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2 Summary 

Renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC) are tumors that arise in 

immunologically different backgrounds. HCC develops almost always in the context of 

chronic inflammation in a categorical immuno-tolerogenic milieu of the liver while RCC has 

no evident inflammation driven etiology. Both tumors harbor tumor-infiltrating lymphocytes 

(TIL), but tumors are not eradicated although spontaneous tumor-specific immune 

responses have been reported. Through checkpoint blockade therapy, T cell responses 

can be re-invigorated to achieve clinically successful tumor eradication, but only in a small 

subgroup of patients. To provide a better understanding of the deviations in antitumor 

immune response hindering effective tumor control, several multi-parameter antibody 

panels were designed which might allow insight into the mechanisms of T cell hypo-

responsiveness. The panels addressed the composition of the immune cell infiltrate as 

well as the functional response of CD8+ T cells, combined with markers of cell cycle, 

cytotoxic state, signaling cascades downstream of the T cell receptor and co-stimulation. 

Furthermore, transcription factors associated with anergy and exhaustion were analyzed.  

CD8+ RCC-TIL and HCC-TIL did not respond to anti-CD3 stimulation with no rescue 

through added co-stimulation and still diminished response to PMA/I stimulation, in 

particular in RCC-TIL. Deeper depression of RCC-TIL compared to HCC-TIL was seen in 

many features including even less Ki-67 and cyclin E, pAKT(S473), as well as perforin in 

RCC-TIL compared to HCC-TIL. An overall very low presence of these markers was a 

hallmark in all TIL. A connection between mTOR- and rpS6-pathway activation and 

perforin expression could be established. An interrupted mTOR pathway in many T cells 

in TIL provided a rationale for observed perforin deficits. Subgroups of RCC-TIL and 

HCC-TIL showed increased DGK-α, indicating an anergic state. T cells defined by the 

transcription factors T-bet and Eomes and the exhaustion marker PD-1 were detected in 

all CD8+ RCC-TIL but divided HCC-TIL into two groups that had or did not have 

T-betlow/Eomes+/PD-1+ T cells. Patient groups based on features of CD8+ TIL such as 

anergy, non-lytic state, PD-1, or senescence included TIL from both RCC and HCC. 

However, better lytic state (perforin+granzyme B+) characterized one group of HCC-TIL 

and distinguished them from RCC-TIL.  
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3 Zusammenfassung 

Das Nierenzellkarzinom (renal cell carcinoma, RCC) und das Leberkarzinom 

(hepatocellular carcinoma, HCC) entstehen unter unterschiedlichen immunologischen 

Voraussetzungen. Das HCC entwickelt sich fast immer in der Folge einer 

vorausgehenden chronischen Entzündung, die durch Immuntoleranzmechanismen in der 

Leber begünstigt ist. Das RCC dagegen entsteht unabhängig von einer Entzündung. In 

beiden Tumorentitäten werden tumor-spezifische Immunantworten nachgewiesen, die 

jedoch zur Elimination des Tumors nicht ausreichend sind. Checkpoint Blockade 

Therapie, die eine inhibierte T-Zellantwort re-aktivieren kann, zeigt bei beiden 

Tumorentitäten klinisch erfolgreiche Tumorregression – allerdings nur bei einer kleine 

Patientengruppe. 

Um die Veränderungen der T-Zellen, die einer erfolgreichen Bekämpfung des Tumors 

entgegen stehen, besser zu verstehen, wurden Gewebesuspensionen von RCC und HCC 

mittels Vielfarben-Durchflusszytometrie analysiert. Die Zusammensetzung des 

Immunzellinfiltrats wurde ebenso analysiert wie der funktionelle Zustand der CD8+ tumor-

infiltrierenden Leukozyten (TIL). Außerdem waren verschiedene Marker Teil der Analysen, 

die den Zellzyklus, die Signalkaskaden des T-Zellrezeptors sowie AKT- und mTOR-

Signalwege abbilden. Des Weiteren wurden die TIL in Bezug auf Transkriptionsfaktoren, 

die im Zusammenhang mit T-Zell-Anergie und Erschöpfung stehen, sowie der zytotoxe 

Zustand der T-Zellen untersucht.  

Weder Stimulation mit anti-CD3 noch mit anti-CD3/anti-CD28 löste eine funktionelle 

Antwort in CD8+ RCC-TIL und HCC-TIL aus; auch eine Stimulation mit PMA/I konnte 

keine starke Reaktion induzieren, was besonders für RCC-TIL der Fall war. TIL beider 

Tumorentitäten wiesen niedrige Positivität an Ki-67, Cyclin E, pAKT(S473) sowie Perforin 

auf, wobei der Mangel in RCC-TIL stärker ausgeprägt war als es in HCC-TIL der Fall war. 

Des Weiteren konnte eine Verbindung zwischen dem mTOR-rpS6 Signalweg und Perforin 

hergestellt werden. Da die Signalweiterleitung von mTOR zu rpS6 in einigen TIL beider 

Tumorentitäten unterbrochen war, könnte dies den Mangel an Perforin in TIL erklären. In 

sowohl RCC-TIL als auch HCC-TIL zeigte ein Teil der T-Zellen Anzeichen von 

T-Zell-Anergie, die sich durch erhöhte Level an DGK-α darstellten. Ferner wurden 

T-Zellen identifiziert, die durch die Anwesenheit der Transkriptionsfaktoren T-bet und 

Eomes sowie durch den mit Erschöpfung assoziierten Marker PD-1 gekennzeichnet 

waren. Diese T-Zellen (T-betlow/Eomes+/PD-1+) wurden in allen RCC-Patienten gefunden, 

allerdings nur in einer Untergruppe der HCC-Patienten. RCC-TIL und HCC-TIL konnten, 
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basierend auf T-Zelleigenschaften der Anergie, lytischem Status, der Anwesenheit von 

PD-1 oder seneszenter T-Zellen in Gruppen eingeteilt werden. Die Gruppen waren 

Tumorentität-übergreifend, jedoch die Gruppe mit ausgeprägtem lytischen T-Zellstatus 

beinhaltete fast ausschließlich TIL von HCC.  
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4 Introduction 

4.1 The immune system 

Protection against diseases and restoration of health is mediated by the immune system 

which recognizes and eliminates intruding pathogens such as viruses, bacteria and 

worms. Each organ or tissue has its own immunological challenges and requirements, 

such as preventing immune response to commensal bacteria in the gut or setting the right 

threshold of immune activation in organs that are constantly exposed to environmental 

challenges. The presence of different components and organ-specific characteristics of 

the immune system help to establish the appropriate immune network. Immune cells and 

also soluble factors are connected by activation and inhibition, resulting in a carefully 

balanced interplay (10).  

4.1.1 Innate and adaptive immunity 

First defense against intruding micro-organisms is mediated by innate immunity. Its cells 

recognize a broad spectrum of microorganisms by pattern-recognizing receptors (PRR) 

that bind to repetitive and conserved structures on the surface of micro-organisms 

(pathogen associated molecular patterns, PAMP). PRRs do not need to be induced which 

allows a fast recognition and elimination of pathogens within minutes or hours. Examples 

for PRRs are toll-like receptors (TLRs) which are expressed on the surface of 

macrophages. Their activation results in production of pro-inflammatory cytokines like IL-6 

and TNF-α, and also in expression of co-stimulatory receptors that are necessary for 

induction of the adaptive immunity. Other cellular players of innate immunity are natural 

killer cells (NK cells) which are activated by cytokines released by macrophages (IFN-α 

and IFN-β). NK cells are specialized to identify virus-infected cells by recognizing altered 

structures of MHC I (major histocompatibility complex) on the cell surface, mediated by 

two families of receptors: killer cell lectin-like receptors (KLR) and killer cell 

immunoglobulin like receptors (KIR). Both groups have activating and inhibiting structures, 

and the presence of intact MHC I molecules prevents NK cells from eliminating healthy 

cells. Once activated, NK cells release cytokines (IFN-γ) and cytotoxic granules containing 

perforin and granzyme B which can eliminate target cells. Antigen presenting cells (APCs) 

like dendritic cells (DCs) connect both the innate and the adaptive immunity by 

phagocytosis, processing of pathogens and presentation of fragmented pathogens by 

MHC-II molecules to CD4+ T cells. Furthermore, virus-infected DCs can also present viral 
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peptides by MHC-I molecules on their cell surface which leads to activation and 

differentiation of naïve CD8+ T cells (10).  

In contrast to innate immunity, adaptive immunity is highly specific against pathogens. 

Cellular components are B and T lymphocytes which become activated when they have 

recognized antigens by their highly specific receptors (B cell receptor: BCR; T cell 

receptor: TCR). The TCR is restricted to major histocompatibility complexes (MHC), 

meaning it can only recognize antigen-derived peptide fragments presented by MHC 

molecules I or II. There is a main difference between peptide MHC complex (pMHC) I and 

II, which is that MHC I is expressed on cells having a nucleus, as nearly all cells of the 

body have, whereas MHC II is present on APCs. Furthermore, the presented peptides are 

different: MHC I molecules present peptides that have been produced in the cytosol 

(e.g. virus particles) and MHC II molecules bind peptides that derive from vesicles and 

have been previously absorbed by phagocytes (10). 

In addition to TCR, T cells also express co-receptors which can either bind to MHC I 

(co-receptor CD8) or to MHC II (co-receptor CD4). CD4+ T cells are T helper cells 

(TH cells) that cross talk to other cellular compartments of the innate or adaptive immune 

system. TH1 cells activate CD8+ T cells and macrophages, TH2 cells induce antibody 

production by stimulation of B cells and TH17 cells induce inflammation by activation of 

neutrophil granulocytes. Regulatory CD4+ T cells (Treg) can stop immune responses or 

suppress unwanted responses against self-antigens or harmless pathogens. Treg cells 

can be identified by the surface markers CD3, CD4, CD25 and transcription factor 

FoxP3 (10). 

One subgroup of CD8+ T cells are cytotoxic T cells (CTL). They trigger apoptosis in their 

target cells by releasing cytotoxic proteins like perforin and granzyme B which enter the 

target cell through its plasma membrane. Once in the cytoplasm, granzyme B induces 

apoptosis of the target cell by activation of caspases. Exocytosis of cytotoxic granules 

perforin and granzyme B is also named degranulation. It can be addressed by detection of 

membrane glycoproteins of lysosomes (e.g. CD107a) on the cell surface. Apoptosis of the 

target cell can also be induced by engagement of FAS (CD95, death receptor) expressed 

on the target cell and FAS-L (CD95-L, ligand of death receptor) on activated CTL. 

Production of cytokines like IFN-γ is another key function of CTL. IFN-γ activates 

macrophages and upregulates expression of MHC I and MHC II molecules and the 

corresponding machinery of antigen presentation (10). 
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4.1.2 T cell immunity 

T cell progenitors derive from the bone marrow and complete their development in the 

thymus. When released into the blood stream, naïve T cells migrate to secondary 

lymphoid organs and get in contact with APCs that present peptides produced by the cell 

itself, altered self-proteins by mutations or pathogens by MHC I molecules. After 

engagement of TCR with antigens presented by MHC I molecules on APCs, naïve T cells 

develop to effector cells (10). Furthermore, clonal selection enables to generate memory 

T cells which mediate a fast reaction against recurring pathogens.  

CD8+ T cell subgroups of naïve, effector and memory T cells can be discriminated 

amongst other markers (CD62-L, CD95, CD45RA, CD45RO) by the expression patterns 

of the transcription factors T-bet and Eomesodermin (Eomes) (11–15). T-bet and Eomes 

are also related to perforin and granzyme B expression which is a hallmark for CTL 

(11,12,16).  

4.1.2.1 Initiation of T cell immunity: TCR signaling and co-stimulation 

Ligation of TCR and cognate pMHC initiate a signal cascade, but TCR heterodimers lack 

kinase activity and are thus not capable by themselves to forward signals. TCR exists in 

complex with four CD3 molecules (ε-δ; γ-ε) which contain immunoreceptor tyrosine-based 

activation motifs (ITAMs) that are phosphorylated by tyrosine kinases Fyn and LCK (Src 

family) upon TCR-pMHC engagement. The phosphorylation state activates downstream 

protein kinase ZAP70 and LAT (linker of activation in T cells) by ZAP70. LAT transmits the 

TCR-pMHC signal to phospholipase C-γ (PLC-γ) and the MAPK signaling cascade. PLC-γ 

generates the second messengers DAG (diacylglycerol) and IP3 (inositol-1,4,5-

trisphosphat). IP3 leads to a release of calcium ions (Ca2+) from the endoplasmatic 

reticulum, resulting in dephosphorylation of NFAT (nuclear factor of activated T cells) 

which induces gene transcription of cytokines (e.g. IL-2) or co-inhibitory receptor PD-1 

(programmed cell death protein 1). 

Activation of MAP (mitogen-activated protein) kinase cascade by DAG results in activation 

of ERK (extracellular signal-related kinase) and association of transcription regulating 

complex AP-1 (activating protein 1). One part of AP-1 is protein kinase JNK (c-Jun 

N-terminale kinase) which is activated by ERK or LAT. The AP-1 complex induces 

transcription of cytokines (IL-2, IFN-γ, TNF-α) and degranulation. Furthermore, DAG 

activates protein kinase C-θ (PKC- θ), resulting in activation of NFκB (nuclear factor 

“kappa light chain” of activated B cells). NFκB is kept inactive by complex formation with 
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IκB (inhibitor of NFκB). IκB dissociates from NFκB when phosphorylated and when Ca2+ is 

present. The transcription factor NFκB can then enter the nucleus and activate gene 

transcription, e.g. of cytokines such as IL-2. 

Combined function of AP-1, NFAT and NFκB is the stimulation of gene expression of 

cytokine IL-2 which is essential for T cell proliferation and differentiation into effector cells. 

IL-2 gene expression is only induced when AP-1, NFAT and NFκB are bound to the IL-2 

promotor (10).  

An overview of the TCR signaling and involved pathways, regulations and cross-talks is 

summarized in figure 1. 

 

Figure 1: TCR signaling and its cross-talk to AKT- and mTOR-pathways 

CD28: co-stimulatory receptor. IL-2R: receptor of IL-2. PD-1: co-inhibitory receptor. TCR: T cell receptor. LCK, 
Fyn: kinases of the Src family. ITAMs: immunoreceptor tyrosine-based activation motif. ZAP70: tyrosinase-
protein kinase ZAP70. LAT: linker of activated T cells. PIP2: phosphatidyl-inositol-4,5-bisphosphat. 
IP3: inositol-1,4,5-trisphosphat. PLC-γ: phosphor lipase C- γ. DAG: diacylglycerol. DGK-α: 
diacylglycerolkinase-α. PA: phosphatidic acid. NFAT: nuclear factor of activated T cells. ERK: extracellular 
signal-related kinase. AP-1: activating protein 1. JNK: c-Jun N-terminale kinase. PI3K: phosphoinositide-3-
kinase, PIP3:phosphatidyl-inositol-3,4,5-trisphosphat. PTEN: phosphatase and Tensin homolog. PDK-1: 
phosphoinositide dependent kinase-1. AKT: protein kinase B. mTORC1/C2: mammalian target of rapamycin 
complex 1/2. FoxO1: forkhead box protein 1. p27

kip1
: CDK inhibitor. CDK2: cylin dependent kinase 2. NFκB: 

nuclear factor “kappa light chain” of activated B cells. p70S6K: p70 ribosomal protein kinase S6. rpS6: 
ribosomal protein S6. IκB: inhibitor of NFκB.  

Ligation of TCR by pMHC is the first signal to drive development of effector function and 

the second required signal is co-stimulation, mediated through the co-stimulatory receptor 

CD28 on T cells. It enhances the TCR signaling as well as it drives T cell proliferation and 

survival, activating the AKT (aka protein kinase B) and mTOR (mammalian target of 

rapamycin) -pathways.  
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In detail, the co-stimulatory receptor CD28 binds to its ligands CD80 and CD86 expressed 

on APCs leading to phosphorylation of the intracellular signaling domain YMNM of CD28. 

This results in activation of PI3K (phosphoinositide-3-kinase) (17), which can also be 

activated by IL-2 receptor (IL-2R) signaling (18). The functions of PI3K are mediated by 

PIP3 (phosphatidyl-inositol-3,4,5-trisphosphat), which is produced by PI3K by 

phosphorylation of PIP2 (phosphatidyl-inositol-4,5-bisphosphat). PI3K signaling can be 

inversely regulated by dephosphorylation of PIP3 by phosphatase PTEN (phosphatase 

and tensin homolog) into PIP2 (19). PIP3 is necessary to activate PDK-1 (phosphoinositide 

dependent kinase-1) that subsequently phosphorylates serine/threonine kinase AKT at 

T308. AKT is fully activated together with at S473, mediated by mTORC2 (mammalian 

target of rapamycin, complex 2) (20). One downstream target of AKT is the transcription 

factor FoxO1 (forkhead box protein 1); phosphorylation of FoxO1 by AKT inhibits nuclear 

translocation and activity of FoxO1 (21). In its active not phosphorylated form, FoxO1 can 

enter the nucleus and then sustains expression of PD-1 (21), CDK inhibitor p27kip1
 (22) 

and DGK-α (18,23). Furthermore, AKT can induce activation of NFκB and can also initiate 

cell cycle progression by suppressing CDK (cyclin dependent kinase) inhibitor p27kip1 and 

subsequently activating cyclin E/CDK2 complexes which lead to S phase entry (20,24-27). 

AKT is also capable to phosphorylate mTORC1 (mammalian target of rapamycin, complex 

1) (20), but mTORC1 can also inhibit AKT as a negative feedback loop (28). Downstream 

signaling of mTORC1 is mediated by its catalytic subunit raptor (regulatory-associated 

protein of mTOR). Raptor phosphorylates p70 ribosomal protein kinase S6 (p70S6) which 

leads to phosphorylation of ribosomal protein S6 (rpS6) that finally induces gene 

translation (29). Furthermore, mTORC1 promotes effector differentiation of CD8+ T cells 

by gene regulation of cytotoxic effector molecules perforin, granzyme B or IFN-γ (30).  

4.1.2.2 Regulation of T cell immunity: signaling cross-talks and co-inhibition 

Cross-inhibition between different pathways leads to negative regulation of an upstream 

component of another pathway resulting in inhibition of the other pathway´s signal (31). 

Cross-inhibition between AKT- and MAPK-pathways have been reported (20,31), 

indicating that T cells can either proliferate as induced by AKT-pathway or be functional 

active by ERK (and MAPK cascade) mediated degranulation. Cross-activation between 

different signaling pathways was also found and is defined by positive regulation of 

upstream components of one pathway by a mediator of a second pathway thereby 

increasing the first pathway´s activity (31). This has been reported for the mTOR-pathway 

and the MAPK cascade; ERK can lead to mTORC1 activation (31), indicating that T cell 

function like degranulation induced by MAPK cascade (ERK) and mTORC1 mediated 
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production of the cytotoxic molecules perforin and granzyme B are both necessary to 

provide target cell toxicity.  

After intruded microorganism or degenerated cells are eliminated, activation of CTL needs 

to be terminated. Co-inhibitory receptors or inhibitory checkpoints are expressed on the 

surface of CTL after activation and negatively regulate a wide spectrum of T cell function 

like proliferation, cytokine production and expression of cytotoxic molecules like perforin 

and granzyme B (32). Examples for inhibitory receptors are, amongst others, lymphocyte 

activation gene 3 (LAG-3), TIM-3 (T cell immunoglobulin and mucin-domain containing-3), 

programmed cell death protein 1 (PD-1), or CTLA-4 (cytotoxic T cell associated protein 4). 

In more detail, LAG-3 associates with the TCR and engages with MHC molecules. 

Downstream functions are decreased intracellular levels of Ca2+ (33) which lead to 

suppression of NFAT and MAP kinase cascades. PD-1 is a transmembrane receptor of 

the immunoglobulin superfamily and after ligation with its ligands PD-L1 or PD-L2 

(expressed on APCs or tumor cells), downstream impact of PD-1 is suppression of PI3K 

(34) which results in suppression of AKT and mTOR pathway and subsequent decrease 

of proliferation and cytokine production. CTL-A4 is transmembrane glycoprotein of the 

immunoglobulin superfamily. As a homologue of CD28, the ligands of CTLA-4, CD80 and 

CD86 are well described, but downstream signaling of CTL-A4 has not been fully 

understood yet (32). 

4.1.2.3 T cell unresponsiveness: anergy and exhaustion 

Different states of T cell unresponsiveness have been reported, and T cell anergy and 

exhaustion are explained in the following.  

T cell anergy has been described as a mechanism of unresponsiveness, in which T cells 

are functionally inactivated after stimulation without co-stimuation. Anergic T cells remain 

alive but are in a hyporesponsive state (35). First experiments that induced T cell anergy 

were performed with murine T cells. T cells were stimulated with fixed APCs which cannot 

upregulate co-stimulatory ligands, then anergic T cells developed, producing less IL-2 as 

when co-cultured with live APCs (36). This led to the conclusion that anergy arises from 

incomplete T cell activation, e.g. ligation of TCR but lacking the co-stimulatory signal (35). 

Indeed, stimulation with antigens only engaged to TCR alone without additional co-

stimulation induced anergy in TH1 cells (37). Besides the incomplete activation by lacking 

the co-stimulatory signal, anergic T cells were in a growth arrested state and showed a 

block in the MAPK pathway by poor activation of ERK and JNK pathways which can be 

completely reverted by IL-2 (35). Interestingly, PMA and Ionomycin usually induce IL-2 
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production and proliferation, however, anergic T cells were only partly revived after PMA/I 

treatment (35). The anergic state was connected to high expression of DGK-α as anergic 

TH1 cells were characterized by overexpression of DGK-α, suppression of ERK activation 

and reduced IL-2 production after anti-CD3/anti-CD28 stimulation (38). In the tumor 

microenvironment, hypo-responsiveness was found in human T cells engineered with a 

chimeric antigen receptor (CAR) after trafficking to tumors, proliferated but rapidly lost 

their functional activity resulting in limited therapeutic effect. These CAR-T cells were 

characterized by high levels of DGK-α and blocking DGK-α decreased the defects in 

tumor cell killing (39). Also CD8+ tumor-infiltrating leukocytes (TIL) of renal cell carcinoma 

(RCC) showed hallmarks of anergy being unresponsive to anti-CD3 stimulation, 

demonstrating reduced phosphorylation of ERK and JNK, and they had high levels of 

DGK-α. Low dose IL-2 and also inhibition of DGK-α led to improved ERK phosphorylation 

and lytic granule exocytosis (40). 

T cell exhaustion defines a state of dysfunction characterized by loss of IL-2 production, 

proliferation and killing capacity. Exhaustion is thought to develop due to antigen 

persistence in chronic infection and cancer, and is described by multiple expression of co-

inhibitory receptors on the surface of CTL (41,42). The state of exhaustion has been 

shown to be reverted by blocking the inhibitory checkpoints PD-1 and CTL-A4 in-vivo in a 

mouse model of chronic LCMV infection (43) and blocking of CTLA-4 and PD-L1 resulted 

in major tumor regression in patients with metastatic melanoma (44).  

4.2 Tumor immunology 

The immune system does not only protect from intruding microorganisms but also 

eliminates degenerated cells such as tumor cells. Indeed, TIL were found in different 

tumors, amongst others also in RCC (45,46) and in hepatocellular carcinoma (HCC) (47). 

Correlations between the levels of the immune cell infiltration of tumors and the clinical 

outcome have been investigated. A strong infiltration has been associated with good 

clinical outcome in different tumor entities (48). Additionally, the tumor infiltrating immune 

cells in human colorectal cancers were characterized and provided a better prediction of 

patient survival as the histopathological methods that were used to stage colorectal 

cancer (49). Taken together, this indicates that characterization of the immune contexture 

meaning type, density and location of immune cells has developed into a useful adjunct 

tool to predict patients´ prognosis (48,49).  

Nevertheless, the question remains why tumors emerge and progress although TIL invade 

into tumors. Different mechanisms of tumor immune escape have been described (50): 
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Loss of antigenicity was found due to loss of immunogenic tumor antigen expression or 

defects in the antigen presentation such as loss of MHC expression or dysregulation of 

antigen processing machinery. Decreased immunogenicity of tumors has been reported 

by upregulation of immuno-inhibitory ligands such as PD-L1 and the presence of co-

inhibitory molecules like PD-1, LAG-3 or TIM-3 and their ligation inhibiting the function of 

TIL. A suppressive tumor microenvironment also plays a role in tumor immune escape by 

the presence of inhibitory immune cell subsets such as regulatory T cells or myeloid-

derived suppressor cells (MDSCs). Additionally, the intruding TIL can have deficits 

themselves; TCRs might not recognize tumor associated antigens (TAAs) or T cells 

recognize the corresponding TAA but T cell function is intrinsically impaired. With regard 

to RCC, CD8+ TIL that recognize the corresponding TAA (6,46) were found in the tumor 

microenvironment but did not eliminate tumor cells but TIL regained anti-tumor 

functionality after cultivation (4–6,40).  

It has been described above (see p. 15) that T cell immunity can be regulated by co-

inhibitory receptors (inhibitory checkpoints) and the hyporesponsive state of T cell 

exhaustion is characterized by expression of multiple co-inhibitory receptors on T cells. 

Blocking of the inhibitory checkpoints PD-1 and CTLA-4 successfully reverted T cell 

exhaustion in a mouse model of chronic LCMV infection (43). Checkpoint inhibitors have 

also entered clinical treatment and the promising response rates of tumor regression in 

some patients led to the approval of several checkpoint inhibitor antibodies (anti-PD-1, 

anti-PD-L1, anti-CTLA-4) by the U.S: Food and Drug Administration (FDA) for treatments 

of several tumor entities. For example, treatment with ipilimumab (anti-CTLA-4) was 

approved after successful studies in melanoma in 2011 (51). Among other tumor entities, 

successful studies of nivolumab (anti-PD-1) in HCC patients showed overall response 

rates of 18% (52) and approval of nivolumab by the FDA was granted in September 2017. 

Furthermore, nivolumab was approved as second-line treatment for RCC in 2016 (53) and 

was additionally approved in combination with ipilimumab by the FDA just recently 

(April 2018) as frontline therapy for intermediate and poor-risk patients with advanced 

RCC (54,55).  

4.3 Renal cell carcinoma (RCC) 

Renal cell carcinoma (RCC) derives from luminal cells of the proximal tubulus and is an 

epithelial tumor. Due to lack of symptoms, RCC is diagnosed in late stages and one third 

of initially surgically treated patients relapse or are diagnosed with metastasis (56). Within 

several subgroups of RCC, clear cell RCC (ccRCC) is most frequent (70%) followed by 

papillary (10% – 15%) and chromophobe (5%) tumors.  
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RCC is considered as an immune responsive tumor defined by several criteria: i) in the 

1990 (before discovery of immune checkpoints), it was shown that some patients 

responded to immunotherapy using high-dose IL-2 or IL-2 and IFN-α (1–3), ii) in rare 

cases, spontaneous remission of primary tumors or metastasis have been observed (9) 

and iii) TIL isolated from RCC tissues showed anti-tumor activity after cultivation in-vitro 

(4–6). Altogether, these findings indicate that immunotherapy of RCC might be successful 

but it still remains unclear why RCCs are strongly infiltrated by effector cells but tumor are 

not rejected (45) and response rates to checkpoint blockade therapy are not higher than 

25% (52). 

For non-metastatic ccRCC, first line therapy suggests tumor resection whereby 

nephrectomy should be prevented if possible (57). First line therapy for metastatic ccRCC 

indicates VEGF-inhibitors or sunitinib. Yet, resistance develops commonly after target 

therapy. Checkpoint inhibitor nivolumab (anti-PD-1) is an approved second line treatment 

option after resistance to tyrosine kinase inhibitors (57). However, objective response 

rates of 25% (52) are promising but further optimization is needed.  

4.4 Hepatocellular carcinoma (HCC) 

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, survival 

rates of HCC patients are very low and only 20% of patients are still alive one year after 

diagnosis (8). Because HCC develops from underlying liver diseases, HCC patients suffer 

from liver dysfunction and the malignancy of the tumor. To evaluate treatment options for 

HCC patients, the Barcelona Clinic Liver Cancer (BCLC) stages allow classification of 

HCC patients not only by tumor burden characterized by pTNM (pathological tumor node 

metastasis) staging but also severity of the underlying liver disease, and general health 

conditions of the patients are taken into account (58,59). Depending on the different BCLC 

stages, different treatment options as surgery, liver transplantation, radiofrequency 

ablation (RFA), transarterial chemoembolization (TACE) are suggested. The multi-kinase 

inhibitor sorafenib prolongs survival up to three months (58,59). Until now, first and 

second line therapy in Germany do not recommend immunotherapy for HCC patients (58). 

