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Summary 

Acute myeloid leukemia (AML) is a severe hematopoietic malignancy with fatal outcome if 

untreated. Although most patients initially respond to intensive chemotherapy, relapse rates are 

high and succeeding treatment is challenging. Older patients often do not tolerate conventional 

therapies and die from their disease within a short time. Thus, new therapeutic strategies are 

urgently needed. In recent years, improvements in immunotherapy have drastically changed cancer 

therapy and led to the broad application of immunotherapeutic agents in the clinics. A highly 

promising approach in AML treatment is the administration of monoclonal antibodies that target 

the leukemia-associated antigen CD33. Some of these agents redirect endogenous immune effector 

cells to leukemic cells to trigger their specific elimination. However, not all patients respond to 

targeted immunotherapy since the destructive anti-cancer activity of immune cells is often impeded 

by the upregulation of inhibitory checkpoints such as programmed death-1 (PD-1) and its main 

ligand programmed death-ligand 1 (PD-L1) in the tumor microenvironment. In AML, the 

expression of these molecules is caused by an inflamed milieu, and it results in an adaptive immune 

resistance against T effector mechanisms. The application of monoclonal antibodies that interfere 

with this inhibitory checkpoint can restore the cytolytic T cell activity. Yet, inhibitory ligands are 

expressed in almost every tissue as natural reaction to inflammation. Therefore, current checkpoint 

inhibitors frequently cause immune-related adverse events (irAEs) that can develop into a severe 

state or even lead to death.  

The present work establishes a new concept to limit the blockade of the PD-1/PD-L1 axis to the 

leukemic site and thus to prevent the development of irAEs. This was accomplished by generating 

a novel molecular format for AML treatment, which is named “Checkpoint inhibitory T cell 

Engager” (CiTE). The CiTE antibody combines high-affinity targeting of the AML antigen CD33 

with low-affinity PD-1/PD-L1 blockade. We took advantage of the naturally occurring weak 

binding of PD-1ex, which is not sufficient to target PD-L1 alone. Consequently, CiTE-mediated 

checkpoint blockade is conditional on the avidity contribution of the CD33 binding arm and thus 

limited to the surface of antigen-positive cells. In vitro evaluation of the molecule demonstrates 

efficient T cell activation and specific induction of cytotoxic lysis of AML cell lines as well as 

primary AML patient samples. Further, the CiTE antibody reveals a high specificity for PD-L1 

expressing AML cells, whereas non-AML cells that are positive for PD-L1 are not addressed. 

These findings are substantiated in vivo in a murine xenograft model, where the CiTE induces the 
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depletion of AML cells but does not cause measurable adverse events such as tumor-independent 

T cell activation or body weight loss. Thus we consider the CiTE format as highly promising 

strategy to fight AML and lower the risk of irAEs that result from immune checkpoint blockade.
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Zusammenfassung 

Akute Myeloische Leukämie (AML) ist eine schwerwiegende hämatopoetische Krebserkrankung, 

die ohne Behandlung tödlich endet. Obwohl die meisten Patienten zunächst auf eine intensive 

Chemotherapie ansprechen, treten häufig Rezidive auf, die nur schwer zu therapieren sind. Ältere 

Patienten verkraften konventionelle Therapieformen oft nur schwer und sterben innerhalb kurzer 

Zeit an ihrer Krankheit, weshalb dringend neue therapeutischen Strategien benötigt werden. In den 

letzten Jahren fand durch Verbesserungen in der Immuntherapie bereits eine drastische 

Veränderung der Behandlung von Krebserkrankungen statt, sodass Immuntherapeutika 

mittlerweile eine breite Anwendung in der Klinik finden. Ein besonders vielversprechender Ansatz 

bei der Therapie von AML ist der Einsatz von monoklonalen Antikörpern, die das Leukämie-

assoziierte Antigen CD33 adressieren. Einige dieser Therapeutika lenken endogene 

Immuneffektorzellen an Leukämiezellen, um diese spezifisch zu eliminieren. Jedoch sprechen bei 

weitem nicht alle Patienten auf eine zielgerichtete Immuntherapie an, da die destruktive Aktivität 

von Immunzellen gegen Krebszellen oft durch die Hochregulation von inhibitorischen 

Checkpoints in der Tumorumgebung behindert wird. Hierzu zählen insbesondere „Programmed 

death-1“ (PD-1) und sein Hauptligand „Programmed death-ligand 1“ (PD-L1). Bei AML wird die 

Expression dieser Moleküle durch ein entzündliches Milieu ausgelöst, welches zu einer adaptiven 

Immunresistenz gegen T-Effektormechanismen führt. Der Einsatz von monoklonalen Antikörpern, 

die mit diesem inhibitorischen Checkpoint interferieren, kann die zytolytische Aktivität von T-

Zellen wiederherstellen, jedoch verursachen gegenwärtige Checkpointinhibitoren häufig 

immunassoziierte Nebenwirkungen, die schwerwiegend sein können oder sogar zum Tod führen. 

Dies liegt darin begründet, dass inhibitorische Liganden als natürliche Reaktion auf Entzündung 

in fast jedem Gewebe exprimiert werden. 

Die vorliegende Arbeit etabliert ein neues Konzept, welches die Blockade der PD-1/PD-L1 Achse 

auf Leukämiezellen beschränkt und so die Entwicklung von immunassoziierten Nebenwirkungen 

verhindert. Dies wird durch die Herstellung eines neuen Molekülformats erreicht, das als 

“Checkpoint inhibitory T cell Engager” (CiTE) bezeichnet wird. Der CiTE-Antikörper kombiniert 

hochaffines Targeting des AML-Antigens CD33 mit niedrigaffiner PD-1/PD-L1-Blockade. Wir 

machen uns die natürliche schwache Bindung der extrazellulären Domäne von humanem PD-1 

(PD-1ex) zunutze, die nicht ausreicht, um alleine mit PD-L1-positiven Zellen zu interagieren. 

Folglich ist die CiTE-vermittelte Checkpointblockade von dem Aviditätsbeitrag des CD33-
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Bindearms abhängig, was den Effekt auf die Oberfläche von antigenpositiven Zellen begrenzt. Die 

in vitro Evaluierung des Moleküls zeigt eine effiziente T-Zell-Aktivierung und das Auslösen einer 

spezifischen zytotoxischen Lyse von AML-Zelllinien sowie primären Patientenproben. Weiterhin 

beweist der CiTE-Antikörper eine hohe Spezifität für PD-L1-exprimierende AML-Zellen, 

während andere PD-L1-positive Zellen nicht adressiert werden. Diese Ergebnisse werden in vivo 

in einem murinen Xenotransplantationsmodell bestätigt. Hier verursacht der CiTE-Antikörper die 

Eliminierung von AML Zellen, jedoch keine messbaren Nebenwirkungen wie übermäßige T-Zell-

Aktivierung oder Gewichtsabnahme. Deshalb betrachten wir das CiTE-Format als 

vielversprechende Strategie für die Therapie von AML, die zur Verringerung von 

immunassoziierten Nebenwirkungen führt, welche bei der systemischen Blockade von 

Immuncheckpoints auftreten. 
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1.  Introduction 

1.1.  Cancer immunotherapy 

1.1.1.  History of cancer immunotherapy 

The opinion about the role of the immune system in cancer has drastically changed over the last 

century.1 In 1893, William B. Coley proclaimed that cancerous malignancies can be treated by 

activating the host immune system. He observed that the injection of streptococcal cultures into 

primary tumors of patients was able to cause tumor regression after the development of erysipelas.2 

Hundreds of patients were treated with the so-called “Coley’s toxin”, inducing durable clinical 

responses even in inoperable tumors. However, the occurrence of severe fever as well as low cure 

rates soon resulted in clinical replacement of the bacterial injections by surgery and radiotherapy.3 

Still, in 1976 the idea of using attenuated bacteria as cancer vaccine was taken up again for 

treatment of invasive bladder cancer with Bacille Calmette-Guérrin (BCG) therapy, which is in 

clinical use until today.4-6 Another early milestone towards cancer immunotherapy was provided 

by Paul Ehrlich. He stated in 1909, that the outgrowth of cancerous cells is usually suppressed by 

the immune system.7 Yet, this finding moved into the background until Thomas and Brunet revived 

the hypothesis of cancer immunosurveillance in the early 1960s. They both claimed that immune 

cells are able to eliminate malignant cells that were transformed by somatic mutations.8-10 

Especially Brunet put the opinion forward that lymphocytes continuously guard healthy tissues by 

depleting cancer cells based on the presence of tumor-associated antigens (TAAs).9 However, due 

to technical limitations this theory could not be substantiated by experimental data in those days 

and it was not until the early 1990s that the existence of immunogenic TAAs was proven.1,11,12 

Along with the description of genetic instability that can lead to mutations which favor the escape 

of tumors from immune surveillance, immunotherapy moved into focus again and is nowadays 

considered indispensable in the successful treatment of cancer.13,14  

The development of the so-called hybridoma technology was essential for the manufacture of 

monoclonal antibodies (mABs) for cancer immunotherapy.15 Naturally, antibodies are secreted by 

terminally differentiated B cells (i.e. plasma cells) as part of the adaptive immune response, and 

each plasma cell produces antibodies with one particular specificity.16 For the generation of 

recombinant mABs, mice were immunized with target antigen, and emerging B cells were 
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subsequently fused with immortalized myeloma cells to give rise to hybridoma cells secreting one 

specific antibody.16 Of hybridoma-derived mABs, muronomab-CD3 (i.e. Orthoclone OKT3®; 

Janssen-Cilag) was the first to be approved by regulatory authorities in 1986 to reduce organ 

transplant rejection.17 Still, all early antibodies encountered serious problems when it came to their 

therapeutic application. These were issues in production and the frequent occurrence of immune 

responses against the foreign antibody framework regions (FR), which were designated HAMA 

(human anti-mouse antibody) responses and resulted in rapid elimination by the human immune 

system and subsequent therapy resistance.18,19 In addition, the efficiency of these mABs in patients 

was poor due to lack of cross-reactivity of the rodent fragment crystallizable (Fc) region with 

human Fc receptors (FcRs) or factors of the complement cascade.19 An important step to solve 

these problems was the ability to clone the genetic sequences of Immunoglobulins (Igs) into 

eukaryotic expression vectors, which paved the way for the modification of antibodies and 

overexpression in cell lines or E. coli.20-22 The immunogenicity of mABs could be lowered by 

fusing the rodent variable domains of heavy and light chain (VH and VL) to the constant regions of 

a human IgG backbone, resulting in chimeric antibodies with a human content of 70% and a fully 

human Fc part.19,23 In 1985, Jones and colleagues introduced a new methodology that further 

increased the human proportion to 85-90%. These so-called “humanized” antibodies were 

generated by the engraftment of the murine complementarity-determining regions (CDR) to a 

human antibody scaffold.19,24 Later, fully human antibodies were generated by using panning 

strategies such as phage display, with which a multitude of antibodies could be screened based on 

their binding affinities.25,26 

Since the approval of the first recombinant mAB in 1986, the market of biopharmaceuticals, and 

especially antibodies, is rapidly increasing. Whereas in 2008 global sales of monoclonal antibodies 

were almost $35 billion, in 2016 they already reached $106.9 billion.27,28 Starting from highest 

market strength, the six top sellers in 2016 were adalimumab (Humira®; AbbVie), etanercept 

(Enbrel®; Amgen, formerly Immunex), infliximab (Remicade®; Johnson & Johnson/ Merck), 

rituximab (Rituxan®, MabThera®; Genentech/ Roche), trastuzumab (Herceptin®; Genentech/ 

Roche) and bevacizumab (Avastin®, Roche).27,28 Since many novel therapeutic antibodies are 

currently evaluated in clinical trials and new therapeutic targets are identified continuously, the 

antibody market is expected to grow steadily.27  
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1.1.2.  Monoclonal antibodies 

Based on their constant (C) regions, immunoglobulins (Igs) can be assigned to five different classes 

(i.e. isotypes). Molecules of the IgA class are present as monomers in the serum and as dimers in 

the mucosa, IgD antibodies either exist as B cell receptor (BCR) on naïve mature B cells or as 

soluble monomers. IgE as well as IgG classes exhibit a monomeric form, whereas IgM antibodies 

are either bound to the surface of B cells as BCR or they are secreted as pentamers. IgG is the most 

commonly utilized format in therapeutic approaches and can again be categorized into four 

subclasses (IgG1, IgG2a/b, IgG3, IgG4) that possess differences in FcR binding.16,29 A schematic 

illustration and the crystal structure of the IgG format are depicted in Figure 1. 

 
Figure 1: Schematic representation and crystal structure of an IgG antibody. 

(A) IgG antibodies consist of two homodimerized heavy and two light chains that are stabilized by intramolecular 

disulfide bridges. The variable domains at the N-terminus of heavy and light chain (VH and VL) represent the 

variable fragment (Fv) of an antibody and form the specific antigen binding site. They are connected to the 

constant (C) domains CH1-3 or CL, respectively. Digestion with papain cuts the antibody at the flexible hinge 

region and separates it into two fragments for antigen binding (Fab) and one glycosylated fragment crystallizable 

(Fc).16 (B) Crystal structure of IgG1 monoclonal antibody (PDB 1IGY). Heavy chains (green), light chains 

(violet), carbohydrates (blue). Panel (A) was adapted from Ioscani Jimenez del Val et al. (2012), originally 

published in InTech, Copr. 2012 Kontoravdi et al., licensed by CC BY 3.0 (http://creativecommons.org).30 

IgGs are composed of four polypeptide chains that are connected to each other by disulfide bridges 

and have a total molecular weight of roughly 150 kDa. They consist of two homodimerized 50 kDa 

heavy (H) and two 25 kDa light (L) chains of either kappa (κ) or lambda (λ) type, and have a 

flexible hinge region.16 The variable parts of heavy and light chain (VH and VL) represent the two 

identical antigen binding pockets (i.e. paratopes) of an antibody. They form a surface 

complementary to the binding epitope, which can either be a conformational protein shape, a linear 

peptide or a carbohydrate.16  By treating the molecule with the protease papain, it is cleaved into 
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three functional parts, two fragments for antigen binding (Fab), which correspond to the light chain 

and the variable and constant 1 domains of the heavy chain (VH-CH1), and one Fc fragment, which 

consists of paired CH2 and CH3 domains.16 The Fc region exhibits oligosaccharides at Asn297, 

which are important for the exertion of Fc effector functions.31,32  

The separate domains of an IgG molecule reveal a similar and unique fold, which is known as Ig 

fold. Each Ig domain consists of two β-sheets that are stabilized by an intramolecular disulfide 

bridge and form a β-barrel structure.16 C and V domains share a significant similarity, however, 

the essential difference between the two is that the V domain is extended by two β-strands and 

possesses an extra loop.16 Each V domain contains three hypervariable regions (HV1-3) or CDRs, 

of which HV3 demonstrates the greatest variability. HV regions are connected by four framework 

regions (FR1-4) that show less variability and are located in close proximity due to the distinct 

domain fold.16 Accordingly, six hypervariable loops, three from VH and three from VL, form a 

hypervariable binding surface. Some but not necessarily all loops are responsible for antigen 

specificity of an antibody and define its binding affinity.16  

Therapeutic mABs either operate by binding and subsequent blocking or activation of a signaling 

cascade, as antibody-drug conjugate (ADC) through a coupled drug or toxin, or by the initiation of 

an Fc-mediated immune response.33,34 Naturally, the most direct effect of an antibody is mediated 

by neutralization (i.e. opsonization) of pathogens or toxins to block the interaction with host cell 

receptors and prevent the infection of healthy cells.16,29 For immunotherapy, mABs are further 

tailored to block cell surface receptors, to trigger internalization or to induce activation or apoptosis 

of target cells.34 Fc-dependent effector functions are conferred by binding to specific receptors, and 

the triggered effect crucially depends on the type of receptor as well as the respective immune cell 

on which it is present. Receptors are either classical FcRs, which are differentially expressed on 

cells of the innate and adaptive immune system, or C-type lectin receptors (CLRs).29 Binding to 

the CLR C1q or mannose-binding lectin (MBL) leads to the destruction of target cells by 

complement-dependent cytotoxicity (CDC).29,33 Interaction with FcRs on innate immune cells 

triggers antibody-dependent cellular cytotoxicity (ADCC) or antibody-dependent cellular 

phagocytosis (ADCP).16,29,35 By utilizing these effector mechanisms in immunotherapeutic mABs, 

cancer cells can be specifically eliminated or suppressive immune cells such as regulatory T cells 

(Tregs) can be depleted.34,35 Notably, Fc-dependent mechanisms result in antigen cross-presentation 
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by antigen presenting cells (APCs), such as dendritic cells (DCs) and macrophages, to T cells, 

which are able to initiate a potent anti-tumor immune response.33,35-38 

1.1.3.  Bi- and multispecific antibodies and derivatives 

Over the last years a multitude of bi- and multispecific antibody derivatives has been developed. 

In contrast to the conventional IgG format, these molecules are able to simultaneously address two 

or more target antigens and recruit distinct immune effector cells.39,40 This increases target cell 

specificity, impairs resistance formation and potentially leads to synergistic effects compared to 

combination therapies.41 Bispecific antibodies typically consist of two different heavy and light 

chains.41 As demonstrated at the example of the Triomab® format, the constant regions neither have 

to originate from the same species nor do they have to be of the same isotype. Here, hybridoma 

cells of mouse and rat are fused to generate a chimera of two full-length half-antibodies of murine 

IgG2a and rat IgG2b subclass.42 Yet, the generation of a bispecific antibody is challenging since it 

initially leads to complex mixtures.41,43,44 To overcome this problem, the knobs-into-holes (kih) 

technology was an important development ensuring correct heterodimerization of heavy chains.45 

Furthermore, the correct assembly of light chains can be achieved by engineering a common light 

chain or by implementing the CrossMab technology, which exchanges CH1 with CL domains in 

one of the two binding arms.46,47 Recent approaches of correct chain pairing also include the forced 

asymmetric assembly by electrostatic steering or the introduction of specific point mutations at the 

interface of VH-VL and CH1-CL to generate an orthogonal Fab surface.48-50 

Besides antibody derivatives that resemble the classical IgG architecture, various alternative 

formats are currently investigated. They can be subdivided into Fc-containing and Fc-deficient 

molecules, of which the latter lack the ability to induce Fc-mediated effector functions such as 

ADCC or ADCP.39,46 The large flexibility in antibody formats allows for tailoring of potential 

immunotherapeutics to different requirements, by e.g. variations in intramolecular flexibility, size, 

number of valencies and specificities, and type of effector cell. Fc-containing antibodies can 

resemble the classical IgG format or contain modifications such as additional binding sites or 

engineered Fc regions.39,46 Figure 2 depicts a selection of bispecific antibodies, of which most are 

either already approved by regulatory authorities or are currently undergoing clinical evaluation. 

Depending on the format, molecules can be manufactured from four or less polypeptide chains. 

Especially recent developments focus on molecular formats that lack an Fc region and are encoded 

by one (or two) polypeptides. They consist of a modular arrangement of targeting moieties, such 
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as Fab fragments, scFvs or nanobodies.39 ScFvs represent the minimal binding modules of a human 

antibody with a molecular weight of roughly 25 kDa and they are generated by connecting VH and 

VL by a flexible polypeptide linker.51,52 Nanobodies are single-domain antibodies of 11-15 kDa 

that originate from variable camelid VHH domains and are similar to shark VNAR domains.39,53 

 

Figure 2: Selection of advanced bispecific antibodies and derivatives. 

Molecules that are not yet applied to humans are indicated as *. The upper row depicts ABs containing an Fc 

region and two arms for bivalent target antigen binding. The lower row illustrates Fc-deficient bispecific AB 

fragments, fusion proteins and multispecific AB derivatives of smaller size that differ from the classical IgG 

format. kih, knobs-into-holes; BiTE®, bispecific T cell engager; DART®, dual-affinity re-targeting; HSA, human 

serum albumin; ImmTAC®, immune mobilizing monoclonal T-cell receptors against cancer; sctb, single-chain 

triplebody; TandAb®, tetravalent bispecific tandem diabodies. 

Established bispecific molecules include bispecific T cell engagers (BiTE®s; Amgen, formerly 

Micromet) diabodies and dual-affinity re-targeting antibodies (DART®s; MacroGenics).39,54-56 

Besides cell surface antigens, these formats can be extended to target human leukocyte antigen 

(HLA)-presented intracellular peptides, as implemented in the ImmTAC® format (Immunocore).57 

In contrast to conventional mABs, the smaller molecular weight of Fc-deficient molecules might 

bear advantages regarding the penetration of tumor tissues.58,59 However, they also hold a short 

plasma retention time due to rapid renal clearance.58 Although the BiTE® format is the only of 

these molecules that has hitherto been approved by regulatory authorities, there are many more that 
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undergo investigation at present, including multispecific molecules such as single-chain 

triplebodies (sctb) or tetravalent bispecific tandem diabodies (TandAbs®; Affimed), which might 

reveal a higher specificity for tumor cells and beneficial effects regarding cytotoxicity.60-63 

1.1.4.  T cell engaging antibody formats 

Aside from monoclonal antibodies that trigger an immune response via their Fc region, the direct 

activation and redirection of antigen-experienced T cells turned out to be a highly successful 

strategy for cancer eradication.56 The great potential of T cells as immune effectors lies within their 

plasticity, their ability to potentiate immune responses at different levels and the formation of 

immunologic memory.16 Notably, the first T cell bispecific (TCB) antibodies were already 

described more than 30 years ago.64 A representative of these early formats is the EpCAM-

targeting Triomab® catumaxomab (Removab®).42 However, this molecule leads to the induction of 

CRS due to Fc gamma receptor (FcγR)-dependent mechanisms as well as an immune response 

against the mouse/rat antibody backbone.65,66 A more recently developed T cell engaging antibody 

is the trivalent carcinoembryonic antigen (CEA)-TCB, which was designed for the treatment of 

CEA+ cancers.67 The use of a human IgG1 backbone and Fc silencing mutations prevent the adverse 

events that have been described for catumaxomab.67 The molecule contains a dual specificity for 

CEA and CD3ε. By the head-to-tail fusion of a second CEA-targeting Fab fragment to the N-

terminus of the CD3ε binding arm, it possesses two valencies for its TAA.67,68 Due to promising 

preclinical data, this format is currently investigated in two phase I clinical trials (NCT02650713, 

NCT02324257) on advanced or metastatic CEA+ solid tumors.67,68   

In recent years, particularly BiTE® antibodies emerged as efficient TCB format. BiTE®s are 

55-60 kDa fusion proteins that consist of two scFvs connected by a short peptide linker. One of the 

two scFvs is directed against the T cell coreceptor CD3 to redirect T cells to the tumor cell, whereas 

the second scFv specifically addresses a TAA.56,69-71 Notably, the BiTE® mode of action is 

independent of the specific interaction between major histocompatibility complex (MHC):peptide 

and T cell receptor (TCR) or additional stimuli and therefore has the potential to access a large 

effector T cell pool.69,72 T cell activation is accompanied by the transient release of 

proinflammatory cytokines such as interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-2, IL-4, 

IL-6 and IL-10, T cell proliferation and the cytotoxic lysis of target cells.56,69,70,73 Recent findings 

indicate that BiTE®s not only induce tumor cell depletion but extend their effect to bystander cells 

that are TAA-negative.74 Yet, since in vitro T cell activation crucially depends on the physical 
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crosslink to target cells, T cell effector functions are expected to be mainly limited to the tumor 

milieu. This implies avoiding severe damage to distant organs by sole CD3 stimulation.73 An 

important feature of the molecular BiTE® scaffold is the balanced affinities between the two scFvs. 

Whereas the tumor-targeting scFv holds a high affinity for the TAA with a KD value in the range 

of 10-9 M, the T cell redirecting CD3 scFv binds with lower affinity (KD = 10-7 -10-9 M).70,75 This 

difference results in stronger binding to targets than to T cells and leads to the formation of a tumor-

immobilized matrix of BiTE® molecules, on which T cells migrate between tumor cells to induce 

serial lysis.69 BiTE®-mediated target cell depletion is very efficient with measured EC50 values in 

the range of 10-11-10-13 M, indicating that low numbers of bound molecules are sufficient to induce 

T cell effector functions.75,76 

Various BiTE® constructs have been tailored to address different TAAs.56,69,75-81 Of these, the 

CD19xCD3 BiTE® antibody blinatumomab was the first to achieve clinical approval by the U.S. 

Food and Drug Administration (FDA) and European Medicines Agency (EMA) in 2014 and 2015, 

respectively, for the treatment of relapsed or refractory (r/r) CD19+ B-cell acute lymphoblastic 

leukemia (B-ALL) under the trade name BLINCYTO®.63  Blinatumomab has demonstrated its high 

clinical efficacy at very low concentrations. Due to its low molecular weight and the associated 

fast renal clearance, it is administered as continuous infusion over several weeks.63,82 

Blinatumomab-mediated T cell activation is often accompanied by immune-related adverse events 

(irAEs), mostly represented by mild inflammation that manifests in flu-like symptoms.83 However, 

some patients develop characteristics associated with cytokine release syndrome (CRS), which in 

a small group of adult patients can adopt a severe state.84 Commonly observed irAEs include 

pyrexia, lymphopenia, an increase in C-reactive protein as well as neurotoxic effects that are 

expected to be associated with increased cytokine levels in the central nervous system (CNS).82 

Most adverse events can be reduced by stepwise dosage and counteraction with e.g. corticosteroids 

and pentosane polysulfate.82,85 Besides blinatumomab, the CD33xCD3 antibody AMG 330 is the 

second most advanced BiTE® and a promising candidate for the therapy of r/r AML. In preclinical 

studies, AMG 330 demonstrated its high potential to specifically deplete AML cell lines and 

primary AML patient blasts in allogeneic as well as autologous settings and therefore entered 

clinical trials in August 2015 (NCT02520427).75,79 Furthermore, other T cell redirecting formats 

such as sctbs are under preclinical evaluation.86,87 
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1.2.  Cancer immunity and the role of immune checkpoints 

1.2.1.  Regulation of T cell activation 

Priming and activation of naïve T cells takes place in lymphoid organs through the contact with 

APCs. Three distinct signals are required: Signal one is provided by the interaction of the TCR 

with its specific MHC:peptide complex expressed on the APC. Signal two is a co-stimulatory 

signal that regulates T cell survival and expansion and is mostly delivered by binding of B7 

molecules on APCs to CD28 on T cells. Signal three is represented by the cytokine milieu, which 

determines T cell proliferation and differentiation.16 In particular, cytokine interleukin-2 (IL-2) 

binds to the high-affinity version of its receptor on activated T cells, which are in turn triggered to 

produce IL-2 themselves and thereby amplify the signal.16 In case of low-level TCR crosslinking 

(i.e. signal one) in the absence of co-stimulatory signals, T cells become anergic or undergo 

apoptosis.16,88,89 Generally, T cell fate is largely determined by the composition of the cytokine 

microenvironment that the cell encounters, which in turn is shaped by factors released by innate 

and adaptive immune cells.16 While CD8+ naïve T cells differentiate into cytotoxic T lymphocytes 

(CTLs) that specifically induce cytolysis of target cells, CD4+ T cells can develop into different 

effector subclasses. These are divided into T helper cells TH1, TH2, TH17 and regulatory T cells 

(Treg).
16 TH1 cells act by triggering the elimination of intracellular pathogens by macrophages. Both 

TH1 and TH2 cells trigger antibody production by plasma cells, and TH17 cells stimulate neutrophils 

to eliminate extracellular bacteria. Contrarily, Tregs function as natural opponents of an immune 

response and suppress T cell effector functions.16 Although it was previously stated that Tregs 

originate from CD4+ T cells, lately also CD8+ Treg cells have been described. Even though their 

function is not yet fully understood, it is reported that CD8+ Tregs are strongly immunosuppressive 

and can promote cancer progression.90-92 

During the process of activation, proliferation and differentiation, T cells traffic from lymphoid 

organs to the place of inflammation and interact with cells that present their specific MHC:peptide 

complex. At each stage of the immune response, T cells are accurately regulated by a large network 

of co-activating and co-inhibiting signals.93,94 A well-balanced system of these molecules is crucial 

for maintaining T cell homeostasis. Particularly inhibitory signals that are provided by so-called 

immune checkpoints have the function to ensure self-tolerance and thereby protect healthy tissues 

from an excessive immune response.93-96 Many regulatory molecules have been identified over the 

last years. They share similarity to the superfamily of tumor necrosis factor receptors (TNFR), such 
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as the co-stimulatory receptors CD27 or 4-1BB, or can be assigned to the CD28 superfamily, such 

as the inducible co-stimulator (ICOS) or the inhibitory cytotoxic T lymphocyte-associated 

protein-4 (CTLA-4) and programmed death-1 (PD-1).16,97 CTLA-4 and PD-1 are inhibitory 

immunoreceptors that are predominantly addressed with current immunotherapies. Both 

checkpoints play a role at different stages of T cell immunity. While CTLA-4 stimulation by B7 

on APCs regulates naïve T cells during the priming phase in the lymph node, PD-1 curtails effector 

functions of activated T cells in the peripheral tissue.98 

1.2.2.  Cancer immunoediting and immune escape 

Cancer immunosurveillance is crucial for preventing (and limiting) tumor growth and metastasis. 

