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1 Zusammenfassung 

Adoptiver T-Zelltransfer ist ein Therapieverfahren, bei dem Patienten-eigene 

T-Lymphozyten mit einem tumorspezifischen Rezeptor transduziert werden, um 

eine anti-tumorale Aktivität zu induzieren 

 

Trotz vieler Fortschritte birgt dieses Verfahren auch Risiken. Eines ist die 

Bildung autoreaktiver T-Zellen: Die Erkennungsdomäne des T-Zellrezeptors ist 

ein Dimer aus α- und β-Kette. Daher kann, durch Hinzufügen eines zweiten 

T-Zellrezeptors in eine T-Zelle, ein weiteres Dimer aus einer nativen und einer 

exogenen Kette entstehen. Ein solcher, fehlgepaarter (’mispaired’) Rezeptor 

kann potenziell neue Antigene erkennen und Autoimmunreaktionen auslösen.  

 

Gegenstand der vorliegenden Arbeit ist es eine neuartige 

T-Zellrezeptormodifikation zum Unterbinden von Mispairing zu untersuchen. 

Dazu vertauschten wir die konstante oder die variable Domäne zwischen den 

Ketten (’domain crossover’). Dieses Prinzip wird bereits erfolgreich beim Design 

von bispezifischen Antikörpern eingesetzt, um Mispairing zu vermeiden und 

könnte sich dank großer Homologie auf T-Zellrezeptoren übertragen lassen. 

 

Bei Transduktion der gekreuzten Rezeptorketten in murine T-Zellen, stellten wir 

zunächst keine Oberflächenexpression, jedoch eine intrazelluläre Akkumulation 

von gekreuzten α-Ketten fest. Nach Beseitigung einer Interferenz durch die 

Linkersequenz stellte sich eine temporäre Oberflächenexpression der α-Kette 

des gekreuzten Rezeptors ein. Transduzierten wir jedoch nur eine einzelne 

Kette, so war keine Oberflächenexpression nachweisbar. Wir folgerten, dass 

auch die grundsätzlich nicht mehr detektierbare β-Kette exprimiert wird und sich 

gekreuzten Ketten erfolgreich mit CD3 Untereinheiten zusammensetzen.  

 

Um eine stabile Oberflächenexpression zu ermöglichen, fügten wir 

Disulfidbrücken ein und veränderten die genaue Kreuzungsstelle innerhalb der 

Ellbogenregion, welche die variable und konstante Domäne verbindet. Es ließ 

sich jedoch keine dauerhafte Oberflächenexpression erzielen. Somit sind 

andere Strategien erforderlich um Mispairing zu verhindern oder zu reduzieren.
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2 Abstract 

Adoptive T cell transfer is a novel approach for cancer treatment in which 

patient’s T lymphocytes are extracted and genetically modified to redirect these 

against the cancer cell. 

 

However, there are still a number of risks and limitations to this approach. One 

is the formation of autoreactive T cell: The antigen-recognizing part of the T cell 

receptor is a dimer of an α- and a β-chain. Accordingly, transduced T cells can 

express ‘mispaired’ T cell receptors that comprise a native and an exogenous 

chain. These heterodimers can cause autoimmunity if they target self-antigens.  

 

The aim of this study was to investigate a novel approach against mispairing by 

transferring either the variable or the constant domain of one chain across to 

the other chain. This concept is already successfully employed in the design of 

bispecific antibodies to avoid mispairing and may be transferable due to a high 

degree of homology between T cell receptors and antibodies. 

 

The transduction of crossed receptors into murine T cells did not result in any 

surface expression. We observed an intracellular accumulation of α-chains. 

After a redesign eliminating an interference with the linker sequence, we found 

a temporary surface expression of α-chains in one of our constructs. However, 

when transducing only the single chain, we could not detect surface expression. 

We concluded that, while undetectable, the β-chain must be expressed when 

transducing with the bicistronic vector and that the crossed T cell receptor 

assembles correctly with the CD3 subunits.  

 

Finally, we aimed at stabilizing surface expression of the crossed receptor. We 

added an additional disulfide bond between both chains at different locations 

and changed the exact location of the domain cross-over in the so-called elbow 

region, which links the variable and the constant domain of each chain. Yet, a 

sustained surface expression of crossed T cell receptors could not be achieved. 

Alternative strategies are thus needed to prevent TCR mispairing.
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3 Introduction 

3.1 Cancer immunotherapy 

Adoptive cell therapy (ACT) is a highly promising, however not yet approved 

form of cancer immunotherapy (Pedrazzoli et al. 2012). In ACT, tumor-specific 

cytotoxic T cells are expanded and stimulated in vitro to elicit an antitumoral 

response upon reinfusion to the patient. Clinical studies have shown the 

efficacy of this approach even in patients with advanced and refractory disease 

(Rosenberg et al. 1988, Dudley et al. 2002) 

 

In clinical studies, two main approaches are employed to generate the required 

T cell population: Isolating and expanding pre-existing tumor-specific 

lymphocytes ex vivo or genetic modification of T cells that are initially not 

tumor-reactive (Pedrazzoli et al. 2012). The former relies on isolation of 

tumor-infiltrating lymphocytes (TIL) out of tumorous tissue (Wu et al. 2012) - a 

process which is considered a critical limitation to TIL-based ACT, as many 

tumor entities do not possess sufficiently many TIL to allow for ex vivo 

extraction (Restifo et al. 2012). This limitation is overcome by the latter 

approach: In gene transfer-based ACT (gtACT), patients’ T cells are genetically 

engineered to become tumor-reactive. This is commonly achieved by either 

transferring a tumor-specific TCR or a chimeric antigen receptor (CAR), 

directing cytotoxic T cells towards the tumor (Sadelain et al. 2003, Hughes et al. 

2005).  

 

However, both forms of ACT share other considerable limitations regarding 

effectiveness and safety. As ACT critically depends on antigen recognition and 

T cell activation, tumors that impair either of these pillars can escape an 

effective T cell response: Tumors can circumvent antigen recognition by either 

loss of target antigens (Maeurer et al. 1996) or a downregulation of major 

histocompatibility complex class I expression (MHC I) (Ferrone et al. 1995, 

Restifo et al. 1996). Also, it has been shown that a variety of tumors create an 

immunosuppressive milieu by soluble and membranous molecules such as 
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transforming growth factor β (TGFβ) or programmed death ligand 1 (PD-L1) 

(Dougan et al. 2009), as well as recruitment of immune-regulatory cells like 

regulatory T cells (Treg) (Antony et al. 2005) or myeloid derived suppressor 

cells (MDSC) (Payne et al. 2012). In solid tumors, poor access to the cancerous 

compartment, leading to “immunological ignorance” is also considered a 

relevant hurdle to an efficient anti-tumoral T cell response (Ochsenbein et al. 

1999).  

 

Some of these limitations can be addressed by a lymphodepleting pretreatment, 

which has significantly increased the initial response rate up to 72% and has 

even resulted in long-term regressions (Dudley et al. 2008, Rosenberg et al. 

2011). Lymphodepletion, either by total body irradiation (TBI) or chemotherapy, 

is thought to enhance ACT by the following mechanisms: For one, it creates a 

niche in lymphatic organs and bone marrow for transferred T cells to proliferate 

and persist (Dudley et al. 2002). Secondly, it decreases the number of 

immunosuppressive cells fostering a stronger antitumoral response (Gattinoni et 

al. 2005, Kmieciak et al. 2011). And finally, it is believed, that the induced tissue 

damage leads to the release of proinflammatory cytokines, which in turn attract 

immune cells to the location of the tumor (Payne et al. 2012). 

