87 0.25
Disaster(Cat 4) Events only 341 1.00 1.00 1.00 0.00
Disaster(Log Loss) Events only 721 -2.30 4.41 -0.72 1.18

where the dependent variable lnYi,t is the log of per capita income in country i and year t.
One lag of the dependent variable is included to capture convergence effects. The coefficient
of primary interest is γ, which captures the impact of natural disasters on income. The
variable DISi,t represents the incidence of a natural catastrophe in country i and year t.
Catastrophes are measured in two ways as described in more detail in the previous section.
The first specification considers a binary indicator that takes value 1 in a year of a severe
(cat 4) disaster, and 0 otherwise. The second specification considers the occurence of any
disaster together with the log of the weighted sum of overall (monetary) disaster-related
losses that occurred within the disaster year to analyze the impact of the intensive margin of
disaster occurrence. The vectorX denotes a set of control variables and contains the capital
stock, total population and human capital.9 All control variables enter in lags to avoid
endogeneity due to a simultaneous impact of a disaster on dependent- and explanatory
variables. The specification includes country fixed effects, νi, to account for time-invariant
country characteristics and a full set of time (year) dummies, νt, to capture common time
trends. In addition, the specification includes country-specific linear time trends, νi·T ,
to account for unobserved country-specific factors that are varying systematically over
time. The inclusion of country specific linear time trends captures the diverse evolution
of incomes over time and facilitate an accurate estimation of disaster shocks to differential
income paths.10 Standard errors are clustered at the country level and are robust to
heteroskedasticity. This is necessary as for instance the measurement precision might be

9The specification thus reflects the factors of production in a human capital augmented Solow growth
model (Mankiw, Romer, and Weil, 1992).

10In particular, the inclusion of country-specific linear time trend ensures that no unobserved country-
specific trends drive the results. For instance one might think of improvements in disaster data quality or
reporting that have been especially strong in transition economies.
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correlated with the amount of losses. Combining a fixed effects estimator with a lag of
the endogenous variable on the right hand side of the equation leads to biased estimates
(Nickell, 1981). However, the asymptotic order of this bias is shown to decline with the
length of the panel (Judson and Owen, 1999). In the above estimation framework with
T=34 the Nickell bias therefore does not constitute a major concern.11

Another potential concern is that the measure of natural catastrophes is endogenous
to economic development and insurance market development (Felbermayr and Gröschl,
2014). The first reason is that the amount of monetary losses caused by a natural disaster
might correlate with the (insurance market-) development status of a country. Moreover,
(insurance market-) development might correlate with the selection of disasters into the
data set, if the insurance industry is a major source of information for compilation.12 Ac-
cording to McDermott, Barry, and Tol (2013) the first concern is addressed by employing
a dichotomous measure as is done in our first specification. The second concern regarding
a potential selection bias is accounted for by the inclusion of country fixed effects and
country-specific trends into the regression. Further, it is alleviated by employing a spec-
ification that only considers the most striking natural disasters based on a classification
scheme that moreover accounts for differential income levels across countries. However, to
fully address these issues it is necessary to include an interaction term between disasters
and insurance market development into the regression to absorb the omitted effect at the
moment that the disaster strikes. In the course of investigating the mediating effect of
insurance markets by including an interaction term into the regression we therefore im-
plicitly alleviate this concern.13 To investigate the mediating effect of insurance markets
we estimate the following empirical model:

lnYi,t = α+βlnYi,t−1 + γDISi,t + δDISi,t ∗ INSi,t−1 +µXi,t−1 + νi + νt + νi·T + εi,t, (3.2)

where an interaction term between the natural disaster and the insurance market pene-
tration rate DISi,t ∗ INSi,t−1 is added to equation (3.1). The insurance penetration rate
enters as lag such that it is not affected by the disaster shock and is included in the vector
X. The coefficient of interest is δ, which measures the mediating effect of insurance markets
on the effects that natural disasters have on income.

11Judson and Owen (1999) show that the asymptotic order of bias is 1/T and that for an average number
of T=30 the bias is already moderate.

12On the other hand one might argue that disasters in poorer countries cause more fatalities (Kahn,
2005) and therefore will be more extensively covered in the databases, particularly the Em-Dat database
which sets fatality thresholds to select disasters into the database. A robustness check to this concern is
thus to validate the results using the publicly available Em-Dat data, which uses different selection criteria
to sort events into their data set than the NatCat data.

13The robustness section further provides estimates including an interaction term with income.
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3.3 Main Results

3.3.1 Baseline Effect of Natural Disasters

The main results regarding the effect of natural catastrophes on economic development
are presented in Table 3.2. Columns (1)-(3) show the results when focusing attention
on the extensive margin in terms of the incidence of a category 4 natural catastrophe
in a given year. Two findings are relevant. First, on average the incidence of a natural
catastrophe appears to be detrimental for development by reducing GDP per capita by
more than half a percent, as indicated by the results in Column (1). Second, there appears
to be pronounced heterogeneity in the effect, depending on the level of development. In
particular, the effect is negative but not statistically significant in OECD countries as shown
in Column (2), whereas the effect is larger in size and statistically significant negative in
non-OECD countries, displayed in Column (3). This replicates the broad picture revealed
by the existing literature, but it leaves open whether the negative effect is affected by the
size of disaster-related losses (the intensive margin). Moreover, it leaves open the reasons
for why developed countries are apparently more resilient to the occurrence of natural
catastrophes than less developed countries.

Columns (4)-(6) address the question regarding the intensive margin by presenting
results for an extended specification that includes both measures, the measure for disas-
ter incidence and the disaster-related losses. The results of this specification show that
the severity of the natural catastrophe, rather than the mere occurrence, matters for the
economic consequences. Regarding the sub-samples, the extended specification yields qual-
itatively very similar results to the baseline specification with the disaster indicator.

Overall, these results suggest a negative effect of natural disasters on GDP per capita
based on different disaster specifications, in line with Noy (2009) and Felbermayr and
Gröschl (2014). Existing research has pointed to the fact that the impact of natural disas-
ters on income depends on different features of the socio-economic environment (e.g., trade
openness, financial openness, share of insured losses), as well as the quality of institutions
(e.g., democratic institutions, political stability), see Noy (2009), McDermott, Barry, and
Tol (2013), Felbermayr and Gröschl (2014), Fomby, Ikedab, and Loayza (2013), von Peter,
von Dahlen, and Saxena (2012) and Loayza, Olaberría, Rigolini, and Christiaensen (2012).

3.3.2 Effects of Insurance Markets

In order to investigate in more detail why developing countries suffer more from natural
disasters, we first explore whether better developed insurance markets in terms of higher
insurance penetration help to mitigate the negative effect of natural disasters in OECD
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Table 3.2: The Effect of Natural Catastrophes on Development

(1) (2) (3) (4) (5) (6)
All OECD non-OECD All OECD non-OECD

DV: log GDP p.c.
Disaster Cat4(t) -0.619∗∗ -0.277 -0.776∗∗

(0.267) (0.206) (0.363)

Disaster(t) -0.553∗∗ -0.552∗∗ -0.533∗

(0.241) (0.232) (0.288)

Losses(t) -0.394∗∗∗ -0.245 -0.424∗∗

(0.141) (0.148) (0.169)
N 3844 868 2976 3822 868 2954
Countries 129 33 104 129 33 104
R-squared 0.961 0.992 0.956 0.963 0.992 0.958
Controls X X X X X X
Year FE X X X X X X
Country FE X X X X X X
Country Trends X X X X X X

Notes: Controls are log GDP p.c. (t-1), log population (t-1), log capital stock (t-1) and log human capital
(t-1). Huber-White robust standard errors clustered at country-level are reported in brackets. ***, **, *
indicate significance at 1-, 5-, and 10-% level, respectively. Coefficients and standard errors are multiplied
by 100.

countries. Insurance penetration has not played a great role as one of the potential reasons
for the apparent heterogeneity in the effects of natural catastrophes in the literature so far.
Thus, as a first step, we investigate the development of the insurance market as potential
reason for the heterogeneity of different effects in the different samples.

Table 3.3 presents the results from estimating an empirical specification that includes
an interaction term between the insurance penetration rate and the respective disaster
measure (incidence, loss). The table follows the same structure as Table 3.2. Columns
(1)-(3) show the results for specification using disaster incidence, while columns (4)-(6)
show the results for the specification that also accounts for the intensive margin in terms
of overall losses. By itself, insurance penetration does not appear to be related to economic
development above and beyond the lagged controls from a standard development account-
ing framework. Regarding the effect of natural catastrophes, the negative coefficient for
the entire sample is slightly larger than in the baseline specification, and significant. This is
true for the full sample as well as the two sub-samples. In OECD countries, the coefficient
of the main effect of natural disasters is significant and even larger than for the sample
of non-OECD countries. At the same time, the results provide evidence for a significant
positive interaction between insurance penetration and disasters in the full sample. This
effect is mainly driven by the OECD sample and not significant in the non-OECD coun-
tries. Thus, at least in the OECD sample, the negative effect of the occurrence of a natural
catastrophe is mitigated by higher insurance penetration.

The results are similar when considering the extended specification that also includes
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Table 3.3: The Mitigating Effect of Insurance

(1) (2) (3) (4) (5) (6)
All OECD non-OECD All OECD non-OECD

DV: log GDP p.c.
Disaster Cat4(t)*INS(t-1) 0.290∗∗ 0.349∗∗ 0.148

(0.124) (0.151) (0.143)

Disaster Cat4(t) -0.870∗∗∗ -1.057∗∗ -0.810∗∗

(0.326) (0.436) (0.350)

INS(t-1) 0.179 -0.498 0.141 0.0853 -0.415 0.0512
(0.123) (0.405) (0.138) (0.164) (0.338) (0.181)

Disaster*INS(t-1) 0.104 0.103 0.103
(0.109) (0.0956) (0.131)

Disaster(t) -0.351∗∗ -0.421 -0.335
(0.172) (0.258) (0.206)

Losses(t)*INS(t-1) 0.0800∗ 0.446∗∗∗ 0.0349
(0.0469) (0.152) (0.0350)

Losses(t) -0.400∗∗∗ -1.218∗∗∗ -0.363∗∗

(0.152) (0.430) (0.158)
N 2572 677 1895 2562 677 1885
Countries 126 33 101 126 33 101
R-squared 0.977 0.991 0.975 0.980 0.991 0.979
Controls X X X X X X
Year FE X X X X X X
Country FE X X X X X X
Country Trends X X X X X X

Notes: Controls are log GDP p.c. (t-1), log population (t-1), log capital stock (t-1) and log human capital
(t-1). Huber-White robust standard errors clustered at country-level are reported in brackets. ***, **, *
indicate significance at 1-, 5-, and 10-% level, respectively. Coefficients and standard errors are multiplied
by 100.

the measure of catastrophe severity in terms of losses. Again, higher losses imply more
negative development effects, but insurance penetration dampens this effect significantly,
at least in developed economies. Hence, ignoring the role of insurance markets appears
to confound negative effects of natural catastrophes with the mitigation due to higher
insurance penetration, which leads estimates of the average effect to be insignificant in the
OECD sample. Overall, the findings suggest that natural disasters have a negative effect
on income in both samples, but that insurance markets attenuate the income decline in
OECD countries.

Figure 3.3 depicts the total effect of the occurrence of a natural catastrophe in terms
of the occurrence of severe natural disasters in Panel (a) and the log share of losses in
Panel (b) on GDP per capita. As long as insurance penetration is below a certain thresh-
old, natural catastrophes have an unambiguously negative effect on income per capita. In
OECD countries, this effect is mitigated with increasing access to insurance, in terms of
higher insurance penetration, and, with average penetration the effect is already insignif-
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icant. The same is true when considering losses. In non-OECD countries, however, the
mitigating effect of insurance penetration is substantially weaker. In particular, even at
average insurance penetration levels (or at average levels exhibited by OECD countries)
the effect of the occurrence of a natural catastrophe is negative. This raises the question
why insurance markets appear not to abate the consequences of natural catastrophes in
non-OECD countries.
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Figure 3.3: The Mitigating Effect of Insurance
Graphs include 95% confidence interval calculated via the delta method. The horizontal light blue lines
indicate point estimates of table 3.2, i.e. ignoring insurance.

