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Abstract

The Vlasov-Poisson equation is a classical example of an effective equation which shall
describe the coarse-grained time evolution of a system consisting of a large number of
particles which interact by Coulomb or Newton’s gravitational force. Although major
progress concerning a rigorous justification of such an approach was made recently, there
are still substantial steps necessary to obtain a completely convincing result. The main
goal of this work is to yield further progress in this regard.

To this end, we consider on the one hand N-dependent forces fV (where N shall denote
the particle number) which converge pointwise to Coulomb or alternatively Newton‘s
gravitational force. More precisely, the interaction fulfills fV(q) = :l:# for |q| > N —T5te
and has a cut-off at |¢| = N ~157¢ where ¢ > 0 can be chosen arbitrarily small. We prove
that under certain assumptions on the initial density kg the characteristics of Vlasov
equation provide typically a very good approximation of the N-particle trajectories if
their initial positions are i.i.d. with respect to density kg. Interestingly, the cut-off di-
ameter is of smaller order than the average distance of a particle to its nearest neighbor.
Nevertheless, the cut-off is essential for the success of the applied approach and thus we
consider additionally less singular forces scaling like |f(q)| = ﬁ where a € (1,3]. In
this case we are able to show a corresponding result even without any regularization.
Although such forces are distinctly less interesting than for instance Coulomb interaction
from a physical perspective, the introduced ideas for dealing with forces where even the
related potential is singular might still be helpful for attaining comparable results for
the arguably most interesting case a = 2.
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Zusammenfassung

Die Vlasov-Poisson Gleichung ist wohl eine der bekanntesten effektiven Gleichungen,
deren Losungen die zeitliche Entwicklung von Vielteilchensystemen von einer makro-
skopischen Perspektive beschreiben sollen, wobei die betrachteten Teilchen mittels Cou-
lombkraft oder Newton‘s Gravitationskraft miteinander wechselwirken. Obwohl in der
letzten Zeit grofe Fortschritte erzielt wurden, die Anwendbarkeit einer solchen Beschrei-
bung rigoros zu begriinden, bleiben immer noch bedeutende Liicken zu einem vollsténdig
zufriedenstellenden Ergebnis bestehen. Das Kernziel dieser Arbeit ist es, bereits vorhan-
dene Resultate in verschiedener Hinsicht auszubauen.

Zu diesem Zweck betrachten wir einerseits Zweiteilchenwechselwirkungen fV, die von
der Teilchenzahl N abhéngen und punktweise gegen die Coulombkraft oder gegen New-
ton’s Gravitationskraft konvergieren. Genauer gesagt, besitzen die Kréfte die Form
N(q) = ilqi?” falls |¢| > N _T78+€, € > 0 und sind in einem Bereich der Gréflenordnung

lgf = N ~15+¢ um die Singularitdt in geeigneter Weise regularisiert. Wir werden zei-
gen, dass unter gewissen Annahmen an die Anfangsdichte kg die Charakteristiken der
Vlasov-Gleichung die Trajektorien der Teilchen in sehr guter Niherung beschreiben,
falls ihre Startpositionen unabhéngig und identisch verteilt sind beziiglich der Dichte kq.
Interessanterweise ist die Groflenordnung des Bereichs, in dem die Wechselwirkung re-
gularisiert wird, bedeutend kleiner als der durchschnittliche Abstand eines Teilchens zu
seinem néchsten Nachbarn in der betrachteten Situation. Leider ist die Regularisierung
in dem beschriebenen Fall trotzdem essentiell fiir den Erfolg der verwendeten Metho-

de. Deshalb betrachten wir zusitzlich weniger singulidre Krifte der Form |f(q)| = ﬁ
fiir |g| > 0 sowie v € (1, 4] und zeigen, dass in diesem Fall entsprechende Resultate

auch ohne Regularisierung bewiesen werden kénnen. Obwohl solche Kréfte von einem
physikalischen Standpunkt aus gesehen weitaus weniger interessant erscheinen als z.B.
Coulomb-Wechselwirkung, kénnte das prisentierte Vorgehen trotzdem hilfreich dabei
sein, letztendlich vergleichbare Resultate fiir den wohl relevantesten Fall a = 2 zu erzie-
len.
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Chapter 1

Introduction

1.1 Introduction to the basic objective

The essential aim of this work is to provide a mathematical rigorous justification for
the application of Vlasov equation to describe the time evolution of certain microscopic
systems from a coarse-grained perspective. In the following sections we will explain what
exactly is meant by the last statement and give additionally a first impression to which
extend we can meet these expectations.

Consider a system of N identical particles (e.g.) in 3-dimensional space evolving by
Newtonian dynamics. Moreover, let f be some pair interaction, then the related particle
trajectories are determined by the following system of coupled differential equations

) P
Qi = 3t

-Pi = Zj;ﬁif(@i - Qj)

where m > 0 shall denote the particle mass. The particle numbers of real systems
are in many cases huge so that solving these equations is an extremely complicated or
even unfeasible problem. However, by heuristic arguments it is often possible to find an
effective equation (resp. a PDE) so that solutions to this equation determine a continuous
approximation of the particle distribution for a certain time span (where usually the
position and/or time variables must be rescaled in a suitable way first). And while
previously we argued that the huge number of particles causes problems, the converse is
true for this purpose since the approximation typically improves as the particle number
increases. In contrast to heuristic derivations, our aim is to show with mathematical
rigor that such an approach is justified for one of the most classical examples which is
the Vlasov-Poisson system. In this case the pair interaction is given by the Coulomb
force or Newton’s gravitational force f(q) = a#, a € {—1,1} for |g| > 0 (where in our

ie{l,.. N}, { (1.1)

units the coupling constant which includes the remaining physical quantities is set equal
to 1) and the related effective equation is the Vlasov equation

skt Lovht ([ BCpas) - Yok =0 (12)
8t m R3

where ‘x’ denotes the convolution and m > 0 is a parameter (which, however, in our
considerations will always be equal to 1). In case of these special interactions the equa-
tion is usually referred to as Vlasov-Poisson equation. The precise sense in which the
solutions to this equation shall be related to the particle distribution will be introduced



in section [[.4

The topic of effective equations in general as well as the justification of their respec-
tive application is a widespread research field and in particular issues concerning Vlasov
equation (being one of the classical examples) are well documented in literature. Hence,
we limit the introduction to aspects which are crucial or helpful for understanding the
approach which is applied in the thesis and refer the reader to some very enlightening
sources in which basically all relevant aspects concerning the current topic are discussed.
In this regard, the lecture notes of Jabin [I2] are very noteworthy. In addition to an
introduction to the conceptual framework, also insight into (classical and current) tech-
niques is provided which can be applied for the derivation of Vlasov equation and other
effective equations. Furthermore, the current work is at least partly build on results of
the thesis of Lazarovici [17] and essentially all basic issues which will be of importance
are discussed there to a wide extent. A slightly broader insight into the topic is deter-
mined by the advisable course of Golse [6]. Finally, for a general overview about issues
concerning the effective description of large particle systems the famous book of Spohn
[28] is a very instructive source.

We continue by introducing the essential systems and equations which will be relevant
in this work.

1.2 The microscopic system

As mentioned at the beginning, we always consider systems of N identical particles in
3-dimensional space which evolve according to Newton’s laws. The trajectories of the
particles shall be given by the following system of differential equations

Qi =V

Vi=§ 2 f(Qi — Q) 43

ie{l,..,N}, {

where we consider (homogeneous) force kernels of the form stated in and a related
regularized version (see (1.4)). In our units the mass of each particle shall be equal to 1
so that velocity and momentum coincide (which explains the equality in the first line of
(1.3)). Moreover, as indicated in the previous section, usually a certain rescaling of time,
positions and/or momenta is necessary so that the regarded system shows interesting
behavior which approximately can be described by a related effective equation. The
prefactor % appearing in equation constitutes such a scaling factor and the applied
scaling is generally called ‘mean-field scaling’ in literature. Taking a closer look at
equations the factor % seems to be the most obvious choice, where an interesting
behavior of the system may be expected, which can be captured by an effective equation.
This is, for instance, also noted in [I2]. If the particle number N increases, then this
prefactor basically compensates the rising number of addends appearing in the force
term so that in total the force on the average particle is expected to keep of order 1.
If, on the other hand, the prefactor takes the form ﬁ where 8 > 1, then for large N
the force term is expected to become negligibly small for most particles which in turn
leads to an almost free time evolution and thus to a rather uninteresting behavior. The
situation is more complicated for a prefactor of the form ﬁ where 8 < 1. However, if
the distribution of the particles is such that order N particles ‘contribute’ in a relevant
way to the total force acting on an average particle, then this force will likely become



arbitrarily large as N increases which results in a correspondingly big acceleration of the
particles, so that in this case no meaningful behavior should be expected in the limit.
Let for X; = (1X;,2X;) € RO the first component ! X; € R? denote the position of the
i-th particle in space and 2X; € R? its velocity. Then X := (X1, ..., Xy) € RV shall
denote the whole N-particle configuration where for convenience we omit to make the V-
dependence explicit in the notation since it will always be clear from the context anyway.
Moreover, we define for a,c >0, a € {—1,1} and N € N the following interaction force
which has a cut-off that becomes arbitrarily small as N grows to oo:

aN(a+1)cq , if |q’ < N—¢

1.4
aw% ,lf |q’ >Nic ( )

VR R qr—>{

For the whole thesis the parameter o will be element of (1,2]. Most estimates can
be done for general « in the respectively considered range and for situations where a
case analysis is necessary we will explicitly point out which values are being considered.
Thus, we will omit to make the dependence of the force on this parameter explicit in the
notation. Furthermore, we also omit to indicate the dependence on a € {—1,1} because
it will not matter for the estimates if the force is attractive or repulsive. We already point
out that the ‘singularity parameter’ « and the ‘cut-off parameter’ ¢ are crucial quantities
which will occur throughout the whole thesis and which are particularly important for
the interpretation of results. Furthermore, we remark that the stated form of the cut-
off is only one of arbitrarily many possibilities. It is only important that the Lipschitz
constant related to the ‘inner area’ of the force |g| < N ¢ is not of distinctly larger order
than the Lipschitz constant related to the ‘outer part’.

Moreover, in correspondence to the notation for the regularized force it makes sense to
denote

0 ,if gl =0

1.5
GWLH ,if gl >0 .

fOO:Rg—HR?’, q*—){

where for convenience we often identify f := f°°. Also for the non-regularized force the
respectively considered values of o € (1, 2] will always be clear from the context.
Actually, (at least in our view) the most interesting choice for the singularity parameter
is a = 2 where f° is given by the physically relevant Coulomb or Newton’s gravitational
force. However, the results which are attainable by our approach still rely on a cut-off
for this choice of a so that we consider additionally structural similar but less singular
force kernels where stronger results can be proven.

The Newtonian flow provided by the solutions to for the regularized force fV will
be denoted by <\Ijé\féc)s7teﬂg which means that the map \I/]\QC(X) = (1111,]7\;’0(X), QIII,JTQ’C(X))

shall solve equations (T.3)) if f := fV and \Ili\ft’c(X) = X for X € R% ¢ € R. Hence, if
\Ili,\fgc(X ) indicates the positions of the particles in phase space, then their positions in
physical space will be denoted by l‘llé\;lc(X) = (PN Xy, .., [FEYE(X)] ) and their

s,t s,t
velocities/momenta by 2\I{Jg\ft’c(X) = ([Q\I/gf(X)]l,..., [2\I/5£C(X)}N), We remark that
(just like introduced here) the left superscript will generally be applied to distinguish
between coordinates describing velocities on the one hand and positions in physical space

on the other hand.



1.3 The Vlasov equation

Furthermore, we consider the differential equation

ikt +v-Voki+ fx (| ki(-,0)d?v) - Vok; =0 (1.6)

ot R3
which we already introduced as Vlasov equation (see (|1.2))). For the regularized in-
teraction fV the solution theory to this equation is standard because in this case the
force is Lipschitz continuous. For the non-regularized, singular force f*° the situation
is in principle much less obvious. However, fortunately there already exist many results
in literature that we can rely on. Since Vlasov-Poisson equation is the related effective
equation to the microscopic system where the singularity parameter o equals 2 (which we
already designated as the physically most relevant option), the solution theory concern-
ing this special case is very well studied. It is well known that under suitable conditions
on the initial density ko there exist global, classical solutions to this equation (see e.g.
the papers of Lions and Perthame [20] or Pfaffelmoser [23]). For our purposes a result
of Horst seems to be best suited since it provides global existence of (unique) classical
solutions under conditions which are very similar to the assumptions we need anyway for
the proof of our Theorem m (see [10]). More precisely, it is shown that for arbitrary
T > 0 and any ko € £!(R%) which is non-negative, continuously differentiable and fulfills
for a suitable constant C' > 0, some § > 0 and all (¢,v) € R® the conditions

. C
(i) ko(g,v) < A+ o)
. C
(it) |Vko(g,v)| < AT [peee
(vi1) /11{6 [v|?ko(q,v)d®(q,v) < oo (1.7)

there exists a continuously differentiable map & : [0,7] x RS — [0,00) which satis-
fies Vlasov-Poisson equation and k(0,-) = ko. What Horst basically shows is that for
ki(q,v) := k(t, (¢,v)) the spatial density

ki(q) = /}R3 ki(q,v)d%v (1.8)

keeps bounded for arbitrary times where the solution exists. More specifically, if for each
existence interval [0,7T) there exists C(T, ko) > 0 such that

sup |lkslleo < C(T, ko), (1.9)
0<s<T

then for any interval [0,7”] C [0,00) a unique solution to Vlasov-Poisson equation with
initial data ko exists (see for example [24]). We will show in section [4| that the bound-
edness of the kinetic energy (resp. condition (#ii) in ) may be dropped and the
existence of global solutions is still guaranteed.
In correspondence to the notation introduced for the non-regularized system we will de-
note solutions to the regularized Vlasov equation by k' “(z) or k*“(q,v) for t € R and
r = (g,v) € RS as well as the spatial density by

@ = [ R (110)



Furthermore, the characteristics of Vlasov equation are given by the following system of
differential equations

q="v
{ 0= fki(q)- 4y

where Et denotes the previously introduced ‘spatial density’. If kg fulfills assumptions
, then according to the results of Horst system is uniquely solvable on any
interval [0,T] and provides us the flow (¢5%)ster Which for convenience will be often
denoted by (s, t)steR More Speciﬁcally, the map ¢.5(z) = (Y¢.s(x),2%p. 5(z)) shall
solve equations (| where g (z) = x for any = € RS and s € R which in addition
yields that gpts(m) = ¢tr(prs(x)) for any r,s,t € [0,7]. Furthermore, it holds that
ki(z) = ko(o,t()) for arbitrary s,t € [0,7], € R and the map

s RO RE 2 oy () (1.12)

is a Lebesgue-measure preserving diffeomorphism which will be applied on different oc-
casions for the computation of integrals over RS. The flow for the regularized system
(where the effective force field f  k; in (1.11) is replaced by fN * kiv ) will be denoted
b N,c . .

y (¢s.i )ster and fulfills corresponding properties.
Finally, we ‘lift’ the effective flow to the N-particle phase space by the following identi-
fication

N, N, N,
(I)s,tc(X) = ((Ps,tc(Xl)7 ) Sps,tc(XN))

for X € RSN and s,t € [0,7] while the corresponding notation for the non-regularized
system shall be given by

DX(X) = (35(X1), e 2 (XN))- (1.13)

The relevance of this definition will become clear shortly.

As a concluding remark for this section we point out that the result of Horst is actually
only formulated for this most interesting case o = 2. However, the estimates applied
in the proof of Horst also work for weaker singularities and in particular for a € (1,2).
In fact, the transition from a = 2 to a < 2 simplifies the estimates in many ways since
in this case showing the Lipschitz continuity of the mean-field force is distinctly easier
to achieve. Hence, we will simply assume that the mean-field flow exists and that the
related spatial density fulfills property (which is all we need for the proofs). In
fact, it should be a straightforward application of the results of Lemma together
with relation and the estimates applied in section to prove this explicitly. How-
ever, since the value of stating all details seems to be rather limited we omit to make
this explicit and continue by introducing in which sense the microscopic system shall be
described by the effective equation.

1.4 Propagation of Chaos

As mentioned before the (vary vague formulated) desired result of this thesis is to justify
the effective description of the previously introduced microscopic system by solutions to



Vlasov equation. This justification usually takes place by proving Propagation of Chaos
for the considered system and is often referred to as ‘derivation’ of the respective effec-
tive equation. In a formal sense the concept of Propagation of Chaos was introduced by
Kac (see [15]) and we refer the reader to the famous book of Sznitman [29] for a deeper
insight into this topic. By this time there are a number of different, partially equivalent
definitions for this expression. One classical version (presented for the currently consid-
ered setting) is the following: Assume that the particles are initially i.i.d. with respect
to the N-fold product of the density kg. Thus, the density of the N-particle system at
time ¢ € [0, 7] is given by

N
FMe(X) = [ ko([¥05°(X)];) for X € ROV, (1.14)
=1

Moreover, let p1, p2 € L1(R™) be two probability densities, then the bounded Lipschitz
distance between them is given by

dr(p1. p2) = sup | | @) (pr(a) - pa(x))d"x|.

where £ shall denote the space of functions h : R® — R fulfilling

=1
aty [T =Yl

Propagation of Chaos holds if with respect to this distance the n-marginal of FtN’c
converges to the n-fold solution of the considered effective equation denoted by (k;)®"
for arbitrary n € N and ¢ € [0, T| respectively

dp (BN (k) ®) M50
where
FN™e(xy L Xy,) = /R o FNX, s X)) (X1, oy Xy).
In the current work we show a different statement which, however, implies this version
of Propagation of Chaos. More precisely, we also assume that the initial data of the

particles are i.i.d. with respect to the density ko and show that for certain 1,52 > 0
there exists a constant C' > 0 such that for all N € N

P(X € ROV sup [ UN(X) — ®5(X)]|loo > N*7) <ON—2
0<s<T

where by this notation we mean the probability with respect to the i.i.d. initial data.
It is shown for example in [19] that the previously introduced version of Propagation of
Chaos follows if this relation is fulfilled. However, independent of this circumstance it
is straightforward to see why such a statement provides a very good justification for the
effective description of the considered systems: Basically, the trajectories of all particles
are predicted up to vanishing deviations by the effective flow for typical initial data.
Hence, while usually one is satisfied if the effective equation provides information about
the macroscopic time evolution of the particles (which for certain settings also is the
strongest result that can be hoped for), the currently considered version even yields
information about their respective trajectories for typical initial data. We point out
that the notion ‘typical initial data’ is supposed to mean that the probability related to
the complement of these configurations gets arbitrarily small as the particle number N
increases.



1.5 Discussion of previous results

In the following we want to discuss under which constraints on the interaction a (so
called) ‘derivation’ of Vlasov equation in the mean-field scaling was possible so far by
means of some selected publications. After introducing certain classical results, the focus
of this overview shall be on findings which target the Coulomb case (in correspondence
to our aspired aim). We decided to keep the framework of the presented results a little
closer in order to discuss those results which seem particularly relevant for our objectives
slightly more detailed.

For the first systems where Vlasov equation could be derived with mathematical rigor
Lipschitz continuous forces were considered. To our knowledge publication [22] of Neun-
zert and Wick in 1974 was the first result for such settings. Perhaps better known are
the publications of Braun and Hepp [3] as well as Dobrushin [5] and the proof presented
in the book of Spohn (see [28]). These results, however, are in a certain aspect stronger
than what can be expected for the systems which we consider since Lipschitz continuous
interaction fits perfectly well to the basic idea of a mean-field approach. Broadly speak-
ing, what they show is that if the initial particle distribution is (in an appropriate weak
sense) close to the density kg, then the particle distribution will also be close to k; at
later times (where k; is the solution to Vlasov equation with initial data ko). The crucial
reason why this works lies in the circumstance that the particle structure does not come
‘into play’ in a relevant way for Lipschitz continuous forces. It does barley matter for the
related force field if a certain mass is concentrated at one point or if it is smeared out to
a little ‘cloud’” around the same position. Hence, if the closeness assumption between the
initial particle distribution and ky is fulfilled, then the initial effective force field should
be close to the microscopic force (resp. f * ko(q) ~ + Zé\;l f(¢g —gj)). This yields in
turn that the dynamics of both systems are such that the closeness between them is
maintained.

The situation, however, is different if the considered interaction is singular and it took
quite some time until Propagation of Chaos was shown by Hauray and Jabin (see [7] and
[8]) for force kernels f which satisfy |f(q)| < %, IVf(g)| < WLH and a < 1. In this
case, the force between individual particles can become arbitrarily large. The considered
particle distribution might be an excellent discrete approximation of the initial density
ko and still the previous relation f * ko(q) ~ % Z;V: 1 f(g — gj) is not true anymore in
general since the singularity of the pair interaction leads to large deviations of the force
field around the positions of the particles. Hence, if two particles are extremely close
to each other, the force between them might completely dominated the force exerted by
all remaining particles. Consequently, in contrast to the previous case, here the particle
structure does matter (at least in principle). Hauray and Jabin applied the second order
nature of the dynamics to solve this problem: Although the force is singular, particles
which have a sufficiently big relative velocity keep only close for short time periods so
that the impact they have on each other still keeps small. Nevertheless, one has to aban-
don such strong Propagation of Chaos statements like applied in previous works. For the
current systems the statements must rather take a form like: For typical initial particle
distributions which provide a good discrete approximation of kg also the time-evolved
distributions will keep ‘close’ to the solution of Vlasov equation.

Moreover, Hauray and Jabin were able to handle forces converging pointwise to even
more singular interactions but having an N-dependent cut-off for all N € N (like intro-
duced previously). Although their result is far more general, perhaps most notably also



forces having a cut-off radius cy = N ~¢ and scaling like ﬁ (in 3-dimensional space)
where a can be arbitrarily close but still smaller than 2 are included (see [§]).
Introducing a further metk%od Boers and Pickl were able to shrink the cut-off for such
forces to a size of order N~ 3 which interestingly is the average distance of a particle to its
nearest neighbor in 3-dimensional space for the considered setting (see [2]). Eventually,
Lazarovici and Pickl managed to include the Coulomb case as well, but to do so they
had to slightly increase the cut-off size to order N~¢ where ¢ < % ([19]). Another con-
siderable result was obtained recently by Jabin and Wang where Propagation of chaos
was shown for arbitrary £°°-forces by application of a new approach which aims to con-
trol the relative entropy between the N-particle density and the product of solutions
to Vlasov equation (see [I3]). It is also noteworthy that their method is particularly
well-suited to deal with models where an additional stochastic term (resp. a Brownian
motion) appears in the equations defining the dynamics (see [14]).

Furthermore, very recently Serfaty and Duerinckx presented an approach which can
handle the case @ = 2 for repulsive interaction (respectively the Coulomb case) and
monokinetic solutions (see [26]). In the setting they consider the initial situation shall
be such that there exists a regular velocity field u : R? — R3 which provides a continuous
approximation of the initial velocity distribution of the particles in dependence on their
positions, respectively u(*X;) ~ 2X; for alli € {1,..., N} (where we note that their result
is not restricted to 3-dimensional space). They introduce a functional denoted as total
modulated energy which constitutes a measure of closeness between the empirical density
associated to the N-particle trajectory and the monokinetic solution. If at the initial
time the functional is sufficiently small, then it stays ‘small’ on the time span where
the solution exists. Due to the very recent date of appearance, the time did not permit
to study why the approach in its current form is restricted to monokinetic initial data.
However, heuristically it appears quite hard to define a functional which contains all
the information such that initial ‘smallness’ implies later ‘smallness’ for the considered
system and general initial data. We already discussed that deviations are expected if
the particle structure comes into play in a significant way. While it is possible to find
functionals which ‘reveal’ if the initial state has this property, it is on the other hand not
obvious how to define a reasonable condition such that this property propagates in time
(deterministically). If there are not quite strict constraints on the initial velocities, then
it should be possible to construct initial states where a considerable number of particles
approaches each other with large relative velocities which in the Coulumb case leads to
‘strong’ collisions and thereby to correspondingly large deviations to the effective dy-
namics. The monokinetic setting appears heuristically to be a very reasonable choice
where such constellations can be excluded under certain constraints. As long as the
monokinetic solution provides a good approximation of the particle distribution, small
inter-particle distances should be connected with small relative velocity values which for
repulsive interaction suppresses the appearance of ‘hard collisions’. On the other hand,
the gap between heuristics and a rigorous proof is often huge, however, the result of
Serfaty and Duerinckx closes this gap for the considered problem.

1.6 Main objectives of the work

Achieving the final aim which is showing Propagation of Chaos for the non-regularized
Coulomb force (respectively Newton’s gravitational force) for general initial densities
still seems a long way off. Thus, the purpose of this work is proving further intermediate



results which hopefully contribute to accomplish this aim.

The first obvious option where some of the previous results can be extended is a further
shrinking of the cut-off size (for fixed N) resp. an increase of the cut-off parameter c.
This objective is pursued in chapter [2l More precisely, we want to show Pro_})agation of
Chaos in the sense introduced in section for a cut-off size of order N™18%¢, € > 0.
The mere numbers perhaps do not 1create the impression that this yields a relevant
improvement to the cut-off size N™37¢ considered in [19]. However, a slightly more
detailed analysis shows that this little increase of the cut-off parameter ¢ indeed has a
certain effect on the interpretation of the result because it leads to a gut—off size which
is distinctly below the order of the typical inter-particle distance N~3. Let us assume
that at a given point in time most particles are more or less homogeneously distributed
over a volume of order 1. If the cut-off radius is N~ 187¢ then its (spatial) volume is
of order N~6+3¢, Hence, the expected relative share of particles which at the given
mome;at have a 1further particle inside their ‘cut-off area’ should be roughly of order
NN~5+3¢ = N=673¢ which for large N € N and sufficiently small € > 0 is a vanishingly
small amount. This yields that a typical particle will feel the ‘full’ non-regularized force
from all remaining particles (not for all but still) for practically all the time. Although
proving Propagation of Chaos for such a system for sure is no rigorous reason that a
corresponding statement holds if the cut-off is removed completely, it might nevertheless
be seen as a further step in this direction.

Chapter [3|is concerned with the second obvious problem which is proving Propagation of
Chaos for interactions where not only the force but also the potential is singular (however
still distinctly less singular than the Coulomb potential). It is straightforward to see the
new problem which arises by this: Even by application of the second order nature of the
dynamics it is not directly possible to conclude that the impact of single particles on
each other becomes negligible for large N. If the spatial distance between two particles
is sufficiently small at a certain point in time, then even under the assumption of a
large relative velocity the effect of this event on the dynamics of the particles can not
be ignored. Handling this new issue is the main challenge. By the presented approach
forces scaling like Lz where 1 < o < % will be considered which unfortunately is still
far away from the Coulomb case. We remark that basically nothing crucial goes wrong
as the singularity parameter o attains %. However, without substantial modifications of
the approach, the case @ = 2 remains clearly out of reach and thus we decided to limit
ourselves to this range of values for a slightly more convenient presentation. In addition,
we will require stronger restrictions on the initial densities than in the second chapter,
in order that we are able to show Propagation of Chaos. Very roughly speaking, the
area where the density changes distinctly faster than its current value (resp. where Vk
has a value of far larger order than kj) needs to have a small probability (with respect
to the measure related to ko).

Finally, chapter[d]is concerned with a slightly different topic and yields a rather secondary
result. As mentioned in section|1.3] we will show that global classical solutions to Vlasov-
Poisson equation still exist if the limitation to initial densities kg with bounded kinetic
energy is dropped from the set of assumptions . Since the existence of global
solutions to Vlasov equation and of the related effective flow as well as their properties
are, of course, crucial for our main results presented in chapters [2| and (3], this topic still
fits well in the conceptual framework of the thesis.
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1.7

Notation

Before we start with the main part of the thesis, we introduce some important remarks
concerning the applied notation.

(i)

All probabilities throughout the thesis are meant with respect to the n-fold product
of probability densities kg € £'(R%) and we denote for any Borel-measurable set
A C R6n

P(X = (X1,..., X,) € A) =P(A) := / 14(X) ﬁko(Xi)dG”X
=1

To avoid clumsy expressions all constants which we apply are simply denoted by
C' (or on rare occasions by K) where we call a positive real number a constant if
it depends only on objects or values which are basically fixed during proofs like
the initial density kg or the length of the considered time span T. However, they
may never depend on variables like the particle number N or the considered con-
figuration. Furthermore, constants may differ from step to step during estimates
without making this explicit.

For ease of notation sometimes the indices which are clear from the context and
not necessary to comprehend the estimates are dropped.

|- | : R™ — R>¢ shall denote the euclidean norm for n € N. Moreover, we apply
slightly modified versions of the usual 1- and co-norm which shall be defined as

follows:
N

X|oo := Xi| N XL = X;
Xl t= o 1] XK= D15

where X := (X1,..., Xy) € R, In the whole work the notations | - |« and | - |1
will always refer to these definitions.



Chapter 2

A derivation of Vlasov(-Poisson)
equation as the mean-field limit
of particle systems with
regularized interaction

Our first main result is the following:

Theorem 2.0.1. Let T > 0 and ko € L1(R®) be a continuously differentiable probability
density fulfilling

1 6
1
[Vko(z)| < COW VzeRS (2.2)
/6 [v*ko (g, v)d% (g, v) < Co (2.3)
R

for some Cy,d > 0. Moreover, let (95t ser be the related lifted effective flow defined in
(1.13) as well as (\Iji\;’c)t’seﬂg the N -particle flow defined in (1.3)) for a € (1,2] and ¢ > 0.

(i) Ifa=2,0>0 andc= 1—78 — o, then for any v > 0 there exists C1 > 0 such that
for all N € N it holds that

P(X € RV : sup [UDF(X) — @5(X)[e > N73) SOINTT. (2.4)
0<s<T

(i) If o € (1,3], c= 2 and 0,e > 0, then there exists C2 > 0 such that for all N € N
it holds that

P(X e RV : sup [UNF(X) — @5(X)|e > N72%9) < CoN 0%, (2.5)

0<s<T

Remark 2.0.1.

(i) As mentioned in the previous section which is concerned with the notation,
the stated probability is meant with respect to the law given by the N-fold product
of densities k.

11
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(ii) As discussed in section statements (¢7) and (i7) of the Theorem imply certain
classical notions of Propagation of Chaos like the version presented there.

(iii) In section the results are stated on which we rely such that the existence and
uniqueness of the effective flow is assured on [0, 7]. Moreover, we recall the impor-

tant feature that under the stated constraints on kg the related ‘spatial density’
fulfills

sup sup [|kN¢||o0 < o0. (2.6)

NeN0<s<T

(iv) Statement (i7) of the Theorem, which considers smaller values of the ‘singularity
parameter’ «, is basically an interim result and its further development is the
essential aim of chapter

2.1 Proof of the first main result

2.1.1 Heuristic proceeding

Roughly speaking, the Theorem states that for typical initial data the interacting parti-
cles evolve up to a small deviation as if they were ‘driven’ by the effective force field. As
mentioned, the applied notion of closeness was originally introduced in [2] and thus also
the current approach strongly relies on the basic ideas introduced there although the
exact form of the implementation might look quite different. We introduce an auxiliary
trajectory @%C(X) = (goi\(f]’c(Xl), ey @%C(XN)) which starts at the same initial data as
the interacting particles, however, evolves according to the mean-field flow. For conve-
nience we will introduce the notion of ‘mean-field particles’ which shall be pictured as
(fictive) particles whose positions are determined by this auxiliary trajectory. Since the
‘mean-field particles’ are initially i.i.d. with respect to the N-fold product of ky and are
subject to the effective flow (which obviously yields that they do not interact with each
other), it follows that they are also i.i.d. at later times but with respect to the N-fold
product of k; = ko(cpé\ff(-)). Now as long as the deviation supy< 4« ]\Ilgbc(X) —@é\’[(’)c(X) oo
is small enough, we are able to ‘transfer’ a lot of the information which we have about
the distribution and the dynamics of the ‘mean-field particles’ on the system of inter-
acting particles which in turn will help us to show that the smallness of the deviation
is preserved. Everything written so far might as well be a heuristic introduction to the
approach applied in [2]. One crucial difference is that in the current case the possibility
to ‘transfer’ information from the ‘mean-field particles’ to their related ‘partners’ of the
interacting system is applied to a distinctly larger extend. A second difference is that we
will make full use of the second order nature of the dynamics. More precisely, the devia-
tion between the ‘microscopic force’ and the effective force field evaluated at the position
of a given particle is heuristically supposed to pass through significant fluctuations. Ev-
ery time a particle comes exceptional close to the ‘observed’ one a correspondingly large
deviation should be expected. However, such peaks are usually only of a very limited
duration since the particles will just fly apart shortly after. Hence, it is reasonable to
compare the dynamics on longer time periods so that the deviations between them do
not become overestimated. This already clarifies how the second order nature will be
relevant to us. But the statement that particles will keep close only for short times is
typically only valid for the vast majority, but not for all collisions that take place (where
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a ‘collision’ is supposed to describe an event in which two particles come close to each
other and fly apart again). As long as the microscopic and their related auxiliary par-
ticles are close in phase space, the ‘types’ of collisions corresponding particles of these
two systems experience are expected to be very similar. Consequently, it seems to be
reasonable to divide the particles into a ‘good’ and a ‘bad’ class (or a finer subdivision)
in dependence on their ‘mean-field particle partners’: If a hard collision is to be ex-
pected for a certain particle pair according to their auxiliary trajectories, then they will
be labeled ‘bad’. Since for such ‘bad’ particles larger deviations are supposed to occur,
we will also ‘allow’ larger distances to their related ‘mean field particles’ than for the
‘good’ ones. In this way a condition is imposed on the proximity between corresponding
trajectories which can be complied with, and at the same time the information provided
by the ‘mean-field particles’ about the ‘real’ ones is kept as big as possible. More details
about the importance of the ‘mean field particles’ will be introduced in the preliminary
studies and the proof of the main result.

For implementing the proposed strategy, it is obviously necessary to first derive certain
results for the auxiliary system which in turn shall be ‘transferred’ on the microscopic
system. The purpose of the following subsection is primarily this topic.

2.1.2 Preliminary studies

First, we introduce a versatile applicable variant of Gronwall’s Lemma which will be used
on several occasions. By a slight abuse of notation we indicate for n € N the multiple
integral

t1 tn
/ o F)dtdt,...dt
0 0

which, however, for the special case n = 1 shall obviously describe

t1 t1 pt2
f(t)dt resp. / f(t)dtdts for n = 2.
0 o Jo

Lemma 2.1.1. Let u : [0,00) — [0,00) be a continuous and monotonously increasing
map as well asl, f1 : R — [0,00) and fo : RxR — [0,00) continuous maps such that for
somen € N and for all t;y >0, x1,29 >0

(i) x1 <x9 = falty,z1) < fa(ty, z2)

(i) 3K1,6 >0 sup |fa(s,2) — fa(s,y)| < Ki|z —yl.
z,y€[f1(0),£1(0)+4]
s€[0,0]

t1 tn
fl(t1)+/0 o [ s, u(s)) st < i) A
(iii) ” ¢
fl(t1)+/0 o [ sttt = 1(0),

then it holds for all t > 0 that 1(t) < u(t).

The proof to this lemma is not important for the comprehension of the remaining part
but can be found in the appendix (resp. in chapter [5)).



14

Before we start with the relevant lemmas, we first have to introduce a function which
will be very important on many occasions throughout the paper and start with some
preliminary considerations.

It holds for a € (1,2], §,¢ € R, |g| > 3N~¢ and || < Z|q| that

1

1FY(q) — FN (g +6)] < a3 Pzl
since
q q+90 o ald|
- < sup 9] <
g ~ g apert! = S et 1 S (= Ja)et
a+1 ’5‘
<a3 lq[o+T

Moreover, it is easy to see that a N1 constitutes a Lipschitz-constant for N (see
(1.4)) and thus
11X (@) = £ (g + 8)| < aNHD)5),

We define
aNeetl) ,if [g] <3N—©

, 2.7
a3°‘+1w%+1 ,if |g| > 3N ¢ (27)

géV:R3—>R, q»—>{

Due to the previous consideration it holds that

12 (a) = f2' (g +0)] < g2 (a)19] (2.8)

if 9] < %|q! or alternatively |¢| < 3N~¢. This, however, yields that inequality is
in particular fulfilled for arbitrary ¢ € RS if |§| < 2N~¢. Moreover, according to the
previous reasoning it is quite obvious that for qi, g, g3 € R? where |q1| < min(|g2|, |q3])
the following relation holds

1N (a2) — Y (a3)] < gY (a1)laz — g3l (2.9)

because for |¢;| < 3N~¢ the factor gV (q1) = aN“@+1) constitutes a Lipschitz-constant
for £V and for larger values again some mean value argument applies.

This concludes the considerations concerning the map g2 .

For ease of notation we allow in the following the range N U {oo} for the index N in
(@i}fgc)t’seR where (¢;)sscr shall simply denote the non-regularized flow (¢g%)s,scr
and correspondingly ki‘fs’c = ki as well as f2° := f°°. Moreover, we remark that while
the statement of the subsequent lemma will be crucial on many occasions, its (slightly
elongated) proof can be skipped without missing something relevant for the main part.
The same applies for basically all preliminary lemmas.

Lemma 2.1.2. Let T > 0 and ko be a probability density fulfilling the assumptions

of Theorem where (@ﬁc)meﬂg shall be the related effective flow defined in (1.11)
for a € (1,2] and ¢ > 0. Then there exist Cy,Coy > 0 such that for all configurations

X, Y €¢RS, N € NU{oo} and t,ty € [0,T)] it holds that
N, N, )
oE(X) = (V)] < | X — Y]t
and

Nk CX) = (N k(Y < Gof ' X =YL
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Proof. For ease of notation we omit to make the index c explicit during the subsequent
estimates. Moreover, the proof is a straightforward application of Gronwall’s Lemma if
a € (1,2) and thus we will limit ourselves to state the estimates for the less obvious case
a=2.

We define for N € NU {oo}, X,Y € R and R > 0 a set which basically constitutes a
(generally) thick-walled spherical shell in space around 'X

Py ={Z € R%: 3max(N°,|'X —'V|) < ['Z - 'X| < R}
where for the case N = oo the factor N~¢ shall simply be replaced by 0. It holds that
YN () = Y kN (1Y)

< (ISNCX = 2) = fNCY = 2))kY (2)dZ]

/ —1X|<3 max (N ¢ 1X-1Y])
+ / ~12)~ fNOY - 2R (2)d° ]

+'X - lY\ / NOX - 2N (2)d*Z
|Z-1X|>max(3|! X -1Y|,R)

where the estimate for the third term follows by application of the properties of gV (see
[2-7) resp. (28)). Since g™ (g) < Cmin (N3, ﬁ) for all ¢ € R?, we obtain that the
third term is bounded by

~ 1
CllkivHooW(E)\lX— Y|

where In*(z) := max (In(z),1), V& > 0. On the other hand for the first term the
subsequent estimates hold

/ (/Y OX = 2) = Y OY - 2))EN (2)d*2
|Z-1X|<3max (N—¢|'X~1Y])
<'X —1ly] / gN(Z - X)EN(2)d*z

1X|<3N F\_<C\,J/VT

+ / (IFVOX = 2)| 1YY - 2N (2)d 2
|Z-1X|<3|lY -1X| S~
S ‘1X _ Z’_Z
<C|lkN|oo|'Y =X

where the first of the two addends appearing after the first step shall be applied as upper
bound if N=¢ > |'X — Y| and the second in the alternative case.

It remains to determine a suitable upper bound for the second term where the mass
related to the spherical shell ‘between’ these two sets is taken into account. Of course,
this set might also be empty if R < 3max(N~¢ !X —1Y]) but we care for the more
interesting situation where this is not the case. In the following we want to utilize that
the contribution of mass (or charge) related to the set ,u,f;’é\; to the force field at positions
1X or 'Y cancels out to a significant amount. For a more convenient comprehension we
first recall the definition

WY = {Z € RS : 3max(N°,|'X ~'Y|) < 'Z - 'X| < R}
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and conclude subsequently by triangle inequality that
| (VX —12) - Ny —12)kN(2)d° 2]
<| /RN (FNOX = 12) = (Y =1 2)) (WY (2) - K (X, 22)))d° 2|
m
Y S DR (D)

oy PYOX DR (X8 2).
3max(N—¢,1X-1Y|)<|'Z-1X|<R

By Newton's shell Theorem, the spherically symmetry of the integration set and the

circumstance that the density k¥ ('X) does not depend on the integration variable the

last two terms vanish completely since all the ‘mass‘ or ‘charge’ lies around ' X and Y.

