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1 ZUSAMMENFASSUNG 

 

Das Amyloid Vorläuferprotein (APP) ist ein transmembranes Protein, welches bisher 

hauptsächlich im Hinblick auf seine Rolle in der Pathogenese des Morbus Alzheimer 

untersucht wurde. 

Dahingegen werden die physiologischen Funktionen von APP noch intensiv 

diskutiert, obwohl immer mehr Beweise seine essentielle Rolle während der 

Gehirnentwicklung aufzeigen. Beispielsweise hat das Volllängenprotein zelladhesive 

und rezeptorenartige Eigenschaften, die für die Synapsenbildung und 

Synapsenstabilität grundlegend zu sein scheinen. 

Trotz seiner ubiquitären Expression, konzentrieren sich die meisten Studien auf die 

Funktion von APP in Neuronen, wobei über seine Rolle in Astrozyten noch sehr 

wenig bekannt ist.  

Um ein detaillierteres Verständnis über die Funktionen von APP zu bekommen, 

untersucht die vorliegende Studie die physiologischen Aktivitäten des Proteins 

sowohl in Neuronen, als auch in Astrozyten. 

Das erste Ziel dieser Studie ist es, zu verstehen, ob und auf welche Weise APP 

intrazelluläre Ca2+  Mengen in Astrozyten in vivo beeinflusst. Hierfür verwendete ich 

die Kombination von Astrozyten-spezifischen Ca2+-Indikatoren und 

Zweiphotonenmikroskopie in vivo an anästhesierten APP-Knock Out (KO) Mäusen. 

Die beobachteten Ergebnisse zeigen, dass das Fehlen von APP starken Einfluss auf 

die Ca2+ Transienten entlang der Zellfortsätze hat. Des Weiteren konnten durch 

einen Zellkulturansatz Mitochondrien als wichtige Mediatoren identifiziert werden. Es 

konnte eine starke Veränderung und Fragmentierung des Mitochondriennetzwerks 

zusammen mit einer Akkumulation von Cytochrom C in unmittelbarer Nähe von 

vergrößerten Mitochondrien beobachtet werden. Ein ähnlicher Phenotyp mit 

fragmentierten Mitochondrien wurde bereits in Astrozyten von mutierten Mäusen 

gefunden die eine APP Form ohne intrazelluläre Domäne exprimieren (APPCT15). 

Diese Ergebnisse weisen auf die wichtige Rolle von APP als Modulator der Ca2+ 

Aktivität in astrozytischen Mikrodomänen hin.  

Ein weiteres Ziel der Studie bestand darin die Rolle von postsynaptischem APP in 

der Plastizität dentritischer Dornfortsätze mit Hilfe konfokaler Mikroskopie zu 
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untersuchen. Zu diesem Zweck diente eine Konditionale APP KO, mit Slick V 

gekreuzte Mauslinie. Diese ermöglicht es den Effekt von fehlendem APP in 

einzelnen kortikalen und hippocampalen Neuronen, die von APP positive Astrozyten 

umgeben sind, zu untersuchen. Das Fehlen von postsynaptischen APP führte 

sowohl zu einem Rückgang der Dichte als auch zu einer veränderten Morphologie 

der Dornfortsätze.  

Da diese strukturellen Dornenphänotypen in konventionellen APP KO Mäusen nicht 

beobachtet werden können, war zu vermuten, dass es hier kompensierende 

Mechanismen gibt, die bei konditionalen KO Mäusen nicht auftreten. 

Der letzte Punkt dieser Arbeit konzentriert sich auf einen Dornenphänotyp, der auch 

bei konventionellen APP KO Mäusen vorhanden ist – eine verminderte 

Dornenplastizität nach Haltung in einer angereicherten Umgebung. 

Um zu zeigen, welche funktionale APP Domäne die Dornplastizität vor und nach 

Exposition gegenüber einer angereicherten Umgebung beeinflussen, wurden die 

apikalen Dornfortsätze des somatosensorischen Cortex von APPCT15 mit GFP 

gekreuzten Mäusen mit Hilfe der in vivo Zweiphotonenmikroskopie untersucht.  

Meine Ergebnisse identifizierten die APP Ektodomäne als wesentlich für die 

Erhaltung einer effizienten Dornenplastizität. Keine signifikante Unterschiede wurden 

hinsichtlich der Dornendichte zwischen der APP mutierten Linie und der 

Kontrollgruppe vor und nach der Exposition gegenüber angereicherten Umgebung 

gefunden. 

 

Zusammengefasst stellt diese Studie neue Erkenntnisse vor, was die Rolle von APP 

bei der Regulierung der Funktion von Neuronen und Astrozyten im Gehirn betrifft. 
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“The brain: if it is cultivated, it works. If you let it go it will weaken. Its 

plasticity is terrific. That’s why you have to keep thinking.” 

Rita Levi Montalcini, Italian neurologist, member of Italian Senate and Nobel Prize in Physiology or 

Medicine in 1986. From an interview for the Italian newspaper “La Repubblica”, 2006. 

2 SUMMARY 

Amyloid precursor protein (APP) is a transmembrane protein whose investigation 

has been mainly confined to the role played in Alzheimer’s disease (AD). By 

contrast, the physiological functions of APP are still matter of intensive debate, 

although compelling evidence strongly suggests its essential role during brain 

development. For instance, the full-length protein has cell-adhesion and receptor-like 

properties, which seem to be fundamental in synapse formation and stability. 

Furthermore, despite its ubiquitous expression, the majority of APP-related studies 

focused mostly on its role in neurons, whereas less is known about its functions in 

astrocytes. Thus, this study investigates the physiological actions executed by APP 

both in neurons and astrocytes, with the aim to provide a more detailed view of APP 

functions.  

Astrocytes are electrically silent cells. They influence neuronal activity as well as 

morphology, thus defining the structure and the functionality of the brain network. 

Astrocytic function is primarily dependent on the intracellular free calcium 

concentration. The first aim of this study is to understand if and how APP modulates 

intracellular Ca2+ levels in astrocytes in vivo. My strategy combined astrocytic 

specific Ca2+ indicators and two photon in vivo microscopy on anesthetized APP 

knock-out (KO) mice. The in vivo results obtained indicate that lack of APP strongly 

influences Ca2+ transients along the fine processes of astrocytes. Additionally, 

through a cell culture approach, mitochondria have been identified as crucial 

mediator. A severe structural alteration and fragmentation of the mitochondrial 

network together with an accumulation of Cytochrome C was observed in close 

proximity of enlarged mitochondria. A similar fragmented mitochondria phenotype 

has been identified in astrocytes of mice expressing a mutated form of APP lacking 

its intracellular domain (APPCT15). These results highlighted a prominent role of 

full length APP in the modulation of Ca2+ activity in astrocytic micro domains.  
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Secondly, confocal microscopy was applied to study the role of post-synaptic APP 

on dendritic spine plasticity. For this purpose, I used a conditional APP KO mouse 

crossed with Slick V mouse line which allows to investigate the effect of the APP KO 

in single cortical and hippocampal neurons having input and surrounded by cells that 

do express APP. It was observed that the lack of postsynaptic APP caused a 

decrease of spine density as well as an alteration in spine morphology. Since these 

structural spine phenotypes cannot be observed in conventional APP KO mice it was 

proposed that compensatory mechanisms occurredd in APP KO mice that do not 

take place in adult mice where APP is conditionally knocked out.  

The last part of this thesis focuses on one spine phenotype that is also seen in 

conventional APPKO mice, a reduced spine plasticity after environmental 

enrichment. By applying two photon in vivo spine imaging on apical dendrites of the 

somatosensory cortex on APPCT15 mice crossed with mice expressing Green 

Fluorescence Protein (GFP), I aim to depict which functional domain of APP governs 

spine plasticity before and after exposure to enriched environment (EE). My findings 

identified the APP ectodomain as crucial for the maintenance of efficient spine 

plasticity, as no significant differences in terms of spine density were observed 

between the APP mutated line and the control group before and after exposure to 

EE.  

Taken together, this study introduces new findings on the role by which the lack of 

APP modulates neuronal and glia functions in the brain. 
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3 INTRODUCTION 

The Amyloid Precursor Protein (APP) and its cleavage products are primarily known 

for their involvement in Alzheimer’s disease (AD), the leading cause of dementia 

worldwide (O’Brien and Wong, 2011). Around 47 million people worldwide are 

affected by dementia and AD may contribute to 60-70% of these cases (World 

Health Organization, 2014). In 1907 Alois Alzheimer reported the results of an 

autopsy on a 55 year old woman named August Deter, who died from a progressive 

behavioral and cognitive disorder. The “special substance in the cortex”, found by 

Alzheimer in the brain of Deter, was later isolated and purified by Glenner & Wong in 

1984. They detected a 40-42 amino acid long peptide. Few years later, in 1987, APP 

was cloned, and the small peptide was found to be a cleavage product of the larger 

APP precursor. Therefore, it was named amyloid-β (Aβ) peptide (O’Brien and Wong, 

2011). 

In the past 30 years, the biological functions of APP and of its cleavage products 

have been the subject of intense investigations. 

3.1 APP 

Amyloid precursor protein (APP) is a member of a family of conserved type I 

membrane proteins which also includes the APP like protein 1 (APLP1) and APP like 

protein 2 (APLP2) (Wasco et al., 1992, 1993; Slunt et al., 1994a). In adult mice, APP 

and APLP2 are ubiquitously expressed, but their highest concentrations have been 

observed in the nervous system and in the neuromuscular junction (NMJ) (Slunt et 

al., 1994b; Lorent et al., 1995; Thinakaran et al., 1995). Differently APLP1 is only 

expressed in the nervous system (Lorent et al., 1995). 

APP was firstly describe in 1987 (Goldgaber et al., 1987; Kang et al., 1987; Tanzi et 

al., 1987). APP, similar to the other proteins of the APP-family, has a large 

extracellular domain and a short cytoplasmatic tail (Müller et al., 2017). The APP 

family member proteins are conserved across a variety of species, excluding 

prokaryotes, plants and yeast (Shariati and De Strooper, 2013). Very interestingly, 

the evolution of the APP family member proteins seems to be highly linked to the 

evolution of the first functional synapses and to the appearance of other cellular 

compounds as the lipoprotein receptors (Dieckmann et al., 2010). 
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Alternative splicing of APP generates eight isoforms, of which three have been 

mainly characterized: APP₆₉₅, APP₇₅₁, APP₇₇ₒ. The isoform mainly expressed in 

neurons is 695 amino acids long, whereas astrocytes and microglia show roughly 

equal amounts of the three isoforms, and other peripheral tissues mainly express the 

longer isoforms (Haass et al., 1991; LeBlanc et al., 1997; Rohan de Silva et al., 

1997).  

 

APP can be cleaved by a large number of proteases, which are mainly grouped into 

α-, β-, and γ-secretases, depending on their cleavage site. However, proteases 

which cleave APP outside those three main sites also exist and have been described 

more recently (Vella and Cappai, 2012; Willem et al., 2015; Zhang et al., 2015; 

Baranger et al., 2016). Depending on the combination of proteases which process 

APP, a vast number of different cleavage products are generated, which have 

various biological properties (Andrew et al., 2016; Nhan et al., 2015). The cleavage 

products of the APP codomain are generally referred to as APPs, and alone 

represent at least 50% of the total forms of APP in the nervous system (Morales-

Corraliza et al., 2009). 

During the years a putative role in the progression of Alzheimer’s disease (AD) has 

been assigned to APP, and in particular to one of the main APP-proteolytic 

fragments: amyloid-β (Aβ) (O’Brien and Wong, 2011; Zhang et al., 2011). Nowadays, 

APP and Aβ functions in AD pathogenesis are well characterized, and the two 

molecules are mainly investigated in the disease context. Nevertheless, APP and its 

cleavage products mediate also physiological functions, which are fundamental for 

brain development and neuronal plasticity (Müller and Zheng, 2012; Dawkins and 

Small, 2014; Müller et al., 2017). For instance, other proteolytic products, such as 

the soluble fragment sAPPα and C-terminal fragments (CTFs), show neuroprotective 

and transcriptional functions (Andrew et al., 2016; Chasseigneaux and Allinquant, 

2012; Hick et al., 2015). Indeed, in vitro evidence suggests that CTFs induce axonal 

outgrowth by interacting with G-protein subunits, which in turn activate adenylyl 

cyclase/PKA-dependent pathways (Copenhaver and Kögel, 2017), although these 

findings have not been corroborated in vivo. 
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3.1.1 APP STRUCTURE 

            

 

Figure 1: APP structure.  

Modified from Montagna et al., 2017. Schematic representation of APP domain structure. APP is a type 1 

transmembrane protein. From the N-terminal region; the E1 domain formed by: heparin binding domain (HBD), 

growth factor like domain (GFLD) and cupper binding domain (CuBD). The E2 domain that includes the heparin 

binding domain and the pentapetide sequence (RERMS). A region and transmembrane region precede the 

AICD intracellular domain. 

 

 

APP is a type I transmembrane protein, and in humans it is encoded by a gene 

located on the chromosome 21 and contains 18 exons spanning 290 kilobases. 

 (Yoshikai et al., 1990; Lamb et al., 1993). APP protein structure has been 

extensively investigated during the years and comprises four major domains: the 

large extracellular domains E1 and E2 (Dahms et al., 2010; Coburger et al., 2014); a 

transmembrane sequence (Dulubova et al., 2004; Keil et al., 2004; Dahms et al., 

2012); and the short APP intracellular domain (AICD) (Kroenke et al., 1997; 

Radzimanowski et al., 2008; Coburger et al., 2014) (Fig.1). 

The E1 domain is composed of the growth factor-like domain (GFLD), which in turn 

contains the heparing binding domain (HBD) and the copper binding domain (CuBD). 



Introduction 

8 

The HBD and the CuBD are stabilized by the presence of several disulfide bridges 

(Müller et al., 2017). 

The main neuronal APP isoform (APP₆₉₅) has a flexible acidic domain that connects 

E1 to E2. The other isoforms, present for example in astrocytes and microglia, show 

additionally a Kunitz domain and a short Ox-2 antigen domain, which are both 

lacking in the neuronal APP isoform (Müller et al., 2017). 

The E2 domain of both neuronal and not isoforms contains another HBD and a 

RERMS motif (Ninomiya et al., 1993; Roch et al., 1993). 

The intracellular domain of APP (APP-CTF) is further cleaved, generating the AICD 

fragment, which is known to regulate gene expression (Deyts et al., 2016). 

The amyloidogenic and the non- amyloidogenic pathway is regulated by the β-

secretase and the α-secretase, followed by the activity of the γ-secretase. β-

secretase and α-secretase cleavage sites are found in the flexible region between 

the E2 domain and the transmembrane domain, whereas the cleavage site of γ-

secretase is in the transmembrane domain.  

3.1.2 APP PROCESSING AND TRAFFICKING 

Nascent APP molecules, after sorting in the reticulum endoplasmaticum (ER) and 

Golgi apparatus are quickly transported towards the plasma membrane (PM) via the 

secretory pathway or directly to the endosomal compartment (O’Brien and Wong, 

2011). During its trafficking, APP is post-translationally modified with N- and O- 

glycosylation, phosphorylation and tyrosine sulphatation (Haass et al., 2012). Usually 

no more than 10% of nascent APP reaches the PM, whereas the majority localizes 

into the Golgi apparatus and the trans- Golgi network (TGN) (Thinakaran and Koo, 

2008; Haass et al., 2012). Recently it was found that APP has also a mitochondrial 

targeting sequence, which is most likely within the KPI domain (Wang et al., 2016). 

This causes APP accumulation in the mitochondria-associated membranes (MAM) 

(Anandatheerthavarada et al., 2003; Devi et al., 2006; Del Prete et al., 2017). In the 

PM, APP can be cleaved by the α-secretase, followed by γ-secretase cleavage, 

generating sAPPα and AICD fragments (Sisodia, 1992; Thinakaran and Koo, 2008). 

Otherwise, after exposure to the cell surface, APP is internalized within minutes 

through its YENPTY domain. Following endocytosis, APP is delivered to endosomes, 

where the secretase BACE1 is abundant and cleaves it, producing the majority of Aβ 

peptides (Perez et al., 1999). 
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3.1.3 APP FUNCTIONS 

In the past years, numerous studies reported multiple APP functions, which vary 

from transcriptional regulation to synaptic functions and receptor-like activity. 

In the brain, APP reaches its highest expression level during early postnatal 

development (from P1 to P36 in mice), and it preferentially localizes in the pre- and 

post-synaptic compartments (De Strooper and Annaert, 2000; Laßek et al., 2013). 

During this period, synaptogenesis occurs (that is, the formation of new synapses) 

and neuronal connections are formed (Hoe et al., 2009; Wang et al., 2009). Thus, 

many studies proposed putative roles of APP in the modulation of neurite outgrowth 

and synaptic connectivity (Moya et al., 1994; De Strooper and Annaert, 2000; Herms 

et al., 2004; Hoe et al., 2012; Müller and Zheng, 2012; Wang et al., 2014; Weyer et 

al., 2014; Hick et al., 2015).  

The synapses are specialized structures that connect neurons. Recent studies have 

clearly demonstrated that during development and throughout life, synapses undergo 

continuous remodeling, both structurally and functionally, in a process known as 

synaptic plasticity. This process is essential for learning and memory. Neuronal 

inability to exhibit such plastic changes is often cause of neurodegenerative and 

physiological disorders (Munno and Syed, 2003). Synaptogenesis, neurite outgrowth 

and synaptic plasticity involve full-length APP, which has been shown to exhibit cell 

adhesion and receptor-like properties (Qiu et al., 1995; Ando et al., 1999; Turner et 

al., 2003; Soba et al., 2005; Müller and Zheng, 2012; Coburger et al., 2014; Deyts et 

al., 2016). There is convincing evidence that two distinct extracellular E1 domains 

from neighboring molecules of APP, APLP1 and APLP2 (Soba et al., 2005; 

Baumkötter et al., 2012; Deyts et al., 2016) can interact via their HBDs, and form a 

so called heparin cross-linked dimer (Coburger et al., 2014). The interaction of the 

E2 domains with heparin cross-linked dimers further strengthens the dimerization 

process (Wang et al., 2009; Hoefgen et al., 2014). As APP is present both in the pre- 

and postsynaptic terminals, a dimerization across the synapse may be relevant for 

synapse formation and stabilization (Wang et al., 2009; Baumkotter et al., 2014; 

Stahl et al., 2014). As trans-synaptic adhesion properties depend on the cell surface 

pool of APP, it is clear how mutations on the extracellular side of APP might alter 

these properties (Stahl et al., 2014). 