3.3.3 Robustness

In the following, we will report on the robustness of these findings to the use of alternative
measures and estimation approaches, before investigating in more depth the mechanisms
behind the results. The tables with the respective results are contained in the Appendix.
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The first step of the robustness analysis explores the sensitivity of the results with re-
spect to alternative measures. The findings are robust to the use of alternative measures of
losses and a restriction to large disasters.14 Likewise, the results also hold when accounting
for the ratio of insured losses over all losses as an alternative measure for the insurance
penetration rate.15 This measure might even be a more accurate measure for insurance
coverage regarding the destructed assets. The results are not confined to the use of the
Nat-Cat data on natural catastrophes and also replicate when using the Em-Dat data.16

Finally, the results for the OECD sample hold when using data on insurance penetration
provided by the OECD.17

In a second step, we investigate the robustness of the results when adding additional in-
teraction terms with natural catastrophe occurrence to rule out that insurance penetration
picks up other factors, such as the level of development. When including an interaction
term between natural catastrophes with income together with an interaction term with
insurance penetration, the effect is essentially as in the baseline specification.18 It turns
out that the interaction of natural catastrophes with income remains statistically insignif-
icant even without the inclusion of insurance penetration.19 Adding additional controls,
such as institutional quality, domestic credit, trade openness or government expenditures
leaves the results unchanged.20 At the same time, the positive interaction between natural
catastrophes and insurance penetration remains unaffected by adding interaction terms of
catastrophes with these additional controls.21

3.3.4 The Role of Institutions

Having documented a significant role of insurance in moderating the adverse effects of
natural catastrophes on economic development, at least in the developed countries, we now
turn to the question about the reasons for the apparent heterogeneity in this mitigation.
In particular, the previous results suggest that it is not merely the level of development
per se that is responsible for the finding that the negative effects of natural catastrophes
are diminished by access to insurance in developed countries, but not in less developed
countries. In particular, the effect of insurance remains when adding an interaction term
with income. This suggests that it might be another factor that is related to the level of

14See Table 3A.2 in the Appendix.
15See Table 3A.3 in the Appendix.
16See Table 3A.4 in the Appendix.
17See Table 3A.5 in the Appendix.
18See Table 3A.6 in the Appendix.
19See Table 3A.7 in the Appendix.
20See Table 3A.8 in the Appendix.
21See Tables 3A.9, 3A.10, 3A.11, 3A.12, and 3A.13 in the Appendix.
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development.
Felbermayr and Gröschl (2014) and Noy (2009) find that a prime candidate is higher

quality of institutions by showing that higher institutional quality mediates the negative
consequences of natural disasters. In the following we show that institutional quality also
unfolds an indirect effectiveness through the channel of functioning insurance markets. To
investigate this hypothesis, we estimate the model for additional sample splits by institu-
tional quality. Table 3.4 reports the corresponding estimation results when splitting the
full sample by institutional quality. Panel A of Table 3.4 reports results employing the
indicator specification, while Panel B of table 3.4 reports respective results considering
the extensive as well as the intensive margin. Columns (1)-(3) show results for a sample
split according to a measure of civil liberties. Columns (1) and (2) split the sample at the
median of country averages of this measure. Column (3) contains countries that constitute
high institutional quality with respect to civil liberties, but do belong to the non-OECD
sample. Column (4)-(6) report results for sample splits according to a measure of political
rights. Column (4) and (5) split the sample at the median of country averages of this mea-
sure. Column (6) contains countries that constitute high quality of political institutions,
but do belong to the OECD sample.22

22Institutions are measured via an ordinal index without straightforward cardinal interpretation, there-
fore we prefer the analysis via sample splits rather than using institutions in a linear regression as an
interacting variable.
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Table 3.4: The Role of Institutions

Dependent Variable: log GDP p.c.(t)
Institutions Civil Liberties Political Rights

high low high high low high
Sample All All non-OECD All All non-OECD

(1) (2) (3) (4) (5) (6)
Panel A: Extensive Margin

Disaster Cat4(t) -1.350** -0.572 -1.633** -1.292** -0.807** -0.913**
(0.569) (0.528) (0.718) (0.716) (0.345) (0.448)

INS(t-1) 0.259** 1.647** 0.247** 0.0781 0.311** 0.208**
(0.0937) (0.840) (0.116) (0.148) (0.176) (0.117)

Disaster Cat4(t)*INS(t-1) 0.442** -0.0194 0.402** 0.456** 0.212 0.198**
(0.154) (0.533) (0.180) (0.260) (0.131) (0.118)

N 1271 1283 931 1260 1294 918
Countries 60 65 50 59 66 49
R-squared 0.985 0.974 0.981 0.986 0.972 0.980

Panel B: Extensive and Intensive Margin
Disaster(t) -0.290 -0.552** -0.332 -0.239 -0.486** -0.193

(0.266) (0.198) (0.308) (0.241) (0.216) (0.269)

Losses(t) -0.399** -0.198 -0.592** -0.650** -0.389** -0.414**
(0.228) (0.263) (0.269) (0.228) (0.179) (0.186)

INS(t-1) 0.267** 0.979 0.272** 0.0872 0.170 0.250**
(0.109) (0.890) (0.123) (0.184) (0.126) (0.124)

Disaster(t)*INS(t-1) -0.0266 0.601 -0.0380 0.0212 0.134 -0.0523
(0.0748) (0.361) (0.0910) (0.120) (0.174) (0.0902)

Losses(t) * INS(t-1) 0.0834 -0.203 0.0859** 0.224** 0.00802 0.0654**
(0.0519) (0.242) (0.0497) (0.0730) (0.0297) (0.0320)

N 1269 1275 929 1258 1286 916
Countries 60 65 50 59 66 49
R-squared 0.985 0.980 0.981 0.986 0.978 0.981
Controls yes yes yes yes yes yes
Country FE yes yes yes yes yes yes
Country Trends yes yes yes yes yes yes
Year FE yes yes yes yes yes yes

Notes: Controls are GDP p.c. (t-1), log population (t-1), log capital stock (t-1) and log human capital (t-
1). Results in Columns (1) and (3) are based on the sub-sample with country averages of the civil liberties
measure better than the median of the entire sample. Column (3) refers to countries with a civil liberties
measure better than the median and that do not belong to the OECD sample. Results in Columns (4)
and (6) are based on the sub-sample with country averages of the political rights measure better than the
median of the entire sample. Column (6) refers countries with a political rights measure better than the
median and that do not belong to the OECD sample. Accordingly, Columns (2) and (5) show results for
samples with institutional quality measures worse than the median. Huber-White robust standard errors
clustered at country-level are reported in brackets. ***, **, * indicate significance at 1-, 5-, and 10-% level,
respectively. Coefficients and standard errors are multiplied by 100.

Two findings are relevant here. First, insurance markets appear to have a mediating
effect in countries with high quality of institutions. The coefficient on the interaction term is
more pronounced and significant in column (1) and (4) than in Column (2) and (5). Second,
this complementarity also unfolds detached from the development status. In Columns (3)
and (6) we observe that access to insurance markets helps to mitigate the disaster shock
in countries that have good institutions but are part of the non-OECD sample. The
findings indicate that insurance penetration indeed only works as a mitigating factor for
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the adverse effects of natural catastrophes on economic development in environments with
institutional quality above the median. This suggests an additional subtlety related to
the earlier results, namely that the failure of finding the mitigating effect of insurance in
non-OECD countries might be related to the lower institutional quality in that sub-sample.
The results are supported by alternative indicators for institutional quality.23

3.4 Concluding Remarks

A number of studies have tackled the macroeconomic consequences of natural disasters.
While the main part of the literature finds that natural disasters are harmful for income
per capita in the short-run, some studies suggest that natural disasters may improve the
macroeconomic performance. This paper contributes to the debate by providing new evi-
dence on the economic effects of natural catastrophes, and in particular on how insurance
markets influence the effects of natural disasters on income. We show that insurance mar-
kets mitigate the negative disaster shock in developed economies. Neglecting insurance
markets may result in an insignificant negative or even positive effect of disasters on in-
come per capita. However, when adding insurance, the results show a strong negative
baseline effect of natural disasters on income, which is mitigated by insurance markets.
Further, this paper provides new evidence for an interaction between access to insurance
and institutional quality in mitigating the adverse economic effects of natural catastrophes.
The results show that the failure of finding the mitigating effect of insurance in develop-
ing countries might be related to the lower institutional quality in that sub-sample. This
finding implies that insurance and a stable, well-institutionalized environment complement
each other in mediating the negative disaster shock.

23Table 3A.14 reports the results for alternative measures of institutional quality. First, it shows results
based on an index on the overall institutional performance of countries constructed by Kunčič (2014).
Second, it shows results based on the polity2 index.
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3.A Appendix

Table 3A.1: Data Sources and Variable Construction

Source Variable Specification

Natural Disasters

1. Natcat Service (MunichRe) (NatCatService,
2014)
Robustness analysis based on EM-DAT
(Guha-Sapir, Below, and Hoyois, 2015)

Disaster Cat4 Classification by income quartile:
High: 2.5 billion$ | 1000 fatalities
Upper-middle: 830 million$ | 1000 f
Low-middle: 280 million$ | 1000 f
Low: 90 million$ | 1000 f

Disaster Any disaster.

Losses Log sum of direct losses (t), normalized by
GDP (t-1).

Insurance Penetration

2. MunichRe
Robustness analysis based on OECD
database, see https://data.oecd.org/

Insurance Penetration
Rate

Sum of insurance premia (non-life,
non-health), normalized by GDP (in
percent).

GDP and Control Variables

3. World Bank Development Indicators (WDI)
(World Bank, 2014)

GDP Log GDP p.c. at constant 2005 national
prices in million 2005 US$.

Population Log total population.

Domestic Credit Sum of domestic credit to private sector,
normalized by GDP (in percent).

Trade Openness Sum of exports and imports of goods and
services, normalized by GDP (in percent).

4. Penn World Tables 8.0 (PWT)
(Feenstra, Inklaar, and Timmer, 2015)

Physical Capital Log capital stock at constant 2005 national
prices in million 2005 US$.

Human Capital Index Quality adjusted measure of average years
of schooling for population aged 15 or older.

Government Expenditure Sum of all government current expenditures
for purchases of goods and services,
normalized by GDP (in percent).

Institutions

5. Freedom House (Teorell, Charron,
Dahlberg, Holmberg, Rothstein, Sundin,
and Svensson, 2013)

Civil Liberties
Political Rights

Index [1,7], based on expert rating.

6. Kuncic Political Institutions (Kunčič, 2014) Institutional Quality Index [0,1], based on computation of the
latent quality of political institutions.

