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Summary

The main goals of this thesis are the development of a computationally efficient framework
for stochastic treatment of various important uncertainties in probabilistic seismic hazard
and risk assessment, its application to a newly created seismic risk model of Indonesia,
and the analysis and quantification of the impact of these uncertainties on the distribu-
tion of estimated seismic losses for a large number of synthetic portfolios modeled after
real-world counterparts. The treatment and quantification of uncertainty in probabilistic
seismic hazard and risk analysis has already been identified as an area that could bene-
fit from increased research attention. Furthermore, it has become evident that the lack
of research considering the development and application of suitable sampling schemes to
increase the computational efficiency of the stochastic simulation represents a bottleneck
for applications where model runtime is an important factor.

In this research study, the development and state of the art of probabilistic seismic haz-
ard and risk analysis is first reviewed and opportunities for improved treatment of uncer-
tainties are identified. A newly developed framework for the stochastic treatment of port-
folio location uncertainty as well as ground motion and damage uncertainty is presented.
The framework is then optimized with respect to computational efficiency. Amongst other
techniques, a novel variance reduction scheme for portfolio location uncertainty is devel-
oped. Furthermore, in this thesis, some well-known variance reduction schemes such as
Quasi Monte Carlo, Latin Hypercube Sampling and MISER (locally adaptive recursive
stratified sampling) are applied for the first time to seismic hazard and risk assessment.
The effectiveness and applicability of all used schemes is analyzed. Several chapters of this
monograph describe the theory, implementation and some exemplary applications of the
framework. To conduct these exemplary applications, a seismic hazard model for Indonesia
was developed and used for the analysis and quantification of loss uncertainty for a large
collection of synthetic portfolios.

As part of this work, the new framework was integrated into a probabilistic seismic
hazard and risk assessment software suite developed and used by Munich Reinsurance
Group. Furthermore, those parts of the framework that deal with location and damage
uncertainties are also used by the flood and storm natural catastrophe model development
groups at Munich Reinsurance for their risk models.
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Chapter 1

Introduction and Motivation

1.1 Introduction

In recent decades, we have experienced a strong increase of the adverse effects of natural
catastrophe events. This can also be seen in the upwards tendency of suffered losses (see
Figure 1.1). Among other reasons, this can be explained by a growing world population,
continuing urbanization, and high vulnerability of present-day technology and societies
(Smolka et al., 2004). Almost every part of the world is affected (see Figure 1.2), which
has raised global awareness to the urgent need to quantify the associated risk in a proba-
bilistic framework.

NatCatSERVICE

© 2018 Münchener Rückversicherungs-Gesellschaft, NatCatSERVICE – As at May 2018 Munich Re NatCatSERVICE
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2

Figure 1.1: Overall and insured losses from relevant natural catastrophe events 1980 to
2017, normalized to 2017 US Dollars by taking consumer price index and exchange rate
fluctuations into account. Noteworthy is the strong annual fluctuation of losses and a
relatively low insurance penetration. From Munich Re NatCatSERVICE (2018b).



2 1. Introduction and Motivation

As of this writing, earthquakes and their secondary effects represented 6 of the 10 costli-
est natural catastrophe events by overall losses (Munich Re NatCatSERVICE, 2018c). This
portion is smaller if measured by insured losses, due to the higher insurance penetration
for other perils. The distribution of losses among different peril types can fluctuate sig-
nificantly, due to accumulation of events for a peril. Earthquake losses in particular are
often driven by relatively few but costly events. For example, in 2011 geophysical events
represented 52.7% of overall losses (see Figure 1.3), but only 3.0% in 2017 (see Figure 1.4).

The 2011 Tōhoku earthquake and tsunami has been the costliest natural catastrophe
event in terms of losses to the overall economy (∼210 billion US dollars), and second costli-
est in terms of insured losses (∼40 billion US dollars). In less developed countries, the
absolute monetary value of losses caused by natural catastrophe events might be lower due
to a smaller gross national product (GNP), but the impact on the national economy can be
even larger. For example, the three largest losses from 1972 to 1990 caused by earthquakes
as a fraction of GNP occurred in the Central American countries of Nicaragua (1972, 40%
GNP), Guatemala (1976, 18% GNP) and El Salvador (1986, 31% GNP) (Calvi et al., 2006;
Coburn and Spence, 2002).

Munich Re Group is a reinsurance company based in Munich, Germany. As “one of
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(storm)  
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Figure 1.2: World Map of Natural Catastrophes in 2011. From Munich Re NatCatSER-
VICE (2018a).
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Figure 1.3: Distribution of losses among different peril types in 2011. Geophysical events
represent only a small fraction in terms of number of loss events, but account for a large
fraction of monetary loss. From Munich Re NatCatSERVICE (2018a).
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Figure 1.4: Distribution of losses among different peril types in 2017. Like most years,
meteorological events account for the majority of losses. From Munich Re NatCatSERVICE
(2018a).
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the world’s leading risk carriers”1, in 2017 Munich Re generated a revenue of about 50
billion euros (Munich Re, 2018), mostly from insurance premiums. In the reinsurance in-
dustry, solvency capital needs to be reserved to reduce the risk of insolvency. Solvency II
(European Commission, 2009) is a directive in the European Union and its implementa-
tion became mandatory for member states on January 1st, 2016. Using an internal risk
model, insurance companies model an economic profit and loss distribution over all fields
of business. The solvency capital requirements (SCR) require to hold capital accounting
for the estimated value at risk over a one-year time horizon of this distribution with a
confidence level of 99.5%. In 2017, the SCR for Munich Re Group (i.e., reinsurance and
primary insurance divisions) excluding tax and diversification effects was about 29 billion
euros. The property-casualty field of business amounted for 6.6 billion euros of the group
SCR, and it is noteworthy that natural catastrophe scenarios account for about two thirds
of this. To be conservative and get a high grade rating, Munich Re multiplies the required
minimum SCR by a factor of 1.75 to obtain the actually maintained risk capital.

Munich Re set itself a long-term target of 15% for the return on risk-adjusted capital
(RORAC), which is a mixture of accounting ratios and economic indicators. This target
was set in times when premiums had higher margins, and is hard to reach in the current
low interest-rate market environment (Munich Re, 2015). In 2016, Munich Re reached
a RORAC of 11.5%. Mostly due to an accumulation of unusually costly meteorological
events, in 2017 Munich Re remained far from this goal, only achieving a RORAC of 1.5%.

More than ever, continuing pressure on premiums results in the necessity to make care-
ful and educated underwriting decisions, including taking the uncertainty of the associated
risk model into account.

1.2 Objectives and Outline

Probabilistic seismic hazard and risk analysis involves large uncertainties of various kinds,
the treatment of which can be computationally intensive. While this has already been
identified as an area that could benefit from increased research attention, so far the amount
of research has been limited. This study is concerned with the development of an efficient
framework for the stochastic treatment of portfolio location uncertainty as well as ground
motion and damage uncertainty. The efficiency of the framework and the impact of the
different uncertainty types on the results of seismic risk analysis are analyzed using a
seismic risk model of Indonesia and a large number of synthetic but realistic portfolios.

This monograph aims to be self-supporting, in the sense that it can be read without the
need to consult further literature on the side. All necessary theory will be presented and
outlined in a way that supports a profound conceptual understanding. However, it would
be beyond the scope of this thesis to rigorously show every step of the derivation of ev-
ery part of the theory. Numerous references are provided as suggestions for further reading.

1http://www.munichre.com

http://www.munichre.com
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Structure

The central chapters of this thesis can be summarized as follows:

Chapter 2 reviews the historical and theoretical background as well as the current
state of the art of probabilistic seismic hazard and risk assessment.

Chapter 3 describes the theory underlying the treatment of ground motion and dam-
age uncertainty in the context of probabilistic seismic hazard and risk analysis and presents
a framework for the simulation of these uncertainties developed in the course of this thesis.

Chapter 4 presents a new framework for the treatment of portfolio location uncer-
tainty and analyzes the impact on probabilistic seismic risk analysis.

Chapter 5 introduces and analyzes an efficient sampling scheme specifically designed
for the treatment of portfolio location uncertainty as presented in the previous chapter.

Chapter 6 investigates the applicability of several well known variance reduction tech-
niques to seismic hazard and risk analysis and shows the results of a global sensitivity
analysis for a seismic risk model.

Chapter 7 presents a conclusion and outlook for future work.

Appendix

A certain part of this thesis is concerned with the development of new auxiliary software,
i.e. tools to facilitate seismic hazard model development. While this represents an im-
portant building block supporting the preparation of this thesis and should arguably be
included here, not all of it aligns with science in the traditional sense and therefore the
corresponding chapters have been moved to the appendix. They describe new functional-
ities and graphical tools that were developed to enable and facilitate the creation of the
Indonesian hazard model described in Chapter 4 as well as other models.

Chapter A describes OpenQuake Model Explorer, a graphical tool and modular frame-
work for hazard model visualization and conversion.

Chapter B describes Source Zone Creator, a graphical tool for seismic area-source
zonation based on analysis of an event catalogue in conjunction with a source model con-
verted using the OpenQuake Model Explorer framework.
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Chapter 2

Probabilistic Seismic Hazard and
Risk Analysis

This chapter reviews the historical and theoretical background as well as the current state
of the art of probabilistic seismic hazard and risk assessment. It aims to provide a solid
understanding of the most important foundations but can not describe all intricacies. For a
deeper understanding, the reader is encouraged to consult comprehensive learning material
on the side, such as the classic textbook Earthquake Hazard Analysis by Reiter (1990) or
the more recent monograph Seismic Hazard and Risk Analysis by McGuire (2004).

2.1 Probabilistic Seismic Hazard Analysis

Probabilistic Seismic Hazard Analysis (PSHA) is a widely used framework to quantify
earthquake hazard. It is a method to compute the probability of exceeding specific ground
motion levels at a site which can be integrated well into a risk analysis framework.

The concept of classical PSHA is introduced in Section 2.1.2. Classical PSHA is a
deterministic method and an important foundation for understanding any work in seismic
hazard assessment.

Section 2.1.3 introduces event-based PSHA, which is the stochastic approach for which
the new uncertainty framework introduced in this thesis has been developed.

2.1.1 Historical Background

The initial development of classical PSHA can be traced back to separate efforts by two
researchers in the early 1960s, which were brought together in 1966 (McGuire, 2008). In
his doctoral dissertation at Stanford University, Allin Cornell studied factors influencing
earthquake engineering design decisions (Cornell, 1964). He was using the concept of
derived distributions in which the probability distribution of a dependent variable is derived
using its relationship to predictor variables and their respective distributions.
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At the same time, PhD student Luis Esteva and Prof. Emilio Rosenblueth at the
Universidad Nacional Autonoma de Mexico (UNAM) studied the dependence of earthquake
ground motions on magnitude and distance, the frequency of earthquakes and the frequency
of ground motions at a site using Bayesian updating. This led to the publication of the
first seismic zone maps (Esteva, 1963). They were also relating probability of structural
failure to ground motion.

In the same decade, Cornell (1968) published the mathematical derivation of clas-
sical PSHA in a seminal paper. Several aspects were influenced by his exchange with the
UNAM group, such as the use of the Gutenberg-Richter magnitude-frequency distribution
(Gutenberg and Richter, 1942, 1944) and the functional form of the chosen ground motion
distribution, which had been published previously by Esteva and Rosenblueth (1964).

Esteva focused more on the engineering design process (Esteva, 1967, 1968). Esteva was
also the first to use the term aleatory uncertainty to describe natural variability of ground
motion due to processes about which we can not gain knowledge. This is in contrast to
epistemic uncertainty, which one could theoretically treat correctly but fails in practice due
to insufficient information. While the distinction of epistemic and aleatory uncertainty is
somewhat arbitrary (Kiureghian and Ditlevsen, 2009), it can be helpful in practice.

To assess the earthquake related ground motions, most authors at that time used at-
tenuation functions of the same functional form, and just reported different values for
coefficients. Some reported a (fixed) standard deviation, while others did not report a
standard deviation at all (Douglas, 2018). In early classical PSHA codes, such as a note-
worthy implementation called EQRISK by McGuire (1976) a fixed form of the ground
motion attenuation function (Equation 2.8) and a constant standard deviation were as-
sumed.

With increasing computational resources, studies that employed event-based PSHA
started to become more common in the 1980s (e.g. Rosenhauer, 1983; Shapira, 1983).
This approach evaluates the tail risk by computing individual event realizations for a finite
event set. The event set is usually generated stochastically and the method became known
as stochastic modeling. This approach provides the advantage that it is applicable to
seismic risk analysis. For each event, a vulnerability function can be evaluated to obtain
a damage or loss measure. In classical PSHA, this would have required integration of
the vulnerability function, which is a method that was hardly ever used (Musson, 2000).
This new approach also allowed a new technique called deaggregation1 to identify the
contribution of individual events to the hazard. The study of ground motion variability lead
to the development of correlation models for the ground motion residual (e.g. Jayaram
and Baker, 2009; Goda and Atkinson, 2010), which are of interest for loss analysis of
portfolios, in particular when these are spatially clustered. Lately, spectral cross-correlation
has been applied to co-simulate ground motion fields at various periods (e.g. Baker and

1In this work, the term deaggregation is adopted in favor of disaggregation for consistency with other
terms commonly used in the field of seismology, such as deconvolution.
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Cornell, 2006; Loth and Baker, 2012), which is of interest for heterogeneous portfolios
where ground motion influences damage at multiple natural frequencies (Weatherill et al.,
2015). The application of these correlation models results in more realistic patterns in the
event footprint.

Defining a parametric model for the standard deviation of ground motion residuals
did not become customary until the year 2008 with the publication of Next Generation
of Ground-Motion Attenuation Models (NGA) in a special issue of Earthquake Spectra
(Power et al., 2008). In addition to providing parametric models for standard deviation, the
authors developed a new set of sophisticated models for median ground motion, including
more explanatory variables for source and site effects. For source effects, footwall and
hanging wall terms, style-of-faulting terms, and rupture area terms were included. Soil and
basin amplification terms were developed to treat site effects, which has been found to
significantly improve PSHA (Field and SCEC Phase III Working Group, 2000). In general,
these efforts helped to identify some of the aleatory ground motion uncertainty and move
it into the realm of epistemic uncertainty.

2.1.2 Classical Integration Approach

Methodology

Let y be a ground motion intensity scale parameter, a physical ground motion parameter,
or a response function of a system exposed to ground motion, such as Maximum Mer-
calli intensity, peak ground acceleration, or peak spectral acceleration, respectively (see
Section 2.1.4).

The idea of PSHA is to derive the probability P (y0, r0, t0) of exceeding some specific
ground motion level y0 within a time interval t0 at a site location r0. PSHA presumes that
there exists a mean occurrence rate curve λ = λ(y0, r0) at which ground motion level y0 is
exceeded (Anderson and Brune, 1999).

Assuming that earthquakes are random events occurring independently of time leads
to the Poisson temporal occurrence model. The probability of observing exactly k random
events, i.e. observing exactly k earthquakes exceeding ground motion level y0 in time
interval t0 is then given by the probability mass function

p(k, t0) =
(λt0)ke−λt0

k!
. (2.1)

The probability of exceeding ground motion level y0 at least once within the time
interval t0 is then given by the probability of more than zero events, i.e. by evaluating the
complementary cumulative distribution function P̄ at k = 0:

P (y0, t0, λ)[y ≥ y0] = p(k > 1) = P̄ (k = 0) = 1− p(k = 0)

= 1− (λt0)0e−λt0

0!
= 1− e−λt0 .

(2.2)
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To find the mean seismic occurrence rate λ(y0, r0), the total probability theorem is
invoked. The probability of exceeding ground motion y0 at a site r0 due to the contribution
of the ith source having a rupture of magnitude m at distance r can then be expressed by a
multiplication of the conditional probability P [y ≥ y0|m, r, r0] of exceeding ground motion
y0 at site r0 given a rupture of magnitude m at a distance r by the probability densities of
the magnitude and distance to the ith fault, fi(m) and fi(r|m), respectively. To get the
contribution for all ruptures of the ith source, a double integration over distances r and
magnitudes m is performed.

In the classical formula, the probability obtained from the aforementioned double in-
tegration is multiplied by the mean annual rupture occurrence rate νi of the ith source to
get the final mean annual exceedance rate (Senior Seismic Hazard Committee (SSHAC),
1997):

λ(y0, r0)[y ≥ y0] =
I∑
i=1

νi

∫
r

∫ mmax

mmin

P [y ≥ y0|m, r, r0]fi(m)fi(r|m)drdm. (2.3)

The conditional probability P [y ≥ y0|m, r, r0] can be derived by evaluating the comple-
mentary cumulative distribution function (tail distribution) of a ground motion probability
model (see Section 2.1.4). For the distribution of magnitudes, a common assumption is to
use results of Benno Gutenberg and Charles Richter (1942, 1944):

log10 nm = a− bm. (2.4)

Here, m denotes magnitude, nm is the number of events with magnitudes ≥ m, and a
and b are constants.

For classical PSHA, the integral of Equation 2.3 is solved numerically or analytically.
For instance, Cornell (see Section 2.1.1) derived a closed analytical form for line, point and
area sources. For intensity measures such as Maximum Mercalli Intensity (MMI), he found
Type 1 extreme value distribution (Gumbel, 1935), while for ground motion parameters
such as peak ground acceleration, he finds Type 2 (asymptotic extreme value distribution).
It is important to note that these results are not based on the asymptotic extreme value
argument (Gumbel, 1958), but dependent on the functional form of the assumptions.
The assumptions for magnitude distribution (Equation 2.4) and conditional ground mo-

tion probability (Section 2.1.4) can relatively easily be replaced with other functional forms.
This merely changes the results of some analytical integrations. For example, in a later
work, Equation 2.3 was integrated for a quadratic magnitude-frequency law (Merz and Cor-
nell, 1973). Removing the assumption that earthquake occurrences can be modeled by a
Poisson process is less straightforward and can make analytical integration very intricated,
however.

See Figure 2.1 for the schematic workflow of classical PSHA. Modern implementations
typically compute an earthquake rupture forecast (e.g. Field et al., 2003; Pagani et al.,
2014), from which the hazard output is obtained by integration of event probabilities. Note
that no realization of the ground motion distribution needs to be explicitly computed.
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Source Model GMPE Model

ERF Calculator

Earthquake Rupture Forecast

Classical Hazard Integration

Hazard Output Risk

Figure 2.1: Schematic workflow of classical PSHA. Modern implementations typically com-
pute an earthquake rupture forecast (ERF), from which the hazard output is obtained by
integration of event probabilities. Illustration inspired by the OpenQuake Book (Crowley
et al., 2011).

The probabilities of exceeding a certain threshold are directly obtained by integrating
Equation 2.3. Although risk results can be obtained from classical hazard output (Cao
et al., 1999), this is usually performed through event-based PSHA (see Section 2.1.3).

Classical Hazard Results

After computing the probability for a range of ground motion levels y0 for a constant t0,
the result can be visualized for a single site r0 by plotting the obtained probability values
versus y. This is called a hazard curve.

Evaluating the probability at a range of locations r for a specific t0 enables producing
a so-called hazard map. This is usually a color-coded plot of the spatial distribution of
ground motion levels y corresponding to some constant probability level p0.

Note that although obtaining risk results from classical PSHA output is possible (e.g.
Cao et al., 1999), for this purpose event-based PSHA (see Section 2.1.3) is usually pre-
ferred. Another procedure to directly compute the probability distribution for losses largely
analogous to the classic PSHA procedure also exists (Wesson et al., 2009).
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Classical PSHA: Analytical Integration of Uncertainty

In the first publication by Cornell (1968), the distribution of earthquake magnitudes and
site-to-source distance was treated by analytical integration. The original formulation did
not take any aleatory ground motion variability into account, but just used the median
prediction. However, only two years later, more sophisticated treatment of the conditional
ground motion probability was added by Esteva (1970). In classical PSHA it is customary
to analytically or numerically integrate the ground motion exceedance probability (using
Equation 2.3 and assumptions).

In the classical formulation of PSHA, explicit computation of the ground motion for
individual event realizations is not necessary. Ground motion exceedance probability is
integrated directly from source parameters and the conditional ground motion distribution.

It is also important to note that classical PSHA does not involve any stochastic pro-
cesses. The ground motion distribution is either integrated analytically, or numerically
using deterministic sampling. This is in contrast to Monte Carlo integration, which is
usually employed for event-based PSHA (see Section 2.1.3). For a more comprehensive
discussion of classical PSHA, its advantages and disadvantages, confer to a report by the
Senior Seismic Hazard Committee (SSHAC) (1997).

Alternative Formulation

The traditional formulation first sums mean annual rates and then computes probabilities
from them. A more efficient formulation of classical PSHA was introduced later (e.g. Field
et al., 2003; Pagani et al., 2014): Assuming that the probability of multiple ruptures of the
same source within the investigated time interval t0 (see Section 2.1.2) can be neglected
allows to work with probabilities instead of mean annual occurrences. The probability of
exceeding intensity measure value y0 is then given by

P (y ≥ y0) = 1−
I∏
i=1

Ñ
1−

N(i)∑
n=1

P (y ≥ y0|rupi,n)P (rupi,n)

é
. (2.5)

Here, N(i) is the maximum number of ruptures on source i, rupi,n is a shorthand
notation for the nth rupture of the ith source, and P (rupi,n) denotes the probability of
that rupture. P (y ≥ y0|rupi,n) denotes the conditional probability of exceeding intensity
level y0 given that rupture (Field et al., 2003).

This formulation allows to handle time-dependent probabilities explicitly and does not
assume Poissonian statistics. For a derivation of this formula from the classical method
under the assumption that multiple ruptures can be neglected, see Appendix A of Field
et al. (2003).
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2.1.3 Event-Based Simulation Approach

Methodology

The main loop for classical PSHA is over sites. For each site, the hazard is integrated
taking all relevant sources into account. This is performed evaluating the integral, which
was analytically derived beforehand for a specific magnitude-frequency relationship, for a
rupture occurrence model (generally assumed to be Poissonian for the classical approach),
and for specific source typologies such as point or line sources.

Classical PSHA in this form is the most efficient way of obtaining traditional hazard
results. It is recommended to be used if these results are the only desired output, e.g. for
an engineering project at a single site (Crowley et al., 2011). It is less well-suited when
individual event ground motions are explicitly needed. This involves, for example, mod-
eling the risk of losses to a portfolio in the insurance industry, where per-event losses are
required, or advanced techniques such as ground motion correlation or deaggregation1 (see
footnote on page 8).

In that case, an alternative procedure is event-based PSHA (see Figure 2.2) where the
main loop is over events. In this approach a synthetic seismicity catalogue (also known
as stochastic event set, SES) is generated from an earthquake rupture forecast (ERF) for
a given time interval t0 using a temporal (rupture) occurrence model (TOM). An ERF
is a list of possible ruptures and their associated probabilities obtained from a seismic
source model. For each rupture rup that can theoretically be generated by a source, this
is usually performed by sampling the number of ruptures k within a time interval t0 from
the probability distribution Prup(k, t0) corresponding to the temporal occurrence model
(e.g. Poissonian, see Equation 2.1 for the probability mass function). In other words, a
stochastic event set is a sample of the population of all ruptures contained in the ERF
(Crowley et al., 2011).

For each event in the SES, one or more realizations of the ground motion field is
then explicitly computed at all necessary sites. This usually involves computing the mean
ground motion as well as inter- and intra-event residuals (see Section 3.4). Since both the
seismicity catalogue as well as the realizations of event ground motion are usually obtained
using Monte Carlo simulation, this method is also known as the stochastic or Monte Carlo
method.

Obtaining Classical Hazard Results from Event-Based PSHA

Also when employing event-based PSHA, one might want to obtain classical hazard re-
sults, i.e. hazard curves and hazard maps. These can be obtained by post-processing the
simulated ground motion fields. Note that this does not imply that the results of all sce-
narios need to be stored explicitly. Post-processing can occur incrementally, e.g. following
immediately after the simulation of one or several events.
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Source Model GMPE Model

ERF Calculator

Earthquake Rupture Forecast

SES Calculator

Stochastic Event Set

Ground Motion Field Calculator

Ground Motion Fields

Event Based Hazard Calculator Risk Calculator

Hazard Output Risk Output

Figure 2.2: Schematic workflow of a typical implementation of event-based PSHA and
event-based risk analysis. Note that a stochastic event set (SES) is obtained from the
earthquake rupture forecast (ERF), and that the hazard and risk output is obtained from
the collection of ground motion fields simulated using Ground Motion Prediction Equations
(GMPEs). Illustration inspired by the Openquake Book (Crowley et al., 2011).
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The mean rate of exceeding ground motion level y0 at a site r0 can be obtained as

λ(y0, r0)[y ≥ y0] =

∑K
k=1H(yk − y0)

T0

, (2.6)

where yk is the ground motion produced by the kth rupture, K is the number of simulated
ruptures, T0 is the duration of the stochastic event set simulation, and H is the Heaviside
function (Kafka et al., 1999; Crowley et al., 2011).

Equation 2.6 estimates the mean ground motion exceedance rate from a simulation of
duration T0. The estimate becomes more accurate with increasing T0. It is also possible
to join multiple stochastic event sets with shorter duration T0. To obtain the probability
of exceedance in time interval t0, a temporal occurrence model for the ruptures needs to
be integrated. If the temporal occurrence model of the sources from which the stochastic
event set was generated were all Poissonian, this can be performed by using the result of
Equation 2.6 with the cumulative distribution function of the Poissonian model given by
Equation 2.2. Other approaches employ time-dependent temporal occurrence models (e.g.
Anagnos and Kiremidjian, 1988; Matthews et al., 2002; Fitzenz and Nyst, 2015). However,
as with many aspects of PSHA, calibration and verification of these models is difficult due
to the limited amount of available data.

2.1.4 Ground Motion Modeling

Ground Motion Prediction Equations

A ground motion prediction equation (GMPE) is a statistical model predicting the ground
motion at a site for a given earthquake rupture. A GMPE predicts the ground motion
in terms of some ground motion parameter which is a function of the full time history of
the ground motion occurring at a site during an earthquake. Commonly used parameters
include peak ground acceleration (PGA), peak ground velocity (PGV), peak ground dis-
placement (PGD), and peak spectral acceleration (PSA). While the first three have some
direct physical meaning, peak spectral acceleration is a response function of a damped
single-degree-of-freedom (SDOF) oscillator subjected to ground motions. Some processing
of the seismogram is necessary to obtain these parameters (see e.g. Krinitzsky, 2002; Dou-
glas, 2003; Pulido et al., 2004; Güllü, 2012).