Introduction 

10 

In addition, APP has also been shown to be involved in synaptic plasticity of mature 

synapses. For instance, some AICD-proteolytic products can directly translocate into 

the nucleus and activate several transcription factors, like CP2/LSF/LBP1 or Tip60 

(Müller et al., 2008a; Schettini et al., 2010; Pardossi-Piquard and Checler, 2012), 

which are known to be involved in the regulation of dendritic spine plasticity. 

With regard to the APP receptor-like function, no enzymatic activity has been 

reported for APP so far, meaning that signal transduction requires interaction with 

other proteins. More than 200 binding partners, both intra and extracellular, have 

been identified (Müller et al., 2017). Growth factors and receptor-like proteins have 

been shown to interact with the APP-extracellular domains (Reinhard et al., 2005; 

Coburger et al., 2014; Deyts et al., 2016). Thus, activation of growth factor receptors 

could be one possible mode of action of how APP affects spine plasticity. 

Additionally, the intra-cellular domain AICD itself may mediate receptor-like activity 

(Cao and Südhof, 2001, 2004; McLoughlin and Miller, 2008; Müller et al., 2008a; 

Klevanski et al., 2015). Here, an intracellular response is triggered by the interaction 

of AICD-cleavage products with effector and adaptor proteins of the cytosolic 

compartment (Okamoto et al., 1990; Timossi et al., 2004; Deyts et al., 2012) (Figure 

1). Besides the role of APP in neurons, only a few studies addressed its role in 

astrocytes. Investigations on astrocytic cell cultures from APP KO mice suggested a 

potential role of APP in modulating ATP production and the cytosolic-free Ca²⁺ 

concentration (Hamid et al., 2007; Linde et al., 2011; Wang et al., 2016). However, 

further studies are still needed to fully unravel the role of APP in astrocytes. 

3.2 ASTROCYTES: THEIR ROLE IN THE CNS 

3.2.1 MORPHOLOGY AND FUNCTIONS 

The first description of neuroglia dates back to 1858 when Virchow wrote: 

“substance […] which lies between the proper nervous parts, holds them together 

and gives the whole its form in a greater or lesser degree” (Virchow, 1858). 

Thereafter, astrocytes have been often overlooked by many neurobiologists, and just 

recently they draw the attention of many researchers. 

The first description of astrocytes morphology dates back to 1894, when the Golgi 

staining method made it possible to identify differences among astrocytes of the 

human brain (Retzius, 1894). One year later the term “astrocyte” was coined, that 
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literally means “star-like cells” (from the Greek astron=star and kytos=cavity, cell), 

due to the complex and numerous processes characteristic of the astrocytes (von 

Lenhossek, 1895). 

Astrocytes are glia cells (as oligodendrocytes, microglia and NG2 glia are) and 

occupy ~ 25%-50% of the brain volume, thereby being one of the most abundant cell 

types in the brain (Verkhratsky and Butt, 2013). They are classified into two different 

categories: “protoplasmic astrocytes”, with very complex and indistinguishable 

processes, mainly present in the grey matter; “fibrous astrocytes”, with clearly 

distinguishable processes and moderate branching, abundant in the white matter 

(Kettenmann and Verkhratsky, 2013). 

 

Figure 2: Golgi staining of astrocytes. 

Modified from Retzius; 1894; astrocytes as they appear after Golgi staining. 

 

 

A recent classification divides astrocytes into nine different groups: tanycytes, radial 

cells, Bergmann glia, protoplasmic astrocytes, fibrous astrocytes, velate glia, 

marginal glia, perivascular glia, and ependymal glia. However this morphological 

classification does not reflect any specific distribution in the brain: within one region 

several types of astrocyte populations can coexist (Emsley and Macklis, 2006). 

It is worth to mention that the majority of the morphological investigations were 

carried out on the human brain, where astrocytes are much more complex and 

bigger in their dimensions compared to rodent ones (Oberheim et al., 2006, 2009). 
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Differently, many studies on astrocytic functions have been conducted on cell 

cultures. Here astrocytes appear as flat cells, which possibly affects their behavior 

compare to astrocytes in situ that show a complex 3D structure (Cataldo and 

Broadwell, 1986).  

Astrocytes perform a plethora of functions in the central nervous system and are the 

only cells able to store glycogen energy molecules in the brain. They are the main 

brain components of the brain blood barrier (BBB), and regulate the molecular 

trafficking across the endothelial cells. Besides their role in long term barrier 

induction and maintenance, astrocytes can release chemical factors to modulate 

endothelial permeability (Abbott, 2002). 

Additionally they can regulate ion homeostasis, especially [K]o, thus modulating 

neuronal activity as well (Ransom and Sontheimer, 1992; Ransom et al., 2000; Kofuji 

and Newman, 2004). Astrocytes are also involved in brain pH control mechanisms 

through several H⁺/HCO₃⁻ transporters present on their membrane (Kimelberg and 

Nedergaard, 2010).  

With regard to the way astrocytes communicate among them, it is known that they 

do not generate any electrical responses due to the low ratio of Na⁺ to K⁺ channels in 

mature astrocytes. Therefore, they developed a different communication system, 

including gap junctions, by which astrocytes are coupled (Magistretti and Ransom, 

2002). Gap junctions consist of aqueous pores permeable to ions and other 

molecules with a molecular weight less than 1,000, able to keep astrocytic processes 

in contact (Magistretti J. and Ransom R). However astrocytes and neurons do not 

form any gap junctions. Thereby, their interaction is thought to happen only via the 

narrow extracellular space (ECS) (Kuffler and Nicholls, 1966). The brain ECS is a 

very dynamic compartment, where ions constantly diffuse almost instantly to 

adjacent cells (Kuffler and Nicholls, 1966). The fact that astrocytes express a broad 

variety of receptors for neuronal neurotransmitter allows astrocytes to sense and 

modulate synaptic transmission (Kettenmann and Ransom, 2005). 

3.2.2 ASTROCYTES CA²⁺ SIGNALS 

The bidirectional communication between astrocytes and neurons gives rise to the 

concept called “tripartite synapse” (Perea et al., 2009). The model proposes that the 
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information does not only travel between pre- and post-synaptic neurons, but also 

astrocytes can actively interfere and respond to those signals (Araque et al., 1999). 

In the early 1990s astrocytes became a main topic in the field of neuroscience, and 

pioneering studies revealed that astrocytes display a form of excitability based on the 

variation of intracellular calcium concentration (Cornell-Bell et al., 1990; Charles et 

al., 1991). The way astrocytes can respond to external stimuli is, indeed, by 

modulating intracellular calcium transients, often triggered by neurotransmitter 

release during synaptic activity (Cornell-Bell et al., 1990; Charles et al., 1991; Perea 

and Araque, 2005). Synaptic control over astrocytic Ca²⁺ is based on astrocytic 

expression of a variety of neurotransmitter receptors, such as for glutamate, GABA, 

norepinephrine and acetylcholine (Araque et al., 2002; Wang et al., 2006). These 

receptors are mainly metabotropic receptors which are linked to second messenger 

systems and activate phospholipase C, adenyl-cyclase and production of IP3, Ca²⁺ 

and cAMP (Wang et al., 2009). Several evidence indicate that metabotropic 

glutamate receptors (mGluR) are involved in the mobilization of intracellular Ca²⁺ 

(Pasti et al., 1997; Porter and McCarthy, 1997). 

In addition to the neurotransmitters receptors, both SOCE (store-operated Ca²⁺ 

entry), Na⁺/ Ca²⁺ exchangers (NCXs) and voltage and ligand gated channels have 

been identified on the plasma membrane of astrocytes (Kukkonen et al., 2001; Parri 

et al., 2001; Reyes et al., 2012). As a consequence of Ca²⁺ increase within the 

cytosol of astrocytes, the secretory machine gets activated and neuroactive 

molecules like glutamate, D-serine, ATP, adenosine, GABA prostaglandins and other 

proteins and peptides are released in the ECS (Perea et al., 2009; Hamilton and 

Attwell, 2010; Zorec et al., 2012; Martineau et al., 2014). Both the intracellular 

compartments (like reticulum endoplasmaticum, ER, and mitochondria, MT) and the 

ECS play a role in controlling the cytosol free Ca²⁺ concentration. Prominent 

examples of molecules critically involved in the astrocytic calcium homeostasis are 

the SERCA (sarcoplasmatic/endoplasmic reticulum Ca²⁺-ATPase), that moves 

calcium inside the lumen of the ER, the Ca²⁺ release channels inositol-1,4,5-

triphosphate receptors (IP₃Rs), and the ryanodine/caffeine receptors (RYRs) 

(Camello et al., 2002; Beck et al., 2004; Bezprozvanny, 2005; Hamilton, 2005; 

Galione, 2011) 
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Mitochondria, as later discussed more in detail, can quickly sequestrate calcium from 

the cytoplasm. This is mediated by the mitochondrial calcium uniporter (MCU), 

leading to a slow calcium release via the mitochondrial NCX and the mitochondrial 

transition pore (Basso et al., 2005; Reyes and Parpura, 2008). 

Overall, increased levels of intracellular Ca2+ are necessary for the release of glio-

transmitters, thus shaping neuronal connectivity and contributing to neuronal network 

(Martineau et al., 2014; Bazargani and Attwell, 2016). Changes in cytosolic Ca2+ are 

dynamically regulated through the interplay between Ca2+ channels, pumps and 

transporters. Both the ER and mitochondria play an important role in this fine 

regulation (Srinivasan et al., 2016; Agarwal et al., 2017). Methodological advances in 

the past years have led to novel interest in astrocytic Ca2+ signaling with respect to 

brain functionality. Nevertheless astrocytic Ca2+ transients are still far away from 

being fully comprehended. 

 

3.2.3 PROGRESSES IN THE LAST DECADE IN STUDYING Ca2+ 

TRANSIENTS AND ASTROCYTES 

Pioneering studies on Ca2+ transients along the fine processes of Bergmann cells 

showed that, upon stimulation, the fluorescence of calcium indicators increases in 

small and specific areas, later called microdomains (Grosche et al., 1999). 

The presence of mitochondria in each microdomain indicates that these 

microdomains are metabolically independent, as ATP and other sources of energy 

from the soma seem unlikely, due to the delay and decay in the transport (Grosche 

et al., 1999). The use of organic Ca2+ indicator dyes led to the erroneous conclusion 

that the majority of the spontaneous and GPCR-dependent Ca2+ fluctuations in 

astrocytes were mediated by inositol triphosphate receptor type 2 (IP3R2) on the ER 

membrane (Petravicz et al., 2008; Agulhon et al., 2010, 2013). 

However, the advent of in vivo imaging together with the development of cytoplasmic 

astrocytic Ca2+ indicators revealed that these Ca2+ transients are independent from 

IP3R2 and are only partially dependent on transmembrane Ca2+ fluxes (Srinivasan et 

al., 2015), thus shifting the attention to other possible candidates, like mitochondria. 

In 2016 the differences between Ca 2+ transients in the soma of astrocytes and Ca2+ 

transients along their processes were depicted (Srinivasan et al., 2016). Differences 

in Ca2+ dynamics might be ascribed to differences in the way they are initiated and 
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the way they propagate. A year later, the mechanisms behind the regulation of 

spontaneous Ca2+ transients occurring in microdomans along astrocytic processes 

were established, identifying mitochondria as main modulators. (Agarwal et al., 

2017). More in detail, the inhibition of mitochondria Ca2+ exchangers and the 

modulation of the membrane potential of mitochondria resulted in a significant 

alteration in the number and in the activity of Ca2+ transients along microdomains 

(Agarwal et al., 2017). Interesting, less evident alterations were identified when 

knocking out IP3R2, thus suggesting a functional coupling between the ER and 

mitochondria, in which mitochondria play a pivotal role. 

 

Figure 3: Timeline of the progresses achieved during recent investigations on the role of Ca2+ 

in astrocytes. 

Scheme illustrating the chronological order of the progresses achieved to understand astrocytic Ca2+ 

mechanisms, from the 90s till today.  

 

 

3.2.4 APP INTERFERES WITH ASTROCYTIC FUNCTIONS 

APP isoforms are distributed in a cell-specific manner, with the KPI-containing 

isoforms (751,770) predominantly expressed in astrocytes (Rohan de Silva et al., 

1997). Although its astrocytic expression has been proven (Haass et al., 1991; 

Rohan de Silva et al., 1997), APP physiological role in glia cells remains largely 

unknown. Pivotal studies on astrocytes showed increased levels of GFAP positive 

astrocytes in several brain areas of APP KO mice (Zheng et al., 1995). Additionally, 

cultured astrocytes of APP KO mice showed altered ATP and cytosolic Ca²⁺ contents 

(Hamid et al., 2007; Linde et al., 2011; Haass et al., 2012). 
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More recent findings tried to bridge the gap between astrocytes, dendritic spine 

plasticity and APP, investigating the release of glio-transmitters, like D-serine. As a 

glutamate co-agonist, the calcium-dependent astrocytic release of D-serine can in 

turn modulate post-synaptic NMDA-dependent long-term potentiation (LTP) 

(Henneberger et al., 2010), thus producing an effect on spine plasticity. Moreover, 

full-length APP and its fragments modulate D-serine secretion (Wu and Barger, 

2004; Wu et al., 2004), and more recently, biosensor measurements in the cortex of 

4-6 months old APP KO mice revealed alteration of D-serine homeostasis (Zou et 

al., 2016). Interestingly, a 5 week long oral D-serine treatment restores altered spine 

dynamics of APP KO mice both under standard housing conditions as well as in 

enriched environment. Taken together these data provided additional insights on the 

active role of astrocytes in the context of synaptic plasticity and APP expression (Zou 

et al., 2016). 

3.3 MITOCHONDRIA 

Mitochondria are double-membrane bound organelles present in the majority of the 

eukaryotic cells. They are thought to derive from eubacteria-like endosymbionts and 

carry their own DNA that forms structures known as “mitochondrial nucleoids” (Lang 

et al., 1997) . 

Although mitochondria differ morphologically from cell to cell (Collins et al., 2002), 

they share common features, thus making them easily recognizable with the majority 

of the microscopy techniques. One typical mitochondrial structure is the double lipid 

membrane that divides the mitochondria in four different compartments: the outer 

membrane, the intermembrane space, the inner membrane, and the matrix. Each 

compartment conducts different functions (McCarron et al., 2013). Mitochondrial 

dimensions can vary from 0.75 to 3 µm, with a more round or a rod-shape 

morphology (McCarron et al., 2013). 

Mitochondria are one of the main sources of energy for cells and play a crucial role 

in processes like apoptosis, free radical scavenging and Ca²⁺ signaling (Pagani and 

Eckert, 2011). The way mitochondria generate energy encompasses mainly two 

metabolic processes: tricarboxylic acid (TCA) cycle (producing NADH, FADH and 

less ATP) and the oxidative phosphorylation (OXPHOS), the main source of ATP 

production. The latter comprises the electron chain transport (ECT), which includes 
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several complexes: complex I to IV plus the F1F0-ATP synthase (complex V) 

(Balaban et al., 2005; Benzi et al.; Pagani and Eckert, 2011). 

Production of energy, such as ATP, requires the presence of Ca²⁺, and the 

accumulation of mitochondrial Ca²⁺ is a tightly controlled process. While the outer 

membrane (OMM) is permeable for ions as Ca²⁺ as well as for small proteins, the 

inner membrane (IMM) is an impermeable membrane (Gincel et al., 2001; Frey et 

al., 2002). Therefore, Ca²⁺ can only pass through the IMM via the mitochondrial 

calcium uniporter (MCU), which takes calcium up and releases it into the 

mitochondrial matrix. For Ca²⁺ efflux two different routes have been identified: one 

sodium dependent (NCE) (that exchange Na⁺ for calcium) and one sodium- 

independent (NICE) (that exchanges H⁺ for calcium) (Bianchi et al., 2004).  

Although Ca²⁺ is essential for ATP production, uncontrolled increased Ca²⁺ levels 

can activate the pro-apoptotic protein Cytochrome C (Jouaville et al., 1999; Szalai et 

al., 1999; Bianchi et al., 2004).  

Furthermore, mitochondria are highly dynamic organels, both in terms of shape and 

mobility within cells. This charactheristic is extremely meaningful if we think that 

mitochondria need to reach those area that demand energy to provide them with 

ATP and Ca2+ (Jackson and Robinson, 2015).  

Fusion and fission are part of the same cycle: a shift towards fusion favors 

generation of interconnected mitochondria, whereas a shift towards fission generates 

several fragmented mitochondria (Celis-Muñoz et al., 2016). During mitosis, 

mitochondrial fission is favored. Instead, mitochondrial fusion consists of OMM 

fusion followed by IMM fusion (Detmer and Chan, 2007). Fusion and fission are 

highly coordinated: for instance, inhibition of mitochondrial fission results in the 

formation of enlarged regions within the highly connected mitochondria network, due 

to clustering of nucleoids in fused mitochondria (Ban-Ishihara et al., 2013).  

Remarkably, alterations in the mitochondrial morphology reflect altered mitochondria 

functionality, a hallmark in several neurological diseases (Swerdlow et al., 2010; Cai 

and Tammineni, 2016; Golpich et al., 2017). Moreover, as highly motile organells, 

mitochondria can move around within a given cell, satisfying any needs of energy. 

Whitin astrocytes, mitochondrial trafficking is bidirectional (44% of mitochondria 

move retrogradly and 56% move anterogradly), whereas the opposite percentage of 

mitochondrial directions have been observed in neurons (Stephen et al., 2014). 
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Finally, it has been shown in organotypic slices (<600 nm), in astrocyte culture and in 

vivo that mitochondria are not uniformly distributed along the fine processes of 

astrocytes (Mathiisen et al., 2010; Jackson and Robinson, 2015). 