For estimating the first addend we define

N N

X) — Y

AN = sup sup P ens ()]
X,Y€ERS: XAY r,5€[0,] | X —Y|

While the existence of this variable is obvious for the regularized system, it is at least
straightforward to see that for the non-regularized system it exists for sufficiently small
times. We will first apply this quantity for the estimates and show afterwards that it
is bounded by some (7-dependent) constant on [0,7]. Due to the mean value theorem
(applied for the densities) and the properties of the map g" (see ) it holds that

| (FYOX =12) =YY = 12)) (kY (2) - kY (1X,22))d°Z|

R,N
Fxy
N /1 1 1 1
<[, o x=17)x -1y
Pxy
(. sup Vko(2)ll904(2) — by ( X, 2 2)])d°Z
Zeal, (X 22 ol (2)
<AV@[IX - Y| @' (X ~12)'X ~17]d%(2)
1Z-1X|<R

<Clrx-1z|-2

: / sup sup \Vko(Z)|d*(22Z)
RS Z/€R° Ze o, (X 22)ob (7' 22)

<CANHRI'X —tY). (2.10)

where X1 X5 := {(1 = \)X1 + AX2 € R : X € [0, 1]} for X1, X, € R,
In the last step we applied that due to the upper bound on ||£}¥ ||s (see ([2-6)) obviously
also B
Jmaz = sup sup ||fN * kév||00 <0
NEN0<s<T
which yields for any Z’ € RS where [2Z/| > 2f,0.T and t € [0, T] that

2, N / 27 ‘ZZ,’
P02 2 P2 = fmast 2 5
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Consequently, it follows according to the assumption on the decay of |Vkg| (see (2.2))
that

[ s sup Vo (Z)|d(22)
R

3 Z/cR3 ZegoN (X, 22)%’ (2 22)
C
S/ sup sup 7~d3(2z)
R3 Z/cR3 2€¢0 (1X2Z) (Z’ 27) (1_|_|Z|)3+5
c

=¢ 7 +/ T P

?Z|1<2fmasT 2Z|>2fmaaT (14 571)3+0
<C.

d>(2Z)

In total we obtain
~ ~ 1
N« ENCX) — NNy < C(ln*(ﬁ) +ANHR)I' X - 1Y| (2.11)

where we again regarded the upper bound on the ‘spatial density’ (see ) Hence,
it remains to control the growth of AM(¢). Let to this end be s,t € [0,7] as well as
X,Y € RS be given where X # Y. If we choose R := A" (#)~! and omit to make the
N-dependence of AN (t) explicit for the estimates, then application of in the first
step shows that

sup 27, (X) = 2o, (V) — (X =Y

/ IfN*kN (ol (X)) — N+ Y (N (V) du

<C ln+(A(U))\1<Pu,s(X)—190{Xs(Y)I

t U
<Clt @A) [P+ ([ s Pl 00 = 26, () dr) du

s s<r'<r
<Cln*(A(t ))(|1X + Y|+ PX +2Y|(t - 8))(t— s)
+CIn* / / sup 2ol S(X) = 2g07{\/[75(Y) — (X = 2Y)|drdu.
s s<r'<r

Now one easily verifies by application of Gronwall lemma that

sup |2¢TIYS(X) - 2901]"\,[3(}/) - (2X - ZY)‘

s<r<t
<CI (A (|'X + Y|+ PX 4+ 2Y|(t — s)) (t — 5) eV O (AO) =) (2.12)

=:b(t)

because for 0 < s < ¢/ <t it holds that
t/
b(#) + Cln* / / VO AW r=3) gy

)(1+4/Clnt( / VOmT AW (u=9) gyy)

=b(t')e Cln* (A())(t'—s
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This yields additionally that

sup ['op (X)) — T, (V) = (PX = 1Y)

s<r<t
t
< [P0 = 2
§(|2X o 2Y| +b(t)e C’ln+(A(t))(t—S)) (t — s) (2.13)

Now the upper bounds (2.12)) and (2.13) imply that for X # Y and s,t € [0,T]

1 N N
——— Su X) - Y
‘X _ Y‘ sgrlét |L)OT’,S( ) SOT’,S( )|
N(X)—N(Y)—(X-Y
1 [P0 ) - (X - Y)
s<r<t X —Y|
[Fofs (X) — ol (V) — (X —FY))|

<1+2 max su
ke{1,2} sgrlg)t |X - Y|

<1+ Clnt(A())teVOR (AO)E=s)

A corresponding relation for ﬁ SUDy<p<s |<p7{YS(X ) — go,{\’[ <(Y)| can be obtained by anal-

ogous estimates for the time reversed trajectories (1g0év,t7s(Z), —2cp§V,t’S(Z)). Taking the
supremum with respect to s,t € [0,t'] C [0,7] and X # Y (while regarding additionally
the time reversal symmetry) finally yields that an inequality of the subsequent form
holds for ¢ € [0, 7] provided that A(t') > e:

VC ’
A') < 14 Cln(AE ) eVCREON — 1 L CI(AE ) AF) Vi@ (2.14)

This inequality provides us an (N-independent) upper bound for the growth of AN (¢)
and implies in particular AV (T) < C. By regarding additionally relation (2-11)), this also
yields the Lipschitz continuity of the mean-field force and thereby one directly obtains
the existence of a constant C7 > 0 such that for arbitrary X,Y € RS t5 € [0,7] and
t e [0, T— to]

t
o i (X) — gy (V) < O /0 N s (X) — @y (V)]s + |X — Y

as well as

t
|90g7t,t0 (X) — ‘ngt,to (V)| < Cl/o |<Pz{/gfs,to (X) — gpi\ols’to(Y)\ds +|X —Y|

for t € [0, tp] which by application of Gronwall’s Lemma completes the proof. O

This lemma basically tells us that the distance in phase space between ‘mean-field parti-
cles’ stays of the same order. Thus, if we know that at some point in time two ‘mean-field
particles’ are particularly close or far apart in phase space, then their distance is of the
same order on the whole interval [0, T7.

In the proof of our main result we will only consider configurations where the ‘mean-
field particles’ are always very close to their corresponding particle of the microscopic
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system (and it will turn out that these are in fact the typical configurations). As men-
tioned before, the expression ‘corresponding’ in this context is supposed to mean that
the ‘particles’ start at the same initial data but evolve with respect to different dynam-
ics. Comnsequently, all properties we show for the auxiliary system can to some extend
be transferred on the system of interacting particles as long as the closeness between
corresponding particles is maintained.

The most crucial point is to control the number and the ‘impact’ of certain collisions.
For this purpose we prove two further lemmas.

The first of them implies that on possibly short (in relation to 7) but N-independent
time intervals the trajectories of the ‘mean-field particles’ are close to trajectories of
freely evolving particles which will be crucial for the collision estimates later and yields
additionally that the number of collisions two ‘mean-field particles’ can in principle have
with each other on [0, T] is bounded by some constant. Since ‘particles’ of the auxiliary
system do not interact, the expression ‘collision’ might sound confusing but should be
understood as an event where two such ‘particles’ come close in space and move apart
afterwards.

Lemma 2.1.3. Let T > 0 and ko be a probability density fulfilling the assumptions of
Theorem as well as (@l{j{;c)t’seR the related effective flow defined in (1.11) for ¢ > 0
and o € (1,2]. Then there exists C1 > 0 such that for all N € N, t,ty € [0,T] where
[t —to] <1 and X,Y € RS it holds that
. N, N,
(@) '@ (X) = o (V) = (X = 1Y) = X = 2Y)(t — to)|
<Ci(t—to)?(I'X = 'Y |+ X = 2Y||t — to])
. N,
(i) P (X) =20 (V) = (X =2Y)|
<Cilt ol (|'X = V| + X = 2Y[[t — to]).

Proof. Again we omit to make the index ¢ explicit during the subsequent estimates and
for ease of notation we only consider the case t) = 0, ¢t > 0 (since the remaining cases
can be handled analogously). Applying the (N-independent) Lipschitz continuity of the
mean-field force derived in Lemma 2.1.2] it follows that

AN(X,Y 1) = sup ['eRo(X) = TR (Y) — (X = 1Y) = (3X = *Y)s|

0<s<t

/ / PN TV (oM 0) — N B (gl (V) drds

<c / [ e = el laras
<c / [0 = 1) = (X = 1Y) = (X =2V )rlards
C§(|1X—1Y|+\2X—2Y|§) (2.15)
By application of Lemma this easily yields that
‘t

2
AN(X,Y,t) < C%(]lX - Y|+ PXx %y §)e@, vt € [0, 1]
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since for ¢t € (0,1] it holds that

t s 2
C’/ / (C (X — Y]+ PX — 2Y|5)eVO) drds
ﬁ 1 1 2 2 E
02(|X Y|+ [|°X Y\g)

2 t s
ch (X — v+ 2x vyl (c/ / eVOrdrds + 1)

t2 t
C5 ("X =Y+ PX - 2Y|§)e*@

where for this single estimate we obviously had to keep the constant C' exceptionally
fixed to check the assumptions of Lemma (2.1.1)).
This implies in turn for ¢ € [0, 1] that

‘2%0 (X) - 2%{\,]0(5/) - (2X - QY)‘

< /0 Y B (oo (X)) — Y TV (Lo (7)) ds
t

<0 [ PNy (X) — 1oy (V)ds
0

t 2
SC/ ("X =Y+ PPX =2Y|s) (1 + C%eﬁS)dS
0
<Ct('X =Y+ X - ?Y|t) (2.16)
O

The last two lemmas will provide us the basis to introduce the following very important
Corollary which yields us a tool to derive an upper bound for the impact two particles
can in principle have on each other on [0,7] in dependence on simple values like their
minimal distance in space and their relative velocity at the moment when this minimum
is attained. At first sight statement (i) of this Corollary seems to provide only infor-
mation about the hypothetical impact of ‘collisions’ between ‘mean-field particles’. But
as long as related trajectories of micro- and macrosystem are close the derived upper
bounds can (usually) be transferred from these auxiliary particles to the ‘real’ ones.

Corollary 2.1.1. Let ko be a probability density fulfilling the assumptions of Theorem
@ and (gpi\gc)t,seR be the related effective flow defined in as well as (\I'iV”;C)MGR
the N-particle flow defined in for o € (1,2] and ¢ > 0. Let additionally for
NneN,1<a<3, Cy>0andcy >0 hy:R>—=R” be a continuous map fulfilling

COC_ay ‘q’ S CN
|hn(q)| < { o :

‘qci?xa |Q| > CN

(i) Let for Y,Z € RS t,, € [0,T) be a point in time where

N, N, N,
min "2 (Z) = Lol (V)] =['e ¢ o(2) =1 (V)] =t Ar>0 A

0<s<T
Pen, o(Z) = 2ep5, o(Y)] = Aw >0,

mzna m’Ln7
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then there exists C1 > 0 (independent of Y, Z € R® and N € N) such that

r 1 1 1
h 1 NCZ 1, N ds < . _ _ )
) 1w ok = Ol < Comin (5 2 g

(ii) Let T >0, 4,5 € {1,...,N},i# 7, X € RN and Y, Z € RS be given such that for
some § >0

NOE o (V) = Yo ((2)] < Por® o(Y) = 20¢ (2)] =: Aw

mzny 'mzn7 - mi'ruo mzna

and

N, N, - N, N, -
sup | i (V) = [Uog (X))l < NPAv A sup |, (Z) — [Uo g (X)]j] < N70Aw
0<s<T 0<s<T

where tyin shall fulfill the same conditions as in item (i). Then there exist Ng € N
and Cy > 0 (independent of X € RSN | Y, Z € RY) such that for all N > Ny

T
/0 (X — PO E (0], ds

‘ 1
<C9min ( a—lA 1 1,2V, a—1
‘N v OglgTH \I’ (X)]l - \118,0 (X)M Av

).

Proof. We put the proof for part (ii) of the Corollary in the appendix since the basic
ideas are already included in the proof of case (i). Like in previous proofs the index ¢
will not be made explicit.

In a first step we want to derive an appropriate upper bound for the relative velocity
between (mean-field) particles at times when they are ‘close’ to each other. It will turn
out by application of Lemma that the variables Ar and Av which we introduced
in the assumptions of the Corollary are sufficient to determine such a bound. To this
end, we remark that according to Lemma there exists a constant Cy > 1 such that
forall t € [0,7] and N € N

[e10(2) = pro (V)| < Co min [:0(2) = @l(V)]. (2.17)

Thus, it holds for arbitrary t1,te € [0,7] that the condition
'eh 0(2) = Lol oI < Pty o(2) =20 o (V)]
implies
2i3,0(2) = ¢ty oY) < Colf o(Z) — o1 o(Y)] < 2C0|*07) 0(2) — 203 o (V).
Hence, in any case it holds that
maX(llsOiY,o(Z) — el o), \Qwﬁ, (2) = ¢y 0o(Y)])

ax (|'opy o(2) = 'of o(Y)], 5 \%tg,o(Z)—QsOiZ,o(Y)l)

1
> TomaX(Ogmng 2e0(Z) = ooV Py 0(2) = *ei0(Y)).
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Let for Y, Z € R® t,,;, € [0, T] be a point in time where

omin ['eio(2) = YeoW)l = "o, 0(2) = ey, o (V) =2 Ar

as well as
N,c N,c
or o(Z) =2, ¢ o(Y)] =: Av,

then the previous considerations (apphed for to = tynn) yield that for any ¢, € [0,77] the
relation

1
max (|'¢}) o(2) = ol oY)l Pl 0(2) =20t o(YV)]) 2 20, A (Ar,Av)  (2.18)

is fulfilled which will be important shortly.
According to Lemma there exists C; > 0 (independent of X, X’ € R® and N) such

that for arbitrary 0 < to, t < T where |t —tg| <1
Poity (X) = 2ope (X)) — (X —2X)]
<Cilt —tol (X = 'X'| + PX —2X'||t — to). (2.19)

Let for t € [0,T] and C2 > 0 ¢t/

in € [t,min (t+ C%, T)] =: I denote (one of) the point(s)
in time where

o(Z)=top oY)

mzn’

min |'o(Z) = 'olo(Y)| = "¢y

s€l; min'0

and for a compact notation we abbreviate additionally
~ N v N
Z = got,TnWO(Z) and Y := gpt;nm’o(Y).

If we choose Cy = [24/C1] and regard the choice of ¢/, (in the third step), then relation

(2.19) (applied for to =t/ ..) yields that for s € I
Wst/ (Z) ="y (V)
>‘ _ 1y) (22 2Y>< mm)}
— | / %tm (Z2) =2y (V) = (Z =2Y)dr|
>|(MZ 1Y) + (2 = 27) (s — L)

- Cl ‘S - tmzn|2 (|12 - IY‘ + ’ Z - 2?”5 - tlmm|)
—————
(&)<
>max (|'Z —1V|,12Z - 2Y||s — ¢,

1 - -~ ~ ~

~ L Z =V P2 -2l )
1 ~ ~ ~

> max (|'Z = V1,22 = *Fls ~ thn)

which implies that

m1n(t+C2,T) LN LN
/t o (Cy(2) — L (¥)ds

1 1 ~
SC’/02 min( — — — — a,cfva)ds
0 max (|'Z =Y, |2Z — 2Ys)
1 1 )
c&N—1’2§ —2y| ’12 _ 1}7@—1’2’2 —2y|

<C'min ( (2.20)
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where we used the properties of hy stated in the assumptions of the Corollary.
Moreover, the constraints on hy directly imply that

1 1
7T R

).

H—C% 1, N 1, N 1 :
[ ('e3o(2) = telo(V)lds < - min(
t

After merging the upper bounds it follows that

min(t+%27T) LN LN
/t i (Co2y(Z) — (1) ds

! ! ! ! —). (2.21)

§C’min( = =, e o= T T =
1Z—1Y|E R S22 2| 1 Z 1Y |a112Z = 2y

What we have done so far is deriving an upper bound for the integral over the desired
function but only for a (possibly) short interval [¢t, min(¢ 4 C%,T )] belonging to [0, 7]
where the starting point ¢ can be selected arbitrarily. However, we recall that its length
C% can be chosen independent of N and the considered configurations. Moreover, it will
turn out that for any such interval the respective upper limit can be bounded itself by
application of Ar and Av which will finally enable us to show the desired result. More
precisely, we apply that according to relation

max (|1Z— Y|, 1?Z - 2}7|) > 2(1;’0max (Ar, Av)

as well as |*Z — Y| > Ar to obtain:

m'n( 1 1 1 1 )
1 — =, = = = =, e~ ~— = =~
1Z —1y|a % c%’1|22—2Y\ |1Z —1y|a-12Z —2Y|
1 1 1 1 1
:min( = ~——, a71)1rnin(—, = —, ——= ~)
1Z -1y a1 ¢ eN [1Z —1Y| 2Z —2Y|

. 1 1 . 1 2Cy 2Cy

< min (Argyfl’ Cafl) i (a’ Ar’ Av)
N
1 1 1

SC’min( —

Aréa c%flAv TAra-1Ay )

Thus, estimates (2.21]) and the previous comment concerning the constant Co imply
that

T
/0 iy (AeN(2) — Ly (V))ds

T min(t—i—é,T) LN LN
<[+ s [ (e 2(2) — NV lds
Cs 0<t<T Jt
1 1 1
SCmin(

ATa ’ c%_lAv, ATa_IA’U ) '

which completes the proof of statement (i). O
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As mentioned before, this Corollary will be essential for the collision estimates later.
If we choose for example hy := |fV|, then it basically tells us that it suffices to know
the minimal distance between two (mean-field) particles and their relative velocity at
a point in time when this minimum is attained, to determine a suitable upper bound
for the impact they have on each other on the whole time interval [0,7] (or in case of
the ‘mean-field particles’ rather for the value of the integral which is considered in the
Corollary since they do not interact).

Thus, it remains to determine an appropriate upper bound for the probability of the
different kinds of collisions before we can start with the proofs of the main results.

Lemma 2.1.4. Let kg be a probability density fulfilling the assumptions of Theorem
@ and (gots )t,scr be the related effective flow defined by - forl < a <2 and
¢ > 0. Then there exists C1 > 0 such that for all Ax,Av >0, N € N, Y € RS and
[t1,t2] C [0, T] it holds that

P(X €R®: (3t € [11,1a] : ' (X) — ol (V)] < Az A
) e (X) = 2o (V)] < Av))
< (] (A:U2Av4(t2 —t1) + Ax® max (Aa:,Av) )

. 6 . . N, 1 N, 2
(i1) IP’(X eR .OrgnslgTP(pS’OC(X) - (psoc( )| < Ax) < CiAzx

P((2,X) € R (3t € [, t] : ' (X) — 'o)'(2)] < Ax))

(iii)
< C1 (A7 + Azt — t)).

Proof. We only make the proof related to item (i) explicit here since the reasoning for
the remaining statements is essentially very similar but still quite elongated. However,
we will give at least a short heuristic reasoning which shall suggest that the statements
of items (i7) and (¢i¢) are plausible. The detailed proofs, on the other hand, can be found
in the appendix (resp. in chapter [5)).

The constants which are applied in the proof do not depend on t1,ts, Az or Av and
(as always) not on N or the considered configuration. Since the value of the cut-off
parameter ¢ has no relevance for the proof, we omit to indicate it in the notation of the
different objects.

If, in accordance with the assumption belonging to (i), there exists a point in time
t € [t1,t2] such that

'oro(X) = ooV < Az A Poly(X) = 2000 (V)] < Av,
then it follows in turn by Lemma that

sup |<p50( ) — goé\jo(Y)] < C'max(Av, Ax) (2.22)
0<s<

for some appropriate constant C' > 0.
We consider different cases: The first possibility is that already at the starting time of
the interval [t1,?2] the positions of the ‘particles’ fulfill |190i\1[,0(X) - lcpi\lfyo(Y)] < Ax.
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The estimates for this case are straightforward and respecting (2.22)) it follows that the
probability of configurations fulfilling this assumption is bounded by

N
/]1%6 1{ZE]R6:\1Z—1¢£\{,0(Y)|§A$/\|2Z—2<pi\{7O(Y)|§CmaX(Av,A:c)}(X)kt1 (X)dﬁX

<C||ko|| oo (Az® max(Az, Av)?).

This bound is obviously small enough so that it complies with statement (7).
Otherwise the assumption belonging to (i) implies together with (2.22)) that for M € N
there exists n € {0, ..., M — 1} such that

to — 1

Az §|1<Ptlymo(X) — ICPt]YmO(Y)] < Az + C max(Az, Av)
2l o(X) — 26l o(¥)] < Cmax(Az, Av)
where we abbreviated ¢, := t; + n‘21.

If we abbreviate additionally A, , := C max(Az, Av), then we get the following upper
limit for the probability of configurations fulfilling this constraint:

M-1
1
Z /1{Z€R3:A$§|Z—1¢§Y U(Y)‘§A$+A957Ut21\_;1}( X)
nZORG n»
Lzersgz20)  (v<an. CXR) (X)d°X
to — 11
M

<CM ||kollos ((Az + Az )3 — Aas?’)Aiv

By choosing M sufficiently large it follows that this term is bounded by

CAxZAi’v(tg —t1) = CAz? max(Axz, Av)*(ty — t;)
<C(Az® + Az”Av?)(ts — 1)

and the first part of the lemma follows.

As mentioned before, the proofs to items (i) and (ii7) can be found in the appendix. At
this point we give at least a short heuristic idea to make these statements plausible. The
statement related to item (i7) might seem wrong at first sight since the upper bound for
the probability is independent of the velocity of the considered configuration Y though
a fast traveling ‘particle’ should potentially be able to come close to a certain amount of
‘mass’ in a shorter time span than a slower one. However, on the other hand the mean-
field force is bounded and the considered initial density kg decays quite fast. Thus, a
particle with a very large relative velocity can be pictured like a bullet flying through
a slowly evolving concentrated ‘dust cloud’. It will move inevitably to areas of lower
density so that after a certain time the amount of ‘mass’ which it approaches becomes
negligible.

As mentioned before, for short time spans a rapidly moving particle should in principle be
able to come close to a larger amount of ‘mass’ than a slower one. We argued that above
a certain value a further increase of the velocity has basically no effect in this regards if
the considered time span is long enough because the density decreases too fast. But for
short time spans the previous reasoning does not work anymore. Hence, the statement
of item (7i7) also seems to be wrong at first sight. Here, however, in contrast to item
(7i) both initial configurations are chosen randomly. Due to the bounded kinetic energy
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related to ko very fast ‘particles’ are much less likely than slower ones (or a bit more
formally the total mass related to very fast characteristics is distinctly smaller) so that
these two effects basically cancel and the upper bound for the stated probability can
indeed be indicated in the current form. O
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2.1.3 Implementation of the proof

After having completed the preliminary considerations we are finally able to start with
the proof of the first main result.

Proof of Theorem [2.0.1F

Since large parts of the estimates are very similar for statement (i) and (i7), we want
to present a unified proof. For the parts where the estimates differ we simply treat
both cases separately. During the whole proof the cut-off parameter will take the value
ci=2%ifac (1,%] (see item (ii) of Theorem and ¢ := % —o if @ = 2 (see
item (i) of Theorem [2.0.1)). Thus, we drop related indices in the notation but it should
become obvious from the context which of the two possibilities is considered in the re-
spective situation (at least if this is relevant at all). It is obvious that the statements
of the Theorem are stronger (or in case of (i) at least harder to prove) the smaller the
appearing parameter ¢ > 0 is. Hence, it is not surprising that many objects and sets
appearing in the proof have to be be defined o-dependent. What we actually will show
is that there exists o* > 0 such that for any given o € (0,0%] the statements related
to items (i) and (i) are valid. Consequently, we will assume on certain occasions that
o > 0 is ‘small’ if this is beneficial for the estimates. Although this will not be made
explicit, it is straightforward to see that the remaining cases where the given ¢ shall be
larger than ¢* can be handled by essentially the same proof, with the slight difference
that o needs to be replaced by (the fixed value) o* in the definitions of all introduced
o-dependent objects (respectively sets). The largest part of the proof is concerned with
showing that supg<g<p \\IIéYO(X) - <I>£0 (X)|oo keeps typically sufficiently small for large
enough N. In a concluding step we will show that a corresponding statement holds for
SUP,eRrs SUP<s<7 | P50 (T) — goé\jo(x)| which together yields the desired result.

First, we define certain sets which can be understood as ‘collision classes’ and which are
very important throughout the proofs. Let for r, R, v,V € R>oU {o0}, t1,t2 € [0,T] and

Y € RS the sets M(N (t)l’(t;)v)(Y) C RS be defined as follows

N,(t1,t2) 6
Z € Mgy win(Y) CR
SZ+£Y N dte [tl,tg] :

r<,min ['elo(2) = el = 'eo(2) = elo(Y)] < R A

v < P0fo(2) = 2elo(Y) < V-

As mentioned, this set will also appear in many of the subsequent proofs and (@é\,[r)r,seR

shall always be understood as the flow related to the respectively considered initial
density (which is always referred to as kg) where the cut-off parameter takes value ¢ = %

if a € (1, %] and ¢ = % — o if & = 2 (unless explicitly stated otherwise). For ease of
notation we abbreviate certain special cases:

(2.23)

N, s N, s
My (Y) o= Mg 0 (V)

N . N (0,T)
M gy, vy (Y) = M, my (03 ()

N — s N(0,T)
MR,V(Y) T M((),RL(O,V)(Y)

Moreover, we will define a set GV (Y) C R® by application of such ‘collision classes’ to
distinguish between problematic and unproblematic collisions. Unfortunately, we need
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different definitions for the set GV (Y") depending whether the case a = 2 or a € (1, %] is
considered. Thus, we delay stating the respective definitions to the moment where they
are needed for the first time.

Next, we split the particles in two groups: A ‘bad’ group where (for our purposes) hard

collisions are expected to happen and a group of the remaining ‘good’ particles:

MY(X)={ie{l,.,N}: (Vje{l,..N}\{i}: X; e GN(X)))}

N
g
(2.24)

MY (X) 1= {1, N} A MY (X)
Since G (Y) will be defined solely by application of the ‘collision classes’, it turns out
that it depends only on their corresponding ‘mean-field particle’, whether a particle is
considered ‘good’ or ‘bad’.
Now we define the following stopping times

N N N N
7 (X):=sup{t € |0,T]: max su U (X)|; — X;)| <4
g ( ) P{ [ ] i MY (X) Ogsgt H 5,0( )]Z QOs,O( 1)| g }

TéV(X) :=sup{t € [0,7T] : ~ max  sup \[\IIQO(X)L — gpéYO(Xi)\ < 6év} (2.25)
’LEM{,V(X) 0<s<t

as well as 7V(X) := min(TéV(X), V(X)) where

4
0N =6 =Nt ifa e (1, 3l
and . ,

Sy =N"°=N"5"and ¢ :=N"5"7ifa=2.

If we are able to show that the probability of configurations fulfilling 7V (X) < T be-
comes sufficiently small for large values of N, then Theorem follows.

Moreover, we remark that in principle the distinction between ‘good’ and ‘bad’ particles
is only necessary for the proof of statement (i) where the value of the singularity pa-
rameter fulfills & = 2. As a consequence the confusing choice 63[ = 5év arises in the case
a € (1, %] which yields that the allowed deviation between ‘real’ and related ‘mean-field
particle’ according to the stopping times is the same. Thus, no advantage for the proof
is obtained by the distinction but this is simply a consequence of the decision to present
the proofs of both statements at the same time.

By % we will denote the right derivative and it obviously holds for i € {1, ..., N} that

d
T sup |[1‘I’fe\,fo(X)]z‘ - 1@2\,[0()(1‘)‘
+ 0<s<t

<IPUNO(X)]i = %0ro(X0)]

<| /0 zlv;f’vqlwo()f)h — (X)) = S kY (el (Xa) s,

Our primary aim in the following is to derive an appropriate upper bound for the last
term. To this end, we need to distinguish if the considered particle belongs to the set
of the ‘good’ or the ‘bad’. The reason for this lies in our assumption on the closeness
of a particle to its related ‘mean-field particle’ which results in having less information
on the positions of ‘bad’ compared to ‘good’ particles in the case @ = 2. The proof
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of statement (ii) (concerning o € (1, %]) will already be concluded in the current part

because we will show in the end that typically no ‘bad’ particle occurs in this case. For
statement (7) on the other hand further considerations will be necessary.

Thus, we start with the case that the observed particle i is ‘good’ which means that only
configurations X are considered where i € MY (X).

Controlling the deviations of the ‘good’ particles: First, it obviously holds for
ie MY(X)and 0 <t <t<T that

| / SO U (X - PN (X)) — Y <RV (CeNo(Xa)ds|  (2.26)
0N J#i
<| / =S Y (0] — PO (X)) T (xpe (X)ds|
3752
[ (G S R0k - P e o (5)
h J#z
— PN R (X )ds\ (2:27)

Then we apply multiple times triangle inequality to show that the previous term is
bounded by

| / SR (X)) — PO (X)) e (xye (X5)ds] (2.28)
t J#i
T / =5 (AN 0L PN e (x (X)
R
— N (eo(X0) = TR0 (X)) L x,) (X;) ) ds (2.29)
+‘/ Zf %0 %O(X Nlenx,)(X;)ds
B
/t YN (X) — Lo (V) 1 (x,) (Y Vo (Y)Y ds| (2.30)

RG
+‘/t1/ FYCeso(Xa) = ToRo (V) 1aw x,) (Y ko (Y)d°Y ds

fN*kﬁv( p0(Xi))ds| (2.31)

t1

In the following we derive subsequently upper bounds for the four terms , ,
and starting with the simplest and concluding with the most complex.
Considerations for term : Since at the moment we only consider configurations
where i € MéV(X), it follows that ., 1(gn(x,))c(X;) = 0. Thus, term vanishes
in this case and we only have to take the remaining terms into account.
Considerations for term (2.31): It is straightforward to derive an upper bound for
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term (2.31)) since it holds due to ((1.12) that
A EN(lsﬁﬁVo(X‘))
= [ YN = YR )Y
/ Py (X0) — TR (V) ko (V)Y

which yields

<T”f HOO/R (GN (X ))C(Y)ko(Y)dGY
<TN*P(Y e R®: Y ¢ GV(X;)). (2.32)

As mentioned the ‘good’ set G (Z) will be defined differently depending if a € (1, ] or
«a = 2. Hence, we need two distinguish between these two options for estimating (2 .
Estimates for term (2.32) if o = 2: In this case we identify for Z € RS

GN(Z) = (MY

C
PS¢ ) (2.33)

where the reason for this choice will become clear later in the proof. Then it holds due
to item (i) of Lemma that

P(Y eR®:Y ¢ GN(X)))

=P(Y eRC:veM" ,  ,(X;)
6N"9 9 N™9
<C(NT3 772 (N 70!
<CN~3i % (2.34)
This yields for term ([2.32)) that
TN*P(Y € RS:Y ¢ GN(X,)) < CNY5-9IN~5720 < ON~3 (2.35)

Estimates for term (2.32) if o € (1,3]: Here, the definition of the set GV (Z) is
slightly more complex:

c
N o N N
G7(2) = ﬂ (MﬁN*%",N*%Jr%‘“r%(Z) Y M6N 3+ N- ?(Z)) (2.36)
keN:
3_o<ko<l

Now it follows analogously to the previous case that

P(Y eR®:Y ¢ GN(X)))



31

N
<SB(Y € MYy, g (X))
N .
+C gleaNX IP)(Y S MGN_E;,N_%JF%JF% (Xz))
%—ngagl

<C(N"2+9)2(N~1s)*
+C max ((N~

ko’

FRNE )

keN:
3_o<ko<l
19 — _ko
<C(N~"9727 4 max N 2T2977%) (2.37)
keN
3 _o<ko<1
<CON—§t5e

where the last term is bounded by CN ~ 9129 if ¢ > 0 is chosen sufficiently small (which
in the current situations means o < % and as mentioned at the beginning of the proof
can be assumed without restriction). Thus, in this case term ([2.32)) is bounded by

TN*P(Y € R®:Y ¢ GN(X,)) <TN35(CN~9+29) < ON~ 9 127, (2.38)

which concludes the estimates for this term.

For the remaining terms we need a version of the law of large numbers.

Lemma 2.1.5. Let 6,Cy > 0, Ne N and let (Xi)ren be a sequence of i.i.d. random
variables Xy, : Q — RS distributed with respect to a probability density k € L'(RS).
Moreover, let (M{N)icr be a family of (possibly N-dependent) sets MY C RS fulfilling

Uicr MY = RS where |I| < Cy and hy: R® — R measurable functions which fulfill on
the one hand ||hx|co < CoN'"% and on the other hand

max/ hv (X)2k(X)dS X < CoN1~2.
i€l Mz‘N

Then for any v > 0 there exists a constant Cq > 0 such that for all N € N it holds that

I*thv Xk) / hn(2)k(Z)d°Z| > 1) < C1N 7.

One might be confused by the rather inconvenient way of essentially claiming that
Jre hnv (X 2k(X)d5X < CN'79. However, in subsequent applications we will always
apply such families (M );cs for verifying this constraint and thus we decided to adapt
the formulation of the lemma to this circumstance.

Proof. We prove the lemma by applying Markov inequality. Let for this purpose be
M € N, then it holds for all N € N that

|
P(\NZhN(Xk) - /]R6 hn(Z)k(Z)d°Z) > 1)

NQM(Z (A (Xp) — / hN(Z)k(Z)d6Z))2M]

2
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where E[-] shall denote the expectation with respect to the N-fold product of k.
Let moreover

N
M = {(’.YlvaﬁyN) S Név : ZWZ = 2M}
i=1
be a set of multi-indices then it follows that

N

B3 (et - [

n(2k(2)d2)) ]
k=1 RS

N

1

= N2M > B[] (en(Xk) - /R6 hn(Z2)k(2)d°Z) ™.
(15 YN)EM k=1

We abbreviate for v := (y1,...,7n)

N

Go(X) =[] (hw(Xx) - /6 h(Z2)k(Z)d°Z) ™.

k=1 R

If there exists an index i € {1,..., N} such that 7; = 1, then integration over the i-th
variable first shows that in this case E[G,(X)] = 0.
Moreover, it holds on the one hand that

(X0 = [ 2)(2)a°2)™
<O (0P +| [ 2k2)8 ) (2.39)

and since ||hy|loo < CoN'7?, it follows on the other hand due to the remaining assump-
tions on the maps hy that for every natural number n > 2:

/R I (OIR(O)EX

§Comax/ | (X)) "k (X)dS X
My

i€l

<Gl 1 max [k (OPCOEX
(A Mz

<C) (Cg—QN(n—Q)(l—(S)) (C()Nl_(s)

o=

Furthermore, if we identify R := ( Jreo h?V(Z)k;(Z)dﬁz) , then it holds that

[ I @Ikz)ez
]R6

1
g [R@HDEZ+ | (@) 1oy 2)EZ)d 2
e 7
1
2 6 2
SQ(CI??IX/MN h2.(2)k(Z)d Z)

<CN3z(1-9),
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Since the constraints on the maps hy are more restrictive the larger the value of ¢
is chosen, we can limit the considered values to (for example) (0,1]. If we identify
additionally |y| := |{i € {1,..., N} : 75 # 0}] and recall that only tuples matter where
vi #1Vie{l,..,N} as well as Zf\il ~vi = 2M, then application of these estimates and

relation ([2.39) yields that

EG,(X) < [] (CrNO=20=0NI=0) < 02MN2MA=0) Nhl(=1+0),
1<i<N:y; 22

We can determine an upper bound for the number of multi-indices v € M related to a
certain value |y| by simple combinatorics: Any such 7 can be identified by first choosing
the set of indices which shall fulfill 7; # 0 and then assigning each of the elements
belonging to this set a number in {1,...,2M} such that the sum over these numbers
equals 2M . Since E[G.,(X)] vanishes if there is at least one index where ; = 1, we only
have to take into account terms G~(X) where |y| < M. Consequently, we get an upper
bound for the number of different tuples v where |y| = k < M by

> 1< (]]D (2M)k < N*(2Mm)M.
yEM
IvI=Fk

Altogether we get

1

NQM Z E[G’Y(X)]

yEM

N2M(1—5) Z CMNM(—H—(S)
YEM

M

SCMN_QM(S ZNk(2M)MNk(_1+6)
k=1

S(CM)MNfMé

1
< N2M

which proves the lemma since M can be chosen arbitrarily large. O

Considerations for term (2.30): We want to apply the law of large numbers to show
that term (2.30)) stays sufficiently small for typical initial data. To this end, we define
for an arbitrary Y € RS the function

t
A (Y,) :R® - R3, Z s NP /0 NN Y) = 1olo(2))ds1gn (v (2) (2.40)

where 0 < 8 < %(1 — o) is a parameter which will later be chosen differently depending
whether we consider the case a = 2 or a € (1, %] Thus, we will fix it later when the
general considerations are concluded respectively when we start to distinguish between
these two options. The notation h%;(Y,-) shall emphasize the correspondence to the
function applied in Lemma

Though Al (Y, -) does not map to R as claimed in the assumptions of Lemmam it can
still be applied on each component separately. If for each of the three components the
difference to its expectation stays typically small, then the same holds for the related

vector-valued map. The subsequent considerations will show that each component of
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this map fulfills the conditions for the application of Lemma [2.1.5

In accordance with the assumptions of the lemma, we begin by providing a suitable cover
of R% to check the constraints on the considered map. The subsequent list shows an
appropriate family of ‘collision classes’ (see ) yielding such a cover where k,l € Z,
NeN\{1},;,§>0and 0 <r,vo <1:

(i) MY

(0,r),(0,v) (Y)

(ii) M(](\Jf,r),(Nzav,N(lH)%)(Y)’ 0<is< L5111(7}\’)J

(iii) MHN

(0,r),(1,00) (Y)

(iv) MY

(Nké,n’N(kJrl)éT%(o’v)(Y)a 0 S k S \_

1
Y),0< k< [pobl ] 0<i< ||

(v) M STIa(V) STa(N)

(Nkop N(k+1)87) (NU8y, N(1+1)6y) (

(vi) Mgvkar,]v(kﬂ)ér),(Loo)(

(vii) MY

(N5 ,00),(0,00) (Y

Sketch ([2.1)) might simplify the comprehension of the basic form of the stated cover.
[
[
[
[
[
[
[
[
[

(iijl (v) : (vii)

Figure 2.1: Schematic diagram of the cover

The axes correspond to the parameters which characterize a ‘collision class’. Though
this sketch might suggest that the sets related to items (i) to (vii) are disjoint, there is
partly actually some overlap. While the dashed line shall outline the respective areas
belonging to these items, the dotted line shall describe the additional intersection in



35

smaller ‘collision classes’ within these items. Obviously, the ‘collision classes’ are chosen
‘finer’ as the related ‘collision strength’ becomes larger. If the particles keep a distance
of almost order 1 to each other (see item (vii)), even no splitting is necessary. If we
choose r = v := N7¢ then the number of sets belonging to this list is some integer I
(independent of N) and if we label the related parameters of these sets consecutively by
ri, Ri,v; and V;, then (M (Nn R), (03 Vi )(Y))Z-e 15 provides us the desired family of ‘collision
classes’.

It remains to check that for each set of this family the assumptions of Lemma are
fulfilled.

To this end, we abbreviate 7 := max(r, N~¢) for r > 0. Then we obtain by Corollary
and Lemma that for 0 < v <V, 0 <r < R the following holds:

2
/. / N RN(2) = Yy (¥))lds) ho(2)d° 2
('r R),(v, V)(Y
1
<C(m1n( =~ ﬁ)) / kO(Z)dﬁz
" v MG py ) (¥)
. 1 1 - 2 p214 3 3 p3
Slen (%’m) min (1,R ,R V +R maX(V ,R ))
. 1 R2 R2y4 RS
<C'min (p(a—l)UQ’ 72(0-1)42” 721 max(7, v)2 ;:Ta)
R2 R2V4 R6
< i — ). 2.41
<C'min (7’21}2’ 7202 P2 max(7,v)2 ™ ) ( )

where we applied in the last step that o < 2.

By application of these estimates we can determine upper bounds for each set of the
‘collision class’-family. The notation for the terms on the left used in the following list is
chosen such that it should become obvious which of the upper limits derived in is
applied in the respective case. If the third of the different upper bounds given in (2.41))
is used, only the larger addend is stated. For a compact notation we drop the constant
C for this list and reintroduce it afterwards.

