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1. Abbreviations

G PR gestational diabetes mellitus
[ oY AN K U UPPRRPPRN hemoglobin Alc
(o L C 1 I SRR oral glucose tolerance test
PPSDiab.....ccccovvuveeeiiiieeeiieenn Prediction, Prevention and Subclassification of type 2 Diabetes
L1072 5 LU type 2 diabetes mellitus



2. Introduction

2.1. Epidemiology of type 2 diabetes mellitus (T2D)

2.1.1. Prevalence of T2D

Worldwide, over 400 million people at the age of 20-79 years are estimated to live with
diabetes mellitus [1, 2]. In industrialized countries, the proportion of patients with type 2
diabetes mellitus (T2D) is about 90% of all cases of diabetes [2]. T2D therefore causes both a
great economic and, for the individuals affected, also a personal burden. Globally, the total
health care expenditure in 2015 due to diabetes in 20-79 year-old patients has been estimated
to be US $673 billion and is expected to rise to more than US $800 billion in 2040 [2]. The
personal consequences for patients are a limitation in quality of life, disability [3-5], and
increased mortality rates [2]. These burdens will increase further with the continuously rising
prevalence. In 2040, the global prevalence of diabetes is expected to exceed 10% (642 million
people) [2]. To reverse this trend, prevention must be improved and progression of the

disease minimized.

2.1.2. Undiagnosed prediabetes and T2D

The worldwide proportion of adults with unknown diabetes is estimated to be 46.5% (192.8
million people) of all cases of diabetes [2]. Even in industrialized countries, screening studies
show that the rate of unknown diabetes among the general population is high [6, 7]. For
Europe, the amount of undiagnosed diabetes in adults was found to still be 39.3% (23.5 million
people) [2]. Almost all cases of unknown diabetes are T2D, because the clinical presentation

of other forms of diabetes is much clearer.

Oral glucose tolerance testing (0GTT) is the gold standard method to test for prediabetes and
T2D. However, it is time consuming and expensive. Therefore, routine screening for T2D is
usually conducted with fasting glucose and hemoglobin Alc (HbAlc) only [8]. This strategy
misses subjects with the prediabetic stage of impaired glucose tolerance and also early forms
of T2D [9, 10]. Diagnostics of prediabetes and early T2D are thus still suboptimal. Similarly,
risk prediction for T2D is incomplete and rather simple-minded. Current risk scores in principle
detect the metabolic syndrome, ask for a family history of diabetes, and older age [8, 11].
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Consequently, the scores miss individuals without these characteristics, in particular young

and lean patients, which certainly exist in rather large numbers.

2.1.3. Consequences of insufficient diagnostic tools

With the current screening methods, many individuals with prediabetes and early T2D are
missed. This is problematic, because disease duration is a critical point for the success of
lifestyle interventions: the longer glucose metabolism has been deranged, the lesser patients
benefit from intervention programs [12]. Thus, healthy subjects at high risk for T2D and
subjects in a prediabetic stage should be the key target groups for prevention programs. To
identify more subjects at high risk, a reliable prediction of T2D through cost-effective

biomarkers is needed.

2.2. Heterogeneity of T2D

Another problem, besides the lack of sufficient prediction and early detection, is that, after
diagnosis, T2D therapy follows a “one size fits all” approach [8, 11]. This leads to
heterogeneous responses to therapy, which is not surprising given the diversity of the

patients’ phenotypes [13-15].

The general preconception of T2D as a disease of older age and obesity/the metabolic
syndrome also has to be revisited. The metabolic syndrome is a cluster of changes that
unquestionably put affected individuals at high risk for cardiovascular diseases and T2D [16].
Despite small differences [17-21], all definitions of the metabolic syndrome include the same
clinical conditions: hyperglycemia, central obesity, hypertension, and dyslipidemia. However,
the proportion of T2D cases that do not have the classical phenotype is noteworthy. For
example, almost one third of incident T2D cases in the United Kingdom Prospective Diabetes

Study cohort was lean with a BMI of less than 25kg/m? [22, 23].

Particularly this high proportion of lean T2D patients substantiates the need for research on
T2D pathophysiology apart from the contribution of obesity. This could enable a better
prediction of T2D risk in lean subjects, facilitate the development of novel, cost-effective
biomarkers, and could lead to more tailored intervention programs. Thereby, the onset of T2D

could be delayed or even prevented. Understanding pathophysiological differences between


http://flexikon.doccheck.com/de/United_Kingdom_Prospective_Diabetes_Study
http://flexikon.doccheck.com/de/United_Kingdom_Prospective_Diabetes_Study

different groups of patients would also permit individualized therapy guidelines. Finally,
further research on specific subgroups of T2D might also lead to the discovery of alternative

drug targets.



3. The PPSDiab study

Previous studies on T2D mostly included older subjects with incident or even long-standing
diabetes [24-27]. This complicates research, as the subjects often have co-morbidities and
medication affecting metabolism. An optimal study design should therefore be prospective,

including young and healthy subjects with the development of T2D as primary endpoint.

Based on these criteria, the Prediction, Prevention and Subclassification of type 2 Diabetes
(PPSDiab) study was designed. To pre-select for individuals at high risk for T2D, women after
a pregnancy complicated by gestational diabetes mellitus (GDM) were recruited preferentially
[28]. GDM serves as a risk-marker for T2D because pregnancy is a stress test for glucose
metabolism [29]. Nevertheless, GDM is a transient condition, meaning that after delivery
affected women usually return to normoglycemia [29, 30]. This allows for the inclusion of
healthy subjects who are at high risk for T2D. Additionally, the inclusion of women after a

recent pregnancy naturally results in a cohort of young adults.

The baseline visit of the PPSDiab study was conducted with 304 women 3-16 months after the
index pregnancy. Women after a pregnancy complicated by GDM were included as cases and
women after a normoglycemic pregnancy served as controls in a ratio of 2:1. The study has
yearly follow ups, which include an oGTT, medical and family history, anthropometric
measurements, and optionally additional tests, e.g. cardiopulmonary exercise testing (Figure

1).
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Figure 1: PPSDiab study design.

GDM: gestational diabetes mellitus, ivGTT: intravenous glucose tolerance test, MRI: magnetic

resonance imaging, oGTT: oral glucose tolerance test, T2D: type 2 diabetes mellitus

All analyses for this thesis were done with data from the baseline visit of the PPSDiab study.
Detailed information about the baseline characteristics of the PPSDiab study cohort is given

in a publication by Rottenkolber et al. [31].



4. Specific aims of this thesis

4.1. Physical fitness, leptin, and T2D risk

Physical activity and fitness are known determinants of T2D risk and other cardiovascular
diseases [32-34]. One possible reason for the reduction of T2D risk with increased physical
activity could simply be an increased energy expenditure, counterbalancing excessive energy
supply and preventing obesity. Furthermore, exercise increases the quantity of the glucose
transporter GLUT-4 on the plasma membrane of contracting muscle cells, leading to an
enhanced glucose uptake into the muscle [35, 36]. This positive effect of exercise continues
even after cessation of activity: A meta-analysis by Way et al. confirmed improved insulin
sensitivity following the last of at least 3 bouts of exercise [37]. Exercise also alters inter-organ
communication via myokines (i.e. cytokines produced by skeletal muscle), which can also

affect glucose metabolism in a positive manner [38].

Physical fitness covers cardiorespiratory and muscular endurance, muscular strength, body
composition, and flexibility [39]. In T2D research, cardiorespiratory fitness (measured as
maximal oxygen uptake in cardiopulmonary exercise testing) is most commonly used as a
surrogate parameter also for the other domains of general physical fitness. Sui et al. have
shown that high cardiorespiratory fitness independently reduces the risk for the development
of T2D [40]. Besides inherited factors, the amount of regular physical activity is the main
determinant of physical fitness [40]. Beyond the effects of regular physical activity (see above),
a high physical fitness improves glycemia as it is positively associated with muscle mass [35,
36]. A high muscle mass improves postprandial glucose tolerance, because skeletal muscle is

the main organ for glucose deposition in that situation [41].

Physical activity and fitness have been shown to be negatively associated with plasma leptin
levels in humans [42-47]. The adipokine leptin is secreted by the adipose tissue in positive
correlation to the amount of stored energy [48, 49]. It mainly acts centrally to control energy
[48, 49] and glucose homeostasis [50-52]. Both leptin deficient and leptin resistant
phenotypes are characterized by hyperinsulinemia, insulin resistance, and hyperglycemia [52].
Consequently, euglycemia requires adequate leptin action. Leptin resistance can be observed

in overweight and obese individuals, where central leptin action is insufficient despite high



amounts of leptin being produced by adipose tissue [53]. Therefore, leptin resistance is one

link from overweight/obesity to disturbed glucose homeostasis.

We examined the association of physical fitness with T2D risk and recent GDM on the one
hand, and with plasma leptin levels on the other hand. We hypothesized that if physical fitness
would associate with leptin levels, it might affect leptin resistance. Therefore, increasing
physical fitness may potentially counterbalance some of the negative effects of obesity in our

study population.

4.2. Plasma glucagon and prediabetes

In the pancreatic islet, alpha-cells secrete glucagon to counteract hypoglycemia [54]. This
raises plasma glucose by an increase in gluconeogenesis and glycogenolysis and a reduction
of glycolysis [54, 55]. Insulin serves as a negative feedback for alpha-cells and inhibits the
secretion of glucagon [54]. Hence, rising insulin levels in an oGTT are expected to suppress the
release of glucagon. Diminished insulin secretion, as seen in T2D, could therefore lead to
differences in the glucagon response. High glucagon levels could also add to hyperglycemia

independent of insulin levels [54].

The literature about glucagon levels in T2D is inconsistent. Some studies showed high fasting
glucagon and insufficient glucagon suppression during an oGTT in prediabetes and T2D [56-

59] while others found no alterations [60].

We examined the plasma glucagon dynamics during an oGTT in different metabolic subgroups

(normoglycemic, prediabetes, T2D) of the PPSDiab study cohort.

4.3. Serum and plasma amino acids as risk markers for T2D

Because routine screening misses many cases of early T2D and especially prediabetes [9, 10],
novel biomarkers are needed. Amino acids serve as precursors for gluconeogenesis [61] and
derangements of glucose homeostasis are reflected by amino acid metabolism [62].
Therefore, amino acids possibly serve as biomarkers for T2D. However, blood amino acid
levels are also altered by other factors like nutrition and comorbidities [61]. For example,

blood amino acid profiles differ between lean and obese subjects [63] and also associate with



hypertension, dyslipidemia, and the metabolic syndrome [64, 65]. These data point to the
question whether amino acids can reliably indicate glycemia besides being affected by many

other conditions.

We reviewed the current literature on serum or plasma amino acids as biomarkers for
prediabetes and T2D and also analyzed original data from the PPSDiab study. Here we
examined, whether plasma amino acid levels reflect pathological glucose tolerance and other

components of the metabolic syndrome in the PPSDiab cohort.
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5. Conclusions

5.1. Physical fitness and leptin

In the PPSDiab study cohort, women post GDM had a lower physical fitness (measured as
maximum oxygen uptake and maximum load in cardiopulmonary exercise testing) than
control subjects after a normoglycemic pregnancy. This association remained significant after
adjustment for BMI, age, and months post-delivery. The results suggest that reduced physical
fitness is an independent risk factor for the increased T2D-risk in the post GDM group of

women, and potentially also for the GDM itself.

Fasting plasma leptin levels associated inversely with physical fitness and the insulin sensitivity
index, and positively with the BMI in our study. The negative association of leptin with physical
fitness was confirmed by a linear regression analysis adjusted for BMI or body fat mass. These
data confirm previous results [42-44, 47] and could mean that physical fitness influences
insulin sensitivity via leptin signaling (Figure 2). This conclusion needs further examination,
e.g. in intervention trials aiming at a weight stable improvement of physical fitness.
Additionally, to address this and similar questions, we recently set up a new protocol for
cardiopulmonary exercise testing that has a specific focus on glucose metabolism and

hormonal signaling.
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Figure 2: Suggested interrelation of physical fitness, plasma leptin, and glucose homeostasis.
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5.2. Plasma glucagon

In our study, mean fasting glucagon levels were higher and glucagon suppression during oGTT
was delayed in the prediabetes-/T2D-group. These were expected findings. However, the
plasma glucagon dynamics were not homogeneous within the metabolic groups that we
examined. Instead, an unsupervised cluster analysis showed 4 patterns of glucagon dynamics

that did not match the predefined metabolic groups.

Clusters with high fasting glucagon and delayed glucagon suppression were enriched for
subjects at high risk for T2D but also contained a large proportion of control subjects.
Conversely, subjects from high-risk groups were also found in the “healthiest” glucagon
cluster characterized by low fasting glucagon and appropriate glucagon suppression. We
conclude that hyperglucagonemia may promote hyperglycemia, but it is neither a clear

indicator nor a prerequisite for T2D.

With respect to the metabolic syndrome, the cluster with high fasting glucagon and poor
glucagon suppression clearly differed from the other clusters. Despite their low mean age, the
women in this cluster had the highest mean BMI, waist circumference, high-sensitivity c-
reactive protein, liver fat, and intra-abdominal fat, and the worst insulin sensitivity. Hence,

fasting plus postprandial hyperglucagonemia is closely linked to the metabolic syndrome.

5.3. Serum and plasma amino acids

Our systematic literature review revealed several candidates that are most consistently
associated with pathological glucose metabolism: the branched chain amino acids (isoleucine,
leucine, and valine), aromatic amino acids (alanine and proline), glycine, and glutamate. Our
own data from the PPSDiab study showed that isoleucine, leucine, the sum of the branched
chain amino acids, proline, glycine, and glutamate were significantly associated with
pathological glucose tolerance. Except for glycine, all associations of amino acids with the

glycemic state were lost with BMI-adjustment in a logistic regression analysis.

Furthermore, not only the glycemic state, but also other components of the metabolic
syndrome (BMI, blood pressure, and lipids) associated with plasma amino acids. Classic risk

models for the development of T2D already include these factors of the metabolic syndrome.
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Thus, the addition of plasma amino acids does not substantially improve already established

clinical models, except possibly for glycine.

5.4. T2D beyond obesity

This thesis aimed at the characterization of several factors, other than obesity, that are
associated with T2D risk in young women. It reveals new aspects of T2D pathophysiology,
highlights the heterogeneity of this disease, and critically evaluates a class of potential novel
biomarkers. Together with other recent studies, our results show that there is still a lot to
learn about T2D and that distinct disease subtypes likely exist but are still underappreciated.
Future work will hopefully close these gaps in our knowledge and will provide means for

personalized T2D prevention, which should be much more effective than current approaches.
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Abstract

Aims/Hypothesis

Low physical fitness (PF) is a risk factor for type 2 diabetes mellitus (T2D). Women with a
history of gestational diabetes (GDM) are at risk for T2D at a young age, but the role of PF in
this population is not clear. PF has also been found to correlate inversely with plasma leptin
in previous studies. Here, we examine whether women who had GDM have lower PF than
women after a normoglycemic pregnancy and, second, whether PF is associated with
plasma leptin, independently of body fat mass.

Methods

Cross-sectional analysis of 236 participants in the PPSDiab Study (cohort study of women
3-16 months after delivery, 152 after gestational diabetes (pGDM), 84 after normoglycemic
pregnancy (control subjects); consecutively recruited 2011-16); medical history, physical
examination with bioelectrical impedance analysis (BIA), whole body magnetic resonance
imaging (MRI) (n = 154), 5-point oral glucose tolerance test, cardiopulmonary exercise test-
ing, clinical chemistry including fasting plasma leptin; statistical analysis with Mann—Whitney
U andt -test, Spearman correlation coefficient, multiple linear regression.

Results

Women pGDM had lower maximally achieved oxygen uptake (VOgzpcar/’kg: 25.7(21.3-29.9)
vs. 30.0(26.6-34.1)ml/min/kg; total VOzpear: 1733(156562-2005) vs. 1970(1767-2238)ml/
min; p<0.0001 for both), and maximum workload (122.5(105.5-136.5) vs. 141.0(128.5—
159.5)W; p<0.0001). Fasting plasma leptin correlated inversely with PF (VOzpear/kg

p =-0.72 p<0.0001; VOyzpeak p =-0.16 p = 0.015; max. load p = -0.35 p<0.0001). These
associations remained significant with adjustment for body mass index, or for body fat mass
(BIA and MRI).
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Conclusions/Interpretation

Women with a recent history of GDM were less fit than control subjects. Low PF may there-
fore contribute to the risk for T2D after GDM. This should be tested in intervention studies.
Low PF also associated with increased leptin levels—independently of body fat. PF may
therefore influence leptin levels and signaling. This hypothesis requires further investigation.

Introduction

Gestational diabetes (GDM) is a transient disturbance of glucose metabolism, with a preva-
lence ranging from 1.1% to 24.3%, depending on diagnostic criteria [1]. It is a strong risk
marker for subsequent type 2 diabetes mellitus (T2D) (2, 3], and women with recent GDM
already show many metabolic characteristics associated with T2D [4].

Physical fitness (PF) and activity are major determinants of diabetes risk [5]. Muscle glu-
cose uptake is particularly important for postprandial glucose tolerance, and regular exercise
increases the insulin sensitivity of skeletal muscle [6]. Additionally, glucose metabolism of
trained individuals with high PF is also probably affected more indirectly by altered interorgan
communication [7, 8]. The gold-standard methodology to quantify PF is cardiopulmonary
exercise testing. To our knowledge, this has not been done in women with recent GDM.