3.3.1 MITOCHONDRIAL ROLE IN THE REGULATION OF 

CYTOSOLIC FREE Ca2+ CONCENTRATION 

As aforementioned, mitochondria are very dynamic organelles that efficiently 

produce ATP and buffer intracellular Ca²⁺ (Agarwal et al., 2017; Hailong Li, Xiaowan 

Wang Nannan Zhanga, Manoj K. Gottipatic, Vladimir Parpura, 2005; Shigetomi et al., 

2013). 

The localization of mitochondria within astrocytes can determine the intracellular free 

Ca²⁺ concentration, thus influencing astrocytes Ca²⁺ signaling, Ca²⁺ wave 

propagation and Ca²⁺-dependent release of gliotransmitters (Wang et al., 2009; 

Shigetomi et al., 2013, 2016; Agarwal et al., 2017). 

Mitochondria were the first organelles to be associated with Ca2+ handling (Rizzuto 

et al., 2012). In 1961, mitochondria were shown to accumulate Ca2+, whereas in 

2004 the first mitochondrial Ca2+ uniporter (MCU) was identified (DeLuca and 

Engstrom, 1961; Vasington and Murphy, 1962; Kirichok et al., 2004). The driving 

force for the accumulation of Ca2+ into the mitochondria is the electrochemical proton 

gradient generated by the mitochondrial ETC (Rizzuto et al., 2012). The close 

apposition of mitochondria to both Ca2+ channels and ER allows a fast Ca2+ uptake 

(Rizzuto et al., 2004). ER and mitochondria are connected via the Mitofusin 2 

protein, a component of the fission machinery of mitochondria, particularly enriched 

in mitochondria associated membranes (MAMs) (Raffaello et al., 2016; Filadi et al., 

2017). Recent findings corroborate the hypothesis that ER and mitochondria are not 

simply morphologically associated, but rather act in concert involving special 

functional domains on both sides (Hayashi et al., 2009; de Brito and Scorrano, 

2010).  

In the context of Ca2+ transients along fine processes of astrocytes, it has been 

found that pharmacological modulation of mitochondria highly affects cytosolic Ca2+ 

dynamics (Kanemaru et al., 2014; Srinivasan et al., 2015; Agarwal et al., 2017).  

Thus, mitochondria regulate several vital cellular functions through the modulation of 

intracellular Ca2+, like the cell metabolism (Rizzuto et al., 1999; Visch et al., 2004), 
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cell survival (Jacobson and Duchen, 2002), cell-cell signaling (Rizzuto et al., 1999; 

Martineau et al., 2014), and nuclear signaling (Ermak and Davies, 2002). 

 

3.3.2 MITOCHONDRIA AND APP, STILL AN UNCLEAR 

RELATIONSHIP 

APP and Aβ target to mitochondria, affecting mitochondrial morphology and 

functionality (Pavlov et al., 2011). Although it seems clear that APP is located on the 

mitochondrial membrane, the results regarding which APP-amino acids are 

determining this localization are still controversial. Several studies attributed such a 

function to the residues 40,44 and 51 (Anandatheerthavarada et al., 2003), whereas 

others propose the KPI domain as the responsible domain (Wang et al., 2016).  

The formation of stable complexes between APP and components of the 

mitochondrial membrane, such as the translocase of outer mitochondrial membrane 

40 (TOMM40) and translocase of the inner membrane 23 (TIM 23) (Pagani and 

Eckert, 2011) has been shown to modulate mitochondrial protein trafficking.  

Although the functional role of APP for mitochondria needs to be further clarified, 

multiple observations have been highlighted in the AD context, where congurent 

mitochondrial-Ca2+ buffering alterations and oxidative stress have been reported 

(Devi et al., 2006; Pera et al., 2017). the presence of abnormal mitochondrial shape, 

transport and altered dynamics has also been reported (Du et al., 2010; Wang et al., 

2014). In particular, the formation of “mitochondria on a string” (MOAS), that is, 

teardrop shaped mitochondria connected by a thin double membrane, has been 

described in AD human brain tissue (Zhang et al., 2016).  

Nevertheless, it is not yet clear whether APP can localize and modulate mitochondria 

activity. A recent study on HeLa cells expressing truncated forms of APP carrying 

mutations in the KPI domain, showed altered mitochondrial morphology and altered 

APP distribution along the mitochondria membrane (Wang et al., 2016). In 2009, 

embryonic fibroblast from APP KO mice were studied in in vitro conditions (Sheng et 

al., 2009). Interestingly, lack of APP affected cell proliferation, mitochondrial 

membrane potential and electron transport chain IV activity, and led to reduced 

levels of reactive oxygen species (ROS). A possible connection between APP and 

mitochondria activity was also proposed in HEK293 cells, H4 cells and in astrocytic 

cultures derived from mice lacking APP. Here lower ATP levels and a 
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hyperpolarization of the inner membrane potential was observed (Hamid et al., 

2007).  

 

3.4 DENDRITIC SPINE PLASTICITY AS A HALLMARK OF A 

HEALTY BRAIN 

3.4.1 DENDRITIC SPINE STRUCTURE 

Neurons can receive and transmit information through synapses, highly plastic 

components of the brain network (Foster and Sherrington, 1897). 

An important structure of the brain to maintain its functionality is the dendritic spine. 

Specifically, dendritic spines are membrane-limited regions that project from the 

dendrites making contact with usually only one axon (Yuste et al., 2011). Most 

excitatory synapses occur at dendritic spines, thereby representing the main post 

synaptic excitatory compartment (Hering and Sheng, 2001). Although axons can 

directly communicate with dendrites (Yuste, 2015), spines greatly expand the 

surface of the dendrites (García-López et al., 2007; Yuste et al., 2011). Therefore, 

dendritic spines are thought to be necessary to implement a distributed circuit with 

widespread connectivity (Yuste et al., 2011).  

Dendritic spines come in different shapes and sizes and act as subcellular 

compartments able to control, receive and process synaptic information (von Bohlen 

und Halbach, 2009). Additionally, the cytoplasm of dendritic spines contains F-actin, 

responsible for the regulation of morphological changes, maturation and stability of 

spines (Ebrahimi and Okabe, 2014) through the activity of several GTPases (Newey 

et al., 2005).  

Depending on the shape and size of their head and neck, spines are usually divided 

in three main categories (Peters and Kaiserman-Abramof, 1970). Mushroom spines 

have a large head and a narrow neck; thin spines are characterized by a long neck 

and an almost absent head; stubby spines, instead, do not seem to have any 

obvious shrinkage between the base and the head. A fourth category named 

“filopodia” could be included. Filopodia have a hair-like morphology, are highly motile 

and can transform themselves into mushroom or thin spines, or initiate another 

dendritic branch formation (Skoff and Hamburger, 1974; Alvarez and Sabatini, 2007; 
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Montagna et al., 2017). Notably, spines with larger heads have greater synaptic 

strength than smaller spines; but is not clear whether spines with different 

morphology serve different functions (Lai et al., 2016). The strength of a given spine, 

often measured by its head enlargement, is the consequence of rapid transport of 

specific mRNAs to the synapse, where local protein synthesis occurs.  

Interestingly, spine plasticity depends also on external and environmental stimuli: 

processes like learning or exposure to Enriched Environment (EE) increase local 

protein synthesis at the spine, influencing stability and dynamics of dendritic spines 

(Johansson and Belichenko, 2002; Lai and Ip, 2013; Jung and Herms, 2014). 

3.4.2 APP AND SPINE PLASTICITY: IN VIVO AND EX VIVO 

EVIDENCES 

The physiological role of APP with regard to spine dynamics and plasticity is still 

controversial and a matter of debate. 

So far, many transgenic mouse models have been employed to address this 

question: single, double and triple knock-out (KO), conditionally floxed alleles, and 

knock in (KI) lines. Among all of these models, the APP KO mouse (single KO of the 

APP locus) is probably the best studied. Ex vivo studies on brain sections of APP KO 

mice detected age-dependent deficits in neuronal morphology, synaptic plasticity and 

behavior (Dawson et al., 1999; Seabrook et al., 1999; Ring et al., 2007; Lee et al., 

2010; Tyan et al., 2012). 

APLP1 KO mice show postnatal growth deficits, whereas APLP 2 KO mice do not 

show any clear observable phenotype. However, APP/APLP2 double KO and 

APLP1/APLP2 double KO mice, as well as triple KO mice (APP, APLP1, and APLP2 

KO) die shortly after birth, most probably due to severe neuromuscular deficits 

(Müller et al., 2017). Intriguingly, APP/APLP1 double KO mice are viable, indicating 

that APLP2 has unique properties that are required when either APP or APLP1 are 

absent. It also suggests that the APP family members can have redundant 

functions.  

In vivo evidence are, unfortunately, more controversial. A recent in vivo study 

investigated the kinetic of spine dynamics of apical tufts dendrites of layer V 

pyramidal neurons of the somatosensory cortex in 4 months old APP KO-GFPm-

crossed mice (Zou et al., 2016). The density and the turnover rate (TOR) of dendritic 
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spines were monitored over a period of 9 weeks in comparison to GFP-m control 

mice. Different from previous data (Bittner et al., 2009), no differences were detected 

in the overall spine densities between the two groups. However the fate of individual 

spines over time exhibited significant changes, resulting in reduced spine TOR in 

APP KO mice (Zou et al., 2016). 

Furthermore, a recent study (Bittner et al., 2009) pointed out that APP might 

influence spine density in the somatosensory cortex of 4-6 months old APP KO mice 

crossed with YFP-H (Feng et al., 2000). In accordance, morphological analysis 

revealed a decrease in the fraction of thin spines and an increase of the relative 

number of mushroom spines (Zou et al., 2016).   

In order to assess whether the reduced TOR in APP KO is a consequence of a 

developmental phenotype, mice were exposed to EE, which is known to enhance 

spine plasticity in several brain regions (Berman et al., 1996; Kozorovitskiy et al., 

2005; Nithianantharajah and Hannan, 2006; Mora et al., 2007; Sale et al., 2014). 

Surprisingly, APP KO mice exposed to EE for 5 weeks did not exhibit any increase in 

spine density, thus delineating a novel role for APP in adaptive spine plasticity.  

Taken together, in vivo and ex vivo results strongly suggest that APP and its 

functional domains are not only implicated in pathological aspects, but are also 

fundamental for dendritic spine plasticity. 

3.5 MICROSCOPY TECHNIQUES AND MOUSE LINES 

MAINLY INVOLVED IN THIS STUDY 

3.5.1 FUNCTIONAL IMAGING: IN VIVO TWO PHOTON Ca2+ 

MICROSCOPY 

Genetically encoded Ca²⁺ indicators (GECIs) represent a biological and 

methodological milestone in the field of calcium imaging research. Their 

development relied on the establishment of multiple GFP color variants and the 

biochemical studies on Ca2+ binding proteins through a fusion of calmodulin with the 

peptide M13, derived from the myosin light chain kinase (Pérez Koldenkova and 

Nagai, 2013). 

GECIs can be categorized in two classes according to the number of fluorescent 

proteins present in the indicator: some GECIs contains one single fluorophore, 

whereas others two (also used as ratiometric probes) (Pérez Koldenkova and Nagai, 
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2013). Single fluorescent protein-based GECIs typically share a common principle of 

action, which involves a change in fluorescence intensity upon Ca2+ binding. Ca2+ 

chelating properties in most of the available indicators are provided by the 

calmodulin fused with the fluorescent protein and the calmodulin-binding peptide 

M13 (Figure 4A).  

GFP-based GCaMPs belong to the family of GECIs. They are a powerful tool for the 

investigation of cellular activity (Chen et al., 2013). They consist of a circular 

permutated enhanced green fluorescent protein (EGFP) that is flanked by the 

calcium binding protein calmodulin and by the calmodulin binding peptide (M13) 

(Nakai et al., 2001). Upon binding of 4 Ca²⁺ molecules, the interaction with the M13-

calmodulin leads to conformational changes that induce an increase in the emitted 

fluorescence in a reversible manner (Nakai et al., 2001; Tian et al., 2009) (Figure 

4A). 

Selective expression of GCaMPs indicators can be achieved by viral transduction or 

by in utero electroporation. More recently, transgenic mice expressing GCaMP family 

members have been also developed (Gee et al., 2015) (Figure 4B). Stereotaxic 

injection of viruses determines the brain region to be targeted, whereas the 

selectivity of cells is regulated by the use of specific promoters. Within the same cell 

type, viral expression can be either cytoplasmic or limited to specific regions and/or 

specific cellular membranes (Grienberger and Konnerth, 2012). Efforts in optimizing 

GCaMPs and other indicators were often limited by physiologically relevant issues. 

Neurons, where calcium sensors are usually tested, have fast calcium dynamics and 

low peak calcium accumulations. However, during the years many improvements 

have been done in terms of sensitivity and speed (Chen et al., 2013). For instance, 

GCaMP6f, a genetically-encoded calcium indicator for free calcium in neurons, has a 

sensitivity comparable to the calcium dye oregon green BAPTA 1-AM (OGB1-AM). 

  



Introduction 

24 

 

Figure 4: GCaMPs and loading approaches. 

Schematic representation of GCaMP. Binding of 4 molecules of Ca2+ promotes intramolecular conformational 

rearrangement of calmodulin (CaM) and M13 changing the fluorescence intensity upon irradiation. Ca2+ affinity is 

conferred by Ca2+-binding moieties derived from calmodulin (A); loading approaches of GCaMPs. Expression of 

genetically encoded calcium indicators (GECI) by viral transduction (left panel), in utero electroporation (middle 

panel), and generation of transgenic mouse lines (right panel) (B). 

 

A further and fundamental step in understanding cellular networks within the brain 

has been achieved by combining sensitive and fast calcium indicators with two 

photon in vivo microscopy. This combination allows the investigation of calcium 

dynamics in whole cells within an intact brain and even in freely moving animals 

(Russell, 2011). To investigate Ca2+ dynamics in the cells of the brain of an alive 

animal, cranial windows need to be implanted on top of the skull. Although with this 

approach a smaller volume is visualized than when applying other in vivo imaging 

techniques, like Magnetic Resonance Imaging (MRI) and Positon Emission 

tomography (PET), the capability of two photon fluorescence microscopy to provide 

in vivo imaging at subcellular and subsecond resolutions is a unique advantage 

(Dunn and Sutton, 2008). 

Two photon microscopy is based on the nonlinear optical approach that was 

originally proposed by the physicist Maria Göppert-Mayer in 1931. It states that a 

fluorophore can be stimulated by effectively simultaneous absorption of two photons, 

if the sum of their energies equals the required energy of excitation. In other words 

two low-energy photons (usually from the same laser) generate a high-energy 

electronic transition in a fluorescent molecule (Figure 5) (Svoboda and Yasuda, 

2006).  
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Figure 5: Two photon excitation microscope. 

Diagram of 1-photon (1-p) and 2-photon (2-p) excitation. 2-p excitation of molecules can be elicited by 

simultaneous absorption of two long wavelengths (low energy). As main advantages the laser penetrates deeper 

into the tissue and only at the focal point, thus reducing bleaching and phototoxicity.  

 

 

Moreover, besides the advantages of imaging at cellular and subcellular levels in 

vivo, the localization of the excitation of the fluorophore within the focal plane 

reduces bleaching and allows all the detected fluorescence photons to constitute 

useful signals (Svoboda and Yasuda, 2006). 

Nevertheless, a unique interpretation of Ca2+ signals through two photon microscopy 

is not always easy and possible. It is important to consider the specific expression in 

the proper cell type, the exact subcellular compartment, the experimental conditions 

and the mouse age for a correct data interpretation. Different kind of anesthetics and 

the relative dose can differently influence intracellular Ca2+ dynamics (Ewald et al., 

2011; Bindocci et al., 2017). Moreover, Ca2+ is known to be differently regulated 

according to the cell localization, so that a somatic localization differs from the 

dendrites of neurons or the processes of astrocytes. Therefore the investigation of 

Ca2+ dynamics in astrocytic processes needs to take into consideration the fact that 

Ca2+ dynamics here might differ from those detected in the soma, in terms of shape 

and regulatory mehanisms (Bindocci et al., 2017).  

Notably, in vivo detection of Ca2+ transients along the fine processes of astrocytes 

has been challenging, mainly due to technical difficulties. The little amount of 

cytoplasm of the astrocytic processes made the in situ expression of cytosolic 
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GCaMPs very difficult. Nevertheless, the generation of membrane-tag Ca2+ 

indicators successfully overcame such limitation (Agarwal et al., 2017).  

3.5.2 TWO PHOTON IN VIVO IMAGING OF DENDRITIC SPINES 

Spine dynamics, including spine turnover and changes in spine shape and motility, 

occur throughout development and are vital for proper functioning of neural circuits in 

the adulthood (Calabrese, 2006). Although most of the spines are stable over very 

long time, a proportion of spines transiently appear and disappear. Many of these 

synaptic changes are driven by sensory experience and underline experience-

dependent remodeling (Knott and Holtmaat, 2008). 

Investigation on the number, morphology, and dynamics of healthy synapses along 

the brain provides researchers with information regarding neuronal development and 

functioning in specific brain regions. 

The classification of dendritic spines must follow a costant criterium that can be 

summarized as following. Dendritic spines range from a volume less than 0.01 µm³ 

to 0,8 µm³, with a length between 0.5 μm and 2 μm (Hering and Sheng, 2001). Since 

spines are easily detectable, several staining and imaging methods have been 

developed so far. 

In the past, visualization of dendritic spines was possible thanks to the Golgi 

staining, also called the “black staining” from Camillo Golgi himself (Mancuso et al., 

2013). Afterwards, thanks to the introduction of more modern approaches, it became 

possible to obtain more valuable anatomical data of spine dynamics and morphology 

compared to those obtained from Golgi staining. Furthermore, for a simple 

investigation on spine density, bright field microscopy provides sufficient information, 

but the resolution of its images are not enough for investigating the morphology of 

spines (Perez-Costas et al., 2007). The advent of laser scanning confocal 

microscopy (LCSM) and electron microscopy (EM) have given researchers and 

neuroscientists a powerful tool to image changes in spine density and plasticity in 

brain slices and cultured neurons with nearly diffraction limited resolution (Moser et 

al., 1994; Papa et al., 1995). 

