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Summary  III 

Summary 

The human gastrointestinal tract is covered by a simple epithelium that operates as a 

selective permeable barrier and allows the uptake of essential nutrients while 

simultaneously preventing the entry of macromolecules and pathogens from the gut 

lumen. Several types of intercellular junctions tightly connect the epithelial cells and thus 

establish a functional barrier. While tight junctions (TJ) as well as adherens junctions 

(AJ) have been studied extensively, less information is available for desmosomes. For a 

long time, desmosomes were considered to provide primarily the mechanical strength to 

intercellular cohesion. However, growing evidence suggest a role in regulating signaling 

cascades. Desmosomal cadherins constitute the adhesive core of desmosomes with 

extracellular domains (ED) binding to adjacent cadherins and a cytoplasmic tail that 

anchors the junctional complex to the intermediate filament cytoskeleton. In the human 

intestine, only two desmosomal cadherins are present, desmoglein 2 (Dsg2) and 

desmocollin 2 (Dsc2), of which Dsg2 has been reported to be crucial for barrier function 

and to play a critical role in the pathogenesis of inflammatory bowel disease (IBD).  

The main objective of this study was to investigate the adhesive and signaling functions 

of Dsg2 in human intestinal cells. At first, I characterized cultured enterocytes regarding 

their ability to establish a functional barrier that is suitable as model for the intestinal 

epithelium. Here, cultured cells showed mature barrier properties with fully formed 

apical junctional complexes and characteristic microvilli on the cell surface similar as 

observed in human tissue.  Furthermore, I identified that Dsg2 is present additionally 

outside of desmosomes on the surface of polarized enterocytes. To characterize Dsg2 

binding properties, I established atomic force microscopy (AFM) on living enterocytes, 

which was then used to investigate the effect of several signaling mediators on Dsg2 

binding. An antibody targeting the ED of Dsg2 was able to inhibit binding events in 

AFM measurements and activated p38MAPK but did not influence cell cohesion under 

same conditions. To elucidate the signaling properties of Dsg2 more in detail, I 

compared WT and Dsg2-deficient enterocytes and found a deregulated p38MAPK 

signaling pathway. Using transepithelial resistance (TER) measurements, I further 

showed that the interrelationship of p38MAPK and Dsg2 regulates barrier properties.  
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Moreover, I identified EGFR as direct interaction partner of Dsg2 and that this 

interaction inhibits the proliferative function of EGFR. In Dsg2-deficient cells, EGFR 

is absent at cell-cell borders and proliferation is increased. Co-localization of Dsg2 and 

EGFR was also observed in human tissue samples, indicating that this newly discovered 

mechanism is universal. Further, I characterized the heterophilic binding and 

demonstrated that EGFR mediators inhibit the interaction. In addition, EGFR 

mediators impaired barrier establishment and reduced cell adhesion, suggesting that the 

Dsg2-EGFR complex regulates barrier properties of intestinal epithelial cells.  

Since impaired barrier function and in particular Dsg2 function is implicated in the 

pathogenesis of Crohn’s disease (CD), I participated in studies investigating the 

mechanisms leading to loss of barrier function in IBD. Here, I analyzed human tissue 

samples from CD patients and showed changes in desmosome ultrastructure. 

 Furthermore, comparison of Dsg2 and Dsc2 deficient cells revealed a differential 

biological relevance of these cadherins. More specifically, Dsg2 had a more profound 

impact on barrier properties than Dsc2. In addition, I investigated the effect of the 

neurotrophic factor GDNF on Dsg2 binding, because GDNF has been reported to have 

a protective function in IBD patients. Here, using AFM, I showed that GDNF increases 

the binding properties of Dsg2 at cell borders and protects Dsg2 from cytokine-induced 

reduction at cell borders.   
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1 Introduction 
 

1.1 Function and structure of the human intestinal epithelial barrier 

The human gastrointestinal tract has amazing skills. Consisting of the oesophagus, 

stomach, small and large intestine, it is designed to fulfill a variety of functions such as 

storage as well as propulsive transport of food, digestion, absorption of nutrients and 

elimination of solid food waste. At the same time, it forms an important interface 

between the body interior and external environment that contains trillions of 

microorganisms that live in symbiotic and mutualistic relationship with the host as well 

as enteric pathogens that are usually co-ingested with food (Cerf-Bensussan and 

Gaboriau-Routhiau, 2010; Rodriguez et al., 2015). Hence, different types of response are 

required, dependent on whether the antigen is profitable or harmful to the host (Mowat, 

2003). How is it possible to stay permeable for the uptake of nutrients but simultanously 

preventing the entry of commensal bacteria, pathogens and harmful macromolecules? 

This remarkable function is achieved by a dynamic, selective permeable barrier. While 

the oesophagus is lined by a multilayered stratified squamous epithelium (Grace et al., 

1985), the remaining parts of the gastrointestinal tract are covered by a single layer of 

polarized columnar epithelial cells that are tightly connected by a set of intercellular 

junctional complexes (Capaldo et al., 2014; Farquhar and Palade, 1963a). The major part 

of digestion and absorption of nutrients takes place in the small intestine, divided into 

the sections duodenum, jejunum and ileum, as well as in the large intestine (Helander 

and Fandriks, 2014; Moog, 1981). In order to achieve a high efficiency in digestion and 

absorption, the intestinal epithelium is organized in a three-dimensional structure 

consisting of crypts and villi in the small intestine and crypts in the colon, which enlarges 

the surface area to approximately 32 m2 (Helander and Fandriks, 2014). To carry out the 

diversity of functions, four major types of intestinal epithelial cells (IECs) are present in 

the intestinal epithelium (Fig.1). Enterocytes make up the largest portion and are created 

primarily for specific digestive functions and absorption of nutrients such as ions, water, 

sugar, peptides and lipids (Clevers, 2013; van der Flier and Clevers, 2009). Goblet cells 

secrete highly glycosylated mucins into the intestinal lumen, thereby creating a thick fluid 
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that protects the intestinal wall from digestive enzymes and forms the first line of defense 

against microorganisms from the gut (Johansson et al., 2013; Kim and Ho, 2010). The 

major intestinal mucin produced by goblet cells is MUC2 that belongs to the gel-forming 

mucins. This group of mucins forms large polymers consisting of glycosylated mucin 

domains that are resistant to endogenous proteases, which allows the intestine to digest 

food without digesting itself (Johansson et al., 2013). In addition, transmembrane mucins 

that are produced by enterocytes, as well, form a thin layer called the glycocalyx that 

covers the apical side of IECs. Beyond their assumed role in protection, transmembrane 

mucins are also believed to be involved in apical cell surface sensing and signaling 

(Hattrup and Gendler, 2008; Singh and Hollingsworth, 2006). Paneth cells, which are 

present only in the small intestine, produce antimicrobial peptides (AMPs) including 

alpha-defensins, lysozymes and Reg3 proteins (Bevins and Salzman, 2011; Clevers and 

Bevins, 2013). AMPs have bactericidal activity and eradicate bacteria, thereby shaping 

the composition of the commensal microbiota and protecting against infections (Muniz 

et al., 2012). Moreover, AMPs function in recruiting and activating immune cells as well 

as modulate their maturation and differentiation (Funderburg et al., 2007; Navid et al., 

2012; Rodriguez-Garcia et al., 2009). Enteroendocrine cells function as chemoreceptors 

and following stimulation, they release intestinal hormones like gastrin, motilin or 

somatostatin directly into the bloodstream (Cox, 2016; Noah et al., 2011). In addition, 

progenitor stem cells reside in the crypt base, also called crypts of Lieberkühn, and 

differentiate into mature IECs while migrating up along the crypt-villus axis, thereby 

renewing the intestinal epithelium every 4-5 days (Clevers, 2013). Together, these 

specialized IECs lineages form a dynamic, physical and biochemical barrier.  

Lamina propria, which is present in close contact below the intestinal epithelium, 

contains blood vessels, immune cells such as intra-epithelial lymphocytes, macrophages, 

dentritic cells, B- and T-cells and connects the epithelium to the smooth muscle layer 

which is responsible for gut movement such as peristaltis (Collins and Bhimji, 2018). 

Muscle contractions and digestive functions are coordinated by the enteric nervous 

system (ENS) that cooperates with the central nervous system (CNS) and consists of the 

myenteric and submucosal plexus (Furness, 2012). Of note here are the enteric glial cells 

(EGCs), which are located also in proximity to the IECs (Yu and Li, 2014). They release 

specific mediators such as glial cell-derived neurotrophic factor (GDNF) or 
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transforming growth factor (TGF) β1 and play an important role in the maintance of 

both, ENS and epithelial barrier integrity (Abdo et al., 2010; Neunlist et al., 2014).  

 

Figure 1: Schematic overview of the cellular composition and three-dimensional organization of 
the epithelium in the small intestine. The intestinal epithelium includes absorptive enterocytes, mucus 
secreting goblet cells, hormone releasing enteroendocrine cells, antimicrobial peptides (AMPs) -
producing paneth cells and proliferating stem cells, which together form a dynamic barrier that seperates 
the mucosal tissue from the luminal gut microbiota. A three-dimensional structure consisting of crypts 
and villi increases the surface area and ensures highly efficient digestion and absorption. The epithelium 
is in close contact to the lamina propria that connects the epithelial cells to the muscle layer and contains 
blood vessels and immune cells. 
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1.2 Intestinal epithelial intercellular junctions 

In order to achieve a functional barrier, the paracellular space between IECs must be 

sealed. Three different types of intercellular junctions namely tight junctions (TJs), 

adherens junctions (AJs) and desmosomes hold the IECs together and form the 

“terminal bar” by sealing the paracellular space (Capaldo et al., 2014; Farquhar and 

Palade, 1963a) (Fig.2). In addition, clusters of intercellular plasma membrane channels 

called gap junctions (GJ) allow communication between adjacent cells through a passage 

route for ions and small metabolites of less than 2 kilodalton (kDa)(Staehelin, 1972).  

 

Figure 2: Structure of intercellular junctional complexes in the intestinal epithelium. Intestinal 
epithelial cells (IEC) are connected through a set of adhesion complexes including tight junctions (TJ), 
adherens junctions (AJ), desmosomes and gap junctions (GJ). TJ and AJ are tethered to the acto-myosin 
cytoskeleton, while desmosomes are linked to the intermediate filament cytoskeleton and provide strong 
intercellular cohesion.   
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1.2.1 Tight junctions 

TJs are the most apical junctional complexes and besides restricting paracellular diffusion 

based on size and charge, they maintain apicobasal cell polarity through their function 

as fence that restricts diffusion of lipids and proteins between the apical and basolateral 

sides of the cell (Cereijido et al., 1998; Tsukita and Furuse, 2000). The main protein 

components of tight junctions include the small tetraspan proteins of the claudin family, 

three MARVEL domain proteins including occludin, tricellulin and MARVELD3 as well 

as the junctional adhesion molecules (JAMs) (Furuse et al., 1996; Kubota et al., 1999; 

Martin-Padura et al., 1998; Tsukita and Furuse, 2000). The cytoplasmic C-terminal 

domains of the transmembrane proteins bind to the junctional plaque that is composed 

of adaptor proteins such as zonula occludens 1 (ZO1), which contain multiple protein-

protein interaction motifs and connect the junctional membrane proteins with F-actin 

and microtubules (Stevenson et al., 1986; Van Itallie and Anderson, 2014). Claudins are 

the most well understood TJ proteins. They comprise at least 27 members with sizes 

ranging from 20 to 27 kDa and are expressed in a tissue specific manner (Mineta et al., 

2011; Tsukita et al., 2001). According to their channel- and barrier-forming properties, 

claudins are grouped into either anion- or cation-selective paracellular channels and 

further into tight claudins when increasing barrier tightness such as claudin 4 (Cld4) and 

leaky claudins when increasing paracellular permeability such as claudin 2 (Cld2) 

(Amasheh et al., 2002; Krug et al., 2014). As they can oligomerize in cis and trans, diverse 

combinations are possible that influence barrier function (Koval, 2013).  

 

1.2.2 Adherens junctions 

AJs are located directly beneath TJs and due to their close structural and functional 

proximity, both together are also referred to as the apical junctional complex (AJC). AJs 

are calcium-dependent multiprotein complexes, consisting of classical cadherins such as 

E-cadherin (Ecad), N-cadherin (Ncad), VE-cadherin (VEcad) and P-cadherin (Pcad), 

which initiate intercellular contacts through homo- or heterophilic binding of cadherins 

on opposing cells (Adams et al., 1998; Pokutta et al., 1994). Classical cadherins are 

expressed in tissue specific manner. For instance Ncad is present in muscle cells and 



6  Introduction 
 

neurons, while VEcad can be found in endothelial cells and Ecad is the key 

transmembrane protein in epithelial cells (Niessen et al., 2011). Their binding is essential 

for the differentiation into an epithelial cell, as loss of Ecad binding results in an epithelial 

to mesenchymal transition and thus impairs barrier function (Pal et al., 2018). Cadherin-

cadherin interaction occur via their extracellular domains (EDs) and is highly dependent 

on extracellular Ca2+ that rigidifies the ED and allows interaction (Nagar et al., 1996). 

The occurrence of several Ca2+ binding pockets with different affinities, enables 

cadherins to respond dynamically to changes in junctional Ca2+ levels (Prasad and 

Pedigo, 2005). Moreover, a highly conserved tryptophan residue that is present in the 

first ED and inserts into the hydrophobic pocket of the partner cadherin influences 

binding by forming a so-called strand-swapped dimeric structure (Shapiro et al., 1995). 

The cytoplasmic domain of these transmembrane proteins interact with catenins such as 

α-catenin, β-catenin and p120ctn, which couple the cadherin complex to the actin 

cytoskeleton (Perez-Moreno and Fuchs, 2006). With this, AJs confer mechanical 

strength to adjacent epithelial cells and stabilize cell-cell adhesion. Additionally, through 

interaction with numerous other cytoskeletal linker molecules as well as adaptor proteins 

(Padmanabhan et al., 2015), AJs regulate the actin cytoskeleton and are involved in 

intracellular signaling as well as transcriptional regulation (Rubsam et al., 2017a). 