The hormone leptin is produced by the adipose tissue as an indicator of the amount of
stored energy (as fat) [9]. Its plasma level correlates closely with the quantity of fat tissue and
therefore also the body mass index (BMI) [10]. Leptin mainly acts centrally, predominantly to
control appetite [11]. It is also required for an adequate neuroendocrine function, i.e. secretion
of sexual hormones, growth and thyroid hormone and has been shown to influence glucose
metabolism by increasing insulin sensitivity [9, 11-14]. This mainly occurs through an activa-
tion of the sympathetic nervous system and by direct action on peripheral leptin receptors in
skeletal muscle [13]. Surprisingly, however, high plasma leptin levels often coexist with insulin
resistance in human subjects. We and other groups have even found a negative correlation
between fasting plasma leptin and insulin sensitivity after adjustment for BMI [4, 5]. Given the
insulin-sensitizing effect of leptin, this finding requires dysfunction or saturation of leptin sig-
naling, phenomena often summarized under the term “leptin resistance”.

An additional factor that may influence leptin sensitivity is physical fitness. Low PF has
been found to be associated with high leptin levels in previous studies [5, 15-17] and exercise
interventions can lead to a reduction in plasma leptin [18].

Based on these lines of evidence, we examined two research questions in an observational
study of young women. First, whether women with a recent history of GDM have lower PF
than appropriate control subjects. Second, whether PF is associated with the plasma leptin
level after adjustment for BMI or body fat mass. Positive answers to both questions would pro-
vide initial evidence that increasing PF in women with recent GDM by an exercise interven-
tion may have the double benefit of reducing both insulin and leptin resistance.

Material and methods
Study design and participants

Women included in the present cross-sectional analysis were participants of the prospective,
mono-center observational study PPSDiab (“Prediction, Prevention and Subclassification of
type 2 diabetes”) enrolled between November 2011 and May 2016. The study population
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consists of women with GDM during their last pregnancy (pGDM) and women following a
normoglycemic pregnancy (controls) in the ratio 2:1. The cohorts were recruited consecutively
from the Diabetes Center and the obstetrics department of the University Hospital (Klinikum
der Universitdt Miinchen) in Munich, Germany.

Eligible women were premenopausal and within 3 to 16 months after a singleton or twin
(n = 9) pregnancy with live birth(s). The diagnosis of GDM was based on a 75g oral glucose
tolerance test (OGTT) after the 23rd week of gestation. The cut-off values for GDM were
92/180/153 mg/dl plasma glucose following the International Association of the Diabetes and
Pregnancy Study (IADPSG) recommendations [19]. Women were eligible to participate as
controls if they had no history of GDM in any previous pregnancy and either a normal 75g
OGTT or a normal 50g screening OGTT (<135 mg/dl plasma glucose after 1 hour, n = 10)
after the 23rd week of gestation. We included controls with only a screening OGTT because in
Germany a 2-Step approach of testing for GDM is widely used and women without known
risk-factors for GDM may only receive the 50g test.

Exclusion criteria for this study were alcohol or substance abuse, pre-pregnancy diabetes,
and chronic diseases requiring systemic medication (except for hypothyroidism (n = 52), mild
hypertension (n = 4), gastroesophageal reflux (n = 2), and history of pulmonary embolism
resulting in Rivaroxaban prophylaxis (n = 1)).

Written informed consent was obtained from all study participants and the protocol was
approved by the ethical review committee of the Ludwig-Maximilians-Universitit.

All data used in this analysis were collected at the baseline visit of the PPSDiab study, 3 to
16 months after the index pregnancy.

Study procedures

After an overnight fast, the women underwent a 5-point 75-g oral glucose tolerance test with
measurement of plasma glucose (Glucose HK Gen.3, Roche Diagnostics, Mannheim, Ger-
many), serum insulin (CLIA, DiaSorin LIASON systems, Saluggia, Italy), plasma leptin
(ELISA "Dual Range", Merck Millipore, Darmstadt, Germany), high sensitivity c-reactive pro-
tein (hs-CRP; wide-range CRP, Siemens Healthcare Diagnostics, Erlangen, Germany) and
blood lipids (LDL and HDL cholesterol, triglycerides; enzymatic caloric test, Roche Diagnos-
tics, Mannheim, Germany). Insulin sensitivity index (ISI) was calculated according to Matsuda
and DeFronzo (ISI = 10,000/square root of [fasting glucose x fasting insulin] x [mean glucose
x mean insulin during OGTT]) [20]. Anthropometric data included body mass, body fat mass
(determined by bioelectrical impedance analysis (Tanita BC-418; Tanita Corporation) [21,
22]), height, waist and hip circumference. A detailed description of the study design, anthropo-
metric and clinical measurements as well as methodologies of blood sampling and analysis can
be found elsewhere [4].

For determination of PF, cardiopulmonary exercise testing was performed on a bicycle
ergometer using the cardiopulmonary exercise testing system MasterScreen CPX (Care
Fusion, Héchberg, Germany). Prior to this test, cardiopulmonary health was ascertained from
the medical history and clinical examination including auscultation and measurement of rest-
ing blood pressure. Due to the heterogeneity of the study cohort regarding physical fitness lev-
els, we used a standardized stepwise ramp protocol for all participants. It consisted of stepwise
increments of 25 W every 3 minutes, starting with a reference phase without load. In order to
reach a plateau phase of the oxygen curve (levelling-off effect), which is required for determin-
ing the maximal possible oxygen uptake of the cardiopulmonary system (VO,,5), an individ-
ualized, steep ramp protocol and a reasonable baseline fitness of the study participant, who
also has to be familiar with the test procedure, would have been needed. This was not possible
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in our study and we therefore determined the peak oxygen uptake before termination of work-
load (VO,cq1)s 2 close approximation of VO, [23]. 12-channel ECG, oxygen uptake, and
carbon dioxide exhalation were monitored continuously, while at the end of each increment,
capillary lactate was measured using a SuperGL Analyser (Hitado, Méhnesee, Germany), and
participants were asked to rate their perceived exertion by pointing to a BORG scale [24]. The
test was terminated when the participant was exhausted. A maximal respiratory exchange ratio
(RER) of at least 1.05 was required for a valid exercise test.

Study participants were invited to undergo a whole-body magnetic resonance imaging
(MRI) measurement (3 Tesla system, Ingenia or Achieva; Philips Healthcare) with determina-
tion of total adipose tissue volumes. Three days before MRI study, participants were advised to
refrain from heavy exercise. The MRI study protocol has been described previously [4].

Statistical analysis

All metric and normally distributed variables are reported as mean + standard deviation; non-
normally distributed variables are presented as median (first quartile-third quartile). For
group comparisons, the t-test was used for normally and the Mann-Whitney U-test was used
for non-normally distributed metric variables. P-values <0.05 were considered to be statisti-
cally significant. Spearman correlation coefficient (p) was calculated for correlation analysis.
Linear regression models (raw and with adjustment for BMI or body fat mass (BIA and MRI),
age, months post-delivery) were conducted with the dependent variables (all logarithmized)
peak oxygen uptake (“VO,p..1”), peak oxygen uptake per body weight (“VO,ca/kg”) and
maximum workload in cardiopulmonary exercise testing (“Max. load”) and “pGDM/control-
status” as independent variable. We also calculated raw and adjusted (BMI or body fat mass
(BIA and MRI), age, months post-delivery, pGDM/control status) linear regression models
with “leptin” (logarithmized) as dependent and “VO, i, “VOspear/kg” and “Max. load” as
independent variables. All statistical calculations were performed using the SAS statistical soft-
ware package, version 9.3 (SAS Institute Inc., Cary, NC, USA) or R version 3.0.2 (http://www.
R-project.org).

Results

From November 2011 to May 2016, 304 women were recruited into the PPSDiab study cohort.
This analysis focuses on the baseline visit, which was 3 to 16 months after delivery (Fig 1). We
excluded five women from this analysis, two because of type 1 diabetes diagnosed during fol-
low-up, two because of overt hyperthyroidism and one because of an acute upper respiratory
infection at baseline (Fig 1). 58 women declined to participate in cardiopulmonary exercise
testing and 5 were excluded from the analysis due to an invalid exercise test (technical failure
in measurement of O,/CO, curves: n = 3; failure in measurement of O,/CO, curves due to
leaky mask: n = 1; unmet exhaustion criteria (low RER): n = 1). Consequently, the final sample
consisted of 236 women, 152 women pGDM and 84 control subjects (Fig 1). Women with a
valid exercise test were slightly older and less overweight than those without (S1 Table). The
proportion of participants with a valid test was comparable in women pGDM and controls.

The baseline characteristics of the final study sample are shown in Table 1. Women pGDM
had larger waist circumference, higher values for BMI, fat mass measured in BIA and MRI,
blood pressure, hs-CRP, HDL cholesterol, triglycerides, as well as plasma leptin compared
with the control group. Fasting and 2-hour plasma glucose were higher and insulin sensitivity
index (ISI) was lower in the pGDM group.

With respect to our first research question (differences in PF between pGDM and control
subjects), women pGDM had lower VO,p../kg body weight, total VOpe.x, and maximum
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included participants at baseline (n=304)

| exclusion due to diagnosis of type
1 diabetes during follow-up (n=1),
— overt hyperthyroidism (n=2) and
acute upper respiratory infection
at the baseline visit (n=1)

eligible subjects at
baseline visit (n=299)

subjects that declined to
participate in cardiopulmonary
exercise testing (n=58); subjects
with invalid exercise test (n=5)

subjects without valid subjects with valid
cardiopulmoary exercise cardiopulmonary
test (n=63) exercise test (n=236)
participants without MRI participants without MRI
measurement (n=53) measurement (n=82)
subjects without participants with
cardiopulmonary exercise cardiopulmonary
testing but with MRI exercise testing and MRI
measurement (n=10) measurement (n=154)

Fig 1. Recruitment flow chart. Cohorts analyzed in this manuscript are shown in bold type. MRI: magnetic
resonance imaging.

https://doi.org/10.1371/journal pone.0179128.g001
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Table 1. Characteristics of the study sample. BIA: bioelectrical impedance analysis; BMI: body mass index; I1SI: insulin sensitivity index; Max. load: maxi-
mum workload in cardiopulmonary exercise testing; MRI: magnetic resonance imaging; VOozpeak: peak oxygen uptake; VOzpea/kg: peak oxygen uptake per

body mass.

Clinical parameter

Laboratory parameter

Glucose parameter

Cardiopulmonary exercise

testing parameter

N

: Age [years]

Waist circumference [cm]

BMI [kg/m?] (missing n = 2)

Fat mass in BIA (missingn=2)
Total fat mass in MRI (n = 154)
Systolic blood pressure [mmHg]

 Diastolic blood pressure [nmHg]

Months post-delivery

| Leptin [ng/ml]

Adiponectin [ng/mi]
hs-CRP [mg/dl]

LDL cholesterol [mg/dl]
HDL cholesterol [mg/di]
Triglycerides [mg/dl]

| Fasting plasma glucose [mg/dl]
| Plasma glucose 2h [mg/dI]

IS1
V02peaklrkg [mllmlnlkg]

 VO2zpeak [Ml/min]

Max. load [W]

https://doi.org/10.1371/journal.pone.0179128.1001

Total
236
35.9+4.1
80.6:11.3
25.0+5.4
23.1+10.5
25.5+10.8
117.2¢11.4
73.4+9.1
9.3:2.8
10.1 (4.9-15.7)
11.6 (8.0-14.9)
0.1(0.0-0.1)
104.0 (86.0-120.0)
62.0 (55.0-73.0)
67.0 (53.0-89.5)
91.0 (87.0-97.0)
109.0 (90.0-125.5)
5.4 (3.6-7.6)
27.6 (22.6-31.3)
1828 (1608-2092)
129.0 (110.0-149.5)

pGDM
152
36.2+4.1
82.4+12.1
25.9+5.9
246115
27.1+11.7
118.8+11.3
74.6+8.9
9.3+2.9
11.5 (6.7-18.8)
10.7 (7.7-15.2)
0.1 (0.0-0.3)
104.0 (86.5-120.0)
61.0 (52.0-71.0)
71.5 (54.5-97.5)
94.0 (89.0-99.0)
117.5(101.0-133.5)
4.6 (3.0-6.7)
25.7 (21.3-29.9)
| 1733 (1552-2005)
122.5 (105.5-136.5)

Control subjects
84
35.4£3.9
77.4%¥9.0
23.4+3.9
20.2¢7.8
22.6%8.3
114.1£11.0
71.3+9.1
9.2+2.6
6.4 (3.6-11.6)
11.7(9.1-14.8)
0.0(0.0-0.1)
104.5 (84.5-118.0)
64.0 (57.0-73.5)
60.0 (50.0-77.5)
89.5 (84.0-92.5)
91.0 (80.0-108.0)
6.9(5.2-8.7)
30.0 (26.6-34.1)
1970 (1767-2238)
141.0 (128.5-159.5)

p-value

0.1438
0.0004
0.0001
0.0007
0.0059
0.0020
0.0081
0.8764
<0.0001
0.3437
0.0044
0.7842
0.0368
0.0041
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

workload compared with the control group (VO,pea/kg: 25.7 (21.3-29.9) vs. 30.0 (26.6-34.1),
p<0.0001; VOypeqr: 1733 (1552-2005) vs. 1970 (1767-2238), p<0.0001; max. load: 122.5
(105.5-136.5) vs. 141.0 (128.5-159.5), p<<0.0001; Table 1). The associations of group status
with VOjpean/kg, total VO,pe and maximum workload remained significant after adjustment
for BML This association was independent of BMI, age and months since delivery as shown by
linear regression analyses (Table 2). Substituting body fat mass determined by BIA or MRI for

BMI in these models gave comparable results (52 and S3 Tables).

Table 2. Linear regression analysis - dependent variable VOzpea/kg (ml/min/kg), VOzpeak (MI/min) or Max. load (all logarithmized), independent
variable pGDM/control status. BMI: body mass index; Cl: confidence interval, Max. load: maximum workload in cardiopulmonary exercise testing; VOzpeax:

peak oxygen uptake; VO,,eac/Kg: peak oxygen uptake per body mass.

[ Max. load

VO2pear’kg (MmI/min/kg) VO2peax

Regression coefficient p-value |Adjusted R? Regression coefficient |p-value Adjusted R?® Regression coefficient p-value  Adjusted R?
(95% Cl) (95% Cl) (95% CI)

No adjustment _

0.18 <0.0001 0.1 0.12 <0.0001 0.08 0.16 <0.0001 0.13
(0.11-0.24) (0.07-0.17) (0.11-0.21)

Adjustment for BMI

0.10 <0.0001 0.50 0.13 <0.0001 0.08 0.14 <0.0001 0.15
(0.05-0.15) (0.07-0.18) (0.09-0.20)

Adjustment for BMI, age, and months post-delivery

0.10 <0.0001 0.51 0.13 <0.0001 0.09 0.15 <0.0001 0.16
(0.05-0.15) (0.08-0.18) (0.10-0.20)
https://doi.org/10.1371/journal.pone.0179128.1002
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Correlation Leptin
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-0,16 0.5
072

Fig 2. Spearman correlation coefficients for leptin and selected other variables. BMI: body mass index; TG:
triglycerides; HDL: HDL cholesterol (mg/dl); ISI: insulin sensitivity index; load: maximum workload in
cardiopulmonary exercise testing; VO2: peak oxygen uptake; VO2/kg: peak oxygen uptake per whole body mass;
WC: waist circumference (cm); p-value <0.0001 for all, except for leptin with VO2 (p = 0.015).

https://doi.org/10.1371/journal.pone.0179128.9002

Concerning the second research question (association of PF and plasma leptin), we found
negative correlations between plasma leptin and VO, /kg, VO5pear, and maximum load
(Fig 2, VOapear/kg: p = ~0.72, p<0.0001; VOypeq: -0.16, p = 0.015; max. load: p = ~0.35,
p<0.0001).

In order to specifically examine the association of plasma leptin with PF, we calculated mul-
tiple linear regression models with adjustment for BMI, or for BMI, pGDM/control status, age,
and months post-delivery (Table 3). These analyses confirmed negative associations between
plasma leptin and VOopear/kg, VO3peqr, and maximum workload, which were independent of
BMI and the other covariables. Similar models with body fat mass (measured with BIA and in
MRI) instead of BMI gave comparable results (54 and S5 Tables).
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Table 3. Linear regression analysis - dependent variable leptin (logarithmized). BMI: body mass index; Cl: confidence interval; pGDM: previous gesta-
tional diabetes; Max. load: maximum workload in cardiopulmonary exercise testing; VOzpeax: peak oxygen uptake; VOzpeai/kg: peak oxygen uptake per body

mass.
VOspear’kg KG (ml/min/ VO2peak Max. load
kg KG) |
Regression coefficient p-value Adjusted R*> Regression coefficient p-value |Adjusted R> Regression coefficient p-value  Adjusted R?
(95% CI) (95% Cl) (95% ClI)
No adjustment
-0.09 <0.0001 0.52 -0.001 0.0007 0.04 -0.01 <0.0001 0.15
(-0.10/-0.08) (-0.001/-0.0002) (-0.02/-0.01)
Adjustment for BMI ] ) ) i ) ‘
-0.05 <0.0001 0.64 -0.0005 <0.0001 0.58 -0.01 <0.0001 0.60
(-0.07/-0.04) (-0.0007/-0.0003) (-0.01/-0.01)
Adjustment for BMI, pGDM/control status, age, and months post-delivery
-0.05 <0.0001 0.64 -0.0004 <0.0001 0.58 -0.01 <0.0001 0.59
(-0.07/-0.04) (-0.0007/-0.0002) (-0.01/-0.004)
https://doi.org/10.1371/journal.pone.0179128.t1003

Discussion

We measured PF (VOypear/kg, VO;peaio and maximum workload during cardiopulmonary
exercise testing) in women after gestational diabetes and in women who had a normoglycemic
pregnancy. The women after gestational diabetes were less fit, independent of adiposity. We
also examined the association of PF and plasma leptin in the whole study cohort. PF was nega-
tively associated with fasting plasma leptin, also after adjustment for BMI or body fat mass.