Commonly LSCM and EM are used in combination with advanced staining 

techniques or injections of intracellular dyes. Additionally, by employing transgenic 

mice, it is nowadays possible to more precisely visualize dendritic spines, and 

differentiate population of neurons (Mancuso et al., 2013). 
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However, two photon in vivo microscopy still represents the most innovative 

approach to study spine dynamics, as it reveals important features in the context of a 

living organism, with an intact brain and a functional network. Indeed, two photon 

microscopy allows to study spines longitudinaly. Additionally, it permits to investigate 

the effects of the exposure to external stimuli, and to monitor aging or disease 

progressions (Jung and Herms, 2012). Finally, in vivo investigations revealed that 

there are populations of “persistent” spines that have a longer lifespan, and 

“transient” spines that appear and disappear more frequently. However, two photon 

in vivo microscopy shows drawbacks as well. For example, a reduced image 

resolution and the physical inaccessibility to the deep brain areas (Yuste et al., 2011) 

are still big limitations that need further improvement. Overall, two photon in vivo 

microscopy is the gold standard for analysing spine plasticity in living animals.   

 

   

Figure 6: Example of GFP positive dendrites acquired through in vivo two photon microscopy.  

Z-stack of GFP-positive dendrites in the somatosensory cortex (424µm x 424 µm) acquired via two photon in vivo 

microscopy (LSM 7MP microscope Carl Zeiss, water immersion 20x objective, Leica); on the right panel z-stack 

of GFP-positive somatosensory dendrites and its spines (512 µm x256 µm).  
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4 AIM OF THE STUDY 

 

With this study, I aimed at combining in vivo and ex vivo approaches to unravel the 

physiological function of APP in astrocytes and neurons, and to better characterize 

the key roles of APP in defining and influencing the overall brain network. 

Firstly, this study investigates how APP modulates intracellular Ca2+ levels in 

astrocytes in vivo. Astrocytes are known to modulate activity and morphology of 

neurons, thus influencing the overall brain network. Through in vivo functional 

microscopy, I investigated Ca2+ dynamics in astrocytes of the somatosensory cortex 

of APP KO transgenic mice. With this approach I aimed at unraveling the role of APP 

as regulator of Ca2+ homeostasis in astrocytes, breaking ground for further 

investigations on APP function in astrocytes.  

Secondly, through two photon in vivo microscopy on dendritic spines of APPCT15 

mice transgenic mouse line, where APP has been truncated at its C-terminal 15 

aminoacids, I aimed at deciphering the role of APP in modulating dendritic spine 

dynamics in correlation with its specific functional domain, which is still matter of 

intensive debates. 

Thirdly, to further explore the role of APP in regulating brain networking I applied 

confocal microscopy to investigate the density and morphology of dendritic spines of 

somatosensory and hippocampal neurons in conditional APP KO mice, highlighting 

the role of post-synaptic APP in modulating plasticity in the brain of adult mice. 

Taken together, the goals of this thesis were to expand the knowledge on APP in 

astrocytes, a topic often overlooked in past studies, and neurons, underlining the 

reciprocal APP-mediated interaction between neurons and astrocytes to finely 

modulate the brain network. 

Overall, this study aims at providing a detailed overview on APP physiological 

functionality, thus generating fundamental data for future investigations on AD and 

the development of efficacious treatments. 
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5 METHODS 

5.1 ANIMALS 

The studies were carried out in accordance with an animal protocol approved by the 

Ludwig-Maximilians-University Munich and the government of Upper Bavaria.  

Amyloid precursor protein knock-out (APP KO) (Zheng et al., 1995), APPCT15 

(Ring et al., 2007), APP flox (Mallm et al., 2010) crossed with Slick V(Young et al., 

2008) and wild type (WT) (C57BL/6) mice were used. 

Prior to surgery mice were group-housed with three to six individuals in standard 

cages (30 × 15 × 20 cm), with standard bedding and additional nesting material 

under pathogen-free conditions. After cranial window implantation mice were singly 

housed in standard cages, with food and water provided ad libitum. Mice were kept 

under a 12/12-hour light/dark cycle. At the age of 2 months, virus injection and 

cranial window implantation were performed and at 3 months of age mice underwent 

in vivo imaging. 

5.2 GENOTYPING 

Mice were genotyped by polymerase chain reaction (PCR). Invisorb® DNA Tissue 

HTS 96 Kit/C (Stratec molecular) was used for the extraction of DNA extraction from 

a small piece of tissue from each mouse. Briefly, 400 μl of Lysis Buffer G was 

incubated with mouse tissue overnight under 52°C shaking condition, followed by 10 

mins 1700g centrifugation. The supernatant was transferred into collection plate and 

mix with 200μl binding buffer A, followed by 1700 g centrifugation for 5 mins. After 

discarding the supernatant, the pellet was washed in 550μl washing buffer, followed 

by twice 5 mins centrifugation at 1700g. Finally, 100μl of warm (52°C) elution buffer 

was used to collects the DNA extraction.  

The extracted DNA was used for PCR to identify the genotypes of each animal. The 

primers are listed in Table 1. The formulation of PCR solution is listed in Table 2. 

The PCR solution was placed in a thermocycler. The PCR program is listed in Table 

3. PCR products were analyzed by gel electrophoresis. The samples were loaded to 

1.5% agarose gel with SYBR® gold nucleic acid gel stain. The agarose gel was 

immerged into TAE running buffer. DNA migration was driven by 120-195 V electric 
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fields for 60-90 minutes. A photograph of the gel was taken under UV light source for 

documentation. 

 

MOUSE LINE PRIMER SEQUENCE 

APP KO FORWARD 

REVERSE 

GAGACGAGGACGCTCAGTCCTAGGG 

ATCACCTGGTTCTAATCAGAGGCCC 

SLICKV FORWARD 

REVERSE 

TCTGAGTGGCAAAGGACCTTAGG 

CGCTGAACTTGTGGCCGTTTACG 

APP FLOX FORWARD 

REVERSE 

TGCATGTCAGTCTAATGGAGGC 

ATCTGCCCTTATCCAGTGAAATGAACC 

APPΔCT15 FORWARD 

REVERSE 

CACACCTCCCCCTGAACCTGAAAC 

CTGCGAGAGAGCATCCCTACAACC 

Table 1: Primers for genotyping. 

 

ITEMS VOLUME 

Onetaq hotstart quickload 12.5 μl 

Forward primer 0.5 μl 

Reverse primer 0.5 μl 

Template DNA 0.5 μl 

Distilled water 10 μl 

Table 2: PCR mix. 

 

STEP TEMPERATURE (°C) TIME(S) 

1 94 180 

2 94 30 

3 60 60 

4 68 20 

5 68 120 

6 10 ∞ 

STEP 2-4 REPEATED 35 

TIMES 

  

Table 3: PCR program. 
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5.3 CRANIAL WINDOW IMPLANTATION AND VIRUS 

INJECTION 

Cranial window implantation is a standard procedure commonly used for a number of 

in vivo imaging techniques (Fuhrmann et al., 2007; Holtmaat et al., 2009). Mice were 

anesthetized before undergoing surgery, by intraperitoneal injection of 

ketamine/xylazine (respectively 120 and 10 μg/g body weight; WDT/Bayer Health 

Care); inflammation and pain were reduced by the subcutaneously administration of 

the anti-inflammatory Rymadil (7.5 µg/g; Pfizer) and the antibiotic Baytril (7 μg/g 

body weight, Bayer Health care). 

For the functional in vivo study 4 WT and 4 APP KO were injected in three different 

areas of the somatosensory cortex with: AAV5.GfaABC1D.cyto-tdTomato.SV40 (# 

44332, Penn Vector, Philadelphia, PA, USA) and AAV2/5.GfaABC1D.Lck-GCaMP6f 

(# 52924, Penn Vector, Philadelphia, PA, USA) viruses, in a solution of 10% virus, 

45% PBS (1x) and 45% of the original stock of mannitol solution, for a final volume of 

300 μl/injection site. Viruses were injected at 200 μm depth from the brain surface 

with a speed of 30 nl/minute. 

Protocol followed for cranial window implantation was the same for APP KO, WT and 

APPCT15 mice and was done as following. A piece of skull, 4mm in diameter, 

above the somatosensory cortex was removed and a thin glass (VWR International 

GmbH, Darmstadt, De) was placed on top of the injected area and sealed by dental 

acrylic (Cyano-Veneer fast; Schein, Vienna, AU). A custom made small metal bar 

was cemented next to the coverslip to allow head-fixation during imaging sessions 

(Figure 7). 
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Figure 7: Virus injection and cranial window implantation. 

Pictures taken during virus injection and cranial window implantation. From left to right, 1: skin on top of the skull 

is removed; 2: 3 mm diameter circle is delimiting the area on the somatosensory cortex where the three injections 

will be performed; 3: loading of the virus in a pulled glass micropipette; 4: virus is injected in three different spots; 

5: after removal of 4 mm diameter skull window is implanted and sealed. Metal bar is cemented to allow head 

fixation during imaging sessions; 6: one month after surgery mouse is perfectly recovered. 

 

 

5.4 TAMOXIFEN ADMINISTRATION 

2 months old APP-flox homozygous crossed with Slick V (for control group) were 

daily forcedly feed with Tamoxifen (T5648, Sigma-Aldrich, Darmstadt, Germany) 

(0.25 mg/g) or peanut oil 5 days/week. Compounds were dissolved in a 1:10 ethanol: 

peanut oil mixture (Sigma-Aldrich, Darmstadt, Germany) 

Control and tamoxifen treated mice were transcardially perfused and full KO of APP 

in YFP positive neurons was confirmed immunohistochemically (Figure 20). 

 

5.5 IN VIVO TWO PHOTON SPINE IMAGING 

Apical dendrites of layer V somatosensory pyramidal neurons have been considered 

in this investigation. Expression of eGFP and eYFP in GFP-M and SlickV mice 
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respectively, allows visualization of apical dendritic spines in vivo. LSM 7MP 

microscope (Carl Zeiss) equipped with water-immersion objective (20x, NA=1.0; Carl 

Zeiss) was used for the experiments. Briefly, mouse with cranial window was head 

fixed and anaesthetized with isoflurane (1% in 95% O2, 5% CO2). Body temperature 

was maintained by a self-regulating heating pad (Fine Science Tools GmbH) and 

each image session lasted less than 90 mins. Microscope was equipped a water-

immersion objective (20x, NA=1.0; Carl Zeiss). Two photon Mai Tai DeepSee laser 

generator (Spectra Physics) was tuned at 920 nm wavelength (Spectra Physics). 

Overview images (351x351) and detailed dendritic images (70 × 97 µm) were 

acquired from each region of interested (Figure 8). Same dendrites were weekly 

acquired for a period of two months. 

             

Figure 8: Cranial window and GFP positive dendrites. 

Photo of a cranial window were blood vessels and GFP positive dendrites are visible. Blood vessels are used 

during in vivo chronic imaging to repeatedly identify the regions to be imaged. On the right Z-stack of GFP 

positive dendrites acquired via two photon microscopy (LSM 7MP microscope Carl Zeiss, water immersion 20x 

objective, Leica). Each color of each asterisk identify a single dendrite visible in both the photos. 

 

 

5.6 IMAGES, DATA PROCESSING 

Dendritic spines were counted manually, using a selfmade script on Zeiss blue 

software. For both confocal and in vivo micrographs, dendritic spines were counted 

in z-stacks by manually scrolling through the images. Because the z-plane resolution 

was low in two photon micrographs, the dendritic spines of cortical neurons were 

restricted to laterally protruding spines. As described before (Holtmaat et al., 2009), 

dendritic spines identified along the dendrite were marked as gained, lost, or stable. 
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The mean density of dendritic spines was estimated for each time point and 

expressed over the dendrite length. The stability of spines was calculated based on 

the amount of spines that remained unaltered for at least two subsequent imaging 

sessions. The spine turnover rate (TOR) was assessed based on gain and loss of 

spines over each day of imaging, calculated as follows: TOR = (Ngained + Nlost)/(2 x 

Npresent)/It, where Ngained, Nlost, and Npresent represent the number of gained, lost, or 

total spines at time points of interest, respectively, while It is the number of days 

between consecutive imaging sessions. 

5.7 IN VIVO CALCIUM TWO PHOTON MICROSCOPY 

Weekly imaging sessions started at earliest 4 weeks after surgery to allow mice to 

recover and cranial windows to become clear. 

Mice were anesthetized by isoflurane inhalation (concentration: 1-1.5% mixed with 

oxygen), head fixed and placed under the microscope. 

During every imaging session the body temperature was monitored and maintained 

at 37°C with a thermostat-controlled heating pad. To ensure mice were equally 

anesthetized during imaging breath rate, oxygen saturation and heart rate were 

monitored with the Oximeter probe (MouseOx; STARR Life Sciences, Oakmont, PA, 

USA) and kept constant (breath rate between 70 and 80; oxygen saturation between 

98.8% and 99%, and heart rate between 450 and 500) as suggested in the 

monitoring protocol (Ewald et al., 2011) (Figure 9). In vivo time-lapse image series of 

GCaMP6f fluorescence were acquired in the layer 2/3 (120–200 mm below the pial 

surface) of the somatosensory cortex. 

Fluorescence images were collected by the LaVision Trim Scope equipped with 

tunable Ti:saphire two photon lasers (Chameleon, Coherent, Santa Clara, CA, USA) 

tuned at 940nm and 25x 1.05NA water-immersion objective (Olympus, Hamburg, 

DE). The setup was controlled using LaVision Inspector software (LaVision BioTec 

GmbH, Bielefeld, DE). 

Each image frame was acquired at the rate of 4.17 Hz and was approximately 75 x 

75 µm at 512 x 512 pixel resolution. 

Laser intensity was always kept below 80mW. Mice were kept on the stage for a 

maximum of 1.30 hour and during this time period images from injected area of the 

somatosensory cortex were acquired (~8 min per area). Only images acquired under 
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same anesthesia condition were taken into consideration for astrocytic-calcium-

activity analysis. 

 

        

 

 

 

 

 

 

 

 

 

 

 

Figure 9: La vision setup. 

Pictures taken before running imaging sessions. Briefly, Mouse is placed on an heating pad and under controlled 

anesthetic;  the mouse is placed under the microscope and the cranial window aligned with the objective (A), the 

mouse is sleeping thanks to the anesthetic during the imaging sessions (B), a clamp of the Oximeter (MouseOx; 

STARR Life Sciences, Oakmont, PA, USA) is emitting a red light when actively recording the mouse parameters 

as reported in method session; the leg of the mouse needs to be shaved for a better recording of the vital 

parameters (C).  

5.8 EXTRACTION AND ANALYSIS OF CA²⁺ TRANSIENTS 

After an image series was acquired, the x-y axis drift in the image stacks was 

stabilized using the software Igor 7 Pro (WaveMetrics Inc., Lake Oswego, OR, USA). 

The protocol used for astrocytic calcium investigation was adapted from the protocol 

“CASCADE” (Agarwal et al., 2017) (Protocol developed in collaboration with Dr. 

Carmelo Sgobio). 

Calcium transient information from individual microdomains have been extracted by 

applying a combination of a custom written code in Fiji (Schindelin et al., 2012) and 

the MiniAnalysis Software (Synaptosoft Inc., Decatur, GA, USA) 

As first step background noise was subtracted by performing 3D convolutions 

(average and Gaussian filters of size 5x5x5 pixels (x,y,t)) on time-series image 

stacks (I(x,y,t)). By subtracting the products of average and gaussian filtering I 
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obtained a noise filtered image stack (I(x,y,t)). To identify those regions that exhibits 

frequent dynamic changes in fluorescence the mean intensity (AVG) and standard 

deviation (SD) of background pixels noise filtered stacks were calculated. The sum-

intensity projected stacks were binarized using a threshold value of AVG + 3 SD. By 

summing the binarized sum- and SD-projected stacks of the noise filtered stack I 

generated a mask were the core of putative microdomains were detected. All 

domains with an area bigger than 25 pixels were taken into consideration. The 

binarized mask of the microdomain cores was used as template for ROIs detection. 

ROIs were finally applied on the raw time series image stack to plot the GCaMP 

intensity levels over time. Time traces of fluorescence intensity were extracted from 

the ROIs and converted to dF/F values. I analyzed spontaneous events that 

occurred in 300 seconds long recording session. Calcium transients were identified 

based on amplitudes that were at least 2-fold above the baseline noise of the dF/F 

value. Microdomains without any calcium transients were excluded from the defined 

“active microdomains”. Spontaneous events were tracked using MiniAnalysis 

software 6.0.07 (Synaptosoft), and event amplitudes, area under the curve, time to 

peak, decay time and event frequency per ROI per min were measured (Figure 10). 
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Figure 10: Representation of the protocol for the extraction and investigation of Ca2+ 

transients. 

Briefly; for the movie acquisition mice were anesthetized and placed on the two photon microscopy set-up, 

parameters like breath, heart rate and oxygen saturation were constantly tracked while the mouse was imaged; 5 

minutes image stacks were acquired in several regions of the somatosensory-cortex. The movie analysis was 

carried out adapting the protocol to “CASCADE” from Agarwal et al., 2017 (Agarwal et al., 2017). Filters on the 

raw movies were applied to substract background from the original stacks. z-projected stack of averaged movies 

were thresholded and ROIs detected (as described in the method part). ROIs were finally applied on the raw data 

and traces were extracted via Fiji software. A low percentage of the traces from the detected ROIs were below 

the threshold (purple ROIs and traces) and therefore not included in the final statistical analysis 
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5.9 IMMUNOFLUORESCENCE  

Mice were anesthetized with an intraperitoneal injection of ketamine/xylazine (0.14 

mg / g body weight; WDT / Bayer Health Care) and transcardially perfused with 

phosphate buffered saline (PBS) followed by 4% paraformaldehyde in 0.12 M PBS, 

pH: 7.4. The brain was removed and post-fixed for 24 h at 4°C in the same fixative. 

The brains were washed in 1% PBS and coronal sections of 50 μm were obtained at 

room temperature by the vibratome Leica VT 1000S (Leica Mikrosysteme Vertrieb 

GmbH, Wetzlar, Germany). Immunofluorescence was performed on free floating 

sections. The study was focused on astrocytes of layer 2/3 of the somatosensory 

cortex (from Bregma 1.98mm to – 1.82mm). Sections were permeabilized (2% 

TritonX –PBS, Life Science, Darmstadt, De), gently shacked, overnight at 4°C. 