7. Polity2 (Marshall, Gurr, and Jaggers, 2016) Polity2 Index [-10,10].

https://data.oecd.org/
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Figure 3A.1: Yearly Average of Disasters by Specification for OECD and non-OECD
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This figure depicts the annual evolution of the average of severe (Cat 4) disasters in the left panel and the
average of the log loss measure in the right panel. The sample is split between developed (OECD) and
developing (non-OECD) countries.
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Table 3A.2: Alternative Measure of Losses

(1) (2) (3)
All OECD non-OECD

DV: log GDP p.c.
INS(t-1) 0.00164 -0.00375 0.00138

(1.34) (-1.06) (1.01)

Disaster>15(t) 0.104 -0.888∗∗∗ 0.401∗∗∗

(1.43) (-3.38) (13.05)

Losses(t) -0.00218∗∗ -0.0198∗∗∗ -0.00171∗

(-2.23) (-5.62) (-1.82)

Disaster>15(t)*Losses(t) -0.000683 0.0601∗∗∗ -0.00218∗∗

(-0.42) (3.59) (-2.52)

Disaster>15(t)*INS(t-1) -0.0846∗ -0.0931∗∗∗

(-1.83) (-5.89)

Losses(t)*INS(t-1) 0.000262 0.00813∗∗∗ 0.0000102
(0.62) (5.34) (0.02)

Disaster>15(t)*Losses(t)*INS(t-1) 0.00294∗∗

(2.29)

Disaster(t) -0.000537 0.0158∗∗ -0.00168
(-0.24) (2.24) (-0.73)

Disaster(t)*INS(t-1) 0.000382 -0.00733∗∗ 0.00153
(0.45) (-2.68) (1.43)

Observations 2562 677 1885
N 2562 677 1885
Countries 126 33 101
R-squared 0.980 0.991 0.979
Controls X X X
Year FE X X X
Country FE X X X
Country Trends X X X

Notes: Share of losses, including dummy for very large disasters (>15% of GDP). There are only 3
observation within the non-OECD sample (Belize 2000, Belize 2001, Honduras 1998) and 2 observations
in the OECD sample (Chile 2010, New Zealand 2011) for which the 15 percent criterion holds. As the
interaction effect between these disasters and insurance yields more variation (degrees of freedom) than
the indicator itself, the coefficient on the interaction between these large disasters can be estimated while
the baseline effect is omitted. Controls are log GDP p.c. (t-1), log population (t-1), log capital stock (t-1)
and log human capital (t-1). Huber-White robust standard errors clustered at country-level are reported in
brackets. ***, **, * indicate significance at 1-, 5-, and 10-% level, respectively. Coefficients and standard
errors are multiplied by 100.
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isaster(t)*log

G
D
P

p.c.(t-1)
0.00167

0.000420
0.00153

(1.08)
(0.27)

(0.62)

Losses(t)
-0.00391

∗∗
-0.0142

-0.00350
∗∗

(-2.36)
(-1.42)

(-2.09)

Losses(t)*IN
S(t-1)

0.000773
0.00409

∗∗∗
0.000525

(1.39)
(3.68)

(1.36)

Losses(t)*log
G
D
P

p.c.(t-1)
0.00000418

0.000885
-0.000730

(0.01)
(0.31)

(-0.53)
O
bservations

2572
677

1895
2562

677
1885

N
2572

677
1895

2562
677

1885
C
ountries

126
33

101
126

33
101

R
-squared

0.977
0.991

0.975
0.980

0.991
0.979

C
ontrols

X
X

X
X

X
X

Y
ear

F
E

X
X

X
X

X
X

C
ountry

F
E

X
X

X
X

X
X

C
ountry

Trends
X

X
X

X
X

X

N
otes:

C
ontrols

are
log

G
D
P
p.c.

(t-1),log
population

(t-1),log
capitalstock

(t-1)
and

log
hum

an
capital

(t-1).
H
uber-W

hite
robust

standard
errors

clustered
at

country-levelare
reported

in
brackets.

***,**,*
indicate

significance
at

1-,5-,and
10-%

level,respectively.
C
oeffi

cients
and

standard
errors

are
m
ultiplied

by
100.
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T
able

3A
.7:

Including
an

Interaction
Term

w
ith

Incom
e

(1)
(2)

(3)
(4)

(5)
(6)

A
ll

O
E
C
D

non-O
E
C
D

A
ll

O
E
C
D

non-O
E
C
D

D
V
:log

G
D
P

p.c.
IN

S(t-1)
0.00165

-0.00499
0.00133

0.00165
-0.00446

0.00135
(1.40)

(-1.22)
(1.00)

(1.43)
(-1.12)

(1.04)

D
isaster

cat4(t)*log
G
D
P

p.c.(t-1)
0.00192

0.00311
0.000424

(1.34)
(0.97)

(0.12)

D
isaster

C
at4(t)

-0.00688
∗∗

-0.0124
-0.00673

∗∗

(-2.10)
(-1.19)

(-2.06)

D
isaster(t)

-0.00341
∗∗

-0.00423
-0.00337

∗

(-2.01)
(-1.63)

(-1.66)

D
isaster(t)*log

G
D
P

p.c.(t-1)
0.00167

0.000855
0.00177

(1.41)
(1.29)

(0.80)

Losses(t)*log
G
D
P

p.c.(t-1)
0.000366

0.00461
-0.000442

(0.62)
(1.48)

(-0.35)

Losses(t)
-0.00313

∗
-0.0166

-0.00294
∗

(-1.93)
(-1.53)

(-1.70)
O
bservations

2572
677

1895
2562

677
1885

N
2572

677
1895

2562
677

1885
C
ountries

126
33

101
126

33
101

R
-squared

0.977
0.991

0.975
0.980

0.991
0.979

C
ontrols

X
X

X
X

X
X

Y
ear

F
E

X
X

X
X

X
X

C
ountry

F
E

X
X

X
X

X
X

C
ountry

Trends
X

X
X

X
X

X

N
otes:

C
ontrols

are
log

G
D
P
p.c.

(t-1),log
population

(t-1),log
capitalstock

(t-1)
and

log
hum

an
capital

(t-1).
H
uber-W

hite
robust

standard
errors

clustered
at

country-levelare
reported

in
brackets.

***,**,*
indicate

significance
at

1-,5-,and
10-%

level,respectively.
C
oeffi

cients
and

standard
errors

are
m
ultiplied

by
100.
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T
able

3A
.8:

A
dding

further
C
ontrols

(1)
(2)

(3)
(4)

(5)
(6)

A
ll

O
E
C
D

non-O
E
C
D

A
ll

O
E
C
D

non-O
E
C
D

D
V
:log

G
D
P

p.c.
IN

S(t-1)
0.00224

∗∗∗
-0.00629

0.00210
∗

0.000702
-0.00490

0.000435
(2.63)

(-1.64)
(1.92)

(0.71)
(-1.50)

(0.38)

D
isaster

C
at4(t)

-0.00820
∗∗

-0.0117
∗∗

-0.00806
∗∗

(-2.40)
(-2.71)

(-2.20)

D
isaster

C
at4(t)*IN

S(t-1)
0.00246

∗
0.00371

∗∗
0.00155

(1.92)
(2.43)

(1.21)

D
isaster*IN

S(t-1)
0.00165

0.000461
0.00181

(1.25)
(0.61)

(1.11)

D
isaster(t)

-0.00390
∗∗

-0.00397
-0.00386

∗

(-2.29)
(-1.34)

(-1.89)

Losses(t)*IN
S(t-1)

0.000719
0.00424

∗∗∗
0.000346

(1.65)
(2.91)

(1.11)

Losses(t)
-0.00372

∗∗
-0.0119

∗∗∗
-0.00344

∗∗

(-2.41)
(-2.80)

(-2.15)
O
bservations

2249
600

1649
2247

600
1647

N
2249

600
1649

2247
600

1647
C
ountries

120
32

96
120

32
96

R
-squared

0.982
0.991

0.980
0.982

0.991
0.980

C
ontrols

X
X

X
X

X
X

Y
ear

F
E

X
X

X
X

X
X

C
ountry

F
E

X
X

X
X

X
X

C
ountry

Trends
X

X
X

X
X

X

N
otes:

C
ontrolsare

log
G
D
P
p.c.

(t-1),log
population

(t-1),log
capitalstock

(t-1),log
hum

an
capital(t-1),

polity2
(t-1),dom

estic
credit

(t-1),trade
openness

(t-1)
and

governm
ent

expenditure
(t-1).

H
uber-W

hite
robust

standard
errors

clustered
at

country-levelare
reported

in
brackets.

***,**,*
indicate

significance
at

1-,5-,and
10-%

level,respectively.
C
oeffi

cients
and

standard
errors

are
m
ultiplied

by
100.
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T
able

3A
.9:

Including
tw

o
Interaction

Term
s,Polity2

and
Insurance

(1)
(2)

(3)
(4)

(5)
(6)

A
ll

O
E
C
D

non-O
E
C
D

A
ll

O
E
C
D

non-O
E
C
D

D
V
:log

G
D
P

p.c.
IN

S(t-1)
0.00151

-0.00473
0.000980

0.00000842
-0.00243

-0.000649
(1.19)

(-1.19)
(0.70)

(0.00)
(-0.64)

(-0.28)

P
olity

(t-1)
0.000629

0.000951
0.00108

∗
0.000498

0.00140
0.000881

(1.19)
(0.13)

(1.69)
(0.83)

(0.20)
(1.20)

D
isaster

C
at4(t)

-0.00907
∗∗

-0.0150
-0.00792

∗∗

(-2.36)
(-0.90)

(-2.02)

D
isaster

C
at4(t)*IN

S(t-1)
0.00243

∗∗
0.00326

∗
0.00181

(2.06)
(1.75)

(1.49)

D
isaster

C
at4(t)*P

olity(t-1)
0.000260

0.000460
0.0000415

(0.64)
(0.22)

(0.10)

D
isaster(t)

-0.00326
∗∗

-0.00413
-0.00318

∗

(-2.02)
(-1.53)

(-1.70)

D
isaster*IN

S(t-1)
0.00173

-0.000983
0.00191

(1.03)
(-0.51)

(1.04)

D
isaster(t)*P

olity(t-1)
-0.0000998

0.000382
-0.000117

(-0.23)
(0.62)

(-0.22)

Losses(t)
-0.00362

∗
-0.0285

∗
-0.00327

∗

(-1.95)
(-1.96)

(-1.76)

Losses(t)*IN
S(t-1)

0.000805
0.00353

∗∗
0.000313

(1.65)
(2.56)

(0.87)

Losses(t)*P
olity(t-1)

-0.0000696
0.00191

-0.000113
(-0.34)

(1.38)
(-0.51)

O
bservations

2440
643

1797
2433

643
1790

N
2440

643
1797

2433
643

1790
C
ountries

121
32

97
121

32
97

R
-squared

0.979
0.990

0.977
0.981

0.991
0.980

C
ontrols

X
X

X
X

X
X

Y
ear

F
E

X
X

X
X

X
X

C
ountry

F
E

X
X

X
X

X
X

C
ountry

Trends
X

X
X

X
X

X

N
otes:

C
ontrols

are
log

G
D
P
p.c.

(t-1),log
population

(t-1),log
capitalstock

(t-1)
and

log
hum

an
capital

(t-1).
H
uber-W

hite
robust

standard
errors

clustered
at

country-levelare
reported

in
brackets.