 

1.2.3 Desmosomes 

Desmosomes (which is a composition of the Greek words “desmos”, meaning bond and 

“soma”, meaning body) are the least studied type of intercellular junctions and 

considered to provide primarily the mechanical strength to intercellular cohesion (Green 

and Simpson, 2007). Similar to AJs, they are composed of transmembrane glycoproteins 

of the cadherin family that mediate calcium-dependent cell-cell adhesion via their EDs 

in a homo- or heterophilic manner. In human epithelial tissues, seven isoforms of 

desmosomal cadherins, desmoglein 1-4 (Dsg1-4) and desmocollin 1-3 (Dsc1-3) are 

expressed in a tissue- and differentiation- specific pattern. While stratified epithelia such 

as the human epidermis, express all desmosomal cadherin isoforms, the simple columnar 

epithelium of the human intestine contains Dsg2 and Dsc2 only (Holthofer et al., 2007; 
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Koch et al., 1992). A common feature shared by all desmosomal cadherins is their 

molecular organization (Fig. 3). Their ED consists of four extracellular cadherin repeats 

(ECs 1-4) and a membrane proximal extracellular anchor (EA) sequence, followed by a 

single-pass transmembrane (TM) domain. While the extracellular repeats of the cadherin 

superfamily are pretty well conserved in classical and desmosomal cadherins, unique 

features are attributed to the cytoplasmic tails (Hulpiau and van Roy, 2009). Both, 

desmogleins and desmocollins, contain a membrane proximal intracellular anchor (IA) 

domain and an intracellular cadherin-like sequence (ICS) that associates with the 

armadillo family plaque proteins plakoglobin (PG) and plakophilin (Pkp). These proteins 

in turn interact with desmoplakin (DP) that anchors the multiprotein complex to the 

intermediate filament cytoskeleton (Holthofer et al., 2007; Koch et al., 1990; Owen and 

Stokes, 2010). Desmocollins occur in two isoforms, of which one contains a truncated 

ICS domain. In addition, desmogleins contain an extended C-terminal unique region 

(DUR) with unknown features that is composed of an intracellular proline-rich linker 

(IPL), a repeat unit domain (RUD) and a desmoglein terminal domain (DTD) (Koch et 

al., 1990). 

 

Figure 3: Molecular composition of a desmosome. (A) Electron micrograph of a desmosome from 
cultured Caco2 cells. (B) Desmosomal cadherins consist of four extracellular cadherin repeats (EC), a 
single pass transmembrane domain (TM) and a cytoplasmic tail that comprises an intracellular anchor 
(IA) and an intracellular cadherin-like sequence (ICS) that associates with plaque proteins. Desmogleins 
have an additional desmoglein unique region (DUR) composed of an intracellular proline-rich linker 
(IPL), a repeat unit domain (RUD) and a desmoglein terminal domain (DTD). 
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1.2.4 Gap junctions 

GJs allow direct communication between two cells through providing a conduit for the 

passage of small metabolites and ions. They are constructed of transmembrane proteins 

called connexins (Cxs) that interact in a homo- and heterophilic way and can form homo- 

and heterotypic channels. Two hemichannels consisting of six Cxs each form a GJ, of 

which permeability is determined by the composition of Cxs isoforms (De Maio et al., 

2002; Segretain and Falk, 2004). Furthermore, Cxs interact with numerous proteins such 

as cytoskeletal components, junctional molecules from AJ or TJ and enzymes like kinases 

or phosphatases (Giepmans, 2004). Intercellular communication via GJ is required for 

maintaining epithelial cell homeostasis and function (Vinken et al., 2006). Furthermore, 

they are assumed to play an important role in several pathophysiological processes. A 

recent study demonstrates that hetero-cellular communication via GJ between IECs and 

inflammatory cells such as macrophages contributes to the dysregulation of intestinal 

epithelial barrier in inflammatory bowel disease (IBD) (Al-Ghadban et al., 2016). 
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1.3 Regulation of the intestinal barrier and intercellular adhesion 

The intestinal epithelial tissue renews every 4-5 days and thus shows the highest turnover 

rate in adult mammals (Clevers, 2013; Mayhew et al., 1999). Within the crypt, progenitor 

stem cells proliferate and differentiate into mature IECs that migrate along the crypt-

villus axis toward the villus tip region, or surface epithelial cuff in the colon, where dying 

epithelial cells are shed, a process that is called cell extrusion (Rosenblatt et al., 2001). 

Cell proliferation and shedding must be tightly regulated to assure the integrity of the 

intestinal barrier and maintain its properties. Hence, it is reasonable that under 

inflammatory conditions, when epithelial proliferation and cell turnover are enhanced, 

an increased risk of barrier leakage is observed (Cliffe et al., 2005). However, how can 

adherent cells in an epithelium proliferate and extrude without compromising the 

epithelial barrier function? The key lies in the regulation of intercellular junctions. Here, 

several strategies are conceivable.  

 

1.3.1 Regulation of intercellular adhesion via specific expression and turnover 

of adhesion molecules 

First, the type and amount of expressed adhesion molecules determines the strength of 

cell-cell adhesion. It is widely recognized that a huge number of narrow tight junctions 

is present in intestinal villi with a mature barrier, while more leaky junctions are found 

in the crypts where cell proliferation takes place (Hollander, 1999). Altered expression 

of tight junction proteins is also observed in a variety of gastrointestinal disorders that 

are characterized by a leaky barrier (Oshima and Miwa, 2016). For instance, expression 

of occludin as well as sealing claudins 5 and 8 is reduced in colon biopsies from patients 

with Crohn’s disease (CD) (Zeissig et al., 2007), whereas the pore-forming claudin 2 has 

been shown to be upregulated in samples from patients suffering from ulcerative colitis 

(UC) and CD (Heller et al., 2005; Zeissig et al., 2007). The same holds true for the 

expression of components from other intercellular junctions. Dsg2 was found to be 

reduced in the mucosa of CD patients (Spindler et al., 2015) and loss of Ecad is nowadays 

commonly considered as a hallmark of epithelial to mesenchymal transition in tumor 

progression (Pal et al., 2018). However, transcriptional regulation of adhesion molecules 
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accounts rather for long-term changes and cannot induce rapid changes in intercellular 

adhesion, since the metabolic half-life of adhesion proteins ranges from approximately 

4 hours for claudins to around five to ten hours for cadherins and up to 12 hours for 

occludin (McCrea and Gumbiner, 1991; Shore and Nelson, 1991; Van Itallie et al., 2004; 

Wong and Gumbiner, 1997). A more dynamic regulation of available amount of 

adhesion molecules is achieved through endocytosis and degradation. In line with this, 

deregulated cadherin internalization has been demonstrated to play a role in various 

diseases associated with loss of epithelial integrity (Kowalczyk and Nanes, 2012). While 

desmosomal cadherins show a rapid turnover, as shown for Dsc2 with a fluorescence 

recovery time of only 30 min after photobleaching, their cytoplasmic plaques seem to be 

exceptionally stable (Windoffer et al., 2002). Furthermore, the composition of 

desmosomal plaques also regulates desmosome dynamics. While Pkp3 renders 

desmosomes to be more dynamic and is found at early desmosomes for instance during 

wound healing, incorporation of Pkp1 results in stable and hyperadhesive desmosomes 

to stabilize intercellular adhesion (Keil et al., 2016; Tucker et al., 2014). A recent study 

shows, that this incorporation is regulated through association of Pkp1 and Pkp3 with 

14-3-3 proteins, which depends on the Pkp phosphorylation status (Rietscher et al., 

2018). 

 

1.3.2 Regulation of intercellular adhesion via the extracellular domain of 

transmembrane adhesion proteins 

A second strategy for regulation of intercellular adhesion involves modulation of the 

existing adhesion complexes including direct inhibition of binding between 

transmembrane proteins through conformational changes, steric hindrance or cleavage 

of extracellular domains (Fig.4). Several studies using adhesion proteins with mutations 

in their extracellular domains report decreased adhesion properties, highlighting the 

importance of a functional ED for proper adhesion (Buck et al., 2018; Dieding et al., 

2017; Gunzel and Yu, 2013; Samuelov and Sprecher, 2015). 
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 Inhibition of binding through conformational changes 

The importance of cadherin ED conformation is obvious regarding the fact that calcium 

binding-induced conformational changes are required for cadherin-cadherin interaction 

(Pokutta et al., 1994). Furthermore, several Ca2+ binding pockets with different affinities 

allow adjustment of binding properties dependent on junctional Ca2+ levels (Prasad and 

Pedigo, 2005). However, for desmosomes, this approach of regulation plays rather a role 

in wound healing, since desmosomes in mature tissues appear in a so-called hyper-

adhesive Ca2+-independent state and thus are resistant to disruption by reduced Ca2+ 

concentration (Garrod et al., 2005). A recent study, reporting that arryhthmogenic 

cardiomyopathy related mutations in Dsg2 ED influence the cadherin binding kinetics 

(Dieding et al., 2017), underlines the importance of proper ED function for adhesive 

properties of cadherins. Modulation of ED conformational changes plays also a role in 

TJ adhesion. For instance, an enterotoxin produced by the food-poisoning bacterium 

Clostridium perfringens, has been reported to target the extracellular domain of Cld4, 

thereby inducing a conformational change that disrupts the claudin assembly in TJ, 

which causes diarrhea (Shinoda et al., 2016).  

 Inhibition of binding through steric hindrance 

Binding inhibition through steric hindrance is well known from the autoimmune disease 

pemphigus, whereby autoantibodies targeting the adhesive domains of Dsg1 and Dsg3 

interfere with desmoglein trans-interaction, leading to skin blisters (Amagai and Stanley, 

2012). However, beside steric hindrance, autoantibody-mediated signaling events are 

required to induce impaired keratinocyte cohesion in pemphigus (Waschke and Spindler, 

2014). Furthermore, multifunctional modulators such as Galectins inhibit cell adhesion 

through steric hindrance when binding monovalently to one of the interacting domains, 

albeit bivalent galectin might also enhance adhesion by cross-linking the ED (Hughes, 

2001). For instance, binding of Galectin-3 to the ED of Dsg2 has been shown to stabilize 

the desmosomal cadherin and intercellular adhesion in intestinal epithelial cells (Jiang et 

al., 2014).  
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 Inhibition of binding through extracellular cleavage of ED 

Regulation of intercellular junctions through extracellular cleavage of the 

transmembrane domains is on the one hand a vital mechanism to regulate epithelial 

homeostasis through loosening intercellular junctions for modulation of cell migration, 

induction of cell proliferation or to prevent the formation of unintended cell aggregates 

(Huguenin et al., 2008; Lochter et al., 1997; McCawley and Matrisian, 2001). On the 

other hand, bacterial proteases target junctional proteins thereby disrupting barrier 

integrity and in pathological states including inflammation and cancer, many proteases 

for junctional proteins are misregulated, which underlines the importance of this 

regulatory mechanism (Nava et al., 2013). For instance, a serine protease released by 

Staphylococcus aureus cleaves the ED of Dsg1, which disrupts cell-cell adhesion and results 

in Staphylococcal scalded skin syndrome or bullous impetigo (Amagai et al., 2000; 

Hanakawa et al., 2002). A zinc-containing metalloprotease produced by Vibrio cholerae 

targets TJs and disrupts epithelial barrier function through cleavage of the occludin ED 

(Wu et al., 2000). Also AJ are targeted by bacterial proteases such as the HtrA protease 

from Helicobacter pylori that cleaves the ED of Ecad (Hoy et al., 2012). By now, a huge 

number of proteases has been identified for all types of intercellular junctions present in 

the intestinal epithelium and many of them are upregulated in IBD (Menzel et al., 2006; 

Ravi et al., 2007). For instance, matrixmetalloproteinase (MMP) as well as a disintegrin 

and metalloproteinase domain-containing protein (ADAM) can cleave classical 

cadherins as well as Dsg2 (Bech-Serra et al., 2006; Lochter et al., 1997; Maretzky et al., 

2005; Nava et al., 2013; Noe et al., 2001) and their activities are upregulated in several 

pathological conditions including inflammation, cancers, vascular disorders and 

autoimmune diseases (Gialeli et al., 2011; Rocks et al., 2008). However, beside disruption 

of adhesion, cleavage of the ED releases a functional ectodomain fragment that 

additionally modulates cellular processes. In this context, Dsg2 ectodomain shedding 

has been shown to compromise the mucosal barrier and to enhance IEC proliferation 

through activation of growth factor receptors (Kamekura et al., 2015). Also in skin 

epithelium, shed cadherin fragments have been reported to inhibit intercellular adhesion 

(Klessner et al., 2009; Lorch et al., 2004; Maretzky et al., 2005; Reiss et al., 2005). 

Moreover, increased soluble fragments of Ecad, Ncad and nectin are detected in cancer 
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tissues of patients and thus are meanwhile considered as biomarkers (Chung et al., 2011; 

Derycke et al., 2006; Fabre-Lafay et al., 2005; Katayama et al., 1994).  

 

Figure 4. Regulation of intercellular adhesion through direct inhibition of binding between ED 
of adhesion molecules. Transmembrane adhesion molecules interact via their ED in a homo- or 
heterophilic manner, thereby mediating strong intercellular adhesion. Interaction is inhibited through 
conformational changes of the ED, protease-mediated cleavage of the ED, whereby the cleaved 
fragment also exerts biological functions and steric hindrance for example through autoantibodies or 
small molecules such as lectins. 
 
