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Zusammenfassung

Galaxienhaufen sind in der modernen Kosmologie von herausragendem In-
teresse, da sie Schnittpunkte des Netzwerks kosmischer Strukturen sind, und
als solche empfindliche Tests von Theorien der Strukturbildung erlauben.
Darüberhinaus zeigen sie eine Vielzahl astrophysikalischer Phänomene über
weite Bereiche des elektromagnetischen Spektrums, was sie selbst zu interes-
santen astrophysikalischen Laboren macht. Galaxienhaufen werden dement-
sprechend in nahezu allen Beobachtungskanälen eingehen untersucht.

In dieser Arbeit präsentiere ich Bemühungen, diese verschiedenen Daten
in konsistenter Weise zu kombinieren, um die Massenverteilung innerhalb
eines Galaxienhaufens zu rekonstruieren und dabei möglichst wenige Annah-
men über selbige zu machen. In Kapitel 1 gebe ich eine kurze Einführung
in die kosmologischen Zusammenhänge und die Methoden zur Nutzung
von Gravitationslinseneffekten, um dann in Kapitel 2 Galaxienhaufen und
ihre Nutzung in Kosmologie und Astrophysik zu diskutieren. In Kapitel
3 behandle ich zunächst Rekonstruktionstechniken im Allgemeinen, bevor
ich detailliert unsere gitter- und modellunabhängige Methode erläutere und
wie verschiedene Beobachtungsdaten darin eingebunden werden können.
Schlussendlich beschreibe ich in Kapitel 4 numerische Testfälle, in denen
ich unsere Methode auf simulierte Haufen verschiedenster Komplexität an-
wende und dabei Daten aus dem schwachen Gravitationslinseneffekt und
Röntgenbeobachtungen kombiniere, während sich in Kapitel 5 abschließende
Bemerkungen finden.

Die Werkzeuge, die hier entwickelt und vorgestellt werden, erlauben,
die Zulässigkeit häufiger Annahmen im Bezug auf das Intraclustermedium,
wie polytrope Schichtung und hydrostatischen Gleichgewicht, ebenso zu
prüfen wie Annahmen über die Morphologie der zugrundeliegenden Massen-
verteilung basierend auf numerischen Simulationen. Sie bieten damit die
Möglichkeit, systematische Fehlerquellen in einer Vielzahl von Anwendungen,
die Galaxienhaufen involvieren, zu untersuchen.
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Abstract

Clusters of galaxies are of particular interest in modern Cosmology, as they
constitute the signposts of the cosmic web and as such are sensitive probes to
test theories of structure formation. They additionally offer a rich astrophysical
phenomenology across wavelengths, which makes them interesting astrophys-
ical laboratories in their own right and, consequently, they are studied in great
detail in almost all observational channels.

In this work, I present efforts to combine these various data sets to constrain
the matter distribution in galaxy clusters in a consistent way, while making
as few a priori assumptions on it as possible. In Chapter 1, I set the stage by
providing a brief introduction to the cosmological context and the methods
of gravitational lensing. In Chapter 2 I discuss galaxy clusters and their uses
in Cosmology and Astrophysics. In Chapter 3, I first give an overview of
reconstruction methods in general, before detailing our mesh-free and free-
form reconstruction framework and how different types of observations can be
incorporated in it. Finally, I describe numerical test cases in Chapter 4, where I
applied our method to simulated clusters of different complexity, combining
weak gravitational lensing and X-ray data, before concluding in Chapter 5.

The tools developed and presented in this work allow us to test the validity
of common assumptions on the physics of the ICM like hydrostatic equilibrium
and polytropic stratification, as well as assumptions on the morphology of the
underlying total mass distribution based on numerical simulations. They thus
offer means to investigate systematic uncertainties in a variety of studies that
involve clusters of galaxies.
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Chapter 1

Introduction

This work treads some not very sharp lines. It overlaps with cosmology as
well as with astrophysics. Cosmology attempts to understand the laws that
govern the evolution of the observable Universe on the largest scales and
throughout its entire existence. Astrophysics describes the somewhat more
localised, yet still often tremendously large constituents of this Universe, like
clusters of galaxies which span several megaparsec, and how they come about.
Cosmology forms the context of astrophysics and astrophysics is employed to
inform cosmology.
The other ill-defined boundary that is touched upon here is the one between
theory and observation. Dealing mostly with the development of numerical
methods, neither are any dedicated observations done here, nor is any specific
theoretical model developed or tested. The goal is rather to create a set of
tools that can be applied to observational data to inform tests of theoretical
predictions. Explicitly and in short, the goal of this project was to develop a
framework to combine all available data on an individual cluster of galaxies to
reconstruct its matter distribution, while making as little assumptions as possi-
ble on the latter. Why? Because galaxy clusters are among the main objects of
interest in modern cosmology, as they are not only a prominent culmination
of structure formation, tracing the evolution of dark matter through cosmic
history. They also act as strong gravitational lenses facilitating the study of
extremely distant galaxies and as astrophysical laboratories displaying the
interplay of radiation and matter in various states and spanning vast scales.
All this depends on the knowledge of the properties of a cluster, so a method
of cross-checking assumptions on them is of use.

As is customary, I will set the stage by briefly introducing the main concepts
of standard cosmology. In doing so, I will mainly keep to the cosmological
standard model ΛCDM, which assumes general relativity as the theory of
gravity, a non-zero cosmological constant Λ driving the accelerated expansion
of the Universe at late times and the existence of a cold dark matter compo-
nent. I will however highlight possible opportunities for deviations from this
concordance model. I will first describe the evolution of the homogeneous
background before moving on to the formation of structures embedded in
it. Finally I will briefly introduce the basics of gravitational lensing, as it is
fundamental to the reconstruction method presented here.
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1.1 Background cosmology

The base assumption underlying almost all of modern cosmology is the so-
called cosmological principle, which states that on sufficiently large scales, the
Universe is homogeneous and isotropic. That means that, if one were to ignore
or smooth out everything smaller than roughly 100 Mpc1, the Universe would
look the same, regardless of where you are (homogeneity) or in which direction
you look (isotropy).2 Applied to a metric theory of gravity, the cosmological
principle leads to the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric
(Friedmann, 1922; Lemaître, 1927; Robertson, 1935; Walker, 1937) described by
the line element3

ds2 = −c2dt2 + a2(t)
[
dχ2 + f 2

K(χ)dΩ2
]

, (1.1)

where χ is the comoving radial distance and Ω is the solid angle on the celestial
sphere. The isotropy in the cosmological principle enforces spherical symmetry
on the spatial part of the metric, which motivates the use of polar coordinates
centred on an observer, and the only remaining degrees of freedom are a global
scaling of the spatial hypersurface with the scale factor a(t) and the relation
between the radial coordinate χ and the area of spheres of constant χ, which
is set by the function fK(χ). It is given by

fK(χ) =


|K|−1/2 sinh

(√
Kχ
)

if K < 0

χ if K = 0

K−1/2 sin
(√

Kχ
)

if K > 0

, (1.2)

with K parametrising the spatial curvature.
In general relativity (GR), the evolution of the metric gµν is given by the

Einstein equation (Einstein, 1915; Einstein, 1916)

Gµν + Λgµν =
8πG

c4 Tµν, (1.3)

where the Einstein tensor Gµν encodes the geometric properties of space-time,
Λ is the cosmological constant and the stress-energy tensor Tµν describes the
matter and energy content of the Universe. Applied to the FLRW metric, and
noting that by the cosmological principle, the stress-energy tensor has to be

1This is an empirical value, or rather an empirical order of magnitude.
2Fortunately this postulate is reasonably well supported by observations as things get very

tricky if it gets relaxed. Nonetheless these more general cases are studied, if only to test the
cosmological principle (Meyer, Redlich, and Bartelmann, 2015)

3The metric signature is chosen to be (−, + , + ,+)
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that of one or more homogeneous perfect fluids with densities ρi and pressures
pi, this yields the Friedmann equations

H2 ≡
(

ȧ
a

)2

=
8πG

3 ∑
i

ρi −
Kc2

a2 +
Λc2

3
, (1.4)

ä
a
= −4πG

3 ∑
i

(
ρi +

3pi

c2

)
+

Λc2

3
, (1.5)

governing the time evolution of the scale factor a. Here we defined the Hubble
function H, describing the rate of expansion (or contraction) of the Universe4.
It is customary to define the scale factor to be unity a(t0) = a0 = 1 today,
such that the Hubble constant H0 = ȧ0 quantifies the expansion rate of the
Universe as observed today. Another convention ist to express the Hubble
constant as H0 = h · 100 km/s

Mpc such that the observed value gets absorbed in
the dimensionless parameter h.

For any given species, as well as for their sum, the Friedmann equations
(1.4) and (1.5) can be combined to obtain the adiabatic equation

3H
(

ρc2 + p
)
+ ρ̇c2 = 0, (1.6)

essentially giving the cosmological version of energy conservation. Integrating
Eq. (1.6) and introducing the equation of state parameter

w =
p

ρc2 , (1.7)

we arrive at an expression for the evolution of the density of a perfect fluid
depending on said parameter, assuming it’s constant,

ρ(a) = ρ0a−3(1+w), (1.8)

where ρ0 again is taken at present day. This allows to distinguish the evolution
of different fluid species in an expanding Universe, based on their equation
of state. In this context it is convenient to treat spatial curvature and the
cosmological constant as fluid species as well and assign them density and
pressure in accordance to the Friedmann equations. The most relevant fluids
are collected in Table 1.1.

With this and Eq. (1.5) in mind it becomes obvious that a Universe domi-
nated by a non-zero cosmological constant undergoes accelerated expansion
(ä > 0). In fact, every fluid component with w < −1/3 would be sufficient
to drive this accelerated expansion, which is where cosmological models that
attempt to replace the cosmological constant with a dynamical dark energy
component set in (see for example Amendola and Tsujikawa, 2010 for a whole
book on the efforts along this line). It is worth to briefly note a few things

4or equivalently the contraction (or expansion) of our measure of distance
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Fluid EOS parameter dilution

radiation wr = 1/3 ρr ∝ a−4

(collisionless) matter wm = 0 ρm ∝ a−3

spatial curvature wk = −1/3 ρk = − 3Kc2

8πGa2 ∝ a−2

cosmological constant wΛ = −1 ρΛ = Λc2

8πG ∝ const.

TABLE 1.1: Collection of relevant fluid species, their equation of
state (EOS) parameters and their evolution with the scale factor

here. From the view point of GR, there is absolutely no problem with a cos-
mological constant Λ > 4πG

c2

(
ρ + 3p

c2

)
, driving the accelerated expansion. In

fact, GR with a cosmological constant is the most general metric theory of
gravity in four dimensions with equations of motion that are linear in the
second order derivatives of the metric (Lovelock, 1972). Hence the presence
of Λ is expected and its value, as any constant of nature, is up to measure-
ments. The ever-growing field of dark energy and modified gravity theories
owes its existence to problems that arise when attempting to reconcile GR and
Quantum Field Theory (QFT), as the measured value of Λ is vastly different
from QFT estimates of vacuum energy and its gravitational effect. Attempts to
overcome this discrepancy from the side of cosmology are usually categorized
into modified gravity or dark energy theories, depending on wether they alter
the underlying assumptions of gravity or introduce new fluids to the stress
energy tensor.

The first Friedmann equation (1.4) hints at a characteristic density scale

ρcrit(t) =
3H2(t)

8πG
(1.9)

called the critical density, as it sets the threshold for the geometry of the
Universe. If the densities of matter, radiation and the cosmological constant
add up to a value above ρcrit, the spatial curvature becomes positive, leading
to spherical geometry, whereas a value below indicates negative curvature
and hyperbolic geometry. Only if all fluid densities add up to the critical
density exactly, the spatial curvature vanishes and we are left with flat Eu-
clidean geometry. With the critical density, or rather its present day value
ρcrit,0 ≡ ρcrit(t = t0), we can rewrite Eq. (1.4) in terms of dimensionless density
parameters

H2(a) = H2
0

(
Ωr,0

a4 +
Ωm,0

a3 +
Ωk,0

a2 + ΩΛ,0

)
= H2

0 (Ωr(a) + Ωm(a) + Ωk(a) + ΩΛ) (1.10)

≡ H2
0 E2(a), (1.11)
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where
Ωi,0 =

ρi,0

ρcrit,0
. (1.12)

Thus the expansion history of the Universe can be recovered from the values of
these Ω-parameters today and vice versa. The density parameters (including
Ωk,0) add up to 1 at any time by construction. As the data indicates a flat
Universe now (Planck Collaboration et al., 2016) and since the importance of
spatial curvature relative to matter and radiation increases in a decelerating
Universe5, |Ωk| either was vanishingly small initially or was reduced by a
previous phase of accelerated expansion, which is one motivation for cosmic
inflation (Baumann, 2007). After this follow successively and according to
their dilution behaviour, phases of radiation domination, matter domination
and recently6 a phase of accelerated expansion dominated by the cosmological
constant.

As the metric gets scaled during the expansion of the Universe, the wave-
length of photons gets shifted towards higher values. This cosmological
redshift is given by

z ≡ λobs − λem

λem
, (1.13)

where λobs is the observed wavelength of a photon and λem is its wavelength
when emitted. The cosmological redshift relates to the scale factor via

z =
1− a

a
(1.14)

and provides a convenient way to determine the latter at the time a given
light source emitted the photons observed today (assuming knowledge on the
original wavelength). In order to reconstruct for example the expansion history
from these measurements, we have to assess the distance to these sources as
well. Thus, measuring distances is one of the key tasks in cosmology and
several distance measures have been introduced, as there is no unique notion
of distance in a dynamical and in general curved spacetime.

The comoving distance is the distance on a spatial hypersurface of constant
time (see Eq. 1.1). It remains unaffected by the dynamics of the background,
hence the name. As a function of redshift, the comoving distance between an
observer and a light emitting source is given by

χ(zobs, zem) =
∫ a(zem)

a(zobs)

da
aȧ

=
c

H0

∫ a(zem)

a(zobs)

da
a2E(a)

. (1.15)

5the deviation from flatness is proportional to the Hubble radius which only shrinks during
accelerated expansion

6cosmically speaking; the cosmological constant started dominating about 3.6 billion years
ago
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Parameter value

Ωm,0 0.3089± 0.0062

ΩΛ,0 0.6911± 0.0062

Ωk,0 0.0008+0.0040
−0.0039

Ωr,0 (5.93± 0.07) · 10−5

H0 67.74± 0.46

TABLE 1.2: Recent values of cosmological parameters according
to (Planck Collaboration et al., 2016); based on measurements of
the Cosmic Microwave Background (CMB) in combination with
external probes (baryon acoustic oscillation, supernovae type Ia,

H0 based on Cepheids).

The proper distance is the distance measured by the travel time of a photon
between source and observer and can be expressed as

Dprop(zobs, zem) =
∫ a(zem)

a(zobs)

da
ȧ

=
c

H0

∫ a(zem)

a(zobs)

da
aE(a)

. (1.16)

The angular diameter distance relates the intrinsic size δA of an object to the
solid angle δΩ under which it appears for an observer. It is given by

Dang(zobs, zem) =
δA
δΩ

=
1 + zobs

1 + zem
fK [χ(zobs, zem)] . (1.17)

Finally, the luminosity distance relates the intrinsic luminosity L of a light source
to its observable flux F and is defined as

Dlum(zobs, zem) =

√
L

4πF
=

(
1 + zem

1 + zobs

)2

Dang(zobs, zem). (1.18)

In practice only the latter two are directly observable and which distant mea-
sure should be used entirely depends on the situation at hand. So, if we know
the intrinsic luminosities or sizes of a set of sources, we can determine their dis-
tance and, by an independent measurement of their redshift via spectroscopy,
infer the expansion history and consequently constrain the cosmological pa-
rameters. Recent values on these and some other parameters are collected
in Table 1.2. If not stated otherwise, they constitute the cosmological model
adopted in this work.

1.2 Structure

Since we seem to exist, just as stars, galaxies and the cosmic large scale struc-
ture do, there clearly are pronounced inhomogeneities in the Universe and
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the cosmological principle is broken on scales below roughly 100 Mpc. The
following section will deal with evolution of inhomogeneities in the Universe.

1.2.1 Dark matter

On scales on which the cosmological principle holds, gravity is the only rel-
evant force, so the behaviour of the components of the stress-energy tensor
with respect to the other fundamental forces is of no interest. Therefore all non-
relativistic matter can be treated as what GR literature refers to as dust, that is
collisionless matter (w = 0). This changes when matter is allowed to stream
and cluster and when it is supposed to be observed as observation implies at
least some interaction with light7. The cosmological terminology distinguishes
between baryonic matter, essentially comprised of all the massive particles in
the standard model of particle physics that interact with the electromagnetic
force, and dark matter, which only interacts gravitationally (and at most via
the weak force). Note that this means that massive neutrinos are in fact an
example of dark matter, albeit a subdominant one when it comes to cosmology.
Dark matter was initially postulated to account for apparent differences in
gravitational and stellar mass of the Coma cluster (Zwicky, 1933) and for the
flatness of galactic rotation curves on larger radii than expected (Rubin, Ford,
and Thonnard, 1978). Nowadays however, the most powerful evidence for
the existence of dark matter comes from the cosmic microwave background
(CMB). Current data requires a mass component that is non-baryonic, mostly
collisionless, does not interact with light (except gravitationally) and has a
very small or negligible velocity dispersion (Planck Collaboration et al., 2016).
The latter is what distinguishes cold dark matter (CDM), where the intrinsic
velocity dispersion is negligible compared to the speed of light, from hot dark
matter (HDM) that travels at relativistic speeds. Neutrinos seem to fall in the
latter category, as their masses are low and they decouple at high enough tem-
peratures to retain relativistic velocities (Lesgourgues and Pastor, 2006). Cold
dark matter forms structures bottom-up, where low mass objects form first,
accrete more matter and merge with each other to form higher mass objects,
whereas hot dark matter leads to a top-down structure formation where high
mass objects form first (and might fragment further) and the free streaming of
the HDM particles prevents the formation of structures on galactic scales, a
scenario that is essentially ruled out by data (White, Frenk, and Davis, 1983).
Warm dark matter (WDM) lies somewhere in between, so structures form essen-
tially bottom up but those below a certain mass scale are washed out by the
free streaming of the WDM particles.

Theoretical particle physics beyond the standard model provides a plethora
of potential candidates for dark matter and I will only mention a few. Weakly
interacting massive particles (WIMPs) have long been considered to be good
candidates, partly since these thermal relics with masses in the range of
100 GeV and small self-interaction cross sections are supported by for ex-
ample the theory of supersymmetry and would be produced in approximately

7with the very recent exceptions of gravitational wave and neutrino astronomy
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the correct abundance8(Bertone, 2010). As significant efforts to directly or
indirectly detect WIMPs so far only have yielded negative results (Marrodán
Undagoitia and Rauch, 2016), just as searches for signs of supersymmetry in
collider experiments (Buchmueller et al., 2014), support for WIMPs as the main
contribution to cold dark matter starts to cease. Lighter thermal relics in the
keV to GeV range are considered candidates for WDM.
Axions (Weinberg, 1978; Visinelli and Gondolo, 2009) are the predicted particle
consequence of a suggested mechanism to solve the strong CP problem of
quantum chromodynamics (QCD), which deals with the question why ex-
periments do not show any evidence of a violation of CP symmetry in the
strong interaction, even though it would be allowed by QCD. If axions existed,
they would display many features of cold dark matter, specifically no electric
charge and small self-interaction cross section.

While collisionless particle dark matter is the framework favoured by the
literature nowadays, it is not the only one. Dark matter models with non-
vanishing self-interaction or couplings to dark energy (or even a whole dark
sector) have been proposed (Spergel and Steinhardt, 2000; Farrar and Peebles,
2004). Other models for dark components include massive compact halo ob-
jects (MACHOs) like black holes or very faint stellar remnants. Microlensing
studies did however not find sufficient amounts of such objects for them to be
a likely alternative (Alcock et al., 2000)9 and they wouldn’t meet the criterion
of being at most gravitationally and weakly interacting. Outside the dark
matter framework, there is a variety of modified gravity theories attempting to
explain the observational features ascribed to dark matter, especially in galax-
ies, by deviations from GR rather than an unknown particle, e.g. Bekenstein
(2004). These currently fail to accommodate more than but a few specialised
observations, though (Mavromatos, Sakellariadou, and Yusaf, 2009; Reyes
et al., 2010).

In the following description of structure formation, a standard collisionless
particle cold dark matter framework is assumed. The reconstruction method
developed in this work presupposes a sufficiently smoothly distributed dark
matter component dominating the gravitational potential of galaxy clusters,
but no assumptions on a specific type or particle are made.