***,**,*
indicate

significance
at

1-,5-,and
10-%

level,respectively.
C
oeffi

cients
and

standard
errors

are
m
ultiplied

by
100.
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T
able

3A
.10:

Including
tw

o
Interaction

Term
s,Trade

O
penness

and
Insurance

(1)
(2)

(3)
(4)

(5)
(6)

A
ll

O
E
C
D

non-O
E
C
D

A
ll

O
E
C
D

non-O
E
C
D

D
V
:log

G
D
P

p.c.
IN

S(t-1)
0.00134

-0.00471
0.00104

0.00210
-0.00449

0.00164
(0.95)

(-1.17)
(0.68)

(1.44)
(-0.90)

(1.02)

Trade
openness

(t-1)
0.000529

∗∗∗
0.000370

∗
0.000470

∗∗∗
0.000414

∗∗∗
0.000409

∗∗
0.000362

∗∗

(3.26)
(1.77)

(2.68)
(2.98)

(2.31)
(2.39)

D
isaster

C
at4(t)

-0.00924
∗

-0.0118
∗∗

-0.00922
(-1.81)

(-2.07)
(-1.53)

D
isaster

C
at4(t)*IN

S(t-1)
0.00261

∗
0.00351

∗∗
0.00136

(1.96)
(2.22)

(0.92)

D
isaster

cat4(t)*Trade
O
penness(t-1)

0.0000272
0.0000183

0.0000331
(0.53)

(0.16)
(0.56)

D
isaster(t)

-0.00363
∗∗

-0.00434
-0.00369

∗

(-2.13)
(-1.54)

(-1.77)

D
isaster*IN

S(t-1)
-0.00104

0.00182
-0.000878

(-1.38)
(0.53)

(-0.97)

D
isaster(t)*Trade

O
penness(t-1)

0.0000649
∗∗

-0.0000156
0.0000632

∗∗

(2.56)
(-0.18)

(2.31)

Losses(t)
-0.00519

∗∗
-0.0132

∗∗
-0.00626

∗

(-2.06)
(-2.55)

(-1.93)

Losses(t)*IN
S(t-1)

0.000668
0.00463

∗∗∗
0.0000823

(1.57)
(3.00)

(0.19)

Losses(t)*Trade
O
penness(t-1)

0.0000173
0.00000981

0.0000365
(0.76)

(0.41)
(1.11)

O
bservations

2555
677

1878
2547

677
1870

N
2555

677
1878

2547
677

1870
C
ountries

126
33

101
126

33
101

R
-squared

0.978
0.991

0.977
0.981

0.991
0.980

C
ontrols

X
X

X
X

X
X

Y
ear

F
E

X
X

X
X

X
X

C
ountry

F
E

X
X

X
X

X
X

C
ountry

Trends
X

X
X

X
X

X

N
otes:

C
ontrols

are
log

G
D
P
p.c.

(t-1),log
population

(t-1),log
capitalstock

(t-1)
and

log
hum

an
capital

(t-1).
H
uber-W

hite
robust

standard
errors

clustered
at

country-levelare
reported

in
brackets.

***,**,*
indicate

significance
at

1-,5-,and
10-%

level,respectively.
C
oeffi

cients
and

standard
errors

are
m
ultiplied

by
100.
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T
able

3A
.11:

Including
tw

o
Interaction

Term
s,G

overnm
ent

Expenditure
and

Insurance

(1)
(2)

(3)
(4)

(5)
(6)

A
ll

O
E
C
D

non-O
E
C
D

A
ll

O
E
C
D

non-O
E
C
D

D
V
:log

G
D
P

p.c.
IN

S(t-1)
0.00220

∗∗
-0.00807

∗
0.00193

∗
0.00244

∗∗
-0.00833

∗∗
0.00227

∗

(2.38)
(-1.93)

(1.77)
(2.24)

(-2.29)
(1.90)

G
overnm

ent
expenditure

(t-1)
0.000736

0.00660
∗∗

0.000541
0.000882

0.00704
∗∗

0.000644
(0.75)

(2.19)
(0.63)

(1.14)
(2.56)

(0.90)

D
isaster

C
at4(t)

-0.0153
∗∗

-0.00625
-0.0173

∗∗

(-2.54)
(-1.14)

(-2.42)

D
isaster

C
at4(t)*IN

S(t-1)
0.00348

∗∗∗
0.00448

∗∗
0.00233

∗

(2.63)
(2.38)

(1.74)

D
isaster

cat4(t)*G
overnm

ent
E
xpenditure(t-1)

0.000776
-0.000957

0.00101
∗

(1.45)
(-0.97)

(1.67)

D
isaster(t)

-0.00520
∗∗∗

-0.00347
-0.00533

∗∗

(-2.96)
(-1.27)

(-2.62)

D
isaster*IN

S(t-1)
-0.000621

0.00237
-0.000718

(-0.77)
(1.06)

(-0.80)

D
isaster(t)*G

overnm
ent

E
xpenditure(t-1)

0.000635
∗∗

-0.000531
0.000647

∗∗

(2.28)
(-0.62)

(2.23)

Losses(t)
-0.0107

∗∗∗
-0.0119

-0.0120
∗∗∗

(-2.99)
(-1.33)

(-2.94)

Losses(t)*IN
S(t-1)

0.000996
∗

0.00411
∗∗

0.000482
(1.74)

(2.61)
(1.40)

Losses(t)*G
overnm

ent
E
xpenditure(t-1)

0.000702
∗∗

0.0000629
0.000839

∗∗

(2.44)
(0.08)

(2.53)
O
bservations

2407
634

1773
2399

634
1765

N
2407

634
1773

2399
634

1765
C
ountries

125
33

100
125

33
100

R
-squared

0.976
0.991

0.974
0.980

0.991
0.978

C
ontrols

X
X

X
X

X
X

Y
ear

F
E

X
X

X
X

X
X

C
ountry

F
E

X
X

X
X

X
X

C
ountry

Trends
X

X
X

X
X

X

N
otes:

C
ontrols

are
log

G
D
P
p.c.

(t-1),log
population

(t-1),log
capitalstock

(t-1)
and

log
hum

an
capital

(t-1).
H
uber-W

hite
robust

standard
errors

clustered
at

country-levelare
reported

in
brackets.

***,**,*
indicate

significance
at

1-,5-,and
10-%

level,respectively.
C
oeffi

cients
and

standard
errors

are
m
ultiplied

by
100.
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T
able

3A
.12:

Including
tw

o
Interaction

Term
s,D

om
estic

C
redit

and
Insurance

(1)
(2)

(3)
(4)

(5)
(6)

A
ll

O
E
C
D

non-O
E
C
D

A
ll

O
E
C
D

non-O
E
C
D

D
V
:log

G
D
P

p.c.
IN

S(t-1)
0.00225

∗∗
-0.00483

0.00224
∗

0.00223
∗

-0.00501
0.00198

(2.29)
(-1.17)

(1.79)
(1.75)

(-1.35)
(1.34)

D
om

estic
credit

(t-1)
-0.000418

∗∗∗
-0.0000305

-0.000547
∗∗∗

-0.000443
∗∗∗

-0.0000294
-0.000556

∗∗∗

(-3.51)
(-0.27)

(-4.71)
(-3.92)

(-0.22)
(-4.82)

D
isaster

C
at4(t)

-0.0109
∗∗∗

-0.00736
-0.0166

∗∗

(-2.76)
(-1.64)

(-2.61)

D
isaster

C
at4(t)*IN

S(t-1)
0.00178

0.00479
∗∗∗

0.000793
(1.42)

(2.78)
(0.42)

D
isaster

cat4(t)*D
om

estic
C
redit(t-1)

0.0000452
-0.0000529

∗∗
0.000184

∗

(1.22)
(-2.61)

(1.86)

D
isaster(t)

-0.00392
∗∗

-0.00425
-0.00389

∗

(-2.33)
(-1.65)

(-1.94)

D
isaster*IN

S(t-1)
-0.0000603

0.00132
0.000229

(-0.06)
(0.60)

(0.21)

D
isaster(t)*D

om
estic

C
redit(t-1)

0.0000470
-0.00000956

0.0000455
(1.27)

(-0.20)
(0.93)

Losses(t)
-0.00449

∗∗
-0.0141

∗∗∗
-0.00415

(-2.32)
(-3.17)

(-1.66)

Losses(t)*IN
S(t-1)

0.000594
0.00437

∗∗∗
0.000353

(1.61)
(3.05)

(1.15)

Losses(t)*D
om

estic
C
redit(t-1)

0.0000147
0.0000183

0.0000214
(1.26)

(1.59)
(0.79)

O
bservations

2509
663

1846
2507

663
1844

N
2509

663
1846

2507
663

1844
C
ountries

126
33

101
126

33
101

R
-squared

0.981
0.991

0.980
0.981

0.991
0.980

C
ontrols

X
X

X
X

X
X

Y
ear

F
E

X
X

X
X

X
X

C
ountry

F
E

X
X

X
X

X
X

C
ountry

Trends
X

X
X

X
X

X

N
otes:

C
ontrols

are
log

G
D
P
p.c.

(t-1),log
population

(t-1),log
capitalstock

(t-1)
and

log
hum

an
capital

(t-1).
H
uber-W

hite
robust

standard
errors

clustered
at

country-levelare
reported

in
brackets.

***,**,*
indicate

significance
at

1-,5-,and
10-%

level,respectively.
C
oeffi

cients
and

standard
errors

are
m
ultiplied

by
100.
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T
able

3A
.13:

Including
tw

o
Interaction

Term
s,FinancialO

penness
and

Insurance

(1)
(2)

(3)
(4)

(5)
(6)

A
ll

O
E
C
D

non-O
E
C
D

A
ll

O
E
C
D

non-O
E
C
D

D
V
:log

G
D
P

p.c.
IN

S(t-1)
0.00110

-0.00221
0.000793

0.0000755
-0.00103

-0.000275
(0.82)

(-0.43)
(0.54)

(0.04)
(-0.21)

(-0.13)

F
inancialopenness

(t-1)
0.00144

0.00870
∗∗∗

-0.00166
0.000548

0.00719
∗∗

-0.00189
(0.75)

(3.06)
(-0.80)

(0.22)
(2.73)

(-0.66)

D
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Table 3A.14: The Mitigating Effect of Insurance by Institutional Quality: Alternative
Measures

Institutional Quality Polity2
(1) (2) (3) (4) (5) (6)

Sample Low High High non-OECD Low High High non-OECD

Panel B: Extensive and Intensive Margin
Disaster Cat4(t)*INS(t-1) 0.363 0.367∗∗∗ 0.285∗∗∗ 0.224∗ 0.481 0.219∗

(0.484) (0.104) (0.0986) (0.134) (0.308) (0.113)

Disaster Cat4(t) -0.804 -1.107∗∗∗ -1.388∗∗∗ -0.801∗∗ -1.442 -1.067∗∗

(0.579) (0.369) (0.397) (0.325) (0.863) (0.468)

INS(t-1) 0.581 0.243∗∗∗ 0.276∗∗∗ 0.266∗ 0.0880 0.200
(1.196) (0.0883) (0.0934) (0.152) (0.139) (0.127)

N 1245 1214 879 1293 1251 917
Countries 65 56 48 68 57 49
R-squared 0.980 0.985 0.978 0.978 0.986 0.982

Panel B: Extensive and Intensive Margin
Disaster*INS(t-1) 0.733∗∗ -0.0290 0.0188 0.109 0.0583 -0.0546

(0.298) (0.0917) (0.115) (0.158) (0.123) (0.0937)

Disaster(t) -0.588∗∗∗ -0.343 -0.498∗∗ -0.595∗∗∗ -0.207 -0.104
(0.211) (0.227) (0.240) (0.184) (0.277) (0.306)

Losses(t)*INS(t-1) -0.104 0.0838∗ 0.0576∗ 0.0230 0.321∗∗∗ 0.0604∗

(0.276) (0.0469) (0.0295) (0.0279) (0.0772) (0.0304)

Losses(t) -0.295 -0.446∗∗ -0.496∗∗∗ -0.331∗ -0.922∗∗∗ -0.384∗

(0.295) (0.177) (0.174) (0.168) (0.266) (0.217)

INS(t-1) 0.0462 0.251∗∗ 0.247∗∗ 0.152 0.0614 0.244∗

(1.110) (0.124) (0.111) (0.126) (0.181) (0.139)
N 1245 1214 879 1293 1251 917
Countries 65 56 48 68 57 49
R-squared 0.981 0.985 0.978 0.978 0.986 0.982
Controls X X X X X X
Year FE X X X X X X
Country FE X X X X X X
Country Trends X X X X X X

Notes: Controls are log GDP p.c. (t-1), log population (t-1), log capital stock (t-1) and log human capital
(t-1). Notes: Controls are GDP p.c. (t-1), log population (t-1), log capital stock (t-1) and log human
capital (t-1). Results in Columns (1) and (3) are based on the sub-sample with country averages of the
institutional quality measure better than the median of the entire sample. Column (3) refers to countries
with an institutional quality measure better than the median and that do not belong to the OECD sample.
Results in Columns (4) and (6) are based on the sub-sample with country averages of the polity2 measure
better than the median of the entire sample. Column (6) refers countries with a polity2 measure better than
the median and that do not belong to the OECD sample. Accordingly Columns (2) and (5) show results
for samples with institutional quality measures worse than the median. Huber-White Robust standard
errors clustered at country-level are reported in brackets. ***, **, * indicate significance at 1-, 5-, and
10-% level, respectively. Coefficients and standard errors are multiplied by 100.