Women pGDM carry an about 20% risk of developing T2D within 10 years of the index
pregnancy [2], and our data suggest that low PF may be one modifiable risk factor contributing
to this situation—although our cross-sectional analysis cannot show this directly. Our finding
is in line with results from other types of at risk cohorts, e.g., older subjects with impaired glu-
cose tolerance [25]. To our knowledge, PF has not been examined previously by objective mea-
sures, such as cardiopulmonary exercise testing, in women with recent GDM. The mean
maximum oxygen uptake in women pGDM was over 200 ml/min lower than in control sub-
jects. This represents a clinically meaningful difference. Exercise intervention programs can
increase physical fitness [18] and may therefore also be valuable for women pGDM. This
should be tested in a study setting.

Further differences between the pGDM and the control group in our study were a higher
BMI and worse lipid profiles in the pGDM group. These findings are not surprising and indi-
cate a higher prevalence of the metabolic syndrome in pGDM subjects.

We also saw an inverse association between plasma leptin and PF. Body fat mass remains
the main determinant of fasting plasma leptin, but our finding was consistent for three mea-
sures of PF, as well as after adjustment for covariates.

Our results regarding an association of leptin with physical fitness are in agreement with
work by Cicchella et al. [15], Chu et al. [26] and Miyatake et al. [17]. Chu et al. [26] studied a
cohort of 268 male health professionals (age: 47-83 years; mean BMI: normal weight 23.2 kg/
m?; overweight 27.7 kg/m?) but only relied on a questionnaire to estimate physical activity.
Cicchella et al. [15] measured VO, as we did in this work, but the study cohort consisted
of 10- to 12-year old boys. Miyatake et al. [17] found a BMI-independent negative association
between leptin and PF in men and between leptin and physical activity in women in a middle
aged, healthy Japanese cohort. Only in a 1996 study by Ostlund et al. [10] was the reverse asso-
ciation of leptin and VO, lost after adjustment for percent body fat. However, only individ-
uals between 60 and 70 years of age were included in that analysis, which suggests that these
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results are not representative for the general population. Additionally, correcting for percent
body fat may underestimate the role of PF, because of the positive association of PF and muscle
mass (with the same fat mass, lower muscle mass leads to a higher percentage of body fat.
Adjustment for percent body fat will then result in an over-adjustment of plasma leptin in
those with lower muscle mass.). Taken together, an inverse and fat mass-independent correla-
tion of plasma leptin and PF is supported by several studies from the literature and also our
own data. Additionally, exercise interventions that increase physical fitness have been shown
to also reduce plasma leptin [18].

Poorly trained muscle has a reduced insulin-mediated glucose uptake [27], but hormonal
signaling also links PF to insulin sensitivity and glucose homeostasis. This involves myokines
but also other hormones like epinephrine, glucocorticoids and, potentially, leptin [6, 28, 29].
An interesting hypothesis, which would be in agreement with our findings, is that PF affects
“leptin resistance” where high plasma leptin levels coexist with late satiety and insulin resistance
[9, 11, 30]. Several mechanisms have been implicated in this phenomenon [9, 11, 12], most
prominently the saturation of the leptin transport system across the blood-brain barrier (BBB)
and impaired intracellular signaling downstream of the leptin receptor [11, 31]. One possibility
that could link PF to a reduction in “leptin resistance” is the finding that the transport of leptin
across the BBB is increased by epinephrine [32-34]. Achieving and maintaining fitness requires
regular exercise, which acutely increases plasma epinephrine with each workout [35]. As a con-
sequence, leptin transport across the BBB and its central effects would be enhanced [34].

However, several alternative explanations can be found for the observed reverse association
between PF and plasma leptin, e.g., a direct muscle-adipose tissue interaction or an influence
of leptin resistance on central rewarding systems that promote voluntary physical activity [36].
Further studies of the effects of changes in PF and of acute and chronic exercise on plasma lep-
tin levels, leptin transport across the BBB and central responses to leptin will be necessary to
clarify this issue.

Strengths of this study include its homogeneous, all-female cohort with a small age range
and very little concomitant disease and medication. Additionally, PF was measured by the
gold standard method of cardiopulmonary exercise testing.

The homogeneous cohort in this study is also one of its weaknesses, as it precludes the gener-
alization of our findings to other populations. The cross-sectional observational design of this
analysis does not permit the investigation of cause-effect relationships. In our cohort, women
with a valid exercise test were leaner than those who declined to participate in or did not com-
plete exercise testing. This was true for both study groups and therefore probably did not bias
our results. The cohort with a valid test also still covered a BMI-range from 18 to 44 kg/m’.

In conclusion, our findings suggest that poor PF may contribute to the T2D risk of women
with recent GDM. Additionally, our results support the hypothesis of a link between PF and
leptin signaling, Specific studies on this issue in humans and animal models are certainly
needed to confirm this assumption and, if true, elucidate the relevant pathways. Such studies
seem warranted because leptin resistance is probably involved in the pathophysiology of obe-
sity as well as of impaired glucose metabolism [37].

Supporting information

S$1 Table. Characteristics of the study sample. BIA: bioelectrical impedance analysis; BMI:
body mass index; ISI: insulin sensitivity index; MRI: magnetic resonance imaging.
(TIF)

$2 Table. Linear regression analysis - dependent variable VO,.../kg (ml/min/kg), VO,
or Max. load (all logarithmized), independent variable pGDM/control status. BIA:
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bioelectrical impedance analysis; CI: confidence interval; Max. load: maximum workload in
cardiopulmonary exercise testing; VO,;,.q: peak oxygen uptake; VO,,,q./kg: peak oxygen
uptake per body mass.

(TIF)

S$3 Table. Linear regression analysis - dependent variable VO, ../kg (ml/min/kg), VO,,cax
or Max. load (all logarithmized), independent variable pGDM/control status. Analysis of
participants with MRI data (n = 154). CI: confidence interval; Max. load: maximum workload
in cardiopulmonary exercise testing; MRI: magnetic resonance imaging; VO, peak oxygen
uptake; VO, ,ca/kg: peak oxygen uptake per body mass.

(TIF)

S$4 Table. Linear regression analysis - dependent variable leptin (logarithmized), indepen-
dent variable VO,p../kg (ml/min/kg), VO, or Max. load. BIA: bioelectrical impedance
analysis; CI: confidence interval; pPGDM: previous gestational diabetes; Max. load: maximum
workload in cardiopulmonary exercise testing; VO,pe.i: peak oxygen uptake; VOjpear/kg: peak
oxygen uptake per body mass.

(TIF)

S5 Table. Linear regression analysis - dependent variable leptin (logarithmized), indepen-
dent variable VO,,¢q/kg (ml/min/kg), VO, (logarithmized) or Max. load (logarith-
mized). Analysis of participants with MRI data (n = 154). CI: confidence interval; Max. load:
maximum workload in cardiopulmonary exercise testing; MRI: magnetic resonance imaging;
pGDM: previous gestational diabetes; VO .. peak oxygen uptake; VOopea/kg: peak oxygen
uptake per body mass.

(TIF)
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Supplemental Material

S1 Table. Characteristics of the study sample. BIA: bioelectrical impedance analysis; BMI: body

mass index; ISI: insulin sensitivity index; MRI: magnetic resonance imaging.

With Without
cardiopulmonary cardiopulmonary p-value
exercise testing exercise testing
N 236 63
pGDM 152 (64.4%) 45 (71.4%) 0.2963
Clinical Age [years] 35.9+4.1 33.7+£5.2 0.0021
parameter
Waist circumference
80.6£11.3 84.1+12.1 0.0373
[cm]
2
BMI [ke/m’] 25.0+5.4 27.247.5 0.0352
(missing=2)
Fat mass in BIA 23.1£10.5 27.7+14.9 0.0266
(missing=5)
Total fat mass in _
MRI (missing=135) 25.5+10.8 28.1+£23.8 (n=10) 0.5340
Systolic blood 117.2411.4 118.8+12.6 0.3219
pressure [mmHg]
Diastolic blood 73.4+9.1 75.2+10.0 0.1959
pressure [mmHg]
Months post- 9.3:2.8 9.6:2.7 0.4821
delivery
Laboratory Leptin [ng/ml] 10.1 (4.9-15.7) 11.2 (7.3-16.9) 0.0574
parameter Adiponectin [ng/ml] 11.6 (8.0-14.9) 9.8 (6.4-14.5) 0.0953
hs-CRP [mg/dl] 0.1 (0.0-0.1) 0.1 (0.0-0.3) 0.0408
LDL cholesterol 104.0 (86.0- 109.0 (82.0- 0.5922
[mg/dl] 120.0) 124.0) ’
HDL cholesterol
[mg/dl] 62.0 (55.0-73.0) 62.0 (46.0-69.0) 0.1333
Triglycerides 67.0 (53.0-89.5)  69.0 (59.0-100.0) 0.1672
[mg/dl] . . . . . . .
Glucose Fasting plasma 91.0 (87.0-97.0)  94.0 (87.0-100.0) 0.1899
parameter glucose [mg/dl]
Plasma glucose 2h 109.0 (90.0- 113.0 (94.0- 0.2598
[mg/dl] 125.5) 134.0) ’
ISI 5.4 (3.6-7.6) 4.7 (2.9-7.2) 0.1080
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S2 Table. Linear regression analysis - dependent variable VO3peai/kg (ml/min/kg), VOzpeax  OF
Max. load (all logarithmized), independent variable pGDM/control status. BIA: bioelectrical
impedance analysis; CI: confidence interval, Max. load: maximum workload in cardiopulmonary

exercise testing; VOopeak: peak oxygen uptake; VOapea/kg: peak oxygen uptake per body mass.

VO2zpeak/’kg VO2zpeak Max. load

(ml/min/kg)

Regression | p-value | Adjusted | Regression | p-value | Adjusted | Regression | p-value | Adjusted
coefficient R? coefficient R? coefficient R?

(95% CI) (95% CI) (95% CI)

Adjustment for fat mass in BIA

0.11 (0.06- | <0.0001 | 0.54 0.13 (0.07- | <0.0001 | 0.08 0.15 (0.09- | <0.0001 | 0.14
0.15) 0.18) 0.20)

Adjustment for fat mass in BIA, age, and months post-delivery

0.11 (0.06- | <0.0001 | 0.55 0.13 (0.08- | <0.0001 | 0.09 0.15 (0.10- | <0.0001 | 0.15
0.16) 0.18) 0.20)
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S3 Table. Linear regression analysis - dependent variable VO3pea/kg (ml/min/kg), VOizpeak  Or
Max. load (all logarithmized), independent variable pGDM/control status. Analysis of participants
with MRI data (n=154). CI: confidence interval; Max. load: maximum workload in cardiopulmonary
exercise testing; MRI: magnetic resonance imaging; VOapeak: peak oxygen uptake; VOapea/kg: peak

oxygen uptake per body mass.

VOZpeak/kg VOZpeak Max. load

(ml/min/kg)

Regression | p- Adjusted | Regression | p- Adjusted | Regression | p- Adjusted
coefficient value | R? coefficient value | R? coefficient value | R?

(95% CI) (95% CI) (95% CI)

Adjustment for total fat mass in MRI

0.08 (0.02- | 0.0092 | 0.56 0.09 (0.03- ] 0.0045 | 0.04 0.11 (0.05- ] 0.0007 | 0.14
0.14) 0.16) 0.17)

Adjustment for total fat mass in MRI, age, and months post-delivery

0.08 (0.02- | 0.0065 | 0.56 0.10 (0.04- | 0.0027 | 0.05 0.11 (0.05- ] 0.0004 | 0.14
0.14) 0.17) 0.18)
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S4 Table. Linear regression analysis — dependent variable leptin (logarithmized), independent
variable VOzpea’kg (ml/min/kg), VOzpea or Max. load. BIA: bioelectrical impedance analysis; CI:
confidence interval; pGDM: previous gestational diabetes; Max. load: maximum workload in

cardiopulmonary exercise testing; VOapeak: peak oxygen uptake; VOapear/kg: peak oxygen uptake per

body mass.
VOzpear’ kg VO2peak Max. load
(ml/min/kg)
Regression | p-value | Adjusted | Regression | p-value | Adjusted | Regression | p-value | Adjusted
coefficient R? coefficient R? coefficient R?2
(95% CI) (95% CI) (95% CI)
Adjustment for total fat mass in BIA
-0.001 (-
-0.05 (- -0.01 (-
<0.0001 0.67 0.001/- <0.0001 0.64 <0.0001 0.65
0.06/-0.03) 0.0003) 0.01/-0.01)
Adjustment for total fat mass in BIA, pGDM/control status, age, and months post-delivery
20,05 (- -0.0005 (- -0.01
0 06/—0 03) <0.0001 0.67 0.001/- <0.0001 0.64 (.0,01/- <0.0001 0.65
) ) 0.0003) 0.005)
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S5 Table. Linear regression analysis — dependent variable leptin (logarithmized), independent
variable VOzpea/kg (ml/min/kg), VOipeak (logarithmized) or Max. load (logarithmized). Analysis
of participants with MRI data (n=154). CI: confidence interval, Max. load: maximum workload in

cardiopulmonary exercise testing; MRI: magnetic resonance imaging; pGDM: previous gestational

diabetes; VOazpeax: peak oxygen uptake; VOopea/kg: peak oxygen uptake per body mass.

VOzpear/kg VOzpeak Max. load
(ml/min/kg)
Regression Adiusted Regression ) Adiusted Regression ) Adiusted
coefficient | p-value RzJ coefficient Balue sz coefficient salue sz
(95% CI) (95% CI) (95% CI)
Adjustment for total fat mass in MRI
-0.05 (- -0.76 (- -0.67 (-
0.06/-0.03) <0.0001 0.70 1.19/-0.33) 0.0006 0.67 1.11/-0.23) 0.0034 0.66
Adjustment for total fat mass in MRI, pGDM/control status, age, and months post-delivery
-0.04 (- -0.69 (- -0.58 (-
0.06/-0.03) <0.0001 0.70 1.14/-0.25) 0.0024 0.67 1.04/-0.12) 0.0147 0.66
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Patterns of Plasma Glucagon Dynamics Do Not Match
Metabolic Phenotypes in Young Women
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Context: The role of hyperglucagonemia in type 2 diabetes is still debated.

Objective: We analyzed glucagon dynamics during oral glucose tolerance tests (0GTTs) in young
women with one out of three metabolic phenotypes: healthy control (normoglycemic after a
normoglycemic pregnancy), normoglycemic high-risk (normoglycemic after a pregnancy complicated
by gestational diabetes), and prediabetes/screening-diagnosed type 2 diabetes. We asked if glucagon
patterns were homogeneous within the metabolic phenotypes.

Design and Setting: Five-point oGTT, sandwich enzyme-linked immunosorbent assay for glucagon,
and functional data analysis with unsupervised clustering.

Participants: Cross-sectional analysis of 285 women from the monocenter observational study
Prediction, Prevention, and Subclassification of gestational and type 2 Diabetes, recruited
between November 2011 and May 2016.

Results: We found four patterns of glucagon dynamics that did not match the metabolic pheno-
types. Elevated fasting glucagon and delayed glucagon suppression was overrepresented with
prediabetes/diabetes, but this was only detected in 21% of this group. It also occurred in 8% of the
control group.

Conclusions: We conclude that hyperglucagonemia may contribute to type 2 diabetes in a subgroup
of affected individuals but that it is not a sine qua non for the disease. This should be considered in
future pathophysiological studies and when testing pharmacotherapies addressing glucagon sig-
naling. (J Clin Endocrinol Metab 103: 972-982, 2018)

lucagon is the main antagonist of insulin. It raises
G plasma glucose by reducing glycolysis and increasing
gluconeogenesis and glycogenolysis (1, 2). Glucagon
secretion from « cells is triggered by hypoglycemia and
inhibited by insulin from neighboring 8 cells. In turn,
glucagon inhibits insulin secretion (2).
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Unger et al. (3, 4) first postulated that elevated glu-
cagon is a sine qua non in the development of diabetes.
This marked the departure from an insulinocentric
concept of type 2 diabetes pathogenesis to a bibormonal
or even glucagonocentric model (4). In a glucagono-
centric model, most metabolic derangements of diabetes

Abbreviations: DI, disposition index; ELISA, enzyme-linked immunosorbent assay; GDM,
gestational diabetes; HDL, high-density lipoprotein; IFG, impaired fasting glucose; 1GT,
impaired glucose tolerance; ISI, insulin sensitivity index; ivGTT, intravenous glucose
tolerance test; MRI, magnetic resonance imaging; oGTT, oral glucose tolerance test;
PPSDiab, Prediction, Prevention, and Subdassification of gestational and type 2 Diabetes;
RIA, radioimmunoassay.

doi: 10.1210/c.2017-02014
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are caused by the disinhibition of glucagon secretion
(resulting from insulin-resistant « cells or impaired in-
sulin release), but not directly by insufficient insulin ac-
tion in other tissues (4, 3).

The issue of the different pathophysiologic models
remains unresolved, at least in part due to technical
difficulties: glucagon is unstable, difficult to measure
because of many similar peptides in plasma (2, 6), and its
concentration is very low (7). Furthermore, « cells are
harder to isolate than their insulin-producing neighbors
(8). This impedes cellular studies.

Current data on plasma glucagon levels in (pre)di-
abetic human subjects are also inconsistent. Several
studies have found impaired glucagon suppression during
an oral glucose tolerance test (0GTT) in prediabetic and
diabetic individuals when compared with healthy con-
trols (9-11). Other studies reported on increased fasting
glucagon levels (12, 13). In contrast, Ahrén and Larsson
(14) saw no differences between impaired glucose tol-
erance (IGT) and normoglycemic subjects, and Wagner
et al. (15) observed rising glucagon values during an
oGTT in 21% to 34% of healthy, insulin-sensitive in-
dividuals. These authors even found that this pattern
predicted future metabolic health.

New sandwich enzyme-linked immunosorbent assays
(ELISAs) with improved specificity for glucagon became
available recently, and this prompted us to re-examine
the issue in a postpregnancy cohort of young women.
We compared three groups of study participants with
different metabolic phenotypes: a control group (nor-
moglycemic women, who had recently completed a
normoglycemic pregnancy), a normoglycemic high-risk
group for type 2 diabetes [normoglycemic women after a
recent pregnancy complicated by gestational diabetes
(GDM)| (16, 17), and a prediabetes/diabetes group
(women with prediabetes or screening-diagnosed type 2
diabetes after GDM).