Nevertheless, HCC is an interesting candidate for immunotherapy because it develops in 

the context of an immune-tolerant milieu of the liver. Due its physiologic function which is 

filtration of toxic waste, environmental agents and bacteria from the GI tract, the liver is 

exposed to an enormous load of antigens (7). Tolerogenic mechanisms prevent the liver 

from organ-autoimmune damage due to ongoing stimulation by antigens (7,60,61). 

Amongst others, tolerogenic mechanisms are decreased surface expression of co-

stimulatory molecules (61), cross-presenting liver sinusoidal endothelial cells (LSECs) that 
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induce memory T cells instead of CTL (62) and increased expression of PD-L1 on 

hepatocytes, hepatic stellate cells, LSECs and Kupffer cells (7). Taken together, the 

tolerogenic milieu eases HCC development when underlying diseases additionally foster 

inflammation. 

Indeed, HCC develops from underlying diseases or infections (8,63); for example chronic 

viral infection with hepatitis B (HBV) or C (HCV) are risk factors that cause liver tumors 

(7). After HBV vaccines have been introduced in 1980s, a decrease of HCC was reported. 

However, obesity, diabetes and subsequent non-alcoholic steatohepatitis (NASH) are 

growing risk factors for HCC (7). Furthermore, alcohol abuse first leads to fibrotic and in 

long term to cirrhotic modifications of the liver and 90% of HCC developed from 

cirrhosis (8). It appears logical that the tolerogenic milieu of the liver and concurrent 

immune suppression in combination with chronic inflammation eases tumor 

development (7). When tumors are established, the immunosuppressive 

microenvironment of the tumor hampers successful tumor eradication by the immune 

system (7). Despite unfavorable conditions for tumor eradication, spontaneous tumor-

specific adaptive immune responses have been reported in HCC patients and tumor-

specific CTL against the tumor-associated antigens (TAAs) NY-ESO and glypican–3 

(GPC3) have been identified (7). This indicates that anti-tumor immunity does exist in 

HCC, but effector activity is suppressed. This raises hope that antitumor immunity might 

be reinvigorated if the underlying immune suppressive mechanisms are counteracted. 

Therefore, HCC was regarded as a candidate for immunotherapy and indeed, nivolumab 

(anti-PD-1) showed clinical responses in a subset of 20% of patients (52). 

5 Objective of this thesis 

RCC is characterized as an immune responsive tumor harboring TIL that show anti-tumor 

activity when removed from the tumor and cultured in vivo (1–6). Already in the 1980s, it 

was shown that RCC patients respond to systemic cytokine therapy (high dose IL-2) and 

immune-modifiers such as IFN-α (1–3). The environment of HCC is influenced by 

immune-tolerogenic mechanisms that favor tumor formation once the liver has been 

damaged (7,8). In both RCC and HCC, spontaneous tumor-specific immune responses 

have been reported (7,9) which makes both tumor entities good candidates for 

immunotherapy. Indeed, current trials using nivolumab have shown objective response 

rates of 25% (55,64) in ccRCC and of 20% in non-viral HCC (52). It still remains unclear 

why response rates are relatively low.  
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This thesis aims to further elucidate defects of tumor infiltrating lymphocytes (TIL) beyond 

the checkpoint inhibition that prevent tumor eradication with special focus on the 

comparison of CD8+ TIL of ccRCC and non-viral HCC. Due to the distinct immunological 

environments of RCC and HCC, it was hypothesized that defects of RCC-TIL and 

HCC-TIL might be different. Furthermore, it was of interest to identify targets that might 

help to improve immunotherapy outcome in both tumor entities. 

Tissue suspensions of RCC and HCC tissues were prepared and analyzed without 

previous cultivation or separation of specific leukocyte subsets in order to best preserve 

the features of the immune cell composition and its possible deviation from active 

immunity. With the help of multi-parameter flow cytometry, the composition of the immune 

cell infiltrate in general as well as the functional state of CD8+ T cells in particular was 

addressed. Markers with regard to cell cycle progression, signaling cascades of the T cell 

receptor and the co-stimulatory pathway, markers associated with anergy and exhaustion 

as well as the cytotoxic state were assessed to obtain insight into the mechanisms of 

T cell hypo-responsiveness.  



 Material and Methods 
 

_ 

22 

6 Material and Methods 

6.1 Materials 

6.1.1 Consumables and Equipment 

Table 1: Consumables and equipment 

Consumable/Equipment Company 

ArC amine reactive compensation Kit 
Thermo Fisher Scientific/Caltag, 
Waltham, Massachusetts 

Balance, PC 400 DeltaRange Mettler, Gießen, Germany 

Cell Strainer 100 µm BD Pharmingen, Heidelberg, Germany 

Centrifuge, Megafuge 2.0 R Heraeus Instruments, Hanau, Germany 

Cover glass for Neubauer counting chambers,  
20 x 26 mm, depth 0,4 mm 

Hirschmann Laborgeräte, Eberstadt, Germany 

Freezing vials, 1,5 ml Nunc, Wiesbaden, Germany 

Incubator Hereaus Instruments, Hanau, Germany 

Light microscopes: 
Leica DMLS 
Zeiss Axioskop 

Leica Microsystems, Heidelberg, Germany 
Carl Zeiss Micro Imaging GmbH, Göttingen, Germany 

Mr Frosty
TM

 freezing container 
Thermo Fisher Scientific/Caltag, 
Waltham, Massachusetts 

Mulit-well plates, polysterene 
96-wellplates (non-tissue culture treated) 

Corning Incorporated, Corning, NY, USA 

Multistepper Eppendorf, Hamburg, Germany 

Neubauer counting chamber, depth 0,1 mm 
Gesellschaft für Laborbedarf Würzburg, Würzburg, 
Germany 

Nitrogen tank Messer Griesheim, Krefeld, Germany 

Nutating mixer VWR International, Ismaning, Germany 

Pasteur pipettes, glass Josef Peske GmbH & Co KG, München, Germany 

Pipettes and tips 
1 to10 μl, 10 to 200 μl, 200 to 1000 μl 

Eppendorf, Hamburg, Germany 

Pipette tips for pipettor  
glass: 2 ml, 5 ml, 10 ml, 20 ml 
disposable: 10 ml, 25 ml 

 
Hirschmann Laborgeräte, Eberstadt, Germany 
Greiner bio-one, Frickenhausen, Germany 

Pipettor Pipetus® Hirschmann Laborgeräte, Eberstadt, Germany 
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Consumable/Equipment Company 

Sterile laminar flow hood 
BDK Luft- und Reinraumtechnik GmbH, Sonnenbühl-
Genkingen, Germany 

Syringes for multistepper, 2,5 ml, 5 ml 
Hartenstein, Würzburg, Germany 
Eppendorf, Hamburg, Germany 

Syringes for tissue sample preparation (10ml) BD Biosciences, Heidelberg, Germany 

Tissue culture flasks, 75 cm
2 

Greiner bio-one, Frickenhausen, Germany 

Tubes for flow cytometry, polypropylene 
1 ml, 5 ml 

Greiner bio-one, Frickenhausen, Germany  
Becton Dickinson Falcon, Heidelberg, Germany 

Tubes, Polypropylene, 1,5 ml, 2 ml, 15 ml, 50 ml Eppendorf, Hamburg, Germany 

Vortexer MS1 Minishaker KA Werke GmbH & Co KG, Staufen, Germany 

Water bath Köttermann Labortechnik, Uetze, Germany 

6.1.2 Reagents 

Table 2: Reagents 

Reagent Company 

Accutase® PAA Laboratories, Cölbe, Germany 

Aqua ad iniectabilia B. Braun, Melsungen, Germany 

ArC amine reactive compensation Kit 
Thermo Fisher Scientific/Caltag, 
Waltham, Massachusetts 

Brefeldin A eBioscience, Frankfurt, Germany 

BSA (bovine serum albumin) Sigma-Aldrich, Taufkirchen, Germany 

Collagenase IA Sigma-Aldrich, Taufkirchen, Germany 

CompBeads (anti-mouse IgG, κ) BD Biosciences, Heidelberg, Germany 

Dimethylformamide Sigma-Aldrich, Taufkirchen, Germany 

Distilled and filtered water, non-sterile Millipore, Schwalbach, Germany 

DNase I Sigma-Aldrich, Taufkirchen 

Dulbecco’s phosphate buffered saline (DPBS) GIBCO by Life Technologies, Darmstadt, Germany 

Ethanol Merck, Darmstadt, Germany 

Ethylenediaminetetraacetic acid (EDTA) GIBCO by Life Technologies, Darmstadt, Germany 

Fetal bovine serum (FBS) Biochrome, Berlin, Germany 

Ficoll® (Pancoll, density 1.077 g/ml) Pan Biotech, Aidenbach, Germany 
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Reagent Company 

Flow-Count Fluoroshperes Beckman Coulter, Galway, Ireland 

Glucose monohydrate Merck, Darmstadt, Germany 

HCl solution (2 mol/l, 2 N) Merck, Darmstadt, Germany 

Heparin-sodium B. Braun, Melsungen, Germany 

HEPES Sigma Aldrich, Taufkirchen, Germany 

Human serum (HS) In-house production (Helmholtz-Center Munich) 

Ionomycin Sigma Aldrich, Taufkirchen, Germany 

L-glutamine GIBCO by Life Technologies, Darmstadt, Germany 

LIVE/DEAD
TM

 Fixable Blue Dead Cell Staining Kit 
Thermo Fisher Scientific/Caltag, Waltham, 
Massachusetts, USA 

Monensin (BD GolgiStop©) BD Pharmingen, Heidelberg, Germany 

Non-essential amino acids GIBCO by Life Technologies, Darmstadt, Germany 

Paraformaldehyde (PFA) Merck, Darmstadt, Germany 

Penicillin/streptomycin GIBCO by Life Technologies, Darmstadt, Germany 

Percoll ® Sigma Aldrich, Taufkirchen, Germany 

Phorbol- 12- myristate- 13- acetate (PMA) Sigma Aldrich, Taufkirchen, Germany 

Recombinant IL-2 Cancernova GmbH, Reute, Germany 

Saponin Merck, Darmstadt, Germany 

Sodium azide Merck, Darmstadt, Germany 

Sodium pyruvate GIBCO by Life Technologies, Darmstadt, Germany 

Trypan blue Sigma-Aldrich, Taufkirchen, Germany 

Trypsin-EDTA GIBCO by Life Technologies, Darmstadt, Germany 

6.1.3 Media and buffers for cell culture and tissue preparation 

Table 3: Media and buffers 

Medium / buffer Formulate / Company 

2 x Trypsin / EDTA 
PBS 
+ 20 % 10 x trypsin / EDTA 

Buffer for digestion 

RPMI 1640 
+ 0.1% BSA 
+ 1% Penicillin/streptomycin 
+ 10 mM HEPES 
+ 800 (U/ml collagenase Ia) 
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Medium / buffer Formulate / Company 

Dulbecco’s phosphate buffered saline 
(DPBS) 

GIBCO by Life Technologies, 
Darmstadt, Germany 

Erythrocytes lysis buffer (10X) 

16.5 g ammonium chloride 
2 g potassium chloride 
74 mg Na-EDTA 
ad 200 ml aqua dest. 
pH adjustment: 7.3 – 7.4 

Freezing Medium Classic without serum Ibidi GmbH, Martinsried, Germany 

Hanks Balanced Salt Solution (HBSS) containing Mg
2+

 and Ca
2+ 

(1.26 mM CaCl2/0.5 mM MgCl2) 
GIBCO by Life Technologies, 
Darmstadt, Germany 

Hanks Balanced Salt Solution (HBSS), 10X  without  
Mg

2+
 and Ca

2+
 

GIBCO by Life Technologies, 
Darmstadt, Germany 

LCL-Medium 
RPMI III 
+ 10% FBS 

Opti-MEM 
GIBCO by Life Technologies, 
Darmstadt, Germany  

Phosphate buffered saline (PBS) 
GIBCO by Life Technologies, 
Darmstadt, Germany 

Roswell Park Memorial Institute 
(RPMI)-1640 medium without L-glutamine 

GIBCO by Life Technologies, 
Darmstadt, Germany 

RPMI III 

RPMI 1640 
+ 2 mM L-glutamine 
+ 1 mM sodiumpyruvat 
+ 1 mM non-essential amino acids 

Thawing and stimulation medium for PBMC, activated T cells,  
NIL and TIL 

RPMI III 
+ 10% human serum 

6.1.4 Buffers for flow cytometry 

Table 4: Buffers for flow cytometry 

Buffer Formulate/Company 

BD Cytofix/Cytoperm Fixation/Permeabilisation Kit BD Biosciences, Heidelberg 

BD Horizon
TM 

Brilliant Stain Buffer BD Biosciences, Heidelberg, Germany 

BD Phosflow
TM

 Perm Buffer III BD Biosciences, Heidelberg, Germany 

Cytofix
TM

 Fixation Buffer BD Biosciences, Heidelberg, Germany 

FACS fixation buffer 
in-house production:  
PBS + 1% PFA 

FACS permeabilization buffer containing saponin 
(0.1%; 0.35%) 

PBS 
+ 0.1 or 0.35% saponin 
+ 2% HS 
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Buffer Formulate/Company 

Fluorescence activated cell sorting (FACS) buffer 

PBS 
+ 2 mM EDTA 
+ 1 % HS 
+ 0,1% sodium azide 

Transcription Factor Buffer Set BD Biosciences, Heidelberg, Germany 

6.1.5 Cell lines 

Table 5: Cell lines 

Name Characteristics Medium for cultivation Source 

activated 
T cells 

PBMC transduced to stably express the 
HLA-A2 restricted tyrosinase-specific 
TCR T58 (see p. 34) 

directly thawed before 
experiments 

in-house 
production 

P815 mouse-mastocytoma cell line TIB-64
TM

 LCL-medium 
ATCC, Rockville, 

Maryland, USA 

6.1.6 Primary antibodies for flow cytometry 

Table 6: Primary antibodies for flow cytometry 

Target/ 
epitope 

Species Isotype Clone 
Fluoro-
chrome 

Dilution 
Appli-
cation 

Company 

CD3 mouse IgG1 κ  SK7 
PerCp-
Cy

TM
5.5 

1:10 surface 
eBioscience, 

Frankfurt, 
Germany 

CD3 mouse IgG1 κ UCHT1 
Alexa Fluor® 

A700 
1:25 surface 

Biolegend, 
London, UK 

CD4 mouse IgG1 κ RPA-T4 
APC-eFluor 

780 
1:25 surface 

eBioscience, 
Frankfurt, 
Germany 

CD8a mouse IgG1 κ RPA-T8 V500 1:8 surface 

BD 
Biosciences, 
Heidelberg, 
Germany 

CD14 mouse IgG2a κ M5E2 PB 1:8 surface 
Biolegend, 

London, UK 

CD19 mouse IgG1 κ HIB19 
Alexa 

Fluor® A700 
1:8 surface 

BD 
Biosciences, 
Heidelberg, 
Germany 
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Target/ 
epitope 

Species Isotype Clone 
Fluoro-
chrome 

Dilution 
Appli-
cation 

Company 

CD19 mouse IgG1 κ HIB19 BV421 1:50 surface 

BD 
Biosciences, 
Heidelberg, 
Germany 

CD20 mouse IgG2b κ 2H7 
Alexa Fluor® 

A700 
1:50 surface 

Biolegend, 
London, UK 

CD20 mouse IgG2a H1 BV421 1:50 surface 

BD 
Biosciences, 
Heidelberg, 
Germany 

CD45 mouse IgG1 κ HI30 Pe-Cy7 1:25 surface 
Biolegend, 

London, UK 

CD56 mouse IgG1 κ B159 V450 1:10 surface 

BD 
Biosciences, 
Heidelberg, 
Germany 

CD56 mouse IgG2b NCAM16.2 BV421 1:50 surface 

BD 
Biosciences, 
Heidelberg, 
Germany 

CD107a mouse IgG1 κ H4A3 APC 1:10 surface 
Biolegend, 

London, UK 

cyclin E mouse IgG2b κ HE12 FITC 1:2,5 
intra-

cellular 

Santa Cruz 
Biotechnology, 

Dallas, USA 

DGK-α mouse IgG2a κ 3G7 unmarked 1:100 
intra-

cellular 
LSBio, Seattle, 

USA 

Eomes mouse IgG1 κ WD1928 PE 1:100 
intra-

cellular 

eBioscience, 
Frankfurt, 
Germany 

FoxO1 mouse polyclonal polyclonal unmarked 1:50 
intra-

cellular 

Cell Signaling, 
Leiden, 

Netherlands 

granzyme B mouse IgG1 κ GB11 
PE-

TexasRed® 
1:8 

intra-
cellular 

Thermo Fisher 
Scientific/ 
Caltag, 

Waltham, 
Massachusetts 

Ki-67 mouse IgG1 κ Ki-67 
Alexa Fluor® 

A488 
1:10 

intra-
cellular 

Biolegend, 
London, UK 

LAG-3 
(CD223) 

mouse IgG1 17B4 ATTO 647N 1:100 
intra-

cellular 

Biomol, 
Hamburg, 
Germany 
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Target/ 
epitope 

Species Isotype Clone 
Fluoro-
chrome 

Dilution 
Appli-
cation 

Company 

p27
kip1

 mouse IgG1 κ F-8 PE 1:10 
intra-

cellular 

Santa Cruz 
Biotechnolog, 
Dallas, USA 

pAKT 
(S473) 

mouse IgG1 κ M89-61 V450 1:10 
intra-

cellular 

BD 
Biosciences, 
Heidelberg, 
Germany 

perforin mouse IgG2b, κ dG9 FITC 1:10 
intra-

cellular 

BD 
Biosciences, 
Heidelberg, 
Germany 

pmTOR 
(S2448) 

mouse IgG1 κ O21-404 
Alexa Fluor® 

647 
1:10 

intra-
cellular 

BD 
Biosciences, 
Heidelberg, 
Germany 

p-p44/42 
MAPK 
(pERK; 

T202/Y204) 

rabbit polyclonal polyclonal unmarked 1:100 
intra-

cellular 

Cell Signaling, 
Leiden, 

Netherlands  

PD-1 
(CD279) 

mouse IgG1 κ eBioJ105 PE 1:8 surface 
eBioscience, 

Frankfurt, 
Germany 

PD-1 
(CD279) 

mouse IgG1 κ eBioJ105 
PerCp-

eFluor 710 
1:8 surface 

eBiosciencen 
Frankfurt, 
Germany 

prps6  
(S244) 

mouse IgG1 κ N5-676 PE 1:10 
intra-

cellular 

BD 
Biosciences, 
Heidelberg, 
Germany 

T-bet mouse IgG1 κ 4B10 
eFluor

TM 

660 
1:10 

intra-
cellular 

eBioscience, 
Frankfurt, 
Germany 

IFN-γ mouse IgG1 κ 4S.B3 
PerCp-
Cy

TM
5.5 

1:10 
intra-

cellular 
Biolegend, 

London, UK 
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6.1.7 Secondary antibodies for flow cytometry 

Table 7: Secondary antibodies for flow cytometry 

Specificity Species Clone 
Fluoro-
chrome 

Dilution Application Company 

anti-mouse 
IgG2a 

goat polyclonal 
Alexa Fluor® 
488 

1:200 intracellular 

Thermo Fisher 
Scientific/Caltag, 
Waltham, 
Massachusetts 

anti-rabbit goat polyclonal 
Alexa Fluor® 
647 

1:500 intracellular 

Thermo Fisher 
Scientific/Caltag, 
Waltham, 
Massachusetts 

6.1.8 Reagents for T-cell stimulation assays 

ImmunoCultTM (StemCellTM Technologies) human T cell activators consist of tetrameric 

antibody complexes designed for T cell activation and expansion without the use of 

magnetic beads.  

Table 8: Immuno
TM

 Cult T cell activators 

ImmunoCult
TM

 T cell activator Antibodies 

CD3 Anti-human CD3 monospecific tetrameric antibody complex 

CD3/CD28 
Anti-human CD3 monospecific tetrameric antibody complex 

Anti-human CD28 monospecific tetrameric antibody complex 

 

Table 9: Antibodies for T cell stimulation assays 

Target/ epitope Species Isotype Clone Company 

CD3 mouse IgG2a OKT3 In-house production 

CD28 mouse IgG1 CD28.2 
BD Pharmingen, 
Heidelberg, Germany 

used as isotype 
control 

mouse IgG1 MOPC21 
BD Pharmingen, 
Heidelberg, Germany 



 Material and Methods 
 

_ 

30 

6.1.9 Peripheral blood mononuclear cells and tissue suspensions 

Peripheral blood mononuclear cells (PBMC) were obtained from healthy donors (n=16). 

Donors consented to the donation and blood collection was approved by the ethics 

committee.  

Table 10: PBMC and tissue suspensions 

Name Characteristics Source 

NIL 
(infiltrating leukocytes from non-
tumor-harboring tissue samples) 

Tissue suspension of non-tumor 
tissue generated by mechanically 
mincing and enzymactic digestion 

Tissue from macroscopically 
tumor-free area of tumor-
harboring organ (liver or kidney) 
of HCC or RCC patients 

PBMC 
(peripheral blood mononuclear 
cells) 

peripheral blood mononuclear cells 
isolated from whole blood of healthy 
donors 

Healthy donors 

TIL 
(tumor-infiltrating leukocytes) 

Tissue suspension of tumor tissue 
generated by mechanically mincing 
and enzymatic digestion of tissue 
samples 

Macroscopically judged tumor-
harboring area of liver or kidney 
of HCC or RCC patients 

6.1.10 HCC Patients 

Tissues, blood samples and corresponding data from HCC patients (tumor samples n=14 

and corresponding non-tumor tissue n=10) were provided by the Biobank under the 

Administration of the Human Tissue and Cell Research (HTCR) Foundation at the 

Hospital of the University of Munich. Tissues and data from a database approved by a 

data protection officer from the HTCR Foundation were provided anonymized (double-

coded). The framework of HTCR Foundation (65), which includes obtained written 

informed consent from all donors, has been approved by the ethics commission of the 

Faculty of Medicine in the University of Munich (No. 025-12) as well as the Bavarian State 

Medical Association (No. 11142). All HCC-patients were negatively tested for hepatitis A, 

B or C infection (non-viral HCC). Infiltrating leukocytes from hepatic non-tumor-harboring 

tissue samples are named as h-NIL and tumor infiltrating leukocytes are named as 

HCC-TIL when compared with samples of RCC patients. 
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Table 11: Clinical-pathological characteristics of non-viral HCC patients 
1
The age classes of the patients were provided within ranges by the HTCR 

2
classification according to guidelines of Union International Contre le Cancer (UICC); T: extent of the primary 

tumor. N: absence or presence of regional lymph node metastasis. M: absence or presence of distant 
metastasis. L: lymphatic invasion, V: venous invasion. R: residual tumor after resection. G: histopathological 
grading. x: not specified 

Patient ID and 
tissue type 

Sex 
Age range

1
  

(at time of tumor 
resection) 

TNM-Stage
2
 

Pathological 
abnormalities of 

tumor tissue 

HCC4 
(NIL, TIL) 

male 70-79 
pT2 pN0 Mx 
L0 V2 R0 G2 

steatosis, fibrosis, 
cirrhosis 

HCC7 
(NIL) 

male 60-69 
pT2 pN0 Mx 
L0 V1 R0 G3 

fibrosis 

HCC9 
(TIL) 

male 70-79 
pT4 pNx Mx 
L1 V0 R1 G3 

steatosis 

HCC12 
(TIL) 

male 60-69 
pTx pNx Mx 
Lx Vx Rx G2 

steatosis 

HCC13 
(NIL, TIL) 

male 70-79 
pT1 pN0 Mx 
L0 V0 R1 G2 

fibrosis 

HCC16 
(NIL, TIL) 

female 70-79 
pT1 pNx Mx  
L0 V0 R0 G2 

steatosis 

HCC17 
(NIL, TIL) 

male 60-69 
pT2 pNx M1 
L0 V1 R1 G2 

none 

HCC19 
(NIL, TIL) 

female 40-49 
pT1 pN0 Mx 
L0 V0 R0 G2 

none 

HCC20 
(NIL, TIL) 

male 60-69 
pT2a pN0 Mx

3
 

L0 V1 R0 G2 
steatosis 

HCC21 
(NIL, TIL) 

female 70-79 
pT1 pNx Mx 
L0 V0 R0 G2 

steatosis 

HCC22  
(TIL) 

male 70-79 
pT3 pNx Mx 

L0 V1 G2 
none 

HCC23 
(TIL) 

female 70-79 
pT4 pNx Mx 

L0 V0 G2 
cirrhosis 

HCC24 
(TIL) 

female 20-29 
pT2 pN0 Mx 
L0 V1 R0 G2 

fibrosis 

HCC25 
(TIL) 

female 70-79 
pT3 pN0 Mx 
L0 V0 R0 G2 

none 

HCC26 
(TIL) 

male 70-79 
pT2 pN0 Mx 
L0 V1 R0 G2 

cirrhosis 
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6.1.11 RCC patients 

Tissue samples of RCC patients (tumor and corresponding non-tumor samples n=10) 

were histologically diagnosed as clear cell renal cell carcinoma and were obtained from 

untreated patients that underwent tumor resections at the Urologische Klinik Dr. 

Castringius Planegg (Munich, Germany). Patients consented to the donation, samples 

were anonymized and analysis was approved by the ethics committee by a clearance 

certificate. Infiltrating leukocytes from renal non-tumor-harboring tissue samples are 

named as r-NIL and tumor infiltrating leukocytes are named as RCC-TIL when compared 

with samples of HCC patients. 

Table 12: Clinical-pathological characteristics of RCC patients 
1
classification according to guidelines of Union International Contre le Cancer (UICC); T: extent of the primary 

tumor. N: absence or presence of regional lymph node metastasis. M: absence or presence of distant 
metastasis. L: lymphatic invasion, V: venous invasion. R: residual tumor after resection. G: histopathological 
grading. x: not specified

 

Patient ID and tissue 
type 

Sex 
Age  

(at time of tumor 
resection) 

TNM-Stage
1
 

RCC108 
(NIL, TIL) 

female 81 pT3a L0 V0 R0 G2 

RCC115 
(NIL, TIL) 

male 73 pT1b L0 V0 G2 

RCC117 
(NIL, TIL) 

male 74 pT3a pN0 L0 V0 G3 R0 

RCC118 
(NIL, TIL) 

male 57 pT3b pN0 L0 V1 R1 G3 

RCC121 
(NIL, TIL) 

male 63 pT3a L0 V0 R0 G3 

RCC124 
(NIL, TIL) 

male 72 pTx
 
Lx Vx Rx Gx 

RCC128 
(NIL, TIL) 

male 67 pT3a L0 V0 R0 G2 

RCC129 
(NIL, TIL) 

female 72 pT1a pN0 L0 V0 R0 G1 

RCC130 
(NIL, TIL) 

female 74 pT3a pN0 L0 V0 R0 G3 

RCC132 
(NIL, TIL) 

female 74 pT3a L0 V2 G3 

RCC133 
(NIL, TIL) 

male 68 pT3a pN0 L0 V0 G3 
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6.2 Methods 

6.2.1 Cell culture techniques 

To prevent contamination with bacteria, yeast or fungi, all cell culture techniques were 

performed with sterile materials, solutions and media under sterile conditions inside a 

laminar flow work bench. 

6.2.1.1 Determination of cell counts 

Cell counts were determined using a Neubauer counting chamber and trypan blue 

staining, which stains dead cells. To count live cells, an aliquot of the cell suspension 

(10 μl) was diluted with trypan blue staining solution (1:10) and transferred into the 

Neubauer counting chamber. Using light microscopy, living cells were counted within four 

large squares. The total cell count per milliliter of cell suspension was calculated the 

following:  

cells/ml = mean cell count of four large squares x dilution factor x 104 

6.2.1.2 Freezing and thawing of cells 

For long term storage, 5 x 106 cells were resuspended in cell freezing medium and 

aliquots of 1 ml per 1.5 ml freezing vial were transferred into a Mr FrostyTM freezing 

container to prevent fast freezing of the cells. Mr FrostyTM freezing containers were stored 

at -80 °C until samples were transferred to a liquid nitrogen tank. For thawing, frozen cell 

suspensions were placed in a water bath (37 °C) until 2/3 of the cell suspension was 

thawed, then transferred into 2 ml FBS and centrifuged for 5 min at 300 g at room 

temperature. After removing the supernatant, the cell pellet was resuspended in the 

thawing medium. 