(i) (N C)G — N2

.. N—¢)2(N(k+1)d py—c)4 c c
(ii) ( -~ ) g Shaea 6)2) — N—2c+2(k+2)5 0<k< LEJ

. N(k+1)6 \y—c)6 _
(iv) ( (NkéiN—c)zl) = N2eF2R0H60 g < | < [5]

(N(k+1)6Nfc)2(N(l+1)5N7c)4 (N(k:+1)5Nfc)6
(v) (NFON—<)2(NEN—¢)2 (NFS N =)
— N—2c+2l6+66 4 ]\[—2(:+2k6+667 0<kl< L%J

. N(k+1)8 py—c)2 c
(vi) Cgmyter- = N?, 0< k< [§]

.o _ 5
(Vll) W N4
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After regarding the possible values for k& and [ related to the respective items it is
straightforward to see that all these terms are bounded by N6 (where the expressions
stated in (iv) and (v) determine this choice). Thus, it follows that for all i € I5

/ WY, 2)%ko(2)d%Z < (NP)2(CND) < CN2EIHH),
M(]Xi*Ri)v(”i!Vi)(Y)

If we choose 0 > 0 small enough, then the related constraint of Lemma is fulfilled
because in this case 8 € (0, 3(1 — 0)] (which we assumed initially) implies the relation
2(30 4+ ) < 1. Now we want to check if the same is true for the assumption concerning
|h% (Y, *)||oo- For this purpose ¢, shall once again denote (one of) the point(s) in time

where the considered ‘mean-field particles’ are closest to each other in space. Then it
holds according to Corollary that

t
/0 P AN () = oo(2) 1w (2 (Y )ds
Ct CN(a—1)c
o V) 1oy @ Bl V) 2 (@)

minao min70 tmi'ru min
)1GN(Z) Y) (242

§m1n<

C
o0 (Y) = 1ot o (D) el o (V) = 2er  o(Z)]

To estimate the last term we need to distinguish between the two cases o = 2 and
a € (1, 3] since the definition of GV (-) and (as mentioned previously) also the choice of
B € (0,3(1 — o)] are different for these two options. We start with the slightly more
elaborate case.

Estimates for if a € (1, %]: Now we finally fix § and choose for the current
case 3 := £(1 — o). The set GV (Y) was basically constructed such that keeps

sufficiently small and we recall that for a € (1, %]:
aNy)y= (MN (vV)u MY (Y))C
' 6N~ NEHE S 6N"2T NTT18
keN:
%—ng‘agl

Hence, we obtain different upper bounds for the relative velocity between ‘mean-field
particles’ during ‘collisions’ where their minimal spatial distance lies below certain values.
To see this one has to regard that for configurations ¥ € GV (Z) and k € N where

% — 0 < ko <1 the following implication holds

_ (k+DH)o ko
2

< T = "ol o(¥) = o o(Z)] < 6N

_1,ko o
= Omin = 2p, oY) =20l o(Z)] = N7 et

6N

and thus in this case (2.42)) is bounded by

(etlo 1 1 _ko_o
2

O(N

since o € (1, 3].
If on the other hand z,,;, < 6N_%+U, then it holds due to the definition of GV (Z) that

_5
‘QSDiYnm,o(Y) - 2<Pi\,[nm,o(z)’ > N"1s
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and thus this time (2.42)) is bounded by

5

CNele=1D) N 15 <CN§% 18 =CNz2.

D=

W

— G6N—% is the

N

If none of the previous conditions is fulfilled, then x,,;, > 6N~
remaining option which in turn yields:
1

o
mwn

N

<CN
x

This eventually shows that in total CN > determines an upper bound for term ([2.42)
and thus . . )

k% (Y, )]leo < N°CN2 < CN2U-9INZ < ON'73.
Hence, also the second assumption of Lemma [2.1.5]is fulfilled in this case and it remains
to consider a = 2.

Estimates for term (2.42)) if @ = 2: For this setting we choose § = c+ 0 = 1—78 and
recall that for oo = 2: .
(V)

Then we can once again apply the reasoning of the previous case to conclude that this

time term (2.42) is bounded by

Ny N
GTY) = (MGN"’ o N~

ot C
No—3-0)  NO-a)eN—3
<CON?3+20 L ON°+5.

The second upper bound ‘controls’ constellations where x,,;, < 6N —5-0 and the first
all remaining.
This, however, yields for small enough o > 0 that

1R (Y, Yo SNPC(N+27 4 N°F5) < CN'—7

where we regarded that 8 = ¢+ o0 and ¢ = 1—78 — 0. Consequently, also the second as-

sumption of the law of large numbers is satisfied in this case.

Before we are able to show that term - 2.30)) stays typically sufficiently small, we need to
introduce the sets By ’” CRON je{l,.., N}

X e B CRW
<:>E|t1,t2 c [0 T] :

NZ fN( Po(Xi) = ToRo(X5))1en (x,) (X;)ds (2.43)

to
=[] = X e (Vs (V)Y | > N

where in accordance with the choice of the parameter 8 in the previous estimates we

identify
!

N[

1-0), ac(ls] (2.44)

[~

)

.
o
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Our next aim is to show that configurations belonging to this set are untypical. Unfor-
tunately, for the considered functions hl;(X;,-) the version of the law of large numbers
only makes statements about the probability of fluctuations at a certain point in time.
But on the other hand, it tells us that at the considered moment large fluctuations
are extremely unlikely. Furthermore, on very short time intervals fluctuations can not
change significantly since || fV||oc < N®¢. Thus, this problem can be easily solved.

For 65 > 0 it holds that

XeBy”
T
=3k € {0, .. L(S—J} :

k&N
([ (5 S 0ol = o) anix ()
J#l

-8
_ /RG fN(lwéYo(Xi) — 1@éYO<Y))1GN(Xi)(Y)ko(y)d6y>d8| > NT) y
(k+1)on
</k: (‘72]0]\[ SOSO - sto(X ))1GN(X)( )|

N J#i

N B) (2.45)

+‘/ e 9030 )_1‘P£YO(Y))1GN(X1-)(Y)]€O d6Y‘>dS> )

This follows easily by the definition of the set Bﬁfg if one takes into account that for any
continuous map a : R — R™, m € N, t1,ty € [0,7] it holds that

to
| a(s)ds|
t2 t1
—|/ ds—/ ds}
to | |6 t1
<|/6N (s)ds|+ [ la(s \ds+|/ Y als)ds|+ [, la(s)|ds
52 )0 50N
k‘(SN k“f‘l)(sN
<2  max |/ (s)ds| +/ ]a(8)|ds). (2.46)
ke{0,.. ,LéTJ} kSn

Since || fV]|oo < N, the second constraint of assumption (2 is true for all configu-

rations if we choose 5 N < CN—P=ca_ After some more detailed analysis one

8 N
could easily show that this 1n||gq1|1|ahty is still true with extremely high probability if d is
of much larger order because for the current estimate we essentially assumed the worst
case scenario that all particles form a single cluster. But on the other hand this does
not lead to a relevant improvement of the result. According to the previous reasoning

for at least one k € {0, ...., L%J} the event related to the first constraint of must
occur if X € Bi\;?g. However, the law of large numbers yields that for any of these events
and any v > 0 there exists Cy > 0 such that its probability is smaller than C,N~7 . By
regarding that ¢ = £ 1f a € (1 f] and ¢ = % — o for a = 2 as well as 0 < % it follows
that the number of such events is bounded by |- Slt+1< CN2T152 = ONT for o = 2
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ol

and by CN2T33 = ONTB ifa € (1, f] and thus it holds for all N € N that

P(3i € {1,..,N}: X € B)Y)
<NP(X € B)7) < N(CN®(C, s N~0+19))) < C,N 7 (2.47)

where C~'7 is simply an adjusted ~-dependent constant. Eventually, this yields that for
typical initial data and large enough N € N term ([2.30]) stays indeed smaller than

N {N-%(l—tﬂ, o€ (1, 4]

7

N™1s, a=2

We finally arrived at the estimates for the last remaining term.
Considerations for term (2.29): For the subsequent part we abbreviate:
AN, X):= max su \I/ X)]; — Yol (X
g ( ) ]EMN(X)0< EtH ( )]J 905,0( ])’
AY(t,X) = max sup |["TI(X)]; — odo(X))|
JEMY (X) 0<s<t

AN\ ._ AN N c
GV () =GN (MgN,%Wm(J) (2.48)
Hence, Aév (t, X) describes the largest spatial deviation of the ‘good’ particles and
A} (t, X) the corresponding value for the ‘bad’ ones.

By definition of GV (-) (apphed for the first inequality) and the stopping time 7V (X)
(see (2:25))) it holds for X; € GV (X;) and times s € [0, 7V(X)] that

max (2N, §|1<p£f0(X ) — @SO(X )]) > max (2N ¢ 2N_§+U) > 2AN(L‘ X).
Furthermore, the map ¢ was defined such that |fN(q + ) — fN(q)| < g™ (q)|d| for

q,6 € R? where max (2N ¢, 2|q|) > [5| (see definition (2.7)) and thus the subsequent
estimates are fulfilled for all 0 < ¢; <t < TN(X):

(& > (7 e~ o2

— V() = oo (X0) ) La e, (X5) ) ds| (2.49)
<[ (G T (e - e
jeﬂjfl?(X)
— IV = o (X)) ey (X)) ) ds (2:50)
<[ (5 S (i) - YRl
je/\j/lff(X)
+ \fN(lcpﬁYo(Xﬂ - 1()050(Xi))‘)1GN(Xi)ﬁMN 1., (Xi)(Xj))dS (2.51)
2 NN ) — e (XAY (s, X Lgn ) (X)ds (252)
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where we just divided the addends into three groups and applied for the last arising term
the previous considerations.
We continue by defining a set which in the end will turn out to be crucial for the estimates

related to term (2.52)):

X € BY” C R
<dt,te € [0 T] :

’Ng/ X;5) = Lodo(Xi)) 1w ) (X)ds (2.53)

to
=[] N = (X (Vs )Y | > 1
t1

For Y,Z € RS (and o € (1, 3] U{2}) it holds that

t
| 0 = o2 ) (V)

1, :
<0 N27 f(f |fN(1SOéYO(Y) _ 190{5\7/0(2))|1GN(Z)(Y)ds, if a € (1, %] (2.50)
TANE T NN (V) = Yo (2)) g ) (V)ds, i a =2

where we regarded that according to the definition of GV (-) (see ([2-48)) the ‘mean-field
particles’ which are relevant for this term keep at least a distance of order N =379 0 each
other as well as the definition of gV (see ) We remark that instead of checking if
W% (Y, )| (see (2.40))) fulfills the assumptions of the law of large numbers we even verified
them for a map which has the form of the term on the right-hand side of (and
where the prefactor is even of slightly larger order with respect to N). Consequently,
the same reasoning as used previously for the map h%(Y,-) works to show that for an
arbitrary v > 0 there exists C,, > 0 such that for all N € N:

P(Jiefl,..N}: X eBY)<C,N " (2.55)

It remains to determine an upper bound for term and to show that the ‘bad’
particles do typically not ‘infect’ the ‘good’ ones which corresponds to deriving a suitable
bound for term (2.50). Since the allowed maximal value for A} (¢, X) (resp. for the
largest deviation of a ‘bad’ particle) is distinctly larger than the corresponding value for
Aév (t, X) (at least if a = 2), problems could arise if the number of ‘bad’ particles coming
close to a ‘good’ one exceeds a certain value. In the subsequent part we want to show
that the probability of such an event gets vanishingly small as N increases. It will turn
out in the end that for a € (1, %] typically no ‘bad’ particle occurs at all and thus we
restrict the estimates for the following term to the relevant case a = 2.

Estimates for term (2.50) if o = 2:

After introducing A% (Y, -) (see(2.40))) we also implemented a family of ‘collision classes’
(M (er R).(05,V3) (Y)) c1, vielding a cover of RY and checked if h% (Y, -) in combination with
this cover fulfills the assumptions of the law of large numbers (resp. Lemma [2.1.5)). Let
(M, (er R, (i, )(Y))i ¢, denote again the family related to the list stated there but this

time for the parameters r = v := 6N—5-° (instead of r = v := N"¢) as well as § :== o
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and we define for 7 € {1,..., N} the set Bgf C RV as follows:

X € By CRW
sdel,: (Rl7éooA
Z lM("T’ Ao V>(Xi)(Xj) > N% {NgRlQ min(maX(V,RZ),l)ﬂ) V. (2.56)
jGMlJ)V(X) 1)V VY
1= MY ()] > N3
JEMY (X)

In a first step we derive a suitable upper bound for term under the condition that
X e (Bév Z?J)C and prove in a second step that P(X € Bé\j 17) gets vanishingly small as N
increases.

We start with some general estimates and apply them for the relevant sets afterwards.
To this end, we abbreviate for 0 <r < Rand 0 <v < V:

N N N
M. gy (o) (Xi) := G7 (X)) 0 My gy v (X5)
However, we only consider values of r and R fulfilling the constraint
(r=0AR=65 =6N"5)V (r>65Y AR=Nr) (2.57)

because for the family (M(]Xl Ri) 0.V )(Y))Z. ¢, essentially only values matter where one
of these relations is fulfilled. Finally, we recall that

sup (WM (X) = ONo(X)|oo < N7577 = 5
0<s<t

for @« = 2 and times before the stopping time is ‘triggered’. Thus, we obtain that for
0<t<V(X):

/0 D SR (Al ARES R ANESN

j#i
JEMY (X)
— NN ) e )i ) (X5 (2:58)
t
1 N (11gq,N 1.q,N
<[5 > (1R - Leon)
FJEMY (X)
+ ‘fN(ISOi\,[o(Xj) - 180é\,[0(Xz‘))|>11\7(z¥R) o V)(Xi)<Xj)d51[o,655V](7")
2 t
+ A (HX)  sup /gN(lcpiYo(Y)—%Yo(Xi))ds
YeM{ py (i (Xi) 0
; 1}\‘]@73)’(%‘/)()(1.)(Xj>1[65{,\’,oo)(r) (259)
JEMY (X)

where we regarded once again that |V (g +6) — fN(q)| < g™ (q)|6| for ¢, € R3 provided
that max (2N ¢, 2|q|) > |8] (see (2.7)). Now application of Corollary (1)+(ii) yields
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that the previous term is bounded by

Cc 1
NNy ; 1]\7&1%)7(“/)(&)(Xj)l[o,ﬁcs{f](r)
JFT

JEMP(X)
C ANt X
LOAX) 3

N 72 max(r, v) Loy (x0) (Ki) Vg o) (7). (2.60)

— (rR),(v,V)
J#i
JEMP (X)

We remark that the assumptions of Corollary (ii) (which we needed to estimate
the first of these terms) are indeed fulfilled in the current situation since according to
the constraints on the possible parameters (see (2.57)) r € [0,66;'] implies R = &} and
r = 0. Hence, by regarding the definition of GV (X;) (see (2:33)) it follows that

_ N N N C
M(o,ﬁagV),(v,V) (Xi) = M(o,ﬁagV),(v,V) (Xi) NGT(X3) © (MG(;{)V’N% (Xi))

which in turn provides us the necessary implication:
TN
Xj € M(O,Géé\’),(v,v) (Xi)
2 g
:>|290gmn,o(Xj) - QSDiYMn,o(XiH >N o=N 5éV
> {N 7 supy<s <, (x) [Wlp (X) = @50(X)oo

- (2.61)
NT‘I%{,YRM,O(XJ) - lsﬁ’ﬁm,o(Xi)\

where as usual t,,,;, shall denote a point in time where |1¢%(Xj) - 1(,0% (X;)| takes its
minimum on [0, T7.
Now we want to derive an upper bound for term (2.60) under the condition that

Z 1M(NR>( V)(Xi)(Xj) SN%U {N%Rzmin(max(v,R),l)ﬂ.
jemy(xy

For a clearer presentation we deal with the addends related to Lio,650] (r) and g5 00) (r)

separately. For the first of them we already discussed that » = 0 and R = Géév due to
condition (2.57)). By regarding additionally that according to (2.61)) we only have to
consider values v > N~5 for estimating this term we obtain that

C 1
~ 1~ X
N N~y ; M(]Z,R),(v,v)(xi)( ])
JEMG(X)
C /N30 R2 min(V, 1)4 N%
<x( ot )
N\ N-c¢max(N~5,v) N—¢max(N"9,v)
2. 4
éC(R mm(_vg’l) Nis + N ﬁ)

. 1 4
SC(—mm(V’ g) N—120 4 N*%) (2.62)
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where we applied ¢ = % —ocifa=2and R = 5}5\/ - N—57°.
Taking additionally into account that A} (t, X) < N=379 = 6 as well as R = N°r for
r > 65} (see (2-57)) it follows for the second term of (2.60) that

g Aljvv(th) Z 1~y (X])

N r2 max(r,v) o My, ry,(w,v) (X3
JEMG (X)
<C(N§(1+")R2min(maX(V,R),1)4 N N% ) 2,
-N r2 max(r, v) r2 max(r, v)

. 4
o= (max(V R 1) 400 NTEE), (2.63)

- max(r,v)

The sum of terms ([2.62]) and (2.63)) forms an upper bound for term (2.60|) under the cur-

rent assumption. Furthermore, all sets which belong to the family (M (]Xl Ry (05,V) (Y))

i€l,
except for M7 (N=7,00),(0,00) (Y') are contained in a ‘collision class’ which takes one of the
subsequent forms for suitable parameter r,v € [0, 1] (see the list previous to sketch [2.1)):

N N

(i) M(o 66)), (0,66117\7)()/) (iv) M(r Ner), (07655)(}/)
.. N

(i) Mig 530, .50) (V) () MG vy o) (V)
N .
(iii) M(O,Géév),(l,oo)(y) (vi) M(]XNJT),(Loo)(Y)

By comparing the possible values for r, R, v, V appearing in this list with estimates ([2.62))
and (2.63)) it is straightforward to conclude that for the considered terms a set of kind
(ii), (iv) or (v) with v = N7 or r = N7 yields the ‘worst case option’ and thus in

total term (2.50) is bounded by
C(N*%s + N*3+3U) < ON~Ts (2.64)

if X e (Bév f)c and o > 0 is chosen small enough. To this end, we regarded additionally
that the number of ‘collision classes’ belonging to the applied cover |I,| is bounded
(independent of N). Moreover, we already used that for the only class where the previous

general considerations can not be applied (which is M(]X[ 7 00),(0, OO)( )) the following

holds if X € (BNU) (see (2.56) for the definition) and ¢ < 7V (X):

[+ (¥ w0 — Mo
1751
JEMP(X)
_ ¢N/ _N N_ 1N /vy ,
PN CRNo(x) = MoK )y, (Om)(X)<X]>ds
9 t
< sup /gN(lsOiYo(Y)— Pao(X Z ANL‘ X)
YeM(JJVV o >,<o,oo)(Xi) 0
]eMN(X) <N~ § "
2 C _2_4
S N

<CN~-5t3° (2.65)
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which is distinctly smaller than necessary (for small enough o > 0).
This concludes the estimates for term (2.50) and it remains to show that the probability
related to the set Bé\’[ ;7 is indeed small enough. First, we bring the assumptions of this

set into a form which is easier to handle. To this end, we recall that j € M (X) implies
that X € (GN(X]-))C for some k € {1,..., N} \ {7} and thus it holds for R,V > 0 and

M := [N3°[N5R*min (max(V, R),1)*]]

that
Z 1Mgv(xi)(Xj) > M (2.66)
JEMP(X)
N N%
=(Fefl,.. N} > g, ne(Xi) > [71) v (2.67)
k=1
N
(38 < {1 NP\ UH ()}
n=1

(i) V(j,k) € S: X; € (GN(Xi))° N My (X))
(i) (j1, k1), (G2, k2) € S = {j1, k1} N {2, ko} = ‘Z)> (2.68)

For the explanation why this relationship holds we will name for convenience the event
Xm € Mg’V(Xn) by the phrase ‘collision between particles m,n’ and the phrase ‘hard
collision between particles m, n’ will be applied synonymous to the event X,, € (G(X,))¢.
If assumption does not hold, then an arbitrary ‘bad’ particle can ‘infect’ at most

[252] further particles to belong to the set M} (X) (or in our language it can have at

most [NTg] hard collisions with different particles). For the following considerations we
assume that this is the case (respectively that the event related to (2.67)) does not occur)
and we argue that under this constraint the relation

D luy,x)(X) 2 M= [N39[N3 R min (max(V, R),1)"]]
JEMY(X)

implies that the event related to (2.68]) is indeed fulfilled. This can be seen as follows:
If (2.66) is fulfilled, then there exists a set Co € M (X), [Co| > M of ‘bad’ particles
which all have a collision with the particle which belongs to label i. If additionally

the event related to (2.67) does not occur, then there exist at most LN%J particles
having a hard collision with particle ¢ and we ‘remove’ all of those which are (possibly)
contained in Cy from this set. Hence, we obtain a new set which we call C; C Cy and

it obviously holds that [Ci| > M — |%%] > 1. Take one of these remaining ‘bad’
particles j1 out of Cq. Since j1 € C1 C Cy C MéV(X), there must be at least one further
particle having a hard collisions with j; (which by construction of C;, however, can not
be i). Let k1 be one of them and we get our first tuple (j1, k1) fulfilling condition (ii)
of the set S appearing in . Now ‘remove’ j; and ki as well as all of their at most

(2|52 ] — 2) (possibly existing) remaining ‘hard collision partners’ from C; to obtain
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a new set Co C C;. Finally, the procedure can be repeated (provided that Cy # () by
choosing the next particle (label) jo out of Co and afterwards an arbitrary one of its
hard collision partners kg (which by construction of C must be unequal to 7, j; and k).
Then the next round can start after having removed j, and ks as well as their (possibly
existing) remaining ‘hard collision partners’ from Co to obtain C3 C Cq. Since after each

round at most 2LNT§J ‘particle labels’ are removed from the set Cj to obtain Ci.1q, this

procedure can be repeated at least [ L 2 J} > [ 23 M1 times (where we additionally

regarded that M > N¥ ) and thus prov1des us a set S consisting of tuples (j;, k;) like
claimed in . The respective removal of the remaining ‘hard collision partners’ of
(ji, ki) after the related round ensures that also condition (iii) is fulfilled.
After these considerations we can easily determine an upper bound for the probability
P(X € Bgf). Let to this end be R,V > 0. We start with assumption and
abbreviate for the moment .
N=3M
2

M1 Z:[ —I

First, we remark that there obviously exist less than (]}/(2 ) different possibilities to choose
K ‘disjoint’ pairs (j, k) belonging to {1,..., N}?\ Uﬁle{(n,n)} (where by ‘disjoint’ we
mean that condition (iii) of is fulfilled). Application of this in the first step,
subsequently Lemma [2.1.4] in the third step and finally

sup P(X; € (GN(Y)) < CN~—520
YeRS

(which was shown in ([2.34))) yields that
N
P(as C (L NP U} 1151 = 24 1

)ES:X; e(GN( ) N MRy (X5)) A
k1), (J2, ko) € S = {j1, k1} N {ja2, ko } = 9))

(VG
(31,
§<J]\\Z)P<V(j, k) e {(2,3),(4,5),...,(2M,2M; + 1)} :

X; € (GN(0)° N MRy (X))

N2M1 N M,
< (52£6P(X6(G (Y)) )ZS:IEGP(XEMRV(Z))>
N2M 4 M 2\ M1
M —=2-20 2 .
<C IW(N 37%) 1(R min ( max(V, R),1) >
<(CN~F)% (2.69)

M) and M = [N3°[N5 R? min (max(V, R), 1)"]]
which in particular implies that M; > Nz%. Consequently, this probability decays dis-

tinctly faster than necessary for any class which appears in (M (er R, (0i,V3) (Y))Z el where
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R; # oo and now it suffices to derive a suitable upper bound for the probability of the
event related to assumption . But previous to this we recall that we also have to
show that typically MY (X) 1< N 3(140) However, for this purpose the preceding
reasoning can be applied as well if the collision class parameters R,V are both set to in-
finity so that we obtain the trivial event 1 MY Xi)(X j) = 1. Everything stays the same

2,0
except for the slight difference that this time M; := (NZ’T;?} and P(X; € M{%\{V (Y)) =1.
Inserting this into the previous estimates shows that

P( Z 1 < N%(l-ﬁ-d)) < CN—O’N%
keMY (X)

which a fortiori is small enough.
Now we continue with the considerations for assumption (2.67). To this end, we abbre-

viate My := [%1 and it holds according to estimates (2.34) that
P(X c RSN . (3] S {1, ,N} : Zl(GN(Xj))C(Xk) > Mg))
ki

N
§NP<X e ROV . Z 1(GN(X1))C’(Xk) > MQ)
k=2

< (y,) 5w Pz € RS 2 e (V)9

Y eRS
NM2 —2 95\ M
<N Vo (CN757%9)
<CN-3I"5 ], (2.70)

In total we obtain
P(X € By))
<|I,| sup IP’( Z Ly x)(X5) = N% (N§R2 min (max(R, V), 1)4—|)
RV>0 \ &= mVE
jGMb (X)
+B( Y 1> N30t
keMN (X)

a
_To N3

<(CN73)2 (2.71)
which concludes the reasoning for term ([2.50)).

While for the last term we only had to consider the singularity parameter a = 2 it
will be necessary to take again both options o = 2 respectively a € (1, %] into account
for the remaining term before we finally arrive at the concluding part.

We identify

Analogous to the estimates for term (2.50)) it follows by application of Corollary
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that

[EF X (I eenen- e
j#i

jeM(X)
+‘fN(lSOéYO(Xj)_ISOéYO(Xi))DlGN(Xi)nMN L (X,)(Xj))ds
3N 2779

C 1
< 1 , NO.¢
N, 0

+ ¢ ! d1 (X)) (2.72)

N N-(a—1)eN—§+30 GN(X)nMN (X)) :

]751 3N 2 ,00

where thle first term takes into account collisions where the relative velocity is below
order N™5737 (but still larger than order v, if X; € GN(X;)) while the second deals
with the rest. Corollary (ii) is applicable since the relative velocity values for the
considered ‘collision classes’ are of distinctly larger order than the deviation between
corresponding particle trajectories of the microscopic and the auxiliary system. More
precisely, we applied that GV (X;) C Mégéva' (X;) where §¥ = N=577if a = 2 and

5 = N ifae (1, %] (see (2.33)) and (2.36)) as well as

max su \I/N X)) — N X,
eMy (X)OSSSTE(X)H s0(X)i — @s0(Xi)l
N_%—i_o- - N_%+Uv7jr\iin7

= {N—17s+0' — N—§to,N

min’

if a € (1, 3]
ifa=2

N 4 N = N74 if @ = 2. This shows
that the assumptions of Corollary (ii) are fulfilled because as discussed at the
beginning of the proof ¢ > 0 can be chosen ‘small’ (and in particular smaller than é)
Now we define a fourth set of ‘inappropriate’ initial data as follows:

where we recall that v, = N1 if a € (1, 4] and ¥

X € By CRW

< 1~ X, (X;) >Nz A
jZ# 6N‘%+",N_é+3"( ) (2.73)

D 1y LX) 2 N3

ji 6N 217 o

[

The choice N~5737 for the velocity parameter is more or less random at the moment but
will turn out to be reasonable during subsequent proofs where this set will be applied
again. Due to our estimates it holds for configurations belonging to the complement of
this set that term (2.72) (and thereby (2.51))) is bounded by

C 1
N Nf(afl)c,UN

min

- {CN—%“—”) +CN-5 <CN2179) | qe (1,4

P C 1
Nz + — - N30’
N N—(a—1)cy—5+30

3

- 2.74
CON~15~% + CN~3 | a=2 (2.74)
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where we regarded that ¢ = 2 and ol = N~T if o € (1,4] as well as ¢ = & — o and

3 3 18
mm—N 91fa—2

We abbreviate this time M; := [N2], My := [N3] and by essentially the same reason-
ing as applied in (2.70) and application of Lemma we obtain that

P(X € By)
My

sup P(X; eMN
- M;! Yelgﬁ ( Nzt N

Mz

L ()M

_l’_

()"

,O0

sup P(X; € MV
M2 Ye]}lgfi ( 6N~ %Jra

_(emM
- My

N

_lion\M _ligon\M
(N M (B M

N2(7%+0))M2

g 30

Sc(N—%+14a')N7 + (CN—O')N (275)

which at least for small enough o > 0 decreases fast enough.

Now we can finally conclude the proof for the first case where we have to distinguish
between the two possible options a = 2 and « € (1, %]

Concluding estimates for o = 2: Due to the previous probability estimates (see
[2-47), 2.55),(2.71) and (2.75)) it easily follows that for small enough o > 0 and an
arbitrary v > 0 there exists a constant C' > 0 such that

r( UBN" < CN7.

je{1,2,3,4} i=1

Initially we stated a sum of four terms which determines an upper limit for the term of

our interest (see (2.26])):

| / SN = PeNo(X)]) — RN (o (X)) ds|-
bt ki

We point out that for X € (U]e{l 2,34} Ul 1 BN U) the respective upper bounds which

we derived in the previous part hold for any ¢1,¢ € [0,7"V(X)]. For the remaining part
we restrict ourselves to these ‘good’ configurations and it remains to merge the different
bounds (see (2.52)), (2.64), (2.74)), (2.35) as well as definition (2.43])). First, we remark
that CN _% dominates all of these upper bounds (for a suitable constant C' > 0) except
for term . However, this term is exactly the reason why we introduced the set Bé\f 7

see (2.53))) because for configurations X € BY:7) it holds for any 7 € {1,...,N
= 1 2,1
and t1,t € [0,T] that

N
1
(5 200" (o) = Moo (X) 1an (x) (X))

- /R6 gV (Melo(Y) — 19050(Xi))1gN(Xi)(Y)ko(Y)d6Y>ds‘ <1
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and thus for N > 1 and t; <t

/t (oo (X5) — Lo (X)) T (x) (X )ds
1 —
<1+ / / (Lo (V) = TNy (X)) Ly (¥ koY )d®Y ds
t1
<14+ CI(N)(t—t) (2.76)

where we regarded that (for N > 1)

sup /R6 gN(lSOiYo(Y) _ 18050(Xi))1GN(X¢)(Y)kO(Y)dGY

t1<s<t
<C sy [ min (¥, e R Y
<C'ln(N).
If we abbreviate
oV (4 X) = max [PN0): — 2 (X)) (2.77)

ieME(X) ’
and recall the previously introduced abbreviation

ANt X):= max su Xi—lﬁ,VXi,
Y X) = e s [MEC0L el (X0)

then it holds in particular for t; < ¢ that
t
AV X) < AN, X)+ | 6) (s, X)ds.
t1

If we choose for some constant C; > 0 the subsequent sequence of time steps

C ln(N)T

for n € {0,...,[ c Nx)] 11,

and abbreviate t* :=t, 1 — t, = \/117]\[)7 then the previous relation easily implies that
for t, <t < 7V(X)

AN( i sup (5 (s, X)t* + (5N(s X)ds (2.78)

1 0<s<ty tn

By merging the preceding considerations and by regarding in particular relation (2.76]
in the third step it follows that for any ‘good’ particle i € ./\/lév (X), the considered

configurations and for all times t € [t,, tp+1] where n € {0, ..., (%TN(XH — 1} the
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following inequality holds:

N
5N (¢, X)

<oy o)+ e | [ (3 S 000k - Lol

ARG sos()( >>)ds\

- / (oo (X;) — Yoo (X)) L o (X5) AN (s, X) ds
16{1, LN} t'n — ——
<AN(t,X)

+ 6 (tn, X) + CN ™18

<(L+CI(N) (t—t) )(D_ sup 6)(s, X)t* + taj,V(r,X)dr)

~—— e 0Ss<ty tn
Stn—kl_tn:t*
+ 6 (tn, X) + CN™1s
<(1+Cln(N / 53 (r, X)d
+ (24 CIn(N)(t )2) sup 6V (s, X) + CN ™15, (2.79)
0<s<ty,

k=1

Application of Gronwall‘s Lemma implies that for ¢ € [t,,, t,+1]

N
oy (£, X)

g((2+Cln(N)(t*)2) oi’uft 3N (s,X)+CN~ 18) el +C (N )’ (2.80)
k=155t

Since this relation holds for all ¢ € [t,,t,41] and a fortiori for ¢ € [0,t,], we can
‘replace’ the left-hand side by its supremum over [0,t,4+1]. Moreover, if we choose

. 1 . . .. . C
C1 := min ( NGk 1) for the constant appearing in the definition of t* = IHEN), then
the previous relation implies
" 7
sup 5 (5,X) < 3¢ sup (5 (5,X) 4 Ce*N™1s. (2.81)
0<s<tn i1 1 0<s<ty,
Due to this relation it follows for n € {1, ..., [ IH(N) N(X)]} that
sup 5N(s X) < Ce*N™ 1 (3e* + 1) (2.82)

0<s<tp

For n = 1 the relation is obvious due to (2.81) and if it holds for k € {1,...,n}, n € N
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(where we fix for these estimates the constant C'), then we obtain that

sup 32 (s, X)

0<5<tn+1

n

§3622 sup 5 (s, X) +CeAN~Ts

k=1 0<s<ty
SC€2N7%(362+1)I€71
2 _ 7 (36 + 1) 1 2 _ 7
§36 (Ce N W) +C€ N~ 1s

—Ce2N 18 (3e2 +1)"

which confirms the claim. Hence, it follows (for large enough N € N) that

Ve B
sup 5 (5,X) <Ce*N~ 18 (3e? + 1)[ 011
0<s<tN(X)
cceN— N YT
<CN- 15, (2.83)

This concludes the estimates because the received upper limit for the velocity deviation
easily implies that

7 o
max sup [N (X)) — oNo(Xi)| S CN -1 T2 (2.84)
ie/\/l{;’(X) 0<s<rN (X) 5,0 % 5,0\

which is smaller than the allowed deviation N~15%7 for large enough values of N.
Finally, we can focus again on the case a € (1, ] and prove in the following that typically
no particle ‘triggers’ the stopping time in th1s setting.

Concluding estimates for a € (1, %]: Large parts of the reasoning are very similar
(or simpler) in the current situation but first we have to verify our claim that in the less
singular case typically no ‘bad’ particle occurs. Fortunately, we already implemented
the necessary estimates and if we define

X e B
X eR™: (3(1,5) € {1,... NP i £ jAX; ¢ GV (X)), (2.85)

then it holds according to estimate (2.37) that
N
P(X € BY7) < <2>]P’(X2 ¢ GN(X,)) < N*(CN~91%) < CNst%.

In the current case we restrict our initial data even further than in the previous one and
identify to this end

g7 = (B u | UBN") (2.86)
je{1,2,34}i=1

which leads to a slower decay of the probability of excluded configurations:

P(X € (9")°) < on—ir
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However, this decay is still sufficiently fast for verifying the Theorem since according to
the discussion at the beginning of the proof ¢ > 0 can be chosen arbitrarily small and
thus in particular smaller than § for any given € > 0. Hence, it remains to show that for
such configurations the stopping time does not get triggered. At this point we already
remark that the set Q{V 7 will play also a crucial role in all proofs concerning Theorem
BT

By restricting the initial data further the advantage arises that the contribution of term
disappears since as claimed no ‘bad’ particle exists for such configurations. One
easily comprehends that all upper limits which arise again by terms (2.52)), (2.74), (2.38)

as well as definition (2.43]) are bounded by C'N ~3(1=9) this time except for (2.52). How-
ever, the same reasoning as in the first case applies with the slight (but important)

difference that for a € (1, §]:

[ 0oX) = (X L ey (VY)Y

1
<C min (N(@FDe,
R3 ( Y — Lol (X;) [+

VEN (V)Y
<C

and thus
/ Zg — Moo (X)) 1gn (x,)(Xj)ds < C

for the considered configurations and ¢ € [0, T]. Hence, it follows by basically copying
the estimates of the previous case that V¢ € [0, 7VV(X)] and the relevant initial data:

5y (t, X)
<, x| L S 0k - PR C0)) — £ Y (ol xs|
Jaﬁz
1 _N N
= e ,N}/ Zg (e0(X;) = ol (X)) e (xy (X;)dsAy (¢, X)
+ CN—2(1-09)
t

<C /0 6N (s, X)ds + CN~30-9), (2.87)

where we recall that 5!1}\7 (t, X) was defined in (2.77).
Application of Gronwall’'s Lemma and taking the supremum over [0,¢] subsequently

yields that

sup 0N (1, X) < CN—30-9)¢C, (2.88)
0<s<t

and thus also

max_ sup [P0 (X)) = TN (X))| < tONT31-9) L, (2.89)
iEMY (X) 0<s<t ’
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By taking into account that Mév (X) = {1,..., N} for the considered configurations we
can finally conclude that

sup UV (X) — OV (X)|oo < CN"25, (2.90)
0<s<rN(x) ’

which for large N keeps sufficiently small so that the stopping time is not ‘triggered-.
Consequently, the proof for statement (ii) of the theorem is already completed and we
can go on with the estimates for the ‘bad’ particles if o = 2.

Controlling the deviations of the ‘bad’ particles: For the whole section we only
consider the case @ = 2 and thus ¢ = 1—78 — 0. Most estimates for the second part are
similar. The only new problem is that we have less control on the position of the ob-
served ‘bad’ particle. While the maximal distance of a ‘good’ particle to its ‘mean-field
particle partner’ is of the same order as the cut-off radius, the situation is different in
this case. The strategy to handle this problem will be as follows: Since the vast ma-
jority of particles is typically ‘good’, we have at least sufficient control on the positions
of most potential ‘collision partners’. 2Fulrthelrmore, we know that the considered ‘bad’
particle moves in a ball of radius N5~ 7 around its related ‘mean-field particle’. In a
small area containing this ball at the initial time we will introduce a homogeneously dis-
tributed cloud of auxiliary ‘mean-field particles’ having respectively a distance slightly
smaller than the cut-off size to their nearest neighbor (and the properties of the mean-
field dynamics ensure that this homogeneity propagates in time to a certain extend).
‘Hard’ collisions might cause that the observed particle departs too far from its initially
corresponding ‘mean-field particle’. However, in this case there always exists another
auxiliary particle belonging to this cloud which is closer to the observed one than the
cut-off radius. If we exchange the currently applied auxiliary particle by such a closer
one as soon as its distance to the related particle of the microscopic system becomes
to large, then it will turn out that most of the estimates can simply be copied from
case 1. At first sight it might seem strange to introduce a whole ‘cloud’ of such auxil-
iary particles instead of introducing every time a single new one at the position of the
observed particle when it departs to far from its current ‘mean-field particle partner’.
The arising problem is that in this case the introduced auxiliary particle would be cor-
related with the remaining particles since its position in phase space would depend on
the whole configuration. This issue does not occur if the mentioned ‘cloud’ is applied
because for a certain particle the initial positions of the related auxiliary particles are
chosen independent of the remaining configuration (but at the price that we need to
introduce many of them). In case 1 we showed that for typical initial data the related
‘mean-field particles’ fulfill a number of properties which made it possible to prove that
the effective and the microscopic dynamics are usually close. This time we show that all
of the auxiliary particles which belong to the small ‘cloud’ fulfill corresponding demands
with high probability and thus we will end up in a very similar situation as in case 1.

To implement this idea we first define
Iy ={—[N%],..,—1,0,1,..., [N} (2.91)

and for (kq,...,kg) € Jn the positions X};hm’kﬁ = X; + 2521 ij_%‘*'%ej (where e,
j € {1,...,6} shall denote the canonical basis vectors of R%). These configurations can
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be understood as the initial data of the auxiliary particles described in the preliminary
considerations. According to Lemma (which is applied in the first step) and the
condition on the distance between corresponding ‘real’ and ‘mean-field particle’ for times
before the stopping time is ‘triggered’ (used for the second inequality), it holds for
arbitrary ¢; € [0,7V(X)] and large enough N that

_2_, _2
|00, (24 0(X))i) = Xil < CI[WH o(X)]i — ¢y o(Xi)| < ON"577 < N5,

Thus, this distance is of smaller order with respect to N than the diameter of the
auxiliary ‘particle cloud’ around X; and thereby it is always possible to find a tuple
(k1,...,ke) € Jn such that

V6

; _ 7,9
|20t (U2 0 (X)) = Xy el < 5 N7 (2.92)

if N is sufficiently large. Lemma implies in turn that

i _ 140
025 0 (X)]i — oy 0 (X ..o )| < ONTIF2, (2.93)
Let N € N be large enough such that CN-1+5 < %NWLSJ“’ then there exists a further
point in time t2 € (t1,7] such that

1 _ T
sup |["WR (X)) = Tl (XG,y k)| < NT1HT
SE[tth]

holds as well as the following bound for the velocity deviation if ¢ > 0 is sufficiently
small:

sup | (X)]s — %00 (Xi, )| S N7
SG[tl,tQ}

For this time span the auxiliary particle related to the initial data X,ih“.’kb, provides a
sufficiently good approximation for the trajectory of the corresponding ‘real’ one and
we want to apply it in the following to show that sup, << [[V2((X)]i — gpéYO(Xi)] grows
slow enough on this interval. More precisely, we utilize that this variable is bounded by

sup [0 (X)]i — oNo(Xi, . xe)l + sup [0Ro(X7,  g) — @No(Xi)] (2.94)
t1<s<t t1<s<t

and derive upper bounds for the growth of these deviations instead. The reason for this
is based on the fact that the considerations for the first of these two terms is mostly
analogous to the estimates of case 1 because the spatial distance betwe;en the considered
auxiliary particle and the ‘real’ particle is bounded from above by N~ 1817 (which is also
the largest allowed deviation for a ‘good’ particle).