Chapter 4

Health on the Nile: The Curse of Living
Downstream

4.1 Introduction

Urbanization and industrialization characterize economic development worldwide. Stan-
dards of living seem to be higher in urban and industrial areas, which promise job op-
portunities, better infrastructure and public good provision. Therefore many people are
attracted to these areas. But one important downside of urbanization and industrialization
is pollution. This is particularly problematic in developing countries as the institutional
framework is usually weak and environmental regulation is not enforced. Industrial wastew-
ater and sewage containing toxic substances are often discharged into rivers. Hence, water
pollution is a particular concern associated with high population density and industrial
activity. The WWF calls it “one of the most serious ecological threats we face today”
(WWF, 2017) and the WHO estimated that more than 360,000 children under 5 years die
due to diarrhea, as a result of poor access to clean water, sanitation, and hygiene (WHO,
2017c).

Water pollutants are spread by moving water, and so the flow of rivers through cities
and past industrial plants determines which households are affected by polluted water. We
use this quasi-experimental variation in exposure to pollutants and examine the effect of
pollution on children’s health. We construct a novel panel data set based on geo-coded
DHS survey data between 1992 and 2014, geo-coded factory locations and finely gridded
population density in Egypt. We aggregate this data for 78 segments along the Nile. We
then estimate the effect of population density and the existence of a factory on the health
of children living up- or downstream of the pollutant. Further, we use information on the

This chapter is based on joint work with Marie Lechler.
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opening year of factories. We are thus able to exploit temporal and spatial variation in
water pollution and to hold region and time specific factors constant.

We find a negative effect of urbanization (measured by population density) and factory
presence on health for the downstream population whereas we do not find a negative health
effect on the upstream population. This differential health effect is most likely caused by
water pollution and suggests that factories and agglomerations emit pollutants into the
Nile, which worsen health outcomes. The effect does not seem to be driven by sorting as
we do not find differential wealth effects. Further results show that the negative health
impact of urban and industrial areas can be mitigated by access to clean drinking water.
Moreover, we find that in the case of urbanization the negative health effect is localized and
vanishes with increased distance between the pollutants and the population. In contrast,
we find evidence that cumulative industrial pollution over several upstream grids still has
detrimental health effects. This is due to the different nature of pollutants. While industrial
pollution is to a large extent persistent due to its chemical composition, pollution caused
by agglomerations degrades more rapidly.

With this study we contribute to a large body of literature, which links water pollution
to poor health outcomes in developing countries. First, we add methodologically to the
existing literature. Based on our unique data set we exploit both spatial and temporal
variation in pollution and are therefore able to deal with potential endogeneity issues, as
for instance systematic differences between upstream and downstream location and time-
specific shocks. Second, we directly examine the health effects of the two most important
pollutants, urban areas and industrial plants. Third, our study adds a highly relevant case,
namely the Nile in Egypt, to the body of literature. Moreover, while most other studies
linking water pollution to poor health outcomes only focus on specific cases we provide an
extensive analysis of the effects along the entire course of the Nile river in Egypt.

There are a few papers that are methodologically related to our approach analyzing
differential effects on the population depending on the relative location to the pollutant.
Duflo and Pande (2007) compare agricultural productivity and vulnerability to rainfall
shocks in Indian districts downstream of a dam with other districts. They thereby assume
that people living downstream of a dam tend to benefit while those living in the vicinity or
upstream do not. Garg, Hamilton, Hochard, Plous, and Talbot (2016) show for Indonesia
that human bathing in upstream villages increases diarrheal incidence, while bathing of
downstream villages has no effect. Romero and Saavedra (2016) examine health effects of
mines in Columbia and find that while mothers living in the vicinity of a mine are positively
affected, mothers living downstream from a mine are negatively affected.

Methodologically less related but relevant in the context of water pollution is a study
by Brainerd and Menon (2014), who show that water quality has an effect on infant and
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child health in India, exploiting seasonal and geographic variation in the use of fertilizers.
Greenstone and Hana (2014) also focus on India and study the impact of environmental
regulations on infant mortality. They find however no significant effect of water regulations.
Ebenstein (2012) uses variation in water pollution across river basins in China and shows
that lower water quality is associated with a higher digestive cancer death rate. Galiani,
Gertler, and Schargrodsky (2005) find that water privatization in Argentina decreases child
mortality using variation in ownership of water provision across time and space. Another
strand of literature deals with the effects of water pollution on other outcomes such as
labor productivity. A recent study by Zhang and Xu (2016) finds for example a positive
effect of a water treatment program in China on education. Zivin and Neidell (2013)
provide an overview over quasi-experimental evidence on the negative effects of pollution
on individual well-being in general and Currie, Zivin, Mullins, and Neidell (2014) provide
an overview over the literature about early-childhood exposure to pollution and health
and human capital outcomes later in life. This literature predominantly finds significantly
negative effects of water pollution on health and human capital. While our study confirms
this relationship for the case of Egypt it goes beyond the existing literature by studying
two of the most hazardous pollutants, agglomerations and industrial plants.

Egypt provides an ideal setting to study health effects of water pollution. The Nile
river is the country’s only major river and around 90% of Egyptians live in the Nile valley
and are thus directly or indirectly affected by polluted water. The Nile is the ‘life artery’
of Egypt and constitutes the most important freshwater resource for almost all water de-
mands. The Nile water can thus reach human organisms through fishing, irrigation, the
groundwater (which is for instance used for washing) and even as drinking water. The
Nile’s water quality has been deteriorating over several decades due to the disposal of in-
dustrial effluents and human sewage (Wahaab and Badawy, 2004; El-Ayouti and Abou-Ali,
2013; Ali, Shabaan-dessouki, Soliman, and Shenawy, 2014; Abdel-Satar, Ali, and Goher,
2017). Abdel-Satar, Ali, and Goher (2017) document spatial differences in the measured
water quality of the Nile, which reflect “combinations of natural and human activities”.
In our study we focus on industrial activities and urbanization, which generate industrial
wastewater and human sewage that are often disposed into the Nile. Water pollution is a
serious concern as around 40% of the Egyptian population does not have access to ’safely
managed’1 sanitation (WashWatch, 2017), which fosters the transmission of diarrhoeal dis-
eases. These diseases are particularly dangerous for children, who are extremely sensitive
to dehydration and the related loss of electrolytes (WHO, 2017a). According to UNICEF,
diarrhea is the second leading cause of death among under 5 year old children in Egypt

1‘Safely managed’ sanitation refers to improved sanitation facilities that are not shared with other
households and where excreta are safely disposed of in site or transported and treated off site.
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(3,500 to 4,000 under 5 year old children die of diarrhea every year (UNICEF, 2017)).
Egypt thus constitutes a compelling case to study the hazardous effects of water pollution
on children’s health.

This chapter is structured as follows. Section 4.2 gives a brief overview over the types
of industrial and urban pollutants and their potential effects on health outcomes. Section
4.3 describes the compilation of the data set. Section 4.4 presents the analysis of urban-
ization whereas Section 4.5 presents the analysis of industrialization as source of pollution.
Section 4.6 shows an analysis of accumulated water pollution. Section 4.7 concludes with
a discussion.

4.2 Health Impact of Industrial and Urban Water Pollution

Water pollutants can be broadly classified into biodegradable and non-biodegradable pol-
lutants. Biodegradable pollutants consist of organic matter that is broken down into
simple organic molecules by natural agents like water, oxygen and micro-organisms. These
molecules eventually return into the environment.2 However, the speed rate of the degra-
dation process differs strongly by material (e.g. paper towels naturally take approximately
1-2 weeks whereas a plastic bottle takes 100 years to biodegrade). At the extreme, non-
biodegradable substances are entirely resistant to natural degradation processes - they are
environmentally persistent and bioaccumulate.

So called Persistent Organic Pollutants (POPs) constitute a great environmental con-
cern. These materials are widely resistant to natural degradation processes and are partic-
ularly toxic to living organisms (Schwarzenbach, Egli, Hofstetter, von Gunten, and Wehrli,
2010).3 POPs are used in agriculture, manufacturing and industrial processes (e.g. fer-
tilizers) but can also emerge unintentionally as by-products of industrial production (e.g.
dioxins in textile production) (Križanec and Majcen Le Marechal, 2006).

Urban sewage mainly consists of “raw sewage” containing excrement and debris (e.g.
sanitary towels or plastic). However, in developing and emerging economies the organic
part of urban sewage like bacteria, parasites as well as viruses constitute the major health
concern (Schwarzenbach, Egli, Hofstetter, von Gunten, and Wehrli, 2010). Diseases caused
by the respective bacteria and viruses can involve gastro-enteritis, diarrhea, typhoid,
cholera, but also respiratory diseases like the Acute Severe Respiratory Syndrome (SARS)

2The level of organic pollution is measured by the biochemical oxygen demand (BOD). Two counter-
acting effects determine the BOD: The organic pollution load and natural cleaning.

3The POP ‘Dirty Dozen‘ are aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, hexachlorobenzene,
mirex, toxaphene, polychlorinated biphenyls (PCBs), dioxins and furans. POPs have been subject of two
international environmental treaties, the Stockholm Convention on Persistent Organic Pollutants (2004)
and the Aarhus Protocol (1998).
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involving heavy cough as major symptom (Feachem, R. G.; Bradley, D. J.; Garelick, H.;
Mara, 1983). An important cause of waterborne illness is the Escherichia coli bacterium
that is commonly found in intestines of humans and animals. Five groups of pathogenic
excreted viruses are particularly important: adenoviruses, enteroviruses (including po-
liovirus), hepatitis A virus, reoviruses and diarrhea causing viruses (especially rota virus).

In contrast, the dominant pollutants in industrial sewage are non-degradable pollutants
such as POPs. They constitute around 95% of industrial effluents in Egypt (Dahshan,
Megahed, Abd-Elall, Abd-El-Kader, Nabawy, and Elbana, 2016) and have hazardous ef-
fects on human health (WHO, 2017b). The most toxic are so called dioxins and dioxin-like
compounds (Križanec and Majcen Le Marechal, 2006).4 Dioxins are considered to have
detrimental effects on the immune system making people more vulnerable to acute infec-
tions. Further, they can damage the gastrointestinal tract, organs and the reproductive
system. In industrialized countries the use of many of these substances in production pro-
cesses is forbidden and particular technologies are in place to destroy material containing
POPs. Developing and emerging economies however often lack regulations and funds to
pursue consequent environmental strategies to combat POPs. Industrial waste water may
also contain harmful components of inorganic pollutants including heavy metals like lead,
cadmium, mercury and arsenic. The related health effects are however expected to unfold
after long-term exposure and often only emerge later in life. Given our research design we
are not able to detect these effects.