6.2.1.3 Cultivation of adherent cell lines 

Mouse myoblastoma cell line P815 was grown in T75 cm2 with LCL medium until confluent 

and then passaged 1:10 by detaching cells with 2 x trypsin/EDTA.   
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6.2.1.4 Generation of activated T cells  

Peripheral blood mononuclear cells (PBMC) of healthy donors were seeded at 1 x 106 

cells in 1 ml per well in anti-CD3 and anti-CD28 antibody coated 24-well plates. After three 

days, activated T cells were harvested and transduced to stably express the HLA-A2 

restricted tyrosinase-specific TCR T58 (66). The activated T cells used in this project 

underwent a second activation in anti-CD3 and anti-CD28 antibody coated wells with 

medium containing 100 U/ml IL-2, resulting in a T cell population of mainly cytotoxic 

(CD3+CD8+) T cells. Aliquots of 1 ml cell suspension per 1.5 ml freezing tubes were frozen 

and one aliquot contained 5 x 106 cells/ml. Freezing tubes were transferred into a 

Mr FrostyTM freezing container and stored at -80°C until samples were transferred to a 

liquid nitrogen tank. 

6.2.2 Isolation techniques of leukocytes  

Isolation steps were performed fast and under sterile conditions. Sterile plastic pipettes 

were used to prevent activation of cells. 

6.2.2.1 Isolation of PBMC from whole blood samples 

Peripheral blood mononuclear cells (PBMC) were isolated from venous whole blood 

samples of healthy donors. Syringes (50 ml) were prepared with 1000 U heparin per 50 ml 

blood to prevent blood coagulation. Whole blood samples were diluted directly after blood 

donation with RPMI 1640 at a ratio of 1:1 and a maximum of 35 ml of the 

blood/RPMI 1640 solution were pipetted onto 15 ml Ficoll in a 50 ml tube. For separation 

of the different blood components, the blood samples were centrifuged at 600 g for 20 min 

at room temperature without brake. The different blood components separate according to 

their density: erythrocytes and granulocytes sink to the bottom of the tube, PBMC 

accumulate in the interphase and thrombocytes and diluted plasma constitute the upper 

phase. The interphase was removed using a 10 ml plastic pipette and transferred to a 

50 ml tube. After dilution with RPMI 1640 at a ratio of 1:1, the solution was centrifuged at 

597 g for 10 min at room temperature to remove the remaining ficoll. The supernatant was 

discarded and the cell pellet was resuspended in RPMI III for cell counting. The yield of 

PBMC was donor dependent and ranged from 20 x 107 to 30 x 107 cells per 100 ml whole 

blood. Cell suspensions were frozen as aliquots of 1 ml cell suspension per 1.5 ml 

freezing tubes whereas one aliquot contained a 5 x 106 cells/ml. Freezing tubes were 
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transferred into a Mr FrostyTM freezing container and stored at -80°C until samples were 

transferred to a liquid nitrogen tank. 

6.2.2.2 Preparation of tissue suspensions 

Fresh postoperative tumor and corresponding non-tumor tissue from HCC and RCC 

patients were evaluated by a pathologist who also selected the sections from each tissue 

sample for further processing. Tissue samples were collected in RPMI 1640 post-

operation and immediately transferred to the lab for processing. The size of the tissue 

samples ranged from 1 cm x 1 cm x 0.5 cm to 3 cm x 2 cm x 1 cm. In the lab, one small 

part of each tissue was cut off, wrapped in aluminium foil, shock-frozen in liquid nitrogen 

and thereafter stored in -80°C until use.  

The remaining part of the fresh tissue samples was minced by hand with scalpel and 

scissors, adding HBSS without Ca2+ and Mg2+ in small volumes to prevent the tissue 

pieces from drying out. Tissue suspensions were transferred into a 50 ml tube using a 

spoon. The volume of tissue suspensions ranged from 2-5 ml. Because only leukocytes 

that had infiltrated into the tissue were desired for the experiments, the leukocytes in the 

blood vessels of the tissue were removed by washing the tissue suspension several times 

with ~ 20 ml of HBSS without Ca2+ and Mg2+ until the supernatant appeared no longer red. 

The supernatants of theses washing steps were pooled and named supernatant-1. As 

these supernatants are thought to contain leukocytes that had not infiltrated into the 

tissue, they were designated tumor-circulating leukocytes (TCL). The pellet that remained 

after the washings was incubated for 20 min with 5 mmol/l EDTA in HBSS without Ca2+ 

and Mg2+ to detach leukocytes from the tissue cells. After centrifugation at 472 g for 5 min 

at room temperature, the supernatant was transferred into a fresh 50 ml tube and named 

supernatant-2. The tissue pellet was resuspended in digestion buffer containing 

collagenase IA (0.5 mg/ml) and DNase I (0.19 mg/ml) and incubated for 30 min at 37°C. 

Samples were then centrifuged at 472 g for 5 min at room temperature. The supernatant 

was pooled with supernatant-2. The remaining pellet was squeezed between two glass 

petri dishes. While HBSS containing Ca2+ and Mg2+ was added to prevent the cells from 

drying out, the cell suspension was forced through a 100 μm filter using the rubber part of 

a 10 ml syringe. The petri dish was washed with HBSS containing Ca2+ and Mg2+, the 

wash medium was combined with the tissue suspension. Supernatants-1 and -2 and the 

cell suspension were centrifuged at 472 g for 10 min at room temperature. The 

supernatants were discarded and the pellet of supernatant-1 containing the TCL was 

resuspended in RPMI 1640 and counted. Yields were patient-dependent and ranged from 
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0.3 x 106 to 10 x 106 cells. Pellets of supernatant 2 and the cell suspension both 

containing the RCC-TIL and HCC-TIL or corresponding NIL were pooled and counted. 

Only small non trypan blue stained cells were counted, larger cells were regarded as 

tumor cells and neglected. The yield of tissue-infiltrated leukocytes was sample-

dependent and ranged from 0.5 x 106 to 38 x 106 cells.  

TCL, NIL and TIL were centrifuged at 472 g for 5 min at room temperature, the 

supernatants were discarded and cell pellets were resuspended in freezing medium. Cell 

suspensions were frozen as aliquots of 1 ml cell suspension per 1.5 ml freezing tubes 

whereas one aliquot contained a maximum of 5 x 106 cells/ml. Freezing tubes were 

transferred into a Mr FrostyTM freezing container and stored at -80°C until samples were 

transferred to a liquid nitrogen tank.  

6.2.3 Functional assays 

Tissue suspensions of NIL and TIL were analyzed in parallel together with one sample of 

activated T cells. Previously prepared activated T cells and tissues suspensions of NIL 

and TIL had been stored in liquid nitrogen. They were thawed and rested for 1 h in 

thawing and stimulation medium. Cells were counted, diluted to 1 x 106 cells/ml and 

transferred to a non-tissue culture treated 96-well plate (100 μl per well) that had been 

previously coated with human T cell activators (see p. 37). Degranulation of CD8+ T cells 

upon stimulation was measured by detection of CD107a; therefore 5 μl of CD107a 

detecting antibody (see p. 26) was added into each well. After stimulation, cytotoxic 

T cells release their lytic granules and CD107a, which is a membrane protein of 

lysosomes and lytic granules of cytotoxic T cells, becomes relocated to the cell surface 

where it can be detected with specific antibodies. The lytic granules of cytotoxic 

lymphocytes under normal conditions contain the lytic proteins. The degranulation is the 

first step of the cytotoxic process leading to the release. For detection of intracellular 

cytokines like IFN-γ upon stimulation, monensin and brefeldin A were present during 

stimulation at a dilution of 1:1000 (according to the manufacturer´s protocol) to inhibit 

intracellular transport processes. This prevents the cytokine release and leads to 

enrichment of cytokines inside the cells. After cell permeabilisation, the retained cytokines 

can be detected with fluorochrome-labeled antibodies. The staining-combination used to 

address CD8+ T cell stimulation as well as the used buffers are in detail described on 

p. 42.  
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6.2.3.1 Stimulation of TIL with ImmunoCultTM human T cell activators 

To mimic target cell stimulation of the TCRs, activated T cells and tissues suspensions 

were stimulated with ImmunoCultTM (StemCellTM Technologies) anti-CD3 human T cell 

activators that consist of anti-CD3 monospecific tetrameric antibody complexes. To 

address the additional contribution of co-stimulation through CD28, human T cell activator 

anti-CD3 plus anti-CD28 (CD28 monospecific tetrameric antibody complexes) was used. 

A flat bottom not-tissue-culture-treated 96-well plate was coated with 50 μl per well of a 

solution of human T cell activators and PBS at ratio of 1:100. The plate was stored at 4°C 

for 3 days. At the day of stimulation, the solution of the human T cell activators was 

aspirated, wells were washed with PBS (100 μl per well) and unspecific binding was 

prevented by blocking with 2% BSA in PBS (100 μl per well) for 30 min. After blocking, the 

solution was aspirated and wells were washed with PBS (50 μl per well), PBS was 

aspirated and 2 x 105 cells per well of activated T cells or tissue suspension were added. 

Fluorochrome-labeled CD107a-antibody (5 μl per well), monensin and brefeldin A (1:1000; 

according to the manufacturer´s protocol) to address degranulation and cytokine induction 

were added to the wells. 

6.2.3.2 Rationale of stimulation with ImmunoCultTM human T cell activators 

Naturally T cell responses are triggered by peptide MHC complexes (pMHC). However, 

the characteristics of the human material, with undetermined MHC types and unknown 

antigenic repertoire, does not allow specific stimulation with natural pMHCs: Primary 

tumor cells of the patient´s tumor tissues might seem to be a good alternative to pMHC 

stimulation. However, tumor cells might not be able to provide the pMHC stimulation as 

they might have lost antigen presentation or lost MHC or might express inhibitory ligands. 

Thus, if the T cell does not response to primary tumor cell stimulation, the underlying 

cause is difficult to interpret since it might be the tumor cell not providing the stimulus, or 

the T cells not being able to respond. Anti-CD3 stimulation allows to address the question 

whether a T cell can activate the TCR signaling cascade leading to functional response. 

Therefore, it can be concluded that a T cell that does not respond to anti-CD3 stimulation 

might have intrinsic defects in its response capacity. On the contrary, a T cell responding 

to anti-CD3 stimulation might be non-responsive in the tumor microenvironment due to the 

tumor immune escape mechanisms as the presence of inhibitory immune cells or soluble 

metabolites (50). 
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An established method to provide target cell stimulation to T cell populations uses the 

P815 mouse mastocytoma cell line loaded with anti-CD3 antibody (and when appropriate 

anti-CD28). Although the antibodies bind to the Fc receptors on the cell surface, the 

loading with anti-CD3 antibody cannot be fully controlled and variations in the amount of 

anti-CD3 (and when appropriate anti-CD28) can result in variable T cell responses. 

Human T cell activators are commercial available and consist of anti-human CD3 

monospecific tetrameric antibodies at a defined concentration. They are a stable and 

reproducible system for delivering the same signal to all T cell samples stimulation 

allowing comparison across T cell samples from different origin. 

Human T cell activators are usually used for long-term T cell expansion rather than for 

short stimulation of T cells to measure effector activity. The optimal concentration of T cell 

activators for short term stimulation to induce effector function had to be determined. This 

was done by comparing the stimulation to anti-CD3 loaded P815. Briefly, P815 cells were 

detached with accutase, centrifuged at 472 g for 5 min at room temperature, resuspended 

in Opti-MEM and counted. 1 x 106 cells were loaded with 5 μg of OKT3 together with 5 µg 

of isotype antibody or anti-CD28 antibody. The cell suspension was incubated on a shaker 

for 30 min at room temperature, washed with Opti-MEM and resuspended in stimulation 

medium. P815 cells and activated T cells were counted, diluted to 0.1 x 106 cells/50 µl, 

and mixed at a ratio of 1:1 resulting in a total volume of 100 µl medium. Anti-CD107a 

antibody (5 μl), monensin and brefeldin A (1:1000; according to the manufacturer´s 

protocol) were added and samples were incubated for 5 hours at 37 °C. In parallel, 

0.1 x 106 activated T cells in 100 µl of stimulation medium were added into 96-wells 

coated with 1:20, 1:100, 1:200 dilutions of anti-CD3 human T cell activator (described 

above, p. 37). Also here, 5 μl of anti-CD107a antibody, monensin and brefeldin A (1:1000, 

according to the manufacturer´s protocol) were added and samples were incubated for 5 h 

at 37°C. Then, cells of the stimulation with P815 or with human T cell activator were 

harvested and stained for FACS-analysis with the surface markers anti-CD45 (Pe-Cy7), 

anti-CD3 (Alexa Fluor® A700) and anti-CD8 (V500), followed by fixation and 

permeabliliation with BD Cytofix/Cytoperm Fixation/Permeabilisation Kit and staining of 

IFN-γ (PerCp-Cy5.5).  

As seen in figure 2, CD3-loaded P815 stimulation resulted in 10% single positive T cells 

for IFN-γ, 4% for CD107a and 2.5% T cells double positive for both markers. These 

results are similar to the frequencies achieved with a dilution of 1:100 of human T cell 

activator. Adding CD28 to the CD3 stimulation had no effect in the P815 system with 

regards to T cells being single positive of CD107a (10%) or single positive of IFN-γ 

(4.5%). T cells being double positive (8.8%) for both markers had increased compared 
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with anti-CD3 loaded P815 cells. Similar results were obtained with human T cell activator 

at a dilution of 1:100, and IFN-γ single positive T cells were even higher (31%). In 

summary, human T cell activator at a dilution of 1:100 can be used for stimulation of 

effector function in T cells and yields comparable results to the previously used 

CD3-loaded P815 cell system. 

 
Figure 2: T cell stimulation with anti-CD3 or anti-CD3/CD28-loaded P815 cells, compared with anti-CD3 
or anti-CD3/CD28 T cell activators  

Activated T cells were stimulated either with anti-CD3/isotye and anti-CD3/CD28 loaded P815 cells or with 
anti-CD3 and anti-CD3/CD28 T cell activator coated, on a 96-well plate at a dilution of 1:50, 1:100 or 1:200. 
Degranualation (CD107a) and IFN-γ production were measured by flow cytometry.  

6.2.3.3 Negative controls 

One aliquot of activated T cells or TIL was used as negative control. Here, monensin, 

brefeldin A and anti-CD107a antibodies were added to 5 x 105 cells at the beginning of the 

stimulation, but these cells were not treated with a stimulus. After 5 hours at 37 °C, 

negative controls and stimulated samples were prepared for flow cytometry in parallel.  

6.2.3.4 Stimulation with PMA/Ionomycin 

Activated T cells or TIL were thawed, resuspended in thawing and stimulation medium, 

counted and diluted to 2 x 105 cells in 200 µl of stimulation medium. 50 ng/ml of phorbol-

12-myristate-13-acetate (PMA), 500 ng/ml Ionomycin as well as anti-CD107a antibody 

(5 µl) and monensin and brefeldin A (1:1000, according to the manufactor´s protocol) were 

added. Samples were incubated for 5 h at 37 °C. Thereafter, cells were harvested and 

stained with antibodies for surface markers followed by cell permeabilisation as indicated 

(see p.42). 
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6.2.4 Multiparameter flow cytometry 

Flow cytometry allows the analysis of marker expression on a single cell level using 

fluorochrome labelled antibodies that bind to surface or to intracellular markers of the cell. 

The cell suspension is forced through a thin capillary which results in a monodisperse 

stream of cells that passes a laser beam. Photomultipliers (PMT) detect the light scatter. 

The forward scatter (FSC) is proportional to the size of the cells whereas the sideward 

scatter (SSC) correlates to the granularity of the cells. When passing the laser beam, the 

fluorochromes of the antibodies absorb light of a certain wavelength. To allow the use of a 

variety of fluorochromes with different absorption spectra, several lasers with different 

wavelengths are combined. The absorbed light results in a higher energy level of the 

electrons and during the relaxation of the electron back to the ground state, a photon with 

a higher wavelength than the absorbed light is emitted. This results in a characteristic 

emission spectrum for each fluorochrome. The emitted light is detected by PMTs which 

intensify the signals of the photons and convert them into electricity. With the help of 

different filters, one specific channel for the emission of one specific fluorochrome is 

shielded from the emission of other fluorochromes to minimize the interference of different 

emission wavelengths. Because the emission spectra of different fluorochromes overlap 

and interference cannot completely be prevented by the optical filters, an electronic 

subtraction (compensation) is necessary to eliminate remaining interferences. With the 

help of programs for the analysis of flow cytometry data (e.g. FlowJo®, TreeStar), the 

compensation can be performed. Furthermore, the frequency of cells with the same 

marker on the cell surface can be determined. It is also possible to address the 

expression level of surface or intracellular molecules by determining the fluorescence 

intensity per cell.  

There are different possibilities to display flow cytometry data: a histogram shows the 

distribution of cells which are characterized by a single parameter and the fluorescence 

intensity can be determined. Two parameters can be displayed as a dot-plot where each 

single cell is displayed by a dot with an x-coordinate representing one fluorescence and a 

y-coordinate representing the second fluorescence.  

Data for the experiments in this thesis were acquired by a LSR II cytometer (BD) 

consisting of four lasers which allows to measure up to 18 different fluorochromes. The 

used lasers, filters and fluorochromes were combined as following (table 13): 
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Table 13: Characteristics of used fluorochromes, lasers and filters for detection at the LSR II 

Fluoro- 
chrome 

Excitation 
maximum  

(nm) 

Emission 
maximum 

(nm) 
Laser 

Laser 
wavelength 

(nm) 

Detection filter  
(nm) 

Alex Fluor® 488 495 520 
Coherent 

Sapphire blue 
488 530/30 

Alexa Fluor® 
647 

650 668 HeNe (red) 633 670/20 

Alexa Fluor® 
A700 

696 719 HeNe (red) 633 730/45 

APC 650 660 HeNe (red) 633 660/20 

Alexa Fluor® 
A488 

650 660 HeNe (red) 633 660/20 

APC-eFluor 780 650 785 HeNe (red) 633 780/60 

BV421 407 421 
Coherent 
VioFlame 

PLUS violet 
405 450/50 

FITC 494 520 
blue Coherent 
Sapphire blue 

488 530/30 

Indo-1 violet 358 461 
Lightwave 

Xcyte  
(UV laser) 

355 250/50 

PB 401 452 
Coherent 
VioFlame 

PLUS violet 
405 450/50 

PE-TexasRed® 496 613 
blue Coherent 
Sapphire blue 

488 610/20 

PE 496 578 
blue Coherent 
Sapphire blue 

488 575/26 

PE-Cy7 496 785 
blue Coherent 
Sapphire blue 

488 780/60 

PerCp-Cy
TM

5.5 482 690 
blue Coherent 
Sapphire blue 

488 695/40 
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Fluoro- 
chrome 

Excitation 
maximum  

(nm) 

Emission 
maximum 

(nm) 
Laser 

Laser 
wavelength 

(nm) 

Detection filter  
(nm) 

V450 404 450 
Coherent 
VioFlame 

PLUS violet 
405 450/50 

V500 415 500 
violet Coherent 

VioFlame 
PLUS violet 

405 525/50 

6.2.4.1 Staining combinations 

Antibody combinations were selected to allow the analysis of the composition of infiltrating 

leukocytes, T-cell subsets, phenotype and function in tumor and corresponding non-tumor 

tissue of HCC and RCC patients and healthy donors.  

Table 14: Antibody combinations 

Number Aim of the combination Surface markers 
Markers stained 
intracellularly 

1 
leukocyte infiltrate 
activation and exhaustion 

LIVE/DEAD
TM

 Fixable Blue Dead Cell 
Stain (indo-1 violet) 
CD45 Pe-Cy7 
CD3 PerCp-Cy

TM
5.5 

CD8 V500 
CD4 APC-eFluor 780 
CD19 Alexa Fluor® A700 
CD20 Alexa Fluor® A700 
CD14 PB 
CD56 V450 
PD-1 PE 

Ki-67 Alexa Fluor® 
A488 
LAG-3 ATTO 647N 

2 
AKT-pathway 
cell cycle 

LIVE/DEAD
TM

 Fixable Blue Dead Cell 
Stain (indo-1 violet) 
CD45 Pe-Cy7 
CD3 PerCp-Cy

TM
5.5 

pAKT(S473) V450 
p27kip PE 
Cyclin E FITC 

3  
mTOR-pathway 
cytotoxic proteins 

LIVE/DEAD
TM

 Fixable Blue Dead Cell 
Stain (indo-1 violet) 
CD45 Pe-Cy7 
CD3 PerCp-Cy

TM
5.5 

pmTOR(S2448) APC 
prps6(S244) PE 
perforin FITC 

4 
anergy  
exhaustion 

LIVE/DEAD
TM

 Fixable Blue Dead Cell 
Stain (indo-1 violet) 
CD45 Pe-Cy7 
CD3 PerCp-Cy

TM
5.5 

CD8 V500 
CD4 APC-eFluor 780 
CD19 Alexa Fluor® A700 
CD20 Alexa Fluor® A700 
CD56 V450 

PD-1 PE 
DGK-α (unmarked, 
secondary antibody: 
Alexa Fluor® 647) 
Foxo1 (unmarked, 
secondary antibody: 
Alexa Fluor® 488) 
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Number Aim of the combination Surface markers 
Markers stained 
intracellularly 

5 
exhaustion, differentiation, 
cytotoxicity  

LIVE/DEAD
TM

 Fixable Blue Dead Cell 
Stain (indo-1 violet) 
CD45 Pe-Cy7 
CD3 Alexa Fluor® A700 
CD8 V500 
CD4 APC-eFluor 780 
CD56 V450 
PD-1 PerCp-Cy

TM
5.5 

Tbet eFluor
TM

660 
Eomes PE 
perforin FITC 
granzyme B PE-
TexasRed® 

6 stimulation 

LIVE/DEAD
TM

 Fixable Blue Dead Cell 
Stain (indo-1 violet) 
CD107 APC 
CD45 Pe-Cy7 
CD8 V500 
CD4 APC-eFluor 780 
CD19 BV421 
CD20 BV421 
CD56 BV421 
PD-1 PE 

CD3 Alexa Fluor® A700 
IFNγ PerCp

Tm
-Cy5.5 

Ki-67 PE-TexasRed® 
CD28 FITC 

6.2.4.2 Sample Preparation for flow cytometry 

T cells and tissue suspensions had been stored in liquid nitrogen and were thawed and 

rested for 1 hour before being prepared for flow cytometry analysis or stimulation. It was 

the intension to determine the features of the immune cells that they had acquired in situ 

in the tissue context. Culture in vitro, exposure to medium and supplements (cytokines, 

FBS, etc.) were kept to a minimum, as they are known to alter the immune cells. Tissue 

suspensions of tumor and non-tumor tissues of 2-5 patients were analyzed in parallel 

always together with one healthy control PBMC to allow normalization of stainings 

performed on different days. Master mixes of antibody combinations were prepared to 

reduce variability. 

Cell suspensions of 1 x 105 to 5 x 105 cells per antibody combination were used and 

incubation steps were performed in the dark at 4 °C. For washing the cells, the indicated 

buffers were added, cell suspensions were centrifuged and the supernatant was removed 

to a volume of 50 µl. If not indicated differently, centrifugation steps were performed at 

472 g for 5 min at room temperature. 

Samples used for staining combination 1 were washed with 500 µl PBS/EDTA (2 mM), 

staining reagents for viability (LIVE/DEADTM Fixable Blue Dead Cell Stain) and antibodies 

for surface staining were added and cells were incubated for 20 min. Unbound antibodies 

and LIVE/DEADTM Fixable Blue Dead Cell Stain were removed by washing with 500 µl of 

FACS buffer. For detecting intracellular markers, the cells need to be fixed and 

permeabilized. Therefore, the cell pellet was resuspended in 500 µl 1% PFA in PBS and 
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incubated for 15 min. After centrifugation of the cell suspensions, the supernatant was 

removed and cells were permeabilized for intracellular staining by resuspending the pellet 

in 500 µl of 0.1% saponin. Cell suspensions were immediately centrifuged, supernatants 

were discarded and the pellet was resuspended in 0.35% saponin. After centrifugation 

and removal of the supernatant, antibodies for intracellular staining were added and 

incubated for 20 min. Unbound antibodies were removed by washing the cells with 500 µl 

of 0.1% saponin and a second time with 500 µl of 0.35% saponin. Shortly before data 

acquisition, Flow-count Fluorospheres (Beckmann coulter) were added to allow 

determining the absolute cell numbers of populations within the leukocyte infiltrate. 

Staining combinations 2 and 3 were designed to detect phosphorylated proteins using a 

commercial buffer set (BD PhosflowTM). Cells were washed with 500 µl PBS/EDTA 

(2 mM), staining reagent for viability (LIVE/DEADTM Fixable Blue Dead Cell Stain) was 

added and cell suspensions were incubated for 10 min in the dark at room temperature. 

Unbound staining reagent was removed by washing the cells with 500 µl of FACS-buffer. 

For fixation, 200 µl of CytofixTM Fixation Buffer (BD) were added and cells were incubated 

for 15 min at 37°C. The supernatant was removed after centrifugation (380 g, 8 min, RT) 

and cells were permeabilized with 500 µl of BD PhosflowTM Perm Buffer III (stored at 

-20°C and used directly without warming) for 30 min. Cells were centrifuged (380 g, 

8 min, room temperature), supernatants were discarded and antibodies for surface 

molecules and for phosphorylated intracellular signaling proteins were added. After 

incubation for 30 min, cells were washed with 500 µl of FACS-buffer, centrifuged (380 g, 

8 min, room temperature) and the supernatant was discarded. Secondary antibody was 

added and cells were incubated for 30 min. Cells were analyzed after washing with 500 µl 

of FACS-buffer, centrifugation (380 g, 8 min, room temperature) and removal of the 

supernatant.  

Staining combinations 4 and 5 were established to detect cell differentiation states based 

on transcription factor expression. To make transcription factors accessible for labelling 

with antibodies, the Transcription Factor Buffer Set (BD) was applied. Cell suspensions 

were washed with 500 µl PBS/EDTA (2 mM), staining reagents for viability (LIVE/DEADTM 

Fixable Blue Dead Cell Stain), antibodies for surface staining were added and cells were 

incubated for 20 min. Unbound antibodies were removed by washing with 500 µl of FACS 

buffer. The Transcription Factor Buffer Set (BD) was used for fixation and 

permeabilisation. The pellet was resuspended in 1 ml of Fix/Perm working solution 

(dilution of 1:4 of the Fix/Perm Buffer and diluent buffer) and after incubation for 45 min, 

1 ml of Perm/Wash working solution (pre-diluted 1:5 with deionized water) was directly 

added. Cell suspensions were centrifuged and supernatants were removed. Cells were 
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washed twice with 1 ml of Perm/Wash working solution, antibodies for intracellular 

antigens were added and cells were incubated for 40 min. After washing cells twice with 

Perm/Wash working solution (2 ml), samples stained for combination 5 were analyzed. 

Regarding staining combination 4, secondary antibody was added to cell suspensions. 

After incubation (30 min), cells were washed twice with 2 ml of Perm/Wash working 

solution and were analyzed. 

Samples used for staining combination 6 had been incubated at 37 °C in medium and 

stimulated to induce effector function. Cell suspensions were washed with 500 µl 

PBS/EDTA (2 mM), staining reagent for viability (LIVE/DEADTM Fixable Blue Dead Cell 

Stain) was added and cell suspensions were incubated for 10 min in the dark at room 

temperature. Unbound staining reagent was removed by washing the cells with 500 µl of 

FACS-buffer and all of the supernatant was removed. To prevent interactions between the 

three antibodies labelled with BD Horizon BrilliantTM polymer dye BV421 (anti-CD19, 

anti-CD20 and anti-CD56), all surface antibodies were diluted into BD HorizonTM Brilliant 

Stain Buffer (50 µl per sample) and this mixture was then used to resuspend the pellet. 

Cells were incubated for 20 min and unbound antibodies were removed by washing with 

500 µl of FACS buffer. Cells were resuspended in 250 µl of Fixation and Permeabilisation 

Solution (BD Cytofix/CytopermTM Fixation/Permeabilisation Kit). After incubation for 

20 min, 500 µl of BD Perm/WashTM buffer (pre-diluted 1:10 with deionized water) were 

added, samples were centrifuged and the supernatant was removed. The pellets were 

washed with 500 µl of BD Perm/WashTM buffer (pre-diluted 1:10 with deionized water), 

supernatants were removed and intracellular antibodies were added. After incubation of 

30 min, cells were washed twice with 500 µl of BD Perm/WashTM buffer (pre-diluted 1:10 

with deionized water) and analyzed. 

6.2.4.3 Compensation beads and compensation matrix 

To correct the interference of different fluorochrome emissions, a compensation matrix 

based on measurements of compensation beads is necessary. The compensation beads 

are a 1:1 mixture of two types of beads, one that is coated by antibodies that bind the 

κ-light chain of the fluorochrome labelled antibodies (positive bead) and the other type that 

does not bind the antibodies (negative bead). 1 μl of the fluorochrome labelled antibody of 

interest was added to the compensation beads, incubated for 20 min and unbound 

antibody was removed by washing with FACS-buffer. The negative and positive 

compensation beads now allow the measurement of two distinct populations that are 

either negative or positive for the fluorescence of interest. These values can then be used 
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to create the compensation matrix. For each fluorochrome that is used in a staining 

combination, compensation beads need to be prepared.  

