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1 Introduction 

This chapter provides a brief introduction into the research field of siRNA delivery with 

sequence-defined oligoamino amides. It was adapted from:  

 

S. Reinhard, E. Wagner, How to Tackle the Challenge of siRNA Delivery with 

Sequence-Defined Oligoamino Amides, Macromol. Biosci. 17(1) (2017) 

1.1 The Requirements for Efficient Nucleic Acid Delivery 

The transcription of genes in RNA and the subsequent translation into proteins is 

described by the central dogma of molecular biology.1, 2 Beyond that, the discovery of 

RNA interference (RNAi) in 1998 as a pathway of gene regulation provides exciting 

opportunities for medical applications.3 Noncoding double-stranded small interfering 

RNA (siRNA) was found to modulate the knockdown of complementary mRNA 

sequences catalytically, thus preventing protein translation. One of the two 21-23 

bases long strands, the guide-strand, is complexed in phosphorylated form with 

argonaute (Ago) protein, forming an RNA-induced silencing complex (RISC). This 

mechanism has to be triggered by delivery of synthetic siRNA into the cytosol of the 

targeted cells since it is not naturally occurring in mammals.4-6 As gene overexpression 

and dysregulation is involved in several human diseases including cancer, the 

development of siRNA therapeutics is a major interest in research and has resulted in 

first preclinical and clinical trials.7-9 However, free siRNA is far larger than conventional 

drugs, negatively charged, and rapidly cleared or degraded in the host. To enhance 

the consequential inefficient uptake, siRNA has to be formulated with suitable carriers.  

Critical issues of nucleic acid delivery via synthetic vehicles are (i) extracellular stability 

by stable polyplex formation and shielding to avoid rapid decay, clearance and 

unspecific interactions (ii) specific target cell binding and uptake through receptor-

mediated endocytosis, (iii) efficient endosomal escape and (iv) release of the cargo in 

the cytosol (Fig. 1).10 
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Fig. 1 Barriers in the nucleic acid delivery pathway of polyplexes. A) Formation of stable polyplexes, B) 

avoidance of rapid clearance and unspecific interactions with blood components, and C) receptor 

targeting, endocytosis, endosomal escape and cytosolic cargo release. 

 

Viruses are natural masterpieces in respect of nucleic acid delivery and can be 

transformed into therapeutic vectors by replacing parts of their genome with the desired 

oligonucleotides and further genetic and chemical modifications.11, 12 However, viral 

vectors are limited to natural nucleic acids as payload, their production and analytics 

are sophisticated, and they may trigger immune responses caused by recognition of 

viral antigens and nucleic acids. Synthetic carriers may resolve these issues and are 

the only option for the delivery of chemically modified nucleic acids.13, 14 Chemical 

modification of siRNA has proven successful as one possible way to circumvent the 

immunogenic potential of the nucleic acid itself.15-19 Viruses, as they are dynamic and 

bioresponsive within the delivery process, are used as models for the development of 

synthetic carriers.20, 21 A broad range of non-viral gene delivery systems has been 

developed over the past decades, including physical methods, inorganic nanoparticles, 
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lipid-based or polymeric transfection agents22-24 and siRNA- or siRNNs- (short 

interfering ribonucleic neutrals) conjugates.25-30 The development of polyplexes, 

formed by electrostatic interaction of negatively charged nucleic acids with cationic 

polymers, started in 1965 with the transfection of phenol-extracted purified poliovirus 

RNA with cationic diethylaminoethyl (DEAE) dextran31 and already comprises five 

decades of research.32 Cationic polymers like polylysine (pLys), polyethylenimine 

(PEI), chitosan and others have been widely investigated as carriers for nucleic 

acids.33-36 Such polymers, however, are facing issues regarding toxicity, heterogeneity, 

and polydispersity which might be critical for clinical studies, reproducible 

manufacturing and polyplex formation and the establishment of clear structure-activity 

relationships. For low-molecular weight transfection carriers, such as cationic lipids, 

small changes in chemistry may result in big differences.37, 38 Similarly, different 

molecular weights and topologies may change properties of carriers.39-41 The 

drawbacks of rather inhomogeneous polymeric carriers can be overcome by solid-

phase assisted precise synthesis of sequence-defined cationic oligomers. Oligomers 

can be modified and tailored in multiple ways to meet specific requirements of nucleic 

acid binding, size, shielding and targeting of the polyplexes and intracellular release of 

the cargo. In this way, sequence-defined cationic oligomers can mimic the dynamic 

and bioresponsive behavior of viruses and present a group of highly versatile nucleic 

acid carriers.42-44  

1.2 Nucleic Acid Binding – The Polyplex Formation Process 

1.2.1 Different requirements of nucleic acid cargos 

Condensation of nucleic acids by polycations are important and well-known processes 

in all kinds of organisms.45 Although the packaging is necessary to reduce the size, 

prevent degradation and neutralize negative charges of the nucleic acids, it has to be 

reversible at a particular time point when the cargo has to be accessible for subsequent 

biological processes such as replication or transcription. The compaction is particularly 

relevant for large plasmid DNA (pDNA), where approximately 10,000 negative charges 

are condensed in 20 - >100 nm nanoparticles by polymers.45-50 The reduction in size 

is not required in case of the much smaller double-stranded siRNA molecule with a 

dimension of ~ 2.3 x 6 nm (for a 21mer A-form siRNA duplex plus single-stranded 

overhangs, 0.24 nm/base). In a properly shielded form, polyplexes with single siRNA 
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molecules as small as 5.8 nm in average dynamic diameter by fluorescence correlation 

spectroscopy have been reported, which is only 1.6 nm larger than the diameter of 

4.2 nm measured for a free fluorescently labeled 21mer siRNA duplex.51 To avoid rapid 

renal clearance of such small polyplexes, the co-packaging of multiple siRNA 

molecules in larger nanoparticles might be beneficial. siRNA with only 42 - 46 negative 

charges, however, suffers from less entropic gain of electrostatic polyplex formation47 

compared to the much larger pDNA. Extracellular stability of polyplexes however is a 

critical issue of the delivery process because interaction with electrolytes, proteins, or 

cellular surfaces can cause partial or complete polyplex dissociation which would result 

in rapid clearance or degradation of the nucleic acid.52 Altogether, this demonstrates 

the necessity to optimize the carrier system towards the requirements of the cargo.53, 

54 

1.2.2 Modification of polycationic carriers 

Common strategies to stabilize siRNA polyplexes include bioreducible crosslinking43, 

55, 56 and hydrophobic stabilization43, 57-60 of the polycations or covalent attachment of 

the siRNA to the carrier.61-63 In our previous work, we investigated the influence of 

cysteines for bioreducible disulfide-linkage and hydrophobic domains such as tyrosine 

trimers and fatty acids on the properties of polyplexes formed with siRNA and 

sequence-defined cationic oligoaminoamide oligomers.44, 64 The aminoethylene motif 

contained in these oligomers is a well-known structure element from the cationic 

polymer PEI and mediates both nucleic acid binding and endosomal buffer capacity.33, 

65 To insert the aminoethylene motif in a precise sequence-defined way, these units 

were incorporated in synthetic amino acid-like building blocks such as succinoyl-

tetraethylene-pentamine (Stp) or succinoyl-pentaethylene-hexamine (Sph). In properly 

protected form, they are compatible with solid-phase supported synthesis42 (Fig. 2A) 

and can be assembled into precise peptide-like oligoamides. Because of their medium 

molecular weight between ~ 1,500 – 11,000 Da they are well biocompatible at the 

standard transfection conditions.40 Polyplexes assemble upon mixing cationic 

oligomers with nucleic acids. This assembly is far less precise and less controllable 

than the SPS synthesis of the oligomers. Reproducibility can be improved by 

automated mixing66, 67 and defined storage conditions such as lyophilization.67 The 

actually formed polyplex nanostructures can be assessed indirectly for example by 

determination of physicochemical properties68 or biological activity. 
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Fig. 2 A) Polycationic transfection agent linear polyethylenimine (LPEI) presented with different degrees 

of protonation and the synthetic amino acid Stp (succinimidyl tetraethylene pentamine), containing the 

aminoethylene motif B) Sequence-defined oligomer 793 containing the ligand folic acid, shielding agent 

PEG24, lysine for branching, histidine for endosomal buffering, the synthetic amino acid Stp and tyrosine 

trimers and cysteines as stabilizing motifs C) Polyplex stabilization via twin-disulfide formation of CRC 

structures 

 

To name a few, reduction of size and zeta-potential compared to unshielded 

polyplexes indicate the exposure of shielding domains on the surface. Receptor 

specificity of targeted polyplexes allows conclusions to the accessibility of targeting 

ligands. The evaluation of polyplex stability in agarose gel shift assays, which can also 

be performed under osmotic stressing, reducing conditions or serum exposure, 

provides information about the siRNA binding capacity of the oligocationic part and 

successful interaction of stabilizing motifs. Based on formerly established structure-

activity relationships, we recently evaluated a library of 42 sequence-defined 

oligo(ethanamino)amides generated by solid-phase assisted syntheses on their 
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suitability as carriers for pDNA and siRNA.69 The oligomers are assembled in 2-arm 

and 4-arm structures and consist of variations of Stp and Sph for nucleic acid binding 

and endosomal buffering, lysines as branching units, tyrosines for hydrophobic 

stabilization, cysteines for bioreducible crosslinking and histidines to further enhance 

the endosomal buffer capacity. To shield the polyplexes against aggregation and 

interaction with serum-containing media, all oligomers contained monodisperse, 

discrete polyethylene glycol (dPEG). Additionally, folic acid (FolA) for folic acid receptor 

targeting or glutamic acid as non-targeted control was used.  

The combined integration of histidines and tyrosine trimers into two-arm structures (for 

example in oligomer 793) turned out to be the most efficient combination for siRNA 

mediated gene silencing (Fig. 2B). In agreement with their reduced stability and 

compaction compared to their pDNA counterparts, siRNA polyplexes showed less 

receptor specificity. Interestingly the same structure elements turned out to be most 

effective for pDNA and siRNA transfections, although both nucleic acids have different 

demands during their delivery process. It seems that shared critical steps of the nucleic 

acid delivery, including polyplex stabilization, endocytosis, and endosomal release 

dominated the selection of functional domains for this library of 42 oligomers.69 

Polyplex stabilization via disulfide bond formation between cysteines can be reversed 

in the bioreductive environment of the cytosol with approximately 100−1,000-fold 

higher intracellular glutathione (GSH) levels.70, 71 To further evaluate the influence of 

crosslinking by bioreducible disulfide bridges, several structures including 2-arm, 3-

arm, and t-shaped oligomers were synthesized containing a twin disulfide-forming 

cysteine–arginine–cysteine (CRC) motif.72 The CXC (cysteine–any amino acid–

cysteine) motif was previously found to selectively form stable twin disulfide dimers 

with other CXC peptides. This process was particularly enhanced when the central 

amino acid is arginine (Fig. 2C).73 When incorporated into sequence-defined 

oligo(ethanamino)amides, the CRC motif improves the stability of both pDNA and 

siRNA polyplexes in the presence of serum and also under short term reducing 

conditions (2 h incubation at 37 °C at 0.1 – 10 mM concentration of glutathione). Low 

surface exposure of the disulfides through PEG-shielding and the higher overall 

amount of disulfides in CRC-containing polyplexes compared to single cysteine 

structures may promote this probably kinetic effect. It is important to note that an 

increased stability did not necessarily result in better transfection efficacy. This might 
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be explained by an insufficient intracellular release or reduced accessibility of the 

nucleic acid cargo at the delivery site due to strong binding to the carrier.  

Therefore, the influence of the CRC motif on siRNA transfection efficacies ranged from 

total abolishment (for already quite stable polyplexes) to significant increase (for less 

stable ones). PEGylated oligomers, usually lacking stability when formed into siRNA 

polyplexes, profit from the additional stabilization of twin disulfide motifs. Besides, the 

CRC motif could be used to tailor the size of polyplexes. Cationic oligomers with 

cysteines and tyrosine trimers decreased in size by incorporation of CRC motifs while 

polyplexes formed with oleic acid or PEG-containing oligomers increased in size. 

Altogether the CRC motif could be a useful tool for the optimization of polyplex stability 

and size depending on the delivery task.72 In general, sizes of polyplexes formed with 

sequence-defined oligo(ethanamino)amides depend on the functional domains of the 

oligomer and the type of nucleic acid. Polyplexes formed with siRNA usually range 

from below 10 nm (when formed with PEGylated oligomers)51 up to several hundred 

nanometers when multiple siRNA molecules are aggregated into one particle for 

example upon formulation with lipo-oligomers.44, 64 Polyplexes formed with the much 

larger pDNA are less influenced by functional domains of the carrier and usually range 

above 100 nm.40, 41, 69 

1.2.3 Modification of siRNA 

Another strategy to stabilize siRNA polyplexes is the conversion of single siRNA 

molecules into larger polyanions by hybridization74, chemical ligation75, click-

chemistry76, and coformulation with pDNA77 or other polyanions. Our group recently 

used DNA oligomers as adaptors to increase the size and charge of siRNA to form 

more stable polyplexes and thus boost transfection efficacies.78 Several DNA/siRNA 

nanostructures ranging from DNA extension of one siRNA up to structures with two to 

ten siRNA units were merged, and polyplexes were formed with a 3-arm sequence-

defined oligomer. Both polyplex stability and transfection efficacy could be improved 

with the extended structures. Interestingly, the larger constructs containing multiple 

siRNAs were less potent than the simple ones with one or two siRNA units. This 

observation might be explained by disturbed RISC loading or passenger strand 

removal due to steric hindrance of larger constructs. A step-by-step extension of a 

single siRNA revealed that a prolongation of up to 181 DNA nucleotides results in a 

significant improvement of transfection efficacy (Fig. 3A). 
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Fig. 3 A) Schematic representation of the stepwise DNA extension of siRNA and gene silencing of 

polyplexes formed with oligomer 689 and control siRNA, eGFP-targeted siRNA (siGFP) and all 

extensions in Neuro2A-eGFPLuc cells B) Gene silencing of folic acid targeted polymer 356 with 

bioreducibly extended siRNA and bioreducibly attached lytic peptide INF7. 

 

This could also be confirmed when using the cationic polymer linear PEI as transfection 

agent78, which is in good agreement with previous findings showing enhanced activity 

of linear PEI when using sticky siRNA.74 The stabilizing effect of the siRNA modification 

ideally lasts throughout the delivery process where polyplex stability is critical but 

should not hinder the cytosolic release of the cargo. To avoid possible steric hindrance 

of the interaction of siRNA with the RISC, a bioreducible disulfide linker between the 

siRNA passenger strand and the DNA extension was introduced. In this way, the 

siRNA is liberated from the DNA adaptor in the cytosol (Fig. 3B).78 
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Altogether, several strategies can be applied to stabilize polyplexes with siRNA and 

sequence-defined cationic oligomers. Stabilization however is only one requirement 

for successful nucleic acid delivery. Extracellular shielding, receptor targeting for 

improved and specific intracellular uptake79 and transport across the endolysosomal 

barrier80, 81 are additional critical steps that have to be addressed.  

1.3 Shielding and Targeting – The Polyplex as Trojan Horse 

Nucleic acid formulations can be applied systemically by intravenous injection or locally 

for example by direct injection into the skin, retina, central nervous system or tumors. 

Depending on the delivery route, different extracellular tasks have to be considered. 

Intravenous administration of free siRNA would lead to rapid clearance and 

degradation by nucleases in the blood. The stable packaging of nucleic acids into 

polyplexes by oligocations is a way to prevent a loss of delivery efficacy. Complexation 

however may cause binding of positively charged polyplexes to serum proteins, 

activation of the innate immune system82, 83, self-aggregation into larger 

microstructures or aggregation of erythrocytes and other blood cells84 thus resulting in 

life-threatening conditions.32 Shielding of positive charges by hydrophilic polymers 

such as polyethylene glycol (PEG)49, 62, 79, 85-87, N-(2-hydroxypropyl) methacrylamide 

(pHPMA)88-90, hydroxyethyl starch (HES)91, hyaluronic acid92, poly(2-oxazoline)93 or 

polysarcosine94 are well-established approaches to circumvent unspecific interactions 

of drug delivery systems. Hydrophilic shielding of polyplexes can significantly improve 

biocompatibility and blood circulation time.95, 96 Long-term plasma circulation is a 

critical requirement for cancer therapy to take advantage of the “enhanced permeability 

and retention” (EPR) effect. By this mechanism of passive tumor targeting, circulating 

nanoparticles can extravasate and passively accumulate at tumor sites due to the 

leakiness of tumor vessels and ineffective lymphatic efflux.97 Optimum polyplex 

shielding, however, may result in a loss of transfection efficacy due to reduced 

intracellular interaction with endolysosomal membranes thus preventing the 

endosomal escape of the cargo (“PEG dilemma”). PEGylation of PEI sharply reduced 

the transfection activity of the polyplexes. The linkage of PEG via acid-labile 

pyridylhydrazone bonds could recover the transfection efficacy by pH-triggered 

deshielding in the acidic endosomal environment.21, 98 
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To achieve specific receptor-mediated uptake, a broad range of ligands from small 

chemical compounds such as vitamins and drugs51, 99-101, carbohydrates61 to 

peptides102, proteins50, 87, 103-105, antibodies106, 107 and aptamers108 can be presented on 

the polyplex surface. In a dual targeting approach, pDNA polyplexes with PEI and 

sequence-defined oligoamino amides containing two different peptidic ligands showed 

a synergistic targeting effect. RGD, a peptide for integrin targeting, dominated in cell 

surface binding while peptide B6 for transferrin receptor-targeting contributed to 

intracellular uptake.109, 110  

Solid-phase assisted synthesis enables the direct attachment of shielding and 

targeting domains to the oligocation in a sequence-defined manner. PEG and targeting 

moieties depending on their biophysical characteristics, however, can alter the 

polyplex formation process.111 This might, on the one hand, result in self-aggregation 

of polyplexes leading to unspecific cellular uptake in vitro and clogging of blood vessels 

when applied intravenously. On the other hand, siRNA polyplexes with sequence-

defined cationic FolA-PEG-oligomers with sizes below 10 nm have been reported. 

Such small structures undergo rapid renal clearance in vivo.51, 79, 112 Considering the 

effect of shielding and targeting moieties on the polyplex formation, post-modification 

strategies present a promising alternative. Our group recently reported post-modified 

transferrin receptor (TfR) targeted siRNA polyplexes based on the sequence-defined 

cationic lipo-oligomer 454.113 Polyplexes are pre-formed with the cysteine containing 

454 without any shielding or targeting moieties. In a second step, PEG-Transferrin (Tf) 

or PEG-TfR-targeting-antibody (TfRab) are attached to the polyplex surface by 

bioreducible disulfide-linkage (Fig. 4). This approach both excludes the influence of 

PEG or ligands during the polyplex formation process and enables bioresponsive 

deshielding in reducing environments. The bulky negatively charged protein ligand Tf 

contributes with an additional shielding effect, leading to entirely shielded particles with 

sizes around 200 nm, nearly neutral zeta potential and low polydispersity by the 

addition of only 5 mol% PEG-Tf to the pre-formed polyplexes. Highly specific TfR-

dependent cellular uptake and efficient target gene silencing could be demonstrated in 

several cell systems leading to potent tumor cell killing in vitro.  
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Fig. 4 Schematic illustration of Tf and INF7 post-modified siRNA polyplexes pre-formed with lipo-

oligomer 454. Both Tf-PEG-OPSS and INF7-TNB contain reactive groups able to bond with cysteine 

thiol groups of oligomer 

1.4 Endosomal Escape – The Major Bottleneck for Delivery? 

The endosomal escape is considered as a major bottleneck for successful nucleic acid 

delivery.80 When polyplexes are entrapped in vesicles after endocytosis, degradation 

by lysosomal enzymes under acidic conditions present a dead end for a significant 

amount of nucleic acids. Rapid endosomal escape is particularly required for the 

delivery of nuclease-sensitive siRNA. The disintegration or destruction of endosomal 

membranes should be triggered after the endocytosis for example by the acidification 

within the vesicles to avoid toxicity of nucleic acid formulations in the extracellular 

environment. Viruses developed efficient cytosolic delivery pathways. Endocytosed 

enveloped viruses such as influenza virus expose fusion peptides that are part of viral 

glycoproteins and trigger fusion of the viral with the endosomal membrane. Non-

enveloped viruses such as rhinovirus or adenovirus present lytic domains which 

directly disrupt the endosomal membrane after endocytosis.10 Synthetic virus-derived 

or artificial lytic peptides have been incorporated into polyplexes to enhance the 

endosomal escape.13, 80, 114, 115 The synthetic peptide Inf7, a glutamic acid-enriched 

analog derived from the influenza hemagglutinin membrane protein HA2, triggers 

membrane disruption specifically at endosomal pH around 5 to 6, thus strongly 

increasing transfection efficiency of pDNA polyplexes after incorporation in a covalent 

or non-covalent manner.116 The Inf7 peptide can be attached directly to the nucleic 

acid to improve the delivery of siRNA. Both the bioreversible attachment of Inf7 to the 

5´-end of siRNA with a C6-ss-C6 spacer51 and linkage to the 5′ DNA adaptor of DNA-

extended siRNA78 (Fig. 3B) lead to significantly enhanced gene knockdown of 

PEGylated FolA-targeted polyplexes. Inf7 was also an indispensable element of post-

modified TfR targeted siRNA polyplexes.113 However, unfavorable interaction of the 
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hydrophobic Inf7 peptide with fatty acids of lipid-containing oligomers was encountered 

when Inf7 was attached directly to the siRNA. To circumvent this issue, Inf7 was 

attached to the polyplex surface in a post-modification approach via a bioreducible 

disulfide linkage (Fig. 4).113 

The antimalaria drug and hydrophobic weak base chloroquine accumulates in acidic 

endolysosomal vesicles and was found to enhance the endosomal escape of DEAE-

dextran and polylysine polyplexes significantly.117 Chloroquine-triggered vesicle 

swelling and subsequent generation of osmotic pressure, the inhibition of 

endolysosomal maturation due to pH buffering and a direct effect on nucleic acids by 

intercalation are the hypothesized mechanisms.118, 119 The beneficial effect of 

endosomal buffering and osmotic swelling on endosomal escape was further 

investigated by the screening of polycations with “proton sponge” characteristics, 

which provide buffer capacity between physiological neutral and endolysosomal acidic 

pH.120 Polyethylenimine (PEI) with repeating units of the aminoethylene motif was 

found to be a very potent transfection polymer.33 In contrast to polymers such as 

polylysine that are fully protonated at neutral pH, proton sponge structures are only 

partly protonated at neutral pH and reach a higher degree of protonation throughout 

the endosomal acidification. It has been demonstrated that the increasing protonation 

leads to an influx of chloride and water; it has been hypothesized that the resulting 

osmotic pressure on the membrane triggers endosomal escape.121, 122 Endosomal 

escape of polyplexes, however, is not always enhanced by endosomal buffer capacity 

of the polymers.123, 124 Even for PEI polyplexes, PEGylation strongly reduced the 

endosomal escape.21 Apparently, in addition to endosomal buffering and osmotic 

pressurizing, a direct exposure of the pH-induced cationic charge residues of the 

protonated polymer to the lipid membrane is needed for destabilization and 

subsequent endosomal burst.10, 36 In our view, cooperation of osmotic pressuring (such 

as by chloroquine or PEI) with direct target lipid membrane disruption activity (such as 

by cationic interaction with phospholipids, lytic or fusogenic peptides or lipids) is 

required, similarly as a moderately pressured gas balloon will pop only upon the stitch 

by a needle.  

The diaminoethylene motif of PEI has been incorporated in synthetic building blocks 

such as succinoyl-tetraethylene-pentamine (Stp) to synthesize sequence-defined 

oligocations with proton sponge activity.42 The incorporation of the basic amino acid 
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histidine can provide additional pH-buffering via the protonation of imidazole groups, 

thus facilitating endosomal escape.69, 125, 126 Histidinylated pLys or pLys/His 

copolymers also present proton sponges and, in contrast to unmodified pLys, mediate 

efficient pDNA and siRNA delivery.127, 128 As an alternative or in addition to the proton 

sponge effect, endosomal pH-specific membrane destabilization can be mediated by 

hydrophobic polymer or lipid domains.43, 129-131 Sequence-defined lipo-oligoamino 

amides such as oligomer 454 combine both proton sponge activity and pH-triggered 

lytic activity of hydrophobic domains to achieve enhanced endosomal escape.64 

Oligomer 454 was used for surface coating of siRNA-loaded mesoporous silica 

nanoparticles (MSN) thus leading to efficient release from the endosome and 

subsequent high transfection efficacy of this delivery system.132 MSN have been 

recognized as powerful tools for packaging of fragile or toxic pharmaceuticals. By 

tuning of the internal surface charge of the pores as well as the pore size and 

morphology in the MSN, very high siRNA loadings of up to 380 μg per mg MSN with 

desorption rates of up to 80 % after 24 h could be achieved. The external exposure of 

mercapto groups allowed for interactions with the cysteine containing 454 to neutralize 

negative surface charges of the MSN for better cell binding and enhanced endosomal 

escape. In several examples siRNA knockdown efficacies of 80 % and more could be 

achieved with a very low exposure of the cells to mesoporous silica.132  

1.5 Polyplexes in vivo 

Efficient and targeted gene knockdown in vivo without off-target side effects is the 

ultimate goal of siRNA delivery. The genetic evolution of viruses resulted in natural 

masterpieces of nucleic acid delivery and can partly be mimicked by the chemical 

evolution of synthetic carrier systems. The solid-phase assisted synthesis of 

sequence-defined oligomers is an elegant approach to shuffle functional domains and 

draw structure-activity relationships.43, 69, 126 Michael addition chemistry has been 

applied for semi-automated synthesis of thousands of polymers to evaluate 

combinations of amines and hydrophobic (di)acrylates with high-throughput 

transfection screenings, resulting in libraries of poly(β-aminoesters) for pDNA delivery 

and lipophilic modified oligoamines (lipidoids) for siRNA delivery.57, 133-135 Packaging of 

cargo nucleic acids in stable, well-sized and monodisperse polyplexes, shielding 

against cargo degradation and undesired cross-reactions during blood circulation, 
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efficient cell binding and uptake, and sufficient endosomal release of the nucleic acid 

in bioactive form are prerequisites of successful in vivo delivery. Several in vitro 

screening methods can be utilized to examine each critical step of the delivery process. 

Still such in vitro assays are only partly predictive of the performance in whole 

organisms. Therefore, not least because of animal welfare considerations, to keep 

numbers of experimental animals as low as possible, identification of most relevant 

selection criteria for in vivo efficacy and design of corresponding robust screening 

assays has critical importance.136 A recent noteworthy example in this direction is the 

identification of four necessary structural and pKa criteria for the prediction of in vivo 

performance of siRNA lipidoid nanoparticles.137 Extracellular stability of polyplexes has 

recently been confirmed as a critical hurdle for the in vivo delivery of 

oligonucleotides.60, 113 A nanomicelle-based platform prepared from mRNA and (PEG)-

polycation block copolymers showed significantly enhanced in vivo stability and mRNA 

translation when a stabilizing cholesterol (Chol) moiety was attached.41 In sharp 

contrast, when evaluating mRNA degradation after serum incubation, nanomicelles 

with and without Chol showed comparable nuclease resistance. Destabilization of 

nanomicelles in the blood but not in serum in the presence of anionic macromolecules 

with high charge densities on cell surfaces, such as proteoglycans was formulated as 

a potentially important factor for extracellular stability. Indeed, in the presence of 

anionic macromolecules, which exist in the blood but not in serum, Chol-containing 

nanomicelles showed enhanced stability compared to mRNA nanomicelles without 

Chol.60 These findings emphasize the need to develop assays that closely mimic in 

vivo conditions for best possible predictive value. Another critical parameter for 

polyplex biodistribution and intra-tissue delivery is the optimal nanoparticle size. Too 

large nanoparticles may be restricted in intra-tissue diffusion.138 Very small siRNA 

nanoparticles of < 10 nm have been shown to be stable in the blood upon systemic 

intravenous injections but are rapidly eliminated via the kidneys in approximately four 

hours, with recovery of intact polyplexes from the urine.51 Such small nanoparticles, 

however, can be utilized for local intratumoral administration. Series of sequence-

defined oligomers, which include a cationic (oligoethanamino)amide core, cysteines 

and PEG coupled to the antifolate drug methotrexate (MTX) as terminal targeting 

ligand were synthesized recently (Fig. 5A).139 
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Fig. 5 A) Overview of the oligomers with MTX polyglutamates B) Cell viability of KB cells after 

transfection with Inf7 peptide-modified EG5-targeted siRNA (siEG5-Inf7) or control siRNA (siCtrl-Inf7) 

polyplexes. Cells were transfected with MTX conjugates (638-642), alanine conjugate (188) or folate 

conjugate (356). Free MTX was applied in concentrations corresponding to that of siRNA polyplexes C) 

Therapeutic efficacy of MTX-conjugated 640 polyplexes (with siEG5-Inf7 or siCtrl-Inf7), free oligomer 

640 (without siRNA), or folate-conjugated 356/siEG5-Inf7 polyplexes in KB xenograft (n = 6 per group). 

The insert shows a comparison of the tumor volume in different groups 5 days after the last treatment 

(day 22). D) Representative KB tumor lesions from the cohorts in C) on day 25. E) The Kaplane-Maier 

survival curve of the animals treated with the indicated formulations. In the animals receiving 640/siEG5-

Inf7 polyplexes, tumors largely disappeared by day 22, and in 3 mice no recurrence was observed until 

the end of the study (day 70). 