In general, if y is a ground motion parameter of interest, then the ground motion
prediction at the ith site for the j th event, denoted by yij, is given by

ln(yij) = ln(ȳij) + εij + ηj. (2.7)

Here, ȳij denotes the predicted median ground motion intensity, εij denotes intra-event
residual at the ith site for the j th event, while ηj denotes the inter-event residual for
the j th event (Jayaram and Baker, 2009). εij and ηj are normal random variables with
zero mean. The multivariate normality assumption for the joint distribution of intra- and
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inter-event residuals has been confirmed by statistical tests (e.g. Jayaram and Baker, 2008;
Strasser et al., 2008).

The model for the median prediction ȳ and the standard deviation terms are developed
via regression. For example, a simple equation for the median ground motion model is

ȳ(m, r) = c1 + c2m+ c3 ln(r + r0), (2.8)

with the magnitude m and the focal distance r. Coefficients c1, c2, c3 and r0 describe
the attenuation relationship.

The standard deviation σ of the observations can be obtained via

σ =

 
1

n

∑
(yi − ȳ(m, r))2, (2.9)

where n is the number of observations used for the regression, and yi is the ith obser-
vation. To obtain the conditional probability of exceeding some ground motion level y0,
the probability density of Equation 2.7 is integrated:

P [y ≥ y0|m, r] =
∫ ∞
y0

fy(y|m, r)dy, (2.10)

fy(y|m, r) is the probability density of y(m, r). The integration is often truncated at
two or three standard deviations above the mean (Grünthal et al., 2013). It is still under
debate whether this can be seen in seismic data (e.g. Anderson and Brune, 1999; Jayaram
and Baker, 2008), but it is probably safe to assume that most researchers will agree that
at some point a truncation can be justified on physical grounds. However, due to the lack
of a statistically significant correlation between physical mechanisms and large residuals,
the deduction of a general truncation scheme is extremely difficult (Strasser et al., 2008).

For classical PSHA, the integration of Equation 2.10 can be performed by inverting
the GMPE and evaluating the complementary cumulative distribution function of the
standard normal distribution. For example, when using Equation 2.7 with Equation 2.8
and a constant standard deviation σc, this results in:

P [y ≥ y0|m, r] = Φ∗
Ç
y0 − c1 − c2m− c3ln(r + r0)

σc

å
. (2.11)

Here, Φ∗ denotes the complementary cumulative distribution function of the standard
normal distribution, and the argument is the inverted GMPE (McGuire, 1976).

In the development of most GMPEs, seismic data is jointly used from multiple earth-
quakes and sites. In effect, this means that the problem of limited data for a specific
location is overcome by making an ergodic assumption (Anderson and Brune, 1999). An
ergodic process is a random process where the probability distribution of a random variable
at a fixed time in space is equal to its probability distribution at a fixed point in time.

Modern GMPEs are usually more complex than the form presented in Equation 2.8.
Some incorporate the influence of source mechanism, path and site effects, such as ampli-
fication by soil and basins, local geology, faulting mechanism and directivity effects. In
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addition, instead of reporting some fixed total standard deviation, modern GMPEs provide
parametric models for inter- and intra-event standard deviation.

When individual event realizations are needed, numerical integration using event-based
PSHA is employed. In this case the integral of Equation 2.10 is evaluated via post-
processing the results of event-based ground motion footprints. The ground motion uncer-
tainty treatment framework implemented in the course of this thesis (see Section 3.4) is
based on this approach.

Numerical Waveform Modeling

The large amount of earthquakes that usually need to be taken into account for a PSHA
study result in the necessity of using a relatively simple ground motion model of limited
computational cost. Due to the extreme computational requirements (10000 CPU-hours or
more on a modern supercomputer for a single event), integrating numerical simulation of
physics-based three-dimensional wave propagation into a large-scale seismic hazard and risk
analysis instead of using GMPEs remains the exception. Nevertheless, recent pioneering
work (e.g. Graves et al., 2011; Infantino, 2016; Paolucci et al., 2018) is investigating the
possibility of incorporating dynamic wave simulations based on numerically solving the
wave equation into PSHA.

Field and SCEC Phase III Working Group (2000) found that the aleatory variability
of GMPEs represents complex effects caused by the unique wave propagation from the
source to a site. They concluded that in order to significantly improve PSHA, numerical
waveform simulation needs to be adopted instead of conventional regression-based ground
motion modeling.

2.2 Probabilistic Seismic Risk Analysis

2.2.1 Historical Background

Seismic vulnerability assessment started in the 1970s with the application of empirical
methods using macroseismic intensity measures. At the time, using physical ground mo-
tion parameters was avoided due to large scatter (Calvi et al., 2006). Damage probability
matrices (DPMs) were first proposed by Whitman et al. (1973). The usage of DPMs is
still popular to account for damage state uncertainty (e.g. Dolce et al., 2003; Pasquale
et al., 2005). The vulnerability index method has been introduced by Benedetti and
Petrini in 1984. It defines a vulnerability index for a building based on a weighted sum.
It uses building parameters such as plan and elevation configuration, foundation type,
structural and non-structural elements, state of conservation and material type and qual-
ity. Since the vulnerability index method is not only based on the building typology as
single predictor variable, this so-called indirect method allows to determine the vulnera-
bility characteristics of a specific building stock somewhat more precisely. Continuous
vulnerability functions were introduced shortly after DPMs. Their derivation was more
complicated since seismic intensity is not a continuous variable (Calvi et al., 2006). The
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problem was overcome by converting seismic intensity to a physical measure (e.g. Spence
et al., 1992; Orsini, 1999).

Enabled by the increased availability of spectral seismic hazard input, analytical and
mechanical methods started to be used more extensively in the 1990s. Obtaining an-
alytical vulnerability curves through non-linear analysis is a time-consuming procedure
and computationally extremely intensive. Therefore, analytical methods are often used in
conjunction with empirical DPMs and vulnerability curves (Calvi et al., 2006). Hybrid
methods combine empirical data obtained after an earthquake with analytical results ob-
tained from a mathematical model (e.g. Kappos et al., 1995; Barbat et al., 1996). Another
analytical vulnerability method is the capacity spectrum method. For example, it is
used by HAZUS (Hazard United States; Whitman et al., 1997; Federal Emergency Man-
agement Agency (FEMA), 2001), a methodology to estimate losses from earthquakes on a
regional basis. The capacity spectrum method finds the structural performance of a build-
ing type as the intersection point of two curves: the acceleration-displacement spectrum
and the capacity spectrum (pushover curve). The former curve represents ground motion,
while the latter represents the horizontal displacement of the structure under increasing
lateral load (Kircher et al., 1997).

2.2.2 Components of Seismic Risk Analysis

Probabilistic Seismic Risk Analysis (PSRA) builds on top of PSHA and consists of three
distinct parts: a hazard model, an exposure model, and a vulnerability model (see Fig-
ure 2.3).

The hazard model is part of a PSHA modeling framework and — as explained in
Chapter 2.1 — estimates an exceedance rate per ground motion intensity. An exposure
model comprises the locations and characteristics of exposed risk items, such as buildings
and infrastructure, or the content of buildings (e.g. industrial machinery). They are
grouped into certain classes according to their structural and nonstructural characteristics.
A vulnerability model provides damage probabilities for different types of exposed risk
items depending on the ground motion intensity they have been exposed to.
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Hazard

Risk Vulnerability

Exposure

Figure 2.3: Risk = F(Hazard,Vulnerability,Exposure).

2.2.3 Exposure Models

In contrast to hazard modeling, less studies have focused on the field of exposure modeling
for purposes of seismic risk assessment. Depending on the type of data and available
computational resources, two distinct types of exposure models are used: aggregated
models and single-risk models (Crowley, 2014). There are some differences in the
corresponding workflows when using either of these in probabilistic seismic risk analysis.

Aggregated Models

In aggregated exposure models, individual buildings within a given geographic area such as
grid cells or administrative zones are aggregated to a single information record. Adminis-
trative zones, e.g. counties or postcodes, can be of varying shape and size (see Figure 2.4).
This type of exposure model is frequently developed with very little available data, re-
sulting in the necessity to make numerous assumptions about the true distribution and
characteristics of exposure. Aggregated models are still very common, in particular for
country-wide or continental scale risk modeling outside of the insurance industry (see e.g.
Yepes et al., 2010; Silva et al., 2014). Even in the insurance industry, where smaller
portfolios containing only few high value risk items are sometimes relatively well known,
country-wide exposure currently almost never is.
In some aggregated exposure models, all risk items are simply located at a single loca-
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tion, such as the centroid of their zone. This introduces the implicit assumption of full
correlation of ground motion uncertainty for all buildings which are aggregated to a single
point.

In practice most aggregated exposure models neglect uncertainty treatment. This is
being justified by the law of large numbers, i.e. by assuming that the aggregated data
represents a very large number of individual buildings so that it suffices to assume that
the arithmetic mean damage ratio of modeled buildings equals the expected value of the
vulnerability distribution. As an attempt to improve this, aggregated exposure is some-
times deaggregated onto a weighted grid using population census and density data, as well
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Figure 2.4: Example of the geographical value distribution of an aggregated exposure
model provided on postcodes in Italy. Note this does not correspond to a real portfolio,
but is provided for illustrative purposes only.
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as publicly or commercially available building stock data. However, this merely results in
smaller areas of aggregation corresponding to the Voronoi cells of the grid, and the assump-
tions mentioned above are still employed. Furthermore, aggregated models do not provide
detailed information on the individual insurance conditions on site or policy levels, which
can have a very significant effect on the finally modeled loss-frequency curve of insured
losses.

Single-Risk Models

Conversely, single-risk (or detailed) exposure models contain a single information record
per individual risk item. These exposure models comprise all information related to the
collection of assets for which risk assessment is performed. This includes data such as loca-
tion, insured value, construction type and year, building height, and insurance conditions.
Table 2.1 shows an example of this kind of model.

More detailed exposure models in turn allow to use a more specific vulnerability model,
which might take into account these additional parameters for the prediction of damage.
Also for single-risk exposure models, the quality of data can vary. Some information might
be missing or not plausible. For example, precise coordinate location information might
not be available for all risk items. Different parts of the portfolio can be known on different
geographic resolutions, e.g. coordinate level, postcodes, or administrative zones of varying
size. Note that this does not necessarily mean that these risk items are aggregated, since
the value of individual risk items might still be known while precise coordinates are not.

Geo.-Resolution Geo.-Zone Lon. Lat. Value Construction Type ...

Postal Code 10130 unknown unknown 12340 reinforced concrete ...
City District DKI Jakarta unknown unknown 34343 reinforced concrete ...
Coordinate Palembang 104.9 -3.0 34343 masonry ...

City Medan unknown unknown 23456 unknown ...
... ... ... ... ... ... ...

Table 2.1: Hypothetic example of a detailed exposure model. Note that a dataset can
be quite heterogeneous, e.g. the quality of location information can vary or some records
might have unknown fields.

2.2.4 Vulnerability Models

The concept of vulnerability provides a link between hazard and risk. Vulnerability models
define the susceptibility of risk items (e.g. buildings, bridges, office equipment, or wine
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barrels) to be damaged by a certain level of ground motion.

Some important parameters influencing vulnerability are:

• construction material

• construction type (load bearing structural systems)

• building design

• official building construction code

• building height (number of stories)

• occupancy type (type of usage, e.g. school, office, hospital)

A vulnerability model is a set of vulnerability curves and associated uncertainty distri-
butions for different building classes defined on the basis of these parameters. Vulnerability
functions provide a probabilistic model of damage depending on seismic demand. Seismic
demand is commonly quantified using a ground motion intensity parameter such as PGA
or PSA (see Section 2.1.4). Depending on its height, a building will respond more or less
to acceleration at different frequencies (see Table 2.2).

Rise Class Stories Typical Natural Period
Low-Rise < 3 < 0.3 seconds
Mid-Rise 3− 8 0.3− 1.0 seconds
High-Rise 9− 20 1.0− 2.0 seconds
Skyscraper > 20 > 2.0 seconds

Table 2.2: Typical natural resonance periods of building rise classes.

In the insurance industry, damage is usually measured as the damage ratio (DR) defined
as

DR =
costrepair

valueinsured

, (2.12)

where costrepair is the cost of repairing or rebuilding and valueinsured is the insured value.
costrepair is also refered to as ground-up loss.

As mentioned in Section 2.2.1, a number of different methodologies have been devel-
oped. Judgement based methods, as well as analytical and mechanical methods are in
widespread use — such as the FEMA loss estimation methodology and HAZUS (Kircher
et al., 1997; Whitman et al., 1997; Federal Emergency Management Agency (FEMA),
2001).
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In particular in the insurance industry, another promising approach to construct vul-
nerability models is to analyze ground motion and loss data from past earthquakes. If the
quality of a dataset is good, an empirical vulnerability curve and uncertainty distribution
can be obtained this way (e.g. Sarabandi et al., 2004; Rossetto et al., 2013; Scheingraber,
2015). Figure 2.5 shows an example of this for three different construction types. However,
in many cases this approach is still hindered by the lack of reliable ground-up loss data.
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Figure 2.5: Example of empirical vulnerability curves for different construction types.
This shows mean damage ratio (see Equation 2.12) against peak ground velocity (PGV, in
m s−1). Color denotes different construction types. These vulnerability curves have been
obtained from ground motion and loss data of the 2011 Tōhoku-Oki earthquake (Japan)
using a sliding window approach with equidistant window width of 0.2 m s−1 and step size
of 0.2 m s−1 (Scheingraber, 2015).
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Chapter 3

A Framework for the Treatment of
Ground Motion and Damage
Uncertainty in Probabilistic Seismic
Hazard and Risk Analysis

This chapter describes the theory behind a new framework for the treatment of ground
motion and damage uncertainties by repeatable stochastic simulation, as implemented
during the course of this thesis for a seismic risk assessment framework used by Munich
Re (see Chapter 1.1).

3.1 Introduction

The financial impact of an earthquake on insured portfolios is a convoluted process in-
volving a multitude of highly complex physical phenomena, such as the nucleation and
propagation of a rupture, the emission and propagation of seismic waves in a heteroge-
neous medium, the response and eventual failure of building materials, and the evaluation
of the value and the repair cost of an affected structure. Remarkable progress has already
been made to model many of these processes in a manner that accurately reflects their
physical nature, such as numerical modeling of 3D waveform propagation for strong sce-
narios in selected regions for probabilistic seismic hazard assessment (e.g. Graves et al.,
2011; Infantino, 2016; Mert et al., 2016), or numerical simulation of the non-linear re-
sponse of structures subjected to ground motion in the area of earthquake engineering
(e.g. Mazzoni et al., 2005; Deierlein et al., 2010; McKenna, 2011; Ni et al., 2012; Chen
et al., 2013). However, fully doing so for the purpose of seismic risk assessment in the
insurance industry seems to remain impractical or unfeasible for the foreseeable future.
The reasons for this are manifold and include the finiteness of financial and computational
resources to physically model the tremendous number of earthquake scenarios which are
necessary to be included in the analysis, limited knowledge of the composition of the crust,
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and often a surprisingly high degree of uncertainty about the construction materials as well
as the condition and location of insured buildings. Therefore, current practice necessarily
involves utilization of simpler models, thereby reducing computational demands and time
expenditure for model development.

To model ground motion at a site, nowadays the most common approach is to use a
ground motion prediction equation (GMPE; see Section 2.1.4) obtained from regression
analysis of site ground motion of records of real events — sometimes supplemented with
synthetic events. Modern GMPEs depend on local soil, varying distance measures to
the earthquake, and a few source parameters such as earthquake magnitude or faulting
mechanism. To model the damage to a building due to ground motion, vulnerability
functions (see Section 2.2.4) are used. Like GMPEs, these are relatively simple curves
and depend on a few factors such as the region, height and age of the building, and the
construction type of load-bearing structures.

Even when neglecting the uncertainty in data, these relatively simple models will always
be associated with a high degree of aleatory variability, as they are not designed to capture
the physical processes which influence the seismic wave along its path, the response of
structures, and losses of an insured portfolio. An important requirement for a modern
seismic risk assessment framework is therefore to take the full uncertainty associated with
ground motion and vulnerability modeling into account.

3.2 Monte Carlo Simulation and Random Number

Generation

In order to take uncertainty of a numeric model into account, it is usually necessary to
evaluate the model at a large point set. Depending on the problem, there is a multitude of
suitable methods to generate this set. The Monte Carlo method uses random numbers in
a controlled manner. Monte Carlo is the standard integration scheme for high-dimensional
problems such as Probabilistic Seismic Hazard Assessment (PSHA) and Probabilistic Seis-
mic Hazard Assessment (PSRA) — in particular if individual event losses are needed or
correlation models are used.

3.2.1 Monte Carlo Simulation

The Monte Carlo method was invented during the Manhattan Project at Los Alamos
Laboratory and first published by Metropolis and Ulam (1949). Simple Monte Carlo in
its original form is based on uncorrelated sampling using uniformly distributed random
numbers, generating a set of n realizations {Y1, Y2, . . . , Yn} of a random variable Y . A
parameter of interest, such as the expectation or variance of Y , can then be estimated
from the sample using a suitable estimator. For example, an unbiased estimator for the
expectation µ = E(Y ) is given by

µ̂ =
1

n

n∑
i=1

Yi, (3.1)
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where Yi = f(Xi) is the random variable depending on the ith random number. An
unbiased estimator for the variance σ2 is given by

σ̂2 =
1

n− 1

n∑
i=1

(Yi − µ̂)2. (3.2)

In real applications, generating Y can be quite complicated. It might depend on a
large number of underlying random variables with potentially discontinuous probability
distributions (see e.g. Section 3.5.3), as well as additional underlying random processes
involving decisions and jumps (see e.g. Chapter 6). However, simple Monte Carlo can still
be used as long as Y can be averaged (Owen, 2013).

Convergence and Error Estimation

The strong law of large numbers ensures convergence of simple Monte Carlo. When the
sample size n grows to infinity, the probability P that the estimator µ̂ is equal to the
expectation µ = E(Y ) is one:

P
(

lim
n→∞

|µ̂n − µ| = 0
)

= 1. (3.3)

Since Monte Carlo is a stochastic method, there are no exact bounds for the error
E = |µ̂n − µ|. The error at a given sample size n is instead distributed according to a
probability distribution, which is called sampling distribution. The standard deviation
of the sampling distribution is referred to as standard error (ESE). This quantity is often
used as an indication of size of the true error.

If the sampling distribution is known to be normal, then for many statistics of interest
there are formulas available to directly estimate standard errors using the sample size n
and variance σ2 (see e.g. Harding et al., 2014). For example, under the normal assumption
for the sampling distribution, the standard error of the mean ESEM,normal can be estimated
as

ESEM,normal =
σ̂2

n
. (3.4)

In practice, Equation 3.4 is often applied without knowledge about the sampling distribu-
tion. However, if the sampling distribution is not known a better approach is either using
repeated simulation with the same sample size (e.g. Koehler et al., 2009) or estimating
the error from the same sample using bootstrapping (Efron, 1979; Efron and Gong, 1983;
Efron, 1982). This resampling-based method assumes that the sample already contains all
information about the underlying population. A set of bootstrap resamples is obtained
by sampling with replacement from the original sample. Each member of the set is of the
same size n as the original sample. The standard deviation of the estimates obtained from
the bootstrap are then used as an estimate for the standard error ESE.

In the studies presented in Chapters 5 and 6 of this thesis, repeated simulation was used
to estimate standard errors of different sampling schemes, and bootstrapping was used to
estimate corresponding confidence intervals.
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3.2.2 Uniform Random Number Generators

As implied in Section 3.2.1, Monte Carlo simulation — and probabilistic algorithms in
general — rely on the availability of a supposedly endless stream of independent and
identically distributed (IID) random variables following different probability distributions.
Generating random variables of a nonuniform distribution in turn requires a theoretically
endless stream of IID uniformly distributed random variables (Robert and Casella, 2004),
which is provided by a random number generator (RNG). A good RNG is therefore a key
ingredient of Monte Carlo simulation.

True and Pseudo Random Number Generators

In computing, two different kinds of RNGs are generally used: hardware random number
generators (HRNGs; also called “true” random number generators), and pseudo-random
number generators (PRNGs; also called deterministic random bit generators). HRNGs are
based on collecting entropy from physical sources, such as thermal and acoustic noise or
quantum phenomena. Modern computer architectures like Intel Ivy Bridge (Hofemeier,
2012) and even smartphones provide dedicated HRNG devices. Random numbers based
on the collected entropy are made available to programs by the operating system1. HRNGs
are most important for cryptographic applications which not only need statistical random-
ness, but also the stronger requirement of unpredictability. While there is ongoing research
concerning faster HRNGs (e.g. Reidler et al., 2009), the devices that are nowadays com-
monly used can not collect entropy at a rate that would suffice to produce random numbers
for direct application. Theoretically, this is not necessary anyway, because entropy is not a
quantity that can be consumed at any measurable rate. Thus, HRNGs are used to obtain
a random seed to generate an initial state for a cryptographically secure PRNG, which acts
as an extensor of randomness and stretches the seed into a sequence of apparently random
numbers (L’Ecuyer, 2014).

For stochastic simulation and computational statistics, PRNGs are better suited be-
cause they can generate random variables at a fast rate and fulfill another important
requirement: repeatability of the generated “random” sequences. Of course, there is noth-
ing truely random about a sequence produced by a PRNG — the dilemma was famously
boiled down to its essence by Von Neumann (1951): “Any one who considers arithmetical
methods of producing random digits is, of course, in a state of sin.” In fact, PRNGs are
deterministic algorithms which only appear to behave like a random variable.

Uniform Pseudo Random Number Generators

As mentioned before, (Pseudo-)RNGs usually imitate the behavior of a random variable
following a uniform distribution. The probability density f(x) of the continuous uniform

1On Unix-like systems, the random digits are made available through /dev/*random for non-dedicated
devices and through /dev/hrng for dedicated HRNG devices. On Windows, they are made available
through the CryptGenRandom and CNG APIs.
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distribution U (a, b) with a < b is given by:

f(x) =


1
b−a if x ∈ [a, b],

0 otherwise.
(3.5)

According to L’Ecuyer (1994), a uniform PRNG can be defined as a structure (S, µ, f, U , g),
with S a finite set of states, µ a probability distribution on S used to select the initial state
s0, f : S → S the transition function between consecutive states, and g : S → U the
output function to the output set U . Most PRNGs model a random variable following the
standard uniform distribution U (0, 1), which implies that the output set equals the unit
interval, U = [0, 1]. Consecutive states si with i ≥ 1 are obtained using a recurrence rela-
tionship si = f(si−1). Because S is finite, starting from a state si, after a certain number
of state transitions j eventually si will be reached again: si+j = si. The smallest j for
which this happens is called the period length ρ. A good PRNG carries only a small state
S, but preferably features a large period length at the same time. It is also important that
a PRNG performs well on statistical randomness tests2. Bad PRNGs generate correlated
sequences which can cause undesired and surprising effects in probabilistic algorithms and
wrong results in stochastic simulations.

Almost all PRNGs which are nowadays used are based on linear recurrences:

Xi = (a1Xi−1 + · · ·+ akXi−k + c) mod m. (3.6)

Prime numbers are good choices for m, because the period length can then be maximized
to ρ = mk−1 with well chosen ai (Knuth, 1981). The well-known class of linear congru-
ential generators (LCGs) use k = 1 with different coefficients a1 and c. LCGs are easy to
implement, very fast, and only require to store a small state in memory, which makes them
a good choice for e.g. embedded systems. The quality of a LCG strongly depends on the
parameter choices, and in a lot of older implementations — which have unfortunately also
been used in many scientific studies which are now often being questioned — bad choices
were made (e.g. IBM’s RANDU). Today, there are better PRNGs for a large scale Monte
Carlo simulation where high quality random numbers are important.

Instead of a prime number, linear feedback shift register (LFSR) generators use
a modulus of m = 2, which can be implemented efficiently using simple bitwise opera-
tions (bit-shift and xor). Notable examples are Mersenne Twister (Matsumoto and
Nishimura, 1998), xorshift (Marsaglia, 2003), and WELL (Panneton et al., 2006). The
name is derived from using a Mersenne prime for its huge period length (ρ = 219937−1). It
was the first PRNG purposefully designed to fix problems with statistical randomness that
were common in LCGs. It was initially perceived as a very good generator and is the default
PRNG in virtually all modern software libraries and computer programs. While Mersenne

2Good random number generator testing suites are e.g. TestU01 (L’Ecuyer and Simard, 2007) and
dieharder (http://webhome.phy.duke.edu/~rgb/General/dieharder.php).

http://webhome.phy.duke.edu/~rgb/General/dieharder.php
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Twister still has a good reputation, it has numerous disadvantages despite the huge pe-
riod; for example it fails some newer statistical randomness tests already for sequences of
50000 numbers, and has an unnecessarily large state resulting in slow seeding and high
memory requirements (O’Neill, 2014). For parallel simulation, it is necessary to divide the
(periodic) PRNG sequence into multiple statistically independent substreams. Mersenne
Twister was not designed to support substreams; it also has a very slow skip-ahead. Fur-
thermore, two seedings are not guaranteed to be statistically independent, especially if the
generated sequence is not very large. This makes Mersenne Twister ill-suited for parallel
simulation, in particular if results need to be exactly reproducible for repeated simulations.

Multiple recursive generators (MRGs) use Equation 3.6 with a large m and define
the output as Ui = Xi/m. Combined multiple recursive generators (CMRGs) are
constituted of several MRGs:

Xi =

Ñ
k∑
j=1

(−1)j−1si,j

é
mod (m1 − 1), (3.7)

where si,j is the ith input from the jth RNG, m1 is the modulus of the first RNG, and Xi

is the ith random integer generated by the CMRG (L’Ecuyer, 1988; L’Ecuyer, 1996). The
random numbers of the uniformly distributed output U are then given by

Ui =

Xi/m1 for Xi > 0

(m1 − 1)/m1 for Xi = 0.
(3.8)

A good combination of MRGs can result in more complicated composite structure and im-
proved statistical randomness of the produced sequence. At the same time, by keeping the
underlying generators simple, CMRGs run fast and only need to carry a relatively small
state (Panneton et al., 2006). A good representative of this category is e.g. MRG32K3a
L’Ecuyer (1999). MRG32K3a has a total period of ρ ≈ 2191 ≈ 3.1 · 1057 and supports
1.8 · 1019 independent substreams which each have a period of 7.6 · 1022. MRG32K3a
has a fast skip-ahead, i.e. individual substreams can be selected efficiently. These prop-
erties make it a good candidate for parallelizing large-scale Monte Carlo simulations on
distributed systems while retaining repeatability.

In this thesis, Mersenne Twister was used for the studies presented Chapters 4 and 6,
and MRG32K3a for the final implementation of the framework described in this chapter
and the study presented Chapter 5.