The compensation control of the LIVE/DEADTM Fixable Blue Dead Cell Stain (Thermo 

Fisher Scientific) to detect dead cells was prepared using ArCTM amine reactive 

compensation Kit (Thermo Fisher Scientific). One drop of component A (ArCTM beads that 

bind LIVE/DEADTM Fixable Blue Dead Cell Stain) were incubated with 1 μl of 

LIVE/DEADTM Fixable Blue Dead Cell Stain for 20 min. Unbound LIVE/DEADTM Fixable 

Blue Dead Cell Stain was removed by washing with PBS/EDTA (2 mM). Thereafter, one 

drop of ArCTM negative beads was added and the solution allowed the measurement of 

two distinct populations positive and negative for the fluorescence of the LIVE/DEADTM 

Fixable Blue Dead Cell Stain.  

6.2.4.4 Flow-Count Fluorospheres 

Flow cytometry allows qualitative analysis of cells and thereby the leukocyte composition 

can be determined as frequencies of cell types within specified populations. Quantitative 

enumeration of actual cell numbers of a specific subset within the leukocyte infiltrate 

requires the in-sample presence of a reference that has a defined number. Flow-Count 

Fluorospheres (Beckmann Coulter) can be added to the cell suspension ready for FACS 

acquisition providing a reference number of events. This was done with staining 

combination 1, where the composition of the infiltrate was determined. Flow-Count 

Fluorospheres consist of 10 μm polystyrene fluorospheres with a fluorescence emission 

range of 525 nm – 700 nm when excited at 488 nm. After the staining procedure was 

completed, the remaining volume in the staining tube was measured and the same 

volume of counting beads was added to get a dilution of 1:1 (according to the 

manufacturer’s recommendation). During data acquisition, the stopping gate was defined 

by the registered events of the counting beads and 3 x 104 events were recorded 

(acquisition of a minimum of 1 x 104 counting beads was required to allow statistical 

calculation). The analyzing software FlowJo® (TreeStar) was used to determine the 

recorded events of the counting beads and the leukocyte populations of interest. The 

absolute cell count/μl was calculated the following:  

 

 

 

concentration of beads/μl x cell count [population of interest] 

Flow-Count Fluorosphere events count x dilution factor 
absolute cell count/μl =  
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The calculated absolute cell counts per µl refer to the amount of cells in the tube that was 

used for data acquisition. Cell counts independent from the volume in the tube were 

calculated by multiplying the cell counts/µl by the volume of the cell suspension in the 

tube, resulting in the number of cells that were present in the tube. To compare cell counts 

of infiltrating leukocytes across different tumors, cell count per ml tissue was calculated 

the following:  

Because one vial of frozen TIL was thawed and used for all staining combinations 1-5 and 

Flow-Count Fluorospheres were only used in staining combination 1, cell counts within the 

tube used for acquisition of Flow-Count Fluorospheres had to be multiplied by the number 

of staining combinations. This resulted in the number of leukocytes that were present in 

the freezing vial. Because isolated TIL were frozen in different numbers of aliquots 

depending on the total number of isolated TIL, the number of cell counts in one freezing 

vial was multiplied by the number of freezing vials to achieve the total number of infiltrated 

leukocytes in the tissue sample. To compare cell counts across different tissue 

suspensions, which were prepared from differently sized tissues, the volume of the 

original tissue was considered und the cell numbers were normalized to 1 ml of tissue 

volume. 

The resulting formula is the following:  

 

 

The formula contains the following determinants: absolute cells counts/µl as determined 

with the help of the flow count beads; µl of volume in the staining tube; factor 5, since one 

vial of tissue suspension was divided over 5 staining combinations where only one was 

used for cell counting, number of freezing vials of the original tissue suspension, solid 

volume of the tissue after mechanical dissociation. 

6.2.4.5 Data acquisition 

Flow cytometry data were acquired by LSR II (BD) using FACSDIVATM (BD) software. 

Compensation beads for each fluorochrome were acquired and the compensation matrix 

was calculated by FACSDIVATM (BD) software. If necessary, the compensation matrix was 

slightly adjusted manually using the analyzing software FlowJo® (TreeStar). For data 

acquisition at the LSR II (BD), PMT values for FSC and SSC were selected to position the 

cell population in the middle of the FSC/SSC-dot plot. The PMT settings of the different 

solid volume of the tissue after mechanical dissociation [ml] 
absolute cell count/ml tissue =  

absolute cell count/μl x tube volume x 5 x number of freezing vials 
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channels for each fluorochrome were modified to achieve a high resolution by positioning 

the negative peak close to zero and the positive peak to the right of the x axis. Between 

1 x 104 and 50 x 104 were recorded within the alive/CD45+ cell population.  

6.2.5 Statistical analysis 

Statistical analysis was performed with GraphPad Prism (7th edition, GraphPad Software, 

San Diego, California, USA). For all statistical tests, the level of 95% was selected. 

N.s. means not significant and significance between samples was indicated by *(p<0.05), 

**(p<0.01), ***(p<0.001) or ****(p<0.0001). 

6.2.5.1 Mann-Whitney U test 

The Mann-Whitney U test was used as a non-parametric test to determine if mean values 

of two unpaired data sets were significantly different.  

6.2.5.2 Wilcoxon matched pairs signed-rank test 

Wilcoxon matched pairs signed-rank test is a non-parametric statistical test to compare 

the mean of two related groups of samples. This test was applied for samples depending 

from each other.  

6.2.5.3 Kruskal-Wallis test, Friedmann test and Dunn´s Post-hoc 

comparisons 

To compare three or more groups, the non-parametric Kruskal-Wallis test was used to 

determine significance of unpaired or unmatched groups and the non-parametric 

Friedmann test was applied when significance of paired or matched groups were 

analyzed. Because both tests can only state whether or not more than two groups of 

samples are significant different, Dunn´s Post-hoc comparisons were applied to evaluate 

which means of which groups are significantly different.  

6.2.5.4 Spearman´s rank correlation 

Spearman´s rank correlation was applied to test correlation between two variables 

(x and y) of non-parametric distributions. The correlation coefficient r2 describes the 

correlation and ranges from zero to one, e.g. r2=1 (perfect correlation) or r2=0.6 (60% of 
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the variance in x can be explained by variation in y). To test if the detected correlation was 

caused by random sampling, the P value was calculated. A small P value allows rejecting 

the hypothesis that the correlation is due to random sampling. 
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7 Results 

7.1 Characterization of the organ-resident immune cell infiltrate comparing 

non-tumor with tumor tissue of kidney and liver 

Immune contexture was defined by density, subtypes and differentiation state of tumor 

infiltrating leukocytes (TIL) (48). Their interplay determines the anti-tumor immune 

response to a large extent and immune contexture of TIL was found to relate not only to 

prognosis but also to prediction of treatment and response to immunotherapy (48). Multi-

parameter flow cytometry was used to determine the composition of the immune cell 

infiltrate of RCC-TIL and HCC-TIL, discriminating leukocyte subgroups of 

monocytes/macrophages, B cells, NK cells and T cells, with further distinction of the CD4 

and CD8 T cell subsets. 

7.1.1 Experimental setup 

Tissue suspensions of tumor and corresponding non-tumor tissue of kidney (RCC-TIL, 

r-NIL, see p. 32) and liver (HCC-TIL, h-NIL, see p. 30) were analyzed by multi-parameter 

flow cytometry (table 15). Furthermore, peripheral blood mononuclear cells (PBMC) of 

healthy donors (HD-PBMC) served as a control for the staining procedure and were also 

compared to TIL and NIL. 
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Table 15: Antibody staining combination to address leukocyte infiltrates in NIL and TIL (staining 

combination 1). The markers PD-1, LAG-3 and Ki-67 are further addressed later (see p.102). 

Target/ Epitope Fluorochrome Cell subset/ function 

Viability:  
LIVE/DEAD

TM
 Fixable Blue Dead Cell Stain 

Indo-1-violet staining of dead cells 

CD45 Pe-Cy7 leukocytes 

CD3 PerCp-Cy
TM

5.5 T cells 

CD8 V500 CD8
+
 T cells 

CD4 APC-eFluor 780 CD4
+
 T cells 

CD19/CD20 Alexa Fluor® A700 B cells 

CD56 V450 NK cells  

CD14 PB monocytes 

PD-1 PE activation/exhaustion marker 

Ki-67 Alexa Fluor® A488 proliferation marker 

LAG-3 ATTO 647N activation/exhaustion marker 

7.1.1.1 Gating strategy 

The gating strategy to identify leukocyte subgroups within the cell suspensions of tumor 

and non-tumor tissues is exemplified in figure 3 (see p. 53). First, CD45+ leukocytes were 

separated from CD45- tumor cells by plotting size granularity (SSC-A; y axis) against 

CD45 (x axis). Within CD45+ cells, live cells were gated as cells negative for marker of 

dead cells (LIVE/DEADTM Fixable Blue Dead Cell Stain). Next, doublets or cell aggregates 

were excluded by gating on single cells, plotting forward scatter height (FSC-H, y axis) 

against forward scatter area (FSC-A, x axis). The resulting population of 

leukocytes/alive/singlets was separated into monocytes/macrophages and lymphocytes 

based on FSC/SSC characteristics. The population with higher FSC/SSC features, 

designated as myeloid population, was further described by the monocytes/macrophage 

marker CD14, which revealed a CD14+ population and a CD14- population. A minor 

fraction of the CD14- population was B cells and T cells, as detected by plotting CD14 

against CD19/CD20 or CD3. The CD14- population was therefore regarded as 

neutrophils, because they were positive for CD45 but no other marker defining the 

leukocyte population. However, the CD14- population has a large granularity (as they are 

part of the myeloid gate defined by large granularity) making it unlikely that this population 

corresponds to NK cells. Lymphocytes were further analyzed within the small FSC/SSC 
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gate. B cells were detected by positivity for CD19/CD20 and the remaining lymphocytes, 

which include T cells and NK cells, were evaluated in the NOT-CD19 gate. T cells were 

described as CD3+CD56±CD19-CD20-CD14-, NK cells as CD3-CD56+CD19-CD20-CD14- 

and B cells as CD3-CD56-CD19+CD20+CD14-. Frequencies of each leukocyte population 

were then calculated as percentages of CD45+/alive/singlets cells. T cell subsets 

(CD8+CD4- and CD8-CD4+ cells) were defined within preselected CD3+ gate by plotting 

CD8 on the y axis and CD4 on the x axis.  
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Figure 3: Gating strategy to determine leukocyte subgroups in PBMC, RCC and HCC tumor cell 
suspensions (TIL) and corresponding non-tumor suspensions (NIL) 

Cell suspensions were stained (table 15, see p. 51) and analyzed by flow cytometry. Monocytes (CD3
-
CD56

-

CD19
-
CD20

-
CD14

+
), B cells (CD3

-
CD56

-
CD19

+
CD20

+
CD14

-
), T cells (CD3

+
CD56

+/
CD56

-
CD19

-
CD20

-
CD14

-
), 

NK cells (CD3
-
CD56

+
CD19

-
CD20

-
CD14

-
) and T cell subgroups (CD8

+
CD4

-
 and CD8

-
CD4

+
) were identified in 

healthy donor PBMC, NIL and TIL of RCC and HCC patients. A: schematic depiction of the gating strategy. 
B: healthy donor PBMC. C: RCC-TIL. D: HCC TIL. 

A: Gating strategy  

D: HCC-TIL 23 

C: RCC-TIL 128 

B: HD-PBMC 
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7.1.2 Composition of the organ-resident immune cell infiltrates  

The composition of immune cells is summarized in figure 4 A by stacked bar diagrams for 

HD-PBMC, r-NIL, RCC-TIL, h-NIL and HCC-TIL. Each leukocyte population is 

represented by a different color, the height of the bar represents the mean of the 

population within one organ type. T cells dominated the immune cell infiltrate in organs 

with lowest frequencies observed in tissue suspension of non-tumor kidney (r-NIL) and 

liver (h-NIL). Renal-NIL showed the highest percentages of monocytes/macrophages 

among the analyzed organs whereas h-NIL were marked by the highest frequencies of NK 

cells. This is consistent with previous findings that had reported a network of dendritic 

cells in the kidney (67) and also high percentages of NK cells in the liver (68). 

 

Figure 4: Organ-resident immune cell infiltrates in tumor and non-tumor tissues of kidney and liver 

Tissue suspensions and HD-PBMC were stained for flow cytometry (table 15, see p. 51) and leukocyte 
population frequencies were determined within the gated CD45

+
/live/singlet cells (leukocytes). A: Leukocyte 

subsets of HD-PBMC, r-NIL, RCC-TIL, h-NIL and HCC-TIL are summarized in stacked bars, each leukocytes 
subset is represented by a different color. The height of the bars represents means and deviation is marked by 
standard error of the mean (SEM). B: Means and ranges of leukocyte populations of different samples. 
C: Summary of statistical significance addressed by Kruskal-Wallis test and Dunn´s Post-hoc comparisons 
(*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001).  

A 

B 

C 



 Results 
 

_ 

55 

7.1.3 Patient-specific deviations of immune cell infiltrates 

The tissue-specific comparison of the immune cell infiltrate revealed similar frequencies of 

leukocyte subsets in HD-PBMC, RCC-TIL and HCC-TIL. The percentages of T cells of 

r-NIL and h-NIL were similar, but r-NIL and h-NIL were different in frequencies of NK cells, 

B cells and monocytes/macrophages. Next, deviations in the immune cell infiltrates of 

non-tumor and tumor tissues were analyzed in more detail. 

In RCC-TIL and HCC-TIL, frequencies of T cells were increased compared with r-NIL or 

h-NIL, respectively. The difference was statistically significant between r-NIL and 

RCC-TIL, and two patients were identified in r-NIL and h-NIL that had elevated 

percentages of T cells compared with corresponding RCC-TIL or HCC-TIL (figure 5 A). 

Frequencies of NK cells were in general decreased in RCC-TIL and HCC-TIL compared 

with r-NIL or h-NIL, the difference was significant between h-NIL and HCC-TIL. With 

regard to kidney resident NK cells, two groups of patients were identified. Five patients 

had increased percentages of NK cells in r-NIL whereas five patients were marked by 

decreased frequencies in r-NIL compared with RCC-TIL (figure 5 B). In RCC-TIL and 

HCC-TIL, percentages of B cells were significantly decreased compared to frequencies in 

r-NIL or h-NIL. Two patients of RCC and HCC were identified by increased percentages of 

B cells in NIL compared with TIL (figure 5 C). Frequencies of monocytes and 

macrophages (CD14+) were comparable in NIL and TIL of RCC and HCC patients, 

however, two groups of patients were detected. Six RCC patients and four HCC patients 

were marked by increased percentages whereas four RCC patients and six HCC patients 

showed decreased frequencies of monocytes/macrophages in NIL compared with TIL 

(figure 5 D). 
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Figure 5: Composition of organ-resident immune cell infiltrates in non-tumor and tumor tissues of 
kidney and liver 

Cell suspensions were stained for flow cytometry (table 15, see p. 51), leukocyte population frequencies were 
determined within the gated CD45

+
/live cells (leukocytes) of tumor and non-tumor tissue of kidney and liver. 

Percentages of T cells (A), NK cells (B), B cells (C) and CD14
+
 monocytes/macrophages (D) are shown. One 

symbol represents one patient or healthy donor, horizontal lines indicate the median of one group and vertical 
dashed lines separate HD-PBMC, kidney and liver resident T cells. Small numbers indicate patient-IDs and 
significance was statistically determined by Mann-Whitney U test within one group (*p<0.05; **p<0.01; 
***p<0.001; ****p<0.0001). Only significant differences between samples are indicated. 

Figure 6 A (see p. 58) summarizes the immune cell composition comparing RCC and 

HCC. Two groups of patients were identified in HCC-TIL with regard to percentages of 

T cells, one group with frequencies above and the other group with frequencies below 

those of HD-PBMC. Interestingly, the group of HCC-TIL with high percentages of T cells 

had low frequencies of monocytes/macrophages and also the RCC-TIL marked by low 

percentages of CD3 had high frequencies of monocytes/macrophages (figure 6 B). 

Percentages of NK cells and B cells were comparable in RCC-TIL, HCC-TIL and 

HD-PBMC, however, two outliers with increased frequencies of NK cells were found in 

HCC-TIL. Frequencies of monocytes/macrophages divided HCC-TIL in two groups, one 

group defined by increased and one group marked by decreased percentages compared 

with HD-PBMC. One outlier of RCC-TIL had increased frequencies of 

monocytes/macrophages, however, different groups of patients were not identified for 

RCC-TIL.  

With regard to the two groups of HCC-TIL with high and low frequencies of T cells and 

monocytes/macrophages, it was next addressed if high percentages of T cells related with 

A B 

C D 
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high cell count of T cells in the tumor (figure 6 C). Of note is that the absolute cell count 

could not be determined of all patients due to experimental settings.  

The cell count analysis revealed that two of five HCC-TIL with high percentages of T cells 

had high (6.5 x 105 – 2.8 x 106) and the other three patients had low (0.1 x 105 –1.5 x 106) 

cell counts of T cells per ml tissue whereas all three HCC-TIL with low percentages of 

T cells had low cell counts (0.1 x 105 –1.0 x 106). Similar findings were found for RCC-TIL: 

two of six RCC-TIL with high percentages of T cells were marked by high cell counts 

(7.5 x 105 – 5.6 x 106) and four had low cell counts (0.1 x 105 –1.0 x 106) of T cells per ml 

tissue. One RCC patient having TIL with low frequencies of T cells had low cell counts 

(3.5 x 105). This indicates that high percentages of T cells cannot relate to high cell counts 

of T cells in the tissue. Therefore the analysis of frequencies as done by flow cytometry 

gating strategy needs to be interpreted with regard to cell type composition, however, the 

frequencies of cell types cannot be extrapolated to absolute cell numbers.  
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Figure 6: Patient-specific composition of immune cell infiltrates in tumor tissues of kidney and liver 
Cell suspensions were stained for flow cytometry (table 15, see p. 51) A: Leukocyte population frequencies 
were determined within gated CD45

+
/live cells (leukocytes) as described above (see p. 51); lines connect cell 

subtypes from one tissue. B: Relation of T cells and monocytes in groups of RCC-TIL and HCC-TIL with high 
and low percentages of T cells. Lines connect T cells and monocytes/macrophages from the same patient. 
C: Relation of percentages and absolute cell counts of T cells in RCC-TIL and HCC-TIL with high and low 
percentages of T cells. Cell counts were determined by Flow-Count Fluorospheres (see p. 46). Lines connect 
percentages and cell counts/ml tissue of T cells from the same patient. One symbol represents one individual 
and numbers are patient-IDs. 

A 

C 

B 
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7.1.4 T cell subset distribution in leukocytes of non-tumor and tumor 
tissue of kidney and liver 

In addition to cell density, the type of immune cell that is present in the tissue is important 

for the immune response (48). Based on the co-receptors CD4 and CD8, the T cell 

population can be subdivided into CD8+CD4-, CD8-CD4+, CD8-CD4- and CD8+CD4+ within 

the gated CD3+CD56+/CD56- population.  

Figure 7 A-D illustrates that the CD8 and CD4 subset distribution in leukocytes of non-

tumor kidney was similar to that found in PBMC, while elevated percentages of CD8+CD4- 

and correspondingly reduced percentages of CD8-CD4+ were observed in RCC-TIL. In 

h-NIL, CD8+CD4- T cells were highly elevated compared with PBMC and also with 

HCC-TIL. Corresponding CD8-CD4+ T cell frequency was low in h-NIL and CD8+CD4- 

T cell frequencies were high. CD8-CD4- T cells were present at very low frequencies in 

tissue and absent in PBMC. CD8+CD4+ T cells were neither found in NIL nor TIL of liver 

and kidney tissue. Median values of each subset of all samples are summarized in 

figure 7 E. 

To determine the tissue-individual T cell subset composition, the ratio of CD8+CD4- to 

CD8-CD4+ T cells (CD4:CD8-ratio) was calculated (figure 7 F). T cells from non-tumor 

kidney and T cells from HD-PBMC showed a similar median CD4:CD8-ratio of 2 (range: 

1.3 – 4.5). In contrast, T cells from non-tumor liver had much lower ratios (median 1; 

range: 0.2 – 0.8). T cells of both tumor tissues had intermediate ratios of 1.1 (RCC-TIL, 

range: 0.5 – 5.3) and 1.0 (HCC-TIL, range: 0.3 – 7.8) whereby TIL of five HCC patients 

had very high values exceeding the value of PBMC.  
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Figure 7: T cell subsets in organ-resident leukocytes of non-tumor and tumor tissue of kidney and 
liver 
Tissue suspensions were stained for flow cytometry (table 15, see p. 51), T cell subsets were determined 
within the gated CD3

+
/CD56

+/-
 T cells. A: CD8

+
CD4

- 
subset. B: CD8

-
CD4

+ 
subset. C: CD8

-
CD4

- 
subset. 

D: CD8
-
CD4

- 
subset. E: Medians of all subsets in HD-PBMC and in organ-resident T cells of non-tumor and 

tumor tissues F: CD4:CD8 ratio. One symbol represents one patient or healthy donor, horizontal lines indicate 
the median of one group and vertical dashed lines separate HD-PBMC, kidney and liver resident T cells. Small 
numbers indicate patient-IDs. Significance was statistically determined by Mann-Whitney U test within one 
group (*p<0.05; ** p<0.01; *** p<0.001; ****p<0.0001). Only significant differences between samples are 
indicated. 
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7.2 Functional responsiveness of CD8+ RCC-TIL and HCC-TIL 

Besides density and subsets, the immune contexture also includes the functional 

responsiveness as an important parameter to describe a tissue immune state (48). 

Functional unresponsiveness of CD8+ RCC-TIL to CD3 stimulation has been reported 

(4,40,69). In this thesis, the question was asked if the addition of CD28 co-stimulation 

improved functional activity. Moreover, a comparison between RCC-TIL and HCC-TIL was 

performed. 

During a 5 h stimulation period, Interferon-gamma (IFN-γ) induction and degranulation 

(addressed by appearance of CD107a on the T cell surface) were measured and 

analyzed by flow cytometry (table 16). Since the patient’s specific peptide-MHC 

combinations were not known, indirect stimulation with anti-CD3 was performed either 

alone or in combination with anti-CD28. PMA and Ionomycin (PMA/I) were used to reveal 

the T cells´ full response capacity. PMA/I activates T cells downstream of the proximal 

TCR signaling and thus allows stimulation of T cells circumventing proximal defects. 

Phorbol esters as PMA are direct activators of the protein kinase C (PKC); ionomycin also 

activates PKC in human T cells and induces Ca2+/Calmodulin pathways (70). Therefore, if 

TIL had proximal defects in the signaling cascade, they could be overcome by stimulation 

with PMA/I.  

Table 16: Staining combination for analysis of T cell function (staining combination 6) 

Target/epitope Fluorochrome Cell subset/function 

Viability:  
LIVE/DEAD

TM
 Fixable Blue Dead Cell Stain 

Indo-1-violet staining of dead cells 

CD107 APC degranulation marker 

CD45 Pe-Cy7 leukocytes 

CD3 Alexa Fluor® A700 T cells 

CD8 V500 CD8
+
 T cells 

CD4 APC-eFluor 780 CD4
+
 T cells 

CD19/CD20 BV421 B cells 

CD56 BV421 NK cells 

PD-1 PE exhaustion marker 

IFN-γ PerCp-Cy5.5
Tm

 IFN-γ production 

Ki-67 PE-TexasRed® proliferation marker 

CD28 FITC co-stimulatory molecule 
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7.2.1 T cells with function 

Figure 8 summarizes the results from all analyzed samples depicting T cells with function 

as percentage of the gated live CD3+CD8+ T cells. As expected, frequencies of CD3+CD8+ 

T cells with function were low in unstimulated samples of RCC-TIL (median 4%; range: 

1% - 5%), HCC-TIL (median 4%; range: 3% - 10%) and activated T cells (median 5%; 

range: 1% - 13.5%). Stimulation with anti-CD3 did not increase the frequency of T cells 

with function among RCC-TIL (median 5%; range: 4% - 24%) and HCC-TIL (median 5%; 

range: 4.5 % - 18%) whereas activated T cells responded to anti-CD3 stimulation showing 

significant higher levels of T cells with function (median 76%; range: 42% - 97%). When 

additional co-stimulation by anti-CD3/CD28 stimulation was provided, activated T cells 

responded even better with a median frequency of T cells with function of 85% (range: 

77% - 98%), while T cells with function remained low in RCC-TIL (median 9%; range: 

3% - 17%) and HCC-TIL (median 11%; range: 5% - 20%). Stimulation with PMA/I enabled 

response in a fraction of T cells of RCC-TIL (median 45%; range:  26% - 85%) and 

HCC-TIL (median 54%; range: 37% - 78%), but frequencies remained significantly below 

those of activated T cells (median 98%; range: 91% - 99%), indicating that functional 

blockades exist in TIL that are in pathways downstream of the PMA/I. Of note is that two 

of four RCC-TIL responded well to PMA/I stimulation whereas two RCC-TIL responded 

poorly suggesting that subgroups of RCC-TIL might exist. 
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Figure 8: T cells with function in activated T cells, RCC-TIL and HCC-TIL upon different stimulation 
Tissue suspensions and activated T cells (act T cells) were thawed, stimulated with anti-CD3, anti-CD3/CD28 
and PMA/Ionomycin (PMA/I) as described above (see p. 37) and stained for flow cytometry (table 16, 
see p. 61). After gating of CD3

+
CD8

+
 T cells, T cells with function were determined as positive for IFN-γ, 

CD107a or both. A: Schematic gating strategy. B: Exemplary dot plots. C: Frequencies of T cells with function 
as percentages of CD3

+
CD8

+
 T cells in RCC-TIL, HCC-TIL and activated T cells. Shades of grey of the 

symbols correspond to different stimulation methods (white: unstimulated (unstim), light grey: anti-CD3, dark 
grey: anti-CD3/CD28, black: PMA/I). One symbol represents one sample of activated T cells or one patient, 

A 

B 
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horizontal lines are median values of one group, dashed lines separate groups. Significance was statistically 
determined by Kruskal-Wallis test and Dunn´s Post-hoc comparisons (*p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001). Only significant differences between samples are indicated. Numbers are patient-IDs. 

7.2.2 Functional profile of CD8+ TIL  

The subset of CD8+ T cells that responded to stimulation was subdivided according to the 

type of function they performed, i.e. only degranulation, only IFN-γ production or being 

poly-functional with degranulation and IFN-γ production. This resulted in a functional 

profile of CD8+ T cells (figure 9 A). 

Upon anti-CD3 stimulation (figure 9 B), the profile of responding T cells was comparable 

between RCC-TIL and HCC-TIL but different to that of activated T cells. CD8+ T cells of 

both RCC-TIL and HCC-TIL were dominated by degranulating cells without IFN-γ 

production (CD107a+IFN-γ-; mean RCC-TIL 58%; mean HCC-TIL 60%) whereas the main 

subgroup of activated T cells was poly-functional (CD107a+IFN-γ+; mean 53%). 

Interestingly, medium frequencies of CD107a-IFN-γ+ (mean RCC-TIL 36%, mean 

HCC-TIL 31%) were higher in TIL compared with activated T cells (mean 14%). Both TIL 

had low percentages of poly-functional (CD107a+IFN-γ+) cells (mean RCC-TIL 6%, mean 

HCC-TIL 9%).  

The analysis of individual patients (figure 9 C) revealed, that a group of four HCC-TIL and 

four RCC-TIL had high percentages of degranulating T cells without IFN-γ production 

(CD107a+IFN-γ-; range HCC-TIL: 69 – 92%; range RCC-TIL: 56 -93%). Those TIL had 

corresponding low frequencies of T cells producing IFN-γ only (CD107a-IFN-γ+; range 

RCC-TIL: 6 - 37%; range HCC-TIL: 6 – 25%). On the contrary, two HCC-TIL and four 

RCC-TIL had low percentages of CD107a-IFN-γ+ T cells (range RCC-TIL: 23 – 26%, 

range HCC-TIL: 20 – 34%) corresponding to high frequencies of CD107a-IFN-γ+ cells 

(range RCC-TIL: 67 – 70%; range HCC-TIL: 54 – 79%).  
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Figure 9: Functional profile of CD8

+
 T cells from tumor tissues of kidney and liver and activated T cells 

upon anti-CD3 stimulation 

Tissue suspensions and activated T cells were thawed, stimulated as described above (see p. 37) and stained 
for flow cytometry (table 16, see p. 61). After selection of CD3

+
CD8

+
 T cells, T cells with function were 

determined as positive for IFN-γ, CD107a or both. A: The functional profile of T cells responding to anti-CD3 
stimulation was determined within gated CD8

+
 T cells with function and defined as degranulation without IFN-γ 

production, (CD107a
+
IFN-γ

-
, light grey), poly-functional T cells (CD107a

+
IFN-γ

+
, black) and IFN-γ production 

without degranulation (CD107a
-
IFN-γ

+
, dark grey) B: Profile of CD8

+ 
T cells upon anti-CD3 stimulation in RCC-

TIL, HCC-TIL and activated T cells. The height of the bars represents the mean of each group and error bars 
indicate the standard error of the mean. Significance was statistically determined by Kruskal-Wallis test and 
Dunn´s Post-hoc comparisons (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). Only significant differences 
between samples are indicated. C: Profile of CD8

+ 
T cells with function upon anti-CD3 stimulation in RCC-TIL, 

HCC-TIL and activated T cells to visualize variances between patients. Each symbol represents one patient or 
sample of activated T cells and lines connect samples from the same individual. Small numbers indicate 
patient-IDs (red: RCC-TIL, blue: HCC-TIL). 
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Next, the question was asked if the functional profile of CD8+ T cells changed upon 

different stimulation conditions of anti-CD3, anti-CD3/CD28 and PMA/I.  