1.2.2 Linear inhomogeneities

The central quantity for the linear evolution of structure is the density contrast

δ(x, t) =
ρ(x,t)− 〈ρ〉(t)
〈ρ〉(t) , (1.19)

where 〈ρ〉(t) is the mean matter density in the Universe. We continue to treat
the density contrast as that of a fluid and apply the hydrodynamical equations

8this is referred to as the WIMP miracle
9although the degree to which candidates like primordial black holes are ruled out is up to

debate
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to account for its evolution, even though dark matter is assumed to be col-
lisionless and therefore has a non-negligible mean free path length, making
hydrodynamics in principle ill-equipped to describe it. Since we are dealing
with the linearised evolution in this section however, the hydrodynamical
formalism remains a good approximation. In particular, we will employ the
Euler equation

v̇ + (v∇)v = −∇p−∇Φ, (1.20)

describing the evolution of the peculiar velocity field v in presence of a pressure
gradient and gravitational forces, the continuity equation

ρ̇ +∇(ρv) = 0 (1.21)

and the Poisson equation
∇2Φ = 4πGρ. (1.22)

Restricting ourselves to small perturbations δ, v � 1, δp and δΦ and trans-
forming to comoving coordinates

x→ x/a, v→ v + Hx, (1.23)

the above equations take the form

v̇ + Hv = − 1
a〈ρ〉∇δp− 1

a
∇δΦ, (1.24)

for the Euler equation,

δ̇ = −1
a
∇v (1.25)

for the continuity equation and

∇2δΦ = 4πGa2〈ρ〉δ (1.26)

for the Poisson equation. Combining these linearised versions of the fluid
equations finally yields the linear growth equation

δ̈ + 2Hδ̇ = 4πG〈ρ〉δ + w
a2∇

2δ, (1.27)

where w = δp/δρ is the equation of state parameter. Since for linearly evolving
pressureless matter on cosmic scales w = 0, the last term can be dropped.
Equation (1.27) has a growing solution D+(a) such that

δ(a) = D+(a)δ0. (1.28)

The exact form of this growth function D+ depends on the background cosmol-
ogy via the Hubble function in the friction term in the growth equation and the
mean matter density 〈ρ〉. While linear growth of (dark) matter perturbations
is suppressed in the epoch of radiation domination (D+ ∝ ln a) and does not
happen at all in the de-Sitter case (ΩΛ = 1), perturbations grow with D+ ∝ a
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during matter domination, so most of the linear growth enabling the formation
of structures we see today has to have happened in that epoch.

Note that the approach above is entirely Newtonian, an approximation that
is justifiable only because we assume linearity, sub-horizon scales and small
perturbations δ� 1. These assumptions are also responsible for the fact that
the growth function is not a function of position or perturbation scale but only
of the background scale factor. As soon as growth becomes non-linear, this
changes.

1.2.3 Statistics of inhomogeneities

In a standard inflationary model, the primordial inhomogeneities (or equiva-
lently anisotropies, if we restrict ourselves to one observer’s position) in the
Universe are sourced by quantum fluctuations in the density field that get ex-
panded to macroscopic scales during inflation and subsequently evolve under
their own gravity and influenced by the cosmological background evolution.
This quantum origin leads to the prediction10 that the primordial anisotropies
are a Gaussian random field (Baumann, 2007), a view that is fully supported by
current observations (Planck Collaboration et al., 2016). As it is the Gaussian
way (due to Wick’s theorem), the statistics of this random field are completely
described by the mean an the (co-) variance. The former is zero by construction
as we are dealing with the density contrast, while the latter is given by the
correlation function

ξ(x1, x2) = 〈δ(x1)δ(x2)〉 , (1.29)

where the averages are taken over a virtual ensemble of realisations11. The
density field is further assumed to be statistically homogeneous and isotropic,
meaning that the correlation function does not actually depend on the position
or relative orientation of x1 and x2, but only on their relative distance r = |r| =
|x2 − x1|,

ξ(r) = 〈δ(x)δ(x + r)〉 . (1.30)

It is convenient to transform the density contrast to Fourier space and calculate
the covariance there

〈δ(k1)δ(k2)〉 = (2π)3δD(k1 − k2)P(k), (1.31)

where we defined the power spectrum P(k) and the Dirac delta function
expresses statistically homogeneous Gaussianity by ensuring that different
modes do not couple. The power spectrum relates to the real space 2-point
correlation function via the Fourier transformation

ξ(r) = 4π
∫ k2dk

(2π)3 P(k)
sin(kr)

kr
= 4π

∫ k2dk
(2π)3 P(k)j0(kr), (1.32)

10shared by many inflationary models, but not necessarily all
11As this is not possible in practice, one usually takes averages over causally disconnected

portions of the sky, introducing an irreducible uncertainty called cosmic variance.
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with the spherical Bessel function j0(x). Again, inflationary models make
predictions for the initial power spectrum to be a nearly scale invariant power
law

P(k) ∝ kns (1.33)

with spectral index ns . 1 (Mukhanov and Chibisov, 1981). Again, measure-
ments so far confirmed this. The power spectrum is customarily normalized
such that the variance of the density contrast averaged over a certain radius R

σ2
R = 4π

∫ k2dk
(2π)3 P(k)W2

R(k) (1.34)

is fixed to an observed value, by convention for R = 8 Mpc/h. Here

WR(k) =
3j1(kR)

kR
(1.35)

is the Fourier transform of a spherical top-hat filter of radius R in real space,
expressed using the spherical Bessel function j1(x).

1.2.4 The Cosmic Microwave Background

The CMB has been mentioned before in this chapter, but given its paramount
importance for modern cosmology and its peripheral relevance for this work,
it is worthwhile to spend a few more words on it. For roughly the first 300 000
years after the Big Bang12 the baryonic matter content of the Universe re-
mained in the state of an ionized hydrogen plasma (with contaminations of
heavier elements as they were produced by BBN13 mechanisms). In this state
the matter was tightly coupled to the radiation component and the mean
free path of photons remained small. As the Universe expanded, the plasma
cooled adiabatically and remained in thermal equilibrium with photons until
the temperature was low enough for electrons and protons to recombine and
form neutral hydrogen. As this process of recombination happened relatively
sudden14, the photons quickly decoupled from the baryonic matter, retain-
ing a black body spectrum. During their relatively unhindered travel since
recombination at z ≈ 1100, they get redshifted accordingly, such that nowa-
days we observe this radiation as a very isotropic microwave background
showing an almost perfect Planck spectrum with TCMB ≈ 2.725 K and only
tiny anisotropies of order δT ∼ 10−5TCMB. These temperature fluctuations,
depicted in fig. (1.1), relate to the density fluctuations described above via vari-
ous processes. On large angular scales the Sachs-Wolfe effect (Sachs and Wolfe,
1967) dominates, roughly stating that gravitational redshift causes photons re-
leased from overdense, intrinsically hotter regions to appear cooler than those

12or the end of inflation
13Big Bang nucleosynthesis, i.e. the formation of elements heavier than hydrogen and

lighter than beryllium during the radiation dominated era
14again, cosmically speaking; the width of the recombination shell in redshift is well ap-

proximated by a Gaussian with mean z ≈ 1100 and standard deviation σz ≈ 80.
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FIGURE 1.1: Foreground corrected and interpolated map of the
CMB temperature fluctuations based on (Planck Collaboration

et al., 2016)

from underdense regions. On scales smaller than the sound horizion at recom-
bination, baryonic accoustic oscillations, i.e. sound resonances in the density
field are the predominant source of temperature fluctuations. The angular
power spectrum of these oscillations in turn is sensitive to the relative preva-
lence of the cosmic fluid species. Among others, temperature measurements
of the CMB can be used to (Hu and Dodelson, 2002)

• constrain the spatial curvature via the sound horizon as a standard ruler,
provided an independent measurement of H0

• infer the existence of an electromagnetically non-interacting matter
species from the amplitude of baryonic density fluctuations that would
be insufficient to account for the large density contrast observed today

• infer the relative prevalences, i.e. the Ω-parameters, of radiation, bary-
onic and dark matter at time of recombination

1.2.5 Non-linear evolution

The description of growth as given in section 1.2.2 is an example of Eulerian
perturbation theory, tracing the evolution of small perturbations to the density
and velocity fields. Another approach would be Lagrangian perturbation
theory, which follows the trajectories of fluid elements by evolving the field of
their displacements. Either approach breaks down, though, once the density
contrast reaches values of order unity. As an overdensity grows, the local grav-
itational potential well steepens, therefore altering the local growth equation.
This means that the growth function becomes position dependent, leading to



1.2. Structure 13

mode coupling in a Fourier space formalism. As the density contrast deviates
further and further from the mean, its statistics become increasingly skewed
and non-Gaussian, signifying that simple 2-point correlation functions are no
longer sufficient to fully describe the density field.

There is significant and ongoing effort to extent the range of Eulerian and
Lagrangian perturbation theories to the non-linear regime (Bernardeau et al.,
2002) but so far with limited success. Alternative approaches, for example
based on a kinetic field theory of correlated many-body systems are being
developed (Bartelmann et al., 2016) but so far no analytic method can fully
describe the phenomenology of non-linear structure formation and one has to
resort to numerical simulations (Bertschinger, 1998; Springel, 2010).

Analytical approximations can however still give useful insights as we shall
see on the example of spherical collapse (Weinberg, 2008). This approximation
starts out from the assumption of a uniform overdensity confined to a finite
sphere. The evolution of such a perturbation by Birkhoff’s theorem decouples
from the background and can effectively be treated as a separate, closed (K > 0)
Universe. Its radial extent is governed by

R̈ = −GM
R2 , (1.36)

where M is the total mass enclosed in R. Integration of this equation just
recovers the energy of the system

1
2

Ṙ2 − GM
R

= E. (1.37)

The collapsing case (E < 0) is solved in parametric form by

R = A (1− cos θ) (1.38)
t = B (θ − sin θ) (1.39)

A3 = GMB2, (1.40)

where the state of the system is parametrised by the phase θ. With this we
immediately see that the radial extent grows initially before turning around
at θ = π and finally re-collapsing to, formally, infinite density at θ = 2π. Of
course in reality the system does not collapse to a singularity and will rather
virialise to a meta-stable equilibrium state of finite radius Rvir. Nevertheless,
the description above offers an estimate on the time scales of collapse. Specif-
ically we can express the density contrast as a function of time, restricting
ourselves to linear approximations (δ� 1)

δlin. ≈
6

20

(
6t
B

)2/3

. (1.41)

Inserting the formal time of collapse tc = 2πB yields

δc ≡ δlin.(tc) ≈ 1.686, (1.42)
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where we have defined δc as the linearly extrapolated density contrast at time
of collapse. Once linear growth equations lead to a contrast of δc, we can expect
that the system has already collapsed non-linearly and formed a meta-stable
halo, with a non-linear virial overdensity of ∆ ≈ 17815.

In order to get the abundance of these halos, we consider the smoothed
density contrast δR, where R is the smoothing scale of, say, a spherical top-hat
window function in Fourier space (see section 1.2.3). We can thus compute the
cumulative probability for the linear smoothed density to lie above δc

F(R; δc) =
∫ ∞

δc

dδR p(δR), (1.43)

where the probability distribution for the the linear smoothed density contrast
is, as stated in section 1.2.3, given by a Gaussian

p(δ; R) =
1√

2πσR
exp

(
− δ2

R
2σ2

R

)
. (1.44)

As the mass inside a spherical top-hat overdensity of radius R in real space is
given by M = 4πΩmρcritR3/3, we can also express the cumulative probability
as a function of mass16

F(M) =
∫ ∞

δc

dδm p(δM) =
1
2

erfc

 δc√
2σ2

R

 . (1.45)

The abundance of collapsed halos as a function of their mass is then

∂F(M)

∂M
=

1√
2π

δc

σR
exp

(
− δ2

c

2σ2
R

)
d ln σR

dM
. (1.46)

This however is not normalised correctly as can be seen by integrating over all
masses ∫ ∞

0
dM

∂F(M)

∂M
=

1
2

. (1.47)

The reasons for this apparent miscounting of objects are a bit intricate and are
presented in detail for example in Bond et al. (1991). Essentially, if we step
by step reduce the smoothing length R in Eq. (1.44) starting from some large
value, the density field at a given point describes a random walk, approaching
the threshold δc. As the Gaussian is symmetric, it is at every step equally
likely to go up or down in density. A trajectory that has once crossed the

15This is based on estimating the non-linear density at turnaround and taking into account
that due to the virial theorem the system has to be eight times denser than that at virialisation
whereas the background density got diluted approximately by a factor of 4 in the meantime,
assuming a matter dominated universe (results differ for different cosmologies).

16Note that, as the window function used for the smoothing is a top-hat in Fourier space
and not in real space, this is not entirely rigorous.
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threshold has thus even chances to further increase in density or to decrease
again below δc. As a once collapsed structure in reality cannot un-collapse
again, this leads to miscounting and needs to be compensated by a factor of 2.
We arrive therefore at the Press-Schechter mass function (Press and Schechter,
1974)

n(M) ≡ 2
∂F(M)

∂M
=

√
2
π

δc

σR
exp

(
− δ2

c

2σ2
R

)
d ln σR

dM
. (1.48)

The mass function is characterised by an exponential sensitivity to σ2
R. In

the above derivation we have suppressed the redshift dependence of the
variance σ2

R ∝ D+(z). Together with the cosmological dependence via the
power spectrum, this turns the halo mass function into a viable probe of
structure formation and cosmology. The Press-Schechter mass function in
this form is not a very good description of the real or simulated Universe,
though, as the assumptions of spherical collapse are not really met. The real
space configuration of dark matter halos is rarely spherical and does in general
not correspond to a Fourier or real space top-hat. There have however been
several adjustments and corrections accounting for these effects (Sheth, Mo,
and Tormen, 2001) and the main concepts surrounding the mass function
remain, i.e. the exponential cut-off for high masses and the universal shape,
depending more on the relative peak height δc/σR than directly on cosmology.
This is also true for alternative definitions of the mass function that are directly
based on numerical simulations, rather than analytical estimations (Tinker
et al., 2008; Jenkins et al., 2001).

1.3 Gravitational lensing

The previous sections introduced inhomogeneities in the cosmic density field
and described their evolution. These perturbations lead to numerous ob-
servational features, among which gravitational lensing might be the most
important for this work, as it will define the target and general structure of the
reconstruction framework in Chapter 3.

1.3.1 General derivations and terminology

Gravitational lensing describes the deflection of light rays due to metric per-
turbations along their path. In the following, I will briefly summarize the
derivations of the equations and quantities relevant for this work. For more
thorough treatments of the subject, see for example Bartelmann and Schneider
(2001), Schneider, Kochanek, and Wambsganss (2006), and Bartelmann (2010)
on which this section is largely based. For a slightly different approach em-
ploying Fermat’s principle, see Blandford and Narayan (1986).
Throughout this section it’s assumed that the sources of gravitational lens-
ing effects are slow moving (much slower than the speed of light) and have
small Newtonian potentials (Φ � c2), i.e. only terms up to first order in the
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Newtonian potential will be kept. Starting from a metric theory of gravity, the
perturbed FLRW metric in Newtonian gauge reads

ds2 = −
(

1 +
2
c2 Φ

)
c2dt2 +

(
1 +

2
c2 Ψ

)(
dχ2 + f 2

K(χ)dΩ2
)

, (1.49)

where Φ and Ψ are the Bardeen potentials (Bardeen, 1980) and χ and fK are
already familiar from Eq. (1.1). In this gauge, the Bardeen potential Φ in
the time-time part of the line element is identical to the Newtonian potential.
Photons follow null geodesics (ds = 0), so their propagation is described by
the geodesic equation

d2xµ

dλ2 = −Γµ
αβ

dxα

dλ

dxβ

dλ
(1.50)

with the affine parameter λ parametrising the progression along the trajectory
and the Christoffel symbols Γµ

αβ giving the metric connection. Identifying the
affine parameter with the comoving distance and evaluating the spatial part
of the geodesic equation for the given perturbed metric yields

d2xi

dλ2 =
d2xi

dχ2 =
1
c2 ∂i(Φ−Ψ)

GR
= − 2

c2 ∂iΦ. (1.51)

Only in the last equality general relativity as a specific metric theory of grav-
ity and the absence of anisotropic stress is assumed, such that the Einstein
equations imply the identity Ψ = −Φ. This differential equation can now be
integrated under the appropriate boundary conditions

xi
∣∣∣
χ=0

= 0,
dxi

dχ

∣∣∣∣
χ=0

= θi (1.52)

to get

xi(χ) = fK(χ)θ
i − 2

∫ χ

0
dχ′ fK(χ− χ′)∂iΦ

(
xj(χ′),χ′

)
. (1.53)

Note that the potential gradient in the integrand depends on the perturbed
path xi(χ) itself. This implicit structure is often circumvented by applying the
Born approximation xi(χ) ≈ fK(χ)θ

i, i.e. assuming small deflection angles and
approximating the curved path with straight lines. With this, and after defining
angular coordinates at the distance of a light emitting source xi(χs) = fK(χs)βi

one finally arrives at the lens equation

βi = θi − 2
∫ χs

0
dχ′

fK(χs − χ′)
fK(χs)

∂iΦ
(

fK(χ
′)θ, χ′

)
︸ ︷︷ ︸

αi(θ)

(1.54)

⇒ β = θ− α(θ), (1.55)
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where we have defined the components of the deflection angle17 α.
Introducing derivatives with respect to angular coordinates ∂i

θ = fK(χ)∂
i,

the deflection angle can be rephrased as the angular gradient of an effective
lensing potential ψ, which is given by the weighted projection of the Newtonian
gravitational potential

ψ(θ) =
2
c2

∫ χs

0
dχ′

fK(χs − χ′)
fK(χs) fK(χ′)

Φ
(

fK(χ
′)θ, χ′

)
(1.56)

αi(θ) = ∂i
θψ(θ) ≡ ψ,i. (1.57)

In the last equation we also defined another commonly used short-hand nota-
tion to denote partial derivatives with respect to angular coordinates.
Equations (1.55) and (1.56) completely define a mapping between the celestial
sphere of an observer and the sky position of the light emitting source. Photons
which are observed at sky coordinates θ were emitted at β and the relation
between those is set by the lensing potential.

The Jacobian of this mapping is

A (θ) ≡ ∂β

∂θ
=

(
δij −

∂2ψ (θ)

∂θi∂θj

)
=

1− κ 0

0 1− κ

−
γ1 γ2

γ2 −γ1

 , (1.58)

where in the last equality we separated the trace from the trace-free part. The
former with the convergence

κ =
1
2

(
∂2ψ

∂θ2
1
+

∂2ψ

∂θ2
2

)
=

1
2
(ψ,11 + ψ,22) =

1
2

∆θψ (1.59)

describes isotropic changes in apparent size of lensed images, whereas the
trace-free part with the two components of the complex shear

γ = γ1 + iγ2 (1.60)

γ1 =
1
2
(ψ,11 − ψ,22) (1.61)

γ2 = ψ,12 (1.62)

describes anisotropic distortions. Phrasing the shear as a complex number
further emphasizes that the trace-free part of the Jacobian (the shear matrix)
transforms like a field of spin 2 under rotations whereas the convergence (a
scalar) remains rotationally invariant (spin 0). Written in polar form γ =
|γ| e2iφ, the amplitude of the shear is indicative of the strength of the distortion
and the phase gives its direction.

17This quantity is sometimes also referred to as the reduced deflection angle, due to a
different derivation of the lens equation
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FIGURE 1.2: The galaxy cluster RCS2 032727-132623 prominently
features a giant arc caused by strong gravitational lensing of a
background galaxy. Picture taken with the Hubble Space Tele-

scope’s Wide Field Camera 318

For a circular source of unit radius, the lens mapping leads to an elliptical
lensed image with semi-major and semi-minor axes

A = (1− κ − |γ|)−1 , B = (1− κ + |γ|)−1 , (1.63)

such that the resulting images’ ellipticity can be given as

ε =
A− B
A + B

=
|γ|

1− κ
≡ g, (1.64)

which defines the so called reduced shear g.
The mapping described by Eq. (1.55) conserves spectral properties and

specific intensity (in absence of scattering and absorption) but changes the
solid angle under which extended sources appear by the magnification

µ = |det(A)|−1 = |(1− κ)2 − γ2
1 − γ2

2|−1. (1.65)

The mapping can become singular (det(A) = 0) on smooth and closed, so-
called critical curves on the observer’s sky. Their corresponding closed curves at
the source distance are called caustics. For points within a caustic, the mapping
is non-linear, and sources at these positions end up with multiple images on
the observers sky. Sources on caustics are extremely magnified (though never
infinitely as indicated by Eq. 1.65) and multiple images blend together to form
giant arcs (see fig. 1.2).
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1.3.2 Thin lenses on a flat sky

FIGURE 1.3: Illustration of gravitational lensing in the case of a
single thin lens on a flat sky; angles are defined according to Eq.