3.2.3 Simulating Nonuniform Random Variables

From a uniformly distributed output set U as obtained from a PRNG or a low discrepancy
sequence, random variables following other distributions can be simulated by applying an
appropriate transformation (Hörmann et al., 2013). The most understandable and most
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commonly used transformation to obtain a random variable Y with cumulative distribution
function F (y) is the inverse transform method :

Y = F−1(U) := min{y|F (y) ≥ U}, (3.9)

where F−1 is the inverse of F , which is also known as quantile function. This method
is well suited to sample distributions where an analytical expression of the corresponding
quantile function is available, such as the Kumaraswamy distribution which in this frame-
work is used to model damage uncertainty (see Section 3.5.2). When the quantile function
is not explicitly known — like for the normal distribution used to model ground motion
uncertainty — other methods are better suited; for example the Box–Muller transform
(Box and Muller, 1958), or rejection sampling methods such as Ziggurat (Marsaglia and
Tsang, 1984; Marsaglia and Tsang, 2000).

When simple sampling of ground motion uncertainty without multidimensional vari-
ance reduction techniques is performed, the framework described in this chapter uses the
Ziggurat method to sample from the untruncated normal distribution, and the efficient re-
jection sampling algorithm proposed by Botev (2017) to sample from the truncated normal
distribution. When variance reduction techniques are applied (see e.g. Chapter 6), inverse
transform sampling in conjunction with an efficient approximation of the quantile function
of the normal distribution is used (Beasley and Springer, 1977; Moro, 1995; Glasserman,
2003).

3.3 Framework for Repeatable Stochastic Simulation

for Probabilistic Seismic Risk Analysis on Dis-

tributed Systems

An important requirement for PSRA in the insurance industry is the exact reproducibility
of results obtained through stochastic simulation. Note that since exact reproducibility is
required, it is not sufficient to ensure stochastic convergence in the sense that the standard
error is below a certain threshold. This requirement is not in contradiction with the usage
of stochastic sampling, because PRNGs are, in essence, combined recurrence relationships
following a deterministic algorithm to calculate random numbers based on the current state
and to move from one state to the next (see Section 3.2.2). It is however not completely
straightforward to achieve this requirement on a distributed compute cluster with many
individual nodes and processors, and therefore the theory and implementation decisions
behind the framework are outlined in the following.

3.3.1 Computational Infrastructure

The uncertainty treatment framework has been integrated into a risk assessment framework
developed by the Natural Catastrophe Modeling Group at MunichRe (see Section 1.1).
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The framework is designed to run on a modern cluster compute environment, managed
running Apache Spark3 on Apache Mesos4 with dynamic resource allocation. Individual
worker processes run in Docker containers5 and the exposure data is piped to the MATLAB
process using a custom binary inter-process communication (IPC) layer. Parallelization is
performed using tiling of exposure and events.

3.3.2 Selection of PRNG Substreams using Hash Functions

In a cluster environment with dynamic resource allocation, it can not be taken for granted
that input data will be partitioned identically when a computation is repeated in the same
or a similar way at a later point in time. Exposure and events might be ordered differently
than the first time and individual worker processes might receive different tiles of exposure
and events. There might even be a different number of total worker nodes assigned to the
same job.

For stochastic simulation requiring exact reproducibility, this poses special problems.
Starting from a given state, RNGs always generate same sequence which might e.g. be
used to stochastically select quantiles of various uncertainty distributions. With variable
input data partitioning and ordering, these quantiles would however inevitably be assigned
to different event and exposure tiles, which would imply obtaining different results. It is
thus necessary to select a state of a RNG depending on the combination of an event and
exposure. This is achieved by choosing a substream of MRG32K3a (see Section 3.2.2) based
on the exposure properties of an individual risk item. For some sampling procedures such as
sampling location uncertainty, it is necessary to obtain a repeatable sequence independent
of the current event. In the framework, an individual risk item is uniquely identified by:

• occupancy type (type of usage, e.g. school, office, hospital)

• construction type (load bearing structural systems)

• year of construction

• latitude and longitude

• geographic/administrative zone

• geographic resolution of original data.

When random number sequences need to be obtained based on the combination of an event
and exposure, these data are furthermore supplemented by the event group index.

While the year of construction, geographic resolution, occupancy type, construction
type are encoded as integers, latitude and longitude are floating point numbers, and the

3Apache Spark is a unified analytics engine for big data. See https://spark.apache.org.
4Apache Mesos abstracts CPU, memory, storage and other resources. See http://mesos.apache.org.
5Docker provides operating-system-level virtualization, see https://www.docker.com.

https://spark.apache.org
http://mesos.apache.org
https://www.docker.com
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geographic zone is a string. It was thus necessary to develop a method to map from these
heterogeneous data to the 1.8 · 1019 statistically independent substreams supported by
MRG32K3a. A hash function does exactly this: it maps from data of arbitrary size to
data of fixed size. The framework supports three suitable hash functions:

• Donald Knuth’s hash proposed in Chapter 6.4 of The Art of Computer Programming
Volume 3 (Knuth, 1997)

• SDBM Hash6

• Message-Digest Algorithm 5 (MD5)7.

Donald Knuth’s hash and the SDBM hash are both simple and fast hash functions
based on a few bit-wise operations. For example, the SDBM hash works be adding up the
original bit-sequence shifted to the left by 6 bits and the original sequence shifted to the
right by 16 bits, and subtracting the original sequence:

1 unsigned i n t SDBMHash( char ∗ s t r , unsigned i n t l ength ) {
2 unsigned i n t hash = 0 ;
3 unsigned i n t i = 0 ;
4

5 f o r ( i = 0 ; i < l ength ; s t r ++, i++)
6 {
7 hash = (∗ s t r ) + ( hash << 6) + ( hash << 16) − hash ;
8 }
9

10 re turn hash ;
11 }

For its relative simplicity, SDBM was found to have a good distribution and few collisions,
i.e. it seldom happens that two different input data are mapped to the same output. MD5
is a more expensive algorithm which was initially designed for encryption. While MD5 is
no longer considered cryptographically secure, due to relatively few collisions it suffices the
requirements for an uncertainty sampling framework.

In the framework introduced in this section, the MD5 hash is always used to select a
substream of MRG32K3a for the sampling of location uncertainty. For this uncertainty
type it is especially important to avoid collisions, because due to the underlying cluster
and datastore architecture it can only be sampled in advance for the entire stochastic
event set and not per individual event. For the sampling of ground motion and damage
uncertainty, the faster SDBM hash is used by default but all supported hash functions
can be selected. In order to support both repeatable as well as stochastically independent
results for repeated simulations, a fixed or a random seed can be set in the job parameter
file of the framework.

6This is the hash function implemented in the public domain database library SDBM. See http://www.

cse.yorku.ca/~oz/sdbm.bun and http://www.cse.yorku.ca/~oz/hash.html.
7See RFC 1321: https://tools.ietf.org/html/rfc1321.

http://www.cse.yorku.ca/~oz/sdbm.bun
http://www.cse.yorku.ca/~oz/sdbm.bun
http://www.cse.yorku.ca/~oz/hash.html
https://tools.ietf.org/html/rfc1321
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3.4 Framework for Stochastic Simulation of Ground

Motion Uncertainty

The modeling of the likely impact of earthquakes on insured portfolios requires not only
computation of the expected ground motion but also involves evaluation and simulation
of ground motion uncertainty, which can have a strong impact on the results. By design,
GMPEs model the marginal distribution of one ground motion parameter at a single site.
To accurately analyze seismic risk for heterogeneous portfolios consisting of different rise
types (see Section 2.2.4), it is necessary to use a vector of multiple ground motion parame-
ters corresponding to Peak Spectral Acceleration (PSA) at different response periods with
correlated residuals (Bazzurro and Cornell, 2002; Baker and Cornell, 2006). Spatial cross-
correlation — i.e. the simultaneous treatment of period-to-period and spatial correlation
— is important when assessing the impact of earthquake events on a spatially clustered
portfolio with heterogeneous building types, such as a portfolio distributed over a typical
city-scale region consisting of risk items with different rise types (Weatherill et al., 2015).

The framework described in this chapter supports evaluation of uncorrelated and spa-
tially correlated ground motion uncertainty, as well as spatially cross-correlated ground
motion uncertainty using either the linear model of coregionalization or full block cross-
correlation methodologies. Table 3.1 gives an overview of supported ground motion corre-
lation models.

Correlation Model Type
Jayaram and Baker (2009) spatial
Baker and Cornell (2006) period-to-period
Loth and Baker (2012) LMCR

Jayaram and Baker (2009) with Baker and Cornell (2006) FBCC

Table 3.1: Ground motion correlation models supported by the framework (LMCR = linear
model of coregionalization. FBCC = full block cross correlation.).

3.4.1 Uncorrelated Ground Motion Uncertainty

Recall Equation 2.7, which for the ith site and j th event models the ground motion pa-
rameter yij as

ln(yij) = ln(ȳij) + εij + ηj, (3.10)

with ȳij the predicted median ground motion intensity, εij the intra-event residual, and
ηj the inter-event residual. εij and ηj are normal random variables with zero mean and
standard deviation σij and τj, respectively.
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The new event-based uncertainty framework numerically simulates Equation 3.10, sam-
pling ground motion uncertainty on all locations and for all GMPEs used by a seismic
hazard model. First, the standard normal distribution is sampled to obtain standard nor-
mal random variates µij and νj. Stochastic realizations of εij and ηj are then obtained by
multiplication of the standard normal random variates with the corresponding standard
deviation as returned by the GMPE:

εij = ξijσij (3.11)

ηj = νjτj (3.12)

Depending on the settings of the computation, ξij and νj and therefore also εij and ηj
can be truncated normal random variates, obtained via the algorithm of Botev (2017) or
inverse transform sampling in conjunction with an efficient approximation of the quantile
function of the normal distribution (Beasley and Springer, 1977; Moro, 1995; Glasserman,
2003; see Section 3.2.3). A truncation of the normal distribution is arguably justified for
physical reasons, but based on current data it is not clear which truncation level to adopt
(see Section 2.1.4).

Figure 3.1: Footprints of mean ground motion (left) and ground motion with sampled
uncorrelated intra-event uncertainty (right) for the Mw 6.3 2009 L’Aquila event. Color
shows Peak Spectral Acceleration (PSA) in m s−2 at a response period of T = 0.1 s obtained
using the ground motion model of Chiou and Youngs (2008). The surface trace of the
rupture is superimposed as a red line, black isolines in the left plot indicate equal levels of
ground motion.
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To provide an illustration, Figure 3.1 shows a footprint of mean ground motion and a
footprint of ground motion with sampled uncorrelated intra-event uncertainty for the Mw

6.3 earthquake which occurred near L’Acquila in central Italy on April 6th, 2009. The
GMPE by Chiou and Youngs (2008) has been used to obtain PSA at a response period of
T = 0.1 s.

3.4.2 Spatially Correlated Ground Motion Uncertainty

Many portfolios in the insurance industry contain risk items which are spatially clustered,
for example in areas of high population density or large industrial plants. In these cases,
the modeling of the spatial correlation of the intra-event ground motion residuals (εj) at a
collection of sites is of high importance to correctly assess the likely impact during an event,
since it can increase the likelihood of particularly high — and sometimes low — losses for
spatially clustered portfolios (Weatherill et al., 2015). Spatial correlation between sites
is caused by several reasons, such as common source effects (e.g. similar stress-drop or
slip pattern) or common path effects because seismic waves travel a similar path from the
rupture to nearby sites (Jayaram and Baker, 2010).

Geostatistics and Spatial Correlation Models for Ground Motion Uncertainty

Because the intra-event residuals εj = (ε1j, ε2j, εnj) have been shown to follow a multi-
variate normal distribution (Jayaram and Baker, 2008), the distribution of εj can be fully
defined by its mean and standard deviation, and the correlation between all εi1j and εi2j
pairs. Because the residuals are centered around zero, the mean of εj is 0. While the stan-
dard deviation is part of the GMPE, usually defined as a function of the spectral period
and distance to the epicenter, the correlations are not.

In the literature several spatial correlation models are proposed, usually derived from
empirical data with geostatistical tools. Ground motion is modeled as a stationary random
process Z(x) = µ+ ε(x) with mean µ and residual ε (compare Equation 3.10). Using the
assumption of intrinsic stationarity

E[Z(x)− Z(x+ h)] = 0, (3.13)

i.e. that the expected differences between two sites x and x + h separated by a distance
vector h are zero, a semi-variogram can be used to model the correlation structure (Oliver
and Webster, 2014):

γ(h) =
1

2
E[{Z(x)− Z(x+ h)}2], (3.14)

where Z is a random variable corresponding to ground motion, and Z(x) and Z(x + h)
its values at two sites.
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Using the method of moments, an experimental variogram can be obtained from a finite
number of realizations z(xi) corresponding to data recorded at sites xi as (Matheron, 1965):

γ̂(h) =
1

2m(h)

m(h)∑
i=1

{z(xi)− z(xi + h)}2, (3.15)

with m(h) the number of paired comparisons at distance h. To obtain a continuous model
for the correlation as a function of lag distance h = |h|, a smooth curve is fit to the
experimental variogram γ̂. For example, a popular model is the isotropic spherical-plus-
nugget model:

γ(h) =


c0 + c

{
3h
2r
− 1

2

Ä
h
r

ä3}
, for 0 < h ≤ r,

c0 + c, for h > r,

0, for h = 0,

(3.16)

with c0 the nugget variance, c the spatially correlated variance, and r the range.

Most spatial correlation models for intra-event ground motion residuals εj (e.g. Wang
and Takada, 2005; Goda and Atkinson, 2009; Jayaram and Baker, 2009; Garakaninezhad
et al., 2017) fit an exponential model of the form

γ(h, T ) = exp[a(T )hb(T )], (3.17)

with h the distance, and a and b coefficients depending on the period T .
The spatial correlation model by Jayaram and Baker (2009) which was implemented

for this framework distinguishes between regions where the values of VS30 (the shear wave
velocity in the upper 30 m) show or do not show clustering. It models the correlation γ
between two sites separated by a distance h as

γ(h) = exp(−3h/b), (3.18)

where

b =


8.5 + 17.2T, for T < 1 s and VS30 clustering,

40.7− 15.0T, for T < 1 s and no VS30 clustering,

22.0 + 3.7T, for T ≥ 1 s independent of VS30 clustering,

(3.19)

where T is the spectral period.

Using the exponential model for the spatial correlation implicitly assumes that the
intra-event ground motion residuals are joint normally distributed and that the field is
isotropic and homogeneous (Weatherill et al., 2015). These assumptions have already been
shown to be reasonable (Wang and Takada, 2005; Baker and Jayaram, 2008; Jayaram and
Baker, 2009).
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Simulation of Spatially Correlated Random Fields

The most common methodology to simulate a spatially correlated normal random field is
to use the classical decomposition approach as described by Davis (1987):

Y = µ+LZ, (3.20)

Figure 3.2: Footprint of Aquila event with spatially correlated ground motion uncertainty.
This shows Peak Spectral Acceleration (PSA) in m s−2 at T = 0.1 s using the ground
motion model of Chiou and Youngs (2008) and the spatial correlation model by Jayaram
and Baker (2009) with VS30 clustering.
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where Y is the resulting vectorized random field with mean µ, Z is a vector of IID standard
normal random variables, and L is the lower-triangular matrix obtained from the Cholesky
decomposition

LLT = C, (3.21)

with C being the symmetric positive definite (SPD) correlation or covariance matrix:

C =



1 γ(h1,2) γ(h1,3) · · · γ(h1,n)
1 γ(h2,3) γ(h2,n)

. . . . . .
...

1 γ(hn−1,n)
sym. 1

 , (3.22)

and γ(hi,j) the correlation or covariance between two sites separated by a distance hi,j.

To illustrate the effect of spatial correlation, Figure 3.2 shows a footprint for the same
April 6th 2009 L’Acquila Mw 6.3 earthquake as in Figure 3.1. The GMPE by Chiou
and Youngs (2008) has been used to obtain PSA at a response period of T = 0.1 s in
combination with the spatial correlation model by Jayaram and Baker (2009).

3.4.3 Spatially Cross-Correlated Ground Motion Uncertainty

For the analysis of portfolios which contain risk items with heterogeneous rise types (see
Section 2.2.4), considering only a scalar ground motion parameter such as PSA at a single
period is usually not sufficient to accurately model the likelihood of damage to the building
stock, since the typical natural period of a building strongly depends on its rise types (see
Table 2.2). In these cases, it is advantageous to employ vector-valued PSHA (Bazzurro
and Cornell, 2002) using PSA at different response periods. Spectral GMPEs provide
a marginal probability distribution for PSA at a period, but do not provide the joint
probability distribution for a vector of PSA at multiple periods for a single site.

Baker and Cornell (2006) investigate observed spectral acceleration values for correla-
tion and provide an analytical model for period-to-period correlation. For the analysis of
portfolios with heterogeneous rise types which are also spatially clustered, it is furthermore
important to simultaneously take spatial correlation into account.

In the framework described in this chapter, two methodologies are available to achieve
this cross-correlation in a stochastic simulation: linear model of coregionalization (LMCR)
and full block cross correlation (FBCC).

Linear Model of Coregionalization

Loth and Baker (2012) fit a LMCR (Matheron, 1982) to a set of experimental vari-
ograms and cross-variograms of total residuals τ = εj + ηj. Using the algorithm pro-
posed by Goulard and Voltz (1992), they fit the following functional form for the SPD
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cross-correlation matrix C:

C = B1 exp

Ç−3h

20

å
+B2 exp

Ç−3h

70

å
+B3

1h=0, (3.23)

where h is the distance, 1 and indicator function equal to 1 for h = 0, B1, B2, and B3

are standardized coregionalization matrices describing the correlation for short, long and
zero distances, respectively. After vectorizing and appropriately concatenating Y i=1...N and
Zi=1...N for all N fields corresponding to N spectral response periods, stochastic simulation
can be performed according to Equation 3.20.

Because Loth and Baker (2012) fitted the LMCR to the total residual τ , the model
should therefore also be applied to τ when used for a simulation. The LMCR methodology
does not separate spatial and period-to-period correlation, but instead provides a single
model incorporating both correlation types. For other regions or events it might therefore
be necessary to fit the coregionalization matrices again if differences in the associated cor-
relation structure exist (Weatherill et al., 2015).

To illustrate the effect of spatial correlation using the LMCR, Figure 3.3 shows again
footprints for the April 6th 2009 L’Acquila Mw 6.3 earthquake. The GMPE by Chiou
and Youngs (2008) has been used to obtain PSA at response periods of T = 0.1 s and
T = 0.3 s in combination with the cross-correlation model by Loth and Baker (2012). The

Figure 3.3: Footprints of the L’Aquila event with cross-correlated ground motion uncer-
tainty via the linear model of coregionalization showing Peak Spectral Acceleration (PSA)
in m s−2 at T = 0.1 s (left) and T = 0.3 s (right). The ground motion model of Chiou and
Youngs (2008) with the cross-correlation model of Loth and Baker (2012) is used.
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footprints corresponding to the two periods are cross-correlated, i.e. regions with large or
small residuals at T = 0.1 s are more likely to have large or small residuals at T = 0.3 s,
respectively.

Full Block Cross Correlation

The classical decomposition approach (see Equation 3.20) can be extended to be used for
stochastic co-simulation of N vectorized random fields Y i=1...N corresponding to N spectral
response periods in the following manner (Oliver, 2003; Weatherill et al., 2015):

Y 1

Y 2
...
Y N

 =


µ1

µ2
...
µN

+


L1L

T
1 ρ1,2L1L

T
2 · · · ρ1,NL1L

T
N

ρ1,2L2L
T
1 L2L

T
2 · · · ρ2,NL2L

T
N

...
...

. . .
...

ρ1,NLNL
T
1 ρ2,NLNL

T
2 · · · LNL

T
N



Z1

Z2
...
ZN

 , (3.24)

where Zi=1...N are normal random variables, ρi,j is the period-to-period correlation between
the ith and j th response period, and Li is the lower-triangular matrix obtained from the
Cholesky decomposition

LiL
T
i = Ci, (3.25)

Figure 3.4: Footprints of the L’Aquila event with full block cross-correlated ground motion
uncertainty showing Peak Spectral Acceleration (PSA) in m s−2 at T = 0.1 s (left) and
T = 0.3 s (right). The ground motion model of Chiou and Youngs (2008) is used, with full
block cross-correlation using the period-to-period correlation model of Baker and Cornell
(2006) in conjunction with the spatial correlation model of Jayaram and Baker (2009) with
VS30 clustering.
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where Ci is the spatial covariance or correlation matrix corresponding to the ith response
period.

FBCC provides a general methodology to combine any spatial correlation model with
any period-to-period correlation model. The spatial correlation remains unaltered for two
equal periods i and j, but is reduced for i 6= j. In the framework described in this chapter,
any available spatial correlation model can be combined with any period-to-period cor-
relation model. In case the resulting cross-correlation matrix is not SPD, the Cholesky
decomposition of the nearest SPD matrix in the Frobenius norm (Higham, 1988) is auto-
matically used.

To illustrate the effect of spatial correlation using FBCC, Figure 3.4 shows footprints
for the same April 6th 2009 L’Acquila Mw 6.3 earthquake as before. The GMPE by
Chiou and Youngs (2008) has been used to obtain PSA at response periods of T = 0.1 s
and T = 0.3 s using FBCC with the spatial correlation model of Jayaram and Baker (2009)
to compute the spatial correlation matrices Ci and the period-to-period correlation model
of Baker and Cornell (2006) for the coefficients ρi,j. The footprints corresponding to the
two periods are cross-correlated, i.e. regions with large or small residuals at one period are
more likely to have large or small residuals at the other period, respectively.

3.5 Damage Uncertainty Framework

The framework implemented during the course of this thesis samples damage uncertainty
given a particular mean damage ratio (MDR) and distributional parameters using the
inverse transform method (see Section 3.2.3). The MDR of a risk item is given by evaluating
the corresponding vulnerability function and depends on the local ground motion. The
parameters of the damage distribution are defined as part of the vulnerability model (see
Section 2.2.4).

3.5.1 Zero-One-Inflated Distributions

Real loss or damage ratio data from earthquake or other NatCat events usually includes
many buildings that are not damaged at all or completely destroyed, corresponding to a
damage ratio (DR) of 0 or 1, respectively. This can be modeled using a zero-one-inflated
distribution (Ospina and Ferrari, 2010, 2012), which is a class of mixed continuous-discrete
distributions. Zero-one inflated distributions consist of a continuous distribution on the
open interval (0, 1) and a Bernoulli distribution on {0; 1}:

f ∗(x; δ0; δ1;α; β) =


δ0, if x = 0,

δ1, if x = 1,

(1− δ0 − δ1)f(x;α; β), if x ∈ (0, 1),

(3.26)
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where f(x;α; β) is a continuous probability density function (PDF) on (0, 1) with shape
parameters α and β. The discrete probability mass for 0 and 1 is given by δ0 and δ1,
respectively. In this parameterization, the restriction 0 < δ0 + δ1 < 1 applies.

3.5.2 Kumaraswamy Distribution

The Kumaraswamy distribution (Kumaraswamy, 1980; Mitnik and Baek, 2013) is a double
bounded continuous probability distribution defined on the interval [0, 1]. It has a simple
closed form for the PDF as well as the cumulative distribution function (CDF). The PDF
is given by

f(x;α; β) = αβxα−1(1− xα)β−1, (3.27)

and the CDF by

F (x;α; β) = 1− (1− xα)β. (3.28)

The Kumaraswamy distribution can assume a wide amount of different shapes, which is
illustrated in Figure 3.5.
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Figure 3.5: Probability density functions for different parameters of the Kumaraswamy
distribution. This two-parameter distribution is very flexible and can assume a wide variety
of different shapes. Illustration from Scheingraber (2015).
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3.5.3 Zero-One-Inflated Kumaraswamy Distribution

For the damage uncertainty framework described in this chapter, a zero-one-inflated Ku-
maraswamy distribution according to Equation 3.26 in conjunction with Equation 3.27 has
been used.

A plot of a possible PDF is shown in Figure 3.6. Vertical lines at x = 0 and x = 1
illustrate the discrete probability mass for no and full damage, respectively.
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Figure 3.6: Probability density function of the zero-one-inflated (4-parameter) Ku-
maraswamy distribution. Note the probability density at y = 0 and y = 1 equals the
probability mass given by δ0 and δ1. Illustration from Scheingraber (2015).

The choice of the zero-one-inflated Kumaraswamy distribution to simulate damage
uncertainty on the closed interval [0, 1] with inflated probabilities at 0 and 1 allows for
an efficient implementation using the simple closed form of the inverse CDF (quantile
function) for inverse transform sampling:

f ∗(x; δ0; δ1;α; β) =


0, if x ≤ δ0,ï
1−

Ä
1− x−δ0

1−δ0−δ1

ä1/βò1/α
, if x ∈ (0, 1),

1, if x ≥ 1− δ1,

(3.29)

where α and β are the shape parameters of the Kumaraswamy distribution, and δ0 and δ1

the inflated probabilities for no and full damage, respectively.
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3.5.4 Damage Correlation

To support stochastic simulation of correlated damage, a multiple factor correlation model
developed during a Master Thesis at Ludwig Maximilian University of Munich in collab-
oration with Munich Re (Reusch, 2017) has been integrated into the damage uncertainty
framework.

The factor model generates correlated quantiles as

Xi =
√
ρgFg +

»
1− ρgFliεi, (3.30)

where Fg is a per-event sample from the uniform distribution corresponding to the event
residual, and Fli is a sample from the uniform distribution corresponding to the location
residual, and ρg is the global correlation parameter controlling the strength of global cor-
relation. For ρg = 0, the correlation model has no effect. If ρg = 1, the same quantile is
used for all risk items.

The correlated quantiles X are used for inverse transform sampling instead of uniformly
distributed quantiles (see Equation 3.9). Different coverages of a single risk item, e.g. a
building and its content, always receive the same quantile. Note that if two risk items
or coverages share the same quantile, this does not imply that they receive the same
damage ratio, because the quantile is used with their individual damage distributions.
The distributional parameters are likely different due to different mean damage ratios and
vulnerability models (see Section 2.2.4). For further details and a study of the impact of
the damage correlation model, please refer to Reusch (2017).
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Chapter 4

The Impact of Portfolio Location
Uncertainty in Probabilistic Seismic
Risk Analysis

Leveraging the work of the previous chapter, we now add treatment of portfolio location
uncertainty and analyze its impact in a realistic study of seismic risk in Indonesia.

This chapter has been published in slightly modified form as a peer-reviewed article in:

Scheingraber, C. and Käser, M. (2018).
The Impact of Portfolio Location Uncertainty on Probabilistic Seismic Risk
Analysis.
Risk Analysis. Advance online publication.
https://doi.org/10.1111/risa.13176

Abstract

Probabilistic Seismic Risk Analysis is a well-established method in the insurance industry
for modeling portfolio losses from earthquake events. In this context, precise exposure
locations are often unknown. However, so far, location uncertainty has not been in the
focus of a large amount of research.