For the remaining part of the proof we will always assume that for an arbitrary point in
time ¢; € [0,7V(X)) and X € R the initial position of the auxiliary particle X,ih‘_.’,%
and t3 € (t1, 7V (X)] are chosen such that the previously introduced demands are fulfilled
on [t1,t2]. Obviously t2 and the choice of (ki, ..., k¢) € Jn depend on i, ¢, and X but for
a clear notation we omit to make this explicit. For the same reason we simply abbreviate
Xﬁ::~Xéhmkg

We start with the second of these two terms because controlling its growth is a simple
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application of Lemma Due to this lemma it follows for arbitrary ¢ € [t1, t2] that

o0 (X)) — oo (Xa))
<eCU) 1N (X)) — ol o(X3))
<eCl=t) (‘%1, (X3) = O o (X))a] + |1 ‘I’tl o(X)]i — ¢£¥,0(Xi)‘)

<eClt=t1) (Jor o(X3) = [T o(X))i| + N~ 1s+0). (2.95)

where we regarded the allowed upper bound for H\If,{\f’o(X)]i - gpi\lf’o()zi)} according to

the choice of X;. This already concludes the estimates for this term and we return to it
later.
For the second term we first remark that

![2‘1’N (X)) — 2o (X))l
<P o X)] - QSDiY,o(Xi)\
‘| / w 2 P CUO) = PO = 7 Bl D))ds|. (2.96)
Now we want to derive an upper bound for the force term and as noted the situation is

almost the same as in the previous case. Hence, it is not surprising that we apply again
multiple times triangle inequality to obtain essentially the four terms of case 1:

5 SO0k - PR - s RO (20
<[5 SO0 = PP 5 e )0 (2.98)
e > (7 o0 = PO 5 ()

ffN(ltps (X-)flw%(X-))lgN(gi)(Xj))ds! (2.99)
) ;fN a0 (Xi) = TR0 (X)) L 5, (X;)ds

/ [ PNCONER 0 D ) (Y)Y s (2100)

FLL (L IO = b)) g () (koY )Y
— VRN (oo (X)) ) ds| (2.101)

A suitable upper bound for term can be derived analogously to the estimates
leading to term and thus is given by CN -3, Next, we care for term and
at the same time for . Since according to the choice of ¢1,ts and X; it holds that
SUPy, <5<ty |[1\IJQ[0(X)]Z- - lgoé\jo()?m < N-wt0 (which as stated is the same value as the
upper bound for the allowed deviations of ‘good’ particles), it follows with the help of
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the map gV (see (2.7)) that
[ S (P00~ PO 1 ()

Bt ki
— N (eo(Xi) — l@go(Xj>)1gN()?i)(Xj)>d8‘ (2.102)
t
5 X (RN - ML) ar g, ()
1 jeMY O\

— V(oK) = TR0 (X) g 5, (X)) dsf

t
1 ~
D DI (A (TGO ERTTC o)) BIENG &)
BT jeMl (X)\ ()

(PN (X0) = R0 (K0) + PO —elo(X)) )ds. (2108)

Obviously, all these terms have basically the same structure as in case 1. We just have
to adjust the definitions of the sets Bivj’a from the previous to the current situation.

More precisely, we recall that )~(Z was only an abbreviation for X,il kg and define for
(k‘l, ...,]{16) € Jn:

N,o 6N
X = Blvlz(kl7 »kﬁ) g R

3t ,th € 10,7 :

t2
| / o S NN, k) — O v (X))
¢ J#l
= [ K — )
-1GN(X;€1WI€6)(Y)ko(Y)d6Y>ds’ > NIV (2.104)
‘/t/ @so(Xkl ..... kG)—ISOéYo(Xj))lcN(X;I '_'kﬁ)(Xj)
Hﬁz
= [ g K k) o)
Rﬁ
Lenxg, _.kG)(Y)kO(Y)dGY)ds‘ >1 (2.105)

Hence, statement ( is the same as applied in the definition of the set B 7 (see
(2.43) except for the 1rrelevant difference that X; is replaced by the initial data of

another auxiliary particle Xkl,...,ke =X; + ijl kN~ s+ 26]. For statement m,
on the other hand, a corresponding relationship holds, however, with respect to Bév 7.

Consequently, it follows analogous to the reasoning applied for the sets B%’U, je{1,2}
that for any v > 0 there exists C'y > 0 such that for all N € N

P(X € B

14, (k1o )) <CyN™T.

Like in case 1 restricting the initial data to this set is already enough to handle term
(2.100) and the second term of (2.103]). Thus, we can start with the considerations for
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the first term of @ (and after that only term remains). In the proof of case 1
the set B 7 (see @ ) was introduced to deal with the corresponding term and since
the swuatlon is basically the same we just have to modify the definition such that it
applies for Xl1,...,ke for (ki,...,k¢) € Jn:

6N
X € 62727(k17 7k ) R

<:>E|l€IJ:(Rl7£oo/\

]. N 7
Z M(Tz»Rl)a(UlaVz)(Xkl

(Xj) > NZTG [N%RZQ min (maX(W,Rl)>1)4D v

..... ke) =
jeMY CO\(i)
S 1> N (2.106)
JEMY O}
For X € (821 e ))C and t € [t1,t2] the term
[ X (M) - M) e ) (X))
0 N Mmoo
- fN(lwé\,fo(Xj) - 190é\,[0()?i))1GN(X )( )ds‘ (2.107)

can be handled by the same estimates as applied in case 1. For this purpose, one has
to take into account the choice of the interval [¢1,t2] because for this time span it holds
that

> _T
sup [["UY (X)) — Mol (Xo)| S NTEF7 A
te(t1,t2]

~ o
sup ‘[Z‘I’é\,fo(X)]j - 28050(Xi)| < N797%

tE[tl,tz}

On can easily comprehend by the considerations starting after (2.56|) that these estimates
can be copied in the current 51tuat10n and hence also the prev1ously derlved upper bound

CN™1s can be applied (see (2.64)).
This concludes the con81derat10ns for term ([2.99) respectively (2.102) and we record

that due to definition (2.105)) and the subsequent reasoning it holds for configurations
o C
X € (B k) UB2 i) and £ € [t1, 1] that

t

1

[~ X (PYee0k - Pee0l) ter x, (X))
" deMY O\

= PN CR(XD) = N (X)) L, (X5) ) ds|

t

1 ~
+ = (97 (N (X0) = o (X g i (X))
N eMY (N
(N (X)) = o (Kl + M0 = e o(X)1) ) ds
<CN~1s
(14 [ [0 ColE ~ e ratr ) as)
t R6

1
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csup (MOl ="Kl + max (MU (0]; — el (X))])
s€[t1,t] JEMEP(X)

SCN™T8 + C(1+ (t — t1) In(N))N~—° (2.108)

The derivation of the upper bound for the first term was already discussed previously.
For the upper bound of the second term we regarded that 0 < g™ (q) < Cmin(N3, ﬁ)
which leads to the factor C'In(V) after the integration as well as

e (X)) = Telo (X +  max NN (X)); - el (X)) < 2N
JEMI(X)

for s € [t1,t] due to t € [t1,ta] C [t1, 7V (X)], the constraints on ¢5 and the definition of

the stopping time (see ([2.25])).
We finally arrived at the last remaining term which is (2.98)):

|/ %ZfN([I\IJiYO(X)]i_[l‘l’{e\,fo(X)]j)l(G’N()zi))C(Xj)d8|
b

This term takes into account the impact of the ‘hard’ collisions which were excluded
for the ‘good’ particles. Thus, it constitutes basically the first significant modification
in contrast to the considerations for the ‘good’ particles. Fortunately, the estimates for
this remaining term are straightforward but first we need to define for the last time in
this proof a set of inappropriate initial data for (ki,...,k¢) € Jy and i € {1,...,N}:

N,o 6NN
X € B3 h,,..ke) ER
o (2.109)
<:>Z]_MN - 2(XI7;1 """ k6) X])ZN2

After recalling that (GV(2))¢ = Mé\]fv_%_a o (Z) (if o = 2), it follows for configura-

tions X ¢ Bé\;ikh...,ks) that this last remaining term is bounded by

CNE YN lolt — t1] < CNFHNT )|t — 1]
<ON“ Tt —t). (2.110)

Moreover, by taking into account that IP(Y € RO :Y ¢ GN(Xi)) < CN~—3-% (see
(2.34))) it follows that

N,o _4_ 94 [N%] _1rvg
P(X € By, ky) < ([Nfﬂ)(CN 3-20) NPT o o3 INE] (2.111)

which obviously drops sufficiently fast.

We arrived at the point where we have to merge all upper bounds which we derived in the
previous part. However, first we restrict our initial data to those configurations where
all applied estimates work for arbitrary t1, to fulfilling the initially introduced demands.
For this purpose, we consider for the remaining part only configurations

N C
xe( U U U BV w)
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We already discussed that for any v > 0 there exists a constant C,, > 0 such that

(X € Bivza(kh k6)) < CyN77 and according to the proof of the first case it holds that

a

P(X € B;V;;kl i) < (CNTF)'5 (see @T1)). Since |Jy| < (3[NF])® < ON (sce

(2.91)), it is agaln possible to choose the constant C,, > 0 such that

U U U Bfi’:zkh...,kﬁ)) < C’yN_7

J€{1,2,3} i=1 (k1,....,ks)€JN

holds for a given v > 0 and all N € N.
For configurations

N c
xe(U U U 8% .0

j€{172»3} i=1 (k177k6)€JN

all derived upper bounds are fulfilled for arbitrary ‘triples’ ¢1, to and )Z'Z provided they are

chosen according to the introduced constraints on them (which we will review shortly).

Under these conditions we obtain that (2.99)) is bounded by C(1 + (¢t — 1) ln(N))Nfﬁ
7

(see (2.108])), while the upper limit for term (2.100) is N~ 18 (see definition (2.104])),

the bound for (2.101) (which is CN —3) was already derived in case 1 (see ([2.35])) and

CN_%_STU(t — t1) constitutes an upper bound for (2.98) (see (2.110). Hence, it follows
that for ¢ € [t1,t2] (and for small enough o > 0) the force term (2.97)) is dominated by

C(NT5~F (t—t))+ N715).

This brings us to the concluding estimates. By regarding this upper bound we obtain
that for any i € {1,..., N} and for all times ¢ € [t1, t2] the following inequality holds for
the considered configurations:

![Q‘IIN (X)) = i (X5)]
t1 0 X)] Z‘Pi\f,o()?i)’

+|/ o S0 V) — (M (X)) — Y xRl (Re)) ) s
f J#z
<|PON (X)) — 2N o (X)) +C(N"57F (t —t;) + N~ 15) (2.112)

where we regarded the condition on the distance between the applied auxiliary particle
of the ‘cloud’ and the related particle of the microscopic system at the starting time of
the observation period t1. Now it is straightforward to indicate an upper bound for the
spatial deviation for t € [t1,t2]:

(0] = "oho ()]

o~ t o~
<M (X)) = Loro (Xl + [ 1PEN (X)) — 202 (X5)|ds

< 4 CO(NTTT(t—t) NI~ 1)) (2.113)
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Eventually, we recall the conditions on t1, ¢t and )2@ which we introduced previous to the

estimates for the ‘bad’ particles so that we can discuss what we achieved so far. t; denotes

basically an arbitrary moment in [0, 7V (X)) and we argued that it is always possible to

find an auxiliary particle of the introducsd ‘cloud’ which is closer (in phase space) to the
N—c¢ _ N_18t°

observed ‘real’ particle than =5— = 3 (at least for large enough N) at this point

in time. )A(:i, on the other hand, was simply an abbreviation for the initia71 position of
the respectively considered auxiliary particle X,il’m,kﬁ =X;+ 2?21 k;N _T8+%ej where
(k1,...,ks) € Jy. Finally, to was defined as a point in time of (¢1,7"(X)] where the
distance in (physical) space between this auxiliary particle and the ‘real’” one still fulfills

oy _7
sup [0 (X)]; — "o (X)| < N7t
h<t<ts

while for the velocity deviation the much larger upper bound

> _2_
sup |[PU7(X)]; — 2o (Xi)| < N7v 7
11 <t<ta

was allowed. After the time to (possibly) a new auxiliary particle of the ‘cloud” which
is closer to the observed ‘real’ particle must be chosen for further estimates. However,
relations and provide us the opportunity to determine a lower bound
for the possible length of such an interval [t1,t3] where in any case the same auxiliary
particle can be applied. For large enough N € N and small enough ¢ > 0 the subsequent
implication holds

7

<N o NI L O(N“ T (t—t1)2+ N 15 (t — 1)) < N"1+0
< 2 i i
NS L O(NTEF (t—ty) + NT) SON“B~F < N~5°°

and thus according to relations (2.112)) and (2.113]) ¢to :=t1 + N-1 s a possible option
such that the constraints on to are fulfilled. Hence, (2.112)) and (2.113) yield for this
choice of t (and small enough o > 0) that

~ 2 30 _1l_ 3¢
sup H\II%(X)]Z — @%(Xm <CN 9 2(tg—t1)=CN 3 2.
t1<s<t2
Eventually, we can return to term (2.94) and by regarding additionally estimate ([2.95)

we obtain for ¢ € [t1,t1 + N _TIQ], the considered configurations, large enough N and
sufficiently small o > 0 that

sup H‘I’é\,{o(X)]i - SOiYo(Xi)’

t1<s<t
< sup W0 (X)]i — eNo(XE, k)l + sup |oNo(XEy ) — Ro(Xi)]
1S5S8S 158
<CN=5 5 4+ PN (X)) — ol o(X))]. (2.114)

Since t; € [0,7V (X)) was chosen arbitrarily, we can define a sequence of time steps

tn :=nN"12 for n € {0, ..., [TN(X)N$1 —1} and ¢ 1= 1V(X)

[TN(X)N12]
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and receive a corresponding sequence of inequalities

sup (W (X)]i — ¢o(X0))|
tn<s<tni1

<CN" %% +eON° 7![\I/th, (X)]i — epy o(X3)]-

Now it is straightforward to derive inductively that

n—1
_11_ 30 _ 1
sup |[WN (X)) — oMy (Xy)| < N~ F Y 20N 2k
0<s<tn i

which after regarding that [T N ﬁ] constitutes an upper bound for the possible values
of n yields that

_2_3,
sup (W (X)) — pf(Xi)| < ON79727,
0<s<TN(X)

This value stays smaller than N ~579 for sufficiently large N which shows that also the
‘bad’ particles do typically not ‘trigger’ the stopping time for the relevant N and o.

Hence, the main part of the proof is finally completed.

Like mentioned in the discussion of the strategy, we conclude the proof of Theorem
by showing that for N > 1

sup sup ['pl(w) — "y (@)] < VIV N TR (2.115)
2€R6 0<s<T

which obviously is a considerably smaller bound than necessary for verifying the state-
ment.

In the following we identify Ay (t) ;= sup supg<,<;|'¢] 0( x) — 190;’?0(33)]. Let t € [0, T
z€RS

be such that still Ay (t) < N~¢, then it holds for z € RS and N € N\ {1} that

@to SOto( )|
<[ /R (PO — o) — 1) — o) ko(y)dyds

<| / [ (Y (elia) = o) — £V 30) — ') haly)duds
T / / (PN (o2 () — Lo ) — 12 (el (x) — Lol () ko(y)dyds|
/ 22 (s) / N (1N, (@) — TNy (1) ko (y)dyds
T / / (PN (o) — L) — £ (%5 (x) — 1))k () dyds|
t 1
<o) [ ads | [ [tk e

t
] [ N (S ) |
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where we remark that for the stated application of the map ¢V (see for the
definition) in the second step the assumption Ay (t) < N~¢ was applied. Moreover,
since gV (¢) < C'min (N(@+De, M%H) for all ¢ € R3 the factor In(N) only arises if o = 2
and is not necessary for the remaining smaller values of o which are considered.
It remains to take a closer look at the last two terms. However, we consider in the
following only the first of these terms since the second can be treated analogously. We
use again the notation x = ('z,2x) € R® where the first component shall describe the
position in space and the second the velocity. We will show that due to the slowly varying
mass or charge density cancellations arise such that this term keeps small enough.

t 1
Y - .
)L e ton-a (ks + o @)
t 1?] 1 2
A /0 J. Lo (D (K7 + 655(0) — K2(0,%) + 935(2))
+ k?o((O,Qy) + 90?,00(37))>d6yd3‘
t 1 1 00 o - ) N )
= Jo Jeo T 01 ) (1K (y + ¢35 (@) = K((0,%y) + ¢%5(2))]| ) dyds (2.116)

where the last step follows since
t Ly . ) 6
[ ]t tow P02 + )|
OO q
—\/ kg 9050 /d Wl(o,N*c](IQ\)dqus‘ =0

due to the symmetry properties of the force kernel.

By application of the condition on our initial density |Vko(z)| < 55 as well as

c
(1)
Lemma (in the second last step) it follows for arbitrary z € R® and s € [0, 7] that

|k (y + 2) = kZ((0,%y) + 2)[Lo,n— (I'yl)
=|ko(85(y + 2)) — ko(2G5((0, %) + 2)) Lo, (|'y])
< sup |Vko (2|

2" €3 (y+2) 5% ((0,2y)+2)

v (Je8ay + 2) — ¢85(00,%y) + 2)])
¢
L+ [P

< sup
2/ €08, (y+2) 5% ((0,2y)+2)

Ao () (Clw+2) = (0.2 +2)])

CN~—¢

< sup sup W

VERTYISNT 2/ €0 (1 2y)+2) 3, ((0.2y) +2)

(2.117)

where 77 := {(1 — \)z + Ay € RS : A € [0, 1]} for z,y € RS,

At this point we only note that if the value of |*y| (appearing in this expression) is
chosen large enough, then all configurations of the set over which the supremum is taken
have a velocity value of this order due to the bounded mean-field force. Hence, term
drops like % as |?y| increases. For a more rigorous argumentation see the



63

reasoning utilized in the proof of Lemma (starting after ) which is essentially
analogous.

Now we can apply these considerations to estimate term . It follows that for
arbitrary z € R® (and in particular z := ©5o(x)) and a € (1, 2]

1
Yy o0
‘ o |1y‘a+11(07NC](|1y|)k5 (ZH'Z)de{
1
< [, metoa-alihé iy

CN~*¢
. / _sup sup WdS(Qy)
R3 y/€R3:|y/|<N—¢ z’GgoSf’S((y’,2y)+2)<p8f’5((072y)+z) z

<CN~2%,

Consequently, it holds that for any = € RS that

sup ['ofo(x) — 1o (@)
0<s<t

t
< [ Pelie) - 2esp(@las
t s
<C'In(N) / / Ap(r)drds + CN~%t. (2.118)
0o Jo
By means of this inequality one easily derives by Gronwall lemma that

An(t) = sup sup ['oly(x) — 9% (x)] < CN~FteV IV
zeR6 0<s<t

which shows that the initial assumption Ay (t) < N7¢ = N —f5to stays true for arbi-
trarily large times ¢ provided that N € N is large enough.
Applying this bound additionally on the relation

t
P () — 2% ()] < Cln(N) /0 An(s)ds + CN%

yields the claimed result

sup sup |l (x) — o (@) < eV N2 (2.119)
z€R6 0<s<T

for the relevant N which concludes the proof of Theorem [2.0.1
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2.2 Discussion of the first main result

Up to now, we showed that for typical initial conditions all particles keep very close to
their related ‘mean-field particles’ for the considered systems. The result related to item
(ii) is basically only an interim result that will be extended in the following part of the
work. However, actually the focus of our interest concerns the Vlasov-Poisson system
which is considered in item (i). Unfortunately, for this system it is not possible to
extend the outcome by the approach which will be applied for the ‘less singular systems’
of item (ii) where the reasons for this will be discussed later in the work. First, it
makes sense to summarize what we have achieved so far for the Vlasov-Poisson system
and to discuss the still existing shortcomings of the result. As mentioned initially, our
main intention was to1 reduce the cut-off size to an order below the mean inter-particle
distan(;e which is N73 in 3-dimensional space. Since the cut-off size which we consider
is N~18%7 (where o > 0 can be chosen arbitrarily small), this aim is any case reached.
In fact, it is still possible to improve the result by basically the same method where a
finer subdivision in ‘particle classes’ is applied than just the distinction between ‘bad’
and ‘good’. However, one can imagine after comprehending the current proof that each
additional class is connected with a significant increase in estimates. Moreover, the
value of the attainable improlvement is questionable since the method fails in any case
at a cut-off order above N~ 2. The reason why the approach has to fail at latest at
this point lies inlthe circumstance that the law of large numbers does not yield better
control than N~ 2-fluctuations around the expectation. This is a problem because for the
Vlasov-Poisson system the method (in the presented form) only works if up to a small
number of exceptions all particles are as close or closer than the cut-off order to their
related ‘mean-field particle’. The reason for this arises by the circumstance that we have
to assume that the interacting particles take the ‘worst trajectories’ possible within the
bounds determined by their respective stopping times. If for the vast majority of particles
the deviations are smaller than the cut-off size, then even in this worst-case scenario the
number of ‘encounters’ between ‘mean-field particles’ where the inter-particle distance
falls blow the cut-off size is typically of the same order as the corresponding number in
the system of interacting particles. The situation, however, is completely different if for
a significant number of particles the allowed deviations are of larger order than the cut-
off size. This is also the main reason why simply permitting bigger deviations between
corresponding particles does not improve the results that can be achieved. Hence, what
actually can be seen as one of the strengths of the approach introduced initially by
Pickl and Boers [2] resp. Pickl and Lazarovici [19] (and thereby of the approach applied
in the proof of Theorem determines also its limit: All information about the
particle distribution is obtained by their related ‘mean-field particles’. This allows in
many situations to prove quite strong results with comparatively low expense (where this
becomes particularly apparent in the previous works and less in the current). However,
strong closeness assumptions between related particles are necessary which additionally
get stronger as the considered systems get ‘more involved’ (for example by regarding a
smaller cut-off size). Thus, at a certain point the method has to fail without arguing
additionally that the assumed ‘worst-case scenarios’ for the interacting system are not
typical but exceptions. It will be discussed in more detail during the introduction to the
second main result how such a reasoning might look like.

Nevertheless, some aspects of the received result can be seen as relevant improvements.
Of course, the most obvious progress is that at an arbitrary point in time the force acting
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on the majority of the particles does (typically) not change if the cut-off is removed. If,
however, a given particle is observed for a longer time period, then this particle will
very likely ‘run into’ the cut-off of some other particle. Hence, this is still no rigorous
justification that Propagation of Chaos holds for the Vlasov-Poisson system. Although
heuristically no surprises are expected in this regard, proving that typical trajectories
do not change significantly as the cut-off is removed seems to be quite a hard problem
for the Vlasov-Poisson system (while for the less singular systems of item (ii), showing
this will be exactly our aim in the next chapter).
One further interesting question which is studied for instance in the book of Spohn [28]
for different systems is how the local particle distribution looks like and if the solution
to the effective equation also provides information about this distribution. By ‘local’ we
mean that we consider for 2 € R some region of the form

A{“\iﬂ“z( ) = BN_%rl(l.TU) X B,«2(2.%') - RG, r1,79 >0
in which typically an N-independent number of particles is located where as usual
B.(x) := {2’ € R3: |2/ — x| < r}. More precisely, for a given N the expected number of
‘mean-field particles’ in such a region is

AN (@) =N / z")d%z
Tl T2 (:I:)
and it holds that
N _ 6 1
]\}E)noo)\m’m(m _]\}gnooN/ d

1 T2

WT‘;’/ kt(la: v )d3( " =: Ariro (T).
BE By, (22)

Moreover, since the ‘mean-field particles’ are i.i.d. with density k¢ the distribution of
the particle number in such a region converges to a Poisson distribution with parameter
Ari.ro (). However, actually we want to obtain information about the local distribution
of the interacting particles. To this end, we abbreviate

¥ =P(Fi € MY(X) : "pro(Xi) € B, 5, ('n))

where we recall that MV (X) denotes the set of ‘bad’ particles) and
b
pév = IP’(Eli e{l,..,N}: (N_%Tl _ N-sto <|'z-— 1(,0,570(Xi)| < N‘%rl + N‘%‘H’)\/

("ero(Xi) € By (o) Ay — NTIH7 < 20— 20, 0(X3) < ra + N_T78+U))>

3ry

then it holds according to the results which we derived in the proof of Theorem [2.0.1
that for t € [0,T], k € N, z € RS, arbitrary v > 0 and for large enough N € N:

P(X R ;1%” (T #ZIAW \(r0(X0)))

§P{V +P§V +CyN™7

To this end, we regarded that according to the proof of Theorem the deviation
between related ‘real” and ‘mean-field particles’ does typically (resp. with a probability
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larger than 1 — C,N~7) stay below order N~15%% in the case of ‘good’ particles and

N=377 in the general case if N is large and o > 0 small enough. Thus, if the event
‘related to’ p) does not occur, then we obtain that typically no ‘mean-field particle’
is located in the border region of Afyhm () so that the numbers of ‘good’ interacting
and ‘mean-field particles’ inside this volume coincide. If there is additionally no ‘bad
mean-field particle’ in the spatial region B2N7%707r2 (12), then obviously even the total
71}1[77“2 (x) is the same for the two systems.

By regarding supg<s<r ks |loe < C it follows that

number of particles in A

pé\f < N(CN_%—FUN%_%)) < CN_%J'_O'
and
pY
S]P)(Eh’ € {17 ,N} :

3je{l,..N}\{i}: X; € Mgv_z o (X)) Aeo(Xs) € B 2 (2))

5§79 NH 2N~H
<ieMY (X)

2 N 6.1 1
<N Sgﬂgép(z € M6N_%_G7N_%(Y))IP(Z ER®:po(Z) B, 2| z))
SNQ (CNQ(—%—O')N4(—%)) (CNS(—%—O'))

SCN_5U

where we applied Lemma in the second last step. Since ¢ > 0 can be chosen
arbitrarily small, both probabilities vanish as N goes to infinity which yields that the
property to be locally Poisson distributed transfers from the ‘mean-field particle’ system
to the interacting system. This concludes the discussion of the first result.

However, the previous analysis already provides first indications on how an extension
of the result might work which will be considered in more detail in the subsequent
introduction to the second main result.



Chapter 3

Vlasov equation as the mean-field
limit of particle systems with
singular potentials

3.1 Introduction to the desired goals and heuristic pro-
ceeding

Our aim is to show that for the systems considered in item (ii) of Theorem reducing
the cut-off size has very little influence on the dynamics. However, the cut-off will never
be removed completely but only made arbitrarily small. Hence, the interaction is always
Lipschitz continuous, so that we do not have to care about the solution theory which at
least in the attractive case is non-trivial without regularization. On the other hand, the
proof includes showing that for very small cut-off sizes and typical initial configurations
the inter-particle distance will never fall below the cut-off diameter for any particle
pair on the considered time span. Thus, in this case corresponding trajectories of the
regularized and of the non-regularized systems coincide. This yields additionally to the
actually aspired aim that for typical initial data (with respect to the considered measure)
the N-particle dynamics are well-defined also without cut-off. A similar reasoning was
also applied in [§]. For achieving this aim it will be necessary to derive some additional
information about the distribution of the interacting particles which is not provided by
the closeness to their related ‘mean-field particles’ alone. The idea is to apply a similar
approach as in the proof of the first main result. In that case we introduced a system
of ‘mean-field particles’ for which we have plenty of information about their dynamics
and their distribution and exploited this to show that their trajectories keep close to the
corresponding trajectories related to the microscopic system with high probability. The
crucial point was that as long as these trajectories are close, the information about the
‘mean-field particles’ can to a wide extend be transferred on the interacting particles. At
the current point we already derived much information about the considered N-particle
systems with cut-off parameter ¢ = % and in the next step we will extend this even
further. Subsequently, we will apply the related particles in the same way as the ‘mean-
field particles’ were applied previously: More precisely, this time we want to ‘transfer’
the information which we have about the trajectories of the system with (comparatively)
large cut-off on the corresponding trajectories of systems where the cut-off size might be
arbitrarily small.
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Before we are able to indicate the precise statement we first need to introduce the
following set for 6 > 0 and N € N:

cy = {YGRG | V21, Z5 € R®:( max |Zi— Y| < N75 AZy # Zs)
K3

e{1,2}

kol2) ~ko(Zo)| _ s
ozl < V)

(3.1)

This sets contains the configurations where the initial density fulfills a special local
Lipschitz property where the reasons leading to the definition will become clear during
subsequent proofs. Of course, one could in principle replace the N 3 factor appearing
in the condition by N? but it will turn out to be slightly beneficial for the notation to
define it this way. Furthermore, the appearing value N =3 is only one of arbitrarily many
possible choices for this variable.

The second main theorem reads as follows:

Theorem 3.1.1. Let T > 0 and ko € L (R®) a probability density fulfilling the assump-
tions of Theorem . Moreover, let (\I’ijfs’c)s,teR be the microscopic flow defined in
for a € (1,%]. If cg > 1 = %, then for any o,e > 0 there exist C1,0’ > 0 such
that for all N € N

P(X e RV : sup [0 (X) — 2 (X)|o > N7279)
0<s<T

<C)N"5H 4 P(X e RV : 3i e {1,..,N}: X; ¢ £Y). (3.2)

If in inequality (3.2]) the second addend of the right side vanishes sufficiently fast, then
we can conclude by application of Theorem that

sup |83 (X) — UV (X))o < 2N 7340
0<s<T ’

holds for typical initial data and arbitrary ¢ > % if N € N is large enough. The upper
bound

P(X eR%™ :3ie {1, ,N}:X; ¢ L) (3.3)

can in principle be improved in the sense that this Lipschitz constraint does not nec-
essarily need to hold for all particles. Actually, it would be sufficient if configurations
X € RN which fulfill a constraint of the form

N / N
3Z €RN 1 |Z — X|oo < N5 A (Hko(Xi) > CeN 712-XIh Hk:o(Zi))
=1 i=1

(instead of 3i € {1,..., N} : X; ¢ L)) are untypical where C > 1 shall be some arbitrary
constant. However, since for a considerable class of initial densities the probability stated
in the Theorem vanishes anyway sufficiently fast, there seem to be at least equally serious
shortcomings of the current result and thus we are content with the stated version which
perhaps is slightly more tangible. On the other hand, it would of course be desirable to
further generalize the possible initial data in the long term.

Furthermore, it is also possible to give some comments on the specific choice of ¢’/ > 0
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which appears in . Usually one can simply choose ¢/ = 0. However, it will turn
out that the estimates implemented in the proof only work for small enough values of
o > 0. This is a consequence of the circumstance that for a given o > 0 we will restrict
the initial data to a set which depends on this parameter. We will see that this set
is not typical for large values of o and additionally it is not suited for implementing
appropriate estimates in this case. On the other hand, it suffices to show that the
event supo<s<r |V} Noev(xy - \I/é\fOCQ( Joo > N~ 3t g untypical for small values of o to
conclude that the same is true for larger values. But as a result we have to choose for
instance ¢’ = min(c,o*) for some sufficiently small * > 0 such that starting from a
certain value of o the upper bound for the probability determined by term does
not improve anymore.

It is quite obvious that proving such a statement includes showing that the interacting
particles typically keep a certain minimal distance to each other which in turn yields
that a corresponding statement is true even for the non-regularized system. To this end,
one has to consider that the parameter co > 0 can simply be chosen large enough such
that the cut-off radius N~ falls short of this minimal distance.

Additional to the results which we already received in the previous part of the work we
will need further properties of the microscopic dynamics. The next step will be to show
that with very high probability ‘shifting’ the positions of arbitrary particles a little bit
does not affect the evolutlon of the remaining particles in manner relevant to us if the
cut-off radius is N~5.

For this purpose we recall the set of ‘good’ initial data applied for proving the first main
result:

gfg = (B u U UBN" (3.4)

je{1,2,3,4}i=1

We note that previously we dropped the T-dependence of this set for a clearer notation.
Obviously, the sets B]]-V,i’g and Bév’o also depend on this parameter but we will continue
to ignore this dependency in the notation, as it will always be clear from the context.
The definitions of these sets can be found in (2.43),(2.53), [2.56), (2.73) and (2.85).
The configurations belonging to Ql 7 have many good properties which will be very
important during the subsequent proofs In particular for such configurations all real’
particles keep closer to their corresponding ‘mean-field particle’ than order CN™ 3+
which was derived in . Since this is such a crucial property for the remaining part,
we introduce an own Corollary for this statement.

Corollary 3.1.1. Let T > 0 and ko be a probability density fulﬁlling the assumptz’ons
of Theorem m Moreover, let (\I/i\i;c)&te]g be the flow defined in and ( ts “)s.ter
the ‘lifted’ effective flow related to system with initial data ko for a € (1, f] and
c= % If 0 > 0 is sufficiently small, then there exists C1 > 0 such that for all N € N

and X € QiVTU it holds that

sup [WVE(X) — BN (X) [0 < CLN 230,
0<s<T ’ ’

We point out that it might appear strange that ¢ > 0 needs to be sufficiently small such
that the previous relation is fulfilled. This is caused by the o-dependence of the ‘good’
set Q{V 757 which for large values of this parameter becomes more or less worthless for the
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estimates.

In the following we will only consider configurations of this ‘good’ set g{v 77 and do not
care for the remaining untypical initial data. In fact, the plan is to restrict the initial
data steadily further until we have reached a set for which the estimates necessary to
prove Theorem [3.1.1] can be successfully implemented. However, we point out that
the ‘strongest’ restriction already took place by excluding the configuration of the set
Bév’a. Compared to the upper bound which we derived for the probability of this set the
probability related to the set of all remaining excluded configurations will turn out to
be negligibly small.
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3.2 Proof of the second main result

3.2.1 Preliminary studies

Theorem 1] already yields us very much information about the positions of the ‘real
particles’ in phase space by their related ‘mean-field partlcles However, though the
uncertainty about their positions is only of order N™ 2‘“’ we still have to expect them
to behave in the worst case possible within these constraints at the moment. Thus, if
the (spatial) distance between two ‘mean-field particles’ falls below order N~ 2+" then
we have to assume that their corresponding ‘real’ particles get as close to each other
as possible (which usually leads to a large deviation to the mean-field dynamics if the
cut-off size is chosen very small). If the N-particle density F}¥ typically does not change
too fast in the neighborhood of a considered configuration, then heuristically it should
be possible to argue that there is no tendency of the interacting particles to run into the
(removed) singularity. The aim of the subsequent lemma is to show a property of the
(regularized) N-particle dynamics which is very helpful to prove such a statement.

Lemma 3.2.1. Let ko be a probability density fulfilling the assumptions of Theorem

and let ( ts “)s.ter be the N-particle flow defined in (L.3)) for 1 < a < 4 and ¢ = %
Let addztzonally foro >0, N €N, ty,ta € [0,T] and Cy > 0 the set g t2) C RN pe
defined as follows:

N,o 6N
X €0 ER

&VY;, Y, € ROV .

\Il Y WN7C X N—%-FO'
zg%?};}()gl?jﬂ‘ 30( ) s,O( )|oo > Co

< max U1 (V1) — Ui (Va)ly

t1<s<to

V

<N %(ta —t1) + Cp min I\Ifﬁféc(YD — ‘I’géc(ﬁé)h A

t1<s<tg

N,
ogla<x ‘\I/s() (Yl) - \Ijsﬁc( )|OO

_1l,0 . N, N,
< oV iy 250 - W COL) )

If the constant appearing in this definition Cy > 0 is sufficiently large and o > 0 small
enough, then there exist C1 > 0 and € > 0 such that for all N € N and t1,ty € [0,T]

which fulfill to —t, > N~3 it holds that

P(X € Gy 7N (gN(f tg))c) <NV

Before we begin with the proof, we note that the dependence of the set g t 1) O the
constant Cy > 0 is not made explicit to avoid an even more overloaded notatlon Fur-
thermore, since the lemma will be crucial on many occasions throughout the subsequent
proofs we outline 1ts essential statement in words: If a trajectory belonging to the ‘good’
initial data X € Ql T I8 close with respect to |- |~ to another trajectory at an arbitrary
pomt in time belonging to [0, 77, then they are typically close (in this sense) for all times

n [0,7]. If on the other hand two trajectories (having initial data Y7,Ys € R®Y) are
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respectively close to such a ‘good’ trajectory (with respect to |- |«) at a certain point
in time, then for their distance with respect to | - |1 one of the following two options is
fulfilled with extremely high probablhty Their distance keeps almost of the same order
on [t1,to] C [0,T] where t; + N— 5 < t5 or it does at least not exceed order N~ T(ty —t1)
if N € N is large enough.

After the short introduction we start with the proof of this important lemma.

Proof. The estimates applied in the proof only need to be fulfilled for large enough NV € N
and sufficiently small ¢ > 0 so that the statement of the lemma holds. To avoid too
much redundant formulations we apply as a general assumption that for the respective
estimates this is indeed the case and mention it only partly explicitly. Since the cut-off
parameter ¢ = % is again fixed, we will drop the related indices in the notation.

First, we prove the statement that such trajectories keep close with respect to | - |
(which is pretty obvious after having proved Theorem and show afterwards the
more interesting statement about their distance with respect to | - |1.

Let Cp >0, X € Q{V 7 and X' € ROV a configuration for which there exists to € [0, 7]

1
such that ]\Il%,O(X') — \Il%,O(X) loo < N_C?:d . To keep the notation as compact as possible
we define YV := \Ifigp(X) as well as Z := \I’i\o[,O(X/)' The estimates will be confined on
showing that the trajectories keep close until time T'. Proving the closeness for times in
[0, to] works analogously due to the time-symmetry of the dynamics.
If (for example) Cp > 4, then it holds for any point in time ¢ € [0,7 — ty] where the
condition supg< sy [W1o(Y) = U1 (2)|o0 < LN=3%9 i still fulfilled that

- s (M)~ 1N (2)l (3:5)
<PONY) =205 ()| (3.6)
<]2Y—2Z|oo

oo | [ S (P e - P
i#]
P2 - oo ) ds 3.7
<|2Y — 7| (3.8)
oo [ (e, - e
” i#]
— NN 0(X) = N 0(Xi) ) ds (3.9)
e | [ > (a0 = lal)

- NN (2)); - | ws,o<z>m)ds\ (3.10)
<*Y — 27|

+C sup [UI(Y) = B 0(X) oo + ONT337

+C sup [UN(Z) = BN,y 0(X)|oo + CN723, (3.11)

0<s<t
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For the explanation why the last relation holds we recall that X € g{v ’TU implies in

particular X € (Bév’a)c which yields Vi # j : X; € GN(X;) (see (2-85)) and thus the
upper bound for term was already derived in the proof of Theorem by the
estimates for term @ . The upper bound for term follows on the one hand due
to the choice of the time ¢ and on the other hand due to Corollary which yields
that for s € [0, ]

(W0 (2) = @81 0(X) oo
<WR(Z) = (Voo + 1 TH(Y) =Ry 0(X)]oo
——
:\Ilé\;to,()(x)
1. 1 _1l.0
<gN7#H L ONT2PE,

At least for large enough N this bound is smaller than N =379 and thus in particular

smaller than the maximal value for the deviation
WY = @8 o(X)] = [ o(X) — DNy (X))

which was allowed according to the stopping time introduced in the proof of Theorem
We point out that in the proof of this Theorem we only applied this information
(namely that the distance with respect to || between the N-particle trajectory and the
applied auxiliary trajectory @% (X) is still below N _%4'“) and X € g{\’ 7 to implement
the different estimates. It was, on the other hand, not important that 7they start at the
same initial data. Hence, it is straightforward to see that term can be handled by
the same reasoning as applied for term which leads to a corresponding result.
Since supg<s<¢ ]\I'Q[O(Y) - (I)ﬁto,o(X)‘oo < CN2%% holds due to Corollary it
follows by triangle inequality that

d
-, Sup |1‘1’§,[0(Y)_1‘I’§,[0(Z)‘oo

<O (V) =207 (2)l

<C sup |"UN(YV) = "ON,(Z)|oo + ON"2F5 4 2V — 27| .
0<s<t ’ '
With the help of Gronwall’s lemma and a subsequent application of the inequality lim-
iting the velocity deviation which appears between the second and the third line of the
previous relation one easily concludes that

sup [W 10 (Y) = ¥00(Z)]o
0<s<t

N—3to

+CON3HE) (3.12)
Co

<(|Y ~ ZJoo + CN"2%3)e < (

By choosing Cy large enough we can gather that the assumption

N—zt0

sup [0(¥) = WN(Z)]oe < =
0<s<t

which we applied for the estimates keeps in fact valid for all ¢ € [0,7 — to] if N is
sufficiently large. After having noticed this, the first inequality appearing in (3.12))
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concludes the proof regarding the deviation with respect to | - |-

Proving the second statement is bit more complex but still large parts of the previous
ideas and estimates can be recycled. We will focus on the arguments which are new and
keep the familiar part a little shorter.