4.3 Data

Our analysis is based on a panel data set of 78 river segments and 7 time periods between
1992 and 2014. The spatial dimension of the data set is based on equally spaced 10x10
square kilometer grids along the course of the Nile. We include grids, whose center is
located within a radius of 30km from the river line. This captures the entire Nile valley
and thereby the vast majority of Egypt’s population as only few people live in the desert
regions beyond the Nile valley. In addition we create a subsample, which only includes grids
that intersect with the Nile. In Egypt the Nile runs relatively straight from its southern
border with Sudan northwards into the Mediterranean Sea. Accordingly, we group grids by
latitude. Employing this strategy, we obtain 78 horizontal river segments (see Figure 1).
We exclude the Nile delta, as the river disperses into multiple arms so that the population
may be affected by polluted water from several sources and a clear assignment is not

4The main groups of dioxins are polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated diben-
zofurans (PCDFs). Polychlorinated biphenyl (PCB) are also chlorinated hydrocarbons with a similar struc-
ture as dioxin (Umweltbundesamt, 2018).
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possible anymore. The temporal dimension of the data set is determined by the availability
of DHS survey waves for Egypt. All, factory-, population density and household DHS data
contain geographic coordinates. We use geospatial software to aggregate all data for each
segment.5

To assess health outcomes of children we use data from the Demographic and Health
Survey. The survey is conducted by USAID and collects detailed health and demographic
data for a wide range of developing countries. For Egypt there are seven survey rounds
available that contain geographic coordinates of the surveyed households for the years 1992,
1995, 2000, 2003, 2005, 2008 and 2014.6 We employ data from the survey’s ‘Individual
Recode’ asking women about their own and their children’s health. Accordingly, for data
on children’s health we use questions asking whether any child had diarrhea (H11), fever
(H22) or cough (H31) during the two-week period before the survey. We construct binary
variables (0 indicating that no child had the respective illness and 1 indicating that at least
one child suffered from the illness) and combine them to a one-dimensional health index
by taking the average of the three measures.7

We also construct a wealth index for each of these households (DHS only provides a
wealth index from 2003 onwards). The DHS index is based on households’ ownership of
selected assets. We follow the same methodology and take the first principal component
of the following survey items, which are covered in all surveys since 1992: type of toilet
facility (dummy variables), possession of radio, TV, refrigerator, bicycle and electricity and
type of floor material (dummy variables). Our newly constructed index highly correlates
with the index provided by DHS for rounds 2003-2014 (correlation coefficient: 0.8). For
ease of interpretation we normalize the measure to scale the range in [0, 1].

In addition we examine sub-samples with respect to the source of drinking water. The
indicator variable turns 1 if drinking water is piped into dwelling and remains 0 if public
taps, the Nile, wells and springs are the household’s source of drinking water.

We thus obtain information on children’s health and household characteristics for 2500

5Following, we use the terms segment and grid interchangeably, referring to the 78 horizontal segments
along the Nile.

6In order to ensure respondent confidentiality, the longitude/latitude information are randomly dis-
placed. “Urban clusters contain a minimum of 0 and a maximum of 2 kilometers of error. Rural clusters
contain a minimum of 0 and a maximum of 5 kilometers of positional error with a further 1% of the rural
clusters displaced a minimum of 0 and a maximum of 10 kilometers” (http://dhsprogram.com/What-We-
Do/GPS-Data-Collection.cfm). Given that our segments span around 40 x 10 kilometers there should only
be few cases in which a DHS cluster is mistakenly allocated to the previous or subsequent segment. In
these cases we only introduce random noise and measurement error, which would bias our results towards
zero.

7We also construct an alternative health index based on the first principal component. The correlation
is 0.999 and we therefore use the former index, which is easier to interpret.
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households in 1992 and up to 4400 households in 2014 along the Nile river grid, which
amounts to 23,700 households in total. These households are grouped into 3200 clusters
, which are georeferenced (the points in Figure 4.1 represent the clusters).8 Finally, we
aggregate the health data to the river segment level, which leaves us with data on children’s
health for 78 segments at 7 points in time. We observe on average 22 DHS clusters per
year and river segment.9

Figure 4.1: Nile River Grid and DHS Cluster

In our main specification we use population density data as a continuous measure for
the level of urbanization in each grid. Data on population density on a 2.5 arc-minutes
grid is obtained from the Gridded Population of the World Database (v3) provided by
the Socioeconomic Data and Applications Center (SEDAC). The data provides estimates
of population density based on counts consistent with national censuses and population
registers in 5 year intervals. To match the years to our DHS waves, we take the value

8242 clusters in 1992, 433 clusters in 1995, 395 clusters in 2000, 391 clusters in 2003, 614 clusters in
2005, 530 clusters in 2008 and 724 clusters in 2014.

9The median number of grids per year and river segment is 9.
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closest to the respective DHS year. We then also aggregate them to the river segment
level. As the population is concentrated around the Nile and the fringes of the Nile valley
are sparsely inhabited, the highest rather than average population density in each segment
is the relevant measure to determine the extent of pollution. In an additional specification
we use cities as binary measure for urbanization. Cities are defined by the “World Cities
Database” and we focus on Egyptian cities with at least one million inhabitants along the
Nile (ordered by total population: Cairo/Giza, Asyut, Aswan, Minya, Beni Suef, Quena,
Sohag).

Figure 4.2: Nile River Grid

Finally, we use data on plant establishment to measure industrialization. Data on
industrial plants comes from the “Plants Database” of Industrial Info Resources, a provider
of global market intelligence. The database tracks the 368 most important industrial
facilities in Egypt.10 The data provides geographic coordinates as well as opening and
closing dates, which enables us to conduct comparisons of health outcomes across both,
space and time. To the best of our knowledge this is the first time this data is used for
scientific purposes in the context of analyzing health effects of industrialization. We select
all 65 plants, which are located within our grid. The industry types represented in our
sample involve power plants, chemical processing, metals and minerals, and pulp, paper
and wood production. The Nile provides approximately 65 percent of the industrial needs

10Plants are considered ‘important’ if they qualify for industry-specific criteria, e.g. mines with capacity
of 250.000 tons per anum and greater.
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Table 4.1: Summary Statistics

Mean SD Min Max Obs

Health Index 0.72 0.12 0 1 459
Wealth Index 0.67 0.14 0 1 459
Population Density (in 10K per sqkm) 0.25 0.45 0 4 539
Factory (binary) 0.23 0.42 0 1 539
Cumulative Population Density (weighted) 0.06 0.05 0 0 539
Cumulative Factory Presence (weighted) 0.06 0.06 0 1 539
Population Share with Access to piped Water 0.73 0.24 0 1 459
Distance along Nile (from South to North) 481.03 286.03 0 921 539

for fresh water used in the production process and receives approximately 57 percent
of industrial effluents. It has been shown that industries in our sample produce toxic
wastewater with detrimental effects on human health (Megahed, Dahshan, Abd-El-Kader,
Abd-Elall, Elbana, Nabawy, and Mahmoud, 2015; Balabanič, Filipič, Krivograd Klemenčič,
and Žegura, 2017). An indicator variable denotes whether there existed a plant in a river
segment at a certain point in time. Summary statistics on all variables of interest are
provided in Table 4.1.

Figure 4.3: Factories Along the Nile in Egypt
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4.4 Urbanization

4.4.1 Empirical Framework

To estimate the effect of urbanization on children’s health we exploit variation in population
density across space. Although we use our panel data set spanning seven time periods,
the variation in population density mainly stems from spatial differences whereas there
is relatively little idiosyncratic variation in population density over time. We estimate
the effect of population density upstream of grid i on the health index in grid i. To
control for neighboring population density with potential spill-over effects we also control
for population density downstream of the respective grid. At the same time this serves
as an important placebo check. According to our assumption that water pollution affects
upstream and downstream population differentially we do not expect strong health effects
for population living upstream of the pollutant. Population density in the same grid is an
important control variable as it is correlated with population density in the previous and
following grids and may affect health in grid i. We thus estimate the following model in
order to identify the effect of upstream population density on health:

Healthi,t = α+ βPop DensityU
i,t + δPop DensityD

i,t + σr + σt + εi,t (4.1)

Healthi,t denotes the health index in grid i at time t, Pop DensityU
i,t is the population

density in the grid directly upstream of grid i at time t and β therefore constitutes the
coefficient of interest. Pop DensityD

i,t is the population density downstream of grid i at time
t. By including Pop DensityD

i,t we are able to take advantage of the quasi-experimental
setting that only upstream pollution affects health in grid i while downstream pollution
should have no negative effect. Further, we use DHS wave fixed effects, σt, to capture
common time trends in urbanization and health. We also include 10 region fixed effects, σr,
to compare households within the same subnational administrative unit, which are exposed
to the same institutional, economic, and cultural environment. In additional specifications
we include distance along the Nile and population density in grid i as control variables.
Distance along the Nile is measured from the southern border of Egypt and constitutes an
important control variable that captures linear trends along the Nile such as downstream
increases in cumulative pollution or factors related to the distance from Cairo. Finally, we
also show that our results are robust to including region-year fixed effects to control for all
region-specific changes over time such as changes in health legislation or enforcement of
regulations. This specification uses the variation in population density as pollutant most
efficiently as it captures the localized effects. Section 4.6 presents results for a cumulative
measure of population density.
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The correlation between population density in two contiguous grids is however rather
high (0.72) and therefore multicollinearity may be an issue when estimating OLS. The coef-
ficients would not be biased but standard errors tend to be very high in the presence of mul-
ticollinearity. Estimates of variance inflation factors for the estimates for Pop DensityD

i,t

and Pop DensityU
i,t are however below 5 and thus do not reveal evidence for excessive

multicollinearity. In the baseline specification we cluster standard errors at the grid level.
To more precisely account for both, cross-sectional spatial correlation and location-specific
serial correlation we conduct robustness checks using Conley standard errors with a spatial
HAC correction (Conley, 1999, 2008).11

Our main identifying assumption is that upstream population density is uncorrelated
with unobserved factors that are correlated with health and that affect the down- and
upstream population differentially. We use data on upstream polluting behavior rather
than data on local pollution levels and are therefore not relying on correlating local pol-
lution with local health outcomes - in fact we even control for local population density
and thereby capture all factors associated with both local level of urbanization and local
health.

The inclusion of downstream population density as a placebo check rules out all con-
cerns related to urbanization effects besides water pollution (such as working conditions
in cities, health care provision, air pollution, risk of contagion). If water pollution is a
relevant channel downstream population density should not affect health. A remaining
concern threatening our identifying assumption is sorting. Particularly, poorer people may
sort into more polluted areas and accordingly settle downstream of high population den-
sities. To address this concern we estimate the effect of both, upstream and downstream
population density on wealth in order to check for systematic differences.

4.4.2 Results

We find that upstream population density has a significantly negative effect on health.
An increase in population density by 10,000 inhabitants per sqkm, which corresponds to
2 standard deviations, decreases the health index by roughly 5 percentage points, which
corresponds to half a standard deviation of the health index (see Table 4.2). This increase
corresponds to one additional disease in every 6th household.12 The effect remains statis-

11Spatial autocorrelation is assumed to linearly decrease with distance up to a cutoff of 100 km and we
account for serial correlation across all seven time periods.

12The health index is an average over the number of diseases (diarrhea, cough and fever) per household,
which is then averaged across all households in the grid. Accordingly, if the health index increases from
0 to 1 all three diseases will occur in all households within the grid. If the health index increases by 1/3
there will be on average one additional disease in every household. As the health index increases by 0.05,
there will be on average 1/6 additional disease in every household or in other words: one more disease in
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Table 4.2: Effects of Urbanization on Health

(1) (2) (3)
Health Health Health

Upstream Pop Density -0.0428*** -0.0455*** -0.0506***
(0.0130) (0.0116) (0.0124)

Downstream Pop Density 0.0260 0.0272* 0.0296
(0.0174) (0.0154) (0.0180)

Year FE X X X
Region FE X X X
Controls X X
Year x Region FE X
N 450 450 450
Cluster 74 74 74
Mean DV 0.72 0.72 0.72

Health is the share of households in each grid where no child suffered
from diarrhea, fever or cough in the past 14 days. It lies between
0 and 1. Upstream Pop Density is population density in the grid
upstream of grid i. Downstream Pop Density is population density in
the grid downstream of grid i. Controls include distance along Nile
and population density in grid i. Standard errors (clustered by grids)
in parentheses, *** p<0.01, ** p<0.05, * p<0.1.

tically significant when including distance along the Nile and population density in grid i
as control variables (Column (2)) and also when adding year-specific region fixed effects
(Column (3)). These results are also robust to using Conley spatial HAC standard errors,
which account for both, spatial- and temporal correlation of the standard errors (see Table
4.A1). The negative effect of downstream population density on health is significantly dif-
ferent from the (positive) effect of upstream population density (p-value of 0.00). Hence,
the negative health effects are unique to the downstream population. This indicates that
population density affects health through water pollution as it is tied to the direction of
the river flow.