1.55;

While cosmological wide field weak lensing surveys cover significant por-
tions of the observers’ sky and are concerned with the cumulative light de-
flection by structures over a large range in redshift, thus requiring a proper
treatment of the celestial sphere and structures extended along the line of sight,
lensing by galaxy clusters is well approximated by the use of flat Cartesian
coordinates on the sky and by the assumption that the lenses’ extent along the
line of sight is negligible compared to the distances between observer, lens
and source. Under these conditions, the lensing potential then simplifies to

ψ(θ) =
2
c2

Dls

DsDl

∫
dχ′Φ

(
fK(χ

′)θ, χ′
)

, (1.66)

where we introduce the shorthand (Ds, Dl,Dls) for the angular diameter dis-
tances to the source, to the lens and the distance between them. Figure 1.3
schematically illustrates this configuration.
It should be noted that the lensing potential and the convergence not only
satisfy a Poisson-like equation in two dimensions (Eq. 1.59) but also that
the lensing potential does not depend on the line-of-sight coordinate. There-
fore the two dimensional Laplacian in Eq. (1.59) can be replaced with its
three-dimensional counterpart. Recalling Poisson’s equation

∆Φ = 4πGρ, (1.67)

the convergence accordingly reduces to

κ (θ) =
4πG

c2
DlDls

Ds

∫
dχ′ρ

(
fK(χ

′)θ, χ′
)

(1.68)

18NASA, ESA, J. Rigby (NASA Goddard Space Flight Center), K. Sharon (Kavli Institute for
Cosmological Physics, University of Chicago), and M. Gladders and E. Wuyts (University of
Chicago)
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and we can identify the convergence with the weighted projection of the
inhomogeneous density field along the line of sight. It is convenient at this
point to rewrite this equation by introducing the surface mass density

Σ (θ) =
∫

dχ′ρ
(

fK(χ
′)θ, χ′

)
(1.69)

and the critical surface mass density

Σcrit(zl, zs) =
c2

4πG
Ds

DlDls
(1.70)

to arrive at

κ (θ) =
Σ (θ)

Σcrit
. (1.71)

As the nomenclature indicates, Σcrit is a characteristic value. The existence of
a point P on the lens plane with convergence κ > 1 is a sufficient condition
for the lens mapping to become locally non-linear and thus leads to multiple
images, since this implies the existence of a point where det(A) < 0. Together
with the odd-number theorem (Burke, 1981), which states that thin, localised
and non-singular lenses produce an odd number of images out of which at
least one lies at a point where det(A) > 0, this in turn implies the existence of
multiple images for a source at a position corresponding to P (Subramanian
and Cowling, 1986). The convergence is thus often used to discern between the
regimes of weak lensing (κ < 1), where the distortion effects are only measurable
by averaging over a large enough sample of sources, essentially employing the
relation (1.64), and strong lensing (κ > 1), where the non-linearity of the lens
mapping causes clearly identifiable multiple images and severe distortions.

Another feature of strong lensing is the different arrival time of photons
emitted by the same event due to their different paths. This time delay consists
of the sum of geometric (different path length) and gravitational delay (Shapiro
delay) and is thus given by (here as a delay with respect to the case without
lensing)

∆t (θ; β) =
DlDs

cDls
(1 + zl) τ (θ; β) (1.72)

(Blandford and Narayan, 1986), where we have defined the so-called Fermat
potential

τ (θ; β) =
1
2
(θ− β)2 − ψ(θ). (1.73)

Due to their cosmological dependence via the distance kernel in Eq. (1.72),
time delays of strongly lensed pulsars or supernovae events have recently
been used to obtain measurements of cosmological parameters, primarily the
Hubble constant H0 (Suyu et al., 2017). Note that demanding ∂iτ = 0, i.e.
applying Fermat’s principle, yields again the lens equation (1.55).
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1.3.3 Degeneracy of the lens mapping

The original positions, shapes and sizes of lensed sources cannot be observed,
therefore the mapping for a given set of observed image positions, shapes
and sizes cannot be determined uniquely but at most down to a family of
mappings related by transformations that leave the observables invariant. The
most commonly quoted of these invariance transformations is the so-called
mass-sheet-degeneracy, where the mapping is transformed according to

A → λA, (1.74)

which leaves the reduced shear and the image positions invariant, but scales
the source size by the scalar factor λ. This transformation changes the conver-
gence to

κ → 1− λ + λκ, (1.75)

which, for λ close to, but smaller than 1, corresponds to adding a sheet of
constant surface mass density, hence the name. More general degeneracies
have been discussed in the literature (Gorenstein, Falco, and Shapiro, 1988;
Schneider and Sluse, 2014) but are not subject of this work.
In general, these degeneracies are broken by imposing a prior on the surface
mass distribution of the lens, ideally informed by non-lensing data on its
gravitational potential. Specifically, if lensing information is combined with
other data in a joint reconstruction framework as presented in this work,
degeneracies of the lens mapping can be broken as well.
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Chapter 2

Galaxy clusters

The following sections will introduce our objects of interest, clusters of galaxies,
in more detail, starting with their physical properties and observational signa-
tures, before describing their use as cosmological and astrophysical probes.

2.1 Properties

2.1.1 Contents

First characterized as confined1 peaks in the galaxy number density, galaxy
clusters are far more than that. A typical cluster lies within the mass range
of 1014-1015 M�. About 85 % of this mass budget is taken up by dark matter
of which most is situated in an extended halo. These halos are the tentative
end products of the non-linear structure formation sketched in the previous
chapter. Roughly 10 % of the mass is provided by the intra-cluster medium
(ICM), a hot ionized plasma dominated by hydrogen, and only a few percent of
the mass consist of baryonic matter in the form of stars and galaxies (Trümper
and Hasinger, 2008). These are only rough numbers, and details often depend
on how exactly one defines a cluster. Contrary to the name, this nowadays is
not always just identifying a literal cluster of galaxies, but rather by identifying
and defining clusters based on the characteristic features of the ICM in X-ray
or microwave observations (see below). Identification thresholds again differ
from survey to survey, so it is not certain that two studies of the same patch of
sky assign the label "cluster" to the same objects.

2.1.2 Structure

The prescriptions for non-linear structure formation in the previous chapter
are clearly approximative and do not describe the real processes in full detail.
In order to get closer to such a detailed description, numerical simulations are
unavoidable and they form the basis for a lot of our understanding of cosmic
structure today. In the context of clusters, such simulations (assuming CDM)
show that they form by a succession of mergers of smaller halos, galaxies and
groups of galaxies interspersed with phases of relaxation (Tormen, Bouchet,
and White, 1997; Boylan-Kolchin et al., 2009; Frenk and White, 2012). Galaxy

1on the sky and in redshift
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FIGURE 2.1: The Bullet Cluster (1E 0657-558), a supposedly re-
cent merger. The heat map shows Chandra X-ray imaging of the
ICM, clearly displaying shock features. Green contours depict
the surface density based on weak lensing. Picture taken from

(Clowe et al., 2006)

clusters vary significantly in their structure, depending on their dynamical
state. While clusters that are the result of a recent merger of a number of smaller
structures still show traces of that event via relatively complex morphologies
across all wavelengths (see for example Figure 2.1), relaxed clusters are more
symmetrical and well-behaved (e.g. see Figure 2.2).

As self-gravitating systems that seem to be dominated by collisionless dark
matter, the energy budget of (at least relaxed) clusters should be governed by
the virial theorem such that

Etotal = Ekinetic + Epotential = Ekinetic − 2Ekinetic = −Ekinetic. (2.1)

Following this any loss of total energy in the cluster, say by ejection of particles
via many-body interactions, leads to an increase in kinetic energy. This means
that clusters should in principle have negative heat capacity and thus no
stable equilibrium state (Binney and Tremaine, 1987). Nevertheless, numerical
simulations show that self-gravitating collisionless systems do indeed have
long-lived metastable states in the form of dark matter halos. Embedded in
these halos are the baryonic components, i.e. the ICM and galaxies, tracing the
dark matter’s gravitational potential.

In many applications, clusters are approximated to be spherically symmet-
ric, such that their internal structure is characterized by a radial density profile.
This is either justified by the apparent relaxed state of an individual cluster or
by stacking and averaging a sample of clusters to investigate their properties in
a statistical sense. It should however be noted that a cluster in general cannot
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FIGURE 2.2: The galaxy cluster Abell 383 as seen by Chandra
X-ray imaging of the ICM. Picture taken from http://chandra.

harvard.edu

be expected to be spherical as significant triaxiality and substructure are to
be expected2 (Limousin et al., 2013). On average though, dark matter halos
in numerical simulations can be reasonably well described by an universal
density profile across a wide range of halo masses. One commonly used form
is

ρ(x) =
ρs

xα (1 + x)3−α
, (2.2)

where x = r/rs is the dimensionless radius in units of the scale radius rs,
ρs is the amplitude at the scale radius and the hyperparameter α sets the
slope of the profile. The scale radius relates to the outer radius Rvir, i.e. the
radius within which virial equilibrium holds, via the concentration c = Rvir/rs.
For α = 1 this profile is referred to as the Navarro, Frenk and White (NFW)
profile (Navarro, Frenk, and White, 1996; Navarro, Frenk, and White, 1997),
probably the most frequently used parametrisation for spherical dark matter
halos, but in general values of 1 ≤ α ≤ 1.5 fit simulated halos well. Another
parametrisation, the Einasto profile (Einasto and Haud, 1989; Merritt et al.,
2006) takes the form

ρ(x) = ρs exp
[
2n
(

x1/n − 1
)]

, (2.3)

where in the case of dark matter halos n ≈ 5. Both the NFW and the Einasto
profile are characterised by the scale radius signifying a change in the slope and
defining how concentrated a halo is. The concentration in turn is connected

2In short: starting from an initial Gaussian density field and employing the Zel’dovich
approximation it can be shown that identical eigenvalues of the deformation tensor, corre-
sponding to isotropic evolution, are excluded (Doroshkevich, 1970)

http://chandra.harvard.edu
http://chandra.harvard.edu
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to the mass and redshift of a halo. Clusters of higher mass form later and as
the core density reflects the background density at formation time, they are
expected to have lower concentration. Several empirical or semi-analytical
parametrisations of this connection exist, often of the shape

c(M,z) = A(M/Mpivot)
B(1 + z)C, (2.4)

with different pivot mass Mpivot and fitting parameters (A,B,C) (Seljak, 2000;
Duffy et al., 2008; Macciò et al., 2008; Meneghetti et al., 2014). Such parametri-
sations depend on the validity of the symmetry assumptions and can be
significantly biased by the fact that clusters are not spherical and contain
substructure (Giocoli et al., 2014).

Numerical simulations assuming cold dark matter unanimously predict
a high level of substructure for dark matter halos, increasing with host mass
(Giocoli et al., 2010). Simulations that take baryonic matter into account
indicate that these subhalos may be stripped of their gaseous content (Dolag
et al., 2009), which likely renders them hard to observe via luminous tracers of
mass.

2.1.3 Observation

Optical

As mentioned already above, historical classifications and catalogues of galaxy
clusters were based on observations in the optical regime, where they appear
just as overdensities of galaxies within a confined aperture and redshift range.
The ACO catalogue (Abell, Corwin, and Olowin, 1989) for instance lists around
4000 such overdensities with 30 or more galaxies between redshift 0.02 and
0.2. The richness, i.e. the number of member galaxies in a cluster is a noisy
estimator of the total mass (Sereno and Ettori, 2017) and can reach values
of O(1000). The abundances of different morphological types of galaxies in
clusters differs significantly from the field average. The fraction of early-type
galaxies increases to up to 30 % in these dense environments and specifically
giant ellipticals, like cD galaxies, are prevalent in the centers of massive galaxy
clusters (Goto et al., 2003) and often the brightest cluster galaxy (BCG) is of
this type. The BCG is frequently used to define the center of mass of a cluster
in optical surveys.

Another observable feature that is usually measured in the optical regime
are the gravitational lensing signatures caused by the clusters gravitational
potential. As discussed in Section 1.3, these range from slight apparent dis-
tortions of background galaxies only measurable in a statistical sense across
the field of view around the cluster, to highly magnified and warped multiple
images of sources aligned with the cluster’s core.

From spectroscopic measurements of the member galaxies, their velocity
dispersion σ2

ij = 〈vivj〉 − 〈vi〉〈vj〉 can be inferred. The dynamics of the ve-
locity dispersion are governed by the Jeans equations (Binney and Tremaine,
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1987). For instance, under the assumption of spherical symmetry and in polar
coordinates, the radial Jeans equation reads

∂(nσ2
rr)

∂r
+

n
r

(
2σ2

rr − σ2
θθ − σ2

ϕϕ

)
= −n

∂Φ
∂r

, (2.5)

where n(r) is the number density of galaxies in the cluster. In principle,
measurements of the velocity dispersion can therefore be used to constrain
the gravitational potential and thus the mass distribution within the cluster
(Capasso et al., 2018).

X-ray

Galaxy clusters are among the most luminous X-ray sources on the sky with
luminosities in the range between 1043 and 1045 erg/s. The continuum radi-
ation originates from optically thin thermal bremsstrahlung emission in the
ICM, accompanied by significant line emission contributions from heavy ions,
mostly highly ionized iron (Trümper and Hasinger, 2008). The emissivity of
the continuum radiation is given by

jX(ω) =
16π2

3
√

3
Z2e6nine

m2
e c3 gff(ω)

√
2me

πkBT
exp

(
− h̄ω

kBT

)
, (2.6)

where ni and ne are the number densities of ions and electrons, Z is the atomic
number and gff(w) is the Gaunt factor, which in this context can safely be
approximated to be 1 (Bartelmann, 2012). The frequency integrated emissivity
then is

jX =
16π2

3
√

3
Z2e6

m2
e m̄2c3h̄

√
2me

π
ρ2
√

kBT, (2.7)

where we have replaced the number densities by the ICM density ρ and
introduced the mean particle mass m̄. Finally, the observable surface brightness
of a cluster is the line-of-sight projected frequency integrated emissivity

SX(θ) =
∫

dχjX(θ, χ). (2.8)

Equation (2.7) shows that the X-ray signal depends quadratically on the density
of the ICM and thus falls off significantly steeper with cluster radius than the
latter while retaining an additional small radial dependence via the ICM
temperature.

Microwave

In Section 1.2.4, the cosmic microwave background and its usefulness for
cosmological inference have been introduced, but it also proves to be a valu-
able resource for the study of galaxy clusters. The CMB photons emitted at
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FIGURE 2.3: The distortion of the CMB black body spectrum
(dashed) caused by the thermal SZ effect (solid). The effect is
strongly exaggerated to improve visibility. Figure taken from

Carlstrom, Holder, and Reese (2002)

the time of recombination do not travel entirely unperturbed. Besides grav-
itational effects like lensing and the integrated Sachs-Wolfe effect (Rees and
Sciama, 1968), there are also electromagnetic interactions affecting the photons.
Traversing through comparably dense and ionized gas like the ICM, about
1% of them undergo Compton scattering by thermal electrons. Due to the
very high temperature of the ICM plasma, this typically leads to an energy
boost for the photon by roughly kBTe/mec2 (Carlstrom, Holder, and Reese,
2002)(me and Te are rest mass and temperature of the ICM electrons) and thus
a slight distortion in the otherwise almost perfect black body spectrum of the
CMB photons, as depicted in Figure 2.3. This inverse Compton scattering is
usually referred to as the thermal Sunyaev-Zel’dovich (tSZ) effect (Sunyaev
and Zeldovich, 1980). It alters the specific intensity of the CMB with respect to
the Planck spectrum Bω as

∆ItSZ(x, θ)

Bω
= g(x)y(θ), (2.9)

as a function of position on the sky θ and dimensionless frequency x =
h̄ω/kBTCMB. The frequency dependence is given by

g(x) =
x4ex

(ex − 1)2

(
ex + 1
ex − 1

− 4
)

(2.10)

and depicted in Figure 2.4. Photons with frequencies below the zero-crossing
value of x ≈ 3.83, corresponding to 217 GHz, get up-scattered to frequencies
above this threshold. This characteristic signature makes the thermal SZ
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FIGURE 2.4: The frequency dependence of the thermal SZ effect,
where x = h̄ω/kBTCMB.

effect easily identifiable. The amplitude of the tSZ effect is quantified by the
Compton-y parameter

y(θ) =
∫

dχ
kBTe

mec2 σTne(θ, χ). (2.11)

It is the line-of-sight projection of an effective pressure given by the product
of the mean energy change and the scattering probability σTne(θ, χ), where
σT is the Thomson cross-section and ne(θ, χ) the number density of electrons.
The signal strength is independent of redshift, which makes the tSZ effect
well suited for the detection clusters at high redshift, even though in practise
detectability is still slightly dependent on redshift via the angular size of a
cluster on the sky and thus the angular diameter distance.

2.2 Clusters as cosmological probes

Here I very briefly list some of the ways galaxy clusters can be used for
cosmological inferences. This is not an exhaustive collection and I refer the
reader to reviews like Allen, Evrard, and Mantz (2011) for further details.

2.2.1 Mass

In Section 1.2.5 we introduced the Press Schechter mass function and how
it relates to cosmological parameters. Similar cosmological dependencies
hold for more sophisticated mass functions and those calibrated to numerical
simulations. As galaxy clusters reside in the most massive dark matter halos,
they probe the high-mass exponential cut-off of the mass function and thus
their abundance is a very sensitive probes of the underlying cosmology (Allen,
Evrard, and Mantz, 2011; Kravtsov and Borgani, 2012; Hagstotz et al., 2018).
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There is however no single preferred definition of mass that is the same for
analytical or numerical predictions on the one side and observations on the
other. Halos in simulations are usually identified and assigned mass either
via friends-of-friends algorithms (Davis et al., 1985) or spherical overdensities
(Springel et al., 2001). The latter definition is closer related to analytical halos
based on spherical collapse (see Section 1.2.5) but the choice of overdensity
threshold is a matter of debate (Coe, 2010). Often an overdensity of of 200ρcrit
is used to approximate the virial overdensity of 178ρcrit in a matter-dominated
universe. On the observational side, masses are usually assigned by measuring
aperture averaged values of mass proxies like richness, velocity dispersion
or X-ray luminosity and connecting them to a mass definition of choice via
analytically, numerically or empirically motivated scaling relations (Sereno
and Ettori, 2017).

Just as the masses of galaxy clusters, also the abundance and masses of
subhalos within a cluster carry information on dark matter and structure
formation (Jauzac et al., 2016). Deviations from the expected abundances
and distribution might indicate flaws in the set of assumptions for CDM but
conclusive claims are often hindered by inconsistent mass definitions and
substructure identification (Schwinn et al., 2018).

2.2.2 Clustering

Numerical simulations as well as observations show that non-linear structure
formation transforms the initially Gaussian density field into a web-like large
scale structure made of sheets and filaments of overdensities surrounding
voids depleted of matter. Galaxy clusters represent the nodes of this cosmic
web and as every identifiable structure in this web is a more or less biased tracer
of the underlying density field (Pollina et al., 2017), clusters are no exception.
Their clustering, i.e. the 2-point correlation function of cluster positions can be
used to constrain the matter power spectrum and thus cosmology (Schuecker
et al., 2003; Hütsi and Lahav, 2008; Mana et al., 2013).

2.2.3 Lensing

The core regions of massive clusters often act as strong gravitational lenses
with magnifications that easily reach factors of O(10) but also much higher
magnifications around 200 are known (Zitrin and Broadhurst, 2009) and in at
least one case a star behind a cluster has been magnified by a factor of roughly
2000 (Kelly et al., 2018). This shows that strong lensing clusters can be used
to study distant objects that would otherwise be excluded from observations
due to resolution constraints or because they would be too faint. This use of
clusters as "cosmic telescopes" has allowed to discover and study extremely
distant and thus early galaxies up to redshifts z ≈ 7 (Kneib et al., 2004).

Another cosmological use for strong lensing clusters are measurements of
the time delay between strongly lensed images of time dependent sources like
supernovae or quasars. As already stated in Section 1.3.2, measurements of
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this time delay allow inference on the Hubble constant H0 via the time delay
distance (Suyu et al., 2017).

The caveat to both, investigations of high redshift galaxies and inferences
of the Hubble constant, is that in most cases knowledge about the mass config-
uration of the lens and its surroundings is required.

2.3 Clusters as astrophysical laboratories

ICM physics

The formation of a galaxy cluster involves complex hydrodynamical processes
as the ICM collapses alongside the dark matter. Infall of gas at the outskirts of
collapsing halos can happen at supersonic speed, which leads to the formation
of pronounced shock fronts. Apart from quasi-isotropic infall, simulations as
well as observations suggest that gas streams towards the center of mass along
filamentary structures. At least in relaxed clusters, the gas is often assumed to
be in hydrostatic equilibrium (HE), with only thermal pressure compensating
the gravitational potential, but indications for deviations from HE, especially
in the outer regions of clusters and in recent mergers are prevalent, again in
simulations (Shi and Komatsu, 2014; Biffi et al., 2016) and observations (Hurier
and Angulo, 2018).

Scaling relations between ICM observables like the X-ray luminosity or
the Compton-y parameter and mass rely, beside hydrostatic equilibrium, on
the self-similarity of clusters, i.e. it is assumed that clusters of different size
and mass are indeed just scaled versions of one another. Observations do
however show that self-similarity needs to be broken in the central regions of
the cluster (Voit, 2005; Allen, Evrard, and Mantz, 2011 and references therein).
Several mechanisms like radiative cooling (Voit and Bryan, 2001), preheating
(Evrard and Henry, 1991) and heating by AGN feedback (Forman et al., 2005;
McNamara and Nulsen, 2007) as well as their interplay may play a role in this
phenomenon and detailed observations in X-rays and microwaves offer a way
to test these contributions.

