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Zusammenfassung 

 

Fledermäuse senden Ultraschallrufe aus und lauschen auf Echos um sich in ihrer 

Umgebung zu orientieren und Beute zu jagen. Dank dieser Fähigkeit zur Echoortung 

sowie zum aktiven Flug haben sich Fledermäuse eine überaus ergiebige ökologische 

Nische erschlossen, den nächtlichen Luftraum. Ihr "sechster Sinn" hat Fledermäusen 

also Unabhängigkeit vom Sonnenlicht beschert. Aber inwiefern kann Hören Sehen 

ersetzen? Die vorliegende Arbeit beschäftigt sich mit der Frage wie Echoortung 

bestimmte räumliche und zeitliche Parameter der Umgebung verarbeitet. 

Wenn es um die Wahrnehmung räumlicher Strukturen geht, stehen echoortende 

Tiere vor einer speziellen Herausforderung. Die Cochlea, das Sinnesepithel des Hör-

systems, kann Rauminformation nicht direkt kodieren. Stattdessen muss 

Rauminformation errechnet werden, über den Vergleich der Signale an beiden Ohren. 

Im ersten Kapitel dieser Dissertation teste ich die Hypothese, dass Echoortung 

dennoch Raumfrequenzen heranzieht um ein Bild der Umgebung zu formen. Das 

Konzept der Raumfrequenz spielte eine entscheidende Rolle in unserem Verständnis 

von visueller Wahrnehmung. In der vorliegenden Arbeit zeige ich, dass trotz 

grundlegender mechanistischer Unterschiede zwischen Seh- und und Hörvermögen 

beide Sinnessysteme Zugang zu Raumfrequenzinformation haben. Sechs Fledermäuse 

(Phyllostomus discolor) wurden darauf andressiert, eine Oberfläche mit Wellen unter-

schiedlicher Raumfrequenz und Tiefe von einer glatten Oberfläche zu unterscheiden.  

Meine Messungen zeigen dass Fledermäuse viel empfindlicher gegenüber hohen 

Raumfrequenzen sind als gegenüber niedrigen Raumfrequenzen, d.h. einen 

sensorischen Hochpassfilter für Raumfrequenz besitzen. Zusätzlich untersuchte ich 

welche sensorischen Reize den Fledermäusen zur Verfügung stehen um 

Raumfrequenz zu bewerten. Ich fand heraus, dass diese Reize sich grundlegend von 

solchen unterscheiden, welche die visuelle Wahrnehmung von Raumfrequenz 

vermitteln. Während visuelle Raumfrequenzwahrnehmung das Ergebnis feinabge-

stimmter räumlicher Empfindlichkeit der Retinazellen ist, wird Raumfrequenz-

wahrnehmung mit Echoortung durch objektspezifische Reflektionseigenschaften 

erreicht. Der Nachweis eines Hochpassfilters in der Echoortung von Fledermäusen 

offenbart funktionelle Gemeinsamkeiten zwischen Sehen und Echoortung, die beiden 

Systemen Zugang zum Raumprofil der Umgebung ermöglichen und damit der Figur-

Grund-Wahrnehmung zugrunde liegen. Diese funktionellen Gemeinsamkeiten, aber 

mechanistischen Unterschiede machen deutlich, dass ein Sinnessystem-

übergreifender Bedarf an räumlicher Umgebungsinformation besteht. 

Das Gehör brilliert in der Messung winziger Laufzeitunterschiede. Doch wenn es 

darum geht zeitlichen Änderungen von Echoparametern zu folgen, scheint das Echo-
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ortungssystem einer typischen Fledermaus im Nachteil. Der Ortungsruf einer 

frequenzmodulierenden Fledermaus ist zu kurz um einen kompletten Bewegungs-

zyklus abzubilden. Um Bewegung nachzuverfolgen müssen Fledermäuse die Laufzeit-

unterschiede ganzer Sequenzen von Ruf-Echo-Paaren vergleichen. Im zweiten und 

dritten Kapitel der vorliegenden Arbeit quantifizierte ich die Empfindlichkeit von 

Fledermausechoortung für zeitliche Modulationen verschiedener Echoparameter. 

Schlagende Insektenflügel erzeugen natürliche Echomodulationen, und zwar 

gleichzeitig Modulationen von Laufzeit und Lautstärke. 

Im zweiten Kapitel führe ich eine Methode ein, mit deren Hilfe sich Laufzeit und 

Lautstärke der Echos unabhängig voneinander manipulieren lassen. Eine akustische 

virtuelle Realität ermöglicht die separate Untersuchung der Effekte des jeweiligen 

Parameters auf die Wahrnehmung der Fledermaus. Ich zeige, dass bei der frequenz-

modulierenden Fledermaus P. discolor die Empfindlichkeit für Modulationen der 

Echolaufzeit stark von der Modulationsrate abhängt. Am empfindlichsten waren die 

Tiere bei Modulationsraten unter 20 Hz und über 50 Hz. Ich zeige, dass Echoortung 

für Wechselwirkungen zwischen Modulationsrate und Rufrate anfällig ist, ein 

Phänomen, das ich als einen echoakustischen Wagenradeffekt bezeichne. Weiter 

zeige ich, dass bei hohen Modulationsraten Doppler-Verzerrungen zusätzliche 

spektrale und zeitliche Reize herbeiführen, was den Wiederanstieg  der 

Empfindlichkeit bei hohen Modulationsraten erklären kann. Die bedeutet, dass für die 

weltweit hunderten Arten frequenzmodulierender Fledermäuse Doppler-Verzerrungen 

eine wichtige Rolle bei der Flügelschlagwahrnehmung spielen könnten. 

Im dritten Kapitel vertiefe ich meine Untersuchungen zum Thema Empfindlichkeit 

von Echoortung gegenüber Echomodulationen. Mit Hilfe der virtuellen Realität 

moduliere ich die Echolautstärke unabhängig von der Echolaufzeit. Ich kann zeigen, 

dass P. discolor diese Lautstärkemodulationen wahrnehmen kann und dass die 

Detektionsleistung der Tiere mit der Modulationsrate ansteigt. Ich führe an, dass sich 

die Wahrnehmung von Lautstärkemodulationen mit Echoortung grundlegend von der 

Wahrnehmung von Laufzeitmodulationen unterscheidet. Weiter spekuliere ich, dass 

der Wahrnehmung schneller Lautstärkemodulationen spektrale Reize zu Grunde 

liegen. 

In ihrer Gesamtheit liefert die vorliegende Arbeit experimentelle Nachweise zu 

wichtigen perzeptorischen Prozessen in der Echoortung frequenzmodulierender 

Fledermäuse. Meine Erkenntnisse zeigen eine Möglichkeit auf, wie Fledermäuse dem 

vermeintlich unumgänglichen Kompromiss zwischen räumlichem und zeitlichem 

Auflösungsvermögen entgehen könnten. Damit stelle ich eine Alternative zur 

traditionellen Sichtweise, dass die sensorischen Einschränkungen des Gehörs 

automatisch zu geringerer Leistungsfähigkeit führen. Ich lege dar wie divers die 

Selektionsfaktoren sind, die auf das Echoortungssystem von Fledermäusen einwirken. 

Diese Dissertation nimmt daher Einfluss auf die Forschungsbereiche Neuroethologie, 

Verhaltensökologie, Tierphysiologie und Evolution, und kann zur Weiterentwicklung 

technischen Sonars beitragen.
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Summary 

 

Bats emit ultrasonic cries and listen to the reflected sounds to orient and forage in 

their environment. The rich ecological niche of nocturnal air space became accessible 

through bats’ capability of sustained flight and echolocation. Their ‚sixth sense‛ 

gained them autonomy from sunlight, but to what extent can hearing replace vision? 

This thesis addresses the question how echolocation encodes certain spatial and 

temporal parameters of the environment. 

Echolocation poses a challenge to the perception of spatial layouts because the 

auditory sensory epithelium, the cochlea, does not explicitly encode space like the 

eye’s retina does; space must be computed by comparing echo cues at both ears. In 

the first chapter of this thesis, I test the hypothesis that despite this challenge, bat 

echolocation utilizes the concept of spatial frequency to form perceptual 

representations of bats’ habitat. Spatial frequency has been crucial to understand 

visual perception. I show that both sensory systems, echolocation and vision, have 

access to spatial frequency information despite their fundamental mechanistic 

differences. I trained six bats (Phyllostomus discolor) to discriminate ripples of 

different spatial frequencies from a smooth surface and measured echo-acoustic 

depth-contrast-sensitivity functions. I show that bats are much more sensitive to high 

spatial frequencies, exemplifying a spatial high-pass filter. Additionally, I evaluated 

the perceptual cues available to the bats to assess spatial frequency and found them 

fundamentally different from those in vision. While spatial frequency perception in 

vision is a result of spatial tuning, starting already in the retina, spatial frequency 

perception in echolocation is achieved by object-specific reflection properties that 

determine the perceived echo-acoustic object signature. The demonstration of a high-

pass filter in bat echolocation reveals a functional similarity between vision and 

echolocation, which underlies figure-ground-separation and allows both systems 

access to the spatial contours in the environment. The functional similarities, yet 

mechanistic differences, highlight the need for spatial environmental information, 

independent of sensory system.  

The auditory system excels in measuring minute differences in echo arrival times. 

But when it comes to the tracking of changes of echo properties over time, the 

echolocation system of a typical bat seems to be at a disadvantage. The echolocation 

call of frequency-modulating bats is too short to track an entire movement cycle. In 

order to track movement, bats have to compare memorised sequences of call-echo 

pairs. In the second and third chapters, I quantified the sensitivity of bat echolocation 

to the temporal modulation of echo parameters. In nature, fluttering insect wings 
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cause echo modulations; the echoes carry modulations in echo delay and in echo 

amplitude simultaneously.  

In the second chapter, I introduce an auditory virtual reality where I can 

manipulate delay independently from amplitude and tease apart the effects of both 

parameters on perception. I demonstrate that in the frequency-modulating bat 

Phyllostomus discolor the sensitivity for modulations in echo delay depends on the 

rate of the modulation, with bats being most sensitive at modulation rates below 

20 Hz and above 50 Hz. I show that echolocation is susceptible to interference 

between call repetition rate and modulation rate. I propose that this phenomenon 

constitutes an echo-acoustic wagon-wheel effect. I further demonstrate how at high 

modulation rates sensitivity could be rescued by using spectral and temporal cues 

introduced by Doppler-distortions. Thus, I present evidence that Doppler distortions 

may play a crucial role in flutter sensitivity in the hundreds of frequency-modulating 

bat species worldwide. In the third chapter, I deepen my investigations into the 

sensitivity of bat echolocation to temporal echo modulations. I use the virtual reality 

approach to generate modulations in echo amplitude independent from echo delay. I 

show that Phyllostomus discolor successfully detected these modulations in echo 

amplitude and that their performance increased with the rate of the modulation. I 

suggest that amplitude-modulation detection with echolocation differs fundamentally 

from delay-modulation detection and speculate that the mechanism to detect fast 

amplitude modulations relies on spectral cues.  

In summary, this thesis provides experimental evidence on important perceptual 

processes in the echolocation of frequency-modulating bats. I give a proof-of-

principle demonstration offering release from the supposed trade-off between 

temporal and spatial acuity and challenging the view that the auditory system’s 

sensory constraints inevitably lead to detrimental echo-acoustic performance. 

Thereby, my findings highlight the diversity of selective pressures working on the 

echolocation system of bats. This thesis therefore has implications on the fields of 

neuroethology, behavioural ecology, animal physiology and evolution, and may 

contribute to the further development of technical sonar. 
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Introduction 

 

An early summer’s evening in the foothills of the Alps. The sunset colouring the 

sky in purple and gold. A mild wind blowing up over the hills and across a small lake 

and its pebbly beach, creating soft waves on the water’s surface. A short distance 

above, a swarm of small shadows shooting swiftly through the warm air.  Every now 

and then, a single shadow swoops down to the water surface. No sound is to be heard 

over the backdrop of chirping crickets from the shore. Not to human ears, anyway. If 

we were to switch on a bat detector, however, a veritable cacophony of sounds would 

become audible. 

Bats emit ultrasonic cries and listen to the reflected sounds to orient and forage in 

their environment. They echolocate. The unique combination of echolocation and 

sustained flight has opened the rich ecological niche of nocturnal air space to them. 