 

Yet, safety concerns remain: The two most important dangers are the creation 

of autoreactive T cells and the malignant degeneration of the infused 

lymphocytes. While the first is usually explained by off-target reactivity causing 

damage to healthy tissue and a potentially lethal “cytokine storm” (Schumacher 

2002, Riechelmann et al. 2007), the latter is due to the highly active viral 

promoters, randomly inserted into the cells genome, potentially activating 

oncogenes or causing insertional mutagenesis (Woods et al. 2003). When 

contemplating the risk of autoreactive T cells in gtACT, the main consideration 

is the target antigen. It requires careful selection and extensive research to 

choose an antigen which is expressed on as many cancer cells as possible, but 

at the same time remaining specific.  
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3.2 T cell receptor mispairing 

Even with the most careful selection of cancer antigen, the danger of 

self-reactivity cannot be completely contained in gtACT. This is due to the 

structure of the TCR: The TCR is a multimer, comprising a heterodimer of two 

chains, the alpha (TCRa) and the beta (TCRb) chain, which together recognize 

an antigen fragment in the context of a MHC-I molecule. When transducing a 

T cell with a cancer specific TCR, the expression of the endogenous TCR is 

unaffected. Hence, a transduced T cell expresses two different TCRa and 

TCRb chains each. However, these four proteins cannot only form two 

functional TCR, but four: Next to an all-endogenous and an all-exogenous TCR, 

two further TCR can form by heterodimerization of an endogenous and an 

introduced chain. It was long hypothesized that these mispaired TCR (often 

referred to as heterodimeric TCR) could potentially recognize MHC-I coupled 

self-antigens (Merhavi-Shoham et al. 2012), even when neither the 

endogenous, nor the introduced TCR would do so (Figure 1).  
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Figure 1: T cells transduced with a cancer-specific TCR can become autoreactive: Even though 
neither the original (right), nor the introduced TCR (top) recognize self-antigens, T cells can attack healthy 
cells because of mispaired TCR chains (left and bottom) (Engels et al. 2007).  

 

For a long time, this effect has been a subject of discussion as – though in 

theory plausible – it was never directly proven. In 2010 Bendle et al. brought 

forward compelling evidence that mispairing can cause severe toxicity in a 

mouse model. Their group described an effect, which they named TCR gene 

transfer-induced graft-versus-host disease (TI-GVHD). In their study, mice 

treated with TCR-transduced T cells followed by an IL-2 regimen experienced 

severe autoimmune reaction and had a close to 100% mortality within days 

after treatment. Further investigations demonstrated that this was also true for 

T cells which were only transduced with either TCRa or TCRb alone (Bendle et 

al. 2010). As TCR surface expression is tightly controlled within T cells and 

dependent on correct TCR-CD3 subunit assembly, a single TCRa or TCRb will 

be retained within cells (Bonifacino et al. 1989). This in turn means that a 

TCR-mediated autoimmune reaction in the setting of single-chain transfer can 

only be explained by a heterodimerization of endogenous and introduced chain. 

The said publication also showed, that when using a modified TCR with 

somewhat better pairing properties, toxicity could be reduced.  

CD#8+&T#Cell&

Introduced&
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Tumor&Cell&

Healthy&Cell&Healthy&Cell&
Self&an>gen&
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In addition, the expression level of an introduced TCR is reduced by mispairing 

with an endogenous TCR and heterodimers competing for CD3 assembly. Yet 

the expression level of a TCR is crucial for T cell function (Labrecque et al. 

2001). So, next to potential danger of autoimmunity, mispairing may also limit 

effectiveness of TCR gene transfer. 

 

Several attempts have been made to tackle this problem. Some approaches 

aim at limiting heterodimerization by preferential pairing via additional disulfide 

bonds (Cohen et al. 2007, Kuball et al. 2007) or partial murinization (Cohen et 

al. 2006). Others diverge more strongly from the natural TCR structure by 

creating fused TCR-CD3ζ proteins (Willemsen et al. 2000) or single chain TCR 

(Figure 2) (Bendle et al. 2009). All of these modifications showed less 

mispairing, however only the single chain and the TCR-CD3ζ approach abolish 

mispairing completely (Zhang et al. 2004, Sebestyen et al. 2008). In turn, with 

more structural differences to a native TCR, there is a possible decrease in 

sensitivity (Zhang et al. 2004) and higher potential for immunogenicity (Uckert et 

al. 2009). 

 
Figure 2: Possible modifications of a native TCR to reduce or avoid mispairing. (A) Native TCR. (B) 
Additional disulfide bond. (C) Murinization of constant domains. (D) TCR-CD3ζ fusion protein. (E) Single 
chain TCR (Govers et al. 2010). 
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3.3 Crossed monoclonal antibodies 

Another - albeit less severe - case of mispairing exists in biotechnology: When 

producing unmodified bispecific antibodies by hybridoma cell lines (so called 

‘quadromas’) two heavy and two light chains are produced. The formation of the 

desired bispecific antibody depends solely on correct pairing. Without further 

optimization, the yield of the desired antibody is only one tenth of all produced 

immunoglobulin (Milstein et al. 1983) (Figure 3).  

 
Figure 3: Four of the twelve possible products when producing a desired (A) bispecific antibody. 
The three undesired side products (B-D) result from mispairing of light chains. The other side products (not 
shown) result from homodimerization of two identical heavy chains (Schaefer et al. 2011).  

 

Schaefer et al. showed that the possible mispairing between heavy and light 

chains can be completely abolished by a crossover of either the variable or the 

constant domains in one antibody arm. The function of such a “CrossMab” is 

not impaired compared to the unmodified antibody (Schaefer et al. 2011). 

Schaefer et al. hypothesized that chain alignment works by specific steric 

interactions of the different domains to their partner domain. That is, a domain 

of a heavy chain can only pair with the corresponding domain of a light chain. 

Therefore, a crossover of domains prevents a pairing of a crossed and an 

uncrossed chain (Figure 4). 

 

   
Figure 4: Domain crossover abolishes mispairing of heavy and light chains in bispecific 
antibodies. Crossing domains of heavy and light chains among each other (B) prevents unwanted 
heterodimerization of heavy and light chains (i.e. yellow-blue and turquoise-red), which occurs in 
unmodified antibodies (A) (Schaefer et al. 2011). 
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3.4 Rationale and goals 

Since TCR chains and light chains of antibodies both belong to the 

immunoglobulin superfamily (Barclay 2003), the approach described above may 

well translate to mispairing of TCR. In order to evaluate this hypothesis, we 

designed two “CrossTCR” (xTCR) and assessed their pairing properties and 

functionality. 

 

 
Figure 5: xTCR: By exchanging either the constant (B) or the variable domain (C) of an unmodified TCR 
(A) two xTCR were designed, to examine their pairing properties and functionality the specific steric 
interactions between the domains (displayed as ‘knob in hole’) should prevent mispairing of crossed and 
uncrossed chains.  

 

As a model, we chose the MHC class I-restricted, ovalbumin-specific TCR 

(OT-I TCR). We considered this the optimal candidate for several reasons: The 

OT-I model is one of the most common models for testing ACT in mice. There 

are cancer cell lines such as the Panc-OVA that specifically overexpress the 

recognized OVA peptide, creating an ideal testing ground for ACT in a mouse 

tumor model (Kobold et al. 2015). Furthermore, the OT-I TCR showed severe 

TI-GVHD in the work Bendle et al., supplying an in vivo model to test for 

mispairing side effects. And finally, this approach also allowed for a direct 

analysis of chain expression via flow cytometry, as there are commercially 

available antibodies that detect the OT-I TCR α- (i.e. anti-Vα2) and TCRβ-chain 

(i.e. anti-Vβ5) (de Witte et al. 2008).  
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In this thesis, the following questions will be addressed:  

1. Can crossed T cell receptors be stably transduced into primary murine 

T cells?  

2. Do transduced T cells show surface expression of xTCR?  

3. How does the location of domain crossing affect surface expression? 

4. Do additional disulfide bonds change xTCR surface expression? 
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4 Materials 

4.1 Chemicals 

Table 1: List of chemicals 

Acetic acid Merck, Darmstadt 
Agarose Biozym Scientific, Oldendorf 
Calcium chloride Merck, Darmstadt 
Chloroquine Merck, Darmstadt 
Dimethyl sulfoxide (DMSO) Sigma, Steinheim 
Disodium hydrogen phosphate 
monohydrate 

Merck, Darmstadt 

Glycerol Carl Roth GmbH, Karslruhe 
Isoflurane Abbott, Zug 
Magnesium chloride Carl Roth GmbH, Karslruhe 
Potassium acetate Carl Roth GmbH, Karslruhe 
Potassium chloride Merck, Darmstadt 
Rubidium chloride Carl Roth GmbH, Karslruhe 
Sodium chloride Carl Roth GmbH, Karslruhe 
Trypan blue Sigma, Steinheim 

 

4.2 Antibodies 

Table 2: List of antibodies 

Antibody Stock concentration Manufacturer Clone 
Anti-Mouse CD3ε 1.0 mg/ml eBioscience 145-2C11 
Anti-Mouse CD28 1.0 mg/ml eBioscience 37.51 
FITC Rat Anti-
Mouse Vα2 TCR 

0.5 mg/ml BD Pharmingen B20.1 

PE Mouse Anti-
Mouse Vβ 5.1, 5.2 
TCR 

0.2 mg/ml BD Pharmingen MR9-4 
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4.3 DNA Primers 