We first confirmed that average fasting plasma glu-
cagon was higher and glucagon suppression during an
oGTT was impaired in the normoglycemic high-risk and
the prediabetes/diabetes groups, similar to what was seen
in the majority of previous studies. However, our main
research goal was to determine whether glucagon dy-
namics within each metabolic group were homogeneous
or followed heterogeneous patterns. We used functional
data analysis and unsupervised clustering to address
this question.

Research Design and Methods

Study cohort
Study participants were women enrolled in the prospective,
monocenter observational study Prediction, Prevention, and
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Subclassification of gestational and type 2 Diabetes (PPSDiab)
between November 2011 and May 2016 (18). The cohort in-
cludes women with GDM during their last pregnancy and
women following a normoglycemic pregnancy in a 2:1 ratio,
recruited consecutively from the diabetes center and the ob-
stetrics department of the University Hospital (Klinikum der
Universitit Miinchen) in Munich, Germany.

Premenopausal women 3 to 16 months after a singleton (n =
295) or twin (n = 9) pregnancy with live birth(s) were eligible to
participate. The GDM diagnosis was based on a 75-g oGTT
with cut-off values for GDM according to the International
Association of the Diabetes and Pregnancy Study Groups
recommendations (plasma glucose: fasting 92 mg/dL, 1 hour
180 mg/dL, and 2 hours 153 mg/dL). Women without a history
of GDM and either a normal 75-g oGTT (n = 294) or a normal
50-g screening oGTT (<135 mg/dL plasma glucose after 1 hour,
n = 10) after the 23rd week of gestation were included in the
normoglycemic group.

Exclusion criteria for this study were alcohol or substance
abuse, prepregnancy diabetes, and chronic diseases requiring
continuous medication, except for hypothyroidism (n = 52),
bronchial asthma (n = 8), mild hypertension (n = 4), gastro-
esophageal reflux (n = 2), and history of pulmonary embolism
resulting in rivaroxaban prophylaxis (n = 1).

Written informed consent was obtained from all study
participants, and the protocol was approved by the ethical
review committee of the Ludwig-Maximilians-Universitit (study
ID 300-11).

Data used in this analysis were collected at the baseline visit
of the PPSDiab study, 3 to 16 months after the index pregnancy.
In addition to the baseline visit, post-GDM women also
attended yearly follow-up visits with a 75-g oGTT.

Groups

We compared three groups of women: a control group
(women normoglycemic at the baseline visit and after a nor-
moglycemic pregnancy), a normoglycemic high-risk group
(women normoglycemic at the baseline visit but with GDM
during the preceding pregnancy), and a prediabetes/diabetes
group [women with impaired fasting glucose (IFG), IGT, com-
bined IFG plus IGT, or screening-diagnosed type 2 diabetes at
the baseline visit and with GDM during the preceding preg-
nancy]. IFG [fasting plasma glucose =100 mg/dL (5.6 mmol/L)),
IGT [2-hour plasma glucose =140 mg/dL (7.8 mmol/L)], and
diabetes [fasting plasma glucose =126 mg/dL (7.0 mmol/L)
or 2-hour plasma glucose =200 mg/dL (11.0 mmol/L)] were
defined according to the criteria of the American Diabetes
Association (19).

Measurements

We conducted a five-point 75-g oGTT with measurement of
plasma glucose (Glucose HK Gen.3; Roche Diagnostics,
Mannheim, Germany), serum insulin (chemiluminescent im-
munoassay; DiaSorin LIASON Systems, Saluggia, Italy), high-
sensitivity C-reactive protein (wide-range C-reactive protein;
Siemens Health Care Diagnostics, Erlangen, Germany), and
blood lipids [low-density lipoprotein and high-density lipo-
protein (HDL) cholesterol and triglycerides] (enzymatic caloric
test; Roche Diagnostics, Mannheim, Germany) after an over-
night fast.
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Plasma glucagon was measured at all five time points of
oGTT with an ELISA (Glucagon ELISA; Mercodia, Uppsala,
Sweden; catalog no: 10-1271-01) and also a radioimmunoassay
(RIA) (Merck Millipore, Darmstadt, Germany; catalog no: GL-
32K) for 283 subjects. ELISA and RIA measurements gave
different results (Supplemental Table 1; Supplemental Fig. 1). In
particular, suppression of plasma glucagon during the oGTT
was insufficiently represented in the RIA measurement. Sensi-
tivity and specificity of ELISA for pancreatic glucagon (amino
acids 33 to 61) have been proven to be superior to RIA (20, 21).
Thus, for this analysis, we exclusively used glucagon data
measured by ELISA (n = 299). Plasma for glucagon measure-
ments was collected in BD p800 tubes (BD Biosciences, San Jose,
CA), which contain specific proteinase inhibitors to stabilize
glucagon and other metabolically important hormones. Plasma
was immediately separated by centrifugation and directly frozen
in aliquots on dry ice, before being transferred to a —80°C freezer
within 1 hour from completion of the oGTT. Glucagon mea-
surements were done in one batch and only from aliquots that
had not been thawed previously.

Height and waist circumference were measured to the nearest
1 cm. Body mass and body fat mass were determined by a bio-
electrical impedance analysis scale (Tanita BC-418; Tanita Cor-
poration, Tokyo, Japan) (22, 23). Blood pressure was calculated as
the mean out of two measurements in a resting seated position.

In addition to these basic tests, all study subjects were asked
to participate in a magnetic resonance imaging (MRI) mea-
surement and an intravenous glucose tolerance test (ivGTT)
on a voluntary basis.

MRI (3 Tesla System, Ingenia, or Achieva; Philips Health
Care, Hamburg, Germany) included determination of ab-
dominal visceral adipose tissue volumes and liver fat content,
using an mDixon low-fat fraction map. In the ivGTT, a glucose
bolus of 0.3 g/kg body weight was injected over 1 minute with
subsequent frequent blood sampling at 0, 2, 4, 6, 8, 10, 20, 30,
45, and 60 minutes. The measurements were used for the cal-
culation of first-phase insulin response.

A detailed description of the study design, anthropometric,
clinical, and MRI measurements, and methodologies of blood
sampling and analysis can be found elsewhere (24).

Calculations
Mean blood pressure = (diastolic value#2 + systolic value) /3

The insulin sensitivity index (ISI) according to Matsuda and
DeFronzo (25) was calculated from the oGTT:

ISI = IOOOO/\/[(glucose O *insulin 0)*(glucose O

+ 2%(glucose 30 + 60 + 90') + glucose120)/8
#(insulin 00 + 2#(insulin 300 + 60" + 90')
+ insulin120)/8]
The disposition index (DI) was calculated as (26):
DI = ISI*IR30
with
IR30 = insulin 30" — insulin O

ISI and insulin release 0’ to 30” in the oGTT were previously
validated with data from ivGTT-euglycemic clamp tests in this
cohort (24).
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Glucagon suppression indices were calculated as (27):

Early suppression = (1-[glucagon 30"/ glucagon 0'])+100%
Late suppression = (1-[glucagon 120" /glucagon 30')+100%

Overall suppression = (1-[glucagon 120 /glucagon 0°])=100%

Area under the glucagon curve was calculated using the
trapezoidal rule.

First-phase insulin response in the ivGTT test was calculated
as the incremental area under the insulin curve from 0 to
10 minutes.

Statistical analysis

All metric and normally distributed variables are reported as
mean * standard deviation; nonnormally distributed variables
are presented as median (first quartile to third quartile). Categorical
variables are presented as frequency and percentage. The Kruskal-
Wallis test was used to compare metric variables, and the y* or
Fisher’s exact test was used to compare categorical variables. For
post hoc analysis, Dunn’s test was used. P values <0.05 were
considered statistically significant.

Functional data analysis methods were used for the analysis
of the oGTT measurements (28). In the first step, the five-point
oGTT measurements were converted into continuous, smooth
curves based on B-spline basis functions (29). Afterward, a
functional principal component analysis was performed based
on the fitted curves to analyze the temporal variation (28). In the
next step, a cluster analysis was conducted to identify patients
with similar plasma glucagon dynamics. Hierarchical clustering
was performed on the first three principal components of the
functional principal component analysis via the Hierarchical
Clustering on Principal Components function of Husson et al.
(30). Hierarchical clustering was performed using the Ward’s
criterion on the selected principal components. The number of
clusters was chosen based on the growth of between-inertia. For
the final partitioning, the k-means algorithm was performed
with the partition obtained from the hierarchical tree as the
initial partition. All statistical calculations were performed
using SAS statistical software package version 9.3 (SAS In-
stitute, Inc., Cary, NC) or R version 3.1.3 (www.r-project.org).

Results

Mean glucagon curves differ between
metabolic groups

We recruited 304 women into the PPSDiab study
cohort but excluded 19 from this analysis. Two women
were excluded because of type 1 diabetes diagnosed
during follow-up, two because of overt hyperthyroidism,
and one because of an acute upper respiratory infection at
baseline. Eight women were excluded from the control
group due to pathological glucose tolerance at the
baseline visit, and six women were excluded due to
missing glucagon values.

Our final sample consisted of 285 study participants:
93 normoglycemic women after a normoglycemic preg-
nancy (control group), 121 normoglycemic women who
had GDM (normoglycemic high-risk group), and 71
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women with IFG, IGT, or newly diagnosed type 2 di-
abetes (prediabetes/diabetes group).

Baseline characteristics of the study cohort are shown
in Table 1. Mean age and low-density lipoprotein cho-
lesterol were comparable, but mean blood pressure, waist
circumference, triglycerides, c-reactive protein, liver fat
content, intra-abdominal fat, and fasting and 2-hour
plasma glucose increased and HDL cholesterol and in-
sulin sensitivity decreased from the control over the
normoglycemic high-risk to the prediabetes/diabetes
groups (all significant over the three groups; results of
pairwise post hoc tests shown in Table 1).

We next compared plasma glucagon levels during the
oGTT in the three groups (Table 1). Fasting plasma
glucagon was significantly elevated, and early glucagon
suppression was diminished in the prediabetes/diabetes
group compared with the control group [median (Q1 to
Q3) for fasting plasma glucagon: 6.0 (4.6 to 8.2) (pmol/L)
vs 7.7 (5.6 to 11.2) (pmol/L); early glucagon suppression:

https://academic.oup.com/jcem 975

47.6(32.8t057.9) (pmol/L) vs 32.0 (14.5to 51.3) (pmol/L),
respectively]. The normoglycemic high-risk group lay in
between for these variables, but closer to the control group
and not statistically different from it [median (Q1 to Q3)
for fasting plasma glucagon: 6.6 (4.5 to 8.4) (pmol/L);
early glucagon suppression: 41.3 (22.9 to 58.3) (pmol/L)]
(Fig. 1; Table 1). Total glucagon suppression was similar in
all three groups.

Similar to a recent publication by Faerch et al. (27), we
further examined fasting glucagon values and glucagon
suppression indices in women with isolated IFG compared
with those with isolated IGT and combined IFG + IGT
(Supplemental Fig. 2; Supplemental Table 2). Late and
overall glucagon suppression was smaller in women with
isolated IFG compared with both other groups [median
(Q1 to Q3) late suppression: 41.8 (16.5 to 50.4) (%) vs 58.1
(43.1 to 71.3) (%) vs 58.9 (46.1 to 69.6) (%) and overall
suppression: 58.9 (39.8 to 70.2) (%) vs 71.2 (68.4 to 81.0)
(%) vs 73.7 (63.8 to 81.0) (%) in IFG vs IGT vs IFG + IGT,

Table 1. Baseline Characteristics of the PPSDiab Study Sample
Control Normoglycemic High-Risk Prediabetes/Diabetes P Value

n 93 121 71
Glucose status

NGT 93 (100.0%) 121 (100.0%)

IFG — — 31 (43 7%)

IGT — — 22 (31.0%)

IFG + IGT — — 12 (16.9%)

Type 2 diabetes — — 6 (8.5%)
Age (y) 35.3 % 4.2 352 =45 359 + 45 0.6204
Mean blood pressure (mm Hg) 85.8 £ 9.0 89.0 = 8.67 90.9 = 10.37 0.0026

(missmg =1)

BMI (kg/m ) (missing = 4) 237 40 25258 282 + 7.1%° 0.0001
Waist circumference (cm) (missing = 5) 78.1 =89 80.7 £ 11.2 86.6 + 13.22% 0.0002
hsCRP (mg/dL) 0.04 (0.01-0.08) 0.06 (0.02-0.25)° 0.09 (0.02-0.30)° 0.0030
Triglycerides (mg/dL) 61.0 (51.0-77.0) 65.0 (50.0-87.0) 81.0 (62.0-130.0)*° <0.0001
HDL cholesterol (mg/dL) 64.0 (57.0-73.0) 63.0 (56.0-73.0) 56.0 (46.0-65.0)*7 <0.0001
LDL cholesterol (mg/dL) 104.0 (88.0-118.0) 105.0 (89.0-120.0) 104.0 (85.0-124.0) 0.9035
Plasma glucose 0 min (mg/dL) 89.0 (83.0-92.0) 91.0 (87.0-95.0) 102.0 (97.0-106.0)%®  <0.0001
Plasma glucose 120 min (mg/dL) 93.0 (81.0-108.0) 114.0 (96.0-122.07° 141.0 (113.0-165. 0¥*  <0.0001
ISI ( missing = 1) 6.8 (5.2-8.6) 5.5 (3.7-7.5)° 3.3(21 4 6)>P <0.0001
DI (missing = 1) 297.4 (221.4-363.1) 246.6 (179.7-322.0) 60. {) ( 11 207 6)* 20 <0.0001
FPIR (missing = 152) 2.2 (1.4-3.5) 2.2 (1.6-3.5) ( 9) 0.8218
Liver fat content (%) (missing = 132) 0.2 (0.0-0.8) 0.5 (0.0-1.1) 1 7 (0. 0 4 ‘I)"‘"b 0.0122
Intra-abdominal fat (L) (missing = 124) 1.4 (0.9-2.1) 1.8 (1.1-2.97° 2.3(1.3-3.27° 0.0046
Glucagon 0 min (pmol/L) 6.0 (4.6-8.2) 6.6 (4.5-8.4) 7.7 (5.6-11.2y0 0.0069
Glucagon 30 min (pmol/L) 3.0(2.4-4.7) 3.7 (2.5-4.9) 5.0 (3.0-7. 6)‘”’ <0.0001
Glucagon 60 min (pmol/L) 1.9 (1.4-3.1) 2.6(1.8-3.7) 2.9 (2.0-4 0.0009
Glucagon 90 min (pmol/L) 2.1 (1.3-3.0) 2.1(1.6-3.2) 2.5(1.8-3 ) 0.0527
Glucagon 120 min (pmol/L) 2.3 (1.4-3.5) 2.2 (1.5-3.3) 2.3(1.6-3.5) 0.5239
AUC glucagon 339.4 (248.5-473.6) 392.1 (283.5-518.2) 511.5(353. 4—61 5.2 0.0006
Early-suppression glucagon (0-30) (%) 47.6 (32.8-57.9) 41.3 (22.9-58.3) 32.0 (14.5-51.37 0.0055
Late-suppression glucagon (30-120) (%) 31.8 (8.9-49.6) 40.9 (14.9-56.7) 47.4 (33.3-63.6)*" <0.0001
Suppression glucagon (0-120) (%) 61.2 (48.2-76.9) 64.1 (49.5-74.4) 68.5 (57.3-75.0) 0.3130

Abbreviations: AUC, area under the curve; BMI, body mass index; FPIR, first-phase insulin response; hsCRP, high-sensitivity C-reactive protein; LDL, low-
density lipoprotein; NGT, normal glucose tolerance.

#Significant post hoc tests vs control.

bsignificant post hoc tests vs normoglycemic high-risk.
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Glucagon (pmol/l)

30

o=

respectively). We observed no significant differences in
early glucagon suppression and fasting glucagon.

Plasma glucagon patterns are heterogeneous
within each metabolic group

The five-point glucagon curves in response to oral
glucose were heterogeneous between individuals
(Fig. 2a). To examine this further, we calculated con-
tinuous, smooth curves from the five measurements
during the oGTT based on B-spline basis functions
(Fig. 2a). Stratified by group, these curves confirmed
within-group heterogeneity of plasma glucagon dynamics
(Supplemental Fig. 3). To permit pattern identification,
we added a principal component analysis of the curves.
The first three principal component factors explained
79%, 17%, and 3% of curve variance, respectively
(Fig. 2b). We used these three principal components as
input for an unsupervised cluster analysis (Fig. 2c). This
identified four clusters corresponding to four distinct
patterns of plasma glucagon dynamics (Fig. 2d).

Cluster 3 was the largest (n = 188; Table 2) and
showed low mean fasting glucagon and rapid suppression
during the oGTT (Figs. 2d and 3a). Cluster 2, the second
largest (n = 62), had higher mean fasting glucagon but

60
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=== control
m== normoglycemic high-risk

== prediabetes/diabetes

90 120

Time
Figure 1. Glucagon during oGTT stratified by risk groups (blue = controls, gray = normoglycemic high-risk, red = prediabetes/diabetes).
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equally rapid suppression. Cluster 1 (n = 21) had high
mean fasting glucagon and delayed suppression, and
cluster 4 (n = 7) had low mean fasting glucagon and a
rising curve after glucose ingestion (Fig. 3a; Table 2).
Cluster 1 contained the highest proportion of women
from the prediabetes/diabetes group (53%), followed by
cluster 2, cluster 3, and cluster 4. Women in cluster 1 had
significantly higher body mass index, waist circumfer-
ence, triglycerides, liver fat content, and intra-abdominal
fat and lower HDL cholesterol and ISI than those in the
other three clusters. The DI of cluster 1 was significantly
lower than those of clusters 2 and 3 (Table 2). Cluster 4
included lean, insulin-sensitive women with a tendency
toward low glucose values (Fig. 3b and 3c; Table 2).