 

These oligomers form homogeneous spherical siRNA polyplexes with hydrodynamic 

average diameter of approximately 6 nm and were therefore applied intratumorally in 

vivo. The endosomolytic peptide Inf7 was coupled via bioreducible linkage to the 

5´ end of the siRNA to enhance endosomal escape of the polyplexes. MTX is a well-
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established chemotherapeutic agent and serves as both targeting ligand and 

anticancer agent. In combination with toxic eglin5 (EG5) siRNA potent dual treatment 

of KB cancer cells could be achieved (Fig. 5B). MTX-conjugated polyplexes bind and 

enter KB cells via FolA receptors. Attachment of MTX significantly increased the 

intratumoral retention (168 h) of the siRNA, as compared to alanine-substituted non-

targeted control polyplexes (48 h). The combination of MTX-conjugated polyplexes and 

EG5 siRNA provided enhanced antitumoral potency with 50 % of recurrence-free 

survival of KB tumor-bearing mice (Fig. 5C-E). Polyglutamylation of the MTX at its γ-

carboxylic acid was introduced to increase the potency of MTX-targeted polyplexes.139 

Glutamic acid residues are attached to MTX by the folylpolyglutamyl synthetase 

(FPGS) after cell entering, producing MTX polyglutamates that are retained in the 

cytosol and represent the more pharmacologically active form.140 Polyglutamylated 

MTX inhibits dihydrofolate reductase (DHFR), resulting in blockage of de novo 

synthesis of thymidylates and purines and consequently of DNA and RNA.141 

Polyplexes formed with polyglutamylated MTX oligomers were found to be more 

cytotoxic than free MTX presumably because the degree of glutamylation of MTX 

conjugates correlates to DHFR inhibition potency.139 Polyplex size and sophisticated 

targeting strategies are particularly important for the delivery of nucleic acids into the 

brain. The therapy of central nervous system (CNS) and brain pathologies, including 

Parkinson’s disease, Alzheimer’s disease, and glioma, are inadequate because of the 

limited ability to deliver drugs across the blood-brain barrier (BBB).142 The BBB 

separates circulating blood from the brain extracellular fluid (BECF) in the CNS and 

protects the brain from various circulating substances.143, 144 Barbiturate coated gold 

nanoparticles (GNPs) with sizes ranging from 20 to 110 nm have been evaluated 

regarding their ability to penetrate the BBB. GNPs of 70 nm size showed the highest 

uptake with maximum amounts of gold within the brain cells.145 The BBB is especially 

restrictive in normal healthy brain, but also a barrier in diseased brain such as glioma. 

In order to generate stable polyplexes in a size range suitable for glioma-targeted 

siRNA delivery across the BBB, a solid-phase synthesized lipo-oligomer (49) 

containing two central oleic acids, 4 Stp units and two terminal cysteines has been 

combined with a lipoprotein receptor-related protein LRP-targeting oligomer containing 

a precise sequence of Angiopep-2 peptide linked with PEG, 8 Stp units and two 

terminal cysteines (727) (Fig. 6A).146  
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Fig. 6 A) Sequence and chemical structure of untargeted lipo-oligomer 49 and Angiopep-2-targeted 

shielded 2-arm polymer 727 B) Cellular uptake of cy3-labeled siRNA polyplexes PEG/siRNA and 

Angiopep-PEG/siRNA with and without Angiopep pretreatment (block) in U87/Luc cells C) Cellular 

uptake and release of polymer/siRNA complexes in U87/Luc cells with time. PEI/siRNA complex was 

exploited as control. Red: Cy3-siRNA; Green: BODIPY-labeled polymer Blue: Hoechst D) Distribution 

of polymer/siRNA complexes in vivo. Real-time fluorescence images of glioma model nude mice injected 

with saline, PEG/siRNA complex, and Angiopep-PEG/siRNA complex after 24 h. Fluorescence images 

of excised brain (upper left) and peripheric organs (right). 

 

siRNA-polyplexes around 100 nm in size with low polydispersity and nearly neutral 

zeta potential could be generated. This emphasizes the possibility to tailor polyplex 

characteristics by mixing oligomers with different functional subdomains in precise 

ratios. The addition of the non-targeted lipo-oligomer increases the polyplex size to 

avoid rapid renal clearance and facilitates the endosomal escape of the polyplexes. 

High cellular uptake of Angiopep-2 targeted polyplexes into U87 glioma cells could be 

detected and was reversible upon ligand competition by pretreatment of the cells with 

free Angiopep-2 (Fig. 6B). Endosomal escape efficacy and the cytosolic reversibility 

of the extracellular polyplex stabilization via disulfide bond formation between 
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cysteines was shown by fluorescent microscopy (Fig. 6C). The separation behavior of 

fluorescently labeled carrier and siRNA was detected 30 min and 2 hours after polyplex 

endocytosis into U87 glioma cells. Colocalization of BODIPY labeled carrier oligomer 

and Cy3-labeled siRNA was detected 30 min after internalization. After 2 hours, initially 

complexed carrier and Cy3-siRNA began to separate in the cytosol, allowing the siRNA 

cargo to be incorporated into the RISC for efficient gene downregulation. BODIPY 

labeled branched polyethylenimine (bPEI) was selected as a non-reducible control to 

prepare Cy3-siRNA polyplexes. As expected, bPEI/siRNA polyplexes remained a tight 

binding between carrier and siRNA after 2 hours. These observations confirm 

endosomal escape of both formulations and GSH-triggered reductive disassembly of 

polyplexes only in case of the sequence-defined oligomers. The Angiopep-2-targeted 

siRNA polyplexes exhibited effective siRNA delivery, resulting in significant gene 

downregulation both in glioma cells and upon intravenous delivery in glioma model 

nude mice without significant biotoxicity. High amounts of fluorescently labeled siRNA 

could be detected in the brain when targeted polyplexes where applied (Figure 6d). 

BAG3 siRNA was chosen as therapeutic cargo.147 BAG3 is a member of the BAG 

family of HSC/HSP70 co-chaperones, which plays a critical role in tumor cell 

survival.147 BAG3 downregulation has been reported to sensitize cells to tumor 

necrosis factor-related apoptosis inducing ligand (TRAIL)-dependent apoptosis.148 

Almost 70 % of BAG3 expression (determined at mRNA and protein level) was 

inhibited in U87 glioma cells after intravenous administration of Angiopep-2-targeted 

polyplexes compared to the saline treated control group, which should induce effective 

TRAIL-dependent apoptosis of the tumor cells.146 
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1.6 Aim of the Thesis 

Sequence-defined cationic oligoaminoamide oligomers can mimic the dynamic and 

bioresponsive behavior of viruses and present a group of highly versatile nucleic acid 

carriers. Solid-phase assisted precise synthesis and establishment of structureactivity 

relationships enables optimization of this nucleic acid carrier class. In properly 

protected form, all natural amino acids, synthetic building blocks and other compounds 

such as fatty acids, dyes or sugars can be incorporated into customized oligomers.  

In this thesis, the main focus was the optimization of the synthesis of oleic acid 

containing structures and the biodegradability of oligocationic carriers. 

As a first aim of the thesis, the synthesis of cationic oligomers containing oleic acid had 

to be optimized to minimize side products. Oleic acid is a substantial part of several 

nucleic acid carriers as it provides polyplex stabilization via hydrophobic interactions 

and enhanced endosomolytic activity by lipid membrane interaction. TFA-mediated 

cleavage of acid-labile protecting groups and the oligomer from the resin leads to side 

products via protonation of the double bond, subsequent nucleophilic addition of the 

trifluoroacetate anion and TFA ester hydrolysis in neutral or basic aqueous solution 

during storage or polyplex formation. Biophysical properties and biological 

performance of siRNA polyplexes of structures containing intact oleic acid were to be 

investigated in comparison to analogs with chemically stable stearic acid or 8-

nonanamidooctanoic acid moieties and an analog containing only the hydroxylated 

side product. The main focus was to be put on the effect of intact oleic acid on the 

endosomolytic activity profile, transfection efficiency and cytotoxicity. 

The second aim was the design, synthesis and evaluation of the bioactivity of 

biodegradable lipo-oligomers. Biodegradability was to be introduced by two different 

strategies, first via a bioreducible disulfide building block and second by introducing 

cleavage sites for enzymatic lysosomal degradation.  

Bioreducible lipo-oligomers should be synthesized by solid-phase assisted synthesis 

by precise incorporation of the disulfide building block Fmoc-succinoyl-cystamine 

between a lipophilic diacyl (bis-myristyl, bis-stearyl or bis-cholestanyl) domain and an 

ionizable oligocationic siRNA binding unit. Cytosolic glutathione-mediated disassembly 

of the polyplexes should improve the release of siRNA and RNA-induced silencing 
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complex formation. Especially the effect on transfection efficiency and toxicity had to 

be analyzed. 

Enzymatic degradability should be tailored by precise integration of cleavage sites 

such as L-Arg dipeptides. Degradation of a surplus of carrier molecules by lysosomal 

enzymes such as cathepsin B targets the majority of transfection material which is 

known to initially accumulate in the lysosomal compartment. Most importantly, the 

influence of improved biodegradability on cell tolerability was to be studied.  

The last aim was the modification of siRNA lipo-polyplexes and proteins with shielding 

and targeting domains to enhance the uptake in glioma and brain endothelial cells. 

Polyplexes were to be modified with various peptide ligands using click chemistry by 

incorporating azide functions in the lipo-oligomers and DBCO moieties in the shielding 

and targeting agents. Protein uptake in glioma cells was to be improved by modification 

with apelin-derived peptides via targeting of the apelin receptor APLNR. 
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2 Materials and Methods 

2.1 Materials 

The solvents, reagents and buffers used for the experiments are presented in Table 1, 

Table 2 and Table 3. 

Table 1 Solvents used for experimental procedures 

Solvent CAS-No. Supplier 

Acetonitrile [1] 75-05-8 VWR Int. (Darmstadt, Germany) 

Chloroform [2] 67-66-3 VWR Int. (Darmstadt, Germany) 

Chloroform-d [3] 865-49-6 Euriso-Top (Saint-Aubin Cedex, France) 

Deuterium oxide [3] 7789-20-0 Euriso-Top (Saint-Aubin Cedex, France) 

Dichloromethane [4] 75-09-2 Bernd Kraft (Duisburg, Germany) 

N,N-Dimethylformamide [5] 68-12-2 Iris Biotech (Marktredewitz, Germany) 

Dimethyl sulfoxide [6] 67-68-5 Sigma-Aldrich (Munich, Germany) 

Ethanol absolute [4] 64-17-5 VWR Int. (Darmstadt, Germany) 

Ethyl acetate [7] 141-78-6 Staub & Co. (Nürnberg, Germany) 

n-Heptane [8] 142-82-5 Grüssing (Filsum, Germany) 

n-Hexane [8] 110-54-3 Brenntag (Mülheim/Ruhr, Germany) 

Methanol [4] 67-56-1 Fisher Scientific (Schwerte, Germany) 

Methanol-d4 [3] 811-98-3 Euriso-Top (Saint-Aubin Cedex, France) 

Methyl-tert-butyl ether [9] 1634-04-4 Brenntag (Mülheim/Ruhr, Germany) 

N-Methyl-2-pyrrolidone [5] 872-50-4 Iris Biotech (Marktredewitz, Germany) 

Tetrahydrofuran [4] 109-99-9 Fisher Scientific (Schwerte, Germany) 

Water [10] 7732-18-5 In-house purification 
 

[1] HPLC grade; [2] DAB grade; [3] NMR grade (> 99.9 %); [4] analytical grade; [5] peptide grade; [6] BioReagent 

grade (> 99.9 %); [7] purum, distilled before use; [8] purissimum; [9] synthesis grade; [10] purified, deionized; 

Table 2 Reagents used for experimental procedures 

Reagent CAS-No. Supplier 

1-Hydroxybenzotriazole 
hydrate 

123333-53-9 Sigma-Aldrich (Munich, Germany) 

2-Chlorotritylchloride resin 42074-68-0 Iris Biotech (Marktredewitz, Germany) 

5,5′-Dithiobis(2-nitrobenzoic 
acid) 

69-78-3 Sigma-Aldrich (Munich, Germany) 

5β-Cholanic acid 546-18-9 Sigma-Aldrich (Munich, Germany) 

Acetic acid 64-19-7 Sigma-Aldrich (Munich, Germany) 

Acetic anhydride 108-24-7 Sigma-Aldrich (Munich, Germany) 

Agarose NEEO Ultra 9012-36-6 Carl Roth (Karlsruhe, Germany) 

Boc-L-Cys(Trt)-OH 21947-98-8 Iris Biotech (Marktredewitz, Germany) 

Bromophenol blue 115-39-9 Sigma-Aldrich (Munich, Germany) 

cis-2-Hexene 7688-21-3 Sigma-Aldrich (Munich, Germany) 

Cyclohexene 110-83-8 Sigma-Aldrich (Munich, Germany) 

Cystamine · 2HCl 56-17-7 Sigma-Aldrich (Munich, Germany) 

D-(+)-Glucose monohydrate 14431-43-7 Merck Millipore (Darmstadt, Germany) 

DBU 6674-22-2 Sigma-Aldrich (Munich, Germany) 

Dde-L-Lys(Fmoc)-OH 156648-40-7 Iris Biotech (Marktredewitz, Germany) 
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Dibenzocyclooctyne-acid 1353016-70-2 Sigma-Aldrich (Munich, Germany) 

Diisopropylcarbodiimid (DIC) 693-13-0 Sigma-Aldrich (Munich, Germany) 

EDTA disodium salt dihydrate 6381-92-6 Sigma-Aldrich (Munich, Germany) 

Fmoc-8-aminooctanoic acid 126631-93-4 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Arg(Pbf)-OH 154445-77-9 Iris Biotech (Marktredewitz, Germany) 

Fmoc-D-Arg(Pbf)-OH 187618-60-6 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Glu-OtBu 84793-07-7 Merck Millipore (Darmstadt, Germany) 

Fmoc-L-Gly-OH 29022-11-5 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-His(Trt)-OH 109425-51-6 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Leu-OH 35661-60-0 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Lys(Boc)-OH 71989-26-9 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Lys(Fmoc)-OH 78081-87-5 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Lys(ivDde)-OH 204777-78-6 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Lys(N3)-OH 159610-89-6 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Trp(Boc)-OH 43824-78-6 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Tyr(tBu)-OH 71989-38-3 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Val-OH 68858-20-8 Iris Biotech (Marktredewitz, Germany) 

Fmoc-N-amido-dPEG24-acid 756526-01-9 Quanta Biodesign (Powell, OH, USA) 

Fmoc-OSu 82911-69-1 Iris Biotech (Marktredewitz, Germany) 

Fmoc-Stp(Boc3)-OH - In-house synthesis [13] 

GelRed - Biotium Inc. (Hayward, CA, USA) 

Glutathione reduced 70-18-8 Sigma-Aldrich (Munich, Germany) 

HBTU 94790-37-1 Multisyntech (Witten, Germany) 

Heparin sodium 5000 I.E/mL 9041-08-1 ratiopharm GmbH (Ulm,.Germany) 

HEPES 7365-45-9 Biomol (Hamburg, Germany) 

Hydrazine monohydrate 7803-57-8 Sigma-Aldrich (Munich, Germany) 

Hydrochloric acid solution 7647-01-0 Sigma-Aldrich (Munich, Germany) 

MTT 298-93-1 Sigma-Aldrich (Munich, Germany) 

Myristic acid 544-63-8 Sigma-Aldrich (Munich, Germany) 

N,N-Diisopropylethylamine 7087-68-5 Iris Biotech (Marktredewitz, Germany) 

N-Hydroxysuccinimide (NHS) 6066-82-6 Sigma-Aldrich (Munich, Germany) 

Ninhydrin 485-47-2 Sigma-Aldrich (Munich, Germany) 

Nonanoic acid 112-05-0 Sigma-Aldrich (Munich, Germany) 

Oleic acid 112-80-1 Sigma-Aldrich (Munich, Germany) 

Phenol 108-95-2 Sigma-Aldrich (Munich, Germany) 

Piperidine 110-89-4 Iris Biotech (Marktredewitz, Germany) 

Potassium cyanide 151-50-8 Sigma-Aldrich (Munich, Germany) 

Pybop® 128625-52-5 Multisyntech GmbH (Witten, Germany) 

Sephadex® G-10 9050-68-4 GE Healthcare (Freiburg, Germany) 

Sodium hydroxide (anhydrous) 1310-73-2 Sigma-Aldrich (Munich, Germany) 

Sodium hydroxide solution  1310-73-2 Sigma-Aldrich (Munich, Germany) 

SPDP 
Stearic acid 

68181-17-9 
57-11-4 

Thermo Scientific (Waltham, USA) 
Sigma-Aldrich (Munich, Germany) 

STOTDA 172089-14-4 Sigma-Aldrich (Munich, Germany) 

Succinic anhydride 108-30-5 Sigma-Aldrich (Munich, Germany) 

Suc-PEI 10 % - In-house synthesis149 

TCEP 51805-45-9 Sigma-Aldrich (Munich, Germany) 

Tetraethylene pentamine·5HCl 4961-41-5 Sigma-Aldrich (Munich, Germany) 

Triethylamine 121-44-8 Sigma-Aldrich (Munich, Germany) 

Trifluoroacetic acid 76-05-1 Iris Biotech (Marktredewitz, Germany) 

Triisopropylsilane 6485-79-6 Sigma-Aldrich (Munich, Germany) 

Triton™ X-100 9002-93-1 Sigma-Aldrich (Munich, Germany) 

Trizma® base 77-86-1 Sigma-Aldrich (Munich, Germany) 
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Table 3 Buffers used for experimental procedures 

Buffer Composition 

10 mM HCl SEC solvent 693 mL water, 300 mL acetonitrile, 7 mL 1M HCl 
solution 

Electrophoresis loading buffer 6 mL glycerine, 1.2 mL 0.5 M EDTA solution (pH 8.0), 
2.8 mL H2O, 20 mg bromophenol blue 

Ellman buffer 0.1 M sodium phosphate buffer (pH 8.0), 1 mM EDTA 

HBG 20 mM HEPES, 5 % glucose, pH 7.4 

TBE buffer 89 mM Trizma® base, 89 mM boric acid, 2 mM EDTA-
Na2 

 

Citrate-buffered human blood for erythrocyte leakage assays was kindly supplied by 

Klinikum der Universität München (Munich, Germany). Recombinant nlsEGFP was 

produced as previously reported.150 g7 (H2N-Gly-L-Phe-D-Thr-Gly-L-Phe-L-Leu-L-

Ser(O-β-D-Glucose)-CONH2) and scrg7 (H2N-Gly-Leu-Phe-Phe-Gly-Ser(O-β-D-

Glucose)-D-Thr-CONH2) were provided by Novo Nordisk (Bagsværd, Dänemark) 

within the COMPACT (Collaboration on the Optimization of Macromolecular 

Pharmaceutical Access to Cellular Targets) consortium.  

 

2.1.1 Equipment for solid-phase synthesis  

Automated parallel synthesis or synthesis with microwave irradiation was carried out 

using a Biotage Syro Wave (Biotage AB, Uppsala, Sweden) peptide synthesizer. 

Disposable polypropylene (PP) syringe microreactors with the volume sizes 2 mL, 

5 mL, and 10 mL were purchased from Multisyntech (Witten, Germany). It was 

conducted with polytetrafluoroethylene (PTFE) filters. The recommended size of the 

reactors was chosen according to the resin amount. For manual solid-phase synthesis 

microreactors with polyethylene filters were used. Reactors were mixed with an 

overhead shaker during reactions. 

2.1.2 siRNA 

All siRNAs and modified siRNA compounds used are presented in Table 4. They were 

synthesized by Roche Kulmbach GmbH (now Axolabs GmbH, Kulmbach, Germany).  

Table 4 siRNA strands  

siRNA Target Sequence 

siCtrl - 
5’-AuGuAuuGGccuGuAuuAGdTsdT-3’ (sense) 

5’-CuAAuAcAGGCcAAuAcAUdTsdT-3’ (antisense) 

siGFP eGFP-Luc 
5’-AuAucAuGGccGAcAAGcAdTsdT-3’ (sense) 

5’-UGCUUGUCGGCcAUGAuAUdTsdT-3’ (antisense) 

Small letters: 2’-methoxy-RNA, s: phosphorothioate. All nucleic acids were synthesized by the Roche Kulmbach 

GmbH (now Axolabs GmbH, Kulmbach, Germany).  
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2.1.3 Cell culture  

Cell culture work was carried out by Dr. Wei Zhang, Dr. Katharina Müller, Dr. Dian-

Jang Lee, Jasmin Kuhn and Dr. Yanfang Wang (Pharmaceutical Biotechnology, LMU) 

and by Dr. Giorgia Mastrella (Department of Neurosurgery, Klinikum LMU). All cell 

culture media, antibiotics and fetal bovine serum (FBS) were purchased from 

Invitrogen (Karlsruhe, Germany). The individual media used for the different cell 

cultures are summarized in Table 5. All media were supplemented with 10 % FBS, 

4 mM stable glutamine, 100 U/mL penicillin and 100 μg/mL streptomycin. 

Exponentially growing cells were detached from the culture flasks using trypsin-EDTA 

solution (Invitrogen, Karlsruhe, Germany) and cell suspensions were seeded at the 

desired density for each experiment. Luciferase cell culture lysis buffer and D-luciferin 

sodium salt were purchased from Promega (Mannheim, Germany). 

Table 5 Overview of the used cell lines and culture media 

Cell line Description Medium 

bEnd.3 [1] Mouse brain endothelioma cells DMEM (5 % glucose) 

DU145/eGFPLuc44 
Human prostate cancer cells expressing 

the eGFP-Luciferase fusion gene 
RPMI-1640 

Huh7/eGFPLuc151 Human hepatoma cells 
DMEM and Ham's 

F12 medium (50:50) 

KB/eGFPLuc51 
Human cervix carcinoma cells expressing 

the eGFP-Luciferase fusion gene 
RPMI-1640, 
folate-free 

Neuro2A Mouse neuroblastoma cells DMEM 

Neuro2A/eGFPLuc44 
Mouse neuroblastoma cells expressing the 

eGFP-Luciferase fusion gene 
DMEM 

[1] bEnd.3 cells were provided by GSK (Brentford, UK) within the COMPACT consortium. 
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2.2 Methods 

2.2.1 Synthesis of disulfide-linker building block (ssbb): 

Fmoc-succinoyl-cystamine 

 

15.0 g of cystamine dihydrochloride (66.6 mmol, 1 eq.) were suspended in 150 mL of 

THF with 23.2 mL of DIPEA (133.2 mmol, 2 eq.) and cooled down to -80 °C. 18.0 g 

(53.3 mmol, 0.8 eq.) of Fmoc-OSu were dissolved in 200 mL of THF and added 

dropwise over the course of 3 h. The reaction was stirred for additional 1 h at -80 °C 

and then for 1 h at room temperature (RT). DIPEA (23.2 mL, 133.2 mmol, 2 eq.) was 

added and the reaction mixture was cooled to 0 °C. Succinic anhydride (12.0 g, 

119.9 mmol, 1.8 eq.) was dissolved in 150 mL of THF. This solution was added 

dropwise to the reaction mixture at 0 °C and stirred over-night. The reaction mixture 

was concentrated to approximately 200 mL, mixed with 200 mL of DCM and was 

washed 5 × with 0.1 M sodium citrate buffer (pH 5.2). The organic phase was dried 

over sodium bicarbonate, concentrated and purified by dry column vacuum 

chromatography (DCVC) using a n-heptane/EtOAc gradient (starting from 1:1) to elute 

Fmoc-byproducts, followed by a EtOAc/MeOH gradient to isolate the product. The 

solvent was removed under reduced pressure to give 6.2 g of a white solid (13.1 mmol, 

24.5 %). 

2.2.2 Loading of a 2-chlorotrityl chloride resin with an Fmoc protected amino 

acid 

(T-shape: 0.75 eq. Fmoc-Tyr(tBu)-OH or Fmoc-Cys(Trt)-OH; i-shape: 0.75 eq. Fmoc-

Stp(Boc3)-OH; U-shape: 0.75 eq. Fmoc-Lys(Fmoc)-OH; DBCO2-PEG24-g7 agents: 

0.75 eq. Fmoc-N-amido-dPEG24-acid; Apelin-derived peptides: 0.75 eq. Fmoc-Phe-

OH (Apelin-13), Fmoc-Ala-OH (Apelin-F13A), Fmoc-Lys(Boc)-OH (Apelin-13scr) 
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After swelling of 750 mg of 2-chlorotrityl chloride resin (1.2 mmol chloride) in water-

free DCM for 10 min, the first Fmoc protected amino acid and DIPEA (1.5 eq.) were 

added to the resin for 1 h. The reaction solvent was drained and a mixture of 

DCM/MeOH/DIPEA (80:15:5) was incubated twice for 10 min. After removal of the 

reaction mixture, the resin was washed 5 times with DCM. 

About 30 mg of the resin were collected and dried to determine the loading of the resin. 

For this purpose, an exact amount of resin was treated with 1 mL deprotection solution 

(20 % piperidine in DMF) for 1 h. The solution was diluted and absorption was 

measured at 301 nm. The loading was then calculated according to the equation: resin 

load [mmol g-1] = (A•1000)•(m[mg]•7800•df)-1 with df as dilution factor. 

The resin was treated twice with 20 % piperidine in DMF and twice with 20 % piperidine 

DMF with 2 % DBU to remove the Fmoc protection group. The resin was washed with 

DMF, DCM and n-hexane and dried in vacuo. 

2.2.3 Oligomer and targeting and shielding agent synthesis 

Oligomers were synthesized using a 2-chlorotrityl resin preloaded with the first C-

terminal amino acid of the respective topology (see 2.2.2) as solid support. All 

sequences and topologies of oligomers can be found in Table 19, all sequences of 

targeting and shielding agents can be found in Table 20. Unless otherwise stated, 

coupling steps were carried out using 4 eq. Fmoc-amino acid, 4 eq. HOBt, 4 eq. 

PyBOP or HBTU and 8 eq. DIPEA (10 mL g−1 resin) for 90 min. General steps of a 

manual and automated synthesis are shown in Table 6 and Table 7. 

Table 6 General steps of a manual synthesis cycle 

Step Description Solvent Volume Time 

1 Coupling DCM/DMF 50/50 5 mL g-1 resin 90 min 

2 Wash DMF, DCM 10 mL g-1 resin 3 x 1 min DMF 
3 x 1 min DCM 

3 Kaiser test - - - 

4 Fmoc deprotection 20 % piperidine/DMF 10 mL g-1 resin 4 x 10 min 

5 Wash DMF, DCM 10 mL g-1 resin 3 x 1 min DMF 
3 x 1 min DCM 

6 Kaiser test - - - 
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Table 7 General steps of an automatic synthesis cycle 

Step Description Solvent Volume Time 

1  Coupling NMP/DMF 5 mL g-1 resin 90 min 

2  Double-coupling NMP/DMF 5 mL g-1 resin 90 min 

3  Wash DMF 8 mL g-1 resin 5 x 1 min 

4  Fmoc deprotection 20 % piperidine/DMF 7 mL g-1 resin 4 x 10 min 

5  Wash DMF 8 mL g-1 resin 5 x 1 min 

2.2.3.1 Synthesis of T-shapes 

After swelling of the preloaded resin, backbones were synthesized with an automated 

synthesizer as described in Table 7. Before deprotection of the central Dde group with 

2 % hydrazine solution, the N-terminal NH2-group was protected with 10 eq Boc 

anhydride and 10 eq DIPEA in DCM/DMF. In case of an N-terminal cysteine, Boc-

Cys(Trt)-OH was used. Dde-deprotection was performed 30 times with a Syro WaveTM 

synthesizer (Biotage, Uppsala, Sweden). Hydrazine–DMF solution 1 : 50 was added 

and vortexed for 2 min. The reaction solvent was drained and fresh solution was added 

again. Afterwards, the resin was washed with 5 × 1 min DMF 5 × 1 min 10 % 

DIPEA/DMF and 3 × 1 min DCM (10 mL g−1 resin). The following coupling steps were 

carried out using the manual protocol in Table 6. In case of a positive result of the 

Kaiser test after coupling, the last coupling step was repeated. In case of a negative 

result after deprotection, the last deprotection step was repeated (optionally with 2 % 

DBU added to 20 % piperidine solution). In case of coupling Fmoc-succinoyl-

cystamine, no HOBt was used and only DMF was used as solvent. All couplings after 

Fmoc-succinoyl-cystamine were carried out without HOBt. Symmetrical branching 

points were introduced using Fmoc-Lys(Fmoc)-OH, asymmetric branching in T-shape 

structures was introduced using Fmoc-Lys(Dde)-OH. 

2.2.3.2 Synthesis of OH-SteA-t 

The precipitated OleA-t used for OH-SteA-t synthesis was dissolved in TFA/DCM 95:5 

and stirred for 12 h at RT to generate TFA-SteA-t. TFA-SteA-t was precipitated in 

40 mL of pre-cooled MTBE/n-hexane 1:1. The identity of TFA-SteA-t was validated by 

mass spectrometry. The product was re-dissolved in 20 mM HEPES and incubated for 

12 h at room temperature to generate OH-SteA-t. 10-fold molar excess of TCEP was 

added and stirred at room temperature for 30 min. The oligomer was purified by HPLC 

and a white powder was obtained. 
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2.2.3.3 Synthesis of i-shapes 

After swelling of the preloaded resin, the structures were synthesized manually as 

described in Table 6. Symmetrical branching points were introduced using Fmoc-

Lys(Fmoc)-OH. In case of coupling Fmoc-succinoyl-cystamine, no HOBt was used and 

only DMF was used as the solvent (Kaiser tests are not always correct after the 

deprotection). All couplings after Fmoc-succinoyl-cystamine were carried out without 

HOBt. 