However, in a process designated as “immunoediting”, cancerous cells may disrupt the natural 

immune response and become resistant to elimination.99 In general, the depletion of these cells is 

a concerted process of the innate and adaptive part of the immune system, which can be subdivided 

into four phases:8,99 In phase one, the immune response is initiated. Tumor cells are recognized by 

innate immune cells such as natural killer (NK), NKT and γδ T cells that infiltrate the tumor mass 

once it reaches a certain threshold and start to release IFN-γ.8,99-101 Phase two includes effects 

triggered by IFN-γ such as the production of various chemokines that inhibit neoangiogenesis and 

proliferation of the tumor cells and promote apoptosis.8,99,102,103 Additionally, NK cells, 

macrophages, DCs and other immune cells are attracted by the cytokine milieu and induce cancer 

cell death. Cell debris are ingested by DCs, which migrate to the tumor-draining lymph node 

(TDLN) and cross-prime resting T cells.8,99 In phase three, the tumor cells are kept at bay by the 

destructive activity of NK cells and macrophages, whereas TAA-specific naïve T cells are activated 

in TDLNs and differentiate into CD4+ and CD8+ effector T cells.8,99 In phase four, these T cells 

traffic to the cancer site along a chemokine gradient, where they specifically eradicate tumor cells 

presenting their cognate MHC:peptide antigen.8,99 The following process is a dynamic equilibrium 

of continuous tumor cell depletion and reproduction. However, the induced selection pressure and 

the high mutagenesis rate of tumor cells can promote the emergence of cells with reduced 

immunogenicity. This equilibrium process and the concomitant selection for non-immunogenic 

cancer cells may last several years and result in the outgrowth of tumor cell variants that escape 

from immune recognition.8,99 

One crucial mechanism of cancer immune escape is the upregulation of inhibitory immune 

checkpoints in the microenvironment. Although these regulatory axes are inevitable during 
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inflammation to dampen the immune response, an upregulation of inhibitory ligands on tumor cells 

disrupts cancer immunity and promotes tumor growth.94,96 T cell activity, can be inhibited at 

different stages of the cancer immunity cycle. Aside from failure of TAA recognition in lymphoid 

organs or unsuccessful migration into the tumor tissue, effector T cells can be directly inhibited at 

the tumor site. Moreover, infiltrating T lymphocytes might differentiate into Tregs rather than CTLs 

and thus promote an immunosuppressive microenvironment.94,104  

For the upregulation of PD-L1 on cancer cells two general mechanisms are postulated, innate 

immune resistance and adaptive immune resistance.93,105 The first mechanism describes PD-L1 

overexpression as a result of constitutive oncogenic signaling, as reported for glioblastoma, some 

lymphomas and prostate cancer.93,106 Contrarily, the acquisition of adaptive immune resistance 

results from a reactive upregulation of checkpoint molecules in response to a proinflammatory 

microenvironment.93 Especially IFN-γ was shown to induce PD-L1 expression on both cancer as 

well as various other tissues.93,96,107 The paradigm of adaptive immune resistance suggests that 

immunogenic neoepitopes might be present in advanced cancers but that cancer immunity is 

inhibited by this mechanism.93,108 The blockade of immune checkpoints by monoclonal antibodies 

is thus a highly promising strategy to reactivate T cells and favor a beneficial outcome in various 

tumors.93,108 

1.2.3.  The PD-1/PD-L1 immune checkpoint 

Programmed death-1 (PD-1) is a 288 amino acid (aa) type I transmembrane glycoprotein with a 

molecular weight of 50-55 kDa that is predominantly found on activated T cells.96,109,110 It consists 

of an N-terminal extracellular IgV domain, a ~20 aa stalk, a transmembrane region and a ~95 aa 

intracellular part containing both an immunoreceptor tyrosine-based inhibitory motif (ITIM) and 

an immunoreceptor tyrosine-based switch motif (ITSM).96,110 Splice variants of PD-1 have been 

reported in activated human T cells.111 Although PD-1 is a member of the CD28 superfamily, it 

shares a low sequence identity with CD28 and CTLA-4.110,112 In contrast to other family members, 

it lacks the proline-rich MYPPPY motif in its extracellular region, which is involved in CD28 

ligand binding, as well as a cysteine residue responsible for dimerization.97 Programmed death-

ligand 1 (PD-L1, also known as B7-H1) and programmed death-ligand 2 (PD-L2, also known as 

B7-DC) have been described as PD-1 ligands.113,114 Both proteins contain two extracellular Ig 

domains. The N-terminal domain adopts an IgV fold and is responsible for PD-1 binding.115 PD-1 

interacts with its ligands PD-L1 and PD-L2 in a 1:1 stoichiometry.112,116 For the PD-1/PD-L1 
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interaction, a KD value of 8.2 µM is reported, whereas the PD-1/PD-L2 interaction revealed a 

slightly stronger binding with KD = 2.3 µM.115-117  PD-1 and PD-L1 bind to each other via the large 

hydrophobic surfaces at the sides of their IgV domains. By this, the loops of both IgV domains are 

positioned on the same side of the complex, which significantly resembles the antigen binding site 

of antibodies and TCRs.116 

In contrast to other CD28 protein family members, PD-1 cannot only be found on T cells but also 

on activated B cells and myeloid cells such as DCs.109,118,119 PD-1 is not expressed by naïve T cells, 

but upregulated on CD4+ and CD8+ T cells upon activation.109,120 Rapid antigen elimination induces 

a decrease in PD-1 levels, whereas high levels remain on the cell surface in case of antigen 

persistence such as during chronic inflammation or cancer.120-123 Tregs reveal a sustained PD-1 

expression and it has been shown that in the presence of CD3 and transforming growth factor 

(TGF)-β, PD-1+ Tregs directly promote the conversion of CD4+ T cells into a Treg phenotype and 

thereby amplify the Treg population at the tumor site.105,124 The two PD-1 ligands differ significantly 

in their expression patterns. PD-L1 is broadly upregulated on T cells, B cells, DCs, and myeloid 

cells as well as on non-hematopoietic tissues.96,107,120,125 It is frequently upregulated in the presence 

of proinflammatory cytokines, of which IFN-γ is the most potent.96,107 PD-L1 plays a crucial role 

in the acquisition of adaptive immune resistance by cancer cells.93 Contrarily, PD-L2 expression is 

restricted to a small subset of immune cells, including DCs, macrophages and some B cell subpopu-

lations.96,120,125 Under healthy conditions, PD-L2 is not expressed, but similar to PD-L1 it can be 

upregulated in the presence of proinflammatory cytokines.96,120 Although both PD-L1 and PD-L2 

can be found on cancer cells, PD-L1 overexpression is more frequently observed. The expression 

levels, however, demonstrate a high intra- and inter-tumor variability.108,120,126 High surface density 

of PD-L1 often correlates with a decrease in overall survival (OS), thereby establishing PD-L1 as 

valuable prognostic biomarker.127-131 

By interaction of PD-1 on the T cell with its ligands, an inhibitory signaling cascade is initiated 

that decreases T cell activity. More precisely, PD-1 ligation with PD-L1 or PD-L2 antagonizes the 

activating signaling cascades of the TCR/CD3 complex and CD28 (Figure 3).120 After PD-1 

stimulation, phosphatases such as src homology 2-domain-containing tyrosine phosphatase 

(SHP)-2 associate with the intracellular ITSM motif of PD-1.120,132,133 Thereby, they interfere with 

phosphoinositide 3-kinase (PI3K)/AKT and rat sarcoma (RAS) pathways, resulting in reduced 

levels of activating transcription factors such as activator protein-1 (AP-1), nuclear factor of 
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activated T cells (NFAT) and nuclear factor-κB (NF-κB). This leads to inhibition of T cell effector 

functions, growth arrest, and anergy.120,133,134 Recently, chemokine-like factor-like MARVEL 

transmembrane domain-containing protein (CMTM) 4 and 6 have been identified to contribute to 

immunoresistance by stabilizing PD-L1 at the cell surface via reduction of its ubiquitination.135 

Moreover, oncogenic RAS signaling leads to stabilization of PD-L1 mRNA and thus enhances 

antigen levels.136  

 
Figure 3: PD-1 signaling in the T cell. 

PD-1 stimulation with PD-L1 or PD-L2 counteracts the activating TCR/CD3 and CD28 signaling cascades. 

Phosphatases such as SHP2 are recruited to the ITSM motif of the cytoplasmic PD-1 tail. These interfere with 

ZAP70, RAS and PI3K/AKT pathways and thus decrease activating and inhibiting transcription factors. 

Collectively, this leads to inhibition of T cell activation, growth, effector functions and survival and promotes a 

T cell anergy phenotype.120,132-134,137 ITIM, immunoreceptor tyrosine-based inhibitory motif; ITSM, 

immunoreceptor tyrosine-based switch motif; SHP2, src homology 2-domain-containing tyrosine phosphatase-2; 

ZAP70, zeta-chain-associated protein kinase 70; RAS, rat sarcoma; ERK, extracellular signal–regulated kinase; 

PI3K, phosphoinositide 3-kinase; AP-1 activating transcription factors such as activator protein-1; NFAT, nuclear 

factor of activated T cells; NF-κB, nuclear factor-κB; BATF, basic leucine zipper transcriptional factor ATF-like; 

PKCθ, protein kinase Cθ. Adapted by permission from Springer Customer Service Centre GmbH: Springer 

Nature, Nature Reviews Immunology, The diverse functions of the PD1 inhibitory pathway, Arlene H. Sharpe, 

Kristen E. Pauken, Copr. 2017.120 
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The actual complexity of PD-1/PD-L1/2 pathway regulation, however, remains to be elucidated in 

detail, as it is not only dependent on the expression of PD-L1 and PD-L2. For instance, PD-L1 can 

additionally interact with CD80 (i.e. B7-1) and PD-L2 was shown to bind to repulsive guidance 

molecule B (RGMB), which both also seem to provide inhibitory signals.120,138,139 

1.2.4.  Success and drawbacks of PD-1/PD-L1 blockade 

The expression of PD-1 and its ligands has a strong influence on the inhibition of T cell-mediated 

anti-tumor activity.93,120 It is well established that the blockade of the PD-1/PD-L1 axis can 

counteract peripheral tolerance and reactivate anergic T cells.93,107 Since PD-1 is not only expressed 

on T cells but also on other immune cells, the interference with this pathway might furthermore 

result in an increased activity of NK cells as well as elevated levels of antibody production by 

PD-1+ B cells.93,140 Clinical investigation of mABs that interfere with the PD-1/PD-L1 pathway 

provided persistent and durable responses in a variety of tumors, including cancers at advanced 

stages such as non-small-cell lung cancer (NSCLC), kidney cancer and melanoma.131,141 This broad 

clinical success is reflected in market approval of pembrolizumab (KEYTRUDA®; Merck) and 

nivolumab (OPDIVO®; BMS) in 2014 as the pioneering therapeutics for PD-1 blockade, as well 

as the three PD-L1 mABs atezolizumab (TECENTRIQ®; Genentech), avelumab (BAVENCIO®; 

Merck/ Pfizer) and durvalumab (IMFINZI™; AstraZeneca), which are currently applied for the 

treatment of numerous cancers.120,142-146 More than a thousand clinical trials with PD-1/PD-L1 

blocking agents are ongoing to evaluate these molecules in different tumor types as mono- or 

combination therapy.105 However, there is a heterogeneity in responsiveness to PD-1/PD-L1 

blockade between different cancer types and individual patients. While many patients can be 

treated successfully, others respond only temporally or do not show a beneficial effect at all.147 

Moreover, some cancer types can be efficiently treated, whereas others are refractory to 

PD-1/PD-L1 inhibition.120 There are even cases in which PD-1 blockade might promote tumor 

growth. Wartewig and colleagues could, for example, recently show that the interference with the 

PD-1 pathway can lead to the acceleration of disease progression in T cell non-Hodgkin’s 

lymphoma (NHL).148  

The combination with other therapeutic agents provides the possibility to overcome the 

unresponsiveness of patients, to extend checkpoint inhibition to tumors that are insensitive to 

monotherapy and to enhance therapeutic efficiency.93,105 Selected agents can either directly address 

cancer cells or components of the immune system. It is therefore inevitable to understand the 
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intracellular signal integration of engaged pathways to obtain synergistic effects.120 One 

therapeutic strategy is to combine PD-1/PD-L1 inhibition with direct targeting of a second 

immunologic pathway.120 Highly promising clinical responses were evoked by the simultaneous 

blockade of CTLA-4 and PD-1 with ipilimumab and nivolumab. In a phase III clinical trial in 

advanced melanoma patients, this combination proved to increase the 3-year OS rate to 58% 

compared to 34% and 52% for ipilimumab or nivolumab monotherapy, respectively, and resulted 

in marketing approval of this combination in 2015.149,150 Other approaches address costimulatory 

checkpoints such as ICOS or CD40, block inhibiting cytokines such as IL-10 or are based on the 

co-administration of proinflammatory cytokines such as IL-2.120 Another strategy is to combine 

PD-1/PD-L1 blockade with radio- or chemotherapy or with mABs that directly target the tumor. 

These therapies induce an immunogenic cell death resulting in the release of tumor antigens and 

so-called “danger signals”, which are subsequently engulfed by APCs. The presentation of cancer 

antigens is thus increased and cancer immunogenicity is elevated.120,150 A third strategy is to 

modulate epigenetic or metabolic pathways.120 Especially the combination of PD-1 blockers and 

agents that modulate T cell metabolism seems to be highly relevant.151,152 Clinically applied agents 

include methotrexate or dichloroacetate as metabolic drugs, and DNA methyltransferase inhibitors 

(such as 5-azacitidine and decitabine) as well as histone deacetylase inhibitors (such as vorinostat) 

as epigenetic drugs.120 Further therapeutic approaches are vaccination, the interference with Tregs 

and myeloid-derived suppressor cells (MDSCs), inhibition of angiogenesis, or direct stimulation 

of effector cell cytotoxicity in combination with checkpoint blockade.150  

Although the number of responding patients can be raised with a well-adjusted therapy, it is 

important to identify reliable biomarkers that allow tailoring of individualized therapies.150,153 

Several attempts have already been made to predict clinical responsiveness, including the approach 

of Hugo and colleagues, who identified a transcriptional signature that characterizes resistance to 

PD-1 blockade (i.e. Innate PD-1 RESistance; IPRES).154,155 However, there is no consensus 

regarding reliable criteria that can be implemented in clinical practice at present. 

Despite the dramatic success of PD-1/PD-L1 inhibitors, their application is frequently correlated 

with immune-related adverse events (irAEs).120 These result from the systemic interference with 

the immune checkpoint, which leads to autoimmune toxicity against self.98 Since PD-L1 can be 

expressed in almost every tissue, reported irAEs cover numerous organs and include colitis, 

dermatitis, hepatitis, endocrinopathies, pneumonitis and myocarditis.98,156-161 Adverse events can 
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range from weak to severe or even fatal toxicity and often require medical intervention with 

corticosteroids or other immunosuppressive agents and a discontinuation of the treatment.158-160,162 

It is not surprising that a systemic dysfunction in PD-1 signaling is correlated with autoimmune 

events since this was already described in preclinical models. In C57BL/6 mice, PD-1 deficiency 

causes chronic lupus-like autoimmune disease, and NOD-Pdcd1-/- mice develop type I 

diabetes.163,164 In 129S4/SvJae mice, a PD-L1 knockout results in susceptibility to autoimmune 

encephalomyelitis.165 In humans, impaired PD-1 functionality caused by single-nucleotide 

polymorphisms (SNPs) in the PDCD1 gene was identified to promote different autoimmune 

diseases including systemic lupus erythematosus and rheumatoid arthritis.166,167 Therefore, limiting 

immune checkpoint blockade to the tumor site and sustaining a functional crosstalk between 

immune cells and healthy tissue is a promising therapeutic strategy. The design of bispecific 

antibodies is one way to increase tumor specificity. Molecules have been developed that 

simultaneously bind to two immune checkpoints such as a PD-1 and T-cell immunoglobulin and 

mucin-domain containing (TIM)-3, as well as formats that address PD-1 and a TAA as for instance 

cellular-mesenchymal to epithelial transition factor (c-Met).168,169 Another strategy is to combine 

PD-L1 blockade with high-affinity targeting of extracellular matrix proteins in the tumor stroma, 

thereby increasing the retention time at the tumor site.170 Although multiple approaches are 

currently evaluated, none of them has been approved by regulatory authorities yet. 

 

1.3.  Acute myeloid leukemia 

1.3.1.  AML pathogenesis and conventional therapy 

Acute myeloid leukemia (AML) originates from malignantly transformed cells of the myeloid 

lineage with abnormal differentiation and proliferation properties.16,171 Leukemic blasts expand 

clonally and accumulate in bone marrow, blood and infrequently in different extramedullary 

tissues. This hampers normal hematopoiesis and consequently results in anemia, granulocytopenia 

and thrombocytopenia.172,173 AML cells reveal a high level of heterogeneity at both cellular and 

molecular levels, and different leukemic clones can be detected at the time of diagnosis.172 Based 

on cytomorphologic and cytochemical characteristics, the French-American-British (FAB) 

classification distinguishes between eleven subtypes.171,174 To integrate genetic alterations as well 

as clinical criteria, an additional classification is provided by the World Health Organization 

(WHO) and was last revised in 2016.171,175,176 Categorizing patients according to these criteria 
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improves the risk-stratification and identification of the best therapeutic options.177  However, 

AML therapy has not significantly improved over the last 30 years.172 Conventional treatment 

consists of induction therapy, in which the high burden of cancer cells is reduced by intensive 

chemotherapy with cytarabine and an anthracycline to achieve complete remission.172,178 

Subsequently, patients undergo a consolidation or postremission therapy to prevent a potential 

relapse. This mostly includes two to four cycles of intermediate-dose cytarabine chemotherapy or, 

depending on the genetic risk profile, allogeneic hematopoietic stem cell transplantation 

(HSCT).172,178 With standard therapy, AML can be cured in 35 to 40% of adult patients who are 

60 years old or younger.172,177 However, in older patients, who cannot endure intensive 

chemotherapies, median OS is less than one year.172 Although many patients initially respond to 

chemotherapy, relapse rates are high and succeeding treatment is challenging.172 Remaining 

leukemic cells in the bone marrow are of high prognostic value to assess the risk of relapse as well 

as long-term survival.179 Presumably, this so-called minimal residual disease (MRD) originates 

from chemoresistant leukemic stem cells (LSCs) that bear the potential for self-renewal and 

asymmetric cell division and thus have the ability to reinitiate and sustain the disease.180-182 A high 

mortality rate after relapse indicates that LSCs are not efficiently eradicated by chemotherapy, and 

that alternative strategies are needed to specifically address this cell population.180,183 To date, 

HSCT represents the only curative option, but a matching donor is often lacking and the therapy 

itself goes along with a high rate of morbidity and mortality due to infections or graft-versus-host 

disease.184 

1.3.2.  The immunosuppressive microenvironment in AML 

In the last years, it became evident that one reason for the failure of conventional chemotherapy is 

the induction of immune escape pathways that lead to immunologic tolerance.185-187 These 

mechanisms are expected to impede the efficient eradication of leukemic cells by endogenous anti-

leukemia immune responses as well as AML therapies.186-188 It has been suggested that the 

expression of inhibitory immune ligands such as PD-L1 is due to adaptive immune resistance 

mechanisms.93 Similar to the healthy state, in which PD-L1 is upregulated in the presence of 

proinflammatory cytokines as protective mechanism against an excessive immune response, 

PD-L1 expression can be induced on AML cells in an inflamed microenvironment and hence 

protect the tumor from eradication by the immune system.120,189-191 Accordingly, the finding that at 

primary diagnosis PD-L1 is only expressed in a subset of cases might be an indication for a non-
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inflamed, immunosuppressive state.192-194 Upon initial treatment or relapse after HSCT, PD-L1 

levels are detected more frequently.189,190,194-197 Preclinical studies in mice reveal that after injection 

of the PD-L1+ AML cell line C1498, PD-1 was significantly upregulated at leukemic sites and the 

number of Tregs increased.186 Furthermore, PD-1 knockout as well as the administration of a PD-L1 

blocking mAB were able to decelerate disease progression and prolong survival.186 The 

combination of PD-1/PD-L1 blockade and depletion of Tregs even enhanced the therapeutic 

success.186 Thus, PD-L1 expression not only directly inhibits the cytolytic activity of CTLs but 

also acts by increasing the frequency of Tregs.
186 

In addition to the PD-1/PD-L1 axis, the upregulation of CTLA-4 and CD200 are described to 

substantially contribute to immune tolerance in AML.198,199 However, the tolerogenic environment 

is not only mediated by the upregulation of inhibitory ligands but rather shaped by a complex 

interplay of leukemia, stroma and immune cells that collectively lead to a dysregulated immune 

response (Figure 4).185  

 

Figure 4: Immunosuppressive microenvironment in AML. 