By application of the sets MN (tl’tz)( X) for 0 < t1 < ty < T (defined in (2.23)) we
identify

i, . . N,(t1,
Crt e X) = {i € {1, . NI\ {i}: X; e M (ha,¢2) 1 (X))

6N~ 217 N
Cy i X) = {5 € {1,.. NI\ {i} £ X; €M ‘_“jf) DINCE, (X)) (313)

and finally C(t ) (X) = Ci](\i 1) (X) U ch ](\; 1)(X). Thus, these sets contain the labels
of the ‘mean-field particles’ which come ‘close’ (in physical space) to the i-th ‘mean-field

particle’ at some moment in [t1,t5] and in case of C Ll t )(X ) have additionally a low

relative velocity value (or more precisely lower than N™ 9+3").
As before, let X € Q{V . and additionally Y', 7’ € RSN such that

N—3t0
max inf \\I/ 0(X) = UM (X)]oe < .
XE{Y’Z@O<S<T ’ Cb

Then, as we previously showed it holds for large enough Cjy, N that

N PJ*%+J
max  sup [WN(X) — W (X)|o < .
Xe{Y",Z2'} 0<s<T 2

(3.14)

Let this be the case and let the times ¢1,t2 € [0,7] be chosen such that the condition
tg —t1 > N -3 mentioned in the assumptions of the lemma is fulfilled. Moreover, we
assume that to € [t1,t] is a point in time where the distance [®N(Y') — ®N(Z")|y
attains its minimal value on this compact interval and identify again for ease of notation
Y =W (V') as well as Z := W)Y ((Z'). Like in the preceding case we will only show
explicitly that in positive time direction (respectively for times in [tg, t2]) the considered
distance between the related trajectories stays typically sufficiently small and remark
that for times in [¢1, tp] an analogous reasoning can be applied.

Finally, we abbreviate for i € {1,..., N}

FAN(Y, Z,t) == sup MU0 (V)]s — [M50(2)]i] (3.15)

0<s<t

and note that due to a ‘mean value argument’ it holds for ¢,¢ € R? that

1 1

1NV () — N < ((|q|+N et T (|q,|+N_C)a+1)|q—q

. (3.16)

We apply this relation in the third step of the subsequent estlmates to obtain term
(3-21). Moreover, we make use of the sets C(t b )( ) as well as C” (t b )(X) forn=1,2

(see(B.13)) to conclude that for ¢ € [0, ¢y — to] the following holds:

N

—— > AN, Z,) (3.17)
dty =
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<Z sup |[? ‘1’ (Y)]i — [‘I’évo(Z)M

0<s<t
<\2Y— Z
(175 eyl - el
N/z;; ol °
N (2], - P\IJéYo(Z)m!)ds
S\QY—2Z’1
N
YT [ et - e
=1 .

i, N
e(e )

e
NV, Z,s)+ ' AY(Y, Z,5))ds
AN(Y, Z,s) + LAN(Y, Z, )

DH

N
C J I )
N z} NZ / POl (V)]; — PO (Y))s] + N7t
1= Cl (X) ’
2,(t1,t2)

AN Z9) AN )
(), = )4

NZ [ e -renen

J 1 (t1 t2)( )

I 2); - (2] ) ds.

_'_

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

For receiving term (3.20) we applied the properties of g™V (see (2.9)) together with
Corollary and estimate ([3.14]) which yield the following implication for large enough

Nand X €Y, Z2:

i, N C
(C(tl tg)( ))
=Vs € [O,tz - to] :

(X)) = PN (X)L > (M0, o(X)]; = P, o (X)) - N™2%7
> [l 0(X)) = Lol 0(X)| —2N 2 F0
26N—%+o
N ‘I‘Pﬁto,o(Xj) ; lwﬁto,o(Xi)‘

A first step for simplifying these estimates is to notice that

jGC (tlt2)(X)@z€C]N

(t17t2)(X)

for n = 1,2 and thus it holds for the index sets of the sums that

{(i,j)e{l,...,N}Q:jeC”V;m( 2 ={(,j) e{1,...,N}?: zec%(tm)(X)}.
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By these considerations we can simplify terms (3.20]) to (3.22)) as follows:
‘QY _ 2Z|1

* ke?ll,?i(N} ( Z / ‘Ps+t0, X;) — 905+t0, (Xk))ds

Xe{v.zy  je(cth, (x)

1 [ERSN
' IcNZ / 1\I/N ' [I‘I/N (X )]k‘—I-N C)a—&-ldS)N; ALY, 2)
JeCy, »(t1s tz)( i
N 10N /<
ty Telvg) Z 2 / YO0 = " (X)) |ds. (3.23)

i, N
TECT 1y 109) (X)

Apphcatmn of X € ng yields X € B )¢ and thus X; € GN(X;) for all j # i

(
(see (2.85)) as well as X € N 1( )C (see (2.53])) which implies in total that for all
ie{l,..,N}

% Z / ("oRo(X5) = Moo (Xi))ds

je(ctl t2
Z/ X)) = todo(XiDlen xpnouy | (xae (Xj)ds
i sNT 217 o
<1+ / [ g (eN) = oo (X k(1Y ds
(3.24)
Furthermore, due to X € gl T C ﬂz 1( ) (see (2.73)) it holds that
3
Cz tl,t2) ZIMN Y (xp) (Xk) = N7
]C?él 6N ? ,00
It follows by Corollary (i) that for any i € {1,..., N} and X € {Y, Z}
C 1
DY / - ds
N UL — P + N
JEC 1y ) (X ’
C 1 iN
SN N-caN—5+30 627(t17t2)(X)’
C 1 35
< =-————
N N—capN—5t+30
<C. (3.25)
In the last step we took into account that ¢ = 2 respectively o € (1, ] Moreover, we
remark that the assumptions of Corollary [2.1.1] (i) are fulfilled since j € CJ (t1 252)()( )

implies that the value of relative velocity between the i-th and j-th ‘mean- field particle’
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at the time of their closest encounter is at least of order N~5+37 (see (3.13))) and thus
of much larger order than the deviation

max sup "I’é\,/o(X) - ‘I)ig+s,o(X)|oo
Xe{Y, 2} 0<s<T—tg

< max - sup WI(K) = W o(X) oo sup [UTH(X) = OF(X) ke
Xe{Y, 2} 0<s<T—tg 0<s<

<N"2t7 4 ON~3+%

where we applied relation (3.14), ¥ = \I/%O(Y’), Z = U (') and Corollary
Hence, it follows for large enough N € N and ¢ € [0, ta — o] that

AN(Y, Z,t
dt+2 )

<Z sup W0 (V)]i — P92 (2)]i] (3.26)

0<s<t

gcz AN, Z,t) + |2y - 22|,
i=1
9 N T—tg _ N

+ 5 max Z > / P 0) = [N (X0)lds. (3.27)
]Eci’](\; t2)(X) "
Until now all estimates can be implemented for arbitrary X € Q{Y /7 and it remains to
show that the last term keeps typically sufficiently small (i.e. smaller than N~ (ty —t1))
before we are able to conclude the proof.

First, we recall that j € Ci’](\; t2)(X) implies that X; € MN (tl’)f) | 4, (Xi). Conse-
’ ’ N~ 2 U7N_§ e

quently, it suffices to cover this set by a certain number of finer subdivided ‘collision
classes’ and to show that the ‘impact’ related to each class stays typically small enough.
For k € Z one possibility for such a cover is given by

i CN(x;) == MmN t) X;

Q) NOn) = N (X

. N vy . Vs (tt2) N < < 1

() ONX) = MY e vy (i) 80 Sho <

(i) CN(X;) o= a(et2) (X:) (3.28)

(0.6N~2%7) (N~ To7 =317 N=h+i7)

because it holds that

N7 K
pt Xy cotxyuefegu ) o).
’ keN:

1 1
§—30§k0§§

Since we only regard configurations belonging to g{V 4, no ‘mean-field particle pair’
fulfills the conditions of classes where the relative Velbcity values are very low (which
in particular is the case for C1(X;)) and thus these classes can be neglected for the
subsequent estimates.
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Let N€N, ke {[g—3]—1,..., 5]}, ri=6N"21 and

N—keo if1—30<kza<l
Vg ‘= L3, .
N5 Jif k=[5 —3]—

Once again we see that the different values for v; are of distinctly larger order with
respect to N than the deviation

max sup "I’é\fo(X) <I>t0+50( Voo < N~3+7 f ON—3+%
Xe{Y, 2} —to<s<T—to

(if o > 0 is chosen small enough). Hence, also in the current situation we can apply our
collision estimates described in Corollary 2.1.1| to conclude that for X € {Y,Z}

9 N T—to _
S [ R~ P e (K

i=1 j#i 0 (07) Vk4+1:Vk)

N
C 1
SNWZZW«W () (Xi)- (3.29)

In the next step we show that for € > o typically

S S i (%) € NNt - )]

i=1 jAi (0 7) (vk+1 vk

Very similar to the reasoning applied previously to handle assumption (2.66)) we obtain
the subsequent relationship:

Z Z 1 N,(t1,t2) (X, )(X ) N2€ {NQT‘ Vg (’I" + Uk(tg — tl))—| (330)
i=1 j;éi (0 ), (Uk+1 vg)
=@ e{l,.. N} Y 1, N o (X9) = [N€]) v (3.31)

]751 (0 r),(0, vk)

(EISC{l N}Q\U{nn

0 15> ¥ NP (4wt — )]

(i) V(4 )es X;j € MySie | (X)

(i) (i1, 1), (32, j2) € § = {1, ju} O {iz, ja} = 0) (3.32)
This can be seen as follows:

If condition (3.30)) is fulfilled, then there exists a set &’ C {1,...,N}?\ UnNzl{(n,n)}

where

€ N )
|S'| > N*[N*r?vp(r + vg(ta —t1))] A V(i,j) €S X, € M (31(32'3k)(X7;).

Let us assume that condition (3.31]) is not fulfilled respectively there exists no particle
having a collision of the considered kind with at least | N€| different particles. Then we
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argue that it is possible to find a set S C S’ containing “- [N2r v (1 + vk(ta — 1)) ]
particle pairs having such a collision with each other (Whlch corresponds to item (i)+(ii)
of condition ) but with no further particle of the remaining pairs belonging to S
(which corresponds to item (iii) of condition (3.32)): Just choose an arbitrary pair of
(i1,71) € 8. Since by assumption

Vie{l,.,N}: Zl N(§1<S2))X)<Xj)SLN€J_1
J#i o

it follows that there exist respectively at most (|/N¢| — 2) further particles which have
such a collision with a particle related to labels i; or j; which in turn corresponds to
at most 4(|N¢| — 2) further tuples (i,7) that are contained in S’ where i; € {i,j} or
J1 € {i,j} except for (i1,71) and (ji,41). Now ‘remove’ the at most 4| N¢| — 6 tuples of
S’ where i1 or j; are ‘contained’ and choose the next pair (ig, jo) out of the remaining
ones for the second round of the approach. Since at least

2e 2 €

[N [Nr Uk(;“]\—;vk(tQ tl))1'| > NT[NQTZU;?(T’—FU]C(Q _tl))—|

rounds of this routine are possible, it provides us a set S like desired. The ‘removal’ of
the tuples after each round ensures that item (iii) of condition (3.32)) is fulfilled.

Fortunately, the event related to assumption (3.31) can not occur for the considered

configurations X € gl T C Ny i1 (BNU) because by definition of this set (see (2.73))) it
holds for » = 6N~377 and the possible values for vy that

Zl N, (t1,t2) X)(Xj)gleN 1

A Monmw A oNTETINTE

x)(Xj) < N3 < N°¢

due to the constraint € > 0. Now we apply Lemma [2.1.4] and the property that the
‘mean-field particles’ are i.i.d. to derive an upper bound for the probability of the
‘event’ described by assumption (3.32). For this purpose, we abbreviate

M::(N

I [N?*r20 (r + vi(ta — t1))]]

and note that the number of possibilities for choosing M ‘disjoint collision pairings’
(where the expression ‘disjoint’ refers to item (iii) of condition ([3.32)) is bounded by
(X7). Thus, it holds that

N
IP’(EIS C{1,..,N}2\ U{(n, n)}

[SI> M A V(i) € S X5 € MySie) (Xi) A

(i1, J1), (i2,J2) € S = {ir, 1} N {iz, j2} = @)
<<N2>P(V(i ) €{(1,2),(2,3), ..., 2M — 1,2M)} : X; € MU0 (x,)
=\ ) )\ (0.7),(005) (<Y

(r ’Uk(tg —t1)+ T’SU]?;)M
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In the first step we regarded that we only have to care for ‘disjoint’ tuples according
to the assumption {i1, 1} N {i2,j2} = 0 and in the second step we simply applied the
probability estimates of Lemma [2.1.4] Finally, the last step follows by regarding the
choice of M and in particular M > %. It is straightforward to see that this upper
bound for the probability fulfills the ‘decay condition’ claimed in the assumptions of the
current lemma and thus we can assume for the remaining part that the configurations

considered by us indeed fulfill

Zzl N,(t1,t2) (X l)(X ) < N26(N2 (T+Uk(t2 —tl))—|

i—1 ]#l (07‘ (vk+1 ’Uk)

for each set of the previously defined cover. For the last conclusion we remark addi-
tionally that the number of classes belonging to the cover is bounded by some constant
(which only depends on o) and thus the probability that for any of these classes the
stated upper bound is violated fulfills the same ‘decay condition’.

It remains to verify that under this assumption term stays sufficiently small for
all of these classes:

C
N N-—cla— 1)%“221 o) ) (X i)(Xj)

i 13#7‘ (O'l)(vk+1 Uk

c 1 2e 2

SN Ny N ot )]
C 1

N N (VN 1))

7 5
(N—9+26+U N—ﬁ+25+4av%

+ 4+ N3t2eto, 3) ty —
vg(te — 1) la—t1 ( :

where we applied that vy = N v, 7 = 6N_%+U, c= % and a € (1, %] Thus, the
interestilng values for v are the largest and the smallest possible, respectively N —5+30
and N~3 (where as mentioned before the class C}¥ (X;) can be neglected since X € Q{V 7).

By regarding this and additionally to —¢; > N =5 as well as ¢ > o we finally obtain that
the previous expression is bounded by

C(N*éJr?)E 4 N7%+126 + N7é+146) (t2 — tl)

Application of this estimate on inequality (3.27) yields that for all such configurations
there exists C' > 0 such that for ¢ € [0, t2 — o]:

N
> AN,z

i=1

<y - /mew (V)i — PO (2)]lds
=1

0<r<s

/cz AN(Y, Z,s)ds + |'Y —'Z);

0 =1
Y —2Z|1(ty — t1) + ON "5ty — 11)2, (3.33)
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Hence, we can apply Gronwall’s lemma and obtain that for ¢ € [0,y — to]:

N
> AN, z,t)

i=1
g(\lY “AZ1 4 PY =224ty — t1) + CN~5 (g, — tl)Q)eCt (3.34)

Moreover, due to the previous estimates it holds for the considered configurations that

N
Zoiligt!([Q‘I’go(Y)h — PUNo(2))i — (Vi —22y)]
7,1—1 ; ]—V

<5 | X (1w - 1emn

i=1 j#i

- NN (2)]; - [Fedo(2)]0)] ) ds

N

<ONLAN(Y, Z,t) + ON“5 11y — 1) (3.35)
=1

SC(PY —1Z01 + Y —2Z|1(ty — t1) + N 7o, — t1)> (3.36)

where we point out that the inequality related to (3.35)) will become important for the
subsequent Corollary.

Since the value of ¢ > 0 and thereby of € > 0 can be chosen arbitrarily small, it follows
in particular that they can be chosen such that for large enough N € N and ¢ € [0, ta —t)

sup \‘I’i\fo(y) - ‘I’é\{o(z)\l

0<s<t
<C|X — ZJ + CN"5H1(ty — 1) < O|X — Z|1 + N~ (t; — t2) (3.37)
which eventually completes the proof. O

Although the proof is completed, we directly continue to examine the inequality related
to term closer. In the proof of Theorem we will derive upper bounds for
the growth of deviations (with respect to | - |1) between different trajectories on short
time intervals which in turn will be applied to determine an upper bound for their
deviation on longer time spans. At first glance, inequality appears inappropriate
for this purpose because an already existing spatial deviation would be translated in a
velocity deviation of (possibly) multiple value independent of the length of the considered
time interval. Extrapolated to longer times the order of the deviation would be greatly
overestimated without further reasoning. One could get rid of this issue by deriving a
better suited estimate. On the other hand, the described problem looses significance
the longer the considered time interval [t1,¢2] is and by applying additionally the second
order nature of the dynamics, it is possible to extend the estimates step by step to longer
time spans. Very broadly speaking, if the velocity deviation is of distinctly larger order
than the deviation in position space, then the spatial deviation must first ‘catch up’
before it contributes in a relevant way to the further (relative) growth of the velocity
deviations.
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As an exception to the common proceeding, we implement the estimates first this time
and summarize the derived results in a Corollary afterwards because the situation which
we consider is exactly the same as in the previous proof.

As mentioned, we want to extend the relation provided by inequality (3.35) - For the
following we choose a sufficiently big NV € N and €,¢y > 0 small enough such that the
relation N~s+14e < N7 js fulfilled for the corresponding addend appearing in term
(3.35)). Then the related inequality takes the form

N
> sup (PO — PO — (PN o)) = PO o(2))0))
<C> " sup [NV = [MON(Z)]i| + CNT0(ty — ). (3.38)

for t € [t1,t2] and according to the previous proof we know that it holds for typical
initial data. In particular, the inequality is satisfied for configurations Y’, Z' € RSV
which fulfill
a UV (X)) = UV (X)|oo < N727T5
X&y}wg%\ 0(X7) = ¥p(X) oo <

for some X € g;v (ZT N Q{V ;7 where QN;”E) C RSN gshall be defined as follows for

t1,ty € [0,T] (however, without making the T-dependence explicit in the notation):

X e Gy CROY

VY € ROV : ( min [N (V) = N (X)|oo < N7275°
0<s<T ’ ’

N
Sy 2T [0 - P )
i=1 j#i

-1 uN (t1 t9) (X')(Xj)ds < N_Eo(tg — t1)>

GN 2+o’ N—§+30'

To see this, one has to regard that the force term in this definition corresponds to term
(13.27)). The probability estimates which we implemented in the previous proof were only
necessary to show that this term keeps typically small enough for trajectories which at
some moment in [0,7] are ‘close’ to a trajectory of the ‘good’ set Q{V 7. If this force
term fulfills the stated bound, then according to the reasoning of the pfevious proof the
assumption X € Ql 7 deals with the rest so that all estimates which lead to inequality
(13.38]) can be carried out for such configurations. Moreover, the probability estimates
of the proof of Lemma 1| imply that for sufficiently small o, g > 0 there exist C > 0
and € > 0 such that for all N e N and t1,t9 € T where to >t + N~ 3 it holds that

P(X €617 N (QN(;’IE;’Q))C) <CONN,
This can be comprehended by going through the considerations which start after term
- As a last remark we point out that despite their similar notation this set should
not be confused with the (for later considerations distinctly more important) set g
which is defined in the assumptions of Lemma [3.2.T )
Let N7 < N~ “q for ¢ > 0 and a variable a > 0 as well as N3 < §; < %% where

t t2)
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K7 > 1is a constant which will be important in the following. Finally, we assume that

111
N,o ~N,o,€
X e gl T N g 0 0,T) ﬂ g2 (kﬁt(? k+1)d:)" (340)

Here, d; corresponds to the length of the short time span mentioned in the introductory
explanations where we want to compare the trajectories in the proof of Theorem [3.1.1
The meaning of the variable a will become clear shortly. Next, we introduce a differen-
tiable map A : R — RS fulfilling 417 (s) = 2h(s) for all s € R where like in the remaining
work the notation h(s) = (*h(s),2h(s)) € RS shall distinguish between ‘position’ and
‘velocity components’. Moreover, for t; = kd;, k € {0, ..., (5—7;1 — 1} the map shall fulfill
the following constraints:

N
0 > sup Y ()] — [h(s)li] < aK167

izltkSSSth

N
(i) Zt sup |y, (h(tk)))i — Ph(s)lil < aK1dy
i—1 e<s<trqn

(iii) sup [WNG(X) — h(s)lee < N75F57
0<s<T

Conditions (i) and (ii) should be interpreted as follows: While (W2)), scp is the N-
particle flow we studied in Lemma the map h shall describe a trajectory which
arises by (possibly) different dynamics. If we ‘follow’ the trajectory h and start at time
t to observe how fast the distance between h and the corresponding trajectory related
to the (¥ Ts)r ser-dynamics grows, then constraints (i) and (ii) shall determine upper
bounds for the allowed deviations on short time spans of length d;. Only by application
of these assumptions we will in the subsequent part derive suitable upper bounds for the
long-term deviations

sup llﬁlgo(h(O)) —h(s)|; and sup \2\I/i\770(h(0)) — 2h(s)\1.
0<s<T 0<s<T

We already point out that in the proof of Theorem we will show that such con-
straints are typically fulfilled if in place of the map h a trajectory of the N-particle
dynamics \II%’C(X ) is considered where the cut-off parameter ¢ > % may be chosen ar-
bitrarily large (which corresponds to an arbitrarily small cut-off). Application of this
Corollary will then take care of the rest.

First, we remark that the condition related to item (iii) ensures that for large enough N
and for t,, = kdy, k € {0, .. [ =] — 1}

_1.3,
N o(X) = h(ti)|eo < sup [WR(X) = h(s)|oe < N72F57 (3.41)
0<s<T

and since X € Q mgN 7 50 ) it follows that the conditions for the subsequent applica-
tion of the mequahty related to (3.35]) (respectively its current form (3.38])) are satisfied
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(where we note that the conditions are discussed after (3.38)):

sup  (1PUN(hO)); — P, (e — (PR o(h(O))): — (1))

i—1 tk<8<tky1
N
<0y sup [[WN(R(0)]; — "W, (A(tk))i| + CN 08, (3.42)

i=1 tp<s<tp+t1

We point out that the constant C' > 0 will exceptionally be kept fixed for the whole
estimates. Moreover, if fi, fo : R — RV are functions which have the same ‘structure’
as \I/A;(X ) or the map h, then we will abbreviate in the following for convenience

|fi = fli" Z sup |[f1(r)]s — [f2(r)]i] (3.43)

157‘t

and introduce a corresponding abbreviation for such maps restricted to the ‘position or
velocity components’:

N

"f="hlr = sup (LA — [ fa(r)li] for 1 =1,2 (3.44)

i—1 s<r<t

Let n € Ny be such that

ol

=>_ sup W3 (h(0))]i — ['h(s)li| < ad (3.45)

and due to constraint (i) on the map h and &; < % it follows that in any case n can be
1
chosen larger or equal to 1.

We obtain by application of relation and N~ < N~ “gq that for all s € [tg, txi1]
and k<n-1
P00 (h(0) = 2h() [
<PON(R(0) = W, (h(t) [ + PO, (h(t)) = R
<PU(R(0) = 2N, (h(th)) — (4 o(h(0)) — *h(tr))[1
+ [P o (h(0)) = 2h(t) 1" + PUT, (A(ty)) = 2R()[
—\Q\I!tk o(h(0))=2h(tr)1 <Kiad
<(CI"EN(R(0) = ")+ O N 6)
gN “lg
+ \Q\IJiZ 0(h(0)) = *h(ti)1 + Kyady

<Ca62 + PO 5(R(0)) = 2h(tp)|1 + (CN™ + K1)aé,
1
<O o(h(0)) = 2h(tr)|1 + (C(N~ +67) + K1)ad, (3.46)

where in the third step we applied relation (3.42)) and item (ii) of the constraints on the
map h while the second last step follows due to condition (3.45). By application of the
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recursive relation determined by this inequality (and the circumstance that s € [tg, tx11]
was given arbitrarily) we obtain the following estimate for k < n:

FEL00) =0

—Zogup PUN O — Ph(s)i] < KON +87) + Ki)as,  (3.47)
1 s<tp

Moreover, it holds for k <n — 1 and all s € [tg, tx+1] = [kde, (k + 1)d;] that

MU (h(0)) = "R
<['w, 0(A(0)) = h(ti)h

N
+> 0 sup [PEN(R(0))i — Ph(s))i] (k1 — i)
i—1 eSs<tryn ~—

=0

where we regarded for this conclusion that L1h(s) = 2h(s).
Application of relation - 3.47)) yields for k < n —1 (see (3.45)) that

O (h(0)) = "R
<o o (R(0)) = *h(te)lL + (k+ 1) (C(N ™ + 5%) + K1)ad} (3.48)

We assume for the rest of the considerations that K; > 4C'. By taking into account that
d¢ < 1 this recursive relation implies for k£ < n:

PN (R(0)) = th()[P* < (C(NT9 +52 a5222
C 1 k(k+1)
< €1 2 2
K1( e (N 4+62)+ )a&t — 5
~~
<1
3 2
< k(k + 1) Kiad; (3.49)

By application of this we can finally determine a lower bound such that the condition on
3

n (respectively [PUN (h(0)) = h(-)|%" < aé?) is fulfilled in dependence on the remaining

variables. Due to (3.49)) the following implication holds:

3 3
(k412 Kaas? < adf = U ((0) ~ B < as?

_1
Thus, relation (3.45)) holds if k(k + 1) < %cﬁ 2. Hence, we can choose

\V)

_1
5t 4J - 17

and identify

6 1] —1)é;. (3.50)
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After regarding that n = %7 relation (3.49) and ([3.47) imply that

t

MU (h(0)) = "R ()

At At 3 2 5t 3 2
<—(—4+1)-Kjad;f = (1 + —)=-KjaA .51
<SG DK = (1+ 30 T Kiad (3:51)
as well as
2w ((0)) = 2h ()T
Ay _ 1 C _ 1
56—(C(N G+ 02)+ Kq)ad < (14 o (N~ +62))Kial. (3.52)
¢ 1
<
So far we only assumed that §; < L < 1 as well as K; > 4C. Now we assume

K?
additionally that d; < 1% where Ko > 0 shall be a sufficiently large constant such that

16 1y 1 1
W< —=—<-|A—>— .
(t_KQ:At_S)/\K12>K2 (3.53)

which is obviously possible due to the definition of A; (see (3.50))). In this case the first
of the previous two inequalities implies that

PN (R(0)) — h()[TA < KiaA? (3.54)

This concludes the main part of the estimates and we can start to discuss the current
result. First, we remark that due to the symmetry of the situation we could just as well
have chosen another ‘starting point’ h(ty/) instead of h(0) and would have obtained

PN (ht) = LA <Kqan? (3.55)
instead of (3.54]) and
1
N_El “I’ 6t2

PON (h(ty)) = 2h()|F T < (14

St

1 )K 10y (3.56)
instead of (provided that ¢t + A; < T'). In the introduction we mentioned that
we want to extend the estimates step by step to longer time spans. This is exactly the
plan we want to implement now. By application of the previously derived inequalities
it is possible to find a new sequence of time steps such that conditions corresponding
to those of items (i),(ii) and (iii) are fulfilled but for a new set of parameters. More

. . N—¢1 +§%
precisely, after replacing 6; =: d;, by Ay =: s, and a =: a; by (1 + ft)

holds that:

a =: ag it

(i) ["ON A, (h(kAY)) = h() A DA < gy e A2
(i) PUNa, (kA = 2a()[2 DD < gy A,

(i) sup [UN)(X) = h(s)lee < N72+57
0<s<T ’
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While the constraint related to item (iii) is the same as in the previous case, the adjusted
items (i) and (ii) follow directly by inequalities (3.55)) and (3.56)) applied for

tk/ == kAt = k‘(nét) = tkn

If additionally

[£1-1

~N,o,e0
X € ﬂ G (kA (k+1)A)

is fulfilled, then we end up in exactly the same initial situation as in the first case but
with respect to the adjusted values a2 and dy,. For the implementation of the estimates
we only needed that §; < —2 (Where the constraints on the constant Ky are stated in
(3.53))). Thus, if also ¢, = Ay < K—2, then we can apply the same estimates as in the first
case which finally provided inequalities (3.51]) and (3.54)) so that we obtain corresponding
relations (but, of course, for the new set of parameters this time).

More generally, if we identify a,41 := (1 + ;(St")an where a; := a,
0p,,, = max (1, (L?)Kla;ij . 1)>5tn, 5i, = 6 (3.57)
(in correspondence to definition ), then the same estimates work as long as
[5-1-1
X e ﬂ G s ety (3.58)

and the condition d;, < %2 is still fulfilled. Hence, this sequence of estimates does
not (need to) end before §;, > %2 and thereby the derived inequalities yield us upper
bounds for the deviations even for a time span larger than some constant 1% > 0 (which
in particular is independent of the starting variables a and d;). What remains is to
show that the arising upper bounds keep sufficiently small. According to the recursive
relations (i) and (ii) adjusted to the case of general n € N it follows (by regarding the
recursion for a,) that for n > 1 where §;, < f and k € {0, .. f%} —1}:

0N, (h(KS,)) - 1h<->|’“‘5t"’mi“<"““>W>

2 —€1 +52
<K1a,67. = K1ad} H 7) (3.59)

and correspondingly
|2\I,%6t7l (h(k5s.)) — 2h(-) llfétn,min((k+1)5tn,T)
_ 1
<Kiands, = K1ady, ﬁ (1+ Nq:é’i‘). (3.60)
i=1
As sitated, the recursion is in any case applicable if &, is still smaller than or eqlual

to 5. Let npae € N be maximal with this property, then the condition 63"1 < gis

fulfilled for n < nyq, according to the choice of K5 and yields us that

1 11

k
5tnmaac—k S (g) 5tnmaz S 37?2 (361)
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Moreover, since K9 > 1 and §; > N ~5 as well as 3n®V) = Ny > N 3 it follows that
the number of factors 7,4, is bounded by [In(N)]. Hence, we obtain that for the ‘large’
N which we consider the following relationship holds:

1
Nmax N*El + 55

H 1+ —F—)

x~
Il
o
w
ko
(V]
[\
E‘
=
[
—_

where we used relation (3.61)) in the second last step.

For convenience we abbreviate in the following t* := §;, and assume additionally

azx+1

that X € ﬂ N(ftfo(l L1yty- Application of the previous estimate on inequalities

; — 1 _V3
(3.59) and (3.60]) yields that there exists a further constant K3 := 2K exp (2 s \/§71)
such that for k € {0,...,[£] — 1}

PN (B(Rt*)) = LRI < e (it)? (3.62)
as well as
PN (h(kt)) = 2R3V < pegar, (3.63)

Since t* > }%7 these relations are finally suited to implement the concluding step of the
estimates. On the other hand, the recursive definition and K7 > 1 imply that
t* =0, . 1 < 1 and thus the stated inequalities yield for s € [kt*, min((k + 1)t*,T')]
where k € {0, ..., [£] — 1} that

U0 (h(0)) = R(s)h
<|W NG (A(0)) = U (A(KE)) |1 + [© 4 (B(KE)) — h(s)h
<2Kjat*
C(|Wht o(h(0)) — h(kt*)[1 + Nt ) + 2K3at*. (3.64)
<N~ €lat*

The estimate for the first addend arises by the same reasoning as utilized for inequalities

(3.33) and (3.36]) but where Y is replaced by \I’{Xt*,o(h(o)) and Z by h(kt*). To this end,
one has to regard that X € gl T N QN Ztio (et 1)t) which together with the constraint

provided by item (iii) sup | W 0( )—h(s)]eo < N™ 2739 ensures that the requirements
0<

for the argumentation leadlng to these 1nequahtles is fulfilled, with the slight difference
that for the current configurations the factor N ™ glde appearing in (3.33]) and ([3.36)
needs to be replaced by N~ (which then leads to the stated result).

Since the relation holds for arbitrary s € [kt*, min((k + 1)t*,T)], it follows inductively
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that for the relevant k, N and C' > 1

ot Cck _
<8Kat® ) " < 3Kzat™(
1=0

Hence, it follows that

clel -1
sup |UN)(h(0)) — h(s)|1 < 3Kzat*(

—_—). 3.65
OSSST S, — C _ 1 ) ( )

which due to }% < t* < 1 shows that

CK2T1 _ 1
sup ]\Il (h(0)) — h(s)1 < 3K3(ﬁ)a.
0<s<T -
Before we formulate a Corollary which records the derived results, we state the conditions
on X which we applied for the estimates again in a more transparent form. However,
we point out that this set will only be important for the formulation of the Corollary so
that (in contrast to other sets of ‘good’ initial data) the details of the definition have no
direct relevance for later proofs. We needed in particular that

(%1*1
~N,o,e0
Xe Ga, (161 (i+1)51,)
i=0
for all n € N where d;, < %2 and also for the next larger natural number, after which
this relation is no longer satisfied (previously called nqr + 1). d¢, is defined by the

recursion (3.57)) and K is the constant which we applied in the considerations. The set

§§V (751’?2) was defined in (3.39)) and by regarding the condition appearing in its definition

W B ((min [W(¥) — ()| < NTHES

0<s<T
i [Pl - )
i=1 j#i
)
6N"2T9 NTD

together with the fact that respectively 0y, ., = k,d¢, for some k, € N as well as d;, <1
if §;, <1, it is straightforward to see that for §;, <1
|'T+1“ 1 l—él-l_l

~N,o,e0 ~N,o,c0
X e ﬂ Gs (ibiy(i1)5y) = V21 X € ﬂ o (600, (i+1)81,)"

i=0 =0
Hence, a set of good initial data unifying all necessary properties can be defined as
follows for N~3 < < 1:
X e gg’,;veo C RON

1L -1

Naeo

(3.66)
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Moreover, as we mentioned previously, it holds according to the proof of Lemma [3.2.1
that for small enough o, €y > 0 thlere exist C > 0 and € > 0 such that for all N € N and
ti,tg € [O,T] where to > t1 + N~ 3:

oe0 \C —N¢
P(X € Gy N (G )" ) SONTY

More precisely, according to reasoning starting after term and leading to relation
(13.35)) the probability estimates are applicable if NV —5+1lde < N~“. However, the only
constraint on € was that ¢ > ¢ and ¢ > 0 can be chosen arbitrarily small. Hence, if
€ < %, then o > 0, the constant C' > 0 and ¢ > 0 can in principle be chosen such that
the stated upper bound for the probability is valid. Furthermore, it holds according to
the reasoning stated after definition that for a given € > 0 and for sufficiently
small o > 0 it holds that

P(X € (GF)°) < ON—5,

This implies in total that for a given ¢ > 0 and small enough parameters o, ¢y > 0 there
exist ¢ > 0 and C > 0 such that

(X € gNJeo)

>1-P(X € (47)7) = P(X € 67 1 (G377 1)°)
—-C 6 1 max (X € ng N (QN"‘“O‘ )M)C)

\/zeNo 16 <T+1 2,(i6¢,(i+1
SN% SC'N_Ne/
21— ON-ot— P(X Gy 7N (gé\,f(,g,T))C) (3.67)

where we applied that d;, = d; > N3

The stated probability estimates will become important in the proof of Theorem [3.1.1
however, now we conclude by summarizing the essential results in the subsequent Corol-
lary.
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Corollary 3.2.1. Let T,Ci,0 >0, N € N, N5 < 6 <1 as well as €, €1,a > 0 such
that N=% < N~“a. Moreover, let (\I’i\i‘;c)&tek be the N -particle flow defined in (1.3)) for

l<a< %, c= % and h : R = RN o differentiable map where the constraints

N

03, e (k) — [h(s)h < aChd?
i=1 FOtS8S ¢

N

() 3 o 2 PG (k8] = PR < aCid
i=1 FOtS8S t

(iii) sup |[UNE(X) = h(s)|oo < N™2157
0<s<T ’

(iv) Vs € [0,T] : £ h(s) = 2h(s)

are fulfilled for a configuration X € Qéj’;’eo (defined in (3.66) ) and all k € {0, ..., [%J —1}.
If 0 > 0 is chosen small enough, then there exist Ny € N and Co > 0 such that for all
N > Ny and all a > 0 which fulfill the introduced conditions, the stated constraints on
the map h imply that

sup W5 (h(0) = h(s)|s < Caa. (3.68)

Regarding the assumptions of the Corollary, it is important to note that we only know
that configurations X € gg;;’fo are typical if ¢ > 0 and ¢y > 0 are sufficiently small.
This is discussed in more detail previous to estimate . However, for the single
application of the Corollary (which will be in the proof of Theorem we will only
consider the case a = N~7 (for small o > 0) and thus it is obvious that for example
the choice ¢y = 20, €1 = o fulfills this demand as well as the constraint N~ < N~ €gqg
stated in the assumptions of the Corollary.

If the part previous to the Corollary has been skipped, then we point out to the reader
that the proof starts shortly before relation and continue now with further pre-
liminaries for the proof of Theorem [3.1.1

The analysis concerning the dynamical properties is now concluded and we continue by
implementing a lemma which improves our capabilities to make probability estimates
for the interacting particles.

Our final aim is to show that increasing the cut-off parameter ¢ (which corresponds
to ‘shrinking’ the cut-off diameter for fixed N € N) will barely change the trajectories
of the N-particle dynamics if ¢ > % Heuristically one would expect such a property
because for a system of particles moving independently from each other it is easy to
show that with high probability only a tiny fraction of them gets close enough such
that the cut-off ‘comes into play’ (provided that its size is very small). However, it is a
priori unclear if this is also true for a system of N interacting particles. If the particles
tend to run into the (regularized) singularity systematically, then the deviation between
dynamics with small but different-sized cut-offs could be significant. In the following
we want to show that under certain assumptions the particles of the systems considered
by us behave ‘good’ (meaning that there is typically not an unexpectedly large number
of them coming very close to each other). Our first step will be to show that this is
indeed true for the previously considered system where the cut-off diameter is of order
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N~3. Since the particles of the microscopic system interact with each other, the initial
product structure of the probability density FtN’C gets lost as time passes. However, the
next lemma will provide us a tool which enables us to determine suitable upper bounds
for the probability of arbitrary (Borel-measurable) events in this system also at later
times.

Before starting with the lemma we have to introduce a further set of ‘good’ initial data:

Gog = {X RN |3Y € G NGyt |1X = Ve < N2+ (3.69)

Vie{l,..N}:Y; e £}

Because of its importance for the subsequent Lemma we recall the definition of the set
C(]SV which was introduced previous to Theorem

£§V::{YGR6]VZI,ZZGR6 (n%ax}]Z Y| < N3 AZ)# 7o)
c{1,2

|ko(Z1) — ko(Z2)]
|21 — Z

(3.70)

< NgkO(Zl)}

where 6 > 0 and N € N.