In this chapter, we propose a novel framework for treatment of location uncertainty. As
a case study, a large number of synthetic portfolios resembling typical real-world cases were
created. We investigate the effect of portfolio characteristics such as value distribution,
portfolio size, or proportion of risk items with unknown coordinates on the variability of
loss frequency estimations.

The results indicate that due to loss aggregation effects and spatial hazard variability,
location uncertainty in isolation and in conjunction with ground motion uncertainty can

https://doi.org/10.1111/risa.13176
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induce significant variability to probabilistic loss results, especially for portfolios with a
small number of risks. After quantifying its effect we conclude that location uncertainty
should not be neglected when assessing probabilistic seismic risk, but should be treated
stochastically and the resulting variability should be visualized and interpreted carefully.

4.1 Introduction

In the insurance industry Probabilistic Seismic Risk Analysis (PSRA) is widely used to
model portfolios losses, usually expressed as an exceedance probability or loss-frequency
curve. PSRA builds upon Probabilistic Seismic Hazard Analysis (PSHA, see Section 4.2).
PSHA involves a large range of uncertainties, commonly categorized as being either aleatory
or epistemic. The aleatory category is used for seemingly irreducible uncertainty associated
with inherent variability of natural processes like ground motion propagation, modeled in
the form of a probability distribution (Atik et al., 2010). The epistemic category refers
to uncertainty caused by limited knowledge or data, usually captured using a logic tree
(Senior Seismic Hazard Committee (SSHAC), 1997). Logic tree weights express the de-
gree of belief in the correctness of a logic tree branch. The weights are determined using
different strategies, often a combination of expert judgement and data-based approaches.
For example, the choice of ground motion model has a strong effect on probabilistic earth-
quake loss, but significant reduction of this uncertainty is not foreseeable in the near future
(Crowley et al., 2005). To overcome this, various ground motion models might be selected
and weighted for the construction of a hazard model (Delavaud et al., 2012). It can also be
advantageous to combine alternative source models applicable to a region (Weatherill and
Burton, 2010). Arguably, the distinction of epistemic and aleatory uncertainty is some-
what arbitrary (Kiureghian and Ditlevsen, 2009), but it is considered helpful to identify
reducible uncertainty.

Empirical ground motion models (also known as ground motion prediction equations;
GMPEs) capture aleatory uncertainty using a log-normal probability distribution and often
separate the total variability (σT ) into inter-event variability (σE) and intra-event variabil-
ity (σA) (Atkinson and Boore, 2003; Chiou and Youngs, 2008; Bindi et al., 2017). Modern
GMPEs consider additional factors to account for more complex source characteristics and
site effects (Bommer et al., 2003; Power et al., 2008), which has moved some aleatory un-
certainty to the epistemic category. This has been found to significantly improve PSHA
(Field and SCEC Phase III Working Group, 2000).

Notwithstanding the potential for further progress, the treatment and impact of un-
certainty in the area of PSHA has been extensively researched. Conversely, uncertainty
in PSRA has been studied less. A recent study has explored the effect of uncertainties
in seismic hazard, site conditions, ground motion intensity conversion, and vulnerability
relationship on the annual collapse probabilities of single buildings; uncertainty was prop-
agated through the model to provide a range of probabilities instead of a single point
estimate (Foulser-Piggott et al., 2017). In the context of PSRA of a spatially distributed
portfolio, exposure uncertainty has already been identified as an area that would particu-
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larly benefit from increased research attention (Crowley, 2014). In the present study, we
are concerned with a specific type of epistemic exposure uncertainty highly relevant to the
insurance industry: namely, that major parts of portfolios lack precise location data. For
the natural catastrophe risk modeler, obtaining this information is often not possible. For
many parts of the world, geocoding engines are not used systematically or can not reliably
derive geographical coordinates from policy address information. In some cases, it might
be too much effort for the primary insurer or the involved insurance broker — or sometimes
there even seems to be little interest — to provide risk locations of large portfolios on coor-
dinate level. In fact, the quality of this data also depends on the capabilities of the insurers’
data management systems. This problem mainly exists for mass business with thousands
to millions of risks, but also appears for smaller portfolios (i.e. less than several hundred
risks) containing only few high-value exposures. However, administrative zones, such as
postal codes, can usually be extracted automatically from the policy. In those cases, the
associated polygon is the only constraint on the locus of risk items. Nonetheless, until
recently, portfolio location uncertainty has apparently not been viewed as an important
topic of research. It has sometimes been treated approximately, e.g. by modification of the
aleatory ground motion variability (Stafford, 2012). A recent study has investigated the
effect of geo-resolution on event loss (Bal et al., 2010). In that experiment, four different
levels of geo-resolution were used to aggregate exposure data; ground motion was always
modeled at the same resolution. This was performed for an idealized city as well as five
scenario earthquakes on the same vertical strike-slip fault in the Marmara region south
of Istanbul, Turkey. For these scenarios, the study found that a very low geo-resolution
level does not imply a significantly biased loss result, but the results were associated with
a higher standard deviation.

In the present chapter we look at a slightly different problem and take an alternative
approach. We propose a framework for stochastic treatment of portfolio location uncer-
tainty in detailed (“single-risk”) PSRA. We assume that the value and number of risk
items is known, but precise coordinate-based location information is not known for the
whole portfolio. In the insurance industry, this situation is encountered when insufficient
location information is provided for an otherwise detailed portfolio, or when previous (e.g.
third-party) deaggregation of a portfolio has occurred. Using a full event set for the region
of western Indonesia, we investigate the effect of location uncertainty and loss aggregation
and the extent of potential misjudgment if it is neglected.

Robust decision making and adaptive risk management under deep uncertainties re-
quires effective communication and visualization of modeling results including the associ-
ated uncertainty (Tesfamariam et al., 2010; Cox, 2012). To address this, in this work we
utilize novel visualization techniques to effectively communicate loss-frequency results and
the associated uncertainty to decision makers.
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4.2 Background: Seismic Hazard and Risk Analysis

As stated before, PSRA builds upon PSHA (Senior Seismic Hazard Committee (SSHAC),
1997; Cornell, 1968; McGuire, 2004). The central idea of PSHA is to express the exceedance
rate of ground motion level y0 at a site r0 by the hazard integral:

λ(y0, r0)[y ≥ y0] =
∫
V

∫ mmax

mmin

P [y ≥ y0|m, r, r0] · ν(m, r)dmdr. (4.1)

Here, ν(m, r)dmdr is the seismic rate density. P [y ≥ y0|m, r, r0] is the conditional proba-
bility of exceeding ground motion y0 at site r0, given a rupture of magnitude m at source
location r. It is given by the complementary distribution function of a GMPE. The spatial
integration volume V needs to contain all sources which can cause relevant ground motion
at the site.

Assuming that the occurrence of earthquake events is a temporal Poisson process, the
probability of at least one exceedance within time interval t0 is given by

P (y0, t0, λ)[y ≥ y0] = 1− e−λt0 , (4.2)

where λ is the mean annual recurrence rate. In the insurance industry, common practice
is to employ Monte-Carlo integration to solve Equation 4.1 (Pagani et al., 2014). In this
approach, a stochastic event set (SES) is generated, which represents a possible seismicity
history during time interval t0. For each event in the SES, a realization of the probabilistic
ground motion model is explicitly computed, resulting in a set of ground motion fields Ŷ.
For PSRA, the Monte-Carlo simulation can then be taken one step further to obtain the
probability that loss ι0 is exceeded:

P (Ŷ,Θ)[ι ≥ ι0] =
n∑
i=1

∫ ∞
ι0

fι(ι|Ŷi,Θ)dι. (4.3)

Here, fι(ι|Ŷi,Θ) is the loss probability density function for a portfolio Θ given ground
motion field Ŷi of the ith event in the SES. The total exceedance probability is obtained
by summing up the contribution of all n events.

fι(ι|Ŷi,Θ) is a complicated function and is usually not expressed analytically. It de-
pends on the chosen vulnerability models as well as on properties of the portfolio, such as
construction types, spatial scale and spatial clustering of risk item locations, value distri-
bution of risk items, and associated uncertainties. Equation 4.3 is used to obtain a loss
exceedance probability curve. Using the assumption that temporal occurrence of earth-
quake events follows a Poisson process, a Probable Maximum Loss (PML) curve, showing
loss against mean return period, can be obtained from the loss exceedance probability
curve. Solving a first-order Taylor approximation of Equation 4.2 for the return period
T = 1/λ under the assumption t0 � T yields

T =
t0

P (y0, t0, λ)[y ≥ y0]
, (4.4)

where t0 is the period of interest (time interval), which is 1 year for most reinsurance
contracts.
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4.3 Proposed Framework for Treatment of Location

Uncertainty

4.3.1 Problem Statement

The non-linearity of the loss density function (Equation 4.3) renders analytical derivation
of the influence of uncertainties such as portfolio location and spatial clustering unfeasi-
ble. While Monte-Carlo simulation in itself already is a computationally intensive method,
the treatment of exposure uncertainty poses further challenges. Propagation of location
uncertainty needs to be handled in an efficient way; in particular avoiding unnecessary,
repetitive computation of hazard. In addition, it is advantageous to exploit known infor-
mation, such as insured exposure density, which can be approximated by different means
(e.g. population density).

4.3.2 Sampling Location Uncertainty on a Weighted Irregular
Grid

The simple approach of aggregating risk items at the centroid of the polygon corresponding
to the administrative zone introduces several problems, such as incorrect distance calcula-
tion and full correlation of the ground motion residual (Crowley, 2014). It also artificially
introduces loss aggregation effects, because risk items are jointly affected by fewer events,
instead of being affected separately by a larger number of events (see Section 4.6.1).

Presumably, it is more likely that a risk item with an unknown location is located in an
area of high rather than low insured exposure density. We distribute risk items with un-
known locations inside their respective administrative zones by randomly selecting indices
of points on a weighted grid. The probability that a grid point is selected is proportional to
its weight. Sampling occurs with replacement, using the Mersenne Twister pseudo-random
number generator (Matsumoto and Nishimura, 1998). For industrial and commercial expo-
sure, grid point weights are based on GEG-2013, a global exposure database produced for
the Global Risk Assessment Report 2013 (GAR 2013), which provides a spatial resolution
of 5 km. For the residential exposure, grid point weights are based on the global popula-
tion database LandScan (Dobson et al., 2000), which has a grid resolution of 30 arcseconds
(corresponding to approx. 1 km at the equator). These datasets combine census data
with other higher resolution data, such as digital elevation models and land cover data.
Figure 4.1 shows a map of population density around the Sunda straight, as an exemplary
proxy for insured exposure density and the weighted grid. In the urban areas of Jakarta
and Bandung, the grid point spacing decreases proportional to population density.

4.3.3 Shared Hazard Computation on Unique Risk Locations

For a PSRA, the computation of hazard usually dominates overall runtime. When using
a large number of exposure location sets, i.e. a large sample size for location uncertainty,
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Figure 4.1: Detailed view of Sunda straight between the islands of Sumatra and Java.
Color indicates population density (residents per km2) as a proxy for insured exposure
density. Due to licensing restrictions, the population data used for this plot is not the
same as used for the study presented in Section 4.4, but a free dataset by Gaughan et al.
(2015). Black markers depict grid points of the weighted grid.

it is likely that different exposure location sets share a significant fraction of common
grid points. The straightforward approach — computing probabilistic loss for different
location sets sequentially — would involve simulating hazard on shared grid points subsets
numerous times. In order to increase computational efficiency, in our framework hazard
is only computed once for all unique grid points used by all exposure location sets. This
is achieved by maintaining an array of unique risk locations, and a mapping of location
sets to unique risk location indices. Table 4.1 illustrates the concept. Probabilistic loss
for all location sets can then be calculated based on the shared hazard computation. Note
that this does not require to explicitly store the SES in memory (see Section 4.2), but
Equation 4.3 can be evaluated incrementally following the simulation of each event.
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Risk No. Sample 1 Sample 2 Sample 3 Sample 4
1 43 13 31 51
2 23 28 98 18
3 98 98 98 98

Table 4.1: Risk Location Index Mapping Table. Rows correspond to individual risk items,
showing sampled grid point indices. Each column represents a possible spatial distribution
of the portfolio. Here, the last risk item has known coordinates and therefore is always
located at the same grid point. Accidentally, the location set of the second risk item also
shares this point.

4.3.4 Empirical Probable Maximum Loss Distributions

Monte Carlo methods are often employed to estimate expectations of functions φ(x) of a
target density P (x) in a parameter space x. In this study, x is the integration domain of
the hazard and loss integrals, including the space of all possible risk item location sets for a
portfolio Θ (see Section 4.2). φ(x) could be the mean, variance, or a quantile of PML at a
return period as given by Equations 4.3 and 4.4. It is approximated from a sample of P (x)
using an estimator φ̂(x). For example, we use order statistics with linear interpolation
(Langford, 2006) to estimate empirical quantile PML curves.

4.4 Modeling Seismic Hazard in Western Indonesia

4.4.1 Study Area

We concentrate on western Indonesia, defined as the area enclosed by the 10° S and 6° N
parallels and 95° E and 120° E meridians. This area includes the islands of Sumatra and
Java, as well as Kalimantan, the Indonesian sector on the island of Borneo. Indonesia is
divided into 34 provinces (administrative zones). Since exposure data is often provided
on the basis of these zones, they are used for the analysis conducted in this chapter.
According to a census commissioned by the Indonesian government, in 2010 the country
had a population of 237.6 Million. The tremendous potential socio-economic impact of
natural catastrophe events stems from a high concentration of the population in areas of
significant seismic hazard. Figure 4.2 shows population density per province. By choosing
the western part of the country, we study the areas of the highest population density.

Indonesia is a seismically highly active region (see Figure 4.3). Throughout recorded
history, numerous earthquakes caused severe damage and considerable loss of life, such as
the 1797, 1833 and 1861 Sumatra earthquakes, or the 1899 Seram earthquake. Recent
events have been particularly consequential, such as the 2004 Sumatra earthquake and
tsunami, causing over 230,000 fatalities; or the 2006 Yogyakarta earthquake, with over
5,700 fatalities.
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Figure 4.2: Population density in Indonesia. The population density is higher in the
western part of the country, with the highest concentration on the island of Java. Map by
Encyclopaedia Britannica (2009).

4.4.2 Seismo-Tectonic Setting

Located offshore from Sumatra, the Sunda arc marks the subduction of the Indo-Australian
plate under the continental Sunda plate. This classic subduction system consists of the
subducting slab along the Sumatra-Java trench, an accretionary wedge where the outer arc
ridge forms the backstop, the Bengkulu-Mentawai forearc basins off Sumatra, and the Java
forearc basin (Schlüter et al., 2002; Samuel et al., 1997). The largest fault of the country
is known as Great Sumatran Fault. Almost 2000 kilometers long, this dextral strike-slip
fault is part of the Sumatra fault zone.

4.4.3 Modeling the Seismic Hazard

For this study, a seismic hazard model of Indonesia was created. It is based on the South-
East Asia hazard model by Mark Petersen et al. (2007) of the United States Geological
Service (USGS), but with some modifications. Site conditions are, with refinements, based
on topographic slope (Wald and Allen, 2007). The geometry of the Sumatra subduction has
not been taken from the original USGS hazard model, but is a complex fault representation
based on Slab 1.0 (Hayes et al., 2012), which provides a three-dimensional representation
of the subduction. For events on the complex fault the model uses a rupture floating
mechanism similar to the implementation of OpenQuake (Pagani et al., 2014), a free and
open-source seismic hazard and risk software developed as part of the Global Earthquake
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Figure 4.3: Tectonic plates in Indonesia. Arrows show far-field plate velocities with respect
to Eurasia. Unmodified from Socquet et al. (2006).

Model (GEM) initiative (Crowley et al., 2013). To reduce computational demands, we
have simplified the branch sets of all tectonic region types in the ground motion model
logic tree. This allowed to conduct a larger case study of the effect of location uncertainty
while retaining overall accordance with the hazard of the original model. Table 4.2 gives
an overview of the selected ground motion models and their weights.

Recent work has shown that neglecting epistemic hazard uncertainty can lead to under-
estimation of hazard levels (Weatherill and Burton, 2010), potentially resulting in biased
loss estimates and underestimation of central 70% inter-percentile ranges of important loss
metrics (Kotha et al., 2018). In this study, we treat epistemic uncertainty by full logic tree
enumeration of the source and ground motion models. On top of this, we investigate the
isolated effect of location uncertainty in two controlled settings (Sections 4.6.1 and 4.6.2),
as well as — in a more realistic example — in conjunction with aleatory ground motion
uncertainty (Section 4.6.3).
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Tectonic Region Type Ground Motion Model Weight
Active Shallow Crust Boore and Atkinson (2008) 1/3

Campbell and Bozorgnia (2008) 1/3
Chiou and Youngs (2008) 1/3

Stable Continental Crust Toro et al. (1997) 1
Subduction Interface Zhao et al. (2006) 2/3

Youngs et al. (1997) 1/3
Subduction Intraslab Atkinson and Boore (2003) 1

Table 4.2: Ground motion models for different tectonic region types used by the hazard
model.

Hazard Results

Figure 4.4 shows seismic hazard predicted by the model with an exceedance probability of
10% in 50 years, corresponding to an average return period of 475 years. This is the proba-
bility level most commonly shown in seismic hazard maps; it is also used by the engineering
community for the design of building codes. The hazard map is in general agreement with
the original USGS South-East Asia model (Mark Petersen et al., 2007) as well as results
obtained using third-party implementations such as by GEM evaluated using the Open-
Quake engine1. On Sumatra, seismic hazard is high and dominated by the Sumatra fault
zone (see Section 4.4.2). On Java, the highest hazard levels are obtained in the western
part of the island, including the area around Jakarta. Kalimantan is characterized by low
hazard levels. Differences to the aforementioned results arise from the inclusion of site
conditions, simplified ground motion model logic tree, different source parameterization,
improved subduction geometry representation, and slightly modified seismicity rates using
the latest ISC-GEM Global Instrumental Earthquake Catalogue (Storchak et al., 2013)
and Global Historical Earthquake Catalogue2.

4.5 Case Study: Impact of Location Uncertainty in

Western Indonesia

4.5.1 Creation of Synthetic Portfolios

For this study, we use synthetic portfolios representing real-world counterparts in terms of
spatial distribution of risk items and value distribution among risk items.

1See https://hazardwiki.openquake.org/sea2007_intro for results obtained using OpenQuake.
2See http://www.emidius.eu/GEH/.

https://hazardwiki.openquake.org/sea2007_intro
http://www.emidius.eu/GEH/
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Figure 4.4: Seismic hazard in western Indonesia. Site conditions are based on topographic
slope (Wald and Allen, 2007). The area encompasses the islands of Sumatra and Java as
well as Kalimantan, the Indonesian sector on the island of Borneo. Color indicates the
level of Peak Ground Acceleration (PGA, in m s−2) that is predicted to be exceeded at an
average return period of 475 years.

Value Distribution

For all portfolios, the total sum insured (TSI) is kept constant:

TSI = const. = 1 · 106. (4.5)

However, the TSI is distributed among a varying number of risk items (portfolio size),
ranging from 1 to 10000. Two fundamentally different value distributions are used: flat
and mixed exponential.

Flat Value Distribution In many real residential portfolios the TSI is divided almost
equally among risk items. For simplicity, we model this as a completely flat value distri-
bution:

VIflat =
TSI

n
. (4.6)
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Here, n is the number of risk items and VIflat (“value insured”) is the value assigned to
each risk item.

Mixed Exponential Value Distribution To approximate the value distribution we
observe in many country-wide facultative risk portfolios, we developed a “mixed exponen-
tial” distribution. Here, the TSI is split into two parts:

TSIflat = µ · TSI (4.7)

TSIexp = (1− µ) · TSI . (4.8)

The weighting factor µ has been set to 0.3, which ensures that the value assigned to
individual risk items does not converge towards zero and assume unrealistically small values
for large i, with i = 1, ..., n. TSIflat is divided equally among all risk items according
to Equation 4.6. TSIexp is given by the probability density function of an exponential
distribution spread across the total number of risk items n:

VI∗exp,i = λ · e−λi ·Xi ·
TSIexp

n
, (4.9)

VIexp,i =
TSIexp∑n
i=1 VI∗exp,i

· VI∗exp,i . (4.10)

The value distribution we observe in many real portfolios of this type is well represented
by choosing a shape factor λ = 1/3. Xi is a uniform random number in the interval
[1− pexp, 1 + pexp]. Here, pexp is a perturbation factor set to 0.1, which is consistent with
the characteristics of many real portfolios. Equation 4.10 normalizes the n randomly
perturbed insured values to ensure

∑n
i=1 VIexp,i = TSIexp. Finally, the insured value of the

ith risk item for the mixed exponential value distribution is given by

VImix,i = VIflat + VIexp,i . (4.11)

See Figure 4.5 for a plot of insured values generated with this process.

Exposure Locations

For each combination of value distribution (flat and mixed exponential) and portfolio size
(ranging from 1 to 10000 risk items), a set of 11 portfolios with an increasing fraction of
unknown coordinates is created. For the first portfolio of a set, the coordinates of all risk
items are known, randomly distributed over all administrative zones onto the weighted
grid (see Section 4.3.2) according to the grid point weights. Coordinate-based location
information is then successively removed and replaced by administrative zone information
in steps of 10%. For the controlled “worst-case” example of the isolated effect of location
uncertainty described in Section 4.6.2, the most valuable risk item is selected first for
the removal of coordinate-based location information and less valuable risk items follow
subsequently until all coordinates are unknown. In contrast, for the more realistic example
including ground motion uncertainty presented in Section 4.6.3, risk items are selected at
random for the removal of location information.
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Figure 4.5: Insured values of risk items sorted in descending order for the mixed exponential
value distribution. Each bar represents one risk item. Many real-world facultative risk
portfolios feature this distribution type, which is characterized by an extremely uneven
distribution of values: this plot only shows the 100 most valuable risk items of a portfolio
of 1000 risk items. For the portfolio shown in this plot, the ratio of the insured value of
the most expensive to the least expensive risk item is VImax

VImin
≈ 545.

Vulnerability Model

As mentioned before, in this study we investigate the influence of location uncertainty in
isolation as well as in conjunction with ground motion uncertainty. To eliminate unwanted
effects due to vulnerability modeling decisions, we use the same vulnerability function for
all risk items.
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4.6 Impact of Location Uncertainty on Probabilistic

Seismic Loss

For the portfolios described in Section 4.5.1, a series of Monte-Carlo simulations were
performed using a sample size of 128. We first investigate the isolated effect of location
uncertainty on loss with a flat hazard model in Section 4.6.1. In Section 4.6.2, we add
spatial hazard variation by using the model described in Section 4.4.3, but still isolate
location uncertainty from aleatory ground motion uncertainty. Finally in Section 4.6.3,
we add aleatory ground motion uncertainty sampling to investigate the effect of location
uncertainty in a realistic seismic risk analysis.

To present the result for individual portfolios, we plot PML and the associated uncer-
tainty against mean return period obtained as described in Section 4.3.4. The plots show
mean PML, lower and upper quartile PML, as well as the full PML range (minimum and
maximum PML). These curves connect the respective estimated values between adjacent
return periods. Note that the quantile curves do not necessarily correspond to one uncer-
tainty realization, because PML curves of different portfolios can intersect. This is because
a given portfolio might be particularly affected by seismic sources active at a specific range
of return periods, while another portfolio might be more affected at another range of return
periods.

To show a smooth plot of the PML distribution at a return period, we use kernel density
estimation with a normal kernel function. To visualize the influence of portfolio properties,
we plot the coefficient of variation (CV) of PML at a fixed return period against portfolio
size or fraction of unknown coordinates. The CV is defined as

CV =
σ

µ
, (4.12)

where σ is the standard deviation and µ the mean.

4.6.1 Flat Hazard Model: Influence of Spatial Risk Item Clus-
tering and Loss Aggregation

In this section, we explore the impact of location uncertainty on PML for portfolios with
a flat value distribution using a hypothetical flat hazard model. The flat hazard model is
characterized by regularly spaced gridded seismicity with a spatially constant magnitude
frequency distribution over the whole area. For this example we perform no sampling of
aleatory ground motion uncertainty, which allows to investigate the effect of the spatial
distribution of risk items in an isolated manner.

We found that even in this case, location uncertainty can have a significant effect on
portfolios consisting of more than one risk item. This can be explained by loss aggregation
effects. When risk items of a sampled location set are spatially clustered, they are affected
conjunctly by a small number of nearby events, resulting in higher event losses. Conversely,
when risk items are spread over a wide area, they are affected by a larger number of events.
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Figure 4.6: Probable Maximum Loss (PML) Curve and associated uncertainty distribution
for a synthetic portfolio of 100 risk items with 80% unknown coordinates, using a flat value
distribution as described in Section 4.5.1 and a flat hazard model without aleatory ground
motion uncertainty sampling. The risk items with unknown locations represent 80% of
the portfolio value. Location uncertainty was treated with the framework described in
Section 4.3 using a sample size of 128. This shows the mean PML (blue line) as well as
lower and upper quartile PML (black lines). PML values are relative to the total sum
insured of the portfolio.

Individual events cause smaller losses, since they affect a smaller portion of the portfolio
TSI.

For larger portfolios, the effect of location uncertainty was found to be smaller. To
consider an extreme case, imagine a portfolio where the number of risk items is much
larger than the number of grid points of the weighted grid (see Section 4.3.2). Almost all
sampled locations sets for this portfolio will be fairly well distributed according to grid point
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weights, therefore most location sets will experience similar loss. On the other hand, for
very small portfolios it is more likely that the coordinates are known. As a representative
example of loss aggregation, Figure 4.6 shows mean PML and the uncertainty distribution
for a flat portfolio of 100 risk items with 80% unknown coordinates, which represents a
quite common situation for large reinsurance treaty portfolios, where the majority of risk
locations is only known by their administrative zone.

In general, PML uncertainty of a given portfolio relative to the mean PML is smaller
for the flat hazard model than for the Indonesia model (see Section 4.6.2). Still, the results
show that considerable loss uncertainty results purely from spatial risk item clustering.
This fact is often overlooked, but should be kept in mind for any study of seismic risk to
spatially distributed exposure.

4.6.2 Western Indonesia Controlled Example: Upper Bound of
the Isolated Influence of Location Uncertainty

We now explore the impact of location uncertainty in the presence of spatial hazard vari-
ation, but still isolate it by not sampling ground motion residuals. To obtain an upper
bound for the western Indonesia model (see Section 4.4.3), we remove the coordinates of
risk items in decreasing order of value.