The metallicity of the ICM allows insight on the chemical enrichment of
the Universe, on star formation history and on the yield of several types of
supernovae (Böhringer and Werner, 2010).
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Chapter 3

Reconstruction methods

The goal of this work is to provide a method to infer the (projected) matter
distribution of a galaxy cluster from a combination of observational constraints.
The following chapter will discuss general properties of such reconstruction
methods as well as the specific methods chosen here. As this project was and
is a collaborative and long-running effort, much of what is described here
builds on published work of collaborators and predecessors (Bartelmann et al.,
1996; Merten et al., 2009; Konrad et al., 2013; Sarli et al., 2014; Majer et al., 2016;
Merten, 2016; Tchernin et al., 2018), as well as myself (Huber et al., 2018).

3.1 Classifying methods

The outcome of this work is a mesh-free free-form linear-Gaussian maximum
posterior estimator of the projected gravitational potential by direct inversion
using joint data. Since this is a rather opaque sentence, the following section
will attempt to unpack the previous terms and put them into context by
providing a short guide to the various types and categories in the business
of inference. Afterwards, we will revisit the unwieldy sentence above and
describe the methods chosen for this work in section 3.2.

3.1.1 Types of modelling

Models used in reconstructions usually fall in one of the following categories.
Parametric methods are based on analytical models with comparably few

parameters (the number of parameters P is much smaller than the number of
data points / constraints N) to describe a given data set. Such models draw
their motivation either from theoretical predictions or are based on empirical
knowledge alone. The former case, particularly in the field of Astrophysics
and Cosmology, explicitly includes predictions based on numerical simula-
tions of the system in question. By construction, the number of data points
per parameter to be fitted is large, allowing (though not guaranteeing) strong
constraints and thus high precision, i.e. a low statistical error. The downside is
that such reconstructions are in danger of being significantly biased, i.e. suffer
from increased systematic error (low accuracy) in cases where the parametric
model turns out to be an inadequate description of the physical system studied.
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Whether this is the case is not necessarily detectable by standard goodness-
of-fit measures and subsequently may lead to wrong inferences based on the
obtained reconstruction. Therefore parametric modelling is most successful
when the assumptions adopted by the model are fulfilled to a high degree,
either by an individual system or on average by a sample of systems. Addi-
tionally, since the dimensionality of their parameter space is often rather low,
they are ideally suited for use of inference methods that explore that parameter
space to at least some extend like for example Monte-Carlo Markov-chain
samplers.

Local free-form methods on the other hand are characterized by making
little assumptions on a specific model and rather describe the system by a large
number of parameters1 (P . N), essentially directly fitting the target variable
at P points in the respective domain. While the precision of course suffers from
this and the statistical error is increased, these methods are intended to be less
prone to systematic errors and biasing and thus to more accurately describe the
reconstructed system. They are however not free of prior assumptions. As the
number of parameters increases the danger of overfitting – that is mistakenly
modelling noise patterns as part of the signal – rises. Therefore, free-form
reconstructions require some sort of regularisation which takes the form of an
additional prior on the presumed shape or characteristics of the model (e.g.
smoothness, etc.). Free-form methods are best employed in situations where
the data quality is exquisite but where it is uncertain that a specific parametric
model is applicable. These conditions are met especially for the most massive
clusters of galaxies, which, as discussed above, have strong signals in lensing,
X-ray and tSZ observations and contain a large number of member galaxies
tracing their Newtonian potential but on the other hand are not necessarily
relaxed and well described by any simple parametric model. Another common
use case are situations where a theoretically or otherwise motivated model is
just not available yet.

Non-local (decomposition) methods fall somewhat in-between. They do
not presume any specific functional shape, so in that sense they are free-form
methods. But rather than fitting a large number of parameters at different
points in the domain of the model, they rely on a decomposition of the data
in some non-local basis set and then fit a – not necessarily large – number of
coefficients of that decomposition. The classical example are Fourier analyses,
where the signal is Fourier transformed and described by a limited set of
spectral coefficients. But also shapelet and wavelet decompositions are abun-
dantly used (Daubechies, 1990; Refregier, 2003). Based on these decomposition
coefficients, further transformations to a target variable, i.e. the underlying
physical quantity, can be performed. The advantage of these methods lies
in the availability of fast high-performance methods of decomposition, the
often easier means of noise reduction and the high flexibility to describe very
different and apparently complex data sets with comparably few coefficients.
The downside is that the majority of methods in this category are inherently
non-local, thus correlating intrinsically uncorrelated data points, and often

1which makes the custom of referring to them as non-parametric so counter-intuitive
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necessitate ad-hoc boundary treatment when dealing with finite data (e.g.
zero-padding to enforce periodic boundary conditions in Fourier methods).

3.1.2 Types of support structure

Especially in local free-form methods the primary choice is where to fit the
data, that is on how many and which points in the data domain should the
target variable be reconstructed. In Astronomy a lot of data come in the form
of discrete two-dimensional maps or images of a part of the sky, the field
of view (or footprint, when speaking of large surveys). The question then
translates to: How to best sample the field of view with support nodes for the
reconstruction?

In this context, a mesh is a collection of connected nodes, with the connec-
tion adhering to predefined geometry (Liu, 2002). The most common examples
are regular rectangular grids, but also Delaunay triangulations (the dual of a
Voronoi graph) fall in this category. Values of the field that is to be discretized
by the mesh are assigned to nodes (Delaunay triangulation) or the volume
elements of the mesh (pixels or voxels, depending in dimensionality). This
discretization with an a priori known relation between neighbouring nodes
allows to approximate (partial) differential equations by algebraic ones in a
relatively straight-forward manner, thus simplifying the task of solving them.
This forms the basis of traditional approaches to finite difference (FD), finite
element (FE) and finite volume methods (FV).
Structured grids are meshes which follow a global coordinate structure and in
which the neighbouring elements for each cell are easily identifiable. Given
the basic properties of the mesh (dimensionality, size, resolution, coordinate
structure) the geometric properties, i.e. cell coordinates, cell size and neigh-
bouring cells can be determined from the cell index alone. Regular grids are
structured grids with cells identical in shape and size. A simple Cartesian grid
is the prime example for regular grids.
Unstructured grids still adhere to certain constraints on their geometry but
adjacent cells are not as easily identified and the size and aspect ratios of cells
may vary. An example is the aforementioned Delaunay triangulation that
tessellates the plane with triangles in a unique way, namely such that the
minimum opening angle is maximized (Press et al., 1992). Figure 3.1 illustrates
these different types of meshes.

In contrast, mesh-free support is given by a set of nodes without any pre-
defined connection or tessellation/sampling pattern. These nodes do not
discretize the domain but rather represent it, as there is no defined graph
connecting the nodes and thus dividing up the domain. This ambiguity makes
FD methods somewhat more complicated but also offers some substantial
advantages. Regular grids can deal with situations that require different reso-
lutions depending on the position in the domain via adaptive mesh refinement
(AMR) methods (Berger and Oliger, 1984), effectively replacing the cells in the
respective area with a finer subgrid. This however substantially complicates
the usual FD or FE methods and requires careful treatment of the boundary
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FIGURE 3.1: Examples of meshes: (left) a structured polar grid,
(middle) a regular Cartesian grid, (right) an unstructured Delau-

nay triangulation;

between grid and subgrid. And even unstructured grids have to be recom-
puted entirely whenever individual nodes are added, removed or even just
shifted in position, which can be computationally costly. Mesh-free methods
do not suffer from these problems at all. The resolution can easily be changed
by just adding more nodes where needed, without almost any computational
overhead since no global mesh-structure has to be recomputed. Section 3.2
will demonstrate in detail how the interpolation and differentiation operations
needed in this work can be performed on a mesh-free support domain. Other
examples for mesh-free algorithms include smoothed particle hydrodynamical
simulations and some classical N-body codes (Gingold and Monaghan, 1977;
Lucy, 1977; Liu, Liu, and Li, 2004; Trenti and Hut, 2008).

3.1.3 Types of regression

A fundamental equation for conditional probabilities and therefore the statis-
tical inference2 of a set of model parameters q given a set of data points d is
Bayes’ theorem (Bayes, 1763)

p(q|d, α) =
p(d|q)p(q|α)

p(d|α) , (3.1)

where the posterior p(q|d) is the probability of q given d, the likelihood p(d|q)
is the probability of the data given the model and the prior p(q|α) quantifies
prior knowledge (or assumptions) on the model and may itself depend on a
set of hyperparameters α. Lastly the evidence or marginal likelihood p(d|α) =∫

dqp(d|q)p(q|α) can (at least here) be seen as a normalization. With Bayes’
theorem in mind, two ways of regression can be distinguished by the choice of
objective functional that is to be optimized.

Maximum likelihood methods try to maximize the probability of the ob-
served data, given the model by optimizing the model parameters. This is the
simplest approach, ignoring any prior assumptions. Usually the optimization
actually is done by minimizing the (negative) log-likelihood, which in the

2This work is composed with a moderately Bayesian mindset
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case of Gaussian likelihoods without covariance immediately reduces to the
familiar least-squares fit.

A bit more Bayesian, maximum posterior methods take prior assump-
tions and knowledge into account and maximize the probability of the model
parameters given the measured data, usually by minimizing the (negative)
log-posterior. Note that regularized maximum likelihood methods fall into
this category as well, since regularization terms, usually added to the log-
likelihood to ensure certain properties of the solution (e.g. smoothness) are
nothing but quantified prior knowledge on the model, i.e. a prior. This then
naturally also includes maximum entropy methods which in this context are
just regularized maximum likelihood methods where the regularization term
takes the functional form of a (relative) Shannon entropy (Shannon, 1948; Press
et al., 1992).

A related distinction is that of forward versus backward modelling. In
our context this boils down to the way the log-likelihood is written. If the
minimization is performed in the data space, i.e. the difference of data points
and predictions based on the model

log p(d|q) ∝ (d−m (q)) (3.2)

is minimized, one speaks of forward modelling. Conversely, backward mod-
elling describes case when the model3 m is inverted to transform the data to
the parameter space and the minimization is performed there, i.e.

log p(d|q) ∝
(

m−1 (d)− q
)

. (3.3)

As for the actual optimization, methods typically fall in the categories of
direct inversion and sampling techniques. While the former are predominantly
used for models that are at least approximately linear in the parameters and
work by inverting a system of equations describing the minimization of the
objective functional (log-likelihood or log-posterior) with respect to the param-
eters, the latter are used for more complicated models and work by sampling
the parameter space and evaluating the objective functional for each point
sampled this way to approximate the optimum. Typical representatives of
sampling techniques are Monte Carlo Markov chain (MCMC) algorithms and
nested sampling techniques (Hastings, 1970; Press et al., 1992; Skilling, 2004).

3.2 A joint reconstruction framework

As stated above, the method described in this work enables mesh-free free-
form reconstructions of the lensing potential ψ of a galaxy cluster. Mesh-free
support was chosen, because we want to combine different probes of ψ in a
joint fit and the spatial scales of these probes differ significantly. While for ex-
ample weak lensing measurements typically span several (tens of) arcminutes

3sometimes called response
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with about O(20) data points per arcmin2 but are increasingly hard to obtain
for the inner core of the cluster as member galaxies get in the way, strong lens-
ing features like multiple images are usually confined to that innermost region
of the field of view with typical distances between data points of arcseconds.
The intrinsic adaptability of mesh-free methods allows for a straight-forward
combination of such different probes. Therefore a set of reconstruction nodes
is defined and the value of ψ is fitted for each of these nodes, marking the
free-form character of the method.

To do so, we assume that all measurements of the different probes (shear,
multiple images, X-rays, etc.) are taken independently and that each probe
has approximately Gaussian errors. Thus we are able to define a predictive
posterior distribution for ψ as

p(ψ|d,α) ∝ p(d|ψ)p(ψ|α) = ∏
i

pi(di|ψ) · p(ψ|α), (3.4)

where the joint likelihood p(d|ψ) of all probes can be expressed as the product
of the individual likelihoods due to their independent measurements. With
this and the assumption that these likelihoods are approximately Gaussian,
we can express the negative log-posterior as a sum of χ2 terms

χ2
joint (ψ|d) = ∑

i
χ2

i (ψ|di) + χ2
reg(ψ|α), (3.5)

where we have called the negative log-prior χ2
reg, as it will act as a regular-

ization term (see below). The third condition we impose on our modelling
technique is that the log-likelihoods are approximately quadratic in ψ. If this
is fulfilled we can find the maximum posterior estimate of ψ at any node k by
first minimizing χ2

joint with respect to ψk

∂χ2
joint

∂ψk

!
= 0, (3.6)

and then solving the subsequent linear system of equations (LSE)

Bklψl = Vk (3.7)

for ψ.
A word on notation: in this section and the following ones, vector notation,

i.e. boldface typesetting, can either describe two dimensional vectors on the
sky, as for example in the case of coordinates (θ, β, x), or it describes an
at least N-dimensional data or parameter vector, where N is the number of
reconstruction nodes in the mesh-free domain. The latter is for example the
case in Eq. (3.5), where the di are data vectors over the domain and ψ is the
vector of ψ values on all nodes. This typographic degeneracy is unfortunate,
but context should make the distinction obvious and where it does not, the
dimensionality and nature of the respective vector will be stated explicitly.
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As the definition of the lensing potential of a thin lens in Eq. (1.66) involves
both the distance to the lens and to the source, a further minor complication
arises. As the different probes of ψ are based on sources at in parts vastly
different redshifts these constraints have to be scaled to a common redshift in
order to consistently reconstruct the lensing potential throughout the field of
view and using all available data sets. To do so, the cosmic weight function

Z(zs) ≡
limz→∞ Σcrit(zl, z)

Σcrit(zl, zs)
Θ(zs − zl) =

DlsD∞

Dl∞Ds
Θ(zs − zl) (3.8)

is introduced (Bartelmann and Schneider, 2001) and applied to all data sets
used, which by construction are approximately linear in ψ. This way, all
sources are scaled to a formally infinite redshift, although a finite but large
reference value is used in practice, and the reconstruction is performed for
this scaled scenario. The Heaviside step function Θ(zs − zl) rules out lensing
of sources in front of the lens. Also all estimates of ψ based on non-lensing
constraints that enter the reconstruction as introduced in section 3.5 will be
scaled in this fashion to allow a consistent treatment.

Radial basis functions for FD and interpolation

As can be expected from section 1.3 and will be detailed below, the projected
potential ψ is related to several of the observables via angular derivatives,
which means that a FD implementation is required in order for Eq. (3.7) to
describe a system of algebraic equations that can be solved via standard linear
algebra methods. Apart from finite differences, the implementation described
in section 3.6 will require the ability to interpolate fields from one mesh-free
domain to another. Both can be achieved via the use of radial basis functions
(RBF). This means any function φ(‖x− x0‖)4 which only relies on the distance
of an evaluation point x to a specified reference point x0. A few typical choices
are collected in Table 3.1. This section will briefly present how RBFs can be
used to perform interpolations and differentiations on mesh-free domains,
which is mostly based on Merten (2016). For more information on this see for
example Fornberg, Lehto, and Powell (2013) and Flyer et al. (2016).

By centring an RBF on each of the support nodes of a mesh-free domain,
the Interpolation f̃ of a function f defined on each of those nodes can be
expressed as

f̃ (x) =
n

∑
i=1

λiφ(‖x− xi‖), (3.9)

with the interpolation weights λi and where n is the number of neighbouring
nodes in consideration, which can typically be chosen much smaller than
the total number of support nodes in the domain. Since the interpolation is

4‖ · ‖ here denotes the Euclidean L2 norm
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Name Form φ(r)

Gaussian exp
(
−(εr)2)

multiquadratic
√

1 + (εr)2

inverse multiquadratic 1/
√

1 + (εr)2

inverse quadric 1/
(
1 + (εr)2)

Polyharmonic splines r2m−1, m ∈N

r2m log r

TABLE 3.1: some typical choices of RBFs; ε is the shape (hyper-)
parameter;

supposed to exactly recover the original function on each of the support nodes

f̃ (xi) = f (xi) ≡ fi, (3.10)

we end up with a linear system of equations
φ(‖x1 − x1‖) · · · φ(‖x1 − xn‖)

... . . . ...

φ(‖xn − x1‖) · · · φ(‖xn − xn‖)


︸ ︷︷ ︸

F


λ1
...

λn

 =


f1
...

fn

 , (3.11)

that can be solved for the weights λi. The resulting accuracy of this procedure
(as well as of the FD scheme described below) depends on the specific choice
of radial basis function. In the case of Gaussian RBFs, which will be adopted
throughout this work, the shape parameter ε remains free and can significantly
affect the quality of interpolation. It can however be optimized beforehand
by testing it on an analytic test function with similar scaling behaviour as the
field that is supposed to be reconstructed (Fornberg, Lehto, and Powell, 2013;
Merten, 2016).

Finite differencing in general approximates a derivative (or really any
linear operator) D f of a function at a point x = xc by a weighted sum over the
n neighbouring points

D f (x) ≈
n

∑
i=1

wi f (xi). (3.12)

The weights wi that form the FD stencil can be obtained in various ways (for
a didactic introduction to some see for example Fornberg (1998)), here we
opt for the following. The FD approximation is demanded to exactly recover
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FIGURE 3.2: Illustration of a Gaussian RBF-based interpolation
of a polynomial function from a 10 by 10 regular grid to a 20 by
20 grid. (left) interpolation with un-optimized shape parameter,
(middle) with shape parameter optimized using a trigonometric
function, (right) the analytic polynomial function on the finer

grid;

the analytically known derivatives of the RBF interpolation above, which, in
analogy to Eq. (3.11) leads to the linear system of equations

F


w1
...

wn

 =


Dφ(‖x− x1‖)

...

Dφ(‖x− xn‖)

 . (3.13)

Note that, if D was the identity operator, Eq. (3.11) and therefore the inter-
polation (the zeroth FD derivative) is recovered. The FD stencil obtained by
solving Eq. (3.13) approximates the derivative D f only at the point xc, which
distinguishes this approach from FD stencils on regular grids, where (except
for boundaries) the same stencil can be applied all over the grid. Consequently
the weights have to be computed for the n− 1 nearest neighbours of each node
in the domain individually.

Following Flyer et al. (2016) (and references therein) the accuracy of this FD
and interpolation method can be improved by additionally demanding that
monomial test functions to a certain (low) order are recovered by it exactly
as well. In the example case of monomials up to first order, this changes Eq.
(3.13) to

F
1 x1,1 x2,1
...

...
...

1 x1,n x2,n

1 · · · 1

x1,1 · · · x1,n

x2,1 · · · x2,n

0





w1
...

wn

ν1

ν2

ν3


=



Dφ(‖x− x1‖)
...

Dφ(‖x− xn‖)
D1

Dx1,c

Dx2,c


. (3.14)
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FIGURE 3.3: Illustration of a Gaussian RBF-based FD 2nd deriva-
tive (∂2/∂x∂y) of a polynomial function on a 20 by 20 regular grid.
(left) FD with un-optimized shape parameter, (middle) with shape
parameter optimized using a trigonometric function, (right) the

analytic derivative of the polynomial;

The νi introduced here are not part of the FD stencil and can be viewed as
Lagrange multipliers of a constrained optimization procedure. With this
method, FD versions of all derivatives and combinations of derivatives needed
in this work can be defined. Specifically we define the linear operators

Di ≈
∂

∂θi
(3.15)

K ≈ 1
2

(
∂2

∂θ2
1
+

∂1

∂θ2
2

)
(3.16)

G1 ≈
1
2

(
∂2

∂θ2
1
− ∂1

∂θ2
2

)
(3.17)

G2 ≈
∂2

∂θ1∂θ2
, (3.18)

which, when applied to the lensing potential ψ, recover the two components of
the deflection angle, the convergence and the two components of the complex
shear respectively (see section 1.3.1).

3.3 Lensing reconstructions

3.3.1 Weak lensing

As mentioned in section 1.3, gravitational lensing to linear order distorts size
and shape of background sources, i.e. galaxies behind the lens. Equation (1.64)
in particular shows how an ellipticity induced by lensing of a circular source
is related to the reduced shear g, the complex-valued representation of the
anisotropic part of the lensing Jacobian. Measuring the ellipticity of a lensed
background galaxy can constrain the gravitational potential and therefore the
mass distribution of a gravitational lens, which in this work will be a cluster
of galaxies.
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The immediate observable in weak lensing studies is a noisy measurement
of the lensed galaxies’ surface brightness I(θ). First defining the center of
brightness

θ̄ ≡
∫

d2θ I(θ)θ∫
d2θ I(θ)

(3.19)

as a reference coordinate and calculating the second moment tensor of the
surface brightness distribution

Qij =

∫
d2θ I(θ)(θi − θ̄i)(θj − θ̄j)∫

d2θ I(θ)
, (3.20)

we can define the complex ellipticity of that distribution as

ε =
Q11 −Q22 + 2iQ12

Q11 + Q22 + 2
(
Q11Q22 −Q2

12

)1/2 . (3.21)

Note that there are several other ways to define an ellipticity based on the sec-
ond moment tensor, but the one given here turns out to be the most convenient
for the purposes of this work. The second moment tensor of the observed
surface brightness is related to that of the intrinsic (unlensed) brightness of
the source via Qs = A(θ̄)QA(θ̄)T, and the observed ellipticity as a function
of the intrinsic source ellipticity εs is

ε =



εs + g
1 + g?εs

if |g| ≤ 1

1 + gε?s
ε?s + g?

else.