Lemma 3.2.2. Let N €N, T > 0 and ko € L (R®) be a probability density fulfilling the
assumptions of Theorem . Moreover, let (\Iiﬁi’,c)s’teR be the N -particle flow defined
in for 1l < a < % and ¢ = % as well as k;N’C = ko(cpé\ff(-)) where (@gt’c>s7te]1§
1s the effective flow defined in . If 0 > 0 is sufficiently small, then there exist
C1 > 0, Ny € N such that for all N € N where N > No, M € {1,..,N}, t € [0,T] and
S =& xRWN-M) € R6N yhere S’ C RM shall be Borel-measurable the following holds:

P(X eR™N: X € G AU (X) €S)

_ N,c 6N
_/RGN1\pivoc(g37T)(X)1S/(X1,...,XM)Ft (X)d*N x

gC{”/ 1e(Xy, ... X Hkt X;)d*™M x
R6M

Proof. The intention for restricting the initial data to Qév /7 might seem strange at the
moment but will resolve itself during the proof of Theorem Since the cut-off
parameter is fixed to ¢ = %, we will once again omit to make the related indices explicit
in the notation during the proof. The applied estimates and statements of the proof
only need to be fulfilled if N € N is large enough and ¢ > 0 sufficiently small which
will be important on several occasions. For convenience and for avoiding redundant
formulations we will often omit to mention this explicitly.

Now let t € [0,7], M € Nand S = & x RSWN-M) C RN where &’ C RM shall
be Borel-measurable. Moreover, let X € Wl (gév /7). then by definition there exists

Y eginge (0. Where [T (X) = V] < N5+ and Y; € LY foralli € {1,...,N}.
It follows due to Lemma that for large enough N € N and Z € RV the subsequent
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implication holds:
1Z — X|ow < N72FF
= (17 = U20(Y)loo €12 = Xoo + [X = U5 (Y)]oo
SNTEET L O(NTERE 4+ ] (X) - Vo)
< CN2tT), (3.71)

If we keep the assumption |Z — X[ < N _%”L%TU, then a further application of Lemma
implies for the relevant IV, o that:

U0:4(2) = Yoo
SC(NT2FE ]2 = U(V)|oo) S ONT2FF < N73

After regarding additionally that Y; € £Y Vi € {1,..., N} we can apply the definition of
LY in the third step (see (3.1))) to obtain that in this case:

F¥(X)

<e %|\pg)\{t(x)—\yg{t(2)|1FtN(Z)
SeN% max(NfU,C|X—Z|1)FtN(Z) (372)

In the second last step we used that Hfil(l +16;]) < el®l for § € RN and in the last
step that according to Lemma [3.2.1

[0 (X) = U Z)1 < Cmax (N77,|X — Z1)
where we regarded that Y € Q{V 20N gév (g ) 88 well as our previous estimates which yield:

max [N (X)-Y|<CON"2TT
Xe{x,z}

Now we can apply these estimates for the first crucial step of the proof. To his end, we

abbreviate ry := N_%‘F%TU, XM= (X1,...,Xn) aswell as p(B(0)) := [ze 1, (0)(Y)dY
where B,.(Y) :={Y' € R®: |Y' — Y| < r}. Then it holds that

/ lsl(XM)FtN(X)d6NX
v (G5)

/ 1 (XM)</ Mﬁl (Z')d6MZ>d6NX
- \Ilévo(gN’a) s R6M /L(BTN(O))M Bry (X3)\ <4

3,T =1
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SeN% max(N—° ,CMry) / 1g (XM)
N (Ge)

(/ F (Zl,.. ZM,XM+1,.. XN
1(Bry (0)M

where we applied estimates (3.72)) and regarded that due to the appearing indicator
functions it holds that

H 1p,, (x, )(Zi)dGMZ) dNX. (3.73)

eN% max(N =7, C|X (21, Za Xns 41, XN) 1) < eN% max(N~ ,CMry)

We will drop this factor for the subsequent steps and reintroduce it in the end. Moreover,

for convenience we abbreviate in the first line Z := (Z1,..., Zar, Xar41, .., X) and
‘rearrange’ the previous integral as follows:
/ 15/(XM)/ (2) H1B (x)(Z:)dM ZdN X
TN (GNe) R (B (0))M ’”N
M
_ = Z N7 =\ 6N
_/RGM (/RGN Ly o) (X1 Xt Zargn, oo Zn) (Z)Zl—[llBrN(Xi)(Zl)d Z)
1o (XM) 6
LSRR )M (X X ) 3.74
w8, o7 7

where we recall the abbreviation XM = (Xi,..., Xjs) to emphasize why the factor
15/(X™) can be ‘pulled out’ of the integral.

We can focus on the inner integral for the further considerations. To visualize the ba-
sic ideas for estimating this integral, we first discuss heuristically the relevant steps by
application of two sketches. The rigorous estimates where the details are stated will be
implemented afterwards.

The initial situation is sketched in figure (3.1). This drawing shows one of the trajec-
tories \Il%(‘lié\jt(X )) = ¥N(X) whose initial particle positions [\I'é\ft(X )]; are distributed
according to the N-fold product of kg restricted to the ‘good’ set Qé\f i (respectively
\I/é\ft(X ) € gé\f /7). The integration variables for the inner integral are indicated
by Z = (Z1, ..., Zpnry Xars1, .-, Xn) but due to the appearing indicator functions we only
have to take configurations Z € RS into account where | X; — Z;| < ry fori € {1,..., M}
which is sketched in by the measure lines around the particle positions on the left
provided with ry (for the special case M = 2). Hence, each relevant configuration of
the integration set can be identified with a trajectory \111\2(7) which at time ¢ is located
at Z where |X; — Z;| < ry for i € {1,...,M}. In the following we want to derive con-
straints on the initial data \I/é\ft(7) of such trajectories which are easy to handle. The
drawing shows two further trajectories \IIN o(Y) and @N o(Y") which will be crucial for this

purpose. More precisely, \IJOt( ) € QS No implies that there exists ¥ € Q 7N Q
such that \Y—\Ilé\ft(X)|oo <N 2T% and Vi € {1,..,N}:Y; e LN, Accordmg to Corol—
lary and Lemma not only \IIN 0(Y) and CIJN 1(Y) keep close on the whole time
span but all the ‘good’ properties which are connected with initial data Q 7N Q
can in large parts be ‘transferred’ to those N-particle trajectories which are at some

point in time s € [0,7] ‘close’ (with respect to | - |s) to \IJ%(Y) For the moment the
most crucial property is that the particles related to such trajectories move up to a
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time

povsition
UN(X): e—e
(I)%(Y): ......
TN (Y): - -

Figure 3.1: Introduction to initial situation

small deviation like ‘mean-field particles’. Thus, like implied in the first sketch the rela-
tion |Y — \Ilé\jt(X)]OO < N2t% directly yields that also W™ (X) and @%(Y) are ‘close’
on [0,7] (and thereby in particular the configurations ®/,(Y) and X). Moreover, the
measure lines around the initial data Y shall describe the small area where the special
Lipschitz condition arising by Y; € £ is fulfilled. The reason why this property is
important will become clear later.

By means of the second sketch we can now start with the essential heuristic consid-
erations. Let to this end be \II%(7) one of the trajectories ‘related to’ the relevant
configurations of the integration set. Then, as mentioned before, we want to determine
a suitable condition on the initial data \IJ%(Z). Simply ‘translating’ the current condi-
tion max;e(1, .. ary |Z; — X;| <7y to the initial time is not very helpful since the arising
constraint is hard to evaluate without further reasoning. By application of the following
sketch (where we dropped the trajectories belonging to the ‘good’ initial data Y for a
clearer presentation) we will discuss a more promising approach. According to the as-
sumptions, the distance (with respect to |- |~ ) between the relevant Z and X is at most
of order 7 and by their closeness to ‘I/% (Y) resp. @fYO(Y) it follows due to our previous
considerations that these configurations evolve more or less like ‘mean-field particles’
when they are ‘driven’ by the (regularized) N-particle flow (\I!fq\;)meR. Hence, the dis-
tance between \Ifé\{t (Z) and <I>£77t(X ) is bounded by Cry for s € [0,t]. This is sketched in
the drawing by the newly introduced measure/border lines which describe the in past
direction slowly growing upper bounds for the possible deviations. Consequently, it fol-
lows that for the considered integration set only configurations Z are relevant where the
related trajectories \IJ{\Q(?) start at initial positions which fulfill

max_J((Xi) — [¥04(Z)]i] < Orw. (3.75)
ie{1,...,N}

On the one hand, this implies that the distance between [\I’é\{t (Z)]; and the i.i.d. positions
[\Ilé\ft(X)]i is also bounded by Cry for i € {1,..., M}. Hence, if Z is one of the relevant
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-+

time

position

Figure 3.2: Sketch of relevant trajectories

configurations, then it holds that
ko([¥34(2))i) = ko([W3 (X)) for i € {1,..., M}

where we regarded the ‘local Lipschitz property’ of kg which holds in the neighborhood
of [\I/évt(X)]z However, at least equally important, for each 7 € {1, ..., M} the constraint
on the initial position [\Il(])\ft (Z)]; provided by only depends on X; and not on the
remaining configuration which is crucial for the estimates.

We will finally start to implement these preliminary consideration in a more rigorous
way. The basic proceeding will be in line with the presented steps though this might
seem a bit hidden due to the different notation which arises by substitutions of the in-
tegration variables.

Now we continue with the estimates for the inner integral of :

M
/RGN 1\1/7{\70((_;;\’&?)()(17 s X0ty Zrits o ZN)FYN(Z) H 1BTN(X,-)(Z)CZ6N7
T i=1

N

=/ lq;ivo(géVvaf)(Xlw-wXMa[\I’i\fo(z)]M—i-la--w[‘IJ%(Z)]N) I *o(2))
RON B, j=M+1
M
T (1 o (52 0Nk0(2)) Y 2 (3.76)
=1
This time we abbreviate
Z = (X1, oo, Xats [U00(2) 01 oo [UD0(2)] ). (3.77)

If Z \I%(gé\’;), then by definition of gévj? there exists Y € gﬁ;’ N gév(’gT) where
Y — \Ifé\ft(g)]oo < N2t and Y € LY for all i € {1,...,N}. Hence, Lemma
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implies that for the relevant values for N, o
(O (Y) ~ Z)oo < ONTZFE

Applying this time that Y € g{v /7 we obtain by Corollary that under these condi-
tions also

1BN(Y) = Z]oo < [N (V) = U (V) [oo + [UD(Y) = Z]oo < ON75FF
which after recalling the definition of Z (see (3.77)) implies in particular that
oMy (Yi) — Xi| < ON"3+F fori € {1,.., M}. (3.78)
If H\IJ%(Z)], - Xi|<rny= N~z fori € {1,..., M}, then it holds in turn that

U0(2) = U)o < 195(2) = Zloo +1Z = U5(Y) s

< max |[ON(2)); - X;| + CN" 2t < ON"z+°
ie{l,....M} ’

where for this conclusion we applied that Z = (Xl, ooy X, [EN, 0(D)r+1s s [\I/%(Z)]N)

After regarding once again that Y € Q 7N Q , the last estimates imply due to
Lemma [2.1.2] and Lemma [3.2.1] that for € {1,.. }
o (Xi) — Zil
<lo(Xi) — @bt (#ho(Ya) | + (53T (Y))]i — [0 (P00 (2)]il
=Y,
_l40
<CIXi — @rp(Y)] + C(N7272 + [0 (Y) — ¥7%(2)]0)
<CON—2+7, (3.79)

In total we obtain the subsequent implication for i € {1,..., M}, Z € N (géV ;) and a
suitable constant C' > 0:

0(2)]s — Xil <= |@ps(Xs) — Zi| < Cry

respectively

HlBTN(X )< H Bery (90 (X )( i)

Moreover, due to relation | and Lemma it holds that
1 30
b (Xi) — Vil < C|X; — ol (Yi)| < ON—3+F

for i € {1,..., M} which together with |cp(])\7ft(Xi) — Z;| < Cry implies for the relevant

N,o that |Y; — Z;| < N~3. Since additionally V; € LY for all i € {1,..., N}, it follows
that the special ‘Lipschitz property’ related to £ (see (3 ) is applicable under these
constraints on Z; and ¢ t(X ). This yields for the relevant N, o that in this case

ko(Zi) <ko(d+(X4)) + [ko(00+(Xi)) — ko(Zs)]
<k (X3) + N2 ko (00 (Xi) 0 (Xi) — Zi| < 2k (X3).
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Eventually, we can merge these considerations and obtain (once again for the relevant
N, o) that term (3.76)) is bounded by

N

Lo Loy (v Xar (2 a1, o (935 2)) T wez)
M
6N
T (e, o, 050 (Z0R0(20)) 2
=1

M
. . 6 M
= /]RGM E (IBCTN (@gt(xi))(ZZ)th(X’))d (Zl, ) ZM)

SQM BCT‘N M Hkt z

which completes the considerations for the inner integral.
Finally, it remains to ‘insert’ these estimates in term (3.74) and to reintroduce the

previously dropped prefactor. After recalling that we abbreviated ry := N ~3+% and
XM .= (Xy,..., Xpr) we can conclude the proof as follows:

/ 15( X1, .., Xan) EN (X)dN X
MoGar)

eN% max(N~,CMry) .
H(BTN(O))M /RGM (2'u (Bery (0 Hkt )1,5 XX

<cM 1s/(X1, ..., Xar) Hk:t X;)dM x

R6M

O

We will apply the previous lemma to do probability estimates re%arding the ‘collision
numbers’ for the microscopic system with a cut-off size of order N~ 3. More precisely, we
want to show that the number of particle pairs having a collision related to a particular
‘collision class’ does typically not exceed a certain value. It will turn out to be simpler
to divide [0,7] in many short intervals and to argue that an adjusted version of the
previous statement is true for each of them. The reason for this lies in the property that
for short times we can apply the mean-field dynamics to approximate the trajectories
of the interacting particles. As long as the related trajectories are sufficiently close, a
certain ‘collision’ between two ‘mean-field particles’ corresponds to a similar collision in
the system of interacting particles. Thus, in this case it suffices to count the number
of ‘mean-field particle collisions’ belonging to a certain ‘collision class’ to receive the
corresponding number for the microscopic system. The great technical advantage of
this approach arises by the fact that the ‘mean-field particles’ move independently from
each other. Of course, their initial positions for each of these intervals (except for the
first at time ¢t = 0) are correlated since they start at the position where the interacting
particles are respectively located. However, our previously established lemma (very
broadly speaking) tells us that still ‘enough independence’ is left to get rid of this issue.
Before starting with the lemma we have to introduce some definitions. First, we define
a set which contains tuples related to ‘mean field particle’ pairs which have a collision
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characterized by a certain ‘collision class’ with each other.
Let X € RN, r v € Ry U {oco} and t1,ts € [0,7], then we identify

MY (X) = {(6,5) € {1,.., N} i #£ j A X; € MNR2)(X;)) (3.80)

where M7y (tl’tQ)(Xi) are the ‘collision classes’ defined in (2.23) for the mean-field dy-
namics w1th cut-off parameter ¢ := %

The second set is the corresponding set for the ‘real’ particles (once again for ¢ := %)

RV (X)) = {(i,§) € {1,... N} ri # j A (Bt € [ta,ta] -
oo, [ \Ifiﬁf(X)]j — OOl = g (X)) — (g (X)L <7 A
[Py (X)) = PUg (0L < v) ). (3.81)

Lemma 3.2.3. Let N € N and ko € L'(R®) be a probability density fulfilling the as-
sumptions of Theorem . Moreover, let t1,ty € [0,T] where ty —t; > N~3 and
r,v > 0 where N=% <r <min(1,v). If 0 > 0 is small enough, then there exist C; > 0

and Ng € N such that for all N > No, M € N as well as r,v,t1 and to fulfilling the
previously mentioned constraints the following holds:

P(X € ROV L [RYM2)(X)] 2 Mty — 1) A X € 637

CiN*39r2 min(v, 1)3
M

SN%(tg —t1)< (min(v,l)—l—N%T)

N~——~"

Proof. Once again the applied estimates and statements of the proof only need to hold
if N € N is large enough and ¢ > 0 sufficiently small. Hence, for convenience and for
avoiding redundant formulations we will partly omit to mention this explicitly. Since
the cut-off parameter of the effective and the microscopic dynamics is once again fixed
to ¢ := % (regarding this recall that Rf«v {,(tl’tQ) was defined for the N-particle dynamics
where the parameter ¢ takes this value), the related index will not appear in the notation.
We start by implementing the idea described previous to the lemma which is dividing
the interval [¢1, t2] in many shorter intervals (of length A > 0) and to prove an adjusted
statement for each of them. ]

Let M,N € N, r,vo > 0 where N5 < r < min(l,v) and t¢1,t2 € [0,7] such that
to —t1 > N~5 as well as 0 < A < t9 — t1 then it holds that

[RE(X)] = Mta — 1)

to —t
=3k e {0,...,[ 2A -1}

Mty —1t MA
RGBS G0N @ (x> M)

> [%1 z— (3.82)

where we regarded that according to definition (3.81]) it holds that

R (W (X)) = R 72757 (),
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Moreover, let X € géVT” (see (3.69)) then there exists Y € g 7N Q OT) such that

Y — X|oo < N A According to Lemma 1} Corollary and Lemma m

(applied in this order on the three addends appearing in the second line) this yields for
s € [0,t] that (at least for the relevant values of o and N)

(W 3(X) = @25(X) oo
S"I’é\fo(X) - ‘I’?jo(y)’oo + “I’é\fo(y) - ‘I)?,fo(yﬂoo + \‘I)é\jo(y) - ‘I’?jo(X)\oo
<ON" % + ON"2t5 f ON"2H T, (3.83)

Thus, the statement of 1the Lemma is obviously only interesting for values of r which are
smaller than order N~ 27 since otherwise we have sufficient ‘control’ on the interacting
particles by their ‘mean-field particle partners’. More precisely, for larger values of r
we only have to ‘count’ the respective collisions of their related ‘mean-field particles’
and show that this number typically remains sufficiently small (which we have basically
already done for example during the probability estimates for ) Hence, we focus
on the distinctly more interesting choices for » > 0 where the information about the
positions of the ‘real’ particles provided by their related ‘mean-field particles’ is in gen-
eral not sufficient anymore to predict the order of their minimal spatial inter-particle
distance.

Again we distinguish two cases: On the one hand we consider the case that there indeed
exists a particle coming closer than » < N~ 349 t0 at least [N39] particles. And in the
second case we assume that all particles have at most |N37 ] such ‘collision partners’
but there exists a set S C {1,..., N} containing at least [(22)(;xss)] = {N73;MA1

AN3o
different pairs of particles (i,7) having a collision with each other (respectively where

(i,7) € RkA (kDA (\IJg’Sl (X))) but with no further particle of the pairs belonging to S
(which we will shortly state more formally).

Analogous to the reasoning applied for estimating the probability of ‘event’ one
easily sees that assumption indeed implies that one of these two options must
occur. The choice N3° seems to be random but on the one hand we know by def-
inition of GI¥ C <U§V: By ) that maxieqrny Yy 1 w w(Y;) < N

277
(see (2.73)) and on the other hand estimates 3) yield for sufﬁmently large N and
Y; € (Mg\,—lw ()¢ that

2

1,30 1
ROk — MO (X)]] = ['efo (V) — 'ofo (V)| - CN72F 7 > N727,

In total this implies that for X € g3 7, sufficiently large N and r < N —gto

30
ZE{I{{a)fN}Zl{ZeW , min |12 D)1y 2 (X) <N

and thus the first case of the considered two options can not occur. Also smaller bounds
than N3° would work in the current situation since the length of the time interval A will
be chosen very short. But to avoid further estimates, we are content with the current
one.

Consequently, we see that for X € Q3T, the relevant NV and r < N —3+0 assumption
2|) implies that the remaining of the previously described two options must be fulfilled
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which (stated a bit more formally) is

to — 1
er{o,...,(QA 111}

N
(35 < {1, NP\ U A}
n=1
—30
i) 181> (T
(i) §CRYGFESEDA (WY (X))

(ii) (i1, 1), (32, j2) € § = {1, ju} 0 {iz. ja} = 0) (3.84)

Like described in the preliminary considerations we will apply the mean-field dynamics
to show that the probability of such an event is very small. For a simpler notation we

‘adjust’ the definition of the sets Mm(t1 t2)(Y) (see (2.23))) to the current situation:

Z e MMttt (yy C RO
SZ+Y N dre [tl,tg] :

tglslgt ‘ <Ps+tt(Z) _190<]s\<7ktt( )| = ‘ 901-+tt( ) — 1<Piv+t,t<Y)‘ <rA

|2<P7+t,t(Z) - Zﬁpﬁrt,t(y)‘ v

Consequently, everything stays the same except for the ‘time shift’ of the dynamics given
by the new parameter ¢ > 0. This modification is only relevant for the present proof.

For short times the mean-field trajectories provide a very good approximation for the
trajectories of the interacting particles. Thus, if (i,7) € Rm(kA’(kH)A)(\IJﬁO(X)), then

typically [N\ o(X)]; € My AN (X)) s fulfilled if we choose A

sufficiently small. To avoid such elongated expressions we abbreviate for the rest
th ==t + kA.

By application of these considerations we split assumption (3.84)) further. More precisely,

(3.84]) implies that:
t

ake{o,...,ﬂgtlw—l};

N
(35 < {1 NP\ U )}

N73MA

() 18] = [————1
(i) V(i.5) €S : (B o(X)]; € My ™ (0] 4 (X))
(if) (i1,51), (12, j2) € S = {ir, 1} N {i, o} = @)) v (3.85)
(sup [relo(0) = el (8 (0 > 3
t’<s<t;€_,'_1

sup P2 (X) — 200, (B (X))l > 7) (3.86)
t’<s<t’

k+1
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First, we determine a suitably short choice for the length A > 0 of the time interval
so that the assumptions described in the last two lines of can not occur for the
values of r and v which are relevant to us.

To this end, we recall that X € QS 7 yields the existence of Y € gl T N Q2 {0.7)

Y — X|ow < N™ 2% and it holds for s € [t thin] = [t1 + kAt 4 (K + 1)A] that

where

[T0(Y) = 2y () 5(Y))lss

<[TL(Y) = @20(Y)loo + [@20(Y) — @5 (T2 o(Y))]os
_1l,0 S—

<ON“35 4 [0 (V) = W) ()|t~

<CN~-2+%

where we used Corollary (in the second and the third step) as well as Lemma
(in the second step).

By taking into account that supy<<r \\IISO(X) - ‘I’go(yﬂoo < ON—z+7¥ (which holds
due to Lemma E this easily implies that

() = 8, (82 (X))

<[T(X) = U (Y)oo + [0 (Y) = % (U] 5(Y)) oo
+|q)st’( NO(Y)) (I)st/ (\I]iZ,O(X)”oo

<CN—2+7%

where in the last step we applied once again Lemma to estimate the term in the
third line.

This basically already shows that the event related to the last line of can not
occur for the values of v which are relevant to us i%ince fortunately we do not have to
care about cases where v is smaller than order N~ 277, We will explain the reasons for
this in more detail shortly. However, first we notice tlhat by the second order nature of
the dynamics the last inequality applied for A := N 73 yields the following upper bound
for the spatial distance between these trajectories:

N
sup \I‘I’s,o( ) — q’st1+m(‘1’t1+m 0(X)) oo
t+kA<s<ti1+(k+1)A

<CN2tTA<CON¢+7

Since the assumptions of the lemma claim r > N _%, this implies that the event

1x5N N
sSup | \Ils St (X) - q)s,tl—i-kA(\I}tl—i-k‘A,tl (X)) |OO 2
t1+kA<s<t1+(k+1)A

N3

of constraint can not occur for A = N3 if ¢ > 0 is chosen sufficiently small
and N € N large enough (which we can assume without restriction). For eventually
justifying that we indeed do not have to care for values v < N =379 one must simply
recall that Y € Q{V; c (Bév’a)c (see (2.85)) which yields that for all i # j

A N
Y ¢ MGN’%
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Together with the circumstance that we only consider choices of r where r < N —3to
this tells us that the relative velocity between ‘mean-field particles’ related to such an
initial configuration Y is at least of order N~ 18 at times when their spatial distance
falls below 6N "2+, Once again we recall that it holds according to Lemma and

Corollary that

sup_[W(X) = 20(Y)]oo

0<s<T

< sup “I’i\,[o(X) - ‘I’é\,[o(Y)‘oo + sup "I’é\jo(y) - ‘I)é\jo(y)’oo
0<s<T 0<s<T

<CN—32+7%

Consequently, it is straightforward to see that a corresponding condition ‘transfers’ on
the relative velocity of the ‘real’ particles related to initial configurations X. However,
this implies that Riv ,(0T) (X) is empty if v > 0 is of smaller order than N —1% (and in
particular for v < N _%4"7) ifr<N _%Jr”. Hence, for such choices of r, v the statement
of the Lemma is trivially fulfilled. X

It remains to show that on a time interval of length N3 the number of considered
‘collisions’ between the auxiliary particles which we apply to approximate the trajec-
tories of the interacting particles does not exceed a certain value with sufficiently high
probability. )

To this end, we identify A := N3 for the rest of the proof and continue by imple-
menting step by step the probability estimates of the related assumption described in
(13.86)):

to — 1y

3k € {0,....[ 1-1} (3.87)

38 C {1, ... NP\ [ J{(n,n)} -

) N73°MA
() IS = [~
N,(0,4),,

(it) V(i,7) €S [ o(X)]i € My, 5, F([7 (X))
(ili) (41,71), (G2, j2) € S = {in, j1} N {ia, jo} =0 (3.88)

These conditions are very strongly reminiscent of (3.32)).

A rough upper bound for the number of possibilities choosing such a set consisting of
2

|S| ‘disjoint’ pairs is given by (ﬁé') < (3%7)"9'. Due to the symmetry of the distribution

(and item (iii)) it suffices to implement the probability estimates for the special choice

N3 MA N73MA

Sp = {(1a2)7(374)7"'7(2( 3 —| _LQ[ R —‘)}

and to multiply the result with the combinatorial factor.
More precisely, we identify for k € {0, ..., [2252] — 1}

o .. N,(0,A),t
Dy = {X € GYF AV, 5) € Sar < (WY o(X)]s € Myt ((wlf (X))} (3.89)
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and by merging the previous considerations it follows that

]P(Z e RN RN (Z)| > M(t, —t1) N Z € Géﬁf’)

to—1t
{ QA 1]71

MA
< X P(zeglf ARNSCDNWY (2)) 2 12)
ta—tio o N? \isy|
<C 3—— max P(Z € Dy). 3.90
A 1 IS ke{0,....[ 25111} ( ) (3.90)

It remains to determine a suitable upper bound for the probability of the ‘events’ Dy:

P(X € Dy)

= 1 ko(X;)dN X
JIREXER

= 1 , N (X)) EN(X)d®N X
/RﬁN 126037 VsV (2))eny s () <Z>m}( o, OV E (X)

= 1 , X1, .., X X)dNx

[pg LG {Z6R5(2|5M\);V(i,j)ESM:ZjEMé\;:é?;A)’tk(Zi)}( b 2Asu1) F ( )

' 00,

If additionally N € N is large enough and ¢ > 0 sufficiently small, then we can apply
Lemma [3.2.2] and obtain that the previous term is bounded by

2|8
S N 6(2|S
ClSul 1 Ve (0.4 X) [T # (xi)d®ishx
R6CISMD)  {ZERCCISMD V(i j)eSnr:Z;€ My, 5, k(Z)} Pl

—clSmIp(x e REASHD : v(i j) € Sy« X; € My (X,))

r,2v

Sl

<CISul (7“2 min(v, 1)3(min(v, 1A + r)) (3.91)

where the last step follows by Lemma [2.1.4] )

30
After recalling that |SM| = (NiMAW as well as A = N73 we can finally apply these
estimates on term ) to conclude the proof:

mw:wwm>M<f2-wegéw>

ty — 1
A

[Sasl M . [Sasl
<CT 1(3‘8 |)S <C|5 ‘(7“ min(v, 1) (mm(v,l)A—i—r))S )

CN?*t39r2 min(v, 1)3
M

S(N%(tg—hﬂ( (min(v, 1)+N%T)>|SM|.

O]

After all these preliminary considerations we are finally able to prove Theorem [3.1.1
which states that trajectories which have the same initial data but belong to systems
with different-sized cut-offs, N~ and N~¢2, typically remain close with respect to |- |0
ifcg > = % We remark that in this proof it will be for the first time necessary to
denote the cut-off parameter explicitly for objects or maps (like f¥ or g¥) which depend
on it.
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3.2.2 Implementation of the proof

Let 0,e > 0 be given. We recall that according to the statement of the theorem we have
to find a constant C; > 0 and a parameter ¢’ > 0 such that

P(X e RV : sup [0 (X) — w2 (X)|o > N7279)
0<s<T

<ONTIT 4 P(X € RN 1 3i e {1,..,N}: X; ¢ £N) (3.92)

holds for all N € N. If we are able to show that there exists ¢* > 0 such that for any
o« € (0,0%] it is possible to find a constant C; > 0 where VN € N

P(X e RV : sup |00 (X) — 02 (X)|o > N7270%)
0<s<T

<SCYN“5H 4+ P(X € RV : Jie {1,..,N}: X; ¢ L)), (3.93)

then the statement of the theorem is proven: If the given ¢ is smaller than or equal to
o*, one just can identify ¢’ := o and the desired statement holds. If, on the other
hand, ¢ > o*, then the choice o/ = o* is possible which can be seen as follows: Under
the condition that the inequality related to holds for the choice o, = ¢*, then
it holds a fortiori if the o* appearing in the first line of the inequality is replaced by o
where ¢ > ¢* while the ¢* in second line is kept fixed.

Hence, in the following we restrict ourselves to showing that the statement belonging to
indeed holds if ¢ = o, > 0 is chosen small enough. Furthermore, like in previous
proofs, applied estimates only need to hold for large enough N € N in order that the
statement of the theorem is fulfilled. Thus, for several estimates and considerations we
will assume that N € N is chosen ‘large’ and o > 0 ‘small’. However, for convenience
and to avoid redundant formulations we often omit to mention this explicitly (or just
call them the ‘relevant values’).

Let cg > ¢ = % Now we identify for the last time a ‘good’ set which unifies all the
properties we will need for the proof:

X e Gy C ROV
sX e gxff‘; AVie{l,.,N}:X; el (3.94)

)

Sets of the form in ¢ were defined in (3.66). On the other hand, for all estimates which

are explicitly implemented in the current proof (and which are not a consequence of

a previous result) we basically only need that the considered configurations belong to
N,o N,o N,o,20 } e oy .

gLT N QQ’(OI) D QN_ i, and thus the details of definition (3.66|) are not important for

comprehending the prdof.

Moreover, we recall that we omitted to make the dependence of the sets Qév ' ) on the

ag

t1,t2
constant Cy > 0 appearing in its definition (see the assumptions of Lemma|3.2.1]) explicit
to avoid an even more cluttered notation. For the current proof we assume that Cj is

chosen sufficiently large and ¢ > 0 small enough such that the probability estimate

N,o N,o _N¢
P(X € G 7N (gl(m))c) <CNN

which determines the essential statement of Lemma indeed holds for all N € N
and appropriate ¢ > 0. Furthermore, we showed previously (see (3.67))) that for a given
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€ > 0 and small enough ¢ > 0 it holds that
IP(X c gNiriQJ)
NT3,T
>1— ONT37 —P(X € G 0 (9076.5)) - (3.95)

-~

<CN-N¢

Hence, it follows that in this case
P(X € Gp7)
>1—CN 9" —P(X RV :3ie {1,.,N}: X; ¢ £Y).

Comparing the derived lower bound for P(X € QJTV 7Y with (3.93)) yields that it suffices
to show that for typical configurations belonging to QIZY '? the desired statement holds
(for the relevant values of o and N) since

P(X € RO sup W] (X) = U (Xl > N727°)

0<s<T

<P(X € G A s [N () — O (X)|oo > N72H) £ P(X € (62)°). (3.96)

For the applied approach it will be necessary to control also the deviations with respect
to | - |1 so that we actually show a stronger statement than claimed in the theorem.
Moreover, it will turn out to be helpful to distinguish between configurations where
collisions of a certain impact occur and such where this is not the case. For a clear
presentation we introduce stopping times like in the proof of Theorem where the
first two of them shall control the deviations

T (X) i=sup{t € [0,7): sup [WN(X) — Wi (X)|w < NT3T37Y,

)

0<s<t
No N,c1 NC2
TN (X) = sup{t € (0.7]: sup W (X) — WO < N7 z} (3.97)
s<t

and the third the upper bound for the impact of single collisions
Vo(x) = sup{t €1[0,7]: (V( J) € ./\/l (0 T) (X) Vi e {1,2}:

col

[ m—w%MWM@<N%%ﬂ. (3.98)

We note that the definition the set M, N (t1.t2) (X) is given in (3.80]). Moreover, we identify:
N, N, N,
No(X) = mln(Tdevgl(X), devg2(X) 7 7(X)).

» "col

If we are able to show that for small enough values1 of 0 > 0 and large enough N
P(X € QT ATN9(X) < T) is smaller than order N~ 9, then according to our previous
reasoning the statement of the theorem follows.
Obviously, it holds that
N I(X)<T
N7
:>Tdev01 (X ) < 7—col

N,o
Tdev Q(X) < Tcol

(X)) Vv (3.99)
(X)) Vv (3.100)
(TN’“(X) < min (107, (X), T4, (X)) A TN (X) < T). (3.101)

col col
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Thus, instead of proving directly that configurations where 7V9(X) < T are untypical
we will subsequently derive upper bounds for the probability of the three events given
in the last implication (starting with and concluding with (3.101).

If we abbreviate for the moment

N(t, X) = sup |\1:N01(X)—x115602(X)|00

0<s<t
and
N o Ncl o N,Cl X
W (1, X) = ey / N QU2 (X0 — (W25 (X)), s,

then one can see for example by the following relation that event (3.99)) is Borel mea-
surable:

N,
{X € R6N Tdevgl (X) < 7-col (X)}
U {(X eRW:a¥(t,X) > N72+57 A bV(t,X) < N2737)

t€[0,T)
t€QN(0,T)
While the ‘D’-relation between second and last line is obvious, the ‘C’-relation can be

seen as follows: If X € ROV fulfills the conditions of the set in the second line for
some t € [0,T), then it follows by monotony of a” (-, X) and continuity of " (-, X) that
N, X) and b™V (¢, X) fulfill the desired claims as well for some sufficiently small ¢/ > ¢
where t' € QN [0,7T). For the event ‘TéVUUQ (X) < Tcol 7(X)* an analogous reasoning works
while for the event related to one should take into account that a configuration
fulfills if and only if it fulﬁlls TCJZZ’U(X ) < T but none of the already discussed
constraints related to or .
Large parts of the subsequent estimates are very similar to the reasoning applied in
previous proof. It is helpful for the comprehension of the different steps to keep in mind

that for times ¢ before Tfl\e[fl(X ) is ‘triggered’

N xy — N (x) < N-3te 3.102
l§§§}| LX) = @R (X)] < (3.102)

holds for the relevant N and ¢ which can be seen by application of Corollary and
the definition of the stopping time. Thus, both trajectories can be ‘controlled’ by the
mean-field trajectory in most situations. Only if two particles have a ‘close encounter’
(below an inter-particle distance of order N~ 2%7) some further arguments are needed.