Table 3: List of Primers 

pMP71 seq fwd 5’-CAG CAT CGT TCT GTG TTG-3’ 

pMP71 seq rev 5’-CAT TTA AAT GTA TAC CCA AAT CCA-3’ 

OT-I seq centre 5’-CTG GTC CAA CCA GAC CAG CTT CAC ATG 
CC-3’ 

OT-I co seq centre 5’-AGC AAC TAC AGC TAC TGC CTG AG-3’ 

OT-Iα NotI fwd 5’-ATT AGC GGC CGC GCC ACC ATG GAC AAG 
ATC CTG-3’ 

OT-Iα p2A rev 5’-CAA AGT CTG TTT CAC CGG GCT GCT CCA 
CAG CCT CAG-3’ 

p2A OT-Iα fwd 5’-CTG AGG CTG TGG AGC AGC CCG GTG AAA 
CAG ACT TTG-3’ 

p2A OT-Iβ rev 5’-AGC ACC CGC GGG GCC ATT GGG TTG GAC 
TCC ACG T-3’ 

OT-Iβ p2A fwd 5’-ACG TGG AGT CCA ACC CAA TGG CCC CGC 
GGG TGC T-3’ 

OT-Iβ EcoRI rev 5’-TAA TGA ATT CTC AGC TGT TCT TCT TCT 
TCA CCA-3’ 

OT-Iβ NotI fwd 5’-ATT AGC GGC CGC GCC ACC ATG GCC CCG 
CG-3’ 

OT-Iβ p2A rev 5’-GCT GCC GCT GCT GTT CTT CTT CTT CAC 
CA-3’ 

p2A OT-Iβ fwd 5’-AAG AAG AAC AGC AGC GGC AGC GGC GC-
3’ 

p2A OT-Iα rev 5’-ATC TTG TCC ATG GGC CCA GGG TTT TCC 
TC-3’ 

OT-Iα p2A fwd 5’-CCC TGG GCC CAT GGA CAA GAT CCT GAC 
CG-3’ 

OT-Iα EcoRI rev 5’-TAA TGA ATT CTC AGC TGC TCC ACA GCC-3’ 

scOT-Iα co Not-I fwd 5’-ATT AGC GGC CGC GCC ACC ATG GAT AAG 
ATC CTG ACC GCC-3’ 

scOT-Iα c/v EcoRI rev 5’-TAA TGA ATT CTC AGC TGG ACC ACA GCC 
GC-3’ 

scOT-Iα va Not-I fwd 5’-ATT AGC GGC CGC GCC ACC ATG GCT CCT 
AGG GTG CTG G-3’ 

scOT-Iβ co NotI fwd 5’-ATT AGC GGC CGC GCC ACC ATG GCC CCT 
AGG GTG-3’ 
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scOT-Iβ va NotI fwd 5’-ATT AGC GGC CGC GCC ACC ATG GAC AAG 
ATC CTG ACC GC-3’ 

Signal-β myc-tag rev 5’-CCT CCT CGC TGA TCA ACT TCT GCT CGG 
TGA CCC AGC TCA GCA G-3’ 

v-β myc-tag fwd 5’-AGA AGT TGA TCA GCG AGG AGG ACT TGG 
TGT TTC TGC TGG GCA CC-3’ 

OTIβ c/v p2A rev 5’-TGC CGC TGC TGT TCT TCT TCT TGA CCA 
TG-3’ 

p2A OT-Iα co rev 5’-CTT ATC CAT GGG CCC AGG GTT TTC CT-3’ 

p2A OT-Iα va rev 5’-GGA GCC ATG GGC CCA GGG TTT TCC-3’ 

OT-Iα co p2A fwd 5’-CCT GGG CCC ATG GAT AAG ATC CTG ACC 
GC-3’ 

OT-Iα va p2A fwd 5’-TGG GCC CAT GGC TCC TAG GGT GCT GG-3’ 

OT-I ba c/v F131 fwd 5'-AGC AGT ATT GTG GCC CTG GCA CGC G-3' 

OT-I ba c/v F131 rev 5'-CCA GGG CCA CAA TAC TGC TCG TAG TTG 
GCC CG-3' 

OT-I ba va Y148 fwd 5'-CGC CGT GTG CCA GCT GAA GGA CCC CAG 
AA-3' 

OT-I ba c/v S157 rev 5'-CGG CCT TGC AAG GCT CGA ACA GGG ACA 
C-3' 

OT-I ba c/v G71 fwd 5'-CGG CGA GTG TCC TGC CCT GCT GAT CTC 
CAT C-3' 

OT-I ba c/v G71 rev 5'-GGG CAG GAC ACT CGC CGG GGA ACT GCT-
3' 

OT-I ba va Y186 rev 5'-CCA GCA CGC ACT TGT CGG TGA TGA AGG 
TGC-3' 

OT-I ba c/v S197 fwd 5'-CGG CGT GTG CAC CGA TCC CCA GGC CT-3' 

OT-I ba c/v S197 rev 5'-GAT CGG TGC ACA CGC CGC TGT GCA CC-3' 

OT-I ba co Y148 fwd 5'-CGC CGT GTG CCA GCT GAA GGA CCC TAG-
3' 

OT-I ba co Y186 fwd 5'-CCG ATA AGT GCG TGC TGG ACA TGA AGG 
CCA-3' 
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4.4 Enzymes 

Table 4: List of Enzymes 

Pfu DNA polymerase Thermo Scientific 
NotI Thermo Scientific 
EcoRI Thermo Scientific 
T4 DNA ligase Thermo Scientific 
Taq DNA polymerase Thermo Scientific 

 

4.5 Commercial kits 

Table 5: List of commercial kits 

JetQuick® Gel Extraction Spin Kit Genomed, Löhne 
GeneJET Plasmid Miniprep Kit Thermo Scientific 
PureYield™ Plasmid Maxiprep System Promega 
Plasmid Maxi Kit  QIAGEN 

 

4.6 Buffers 

Table 6: List of buffers 

Phosphate buffered saline (PBS) PAA, Paschin 
4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) 

Sigma, Steinheim 

 

4.7 Media and cell culture supplements 

4.7.1 Ingredients 

Table 7: List of cell culture media and other additives 

Dulbecco’s modified Eagles Medium 
(DMEM)  

PAA, Pasching  

Roswell Park Memorial Institute 1640 
Medium (RPMI) 

PAA, Pasching  

Penicillin/Streptomycin (100x) PAA, Pasching  
L-Glutamine 200mM PAA, Pasching  
Fetal bovine serum (FBS) Invitrogen, Auckland 
Sodium pyruvate Biochrom AG, Berlin 
G 418 disulfate salt Sigma, Steinheim 
Puromycin Sigma, Steinheim 
Blasticidin Sigma, Steinheim 
β-mercaptoethanol Sigma, Steinheim 
RetroNectin® Clontech, Mountain View 
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4.7.2 Prepared media mixtures 

Table 8: List of cell culture mixtures 

Complete DMEM DMEM 
+10% FBS 
+1% L-glutamine 
+1% Penicillin/streptomycin 

Complete RPMI 1640 RPMI 1640 
+10% FBS 
+1% L-glutamine 
+1% Penicillin/streptomycin 

Plat-E medium Complete DMEM 
+10 µg/ml blasticidin 
+1 mg/ml puromycin 

Plat-E hunger medium DMEM 
+3% FBS 
+1% L-Glutamine 
+1% Penicillin/streptomycin 

T cell medium Complete RPMI 
+1% Sodium pyruvate 
+0.1% HEPES buffer 

OVA selection medium Complete DMEM 
+1 mg/ml G 418 

4.8 Cell lines 

4.8.1 Platinum E 

The Plat-E cell line is based on the traditionally used 293T cell line and is used 

as a packaging cell line to produce ecotropic retrovirus to transduce murine 

cells (Morita et al. 2000). Plat-E cells were kept in Plat-E medium described 

above. Plat-E cells were kindly provided by Matthias Leisegang, Berlin, 

Germany. 