In the AML microenvironment, T cells can be inhibited by the secretion of immunosuppressive molecules such 

as TGF-β, arginase II, IL-10 or kynurenine (kyn), or by direct stimulation of inhibitory receptors such as PD-1, 

CTLA-4 or CD200R. By the secretion of proinflammatory cytokines (e.g. IFN-γ), cytotoxic T lymphocytes 

(CTLs) contribute to the upregulation of inhibitory ligands on AML cells and thus to the acquisition of adaptive 

immune resistance.185,200 COX-2, cycloocygenase-2; IDO, indoleamine 2,3-dioxygenase; PGE2, 

prostaglandine E2. Adapted from Alessandro Isidori et al. (2016), originally published in Cancer Research 

Frontiers, Copr. Isidori et al. 2016, licensed by CC BY 4.0 (http://creativecommons.org).200 



INTRODUCTION 

 

23 

 

AML and stroma cells are shown to express molecules that inhibit T cell activation and 

proliferation as well as TH1 cytokine production.188 In vitro studies indicate that these include the 

release of arginase II, TGF-β and IL-10.188,193 Furthermore, AML cells reveal high levels of 

cycloocygenase-2 (COX-2) and thus an increased production of prostaglandine E2 (PGE2), which 

further promote immunosuppression.201,202 Additionally, they upregulate indoleamine 

2,3-dioxygenase (IDO) in the presence of IFN-γ.192,201,202 Moreover, the increased abundance of 

Tregs and MDSCs significantly contributes to immune suppression.203,204 Elevated Treg levels can 

be detected at different stages of therapy, and high levels often correlate with poor prognosis.204,205 

It has been shown in mice that the frequency of Tregs is increased at leukemic sites and that 

adoptively transferred CTLs are compromised in their proliferation capacity, IFN-γ release and 

their ability to deplete AML cells.206 This suppressive effect could be abrogated by Treg elimination 

with IL-2 diphteria toxin, resulting in increased CTL-mediated reduction of the tumor burden.206 

1.3.3.  Immunotherapeutic approaches in AML 

In general, AML is susceptible to immunotherapy. One established approach that is based on a 

functional immune response is the graft-versus-leukemia (GvL) effect of allogeneic HSCT, which 

is mediated by TCR recognition of foreign antigens.202,207 Also in autologous settings, the detection 

of leukemic cells by T cells is essential for a successful immune response.202 Several leukemia-

associated antigens (LAAs) have been identified, including gene fusions such as DEK-CAN and 

neoantigens that evolved from genetic aberrations such as internal tandem duplications (ITD) in 

the gene of FSM-like tyrosine kinase 3 (Flt3) as well as mutations in the gene of nucleophosmin 1 

(NPM1).202,208-211 In addition, antigens have been identified that are overexpressed on the surface 

of leukemic blasts compared to healthy tissue. Of these, the most established targets are myeloid 

differentiation antigen CD33 (i.e. sialic acid-binding immunoglobulin-like lectin-3; Siglec-3) and 

the α-subunit of the IL-3 receptor, CD123.212 These are present on the majority of myeloid blasts 

but absent or detected at lower levels on hematopoietic stem cells (HSCs), which qualifies them as 

promising targets to eliminate leukemic cells while maintaining the capacity for hematopoietic 

reconstitution.79,213-215 Furthermore, they are expressed on LSCs, which makes them good target 

antigens to eradicate MRD and to counteract relapse.79,213,216  

Since it was discovered that the depletion of CD33+ cells still allows the reconstitution of normal 

hematopoiesis in vitro, CD33 moved into focus of AML immunotherapy.217 Amongst others, 

Krupka and coworkers were able to validate CD33 as specific AML target by screening 621 AML 
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patients. They reported overexpression in >99% of samples and confirmed CD33 presence on bulk 

AML cells as well as on CD34+CD38− LSCs. Notably, CD34+CD38− bone marrow (BM) cells 

from healthy donors demonstrated a comparably lower expression of CD33.79 Several 

immunotherapeutic approaches have been tailored to address CD33, including naked mABs and 

derivatives, ADCs and chimeric antigen receptor (CAR) T cells.75,217-221 The first CD33-targeting 

mAB was already evaluated in a phase I clinical trial more than 20 years ago.222 Since then, mABs 

have continuously improved. The most advanced unconjugated mAB, lintuzumab (SGN-CD33), 

was investigated in a phase III clinical trial before it was discontinued due to lack of 

efficiency.219,223 This might be partially due to the fact that CD33 internalizes upon crosslinking.224 

ADCs, however, take advantage of this targeted endocytosis to release their cytotoxic payload 

within the cell. Thus, the only CD33-targeting agent that hitherto gained market access is 

gemtuzumab ozogamicin (GO; Mylotarg®), which is a humanized IgG4 mAB conjugated to the 

cytotoxic agent N-acetyl-γ-calicheamicin dimethyl hydrazide (CalichDMH) via a bifunctional 

linker.225-227 Upon internalization, CalichDMH is released in the cell to induce DNA double-strand 

breaks and trigger tumor cell apoptosis.228
 Due to its intriguing success in treating relapsed AML 

patients, GO gained accelerated approval by the U.S. FDA in the year 2000.225,229 Ten years later, 

it was voluntarily withdrawn by Pfizer due to frequent reports of high toxicity and lack of efficiency 

in post-marketing studies.225,230 However, after careful investigation it was most recently 

reapproved to treat adults with newly diagnosed as well as r/r AML.226,231,232 Aside from therapeutic 

molecules that are based on the conventional IgG format, the CD33xCD3 BiTE® antibody 

AMG 330 is currently evaluated in a clinical phase I trial (NCT02520427).75,221 In contrast to 

mABs, AMG 330 is not internalized and has no influence on CD33 surface antigen density.221 It 

reveals efficient cytolytic activity on AML cell lines and is able to activate T cells ex vivo in an 

autologous setting of cynomolgus monkey bone marrow aspirates and human patient samples.75,79 

Further, in a murine xenograft model, it induces AML regression and prolonged survival.75  

Notably, not all patients respond to CD33-targeted therapies.229 One reason is the upregulation of 

inhibitory immune checkpoints in the tumor microenvironment, including PD-1 and PD-L1.195-197 

Expression levels can be particularly increased in response to proinflammatory cytokines, which 

are released upon immune stimulation by tumor neoantigens or therapeutics such as T cell 

engagers.189-191,194 In this regard, recent ex vivo studies indicated that AMG 330 treatment leads to 

upregulation of PD-1 on T cells and PD-L1 on AML cells.194 The coexpression of CD33 and PD-L1 

or PD-L2 on AML cell lines decreased the AMG 330-mediated cytolytic activity of T cells, which 
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could be reversed by the addition of PD-L1 or PD-L2 blocking mABs.233 Further, it could be shown 

that the depletion of primary AML samples was enhanced by the combined application of 

AMG 330 and PD-1/PD-L1 blocking agents.194 As preclinical investigations of PD-1/PD-L1 

blockade in AML revealed a beneficial effect on disease progression, PD-1 and PD-L1 blocking 

mABs are currently evaluated in clinical phase I and II trials.234 This includes the administration 

as monotherapy or the combination with chemotherapy and/or other checkpoint blocking mABs 

such as ipilimumab.234-236 The aforementioned findings, however, provide a strong rationale for 

combining PD-1/PD-L1 checkpoint blockade with targeted antibody therapy as well. The efficacy 

of simultaneous CD33-targeting and PD-1/PD-L1 checkpoint blockade, though successful in vitro, 

has yet to be shown in vivo in preclinical animal models and in clinical trials.194 In the future, the 

combination of two different immunotherapeutic strategies might be a highly potent strategy for 

the treatment of AML. 
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2.  Objectives 

In AML, novel therapeutic approaches are urgently needed. Although most patients initially 

respond to conventional chemotherapy, relapse rates are high. This is presumably due to the 

persistence of chemoresistant LSCs and the upregulation of inhibitory immune checkpoints. One 

approach to prevent reoccurrence of disease is targeted immunotherapy against AML antigens that 

are expressed on both bulk AML cells and LSCs. Moreover, the inhibition of the PD-1/PD-L1 

checkpoint is clinically investigated in AML at present. Five PD-1/PD-L1 monoclonal blocking 

antibodies have already been approved by regulatory authorities for different types of cancer, and 

more than a thousand trials are ongoing that evaluate these agents as mono- and combination 

therapies. However, the intriguing clinical response rates are accompanied by irAEs that result 

from systemic checkpoint inhibition. Since PD-L1 can be upregulated by almost every cell of the 

body as natural reaction to inflammation, reported side effects are distributed across various organs 

and can develop into a severe or fatal state.  

The aim of this thesis was to develop a novel molecular format that locally restricts immune 

checkpoint blockade to the cytolytic synapse between T cell and leukemic cell and thus maintains 

the crosstalk between T cells and healthy tissue. This was accomplished by synergizing 

PD-1/PD-L1 blockade with specific T cell redirection. Our new molecule is designated 

“Checkpoint inhibitory T cell Engager” (CiTE) and its unique functionality is conferred by three 

distinct modules: (1) the extracellular domain of human PD-1 (PD-1ex) for local immune 

checkpoint blockade, (2) a CD3ε-specific scFv for T cell redirection and (3) a high-affinity CD33-

specific single-chain variable fragment (scFv) for AML targeting. PD-1ex holds a naturally 

occurring low affinity to PD-L1 and was therefore expected to only interact with its ligand in 

conjunction with a high-affinity tumor-targeting module. The CiTE was compared to a single-chain 

triplebody (sctb) format in which the checkpoint blocking module is represented by a high-affinity 

PD-L1 scFv, and to a BiTE®-like molecule lacking this module. The present work consisted of the 

design, the expression and purification of CiTE, sctb and respective control molecules as well as 

their biochemical and biophysical evaluation. The biological functionality was evaluated in vitro 

on different cell lines. In collaboration with Christina Krupka and Katrin Deiser a, they were further 

investigated on primary AML patient samples and in vivo in a murine xenograft model.

                                                   
a Laboratory of Marion Subklewe, Gene Center Munich, LMU München, Germany 
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3.  Materials and methods 

3.1.  Materials 

All chemicals utilized in this thesis were purchased from Carl Roth, Merck, or Sigma-Aldrich, if 

not otherwise stated. Restriction enzymes for microbiological applications were obtained from 

New England Biolabs or Fermentas. Cell culture media were obtained from Thermo Fisher 

Scientific and cell culture supplies from Sarstedt unless indicated otherwise. 

3.1.1.  E. coli strains and cell lines 

Table 1: E. coli strains used for cloning and expression of recombinant proteins. 

strain genotype company 

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 

lac [F' proAB lacIqZΔM15 Tn10 (TetR)] 

Stratagene 

BL-21 (DE3) fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS 

λ DE3 = λ sBamHIo ∆EcoRI-B 

int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5 

New England Biolabs 

 

Table 2: Mammalian cell lines. 

cell line company 

FreeStyle™ 293-F Thermo Fisher Scientific 

Expi293F™ Thermo Fisher Scientific 

Flp-In™ T-REx™ 293 Thermo Fisher Scientific 

HEK293:PD-L1 created during the present work 

HEK293:CD33 created during the present work 

HEK293:CD33:PD-L1 created during the present work 

Jurkat DSMZ 

MOLM-13 DSMZ 

MOLM-13:PD-L1 created during the present work 

OCI-AML3 kindly provided by Marion Subklewe, 

originally purchased from DSMZ 

OCI-AML3:PD-L1 created during the present work 

Panc02OVA:mPD-L1 kindly provided by Sebastian Kobold 
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3.1.2.  Plasmids 

Table 3: Vector backbones used for protein expression and generation of stable cell lines. 

vector company 

pSecTag2/Hygro C Life Technologies 

pAK400 generated in the laboratory of Andreas 

Plückthun 237 

pMXs kindly provided by Sebastian Kobold 

pcDNA5/FRT/TO Thermo Fisher Scientific 

 

Table 4: Expression vectors. 

name encoded sequence tag 

pSecTag2 - PD-1ex.αCD3.αCD33 hPD-1ex/ hCD3ε-specific scFv/ 

hCD33-specific scFv 

N-His6 

pSecTag2 - αPD-L1.αCD3.αCD33 hPD-L1-specific scFv/ hCD3ε-specific 

scFv/ hCD33-specific scFv 

N-His6 

pSecTag2 - αCD3.αCD33 hCD3ε-specific scFv/ hCD33-specific 

scFv 

N-His6 

pSecTag2 - PD-1ex.αCD3 hPD-1ex/ hCD3ε-specific scFv N-His6 

pSecTag2 - αPD-L1.αCD3 hPD-L1-specific scFv/ hCD3ε-specific 

scFv 

N-His6 

pSecTag2 - αHer2.αCD3.αCD33 hHer2-specific scFv /hCD3ε-specific 

scFv/ hCD33-specific scFv 

N-His6 

pSecTag2 - αHer2.αCD3.αHer2 hHer2-specific scFv/ hCD3ε-specific 

scFv 

N-His6 

pAK400 - PD-L1scFv hPD-L1-specific scFv C-His6 

pSecTag2 - PD-1ex-Fc hPD-1ex C-His6/ IgG1 

Fc 

pMXs - hPD-L1 hPD-L1 - 

pcDNA5 - hPD-L1 hPD-L1 - 

pcDNA5 - hCD33 hCD33 - 

pcDNA5 - hCD33/ hPD-L1 hCD33/ hPD-L1 - 

 

3.1.3.  Oligonucleotides 

All oligonucleotide primers were purchased from Metabion international AG. 
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Table 5: Primers designed for cloning. 

name 5’3’ sequence 

PD-1 N33 for SfiI TTTAAGGCCCAGCCGGCCAACCCCCCCACCTTCTCCCCAG 

PD-1 A149 rev SfiI TTTAAGGCCCCCGAGGCCGATGCCCTTCTCTCTGTCACCCTG

AG 

PD-L1 A18 for SfiI TTTAAGGCCCAGCCGGCCGCATTTACTGTCACGGTTCCCAA

G 

PD-L1 R238 rev SfiI TTTAAGGCCCCCGAGGCCGACCTTTCATTTGGAGGATGTGC

CAG 

CD3scFv for NotI TTTAAGCGGCCGCGGACATCAAACTGCAGCAGTCAG 

CD3scFv rev XhoI TTTAACTCGAGCTTTCAGCTCCAGCTTGGTCCCAGC 

CD3scFv stop rev 

EcoRV 

TTAAAGATATCCTACGCTTTCAGCTCCAGCTTGGTCCCAGCA

CCGAACG 

CD3scFv for G4S 

KasI 

CTCGAGGGTGGCGGAGGTTCTGGCGCCGACATCAAACTGCA

GCAGTCAG 

PD-L1 VL for NheI GATCTGCTAGCCACCATGAGGATATTTGCTGTCTTTATATTC

ATG 

PD-L1 VL rev 

EcoRV 

AGATCGATATCTTACGTCTCCTCCAAATGTGTATCACTTTG 

PD-1ex rev G4S XhoI GCCAGAACCTCCGCCACCCTCGAGTGCCCTTCTCTCTGTCAC

CCTGAG 

pAK400 rev EcoRI 

SfiI 

CTAGAGAATTCCTAATGATGGTGATGATGGTGATCGGCCCC

CGAGGCCGA 

PD-L1scFv for SfiI CATGGCTTCGAAAAAGCGGCCCAGCCGGCCATG 

PD-L1scFv rev XhoI CCACCCTCGAGAGCAGACACGGTCACGAGGGTTCC 

PD-1ex rev EcoRV AGTCAGATATCTTATGCCCTTCTCTCTGTCACC 

PD-L1 VL for EcoRV CTGCAGATATCATGAGGATATTTGCTGTCTTTATATTCATGA 

PD-L1 VL rev XhoI CTAGACTCGAGCTATTACGTCTCCTCCAAATGTGTATC 

CD33 VL for EcoRV CTGCAGATATCATGCCACTCCTCCTGCTG 

CD33 VL rev XhoI CTAGACTCGAGCTATTATCATTGAGTCCGCACTTCG 

PD-L1 VL rev linker GGAGCCTCTCTTGGCCCGCGTCTCCTCCAAATGTGTATCAC 

CD33 VL for linker GTGATACACATTTGGAGGAGACGCGGGCCAAGAGAGGCTC

C 

PD-L1 VL for PacI GCTAGTTAATTAAATGAGGATATTTGCTGTCTTTATATTCAT

GACC 

PD-L1 VL rev NotI GTGCTGGCGGCCGCTTACGTCTCCTCCAAATGTGTATCACTT

TGC 
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Table 6: Primers designed for DNA sequencing. 

name 5’3’ sequence 

MHsq01 ahCD33 rev CCTGATACCATAGTTATCGAGAG 

MHsq02 ahCD33 for CTCTCGATAACTATGGTATCAGG 

MHsq03 hPD1ex for CTCAGGGTGACAGAGAGAAG 

MHsq05 hPDL1VL for GAACTGACATGTCAGGCTGAGG 

MHsq06 pAK400 for CACAGGAAACAGCTATGAC 

MHsq07 pAK400 rev GACGCAGTAGCGGTAAAC 

MHsq08 ahCD3 for CATACTCTCTCACAATCAGC 

MHsq09 ahPDL1 for CTACCTACTACGCCGACA 

MHsq10 ahPDL1 for2 GACACCAGCAAGAACAC 

MHsq12 ahHer2 for GCGTGCAGAAGATACCG 

MHsq13 ahHer2 for TATCCATTGGGTTCGTCAGG 

MHsq17 pMXs for GAC GGC ATC GCA GCT TGG ATA CAC 

MHsq18 ahCD3 rev CTGGAGGATTTGTCTGTAGTC 

 

3.1.4.  Amino acid sequences 

Table 7: Amino acid sequences of binding modules and ligands. 

name sequence 

extracellular domain 

of human PD-1 

(PD-1ex) 

NPPTFSPALLVVTEGDNATFTCSFSNTSESFVLNWYRMSP 

SNQTDKLAAFPEDRSQPGQDCRFRVTQLPNGRDFHMSVVR 

ARRNDSGTYLCGAISLAPKAQIKESLRAELRVTERRA 

full-length human 

PD-L1 

MRIFAVFIFMTYWHLLNAFTVTVPKDLYVVEYGSNMTIEC 

KFPVEKQLDLAALIVYWEMEDKNIIQFVHGEEDLKVQHSS 

YRQRARLLKDQLSLGNAALQITDVKLQDAGVYRCMISYGG 

ADYKRITVKVNAPYNKINQRILVVDPVTSEHELTCQAEGY 

PKAEVIWTSSDHQVLSGKTTTTNSKREEKLFNVTSTLRIN 

TTTNEIFYCTFRRLDPEENHTAELVIPELPLAHPPNERTH 

LVILGAILLCLGVALTFIFRLRKGRMMDVKKCGIQDTNSK 

KQSDTHLEE 

full-length human 

CD33 

MPLLLLLPLLWAGALAMDPNFWLQVQESVTVQEGLCVLVP 

CTFFHPIPYYDKNSPVHGYWFREGAIISRDSPVATNKLDQ 

EVQEETQGRFRLLGDPSRNNCSLSIVDARRRDNGSYFFRM 

ERGSTKYSYKSPQLSVHVTDLTHRPKILIPGTLEPGHSKN 

LTCSVSWACEQGTPPIFSWLSAAPTSLGPRTTHSSVLIIT 
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PRPQDHGTNLTCQVKFAGAGVTTERTIQLNVTYVPQNPTT 

GIFPGDGSGKQETRAGVVHGAIGGAGVTALLALCLCLIFF 

IVKTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPT 

ETSSCSGAAPTVEMDEELHYASLNFHGMNPSKDTSTEYSE 

VRTQ 

PD-L1 scFv 

(YW243.55.S70-

derived)238 

DIQMTQSPSSLSASVGDRVTITCRASQDVSTAVAWYQQ 

KPGKAPKLLIYSASFLYSGVPSRFSGSGSGTDFTLTISSL 

QPEDFATYYCQQYLYHPATFGQGTKVEIKRGGGGSGGGGS 

GGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFS 

DSWIHWVRQAPGKGLEWVAWISPYGGSTYYADSVKGRFTI 

SADTSKNTAYLQMNSLRAEDTAVYYCARRHWPGGFDYWGQ 

GTLVTVSA 

CD3ε scFv 

(OKT3-derived)86,239 

DIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQR 

PGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAY 

MQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSV 

EGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTC 

RASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSG 

SGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKL 

ELK 

CD33 scFv 

(hP67.6-derived)240 

DIQLTQSPSTLSASVGDRVTITCRASESLDNYGIRFLTWF 

QQKPGKAPKLLMYAASNQGSGVPSRFSGSGSGTEFTLTIS 

SLQPDDFATYYCQQTKEVPWSFGQGTKVEVKGGGGSGGGG 

SGGGGSGGGGSEVQLVQSGAEVKKPGSSVKVSCKASGYTI 

TDSNIHWVRQAPGQSLEWIGYIYPYNGGTDYNQKFKNRAT 

LTVDNPTNTAYMELSSLRSEDTAFYYCVNGNPWLAYWGQG 

TLVTVS 

Her2 scFv 

(4D5-8-derived,  

kindly provided by 

Matthias Peipp)86,241 

DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKP 

GKAPKLLIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQP 

EDFATYYCQQHYTTPPTFGQGTKVEIKRGGGGSGGGGSGG 

GGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFNIKDT 

YIHWVRQAPGKGLEWVARIYPTNGYTRYADSVKGRFTISA 

DTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQ 

GTLVTVS 

human IgG1 Fc DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT 

CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY 

RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK 

GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE 

WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG 

NVFSCSVMHEALHNHYTQKSLSLSPGK 
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3.1.5.  Commercial antibodies 

Table 8: Commercial antibodies for flow cytometry and western blot analysis. 

antigen fluorophore reactivity isotype clone company 

CD2 PE, FITC, 

APC, PE/Cy5 

human mouse IgG1, K RPA-2.10 BioLegend 

CD3 PE human hamster IgG 145-2C11 BioLegend 

 FITC, PE/Cy5, 

unconjugated 

human mouse IgG2a, K HIT3a BioLegend 

 BV421 human mouse IgG1, K UCHT1 Biolegend 

CD4 APC-H7 human mouse IgG1, K RPA-T4 BD 

Pharmingen 

CD16 PE human mouse IgG1, K 3G8 BioLegend 

CD25 PerCP/Cy5.5 human mouse IgG1, K M-A251 BioLegend 

PD-1 PE, APC, 

PerCP, 

unconjugated 

human mouse IgG1, K EH12.2H7 BioLegend 

PD-L1 PE, PECy7 human mouse IgG1, K MIH1 BD 

Pharmingen 

 APC, 

unconjugated 

human mouse IgG2b, K 29E.2A3 BioLegend 

 APC mouse rat IgG2b, K 10F.9G2 BioLegend 

PD-L2 APC human mouse IgG2a, K 24F.10C12 BioLegend 

CD33 FITC human mouse IgG1, K HIM3-4 BD 

Pharmingen 

 PE, APC, 

unconjugated 

human mouse IgG1, K WM53 BioLegend 

 unconjugated human mouse IgG1, K P67.6 BioLegend 

CD45 FITC human mouse IgG1, K 2D1 BioLegend 

CD56 APC human mouse IgG1, K HCD56 BioLegend 

CD69 APC human mouse IgG1, K FN50 BioLegend 

penta-His  Alexa Fluor 

488 

human mouse IgG1  Qiagen 

IgG FITC mouse rat polyclonal IgG polyclonal BioLegend 

His HRP human mouse IgG2b GG11-

6F4.3.2 

Miltenyi 
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3.1.6.  Buffers and media 

Table 9: List of standard buffers used for biochemical and cell culture methods. 

buffer components 

10 x PBS (1 l) 80 g NaCl, 2 g KCl, 14.4 g Na2HPO4 x 2 H2O, 2 g 

KH2PO4 (pH 7.4) 

1 x PBS-T (1 l) 100 ml 10 x PBS, 0.1% (v/v) Tween-20 

10 x transfer buffer (1 l) 30.3 g tris base, 144 g glycine 

1 x transfer buffer (1 l) 100 ml 10 x transfer buffer, 20% (v/v) ethanol 

4 x Laemmli buffer 0.11 M tris base (pH 6.8), 16% (v/v) glycerol, 4% (w/v) 

SDS, 5% (v/v) β-mercaptoethanol, 0.05% (w/v) 

bromophenol blue 

Coomassie stain 50% (v/v) ethanol, 7% (v/v) acetic acid, 0.2% (w/v), 

Coomassie Brilliant Blue R250 

20 x ECL solution 2 M tris base (pH 8.5) 

1 x ECL staining solution 

(10 ml) 

10 ml 20x ECL solution, 3 μl H2O2, 25 μl cumaric acid 

(90 mM), 50 μl luminol (250 mM) 

FACS buffer 1% (v/v) FBS in 1x PBS 

 

Table 10: List of media and buffers for E. coli. 

medium components 

LB medium (1 l) 10 g bacto tryptone, 5 g yeast extract, 5 g NaCl, 1.3 ml 

NaOH 

LB agar (1 l) LB medium + 15 g agar 

TSS buffer LB medium with 10% (w/v) PEG 6000, 5% (v/v) DMSO, 

50 mM MgSO4 (pH 6.5-6.8), frozen at -20°C 

 

3.1.7.  Technical equipment 

Aekta Purifier 10, Explorer, Basic, FPLC GE Healthcare 

Agarose gel electrophoresis system Bio-Rad 

Amersham™ Imager 600 GE Healthcare 

BD FACS Calibur BD Biosciences 

Cell culture laminar-flow BDK Luft- und Reinraumtechnik 

GmbH 

Countess, automated cell counter Thermo Fisher Scientific 
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Guava easyCyte 6HT Merck Millipore 

Hemocytometer Neubauer improved Brand GmbH and Co KG 

HeraCell CO2 incubator Thermo Scientific 

Innova 44 Shaker New Brunswick Scientific 

Inverted laboratory microscope Leica DM IL LED Leica 

Microplate reader Infinite M1000 Pro Tecan 

Mini-Trans Blot® electrophoretic transfer cell Bio-Rad 

Mr. Frosty freezing container Thermo Fisher Scientific 

Model 200 / 2.0 power supply Bio-Rad 

Multitron Cell incubator Infors HT 

Nanodrop ND-1000 Peqlab Biotechnologies GmbH 

Novex® NuPAGE® SDS-PAGE Gel System Thermo Fisher Scientific 

pH-meter 766 Knick 

Realtime system CFX96 Bio-Rad 

Rotanta 460 RT centrifuge Hettich 

Sartorius scale LE 22025 Sartorius AG 

Sorvall RC6+ centrifuge Thermo Scientific 

T personal thermocycler Biometra 

Tabletop centrifuges Eppendorf 

Thermomixer comfort Eppendorf 

Vi-Cell™ XR cell viability analyzer Beckman Coulter 

X-Omat M35 Kodak 

3.1.8.  Software 

Adobe Illustrator CS6 version 16.0.3 

Ape - A plasmid Editor version 2.0.36 

Graph Pad Prism version 6 

InCyte Software version 3.1.1 

PyMOL Molecular Graphics System version 2.0 

 

Adobe Systems Inc. 

M. Wayne Davis 

GraphPad Software Inc. 

Merck Millipore 

Schrödinger, LLC 
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3.2.  Molecular biology methods 

3.2.1.  Molecular cloning  

CiTE antibody, sctb and control molecules were generated using conventional molecular biology 

methods. The CD33 scFv originates from antibody clone hP67.6, it is composed of VL connected 

to VH by a (G4S4)4-linker and it has a humanized backbone.240 The CD3ε scFv is derived from 

antibody clone OKT3, comprising a murine backbone and VH connected to VL by a (G2S)4G2 

linker.86,239 The PD-L1 scFv was generated based on published sequences.238 This scFv has a 

humanized backbone and VL and VH are connected by a (G4S4)4 linker.238 

General molecular cloning techniques such as site-specific cleavage of DNA with restriction 

enzymes, dephosphorylation and ligation as well as size-dependent separation of DNA fragments 

by agarose gel electrophoresis were conducted according to standard protocols.242 Commercially 

available enzymes and ready-made kits were used following manufacturer’s instructions. Plasmid 

DNA was isolated from E. coli XL-1 blue using NucleoSpin® Plasmid EasyPure kit 

(MACHEREY-NAGEL) or QIAfilter Plasmid Maxi Kit (QIAGEN). The NucleoSpin® Gel and 

PCR clean-up kit (MACHEREY-NAGEL) was used to purify DNA from agarose gels or PCR 

reactions. The correct DNA sequence was assured by the sequencing of all generated DNA vectors 

at Eurofins Genomics. DNA sequences of scFvs were ordered from GeneArt and inserted into a 

pAK400 vector containing a pelB leader sequence and a C-terminal His6 tag via SfiI restriction 

sites. For recombinant protein expression in HEK293-based expression systems, the respective 

DNA sequences were subcloned into a pSecTag2/Hygro C vector including an Igκ leader sequence 

and an N-terminal hexahistidine (His6) tag. The N-terminal module of trispecific molecules was 

inserted via SfiI, the central module via NotI and XhoI and the C-terminal module via KasI and 

EcoRV. For generation of stable cell lines, full-length cDNA sequences of CD33 and PD-L1 were 

either cloned into the vector pcDNA5/FRT/TO via EcoRV and XhoI or into pMXs via PacI and 

NotI restriction sites. 

3.2.2.  PCR and site-directed mutagenesis 

The cDNA sequences of the extracellular domain of human PD-1 (PD-1ex) and human full-length 

PD-L1 were obtained by PCR from isolated human muscle cDNA. PCR was also utilized to 

amplify scFvs from plasmid DNA. If necessary, primer sequences contained restriction sites or 
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included sequences encoding affinity tags or leader sequences. PCR reactions for amplification of 

coding sequences were performed using Phusion Flash High-Fidelity PCR Master Mix (Thermo 

Fisher Scientific). Correct assembly of DNA sequences after molecular cloning was assured by 

colony PCR with GoTaq® DNA polymerase (Promega). For this purpose, bacteria from a single 

colony were picked with an inoculation loop and used as template.   