Discussion

In our first analysis, we found that women with
prediabetes/screening-diagnosed type 2 diabetes had
higher fasting glucagon and delayed glucagon suppres-
sion during an oGTT compared with healthy control
subjects (normoglycemic women after a normoglycemic
pregnancy). Normoglycemic women after GDM, a high-
risk group for type 2 diabetes (16, 17), lay in between,
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indicated by black line). (b) Then, a principal component analysis of the curves was conducted (median indicated by solid line; extremes indicated

by dotted lines). (c) The three principal components were used as input for an unsupervised cluster analysis (asterisk indicates line types used to
represent the clusters in Fig. 3). (d) Fitted glucagon curves during oGTT stratified by the four clusters (colors: original risk groups as used in Table

1 and Fig. 1; blue = controls, gray = normoglycemic high-risk, red = prediabetes/diabetes).
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Table 2. Baseline Characteristics of the PPSDiab Study Sample, Stratified by Clusters of Glucagon Dynamics

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P Value
n 28 62 188 7
Risk group
Control 7 (25.0%) 19 (30.7%) 65 (34.6%) 2 (28.6%) 0.0279
Normoglycemic high-risk 6 (21.4%) 27 (43.6%) 84 (44.7 %) 4 (57.1%)
Prediabetes/diabetes 15 (53.6%) 16 (25.8%) 39 (20.7%) 1(14.3%)
Glucose status
NGT 13 (46.4%) 46 (74.2%) 149 (79.3%) 6 (85.7%) 0.0099
IFG 5(17.9%) 6 (9.7%) 19(10.1%) 1(14.3%)
IGT 3 (10.7%) 7 (11.3%) 12 (6.4%) 0
IFG + IGT 3 (10.7%) 3 (4.8%) 6 (3.2%) 0
Type 2 diabetes 4 (14.3%) 0 2(1.1%) 0
Age (y) 33.5 .+ 4.8 35:.5 a4 35.7 +4.3° 350 4.0 0.0315
Mean blood pressure (mm Hg) 96.2 = 8.6 894 +92 87.0 + 9.0 856 74 <0.0001
(missing = 1)
BMI (kg/mz) (missing = 4) 333 £ 6.1 265 = 6.4° 240 = 467 216 + 1.5 <0.0001
Waist circumference (cm) 96.0 = 11.9 83.8 + 12.3°7 78.6 + 9.3° 735 + 4.1° <0.0001
(missing = 5)
hsCRP (mg/dL) 0.19 (0.07-0.47) 0.05 (0.01-0.17)* 0.04 (0.01-0.12)° 0.12 (0.05-0.38) 0.0004
Triglycerides (mg/dL) 91.5 (58.5-132.0) 62.5 (53.0-83.0) 67.5 (53.0-88.5) 63.0 (58.0-91.0) 0.0898
HDL cholesterol (mg/dL) 49.0 (44.5-61.5) 62.0 (51.0-73.0) 63.0 (56.0-73.0) 65.0 (56.0-70.0) 0.0012
Plasma glucose 0 min (mg/dL) 97.5 (90.5-106.0) 91.0 (88.0-97.0) 91.0 (86.0-97.0) 87.0 (82.0-92.0) 0.0078
Plasma glucose 120 min 127.0(115.5-154.5)  113.5 (95.0-130.0)° 106.5 (90.0-121.5° 80.0 (74.0—92.0)""" <0.0001
(mg/dL)
ISI (missing = 1) 2.5(1.9-4.3) 5.0 (3.3-6.97° 5.8 (4.2-8.1)° 7.9 (5.6-8.3)° <0.0001
DI (missing = 1) 152.0(96.5-247.8) 230.2 (165.3-392.0)° 252.8 (176.7-324.4)" 232.9(156.2-276.4) 0.0007
IR30 (missing = 1) 55.7 (37.1-82.2) 50.3 (36.4-86.1) 41.6 (30.9-60.1) 28.7 (26.2-41.3%% 0.0023
FPIR (missing = 152)¢ 3.9(2.2-6.2) 3.3(2.2-4.3) 2.1(1.4-3.1) 2.1(1.0-2.7)(n=3) 0.0140
Liver fat content (%) 2.4(1.1-6.4) 0.7 (0.0-1.77° 0.3 (0.0-0.8)° 0.1 (0.0-0.5)7 <0.0001
(missing = 131)
Intra-abdominal fat (L) 3.4(2.9-4.4) 2.0 (1.5-3.07° 1.5(1 0-2.3y° 1.1 (0.9-1.6Y* <0.0001

(missing = 124)

Abbreviations: BMI, body mass index; FPIR, first-phase insulin response; hsCRP, high-sensitivity C-reactive protein; IR30, insulin release 0’ to 30" in the

oGTT; NGT, normal glucose tolerance.
“Significant post hoc test: significant vs cluster 1.
bSignificant post hoc test: significant vs cluster 2.

“The post hoc test for FPIR was conducted both including cluster 4 and after exclusion of cluster 4 (due to the small group size in cluster 4); in any case, the

post hoc test has not reached significance.

with values closer to and not statistically different from
the control group.

These results are in line with most previous studies that
saw the highest fasting glucagon and most impaired
glucagon suppression in subjects with diabetes, followed
by those with prediabetes, and, at the low end, normo-
glycemic individuals (10-13, 27). In several nondiabetic
cohorts, fasting glucagon was higher in insulin-resistant
than in insulin-sensitive subjects (31-33). A majority of
studies also found a positive association of plasma glu-
cagon with obesity in groups with similar glucose tol-
erance (11, 13, 31). Some earlier studies had different
findings. Ahrén and Larsson (14) reported that fasting
and postprandial glucagon did not differ between IGT
and normoglycemic subjects in 84 postmenopausal
women. Wagner ef al. (15) analyzed cohorts of non-
diabetic individuals and found that, in 21% to 34% of
subjects, glucagon was not suppressed until 120 minutes
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into the oGTT. These individuals were lean and insulin-
sensitive, and also had a favorable prognosis of insulin
sensitivity over time.

In their recent study, Faerch et al. (27) described that
glucagon curves differed between individuals with IFG
and those with IGT. They found a smaller overall de-
crease in glucagon during an oGTT in the group with
isolated IFG compared with isolated IGT and combined
IFG + IGT. Our analysis confirms this result, with the
difference in overall glucagon suppression mainly caused
by the late phase of the oGTT (Supplemental Fig. 2;
Supplemental Table 2).

In our second analysis, we saw that plasma glucagon
dynamics in the study cohort followed four different
patterns, based on an unsupervised cluster analysis. The
clusters detected did not fully or even closely match the
predefined metabolic groups. We consider this the main
finding of this paper. Subjects from the prediabetes/
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Figure 3. Means of (a) glucagon, (b) glucose, (c) insulin, and (d) c-peptide curves during oGTT stratified by the four clusters derived from the

glucagon curves (Fig. 2).

diabetes group were overrepresented in cluster 1 (with
high fasting glucagon and diminished suppression), but
still only made up 50% of this cluster, which also con-
tained 25% control subjects. Conversely, the majority of
women from the prediabetes/diabetes group (n = 39;
55%) fell into cluster 3, the “most normal” cluster (with
low fasting glucagon and rapid suppression). Therefore,
hyperglucagonemia was not a universal prerequisite for
impaired glucose metabolism or early type 2 diabetes. It
only affected a subgroup of individuals.

Delayed glucagon suppression was clearly associated
with obesity and metabolic syndrome markers in our
study. This is evident from the clinical characteristics
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(e.g., waist circumference, blood lipids, plasma glucose,
and intra-abdominal and liver fat) of the subjects in
cluster 1 compared with the other clusters (Table 2).

Hepatic steatosis may even be a cause of hyper-
glucagonemia, as it disrupts hepatic glucagon sensitivity
and probably leads to reactive hypersecretion of the
hormone (34). The association of liver fat and hyper-
glucagonemia was found independent of the presence of
disrupted glucose metabolism (34, 35).

Impaired early insulin secretion could be another cause
of delayed postprandial glucagon suppression, but we do
not find evidence for this relationship. Early insulin and ¢-
peptide levels during the oGTT and first-phase insulin
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secretion in the ivGTT were not reduced in the women in
cluster 1. The reduced DI results from lower insulin sen-
sitivity (ISI) in this cluster, but not from reduced early insulin
secretion (insulin release 0’ to 30° in the oGTT) (Table 2).
The a cell resistance to inhibition by insulin or a reactive
glucagon hypersecretion due to a resistance of the liver is
therefore the most likely explanations for our findings.

.Another noteworthy observation was the small cluster
4 (n=7;2.5% of participants), with low fasting glucagon,
but rising glucagon levels during the oGTT. The women in
this cluster were lean and insulin-sensitive and had low
glucose levels. In this group, the rising glucagon probably
is a physiologic response to avoid postchallenge hypo-
glycemia as a result of an overactive insulin response,
which is not uncommon in lean, young women (36).
Wagner et al. (15) associated rising glucagon during an
oGTT with a favorable metabolic prognosis. Our small
and probably not representative sample does not confirm
this finding. Five of the 7 women in cluster 4 had had
GDM (Table 2), and all of these 5 women developed
prediabetes or diabetes during the follow-up of this study
(mean duration of follow-up was 38.2 months; data not
shown). In our cohort, this phenotype is also much less
common than reported in the previous publication. How-
ever, given the small number of subjects in cluster 4, we find
these observations interesting and worth following up on,
but we do not claim that they constitute scientific evidence
by themselves.

Finally, we believe it is important to use highly specific
glucagon assays, in particular to study postprandial glu-
cagon dynamics. We initially used a standard RIA, which
strongly underestimated glucagon suppression (Supple-
mental Fig. 1). This was probably due to cross-reactivity
with other peptides cleaved from proglucagon, such as
oxyntomodulin, glicentin 1-61 (N-terminally elongated
glucagon), and miniglucagon. Intestinal secretion of these
peptides increases in the postprandial state, masking
glucagon suppression (21, 37-39). Sandwich ELISAs, with
antibodies against the N- and the C-terminal end of the
glucagon molecule, circumvent this problem.

Strengths of this study are optimal preanalytic and
analytic techniques plus a cohort homogeneous for age
and sex and with little medication and concomitant
diseases. We used functional data analysis to interpret
glucagon dynamics and also consider this a strength of
our work. This method can extract more of the in-
formation contained in a function than classic multi-
variate statistical techniques (40-42). Together with a
subsequent cluster analysis, it permits the grouping of
data sets according to their curve shapes. Using a recent
history of GDM to identify a high-risk cohort early in the
process of type 2 diabetes development should have
limited secondary metabolic abnormalities to the minimal
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extent possible in a human study. At the same time, the
study cohort can also be interpreted as a weakness, because
results may not apply to the general population. Another
limitation of this analysis is its cross-sectional design, which
precludes the clarification of cause-effect relationships.

We conclude that fasting hyperglucagonemia and
delayed postprandial glucagon suppression associate
with insulin resistance, prediabetes, and diabetes, but are,
in reality, only present in subgroups of individuals.
Dysglycemia can develop without elevated plasma glu-
cagon, and elevated glucagon does not preclude nor-
moglycemia. Fasting hyperglucagonemia and delayed
suppression are strongly linked to obesity and metabolic
syndrome. Rising glucagon during an oGTT may be a
rare phenomenon. It occurs in insulin-sensitive in-
dividuals with a tendency toward hypoglycemia, but does
not necessarily indicate metabolic health.

Our results have consequences for the pathophysiologic
understanding of type 2 diabetes and for the development
of precision treatments. At present, glucagon agonists and
antagonists are evaluated for diabetes therapy (1, 2, 43,
44). Based on our findings, patients should probably be
stratified by glucagon values for such treatments. For those
patients with hyperglucagonemia, glucagon antagonists
could be an appropriate therapy, whereas for others,
agonists may be useful to induce beneficial effects mediated
through the glucagon receptor, such as weight loss (2, 44).
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Supplemental Table 1: Comparison of glucagon values measured with RIA vs. ELISA
(n=283); RIA: radioimmunoassay, ELISA: Enzyme-linked Immunosorbent

Assay, GDM-NG: normoglycemic subjects at baseline after a pregnancy complicated by
gestational diabetes; GDM-PGM: subjects after a pregnancy complicated by

gestational diabetes with pathological glucose tolerance at baseline

RIA ELISA
total control normoglycemic prediabetes/diabetes total control normoglycemic  prediabetes/diabetes
high-risk high-risk
Glucagon 0 1 1 1 1 1 1 1 1
min
Glucagon 30 0.95 0.94 0:95 0.98 0.58 0.53 0.59 0.68
min (0.87-1.05) (0.86-1.03) (0.85-1.05) (0.89-1.07) (0.43-0.77)  (0.42-0.68) (0.42-0.77) (0.49-0.85)
Glucagon 60 0.90 0.90 091 0.90 0.38 0.34 0.40 0.43
min (0.81-1.06) (0.82-1.06) (0.81-1.07) (0.81-1.05) (0.26-0.52)  (0.21-0.50) (0.28-0.54) (0.28-0.52)
Glucagon 90 0.90 0.91 0.89 0.89 0.36 0.33 0.38 0.36
min (0.79-1.04)  (0.82-1.06) (0.77-1.03) (0.74-1.03) (0.24-0.50)  (0.22-0.54) (0.24-0.50) (0.25-0.49)
Glucagon 0.89 0.94 0.89 0.87 0.35 0.39 0.36 0.32
120 min (0.78-1.02)  (0.82-1.07) (0.78-1.01) (0.73-0.95) (0.25-0.49) (0.23-0.53) (0.26-0.50) (0.25-0.43)
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Glucagon RIA

Supplemental Fig. 1: Comparison of glucagon curves measured with RIA vs. ELISA

(n=283); RIA: radioimmunoassay, ELISA: enzyme-linked immunosorbent assay.
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Supplemental Table 2: Fasting plasma glucagon and glucagon suppression indices during oGTT in different groups of prediabetes (isolated IFG,
IGT, and combined IFG+IGT). IFG: impaired fasting glucose, IGT: impaired glucose tolerance.

IFG IGT IFGHIGT p-value
n 31 22 12
Glucagon 0 min [pmol/1] 7.2 (5.3-9.6) 8.7 (6.6-11.7) 8.6(58-11.1) 0.2503
Early suppression glucagon (0-30) [%] 28.0 (11.9-65.5) 34.0 (17.4-51.7) 384 (17.6-52.1) Q273
Late suppression glucagon (30-120) [%] 41.8 (16.5-50.4) 58.1 (43.1-71.3)' 58.9 (46.1-69.6)" 0.0004
Suppression glucagon (0-120) [%] 58.9 (39.8-70.2) 71.2 (68.4-81.0)" 73.7 (63.8-81.0)" 0.0009

"in post hoc test significant vs. IFG
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Supplemental Fig. 2: Plasma glucagon during oGTT in different groups of prediabetes
(isolated IFG: light pink; isolated IGT: red; combined IFG+IGT: brown).

IFG: impaired fasting glucose, IGT: impaired glucose tolerance.
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Glucagon [pmol/l]

Supplemental Fig. 3: Glucagon curves stratified by risk group (blue = controls, gray = normoglycemic high-risk, red = prediabetes/diabetes) and

subjects (each curve indicates one subject).
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ABSTRACT

Presently, routine screening misses many cases of prediabetes and early type 2 diabetes (T2D).
Therefore, better biomarkers are needed for a simple and early detection of abnormalities of glu-
cose metabolism and prediction of future T2D. Possible candidates for this include plasma or
serum amino acids because glucose and amino acid metabolism are closely connected. This
review presents the available evidence of this connectivity and discusses its clinical implications.
First, we examine the underlying physiological, pre-analytical, and analytical issues. Then, we
summarize results of human studies that evaluate amino acid levels as markers for insulin resist-
ance, prediabetes, and future incident T2D. Finally, we illustrate the interconnection of amino
acid levels and metabolic syndrome with our own data from a deeply phenotyped human cohort.
We also discuss how amino acids may contribute to the pathophysiology of T2D. We conclude
that elevated branched-chain amino acids and reduced glycine are currently the most robust and
consistent amino acid markers for prediabetes, insulin resistance, and future T2D. Yet, we are cau-
tious regarding the clinical potential even of these parameters because their discriminatory
power is insufficient and their levels depend not only on glycemia, but also on other components
of the metabolic syndrome. The identification of more precise intermediates of amino acid
metabolism or combinations with other biomarkers will, therefore, be necessary to obtain in
order to develop laboratory tests that can improve T2D screening.
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Introduction gold-standard for the diagnosis of prediabetes and T2D,
is used infrequently, because it is time consuming and
difficult to reproduce [10]. Screening with HbAlc or

fasting plasma glucose misses many cases of prediabe-

The need for novel biomarkers for type 2 diabetes
risk

A chronic and progressive disease, diabetes mellitus
often yields secondary complications like neuro-,
nephro-, and retinopathy [1]. The global prevalence of
diabetes almost quadrupled from 108 to 422 million
people from 1980 to 2014 [2]. Worldwide, the direct
annual costs of type 2 diabetes (T2D) have been esti-
mated to be more than US $825 billion [2-4]. Over 90%
of the diabetes cases globally are defined as type 2 [5,6].

Currently, routine screening for T2D is usually per-
formed with fasting plasma glucose or HbA1c measure-
ments [7-9]. An oral glucose tolerance test (oGTT), the

tes and early T2D. Measurement of HbA1lc reliably
detects later disease stages [8], but at that point, remis-
sion of the disease is unlikely [11,12]. However, if detec-
tions occur in the prediabetic stage, lifestyle, and
pharmacologic interventions can often delay T2D mani-
festation [11,13-15]. Hence a new, simple, sensitive, and
reliable laboratory test for prediabetes and early T2D
would be desirable. In this respect, amino acids and
related metabolites in the blood have been intensely
studied in recent years as some of the most promising
biomarker candidates.