High Potential Impact for the Mixed Exponential Distribution

The value distribution of the portfolio has a strong effect. The potential impact of location
uncertainty is higher for the mixed exponential than for the flat value distribution. As
explained in Section 4.6.1, for very large portfolios location uncertainty tends to balance
out, while for very small portfolios it is likely that the coordinates of all risk items are
known. To select meaningful examples in this light, we show PML results for portfolios
of 300 risk items with 20% unknown coordinates. For the flat value distribution, PML
uncertainty is limited in this case (see Figure 4.7), since the risk items with unknown
coordinates only account for 20% of the total portfolio value. The CV of PML is 1.7% at
a return period of 10 years, 1.1% at 100 years, and 0.9% at 1000 years. By contrast, 20%
of the risk items can represent up to 76% of the portfolio value for the mixed exponential
distribution. Figure 4.8 shows this “worst-case” scenario. The CV of PML is 4.2% at a
return period of 10 years, 4.9% at 100 years, and 4.8% at 1000 years. The range of PML
values is significantly larger than for the flat value distribution. In general, also the mean
PML at a given return period is higher. This can be explained by the concentration of
value to a few risk items, which increases the likelihood that a high portion of the portfolio
TSI is affected jointly by an event. Abrupt, steep jumps in the PML curves at higher
return periods can be attributed to low-probability but high impact events.
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Figure 4.7: Probable Maximum Loss Curve (PML) and associated uncertainty for a syn-
thetic portfolio of 300 risk items with 20% unknown coordinates, using a flat value dis-
tribution as described in Section 4.5.1 and the western Indonesia hazard model without
aleatory ground motion uncertainty sampling. The risk items with unknown locations rep-
resent 20% of the portfolio value. Location uncertainty was treated with the framework
described in Section 4.3 using a sample size of 128. The mean PML (blue line) as well as
lower and upper quartile PML (black lines) are close. PML values are relative to the total
sum insured of the portfolio.

Comparison to Reference Portfolio

In addition to the uncertainty distribution resulting from sampling location uncertainty,
Figure 4.8 shows a reference PML curve in red. The curve represents the PML of the orig-
inal portfolio with known coordinates from which the portfolio with unknown coordinates
was derived. The mean of the portfolio with unknown coordinates deviates significantly
from the reference solution. For some return periods, the reference curve is even outside
the interquartile interval (middle 50%); this is because the spatial distribution of the orig-
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Figure 4.8: Probable Maximum Loss (PML) Curve and associated uncertainty for a syn-
thetic portfolio of 300 risk items with 20% unknown coordinates, using a mixed exponential
value distribution as described in Section 4.5.1 and the western Indonesia hazard model
without aleatory ground motion uncertainty sampling. This shows the “worst-case” un-
certainty for this portfolio, in which the risk items with unknown coordinates account for
76% of the total value. Location uncertainty was treated with the framework described in
Section 4.3 using a sample size of 128. The lower and upper quartiles (black lines) and
the full PML range (shaded in blue) spread significantly from the mean PML (blue line).
The red line shows the PML of the reference portfolio for which all coordinates are known.
PML values are relative to the total sum insured of the portfolio.

inal portfolio represents only one uncertainty realization of the portfolio with unknown
coordinates. The PML of this realization can behave quite different from the mean PML.
Figure 4.9 shows the ratio of the mean PML of the portfolio with unknown coordinates
to the reference solution. The reference PML is underestimated for return periods where
the blue curve is under the horizontal red line. For this portfolio, this is the case for re-
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Figure 4.9: Comparison of the reference Probable Maximum Loss (PML) curve for the
original portfolio with only known coordinates with the mean PML of the portfolio with
20% unknown coordinates, both using a mixed exponential value distribution as described
in Section 4.5.1. Here, risk items with unknown coordinates account for 76% of the total
portfolio value. Location uncertainty was treated with the framework described in Sec-
tion 4.3 using a sample size of 128. Note that for return periods below 40 years, the mean
PML of the portfolio with the unknown coordinates underestimates the probabilistic loss
of the reference PML, while it tends to overestimate loss for higher return periods.

turn periods below 35 years. The deviation varies for different portfolios; for some, losses
at shorter return periods are overestimated and losses at longer return periods underesti-
mated; for others, losses at all return periods are systematically under- or overestimated;
occasionally the mean PML is close to the reference solution.

Shape of the PML distribution For the isolated treatment of the location uncertainty
performed in this section, we observe a wide range of shapes of the probability density of



66
4. The Impact of Portfolio Location Uncertainty in Probabilistic Seismic Risk

Analysis

PML at different return periods. Sometimes, the shape is symmetric, but often it is left-
or right-skewed (e.g. right-skewed for this portfolio at 10 years, see Figure 4.10). In some
cases, the distribution is even multi-modal.
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Figure 4.10: “Vertical cut” of the Probable Maximum Loss (PML) curve shown in Fig-
ure 4.8 at a return period of 10 years. This shows probability density obtained via kernel
density estimation with a normal kernel function. The mean PML of the portfolio with
unknown coordinates is shown as a vertical blue line, while lower and upper quartiles are
shown in black. The estimated kernel density is shaded in blue. The reference PML of the
portfolio with all locations known is shown as a vertical red line; for this return period, it
is near the upper tail of the distribution.

Influence of Portfolio Size and Fraction of Unknown Coordinates

For a given value distribution, portfolio size and the fraction of unknown coordinates
typically have an important effect. Figure 4.11 shows the CV of PML at 10 years return
period against the fraction of unknown coordinates for portfolios of 10, 100, 1000 and
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10000 risk items. Solid and dashed lines correspond to the flat and mixed exponential
value distribution, respectively. Each curve depicts portfolios of the same size (number of
risk items), and each point along the curves represents the CV of PML of one portfolio
with the respective fraction of unknown coordinates, obtained from 128 sampled location
sets. In particular for smaller portfolios, location uncertainty has a noticeable effect and
the CV increases with the fraction of unknown coordinates. For larger portfolios, scenarios
with higher losses seem to balance out scenarios with lower losses and therefore the CV
increases slower and reaches lower maximum values. We observed a similar behavior at
larger return periods than 10 years.

For portfolios with a mixed exponential value distribution, even small percentages of
unknown coordinates have a strong effect on loss variability, because for this assessment of
the “worst-case” impact, we preferentially remove coordinate information from the most
valuable risk items. Since most of the portfolio TSI is assigned to a few risk items, the
upward trend when removing coordinate-based location information of further risk items
is small.

4.6.3 Western Indonesia Realistic Example: The Influence of Lo-
cation Uncertainty in Conjunction with Aleatory Ground
Motion Uncertainty

In the remainder of this chapter, we analyze the effect of location uncertainty in conjunction
with aleatory ground motion uncertainty. To this end, we use the same hazard model and
synthetic portfolios as in Sections 4.6.1 and 4.6.2, but also treat aleatory uncertainty for all
GMPEs contained in the logic tree (Table 4.2). For GMPEs that provide separate terms for
σE and σA (see Section 4.1), we sample the inter- and intra-event residuals independently.
For GMPEs that only provide a term for σT , the total residual is directly sampled. For
the analysis presented in this section, risk items are selected randomly for the removal of
coordinate location information.

The ground motion distribution is known to have a strong influence on the results of
PSHA and PSRA, particularly at high return periods corresponding to low annual fre-
quencies of exceedance. While statistical tests and quantile-quantile plots support the
assumption that spatially distributed logarithmic ground motion values follow a multivari-
ate normal distribution, it is not clear over which range of quantiles this holds (Jayaram
and Baker, 2008; Strasser et al., 2008). Most studies truncate the distribution at a fixed
number εmax of standard deviations σ to exclude unphysical values, but no consensus has
been reached on this value. Ideally, εmax should correspond to the ground motion that
would result from the “worst-case” realization of the underlying physical processes, how-
ever it has proven to be difficult to establish a robust relationship to predict large residuals.
The matter is further complicated by the fact that σ is related to the ground motion model
and theoretically εmax should be too. We follow the recommendation to base this — neces-
sarily subjective — decision on probabilistic considerations instead of defining an integer
for εmax (Strasser et al., 2008). In view of the fact that in this section we investigate
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Figure 4.11: Coefficient of Variation of Probable Maximum Loss at a return period of
10 years for synthetic portfolios of 10, 100, 1000 and 10000 risk items with an increasing
fraction of unknown coordinates. Solid lines correspond to the flat value distribution,
dashed lines to the mixed exponential value distribution (see Section 4.5.1). This shows
the “worst-case” uncertainty, i.e. coordinates of high value risk items are preferentially
removed. Location uncertainty was treated with the framework described in Section 4.3
using a sample size of 128.

the variability of PML at a relatively small return period for which the truncation has a
less pronounced influence, we choose a threshold of 10−3 on the conditional probability of
exceedance. This corresponds to εmax = 3.09.

The results show that even for portfolios for which the coordinates of all risk items
are known, considerable PML variability can already be caused by aleatory ground motion
uncertainty. The degree of the increase in variability due to successively replacing coordi-
nates of randomly selected risk items with administrative zone information depends on the
value distribution and portfolio size. In line with the analysis presented in Section 4.6.2,
in Figure 4.12 we plot the CV of PML at a return period of 10 years against the fraction
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Figure 4.12: Coefficient of Variation of Probable Maximum Loss at a return period of
10 years for synthetic portfolios of 10, 100, 1000 and 10000 risk items with an increasing
fraction of unknown coordinates. Solid lines correspond to the flat value distribution,
dashed lines to the mixed exponential value distribution (see Section 4.5.1). Risk items
are selected randomly for the removal of coordinate location information. In addition to
location uncertainty, aleatory ground motion uncertainty was treated using a sample size
of 128.

of unknown coordinates for portfolios with the flat (solid lines) and mixed exponential
(dashed lines) value distributions. Individual curves correspond to portfolios of the same
size, ranging from 10 to 10000 risk items; each point along the curves represents the result
for one portfolio with the respective fraction of unknown coordinates. For 10 risk items
with a flat value distribution and no unknown coordinates, the CV assumes a value of
8.6% and rises to 16.2% when all coordinates are unknown. While for larger portfolios the
absolute increase in variability is smaller, the relative increase from 0% to 100% unknown
coordinates remains roughly at a factor of 2.

Like in Section 4.6.2, PML variation is higher for the mixed exponential than for the
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flat value distribution, which can once more be attributed to the concentration of value to
a few risk items. For a portfolio of 10 risk items, the CV of PML at a return period of 10
years rises from 12.7% to 18.6%. For larger portfolios again the absolute increase from 0%
to 100% unknown coordinates is smaller, but the relative factor remains roughly at 1.4.

4.7 Conclusions

Building on a recent study of the influence of exposure geo-resolution on the variability
of scenario loss (Bal et al., 2010), in the present chapter we additionally incorporated
stochastic sampling of exposure locations and explored the effect on PSRA results. To
this end the Monte-Carlo methodology has been successfully applied to the modeling of
seismic losses of synthetic but realistic portfolios in western Indonesia; key results have been
presented in a novel graphical way that allows to effectively communicate loss estimations
with their associated uncertainty.

Even though the results likely do not apply to other studies in terms of exact numbers,
the analysis presented here provides valuable insight about the characteristics of location
uncertainty. While the conclusions presumably hold for similar cases both in industry
and academia, associated differences should be considered carefully, in particular for other
regions and portfolios.

This study has shown that it is not advisable to neglect location uncertainty in PSRA.
This holds especially for small to moderately sized portfolios of less than a few hundred
risks, where loss aggregation — due to the risks’ locations relative to each other within an
earthquake footprint of damaging ground motion — is important. For portfolios consisting
of several hundred risks with a relatively flat value distribution (e.g. residential portfolios),
location uncertainty seems to play a less important role. However, even for large portfolios,
location uncertainty can have a sizable effect if the value distribution is similar to the
mixed exponential type (e.g. larger facultative portfolios). In these cases, it is necessary to
investigate how many risks have unknown coordinates, which fraction of the portfolio TSI
they represent, and how insured values are distributed. Low quality location information
of a few important risk items can already have a significant effect.

The proposed approach to sample location uncertainty using insured exposure density
undoubtedly provides more realistic results than previous approximate treatments. How-
ever, this study has also shown that it is important to be aware that the sampled mean
PML curve does not necessarily converge to the result that would be obtained if the true
spatial distribution were known. This is because the true spatial distribution only cor-
responds to one realization of location uncertainty, which is not related to the average
loss. Another interesting observation is that location uncertainty can result in skewed as
well as multi-modal loss distributions. This suggests that it is not ideal to treat location
uncertainty as part of the ground motion or damage uncertainty sampling, since these
uncertainties are usually modeled with a unimodal distribution.

It is appropriate to view the results in the context of overall uncertainties in PSRA.
Even for a relatively rough geographical resolution like Indonesian provinces, the influence



4.7 Conclusions 71

of location uncertainty in isolation is not overwhelmingly large in comparison to the effect
of ground motion and damage uncertainty (Bommer and Abrahamson, 2006). For most
portfolios, the standard deviation of the loss distribution is below 10% of the mean, a
finding in accordance with the aforementioned study on scenario loss (Bal et al., 2010).
Additionally, it has turned out to be extremely challenging to validate hazard and loss
models (Crowley et al., 2008). As a final word of caution, we remark that the range of PML
uncertainty can be quite large and that the true spatial distribution of risk items might
correspond to an extreme case at the tail of the distribution. Therefore, we propose the
usage of appropriate uncertainty visualization techniques, as presented in this chapter, for
risk underwriting and risk management in the insurance industry. Careful thought should
be given to the graphical representation, which can have a strong effect on decision making
(Stone et al., 2017). While this work represents a progressive step towards integrating
stochastic treatment of exposure uncertainty into PSRA, opportunities for improvement
remain, e.g. taking uncertainty in the insured value of risk items into account. The ultimate
goal should be the proper treatment and communication of all involved uncertainties and
their dependencies (Bier and Lin, 2013).
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Chapter 5

Spatial Seismic Hazard Variation and
Adaptive Sampling of Portfolio
Location Uncertainty in Probabilistic
Seismic Risk Analysis

Building upon the previous chapter, we now analyze spatial variation of seismic hazard
in Indonesia. Based on this, we develop a novel sampling scheme specifically designed for
portfolio location uncertainty in seismic risk analysis.

This chapter has been submitted for publication as a peer-reviewed article in:

Scheingraber, C. and Käser, M. (2018).
Spatial Seismic Hazard Variation and Adaptive Sampling of Portfolio Location
Uncertainty in Probabilistic Seismic Risk Analysis.
Risk Analysis. Manuscript submitted for publication.

Abstract

Probabilistic Seismic Risk Analysis is widely used in the insurance industry to model
the likelihood and severity of losses to insured portfolios by earthquake events. Due to
geocoding issues of address information, risk items are often only known to be located
within an administrative geographical zone, but precise coordinates remain unknown to
the modeler.

In the first part of this chapter, we analyze spatial seismic hazard and loss rate variation
inside administrative geographical zones in western Indonesia. We find that the variation
of hazard can vary strongly not only between different zones, but also between different
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return periods for a fixed zone. However, the spatial variation of loss rate displays a similar
pattern as the variation of hazard, without depending on the return period.

We build upon these results in the second part of this chapter. In a recent work, we
introduced a framework for stochastic treatment of portfolio location uncertainty. This re-
sults in the necessity to simulate ground motion on a high number of sampled geographical
coordinates, which typically dominates the computational effort in Probabilistic Seismic
Risk Analysis. We therefore propose a novel sampling scheme to improve the efficiency
of stochastic portfolio location uncertainty treatment. Depending on risk item properties
and measures of spatial loss rate variation, the scheme dynamically adapts the location
sample size individually for insured risk items. We analyze the convergence and variance
reduction of the scheme empirically. The results show that the scheme can improve the
efficiency of the estimation of loss frequency curves.

5.1 Introduction

Probabilistic Seismic Risk Analysis (PSRA) is widely used in the insurance industry to
model the likelihood and severity of losses to insured portfolios due to earthquake events.
In this context, precise exposure locations are often unknown, which can have a significant
impact on scenario loss as well as on loss frequency curves (Bal et al., 2010, Scheingraber
and Käser, 2018, Chapter 4).

The treatment of uncertainty in PSRA of spatially distributed portfolios is usually
performed by means of Monte Carlo (MC) simulation (Pagani et al., 2014). This is a com-
putationally intensive process, because the error convergence of MC is relatively slow and
a high-dimensional loss integral needs to be evaluated with a sufficient sample size. The
hazard component typically dominates the overall model runtime of PSRA. As a result,
stochastic treatment of portfolio location uncertainty can be particularly challenging —
ground motion needs to be simulated on a large number of sampled risk locations. On
the other hand, a fast model runtime is a key requirement for underwriting purposes in
the insurance industry. Methods or sampling schemes to improve the error convergence of
MC simulation are known as variance reduction techniques. MC simulation is ubiquitous
in many areas of science and engineering and a wide variety of sampling schemes exists.
Some well-known ideas are common random numbers and control variates (Yang and Nel-
son, 1991), importance-, stratified- and hypercube sampling, Quasi Monte Carlo Simulation
using low-discrepancy sequences, as well as adaptive sampling. The error convergence of
different sampling schemes has been investigated for many different types of integrals and
application areas (Hess et al., 2006; dos Santos and Beck, 2015). Some work has already
been performed on variance reduction for Probabilistic Seismic Hazard Assessment in the
form of importance sampling, e.g. preferentially sampling the tails of the magnitude and
site ground motion probability distributions (Jayaram and Baker, 2010; Eads et al., 2013).
However, to our knowledge so far no study has specifically investigated variance reduction
for location uncertainty in PSRA in a modern risk assessment framework. Building on
a framework proposed in a recent study (Scheingraber and Käser, 2018, Chapter 4), in
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the present chapter we describe a novel variance reduction scheme specifically designed to
increase the computational efficiency of stochastic treatment of portfolio location uncer-
tainty in PSRA.

The remainder of this chapter is structured as follows. We outline the most important
theoretical background in Section 5.2. Using a seismic risk model of western Indonesia, in
Section 5.3 we explore spatial hazard and loss rate variation inside administrative zones.
Based on this, in Section 5.4 we propose an adaptive location uncertainty sampling scheme
and investigate its performance using several test cases in Section 5.5. In Section 5.6, we
give some recommendations on how to apply the results in practice and conclude with
possible future improvements.

5.2 Background

5.2.1 Probabilistic Seismic Hazard and Risk Analysis

PSRA is based on Probabilistic Seismic Hazard Analysis (PSHA; Senior Seismic Hazard
Committee (SSHAC), 1997; Cornell, 1968; McGuire, 2004), where the exceedance rate λ
of ground motion level y0 at a site r0 is expressed by the hazard integral

λ(y0, r0)[y ≥ y0] =
∫
V

∫ mmax

mmin

P [y ≥ y0|m, r, r0] · ν(m, r)dmdr, (5.1)

with ν(m, r)dmdr the seismic rate density which describes the spatio-temporal distribution
of seismic activity, P [y ≥ y0|m, r, r0] the conditional probability of exceeding ground
motion y0 at site r0 given a rupture of magnitude m at source location r, and V the
spatial integration volume containing all sources which can cause relevant ground motion
at r0. Assuming that the occurrence of earthquake events is a temporal Poisson process,
the probability of at least one exceedance of y0 within time interval t0 is given by

P (y0, t0, λ̄)[y ≥ y0] = 1− e−λ̄t0 , (5.2)

where λ̄ is the mean annual recurrence rate.

For PSRA in the insurance industry, MC simulation is commonly used to obtain a set
of stochastic ground motion fields Ŷ and to then compute the probability that a loss level
ι0 is exceeded as

P (Ŷ,Θ)[ι ≥ ι0] =
ne∑
i=1

∫ ∞
ι0

fι(ι|Ŷi,Θ)dι, (5.3)

where fι(ι|Ŷi,Θ) is the loss probability density function for a portfolio Θ given the ith
ground motion field Ŷi. Summing up the contribution of all ne events yields the total loss
exceedance probability. A Probable Maximum Loss (PML) curve, showing loss against
mean return period T (with T = 1/λ̄), can be obtained from the loss exceedance probability
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curve (Equation 5.3) using a first order Taylor approximation of Equation 5.2:

T =
t0

P (y0, t0, λ)[y ≥ y0]
. (5.4)

Here, t0 is the period of interest (time interval), which is 1 year for most reinsurance
contracts.

5.2.2 Portfolio Location Uncertainty

Perhaps surprisingly, in the insurance industry, portfolios frequently lack precise coordinate-
based location information. Obtaining this information is often not possible, e.g. because

Figure 5.1: An example of a weighted grid used as an insurance density proxy for the
location uncertainty framework. This shows northern Sumatra. Color indicates population
density (residents per km2) as a proxy for insured exposure density. Black markers depict
grid points of the weighted grid. The population data in this plot is based on a free dataset
(Gaughan et al., 2015).
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geocoding engines are not used systematically or can not reliably obtain coordinates from
the policy address of the insured risk. Especially for large treaty portfolios with thousands
or millions of risks, it apparently is simply too much effort for the primary insurer or the
insurance broker to obtain and provide this information. Unfortunately, this is also not
uncommon for smaller portfolios consisting only of a few hundred high-value risks. How-
ever, administrative zones, such as postal codes, can easily be obtained from the insurance
policy.

Exposure uncertainty has previously been identified as an important area of research
(Crowley, 2014), and we already introduced a framework for stochastic treatment of lo-
cation uncertainty in a recent paper (Scheingraber and Käser, 2018, Chapter 4). In our
framework, locations of risk items without precise coordinate location information are
sampled with replacement from a weighted irregular grid inside their corresponding ad-
ministrative zone. The grid weights are used to preferentially sample locations in areas of
assumed high insurance density, e.g. based on population density or on commercial and
industrial inventory data depending on the type of risk (Dobson et al., 2000). An example
of such a weighted grid is shown in Figure 5.1.

In MC simulation, the choice of a pseudo-random number generator is of particular
importance. In this study we use MRG32K3a, a combined multiple recursive generator
which efficiently generates random number sequences with low memory requirements and
excellent statistical properties (L’Ecuyer, 1999). MRG32K3a supports up to 1.8 · 1019

statistically independent substreams. Each substream has a period1 of 7.6 · 1022. These
properties make MRG32K3a well suited for a large scale parallel MC simulation of seismic
risk.

5.2.3 Evaluation of the Proposed Sampling Scheme

Standard Error

Because MC simulation is a stochastic method, there are no strict error bounds for statistics
of interest obtained from a sample of finite size n. The error is therefore usually estimated
using the standard deviation of the sampling distribution of the respective statistic, which is
referred to as its standard error (ESE). If the sampling distribution is known (e.g. normal),
standard errors can often be obtained using a simple closed-form expression (Harding et al.,
2014). For the statistics estimated in this study, e.g. PML at a specific return period, we
can however not make a valid distribution assumption when taking location uncertainty
into account. We therefore use repeated simulation to evaluate the performance of the
proposed sampling scheme. The standard error can then be estimated as

ESE(Φ̂R) =
√

Var(Φ̂R), (5.5)

1The period of a pseudo-random number generator refers to the minimum length of a generated sequence
before the same random numbers are repeated cyclically.
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where Φ̂R denotes a set of estimations of a statistic obtained from R repeated simulations
and Var(·) the variance operator. The corresponding relative standard error ERSE can
be obtained by dividing ESE by the estimated statistic. To estimate confidence intervals
of standard errors, we use bootstrapping with the bias-corrected accelerated percentile
method (Efron, 1979; Efron and Tibshirani, 1986).

Bias and Convergence Plots

The bias of an estimator θ̂ is defined as

Bias(θ̂n) = Eθ(θ̂n)− θ, (5.6)

where θ̂n = f(x1, x2, . . . , xn) is the estimator depending on the n members of the sample
and Eθ its expected value. Because deriving the bias analytically is infeasible for a complex
numerical simulation such as performed by our framework, we use simple MC2 with a large
sample size as empirical reference and approximation for θ. In addition we use convergence
plots, which are a simple yet powerful method to monitor and verify the results (Robert
and Casella, 2004). The values estimated using simple MC and the adaptive variance
reduction scheme are plotted against increasing sample size n.

Variance Reduction, Convergence Order and Speedup

To quantify the performance of the proposed scheme at a particular sample size n, we use
the following well-known definition of variance reduction VR:

VR =
σ2

MC

σ2
LSS

, (5.7)

where σ2
MC is the variance using simple MC and σ2

LSS the variance using the proposed
location sampling scheme (MacKay, 2005; Juneja and Kalra, 2009).

To describe asymptotic error behavior for growing n, we use the big O notation (O;
Landau, 1909; Knuth, 1976). For example, the error convergence order of simple MC is
always O(n−0.5) independent of the dimensionality of the integrand (Papageorgiou, 2003).

To compare the real runtime required by simple MC and the proposed scheme to reach
a specific relative standard error level εRSE, we use the speedup S defined as

S =
tMC

tLSS

, (5.8)

where tMC the runtime required by simple MC and tLSS the runtime required by the pro-
posed location sampling scheme.

2For simple MC, the strong law of large numbers guarantees an almost certain convergence for n→∞.
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5.2.4 Generation of Synthetic Portfolios

In this work, we use synthetic portfolios in western Indonesia modeled after real-world
counterparts in terms of spatial distribution of risk items as well as value distribution
among risk items.

Value Distribution

The total sum insured (TSI) is kept constant for all portfolios:

TSI = const. = 1 · 106. (5.9)

However, the TSI is distributed among a varying number of risk items (portfolio size). For
this study, we use portfolio sizes nr of 1, 10, 20, 50, 100, 1000 and 10000 risk items.

The value distribution observed in many real residential portfolios can be approximated
well by a randomly perturbed flat value distribution:

VI∗flat,i =
TSI

nr

·Xi, (5.10)

VIflat,i =
TSI∑nr

i=1 VI∗flat,i

· VI∗flat,i . (5.11)

VIflat,i (“value insured”) is the value assigned to the ith risk item and nr denotes the
number of risk items. Xi is a uniform random number in the interval [1− p, 1 + p], where
p is a perturbation factor set to 0.2, which is consistent with the characteristics of many
real portfolios. Equation 5.11 normalizes the nr randomly perturbed insured values to
ensure

∑nr
i=1 VIflat,i = TSI.

Geographical Distribution

For each portfolio size, we created a set of 6 portfolios with an increasing fraction of
unknown coordinates: 0%, 20%, 40%, 60%, 80%, and 100% of the risk items have unknown
coordinates and are only known on the basis of their administrative zone (Indonesian
provinces, or regencies and cities, see Section 5.3).