Where diurnal mammals use vision as their main remote sense, echolocation has 

evolved as the main remote sense in mammals that live under conditions with no 

external light. But to what extent can hearing replace vision? Or in other words, can 

sound really paint a picture? 

The physical and anatomical principles underlying the two sensory systems are as 

different as they come. The brain, however, ultimately receives the same neural 

impulses in either case. This chapter aims to give an introduction first to the 

relationship between vision and hearing, then to the operating principles of 

echolocation and their physiological basis, next to the environmental parameters 

under study, and lastly to the scientific approach used throughout this thesis. 

 

Vision vs. hearing - In order to understand the differences and similarities 

between vision and hearing, we will first look at their physical and physiological 

basis. 

Light is electromagnetic radiation within a small portion of the electromagnetic 

spectrum. Vision refers to the ability to perceive the light in the visible spectrum 

reflected by objects in the environment and to interpret these reflections as images. 

Light is perceived via a chemical process in the receptor cells of the sensory 

epithelium of the eye, the retina. The explicit spatial layout of the retina and the fine 

spacing of photoreceptors support high spatial acuity and resolution along the two 

dimensions of azimuth and elevation. The perception of depth arises from 

computations in the visual cortex using binocular disparities, i.e., differences between 

the images of left and right eye. Depth-perception is prone to optical illusions. 
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Sound is a vibration that propagates as longitudinal wave of pressure in an elastic 

medium, e.g. air. Hearing refers to the ability to receive waves of certain wavelengths 

and interpret them as sounds. Sounds coming from any direction are superimposed at 

the eardrum and transmitted through the middle ear to the hearing organ of the inner 

ear, the cochlea. The cochlea contains the ear’s sensory epithelium, the basilar 

membrane, where the (transformed) pressure wave mechanically stimulates the 

receptor cells. The basilar membrane is organized tonotopically, i.e., a certain place 

of stimulation codes for a certain sound frequency (pitch). This organization leaves 

the auditory system poorly set up for displaying space: spatial information must be 

neurally computed, for azimuth through binaural comparisons (Rayleigh 1907), and 

for elevation through the analysis of complex spectral interference patterns generated 

by the outer ears (Blauert 1997) . 

As opposed to light, that usually originates from the sun and is basically 

inexhaustible while it travels through air, sound waves need a relatively nearby sound 

source because they become fainter over distance (geometric and atmospheric 

attenuation). In the case of echolocation, the bat itself is the sound source, emitting 

sounds of extremely high frequencies at ear-piercing volumes. The sound waves 

bounce off objects in the environments and return to the bat’s ears with decreased 

volume, depending on the distance the sound has travelled but also on the reflection 

properties of the particular object. Hence the loudness of the echo, the echo 

amplitude, is a rather unreliable measure for object distance. A very dependable 

measure, however, is the time delay between outgoing call and returning echo, the 

so-called echo delay. This simple example already illustrates the operation principles 

of echolocation; the following section will trace the path of scientific findings that led 

to our present-day understanding of them.  

 

The discovery of echolocation - The story of echolocation research begins in the 

18th century. Italian physiologist Lazaro Spallanzani found that bats could avoid 

obstacles in flight not only in a dark room but even after they had been blinded. 

Spallanzani and his Swiss friend and colleague Louis Jurine eventually concluded that 

hearing was the sensory modality responsible for this feat, but they did not yet realise 

that self-emitted sounds played a crucial role. More than a hundred years later, 

American zoologist Walter L. Hahn (1908) repeated and extended their experiments 

and came to the same conclusion. Around the same time, American-British inventor 

Hiram Maxim (1912) proposed that bats used sound below the human auditory range 

to avoid obstacles. A few years later, English physiologist Hamilton Hartridge (1920) 

correctly proposed instead that bats used frequencies above the range of human 

hearing because only very short wavelengths would be reflected off the very small 

obstacles that bats were able to avoid in the dark. In occupied Holland of the 1930s, 

Dutch scientist Sven Dijkgraaf (1946) heard faint sounds from passing bats 

(‚Ticklaute‛) and concluded that bats emitted sounds and used the echoes for 

orientation.  
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Also in the 1930s, Donald Griffin began studying the navigational methods of bats 

as an undergraduate at Harvard University. He knew about Spallanzani’s and Hahn’s 

findings, but not Hartridge’s proposition of ‚supersound‛. Still, when he learned 

about the development of a microphone that could record ultrasonic frequencies, he 

pointed it at a cage full of little brown bats (Myotis lucifugus). Thus, Griffin and 

George W. Pierce, inventor of said microphone, made the first ever recordings of bat 

echolocation calls (Pierce and Griffin 1938), although at the time they still didn't know 

that this is what they were. They could barely record any sounds from flying bats. 

Only during his PhD work, Griffin and his fellow graduate student Robert Galambos 

pointed the Pierce microphone directly at flying bats and finally recorded the 

expected stream of ultrasonic pulses. They subsequently repeated and extended 

former experiments: they sealed bats’ snouts shut and found them completely 

disoriented even when hearing was still intact. Griffin and Galambos thus proved that 

both the emission and the hearing of ultrasonic pulses are necessary for bats’ sixth 

sense (Griffin and Galambos 1941; Galambos and Griffin 1942). Griffin (1944) 

eventually coined the term ‚echolocation‛. The expression proved to be not 

comprehensive enough, because bats can do more than just locate obstacles by 

means of echoes. Still, the term prevails, if rather for historical reasons than those of 

accuracy. 

 

Operation principles of echolocation - Echolocation is always a trinity of call, 

target and echo (cf. Figure I.1A). Call properties and target properties together 

determine the properties of the echo. By comparing the call properties with the echo 

properties the bat can draw conclusions about the target properties.  

The properties of a target are fully described by the target’s acoustic impulse 

response (IR). The IR is the echo-acoustic counterpart of a visual image. As the visual 

image is a reflection pattern in response to a flash of white light, the IR describes the 

reflections of a 3D scene when it is ensonified with a spectrally white acoustic 

impulse of infinitely short duration and infinite amplitude (Dirac impulse, cf. Figure  

I.1B). Bats don’t ensonify objects with theoretical acoustical impulses, but with 

echolocation calls produced with their vocal chords. Calls have a finite frequency 

spectrum, a finite duration, and finite amplitude. Convolving the actual call with the 

IR will recreate the echo as the bat would receive it. Vice versa, bats likely extract the 

IR from the echo in order to analyse the target properties (Weissenbacher and 

Wiegrebe 2003). 
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Static IRs describe static 

systems. Dynamic systems 

can only be described by 

dynamic, or time-variant, 

IRs. What makes a system 

dynamic? The answer to this 

question is, any change over 

time. The most common 

change over time is of 

course movement. A moving 

target is described by a 

time-variant IR.  

The movement of a target 

can change the target’s 

distance to the bat, or its 

reflection properties.  For 

example, the fluttering wings 

of insects move back and 

forth, thereby changing the 

distance of the reflecting 

wing area. At the same time, 

the wings rotate, i.e. the size 

of the reflecting wing area changes, thereby changing the reflective strength (Griffin 

1958; Roeder 1963). These changes in target properties are mirrored in changes 

within the time-variant IR: the echo-delay is modulated over time, and so is the target 

strength. Target strength is a measure of the target’s reflective strength and is 

directly proportional to echo-amplitude. It is described by the quadratic mean of the 

target’s IR. The modulations within the time-variant IR are carried over to 

modulations in the echo. How well they can be monitored within a single echo or a 

sequence of echoes depends on the design of the echolocation calls. In bats, two 

general types of echolocation calls have evolved: frequency-modulated calls (FM 

calls) sweep through a broad band of frequencies within a few milliseconds whereas 

constant-frequency calls (CF calls) keep a constant frequency over a much longer 

duration. Before we have a closer look at these two general types of echolocation we 

need to consider the physiological specialisations of sound perception and sound 

production in bats. 

 

Hearing in bats – Hearing is an essential sense in all mammals. The functional 

anatomy of the bat’s peripheral and central auditory system enables them to perceive 

frequencies above the human hearing range. However, the ability to hear ultrasound 

is not synonymous to the ability to echolocate. Many small mammals, e.g. mice, but 

also non-echolocating bats, show similar audiograms to echolocating bats (Neuweiler 

1990). Bats show some physiological adaptations while following the general 

FIGURE I.1 SCHEMATIC OF THE OPERATION PRINCIPLES OF 

ECHOLOCATION. (A) A bat emits an echolocation call which 

is reflected off a target and returns to the bat as echo of 

the target. (B) When a target is ensonified with an acoustic 

impulse of infinitely short duration and infinite amplitude, 

the resulting reflection is the target’s impulse response 

(IR).  
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mammalian blueprint. The often-huge pinnae act as directional microphones. 

Additionally, they have an exceptionally well-developed tragus, the stiff skin fold at 

the opening of the ear canal. The tragus is essential for the determination of the 

elevation of a sound source relative to the bat (Lawrence and Simmons 1982; Wotton 

and Simmons 2000; Chiu and Moss 2007) and for controlling flight height (Hoffmann 

et al. 2014). Sound waves being reflected between tragus and pinna wall create 

interferences, i.e., the sound’s frequency spectrum changes with relative vertical 

position. In CF species that use narrowband calls without much potential for spectral 

interferences, the tragus is poorly developed or missing (Neuweiler 1993). The bat’s 

middle ear functions as a species-specific frequency filter: the tympanum is small and 

the ear bones are stiff and lightweight, amplifying high frequencies (Neuweiler 1993). 

Furthermore, the highly developed muscles of the middle ear contract whenever the 

bat emits a call and thus selectively suppress the perception of the bat’s own emission 

(Jen and Suga 1976). The inner ear contains the cochlea where, as described above, 

the frequency decomposition is carried out. The cochlea is a coiled-up cavity inside 

the temporal bone of the skull, consisting of three fluid-filled canals. The third canal, 

the cochlear duct, hosts the Organ of Corti with the basilar membrane that carries the 

receptor cells. High frequencies maximally stimulate inner hair cells at the base of the 

basilar membrane; low frequencies maximally stimulate inner hair cells at its apex. 

Due to the mechanical properties of the basilar membrane the frequency 

decomposing happens on a logarithmic scale. As a rule of thumb, every octave covers 

an equally large portion of the basilar membrane. In a typical FM bat, the auditory 

filters thus widen with increasing sound frequency. In contrast, CF bats possess an 

auditory fovea: a very large portion of the basilar membrane is dedicated to the CF 

frequency, resulting in auditory filters of an extremely narrow bandwidth around that 

frequency (Kössl and Vater 1995). The tonotopy of the cochlea, i.e., its frequency-

place relationship, is preserved along the entire auditory pathway up to the auditory 

cortex. Like all mammals, bats use spectral interference patterns that arise from the 

directional filtering of the outer ear for localizing targets along the vertical axis. 

These cues are monaural, as opposed to binaural cues that require comparing the 

inputs at both ears. For localizing targets along the horizontal axis, differences in 

sound arrival time or sound level between left and right ear are used: interaural time 

differences (ITDs) for low frequency sounds and interaural level differences (ILDs) for 

high frequency sounds (Moore 2012). 

 

Vocal production in bats – Except for one genus of flying foxes (Rousettus spec.), 

whose echolocation signals consist of sharp tongue-clicks, all bats produce their 

echolocation calls following the general mammalian pattern, i.e., with their vocal 

chords in the larynx. But thanks to several adaptations of their vocal tract (i.e., 

laryngeal cavity, pharynx, oral and nasal cavity) they can emit ultrasonic frequencies 

at high intensities and high repetition rates. Their exceptionally thin vocal chords can 

vibrate at very high rates, generating very high frequencies (Novick and Griffin 1961): 

bats produce the highest tonal vocalizations known to date in the animal kingdom, 
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with frequencies reaching 250 kHz (Schmieder et al. 2010). Many tonal sounds 

consist of several harmonics, i.e., sound components with a frequency that is an 

integer multiple of the frequency of the fundamental frequency. The members of 

some bat families (Phyllostomidae, Rhinolophidae, and Hipposideridae) increase the 

effective frequency of their emissions by suppressing energy in the fundamental and 

in lower harmonics with their vocal tract (Au and Suthers 2014). Similarly, they can 

increase their call bandwidth by distributing energy to more than one harmonic, 

resulting in multiharmonic echolocation calls. Bats emit their calls through their 

mouth, their nostrils or both (Seibert et al. 2015). This focuses the main energy of the 

call forwards into a sound beam. Within species-specific limits, bats can broaden or 

narrow the shape of their sonar beam according to the task at hand (Linnenschmidt 

and Wiegrebe 2016; Jakobsen et al. 2018). 