4.9 Devices 

Table 9: List of technical devices 

Flow cytometer FACS Canto II (BD) 
PCR thermocycler T3 Thermocycler (Biometra) 
Photometer NanoPhotometer® (IMPLEN) 
CO2 incubator BD6220 (Heraeus) 
Laminar flow cabinet Lamin Air (Heraeus) 
Neubauer chamber Optik Labor Frischknecht 
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4.10 Computer Software 

Table 10: List of computer software 

Flow cytometry analysis FlowJo (Treestar) 
Molecular cloning Lasergene Suite (DNA star) 
Sequencing results evaluation Lasergene Suite (DNA star) 
DNA melting temperature calculation http://www.appliedbiosystems.com/ 

support/techtools/calc/ 
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5 Methods 

5.1 Production of competent DH5α E. coli 

Bacteria were expanded in 100 ml lysogeny broth (LB) at 37°C to an optical 

density of 0.40 - 0.55. The medium was then cooled down to 4°C and bacteria 

were pelleted by centrifugation at 4°C. Supernatant was removed and the 

bacteria were resuspended in 30 ml of transformation buffer 1. After 5 minutes 

of incubation at 4°C, bacteria were pelleted once more by centrifugation at 4°C. 

Finally, the pellet was resuspended in 4 ml transformation buffer 2 and aliquots 

of 50 – 100 µl were frozen in a liquid nitrogen bath. Hereafter, aliquots were 

stored at -80°C.  

 

5.2 Primer design 

All PCR primers were designed using the DNASTAR Lasergene software suite. 

When calculating the melting temperature of primers only the annealing part of 

the primer was considered. Calculation was performed using the tm calculator 

on www.appliedbiosystems.com/support/techtools/calc. The target annealing 

temperature for every primer was between 60°C and 65°C.  

 

If, in addition to amplification, an extension by a certain nucleotide sequence 

was required, primers were designed, comprising two functionally different 

parts: A 3’ end, annealing to the DNA template, and a 5’ end, consisting of the 

intended extension sequence.  

 

5.3 Polymerase chain reaction for molecular cloning 

In all Polymerase chain reactions (PCR) performed for molecular cloning 

purposes, only DNA polymerases with proofreading activity were used. The 

reaction mix was set up in the following way: 

  



Methods 

 

 

 

-20- 

 

 Table 11: PCR reaction mix 

Component Amount 
Template DNA 50-500 ng 
10x Pfu Buffer + MgSO4 5 µl 
Primers 50 pmol each 
dNTPs 10 nmol each 
Pfu DNA polymerase 2.5 U 
H2O Filled up to 50 µl 

 

The temperature cycling parameters were: 

 

Table 12: PCR cycling parameters 

Temperature (step) Duration   
95°C (initial denaturation) 5 min   
95°C (denaturation) 0.5 min 

 

 
Tm – 5°C (annealing) 0.5 min  30 - 35 cycles 
72°C (elongation) 2 min/kb  
72°C (final elongation) 10 min   

 

Next to a simple amplification of the desired DNA fragment, the PCR was also 

used to add short oligonucleotide sequences to the desired fragment. This was 

achieved by using the primer design described in 5.2. 

 

Furthermore, PCRs were also utilized to link distinct PCR products together by 

the so-called overlap extension technique. For this method two sequential 

PCRs are performed: In a first PCR, each of the desired fragments is not only 

amplified, but also extended by a matching sequence. This creates an overlap 

between the two products.  
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Figure 6: Step 1 of overlap extension PCR: The two inside primers contain a not annealing part (green) 
by which the two templates (blue) get extended.  

 

In the second PCR, the two products are combined with the two outside 

primers. Next to an amplification of the template strands, this PCR also yields a 

DNA fragment, which consists of the two templates linked to each other, 

because of their ability to also prime each other.  

 
Figure 7: Step 2 of overlap extension PCR: In the second step, only the two outer primers (red) from 
step 1 are used. On the inside the extensions (green) from step one anneal and function as primers. This 
step yields a fusion of the two initial templates.  

 

After every PCR, an agarose gel electrophoresis was performed and the correct 

band was excised and purified using the JetQuick® Gel Extraction Spin Kit 

according to the manufacturer’s protocol.  
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5.4 DNA agarose gel electrophoresis 

For agarose gels, 1.2 - 3.0 g of agarose were dissolved in 150 ml 

tris-acetic acid-EDTA (TAE) buffer, heated to boiling point and poured into a 

plastic chamber. Ethidium bromide (0.5 µg/ml) was added and evenly 

distributed among the liquid. After adding the adequate amount of loading dye, 

samples were filled into the gel pockets and separated at 90 - 100 V. Fragment 

size was determined by comparison to a DNA ladder on the gel.  

 

5.5  Sticky end ligation 

In order to perform sticky end ligation, insert DNA and vector backbone were 

first digested with two restriction endonucleases. Any digestion with restriction 

enzymes was performed according to manufacturer’s recommendation, found 

on www.thermoscientificbio.com/webtools/doubledigest. Digestion time was 

varied between one and four hours. The reaction mix was incubated at 37°C 

and was composed as follows: 

 

Table 13: DNA digestion reaction mix 

Component Amount 
DNA 500 - 1500 ng 
Recommended 10x buffer 2 µl 
Restriction enzymes 10 U each 
H2O Filled up to 20 µl 

 

Digested vector backbone was always purified via agarose gel electrophoresis 

to clear out the excised former insert. Digested PCR products were directly 

purified by using the JetQuick® Gel Extraction Spin Kit together with JetQuick® 

DNA CleanUp Buffers according to the manufacturer’s protocol.  

 

Finally, the following ligation reaction mix was set up: 
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Table 14: DNA ligation reaction mix 

Component Amount 
Vector DNA (digested) Up to 1 mg 
Insert DNA (digested) Up to 500 µg 
10x T4 DNA ligase buffer 2 µl 
H2O Filled up to 20 µl 

 

After 20 - 30 minutes of incubation at room temperature, 10 µl of the reaction 

mix were used to transform 100 µl competent DH5α E. coli. Competence was 

induced by preparing E. coli as described in 5.1 and by a 45 second heat shock 

at 42°C. After 30 - 60 minutes of pre-incubation in LB, bacteria were centrifuged 

at 400 G for 5 minutes and finally evenly distributed on LB agar plates 

containing selection antibiotics.  

5.6 Cell culture 

Cells were always cultured at 37°C under 5% CO2 and 95% humidity 

atmosphere. Cells were kept in sterile disposable tissue culture treated flasks or 

well plates. All cell culture related work was performed with sterile instruments 

under a laminar flow hood. Whenever cells were spun down this was done by 

centrifugation at room temperature and 400 G for 5 minutes. Any exceptions are 

explicitly denoted. 

 

5.7 Cell counting and viability assessment 

Cell concentration was determined by adding a certain volume of a trypan blue 

solution. Only intact cell membranes prevent the blue dye from crossing into the 

cytoplasm, resulting in a blue staining of dead cells. The concentration of viable 

cells can then be assessed by counting in a hemocytometer. 
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5.8 Splenocyte isolation  

For splenocyte isolation a mouse of the desired genotype was euthanized 

under isoflurane anesthesia. The spleen was then harvested via a flank section, 

remaining soft tissue was carefully removed without rupturing the capsule. For 

transport the organ was kept in T cell medium. Hereafter, a splenocyte 

suspension was generated by meshing the spleen through a 40 µm cell strainer 

and rinsing the strainer several times with T cell medium. The medium passing 

the strainer was collected in a 50 ml tube and centrifuged. The resulting pellet 

was resuspended in erythrocyte lysis buffer and incubated for 90 seconds. The 

lysis reaction was stopped by adding 35 ml T cell medium. The cells were then 

spun down again and re-suspended in T cell medium.  

 

5.9 Production of retroviruses 

On day before transfection 1 - 1.5 x 106 Platinum-E cells (Morita et al. 2000) 

were plated in a well of a tissue culture treated 6-well plate using 3 ml of 

complete DMEM. The next day, when cells had reached 70 - 90% confluency, 

the following plasmid solution was prepared.  

 

Table 15: Plasmid solution 

 Amount (absolute) Concentration 

Retroviral vector 18 µg 120 ng/µl 

CaCl2 30 µmol 200 mM 

Chloroquine 38 nmol 253 µM 

Sterile H2O Filled up to 150 µl  

 

While incubating the plasmid solution for five minutes, the medium on the Plat-E 

cells was removed, carefully replaced by Plat-E hunger medium and the cells 

were placed back in the incubator. A sterile 13 ml polystyrene tube was then 

filled with 150 µl of transfection buffer and the plasmid solution was added 

dropwise while constantly vortexing the tube. The combined solution was 
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incubated for 30 minutes at room temperature and finally added to a well with 

Plat-E cells. 

 

Six hours later the medium was exchanged for Plat-E transfection medium.  

After another 42 hours, the virus containing supernatant was harvested and 

cleared of cells and cellular debris by passing it through a low protein binding 

0.45 µm filter. Hereafter Plat-E cells were supplied with T cell medium. After 

another 24 hours, more the virus harvest procedure from above was repeated.  