A common PCR reaction with Phusion Flash Master Mix contained 10-100 ng DNA template and 

0.5 µM of each primer. It was run as follows: 

Table 11: Conventional PCR program for Phusion Flash Master Mix. 

step temperature time 

initial denaturation 98°C 30 sec 

20-30 cycles 

amplification 

98°C 

annealing temperature of primers 

72°C 

10- 30 sec  

30 sec 

30 sec / kb 

final extension 72°C 5 – 10 min 

hold 16°C  

 

For common PCR reactions using Taq polymerase the following protocol was used: 

Table 12: Conventional PCR protocol for Taq polymerase. 

step temperature time 

initial denaturation 95°C 30 sec 

20-30 cycles 

amplification 

95°C 

annealing temperature of primers 

68°C 

30 sec 

60 sec 

60 sec / kb 

final extension 68°C 5 – 10 min 

hold 16°C  

 

Site-directed mutagenesis was used to generate point mutations or to introduce or delete parts of 

DNA sequences. The 5’ and the 3’ end of the primer pairs surrounding the mutation allowed 

homology pairing of at least 20 bp. In the reaction, 10-100 ng DNA template were incubated with 

0.05 µM of each primer and Phusion Flash High-Fidelity PCR Master Mix (Thermo Fisher 

Scientific) following the protocol in Table 11. Afterwards, the reaction product was digested with 

DpnI to remove maternal DNA. Subsequently, the DNA was transformed into chemically 
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competent E. coli XL-1 blue cells and DNA isolated from single clones was verified by sequencing 

at Eurofins Genomics. 

 

3.3.  Microbiology methods 

3.3.1.  Transformation in E. coli 

Chemically competent bacterial cells were generated.243 Briefly, 200 ml of LB medium containing 

the appropriate antibiotics (Table 13) were inoculated with 2 ml of an overnight culture and grown 

to an OD600 of 0.3-0.5. Subsequently, the cells were centrifuged at 3,000 g for 5 min at 4°C, 

resuspended in ice-cold TSS buffer (Table 10), aliquoted, shock-frozen in liquid nitrogen and 

stored at -80°C until further usage.  

The E. coli strains used in this work are listed in Table 1. For transformation, 10-100 ng of plasmid 

DNA or the complete volume of a ligation mixture or mutagenesis PCR were added to 75 µl of 

bacterial cells before incubation on ice for 15 min. Bacteria were heat-shocked at 42°C for 45 sec 

and subsequently transferred back on ice for 2 min before they were allowed to recover in 600 µl 

of prewarmed LB medium at 37°C for 1 h while shaking. Afterwards, the cells were centrifuged 

briefly, most of the supernatant was removed and the cells were resuspended in the remaining LB 

medium before plating them on LB agar plates supplemented with the appropriate antibiotics 

(Table 13). 

Table 13: Concentrations of stock solutions of antibiotics and IPTG used for bacteria. Antibiotic and 

IPTG stock solutions were applied at 1:1000 (v/v) dilution. 

ampicillin 100 mg/ml (in water) 

chloramphenicol 34 mg/ml (in ethanol) 

tetracycline 10 mg/ml (in ethanol) 

IPTG 0.5 M (in water) 

 

Single colonies were picked and inoculated in 5 ml of LB medium containing the appropriate 

antibiotics. The cells were shaken over night at 37°C and plasmid DNA was isolated. 

3.3.2.  Recombinant periplasmic protein expression 

The scFvs were overexpressed in the periplasm of E. coli. Therefore, pAK400 plasmids carrying 

the respective coding sequences were transformed into competent E. coli BL21 (DE) cells (NEB) 
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under chloramphenicol selection pressure. 30 ml of an overnight pre-culture were used to inoculate 

3 l of LB growth medium, which was shaken at 200 rpm at 37°C until an OD600 of 0.5-0.7 was 

reached. Subsequently, protein expression was induced by adding 0.5 mM IPTG while keeping the 

cells shaking at 25°C. After 5 h, the cells were pelleted by centrifugation at 5,000 rpm for 10 min 

at 4°C using a SLC 6000 rotor (Sorvall). Cell pellets were directly placed on ice, subsequently 

proceeding with cell disruption and protein purification (section 3.5.1.). 

 

3.4.  Cell culture methods 

3.4.1.  Cell lines 

All cell lines used in this project were purchased from the “Deutsche Sammlung von 

Mikroorganismen und Zellkulturen” (DSMZ) or Thermo Fisher Scientific, or they were adapted 

by transfection or transduction and selection of stable cell clones (Table 2). Cell lines were 

routinely tested for mycoplasma contaminations. 

The T cell leukemia cell line Jurkat (DSMZ) grows in suspension and is maintained in RPMI1640/ 

GlutaMAX medium supplemented with 10% FBS at a density of 0.5-2x106 cells/ml. MOLM-13 

and OCI-AML3 cell lines (DSMZ) originate from AML patients and are kept in suspension in 

RPMI1640/ GlutaMAX medium supplemented with 10% FBS at a density of 0.4-2x106 cells/ml. 

To provide stable PD-L1 expression levels, these two cell lines were modified by retroviral 

transduction of a pMXs vector containing the full-length human PD-L1 cDNA sequence to 

generate MOLM-13:PD-L1 and OCI-AML3:PD-L1 cells, respectively (section 3.4.6.). Flp-In™ 

T-REx™ 293 cells (Thermo Fisher Scientific) are adherent cells derived from the HEK293 cell 

line, and they were utilized to generate HEK293:PD-L1, HEK293:CD33 and 

HEK293:CD33:PD-L1 cell lines (section 3.4.5.). These cells carry one stably integrated FRT site 

(pFRT⁄lacZeo) at a transcriptionally active locus to allow stable expression of the gene of interest. 

Additionally, they contain a tetracycline inducible system (pcDNA™6⁄TR) derived from the E. coli 

Tn10 -encoded (Tet) resistance operon, which represses protein expression in the basal state.244 

Parental cells are maintained in DMEM/ GlutaMAX medium supplemented with 10% FBS, 

100 μg/ml zeocin and 15 µg/ml blasticidin. Modified Flp-In™ T-REx™ 293 cell lines are kept 

under selection pressure of 15 µg/ml blasticidin and 50 µg/ml hygromycin B gold (InvivoGen). 

Antigen expression can be increased by the addition of 1 µg/ml tetracycline 24 h prior to the 
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experiment. FreeStyle™ 293-F and Expi293™ cells (Thermo Fisher Scientific) are derived from 

HEK293 cells and adapted to suspension culture in their corresponding expression media 

(FreeStyle™ 293 or Expi293™ Expression Medium). Both cell lines were maintained in 125 ml 

Erlenmeyer flasks (Corning) and shaken at 125 rpm. FreeStyle™ 293-F cell grow at a density of 

0.5-2x106 cells/ml, whereas Expi293™ cells are kept at 0.5-6x106 cells/ml. Panc02OVA:mPD-L1 

cells were kindly provided by Sebastian Kobold and maintained in DMEM/ GlutaMAX medium 

supplemented with 10% FBS. These cells originate from a mouse pancreatic ductal 

adenocarcinoma cell line and were modified to additionally express ovalbumin and murine 

PD-L1.245  

3.4.2.  Cell line maintenance 

Human cell lines were maintained at 37°C/ 5% CO2 in shaking or standing incubators, respectively. 

Cells were split twice per week, and live cell numbers were determined using a Countess automated 

cell counter (Thermo Fisher Scientific) and trypan blue exclusion stain (0.4%) (Thermo Fisher 

Scientific). Suspension cells were resuspended, counted and the respective amount of cells was 

transferred back into the culture dish before adding fresh medium. In case of adherent cells, the 

medium was carefully aspirated and the cells were washed with 1x DPBS. Afterwards, 0.05% 

trypsin-EDTA (1x) was added and the cells were placed in the incubator for 2-3 minutes. Cells 

were detached by repeatedly tapping the culture dish. The tryptic digest was arrested by addition 

of an equal volume of cell culture medium containing 10% FBS. After cell counting, the respective 

amount of cells was centrifuged at 1,400 rpm for 4 min, the supernatant was discarded, the pellet 

resuspended in fresh medium and transferred to a new plate. 

For freezing of cell lines, cells were centrifuged at 1,400 rpm for 4 min, the supernatant was 

discarded and the cell pellet was resuspended in culture medium without antibiotics containing 

10% DMSO. Cells were distributed to cryovials and quickly placed in a freezing container, which 

was transferred to -80°C. After 24 h, the cell vials were transferred to a liquid nitrogen container. 

3.4.3.  Recombinant protein expression in HEK293-based expression systems 

Protein expression in human cells was conducted in FreeStyle™ 293-F cells or Expi293F™ cells. 

In both cases, pSecTag2/Hygro C vectors containing an N-terminal Igκ leader sequence, an N- or 

C-terminal His6 tag and the desired ORF were transfected into the cells using lipid-based 
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transfection reagents according to manufacturer’s instructions. The protein was expressed in the 

supernatant for 5-7 days.  

Briefly, for the expression in 30 ml of FreeStyle™ 293-F cells, cells were adjusted to a density of 

0.5x106 cells/ml one day prior to transfection. The following day, 30 µg of plasmid were mixed 

with 60 µl of TransIT-LT1 transfection reagent (Mirus Bio LLC) and 3 ml of Opti-MEM™ reduced 

serum medium. The transfection mix was incubated at room temperature for 20 min and afterwards 

added dropwise to the cells, which were further maintained at 37°C/ 5% CO2 in a shaking 

incubator. To avoid cell clumping, 6-12 h later anti-clumping agent (Gibco) was added in a dilution 

of 1:750. For the expression in 30 ml of Expi293F™ cells, one day prior to transfection the cells 

were adjusted to a density of 2x106 cells/ml in a total volume of 25.5 ml. The following day, two 

times 1.5 ml Opti-MEM™ reduced serum medium were mixed with either 30 µg DNA or 80 µl 

ExpiFectamine™ and separately incubated at RT for 5 min. Afterwards both mixtures were 

combined and again incubated for 20 min. Subsequently, the transfection mix was added dropwise 

to the cells, which were kept at 37°C/ 5% CO2 in a shaking incubator. 16-18 h post transfection, 

150 µl of “Enhancer 1” and 1.5 ml of “Enhancer 2” were added.  

For expression in stable cell lines, FreeStyle™ 293-F or Expi293F™ cells expressing the 

respective protein were adjusted to a density of 1x106 cells/ml or 2x106 cells/ml, respectively, and 

the supernatant was harvested 5-7 days later. 

3.4.4.  Generation of stable Expi293F™ and FreeStyle™ 293 expression cell lines 

To generate higher amounts of protein than obtained by transient expression in Expi293F™ or 

FreeStyle™ 293 cells, stable cell lines were generated. Therefore, one day after transfection, 

100-300 µl of FreeStyle™ 293-F cells or Expi293F™ cells were transferred to 3 ml DMEM/ 

GlutaMAX medium supplemented with 10% FBS and 50 µg/ml hygromycin B gold (InvivoGen) 

in a 6-well plate. Cells that stably integrated the plasmid were allowed to become adherent and 

grow out in clones while frequently changing the medium to remove dead cells. After 3-6 weeks, 

protein expression in stable cell pools was evaluated by western blot detecting the His6 tag and the 

highest protein expressing pools were expanded.  
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3.4.5.  Generation of stable Flp-In™ T-REx™ 293 cell lines 

HEK293:PD-L1, HEK293:CD33 and HEK293:CD33:PD-L1 cells were generated from Flp-In™ 

T-REx™ 293 cells (Thermo Fisher Scientific) by transfecting the eukaryotic expression vector 

pcDNA5/FRT/TO containing either the full-length cDNA sequence of human PD-L1, human 

CD33 or the full-length cDNA sequence of human CD33 fused to the cDNA sequence of human 

PD-L1 by a P2A site. In order to allow site-directed integration at the FRT site, the plasmid 

comprising the gene of interest was co-transfected with the pOG44 Flp recombinase expression 

plasmid (Thermo Fisher Scientific) at a ratio of 1:9 (w/w) using TransIT-LT1 transfection reagent 

(Mirus Bio LLC). Briefly, one day prior to transfection 1x106 cells in 2.5 ml culture medium were 

seeded per well of a 6-well plate. The following day, 0.5 µg expression vector and 4.5 µg pOG44 

vector were mixed with 15 µl of transfection reagent and 500 µl Opti-MEM™. After 20 min 

incubation at room temperature, the mixture was added dropwise to two wells. Two days later, the 

selection process was initiated by adding 50 µg/ml hygromycin B gold (InvivoGen) and 15 µg/ml 

blasticidin (Invitrogen). The following 3-4 weeks, the outgrowth of polyclonal cell lines was 

frequently monitored under the microscope and the medium was regularly changed to remove cell 

debris. After 4 weeks, the newly generated cell lines were transferred to a 10 cm dish and antigen 

expression was evaluated by flow cytometry.  

3.4.6.  Generation of stable PD-L1+ AML cell lines 

MOLM-13:PD-L1 and OCI-AML3:PD-L1 cell lines were generated from parental MOLM-13 and 

OCI-AML3 cell lines through retroviral transduction by Felicitas Rataj and Constanze Heise b. 

Therefore, the retroviral packaging cell line Platinum-A (Plat-A) (CellBiolabs) was cultivated in 

DMEM/ GlutaMAX medium supplemented with 10% FBS, 1% penicillin/streptomycin (P/S) and 

1% L-Gln. At day 1, cells were plated at a density of 1.2x106 cells per well of a 6-well plate and 

24 h later transfected with pMX vector containing the full-length cDNA of human PD-L1 by 

calcium phosphate transfection. 15 µl CaCl2 solution (2.5 M) were mixed with 18 µg of pMXs-

hPD-L1 and the solution was filled up to 150 µl with ddH2O. While vortexing, 150 µl of Plat-A 

transfection buffer (280 mM NaCl, 10 mM KCl, 1.5 mM Na2HPO4, 50 mM HEPES (pH 6.8)) was 

added dropwise. The transfection mix was incubated for 30 min at room temperature before 

                                                   
b Laboratory of Sebastian Kobold, Clinical Pharmacology, Department of Internal Medicine IV, Klinikum der 

LMU München, Germany 
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transferring it to the Plat-A cells. After 6 h incubation at 37°C/ 5% CO2, the medium was carefully 

replaced and the cells were cultivated for 42 h. During the incubation period, 24-well plates were 

coated with 400 µl of DPBS and 5 µl RetroNectin (0.5 mg/ml) (TaKaRa) over night at 4°C. 

Afterwards, wells were blocked with 500 µl of 2% BSA for 30 min followed by a washing step 

with DPBS. At day 4, virus supernatant of the Plat-A cells was harvested on ice and filtered through 

a 0.45 µm filter. 1 ml of virus supernatant was transferred to each well of the RetroNectin-coated 

plate and immobilized by centrifugation at 3,000 g for 90 min at 32°C. After removing the liquid, 

0.5x106 MOLM-13 or OCI-AML3 cells were added to the wells in a total volume of 1 ml and spun 

down at 800 g for 30 min at 32°C before incubation over night at 37°C. Plat-A cells were 

resuspended in 3 ml fresh medium and cultivated at 37°C/ 5% CO2 for further 24 h. At day 5, the 

virus supernatant was again harvested as described, the virus was added to MOLM-13 or OCI-

AML3 cells and again centrifuged for 90 min and 800 g at 32°C, before 24 h of cultivation at 37°C/ 

5% CO2. At day 6, the transduced MOLM-13 of OCI-AML3 cells were placed in fresh medium 

and subsequently expanded. At day 10, the transduction efficiency was determined by flow 

cytometry and at day 18, the PD-L1+ cells were separated by FACS. Sorted cells were seeded into 

96-well plates by dilution cloning, single-cell clones were raised and expression levels were 

characterized by flow cytometry. 

3.4.7.  Patient and healthy donor (HD) material 

Human samples were collected in accordance to the declaration of Helsinki and in agreement with 

the Institutional Review board of the Ludwig-Maximilians-Universität München.246 Donor 

material included peripheral blood (PB) from healthy donors (HDs) as well as PB and BM from 

patients after initial diagnosis or upon relapse. HD samples were cryoconserved in 90% FBS and 

10% DMSO at -80°C, patient samples in liquid nitrogen. AML diagnosis based on the FAB 

(French-American-British) classification and was done by the Laboratory of Leukemia Diagnostics 

of the Department of Internal Medicine III of the Klinikum der Universität München.171,174 Work 

on patient samples was performed by Christina Krupka c. 

3.4.8.  Isolation of peripheral blood mononuclear cells (PBMCs) and T cells 

PBMCs were isolated from whole blood of HDs by density gradient centrifugation using Biocoll 

separating solution (Biochrom). Briefly, heparinized blood was mixed 1:1 with 1x DPBS and 
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gently pipetted into a 50 ml falcon tube on top of 25 ml Biocoll separating solution. After 

centrifugation at 818 g for 30 min at room temperature and deceleration without brakes, the PBMC 

fraction was carefully removed with a pipette and washed twice in RPMI1640/ GlutaMAX 

supplemented with 10% FBS. The pan T cell population was isolated from PBMCs by negative 

selection using the Pan T cell isolation kit (Miltenyi Biotec) according to manufacturer’s 

instructions. The cellular composition was determined by flow cytometric analysis. Staining was 

performed with antibodies against CD3 (clone HIT3a, FITC), CD16 (clone 3G8, PE) and CD56 

(clone HCD56, APC) (all purchased from BioLegend) and T cells were identified as CD3+ 

population. T cells and PBMCs were either cryoconserved in FBS/ 10% DMSO or used for T cell 

expansion. 

3.4.9.  T cell expansion 

PBMCs or Pan T cells were plated at a density of 0.5x106 cells/ml in 20-50 ml of RPMI1640/ 

GlutaMAX medium supplemented with 5% human serum, 500 units/ml IL-2 and 10 ng/ml CD3 

antibody OKT3 (BioLegend). At day 5, the antibody was removed by washing with 1x DPBS, and 

cells were resuspended in medium without OKT3 at a density of 0.5x106 cells/ml. Cells were 

counted every second day and adjusted to 0.5x106 cells/ml. At day 5, 9, 14, and the day of cell 

harvest, the cellular composition was monitored by flow cytometry as described in 3.4.8., and 

T cell effector functions were confirmed by redirected lysis assay (section 3.7.1.). At day 18-20, 

the cells were harvested by centrifugation and cryoconserved in FBS and 10% DMSO. 

 

3.5.  Protein biochemistry methods 

3.5.1.  Purification of poly-Histidine tagged proteins from E. coli periplasm 

A bacterial cell pellet from 3 l E. coli culture (section 3.3.2.) expressing scFvs was resuspended in 

100 ml periplasm lysis buffer (30 mM Tris pH 8, 1 mM EDTA, 20% (w/v) sucrose) and incubated 

on ice for 10 min. Afterwards, the suspension was centrifuged at 4,500 rpm for 20 min at 4°C, the 

supernatant was separated and stored on ice. The pellet was resuspended in 50 ml of 5 mM MgSO4 

and after 10 min incubation on ice it was again centrifuged at 4,500 rpm for 20 min at 4°C. Both 

supernatants were combined and centrifuged at 15,000 g for 20 min at 4°C using an SS-34 rotor 

(Thermo Scientific) to remove remaining cell debris. After overnight dialysis against 100 volumes 
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of dialysis buffer (20 mM Tris pH 7, 300 mM NaCl), the His6 tagged scFvs were enriched by nickel 

affinity chromatography. 1 ml of Ni-NTA agarose beads (Qiagen) were added to the supernatant 

and imidazole was adjusted to a final concentration of 10 mM to hamper unspecific binding. After 

rotation at 4°C over night, the beads were collected by centrifugation at 3,500 rpm at 4°C for 

10 min and applied to a Spin® chromatography column (Bio-Rad). Bead-bound impurities were 

removed by washing with one column volume of wash buffer (20 mM His (pH 6.5), 300 mM NaCl, 

10 mM imidazole) and the protein was eluted in 5 elution steps of one column volume at a time 

using elution buffer (20 mM His (pH 6.5), 300 mM NaCl, 200 mM imidazole). All wash and 

elution fractions were collected and analyzed by denaturing polyacrylamide gel electrophoresis 

(SDS-PAGE, section 3.5.4.). Protein bands were visualized by Coomassie Brilliant Blue staining, 

which enabled the determination of the fractions containing the desired protein. These were pooled 

and further purified by analytical size exclusion chromatography (SEC) using a Superdex 75 

10/300 column (GE Healthcare) in 20 mM His (pH 6.5), 300 mM NaCl (i.e. SEC buffer). 

Afterwards, the chromatography fractions were evaluated by SDS-PAGE and pure monomeric 

fractions were pooled and concentrated using an Amicon spin concentrator (Millipore, cutoff 

10 kDa). Protein concentration was measured as absorption at 280 nm by Nanodrop ND-1000 

(Peqlab Biotechnologies), proteins were shock-frozen in liquid nitrogen and stored at -80°C. 

3.5.2.  Purification of poly-Histidine tagged proteins from cell culture supernatant 

All proteins expressed in HEK293-based expression systems were designed to carry an N- or C-

terminal His6 tag and were secreted into the medium. Cell culture supernatants were harvested 

5-7 days after transfection (section 3.4.3.) by centrifugation at 1,500 rpm. Afterwards, remaining 

cell fragments were removed in a second centrifugation step at 15,000 g using a SS-34 rotor 

(Thermo Scientific). Ni-NTA agarose beads (Qiagen) and 10 mM imidazole were added and the 

supernatant was incubated at 4°C for at least 2 h meanwhile rotating. Afterwards, nickel affinity 

chromatography was performed as described in 3.5.1. and protein fractions were analyzed by SDS-

PAGE. Fractions containing the protein of interest in high purity were pooled and dialyzed over 

night against SEC buffer. The following day, the protein was concentrated and further purified 

using a Superdex 200 10/300 GL column (GE Healthcare), which was run in SEC buffer. The peak 

fractions were again evaluated by SDS-PAGE and the fractions containing the correct monomeric 

protein at high purity were pooled, concentrated, shock-frozen in liquid nitrogen and stored 

at -80°C until further use. Stability of the proteins after freezing was confirmed by analytical SEC 
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using a Superdex 200 5/150 GL column (GE Healthcare) in SEC buffer. Prior to functional assays, 

all proteins were thawed on ice and centrifuged at 15,000 g for 10 min at 4°C. 

3.5.3.  Protein purification for analysis in murine NSG xenograft model 

Proteins designated for injection into a murine non-obese diabetic (NOD) severe combined 

immunodeficiency (scid) (NSG) xenograft model were expressed and purified under endotoxin-

free conditions. For this purpose, the proteins were expressed in HEK293-based suspension cells 

as described in 3.4.3. and purified according to 3.5.2. However, special attention was paid to obtain 

low endotoxin levels in the sample. Thus fresh, endotoxin-free Ni-NTA agarose beads, 

chromatography columns and plasticware were used. SEC columns as well as Äkta systems 

including tubings and adaptors were preincubated with 0.5 M NaOH for at least 4 h and rinsed with 

3 column volumes of ddH2O. After nickel affinity chromatography, the protein was dialyzed 

against 1x DPBS, which was also used as running buffer for gel filtration chromatography. Before 

freezing in liquid nitrogen, the protein was sterile filtered using a 0.45 µM filter (Ultrafree-MC HV 

Centrifugal Filter units, Merck Millipore) and aliquoted under a laminar airflow cabinet. Low 

endotoxin levels were confirmed with the Pierce™ LAL Chromogenic Endotoxin Quantitation Kit 

(Thermo Fisher Scientific) which was used according to manufacturer’s instructions. 

3.5.4.  Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) 

The purity of protein samples was evaluated by denaturing polyacrylamide gel electrophoresis 

(sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) using precast 4-20% 

Bis-Tris gels of the  RunBlue® SDS-PAGE Gel System (Expedeon).247 Before loading the gel, 

protein samples were mixed with Laemmli buffer and denatured at 95°C for 5 min. Protein 

separation was achieved by running the gels at 120 V in 1x RunBlue SDS Run TEO-Tricine buffer. 

Afterwards, proteins were either stained 30 min using Coomassie Brilliant Blue staining solution 

followed by destaining in water, or the gel was used for western blot analysis. PageRuler™ 

Unstained Protein Ladder or PageRuler™ Prestained Protein Ladder (both Thermo Fisher 

Scientific) served as size standards. 

3.5.5.  Western blot analysis 

Protein samples of interest were separated according to their size by SDS-PAGE (section 3.5.4.) 

and transferred to a PVDF membrane by wet transfer using a Mini-Trans Blot® electrophoretic 
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transfer cell (Bio-Rad). The PVDF membrane was activated in >99% EtOH, and all other 

components were presoaked in 1x transfer buffer. The gel and the PVDF membrane were 

sandwiched between a foam pad and two Whatman papers on each side, clamped tightly and 

transferred to the blotting chamber, which was filled with 1x transfer buffer and run at 100 V for 

50 min. Afterwards, the membrane was washed in PBS-T for 5 min and subsequently incubated 

with a 1:10,000 dilution of His-HRP antibody (Miltenyi) in 3% milk powder/ PBS-T for 1 h at 

room temperature while agitating. The membrane was washed with 1x PBS-T three times for 

20 min. For protein detection, it was incubated in 10 ml of 1x ECL solution for 1 min and 

subsequently placed in an exposure cassette. Either a light sensitive Hyperfilm™ ECL™ (GE 

Healthcare) was exposed for varying time intervals followed by film development in a Kodak X-

Omat M35 developing machine, or the chemiluminescence was directly measured in a digital film 

developer (Amersham™ Imager 600, GE Healthcare). The buffer compositions are listed in 

Table 9. 

3.5.6.  Fluorescence-based thermal shift (ThermoFluor) assay  

The thermal stability of proteins was determined in a fluorescence-based thermal shift 

(ThermoFluor) assay.248 Briefly, the proteins were diluted to a concentration of 100 ng/µl and 

mixed with a 1:500 dilution of CYPRO® Orange (Thermo Fisher Scientific). Protein unfolding 

over a temperature gradient from 10°C to 95°C was recorded using a CFX96 Touch Real-Time 

PCR Detection System (Bio- Rad, Munich, Germany) with a stepwise temperature increase of 

0.5°C/ 10 sec and one scan after each cycle using FAM and SYBR Green I filter pairs. 

 

3.6.  Flow cytometry methods 

3.6.1.  Detection of cell surface antigens 

To analyze the expression of cell surface antigens, 1x105 cells per well were transferred to a 

v-bottom 96-well plate (Costar). Cells were centrifuged at 1,400 rpm for 4 min and the pellets were 

resuspended in FACS buffer containing the diluted FACS antibody of choice (Table 8). To ensure 

the specificity of staining, isotype controls were included. Additionally, for compensation of the 

dyes, controls were performed where cells were stained with each FACS antibody individually. 

Cells were incubated for 30 min at 4°C in the dark, washed with 200 µl 1x PBS and resuspended 
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in 200 µl FACS buffer. Afterwards measurements were conducted on a Guava easyCyte 6HT 

instrument (Merck, Millipore). Mean fluorescence intensity (MFI) ratios were calculated as median 

of expression intensities normalized to the median of isotype control staining. 