 

FM and CF echolocation and the duty-cycle - Echolocation is an active sense, i.e. 

bats need to actively emit sound in order to receive echoes instead of passively 

listening to sounds produced by others. Aside from motor-performance constraints 

(Elemans et al. 2011), the portion of time that a bat can call is limited by the fact that 

it also needs to listen for the returning echo after each emission. The longer the call, 

the longer the bat is forced to pause in order to avoid overlap of call and echo (but 

see CF echolocation below). Thus, the duty-cycle of echolocation is never 100 %. 

There are two distinct groups of bats, one that emits calls at less than 25 % of the 

time (low duty-cycle) and one that emits calls at more than 25% of the time (high 

duty-cycle) (Neuweiler and Fenton 1988; Fenton 1995). This grouping is in accord 

with the two echolocation call designs mentioned above, FM and CF echolocation 

calls. 

Frequency-modulating bats (FM bats) constitute more than 80 % of all 

echolocating species. Their calls sweep through a wide band of frequencies within 

few milliseconds. The exact structure of the call varies with the task that the bat is 

facing. A typical foraging sequence can be divided into search, approach and capture. 

The emissions in every phase vary in duration, repetition rate, and frequency content. 

Search calls are often longer than 10 ms and relatively narrowband with a shallow 

frequency modulation. But call design also depends on the habitat the bat is foraging 

in. Amidst dense vegetation calls will be fainter, shorter and more steeply modulated 

than in the open air in order to avoid distraction through non-prey echoes, so-called 

clutter echoes. After a bat has detected a potential prey item, it will emit approach 

calls of shorter duration and wider bandwidth, resulting in a steeper frequency 

modulation, at higher repetition rates. The task has now changed from detection to 

localisation and identification of prey. The final stage is characterised by a very rapid 

series of very short calls that consecutively decrease in frequency. This sequence of 

calls is referred to as final or terminal buzz. The emission of a buzz is reflex-like and 

sometimes only ends after the actual capture of the prey (Geberl et al. 2015). Some 

FM species emit a final buzz also when landing on a surface, while others do not use 

it at all (Ratcliffe et al. 2013). 
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CF echolocation independently evolved in bats belonging to the families of 

Rhinolophidae and Hipposideridae as well as in one species of Mormoopidae 

(Pteronotus parnellii) (Teeling et al. 2005; Tsagkogeorga et al. 2015). CF signals 

consist of constant frequency tones. The species-specific CF frequency matches the 

bat’s auditory fovea, so that smallest deviations in the echo’s frequency can be 

detected. Fluttering wings or prey movement relative to the bat introduce tiny 

Doppler shifts, i.e., broadenings of the echo’s spectrum, and simultaneous peaks in 

echo amplitude (Schnitzler and Denzinger 2011; Schoeppler et al. 2018; Suga 2018). 

These momentary effects are sometimes called acoustic glints, in analogy to light 

glints reflecting off moving objects. They become apparent within one single echo 

because CF calls are exceptionally long; call duration in search flight averages from 

5-20 ms in Hipposiderids to 50–80 ms in Rhinolophids (Denzinger and Schnitzler 

2013). Echoes reflected off nearby targets will thus overlap with the call, as echoes 

from vegetation will overlap with echoes from prey. The bat can ignore this, however, 

as long as the echo doesn't carry the typical glints that signal fluttering insect wings.  

FIGURE I.2 COMPARISON OF FM AND CF BATS Frequency-modulating bats constitute more than 

80% of all bat species, covering different foraging ecologies. Their echolocation calls are 

very short and broadband. FM bats are also called low-duty-cycle bats because of the short 

duration of the calls in relation to the inter-call intervals. From left to right, the calls in the 

depicted sequence illustrate the three phases search, approach and buzz. In contrast to FM 

bats, constant-frequency bats are often specialized to hunt fluttering insects with their rather 

long echolocation calls that contain one prominent frequency-band, but often also frequency-

modulated parts (upwards or downwards modulated). The silent intervals between calls are 

much shorter, therefore CF bats are also known as high-duty-cycle bats. Bat photos by D. Nill 
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The spatial resolution at which a target is depicted increases with the range of 

frequencies an echolocation call covers, the call bandwidth. The temporal resolution, 

at which changes in a target are depicted, however, is limited by the duration of the 

call. In comparison to a CF call, a broadband short FM call grants high spatial 

resolution at the expense of accuracy in tracking the movement of the target. 

However, we have to keep in mind that here spatial resolution refers to depth-

resolution, not to resolution along the azimuth/elevation axes as we are used to in 

vision. The following sections will illuminate spatial and temporal parameters of the 

environment and how they are depicted with echolocation. 

 

Spatial frequency – Since the pioneering work of Wiesel and Hubel on simple and 

complex receptive fields (Wiesel and Hubel 1966), the concept of spatial frequency 

has proven one of the most powerful tools to understand visual perception. Spatial 

frequency is a measure of change per unit space. A basic stimulus for visual research 

is the sine-wave grating, a repeating sequence of light and dark bars, where the light 

intensity changes sinusoidally (cf. Figure 1.1A). Gratings can vary in four independent 

parameters: contrast, orientation, phase, and spatial frequency. The contrast of a 

grating is defined as the maximum luminance minus the minimum luminance divided 

by twice the mean luminance (         
   

 ; Michelson 1927). Spatial frequency refers to 

the number of light-and-dark cycles per meter (cyc/m). The contrast needed by any 

visual system to perceive a light-and-dark grating depends on spatial frequency and 

on the distance from which the grating is viewed: the contrast sensitivity function 

describes the just-detectable (perceptual or neural) contrast as a function of spatial 

frequency (Enroth-Cugell and Robson 1966; Campbell and Robson 1968) where the 

latter is converted to grating cycles per degree of visual angle (cyc/deg). 

High spatial frequencies, i.e. steep changes of intensity along one spatial axis, 

represent local object features (e.g., object edges) whereas low spatial frequencies 

code for more global information about the object’s shape (Bar 2004). In images that 

contain both low and high spatial frequencies at similar proportions, the high 

frequencies are perceived as the figure and the low frequencies as background. The 

larger the spatial frequency difference, the more pronounced is the perceptual 

figure/ground separation (Klymenko and Weisstein 1986).  

For echolocating animals, one potential equivalent of a light-and-dark grating is a 

surface that changes its depth periodically (cf. Figure 1.1A): In echolocation, depth is 

explicitly encoded through the measurement of the echo delay (Simmons 1971; 

Simmons 1973; Simmons et al. 1979) and, like azimuth and elevation in the visual 

system, it is topographically represented in the bat auditory cortex (O'Neill and Suga 

1979; Hoffmann et al. 2008; Hagemann et al. 2010). Natural depth gratings occur for 

instance on water surfaces when the touch of an object, such as a raindrop, creates 

spreading ripples. 

The spatial frequency of such surface waves depends upon mass and surface 

tension. Short waves have a high spatial frequency. The wave period is smaller than 
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the sonar beam’s diameter, the sonar footprint (Vanderelst et al. 2010). The different 

echo delays within the sonar footprint will create a complex interference pattern that 

is projected upon the bat’s tonotopic frequency axis. The spatial assessment may be 

further refined through binaural interaction and the dynamic components of both the 

sending and receiving system (Mogdans et al. 1988; Ghose and Moss 2003; Holland 

and Waters 2005; Morinaka et al. 2007; Surlykke et al. 2009). Long surface waves 

have a low spatial frequency. The wave period may well be larger than the size of a 

bat’s sonar footprint. In response to a single echolocation call, a bat will thus get the 

same echoes as from a smooth surface without waves. Long waves can only be 

perceived through the changes of echoes (possibly in terms of echo delay) across a 

sequence of calls. Therefore, long waves require the analysis of temporal frequency.  

 

Temporal frequency – Temporal frequency is a measure of change per unit of 

time. How many periods of a periodic event fit into one time unit? The analysis of 

temporal frequencies has been intensively studied with regard to the analysis of 

echoes generated from fluttering targets like flying insects. We already know that in 

this case, the echoes are time-variant because of the movement of the ensonified 

target. The fluttering wings generate a modulation of both echo delay and echo 

amplitude over time (Neuweiler 1984; Schnitzler et al. 1985). Bats’ ability to detect 

modulations of echo parameters is often referred to as flutter sensitivity. Sensitivity to 

flutter in CF bats has been investigated extensively (reviewed in Neuweiler 1990), 

both in theoretical studies (Kober and Schnitzler 1990) and in experimental studies 

(Schnitzler and Flieger 1983; Von der Emde and Schnitzler 1986; Von Der Emde and 

Menne 1989; Von der Emde and Schnitzler 1990; Roverud et al. 1991; Koselj et al. 

2011). In CF bats, the call duration is much longer than the temporal- frequency 

period, allowing for a continuous monitoring of amplitude changes (Gustafson and 

Schnitzler 1979; Schnitzler and Flieger 1983; Von der Emde and Schnitzler 1986; 

Kober and Schnitzler 1990; Von der Emde and Schnitzler 1990; Tian and Schnitzler 

1997).  

In FM bats, the nature of echolocation is more stroboscopic: call durations do not 

exceed a few milliseconds and thus variations in the echo must be sampled across a 

sequence of echolocation calls. Flutter sensitivity in FM bats has been addressed by a 

mere handful of studies. The behavioural studies by Sum and Menne (1988), by 

Roverud et al. (1991) and by Grossetete and Moss (1998) investigated it in terms of 

discriminating one flutter-rate from another, but not in terms of how large a flutter 

needs to be at a given flutter rate so that it can be detected by the bat.  

Sensitivity to the magnitude of delay changes was examined in the classical 

phantom-target jitter experiments by Simmons (1979) that were repeated by Menne 

et al. (1989). However, these experiments were not originally designed to assess 

flutter sensitivity and therefore the temporal frequency of the modulation was not 

studied as an independent parameter: the modulation was rectangular, i.e., jumped 

from one state to another with every emitted call. In echoes that result from fluttering 
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insects, the modulation is sinusoidal and independent of the bat’s ensonification. Only 

one study has investigated bats’ sensitivity to the magnitude of echo delay modulation 

for a fixed, call-independent temporal frequency: Goerlitz et al. (2010) trained free-

flying bats to discriminate between a stationary loudspeaker membrane and a 

membrane sinusoidally vibrating at 10 Hz. The perceived call-to-call flutter depended 

on call rate and call emission time in relation to modulation phase.  

 

Before we turn to the aims of this thesis, I will briefly introduce the scientific 

approaches central to this study: the use of psychophysical methods and the 

implementation of an auditory virtual reality. 

 

Psychophysics – Psychophysics is the study of perception with behavioural 

methods. German philosopher, psychologist and physicist Gustav Fechner founded 

the field in 1860. His famous Weber-Fechner-law describes the relationship between 

a physical stimulus and the according sensation. More specifically it describes the 

relation between the actual change in a physical stimulus and the perceived change. 

Perception of a stimulus often changes with some stimulus variable. For instance, the 

auditory threshold for detecting a faint sound varies depending on the sound’s 

frequency (pitch). When we plot perception thresholds as the function of some 

stimulus dimension, we obtain a psychophysical function. In this example, we plot 

hearing thresholds against sound frequency and obtain an audiogram. To measure 

the thresholds in the first place, we collect psychometric data. A psychometric 

function describes the relationship between the stimulus magnitude and the subject’s 

response. The just-noticeable difference (JND) in stimulus magnitude yields the 

threshold value. In the audiogram example, we play sounds of a certain frequency at 

varying volumes and record the subject’s response: can you hear the tone or not? The 

just noticeable volume (i.e., the difference to silence) is the hearing threshold for that 

tone frequency. In order to make these tests more objective and prevent cheating, the 

subject must prove that they can detect the stimulus, for example by stating from 

which earphone the sound was being played. We refer to this paradigm as two-

alternative, forced choice (2AFC). When working with animals, we can use 2AFC to 

assess their responses: Animals are offered a choice between a reference stimulus 

(e.g. silence) and the test stimulus (e.g. a loud tone) and trained to choose the 

reference stimulus for a food reward. They indicate their choice by approaching the 

one food source among two alternatives that is associated with the reference. Once 

they discriminate the reference from the test with a stable performance rate, training 

is completed and measuring begins. The difference between reference and test 

stimulus is decreased (the tone is played progressively fainter) until the animal is left 

to guessing which one is which: discrimination performance drops to chance level. 