(3.22)

A star denotes complex conjugation. Under the assumption that the intrinsic
alignment of galaxies, that are close by each other in projection but distant in
redshift, is negligible5, the orientations of these galaxies are uncorrelated and
their intrinsic ellipticity on average vanishes

〈εs〉 = 0. (3.23)

This leads to the simplified relation

〈ε〉 =


g if |g| ≤ 1

1
g?

else.
(3.24)

5This assumption is far from guaranteed to be valid and significant effort is made to
reliably quantify the bias introduced this way (see for example Tugendhat and Schäfer, 2018
and references therein)
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FIGURE 3.4: The averaging scheme for shear measurements on a
mesh-free domain. Reconstruction nodes are depicted in orange,
galaxies with ellipticity measurements in blue and those galaxies
that contribute to the average ellipticity of two nodes in green.

Restricted to the weak lensing regime, where |g| ≤ 1 can safely be assumed,
Eq. (3.24) defines how ellipticity measurements are used in this work to con-
strain the gravitational potential of the lens. Given a catalogue of ellipticity
measurements for galaxies behind the lens and after choosing an appropri-
ate set of reconstruction nodes sufficiently sampling the respective field of
view (see section 3.6), ellipticities of galaxies in the vicinity of each node are
averaged over to get an estimate of 〈ε〉(θ). This averaging process introduces
covariances between neighbouring reconstruction nodes, as they might "share"
galaxies. This is shown in Figure 3.4. The resulting covariance matrix is given
by

Cij =
2nij(

ni + nj
)σiσj, (3.25)

where ni/j and σi/j are the total number of galaxies involved in the averaging
for nodes i/j and the respective standard deviation and nij is the number of
galaxies used in the averaging process for both nodes.

Assuming that shear/ellipticity measurement errors are well-approximated
by a Gaussian, we can define the negative log-likelihood for the weak lensing
constraints as

χ2
WL (〈ε1/2〉|ψ) =

(
〈ε1/2〉 −

1
1− κp

G1/2ψ

)T

C−1
WL

(
〈ε1/2〉 −

1
1− κp

G1/2ψ

)
,

(3.26)
where G1/2 is the appropriate finite differencing operator for the respective
component of the complex shear and 〈ε1/2〉 are the corresponding components
of the measured average ellipticity. Note that, in order to remain quadratic in
ψ, the convergence κp, necessary to convert shear to reduced shear, is based
on a prior and subsequently updated iteratively (see section 3.6).
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3.3.2 Strong lensing

In the regime of strong gravitational lensing, the non-linearity of the lens map-
ping leads to multiple images of a background galaxy appropriately aligned
with the cluster. If that galaxy happens to be close to a caustic (see section 1.3),
these images blend together and are highly magnified and distorted, forming
a giant arc. Recalling that the deflection angle is given by the angular gradient
of the lensing potential, the lens equation reads

β(θ|ψ) = θ−∇ψ(θ). (3.27)

If now all Ns images stemming from the same source galaxy can be reliably
identified, then it is straightforward to define a negative log-likelihood that
minimizes the deviation of source plane positions for each of these images

χ2
MI (θi|ψ) =

1
σ2

s
(βi(θi|ψ)− 〈β〉 (ψ))2

=
1
σ2

s
(θi −∇ψ(θi)− 〈β〉 (ψ))2 , (3.28)

where

〈β〉 (ψ) = 1
Ns

Ns

∑
i

β(θi|ψ) (3.29)

is the mean source plane position for all images stemming from the same
source, given the lensing potential ψ. Then σs quantifies the positional error
tolerance on the source plane. In terms of FD operators and summed over all
members of one multiple image system, this becomes

χ2
MI (θ|ψ) =

Ns

∑
i

1
σ2

s

[
θi − Dikψk −

1
Ns

Ns

∑
j
(θj − Djkψk)

]2

, (3.30)

where the index describing the component of coordinate and deflection angle
vector is suppressed, as Eq. (3.30) takes the same form for both components.

This approach is usually referred to as source plane minimization and
offers the advantage of again being at most quadratic in ψ. The disadvantage
however is that it is not a minimization in data space, i.e. the image plane, and
uses highly reduced data to begin with, namely the image plane positions of
brightness peaks of multiple images as opposed to an actual, or even filtered,
brightness map over the field of view. Therefore a likelihood based on source
plane minimization does not penalize false positives, which means realisations
of ψ (especially in a free-form framework) that minimize this log-likelihood
may well produce false additional images without being ruled out. A posteriori
checks can of course account for this, and source plane minimization remains
in use, due to its appealingly low computational cost.

A more involved approach of using multiple images is often referred to as
source inversion (Warren and Dye, 2003; Koopmans, 2005). In this scenario,
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the extended surface brightness distribution of the images is used to constrain
the lens and simultaneously reconstruct the original surface brightness of the
source. The clear advantage with respect to the sole usage of image peak
positions is the vastly increased amount of data points. But this of course
comes at the prize of computational complexity. As we don’t expect all points
in all images to map back to one singe point on the source plane, reconstructing
the source properly is actually non-optional in this approach, which extends
the dimensionality of the reconstruction problem by the number of parameters
used to model the source. If successful, this on the other hand allows to
constrain the morphology of the high-redshift source galaxy. In general the
log-likelihood then takes a form

χ2
SI(d|ψ, s) = (m (ψ, s)− d)T C−1

SI (m(ψ, s)− d) , (3.31)

where d represents the (pixelated) surface brightness data of lensed images
with the data covariance CSI. The response m(ψ, s) is a function of both the
lensing potential and the source surface brightness parameters s. In the context
of galactic lenses, using a parametric lens model with free-form corrections
and a free-form source model, source inversion is for example successfully
employed to detect substructures or foreground structures (Vegetti and Koop-
mans, 2009; Vegetti et al., 2012). In a line-search-like6 iteration scheme, first
a parametric lens model would be reconstructed, and then pixelated correc-
tion to the lens potential and the free-form source model are constrained in
a maximum-posterior regression with regularization priors for both. Their
approach shares many design similarities with the free-form reconstruction
presented here and I will now describe how it could be adapted to augment
the present framework with source inversion capabilities.

The response is expressed as a linear operation applied to to a block vector
comprised of both the linearised free-form corrections to the lensing potential
and the source surface brightness rT = (s,δψ)T such that the negative log-
likelihood reads

χ2
SI(d|r) = (Mr− d)T C−1

SI (Mr− d) . (3.32)

The elements of the response operator

M = B
(
L−DsDψ

)
(3.33)

are the blurring induces by the instrumental point spread function (PSF) B, the
lens operator L and the correction term DsDψ, which will be explained below.
The lensing operator encodes the mapping between the lens/data and source
planes and acts on the source part of r. The original authors chose a regular
Cartesian grid for the lens plane based on the pixels of the observational data
and a Delaunay triangulation for the source plane. This choice of an unstruc-
tured mesh is motivated by the fact that the lens mapping induces significant

6in line-search optimization, parts of the full parameter space of a model are alternately
kept fixed while others are optimized
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FIGURE 3.5: Illustration of the support structures in (Vegetti
and Koopmans, 2009); Half of the nodes of the regular grid
representing the image plane on the left get mapped to the source
plane (right) and become nodes of the Delaunay triangulation
there. The other half, when mapped, falls within the triangular

cells.

distortions such that it is a priori unclear where on the source plane high
resolution is required. By defining the nodes of a Delaunay mesh as a lensed-
back subset of the lens plane pixels, the source plane resolution automatically
adapts as reconstruction iterations progress. In such a scenario and if say
ever odd-numbered pixel in the data domain is cast back to the source plane
to define the nodes of the Delaunay mesh, then every even-numbered pixel
would land within one triangular cell of that source mesh7 and its assigned
surface brightness value would be the result of simple linear interpolation
based on the three surrounding nodes. This is exactly the mapping encoded
in L, illustrated in Figure 3.5. It is a nd × ns matrix, where nd is the number
of data pixels and ns the number of source nodes. Every row has either one
non-zero entry for the corresponding source node, or three entries for the
linear interpolation weights if the respective data pixel is not connected to a
source node by the lens mapping.

In the present framework both lensing potential and source would be
represented by mesh-free domains, a transition that is relatively straightfor-
ward. Mesh-free support has the same desired feature of adaptive resolution
as the Delaunay triangulation and as section 3.2 showed, interpolation and
differentiation are readily implemented with a pre-defined number of nearest
neighbours then taking the role of the nodes of the Delaunay cell in both.
The next and most obvious change is to drop the parametric lens model and
promote the corrections on the lensing potential to be the entire lens model.
They are subject to the correction term DsDψ, which is motivated as follows
(Koopmans, 2005). After one iteration of the reconstruction (ignoring blurring
for now), the discrepancy between data and model is

δd = d−Ls. (3.34)

7or may fall outside the the mesh, but most Delaunay implementations account for such
cases by defining an encompassing "infinite" cell
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If this discrepancy is due to an incorrect lens mapping and not an incorrect
source model, the goal is to correct the lensing potential, such that this discrep-
ancy is minimized. Assuming continuous fields for a moment, we can write

δd(θ) = s(β + δβ)− s(β) ≈ ∇βs(β)δβ, (3.35)

i.e. the discrepancy is caused by a shift in the source plane coordinate δβ,
such that the wrong surface brightness value gets assigned to the image plane
position θ. This, to first order, can be re-expressed using the gradient of the
surface brightness. Using the lens equation (1.55), the shift in source coordinate
can be associated to a correction in the deflection angle, and thus the gradient
of the lensing potential and we arrive at

δd(θ) ≈ −∇βs(β)∇θδψ(θ). (3.36)

In the discrete and linearised response above, the gradient of the source plane
surface brightness is expressed by the matrixDs, whereas the gradient operator
on the lens plane is expressed by Dψ, such that their product, applied to the
potential part of r returns the equivalent of Eq. (3.36). As with the non-
linearities in the weak lensing contribution, the lensing operator L as well
as the surface brightness gradient Ds have to be iteratively updated, starting
from a reasonable prior. Experiments to incorporate such a source inversion
technique in our framework are ongoing, but complicated by the fact, that
a purely free-form lens reconstruction can much easier run into unphysical
false minima of the log-posterior, caused by numerical artefacts or noise, than
a method that only allows linear corrections to a parametric model that gets
repeatedly recomputed throughout the reconstruction.

The third method to use strong lensing as a constraint in the present frame-
work is by approximating the positions of critical curves on the image plane
by the positions of giant tangential arcs. The extreme magnifications necessary
for multiple images to blend together occurs only for sources close to caustics
on the source plane. Their images are therefore expected to lie close to the cor-
responding critical curves, even though they usually don’t trace them exactly
but rather cross them. Nevertheless, they are in general a reasonable indicator
for the position of critical curves. On these critical curves, the determinant of
the lensing Jacobian formally has to vanish as the magnification µ formally
becomes infinite, which motivates the negative log-likelihood

χ2
CC(µi|ψ) =

(detA)2

σ2
i

=

[
(1− κ)2 − γ2

1 − γ2
2

]
σ2

i
, (3.37)

where θi is the position of a point of the image plane that is part of a giant
tangential arc and σi is the positional uncertainty. As before, the log-likelihood
is kept quadratic in the parameters by iteratively updating the non-quadratic
contribution. Expressed in terms of linear operators applied to the lensing
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potential and summed over all points belonging to an arc, the log-likelihood
thus reads

χ2
CC(µ|ψ) = ∑

i

detAi,p

σi

[(
1− Kijψj

)2 −
(
G1,ijψj

)2 −
(
G2,ijψj

)2
]

, (3.38)

with detAi,p based on a previous iteration. The degree to which a giant arc
actually traces the critical curve depends on the shape and (sub-) structure
of the lens and of course on the resolution of the observation, but they are
generally expected to be sufficiently close on the image plane.

3.4 Regularisation

As already mentioned above, free-form reconstruction methods are particularly
prone to the problem of overfitting. To avoid this inadvertent modelling of
noise patterns as part of the lensing potential, a prior/regularisation term that
penalizes deviations from a smooth potential is required. This can be achieved
by minimizing the difference between the local curvature of the potential,
i.e. its Hessian, and that of a smooth moving prior. Since the Hessian of a
function is the transpose Jacobian of its gradient, the Hessian of the lensing
potential by construction is just 1−A, and thus given by the convergence
and the shear. We opt to minimize the difference between the reconstructed
and prior convergence and shear in a Gaussian approach and end up with the
terms

χ2
reg,κ(ψ|ακ) =

(
κp −Kψ

)THκ

(
κp −Kψ

)
(3.39)

χ2
reg,γ(ψ|αγ) =

(
γp − Gψ

)THγ

(
γp − Gψ

)
, (3.40)

where Hκ and Hγ are diagonal matrices with entries ακ and αγ on their re-
spective main diagonals. They set the regularisation strength, i.e. the relative
weight of the regularisation term with respect to the data likelihoods, poten-
tially node by node. There is no distinct way to determine the regularisation
strength from first principles. It’s mostly set using guidance from experience
or optimised for, using simulated data. The moving priors κp and γp are taken
from a previous iteration (again see section 3.6), starting with an initial guess,
which here will always be a flat zero, i.e. no lens at all. While this starting point
is indeed smooth, the regularisation described here on its own is no guarantee
that noise in the data will not drive the reconstructed solution far away from
smoothness. This problem will be mitigated by the two-level iteration scheme
described in section 3.6. Another possible approach for smooth regularisation,
via an entropic term involving a smoothed moving prior, will be presented
in the next section. For the overall reconstruction framework presented here,
we opt for the least-squares terms (3.39, 3.40) for reasons of computational
simplicity on the mesh-free domain.

If the method is augmented by the source inversion techniques discussed
above, the parameter space of the reconstruction is enlarged by the source
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model and an additional regularisation term for the surface brightness of the
source becomes necessary. Various approaches can be found in the literature
(Suyu et al., 2006; Tagore and Keeton, 2014) and often again constrain the
Hessian of the model in order to avoid overly peaked solutions.

3.5 Adding non-lensing constraints

As the projected gravitational potential ψ is the quantity defining all lensing
observables and therefore the quantity this reconstruction framework is built
on, any additional non-lensing constraint that is to be incorporated in this
framework has to be relatable to ψ. Luckily gravity is a driving force for most
astrophysical processes, so a physically motivated relation (rather than an
empirical scaling relation) to the Newtonian potential Φ of a cluster can be
constructed for a variety of observables. To do so however, it is necessary
to overcome a fundamental problem in Astronomy: the physical processes
happen in three-dimensional space whereas observations are taken in one
projection, on the two-dimensional sky. So in order to obtain an estimate on
ψ based on a non-lensing observable via physically motivated relations one
has to take a detour. First deproject the observed quantity to get an estimate of
the underlying three-dimensional distribution, then use physical connections
to get an estimate on the three-dimensional Newtonian potential and subse-
quently project the latter to arrive at ψ. This section will describe these steps,
first introducing the deprojection algorithm used, then detailing the physics
involved in connecting X-ray, thermal SZ and kinematic observations to the
Newtonian potential. Lastly problems arising from re-projecting discrete and
bounded data as well as possible solutions are presented.

At this point it is important to note the following limitation of the presented
method. Recalling the introduction of gravitational lensing in section 1.3.1, es-
pecially equations (1.49) and (1.51), it becomes obvious that in a general metric
theory of gravity, lensing probes the the difference8 Φ−Ψ of the two Bardeen
potentials, the so-called Weyl potential. The physical processes involving non-
relativistic matter described below however only depend on the Newtonian
potential Φ, i.e. the potential in the time-time term of the metric element.
Only if General Relativity as the specific theory of gravity is assumed, the two
potentials are identical up to a sign and thus relativistic and non-relativistic
particles probe the same potential. Only in this case observations based on
relativistic and non-relativistic particles can be combined in the way it is done
here.

Several ways to include the potential estimate based on de- and reprojected
data are conceivable, depending on the specifics of the deprojection algorithm
and the data at hand. In general the respective log-likelihood term that enters
the reconstruction will be of the form

χ2
X(ψ̄X|ψ) = (ψ̄X −Pψ)T C−1

X (ψ̄X −Pψ) . (3.41)

8or sum, depending on sign conventions
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P here denotes any operator that ensures compatibility of the coordinate
basis of the model ψ and that of the data-based estimate ψ̄X and CX is the
covariance matrix of ψ̄X. The operator P depends mostly on the specifics of
the deprojection method and will be revisited in section 3.6.

3.5.1 Richardson-Lucy deprojection with correct amplitudes

Here I briefly recap the main ideas of the Richardson-Lucy (RL hereafter)
deprojection method. For more extensive accounts see Lucy (1974), Lucy (1994),
Konrad et al. (2013), and Majer et al. (2016) among others. The RL algorithm is
chosen here as its design resonates well with that of the lensing reconstruction.
It is a local method to reconstruct the three-dimensional distribution of a
physical quantity based on a two-dimensional projection, without assuming
a specific physical model. It is however not entirely free-form, since any
deprojection method needs assumptions concerning the distribution along
the line of sight. In the present case, this is done by assuming that the three-
dimension distribution adheres to certain degree of symmetry. For brevity
and simplicity we here assume spherical symmetry and thus radial profiles,
but the method can be extended to other symmetries as well (Reblinsky, 2000;
Majer et al., 2016).
The RL algorithm was developed as a solver for any inverse problem that can
be phrased as a Fredholm or Volterra9 integral equation of the first kind, i.e.

g(x) =
∫

dξK(x|ξ) f (ξ), (3.42)

where g is a function accessible to observations while f is the not directly
observable target function and K(x|ξ) is the kernel connecting the two. The
applications the original authors had in mind were all reducible to cases where
g, f and K(x|ξ) are probability density functions (pdf) and therefore adhere to
normalization and non-negativity constraints. In that case, Bayes’ theorem in
Eq. (3.1) states that

K(ξ|x) = K(x|ξ) f (ξ)
g(x)

, (3.43)

where K(ξ|x) is a pdf describing the unknown inverse kernel, such that

f (ξ) =
∫

dxK(ξ|x)g(x). (3.44)

Equations (3.43) and (3.44) suggest an iterative scheme to estimate f (ξ) given
g(x) and an initial guess f̃0(ξ), by updating f̃ (ξ) in every step using an esti-
mated inverse kernel based on the reprojected result of the previous iteration.
This scheme can be expressed as a maximum likelihood approach (Lucy, 1974)
and refined by adding an entropic regularization term (Lucy, 1994) and thus
qualifies as a maximum entropy method. The resulting algorithm will now be
detailed for the case of deprojecting a spherically symmetric field.

9Fredholm equations have fixed integration bounds, in Volterra equations they are variable
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Assuming a three-dimensional field f (r), a two-dimensional projection of
said field can be expressed as

g(s) =
∫

dr f (r)K(s|r), (3.45)

where r and s denote three- and two-dimensional radius respectively10 and
K(s|r) is the projection kernel, which for spherical symmetry reads

K(s|r) = r√
r2 − s2

Θ(r2 − s2). (3.46)

Here Θ(r2 − s2) is the Heaviside step function. Given the projected field g(s),
the RL-deprojection algorithm infers locally, i.e. for each line of sight, a free-
form (i.e. no underlying model is assumed, only symmetry) estimate f̃ (r) of
the three dimensional field, by iteratively maximizing the objective functional

Q[ f̃ ] = H[ f̃ ] + S[ f̃ ], (3.47)

where
H[ f̃ ] =

∫
ds g(s) ln g̃(s) (3.48)

is the log-likelihood for a reprojected estimate g̃(s) and

S[ f̃ ] = −α
∫

dr f̃ (r) ln
f̃ (r)
π(r)

(3.49)

an entropic regularization with regularization strength α and a smooth moving
prior π(r) =

∫
dr′P(r|r′) f̃ (r), where P(r|r′) is a appropriately chosen window

function.
The explicit form of H stems from the assumption that the measured g(s)

are drawn from a Poisson distribution11 with the mean given by the reprojected
estimate g̃(s), independently for each s. The regularization term S on the other
hand penalizes a large Kullback-Leibler divergence between the inferred f̃ (r)
and a smoothed version of itself, ensuring a sufficiently smooth final estimate.

Starting from an initial guess for the three-dimensional field f̃0, each algo-
rithmic step takes the form

f̃i+1 = f̃i + ∆ f̃i (3.50)

∆ f̃i =
δQ
δ f̃i
−
∫

dr f̃i(r)
δQ
δ f̃i

= ∆H + ∆S

∆H = f̃i

(∫
ds

g(s)
g̃i(s)

K(s|r)− 1
)

∆S = −α f̃i

(
S + ln

f̃i

πi
+ 1−

∫
dr′

f̃i(r′)
πi(r′)

P(r|r′)
)

.