3.6.2.  Determination of surface antigen density 

Surface antigen density of cell lines was evaluated using the commercial QIFIKIT (Dako) 

following manufacturer’s instructions. Briefly, cell lines were incubated with saturating 

concentrations of unconjugated primary murine antibody directed against human CD33, PD-L1 or 

CD3 (clone P67.6, clone 29E.2A3 and clone HIT3a, respectively, BioLegend) followed by 

secondary staining with a FITC labeled detection antibody that was provided by the kit. QIFIKIT 

calibration beads served as calibration standard for the determination of the amount of apparent 

surface antigens.249 

3.6.3.  Binding studies and determination of dissociation constants (KD) 

Binding analysis of CiTE, sctb and controls to cell surface antigens was assessed by incubating 

cells with the respective protein at saturating concentration, followed by secondary staining with 

αPenta·His Alexa Fluor 488 Conjugate (Qiagen). Briefly, 1x105 cells were stained with 30 µl of 

15 µg/ml CiTE, sctb or controls diluted in FACS buffer, if not otherwise stated. After 30 min of 

incubation at 4°C, cells were washed in 200 µl 1x PBS and the pellet was resuspended in 30 µl 

αPenta·His Alexa Fluor 488 Conjugate (Qiagen) at a dilution of 1:200. The cells were again 

incubated for 30 min at 4°C in the dark, subsequently washed in 1x PBS, resuspended in FACS 

buffer and measured on a Guava easyCyte 6HT instrument (Merck, Millipore). 

KD values were determined by calibrated flow cytometry similar to a described method.250 Briefly, 

CiTE, sctb or control molecules were titrated to target cells in a concentration range between 

0.01-15 µg/ml and detected by the secondary αPenta·His Alexa Fluor 488 Conjugate (Qiagen). As 

calibration control, 3.0–3.4 μm Rainbow Calibration particles of 8 peaks (BioLegend) were 

included. Data points were normalized to the maximum MFI and fitted to a one-site specific 

binding model. 
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3.6.4.  Internalization assay 

Internalization of bi- and trispecific molecules was evaluated on MOLM-13:PD-L1 target cells. 

Briefly, 0.5x106 cells were transferred into a 96-well v-bottom plate and incubated with or without 

15 ng/µl of the molecules in FACS buffer in a total volume of 50 µl for 30, 60 or 120 min at 37°C 

or on ice for 2 h as control. Additionally, the CD33 mAB clone P67.6 (BioLegend) was included 

as positive control. Afterwards, the cells were washed with 200 µl ice-cold FACS buffer and 

centrifuged at 1,600 rpm for 4 min. Following removal of the supernatant, 50 µl of the secondary 

αPenta·His Alexa Fluor 488 Conjugate (Qiagen) was added at a 1:200 dilution and incubated at 

4°C in the dark for 30 min. The CD33 mAB was detected by adding a FITC-coupled antibody 

targeting mouse IgG Fc (BioLegend) at a dilution of 1:100. After another washing step with 200 µl 

FACS buffer and centrifugation of cells, the pellet was resuspended in 200 µl FACS buffer. The 

internalization was monitored on a Guava easyCyte 6HT instrument (Merck Millipore) recording 

5,000 events per well. Internalization was quantified as follows: 

internalization [%] =
(MFI4°C − MFIbackground) − (MFI37°C − MFIbackground)

(MFI4°C − MFIbackground)
 x 100 

 

3.7.  Biological assays 

3.7.1.  Redirected lysis assay with pre-activated T cells 

Redirected lysis of target cells by pre-activated T cells was investigated in analogy to a published 

protocol.251 18-21 days IL-2 expanded and cryopreserved T cells were used as effector cells and 

thawed one day prior to the experiment in RPMI 1640/ GlutaMAX medium supplemented with 

10% FBS. MOLM-13:PD-L1 target cells were split to a density of 0.6x106 cells/ml. The next day, 

2x106 target cells were labeled with 15 µM Calcein AM (Thermo Fisher Scientific). Redirected 

lysis assays were performed in 96-well u-bottom plates in a total volume of 200 µl RPMI1640/ 

GlutaMAX medium supplemented with 10% FBS per well. T cells and target cells were applied at 

an effector to target (E:T) ratio of 5:1 (10,000 target cells and 50,000 T cells) and the molecules 

were added at concentrations ranging from 10 fM to 100 nM. As positive control, target cells were 

lysed with 2.5% Triton X-100 (denoted as max lysis). Background lysis without effector molecules 

was monitored by including a control with target cells only (BG) and a control with a mixture of 

target and T cells (BG+T). After incubation at 37°C/ 5% CO2 for 4 h and centrifugation at 
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1,600 rpm for 4 min, 100 µl of the supernatant was transferred to a black 96-well polystyrene plate 

(Nunc) and cytolysis was monitored by reading out the emitted fluorescence of released Calcein at 

485 nm with an Infinite® M100 plate reader instrument (TECAN). Specific lysis was calculated as 

follows:  

specific lysis  [%] =
(fluorescence𝑠𝑎𝑚𝑝𝑙𝑒 − fluorescence𝐵𝐺+𝑇)

(fluorescencemax 𝑙𝑦𝑠𝑖𝑠 − fluorescence𝐵𝐺)
 x 100 

In a dose-response curve, the averaged specific lysis was plotted against the concentration of 

molecules and analyzed with Prism software (Graph Pad Software Inc.) using the integrated four 

parameter non-linear fit model to determine concentrations of half-maximal target cell lysis (EC50 

values). 

3.7.2.  Preferential lysis assay with pre-activated T cells 

The preferential lysis assay was performed according to 3.7.1. HEK293:PD-L1 and 

HEK293:CD33:PD-L1 cells were used as target cells and labeled with 15 µM Calcein AM. Pre-

activated T cells were incubated with a 1:1 mixture of unlabeled HEK293:PD-L1 and labeled 

HEK293:CD33:PD-L1 cells and vice versa at a total E:T ratio of 2:1. CiTE, sctb and control 

molecules were added as described and compared to the maximum unspecific lysis induced by 

2.5% Triton X-100. After 4 h, fluorescence intensity in the supernatant was measured by an 

Infinite® M100 plate reader (TECAN) and specific lysis was calculated.  

3.7.3.  Redirected lysis assay with non-stimulated T cells  

3.7.3.1. Redirected lysis assay with non-stimulated T cells and CD33bright cells 

Frozen, isolated HD T cells were taken into culture in RPMI1640/ GlutaMAX medium 

supplemented with 10% FBS (T cell medium) one day prior to the experiment. In parallel, 

CD33bright MOLM-13 and MOLM-13:PD-L1 cells were split to a density of 0.6x106 cells/ml. The 

next day, the assay was set up in T cell medium in 96-well flat bottom cell culture plates in a total 

volume of 200 µl per well. T cells were mixed with MOLM-13 or MOLM-13:PD-L1 cells at an 

E:T ratio of 2:1 and a total cell density of 3x105 cells/ml, and CiTE, sctb and controls were added 

(500 fM to 50 nM). 3x105 αCD3/αCD28 coupled beads (Thermo Fisher Scientific) served as 

positive control and a negative control without molecules was included. After incubation at 37°C/ 

5% CO2 for 72 h, the cell mixture was resuspended carefully and transferred to a 96-well v-bottom 
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plate. The supernatant was removed and the cell pellets were resuspended in 30 µl of premixed 

FACS antibodies against CD2, CD33 and LIVE/DEAD stain, as further specified in Table 14. 

Additionally, control stainings with the respective isotypes were performed as well as stainings 

with the single FACS antibodies as compensation controls. 

Table 14: Antibodies used for flow cytometric readout of redirected lysis assay. 

antigen / stain dye clone applied 

concentration 

dilution company 

CD2 PE RPA2.10 0.05 µg/ml 1:500 BioLegend 

CD33 FITC HIM3-4 n.a. 1:10 BD Pharmingen 

LIVE/DEAD® Fixable Dead Cell Stain 1:1000 Thermo Fisher 

Scientific 

 

Cells were stained for 60 min at 4°C in the dark, subsequently washed with 1x PBS and 

resuspended in 200 µl FACS buffer. The total number of live target cells was assessed by flow 

cytometry within a fixed time frame of 60 sec. Due to the positive displacement syringe pump and 

the precise microfluidic system it was possible to quantify the absolute number of events without 

the addition of counting beads on the Guava easyCyte 6HT instrument (Merck Millipore). The 

number of remaining target cells was normalized to the negative control and plotted against the 

concentration of molecules. Data was evaluated using Prism software (Graph Pad Software Inc.) 

and fitted with an integrated four-parameter non-linear fit model to determine concentrations of 

half-maximal target cell lysis (EC50 values). 

3.7.3.2. Redirected lysis assay with non-stimulated T cells and CD33dim cells 

Redirected lysis assays with CD33dim OCI-AML3 and OCI-AML3:PD-L1 target cells were 

performed similarly to 3.7.3.1. The two cell lines were split to a density of 0.6x106 cells/ml one 

day prior to the experiment. At the day of the assay, the cells were labeled with 2 µM PKH67 dye 

(Sigma-Aldrich) according to manufacturer’s instructions. Briefly, 4x106 cells of each cell line 

were placed in a 15 ml falcon tube and washed twice in RPMI1640/ GlutaMAX medium. A 2x 

solution of the PKH67 dye was prepared by mixing 400 µl of Diluent C buffer with 1.6 µl of dye. 

The cells were resuspended in 400 µl of Diluent C buffer and mixed with 400 µl of the dye solution. 

After 5 min incubation at room temperature and frequent mixing, the staining was stopped by 

addition of 400 µl FBS and 1 min incubation. The cells were centrifuged at 1,400 rpm for 4 min, 

the supernatant was discarded and the pellet was washed twice in RPMI1640/ GlutaMAX medium. 

Subsequently, the assay was set up as described (section 3.7.3.1.) using molecules at concentrations 



METHODS 

 

53 

 

from 5 fM to 50 nM. Readout was conducted by staining with a FACS antibody against CD2 and 

LIVE/DEAD stain (Table 14) and measurement of total events within a fixed time frame of 60 sec 

on a Guava easyCyte 6HT instrument (Merck Millipore). 

3.7.4.  T cell proliferation assay 

Freeze-downs of HD T cells were thawed one day prior to the experiment and recovered in T cell 

medium. Additionally, target cells were split to a density of 0.6x106 cells/ml. The following day, 

T cells were stained with CFSE (Thermo Fisher Scientific). Briefly, T cells were centrifuged at 

1,600 rpm for 5 min and the pellet was resuspended in 1 ml of a prewarmed solution of 2 µM CFSE 

in 1x DPBS supplemented with 0.5% FBS. The cells were incubated for 12 min at 37°C/ 5% CO2, 

centrifuged, and the pellet was resuspended in 10 ml of fresh T cell medium followed by 30 min 

of incubation to ensure complete CFSE acetate hydrolysis. Afterwards, the cells were spun down 

and the pellet was washed with fresh T cell medium. Subsequently, the assay was set up in 96-well 

flat bottom cell culture plates in a total volume of 200 µl per well and a total cell density of 

3x105 cells/ml. The labeled T cells were mixed with target cells in T cell medium at an E:T ratio 

of 2:1 and CiTE, sctb and controls (5 fM to 50 nM). A positive control with 3x105 αCD3/αCD28 

coupled beads (Thermo Fisher Scientific) and a negative control without molecules was included. 

Additionally, unlabeled T cells were used as control. The assay was incubated at 37°C/ 5% CO2 

for 96 h. Subsequently, the cells were carefully resuspended and transferred to a 96-well v-bottom 

plate. After centrifugation and discarding the supernatant, the cells were labeled with a FACS 

antibody against CD2 and LIVE/DEAD stain, as further specified in Table 15, at a total volume of 

30 µl for 60 min. Control stainings with isotype as well as single stainings for compensation were 

performed. 

Table 15: Antibodies used for flow cytometric readout of T cell proliferation assay. 

antigen / stain dye clone applied 

concentration 

dilution company 

CD2 PE/Cy5 RPA2.10 0.5 µg/ml 1:50 BioLegend 

LIVE/DEAD® Fixable Dead Cell Stain 1:1000 Thermo Fisher 

Scientific 

 

After washing, 2,000 live/CD2+ events were recorded on a Guava easyCyte 6HT instrument 

(Merck Millipore). Data was evaluated using Prism software (Graph Pad Software Inc.). In 
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particular, the percentage of divided T cells was plotted against the concentration of molecules and 

fitted with an integrated four-parameter non-linear fit model. 

3.7.5.  T cell activation assay 

T cell activation assays were set up as described in 3.7.3.1., except that CiTE, sctb and control 

molecules were applied at 5 nM concentration. After 96 h, the cell mixtures were transferred to a 

96-well v-bottom plate for FACS staining. They were centrifuged and the pellets were resuspended 

in antibody dilutions directed against CD2, PD-1, CD25 and CD69 in FACS buffer, as further 

specified in Table 16. Control stainings were included. All stainings were performed at 4°C 

protected from light for 30 min, and after washing with 1x PBS and resuspending the pellet in 

200 µl of FACS buffer, 5,000 events in the FSC/SSC lymphocyte gate were recorded on a Guava 

easyCyte 6HT instrument (Merck Millipore). 

Table 16: Antibodies used for flow cytometric readout of T cell activation assay. 

antigen dye clone applied 

concentration 

dilution company 

CD2 FITC RPA2.10 1 µg/ml 1:100 BioLegend 

PD-1 PE EH12.2H7 1.25 µg/ml 1:40 BioLegend 

CD25 PerCP/Cy5.5 M-A251 2.5 µg/ml 1:40 BioLegend 

CD69 APC FN50 5 µg/ml 1:100 BioLegend 

  

3.7.6.  Ex vivo redirected lysis assay of primary AML patient samples 

Ex vivo redirected lysis assays of AML patient samples were performed by Christina Krupka d in 

α-MEM medium (PAN Biotech) supplemented with 12.5% FBS, 12.5% horse serum (Gibco) and 

1% P/S/L-Gln (Invitrogen). Similar to a method previously described, recombinant human 

granulocyte-colony stimulating factor (rhG-CSF), rhu interleukin (IL)-3 and rhu thrombopoietin 

(TPO) (Peprotech, Germany) were added to the medium at a final concentration of 20 ng/ml.252 

Irradiated MS-5 cells were used as feeder layer (irradiation at 60 Gy for 2 h) in 12-well flat-bottom 

cell culture plates, and AML patient cells and HD T cells were added at an E:T ratio of 1:5.253-255 

CiTE, sctb and controls were applied at a concentration of 10 nM and the PD-L1 blocking mAB at 

                                                   
d Laboratory of Marion Subklewe, Gene Center Munich, LMU München, Germany 



METHODS 

 

55 

 

10 µg/ml. The percentage of lysis as well as PD-1 and PD-L1 expression were monitored after 

3-4 days.  

3.7.7.  Determination of cytokine levels 

Cytokine levels were determined in cell culture supernatants by Cytometric Bead Array (CBA) 

(Human IFN-γ Flex Set, Human IL-2 Flex Set, BD Biosciences) according to manufacturer’s 

instructions. Specifically, the supernatants from redirected lysis assays with non-stimulated T cells 

and MOLM-13 or MOLM-13:PD-L1 target cells (section 3.7.3.1.) and 5 nM or 0.5 nM CiTE, sctb 

or control molecules were analyzed. Additionally, the BiTE®-like molecule was evaluated in 

combination with PD-L1 scFv, PD-1ex-Fc, and commercial PD-1 (EH12.2H7, BioLegend) or 

PD-L1 (NIH1, eBioscience) blocking antibodies at 5 nM or 250 nM concentration. After 72 h, 

15 µl of assay supernatant were transferred into a 96-well v-bottom plate and mixed with 15 µl of 

1:50 diluted capture beads. After incubation for 60 min at room temperature, 15 µl of 1:50 diluted 

PE detection reagent was added, the components were mixed and incubated for another 120 min 

at room temperature in the dark. Afterwards, the beads were washed with 180 µl wash buffer, 

centrifuged at 1,400 rpm for 4 min and the pellets resuspended in 200 µl wash buffer. 

Subsequently, 600-2,000 beads were measured on a Guava easyCyte 6HT instrument (Merck 

Millipore). Absolute IFN-γ and IL-2 levels were calculated from standard curves derived from a 

serial dilution of cytokine standards provided by the manufacturer, which were fitted with a four 

parameter logistic regression using Prism software (Graph Pad Software Inc.). 

 

3.8.  Mouse studies 

All mouse work was performed in cooperation with Katrin Deiser e. 

3.8.1.  Study design 

The effects of CiTE, sctb and BiTE®-like molecule were evaluated in a murine AML xenograft 

model on NSG background. All mice were female, 170-265 days old and they were housed under 

pathogen-free conditions at the research animal facility of the Helmholtz Zentrum München, 

Munich, Germany. Animal experiments were approved by the Bavarian government (no. 55.2-1-

54-2532-226-2013). Based on a published experimental design, mice were inoculated with 2x104 
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MOLM-13:PD-L1 cells intravenously (i.v.) on day 0.256 On day 3, 1x107 in vitro pre-activated 

T cells were transferred intraperitoneally (i.p.) and mice were randomized into 5 groups: 3 groups 

for treatment with either CiTE, sctb or BiTE®-like molecule containing 6 mice each, a specificity 

control group of 4 mice and a 1x DPBS control group of 5 mice. On day 4, 50 pmol of therapeutic 

proteins, specificity control or 1x DPBS were injected i.v., which was repeated for 9 days. The 

body weight of the mice was monitored every second day. On day 13, the mice were sacrificed by 

CO2 asphyxiation. Murine whole blood, femurs of hind legs and spleens were collected and mice 

were macroscopically examined for bowel inflammation.  

3.8.2.  Cell isolation from murine organs and extraction of murine whole blood 

For bone marrow isolation, femurs of hind legs were removed and subsequently placed on ice. The 

femurs were opened at both ends and the bone marrow was washed out with 1x PBS using a 27G 

needle. The spleens were disrupted mechanically and filtered through a moistened 70 µm cell 

strainer. Both cell suspensions were centrifuged at 550 g for 5 min and washed with 1x PBS. 

Afterwards, they were incubated with ACK buffer (150 mM NH4Cl, 10 mM KHCO3, pH 7.2-7.4) 

for 90 sec to lyse erythrocytes and the reaction was stopped by the addition of 7 ml PBS. After 

centrifugation at 550 g for 5 min, the cells were resuspended in 1x PBS and prepared for flow 

cytometry analysis. Murine whole blood was drawn from the heart immediately after sacrificing 

the mice. For this purpose, the heart was punctured with a 27G needle containing 20 µl of 0.5 M 

EDTA and blood was transferred to a 1.5 ml Eppendorf tube on ice. Plasma was isolated by 

centrifugation of whole blood at 500 g for 10 min at 4°C. The supernatant was carefully transferred 

to a new tube and again centrifuged. Subsequently, the plasma was transferred, frozen in liquid 

nitrogen and stored at -80°C until further usage. 

3.8.3.  Flow cytometry analysis of murine cells 

For flow cytometric analysis, 50 µl of murine whole blood, 1x106 cells from spleen or 0.5x106 cells 

from bone marrow were preincubated with 3 µl Fc blocking reagent (Miltenyi Biotech) for 15 min, 

subsequently washed and incubated with FACS antibodies that were diluted in FACS buffer in a 

total volume of 50 µl. Human T cells and AML cells were separated from murine cells by CD45 

staining (clone 2D1, BioLegend) and further discriminated by staining for CD3 (clone UCHT1, 

BioLegend), CD33 (clone WM3, BioLegend), CD4 (clone RPA-T4, BD Biosciences) and PD-1 

(clone EH12.2H7, BioLegend). 
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3.9.  Plotting and statistical analysis 

For curve fitting and statistical evaluation, GraphPad Prism Software (GraphPad Software Inc.) 

was used. Unpaired Student’s t-test with Welch correction was applied for samples following 

Gaussian distribution and Mann-Whitney U test was used for data with unknown distribution. The 

result was considered to be statistically significant if p < 0.05. * corresponds to p = 0.01-0.05, ** to 

p = 0.001-0.01 and *** to p ≤ 0.001. 
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4.  Results 

4.1.  Design of CiTE antibody format 

The blockade of the PD-1/PD-L1 axis to counteract adaptive immune escape is a highly efficient 

strategy in the treatment of various cancers. However, all high-affinity PD-1 and PD-L1 blocking 

agents share the risk to induce broadly distributed adverse events since almost every tissue is able 

to upregulate PD-L1 in response to proinflammatory cytokines.98 We developed the “Checkpoint 

inhibitory T cell Engager” (CiTE) format to restrict immune checkpoint blockade to the surface of 

tumor cells and to thereby avoid systemic on-target off-leukemia events. The CiTE described in 

this thesis consists of three distinct modules: (1) The N-terminal extracellular domain of human 

PD-1 (PD-1ex) as checkpoint blocking module, (2) a central CD3ε scFv for the polyclonal 

redirection of T cells, and (3) a C-terminal CD33 scFv for high-affinity targeting of AML cells 

(Figure 5).  

 

Figure 5: Schematic representation of CiTE, sctb and control molecules. 

Modular composition of CiTE, sctb, BiTE®-like molecule, low- and high-affinity checkpoint controls 

PD-1ex.αCD3 and αPD-L1.αCD3 as well as specificity control. The checkpoint blocking modules (orange and 

green) were cloned N-terminally of a central CD3ε scFv (white) and a C-terminal CD33 leukemia-targeting scFv 

(grey).  
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The utilized CD33 scFv originates from antibody clone hP67.6 and an OKT3-derived CD3ε scFv 

served as T cell engaging module.86,239,240 Both scFvs were already described in previous 

studies.86,87,257 The PD-L1 scFv was generated based on published sequences.238 To ensure 

flexibility of the binding arms, the respective binding modules were connected to each other by 4-

times poly-Gly-Ser linkers (G4S)4. The CiTE was compared to a single-chain triplebody (sctb), in 

which checkpoint blockade is mediated by a high-affinity PD-L1 scFv.86 Due to the low affinity of 

PD-1ex, the CiTE is not expected to induce targeting of PD-L1+ cells, whereas in analogy to high-

affinity blocking agents, the sctb is intended to systemically address PD-L1+ cells. As control 

molecules, the BiTE®-like molecule, a low-affinity PD-1ex.αCD3 and a high-affinity 

αPD-L1.αCD3 checkpoint control were generated. The previously published αHer2.αCD3.αHer2 

molecule served as non-targeting specificity control.86 

 

4.2.  Generation and stability of CiTE antibody and sctb 

4.2.1.  Expression and purification of CiTE antibody and sctb 

All molecules were expressed in stable FreeStyle™ 293-F or Expi293F™ cell pools and purified 

in a two-step purification procedure. Exemplarily, Figure 6 displays the purification of CiTE 

antibody and sctb. The proteins were captured in the cell culture supernatant using Ni2+-NTA 

agarose beads. Two washing steps were performed to remove bead-bound impurities and the 

protein was eluted in five steps (Figure 6 A, B). Under reducing conditions of SDS-PAGE, the 

CiTE antibody revealed a higher apparent molecular weight than the theoretical value of 71.4 kDa, 

which was presumably due to PD-1ex glycosylation.109 The sctb indicated the expected molecular 

weight of 84.2 kDa. As can be concluded from visible bands at the respective molecular weights 

in the flow through fractions, at high protein levels a single capture step was not sufficient to 

achieve a full protein recovery. Thus, the flow through was reapplied to Ni2+-NTA affinity 

chromatography (data not shown). Analysis of the separate chromatography fractions 

demonstrated that CiTE antibody and sctb were mainly enriched in the first elution fractions (i.e. 

E1-E2 and E1-E3, respectively). Chromatograms of the subsequent SEC with a Superdex 200 

increase 10/300 GL column revealed three elution peaks for both proteins (I-III) (Figure 6 C, D). 

However, the higher-molecular weight peaks I and II were less pronounced for the sctb. SDS-

PAGE analysis confirmed that all peaks accounted for the expressed proteins, therefore I and II 

were considered to be multimers (Figure 6 E, F). Accordingly, the fractions of monomer peak III 
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were pooled for further analysis. Protein yields were determined to be 1-4.3 mg/l for the CiTE 

antibody and 10.8-19.7 mg/l for the sctb. 

 

Figure 6: Expression and purification of CiTE antibody and sctb. 

SDS-PAGE analysis of Ni2+-NTA affinity chromatography fractions of (A) CiTE and (B) sctb purified from 

supernatants of stable FreeStyle™ 293-F cell pools. (C), (D) SEC chromatograms of CiTE and sctb with 

Superdex 200 increase 10/300 GL column with three main peaks (I, II, III). (E), (F) Evaluation of SEC fractions 

by SDS-PAGE. M, marker; P, pellet; FT, flow through; W1-W2, wash fractions; E1-E5, elution fractions; ni, 

protein after Ni2+-NTA affinity chromatography. 
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An overview of the proteins is depicted in Figure 7, in which single bands confirm their purity. On 

the polyacrylamide gel, the bands of sctb and the BiTE®-like molecule, αPD-L1.αCD3 and 

specificity control correlated with the calculated molecular weights of 84.2 kDa, 57.7 kDa, 

55.2 kDa and 87.2 kDa, respectively. With 71.4 kDa and 42.3 kDa, CiTE and PD-1ex.αCD3 

demonstrated a higher apparent molecular weight than calculated, which is presumably due to 

glycosylation.109 

 

 

Figure 7: SDS-PAGE analysis of purified CiTE antibody, sctb and control molecules. 

SDS-PAGE analysis of (1) CiTE antibody, (2) sctb, (3) BiTE®-like molecule, (4) PD-1ex.αCD3, 

(5) αPD-L1.αCD3 and (6) specificity control after purification by Ni2+-NTA affinity chromatography and SEC. 

 

4.2.2.  Protein stability of CiTE antibody, sctb and BiTE®-like molecule 

After two-step purification, the proteins could be obtained in a pure, monomeric state. However, 

storage conditions as well as assay incubation at 37°C can significantly influence protein quality 

and lead to degradation or aggregation. To evaluate whether the molecules tolerate storage at -80°C 

and are suitable for the application in vitro and in vivo over several days, the stability of CiTE 

antibody, sctb and BiTE®-like molecule was determined. After one-time freezing at -80°C, the 

proportion of monomeric protein was monitored by SEC using a Superdex 200 increase 5/150 

column. The elution profile displayed one main peak for each molecule (Figure 8 A). No significant 

high- or low-molecular weight peaks were observed, indicating the absence of aggregation or 

degradation products. Further, the thermal stability of the three molecules was investigated by 

ThermoFluor assay (Figure 8 B). Analysis of thermal unfolding resulted in a melting temperature 

of 54°C for the CiTE, a 3-step unfolding of the sctb with the lowest melting temperature at 52.5°C 
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and a 2-step unfolding of the BiTE®-like molecule starting at 51.5°C. Further, the proteins were 

incubated at 37°C for 14 days, large aggregates were separated by centrifugation and supernatant 

as well as pellet were subsequently evaluated by SDS-PAGE. As shown exemplarily for the CiTE 

in Figure 8 C, no significant degradation bands could be noted and no considerable aggregation 

was detected in the pellet fraction after 14 days. This confirms that the proteins can be stored 

at -80°C and they are sufficiently stable at physiological temperatures. 