The just-noticeable difference between reference and test stimulus yields the 

perception threshold (the hearing threshold for the measured tone frequency) (cf. 

Sekuler and Blake 1985). 
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Virtual reality - The stimuli presented in psychophysical experiments can be real 

objects or they can be virtual representations thereof. In the case of echolocation, we 

can make use of virtual echoes to simulate virtual targets. We create these virtual 

echoes by taking an emitted echolocation call and convolving it with an impulse 

response (IR) that carries the properties of the desired target. As we know, the IR is 

like a filter whose characteristics are determined by the physical properties of the 

target (cf. Figure I.1B). With modern processors that can operate in real-time at high 

sampling-rates, we can use time-variant IRs to create dynamic virtual targets. The 

important advantage of a time-variant IR is that it truly simulates a moving target: it 

produces an echo with the target properties at the specific moment in time when the 

call is emitted, so that it interacts with call properties like call duration and inter-call 

interval, affecting echo frequency, duration and delay. Like real moving targets, time-

variant impulse responses can thus create e.g. Doppler distortions and echo-

amplitude modulation. 
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Aims of the thesis 

 

In our opening example, bats were hunting on a small lake during springtime. 

Many bat species from at least three families have specialized in trawling prey from 

water surfaces (Kalko et al. 1998; Ruedi and Mayer 2001; Weinbeer et al. 2006). 

Smooth water surfaces are considered clutter-free (Kalko and Schnitzler 1989) and 

may even facilitate prey detection due to the acoustic mirror effect: the echoes from 

the prey item are also mirrored by the water surface, thereby increasing the echo 

amplitude (Siemers et al. 2005). A turbulent water surface on the other hand reflects 

the sonar emissions back towards the bat, creating background echoes that may 

impair prey detection (Von Frenckell and Barclay 1987; Mackey and Barclay 1989; 

Rydell et al. 1999). Indeed, trawling bats prefer smooth water to turbulent or 

vegetation-covered water when foraging (Von Frenckell and Barclay 1987; Mackey 

and Barclay 1989; Boonman et al. 1998; Rydell et al. 1999). In contrast to these 

findings, a more recent study (Zsebők et al. 2013) indicates that prey detection of the 

European trawling bat Myotis daubentonii is not impaired by turbulent water. The 

discrepancy of these results suggests that the degree of turbulence determines the 

degree of prey detection impairment. Low degrees of turbulence result in low spatial 

frequencies, because the surface tension of water acts as a spatial low-pass filter, 

smoothing out sharp edges. High degrees of turbulence result in high spatial 

frequencies, as well as protruding solid structures (e.g. duckweed) and movement on 

or below the surface (prey). 

All water surfaces are characterised by their co-varying spatial and temporal 

frequencies. The overall goal of this thesis is to quantify the sensitivity of bat 

echolocation to spatial and temporal frequency.  

Chapter 1 tests the hypothesis that despite the fundamental anatomical and 

mechanistic differences between vision and hearing, bat echolocation analyses spatial 

frequency to perceive three-dimensional spatial layouts. We measure the echo-

acoustic depth-contrast sensitivity functions of six pale spear-nosed bats 

(Phyllostomus discolor) in a classical psychophysical experiment. We further analyse 

impulse responses of artificial wave surfaces to gain insight into the perceptual cues 

available to the bats.  

Chapter 2 tests the hypothesis that for evaluation of changes across entire 

sequences of call-echo pairs the relation between call rate and modulation rate plays 

a crucial role. Therefore, we quantify bats’ sensitivity to the modulation of echo delay 

in a psychophysical experiment with six pale spear-nosed bats (Phyllostomus 

discolor). We use a virtual reality to manipulate the modulation of echo delay 
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independently from the modulation of echo amplitude. We analyse bats’ emissions 

and measure echo properties to elucidate the underlying neural processing 

mechanisms. 

Chapter 3 aims to answer the question whether the relation between call rate and 

modulation rate is independent of the nature of the modulated stimulus. Echo delay 

and echo amplitude are encoded differently in the bat ascending auditory pathway 

(Hagemann et al. 2010; Hechavarría et al. 2013; Greiter and Firzlaff 2017; Measor et 

al. 2018). We investigate whether this might also be true for the encoding of 

modulations of the co-occurring echo features. Again, we implement a virtual reality 

in a psychophysical experiment with four pale spear-nosed bats (Phyllostomus 

discolor). We modulate echo amplitude independently from echo delay. Further, we 

analyse bats’ emissions and simulate echo properties to establish possible perceptual 

cues.  
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Chapter 1 

 

Bat echo-imaging perceives spatial frequency  

with a non-spatial sensor 

 

 

Spatial frequency analysis is fundamental to visual tasks such as discrimination of 

objects from background. The retina’s layout directly encodes space; the auditory 

system, in contrast, needs to compute all spatial information. Here we demonstrate 

that the auditory system nevertheless processes spatial frequency with a spatial high-

pass filter directly comparable to vision. Six echolocating bats were trained to 

discriminate gratings of different spatial frequencies from a flat surface in darkness. 

Bats were much more sensitive to high rather than low spatial frequencies, likely 

mediated by the gratings’ reflection properties. These functional similarities, yet 

mechanistic differences between vision and hearing illustrate convergent evolution of 

spatial information processing and challenge the notion that the auditory system’s 

sensory constraints inevitably lead to inferior spatial performance. 

 

A. Leonie Baier, Lutz Wiegrebe, and Holger R. Goerlitz Bat echo-imaging 

perceives spatial frequency with a non-spatial sensor.   
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Bat echo-imaging perceives spatial frequency  

with a non-spatial sensor 

The main remote sense in diurnal mammals is vision, whereas nocturnal mammals 

(and those living in murky waters) evolved sound-based echo-imaging. Both systems’ 

main task is to delineate the layout of far space in 3D for orientation and navigation. 

While the retina’s two-dimensional anatomy supports high spatial acuity and 

resolution, the auditory system is poorly set up for displaying space: incoming sounds 

are not mapped onto a two-dimensional projection of the world, but superimposed at 

the eardrums and then decomposed along a frequency-axis by the inner ear. Spatial 

information must be neurally computed (Rayleigh 1907). For echo-imaging, bats use 

the returning echoes of their ultrasonic calls to analyze objects within the emitted 

sound beam. They compute an object’s structure along the azimuth, elevation and 

distance axes in the central auditory system from the spectro-temporal echo cues at 

both ears (Simmons 1971; Lawrence and Simmons 1982; Simmons et al. 1983; 

Schmidt 1988b; Firzlaff et al. 2007). 

Spatial frequency quantifies change as a function of position, e.g. changes in 

brightness along azimuth. Spatial frequency analysis is fundamental to visually 

perceiving the environment (Wiesel and Hubel 1966). High spatial frequencies 

characterize local object features (object edges), and low spatial frequencies 

characterize global object features (object shading) (Bar 2004). For figure-ground 

separation, humans perceive high frequencies as the figure and low frequencies as 

background; the larger the difference in frequency, the clearer the perceived 

separation (Klymenko and Weisstein 1986). A basic stimulus for investigating visual 

spatial frequency analysis is the sine-wave grating, a repeating sequence of light and 

dark stripes where the light intensity changes sinusoidally along one spatial axis. For 

echolocating animals, one potential equivalent of a light-and-dark grating is a surface 

that periodically changes its depth (Fig. 1.1A). Depth is explicitly encoded through 

echo delay (e.g. (Simmons 1973)) and is topographically represented in the bat 

auditory cortex (e.g. Hoffmann et al. 2008) like azimuth and elevation in the visual 

system. Natural depth gratings occur for instance on water surfaces when the touch 

of an object (raindrop, insect) creates spreading ripples (cf. Fig. 1.1B). 

Here we hypothesize that despite the fundamental anatomical and mechanistic 

differences between vision and hearing, bat echo-imaging analyses spatial frequency 

to perceive 3D spatial layouts. Spatial frequency sensitivity in vision is quantified by 

the contrast sensitivity function, which describes the (perceptually or neurally) just-

detectable contrast as a function of spatial frequency, i.e., the contrast needed by any 

visual system to perceive a light-and-dark grating (Campbell and Robson 1968). In 

accordance to the visual contrast sensitivity function, we measured the echo-acoustic 

depth-contrast sensitivity functions of six pale spear-nosed bats (Phyllostomus 

discolor) in a classical psychophysical experiment. 
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Bats were trained in a two-alternative, 

forced-choice paradigm with food reward 

to choose between a flat reference disc 

and a disc with concentric grating of 

varying depth and spatial frequency (Fig. 

1.1C). After bats discriminated a large 

grating depth of ±16 mm at a spatial 

frequency of 0.5 cyc/deg to criterion 

(70% correct), we stepwise reduced 

grating depth, collecting 30 trials per 

grating depth. The experiments yielded 

one psychometric function per bat, i.e., 

the discrimination performance as a 

function of grating depth (Fig. 1.2A). We 

then measured psychometric functions 

for four more spatial frequencies. Due to 

production limitations, we could not 

investigate spatial frequencies higher 

than 2 cyc/deg. For all bats and across all 

spatial frequencies, discrimination 

performance was poor at low grating 

depths and improved with higher grating 

depths (Fig. 1.2A), For instance, at a 

spatial frequency of 0.5 cyc/deg, grating 

depths up to ±1 mm were not 

discriminated from a flat disc above 

chance level. Discrimination improved as 

grating depth increased, reached 

threshold level at ±4 mm in five out of six 

bats, and improved further with the larger 

grating depths of ±8 and ±16 mm. Thus, 

echo-imaging is more sensitive to deeper 

gratings than to shallow gratings. This 

pattern existed for all spatial frequencies, 

yet with frequency-dependent 

differences: while at the lowest presented 

spatial frequency (0.125 cyc/deg) none of 

the bats detected even the strongest 

depth modulation (±16 mm), the bats 

reliably detected ±1 mm gratings at the 

highest spatial frequency of 2 cyc/deg. 

We estimated actual discrimination 

thresholds for each spatial frequency and 

animal from a fitted sigmoidal function at  

FIGURE 1.1 SPATIAL FREQUENCY IN VISION 

AND ECHO-IMAGING.  (A) Spatial frequency 
quantifies the periodic change of either 
luminance (vision) or depth (echo-imaging) 
along a spatial axis, expressed in units of 
cycles per degree observation angle.  (B) 
We simulated natural depth gratings with 
discs covered in concentric depth gratings.  
(C) Six bats discriminated in darkness 
between the flat reference disc and the test 
disc with depth gratings of varying depth 
and spatial frequency. Bats indicated the 
pseudo-randomly chosen position of the 
flat disc by crawling towards it from the 
starting position after echolocating towards 
both discs. 
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FIGURE 1.2. DEPTH-GRATING DISCRIMINATION REVEALS A SPATIAL HIGH-PASS FILTER IN ECHO-IMAGING.  (A) 

Depth-grating discrimination performance of six bats (colored dots, n=30 trials per dot) as a function of 

grating depth at five spatial frequencies. Discrimination thresholds were extracted from the fitted 

psychometric functions at 70% correct (exemplary sigmoid dashed line and arrows in A and B). Horizontal 

dotted lines at 50% and 70% correct depict chance and significance (p<0.05) levels, respectively. Insets 

show exemplary grated discs with ±16 mm grating depth. (B) Individual (colored) and mean (black, ± s.e.m.) 

depth-contrast sensitivity (the reciprocal of depth-contrast threshold, as extracted from A) improves with 

increasing spatial frequency, forming a spatial high-pass filter. Where no threshold was found within the 

range of tested grating depths (downward-pointing arrows), threshold was assumed to be higher than ±16 

mm, but set to ±16 mm for calculations. (C) The high-pass characteristic of the current depth-contrast 

sensitivity in bat echo-imaging (black circles) is well comparable to the luminance-contrast sensitivity in 

human vision (grey squares: black-and-white contrast sensitivity, adapted with permission from Campbell & 

Robson 196811). (D) The mean depth-contrast sensitivity function overlaid on the measured acoustic 

impulse responses (aIR) of all grated discs. Amplitude and duration of aIRs increase with increasing grating 

depth (top to bottom) and spatial frequency (left to right). Small numbers indicate target-strength difference 

(TSD) between each grated disc and the reference disc. Depicted in red are exemplary aIRs of different 

spatial frequency and grating depth but not target strength; these aIRs differ in their temporal structure. 
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70% correct performance (p<0.05, binomial test; cf. Fig 1.2A, dashed red line). 