The geographical distribution of the exposure locations follows the weighted irregular
grid described in Section 5.2.2. For each portfolio size, a portfolio with 0% unknown coor-
dinates is initially created by choosing exposure locations from the irregular grid according
to the grid point weights. For the other portfolios with the same number of risk items but a
higher fraction of unknown coordinates, coordinate-based location information is then re-
moved stepwise from the initial portfolio. In each step, 20% of the risk items are randomly
selected for the removal of coordinates until all risk items have unknown coordinates.
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Figure 5.2: Coefficient of Variation (CV) of Peak Ground Acceleration (PGA) with an
exceedance probability of 10% in 50 years inside provinces in western Indonesia. Color
denotes the CV. Note how the CV is higher in provinces that have a large extent per-
pendicular to the Sumatra Fault Zone, such as Jambi (outlined in pink color), than in
provinces with a small extent in that direction, such as Bengkulu (outlined in blue).

5.3 Case Study: Spatial Seismic Hazard Variation in

Western Indonesia

5.3.1 Hazard Model

We use a proprietary seismic risk model based on the South-East Asia hazard model of the
United States Geological Service (USGS) by Mark Petersen et al. (2007). Site conditions
are based on topographic slope (Wald and Allen, 2007). The geometry of the Sumatra
subduction zone is a complex fault representation based on the three-dimensional Slab 1.0
model (Hayes et al., 2012). For events on the complex fault, we use a rupture floating
mechanism similar to the implementation of OpenQuake (Pagani et al., 2014), a free and
open-source seismic hazard and risk software developed as part of the Global Earthquake
Model initiative (Crowley et al., 2013). The model is described in greater detail in a recent
paper (Scheingraber and Käser, 2018, Chapter 4).
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Figure 5.3: Coefficient of Variation (CV) of Peak Ground Acceleration (PGA) with an
exceedance probability of 10% in 50 years inside regencies and cities in western Indonesia.
Color denotes the CV. At this geographical resolution the CV is lower than for provinces
(see Figure 5.2), and the influence of individual seismo-tectonic features, such as the Suma-
tra fault zone, becomes apparent.

5.3.2 Spatial Seismic Hazard Variation

For this analysis, we compute seismic hazard on a regular grid using a resolution of 0.3°. We
investigate the coefficient of variation (CV) of hazard inside administrative geographical
zones for different levels of resolution, corresponding to provinces and regencies or cities in
Indonesia. The CV is defined as

CV =
σ

µ
, (5.12)

where σ is the standard deviation and µ the mean.

Dependence on Resolution Level of Geographical Zones

Figure 5.2 shows the CV of peak ground acceleration with an exceedance probability of
10% in 50 years per province in Indonesia. There is a noticeable decrease of the CV from
west to east. The subduction modeled by the complex fault and the Sumatra Fault Zone
(SFZ) result in the highest CV on Sumatra (most values 0.2 – 0.3). The CV is also rela-
tively high on Java (around 0.15). The CV is the lowest in Kalimantan (< 0.1) due to the
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Figure 5.4: Coefficient of Variation (CV) of ground motion predicted to be exceeded at
various return periods for the Jambi province (see Figure 5.2). The CV remains quite
stable over a large range of return periods.

absence of any known or modeled crustal faults. As only gridded seismicity is used in this
area, the hazard variation is very small. Furthermore, zones with a large extent perpendic-
ular to the SFZ show a larger CV than zones with a smaller extent along the direction of
the steepest hazard gradient. An example of this are the provinces of Jambi and Bengkulu
in Figure 5.2. Arguably, location uncertainty is more important in Jambi than in Bengkulu.

Figure 5.3 shows the CV per regency or city for the same exceedance probability. Due
to the smaller spatial extent of the administrative zones, the CV is in general lower at
this more granular resolution of administrative geographical zones. Another observation
is that the influence of individual seismo-tectonic features emerges; the CV is higher in
the vicinity of modeled faults. While the Sumatra subduction only has a weak influence,
the SFZ has a pronounced effect. Near the SFZ, the CV has values of about 0.1 – 0.2.
Perpendicular to the SFZ, the CV quickly drops below 0.1.

In general, the CV is highest in zones close to modeled faults of shallow depths, as
they result in a higher spatial hazard gradient than compared to areas where hazard is
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Figure 5.5: Coefficient of Variation (CV) of ground motion predicted to be exceeded at
various return periods for the Kalimantan Timur province (see Figure 5.2). In this case,
it is not possible to determine a range of return periods for which the CV remains in a
stable range.

dominated by rather regularly distributed gridded seismicity. A reasonable assumption is
that location uncertainty can be particularly high in such zones.

Dependence on Return Period

Analysis of the CV across different return periods for individual zones revealed a similar
pattern for most administrative zones. The CV is small for short return periods, and
reaches a relatively stable level above a certain return period. An example of this behavior
is shown in Figure 5.4 for the province of Jambi. However, the CV does not show this
pattern in all administrative zones. For some zones, especially at the level of regencies
and cities, we could not determine a range of return periods for which the CV is roughly
constant, as for example in the province of Kalimantan Timur shown in Figure 5.5.
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5.3.3 Loss Rate Variation

The variability of the CV over return periods for certain zones makes it difficult to choose a
general return period suitable for assessing the spatial variation of hazard inside a zone. To
avoid the subjectivity introduced by a manual decision process for a suitable return period,
we use the CV of the loss rate per zone, as it considers all return periods. Figure 5.6 shows
the CV of the loss rate for Indonesian provinces. The overall pattern agrees with the
pattern of the spatial hazard variation in Figure 5.2, but the range of values is much
higher, from about 0.1 to 0.9.

Figure 5.6: Coefficient of Variation (CV) of the loss rate inside provinces in western In-
donesia. Color denotes the CV.

5.4 A Framework for Adaptive Sampling of Portfolio

Location Uncertainty

To increase efficiency, in our framework ground motion is jointly simulated on all unique
locations of all sampled location sets. Since the computation of hazard dominates the
overall runtime of PSRA, it is worthwhile to explore possibilities to distribute the number
of locations on which hazard is computed in a smart way among risk items. To this end,
we introduce three sampling criteria to determine the location sample size individually per



5.4 A Framework for Adaptive Sampling of Portfolio Location Uncertainty 85

Table 5.1: Risk Location Index Mapping Table. Rows correspond to individual risk items,
showing sampled grid point indices. Each column represents a possible spatial distribution
of the portfolio. Risk item 1 has the maximum location sample size of nmax = 4, but risk
items 2 and 3 only have a sample size of 2 and 1, respectively.
Risk Item Index Sample Size Sample 1 Sample 2 Sample 3 Sample 4
1 4 43 13 31 51
2 2 23 18 23 18
3 1 51 51 51 51

risk item. A large location sample size is used for risk items for which at all three criterions
indicate that location uncertainty has a strong influence. If any of the three criteria predicts
that location uncertainty has a lesser effect, a smaller sample size is used. In this way,
more computational effort is invested where it is important and a better estimation of the
PML curve associated with a lower variance is obtained for a given number of used hazard
locations.

To not add noticeable overhead to the calculation, a key requirement is that all criteria
can be evaluated very efficiently. To keep the computational overhead small, another design
goal is that the framework is adaptive in a sense that it depends directly on properties of
the portfolio and a precalculated hazard variability (see Section 5.3), but does not require
on-the-fly integral presampling such as used by some general purpose adaptive variance
reduction schemes (Press and Farrar, 1990; Jadach, 2003).

5.4.1 Risk Location Index Mapping Table

We store an array containing all unique geographical locations on which ground motion is
simulated, and another array storing the sampled location indices per risk item. Table 5.1
illustrates the concept. Each column of the table corresponds to a location set representing
a valid realization of location uncertainty for the entire portfolio. To combine unequal
sample sizes for risk items without introducing bias due to overemphasis of a subset of a
sample, we restrict the sample size to powers of two. The full sample can then be repeated
in the mapping table.

5.4.2 Criterion I: Coefficient of Variation of Loss Rate

The first criterion is based on the CV of loss rate within a zone (see Section 5.3), hereafter
denoted by CVz. The values of CVz can be precomputed for all administrative geographical
zones, and therefore the evaluation of this criterion can be implemented in a very efficient
manner.
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Figure 5.7: Criterion I: Number of samples per zone depending on Coefficient of Variation
(CV). The discrete realization of the criterion (limited to powers of two) is shown in blue,
while the red line represents the theoretical linear behavior.

The number of samples nL due to criterion I is defined piecewise:

n∗L =


1, if CVz ≤ tl,
nmax−1
tu−tl

· CVz +1, if CVz ∈ (tl, tu),

nmax, if CVz ≥ tu.

(5.13)

Here, tl and tu are lower and upper threshold values. nmax represents the maximum used
sample size. We round n∗L up to the next higher power of two to obtain the final nL. The
criterion is shown in Figure 5.7 for the example tl = 0.1, tu = 0.4 and nmax = 16. In
our final implementation, tl and tu are chosen adaptively as empirical quantiles of the CV
distribution (CV0.4 for tl and CV0.6 for tu, i.e. the 40% and 60% percentiles) of the loss rate
of all administrative zones of a model (see Section 5.3), which was found to be a reasonable
choice for our test cases with the aid of an extensive parameter study (see Section 5.5.1).
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Figure 5.8: Criterion II.a: Number of samples per zone depending on the number of risk
items in the portfolio. Note that we do not round up to the next higher power of two,
since this plot illustrates Equation 5.14, which is an intermediate step.

5.4.3 Criterion II: Number of Risk Items

The second criterion involves two steps. The first step defines a maximum sample size for
the entire portfolio depending on the total number of risk items nr in the portfolio and a
threshold tp as

n†R =

−
nmax−1

log(tp−1)
· log(nr − 1) + nmax, if nr < tp,

1, if nr ≥ tp,
(5.14)

which is then used to obtain a maximum sample size per zone, depending on the number
of risk items in a zone nz and a threshold tz:

n∗R =

−
n†R−1

tz−1
· (nz − 1) + n†R, if nz < tz,

1, if nz ≥ tz.
(5.15)
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Figure 5.9: Criterion II.b: Maximum number of samples per zone depending on the number
of risk items in an administrative zone. The discrete realization of the criterion (limited
to powers of two) is shown in blue, while the red line represents the theoretical linear
behavior.

We round n∗R up to the next higher power of two to obtain the final nR. Figures 5.8 and 5.9
illustrate this criterion for tp = 10000, tz = 100 and nmax = 16. In this study, tp is
chosen to be 10000 and tz is set adaptively to equal the number of grid points of the
weighted location uncertainty sampling grid (see Section 5.2.2) inside each administrative
zone. The design of this criterion is based on the results of a previous study, in which
we systematically investigated the effect of location uncertainty and loss aggregation due
to spatial clustering of risk items for a large range of different portfolios. It was found
that location uncertainty typically has a neglectable effect for very large portfolios and a
roughly flat value distribution (Scheingraber and Käser, 2018, Chapter 4).

5.4.4 Criterion III: Value Distribution

The third criterion depends on the relative insured values of risk items (“sum insured”,
SI). Risk items are sorted with respect to their SI, and the index of their sorted order Ir is
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Figure 5.10: Criterion III: Number of samples per zone depending on the insured values of
the risk items. The discrete realization of the criterion (limited to powers of two) is shown
in blue, while the red line represents the theoretical linear behavior.

used along with a threshold index ti to determine the maximum sample size per risk item:

n∗V =

−
nmax−1
ti−1

· (Ir−1) + nmax, if Ir < ti,

1, if Ir ≥ ti.
(5.16)

We round n∗V up to the next higher power of two to obtain the final nV. Figure 5.10
illustrates this criterion for ti = 6 and nmax = 16. In this study, for ti we adaptively set
the index of the first risk item which has a SI higher than the mean of all risk items.

5.4.5 Combination of Criteria

The final sample size for a specific risk item is then given by the minimum of the three
criteria:

n = min{nL, nR, nV}. (5.17)

The rationale behind this decision is that any of the criteria can separately predict that a
particular risk item has a low impact on loss uncertainty. For example, if a risk item with
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an unknown coordinate has a low insured value, it has a relatively low impact on loss uncer-
tainty even if the variation of hazard or loss rate within the corresponding administrative
zone is high, and thus a small location uncertainty sample size can be used.

Vice versa, the impact of location uncertainty is limited if a risk item with an unknown
coordinate has a high insured value but the hazard within the corresponding adminis-
trative zone is relatively flat. Furthermore, loss uncertainty is also limited if a portfolio
contains a very high number of total risk items or the number of risk items belonging to
an administrative zone is high compared to the number of grid points within this zone.

5.5 Results

In this section, the variance reduction and speedup obtained with the proposed adaptive
location uncertainty sampling scheme is analyzed using the western Indonesia hazard model
described in Section 5.3.1 in conjunction with a vulnerability model for regional building
stock composition. To this end, loss frequency curves are computed for the synthetic
portfolios described in Section 5.2.4 with simple MC as well as the adaptive scheme. The
convergence and relative standard errors are evaluated against the number of unique hazard
locations used for the loss calculation by either approach and the associated required
runtime is compared.

5.5.1 Spatial Variation Parameter Study

We first analyze the performance of the adaptive sampling scheme for different values of
the lower (tl) and upper (tu) threshold parameters for the spatial variation of loss rate in
an administrative zone in comparison to simple sampling. In simple MC, all risk items get
the same location uncertainty sample size nmax and there is not restriction to powers of
two. For this parameter study, we use values of nmax = 32, 64, 96, 128, 160, 192, 224, 256
in order to obtain a smooth curve with a high number of support points.

For the adaptive variance reduction scheme, the sample size is restricted to powers
of two and is determined for each risk item individually — potentially smaller than the
maximum allowed location uncertainty sample size nmax (see Section 5.4 and Table 5.1).
Since the sample size varies between risk items, for a meaningful comparison with simple
MC it is necessary to use a measure of the total effort spend for the treatment of location
uncertainty of all risk items. We use the total number of unique hazard locations (nhazard)
and the runtime spent for the computation of hazard (thazard). While for simple MC all risk
items get the maximum sample size nmax, the adaptive location sampling scheme reduces
the sample size for risk items for which location uncertainty likely has a smaller influence.
This means that the adaptive location sampling scheme results in a smaller nhazard than
simple MC for the same portfolio and nmax. Therefore, in order to obtain a comparable
values for nhazard, a larger maximum sample size nmax has to be employed for the adaptive
scheme than for simple MC. Here, we use nmax = 2i with i = 5, 6, . . . , 8.
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Figure 5.11: Results of a systematic parameter study with the goal of finding good values for
the lower threshold (tl) and upper threshold (tu) parameters of Criterion I of the adaptive
location uncertainty sampling scheme (see Section 5.4), based on the distribution of the
Coefficient of Variation (CV) of loss rate in administrative zones. This shows a logarithmic
plot of relative standard error (ERSE) of Probable Maximum Loss (PML) at a return period
of 100 years against the number of used hazard locations (nhazard) for a portfolio of 20 risk
items with 100% unknown coordinates. Color indicates different combinations for the
threshold parameters tl and tu. Quantiles of the CV distribution around tl ∈ [CV0.2; CV0.4]
in combination with tu ∈ [CV0.6; CV0.8] work best.

For each sample size, the spatial variation threshold parameters are varied over the
distribution of CV values, picking quantiles in constant steps of 0.2. The lower threshold
tl is varied from CV0.0 to CV0.8, and the upper threshold tu from CV0.2 to CV1.0. For each
combination of tl and tu, R = 20 repeated simulations were performed for each sample size
to estimate the respective relative standard error ERSE.

In general, for our test cases the scheme works well around tl ∈ [CV0.2; CV0.4] in com-
bination with tu ∈ [CV0.6; CV0.8]. For example, for a portfolio of 20 risk items and 100%
unknown coordinates, Figure 5.11 shows a logarithmic plot of the relative standard error
ERSE of PML at a return period of 100 years against the number of used hazard locations
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Figure 5.12: Convergence plots showing relative Probable Maximum Loss (PML) at a
return period of 100 years against the number of used hazard locations nhazard for portfolios
of nr = 10 risk items with 60% (left plot) and 100% (right plot) unknown coordinates using
simple MC (shown in blue) as well as the adaptive scheme (shown in red). Semi-transparent
circles depict R = 20 repeated simulations for each sample size, solid lines highlight one
repetition. The transparently shaded background shows the entire range for each sampling
scheme. The plots show that the adaptive scheme scatters less and converges faster to the
same result as simple sampling.

nhazard for some combinations of tl and tu. The error curves for all combinations of tl and
tu have the same slope as the curve for simple MC and thus the same convergence order
of O(n−0.5). For certain combinations, the error curve is below the curve for simple MC,
meaning that in these cases the scheme successfully reduces the variance of the estimation
and therefore the associated standard error.

For the final implementation, we used tl = CV0.4 and tu = CV0.6, which performed best
in this parameter study.

5.5.2 Performance of the Final Implementation

We now evaluate the performance of the final implementation of the adaptive scheme,
checking if it results in any unwanted systematic bias and investigating variance reduction
and speedup for the calculation of PML for different portfolios.
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Figure 5.13: Convergence plots showing relative Probable Maximum Loss (PML) at a
return period of 100 years against the number of used hazard locations nhazard for portfolios
of nr = 100 risk items with 60% (left plot) and 100% (right plot) unknown coordinates
using simple MC (shown in blue) as well as the adaptive scheme (shown in red). Semi-
transparent circles depict R = 20 repeated simulations for each sample size, solid lines
highlight one repetition. The transparently shaded background shows the entire range for
each sampling scheme. The plots show that the adaptive scheme scatters less and converges
faster to the same result as simple sampling.

Convergence and Bias

Figures 5.12 and 5.13 show convergence plots of PML at 100 years return period against the
number of used hazard locations nhazard for portfolios with nr = 10 and nr = 100 risk items,
respectively. The left plots depict the results for portfolios with 60% unknown coordinates,
the right plots the results for portfolios with 100% unknown coordinates. Simple sampling
is shown in blue, the adaptive scheme in red. For all portfolios, the sample size n was varied
as n = 2i with i = 3, 4, . . . , 9. For each sample size and both sampling schemes R = 20
repeated simulations are shown as semi-transparent circles, with solid lines highlighting
one individual repetition.
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Figure 5.14: Logarithmic plot of relative standard errors ERSE of Probable Maximum Loss
(PML) at a return period of 100 years against the total number of used hazard locations
nhazard for different portfolios with nr = 10 (left plots) and nr = 100 (right plots) risk items
and 60% (upper plots) and 100% (lower plots) unknown coordinates. Simple MC is shown
in blue, the adaptive variance reduction scheme in red. All ERSE have been obtained from
R = 20 repeated simulations, vertical error bars depict upper 95% confidence intervals
estimated using bootstrapping with 1000 resamples.

The results show that empirically the adaptive scheme converges to the same result as
simple MC for our test cases, meaning that the scheme does not result in any systematic
bias. It is also apparent that for a given number of used hazard locations nhazard, the
relative PML values obtained with the adaptive scheme scatter less than those estimated
with simple MC.
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Table 5.2: Mean runtime speedup and standard errors (S±ESE) of the hazard computation
achieved by the adaptive location uncertainty sampling scheme in comparison to simple
sampling to obtain relative standard error levels of εRSE = 10−4 and εRSE = 10−5, estimated
from R = 20 repeated simulations. Depending on the portfolio and εRSE, the mean speedup
ranges from 6% to 37%.

Speedup (S)

Portfolio εRSE = 10−4 εRSE = 10−5

10 risk items, 60% unknown coordinates 1.24± 0.09 1.14± 0.04
10 risk items, 100% unknown coordinates 1.35± 0.06 1.37± 0.09
100 risk items, 60% unknown coordinates 1.08± 0.04 1.06± 0.03
100 risk items, 100% unknown coordinates 1.09± 0.03 1.08± 0.02

Variance Reduction and Speedup

For the same portfolios as analyzed in the previous section, Figure 5.14 shows logarithmic
plots of the relative standard error ERSE obtained from R = 20 repeated simulations against
the number of used hazard locations nhazard. Vertical bars depict upper 95% confidence
intervals estimated using bootstrapping with 1000 resamples. Simple MC is again shown in
blue, the variance reduction sampling scheme in red. While the observed error convergence
order of the adaptive scheme remains the same as for simple MC (i.e. O(n−0.5), compare
Section 5.5.1), the error curves are below those for simple MC for all portfolios.

The variance reduction quotient (VR, the ratio of the variances of the estimations
obtained using simple MC and the adaptive scheme, see Equation 5.7) varies between
portfolios with different number of risk items and fractions of unknown coordinates, but
generally increases with growing nhazard. For example, for the portfolio with 10 risk items
and 60% unknown coordinates, VR is about 6.2 at nhazard = 102 and increases to 13.2
at nhazard = 103. For the portfolio with 10 risk items and 100% unknown coordinates,
VR ≈ 1.8 at nhazard = 102 and 2.2 at nhazard = 103. For the portfolios with 100 risk items,
the situation is similar. For 60% unknown coordinates, VR ≈ 2.4 at nhazard = 103 and 3.7
at nhazard = 104. For 100% unknown coordinates, VR ≈ 1.7 at nhazard = 103 and 3.0 at
nhazard = 104.

The obtained variance reduction partially leads to a speedup of the computational
runtime to reach a specific relative standard error level εRSE. Table 5.2 shows the speedup
S of the scheme to reach relative standard error levels of εRSE = 10−4 and εRSE = 10−5 for
the same portfolios. Depending on the portfolio, the scheme achieves a speedup between
8% and 35% to reach εRSE = 10−4, and between between 6% and 37% to reach εRSE = 10−5.
Note that we obtained these speedup values using a highly optimized seismic hazard and
risk analysis framework. We suspect that the scheme can result in a significantly higher
speedup for less optimized code, especially if the hazard simulation is not vectorized but
contains a loop over locations.
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5.6 Conclusions

In seismic risk assessment the exact location of risks is often unknown due to geocoding
issues of address information. Therefore, in this chapter we propose a novel adaptive sam-
pling strategy to efficiently treat this location uncertainty using a seismic hazard and risk
model for western Indonesia. The adaptive scheme considers three criteria to decide how
often an unknown risk coordinate has to be sampled within a known administrative zone:
(1) the loss rate variation within the zone, (2) the number of risks within the zone, and
(3) the individual value of the risk. As the variation of hazard can vary quite strong not
only between different administrative geographical zones, but also between different return
periods, we use the spatial variation of loss rate which displays a similar pattern as the
variation of hazard, but is independent of the return period. Furthermore, the total num-
ber of risks in the corresponding administrative zone, as well as the value (importance) of
the risk with respect to the entire portfolio are considered by the adaptive scheme.

We investigated the performance of the scheme for a large range of sample sizes using
different synthetic portfolios of different levels of unknown risk locations. We have found
that the scheme successfully reduces the expected error, i.e. it reaches the same error levels
as simple Monte Carlo with less samples of potential risk locations. This results in lower
memory requirements and a moderate but appreciable runtime speedup to reach a desired
level of reliability when computing loss frequency curves — a critical measure of risk in
the insurance industry. The scheme could also be applied to other natural perils, such as
probabilistic wind and flood models.

While the proposed scheme already successfully reduces the variance of loss frequency
curve estimations, future improvements in the treatment of uncertainty in PSRA are con-
ceivable. The computation might become yet more efficient by the application of variance
reduction techniques to other uncertainties, for example in the ground motion and vulner-
ability models. Moreover, it would be essential to investigate the relative importance of
location uncertainty in comparison to these other uncertainty types.
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Chapter 6

Uncertainty Quantification for
Seismic Risk Assessment using Latin
Hypercube Sampling and Quasi
Monte Carlo Simulation

After having addressed the efficiency of the Monte Carlo simulation for portfolio location
uncertainty in the previous chapter, we now turn our attention to the other uncertainty
types described in Chapter 3. We analyze the performance of several well known sampling
strategies for the simulation of seismic losses and quantify the relative impact of various
uncertainty types using variance-based global sensitivity analysis.

Most of this chapter has been published as a peer-reviewed article in:

Scheingraber, C. and Käser, M. (2018).
Uncertainty Quantification for Seismic Risk Assessment using Latin Hypercube
Sampling and Quasi Monte Carlo Simulation.
Paper No. 11221, Proceedings of the 16th European Conference on Earthquake Engineer-
ing, Thessaloniki, Greece, 2018.

Abstract

In the insurance industry Seismic Risk Assessment is commonly used for modeling loss
to a spatially distributed portfolio. Best practice not only involves the computation of
expected loss, but also requires treatment of the uncertainty of all components of the mod-
eling chain. Because the dimensionality is high, this is typically performed with a Monte
Carlo simulation of a large number of scenario realizations.
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In this study, we first compare the computational efficiency of uncorrelated pseudo-
random sampling to variance reduction techniques for scenario loss uncertainty treatment.
We observe that Latin Hypercube sampling as well as Quasi Monte Carlo simulation using
low-discrepancy sequences can improve the error convergence from O(n−0.5) to O(n−1)
in many cases. The adaptive MISER algorithm, based on recursive stratified sampling,
improves the error convergence to O(n−1) only for very small portfolios and does not
provide any convincing advantage over Latin Hypercube Sampling or Quasi Monte Carlo
simulation for our purposes. We then perform a global sensitivity analysis to quantify the
contribution of different modeling parameters and their uncertainties to the overall loss
uncertainty. To this end we use three scenarios in Indonesia and explore uncertainty in the
geographical distribution of portfolio items, structural properties such as building height
and quality, as well as ground motion and damage models. We find that depending on
the portfolio a significant fraction of the output variance can be attributed to uncertain
factors in the exposure and vulnerability models, revealing the importance of their thorough
treatment in seismic risk analysis.

6.1 Introduction

Probabilistic Seismic Risk Assessment (PSRA), building upon Probabilistic Seismic Haz-
ard Assessment (PSHA; Cornell, 1968; Senior Seismic Hazard Committee (SSHAC), 1997),
is widely used in the insurance industry to model the frequency and severity of losses to
a geographically distributed portfolio from the occurrence of earthquake events. In this
context it is not sufficient to only compute expected loss, but the treatment of uncertainty
in all parts of the modeling chain is of immense importance (Crowley, 2014). For practical
purposes, model uncertainty can be categorized into being either epistemic or aleatory. The
term epistemic describes uncertainty due to limited knowledge or data and is commonly
treated with a logic tree combining multiple alternative models. Weights of the logic tree
represent the degree of belief in the correctness of a branch. Aleatory refers to variability
inherent to natural processes which is assumed to be irreducible and usually captured with
a probability distribution.