10r =
√

s2 + z2, where z here denotes the coordinate along the line of sight
11even though g(s) ∈ R≥0
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The algorithm converges usually within only a few iterations, even when
the initial guess is significantly off. It preserves normalizations and ensures,
within a certain range of regularization strengths α, also non-negativity of
all fields and kernels involved. As explained above, for reasons of internal
consistency, fields and kernels need to be normalized with respect to their
domains, but the correct amplitude and units for the resulting f̃ (r) can be
restored as follows.
Assuming that the two dimensional input field and the projection kernel are
normalized via

gn(s) =
1
Ig

g(s), (3.51)

Kn(s|r) =
1

IK(r)
K(s|r) (3.52)

Ig =
∫

dsg(s) (3.53)

IK(r) =
∫

dsK(s|r), (3.54)

then inserting Eq. (3.52) and (3.45) in Eq. (3.51) and integration over the
two-dimensional domain yields∫

dsgn(s)︸ ︷︷ ︸
=1

=
∫

dr
IK(r)

Ig
f (r)

∫
dsKn(s|r)︸ ︷︷ ︸

=1

, (3.55)

such that ∫
dr f̃n(r) = 1, f̃n(r) =

IK(r)
Ig

f (r). (3.56)

So we can recover the units and scale of the three-dimensional field via

f̃ (r) =
Ig

IK(r)
f̃n(r) (3.57)

from the normalized output of the RL-algorithm f̃n(r). Thus equipped with a
deprojection method, we move on to connecting the deprojected quantity to
the Newtonian potential.

3.5.2 X-ray

In the case of X-ray observations, the observed two-dimensional data are
counts of X-ray photons hitting a detector. The number of photons detected
NX is connected to the surface brightness via

NX(s) =
∆tAeff

h̄ω̄
SX(s), (3.58)
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where ∆t is the exposure time, Aeff the effective area of the detector and h̄ω̄
the average energy of the photons. Recalling section 2.1.3, the X-ray surface
brightness can be expressed as the line-of-sight projection of the frequency-
integrated X-ray emissivity of the ICM

jX(r) = Cρ2(r)
√

kBT(r), (3.59)

where ρ(r) and T(r) are gas density and temperature respectively and where
we have collected the constant terms in Eq. (2.7) in the overall constant C,
which is approximately

C ≈ 6.89 · 1023 erg cm3

g2 s
√

eV

for a fully ionized hydrogen plasma12. As we assume spherical symmetry,
the density and temperature and consequently the emissivity are treated as
functions of three-dimensional radius r only.

So, by translating the photon counts to the surface brightness and depro-
jecting the latter, we arrive at the frequency-integrated emissivity. To get an
estimate for the gravitational potential of the cluster from this, some assump-
tions about the state of the ICM have to be made. Here we opt for

• an ideal gas law

kBT = m̄
P
ρ

, (3.60)

allowing to express the ICM temperature as a function of density and
pressure P.

• a polytropic stratification

P
P0

=

(
ρ

ρ0

)γ

, (3.61)

with polytropic index γ, connecting pressure and density

• and (approximate) hydrostatic equilibrium

∇P = −ρ∇Φ (3.62)

connecting pressure and density to the Newtonian potential

(Konrad et al., 2013; Tchernin et al., 2018). As mentioned in chapter 2, at least
the last assumption is not necessarily valid for every cluster but nevertheless
often used. Studies suggest that the deviations from hydrostatic equilibrium
are most relevant in the innermost cores and the outskirts of clusters as well as
in recent mergers (Shi and Komatsu, 2014; Biffi et al., 2016). Also polytropic

12Z = 1, m̄ = 1
2 mproton
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stratification can not necessarily be safely assumed for the centres of clusters,
as they may host cooling cores (Markevitch, 1998). The locality of the RL
deprojection method however allows us to restrict ourselves to intermediate
ranges in radius, which should minimize the effects of hydrostatic bias and
localised cooling flows, by neglecting the areas of the cluster, where these
biases dominate.

Introducing the dimensionless gravitational potential

ϕ(r) = −γ− 1
c2

s,0
(Φ(r)−Φcut) (3.63)

with the sound speed at some reference radius r0

c2
s,0 = γ

P0

ρ0
= γ

kBT0

m̄
(3.64)

and the potential at a cut-off radius Φcut ≡ Φ(rcut), the emissivity can be
expressed as a function of that dimensionless gravitational potential

jX(r) = Cρ2
0T1/2

0 ϕ(3+γ)/(2γ−2)(r). (3.65)

T0 and ρ0 are temperature and density at the reference radius r0 respectively.
Thus, using the aforementioned assumptions, an estimate of the polytropic

index and a measurement of the X-ray temperature of the ICM are needed
to infer the three dimensional gravitational potential Φ(r) from the observed
X-ray surface brightness.

3.5.3 Thermal SZ

As introduced in section 2.1.3, the two-dimensional observable of the thermal
SZ effect is the intensity change of CMB photons with respect to the Planck
spectrum

∆ItSZ(x,s)
Bω

= g(x)y(s) = g(x)
kBσT

mec2

∫
dχTe(s,χ)ne(s,χ)

=
∫

dχPeff(s, χ), (3.66)

where we have defined the effective pressure Peff (Majer et al., 2016). Thus,
deprojecting the spectral distortion, we can determine the effective pressure.
Using the same assumptions as in the X-ray case above, that is

• ideal gas law

• polytropic stratification

• approximate hydrostatic equilibrium,



56 Chapter 3. Reconstruction methods

we can again connect density, temperature and hence the effective pressure to
the dimensionless gravitational potential and arrive at the relation

Peff = g(x)
kBσT

mec2 ρ0T0ϕγ/(γ−1). (3.67)

And again, we additionally need an estimate of the polytropic index and the
ICM temperature to recover the Newtonian potential.

3.5.4 Kinematics

As shown in section 2.1.3, the radial velocity dispersion of galaxy members
within the cluster can be connected to the Newtonian potential via the Jeans
equation (2.5). The actual observable is the density-weighted projection of that
dispersion. We can identify the density-weighted radial velocity dispersion
with an effective pressure Peff = nσ2

rr, which illustrates the formal similarity of
the Jeans and the hydrostatic equation, as the former now reads

∂Peff

∂r
+ 2βani

Peff

r
= −n

∂Φ
∂r

, (3.68)

where we introduced the common anisotropy parameter βani = 1− σ2
θθ

σ2
rr

and

set σ2
θθ = σ2

φφ due to the isotropy assumption (Binney and Tremaine, 1987).
Numerical tests in Sarli et al. (2014) indicate that a polytropic stratification for
this effective galaxy pressure can be assumed, such that we can again close
the system of equations and connect the effective pressure uniquely to the
dimensionless gravitational potential via

pη
eff(r) =− ϕ(r) + exp

(
−2

∫ r

r0

dx
ηβani

x

)
+ 2

∫ r

r0

dy
ηβani

y
ϕ(y) exp

(
2
∫ y

r
dx

ηβani

x

)
, (3.69)

with
η =

γ− 1
γ

, peff =
Peff

P0
, ϕ =

n0η

P0
Φ,

and the polytropic index γ. This connection is more complicated than in the
cases above, due to the anisotropy term in the Jeans equation. In fact Eq.
(3.69) is a Volterra integral of the 2nd kind and needs to be solved numerically.
Despite this, the general idea remains the same and estimates of the polytropic
index and the effective pressure at some reference radius are needed to obtain
the Newtonian potential.

3.5.5 Artefact treatment

Now that we are able to infer the three-dimensional Newtonian potential from
non-lensing observations we just need to project it in order to arrive at an
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estimate of the lensing potential that can be incorporated into our reconstruc-
tion framework. There is however a complication. The discrete and truncated
nature of our data-based potential estimate can introduce numerical artefacts
during the projection that need to be taken care of. I will first introduce the
origin of such artefacts and then present means to amend them.

Origin of artefacts

In our present scenario of a thin lens adhering to spherical symmetry, the
projection integral for the lensing potential formally is given by

ψ(s) =
2
c2

Dls

DlDs

∫ ∞

s
dr

r√
r2 − s2

Φ(r), (3.70)

where, in comparison to Eq. (1.66), we replaced the line-of-sight integral
with an integral over the three-dimensional radius using the projection kernel
defined in Eq. (3.46). But since the gravitational potential is based on finite
data, for example the X-ray surface brightness within a finite field of view,
it is only known up to a certain radius rdata. The projection integral thus is
truncated at rdata

ψ (s) ≈ 2
c2

Dls

DlDs

∫ rdata

s
dr

r√
r2 − s2

Φ(r). (3.71)

The applicability of this approximation13 critically depends on the choice of
rdata. For large enough fields of view, the gravitational potential may drop
off to small enough absolute values within rdata such that the region outside
does not significantly contribute to the integral and therefore can safely be
neglected. If the field of view is however comparable to the virial radius of
the cluster, these neglected contributions become increasingly important and
simply cutting them away introduces artefacts that severly alter the radial
curvature of the resulting lensing potential and thus systematically bias con-
clusions on the mass distribution in the lens. Figure 3.6 illustrates this effect.
It shows the difference of the projected gravitational potential of a NFW halo
according to Eq. (3.71) from the analytically known lensing potential. If the
integral is truncated at the virial radius, the result significantly deviates from
the truth on all radii. With increasing upper bound, the differences become
smaller and restricted to larger and larger radii. This effect is less pronounced
for functions that fall off steeper as can be seen in Figure 3.7, where the same
procedure is shown for the projected density versus the analytically known
convergence. Since the X-ray emissivity of the ICM is quadratic in the gas
density and therefore falls off even steeper, it is not surprising, that truncation

13It is perhaps noteworthy that the truncation is not the only approximation. Of course
data, and thus the estimated gravitational potential, is discrete which means the integral in
the projection is replaced by a sum. This however proves to have little influence on the result
as even a simple midpoint Riemann sum produces good results once the truncation radius is
large enough.
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FIGURE 3.6: Difference between projections of the gravitational
potential of a NFW halo, truncated at different multiples of the
virial radius, and the analytic lensing potential of a NFW lens,
as a function of two-simensional radius s; all curves shifted to

coincide at the innermost radius

artefacts usually do not interfere with the RL deprojection algorithm even
though it includes a reprojection in every iteration.

Analytic continuation

To amend these artefacts in cases where radial extent is not large enough to
ignore them, we chose to introduce an analytic continuation of the 3D gravi-
tational potential outside of rdata. Such an extrapolation needs to be justified
and treated with care. Several functional forms are possible to reasonably de-
scribe the gravitational potential outside the cluster and most of them formally
diverge when integrated up to infinite radius, so still an upper bound for this
continuation has to be defined. Both the choice of functional form and upper
bound of the continuation introduce some level of arbitrariness to the method,
but are necessary to counteract the biasing effect of projection artefacts. This
leads to the adjusted projection integral

ψ (s) ≈ 2
c2

Dls

DlDs

[∫ rdata

s
dr

r√
r2 − s2

Φ(r) +
∫ rcut

rdata

dr
r√

r2 − s2
fcont(r)

]
, (3.72)

where fcont(r) is the analytic continuation function and rcut is the upper bound
of the integration outside rdata.

The simplest, and in a way most conservative choice is to assume that
there is no significant mass contribution outside of rdata and that therefore the
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potential in this radial regime is dominated by the mass enclosed within rdata.
In this case the continuation takes the form

fcont(r) =
A
r
+ B, (3.73)

where A,B are fixed by smoothness conditions, i.e. we demand that

Φ(rdata)
!
= f (rdata) (3.74)

∂Φ
∂r

(rdata)
!
=

∂ fcont

∂r
(rdata). (3.75)

While the assumption, that there is no more mass outside rdata, most likely
does not hold in a strict sense, tests with hydrodynamical simulations show
that it can be sufficient to reconcile reconstructed and true projected potential
(see section 4.2).

3.6 Implementation

After introducing a classification system of reconstruction methods and posi-
tioning our own method within that system, I discussed the various data we
can use to constrain the lensing potential of a galaxy cluster. In the following, I
finally present the current specific implementation of this reconstruction frame-
work. From here on, non-lensing constraints will be restricted to X-ray data,
deprojected assuming spherical symmetry, as that example already highlights
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all the features and steps relevant for the combination of non-lensing and lens-
ing data in our free-form reconstruction. First I will detail some preparatory
steps that need to be taken in order to render X-ray surface brightness data
usable for our purposed an then I will present the implemented reconstruction
code itself, SAWLENS2. In the last section, I will go over the pipeline employed
to analyse the outcome of the reconstruction and the ways to estimate and
assign errors to it.

3.6.1 Preparations

In order to use X-ray data in SAWLENS2 as indicated by Eq. (3.41), we so
far still lack an estimate of the noise and correlation properties of the data,
and how this affects the estimated lensing potential. In other words, we have
to determine the covariance matrix CX. To do so, we produce a number of
realisations of the data, according to the expected probability distribution
of the data, and then subject these realisations to the de- and reprojection
procedure outlined above, to arrive at a set of realisations of the estimated
lensing potential ψ̄X. Based on these realisations we then can compute the
covariance matrix.

As the X-ray surface brightness is measured counting photons hitting a
detector and since we can always rebin or coarse-grain the data such that
the point spread function and pixel correlations due to detector systematics
can be ignored, we can draw realisations in the present case from a Poisson
distribution, where the mean is given by the actual observation.

Since a large number of realisations is needed to accurately infer the covari-
ance matrix and since we are only interested in the radial profiles of surface
brightness anyway (due to the assumption of spherical symmetry in the de-
projection step), it is convenient to first reduce the observed photon count
map to a cumulative profile, that still adheres to the same noise properties but
requires much less space and computational time. To this end, we define the
center of the count map to be the peak of the surface brightness (excluding
obvious artefacts and point sources) and draw a number of evenly or logarith-
mically spaced radial bins around that center, before summing up the counts
of all pixels in each of those bins. We then draw the above mentioned Poisson
realisations, as this profile of sums is still adhering to the same statistics as
the counts. After the realisations are created, we divide the number of counts
in each bin by the number of pixels in that bin to arrive at realisations of the
azimuthally averaged radial count profile. With the average photon energy,
the exposure time and the effective area of the detector, we can compute the
surface brightness profiles from the count profiles and are able to deproject
them to obtain a set of realisations of the X-ray integrated emissivity. All steps
so far are easily implemented in any scripting language and template python
code is provided and packaged with the deprojection implementation, which
is written in C++ for performance reasons.

To compute the gravitational potential from that, we now require an esti-
mate of the polytropic index γ and of the temperature of the ICM (see section
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3.5). The polytropic index can be determined by plotting the frequency in-
tegrated X-ray emissivity against the ICM pressure, based on deprojected
thermal SZ observations, on the same domain, since both relate to the di-
mensionless potential with different powers of γ. This plot also immediately
identifies the radial regime in which the assumption of polytropic stratifica-
tion can be safely used, as deviations from it result in a broken power-law
behaviour. The application of our method to a realistic hydrodynamical simu-
lation will illustrate this further.

The temperature of the ICM can be inferred from the shape of the X-ray
spectrum and for our purposed it is only important that it is measured at
the same radius or averaged over the same domain as the normalisation of
the emissivity. As an example, if ρ0, T0 are supposed to be fixed at a certain
radius r0, we divide the emissivity by its value at r0 to translate it to the
dimensionless potential according to Eq. (3.65). In order to determine the
dimensional Newtonian potential we then have to obtain the ICM temperature
and thus the sound speed at that same radius r0. Where that radius is, is
largely irrelevant as long as internal consistency is ensured.

For the projection we assume an analytic continuation according to Eqs.
(3.72, 3.73) up to a cut-off radius that is a multiple of rdata. As mentioned above,
the parameters of the analytic continuation are set by smoothness conditions,
i.e. by demanding that the values of fcont.(rdata) and its first derivative coincide
with the respective values in the deprojected profile. In order to ensure that
especially the finite-differencing-based radial derivative for the latter is still
driven by data rather than noise at rdata we employ a series of simple sanity
checks.

We estimate the signal to noise ratio for the enclosed mass as a function of
radius

GMenclosed(r) = r2 ∂Φ(r)
∂r

(3.76)

from Poisson realizations of the X-ray data, as this directly sets the slope of the
continuation A. Figure 3.8 shows an example for a mock NFW halo (see also
section 4.1).
Additionally we check for unphysical behavior by testing the non-negativity
of the Laplacian ∆Φ(r), which is of course proportional to the density via
Poissons equation.
If the outer bins fail to meet these criteria, the analytic continuation parameters
would likely be set by random fluctuations and introduce new artifacts rather
than correcting those induced by truncating the projection integral. Therefore,
if necessary we cut the profile at the outermost radial bin where both conditions
are still satisfied and start the continuation there.

3.6.2 SaWLens2

SAWLENS2 is a modular C++ code framework to allow reconstructions of
the projected potential of a gravitational lens based on mesh-free support. Its
development lineage traces back to Bartelmann et al. (1996) and Cacciato et al.
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FIGURE 3.8: signal-to-noise ratio for the enclosed mass of a mock
NFW halo (see section 4.1) as a function of radial bin. Horizontal
lines denote signal-to-noise values of 1, 3 and 5 respectively.
Crossed-out bins fail the sanity checks and are excluded from the

analysis.

(2006), its first version under this name, then still using adaptive regular grids,
was presented and applied to the CLASH sample of massive galaxy clusters in
Merten et al. (2009) and Postman et al. (2012) and its current overhauled mesh-
free version was first presented in Merten (2016). A very similar approach is
described in Bradač et al. (2005). SAWLENS2 is a polymorphic library of classes
and routines, falling into three broad groups, the field node builders, the
field and the system builders, as well as a number of auxiliary routines to
manage inputs, outputs and the like. Field node builders translate different
data sets into a format usable in SAWLENS2, and create a mesh-free set of
support nodes based on this. In principle every data set used in a reconstruc-
tion can contribute with its own mesh-free domain. The field class combines
these into a unified set of nodes that defines the support for the reconstructed
potential. Further, the field implements all of the necessary book keeping in
the course of the reconstruction. Finally, the system builders implement the
contributions to the linear system of equations constraining the lensing poten-
tial, based on the log-likelihood terms defined above.The LSE is then solved
for the lensing potential by the field class, using standard CLAPACK14 linear
algebra routines. Finally, the resulting lensing potential at formally infinite
source redshift (see section 3.2) is converted to the convergence κ at a specified
redshift by the auxiliary class lens. Figure 3.9 schematically illustrates the
interplay of these classes. A ready-to-use driver for cluster reconstructions is
packaged with the code, but the modular and polymorphic structure of the
code allows for implementations tailored to the use case at hand.

14https://www.netlib.org/clapack/

https://www.netlib.org/clapack/


3.6. Implementation 63

FIGURE 3.9: Schematic illustration of the basic classes in
SAWLENS2, as well as their interplay;

In the following I will describe the specific choice and management of
the mesh-free support chosen here, before detailing the iteration scheme em-
ployed in SAWLENS2. Finally I will introduce the explicit implementation
of the X-ray log-likelihood used in the applications in the next chapter. As
SAWLENS2 started out as a lensing reconstruction framework, many of its key
design features, like the support structure and iteration scheme, are motivated
by the peculiarities of especially weak lensing.

Mesh-free support

The mesh-free domain as well as the RBF-based interpolation and differentia-
tion is handled using the separate library libmfree15, which implements all
RBFs listed in Table 3.1 and all FD operators necessary for lensing purposes, as
listed in Eqs. (3.15-3.18), as well as regular derivatives up to 2nd order in one,
two and three dimensions. The shape parameter of the RBFs can be optimized
against a selection of analytic test functions on any given mesh-free domain.

We chose the support structure of our reconstruction as follows. For the
weak lensing contribution the field node builder divides the shear cata-
logue up in a number of regularly spaced cells on the sky. Within each cell, it
randomly selects a galaxy and the coordinates of this galaxy are taken to be
the coordinates of a support node. It then identifies the nearest neighbouring
galaxies and assigns their mean shear to that node and computes the covari-
ance matrix according to Eq. (3.25). This most basic approach is well-suited
for evenly distributed shear catalogues as the ones we will use in the next

15https://bitbucket.org/jmerten82/libmfree

https://bitbucket.org/jmerten82/libmfree
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FIGURE 3.10: Workflow diagram depicting the SAWLENS2 itera-
tion scheme

chapter, but falls short in cases of masking or significant over- or underdense
regions in the background galaxy distribution. For these cases, other field
node builders, which add additional nodes if the local number density of
galaxies around a given node exceeds a predefined threshold, are supplied.

If strong lensing features like multiple images are used, the positions of
these images form another set of reconstruction nodes that is incorporated
in the mesh-free support structure. Therefore, not all nodes carry the same
kind of data, but the lensing potential is reconstructed on the combined set of
nodes.

Iteration scheme

In order to keep the contamination by shape noise in the shear measurements
low and to treat non-linearities in the log-likelihood terms, SAWLENS2 imple-
ments a two-level iteration scheme depicted in Figure 3.10.