Percentages of degranulating T cells without IFN-γ production (CD107a+IFN-γ-) decreased 

gradually from anti-CD3 to anti-CD3/CD28 to PMA/I stimulus in RCC-TIL, HCC-TIL and 

activated T cells. Highest frequencies were found upon anti-CD3 stimulation and lowest 

percentages were detected upon PMA/I stimulation.  

In contrast, percentages of IFN-γ producing T cells that did not degranulate 

(CD107a-IFN-γ+) increased in RCC-TIL, HCC-TIL and activated T cells upon 

anti-CD3/CD28 stimulation; however, PMA/I stimulation did not lead to higher 

percentages. Frequencies of poly-functional T cells were comparable in RCC-TIL and 

HCC-TIL after anti-CD3 and anti-CD3/CD28 stimulation and increased upon PMA/I 

treatment. This was also found in activated T cells, although percentages of poly-

functional T cells were in general higher in activated T cells compared with TIL.  
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Figure 10: Functional profile of CD8
+
 T cells from tumor tissues of kidney and liver and activated 

T cells upon stimulation with anti-CD3, anti-CD3/CD28 and PMA/I 

Tissue suspensions and activated T cells (act T cells) were thawed, stimulated with anti-CD3, anti-CD3/CD28 
and PMA/Ionomycin (PMA/I) as described above (see p. 37) and stained for flow cytometry (table 16, 
see p. 61). T cells with function were determined as positive for IFN-γ, CD107a or both within preselected 
CD3

+
CD8

+
 T cells. The functional profile of CD8

+
 T cells responding to stimulation was further addressed 

within gated T cells with function and defined as degranulation without IFN-γ production (CD107a
+
IFN-γ

-
, light 

grey), poly-functional T cells (CD107a
+
IFN-γ

+
, black) and IFN-γ production without degranulation (CD107a

-

IFN-γ
+
, dark grey). A: Profile of CD8

+
 T cells upon anti-CD3, anti-CD3/CD28 and PMA/I stimulation in RCC-

TIL, HCC-TIL and activated T cells. The height of the bars represents the mean of each group and error bars 
indicate the standard error of the mean. Significance was statistically determined by Kruskal-Wallis test and 
Dunn´s Post-hoc comparisons (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). Only significant differences 
between samples are indicated. B: Table summarizes median and ranges of combinations within pregated T 
cells with function in RCC-TIL, HCC-TIL and activated T cells upon stimulation with anti-CD3, anti-CD3/CD28 
and PMA/I.  

7.2.3 Can markers of proliferation (Ki-67), PD-1 or CD28 delineate T cell 
function of TIL? 

The proliferation marker Ki-67, co-inhibitory receptor PD-1 and co-stimulatory receptor 

CD28 have been associated with CD8+ effector function:  

Ki-67 is expressed in proliferating cells and its level remains low during G0/G1 transition, 

raises during S phase and is highest during mitosis. Therefore, Ki-67 can be used as a 

biomarker to estimate proportions of dividing cells (71). Moreover, it has been reported 

that the number of CD8+Ki-67+ lymphocytes in RCC tissue was associated with longer 

patient survival  (72). This raised the question if Ki-67 in RCC-TIL and HCC-TIL could be 

used as a marker for the quality of the TIL population in a tissue. Specifically, the 
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hypothesis was formulated if Ki67 expression could be used to distinguish TIL with 

functional profile from those without function as defined by positivity of CD107a and IFN-γ 

production in response to stimulation with anti-CD3, anti-CD3/CD28 or PMA/I. 

Programmed cell death protein 1 (PD-1) has been described as a marker for exhausted 

CD3+CD8+ T cells (41). Furthermore, findings in chronic viral infections like hepatitis C 

virus (73) or HIV (74) indicate a correlation of PD-1 expression and impaired function of 

CD8+ T cells: i.e. virus specific T cells with PD-1 expression were found to have reduced 

capacity to proliferate, to expand and to produce cytokines. Similarly, PD-1 expressing TIL 

of melanoma were impaired in the production of IFN-γ and IL-2 upon stimulation with 

PMA/I compared with PD-1 negative TIL (75). Thus, it was addressed if a similar 

association can also be found for RCC-TIL and HCC-TIL. 

In healthy individuals, CD8+CD28- T cells are described as terminally differentiated 

effector population (76,77) that contains elevated levels of perforin and IFN-γ compared 

with CD8+CD28+ T cells (77). Therefore it was addressed if CD8+CD28- RCC-TIL and 

HCC-TIL show higher levels of T cells with function compared with the CD8+CD28- subset.  

To determine if Ki-67, PD-1 and CD28 might delineate CD8+ T cells with effector function 

of activated T cells, RCC-TIL and HCC-TIL, the percentages of each markers in 

preselected CD8+ T cells were analyzed in unstimulated controls and upon different 

stimulation conditions (figure 11). 

Activated T cells had highest percentages of Ki-67 (median 48%; range: 22 - 63%) while 

Ki-67+ cells were infrequent with median percentages of 4% (RCC-TIL, range: 3 – 10%) 

and 8% (HCC-TIL, range: 3 – 16%). With regard to co-inhibitory receptor PD-1, median 

percentages of RCC-TIL of 65% (range: 28 – 75%) were detected and HCC-TIL (median 

over all samples 41%) were separated into two groups with low (range: 16 – 41%) and 

high (range: 83 – 97%) frequencies. PD-1 was not detected in activated T cells. 

Percentages of CD28 in activated T cells differed to a high degree (31% and 68%). The 

high variance of CD28 percentages in activated T cells might be due to low numbers of 

experiments (n=2 for CD28 in activated T cells). Percentages of CD28+ cells divided 

RCC-TIL and HCC-TIL into two groups and the main cohort had median frequencies of 

35% (RCC-TIL) and 41% (HCC-TIL). The second group was defined by one patient of 

RCC (68%) and one patient of HCC (69%).  
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Figure 11: Percentages of Ki-67, PD-1 and CD28 in RCC-TIL, HCC-TIL and activated T cells 

Tissue suspensions and activated T cells (act T cells) were thawed as described above (see p. 37) and 
stained for flow cytometry (table 16, see p. 61). Percentages of the markers Ki-67, PD-1 and CD28 were 
determined within pregated CD8

+
 RCC-TIL, HCC-TIL and activated T cells. A: Exemplary dot plots. B: 

Summarizing graph of percentages of each marker in CD8
+
 RCC-TIL, HCC-TIL and activated T cells. 

Significance was statistically determined by Kruskal-Wallis test and Dunn´s Post-hoc comparisons (*p<0.05; 
**p<0.01; ***p<0.001; ****p<0.0001). Only significant differences between samples are indicated. One symbol 
represents one TIL or sample of activated T cells, horizontal lines indicate the median of one group and 
vertical dotted lines separate different groups. Small numbers indicate patient-IDs. 

 

To address if Ki-67, PD-1 or CD28 might delineate CD8+ T cell function, CD8+ T cells were 

divided into subsets positive or negative for Ki-67, PD-1 or CD28. Then T cells with 

function defined by positivity for either CD107a or IFN-γ or both were determined in these 

subsets after stimulation with anti-CD3, anti-CD3/CD28 or PMA/I. Figure 12 shows the 

gating strategy (A) and exemplary dot plots of PMA/I treated samples (B).  
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Figure 12: Gating strategy and exemplary dot plots to determine the function profile of CD8
+
 TIL or 

activated T cells in subsets of Ki-67, PD-1 and CD28 T cells  

Activated T cells, RCC-TIL and HCC-TIL were used unstimulated or stimulated with anti-CD3, anti-CD3/CD28 
or PMA/Ionomycin (PMA/I) as described above (see p. 37) and stained for flow cytometry (table 16, 
see p. 61). A: Gating strategy determining T cells with function in subsets of Ki-67, PD-1 and CD28 within 
preselected CD3

+
CD8

+
 T cells. B: Exemplary dot plots of PMA/I stimulated RCC-TIL, HCC-TIL activated T 

cells (act T cells), gated on negative or positive subsets of Ki-67, PD-1 and CD28. Gates were set based on 
unstimulated controls. PD-1

+
 subset was not detected in act T cells (figure 11, see p. 69). 

T cells responsive to CD3 stimulation were enriched in Ki-67+ compared with Ki-67- subset 

of CD8+ RCC-TIL and HCC-TIL (figure 13 A). With PMA/I stimulation, this association was 

lost. Activated T cells had comparable percentages of T cells with function in Ki-67- and 

Ki-67+ subsets. 

Functional responsive CD8+ T cells were similar distributed in PD-1- and PD-1+ subsets of 

CD8+ RCC-TIL and slightly less prevalent in the PD-1- subset in HCC-TIL (figure 13 B). 

Activated T cells were not PD-1+, therefore a comparison was not possible.  

No association was found between CD28 and RCC-TIL responding to stimulation, while 

the CD28+ TIL subset showed an enriched functional response in CD8+ HCC-TIL 

(figure 13 C). 
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Figure 13: CD8

+
 T cells with function in Ki-67

-/+
, PD-1

-/+
 and CD28

-/+
 subsets in RCC-TIL, HCC-TIL and 

activated T cells upon different stimulation conditions 

Activated T cells, RCC-TIL and HCC-TIL were used unstimulated or stimulated with anti-CD3, anti-CD3/CD28 
or PMA/Ionomycin (PMA/I) and stained for flow cytometry (table 16, see p. 61). CD8

+
 T cells with function 

were determined in subsets of Ki-67
-/+

, PD-1
-/+

 and CD28
-/+

 of preselected CD8
+
 T cells as previously shown 

(see p. 70). Percentages of CD8
+
 T cells with function are visualized in subsets of Ki-67 (A), Ki-67 (B) and PD-

1 (C) of RCC-TIL, HCC-TIL and activated T cells (act T cells). Tables summarize median values of the groups, 
one symbol represents one TIL or sample of activated T cells, lines connect samples of the same individual in 
negative and positive subsets. Shades of grey of the symbols represent different stimulation conditions (light 
grey: anti-CD3, dark grey: anti-CD3/CD28, black: PMA/I). Horizontal lines indicate medians of one group and 
vertical dashed lines separate different groups. Significance was statistically determined by Wilcoxon matched 
pairs signed rank test between two corresponding subsets (*p<0.05; **p<0.01; ***p<0.001; ****p<0.000). Only 
significant differences between samples are indicated and small numbers indicate patient-IDs. n.a.: not 
assessable; n.d.: not detected. 

7.3 Cell cycle state of TIL 

CD8+ RCC-TIL and CD8+ HCC-TIL showed low frequencies of Ki-67 within CD8+ T cells 

(figure 11, see p. 69). To elucidate possible causes for the poor proliferation, the cell cycle 

of RCC-TIL and HCC-TIL was analyzed.  

A 

B 

C 



 Results 
 

_ 

72 

Cell cycle progression is regulated by cyclin-dependent kinases (CDK) which are catalytic 

active or inactive through association with regulatory subunits (cyclins) and inhibitory 

proteins such as p27kip1 (78,79).  

The phases of the cell cycle can be approximated by levels of cyclin E and p27kip1 which is 

visualized in figure 14 A (see p. 74): Low levels of cyclin E (light brown) and p27kip1 (light 

green) are related to G0 and G1 phase, as well as G2 and M phase. During late G1 and 

early S phase levels of cyclin E are high (dark brown) but p27kip1 is low. The S phase is 

characterized by high levels of cyclin E and p27kip1 (dark green) whereas in late S phase 

cyclin E levels start to decline and p27kip1 levels remain high. During G2 and M phase, 

levels of cyclin E and p27kip1 are low (26,27). 

To determine the cell cycle state of RCC-TIL and HCC TIL, TIL and activated T cells were 

stained for cyclin E and p27kip1 and analyzed by flow cytometry. The staining combination 

is shown in table 17. 

Table 17: Staining combination to examine cell cycle state of TIL (staining combination 3). The markers 
pAKT(S473) and pERK(T202/Y201) are addressed later (see p. 75) 

Target/epitope Fluorochrome Cell subset/function 

Viability:  
LIVE/DEAD

TM
 Fixable Blue Dead Cell Stain 

Indo-1-violet staining of dead cells 

CD45 Pe-Cy7 leukocytes 

CD3 PerCp-Cy
TM

5.5 T cells 

p27
kip1

 PE CDK- inhibitor 

cyclin E FITC cell cycle protein 

pAKT (S473) V450 AKT phosphorylated at S473 

p-p44/42 MAPK 
(pERK(T202/Y204)) 

unmarked, detected by 
secondary antibody  
(Alexa Fluor® 647) 

MAPK (ERK) phosphorylated 
at T202 and Y204 

 

In activated T cells, RCC-TIL and HCC-TIL, low and high frequencies of cyclin E within 

gated CD3+ T cells could be distinguished; however, cyclin E negative cells did not exist 

(figure 14 B). Activated T cells were primarily cyclin E high whereas the main population of 

RCC-TIL and HCC-TIL was cyclin E low. 

Based on the combination of cyclin E and p27kip1 (figure 14 C), T cells were distinguished 

into four cell cycle subsets: G0/G2/M (cyclin Elow/p27kip1-), late G1/early S 

(cyclin Ehigh/p27kip1-), S (cyclin Ehigh/p27kip1+) and late S (cyclin Elow/p27kip1+). Comparing the 

frequencies of each subset in RCC-TIL, HCC-TIL and activated T cells, it was observed 
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that TIL were predominantly cyclin Elow and p27kip1-, placing them into the G0, G2 or M 

phase of the cell cycle (figure 14 D). Activated T cells showed high levels of cyclin E and 

were p27kip1-suggesting that they are in late G1 or early S phase.  

In HCC-TIL, five patients had higher frequencies (13% – 23%) of cyclin Ehighp27kip1- 

T cells. while the other HCC-TIL had frequencies around 3% similar to all RCC-TIL. T cells 

in the S phase of the cell cycle (characterized by cyclin Ehighp27kip1+) were not found in 

RCC-TIL and HCC-TIL and were present at low frequency in activated T cells 

(median 4%; range: 2% – 9%). T cells in the late S phase (cyclin E lowp27kip1+) were not 

detected in activated T cells and had low levels in RCC-TIL (median 1%; range: 0% – 6%) 

and HCC-TIL (median 1%; range: 0% – 4%).  

Taken together, activated T cells were mainly proliferating and in late G1 or early S phase 

of the cell whereas the main cohorts of CD3+ RCC-TIL and HCC-TIL were in the G0, G2 or 

M phase of the cell cycle. The cell cycle phase of TIL can be more precisely located 

utilizing the knowledge of Ki-67, as Ki-67 is expressed in G2 or M (71). Since less than 

10% of CD8+ TIL were Ki-67+ (figure 11, see p. 69), RCC-TIL and HCC-TIL were mostly in 

the quiescent G0 phase of the cell cycle.  
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Figure 14: Cell cycle analysis of activated T cells, RCC-TIL and HCC-TIL 

Cell suspensions of RCC and HCC tissues and activated T cells were thawed, stained for cyclin E and p27
kip1

 
(table 17, see p. 72) and analyzed by flow cytometry. A: The arrow indicates the starting point of the cell cycle 
and the inner rim denominates the different phases of the cell cycle. Cyclin E levels are indicated in the middle 
circles. Light brown color corresponds to low levels and dark brown color indicates high levels. The outer rim 
describes expression of p27

kip1
, p27

kip1
 negative phases are encoded by light green and p27

kip1
 positivity is 

depicted by dark green. B: Gating strategy and exemplary dot plots to determine frequencies of cyclin E. After 
gating on CD3

+
 T cells, cyclin E negative (neg), low and high intensities were distinguished in activated T cells 

(act T cells), RCC-TIL and HCC-TIL. Cyclin E negative T cells did not exist. Borders were set based on FMO 
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(fluorescence minus one) controls for cyclin E. C: Gating strategy and exemplary dot plots for RCC-TIL, 
HCC-TIL and activated T cells (act T cells). Because cyclin E negative cells did not exist, the gate divides 
cyclin E low and cyclin E high intensities. HCC 4 and HCC 21 are representative patients that have high 
(HCC 4) and low (HCC 21) frequencies of p27

kip1-
cyclin E

high
 subsets. Borders may vary between samples due 

to experimental settings. Comparability between experiments was guaranteed by the use of FMO controls for 
p27

kip1
 and cyclin E to set the borders. C: Graph summarizes the different phases of the cell cycle of RCC-TIL, 

HCC-TIL and activated T cells. Cell cycle phases are addressed by combinations of cyclin E
low/high

 and p27
kip1

 
negative (

-
) or positive (

+
). The percentages of each marker combination within preselected CD3

+
 T cells are 

presented. Each symbol corresponds to one TIL or sample of activated T cells, significance was determined 
by Kruskal-Wallis test and Dunn´s Post-hoc comparisons in one group (*p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001). Only significant differences between samples are indicated and small numbers indicate 
patient-IDs. 

7.4 The AKT-pathway in TIL 

Protein kinase B (PKB, aka AKT) is a serine and threonine kinase with multifunctional 

downstream signaling nodes like FoxO1 (forkhead box protein 1) and mTORC1 

(mammalian target of rapamycin, complex 1). AKT also mediates cytokine production via 

NF-κB activation and initiates cell cycle progression by suppression of CDK inhibitor 

p27kip1 (20,24,25). Furthermore, cross-talks of AKT- and MAPK-pathway exist by which 

phosphorylation of AKT can suppress phosphorylation of MAP kinase ERK (20) resulting 

in the inhibition of T cell degranulation of T cells and lower cytokine production. The 

impacts of AKT on cell cycle progression and cross-talk to MAPK pathway are visualized 

in figure 15.  

 

Figure 15: Impact of AKT on cell cycle progression and cross-talk to ERK signaling 
AKT: protein kinase B, mTOR: mammalian target of rapamycin (C1: complex 1; C2: complex 2), PDK-1: 
phosphoinositide-dependent kinase-1, PIP3: phosphatidylinositol-(3,4,5)-triphosphate, FoxO1: forkhead box 
protein 1, ERK: extracellular-signal regulated kinase. P: phosphate; S: serine, T: threonine 

The AKT-pathway was analyzed in RCC-TIL and HCC-TIL and it was asked whether an 

impaired phosphorylation state of AKT might relate to the non-proliferative state of TIL. 

The staining combination was shown above (table 17, see p.72).  
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7.4.1 The AKT-pathway is poorly active in TIL 

First, each of the four markers connected to the AKT-pathway was analyzed individually 

and frequencies of pAKT(S473), p27kip1, cyclin E and pERK(T202/Y204) within gated 

CD3+ T cells were determined for RCC-TIL, HCC-TIL and activated T cells. Exemplary dot 

plots are shown in figure 16.  

 
Figure 16: Exemplary dot plots to determine frequencies of proteins related to AKT-pathway in 
activated T cells and in CD3

+
 RCC-TIL and HCC-TIL 

Tissue suspensions and activated T cells (act T cells) were stained for proteins related to AKT-pathway 
(table 17, see p. 72) and analyzed by flow cytometry. Exemplary dot plots to determine frequencies of 
pAKT(S473), p27

kip1
, cyclin E and pERK(Y202/T204) are shown. Borders were set based on FMO 

(fluorescence minus one) controls separately in each experiment.  

It was observed (figure 17 A), that TIL had low frequency of pAKT(S473)+ T cells 

(RCC-TIL: median 1%; range: 0.5% – 12%; HCC-TIL: median 4%; range: 1% – 9%) 

compared with activated T cells (median 8%; range: 5% – 13%). This difference was 

significant for RCC-TIL whereas HCC-TIL were split into two groups: TIL of five HCC 

patients had higher frequencies (highest value: 10%) of pAKT(S473) similar to activated 

T cells while the other nine patients had TIL with very low frequencies of pAKT(S473)+ 

T cells (highest value: 4%) similar to RCC-TIL. 
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Frequencies of p27kip1 were lower in CD3+ RCC-TIL (median 1%; range: 1% – 8%) and 

HCC-TIL (median 2%; range: 0% – 4%) compared with activated T cells (median 7%; 

range: 3% – 12%) without reaching significance. As mentioned before (see p. 71), T cells 

could be distinguished based on cyclin Elow and cyclin Ehigh whereas cyclin E negative 

T cells did not exist. RCC-TIL and HCC-TIL were found to be mostly cyclin E low (RCC-TIL: 

median 96%; range: 70% – 98%; HCC-TIL: median 88%; range: 77% – 97%), while 

activated T cells were cyclin Ehigh (median 94%; range: 82% – 98%). Again, HCC-TIL split 

into two groups: five TIL of HCC patients had T cells being cyclin Ehigh (highest 

value: 21 %) and nine TIL had comparable values of cyclin Ehigh as RCC-TIL (highest 

value: 3%). Frequencies of pERK(T202/Y204)+ T cells were significantly lower in RCC-TIL 

(median 2%; range: 1% – 4%) and HCC-TIL (median 3%; range: 0% – 4%) than in 

activated T cells (median 7%; range: 3% – 14%). 

The expression of the markers pAKT(S473), p27kip1, cyclin E and pERK(T202/Y204) was 

analyzed by the mean fluorescence intensity (MFI) of each protein. Similar to observed 

lower frequencies of T cells, also MFI values of each protein were significantly lower in TIL 

compared with activated T cells (figure 17 B).  
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Figure 17: Cell frequencies and expression levels of proteins related to AKT-pathway in activated 
T cells and in gated CD3

+
 RCC-TIL and HCC-TIL 

Tissue suspensions of and activated T cells (act T cells) were stained for proteins related to AKT-pathway 
(table 17, see p. 72) and analyzed by flow cytometry. A: Frequencies of markers related to the AKT-pathway 
among gated CD3

+
 T cells. C: Normalized fluorescence intensities (FI) of markers. Because mean 

fluorescence intensities (MFI) depended on the settings of the flow cytometer (LSR II, BD) and settings varied 
between experiments, the MFI values of each marker in different experiments were normalized to the MFI of 
one HD-PBMC that was included in each experiment as control. Dotted horizontal line indicates values of 
normalization control. Each symbol represents one sample and vertical dotted lines separate different 
markers. Significance was determined within one marker by Kruskal-Wallis test and Dunn´s Post-hoc 
comparisons (*p<0.05; **p<0.01; *** p<0.001; ****p<0.0001). Only significant differences are indicated. Small 
numbers indicate patient-IDs. 

7.4.2 The influence of AKT on cell cycle progression in TIL 

7.4.2.1 pAKT(S473) suppresses p27kip1 in TIL 

RCC-TIL and HCC-TIL were found to exhibit low levels of pAKT(S473). Since the AKT-

pathway is known to support the cell cycle by phosphorylation and inactivation of p27kip1 

(24,25), it was of interest to determine if low phosphorylation levels of AKT might be 

connected to the non-proliferative state of TIL. To define a relationship between pAKT and 

the cell cycle inhibitory protein p27kip1 on a single cell level, dot plots were analyzed and 

frequencies of each combination of pAKT(S473) and p27kip1 were calculated as 

A 
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percentages of CD3+ T cells (figure 18). A clear association of pAKT(S473) and p27kip1 

was observed, since T cells double-positive for pAKT(S473) and p27kip1 were not detected 

and all pAKT(S473)+ T cells were found to be p27kip1 negative, consistent with the 

knowledge that active (phosphorylated) AKT(S473) inhibits p27kip1 (24,25). The 

frequencies of pAKT(S473)+p27kip1- T cells were highest in activated T cells (median 7%; 

range: 3% - 14%) and significantly lower in HCC-TIL (median 3%; range: 0% – 7%) and in 

RCC-TIL (median 2%; range: 0% – 7%). Frequencies of pAKT(S473)-p27kip1+ T cells were 

also highest in activated T cells (median 4%, range: 2% – 7%) and low in RCC-TIL 

(median: 2%; range: 0% – 7%) and in HCC-TIL (median 2%; range: 2% - 6%). The main 

CD3+ T cell population in RCC-TIL and HCC-TIL as well as in activated T cells was double 

negative for pAKT(S473) and p27kip1 (activated T cells: median 85 %; range: 83% – 92%; 

RCC-TIL: median 97%; range: 95% – 98%, HCC-TIL: median 97%; range: 90% – 99%). 
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Figure 18: Combinations of pAKT(S473) and p27

kip1
 in activated T cells, CD3

+
 RCC-TIL and HCC-TIL 

Tissue suspensions and activated T cells were stained for flow cytometry (table 17, see p. 72). Combinations 
of pAKT(S473) and p27

kip1
 were analyzed within gated CD3

+
 T cells. A: Gating strategy and exemplary dot 

plots of RCC-TIL and HCC-TIL and activated T cell (act T cells). B: Summary of calculated frequencies of cells 
with indicated marker combination within gated CD3

+
 T cells of RCC-TIL, HCC-TIL and activated T cells. Each 

symbol represents one TIL or one sample of activated T cells, lines connect combinations of pAKT(S473) and 
p27

kip1
 of the same individual. C: The subset pAKT(S473)

+
p27

kip1-
 is visualized separately to illustrate 

significant differences between activated T cells (act T cells) and RCC-TIL or HCC-TIL respectively. Each 
symbol represents one TIL or sample of activated T cells, horizontal lines indicate median of one group. 
Significance was determined within pAKT(S473)

+
p27

kip1-
 by Kruskal-Wallis test and Dunn´s Post-hoc 

comparisons (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). Only significance between samples is indicated. 
Numbers are patient-IDs. 
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7.4.2.2 High percentages of cyclin E are independent of AKT 

phosphorylation 

Activation of the AKT-pathway is known to positively drive cell cycle progression, amongst 

other by inhibiting p27kip1 leading to upregulation of cyclin E (24,25). To determine the 

interrelationship of pAKT(S473) and cyclin E on a single cell level, both markers were 

displayed in dot plots and percentages of cells expressing either one marker alone or a 

combination of both markers within gated CD3+ T cells were calculated (figure 19 A 

and B). 

It was observed, that the majority of activated T cells were cyclin Ehigh independent of 

pAKT(S473) expression, illustrating that there is no strict association between 

pAKT(S473) and high cyclin E. Different to activated T cells, the predominant population 

in CD3+ RCC-TIL and HCC-TIL was negative for pAKT and was cyclin Elow, suggesting 

that in TIL the AKT pathway is poorly activated and consequently most T cells are 

cyclin Elow. Interestingly, higher frequencies of pAKT(S473)+cyclin Elow T cells were found 

in TIL compared with activated T cells (figure 19 C), indicating that the phosphorylation 

the AKT-pathway in TIL was not communicated to cyclin E (figure 19 C). Four HCC-TIL 

that were previously described to have higher frequencies of cyclin E high compared with 

the main cohort (see p. 76) also had T cells that were pAKT(S473)-cyclin Ehigh resembling 

activated T cells. These CD3+ HCC-TIL might have experienced activation of the AKT-

pathway. However, this population was very rare (below 5%) in all RCC-TIL, 

demonstrating that RCC-TIL were excluded from AKT activation. 
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Figure 19: Association between pAKT(S473) and cyclin E in activated T cells, RCC-TIL and HCC-TIL 
Tissue suspensions and activated T cells were stained for flow cytometry (table 17, see p. 72). Combinations 
of pAKT(S473) and cyclin E were analyzed within gated CD3

+
 T cells. A: Gating strategy with exemplary dot 

plots of RCC-TIL, HCC-TIL and activated T cell (act T cells). Cyclin E negative (neg) subsets did not exist and 
borders separate between cyclin E

low
 and cyclin E

high
 subsets. B: Summary of calculated frequencies of cells 

with indicated marker combination in pregated CD3
+
 T cells of RCC-TIL, HCC-TIL and activated T cells. Each 

symbol represents one TIL or one sample of activated T cells, lines connect combinations of pAKT(S473) and 
cyclin E of the same individual. C: The subset pAKT(S473)

+
cyclin E

low
 is visualized separately to illustrate 

significant differences between activated T cells and TIL. Each symbol represents one TIL or sample of 
activated T cells, horizontal lines indicate median of one group. Significance was determined in the 
pAKT(S473)

+
cyclin E

low
 subset by Kruskal-Wallis test and Dunn´s Post-hoc comparisons (*p<0.05; **p<0.01; 

***p<0.001; ****p<0.0001). Only significance between samples is indicated. Small numbers indicate 
patient-IDs. 
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7.4.3 Cross-talk of AKT- and MAPK-pathway 

The literature indicates cross-talks of AKT- and MAPK-pathway (20) where pAKT inhibits 

pERK by phosphorylation of c-RAF. Additionally, pERK can directly inhibit pAKT, thereby 

inhibiting the other pathway´s ability to signal (31).  