 
 

1.3.3 Regulation of intercellular adhesion via the cytoplasmic tail of adhesion 

proteins 

Although it is the ED of the transmembrane junctional proteins that mediates interaction 

with their respective binding partners on adjacent cells, also the cytoplasmic tail is an 

important site for regulation of intercellular adhesion (Fig. 5). To provide mechanical 

strength, adhesion complexes are associated with the cytoskeleton, which in case of TJ 

and AJ is the actin cytoskeleton and in case of desmosomes, the intermediate filament 

cytoskeleton. Hence, the cytoskeletal anchorage is a favorable target site for regulation 

of the adhesive strength and for opening of the intercellular space by contraction of the 

cytoskeleton. Important to mention here are the Rho family GTPases that modulate 

actin cytoskeleton dynamics and have emerged as crucial regulators of intestinal barrier 

function (Citalan-Madrid et al., 2013). Both, barrier stabilizing and destabilizing effects 

for these GTPases have been shown such as RhoA and Cdc42 mediated support of TJ 

formation as well as barrier disruption through RhoA induced myosin light chain 

phosphorylation and actin-myosin contraction (Itoh et al., 2012; Terry et al., 2011; 
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Yamada and Nelson, 2007). Along this line, reduced barrier function in CD is assumed 

to be induced by increased expression of myosin light chain kinase (MLCK) in response 

to TNFα (Turner, 2006). Moreover, retraction of the keratin intermediate filament 

network is a hallmark of the autoimmune disease pemphigus vulgaris that is 

characterized by skin blisters, which result from loss of cell-cell adhesion (Spindler et al., 

2018). Furthermore, keratinocytes deficient of all keratin filaments showed impaired 

Dsg3 binding properties and membrane stability (Vielmuth et al., 2018). In this context, 

another important signaling molecule, p38 mitogen-activated protein kinase 

(p38MAPK) has been shown to regulate the anchorage of the desmosomal complex to 

the keratin filament cytoskeleton and its activation is linked to keratin retraction 

(Berkowitz et al., 2005; Spindler et al., 2013; Waschke et al., 2006). In addition, 

p38MAPK is also involved in regulation of intercellular adhesion in the intestinal 

epithelium and is supposed to play an important role in the pathogenesis of CD. In this 

regard, TNFα, the central cytokine in CD, has been shown to increase the activity of 

p38MAPK, which was accompanied by loss of Dsg2 and TJ remodeling (Spindler et al., 

2015). The p38MAPK signaling pathway and its interrelationship with desmosomal 

cadherins is described in detail below. Finally, the cytoplasmic tails modulate intercellular 

adhesion through regulation of cadherin turnover as tail-tail interactions have been 

demonstrated to stabilize the protein and inhibit endocytosis (Chen et al., 2012). 

 

1.3.4 Regulation of intercellular adhesion via receptor tyrosine kinase signaling 

Regulation of intercellular adhesion is required for proper cell homeostasis and has to 

be adjusted dynamically in response to environmental stimuli. Central in transmitting 

extracellular stimuli, are the receptor tyrosine kinases (RTK) that have emerged as key 

regulators of fundamental cellular processes including differentiation, proliferation and 

migration (Ullrich and Schlessinger, 1990). In humans, 58 RTKs are expressed, with all 

having a similar molecular architecture consisting of an extracellular region with ligand 

binding domains, a single transmembrane helix and a cytoplasmic region containing a 

protein tyrosine kinase domain as well as further carboxy terminal and juxtamembrane 

regulatory regions (Lemmon and Schlessinger, 2010). A growing number of studies 
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provide evidence that RTKs associate with intercellular junctions and influence cell-cell 

adhesion but vice versa also junctional proteins control RTKs (McClatchey and Yap, 

2012; McCrea et al., 2015; McLachlan and Yap, 2007). Mechanisms how RTKs regulate 

intercellular adhesion, include phosphorylation of multiple components of the adhesion 

complex in a direct manner or via activation of kinases such as Src, Abl, PAK and CK1/2 

(Bertocchi et al., 2012; Escobar et al., 2015; Hoschuetzky et al., 1994; Ji et al., 2009; 

Shibamoto et al., 1994). It is assumed, that this modification weakens cell adhesion by 

disrupting the cytoskeleton anchorage (Bertocchi et al., 2012; McCrea et al., 2015) or by 

inducing protein endocytosis (Cadwell et al., 2016). In this study, particular attention is 

given to the epidermal growth factor (EGF) receptor (EGFR) that has been 

demonstrated to regulate function of desmogleins (Klessner et al., 2009; Lorch et al., 

2004) and is described in detail below. 

 
 
Figure 5. Modulation of the transmembrane adhesion protein cytoplasmic tail regulates 
intercellular adhesion. Adhesion proteins are tethered to the cytoskeleton via their cytoplasmic tail, 
which provides mechanical strength to the intercellular junction. Contraction of the cytoskeleton as well 
as disruption of cytoskeleton anchorage, both mediated by a range of signaling molecules, weakens 
intercellular adhesion. Tail-tail interaction of desmosomal cadherins stabilizes the proteins and prevents 
internalization. RTKs regulate intercellular adhesion via direct or indirect phosphorylation of the 
junctional proteins, which results in disruption of cytoskeleton anchorage or internalization.   
 
 
 
Thus far, many signaling molecules have been identified to interact with intercellular 

junctions. In general, junctional complexes are meanwhile accepted as signaling 

platforms that are targeted by various signaling mechanisms but also themselves 

modulate epithelial homeostasis including cell proliferation, differentiation, migration 

and regulated shedding (Chiasson-MacKenzie and McClatchey, 2018; Muller et al., 2008; 

Rubsam et al., 2017a).  
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1.3.5 Desmosomes as signaling hubs 

There is increasing evidence that desmosomes do not only provide mechanical strength 

to intercellular adhesion but also integrate mechanical and biochemical pathways to 

regulate cellular functions. Although cells are held together by three types of intercellular 

junctions, inactivation of desmosomal components such as Dsg2, Dsc3 or DP are 

embryonic lethal in mice, indicating their important function in tissue morphogenesis 

(Den et al., 2006; Eshkind et al., 2002; Gallicano et al., 1998). Over the last years, 

desmosomal contacts have emerged as critical signaling hubs (Spindler and Waschke, 

2014). Since to date no enzymatic activity has been accredited to the intracellular tail of 

desmogleins, interaction with signaling components is required for signal transduction. 

In keratinocytes, extradesmosomal Dsg3 has been reported to strengthen cell cohesion 

via modulation of p38MAPK through the formation of a signaling complex together 

with Ecad, β-catenin and Src (Rotzer et al., 2015). Activation of p38MAPK through 

desmosomal signaling is also a well-known event in the autoimmune disease pemphigus, 

where autoantibody binding to the ED of Dsg1 and Dsg3 induces phosphorylation of 

p38MAPK (Berkowitz et al., 2008b; Berkowitz et al., 2005). Furthermore, several other 

signaling molecules have been shown to be activated by pemphigus autoantibodies such 

as the protein kinase C (PKC), Src, Erk and cAMP signaling (Esaki et al., 1995; Seishima 

et al., 1995; Walter et al., 2017), suggesting that desmosomal cadherins transmit 

extracellular stimuli and trigger signaling inside the cell (Muller et al., 2008). A well-

known environmental stimulus are for instance inflammatory cytokines like interferon-

γ (IFNγ) and TNFα, which are released during mucosal inflammation as known for the 

pathogenesis of IBD (Koch and Nusrat, 2012; Nava et al., 2010; Rogler and Andus, 

1998). In respond to inflammatory cytokines, Dsg2 ED cleavage has been reported. 

Here, the cleaved fragments bind to human epidermal growth factor receptor family 

members HER2 and HER3, which results in activation of MAPK and Akt/mTOR 

downstream signaling pathways (Kamekura et al., 2015). 

However, signaling occurs also independently of the extracellular portion, as shown for 

Dsg1, where direct interaction of the Dsg1 cytoplasmic tail and EGFR suppress EGFR 

activation and subsequent Erk1/2 signaling, to promote differentiation (Getsios et al., 

2009). Further, the release and translocation of otherwise tied desmosomal components 
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regulates signaling pathways, as shown for PG that inhibits the expression of β-catenin 

genes in the nucleus, thereby controlling the canonical Wnt pathway (Ben-Ze'ev et al., 

2000; Garcia-Gras et al., 2006). Likewise, the plakophilins, in addition to their role as 

architectural component in desmosomal plaques, are known to be present in the 

cytoplasm or nucleus, where they influence translational as well as transcriptional 

processes through direct interaction with RNA binding proteins or transcription factors, 

respectively (Hofmann et al., 2006; Mertens et al., 1996; Munoz et al., 2014). In addition, 

the release of cleaved fragments from the intracellular desmoglein domains are able to 

induce signaling as shown recently for Dsg2, of which intracellular fragments regulate 

apoptosis in IECs (Yulis et al., 2018). Similarly, the cleaved intracellular fragments of 

Dsg1 and Dsg3 have been reported to regulate apoptosis (Dusek et al., 2006; Weiske et 

al., 2001). Furthermore, the intracellular C-terminal fragment of Dsg2 has been found 

to be enriched in extracellular vesicles secreted by keratinocytes, thus influencing 

intercellular signaling. Moreover, Dsg2 modulated biogenesis of the extracellular vesicles 

via caveolin-1 and lipid rafts (Overmiller et al., 2017). Previously, Dsg2 has already been 

demonstrated to displace caveolin-1, EGFR and Src from lipid rafts leading to their 

enhanced activity (Overmiller et al., 2016).  

Given their tight association with the cytoskeleton, it is easily comprehensible that 

desmosomes control also the cytoskeletal network and thereby integrate mechanical 

pathways to attune tissue structure and function (Rubsam et al., 2017a). However, this 

involves not only regulation of the directly associated intermediate filament cytoskeleton, 

but also includes regulation of the actin cytoskeleton and actin-based junctions. For 

instance, keratinocytes deficient for DP have a reduced number of desmosomes that are 

not linked to keratins anymore and in addition, they have less AJs (Vasioukhin et al., 

2001b). Vice versa, loss of classical cadherins from AJ or α-catenin also impairs AJ as 

well as desmosome assembly (Michels et al., 2009; Tinkle et al., 2008; Vasioukhin et al., 

2001a). In addition, extradesmosomal Dsg3 signaling complexes have been shown to 

bind to actin and recruitment of DP to the desmosomal plaque requires actomyosin, 

which raises the possibility that actin is important for desmosome assembly (Godsel et 

al., 2010; Tsang et al., 2012). Desmosome-mediated regulation of the actin organization 

involves inter ilia the plaque protein Pkp2 that regulates actin remodeling and 



18  Introduction 
 

localization of active RhoA to cell-cell contacts (Godsel et al., 2010). Furthermore, it can 

be concluded that TJ are under control of desmosomes. DP was demonstrated to 

regulate claudin expression (Sumigray et al., 2014) and an antibody targeting the ED of 

Dsg2 induced increased permeability accompanied with alterations of TJ component 

distribution, while Ecad was unaltered (Schlegel et al., 2010). However, the underlining 

mechanism remains unclear, so far. 

 

1.3.6 p38MAPK signaling pathway 

The p38MAPK is an important player involved in the regulation of intercellular adhesion 

(Spindler and Waschke, 2014) and has been associated with a variety of vital functions 

(Fig. 6). So far, four splice variants of p38MAPK are known, of which p38α and p38β 

are ubiquitously expressed whereas p38γ as well as p38δ expression is dependent on the 

type of tissue (Hanks and Hunter, 1995). Activation of p38MAPK includes extracellular 

stimuli such as UV light, heat, osmotic shock, inflammatory cytokines and growth factors 

(Foltz et al., 1997; Han et al., 1994; Lee et al., 1994; Raingeaud et al., 1995; Rouse et al., 

1994). Further complexity comes from the vast number of extracellular activators, of 

which some can do both, activate as well as inactivate the kinase dependent on the type 

of cell. For instance, insulin activates p38MAPK in adipocytes but downregulates the 

kinase in chick forebrain neuron cells (Heidenreich and Kummer, 1996; Sweeney et al., 

1999). Moreover, several upstream kinases regulate p38MAPK activity (Zarubin and 

Han, 2005) with MKK3 and MKK6 from the MAP kinase kinase (MAPKK) family 

being the two main kinases known to activate p38MAPK (Enslen et al., 1998). 

Furthermore, a MAPKK-independent mechanism of p38MAPK activation has been 

reported, involving autophosphorylation of p38MAPK upon binding to transforming 

growth factor-β-activated protein kinase 1 binding protein (TAB1) (Ge et al., 2002). In 

addition, Rho family GTP-binding proteins such as RhoA, Rac1 and Cdc42 also 

contribute to p38MAPK activation (Bagrodia et al., 1995; Kyriakis and Avruch, 2001; 

Zhang et al., 1995). Downregulation of p38MAPK activity is achieved by 

dephosphorylation through phosphatases from the MAP kinase phosphatase (MPK) 

family as well as some other types of phosphatases such as serine/threonine protein 
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phosphatase type 2C (PP2C) (Sun et al., 1993; Takekawa et al., 1998). Substrates of 

p38MAPK include downstream kinases, transcription factors as well as components of 

the cytoskeleton such as keratins and regulate cell metabolism, apoptosis, survival, 

migration, inflammation, cell growth, proliferation and cell differentiation (Daly et al., 

1999; Dieckgraefe et al., 1997; Sharma et al., 2003; Xia et al., 1995; Zarubin and Han, 

2005). Furthermore, a growing number of studies reports a role for p38MAPK in 

regulating cell adhesion. Thus, p38MAPK-mediated keratin retraction paralleled with 

decreased cell cohesion, is a well-known phenomenon in pemphigus (Berkowitz et al., 

2005; Spindler et al., 2013). This process involves EGFR activation and inhibition of 

RhoA activity, which results in reduced insertion of keratin filaments at cell junctions 

(Bektas et al., 2013; Waschke, 2008). Furthermore, p38MAPK is also known to bind 

directly to Dsg3 and PG and activation of p38MAPK has been associated with increased 

desmosomal turnover in a clathrin- and dynamin-independent manner (Delva et al., 

2008; Mao et al., 2009; Saito et al., 2012; Schulze et al., 2012; Spindler et al., 2013). In 

addition, increased activity of p38MAPK upon stimulation with TNFα induced loss of 

cell cohesion and increased permeability in cultured IECs (Spindler et al., 2015).  
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Figure 6. The p38MAPK signaling pathway and associated functions. Activation of the p38MAPK 
signaling pathway includes stimulation with UV light, cytokines, growth factors, oxidative stress or DNA 
damage. Upon stimulation, a cascade of several kinases is activated resulting in phosphorylation of 
p38MAPK, which in turn regulates a variety of cellular functions. Among others, activation of 
p38MAPK inhibits anchorage of the keratin filament cytoskeleton via RhoA and MK2, resulting in 
impaired cell adhesion. In addition, active p38MAPK promotes Dsg3 depletion, further destabilizing cell 
adhesion. 
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1.3.7 EGFR signaling pathway 

Beside its plethora of functions including cell growth, differentiation, proliferation and 

motility (Ceresa and Peterson, 2014), increasing evidence indicate that EGFR plays a 

central role in regulating intercellular adhesion. Moreover, EGFR has already been 

shown to regulate function of desmogleins and vice versa (Blay and Brown, 1985; 

Getsios et al., 2009; Kamekura et al., 2014; Klessner et al., 2009; Lorch et al., 2004; 

Overmiller et al., 2016). The EGFR belongs to the ErbB/HER protein-tyrosine kinase 

family, of which four members are known in vertebrates, HER1-4 that are expressed at 

the cell surface of numerous cell types (Hynes and Lane, 2005). The extracellular region 

comprises four domains I-IV, of which the domains I and III bind to activating ligands. 