CONTACT Andreas Lechner @ andreas.lechner@med.uni-muenchen.de e Diabetes Research Group, Medizinische Klinik und Poliklinik 1V, Ziemssenstrasse

1, 80336 Munchen, Germany
9 Supplemental data for this article can be accessed here.
© 2017 Informa UK Limited, trading as Taylor & Francis Group
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Why amino acids? The interrelation of glucose and
amino acid metabolism

Protein provides the most important structural and
functional components of the human body. Muscle pro-
tein in particular also serves as an energy store. Protein-
derived amino acids are constantly turned over and
transported between organs and the blood stream. In
anabolic phases, dietary amino acids are added to the
body’s protein pool. These phases alternate with cata-
bolic states, which occur with energy deprivation or
when dietary protein is available in excess of structural
requirements. Then energy is provided by the break-
down of endogenous protein and amino acids can be
used for gluconeogenesis [16]. Over-activation of gluco-
neogenesis occurs in most cases of prediabetes and
T2D [17,18]. Glucagon stimulates this process in the
liver and, to a lower extent, in the kidneys [16]. After
deamination, amino acids form keto acids like acetyl-
CoA (derived from leucine, isoleucine, lysine, and tryp-
tophan), alpha-ketoglutarate (derived from glutamate,
glutamine, arginine, proline, and histidine), succinyl-CoA
(derived from valine), and fumarate (derived from aspar-
tate, asparagine, tyrosine, and phenylalanine), which are
further metabolized to oxaloacetate in the Krebs-cycle
(Figure 1) [16,19]. Deamination of asparagine and aspar-
tate directly forms oxaloacetate and alaninge; the
deamination of cysteine, glycine, serine, and tryptophan
form pyruvate. Oxaloacetate and pyruvate feed gluco-
neogenesis [16,19]. Among the amino acids, alanine
and glutamine are the most important gluconeogenic
precursors in liver (major site of gluconeogenesis)
[20-22].

In turn, non-essential amino acids can be synthetized
de novo from glucose. Phosphoglycerate (an intermedi-
ate of glycolysis) and pyruvate are carboxylic acids. The
addition of an amine group to these carboxylic acids
results in amino acids. Thereby serine is gained from
phosphoglycerate and alanine is gained from pyruvate
[23]. Carboxylic acid-intermediates of the Krebs-cycle
also form amino acids by transamination, e.g. aspartate
from oxaloacetate and glutamate from alpha-ketogluta-
rate [23].

Free amino acids also modulate glucose metabolism
by stimulating insulin secretion. For example, oral inges-
tion of amino acids simultaneously raises insulin and
glucagon [24,25] without changes in the plasma glu-
cose [26,27]. This hormonal response is dependent on
the type of amino acid ingested [24].

In conclusion, amino acid and glucose metabolism
are closely linked. Amino acids represent a main reser-
voir for gluconeogenesis and influence insulin and glu-
cagon secretion. Both processes are altered early in the

pathogenesis of T2D, which, at least in theory, makes
amino acids good candidates for biomarkers in this
area.

Pre-analytics — plasma or serum, fasting or
non-fasting, stability

Studies on how pre-analytic procedures affect the
amino acid content in serum and plasma vyield incon-
sistent results, Many studies have found differences
in amino acid concentrations between serum and
plasma [28-35]. These differences range from a few
to more than 100%, depending on the specific
amino acid [28,31]. One possible reason for differen-
ces between serum and plasma is the delay until
sample processing. Concentrations of amino acids in
plasma or serum alter rapidly if analysis (or freezing)
is delayed after the blood draw, even after centrifu-
gation [30]. The concentrations of some amino acids
rise, e.g. when amino acids are released from blood
cells during clotting in a serum tube, while other
amino acids are degraded when stored at room tem-
perature [28,31,35]. Hence, time and sample tempera-
ture affect the results and stability varies for each
amino acid [30,3536]. Normally, one freeze-thaw
cycle seems acceptable, but more than one may
cause problems [36]. Different concentrations of
serum and plasma metabolites can also result from
matrix effects during analysis that occur due to ion
suppression. In electrospray ionization mass spec-
trometry, competition of molecules for ionization can
reduce the detection rate [29,34]. Hence, Denery
et al. suggest enhanced sensitivity for small mole-
cules like amino acids in serum, because serum con-
tains less protein than plasma [29].

Other studies find comparable amino acid concentra-
tions in serum and plasma [26,27] and Wedge et al.
demonstrate that inter-individual differences in amino
acid concentrations clearly outweigh possible differen-
ces between serum and plasma [34].

Another factor that profoundly affects the amino
acid levels is the fasted/non-fasted state. After a protein
containing meal, amino acid concentrations rise sub-
stantially and, depending on the food consumed, their
composition in plasma and serum differs [16,37].
Therefore, blood sampling in the fasted state should be
preferred in order to gain robust results.

In summary, plasma or serum amino acids should be
measured in the fasted state for most research ques-
tions. Neither plasma nor serum has a consistent advan-
tage. However, the processing time should generally be
brief and rapid cooling of the samples should be
attempted.
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Figure 1. Schematic interrelation of amino acids and gluconeogenesis. Amino acids printed in bold italic represent the major glu-

coneogenic precursors from liver and intestine.

Analytic approaches to quantify amino acids

Building on the introduction of starch columns by
Elsden and Synge [38], W. H. Stein and S. Moore have
developed the first method for the chromatography of
amino acids [39-42]. At this time, amino acids were
detected via UV-Vis-spectroscopy with post-column
derivatization using ninhydrin [43,44]. Later, ion-
exchange columns replaced the starch columns [45,46].
Finally, analysis time had shortened with the “automatic
recording apparatus”, invented by D. H. Spackman et al.
[47]. Instead of a derivatization after separation, pre-col-
umn derivatization with aromatic reagents subse-
quently permitted reversed-phase chromatography as
small, polar molecules were converted into hydrophobic
ones [48].

Modern gas and liquid chromatography of amino
acids are still conducted primarily on ion-exchange and
reverse-phase columns [49,50], but now usually coupled
with high resolution mass spectrometry (MS) to analyze
the effluent [49,51-55]. Gas chromatography is used
less frequently today because it is only suitable for vola-
tile yet thermo-stable molecules. Instead, high perform-
ance liquid chromatography (HPLC) is used widely in
the metabolomics field. It maintains high sensitivity and
guantitative reproducibility without a mandatory need
for chemical derivatization [51]. Stationary phases can
now be manufactured from very small particles of about
2um diameter that enhance specificity and sensitivity
with a higher peak capacity compared to standard
HPLC columns. This technique is usually recognized as
ultra-high performance liquid chromatography (UHPLC)
[56-59].

An alternative to chromatography, mass spectrom-
etry (MS) can also directly separate most amino acids
(separation of metabolites with different molecular
weights or different fragmentation patterns) [60]. This
method is often combined with direct sample injection,
e.g. the widely used flow injection analysis (FIA). Even if
the direct injection lowers the ionization efficiency, this
combination analyzes rapidly and covers a wide range
of metabolites with high selectivity and a very low limit
of detection [51,61]. One disadvantage of direct MS for
metabolite separation is the need for a sample prepar-
ation, which probably causes a loss of metabolites by a
reaction with added substrates or a degradation when
physical conditions are changed [62]. Additionally, ion-
ization effects impair the quantification of compounds
[51,62,63]. Hence, MS is primarily used for detection in
combination with other separation methods.

Nuclear magnetic resonance (NMR) spectroscopy
represents another key method for amino acid analysis.
Compared to MS, NMR spectroscopy implies a lower
sensitivity (micro-molar range) [58,64], yet sample prep-
aration is easier to conduct and NMR signals are inher-
ently semi-quantitative [58,63]. Also, NMR provides
some information about molecule structure that is
especially useful for non-targeted metabolomics [65].
The signal’s integral reflects the relative concentration
of a compound and the addition of an internal or exter-
nal standard can make the method fully quantitative.
To some degree, an electronic reference also permits
the calculation of absolute concentrations [65].

In summary, neither method ideally separates and
detects all metabolites [66]. For simultaneous
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determination of various amino acids, NMR and
(UHP)LC-MS are currently the most widely used techni-
ques [51,58]. NMR provides more detailed information
about molecular structure and the samples remain
intact, while LC-MS has higher sensitivity and through-
put [51,58,67].

Results

Plasma or serum amino acids as biomarkers for
prediabetes and insulin resistance

In the previous paragraphs, we showed that in theory
amino acids could be good biomarkers for prediabetes
and T2D and that efficient methodologies exist that can
quantify them in human serum or plasma. But, how
effective are amino acids in identifying individuals with
prediabetes or insulin resistance?

In cross-sectional studies, the three branched-chain
amino acids (BCAAs) valine, leucine, and isoleucine
[68-85], and the aromatic amino acids (AAAs) tyrosine
[69,71,75,81,82] and phenylalanine [69,71,74,75,78,
81,82] show the most consistent positive associations
with prediabetes and insulin resistance. An equally
robust, but negative, association is found for glycine
[73,76,80,82,85-88].

A less consistent finding is the association of predia-
betes or T2D with higher levels of alanine [69,71,75,76,
78,86], serine [73,76,80,81], proline [71,76,78,84], glu-
tamine [68,75,76,78], the glutamine/glutamate ratio
[71,80], glutamate [69,76,81,85], histidine [69,72,76], and
lysine [69,76,80].

More detailed information on the current literature is
provided in the Online Resource 1, where we update a
previous systematic review [89] on the subject.

Novel cross-sectional data from a deeply
phenotyped human cohort

We used original data obtained from our own study,
PPSDiab, to illustrate how plasma amino acid concen-
trations also correlate with other components of the
metabolic syndrome, beyond glucose metabolism.
PPSDiab is a prospective cohort study of young women
after a recent pregnancy. It was enriched for T2D at-risk
individuals by recruiting women after gestational dia-
betes and women after a normoglycemic pregnancy in
a 2:1 ratio. In a cross-sectional analysis of the baseline
visit of the study, 8.9+28months after delivery, we
measured 29 amino acids and related biogenic amines
in fasting plasma from 153 women. Baseline characteris-
tics are shown in Table 1. Detailed information about

the study procedures are provided in the Online
Resource 1.

Between subjects with normal glucose tolerance
(NGT) and those with pathologic glucose tolerance
(PGT) glycine (fold change (FC)=1.21, Benjamini
Hochberg corrected p=.01; NGT median 272.6 (95% Cl:
228.1-340.7) pmol/l; PGT 224.6 (186.9-258.3) pumol/l)
and glutamate (FC =0.76, p=.01; NGT 40.1 (28.2-50.3)
umol/l; PGT 53.3 (37.8-65.5) umol/l) showed the largest
differences. Other significant amino acids (after correc-
tion) were proline, the sum of the BCAAs, and isoleucine
and leucine by themselves (Figure 2). All values of
the group comparison are provided in the Online
Resource 2.

Only glutamate and glycine were significantly (but
weakly) associated with glucose status in a logistic
regression analysis with the amino acids that signifi-
cantly differed between the NGT and PGT group. In the
BMI-adjusted model, solely glycine remained significant
(Table 2).

Figure 3 depicts a heatmap of correlations between
plasma amino acids and the main components of the
metabolic syndrome. Details for this analysis are pro-
vided in the Online Resource 2. The pictured associa-
tions illustrate that some plasma amino acids are
indeed markers for all aspects of this syndrome, not
only disturbed glucose metabolism. This finding corre-
sponds with several previous studies [90-95].

We believe these data illustrate the problems of
amino acids as biomarkers for prediabetes. The overlap
between normoglycemic and prediabetic individuals is
high and associations with other components of the
metabolic syndrome obscure the connections between
amino acid levels and glycemia.

Plasma or serum amino acids to predict future
incident T2D in prospective studies

Amino acid levels not only associate with current meta-
bolic disease but, to a certain extent, also predict future
T2D. In prospective studies, high levels of the BCAAs
[75,83,96-104] [RR (95% CI) for T2D isoleucine: 1.36
(1.24-1.48); leucine: 1.36 (1.17-1.58); wvaline: 1.35
(1.19-1.53) in the meta-analysis by Guasch-Ferre et al.
[89]] and the AAAs tyrosine [75,83,96,98,102-104] [RR
(95% Cl)=1.36 (1.19-1.55) [89]] and phenylalanine
[75,96,98,101-104] [RR (95% Cl)=1.26 (1.10-1.44) [89]],
as well as low levels of glycine [83,99,100,101,103] [RR
(95% ClI)=0.89 (0.81-0.96) [89]], were seen most
consistently.

Some studies also report associations of incident
prediabetes or T2D with higher levels of alanine
[98,100,104] and the glutamine/glutamate ratio
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Table 1. Baseline characteristics of the PPSDiab study cohort.
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Total Glucose status
NGT PGT p value
n 151 113 38
Post GDM 100 (66.2%) 65 (57.5%) 35 (92.1%) <.0001
Clinical parameter (mean = SD)
Age [years] 356+3.9 353+38 36.5+4.1 1199
Waist circumference [cm] [missing =6] 81.5+12.0 79.8+113 86.5+12.7 .0016
BMI [kg/mz] [missing =1] 254+5.7 245+52 279+6.5 .0008
Systolic blood pressure [mmHg] [missing =1] 119.2+£11.0 1183+ 10.6 121.9+£12.0 1687
Diastolic blood pressure [mmHg] [missing =1] 749+9.1 743+86 76.8+10.4 3145
Months post delivery 89+28 9.1+26 8.2+31 .0580
Laboratory parameter [median (Q1-Q3)]
LDL cholesterol [mg/dI] 105.0 (89.0-122.0) 105.0 (92.0-119.0) 102.5 (83.0-125.0) .7624
HDL cholesterol [mg/dI] 62.0 (52.0-71.0) 64.0 (56.0-73.0) 58.5 (46.0-64.0) .0015
Triglycerides [mg/dl] 68.0 (54.0-91.0) 65.0 (51.0-88.0) 74.5 (60.0-110.0) 0217
Gamma glutamyl-transferase [U/I] 14.0 (12.0-20.0) 14.0 (11.0-18.0) 16.5 (13.0-23.0) 0212
hsCRP (missing =18) 0.1 (0.0-0.3) 0.1 (0.0-0.2) 0.2 (0.0-0.3) .0189
Glucose parameter [median (Q1-Q3)]
Fasting plasma glucose [mg/dl] 91.0 (87.0-97.0) 90.0 (86.0-93.0) 102.0 (96.0-105.0) <.0001
Plasma glucose 2h [mg/dl] 109.0 (91.0-123.0) 104.0 (87.0-118.0) 131.0 (99.0-161.0) <.0001
ISI [missing =2] 5.3 (3.5-8.0) 6.0 (4.4-8.4) 3.4 (2.3-4.9) <.0001
HOMA-IR [missing =1] 1.7 (1.0-2.7) 1.3 (0.9-2.1) 2.8 (1.7-3.6) <.0001
HbA1c [%] [missing =1] 5.4 (5.2-5.6) 5.4 (5.2-5.6) 5.5 (5.3-5.8) .0085
HbA1c [mmol/mol] 36 (33-38) 36 (33-38) 37 (34-40) .0085

NGT: normoglycemic glucose tolerance; PGT: pathological glucose tolerance; GDM: gestational diabetes mellitus; BMI: body mass index; LDL: low density
lipoprotein; HDL: high density lipoprotein; hsCRP: high-sensitivity C-reactive protein; ISI: insulin sensitivity index; HOMA-IR: homeostatic model assessment-

estimated insulin resistance; HbA1c: glycated hemoglobin.

[88,103], plus glutamine [88,98] and glutamate on their
own [88,100], but these findings are less consistent.

Discussion

The clinical potential of plasma or serum amino
acids as T2D biomarkers

The strongest differences in plasma amino acids prevail
between individuals with prevalent and often long-
standing T2D, and healthy individuals. In this setting,
however, additional disease biomarkers are superfluous.
With less extreme phenotypes, such as prediabetes
or normoglycemic insulin resistance, the differences
become smaller. Classic clinical risk markers, such as BMI,
blood pressure, and lipids, correlate with the most prom-
ising amino acids in the blood (Figure 3). This correlation
reduces their diagnostic potential for diabetes. The
measurement of plasma amino acids, therefore, does
not substantially improve clinical models [88,95,96,101].
Nevertheless, the available data are too consistent to
fully neglect them, in particular for glycine and the
BCAAs. Examining related intermediates of amino acid
metabolism or combining these amino acids with other
metabolite classes in diagnostic panels may, therefore,
still foster clinically useful tests.

Possible pathophysiological roles of amino acids

Given the consistent associations of several amino acids
with various stages of T2D development, it is also

warranted to consider potential contributions of these
metabolites to the pathogenesis of this disease.

Glycine

The strongest evidence for pathophysiologic involve-
ment exists for glycine. Yan-Do et al. [105] have iden-
tified glycine receptors on pancreatic beta cells that
activate chloride currents and promote membrane
depolarization. The depolarization opens voltage
dependent Ca®"channels, followed by the subsequent
secretion of insulin (Figure 4). In a positive feedback
loop, insulin augments the glycine-induced current.
Low levels of glycine could therefore impair pancre-
atic insulin release. Consistent with Yan-Do, Gonzalez-
Ortis et al. [105,106] have shown that oral glycine
supplementation can increase insulin secretion with-
out affecting insulin sensitivity and Cochrane et al.
have observed a decrease in blood glucose after gly-
cine ingestion [107]. In our opinion, these results war-
rant further investigation regarding therapeutic
applications.

Other possible links between a low blood-glycine
concentration and a metabolic risk are increased gly-
cine utilization for the formation of glutathione to
counteract oxidative stress [108], an increased uptake
rate of glycine for gluconeogenesis in insulin-resistant
tissues [95], or an inverse correlation of glycine with
visceral and subcutaneous adipose tissue mass [109].
Our data supports this inverse correlation, which can
be seen in the negative association of glycine with
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Figure 2. Beeswarm box plots for significant amino acids in
normal glucose tolerance; PGT: pathological glucose tolerance.