7.4.3.1 Positivity of pAKT excludes positivity of pERK in TIL 

To elucidate the interrelationship between AKT and ERK pathway, the phosphorylation 

state of the two markers was displayed in dot plots and the marker combinations were 

calculated in activated T cells, RCC-TIL and HCC-TIL (figure 20 A and B). 

In HCC-TIL (figure 20 C), some T cells with pAKT(S473) but without pERK(Y202/T204) 

were detected (pAKT(S473)+pERK(Y202/T204)-, median 4%; range: 2% – 8%) similar to 

activated T cells (median 3%; range: 2% – 7%). These cells were fewer in RCC-TIL 

(median 1%; range: 0% – 4%; except of RCC-TIL 118; 11%). A small fraction (median 

4%; range: 0% – 8%) of activated T cells was positive for both pAKT(S473) and 

pERK(Y202/T204). On the contrary, those T cells were not observed in RCC-TIL and 

HCC-TIL. Taken together, CD3+ RCC-TIL were strongly depressed in both pAKT(S473) 

and pERK(Y202/T204), while HCC-TIL have retained some level of AKT-pathway 

activation. 
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Figure 20: Association between pAKT(S473) and pERK(T202/Y204) in activated T cells, RCC-TIL and 
HCC-TIL 

Tissue suspensions and activated T cells were stained for flow cytometry (table 17, see p. 72). Combinations 
of pAKT(S473) and pERK(T202/Y204) were analyzed within gated CD3

+
 T cells. A: Gating strategy with 

exemplary dot plots of RCC-TIL, HCC-TIL and activated T cell (act T cells). B: Summary of calculated 
frequencies of cells with indicated marker combination within gated CD3

+
 T cells of RCC-TIL, HCC-TIL and 

activated T cells. Each symbol represents one TIL or one sample of activated T cells and lines connect 
combinations of pAKT(S473) and pERK(T202/Y204) of the same individual. C: The subset 
pAKT(S473)

+
pERK(T202/Y204)

-
 is visualized separately to address differences between activated T cells and 

TIL. Kruskal-Wallis test did not detect significant differences between act T cells and TIL. Each symbol 
represents one TIL or sample of activated T cells, horizontal lines indicate median of one group. Numbers are 
patient-IDs. 
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7.4.3.2 Positivity of pERK predicts cell cycle state of TIL 

AKT and ERK are activated through different upstream signals: the AKT-pathway and 

subsequent cell cycle progression is activated by co-stimulation (17), while ERK and 

downstream degranulation of T cells is induced by TCR triggering through pMHC binding 

(10). Analyzing combinations of pERK(T202/Y204), pAKT(S473) and p27kip1 at a single 

cell level, it was observed that pERK(Y202/T204)+ T cells of TIL were found in different 

pAKT/p27kip1 T cell subsets (figure 21). In activated T cells, the pERK(Y202/T204)+ 

T cells were mainly detected in the pAKT(S473)+p27kip1- subset in activated T cells 

(median 43%; range: 12% – 73%), indicating that pERK(T202/Y204) positivity is related to 

cell cycle progression in activated T cells. On the contrary, pERK(T202/Y204)+ T cells of 

RCC-TIL and HCC-TIL were mainly present in pAKT(S473)-p27kip1+ subset (RCC-TIL 

median 13%; range: 1% – 48%; HCC-TIL median 12%; range: 0% – 62%), indicating that 

in TIL pERK(T202/Y204) positivity is related to cell cycle arrest (positivity of cell cycle 

inhibitor p27kip1).  
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Figure 21: Relationship of pERK, pAKT and p27
kip1

 in activated T cells, RCC-TIL and HCC-TIL 

Tissue suspensions and activated T cells were stained for flow cytometry (table 17, see p. 72). Interrelations of 

pERK(T202/Y204), pAKT(S473) and p27
kip1

 were analyzed within gated CD3
+
 T cells. A: Gating strategy to determine 

pERK
+
 T cells within combinations of pAKT (S473) and p27

kip1
. B: Summary of calculated frequencies pERK

+
 T cells within 

indicated marker combinations in gated CD3
+
 T cells of RCC-TIL, HCC-TIL and activated T cells (act T cells). Each symbol 

represents one TIL or one sample of activated T cells and lines connect percentages of pERK in different combinations of 

pAKT(S473) and p27
kip1

 of the same individual. Numbers are patient-IDs. 

 

To further elucidate the relation between pERK(T202/Y204) positivity and cell cycle state 

of TIL, the phases of the cell cycle were determined at a single cell level by combinations 

of p27kip1 and cyclin E (see p. 71) in preselected pERK(T202/Y204)- or pERK(T202/Y204)+ 

subgroups of CD3+ RCC-TIL, HCC-TIL and activated T cells (figure 22). Activated T cells 

were mainly in the late G1/early S subgroup (figure 22 C) and this was independent of 

pERK(T202/Y204).  

In TIL, there was a difference between T cells with or without pERK(T202/Y204): 

pERK(T202/Y204)+ TIL had reduced frequencies in the G0/G1/M group (figure 22 D) and 

significantly higher percentages of T cells in the late G1/early S (figure 22 C), S 

(figure 22 E) or late S (figure 22 F) phase compared with pERK(T202/Y204)- T cells. 
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Figure 22: Relation between pERK and cell cycle of activated T cells, RCC-TIL and HCC-TIL 

Tissue suspensions and activated T cells (act T cells) were stained for flow cytometry. Interrelations of 
pERK(T202/Y204), p27

kip1
 and cyclin E were addressed. A: Gating strategy: Combinations of p27

kip1
 and 

cyclin E were determined within pERK
+
 and pERK

-
 subgroups of preselected CD3

+ 
T cells. Phases of the cell 

cycle were related to p27
kip1

 and cyclin E combinations. B: Exemplary dot plots of RCC-TIL, HCC-TIL and 
activated T cells for combinations of p27

kip1
 and cyclin E (different cell cycle states) in pERK

-/+
 subsets. C-F: 

Summary figures of calculated percentages of T cells at different cell cycle states in pERK
-/+

 subsets. Each 
symbol represents one sample, numbers are patient-IDs and horizontal lines indicate the median of one 
group. Significance was determined between pERK

-
 and pERK

+
 subsets by Wilcoxon matched pairs signed-

rank test (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). Only significance between groups is indicated.  
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7.5 The mTOR-pathway in TIL 

Mammalian target of rapamycin (mTOR) is a central regulator of cell metabolism, growth 

and proliferation (29,30,80). There are two protein complexes of mTOR with different 

functions: mTORC2 phosphorylates AKT at S473 and mTORC1 can be activated by AKT 

(20) and ERK (31). Its catalytic subunit raptor (regulatory-associated protein of mTOR) 

allows phosphorylation of p70 ribosomal protein kinase S6 (p70S6) which leads to 

phosphorylation of ribosomal protein S6 (rpS6) that subsequently induces gene 

translation (29). 

mTORC1 regulates CD8+ T cell memory generation and high mTORC1 activity is 

associated with poor effector to memory transition (80). Furthermore, mTORC1 promotes 

effector differentiation of CD8+ T cells by gene regulation of cytotoxic effector molecules 

perforin, granzyme B or IFN-γ (30). A brief summary of mTOR activation and its 

downstream effects in CD8+ T cells are summarized in figure 23. 

In CD8+ RCC-TIL, levels of perforin have been reported to be low compared with r-NIL 

(40). In this thesis it was further elucidated if low perforin levels also exist in HCC-TIL and 

might be traced back to impaired mTOR-pathway. 

 

Figure 23: mTOR-pathway in CD8
+
 T cells 

mTOR: mammalian target of rapamycin (C1: complex 1; C2: complex 2), PDK-1: phosphoinositide-dependent 
kinase-1, PIP3: phosphatidylinositol-(3,4,5)-triphosphate, PIP2: phosphatidylinositol-(4,5)-bisphosphate, 
PI3K: phosphoinositide-3 kinase; PTEN: phosphatase and tensin homolog, AKT: protein kinase B, 
ERK: extracellular-signal regulated kinase, p70S6K: p70 ribosomal protein kinase, rpS6: ribosomal protein S6, 
Arrows indicate activation and dashes visualize inhibition. P: phosphate; S: serin, T: threonine 
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The staining combination for addressing the mTOR-pathway is shown in table 18. 

Table 18: Staining combination to address the mTOR-pathway (staining combination 3) 

Target/epitope Fluorochrome Cell subset/function 

Viability:  
LIVE/DEAD

TM
 Fixable Blue Dead Cell Stain 

Indo-1-violet staining of dead cells 

CD45 Pe-Cy7 leukocytes 

CD3 PerCp-Cy
TM

5.5 T cells 

pmTOR(S2448) APC 
mTOR phosphorylated at 
S2448 

prpS6 (S244) PE 

ribosomal protein S6 
phosphorylated at S244 
(downstream target of 
pmTOR) 

perforin FITC cytolytic molecule 

7.5.1 The mTOR-pathway is impaired in TIL 

First, each of the markers was analyzed individually and frequencies of pmTOR(S2448), 

prpS6(S244) and perforin within gated CD3+ T cells were determined for RCC-TIL, 

HCC-TIL and activated T cells (figure 24 A and B, see p. 90). In addition, the expression 

level (addressed by mean fluorescence intensity) of each protein in the gated CD3+ 

population was determined (figure 24 C). 

All activated T cells were pmTOR(S2448)+ (median frequency 100%), while frequencies of 

pmTOR(S2448) were lower in RCC-TIL (median 83%; range: 63% – 96%), though not 

significantly. Two cohorts were found for CD3+ HCC-TIL, one with high 

(range: 84% - 100%, eight patients) the other with low (range: 26% – 75%, five patients) 

frequencies of pmTOR(S2448). In contrast, all TIL had significantly lower frequencies of 

prpS6(S244)+ T cells (RCC-TIL: range 0% - 80%; HCC-TIL: 0% - 90%), while act T cells 

were nearly all positive for prpS6(S244) suggesting that the activation of mTORC1 

downstream target rpS6 is interrupted in most TIL. Frequencies of perforin+ T cells were 

very low in RCC-TIL, somewhat higher in CD3+ HCC-TIL and highest in act T cells. 

Analysis of the mean fluorescence intensities (MFI) revealed that pmTOR(S2448), 

prpS6(S244) and perforin were significantly lower expressed in CD3+ RCC-TIL and 

HCC-TIL compared with activated T cells.  
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Figure 24: Cell frequencies and expression levels of proteins related to mTOR-pathway in activated 
T cells, CD3

+
 RCC-TIL and HCC-TIL 

Tissue suspensions and activated T cells stained for flow cytometry. A: Exemplary dot plots to determine 
frequencies of pmTOR(S2448), prpS6(S244) and perforin. Borders were set based on FMO (fluorescence 
minus one) controls separately in each experiment. B: Frequencies of markers related to the mTOR-pathway 
among gated CD3

+
 T cells. C: Normalized mean fluorescence intensities (FI) of markers. Horizontal dotted line 

indicates values of normalization control. Each symbol represents one sample, vertical dotted lines separate 
different markers. Significance was determined within one marker by Kruskal-Wallis test and Dunn´s Post-hoc 
comparisons (*p<0.05; **p<0.01; *** p<0.001; ****p<0.0001). Only significant differences are indicated.  
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7.5.2 pmTOR+prpS6+ divides TIL into two groups 

Activation of mTORC1 leads to downstream phosphorylation of rpS6(S244) which then 

induces translational gene regulation (29). To examine if the mTOR-signaling in TIL is 

activated, co-expression of pmTOR(S4428) and prpS6(S244) was addressed on a single 

cell level. Within gated CD3+ T cells (figure 25), activated T cells were mainly double 

positive for pmTOR(S2448) and prpS6(S244) (median 93%; range: 87% – 97%). In CD3+ 

RCC-TIL and HCC-TIL, two groups of patients were identified. Five patients in RCC-TIL 

and seven HCC-TIL had high frequencies of pmTOR(S2448)+prpS6(S244)+ T cells 

(RCC-TIL: 39% - 83% and HCC-TIL: 54% – 91%). These TIL had low frequencies of 

pmTOR(S2448)+prpS6(S244)- T cells (RCC-TIL: 20% – 43% and HCC-TIL: 8% – 32%). 

The second group of patients showed low frequencies of T cells being 

pmTOR(S2448)+prpS6(S244)+ T cells (RCC-TIL: 1% - 21% and HCC-TIL: 1% – 22%) and 

high levels of pmTOR(S2448)+prpS6(S244)- (RCC-TIL: 55% – 96%; HCC-TIL: 

60% - 80%). The difference between the two groups of TIL with low and high frequencies 

of pmTOR(S2448)+prpS6(S244)+ was significant (p<0.001). In general, the frequencies of 

pmTOR(S2448)+prpS6(S244)- were higher in RCC-TIL and HCC-TIL compared with 

activated T cells indicating an incomplete activation of the mTOR-pathway. 

Percentages of T cells double negative for pmTOR(S2448) and prpS6(S244) were also 

higher in RCC-TIL and HCC-TIL than in activated T cells suggesting that in some TIL the 

mTOR-pathway was not activated at all. T cells being pmTOR(S2448)-prpS6(S244)+ were 

largely absent in TIL and in activated T cells as expected since phosphorylation of rpS6 

requires mTOR phosphorylation (29).  
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Figure 25: Combinations of pmTOR(S2448), rpS6(S244) in activated T cells, CD3

+
 RCC-TIL and 

HCC-TIL 

Tissue suspensions and activated T cells were stained for flow cytometry (table 18, see p.89). Combinations 
of pmTOR(S2448), prpS6(S244) and perforin were analyzed within gated CD3

+
 T cells. A: Exemplary dot plots 

of RCC-TIL, HCC-TIL and activated T cell (act T cells). B: Summary of calculated frequencies of cells with 
indicated marker combination within gated CD3

+
 T cells of RCC-TIL, HCC-TIL and activated T cells. Dotted 

circles mark groups of TIL with high and low percentages of pmTOR(S2448)
+
prpS6(S244)

+
 T cells. Each 

symbol represents one TIL or one sample of activated T cells, lines connect combinations of pmTOR(S2448) 
and prpS6(S244) of the same individual and number indicate patient-IDs (red: RCC-TIL, blue: HCC-TIL). 

7.5.3 Phosphorylated mTOR and rpS6 determine perforin positivity in TIL 

It has been described that the expression of cytotoxic effector molecules perforin and 

granzyme B is controlled by mTORC1 signaling (29,30), however, it has remained unclear 

if phosphorylation of rpS6 is also involved in perforin upregulation. Therefore the relation 

between pmTOR(S2448), prpS6(S244) and perforin in TIL was evaluated. Exemplary dot 

plots and corresponding graphs are shown in figure 26. 

Examining the dot plots, it was evident that perforin was only seen in pmTOR(S2448)+ or 

prpS6(S244)+ cells in all samples of TIL or activated T cells indicating a strict dependency 

of perforin on phosphorylated mTOR or phosphorylated rpS6. 
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Activated T cells were all pmTOR(S2448)+perforin- and CD3+ RCC-TIL and HCC-TIL had 

high percentages of pmTOR(S2448)+perforin- T cells (median RCC-TIL 74%, median 

HCC-TIL 79%). One RCC-TIL (53%) and three HCC-TIL (range: 18% – 52%) had lower 

percentages compared with the main cohort. Frequencies of pmTOR(S2448)+perforin+ 

T cells were comparable low in RCC-TIL (median 1%) and HCC-TIL (median 3%) 

whereas percentages of pmTOR-perforin- cells were higher in RCC-TIL (median 21%) 

compared with median frequencies in HCC-TIL of 11%. Interestingly, pmTOR(S2448)-

perforin+ subsets did neither exist in RCC-TIL nor HCC-TIL nor activated T cells, 

emphasizing that perforin positivity depends on phosphorylated mTOR. 

With regard to combinations of prpS6(S244) and perforin, activated T cells were all 

prpS6(S244)+perforin-, and CD3+ RCC-TIL and HCC-TIL covered a wide range of 

prpS6(S244)+perforin- cells. (range RCC-TIL: 0% – 85%, range HCC-TIL: 0% - 87%). 

Those TIL with high frequency of prpS6(S244)+perforin- had correspondingly low 

frequency of double negative cells for rpS6(S244) and perforin (range RCC-TIL: 

15% - 98%, range HCC-TIL: 9% - 99%). Interestingly, prpS6(S244)-perforin+ cells did 

neither exist in RCC-TIL nor in HCC-TIL, emphasizing that perforin positivity depends not 

only on pmTOR(S244) but also on phosphorylated rpS6.  
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Figure 26: Relation of pmTOR(S2448), prpS6(S244) and perforin in activated T cells, RCC-TIL and 
HCC-TIL  

Tissue suspensions and activated T cells were stained for flow cytometry (table 18, see p.89). Combinations 
of pmTOR(S2448) and perforin or prpS6(S244) and perforin were analyzed within gated CD3

+
 T cells. 

A: Exemplary dot plots of RCC-TIL, HCC-TIL and activated T cell (act T cells). B and C: Summary of 
calculated frequencies of cells with combinations of pmTOR(S2448) and perforin (pfn) (B) or combinations of 
rpS6(S244) and perforin (C) within gated CD3

+
 T cells of RCC-TIL, HCC-TIL and activated T cells. Each 

symbol represents one TIL or one sample of activated T cells, lines connect different combinations of the 
same individual. Numbers indicate patient-IDs (red: RCC-TIL, blue: HCC-TIL). 

To address if perforin positivity requires activity of both mTOR and rpS6, the 

pmTOR(S2448)+perforin+ subset was gated and questioned for positivity of prpS6(S244). 
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It was found that pmTOR(S2448)+perforin+ cells were also positive for prpS6(S244), 

indicating that the downstream activation of prpS6 through mTOR leads to perforin 

positivity. Exemplary dot plots are shown in figure 27.  

 
Figure 27: Relation of prpS6(S244) and pmTOR(S2448)

+
perforin

+
 cells in activated T cells, RCC-TIL and 

HCC-TIL  

Tissue suspensions and activated T cells were stained for flow cytometry (table 18, see p.89). A: Within 
preselected CD3

+
 T cells, pmTOR(S2448) was plotted against perforin and T cells being 

pmTOR(S2448)
+
perforin

+
 were selected to determine positivity of prpS6. B: Exemplary dot plots of RCC-TIL 

and HCC-TIL.  

 

7.6 T cell anergy in CD8+ TIL 

T cell anergy arises from incomplete T cell activation, which occurs when T cell receptors 

are triggered by peptide-MHC ligands without co-stimulation and was initially described for 

CD4+ T cells (35). A hallmark for anergic CD4 T cells is upregulated diacylglycerol 

kinase α (DGK-α) which degrades diacylglycerol (DAG). Reduction in DAG is followed by 

inhibition of ERK, suppression of PI3K, downstream inhibition of AKT and mTOR (18,35). 

The phenomenon of upregulated DGK-α and reduced levels of phosphorylated ERK and 

AKT was found in CD8+ RCC-TIL (40). It is further known, that the transcription factor 

FoxO1 (forkhead box protein O1) regulates transcription of DGK-α (18) and also promotes 

PD-1 expression in exhausted CD8+ T cells of chronic infection (21). A brief overview of 

FoxO1, DGK-α and PD-1 and their relation within the signaling cascade of the TCR in 

CD8+ T cells are exemplified in figure 28. 
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Figure 28: Signaling of the TCR in CD8
+
 T cells with focus on T cell anergy and exhaustion 

CD28: co-stimulatory molecule, PD-1: programmed cell death protein 1 (co-inhibitory receptor), TCR: T cell 
receptor, PLCγ: protein lipase γ, FoxO1: forkhead box protein 1, AKT: protein kinase B, mTORC1/C2: 
mammalian targets of rapamycin complex 1 (C1) or 2 (C2), PI3K: phosphoinositide-3-kinase, 
PIP3: phosphatidylinositol-(3,4,5)-trisphosphate, PIP2: phosphatidylinositol-(4,5)-bisphosphate, 
PI3K: phosphoinositide-3 kinase; PTEN: phosphatase and tensin homolog, IP3: inositoltrisphosphate, 
DAG: diacylglycerol, DGK-α: diacyglycerol kinase α, PA: phosphatic acid, JNK: c-Jun N-terminal kinase, ERK: 

extracellular regulated kinase.  

While the hyporesponsive state of RCC-TIL and HCC-TIL is clearly documented, the 

underlying cause of this unresponsiveness is not yet delineated and might be 

multifactorial (anergy, tolerance, exhaustion or inhibition). This knowledge, however, is 

required in order to select the most effective intervention strategies. Thus, the interplay 

between FoxO1, DGK-α and PD-1 was assessed in CD8+ RCC-TIL and HCC-TIL by 

staining tissues suspensions with respective antibodies and performing flow cytometry 

(table 19). 
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Table 19: Staining to address T cell anergy and exhaustion (staining combination 4) 

Target/epitope Fluorochrome Cell subset/function 

Viability:  
LIVE/DEAD

TM
 Fixable Blue Dead Cell Stain 

Indo-1-violet staining of dead cells 

CD45 Pe-Cy7 leukocytes 

CD3 PerCp-Cy
TM

5.5 T cells 

CD8 V500 CD8
+
 T cells 

CD4 APC-eFluor 780 CD4
+
 T cells 

CD19/CD20 Alexa Fluor® A700 B cells 

CD56 V450 NK cells 

PD-1 PE exhaustion marker 

DGK-α 
unmarked, detected by 
secondary antibody  
(Alexa Fluor® 647) 

marker for T cell anergy 
(diacylglycerol kinase α) 

FoxO1 
unmarked, detected by 
secondary antibody  
(Alexa Fluor® 488) 

transcription factor of PD-1 and 
DGK-α (forkhead box protein O1) 

7.6.1 DGK-α expression divides RCC-TIL and HCC-TIL into two groups 

DGK-α expression levels were addressed by measuring DGK-α mean fluorescence 

intensities in preselected CD8+ T cells of cell suspensions of non-tumor and tumor tissues 

of kidney and liver (figure 29). Two groups of patients were identified: five RCC and five 

HCC patients were marked by higher expression levels of DGK-α in TIL compared with 

NIL. The second group of six RCC and three HCC patients had lower DGK-α expression 

in TIL than in NIL, which was significant for r-NIL and RCC-TIL. 
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Figure 29: DGK-α expression levels in NIL and TIL of kidney and liver 

Tissue suspensions were stained to address T cell anergy (table 19, see p. 97) and analyzed by flow 
cytometry. A: Exemplary histograms of DGK-α expression addressed by the fluorescence intensity of DGK-α 
in preselected CD8

+
 NIL (grey) and TIL (black). Numbers indicate mean fluorescence intensities. 

B: Summarizing figure of mean fluorescence intensities (FI) of r-NIL, RCC-TIL, h-NIL and HCC-TIL. Vertical 
dashed line separate cells suspensions from kidney and liver. Numbers indicate patient-IDs, lines connect 
tissues from the same individual and horizontal lines indicate the median of one group. Significance between 
NIL and TIL in one group was statistically addressed by Mann-Whitney U test but did not reveal significance. 

7.6.2 DGK-α correlates with expression of FoxO1 in CD8+ TIL 

Exemplary dot plots (figure 30 A) indicate a correlation of high FoxO1 with high DGK-α in 

CD8+ RCC-TIL and HCC-TIL on a single cell level, showing that high FoxO1 is associated 

with high DGK-α (FoxO1high/DGK-αhigh) and vice versa (FoxO1low/DGK-αlow). The relation 

between FoxO1 and DGK-α was further addressed by Spearman´s correlation analysis of 

expression levels of both markers in CD8+ RCC-TIL and HCC-TIL (figure 30 B and C) and 

revealed nearly linear correlations (r2(RCC-TIL)=0.63; r2(HCC-TIL=0.86)).  
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Figure 30: Correlation of DGK-α and FoxO1 in CD8
+
 RCC-TIL and HCC-TIL 

Tissue suspensions were stained to address T cell anergy (table 19, see p. 97) and analyzed by flow 
cytometry. A: Schematic gating strategy and exemplary dot plots of DGK-α and FoxO1 in preselected 
CD3

+
CD8

+
 RCC-TIL and HCC-TIL. B and C: Spearman´s rank correlation analysis of expression levels of 

DGK-α and FoxO1 (addressed by mean fluorescence intensities (FI) in CD3
+
CD8

+
 RCC-TIL (B) and HCC-TIL 

(C). One symbol represents one patient. Correlation coefficient r
2 

was determined by Spearman´s correlation 
test, lines indicate the best-fit line of the correlation and dotted curves are 95%-confidence bands of the best-
fit line. *p<0.05; **p<0.01; *** p<0.001; ****p<0.0001. 

 

7.7 Exhaustion in CD8+ TIL 

T cell exhaustion was described as a state of dysfunction in chronic infection and cancer 

that develops due to antigen persistence (42). 

7.7.1 PD-1 is enriched in CD8+ TIL 

FoxO1 was not only shown to drive T cell anergy by inducing transcription of DGK-α (18), 

but is also related to exhausted T cells promoting PD-1 expression (21). Figure 31 A 

shows exemplary dot plots for two RCC-TIL and HCC-TIL with low and high frequencies 

of PD-1. The dot plots display FoxO1 and PD-1 overlaid by DGK-α fluorescence 

intensities. PD-1+ cells were found among FoxO1- and FoxO1+ cells, indicating that PD-1 

expression was not exclusively related to FoxO1 expression. Nevertheless, cell frequency 

analysis of PD-1+ cells among preselected FoxO1- or FoxO1+ subsets showed that PD-1+ 

cells were significantly more prevalent in the FoxO1+ subsets of CD8+ RCC-TIL 

(median 64%; range: 47% – 91%) and HCC-TIL (median 41%; range: 30% - 97%; 
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outlier HCC 20: 0%) compared with the FoxO1- subsets, although that subset also 

harbored many PD-1+ cells (RCC-TIL: range: 24% – 84%; HCC-TIL: range: 5% - 97%). 

Moreover, high expression levels of DGK-α (red color) were distributed over PD-1+ and 

PD-1- cells, indicating that PD-1 is not linked to DGK-α expression. However, as revealed 

bevor (see p.99), high expression levels of DGK-α were only found in FoxO1+ cells. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Results 
 

_ 

101 

 
Figure 31: Relation between FoxO1, DGK-α and PD-1 in CD8

+
 RCC-TIL and HCC-TIL 

Tissue suspensions were stained to address T cell anergy and exhaustion and analyzed by flow cytometry. 
A: Schematic gating strategy and exemplary dot plots of FoxO1, DGK-α and PD-1 overlaid with mean 

expression of DGK-α in preselected CD8
+
 RCC-TIL and HCC-TIL. Expression levels of DGK-α are visualized 

by a color gradient (blue: low expression; red: high expression). B: Gating strategy and exemplary dot plots to 
determine relation of FoxO1 and PD-1. Percentages of PD-1 were addressed within preselected FoxO1

-/+
 

populations. C: Summarizing figure displaying percentages of PD-1 in FoxO1 negative (-) and FoxO1 positive 
(+) subgroups of CD8

+
 RCC-TIL and HCC-TIL. One symbol represents one sample, horizontal lines indicate 

the median within one group and vertical dotted lines separate different groups. Significance was addressed 
by Wilcoxon matched pairs signed rank test between two corresponding subsets (*p<0.05; **p<0.01; 
***p<0.001; ****p<0.0001). If not indicated differently, differences between samples were not significant. 
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7.7.2 RCC-TIL and HCC-TIL have low frequencies of T cells co-expressing 
PD-1 and LAG-3 

Co-inhibitory receptor PD-1 has been assigned to T cell exhaustion, but is also expressed 

upon T cell activation (41,81). PD-1+ exhausted T cells are distinguished from PD-1+ 

activated T cells by prolonged and high expression of PD-1 with additional expression of 

other inhibitory receptors like lymphocyte activation gene 3 (LAG-3) or T cell 

immunoglobulin and mucin-domain containing (TIM-3) (41). In the following, the staining 

combination of PD-1 and LAG-3 together with the proliferation marker Ki-67 was applied 

(table 20). It was hypothesized, that exhausted T cells should be represented by 

PD-1+LAG-3+ cells, whereas PD-1+Ki-67+ T cells should indicate activated T cells.  