Blocking solution (10% normal goat or donkey serum - 1% PBS, Thermo Fisher 

Scientific Messtechnik GmbH, Munich, DE) was applied for 2 hours at room 

temperature (RT). Sections were incubated with primary antibody diluted in 3% 

normal goat/donkey serum, 0,03% Triton-X, 0,05% sodium azide – PBS overnight at 

4°C, for a list of all the primary see table 4. 

Secondary antibodies were all applied in a dilution of 1:500 in 3% normal 

goat/donkey serum, 0,03% Triton-X, 0,05% sodium azide – PBS for a minimum of 2 

hours at room temperature. The secondary antibodies were raised in goat or donkey: 

Alexa 594, Alexa 488 and Alexa 647. Brain sections were mounted on polysine 

slides with Dako Fluorescent Mounting Medium (#S3023, Thermo Fisher Scientific 

Messtechnik GmbH, Munich, DE). Confocal images were acquired using a Zeiss 

LSM 780 with a Plan Apochromat 40x/ NA 1.4 Oil DIC M27 with a Pinhole set to 1 

airy unit.  

5.10 3D SHOLL ANALYSIS ON ASTROCYTES 

High resolution confocal stacks of GFAP positive astrocytes of the somatosensory 

cortex (from 20 to 25 astrocytes per group, n= 4 mice/group) were acquired (x=42 

µm, y= 42 µm, z~ 8µm) and deconvoluted using the software AutoQuantX3 (Media 

Cybernetics).  

Custom written Fiji codes for Sholl analysis were applied to the image stacks 

(Schindelin et al., 2012, 2015; Theer et al., 2014). Sholl analysis is a method that 
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allows counting the number of intersections of GFAP positive leaflets, at circles of 

increasing radii from the center.  

Shortly, stacks were thresholded and then the center of GFAP positive astrocytes 

was detected based on DAPI staining. First radius for the Sholl analysis was set at a 

distance of 50 radii (4 µm) from the center, and subsequently circles were placed 

every 5 radius (0,4 µm), till a maximum distance of 250 radi (20 µm). 

5.11 MEASURMENT OF THE VOLUME OF MOSSY FIBER IN 

APP FLOX X SLICK V MICE. 

High resolution confocal stacks of YFP-VGlut positive mossy fibers (n=4 mice per 

control, 5 per tamoxifen treated) were acquired by confocal microscopy (x=212 µm, 

y= 212 µm, z= 32 µm) 

For the quantification of the mossy fiber terminal volume, 3D image data stacks were 

analyzed using custom-written MATLAB software in combination with Imaris (Version 

7.7.2). In detail, the surface detection algorithm of Imaris was applied using a 

smoothing value of 0.2 µm. Background subtraction was enabled by setting the 

diameter of the ‘largest sphere that fits into the Object’ to a value of 10 µm. 

Subsequently a manual threshold of 27000 and a minimal seed diameter of 4 µm 

were defined to detect individual terminals. The data was compiled in Matlab using 

ImarisXT interface. The MATLAB’s script for the analysis of mossy fiber was 

developed in collaboration with Dr. Finn Peters. 

5.12 CORTICAL ASTROCYTIC CULTURE 

Primary cortical astrocyte cultures were prepared from P3 pups of APPKO and 

C57/Bl6 animals. The brain was isolated and placed in HBSS (Gibco, cat. 24020091, 

Thermo Fisher Scientific) at RT. Meninges were removed and the cortex was 

dissected. Cortices from 3 animals were pooled, cut into pieces, washed with HBSS, 

and digested in 5 ml Trypsin containing 0.05% EDTA (Gibco; cat. 25300062, Thermo 

Fisher Scientific) at 37°C for 15 min. The reaction was stopped by adding 5 ml of 

medium (MEM (Gibco cat. 31095029, Thermo Fisher Scientific), 0.6% Glucose 

(Merck # 1083371000, CAS 50-99-7), 5% heat-inactivated FBS (PAN Biotech P40-

37500)). After washing with HBSS, cells were mechanically dissociated in culture 

medium to obtain a single-cell suspension and plated on a T-75 flask (Nunc EasY 

Flask cat. 156499, Thermo Fisher Scientific). The medium was changed the next day 
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in order to remove unattached cells. Cultures were grown in an incubator with humid 

environment at 37°C and 5% CO2 (Hereaus, HERAcell 150i). Astrocytic cultures 

were split at 90% confluency by transferring the cells equally in T-175 flasks (Nunc 

EasY Flask cat.159910, Thermo Fisher Scientific). Primary cultures of astrocytes 

were prepared in collaboration with Sophie Crux.  

 

5.13 IMMUNOFLUORESCENCE ON CULTURED CORTICAL 

ASTROCYTES  

Cover glasses were placed into a humid chamber, quenched for 10 minutes with 

50mM Ammonium Cloride and extracted with 0.1% Triton-X 1x PBS (Life Science, 

Darmstadt, De) for 3 minutes at RT. 

To prevent unspecific binding, a 10 % blocking solution (2% FCS, 2%BSA, 0.2% fish 

Gelatin) diluted in 1x PBS was applied on the coverslips for 1 hour at room 

temperature. 

For immunolabelling sections were incubated 1 hour at RT with primary antibody 

diluted in 10% blocking solution/ PBS (for a complete primary antibodies list see 

table). After rinsing the coverslips 3 times with 1x PBS I applied secondary 

antibodies diluted in 10% blocking solution/ PBS.  

The secondary antibodies were raised in goat or donkey: Alexa 594, Alexa 488, and 

Alexa 647 diluted 1:500 in 10% blocking solution/PBS. 

5.14 CONFOCAL CHARACTERIZATION OF 

MITOCHONDRIA MORPHOLOGY  

Mitochondria from 22 different astrocytes were analyzed from 4 different cell 

cultures. Cultured astrocytes stably expressing Mito-GCaMP were stained with GFP-

Alexa 488 (see table for protocol) and mounted with Dako Fluorescente Mounting 

Medium (S3023) on Polysine slides (Thermo Scientific, P4981). 

Z-stacks confocal microscopy images were acquired (x: 106.07 µm, y: 106.07 µm, z: 

between 3-6 µm; Zeiss 40x/1.4, oil immersion) and 2-D deconvoluted (AutoQuantX3, 

Media Cybernetics). Projection on the z-axis was performed to obtain a single in-

focus field projection.  

Mitochondria were selected by thresholding the pictures and processing them using 

the software Fiji (Schindelin et al., 2012). Classification of mitochondria morphology 
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in network, rods and puncta was done accordingly to the following values: puncta 

area: 0,1 - 2,7 µm²; rods area: 2,7 - 8.8 µm² and network area: from 8.9 µm². 

Based on the area covered by the mitochondria, a colour-coded image was 

generated to visualize puncta in red, rods in green and network in blue . 

For the statistical analysis data are shown as percentage of the total area covered by 

each class of mitochondria divided by the sum of the area covered by the three 

different morphological classes. 

5.15 EM CHARACTERIZATION OF MITOCHONDRIA 

MORPHOLOGY 

During the second passaging, primary cortical astrocytes were plated on 15 mm 

glass coverslips (Marienfeld, pretreated overnight (o/n) with nitric acid (Merck) and 

sterilized) in a 12 well plate (Nunclon delta surface) at a density of 70 000 cells per 

well. After 5 days, astrocytes were rinsed with autoclaved phosphate buffered saline 

briefly and fixed with 2,5% glutardialdehyde in cacodylate-buffer (75 mM cacodylate, 

75 mM NaCl, 2 mM MgCl2) for 30 min, followed by 3 washing steps in cacodylate 

buffer. Thereafter, cells were post-fixed with 1% OsO4 and 1% K4Fe(CN)6 in 

cacodylate buffer for 30 min, washed 3 times in ddH2O, incubated with 1% 

thiocarbohydrazide in ddH2O for 30 minutes, washed with ddH2O 3 times, followed 

by a second post-fixation with 1% OsO4 in ddH2O for 30 min. Samples were further 

rinsed 3 times with ddH2O, dehydrated in a graded series of acetone (10%, 20%, 

40%, 60%, 80%, 100%, 100%, 100%; 10 min each) including an incubation step in 

1% uranyl acetate in 20 % acetone for 30 min. Subsequently, cells were infiltrated 

and embedded as described previously (Gaertner et al., 2017). Tomographic 

datasets were obtained by the ‘slice and view’ technique using a Zeiss Auriga 40 

crossbeam workstation (Carl Zeiss Microscopy, Oberkochen, DE). For milling with 

the Ga-ion beam, the conditions were as follows: 0.5–1 nA milling current of the Ga-

emitter; with each step 50 nm of the epoxy resin was removed. Scanning Electron 

Microscopy (SEM) images were recorded at 1.5 kV with an aperture of 60 μm 

operated in the high current mode with the in-lens EsB detector (EsB grid set to 

−1000 V). The voxel size was 5 nm in x/y and 50 in z. FIB/SEM image stacks were 

aligned, segmented and 3D reconstructed with Amira® (Thermo Fischer Scientific 

Messtechnik GmbH, Munich, DE). Manja Luckner provided EM imaging and 3D 

reconstructions of mitochondria. 
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5.16 IMMUNOHISTOCHEMICAL APPROACH TO QUANTIFY 

MCU PROTEIN  

For quantitative image acquisition in astrocytic cell culture, images were acquired by 

confocal microscope Zeiss LSM 780 with a 40×/1.4 oil objective.  

Single plane images (x: 53.09 µm, y: 53.09 µm) were further processed in Igor Pro to 

detect single MCU, based on published algorithms (Dorostkar et al., 2010). Briefly, 

the Laplace operator (which is the sum of the unmixed second partial derivatives in 

the Cartesian co-ordinates x and y), was calculated from an image. The result was 

thresholded at 2×standard deviation of the pixel values to yield a binary image, from 

which centers of mass for each puncta were determined and counted. MCU 

densities were normalized to the area occupied by astrocytes (labeled with anti - 

Ezrin antibody, Sigma #E8897). 

5.17 CONFOCAL MICROSCOPY AND DENDRITIC SPINE 

ACQUISITION 

Brain sections of the somatosensory cortex from APP flox x Slick V mice were 

incubated with 0.1% Triton X-100, 5% normal goat serum (NGS) for 2 h at room 

temperature and stained with rabbit anti-GFP antibody tagged. The secondary 

antibody Alexa488 (1:200, Invitrogen) in PBS with 5% NGS for 2 h was used for 

incubate the sections at room temperature. After three washes with PBS, slices were 

mounted and covered with a glass coverslip for microscopic analysis. Images of 

apical dendrites of layer V pyramidal cells were acquired in slices through 40× oil 

immersion objective (NA 1.3; Carl Zeiss), using the LSM780 confocal microscope 

(Carl Zeiss). 

5.18 IN VIVO AND EX VIVO DENDRITIC SPINE ANALYSIS 

Dendritic spine density was determined using ZEN 2012 Light Edition software 

(version 8.0, Carl Zeiss MicroImaging GmbH) as previously described (Filser et al., 

2015; Ochs et al., 2015; Zou et al., 2015). Images were corrected with a gamma of 

0.45 and spines were counted manually by scrolling through the z-stacks. For in vivo 

study on APPΔCT15 mice from 8 to 10 dendrites per mouse were investigated. For 

ex vivo study on APP flox x Slick V mice, 6 to 8 dendrites per mouse from 

somatosensory cortex, and 8-10 basal and 8-10 apical dendrites from CA1 

hippocapmal subregion were analyzed.  
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As previously described (Holtmaat et al., 2009) in time-series, a dendritic spine was 

defined as the same if its location did not change within a range of 1 μm along the 

dendrite. Since z-scaling was limited to 1 μm, only lateral protrusions of the dendritic 

shaft were analyzed. 

Ex vivo image analysis measurements were performed manually from maximal 

projection images of deconvoluted (AutoQuantX3, Media Cybernetics) confocal 

stacks. As previously described all spines along the dendrite were marked and 

categorized into three morphologically different classes, according to established 

criteria (Jung et al, 2011). Morphological subtypes of dendritic spines were identified 

with the following criteria: mushroom spines: max_width(head)/min_width(neck) > 

1.4 µm and max_width (head) >0.2 µm and min_width(neck) > 0 µm; stubby spins: 

length (spine)/mean_width(neck) ≤ 3 µm or min_width(neck) = 0 µm or 

min_width(neck) > 0.5 µm; thin spines: length(spine)/mean_width (neck) > 3 µm. For 

illustration purpose only, image stacks were deconvolved (AutoQuant X3, Media 

Cybernetics) and adjusted for contrast and brightness. 

5.19 PRIMARY ANTIBODY LIST FOR 

IMMUNOFLUORESCENCE 

 

ANTIGEN SOURCE TYPE DILUTION 

FACTOR 

INCUBATION SAMPLE 

GFAP Abcam 

(#53554) 

goat 1:500 1 night / 4°C Brain slice  

EZRIN Sigma 

(#E8897) 

ms 1:100 2 nights/ 4°C Brain slice 

GFP-Alexa 

conjugated488 

Thermo Fisher 

(#A21311) 

rb 1:500 2 h /room temp. Brain slice 

TOMM20 Abcam 

(#186735) 

rb 1:200 1 hour/ room temp. Astrocytic culture 

CYTOCHROME C BD Pharmigen 

(#556432) 

ms 1:200 1 hour/ room temp. Astrocytic culture 

MCU SIGMA 

(#HPA016480) 

rb 1:200 1 hour/ room temp. Astrocytic culture 
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APPY188 Abcam (#32136) rb 1:200 1 hour/ room temp. Astrocytic culture 

VGlut Millipore 

(#AB5905) 
 

gp 1:200 1 night/4°C Brain slice 

Table 4 : Primary antibody list. 

5.20 NOVEL OBJECT RECOGNITION TEST 

To evaluate cognition and memory of APPΔCT15 and WT mice, a modified version 

of novel objective recognition test was used as described before (Leger et al., 2013; 

Zou et al., 2016). Mice explored an open-field arena (40 × 40 cm) freely in the 

absence of objects for 10 min having their locomotor activity recorded. One day later, 

mice were placed in the open-field arena with two identical sample objects (two 

identical plastic rectangular-shaped blue objects) with exploration period of 10 

minutes. Mice were returned to their home cages. After 24 h, mice were put back to 

the arena with one of the sample objects changed into a novel one (a grey plastic 

cilindric-shaped object). This test phase lasted 5 min. The index of recognition was 

then calculated as ratio of the time spent exporing each object on the total time spent 

exploring both of the items. 

5.21 ENVIRONMENTAL ENRICHMENT  

Environmental enrichment (EE) housing condition is a group (3-6) of mice in 48cm × 

48cm × 48cm cage with running wheels, ladders, tunnels and multiple hanging toys 

which were replaced with new objects 3 times per week (Figure 11). Mice of the 

same gender from APPΔCT15 and WT litters were placed into EE housing 

conditions from 2-month-old or 3-month-old for 6-7 weeks. Both genders were use in 

this treatment. Aggressive mice were removed from EE housing. Standard cages 

were 30 × 15 × 20 cm in size without any wheels or toys. 
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Figure 11: Environmental housing condition. 

Photo of an example of environmental enriched housing cage. Food and water are given ad libitum. 

 

 

5.22 STATISTICAL ANALYSIS 

For statistical analysis and comparisons GraphPad Prism 5.04 (GraphPad Software, 

Inc., La Jolla, CA USA) was used. For each set of data, I determined whether they 

were normally distributed or not. If they were normally distributed, I used parametric 

tests; otherwise, I used non-parametric tests (unpaired two-tailed Student’s t test and 

two-way ANOVA followed by Bonferroni post-hoc test or Mann Whitney test). In 

frequency distribution comparison, Kolmogorov-Smirnov test was applied. P-value < 

0.05 was defined as statistically significant. Wilcoxon signed-rank test was used test 

whether the quotient of interaction time with the novel object divided by interaction 

time with the familial object significantly differed from a hypothetical value of 1 (equal 

interaction times). All the analysis was performed blinded with respect to mouse 

genotype.  
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6 RESULTS 

6.1 IN VIVO CA2+ IMAGING TO UNRAVEL THE CRITICAL 

ROLE OF APP ALONG THE FINE PROCESSES OF 

ASTROCYTES 

6.1.1 EXPRESSION OF MEMBRANE-ANCHORED GCaMP6f IN 

ASTROCYTES OF APP KO MICE 

The astrocytic optically-unresolved structure “gliapil” is formed by thin lamellar 

sheets that extend from the cell body to either the pial surface or the blood vessels, 

or in some cases to freely moving axons and dendritic spines (Magistretti and 

Ransom, 2002; Bindocci et al., 2017). These long branching processes have 

reduced cytoplasm, thus rendering the investigation on calcium dynamics difficult 

(Agarwal et al., 2017). 

The AAV.Pzac2.1gfaABC1Dlck-GCAMP6f (AAV-GFAP-GCaMP6) is a membrane-

anchored adeno-associated virus carrying an ultrasensitive Ca2+ indicator 

(GCaMP6f) driven by a GFAP promoter (Chen et al., 2013; Shigetomi et al., 2013). 

By injecting this virus into mice, it is possible to overcome the aforementioned 

limitation. 

In order to investigate spontaneous Ca2+ fluctuations along the fine astrocytic 

processes, I injected AAV.Pzac2.1gfaABC1Dlck-GCAMP6f (AAV-lck-GCaMP6f) 

encoding the membrane-associated Ca2+ indicator GCaMP6 under the control of the 

GFAP promoter into the somatosensory cortex of three months old WT and APP KO 

mice (Figure 12). With the same injection, mice were co-transduced with 

AAV.GfaABC1DcytotdTomato.SV40 (AAV.Gfacyto.tdtomato) encoding a cytosolic 

tdTomato fluorescent protein under the control of the GFAP promoter (Figure 12) to 

confirm the astrocyte-specific expression of the Ca2+ indicator AAV-lck-GCaMP6f. 

Due to its lck-membrane anchor, the AAV-lck-GCaMP6f expression is detectable 

within fine protrusions of astrocytes, and thus it is perfectly suitable for the 

investigation of astrocytic Ca2+ transients (ASCaTs). 
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Figure 12: Expression pattern of GCaMP in vivo within astrocytes. 