   

Figure 8: Biochemical and biophysical evaluation of protein stability. 

(A) SEC chromatograms of proteins after 1x freezing using a Superdex 200 increase 5/150 GL column. 

(B) Melting curves as determined by ThermoFluor assay with calculated melting temperatures indicated. 

(C) SDS-PAGE of CiTE antibody after incubation at 37°C for indicated days in 20 mM His (pH 6.5), 300 mM 

NaCl. P, pellet. 

 

4.3.  Characterization of target cell lines 

4.3.1.  Generation of PD-L1+ AML target cell lines 

Screenings of CD33 expression levels in AML patient samples report a significant but 

heterogeneous upregulation of the myeloid differentiation antigen with high variation between 
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patients and leukemic subpopulations.79 Thus, two AML cell lines with different CD33 expression 

levels were selected as target cell lines. MOLM-13 cells were identified to express high (CD33bright) 

and OCI-AML3 low (CD33dim) CD33 levels, however, both of them lack PD-L1 on the cell surface 

(Figure 9). The second known ligand of PD-1, i.e. PD-L2, was not detected on MOLM-13 but on 

OCI-AML3 cells. 

 

Figure 9: Antigen expression by selected AML cell lines. 

Flow cytometric evaluation of CD33, PD-L1 and PD-L2 expression on parental MOLM-13 and OCI-AML3 cells. 

The black line indicates unspecific staining by the isotype control. 

It is reported in vitro and in vivo that IFN-γ induces the upregulation of PD-L1 on AML cells.189-

191 Thus, MOLM-13 and OCI-AML3 cells were incubated with 100 ng/µl IFN-γ and after 24 h 

PD-L1 expression was analyzed by flow cytometry. However, with this strategy, no significant 

PD-L1 induction could be triggered (data not shown). Thus, stable PD-L1 expression on 

MOLM-13 and OCI-AML3 cells was ensured by retroviral transduction of the parental cell lines f. 

This strategy guaranteed the maintenance of a stable cell background for functional assays and 

enabled the selection of cell lines with distinct PD-L1 expression levels. MOLM-13 cells were 

transduced with a pMXs vector containing the full-length human PD-L1 cDNA sequence, which 

yielded a transduction efficiency of 11% (Figure 10). Subsequently, PD-L1+ cells were separated 

by FACS sorting, and by dilution cloning homogeneous cell lines were raised from single cells. In 

total, the PD-L1 expression level of 78 clones was assessed by flow cytometry, and the five shown 

                                                   
f Retroviral transduction and FACS sorting were performed by Felicitas Rataj and Constanze Heise, Laboratory 

of Sebastian Kobold, Clinical Pharmacology, Department of Internal Medicine IV, Klinikum der LMU München, 

Germany 
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in Figure 10 B were cryoconserved for further analysis. Clone 56 was selected for the present study 

since it exhibited similar expression levels for PD-L1 and CD33. It is hereafter referred to as 

MOLM-13:PD-L1 cell line. Characterization of MOLM-13 and MOLM-13:PD-L1 cells confirmed 

similar CD33 levels and homogeneous PD-L1 expression on MOLM-13:PD-L1 cells 

(Figure 10 C). According to the same procedure, OCI-AML3:PD-L1 cells were generated. 

 

Figure 10: Generation of PD-L1+ MOLM-13 cells by transduction and single-cell cloning. 

(A) Flow cytometric analysis of PD-L1-transduced bulk MOLM-13 cells in comparison to parental MOLM-13 

cells. (B) PD-L1+ single cell clones with different PD-L1 expression levels. (C) CD33 and PD-L1 expression of 

selected MOLM13:PD-L1 clone 56 in comparison to parental MOLM-13 cells. The black line indicates unspecific 

staining. 

All cell lines were quantified regarding their surface antigen density (Table 17). Notably, CD33 

and PD-L1 expression levels were in a similar range on MOLM-13:PD-L1 cells, whereas OCI-

AML3:PD-L1 cells displayed a significantly higher density of PD-L1 compared to CD33. 
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Table 17: Surface antigen density of AML target cell lines as determined by QIFIKIT. 

Table summarizes mean values of surface antigen density calculated from 3-4 experiments. Errors indicate SEM.  

 CD33 PD-L1 

MOLM-13 69.2x10
3
 ± 8.2x10

3
 - 

MOLM-13:PD-L1 78.3x10
3
 ± 4.5x10

3
  99.3x10

3
 ± 9.7x10

3
 

OCI-AML3 3.0x10
3
 ± 0.6x10

3
 - 

OCI-AML3:PD-L1 3.3x10
3
 ± 1.3x10

3
 121.9x10

3
 ± 7.9x10

3
 

 

4.3.2.  Generation of stable PD-L1+, CD33+ and CD33+PD-L1+ target cell lines 

Since PD-L1 can be ubiquitously upregulated on cells in the presence of proinflammatory 

cytokines, for the evaluation of potential on-target off-leukemia effects of CiTE and sctb a target 

cell system was required that represents this cell population of the body.107 To this end, the Flp-

In™ 293 T-Rex system was used to raise PD-L1+, CD33+ as well as CD33+PD-L1+ cell lines of 

the same cell background. Stable cell lines were grown under hygromycin selection pressure within 

several weeks. The resulting HEK293:PD-L1, HEK293:CD33 and HEK293:CD33:PD-L1 cell 

lines were confirmed to homogeneously express the integrated antigens and PD-L1 and CD33 

levels were quantified (Table 18). Notably, PD-L1 expression on HEK293:PD-L1 cells was 

determined to be similar to HEK293:CD33:PD-L1 cells. Basal antigen expression of all three cell 

lines could be increased by the addition of tetracycline. Yet, induced cell lines were exclusively 

applied for binding studies, whereas cell lines with antigen expression in a physiologically more 

relevant range were utilized for functional assays. 

Table 18: Surface antigen density of Flp-In™ T-Rex-derived cell lines as determined by QIFIKIT. 

Table summarizes mean values of surface antigen density calculated from 3-4 experiments. Errors indicate SEM.  

 CD33 PD-L1 

HEK293:PD-L1 - 8.8x10
3
 ± 1.8x10

3
 

HEK293:PD-L1_ind. - 348.2x10
3
 ± 13.8x10

3
 

HEK293:CD33 22.5 x10
3
 ± 7.8x10

3
 - 

HEK293:CD33_ind. 235.7x10
3
 ± 3.4x10

3
 - 

HEK293:CD33:PD-L1 15.4x10
3
 ± 0.6x10

3
 8.5x10

3
 ± 0.9x10

3
 



RESULTS 

 

67 

 

4.4.  Binding and internalization of CiTE antibody 

4.4.1.  Binding of CiTE antibody to target and effector cells 

The CiTE antibody is designed to bind to CD33+ AML cells and T cells but to spare PD-L1+ non-

AML cells. This binding selectivity is conferred by the PD-1ex module, which is described to 

interact with PD-L1 with low affinity and a KD value of 8.2 μM.115-117 To evaluate the binding 

properties of CiTE antibody and sctb, the interaction of the molecules to MOLM-13:PD-L1 target 

cells and healthy donor T cells was investigated (Figure 11 A). Both bound comparably to target 

and effector cells, which was independent of the affinity of the checkpoint blocking module. As 

the unique functionality of the CiTE antibody is its weak affinity to PD-L1, the binding properties 

of the two checkpoint blocking modules PD-1ex and PD-L1 scFv were analyzed. To sustain the 

direct molecular environment of the modules, they were not investigated as single modules but 

incorporated into bispecific checkpoint controls where they are connected to a C-terminal CD3ε 

scFv (i.e. PD-1ex.αCD3 and αPD-L1.αCD3). Cell lines with low (HEK293:PD-L1), intermediate 

(MOLM-13:PD-L1) and high PD-L1 levels (HEK293:PD-L1_ind.) served as target cells 

(Figure 11 B).  

 

Figure 11: Binding properties of CiTE antibody and sctb. 

(A) Binding studies of CiTE antibody and sctb at saturating conditions of 15 ng/µl to MOLM-13:PD-L1 target 

cells and HD T cells as determined by flow cytometry. (B) Binding analysis of PD-1ex in PD-1ex.αCD3 and PD-L1 

scFv in αPD-L1.αCD3 to cell lines with different PD-L1 expression levels at a protein concentration of 1.5 ng/µl. 

Molecules were detected by a secondary antibody (His). The black line shows unspecific staining. Histograms 

display one out of three independent experiments with similar results. 
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Flow cytometry analysis of PD-1ex binding revealed a much lower MFI shift than binding of the 

PD-L1 scFv, indicating a comparably weaker affinity. Binding of both modules directly correlated 

with the number of PD-L1 molecules on the target cells, demonstrating the lowest MFI shift on 

HEK293:PD-L1, an intermediate shift on MOLM-13:PD-L1 and the highest shift on 

HEK293:PD-L1_ind. cells.  

4.4.2.  KD determination of scFv modules in CiTE antibody and sctb 

Binding of the scFv modules within CiTE antibody, sctb and bispecific molecules was quantified 

by calibrated flow cytometry analysis and dissociation constants (KD) were determined 

(Figure 12).  

 

Figure 12: KD measurements of scFv binding modules. 

Concentration-dependent binding of the PD-L1 scFv (in αPD-L1.αCD3) to PD-L1 expressing MOLM-13:PD-L1 

and HEK293:PD-L1_ind. cells, CD33 scFv in the CiTE to MOLM-13 and HEK293:CD33_ind. cells , and CD3ε 

scFv in the CiTE to Jurkat cells. KD values are indicated. Graphs show mean values of three independent 

experiments with SEM as error bars. 
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Interaction of the cancer-targeting modules with their ligands was investigated on cell lines 

expressing moderate levels of PD-L1 (MOLM-13:PD-L1) and CD33 (MOLM-13) and on cell lines 

with high overexpression of the target antigens (HEK293:PD-L1_ind. and HEK293:CD33_ind.). 

Binding of the T cell recruiting module αCD3ε was evaluated on the T cell leukemia cell line 

Jurkat. For the PD-L1 scFv, mean KD values of 9.2 nM ± 1.9 nM and 16.0 ± 2.0 nM were 

calculated. The determined KD values of 29.4 ± 3.5 nM and 31.0 ± 1.4 nM for CD33 scFv are 

similar to published values for other scFv-based bispecifics.75,258 Furthermore, the affinity of 

121.3 ± 8.9 nM for the CD3 scFv was comparable to previously developed formats.70 The 

stronger binding of the tumor targeting modules in comparison to the T cell recruiting module is 

in accordance to the concept that the molecules bind to the target cells with higher affinity to 

facilitate T cell migration and serial lysis.69 

4.4.3.  Internalization of CiTE antibody 

CD33-targeting mABs (particularly clone P67.6) as well as mABs that address PD-L1 were 

reported to trigger internalization of their target antigens.224,259,260 Thus CiTE antibody, sctb and 

control molecules were investigated regarding their potency to internalize upon binding to 

MOLM-13:PD-L1 cells. As readout after incubation, remaining molecules on the target cell surface 

were quantified (Figure 13). The PD-1ex.αCD3 control was excluded due to its low binding affinity 

to the target cells. 

 

Figure 13: Internalization of CiTE antibody and sctb on PD-L1+ AML cells. 

Internalization of CiTE antibody, sctb and controls on MOLM-13:PD-L1 cells at 15 ng/µl concentration as 

determined by flow cytometry. Graphs show mean values of five independent experiments with SEM as error 

bars. 

CiTE and sctb revealed similar internalization rates. After 30 min of incubation, 11.7 ± 5.4% of 

CiTE and 12.4 ± 6.8% of sctb were internalized, after 60 min 21.5 ± 6.9% and 20.7 ± 8.5%, and 
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after 120 min 28.7 ± 6.7% and 23.4 ± 5.3%, respectively. In comparison, the bivalent CD33 mAB 

showed 42.3 ± 4.8% of internalization after 120 min, which is in the range of published data.261 

Interestingly, CiTE antibody and sctb but also αPD-L1.αCD3 revealed higher internalization rates 

than the BiTE®-like molecule that lacks the checkpoint blocking module. This leads to the 

conclusion that in CiTE and sctb, PD-L1 binding might increase internalization compared to CD33 

monotargeting. 

4.4.4.  CiTE-mediated PD-L1 blockade on AML cells 

CiTE antibody and sctb binding to AML cells was expected to block the interaction of PD-1 with 

PD-L1 and thus to interfere with PD-1 signaling in the T cell. The CiTE molecule was intended to 

target AML cells by its high-affinity CD33 scFv, which leads to an avidity-dependent local PD-L1 

blockade by PD-1ex. Due to its low affinity, we hypothesized that PD-1ex is not sufficient to induce 

checkpoint blockade on single-positive cells. To this end, MOLM-13:PD-L1 cells were incubated 

with saturating concentrations of CiTE, sctb and controls. A PD-L1 mAB (clone MIH1) that 

competes with PD-1ex and the PD-L1 scFv for their binding sites was applied and binding was 

determined by flow cytometry (Figure 14). The detection of cell-bound molecules revealed 

comparable binding of CiTE antibody, sctb, BiTE®-like molecule as well as αPD-L1.αCD3, 

whereas PD-1ex.αCD3 binding was weaker due to its low affinity (Figure 14 A). The readout of the 

PD-L1 mAB as a measure for accessible PD-L1 binding sites demonstrated a CiTE-mediated 

blockade of a significant proportion of PD-L1 surface molecules, whereas the high-affinity sctb 

led to complete blockade (Figure 14 A, B). Investigation of the high-affinity αPD-L1.αCD3 

showed that sole binding by the PD-L1 scFv is sufficient to occupy PD-L1 sites completely, 

whereas the low-affinity PD-1ex.αCD3 was not able to interact with PD-L1 by itself. These findings 

suggest that PD-1ex-mediated PD-L1 blockade by the CiTE antibody is strictly dependent on the 

avidity contribution of the high-affinity tumor-targeting arm. Thereby, the local PD-1ex 

concentration (i.e. residence time) is increased at the target cell surface, which is necessary for 

efficient PD-L1 binding. However, since the binding affinity of PD-1ex is weak, CiTE-mediated 

blockade was not as strong as the blockade induced by the sctb. Similar results were obtained for 

the investigation of binding competition with a low-affinity PD-1ex-Fc (data not shown). 
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Figure 14: Blockade of PD-L1 accessibility on MOLM-13:PD-L1 cells. 

Blocking assay was performed by sequential administration of 15 ng/µl CiTE antibody, sctb or controls and 

PD-L1 mAB (MIH1) to MOLM-13:PD-L1 cells. (A) Binding of CiTE, sctb and controls as detected by a 

secondary antibody (His) and binding of PD-L1 mAB. Histograms show one out of three independent experiments 

with similar results. (B) MFI ratios of PD-L1 mAB binding. Dashed line indicates an MFI ratio of 1. The graph 

shows mean values of three independent experiments with SEM as error bars.  

 

4.5.  Functional characterization of CiTE antibody on cell lines 

4.5.1.  Activation of resting T cells 

An important requirement for T cell engagers is to activate T cells exclusively upon physical 

linkage to tumor cells. This is highly relevant since the CD3 mAB OKT3 (i.e. muronomab; 

Orthoclone OKT3®) leads to basal T cell activation that can cause CRS in patients.73,262,263 Thus, 

the impact of the molecules on resting T cells was investigated in the presence and absence of 

AML cells. For this purpose, human healthy donor T cells were incubated with MOLM-13 or 

MOLM-13:PD-L1 cells at saturating concentrations of the molecules. T cell activation was 

determined by quantifying CD69 and CD25 (i.e. IL-2 receptor α-chain) expression as well as PD-1 

levels by flow cytometry (Figure 15). In the presence of target cells, CiTE antibody, sctb and 

BiTE®-like molecule induced the upregulation of CD69, CD25 and PD-1 on T cells. Due to the 

saturating conditions of the experimental system, measured expression levels were similar 

irrespective of PD-L1 expression. Even the high-affinity αPD-L1.αCD3 induced an activation on 

both cell lines with only slightly higher levels on MOLM-13:PD-L1 cells. As it is described that 

AML cell lines are able to express PD-L1 in the presence of IFN-γ, this observation is most 
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probably due basal PD-L1 expression on MOLM-13 cells.189 Similar tendencies were observed for 

PD-1ex.αCD3, however, the effects were minor due to its low affinity towards the target cells. When 

evaluating the sole effect of the molecules on T cells without the addition of target cells, no 

upregulation of CD69 and CD25 could be detected, whereas both markers were clearly expressed 

in the positive control. Notably, the specificity control did not affect T cells in any condition. Thus, 

monovalent CD3-targeting does not per se induce T cell activation. Instead, a physical crosslink 

between T cell and leukemic cell is crucial, which might prevent unwanted T cell activation and 

associated cytokine release in healthy tissue. 

 

Figure 15: CiTE- and sctb-mediated activation of non-stimulated T cells. 

Non-stimulated HD T cells were incubated with 5 nM of molecules in the presence or absence of MOLM-13 or 

MOLM-13:PD-L1 target cells at an E:T ratio of 2:1. After 96 h, activation markers were detected by flow 

cytometry. Bar charts show mean values of three independent experiments with SEM as error bars. 

 

4.5.2.  Induction of cytotoxic lysis of AML cells by pre-activated T cells 

Similar to BiTE® molecules, the intended functionality of CiTE antibody and sctb is to redirect 

antigen-experienced T cells to AML cells irrespective of their antigen specificity.69 Redirected 
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lysis assays with pre-stimulated T cells were chosen as initial evaluation to analyze CiTE-mediated 

induction of specific T cell effector functions. MOLM-13:PD-L1 target cells were Calcein AM-

labeled prior to the assay and redirected lysis was determined by quantifying the released Calcein 

in the supernatant. Figure 16 displays the dose-dependent increase of specific lysis for all 

molecules besides the specificity control, indicating the requirement of binding to both target and 

effector cell for the exertion of T cell cytotoxicity.  

 

Figure 16: Cytotoxic lysis of PD-L1+ AML cells by CiTE antibody, sctb and control molecules. 

Redirected lysis assays of MOLM-13:PD-L1 target cells were performed for 4 h at an E:T ratio of 5:1 using IL-2 

pre-activated HD T cells. Graph shows mean values of three independent experiments with SEM as error bars. 

n.d., not determined. 

For CiTE, sctb as well as BiTE®-like molecule and αPD-L1.αCD3, specific lysis at 100 nM 

concentration was determined to be rather low in this setting with a maximum of 25.3% for 

αPD-L1.αCD3. This is most probably due to the short incubation time and to cell line-specific 

characteristics and has already been described previously.87,261 Notably, CiTE antibody, sctb, 

BiTE®-like molecule and αPD-L1.αCD3 revealed comparable dose-response curves. Also 

calculated EC50 values were of similar magnitude with 132.5 pM for CiTE, 66.4 pM for sctb, 

173.5 pM for the BiTE®-like molecule and 204.5 pM for αPD-L1.αCD3. PD-1ex.αCD3 showed a 

lower EC50 value of 965.4 pM and a decreased maximum specific lysis due to its low affinity to 

the target cells, which has already been described in binding analyses. 

These findings reflect the ability of the molecules to induce redirected lysis of AML cells. 

However, the use of pre-activated T cells as effectors in a time range of a few hours seems to be 

too insensitive to investigate effects that depend on avidity or immune checkpoint blockade. 
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4.5.3.  CiTE-mediated increase in redirected lysis of PD-L1+ AML cell lines 

In order to evaluate the ability of the molecules to engage resting T cells, in a further setting non-

stimulated T cells were used as effectors and their cytolytic activity was investigated. To this end, 

healthy donor T cells were incubated with different AML target cell lines and increasing 

concentrations of CiTE antibody, sctb and control molecules and live target cells were quantified 

by flow cytometry. More precisely, CD33bright MOLM-13 and MOLM-13:PD-L1 cells were 

detected as CD33+CD2- population, whereas the CD33dim OCI-AML3 and OCI-AML3:PD-L1 

cells were labeled with PKH67 prior to the experiment and the number of PKH67+CD2- cells was 

monitored. The gating strategy of this assay is indicated in Figure 17. In the forward scatter (FSC)/ 

side scatter (SSC) plot, a gate was set comprising lymphocyte and target cell populations. A second 

gate was restricted to live cells, and in a third step, the target cells were determined as CD2-CD33+ 

or CD2- PKH67+ population. To allow quantification of the events without the application of 

counting beads, absolute target cell numbers were measured within a restricted time frame of 60 sec 

and normalized to the negative control.  

 

Figure 17: Gating strategy of redirected lysis assays with non-stimulated T cells. 

Lymphocytes and target cells were separated in the FSC/SSC plot. Remaining target cells were gated as live 

CD33+CD2- or PKH67+CD2- population. FSC, forward scatter; SSC, side scatter; L/D, LIVE/DEAD stain. 

To determine the influence of PD-L1 expression on CiTE- and sctb-induced cytolysis, the effects 

on CD33+ and CD33+PD-L1+ target cells were investigated in parallel. Since AML patients 

demonstrate a high heterogeneity in their CD33 expression levels, MOLM-13 and 

MOLM-13:PD-L1 as well as OCI-AML3 and OCI-AML3:PD-L1 target cells were selected to 

analyze the impact of differential CD33 expression (Figure 18 and Figure 19).79 At high 

concentrations all molecules aside from the specificity control induced complete eradication of the 

target cell lines independent of PD-L1 and CD33 expression levels.  
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Figure 18: Redirected lysis of MOLM-13 and MOLM-13:PD-L1 cells by non-stimulated T cells. 

(A) Dose-dependent redirected lysis of MOLM-13 or MOLM-13:PD-L1 cells by T cells as induced by CiTE 

antibody, sctb and control molecules. (B) EC50 values as calculated. (C) Direct comparison of CiTE- and sctb-

induced redirected lysis of MOLM-13 and MOLM-13:PD-L1 target cells. (D) Cytotoxicity of the two cell lines 

at 50 pM concentration, Experiments were performed for 72 h at an E:T ratio of 2:1 using non-stimulated HD 

T cells. The graphs show mean values of five independent experiments with SEM as error bars.  

The evaluation of the dose-response curves on MOLM-13 cells indicated a concentration-

dependent cytolysis, at which the molecules differed in their efficiency (Figure 18 A). The BiTE®-

like molecule indicated the highest potency to induce cytolysis, whereas CiTE antibody and sctb 

revealed a slightly worse performance. Also αPD-L1.αCD3 and to a lower extent PD-1ex.αCD3 
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induced cytotoxicity at elevated concentrations. As previously described, this was most probably 

due to a presumably low PD-L1 expression on MOLM-13 cells.189,190 Weak effects of 

PD-1ex.αCD3 are attributed to its low binding affinity to PD-L1.  

When comparing MOLM-13 and MOLM-13:PD-L1 target cells, the BiTE®-like molecule 

demonstrated a similar effect on the two cell lines. Contrarily, the trispecific molecules as well as 

αPD-L1.αCD3 indicated a shift towards lower effective concentrations. Calculated EC50 values 

(Figure 18 B) are in the picomolar range, and in the presence of PD-L1 they shift from 79.1 pM to 

26.9 pM for the CiTE (5-fold decrease) and from 81.6 pM to 13.2 pM for the sctb (7-fold decrease). 

In the direct overlay of dose-response curves in the presence and absence of PD-L1, the same effect 

can be observed as shift to lower concentrations (Figure 18 C). At 50 pM, which approximately 

corresponds to EC50 values, a significant decrease of PD-L1+ target cells (from 68.3 ± 12.8% to 

20.4 ± 7.3% for the CiTE antibody and from 71.6 ± 11.5% to 15.6 ± 4.8% for the sctb) was 

monitored, whereas no such change occurred upon application of the BiTE®-like molecule 

(Figure 18 D). This effect is most probably due to avidity-dependent binding and notably it seems 

to be independent of the affinity of the checkpoint blocking module. Besides that, the high 

efficiency of αPD-L1.αCD3 indicates that the high-affinity PD-L1 scFv is sufficient to target 

PD-L1+ cells without a second binding module, whereas the low-affinity PD-1ex requires a tumor-

targeting arm to enable efficient binding.  

Evaluation of CiTE, sctb and controls on CD33dim OCI-AML3 and OCI-AML3:PD-L1 cells led to 

similar observations as for the CD33bright target cells (Figure 19). However, there were slight 

differences regarding the range of EC50 values, the concentration shift and the behavior of the 

bispecific molecules. In this system, the efficient concentrations were approximately 10-fold lower 

compared to MOLM-13 cells. This is reflected in the EC50 values, which are determined to be 

20.8 pM on OCI-AML3 and 2.3 pM on OCI-AML3:PD-L1 cells for the CiTE (15-fold decrease), 

and 27.4 pM and 1.9 pM for the sctb, respectively, (20-fold decrease) (Figure 19 B). In the absence 

of PD-L1, the BiTE®-like molecule showed a similar dose-response curve as the trispecific 

molecules, whereas it was clearly outpaced by CiTE antibody and sctb upon PD-L1 expression 

(Figure 19 A, B). Taken together, CiTE antibody and sctb induced a decrease of EC50 values upon 

PD-L1 expression on both CD33dim and CD33bright cells. Since PD-L1 expression does not have an 

impact on the performance of the BiTE®-like molecule, this effect is most probably due to avidity-

dependent binding.  



RESULTS 

 

77 

 

 

 

Figure 19: Redirected lysis of OCI-AML3 and OCI-AML3:PD-L1 cells by non-stimulated T cells.  

(A) Dose-dependent redirected lysis of OCI-AML3 or OCI-AML3:PD-L1 cells by T cells as induced by CiTE 

antibody, sctb and control molecules. (B) EC50 values as calculated. (C) Direct comparison of CiTE- and sctb-

induced redirected lysis of OCI-AML3 and OCI-AML3:PD-L1 target cells. (D) Cytotoxicity of the two cell lines 

at 5 pM concentration, Experiments were performed for 72 h at an E:T ratio of 2:1 using non-stimulated HD 

T cells. The graphs show mean values of four independent experiments with SEM as error bars.  

Sterical differences between the molecular scaffolds may be responsible for the more efficient 

cytolysis of MOLM-13 cells by the BiTE®-like molecule than the trispecific molecules. These 

might be particularly advantageous at high CD33 expression levels, since on OCI-AML3 cells such 

differences were not observed. We hypothesized that, depending on the targeted tumor, a BiTE® 
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format might be beneficial for the formation of a cytolytic synapse due to more favorable steric 

properties. Another possibility is, that the influence of an N-terminal domain attached to the CD3ε 

scFv per se affects its functionality. To address this question, a trispecific control molecule was 

generated and evaluated in comparison to the BiTE®-like molecule (section 4.5.5). 