Table 2. Logistic regression, dependent variable NGT/PGT.

p value 0dds ratio R?
BMI .0032 1.10 (1.03-1.17) 0.09
glutamate .0071 3.29 (1.28-7.82) 0.08
glycine .0005 0.09 (0.02-0.35) 0.13
isoleucine 1143 5.19 (0.67-39.98) 0.02
leucine 2207 4.10 (0.43-39.25) 0.02
proline 1260 3.95 (0.68-22.89) 0.02
BCAA 2184 4,02 (0.44-36.80) 0.02
BMI/glutamate
BMI .0488 1.07 (1.00-1.15) 0.11
glutamate .1003 2.16 (0.86-5.43)
BMI/glycine
BMI .0856 1.06 (0.99-1.14) 0.15
glycine .0087 0.14 (0.03-0.61)
BMl/isoleucine
BMI .0091 1.09 (1.02-1.17) 0.09
isoleucine 6255 1.74 (0.19-15.90)
BMI/leucine
BMI .0061 1.10 (1.03-1.17) 0.09
leucine 8143 1.34 (0.12-15.12)
BMI/proline
BMI .0045 1.10 (1.03-1.17) 0.10
proline 2350 3.05 (0.48-19.28)
BMI/BCAA
BMI .0062 1.10 (1.03-1.17) 0.09
BCAA .8605 1.24 (0.11-13.65)

BMI: body mass index; NGT: normoglycemic glucose tolerance; PGT: patho-
logical glucose tolerance.

triglycerides and BMI and the positive association
with HDL cholesterol (Figure 3). However, findings
regarding the causal connection of glycine and obes-
ity are contradictory. Kamaura et al. have observed a
normalization of glycine levels after a life style inter-
vention that decreased body weight and waist cir-
cumference [92]. In contrast, El Hafidi et al. find that
oral glycine supplementation reduces visceral obesity
in an animal study, via enhanced oxidation of fatty
acids in the adipose tissue [110].

NGT vs. PGT group comparison stratified for glucose status. NGT:

The branched-chain amino acids

For the BCAAs, their role in the pathogenesis of T2D
remains debatable. Higher BCAAs with insulin resist-
ance may result from muscle tissue that does not
adequately respond to the anti-catabolic effect of
insulin in this situation. This dysregulation would lead
to an increased proteolysis of skeletal muscle and,
because BCAAs are the most prominent class of
amino acids in this tissue, their plasma concentration
would subsequently rise [70,111,112]. This association
is supported by a recent Mendelian randomization
study by Mahendran et al., which suggests that insu-
lin resistance drives high fasting BCAA levels and not
the other way around [113].

An alternative explanation for higher BCAAs may be
the disruption of BCAA-catabolism (Figure 5). The
branched-chain aminotransferase (BCAT), most notably
present in muscle tissue, metabolizes BCAAs to their
analogous branched-chain keto acids [91,114-116].
Usually, the branched-chain keto acid dehydrogenase
(BCKD) further oxidizes these keto acids to acetyl- or
succinyl-CoA (depending on the initial BCAA) that are
then used as substrates in the Krebs-cycle [115]. Several
studies suggest a defect of BCKD as the cause for high
BCAA levels in T2D [115,117,118]. This defect has been
ascribed to occur due to three possible reasons: genetic
alteration of BCKDH (the gene encoding for BCKD) in
T2D and obesity [115], the disruption of enzyme activity
by high fatty acids [115,118], and high insulin levels in
insulin resistant and obese subjects [117].

A defect of BCKD may directly contribute to T2D
development because of the accumulation of
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Figure 3. Spearman correlation coefficient heatmap between components of the metabolic syndrome and amino acids with
related biogenic amines. *p < .05; metabolites are sorted by strength of association with ISI (strongest association on the left).
BMI: body mass index; HDL: high density lipoprotein; ISI: insulin sensitivity index; sysBP: systolic blood pressure; TG: triglycerides;
ala: alanine; arg: arginine; asn: asparagine; asp: aspartate; cit: citrulline; gln: glutamine; glu: glutamate; gly: glycine; his: histidine;
ile: isoleucine; leu: leucine; lys: lysine; met: methionine; orn: ornithine; phe: phenylalanine; pro: proline; ser: serine; thr: threonine;
trp: tryptophan; tyr: tyrosine; val: valine; ac-orn: acetylornithine; ADMA: asymmetric dimethylarginine, alpha AAA; a_AAA: alpha-
aminoadipic acid, creatinine, kynurenine, putrescine, serotonin, taurine; AAAs: the sum of the aromatic amino acids; BCAAs: the
sum of the branched-chain amino acids. Details for this analysis are provided in the Online Resource 2.

-
glycine‘ \

Figure 4. Scheme of suggested role of glycine receptors in
beta-cell activation. Activation of the glycine receptor (GlyR)
on the beta-cell induces Cl currents that open voltage
dependent Ca®"-channels followed by insulin secretion. Insulin
itself enhances the activation of GlyR. Taken together, this
constitutes a positive feedback loop between glycine and
insulin.

branched-chain keto acids [91]. Branched-chain keto
acids are degraded to C3- and C5-acylcarnitines and, in
excess, could overwhelm the [-oxidation machinery.

This would result in their degradation to toxic lip-
ids, like diacylglycerol and ceramide, that probably
contribute to insulin resistance [119-121] and beta-
cell failure [91]. Similarly, by preventing the over-
production of branched-chain keto acids, e.g. by
disruption of BCAT, it has been observed that glu-
cose regulation, insulin sensitivity, and lipid profiles
improve [115]. There are findings that contradict
the idea that enzymatic malfunction in few or even
single tissues could cause an increase in whole
body BCAA concentrations. Burrage et al. have
found that liver transplantation from BCKD defective
individuals into healthy humans does not disrupt
BCAA homeostasis [116]. The authors conclude that
BCAA catabolism in other tissues, like skeletal
muscle and adipose tissue, can compensate for the
defect in the liver. Furthermore, transplantation of
intact liver or adipose tissue into metabolically
impaired mice or patients with maple syrup urine
disease (a genetic defect of BCAA breakdown)
normalized BCAA levels [115]. Nevertheless, these
findings do not preclude the aforementioned effects
of ubiquitous disrupted enzymes of the BCAA
catabolism.
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Figure 5. A model of perturbation in branched-chain amino
acid catabolism. Branched-chain amino acids (BCAAs) are cata-
bolized to branched-chain keto acids (BCKAs) by the
branched-chain amino transferase (BCAT) and further oxidized
to acetyl- or succinyl-CoA by the branched-chain keto acid
dehydrogenase (BCKD). Acetyl- and succinyl-CoA will then
serve as intermediates in the Krebs-cycle. A defect in BCKD
leads to the accumulation of BCKAs, followed by the accumu-
lation of BCAAs. An overflow of BCKAs will be compensated
by alternative degradation of BCKAs to C3- and C5-acylcarni-
tines, which are degraded by beta-oxidation. If acylcarnitines
exceed the capacity of beta-oxidation, diacylglycerol (DAG)
and ceramides are formed, which promote insulin resistance.

Glutamate

The breakdown of BCAAs to branched-chain keto acids
releases ammonia that is used for the synthesis of glu-
tamate from alpha-ketoglutarate [111,122]. Increased
breakdown of BCAAs to their keto acids will increase
the synthesis of glutamate, thus, linking elevated BCAA
with elevated glutamate levels.

In beta cells, leucine allosterically activates the glu-
tamate dehydrogenase [123]. This enzyme catalyzes the
conversion of glutamate to alpha-ketoglutarate with a
glucose independent release of ATP. Thereby, the ATP/
ADP-ratio increases; this increase primarily causes insu-
lin release [123,124]. Glutamate synthesized in the beta-
cell is transported into and stored in insulin secreting
granules [124]. Subsequently, it is released together
with insulin, linking hyperinsulinemia to high levels of
glutamate.

In  contrast, glutamate decreases insulin and
increases glucagon secretion via activation of NMDA
receptors on the beta cell and AMPA/Kainate receptors
on the alpha cell, respectively [124,125]. This can wor-
sen insulin resistance.

The aromatic amino acids

For the AAAs, it has been suggested that tyrosine and
phenylalanine are increased because of a decreased

activity of the tyrosine aminotransferase, caused by
insulin resistance [126]. Additionally, an enhanced
breakdown of methionine to cysteine/cystine, and
finally to alpha-hydroxybutyrate, which has been
reported to be elevated in T2D, possibly inhibits the
tyrosine aminotransferase [126]. As phenylalanine is dir-
ectly converted into tyrosine, alterations in one of the
two amino acids will probably cause an alteration in the
other.

Conclusions

The need for better biomarkers for prediabetes and
future T2D remain and selected plasma or serum amino
acids, in particular glycine and the BCAAs, are possible
candidates for such biomarkers. For reproducible results
of an amino-acid analysis, we recommend fasting sam-
ples, rapid pre-analytical processes, and a maximum of
one freeze-thaw cycle. High-quality analytic methods
are available. Besides their association to diabetes,
amino acids are connected to other markers of the
metabolic syndrome. Given this and the limited
strength of the observed associations in cross-sectional
and prospective studies, amino acids cannot yet serve
as clinically relevant biomarkers by themselves.
Therefore, future research should focus on broader
metabolomics analyses, including other metabolite
classes, and also examine metabolite interactions and
additional intermediates of amino acid metabolism. The
therapeutic potential of the effect of glycine on insulin
secretion should be further investigated in human
studies.
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Online Resource 1: Materials and methods

Systematic review

Our search in MEDLINE for previous systematic reviews on the subject produced/yielded a 2015, high-
quality publication by Guasch-Ferre et al. [68]. We used this publication as the starting point for our
literature search and conducted a qualitative review of observational human studies published
subsequently that analyzed plasma amino acids and their relationship to prediabetes and T2D. Our
search strategy mirrored Guasch-Ferre et al. [68] and focused on MEDLINE for publications from
August 1, 2015 until May 10, 2017, because this period is not covered by Guasch-Ferre et al.

Search strategy:

MEDLINE was searched for articles published between 08/01/2015 and 05/10/2016 in English

using the following search term:

((“metabolomics”[MeSH Terms] OR “metabolomics”[All Fields] OR “metabolome”[MeSH
Terms] OR “metabolome”[All Fields]) AND (“diabetes mellitus”[MeSH Terms] OR
(“diabetes”[All Fields] AND “mellitus”[All Fields]) OR “diabetes mellitus”[All Fields] OR
“diabetes”[All Fields] OR “type 2 diabetes”[ All Fields] OR “metabolic diseases”[MeSH Terms]
OR “insulin resistance”[All Fields] OR “insulin sensitivity”[ All fields] OR “metabolic
syndrome x”’[MeSH Terms] OR “metabolic syndrome”[All Fields] OR “HOMA-IR”’[All Fields]
OR “HOMA- B”[All Fields] OR “impaired glucose”[All Fields] OR “impaired fasting
insulin”[All Fields]) AND “humans”[MeSH Terms])

All stages of publications (early view, in press, published) in English were considered relevant. Inclusion
criteria were also adapted from Guasch-Ferre et al. [68] (observational human studies on prediabetes or
T2D plus the measurement of a plasma or serum amino acid panel; in contrast to Guasch-Ferre et al.,
we did not include studies on urinary amino acids). Study quality was rated following the STROBE
checklist [69].

67



Initial search in PubMed for
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PPSDiab study design and participants

The observational, prospective cohort study PPSDiab [70] assessed women 3—16 months after delivery
with either gestational diabetes or normoglycemia during pregnancy at the Medical Center of the
University of Munich (“Klinikum der Universitit Miinchen”), Germany, starting in November 2011.
Recruitment for the sample analyzed here concluded in December 2013. Gestational diabetes mellitus
was diagnosed with a 75g oral glucose tolerance test (0GTT) and according to the IADPSG criteria [71].
Exclusion criteria were alcohol or substance abuse and chronic diseases requiring systemic medication
(except for hypothyroidism (n=23), mild hypertension (n=1), bronchial asthma (n=3), and seasonal
allergies treated with desloratadine (n=1)). Four women included in this analysis without a clear medical
diagnosis were also taking daily medication at the time of the study visit (proton-pump inhibitors (n=3)
and dehydroepiandrosterone (n=1)).

Written informed consent was obtained from all study participants, and the study protocol was approved
by the ethics review committee of the Ludwig-Maximilians-Universitit in Munich, Germany.

Two participants were excluded from the analysis because of a diagnosis of hyperthyroidism (n=1) and

positivity for GADG65 and IA2 antibodies (n=1) respectively. The final sample included 151 women.

PPSDiab study procedures

Participants underwent a five-point, 75g oGTT with measurement of plasma glucose and serum insulin
(after an overnight fast) and were divided into normoglycemic subjects [NGT; fasting plasma glucose
5.6 mmol/l (<100 mg/dl) and 2h plasma glucose 7.8 mmol/l (<140 mg/dl)) and subjects with
pathological glucose tolerance (PGT; fasting plasma glucose >5.6 mmol/l (=100 mg/dl) and/or 2h
plasma glucose >7.8 mmol/l (=140 mg/dl)]. The oGTT data were also used to calculate the insulin
sensitivity index according to Matsuda and DeFronzo [72] as well as the homeostasis model assessment

insulin resistance index (HOMA-IR) [73].

Metabolite quantification out of fasted plasma samples was conducted using the targeted metabolomics
assay Absolute/DO™ pl180 Kit (Biocrates Life Sciences AG, Innsbruck, Austria) and liquid
chromatography-triple quadrupole mass spectrometry (LC-MS/MS). The assay procedures of the
Absolute/DO™ p180 Kit have been described in detail previously [74]. Concentrations of all
metabolites were calculated using internal standards and reported in uM. Amino acids and related
biogenic amines, as represented in the kit, were included in this analysis. These were: alanine (ala),
arginine (arg), asparagine (asn), aspartate (asp), citrulline, glutamine (gln), glutamate (glu), glycine
(gly), histidine (his), isoleucine (ile), leucine (leu), lysine (lys), methionine (met), ornithine (orn),
phenylalanine (phe), proline (pro), serine (ser), threonine (thr), tryptophan (trp), tyrosine (tyr), valine
(val), acetylornithine, asymmetric dimethylarginine, alpha-aminoadipic acid, creatinine, kynurenine,
putrescine, serotonin, taurine, the sum of the aromatic amino acids (AAAs), and the sum of the branched-

chain amino acids (BCAAs).
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Anthropometric data and body fat mass, as determined by a bioimpedance measurement, were also
obtained. A detailed description of the study design, anthropometric and clinical measurements as well
as methodologies of blood sampling and analysis has been published previously [70]. In brief, fasting
plasma samples were collected in protease inhibitor containing tubes (P800 vacutainer, BD Biosciences,
Becton, Dickinson and Company, Franklin Lakes, New Jersey, USA). After blood sampling, plasma

was immediately processed and subsequently stored at -80°C until analysis.

Statistical analysis

All numerical values are presented as mean =+ standard deviation (SD) or median (first - third quartile).
Proportions were compared using chi-squared test or Fisher’s exact test. Different groups were
compared using a t-test or Mann—Whitney U-test. The Benjamini—-Hochberg method was used to correct
for multiple testing. To assess whether a variable is normally distributed or not, the Shapiro—Wilk test
was used. Logistic regression models with NGT/PGT status as dependent and plasma concentrations
and/or BMI as independent variables were performed for selected metabolites. All statistical analyses
were performed using SAS statistical software package, version 9.3 (SAS Institute Inc., Cary, North

Carolina, USA) and R version 3.1.3 (R Development Core Team, Vienna, Austria).
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Online Resource 2

Study characteristics and main findings for the systematic review

Systematic review of the association of amino acids and biogenic amines with prediabetes and type 2 diabetes.