We start by showing that the deviations with respect to | - |~ keep sufficiently small for
times before 7 7(X). In fact, we show a slightly stronger statement which will turn out

col

to be helpful later.
For X € N7 C GV € MY, (BY7) (see (£-73)) it holds for all i € {1,..., N} that

zl zl vom () < N

6N~ 2“’ 6N 2+Uoo
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By application of this, the definition of the stopping times and the good properties of
the considered initial data it follows for ¥ := \IIN 02(X), the relevant values of N and o

as well as times ¢t where 0 <t; <t < min (Tdev’l(X) TN’U(X)) that

’» “eol

d
—— sup [N (X) = T (Y )

dt4 ¢ <s<t st
< sup PUNP(X) - 20N (V)|
t1<s<t

<N12118£J{VZ/ |fc2 éVoCQ )]j—[l\yi\,{éQ(X)]i)
e ) - | \Ifivz? ()l )ds
< ma, ( / (L@l - ey (0l

- g([l‘l’gifl (Y)]J - [lllli\,fifl (Y)]i)DdSl(MNy(O»T) (X))C (Z7J)>

1
6N 217 o

%@2@%( / (L el ()] - Mol (o)

— NN )] - el <Y>L->\)dslMN,<o,p o lisd) (3.103)

6N 217 o
According to Lemma and Corollary (both applied in the third step) it holds
for the considered configurations, (i,7) € (MN];;O}T J)r (X ))C (see (3.80])), the relevant
6N"277 00
N eN, o >0and s € [t;, 7V7(X)] that

IR SRR NI

s,t1

N, N, N, N,
>0 (X5) = ey ()| = 28 (V) = @og™ (X) oo
N, N, N, N,
|1905 OCI(X]) - 1()03061( Z)’ - 2‘ ‘lls tfl(y) _lIls,OCI(XNOO
—_——
=W (W R ()

= 200" (X) = B35 (K)o

N, N, 1,90 N, N,
>M ol (X5) = Long (X)| — C(N 72 4 |80 (X) — U6 (X) o)
—~CN2%
1,3
> [Pl (X) — el (X)) —CN 250

e
rlsoivﬁ Xj) = ey (X0
and due to relation
[0 (X)) — Mo (X))

N, N, N, N,
>' o0 (X5) = Logi (Xa)| = 2|00 (X) = 5™ (X)|oo

~~

1
<NT3te
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1 N, N,
2 1(708 0Cl (XJ) 1905 O61 (Xl)|

Regarding the ‘properties’ of the map g (and in particular (2.9)) yields that term

(3-103) is bounded by
Ez t 1 N, X ! N,c1 X1 i Vd
max Z ) gcl( ©s.0 ( J) Ps,0 (X%)) (MN(OT) (X))c(z,]) s

T g#

sup MW (X) = M0 (V) oo

t1<s<t ot
—1 55730
+2N"23ON
<Cts<up<t\ LN (X) — LN (V)| + 2N 7330 (3.104)
1<s

For the upper limit 2N ~3739 N3 we simply applied that according to our preceding
discussion N3 constltutes an upper bound for the number of ‘close colhslons as Well
as that by definition of Tc o7 (X) the impact of such a collision is bounded by N273% on
0,7 Toor (X)]. The last inequality, on the other hand, follows by the same reasoning as
applied for estimates
After recalling that Y = \IJN 02(X) one easily concludes by application of Gronwall‘s
Lemma that for such conﬁguratlons

2 (X) = T (B (0) e < ON 727 (€070 1) (3.105)

holds for ¢ € [t1, CJZIU(X )] which will be important shortly. Moreover, according to these
estimates (applied for t; = 0) it holds for ¢ € 0,77 (X)] that

’ col

sup 20032 (X) — 205 (X))o
0<s<t

<C sup [PUN(X) — N (X))o + 2N TR
0<s<t

which together with (3.105|) yields for the considered configurations that

sup TN (X) — UN (X)|e < ONT2YS, (3.106)
0<s<T N7 (X)

We remark that due to the previous estlmates this inequality holds for all initial config-
urations of g 7 and thus the event Tdev T(X) < Tgl’g(X) can not occur in this case (if
N is large enough and o sufficiently srnall)

Now we go on with the considerations for the distinctly more interesting ‘event’
concerning the distance with respect to |- | between corresponding trajectories.
However, since the proof for this case is a bit elongated, it might be reasonable to start by
introducing the heuristic proceeding. Like in the proof of Lemma we will compare
corresponding trajectories on short time intervals (where this time both trajectories are
subject to the N-particle dynamics but with different-sized cut-offs) and choose to this
end again A := N =5 for the length of these intervals. Instead of deriving upper bounds
for the deviations

sup W) — U (X))
EA<s<(k+1)A
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on each of these intervals, it turns out that it suffices to do this for

N

N,c N,c N,c
> s ISR O — [t (k] 1=1,2 (3.107)
i—1 kA<s<(k+1)A

If we are able to show that the deviations related to (3.107) are sufficiently small for all
intervals, then X € Q]TV 7 C gﬁv“f" implies by application of Corollary [3.2.1{for the map
3,7

)

h(-) := \I/i\g’c2 (X)) that also the actually relevant deviation

N. N
sup ’\Ps,f)cl (X) - \Ijs,écQ (X)|1
0<s<T

keeps small enough. Hence, it remains to discuss how terms of the form can
be estimated in a reasonable way. We will introduce the most important aspects of
the approach by application of sketch which outlines the relevant trajectories for
the short interval [4A,5A]. More precisely, the sketch shows on the one hand two

A
+
©
Elooofte bl
+
0
<t
Q-
\I/Nﬁl X): i 143
0 : — position x
‘I’N’CQ - — -u
\Il' %(X)) P T— <S>

Figure 3.3: Sketch of the essential proceeding

trajectories which start at a ‘good’ initial condition X € Qr}v “ but evolve by different
dynamics (due to the different-sized cut-offs) and on the other hand the auxiliary tra-
jectory \I/.]\ZL’CA1 (\IfiVA’C% (X)) which according to shall be ‘compared’ to \P%’CQ (X) on
the fifth interval. The auxiliary trajectory is chosen such that its position coincides with
the position of the trajectory \IJ%’CZ (X) at the time 4A (resp. at the beginning of the
short interval) but it evolves with respect to the dynamics where the cut-off parameter
isc; = % for which we have derived some very helpful results previously. Due to the first

part of the proof we already know that this auxiliary trajectory and \Il%’cl (X) are ‘close’
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with respect to |- | at time 4A if 4A < T(fZZ’U(X ) and since both evolve with respect
to the well-studied dynamics this allows us to apply Lemma [3.2.1| which in turn yields
us plenty of ‘good’ properties for the auxiliary trajectory. In particular, we obtain that
its position at the starting time W) A (Ph32 (X)) belongs to Ga's7 which will provide us
the opportunity to make probabilfty estimates for these trajeétories by application of
Lemma We want to derive suitable upper bounds for the deviations and
to this end one should recall that the force kernels related to the compared dynamics
differ only by their cut-off size (which in both cases is very small). Thus, the distance
between the auxiliary trajectory and \I/,]’\/(')’C2 (X) starts to grow as soon as two particles
get close enough such that the larger cut-off related to parameter ¢; ‘comes into play’.
Of course, in principle the arising spatial deviations transfer to the 11"emaining pairs of
corresponding particles but since the length of the intervals A = N3 is very short and
the dynamics are second order the spatial deviations are negligibly small compared to
the velocity deviations so that this ‘effect’ does not matter for the estimates. If the
number of ‘close’ collisions would be of comparable order as in the i.i.d. ‘mean field par-
ticle system’, then these considerations suggest that the value of integral should
typically be bounded by

1 C

Ny < ONTHNTHEICPA <oNTiA,
—————

(CN?(N~)2A)

number of particle pairs ) .
coming closer than N—¢1  impact of majority

on [kA, (k+ 1)A] of the
related collisions

This would in any case pose a sufficiently small upper bound, however, first one has
to justify the assumptions and we try to give a rough idea how this can be done in
the following part. We point out that at the moment we only consider times before
TéXl’J(X ) (resp. where we have a small enough upper bound for the ‘impact’ of single
collisions). Thus, it is straightforward to see that for times in [4A,5A] (resp. in general
[kA, (k + 1)A]) all pairs of corresponding particles keep very close to each other in

phase space and even more in position space if TCJZI’U(X ) is not yet ‘triggered’. Hence, the

auxiliary trajectory determines an excellent approximation of \I/%’CZ (X) on [kA, (k+1)A]:
If the minimal distance between two of these auxiliary particles on [kA, (k+1)A] is given
by 7min and the value of their relative velocity at the time of their ‘encounter’ by vimin,
then the corresponding particles ‘related to’ \II%’CQ (X) also attain a minimal distance of
order 7,,;, while the value of their relative velocity at this moment is of order v,;,. The
last statement is at least true up to very rare occasions where r,,;, is extraordinarily
small but it will turn out that these remaining (rare) collisions do not pose a problem.
This yields that in principle it suffices to know the respective numbers of collisions
characterized by Tpmin and vmin on [kA, (k + 1)A] for the auxiliary trajectory to derive
a suitable upper bound for the caused deviation. To carry out the suggested strategy
we need to be capable of doing probability estimates for the auxiliary system. This,
however, as mentioned previously is possible without any problems: To this end, one
has to regard that the auxiliary trajectory evolves by the well-studied dynamics and its
initial position belongs to the ‘good’ set Q:J,X 7. Moreover, we recall that if the i.i.d. initial

positions of the particles are given by X € grfpv 7 then the initial positions (resp. the
positions at time ¢ = 0) of the corresponding auxiliary particles which are applied for
the short interval [kA, (k + 1)A] are given by \Iié\f,’gci(\I/]kVAc,%(X )). Due to Lemma it

follows that the distance between these corresponding initial configurations with respect
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to | - |1 is of the same order as the distance |¥p32 (X) — Un L (X)]1 (or of order N=7).
This yields that though the positions of the auxiliary particles at the starting time ¢ = 0

are not i.i.d. (if £ > 1), they are still close enough to the positions of the i.i.d. particles
X;, i € {1,..., N} such that

N

Hko évkci kNAcfo(X))}i)%Hko(Xi)

=1

is fulfilled provided that kA < TCJl\eIfQ(X ). In this case, however, it is straightforward to see
by application of Lemma [3.2.3] that restricted to configurations fulfilling this constraint
the number of ‘problematic collisions’ between auxiliary particles on [kA, (k+1)A] keeps
typically ‘small’ Wthh then again implies that indeed |\IJN 2 (X) =W 57 (X)]1 grows slow

enough such that Td v o(X) does not get ‘triggered’.
Finally, we conclude the heuristic introduction and start with the detailed considerations
for the event TC]lZfQ(X ) < TCN’U(X ). For ease of notation we identify in the following

tN ;= kA and téVX := min (kA,TéZlU( )) for k € {0,...,[X] — 1}. First, we recall that
for X € Q 7 C QNUQU it suffices to verify that \I/N (X)) fulfills the conditions on the
map h of Corollary |3.2.1] where the parameters which appear in the assumptions are set

toeg=20,€61 =0 and a = N7 which leads to the constraints

N
. N, N, N, -
B Zt <Siltp qujsvtzvl (\Ijtﬁcg(X))]z - [I‘I’S,OCZ(X)M < ON7A?
i=1 S3lpqa,x
N
.s N, N, N B
) Zt <Siltp ’[2\p87t§(q]tﬁ?§(x))]i - [2‘118002( )il <CN7A
=1 SSt x

() sup U (X) — W ()| < NS
0<s<7,57 (X)

for all k € {0, ..., [X] — 1} to be able to conclude that

sup [P (x) - TN (X)L < ON T (3.108)
0<s<r 7 (X)

According to our previous estimates the constraint related to item (iii) is fulfilled for the
relevant N and o. Thus, we can restrict ourselves to proving that also the first two con-
ditions are typically fulfilled. We note that for a certain configuration X obviously only
intervals are relevant where still t} < o 7(X) because otherwise the interval [tY, )Y 1 x]

col
is empty. Hence, for a certain X the stopping time C]Xl (X) basically corresponds to the
end time 7T applied in the assumptions of Corollary [3.2.1]

In the proof of Lemma the length of the short time intervals A was chosen such
that the mean-field dynamics typically provided a sufficiently good ‘approximation’ for
the trajectories of the interacting particles. This time we want to ‘approximate’ the tra-
jectories belonging to the system with a cut-off diameter of order N ~“2 by those which
are subject to (\I/gt’cl) s;ter- Thus, we need for the same reason as in the previous case
that corresponding trajectories of the compared dynamics keep very close in positior71
space for the considered time span. A reasonable order for the allowed distance is N~ 9

which is in correspondence to the smallest allowed value for r in the assumptions of
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Lemma

The choice A := N 5 fulfills this requirement as long as 7'Nl (X) is not ‘triggered’ be-
cause relation (3.105) yields for X € QJTV 7, large enough N, small enough ¢ > 0 and
ty <t <ty that

MR (X) = T (TR (X)) oo

Gt ATV 0

©l

<ON3+39(eONF 1) < ON“EHE < N- (3.109)
After these considerations we can start to show that constraints (i) and (ii) stated in
the list previous to (3.108) are typically fulfilled for configurations X € G and all

k € {0,...[%] — 1} if N is large and o small enough. Since these conditions are only

non-trivial for time intervals where )Y < tk+1 y = min (tkH, (f\ofla(X)), we will assume

for the following estimates that for a given X the value of k is small enough such that this
relation is still fulfilled. Furthermore, we abbreviate ¥ = \IIN C2( ) and obtain by a pro-

ceeding which is very similar to the estimates applied for controlling the corresponding
quantities in the proof of Lemma [3.2.1| (see (3.17))) that for ¢ € [ty, T(fo(X)]:

N
T sup (MWt (V)] — MRV (3.110)
+ =1 0<s<t—tlY
N
<Y sup PN - PRSP (V) (3.111)
i=1 0Ss<t—t)f
N
=S| / e - e )
- N J s,0 )
i=1 j#i 0
— L () - [HI%Q(Y)MMS) (3.112)
<9 Z ( t ( Ncl(X)_ Ncl(X))ds
- N N 9er (P50 J s,0 i
k
(i) (M Mi’ljﬁ,“’(m)c
6N 2 ,00

(Y sw (PN - PN O0h)

N
nefi} 0S5

1 t—ty . )
o (T en e - e o)
(i N e ) 0
z,j)€M6N_%+a (X)
NN - PN )] ds) (3.113)

where the derivation of the last step is analogous to the reasoning after and
takes into account that the force kernels coincide if the particles keep a mlnlmal dlstance
of at least N—¢* = N~3 to each other.

We continue the estimates and observe due to the symmetry

(5 t) (3 N )
(i,J )GMN,§+J (X) & G eM oy (X)
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that (3.113)) is bounded by

N

C N N

N > sup N F0es (V)i = [N (V)i
i=1 0<s<t—t}

1 N,c 1, N,
ity X el - %O“X?%))l(wﬂ
6N 277
1 o N
xS ([ menren-reron

N )
(ii)em +’;“ (X)
6N 2

— (e (), = e () |ds) (3.114)

n,j)ds
(X))C( )

Furthermore, once again X € Gn"° C ﬂfvl(BéVZJ)C N (BY7)C (defined in (2.53) and
(2.85)) implies together with estimates ([3.24) that foralli e {1,...,.N}

N
1 t N N . .
N Z /tN gcl 1503 001 (X]) 1305 001 (Xl))l(MN’(O’T) C(Z,])ds < C.
7j=1""

1
6N_7+U,oo

(X))
In total this yields for tév <t< téVH’X that

N
d N N,
o s (M )= [ )
+ =1 0<s<t—tlY
N N
N, e
<> sup PR () - PUlyt ()]
i=1 OSSSt—t{CV
N N
,C
<CY swp (PN - )
i=1 OSSStft]kV

f ([ e, - reee

(i,j)eMN’(tqtg“)(X)
6N 277 oo
N, N,
— R ), - [ ()] |as) (3.115)

Until this point all estimates hold for arbitrary initial conditions of the ‘good’ set QF}V 7,
The term related to the last two lines of this expressioln arises from collisions where
particles get at least as close to each other as order N~21% and in the following want
to show that for typical initial data of QJTV 7 it keeps small enough. Furthermore, this
term determines the only significant difference to the proof of Lemma [3.2.1] because in
contrast to previous situations the parameter cy can be chosen arbitrarily large which in
turn leads to an arbitrarily small cut-off radius N~ (even for fixed N). Consequently,
we have to argue that the number of very close ‘encounters’ between particles does not
exceed a critical value. The recently introduced lemmas provide us sufficient knowledge
about the dynamics of the system with cut-off radius N~ and by the closeness of
corresponding trajectories on the considered time intervals [t,iv ) tév ", | (where obviously
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only the non-trivial intervals are of interest) it is likewise possible to ‘transfer’ some of
these information on the system with smaller cut-off.

For this purpose we have to define certain sets which can be applied to classify particles
by means of the ‘collision types’ they experience.

In correspondence to the sets R, v(tl’tz)(X ) introduced in we define additionally
for 7, R,v,V € Rso U {0}, t1,t2 € [0,7] and X € RSV

R (D) (X) = { ) € {1, N}?\U{nn (3t € [t1, 2] -

s N01 NCl
< ? R ) .
r< min |1 <X>b o (X)L

= I (0, - [N (X))l < R
v < PO (0 - PO (0L < V) | (3.116)

After some preliminary considerations we will apply these sets to define a cover of
Nt )

6N—3+0,
remaining term 5) (which at least holds typically).
Now we arrived at the first situation where Lemma [3.2.3] will become crucial. In the
following we abbreviate

( ) which will provide us the possibility to derive an upper bound for the

N . N, N
Tdeva (X) = min (Tdevcfl <X> deva2 (X>)

For 0 <t < TgiU(X ) it holds according to our previous estimates (see (3.106])) and the
relevant IV, o that

W75 (X) = U™ (X)|oe < ONT2F5 < N72757
which implies that TN’U (X) < Té\éfl( ) holds in this case. Thus, if ¢, = kA < TC]Xl’U(X )

and X € QIJYU C g , then we can apply Lemma |3.2.1| to obtain that

N, N,
| X =0 (0,6 (X)) oo
<O(N7245 4 [UN0(X) — TN (X)|o) < CN72F57,

Since X € GN7, this yields in turn that \Ilé\;il(\lli”(cf (X)) € Go¥ for large enough N

(see definition (3.69)). Hence, we abbreviate XN-F := \Ilé\f 221(\11?2 ‘0’ (X)) and conclude
that the following implication holds (for the relevant N, o):

o N,(0,A c

X € G ATN(X) > KA A (i,5) € Ry (U (X) )
——
_\I,Nﬁl(XNk)

= XNF e G AT (X) > kAN (i,5) € Ry &S (w6 (XNF))

For X € QJTV it holds in particular that X; € £Y and by application of the Lipschitz
property stated in (3.1)) (which is applicable because according to our previous reasoning
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X — XNk < CN _%Jr%") it follows basically analogously to estimates (3.72) used in
the proof of Lemma that

N
<eNVERRYE T o (X))
i=1

Since XNk .= w1 (w2 (X)), this corresponds to
0,tg tr,0

FN,CQ(\P%’%Q (X)) < €N7|X—)?N,k|1Ft1:,c1(qji\£:82 (X)) (3_117)

tg

which will be apphed later during the proof. Moreover, since | X — XN o <ON —3+50
and X € gJTV" - g we can apply Lemma|3.2.1{to obtain that for ¢, = kA < Té\e[f(X)

OT)

NEX — XVF < ONE (076 (X) = 0@ (X)) + N77) < C

where for the last conclusion we simply applied the definition of the stopping time (see
(3:97)). In the following we maintain the abbreviation XV : \Ifévtil(\lléi 0 (X)) and
abbreviate additionally

M := (8N5%47) [N5 R? min(V, 1)*(min(V, 1) + N5 R)].
Then it follows by merging these consideration subsequently that

P(X € RV X € )7 Amin (707 (X), 7 75(X)) = RA A

Teol

Riy ™ (L3 00)| = MA)

<P(X € ROV XV € G AT (X) 2 A A R (@ (XV)] = MA)

N
— v N,k
=1

TN,k 6N
1{Y6R6N:T£;”<Y)zm}(X)I{YERGN-WN’(M)(wivi%)(y))\zMA}(X Jm X
< NZ|X-XNk|y Nk
/IZQGN %/_/1 3yT H k X
(X) Neq ()?N’k)dGNX

{Y€R6N:T(Z;)U(Y)2kA} {YERON R (0 (V)| >M A}

N
()'Z-N,k) H ko([)?N’k]i)dGNX
i=1

<C 1 N,o'()’(va,k)

N A N,c
RN s Liverom i) VEh () [=MA}
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<C]P>(X € ROV : X € GV AR (U (X)) = MA). (3.118)

We assume that R > N =5 and continue by applying on the one hand the relation
N,(0,A) ;7. N,e N,(kA,(k+1)A
Ry D (WKp(2) = Ry 02 2)

(which can be easily verified by regarding the definition (3.81))) and on the other hand
Lemma [3.2.3] to estimate the last term further:

CP(X e RN X € G ARy FMETIN (x| > MA)
2430 P2 - 3 M —%-30
SN%A(CN RMmm(V’ D) (min(V; 1) +N%R)) ;

,U)NU [N3 R2min(V4,1)]

<(CN (3.119)

where we regarded that A = N =3 and the abbreviation
M = (8N5+49) [N3R? min(V, 1)*(min(V, 1) + N5 R)].

Thus, the probability for such an event gets negligibly small as N increases. We will
return to this shortly.

These considerations yield us upper bounds for the number of certain collisions on
NN 1] which at least are complied with for typical initial data. What remains is
to show that these upper limits can be applied to show that the deviations grow slow

enough and we start with some general estimates.

t

Let for the subsequent part (i,7) € R 1(,%3“ (’U’“‘ﬁﬁ)(X ) where

N 677 <r<R<8N:t% A v>N3 (3.120)

and we note that the restriction to these values will resolve itself shortly. According to
estimates (3.109)) it holds for the relevant values of N, o, the considered configurations
X e g]TV"’ and times t € [t t{cvﬂ ] that

—_

G:\U\

sup  [PUN(Y) N2 (Y)o < ONTEHE < o

-N—
0<s<t—tly 4

Hence, it holds in this case for r > N~67% and ¢ € [ty ,thVH | that

inf LgNe iy, — tgiVez iy,
OSSSt_tQ/ |[ 870 ( )]’L [ S,O ( )]j|

. 1.5
> nf [PV - N (V)] -GN e

0<s<t—tl

1. N v
> inf POV = PO (V). 3.121
2 OSsSt—tLVH 20" Wl = [Tl (3.121)

Like in the proof of Lemma, we apply that for |q|,|¢/| > N~ > N~

1 1
N Ny 1 !
1 (@) = fey ()] SC(\QIO‘“ + |q,|a+1)\q—cJ|
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which follows by a mean value argument since theses force kernels coincide if the con-
sidered configuration fulfill |¢|,|¢’| > N~“. This yields together with relation
and Corollary (ii) that for times ¢ € [tk ,t{gv 4, ], the relevant N, o and parameters
R,v,V fulfilling constraints as well as additionally r > 3N ~°1:

¥ X ([ imeedpon-releon

N,V eV )

y k otk
(%])GR(T R),(v,V) (X)

(e () = el )l ds)

€2

C t—tN 1
S D . is
N Ty o P ()= [P (V)]
GDER Ry, (o) (X)
sup Mg (V) = M (V)
0<s<t—tY
<CN-8t<N"§
_1 NN )
SNTOc ‘R(r R;C Uk;; (X)’
16
CN™ 9 NNV )
S oy Remy.wr) (X (3.122)

Strictly speaking, for the application of Corollary (ii) it would be necessary that
there exist ‘mean-field particles” which keep sufficiently close to the ‘real’ particles on the
time span [t2, ¢ ',1]. However, since we consider only initial data of the ‘good’ set gJTV 7

is straightforward to see that for example the related ‘mean-field particles’ (which start
at the same initial data) fulfill this requirement. A more detailed explanation Why the
Corollary is applicable can essentially be copied by the reasoning stated after
Moreover, we have to take into a account collisions Where the inter-particle dlstance
falls below the order of the larger cut-off N=“ = N~ 5 and we obtain the following
relation by a further application of Corollary - 1| for times t € [tk, ,tk 4, ] as well as

N-8te <r<R<3N“ v> N5 and the relevant N,o

1 b=ty . .
~ X ([ T mensen-relr o)
N, ) 0
()ER 1t (W SEE (X)
N )] - el ds)
¢ N )
S yra=iy Rer) @) (X)) (3.123)

where we regraded additionally that according to relation (3.121)) the minimal distance
between the considered particles on [tév ) tkN '\1.x] is of the same order for both dynamics
ifr>N ~3+7 and the value of their relative velocity all the more for v > N =3 due to
relation (3.106)).

For the following estimates we assume that

Nt ) doTATS P2 - 3( s 1
Rev (X)] < CN*[N3R*min(V,1)?(min(V,1) + N3R)] (3.124)



119

is fulfilled (and remark that we previously showed that such a relationship holds with
exceedingly high probability for the relevant configurations). Moreover, we set the fol-
lowing constraints on the values of the parameters

(N§77 <r = N"SR<8N ) A (N75 <v=N"3V)

which in particular comply with the conditions which we applied for our estimates (|3.120))
and demand additionally that

N3 R?min(V,1)?(min(V, 1) + N3R) > 1

In this case application of estimates (3.122)) and (3.123)) yields for the relevant N, o that

S (" e o - P o)

N,V NV, )

CDER (o gy (o (X)

Nl ) - e[ ds)

Cc2

_16
N (N4 NS R2 min(V, 1)* (min(V, 1) + N3 R) ), if 7 € [3N ¢, 8N~ #+7]

reu
s (V7 [N R2min(V, 1) (min(V, 1) + N3R)] ), if r € V737,38
o [NTIRTRY O L NSRRI  [3N T 8N T3]
> N%+50R3—a + N1+50R4_a, ifre [N—%—l-cr, 3N_Cl]
o N=9+t70 L N=5197  if p € [N~ 8N~ 2+7]
=T I N5+ if r € [N~617 3N~3]

IN

(3.125)

where we regarded that R = N2r, ¢; = % and a < %.
It remains to show that also very ‘close collisions’ do typically not pose a problem. More
specifically, we will now consider parameters R < 8 N~ 9 for arbitrary r € [0, R] and at

the same time we take into account the previously excluded settings of parameters where
[N3R?min(V,1)*(min(V, 1) + N3R)| =

for R,V > 0. To this end, we only have to regard the condition on the ‘impact’ of single

collisions which is fulfilled for times 0 < t < 7°:7(X) (see (3.98) for the definition of

col
Tizla( )) and thereby it follows for such options of r, R, V' that

¥ X (] mewyen-reron

NN )
(), (0,v) ()

Nl () — el ds)

Cc2

)
<CN~3737(N% (NsR2mmv13(mmv1 +N3R)])
5

(1,7)ER

<CNENA-5)
<CN-1s+2 (3.126)

where in the first step we applied additionally our current assumption on the number of

such collisions ([3.124)).
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Now we can merge these bounds and obtain that for ¢ € [t,]cv ,t,iv 't1 x] and for any such
‘collision set’ where the parameters fulfill

ol
w\q

((N—%+0 <r=NSR<SN ) A (N3 <v=N- V)) VR<8NTS  (3.127)

the constraint stated in (3.124)) implies that

N 2 ( /0 o e ()] = o™ (V))

N,tN N

(L.1)ER ., Rf(vk\j)l)(X)
Nc N,c
— NN )] - PN )] ds) (3.128)
<CN-9t70 4 N~1+97 L ON~1s 120 (3.129)

After these general considerations we can finally continue to derive an upper bound for
the remaining term . As mentioned before, we want to subdivide ./\/l Nt k“)( X)

Lo
by application of the ‘colli ts” RV 3y and we will choose th ¢
y application of the ‘collision sets (r.R). (V) (X) and we will choose the parameters

r, R,v and V such that with two exceptions all sets fulfill the constraints determined by
(3.127)). We recall that due to X € QJTV "7 it holds for the relevant N, o that

sup TN (X) — @) (X)) < N3O

0<s<T
which implies in turn
N,(tg,tiv+1) Nv(t{cvvt{cthl) N k+1)
1 (X): 1 (X)ﬂR (X)
6N~ 277 o 6N~ 277 8N~ 2*",

(tk ’ k+1)(X)

and thereby it is suffices to look for a suitable cover of the set R 1
8Nzt

One possibility for such a cover can be obtained as follows:
For a slightly shorter notation we identify t; = t{cv , to = tkN '+, and define

1 3o o 7 o 1
={(k,)eZ?: = - <k=< - I+1)= <=1 1
{(k,1) € 5- 3 Sk3<g A - (+)2 3 (3.130)
Then it holds that
N, (t1,t
,R/S]\/(*l%j‘)7 oo(X)
N,(tl,tz) N,(tl,tQ) (t1,t2)
CR X)UR UR X
- (0,8N—%+0),(N,oo)( ) 8N—%+U,N—%+%( ) SN~ N( )

U RV e g g (X). (3.131)

- SN (k+1)2,8N_k2),(N (l+1)2,N_l2)
kl)el

We point out that the number of sets forming the indicated cover is bounded by some
constant (depending only on o). Consequently, it suffices to show that for all of these
sets term keeps typically smaller than some value to conclude that term
(which constitutes actually the focus of our interest) is typically bounded by a value of
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the same order. Moreover, we already showed by the estimates leading to (3.119) that
7
for R> N"9

IP(XER6N | X € G ATk €{0,..., [N3T] — 1} -
REGAH DA (X)| > 8N [NF R? min(V, 1)* (min(V, 1) +N%Rﬂ)

<[NsT](CN—)N (3.132)

and all sets of the union (3.131)) except for

. N, (t1,t2) N,(t1,t2)
R X)Nn X
) (O,SN_%+U)7(N7OO)( ) MGN_%-vaO( )
.. N, (t1,t2) N(tlth)
(ii) RSN*%”,N*%*?( )ﬂ./\/l6N Yo (X)

fulfill the constraints on r, R, v,V (stated in ) which we applied for the derivation
of relation . Hence, for any set of the cover except for the sets associated to items
(i) and (ii) relation provides us an appropriate upper bound which is typically
complied with. More specifically, according to estimate the probability that
relation does not hold is of far smaller order than necessary for the proof. Thus,
we can focus on determining a suitable bound for the ‘contribution’ of the sets related
to 1terns ( ) and (ii) which typically is satisfied to finally complete the considerations for
term .

First, we remark that for large enough N and sufficiently small o > 0 the set related
to item (ii) is even empty for the ‘good’ configurations which we consider because for

(i,7) € ./\/lN(tl’tQ) (X) the constraint X € Gn'7 C (B27)C (defined in (2:85)) yields

that the value of the relative velocity between the related ‘mean-field particles’ at the
times when they are ‘close’ in space is bounded from below by order N ~15. After
regarding the closeness (in phase space) between corresponding ‘real’” and ‘mean-field
particles’ it is obvious that this property transfers to their related ‘real’ particles.

For handling the set assigned to item (i) one has to recall that in the current case we only
take into account configurations where chl\e[f2 (X) < TCN’U(X ) and thus on the time interval
which is relevant for our estimates the 1mpact’ of a single close collision is bounded

from above by N 373 . Moreover, according to estimate ) the ‘contribution’ of
the collisions related to item (i) is only relevant for the value of term (3.115) if it exceeds

order N~ 18”“ In that case, however, at least order N TR

to be contained in this set because

‘particle pair labels’ have

nN~373% > ON~15+2 = > ONs+5,

If at the time of their ‘closest encounter’ the relative velocity value between two particles
is of order IV or larger, then at least one of the colliding particles had already a velocity of
the same order initially (for large V) since the effective force field is bounded independent
of N (and the ‘real’ particles are close to their ‘mean-field part1cle partners’ on the
considered time span). Moreover, due to X € QN 7 NY(B NJ)C (see (2.73)) it
follows that

Vie{l,..N}:Y Tynw | (x,)(Xj) < NP
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This, however, yields that in the current situation the assumption

N,(t1,t2) (tl t2) l_i_gi
R N X)| >N
| (0.8N~29) (N,00 )( ) M —3+ ,OO( )| = Note

implies that there exist at least order & 2;? — Ns+% different particles which have an
initial velocity value of at least order N. On the other hand it holds for arbitrary n € N

and a constant K7 > 0 that

N
P(X € ROV . Z 1[K1N,oo)(‘2XiD > n)
=1

< (JZ>IP’(X1 eR:|2X | > K1N)" < (:) (C(KIN)™2)"<CN™"

where we regarded that according to assumption the kinetic energy related to kg
is bounded and thus

C
(K1N)*

L T (Pl () < (3.13)
N———

12x;]2
< (K1N)2

Hence, the number of such collisions keeps obviously with exceedingly high probability
sufficiently small.

Since all these probabilities drop so Inuch faster than necessary for the proof of the
theorem (which means faster than C N~ 9+€, e > 0), we will simply neglect the inappro-
priate initial data for the concluding estimates and restrict ourselves to presenting that
for the remaining configurations the deviations keep sufficiently small. Let to this end
X e Q]TVU be one of these remaining ‘good’ configurations and k € {0, ... (NST] -1} If

we maintain the abbreviations ¢ := kNN 5 and Y = \I'i\]f\,’c2 (X), then it holds according

to estimates (3.115) and (3.129) for times ¢ <t < mm(TC]Zl (X),t 1) as well as the
relevant N, o that

N
N7
sup [N (V)] — [MWa0? (V)i

i=1 OgsgtftkN

t N
c N,c
g/t sup |PUNGT (V)]s — P (V))ilds

N N
k i=1 OSTgsftk

t N
<C [ > sup [PV (10 (V)lilds + CNTT572 (8, — 1)) (3.134)
b b

tljcv i=1 Ogrgs—tkN —
=A=N"3
Finally, application of Gronwall’s Lemma yields for large enough N € N and times
te [ty min(r7 (X)), ¢ t.1)] that

col
N N
N ,C:
sup [N (V)] = ["0gg (V)]
i—1 0<s<t—tl
SCN*%JrQUAeC(tft,ICV)
7
N*ﬁ‘i’QO‘
<C——
- A
SCNfﬁJrQUAQ
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where we recall that A = N~5 and ti;v = kA.
By regarding this relation we can once again apply our previous estimates to obtain that

N
N, N,
sup [P0 (V)]s — P8y (V)i
i=1 0<r<t—tff
N
N —_—

<C Z sup Hl\pi\,[(,)m (Y)]z . [1\1157(,)02 (Y)M L ON 178 19
i—1 0<s<t—tl
N—15+20
—x
<CN-=T2A,

<C

After recalling the abbreviations Y = \IJN (X)) and t}) = min (¢}, mN(X )), it follows

in particular that for sufficiently large N E N and small enough ¢ > 0

N
sup MU (TN ()] — [N (X)) < ONT7A?
=1 Y <s<ti ) k k
as well as
N
sup ![Qﬁ’ggfé(\l’ﬁv’% (X)) — PULE* (X)) < CNTIA.
=1ty <s<tp k k
Thus, inequality ([3.108])
sup  [MON(X) = telyt (X)) < ONTT (3.135)

0<s<T N7 (X)

holds for the relevant N and o since all constraints stated in the list previous to
are fulfilled in this case which implies that Corollary [3.2.1] is applicable.

Eventually, we can conclude that the probability of configurations X € Q’T where
TéZvJQ(X ) < Tcol 7(X) decays distinctly faster with increasing N than necessary for the
proof

Finally, we arrived at the point where we have to care for configurations fulfilling

N, . (_N, N,
7 7(X) < min (Tdev‘fl(X) devJQ(X)) AN

col col

(X)<T

=M (X)

dev

respectively where one of the previously excluded collisions happens though the devia-
tions between the corresponding trajectories are still small enough:

(OT) )
3e (1,2}, () e MO (X))
N,o’

dev( 1 5
/0 Y (ol (0] — Moy (X)) lds > N2 727 (3.136)

Before we are able to derive an upper bound for the probability of configurations which
fulfill (3.136]) we have to make some considerations to clarify how this can be done.
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For a clearer presentation we focus for the remaining part of the proof on the slightly
more elaborate case | = 2 (respectively the system with smaller cut-off order). However,
obviously [ = 1 can be handled analogously since the exact value of ¢y is arbitrary in
[c1,00) and thus the special case ¢ = ¢ is included.

Let t/ . denote (one of) the point(s) in time where ‘mean-field particles’ ¢ and j are

min

closest in space, then it follows by Lemma that for [t —¢ . | <1

N, N, N, N,
|(290t o (Xi) — 2 OCI(XJ)) - (290t/ ji:o(Xi) N 290tin2:0(Xj))’
N N.
<O|t - tmm| (‘lsot/ “ (X) lsot’ “ O(Xj)’

N,c N,c
+ Py o (X0) = 2ep (X = thuinl ). (3.137)

which implies that on a possibly small interval around ¢/, (but whose length may be
chosen larger than some constant) their relative velocity barely changes if

N, N N N,
Mo (X')—lwt/ XN < Py ((Xa) =20 (X))

in 0 mzn’o min’

For the configurations which we consider this condition holds if (i, j) € MN];](O’Q (X)
6N 217 00

because X € QN’U - (Bév’g)c (see ([2.87))) implies that the relative velocity value between

‘mean-field parmcles is at least of order N~ 15 at times when their spatial distance attains

or falls below 6N 217, A corresponding statement is true for their related ‘real’ particles
if Tdev 7(X) is not ‘triggered’ yet because in this case the deviation

sup  [WIE(X) — 857 (X) oo < ONT2V57, 1€ {1,2)
0<s<rd (X)

is of much smaller order than N~ 18 (for the relevant N).
Let now X € Gn'7 and let ¢, € [0, 7507 (X)] denote (one of) the point(s) in time where
the ‘real’ particles ¢ and j attain their minimal spatial distance on this interval, then the

preceding considerations and Corollary [2.1.1] (ii) imply that for (i, j) € ./\/l ( D (X)

1+a

and a suitable constant Cy > 0:
Toor (X)
L e oon - e ao) s
< Co
TR (X)) = [ (X PR (X)) — [PE (X))

tmin, tmin, tmin, tmin,

For convenience we abbreviate in the following rmin := [F¥N ((X)]; — L2 (X))

t"’LlTL ’ tml'n kl

as well as Upin = |[2 ]Ynfz o X)) — [Q\I'i:fjj,o(X)M and recall that according to the
previous reasoning v, is of distinctly larger order than r,;, for the currently considered
configurations. Then for any r > 0 where N~ 27 < rp < 7 the subsequent implication

holds (for sufficiently large N € N):

N,o'

Tdev( 1 5
/0 N e )] — PN (0] )lds = N3

1 5 1 5 a—1 1 1
SUmin < CoNT2T207 1m0 < QuN 2G5 )oplme o y=atdo,— (3.138)
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where we regarded that a € (1, %] Though we omitted to make it explicit, the respec-
tive value of r;,;, obviously depends on N and X and the first inequality determines
a border for the values of Umin separating problematic and non-problematic collisions.
For a certain r € (0,6N~ 2+U] the second inequality, on the other hand, prov1des us
a corresponding border for v,,;, depending on r which is valid for all X € QT 7 where
Tmin € [IV _%r, r]. The exact reason for introducing such a parameter r will become clear
shortly.

Moreover, we remark that according to our preliminary considerations v,,;, is of dis-
tinctly larger order than 7, and the relative velocity of the particles barely changes
on a possibly small interval t1 < t, < to < TC]l\e[f(X ) whose length, however, can be
‘chosen’ larger than some constant for the relevant configurations (resp. for X € g;v 7).
Hence, if M € N is chosen large enough and is fulfilled, then for each such triple
N, r and v, := N—3+39:=% there exists k € {0,..., M — 1} such that

(N—%r <I'X; - X <r A PX 22X < ur) Y,

(r < 22 (00 = Y (OL < 7 o A

kL0 kL0
Bw (O] = P (X)) < o) (3.139)
M M

because either the particles are already close initially or at one of the time steps kz%
particle 7 must be located in a spherical shell around the position of particle i like stated
above (respectively vice versa).

We continue by merging the preliminary reasoning subsequently to derive an upper
bound for the probability that TCJXiJ(X ) gets ‘triggered’ first.

Due to the previous considerations the following implication holds for ‘small’ ¢ > 0,
large enough values of N € N and X € Qéﬂv 7

N,(0T) )
(i, j) e M 6N+ o (X):

N,o
Tdev (

| O (X)) — [Nl (X)) lds > N2 72

1+o‘

[
0
:<3t€[0,fﬁf(X)] 3(4, )EM NOD) - (x) 3r e [0,8N 2T ;
0H%%m1[w%%ﬂwﬂA

\W%WM][@%W)Msmwﬁng> (3.140)

where this implication is a consequence of the first mequahty of m After introduc-

ing additionally r; := 8N~ 9+5% and v = N~ 2+3" 3 the previous statement implies
due to the second and third inequality of (3.13§] m that.

3t 0,720 (01 36.0) e MYCT) () 3 .. NEORE

6Nt
((|1Xi—1Xj| <79 A ‘QXZ'—2X]'| Svo) vV

(ris < P9 C0L — UL < A
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PR 0k - P (X < ) v

PUNe (X)) — PO (X)) > ) (3.141)

The intervals [r;_1,7] for {0,..., [L£] + 2} cover the whole range of potential ‘collision

distances’ in [SN~9,8N _%J”’] while the v; are chosen such that they determine respec-
tively a border between problematic and unproblematic collisions for these intervals
according to considerations . The events related to the second and the last line of
are introduced to ensure that also configurations are taken into account where
a ‘problematic’ collision occurs between particles which get closer to each other than
ro without fulfilling the assumptions of one of the remaining ‘events’ because if their
initial distance is still larger than rg then their relative velocity previous to the collision
must exceed order v; > N 2 or the event related to the third and the fourth line for
[ = 1 occurs. Thus, if none of these events occurs, then we can also conclude that no
particle pair gets closer than g = 8N~ which implies that for cut-off parameters ¢y > 9
the trajectories of the regularized dynamics coincide with those of the non-regularized
system in this case.

Now we can finally apply consideration to conclude that for sufficiently large
M € N the statement related to implies that

Tk € {0, M~ 1} 3, ) € MUY (X)

{0, [+ 2} ke < NI (X) A
U o M= Tdev

<(|1Xi =Xl <A PX =X < 2vl> v (3.142)

<M (X)) = N (X)) < 4+ 20— A

Tl—’[ k;{po( )]z_[ kszpO( )]]|—Tl+ UZM
2y V2 12 N,ca )
[E0; 2 (X)) = 0,22 (X1 < 201) v (3.143)
2.,V,c 2.1, N,c2 1
Pz ()i = P o (X = 2v1>. (3.144)

It is obvious that the probability of configurations satisfying is negligible com-
pared to summed probability of the events related to assumption . An upper
bound for the event related to assumption can be derived as follows: If there
exists k € {0, ..., M — 1} such that k% < 707 (X) and

N, N, 5
B () = PO () = 5o > 5N,

N | =
N | =

then the closeness to the related ‘mean-field particles’ also implies

N, N, 5
Py (X0) = 2Nt (X)) 2 5N

M>

W =

which by the N-independent boundedness of the mean-field force yields that for an
appropriate constant also the initial velocities fulfill |2X;| > CN3 or 2X;| > CN3
if NV is sufficiently large. Due to the assumption that kinetic energy related to kg is
bounded we can once again apply estimates (3.133) which imply that the probability of
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configurations fulfilling condition (3.144]) is bounded by N (C’N _%)2 < CN—.

It remains to determine a suitable upper bound for the probability of the configurations

fulfilling assumption (|3.143)).

First, we recall that due to the considerations after (3.115)) and in particular estimate

(B-117) it holds for ¢ < 7707(X) that

(X)

N,o
9r

N
N,c N,c
L1gn.o(X) [T ko(xi) = B2 (055 (X)1
=1

N, N, N, N,
SCF (W7 (X)) Lgne (W™ (W77 (X))

By application of this in the second step, it follows for [ € {0, ..., (%1 +2} and the special
case 1 =1, 7 = 2 that

dev

T
]P’(X €N A 1ol (X) 2 k-

N, N, T
rp < ’[1‘1’,6%6270()()]1 - [1‘1’;{%0270()()]2’ <r+ %lM A
N, N,
PR (X)L = PO (O] < 20)

N
B /RGN Loxe (X)L izemon ol 2yzn iy (X) Hl ko(Xn)

N,ca 6N
’ 1{YER6NZ7‘ZSI1Y1—1Y2|§7‘l+21)l%/\|2Y1—2Y2|§2’Ul}(\Ilk%I)(X))d X

<O [ g (e (N CONFNE (U (X))

ixd T T T T
reN I3 kgt kgp0 ki~ kgp0

N,c2 6N
’ 1{Y€R6N:n§|1Y1—1Y2|§rl+2vl%/\|2Y1—2Y2|§2vl}(\Pk%yo(X))d X

—C [ g (X)EN (X)

N,o T T
reN  Yar o Okgg ko

61N
. 1{Y€R6N3TZS|IY1—1Y2|§'f‘l+2vl%/\|2Y1—2Y2|§2’vl}(X)d X (3145)

Now we can apply Lemma and obtain for M > Ul% that (3.145)) is bounded by

C/R6 /RG 1{Y€R6:n§|1Y—1Z2|§n+2vl%}(Zl)

. 1{Y6R6:‘2Y_2Z2|§2vl}(Zl)k]]gv];ljl (Zl)kljfv;%:l (ZQ)d6Z1d6ZQ

2 41 “1430,-3y4 o O 3 v at120 ~1 4130
SCTl (% M S -1 (N 2 Tl ) S Mrl N S N3

S

where we applied that r; = 8N ~9737 < ON~2+% since | € {0,....., [ + 2}
By taking into account all possible pairs (i,j) € M;V];[(O’T) (X) € {1,...,N}? and

1
77+U,OO
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k€{0,...M—1} as well as [ € {0, ..., [1£] + 2} it is straightforward to conclude that

P(Xeg;““ (i, j )eMN (X) :

7§+a'

[ | Y 00— 0] s 2 VA7)

M—1¥

<N?H Z —rlvl +CN™*
k=0 I=

<CN2N—§+130'
<CN~3t13, (3.146)

where the insignificant addend CN~* appearing after the first step arises from the pre-
vious probability estimates for condition . Hence, also this probability becomes
negligible compared to the upper limit which we determined for IP’(X € (g]TV ’U)C) if
N € N is chosen large and ¢ > 0 small enough.