 

Collected virus containing supernatant was directly used for transduction 

purposes. 

 

5.10 Transduction of primary murine T cells  

One day before transduction, freshly isolated splenocytes were plated at a 

concentration of 2 x 106 cells/ml in T cell medium supplemented with 

50 µM β-mercaptoethanol, 10 U/ml IL-2, 1 µg/ml activating anti mouse CD3ε 

and 0.1 µg/ml anti mouse CD28 antibody. Cells were then incubated for 

24 hours. 

 

The different media used during the entire procedure selectively expand CD8+ 

cytotoxic T-lymphocytes, while depriving most other cells of necessary survival 

signals. This way a highly pure (> 99%) cytotoxic T lymphocyte population is 

obtained from the initial mix of splenocytes. 

 

The following day a tissue culture treated 24-well plate was coated with 

400 µl RetroNectin® per well (stock concentration: 6.25 μg/ml). After 2 hours of 

incubation at room temperature the RetroNectin was removed and wells were 

blocked for 30 minutes at 37°C using 500 µl of sterile filtrated 2% BSA solution 

per well. Hereafter, the BSA containing solution was removed and each well 

was washed once with 2 ml PBS containing 25 mM HEPES. 
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Depending on viral titers 1-2 ml harvested virus (or the equivalent of 

concentrate in T cell medium) was added to each well. The plate was then 

centrifuged at 4°C, 3000 g for 2 hours to attach viral particles to the RetroNectin 

layer.  

 

In the meantime, cultivated splenocytes were counted, centrifuged and supplied 

with fresh T cell medium containing 50 µM β-mercaptoethanol and 10 U/ml IL-2. 

Cell concentration was adjusted to 1 x 106/ml.  

 

When virus centrifugation was completed, remaining medium was removed, 

and 1 ml of splenocyte containing medium was added to each virus coated well. 

Additionally, one uncoated well was included as an untransduced control. 

Finally, 10 µl of mouse T-activator CD3/CD28 Dynabeads® were added to each 

well and the plate was centrifuged for another 30 minutes at 800 G and 32°C. 

 

After an incubation period of 24 hours, 1 ml of the second virus harvest was 

added to the matching well and spun down for 90 minutes at 800 G and 32°C. 

Cells were then placed in the incubator for 6 hours and afterwards 1 ml of 

medium was carefully removed and exchanged for fresh T cell Medium with 

50 µM β-mercaptoethanol and 10 U/ml IL-2. 

 

The following day and every second day hereafter, cells were centrifuged and 

concentration adapted to 1 x 106 cells/ml. From this day onward, cells were 

cultivated in T cell medium supplemented with 50 µM β-mercaptoethanol and 

50 ng/ml IL-15. 

 

Transduction efficiency was determined by flow cytometry between 24 and 

72 hours after second transduction. 

 

Transduced or untransduced expanded mouse T cells were never used for 

experiments later than eight days after splenocyte isolation.  

 

 



 -27- 

6 Results 

6.1 Transduction of primary murine T cells with the OT-I TCR 

The unmodified ovalbumin specific T cell receptor, which served as a control 

throughout all experiments, was first cloned into the pMP71 vector. To achieve 

a high level of co-expression a bicistronic vector design was implemented. This 

was done by using a DNA sequence encoding for a p2A peptide.  

 

When T cells were transduced with this vector, the surface expression profile in 

flow cytometry showed only expression of the β-chain of the OT-I TCR. During 

further analysis, an intracellular staining of the transduced T cells was 

performed, revealing that the α-chain was indeed properly transcribed but 

retained within the cells (Figure 8).  
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A 
Untransduced T cells  OT-I TCR-transduced T cells 

  
B 

  
Figure 8: Flow cytometry analysis of transduced T cells. Surface (A) and intracellular (B) staining for 
vα2 and vβ5 of OT-I TCR-transduced (right) versus untransduced (left) T cells.  

 
To determine whether the order of the chains relative to the p2A linker impacts 

the expression profile, the chain order within the construct was reversed, so that 

now the β-chain preceded the p2A sequence.  

 

The reversed order not only led to a correct localization of the α-chain, but also 

left the localization of the β-chain unaffected (Figure 9). Therefore, this 

construct was used for all further transductions.  
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Figure 9: Flow cytometry analysis of transduced T-cells. Surface staining for vα2 of reversed OT-I 
TCR transduced (B) versus untransduced (A) T cells 

6.2 Design of cross T cell receptors 

On first approach the following two xTCR were constructed:  

 
Figure 10: Primary xTCR design: Linearized map of the OT-I const (A) and OT-I varia (B) xTCR within 
the vector, showing the location of the different domains and order in respect to the linker sequence. 
Chains are referred to as alpha or beta chains depending on their transmembrane domain.  

 

The two xTCR were named by the domain that was crossed. The one being the 

(OT-I) const xTCR (Figure 10 A) and the other the (OT-I) varia xTCR (Figure 

10 B). When referring to the chain subtype (alpha or beta) we decided to name 

an xTCR chain according to its transmembrane domain as this domain was 

never crossed in any of our constructs. That is, a chain carrying the alpha 

transmembrane domain would be referred to as OT-Iα varia or OT-Iα const 

depending on xTCR type. The same holds true for a chain carrying the tm beta 

domain (labelling shown in Figure 10) 
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6.3 Transduction of cross T cell receptors 

After transducing both variants of the xTCR into primary murine T cells, surface 

profiling in flow cytometry did not reveal any differential surface expression of 

the xTCR chains (Figure 11 A and Figure 11 B). Due to our previous 

experiences, we again performed intracellular staining which revealed 

differential expression only of Vα containing chains (Figure 11 C and Figure 

11 D). 

 
Figure 11: Flow cytometry analysis of xTCR transductions: Staining for vα2 (A, C) and vβ5 (B, D) of 
untransduced (red), const xTCR (green) and xTCR transduced (blue) T cells. The top half (A, B) shows 
surface staining, the bottom half intracellular (C, D) staining.  

 

To further investigate this issue, we decide to construct single chain vectors, so 

we could analyze surface expression independent of possible p2A residue 

interference.  
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6.4 Single chain xTCR vectors 

The following four chains were cloned into individual vectors, to allow single 

chain transduction of T cells: 

 
Figure 12: Single chain xTCR constructs: The two chains of each construct were separately cloned into 
one vector each yielding four new constructs, named according to their transmembrane domain and the 
crossing type (A-D). The individual chains were left unchanged.  

 

Again, we named the chains ‘const’ (Figure 12 A and Figure 12 B) or ‘varia’ 

(Figure 12 C and Figure 12 D) depending on the crossing type. A chain was 

referred to as α-chain (Figure 12 A and Figure 12 C) or β-chain (Figure 12 B 

and Figure 12 D) by its respective transmembrane domain. After transducing 

T cells, we then again performed surface and intracellular staining for vβ5 and 

vα2 followed by flow cytometry analysis.  
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Figure 13: Flow cytometry analysis of single chain xTCR transduction: Vα2 (A, C) and vβ5 (B, D) 
staining of the different xTCR single chains (color coding far right). The top half (A, B) shows surface 
staining, the bottom half (C, D) intracellular staining.  

 

None of the single chain constructs expressed on the surface (Figure 13 A and 

Figure 13 B), yet there was intracellular expression of the chains carrying a 

variable alpha domain (Figure 13 C). However, there was no detectable 

expression of any chain when staining for vβ5 (Figure 13 B and Figure 13 D). 

To further evaluate the impact of the linker sequence we proceeded by 

changing the order of our xTCR constructs within the vector.  
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6.5 Reversed xTCR double chain vectors 

We reversed the order of our xTCR chains as follows:  

 
Figure 14: Reversed xTCR vectors: In both the constant (A), as well as the variable (B) domain crossed 
TCR we reversed, we reversed the order of the chains relative to the linker sequence.  

 

Thereby, the large part of cleaved p2A peptide residue would now be attached 

to a tm β domain in both constructs (Figure 14 A and Figure 14 B). The 

following transduction results were obtained: 

 
Figure 15: Flow cytometry analysis of reversed xTCR transduction: Surface staining for vα2 of 
untransduced (red), reversed OT-I (blue), reversed const xTCR (green) and reversed varia xTCR (orange) 
transduced T cells.  