Combined, the extracted threshold values form the depth-contrast sensitivity function, 

with depth-contrast sensitivity being the reciprocal of the discrimination threshold 

(Fig. 1.2B). Depth-contrast sensitivity improved with increasing spatial frequency: all 

bats required deeper gratings to detect low spatial frequencies, while shallower 

gratings sufficed with increasing spatial frequencies. This high-pass characteristic is 

qualitatively comparable to the high-pass portion of the human visual contrast 

sensitivity function (Fig. 1.2C). 

To understand the auditory perceptual cues behind the bats’ ability to assess 

spatial frequency, we measured the acoustic impulse responses (aIR) of the depth 

gratings from the bats’ perspective. The aIR is the echo-acoustic counterpart of a 

visual image. As the visual image of an object is a reflection pattern in response to a 

flash of white light, the aIR is the reflection pattern in response to a spectrally white 

acoustic impulse. It fully describes the object’s reflection properties and determines 

the returning echo. Amplitude and duration of the gratings’ aIR (and therefore also 

their echoes) increased with increasing grating depth and spatial frequency 

(Fig. 1.2D). We estimated relative echo amplitude by calculating the difference in 

target strength (root mean square of the aIR) between each grated test disc and the 

flat reference disc. These biophysical measurements parallel the perceptual 

thresholds: target-strength differences (TSD) increased with increasing grating depth 

and spatial frequency, with a very sudden increase around the grating-depth 

threshold (Fig. 1.2D). The discs’ TSD at discrimination threshold for each spatial 

frequency roughly matches P. discolor’s threshold for TSD of about 5-7 dB (Heinrich 

et al. 2011), suggesting that spatial frequency sensitivity is mediated by TSD 

(Fig. S1). However, to discriminate spatial frequencies with equal target strengths, 

bats will require additional cues. These cues might be distinct temporal envelope 

structures (compare colored aIRs in Fig. 1.2D), which are well perceptible to bats 

(Grunwald et al. 2004). 

To date, we understand very little about the perception of complex 3D layouts with 

echo-imaging (Wohlgemuth et al. 2016). Our results provide an important 

demonstration of the auditory systems’ capabilities for spatial perception as basis for 

orientation and navigation. 

First, we demonstrated a perceptual spatial high-pass filter in echo-imaging that 

allows extracting the contours of objects, directly comparable to vision. This 

convergent evolution across sensory systems points to a strong survival benefit of 

perceiving the spatial layout of the environment. Spatial-frequency mediated figure-

ground-separation would facilitate prey detection in complex auditory scenes by 

rejecting low-frequency background and letting pass high-frequency prey 

information. One relevant scenario is the detection of insects on or above water 

surfaces (‚trawling‛). Despite the background echoes produced by surface 

turbulences, trawling is common in bats (Kalko and Schnitzler 1989; Schnitzler et al. 

1994; Weinbeer et al. 2006). It is possibly promoted by spatial high-pass filtering: 

weak turbulences, like waves, possess low spatial frequencies, because the surface 
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tension smoothes out sharp edges. Protruding solid structures (prey) and strong 

turbulences generated by prey movement possess high spatial frequencies. Similarly, 

a perceptual spatial high-pass filter will promote the detection of prey on smooth 

vegetation surfaces (Geipel et al. 2013) as well as of roosts (Ruczynski et al. 2007), 

since the sharp edges of holes, cracks and other openings in trees and rock surfaces 

increase the spatial frequency content. 

Second, we demonstrated that high-pass filtering in echo-imaging is likely 

mediated by conversion of spatial features into proximate echo parameters 

(amplitude, duration, envelope fluctuation), which then undergo established auditory 

analysis. In the primate visual system, contrast sensitivity is mediated by the spatial 

arrangement of neuronal connections in the retina, mechanistically implemented by 

the center-surround organization of the receptive fields of ganglion cells (Hartline 

1949; Von Bekesy 2017). The size of its receptive field determines the cell’s response 

to gratings of different spatial frequencies and the cut-off-frequency of its spatial 

high-pass filter: spatial frequencies whose period exceeds the size of the receptive 

field are hard to perceive. Consequently, the effective functional similarity of spatial 

high-pass filtering in vision and echo-imaging, allowing figure-ground separation in 

both systems, must not be extrapolated to the spatial resolution of both sensory 

systems. Due to the mechanistic differences, echo-imaging will not provide a resolved 

perceptual representation of gratings within the pass-band of the spatial high-pass 

filter.  

Our findings suggest a mechanistic sensory strategy for converting spatial layout 

into perceptible auditory cues. They highlight how selective pressures have 

convergently shaped both vision and audition to extract spatial features for 

orientation and navigation, and challenge the notion that the auditory system’s 

sensory constraints inevitably lead to inferior spatial performance. 

 

SUPPLEMENTARY MATERIALS 

FIGURE S1 DIFFERENCES IN TARGET 

STRENGTH CAN SERVE TO EXPLAIN 

THE BATS’ DETECTION 

PERFORMANCE.  (A) Each line 
depicts detection performance 
(mean over all bats) at the denoted 
spatial frequency as a function of 
grating depth. Horizontal dashed 
lines at 50 and 70 % correct depict 
chance and significance level, 
respectively. (B) Each line depicts 
the target-strength difference (at 
45°ensonification angle) between 
the test disc of the denoted spatial 
frequency and the reference disc as 
a function of the test disc’s grating 
depth. Grey bar depicts target-
strength-difference-discrimination 
threshold (Heinrich et al. 2011). 
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Experimental animals We used six adult individuals (four male, two female) of the 

neotropical omnivorous bat species Phyllostomus discolor, Wagner, 1843.These bats 

emit short (<3 ms), downward frequency-modulated, multi-harmonic echolocation 

calls covering the frequency range between 45 and 100 kHz (Rother and Schmidt 

1982). Bats originated from a breeding colony at the Department Biology II of the 

Ludwig Maximilians University Munich and were kept at the Max Planck Institute for 

Ornithology in Seewiesen (12 h night / 12 h day cycle, 65-75% relative humidity, 

28°C) with unlimited access to water at all times. On free days, the bats had ad 

libitum access to mixed fruit and mealworms (larval form of Tenebrio molitor) 

supplemented with essential fatty acids (Efaderm®), minerals (Korvimin 

ZVT+Reptil®) and vitamins (NutriCal®). During training periods, bats were fed with 

mealworms in the experiment. All experiments complied with the principles of 

laboratory animal care and were conducted under the regulations of the current 

version of the German Law on Animal Protection (approval 55.2-1-54-2532-34-2015, 

Regierung von Oberbayern). 

Stimuli The 27 stimulus discs (Fig. 1.1B) were manufactured by a milling cutter 

(Modellbau Grossmann, Calw). They were 5 cm high, 45 cm in diameter wide and 

were covered in concentric waves. From the bat’s typical viewpoint in the setup (40 

cm decision distance and 45° ensonification angle), the discs covered a considerable 

area of the bat’s sonar footprint (Vanderelst et al. 2010). The cross-section of each 

disc’s surface can be described by a sine wave function whose peak amplitude 

represents the grating depth and whose number of periods per diameter defines the 

spatial frequency. Five spatial frequencies were tested, namely 4.4, 8.9, 17.8, 35.6, 

and 71.1 cycles/meter (Fig. 1.1B), corresponding to 2, 4, 8, 16 and 32 wave troughs 

per disc, respectively. From the bat’s typical viewpoint in the setup, this corresponds 

to spatial frequencies of 0.125, 0.25, 0.5, 1 and 2 cycles/degree. Within each spatial 

frequency, a set of six grating depths was tested; namely ±16, ±8, ±4, ±2, ±1, and ±0 

mm. The reference stimulus was a flat disc, identical to the ±0 mm control.  

Experimental setup The experiments were performed inside a dark echo-

attenuated chamber in a dark echo-attenuated room. Two infrared floodlights 

(TV6819, ABUS, Wetter, Germany) and a camera (WAT-902H2 Ultimate, Watec Co. 

LTD, Higashine, Japan) were mounted inside the chamber for observation. Both 

experimenter and control computer were stationed outside the chamber. Inside the 

chamber, a custom-built table held both the stimulus-presentation apparatus and the 

experimental cage (87 cm x 65 cm x 18 cm, W x H x D, built from wire mesh; Fig. 

1.1C). Two stimulus discs (reference and test disc), were presented simultaneously. 

Both discs were placed on a carousel mechanism of the stimulus-presentation 

apparatus underneath the table, swivelled to their pseudo-randomly assigned 

positions and hoisted up into two holes in the tabletop. Due to this procedure, 

blinding was not possible. Infrared light barriers were fixed close to the bottom of 

both cage sidewalls to detect the presence (and thus decision) of the bat. They were 

connected to the serial port of a personal computer. Data recording and stimuli 
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presentation order were controlled via a custom MATLAB R2007b application (The 

Mathworks, Inc., Natick, MA, USA).  

 

General procedure Daily training sessions lasted 20-30 minutes per bat at 5 d per 

week, followed by a 2 d break. The experiment followed a two-alternative, forced-

choice paradigm (2AFC) with food reinforcement. Once a bat sat at the starting 

position in the cage, both the flat disc (reference) and one grated disc (test) were 

presented. The position of the flat disc (left or right) was pseudo-random (Gellermann 

1933). Bats had to move towards the flat disc, where they were rewarded with a 

mealworm as soon as they interrupted the corresponding light barrier. Then the bats 

returned to the starting position, where they waited in a closed starting box without 

sensory access to the outside until the discs were swivelled and a new trial started. 

Once a bat had learned this task (>70% correct choices on 5 consecutive days), data 

acquisition started for the same spatial frequency but with stepwise smaller grating 

depths, making the detection task more and more difficult. Daily data acquisition 

started with four consecutive trials presenting the largest grating depth of ±16 mm, 

continued with stepwise reduced grating depths, each presented for four trials. After 

a grating depth of ±0mm was reached, data acquisition returned to ±16 mm etc. until 

the daily session was completed. To keep the bats motivated, three or two trials 

instead of four trials per grating depth could be presented in a row, or easier trials 

(with larger grating depth) could be interspersed. Testing of one spatial frequency set 

was completed when 30 trials per grating depth and bat were recorded. 

For the lowest tested spatial frequency of 0.125 cyc/deg, none of the bats reached 

the criterion level of 70% correct choices. To keep up motivation and to exclude the 

possibility that the bats had unlearned the task, trials with discs from a higher spatial 

frequency set were interspersed. In this manner, testing of all six grating depths at 

the 0.125 cyc/deg spatial frequency could be completed for two bats. For the other 

four bats, we needed to further adjust the procedure. We tested the detection of the 

spatial frequency of 0.125 cyc/deg only for the largest grating depth of ±16 mm and 

interspersed trials with the next higher spatial frequency of 0.25 cyc/deg at the 

largest grating depth of ±16mm (which the bats could detect). In this manner, we 

controlled for the possibility that lack of motivation or forgetting the task caused the 

bats to miss the criterion level at a spatial frequency of 0.125 cyc/deg. After none of 

the bats reached the criterion level at the largest grating depth at a spatial frequency 

of 0.125 cyc/deg, testing of the remaining smaller grating depths was dismissed and 

we conclude that bats cannot perceive ripples of ±16mm grating depth or smaller at a 

spatial frequency of 0.125 cyc/deg. Bat 6 dropped out due to pregnancy before 

completion of the 0.25 cyc/deg and 1 cyc/deg data sets. 

Impulse responses and target strength measurements To evaluate the echo 

scenes reflected back by the experimental discs, we ensonified the discs with band-

pass filtered white noise through a loudspeaker (Vifa Denmark A/S, Viborg, Denmark) 

and amplifier (AVR 445, Harman/Kardon, Stamford, CT, USA), and recorded the 
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echoes with a ¼’’ measurement microphone and pre-amplifier (Type 40BF and 

26CA, G.R.A.S. Sound & Vibration A/S, Holte, Denmark; protective grid removed) 

powered by a power module (G.R.A.S. Type 12AA).  