Considering the respective upper bounds which we derived for the different probabil-
ities of sets of excluded configurations shows that the upper limit for IP’(X € (Q]TV ’U)C) is
dominating for small enough ¢ > 0. Thus, for a given € > 0 and sufficiently small ¢ > 0
there exists C' > 0 such that for all N € N it holds that

P(X € RV : sup [0 (X) — 02 (X)|o > N737)
0<s<T '
<P(X € (GN)°) +P(X € GN7 A swp N () — Ui (X)|oo > N72H)
<ON"5H 4 P(X e RO - 3j € {1, ...,N} . X; ¢ LY).

which according to the discussion after (3.92)) eventually completes the proof of Theorem
B.I1
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3.3 Discussion of the second main result

After a quite elongated proof we conclude the chapter concerning the second main result
by discussing shortly what we have achieved so far and in which aspects further progress
is most desirable. Perhaps the most pleasing point concerning the current result is that
(at least morally) no regularization is needed. More precisely, at least for typical initial
data we showed that trajectories of the non-regularized microscopic system are up to
vanishingly small deviations predicted by the effective dynamics while the trajectories
related to the remaining (non-typical) initial data are simply ignored. (The notion
‘typically’ obviously always refers to the currently considered i.i.d. initial data.) This
is all we can hope for since in case of singular interaction there are for sure initial
configurations where this not true. Moreover, we obtain very strong closeness results
for corresponding trajectories of the different dynamics. However, while in the present
situation this seems to be a positive aspect, it can as well be considered as an negative
issue since the applied approach relies strongly on this closeness between corresponding
trajectories. This is exactly the reason why we are not able to apply the current strategy
for the case a = 2 (resp. the Coulomb case) since here the singularity is just too
strong so that many of the stated results do not remain true in this setting. Of course,
the present version of the approach could be weakened in many aspects and even in
the current form slightly larger values for o could be (successfully) considered than %.
However, the case a = 2 will still remain out of reach. On the other hand, this does
not mean that the introduced ideas are worthless for dealing with more singular systems
but rather that further ideas are necessary in order that the method remains successful.
In any case their are certain aspects which obviously have to be changed to (possibly)
handle such systems. |- |5 for example is for sure not the right notion of distance
for the Vlasov-Poisson system because for few particles deviations of order 1 to their
corresponding ‘mean-field particles’ must be expected. A stopping time that sets an
upper limit to the number of particles allowed to have a certain distance from their
‘mean field particle partner’ (which naturally shall be smaller the bigger the respectively
considered deviation is) seems to be a bit more promising heuristically. This, however,
is quite a big modification of the current approach and if implementation is possible at
all, there are in any case significant adjustments necessary.
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Chapter 4

Global classical solutions to
Vlasov-Poisson equation without
bounded kinetic energy

4.1 Objective of the chapter

While the two main results are concerned with justifying the application of Vlasov equa-
tion for the effective description of certain microscopic systems, the current chapter shall
present a rather subsidiary result regarding the solution theory to this equation. The
result is referred as ‘subsidiary’ since the solution theory to Vlasov-Poisson equation is
already distinctly better understood than the questions which are treated in the previous
chapters. On the other hand, the already established results concerning solution theory
are crucial for the approach which we introduced there. We required for instance on
several occasions that the ‘spatial density’ k(q) := [gs ki(q, v)d3v keeps bounded for all
finite times and fortunately we can rely on various results which guarantee this property
under relatively mild assumptions on the initial density (see e.g. [10]). However, | kt|/co
has also a special role in the theory of existence and uniqueness of solutions to Vlasov-
Poisson equation. For instance Loeper shows uniqueness of (weak) solutions to Vlasov
equation provided that the spatial density keeps bounded (see [21]). Moreover, the result
presented by Horst in [9] guarantees the local existence of classical solution provided that
the initial density kg € L£!'(R%) is continuously differentiable, non-negative and fulfills
the following constraints for all (¢,v) € R, some ¢ > 0 and a suitable constant C' > 0:

. C
(Z) kO(Qf”) < W
. C
(ZZ) IVkO((L U)’ S W

If the given existence interval is [0,7") and we are able to show that

sup ||ks|oo < 00,
0<s<T

then the solution can be extended to a larger interval [0,T'], T < T" (see for example
[24]). Thus, it suffices to control the growth of ||kl and the corresponding constraint
is referred to as the boundedness condition in [9]. As stated in (1.7) the additional
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assumption of an initially bounded kinetic energy

[ (a0 (a.0) < o

yields that the boundedness condition remains fulfilled and thus a global solution exists
in this case. Our aim is to show that this additional constraint is not necessary at all.
One might argue that an unbounded kinetic energy is unphysical and thus not interesting
at all. However, on the other hand the microscopic system constitutes the physically
relevant system and not its macroscopic description which is given by the solutions to
the effective equation. For a finite particle number we do not need to worry about the
boundedness of the kinetic energy related to the initial particle configuration no matter
if the kinetic energy belonging to kg is finite or not. Although the already existing
results concerning classical solutions are quite satisfactory, dropping the kinetic energy
as a constraint might nevertheless be an interesting question, in particular because it
determines a crucial tool in previous proofs.

There exists already a recent result concerning classical solutions where no bound on the
kinetic energy is necessary (see [4]). However, in this case a condition is needed which is
referred to as compact velocity-spacial support. More precisely, the existence of an o > 0
is required such that

sup{|z — av| : (z,v) € suppkp} < o0

where supp ko shall denote the support of kg which is quite different to the setting
considered by us.

Furthermore, results concerning weak solutions without bounds on the kinetic energy
can be found in [I1] and [30].

4.2 Formulation of the result and implementation of proof

Before stating and proving the Theorem we remark that many of the basic concepts are
already known from the proofs applied in the work of Pfaffelmoser [23], Schaeffer [25]
and Horst [10]. We try to present clearly the differences between the approaches which
are necessary in order that a bounded kinetic energy becomes dispensable.

Theorem 4.2.1. Let kg € LY(R®) be continuously differentiable and non-negative. If
there exists a constant Cy > 0 such that for all (q,v) € RS
C1
(1+ Jof)3+0
Ch
(1+ Jo[)3+0

(1) ko(g,v) <

(it) [Vko(g,v)| <

is fulfilled for some § > 0, then for any T > 0 there exists a unique, continuously
differentiable function k : [0,T] x R® — [0,00) satisfying the Vlasov-Poisson equation
(1.2) where k(0,-) = ko(-).

Proof. As mentioned previously, we already know that under the stated assumptions
at least a local solution exists and we only require an appropriate upper bound for the
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growth of ||k¢||so to show that the solution can be extended to arbitrary finite time spans.
In the following we apply our usual convention that for z = (z,2z) € RS the variable
describing the position in physical space shall be indicated by 'a while 22 describes the
velocity. We assume that the solution exists on [0,7") and define for ¢ € [0,7):
At):= sup sup |Ppso(te, ) — 2z (4.1)
(1z,22)€R6 0<s<t
The approach applied for instance in [10] aims to control the growth of such a variable.

It is straightforward to see by application of constraint (i) stated in the assumptions and
also shown in [9] that this provides us control on the growth of | k||~ because

c < C
(1+ 200 0)D*° 7 (14 max(0, [o] — A®#)))*

kt(qa U) <

which after integration over v concludes the proof if A(t) remains bounded. Hence,
controlling the growth of A(+) is exactly our aim in the following. To this end, we will
show that for any ¢ € [0, 7] the time 7(t) € [0, ¢] which shall be given by
t
7(t) :=inf {s € [0,¢] : sup |f *%T(lcpno(f))\dr > %} (4.2)
z/€R6 Js 2

is sufficiently small and by definition of A(t) it is straightforward to see that the set
related to the infimum is nonempty. Hence, instead of controlling the velocity change
of the characteristics directly, we first control the mean value of the force an arbitrary
characteristic ‘experiences’ over time. It will turn out that in this way we obtain addi-
tional information for the estimates which will be crucial in the end.
More precisely, we will show that there exist constants Ci,Cy > 0 such that for all
t € [0,T] it holds that

Alt)>Cr=t—T1(t) > Cs. (4.3)
Such a statement yields that

vt e [0,7]: At) < 021 (4.4)
This can be easily seen because by definition of 7 it holds for any z € R® and ¢ € [0, 7]
that

max, Poso(te,?x) — 2| — o X 2ps.0(te, 2x) — 2z

< ma 2 liL‘,Qx —2 1x,2:c
=8 g?gt’ ©s,0( ) = “er),0( )|

t ~
< [ 1< RCorotalar < 20
7(t)

(4.5)
where the first inequality can be seen as follows: If [2p; (12, 2z) — 22| takes its maximal
value for s € [0,t] already in [0,7(¢)], then the inequality is obviously fulfilled and
otherwise it holds by triangle inequality that

2 1,2y _ 2| _ 2 1.2,y 2
max [“ps0(x, ") —“af T(ﬁ?g‘fﬁ’ @so(x,“x) — x|
< max Peso(te,’z) = 20,0tz 22) + Porgolte, *x) — 2o

T(t)<s<t

Smaxogsgr(t) |2g05’()(1$,21’)—2x‘
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Since (4.5) holds for arbitrary = = (1z,2x) € RO, this relation implies that

A(t)

2 2 1.2

su max SO T, T < "‘ su max QO T, T)— $
xeRpts 0<s<t ’ s 0( ) | - :peRpG 0<s<7(t) ‘ s 0( ) ’

which in turn yields by definition (4.1)) that

A(t)
1 2 2
= _ >\
A(r(t)) = f;lﬂgl Oggf(t)l pso(Tx,“x) — “2| > 2
respectively
A(t) < 2A(7(1)). (4.6)

In total we obtain the following: If there exists ¢; € [0,7] such that A(¢;) > Cy and
condition is fulfilled, then it follows by relation that a further doubling of this
variable takes a time span larger or equal to Cs after time t;. Hence, the number of
further ‘doublings’ is bounded from above by {Clw which finally shows that the claimed
inequality indeed holds provided that is fulfilled (which we show in the fol-
lowing).

Before starting with the estimates we introduce for z € RS a partition of phase space into
five sets which will turn out to be very helpful shortly. Let ¢ > 0 respectively A(t) >0
then we identify for K1 > 0

(1) Mi(z) := {2’ e RS : |'a' — 12| < K1 A(t) 72}
(i) Ma(z) == {2’ € RS : ['a/ — 12| > A(t)"2}
(iil) Mz(z) := {2’ e R :
KiA®) ™2 < %! = 2| < min (A1) 72, Ky A(1)5 %) — 22[73)}
(iv) My(z) == {2’ e RO : K1A(t) 2 < M2/ — 12| < A(t)fé AP =22 > 2A(t)}

4
(v) Ms(2) = (| Mi(2))“
i=1
= {2/ e RO : |22’ — 22| < 2A(t) A
Kymax (A() 72 A@)5 %0 —2275) < |'a’ — 2| < A(t)"2} (4.7)

where the choice of the constant K; > 0 will turn out to be important in the end. The
partition is sketched in diagram where for a given z € RS the x-axis corresponds
to |'z’ — 12| and the y-axis to |*z’ —2z|. The areas related to (iv) and (v) are kept white
since they will be treated differently in the estimates. The idea to apply a partition
of phase space for the estimates is based on the work of Pfaffelmoser [23] and was
refined (for example) in [25] and [10]. Let z € R® be some given configuration. The
sets corresponding to the grey areas M;(z), i € {1,2,3} are constructed such that the
force exerted at 'z by the ‘mass contained in them’ keeps in any case sufficiently small
for our purposes. The situation is different for the white areas. Estimating simply
the maximal force which could be exerted in principle by mass related to these areas
would not work for proving the stated result. However, by definition only configurations
are contained in these sets which have a certain (distance-dependent) minimal relative
velocity value to the considered configuration z. Hence, in a time-evolved picture the
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>

Figure 4.1: Diagram of phase space partition

characteristics related to these configurations will only have a short ‘encounter’ and
move apart afterwards. Technically this picture can be realized by performing the time-
integration prior to the integration over phase space.

Now we start to implement these consideration. We remark that the constants C > 0
which we apply in this proof only may depend on properties of the initial density kg.
It obviously holds for any s € [r(t),t] and x € R® (which will be kept fixed for the
reasoning) that

/ 1+ Fe (Yoo (a))ldr

5 ot
= Z/ /]RG |f(190r,0($) — 1x,)‘kr(wl)lMi(sor,o(x))(xl)dﬁl‘/dr. (4.8)
k=1v"%

and it is straightforward to derive an appropriate upper bound for the contribution of the
first three addends to this sum. By apphcatlon of assumption (i) on the initial density
and definition it follows for all 2/ € RS and r € [s, ] that

1 < Ci
L+ o@D = (1 4 max(0, [22'] — A(1)))*

kr(2') <
which together with the definition of the set M;j(z) stated in the list yields:
[ o) = 0 0
</St/]R3 (0,K1A(t \q— <Pr0( )I) (/R3k( )1[02A (M)d3 )d3qdr

\q - SOT,O( )2

<Clkolloo A(1)?

oxine-(li—"ero@) 4 [ Cilgaweo(lo)
//R PR dq/m(mv\ A

SCKlA(t)72
<COK1||ko||soA(t)(t — 5) + CK1A()72(t — ) (4.9)
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Moreover, 1y, 1y, o(2)) () =1 Itz’ — Lo, 0(z)|) easily implies that

a0 00t

/ / Yor0(2) = ') Lan (o) (@) () d%2"dr < [[kolLA()(E — 5).  (4.10)

<A(%)

Due to the relation v > A(t) = (KlA(t)%vfg < K1A(t)™?) and the definition of M3(2)
stated in list , we obtain for the third addend:

/ / (pr o(z) — lx/) |k (13/)1M3(¢T,0(x)) (a:')dﬁx/dr

A(t) 1
2 3
<Cllkolloo(t - S)/O v (/R3 ‘q’Q1(0,K1A(t)32§v_§}(‘q|)d q) dv

2 8
<CK1A(t)3v™3

<CK(t—s)A(t)3 / M
0
<CKi(t — s)A(t) (4.11)

For the last two addends corresponding to the white areas in (4.1)) we proceed like
suggested in the previous considerations by first applying Tonelli:

/ / SOTO - 155,)|]€r($/)1Mi(%,0(m))(x/)dﬁzvldr
:/RG/ |f(180T,0($) - 1907",0(33/))|k0(x/)1Mi(¢Tyo(x))(sDr,o(x/))de6x/. (4.12)

In previous approaches the kinetic energy was a crucial tool for estimating terms where
the time integration is carried out prior to the integration over phase space and we try to
summarize roughly how it was usually applied. Since the kinetic energy keeps bounded
if it is initially bounded (also in the attractive case), one obtains an upper bound for the
amount of the mass having a velocity faster than some value at arbitrary times. This in
turn supplies an upper bound for the amount of mass the sets corresponding to the white
areas can in principle contain which is already very helpful by itself. However, it yields
additionally some constraints on the mass density k; which in turn provides a certain
control on the force field. This constraint on the force field was applied to derive a
lower bound for the time span where considered mass (reps. a considered characteristic)
keeps a velocity value of the same order. After having derived such a lower bound it
is straightforward to estimate terms of form because restricted to such (possibly
short) time periods the considered characteristics move more or less like freely evolving
particles. Taking additionally into account the upper bounds for the amount of mass
contained in these sets which (as mentioned before) are also determined by the kinetic
energy finally leads to the required estimate for .

Since according to our assumptions the kinetic energy is not necessarily bounded, the
approach we consider is quite different in this regard. Very roughly speaking, we choose
an arbitrary characteristic ¢. o(z) and estimates and upper limit for the ‘impact’ a further
characteristic ¢. o(z) can in principle exert on it on [s,t] when only times r € [s,t] are
taken into account where

ero(a’) € My(pro(z)) U Ms(pro()). (4.13)
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Looking at the form of the white sets in our diagram one easily sees that for
a given relative velocity value v between the characteristics we obtain a lower bound
for their minimal distance r in space at the relevant points in times (which are those
where condition is fulfilled). If their relative velocity barely changes, then it is
straightforward to see that their impact on each other is bounded by % On the other
hand, in the current case we have no suitable constraint on the force field and thus the
characteristics can in principle change their relative velocity very fast. Hence, the next
‘collision’ between the considered characteristics might occur after a very short time span
which on first sight makes it very hard to implement expedient estimates. However, in
any case for each repetition of such an event the characteristics have to change their
velocity and the condition on 7(t) provides us an upper bound for the total ‘velocity
variation’ a characteristic might pass on [7(t),t] (see (4.2))). This in turn yields us an
upper bound for the possible number of certain ‘collisions’ between two characteristics
on [7(t),t]. Thus, the plan is not to care about the ‘impact per time’ of a single ‘collision
event’ like in previous approaches but to derive directly an upper bound on the total
impact on [7(t),t] by application of the constraint provided by 7(t).

After this introduction we start with the slightly more complicated estimates for the set
M5 (y) because after the considerations for this set, My(y) is straightforward to handle.
As mentioned before, the definition of Mj5(y) ensures that the characteristics have a
suitably large relative velocity if they are close in position space and we want to apply
this for deriving an appropriate upper bound for

t
/ [f(Cero(@’) = ' oro(@)Lass (g0 (Pro(a’))dr (4.14)

which holds for any 2’ € RS and s € [r(t),
To this end, let 2’ € RS and for s € [7(¢),t

bs := inf{r € [s, ] : 1M5(M(I))(gpr,0(a¢’)) =1Vr=t}. (4.15)

Obviously, we only have to care about situations where by < t because otherwise (4.14))
is equal to 0 anyway. Moreover, we define the time interval [bs,es] C [s,t] by choosing
es <t maximal with the property that for all r € [bs, e4] the relation

1].
]

2 no_ 2
2 2 “ep.,0(2") — “pp,0()]
|Cero@) = 20ro(x)) = (Cop,0(@) = 2p, 0(2))] < 5

is fulfilled. Thus, value and direction of the relative velocity do not change too much
on the considered interval [bg, e5]. We regard the only interesting setting which is by < ¢
(and hence by < e5) and identify additionally

(4.16)

Tmin = f{|"oro(2") — Yoro(@)] 1 7 € [bs, €] A Lpgy(g,o(a) (Pro(2')) = 1}.

We remark that the infimum exists in this case because due to the definition of by the
considered set is nonempty if by < t. It follows by the fact that 2’ € M;5(z) iff

|?z' — 22| < 2A(t) A Kjmax (A(t)fz, A(t)§|2$’ — 2z|7§) <tz =1z < A(t)’%
and the continuity of ¢.(z) for z € RS as well as the constraint on es (see (4.16])) that

W
wloo

Tmin ZK1A@)5( sup [Poro(a’) = 2pro(2)])”

TE[bsyes}

wln
wloo

> K AWM G Pon.ole’) ~ %60,0(2) (4.17)
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Moreover, due to

min | oro(z )_1907",0( ) < Timin < max | oro(x )—1907"’0(%)‘
Te[b57es] E[bsyes]

there exists a point in time rg € [bs, es] where |Yo,, o(2") — Yor.0(®)| = Tmin. If we
abbreviate v := |%pp, o(2") — 2pp, 0()|, then it holds for all r € [bs, e;] that

v
‘190T,0(x/) - 1907“,0(37)’ 2 max (xmin7 517 = TO’ - xmm) 1M5((,9r,0(z))(§0r,0(x/))

5|
where the lower bound x,,;, arises directly by its definition and the second lower bound
by condition (4.16)) which implies for r € [bs, e5] that

'ero(a’) = oro(@)]

:‘(1%070(;,;/)_1%0,0(35))+/T (2%,0(33)— Pu0(T )dul

70

>Pop,.0(z") = 2pp,.0(2)[|r = 7o
}/ ‘PUO - SOuO( )) (Sobs, (z )—2<,0bs70(33))du|

<0 >2 2, 0@, o

~ "ero0(z') = toro(@)] -

=Tmin

However, this yields by application of ,;, > K 1A(t)%(%v)7% (see (4.17)) that
1 Cnala!) = orne D aror oo (e

€s—TQ
g/ ! ar< ¢ SQA(t)—%U%. (4.18)
b

s—ro Imax (wmm, slr| — g:mm)Q Tminv — K1

IN

We continue by implementing the further steps mentioned in the preliminary considera-
tions and recall that according to the definition of 7(¢) (see (4.2))) and s > 7(¢) we have
on the one hand the condition

t ~ At
swp [ 1f 5 Cgrolw)lar < 20
yeR6 Js
which in particular yields
t _ t "
/ 1 % T (mo (@) ldr + / 1 % T (Cmo(@))ldr < A(H) (4.19)
S S

and on the other hand the claim on e; (see (4.16))) which implies the last inequality of
the subsequent relation:

(717 Conotaldr + [ 17« FoCono@r)
> | (pes0(@’) = 2pe,0(2)) = (Peon,0(2") = 2pp,0(2)) | >

|-|=v

(4.20)

N <
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Thus, according to condition (4.19) the ‘acceleration or deceleration process’ taking
place on [bs, €] is in a sense connected with ‘costs’ § because for a certain v > 0 at most
[AR)(3)~ 1 = [2%} repetitions can occur on the time interval [s,¢] C [7(t),t]. More-
over, the ratio of ‘impact’ (see (4.18])) to ‘costs’ per cycle (or repetition) is monotonously
increasing with respect to v since

=

K
Eventually, we remark that according to the definition of the set M5(y), the point in
time bs and the continuity of the flow only values

3
KSA() < v =gy, o(z) — 290bs,0($)| < 2A(1)

are relevant for estimating the ‘collision integral’ (4 and thus it is straightforward to
conclude by the previous considerations that

t
[ 1 C0n0l@) = oro@) Pt (oraton (prol@ir < A0 (421
7(t) 1

More rigorously, this can be seen by covering the relevant time spans of [7(t),t] by such
intervals [bs, 5] where we recall that theses points in time were defined in and
(4.16). To this end, we identify ¢1 := b, and Ty := e, ;) which yields the first interval
[t1,T1] and as long as t, < t we define t,4+1 = by, and T,,4+1 := e, to receive the (n+1)-

th interval [ty 41, Th+1]. We mentioned previously that the minimal velomty change’ of

the characteristics on each such interval is bounded from below by order K SA( )176 and
thus the sequence ends after a finite number of steps. Let K denote the first natural
such that tx =t then we abbreviate vy := |*¢t, o(z) — 21, o(2’)| for k € {1,..., K} and
according to our previous considerations it holds that

t
/T 7 9n0(a) = 0 Wt (o

1

T;
e [ 10 = no(@) Lat oo (role! i

‘Q wl/\
M= 3

IA
=

sup A(t)*%v%) Z Vg

1 0<w<2A(t) 1
C

<—A(t

< A0
where in the second last step we regarded relation and in the last step the
constraints on the number of ‘cycles’ provided by (4.19 and which 1mply that
Zk 1 Uk < 2A(t). Consequently, the term related to M5( ) is bounded by & ¢ A(t) and
finally only one addend remains. For estimating this last term we point out in a first
step that the condition on 7(t) (see (4.2) implies that

vr,s € [1(t), 1] Peso(a’) = 2ps0(2) = Coro(a’) = *pro(@))] < A1)

If, on the other hand, there exists r € [7(t),t] such that ¢, o(2') € My(¢ro(x)), then the
definition of this set implies that [2p;.0(z') — 2, 0(z)| > 2A(t) and thus the component
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of (2ps,0(z') —2ps0(z)) in direction of (¢, 0(z') —2pr0(x)) keeps a value of at least A(t)
for s € [7(t),t]. Finally, we take into account that

ero(z') € My(oro(2)) = |"oro(@) = Yoro(z)] = K1A() ™ =t Tin.

By recalling the estimates which we applied for the addend related to M5(z) these
considerations easily imply that

/. / (oro(@) = n0(2)) Lty (Pr0(@)drko(a')ds’
6 I C x/ 61,/
< L rrm @@ = [ ea mam
égA(t). (4.22)
K

Merging all upper bounds (4.9)), (4.10]), (4.11)), (4.21)) and (4.22]), choosing s = 7(¢) and

applying the definition of 7(¢) (see (4.2)) implies in total that:

A(t)
— T sw /T( | # ke (Coro(@))dr
< c(l;1 + Ky (t— 7)) At) + cAfél)2 (t— (1))

=

< C(i + Ki(t—7(t))) + C%(t —7(t)) (4.23)

Ky (t)?
After K7 > 0 has been chosen large enough, the last inequality yields that there in fact
exist constants C1,C2 > 0 (depending only on the properties of kg) such that for all
t € [0, 7] the following implication holds

1
2

A(t)201:>t—7'(t)202

which completes the proof. O



Chapter 5
Appendix

Proof of Lemma

Proof. For a simpler comprehension of the proof we indicate the items which determine
important constraints on the applied maps also here: For some n € N and for all
t1 > 0, 1,29 > 0 the maps shall fulfill

(1) z1 <22 = folt1,71) < fa(tr, 22)
(11) 3K175>O: sSup |f2(S,l’)—f2(S,y)| SKl’l‘_y’

x,y€[f1(0),f1(0)+4]
s€[0,8]

t1 tn
fl(tl) —|—/ fZ(S,U(S))detn...dtQ < u(tl) VAN
(iif) o o
fith) +/ o | fa(s, U(s))dsdty....dty = U(t1)
0 0
The continuity of the different functions and condition (iii) yield that
0 <1(0) < f1(0) < u(0).

Now it suffices to show that there exists a point in time ¢; > 0 such that Vs € [0,#1] :
I(s) < wu(s) because in this case the monotony of the integral implies together with
assumption (i) and (iii) that

tn

l(tl) Sfl(tl) + /Ot1 fZ(S,l(S))detn...dtQ

0

31 tn
Sfl(tl) +/0 ; fQ(S,U(S))detn...dtQ < u(tl)

which yields in turn that the existence of a point in time where the statement of the
lemma does not hold can be falsified.

Due to the continuity of the maps the only case where the existence of a point in time
t > 0 such that Vs € [0,¢] : [(s) < u(s) is non-trivial arises if

f1(0) = u(0) = 1(0).
Thus, we restrict ourselves to this case and define the set

M(t) :={s€0,t] : l(s) —u(s) > 0}

141
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and remark that for s € [0,¢] \ M(t) it holds according to item (i) that
fa(s,1(s)) = fa(s,u(s)) <0 (5.1)

Moreover, let 0 < §’ < ¢ be small enough such that
sup |I(s) = f1(0)] <& A sup [u(s) — f1(0)| <4,
0<s<’

<s<¢’
then it follows due to the monotony of u that u(s) € [f1(0), f1(0) + 4] for all s € [0, ']
and thus I(s) € [f1(0), f1(0) + 4] for all s € M(6"). Now application of (iii) in the first
step, in the second step and (ii) in the third step as well as again the continuity of
the functions yields that for t; € [0, ']

max_(I(t) — u(t))

te[0,t1]
t tn
< max / / (f2(s,1(s)) = fa(s,u(s)))dsdty...dts
te[0,t1]
t1 tn
/ (fa(s, (s fz(s w(s))) Las(y)(s) dsdty...dta
t1 tn
<K1/ / 1M(t1)< )dsdtn..dtg
<tt'K
1K1 max (I(s) — u(s ))

which can only be fulfilled for all ¢; € [0,8'] if maxyepq (I(s) — u(s)) = 0 (where we
regarded in the last step the assumption [(0) = u(0)). O

Proof of Corollary (ii):
Proof. Let X = (X1,...,Xn) € R Y, Y; € RS and Av > 0 such that

max sup [pl(Ye) - (W00 < N7Ae (5.2)
ke{i,g} o<t<

for some 6 > 0 as well as
NP o(Ya) =Yt oY < Por . oY) =20l oY)l =Av.  (5.3)

where as usual t,,,;,, shall again denote a point in time where ]190,% (Y;)— gp N(Y;)| attains
its minimal value on [0, T]. It follows by Lemma that there exists a constant Cy > 0
such that

Av N
o = 0I<nt1<nT|30t0(Y) ero(; )|<0rgta<les0to(Y) pi0(Y;)] < CoAv (5.4)

and for large enough N € N it holds according to (5.2)) that
min [[U7(X)]; — (L7 (X)];|

0<t<T
Av
> . NY— NY _2N75A >7—2N76A
_OIS%lSnT‘@t,O( i) ‘Pt,o( ] v > o "
Av
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Let for t’ € [0,T] and Cy > 1¢]

min

denote a point in time where ][1\111\6()()]1 - [IW%(X)]j]
attains its minimum on [¢/, t’+c—1]. For a compact notation we identify X; := [\IIQ:WIO(X)]Z
and X; := [ o(X)]j~

If \1)21 1X | > 4C , then the properties of the map hy easily yield that

trin Ty
/t, oy (20, — [ (X)])lds

min

1 1 C 1 1
<C’m1n( ﬁ)g—min(~ AT —).
1X lXj‘a Av C?\l_ ‘lXi _ lXj‘O‘_l
In the following we consider the remaining case ]1)~Q 1X | < ior Wthh due to relation

(5.5)), however, implies that
400‘15(:1‘ - 15(:]" < Av < 4CQ|2Xi - QXj‘. (56)
Moreover, according to Lemma, 2 it holds for all |s — tyin| < C% that

2N (¥i) — 20N0(Y)) — Gl o(Y7))]

'mzn7 (}/Z) a S01(:;71171,’
<C|s — tmm\<\ <Pt;nm,0(Y;‘) - @t;mmo(yjﬂ
12l o) =20l o(Vlls = thi )

which by application of relations (5.2)),(5.4]) and (5.6) yields that

2N (%) — 25 (¥) — Gl o) =26l (V)]
<C|s =t il (( \1)?1 — 1)?3'] +2N7‘$Av) + CoAv|s — t;mn|>
—_—
<|2)?i—2)~<j|
<C‘S - tmzn” 2Xj| (57>

According to this estimate and (5.2)) it follows for sufficiently large values of N € N and
|t — | < & that

m'm

[N (X)) = (X)) — (X —1X5) — (X = 2X;)(t— ¢,

= [ PENCOL - PR, s - (2K - 2K, -

mm) }

0(Y7) = CXi = 2X))|lt =t

+ ‘ SOt/ (Y) — (pt/

m'm,’

<2 sup  sup |ooo(Ye) — [Vl (X)]kl[t =t
ke{z]}0<s<T

+O‘ XZ 2X Ht tmin

+2 sup sup ‘SOSO(Y/C) [‘Il ( )]kHt mm|
ke{i,j} 0<s<T

| 2
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<ANT  Av |t

<C]2X;—2X;|

trin] + C1PX; — 2X|[t — thynl? (5.8)

— Ymin

where in the last step we regarded relation .

Thus, in this case the ‘real’ particles fly apart almost like freely moving particles for a
possibly short (but N- and X-independent) time span after a collision exactly like the
‘mean-field particles’. Just like in the proof of part (i) this implies that

t;nmJFcil
/t, [ (M2 (X0)])i — M0 (X)];)lds

< C . ( 1 1 )
= — min (——, ——= —

CPXG -2 CTLD GRS ¢l
—min( L ! )

_A’U Ca—l ‘15(11 . IX ‘a—l .

where the last step follows again due to (5.6)).

Since ¢ € [0,T] was chosen arbitrarily and the length of the time interval C% can be
selected independent of X and N, this estimate can again be ‘extended’ successively to
the whole time period [0, 7] such that

T
/ e (O (X)) — L0 (0], |ds

0
1 1
<C'min ( - ) p N a— )
ey 1 Av min [P0 (X)]; — [M (X))~ Av

Proof of Lemma (ii):

Proof. Now we want to conclude the proof of Lemma [2.1.4] The statement is only
interesting if Ax < 1 and thus we consider only such values in the following.
Furthermore, we only make the estimates explicit for the most interesting choices of Y
since the proof for the remaining options is straightforward. More precisely, we only
consider Y where |2Y| > 2supyey supg<s<t | fY * kN ||ooT (which obviously implies the
relation 3[2Y| < ‘QQDI{YO(Y)’ < 22Y| for all t € [0,T]). We call this the most interesting
case because if one argues solely by the idea (or picture) of a ‘Boltzmann collision
cylinder’ the postulated statement could not be verified if |>Y| can be chosen arbitrarily
large. However, by application of the decay of kg it is possible to show that such a
‘mean-field particle’ will move inevitably to areas of low density which will eventually
enable us to show that this statement is nevertheless valid.

Thus, if Y € RS is chosen like described before, then for arbitrary M € N the subsequent
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relationship holds:

3t € [0,T]: ['eo(Y) = '9l0(2)] < Az
=Y 17| < Az v (Hk € {0,..., M —1}:

T
1, _N 1, _N 2
(Az < | gok%’O(Y) — %%,O(Z” < Az + 3| Y|M v (5.9)
T
1. _N 1,_N 2
Ar < 'l (V) = 1¢lr (2)] < Ao +3122] 1) ) (5.10)

For this conclusion one has to regard that 3 max(|>Z|, |*Y|) is an upper bound for the
value of the relative velocity between the ‘mean-field particles” due to the current con-
dition that [2Y| > 2supgeser || fN * kN || oT.

Since |[ko||oe < 00, it follows that the probability of the event |'Y —1Z| < Az is bounded
by CAz? < CAz? where we regarded that Az < 1. Despite their apparent similarity
assumptions and differ because Y € R shall be an arbitrarily chosen con-
figuration (except for the current assumption that [2Y| shall be ‘large’) while Z € R® is
random. Thus, the more interesting statement is and if we are able to show that
the corresponding probability is sufficiently small, then of course the same is true for
the remaining statement.

For convenience we assume that ['Y| = ming<,<r ['o)o(Y)[. If [*o(Y)| attains its
minimum at another moment ¢ € [0, 7], then the reasoning is analogous except for the
slight difference that one has to apply the same arguments in both time directions start-
ing from time t.

It is straightforward to see that the boundedness of the mean-field force (which is a con-
sequence of supg< <7 ||k ||« < C) implies that a relation of the form k¥ (Z) < W
(for all Z € R®) which by assumption holds for ¢+ = 0 also holds at later times if the
constant is adjusted. More precisely, if we abbreviate

fma:c ‘= Sup sup HfN *EiVHOO < 00,
NeN0<s<T

then it holds for any ¢ € [0,7], N € N and X € R® where |2X| > 2fynazT that

- < -1 -5 -
o)) > 1] = PRIt = 3 maat? > 1] - STPR]
~ ~ 25
PR 2 PRI fast 2 1

which yields

0:(X)| = ;('25' + max(0, L] - 3712%)))
> SL%TW (2[ZT} X | + max(0, |' X| - ZTIQX\))
> 8(% (11X +1X)).



146

This implies for X e RS, |2)Af | > 2fimasT that

N/ N/ C (8[%T])4+60
k' (X) = ko(p0,4(X)) < (14 [, (X) )+ L

If on the other hand LX| > 2fmaeT > |2X], then it holds that

2
77|

- - -1
Mo (X)) > ['X| = [PX |t - ifmmt2

KPR PR PR

1y 1y 2y
eIk (X1 Xty ['X]+ PX]

s
Xt —

"X 14[T7] ) - 2

which easily yields that also for such configurations there exists a constant C' > 0 such

that kN (X) < W. Configurations where neither of these two conditions hold at

least fulfill 2X| < 2fmazT A |'X| < 7fmae[T]? and are thus contained in a bounded
subset of R®. This, however, yields due to ||ko||oc < 0o that we can adjust the constant
such that the condition on the decay is fulfilled for all X € RS.

Hence, for the configurations Y € R which we consider it holds that

(Z2)k¥(2)

<1 Z o

S {Z€R6:|lwgo(y)_12|§2Ax}( )W

<1, 5 Z -

= {zeR6z|1go,§Yo(Y)—1Z|§2M}< )(1+ 2Y[t +[2Z])*+0

1{ZGR6:|1¢§YO(Y)JZ|QM}

where the last step follows after taking into account our convention regarding the adap-
tations of constants C' > 0 together with the fact that due to our conditions on Y (which
are |'Y| = ming<s<r \1@50(Y)| and |2Y| > 2fma:T) and the assumption 0 < Az < 1 it
holds that

oro(Y) —1Z| < 2Ax

1 1
=[1Z| > *eN(Y)| =248z > PY |t — = sup fmaet® — 20z > Z|PY |t — 2.
’ 2 o<s<T 2

This yields in turn that the following holds for k£ € {0, ..., M —1} and large enough values
of M such that %PY\ < Auz:

T
P(Z eR%: Az < \190]]:%70()/) - 1%%70(2)1 < Az + 3\2Y]M)

_ _ _ 6
_/RG 1{Z€R6:Ax§|1¢iv%7O(Y)*19"£,%70(Z)‘SAWF?’PY\%}(Z)ko(z)d Z

— - _ N 6
_/Re 1{Z€R63A93§|150;€V%,O(Y)*IZ|§A€U+3\2Y|%}(Z)kk%(Z)d A

¢ 6
< /]RG 1{ZeR6:Ax§|lgog%,O(Y)JZISAer?»\ZYI%}(Z) (1+ |2Y|k% + 2Z])4+9

T [*® 1
gCAx2|2Y|/ = ViV
M Jo (14 PY|kd + |V])H0
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T 1
<CA2*?Y|— :
~ T ’ ‘M (1 + ’2Y’k%)1+5
Consequently,
IP(Z €RC: (ke {0,..., M —1}:
Az < |! y)-1! Z) <A 2y L
2 < Moz oY) = "oz o(2)] < A+ 312Y| )
M-1
T 1
SCAL?PY|— ) -
M = (14 [2Y|kgp)tHo
T o 1
<CAZ*PY|—(1 +/ dx
= ‘ ‘M( 0 (1 4 ‘2Y|%$)1+6 )
<CAz?
and part (i7) of the lemma follows. O

Proof of Lemma (iii):

Proof. First, we abbreviate for M,n € N Ay := % and t), :=t; +n%. We remark
that the circumstance that there exists a constant K; > 0 (independent of V) such that

sup ||fN *E,VHOOT < K;
0<s<T

easily yields supy< <7 |22 (Y)| < [?Y|+ K, for any Y € RE.
If there exists a point in time ¢ € [¢;, t2] such that

Mero(X) = eio(2)] < Az,
then the previous considerations imply that one of the subsequent ‘events’ must occur:
Moty o(X) = ol o(2)| < Az v (5.11)
<E|n € {0,...M —1},3Y € {X, 2} :
(Az < 'of o(X) = 1ol o(Z)] < Az +2(PY |+ Ki)Aum) A
max(|X2],22]) < R)v (5.12)

(?PX|> RV |°Z| > R) (5.13)

because maxye(x,z} 2(]*Y| + K1) determines an upper bound for the relative velocity
of the respectively considered ‘mean-field particles’. We assume in the following that
R > 0 is chosen large enough such that

P(?X|> RV |*Z| > R)

can be neglected. By symmetry it suffices to consider the case Y = X for the probability
estimates concerning condition ([5.12)). If for a given R > 0 the value of M € N is chosen
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such that % < Az, then it holds for n € {0,..., M — 1} that
]P’(Ax < "ol o(X) = o o(2)] < Aw + 2(PX| + K1)Apr) Amax(1X?],|22]) < R)

S/RG /RG 1{Y€R6:Aa:§|1cpgpo(X)—lwf\:po(Y)|§Az+2(\2X|+K1)AM}(Z)

t/

gy ero.pyi<ry (X)ko(2)ko(X)d® Z2d° X

N 6
= /RG ( /RG Lyers:aosiol (X)-vI<arta(2x|+K0)ay} (DR, (Z)d Z)
Ly ero 2y <ry (X )ko(X)d° X

<c/ 1 o AZ2(2X] + K1) Anr gyepooy <y (X o (X)d X

<CA2?Ay | ( PX| 4+Kp)ko(X)d° X
R6 S~~~
<1+2X|?

<CAz* Ay

where we applied that the kinetic energy related to ko is bounded (see ) which yields
that we obtain an upper limit for the value of the integral which does not depend on R.
Summing up the probabilities for n € {0, ..., M —1} and regarding Ay = 21 tl concludes
the proof. O
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