Table 20: staining combination to address T cell exhaustion (staining combination 1) 

Target/epitope Fluorochrome Cell subset/function 

Viability:  
LIVE/DEAD

TM
 Fixable Blue Dead Cell Stain 

Indo-1-violet staining of dead cells 

CD45 Pe-Cy7 leukocytes 

CD3 PerCp-Cy
TM

5.5 T cells 

CD8 V500 CD8
+
 cells 

CD4 APC-eFluor 780 CD4
+
 cell 

CD19/CD20 Alexa Fluor® A700 B cells 

CD56 V450 NK cells 

CD14 PB monocytes/macrophages 

PD-1 PE activation/exhaustion marker 

Ki-67 Alexa Fluor® A488 proliferation marker 

LAG-3 ATTO 647N activation/exhaustion marker 

 

It was observed (figure 32) that the frequency of PD-1+ cells of TIL was significantly higher 

compared with corresponding NIL for both kidney and liver tissues (median r-NIL 11%; 

range: 4% - 26%; median h-NIL 12%; range: 1% - 60%). HCC-TIL were more 

heterogeneous (range: 8% - 96%) compared with RCC-TIL (range: 24% - 78%).  

LAG-3+ cells were of very low frequency but significantly more frequent in RCC-TIL 

(median 5%; range: 0% - 13%) or HCC-TIL (median 9%; range: 1% - 17%) compared with 

the corresponding NIL (median r-NIL 2%; range: 0% - 12%; median h-NIL 1%; 
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range: 0% - 2%). Activated T cells had low frequencies of both PD-1 (median 2%) and 

LAG-3+ (median 3%).  

 
Figure 32: Analysis of co-inhibitory receptors PD-1 and LAG-3 in RCC-TIL and HCC-TIL  

Tissue suspensions were stained to address exhaustion (table 20, see p. 102) and analyzed by flow 
cytometry. Figure depicts schematic gating strategy and summarizing graph of single marker analysis. Each 
symbol represents one individual and lines connect samples of one individual. Significance between NIL and 
TIL in one group was statistically determined by Mann-Whitney U test (*p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001). Only significant differences between samples are indicated. Small numbers indicate 
patient-IDs. 

Since co-expression of multiple co-inhibitory receptors is described as a hallmark of CD8+ 

T cell exhaustion (41,42), co-expression of PD-1 and LAG-3 was determined for pregated 

CD8+ TIL (figure 33).  

PD-1+LAG-3- cells ranged from 23% – 65% in CD8+ RCC-TIL but frequencies of 

PD-1+LAG-3- cells varied strongly in CD8+ HCC-TIL, dividing patients into those with high 

frequencies (range 34% – 91%) and low frequencies (range 7% – 17%), identifying the 

same patients as in the single marker analysis. PD-1 and LAG-3 double positive T cells 

were infrequent in RCC-TIL and HCC-TIL (median of both 7%) and LAG-3+ TIL without 

PD-1 were neither detected in CD8+ RCC-TIL or HCC-TIL.  
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Figure 33: Relationship of co-inhibitory receptors PD-1 and LAG-3 in RCC-TIL and HCC-TIL  

Tissue suspensions were stained to address exhaustion (table 20, see p. 102) and analyzed by flow 
cytometry. A: Exemplary dot plots addressing combinations of PD-1 and LAG-3. B: Summarizing graph of 
combinations of PD-1 and LAG-3. Each symbol represents one tissue and lines connect samples from the 
same individual. C: The combinations PD-1

+
LAG-3

-
 and PD-1

+
LAG-3

+
 are visualized separately. Significance 

was addressed by Mann Whitney U test, but did not reveal significance. Each symbol represents one tissue 
and small numbers indicate patient-IDs. 

7.7.2.1 Ki-67 is expressed in PD-1+LAG-3+ CD8+ TIL 

Ki-67 expression was analyzed to facilitate a distinction between exhaustion and 

activation (figure 34). Single marker analysis of Ki-67 (figure 34 A, see p. 106) revealed 

very low frequencies of Ki-67+ cells in NIL (median r-NIL 3%; range: 1% - 9%; median h-

NIL 1%; range: 1% - 4%) and low, but significantly higher values in corresponding TIL 

(median RCC-TIL 4%; range: 1% - 7%; median HCC-TIL 5%; range: 2% - 14%). 
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PD-1+Ki-67+ T cells, considered as activated and not exhausted, were detected at 

comparable low frequencies in RCC-TIL (median 3%, range: 1% - 7%) and in HCC-TIL 

(median 3%, range: 1% - 13%). Four HCC-TIL had higher percentages (range: 6% - 13%) 

of PD-1+Ki-67+ T cells compared with the main cohort (figure 34 B). 

In the combined analysis with PD-1 and LAG-3 (figure 34 C and D), Ki-67+ cells were 

mainly detected in the PD-1 and LAG-3 double positive subset of CD8+ RCC-TIL 

(median 23%; range: 7% - 44%) and HCC-TIL (median 31%; range: 0% - 46%). The 

frequency of Ki-67 was significantly lower in the PD-1+LAG-3- (median RCC-TIL 4%; 

range: 0% - 10%; median HCC-TIL 4%; range: 0% - 16%) subset and also significantly 

lower in the PD-1-LAG-3- (median RCC-TIL 2%; range: 0% - 3%; median HCC-TIL 3%; 

range: 0% - 13%) subset. Single positive subsets of LAG-3 were not detected and this 

subgroup is therefore not displayed in the figure. 



 Results 
 

_ 

106 

 
Figure 34: Percentages of Ki-67 in combinations with PD-1 and LAG-3  
Tissue suspensions were stained for flow cytometry. A: Ki-67 analysis in pregated CD3

+
CD8

+
 T cells. 

B: Frequencies of PD-1
+
Ki-67

+
 cells in CD8

+
 TIL. B: Schematic gating strategy and exemplary dot plots to 

address positivity of Ki-67 in combinations of PD-1 and LAG-3 in CD8
+
 TIL. C: Summarizing graph of Ki-67

+
 

cells in combinations of PD-1 and LAG-3. Each symbol represents one tissue, lines connect samples from the 
same individual. Horizontal lines indicate the median within one group, vertical dotted lines separate different 
groups. Significance was determined by Mann-Whitney U test (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). 
Only significant differences are indicated. Small numbers indicate patient-IDs. 
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7.7.3 Transcription factors T-bet and Eomes, and PD-1 in CD8+ TIL 

Exhausted CD8+ T cells are not only described by high expression of multiple inhibitory 

receptors (41), but can also be addressed by T-box transcription factor T-bet and 

transcription factor Eomesodermin (Eomes): T-bethigh/Eomeslow/PD-1low subset is 

considered to still have potential for further division, can moderately produce IFN-γ and 

TNF-α and is more responsive to anti-PD-L1/anti-PD-1 reinvigoration (42,82). On the 

contrary, exhausted CD8+ T cells defined by T-betlow/Eomeshigh/PD-1high show low potential 

for further division, but have maintained cytolytic activity and high levels of granzyme B. 

They are thought to be less responsive to anti-PD-L1/anti-PD-1 therapy (42,82,83). 

The staining combination (table 21) to analyze RCC-TIL and HCC-TIL by flow cytometry 

included T-bet and Eomes in combination with PD-1, perforin and granzyme B. 

Table 21: Staining combination to determine T cell subsets by transcription factors, PD-1 and cytotoxic 

proteins (staining combination 5) 

Target/epitope Fluorochrome Cell subset/function 

Viability:  
LIVE/DEAD

TM
 Fixable Blue Dead Cell Stain 

Indo-1-violet staining of dead cells 

CD45 Pe-Cy7 leukocytes 

CD3 Alexa Fluor® A700 T cells 

CD8 V500 CD8
+
 T cells 

CD4 APC-eFluor 780 CD4
+
 T cells 

CD56 V450 NK cells 

PD-1 PerCp-Cy
TM

5.5 activation/exhaustion marker 

T-bet eFluor
TM

660 
transcription factor to discriminate 
T cell subsets, high in T effector cells, 
low in T memory 

Eomes PE 

transcription factor to discriminate 
T cell subsets, associated with 
T effector cells and memory 
development 

perforin FITC cytolytic molecule 

granzyme B PE-TexasRed® serine protease 
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7.7.3.1 Tbetlow/Eomes+/PD-1+ expression in CD8+ HCC-TIL identifies two 

groups of HCC patients 

Expression patterns of T-bet and Eomes can be used to identify CD8+ T cell subsets: 

naïve CD8+ T cells are defined by low levels of T-bet and Eomes whereas cytotoxic 

effector CD8+ T cells are marked by high levels of T-bet and Eomes. Memory-like CD8+ 

T cells show low expression of T-bet but high expression of Eomes (11–15).  

The gating scheme and exemplary dot plots are visualized in figure 35 A, discriminating 

three CD8+ T cell subsets defined as T-betlow/Eomes- (T naïve, Tn), T-betlow/Eomes+ 

(memory-like, Tm-like) and T-bethigh/Eomes± (cytotoxic T cells, CTL). 

In CD8+ RCC-TIL, all three T cell subsets were found in all patients (n=11), while a 

majority of HCC-patients lacked the T-betlow/Eomes+ T cells (n=10 of 14 patients, 

designated Tm-HCC-TIL). The smaller cohort of HCC-patients were TIL having all three 

T-bet/Eomes subsets (n=4; of 14 patients, designated Tm+HCC-TIL). T-betlow/Eomes+ 

cells were also absent in activated T cells (figure 35 B). 

Figure 35 C-F summarizes the prevalence of each T cell subset (T-betlow/Eomes-, 

T-betlow/Eomes+ and T-bethigh/Eomes±) within gated CD8+ T cells of RCC-TIL (C), 

Tm+HCC-TIL (D), Tm-HCC-TIL (E) and activated T cells (F).  

In all TIL independent of tissues source, the Tn subset was the most frequent one 

(median RCC-TIL 72%, median Tm+HCC-TIL 70%, median Tm-HCC-TIL 79%). The 

subset of T-betlow/Eomes+ was detected in ranges of 7% - 35% in RCC-TIL and 7% - 22% 

in Tm+HCC-TIL. CTL were represented in ranges of 7% - 45% in RCC-TIL, 8% - 37% in 

Tm-HCC-TIL and 5% - 35% in Tm+HCC-TIL. Activated T cells were mainly CTL 

(median 98%), the Tm-like subset was not detected and percentages of Tn were low 

(median 2%). 
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Figure 35: T cell subsets defined by T-bet and Eomes in CD8

+
 RCC-TIL, HCC-TIL and activated T cells 

A: Gating strategy and exemplary dot plots delineating Tn (T naïve; T-bet
-/low

/Eomes
-
), Tm (memory-like, 

T-bet
low

/Eomes
+
) and CTL (cytotoxic T cells, T-bet

high
/Eomes

±
) subsets in pregated CD3

+
CD8

+
 T cells of 

RCC-TIL, Tm
+
HCC-TIL, Tm

-
HCC-TIL and activated T cells (act T cells). B: Bars represent numbers of patients 

or healthy donors that did not have (-) or had (+) the T-bet
low

/Eomes
+ 

subset in CD8
+
 T cells. Grey: patients 

with (+) and white bars: patients without (-) T-bet
low

/Eomes
+
subset. C-F: Summarizing graphs of T cell subsets 

defined by T-bet and Eomes in RCC-TIL (C), Tm
+
HCC-TIL (D), Tm

-
HCC-TIL (E) and activated T cells (F). One 

symbol represents one patient or healthy donor. Significance was determined by Friedmann test and Dunn´s 
Post-Hoc comparisons in C-D and by Wilcoxon matched pairs signed rank test in E-F (*p<0.05; **p<0.01; 
***p<0.001; ****p<0.0001). Only statistical significant differences are indicated. 
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The T-bet/Eomes CD8+ T cell subsets identified in TIL were further characterized with 

regard to expression of PD-1. In a first step, the mean fluorescence intensity of PD-1 in 

CD8+ T cell subsets was visualized by a color-gradient (blue to red) and overlaid onto the 

T-bet/Eomes dot plots (examples are shown in figure 36). 

High levels of PD-1 staining were mainly localized in the T-betlow/Eomes+ Tm-like cells and 

to some extent in the naïve T-betlow/Eomes- T cell subset. In a second step, the 

frequencies of the PD-1+ cells within the different T-bet/Eomes CD8+ T cell subsets were 

calculated.  

Considering each patient’s TIL individually, a consistent distribution of PD-1 among the 

T-betlow/Eomes+  CD8+ T cell subsets was observed. All TIL had the highest PD-1 

frequency in the T-betlow/Eomes+  Tm-like population (median RCC-TIL 80%, 

range: 55% – 95%, median Tm+HCC-TIL 90%; range: 81% - 98%), followed by lower 

frequencies of PD-1 in the T-betlow/Eomes- Tn-like subset (median RCC-TIL 59%; 

range: 34% - 80%, median Tm+HCC-TIL 70%; range: 55% – 97%). Lowest prevalence of 

PD-1 was found in the CTL T-bethigh/Eomes± CD8+ T cells. RCC-TIL showed median 

frequencies of 23% (range: 10% - 50%) and in Tm+HCC-TIL, two patients had low 

(20% and 35%) and two patients had high frequencies of PD-1 (91% and 95%) within their 

CTL population. Tm-HCC-TIL had in general less PD-1+ and the percentages of PD-1+ 

cells were similar in Tn and CTL (median Tn 28%; range: 8% – 56%; median CTL 21%; 

range: 8% – 51%). 
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Figure 36: PD-1 in T-bet/Eomes subsets of CD8

+
 RCC-TIL and HCC-TIL 

Samples were stained for flow cytometry (table 21, see p. 107) and T-bet and Eomes are presented as dot 
plots of gated CD8

+
 T cells. Mean fluorescence intensities (MFIs) of PD-1 are displayed by color gradient (blue 

to red), overlaid onto the T-bet and Eomes dot plots. Graphs summarize the percentages of gated PD-1
+
 cells 

in T-bet/Eomes CD8
+
 T cell subsets. One symbol represents one patient or healthy donor, horizontal lines 

indicate median of one subset. Significance was statistically determined by Friedmann test and Dunn´s 
Post-Hoc comparisons in A-B and by Wilcoxon matched pairs signed rank test in C (*p<0.05; **p<0.01 
***p<0.001;****p<0.0001). If not indicated differently, differences between samples were not significant. 
A: RCC-TIL. B: Tm

+
 HCC-TIL. C: Tm

-
HCC-TIL. 
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7.7.3.2 T-betlow/Eomes+ TIL express granzyme B but not perforin 

Two questions resulted from the previous findings: First, a T-bethigh/Eomes± subset was 

identified in CD8+ TIL that had overall low levels of PD-1. As T-bethigh/Eomes±  T cells are 

designated as cytotoxic T cells (11–15), it was of interest if these T cells in TIL were 

positive for perforin and granzyme B. Second, the T-betlow/Eomes+ subset, designated as 

Tm-like (11–15), showed high PD-1 expression and does therefore not necessarily fit the 

memory cell description but might correspond to the features of terminally exhausted 

T cells described in literature (42,83). Perforin and granzyme B were part of the staining 

combination (table 21) allowing co-analysis with T-bet/Eomes.  

Perforin and granzyme B expression levels were displayed by a color-gradient and 

overlaid on the T-bet/Eomes dot plots (figure 37 A) exemplary dot plots of RCC-TIL, 

Tm+HCC-TIL and Tm-HCC-TIL). This visualized that perforin as well as granzyme B 

staining intensities were highest in the CTL subset of all TIL.  

Next, the percentages of perforin+ and granzyme B+ cells within the different T-bet/Eomes 

subsets were calculated (figure 37 B-E). Frequencies of perforin were consistently low 

across all TIL samples in the Tn T-betlow/Eomes- and Tm-like T-betlow/Eomes+ CD8+ 

subset. Concerning the CTL subset, the frequencies of perforin varied from very high 

(around 80%) to very low (0%). Thus, this analysis identified some RCC-TIL and HCC-TIL 

with CTL being very low in perforin.  

In general, granzyme B had a higher prevalence as perforin in all TIL and was detected in 

all T-bet/Eomes CD8+ T cell subsets with varying frequency. Highest percentages were 

consistently observed in CTL (median RCC-TIL 89%; median Tm+HCC-TIL 70%; median 

Tm-HCC-TIL 80%) compared with the Tn and Tm-like subsets.  

To conclude, granzyme B was detected at high frequencies in the Tbetlow/Eomes+ Tm-like 

cells, although this subset was almost devoid of perforin. Together with the observation of 

high PD-1 expression in this subset, it is likely that these Tbetlow/Eomes+ T cells 

correspond to exhausted T cells as described in literature (42,44,83). 
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Figure 37: Frequencies of perforin and granzyme B in CD8

+
 T cell subsets defined by T-bet/Eomes in 

CD8
+
 RCC-TIL and HCC-TIL 

Samples were stained for flow cytometry (table 21, see p. 107). A: Exemplary dot plots show CD8
+
 T cell 

subsets defined by T-bet and Eomes presented as dot plots. Mean expression of perforin (Pfn) and 
granzyme B (GRZB) are overlaid by color gradient (blue representing lowest expression and red highest 
expression). Graphs summarize the percentages of gated Pfn

+ 
(left) and GRZB

+
 (right) cells in gated 

T bet/Eomes CD8
+
 T cell subsets of RCC-TIL (B), Tm

+
HCC-TIL (C) and Tm-HCC-TIL (D). One symbol 

represents one patient or healthy donor and horizontal lines indicate median of one subset. Significance was 
determined by Friedmann test and Dunn´s Post-Hoc comparisons in A-B and by Wilcoxon matched pairs 
signed rank test in C (*p<0.05; **p<0.01 ***p<0.001;****p<0.0001). Only significance between samples is 
indicated. Numbers indicate patient-IDs. 
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7.7.3.3 Cytotoxic state of CTL in TIL is defined by perforin expression 

In addition to analyzing the individual expression of perforin and granzyme B, the 

co-expression within CTL (T-bethigh/Eomes±) CD8+ T cell subset was assessed on single 

cell level (figure 38). Examining the dot-plots (figure 38 A), it was observed that in all TIL 

perforin+ cells without granzyme B did not exist; perforin was always co-expressed with 

granzyme B, while granzyme B was also found in cells that did not express perforin. Next, 

the frequency distribution of double negative, double positive and single granzyme B+ 

cells among gated CTL (CD8+T-bethigh/Eomes±) was calculated (figure 38 B). With regard 

to the perforin+granzyme B+ double positive cells, two groups were identified with high and 

low frequency. The frequency of perforin+granzyme B+ CTL was defined by the perforin 

expression, as illustrated by identical values obtained from gating on the 

perforin+granzyme B+ double positive or perforin+ single positive (calculated percentages 

without considering the granzyme B co-staining) CTL. Two groups of patients were also 

identified based on the perforin-granzyme B+ subset, whereby the frequencies of these 

T cells mostly inversely correlated with the frequency of the double positive 

perforin+granzyme B+ cells. Double negative cells were low (beyond 40%) in all TIL. 
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Figure 38: Co-expression of perforin and granzyme B in CTL of RCC-TIL and Tm

+
/Tm

-
HCC-TIL 

Samples were stained for flow cytometry (table 21, see p. 107).A: Gating strategy and exemplary dot plots to 
determine combinations of perforin (Pfn) and granzyme B (GRZB) in CTL of RCC-TIL, Tm

+
 and Tm

-
HCC-TIL. 

B-D: Graphs summarize calculated percentages of Pfn and GRZB in CTL of RCC-TIL (C), Tm
+
HCC-TIL (D) 

and Tm
-
HCC-TIL (E). Highlighted by a grey box are the calculated percentages of Pfn

+
 CTL without 

considering the GRZB co-staining. One symbol represents one patient, lines connect combinations from the 
same individual. Significance was statistically determined by Friedmann test and Dunn´s Post-Hoc 
comparisons (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). If not indicated differently, differences between 
samples were not significant. Numbers indicate patient-IDs. 

 

It was previously observed (figure 36, see p. 111), that CTL had low, but varied 

expression levels of PD-1. Now, a possible connection between expression of perforin or 

granzyme B and PD-1 in pregated T-bethigh/Eomes± CD8+ (CTL) was addressed. An 

overlay of the mean fluorescence intensity of PD-1 on pregated perforin and granzyme B 

dot plots of T-bethigh/Eomes± CD8+ (CTL) TIL visualized that highest PD-1 intensities were 

found in the perforin-granzyme B- subset (figure 39). Calculated percentages of PD-1+ 

were lowest in perforin+granzyme B+ cells compared with perforin-granzyme B- or perforin-
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B C 
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granzyme B+ subsets. For comparison, the total percentages of PD-1 of T-bethigh/Eomes± 

CTL without consideration of perforin and granzyme B subsets are shown in the grey box. 

These values are those shown in figure 37 (see p.113). 

 
Figure 39: Percentages of PD-1 in perforin and granzyme B combinations of CTL in RCC-TIL and 
Tm

-
/Tm

+
HCC-TIL 

Samples were stained for flow cytometry (table 21, see p. 107). A: Gating strategy and exemplary dot plots to 
determine combinations of perforin (Pfn) and granzyme B (GRZB) in pregated CTL (T-bet

high
/Eomes

±
) of 

RCC-TIL and Tm
+
/Tm

-
HCC-TIL. Mean expression of PD-1 is overlaid by color gradient: blue and green 

represent low expression whereas high expression is indicated by orange and red. B-D: Graphs summarize 
calculated percentages of PD-1 in combinations of Pfn and GRZB in CTL of RCC-TIL (B), Tm

+
HCC-TIL (C) 

and Tm
-
HCC-TIL (D). Highlighted by a grey box are percentages of total PD-1 in CTL without considering 

combinations of Pfn and GRZB. One symbol represents one patient or healthy donor, lines connect samples 
from the same individual, horizontal lines indicate median of one subset and significance was statistically 
determined by Friedmann test and Dunn´s Post-Hoc comparisons (*p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001). If not indicated differently, differences between samples were not significant. Numbers are 
patient-IDs. 
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7.7.3.4 Frequency analysis of perforin and granzyme B co-expression in 

CD8+ TIL 

The previous analysis indicated that TIL harbor CD8+ TIL that co-express perforin and 

granzyme B (perforin+granzyme B+) which might represent CTL with tumor killing capacity. 

CD8+ T cells being perforin- but granzyme B+ were also observed and might correspond to 

a senescent (84,85) subtype.  

The subset frequencies of perforin+granzyme B+ and perforin-granzyme B+ cell were 

determined for CD8+ TIL of each patient and RCC-TIL and HCC-TIL were compared 

(figure 40). 

RCC-TIL harbored more perforin-granzyme B+ as perforin+granyzyme B+ TIL, while 

HCC-TIL showed comparable frequencies of both, with no difference between 

Tm-HCC-TIL and Tm+HCC-TIL (figure 40). The comparison between RCC-TIL and 

HCC-TIL revealed similar low frequencies of perforin+granyzyme B+ CD8+ T cells in both 

TIL, but significantly higher perforin-granzyme B+ CD8+ T cells in RCC-TIL compared with 

HCC-TIL. This indicates a stronger cytotoxic capacity for HCC-TIL, consistent with 

previous finding that the frequency of perforin is higher in HCC-TIL than in RCC-TIL 

(figure 24, see p 90).  
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Figure 40: Perforin and granzyme B co-expression in CD8
+
 TIL 

Samples were stained for flow cytometry (table 21, see p. 107). A: Gating strategy and exemplary dot plots to 
determine combinations of perforin (Pfn) and granzyme B (GRZB) in pregated CD3

+
CD8

+
 T cells of RCC-TIL, 

Tm
+
HCC-TIL, Tm

-
HCC-TIL. B: Calculated percentages of Pfn

-
GRZB

+
 and Pfn

+
GRZB

+
 in CD8

+
 RCC-TIL, 

Tm
+
HCC-TIL and Tm

-
HCC-TIL. One symbol represents one patient, lines connect subsets of one individual. 

C: Pfn
-
GRZB

+
 and Pfn

+
GRZB

+
 combinations are visualized separately to address significance between 

RCC-TIL, Tm
+
HCC-TIL and Tm

-
HCC-TIL by Kruskal-Wallis test and Dunn´s Post-hoc comparisons (*p<0.05; 

**p<0.01; ***p<0.001; ****p<0.0001). Only significance between samples is indicated. Numbers are 
patient-IDs. 
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7.8 Individual profiles of CD8+ TIL based on anergic characteristics, PD-1, 

cytotoxic molecules and Ki-67 

The above described analyses included markers that relate to T cell qualities. Subgroups 

designated as anergic (FoxO1+DGK-αhigh), senescent (PD-1-perforin-granzyme B+) 

(84,85), PD-1+ non-lytic (PD-1+perforin-granzyme B- or PD-1+perforin-granzyme B+), lytic 

state (perforin+granzyme B+ with or without PD-1) or proliferating state (Ki-67+ with or 

without PD-1) were calculated as percentages of CD8+ TIL of each individual patient and 

combined to form a “profile” of T cell quality (figure 41) 

Group one (four RCC-TIL and two HCC-TIL) was dominated by high frequencies of PD-1+ 

non-lytic T cells (range: 52% – 80%). The second group (five RCC-TIL and five HCC-TIL) 

was marked by medium percentages of PD-1+ non-lytic T cells (range: 27% – 57%) and 

high frequencies of anergic T cells (range: 18% - 47%) with little lytic or proliferating 

subsets. The third group consisted of four HCC-TIL, characterized by high representation 

of PD-1+ non lytic cells (range: 38% - 54%) and low representation of anergic CD8+ cell 

subsets (range 1% - 11%) similar to group one. However, differently to group one, this 

group harbored a high fraction of lytic cells (range: 39% - 53%) and some proliferating 

subsets (range: 2% - 15%). The fourth group, consisting of one RCC-TIL and three 

HCC-TIL, was dominated by high proportions of lytic (range: 34% - 47%) and senescent 

(range: 18% - 39%) T cells subsets but had low fractions of the non-lytic PD-1+ T cell 

subset.  
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Figure 41: CD8

+
 TIL profiles based on T cell anergy, PD-1, lytic state and proliferation  

Tissue suspensions were stained and analyzed by flow cytometry. Percentages of different T cell subsets 
were calculated within CD8

+
 T cells and defined as anergic (FoxO1

+
DGK-α

high
), senescent 

(PD-1
-
perforin

-
granzyme B

+
), PD-1

+
 non-lytic (PD-1

+
perforin

-
granzyme B

-
 or PD-1

+
perforin

-
granzyme B

+
), lytic 

(perforin
+
granzyme B

+ 
with or without PD-1) or proliferating (Ki-67

+
 with or without PD-1). Composition of the 

CD8
+
 TIL of each patient is visualized by stacked bars, each subset is represented by a different color and the 

height of the bars represents percentages of one subset in gated CD8
+
 TIL. Patients with similar percentages 

of T cell subsets were grouped together. GRZB: granzyme B. Pfn: perforin 
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8 Discussion 

Immunotherapy is currently one of the highlights in cancer therapy (86) and tumor control 

can be achieved even in patients with metastatic progression who have failed other 

available therapeutic options (87). The currently most successful immunotherapy is 

directed against immune checkpoints like CTLA-4 or PD-1, which are co-inhibitory 

receptors expressed on the cell surface of T cells. In the tumor microenvironment, ligands 

of CTLA-4 or PD-1 are increased (50). They impair anti-tumor T cell function and blocking 

the interaction between immune checkpoints and their ligands leads to re-invigoration of 

T cells which were made unresponsive in the tumor microenvironment (32). Despite the 

success of checkpoint blockade, it remains unclear why only a subgroup of patients 

responds to this immunotherapy, demonstrating that other mechanisms beyond CTLA-4 

or PD-1 checkpoints must exist.  

This thesis aimed to further investigate modifications of TIL in the tumor 

microenvironment, focusing on TIL of clear cell renal cell carcinoma (ccRCC, RCC-TIL) 

and TIL of non-viral HCC (HCC-TIL). RCC and HCC form in the context of very different 

immunologic background: An inflammatory background of RCC development is not 

indicated though RCC is considered to be an immune responsive tumor as some patients 

responded to high-dose IL-2 or IFN-α (1–3) and TIL isolated from RCC tissues showed 

anti-tumor activity after cultivation in-vitro (4–6). On the contrary, HCC emerges most 

exclusively on an inflammatory background such as chronic viral infection, steatosis, non-

alcoholic steato-hepatitis (NASH) or inflammatory conditions of alcoholic liver disease 

which develop in the context of an immune-tolerant milieu of the liver required to prevent 

overt reactivity to toxic agents and gut-delivered pathogens (63). These conditions ease 

tumor development and simultaneously hamper anti-tumor activity of HCC-TIL (7,60,61). 