Domain II contains a dimerization arm that is masked through intramolecular 

interactions with domain IV resulting in a tethered conformation that inhibits 

dimerization (Bouyain et al., 2005; Burgess et al., 2003; Cho and Leahy, 2002; Ferguson 

et al., 2003). Ligand binding induces a conformational change that unmask the 

dimerization arm and allows homophilic as well as heterophilic interaction with a second 

ligand-bound receptor molecule to form functional dimers or oligomers (Burgess et al., 

2003; Roskoski, 2014). So far, seven different ligands are known to bind to EGFR, of 

which EGF is considered to bind with high affinity (Harris et al., 2003; Wilson et al., 

2009). All ligands are produced as transmembrane precursor proteins and have to be 

cleaved by cell surface proteases to be released as mature growth factors that bind to 

EGFR (Harris et al., 2003). Since production of EGF is controlled locally, in contrast to 

being delivered systematically like it is the case for hormones, it is possible that different 

organs execute their own EGF-mediated programs (Conte and Sigismund, 2016; Singh 

and Harris, 2005). Receptor dimerization induces activation of the EGFR tyrosine kinase 

domain (TKD) and succeeding cross-phosphorylation of cytoplasmic receptor domains 

that serve as docking sites for several adaptor proteins containing Src homology-2 (SH2) 

and phosphotyrosine-binding (PTB) domains (Honegger et al., 1989; Kaplan et al., 2016; 

Ogiso et al., 2002; Shoelson, 1997; Sudol, 1998; Ullrich and Schlessinger, 1990). 

Recruited proteins include for example Src homology domain-containing adaptor 

protein C (Shc), growth factor receptor-bound protein 2 (Grb2) phospholipase C γ 

(PLCγ) or kinases such as Src, phosphatidylinositol-3-kinase (PI3K), phosphatases such 
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as PTP1B, SHP1 and SHP2 and ubiquitin ligases such as Cbl (Olayioye et al., 2000). The 

kinase Src has additionally been shown to phosphorylate EGFR on tyrosine residue 845 

(Y845) in a ligand independent manner (Moro et al., 2002). Over hundred interaction 

partners for EGFR have been identified so far and the number is still growing 

(Morandell et al., 2008). Specificity of the docking site is defined by the phosphorylated 

tyrosine residue, of which approximately twenty residues have been identified as docking 

sites that trigger various signaling cascades. The major signaling cascades involve 

Ras/Raf/MEK/ERK/MAPK and PI3K/Akt pathways (Singh and Harris, 2005) but 

further pathways have been reported such as PLCγ/PKC, signal transducer and activator 

of transcription (STAT), c-Jun terminal kinase (JNK) as well as p38MAPK (Andl et al., 

2004; Johnson et al., 2005; Kloth et al., 2002) (Fig. 7). Vice versa, p38MAPK is also a 

feedback regulator of EGFR and controls its expression (Frey et al., 2006; 

Vergarajauregui et al., 2006). Furthermore, EGFR is internalized upon ligand binding via 

clathrin-coated endocytic vesicles that fuse with early endosomes where the EGFR is 

sorted for recycling or degradation (Bakker et al., 2017). While trafficking, signaling 

continues and EGFR is also known to function as transcription factor in the nucleus 

(Brand et al., 2013; Francavilla et al., 2016; Haugh et al., 1999; Kamio et al., 1990; Vieira 

et al., 1996; Wu et al., 2012). The EGFR pathway controls a series of biological functions 

such as cell proliferation, differentiation, survival, migration, angiogenesis and cell 

adhesion (Baselga and Hammond, 2002; Laskin and Sandler, 2004; Morandell et al., 

2008; Yarden and Sliwkowski, 2001). Moreover, EGFR is suggested to regulate cell 

extrusion, wound healing and migration in the intestinal epithelium (Blay and Brown, 

1985; Miguel et al., 2017; Polk, 1998). These processes require precise regulation of 

intercellular adhesion and thus it comes as no surprise that several studies linked the 

EGFR to desmosomal function. In keratinocytes, Dsg1 was shown to co-localize with 

EGFR, thus suppressing its activity to promote differentiation (Getsios et al., 2009). 

Another study reported positive regulation of EGFR by Dsg2 thereby stimulating cell-

growth and migration (Overmiller et al., 2016) and Dsg2 turnover is under control of 

EGFR signaling (Klessner et al., 2009). There is also evidence for direct interaction of 

Dsg2 and EGFR (Tong et al., 2014). In addition, desmosomal plaque proteins have been 

linked to the EGFR pathway, such as Pkp2 that enhances ligand-dependent as well as 

ligand-independent receptor dimerization and activation (Arimoto et al., 2014).  
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Figure 7. The EGFR signaling pathway and associated functions. The EGFR appears as monomer 
in a tethered conformation that is opened upon ligand binding, which allows receptor dimerization 
followed by cross-phosphorylation of the cytoplasmic tail tyrosine residues. Several adaptor proteins as 
well as kinases, phosphatases and ubiquitin ligases are recruited dependent on the type of 
phosphorylation that results in activation of various signaling cascades controlling vital cellular functions. 
Ligand binding also induces receptor internalization. Besides, EGFR is also linked to desmosomal 
components. 
 
 
 
 

1.3.8 Glial cell-derived neurotrophic factor 

The intestinal epithelial barrier function is additionally regulated by the ENS, which is a 

network of glial and neuronal cells and through sympathetic and parasympathetic 

pathways liaises closely with the CNS (Furness, 2012). Increasing evidence attribute a 

key role in regulating barrier function to the EGCs that release specific mediators such 

as GDNF or TGFβ1 hence controling the maintance of both, ENS and epithelial barrier 

integrity (Abdo et al., 2010; Neunlist et al., 2014). Ablation of EGCs has been 
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demonstrated to impair intestinal barrier function in mice (Bush et al., 1998; Cornet et 

al., 2001) and functional as well as morphological abnormalities similar to inflammatory 

bowel diseases were observed in mice with reduced GDNF levels (Brun et al., 2013; von 

Boyen et al., 2004; Zhang et al., 2010b). GDNF is a growth factor belonging to the 

cysteine-knot superfamily and signals through a receptor complex consisting of the RTK 

RET (rearranged during transfection) and one of four GDNF familiy receptors (GFRα 

1-4) (Takahashi, 2001). Downstream targets of the activated receptor complex include 

p38MAPK, Erk, Akt and PKA (Allen et al., 2013; Granholm et al., 2000; Takahashi, 

2001). In general, GDNF influences the proliferation of glial cells as well as neurons 

during development of the ENS (Wang et al., 2010), but additionally GDNF is reported 

to have strong anti-apoptotic effects on colonic epithelial cells (Steinkamp et al., 2003; 

Zhang et al., 2010b). Moreover, GDNF is suggested to directly affect junctional proteins 

such as claudin 5 that is upregulated by the growth factor in the blood-brain barrier 

(Shimizu et al., 2012). Along this line, a recent study demonstrated a positive effect on 

barrier maturation and wound healing in IECs involving enhanced maturation of TJ and 

on top, suggests enterocytes to represent another source for GDNF in the intestine 

(Meir et al., 2015b). However, it is unclear what stimulus induces GDNF expression in 

enterocytes. Here, toll-like receptor 2 (TLR-2) that is activated by pathogen-associated 

molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), has 

been shown to be required for secretion of GDNF in EGCs (Walsh et al., 2013). Hence, 

it can be envisioned that GDNF regulates the intestinal barrier properties in 

pathophysiological inflammatory states such as IBD. 
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1.4 Inflammatory bowel disease 

Dysfunction of the intestinal epithelial barrier is a hallmark of IBD including ulcerative 

colitis (UC) and CD, which affect mostly young people (Martini et al., 2017). While CD 

can impact any part of the gastrointestinal tract, UC is limited to the mucosa of the colon 

(Feakins, 2014). Up to 40% of first-degree relatives of patients suffering from CD display 

an altered permeability in the small intestine without showing symptoms of IBD, 

indicating that multiple genetic as well as environmental factors contribute to a complex 

pathogenesis (Geremia et al., 2014; Hollander et al., 1986; Peeters et al., 1997; Uhlig, 

2013). Due to an uncontrolled immune response to gut microbiota, which results from 

compromised barrier functions, IBD was classified as an autoimmune disease, for a long 

time. However, nowadays the disturbed adaptive immunity is considered rather as 

consequence than as cause of intestinal inflammation (Jager et al., 2013). An increased 

secretion of the inflammatory cytokine TNFα is believed to be a critical factor that links 

the observed increased intestinal permeability and immune reaction (Sanders, 2005). 

However, TNFα also affects junctional components such as Dsg2 that has been shown 

to disappear from cell borders upon stimulation with TNFα. In addition, claudins were 

deregulated with a reduction of Cld1 and upregulation of Cld2 (Spindler et al., 2015). At 

least in part, these effects were triggered by activation of p38MAPK. Alterations in TJ 

integrity is a well-known phenomenon in patients suffering from CD (Mankertz and 

Schulzke, 2007; Zeissig et al., 2007). Likewise, AJ are affected in CD with an observed 

dislocation of Ecad (Muise et al., 2009). Furthermore, several signaling molecules such 

as RhoA or MLCK that are linked to regulation of intercellular adhesion, have been 

reported to be dysregulated in patients with IBD (Blair et al., 2006; Lopez-Posadas et al., 

2016). Hence, not only changes in composition of intercellular junctions play a key role 

in the pathogenesis of IBD but also signaling related to intercellular junctions. Treatment 

of IBD is currently focused on immunomodulators and anti-inflammatory agents to 

control the inappropriate immune response as well as inflammation that harms the 

intestinal epithelium (Cohen et al., 2012). However, there are considerable side-effects 

and not all patients respond to the therapy, which underlines the need for new 

therapeutic approaches (MacDonald et al., 2012; Rutgeerts et al., 2009). Hence, a deeper 

knowledge on the pathophysiology of IBD might provide new therapeutic options.  
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1.5 Aim of this study 

For a long time, desmosomes have been considered to provide primarily the mechanical 

strength to intercellular cohesion. However, a growing number of studies point also 

towards a role in regulating signaling cascades. Especially tissues with a high turnover 

rate such as the human intestinal epithelium require a precise regulation of intercellular 

adhesion to allow cell extrusion and proliferation, while maintaining the epithelial barrier 

function. Many signaling pathways are known to be central during intestinal tissue 

homeostasis, however only little is known about their interplay with desmosomal 

components. Thus, the main objective of this PhD thesis was to explore whether the 

desmosomal cadherin Dsg2 modulates signaling pathways beside its adhesive properties 

in simple epithelia of the intestine. 

For this purpose, WT as well as Dsg2 deficient cultured enterocytes were analyzed 

regarding deregulated signaling pathways as well as their intercellular cohesion and 

barrier properties. To ascertain the suitability of cultured enterocytes as a model for the 

intestinal epithelium, cells were characterized concerning the establishment of junctional 

complexes and compared to human tissue from the intestine using transmission as well 

as scanning electron microscopy.  

Although, being the core adhesive molecule of desmosomes, the appearance of 

extradesmosomal cadherins has been reported. Thus, another goal was to clarify the 

question whether extradesmosomal Dsg2 is present in IECs, which was addressed 

utilizing high resolution microscopy as well as biochemical approaches.  

To elucidate binding properties of Dsg2, atomic force microscopy (AFM) was 

established on living enterocytes. Using this approach several modulators of different 

signaling cascades were tested regarding their ability to influence Dsg2 binding.  

A crucial regulator of the intestinal homeostasis is EGFR that has already been linked to 

regulation of junctional complexes. Hence, a further aim was to explore a putative 

cooperation of Dsg2 and EGFR in intestinal barrier regulation. For this, co-localization 

studies, biochemical assays, interaction studies and functional assays were performed in 

cultured cells as well as human tissue samples.  
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Since Dsg2 is assumed to contribute to the pathogenesis of CD, another goal was to 

elucidate its role in this context. To this end, human tissue samples from CD patients 

were analyzed with regard to ultrastructural changes of desmosomes. Moreover, the 

interrelationship of Dsg2 and GDNF, which is a potential key player in IBD, was 

characterized with AFM. 

 

  



28  Introduction 
 

  



Results  29 

2 Results 
 

 

 

 

 

 

 

 

___________________________________________________________________ 

2.1 Desmoglein 2 regulates the intestinal epithelial barrier via p38 

mitogen-activated protein kinase  

__________________________________________________________ 



30  Results 
 

 



1SCIENTIFIC REPORTS | 7:  ����  | DOI:10.1038/s41598-017-06713-y

www.nature.com/scientificreports

Desmoglein 2 regulates the 
intestinal epithelial barrier via p38 
mitogen-activated protein kinase
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Harz3, Heinrich Leonhardt3, Daniela Kugelmann1, Nicolas Schlegel4 & Jens Waschke1

Intestinal epithelial barrier properties are maintained by a junctional complex consisting of tight 
junctions (TJ), adherens junctions (AJ) and desmosomes. Desmoglein 2 (Dsg2), an adhesion molecule 
of desmosomes and the only Dsg isoform expressed in enterocytes, is required for epithelial 
barrier properties and may contribute to barrier defects in Crohn’s disease. Here, we identified 
extradesmosomal Dsg2 on the surface of polarized enterocytes by Triton extraction, confocal 
microscopy, SIM and STED. Atomic force microscopy (AFM) revealed Dsg2-specific binding events along 
the cell border on the surface of enterocytes with a mean unbinding force of around 30pN. Binding 
events were blocked by an inhibitory antibody targeting Dsg2 which under same conditions activated 
p38MAPK but did not reduce cell cohesion. In enterocytes deficient for Dsg2, p38MAPK activity 
was reduced and both barrier integrity and reformation were impaired. Dsc2 rescue did not restore 
p38MAPK activity indicating that Dsg2 is required. Accordingly, direct activation of p38MAPK in Dsg2-
deficient cells enhanced barrier reformation demonstrating that Dsg2-mediated activation of p38MAPK 
is crucial for barrier function. Collectively, our data show that Dsg2, beside its adhesion function, 
regulates intestinal barrier function via p38MAPK signalling. This is in contrast to keratinocytes and 
points towards tissue-specific signalling functions of desmosomal cadherins.