Once uncertainty treatment is integrated, result uncertainty can be visualized and
communicated to decision makers. Moreover, the contribution of individual factors to
the output variation can be quantified using sensitivity analysis (SA). This allows to e.g.
identify areas where additional research or effort to reduce the associated uncertainty might
be worthwhile. In contrast to local methods which investigate the impact of incremental
input perturbations at a base case, global SA aims at exploring the entire space of uncertain
input factors and thereby allows to take factor interactions into account. Global SA is a
computationally demanding technique, because in general a high-dimensional input space
needs to be sampled. This motivates our investigation of the efficiency of various sampling
schemes in the first part of this chapter before we perform a global SA for seismic risk
analysis using three loss scenarios in Indonesia in the second part.
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6.2 Methodology

6.2.1 Modeling Framework and Uncertainty Treatment

Ground Motion Model

Ground Motion Prediction Equations (GMPEs) are used to model the distribution of
ground motion at a site r given the occurrence of an earthquake event of magnitude m.
Ground motion levels are expressed by intensity measures such as Peak Ground Accelera-
tion, Peak Ground Velocity, or Pseudo-Spectral Acceleration at a given frequency.

A simplified form for expected ground motion is generally given by

y(m, r) = c1 + c2m+ c3 ln(r + r0), (6.1)

with coefficients ci and r0.

Most GMPEs capture the associated aleatory variability using a log-normal probability
distribution. The standard deviation of this distribution is part of the GMPE. In this
study, we use five different GMPEs (see Section 6.2.4) and sample the total ground motion
residual.

Portfolio Location Uncertainty

In the context of Seismic Risk Assessment for insurance purposes, a wide range of portfolio
uncertainty exists. For many portfolios, risk items are only known to be located within
some administrative zone but exact coordinates are unknown. This can be caused by inac-
curate geocoding as well as reduced information accuracy between brokers and reinsurance
companies or risk modelers. We treat portfolio location uncertainty in a stochastic man-
ner by sampling risk locations within their respective administrative zone on a weighted
irregular grid, which acts as a proxy for insured exposure density so that e.g. residential
buildings are preferentially located in areas of high population (see Figure 6.1).

Vulnerability Function and Damage Uncertainty

In addition, it is common that building properties such as the number of stories as well as
building age and the related construction quality – due to updated building codes – remain
unknown to the modeler. For this study, we assume that building height and construction
quality are unknown for all buildings. The associated epistemic uncertainty is treated
stochastically with a logic tree approach. To model damage given a ground motion level at
a site we use a zero-one-inflated Kumaraswamy distribution. This is a mixture distribution
of a Bernoulli distribution on {0; 1} and a Kumaraswamy distribution in the open interval
]0, 1[, which allows the use of discrete probability masses f0 and f1 to denote the likelihood
that a building suffers no damage or is completely destroyed, respectively. The remaining
probability mass 1− f0− f1 is then used to scale the Kumaraswamy distribution to model
partial damage.
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We employ the inverse transform method to sample building damage. Conveniently,
the inverse distribution function of the zero-one-inflated Kumaraswamy distribution has a
closed-form expression.

Figure 6.1: Sunda straight with the urban areas of Palembang and Jakarta. Transparent
black markers depict the vertices of the weighted irregular grid employed in this study.
Color represents population density (residents per kg2; Gaughan et al., 2015), which we
use as insurance density proxy.
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6.2.2 Sampling Strategies and Error Estimation

Because a large number of model evaluations is necessary for sensitivity analysis, it is worth
to explore the efficiency of different sampling strategies for our study.

Simple Monte Carlo

Stochastic sampling was first used on an electronic computer (ENIAC) during the Man-
hattan Project at Los Alamos Laboratory, where the still widely used name Monte Carlo
(MC) was also coined. The theory was further developed and first published by Metropolis
and Ulam (1949). Simple MC is based on uniform random sampling of the domain and
can be used for numerical integration instead of deterministic quadrature rules. We create
uncorrelated pseudo-random numbers using the Mersenne Twister pseudo-random number
generator (Matsumoto and Nishimura, 1998). Given a sample x of size n, the expectation
of some function φ(x), for example mean scenario loss or values along a probabilistic loss
curve, is given by the unbiased estimator

φ̂ =
1

n

n∑
i=1

φ(xi). (6.2)

Simple MC has a slow error convergence of O(n−0.5). However, in contrast to deterministic
quadrature schemes such as the trapezoidal rule, the convergence order of simple MC is
independent of the number of parameters and only depends on the variance of the estimate
φ̂. For this reason, the method is well suited for high-dimensional integrals such as seismic
risk assessment with a large portfolio size.

Latin Hypercube Sampling

Uncorrelated random sampling points tend to cluster, which is not ideal because there is
little information gain when sampling a point which is close to previous ones. Latin Hy-
percube Sampling (LHS; McKay et al., 1979) is a variance reduction technique which aims
to improve this by stratifying the domain along each dimension. With a sample size of n,
for each dimension n strata are created such that every projection to one of the dimen-
sions is itself a stratified sample with n strata. This can result in better asymptotic error
convergence, particularly when the function is additive or dominated by one parameter
(Owen, 1994). While O(n−1) convergence is often observed in practice, theoretically this
order could so far only be shown for special cases.

A problem with LHS is that while the domain is stratified in each separate dimension,
multidimensional combinations are not. This can be enhanced to some extent by additional
design criterions. We use the maximin distance criterion (Johnson et al., 1990), which
maximizes the minimum distance between two points. While LHS with sample size n
never performs worse than simple MC with sample size n− 1 (Owen, 1997), the advantage
of LHS can decrease for high-dimensional problems. Thus the performance of LHS for our
study needs to be evaluated.
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Quasi Monte Carlo

With Quasi Monte Carlo (QMC) methods, deterministic low-discrepancy sequences are
used instead of quasi-random numbers to generate sampling points. Low-discrepancy se-
quences are designed to avoid previous points and fill space evenly. In this study, we use
the sequence introduced by (Sobol’, 1967). The Koksma-Hlawka inequality states that the
QMC integration error En of a function φ(x) in the d-dimensional unit cube is bounded by

En(φ(x)) ≤ DnV (φ(x)), (6.3)

where V (·) is the variation in the Hardy-Krause sense which is finite if the integrand is
smooth (Moskowitz and Caflisch, 1996). Dn is the discrepancy of the sequence which
is O(n−1 logd n) for large n, although it can be worse for intermediate n (Morokoff and
Caflisch, 1994). This can potentially be improved with randomized QMC, where a deter-
ministic sequence is scrambled randomly. We use scrambling as described in Owen (1997)
and Matoušek (1998).

In practice, many MC simulations involve decisions or functions that are not smooth,
like the epistemic uncertainties and the zero-one-inflated loss distribution in this study.
We therefore investigate the error convergence of QMC for our model empirically.

MISER

MISER is an adaptive MC scheme based on recursive stratified sampling (Press and Farrar,
1990; Press et al., 2007). It has been extended to be used in conjunction with QMC in
Schürer (2004). The basic idea of MISER can be described as follows. First, 10% of the
n available sampling points are used to presample the entire d-dimensional integration
domain of a function φ(x) using simple MC or QMC. The standard deviation of φ(x) in
each of the 2d possible hyperrectangular halves of the domain is estimated. MISER is
then applied recursively to the two disjoint subdomains Sα and Sβ (i.e. halves) for which
the sum of the standard deviations assumes its minimum, with the remaining 90% of the
sampling points split according to

nα
nβ

=
σ̂α
σ̂β
, (6.4)

where nα is the number of sampling points assigned to the subdomain Sα, nβ the number
of sampling points assigned to the subdomain Sβ, σ̂α the estimated standard deviation of
φ(x) in Sα, and σ̂β the estimated standard deviation of φ(x) in Sβ.

The recursion bottoms out when the number of assigned sampling points falls below a
certain threshold, and simple MC or QMC is used to return an estimation of the function
φ(x) in the corresponding subdomain1. Finally, the estimations φ̂α and φ̂β from two halves

1An animation of inverse transform sampling of the zero-one-inflated Kumaraswamy distribution using
the MISER algorithm is available at http://archive.scheingraber.net/animation/miser.gif.

http://archive.scheingraber.net/animation/miser.gif
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Sα and Sβ are combined as

φ̂α+β =
φ̂α + φ̂β

2
, (6.5)

where φ̂α+β is the estimation of φ(x) in the combined region Sα ∪ Sβ.

Estimation of Standard Error and Confidence Intervals

We use repeated simulation for MC standard error estimation of the different sampling
schemes. Denoting a set of estimations of a statistic obtained from R repeated simulations
by φ̂R and the variance by V (·), then the standard error ESE is given by

ESE(φ̂R) =
√
V (φ̂R). (6.6)

In this study, we normalize the standard error of the mean by the sample mean to
obtain relative standard error ERSE. For the estimation of confidence intervals of ERSE, we
use bootstrapping. This method assumes that the original sample holds all information
about the underlying population, and can be used to estimate the sampling distribution
of φ̂ by resampling with replacement. Specifically, we employ the bias-corrected accelerated
percentile method (Efron and Tibshirani, 1986).

6.2.3 Sensitivity Analysis

Seismic Risk Assessment relies on many uncertain parameters. Awareness of model un-
certainties and knowledge of the extent to which certain factors drive output uncertainty
under specific circumstances is important for risk modelers as well as end users. With
sensitivity analysis (SA), it is possible to quantify the influence of uncertain model input
factors. Regulatory documents and official guidelines of the European Commission and
the United States Environmental Protection Agency recommend the use of SA and stress
the importance to consider factor interactions (Saltelli et al., 2010).

Local SA methods use first-order partial derivatives ∂Yi/∂Xi to evaluate the sensitivity
of model output Yi against input Xi at a predefined base case of the input space. If the
modeling code itself does not return derivatives, they can e.g. be estimated with finite
differences. Another very powerful approach is algorithmic differentiation, which is the
automated differentiation of an entire model source code via application of the chain rule.
While local methods are relatively cheap, they give only limited insight into the sensitivity
of a model with respect to a variable, because they only provide valid information close
to the base case where non-linear response can be neglected. They provide no information
about other regions of the input space. By contrast, global SA methods explore the entire
input space. This allows to quantify the overall sensitivity of the model output with respect
to input factors as well as interactions between factors.
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For the global SA in this study, we use the variance decomposition introduced by Sobol
(2001) based on his Analysis of Variances (ANOVA) decomposition. The total variance
V (Y ) of a scalar model output Y dependent on a model input vector X can be decomposed
into 2d − 1 components

V (Y ) =
∑

1≤i≤d
+

∑
1≤i<j≤d

Vij + · · ·+ V12...d, (6.7)

where d denotes the number of input factors, Vi a first-order variance term dependent
only on the ith input factor and Vij a second-order term dependent on the ith and jth
input. V12...d is the highest-order variance term dependent on all d input factors. Higher-
order terms represent variance that cannot be explained by lower-order terms, but is caused
by some interaction of the involved factors. For example, the variance in Vij cannot be
expressed by Vi + Vj.

Sobol sensitivity indices express the fraction of the total variance due to a subset of
the variance components. In this study, we use the first order (or main effect) indices
which quantify the fraction of the variance caused by an input factor i to the total output
variance without interactions over the whole input space:

Si =
VXi

(EX∼i
(Y |Xi))

V (Y )
. (6.8)

Xi denotes the ith input factor and VXi
is the partial variance taken over factor Xi. X∼i

denotes all input factors but the ith, which can be thought of as the “non-Xi direction”
(Saltelli et al., 2010). EX∼i

is the conditional expectation taken over all factors but Xi,
which means that variations in other parameters are “averaged” and the variance is taken
over these averages.

In addition, we use the total effect indices introduced by Homma and Saltelli (1996) to
quantify the contribution of the first order effect of the ith input factor together with all
higher-order interactions with other factors to the total output variance:

STi =
EX∼i

(VXi
(Y |X∼i))

V (Y )
. (6.9)

STi is called the total effect index of the ith input factor. Note that because individual
interaction components of the variance decomposition are reused for the computation of
several total effect indices (of all input factors involved in this interaction), the sum of all
total effect indices exceeds 1 unless the model itself is purely additive. Because they are
normalized by their variances, the exact values of Si and STi are in the interval [0; 1].

Estimating Si and STi is usually performed via MC simulation, which can be computa-
tionally demanding because convergence of the indices is often only achieved after a very
large number of model evaluations (Sarrazin et al., 2016). Numerous studies are devoted
to deriving efficient sampling designs for the joint estimation of main and total effects. In
this study, the design proposed by Jansen (1999) is employed.



6.2 Methodology 105

6.2.4 Earthquake Scenarios and Portfolios

We study scenario loss variations based on two hypothetical earthquake events and sev-
eral synthetic portfolios in Indonesia. For this purpose we use a proprietary seismic risk
assessment framework developed by MunichRe running on MATLAB.

We use three “portfolio sets”, each is only known to be distributed in a different ad-
ministrative zone corresponding to an Indonesian province. Each portfolio set consists of
several portfolios with a varying number of buildings (1, 5, 100, 5000 and 10000). For
simplicity we use a total sum insured (TSI) of and a flat value distribution for all port-
folios, i.e. losses can be interpreted directly as percentage of the TSI and the TSI is
distributed equally among all risk items. For each model evaluation, locations, heights and
qualities are sampled independently for all buildings, but we assume a fixed construction
type (reinforced concrete with unreinforced masonry infill). To compute mean damage ra-
tios, our model then uses customized vulnerability functions reflecting different structural
performance due to varying building heights and construction qualities.

On top of this, we sample either the ground motion residuals or the damage residuals.
Note that we do not sample ground motion and damage residuals jointly, because in the
reinsurance industry damage distributions are fitted to include variation due to aleatory
ground motion uncertainty. It might be possible to correct for this effect in the future
when more detailed loss and ground motion data become available, but currently this
approach is common practice. The aleatory ground motion uncertainty model is part of
each GMPE, while the parameters of the zero-one-inflated Kumaraswamy distribution used
to treat aleatory damage uncertainty (see Section 6.2.1) are part of the aforementioned risk
assessment framework and depend on mean damage ratios as well as building heights and
qualities.

For the SA, we use the SAFE toolbox (Pianosi et al., 2015), which provides workflows
for several SA methods. For a variance-based global SA as performed in this study, SAFE
provides functions to approximate and visualize main and total effect indices.

Southern Sumatra Subduction Fault Event

The first scenario is a hypothetical Mw 9.2 event on the Sumatra subduction fault near the
urban areas of Palembang and Jakarta on the islands of Sumatra and Java, respectively.
For this event, we use a three-dimensional representation of the subduction zone based on
the Slab 1.0 model (Hayes et al., 2012) and sample from two GMPEs with equal weights:
Zhao et al. (2006), and Youngs et al. (1997). We use two sets of portfolios: the first,
hereafter labeled “Palembang portfolio set”, is only known to be distributed within the
province Sumatera Selatan on Sumatra; the second, hereafter labeled “Jakarta portfolio
set”, in the province Daerah Khusus Ibukota Jakarta on Java. Portfolio locations are
sampled onto the weighted irregular grid inside their respective zones (see Section 6.2.1
and Figure 6.1). Figure 6.2 shows a footprint of the event obtained using the GMPE by
Zhao et al. (2006) and the outline of the two administrative zones.
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Figure 6.2: Footprint of expected ground motion of the hypothetical Mw 9.2 event on
the Sumatra subduction fault near the urban areas of Palembang and Jakarta using the
Ground Motion Prediction Equation (GMPE) by Zhao et al. (2006). Color and isolines
denote Peak Ground Acceleration (PGA) in m s−2. The provinces of Sumatera Selatan on
the island of Sumatra and Daerah Khusus Ibukota Jakarta on Java are outlined by their
boundaries in blue color.
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Figure 6.3: Footprint of expected ground motion of the hypothetical Mw 7.8 event on a
northern segment of the Sumatra Fault Zone near the city of Medan using the Ground
Motion Prediction Equation (GMPE) by Chiou and Youngs (2008). Color and isolines
denote Peak Ground Acceleration (PGA) in m s−2. The province of Sumatera Utara on
the island of Sumatra in which we sample location uncertainty is outlined by its boundary
in blue color.
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Northern Sumatra Fault Zone Event

The second scenario is a hypothetical Mw 7.8 event on a northern segment of the Sumatra
fault zone near the urban area of Medan. For this event, we sample from three different
GMPEs with equal weights: Boore and Atkinson (2008), Campbell and Bozorgnia (2008),
and Chiou and Youngs (2008). We use one portfolio set for this event, hereafter referred
to as “Medan portfolio set”, for which risk items are only known to be located somewhere
in the administrative zone Sumatera Utara. For each model run, risk item locations are
sampled onto the weighted irregular grid inside this area (see Section 6.2.1). Figure 6.3
shows a footprint of this event obtained using the GMPE by Chiou and Youngs (2008) and
the outline of the administrative zone.

6.3 Results

6.3.1 Error Convergence of Sampling Strategies

In this section, we analyze the performance of different sampling schemes described in
Section 6.2.2 for the scenarios and portfolios described in Section 6.2.4. The discontinuous
zero-one-inflated damage distribution (see Section 6.2.1) as well as the high dimensionality
of large portfolios provide an interesting and challenging test case.

Figure 6.4 shows estimated event losses φ̂ for the Palembang portfolio set with 1 and 5
risk items against ten sample sizes n = 2i with i = 2, 3, . . . , 11 for 50 repeated simulations
for each sample size. All sampling schemes converge to the same solution, but the estima-
tions obtained with Latin Hypercube Sampling (LHS) with the maximin design criterion
and Quasi Monte Carlo with the scrambled Sobol sequence (SSobol) converge faster with
less variable loss estimates. The portfolio with 5 risk items has less variation than the
portfolio with 1 risk item due to the diversification induced by uncorrelated sampling of
individual building losses. A correlation model such as a spatial ground motion correlation
model (e.g. Jayaram and Baker, 2009) with a spatially clustered portfolio or any type of
damage correlation model would act to lessen this effect. Other portfolio value distribu-
tions than flat (see Section 6.2.4) would also show relatively higher variability.

To analyze the convergence order of the different global sampling schemes, Figure 6.5
shows logarithmic plots of the relative standard error ERSE of φ̂ against ten sample sizes
n = 2i with i = 2, 3, . . . , 11 for the Medan portfolio set, obtained from r repeated simula-
tions (r = 200 for the portfolio with 1 risk item, r = 50 for 100 risk items, and r = 25 for
5000 and 10000 risk items). The thin blue and red lines indicate theoretical O(n−0.5) and
O(n−1) convergence given the initial ERSE at n = 4. As expected, simple MC converges
slowest with O(n−0.5) for all portfolios independently of the dimensionality. For the small
portfolios with 1 and 100 risk items, SSobol and LHS perform about equally well and
achieve linear convergence. For the larger portfolio sizes (5000 and 10000 risk items), LHS
does not achieve O(n−1) convergence but retains some advantage over simple MC. We do
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Figure 6.4: Event loss φ̂ versus sample size n for the Mw 9.2 Sumatra subduction zone
event and the Palembang portfolio set with 1 risk item (left) and 5 risk items (right).
Semi-transparent circles depict 50 repeated simulations for each sample size and sampling
scheme, with solid lines highlighting one individual repetition. The transparently shaded
background indicates the entire range for each sampling scheme. Estimations obtained
using Latin Hypercube Sampling (LHS; red) and Quasi Monte Carlo using a scrambled
Sobol sequence (SSobol; green) scatter less than those obtained with simple MC (blue).

not use the Sobol sequence for very large portfolios, because the employed algorithm only
supports up to 1111 dimensions (Joe and Kuo, 2003).

To evaluate the performance of the adaptive MISER algorithm in comparison to simple
MC, Figure 6.6 shows logarithmic plots of the relative standard error ERSE of φ̂ against
ten sample sizes n = 2i with i = 2, 3, . . . , 11 for the Jakarta portfolios with 1 and 5 risk
items, obtained from 50 repeated simulations. The thin blue and red lines again indicate
theoretical O(n−0.5) and O(n−1) convergence given the initial ERSE at n = 4. MISER
improves the convergence rate to O(n−1) for the portfolio of 1 risk item. However, for
portfolios of 5 risk items and more, the convergence rate is not improved over simple MC.
Thus MISER provides no convincing advantage over LHC and QMC for our purposes, even
though we use a zero-one-inflated probability distribution to model damage uncertainty.

The variant of MISER using randomized QMC for presampling and at the bottom
of the recursion performs slightly better than the original version, but likewise does not
improve the convergence rate for larger portfolios.
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Figure 6.5: Logarithmic plot of relative standard errors ERSE versus sample size n obtained
from repeated simulations and bootstrapped upper 95% confidence intervals of event loss
for the Medan portfolio set with 1, 100, 5000 and 10000 risk items and the Mw 7.8 Sumatra
fault zone scenario. Latin Hypercube Sampling (LHS; red) and Quasi Monte Carlo using a
scrambled Sobol sequence (SSobol; green) achieve O(n−1) convergence for the small port-
folios. While O(n−1) is not achieved for larger portfolios, LHS still retains some advantage
over simple sampling (blue).
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Figure 6.6: Logarithmic plot of relative standard errors ERSE versus sample size n obtained
from 50 repeated simulations and bootstrapped upper 95% confidence intervals of event
loss for the Jakarta portfolio set with 1 risk item (left) and 5 risk items (right) for the
Mw 9.2 Sumatra subduction zone event. The adaptive MISER algorithm (red) and its
variant using Quasi Monte Carlo (MISER-QMC; green) improve the convergence order
to O(n−1) for the portfolio with 1 risk item. However, for the portfolio with 5 risk items,
both MISER and MISER-QMC do not improve the convergence order over simple sampling
(blue).

6.3.2 Results of Global Sensitivity Analysis

Using the same hypothetical scenarios and synthetic portfolios in Indonesia, we performed
a global SA to investigate the effect of uncertain input factors on event loss estimation.

To obtain a first impression of sensitivities, scatter plots are a simple and powerful tool.
This graphical global SA technique allows to quickly assess the first-order effect of varying
each factor over its entire range while also taking the global input space of other factors
into account. Figure 6.7 shows scatter plots of event losses φ̂ versus five different input
factors for the Mw 9.2 Sumatra subduction zone event and a portfolio in DKI Jakarta with
1 building, obtained using LHS with size n = 213 = 8192. Each plot is a one-dimensional
projection of the entire sample, in which one factor (Xi) is varied systematically while all
other factors (X∼i) are taken unconstrained over their full range. The red lines approximate
EX∼i

(Y |Xi) by computing mean values of φ̂ inside a sliding window with length 1/10 of the
range of the respective input factor. The steep slope and large range (i.e., large variance)
of the red lines of the building quality and damage residual suggest that these uncertainty
types have a strong effect for this scenario and portfolio.
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Figure 6.7: Scatter plot of event loss φ̂ versus individual input factors for the Mw 9.2
Sumatra subduction zone event and a portfolio in DKI Jakarta with 1 building obtained
using Latin Hypercube Sampling. In each plot all other input factors are sampled over
their entire range, which corresponds to a projection to one dimension. Semi-transparent
blue markers depict individual event loss realizations. The red curves correspond to the
conditional mean obtained using a sliding window with a length of 1/10 of the total input
interval, thereby approximating EX∼i

(Y |Xi).

Figure 6.8 shows the results of a variance-based global SA (see Section 6.2.3) for the
same portfolio. To ensure convergence of the sensitivity indices, for this portfolio we com-
puted N = 229376 model evaluations using simple MC, corresponding to a base sample
size n = 215 = 32768 (see Equation 13 of Sarrazin et al., 2016). Main effects (first order
Sobol sensitivity indices Si) are depicted as orange boxes and total effects (total sensitiv-
ity indices STi) as blue boxes for each input factor. The MC estimation of each effect is
indicated by a thin black line inside the corresponding box, while the extent of the boxes
depicts 95% confidence intervals obtained using bootstrapping. Confirming the impression
obtained from the scatter plot, the GMPE, the building quality and the damage distribu-
tion all have an important first order effect. All three are subject to significant higher order
interactions with other factors, resulting in larger total sensitivity indices. This underlines
the notion that uncertainty quantification for seismic risk analysis should not merely con-
sider first-order effects or local sensitivities, but consider factor interactions and explore
the global uncertainty space. For this scenario location uncertainty has little effect, which
can be explained by the relatively small extent of the administrative zone DKI Jakarta
(see Figure 6.2).

Figure 6.9 shows the equivalent plot for the Mw 7.8 Sumatra fault zone event and the
Medan portfolio with 100 risk items. The main and total effects for the same uncertainty
types as before are investigated. However, in this case the 500 individual input factors
are organized into five uncertainty groups (one per uncertainty type), each containing 100
independently sampled factors corresponding to the 100 risk items. Due to the larger
portfolio size, N = 573440 model evaluations were necessary to achieve convergence of the
indices, corresponding to a base sample size n = 10·213 = 81920. For this scenario, location
uncertainty has a strong effect because the province of Sumatera Utara has a large spatial
extent (see Figure 6.3) even though it is on the same administrative level as DKI Jakarta.
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Figure 6.8: Main effects Si (orange) and total effects STi (blue) for the MW 9.2 Sumatra
subduction zone event and a portfolio in DKI Jakarta with 1 building. While in this case
the building location and height account for a negligible fraction of event loss variance,
the Ground Motion Prediction Equation (GMPE), the building quality and the damage
distribution all have a sizable effect, in particular in interaction with other factors (STi).
The vertical extent of the boxes corresponds to bootstrapped 95% confidence intervals.

6.4 Conclusions

The results shown in this study indicate that LHS as well as QMC have the potential
to increase the computational efficiency of seismic risk analysis. We observe that error
convergence is improved from O(n−0.5) to O(n−1) for many loss scenarios. While O(n−1)
convergence is not fully achieved for very large portfolios, it still remains advantageous to
use these sampling strategies over simple MC. For our model the adaptive MISER algo-
rithm in its original form as well as in conjunction with QMC does not provide tangible
benefits over LHS and QMC.

We have furthermore investigated the impact of uncertainties in the ground motion
model as well as in the exposure and vulnerability models. Like many other uncertainty
types in the exposure model, uncertainties in building location and building properties
are so far often neglected. This study has shown that — depending on the loss scenario
— a large fraction of the output variance can be attributed to these factors. Although
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Figure 6.9: Main effects Si (orange) and total effects STi (blue) for theMw 7.8 Sumatra fault
zone event and a portfolio in Medan consisting of 100 buildings. While building heights
accommodate a small fraction of the output variance, building locations and qualities, the
Ground Motion Prediction Equation (GMPE) as well as the damage distributions have
substantial influence. The vertical extent of the boxes corresponds to bootstrapped 95%
confidence intervals.

due care must be exercised when transferring the results to other models, they highlight
the importance of investigating the uncertainty associated with different factors. Decision
makers may then incorporate this knowledge into e.g. regulation, disaster management
and response plans, as well as risk mitigation measures and insurance pricing policies.