Confocal-tile scan of GCaMP respectively GFAP-cyto-tdTomato injected area, and merge (Zeiss 40X lens oil 

immersion). In the line below zoom in of single transfected astrocytes (GCaMP and cyto-TdTomato). The white 

rectangle in A is given in higher magnification below.  

 

6.1.2 APP KO MICE SHOW IMPAIRED ASTROCYTIC CALCIUM 

TRANSIENTS ALONG THE FINE PROCESSES OF 

ASTROCYTES 

In order to investigate spontaneous Ca2+ fluctuations along the fine astrocytic 

processes, two-photon in vivo Ca2+ microscopy was conducted in the somatosensory 

cortex of mice kept under isoflurane anesthesia. Respiratory rate, temperature and 

oxygen levels in the blood were constantly monitored and isoflurane concentration 

was modified accordingly to guarantee equal depth of anesthesia between mice 

(Figure 13). Imaging series of 5 min were acquired with a sampling rate of 4.17 Hz. 

For the identification of active microdomains and their calcium transient activity 

analysis, I applied a protocol adapted from Agarwal et al. (Agarwal et al., 2017). The 

analysis was performed on single focal 60 x 60 µm images, as a time stack image 

series. As described in more details in the method section, this involved low-pass 

filtering of the time stack for background noise. Then, a 2D activity profile of ASCaTs 

activity was generated and an arbitrary threshold (average of the overall activity plus 

three standard deviations) was used to identify active microdomains (Figure 13). 
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With the analysis procedure I identified a mask of ROIs as active microdomains that 

could be further analyzed for time dependent properties. Subsequently, the traces of 

single ROIs were extracted and single ASCaTs were isolated and analyzed in terms 

of frequency, event size and kinetics. All ROIs with 1.5-fold fluorescence intensity 

above the baseline noise were considered as active domains. 

From the analysis of active ROI/microdomain distribution (Figure13A,B), I detected 

that active microdomain density was reduced by ~50% in APP KO compared to WT 

astrocytes (Figure 13C). This was accompanied by a substantial increase in the 

average area of individual active microdomains in APP KO astrocytes (~25% 

compared to WT) (Figure 13D). Likewise, the frequency distribution of the 

microdomain size (Figure 13E) was significantly shifted in APP KO mice, suggesting 

that APP KO astrocytes have fewer small microdomains. Finally, Ca2+ activity 

analysis based on the traces extracted from active microdomains showed a 

reduction of ~45% in ASCaTs frequency in APP KO astrocytes compared to WT 

(Figure 13F). 

Taken together, these results indicate that lack of APP leads to a reduction in the 

number of active microdomains and a reduction in the frequency of spontaneous and 

locally restricted Ca2+ transients occurring in the fine processes of astrocytes in vivo.  
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Figure 13: Altered astrocytic microdomain size and occurrence in the cortex of APP KO mice. 

Color-coded heat map of astrocyte activity showing ASCaTs frequency from WT (A) and APP KO (B) somatosensory cortex 

area extracted active microdomains (right, green encircled). Scale bar = 10 µm. (C) Active microdomain density was 

decreased in APP KO mice (Student’s t test: t(17)=3.53, p<0.005). (D) APP KO microdomain areas were increased, as 

shown their averaged size (t(94)=3.723, p<0.001) and (E) in their frequency distribution (KS test; D=0.1955, p<0.05). (F) 

The frequency (ASCaTs/min/domain) was reduced in APP KO mice (t(17)=2.878, p<0,05). *p<0.05, **p<0.01, ***p<0.001. 

6.1.3 MICRODOMAIN KINETICS ALONG THE FINE PROCESSES OF 

ASTROCYTES ARE ALTERED IN APP KO MICE 

After confirming that the population of microdomains was not only smaller but also 

displayed less ASCaTs in APP KO, I analyzed spontaneous Ca2+ transients in terms 

of event amplitude, rise and decay time (Srinivasan et al., 2015). The Ca2+ transients 

typically occurred as single peaks and also as bursts, as shown in traces extracted 

from active microdomains (Figure 14A).  

The total amount of single peak Ca2+ increase generated in each ASCaTs was 

examined as area under the curve (Figure 14B) and peak amplitude (Figure 14C). 

Statistical comparison revealed no significant difference between WT and APP KO 

mice. However, ASCaTs in APP KO mice displayed a longer rise time (~22%, Figure 

14D) and a longer decay time (~20%, Figure 14E), implying slower kinetics of 

calcium regulation compared to WT controls. Next, the consecutive peaks from 

burst-like transients were grouped in categories depending on the order in which 

they appeared. Consistently, both area under the curve and amplitude were 

comparable to WT (Figure 14F,G). Again, ASCaTs of APP KO mice displayed 

significantly slower kinetics regardless of the order of appearance as a part of a burst 

activity (Figure 14H,I).  

Taken together my results suggest that in the absence of APP the spontaneous 

increase of Ca2+ in microdomains is still able to reach calcium levels comparable to 

physiological conditions, but at a significant slower rate. As mentioned before, 

microdomain activity is often driven by mitochondrial Ca2+ buffering (Grosche et al., 

1999; Srinivasan et al., 2015; Agarwal et al., 2017) that is responsible for the fine 

tuning of Ca2+ homeostasis in the cytosol. For this reason, I decided to focus on the 

effect of APP depletion on astrocytic mitochondria, considering it as a potential actor 

in the observed dysregulated ASCaTs.  
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Figure 14: APP KO microdomains have impaired kinetics. 

Representative traces from active microdomains of WT (above) and APP KO (below)(A). The area under the 

curve (B) and peak amplitudes (C) values were comparable between genotypes. The rise time (D)(Student’s t 

test: t(17)=2.24, p<0.05) and decay times (E)(t(17)=2.118, p<0.05) were significantly increased in APP KO 

ASCaTs. When considered as isolated (single peak) or ordered by occurrence along burst transients, both area 
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(F) and amplitude (G) values showed no significant difference between KO and WT. More than a specific peak 

category, there was a general increase of the rise (H)(two-way ANOVA, genotype main factor, F(1,65)=9.92, 

p<0.01) and the decay time (I) (genotype main factor, F(1,65)= 17.26, p<0.001) in the kinetics of the ASCaTs of 

KO mice. *p<0.05, **p<0.01, ***p<0.001. 

6.1.4 GFAP SIGNAL INCREASES IN APP KO ASTROCYTES 

SHOWING A MORE COMPLEX BRANCHING COMPARED TO 

WT 

Before investigating the effects of APP depletion on mitochondria I determined 

whether the lack of APP might influence the activation status of astrocytes through 

the investigation of their morphology and branching processes. To determine the 

complexity of astrocytes in the somatosensory cortex, brain sections of WT and APP 

KO mice were stained with the anti-GFAP antibody using the Sholl analysis 

approach; a method often used to quantify the complexity of neuronal processes 

and, more recently, of astrocytic processes (Sholl, 1953) (Figure 15A-D). Z-stacks 

containing entire cell ramifications (Figure 15A) and the 3D reconstructions of the 

GFAP-positive structures were acquired, revealing a compact and well defined 

architecture (Figure 15B). 

The custom written FIJI Sholl scripts (Schindelin et al., 2015), used for the analysis, 

generates color coded images, based on the frequency of intersections (Figure 15C). 

As a result, a significant increase in the number of intersections with increasing 

distance from the cell soma was observed in APP KO compared to WT astrocytes 

(~10% increase in the farthest radii) (data shown as mean ± SEM, two-way ANOVA, 

interaction F(40,246) = 3.16, p < 0.0001) (Figure 15A,D).  

These findings show that the lack of APP leads to an increase in the level of GFAP 

expression and to an enhanced branching, thus suggesting a role for APP in 

modulating the activation state of astrocytes. 
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Figure 15: Sholl analysis on astrocytes. 

Confocal images of GFAP positive astrocyte from somatosensory cortex of WT and APP KO (A); 3D 

reconstruction of somatosensory astrocyte (in red), DAPI staining showing nuclei (in blue) (B); Sholl analysis was 

applied for investigating complexity of astrocytes. As readout of Sholl analysis the number of intersections 

between GFAP positive branches and concentric circles is automatically extrapolated by custom written codes on 

Fiji (C);  Number of intersections and distance from the center of the astrocytes were plotted. APP KO astrocytes 

showed significance increase in the number of intersections located farther from the soma (two-way ANOVA, 

interaction F(40,246) = 3.16, p < 0.0001) (D). 

 

6.1.5  MITOCHONDRIA OF APP KO ASTROCYTES ARE 

FRAGMENTED AND DISTORTED 

Prompted by my results of the lack of APP on calcium transients in astrocytic 

microdomains and the observed enhanced activation state of astrocytes I next aimed 

to identifying the underlying mechanisms. 

The handling and buffering of Ca2+ by mitochondria has been shown to be a key 

feature for astrocytic microdomain activity (Srinivasan et al., 2016; Agarwal et al., 
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2017). Mitochondria are extremely dynamic organelles (Detmer and Chan, 2007), 

which are actively transported within any given cell and that actively modify their 

shape and size. The notion that their dynamics impact on cellular functionality is 

widely endorsed (Chang and Reynolds, 2006; Detmer and Chan, 2007; Picard et al., 

2013).  

To further address the questions why microdomains and ASCaTs are altered in 

astrocytes of APP KO mice, I analyzed the morphology of mitochondria. Thus, 

primary astrocyte cultures were prepared from WT and APP KO pups (postnatal day 

3) and confirmed the lack of APP in astrocytes from APP KO animals by 

immunohistology (Figure 16A,B). Primary cultures of WT and APP KO astrocytes 

were next subjected to electron microscopy (EM) in order to obtain high-resolution 

micrographs of mitochondria and evaluate the effects of APP depletion in isolated 

astrocytes. 3D-reconstruction of EM image z-stacks revealed shorter and more 

fragmented, roundish-shaped mitochondria in APP KO astrocytes compared to WT 

(Figure 16C,D). This result is in line with previous evidence that the lack of APP 

results in Ca2+ and ATP dysregulations (Hamid et al., 2007; Linde et al., 2011; Pera 

et al., 2017) and morphological alterations of mitochondria (Wang et al., 2016) 

suggesting that APP regulates mitochondrial homeostasis.  
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Figure 16: Primary cultured astrocytes lacking APP display fragmented mitochondrial 

morphology. 

Each astrocytic cell culture was obtained from 3 P3 pups per group (A); Immunohistochemical analysis with C-

terminus targeted APP antibody on WT (left) and APP KO (right) primary astrocytes shows exclusive expression 

of APP in WT. Scale bar = 40 µm. (B). Representative FIB/SEM microscopy of WT (C) and APP KO (D) cultured 

astrocytes with detailed images of 3D-recontructions (right) illustrate the fragmentation of mitochondria in APP 



Results 

55 

KO astrocytes. Original FIB/SEM image, scale bar = 2 µm; overview reconstruction (middle), scale bar = 2.5 µm, 

single mitochondria fragments, scale bar = 1 µm. 

 

To confirm the presence of shorter and more fragmented mitochondria in isolated 

astrocytes of APP KO mice, both WT and APP KO astrocytic cultures were 

transfected with the plasmid pZac2.1-gfaABC1D-mito-GCaMP5G and stained 

against GFP (mito-GCaMP) (Hailong Li, Xiaowan Wang Nannan Zhanga, Manoj K. 

Gottipatic, Vladimir Parpura, 2005) (Figure 17). Addittional markers commonly used 

for the investigation of mitochondria structures, such as Cytochrome C andTOMM 20 

antibodies, were applied on astrocytic cultures (Figure 17). While Cyto C is a small 

hemeprotein on the inner membrane of mitochondria, TOMM 20 is a component of 

the receptor complex expressed on the outer membrane (Figure 17). Independently 

from the antibody applied on isolated astrocytes and from the approach used to 

visualize mitochondria, that is, either EM or confocal microscopy, I observed the 

presence of fragmented mitochondria along astrocytes of APP KO mice, thus 

providing us further confirmation on the fragmentation of mitochondria, 

independently from the kind of staining applied. 

 

 

Figure 17: Different mitochondrial markers show mitochondria fragmentation in APP KO 

astrocytic cultures. 
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Z stack from confocal microscopy (353 µm x353µm ) images of mitochondria from WT and APP KO cultured 

astrocytes transfected with pZac2.1-gfaABC1D-mito-GCaMP5G (mito-GCaMP). Anti-GFP antibody was applied 

to strengthen the fluorescent signal (in grey)l; confocal images of WT and APP KO mitochondria stained with 

mouse anti-Cytochrome C antibody followed by anti-mouse Alexa-488 (in green); confocal images of WT and 

APP KO mitochondria stained with rabbit anti-TOMM 20 antibody followed by anti-rabbit Alexa-647 (in red). 

 

6.1.6 EXPRESSION OF APP ECTODOMAIN ALONE IN APPCT15 

MICE IS NOT SUFFICIENT TO RESTORE MITOCHONDRIA 

MORPHOLOGY 

Next I assessed if the staining of TOMM 20 (mitochondrial import receptor located at 

the surface of mitochondria outer membrane) co-localizes with the signal from anti-

mito-GCaMP staining (Figure 18). I further investigated mitochondria morphology 

based on the staining of the GCaMP plasmid; with the benefit of being able to isolate 

single cell mitochondria, not possible by using TOMM20 antibody. 

 

 

Figure 18: mitoGCaMP colocalyze with TOMM20. 

 

Single plane confocal images of astrocytes (353 µm x 353µm) stained with anti GFP (green), anti TOMM20 (red) 

and DAPI (blue). The overlapping of mito-GCaMP and TOMM20 is visible as yellow colour in the merge image. . 

 

Based on their morphology, mitochondria were subsequently classified into 

networks, rods and puncta (Figure 19A,B) (Leonard et al., 2015). Interestingly, the 

analysis revealed a ~25% decrease of the area covered by network-shaped 

mitochondria, together with a ~12% increase of puncta and 12% increase of rod 

types in APP KO astrocytes compared to WT (Figure 19B). By classifying 

mitochondria in network, rods and puncta, as described in the methods, I could 

quantify the presence of more fragmented mitochondria, as outlined through EM, as 
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the result of a reduction of networked mitochondria in favor of more rods and puncta 

mitochondria (Figure 19 B). 

Considering that the multidomain structure of APP gives to the protein multi 

functional properties (De Strooper and Annaert, 2000; Andrew et al., 2016; Müller et 

al., 2017), I asked whether the presence of the APP ectodomain in its physiological 

location could rescue the mitochondrial morphology. The APP ectodomain extrudes 

into the extracellular space and is needed for trans- and homo- dimerizations and it 

is important as main source of sAPP and A (Ring et al., 2007). I investigated the 

influence of APP ectodomain on mitochondria morphology by applying the same 

approach, mitochondria morphology in APPΔCT15 astrocytic cultures. These mice 

are KI animals that express a truncated form of APP, which lacks the 15 C-terminal 

amino-acids and with improved hippocampal spine plasticity and LTP compared to 

APP KO mice (Ring et al., 2007). Surprisingly, once performing the same procedure 

on mitochondria of APPΔCT15 astrocytic culture I observed a significant reduction of 

~7% of networked mitochondria compare to WT, whereas investigation on the 

percentage of rod and puncta mitochondria did not reveal any significant difference 

neither from WT nor from APP KO (Figure 19A,B). Thus my results firstly show that 

the GCaMP-plasmid efficiently allowed a quantitative definition of mitochondria, 

confirming the presence of fragmented mitochondria in APP KO astrocytes as 

revealed by the EM investigation (figure 17). Moreover I could prove that the 

presence of APP ectodomain alone does not efficiently restore the mitochondrial 

network and therefore mitochondria of APPΔCT15 still show an increase in 

fragmentation.  
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Figure 19: APP KO mitochondria show fragmented mitochondria and APP ectodomain cannot 

recover completely to a normal phenotype. 

Mitochondrial morphology analysis in WT, APP KO and APPΔCT15 astrocytic cultures. Confocal pictures of 

GFP-positive mitochondria and relative classification in network (blue), rods (green) and puncta (red) (A),  

Area covered by APP KO and APPΔCT15 mitochondria is more fragmented compared to mitochondria area in 

WT astrocytes (2-way anova followed by Bonferroni, p< 0,001, dF(4,53) =18.08). 

 

6.1.7 APP KO FRAGMENTED MITOCHONDRIA COLOCALIZE WITH 

CYTOCHROME C 

Apoptosis is a process of programmed cell death, necessary for the development 

and homeostasis of living organisms (Parsons and Green, 2010). Although 

mitochondria provide the cell with energy needed in form of ATP, paradoxically, they 

also play an important role in the apoptocic pathway of cell death. The release of 

various mitochondrial intermembrane proteins, like Cyto C, activates numerous 

caspases that lead to apoptosis (Tait and Green, 2013). The mitochondrial CytoC is 

also a component of the mitochondrial electron transport chain that, after the 

increase of mitochondrial Ca2+, is released in the cytosol, where it executes its 

apoptotic function (Tait and Green, 2013). 

Dysfunctional mitochondria present alterations in their morphology showing enlarged 

structures often call “mito-bulb structures” (Ban-Ishihara et al., 2013). Within these 

structures Cyto C accumulates. Such accumulation does not simply reflect an 

increase in the mitochondrial respiratory activity, but it is often the result of a delay in 

Cyto C release into the cytoplasm (Ban-Ishihara et al., 2013). However, while it is 
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known that the accumulation of Cyto C in the mitochondria does not enhance the 

mitochondrial respiration activity the reasons behind  such accumulation are not 

clear yet (Ban-Ishihara et al., 2013). My confocal data clearly indicate mito-bulbs-like 

structrures in the mitochondria of APP KO astrocytes (Figure 20A). I further 

characterized the mito-bulbs by looking at Cyto C using confocal microscopy (Figure 

20B) and I observed that Cyto C clustered in the bulbs-like regions of APP KO 

mitochondria. As dysfunctional mitochondria are often presenting mito bulb 

structures enriched with Cyto C (Ban-Ishihara et al., 2013), I combined together the 

observed fragmentation of mitochondria and the accumulation of Cyto C in the mito-

bulb structures to delinate an “unhealthy “ status for mitochondria of astrocytes 

lacking APP. The “unhealthy” status of mitochondria could be most likely affecting 

the buffering of Ca2+ allover the astrocytes, thus resulting in altered Ca2+ transients 

as shown by the in vivo data. 