2.2.3.4 Synthesis of U-shapes 

After swelling of the preloaded resin, the structures were synthesized manually as 

described in Table 6. Symmetrical branching points were introduced using Fmoc-

Lys(Fmoc)-OH. In case of coupling Fmoc-succinoyl-cystamine, no HOBt was used and 

only DMF was used as solvent (Kaiser tests are not always correct after the 

deprotection). All couplings after Fmoc-succinoyl-cystamine were carried out without 

HOBt. 

2.2.3.5 Synthesis of apelin-derived PEGylated agents and GFP-conjugates 

After swelling of the preloaded resin, apelin-13 (H-QRPRLSHKGPMPF-OH), apelin-

F13A (H-QRPRLSHKGPMPA-OH) and apelin-13scr (H-HGFPRPQMPRLSK-OH) 

peptides were synthesized with an automated synthesizer as described in Table 7. 

The coupling of Fmoc-N-amido-dPEG24-acid and cysteine was carried out using the 

manual protocol in Table 6. Coupling of peptides or cationic lipo-oligomer 728 (GFP-

control) to GFP was performed analogous as described before.152 

2.2.3.6 Synthesis of DBCO2-PEG24-g7 agents 

After swelling of the preloaded resin, Fmoc-Lys(Fmoc)-OH, STOTDA and DBCO-acid 

were coupled using the manual protocol in Table 6. After cleavage using the conditions 

in section 2.2.5.4, (DBCO-STOTDA)2-K-PEG24-COOH was dissolved in DCM and 

each 1.5 eq. of N,N′-Diisopropylcarbodiimide (DIC) and N-Hydroxysuccinimide (NHS) 

were added in DCM. After 2 h incubation at RT, (DBCO-STOTDA)2-K-PEG24-NHS was 

precipitated in 40 mL of pre-cooled MTBE–n-hexane (1:4) and dried in vacuo. (DBCO-

STOTDA)2-K-PEG24-NHS was dissolved in DMF and 1.1 eq. of g7 or scrg7 were added 

in PBS 7.4. After 2 h of incubation at RT, the product was purified by HPLC and 

lyophilized. 
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2.2.4 Kaiser test 

Free amines of deprotected amino acids on the resin were determined qualitatively by 

the Kaiser test.153 A small sample of DCM washed resin was transferred into an 

Eppendorf reaction tube. One drop of each 80 % phenol in EtOH (w/v), 5 % ninhydrin 

in EtOH (w/v) and 20 μM potassium cyanide (KCN) in pyridine (mixture of 1 mL 

aqueous 0.001 M KCN solution and 49 mL pyridine) were added. The tube was 

incubated at 99 °C for 4 min under shaking. The presence of free amines was indicated 

by blue color. 

2.2.5 Cleavage conditions 

2.2.5.1 General cleavage conditions 

All oligomers containing neither oleic acid nor DBCO were cleaved off the resin by 

incubation with TFA–TIS–H2O (95:2.5:2.5) (10 mL g−1 resin) for 90 min. The cleavage 

solution was concentrated in a stream of nitrogen and oligomers were precipitated in 

40 mL of pre-cooled MTBE–n-hexane (1:1). All oligomers were purified either by size 

exclusion chromatography using an Äkta purifier system (GE Healthcare Bio-Sciences 

AB, Uppsala, Sweden), a Sephadex G-10 column and 10 mM hydrochloric acid 

solution–acetonitrile (7:3) as solvent or HPLC. All oligomers were lyophilized. 

2.2.5.2 Cleavage of test structures containing oleic acid for kinetic studies 

All oligomers were cleaved off the resin by incubation with TFA-EDT-H2O-TIS 

94:2.5:2.5:1 (10 mL g-1 resin, 5 mmol each) for certain times either at 20 °C, +4 °C or 

+22 °C. The cleavage solution and the resins were cooled to 4 °C before addition if not 

stated otherwise. The oligomers were immediately precipitated in 40 mL of pre-cooled 

MTBE/n-hexane 1:1. All oligomers were analyzed by HPLC-DAD at 280 nm.  

2.2.5.3 Cleavage of oligomers containing oleic acid 

The cleavage of oleic acid-containing structures was performed according to an 

optimized protocol by incubation with TFA-TIS-H2O 95:2.5:2.5 (10 mL g−1 resin cooled 

to 4 °C prior to addition) for 20 min followed by immediate precipitation in 40 mL of pre-

cooled MTBE–n-hexane (1:1). The oleic acid containing oligomers were then purified 

either by size exclusion chromatography using an Äkta purifier system (GE Healthcare 

Bio-Sciences AB, Uppsala, Sweden), a Sephadex G-10 column and 10 mM 
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hydrochloric acid solution–acetonitrile (7:3) as solvent or by HPLC. The oligomers were 

lyophilized. 

2.2.5.4 Cleavage of oligomers containing DBCO 

The cleavage of DBCO-containing structures was performed with DCM-TFA-TIS 

92.5:5:2.5 (10 mL g−1 resin) for 60 min followed by immediate precipitation in 40 mL of 

pre-cooled MTBE–n-hexane (1:4). The DBCO-containing oligomers were then purified 

by size exclusion chromatography using an Äkta purifier system (GE Healthcare Bio-

Sciences AB, Uppsala, Sweden), a Sephadex G-10 column and 10 mM hydrochloric 

acid solution–acetonitrile (7:3) as solvent and lyophilized.  

2.2.6 siRNA polyplex formation 

Nucleic acid and oligomers at indicated nitrogen/phosphate (N/P) ratios were diluted 

in 20 mM HEPES buffered 5 % glucose pH 7.4 (HBG) in separate tubes of equal 

volumes. 500 ng siRNA were dissolved in 10 µL HBG. Only protonatable nitrogens 

were considered in the N/P calculations (see Table 19). The siRNA solution was added 

into the lipo-oligomer solution, mixed by 5 × rapid pipetting and incubated for 40 min 

at RT. 

2.2.7 Polyplex modification with DBCO agents 

After polyplex formation, 1 eq. (representing the molar ratio of DBCO agents to 

oligomers in the polyplex solution) was added to the polyplex solution. The reaction 

time was 4 h. 

2.2.8 siRNA binding assays 

An agarose gel was prepared by boiling of 1 % agarose in TBE buffer (10.8 g of trizma 

base, 5.5 g of boric acid, 0.75 g of disodium EDTA, and 1 L of water). After cooling 

down to about 50 °C, GelRed™ was added. Polyplexes in 20 µL volume were pipetted 

into the sample pockets after 4 µL of loading buffer (prepared from 6 mL of glycerol, 

1.2 mL of 0.5 M EDTA, 2.8 mL of H2O, 0.02 g of bromophenol blue) was added. 

Electrophoresis was performed at 100 V for 40 min in TBE buffer.  

2.2.9 siRNA polyplexes under reducing conditions 

Polyplexes were formed at N/P ratio 20 with 500 ng siRNA in 20 µL. After polyplex 

incubation, 5 µL of a GSH solution were added to 20 µL of the polyplex solution. The 
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GSH stock solution had a concentration of 50 mM and pH was adjusted to 7.4. It was 

diluted to concentrations of 5 mM and 0.5 mM. Consequently, the resulting solutions 

had the final concentrations 0.1 mM, 1 mM and 10 mM, respectively. HBG was used 

as negative control (0 mM GSH). The solutions were incubated at 37 °C for 90 min. 

5 µL loading buffer was added and a siRNA binding assay was performed. 

2.2.10 siRNA polyplex stability in 90 % serum  

Polyplexes were formed using 2.5 μg siRNA in 6.25 μL HBG mixed with the lipo-

oligomer at N/P 12 resulting in a total volume of 12.5 μL. After incubation for 40 min, 

112.5 μL fetal calf serum (FCS) was added to the samples. All samples had a final 

concentration of 90 % FCS. The samples were incubated at 37 °C for the indicated 

time. 20 μL of the samples were put into the sample pockets after 4 μL of loading buffer 

was added. Electrophoresis was performed at 100 V for 40 min as described above. 

2.2.11 Particle size and zeta potential 

For dynamic light scattering (DLS) measurements the polyplex solution was measured 

in a folded capillary cell (DTS 1070) using a Zetasizer Nano ZS with backscatter 

detection (Malvern Instruments, Worcestershire, UK). Polyplexes were prepared at the 

indicated N/P in a total volume of 100 µL. For size (z-average) and polydispersity index 

(PDI) measurements, the equilibration time was 0 min, the temperature was 25 °C and 

an automatic attenuator was used. The refractive index of the solvent was 1.330 and 

the viscosity was 0.8872 mPa•s. Each sample was measured 3 times. For zeta 

potential measurements, the sample was diluted with 700 µL 10 mM NaCl (pH 7.4). 

Zeta potentials were calculated by the Smoluchowski equation. Ten to fifteen sub runs 

lasting 10 s each at 25 °C (n = 3) were measured. 

2.2.12 Ellman´s assay 

Oligomers containing the ssbb or cysteines were diluted to a concentration of 

1.67 mg mL-1. 30 µL of the solution was mixed with 170 µL working solution (2.44 mL 

Ellman´s buffer (0.2 M Na2HPO4, 1 mM EDTA, pH 8.0) and 60 µL DTNB solution in 

methanol (c = 4 mg mL-1)). After 15 min incubation at 37 °C absorption was measured 

at 412 nm using a GENESYSTM UV-VIS spectrophotometer (Thermo Scientific). The 

percentage of free mercapto groups is based on the theoretical amount (100 %) of 

thiols in case of complete cleavage. 
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2.2.13 Oligomer digestion with cathepsin B 

A cathepsin B solution (0.379 mg mL-1, 331 U mg-1) was added to an acetate-

incubation buffer (sodium acetate 0.1 M, EDTA 1 mM and DTT 1 mM, pH 5.5) and 

activated for 5 min at 22 °C under constant shaking. The activated enzyme was added 

to the oligomer or polyplex sample to reach a final concentration of 0.25 µM cathepsin 

B. Test structures were incubated for 2 h at 37 °C at a final concentration of 0.5 mM. 

Lipo-oligomers were incubated for 24 h at 37 °C at a final concentration of 0.125 mM. 

Polyplexes formed with lipo-oligomers and siRNA at indicated N/P ratios were 

incubated for 24 h at 37 °C at a final concentration of 500 ng siRNA in 50 µL reaction 

mixture. For MALDI mass spectrometry, 1 μL of the reaction mixture was pipetted on 

top of a MF-Millipore membrane filter placed in 2 L deionized water and microdialyzed 

for 60 min. 

2.2.14 Erythrocyte leakage assay 

Fresh, citrate-buffered human blood was washed with phosphate-buffered saline 

(PBS). The washed human erythrocyte suspension was centrifuged and the pellet was 

diluted to 5 × 107 erythrocytes per mL with PBS (pH 7.4, 6.5 and 5.5). In case of GSH 

treatment, oligomers were incubated in 10 mM GSH in HEPES (pH adjusted to 7.4) at 

a concentration of 1 mg mL-1 at 37 °C for 90 min. To determine the lytic activity at the 

endolysosomal pH 5.5 before and after digestion with cathepsin B, the oligomer 

solution was either incubated with incubation buffer only or incubation buffer with 

cathespin B before dilution with PBS at pH 5.5. A volume of 75 μL of erythrocyte 

suspension and 75 µL of oligomer solution (previously diluted with PBS of the 

respective pH to the indicated concentration) were added to each well of a V-bottom 

96-well plate (NUNC, Denmark). The plates were incubated at 37 °C under constant 

shaking for 1 h. After centrifugation, 100 µL of the supernatant was analyzed for 

hemoglobin release at 405 nm wavelength using a microplate reader (Spectrafluor 

Plus, Tecan Austria GmbH, Grödig, Austria). 

2.2.15 Gene silencing with siRNA 

Gene silencing experiments were performed in Neuro2A/eGFPLuc, KB/eGFPLuc, 

Huh7/eGFPLuc or DU145/eGFPLuc cells. The siRNA against eGFP (siGFP) for 

silencing the eGFPLuc gene or its control sequence (siCtrl) was used. Silencing 

experiments were performed in triplicates in 96-well plates with 5000 cells for 
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Neuro2A/eGFPLuc, Huh7/eGFPLuc and DU145/eGFPLuc cell line or 4000 cells for 

KB/eGFPLuc cell line and 500 ng siRNA per well. Cells were seeded 24 h prior to 

transfection and then medium was replaced with 80 μL fresh growth medium 

containing 10 % FBS. Transfection complexes for siRNA delivery (20 μL in HBG, 

prepared as described above) at different N/P ratios were added to each well and 

incubated at 37 °C. Medium was replaced with 100 µL fresh medium after 45 min in 

case of targeted polyplexes and after 4 h in case of lipo-oligomers with enzymatic 

cleavage sites. Luciferase activity in the cell lysate was measured 48 h after initial 

transfection using a luciferase assay kit (Promega, Mannheim, Germany) and a Centro 

LB 960 plate reader luminometer (Berthold Technologies, Bad Wildbad, Germany). 

The experiments were performed in triplicates, and the relative light units (RLU) were 

presented as percentage of the luciferase gene expression obtained with HBG-treated 

control cells. 

2.2.16 Cell viability assay (MTT) 

MTT assays were performed using Huh7/eGFPLuc or DU145/eGFPLuc cells. 5 × 103 

cells per well were seeded onto 96-well plates, and medium was replaced with 80 μL 

fresh growth medium after 24 h. Polyplex or oligomer solutions were added to each 

well in 20 µL volume and incubated for 4 h at 37 °C. The medium was replaced with 

100 μL fresh growth medium and the cells were incubated for additional 44 h at 37 °C. 

MTT assay (Life Technologies, Darmstadt, Germany) was performed and measured 

using a SpectraFluor Plus microplate reader to evaluate the cytotoxicity. The 

experiments were performed in triplicates and the cell viability was calculated as 

percentage compared to untreated control cells. 

2.2.17 Cell viability assay (CellTiter-Glo® assay) 

CellTiter-Glo® assays were performed using Neuro2A/eGFPLuc or DU145/eGFPLuc 

cells. 5000 cells per well were seeded on 96-well plates, and medium was replaced 

with 80 μL fresh growth medium after 24 h. Polyplexes in 20 µL volume at indicated 

N/P ratios was added to each well and incubated for 48 h at 37 °C. Cell viability was 

measured using CellTiter-Glo® (Promega, Dübendorf, Switzerland) and a Centro LB 

960 plate reader luminometer (Berthold Technologies, Bad Wildbad, Germany). 
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2.2.18 Identification of degradation products from cell lysates 

Human hepatoma Huh7-eGFPLuc cells were transfected with polyplexes at N/P 20 as 

described in the reporter gene silencing section. A protocol for the identification of 

mammalian cell lines using MALDI-TOF mass spectrometry154 was adapted as follows: 

After transfection, medium was removed and the cells were resuspended in 100 μL of 

a 10 mg mL-1 solution of sDHB in acetonitrile/water (3:7) with 0.1 % (v/v) TFA. The cell 

suspension was stored at -80 °C for 1 h. Then the cell lysate was sonicated for 5 min 

at 22 °C. One μL of the sample solution was added on a dried sDHB matrix spot and 

MALDI mass spectrometry was performed. 

2.2.19 Specific GFP-apelin internalization 

The internalization assay was performed on GBM14 GSCs. The cells were plated at a 

density of 10.000 cells/well on a glass coverslip previously coated with poly-D-lysin 

50 μg mL-1 followed by laminin 50 μg mL-1. The day after, the medium was replaced 

with 200 μL of fresh medium and the N-terminally GFP-conjugated apelin-13, apelin-

F13A, apelin-13scr (containing the scrambled amino acid sequence of apelin-13) or 

GFP-linked cationic lipo-oligomer 728152, 155 were added to the cells for 120 min at 

37 °C. For the competition experiment, unlabelled apelin-13 or apelin-F13A was added 

to the GBM14 cells 30 min prior to the addition 200 nM GFP-apelin-13 or GFP-apelin-

F13A, respectively. After that, cells were fixed for 30 min with 4 % PFA and incubated 

for 10 min at room temperature with WGA-594 1:200 and DAPI 1:1000 diluted in 

1 × PBS washed and mounted on a glass slide with Dako Fluorescent Mounting 

Medium. The pictures were taken at the Leica SP8X WLL upright confocal microscope 

or at the Leica SP5 inverted confocal microscope, with the LAS X software, and 

analysed with ImageJ. For the quantification of the GFP-positive cells, 6 pictures per 

condition were used, and for each picture the data were measured as number of GFP-

positive cells on the total number of cells. 

2.2.20 HPLC analysis 

For kinetic studies of test structures containing oleic acid, samples were dissolved in 

H2O containing 0.1 % formic acid (HCOOH). Column: YMC-UltraHT Hydrosphere C18, 

150 x 4.6 mm,5 μm, 12 nm. Conditions: A: 0.1 % HCOOH in H2O; B: 0.1 % HCOOH in 

ACN; 5 % B for 5 min, 5-45 % B in 15 min, 45 % B for 10 min; 1.00 mL min-1, 35 °C, 

280 nm.  
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For purification of lipo-oligomers, samples were dissolved in H2O/MeOH 60:40 

containing 0.1 % TFA. Column: YMC-Pack C4, 250 x 10 mm, 5 μm, 12 nm. Conditions: 

A: 0.1 % TFA in H2O/MeOH 60:40; B: 0.1 % TFA in ACN; 0 % B for 10 min, 0-90 % B 

in 40 min, 90 % B for 10 min; 2.00 mL min-1, 35 °C, 280 nm.  

To analyze the cathepsin B-triggered cleavage of the test structures, samples were 

dissolved in H2O containing 0.1 % TFA either before or after digestion. Column: YMC-

UltraHT Hydrosphere C18, 150 x 4.6 mm, 5 µm, 12 nm. Conditions: A: 0.1 % TFA in 

H2O; B: 0.1 % TFA in ACN; 5 % B for 5 min, 5-90 % B in 10 min, 90 % B for 5 min; 

1.00 mL min-1, 30 °C, λ = 280 and 370 nm. Chromatograms were recorded using a 

Chromaster HPLC-DAD system by VWR Hitachi and analyzed using Chromaster 

System Manager (Ver. 1.1 by Hitachi).  

The redox-sensitivity of oligomer 740 was analyzed by RP-HPLC using a Waters HPLC 

system equipped with a Waters 600E multisolvent delivery system and a Waters 996 

PDA detector. The compounds were analyzed using a Xbridge C18 column (5 μm, 

4.6 x 150 mm) and a water/acetonitrile gradient (95:5 – 0:100) containing 0.1 % TFA. 

For detection, the extinction at 280 nm was monitored. 

2.2.21 Proton 1H NMR spectroscopy 

1H NMR spectra were recorded using an AVANCE III HD 500 (500 MHz) by Bruker 

with a 5 mm CPPBBO probe. All spectra were recorded without TMS as internal 

standard and therefore all signals were calibrated to the residual proton signal of the 

deuterium oxide (D2O) solvent. Chemical shifts are reported in ppm and refer to the 

solvent as internal standard (D2O at 4.79). Integration was performed manually. The 

spectra were analyzed using MestreNova (Ver. 9.0 by MestReLab Research). 

2.2.22 MALDI mass spectrometry 

A drop of 1 μL matrix solution, consisting of 10 mg mL-1 sDHB (sum of 2,5-

dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid) in acetonitrile/water 

(3:7) with 0.1 % (v/v) TFA, was spotted on a MTP AnchorChip (Bruker Daltonics, 

Bremen, Germany). After the sDHB matrix crystallized, 1 µL of the sample solution 

was added on the matrix spot. Samples were analyzed in positive ion mode using an 

Autoflex II mass spectrometer (Bruker Daltonics, Bremen, Germany). 
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2.2.23 Statistical analysis 

The results are presented as mean values of experiments performed in at least 

triplicates. Unless otherwise stated, error bars show standard deviation (SD). 

Significance was evaluated by unpaired t test: *p < 0.05; **p < 0.01; ***p < 0.001. Two-

tailed Student's t-test, calculations and graphical presentation were performed with 

Prism 6.01 (GraphPad Software Inc.). 
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3 Results 

3.1 Optimized Solid-Phase-Assisted Synthesis of Oleic Acid Containing 

siRNA Nanocarriers 

This chapter has been adapted from: 

S. Reinhard, W. Zhang, E. Wagner, Optimized Solid-Phase-Assisted Synthesis of 

Oleic Acid Containing siRNA Nanocarriers, ChemMedChem 12(17) (2017) 1464-1470. 

Lipo-polyplexes assemble upon mixing of cationic lipids or lipo-oligomers with nucleic 

acids and association is driven by intermolecular hydrophobic and electrostatic 

interactions. Such carriers provide high plasmid DNA (pDNA) or siRNA polyplex 

stability and transfection efficacy.37, 57, 156-158 Minor variations in the different subunits 

(polar head group, hydrophobic tails, linkages) have significant influence on the 

bioactivity of cationic lipids.38, 159 Well known cationic lipids like DOPE, DOTMA and 

DOSMA contain the cis-unsaturated fatty acid (FA) oleic acid and were first used to 

efficiently delivery DNA and mRNA in 1987 and 1989 respectively.160-163 Cationic lipids 

containing cis-unsaturated FAs can promote membrane lipid disorders by interacting 

with anionic phospholipids.164 The fusion between two lipid membranes is mediated by 

a lamellar-to-hexagonal inverted phase transition.165-168 This process is promoted by 

cone-shaped cationic lipids, where the cross-sectional area of the hydrophilic head 

groups is smaller than that of the hydrophobic tails.37, 169-172 Double bonds or other 

modifications of hydrocarbon moieties can lead to broader conical shapes by 

increasing its steric demands and fluidity, thereby elevating the tendency to form the 

hexagonal phase during membrane fusion events.159, 172 Cationic carriers with 

unsaturated fatty acids and amino acids can be produced by solid-phase-assisted 

synthesis or in solution.43, 44, 64, 129, 172-175 However, the trifluoroacetic acid (TFA)-

mediated cleavage of acid-labile protecting groups and the oligomer from the resin (in 

case of SPS) is accompanied by side reactions as TFA adds to double bonds of 

alkenes.176-184 The resulting TFA esters are readily hydrolyzed in neutral or basic 

aqueous solution, generating hydroxylated hydrocarbons. Such side products can 

drastically lower the yield of the synthesis or, if not purified properly, might affect the 

properties of the nucleic acid carrier. In this chapter, we investigated the reaction 

kinetics of the addition of TFA to the mono-unsaturated oleic acid (C18:1) during TFA-
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mediated cleavage. The cleavage protocol was optimized in terms of temperature and 

time to minimize side products caused by TFA addition to oleic acid, while ensuring 

complete cleavage of the oligomer from the resin and of acid-labile protecting groups. 

The optimized protocol was used to obtain a purified oleic acid containing T-shape lipo-

oligomer (OleA-t) in high yields. The same oligomer was modified by long-time 

treatment with TFA followed by TFA-ester hydrolysis, generating a mono-hydroxylated 

hydrocarbon chain (OH-SteA-t) to investigate how this reaction might affect the nucleic 

acid carrier. A lipo-oligomer with 8-nonanamidooctanoic acid moieties (NonOcA-t) was 

synthesized as an alternative analog including a polar amide bond. Together with a 

lipo-oligomer containing the unsaturated C18 FA stearic acid (SteA-t), all carriers were 

evaluated regarding their nucleic acid delivery characteristics such as siRNA binding 

and lytic potential of oligomers, gene silencing efficacy and cytotoxicity of lipo-

polyplexes. 

3.1.1 Synthesis of test structures and reaction kinetics of addition of TFA to 

oleic acid 

Functional groups of amino acid side chains in standard Fmoc-based solid-phase 

assisted synthesis need to be protected orthogonally to the base-labile Fmoc 

protecting. Acid-labile protecting groups like OtBu for carboxylic acids (Glu, Asp), tBu 

for thiols and hydroxyl groups (Cys, Ser, Thr, Tyr), Trt for thiols, carboxamides and 

imidazoles (Cys, Asn, Gln, His) and Boc for amino groups, imidazoles and indols (Lys, 

His, Trp) are common choices which, according to literature, should be cleaved with at 

least 50 % TFA (Trt on His) and up to 90 % TFA (Boc, OtBu, tBu, Trt on Cys) for 30 min 

at room temperature.185 Commonly used linker resins for SPS like Wang, Rink acid 

and -amide and chlorotrityl resins also require TFA treatment for peptide cleavage.185 

Such TFA-mediated cleavage of protecting groups and product from the resin can 

corrupt the double bonds of unsaturated fatty acids. TFA can protonate alkene groups 

which enables nucleophilic addition of a trifluoroacetate anion. As trifluoroacetate is a 

weak nucleophile, the addition is the rate-limiting step of the reaction.177 The addition 

results in four mono-TFA esters as major side products (R and S configuration for each 

hydrocarbon group) in case of linear hydrocarbon chains with a central double bond 

like in oleic acid (Fig. 7A and 7B).  
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Fig. 7 A) Reaction mechanism of TFA addition to double bonds and subsequent TFA ester 

hydrolyzation. B) Test structure CK2Y2-OleA and the four major side products after TFA-mediated 

cleavage. C) HPLC chromatogram of CK2Y2-OleA after 30 min cleavage at 22 °C and MALDI spectrum. 

 

However, carbocation rearrangement might occur after electrophilic protonation in 

absence of a good nucleophile, leading to minor amounts of further side products.176 

Complete cleavage of acid-labile protecting groups has to be ensured when an 

optimized cleavage protocol with low amounts of TFA adducts is established. Three 

test structures with common protecting groups (Trt, Boc, tBu and OtBu) were 

synthesized and cleaved at different temperatures (Table 8).  
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Table 8 Evaluation of cleavage time and temperature for sufficient cleavage of acid-labile protecting 

groups 

  Sufficient cleavage time at indicated 
temperature [min][a] 

 

Test structure Protecting groups -20 °C 4 °C 22 °C 

Stp-W-OleA Boc (Stp, W) 
x[b] 120 15 

CKEHEK-OleA Trt (C, H); Boc (K); OtBu 
(E)  

x[b] 120 20 

CK2Y2-OleA Trt (C); Boc (K); tBu (Y)  
not tested 120 15 

[a] Cleavage solution (TFA/H2O/EDT/TIS 94:2.5:2.5:1, 1 mL) was precooled to 4 °C before addition to 

the resin (5 µmol oligomer). Detection of uncleaved protecting groups by MALDI mass spectrometry [b] 

Not determined because of very low yields and high amounts of uncleaved protecting groups after 

360 min cleavage time. 

The temperature strongly influenced the cleavage of acid-labile protecting groups. 

While 15-20 min at 22 °C were sufficient for complete cleavage, side products with 

remaining protecting groups could be observed at 4 °C when the cleavage time was 

less than 120 min. The sufficient time for cleavage at -20 °C was not determined, as 

both yield and cleavage efficacy were poor after 360 min. The test structure CK2Y2-

OleA, containing Trt-, Boc- and tBu-protected amino acids and the unsaturated oleic 

acid, was used to determine the reaction kinetics of the TFA addition at 4 °C and 22 °C. 

TFA adducts could be observed both in MALDI spectra and HPLC chromatograms 

(Fig. 7C). In accordance with literature, first-order rate behavior was observed and the 

rate constant was evaluated from a first-order plot of the HPLC quantification (Table 

9).176, 177, 184  

Table 9 Reaction kinetics of addition of TFA to CK2Y2-OleA at different cleavage temperatures[a] 

Temperature [°C] k x 104 [sec-1][b] T1/2 [min] TFA adducts after complete 
cleavage [%][c] 

22 0.802 104 7.4 

4 0.197 423 15.2 

[a] Cleavage solution (TFA/H2O/EDT/TIS 94:2.5:2.5:1, 1 mL) precooled to 4 °C before addition to resin 

(5 µmol oligomer). [b] Rate constant from a first-order plot of HPLC quantification. [c] TFA adducts after 

sufficient cleavage time (120 min at 4 °C and 20 min at 22 °C) of protecting groups and product from 

resin as determined by HPLC quantification. 
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The rate constant at 22 °C is almost five times higher than at 4 °C and the half-life time 

of the unsaturated oleic acid is accordingly reduced. However, the sufficient cleavage 

of acid-labile protecting groups has to be considered for an optimized cleavage 

protocol. 20 min was determined as sufficient cleavage time at 22 °C for all three test 

structures. After that time, 7.4 % TFA adducts were measured by HPLC quantification. 

At 4 °C, at least 120 min were necessary for sufficient cleavage of protecting groups, 

after which 15.2 % of TFA adducts were quantified. Although lowering the temperature 

slows down the TFA adduct formation, the cleavage of acid-labile protecting groups 

seems to be reduced even more. All cleavage solutions were adjusted to 4 °C before 

addition to the resins.  

The precooling of the cleavage solution is important, as exothermic cleavage of 

protecting groups and the product from the resin increases the temperature of the 

cleavage solution after addition. Significantly higher amounts of TFA adducts were 

detected when the cleavage solution was added at room temperature (Table 10).  