This work represents a progressive step towards a more comprehensive understanding of
uncertainty in seismic risk analysis. Nevertheless, the integration of more factors remains
an important task. The results of this study could also be tested using other methods than
a variance-based SA, such as the elementary effects test (Morris, 1991) or density based
methods (e.g. Pianosi and Wagener, 2015). Another powerful alternative is derivative
based global SA (Sobol’ and Kucherenko, 2009). This approach is particularly efficient
in combination with algorithmic differentiation, which has already been successfully per-
formed for PSHA (Molkenthin et al., 2017).
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Chapter 7

Conclusion and Outlook

In this work we motivated, developed and analyzed a computationally efficient framework
for the treatment of several important uncertainties in probabilistic seismic hazard assess-
ment (PSHA) and probabilistic seismic risk assessment (PSRA). We analyzed the efficiency
of different sampling schemes and the impact of various uncertainties on estimated seismic
losses using a newly created seismic risk model of Indonesia in combination with synthetic
portfolios modeled after real-world counterparts.

In Chapter 2, we reviewed the historical and theoretical background of PSHA and
PSRA. We gave an overview of the current state of the art and identified several areas
where the treatment and quantification of uncertainty could possibly be improved.

In Chapter 3, we described a framework for the stochastic simulation of ground mo-
tion and damage uncertainty, which has been developed during the course of this thesis
and not only represents an important building block for all subsequent chapters, but also
already facilitates other studies performed by internal and external scientists at Munich
Reinsurance Group. We discussed the underlying theory and the most important imple-
mentational aspects of the framework, including the generation of uniform pseudo-random
numbers, the transformation to non-uniform probability distributions using different algo-
rithms, as well as the theory of Monte Carlo (MC) simulation including convergence and
error estimation.

Special attention was also given to the treatment of correlation, which can have a
strong effect on the results of PSRA. In the area of ground motion uncertainty, a range
of different spatial correlation models as well as period-to-period cross-correlation models
were implemented. Extending the framework with other models is straightforward, since
the basic methodology for stochastic simulation of spatially cross-correlated random fields
is independent of the correlation model. In the area of damage uncertainty, a multiple
factor correlation model implemented during a Master thesis at Munich Re was integrated
into the framework. The model consists of a global correlation residual sampled per event
and a local residual sampled per risk item.

Furthermore, we introduced a new framework to obtain exact reproducibility of stochas-
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tic simulation results on distributed systems, which is an important requirement for PSRA
in the insurance industry due to stability requirements of model results used for insurance
pricing. We described the usage of different hash functions to efficiently select substreams
of a suitable pseudo-random number generator (e.g. MRG32K3a) to perform repeatable
random number generation. Using a relatively simple and fast hash function such as the
SDBM hash seems to be sufficient for the repeatable stochastic simulation of ground mo-
tion and damage uncertainty. However, for the repeatable simulation of portfolio location
uncertainty, we found that a more sophisticated hash function such as MD5 is a better
choice — at least for our framework, in which location uncertainty needs to be sampled
beforehand for the entire event set and not per individual event, because of the underlying
cluster architecture. Using the same substream repeatedly — due to collisions of the hash
function — would carry more weight and should therefore be avoided.

In Chapter 4, we turned our attention to the previously little researched issue that
for real portfolios in the insurance industry, exposure locations are often not known on
coordinate-level, but instead only on the basis of administrative geographical zones. We
proposed a novel framework for the stochastic treatment of portfolio location uncertainty,
and investigated its impact on PSRA using a seismic hazard and risk model of western
Indonesia. We analyzed the effect of portfolio characteristics such as value distribution,
portfolio size, or proportion of risk items with unknown coordinates on the variability of
loss frequency curves.

We first obtained an upper bound of the isolated impact of portfolio location uncer-
tainty without aleatory ground motion variability for a flat hazard model and for the
western Indonesia hazard model. We found that in both cases, depending on the portfolio
properties, the worst-case impact can be quite high, which could be explained by risk item
clustering as well as spatial hazard variability.

We proceeded to analyze the typical influence of location uncertainty in a realistic
study of seismic risk in western Indonesia. We found that even in conjunction with aleatory
ground motion uncertainty, location uncertainty can cause noticeable additional variability
in loss frequency curves, in particular for portfolios with a small number of risks or when
the insured value is distributed roughly exponentially among risk items.

The results led to the conclusion that location uncertainty in PSRA should not be
neglected but treated stochastically, and that the resulting variability of probabilistic loss
results should be visualized and interpreted carefully by decision makers. More precise
location information might then be requested if the variability due to location uncertainty
turns out to be prohibitively large for a particular portfolio.

In Chapter 5, we analyzed the spatial variation of seismic hazard and loss rate. For
the example of western Indonesia, we found that the variation of hazard can vary strongly
between different administrative geographical zones as well as between return periods. We
found that the spatial variation of the loss rate was similar to that of the hazard without
depending on the return period. This allowed to quantify spatial variation while avoiding
the subjective selection of a suitable return period.
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Building on these results, we then proposed a novel sampling scheme to increase the
efficiency of portfolio location uncertainty treatment for the estimation of loss frequency
curves. The scheme dynamically adapts the location sample size individually for insured
risk items depending on (1) the loss rate variation within an administrative geographical
zone, (2) the number of risks within the zone, and (3) the value of the risk.

We analyzed the performance of the scheme empirically. While the scheme did not
improve the error convergence order, it reached the same error levels as simple MC with
less samples of potential risk locations, resulting in lower memory requirements and a mod-
erate runtime speedup. The scheme could also be applied to other natural perils, such as
probabilistic wind and flood models.

To improve the efficiency of the MC simulation in the area of ground motion and
damage uncertainty, in Chapter 6 we investigated the applicability of some well-known
variance reduction schemes for the computation of seismic losses using three scenarios in
Indonesia. Latin Hypercube Sampling (LHS) as well as Quasi MC (QMC) simulation
using low-discrepancy sequences could improve the error convergence order from O(n−0.5)
to O(n−1) in many cases. The adaptive MISER algorithm, based on recursive stratified
sampling, did not provide any convincing advantage over LHS and QMC for our purposes
— while the convergence rate could be improved to O(n−1) for very small portfolios, it
remained at O(n−0.5) for portfolios consisting of 5 risk items and more. A variant of MISER
combined with QMC slightly improved the performance of the original MISER routine, but
likewise did not achieve a better convergence rate.

Using variance-based global sensitivity analysis, we then quantified the relative impact
of different uncertainties on seismic loss for the same three scenarios in Indonesia. De-
pending on the portfolio, we found that a significant fraction of the output variance could
be attributed to uncertainties in the exposure and vulnerability models, highlighting the
importance of their rigorous treatment in seismic risk analysis.

This work made numerous contributions to a more comprehensive and efficient treat-
ment of uncertainty and thereby represents an important step towards a more holistic view
on seismic hazard and risk. Nevertheless, we are certainly far from having integrated all
relevant uncertainties and this work hopefully only started the quest to develop and apply
more computationally efficient methodologies to their treatment.

Future work could focus on a wide range of possible issues. An important task will be the
treatment of further uncertainties, in particular in the exposure model. For example, it is
known that the insured values of risk items are often biased or estimated inaccurately, which
likely has a strong effect on loss frequency curves. The efficiency of the loss computation
can possibly be further optimized, for example with the aid of machine learning techniques
to create an adaptive sampling scheme or a surrogate model.
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Matoušek, J. (1998). On the L2-discrepancy for anchored boxes. Journal of Complexity,
14(4):527–556.
Referenced on page 102.

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on Mod-
eling and Computer Simulation, 8(1):3–30. doi:10.1145/272991.272995.
Referenced on pages 29, 51, and 101.

Matthews, M. V., Ellsworth, W. L., and Reasenberg, P. a. (2002). A Brown-
ian model for recurrent earthquakes. Bulletin of the Seismological Society of America,
92(6):2233–2250. doi:10.1785/0120010267.
Referenced on page 15.

Mazzoni, S., McKenna, F., and Fenves, G. L. (2005). OpenSees command language
manual. Pacific Earthquake Engineering Research (PEER) Center, 264.
Referenced on page 25.

McGuire, R. K. (1976). USGS open-file report 76-67: Fortran computer program for
seismic risk analysis.
Referenced on pages 8 and 16.

McGuire, R. K. (2004). Seismic hazard and risk analysis. Earthquake Engineering
Research Institute, 1st edition.
Referenced on pages 7, 50, and 75.



BIBLIOGRAPHY 133

McGuire, R. K. (2008). Probabilistic seismic hazard analysis: early history. Earthquake
Engineering & Structural Dynamics, 37(3):329–338. doi:10.1002/eqe.
Referenced on page 7.

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). A comparison of three
methods for selecting values of input variables in the analysis of output from a computer
code. Technometrics, 21(2):239–245. doi:10.1080/00401706.1979.10489755.
Referenced on page 101.

McKenna, F. (2011). OpenSees: a framework for earthquake engineering simulation.
Computing in Science & Engineering, 13(4):58–66. doi:10.1109/MCSE.2011.66.
Referenced on page 25.

Mert, A., Fahjan, Y. M., Hutchings, L. J., and Pınar, A. (2016). Physically based
probabilistic seismic hazard analysis using broadband ground motion simulation: a case
study for the Prince Islands Fault, Marmara Sea. Earth, Planets and Space, 68(1):146.
doi:10.1186/s40623-016-0520-3.
Referenced on page 25.

Merz, H. A. and Cornell, C. A. (1973). Seismic Risk Analysis based on a quadratic
magnitude-frequency law. Bulletin of the Seismological Society of America, 63(6):1999–
2006.
Referenced on page 10.

Metropolis, N. and Ulam, S. (1949). The Monte Carlo Method. Journal of the Amer-
ican Statistical Association, 44(247):335–341. doi:10.1080/01621459.1949.10483310.
Referenced on pages 26 and 101.

Mitnik, P. a. and Baek, S. (2013). The Kumaraswamy distribution: median-dispersion
re-parameterizations for regression modeling and simulation-based estimation. Statistical
Papers, 54(1):177–192. doi:10.1007/s00362-011-0417-y.
Referenced on page 43.

Molkenthin, C., Scherbaum, F., Griewank, A., Leovey, H., Kucherenko, S.,
and Cotton, F. (2017). Derivative-based global sensitivity analysis: Upper bounding
of sensitivities in seismic-hazard assessment using automatic differentiation. Bulletin of
the Seismological Society of America, 107(2):984–1004. doi:10.1785/0120160185.
Referenced on page 114.

Moro, B. (1995). The Full Monte. Risk Magazine, 8(2):57–58.
Referenced on pages 31 and 35.

Morokoff, W. J. and Caflisch, R. E. (1994). Quasi-random sequences and their discrep-
ancies. SIAM Journal on Scientific Computing, 15(6):1251–1279. doi:10.1137/0915077.
Referenced on page 102.



134 BIBLIOGRAPHY

Morris, M. D. (1991). Factorial sampling plans for preliminary computational experi-
ments. Technometrics, 33(2):161–174.
Referenced on page 114.

Moskowitz, B. and Caflisch, R. (1996). Smoothness and dimension reduction in Quasi-
Monte Carlo methods. Mathematical and Computer Modelling, 23(8-9):37–54. doi:
10.1016/0895-7177(96)00038-6.
Referenced on page 102.

Munich Re (2015). Knowledge series: Reinsurance in a changing world.
Referenced on page 4.

Munich Re (2018). Group Annual Report 2017.
Referenced on page 4.

Munich Re NatCatSERVICE (2018a). Annual Statistics 2017.
https://www.munichre.com/touch/naturalhazards/en/natcatservice/annual-
statistics/index.html, last accessed on May 23rd, 2018.
Referenced on pages 2 and 3.

Munich Re NatCatSERVICE (2018b). Natural Loss Events Worldwide
1980 - 2017, https://www.munichre.com/touch/naturalhazards/en/natcatservice/focus-
analyses/index.html, last accessed on May 23rd, 2018.
Referenced on page 1.

Munich Re NatCatSERVICE (2018c). Significant Natural Catastrophes.
https://www.munichre.com/touch/naturalhazards/en/natcatservice/significant-
natural-catastrophes/index.html, last accessed on May 23rd, 2018.
Referenced on page 2.

Musson, R. M. W. (2000). The use of Monte Carlo simulations for seismic hazard
assessment in the U.K. Annals of Geophysics, 43(1):1–9. doi:10.4401/ag-3617.
Referenced on page 8.

Ni, C., Pei, S., Lindt, J. W. V. D., Kuan, S., van de Lindt, J. W., Kuan, S.,
and Popovski, M. (2012). Nonlinear time-history analysis of a six-story wood platform
frame buildings in Vancouver, British Columbia. Earthquake Spectra, 28(2):621–637. doi:
10.1193/1.4000015.
Referenced on page 25.

Oliver, D. S. (2003). Gaussian cosimulation: Modelling of the cross-covariance. Mathe-
matical Geology, 35(6):681–698. doi:10.1023/B:MATG.0000002984.56637.ef.
Referenced on page 41.

Oliver, M. and Webster, R. (2014). A tutorial guide to geostatistics: Computing and
modelling variograms and kriging. Catena, 113:56–69. doi:10.1016/j.catena.2013.09.006.
Referenced on page 36.



BIBLIOGRAPHY 135

O’Neill, M. E. (2014). PCG: A family of simple fast space-efficient statistically good al-
gorithms for random number generation. Technical Report HMC-CS-2014-0905, Harvey
Mudd College, Claremont, CA.
Referenced on page 30.

Orsini, G. (1999). A model for buildings’ vulnerability assessment using the param-
eterless scale of seismic intensity (PSI). Earthquake Spectra, 15(3):463–483. doi:
10.1193/1.1586053.
Referenced on page 18.

Ospina, R. and Ferrari, S. L. (2012). A general class of zero-or-one inflated beta
regression models. Computational Statistics & Data Analysis, 56(6):1609–1623. doi:
10.1016/j.csda.2011.10.005.
Referenced on page 42.

Ospina, R. and Ferrari, S. L. P. (2010). Inflated beta distributions. Statistical Papers,
51(1):111. doi:10.1007/s00362-008-0125-4.
Referenced on page 42.

Owen, A. B. (1994). Controlling correlations in Latin Hypercube samples. Journal of
the American Statistical Association, 89(428):1517–1522.
Referenced on page 101.

Owen, A. B. (1997). Monte Carlo variance of scrambled net quadrature. SIAM Journal
on Numerical Analysis, 34(5):1884–1910.
Referenced on pages 101 and 102.

Owen, A. B. (2013). Monte Carlo theory, methods and examples. Monte Carlo theory,
methods and examples, pages 1–26.
Referenced on page 27.

Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V.,
Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., and Vigano,
D. (2014). OpenQuake engine: An open hazard (and risk) software for the Global Earth-
quake Model. Seismological Research Letters, 85(3):692–702. doi:10.1785/0220130087.
Referenced on pages 10, 12, 50, 54, 74, and 80.

Panneton, F., L’Ecuyer, P., and Matsumoto, M. (2006). Improved long-period
generators based on linear recurrences modulo 2. ACM Transactions on Mathematical
Software, 32(1):1–16. doi:10.1145/1132973.1132974.
Referenced on pages 29 and 30.

Paolucci, R., Infantino, M., Mazzieri, I., Özcebe, A. G., Smerzini, C., and Stu-
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Appendix A

OpenQuake Model Explorer:
Visualization and Conversion of
Earthquake Models in NRML format

A.1 Introduction

This chapter describes how to use OpenQuake Model Explorer, a graphical tool which has
been developed during the course of this thesis in order to visualize, analyze and process
seismic hazard models.

Global Earthquake Model The Global Earthquake Model1 (GEM) is a public-private
partnership initiated by the Organization for Economic Co-operation and Development2

(OECD), an internationally sanctioned program which aims to build an independent and
open standard for modeling and communicating earthquake risk.

OpenQuake and NRML OpenQuake3 is a free and open-source seismic hazard and risk
assessment framework developed as part of the GEM initiative. The OpenQuake engine can
be used to perform calculations using hazard and risk models provided by GEM. GEM and
OpenQuake use the Natural hazards’ Risk Markup Language (NRML), an open file-format
for natural catastrophe hazard and risk models.

OpenQuake Model Explorer OpenQuake Model Explorer allows to visualize and an-
alyze earthquake source models in NRML format. Moreover, the tool helps to convert
NRML files into a binary format used for model development at Munich Reinsurance (see
Section 1.1). OpenQuake Model Explorer is implemented in the Python Programming

1See https://www.globalquakemodel.org/.
2See https://www.oecd.org/.
3See https://www.globalquakemodel.org/openquake/about/ and https://github.com/gem/oq-engine.

https://www.globalquakemodel.org/
https://www.oecd.org/
https://www.globalquakemodel.org/openquake/about/
https://github.com/gem/oq-engine
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Language4. A visualization-only version has been made available publicly5. This version
lacks all of the described conversion functionality.

A.2 Graphical User Interface

OpenQuake Model Explorer provides a graphical user interface (GUI), which can be used
to visualize, analyze, crop and convert NRML source models. Figure A.1 shows the main
window of the interface.

Figure A.1: Main window of OpenQuake Model Explorer after loading a source model.
The upper panel contains buttons to use all described functionality, the status bar on the
bottom gives information on loaded model files and the current progress of tasks.

A.2.1 Visualization of Sources and Seismicity

Once a NRML model has been loaded using the leftmost button on the top panel, a
graphical representation of all seismic sources contained in the model will be plotted into the
world map. Point sources are shown as color-coded circles. The color-code denotes the b-
value (slope) of a fit of the truncated Gutenberg-Richter magnitude-frequency distribution

4See https://www.python.org/
5See https://github.com/scheingraber/oq_model_explorer.

https://www.python.org/
https://github.com/scheingraber/oq_model_explorer
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(MFD) to the incremental MFD of the original NRML source, which is a discretization of
an arbitrary MFD. Simple faults are shown as red lines, and big transparent red patches
show the surface projection of complex faults.

To inspect the model, the world map can be zoomed to any area of interest using
the zoom button on the top panel and the right mouse button. Double-clicking on a
seismic source opens a popup window (see Figure A.2) with two plots. The left plot shows
the annual occurrence rate, the right plot shows the annual exceedance rate of the MFD
corresponding to the seismic source. The plots shows the original incremental MFD (solid
blue) as well as the fitted truncated Gutenberg-Richter MFD (dashed red) used to visualize
the b-value.

Figure A.2: Popup window after double-clicking on a seismic source showing the discretized
magnitude-frequency-distribution of the respective seismic source, as well as a fitted trun-
cated Gutenberg-Richter (GR) distribution. In this case, the discretized magnitude-
frequency-distribution was also modeled using a truncated GR distribution, and could
therefore be fitted exactly.
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A.2.2 Extraction of Geographical Subsets

Using the GUI, a smaller geographical area can be cropped from the original NRML source
model in an interactive manner. Clicking the button Start Region Selection on the top
panel starts the region-selection mode. A left mouse button click adds a new vertex to the
polygon connecting to the last vertex via the corresponding great-circle path, and a right
mouse button click removes the last vertex. The polygon is closed automatically when
the region selection is finished using the Finish Region Selection button on the top panel.
After a region has been selected, a dialog window opens, allowing to extract the selected
region.

For large NRML input models, subset extraction can be a time-consuming operation.
The progress is indicated using the status bar on the bottom.

A.2.3 Converting and Saving a Source Model

To support model development at Munich Reinsurance, a model can be converted to a
binary MATLAB format from the GUI of OpenQuake Model Explorer. The model is
converted automatically when clicking the button Save MRRisk Source Model on the top
panel, which opens a dialog window asking where to save the file.

A.3 Usage of OpenQuake Model Explorer from a Python

Script

Due to the modular, object-oriented software architecture of OpenQuake Model Explorer,
the conversion functionality can also be used from a Python script instead of the GUI. This
allows for efficient batch processing of a large number of model input files. The application
programming interface (API) can be obtained from the reference (docstring) contained in
the source code of each module.

For the South-East Asia hazard model by Mark Petersen et al. (2007) of the United
States Geological Service (USGS), the following example creates two model containers from
NRML input files, separating seismic sources which are shallower than 35 kilometers from
seismic sources which are deeper than 35 kilometers. For each model container, model
converters are then created, which provide methods to create analytic plots and save the
source model to the binary MATLAB output format. In this example, this is performed
for both containers:

1 #! / usr / bin /env python
2

3 ”””
4 Read GEM SE−Asia . nrml model , c r e a t e p l o t s and save in fo rmat ion to . mat .
5 ”””
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6

7 from mr . source . s ou r c e conve r t e r import SourceModelConverter
8 from mr . source . sourcemode lconta iner import NrmlModelContainer ,

MrModelContainer
9

10 # f i l enames
11 nrml mode l f i l ename = ’ South East Asia SEA07 v1 . xml ’
12 mr model f i lename = ’ SouthEastAsia v1 . mat ’
13

14 # i n s t a n t i a t e source model c o n t a i n e r s
15 nrml model sha l low = NrmlModelContainer ( nrml model f i l ename , min depth=0,

max depth=35)
16 nrml model deep = NrmlModelContainer ( nrml model f i l ename , min depth =35,

max depth=60)
17

18 mr model = MrModelContainer ( mr model f i lename )
19

20 # source model c onve r t e r s hold both c o n t a i n e r s
21 smc shal low = SourceModelConverter ( nrml model shal low , mr model )
22 smc deep = SourceModelConverter ( nrml model deep , mr model )
23

24 # plo t model
25 smc shal low . p l o t ( f i l ename=’ s e a s i a b v a l s h a l l o w . png ’ , topo map=False ,

dens i ty hack=False , dpi =900 , p o i n t s r c c o l o r=’ bval ’ , p o i n t s r c s i z e =5,
max po int sources =120000)

26 smc shal low . p l o t ( f i l ename=’ se a s i a momentra te sha l l ow . png ’ , topo map=False ,
dens i ty hack=False , dpi =900 , p o i n t s r c c o l o r=’ moment rate ’ ,

p o i n t s r c s i z e =5, max po int sources =120000)
27

28 smc deep . p l o t ( f i l ename=’ s e a s i a b v a l d e e p . png ’ , topo map=False , dens i ty hack
=False , dpi =900 , p o i n t s r c c o l o r=’ bval ’ , p o i n t s r c s i z e =5,
max po int sources =120000)

29 smc deep . p l o t ( f i l ename=’ se as ia momentrate deep . png ’ , topo map=False ,
dens i ty hack=False , dpi =900 , p o i n t s r c c o l o r=’ moment rate ’ ,
p o i n t s r c s i z e =5, max po int sources =120000)

30

31 # save to . mat format
32 smc shal low . save sor ted mat ( ’ s e a s i a f u l l s o r t e d ’ )
33 smc deep . save sor ted mat ( ’ s e a s i a f u l l s o r t e d ’ )

The example above generates and saves analytic plots of the b-value of the Gutenberg-
Richter distribution as well as the seismic moment rate. The plot of the b-values of shallow
sources is shown in Figure A.3.
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Figure A.3: Example plot of b-values of the Gutenberg-Richter magnitude frequency distri-
bution produced by OpenQuake Model Explorer. This shows b-values for shallow sources
in Indonesia contained in the larger South-East Asia hazard model by Mark Petersen
et al. (2007) of the United States Geological Service (USGS). Point sources are shown as
color-coded circles, with color denoting the b-value of the Gutenberg-Richter magnitude-
frequency distribution (MFD) of the seismic source. Simple faults are shown as red lines,
and big transparent red patches show the surface projection of complex faults. Area sources
are outlined in black.
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Source Zone Creator: Graphical Tool
for Seismic Hazard Model
Development

This chapter describes how to use Source Zone Creator, a graphical tool which has been
developed during the course of this thesis to support the creation of seismic source zones
in hazard model development.

B.1 Introduction

A common task during seismic hazard model development is the creation of seismic source
zones. Seismic source zones share a common magnitude frequency distribution (MFD),
which is spatially distributed within the zone using variable weights.

Source Zone Creator is a graphical tool implemented in MATLAB to support the inter-
active creation of seismic source zones, including their geometry and MFD. Source zones
can be created using a catalogue of historical and instrumental seismicity (e.g. Storchak
et al., 2013), or distributed point sources from hazard models published by the Global
Earthquake Model (GEM, see Section A.1). GEM hazard models need to be converted to
a binary MATLAB format using OpenQuake Model Explorer (see Chapter A) before they
can be used with Source Zone Creator.

B.2 Graphical User Interface

Source Zone Creator uses a Graphical User Interface (GUI, see Figures B.1 and B.2). On
the left hand side, the source zone geometry of the currently loaded model are shown in
red, and a country coastline in black.
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Figure B.1: Main Window of Source Zone Creator showing zones of the model and b-values
for shallow point sources in Indonesia contained in the larger South-East Asia hazard model
by Mark Petersen et al. (2007) of the United States Geological Service (USGS).

B.2.1 Source Model and Catalogue Visualization

Loading Input Files

Input files such as Munich Re Risk models (see Section 1.1), historical seismicity catalogues
or GEM hazard models can be loaded using the topmost button of the panel on the right
hand side. In the beginning, most panel elements on the right are greyed out. Once specific
input files have been loaded, the corresponding panel elements on the right become active.

Choosing a Plot Type

The radio button under Choose Plot Type can be used to plot properties of the MFD
of seismic point sources from a loaded GEM source model (e.g. minimum magnitude,
maximum magnitude, or a- and b-values, see Figure B.1), or seismicity locations and
smoothed seismicity from a loaded catalogue (e.g. Figure B.2). The model view on the
left and the corresponding colorbar adapts automatically to the chosen plot type.
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Figure B.2: Main Window of Source Zone Creator showing zones of the model and
smoothed seismicity from an historical and instrumental seismic catalogue (Storchak et al.,
2013).

B.2.2 Creating and Modifying the Geometry of Seismic Source
Zones

Below the Modify Zone Geometry header are several buttons to add and remove seismic
source zones from the model, and to select which zones to show in the view on the left.
When adding zones, a left click adds a new vertex to the zone, a middle click removes the
last vertex, and a right click finishes the creation of the zone1. New vertices can be snapped
to previous vertices, i.e. a new vertex gets the same coordinates as a previous one when
clicking very close.

B.2.3 Obtaining the Final Model Variables

The final model variables for a Munich Re Risk model can be obtained in the lowermost
section of the panel on the right hand side, labeled Obtain MRRisk Model Variables. Upon
clicking the Get variables button, source zone geometries, source zones MFDs and grid

1An animation of the functionality is available at http://archive.scheingraber.net/animation/

sourceZoneCreator.gif.

http://archive.scheingraber.net/animation/sourceZoneCreator.gif
http://archive.scheingraber.net/animation/sourceZoneCreator.gif
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Figure B.3: Histogram of hypocentral depths within a seismic source zone obtained when
clicking the Depth Histogram button.

point weights are calculated for all selected zones. A radio button is used to select whether
this should be performed using the seismicity catalogue or using GEM point sources. Since
each source zone can only be assigned 3 discrete depths, the button Depth histogram can
be used to open a popup window showing a histogram of hypocentral depths of all events
within a zone, again showing the seismic catalogue or GEM sources (see Figure B.3).
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