  

 
 

Figure 20: APP KO mitochondria show "teardrop" like structures enriched with Cytochrome C. 
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Mitochondria of WT astrocytic cultures show a tubular, interconnected shape; APP KO mitochondria instead 

present enlarged regions named as “mito-bulbs”, on the right upper corner magnification of the white square 

delimited areas (A); staining of GFP positive mitochondria (green) and Cyto C (red) on APP KO astrocytic 

cultures show clustering of Cyto C in the mito-bulb structures. In insets, magnification of “mito-bulbs” structure 

colocalizing with Cyto C (B). 

 

6.1.8 MITOCHONDRIAL CALCIUM UNIPORTER EXPRESSION IS 

INCREASED IN ASTROCYTIC CULTURES OF APP KO MICE 

To better understand if the mitochondria machinery that modulates Ca²⁺ buffering 

along the astrocytes of APP KO mice is affected, I further investigated the 

expression pattern of MCU, the mitochondrial calcium uniporter. Mitochondrial Ca²⁺ 

uptake regulates the cellular energy production, influences the intracellular free Ca²⁺ 

concentration and modulates the release of Cyto C (Bianchi et al., 2004; Kirichok et 

al., 2004; Patterson et al., 2004) (Figure 21A). The close apposition between ER IP₃-

gated receptors (IP3Rs) and mitochondria, as well as the close proximity of 

mitochondria with transmembrane Ca²⁺ channels, allows mitochondria to modulate 

shape and amplitude of cytosolic Ca²⁺ transients (Gunter and Gunter, 2002; Rizzuto 

et al., 2004). The MCU, is responsible for the electrophoretic Ca²⁺ uptake across the 

inner mitochondrial membrane (IMM), and is able to bind Ca²⁺ with extremely high 

affinity and then release it into mitochondria (Kirichok et al., 2004).  

Astrocytic cultures of WT and APP KO mice were stained with an anti-MCU antibody 

(Figure 21B), and counterstained with an anti-EZRIN antibody to identify the borders 

of the astrocytic area. The quantification of MCU positive spots, on the EZRIN-

positive covered area, revealed an increase in MCU distribution of around 15% in 

APP KO astrocytes compared to WT (Figure 21C,D). Increased levels of MCU seem 

to correlate with the accumulation of Cyto C as previously reported (Figure 21).  

In conclusion, an increased number of MCU positive spots might be the 

consequence of an enhanced internalization of MCU into the mitochondrial 

membrane of APP KO astrocytes, resulting in a subsequent reduction of free 

cytosolic Ca2+, which in turn influences astrocytic Ca2+ dynamics. 
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Figure 21: Immunofluorescence of MCU shows enhanced number of MU-positive spots in APP 

KO astrocytic culture. 

The mitochondrial calcium uniporter (MCU) is a transmembrane protein. It is one of the primary sources of 

mitochondrial Ca2+ uptake. If one hand Ca2+ is necessary for the production of ATP, on the other hand 

accumulation of Ca 2+ into mitochondria activates the apoptotic machinery via released of cyto C into the cytosol 

(A); astrocytic culture were stained for MCU and EZRIN (B); MCU-positive spots were increased in APP KO 

compare to WT Mann Whitney test, U=285, p<0,005(C,D). 

 

 

6.1.9 SUMMARY OF THE FUNCTIONAL ROLE OF APP IN 

ASTROCYTES 

Here, I established a protocol for the in vivo investigation of Ca2+ activity in the small 

microdomains of astrocytes. I show for the first time that the Ca2+ activity in astrocytic 

microdomains is severely compromised in the absence of APP. However, the 

molecular mechanism by which the lack of APP mediates this alteration needs to be 

further investigated. In response to the lack of APP I observed enhanced 

mitochondrial fragmentation, the presence of bulb structures containing Cyto C and 

an overexpression of MCU, all clear hallmarks of malfunctioning mitochondria. 

Interestingly I could also demonstrate that the expression of a truncated form of APP 

is not sufficient to restore the morphological alterations of mitochondria. Since 

morphology of mitochondria and their functionality are strongly connected, I 
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speculate on the need of full length APP for an efficient functioning of mitochondria 

and for the consequent astrocytic Ca2+ activity along the fine processes of 

astrocytes. 
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6.2 POST SYNAPTIC APP AND APP ECTODOMAIN ARE 

NECESSARY FOR THE MAINTENANCE OF DENDRITIC 

SPINE PLASTICITY 

6.2.1 FIVE DAYS TAMOXIFEN-TREATMENT DEPLETED APP FROM 

THY-1 YFP POSITIVE NEURONS IN APP-FLOX/SLICK V MICE 

In order to investigate the role of APP in modulating dendritic spine plasticity, I used 

a mouse model co-expressing tamoxifen-inducible Cre recombinase and the 

fluorophore YFP (SlickV) (Young et al., 2008) to specifically delete APP in a small 

subset of pyramidal neurons in the somatosensory cortex as well as in the region 

CA1 region of the hippocampus (Figure 22). APP KO was achieved in 10 weeks old 

mice by 5 days of application of tamoxifen, which caused almost complete loss of 

APP immunoreactivity in YFP positive neurons (Figure 22E). As control group, 

APPflox mice crossed with Slick V received a solution of peanut oil instead of 

Tamoxifen for a period of 5 days which did not cause any loss of APP (Figure 22E). 

Treatment with tamoxifen allows translocation of the complex CreERT2 into the 

nucleus where it exerts its recombinase functions on APP lox P sites (Figure 22B,C). 
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Figure 22: Knockout of APP in a sparse subset of hippocampal and cortical neurons 

10 weeks old APP flox(tg/tg) SlickV(tg/-) were administrated tamoxifen or peanut oil for 5 days and post-

mortem fixed brains were used for spine density and morphology investigations (A); Breeding scheme to obtain 

inducible APP knockout. SlickV mice co-express tamoxifen-inducible cre recombinase (CreERT2) with YFP under 

the Thy-1 promoter. These were crossed with APPLoxP/LoxP mice, in which APP is flanked by LoxP sites. 

Administration of tamoxifen irreversibly excises APP in YFPexpressing neurons (B,C). Sagittal section through 

the brain of a SlickV mouse, YFP stain. Note the sparse labelling in the cortex and CA1 region. (D). 

Immunofluorescence stain against APP reveals selective loss in YFP-expressing cortical neurons. Scale bar, 20 

μm (E). 

6.2.2 CONDITIONAL POST SYNAPTIC KO OF APP AFFECTS 

DENDRITIC SPINE DENSITY AND MORPHOLOGY 

As the fraction of somatosensory as well as hippocampal YFP-positive neurons is 

very low, they are not expected to provide a substantive fraction of presynaptic input 

into any given neuron (Figure 23D). 

Therefore, I assumed that any of the observed effects are exclusively due to the loss 

of cell autonomous APP and to the subsequent lack of APP-APP trans dimerization 
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at the synapses, known to play a role in the maintenance of spine stability (Müller 

and Zheng, 2012; Andrew et al., 2016; Montagna et al., 2017).  

To pin down the effect of a post synaptic KO of APP, spine density and morphology 

were investigated from apical dendrites of layer V somatosensory neurons and from 

apical and basal dendrites of the region CA1 of the hippocampus (Figure 23 and 

Figure 24).  

Spine density of layer V somatosensory apical dendrites was significantly decreased 

in tamoxifen treated APP flox/Slick V mice to around 35% compared with control 

animals (t test dF9= 3.22p<0,05) (Figure 23A,B,C). Morphologically, three basic 

types of dendritic spines were distinguished: stubby, mushroom-shaped and thin 

spines. The affected spine density was driven by a significant decrease of the more 

stable mushroom spines, with around 30% fewer mushroom spines in tamoxifen 

treated mice compared to control group (2 way anova, dF2,27=12.94, p<0,05) (Figure 

23D). Density of  thin and stubby were not significantly affected by the lack of APP 

(Figure 23D).  

Pyramidal dendritic spine density of CA1 region of the hippocampus was also 

considered in our study (Figure 23). It has been shown that dendritic spines of CA1 

hippocampal pyramidal neurons are more motile than their cortical partners, and 

their plasticity correlates with LTP, therefore with learning and memory formation 

processes (Woolfrey and Srivastava, 2016). However it has been also reported that 

apical and basal dendrites do not respond equally to LTP stimuli: basal dendritic 

potentiation is quicker than potentiation of apical dendrites (Kaibara and Leung, 

1993), thereby I decided to analyze the apical and basal dendrites independently 

(Figure 24). This investigation revealed that dendritic spine reduction was more 

evident in apical (around 42% less spines in tamoxifen treated mice compared to 

control group) (t test dF8=5.519, p<0,001) than in basal dendrites (around 40% less 

spines in tamoxifen treated mice compared to control group) (t test dF7=2.633, 

p<0,05) (Figure 24G,K). 

Moreover, the morphology was differently affected in the two dendritic populations. 

Apical dendrites of tamoxifen treated mice show a significant reduction of around 

30% of mushroom spines and of almost 50% of stubby spines compared to control 

mice (2 way anova, dF2,24=6.25, p<0,05) (Figure 21H). In basal dendrite a reduction 

of around 40% of mushroom spines was observed and is the driving factor for the  

decreased density of spines in tamoxifen treated mice (2 way anova dF2,21=3.79, 
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p<0,05). Overall, these data show that post synaptic conditional KO of APP strongly 

affects dendritic spines.  

As I was interested in understanding the effects of post-synaptical KO of APP on the 

pre-synapses, I investigated whether the sphericity of the presynaptic terminals of 

mossy fibers was altered in tamoxifen treated mice (Figure 25). The morphology of 

mossy fibers boutons is a parameter used to investigate the number of established 

synapses (Blaabjerg and Zimmer, 2007). Interestingly, no detectable differences in 

the sphericity of the mossy fibers were identified (Figure 25).  

Taken together these results show that APP is important for dendritic spine stability 

and morphology not only during the developmental phase of the mouse (De Strooper 

and Annaert, 2000; Laßek et al., 2013) but also during its adulthood. Additionally, 

using this approach I could demonstrate that while post-synaptic dendritic spines are 

very sensitive to conditional KO of APP, the presynaptic terminal did not undergo 

any substantial change when sphericity was investigated.  
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Figure 23: Conditional post synaptic KO of APP affects dendritic spines of the somatosensory 

cortex and of hippocampal CA1 pyramidal neurons. 

Coronal section of mouse brain showing the somatosensory cortex (black rectangular) where YFP-positive 

dendrites where depicted and confocal picture of somatosensory dendrites used for dendritic spine analysis, 

scale bar= 100µm (A) ; two representative dendrites of control (CTRL) and tamoxifen (TAM) treated mice, scale 

bar=10 µm (B); spine density quantification(t test dF9= 3.22p<0,05) (C); morphological quantification of dendritic 

spines (2 way anova, dF2,27=12.94, p<0,05) (D); Coronal section of mouse brain showing the CA1 hippocampal 

region (black rectangular) where apical YFP-positive dendrites where depicted (white arrow) and confocal picture 

of apical CA1 dendrite used for dendritic spine analysis, scale bar=100µm  (E) ; two representative dendrites of 

control (CTRL) and tamoxifen (TAM) treated mice, scale bar= 10 µm (F); spine density quantification (t test 

dF8=5.519, p<0,001) (G); morphological quantification of dendritic spines (2 way anova, dF2,24=6.25, p<0,05) (H); 

Coronal section of mouse brain showing the CA1 hippocampal region (black rectangular) where basal YFP-

positive dendrites where depicted (white arrow), confocal picture of basal CA1 dendrite used for dendritic spine 
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analysis, scale bar=100µm  (I) ; two representative dendrites of control (CTRL) and tamoxifen (TAM) treated 

mice, scale bar= 10 µm (J); spine density quantification (t test dF7=2.633, p<0,05) (K); morphological 

quantification of dendritic spines (2 way anova dF2,21=3.79, p<0,05) (L). 

 

 
 

Figure 24: Hippocampal pyramidal neurons: apical and basal dendrites. 

Confocal picture of YFP positive pyramidal CA1 neurons. Basal dendrites in the Stratum Oriens (SO) were 

independently analyzed from apical dendrites in the Stratum Radiatum. Soma of CA1 pyramidal neuron is located 

in the Stratum Pyramidale (SP). Scale bar=10m. 

 

 
 

Figure 25: Mossy fiber’ s terminals of conditional APP KO mice do not show any alteration 

compare to control group. 
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Z-stack of confocal pictures of YFP positive mossyfibers (green) co-expressing VGlut (purple) as marker of pre-

synaptic terminal (A) Scale bar =10um; analysis of sphericity of mossy fibers terminal in APP-flox SLick V mice 

treated with tamoxifen or peanut oil did not reveale evident differences between the two groups (B). 

 

6.2.3 APP ECTODOMAIN IS CRUCIAL FOR SPINE DYNAMICS UPON 

EE STIMULATION  

Given that the conditional KO of full length APP strongly affects spine density and 

morpholgy, and given that APP KO mice show impaired spine plasticity if exposed to 

EE (Zou et al., 2016), I decided to further explore the role of the APP ectodomain in 

regulating spine dynamics. Under the correct experimental conditions, in vivo 

imaging approaches can simultaneously allow imaging of spines and monitoring of 

specific populations of dendrites in a living organism in real time (Jung and Herms, 

2012), hence being an advantageous tool to investigate the effects of environmental 

stimulation on a subpopulation of neurons. Therefore I decided to apply two photon 

in vivo microscopy to APPCT15 mice (Ring et al., 2007) and monitor the dynamics 

of apical dendritic spines of layer V somatosensory neurons. Studies conducted so 

far on APPCT15 mice reported an overall improvement of LTP, brain weight and 

body growth compared to APP KO mice, thus suggesting APP ectodomain as crucial 

for the establishment and maintenance of the brain network (Ring et al., 2007). 

Three months olds APPCT15 and WT mice were exposed to EE for a period of 4 

weeks and dendritic spines were monitored weekly (Figure 26A,B), as previously 

described (Zou et al., 2016). EE is known to provide a spectrum of synaptic inputs, 

which lead to adaptive synaptic alterations within the adult brain (Nithianantharajah 

and Hannan, 2006). In agreement with previous observations (Jung and Herms, 

2014; Zou et al., 2016) exposure to EE induced a steady increase of spine density in 

the WT mice (Figure 26 D). 

Interestingly my results clearly indicate that, in contrast to APP KO mice (Zou et al., 

2016), spine density of layer V pyramidal neurons in the somatosensory cortex of 

APPCT15 mice increases after exposure to EE by ~5%, similar to denditric spines 

of WT mice (2 way anova, dF7,49 =0.16, p< 0.001) (Figure 26CD). Moreover, the 

spine density of WT and APPCT15 mice showed no significant difference (t test 

p>0,05) (Figure26D). Taken together I observations reveal a crucial role of APP 

ectodomain to maintain an efficient and functional spine plasticity. APP ectodomain 

at its physiological location is needed to preserve the capability of dendritic spines to 
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adaptively remodel their location, thus determining the whole brain network in the 

adult brain. 

 

 

Figure 26: APP ectodomain is necessary for spine plasticity upon EE stimulation. 

10 weeks old mice underwent cranial window implantation. 4 weeks later mice were anesthetized (mixture of 

isofluoran and oxygen) and placed under two photon microscopy where somatosensory dendritic spine were 

image weekly d for a period of 8 weeks. For 4 weeks, before and after the imaging session the mice were housed 

in single caged conditions, whereas for the last 4 weeks of imaging the mice were housed in EE conditions (A); 

Representation of apical dendrites imaged through a two photon in vivo microscopy setup; a thin glass allows 

imaging of apical dendrites in vivo (B); typical somatosensory dendrite whose spines have been counted for 49 

days, before and after expose to EE (C); dendritic spine density of WT and APPCT15 mice kept in single cage 

environment (SE) and in enriched environment (EE) condition; no significant differences of spine density was 

detected between the two groups (t test p>0,05), both groups showed significant increase of spine density  after 

exposure to EE of ~5%(2 way anova, dF7,49 =0.16, p< 0.001). 

 

 

6.3 APPΔCT15 MICE CAN DISCRIMINATE BETWEEN 

FAMILIAR AND NOVEL OBJECTS DURING A NOVEL 

OBJECT RECOGNITION TEST 

Dendritic spine plasticity strongly affects cognition and memory (Lai and Ip, 2013; 

Zou et al., 2016) 

To understand whether the dendritic spines in APPCT15 mice impact and 

ameliorate the cognition performances, shown to be impaired in mice with full KO of 
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APP (Ring et al., 2007; Zou et al., 2016), I performed novel object recognition 

(NOR). Following the previously established protocol on APP KO mice (Zou et al., 

2016) I could demonstrate that APPCT15 mice can discriminate between novel and 

familiar objects, in a similar manner as WT mice (Wilcoxon signed rank test was 

performed to compare data to the hypothetical value 1. *p<0,05). (Figure 27 A,B). 

This means that, during the test phase, the mice spent the majority of the time next 

to the new object, which draws their curiosity.  

Overall, these data show that cognition and memory tasks are not affected by the 

lack of the 15 C-terminal aminoacids of APP. Hence, the APP ectodomain alone at 

its physiological expression at the cell membrane allows mice to perform the NOR 

paradigm similar to control WT mice, and therefore ameliorates behavioral deficits 

observed in condition of full APP KO mice (Ring et al., 2007; Zou et al., 2016). 

 

Figure 27: APPΔCT15 mice can discriminate between novel and familiar object during a NOR 

test. 

Schematic representation of NOR paradigm applied to WT and APPCT15 mice. Briefly mice spent 10 minutes 

in an open field arena where they could familiarize with the environment (Habituation phase), 24 hours later mice 

were placed back in the arena with two identical object for a period of 10 minutes (Familiarization phase), after 

placing back the mice in their cage they were re-locate in the arena, this time with a familiar object and with a 

new one (Test phase); the time spent exploring each object was calculated (A); Both WT and APPCT15 were 

able to discriminate between a novel and familiar object spending more time next to the novel object compare to 

the old one (Wilcoxon signed rank test was performed to compare data to the hypothetical value 1. *p<0,05 (B)). 