Table 10 Influence of oligomer sequence and temperature of the cleavage solution before addition to 

the resin[a] 

Test structure 
Temperature of 
cleavage solution [°C] 

Amount of TFA adducts [%] Alkene scavenger 

CK2Y2-OleA 4 11.6 x 

CK2Y2-OleA 4 11.8 cis-2-Hexene 

CK2Y2-OleA 4 12.6 Cyclohexene 

CK2Y2-OleA 22 20.0 x 

Stp-W-OleA 4 11.7 x 

[a] Cleavage time 30 min at 22 °C. Cleavage solution (TFA/H2O/EDT/TIS 94:2.5:2.5:1 or 

TFA/Alkene/H2O/EDT/TIS 90:4:2.5:2.5:1, 1 mL) was precooled to 4 °C or kept at 22 °C before addition 

to the resin (5 µmol oligomer). Quantification by HPLC-DAD at 280 nm 

Quantification of TFA adducts on a Stp-W-OleA test structure confirmed that the 

sequence of the oligomer does not influence the amount of adducts (Table 10). Adding 

a >100-fold molar excess of cyclohexene or cis-2-hexene to the cleavage solution did 

not reduce the percentage of TFA adduct formation (Table 10). SPS products are 
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usually precipitated in cold ether and/or hexane after TFA-mediated cleavage. To 

enhance the yield, the precipitation is often done after evaporation of TFA and volatile 

scavengers.185 This step should obviously be avoided when the structures contain 

unsaturated FAs.  

3.1.2 T-shape lipo-oligomers containing oleic acid and analogs with saturated 

or modified hydrophobic moieties 

The optimized cleavage protocol, including precooling of the cleavage solution to 4 °C 

before adding to the resin, 20 min cleavage time at 22 °C followed by immediate 

precipitation in cold t-butyl methyl ether/n-hexane was used to obtain an oleic acid 

containing T-shape lipo-oligomer OleA-t (Fig. 8) in good yield (overall 65 %).  

 

Fig. 8 Sequence-defined lipo-oligomers with T-shape topology. Top: schematic overview of the 

structures with different modifications (C: cysteine, Y: tyrosine, K: lysine, Stp: succinoyl-tetraethylene-

pentamine. The broken lines represent amide linkages. Bottom: lipo-polyplex assembly upon mixing of 

lipo-oligomers with siRNA 
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In a separate approach, the resin was treated for 12 hours with TFA to ensure complete 

modification of the double bonds, followed by TFA ester hydrolysis at pH 7.4 for 

12 hours, generating a mono-hydroxylated hydrocarbon chain (OH-SteA-t). This 

structure represents the major side product of the OleA-t synthesis and can be used 

to study the influence of the TFA-induced hydrocarbon chain modification. As 

additional structure with polar modification, a lipo-oligomer with 8-nonanamidooctanoic 

acid moieties (NonOcA-t) was synthesized. Amide bonds are chemically far more 

stable than double bonds and could present an alternative to unsaturated fatty acids 

with regard to perturbation of the aliphatic chain. Last not least, stearic acid as 

saturated C18 FA (SteA-t) was incorporated in another reference structure to further 

evaluate the influence of the hydrocarbon chain modifications. By this approach, any 

differences between the lipo-oligomers can be attributed to the hydrocarbon moieties, 

as the rest of the structures was retained unchanged. The oligocation part of the 

structures contains several Stp units as artificial oligoamino acids for nucleic acid 

binding and endosomal protonation,42 and α,ε-modified lysines (K) as branching units. 

The cationic part was further equipped with tyrosine trimers (Y3)64 for additional 

hydrophobic polyplex stabilization and cysteines (C) for stabilizing disulfide 

crosslinking during polyplex formation by air oxygen.43, 173 The lipo-oligomers were 

purified by HPLC. The presence of the free thiol groups was confirmed by Ellman´s 

assay (Table 11).  

Table 11 Determination of free thiols in oligomers via Ellman´s assay 

Oligomer Free thiols [% of calculated][a] 

OleA-t 87 

OH-SteA-t 84 

SteA-t 80 

OcNonA-t 87 

[a] Determined as percentage of calculated thiols based on weighted samples. Deviation from 100 % 

might be due to residual water or salt and premature oxidation of thiols.  
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All carriers form lipo-polyplexes upon mixing with siRNA and were evaluated regarding 

their analytical, biophysical (Fig. 9) and biological (Fig. 10) characteristics. Analytical 

characterization by MALDI mass spectrometry showed high purity without side 

products (Fig. 9A).  

 

 

Fig. 9 A) Analytical characterization of the T-shape lipo-oligomers OleA-t and OH-SteA-t by MALDI 

mass spectrometry. B) Biophysical characterizations of lipo-polyplexes formed with oligomers and 

siRNA at N/P 12 by DLS. B) Agarose gel shift assays. Top: siRNA binding at different N/P ratios. Bottom: 

Lipo-polyplexes formed at N/P 12 and subsequent treatment at 37 °C with 90 % serum (FCS). The black 

arrow points at a band that is caused by serum (see serum blank in band one) 

 

The particle sizes of formed siRNA lipo-polyplexes were measured by dynamic light 

scattering (DLS). All formulations showed uniform sizes just below 150 nm z-average. 

(Fig. 9B, Table 12). Positive zeta potentials, ranging from +39 to +46 mV, were 

detected due to the cationizable properties of the oligomers (Table 12).  
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Table 12 Particle size (z-average), polydispersity index (PDI) and zeta potential of siRNA lipo-polyplexes 

determined with a DLS zetasizer 

Oligomer N/P z-average [nm] Mean PDI 
Mean zeta 
potential [mV] 

OleA-t 12 
147.7 ± 2.2 0.13 ± 0.02 40.7 ± 1.2 

OH-SteA-t 12 
146.1 ± 3.0 0.19 ± 0.00 39.0 ± 1.2 

SteA-t 12 
145.9 ± 2.0 0.15 ± 0.02 45.7 ± 0.6 

NonOcA-t 12 
149.3 ± 2.5 0.14 ± 0.01 47.5 ± 1.2 

 

The uniform size distribution with low polydispersities and similar z-averages and zeta 

potentials render T-shape oligomers well-suited for the evaluation of structure-activity 

relationships. siRNA binding ability of the lipo-oligomers was determined by measuring 

the electrophoretic mobility of siRNA in a 2.5 % agarose gel. The N/P values depict the 

ratio of protonatable amines (N) of the oligomer to phosphates (P) of the siRNA. As 

the diaminoethylene motif of Stp is pH-responsive, not all protonatable amines are 

protonated at neutral pH, which is why the N/P ratio does not present charge ratios 

during polyplex formation. All lipo-oligomers showed similar siRNA binding abilities 

with sufficient binding at N/P ≥ 12 (Fig. 9C top). Polyplexes were exposed to 90 % full 

serum at 37 °C for two and 24 hours (Fig. 9C bottom). This assay can be indicative for 

extracellular stability, as the incubation with full serum at body temperature partly 

resembles the blood stream. None of the lipo-polyplexes released siRNA after two 

hours of incubation. After 24 hours, small amounts of siRNA were released from 

polyplexes with unsaturated or modified hydrocarbon chains (OleA-t, OH-SteA-t and 

NonOcA-t). The lipo-polyplexes formed with the saturated structure SteA-t did not 

release siRNA after 24 hours, indicating a slight benefit in long-term extracellular 

stability of this formulation. This is in accordance with the concept of higher steric 

requirement of the unsaturated or modified hydrocarbon chains, resulting in less 

hydrophobic polyplex stabilization compared to the saturated counterpart. Altogether, 

no significant differences in size, zeta potential, siRNA binding and lipo-polyplex 

stability could be observed comparing the unsaturated oleic acid containing lipo-

oligomer OleA-t to the OH-SteA-t and NonOcA-t structures.  
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3.1.3 Lytic activity, cell tolerability and transfection efficiency of T-shape lipo-

oligomers 

Changes in the hydrocarbon chain might alter the interaction of the lipo-oligomers with 

the membrane lipids, resulting in different membranolytic potentials. This was 

assessed in an erythrocyte leakage assay comparing the lysis of erythrocyte 

membranes at different concentrations and pH values. (Fig. 10A)  

 

Fig. 10 A) Erythrocyte leakage triggered by lipo-oligomers at different concentrations and pH values. 

Negative control (hemoglobin release from PBS-treated erythrocytes) was set to 0 %. Triton X treatment 

served as positive control and was set to 100 %. Data are presented as mean value (± SD) out of 

quadruplicates. B) Gene silencing by siRNA lipo-polyplexes in neuroblastoma cells (left) and human 

prostate cancer cells (right). Lipo-polyplexes with 500 ng (37 pmol) eGFP-targeted siRNA (siGFP) per 

well respectively control siRNA (siCtrl) at N/P 12 and 20 were tested for eGFPLuc gene silencing in 

Neuro2A-eGFPLuc and DU145-eGFPLuc cells. The luciferase activity of siRNA treated cells is 

presented related to buffer treated cells. HBG-treated cells were set to 100 %. Data are presented as 

mean value (±SD) out of triplicates. Transfections were performed by Dr. Wei Zhang (Pharmaceutical 

Biotechnology, LMU). 

 

All four lipo-oligomers showed the desirable increase in lytic activity at slightly acidic 

pH as occurring after cellular endocytosis. This is in accordance with the progressive 

protonation of the Stp-units, increasing the cationic character beneficial for lipid 

membrane binding. The structures with unsaturated or modified hydrocarbon chains 

displayed significantly higher lytic activity than the saturated SteA-t oligomer. The 

steric requirement of the OleA-, OH-SteA- and NonOcA-moieties presumably results 
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in a broader conical shape of the lipo-oligomers, increasing their lytic potential as 

expected. Interestingly, both OH-SteA-t and NonOcA-t showed significantly higher 

erythrocyte lysis at pH 7.4 with 3-fold and 4.5-fold increase compared to OleA-t. This 

might result in increased cellular internalization on the one hand, but in undesired 

cytotoxicity on the other hand, as cell membrane lysis might occur prematurely at the 

cell surface or may affect intracellular membranes after endosomal release of lipo-

oligomers into the cytosol. OleA-t showed particularly favorable pH dependency of 

membranolytic activity with low lysis at pH 7.4, while having similar lytic activity as OH-

OleA-t and NonOcA-t at lower pH values. Gene silencing experiments were 

performed in Neuro2A neuroblastoma cells and DU145 human prostate cancer cells 

stably expressing an eGFP-Luciferase fusion protein. Thus, silencing by siGFP (light 

bars) can be quantified by a standard luciferase assay (resulting in luciferase activity 

decrease); treatment with analogous control siCtrl (black bars) should maintain 

luciferase activity close to 100 % unless unspecific effects take place (Fig. 10B). In 

Neuro2A cells, similar gene silencing efficacy was observed for both OleA-t and OH-

SteA-t. This is presumably due to the tolerance of N2A cells towards the elevated lytic 

activity of OH-SteA-t at neutral pH. If unspecific toxicity is not an issue, the transfection 

efficacy in vitro is mainly driven by the endosomolytic potential of the carrier. In DU145 

cells, lipo-polyplexes formulated with OH-SteA-t and control siRNA showed reduced 

luciferase activity, indicating unspecific toxicity of the formulations, while OleA-t 

formulations displayed high cell tolerability and high gene silencing efficacy. SteA-t 

showed low gene silencing activity in both cell lines, in accordance with the low lytic 

activity of the lipo-oligomer. Reduced luciferase levels were observed for NonOcA-t 

lipo-polyplexes formulated with control siRNA at the higher N/P 20 in N2A cells, and 

for both N/P ratios in DU145 cells. This can be explained by unspecific cytotoxicity, as 

confirmed by measuring metabolic cell activities compared to untreated cells via a 

CellTiter-Glo® assay as an indicator for cell viability (Fig. 11). High metabolic activities 

of cells treated with OleA-t and SteA-t polyplexes, on the other hand, reaffirmed their 

high cellular compatibility. Apparently, alterations of the unsaturated fatty acids by TFA 

mediated cleavage after SPS, leading to TFA esters and subsequently mono-

hydroxylated hydrocarbon chains, have the potential to enhance the lytic activity at 

physiological pH and therefore can increase the cytotoxicity of lipo-oligomers. 

Introducing an amide bond as an alternative to unsaturated FAs even enhanced this  
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Fig. 11 Cell viability of murine neuroblastoma cells (left) and human prostate cancer cells (right) 

determined by CellTiter-Glo®. Lipo-polyplexes with 500 ng (37 pmol) eGFP-targeted siRNA (siGFP) per 

well respectively control siRNA (siCtrl) at N/P 12 and 20 were tested for cytotoxicity in Neuro2A-

eGFPLuc and DU145-eGFPLuc cells. The metabolic activity of cells incubated with siRNA complexes 

for 48 h at 37 °C is presented related to buffer treated cells. HBG-treated cells were set to 100 %. Data 

are presented as mean value (±SD) out of triplicates. Gene silencing as shown in main Figure 4 B was 

performed under same conditions. Cell viability assays were performed by Dr. Wei Zhang 

(Pharmaceutical Biotechnology, LMU). 

 

effect. DU145 cells seemed to be more sensitive to changes in lytic potential as 

cytotoxic effects were predominantly observed in this cell line. The comparison with 

the chemically stable saturated FA stearic acid, however, confirmed that steric 

modification of the hydrophobic domain (such as by cis- double bonds in oleic acid or 

linoleic acid) is needed for enhanced lipid membrane interaction and to achieve 

efficient gene silencing efficacy mediated by high lytic potential throughout the 

endosomal acidification. Analogous studies with a linoleic acid containing lipo-oligomer 

confirm both the possibility of TFA adduct formation and the measures to avoid them 

(Fig. 12 and Analytical Data in section 6.4) 

 

Fig. 12 Schematic overview of the structure LinA-t with linoleic acid and different modifications (C: 

cysteine, Y: tyrosine, K: lysine, Stp: succinoyl-tetraethylene-pentamine. The broken lines represent 

amide linkages. Analytical data of the purified LinA-t, as well as of the side product OH-(C18:1)-t 

resulting from TFA-addition and subsequent TFA ester hydrolization, can be found in the analytical 

section. 
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3.2 Precise Redox-Sensitive Cleavage Sites for Improved Bioactivity of 

siRNA Lipopolyplexes 

This chapter has been adapted from: 

P.M. Klein*, S. Reinhard*, D.-J. Lee, K. Müller, D. Ponader, L. Hartmann, E. Wagner, 

Precise redox-sensitive cleavage sites for improved bioactivity of siRNA 

lipopolyplexes, Nanoscale 8(42) (2016) 18098-18104. 

* Authors contributed equally 

Our previous work demonstrated the beneficial effect of hydrophobic elements and 

disulfide-forming cysteines on siRNA polyplex stabilization.44, 64, 72 Maximum 

stabilization, however, was not advantageous for gene silencing; the incorporation of 

disulfide bonds should facilitate disassembly of polyplexes in the intracellular reductive 

milieu caused by increased cytosolic glutathione (GSH) concentrations.71, 186-188
 

Cysteine-based disulfide formation during polyplex formation by air oxygen is a poorly 

controllable, incomplete process.43, 173 Alternatively, integration of bioreducible bonds 

into carriers can be achieved before nanoparticle formation by polymerization reactions 

with disulfide-bearing compounds.186-188 Disulfide bonds can be accurately integrated 

during SPS of polymers, as already demonstrated by Hartmann et al.189 Cleavable 

cationic domains, as well as disassembly of stabilizing domains, have been 

demonstrated to improve delivery systems.71 

In this chapter, we designed novel bioreducible cationic lipo-oligomers. By precisely 

positioning the disulfide bond between the fatty acid and polycationic domain (and not 

into the polycationic domain) via a Fmoc-succinoyl-cystamine building block, we 

intended to obtain a most drastic molecular change upon bioreduction. The 

amphiphilic, detergent-like character, which is considered favorable for endosomolysis 

but might also be associated with cytotoxicity, should be abolished upon entry into the 

reductive cytosol by the split into separate pure lipidic and cationic fragments; the latter 

have insufficient ability to bind siRNA. 

We evaluate three lipo-oligomer topologies (T-shape, i-shape and U-shape) and 

different representatives of fatty acids as variables, which previously were found44 to 

affect polyplex characteristics such as siRNA binding and lytic potential of oligomers, 
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gene silencing efficacy and toxicity of polyplexes. Compared with their nonreducible 

lipo-oligomer analogs, the favorable polyplex characteristics should remain indifferent 

until intracellular release into the cytosol, where improved siRNA release and 

biocompatibility would be expected. 

3.2.1 Synthesis of the bioreducible Fmoc-succinoyl-cystamine building block 

and evaluation of its sensitivity towards reducing conditions 

A building block applicable for standard Fmoc solid-phase peptide synthesis requires 

a protected amino group and a free carboxylic acid function. The synthesis of the 

disulfide building block (ssbb) was carried out starting from cystamine by selective 

protection of one terminal amine with Fmoc in the first step avoiding change of 

protecting groups as was previously presented.190 To achieve reaction selectivity 

towards mono-functionalization, 0.8 eq. Fmoc-succinimide (Fmoc-OSu) was added 

dropwise to a cooled solution (-80 °C) of cystamine dihydrochloride in THF with DIPEA 

as a base. The carboxylic acid function was introduced in the second step by addition 

of 1.8 eq. succinic anhydride (Succ anhydride) solved in THF with DIPEA (Fig. 13A). 

The ssbb structure was purified via column chromatography and the identity confirmed 

by 1H-NMR. A test structure (740) was synthesized on solid phase to prove the 

applicability for SPS. Here the ssbb connects a lipophilic peptide sequence containing 

three leucines (L3) to a hydrophilic sequence with two succinoyl-tetraethylene 

pentamine (Stp) units (Fig. 13B). Tryptophane (W) was incorporated into both parts to 

facilitate photometric analysis. The product structure was confirmed by mass 

spectrometry and 1H-NMR. The product was incubated with increasing concentrations 

of the physiological antioxidant glutathione (GSH) at 37 °C to simulate the behavior of 

the ssbb at different extra- and intracellular milieus. A GSH concentration of 0.1 mM 

mimics the barely reducing extracellular environment. As expected, the test oligomer 

mostly retained its structural integrity. Increasing the GSH concentration to 10 mM 

resembling the cytosolic reducing conditions resulted in cleavage of the test structure 

without detectable fractions of the intact oligomer (Fig. 13C). 
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Fig. 13 A) Synthesis of the disulfide building block Fmoc-succinoyl-cystamine (Fmoc-ssbb). B) 

Glutathione (GSH) triggered cleavage of the test structure (740) with a hydrophilic (Stp2) and a 

hydrophobic (L3) part connected by ssbb. C) Test structure monitored by HPLC (280 nm wavelength) 

after incubation for 90 min at 37 °C in 0.1 mM GSH- (top) and 10 mM GSH- (bottom) containing HEPES 

buffer pH 7.4. Synthesis of Fmoc-ssbb, test structure 740, cleavage experiments and HPLC analysis 

were performed by Dr. Philipp Klein (Pharmaceutical Biotechnology, LMU). 

 

3.2.2 Design and synthesis of cationic lipo-oligomers to form siRNA 

polyplexes 

The ssbb unit was applied in SPS of lipo-oligomers supposed to form siRNA polyplexes 

that are stable in the extracellular and labile in the intracellular environment. Lipo-

oligomers with three different topologies, T-shape, i-shape, and U-shape, were 

synthesized (Fig. 14 top and Fig. 15). As shown in our previous work, topologies, as 

well as specific moieties of structures, may influence the biophysical and biological 

properties of the resulting polyplexes.32, 43, 44, 64 For bioreducible crosslinking between 

oligocations, previous oligomers were designed with cysteines terminating the cationic 

backbone.43, 44, 64 Differently, in the current work, the ssbb unit was positioned between 

the ionizable oligocationic part of the molecule and a bis (fatty acid) unit. 
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Fig. 14 Sequence-defined oligomers with T-shape topology. Top: schematic overview of the structures 

with different modifications (Y: tyrosine, K: lysine, G: glycine, Stp: succinoyl-tetraethylene-pentamine, 

ssbb: succinoyl-cystamine, MyrA: myristic acid, SteA: stearic acid, CholA: 5β-Cholanic acid). The broken 

lines represent amide linkages. IDs are unique database identification numbers. Bottom: cellular uptake, 

acidic pH-triggered endosomal escape, and GSH triggered cytosolic disassembly of siRNA polyplexes. 

Structures 991 and 992 were synthesized by Dr. Philipp Klein (Pharmaceutical Biotechnology, LMU). 

 

 

Fig. 15 Sequence-defined oligomers with i-shape and U-shape topology. Schematic overview of the 

structures with different modifications (K: lysine, H: histidine, Stp: succinoyl-tetraethylene-pentamine, 

ssbb: succinoyl-cystamine, CholA: 5β-Cholanic acid). IDs are unique database identification numbers. 

U-shape structures were synthesized by Dr. Philipp Klein (Pharmaceutical Biotechnology, LMU). 
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Thus, upon reductive cleavage maximum destabilization of the polyplex on the one 

hand, and abolition of the membrane-active amphiphilic character on the other hand, 

should be achieved. The oligocationic part contains several Stp units as artificial 

oligoamino acids for nucleic acid binding and endosomal protonation42, and lysines (K) 

as branching units. Additionally, the cationic part was equipped with tyrosine trimers 

(Y3)64 for further hydrophobic stabilization of the T-shape oligomers (Fig. 14), and with 

histidine blocks (H6) for increased endosomal buffering of the i-shape oligomers. The 

saturated C14 short chain myristic acid (MyrA), the stearic acid (SteA) with the longer 

C18 chain, and the bulky cholanic acid (CholA) were incorporated as fatty acids for 

hydrophobic polyplex stabilization. For all oligomers, the corresponding non-reducible 

control structures lacking ssbb were synthesized. The ssbb was incorporated into 

various different structures to proof the concept independently of shape and other 

functional domains and to put this work into a broader context. The structures were 

analyzed with mass spectrometry and 1H-NMR. To exclude that lipo-oligomers contain 

significant amounts of reduced fragments, Ellman´s assay was performed to detect 

free thiols (Table 13). Lack of free thiols (< 3 %) indicate high integrity of the ssbb 

linkage. 

Table 13 Determination of free thiols in reducible T-shape, i-shape and U-shape structures via Ellman´s 

assay. Ellman´s assay was performed by Dr. Philipp Klein (Pharmaceutical Biotechnology, LMU). 

Oligomer Ratio of free thiols (in %) 

1082 (MyrA-ss-t) 2.0 
990 (SteA-ss-t) 2.3 

992 (CholA-ss-t) 2.7 
969 (CholA-ss-i) 1.2 
782 (CholA-ss-u) 0.6 

 

3.2.3 Formulation of siRNA polyplexes and biophysical characterization 

Polyplexes were formed by mixing the cationic oligomers with siRNA, followed by 

40 minutes incubation and biophysical characterization (Fig. 16 shows a summary for 

stable and reducible CholA T-shapes 991 and 992). The siRNA binding ability of 

oligomers was determined by measuring the electrophoretic mobility of siRNA in a 

2.5 % agarose gel. Different N/P values depict the ratio of protonatable amines (N) of 

the oligomer to phosphates (P) of the siRNA. 
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Fig. 16 A) Analytical characterization of stable oligomer 991 and bioreducible oligomer 992 by mass 

spectrometry. B) Agarose gel shift assays. Left: siRNA binding at different N/P ratios. Right: 

Lipopolyplexes formed at N/P 20 and subsequent 90 min treatment at 37 °C with different 

concentrations of GSH in HEPES buffer pH 7.4. C) Biophysical characterizations of lipopolyplexes 

formed with oligomers and siRNA at N/P 12 by DLS. DLS measurements were performed by Dr. Philipp 

Klein (Pharmaceutical Biotechnology, LMU). 

 

This does not present charge ratios, as only a fraction of the protonatable amines are 

protonated at physiological pH. All T-shape, i-shape and U-shape structures showed 

sufficient binding at N/P ≥ 12 (Fig. 17, Fig. 18). 
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Fig. 17 siRNA binding ability of T-shape structures analyzed with an agarose gel shift assay. The left 

lane shows the running distance of free siRNA in HBG that is not complexed by lipo-oligomers. 

Polyplexes were tested for siRNA binding ability at different N/P ratios. Top: stable structures, bottom: 

reducible structures. 

 

 

Fig. 18 siRNA binding ability of i-shape and U-shape structures analyzed with an agarose gel shift 

assay. The left lane shows the running distance of free siRNA in HBG that is not complexed by lipo-

oligomers. Polyplexes were tested for siRNA binding ability at different N/P ratios. Top: stable structures, 

bottom: reducible structures. Gel shifts for U-shape structures were performed by Dr. Philipp Klein 

(Pharmaceutical Biotechnology, LMU). 
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Neither stable nor reducible polyplexes released free siRNA when exposed to 90 % 

full serum at 37 °C for two hours, indicating a high extracellular stability (Fig. 19). 

 

Fig. 19 Gel retardation assay of siRNA polyplexes incubated at N/P 12 for 40 min, followed by treatment 

with 90 % full serum for two hours at 37 °C. The black arrow points at a band that is caused by serum 

(see serum blank in band one). Running distance of free siRNA in HBG buffer and in 90 % serum are 

shown in band two and three. Serum gel shifts were performed by Dr. Philipp Klein (Pharmaceutical 

Biotechnology, LMU). 

 

In contrast, treatment of polyplexes with the physiological reducing agent GSH at 37 °C 

resulted in a dose-dependent loss of siRNA binding efficacy for the reducible but not 

the stable oligomers (Fig. 20, Fig. 21). Due to the particular position of the ssbb unit, 

reductive cleavage leads to the release of the lipid as the most important stabilization 

motif, thus keeping only a weak binding ability of the remaining cationic backbone.64 

This destabilization of polyplexes is expected to provide better accessibility of siRNA 

at intracellular GSH concentrations (~10 mM). 
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Fig. 20 siRNA binding ability of T-shape structures under reducing conditions analyzed with an agarose 

gel shift assay. The left lane shows the running distance of free siRNA in HBG that is not complexed by 

lipo-oligomers. Lipopolyplexes were formed at N/P 20 followed by 90 min treatment at 37 °C with 

different concentrations of GSH in HEPES buffer pH 7.4. Top: stable structures, bottom: reducible 

structures. 

 

 

Fig. 21 siRNA binding ability of i-shape and U-shape structures under reducing conditions analyzed with 

an agarose gel shift assay. The left lane shows the running distance of free siRNA in HBG that is not 

complexed by lipo-oligomers. Lipopolyplexes were formed at N/P 20 followed by 90 min treatment at 

37 °C with different concentrations of GSH in HEPES buffer pH 7.4. Top: stable structures, bottom: 

reducible structures. Gel shifts for U-shape structures were performed by Dr. Philipp Klein 

(Pharmaceutical Biotechnology, LMU). 
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The particle sizes of siRNA lipopolyplexes were measured by dynamic light scattering 

(DLS). All T-shape polyplexes showed uniform sizes between 105 - 138 nm z-average 

(Table 14). 

Table 14 Particle size (Z-average) and zeta potential of siRNA polyplexes determined with a DLS 

zetasizer. Measurements for t- and U-shape structures were performed by Dr. Philipp Klein 

(Pharmaceutical Biotechnology, LMU). 

Oligomer N/P z-average [nm] Mean PDI 
Mean Zeta 

Potential [mV] 

1081 (MyrA-t) 12 105.0 ± 1.8 0.15 ± 0 27.0 ± 0.8 
1082 (MyrA-ss-t) 12 107.7 ± 0.5 0.14 ± 0.02 28.6 ± 0.8 

989 (SteA-t) 12 125.3 ± 1.0 0.12 ± 0.01 29.3 ± 1.6 
990 (SteA-ss-t) 12 137.9 ± 1.6 0.13 ± 0.01 26.8 ± 0.9 
991 (CholA-t) 12 131.7 ± 0.5 0.13 ± 0 29.4 ± 4.2 

992 (CholA-ss-t) 12 128.3 ± 0.5 0.13 ± 0.01 30.9 ± 0.7 

871 (CholA-i) 12 275.0 ± 7.2 0.24 ± 0.01 23.4 ± 0.7 
969 (CholA-ss-i) 12 237.8 ± 4.2 0.20 ± 0.01 25.2 ± 0.3 

783 (CholA-u) 12 122.7 ± 2.0 0.26 ± 0.02 31.5 ± 0.7 
782 (CholA-ss-u) 12 181.2 ± 4.7 0.27 ± 0.01 29.1 ± 3.3 

 

The sizes of i-shape and U-shape polyplexes showed higher polydispersity. All 

formulations revealed a positive zeta potential of around 23 – 32 mV due to an excess 

of cationic oligomer (Table 14). T-shape oligomers were found as well-suited for the 

evaluation of structure-activity relationships, since all of them formed polyplexes with 

reliable sizes and low polydispersity. 

3.2.4 siRNA transfection efficiency 

Gene silencing experiments were performed in Neuro2A neuroblastoma cells stably 

expressing an eGFP-Luciferase fusion protein (Fig. 22). Silencing by siGFP (light bars) 

can be quantified by a standard luciferase assay. In all cases, gene silencing was more 

effective for the bioreducible T-shape oligomers (Fig. 22B) as compared to their stable 

analogs (Fig. 22A). A reduced luciferase expression in control experiments using siCtrl 

(dark bars) is caused by unspecific cytotoxic effects and not by a specific knockdown 

of the eGFPLuc gene. Thus, from evaluating the luciferase levels of the siCtrl 

polyplexes, an enhanced biocompatibility of the reducible structures (Fig. 22B) can be 

concluded. 
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Fig. 22 Gene silencing of T-shape oligomers in neuroblastoma cells. Lipopolyplexes with 500 ng / 

37 pmol eGFP-targeted siRNA (siGFP) / well respectively control siRNA (siCtrl) at N/P 6, 12 and 20 

were tested for eGFPLuc gene silencing in Neuro2A-eGFPLuc cells. A) Lipopolyplexes made of stable 

structures 1081, 989 and 991 B) Lipopolyplexes made of bioreducible structures 1082, 990 and 992. 