While the transduction efficiency was considerably below our usual transduction 

efficiency and the transduction efficiency seen in the unmodified TCR there was 

a clear surface expression of the OT-I varia xTCR. There was still no intra- or 

extracellular signal of vβ domains (data not shown). However, when further 

investigating the properties of the OT-I varia xTCR surface expression changed. 
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6.6 xTCR surface kinetic 

Through different experiments we observed that the surface expression of our 

OT-I varia xTCR was unstable (Figure 16).  

 
Figure 16: Flow cytometry analysis of xTCR surface expression over time: Surface staining for vα2 
on day 1 (left), day 3 (middle) and day 6 (right) after primary transduction of the different constructs (color 
coding far right).  

 

While on day one there was still a clear – albeit low –expression level, surface 

expression continuously decreased to baseline over the course of six day. To 

determine if this was a problem of location or expression on protein level, we 

performed intracellular staining.  

 
Figure 17 Flow cytometry analysis on day 6 after transduction. Intracellular staining for vα2 of the 
different constructs (color coding on the right). 

Despite no surface expression there was still a relatively high level of OT-I varia 

xTCR detectable within the cells. Here, also the OT-I const xTCR was 

expressed, though at a very low level (Figure 17). To further investigate this, we 

evaluated if surface expression could be enhanced by stronger binding of the 

xTCR chains.  
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6.7 Disulfide bond xTCR 

We derived this idea from early TCR engineering approaches, in which 

selective pairing was tried to be achieved by adding a disulfide bond between 

the two introduced chains. S. Dengl and W. Schaefer (Roche AG, Penzberg) 

kindly provided the protein structure simulations, identifying three possible 

domains for insertion of a disulfide bond (Figure 18).  

 

 

 
Figure 18: TCR structure simulation: Simulation of the OT-I TCR tertiary structure (A). Six possible sites 
were analyzed as candidates for disulfide bonds. Their CB atom distance and their degree of torsion was 
calculated (B).  The locations marked with green were chosen as best candidates. The red location is one 
commonly used as introduction site for disulfide chains and was therefore also realized. Provided by W. 
Schaefer and S. Dengl, Roche AG, Penzberg 

 

These three candidates were generated, resulting in a total of six new vectors, 

each now encoding for one of three possible disulfide bonds (Figure 19 A-C).  

   
Figure 19: Cysteine residue insertion locations: The two xTCR (left and right) vectors were changed at 
the marked locations, so that the given amino acids were replaced with cysteine. Thereby introducing the 
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three calculated disulfide bonds (dotted lines) between the two xTCR chains shown above. The locations 
shown in A-C correspond to the locations calculated in Figure 18 B. 

 
Again, these constructs were transduced into primary murine T cells to compare 

their surface expression profile to the respective OT-I xTCR. 

 
Figure 20: Flow cytometry analysis of disulfide bonds in xTCR const transductions: Surface staining 
for vα2 on day 2 after primary transduction with the different cysteinized const xTCR vectors (color coding 
on the right).  

 

In the case of the OT-I const xTCR, there was no detectable surface expression 

(Figure 20). In the case of the OT-I varia xTCR, there was detectable vα2 

surface expression. However, all three cysteine-modified xTCR variants did 

neither significantly increase surface expression on day two, nor show stable 

surface expression over time (Figure 21). By day five all transductions displayed 

baseline surface levels of vα2. 
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Figure 21 Flow cytometry analysis of disulfide bonds in xTCR varia transductions: Surface staining 
for vα2 on day 2 (A) and day 5 (B) after primary transduction with the different cysteinized varia xTCR 
vectors (color coding on the right).  

6.8 Elbow regions 

In our initial approach, the exact location of the domain switch was chosen 

within the elbow region, that is the linking sequence between constant and 

variable domain (Figure 22).  

 
Figure 22 Amino acid sequence of domain switch region: The underlined amino acids represent the 
putative elbow region and the black dash the location of the domain switch. The annotations on the side 
and the color coding indicates whether the amino acids belong to α- or β-chain.  

 

In an attempt to restore continuous surface expression of the xTCR, we 

changed the location of the domain switch so that the elbow region was left 

intact, that is we moved the location of the domain crossing to either edge of the 

elbow region (Figure 23). 
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Figure 23: Elbow region remodeling: Of our two initial xTCR (top) in which the elbow was ‘cut’ centrally 
we designed a total of four elbow modified xTCR in which the elbow region was left intact, named 
according to the domain the elbow region belongs to (A-D). 

 

This resulted in a total of four newly designed xTCR constructs, two for each 

domain crossing type (Figure 23 A and Figure 23 B, Figure 23 C and Figure 23 

D respectively). One in which the elbow was left uncrossed (Figure 23 A and 

Figure 23 D), and one where the elbow was crossed along with the adjacent 

domain (Figure 23 B and Figure 23 C). Despite several attempts, we were 

unfortunately not able to successfully clone the OT-I varia TCR with variable 

elbow (Figure 23 B). So, we decided to proceed with only three constructs. 

Again, we transduced the xTCR into primary murine T cells and analyzed by 

flow cytometry. 
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Figure 24: Flow cytometry analysis of transductions of xTCR with modified elbow region: Surface 
staining for vα2 on day 2 (A) and day 7 (B) after primary transduction of the different elbow modified xTCR 
vectors (color coding far right).  

 

We observed, that OT-I varia xTCR based modification showed significantly 

increased surface levels on day two (Figure 24 A). Yet, surface levels declined 

over time (Figure 24 B). The OT-I const based constructs showed no increased 

surface expression (Figure 24 A and Figure 24 B). When directly comparing the 

xTCR varia with and without modified elbow, we saw slightly higher expression 

levels in the changed elbow construct (Figure 25 A). Still, both transductions 

showed decreasing surface expression levels over time (Figure 25 B). 

 
Figure 25: Flow cytometry analysis of varia xTCR and elbow modified varia xTCR: Surface staining 
for vα2 on day 2 (left) and day 7 (right) after primary transduction with xTCR varia (red) or xTCR varia with 
modified elbow (blue).  
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7 Discussion 

7.1 Summary 

Taken together our experiments show that xTCR can be transduced into 

primary murine T cells resulting in initial surface expression of at least the 

β-chain of the OT-I varia xTCR. However, surface expression diminishes over 

time returning to baseline about seven days after transduction. At the same 

time, intracellular expression of vα carrying chains of both xTCR variants 

remains constantly high.  

 

We also observed that when using bicistronic vectors the order of the two 

inserts is relevant. More precisely, we found that whenever an alpha 

transmembrane domain was located N-terminally of the p2A linker, the 

corresponding chain did not translocate to the surface, despite being expressed 

intracellularly.  

 

Furthermore, surface expression of the OT-I varia xTCR depended on 

co-transduction of both chains. Single chain transduction did not result in 

surface expression. 

 

Additional disulfide bonds did not change surface expression profile of xTCR 

irrespective of their location within the xTCR.  

 

Variation of the crossing point within the elbow region slightly improved surface 

expression levels. However, decrease of surface expression over time could not 

be prevented.  

7.2 Linker sequence 

During all our experiments, we used the linker sequence known as p2A. 

2A peptide sequences mediate co-translational self-cleavage, without 

interfering with translation itself, thus leading to a stoichiometric 1:1 ratio of the 

two proteins (Szymczak et al. 2005). The cleaved peptide residue remains 
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linked to the translated proteins (Kim et al. 2011). All bicistronic transductions, 

in which an alpha transmembrane domain preceded the p2A linker, the 

N-terminal insert failed to translocate to the surface. When transducing the 

unmodified OT-I TCR, the β-chain translocates to the surface – irrespective of 

its relative position to the p2A linker. TCR translocation depends critically on 

correct assembly of both TCR chains and CD3 subunits (Bonifacino et al. 1989, 

Bonifacino et al. 1990). The assembly of CD3 subunits with the TCR mainly 

depends mainly on charged residues in the transmembrane domain of the TCR 

and CD3 chains (Call et al. 2002). A tm α domain that is not paired to CD3 

subunits is subjected to rapid intracellular degradation (Bonifacino et al. 1990). 

Therefore, the most plausible hypothesis that explains our observations seems 

to be, that the 19-aminoacid residue of p2A sequence interferes with a correct 

TCR-CD3 complex assembly. Due to its location, it seems most likely that the 

disruption occurs mainly between the TCRα and the CD3 subunits. 

Interestingly, this does not seem to be the case for the TCRβ.  