The outer loop gradually increases the resolution of the reconstruction
by adding nodes to the shear-based mesh-free domain, while at the same
time reducing the number of nearest neighbours considered in the shear
averaging and covariance computation. Starting out with a relatively high
number of nearest neighbours (say 40), the shape noise induced by the intrinsic
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ellipticities of the sheared galaxies is efficiently suppressed (Bradač et al., 2005).
But since the covariance matrix is required to be numerically invertible, this
necessitates a comparatively low number of support nodes as otherwise the
overlap between nodes becomes too large and consequently the covariance
matrix too full to be reliably inverted. In the first iteration, the reconstruction
is regularized against a flat prior of zero convergence throughout the field of
view. This prior enters the reconstruction through the regularisation term and
through the terms in the log-likelihoods in Eqs. (3.26, 3.38), that are kept fixed
to ensure linearity of the responses with respect to ψ.

The inner loop repeats the reconstruction on the same domain, each time
updating the prior to the convergence map obtained from the previous iter-
ation. Once this process converges16 and the difference in the reconstructed
convergence maps between iteration falls below a predefined threshold, the
code exits the inner loop, interpolates the reconstructed convergence map to
the new mesh-free domain (containing more nodes) and thus starts the next
iteration of the outer loop until the final resolution is reached.

With each iteration in the outer loop, the number of nearest neighbours is
decreased, which increases the shape noise contribution. Since the reconstruc-
tion is however regularized against the convergence map recovered at lower
resolution, over-fitting of shape noise patterns continues to be suppressed. On
the other hand, the reduced number of nearest neighbours means a reduced
shear averaging area per node, resulting in a higher sensitivity to small scale
changes in the lensing potential.
Note that the explicit choice of number of support nodes, number of nearest
neighbours, regularisation strength and convergence threshold makes a certain
amount of arbitrariness and tuning unavoidable.17

Implemented X-ray constraints

As the deprojection of the X-ray surface brightness and the subsequent pro-
jection of the Newtonian potential are here carried out under the assumption
of spherical symmetry, this only constraines the azimuthally averaged radial
profile of the lensing potential. There is therefore no a priori natural support
domain and thus no set of reconstruction nodes is created solely to represent
X-ray data in this case. This changes if that assumption is relaxed, for example
to ellipsoidal symmetry, allowing to produce a two-dimensional estimate of
ψ. For such situations, we provide a field node builder, sampling support
nodes from the projected potential map, which in turn is likely based on
the pixels of the original observation. But for the present case of spherically
symmetric deprojections, such an approach would induce systematic errors.
Suppose a cluster that is clearly elongated in a direction perpendicular to the

16It is unfortunate that a description of the iterative reconstruction of the lensing convergence
almost necessarily requires the verb "converge"

17as an experience-based rule of thumb, the number of nodes times the number of nearest
neighbours should not significantly exceed the total number of galaxies in the shear catalogue
and the regularisation strength should be of the order of the diagonal elements in the inverse
data covariance matrices
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line of sight. The lensing terms in the combined log-likelihood do not suppose
any symmetry, so they pick up on the asymmetric morphology and steer the
reconstruction accordingly. If however on each node that is at the same radius,
the X-ray term enforces the same value of ψ̄X this then leads to conflicts and
overstates the importance of the X-ray constraint as it would demand strict
spherical symmetry in conflict with the lensing data. We therefore choose the
operator P in Eq. (3.41) such that

Pij =

{
N−1

i if node j falls in bin i
0 else,

(3.77)

where Ni is the number of nodes that lie within the radial bin i. This way, the
log-likelihood in Eq. (3.41) ensures that the reconstructed potential values ψ on
(azimuthal) average follow the profile ψ̄X while still leaving enough freedom
for local deviations from spherical symmetry required by lensing constraints,
for example due to significant substructure or an overall non-spherical cluster
morphology.

3.7 Analysis and error estimation

Even though the presented framework employs approximately linear re-
sponses to the model parameters throughout, the free-form character of the
method, combined with the regularisation priors, makes standard measures
for goodness-of-fit like the reduced χ2 non-trivial to compute (Bishop, 2006)
and the fact that several log-likelihood terms are only approximately quadratic
in ψ renders the usefulness of such measures questionable (Andrae, Schulze-
Hartung, and Melchior, 2010).

As an alternative way to assess the quality of the reconstruction we choose
normalised data residuals. After the reconstruction we compute the residual
vector

r = d−m(ψ), (3.78)

for the combined data set d and the corresponding combined response m(ψ).
In case of uncorrelated data, we would now divide each entry of the residual
vector by the standard deviation of the corresponding data point. Since all
our data sets are however correlated we have to first transform the residual
vector into the eigenbasis of the combined inverse data covariance, in which
the latter is diagonal

T TC−1T = diag(λ1, . . . , λN), (3.79)

where N is the total number of data points, λi are the eigenvalues of the
combined inverse data covariance and T is the corresponding basis change
operator. The normalised residuals are then

rn,i =
(
T Tr

)
i
·
√

λi. (3.80)
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If the assumptions going into the reconstruction are valid and if the regu-
larisation is set properly, the normalised residuals should follow a Gaussian
distribution with zero mean and standard deviation of one. If their distribution
is significantly non-Gaussian, the assumed likelihood term was a bad choice.
If the distribution is Gaussian, but significantly narrower, the reconstruction is
likely under-regularised, i.e. the reconstruction would be overfitting the data.
Conversely, if the distribution is much wider, the regularisation may be too
strong.

Apart from assessing the quality of the reconstruction, we also need to
quantify the errors of reconstructed quantities, especially the convergence, as it
directly relates to the projected density distribution. Several ways to estimate
errors of a SAWLENS2 reconstruction are possible and I will present two18.

Since the reconstruction is entirely based on Gaussian likelihoods, all infor-
mation on errors on the parameters ψi and derived quantities can in principle
be obtained from the Fisher matrix

Fij ≡
∂2χ

∂ψi∂ψj
= Bij (3.81)

where we identified the coefficient matrix from Eq. (3.7). By construction,
its inverse is the covariance matrix of the reconstructed ψi. To get an error
estimate for the convergence we therefore only have to transform the inverse
Fisher matrix

Cκ = KTF−1K, (3.82)

using the FD operator for the convergence K. The diagonal elements of this
matrix are then the variance of the reconstructed convergence at the respective
nodes. The downside of this method of error estimation is, that it requires
the explicit inversion of the coefficient matrix, unlike in the actual solving
of the LSE. Since the coefficient matrix is rather dense, numerical inversion
is not guaranteed to be stable, and some form of matrix conditioning, for
example Tikhonov regularisation (Tikhonov et al., 1995), is often needed to
make it feasible at all. We nevertheless compute this covariance estimate in
SAWLENS2 and present the result in the next section.

The standard way of error estimation in SAWLENS2, however is resam-
pling, specifically bootstrapping (Andrae, 2010; Merten, 2016). In this mode,
SAWLENS2 creates a number of realisation of the reconstruction by resam-
pling (with replacement) the entire shear catalogue and randomly sampling
the source redshift of strong lensing constraints from their confidence range.
The X-ray based lensing potential profile is also bootstrapped, by resampling
the Poisson realisations created for the covariance estimation and averaging
over the resampled set instead of the original to create the mean projected
profile, but keeping the original covariance matrix.

Since the shear catalogue gets resampled for each bootstrap realisation
and as there is an element of randomness in the creation of the mesh-free
domain from it anyway, all these realisations lie on slightly different domains.

18Another error estimation for lensing-only reconstructions can be found in Majer (2014)
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In order to create an estimate of the errors on the default reconstruction, we
therefore interpolate the bootstrapped convergence maps onto the domain
of the default map, before computing averages and standard deviation. We
have to point out, that, most likely due to numerical instabilities along the way,
a small fraction of bootstrap realisations returns entirely unphysical results,
like convergence values several orders of magnitudes above the weak lensing
regime in a reconstruction without strong lensing constraints. We identify and
discard such obviously corrupted cases before the error estimation.
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Chapter 4

Application

In the following, I will present applications of the reconstruction framework
described in Section 3.2 to simulated clusters, in order to detail the intended
usage, features and potential advantages and pitfalls of our method of combin-
ing lensing and X-ray data in a joint reconstruction. The first, most basic use
case will be a simple, spherically symmetric NFW halo, the second a realistic
cluster taken from a hydrodynamical simulation of large scale structure.
The results in this chapter are also presented in Huber et al. (2018).

4.1 Simple mock

For the most basic test of our method, we chose a case where all assumptions
are true by construction, i.e. a NFW halo with a polytropic ICM in perfect
hydrostatic equilibrium. We set the virial mass of the halo to Mvir = 5.0 ·
1014M�h−1 at redshift zl = 0.3, which according to the concentration-mass-
relation

c = 6
(

Mvir

1014M�h−1

)−1/5

, (4.1)

(Seljak, 2000; Klypin et al., 2001) results in a concentration of roughly c ≈ 4.71
and a virial radius of

Rvir =

(
Mvir

4π
3 ∆cρcrit(z)

)1/3

≈ 1.71 Mpc (4.2)

(Peebles, 1980), where we used the critical overdensity ∆c = 200. The lensing
properties of NFW halos are analytically known (Golse and Kneib, 2002), so
we can easily create1 a mock shear catalogue with sources at zs = 1.0 and
a source number density of ngal ≈ 20 arcmin−2. Setting the field of view
to 21 arcmin× 21 arcmin, this results in roughly 6900 randomly distributed
galaxies with shears to which we add Gaussian shape noise with σ = 0.3. We
set the gas mass fraction to fgas = 0.2 and follow the formalism of Komatsu
and Seljak (2001) to model the ICM in hydrostatic equilibrium and with a
polytropic stratification with index γ = 1.13. We create a surface brightness

1Part of this was done using the libastro code library developed by the cosmology group at
ITA Heidelberg.
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Halo Lensing X-ray

Mvir = 5.0 · 1014M�h−1 FoV= (21 arcmin)2 FoV= (21 arcmin)2

Rvir = 1.71 Mpc zs = 1.0 h̄ω̄ = 1.5 keV

c = 4.71 ngal ≈ 20 arcmin−2 texp = 3000 s

zl = 0.3 σ = 0.3 Aeff = 500 cm2

fgas = 0.2

γ = 1.13

TABLE 4.1: Defining parameters for the NFW halo and the mock
observations of it;

map with the same field of view and assuming a mean photon energy of
1.5 keV, an exposure time of 3000 s and a detector with an effective area of
500 cm2. All defining properties of the halo and the mock observations are
collected in Table 4.1 and for completeness, all relevant equations for the
creation of mock observations of a NFW can be found in Appendix B.

We add Poissonian noise to the resulting X-ray surface brightness before
creating 20 000 Poisson realisations of the surface brightness profile in 25
linearly spaced radial bins, as described in Section 3.6.1. We deproject these
realisations with the RL algorithm and, using the correct polytropic index and
temperature of roughly 8.1 keV, determine the Newtonian potential profile.
Based on the realisations of ΦX(r), we estimate the signal-to-noise ratio of the
enclosed mass as a function of radius, again as discussed in Section 3.6.1 and
depicted in Figure 3.8. Additionally we compute the Laplacian of the potential
as as a proxy for the total density, illustrated in Figure A.2. We now discard
all bins that fail our sanity checks, i.e. where the Laplacian is cleary negative
and where the signal-to-noise ratio falls below a threshold value of 3. The thus
truncated potential profile is subsequently projected along the line of sight
and using the analytic continuation according to Section 3.5.5 up to a cut-off
radius of three times the truncated data radius. The resulting lensing potential
profile is compared to the analytically known true profile in Figure A.3. Even
without knowing the true lensing potential an appropriate cut-off radius for
the analytical continuation can be found by gradually increasing it from the
truncated data radius. If the cut-off radius is too small, the projection artefacts
manifest themselves in deviations in the radial curvature of the potential
at increasing radii (with increasing cut-off, see Fig. 3.6). These curvature
deviations lead to ring-like structures on the reconstructed convergence map,
which are easily spotted as unphysical. This of course doesn’t pin down the
proper cut-off radius entirely, but gives a lower limit. The realisations of
ψX are Gaussian distributed as shown in Figure A.4, so the assumption of a
Gaussian likelihood is valid. We scale all realisations to a reference redshift
of zinf = 20 000 and use them to compute the inverse covariance matrix of the
projected potential profile.
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Nodes (nominal) 300 500 800

Nearest neighbours 33 21 12

Regularisation strength 200 400 600

TABLE 4.2: List of parameters defining the outer loop iterations
for the SAWLENS2 recosntruction of a NFW halo; The algorithm
has some leeway when subsampling the shear catalogue to set up
the mesh-free domain, so the actual numbers of nodes deviates
slightly from the nominal one. The regularisation strength is set
to be the same for both, the regularisation against the conver-

gence and the one against the shear (see Section 3.4)

With this, all ingredients are in place and we run SAWLENS2, once only
using the shear data (designated as W from here on) and once with both shear
and X-ray based constraints (W+X hereafter). In both cases, the mesh-free
support is defined by subsampling the shear catalogue as described in Section
3.6.2 and we choose three resolution levels, with 300, 500 and 800 nodes. All
parameters of the reconstruction are collected in Table 4.2 and as an example
the distribution of nodes in the highest resolution is shown in Figure A.1.

In order to estimate errors on the resulting convergence maps, we run 500
bootstrap realisations of these reconstructions each. Figures A.9 and A.10 show
the results of the default reconstruction with relative residuals based on the
Fisher error estimation (see Fig. A.8), whereas figures A.5 and A.6 show the
mean result of the bootstrapped reconstructions with relative residuals based
on the bootstrapped errors (see Fig. A.7). The convergence profiles based
on the default reconstructions and the mean of the bootstrap realisations are
shown in figures A.11 and A.12 respectively and Figure 4.1 depicts the profiles
of the default reconstruction with the bootstrapped error bars.

To assess the quality of the reconstruction we show the normalised residuals
(compare Section 3.7) in Figure A.13. We can summarise the results of this run
as follows.

• The central convergence peak is significantly more pronounced in the
combined reconstruction than in the shear-only case.

• The error estimate based on the Fisher matrix clearly and persistenty
(in both runs) shows numerical artefacts not related to any structure or
noise pattern in the data.

• The bootstrap-based error estimates for both cases are very similar with
very slightly increased errors for the combined case.

• The bootstrap-based error estimates increase towards the central peak, as
expected, since picking a slightly different node position has the largest
effect where the gradient of the convergence is large.
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FIGURE 4.1: Reconstructed convergence profiles for a NFW
mock cluster, with error bars inferred from averaging over boot-

strapped samples;

• The convergence profile based on the bootstrapped reconstruction in-
dicates a slight bias towards higher convergence values in the lensing
reconstruction and the outskirts of the combined. The origin of this is
not entirely clear, but could lie in under-regularisation.

• the relative residuum (κrec − κtrue) /σκ,BS with respect to the boot-
strapped error estimation shows better agreement in the combined
case and indicates a fairly unbiased reconstruction.

• The normalised data residuals are in reasonable agreement with expecta-
tions, even though a slight tendency towards over-fitting is visible.

The addition of an X-ray based constraint on the radial profile of ψ can signif-
icantly improve the reconstruction, at least in cases where the assumptions
going into it hold true and where otherwise only shear data of average quality
is available.
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FIGURE 4.2: (top) Reconstructed convergence map for a NFW
mock cluster, based on weak lensing alone; (bottom) relative
residuum, compared to error estimate based on bootstrapping;
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FIGURE 4.3: (top) Reconstructed convergence map for a NFW
mock cluster, based on weak lensing and X-ray data; (bottom)
relative residuum, compared to error estimate based on boot-
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FIGURE 4.4: Convergence map of the realistic simulated clus-
ter; It clearly features substructure and deviates from spherical

symmetry.

4.2 Realistic simulation

To investigate the performance of the reconstruction framework when faced
with more realistic cluster morphologies, we turn to a hydrodynamical simula-
tion of a cluster embedded in the cosmic web. We make use of the public web
interface2 first presented in Ragagnin et al. (2017) to select a massive cluster
from Box2b/hr of the Magneticum3 (Dolag et al. in prep.; Hirschmann et al.,
2014) simulation suite. The simulations, as well as our subsequent treatment
of them in the context of this work, adopt a WMAP7 cosmology (Komatsu
et al., 2011) and the particular box follows 2 · 28803 particles in a volume of
(640 Mpc/h)3, using the N-body/SPH code P-Gadget3 (Springel, 2005; Beck
et al., 2016) and it includes the full variety of non-gravitational effects, like
radiative cooling, heating, star formation and AGN feedback.

The cluster used here has a mass of M500 = 5.54 · 1014M�/h at a redshift
of z = 0.25. Its convergence map is shown in Figure 4.4 and Table 4.3 collects
some of its properties. We select this particular cluster, because it displays
a structured and non-spherical morphology while being among the more
massive halos in the box, which allows for pristine enough mock observations.

We employ the tools PHOX (Biffi et al., 2012) and SIXTE4 (Schmid et al.,
2010), which are both implemented in the aforementioned interface, to generate
synthetic X-ray observations with 4 · 104 s exposure with XMM-Newton’s EPIC-
pn instrument and use SMAC (Dolag et al., 2005), to obtain a total surface

2https://c2papcosmosim.uc.lrz.de
3http://www.magneticum.org/
4http://www.sternwarte.uni-erlangen.de/research/sixte/

https://c2papcosmosim.uc.lrz.de
http://www.magneticum.org/
http://www.sternwarte.uni-erlangen.de/research/sixte/
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Halo Lensing

M500 = 5.54 · 1014M�h−1 FoV= (21.3 arcmin)2

R500 = 1.14 Mpc zs = 1.0

zl = 0.25 ngal ≈ 25 arcmin−2

T500 = 5.98 keV σ = 0.3

fgas = 0.13

TABLE 4.3: Defining parameters for the realistic simulated cluster
and the mock lensing observations of it;

density map. Based on the latter we compute the convergence map and from
that the complex shear via the relation

γ(θ) =
1
π

∫
d2θ′D(θ− θ′)κ(θ′), (4.3)

with the convolution kernel

D(θ) =
−1

(θ1 − iθ2)
2 . (4.4)

With this we can generate a map of the reduced shear g and sample it at a
source density of ngal ≈ 25 arcmin−2 to generate a catalogue of weakly lensed
sources at redshift zs = 1, adding again Gaussian noise with σ = 0.3.

We additionally create a map of ICM temperature, to estimate the sound
speed, and a map of the tSZ signal of the cluster. Deprojecting the latter, as
well as the count map based on the synthetic XMM observations depicted in
Figure A.14, we can estimate the polytropic index of the ICM. To do so, we
plot the electron pressure obtained from deprojecting the Compton-y profile
against the X-ray emissivity, realising that, if the assumptions in Section 3.5.2
hold, both are related by

P(r) ∝ j2γ/(3+γ)
X (r). (4.5)

Figure 4.5 shows the pressure versus the emissivity in arbitrary units and the fit
based on Eq. (4.5), excluding areas, where the simple powerlaw relation seems
broken and the assumptions likely don’t hold. The best fitting polytropic index
according to this then is γ = 1.10.

As in the previous example, we again create 20 000 Poisson realisations
of the count profile which are deprojected, converted to realisations of the
Newtonian potential and subjected to the same sanity checks. Figures A.15
and A.16 show the signal-to-noise ratio of the enclosed mass and the Laplacian
of the potential respectively, as well as the radial bins excluded from the
further analysis. The thus truncated potential profiles are then projected,
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FIGURE 4.5: The pressure versus the emissivity in the realistic
cluster. The data displays a broken powerlaw behaviour indicat-
ing that the simple assumptions going into our method are not
valid throughout. We restrict the analysis and the fit to obtain
the polytropic index to the radial region where the P-jX follows a

straight line in double-logarithmic scaling;

again employing the analytic continuation scheme described above up to a
cut-off radius of four times the truncated data radius. The resulting ψ potential
realisations are used to estimate the corresponding inverse covariance matrix
and their mean profile is compared to the actual lensing potential of the
simulated cluster in Figure 4.6. The curves agree well, up to a radius of
roughly 5 arcmin, where the X-ray-based estimate starts to deviate, however
still well within the error margins. We chose the cut-off radius based on
ballpark estimates of the virial radius from the surface brightness data and
experience from Section 3.5.5. The error bars in Figure 4.6 are noticeably larger
than in the NFW case above, and one reason for this is the choice of cut-off
radius. The further out the extrapolation is taken, the more noisy features,
even in the truncated potential profile, influence the continuation and thus the
projection and consequently the variance throughout the realisations increases.
A balance between extrapolating far enough to counter artefacts while still
maintaining constraining power needs to be found, but so far rough estimates
have proven to work sufficiently well. The realisations again are compatible
with a Gaussian likelihood, as shown in Figure A.17.