In order to further substantiate water pollution as a driver of the observed negative
health effects on the downstream population, we take into account the households’ source
of drinking water. For this analysis we calculate the fraction of households within a grid
that have access to piped water and split the sample at the mean of this variable (75%).
We find that the effect of upstream population density is almost twice as large in grids
where drinking water of less than 75% of households comes from clean sources (these
households use public taps, the Nile, wells and springs) as opposed to grids where more
than 75% of households have access to clean water (Table 4.3). The negative health effect

every 6th household.
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Table 4.3: Effect Heterogeneity: The Role of Piped Water

Health

(1) (2)
Piped Water<0.75 Piped Water>0.75

Upstream Pop Density -0.0796*** -0.0416**
(0.0155) (0.0159)

Year FE X X
Region FE X X
Controls X X
N 177 270
Cluster 58 73
Mean DV 0.71 0.73

Health is the share of households in each grid where no child suffered
from diarrhea, fever or cough in the past 14 days. It lies between 0 and
1. Upstream Pop Density is population density in the grid upstream
of grid i. Controls include distance along Nile and population density.
The sample is split according to the fraction of households with access
to piped water. Standard errors (clustered by grids) in parentheses,
*** p<0.01, ** p<0.05, * p<0.1.

is considerably mitigated by the access to clean drinking water. This again points to water
being the crucial link between pollutants and diseases.

4.4.3 Robustness

To address sorting as a potential concern we analyze whether there are differential effects of
urbanization on wealth given the relative location of the household to the pollutant. In fact
we replicate our analysis from the previous section using wealth as outcome. We find that
both, downstream and upstream population density have positive, albeit not statistically
significant effects on wealth (see Table 4.4). The upstream and downstream coefficients
in Table 4.4, do not differ significantly from each other (p-value of 0.84). This shows
that there is no heterogeneity in wealth outcomes depending on the geographic location of
households indicating that sorting between up- and downstream locations based on wealth
is unlikely. Hence, more polluted water downstream of agglomerations does not prevent
wealthy people from living there (unlike air pollution caused by industrial activity in 19th
century Britain (Heblich, Trew, and Zylberberg, 2016).
We also include wealth as control variable in an additional specification (Table 4.A2 in
Appendix) because it may be an omitted variable in the main specification. The results
are robust to the inclusion of this additional control variable. This however introduces bad
control bias (Angrist J. D. and J. S. Pischke, 2008) as wealth itself is an outcome of the
treatment.



128 Health on the Nile: The Curse of Living Downstream

Table 4.4: Effects of Urbanization on Wealth

(1) (2) (3)
Wealth Wealth Wealth

Upstream Pop Density 0.0295 0.0346* 0.0255
(0.0449) (0.0178) (0.0206)

Downstream Pop Density 0.0468 0.0256 0.0350
(0.0444) (0.0242) (0.0280)

Year FE X X X
Region FE X X X
Controls X X
Year x Region FE X
N 450 450 450
Cluster 74 74 74
Mean DV 0.72 0.72 0.72

Wealth is a wealth index, which lies between 0 and 1 and is av-
eraged over all households living in grid i. It is based on house-
holds’ ownership of selected assets. Upstream Pop Density is
population density in the grid upstream of grid i. Downstream
Pop Density is population density in the grid downstream of
grid i. Controls include distance along Nile and population
density in grid i. Standard errors (clustered by grids) in paren-
theses, *** p<0.01, ** p<0.05, * p<0.1.

As additional robustness check we estimate the same model using only grids that inter-
sect with the Nile river rather than grids within a 30km radius.13 We expect the effect to
be stronger for people living extremely close to the river as opposed to people who live on
the fringe of the Nile valley, close to the desert. The disadvantage of using this subsample
is however that we observe fewer DHS clusters in each segment (though the most affected
ones).14 Table 4.A3 in the Appendix shows that the negative effect of population density
on downstream health is indeed stronger than for the main sample (the effect size is 30%
- 40% larger). In contrast, the effect on the health of the upstream population is signifi-
cantly positive in all specifications estimated for this subsample. These findings stress the
asymmetric health effects of population density.

Finally, we focus on large and densely populated cities as the most severe cases of
concentrated pollution. To do so, we restrict our sample to grids surrounding large cities,
excluding all other observations. We thus only compare grids located downstream of a city
to grids located upstream of the same city rather than comparing all grids in the region..
The downside of this approach is the limited number of observations given that there are

13The number of river segments (grids grouped by latitude) is still similar. The sample size only reduces
by 26 segment-year cells due to missing DHS observations).

14We here observe on average 16 DHS cluster per segment-year cell as opposed to 20 in the main sample.
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Table 4.5: Case Study: Effect of Cities on Health

(1)
Health

City Upstream -0.0413*
(0.0182)

Year FE X
City FE X
Controls X
N 112
SE 6 City Cluster

The sample is restricted to grids
that are located directly upstream
or downstream of a city. Health
is the share of households in each
grid where no child suffered from
diarrhea, fever or cough in the past
14 days. It lies between 0 and
1. City Upstream is a binary vari-
able, which indicates whether a city
is located upstream of grid i (=1)
or whether a city is located down-
stream of grid (=0). Controls in-
clude distance along Nile and pop-
ulation density. Standard errors
(clustered by grids) in parentheses,
*** p<0.01, ** p<0.05, * p<0.1.

only 6 major cities along the Nile.15

We estimate the following model:

Healthi,t = α+ βCityU
i + σc + σt + Xi,t + εi,t (4.2)

where Healthi,t denotes health in grid i at time t. CityU
i,t indicates whether the grid is

“treated”, this indicator variable turns 1 if the city is located upstream of grid i and zero if
the city is located downstream of gird i. σc denotes city cluster fixed effects. Each of these
clusters contains three grids: the grid where the city is located, the upstream (control) and
the downstream (treatment) grid. The city cluster fixed effects thus ensure that we only
compare grids around the same city. σt denotes time fixed effects and Xi,t is a vector of
control variables for grid i, including distance along the Nile and population density.

15We exclude Cairo from the regression because we cannot specify a unique downstream grid. The city
is located at the end of the river stream and spreads across the Nile Delta, which we have excluded from
the analysis.
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We find that children living downstream of a city are significantly sicker than children
living upstream of the same city. Specifically, their health index is 4 percentage points
lower, which corresponds to 0.4 standard deviations of the health index for this sample.
This provides further evidence for asymmetric health effects of agglomerations. Children
living downstream of these pollutants exhibit significantly worse health outcomes than
children living upstream.

4.5 Industrialization

4.5.1 Empirical Framework

In this section we analyze the impact of water pollution caused by industrial plant openings
close to the Nile on children’s health. Information on the opening date of industrial plants
allows us to exploit temporal variation in addition to spatial variation to estimate the
health effect of industrial water pollution. Applying a difference-in-differences strategy we
compare health changes of children living downstream of a factory with health changes of
children in unaffected grids.16 We estimate the following model:

Healthi,t = α+ βFactoryU
i,t + σi + σt + εi,t (4.3)

Healthi,t denotes health in grid i at time t. FactoryU
i,t indicates whether a factory is

located in the upstream grid at time t and thus constitutes a binary treatment variable.
σi are grid fixed effects, which account for grid specific factors, as for instance potential
systematic differences between northern and southern areas.17 σt denotes time fixed effects,
which account for health trends over time. εi,t is the error term and standard errors are
clustered on a grid level.

In an additional specification we include population density as a control variable in order
to account for changes in population density caused by the opening of a factory, which at
the same time may influence health.18 We also apply a placebo check by estimating the
effect of a downstream factory on health.

Since we control for all grid-specific and time-specific factors the only threat to iden-
tification would be an event that occurred simultaneously with the factory opening and

16The variation in this set-up stems from 31 factories (out of the 65), which opened between 1992 and
2014.

17Here we can exploit temporal variation within the grid and are therefore able to include gird fixed
effects as opposed to our specification in Section 4.4.1.

18It becomes obsolete to control for distance along the Nile as this variable is time-invariant and is
captured by grid FE.
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Table 4.6: Effects of Industrialization on Health

(1) (2)
Health Health

Upstream Factory -0.0763* -0.0751*
(0.0429) (0.0421)

Downstream Factory 0.00857 0.0113
(0.0430) (0.0423)

Year FE X X
Grid FE X X
Pop Density X
N 450 450
Cluster 74 74
Mean DV 0.72 0.72

Health is the share of households in each grid
where no child suffered from diarrhea, fever or
cough in the past 14 days. It lies between 0
and 1. Upstream Factory indicates whether a
factory is located in the grid upstream of grid i.
Downstream Factory indicates whether a fac-
tory is located in the grid downstream of grid i.
Standard errors (clustered by grids) in paren-
theses, *** p<0.01, ** p<0.05, * p<0.1. Con-
trol for population density is included.

affects downstream and upstream health differentially. As this seems rather unlikely, we are
confident that water pollution caused by the factory contributes to poor health outcomes.

4.5.2 Results

We find that a factory located upstream affects children’s health negatively. The effect
is however only marginally significant (see Table 4.6, Columns (1) and (2)). The effect
appears to be quantitatively sizable - the opening of an upstream factory decreases the
health index by roughly 8 percentage points, which corresponds to roughly 0.7 standard
deviations of the dependent variable. In other words, the factory opening leads to an
additional child disease in every 4th household. Contrary, we find that a downstream
factory has no effect on health. These results are also robust to using Conley spatial HAC
standard errors, which account for both spatial and temporal correlation of the standard
errors (see Table 4.A4).

In order to further examine water pollution as driver of the negative health effects we
again split the sample into grids with less than 75% of households with access to piped
water and grids where more than 75% of households have access to piped water. We find
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Table 4.7: Effect Heterogeneity: The Role of Piped Water

Health

(1) (2)
Piped Water<0.75 Piped Water>0.75

Upstream Factory -0.101*** -0.0450
(0.0257) (0.0574)

Year FE X X
Grid FE X X
N 177 277
Cluster 58 74
Mean DV 0.71 0.73

Health is the share of households in each grid where no child
suffered from diarrhea, fever or cough in the past 14 days. It lies
between 0 and 1. Upstream Factory indicates whether a factory
is located in the grid upstream of grid i. Controls include distance
along Nile and population density. The sample is split according
to the fraction of households with access to piped water within
each grid. Controls include distance along Nile and population
density. Standard errors (clustered by grids) in parentheses, ***
p<0.01, ** p<0.05, * p<0.1.

that the effect of an upstream factory is highly significant and twice as large for the group
with less than 75% of households with access to piped water and turns insignificant for grids
where more than 75% of households use piped water as drinking water. This demonstrates
that children who have contact with industrial wastewater are more likely to fall sick than
children who have access to clean drinking water.

4.5.3 Robustness

To tackle the potential concern of sorting due to polluting factories we examine the effects
on wealth. Table 4.8 shows that there are no statistically significant effects of factories
(both upstream and downstream) on wealth. The coefficients on upstream and downstream
factories are also not statistically different from each other (p-value: 0.49), which suggests
that there is no sorting based on wealth around factories.