 

However, literature shows that p2A interference does not occur consistently in 

every TCR (Leisegang et al. 2008). It can therefore not be taken for granted 

that p2A residues never interfere with TCRβ-CD3 assembly. Even if surface 

expression of a TCR chain is not completely abrogated, it is possible for p2A 

residues to impair CD3 assembly. This can result in the native TCR 

outcompeting the exogenous TCR for CD3 recruitment and lowering its density 

on the surface, thus decreasing functional activity (Heemskerk et al. 2007, 

Jorritsma et al. 2007).  

 

Alternative strategies to avoid usage of p2A linkers include using internal 

ribosome entry sites (IRES) or performing double transductions with 

monocistronic vectors. However, both approaches suffer from drawbacks, as 

they cannot achieve a 1:1 stoichiometric ratio of both TCR chains, which in turn 

leads to suboptimal surface expression. Especially double transductions suffer 

from low transduction efficiency, while IRES linked vectors tend to 

underexpress the C-terminal insert (Leisegang et al. 2008). Therefore, while 

alternatives to p2A linkage are desirable, current substitutes are considered 
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inferior. Until better options arise, p2A linked bicistronic TCR vectors need to be 

assessed carefully on a case by case basis.  

 

7.3 Vβ5 epitope loss 

Throughout all our experiments and despite several modifications to the initial 

xTCR approach we were never able to detect the vβ5 epitope once the domains 

were switched. We considered several possible explanations. Two of which we 

believed to be the most relevant:  

 

For one, it is possible that the tertiary structure of the respective xTCR changes 

significantly over a larger area including the vβ5 epitope. If a change of the 

tertiary structure occurs at the epitope it is likely that major parts of the tertiary 

structure of this chain are affected. As opposed to immunoglobulins especially 

the β elbow region is considered more rigid (Bentley et al. 1995).  

 

However, if domain crossing affects the overall tertiary structure of one chain, 

one would expect an impact on the tertiary structure of the second chain. Yet, 

our results suggest that the structure of this chain is conserved, as the vα2 

epitope remains intact. Also, if the tertiary structure were the main issue then it 

would be likely that this can be reverted by choosing a better site to cross. But 

in our experiments three different crossing sites within the elbow region showed 

the same loss of detectability. And finally, immunoglobulins and TCR show high 

amounts of homology (Boulot et al. 1994) but domain switching has no major 

impact on the structure of immunoglobulins (Schaefer et al. 2011). 

 

Another explanation is that the vβ5 epitope lies exactly at the elbow region of 

the TCRβ. Unfortunately, the exact location and sequence of the vβ5 epitope 

are unknown so we were unable to prove this hypothesis. But given the 

arguments above, we deem this more likely to be true than a large change of 

tertiary structure. To be certain, further experiments need to be conducted, to 

either determine the vβ5 epitope or the crystal structure of xTCR.  
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7.4 Pairing properties 

Despite not being able to detect the vβ5 epitope, we were still able to draw 

conclusions about the pairing properties of our xTCR constructs. These became 

especially apparent when looking at our single chain transduction results:  

 

Through intracellular staining we could prove that at least the transduction of 

OT-Iα const and OT-Iβ varia was successful. However, there was no detectable 

surface expression. If these chains mispaired with endogenous TCR chains to 

form functional TCR-CD3 complexes, then these complexes would translocate 

to the surface (Bonifacino et al. 1989). As we detected no surface expression in 

our single chain experiments, we therefore concluded that none of our 

detectable crossed chains mispair with endogenous TCR chains.  

 

Furthermore, we could show that in our variable domain switch temporary 

surface expression is re-established, once we transduce with both chains. 

Together with our single chain data, this strongly indicates that the undetectable 

OT-Iα varia chain pairs with the detectable OT-Iβ varia chain and allows for 

correct CD3 subunit assembly, resulting in increased detectable vα2 epitope 

expression. So, despite one of our chains being undetectable, we can 

confidently assume that we did in fact achieve surface expression of both 

chains, as only correctly assembled TCR-CD3 complexes avoid intracellular 

retention and degradation (Bonifacino et al. 1990). By the same reasoning we 

can also assume, that the pairing properties of the constant domain switch were 

not sufficient to allow for a correct TCR-CD3 complex assembly.  

7.5 Kinetics of surface expression 

We were able to prove that xTCR can be transduced into primary murine T cells 

by intracellular flow cytometry staining. As p2A linked bicistronic vectors yield a 

1:1 stoichiometric ratio of both inserts (Szymczak et al. 2005), intracellular 

detectability of one chain, guarantees successful translation of both chains.  

 



Discussion 

 

 

 

-45- 

Our experiments also show that the OT-I varia xTCR is expressed on the 

surface of transduced T cells. The explanation why surface detectability of one 

chain proves successful surface expression of both chains was already given in 

7.4.  

 

However, surface expression was not permanent, but subject to some 

mechanism of degradation or internalization, leading to a continuous decrease 

of surface-detectable vα2 epitope. Eventually, surface expression returns to 

baseline after about seven days post transduction.  

 

The possibility that the transduction itself is unstable and gene expression is 

downregulated can be excluded, as there is durable intracellular expression of 

xTCR. Only surface expression diminishes.  

 

We were unable to find literature describing a continuous decrease of TCR 

surface expression post transduction. Literature consistently emphasizes that 

only completely assembled TCR-CD3 complexes translocate to the surface 

(Klausner et al. 1990). So, deterioration of TCR surface-levels cannot be 

explained by unsuccessful TCR-CD3 assembly. There are however, 

mechanisms described in literature that combined could potentially explain our 

observations:  

 

First, there is a concept of native TCR “outcompeting” an introduced TCR for 

CD3 recruitment (Bethune et al. 2016). The idea is based on the fact that the 

CD3 subunit pool is limited. If a second TCR is introduced into a cell, the 

concentration of TCR in the cell rises, while the number of available CD3 

molecules does not. Therefore, TCR dimers compete for CD3 assembly. If the 

native TCR shows a higher affinity to CD3 subunits, resulting in preferential 

pairing, then less TCR-CD3 complexes of the introduced TCR will form. In turn, 

this would lead to less surface translocation of the introduced TCR.  

 

Secondly, TCR-CD3 complexes get internalized and lysosomally degraded 

when T cells activate (Valitutti et al. 1997). During our transduction protocol, a 



Discussion 

 

 

 

-46- 

highly pure CD8+ T cell population is achieved by various forms of stimulation 

and activation.  

 

Taking together both of these effects, the following hypothesis seems plausible: 

xTCR show a lower affinity to CD3 molecules than the native TCR. Initially, 

however, the availability of intracellular CD3 subunits is high (Figure 26 A). 

Therefore, a number of xTCR-CD3 complexes form and translocate to the 

surface (Figure 26 B). Here, both xTCR- and native TCR-CD3 complexes get 

internalized and degraded due to T cell activation (Figure 26 C). This in turn, 

“consumes” more CD3 molecules than are produced, lowering the intracellular 

availability of CD3 subunits. However, the intracellular TCR levels remain high, 

as the cell produces two types of TCR. Due to the greater imbalance of TCR 

chains and CD3 subunits, the native TCR now increasingly outcompetes the 

xTCR for CD3 recruitment (Figure 26 C). This continuously lowers the amount 

of surface expressed xTCR and results in intracellular accumulation of xTCR 

(Figure 26 D).  

  
Figure 26: Hypothesis for xTCR surface kinetics: Each subfigure shows a T cell membrane with native 
(blue/red) TCR and xTCR (green/orange), as well as CD3 molecules (pink, simplified). First, intracellular 
levels of CD3 are high (A), allowing xTCR surface expression, but lowering CD3 levels (B). Then, surface 
TCR-CD3 complexes are degraded and replaced by TCR-CD3 complexes. Due to low levels of CD3 the 
native TCR outcompetes the xTCR for CD3 recruitment (C). Finally, only native TCR is expressed on the 
surface, while the xTCR accumulates intracellularly (D).  

 

Though plausible by literature, this effect has not been previously described and 

remains speculative. To prove this, further experiments need to be conducted, 

such as immunoprecipitation of xTCR and CD3 subunits.  

 

Following this hypothesis, the process of declining xTCR surface expression 

would happen particularly fast, if xTCR gets internalized at a higher rate, than 

the native TCR. However, when adding additional disulfide bonds to the xTCR 
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no stabilization of surface expression was observed. Suggesting that the kinetic 

of internalization is not influenced by disulfide linking of TCR chains.  