The internal surface of the gut is covered by a single layer of polarized enterocytes, forming the intestinal epi-
thelium that operates as a selective barrier which protects the organism against luminal pathogens but allows 
uptake of nutrients. Barrier properties are established by three types of intercellular junctions, tight junctions 
(TJ), adherens junctions (AJ) and desmosomes which together form the “terminal bar” by sealing the paracellular 
space1, 2. TJ composed of claudins, occludin and a range of additional transmembrane proteins, are located in 
the most apical part where they seal the intercellular cleft3. Beneath, AJ formed by E-cadherin (E-cad) and a set 
of associated proteins mediate mechanical strength between epithelial cells and in addition are also involved in 
epithelial polarization, differentiation, migration and tissue morphogenesis4. The third and least studied type of 
intercellular junctions are the desmosomes, composed of the cadherin family members desmoglein (Dsg) and 
desmocollin (Dsc), which interact in homo- and heterophilic fashion via their extracellular domains (ED) and 
are associated with the intermediate filament cytoskeleton through specific desmosomal plaque proteins, namely 
plakoglobin (PG), plakophilins (Pkp) and desmoplakin (DP)5. Desmosomal cadherins are expressed as multiple 
isoforms in a tissue- and differentiation-specific manner. Layer specific expression pattern of all human isoforms 
(Dsg1-4 and Dsc1-3) can be observed in stratified epithelia such as the human epidermis whereas desmosomes in 
the simple columnar epithelium of the human intestine are composed of Dsg2 and Dsc2 only6–9.

Desmosomes are assumed to play the leading role in intercellular cohesion10. Beyond, they are also implicated 
in modulating fundamental cellular processes such as proliferation, apoptosis or organization of the cytoskele-
ton11. We have previously shown that desmosomal adhesion is required for intestinal epithelial barrier function12. 
The maintenance and turn-over of junctional complexes has to be regulated tightly during the rapid cell renewal 
of every 4–5 days in the intestinal epithelium13. On the other hand, increased intestinal permeability is associated 
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with severe inflammatory disorders such as Crohn’s disease (CD)14–17. Especially, Dsg2 has already been shown to 
play a role in inflammation18 and in the pathogenesis of CD as it was strongly reduced in the mucosa of patients 
suffering from CD whereas the AJ molecule E-cadherin was unaffected19. Tumor necrosis factor-α (TNF-α), 
which is a central cytokine in CD, resulted in impaired barrier properties whereas a tandem peptide stabiliz-
ing desmosomal adhesion rescued barrier function. Interestingly, similar to TNF-α, a Dsg2-specific antibody 
targeting the ED of Dsg2 increased permeability12. However, it is unclear how this effect is achieved. It is likely 
that some amount of antibody permeates across TJs and directly inhibits transinteraction of Dsg2 within desmo-
somes, which compromises barrier integrity.

Another possibility could be that Dsg2 is expressed outside of desmosomes on the cell surface, accessible to 
the Dsg2-specific antibody and binding resulted in activation of signalling pathways. Desmogleins have already 
been shown to mediate signalling events20, however, nothing is known about extradesmosomal Dsg2 on the cell 
surface of enterocytes. In contrast, in keratinocytes extradesmosomal Dsg3 but not Dsg2 has been found in a 
signalling complex together with E-cadherin, β-catenin and Src21 where Dsg3 strengthens cell cohesion via mod-
ulation of mitogen-activated protein kinase (p38MAPK)22.

Bearing in mind that Dsg2 is the only Dsg isoform expressed in enterocytes and in view of our previous 
finding that it may contribute to the pathogenesis of CD, we investigated whether Dsg2 plays a role in modu-
lating signalling cascades and cell cohesion in enterocytes, in this study. For the recent study, we used DLD1 
cells deficient for Dsg2 and or Dsc2 under conditions where they were polarized similar to the well-established 
model of Caco2 cells used in our previous studies. Here, we show for the first time that extradesmosomal Dsg2 
is expressed on the surface of polarized cultured enterocytes. Moreover, our data identify a novel role for Dsg2 
in regulating p38MAPK as this kinase was activated after application of the Dsg2-specific antibody and reduced 
levels of p38MAPK activity were detected in Dsg2 knockout cells. Furthermore, activation as well as inhibition of 
p38MAPK led to barrier-destabilization, suggesting that a well-balanced level of p38MAPK activity is crucial for 
barrier properties. Collectively, our data provides evidence that Dsg2 regulates barrier properties in enterocytes 
via modulating the p38MAPK signalling cascade.

Results
Polarized cultured enterocytes displayed extradesmosomal Dsg2 at the cell surface. To explore 
the adhesive and signalling function of Dsg2 in the intestine, we used Caco2 and DLD1 cell lines. Both form an 
enterocyte-like epithelial cell monolayer with fully formed junctional complexes and characteristic microvilli on 
the cell surface (Fig. S1A) resembling a human specimen from the terminal ileum (Fig. S1B). Immunostaining 
of the junctional components Dsg2 and Claudin4 (Cld4) revealed linear localization at the cell border with junc-
tional complexes being present at the most apical part of the intercellular cleft (Fig. 1A and S1C). Moreover, con-
stant protein levels of junctional components (Fig. S1D) as well as constant transepithelial resistance (TER) values 
(Fig. S1E) revealed mature barrier properties. By using structured illumination microscopy (SIM), we observed 
that Dsg2 is also located at the free cell surface which is characterized by microvilli (Fig. 1B). Furthermore, 
SIM allowed distinguishing between desmosomal Dsg2 which is in close proximity to DP and extradesmosomal 
Dsg2 which is found solitary. Sandwich-like arrangement of Dsg2 and DP was observed at the lower lateral cell 
borders whereas apically, Dsg2 was found primarily separate from DP (Fig. 1C). Additionally, by using stimu-
lated emission depletion microscopy (STED), we identified clusters on the cell surface consisting of Dsg2 and 
DP molecules as well as single Dsg2 molecules (Fig. 1D). These results were confirmed biochemically by triton 
extraction which separates the cell lysate into a soluble fraction and an insoluble fraction which is considered to 
be cytoskeleton-bound and to contain desmosomal components. In contrast to DP, which was detected in the 
insoluble fraction only, Dsg2 was found in both the insoluble as well as the soluble fraction (Fig. 1E) in line with 
extradesmosomal localization of Dsg2. Taking together, our findings reveal that Dsg2 is present outside of des-
mosomes on the cell surface in addition to its typical localization to serve as adhesion molecule in desmosomes.

Dsg2-specific binding events were detected on the surface of living enterocytes. Since immu-
nostaining revealed Dsg2-specific spots on the cell surface, we next applied AFM on living cells to characterize 
Dsg2-specific binding events similar as shown recently for Dsg323, 24. The AFM topography image of DLD1 cells 
closely resembled the scanning electron microscopy (SEM) image of these cells (Fig. S2A) and allows specific 
measurements at cell borders which appeared elevated in the topography image. For each experiment, 2–3 areas 
at cell borders were selected for each condition, with 1000 recorded force-distance curves for each area. Under 
control conditions, binding events with a frequency of around 14,5% were detected which were more prominent 
close to the cell border (Fig. 2A). Peak fit analysis of unbinding force in DLD1 cells revealed a distribution-peak 
at 30,4 pN (Fig. 2B). To demonstrate specificity of binding events, an inhibitory Dsg2-specific antibody was 
added after control measurements12, 25. The antibody significantly reduced the binding frequency by around 40% 
(Fig. 1C). Specificity of the Dsg2-specific antibody was verified in a cell-free AFM setup, where it significantly 
blocked homophilic Dsg2 interaction to a similar extent (Fig. 2D). Similarly, siRNA-mediated silencing of Dsg2 
expression resulted in significantly reduced binding frequency (Fig. S2B). Next, the antibody was applied in a 
dispase-based cell dissociation assay to investigate its effect on cell adhesion. Application for 24 h resulted in 
increased cell monolayer fragmentation compared to controls in both DLD1 and Caco2 monolayers (Fig. 2E and 
S2C). Depletion of Dsg2 using siRNA yielded similar results in both DLD1 and Caco2 cells (Fig. S2D). These 
observations further confirm the presence of extradesmosomal Dsg2 on the cell surface which specifically can be 
targeted by an anti Dsg2 antibody which is capable of reducing cell cohesion.

Inhibition of Dsg2 binding activated p38MAPK which is critical for enterocyte cohesion. In 
addition to their adhesive functions, desmosomal cadherins have already been shown to regulate p38MAPK sig-
nalling in keratinocytes22, 26, 27. Hence, we investigated the effect of inhibited Dsg2 binding on p38MAPK activity 
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in enterocytes. After incubation with the Dsg2-specific antibody for 30 min, we observed activation of p38MAPK 
(Fig. 3A and B). Depletion of Dsg2 by siRNA did not cause p38MAPK activation but rather resulted in reduced 
level of p38MAPK activity (Fig. S3A), which is similar to DLD1 cells lacking Dsg2 (see below). Next, we exam-
ined whether the activity of p38MAPK is important for cell cohesion. Blocking of p38MAPK with the inhibitor 
SB202190 as well as activation of p38MAPK with anisomycin resulted in increased cell monolayer fragmenta-
tion (Fig. 3C). Moreover, application of the p38MAPK inhibitor together with the Dsg2-specific antibody also 
increased fragmentation (Fig. 3C). Intriguingly, short incubation with the Dsg2-specific antibody for 30 min was 
sufficient to activate p38MAPK but not to reduce cell cohesion (Fig. S3B), suggesting that binding to extrades-
mosomal Dsg2 may induce p38MAPK signalling. In contrast, incubation for 24 h increased cell monolayer frag-
mentation and was accompanied with elevated p38MAPK activity (Fig. S3C). Together, these data indicate that 

Figure 1. Extradesmosomal Dsg2 is present at the cell surface of polarized cultured enterocytes. Cells were 
grown on coverslips for several days after reaching confluency, fixed with 2% PFA and stained for junctional 
components. (A) Confocal microscopy analysis of Caco2 cells shows linear and apical localization of the 
junctional components Dsg2 and Cld4 at cell borders. Scale bar, 10 µm. (B) Analysis with SIM shows Dsg2 being 
located at same level as microvilli, visualized with Alexa488-phalloidin, at the surface of Caco2 cells. Shown 
is a Z-projection. Bar, 5 µm. (C) Apical fraction of Dsg2 (right panel) is not co-localizing with DP in contrast 
to lower layers (left panel) where both can be found in close proximity as analysed via SIM. Scale bar, 5 µm. 
(D) Both, clusters consisting of Dsg2 and DP as well as single Dsg2 molecules are present on the cell surface 
of DLD1 cells, as revealed by STED. Scale bar, 5 µm (left panel), 1 µm (right panel). (E) Dsg2 was detected in 
both, the Triton X-100-soluble and -insoluble fraction in contrast to DP being present only in the insoluble 
fraction. GAPDH served as loading control. Cropped blots are displayed and full-length blots are included in 
the supplementary information.
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inhibition of Dsg2 binding activates p38MAPK which is critical for enterocyte cohesion and that the level of 
activated p38MAPK has to be well-balanced.

Balance of p38MAPK activity is critical for intestinal barrier function. We have previously shown 
that Dsg2 is required for maintenance of intestinal barrier function12. Therefore, we next sought to explore the 
role of Dsg2 during barrier recovery. To this end, we performed Ca2+-switch experiments which allowed us to 
induce barrier recovery under well-defined conditions28. TER values of confluent monolayers dropped during 
1 h of EGTA-mediated Ca2+ depletion by around 50% and rose immediately after addition of CaCl2 (Fig. 4A and 
S4A). After about two hours of repletion, TER values reached again control levels indicating that reformation 

Figure 2. Dsg2-specific binding events can be detected on the surface of enterocytes. (A) Dsg2 force 
measurements were performed on living DLD1 cells at 37 °C. Cell topography was imaged to select specific 
areas at cell borders (upper panel). Force measurements revealed binding events along the cell border (lower 
panel) Bar, 10 µm (upper panel), 1 µm (lower panels). (B) Peak fit analysis of unbinding force resulted in a 
distribution-peak of 30,4 pN. (C) Application of a Dsg2-specific antibody significantly reduced the amount of 
binding events on living DLD1 cells as well as (D) in a cell-free setup (shown are means ± SE, n = 3, *p < 0,05). 
(E) Dsg2-specific antibody increased cell monolayer fragmentation in a dispase-based cell dissociation assay. 
(Shown is mean ± SE, n = 9, *p < 0,05 compared to control).

Figure 3. Inhibition of Dsg2 binding resulted in increased p38MAPK activity which is critical for enterocyte 
cohesion. (A) Western blot analysis after incubation of DLD1 cells with a Dsg2-specific antibody for 30 min 
revealed increased phosphorylation of p38MAPK. Cropped blots are displayed and full-length blots are 
included in the supplementary information. (B) Band intensity of detected p-p38MAPK was quantified using 
ImageJ and normalized to control (shown is mean ± SE, n = 6, *p < 0,05 compared to control). (C) DLD1 cells 
were treated with the p38MAPK inhibitor SB202190 or the activator anisomycin and analysed in a dispase-
based cell dissociation assay. Both resulted in increased cell monolayer fragmentation. (Shown is mean ± SE, 
n = 3, *p < 0,05 compared to control).
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of junctional complexes is completed. In line with this, immunostaining of Dsg2, E-cad and Cld4 displayed 
fragmentation and reduction at cell borders during depletion accompanied with formation of intercellular gaps 
(Fig. 4B and S4B–D). After two hours of repletion, immunostaining was similar to controls (Fig. 4B and S4C). 
To examine the role of Dsg2 during barrier recovery, we next applied the Dsg2-specific antibody at the end of 
depletion together with CaCl2. Interestingly, barrier recovery was not disturbed (Fig. 4C). In contrast, application 
of an inhibitory E-cad-specific antibody abolished barrier recovery. Next, we applied SB202190 at the end of 
depletion which in DLD1 cells, prevented barrier reformation and moreover also resulted in barrier disruption 
without Ca2+-switch (Fig. 4D). Similarly, in Caco2 cells, inhibition of p38MAPK significantly delayed barrier 
recovery (Fig. S4E and S4F). Activation of p38MAPK via anisomycin had no immediate effect on barrier func-
tion and recovery (Fig. 4D). However, 10 h after application of anisomycin TER values dropped indicating that a 
well-balanced level of activated p38MAPK is crucial for barrier maintenance. In summary, our findings support 
an indispensable role of p38MAPK in barrier reformation and maintenance.