Based on these different immunologic backgrounds of RCC-TIL and HCC-TIL, it was of 

interest to derive comparative data for TIL from these tumor entities. The knowledge of 

mechanisms of tumor immune escape is required to understand therapy responses and to 

rationalize strategies to improve outcome of immunotherapy.  

8.1 Hypo-responsiveness of CD8+ RCC-TIL and HCC-TIL 

It was observed on a global perspective that the infiltrate in HCC and RCC was dominated 

by T cells. Interestingly, in HCC and less prominent in RCC, there were some patients 

with low frequencies of T cells correlating with high percentages of 

monocytes/macrophages. An accumulation of tumor-associated macrophages (TAMs) 
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has been associated with poor prognosis (88) and M2 polarized macrophages were 

described to sustain tumor progression (89). Depletion of TAMs in a mouse model led to 

increased cytotoxic T cell response of TIL (89). It would be of interest or future analysis to 

define the characteristics of the monocytes/macrophages in HCC and RCC such as their 

polarization and their impact on the infiltrated T cells. Among the infiltrating immune cells, 

CD8+ TIL are of special interest because they can be highly specific against their antigen 

and can trigger apoptosis in targeted tumor cells by releasing cytotoxic proteins like 

perforin and granzyme B (10). Both RCC-TIL and HCC-TIL harbored CD8+ TIL and the 

ratio to CD4+ TIL was balanced except for one RCC-TIL (RCC-TIL 123) and four HCC-TIL 

(HCC-TIL 13, HCC-TIL 17, HCC-TIL 19, HCC-TIL 21) which had a higher CD4:CD8 ratio. 

A potential association with prognosis cannot be deduced from this analysis since no 

follow-up reports are available for the analyzed patient cohorts.  

The presence of CD8+ in the absence of tumor growth control indicates functional 

impairment of the CD8+ TIL. Indeed, functional unresponsiveness of CD8+ RCC-TIL to 

anti-CD3 stimulation with suppressed IFN-γ production and lytic granule exocytosis has 

been reported for CD8+ TIL in numerous studies including HCC-TIL (90,91) and RCC-TIL 

(4,40,69). However, the underlying mechanisms that lead to functional unresponsiveness 

of CD8+ TIL have been neither fully understood in RCC-TIL nor in HCC-TIL. In this thesis, 

dysfunction in degranulation and IFN-γ production was shown for CD8+ RCC-TIL and 

HCC-TIL which responded equally poor to anti-CD3 stimulation. Providing additional co-

stimulation through CD28 did not improve the situation. Stimulation with PMA/I increased 

the percentages of T cells with function in RCC-TIL and HCC-TIL, but the values 

remained lower compared with activated T cells, indicating that RCC-TIL and HCC-TIL 

were in a non-responsive state that cannot be completely overcome by PMA/I stimulation 

(see discussion below). The responsive profile of CD8+ RCC-TIL and HCC-TIL upon anti-

CD3 stimulation was dominated by degranulating T cells followed by T cells that secreted 

IFN-γ and very few poly-functional (CD107a+IFN-γ+) T cells. Anti-CD3/CD28 stimulation 

did not change the profile while PMA/I stimulation did not only lead to more responsive 

T cells but also changed the profile with an increased stimulation of IFN-γ secretion, 

resulting in more poly-functional T cells in both TIL. PMA is a direct activator of PKC (70), 

leading to increased levels of active NFκB and subsequent cytokine (IFN-γ) production 

(10). Ionomycin (Iono) is a DAG analogon (70). They activate Ca2+ influx, NFAT 

associated transcription and the ERK-pathway leading to degranulation (10). The targets 

of PMA/I are downstream of the proximal TCR signaling and therefore PMA/I should 

overcome deficits in the proximal signaling cascade, e.g. impaired signal transduction of 

Lck or PLC-γ (92). A blockade in the signaling cascade downstream of PMA/I activation is 
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evident in CD8+ RCC-TIL and HCC-TIL because they responded to PMA/I treatment with 

increased CD8+ T cells with function but their frequencies were beyond those of activated 

T cells. These obstructions might relate to deficits in the PI3K signaling, as previous 

findings have reported impaired degranulation upon stimulation with PMA/I in PI3Kδ 

knockout CD8+ T cells (91). Impaired function of PI3K in TIL might be caused by PD-1 

signaling (34) or low levels of DAG which might occur in a situation of DGK-α 

overexpression as described in RCC-TIL (40) and also found in some RCC-TIL and HCC-

TIL in this study. Since TIL showed evidence that they cannot fully respond with 

degranulation and IFN-γ production to PMA/I stimulation, defects in the downstream 

signaling pathways were expected. Downstream targets and pathways, schematically 

delineating in figure 42, include the PKCθ and the AKT-pathway, both leading to NFkB, 

and communication to the mTOR- and ERK-pathways. 

 
Figure 42: TCR signaling, its cross-talk to AKT and mTOR pathways and impacts of PMA/I 

CD28: co-stimulatory receptor. IL-2R: receptor of IL-2. PD-1: co-inhibitory receptor. TCR: T cell receptor. LCK, 
Fyn: kinases of the Src family. ITAMs: immunoreceptor tyrosine-based activation motif. ZAP70: tyrosinase-
protein kinase ZAP70. LAT: linker of activated T cells. PIP2: phosphatidyl-inositol-4,5-bisphosphat. 
IP3: inositol-1,4,5-trisphosphat. PLC-γ: phosphor lipase C- γ. DAG: diacylglycerol. DGK-α: 
diacylglycerolkinase-α. PA: phosphatidic acid. NFAT: nuclear factor of activated T cells. ERK: extracellular 
signal-related kinase. AP-1: activating protein 1. JNK: c-Jun N-terminale kinase. PI3K: phosphoinositide-3-
kinase, PIP3:phosphatidyl-inositol-3,4,5-trisphosphat. PTEN: phosphatase and Tensin homolog. PDK-1: 
phosphoinositide dependent kinase-1. AKT: protein kinase B. mTORC1/C2: mammalian target of rapamycin 
complex 1/2. FoxO1: forkhead box protein 1. p27

kip1
: CDK inhibitor. CDK2: cylin dependent kinase 2. NFκB: 

nuclear factor “kappa light chain” of activated B cells. p70S6K: p70 ribosomal protein kinase S6. rpS6: 
ribosomal protein S6. IκB: inhibitor of NFκB.  PMA: phorbol-12-myristate-13-acetate. Iono: ionomycin 

Indeed, it was observed that the AKT-pathway was poorly in T cells of TIL demonstrated 

by low percentages of pAKT(S473), whereby RCC-TIL seemed most strongly suppressed 

while some CD3+ HCC-TIL (HCC-TIL 4, HCC-TIL 12, HCC-TIL 13, HCC-TIL 16, 

HCC-TIL 17) showed evidence that the AKT-pathway was activated to some extent. TIL 
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with AKT phosphorylation might be regarded as T cells with functional PI3K signaling, 

allowing stronger response to PMA/I stimulation. Actually, two HCC-TIL (HCC-TIL 4, 

HCC-TIL 17) with higher percentages of pAKT(S473) had also higher frequencies of 

T cells with function upon PMA/I stimulation. Unfortunately, this study is restricted 

because simulation assays were only performed for few TIL and these studies have to be 

extended to include more TIL, providing further evidence for a possible association 

between functional T cell response and the AKT-pathway.  

Markers that allow prediction of functional responsiveness of T cells would be attractive 

tools as they would allow to judge the quality of TIL and the immune state of patients 

without the need of functional assays. Proliferating TIL have been associated with good 

prognosis (72), and here it was observed that T cells responding to anti-CD3 stimulation 

were enriched among Ki-67+ CD8+ T cells in RCC-TIL and in some HCC-TIL. Moreover, it 

has been proposed that CD28 expression on T cells might predict the response to 

checkpoint therapy (93). Human T cells lose the ability to receive co-stimulation during 

differentiation to effector T cells (76,77) and concurrently cannot receive co-stimulation for 

prolonged effector activity. Thus, it is conceivable that T cells in TIL that maintained CD28 

expression might be of better quality. However, in this thesis no enrichment of T cells with 

function in the CD28+ versus the CD28- CD8+ T cell population was observed. This might 

be due to low sample numbers. Next to markers that might be positively associated with 

T cell quality, there are also markers such as PD-1 which are related to impaired T cell 

function (73–75). Although there was a slight reduction of T cells with function among the 

PD-1+CD8+ population in TIL, the difference to PD-1-CD8+ subset was not significant. The 

reason for the lack of association can be due to the fact, that PD-1 is not exclusively 

expressed on T cells with impaired function (73–75), but is also expressed on activated 

T cells (81). The combination of PD-1 and other co-inhibitory receptors is required to 

identify the true dysfunctional T cells (42) of which only few were detected in CD8+ 

RCC-TIL and HCC-TIL.  

Based on the observation that Ki-67 and the AKT-pathway allow some prediction of T cell 

quality, the cell cycle was further considered being closely connected to Ki-67 and AKT 

(24–27), as shown in figure 42 (see p. 123). A connection between the AKT-pathway and 

the cell cycle was evident in TIL since pAKT(S473); in the case when pAKT(S2473) was 

detected, it was not found in combination with cell cycle inhibitor p27kip1 in RCC-TIL and 

HCC-TIL. Thus, an active AKT-pathway might sustain cell cycle progression in TIL, 

according to previous literature findings (24–27). Cyclin E is connected to cell cycle entry 

(26,27), but in most RCC-TIL and HCC-TIL a relation between pAKT(S473) and cyclin E 

was not found, as positivity of pAKT(S473) was detected in combination with both cyclin 
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Elow or cyclin Ehigh. These data could indicate that activation of the AKT-pathway is not 

sufficient to always lead to cell cycle progression. However, it needs to be taken into 

account that analysis of this thesis represents “snap-shots” catching TIL in a certain state 

and can, therefore, not address the dynamics and kinetics of the signaling cascades. 

Thus, observed high levels of cyclin E could indeed have been induced by pAKT(S473), 

but the phosphorylation of AKT might already have been degraded. Additionally, T cell 

subsets with nuclear pAKT(S473)+cyclin Ehigh cannot be detected by the experimental 

setting using “Perm buffer III” (BD) which is required to preserve the phosphorylation state 

but does not permeabilize the nucleus. However, activated AKT is known to translocate 

into the nucleus to phosphorylate its nuclear targets 20 min – 30 min after its activation 

(94) which is followed by subsequent ubiquitin-mediated degradation of pAKT (95).  

Considering that perforin and granzyme B are central mediators of tumor cell killing, these 

cytotoxic molecules also need to be considered when describing T cell quality. The 

paucity of perforin as described for CD8+ RCC-TIL (40,96) and HCC-TIL (97) and also 

found in this thesis, can be considered as a nearly universal hallmark of CD8+ TIL. The 

mechanism which regulate perforin expression are not fully elucidated, but a connection of 

the mTOR-pathway to perforin expression has been described (30). In contrast to the the 

predominance of perforin negativity in CD8+ TIL, more than 80% of TIL were 

pmTOR(S2448), except for five HCC-TIL and five RCC-TIL, which had lower percentages. 

However, rpS6, the downstream target of mTOR (29), was much less phosphorylated as 

mTOR in RCC-TIL and HCC-TIL, hinting to an interrupted mTOR-pathway. The analysis 

between pmTOR(S2448), prpS6(S244) and perforin revealed that T cells positive for 

perforin were also positive for pmTOR(S2448) as well as for prpS6(S244), indicating that 

perforin regulation might require that mTOR is connected to the downstream activation of 

rpS6, which has until now not been described. Considering the combined expression of 

pmTOR(S2448) and prpS6(S244), two groups of TIL with either high or low frequencies of 

pmTOR(S2448)+prpS6(S244)+ were identified. Five HCC-TIL (HCC-TIL 4, HCC-TIL 12, 

HCC-TIL 13, HCC-TIL 16, HCC-TIL 17) having high percentages of 

pmTOR(S2448)+prpS6(S244)+ cells with four of these five TIL (HCC-TIL 4, HCC-TIL 12, 

HCC-TIL 13, HCC-TIL 17) having high frequencies of perforin compared with the rest of 

the HCC cohort. Interestingly, those HCC-TIL (HCC-TIL 4, HCC-TIL 12, HCC-TIL 13, 

HCC-TIL 17) were identified to harbor elevated frequencies of pAKT(S473) and cyclin E 

(see discussion above), too. None of the analyzed RCC-TIL showed evidence of active 

AKT and high levels of cyclin E an perforin+ T cells were nearly absent in RCC-TIL, 

suggesting deeper suppression of the intracellular signaling in RCC compared with HCC.  
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8.2 Different types of unresponsiveness in CD8+ RCC-TIL and HCC-TIL  

The lack of perforin and also functional unresponsiveness are hallmarks of TIL. While 

unresponsiveness is commonly observed, the underlying mechanisms could be different 

and manifold. Various types of unresponsiveness have been described, including 

quiescence, anergy, exhaustion, tolerance or senescence. Quiescent T cells might not 

have been activated or been excluded from antigen and are at the quiescent G0 phase of 

the cell cycle. Cell cycle analysis of TIL revealed that RCC-TIL and HCC-TIL were mainly 

in G0, G2 or M phase of the cell cycle. Only four HCC-TIL (HCC-TIL 4, HCC-TIL 12, 

HCC-TIL 13, HCC-TIL 17) had higher percentages of T cells being in the S phase of the 

cell cycle. Interestingly, a connection between positivity of pERK(T202/Y204) and cell 

cycle progression was found as T cells with pERK(T202/Y204)+ were enriched for T cells 

in early S/late G1, S or late S phase compared with pERK(T202/Y204)- subsets. This 

demonstrated, that proliferating TIL associated with good prognosis (72) also might be 

capable to degranulate due to the positivity of pERK(T202/Y204). Considering that 

phosphorylation of ERK is related to the capacity of T cells to degranulate (10), it is 

interesting that the cell cycle state might also control T cell function. Irreversible cell cycle 

arrest has also been associated with the hypo-responsive phenotype of senescence (98). 

Although senescence has been originally found with aging, it can also develop in the 

context of persisting antigen stimulation as present in the tumor (99) or in chronic viral 

infections (85). The extensive turnover leading to irreversible cell cycle state in senescent 

T cells is in line with the loss of cytotoxic molecules, and the development of perforin-

granyzme B+ T cells have been associated with a senescent phenotype in HIV-specific 

CD8+ T cells (84,85). Perforin-granzyme B+ T cells were detected in CD8+ TIL, in particular 

in RCC-TIL and less in HCC-TIL, indicating a different microenvironment of RCC and 

HCC that drives TIL into different developmental stages. Senescent T cells were also 

associated with positivity of PD-1 as PD-1 expression was increased in early stage 

chronic lymphatic leukaemia (CLL) patients who had also high levels of senescent T cells 

(100). However, PD-1 expression has not been identified as surface marker on senescent 

T cells, which could be achieved by flow cytometry, characterizing senescent T cells as 

CD57+CD28-CD27-KLRG-1+ (99,100) and examining co-expression of PD-1. This would 

further help to distinguish if PD-1+perforin-granzyme B+ are senescent T cells. 

Another type of unresponsiveness has been described as T cell anergy, defined by 

incomplete T cell activation without co-stimulation. The initial description of T cell anergy 

addressed the function unresponsive state of CD4+ T cells (35). It was found our recently, 

that CD8+ RCC-TIL (40) also showed hallmarks of anergic T cells such as upregulated 

DGK-α, subsequent degradation of DAG and reduced levels of phosphorylated AKT and 
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ERK (18,35). In both RCC-TIL and HCC-TIL, a group of TIL was identified, showing signs 

of an anergic T cell state by increased expression of DGK-α compared with corresponding 

NIL. DGK-α strictly correlated with FoxO1 in CD8+ RCC-TIL and HCC-TIL. FoxO1 has 

been suggested as a transcription factor for DGK-α (18). The results of the TIL analysis 

further support this finding and indicate FoxO1 activity as one mechanism causing DGK-α 

expression.  

FoxO1 is also considered to be the transcription factor for PD-1. In this thesis, however, 

PD-1 positivity was not exclusively related to FoxO1+ cells, and PD-1 was also found in 

FoxO1- T cell populations. A possible explanation is, that different stages of PD-1 

expression are regulated by different transcription factors; FoxO1 is thought to drive 

sustained PD-1 expression (21) whereas initial or temporary PD-1 expression upon T cell 

activation is induced by NFAT (81). Thus PD-1+ T cells in FoxO1- subsets might not be 

those with sustained PD-1 expression and considered to represent the exhausted T cell 

subset but might rather correspond to activated T cells. The different PD-1 states are not 

distinguishable in this thesis as NFAT was not analyzed and further experiments are 

necessary to elucidate the relation of NFAT and PD-1+ T cells in FoxO1- subsets and to 

discriminate potentially exhausted from activated T cells. It is interesting to note, that the 

expression and transcriptional activity of FoxO1 is regulated by AKT-pathway, whereby 

activation of AKT leads to suppression of FoxO1 activity (21). Thus, the lack of AKT 

activation as observed in RCC-TIL and HCC-TIL may be the underlying cause for FoxO1 

activity that drives DGK-α expression, the development and manifestation of anergy and 

possibly also exhaustion in TIL.  

Exhaustion indicates a T cells state which is functionally poor. PD-1 expression is often 

used as surrogate for exhaustion (41,42). It is now increasingly appreciated that PD-1 is 

an imprecise marker to describe exhausted T cells because PD-1 is also expressed upon 

T cell activation (81). A better description of exhausted T cells can therefore be achieved 

by co-expression of multiple co-inhibitory receptors. In this thesis, co-expression of PD-1 

and LAG-3 was addressed. However, very few T cells co-expressing both markers were 

found. The low percentages of TIL being PD-1+LAG-3+ might suggest that TIL are not 

exhausted. These findings need to be treated cautiously as only one additional co-

inhibitory receptor (LAG-3) was evaluated and other co-inhibitory inhibitory receptors like 

TIM-3 and CTLA-4 were not analyzed. Interestingly, positivity of Ki-67 was mainly found in 

PD-1+LAG-3+ subsets in both RCC-TIL and HCC-TIL. As Ki-67 indicates a proliferative 

state, the PD-1+LAG-3+ T cells were exhausted but still maintained proliferation and might 

possess the potential to become re-invigorated after checkpoint blockade, as has been 

suggested (41,42). In previous studies, T cell exhaustion has not only been addressed by 
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co-inhibitory receptor expression, but also by transcription factors T-bet, Eomes, and 

PD-1. T cells being T-betlow/Eomes+ were identified in all RCC-TIL, but HCC-TIL were 

divided into two groups: One group had (Tm+HCC-TIL) and the second group did not have 

(Tm-HCC-TIL) T-betlow/Eomes+ T cells. Further analysis revealed that the T-betlow/Eomes+ 

(Tm-like) T cell subset had the highest expression levels of PD-1 compared with the 

T-bethigh/Eomes-/+ (CTL) and T-bet-/low/Eomes- (naïve) subsets, which is in line with findings 

that T-bet inversely and Eomes directly correlated with PD-1 expression (101). The 

T-betlow/Eomes+/PD-1+ subset could resemble the T-bethigh/Eomeslow/PD-1low subset of 

exhausted CD8+ T cells described in literature as more responsive to anti-PD-L1 

reinvigoration (42,82). This subset was absent in the larger subgroup of Tm-HCC-TIL, and 

present in all RCC-TIL and Tm+HCC-TIL. PD-1+ T cells were also enriched in the Tn-like 

T-betlow/Eomes- subsets of RCC-TIL and Tm+HCC-TIL, suggesting that this population 

does not relate to naïve T cells, but to T cells that are antigen-experienced.  

Interestingly, PD-1 expression levels in Tm-HCC-TIL were found infrequently and equally 

distributed over the T-betlow/Eomes- (naïve) and T-bethigh/Eomes-/+ (CTL) subsets. TIL of 

these patients might not have experienced antigen and might therefore not have been 

activated. Further research is necessary to reveal why CD8+ T cells had no antigen 

contact in these tumors. Mechanisms could be that i) the CD8+ TIL lack cognate TCRs for 

presented antigens, ii) antigen presentation could be disturbed and iii) tolerogenic 

mechanisms of the liver and immune suppressive cell types like regulatory T cells (90,91) 

or MDSCs (myeloid-derived suppressor cells) (91) could prevent activation. Indeed, some 

Tm-HCC-TIL (HCC-TIL 19, HCC-TIL 20, HCC-TIL 22, HCC-TIL 23, HCC-TIL 24) had low 

percentages of T cells but high percentages of monocytes/macrophages.  

Perforin+ T cells were mainly found among the T-bethigh/Eomes-/+ (CTL) subset in all 

RCC-TIL and HCC-TIL, independently if HCC-TIL were Tm- or Tm+. In RCC-TIL, two 

groups with high and low percentages of perforin+granzyme B+ in CTL were identified. 

RCC-TIL with a high percentage of perforin+granzyme B+ in CTL were also those TIL that 

had high pmTOR(S2448)+prpS6(S244)+, emphasizing the connection between an active 

mTOR-pathway and perforin. Tm+HCC-TIL also differed in perforin+granzyme B+ cells, but 

a connection to increased percentages of pmTOR(S2448)+prpS6(S244)+ was not evident 

as perforin+granzyme B+ cells were also high in TIL with low percentages of 

pmTOR(S2448)+prpS6(S244)+ cells. However, Tm+HCC-TIL with pmTOR(S2448)+ 

prpS6(S244)+ but low perforin+granzyme B+ CTL had high levels of PD-1. These cells 

might have lost perforin due to extensive activation and degranulation. On the other hand, 

Tm+HCC-TIL having high percentages of perforin+granzyme B+ CTL had low PD-1. They 

might not have been activated and thereby still harbor perforin and granzyme B. 
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8.3 “Best-fit” treatments based on CD8+ TIL profiles 

Based on the observed types of hypo-responsiveness, proliferation and lytic state (defined 

by perforin and granzyme B), a profile was assembled for each TIL. TIL of each individual 

patient showed a unique composition. Some TIL were dominated by non-lytic T cells, 

other TIL displayed a combination of non-lytic and anergic T cells, whereas others showed 

a combination of non-lytic and lytic T cells or had fewer non-lytic but mostly lytic and 

senescent T cells. Interestingly, there was only one profile (non-lytic/lytic) that was only 

represented by HCC-TIL; all other profiles were seen in RCC-TIL as well as in HCC-TIL. 

Should it turn out that a particular TIL profile correlates with a particular treatment 

response, the patient selection for the therapy will no longer be based on the tumor entity  

Based on immune characteristics predominating in the TIL, “best-fit” treatments may 

rationally be selected, as some treatment options are currently available for some T cell 

states whereas for other types of unresponsiveness further research is necessary. 

Checkpoint inhibitors are in clinical use and response rates are around 25% for different 

tumor entities (52,64). Based on the TIL profile one might predict that those patients are 

likely to respond to checkpoint inhibitors who have PD-1+ TIL with a lytic component. If TIL 

lack the lytic component, additional activation of TIL to induce perforin might be indicated. 

IL-2 is a potent inducer of perforin (102), but systemic toxicities currently limit its broader 

clinical application. If TIL contain a strong myeloid component (as observed for HCC-TIL 

22 and HCC-TIL 23), PD-1 blockade might fail due to continued T cell inhibition by 

myeloid cells. A possible improvement might be achieved by combined therapy targeting 

the myeloid compartment.  

A profile that contains T cells with anergic features (FoxO1+DGK-αhigh) might require re-

invigoration by inhibition of DGK-α. DGK-α inhibition has been demonstrated to improve 

T cell function in in-vitro assays (40), however, drugs inhibiting DGK-α for clinical use are 

currently not available.  

An interesting profile is mostly found in HCC-TIL, and is composed of T cells with lytic 

state, however, very low positivity of PD-1 and indication of senescence. Here it appears 

that T cells activation was impaired as T cells might be excluded from direct tumor contact 

or tumor cells may not present antigens. Further information is required, e.g. histological 

examination could help to define the position of the T cells in the tumor tissue. If an 

excluded state is observed, measures should be directed to enhance recruitment. Clinical 

success has been observed in combination therapies of checkpoint blockers and 

Bevazizumab in RCC-TIL (103), demonstrating enhanced infiltration. Successful targeting 

of senescence in leukocytes has not yet been reported, but some promising results with 
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senolytic drugs were obtained such as quercetin in senescent human endothelial cells 

(104). 



 Abbreviations 
 

_ 

131 

9 Abbreviations 

AKT protein kinase B 

AP-1  activating protein 1 

APC antigen presenting cell; allophycocyanin (fluorochrome) 

APC-e Fluor 780 allophycocyanin e-Fluor 780 

BCLC staging Barcelona clinic liver cancer staging 

BCR B cell receptor 

BV421 brilliant violet 421 

ccRCC clear cell renal cell carcinoma 

CDK cyclin dependent kinase 

CLL chronic lymphatic leukaemia 

CTL cytotoxic lymphocytes 

CTLA-4 cytotoxic T cell associated protein 4 

DAG diacylglycerol 

DC dendritic cell 

DGK-α diacylglycerol kinase α 

EDTA ethylenediaminetetraacetic acid 

Eomes Eomesodermin 

ERK extracellular signal-related kinase 

FACS fluorescence activated cell corting 

FBS fetal bovine serum 

FDA Food and Drug Administration 

FI fluorescence intensity 

FITC fluorescein isothiocyanate 
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FMO fluorescent minus one 

FoxO1 forkhead box protein 1 

GIT gastro intestinal tract 

GPC-3 glypican-3 

HBSS Hanks balanced salt solution 

HBV hepatitis B virus 

HCC hepatocellular carcinoma 

HCV hepatitis C virus 

HIV human immunodeficiency virus 

HS human serum 

HTCR human Tissue and Cell Research (HTCR) Foundation 

ID identification 

IFN-α interferon α, interferon β 

IFN-β interferon β 

IP3 inositol-1,4,5-trisphosphate 

ITAMs immunoreceptor tyrosine based motifs 

IκB inhibitor of NFκB 

JNK c-Jun-N-terminale kinase 

KIR killer cell immunoglobulin like receptors 

KLR killer cell lectin-like receptors 

LAG-3 lymphocyte activation gene - 3 

LAT linker of activated T cells 

LSECs liver sinusoidal endothelial cells 

MAP kinase mitogen-activated protein kinase  

MDSC myeloid derived suppressor cells 
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MFI mean fluorescent intensity 

MHC, pMHC major histocompatibility complex, protein major histocompatibility complex 

mTOR C1/C2 mammalian target of rapamycin complex 1/complex 2 

NASH non-alcoholic steatohepatitis 

NFAT nuclear factor of activated T cells 

NFκB nuclear factor of κ light chain of activated B cells 

NIL infiltrating leukocytes from non-tumor harboring tissues 

NK cells natural killer cells 

nv-HCC non-viral hepatocellular carcinoma 

p70S6 ribosomal protein kinase S6 

PA phosphatidic acid 

PAMP pathogen-associated molecular pattern 

PB pacific blue  

PBMC peripheral blood mononuclear cells 

PBS phosphate buffered saline 

PCA principal component analysis 

PD-1 programmed cell death protein - 1 

PDK-1 phosphoinositide-dependent kinase 1 

PE phycoerythrin 

PE-Cy7 phycoerythrin–cyanin 7 

PerCP-Cy5.5 peridinin-chlorophyll-cyanine 5.5 

PI3K phosphoinositide-3-kinase 

PIP2 phophatidyl-inositol-4,5-bisphophate 

PIP3 phosphatidyl-inositol-3,4,5-trisphopate 

PKC-θ protein kinase c-θ 
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PLC-γ phospholipase C- γ 

PMA/I phorbol-12-myristate-13-acetate/ Ionomycin 

PMT photomultiplier 

PRR pathogen recognizing receptor 

PTEN phosphatase and tensin homolog 

pTNM staging pathological tumor node metastasis staging 

RCC renal cell carcinoma 

RFA radiofrequency ablation 

RPMI Roswell Park Memorial Institute 

rpS6 ribosomal protein S6 

SEM standard error of the mean 

SH2 Src homology 2 

TAA tumor associated antigen 

TACE transarterial chemoembolization 

TAMs tumor-associated macrophages 

T-bet T box transcription factor 

TCL Tumor circulating lymphocytes 

TCR T cell receptor 

TIL tumor-infiltrating leukocytes 

TIM-3 T cell immunoglobulin and mucin domain containing3 

TLR toll-like receptor 

Tm memory-like T cells 

Tn naïve T cells 

TNF- α tumor necrosis factor α 

Treg regulatory T cell 



 Abbreviations 
 

_ 

135 

UICC Union International Contre le Cancer 

V450 violet 450 

V500 violet 500 
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