Covariates
Study, Technique and . . . Other PRISMA/
t N f Biol 1 full,
Reference | population S u.dy un}b.e re metabolite AeaIes Outcome n .u v Key findings substudies STROBE
. design participants sample adjusted .
location targets included score*
model
case-control and non-
prospective population-based
studies:
association with prediabetes:
Cross-sectional or (1) BCAAs, AAAs, ala, pro,
case—control: gln/glu ratio
7 prediabetes-related (1) gly, ser, gln;
measures (2h glucose, association with T2D:
HOMA-IR); (1) BCAAs, AAAs, ala, glu, lys,
27 cross- . .
. . 9 studies prediabetes alpha-/beta-HB
sectional or Mainly LC- or . .
. and T2D; 11 studies (1) gly, his
Systematic case—control .. GC-MS (24 . .
[68] review studies Participants: studies): plasma / T2D mainly: age, Meta-analysisi: 3 10
06/2015 19 ’ n=20-n=7098 Tar ete(i/ serum Prospective: sex, BMI ile RR=1.36 (1.24-1.43), )
rospective untar egte d4:20/7 3 prediabetes-related leu RR=1.36 (1.17-1.58),
P Snﬁ’ o geted: measures (fasting-/2h val RR=1.35 (1.19-1.53),
glucose, HOMA, tyr RR=1.36 (1.19-1.55),
oGTT glucose AUC); phe RR=1.26 (1.10-1.44),
8 studies prediabetes gly (RR=0.89 (0.81-0.96),
and T2D; 8 studies gln (RR=0.85 (0.82—0.89),
T2D ala (RR=1.19 (0.99-1.42),
his (RR=0.98 (0.91-1.006),
arg (RR=1.19 (1.14-1.25), om
(RR=1.10 (1.05-1.15), met
(RR=1.45 (1.38-1.52)
Netherlands n=533 (165 Blood (no Cross-sectional
Epidemiology newly information . analysis of
- ESI-FIA-M h file+l
[71] of Obesity ‘s:er:(c)fiinal diagnosed T2D MSS S/ about T2D ]s;;l,lage, and (I) phe, tyr, sum of iletleu (1) postprandial 0.81
(NEO) study, / 174 control plasma or gy changes in
Netherlands subjects) serum) metabolites
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n=2383 (154

association with HOMA-IR:

DM), fi .
)’. rom (1) ala, alpha-ketoglutarate, Cross-sectional
baseline . S .
.. aminoadipic acid, ile, kynurenine, | sub-study of
. examination .
Framingham cohort , leu, pro, tyr, val obesity and
Heart Stud prospective (1991-1995) to age, Sex, (}) asn, gly, SDMA related
) Y .| either one of the | LC with tandem HOMA-IR; fasting batch, BMI, 0 ¥ . . . )
[69] Offspring population- followin MS plasma lucose o association with fasting glucose: cardiometabolic | 0.84
Study, US based . g g .g . (1) alpha-HB, beta-HB, isocitrate | traits;
examinations: triglycerides .. . S
(]) creatinine, gly, his, longitudinal
exam 6 (1995- . . .
kynurenine, symmetric analysis of
1998), 7 (1998~ dimethylarginine, taurine metabolites
2001), or 8 threonifle ¢ ’ ’
(2005-2008)
n=30
(10 healthy-
lean; 10 association with HOMA-IR and Analysis of fatty
Diabetes Risk metabolically Prediabetes (fasting fasting insulin: acids,
Ccross- ) age, sex, and .
[72] Assessment sectional healthy-obese; CE-MS plasma glucose, fasting BMI (1) pro, leu postprandial 0.73
Study, Canada 10 insulin, HOMA-IR) association with fasting glucose: analysis of
metabolically (1) creatine, pro metabolites
unhealthy-
obese)
Qatar (1) 2-HB, alpha-ketobutyrate
Metabolomics > &P yrate,
Stud n=369 (188 age, sex, alpha-hydroxypyruvate, 3- Analvsis of
}., Cross- T2D/181 Ultra-HPLC/GC ethnicity, hydroxyisobutyrate ¥ L.
[70] on Diabetes . plasma T2D . metabolites in 0.76
. sectional control -MS and BMI (]) pyroglutamine, 1- . .
(QMDiab), . o saliva and urine
subjects) methylhistidine, 3-
Arab and methoxytyrosine, citrulline
Asian yoyr ’
Subjects
ited at th
recturtec 4t the n=64 (31 non-
Virgen de L
. prediabetic . . .
laVictoria . association with HOMA-IR and Analysis of
University Cross insulin Prediabetes (fasting age (all), fasting insulin: association of
i itive; ESI-MS/M BMI (onl ' .
[73] Hospital and sectional sens1-t1ve,.33 SEMS/MS serum insulin, HOMA-IR) (only (1) val, glu BMI with 0.79
prediabetic val) .
Carlos Haya . . ) gly metabolites
. insulin
Hospital resistant)
(Malaga,
Spain)

* Score calculated as sum of criteria fulfilled/sum of criteria requested.
tprospective association of amino acids with T2D; pooled RR for incident T2D per study-specific SD difference in the amino acid analyzed,

(1), positive association (e.g., higher metabolite, higher risk); (|), inverse association (e.g., lower metabolite, lower risk) with prediabetes traits or type 2 diabetes.
AAAs: aromatic amino acids; BCAAs: branched-chain amino acids; DM: diabetes mellitus, T2D: type 2 diabetes; HB: hydroxybutyrate
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Comparison of plasma amino acids in NGT and PGT group (PPSDiab study)

Fold change NGT vs. PGT-group p value
alanine 0.963784208822498 0.449158005020214
arginine 1.02143595351558 0.830169269640774
asparagine 0.990206117990152 0.981519806304174
aspartate 0.937309545274435 0.449158005020214
citrulline 0.969422343700731 0.981519806304174
glutamine 1.06320978860949 0.0759106163604412
glutamate 0.758478365193794 0.0147770300563038
glycine 1.20764320964134 0.0147770300563038
histidine 1.00357421130837 0.947178590532944
isoleucine 0.92254202298691 0.0147770300563038
leucine 0.938875699691918 0.0355730504363148
lysine 1.00042060030229 0.981519806304174
methionine 1.0102707042081 0.853221343178087
ornithine 1.04449593578243 0.471775515093756
phenylalanine 0.949272721372389 0.0632558716223262
proline 0.922549074179386 0.0147770300563038
serine 1.05164897135846 0.471775515093756
threonine 1.01159818360666 0.981519806304174
tryptophane 1.00151202879749 0.981519806304174
tyrosine 0.964809232223344 0.418921357490307
valine 0.958299576211642 0.247730477421767
Ac-Orn 1.19792481428624 0.549542664740572
ADMA 1.00078011187636 0.982895333686895
alpha AAA 0.836062916498834 0.0577518126920937
creatinine 0.995972176258046 0.981519806304174
kynurenine 0.989914692206711 0.981519806304174
putrescine 1.05291533711337 0.549542664740572
serotonine 0.937303630463963 0.549542664740572
taurine 1.01876587858866 0.853221343178087
AAAs 0.946260539389602 0.0858961121448052
BCAAs 0.939418360444861 0.0355730504363148
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Spearman correlation of amino acids and selected biogenic amines with components of the metabolic syndrome (PPSDiab study)

correlation coefficient p-value number of participants (n)
Variable ISI BMI sysBP TG HDL IST BMI sysBP TG HDL ISI BMI sysBP TG HDL
alanine -0.2295 0.1292 0.0860 0.1956 -0.1784 | 0.0049 0.1152 0.2956 0.0161 0.0284 149 150 150 151 151
arginine 0.1175 -0.1044 -0.0027 -0.1140 0.1016 0.1535 0.2035 0.9742 0.1633 0.2145 149 150 150 151 151
asparagine 0.1767 -0.2308 -0.2051 -0.1101 0.1550 0.0311 0.0045 0.0118 0.1782 0.0575 149 150 150 151 151
aspartate -0.1102 0.0618 -0.1151 0.1188 -0.0483 | 0.1810 0.4525 0.1607 0.1463 0.5557 149 150 150 151 151
citrulline 0.1872 -0.2155 -0.2232 -0.1881 0.2721 0.0223 0.0081 0.0060 0.0207 0.0007 149 150 150 151 151
glutamine 0.2127 -0.0946 -0.0507 -0.2198 0.1230 0.0092 0.2497 0.5381 0.0067 0.1325 149 150 150 151 151
glutamate -0.4853 0.4787 0.1144 0.3392 -0.2941 | 0.0000 0.0000 0.1635 0.0000 0.0002 149 150 150 151 151
glycine 0.3680 -0.3436 -0.2792 -0.2212 0.2007 0.0000 0.0000 0.0005 0.0063 0.0135 149 150 150 151 151
histidine 0.1186 -0.0760 -0.0132 0.0111 -0.0378 | 0.1498 0.3555 0.8730 0.8920 0.6453 149 150 150 151 151
isoleucine -0.3294 0.3558 0.2065 0.1862 -0.4107 | 0.0000 0.0000 0.0112 0.0221 0.0000 149 150 150 151 151
leucine -0.2333 0.2992 0.1804 0.1654 -0.3299 | 0.0042 0.0002 0.0272 0.0424 0.0000 149 150 150 151 151
lysine 0.0711 0.0558 -0.0307 -0.0502 -0.0282 | 0.3890 0.4978 0.7093 0.5401 0.7308 149 150 150 151 151
methionine 0.0566 -0.0702 -0.0140 -0.0851 -0.0308 | 0.4930 0.3931 0.8648 0.2991 0.7070 149 150 150 151 151
ornithine 0.0934 -0.0151 -0.0307 -0.2279 0.0391 0.2572 0.8541 0.7096 0.0049 0.6340 149 150 150 151 151
phenylalanine -0.1576 0.1630 0.1155 0.0721 -0.1532 | 0.0549 0.0463 0.1595 0.3789 0.0604 149 150 150 151 151
proline -0.2063 0.1087 0.0916 0.0140 -0.1455 | 0.0116 0.1855 0.2647 0.8641 0.0746 149 150 150 151 151
serine 0.2255 -0.1168 -0.0681 -0.4068 0.0839 0.0057 0.1545 0.4079 0.0000 0.3056 149 150 150 151 151
threonine 0.0248 0.0515 -0.0259 -0.0113 -0.0001 | 0.7641 0.5315 0.7535 0.8904 0.9991 149 150 150 151 151
tryptophane -0.0638 0.0487 0.0230 0.0441 -0.0292 | 0.4395 0.5537 0.7801 0.5907 0.7219 149 150 150 151 151
tyrosine -0.2963 0.2858 0.1973 0.1289 -0.1939 | 0.0002 0.0004 0.0155 0.1148 0.0171 149 150 150 151 151
valine -0.2386 0.3035 0.1408 0.1491 -0.2469 | 0.0034 0.0002 0.0857 0.0676 0.0022 149 150 150 151 151
ac-Orn 0.1638 -0.2264 -0.2856 -0.2837 0.2494 0.0459 0.0053 0.0004 0.0004 0.0020 149 150 150 151 151
ADMA -0.0727 0.0743 0.0483 0.0362 0.0203 0.3782 0.3660 0.5576 0.6590 0.8044 149 150 150 151 151
alpha AAA -0.3120 0.2754 0.0687 0.1847 -0.2205 | 0.0001 0.0006 0.4038 0.0232 0.0065 149 150 150 151 151
creatinine 0.2322 -0.1682 -0.0561 -0.0870 0.2070 0.0044 0.0396 0.4956 0.2883 0.0108 149 150 150 151 151
Kynurenine -0.0561 0.1423 0.0884 0.0528 -0.0017 | 0.4969 0.0825 0.2821 0.5194 0.9837 149 150 150 151 151
putrescine 0.1350 -0.0460 0.0246 -0.1074 0.0530 0.1007 0.5762 0.7647 0.1895 0.5178 149 150 150 151 151
serotonine -0.1244 0.0923 0.0146 0.2384 -0.0274 | 0.1307 0.2612 0.8597 0.0032 0.7380 149 150 150 151 151
taurine 0.1144 -0.1572 -0.1017 -0.0837 0.0499 0.1648 0.0547 0.2154 0.3067 0.5427 149 150 150 151 151
AAAs -0.2824 0.1981 0.1572 0.0657 -0.1324 | 0.0005 0.0151 0.0548 0.4230 0.1051 149 150 150 151 151
BCAAs -0.2840 0.3032 0.1750 0.1441 -0.3078 | 0.0004 0.0002 0.0322 0.0775 0.0001 149 150 150 151 151

ISI: insulin sensitivity index, BMI: body mass index, sysBP: systolic blood pressure, TG: triglycerides, HDL: high density lipoprotein cholesterol, ac-Orn: acetylornithine, ADMA: asymmetric dimethylarginine,
alpha AAA; alpha AAA: alpha-aminoadipic acid, AAAs: the sum of the aromatic amino acids, BCAAs: the sum of the branched-chain amino acids.
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8. Summary

8.1. Summary of this thesis

Type 2 diabetes mellitus (T2D) is a global health burden with an increasing prevalence.
Prevention of this disease is still insufficient, mainly due to an incomplete understanding of its
pathophysiology and a lack of suitable tests for early diagnosis. To contribute to the
understanding of early T2D pathophysiology, this thesis examines the role of physical fitness
and the hormones leptin and glucagon in women with a recent history of gestational diabetes
(GDM), a young, high-risk population for T2D. It also looks at plasma amino acids as potential

early biomarkers for prediabetes and T2D.

All analyses were conducted in the Prediction, Prevention and Subclassification of type 2
Diabetes (PPSDiab) study, which prospectively follows women after a pregnancy complicated

by gestational diabetes and also women after a normoglycemic pregnancy as control subjects.

The first manuscript of this thesis revealed differences in physical fitness between women
post GDM and controls. T2D-risk (post GDM-status) was associated with lower physical fitness,
independent of the BMI. Additionally, physical fitness correlated inversely with fasting plasma
leptin, independent of the BMI. Therefore, high physical fitness could potentially reduce
elevated leptin levels or counteract other mechanisms leading to leptin resistance. This may

alleviate insulin resistance, hyperinsulinemia, and hyperglycemia.

In a second manuscript, we examined plasma glucagon dynamics in the oral glucose tolerance
test in three different metabolic groups. Mean glucagon values (fasting and postprandial)
were higher in the groups at higher risk for T2D, but this was not an ubiquitous finding. An
unsupervised cluster analysis revealed four clusters of glucagon dynamics that only partially
overlapped with the metabolic groups. Therefore, we concluded that hyperglucagonemia may
contribute to hyperglycemia in some individuals, but that it is not a sine qua non for T2D

development.

In the third publication of this thesis, we examined whether plasma amino acids can serve as
biomarkers for pathological glucose tolerance. A systematic literature review and original data

from the PPSDiab study showed that glutamate, glycine, isoleucine, leucine, proline, and the
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sum of the branched chain amino acids were associated with pathological glucose tolerance.
In the PPSDiab study however, only glycine remained significantly associated with glucose
tolerance after adjustment for BMI. Additionally, besides insulin sensitivity, most amino acids
also associated with other components of the metabolic syndrome (hypertension,
dyslipidemia, high BMI, and visceral obesity). Because the metabolic syndrome is already the
basis for most current T2D risk prediction models, the addition of plasma amino acids does
not improve prediction. An exception may be glycine, which showed BMlI-independent

associations.

In sum, this thesis evaluated risk factors and novel biomarker-candidates for T2D in a
prospective cohort study of young women. It shows novel aspects of the pathophysiology of
T2D and highlights the heterogeneity of this disease. Personalized approaches to prevention

will certainly be necessary to limit the current T2D epidemic.
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8.2. Zusammenfassung dieser Arbeit

Diabetes mellitus Typ 2 (T2D) stellt ein globales Gesundheitsproblem mit steigender Pravalenz
dar. Die Pravention der Krankheit ist immer noch unzureichend, vor allem aufgrund des
unvollstandigen Verstandnisses ihrer Pathophysiologie und des Mangels an geeigneten Tests
zur frihen Diagnose. Als Beitrag zur Aufklarung der frithen T2D-Pathophysiologie untersucht
die vorliegende Dissertation die Rolle von korperlicher Fitness und der Hormone Leptin und
Glucagon in Frauen nach einer kirzlichen Schwangerschaft mit Gestationsdiabetes (GDM),
einer jungen hoch-Risiko Population fiir T2D. AuBerdem beschaftigt sie sich mit Plasma-

Aminosauren als mogliche frihe Biomarker fiir Pradiabetes und T2D.

Alle Analysen wurden in der Pradiktion, Pravention und Subklassifikation von Typ 2 Diabetes
(PPSDiab) Studie durchgefiihrt, welche prospektiv Frauen nach einer mit Schwangerschaft mit
Gestationsdiabetes sowie Frauen nach einer normoglykdamen Schwangerschaft als Kontrollen

beobachtet.

Die erste Auswertung ergab Unterschiede in der kérperlichen Fitness zwischen Frauen post
GDM und Kontrollen. Das T2D-Risiko (post GDM-Status) war BMI-unabhangig mit einer
geringeren korperlichen Fitness assoziiert. Des Weiteren korrelierte korperliche Fitness BMI-
unabhangig invers mit Nichtern Plasma-Leptin. Somit kdnnte eine hohe korperliche Fitness
moglicherweise erhdhte Leptin-Spiegel reduzieren oder anderen Mechanismen, die zu
Leptinresistenz flihren, entgegenwirken. Das kénnte Insulinresistenz, Hyperinsulindmie und

Hyperglykdamie verringern.

In einer zweiten Analyse wurde in drei verschiedenen metabolischen Gruppen der Verlauf von
Plasma-Glucagon im oralen Glucosetoleranztest untersucht. Die mittleren Glucagonwerte
(ntGchtern und postprandial) waren hoher in Gruppen mit héherem T2D-Risiko, jedoch war
dieses Ergebnis nicht ubiquitar. Eine unbeaufsichtigte Clusteranalyse ergab vier Cluster von
Glucagonverldufen, welche nur partiell mit den metabolischen Gruppen lberein stimmten.
Somit kamen wir zu dem Schluss, dass Hyperglucagonamie moglicherweise in manchen
Individuen zu einer Hyperglykdmie beitrdgt, dass es aber keine unabdingbare Voraussetzung

fir die Entwicklung von T2D ist.

In der dritten Publikation dieser Dissertation untersuchten wir, ob Aminosauren als Biomarker

flir pathologische Glucosetoleranz dienen kdnnen. Ein systematischer Literaturreview sowie
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die Originaldaten aus der PPSDiab-Studie zeigten, dass Glutamat, Glycin, Isoleucin, Leucin,
Prolin und die Summe der verzweigtkettigen Aminosdauren mit pathologischer
Glucosetoleranz assoziiert waren. In der PPSDiab Studie blieb nach Adjustieren fiir BMI jedoch
lediglich Glycin signifikant mit der Glucosetoleranz assoziiert. AuBerdem assoziierten die
meisten Aminosauren neben der Insulinsensitivitdt auch mit anderen Charakteristika des
Metabolischen Syndroms (Hypertonus, Dyslipiddmie, hoher BMI und viszerale Adipositas). Da
die Charakteristika des Metabolischen Syndroms die Basis fiir die meisten klassischen T2D-
Risikomodelle bilden, verbessert die Hinzunahme von Aminosauren die Pradiktion nicht. Eine

Ausnahme kénnte Glycin sein, welches BMI-unabhangige Assoziationen aufwies.

Zusammengefasst untersuchte diese Dissertation Risikofaktoren und neue Biomarker fir T2D
in einer prospektiven Kohortenstudie junger Frauen. Sie zeigt neue Aspekte der
Pathophysiologie des T2D auf und hebt die Heterogenitat der Erkrankung hervor. Sicherlich
werden personalisierte Praventionsansdtze notig sein, um die derzeitige T2D-Epidemie

einzudammen.
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