Dsg2 regulates p38MAPK activity which is required for barrier properties. Since the activation of 
p38MAPK via the Dsg2-specific antibody indicated that Dsg2 regulates p38MAPK activity, we hence determined 
alterations in p38MAPK signalling in DLD1 cells lacking desmosomal cadherins. Comparison of baseline TER 
values of wildtype (wt) and knockout cells revealed a significant reduction when desmosomal cadherins were 
absent (Fig. 5A). Interestingly, no difference was observed when both Dsg2 and Dsc2 were missing or when Dsc2 
was re-expressed indicating that Dsg2 was critical for barrier properties. Similarly, in cells lacking Dsg2 chelation 
of Ca2+ had a more severe impact on cell junction disruption with values around 70% lower than wt values at the 
end of depletion (Fig. 5B). Interestingly, in both DLD1 cells missing Dsg2 and Dsc2 as well as in cells with Dsc2 
rescue levels of p-p38MAPK but not total p38MAPK were reduced (Fig. 5D and E). This is similar to DLD1 cells 
where Dsg2 expression was suppressed by siRNA (Fig. S3A). This indicates that Dsg2 but not Dsc2 regulates the 
activity of p38MAPK. Finally, we investigated how the loss of desmosomal cadherins affects barrier recovery. 
Time for repletion was about 4–5 times higher in cells lacking Dsg2 and Dsc2 compared to wildtype (Fig. 5F 
and G). However, anisomycin to activate p38MAPK during Ca2+-switch experiments facilitated repletion in 

Figure 4. Well-balanced p38MAPK activity is critical for intestinal barrier function. Ca2+-switch assay with 
confluent DLD1 cells. (A) TER values decrease during depletion with 4 mM EGTA for 1 h and increase to 
back to control values during 2 h of repletion with 8 mM CaCl2. (B) Immunostaining of Dsg2 and Cld4 shows 
reduced and fragmented staining as well as gaps after 1 h depletion and similar staining to control condition 
after 2 h repletion. (C) Barrier reformation is not disturbed after application of a Dsg2-specific antibody but is 
impaired after addition of an inhibitory anti E-cadherin antibody. (D) TER values decrease after inhibition of 
p38MAPK with SB202190 and also barrier reformation is impaired in the Ca2+-switch experiment. Activation 
of p38MAPK via anisomycin has no effect in the short run but also induces reduction of TER values after about 
10 h. (shown are representative graphs for at least three independent experiments).
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∆Dsg2∆Dsc2 cells resulting in times to recovery similar to wt cells (Fig. 5F and G). In summary, these data iden-
tify a new role for Dsg2 in regulating p38MAPK activity which is required for barrier properties in enterocytes.

Discussion
In this study we demonstrate that Dsg2 is required for cell cohesion of enterocytes and maintenance of intestinal 
epithelial barrier function. For this function, regulation of p38MAPK appears to be critical, especially for barrier 
recovery. We detected reduced levels of activated p38MAPK in enterocytes deficient for Dsg2 and Dsc2 which 
was accompanied by both impaired barrier integrity as well as delayed barrier reformation. Reduced activity of 
p38MAPK was not restored with a Dsc2 rescue indicating that Dsg2 is required. However, barrier reformation 
was accelerated with direct activation of p38MAPK demonstrating that Dsg2-mediated activation of p38MAPK 
is crucial for barrier function. Furthermore, we identified extradesmosomal Dsg2 on the surface of polarized 
enterocytes. Application of an antibody targeting the ED of Dsg2 reduced binding events in AFM experiments 

Figure 5. Dsg2 regulates p38MAPK activity which is required for barrier properties. (A) Comparison of 
baseline TER values between wildtype and knockout cells revealed reduced TER in DLD1 cells lacking Dsg2 
(shown is mean ± SE, n ≥ 10, *p < 0,05 compared to control, n.s not significant). (B) During Ca2+ depletion 
for 1 h TER values of Dsg2-deficient cells decreased stronger compared to wildtype cells. (Shown is mean ± SE, 
n ≥ 6, *p < 0,05 compared to control, n.s not significant). (C) Wildtype and knockout cells grown on coverslips 
were stained for Dsg2 and Dsc2 to confirm knockout. Scale bar, 10 µm (D). Level of p-p38MAPK in Dsg2 
and Dsc2 knockout cells was analysed via Western blot. Loss of Dsg2 and Dsc2 resulted in reduced level of 
p-p38MAPK which was not restored by Dsc2 rescue. α-Tubulin served as loading control. Cropped blots are 
displayed and full-length blots are included in the supplementary information. (E) Band intensity of detected 
p-p38MAPK was quantified using ImageJ and normalized to control (shown is mean ± SE, n ≥ 3, *p < 0,05 
compared to control, n.s not significant). (F) Time for complete repletion during Ca2+-switch experiments was 
compared between wildtype and double knockout of Dsg2 and Dsc2. Loss of desmosomal cadherins resulted in 
a prolonged repletion time which was rescued by activation of p38MAPK via anisomycin (shown is mean ± SE, 
n ≥ 6, *p < 0,05 compared to wildtype under control conditions, #p < 0,05 compared to ∆Dsg2∆Dsc2 under 
control conditions, n.s not significant). (G) Treatment with anisomycin reduced repletion time in ∆Dsg2∆Dsc2 
knockout cells. Representative graph for at least four independent Ca2+-switch experiments is shown.
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and under same conditions activated p38MAPK but was not effective to reduce cell cohesion, indicating that 
extradesmosomal Dsg2 may be involved in the regulation of p38MAPK signalling.

In previous studies, we have characterized mechanisms regulating desmosomal adhesion in keratinocytes. 
However, desmosomal cadherins show tissue-specific expression patterns6–9, which implies that they may have 
distinct functionally properties within different tissues. In keratinocytes we found that Dsg2 is less important for 
cell cohesion compared to Dsg329 and beyond that, activated p38MAPK reduces intercellular cohesion and forms 
a complex with Dsg3 but not Dsg222, 30. In line with this, depletion of Dsg2 did not cause p38MAPK activation. 
In contrast, this study reveals that in enterocytes active p38MAPK is indispensable for barrier reformation and 
maintenance. Moreover, Dsg2 appears to regulate the activity of this kinase. However, by immunoprecipitation 
we did not find Dsg2 being associated with p38MAPK (data not shown).

Previously, we have shown that Dsg2 is required for intestinal barrier properties. Both, an antibody directed 
against Dsg2 as well as siRNA-mediated Dsg2 depletion resulted in loss of cell cohesion and reduced barrier 
function12, 19, 22. Since Dsg2 was missing at cell junctions in patients suffering from CD and a Dsg-specific tandem 
peptide ameliorated barrier dysfunction in response to TNF-α, which is regarded as a central cytokine in CD 
pathogenesis, we concluded that impaired Dsg2 may contribute to pathogenesis of inflammatory bowel diseases 
(IBD)19. This is supported by the finding that cytokines in IBD via matrix metalloproteinase 9 (MMP9) and a 
disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) cause ectodomain cleavage of Dsg2, 
the products of which further compromised barrier integrity18. Thus, we were surprised that the Dsg2-specific 
antibody was not effective to inhibit barrier reformation in Ca2+-switch experiments, in contrast to an inhibi-
tory E-cad-specific antibody which prevented barrier recovery completely. With this, it can be speculated that 
homophilic Dsc2 interactions can compensate for inhibited Dsg2 binding and are sufficient to restore barrier 
properties. Otherwise, it is also possible that AJ account for barrier establishment while desmosomes have rather 
regulatory function during epithelial homeostasis via p38MAPK. Studies from the literature showing that E-cad 
is clearly present at cell borders already at beginning of confluency12 support this hypothesis.

As outlined above, previous studies have shown that a specific antibody binding the ED of Dsg2 disrupted 
intestinal epithelial barrier properties12. Although, it is likely that this effect is to some extend caused by direct 
interference of Dsg2 binding within desmosomes, it is also possible that the Dsg2-specific antibody bound to 
extradesmosomal Dsg2 thereby inducing signalling events leading to reduced barrier properties. This is espe-
cially intriguing since extradesmosomal Dsg molecules have been proposed to serve as signalling hubs31. In this 
study, we demonstrated for the first time that Dsg2 is present outside of desmosomes on the surface of polarized 
cultured enterocytes. Using SIM and STED, we identified distinct Dsg2 spots on the cell surface as well as clusters 
consisting of Dsg2 and DP. Moreover, specific interaction between Dsg2-coated tips and the surface of living 
enterocytes was measured with AFM and application of the Dsg2-specific antibody resulted in decreased binding 
frequency, under conditions where it did not reduce cell cohesion in a dispase-based cell dissociation assay but 
significantly increased p38MAPK phosphorylation. Collectively, these findings suggest that the Dsg2-specific 
antibody binds to extradesmosomal Dsg2 on the cell surface thereby inducing p38MAPK signalling. However, 
incubation for 24 h reduced cell cohesion, indicating that it most likely interfered with desmosomal Dsg2 binding 
under these conditions. Along with a possible signalling function, Dsg2 is known to be a receptor for adenovi-
ruses of which binding triggers intracellular signalling32, 33 also pointing towards the appearance of extradesmo-
somal Dsg2 on the cell surface as desmosomal Dsg2 is inaccessible for adenoviruses in polarized epithelial cells. 
Interestingly, Adenovirus 3 is supposed to bind to the ED 3 and 4 leading to an activation of members of the 
MAPK pathway32, 33. This is in accordance with our data, since the Dsg2-specific antibody is also directed against 
the ED 3 and induced p38MAPK activation, which was paralleled by reduced cell cohesion in a dispase-based 
cell dissociation assay. Considering that there is no enzymatic activity of the intracellular tail of Dsg2 known to 
date, the question arises how signalling cascades can be activated. A recent study demonstrated that soluble Dsg2 
fragments activate the Akt/mTor and MAPK pathway through binding to HER2 and HER3 receptors18. In this 
line shedding of the Dsg2 ED upon binding to the virus was reported32, supporting the idea of Dsg2 fragments 
acting as ligands for other receptors. An alternative mechanism for activating signalling pathways may involve 
displacing proteins from lipid rafts as it has just been reported for Dsg2 in keratinocytes34. Furthermore, our 
data demonstrate that activity of p38MAPK has to be regulated tightly. Inhibition of p38MAPK impaired barrier 
reformation during Ca2+-switch experiments and augmented cell monolayer fragmentation. Direct activation 
of p38MAPK with anisomycin facilitated barrier recovery in Dsg2-deficient cells, in which baseline p38MAPK 
activity was reduced. However, in the course of several hours treatment with anisomycin impaired barrier func-
tion also. This is in line with our previous data, as treatment with TNFα activated p38MAPK which resulted in 
loss of cell cohesion and increased permeability as well as reduction of Dsg2 at the cell borders19.

Finally, our experiments also may give some insight into the pathogenesis of CD. As previously shown, Dsg2 is 
decreased in samples from patients suffering from CD19. However, it is unclear whether this is primary or second-
ary to lesion formation in CD and nothing is known about the underlying mechanisms leading to reduction of 
Dsg2. Our findings that extradesmosomal Dsg2 is present on the cell surface of enterocytes and Dsg2 modulates 
the p38MAPK signalling cascade could uncover a new mechanism in the development of CD. Dsg2 may act as 
a sensor to transmit extracellular stimuli thereby controlling intestinal barrier maintenance. In this scenario, it 
can be speculated that inappropriate transmission of environmental signals could lead to severe inflammatory 
responses and facilitate the development of CD. Further studies are necessary to prove this hypothesis.

Materials and Methods
Cell Culture. The two human intestinal epithelial cell lines Caco2 (ATTC, LGC Standards, Wesel, Germany) 
and DLD1 (kind gift of Shintaro T. Suzuki, Kwansei Gakuin University, Japan) were used. Caco2 cells were cul-
tured in Eagle’s minimal essential medium (ATCC) and DLD1 cells were maintained in Dulbecco’s modified 
Eagle medium (Life Technologies, Carlsbad, CA) with both media being supplemented by 10% fetal bovine serum 
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(Biochrom, Berlin, Germany), 50 U/ml penicillin and 50 U/ml streptomycin (both AppliChem, Darmstadt, 
Germany). Both cell lines were cultivated in a humidified atmosphere containing 5% CO2 at 37 °C and used for 
experiments after reaching full confluence.

Test Reagents. SB202190 (Calbiochem, Darmstadt, Germany) was used to inhibit p38MAPK at 30 µM for 
24 h and anisomycin (Sigma-Aldrich, Munich, Germany) was applied at 60 µM for 24 h to activate p38MAPK. 
For inhibition of Dsg2 binding a specific monoclonal mouse antibody directed against the second and third 
ED of Dsg2 (clone 10G11, Acris, Herford, Germany) without sodium azide was applied at 1:50. Following pri-
mary antibodies were used: mouse anti Dsg2 (clone 10G11) and rabbit anti Dsg2 (rb5, both Progen, Heidelberg, 
Germany), rabbit anti DP (NW6, USA, self-made), mouse anti Dsc2/3 (clone 7G6, Life Technologies, Carlsbad, 
CA), rabbit anti Claudin-4, rabbit anti Claudin-1 and rabbit anti Claudin-2 (all from Life Technologies, Carlsbad, 
CA), mouse anti E-cadherin (clone 36, BD Bioscience, Heidelberg, Germany,) mouse anti GAPDH (Santa Cruz 
Biotechnology, Santa Cruz, CA), mouse anti α-tubulin (Abcam, Cambridge, UK), rabbit anti p38MAPK, rabbit anti 
phospho-Thr180/182 p38MAPK, (Cell Signaling, Danvers, MA, USA),. As secondary antibodies HRP-conjugated 
goat anti-mouse or goat anti-rabbit (Dianova, Hamburg, Germany) were used for western blot analysis, Cy2-, Cy3- 
or Alexa488-labeled goat anti-mouse or goat anti-rabbit antibodies (Dianova, Hamburg, Germany) were used for 
confocal microscopy, Alexa488-labeled goat anti-mouse (Dianova, Hamburg, Germany) and Alexa594-labeled 
goat anti-rabbit (Life Technologies, Carlsbad, CA) were used for SIM and Star580- and Star635P-labeled antibod-
ies (Abberior) were used for STED. For visualization of F-Actin Alexa488-labeled phalloidin (Life Technologies, 
Carlsbad, CA) was applied and nuclei were counterstained with DAPI (Sigma-Aldrich, Munich, Germany).