Sound recording and noise playback were synchronized through an audio interface 

(Fireface 800, RME Audio AG, Haimhausen, Germany), which was controlled by 

SoundMexPro software (HörTech, Oldenburg, Germany) in MATLAB. The noise pass 

band ranged from 3 to 92 kHz. This encompasses the main frequency range used by 

P. discolor. Measurements were carried out with the speaker and microphone 

positioned at a distance of 40 cm to the disc at angles of 30°, 45°, 60° and 90° relative 

to the disc’s center. We ensured a flat frequency response of the noise playback by 

filtering white noise with the speaker’s compensatory impulse response (impulse 

response filter with cut-off frequencies of 3 and 92 kHz). Initial measurements of the 

speaker impulse response were conducted with the measurement microphone 

oriented perpendicular to the speaker at a distance of 40 cm.  

We obtained each disc’s acoustic impulse response (aIR) by cross-correlating the 

outgoing noise with the reflected echo in MATLAB (Version R2015a, The MathWorks 

Inc., Natick, MA, USA). aIRs and target strength depend on the ensonification angle. 

For the current comparison we chose target strengths at an ensonification angle of 

45° relative to the disc’s center, which matches the typical position of the bats during 

the experiment, and where target-strength differences were most conspicuous. 

Target strength differences between grated and flat discs were calculated by 

subtracting the root mean square of the corresponding impulse responses (test disc 

minus reference disc). 

Data analysis Psychometric functions for five spatial frequencies between 0.125 

cyc/deg and 2 cyc/deg were measured, i.e. the detection performance of the bat (in 

% correct detections over 30 trials) as a function of grating depth (from ±16 mm to 

±0 mm). A sigmoid function was fitted to the psychometric function (MATLAB 

R2007b; The Mathworks, Inc., Natick, MA, USA) and the value of this fit at 70% was 

taken as threshold. In a 2AFC paradigm with 30 trials per point, 70% correct is 

significantly above chance level (95%-confidence intervals: 50.6-85.3%; Clopper-

Pearson method for binomial confidence intervals). For the spatial frequency 0.125 

cyc/deg, the threshold was assumed to be higher than ±16 mm, since none of the bats 

reached the significance level of 70%. Likewise, this was the case for Bat 5 at the 

spatial frequency 0.25 cyc/deg where it missed the 70% criterion. For calculating the 

average performance across bats, the threshold value in those conditions was 

conservatively set to ±16 mm. 
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Chapter 2 

 

Flutter sensitivity in FM bats. Part I: delay modulation 

 

 

Echolocating bats measure target distance by the time delay between call and 

echo. Target movement such as the flutter of insect wings induces delay modulations. 

Perception of delay modulations has been studied extensively in bats, but only 

concerning how well bats discriminate flutter frequencies, never with regard to flutter 

magnitude. We used an auditory virtual reality approach to generate changes in echo 

delay that were independent of call repetition rate, mimicking fluttering insect wings. 

We show that in the frequency-modulating (FM) bat Phyllostomus discolor, the 

sensitivity for modulations in echo delay depends on the rate of the modulation, with 

bats being most sensitive at modulation rates below 20 Hz and above 50 Hz. The very 

short duration of their calls compels FM bats to evaluate slow modulations (< about 

100 Hz) across entire echo sequences. This makes them susceptible to interference 

between their own call repetition rate and the modulation rate. We propose that this 

phenomenon constitutes an echo-acoustic wagon-wheel effect. We further 

demonstrate how at high modulation rates, flutter sensitivity could be rescued by 

using spectral and temporal cues introduced by Doppler distortions. Thus, Doppler 

distortions may play a crucial role in flutter sensitivity in the hundreds of FM species 

worldwide.  

 

A. Leonie Baier and Lutz Wiegrebe (2018) Flutter sensitivity in FM bats. Part I: 

delay modulation. The Journal of Comparative Physiology A (in press; https://doi.org/ 

10.1007/s00359-018-1291-z) © The Authors 2018 
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Chapter 3 

 

Flutter sensitivity in FM bats. Part II: amplitude modulation 

 

 

Bats use echolocation to detect targets such as insect prey. The echolocation call of 

frequency-modulating bats (FM bats) typically sweeps through a broad range of 

frequencies within a few milliseconds. The large bandwidth grants the bat high 

spatial acuity in depicting the target. However, the extremely short call duration and 

the overall low duty cycle of call emission impair the bat’s capability to detect e.g. 

target movement. Nonetheless, FM bats constitute more than 80% of all echolocating 

species and are able to navigate and forage in an environment full of moving targets. 

We used an auditory virtual reality approach to generate changes in echo amplitude 

reflective of fluttering insect wings independently from other confounding 

parameters. We show that the FM bat Phyllostomus discolor successfully detected 

these modulations in echo amplitude and that their performance increased with the 

rate of the modulation, mimicking faster insect wing-beats. The ability of FM bats to 

detect amplitude modulations of echoes suggests a release from the trade-off 

between spatial and temporal acuity and highlights the diversity of selective 

pressures working on the echolocation system of bats.  

 

A. Leonie Baier, Kristin-Jasmin Stelzer, and Lutz Wiegrebe (2018) Flutter 

sensitivity in FM bats. Part II: amplitude modulation. The Journal of Comparative 

Physiology A (in press; https://doi.org/10.1007/s00359-018-1292-y) © The Authors 

2018 
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Discussion 

 

In our opening example, we observed bats foraging low over a lake. All water 

surfaces are characterised by their co-varying spatial and temporal frequencies. This 

thesis aimed to quantify the sensitivity of bat echolocation for spatial and temporal 

frequency. I assessed sensitivity for depth contrast as a function of spatial frequency 

in Chapter 1. I measured sensitivity for echo-delay modulations and for echo-

amplitude modulations as a function of temporal frequency in Chapters 2 and 3, 

respectively. Chapter 1 demonstrated a high-pass filter for the detection of spatial 

frequency. Chapter 2 revealed an echo-acoustic wagon-wheel effect that arises from 

the interaction of call rate and modulation rate. Furthermore, Chapter 2 introduced 

the possible use of Doppler distortions in FM echolocation. Chapter 3 corroborated 

the use of Doppler cues but indicated a fundamental difference in the processing of 

modulations of echo delay on the one hand and echo amplitude on the other hand. On 

the whole, these data help to improve our understanding of how bats perceive 

complex environments with a non-spatial, non-continuous sensory system. Below I 

discuss these results in a broader context and indicate research directions that arose 

from the current experimental work. Some of them I have begun to address, but they 

ultimately proved to be beyond the scope of the current thesis.  

 

Water turbulence: clutter or clue? - Water bodies offer an abundance of prey, 

often soft bodied and easily digestible (Fukui et al. 2006). Many bat species exploit 

this rich resource and show morphological adaptations to capture prey from water 

surfaces or even out of the water: their hind legs and tail membranes are highly 

specialized and fish-eating species have sharp claws. We find these so-called trawling 

bats in at least three bat families: Vespertilionidae [Myotis adversus (Thompson and 

Fenton 1982), Myotis albescens  (Kalko et al. 1996), Myotis capaccinii (Kalko 1990), 

Myotis dasycneme (Britton et al. 1997), Myotis daubentonii (Kalko and Schnitzler 

1989), Myotis ricketti (Ma et al. 2003), Myotis vivesi (Blood and Clark 1998)], 

Noctilionidae [Noctilio albiventris (Kalko et al. 1998), Noctilio leporinus (Schnitzler et 

al. 1994)] and Phyllostomidae [Macrophyllum macrophyllum (Weinbeer et al. 2006)].  

Remarkably, these bats don't show adaptations for clutter avoidance (Jones and 

Rayner 1991; Kalko et al. 1998; Siemers et al. 2001a; Jones and Rydell 2003; Siemers 

and Schnitzler 2004). In cluttered environments efficient prey detection within the 

acoustic domain is especially challenging. Clutter refers to structures the echoes of 

which can mask the prey echo. Bats that forage close to vegetation or other clutter 

usually apply one of two strategies to increase signal-to-noise ratio. Either they adapt 
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their echolocation call to gain maximal resolution and thereby increase the signal 

(Schnitzler and Kalko 2001; Siemers and Schnitzler 2004).  Or, they use passive 

listening to prey-generated sounds instead of echolocation (Jones and Rydell 2003) 

and thereby reduce the noise. As a matter of fact, smooth water surfaces do not 

require either of these adaptations to clutter as they are considered clutter-free (Kalko 

and Schnitzler 1989).  

Foraging trawling bats fly at low 

heights above the water surface and 

emit their calls in forward direction. 

The sound beam interacts with the 

bat’s immediate environment in three 

different ways: First, smooth water 

surfaces act like mirrors, both in 

vision and echolocation. Sound waves 

that hit the water surface at small 

angles relative to the surface are 

reflected away from the bat, 

according to Snell’s law. Therefore, 

little or no clutter echo is reflected 

back to the bat (Mackey and Barclay 

1989; Schnitzler et al. 1994; Boonman 

et al. 1998; Rydell et al. 1999). 

Second, the small fraction of the 

sound beam that hits the water 

perpendicularly, directly below the bat, produces a detectable echo. The delay of this 

echo encodes the bat’s flight height above the water surface. Finally, sound waves 

that hit a target floating on the water surface in front of the bat are reflected back 

towards the bat in a twofold way: directly, and indirectly via the water surface. Hence, 

the overall amplitude and duration of this combined echo is larger than the direct 

echo alone (as it would be produced by the same target suspended in air). Due to this 

acoustic mirror effect, bats can detect targets on smooth water surfaces easier 

(Boonman et al. 1998; Siemers et al. 2001b) and from further away (Siemers et al. 

2005) than on vegetation or suspended in air. In a nutshell, calm smooth water 

surfaces render prey items very conspicuous.  

Indeed, foraging trawling bats prefer smooth water to vegetation-covered water 

(Boonman et al. 1998), water covered by artificial foam blocks (Mackey and Barclay 

1989), or turbulent water (Von Frenckell and Barclay 1987; Rydell et al. 1999; Warren 

et al. 2000). In most cases, this preference cannot be explained by prey abundance 

(Von Frenckell and Barclay 1987; Boonman et al. 1998; Rydell et al. 1999). However, 

Warren et al. (2000) demonstrate that insect abundance correlates with the habitat 

preferences of bats. Generally, it has been assumed that clutter and/or noise 

produced by the water turbulences impair bats’ foraging efficiency. 

FIGURE D.1 MYOTIS DAUBENTONII, A EUROPEAN 

TRAWLING BAT. Photo by D. Nill 
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A more recent study, however, indicates that prey detection is not impaired by 

turbulent water: Zsebők et al. (2013) formally quantified the effects of surface 

properties and target height on both target detection and discrimination of Myotis 

daubentonii. Experiments were carried out both in a large flight room under 

controlled conditions and in the field in a more natural situation. In a two-alternative, 

forced-choice paradigm, the bats had to detect a mealworm and discriminate it from 

an inedible dummy. Echolocation and flight behaviour were recorded. Psychophysical 

performance was measured as a function of height above either a smooth or a 

cluttered surface. The clutter surface consisted of artificial lawn, which contains 

strong high spatial-frequency components. At low target heights (<35 cm), the bats’ 

detection performance was worse over clutter than over the smooth surface, whereas 

at a target height of 50 cm there was no effect of surface structure on target 

detection. Target discrimination was also impaired at low heights above the cluttered 

surface. Generally, over clutter, bats produced approach calls with significantly 

higher peak frequency and flew about 20 cm higher than when approaching the 

target above water. However, prey detection performance above the rippled water in 

the field experiments was very similar to that above completely calm water in the lab 

experiments. 

These discrepancies of the studies on trawling above turbulent water suggest that 

the degree of turbulence (and thus the spatial-frequency composition) determines the 

degree of prey detection impairment. I speculate that the auditory system of 

echolocating bats uses the concept of spatial frequency in order to segregate 

foreground from background and thereby increase signal-to-noise ratio during prey 

detection over turbulent water surfaces. I propose the existence of a threshold spatial 

frequency below which turbulent water surfaces don't impair prey detection and 

above which turbulent water surfaces impair prey detection with echolocation and are 

therefore avoided during foraging. 