One might argue that control grids may in fact be “treated” by a factory two or three
grid further upstream. Even though this would only bias our coefficients towards zero
we address this issue twofold. First, to account for accumulating pollution we construct
a cumulative measure (see Section 4.6). Second, we construct factory clusters to better
distinguish between treated and control grids. We therefore generate a new sample where
geographically close factory grids are defined as factory clusters. We define grids that
are located downstream of the entire factory cluster as treated grids and grids, which are
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Table 4.8: Effects of Industrialization on Wealth

(1) (2)
Wealth Wealth

Upstream Factory -0.0374 -0.0399
(0.0279) (0.0263)

Downstream Factory -0.0119 -0.0171
(0.0160) (0.0150)

Year FE X X
Grid FE X X
Pop Density X
N 450 450
Cluster 74 74
Mean DV 0.72 0.72

Wealth is a wealth index, which lies between
0 and 1 and is averaged over all households liv-
ing in grid i. It is based on households’ own-
ership of selected assets. Upstream Factory
indicates whether a factory is located in the
grid upstream of grid i. Downstream Factory
indicates whether a factory is located in the
grid downstream of grid i. Control for popula-
tion density is included. Standard errors (clus-
tered by grids) in parentheses, *** p<0.01, **
p<0.05, * p<0.1.
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Table 4.9: Case Study: Effect of Factory Clusters on Health

(1)
Health

Factory Upstream -0.0926*
(0.0552)

Year FE X
Factory Cluster X
Controls X
N 80
Mean DV 0.73

Sample consists only of grids,
which are directly located up-
stream or downstream of an in-
dustry cluster (consecutive grids
that are characterized as indus-
trial area). Health is the share
of households in each grid where
no child suffered from diarrhea,
fever or cough in the past 14
days. It lies between 0 and
1. Factory Upstream indicates
whether a factory cluster is lo-
cated upstream of grid i (=1)
or whether the factory cluster
is located downstream of grid i
(=0). Controls include popula-
tion density and distance along
Nile. Standard errors (in paren-
theses) are bootstrapped, ***
p<0.01, ** p<0.05, * p<0.1.

located upstream of the cluster as control grids. In 2014, we for example observe six
factory clusters consisting of 3 to 16 individual grids (as opposed to 22 individual factory-
grids). Instead of grid fixed effects we include factory cluster fixed effects and thereby
directly compare children living upstream to children living downstream of the same factory
cluster.19 Due to the small number of observations we bootstrap the standard errors.

We again find that children living downstream of a factory are significantly sicker than
children living upstream. Specifically, their health index is around 9 percentage points
lower, which corresponds to roughly 0.8 standard deviations of the dependent variable

19For each factory cluster we observe health in two grids (upstream and downstream) over 8 years. As
these clusters change over time (due to factory openings and closings) we only observe 5 of these clusters
over the entire sample period.
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(Table 4.9, Column (1)). This provides further evidence for adverse health effects of the
presence of industrial plants.

4.6 Cumulative Pollution

Finally, we shift the focus from localized pollution to cumulative pollution along the Nile.
Here we analyze the aggregate effects of population density and factory presence over all
grids located upstream. To do so, we weight population density and factory presence re-
spectively by the inverse of the distance to grid i. This weighting accounts for cumulative
pollution as people living downstream are not only exposed to pollution from the previous
grid but also to water pollution originating in grids further upstream.

Weighted Population Densityi =
78∑

j=1
1

Distancei,j
∗ Population Densityj ∗ I(j < i)

The mean of the weighted population density is 0.06 and the standard deviation 0.05.
We applied the same formula to calculate the weighted factory presence, which has a mean
of 0.07 and a standard deviation of 0.06. We assume linear degradation of pollutants in this
setting. In an alternative specification we weight by the inverse of the quadratic distance,
which gives closer grids a higher weight as compared to linear weighting. We include this
measure as regressors in specification 4.1 (see Section 4.4.1).

We do not find an effect of the cumulative population density measure on health,
irrespective of the weighting function (Table 4.10, Columns (1) and (2)). While we detect
negative health effects of population density in the adjacent upstream grid (Section 4.4.2)
we do not identify a statistically significant effect of cumulative population density. This
finding suggests that the negative health effect of population density is localized. The
effects of the cumulative factory measure are in turn highly statistically significant (Table
4.10, Columns (3) and (4)). If a factory opens 10km upstream (increase of weighted factory
measure by 0.1) the health index decreases by 0.02 points which corresponds roughly to 0.2
standard deviations of the health index. The results reflect a key difference between the
two types of pollution in terms of degradability. While organic pollutants in urban waste
are subject to natural cleaning and dilution, large fractions of industrial pollution are not.
In line with this pattern we observe that the effects of urbanization decline more rapidly
with distance to the pollutant than the effect of industrial pollution on human health.20

Finally, we also include both sources of pollution in the specification at the same time and

20Depending on industry type the scale of biodegradability can vary, e.g. slaughter houses contain
higher extend of biodegradable components whereas chemical plants or pulp and paper mills contain higher
content of persistent organic pollutants.
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find that the effect of cumulative factory presence remains statistically significant negative
while the effect of cumulative population density remains insignificant.

4.7 Conclusion

Using a newly constructed, geo-coded data set for Egypt we find detrimental effects of
urban and industrial water pollution on health. Our research design exploits the direction
of the river flow as natural experiment, where population density and industrial plant
location constitute the sources of urban and industrial pollution.

We find a strong negative impact on the health of children who live downstream of an
agglomeration. Children living upstream are not negatively affected. This heterogeneity
of health outcomes suggests that urbanization affects health through water pollution. The
opening date of industrial plants allows us to employ a difference-in-differences strategy to
analyze the health effect of industrialization. Here we also find a significantly negative effect
on the health of children living downstream of a factory while children living upstream are
again not affected.

The health effects of urbanization and industrialization are strongest for grids where
a significant proportion of households uses untreated water as source of drinking water.
This finding substantiates the argument that the water transmits diseases caused by the
pollutants. Finally we show that the cumulative effect of factories along the course of the
Nile is significant whereas we do not find a cumulative effect of population density. This
finding reflects the difference between these two different sources of pollution in terms of
degradability. While organic pollutants in urban waste dilute, large fractions of the indus-
trial pollutants are persistent. The health effects of water pollution caused by urbanization
are therefore expected to decline more rapidly with distance to the pollutant than the effect
of water pollution caused by factories.

The findings of this study have important implications for policy in developing coun-
tries. In order to improve health outcomes it is important to put environmental regulations
in place and to enforce them. This is particularly important for countries that are industri-
alizing rapidly and are positioned on the polluting trajectory of the Environmental Kuznet
Curve21. Weak political and legal institutions are however a stumbling block to regulation.
It is thus important to fight corruption, promote law enforcement and increase awareness
for sustainable growth. In addition the international community has to support developing
countries in these efforts as they often do not have the resources and technologies needed
for environmental protection.

In Egypt, various authorities are in charge of water management and quality control,

21It illustrates that over the course of development pollution first increases and then decreases again.
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which leads to ambiguous responsibilities.22 Water quality thus has to become a priority
for the Egyptian government and it has to assign responsibilities clearly.

Moreover, adverse health effects of urbanization have to be taken into account for city
planning in developing countries. The direction of the river flow determines who is affected
most by water pollution and thereby leaves people living downstream worse off. As long
as there is no environmental protection in place governments have to work on improved
sanitation in these areas. Institutional changes are thus key to reduce the detrimental
health effects of industrialization and urbanization in emerging economies.

22“The absence of a single administrative body in charge of water management and quality improvement
from the High Dam to the riverbed, and up to the point where it [water] is delivered to people’s homes, is
the reason behind water pollution in Egypt.” (Kareem Khaled, 2015).
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4.A Appendix

Table 4.A1: Effect of Urbanization on Health using Conley spatial HAC Standard
Errors

(1) (2) (3)
Health Health Health

Upstream Pop Density -0.0428 -0.0455* -0.0457*
(0.0275) (0.0275) (0.0275)

Downstream Pop Density 0.0260 0.0272 0.0274
(0.0275) (0.0274) (0.0276)

Year FE X X X
Region FE X X X
Controls X X
Region x Year FE X
N 450 450 450

Health is the share of households in each grid where no child
suffered from diarrhea, fever or cough in the past 14 days.
It lies between 0 and 1. Upstream Pop Density is population
density in the grid upstream of grid i. Downstream Pop Density
is population density in the grid downstream of grid i. Controls
include distance along Nile and population density. Conley
spatial HAC standard errors estimated, *** p<0.01, ** p<0.05,
* p<0.1.
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Table 4.A2: Including Wealth as Control

(1) (2) (3)
Health Health Health

Upstream Pop Density -0.0412*** -0.0437*** -0.0499***
(0.0118) (0.0116) (0.0122)

Downstream Pop Density 0.0286* 0.0285* 0.0307*
(0.0160) (0.0149) (0.0179)

Year FE X X X
Region FE X X X
Controls X X
Year x Region FE X
N 450 450 450
Cluster 74 74 74
Mean DV 0.72 0.72 0.72

Health is the share of households in each grid where no child suffered
from diarrhea, fever or cough in the past 14 days. It lies between 0
and 1. Upstream Pop Density is population density in the grid up-
stream of grid i. Downstream Pop Density is population density in
the grid downstream of grid i. All specifications include wealth in grid
i as control. Other controls include distance along Nile and popula-
tion density. Standard errors (clustered by grids) in parentheses, ***
p<0.01, ** p<0.05, * p<0.1.
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Table 4.A3: Subsample: Only Grids intersecting with Nile

(1) (2) (3)
Health Health Health

Upstream Pop Density -0.0599*** -0.0571*** -0.0649***
(0.0121) (0.0129) (0.0126)

Downstream Pop Density 0.0384** 0.0387*** 0.0412***
(0.0156) (0.0133) (0.0147)

Year FE X X X
Region FE X X X
Controls X X
Year x Region FE X
N 424 424 424
Cluster 71 71 71
Mean DV 0.72 0.72 0.72

Data for segments along the Nile is only based on grids that intersect
with NIle river (information from grids that are located close to the
desert is excluded). Health is the share of households in each grid
where no child suffered from diarrhea, fever or cough in the past 14
days. It lies between 0 and 1. Upstream Pop Density is population
density in the grid upstream of grid i. Downstream Pop Density is
population density in the grid downstream of grid i. Controls include
distance along Nile and population density. Standard errors (clustered
by grids) in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table 4.A4: Effect of Industrialization on Health using Conley spatial HAC Standard
Errors

(1) (2)
Health Health

Upstream Factory -0.0763* -0.0751*
(0.0410) (0.0405)

Downstream Factory 0.00857 0.0113
(0.0517) (0.0510)

Year FE X X
Grid FE X X
Pop Density X
N 450 450

Health is the share of households in each grid
where no child suffered from diarrhea, fever or
cough in the past 14 days. It lies between 0
and 1. Upstream Factory indicates whether a
factory is located in the grid upstream of grid i.
Downstream Factory indicates whether a fac-
tory is located in the grid downstream of grid
i. Population density in grid i is included as
control variable in column (2). Conley spatial
HAC standard errors estimated, *** p<0.01,
** p<0.05, * p<0.1.
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Table 4.A5: Including Wealth as Control

(1) (2)
Health Health

Upstream Factory -0.0759* -0.0752*
(0.0410) (0.0425)

Downstream Factory 0.0112
(0.0424)

Year FE X X
Grid FE X X
Pop Density X X
N 457 450
Cluster 75 74
Mean DV 0.72 0.72

Health is the share of households in each grid
where no child suffered from diarrhea, fever or
cough in the past 14 days. It lies between 0
and 1. Upstream Factory indicates whether a
factory is located in the grid upstream of grid i.
Downstream Factory indicates whether a fac-
tory is located in the grid downstream of grid
i. All specifications include wealth and popu-
lation density in grid i as controls. Standard
errors (clustered by grids) in parentheses, ***
p<0.01, ** p<0.05, * p<0.1.
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