The following SAWLENS2 reconstructions, as well as the 500 bootstraps,
are set up using the parameters collected in Table 4.4. Again, we perform one
reconstruction, only using the shear catalogue and one, combining shear and
X-ray data. The resulting convergence maps are shown in figures 4.8 and 4.9,
together with their relative residua based on bootstrapping, whereas the mean
results of the bootstrapping are depicted in figures A.18 and A.19. Figure
A.24 shows the convergence profiles based on the default reconstructions,
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FIGURE 4.6: The lensing potential of a realistic cluster, obtained
from projecting the X-ray based estimate of the Newtonian po-

tential;

Nodes (nominal) 300 550 800

Nearest neighbours 40 22 15

Regularisation strength 200 400 600

TABLE 4.4: List of parameters defining the outer loop iterations
for the SAWLENS2 recosntruction of the realistic cluster; The
regularisation strength is set to be the same for both, the regulari-
sation against the convergence and the one against the shear (see

Section 3.4)
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FIGURE 4.7: Reconstructed convergence profiles for a realis-
tic cluster, with error bars inferred from averaging over boot-
strapped samples; curves shifted to coincide at outermost bin to

correct slight bias to higher convergence values (see text);

Figure A.25 those based on the bootstraps and Figure 4.7 depicts the profiles
of the default reconstruction with the bootstrapped error bars. The estimated
error maps from Fisher analysis and bootstrapping are shown in figures A.21
andA.20 respectively and the normalised residuals are presented in Figure
A.27.

As in the previous use case, the combined reconstruction results in a more
pronounced central convergence peak and the radial convergence profile nicely
traces the true one, especially in the bootstrapped mean. We do however note,
that the combined reconstruction is noticeably biased high in convergence, as
can be seen in the relative residuum map in the lower plot of Figure 4.9 and
in Figures A.26 and A.28. Experiments with increased and decreased cut-off
radii in the projection step for the X-ray constraint show that the bias is not
related to deviations in the projected potential curvature alone. The scale of
the lensing potential is, as Figure 4.6 shows, well reproduced and as the previ-
ous section showed, the combination of shear- and X-ray-based constraints in
SAWLENS2 does not generally introduce a bias in the reconstructed conver-
gence. Further investigation reveals that this bias originates in the combination
of two factors. The recovered profile of the lensing potential based on X-ray
data, ψ̄X, deviates slightly from the truth (see figure 4.6) and the covariance
matrix CX is very dense, effectively correlating every radial bin with every
other as can be seen from the Pearson correlation matrix depicted in Figure
A.29. This way, slight overestimations of the radial curvature in the outer bins
lead to slight additive biases in the convergence of the joint reconstruction.
Since this is a purely additive bias, it can be mitigated relatively easily. It
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highlights however once more the need for careful treatment of artefacts in
the projection step, as they can alter the results across the whole domain. The
radial profiles in figure 4.7 are adjusted for this bias.

In order to quantify how the reconstruction deals with the obviously triaxial
morphology of the cluster, we calculate the second moment tensor

E = ∑
n

κnΘ (κn − κthresh) θn ⊗ θn (4.6)

for the convergence map, where the sum runs over all nodes in the recon-
struction and the Heaviside function Θ(κn − κthresh) ensures that only nodes
with convergence above a certain threshold are taken into consideration. The
eigenvectors of this tensor align with the major axes of the halo, while the ratio
of its eigenvalues reflects the square major axes ratio.

The corresponding eigenvectors are shown in Figure 4.10, scaled to reflect
the reconstructed eigenvalue ratio. The X-ray-based information does not
add information on the morphology as it is based on spherical symmetry to
create an estimate of the radial profile of the lensing potential. But since the
reconstruction is only required to follow this profile on azimuthal average,
it also does not impose any morphology. In cases where the noise in the
reconstruction is reduced by the addition of X-ray data, the constraints on the
morphology may be improved. In the present case, where we used the median
reconstructed convergence as a threshold for Eq. (4.6), the reconstructions only
poorly reflect the axis ratio of the true map, but the combined reconstruction
matches the directions of the major axes significantly better than in the shear-
only case.

This is however not a particularly stable result. Changes in the iteration and
regularisation settings may alter the inferred second moment tensor without
significantly changing the normalised data residuals or other reconstruction
results. It therefore remains doubtful if the addition of symmetrised X-ray
constraints can improve the inference of the morphology of a real cluster. We
do however expect, that X-ray constraints using deprojections with spheroidal
symmetry are bound to improve this measure, as Figure A.14 shows a clear
elongation of the surface brightness, paralleling that of the underlying mass
distribution.
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FIGURE 4.8: (top) Reconstructed convergence map for a realistic
cluster, based on weak lensing alone; (bottom) relative residuum,

compared to error estimate based on bootstrapping;
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FIGURE 4.9: (top) Reconstructed convergence map for a realistic
cluster, based on weak lensing and X-ray data; (bottom) relative
residuum, compared to error estimate based on bootstrapping;
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Chapter 5

Conclusion

5.1 Summary

The cosmic large scale structure in general and clusters of galaxies in particular
are used in a plethora of ways to further our understanding of the Universe as
a whole and of the structures we find in it. In order to make the best possible
use of the rich observational data available for clusters, we require means to
understand individual clusters in detail and to test the assumptions we make
when modelling them in bulk.

After establishing the wider context and highlighting some of the many
features and use cases of galaxy clusters in chapters 1 and 2, I discussed in
chapter 3, first in general, how methods to reconstruct the mass distribution
of clusters can be classified and what use case calls for which type of method.
I then continued to introduce the mesh-free and free-form framework we
settled on and its most recent implementation, SAWLENS2. I presented how
SAWLENS2, initially designed to combine strong and weak lensing data, can
make use of additional constraints based on gaseous and kinematic tracers
of the underlying gravitational potential. I introduced the classic Richardson-
Lucy algorithm as a means to deproject such observations in order to derive the
Newtonian potential of a cluster and showed how this can be done maintaining
the appropriate normalisation and dimensionality. Subsequently, the issue
of hitherto unnoticed numerical artefacts in the process of reprojecting the
Newtonian potential presented itself and I discussed a scheme to amend these
problems in a data-driven way. Finally, I suggested a measure to assess the
quality of reconstructions in application cases and demonstrated how we can
estimate errors in a SAWLENS2 reconstruction.

In Chapter 4, I then moved to testing the reconstruction framework. I first
showed how weak lensing and X-ray mock observations of a simple NFW halo
can be combined in SAWLENS2, to improve the accuracy of the reconstruction.
After that, I tested the method in a more realistic, yet still controlled example,
tackling mock observations of a realistic galaxy cluster from a state-of-the-art
hydrodynamical simulation. We saw that, while many of the improvements
first seen with the NFW halo hold true, the addition of X-ray-based constraints,
especially under the strong symmetry assumptions imposed by the present
implementation of the Richardson-Lucy algorithm, is not an universal remedy
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and does introduce complications and potential biases that need to be weighed
against the undeniable advantages in a case by case fashion.

5.1.1 Assumptions

In the course of this thesis several limiting and simplifying assumptions have
been made and it is worthwhile to collect them here in a concise list and point
out how they affect this work.

We assume that the ΛCDM framework is an adequate description of the
Universe. This entails the assumption that

• GR is the appropriate theory of gravity on all scales relevant here. Our
method of joint analysis is therefore in its basic form unfit to test devia-
tions from GR.

• particle dark matter (cold or warm) is the appropriate explanation for
cosmological observations and dominates the gravitating matter in the
Universe and particularly in galaxy clusters.

In the context of gravitational lensing, we limit ourselves to cases that can
be sufficiently described in the single thin lens approximation and assume that
intrinsic alignment is a negligible source of systematic error on scales relevant
for cluster lensing.

In the context of using X-ray data as an additional constraint, we assume
that

• the cluster at hand is in approximate hydrostatic equilibrium. This is
needed to connect the gas structure to the total Newtonian potential.

• the ICM is polytropically stratified over a significant radial range.

• the ICM can be described as an ideal gas.

For our reconstruction method, we assume that Gaussian likelihoods are
sufficient to describe the data and their uncertainties, and specifically we
assume that the statistical uncertainties in X-ray observations of galaxy clusters
are purely Poissonian, when we create the realisations necessary to estimate
the covariance matrix of the projected, X-ray-based potential.

Some of these assumptions can be altered or replaced. For instance,
parametrised deviations from GR (Zhao et al., 2009) can in principle be in-
corporated to either allow a consistent reconstruction assuming modified
gravity or to test for such deviations. More involved lensing scenarios, where
for example intrinsic alignment is taken into account can be implemented by
altering the computation of the shear covariance matrix. Similarly, corrections
for hydrostatic bias can be included. It is however doubtful that any of the
assumptions in this section can be dropped entirely without altering the core
concepts of the methods they are involved in.
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5.2 Discussion and outlook

5.2.1 Scope of the framework

SAWLENS2 is a free-form method and as such not equipped for reconstruc-
tions of very high statistical precision. It cannot replace parametric models of
gravitational lenses such as galaxy clusters, it can only complement them. To
do so, it has to be able to constrain properties of a cluster that a parametric
method does not capture. One very simple and perhaps educational example
not mentioned so far is the issue of miscentering. A parametric model has
to be centred on a specific point1 in space or on the sky. This is often done
by either choosing the BCG as a center or the peak of the observed surface
brightness or tSZ map, but that does not necessarily have to be the center of
the total mass distribution. In its lensing-only configuration, SAWLENS2 does
not care about the position and layout of the cluster with respect to the co-
ordinate frame, as long as it is in it, and therefore can readily be used to, at
least approximately, locate the peak of the total projected mass distribution.
In this way it can inform a statistically more precise parametric model. This
small example already showcases that the addition of X-ray constraints does
not necessarily always improve everything. While Chapter 4 showed that it
makes the central convergence peak much more pronounced, the deprojection,
due to the underlying symmetry assumptions, itself has to be centred first,
somewhat defying the point of the exercise. The lesson is, that the usefulness
of any specific probe as well as of any specific combination of probes depends
on the goal in mind. The great advantage of SAWLENS2 in its current form
is, that it is now equipped to handle essentially all these probes as well as all
their combinations and therefore is a most versatile tool.

SAWLENS2, by now, is a conveniently fast method, taking only between
seconds and few minutes for reconstructions of the type presented here2, allow-
ing to quickly perform several exploratory reconstructions of a cluster once the
necessary preparations are done. For this, one has to set the hyper-parameters
of the reconstruction, like the regularisation strength and the specifics of the
iteration and shear averaging scheme, by hand however, which introduces
a degree of arbitrariness to the reconstruction. Also the cut-off radius for
the analytic continuation has to be set by hand. While there are reasonable
experience-based guidelines how to choose these parameters, there is still
considerable leeway and results may be affected by that, as the examples of
reprojection and the second moment tensor in Section 4.2 illustrate. These
parameters could of course in principle be optimised for, either beforehand by
calibrating the method to a training set of simulations and mocks, or on the
fly, by iteratively fixing hyper- or model parameters. The former case would
require automatising the entire preparatory pipeline described in Section 3.6.1,
the latter a measure of goodness of fit, that is significantly more sensitive

1even though the centering can of course also be parametrised
2on a regular laptop; bootstrapping of course still takes a while



88 Chapter 5. Conclusion

to changes in any of the hyper-parameters than the normalised data residu-
als. Their quantitative assessment is complicated by numerical instabilities,
which occasionally lead to a single extreme outlier, throwing off quantitative
measures of statistical compatibility, like the Kolmogorov-Smirnoff or the
D’Agostino-Pearsons normality test. The root of these instabilities lies in the
inversion of the data covariance matrices, which in many cases can be poorly
conditioned.

While the tools to connect non-lensing data to the lensing potential rely on
sometimes debatable assumptions, they can, for the same reasons , be used to
test these very assumptions. Using the RL machinery to deproject X-ray and
tSZ data allows to test polytropic stratification, and when lensing and X-ray
based estimates of the potential behave significantly differently, the reason
may lie in hydrostatic bias.

To summarise, despite some shortcomings, the methods presented here
offer means to investigate systematic uncertainties both for scaling relations
and mass calibrations in large cosmological surveys as well as for studies of
individual lens systems.

5.2.2 Future prospects

There are some more or less obvious avenues for this particular project to
continue from here.

Perhaps the most obvious is application. While SAWLENS2 has been and
continues to be used for lensing based reconstructions of galaxy clusters, the
combination of lensing and X-ray (or other) constraints yet has to be taken to
the real world. This thesis is intended as a guideline for such applications and
a number of excellent, already available data sets, first and foremost maybe
the CLASH survey of X-ray selected massive clusters (Postman et al., 2012),
can readily be approached with the framework in its current state layed out
here.

The inclusion of non-lensing constraints as presented here, relies on spheri-
cal symmetry. In Reblinsky (2000) and Majer et al. (2016) the Richardson-Lucy
algorithm got extended to spheroidal symmetries. This complicates matters
in the deprojection step as the inclination angle of the spheroid with respect
to the line of sight has to be inferred in some way. The projection step and
the artefact treatment it involves, however should not be affected by this
generalisation. The actual incorporation of the estimated projected potential
in SAWLENS2 can then happen on the map level instead of the azimuthal
average, and the modular structure of the code framework readily allows to
include such a constraint.

Chapter 3 already hints at the incorporation of source inversion techniques
in SAWLENS2. Parametric and semi-parametric source inversion techniques
have become important tools, both for cosmology, as in tests of dark matter
via the measurement of line-of-sight structure in strong lensing by galaxies
(Despali et al., 2018) or measurements of cosmic expansion via time delays, as
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well as for studies of the high redshift source galaxies themselves. These stud-
ies often rely on the separability and sufficiency of a relatively well-behaved
main lens and a simple external shear contribution, which is questionable for
strong lenses in many environments but especially in galaxy clusters, as their
extent and formation history allows for a variety of morphologies of varying
complexity. Free-form reconstruction techniques on the other hand are ideally
suited to constrain the potentially complex mass distributions in such environ-
ments. Introducing source inversion capabilities to SAWLENS2 would vastly
increase the codes usefulness in informing statistically more precise parametric
methods on such potential systematic errors. A free-form assessment of lens
morphology could also be suited to extend the scope of source inversion meth-
ods to giant arcs, allowing to study the properties of highly magnified galaxies
at extremely high redshifts. But as preliminary attempts have proven, a fully
free-form treatment of source and lens faces severe numerical challenges, that
may require a more careful treatment than a straightforward translation of
currently used techniques to the SAWLENS2 framework. Alternatively, free-
form techniques like SAWLENS2 could still be used to inform the choice of
parametric model in semi-parametric source inversions.

The adaptable free-form character of the presented framework allows its
application also to structures beyond clusters of galaxies. Ongoing work is
directed to extending its scope to the cosmic web itself, a transition that has
technical but little conceptual challenges in the realm of gravitational lensing
but would have to alter the way non-lensing constraints are incorporated.

All in all, the SAWLENS2-framework has been developed and revisited
throughout the span of more than two decades, but it seems that there is still
room for more.
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Appendix A

Additional figures

A.1 Reconstructing a NFW halo
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FIGURE A.1: The mesh-free reconstruction domain generated
from a shear catalogue of a NFW mock cluster; the red cross
marks the center of the coordinate frame and will do so through-

out the following maps.
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tained from projecting the X-ray based estimate of the Newtonian
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FIGURE A.5: (top) Mean reconstructed convergence map for a
NFW mock cluster, based on weak lensing alone, inferred from
averaging over bootstrapped samples; (middle) residuum with
respect to true convergence map; (bottom) relative residuum,

compared to error estimate based on bootstrapping;
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FIGURE A.6: (top) Mean reconstructed convergence map for
a NFW mock cluster, based on weak lensing and X-ray data,
inferred from averaging over bootstrapped samples; (middle)
residuum with respect to true convergence map; (bottom) relative
residuum, compared to error estimate based on bootstrapping;
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FIGURE A.7: Map of the standard deviation on the reconstructed
convergence of a NFW mock cluster, inferred from bootstrapping;

(left) weak lensing only, (right) weak lensing and X-ray data;
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convergence of a NFW mock cluster, inferred from the Fisher
matrix; (left) weak lensing only, (right) weak lensing and X-ray

data;
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FIGURE A.9: (top) Reconstructed convergence map for a NFW
mock cluster, based on weak lensing alone; (middle) residuum
with respect to true convergence map; (bottom) relative residuum,

compared to error estimate based on the Fisher matrix;
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FIGURE A.10: (top) Reconstructed convergence map for a NFW
mock cluster, based on weak lensing aand X-ray data; (middle)
residuum with respect to true convergence map; (bottom) relative
residuum, compared to error estimate based on the Fisher matrix;
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FIGURE A.13: Histogram of the normalized data residuals in the
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halo. The results for the recosntruction using only shear (grey)
and using shear and X-ray data (green) are reasonably consistent
with a Gaussian of zero mean and unit variance (dashed line).
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A.2 Reconstructing a realistic cluster
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FIGURE A.15: signal-to-noise ratio for the enclosed mass as a
function of radial bin for a realistic cluster. Horizontal lines
denote signal-to-noise values of 1, 3 and 5 respectively. Crossed-
out bins fail either one or both of the sanity checks and are

excluded from the analysis.
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excluded from the analysis.
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FIGURE A.18: (top) Mean reconstructed convergence map for
a realistic cluster, based on weak lensing alone, inferred from
averaging over bootstrapped samples; (middle) residuum with
respect to true convergence map; (bottom) relative residuum,

compared to error estimate based on bootstrapping;
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FIGURE A.19: (top) Mean reconstructed convergence map for a
realistic cluster, based on weak lensing and X-ray data, inferred
from averaging over bootstrapped samples; (middle) residuum
with respect to true convergence map; (bottom) relative residuum,

compared to error estimate based on bootstrapping;
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FIGURE A.22: (top) Reconstructed convergence map for a realistic
cluster, based on weak lensing alone; (middle) residuum with
respect to true convergence map; (bottom) relative residuum,

compared to error estimate based on the Fisher matrix;
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FIGURE A.23: (top) Reconstructed convergence map for a real-
istic cluster, based on weak lensing aand X-ray data; (middle)
residuum with respect to true convergence map; (bottom) relative
residuum, compared to error estimate based on the Fisher matrix;
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FIGURE A.24: Reconstructed convergence profiles for a realistic
cluster; profiles shifted to correct for bias (see Section 4.2);
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FIGURE A.25: Reconstructed convergence profiles for a real-
istic cluster, inferred from averaging over bootstrapped sam-

ples;profiles shifted to correct for bias (see Section 4.2);
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FIGURE A.26: Reconstructed convergence profiles for a realis-
tic cluster, with error bars inferred from averaging over boot-
strapped samples; a clear bias towards higher convergence val-

ues is visible;
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recosntruction using only shear (grey) and using shear and X-ray
data (green) are reasonably consistent with a Gaussian of zero

mean and unit variance (dashed line).
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Appendix B

NFW properties

For the sake of completeness, I give the relevant formulas for the creation of
mock observations of the NFW halo in section 4.1. This is based on (Golse and
Kneib, 2002) and (Suto, Sasaki, and Makino, 1998; Komatsu and Seljak, 2001).
The lensing properties of an NFW halo are given by

ψ(x) = 2κsθsh(x) (B.1)
κ(x) = 2κsF(x) (B.2)

γ(x) = 2κs

(
2
x2 G(x)− F(x)

)
, (B.3)

where we use the dimensionless radius x = r/rs ≈ θ/θs and

κs =
rsρs

Σcrit
(B.4)

F(x) =



1
x2 − 1

(
1− 1√

1− x2
arcosh

1
x

)
if x < 1

1/3 if x = 1
1

x2 − 1

(
1− 1√

x2 − 1
arccos

1
x

)
if x > 1

(B.5)

G(x) =



ln
x
2
+

1√
1− x2

arcosh
1
x

if x < 1

1 + ln
1
2

if x = 1

ln
x
2
+

1√
x2 − 1

arccos
1
x

if x > 1

(B.6)

h(x) =


(

ln
x
2

)2
−
(

arcosh
1
x

)2

if x < 1(
ln

x
2

)2
−
(

arccos
1
x

)2

if x ≥ 1

. (B.7)

The dimensionless mass profile for the NFW is given by

m(x) = ln(1 + x)− x
1 + x

. (B.8)
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With this, the hydrostatic equation for the dimensionless gas density profile is
solved by

ygas(x) =
[

1− 3
η0

γ− 1
γ

c
m(c)

∫ x

0
du

m(u)
u2

] 1
γ−1

=

[
1− 3

η0

γ− 1
γ

c
m(c)

(
1− ln(1 + x)

x

)] 1
γ−1

, (B.9)

where the mass-temperature normalisation factor η0 is found to be well-fit be

η0 = 0.00678 (c− 6.5)2 + 0.206(c− 6.5) + 2.48. (B.10)

The surface brightness profile is then proportional to

SX(x) ∝
∫ ∞

−∞
dl
[
ygas(

√
x2 + l2)

] γ+3
2 (B.11)

and the normalisation factors are found according to Eq. (2.7) and section 3.5.2,
with the scale temperature

T0 =
Gmpη0µMvir

3Rvir
, (B.12)

where µ ≈ 0.59 is the mean molecular weight of the gas.
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