4.5.4.  CiTE-mediated increase in T cell proliferation 

Another important prerequisite for a T cell engager is the induction of T cell proliferation to expand 

the available T cell effector pool and multiply the effector cell population as well as the immune 

response as a whole. Therefore, CFSE-labeled non-stimulated healthy donor T cells were incubated 

with either MOLM-13 vs. MOLM-13:PD-L1 cells or OCI-AML3 vs. OCI-AML3:PD-L1 cells and 

increasing concentrations of CiTE antibody, sctb and controls (Figure 20). Additionally, the impact 

of the molecules on proliferation without target cells was analyzed. Figure 20 A shows that CiTE 

antibody, sctb and BiTE®-like molecule already induced T cell proliferation of 36.2%, 32.3% and 

69.4%, respectively, at a low concentration of 5 pM and in the presence of MOLM-13 target cells. 

PD-1ex.αCD3 and αPD-L1.αCD3 did not reveal an effect in the absence of PD-L1 expression. In 

the presence of MOLM-13:PD-L1 cells, however, CiTE and sctb treatment increased T cell 

proliferation and reached levels of 58.0% and 69.4%, whereas the BiTE®-like molecule displayed 

an almost unchanged level of 68.0%. The high-affinity αPD-L1.αCD3 induced 61.6% proliferated 

T cells in the presence of MOLM-13:PD-L1 target cells. PD-1ex.αCD3 did not have an effect at the 

displayed concentration, which is likely due to its weak binding affinity to PD-L1. All of the 

indicated molecules led to at least three generations of T cells. When analyzing T cells without 

target cells, none of the molecules was able to induce T cell proliferation by the sole interaction 

with CD3. These findings support the previous observations that CiTE antibody and sctb 

exclusively activate T cells upon crosslinking to target cells.  

As already observed for cytotoxicity induction, CiTE- and sctb- induced T cell proliferation was 

also increased on AML cell lines that additionally expressed PD-L1, which we attribute to avidity-

dependent binding (Figure 20 B, C). Notably, this effect was more pronounced at low CD33 levels. 

Since the performance of CiTE and sctb was similar, the potency to induce T cell proliferation 

seems to be independent of the affinity of the checkpoint blocking modules. 
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Figure 20: Dose-dependent proliferation of non-stimulated T cells. 

(A) T cell proliferation in the presence of MOLM-13 and MOLM-13:PD-L1 cells at 5 pM concentration of CiTE 

antibody, sctb and control molecules or in the absence of target cells. Histograms show one out of three to four 

experiments with similar results. (B) Direct comparison of CiTE- and sctb-induced T cell proliferation on 

MOLM-13 and MOLM-13:PD-L1 and (C) OCI-AML3 and OCI-AML3:PD-L1 target cells. Experiments were 

performed for 96 h at an E:T ratio of 2:1 using CFSE-labeled non-stimulated HD T cells. The graphs show mean 

values of three to four independent experiments with SEM as error bars.  
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4.5.5.  Sterical influence of N-terminal module in CiTE antibody 

As highlighted in sections 4.5.3. and 4.5.4., the BiTE®-like molecule differed from CiTE antibody 

and sctb regarding the induction of cytotoxicity and T cell proliferation. Although all molecules 

possess an identical CD3ε scFv, in the presence of MOLM-13 target cells the BiTE®-like molecule 

revealed a superior performance compared to the trispecific molecules (Figure 18 A and 20 A). On 

CD33dim OCI-AML3 cells, these effects were not observed (Figure 19 A). We hypothesized that 

the deviations might be due to intramolecular properties and are a result of the additional modules 

that are fused to the N-terminus of the CD3ε scFv. Thus, the binding of the CD3ε scFv might be 

altered or the formation of the cytolytic synapse could be impaired due to partial sterical hindrance. 

To address this question, an αHer2.αCD3.αCD33 control was generated and compared to the 

BiTE®-like molecule with the intention to mimic the geometry of CiTE antibody and sctb. The 

attachment of a non-binding Her2 scFv to the N-terminus of the molecule induced a shift in the 

dose-response in redirected lysis and T cell proliferation assays to higher concentrations, indicating 

a worse performance of the molecule (Figure 21). This finding demonstrates that trispecific and 

bispecific formats might differ in their efficiency to engage T cells. 

 

Figure 21: Comparison of αHer2.αCD3.αCD33 and BiTE®-like molecule. 

The control αHer2.αCD3.αCD33 and the BiTE®-like molecule were compared in (A) 72 h redirected lysis assays 

and (B) 96 h T cell proliferation assays. HD T cells and OCI-AML3:PD-L1 cells were incubated at an E:T ratio 

of 2:1. Mean values of four (A) and three (B) independent experiments are shown. Error bars represent SEM. 

 

4.5.6.  CiTE-mediated increase in proinflammatory cytokine secretion 

To investigate CiTE- and sctb-mediated redirection of T cells comprehensively, the release of 

proinflammatory cytokines was analyzed as a further hallmark of T cell activation. Therefore, 

IFN-γ and IL-2 release were quantified in the presence of MOLM-13 or MOLM-13:PD-L1 target 
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cells. To pay special attention to donor-dependent variations, IFN-γ release of three different T cell 

donors was determined separately. Cytokine levels were evaluated as fold change between the two 

cell lines to display the influence of PD-L1 expression, or as absolute levels on MOLM-13:PD-L1 

cells (Figure 22).  

 

 

Figure 22: CiTE- and sctb-induced IFN-γ and IL-2 release. 

(A) Fold change in IFN-γ levels (MOLM-13:PD-L1/MOLM-13) using T cells derived from donor 1. (B) Absolute 

IFN-γ levels on MOLM-13:PD-L1 target cells. (C) Fold change in IFN-γ levels (MOLM-13:PD-L1/MOLM-13) 

using T cells from donors 2 and 3. (D) Fold change in IL-2 levels (MOLM-13:PD-L1/MOLM-13). (E) Evaluation 

of absolute IL-2 levels on MOLM-13:PD-L1 target cells. Experiments were performed for 72 h at an E:T ratio of 

2:1 using non-stimulated HD T cells. Bar charts of IFN-γ evaluation depict mean values of five independent 

experiments of the same donor, bar charts of IL-2 evaluation display four independent experiments with different 

HDs. Error bars indicate SEM. Statistics refer to the single application of the BiTE®-like molecule. 
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Notably, in the presence of the BiTE®-like molecule, PD-L1 led to a decrease in IFN-γ and IL-2 

release (Figure 22 A, C, D). This reflects the inhibitory influence of the PD-1/PD-L1 interaction 

on T cells. IFN-γ quantification indicated that with effector cells from donors 1 and 3, both CiTE 

antibody and sctb induced a significantly higher fold change than the BiTE®-like molecule, 

whereas T cells from donor 2 revealed only a sctb-mediated increase (Figure 22 A, C). Thus, the 

heterogeneity between donors is expected to influence the efficiency of the molecules.  

Since many clinical trials currently focus on the combination of checkpoint blockade and tumor-

targeting agents, we combined the BiTE®-like molecule with the separate checkpoint blocking 

modules PD-1ex-Fc fusion and PD-L1 scFv (Figure 23). Additionally, commercial PD-1 and PD-L1 

blocking mABs were included.  

 

Figure 23: CiTE- and sctb-induced IFN-γ release in comparison to combinations with blocking agents. 

(A) Absolute IFN-γ levels on MOLM-13:PD-L1 cells in the presence of 5 nM CiTE antibody, sctb, BiTE®-like 

molecule or combinations of BiTE®-like molecule with different PD-1/PD-L1 blocking agents at either 

equimolar ratio (+) or 50-fold surplus (++). (B) IFN-γ release in the presence of 250 nM blocking agents and 

MOLM-13:PD-L1 cells. (C) Fold change in IFN-γ levels (MOLM-13:PD-L1/MOLM-13). Experiments were 

performed for 72 h at an E:T ratio of 2:1 using non-stimulated HD T cells. Bar charts depict mean values of four 

independent experiments with SEM as error bars. Statistics refer to the single application of the BiTE®-like 

molecule. 
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The blocking agents were applied at equimolar concentration or 50-fold surplus, and control 

experiments confirmed that the molecules did not induce cytokine release by themselves 

(Figure 23 B). The combination of BiTE®-like molecule and PD-L1 scFv was able to induce a 

significant increase in IFN-γ release, whereas the low-affinity PD-1ex-Fc only lead to elevated 

cytokine levels when applied in high excess (Figure 23 A). The addition of PD-1 and PD-L1 

blocking mABs induced a similar response as the scFv. Notably, the CiTE antibody was able to 

raise IFN-γ levels to a similar extent than could be achieved with BiTE®-like molecule and a 

surplus of high-affinity blocking agents. Furthermore, not only the sctb but also the addition of the 

PD-L1 scFv induced similar IFN-γ levels in the presence and absence of PD-L1 (i.e. a fold change 

of ~1), which indicates complete blockade of the inhibitory axis (Figure 23 C). Still, the sctb was 

able to cause the highest absolute cytokine release on MOLM-13:PD-L1 cells (Figure 23 A). We 

thus assume that the CiTE- and sctb-mediated T cell activation is not only due to PD-L1 blockade 

but also to avidity-dependent binding. However, the individual contributions of these two effects 

could not be conclusively determined. 

4.5.7.  Selective lysis of CD33+PD-L1+ target cells 

An important feature of the CiTE molecule in comparison to commercial PD-1 or PD-L1 blocking 

antibodies is its low-affinity for the inhibitory checkpoint ligand. We hypothesize to thereby 

circumvent systemic PD-L1-targeting and to avoid damage to PD-L1+ non-AML cells. To 

investigate potential on-target off-leukemia effects in vitro, preferential lysis was analyzed in a 

mixed target cell population of HEK293:PD-L1 and HEK293:CD33:PD-L1 cells, of which one 

cell line was labeled with Calcein AM. After incubation with pre-activated healthy donor T cells 

and increasing concentrations of molecules, specific lysis was determined by fluorescence readout 

of the released dye in the supernatant. The sctb mediated dose-dependent elimination of 

HEK293:PD-L1 target cells whereas no lysis could be observed when applying the CiTE antibody 

or BiTE®-like molecule (Figure 24 A). In contrast, HEK293:CD33:PD-L1 cells were depleted by 

all three molecules. Similar to the sctb, the high-affinity αPD-L1.αCD3 induced lysis of both target 

cell lines. PD-1ex.αCD3 only led to elimination of target cells at elevated concentrations. This was 

also reflected in the direct comparison of specific lysis of PD-L1+ and CD33+PD-L1+ cells at 10 nM 

concentration (Figure 24 C). The sctb revealed killing of 24.5 ± 4.4% of HEK293:PD-L1 and 

38.1 ± 3.7% of HEK293:CD33:PD-L1 cells, while CiTE and BiTE®-like molecule only mediated 

lysis of 38.4 ± 3.7% and 39.7 ± 4.2% of double-positive target cells, respectively. PD-L1+ cells 
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were only affected marginally. We assume that the increase of sctb-mediated lysis of double-

positive targets is mainly due to an avidity effect. These results are a first proof that the PD-1ex 

module in the CiTE antibody allows a high selectivity for CD33+PD-L1+ targets whereas the high-

affinity PD-L1 scFv also addresses PD-L1+ cells that lack the expression of the leukemic antigen. 

In vivo, the administration of the CiTE antibody might therefore translate into a lowered risk to 

develop irAEs that are caused by systemic PD-L1 binding. 

 

Figure 24: CiTE-induced preferential killing of CD33+PD-L1+ target cells. 

(A) Preferential killing of HEK293:PD-L1 or (B) HEK293:CD33:PD-L1 in a mixed target cell population by 

pre-activated HD T cells and increasing concentrations of CiTE antibody, sctb or control molecules. (C) Specific 

lysis of HEK293:PD-L1 and HEK293:CD33:PD-L1 at 10 nM concentration of molecules. Experiments were 

performed for 4 h at an E:T ratio of 2:1. Graphs represent mean values of four independent experiments with 

SEM as error bars.  
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4.6.  Selective lysis of primary AML patient samples 

In the previous assays, the biological functionality of CiTE antibody and sctb was evaluated on 

cell lines. To provide clinically more relevant conditions, CiTE and sctb were further analyzed in 

an ex vivo co-culture of AML patient samples g. In a non-autologous setting, T cells were 

investigated regarding their PD-1 and AML cells regarding their PD-L1 expression. As a measure 

for T cell activation, IFN-γ levels were quantified in the supernatant. 

Figure 25 A depicts the cytotoxic lysis of AML cells from an individual patient and illustrates the 

gating scheme for CD3+CD33- T cells and CD3-CD33+ AML cells. On average, the CiTE revealed 

a slight increase in specific lysis compared to the BiTE®-like molecule, but only the sctb indicated 

a statistically significant benefit (Figure 25 B). This can be partially reasoned in the high 

heterogeneity between patients. Whereas the CiTE antibody was able to induce similar or superior 

AML cell lysis in 7 out of 8 patients (87.5%) compared to the BiTE®-like molecule, the sctb 

mediated an increased specific lysis in 8 out of 8 patients (100%) (Figure 25 C). Interestingly, the 

combination of the BiTE®-like molecule with a PD-L1 blocking mAB did not significantly increase 

target cell lysis in our setting. These results were also reflected in IFN-γ release (Figure 25 D). 

On T cells, PD-1 levels were elevated in all conditions aside from the specificity control 

(Figure 25 E). The sctb triggered the highest PD-1 upregulation, and the CiTE slightly increased 

PD-1 levels compared to BiTE®-like molecule. The elevated PD-1 levels might be interpreted as 

reactive mechanism to an increased T cell activation as measured by elevated IFN-γ levels and 

cytotoxicity. Further, PD-L1 upregulation on AML cells could be detected in all conditions where 

the surface antigens were not masked by high-affinity blocking agents (Figure 25 F). Collectively, 

the CiTE antibody and to a higher extent the sctb were able to increase specific lysis of AML 

patient cells compared to the BiTE®-like molecule in a setting of adaptive immune resistance. Thus 

the two molecules might be an improvement to a BiTE®-like format with or without the 

combination with a PD-L1 mAB. 

 

                                                   
g Data were kindly provided by Christina Krupka, Laboratory of Marion Subklewe, Gene Center Munich, LMU 

München, Germany. Patient samples were provided by the Laboratory of Leukemia Diagnostics of the 

Department of Internal Medicine III of the Klinikum der Universität München, Germany 
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Figure 25: Biological functionality of CiTE, sctb and controls on primary AML patient samples. 

(A) Cytotoxic lysis, PD-1 and PD-L1 upregulation induced by CiTE, sctb and controls on AML cells of an 

exemplary patient. (B) Specific lysis averaged over samples from eight patients. (C) Specific lysis of AML cells 

from individual patients. (D) IFN-γ release as determined on AML cells from four patients. (E) MFI-ratio of PD-1 

expression on T cells. (F) MFI ratio of PD-L1 expression on AML cells. Experiments were performed for 3 to 

4 days at an E:T ratio of 5:1 using non-stimulated HD T cells and patient-derived AML cells. CiTE, sctb and 

control molecules were applied at 10 nM and the PD-L1 mAB at 10 µg/ml concentration. (B,C,E,F) represent 

values from eight, (D) from four experiments with SEM as error bars. Assays were performed by Christina 

Krupka. 
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4.7.  Evaluation of the CiTE antibody in a murine AML xenograft model 

To investigate the functionality of CiTE antibody and sctb in vivo, the molecules were evaluated 

in a murine xenograft model. Since both checkpoint blocking modules are described to be cross-

reactive to murine PD-L1, the xenograft model was intended to cover two aspects:113,238,264 (1) the 

analysis of the efficiency to induce specific AML cell lysis in vivo, and (2) the potential 

development of irAEs h. 

The binding properties of the two checkpoint blocking modules were analyzed on 

Panc02OVA:mPD-L1 cells, which were engineered to express murine PD-L1 (Figure 26) i.  

 
Figure 26: Cross-reactivity of human PD-1ex and PD-L1 scFv with murine PD-L1. 

Binding analysis of PD-1ex in PD-1ex.αCD3 and PD-L1 scFv in αPD-L1.αCD3 to Panc02OVA:mPD-L1 cells. 

Histograms show one out of three experiments with comparable results. 

Therefore, PD-1ex.αCD3 and αPD-L1.αCD3 were incubated with Panc02OVA:mPD-L1 cells and 

binding was assessed by flow cytometry. Both PD-1ex and PD-L1 scFv interacted with the target 

cells, however, the scFv revealed a higher affinity to the antigen. 

At primary diagnosis, only a subset of AML patients demonstrates PD-L1 expression, however, 

PD-L1 upregulation seems to play a critical role after first-line treatment.189,190,194-197 Thus, we 

consider a potential therapy with a CiTE antibody particularly suitable to counteract relapse. 

Furthermore, CD33 is not only expressed on bulk AML cells but also on LSCs, thus the CiTE 

molecule might also eliminate this cell population.79 We chose an MRD-like setting to evaluate the 

efficiency of our molecules with an engraftment rate of ˂5% leukemic cells in the bone marrow.265 

The study was conducted in accordance with the preclinical characterization of AMG 330 

(Figure 27).75 The daily treatment with 50 pmol (i.e. 1.7 pmol/g body weight) of CiTE antibody, 

sctb and control molecules was equivalent to 0.1 mg/kg of BiTE®-like molecule and therefore lay 

                                                   
h Data were kindly provided by Katrin Deiser, Laboratory of Marion Subklewe, Gene Center Munich, LMU 

München, Germany 
i Panc02OVA:mPD-L1 cells were kindly provided by Sebastian Kobold, Clinical Pharmacology, Department of 

Internal Medicine IV, Klinikum der LMU München, Germany 
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within the preclinically efficient range of AMG 330.75 After 13 days, the mice were sacrificed and 

bone marrow and spleen were removed for further analysis. 

 

Figure 27: Experimental setup of in vivo studies. 

Schedule of injection of MOLM-13:PD-L1 target cells, T cells and molecules into NSG mice. 

Cytotoxic lysis of AML cells was evaluated by flow cytometry readout of residual CD45+CD33+ 

cells in the bone marrow. The CiTE antibody, sctb and BiTE®-like molecule evoked complete 

eradication of MOLM-13:PD-L1 cells, whereas the cohorts treated with specificity control or 

1x PBS revealed a tumor engraftment of 1-3% in the bone marrow (Figure 28). Without treatment, 

the E:T ratio of human T cells and MOLM-13:PD-L1 cells at the time point of sacrifice was 

approximately 1:3 indicating an outgrowth of tumor cells (Figure 28 A).  

 

Figure 28: AML eradication in vivo mediated by CiTE antibody, sctb and BiTE®-like molecule. 

(A) Exemplary evaluation of one mouse per treatment cohort. (B) Average of remaining target cells over treatment 

cohorts with SD as error bars. Experiment was performed by Katrin Deiser. 
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When monitoring the overall constitution of the mice, we observed a time-dependent decrease in 

relative body weight in the sctb treatment group whereas the body weight in all other cohorts 

remained stable (Figure 29).  

 

Figure 29: Monitoring of body weight during treatment period. 

(A) Relative body weight in CiTE and sctb cohorts. (B) Relative body weight in control cohorts. Error bars 

indicate SEM. Data was obtained by Katrin Deiser. 

In the sctb cohort PD-1 was significantly upregulated on CD4+ as well as CD4- (i.e. CD8+) T cells, 

whereas PD-1 levels were low in all the other treatment groups. These findings were reflected on 

T cells derived from bone marrow and spleen (Figure 30).  

 

Figure 30: PD-1 expression on T cells of bone marrow and spleen. 

PD-1 upregulation on CD4- T cells of bone marrow (A) and spleen (B) as well as on CD4+ T cells of bone marrow 

(C) and spleen (D) as determined by flow cytometry with SD as error bars. Data was obtained by Katrin Deiser. 
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As exhaustion marker PD-1 upregulation points towards a prolonged antigen exposure in case of 

sctb treatment compared to CiTE antibody and BiTE®-like molecule, even though leukemia target 

cells were no longer detectable.  

Evaluation of CD3 expression on T cells demonstrated a significant downregulation of CD3 on 

CD4- (i.e. CD8+) T cells upon sctb treatment in both bone marrow and spleen, whereas in the other 

treatment groups only minor differences could be observed (Figure 31). On CD4+ T cells the CD3 

expression levels were similar in all cohorts. Since CD3 is downregulated as a natural consequence 

of T cell activation, these findings suggest an increased activation of CD8+ T cells upon treatment 

with sctb.266-269  

 

Figure 31: CD3 expression on T cells of bone marrow and spleen. 

MFI of CD3 expression on CD4- T cells of (A) bone marrow and (B) spleen as well as CD4+ T cells of (C) bone 

marrow and (D) spleen with SD as error bars. Data was generated by Katrin Deiser. 

Although the three molecules evaluated in this study resemble each other in all binding modules 

aside from the checkpoint blocking arm, the sctb induced a different response. We hypothesize that 

the increase in T cell activation as well as the loss of body weight are due to an on-target off-

leukemia effect caused by the PD-L1 scFv. Moreover, we reckon that the effect is restricted to the 

sctb and cannot be observed for  the CiTE antibody due to the low binding affinity of PD-1ex. 
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To exclude the possibility that the molecules target PD-L1 on the engrafted human T cells, PD-L1 

levels were determined on T cells derived from bone marrow and spleen. Slight differences could 

be observed between the treatment groups, however, no increase in PD-L1 levels was detected 

(Figure 32). In fact, PD-L1 expression slightly decreased in the cohorts treated with CiTE antibody, 

sctb and BiTE®-like molecule. 

 
 

Figure 32: PD-L1 expression on T cells of bone marrow and spleen. 

MFI of PD-L1 expression on CD45+CD3+ cells from (A) bone marrow and (B) spleen as measured by flow 

cytometry. Dashed line indicates MFI of isotype control with SD as error bars. Data was generated by Katrin 

Deiser. 

Therefore, we hypothesize that the sctb-mediated effects were due to cross-reactivity of the high-

affinity αPD-L1 binding arm to murine PD-L1. These effects could not be observed for the CiTE 

antibody, which we attribute to its low binding affinity to the checkpoint ligand.  

Taken together, the CiTE antibody does not only possess a high potential to efficiently induce 

T cell effector functions against AML cell lines and primary AML patient samples in vitro but also 

in vivo in a murine xenograft model. It demonstrates a clear advantage compared to high-affinity 

PD-L1 binders by selectively targeting CD33+PD-L1+ cells. This may result in the specific lysis of 

AML blasts rather than PD-L1+ bystander cells and thereby presumably lead to a decrease of on-

target off-leukemia events. 
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5.  Discussion 

In hematologic malignancies the development of successful immunotherapeutic strategies was 

hitherto limited to B-lymphoid neoplasias. The CD20-specific antibody rituximab was already 

approved in November 1997 for CD20+ B-cell non-Hodgkin lymphoma (NHL), and novel CD19-

targeting agents such as the BiTE® blinatumomab and CD19-targeting chimeric antigen receptor 

(CAR) T cells have become available for the treatment of ALL in the last four years.63,270-272 New 

therapies are particularly necessitated in AML, where long-term survival rates are low and HSCT 

still represents the only curative option for non-favorable risk patients.273 Currently, monoclonal 

antibodies and derivatives thereof that target leukemia-associated antigens such as CD33 and 

CD123 as well as CAR T cells are clinically evaluated.212,220 The only immunotherapeutic agent 

that is available since September 2017 is GO (Mylotarg®), which has been approved for the 

treatment of newly diagnosed or r/r AML.226,231,232 Although CD33-targeting is considered highly 

promising, only thirty percent of patients respond to GO therapy after first relapse, which may be 

partially explained by the upregulation of PD-1 and PD-L1 in the leukemic microenvironment.195-

197,229 Thus, PD-1 and PD-L1 blocking mABs are currently investigated in clinical trials as 

monotherapy and in combination with chemotherapy or other immunotherapeutic agents to achieve 

higher response rates in AML and increase survival rates.234  

Despite the encouraging results from PD-1/PD-L1 blockade in various cancer types, a common 

drawback of all applied agents is their risk to induce irAEs, which can affect almost every organ.156-

161 The increasing use of systemically active immune checkpoint blocking mABs in the clinics will 

unavoidably lead to a higher number of cases that require intensive medical treatment. Thus, 

alternative therapeutic strategies to restrict irAEs are urgently needed. The novel CiTE antibody 

presented within this thesis approaches this problem by combining the high potential of T cell 

redirection with a local limitation of PD-1/PD-L1 blockade to the surface of leukemic cells. 

 

5.1.  Rationale for the novel CiTE format 

The CiTE format is based on the established BiTE® scaffold, which already proved its high 

efficiency to redirect T cells independent of costimulatory signals.56,69,70,72,73,75,76,80 Since AML is 

often correlated with an immunosuppressed state, the synergistic effect of PD-1/PD-L1 blockade 

and CD3-mediated T cell activation appears particularly suited to trigger an efficient anti-cancer 
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immune response.186,187,189-191,198 We achieved a spatial limitation of immune checkpoint blockade 

to the cytolytic synapse by making use of the naturally occurring low affinity of PD-1ex, which is 

not sufficient to bind to its ligands alone.115-117 Furthermore, PD-1ex bears an advantage over 

conventional PD-L1-specific mABs in not only interfering with PD-L1 but also with PD-L2, which 

is also described to play a role in AML and other tumors but is hitherto less characterized.114,197 

Aside from the low binding affinity for PD-L1, we also chose distinct affinities for the tumor-

targeting and the T cell redirecting modules in agreement with the related BiTE® format.70,75,258 

The selected CD33 scFv holds a high affinity for its ligand with measured KD values of 29.4 nM 

and 31.0 nM, whereas the CD3ε scFv interacts with T cells with a comparably lower affinity of 

121.3 nM. Thus, CiTE molecules are expected to primarily attach to the surface of CD33+ AML 

cells and form a matrix on which T cells can easily migrate, facilitating serial AML cell lysis as 

observed in ex vivo cytotoxicity assays and described previously for the BiTE® format.69 By 

addressing T cells as effector population and inducing their proliferation, the CiTE antibody 

enables the amplification of the anti-cancer immune response. Moreover, T cells are able to directly 

interact with other immune cells and release proinflammatory cytokines.16 Other T cell redirecting 

therapeutics have been developed that have validated this therapeutic strategy, including BiTE®s, 

the trivalent TCB format and sctbs.56,67,68,75,86,87 In a different approach, antibodies containing 

extracellular domains of costimulatory T cell ligands such as 4-1BBL or OX40L, or extracellular 

domains of inhibitory receptors such as TIM-3 or PD-1 have been generated.274-276 The novelty of 

the presented CiTE antibody is that it is simultaneously capable of redirecting T cells and locally 

blocking an inhibitory immune checkpoint via the extracellular domain of a T cell immunoreceptor.  