 

 

6.3.1 SUMMARY OF THE FUNCTIONAL ROLE OF APP IN 

MODULATING DENDRITIC SPINE PLASTICITY 

I applied ex vivo as well as in vivo approaches to unravel the role of APP in spine 

dynamics, stability and structure in different conditions and upon environmental 

stimulation. Density as well as dynamics of dendritic spine correlates with the 

plasticity and the structure of the brain network and its ability to adapt in response to 
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external stimuli. Through the ex-vivo investigation I could demonstrate that the 

conditional KO of APP in adult mice induces a clear reduction of dendritic spines and 

alters spine morphology, in the hippocampal CA1 neurons as well as layer 5 

pyramidal neurons of the somatosensory cortex. Additionally I confirmed that 

neurons undergo rearrangement of dendtiric spinses also during mouse adulthood, 

ascribing to APP a pivotal role in this function. In fact I demonstrated how conditional 

APP KO negatively impacts on spine density and structure. Due to the low fraction of 

YFP positive neurons I also assumed that the observed alterations were induced by 

the loss of the cell autonomous APP, whose role at the synapses, among the others, 

is to govern spine stability through APP-APP dimerization and/or through the 

activation of intracellular pathways (Müller et al., 2008b; Baumkötter et al., 2012; 

Baumkotter et al., 2014; Hoefgen et al., 2014; Klevanski et al., 2015). Moreover, 

thanks to the in vivo results on spine dynamics in APPCT15 mice I could prove the 

necessity for the expression of the APP ectodomain at its physiological location, in 

order to have a constitutive and adaptive spine plasticity comparable to the one 

observed in the control mice. Furthermore, the lack of the 15 intracellular amino 

acids of APP in these mice did not affect the performances during the NOR test.   

. 
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7 DISCUSSION 

In the past, astrocytes have been considered as passive elements involved in the 

modulation of neuronal functions. Today their active role in regulating brain network, 

refining synapses, modulating the concentration of neuro- and glio- transmitters in 

the extracellular space is widely accepted in the field of neuroscience (Perea et al., 

2009; Perez-Alvarez et al., 2014). Although the role of APP has been widely 

investigated in neurons (Müller et al., 2017), it has been for too long overlooked in 

astrocytes. 

Therefore, I decided to focus this study on the role of APP in astrocytes, as active 

partners in synaptic function (Perea et al., 2009). Namely, astrocytes conduct a great 

number of functions, which often require increased levels of intracellular Ca²⁺, and 

are partners of neurons in modulating synaptic networks (Perea et al., 2009). As we 

recently demonstrated, the lack of APP affects glio-transmission of D-serine, a co-

agonist of NMDA receptors. This alteration, in turn, leads to defects in dendritic 

spines plasticity of adult APP KO mice (Zou et al., 2016). Considering that the D-

serine release from astrocytes is mediated by intracellular Ca2+-dependent 

mechanisms, I hypothesized that Ca2+ activity in the fine astrocytic processes of APP 

KO mice is altered. Hamid et al. showed alterations in both resting free cytosolic 

Ca2+ and in the Ca2+ release from ER in primary astrocityc cultures from APP KO 

mice (Hamid et al., 2007). Additionally, in 2011 Linde and colleagues showed altered 

Ca2+ homeostasis in astrocytic cultures of APP KO mice, suggesting a strong 

correlation between APP and Ca2+ modulation in astrocytes. 

In this study I considered the effects of APP depletion on spontaneous in vivo Ca2+ 

dynamics within microdomains of astrocytic fine processes known to be closely 

associated with synapses. It is fundamental to understand the local function of these 

microdomains in order to decode the contribution of APP to the communication 

between astrocytes and neurons (Perea et al., 2009).  

Thus, I used a membrane-tagged genetically encoded Ca2+ indicator for the 

investigation of astrocytic Ca2+ transients in astrocytic fine processes (Shigetomi et 

al., 2013).  

The challenging in vivo investigation of Ca2+ transients in the distal part of the 

astrocytes has been recently resolved by the development of the AAV-GCaMP6f 

carrying a GFAP promoter and a plasma membrane localization signal. This tool 
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allowed me to the establish a new protocol for the analysis of in vivo Ca2+ transients 

in APP KO astrocytic fine processes. My data show that lack of APP significantly 

affects in vivo spontaneous Ca2+ activity along the fine processes defined as 

microdomains. These autonomous, functional units are able to modulate dendritic 

spine plasticity (Perea et al., 2009). My in vivo two-photon imaging results clearly 

demonstrate that lack of APP affects the density of microdomains, with a significant 

loss of small active domains compared to control animals. Moreover, frequency and 

kinetics of Ca2+ transients along the fine processes were reduced as well, without 

any substantial change in amplitude.  

These results provide new insights on the in vivo role of APP in the modulation of 

Ca2+ transients in astrocytes. Given that Ca2+ transients along the fine processes of 

astrocytes are defined by mitochondria-mediated ion homeostasis (Jackson and 

Robinson, 2015; Agarwal et al., 2017), I hypothesized and investigated possible 

mitochondria dysfunctions. The KPI domain of APP is expressed in the 751-770 

amino acids long APP isoforms, predominantly expressed in astrocytes (Rohan de 

Silva et al., 1997). In 2016 Wang and colleagues generated KPI-APP mutants, 

lacking the 12 C-terminal amino-acids in Hela cells. Wang observed that the mutated 

KPI-APPs exhibited decreased mitochondrial localization. In addition, mitochondrial 

morphology was altered, resulting in an increase in spherical mitochondria in the 

mutant cells through the disruption of the balance between fission and fusion (Wang 

et al., 2016). These data are in strong agreement with my assumptions of an 

astrocytic-specific phenotype of mitochondria in this context. Indeed, I observed that 

mitochondria from APP KO astrocytic cultures are fragmented, in accordance with 

the observations of Wang in HeLa cells (Wang et al., 2016). Moreover, my findings 

indicate that the expression of the APP ectdomain alone is not sufficient to rescue 

this fragmentation. Mitochondria fragmentation correlates with unhealthy 

mitochondria, present in many neurological diseases, as AD (Spuch et al., 2012). 

Intriguingly, mitochondria ability of buffering Ca2+ over a big area is strongly linked to 

their physiological tubular morphology (Chang and Reynolds, 2006). In the case of 

fragmented and more sparse mitochondria, instead, Ca2+ will be buffered over a 

smaller cytoplasmic area. Therefore, as a result of the observed mitochondria 

fragmentation, microdomains may get deprived of their main energetic sources and 

cannot sufficiently support surrounding neuronal activity. Therefore I hypothesize 

that the highly ramified protrusions of astrocytes, where microdomains are located, 
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are not fully functional in APP KO mice, thus explaining the impairments in synaptic 

plasticity and gliotransmitter release observed in APP KO animals (Zou et al., 2016).  

It has previously been shown that APP harbors a mitochondrial targeting signal and 

forms complexes with the translocase of the outer mitochondrial membrane 40 

(TOMM40) and the inner mitochondrial membrane 23 (TIMM23) (also know as TOM 

complex), regulating the translocation of nuclear-encoded proteins into the 

mitochondria (Devi et al., 2006; Pagani and Eckert, 2011). I therefore reasoned that 

depletion of APP may compromise mitochondrial protein translocation affecting 

mitochondria functions and leading to imbalanced intracellular Ca2+ homeostasis. In 

fact, the mitochondria-associated ER membranes (MAMs) are sites where the APP 

cleavage product C99 accumulates and interferes with the mitochondrial respiratory 

chain (Pera et al., 2017). Hence, I speculate that full-length APP or any of its 

cleavage products at physiological levels have a function in ensuring ER-

mitochondria proximity and thus permitting proper mitochondria integrity 

Notably, I also observed an augmented level of the nuclear-encoded protein MCU. 

MCUs are Ca2+ uniporter, responsible for the uptake of Ca2+ from the cytosolic space 

into the mitochondria, where it is used for the production of ATP or it is simply stored 

and then released again in the cytoplasm (Gunter and Gunter, 2002). The more 

spread distribution of MCU observed in APP KO astrocytes could be a consequence 

of either a mis-regulation of APP-TOM dependent protein translocation or the result 

of the fragmented mitochondria network.  

In summary, the alteration of ASCTs in APP KO may be either due to a higher 

expression of MCUs and as a consequence an enhanced uptake of Ca2+ from 

ER/cytoplasm or due to an impaired buffering of Ca2+ resulting from the alteration in 

the morphology or functionality of mitochondria. Thus, the malfunctioning of 

mitochondria could cause a reduction of free cytosolic Ca2+, hence explaining my in 

vivo observations (Figure 28).  

In conclusion, I introduced a new protocol for the investigation of Ca2+ dynamics 

along the fine processes of astrocytes. Thanks to this approach I could provide novel 

insights into the role of APP as a regulator of mitochondrial network and Ca2+ 

homeostasis in astrocytes My data represent a valuable resource for further 

investigations on APP functions in astrocytes that have been neglected for too long.  
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Figure 28: Schematic representation of the interplay between APP –mitochondria and calcium 

transients in fine processes of astrocytes. 

WT astrocytes show more elongate mitochondria with a typical tubular shape, that allow them to cover a bigger 

area compared to the fragmented mitochondria present in APP KO astrocytes. As WT mitochondria cover a 

bigger area within an astrocyte they can buffer Ca2+ over a larger cytoplasmic area than APP KO, thus 

influencing the decrease number and slower kinetics of active microdomains of APP KO astrocytes, as our in vivo 

observations show. Influx of Ca2+ into mitochondria is modulated by the uniporter MCU. Its proximity to IP3R2 

and of other Ca2+ channels modulate the concentration of free cytosolic Ca2+ Increased number of MCU let us 
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hypothesize that correlate to less free cytosolic Ca2+ (A). The link between APP and TOM complexes regulates 

the entrance of nuclear encoded mitochondria protein, like MCU for instance. The lack of APP might affect the 

TOM-dependent protein translocation into the mitochondria, determining an overexpression of protein, like MCU, 

involved in the uptaken of Ca2+ affecting the concentration of free cytosolic Ca2+ (B). 

 

 

Next, I provided new insights on the role of APP in modulating dendritic spine 

plasticity by using both in vivo and ex vivo approaches. To understand the role of full 

length APP and of APP functional domains, I pursued two different strategies: 1) 

APP was conditionally KO in adult mice and spine density and morphology was 

investigated; 2) dendritic spine plasticity of APPCT15 mice was investigated to 

unravel the specific role of the APP ectodomain in spine dynamics. It has been 

shown that APP can form dimers, through the interaction of APP-APP ectodomains 

and with other APP family members, both in cis as in trans orientations (Figure 29A) 

(Soba et al., 2005; Dahms et al., 2010; Xue et al., 2011). The formation of trans-

dimers allows APPs to act as synaptic adhesion molecules (Wang et al., 2009; 

Müller and Zheng, 2012; Baumkotter et al., 2014). This study demonstrated that 

conditional APP KO in a small subset of cortical and hippocampal neurons allowed 

us to analyze the effects of the KO at the postsynaptic plasmamembrane. Under 

such conditions the APP expressed in the presynaptic terminals is very likely unable 

to dimerize with the post-synaptic APP, hence affecting dendritic spine stability. 

Moreove, due to the low percentage of conditional KO neurons I assumed that the 

observed outcome is the result of a cell autonomous lost of APP. The conditionally 

APP KO in adult mouse brain revealed its utility to understand how adult neurons are 

sensitive to a sudden KO of APP, without being able to take any advantage from 

possible compensatory mechanisms that occour during brain development (El-

Brolosy and Stainier, 2017). Data obtained within my study indicates that post 

synaptic KO of APP leads to a reduction of spine density in regions like the 

somatosensory cortex and in the more plastic CA1 region of the hippocampus. 

Moreover the observerved altered spine density seems to be induced from a loss of 

the stable mushroom spines. Spine density and plasticity correlates with experience 

dependent plasticity and with memory and learning processes (Ring et al., 2007; 

Knott and Holtmaat, 2008; Ochs et al., 2015; Zou et al., 2016). The effects observed 

by the conditional KO of APP show how even during adulthood the brain mantains its 

plasticity and dendritic spines lose their stability in response to the conditional APP 
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KO. However, I cannot assess the contribution of the transcriptional role played by 

the intracellular domain of APP (Müller and Zheng, 2012) or by the dimerization 

driven by APP ectodomains in this model (Figure 29B). Thereby, I decided to 

investigate spine plasticity in the APPCT15 mouse models (Ring et al., 2007), 

where the intracellular domain of APP is missing and therefore its transcriptional 

role. 

My study is based on our recent findings. I demonstrated through an in vivo study in 

the somatosensory cortex of adult APP KO mice that lack of APP does not affect 

spine density in standard housing condition. However, the exposure of mice to EE 

stimulates formation of new spines in WT mice (Nithianantharajah and Hannan, 

2006), but not in APP KO mice (Zou et al., 2016). The mutated APP in the 

APPCT15 is expressed under its endogenous promoter, but it lacks the C-terminal 

15 aminoacids (Ring et al., 2007). Nevertheless it still expresses its transmembrane 

domain, thus allowing the protein to be located in the membrane and form dimers at 

the synapses (Figure 29C). Previous data already reported a rescue in behavioural 

deficits, weight loss and reduced dimension of the brain in these mice (Ring et al., 

2007). On the same line, my data clearly indicate that there are no deficits in the 

spine density of apical dendrites of layer V somatosensory neurons of APPCT15 

mice compared to WT. Moreover, the presence of this truncated form of APP is 

enough to observe a physiological increase in the spine density of the mice after 

exposure to EE. Following the protocol performed on the APP KO mice, I also 

observed no behavioral deficits in the NOR test, thus suggesting that the expression 

of APP ectodomain is enough for maintaining a functional brain network, in 

accordance with previous studies on this mouse line (Ring et al., 2007).  

Overall, I show that APP is indeed fundamental for the regulation of spine stability, 

plasticity and morphology in adult mice. I additionally claim that APP ectodomain, at 

his physiological location, is strongly required for functional brain network and for 

spine plasticity. Thus, my study gives an overview of the role of APP in defining the 

brain network and the formation/stabilization of new synapses through the 

modulation of both astrocytes and neuronal dendrititc spines. 

 

In conclusion, my study on APP physiological functions identifies astrocytes as new 

partners involved in the APP-dependent regulation of the brain network. I additionally 
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provided new information regarding the interplay between APP and mitochondria, 

although the molecular mechanisms of this interaction need to be further 

investigated. I contributed to the understanding of APP role in governing spine 

dynamics, a topic that is still being explored. I showed that dendritic spines reduce 

their stability upon KO of APP, and I hypothesize a pivotal role of the APP 

ectodomain in the regulation of this process. Taken together, my results give an 

overview of the role of APP in defining the brain network and the 

formation/stabilization of new synapses through the modulation of both astrocytes 

and neuronal dendritic spines. To more deeply understand the way APP influences 

brain network, future studies should take into consideration the relationship of 

astrocytes and neurons as part of one single process and investigate the effect of 

the lack of APP as the result of altered communication among different cell types, 

shifting the neurocentric view that has been driving neuro scientists for too long. 

. 
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Figure 29: Schematic representation on how APP can influence spine dynamics in WT mice, in 

mice were APP has been  conditional KO and in APPCT15 KI mice. 



Discussion 

81 

(Previous page) APP dimerization as well as APP intracellular signaling cascade are important for dendritic spine 

palsticity. 

1. Schematic representation of APPdomain structure. From the N-terminal region; the E1 domain formed by: 

heparin binding domain (HBD), growth factor like domain (GFLD) and cupper binding domain (CuBD). The E2 

domain that includes the heparin binding domain and the pentapetide sequence (RERMS). Aβ region and 

transmembrane region precede the AICD intracellular domain. 2,3. Example of APP dimerization occurring at the 

synapses and between two molecules of APP on the same neuron. The dimerization is stabilized by the 

formation of disulfide bridges (SH-SH) highlighted in yellow. 4. Schematic representation of AICD intracellular 

pathway. Phosphorylated AICD interacts with 

JNK triggering cell death, with JIP stimulating cell differentiation and with Fe65 or JIP to get transport into the 

nucleus and modulate gene transcription (A); Schematic representation of readouts from APP flox- tamoxifen 

treated mice. Lack of post synaptic, therefore of the trans-dimerization and of the intracellular signaling cascade, 

lead to a reduction in spine density and altered spine morphology (B); Schematic representation of APPΔCT15 

experiments, expression of APP ectodomain allows still the formation of trans dimers, while the intracellular 

cascade activated by tha AICD domain is still missing. However mice show dynamic and functional spine 

plasticity (C). 
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9 LIST OF ABBREVIATIONS 

 

AD  Alzheimer’s disease 

APLP  Amyloid Precursor Like Protein 

APP  Amyloid Precursor Protein 

AICD  APP intracellular domain 

A  Beta-amyloid 

CTF  C-terminal fragment 

Ca2+  Calcium 

CuBD Cupper binding domain 

Cyto C  Cytochrome C 

°C Degree Celsius 

EE Enriched Environment  

ECS Extra-Cellular Space 

GECI  Genetically encoded calcium indicators 

GCaMP  GFP, Calmodulin, peptide sequence from myosin light chain 

GFAP  Glial fibrillar acid 

GFP  Green fluorescente protein 

GFLD  Growth factor like domain 

Gp  Guinea pig 

HBD  Heparin binding domain 

IMM Inner Mitochondria Membrane  

TIMM23 Inner Mitochondrial Membrane 23 

KI  Knock In 

KO  Knock Out 

KPI  Kunitz Protase inhibitor 

g Microgram 

l Microliter 

m Micrometer 

MitoGCaMP Mitochondria targeted GCaMP 

MCU Mitochondrial Ca2+ uniporter 

Ms  Mouse 

NOR Novel Object Recognition Test 

OMM  Outer Mitochondria Membrane 

PM  Plasma membrane 

Rb  Rabbit 

ER  Reticulum Endoplasmaticum 

sAPP  Soluble APP alpha 

TGN Trans-Golgi Network 

TOMM40  Translocase of the Outer Mitochondrial Membrane 40 

VGLUT1  Vescicular glutamate transporter 1 
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