The luciferase activity of siRNA-treated cells is presented related to buffer-treated cells. HBG-treated 

cells were set to 100 %. Data are presented as mean value (± SD) out of triplicates. Dose-dependent 

gene silencing transfections are shown in Fig. 24 and Fig. 25. Transfections were performed by Dr. 

Dian-Jang Lee (Pharmaceutical Biotechnology, LMU). 

 

Similar findings, an enhanced gene silencing and especially the reduction of 

cytotoxicity, were also made for bioreducible i-shape and U-shape lipo-oligomers (Fig. 

23). 
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Fig. 23 Gene silencing of i-shape and U-shape oligomers in neuroblastoma cells. Lipopolyplexes with 

500 ng / 37 pmol eGFP-targeted siRNA (siGFP) / well respectively control siRNA (siCtrl) at N/P 6, 12 

and 20 were tested for eGFPLuc gene silencing in Neuro2A/eGFPLuc cells. A) Lipopolyplexes made of 

stable structures 871 and 783 B) Lipopolyplexes made of bioreducible structures 969 and 782. The 

luciferase activity of siRNA-treated cells is presented related to buffer-treated cells. HBG-treated cells 

were set to 100 %. Data are presented as mean value (± SD) out of triplicates. Transfections for i-shapes 

were performed by Dr. Dian-Jang Lee, transfections for u-shapes were performed by Dr. Katharina 

Müller (Pharmaceutical Biotechnology, LMU). 

 

Based on the starting formulation of 37 pmol siRNA (370 nM) with 1.44 nmol oligomer 

(N/P 12), the dose of siRNA was reduced either at a constant N/P 12 (Fig. 24) or a 

constant dose of 1.44 nmol oligomer (Fig. 25). In the latter case, significant gene 

silencing was still observed for reducible MyrA polyplexes at 1.2 pmol / 12 nM siRNA. 
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Fig. 24 Dose-dependent gene silencing of T-shape oligomers at N/P 12 in neuroblastoma cells. 

Lipopolyplexes with eGFP-targeted siRNA (siGFP) respectively control siRNA (siCtrl) were examined 

for eGFPLuc gene silencing in Neuro2A/eGFPLuc cells. The oligomer amount was adjusted for each 

formulation to keep it constant at N/P 12. Formulations including siRNA from 6, 12, 27, 47, 93, 185, 370 

up to 740 nM were tested. A) Lipopolyplexes made of stable structures 1081 and 991 B) Lipopolyplexes 

made of bioreducible structures 1082 and 992. The luciferase activity of siRNA-treated cells is presented 

related to buffer-treated cells. HBG-treated cells were set to 100 %. Data are presented as mean value 

(± SD) out of triplicates. Transfections were performed by Dr. Dian-Jang Lee (Pharmaceutical 

Biotechnology, LMU). 
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Fig. 25 Dose-dependent gene silencing of T-shape oligomers in neuroblastoma cells. Lipopolyplexes 

with eGFP-targeted siRNA (siGFP) respectively control siRNA (siCtrl) at constant oligomer amount of 

1.44 nmol (N/P 12 at 500 ng siRNA) were examined for eGFPLuc gene silencing in Neuro2A/eGFPLuc 

cells. Formulations including siRNA from 6, 12, 27, 47, 93, 185, 370 up to 740 nM were tested. A) 

Lipopolyplexes made of stable structures 1081 and 991 B) Lipopolyplexes made of bioreducible 

structures 1082 and 992. The luciferase activity of siRNA-treated cells is presented related to buffer-

treated cells. HBG-treated cells were set to 100 %. Data are presented as mean value (± SD) out of 

triplicates. Transfections were performed by Dr. Dian-Jang Lee (Pharmaceutical Biotechnology, LMU). 

 

The beneficial effects of reducible polyplexes are also confirmed in DU145/eGFPLuc 

prostate cancer cells (Fig. 26).  
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Fig. 26 Gene silencing of T-shape oligomers in prostate cancer cells. Lipopolyplexes with 500 ng eGFP-

targeted siRNA (siGFP) respectively control siRNA (siCtrl) at N/P 12 were tested for eGFPLuc gene 

silencing in DU145/eGFPLuc cells. Lipopolyplexes made of stable structures (1081, 989 and 991) and 

bioreducible structures (1082, 990 and 992) are shown. The luciferase activity of siRNA treated cells is 

presented related to buffer-treated cells. HBG-treated cells were set to 100 %. Data are presented as 

mean value (± SD) out of triplicates. Transfections were performed by Dr. Dian-Jang Lee 

(Pharmaceutical Biotechnology, LMU). 

 

Gene silencing experiments were performed in HeLa-derived KB/eGFPLuc cells and 

revealed a negative influence of the bioreducible building block. While the stable 

structures merdiated gene silencing, the efficiency for biodegradable structures was 

significantly decreased (Fig. 27). Obviously not all cell lines profit from a bioreducible 

character of the nucleic acid carrier, which could be explained by premature disulfide 

cleavage occurring at the extracellular cell surface. High extracellular disulfide 

cleavage was previously reported for HeLa cells and could potentially also account for 

KB cells.191 When focusing on the comparison of the three different fatty acids, SteA 

and CholA lipo-oligomers (no or only moderate silencing for the stable versions) 

strongly benefited from the incorporation of the ssbb with regard to gene silencing in 

Neuro2A and DU145 cell lines. In contrast, the stable MyrA lipo-oligomer displayed 

gene silencing activity combined with significant cytotoxicity (Fig. 22A); here the 

reducible ssbb unit eliminated the cytotoxicity without reducing the gene silencing 

activity (Fig. 22B). 
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Fig. 27 Gene silencing of T-shape oligomers in KB cells. Lipopolyplexes with 500 ng/37 pmol eGFP-

targeted siRNA (siGFP) per well respectively control siRNA (siCtrl) at N/P 12 were tested for eGFPLuc 

gene silencing in KB-eGFPLuc cells. Lipopolyplexes made of stable structures 1081, 989 and 991 (- 

ssbb) and lipopolyplexes made of bioreducible structures 1082, 990 and 992 (+ ssbb) were tested. The 

luciferase activity of siRNA-treated cells is presented related to buffer-treated cells. HBG-treated cells 

were set to 100 %. Data are presented as mean value (± SD) out of triplicates. Transfections were 

performed by Dr. Dian-Jang Lee (Pharmaceutical Biotechnology, LMU). 

 

The findings for non-reducible lipo-oligomers are consistent with our earlier 

observations192, where SteA derivatives showed poor gene silencing activity and MyrA 

derivatives exhibited not only gene silencing activity but cytotoxicity. For non-reducible 

structures, the unsaturated C18 fatty acids oleic acid and linoleic acid were the 

optimum lipid units with regard to transfection efficacy and cell tolerability.43, 44, 64 Still, 

due to the higher stability during synthesis and storage, in the current work saturated 

fatty acids were the preferred option for integration into solid phase synthesized lipo-

oligomers.  

Nevertheless, incorporation of the bioreducible linker into oleic acid containing 

oligomers was also found to further enhance transfection efficacy and cell tolerability 

(Fig. 28). 
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Fig. 28 Gene silencing of oleic acid containing T-shape oligomers in neuroblastoma cells. 

Lipopolyplexes with 500 ng / 37 pmol eGFP-targeted siRNA (siGFP) / well respectively control siRNA 

(siCtrl) at N/P 6, 12 and 20 were tested for eGFPLuc gene silencing in Neuro2A/eGFPLuc cells. The 

luciferase activity of siRNA-treated cells is presented related to buffer-treated cells. HBG-treated cells 

were set to 100 %. Data are presented as mean value (± SD) out of triplicates. Transfections were 

performed by Dr. Dian-Jang Lee (Pharmaceutical Biotechnology, LMU). 

 

The different fatty acids may influence the extent of hydrophobic stabilization of siRNA 

polyplexes, but do also strongly affect the lytic properties of the lipo-oligomers, both in 

the stable and reducible setting. At endosomal pH, the cationic parts receive increased 

cationization, which in combination with the hydrophobic domain facilitates endosomal 

membrane destabilization and escape into the cytosol. An erythrocyte leakage assay 

compared the different fatty acid versions of stable (Fig. 29A) and the ssbb containing 

reducible (Fig. 29B) lipo-oligomers. MyrA structures displayed a far higher leakage 

activity (highest at pH 5.5) than the SteA structures, whereas oligomers with the bulky 

CholA did not display lytic effects. 
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Fig. 29 Erythrocyte leakage of oligomers at different pH and under reducing conditions. A) Stable lipo-

oligomers 1081, 989 and 991. B) bioreducible lipo-oligomers 1082, 990 and 992. The final concentration 

of oligomers was 7.5 µM. GSH treated lipo-oligomers were incubated with 10 mM GSH in PBS adjusted 

to pH 7.4 at 37 °C for 90 min (right-hand side). PBS-treated erythrocytes were set to 0 %. Triton X 

served as positive control and was set to 100 %. Data are presented as mean value (± SD) out of 

quadruplicates. 

 

This finding is in agreement with literature, showing that cationic dimyristyl lipids 

strongly promote membrane fusion events. Deviations of hydrophobic volume and 

hydrophilic-lipophilic ratio from an optimum hampered membrane interactions.168 

Treatment with GSH did not affect the stable analogs but extinguished the lytic activity 

of the reducible lipo-oligomers, consistent with their lower cytotoxicity. This observation 

can be attributed to the integration of the ssbb as a linker between the cationic and the 

lipophilic part, as reductive cleavage results in an uncharged fatty acid structure and 

an oligocationic part with significantly reduced amphiphilic character. Both compounds 

alone were not able to lyse membranes anymore. 
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3.3 Precise Enzymatic Cleavage Sites for Improved Bioactivity of siRNA 

Lipo-Polyplexes 

This chapter has been adapted from: 

Reinhard, S.,* Wang, Y., Dengler, S., Wagner, E. (2018) Precise Enzymatic Cleavage 

Sites for Improved Bioactivity of siRNA Lipo-Polyplexes, Bioconjug Chem 29(11) 

(2018) 3649-3657 

* Corresponding author 

Although polycations fulfill several extracellular and intracellular delivery requirements, 

the therapeutic window between transfer efficiency and cytotoxicity is usually narrow. 

Nondegradable polymers like the potent and commonly used transfection polymer 

polyethylenimine (PEI) show significant toxicity in a time-and concentration-dependent 

manner with a two-stage mechanism: phase 1 short-term toxicity results from 

compromised plasma membrane integrity, while phase 2 long-term (> 24 h) toxicity is 

caused by intracellular mechanisms after internalization of the polyplexes.193, 194 PEI-

induced damage of lysosomal and mitochondrial membranes is a potential cause for 

late-phase cell death. The disintegration of mitochondrial membranes leads to the 

release of pro-apoptotic cytochrome c and an energy crisis due to ATP-leakage, while 

perturbation of lysosomal membranes contributes to cellular stress through possible 

release of lysosomal cathepsins.193-200 

The degradation of cationic polymers in low molecular weight subunits reduces both 

acute toxicity and negative long-term effects, which might occur after repeated 

administration.32, 201-203 Biodegradable cationic polymers can be designed by 

introduction of ester bonds,204, 205 disulfides,201, 206, 207 ketals,208 imines,209 polyglutamic 

acid amides, and other degradable amide bonds.210, 211 

Release of siRNAs from endosomes into the cytosol occurs at low rates (1−2 %) for 

lipid nanoparticles.212, 213 This implies that large amounts of cationic carriers 

accumulate in lysosomes, which represent the terminal organelles on the endocytic 

pathway196, 214 unless dumped by emergency exocytosis.215 Specific degradation of 

nucleic acid carriers by endolysosomal enzymes therefore appears as an attractive 

strategy to destroy abundant carrier molecules while ensuring high extracellular 

stability. Lysosomes mediate the degradation of extracellular particles from 
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endocytosis and of intracellular components from autophagy with more than 60 

different types of hydrolytic enzymes.216 Endolysosomal cysteine proteases like 

cathepsin B are involved in protein degradation and turnover in cells.217, 218 Cathepsin 

B, together with cathepsin L and D, is one of the most abundant lysosomal proteases 

with concentrations as high as 1 mM and ubiquitous expression.217 Cathepsin B has 

both endo- and exopeptidase activity, which was utilized for enzyme-triggered, 

intracellular drug delivery219-221 as well as for nucleic acid delivery with degradable 

peptide-HPMA copolymers. Polyplexes formed with biodegradable copolymers 

showed similar transfection efficiency but less cytotoxicity compared to nondegradable 

structures.222  

In this chapter, we evaluated the cathepsin B-triggered cleavage of oligoaminoamides 

based on the synthetic solid-phase compatible building block succinoyl-tetraethylene-

pentamine (Stp), which contains the pH-responsive diaminoethylene motif of the 

transfection polymer PEI, and different peptide linkers placed between two Stp units. 

A library of myristic acid- and Stp-containing sequence-defined lipo-oligomers with 

tailored biodegradability was synthesized by introducing either short cleavable L-

arginine dipeptides, noncleavable D-arginine dipeptide linkers, or varieties of both. 

Endolysosomal degradation was simulated by incubation with cathepsin B at pH 5.5, 

and the fragments were identified by MALDI-TOF mass spectrometry. The influence of 

tailored intracellular cleavability on cell tolerability and transfection efficiency was 

studied in Huh7-eGFPLuc and DU145-eGFPLuc cells. 

3.3.1 Degradability of test oligomers by cathepsin B 

For solid-phase assisted synthesis of sequence-defined oligomers, natural and 

artificial amino acids, synthetic building blocks, and fatty acids can be used. While 

linear peptide sequences of natural L-amino acids usually are readily cleavable by 

proteases, the degradability might be hampered when oligoamide structures contain 

artificial building blocks or are synthesized in branched configurations. Repeating units 

of the synthetic building block Stp provide oligoaminoamides with both nucleic acid 

binding and endosomal buffering capacity and therefore can be substantial parts of 

nucleic acid carriers. A library of test structures was synthesized to study the cathepsin 

B-triggered degradation of Stp-containing oligomers (Fig. 30).  
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Fig. 30 Enzymatic degradation of test structures. A) Single L-amino acid or dipeptide linkers are placed 

at position X between two amidebound units of the synthetic building block Stp. Left: Cathepsin triggered 

degradation of a test structure containing a L-Arg-L-Arg linker (Acr-Stp-RR-Stp-w). B) HPLC-

Chromatogram of Acr-Stp-RR-Stp-w before (left) and after (right) incubation with cathepsin B. 

 

The test oligomers consist of two Stp units connected by one or two of the natural L-

amino acids lysine, arginine, histidine, or tyrosine, which have been used in our 

published nucleic acid carriers.223 Lysine and arginine bind and complex nucleic acids, 

histidine provides endosomal buffer capacity, and tyrosines are involved in aromatic 

polyplex stabilization. The test structures were equipped with acridine (Acr) at the N-

terminus and D-tryptophane (w) at the C-terminus to facilitate the detection of 

fragments by HPLC-DAD. The degradability of the test oligomers was evaluated by 

incubation with cathepsin B at endolysosomal pH 5.5. After 2 h of incubation at 37 °C, 

the percentage of cleaved material was determined by HPLC (Table 15). The test 

structure containing two amide-bound Stp units without any natural L-amino acid linkers 

was not degradable by cathepsin B. This enzyme resistance is the most relevant 

information for carriers based on Stp block oligomers and is consistent with findings 

that length of Stp oligomers correlates with cytotoxicity.40 No cleavage was also found 

for test oligomers containing one or two histidines or one tyrosine. A low fraction of 

degraded material was detected when two tyrosines (8.6 %) or one lysine (16 %) were 

placed between the Stp units. Arginine was the preferred substrate of the enzyme with 

cleavage rates of 47 % with one and 100 % with two L-arginines. 
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Table 15 Cathepsin-triggered degradation of test structures 

Test structurea N→C Degradation fragmentsb Peptide degradation [%]c 

Acr-Stp-Stp-w - 0 

Acr-Stp-H-Stp-w - 0 

Acr-Stp-HH-Stp-w - 0 

Acr-Stp-Y-Stp-w - 0 

Acr-Stp-YY-Stp-w Acr-Stp-Y + Y-Stp-w 8.6 

Acr-Stp-K-Stp-w Acr-Stp-K + Stp-w 16 

Acr-Stp-KK-Stp-w Acr-Stp-K + K-Stp-w 100 

Acr-Stp-R-Stp-w Acr-Stp-R + Stp-w 47 

Acr-Stp-RR-Stp-w Acr-Stp-R + R-Stp-w 100 

aTest structures contain no linker (Acr-Stp-Stp-w) or L-His (H or HH), L-Tyr (Y or YY), L-Lys (K or KK), 

or L-Arg (R or RR) single amino acid or dipeptide linkers. bIdentified by MALDI-TOF mass spectrometry 

after HPLC. cDetermined by HPLC. 

3.3.2 T-Shaped lipo-oligomers with designed enzymatic degradability 

Based on the results of the cathepsin-triggered degradation of test oligomers, a library 

of Stp- and arginine-containing T-shaped lipo-oligomers with precisely introduced 

cleavage sites was synthesized (Fig. 31A, Table 16).  

 

 

Fig. 31 A) Scheme of lipo-oligomers X1-My-X2 with cleavable single amino acid or dipeptide L-arginine 

sequences (R or RR) or noncleavable D-arginine linkers (r or rr) at sites X1 and X2. My is used as the 

abbreviation for T-shaped lipo-oligomers containing a dimyristic acid domain. An overview of all 

structures and the linkers can be found in Table 16. Y: L-tyrosine, K: L-lysine. B) Enzymatic degradation 

only occurs when L-amino acids are incorporated. C) MALDI mass spectra of rr-My-rr (top) containing 

only D-Arg linkers and RR-My-RR (bottom) containing only L-Arg linkers after digestion.  
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Table 16 Lipo-oligomers as shown in Figure 31 with cleavable L-arginine sequences, non-cleavable D-

arginine linkers or varieties of both. 

Lipo-oligomers X1-My-X2 X1 X2 

My - - 

My-RR - L-Arg-L-Arg 

RR-My L-Arg-L-Arg - 

RR-My-RR L-Arg-L-Arg L-Arg-L-Arg 

RR-My-rr L-Arg-L-Arg D-Arg-D-Arg 

rr-My-RR D-Arg-D-Arg L-Arg-L-Arg 

rr-My-rr D-Arg-D-Arg D-Arg-D-Arg 

My-R - L-Arg 

My-r - D-Arg 

R-My L-Arg - 

R-My-R L-Arg L-Arg 

R-My-r L-Arg D-Arg 

r-My D-Arg - 

r-My-R D-Arg L-Arg 

r-My-r D-Arg D-Arg 

 

Arginine was preferred over lysine as a single L-Arg linker between two amide-bound 

Stp units in the test oligomers and showed significantly higher degradability compared 

to the L-Lys linker. However, the linkage via the L-Lys dipeptide showed complete 

cleavage in the test structure and could potentially also be integrated in lipo-oligomers 

as a motif for efficient enzymatic degradation. Biodegradability was tailored by placing 

either cleavable L-arginine or noncleavable D-arginine dipeptides or varieties of both 

linkers between a lipophilic dimyristic acid (MyrA) domain and a Stp-containing cationic 

siRNA-binding unit. The later domain contains also two tyrosine tripeptides, which flank 

the Stp-units at the C- and N-terminus and are incorporated to enhance polyplex 

stabilization.64 The lipo-oligomers were incubated with cathepsin B to simulate 

endolysosomal degradation. Fragments of cathepsin B-triggered cleavage were 

identified by MALDI-TOF mass spectrometry. Fragments resulting from cleavage 

between two L-arginines both at sites X1 and X2 were found (Fig. 31B and Fig. 31C, 

and see the Analytical Data in section 6.4.4, Table 22). When no arginines (My) or D-

arginine dipeptides were incorporated instead of L-Arg-L-Arg, no cleavage was 
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detectable at sites X1 and X2. In all cases, cleavage of up to five of six tyrosines was 

detectable.  

3.3.3 Lytic activity of bioresponsive lipo-oligomers 

Amphiphilic lipo-oligomers containing cationizable, bioresponsive Stp units together 

with hydrophobic moieties usually display a pH-responsive membranolytic activity. This 

was confirmed in an erythrocyte leakage assay at three pH values covering the range 

from early to late endosomal/lysosomal conditions. The lytic activities of all lipo-

oligomers were highest at the lowest pH 5.5 (Fig. 32A).  

 

 

Fig. 32 Erythrocyte leakage of lipo-oligomers A) at different pH conditions at 5 mM concentration and 

B) at endolysosomal pH 5.5 after incubation with cathepsin B-containing buffer (digested) or buffer only 

(native) at 2.5 mM concentration. 

 

Although the lytic activities at pH 7.4 were low compared to the endosomal/lysosomal 

conditions, an increasing erythrocyte lysis was observed for structures with more 

arginines (14 % for My without arginines and ∼30 % for structures with six arginines). 

This indicates that the incorporation of arginines can potentially impact short-term 

toxicity resulting from plasma membrane disruption. Bioresponsive behavior with low 

lytic potential at neutral pH and increasing lysis at lower pH values is highly desirable 

and necessary for efficient endosomal escape. However, as nucleic acid carriers 

accumulate in lysosomes, highly lytic structures might trigger toxicity by intracellular 

mechanisms. The incorporation of degradable L-arginine dipeptides as linkers between 

the oligocationic and lipophilic moieties should result in reduced amphiphilic character 

of the lipo-oligomers after cleavage, thereby reducing cytotoxicity caused by lysosome 

and organelle damage. Reduced lytic activity of biodegraded structures was verified in 

an erythrocyte leakage assay at pH 5.5 before and after incubation with cathepsin B. 

For this assay, the concentration of the lipo-oligomers was reduced to 2.5 mM to avoid 
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a saturation of the assay, as the lytic activities of all lipo-oligomers at 5 mM 

concentration were close to 100 % at pH 5.5. All lipo-oligomers showed >50 % lysis in 

native form (Fig. 32B). Structures containing at least one L-Arg dipeptide sequence 

either at site X1 or X2 displayed significantly reduced lytic activity after degradation, 

while the nondegradable structures My and rr-My-rr largely retained their lytic potential 

after incubation with cathepsin B. Similar, but less pronounced, effects were found for 

lipo-oligomers containing only single L-arginines as cleavage sites, in agreement with 

a reduced degradability of such structures (Fig. 33, Table 16). 

 

 

Fig. 33 Erythrocyte leakage of lipo-oligomers containing only single L- or D-arginines at endo/lysosomal 

pH 5.5 before and after incubation with cathepsin B. 

 

Lipo-oligomers containing cleavable L-arginine linkers with reduced lytic activities at 

endolysosomal pH conditions after internalization and degradation could potentially 

cause less intracellular membrane damage and thereby display higher cell tolerability. 

3.3.4 Improved cell tolerability without hampering gene silencing efficiency 

The influence of improved endolysosomal degradability on cell tolerability and 

transfection efficiency was studied in human hepatoma Huh7/eGFPLuc and human 

prostate carcinoma DU145/eGFPLuc cells. Lipo-polyplexes were formed by mixing 

lipo-oligomers with siRNA at a constant N/P value, which depicts the ratio of 

protonatable amines (N) of the oligomers to phosphates (P) of the siRNA. The N/P 

value does not present charge ratios, as only a fraction of the protonatable amines of 
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Stp are protonated at physiological pH. Biophysical characterization showed no 

significant differences in size, zeta potential, or siRNA binding (Fig. 34, Table 17). 

 

Fig. 34 Agarose gel shift siRNA binding assay with lipo-polyplexes at N/P 20. All lipo-oligomers show 

full siRNA binding. 

 

Table 17 Particle size (z-average), polydispersity index (PDI) and zeta potential of siRNA lipo-polyplexes 

at N/P 20 determined with a DLS zetasizer. 

Lipo-oligomer z-average [nm] Mean PDI Mean zeta potential 
[mV] 

My 85.3 ± 0.9 0.18 ± 0.01 26.9 ± 1.4 

My-R 74.9 ± 0.9 0.18 ± 0.02 25.9 ± 0.2 

My-r 70.9 ± 1.2 0.22 ± 0.01 28.2 ± 2.3 

My-RR 68.0 ± 0.8 0.17 ± 0.01 26.7 ± 0.7 

R-My 69.5 ± 0.9 0,19 ± 0.00 25.8 ± 3.5 

R-My-R 67.7 ± 0.9 0.17 ± 0.02 27.7 ± 1.3 

R-My-r 67.8 ± 0.7 0.19 ± 0.01 26.5 ± 1.6 

r-My 70.1 ± 0.7 0.15 ± 0.01 29.3 ± 1.0 

r-My-R 71.7 ± 0.1 0.16 ± 0.01 27.3 ± 0.7 

r-My-r 61.9 ± 0.7 0.19 ± 0.01 26.8 ± 1.5 

RR-My 63.4 ± 0.6 0.20 ± 0.01 27.1 ± 1.0 

RR-My-RR 61.1 ± 0.8 0.23 ± 0.01 27.4 ± 1.0 

RR-My-rr 71.8 ± 1.3 0.26 ± 0.04 25.0 ± 1.1 

rr-My-RR 63.7 ± 0.2 0.22 ± 0.01 28.0 ± 0.3 

rr-My-rr 64.9 ± 0.3 0.18 ± 0.00 26.3 ± 2.9 

 

In previous work, lipo-oligomers containing the saturated C14 short chain myristic acid 

were found to display not only efficient gene silencing but also high lytic activity and 

cytotoxicity.43, 44, 174 This renders MyrA-containing oligomers as good model structures 

to study the effect of lysosomal detoxification. However, phase 1 short-term toxicity 

resulting from plasma membrane damage might still occur and veil any effects of 

improved intracellular degradability on phase 2 long-term toxicity. For this reason, 

incubation times on cells were kept short (4 h), and the read-out of cytotoxicity and 
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gene silencing assays were measured after further 44 h long-term incubation in fresh 

media. Metabolic cell activities compared to buffer-treated cells, as an indicator for cell 

viability, were measured via MTT assays. Buffer-treated cells were set to 100 %. For 

MTT assays, only lipo-oligomers without siRNA were added to the cells. Biodegradable 

structures containing L-arginine dipeptides either at site X1 or X2 showed excellent cell 

tolerability on Huh7 cells compared to the highly toxic nondegradable My and rr-My-rr 

oligomers (Fig. 35A).  

 

 

Fig. 35 A) Metabolic activity indicating cell viability of human hepatoma Huh7-eGFPLuc (top) and human 

prostate carcinoma DU145-eGFPLuc cells (bottom) compared to buffer-treated cells determined by MTT 

assay after incubation with lipo-oligomers with tailored biodegradability. Lipo-oligomer solutions were 

used in the same concentrations as in gene silencing experiments but without the addition of siRNA. B) 

Gene silencing of lipo-polyplexes (N/P 20) formed by mixing of lipo-oligomers and eGFP-targeted siRNA 

(siGFP) or control siRNA (siCtrl) compared to buffer-treated cells. C) MALDI mass spectra of cell 

extracts after transfection with My (left) or highly degradable RR-My-RR (right) after transfection showing 

both undigested lipo-oligomers (red) and fragments of endolysosomal degradation (green). 

Transfections and cell viability assays were performed by Dr. Yanfang Wang (Pharmaceutical 

Biotechnology, LMU). 

 

Improved cell tolerability of degradable structures was also found in DU145 cells; the 

nondegradable oligomers did not display as strong toxicity as in HUH7 cells. These 
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results are in good agreement with the reduced lytic potential of enzyme-degraded 

carriers (Fig. 32B), indicating that lysosomal cleavage enhanced cell tolerability. Gene 

silencing experiments were performed in cells stably expressing an eGFP-Luciferase 

fusion protein. Gene silencing by siGFP (light bars), resulting in decreased luciferase 

activity, is quantified by a standard luciferase assay. In the absence of unspecific 

effects, cells treated with analogous control siCtrl lipo-polyplexes (black bars) should 

maintain luciferase activity close to 100 % (buffer-treated cells); reduced levels of 

luciferase activity in siCtrl treated cells are an indicator of cytotoxicity. Cells were 

transfected at N/P 20, as this ratio was found to enable efficient gene silencing. 

Improved knockdown of the eGFP-Luciferase gene in siGFP-treated cells would not 

be expected for biodegradable oligomers, as reduced lytic activity after enzymatic 

cleavage might even hamper the escape of the nucleic acid cargo into the cytosol. 

Notably, all siGFP lipo-polyplexes show similar levels of eGFP-Luciferase expression 

in both Huh7- and DU145 cells, indicating that transfection efficiency is not reduced by 

the introduction of enzymatic cleavage sites (Fig. 35B). Luciferase activities in Huh7 

cells treated with My and rr-My-rr siCtrl-polyplexes are significantly reduced compared 

to buffer-treated cells. The unspecific reduction of gene expression for nondegradable 

structures is in agreement with the reduced cell viability detected in the MTT assay. 