Immunofluorescence. After grown to confluency on glass coverslips, cells were fixed with 2% paraform-
aldehyde in PBS for 10 min and subsequently permeabilized with 0,5% TritonX-100 in PBS containing 0,02% 
Tween20 (PBS-T) for 10 min. After blocking in 2% BSA in PBS-T for 1 h cells were incubated with primary anti-
bodies for 1 h (all steps were performed at room temperature) and subsequently after 3 washing steps with PBS-T 
with secondary antibodies also for 1 h. For confocal microscopy coverslips were mounted on glass slides with 60% 
glycerol in PBS, containing 1,5% N-propyl gallate (Serva, Heidelberg, Germany) and images were acquired using 
a Leica SP5 confocal microscope with a 63 x NA 1.4 PL APO objective (both Leica, Wetzlar, Germany).

Structured illumination microscopy (SIM). After immunostaining, cells were mounted in 
VECTASHIELD (Vector Laboratories) and SIM images were acquired with a DeltaVisionOMX V3 microscope sys-
tem (General Electric) equipped with a 100 × 1.4 oil immersion objective UPlanSApo (Olympus), 405 nm, 488 nm 
and 593 nm laser (DIC) and Cascade II camera (Photometrics). Reconstruction was done with the SoftWorx soft-
ware (Vers. 6.0 Beta 19, unreleased) and additionally images were aligned with a self-written Fiji macro.

Stimulated emission depletion microscopy (STED). After immunostaining, cells were mounted in 
2,5% DABCO in MOWIOL/HEPES (self-made solution) and imaged with an Abberior 3D STED confocal micro-
scope. Star580 and Star635P (both from Abberior) were excited at 594 nm and 638 nm respectively using pulsed 
diode lasers (PDL 594, Abberior Instruments; PiL063X, Advanced Laser Diode Systems). Fluorescent molecules 
were depleted at 775 nm with a pulsed fibre laser (PFL-P-30-775B1R, MPB Communications) and emission was 
detected with an avalanche photodiode detector at 605-625 and 650-720 nm range.

Western Blot. Cells were grown in 24-well plates and after treatment with respective reagents lysed using SDS 
lysis buffer containing (containing 25 mM HEPES, 2 mM EDTA, 25 mM NaF and 1% SDS) supplemented with 
a protease-inhibitor cocktail (Roche, Mannheim, Germany) and subsequently sonicated. After protein amount 
determination using a BCA Protein Assay Kit (Pierce/Thermo Scientific, Waltham, MA, USA) cell lysates were 
mixed with 3x Laemmli buffer and resolved by reducing SDS-PAGE. Following, proteins were transferred to a 
nitrocellulose membrane (Life Technologies, Carlsbad, CA) according to the standard protocols and membranes 
were probed with primary antibodies. Afterwards, HRP-conjugated secondary antibodies (Dianova, Hamburg, 
Germany) were applied and detected with an ECL reaction system (self-made solution).

TritonX-100 Protein Extraction. Cell monolayer grown in 6-well plates were washed with ice cold PBS 
and incubated in a Triton buffer (containing 0.5% Triton X-100, 50 mM MES, 25 mM EGTA and 5 mM MgCl2) 
for 15 min on ice under gentle shaking. To separate the cytoskeletal protein fraction (Triton-insoluble) from the 
non-cytoskeletal protein fraction (Triton-soluble), cell lysates were centrifuged at 13,000 rpm for 5 min. After 
resuspending the pellets in SDS lysis buffer followed by sonication, protein concentration of both fractions was 
defined as described above and lysates were analysed via Western blot.

Atomic Force Microscopy (AFM). Dsg2 interactions on the surface of living enterocytes were analysed with 
atomic force microscopy (AFM), using a Nanowizard III AFM (JPK Instruments, Berlin, Germany) mounted on 
an optical microscopy (Carl Zeiss, Jena, Germany). The principle of AFM force spectroscopy was described in 
detail before23. Briefly, the sharp tip on a flexible cantilever was functionalized with recombinant Dsg2-Fc con-
taining the complete ED of Dsg2 using a flexible polyethylene glycol linker (Gruber Lab, Institute of Biophysics, 
Linz, Austria) as outlined elsewhere35. While measurements, the tip is repetitively lowered onto the enterocyte cell 
monolayer and retracted again. Thereby binding events between the molecule on the tip and a molecule on the 
cell surface can be detected as the tip is hold back near the cell surface during the retraction movement in case of 
interaction. When the retraction force overcomes the binding strength of the interaction the tip jumps back into 
neutral position. AFM topography images of 50 × 50 µm were acquired at the beginning of each experiment in 
a force curve-based imaging mode (QI- mode) with a setpoint adjusted to 0,5 nN, a z-length of 1500 nm and a 
pulling speed of 50 µm/s. For force mapping to detect specific binding events a small area of 2 × 5 µm was chosen 
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and a map consisting of 20 × 50 pixels with each pixel representing one force-distance curve was recorded. Hereby, 
relative setpoint was set to 0,5 nN, a z-length of 2 µm was used for the DLD1 cells and 3 µm for the Caco2 cells 
with a pulling speed of 4 µm/s for the DLD1 cells and 5 µm/s for Caco2 cells. Measurements were performed in 
respective cell culture medium at 37 °C. For cell-free AFM measurements Dsg2 coated mica sheets (SPI Supplies, 
West Chester, USA) were used instead of cell monolayers. Setpoint was adjusted to the same value as for cell-based 
experiments to produce comparable results. The z-length was set to 0,3 µm and a pulling speed of 1 µm/s was used. 
For each condition 400 force-distance curves were measured on an area of 25 µm × 25 µm.

Dispase-based Dissociation Assay. Confluent Caco2 and DLD1 cell monolayer grown in 24-well plates 
were incubated with test reagents, washed with Hank’s buffered saline solution (HBSS; Sigma-Aldrich) and 
treated with 150 µl of the enzyme dispase II (2,4 U/ml in HBSS, Sigma-Aldrich) at 37 °C to detach the whole cell 
monolayer from the well bottom. For Caco2 cells additionally 1% Collagenase I (Thermo Scientific, Waltham, 
MA, USA) was added. DLD1 cell monolayer detached from the well bottom after 30 min and Caco2 cell mon-
olayer after 1,5 h. After stopping the reaction with 200 µl HBSS cell monolayer were sheared by pipetting 3 times 
using an electrical pipet. Finally, resulting fragments were counted under a binocular microscope (Leica). For 
every condition 3–4 wells out of a 24-well plate were counted and each experiment was repeated at least 3 times.

Measurement of transepithelial resistance. To asses epithelial barrier integrity, the transepithelial 
resistance (TER) was measured with an ECIS model Z theta (Applied Biophysics, Troy, NY) as described previ-
ously36. For this, cells were cultured on 8-well electrode arrays (Ibidi, 8W10E) with sensing areas consisting of 
working electrodes at each well bottom and a counter electrode. Via the electrolytes of the cell culture medium 
above the cells, the electrodes are electrically connected. By application of a non-invasive alternating current 
(<1 µA) to the electrodes, the ECIS device measures the associated voltage drop across the system and determines 
the electrical resistance of the cell covered electrodes. A drop in TER values mirrors barrier breakdown. At the 
beginning of measurements medium was exchanged (300 µl) and baseline TER at 400 Hz for Caco2 cells and 
800 Hz for DLD1 cells, was measured until values reached a plateau. Then, different test reagents were added and 
resistance was monitored every minute for the next 24 h.

Calcium Switch Assay. To analyse cell junctional disassembly and reassembly, Caco2 and DLD1 cells were 
grown on 8-well electrode arrays (Ibidi, 8W10E) and TER was monitored every minute. After measurement of 
baseline TER for about 20 min, Ca2+ ions were depleted using 4 mM EGTA for 1 h thereby inducing disruption of 
Ca2+-dependent cell junctions. With the addition of 8 mM CaCl2, reformation of cell junctions was induced and 
validated based on changes in TER values.

Statistics. All experiments were repeated at least 3 times. Quantification of band intensity was performed using 
ImageJ (National Institutes of Health, Bethesda, MD). Statistical analysis was performed using a two-tailed t test 
for 2-sample group analysis and one-way ANOVA followed by bonferroni correction for multiple sample groups.

Human samples. Human specimens were obtained from terminal ileum of patients that required right hem-
icolectomy in which the surgical resection routinely involves a part of the healthy small intestine. All experiments 
were performed in accordance with relevant guidelines and regulations. All patients had given their informed 
consent before surgery, and the study was approved by the Ethical Board of the University of Würzburg (proposal 
numbers 113/13 and 46/11). For TEM analyses samples were fixed with 2.5% glutaraldehyde, cut into ~1mm³ 
pieces and further processed as described above.

Data Availability. The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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Supplemental Material and Methods  

Transmission Electron Microscopy (TEM)  

Cell monolayer were fixed with 1% glutaraldehyde at 37°C for 1 h, then washed three times with PBS 

and incubated with 2% osmiumtetroxid solution for 1 h at 4°C.  Afterwards, samples were dehydrated 

through an ethanol series from 20 to 100% followed by embedding with epon for 24 hours at 80°C. 

Finally, ultrathin sections (60 - 80 nm) were cut with a diamond knife and staining was performed 

with a saturated solution of uranyl acetate for 40 min and lead citrate for 5 min. Images were acquired 

with the transmission electron microscope Libra 120 (Zeiss, Oberkochen, Germany).  

 

Scanning Electron Microscopy (SEM)  

For scanning electron microscopy, cell monolayer were fixed and dehydrated as described for TEM. 

Afterwards, samples were dried with carbon dioxide under excess pressure of around 86 bar (Critical 

point dryer K850, Quorum Technologies, UK) and subsequently sputtered with gold at 30 mA for 60 s 

(Cressington 108auto) under argon atmosphere. Images were acquired using the scanning electron 

microscope Leo 1550 (Zeiss Oberkochen, Germany). 

siRNA-mediated Silencing of Dsg2 

Human siRNA oligo pools specific for Dsg2 as well as non-target controls were purchased from 

Dharmacon/GE Healthcare (Freiburg, Germany). Cells were transfected at 90% confluency using 

Turbofect (Thermo Scientific, Waltham, MA) as a transfection reagent according to manufacturer’s 

protocols. Medium was exchanged after 24 hours and experiments were performed after 48 hours. 

 

Supplementary figure legends 

Figure S1. Caco2 cells were cultured for 2 days, 4 days or 6 days after confluency and analysed via 

transmission and scanning electron microscopy, confocal microscopy, Western blot and TER. (A) 

Characteristic junctional complexes as well as microvilli were present already on day 2. Scale bar, 1 

µm (left and central panels), 2 µm (right panel) (B) Electron microscopy images of human terminal 

ileum specimens show tight junctions (TJ), adherens junctions (AJ) and desmosomes (D) at the apical 



part of the intercellular cleft. Desmosomes can also be found in lower regions of the intercellular cleft. 

Scale bar, 1000 nm (left panel), 500 nm (right panel) (C) Immunostaining of junctional components 

reveals linear localization of Dsg2, Cld1 and Cld4 already on day 2, staining for Cld2 decreases in the 

time course of differentiation. Scale bar, 10 µm. (D) Western blot analysis reveals unaltered protein 

level of junctional components from day 2 till day 6. α-Tubulin serves as loading control. (E) TER 

measurements reveal constant values between day 2 and day 6. (n = 4, n.s not significant) 

Figure S2. (A) AFM topography image and scanning microscopy image of DLD1 cells closely 

resemble each other. Scale bar, 2 µm (left panel), 10 µm (right panel). (B) siRNA-mediated silencing 

of Dsg2 reduces amount of binding events on living DLD1 cells. (siNT = non-target siRNA; shown is 

mean ± SE, n = 4, * p < 0,05) (C) Dsg2-specific antibody increases cell monolayer fragmentation of 

Caco2 cells in a dispase-based cell dissociation assay (shown is mean ± SE, n = 4, * p < 0,05). (D) 

siRNA-mediated silencing of Dsg2 increases cell monolayer fragmentation of DLD1 and Caco2 cells 

in a dispase-based cell dissociation assay. (shown is mean ± SE, n = 4, * p < 0,05) 

Figure S3. (A) siRNA mediated silencing of Dsg2 reduces phosphorylation of p38MAPK. (B) Dsg2-

specific antibody did not increase cell monolayer fragmentation in a dispase-based cell dissociation 

assay after 30 min of incubation (shown is mean ± SE, n = 4, n.s = not significant compared to 

control). (C) Western blot analysis after incubation of DLD1 cells with a Dsg2-specific antibody for 

24 h revealed increased phosphorylation of p38MAPK. Band intensity of detected p-p38MAPK was 

quantified using ImageJ and normalized to control (shown is mean ± SE, n = 3, * p < 0,05 compared 

to control). 

Figure S4. (A) TER values of Caco2 cells decrease during depletion with 4 mM EGTA for 1 h and 

increase back to control values during 2 h of repletion with 8 mM CaCl2. (Representative graph for n > 

3 is shown). (B) Immunostaining of Dsg2 and E-cadherin during Ca2+-switch experiments in DLD1 

cells reveals reduction and fragmentation after 1 h depletion and similar staining to control condition 

after 2 h repletion. Scale bar, 10 µm. (C-D) Immunostaining of junctional components during Ca2+-

switch experiments in Caco2 cells reveals reduction and fragmentation as well as gap formation after 1 

h depletion and similar staining to control condition after 2 h repletion. Scale bar, 10 µm. (E) Barrier 



reformation in Caco2 cells is impaired after inhibition of p38MAPK with SB202190 in the Ca2+-

switch experiment while addition of anisomycin has no effect (Representative graph for 6 independent 

experiments is shown). (D) Time for repletion during Ca2+-switch experiments was compared between 

control condition and application of anisomycin or SB202190. Inhibition of p38MAPK with 

SB202190 significantly delayed the repletion time while application of anisomycin resulted in a 

repletion time similar to control condition (shown is mean ± SE, n=6, * p < 0,05 compared to control 

condition, n.s not significant). 
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Abstract
Rapidly renewing epithelial tissues such as the intestinal epithelium require precise tuning of intercellular adhesion and 
proliferation to preserve barrier integrity. Here, we provide evidence that desmoglein 2 (Dsg2), an adhesion molecule of des-
mosomes, controls cell adhesion and proliferation via epidermal growth factor receptor (EGFR) signaling. Dsg2 is required 
for EGFR localization at intercellular junctions as well as for Src-mediated EGFR activation. Src binds to EGFR and is 
required for localization of EGFR and Dsg2 to cell–cell contacts. EGFR is critical for cell adhesion and barrier recovery. In 
line with this, Dsg2-deficient enterocytes display impaired barrier properties and increased cell proliferation. Mechanisti-
cally, Dsg2 directly interacts with EGFR and undergoes heterotypic-binding events on the surface of living enterocytes via 
its extracellular domain as revealed by atomic force microscopy. Thus, our study reveals a new mechanism by which Dsg2 
via Src shapes EGFR function towards cell adhesion.