7.6 Elbow region and intrachain domain interactions 

To gain further insight into the mechanisms of TCR assembly and surface 

translocation, we conducted further literature research on TCR structure. As it 

turns out, there are significant differences in the tertiary and quaternary 

structure of TCR as opposed to immunoglobulins. Despite being homologous 

for a large part of their structure (Boulot et al. 1994), there are regions that show 

very distinct features: In 1995 the structure of the TCR β-chain was unraveled 

through crystallography (Bentley et al. 1995). It turned out, that while the vβ 

domain was highly homologous with the vL domain, the cβ domain showed a 

more polarized surface. The most significant difference appeared to be the 

interaction of the variable and constant domain within the β-chain. There was a 

lot of covered surface area and close interaction between the domains. It was 

also described that the elbow region of the β-chain would hence be very rigid 

and lack flexibility. 

 

Also we discovered that a similar approach had been tried before: In 1993 

Casorati et al. performed what they described as “αβ V-J domain shuffling” 

(Casorati 1993). In their approach, they used the TCR derived from the mouse 

T helper hybridoma 16.2.D, which is an influenza (H1N1) specific TCR. The 

TCR chains created were of the structure Vα-Cβ and Vβ-Cα respectively. The 

transduction was performed in TCR-deficient 58αβ- hybridoma cell lines. Four 

double-transductions were performed:  

 
Figure 27: Double transductions performed by Casorati et al.: Vα-Cα and Vβ-Cβ (A), Vβ-Cα and Vβ 
Cβ (B), Vα-Cα and Vα-Cβ (C), Vβ-Cα and Vα-Cβ (D). 

 

Some of their results align with what we saw in our approach: Except in the 

unmodified double-transduction, no surface expression was achieved, but they 
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saw intracellular accumulation. They also performed co-precipitation, proving 

that there was no intracellular assembly of “shuffled” TCR.  

 
Figure 28: Expression results from Casorati et al.: Except the unmodified TCR (A), no other double 
transductions yielded TCR surface expression (B-D) 

 

In our approach, however we observed some translocation to the surface, 

suggesting, that these results do not uniformly apply to all TCR types and 

domain crossing points. As it appeared that at least to some extent the rigidity 

of the elbow was responsible for their observations, we reasoned that the exact 

location of the domain switch within the elbow region might be crucial.  

 

In a final approach, we designed another three constructs with different 

crossing points in the elbow region, as described in 6.8. While there was no 

significant improvement of surface expression, there was also no loss thereof. 

This indicates, that at least in our model, the domain switch approach is 

somewhat robust to changing the location of the crossing point. However, 

despite many modifications, we were unable to achieve durable surface 

expression of xTCR chains.  

 

Due to the partial discrepancy between results in literature and our results, the 

question arises whether possibly certain subtypes of TCR allow for domain 

crossings while others do not. To further investigate this, additional TCR 

crossing would need to be performed and their surface expression assessed.  

7.7 Domain-swapped T cell receptors 

Recently a similar approach to modifying TCR was published (Bethune et al. 

2016). Instead of choosing a domain switch of variable or constant domain, the 

following three domain switches were used:  
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Figure 29: Domain switches used by Bethune et al.: Domain switch at the V-C junction (A), domain 
switch at the junction between constant domain and transmembrane domain connecting peptide (B) and 
domain switch at the junction between connecting peptide and transmembrane domain (C). 

 

While the first approach (Figure 29 A) matches our xTCR varia approach, the 

other two are distinct (Figure 29 B and Figure 29 C). The given publication 

describes that surface expression was only achieved in the latter two 

approaches while the first approach failed. These two “domain swapped TCR” 

(dsTCR) not only showed avidity in dextramer staining, but also retained 

functional capacity in vivo: OT-I dsTCR transduced T cells were able to reject 

an ovalbumin overexpressing thymoma line when injected into mice in the same 

way T cells transduced with the unmodified OT-I TCR did. Furthermore, dsTCR 

chains did not show surface expression when only one dsTCR chain was 

co-transduced with an unmodified TCR chain into Jurkat T cells. To also 

exclude mispairing with other native TCR, dsTCR chains were labeled with an 

N-terminal myc and V5-tag respectively. Then single chains were transduced 

into primary T cells and detectability of the tags was measured. Tagged 

unmodified TCR chains showed surface expression due to mispairing, however 

no surface expression of the tags was detected when using dsTCR chains, 

proving that mispairing does not occur even when there is a broad variety of 

native TCR chains to pair with.  

 

Finally, the given publication used the TI-GVHD model described in 3 (Bendle et 

al. 2010) to examine dsTCR in an in vivo mispairing model. In concordance with 
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the other results, OT-I dsTCR transduced T cells did not cause auto reactivity 

as seen with unmodified OT-I TCR transduced T cells.  

 

Furthermore, the dsTCR approach was validated with a variety of different TCR, 

showing that the concept is easily applicable to a wide range of TCR without 

further adjustments.  

 

However, some limitations to the dsTCR model were also seen: Often the 

surface expression of dsTCR was significantly lower than that of the unmodified 

TCR. Bethune et al. reasoned, that the native TCR “outcompete the dsTCR for 

CD3 recruitment”. To optimize this, they showed that when co-transducing with 

shRNA (Bunse et al. 2014), they could significantly increase surface expression 

by decreasing the level of endogenous TCR. The publication also argues that 

as the switching domains at the V-C junction might improve pairing properties 

with CD3 as the constant domains would not be switched relatively to the 

transmembrane domains. However, they state that despite this being possible 

in antibodies (Schaefer et al. 2011), this attempt fails in TCR in concordance 

with what we observed in our xTCR approach.  

7.8 Conclusions and outlook 

Despite different attempts, we were unable to achieve stable surface expression 

of xTCR. However, we could clearly show that the varia xTCR shows temporary 

surface expression. Our results in combination with the data of Bethune et al. 

summarized in the previous chapter, give convincing evidence for domain 

crossing to successfully prevent mispairing and its detrimental side effects.  

 

Bethune et al. have furthermore shown that when crossing the transmembrane 

domain instead of variable or constant domain that surface expression is 

consistently achieved through a variety of TCR and that these dsTCR are 

functional in vitro and in vivo. Therefore, providing a relevant alternative to 

currently established TCR modifications such as single chain TCR.  
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However, an xTCR with a crossed variable domain still remains desirable as it 

would ensure a more physiological orientation of CD3 subunit assembly 

(Bethune et al. 2016). Especially, as the detailed consequences of crossing 

transmembrane domains on TCR signaling are unknown and the potential side 

effects of ACT are potent and dangerous (Schumacher 2002, Riechelmann et 

al. 2007). 

 

It remains unclear, however, whether the xTCR approach described in this 

thesis is feasible or not. To further assess feasibility, further investigation on 

structure and pairing properties of xTCR are needed, which require techniques 

such as protein crystallography and immunoprecipitation. Yet, such techniques 

were beyond the scope of this thesis, where the aim was a basic 

characterization of xTCR.  

 

In light of the growing importance and efficacy of ACT, it becomes increasingly 

relevant to improve the safety of this therapy. For gtACT to move beyond a last 

line approach, it is imperative to have a repertoire of safe TCR modifications at 

disposal. The development and further examination of crossed or “domain 

swapped” TCR is a decisive step in this direction.  
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9 Appendix 

9.1 List of abbreviations 

ACT Adoptive cell therapy 
CD3x CD3 subunit x 
CDx Cluster of differentiation number x 
Cα Constant alpha domain 
Cβ Constant beta domain 
DMEM Dulbecco's Modified Eagle's medium 
DMSO Dimethyl sulfoxide 
DNA  Deoxyribonucleic acid 
dsTCR Domains swapped TCR 
FBS Fetal bovine serum 
g Gram or gravity of earth 
gtACT Gene transfer-based adoptive cell therapy 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  
IL-x Interleukin number x 
kb Kilobase pairs 
l Liter 
LB Lysogeny broth  
M Molar 
MDSC Myeloid-derived suppressor cells 
MHC I Major histocompatibility complex class I 
min Minutes 
mol Mole (unit) 
OT-I TCR MHC class I-restricted, ovalbumin-specific TCR 
PBS Phosphate-buffered saline 
PCR Polymerase chain reaction 
RPMI 1640 Roswell Park Memorial Institute medium 
TAE TRIS-Acetate-EDTA 
TBI Total body irradiation 
TCR T cell receptor 
TCRα TCR alpha chain 
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TCRβ TCR beta chain 
TI-GVHD TCR gene transfer-induced graft-versus-host disease  
TIL Tumor infiltrating lymphocyte 
TM Transmembrane domain 
U Units 
V Volts 
vH Variable heavy chain domain 
vL Variable light chain domain 
Vα Variable alpha domain 
Vβ Variable beta domain 
xTCR Cross TCR 
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