Interestingly, siCtrl-polyplexes formed with structures containing at least one L-arginine 

dipeptide linker showed luciferase activities well above 100 %, which has previously 

been observed for nontoxic transfections of Huh7/eGFPLuc transgenic cells 

(unpublished data). In this cell line, the eGFP-luciferase fusion gene is stably 

expressed under control of a CMV promoter. The transcription of transgenes from the 

CMV promoter can be up-regulated by a variety of mild stresses by activation of MAP 

protein kinases.224 The transfection of siRNA with cationic lipo-oligomers could 

potentially result in stress-activation of transgene expression. However, the improved 

biocompatibility of degradable lipo-oligomers is supported by the results from the MTT 

assay, which showed metabolic cell activities similar to buffer-treated cells. The 

positioning of the cleavable linker did not significantly influence MTT and gene 

silencing assays in Huh7 cells. For DU145 cells, only lipo-oligomers containing 

cleavable L-arginines at site X1 (RR-My, RR-My-RR, and RR-My-rr) showed 

significantly reduced toxicity and higher luciferase expression of siCtrl treated 

compared to siGFP treated cells. This indicates that not only the introduction of 

cleavage sites but also their precise positioning might affect cell tolerability. Lipo-
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oligomers with only single L-arginines as cleavage sites at position X1 also showed 

improved cell viabilities in MTT and gene silencing assays in both cell lines compared 

to nondegradable structures or structures with degradable linkers only at site X2 (Fig. 

36).  

 

Fig. 36 A) Metabolic activity indicating cell viability of human hepatoma Huh7- (top) and human prostate 

carcinoma DU145-eGFPLuc cells (bottom) determined by MTT assay after incubation with lipo-

oligomers containing only single L- or D-arginines. B) Gene silencing of lipo-polyplexes at N/P 20 formed 

by mixing of lipo-oligomers and eGFP-targeted siRNA (siGFP) or control siRNA (siCtrl). Transfections 

and cell viability assays were performed by Dr. Yanfang Wang (Pharmaceutical Biotechnology, LMU). 

 

Integration of cleavage sites at position X1 within the more hydrophilic part of the lipo-

oligomers seems preferable for these structures, possibly due to better accessibility for 

endolysosomal proteases and therefore more efficient degradation; cleavage site X2 

is positioned at the side chain of a branching central lysine followed by a hydrophobic 

diacyl domain. In Huh7 cells, dipeptide linkers showed a superior effect on cell 

tolerability compared to single L-arginine linkers. Incorporation of cleavage sites at 

position X2 was only beneficial for dipeptides. At site X1, metabolic activities were 

ranging from 49−66 % for single L-Arg linkers, while structures with dipeptide motifs 

showed similar cell viability as buffer-treated control cells. This is in accordance with a 

more efficient cathepsin-triggered degradation of test oligomers with dipeptide linkers. 

Cell viability assays in Huh7 cells were also performed with lipo-polyplexes formed by 

mixing of lipo-oligomers with siGFP and siCtrl, as polyplexes could potentially be less 

toxic than carriers in isolation. In this cell line, siRNA lipo-polyplexes showed similar 

results compared to MTT assays with only lipo-oligomers (Fig. 37).  
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Fig. 37 Metabolic activity indicating cell viability of human hepatoma Huh7/eGFPLuc cells determined 

by MTT assay after incubation with polyplexes at N/P 20 formed by mixing of lipo-oligomers and eGFP-

targeted siRNA (siGFP) or control siRNA (siCtrl). Cell viability assays were performed by Dr. Yanfang 

Wang (Pharmaceutical Biotechnology, LMU). 

 

3.3.5 Oligomer cleavage detected in cell transfections 

Fragments of degradation were identified from lysates of cells transfected with lipo-

polyplexes in agreement with cathepsin B incubation assays, indicating that 

endolysosomal degradation takes place after cellular internalization (Fig. 35C, and see 

the Analytical Data in section 6.4.4, Table 22). In contrast to degradation assays with 

cathepsin B, significant amounts of nondegraded material were found in cell lysates, 

which can be attributed to noninternalized material at the cell surface, intact lipo-

oligomers that were released into the cytosol or nondegraded structures in the 

lysosomes. Cathepsin B-triggered degradation of lipo-oligomers was studied after 

addition of siRNA to examine the influence of electrostatic interaction with nucleic acids 

on the degradability of the carrier. At N/P 1, no degradation of lipo-oligomers was 

detectable, indicating that the binding of nucleic acid phosphates to L-arginine side 

chains prevents enzymatic cleavage. When lipo-oligomers were added in excess 

(N/P 20), efficient cleavage similar to the degradation of lipo-oligomers without siRNA 

was found (see the Analytical Data in section 6.4.4, Table 22). 
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3.4 Delivery of siRNA and Proteins into Glioma and Brain 

The increasing prevalence of diseases affecting the central nervous system (CNS) 

urgently demands the development of biologic drugs like proteins, antibodies, peptides 

or nucleic acids capable of crossing the blood-brain barrier (BBB).225, 226 Efficient 

delivery of therapeutics into the brain is restricted by the BBB, which is formed by 

endothelial cells together with astrocytes, pericytes, and the basal lamina at the plasma 

membrane of the capillary of brain parenchyma.227 Microvessels in the brain are only 

40 µm apart, which allows for complete and almost instantaneous distribution 

throughout the entire CNS once a therapeutic substance or formulation is able to cross 

the BBB.228 As large molecule drugs or nanoparticles lack the requirements for free 

diffusion into the brain (molecular weight < 400 Da, < 8 hydrogen bonds), such 

therapeutics need to be designed to exploit carrier-mediated transport (CMT) or 

receptor-mediated transport (RMT) systems or need to undergo adsorptive-mediated 

transcytosis (AMT).229, 230 Sequence-defined oligoaminoamides have been used for 

receptor-targeted delivery of siRNA146 and pDNA231 to glioma in vivo. For siRNA 

delivery, a non-targeted lipo-oligomer was mixed with a PEGylated oligomer containing 

an Angiopep-2 ligand targeting the LRP-1 receptor, which is overexpressed both on 

the surface of the brain capillary endothelial cells (BCECs) and glioma cells.146 A 

similar cascade-targeting strategy was used for the delivery of therapeutic pDNA. 

Here, a non-targeted three-arm histidine oligomer was mixed with a PEGylated 

oligomer containing the IL-6 receptor targeting heptapeptide I6P7. IL-6 receptor 

expression was detected on the BBB and in various brain tumors such as glioblastoma. 

Targeted delivery of pDNA encoding inhibitor of growth 4 (pING4) significantly 

prolonged the survival time of orthotopic U87 glioma-bearing mice.231 The 

proangiogenic receptor APLNR and its cognate ligand apelin play a central role in 

controlling glioblastoma vascularization.232 Therefore, peptide sequences derived from 

the endogenous apelin ligand such as apelin-13 or the mutant APLNR ligand apelin-

F13A could not only be used to inhibit glioblastoma angiogenesis but also for glioma-

targeted delivery of nucleic acids and proteins.  

Notably, in late stages of glioma development, the BBB is impaired by formation of 

fenestrations, altered thickness of the basal lamina and tight junction disruption.233 

Delivery into the brain with an unimpaired BBB however is a major obstacle in the 

treatment of neural diseases. RMT using endogenous BBB receptor transporters such 
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as the transferrin receptor (TfR) was described to enable the re-engineering of biologic 

drugs that cross the BBB.228 However, modification of siRNA lipo-ployplexes with 

transferrin or an anti‐murine TfR antibody failed to show enhanced uptake into the 

brain in vivo, probably due to insufficient stability and disassembly of the polyplexes.113 

Several studies show BBB crossing and brain delivery of drug- or protein-loaded poly-

lactide-co-glycolide (PLGA) nanoparticles after conjugation with the glycosylated 

heptapeptide g7, which is derived from the opioid peptide MMP-2200.234-237 These 

nanoparticles are hypothesized to use membrane-membrane interactions triggering 

endocytosis and macropinocytosis-like processes due to the helical conformation of 

the g7 peptide.238 Click-chemistry is an elegant approach to functionalize polyplexes 

formed with azide-bearing oligoaminoamides and nucleic acids by post-modification 

with DBCO-containing shielding and targeting agents. Bivalent bis-DBCO agents 

potentially allow for crosslinking of two lipo-oligomers and thereby can increase 

polyplex stability in vivo.239 In this chapter, we evaluate cellular uptake in brain 

endothelial and neuroblastoma cells and gene silencing efficiency of siRNA lipo-

polyplexes after post-modification with a g7-containing bis-DBCO-PEG24 agent or non-

targeted control structures. 

3.4.1 Apelin receptor targeted delivery of GFP into glioma cells 

The ability of apelin-derived peptide ligands to improve the uptake of proteins in glioma 

cells via APLNR targeting was studied in vitro. Four equivalents of apelin-13, the 

mutant APLNR ligand apelin-F13A and a scrambled apelin-13scr, all containing a 

PEG24 spacer and a cysteine at the N-terminus, were linked to eGFP (enhanced green 

fluorescent protein) via SPDP (succinimidyl 3-(2-pyridyldithio)propionate) linkers. 

Apelin-modified eGFP variants were administered to GBM14 cells. Both apelin-13 and 

apelin-F13A linked eGFP were internalised by the cells, while eGFP modified with the 

negative control apelin-13scr was not (Fig. 38A). The specificity of APLNR-mediated 

protein uptake was confirmed by performing a dose escalation competition assay with 

unlabelled peptide, showing that uptake of both peptide-modified eGFP variants was 

blocked by its unmodified peptide counterparts (Fig. 38B). 
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Fig. 38 Specific internalization of apelin-modified eGFP by GBM14 cells. A) The eGFP signal in confocal 

images of cells treated with 1 M eGFP-peptide was compared to nuclear (DAPI) and membrane 

staining (wheath germ agglutinin; WGA). Internalization of eGFP-peptide conjugates was assessed by 

counting the percentage of cells with GFP-positive vesicles in four independent experiments. GFP-

apelin-13 and GFP-apelin-F13A were taken up specifically by more than 50 % of the cells while 

scrambled apelin-13scr was not. GFP pos. control (GFP-linked cationic lipo-oligomer 728 as unspecific 

positive control) was taken up by all cells. B) Dose-response curve of the inhibition of eGFP 

internalization. GBM14 cells were pre-treated with escalating amounts of unlabeled apelin-13 or apelin-

F13A peptide for 30 min before GFP-linked apelin-13 or apelin-F13A (200 nM) were applied, 

respectively. Inhibition of internalization by increasing concentrations (2, 20, 200, 2000 and 20000 nM) 

demonstrates the specificity of GFP-Apelin peptide internalization. GFP-Scale bar, 15 mm; Student’s t-

test, *** p  0.005. The uptake assays were performed by Giorgia Mastrella in the group of Prof. Rainer 

Glaß and Dr. Roland Kälin (Department of Neurosurgery, University Hospital of Munich (LMU).  

 

Similar studies were performed with apelin-modified siRNA polyplexes. The azide-

containing biodegradable t-shape oligomer 1073 (N→C: K(N3)-Y3-Stp2-K-ε[G-ssbb-K-

α,ε(CholA)2]Stp2-Y3)240 was modified with each 1 eq DBCO-PEG24-apelin-13, -apelin-

F13A or –apelin-13scr. The uptake in GBM14 cells was not increased by APLNR ligand 
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modification (data not shown). This finding could be explained by high unspecific 

uptake of polyplexes compared to the low uptake of unmodified eGFP.  

3.4.2 Design of lipo-oligomers and targeting and shielding agents for click 

chemistry 

Azide-bearing T-shaped lipo-oligomers with two (1198) or four (1215) Stp units at each 

side of the cationic backbone were synthesized to enable post-modification of siRNA 

lipo-polyplexes with DBCO-containing shielding and targeting structures by click 

chemistry (Fig. 39).  

 

Fig. 39 Brain-targeted sequence-defined oligomers with T-shape topology. Top: schematic overview of 

the structures with different modifications (Y: tyrosine, K: lysine, C: cystein, Stp: succinoyl-tetraethylene-

pentamine, OleA: oleic acid). The structures contain an azide function for modification with DBCO-

bearing shielding and targeting agents and two (1198) or four (1215) Stp units at each side of the cationic 

backbone. Oligomer 1215 was synthesized by Jie Lou (Pharmaceutical Biotechnology, LMU). IDs are 

unique database identification numbers. Bottom: Targeting and shielding agents with bis-DBCO 

moieties for click chemistry, a PEG24 unit for polyplex shielding and g7 (H2N-Gly-L-Phe-D-Thr-Gly-L-

Phe-L-Leu-L-Ser(O-β-D-Glucose)-CONH2) as ligand or scrg7 (H2N-Gly-Leu-Phe-Phe-Gly-Ser(O-β-D-

Glucose)-D-Thr-CONH2) as scrambled control sequence.  
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Both lipo-oligomers contain cysteines and tyrosine trimers for enhanced polyplex 

stabilization and a dioleic acid domain for enhanced lipid membrane interaction.43, 64 

The shielding agents contain two DBCO moieties (bis-DBCO) which potentially 

enables crosslinking of two lipo-oligomers on the surface of polyplexes. Two 

succinylated PEG3-spacer (STOTDA) were placed before a PEG24 shielding domain. 

The glycosylated heptapeptide g7 was introduced as ligand to improve the uptake in 

brain endothelial cells. Non-targeted control structures contain either no ligand (PEG24) 

or a scrambled sequence of g7 (PEG24-scrg7). 

3.4.3 Biophysical characterization of lipo-polyplexes with and without post-

modification  

Particle sizes, polydispersity indices and zeta potentials of siRNA lipo-polyplexes with 

or without post-modification were measured by dynamic light scattering (DLS). All 

polyplexes showed uniform sizes between 139 - 159 nm z-average (Table 18).  

Table 18 Particle size (z-average), polydispersity index (PDI) and zeta potential of siRNA lipo-polyplexes 

at N/P 20 determined with a DLS zetasizer. 

Formulation z-average [nm] Mean PDI 
Mean zeta potential 

[mV] 

1198 146.0 ± 1.5 0.19 ± 0.01 34.0 ± 1.2 

1198 + PEG24 159.0 ± 3.7 0.20 ± 0.02 8.6 ± 0.6 

1198 + PEG24-scrg7 150.4 ± 4.5 0.18 ± 0.03 9.1 ± 0.2 

1198 + PEG24-g7 156.2 ± 2.3 0.19 ± 0.02 5.2 ± 1.0 

1215 138.8 ± 1.9 0.14 ± 0.01 40.2 ± 2.5 

1215 + PEG24 138.0 ± 2.5 0.18 ± 0.01 18.2 ± 2.2 

1215 + PEG24-scrg7 142.6 ± 1.4 0.19 ± 0.01 19.7 ± 1.0 

1215 + PEG24-g7 147.6 ± 3.1 0.21 ± 0.02 13.0 ± 2.1 

 

The zeta potentials of 1198 formulations (34 mV unshielded, 5.2 – 8.6 mV after post-

modification) are significantly lower compared to 1215 polyplexes (40 mV unshielded, 

13 – 20 mV after post-modification), probably due the higher charge density of 1215 

with 8 Stp units per oligomer compared to only 4 Stps of 1198. Shielding of polyplexes 

was more efficient for 1198 formulations, as PEGylation reduced the zeta potential of 

the unshielded polyplexes to 15 - 27 % compared to 32 – 49 % for 1215. The binding 

ability of the lipo-oligomers to siRNA was determined by measuring the electrophoretic 

mobility of siRNA in a 2.5 % agarose gel. All formulations showed full siRNA binding 

in HBG buffer at N/P 12 (Fig. 40 top). 
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Fig. 40 Agarose gel shift assays of lipo-polyplexes before and after modification with targeting and 

shielding agents. Lipo-polyplexes were formed at N/P 12 and subsequently modified with bis-DBCO 

agents for 4h. Polyplexes were analysed either in HBG or after treatment at 37 °C with 90 % serum 

(FCS). 

 

Polyplexes were exposed to 90 % full serum at 37 °C for two and 24 hours (Fig. 40 

bottom). Incubation with serum at body temperature can be indicative for polyplex 

stability in the blood stream. All formulations fully retained the siRNA after two hours 

of incubation. After 24 hours, small amounts of siRNA were released from polyplexes 

with 1198 after post-modification, but not from the unmodified polyplexes. For 1215 

formulations, the post-modified polyplexes released slightly more siRNA than the 1198 

formulations and also the unmodified 1215 polyplexes released small amounts of 

siRNA after 24 h. This indicates a minor benefit in stability of 1198 probably due to a 

more favorable ratio of positively charged Stp units to stabilizing motifs compared to 

1215.  

3.4.4 Cellular uptake in brain endothelial and neuroblastoma cells and gene 

silencing efficiency 

All formulations were tested for cellular internalization in bEnd.3 mouse brain 

endothelial cells and Neuro2A mouse neuroblastoma cells (Fig. 41A).  
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Fig. 41 A) Mean fluorescence intensity (MFI) data for cellular internalization of Cy5-labeled siRNA 

formulations (left: bEnd.3 cells; right: Neuro2A cells) with or without modification with targeting and 

shielding agents determined by flow cytometry. B) Gene silencing of formulations with eGFP-targeted 

siRNA (siGFP) or control siRNA (siCtrl) in Neuro2A/eGFPLuc cells. Uptake assays and transfections 

were performed by Jasmin Kuhn (Pharmaceutical Biotechnology, LMU). 

 

The uptake in brain endothelial cells, which form the inner layer of the brain capillary 

wall, is a crucial first hurdle for efficient delivery into the brain. Polyplexes formed with 

Cy5-labeled siRNA with or without post-modification with targeting and shielding 

agents were incubated for 45 min on cells. After washing with heparin to remove non-

internalized polyplexes, the mean fluorescence intensity (MFI) was determined by flow 

cytometry. As expected, polyplexes shielded with PEG24 showed reduced cellular 

uptake compared to unshielded polyplexes. The uptake of g7-targeted lipo-polyplexes 

in bEnd.3 was increased by 60 % for 1198 polyplexes and 90 % for 1215 polyplexes 

compared to PEG24-scrg7 modified control formulations and was also higher than for 

unshielded polyplexes. A similar, but less pronounced effect was found in Neuro2A 

cells with an increase in MFI of 15 % for 1198 and 35 % for 1215 formulations with 

PEG24-g7 compared to PEG24-scrg7. Gene silencing experiments were performed in 

Neuro2A/eGFPLuc reporter cells. All formulations showed low gene silencing 

efficiency with a slight reduction in gene expression for formulations with the g7 ligand 

compared to non-targeted controls. Altogether, the g7 ligand showed a positive but 

moderate effect on cellular uptake in both bEnd.3 and Neuro2A cells and transfection 

efficiency in Neuro2A cells. Cellular uptake and gene silencing efficiency were similar 

for 1198 and 1215, indicating no clear benefit for any of the two lipo-oligomers. 
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4 Discussion 

4.1 Optimized Solid-Phase-Assisted Synthesis of Oleic Acid Containing 

siRNA Nanocarriers 

Incorporation of fatty acids in cationic nucleic acid carriers provides both polyplex 

stabilization by hydrophobic interactions and enhanced membrane interactions for 

efficient cellular uptake and endosomal release.37, 43 The cis-unsaturated fatty acid 

oleic acid (C18:1 cis) has been incorporated in well-known cationic lipids162 and 

sequence-defined lipo-oligomers43, 44 and promotes membrane lipid disorders by 

interacting with anionic phospholipids.164 The incorporation of unsaturated fatty acids 

in sequence-defined oligomers via solid-phase assisted synthesis however bears the 

risk of producing side products caused by addition of TFA to the double bonds during 

cleavage. Standard peptide synthesis protocols recommend high amounts of TFA 

(50 – 95 %) and incubation times of 30 – 60 min at room temperature for complete 

cleavage of acid-labile protecting groups like OtBu, tBu, Trt and Boc.185 For the 

synthesis of lipo-oligomers containing both unsaturated fatty acids and amino acids 

with protected side chains, the cleavage protocol has to be as mild as possible to 

minimize side products by TFA-addition while ensuring complete cleavage of 

protecting groups. Test peptides with oleic acid and natural and artificial amino acids, 

which have been used in our published nucleic acid carriers, were synthesized. 

Cleavage assays were performed at various temperatures and incubation times, and 

the influence of alkene scavangers and precooling of the resin and cleavage cocktails 

was studied. The reaction kinetics of the addition of TFA to OleA at 4 °C and 22 °C 

were determined. Although TFA adds at a higher rate to alkenes at 22 °C, the amount 

of side products was lower after the cleavage time which was sufficient to deprotect all 

amino acid side chains. Precooling of resin and cleavage cocktail siginificantly reduced 

the formation of TFA adducts, as exothermic cleavage of protecting groups and the 

product from the resin increases the temperature of the cleavage solution after 

addition. The addition of 4 % alkene scavengers had no influence on the formation of 

side products, presumably because of the huge excess of 90 % TFA. An optimized 

cleavage protocol, comprising precooling of the cleavage cocktail and the resin and 20 

min incubation time at 22 °C, was used to synthesize a library of lipo-oligomers 

containing cysteines, tyrosines, lysines and the synthetic building block Stp together 
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with either oleic acid (OleA-t) or chemically stable stearic acid (SteA-t) and 8-

nonanamidooctanoic acid (NonOcA-t) moieties. Low amounts of side products were 

removed by HPLC purification of the crude product and high yields of the purified 

products were achieved. TFA esters resulting from addition of TFA to alkenes are 

hydrolyzed under neutral or basic aqueous conditions and form hydroxylated 

hydrocarbons. This side reaction was forced by long-time treatment with TFA followed 

by TFA-ester hydrolysis, generating a mono-hydroxylated hydrocarbon chain (OH-

SteA-t). Comparing the siRNA delivery characteristics of the oleic acid containing lipo-

oligomer OleA-t to structures with modified hydrophobic moieties (OH-SteA-t and 

NonOcA-t) revealed differences in membrane-lytic potentials. A shift toward enhanced 

lytic activity at pH 7.4 was observed for OH-SteA-t and NonOcA-t, while OleA-t 

displayed a highly desirable pH-dependency of membrane lysis toward endosomal 

acidic pH. These findings can explain the significant cytotoxicity of OH-SteA-t and 

NonOcA-t as compared with nontoxic OleA-t. The choice of the cell line influences the 

finding, as DU145 cells seemed to be more sensitive to changes in lytic potential than 

Neuro2A cells. Thus, OH-SteA-t as side product of OleA-t synthesis might negatively 

affect the properties of the resulting lipo-polyplexes. In conclusion, OleA-t showed 

particularly favorable pH dependency of endosomolytic activity, efficient gene silencing 

and excellent cell tolerability compared to its counterparts. TFA-mediated cleavage of 

the oligomer and subsequent purification has to be critically controlled in order to retain 

the unsaturated hydrocarbon chain character and ensure high yields of the synthesis. 

Notably, the cleavage protocol was optimized for the synthesis of structures containic 

both oleic acid and amino acids with Trt (Cys, His), Boc (Trp, Lys, Stp), OtBu (Glu) and 

tBu (Tyr) protecting groups. TFA concentrations in the cleavage cocktails might be 

lowered and thus result in even less side products if unsaturated fatty acids are 

incorporated in structures with amino acids containing protecting groups which are 

cleavable under mild conditions (such as Fmoc-Lys(Mtt)-OH instead of Fmoc-

Lys(Boc)-OH185). Some protecting groups of amino acid side chains, such as Mtr, Pmc 

or Pbf of the arginine guanidino group, might however require harsher conditions185 

compared to the optimized cleavage protocol in this chapter, resulting in more side 

products.  
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4.2 Precise Redox-Sensitive Cleavage Sites for Improved Bioactivity of 

siRNA Lipopolyplexes 

In the first chapter, lipo-oligomers were found to display slight variations in pH-specific 

lytic profiles dependant on the incorporated hydrophobic moieties in agreement with 

previous work.43, 44 Besides membrane destabilization mediated by membrane 

interactions at low endolysosomal pH, the hydrophobic domains in cationic lipo-

oligomers offer polyplex stabilization in the extracellular space. Although high stability 

of siRNA polyplexes is desirable for in vivo circulation and cellular uptake, intracellular 

disassembly promotes cytosolic release and subsequent incorporation of siRNA in the 

RNA-induced silencing complex. To improve cytosolic disassembly of lipo-polyplexes, 

bioreducible sequence-defined lipo-oligomers were synthesized by solid-phase 

assisted synthesis by incorporating the disulfide building block Fmoc-succinoyl-

cystamine between a lipophilic diacyl (bis-myristyl, bis-stearyl or bis-cholestanyl) 

domain and an ionizable oligocationic siRNA binding unit.  

The applicability of the disulfide building block for solid-phase assisted synthesis and 

cleavability under physiologic conditions was evaluated for test structure 740. As 

disulfides are degradable in presence of hydroxyl anions241, 1-Hydroxybenzotriazole 

hydrate was not used for coupling reactions of the ssbb and all subsequent reactions. 

The ssbb was shown to be stable during standard Fmoc-based solid-phase assisted 

synthesis and could be disassembled in presence of cytosolic gluathione 

concentrations.  

The redox-triggered disassembly of lipo-polyplexes could also be demonstrated for 

lipo-oligomers containing the ssbb by performing agarose gel shifts assays under 

reducing conditions. While bioreducible structures showed a release of siRNA at 

intracellular concentrations of 1 – 10 mM glutathione, the stable analogs did not show 

any siRNA release in presence of increasing amounts of GSH. Major differences in 

membrane lytic activity could be observed for the different hydrophobic diacyl moieties. 

While myristic acid, in accordance with literature168, showed high lytic activity 

especially at late endosomal pH, cholanic acid and stearic acid showed only moderate 

lytic activity. The pH sensitivity of the cationic lipo-oligomers can be explained by 

increasing protonation of the ionizable cationic backbone that is used for nucleic acid 

binding.  
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The lytic activity of biodegradable oligomers could be abolished after incubation with 

glutathione at intracellular concentrations (10 mM). Glutathione-triggered degradation 

of the lipo-oligomers should on the one hand reduce lytic activity of the lipo-oligomers 

in the cytosol after endosomal release and on the other hand improve the accessibility 

of siRNA for facilitated incorporation into the RISC. Consistent with both hypotheses, 

the reducible siRNA polyplexes show lower cytotoxicity and higher gene silencing 

efficacy in Neuro2A and DU145 cells compared to their stable analogs.  

Suprisingly, a negative influence of the bioreducible building block on gene silencing 

activity was found for HeLa-derived KB cells. As high extracellular disulfide cleavage 

was previously reported for HeLa cells191, disulfide cleavage occurring at the 

extracellular cell surface might be an explanation for this finding.  

In sum, bioreducible siRNA carriers offer increased gene silencing efficiency in certain 

cell lines by combining extracellular polyplex stability, high lytic activity under 

endosomal conditions and cytosolic degradability leading to cleavage products with 

low cytotoxicity and improved siRNA release from the disassembled polyplexes. 

Nevertheless, for cell lines with exceptional extracellular redox environments, the 

redox-sensitivity of carriers can also be a disadvantage. 

4.3 Precise Enzymatic Cleavage Sites for Improved Bioactivity of siRNA 

Lipo-Polyplexes 

In the previous chapter, a new class of redox-sensitive lipo-oligomers was successfully 

established for siRNA delivery. Biodegradable sequence-defined oligomers were 

generated by introducing a disulfide-containing building block between a lipophilic 

diacyl domain and an ionizable oligocationic siRNA-binding unit. Degradable siRNA 

polyplexes showed higher gene silencing efficiency and lower cytotoxicity than their 

stable analogs. Premature disulfide cleavage of carriers by cell surface 

oxidoreductases may however present a significant obstacle depending on tissue and 

cell types.71 Moreover, glutathione-triggered cleavage is initiated after cytosolic release 

and therefore effects only a small fraction of cytosolic carriers, as endosomal escape 

is a major bottleneck for delivery. Degradation of lipo-oligomers by endolysosomal 

enzymes therefore appears as an attractive strategy to destroy abundant potentially 

toxic carrier molecules while ensuring high extracellular stability. The resistance to 
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degradation by the lysosomal protease cathepsin B of a test structure containing two 

amide-bound Stp units without any natural L-amino acid linkers is consistent with 

findings that length of Stp oligomers correlates with cytotoxicity.40 This may present a 

problem for the cell metabolism, as the majority of transfection material is known to 

initially accumulate in the lysosomal compartment and needs to be dumped from 

cells215 before serious organelle damage. Therefore, one or two of the natural L-amino 

acids lysine, arginine, histidine, or tyrosine, which have been used in our published 

nucleic acid carriers223, were incorporated in a library of test structures between two 

Stp units to identify sequences which are readily cleavable. Arginine showed the 

highest enzymatic degradabiliy of all tested amino acids and test structures containing 

dipeptides were cleaved faster compared to single L-amino acid linkers. 

Biodegradability of lipo-oligomeric nucleic acid carriers was tailored by precise 

integration of L-Arg dipeptides or single L-arginines as enzymatic cleavage sites. 

Similar degradation fragments were found after incubation of lipo-oligomers with the 

endolysosomal protease cathepsin B as in cell lysates after transfection. Introducing 

short cleavable L-Arg dipeptide linkers significantly improved cell tolerability after 

transfection without hampering gene silencing efficiency. Reduced lytic activities of 

degraded lipo-oligomers at endolysosomal pH conditions after internalization can be 

hypothesized as an underlying mechanism for the decreased toxicity. Our data indicate 

that the cleavage sites should preferably be integrated in the hydrophilic parts of 

carriers.  