 

5.2.  The CiTE format mediates T cell activation and cytotoxicity 

In our studies, the CiTE antibody demonstrated a high efficiency to initiate T cell immune 

responses. It was able to activate T cells polyclonally and thus irrespective of their MHC:antigen 

specificity, as measured by the general upregulation of CD69 and CD25. This implies that a much 

larger effector T cell pool can be addressed than in a physiological immune response, where only 

T cells carrying the specific TCR are engaged.76,277 Since in AML after chemotherapy or HSCT 

T cell numbers are often reduced and low lymphocyte counts are associated with a poor prognosis, 

polyclonal activation and proliferation of remaining T cells might be particularly beneficial.278-280 

Furthermore, CiTE-mediated T cell activation results in the release of IFN-γ and IL-2, thereby 

promoting a proinflammatory microenvironment and potentially leading to the attraction of other 



DISCUSSION 

 

95 

 

immune cells to the tumor site. In vitro, the CiTE was able to specifically induce cytotoxic lysis of 

AML cells at very low concentrations with calculated EC50 values between 2.3 pM and 132.5 pM. 

This is comparable to published values for BiTE® antibodies.70,75,76 Taking blinatumomab as 

reference, in a clinical application this might translate into effective therapeutic doses of around 

15 µg/m2/day, which is significantly lower than conventional mABs.63,281,282 Notably, there is a 

considerable difference between EC50 values, which were determined to be in the picomolar range, 

and the calculated dissociation constants of the separate tumor binding scFvs in the nanomolar 

range. This highlights the high biologic activity of the CiTE and suggests that a few molecules at 

the tumor site are already sufficient to induce T cell effector functions. In contrast, as example for 

conventional IgG antibodies rituximab was described to exhibit a 100,000-fold higher EC50 value 

than the corresponding CD19xCD3 BiTE®, indicating that Fc-induced tumor cell depletion through 

NK cells and macrophages is less potent than cytotoxic lysis by T cells.70 An additional component 

that enhances CiTE-mediated T cell cytotoxicity is its ability to induce serial lysis of cancer cells, 

as demonstrated in assays with patient-derived AML cells. Similar to other T cell engagers, this is 

attributed to the low binding affinity of the CD3ε binding module compared to the tumor-targeting 

arm, allowing T cell migration between tumor cells.69,86 

It is important to mention that the CiTE antibody is able to induce cytotoxic lysis of target cells 

with varying target antigen densities. For the BiTE® AMG 330 it has been described that the 

kinetics of induced lysis correlate with CD33 surface levels, however, elimination of different 

AML cell lines with different CD33 antigen densities was still achieved.75,221 Similar results were 

obtained for the CiTE antibody. This is especially relevant since individuals reveal a large inter- 

and intra-patient heterogeneity regarding their CD33 expression.79 In addition, the supposed source 

of relapse in many patients is a population of chemoresistant LSCs that expresses CD33 but at 

lower levels.79 By depleting AML cells irrespective of absolute CD33 density, the CiTE might 

provide a promising strategy to eliminate remaining LSCs and thus prevent reoccurring disease 

outgrowth.79,213 First evidence for the efficient eradication of MRD was provided by the in vivo 

xenograft experiments that were performed as part of this study. By injecting MOLM-13:PD-L1 

cells and obtaining 1-3% engraftment in the bone marrow, we were able to provide a model that 

resembled an MRD-positive state with ˂5% myeloblasts in the bone marrow.265 As the CiTE 

antibody was able to completely eradicate AML cells in our setting, we propose that it might also 

be a highly promising therapeutic to eliminate MRD cells in humans. However, future studies will 

have to elucidate safety and efficacy in preclinical models before transferring the CiTE format into 
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the clinics. From the current perspective similar patient groups that are addressed with GO might 

benefit from a CiTE therapy.232 These include adult patients at relapse or elderly patients that 

cannot be treated with conventional therapies in particular, as GO monotherapy turned out to be 

advantageous in a randomized trial (EORTC-GIMEMA AML-19) with patients aged 62 years or 

older.232,283 Further, GO was efficient in newly diagnosed patients in combination with 

chemotherapy (e.g. studies ALFA-0701, MRC AML-15), wherefore accordingly a combination of 

CiTE and chemotherapeutic agents appears reasonable.231,232,284 However, due to the large 

heterogeneity within the disease we do not expect all patients to respond equally to CiTE 

administration.79 This was already suggested by our ex vivo studies on primary AML patient 

samples, in which variable efficiency of AML depletion and differential upregulation of PD-1 on 

T cells as well as PD-L1 on AML cells were observed. Moreover, the release of proinflammatory 

cytokines by healthy donor T cells in response to CiTE-mediated activation indicated differences. 

The implementation of biomarker screenings might help to identify patients that benefit from CiTE 

therapy. These could include the quantification of CD33 expression and the determination of the 

responsiveness to PD-1/PD-L1 blockade, for instance by assessing the transcriptional IPRES 

signature.154,155  

 

5.3.  Differences between CiTE and BiTE® format 

By fusing a checkpoint blocking module to a BiTE®-like scaffold, we expected to increase T cell 

effector functions due to a joint effect of avidity-dependent target cell binding and local 

PD-1/PD-L1 checkpoint blockade. Indeed, in the presence of PD-L1+ AML cell lines the CiTE 

antibody induced a significant increase in the release of proinflammatory cytokines compared to 

the BiTE®-like molecule. Moreover, the CiTE displayed a higher efficiency in cytotoxicity 

induction on the majority of AML patient samples, and the high-affinity sctb contributed to our 

hypothesis by demonstrating the most efficient AML cell depletion. Since the synergy of avidity 

and blocking is the essential feature of the CiTE and the two mechanisms reinforce each other, the 

individual contribution of checkpoint blockade could not be assessed individually in these assays. 

Yet, the positive impact of PD-1/PD-L1 blockade on T cell redirection was demonstrated by recent 

in vitro studies. While PD-L1 expression reduced AMG 330-mediated effector functions, the 

combination with blocking agents was able to restore cytotoxicity.233 These findings were 

substantiated on primary AML patient samples, where the joint application of AMG 330 and 

blocking agents increased the efficiency of AML cell depletion.194 Also in our hands the release of 
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proinflammatory cytokines was increased when combining a BiTE®-like molecule with checkpoint 

inhibitors. Importantly, the fusion of a PD-L1 blocking module in CiTE and sctb elevated IFN-γ 

levels to a similar or even higher extent. Thus, we estimate that the covalent fusion of a PD-L1 

blocking module might increase the therapeutic benefit compared to BiTE® or combination 

therapies also in vivo. 

In functional assays with MOLM-13 cells the CiTE molecule was, however, less efficient 

regarding the induction of cytotoxicity and T cell proliferation than the BiTE®-like molecule. To 

investigate whether this effect was due to general properties of the molecular scaffold, the BiTE®-

like molecule was analyzed in comparison to a control molecule that based on the same trimodular 

geometry as the CiTE but in which PD-1ex was replaced by a non-targeting scFv. Interestingly, the 

fusion of this module significantly decreased the performance of the molecule. We hypothesize 

that the additional binding arm might indeed slightly impair the formation of the cytolytic synapse 

either sterically, or via differences in the accessibility of the binding pocket of the CD3ε scFv. 

Thus, in general a geometry as present in the BiTE® antibody might be more advantageous for 

T cell engagement than the trimodular CiTE format. Yet, these effects were only observable on 

cell lines and not on AML patient samples, wherefore they might not play a role in clinically 

relevant settings. In the presence of PD-L1 expression, no such effects were observed. Here, the 

direct fusion of a small blocking module might even bear a sterical advantage compared to 

combination therapies of BiTE® and blocking mABs. 

 

5.4.  The CiTE format increases selectivity for PD-L1+ AML cells 

In the course of the more frequent clinical application of immune checkpoint inhibitors, clinicians 

become more and more aware of adverse events that require intensive medical care. These are often 

reasoned by on-target off-cancer toxicity due to PD-L1 upregulation in healthy tissues. Thus, novel 

strategies that implement the concept of immune checkpoint blockade in a cancer-restricted manner 

are of interest. Some approaches have already addressed this challenge but none of them have 

gained market approval yet. These include bispecific antibodies that simultaneously target two 

immune checkpoints such as PD-1 and TIM-3, or that address PD-1 and a TAA such as c-Met to 

increase tumor specificity.168,169 Another concept has been proposed that localizes a PD-L1 

blocking antibody at the tumor site by attaching a binding arm against extracellular matrix proteins 
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in the tumor stroma.170 Further, a recombinant myxoma virus has been engineered to carry a soluble 

form of PD-1, which is locally released from infected tumor cells.285  

In the CiTE antibody we made use of the naturally occuring low affinity of PD-1ex to its ligand, 

which is not sufficient to bind to PD-L1 expressing cells alone.115-117 We demonstrated that PD-1ex 

only interacts with its target and blocks accessible binding sites when covalently linked to a high-

affinity module. Thus, in comparison to high-affinity blocking agents the selectivity for leukemic 

cells can be significantly increased. In vitro, these findings were substantiated by showing that in 

the presence of PD-L1+ bystander cells, the CiTE exclusively induced lysis of AML cells, whereas 

the high-affinity sctb led to depletion of all target cells. Furthermore, the cross-reactivity of the 

PD-L1 blocking modules allowed us to evaluate potential irAEs in a murine model system.113,238,264 

Similar to humans, PD-L1 expression in mice is widely distributed across different tissues.96 

Application of the CiTE did not provoke adverse events in our setting, whereas the high-affinity 

sctb revealed irAEs as indicated by relative body weight loss and the upregulation of PD-1 on 

T cells. These observations represent the first indication that in contrast to high-affinity PD-L1 

binding agents the CiTE may not induce irAEs. 

Aside from the prevention of irAEs that are a result of systemic PD-L1 blockade, the CiTE-

mediated increase in selectivity for CD33+PD-L1+ cells might also bear the potential to reduce 

adverse events that originate from systemic CD33-targeting. This is particularly relevant since 

CD33 is also expressed on healthy myeloid cells and was detected on CD34+CD38− 

HSCs.79,215,286,287 As observed for GO, the general depletion of CD33+ cells consequentially results 

in myelosuppression as manifested in neutropenia and thrombocytopenia.218,288,289 In this regard, 

an interesting observation was that on PD-L1+ AML cells EC50 values of CiTE were decreased by 

about one order of magnitude. We attribute this effect to avidity-dependent binding of PD-1ex and 

the CD33 scFv. As CiTE and sctb behaved similar, this impact seems to be independent of the 

absolute binding affinity of the checkpoint blocking module. In carefully designed in vivo studies, 

the increase in efficiency might allow the exploration of a therapeutic concentration in which 

preferentially AML cells are targeted and healthy CD33+ cells are spared. Consequently, drug-

associated cytopenias might be reduced while still sustaining therapeutic efficiency. It has 

previously been shown that bispecific dual-targeting agents with two high-affinity binding arms 

show a preference for double-positive cells.87,290 The novel feature of the CiTE is, that the low 

absolute affinity of PD-1ex does not impair this effect compared to the high-affinity PD-L1 scFv in 
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the sctb. However, further investigations will have to clarify whether the measured concentrations 

are in a therapeutically relevant range and whether it is possible to determine a concentration in 

which LSCs are addressed but healthy CD33+ cells are spared.   

Notably, CD33 is not only expressed on myeloid cells but also on activated T and NK cells, which 

might be detrimental for the specificity of the CiTE molecule.291 However, publications on the 

BiTE® antibody AMG 330 reported that T cell activation is not correlated with CD33 upregulation, 

wherefore we also do not expect this mechanism to play a role for the CiTE antibody.75 Apart from 

that, CD33 shedding has been observed in AML patients, which leads to the presence of soluble 

CD33 in the bone marrow plasma.292 As it was demonstrated that this soluble form did not affect 

AMG 330 activity, we are confident that the same applies for the related CiTE format.75 

 

5.5.  Benefit and risk of CiTE-mediated T cell activation 

The activation of T cells by therapeutic antibodies bears the potential to initiate an anti-cancer 

immune response, however, the level of activation has to be carefully investigated. Lessons have 

been learned from a phase I clinical trial of the CD28 superagonist TGN1412, which was 

administered to six healthy volunteers at a dose that was 500-fold less than considered safe in 

animal models. Immediately after the first infusion, all patients developed a dramatic cytokine 

storm and subsequent multiorgan failure that required transfer to intensive care units.293-295 In this 

regard, one important safety aspect of the CiTE is that T cell activation crucially depends on the 

physical linkage to antigen-positive target cells. Similar to other currently investigated T cell 

engaging formats, the CiTE addresses T cells by binding to the ε subunit of CD3 in the TCR 

complex.68,70 Monoclonal CD3 antibodies as well as dimerized BiTE® molecules were shown to 

induce T cell activation by CD3 crosslinking, and the clinical application of OKT3 (i.e. 

muronomab; Orthoclone OKT3®), which is the parental antibody clone of blinatumomab and the 

presented CiTE, can results in severe side effects due to the development of CRS.73,262,263 However, 

we were able to demonstrate that monovalent CD3-targeting by the CiTE does not activate T cells 

in the absence of target cells or a tumor-targeting module in vitro, as measured by the upregulation 

of CD69 and CD25. Further, neither the release of proinflammatory cytokines such as IL-2 and 

IFN-γ nor T cell proliferation or cytotoxicity were detected. In accordance with the related BiTE® 

format, T cell activation was conditional on the crosslink to target cells.73,76 Yet, despite the absence 
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of extensive cytokine release in vitro, blinatumomab does induce CRS in some patients.84 Thus, 

further studies also have to carefully evaluate CiTEs in this respect in vivo. 

In line with T cell activation, we reported CiTE-mediated PD-1 upregulation on resting T cells and 

PD-L1 expression on primary patient-derived AML samples. This corresponds to publications that 

the expression of inhibitory immune checkpoints in AML does not originate from intrinsic 

oncogenic signaling but is rather a response to the inflammatory environment.189-191 Particularly 

IFN-γ was shown to induce PD-L1 on AML cells in vitro and in vivo.189-191 At this, inflammation 

cannot only be caused by an intrinsic anti-cancer response against cancer neoepitopes but also by 

artificial T cell engagement. Particularly in AML and ALL the correlation between targeted T cell 

activation and adaptive immune resistance has been demonstrated in vitro.194,296 To instantly 

counteract the inhibitory influence of PD-L1 upregulation, a combination of direct leukemia-

targeting and PD-1/PD-L1 checkpoint inhibition appears reasonable. We were able to show that 

the fusion of a PD-L1 blocking module to a BiTE®-like scaffold significantly elevated T cell 

activation compared to a BiTE®-like molecule in the presence of PD-L1+ AML cells. The 

combination with blocking agents could increase IFN-γ and IL-2 levels induced by the BiTE®-like 

molecule, however, the highest cytokine release was achieved with the sctb. Importantly, also the 

CiTE was able to trigger similar cytokine levels compared to combination therapies, even if 

blocking agents were applied at a high surplus. An enhancement of T cell activation and associated 

proinflammatory cytokines might be beneficial in an immunosuppressed state to overcome PD-L1-

mediated immune tolerance and restimulate the endogenous anti-cancer immune response. In 

AML, inhibitory ligands as well as the secretion of factors such as TGF-β and IL-10 and the 

increased abundance of Tregs and MDSCs contribute to an immunosuppressed state, thus a higher 

T cell activation might be particularly advantageous.188,193,203,204,297 Furthermore, after 

chemotherapy and HSCT the number of T cells is often decreased, which consequently lowers the 

probability of high cytokine levels that originate from activated T cells.278-280 A strong CiTE-

mediated polyclonal activation is expected to lead to proliferation of remaining T cells, which 

could contribute to a restoration of the patient’s effector T cell pool.  

It has to be highlighted that the level of cytokine release seems to depend on the binding affinity 

of the PD-L1 blocking module, as the sctb revealed a stronger increase in IFN-γ and IL-2 levels 

compared to the BiTE®-like molecule than the CiTE antibody. Accordingly, the sctb is expected 

to bear a higher risk for CRS development than the CiTE. Moreover, the level of T cell activation 
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critically depends on the dosing regimen of a T cell engager. It thus appears conceivable that CiTEs 

might be applied at lower therapeutic doses than BiTE®s. Depending on the concentration, this 

might simultaneously favor the selective targeting of CD33+PD-L1+ cells and restrain binding to 

CD33+ or PD-L1+ non-AML cells. Carefully designed in vivo experiments in mice and non-human 

primates will have to be conducted before translating the CiTE format into clinical trials. 

 

5.6.  Optimization potential of the CiTE format 

The CiTE format consists of two scFv modules and the extracellular domain of PD-1 that are 

connected by polypeptide linkers. In comparison to IgG based formats, it lacks the Fc part, which 

is accompanied by a lower molecular weight of roughly 75 kDa compared to 150 kDa. CiTE 

molecules are produced from one single polypeptide chain, whereas IgG antibodies assemble from 

two heavy and two light chains. The small molecular weight and the lack of an Fc portion is 

correlated with differences regarding predicted pharmacokinetic properties. In contrast to IgG 

antibodies, CiTEs are not expected to be adsorbed and endocytosed by FcR-bearing immune cells 

that represent a “sink” for the molecules.298 Still, it has to be considered that the CiTE moderately 

internalizes into PD-L1+ AML cells in vitro, which might lead to lower effective concentrations. 

A predictable characteristic of the format that differs from IgG molecules is a more rapid renal 

clearance from the bloodstream due to the small size and the correlated small hydrodynamic 

radius.299 The lack of an Fc region further contributes to a short plasma retention time. In contrast 

to the CiTE antibody, IgGs bind to neonatal Fc receptors (FcRn) after cellular uptake, which 

prevents the intracellular degradation and induces recirculation to the cell surface.33,300,301 Thus, 

conventional IgG-based mABs reveal a pharmacokinetic half-life of more than three weeks in 

humans.302 In contrast, a sctb that possesses a similar architecture and size as the CiTE was 

described to exhibit a plasma half-life of four hours in the murine system, which was twice as long 

as the half-life of a bispecific scFv.60 Still, in a clinical setting this might necessitate a frequent 

application or the administration as continuous infusion, as implemented for blinatumomab.63,82 

Yet, the fast clearance might provide an advantage with regards to the control of exposure time. 

While an IgG antibody may remain in the blood system for several weeks after treatment 

discontinuation upon the detection of adverse events, CiTE therapy could be terminated 

immediately and the residual molecules cleared from the system within hours.60 The smaller size 

also bears potential advantages compared to the larger mABs regarding tissue penetration, and it 

might facilitate binding of some epitopes that are more difficult to access for larger IgG 
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antibodies.58,59 Further studies will have to elucidate the potential and disadvantages of the 

comparably low molecular weight of CiTEs and elaborate on potential technologies to elongate 

plasma half-life. Possibilities include the chemical conjugation to polyethylene glycol (PEG) and 

a genetic fusion of a poly-amino acids such as proline-alanine-serine (PAS).303,304 Also coupling 

to a protein with a naturally occurring long half-life such as HSA or a domain that is capable of 

targeting such a protein by e.g. the fusion of an HSA-binding module can be found in other 

therapeutic formats and represent reasonable strategies.305,306  

Moreover, it is important to ensure that the CiTE antibody is stable as monomer, since dimerization 

of BiTE® molecules can lead to target cell-independent T cell activation.73 After purification, we 

were able to obtain the CiTE antibody in a pure, monomeric state. Conventional storage of the 

protein at -80°C did not favor oligomer formation and incubation at physiological temperatures for 

several days did not lead to target cell-independent T cell activation. However, in the purification 

process multimers were detected by SEC. Since scFvs display a tendency to unfold at their VH/VL 

interface, it cannot be excluded that during long-term storage or in vivo application the Ig domains 

mispair with adjacent complementary Ig folds in a process called “protein domain swapping”.307,308 

Consequently, this could lead to a mixture of different intramolecular folding states and oligomers. 

A consolidation of the functional monomeric state by stabilizing the scFvs might thus not only 

increase the total yield after purification but also the effective concentration of the protein in 

solution. Rational stabilization approaches include CDR grafting onto a stable framework, the 

introduction of point mutations in FRs or CDRs to stabilize the intrinsic domain folds, or 

stabilization of the VH/VL interface by e.g. the introduction of disulfide bonds.307,309,310 Still, 

changes in the amino acid sequence of scFvs have to be carefully designed to avoid worsening of 

expression yield and protein affinity. 

 

5.7.  Future directions of the CiTE format 

In the present study we reported the de novo generation of the CiTE antibody format. By targeting 

CD33 on AML cells and simultaneously blocking the PD-1/PD-L1 immune checkpoint with 

PD-1ex, we were able to locally restrict checkpoint blockade to the cytolytic synapse. We 

demonstrated that the CiTE induces efficient T cell-mediated cytotoxicity in vitro and in vivo and 

it exhibits a high selectivity for CD33+PD-L1+ cells. Thus we propose the CiTE format as highly 

promising therapeutic approach for AML treatment and hypothesize that induced irAEs are low. 
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However, future preclinical studies will have to be performed to obtain a reliable prognosis 

regarding efficiency and safety in humans. Although the CiTE antibody has been analyzed on 

samples derived from different patients, a larger number of individuals will have to be screened to 

representatively investigate the role of inter-patient heterogeneity.79 Further, the performed 

xenograft experiments were well suited for proof-of-concept evaluation but they do not reflect the 

physiological tumor microenvironment and the interplay of tumor cells and immune system.311 

Thus, in a next step, the CiTE molecule should be investigated in a humanized mouse model. Here 

a human immune system is established by transplantation of human peripheral blood lymphocytes 

or HSCs into immunodeficient or irradiated mice.311,312 HSCs are mainly derived from bone 

marrow fetal liver and umbilical cord blood.312 The injection of patient-derived xenografts (PDX) 

instead of human cell lines would further allow the inclusion of the genetic diversity within 

AML.311 Apart from that, established murine AML model systems could be used that inherit the 

main genetic aberrations that have been found in AML.311,313,314 The most conclusive evaluation 

could be provided by studies in non-human primates as this system is more similar to human. Due 

to the encouraging results of our initial AML xenograft studies, we are confident that the CiTE 

strategy might also succeed in such more advanced in vivo models. 

Collectively, the in vitro and in vivo evaluation that was performed within this thesis demonstrated 

that the CiTE antibody induces highly efficient and specific elimination of AML cells. We consider 

this molecular format to be a promising strategy for AML treatment that may have significant 

benefits compared to conventional chemotherapy and should be further explored in combination 

approaches or as monotherapy. 
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7.  List of abbreviations 

ADC antibody-drug conjugate 

ADCC antibody-dependent cellular  

 cytotoxicity 

ADCP antibody-dependent cellular  

 phagocytosis 

ALL acute lymphoblastic leukemia 

AML acute myeloid leukemia 

AP-1 activator protein-1 

APC antigen presenting cell 

BATF basic leucine zipper  

 transcriptional factor ATF-like 

BCG Bacille Calmette-Guérrin 

BCR B cell receptor 

BiTE® bispecific T cell engager 

BM bone marrow 

C constant 

CalichDMH N-acetyl-g-calicheamicin  

 dimethyl hydrazide 

CAR chimeric antigen receptor 

CD cluster of differentiation 

CDC complement-dependent  

 cytotoxicity 

CDR complementarity-determining  

 region 

CEA carcinoembryonic antigen 

CH constant region of Ig heavy  

 chain 

CL constant region of Ig light  

 chain 

CLR C-type lectin receptor 

c-Met cellular-mesenchymal to 

epithelial transition factor 

CMTM chemokine-like factor-like 

MARVEL transmembrane  

 domain-containing protein 

CNS central nervous system 

COX-2 cycloocygenase-2 

CRS cytokine release syndrome 

CTL cytotoxic T lymphocyte 

CTLA-4 cytotoxic T lymphocyte- 

 associated protein-4 

DART dual-affinity receptor re- 

 targeting 

DC dendritic cell 

E:T effector-to-target cell ratio 

EMA European Medicines Agency 

Fab fragment for antigen binding 

FAB French-American-British 

Fc fragment crystallizable 

FcR Fc receptor 

FcRn neonatal Fc receptor 

FcγR Fc gamma receptor 

FDA U.S. Food and Drug  

 Administration 

Flt3 FSM-like tyrosine kinase 3 

FR framework region 

GO gemtuzumab ozogamicin 

GvL graft-versus-leukemia 

H heavy 

HAMA human anti-mouse antibody  
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HSA human serum albumin 

HSC hematopoietic stem cell 

HSCT hematopoietic stem cell  

 transplantation 

HV hypervariable 

i.v. intravenous 

ICOS inducible co-stimulator 

IDO indoleamine 2,3-dioxygenase 

IFN interferon 

Ig immunoglobulin 

IL interleukin 

ImmTAC® immune mobilizing 

monoclonal T-cell receptors 

against cancer 

IPRES Innate PD-1 RESistance 

irAE immune-related adverse event 

ITD internal tandem duplication 

ITIM immunoreceptor tyrosine- 

 based inhibitory motif 

ITSM immunoreceptor tyrosine- 

 based switch motif 

KD equilibrium dissociation  

 constant 

kih knobs-into-holes 

L light 

LAA leukemia-associated antigen 

LB lysogeny broth 

LSC leukemic stem cell 

mAb monoclonal antibody 

MBL mannose-binding lectin 

MDSC myeloid-derived suppressor  

 cell 

MHC major histocompatibility  

 complex 

MRD minimal residual disease 

NFAT nuclear factor of activated T  

 cells 

NF-κB nuclear factor-κB 

NHL non-Hodgkin’s lymphoma 

NK natural killer 

NOD non-obese diabetic 

NPM1 nucleophosmin 1 

NSCLC non-small-cell lung cancer 

NSG NOD scid gamma 

NTA nitrilotriacetic acid 

ORF open reading frame 

OS overall survival 

PAGE polyacrylamide gel  

 electrophoresis 

PAS proline-alanine-serine 

PB peripheral blood 

PBMC peripheral blood mononuclear  

 cell 

PD-1 programmed death-1 

PD-L programmed death-ligand 

PEG polyethylene glycol 

PGE2 prostaglandine E2 

PI3K phosphoinositide 3-kinase 

PKCθ  protein kinase Cθ 

r/r relapsed or refractory 

RAS rat sarcoma 

RDL redirected lysis 

RGMB repulsive guidance molecule B 

scFv single-chain variable fragment 

sctb single-chain triplebody 

SDS sodium dodecyl sulfate  
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SHP-2 src homology 2-domain- 

 containing tyrosine  

 phosphatase 

SEC size exclusion chromatography 

Siglec sialic acid-binding  

 immunoglobulin-like lectin 

SNP single-nucleotide  

 polymorphism 

TAA tumor-associated antigen 

TandAb® tetravalent bispecific tandem  

 diabody. 

TCB T cell bispecific 

TCR T cell receptor 

TDLN tumor-draining lymph node 

TGF transforming growth factor 

TH T helper cell 

TIM-3 T-cell immunoglobulin and  

 mucin-domain containing 

TNF tumor necrosis factor 

TNFR tumor necrosis factor receptor 

Treg regulatory T cell 

tris  tris-hydroxymethyl-

aminomethane 

V variable 

VH variable region of Ig heavy  

 chain 

VL variable region of Ig light 

chain 

WHO World Health Organization
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