The artificial grass used by Zsebők et al. (2013) consisted mainly of sharp edges 

and thus reduced detection performance. The clutter surface used by Siemers and 

Schnitzler (2004) and the duckweed vegetation of Boonman et al. (1998) included 

regular sharp edges as well. Thus, sharp edges (i.e. high spatial frequencies) in the 

background structure dramatically reduce performance of bats. In contrast, M. 

daubentonii perform similarly above smooth water in the laboratory and above 

rippled water in the field. The echoacoustic reflection of rippled water did not impair 

the bats’ performance (Zsebők et al. 2013). According to my results in Chapter 1, 

water surfaces with low spatial frequency waves can be perceived as smooth surfaces 

and hence do not affect foraging performance. Rydell et al. (1999) report reduced 

activity of M. daubentonii over water with ripples that were approximately 2-3 cm in 

amplitude and 5-10 cm in wavelength. This corresponds to spatial frequencies of 10-

20 cyc/m and grating depths of ±10 to ±15mm. In Chapter 1, bats showed a detection 

threshold of around ±4mm for a spatial frequency of 17.8 cyc/m (0.5 cyc/deg), 

meaning that the ripples that Rydell and his colleagues observed would have been 

well perceivable and indeed have affected prey detection. On large water bodies, 
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wind generates waves that typically have similarly high amplitudes (0.8-38.3 mm) but 

much longer wave lengths of around 82 cm, corresponding to a spatial frequency of 

less than 1.5 cyc/m [wave maximum frequencies around 1.4 Hz with an upper-

frequency limit below 10 Hz (Bleckmann and Rovner 1984)]. Based on the results 

from Chapter 1, bats are highly unlikely to perceive such low spatial frequencies, no 

matter the wave amplitude. However, the exact cut-off frequency of the spatial high-

pass filter is very likely to be species-dependent. 

So far I have discussed water turbulences as possible hindrance for foraging bats. 

But many predatory species across the animal kingdom make use of water surface 

ripples generated by their prey.  

A positive tactic response towards surface waves has been demonstrated in leeches 

(Dickinson and Lent 1984), surface-feeding fish (Bleckmann et al. 1989), a variety of 

aquatic amphibians and insects (Bleckmann 1985), and fishing spiders (Bleckmann et 

al. 1994). Most of these predators can discriminate between the different wave-

sources by means of analysing both spatial and temporal frequency and amplitudes of 

the waves. Objects falling onto the water surface elicit transient changes in both 

spatial and temporal frequency. Drowning terrestrial insects produce wave stimuli 

that are characterized by broad frequency bands (half-amplitude bandwidth 30-

60 Hz), high upper-frequency limits (100-140 Hz), and low amplitudes (peak 

amplitudes 2-81 µm) with the peak amplitude situated far above 10 Hz (Lang 1980; 

Bleckmann 1985). Some specialist species can also peruse the wavefront curvature, 

the surface’s dispersive properties and the frequency-dependant absorption 

(Bleckmann and Schwartz 1982; Hoin-Radkovsky et al. 1984; Bleckmann et al. 1994). 

While insect-generated waves are minuscule in amplitude, their spatial frequency is 

large, far beyond the range we could test in the Chapter 1 experiment. It would be 

interesting to know if P. discolor and other FM bats can perceive ripples of these 

qualities. 

There are two known examples of exploiting prey-generated turbulence for prey 

detection among bats: Noctilio leporinus, which uses CF echolocation calls 

(Schnitzler et al. 1994; Ubernickel et al. 2013), and the neotropical fringe-lipped bat 

Trachops cirrhosus (Halfwerk et al. 2014), a Phyllostomid bat that uses FM 

echolocation. T. cirrhosus forages mainly on male túngara frogs (Physalaemus 

pustulosus), hence it is also called the frog-eating bat. Male túngara frogs advertise 

for females from small breeding puddles. The main component of the mating signal is 

acoustic. The frog produces either a simple call, consisting of a frequency-modulated 

~350 ms sweep called a ‘whine’, or a complex call consisting of a whine followed by 

1-7 broadband ~40–80 ms harmonic bursts called ‘chucks‘ (Ryan 1980).  

Female frogs use the call to locate a mate and frog-eating bats rely on the call to 

locate a meal. Both receivers are preferentially attracted to complex calls over simple 

calls. In the frog’s display there are also associated visual cues (an inflating vocal sac, 

perceived by the bats by echolocation), and turbulence cues (water ripples generated 

by the inflating vocal sac). To reduce predation risk, frogs stop calling in response to 
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predator cues (Bernal et al. 2007), a strategy that effectively increases localization 

errors by bats (Page and Ryan 2008). However, ripple propagation continues for 2-3 s 

after call cessation (Halfwerk et al. 2014) and thus could be used as additional 

foraging cue. Even though T. cirrhosus mainly listens to prey-generated cues for 

detection and localization, it produces echolocation calls throughout the prey 

approach (Barclay et al. 1981). T. cirrhosus increases its attack rate on attack model 

frogs by 36.5 % when ripples are added to the acoustic component of the call 

(Halfwerk et al. 2014). 

I was interested in the attack behaviour of the frog-eating bat when presented with 

artificial water waves mimicking the ripples created by the inflating vocal sac of the 

túngara frog. In order to learn more about how Trachops cirrhosus might exploit the 

turbulences generated by the frog, we designed a set of experiments to quantify 

attack rates on water ripples in the absence of additional prey cues (inflating vocal 

sac or frog call). Single wild bats were captured and left to forage above an artificial 

pond in an outdoor flight cage. Water ripples were generated in one of four possible 

locations on the pond and bats received a food reward in case of successful detection. 

Echolocation behaviour was recorded with a five-channel microphone array. Because 

bats do not initiate foraging flights without the broadcast of a frog call (Page and 

Ryan 2008), a speaker was placed next to the pond that broadcasted a call at the 

beginning of a trial and was turned off as soon as the bat left its perch. Out of twelve 

captured bats four learned to search for the food reward on the pond. None of these 

four bats detected the artificial turbulences at a significant success rate although two 

bats showed a positive trend towards finding the correct location. Thus, the question 

whether the frog-eating bat is able to find prey based solely on water turbulence cues 

remains open. Based on my observations during the experiments, I suspect a strong 

influence of the acoustic cue on the behaviour of the bat. I hypothesize that not only 

the acoustic component of the frog’s display is necessary to elicit foraging behaviour 

in the bat (Page and Ryan 2008), but that a close spatial relationship between the frog 

call and the water ripples is necessary to trigger a search-image in the bat. Female 

túngara frogs show perceptual binding of the acoustic and visual component of the 

male frog’s display (Clark and Dukas 2003). Similarly, perceptual binding of acoustic 

and echo-acoustic cue might be present in the frog-eating bat, since the acoustic 

component imperatively precedes the ripple component in the wild.  

I believe that the frog-eating bat and the túngara frog provide an outstanding 

system to get closer to answering the question whether FM bats can use water 

turbulences as foraging cues. With future research I want to address this subject in 

more detail. A related question that arose from my work regards the influence that 

the angle of ensonification has on the detection of water turbulences. 

 

Influence of ensonification angle - In the spatial frequency detection experiment 

in Chapter 1, bats would have had the possibility to change the angle from which to 

echolocate at the targets. For instance, the set-up would have allowed them to choose 
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a position directly above the discs or directly next to them. However, no such strategy 

could be observed. The typical position of a bat during the detection task was at 45° 

relative to the disc’s centre at 40 cm distance. According to our impulse-response 

measurements in Chapter 1, this position yields the most conspicuous differences in 

target strength between the flat and the rippled disc. Impulse-response 

measurements were carried out with the speaker and microphone positioned at 

angles of 30°, 45°, 60° and 90° relative to the disc’s centre at a distance of 40 cm to 

the disc. My data showed that echoes from rippled surfaces depend very much on 

sound impingement angle. For an ensonification angle of 45°, amplitude and duration 

of the impulse responses increased with increasing grating depth and spatial 

frequency. The difference in target strength between each rippled test disc and the 

flat reference disc paralleled the perceptual thresholds: target-strength differences 

(TSD) increased with increasing grating depth and spatial frequency, with a very 

sudden increase around the respective spatial frequency’s grating-depth threshold. 

The discs’ TSD at discrimination threshold for each spatial frequency roughly 

matches P. discolor’s threshold for TSD of about 5-7 dB (Heinrich et al. 2011). At a 

shallower ensonification angle of 30°, the relationship between TSD and spatial 

frequency/grating depth follows the same pattern as for the 45° ensonification, but 

shifted in a way that the TSDs at discrimination threshold were only 0-5 dB. This 

means that bats’ detection thresholds would have been systematically worse had the 

bats ensonified the ripples from a shallower angle (if we assume that bats’ spatial 

frequency sensitivity is indeed mediated by TSDs). At a steeper ensonification angle 

of 60°, the relationship between TSP and spatial frequency/grating depth becomes 

more erratic; for higher spatial frequencies, the sudden increase in TSD around the 

threshold grating depth is missing. At an ensonification angle of 90°, any relation 

between TSD and spatial frequency or grating depth is lost. It is noteworthy however, 

that from this vertical position all TSD values are 20 dB and higher, so well above P. 

discolor’s TSD threshold of 5-7 dB (Heinrich et al. 2011). 

These results raise the question whether a flying bat also ensonifies the water 

surface at an angle of 45°. Rydell et al. (1999) report that M. daubentonii bats fly low 

over water and hold their heads horizontally, approximately in line with the body, 

during call emission. It was concluded that the echolocation beam is thus emitted 

parallel to the water surface. Sonar emissions are directional, i.e., the emission’s 

sound level changes with its direction in azimuth and elevation. This spatial pattern 

has been quantified for several bat species (Surlykke et al. 2009; Brinklov et al. 2011; 

Jakobsen et al. 2013). It is generally referred to as the sonar beam, although this term 

is somewhat misleading because the echolocation beam is often lobe-shaped, not 

cone-shaped like a light beam. 

 When hunting in open air, the sonar beam of M. daubentonii can be described as 

circular (Jakobsen and Surlykke 2010). Their frequency-modulated call has most of its 

energy at 55 kHz. For this frequency, both the maximum horizontal and vertical beam 

width is approximately 120°. The sound pressure at 45° vertically off-axis is reduced 

by approximately 6 dB relative to the centre of the piston and by approximately 12 dB 
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at 90° vertically off-axis, i.e., directly below the bat (Jakobsen and Surlykke 2010). A 

bat emitting its calls parallel to the water surface would therefore receive the 

strongest echoes from directly ahead, on-axis, but also audible echoes from the water 

surface ahead and directly below, including a 45° ensonification angle. However, as 

mentioned these sonar-beam measurements stem from M. daubentonii ensonifying 

an airborne target. Measuring beam size of bats flying above water is not a trivial task 

due to strong interference from water reflections. While horizontal beam-width of M. 

daubentonii when hunting over a water surface appears similar to when hunting in 

open air (Surlykke et al. 2009), to date no data are available for their vertical beam-

width above water. 

M. daubentonii emits its calls through the mouth. Both P. discolor, the species 

under study in this thesis, and T. cirrhosus, the frog-eating bat, belong to the family 

of Phyllostomid bats, which emit their echolocation calls through the nostrils. The 

nose leaf, name giving to this bat family, surrounds the nostrils. The nose leaf is a 

highly motile fleshy extension of the nose in the shape of a lancet. Phyllostomid bats 

produce sonar beams that are both highly directional (Brinklov et al. 2011; Surlykke 

et al. 2013) and highly dynamic (Linnenschmidt and Wiegrebe 2016), with the nose 

leaf determining especially the vertical directionality (Hartley and Suthers 1987; 

Vanderelst et al. 2010; Kugler and Wiegrebe 2017). The height of the sonar beam in 

Phyllostomid bats is much smaller than in M. daubentonii; around 60° in Carollia 

perspicillata, P. discolor, and T. cirrhosus (Brinklov et al. 2011; Linnenschmidt and 

Wiegrebe 2016; Surlykke et al. 2013). However, it is noteworthy that bats narrow 

their sonar beam in the confined environment of a laboratory in comparison to the 

wild (Surlykke et al. 2009) and possibly also when free-flying compared with when 

they are stationary (Brinklov et al. 2011). 

Keeping all of these aspects in mind, we can conclude that an experiment with 

free-flying bats solving a spatial frequency detection task would give us more insight 

on the perception of rippled surfaces and its dependence on ensonification angle. 