Introducing enzymatically cleavable amino acid linkers however could lead to rapid 

degradation of the carrier by blood proteases and thus may limit the in vivo stability of 

polyplexes or the excess of free lipo-oligomers. Further optimization could target the 

development and integration of more cathepsin-specific cleavage sites, such as the 

Phe-Lys-Phe-Leu (FKFL) motif, which was integrated in cathepsin-degradable peptide-

HPMA copolymers and showed intact polymers even after serum incubation for 4 

hours.89, 222 The choice of the amino acid linkers may also alter the properties of the 

nucleic acid carrier. Linkers containing several arginines or lysines will participate in 

nucleic acid binding and could potentially promote lytic acitivities and short term toxicity 

resulting from compromised plasma membrane integrity at neutral pH.  
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4.4 Delivery of siRNA and Proteins into Glioma and the Brain 

Modification of eGFP with the apelin-derived peptide ligands apelin-13 and apelin-

F13A was shown to improve the uptake in glioma cells via specific APLNR targeting. 

Although apelin-modification of proteins could be a promising strategy to trigger uptake 

into glioma via APLNR interaction, an additional endosomal escape mechanism might 

be needed for efficient cytosolic or nuclear delivery. Endosomal escape of proteins 

could potentially be improved by dual modification with both apelin peptides and 

endosomolytic peptides. Although apelin and APLNR were found to be dramatically 

upregulated in in glioblastoma-associated microvascular proliferations, apelin was 

undetectable in the healthy brain and APLNR mRNA expression was very low in 

normal brain vessels.242 This renders APLNR targeting as promising strategy for 

glioma models, but not for enhanced delivery of therapeutics into the brain through a 

healthy BBB. Apelin-modification of polyplexes could facilitate nucleic acid delivery into 

glioma, but failed to show an effect in preliminary studies, probably due to high 

unspecific uptake of unmodified polyplexes.  

Formulation of nucleic acids with cationic lipo-oligomers provides both polyplex stability 

and pH-specific lytic activity for endosomal escape. Unshielded cationic lipo-

polyplexes however can interact unspecifically with serum proteins or off-target tissues 

in vivo.113, 243 Shielding agents can be equipped with ligands to improve tissue 

specificity. Transferrin and an anti-TfR antibody were used for transferrin receptor 

targeting, but did not show enhanced uptake into the brain, possibly due to a 

destabilizing effect of such large protein ligands.113 Small peptide ligands such as I6P7 

and angiopep-2 present an alternative to larger protein ligands and were used for 

successful delivery of nucleic acids into glioma in vivo.146, 231 The work in this chapter 

was carried out within the COMPACT (Collaboration on the Optimization of 

Macromolecular Pharmaceutical Access to Cellular Targets) consortium where several 

preselected peptide ligands were screened at LMU Munich and collaborating 

institutions for uptake and transcytosis in brain endothelial cells and BBB models. 

Screening of the peptide ligands RVG (targeting the alpha-7 nicotinic receptor)244, 

EPRNEEK (targeting the laminin receptor)245, I6P7 (targeting the interleukin 6 

receptor)246 and g7 (reported to undergo adsorption-mediated endocytosis)238 

revealed a positive ligand effect in healthy BBB models only in case of g7 (data not 

shown for other ligands).  
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Post-modification of polyplexes formed by mixing of azide-bearing oligomers and 

siRNA with bis-DBCO-containing shielding and targeting agents by bio-orthogonal click 

chemistry is an elegant approach to avoid side reactions and to potentially increase 

polyplex stability by crosslinking of oligomers.239 Azide-bearing T-shaped lipo-

oligomers 1198 and 1215 were synthesized and polyplexes were post-modified with 

shielding agents containing a bis-DBCO moiety and either a g7 ligand for enhanced 

brain uptake or non-targeted controls. While polyplex sizes were in a similar range after 

post-modification, a significant reduction of zeta-potentials after modification down to 

15 - 27 % for 1198 and 32 – 49 % for 1215 compared to unmodified polyplexes was 

detected, which should reduce unspecific interactions of the polyplexes. Higher 

shielding efficiency for 1198 might be beneficial compared to 1215, which has a higher 

charge density with 8 instead of 4 Stp units per oligomer. Modification of lipo-

polyplexes with hydrophilic shielding agents, especially with higher equivalents 

containing longer PEG chains, bears the risk of polyplex destabilization.239 Notably, 

electrophoretic mobility assays evaluating the binding ability of lipo-oligomers to siRNA 

revealed no destabilization of polyplexes after post-modification in HBG buffer and 

after two hours of incubation in 90 % FCS at 37 °C. Only after 24 h of incubation in 

serum a minor destabilizing effect of the shielding and targeting agents could be 

observed, indicating that these formulations could be suitable for application in vivo. 

Polyplexes containing lipo-oligomer 1198 released less siRNA than 1215 polyplexes, 

giving hint to a potential benefit in long-term extracellular stability of 1198. Higher 

stability of 1198 compared to 1215 oligomers could be attributed to the ratio of 

positively charged Stp units to stabilizing motifs, which is lower for 1198 and potentially 

beneficial for polyplex stability.  

Brain capillary endothelial cells form a restrictive layer and prevent the majority of 

therapeutics from entering brain parenchyma. As tight junctions between adjacent 

BCECs prevent paracellular diffusion, cellular uptake in these cells a crucial first step 

in BBB crossing and brain delivery.229 Polyplexes modified with PEG24-g7, a shielding 

agent containing the opioid-derived g7 ligand, show enhanced uptake in mouse brain 

endothelial cells compared to unshielded polyplexes and polyplexes modified with 

shielding agents without ligand (PEG24) or with a scambled control ligand (PEG24-

scrg7). The effect of g7-targeting could be observed for both 1198 and 1215 

polyplexes, but was rather moderate with a less than 2-fold increase in mean 

fluorescence. An even less pronounced effect of g7-modification on cellular 
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internalization was found in Neuro2A neuroblastoma cells. Gene silencing efficiency in 

Neuro2A/eGFPLuc reporter cells was low for all tested formulations, but a moderate 

increase in gene knockdown was found for g7-modified polyplexes for both 1198 and 

1215 and could be attributed to the slightly enhanced cellular uptake in this cell line. 

Giovanni Tosi, who repeatedly reported BBB crossing and brain delivery of g7-modified 

PLGA nanoparticles with various loadings in vivo, was consulted within the COMPACT 

consortium to discuss the data generated with the g7 ligand. His group extensively 

studied cell-specific uptake, distribution and neuronal cell-to-cell transport in vitro and 

in vivo. Tosi pointed out the limited predictive value of in vitro assays in case of g7-

modified nanoparticles and strongly encouraged in vivo biodistribution assays. 

Although g7-targeted PLGA nanoparticles showed efficient uptake in mouse brain after 

i.v. injection, they lack an endosomal escape mechanism and therefore have only been 

used for the delivery of hydrophobic drugs or lysosomal enzymes for the treatment of 

lysosomal storage disorders.234, 235, 237 Targeted siRNA lipo-polyplexes could provide 

enhanced endosomal escape efficiency and therefor potentially enable cytosolic 

delivery of RNAi therapeutics. However, it remains unclear if g7-modified lipo-

polyplexes would exploit uptake and distribution mechanisms similar to negatively 

charged PLGA nanoparticles. Further testing in cellular BBB models or in vivo 

biodistribution studies are essential to evaluate if this delivery system is able to cross 

the BBB, as uptake in endothelial cells is only a first critical step of the brain delivery 

process. Azide-bearing lipo-oligomers are a highly versatile delivery platform which 

can be equipped with any DBCO-functionalized ligands. Further optimization could 

include ligands such as the protease-resistant TfR-targeting retro enantio peptide 

THRre247, 248, cyclic MiniAp-4249 or properly configured glucose in combination with 

rapid glycaemic increase after fasting.250 
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5 Summary 

The transfer of therapeutic genes and oligonucleotides offers great opportunities for 

the treatment of severe diseases including genetic disorders and cancer.251, 252 

Efficient and safe delivery of nucleic acids is a major challenge. Stable nucleic acid 

complexation, low unspecific interactions with blood components and non-target cells, 

specific cellular uptake, endosomal escape and intracellular cargo release at the target 

site are critical parameters of the delivery process which can be addressed by 

formulation with multifunctional, bioresponsive, sequence-defined nucleic acid 

carriers. Solid-phase assisted synthesis enables modular assembly using natural 

amino acids, synthetic building blocks and other moieties such as fatty acids.  

In this thesis, the synthesis of oleic acid containing lipo-oligomers was optimized with 

a new cleavage protocol, and biodegradable moieties were precisely integrated with a 

disulfide building block or enzymatic cleavage sites. Further, lipo-polyplexes and 

proteins were modified with targeting and shielding domains to enhance uptake in 

glioma and brain endothelial cells.  

In the first part, the kinetics of TFA addition to oleic acid, which occurs as a side 

reaction during the oligomer cleavage, were studied with test oligomers and an 

optimized cleavage protocol was developed to minimize side products. Lipo-oligomers 

with intact oleic acid were synthesized in high yields (> 60 %) by precooling of both 

resin and cleavage cocktail, reduction of cleavage time and subsequent HPLC 

purification. Structures containing oleic acid showed particularly favorable pH 

dependency of endosomolytic activity, efficient gene silencing and excellent cell 

tolerability compared to its counterparts containing chemically stable or hydroxylated 

hydrocarbon chains.  

In the second and third part, we presented biodegradable lipo-oligomers as siRNA 

carriers. Bioreducible carriers were synthesized by precise introduction of a disulfide 

bond between the cationic backbone and the hydrophobic domain via a Fmoc-

protected cystamine building block, which is compatible with solid-phase assisted 

synthesis. Bioreducible carriers combined extracellular polyplex stability with siRNA 

release under cytosolic conditions and a high lytic activity under endosomal conditions 

with low cytotoxicity. However, their applicability must be evaluated for each cell line, 



   Summary 

   102 

as reductive environments may differ and may result in premature extracellular 

disulfide cleavage.  

In the third part, it was found that Stp-based oligoaminoamides are resistant toward 

enzymatic degradation by the lysosomal enzyme cathepsin B, which may present a 

problem for the cell metabolism. Biodegradability was tailored by precise integration of 

enzymatic cleavage sites such as L-Arg dipeptides. Cleavage sites should preferably 

be integrated into the hydrophilic parts of carriers. Introducing short cleavable L-Arg 

dipeptide linkers significantly improved cell tolerability after transfection without 

hampering gene silencing efficiency. Reduced lytic activities of degraded lipo-

oligomers at endolysosomal pH conditions after internalization can be hypothesized as 

an underlying mechanism for the decreased toxicity. Evaluation of different cleavage 

motifs may enable further optimization regarding faster degradability by lysosomal 

enzymes or reduced cleavability by extracellular blood proteases, which could result 

in a loss of stability in vivo.  

In the fourth part, modification of eGFP with the apelin-derived peptide ligands apelin-

13 and apelin-F13A resulted in improved uptake in glioma cells via specific APLNR 

targeting. Still, an additional endosomal escape mechanism might be needed for 

efficient cytosolic or nuclear delivery. Modification of polyplexes with apelin-derived 

ligands could be a promising strategy to facilitate nucleic acid delivery into glioma, but 

not into the brain with a healthy BBB, as the expression of APLNR is low in normal 

brain vessels. Various peptide and protein ligands were tested for enhanced uptake in 

brain endothelial cells, where only the glycosylated heptapeptide g7 showed a slight 

increase of siRNA internalization by up to 90 %. 
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6 Appendix 

6.1 Abbreviations 

AMT  Adsorptive-mediated transcytosis 

APLNR Apelin receptor  

BBB  Blood-brain barrier 

BCECs Brain capillary endothelial cells 

BECF  Brain extracellular fluid 

Boc   tert-Butoxycarbonyl protecting group  

BODIPY Boron-dipyrromethene 

bPEI  Branched polyethylenimine 

CholA  5β-Cholanic acid 

CMT  Carrier-mediated transport 

CNS  Central nervous system 

DBCO  Dibenzocyclooctyne group 

DCM   Dichloromethane  

DCVC  Dry column vacuum chromatography  

DIPEA  N,N-Diisopropylethylamine  

DLS  Dynamic light scattering 

DMEM  Dulbecco’s modified Eagle’s medium  

DMF   N,N-Dimethylformamide  

DNA   Desoxyribonucleic acid  

EDTA  Ethylendiaminetetraacetic acid  

EG5  Eglin 5 

EGFP  Enhanced green fluorescent protein 

FA  Folic acid 

FCS   Fetal calf serum  

Fmoc   Fluorenylmethoxycarbonyl protecting group  

FolA   Folic acid  

GFP  Green fluorescent protein 

GNPs  Gold nanoparticles 

GSH   Glutathione 



   Appendix 

   104 

HBG   Hepes-buffered glucose  

HBTU  2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate  

HEPES  N-(2-hydroxethyl) piperazine-N‘-(2-ethansulfonic acid)  

HMW   High molecular weight  

HOBt   1-Hydroxybenzotriazole  

IL-6  Interleukin 6 

INF7  An endosomolytic influenza virus derived peptide  

DHFR  Dihydrofolate reductase 

Dde  4,4-Dimethyl-2,6-dioxocyclohexylidene)ethyl protecting group  

LPEI   Linear polyethylenimine  

LRP-1  Low Density Lipoprotein Receptor-Related Protein 1 

MALDI-TOF Matrix-assisted laser desorption/ionization – Time of flight  

mM  Millimolar 

mRNA  Messenger RNA 

MTBE  Methyl tert-butyl ether  

MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide  

MTX  Methotrexate 

mV  Millivolt 

MyrA   Myristic acid 

N/P   Nitrogen to phosphates ratio  

NHS   N-Hydroxysuccinimide 

nm  Nanometer 

NMP   N-Methyl-2-pyrrolidone  

NMR   Nuclear magnetic resonance  

OleA  Oleic acid 

PDI   Polydispersity index  

pDNA  Plasmid DNA  

PEG   Polyethylene glycol  

pKa  -log10 Ka (acid dissociation constant) 

PLGA  Poly-lactide-co-glycolide 

PyBOP  Benzotriazol-1-yloxy-tripyrrolidinophosphonium hexafluorophosphate  

RISC  RNA-induced silencing complex 

RLU   Relative light units  
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RMT  Receptor-mediated transport  

RNA   Ribonucleic acid  

RP-HPLC  Reversed-phase high-performance liquid chromatography  

RT   Room temperature  

SEC   Size-exclusion chromatography  

siRNA  Small interfering RNA 

SPDP  Succinimidyl 3-(2-pyridyldithio)propionate 

Sph   Succinoyl-pentaethylene hexamine  

SPS   Solid-phase synthesis  

SteA  Stearic acid 

Stp   Succinoyl-tetraethylene pentamine  

TBE   Tris-boric acid-EDTA buffer  

TEPA   Tetraethylene pentamine  

TFA   Trifluoroacetic acid  

TfR  Transferrin receptor 

THF   Tetrahydrofuran  

TIS   Triisopropylsilane 

6.2 Summary of SPS Derived Oligomers 

Table 19 Summary of SPS derived oligomers 

Oligomer ID Topology Sequence (C→N) 
Proton. 
Amines 

Chapter 

454 T-Shape C-Y3-Stp2-K-ε[K-α,ε(OleA)2]αStp2-Y3-C 13 3.1 

782 U-shape K-αK-α,ε[Stp3-ssbb-(CholA)2]2 19 3.2 

783 U-shape K-αK-α,ε[Stp3-(CholA)2]2 19 3.2 

871 i-Shape Stp4-H6-K-α,ε(CholA) 12 3.2 

969 i-Shape Stp4-H6-ssbb-K-α,ε(CholA)2 12 3.2 

989 T-Shape Y3-Stp2-K-ε[G-K-α,ε(SteA)2]αStp2-Y3 13 3.2 

990  T-Shape Y3-Stp2-K-ε[G-ssbb-K-α,ε(SteA)2]αStp2-Y3 13 3.2 

991 T-Shape Y3-Stp2-K-ε[G-K-α,ε(CholA)2]αStp2-Y3 13 3.2 

992 T-Shape Y3-Stp2-K-ε[G-ssbb-K-α,ε(CholA)2]αStp2-Y3 13 3.2 

1072 T-Shape C-Y3-Stp2-K-ε[K-α,ε(SteA)2]αStp2-Y3-C 13 3.1 
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1081 T-Shape Y3-Stp2-K-ε[G-K-α,ε(MyrA)2]αStp2-Y3 13 3.2 

1082 T-Shape Y3-Stp2-K-ε[G-ssbb-K-α,ε(MyrA)2]αStp2-Y3 13 3.2 

1104 T-Shape C-Y3-Stp2-K-ε[K-α,ε(OcANonA)2]αStp2-Y3-C 13 3.1 

1105 T-Shape C-Y3-Stp2-K-ε[K-α,ε(OH-SteA)2]αStp2-Y3-C 13 3.1 

1107 T-Shape Y3-Stp2-K-ε[G-K-α,ε(OleA)2]αStp2-Y3 13 3.2 

1108 T-Shape Y3-Stp2-K-ε[G-ssbb-K-α,ε(OleA)2]αStp2-Y3 13 3.2 

1165 T-Shape C-Y3-Stp2-K-ε[K-α,ε(LinA)2]αStp2-Y3-C 13 3.1 

1166 T-Shape C-Y3-Stp2-K-ε[K-α,ε(OH-C(18:1))2]αStp2-Y3-C 13 3.1 

1198 T-Shape C-Y3-Stp2-K-ε[K-α,ε(OleA)2]αStp2-Y3-C-K(N3) 13 3.4 

1215 T-Shape C-Y3-Stp4-K-ε[K-α,ε(OleA)2]αStp4-Y3-C-K(N3) 13 3.4 

1286 T-Shape Y3-Stp2-K-ε[K-α,ε(MyrA)2]Stp2-Y3 13 3.3 

1287 T-Shape Y3-Stp2-K-ε[R-K-α,ε(MyrA)2]Stp2-Y3 14 3.3 

1288 T-Shape Y3-Stp2-K-ε[r-K-α,ε(MyrA)2]Stp2-Y3 14 3.3 

1289 T-Shape Y3-Stp2-K-ε[RR-K-α,ε(MyrA)2]Stp2-Y3 15 3.3 

1291 T-Shape Y3-Stp2-R-K-R-ε[K-α,ε(MyrA)2]Stp2-Y3 15 3.3 

1292 T-Shape Y3-Stp2-R-K-R-ε[R-K-α,ε(MyrA)2]Stp2-Y3 16 3.3 

1293 T-Shape Y3-Stp2-R-K-R-ε[r-K-α,ε(MyrA)2]Stp2-Y3 16 3.3 

1294 T-Shape Y3-Stp2-r-K-r-ε[K-α,ε(MyrA)2]Stp2-Y3 15 3.3 

1295 T-Shape Y3-Stp2-r-K-r-ε[R-K-α,ε(MyrA)2]Stp2-Y3 16 3.3 

1296 T-Shape Y3-Stp2-r-K-r-ε[r-K-α,ε(MyrA)2]Stp2-Y3 16 3.3 

1297 T-Shape Y3-Stp2-RR-K-RR-ε[K-α,ε(MyrA)2]Stp2-Y3 17 3.3 

1298 T-Shape Y3-Stp2-RR-K-RR-ε[RR-K-α,ε(MyrA)2]Stp2-Y3 19 3.3 

1299 T-Shape Y3-Stp2-RR-K-RR-ε[rr-K-α,ε(MyrA)2]Stp2-Y3 19 3.3 

1301 T-Shape Y3-Stp2-rr-K-rr-ε[RR-K-α,ε(MyrA)2]Stp2-Y3 19 3.3 

1302 T-Shape Y3-Stp2-rr-K-rr-ε[rr-K-α,ε(MyrA)2]Stp2-Y3 19 3.3 
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6.3 Summary of SPS Derived Shielding Agents 

Table 20 Summary of SPS derived shielding agents 

ID Name Sequence (N→C) Chapter 

1307 
(DBCO-STOTDA)2-K-

PEG24-COOH 
(DBCO-STOTDA)2-K-PEG24-COOH 3.4 

1308 
(DBCO-STOTDA)2-K-

PEG24-g7 
(DBCO-STOTDA)2-K-PEG24-Gly-FtGFLL-

L-Ser(O-β-D-Glucose)-CONH2 
3.4 

1309 
(DBCO-STOTDA)2-K-

PEG24-scrg7 
(DBCO-STOTDA)2-K-PEG24-GLFFG-

Ser(O-β-D-Glucose)t-CONH2 
3.4 

1310 C-PEG24-apelin-13 C-PEG24-QRPRLSHKGPMPF 3.4 

1311 C-PEG24-apelin-F13A C-PEG24- QRPRLSHKGPMPA 3.4 

1312 C-PEG24-apelin-13scr C-PEG24- HGFPRPQMPRLSK 3.4 
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6.4 Analytical Data 

6.4.1 1H NMR spectrum of disulfide-linker building block(ssbb) 

 

 

1-(9H-fluoren-9-yl)-3,12-dioxo-2-oxa-7,8-dithia-4,11-diazapentadecan-15-oic acid 

(ssbb)  1H NMR (500 MHz, Methanol-d4) δ (ppm)  7.81 (d, J = 7.5 Hz, Ha, 2H), 7.67 

(d, J = 7.4 Hz, Hb, 2H), 7.41 (t, J = 7.4 Hz, Hc,  2H), 7.33 (t, J = 7.4 Hz, Hd, 2H), 4.38 

(d, J = 6.9 Hz, He, 2H), 4.22 (t, J = 6.8 Hz, Hf, 1H), 3.49 (t, J = 6.7 Hz, Hg, 2H), 3.43 

(t, J = 6.7 Hz, Hh, 2H), 2.76-2.87 (m, Hi, 4H), 2.60 (t, J = 6.6 Hz, Hj, 2H), 2.48 (t, J = 

6.8 Hz, Hk, 2H).  
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6.4.2 1H NMR spectra of oligomers 

OleA-t 

Sequence (C→N): C-Y3-Stp2-K-ε[K-α,ε(OleA)2]αStp2-Y3-C 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.65-0.85 (s, 6 H, -CH3 oleic acid), 

0.85-1.95 (m, 64 H, βγδH lysine, -CH2- oleic acid), 2.0 -2.65 (m, 20 H, -CO-CH2-CH2-

CO- Stp, -CO-CH2- oleic acid), 2.65-3.1 (m, 20 H, εH lysine, tyrosine, cysteine), 3.1-

3.6 (m, 64 H, -CH2- Tp), 3.85-4.55 (m, 10 H, αH amino acids), 5.05-5.20 (s, 4 H, -

CH=CH oleic acid), 6.55-7.10 (m, 24 H, -CH- tyrosine). 
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OH-SteA-t: 

Sequence (C→N): C-Y3-Stp2-K-ε[K-α,ε(OH-SteA)2]αStp2-Y3-C 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.80 (s, 6 H, -CH3 hydroxystearic 

acid), 0.80-1.35 (m, 68 H, βγδH lysine, -CH2- hydroxystearic acid), 2.3-2.65 (m, 22 H, 

-CO-CH2-CH2-CO- Stp, -CO-CH2- hydroxystearic acid, =CH-OH hydroxystearic acid), 

2.65-3.1 (m, 20 H, εH lysine, tyrosine, cysteine), 3.1-3.6 (m, 64 H, -CH2- Tp), 3.90-4.55 

(m, 10 H, αH amino acids), 6.55-7.10 (m, 24 H, -CH- tyrosine). 
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SteA-t: 

Sequence (C→N): C-Y3-Stp2-K-ε[K-α,ε(SteA)2]αStp2-Y3-C 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.80 (s, 6 H, -CH3 stearic acid), 

0.80-1.35 (m, 72 H, βγδH lysine, -CH2- stearic acid), 2.3-2.65 (m, 20 H, -CO-CH2-CH2-

CO- Stp, -CO-CH2- stearic acid), 2.65-3.1 (m, 20 H, εH lysine, tyrosine, cysteine), 3.1-

3.6 (m, 64 H, -CH2- Tp), 3.90-4.55 (m, 10 H, αH amino acids), 6.55-7.10 (m, 24 H, -

CH- tyrosine). 
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NonOcA-t: 

Sequence (C→N): C-Y3-Stp2-K-ε[K-α,ε(OcANonA)2]αStp2-Y3-C 

 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.80 (s, 6 H, -CH3 nonanoic 

acid), 0.85-1.75 (m, 56 H, βγδH lysine, -CH2- octanoic acid, nonanoic acid), 2.0-2.65 

(m, 24 H, -CO-CH2-CH2-CO- Stp, -CO-CH2- octanoic acid, nonanoic acid), 2.65-3.1 

(m, 20 H, εH lysine, tyrosine, cysteine), 3.1-3.6 (m, 64 H, -CH2- Tp), 4.00-4.55 (m, 10 

H, αH amino acids), 6.55-7.10 (m, 24 H, -CH- tyrosine). 
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LinA-t 

Sequence (C→N): C-Y3-Stp2-K-ε[K-α,ε(LinA)2]αStp2-Y3-C 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.80 (s, 6 H, -CH3 linoleic acid), 

0.90-2.00 (m, 56 H, βγδH lysine, -CH2- linoleic acid), 2.30 -2.60 (m, 20 H, -CO-CH2-

CH2-CO- Stp, -CO-CH2- oleic acid), 2.65-2.95 (m, 20 H, εH lysine, tyrosine, cysteine), 

2.95-3.55 (m, 64 H, -CH2- Tp), 3.95-4.60 (m, 10 H, αH amino acids), 5.05-5.25 (s, 8 H, 

-CH=CH linoleic acid), 6.60-7.10 (m, 24 H, -CH- tyrosine). 
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OH-C(C18:1)-t (side product of LinA-t synthesis) 

Sequence (C→N): C-Y3-Stp2-K-ε[K-α,ε(OH-C(18:1))2]αStp2-Y3-C 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.70-0.90 (s, 6 H, -CH3 

hydroxyoctadecenoic acid), 1.00-2.00 (m, 60 H, βγδH lysine, -CH2- 

hydroxyoctadecenoic acid), 2.35-2.70 (m, 22 H, -CO-CH2-CH2-CO- Stp, -CO-CH2- 

hydroxyoctadecenoic acid, =CH-OH hydroxyoctadecenoic acid), 2.75-3.15 (m, 20 H, 

εH lysine, tyrosine, cysteine), 3.20-3.60 (m, 64 H, -CH2- Tp), 4.10-4.60 (m, 10 H, αH 

amino acids), 5.10-5.30 (s, 4 H, -CH=CH hydroxyoctadecenoic acid), 6.65-7.20 (m, 24 

H, -CH- tyrosine). 
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740 (test structure)  

Sequence (C→N): W-Stp2-ssbb-L3-W 

 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.95 (m, 18 H, δH leucine), 1.10-

1.60 (m, 12 H, βγH leucine), 2.20-2.50 (m, 12 H, -CO-CH2-CH2-CO- Stp and ssbb), 

2.60-2.80 (m, 4 H, -CH2-SS-CH2-), 2.90-3.55 (m, 40 H, -CH2- Tp and ssbb, εH 

tryptophane), 4.10-4.60 (m, 5 H, αH tryptophanes and leucines), 7.00-7.65 (m, 10 H, 

aromatic H tryptophane). 
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782 

Sequence (C→N): K-αK-α,ε[Stp3-ssbb-(CholA)2]2 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.45-2.40 m, 88 H, βγδH lysine, 

cholanic acid), 2.40-2.60 (m, 36 H, -CO-CH2-CH2-CO- Stp and ssbb, -CO-CH2- 

cholanic acid), 2.65-3.15 (m, 12 H, εH lysine, -CH2- ssbb), 3.15-3.65 (m, 96 H, -CH2- 

Tp), 4.15-4.30 (m, 2 H, αH lysines). 

 

  



   Appendix 

   117 

783 

Sequence (C→N): K-αK-α,ε[Stp3-(CholA)2]2 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.50-2.35 m, 88 H, βγδH lysine, 

cholanic acid), 2.40-2.60 (m, 28 H, -CO-CH2-CH2-CO- Stp, -CO-CH2- cholanic acid), 

2.85-3.15 (m, 4 H, εH lysine), 3.15-3.65 (m, 96 H, -CH2- Tp), 4.15-4.30 (m, 2 H, αH 

lysines). 