Preceding the experiment in Chapter 1, I have tried to train free-flying P. discolor 

bats to the detection of rippled surfaces without success. While I can’t exclude the 

possibility that they could have eventually learned this task, there are other bat 

species with foraging ecologies more suited to the task. Both M. daubentonii as a 

trawling mouth-emitting bat as well as T. cirrhosus as a nose-leaved bat make 

excellent candidates to study the question how bats optimize their calling angle on 

water surface ripples. 

 

Evaluation of transient cues - Prey-induced turbulences are temporary or 

transient cues, i.e., they change their reflective characteristics over time and 

eventually disappear. Bat echolocation faces special challenges with the analysis of 

transient cues: it is not continuous but stroboscopic. A bat calls, and then must be 

silent in order to hear the returning echo. In Chapter 2 and 3, I measured how small a 

periodic movement with a specific frequency can become to be still detectable by an 
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echolocating bat. My results show that the sensitivity varies considerably among 

different temporal frequencies and that sensitivity depends on the quality of the cue 

that is modulated. In Chapter 2, I modulated echo delay and found a wagon-wheel 

effect that arises from interaction between the bat’s call rate and the modulation rate. 

In this experiment, the wagon-wheel effect resulted in a steep drop in modulation 

sensitivity for modulation rates of 20 Hz and 50 Hz, rates comparable to the bats’ own 

call rate within groups of emitted echolocation calls. One can ask whether a different 

call rate would then result in a wagon-wheel effect that emerges at different 

modulation rates. One can further ask what call rates do aerial hawking FM bats 

employ.  

The call rates of insectivorous aerial hawking bats are often coupled to their own 

wing-beat rate. This strategy allows them to produce intense echolocation calls at low 

cost as a by-product of flight (Heblich 1986; Speakman and Racey 1991; Wong and 

Waters 2001). In particular, during the search phase these bats call only once every 

wing beat (Jones 1994; Kalko 1994). The resulting low call rates not only support 

perception of echoes with long delays, as they can be expected from distant prey 

items, they also prevent any wagon-wheel effect. Once an insect has been detected, 

the call rate increases: the closer the bat gets to its prey the earlier it receives the 

echo and emits the next call. During this approach phase the call rate gradually 

increases until the call series ends with the distinctive terminal buzz (Kalko and 

Schnitzler 1989). The ongoing increase in call rate would prevent the wagon-wheel 

effect and thus allow the bat to perceive the target’s fluttering movement, enabling it 

to discriminate prey type and make appropriate foraging decisions. However, at 

higher call repetition rates during the approach phase, many bats of different families 

[e.g. Vespertilionidae, M. nattereri (Melcón et al. 2007), E. fuscus (Surlykke and Moss 

2000); Phyllostomidae (Weinbeer et al. 2006); Rhinolophidae (Schnitzler 1968)] have 

been reported to keep their call rates stable for periods of up to 200 ms (Moss et al. 

2006) before introducing a longer call pause. The longer intervals between these so 

called strobe-groups of calls have been suggested to serve as window for the bat to 

listen to echoes with longer delays or for functions such as integration of echo 

sequences and motor behaviour control (Wilson and Moss 2003). Moss and Surlykke 

(2010) assumed that bats adjust their call timing in response to perceptual demands. I 

suggest that the avoidance of a wagon-wheel effect within strobe-groups is one of 

those demands. In the virtual reality paradigm used in Chapters 2 and 3, a different 

simulated target distance may have lead to a change in the bats’ call rate within 

strobe-groups. We would expect this to lead to different sensitivity for echo-delay 

modulation but not for echo-amplitude modulation; a hypothesis that remains to be 

tested. 

Notably, it is unknown whether P. discolor, the species under study in this thesis, 

can forage on the wing. There is strong evidence that it forages on insects capable of 

flight (Willig et al. 1993), but we cannot know whether the bats catch this prey 

airborne or on the ground. We could shed light on this question with a simple 

experiment where P. discolor bats are given the chance to hunt airborne insects in a 
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flight-room. Monitoring with stereo high-speed video recordings and with multi-

channel ultrasound recordings would allow for flight-path and sonar-beam 

reconstruction. More information on P. discolor’s foraging behavior will be 

advantageous in interpreting former and future scientific findings on this model 

species. 

For aerial hawking bats, a failure to detect movement does not necessarily mean a 

failure to detect the prey altogether, but it might do so for trawling bats that rely on 

transient turbulences. The CF bat Noctilio leporinus can use echolocation to detect 

small water splashes or other cues produced when prey disrupt the water surface 

from below (Suthers 1965; Ubernickel et al. 2013). Can we expect similar sensitivity 

in FM bats? The prey-generated water ripples that the frog-eating bat T. cirrhosus 

exploits have a main temporal frequency of 12 Hz (Halfwerk et al. 2014). In Chapter 2 

I found that in P. discolor the sensitivity to delay modulation at a rate of 10 Hz is fairly 

high. Given that T. cirrhosus uses a call rate similar to what we found during our 

experiments [25 Hz in cruising flight (Surlykke et al. 2013)], it should be well able to 

detect the ripples through the accompanying modulation of echo delays. In this case, 

a wagon-wheel effect is impossible, since the call rate is higher than the temporal 

frequency of the waves. Alternatively, Halfwerk et al. (2014) proposed that T. 

cirrhosus relies on the temporal variance in echo loudness for the detection of frog-

generated ripples. They found that echoes returning from a rippled water surface had 

higher variance in amplitude than echoes from a smooth water surface. These results 

match our findings from Chapter 2, where the variation in echo amplitude between 

different phases of the amplitude modulation was very high at an amplitude-

modulation rate of 10Hz.  

We can conclude that dynamic cues changing at a slow rate, i.e., at least slower 

than the call emission rate of the bat, should be perceivable to FM bats both through 

the detection of changes in echo delay and in echo amplitude. Transient cues with 

higher temporal frequencies would very likely be subject to the wagon-wheel effect if 

a bat uses one fixed call rate. To find out more about how aerial hawking bats 

perceive transient cues, especially during the approach phase we require more 

experimental data on echolocation behaviour of free-flying FM bats. Stereotypical call 

grouping on the one hand may lead to a wagon-wheel effect, the longer inter-call 

intervals between call groups on the other hand may serve to prevent it.  

 

Spatial frequency discrimination - In Chapter 1 I have shown that P. discolor is 

sensitive to spatial frequency. My experiment was limited to a detection task only. We 

can ask what are the capabilities of echolocating bats when it comes to the 

discrimination between different spatial frequencies? To test this experimentally, bats 

would be presented not with one flat and one rippled disc, but with two rippled discs 

differing in spatial frequency. Additionally, one could introduce high-frequency cues 

in the form of small prey items on top of different low-frequency backgrounds. I have 

attempted this experiment in the field with wild M. daubentonii, to no avail because 
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the bats were not attracted to but rather avoided the experimental setup. A laboratory 

approach might yield more success. Furthermore, for the detection of spatial 

frequency, bats very likely use target strength cues. For the discrimination of two 

spatial frequencies with equal target strength, bats would be forced to abandon 

target-strength evaluation and most likely analyse temporal and/or spectral features 

of the echoes. My measurements have shown that the impulse responses of two discs 

with differing spatial frequency and grating depth (but equal target strength) differ in 

their temporal structure. Differences in echo temporal structure, ‚echo roughness‛, 

are well perceptible to bats (Grunwald et al. 2004). Thus, these temporal envelope 

fluctuations may be an important cue for spatial-frequency discrimination. We 

propose that on top of target-strength analysis, FM bats rely on time-domain analyses 

of the complex echoes from wave surfaces to assess their spatial frequencies - 

another hypothesis that remains to be experimentally evaluated.    

 

Prey detection performance over turbulent water – I have proposed the 

existence of a threshold degree of turbulence below which foraging efficiency is not 

affected because the spatial frequency content is below the cut-off frequency off the 

spatial high-pass filter. In order to test this hypothesis we designed a pilot experiment 

to quantify prey-detection performance above a real water body with tightly 

controlled distribution of both temporal and spatial frequencies (Figure D.2). Single 

wild bats (Myotis daubentonii) were captured and left to forage above an artificial 

pond in the flight laboratory. Prey items (live mealworms, larvae of the species 

Tenebrio molitor) floated on the water surface within a foraging patch measuring 110 

x 120 cm. The bat’s behaviour was monitored with stereo high-speed video 

recordings and with stereo ultrasound recordings. I generated surface waves by 

means of four long-stroke bass speakers, whose membranes were connected to the 

water surface via Styrofoam cones. In order to create ripples of different frequency 

and amplitude, the speakers were driven with different stimuli (pink noise, low 

frequency pure tones) at different amplitude settings. The water surface was 

obliquely illuminated by red light from a slide projector and the resulting reflections 

of the waves were filmed off a projection screen erected behind the pond, together 

with the bat’s behaviour (Figure D.3). In the pilot data, I analysed the number of 

passes prior to a capture event as well as at the search time required to catch the 

prey item. A pass was defined as crossing the foraging area at low height (< 50cm). 

Search time was measured from the first pass to the first capture attempt. A 

successful capture attempt was defined by hearing a feeding buzz on the 

synchronized echolocation recordings emitted by the bat at the location of the prey.  
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FIGURE D.3 PREY-CAPTURE SUCCESS OVER TURBULENT WATER.  Still frames taken from high-

speed footage show glimpses of a catching sequence: the bat (white circle) approaches the 

prey, catches it with its feet and rolls up in flight to take the prey out of the uropatagium. 

FIGURE D.2 PILOT SETUP FOR PREY DETECTION EXPERIMENTS. Frontal view of the pool and the 

projection screen with reflections of the ripples that were created by the bass speakers. Note 

in the foreground inactive speaker on the left and active speaker on the right. 
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Bats reliably detected and localised prey floating on waves with a 5 Hz temporal 

frequency and a 17 m
-1

 spatial frequency. Failed capture attempts occurred in the 

sense that bats were not able to glean the prey off the surface or dropped it during 

further handling, but not due to erroneous localization. While these findings 

corroborate my conclusions from Chapter 1 that bats may rely on the segregation of 

high from low spatial frequencies for prey detection, the limited data set does not yet 

allow confirming or rejecting the hypothesis of an existing threshold for impairment 

caused by water turbulence. 

Rydell et al. (1999) found that bats avoid ripples with amplitudes of 2-3 cm. Even at 

the highest amplitude setting, the waves in the pilot experiment did not reach this 

height. Additionally, S. Greif (personal communication) found that bats no longer 

recognize a water surface when it is covered with a coarsely meshed net. The net 

protruded much less from the water than the height of the waves generated in the 

pilot experiment, but the threads formed sharp edges, producing high spatial 

frequencies. Again, these observations indicate that bats rely on the segregation of 

high from low spatial frequencies for prey detection. The pilot setup allowed both the 

generation and documentation of the resulting spatio-temporal wave structure, but 

for further research both wave generation and monitoring need refined techniques: 

waves would be generated with horizontal rod actuators, driven by the existing 

speakers. Colouring the water black, and projecting a grid pattern vertically onto the 

water surface would improve documentation of the wave structure. The waves would 

perturb the grid pattern, and thus, filming the grid pattern from vertically above 

would allow reconstructing the 3D wave structure. An improved technical set-up will 

allow testing higher temporal and spatial frequencies.  

Based on my results from the formal psychophysical detection experiments and the 

pilot data outlined above, we can devise some expectations: First, prey detection will 

likely become difficult for the trawling bats when the spatial frequency content of 

generated waves approaches the cut-off frequency of the spatial high-pass filter for 

this species. Second, prey detection will likely become difficult for the trawling bats 

when the spatial and temporal frequency content of generated waves approaches the 

frequency range of the local turbulence introduced by the floating prey item. Third, 

we can expect behavioural changes in flight and/or echolocation behaviour of the bats 

in such cases. Ultimately, these experiments will provide evidence in support of or 

against the existence of a turbulence threshold. 
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In this thesis, I have explored the capabilities and limitations of the echolocation 

system of frequency-modulating bats, mostly with regard to tasks that these bats face 

when they forage above water surfaces. My studies have answered many questions 

and brought up many new ones. In the same way, by writing these lines I close one 

door behind me and open many new doors ahead of me. What will guide me through 

all of these doors is the curiosity about what is going on in the brains of these small 

shadows that shoot swiftly through the warm air above a lake, on an early summer’s 

evening.  
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