  



   Appendix 

   118 

871  

Sequence (C→N): Stp4-H6-K-α,ε(CholA)2 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.40-2.30 m, 82 H, βγδH lysine, 

cholanic acid), 2.40-2.55 (m, 20 H, -CO-CH2-CH2-CO- Stp, -CO-CH2- cholanic acid), 

2.55-3.05 (m, 14 H, εH lysine and histidine), 3.05-3.60 (m, 64 H, -CH2- Tp), 3.95-4.65 

(m, 7 H, αH lysines and histidines), 7.10-7.35 (d, 6 H, aromatic H histidine), 8.5-8.65 

(m, 6 H, aromatic H histidine). 
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969 

Sequence (C→N): Stp4-H6-ssbb-K-α,ε(CholA)2 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.40-2.30 m, 82 H, βγδH lysine, 

cholanic acid), 2.30-2.55 (m, 24 H, -CO-CH2-CH2-CO- Stp and ssbb, -CO-CH2- 

cholanic acid), 2.55-3.15 (m, 22 H, εH lysine and histidine, -CH2- ssbb), 3.15-3.65 (m, 

64 H, -CH2- Tp), 3.75-4.65 (m, 7 H, αH lysines and histidines), 7.10-7.35 (d, 6 H, 

aromatic H histidine), 8.50-8.70 (m, 6 H, aromatic H histidine). 
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989 

Sequence (C→N): Y3-Stp2-K-ε[G-K-α,ε(SteA)2]αStp2-Y3 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.65-0.85 (s, 6 H, -CH3 stearic acid), 

0.85-2.25 (m, 76 H, βγδH lysine, -CH2- stearic acid), 2.3-2.65 (m, 20 H, -CO-CH2-

CH2-CO- Stp, -CO-CH2- stearic acid), 2.65-3.1 (m, 16 H, εH lysine and tyrosine), 3.1-

3.6 (m, 64 H, -CH2- Tp), 3.65-4.65 (m, 10 H, αH amino acids), 6.65-7.25 (m, 24 H, -

CH- tyrosine).  
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990: Sequence (C→N): Y3-Stp2-K-ε[G-ssbb-K-α,ε(SteA)2]αStp2-Y3 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.50-2.25 (m, 82 H, βγδH lysine, -

CH2- and -CH3 stearic acid), 2.3-2.6 (m, 24 H, -CO-CH2-CH2-CO- Stp and ssbb, -CO-

CH2- stearic acid), 2.6-3.1 (m, 24 H, εH lysine and tyrosine, -CH2- ssbb), 3.1-3.6 (m, 

64 H, -CH2- Tp), 3.65-4.55 (m, 10 H, αH amino acids), 6.6-7.3 (m, 24 H, -CH- tyrosine).  
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991: Sequence (C→N): Y3-Stp2-K-ε[G-K-α,ε(CholA)2]αStp2-Y3 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.35-2.20 (m, 88 H, βγδH lysine, 

cholanic acid), 2.2-2.6 (m, 20 H, -CO-CH2-CH2-CO- Stp, -CO-CH2- cholanic acid), 

2.6-3.05 (m, 16 H, εH lysine and tyrosine), 3.05-3.60 (m, 64 H, -CH2- Tp), 3.60-4.60 

(m, 10 H, αH amino acids), 6.50-7.25 (m, 24 H, -CH- tyrosine).  
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992: Sequence (C→N): Y3-Stp2-K-ε[G-ssbb-K-α,ε(CholA)2]αStp2-Y3 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.40-2.30 (m, 88 H, βγδH lysine, 

cholanic acid), 2.3-2.7 (m, 24 H, -CO-CH2-CH2-CO- Stp and ssbb, -CO-CH2- cholanic 

acid), 2.70-3.15 (m, 24 H, εH lysine and tyrosine, -CH2- ssbb), 3.15-3.80 (m, 64 H, -

CH2- Tp), 3.65-4.65 (m, 10 H, αH amino acids), 6.60-7.35 (m, 24 H, -CH- tyrosine).  
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1081 

Sequence (C→N): Y3-Stp2-K-ε[G-K-α,ε(MyrA)2]αStp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 myristic acid), 

0.85-2.30 (m, 56 H, βγδH lysine, myristic acid), 2.3-2.6 (m, 20 H, -CO-CH2-CH2-CO- 

Stp, -CO-CH2- myristic acid), 2.6-3.10 (m, 16 H, εH lysine and tyrosine), 3.10-3.65 (m, 

64 H, -CH2- Tp), 3.65-4.55 (m, 10 H, αH amino acids), 6.60-7.10 (m, 24 H, -CH- 

tyrosine).  
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1082 

Sequence (C→N): Y3-Stp2-K-ε[G-ssbb-K-α,ε(MyrA)2]αStp2-Y3 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.80 (s, 6 H, -CH3 myristic acid), 

0.80-2.25 (m, 56 H, βγδH lysine, myristic acid), 2.3-2.6 (m, 24 H, -CO-CH2-CH2-CO- 

Stp and ssbb, -CO-CH2- myristic acid), 2.60-3.05 (m, 24 H, εH lysine and tyrosine, -

CH2- ssbb), 3.05-3.60 (m, 64 H, -CH2- Tp), 3.65-4.55 (m, 10 H, αH amino acids), 6.60-

7.15 (m, 24 H, -CH- tyrosine).  
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1107 

Sequence (C→N): Y3-Stp2-K-ε[G-K-α,ε(OleA)2]αStp2-Y3 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 

0.85-2.25 (m, 72 H, βγδH lysine, -CH2- oleic acid), 2.25-2.60 (m, 20 H, -CO-CH2-CH2-

CO- Stp, -CO-CH2- oleic acid), 2.65-3.1 (m, 16 H, εH lysine and tyrosine), 3.1-3.65 (m, 

64 H, -CH2- Tp), 3.70-4.55 (m, 10 H, αH amino acids), 5.05 – 5.25  (s, 4 H, -CH=CH- 

oleic acid), 6.60 -7.15 (m, 24 H, -CH- tyrosine).  
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1108 

Sequence (C→N): Y3-Stp2-K-ε[G-ssbb-K-α,ε(OleA)2]αStp2-Y3 

 

 

 

 

 

 

 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.80 (s, 6 H, -CH3 oleic acid), 

0.85-2.10 (m, 72 H, βγδH lysine, -CH2- oleic acid), 2.25-2.60 (m, 22 H, -CO-CH2-

CH2-CO- Stp, -CO-CH2- oleic acid), 2.60-3.0 (m, 22 H, εH lysine and tyrosine), 3.05-

3.65 (m, 64 H, -CH2- Tp), 3.70-4.60 (m, 10 H, αH amino acids), 5.00 – 5.25  (s, 4 H, -

CH=CH- oleic acid), 6.55 -7.15 (m, 24 H, -CH- tyrosine).  
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My 

Sequence (N→C): Y3-Stp2-K-ε[K-α,ε(MyrA)2]Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.57-0.84 (s, 6 H, -CH3 myristic acid), 

0.87-1.8 (m, 56 H, βγδH lysine, -CH2- myristic acid), 2.0 -2.6 (m, 20 H, -CO-CH2-CH2-

CO- Stp, -CO-CH2- myristic acid), 2.6-3.0 (m, 16 H, εH lysine, βH tyrosine), 3.0-3.7 (m, 

64 H, -CH2- tepa), 3.9-4.6 (m, 8 H, αH amino acids), 6.5-7.2 (m, 24 H, -CH- tyrosine). 
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My-R 

Sequence (N→C): Y3-Stp2-K-ε[R-K-α,ε(MyrA)2]Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.58-0.86 (s, 6 H, -CH3 myristic acid), 

0.93-1.8 (m, 60 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.0 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 18 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.7 (m, 64 H, -CH2- tepa), 3.9-4.6 (m, 9 H, αH amino acids), 

6.5-7.1 (m, 24 H, -CH- tyrosine). 
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My-r 

Sequence (N→C): Y3-Stp2-K-ε[r-K-α,ε(MyrA)2]Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.82 (s, 6 H, -CH3 myristic acid), 

0.90-1.7 (m, 60 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.0 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 18 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.7 (m, 64 H, -CH2- tepa), 3.9-4.5 (m, 9 H, αH amino acids), 

6.6-7.1 (m, 24 H, -CH- tyrosine). 
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My-RR 

Sequence (N→C): Y3-Stp2-K-ε[RR-K-α,ε(MyrA)2]Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.57-0.79 (s, 6 H, -CH3 myristic acid), 

0.82-1.9 (m, 64 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.0 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 20 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.6 (m, 64 H, -CH2- tepa), 4.0-4.6 (m, 10 H, αH amino acids), 

6.6-7.2 (m, 24 H, -CH- tyrosine). 
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R-My 

Sequence (N→C): Y3-Stp2-R-K-ε[K-α,ε(MyrA)2]R-Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.54-0.78 (s, 6 H, -CH3 myristic acid), 

0.79-1.8 (m, 64 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.0 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 20 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.6 (m, 64 H, -CH2- tepa), 3.9-4.5 (m, 10 H, αH amino acids), 

6.6-7.1 (m, 24 H, -CH- tyrosine). 
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R-My-R 

Sequence (N→C): Y3-Stp2-R-K-ε[R-K-α,ε(MyrA)2]R-Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.57-0.83 (s, 6 H, -CH3 myristic acid), 

0.83-1.9 (m, 68 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.0 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 22 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.6 (m, 64 H, -CH2- tepa), 3.9-4.5 (m, 11 H, αH amino acids), 

6.5-7.2 (m, 24 H, -CH- tyrosine). 
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R-My-r 

Sequence (N→C): Y3-Stp2-R-K-ε[r-K-α,ε(MyrA)2]R-Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.56-0.72 (s, 6 H, -CH3 myristic acid), 

0.77-1.9 (m, 68 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.0 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 22 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.6 (m, 64 H, -CH2- tepa), 3.9-4.5 (m, 11 H, αH amino acids), 

6.6-7.1 (m, 24 H, -CH- tyrosine). 
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r-My 

Sequence (N→C): Y3-Stp2-r-K-ε[K-α,ε(MyrA)2]r-Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.56-0.77 (s, 6 H, -CH3 myristic acid), 

0.82-1.9 (m, 64 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.0 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 20 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.7 (m, 64 H, -CH2- tepa), 3.9-4.6 (m, 10 H, αH amino acids), 

6.5-7.1 (m, 24 H, -CH- tyrosine). 
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r-My-R 

Sequence (N→C): Y3-Stp2-r-K-ε[R-K-α,ε(MyrA)2]r-Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.57-0.81 (s, 6 H, -CH3 myristic acid), 

0.84-1.9 (m, 68 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.0 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 22 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.6 (m, 64 H, -CH2- tepa), 4.0-4.6 (m, 11 H, αH amino acids), 

6.5-7.1 (m, 24 H, -CH- tyrosine). 
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r-My-r 

Sequence (N→C): Y3-Stp2-r-K-ε[r-K-α,ε(MyrA)2]r-Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.57-0.76 (s, 6 H, -CH3 myristic acid), 

0.76-1.9 (m, 68 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.0 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 22 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.6 (m, 64 H, -CH2- tepa), 3.9-4.5 (m, 11 H, αH amino acids), 

6.6-7.1 (m, 24 H, -CH- tyrosine). 
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RR-My 

Sequence (N→C): Y3-Stp2-RR-K-ε[K-α,ε(MyrA)2]RR-Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.59-0.78 (s, 6 H, -CH3 myristic acid), 

0.78-1.8 (m, 72 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.0 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 24 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.6 (m, 64 H, -CH2- tepa), 4.0-4.6 (m, 12 H, αH amino acids), 

6.6-7.2 (m, 24 H, -CH- tyrosine). 
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RR-My-RR 

Sequence (N→C): Y3-Stp2-RR-K-ε[RR-K-α,ε(MyrA)2]RR-Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.56-0.78 (s, 6 H, -CH3 myristic acid), 

0.78-1.8 (m, 80 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.0 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 28 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.6 (m, 64 H, -CH2- tepa), 3.9-4.5 (m, 14 H, αH amino acids), 

6.6-7.2 (m, 24 H, -CH- tyrosine). 
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RR-My-rr 

Sequence (N→C): Y3-Stp2-RR-K-ε[rr-K-α,ε(MyrA)2]RR-Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 myristic acid), 

0.89-1.9 (m, 80 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.1 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.7-3.1 (m, 28 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.6 (m, 64 H, -CH2- tepa), 4.0-4.6 (m, 14 H, αH amino acids), 

6.6-7.1 (m, 24 H, -CH- tyrosine). 
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rr-My-RR 

Sequence (N→C): Y3-Stp2-rr-K-ε[RR-K-α,ε(MyrA)2]rr-Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.56-0.80 (s, 6 H, -CH3 myristic acid), 

0.84-1.9 (m, 80 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.1 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 28 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.5 (m, 64 H, -CH2- tepa), 3.9-4.6 (m, 14 H, αH amino acids), 

6.6-7.2 (m, 24 H, -CH- tyrosine). 
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rr-My-rr 

Sequence (N→C): Y3-Stp2-rr-K-ε[rr-K-α,ε(MyrA)2]rr-Stp2-Y3 

 

 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.56-0.77 (s, 6 H, -CH3 myristic acid), 

0.79-1.9 (m, 80 H, βγδH lysine, βγH arginine, -CH2- myristic acid), 2.2 -2.6 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- myristic acid), 2.6-3.1 (m, 28 H, εH lysine, δH 

arginine, βH tyrosine), 3.1-3.7 (m, 64 H, -CH2- tepa), 4.0-4.5 (m, 14 H, αH amino acids), 

6.5-7.1 (m, 24 H, -CH- tyrosine). 
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6.4.3 Mass spectra of oligomers 

Table 21 Summarizing table oligomers. Mass data recorded with a Bruker MALDI-TOF instrument 

Oligomer Molecular formula [M+H]+ calc. [M+H]+ found 

454 (OleA-t) C156H254N32O27S2 3070.9 3069.9 

1105 (OH-SteA-t) C156H258N32O29S2 3106.9 3106.2 

1172 (SteA-t) C156H258N32O27S2 3074.9 3074.0 

1104 (NonOcA-t) C154H252N34O29S2 3104.9 3104.0 

CK2Y2-OleA C51H81N7O9S 966.6 965.1 

Stp-W-OleA C41H69N7O5 738.5 738.2 

CKEHEK-OleA C49H84N10O12S 1037.6 1036.7 

1165 (LinA-t) C156H250N32O27S2 3066.9 3066.7 

1166 (OH-(C18:1)-t) C156H254N32O29S2 3102.9 3102.1 

740 (Test structure) C72H119N19O12S2 1506.9 1506.1 

782 C148H280N38O21S4 3055.0 3056.1 

783 C132H252N34O17 2587.0 2587.2 

871 C138H232N40O18 2738.9 2739.2 

969 C146H246N42O20S2 2972.9 2973.2 

989 C152H251N31O26 2927.9 2929.3 

990  C160H265N33O28S2 3162.0 3163.6 

991 C164H259N31O26 3080.0 3079.0 

992 C172H273N33O28S2 3314.0 3314.2 

1081 C144H235N31O26 2815.8 2813.6 

1082 C152H249N33O28S2 3049.9 3048.2 

1107 C152H247N31O26 2923.9 2922.9 

1108 C160H261N33O28S2 3158.0 3156.3 

1198 C162H264N36O28S2 3229.2 3232.1 

1215 C210H364N56O36S2 4308.8 4305.2 

Acr-Stp-Stp-w C49H69N13O7 952.5 952.5 

Acr-Stp-H-Stp-w C55H76N16O8 1089.6 1089.6 

Acr-Stp-HH-Stp-w C61H83N19O9 1226.7 1226.7 
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Acr-Stp-Y-Stp-w C58H78N14O9 1115.6 1115.6 

Acr-Stp-YY-Stp-w C67H87N15O11 1278.7 1278.7 

Acr-Stp-K-Stp-w C55H81N15O8 1080.6 1080.6 

Acr-Stp-KK-Stp-w C61H93N17O9 1208.7 1208.7 

Acr-Stp-R-Stp-w C55H81N17O8 1108.7 1108.7 

Acr-Stp-RR-Stp-w C61H93N21O9 1264.8 1264.8 

Acr-Stp-RV-Stp-w C60H90N18O9 1207.7 1207.7 

Acr-Stp-VV-Stp-w C59H87N15O9 1150.7 1150.7 

1286 (My) C142H232N30O25 2758.8 2758.1 

1287 (My-R) C148H244N34O26 2914.9 2913.3 

1288 (My-r) C148H244N34O26 2914.9 2914.4 

1289 (My-RR) C154H256N38O27 3071.0 3070.8 

1291 (R-My) C154H256N38O27 3071.0 3070.8 

1292 (R-My-R) C160H268N42O28 3227.1 3224.9 

1293 (R-My-r) C160H268N42O28 3227.1 3226.2 

1294 (r-My) C154H256N38O27 3071.0 3070.1 

1295 (r-My-R) C160H268N42O28 3227.1 3227.1 

1296 (r-My-r) C160H268N42O28 3227.1 3226.7 

1297 (RR-My) C166H280N46O29 3383.2 3381.9 

1298 (RR-My-RR) C178H304N54O31 3695.4 3695.3 

1299 (RR-My-rr) C178H304N54O31 3695.4 3693.1 

1301 (rr-My-RR) C178H304N54O31 3695.4 3695.1 

1302 (rr-My-rr) C178H304N54O31 3695.4 3694.4 
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6.4.4 Mass spectra of enzymatically degradable oligomers 

Table 22 Summarizing table with mass data for lipo-oligomers after incubation with cathepsin B or from 

cell lysates. An “X” indicates that the mass was found. Mass data recorded with a Bruker MALDI-TOF 

instrument 

My 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Polyplex 
N/P 1 

Polyplex 
N/P 20 

Cell 

lysate 

Y3-Stp2-K-ε[K-α,ε(MyrA)2]Stp2-Y3 2758.8  x  x 

Y2-3-Stp2-K-ε[K-α,ε(MyrA)2]Stp2-Y2-3 ↓Y 2595.7 x  x  

Y1-3-Stp2-K-ε[K-α,ε(MyrA)2]Stp2-Y1-3 
↓Y2 

2432.7 
x  x x 

Y1-3-Stp2-K-ε[K-α,ε(MyrA)2]Stp2-Y1-3 
↓Y3 

2269.6 
x  x x 

Y0-1-Stp2-K-ε[K-α,ε(MyrA)2]Stp2-Y1-2 
↓Y4 

2106.5 
x  x  

My-R 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Y3-Stp2-K-ε[R-K-α,ε(MyrA)2]Stp2-Y3 2914.9  

Y2-3-Stp2-K-ε[R-K-α,ε(MyrA)2]Stp2-Y2-3 ↓Y 2751.8 x 

Y1-3-Stp2-K-ε[R-K-α,ε(MyrA)2]Stp2-Y1-3 
↓Y2 

2588.8 
x 

Y1-3-Stp2-K-ε[R-K-α,ε(MyrA)2]Stp2-Y1-3 
↓Y3 

2425.7 
x 

Y0-1-Stp2-K-ε[R-K-α,ε(MyrA)2]Stp2-Y1-2 
↓Y4 

2262.6 
x 

R-K-α,ε(MyrA)2 ↓ Y3-Stp2-K-Stp2-Y3 723.6 x 

My-r 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Y3-Stp2-K-ε[r-K-α,ε(MyrA)2]Stp2-Y3 2914.9  

Y2-3-Stp2-K-ε[r-K-α,ε(MyrA)2]Stp2-Y2-3 ↓Y 2751.8 x 

Y1-3-Stp2-K-ε[r-K-α,ε(MyrA)2]Stp2-Y1-3 ↓Y2 2588.8 x 

Y1-3-Stp2-K-ε[r-K-α,ε(MyrA)2]Stp2-Y1-3 ↓Y3 2425.7 x 

Y1-3-Stp2-K-ε[r-K-α,ε(MyrA)2]Stp2-Y1-3 ↓Y3 2262.6 x 
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My-RR 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Polyplex 
N/P 1 

Polyplex 
N/P 20 

Cell 

lysate 

Y3-Stp2-K-ε[RR-K-α,ε(MyrA)2]Stp2-Y3 3071.0  x x x 

Y1-3-Stp2-K-ε[RR-K-α,ε(MyrA)2]Stp2-Y1-

3 ↓Y2 
2744.9 

x  x  

Y1-3-Stp2-K-ε[RR-K-α,ε(MyrA)2]Stp2-Y1-

3 ↓Y3 
2581.8 

x  x x 

Y0-1-Stp2-K-ε[RR-K-α,ε(MyrA)2]Stp2-Y1-

2 ↓Y4 
2418.7 

x  x  

R-K-α,ε(MyrA)2 ↓ Y3-Stp2-K-ε[R]-Stp2-
Y3 

723.6 
x  x x 

R-My 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Y3-Stp2-R-K-ε[K-α,ε(MyrA)2]R-Stp2-Y3 3071.0  

K-ε[K-α,ε(MyrA)2]R-Stp2-Y3 ↓Y3- Stp2-R 1883.3 x 

K-ε[K-α,ε(MyrA)2]R-Stp2-Y2 ↓Y3- Stp2-R; 
Y 

1720.2 
x 

K-ε[K-α,ε(MyrA)2]R-Stp2-Y1 ↓Y3- Stp2-R; 
Y2 

1557.2 
x 

K-ε[K-α,ε(MyrA)2]R ↓Y3- Stp2-R; Stp2-Y3 851.7 x 

R-My-R 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Y3-Stp2-R-K-ε[R-K-α,ε(MyrA)2]R-Stp2-Y3 3227.1  

K-ε[R-K-α,ε(MyrA)2]R-Stp2-Y3 ↓Y3- Stp2-R 2039.4 x 

K-ε[R-K-α,ε(MyrA)2]R-Stp2-Y2 ↓Y3- Stp2-
R; Y 

1876.3 
x 

K-ε[R-K-α,ε(MyrA)2]R-Stp2-Y1 ↓Y3- Stp2-
R; Y2 

1713.3 
x 

K-ε[R-K-α,ε(MyrA)2]R ↓Y3- Stp2-R; Stp2-
Y3 

1008.5 
x 

Y1- Stp2-R ↓K-ε[R-K-α,ε(MyrA)2]R-Stp2-Y3 

; Y2 
880.6 

x 

R-K-α,ε(MyrA)2 ↓ Y3-Stp2-R-K-R-Stp2-Y3 723.6 x 
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R-My-r 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Y3-Stp2-R-K-ε[r-K-α,ε(MyrA)2]R-Stp2-Y3 3227.1  

K-ε[r-K-α,ε(MyrA)2]R-Stp2-Y3 ↓Y3- Stp2-R 2039.4 x 

K-ε[r-K-α,ε(MyrA)2]R-Stp2-Y2 ↓Y3- Stp2-R; 
Y 

1876.3 
x 

K-ε[r-K-α,ε(MyrA)2]R-Stp2-Y1 ↓Y3- Stp2-R; 
Y2 

1713.3 
x 

K-ε[r-K-α,ε(MyrA)2]R ↓Y3- Stp2-R; Stp2-Y3 1008.5 x 

r-My 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Y3-Stp2-r-K-ε[K-α,ε(MyrA)2]r-Stp2-Y3 3071.0  

Y2-3-Stp2-r-K-ε[K-α,ε(MyrA)2]r-Stp2-Y2-3 
↓Y 

2909.8 
x 

Y1-3-Stp2-r-K-ε[K-α,ε(MyrA)2]r-Stp2-Y1-3 
↓Y2 

2746.7 
x 

Y1-3-Stp2-r-K-ε[K-α,ε(MyrA)2]r-Stp2-Y1-3 
↓Y3 

2583.6 
x 

Y0-1-Stp2-r-K-ε[K-α,ε(MyrA)2]r-Stp2-Y1-2 
↓Y4 

2420.5 
x 

r-My-R 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Y3-Stp2-r-K-ε[R-K-α,ε(MyrA)2]r-Stp2-Y3 3227.1  

Y2-3-Stp2-r-K-ε[R-K-α,ε(MyrA)2]r-Stp2-Y2-3 
↓Y 

3064.0 
x 

Y1-3-Stp2-r-K-ε[R-K-α,ε(MyrA)2]r-Stp2-Y1-3 
↓Y2 

2901.0 
x 

Y1-3-Stp2-r-K-ε[R-K-α,ε(MyrA)2]r-Stp2-Y1-3 
↓Y3 

2737.9 
x 

Y0-1-Stp2-r-K-ε[R-K-α,ε(MyrA)2]r-Stp2-Y1-2 
↓Y4 

2574.8 
x 

R-K-α,ε(MyrA)2 ↓ Y3-Stp2-r-K-r-Stp2-Y3 723.6 x 
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r-My-r 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Y3-Stp2-r-K-ε[r-K-α,ε(MyrA)2]r-Stp2-Y3 3227.1  

Y2-3-Stp2-r-K-ε[r-K-α,ε(MyrA)2]r-Stp2-Y2-3 
↓Y 

3064.0 
x 

Y1-3-Stp2-r-K-ε[r-K-α,ε(MyrA)2]r-Stp2-Y1-3 
↓Y2 

2901.0 
x 

Y1-3-Stp2-r-K-ε[r-K-α,ε(MyrA)2]r-Stp2-Y1-3 
↓Y3 

2737.9 
x 

Y0-1-Stp2-r-K-ε[r-K-α,ε(MyrA)2]r-Stp2-Y1-2 
↓Y4 

2574.8 
x 

Y0-Stp2-r-K-ε[r-K-α,ε(MyrA)2]r-Stp2-Y1 
↓Y5 

2411.8 
x 

RR-My 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Polyplex 
N/P 1 

Polyplex 
N/P 20 

Cell 

lysate 

Y3-Stp2-RR-K-ε[K-α,ε(MyrA)2]RR-Stp2-
Y3 

3383.2  x  
x 

K-ε[K-α,ε(MyrA)2]RR-Stp2-Y3 ↓Y3- Stp2-
RR 

2039.4 
x  x x 

K-ε[K-α,ε(MyrA)2]RR-Stp2-Y2 ↓Y3- Stp2-
RR; Y 

1875.3 
x  x  

K-ε[K-α,ε(MyrA)2]RR-Stp2-Y1 ↓Y3- Stp2-
RR; Y2 

1713.3 
x  x  

K-ε[K-α,ε(MyrA)2]RR ↓Y3- Stp2-RR; 
Stp2-Y3 

1007.8 
x  x x 

RR-My-RR 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Polyplex 
N/P 1 

Polyplex 
N/P 20 

Cell 

lysate 

Y3-Stp2-RR-K-ε[RR-K-α,ε(MyrA)2]RR-
Stp2-Y3 

3695.4  x  x 

K-ε[RR-K-α,ε(MyrA)2]RR-Stp2-Y1 

↓Y3-Stp2-RR; Y2 

2025.5 x    

R-K-ε[RR-K-α,ε(MyrA)2]R ↓2 x Y3-Stp2-
R 

1320.0 x  x  

K-ε[RR-K-α,ε(MyrA)2]R 

↓Y3-Stp2-RR; R-Stp2-Y3 
1163.9 x  x  

RR-K-α,ε(MyrA)2 ↓Y3-Stp2-RR-K-RR-
Stp2-Y3 

879.7 x  x  
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R-K-α,ε(MyrA)2  

↓Y3-Stp2-RR-K-ε[R]-RR-Stp2-Y3 
723.6 x  x x 

RR-My-rr 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Polyplex 
N/P 1 

Polyplex 
N/P 20 

Cell 

lysate 

Y3-Stp2-RR-K-ε[rr-K-α,ε(MyrA)2]RR-
Stp2-Y3 

3695.4  x  x 

R-K-ε[rr-K-α,ε(MyrA)2]R ↓2 x Y3-Stp2-R 1320.0 x  x x 

K-ε[rr-K-α,ε(MyrA)2]R 

↓Y3-Stp2-RR; R-Stp2-Y3 
1163.9 x  x x 

rr-My-RR 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Polyplex 
N/P 1 

Polyplex 
N/P 20 

Cell 

lysate 

Y3-Stp2-rr-K-ε[RR-K-α,ε(MyrA)2]rr-
Stp2-Y3 

3695.4  x  x 

Y1-3-Stp2-rr-K-ε[RR-K-α,ε(MyrA)2]rr-
Stp2-Y1-3 ↓Y2 

3369.3 x    

Y1-3-Stp2-rr-K-ε[RR-K-α,ε(MyrA)2]rr-
Stp2-Y1-3 ↓Y3 

3206.2 x    

Y0-1-Stp2-rr-K-ε[RR-K-α,ε(MyrA)2]rr-
Stp2-Y1-2 ↓Y4 

3042.1 x    

Y0-1-Stp2-rr-K-[R]rr-Stp2-Y1-2  

↓Y4; R-K-α,ε(MyrA)2  
2338.5 x    

RR-K-α,ε(MyrA)2 ↓Y3-Stp2-rr-K-rr-Stp2-
Y3 

879.7 x  x  

R-K-α,ε(MyrA)2  

↓Y3-Stp2-rr-K-ε[R]-rr-Stp2-Y3 
723.6 x  x x 

rr-My-rr 

Structure (N→C) 

Mass 
[M+H] 

Lipo-
oligomer 

Polyplex 
N/P 1 

Polyplex 
N/P 20 

Cell 

lysate 

Y3-Stp2-rr-K-ε[RR-K-α,ε(MyrA)2]rr-
Stp2-Y3 

3695.4  x  x 

Y2-3-Stp2-rr-K-ε[rr-K-α,ε(MyrA)2]rr-
Stp2-Y2-3 ↓Y1 

3532.3 x  x  

Y1-3-Stp2-rr-K-ε[rr-K-α,ε(MyrA)2]rr-
Stp2-Y1-3 ↓Y2 

3369.3 x  x  

Y1-3-Stp2-rr-K-ε[rr-K-α,ε(MyrA)2]rr-
Stp2-Y1-3 ↓Y3 

3206.2 x  x x 

Y0-1-Stp2-rr-K-ε[rr-K-α,ε(MyrA)2]rr-
Stp2-Y1-2 ↓Y4 

3042.1 x  x  
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Y0-Stp2-rr-K-ε[rr-K-α,ε(MyrA)2]rr-Stp2-
Y1 ↓Y5 

2880.1 x    

 

6.4.5 Mass spectra of shielding agents 

Table 23 Summarizing table shielding agents. Mass data recorded with a Bruker MALDI-TOF instrument 

Shielding agent ID Molecular formula [M+X]+ calc. [M+X]+ found 

(DBCO-STOTDA)2-K-
PEG24-COOH 

1307 C127H201N9O41 2508.4 2505.9 

(DBCO-STOTDA)2-K-
PEG24-g7 

1308 C168H259N17O54 3399.8 [Na] 3399.4 [Na] 

(DBCO-STOTDA)2-K-
PEG24-scrg7 

1309 C168H259N17O54 3399.8 [Na] 3400.4 [Na] 

C-PEG24-apelin-13 1310 C123H217N25O42S2 2779.5 2779.2 
C-PEG24-apelin-F13A 1311 C117H213N25O42S2 2703.5 2702.9 
C-PEG24-apelin-13scr 1312 C123H217N25O42S2 2779.5 2779.4 
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