Keywords Desmosomes · Desmosomal cadherins · Intestinal barrier · Cell adhesion

Abbreviations
AFM  Atomic force microscopy
AJ  Adherens junction
Cld4  Claudin 4
Dsc2  Desmocollin 2
Dsg2  Desmoglein
DP  Desmoplakin

Ecad  E-cadherin
EGFR  Epidermal growth factor receptor
MAPK  Mitogen-activated protein kinase
PG  Plakoglobin
Pkp  Plakophilin
RTK  Receptor tyrosine kinase
STED  Stimulated emission depletion microscopy
TER  Transepithelial resistance
TJ  Tight junction
WT  Wild type

Introduction

Epithelial tissues represent the interface between the 
organism and the environment, and thus, maintenance of 
epithelial barrier function is indispensable to prevent entry 
of pathogens or harmful macromolecules. This is, in par-
ticular, crucial for the gastrointestinal epithelium, which 
comprises a huge surface and faces a plethora of bacteria 
present in the gut but simultaneously needs to stay perme-
able to enable the uptake of nutrients and essential macro-
molecules [1, 2]. Aggravating this situation, the intestinal 
epithelial tissue shows the highest turnover rate in adult 
mammals and is exposed to notable mechanical stress 
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resulting from gastrointestinal motility [3, 4]. Hence, pre-
cise regulation of intercellular adhesion and proliferation 
is required to preserve barrier integrity. This function is 
achieved by a set of adhesion complexes including tight 
junctions (TJ), adherens junctions (AJ), and desmosomes 
that tightly connect the polarized enterocytes within the 
simple columnar epithelium, thereby sealing the paracel-
lular space [5, 6]. Initially, desmosomes were considered 
to primarily provide the mechanical strength in intercel-
lular cohesion [7]. However, growing evidence suggests 
that desmosomal cadherins beside their adhesive function 
actively coordinate signaling pathways, hence mediat-
ing proliferation, differentiation, and apoptosis [8–11]. 
Desmosomal cadherins are transmembrane glycoproteins 
which interact via their extracellular domains (ED) in a 
homo- and heterophilic manner, while their tails associ-
ate with the plaque proteins plakoglobin (PG), plakophilin 
(Pkp), and desmoplakin (DP), thereby anchoring the des-
mosomal complex to the intermediate filament cytoskel-
eton. Thus, these components constitute the adhesive core 
of desmosomes [12]. Seven isoforms of desmosomal cad-
herins are expressed in human epithelial tissues, of which 
the intestinal epithelium contains Desmoglein 2 (Dsg2) 

and Desmocollin 2 (Dsc2) only [13–15]. A recent study 
reports that Dsc2 alone is sufficient to form a functional 
desmosomal plaque in enterocytes [16]. However, Dsg2 
is required for intestinal epithelial barrier properties and 
abnormal expression of Dsg2 is implicated in colon can-
cer and inflammatory disorders such as Crohn’s disease 
[17–20]. In addition, it was shown that Dsg2 besides its 
role in cellular adhesion has an essential signaling func-
tion in regulating p38 mitogen-activated protein kinase 
(MAPK) signaling in enterocytes [20].

The mechanism by which desmosomal cadherins regu-
late signaling pathways is an emerging focus of research. 
Given that the intracellular tail of desmogleins has no 
enzymatic activity, transduction of signaling requires 
interaction with signaling components such as kinases. 
In this context, several molecular mechanisms have been 
proposed such as matrix metalloprotease-mediated shed-
ding of Dsg2 external domain fragments which may act 
as ligands for receptor tyrosine kinases (RTK) [21] or 
displacing kinases from lipid rafts, thereby promoting 
their activation [22]. The common denominator in both 
scenarios is the involvement of RTK which are already 
known to associate with classical cadherins, and thus, both 
molecules are modulated mutually [23, 24]. Depending on 
the phosphorylation site, specific signaling molecules can 
be recruited which, in turn, modulate a variety of down-
stream signaling cascades [25–29]. Of particular inter-
est to this study is the epidermal growth factor receptor 
(EGFR) which has been shown to modulate function of 
desmogleins [30, 31] as well as to be modulated by des-
mogleins [9, 22, 32]. Furthermore, EGFR is suggested to 
regulate cell migration, wound healing, and cell extrusion 
in intestinal epithelial cells [33–35]. Albeit, all these pro-
cesses require regulation of intercellular junctions; the role 
of desmosomal cadherins in this context has only been 
marginally explored.

In this study, we examined how Dsg2 and EGFR cooper-
ate in regulating intestinal epithelial homeostasis to assure 
barrier integrity. We show that Dsg2 modulates EGFR 
localization as well as protein level and Src-dependent acti-
vation, which both were reduced in Dsg2-deficient DLD1 
and Caco2 cells. Here, we demonstrate, for the first time, 
that Dsg2 and EGFR interact directly using atomic force 
microscopy (AFM) both on living enterocytes as well as in 
a cell-free setup. Moreover, these binding events were inhib-
ited by ligand binding to EGFR and depend on EGFR tyros-
ine kinase activity. In addition, inhibition of EGFR tyrosine 
kinase activity impaired barrier formation and intercellular 
adhesion. Furthermore, loss of Dsg2 increased cell prolif-
eration, which was restored after inhibition of EGFR activ-
ity. Collectively, our data suggest a new signaling complex 
consisting of Dsg2 and EGFR which stabilizes the adhesive 
state of intestinal epithelial cells.

Fig. 1  Dsg2 knockout results in mislocalization and reduced pro-
tein levels of EGFR in intestinal epithelial cells. a Immunostaining 
for Dsg2 (green) and EGFR (red) in patient tissue sections of the 
colon revealed co-localization of both proteins. Four independent 
patient tissue samples were analyzed. Shown is representative image 
of a section from the colon. Bar 10 µm. b Immunostaining for Dsg2 
(green) and EGFR (red) in human enteroids revealed co-localization 
of both proteins along the cell borders as well as on the surface fac-
ing the lumen. Shown is representative image for ten enteroids. Bar 
10  µm. c Confluent cell monolayer of DLD1 cells grown on cover-
slips were immunostained for EGFR, Dsg2, and Dsc2/3. Loss of 
Dsg2 but not Dsc2/3 results in a major loss of EGFR staining at cell 
borders. Bar 10 µm. d Merged images of immunofluorescence stain-
ing of Dsg2, EGFR, and Dsc2/3 show co-localization of Dsg2 and 
EGFR but not Dsc2/3 and EGFR. Bar 10 µm (left panel) and 5 µm 
(right panel). e Evaluation of the Pearson correlation coefficient of 
EGFR confirms a co-localization of EGFR with Dsg2 but not Dsc2. 
Shown are boxplots with each point representing one analyzed area 
along the cell border. *p < 0.05. f STED super resolution microscopy 
analysis of Dsg2 and EGFR co-immunostaining shows co-localiza-
tion. Bar 5 µm. g x–z image of Dsg2 and EGFR co-immunostaining 
shows specific co-localization at the apical site of cell contacts. Bar 
10 µm (left panel) and 5 µm (right panel). h EGFR is absent in the 
Triton X-100 insoluble fraction when Dsg2 is missing in contrast to 
Ecad that is not affected by Dsg2 knockout. GAPDH served as load-
ing control. i Band intensity of detected EGFR was measured from 
five independent experiments, showing a significant reduction of 
EGFR in the insoluble fraction in Dsg2-deficient DLD1 cells. Results 
are shown as mean ± SE. *p < 0.05. j Total protein level of EGFR in 
DLD1 cells were assessed by western blotting that revealed reduced 
EGFR levels in Dsg2-deficient cells. GAPDH served as loading 
control. k Band intensity of detected EGFR was quantified from at 
least ten independent experiments, demonstrating a significant reduc-
tion of total EGFR protein levels upon Dsg2 knockout. Shown are 
mean ± SE. *p < 0.05

◂



 H. Ungewiß et al.

1 3

Results

Loss of Dsg2 reduces EGFR levels and prevents its 
localization to cell borders

Increasing evidence suggests that desmosomal cadherins 
beyond their adhesive function are actively involved in reg-
ulating signaling cascades. Previously, we demonstrated 
that Dsg2 regulates barrier integrity in human intestinal 
cells via p38MAPK signaling [20]. In addition, several 
studies on keratinocytes linked desmogleins to differentia-
tion and proliferation through regulation of growth factor 
signaling cascades [8, 9]. We, therefore, asked how des-
mosomal cadherins influence EGFR signaling in human 
intestinal cells. First, we performed immunostaining for 
Dsg2 and EGFR in human colon samples to investigate 
whether these proteins can be found in close proximity. 
EGFR is assumed to be located primarily in the basolat-
eral membrane of enterocytes, whereas Dsg2 was shown 
to be present as part of desmosomes in the basolateral 
membrane but also outside of desmosomes in the apical 
membrane, at least in cultured enterocytes [20, 36, 37]. 
Interestingly, we observed EGFR staining at the basolat-
eral membrane as well as at the apical surface and distinct 
spots of Dsg2 staining all along the cell borders (Fig. 1a). 
Besides, a small fraction of apical EGFR staining was 
overlapping with immunostaining for Dsg2 resulting in 
yellow spots. Similarly, we observed overlapping stain-
ing for EGFR and Dsg2 in human enteroids with an even 
more pronounced EGFR staining at the apical cell mem-
brane facing the enteroid lumen (Fig. 1b). Using human 
colon carcinoma DLD1 cells deficient for Dsg2 and/or 
Dsc2 [16], we next investigated whether localization and 
protein levels of EGFR are controlled by desmosomal cad-
herins. DLD1 wild-type (WT) cells in immunostaining 
displayed linear localization of EGFR along cell borders 
similar to Dsg2 (Fig. 1c, upper panels) and Dsc2 (Fig. 1c, 
lower panels). To examine whether desmosomal cadher-
ins affect the localization of EGFR, we immunostained 
DLD1 cells deficient for Dsg2, Dsc2, or both cadherins. 
Cells deficient for both, Dsg2 and Dsc2, showed almost 
complete loss of EGFR staining at cell borders (Fig. 1c, 
second column). Similar results were obtained using WT 
and Dsg2-deficient Caco2 cells (Fig. S1A). Reconstitu-
tion of Dsc2 was not sufficient to restore this phenotype 
(Fig. 1c, third column), suggesting that Dsg2 is required 
for recruiting EGFR to cell borders. In line with this, 
loss of Dsc2 did not affect EGFR localization (Fig. 1c, 
fourth column). Moreover, merged images of Dsg2 (green) 
and EGFR (red) staining revealed co-localization at cell 
borders with a Pearson correlation coefficient of around 
0.4 pointing towards positive correlation of overlapping 

staining (Fig. 1d, e). In contrast, no correlation between 
EGFR and Dsc2 staining was observed, as indicated by 
a correlation coefficient of 0 (Fig. 1d, e). Using STED 
super resolution microscopy, we analyzed EGFR and Dsg2 
localization more closely and found overlapping stain-
ing for EGFR and Dsg2 even at high resolution (Fig. 1f) 
confirming their close co-localization. Furthermore, we 
observed co-localization all along the cell border but more 
pronounced at the most apical part of the intercellular cleft 
(Fig. 1g). In accordance to the immunostaining, triton 
extraction resulted in a significant reduction of EGFR in 
the insoluble fraction when Dsg2 was absent (Fig. 1h, i) 
raising the possibility of a putative signaling complex con-
sisting of Dsg2 and EGFR maybe at sites of desmosomes. 
Importantly, immunoblotting for Ecad did not result in 
any changes upon loss of Dsg2 or of Dsc2 (Fig. 1h), sug-
gesting that AJ stay unaffected. Moreover, total protein 
expression levels of EGFR were reduced significantly in 
cells deficient for Dsg2 but not Dsc2 (Fig. 1j, k), indicating 
that Dsg2 might be important for EGFR stability. Simi-
larly, EGFR protein levels were reduced in Dsg2-deficient 
Caco2 cells (Fig. S1 B–E).

Dsg2 and EGFR interact directly via their 
extracellular domains

Given the first hints pointing towards a signaling complex 
consisting of Dsg2 and EGFR, we next investigated whether 
there is direct interaction. To this end, we conducted AFM 
on living DLD1 cells using an AFM cantilever coated with 
recombinant Dsg2-Fc containing the complete extracellu-
lar domain of Dsg2 similar as shown recently [20]. First, 
AFM topography images were created to select specific 
areas at cell borders for further adhesion measurements 
(Fig. 2a, upper panel). For interaction studies, the function-
alized AFM tip was repetitively lowered on the cell sur-
face, thereby creating an adhesion map consisting of 1000 
force–distance curves for each selected area, with each white 
pixel representing one positive-binding event (Fig. 2a, lower 
panel). Intriguingly, these binding events were blocked sig-
nificantly when applying an inhibitory antibody against the 
extracellular domain of EGFR (Fig. 2a, b), indicating that 
measured binding events under control conditions partly 
reflect heterophilic Dsg2–EGFR interaction. To verify that 
measured binding events were Dsg2-specific, an inhibi-
tory antibody against the extracellular domain of Dsg2 was 
applied, which reduced the binding events to a similar extent 
(Fig. 2b), similar as published previously [20]. In addition, 
we performed cell-free AFM experiments with Dsg2-coated 
AFM tips on mica sheets functionalized with either recom-
binant Dsg2-Fc or recombinant EGFR-Fc containing the 
complete extracellular domain to validate homophilic or het-
erophilic interactions. Binding frequency was similar when 
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measured Dsg2–Dsg2 or Dsg2–EGFR interaction under the 
same conditions (Fig. 2b), suggesting that both interactions 
can occur. Application of the inhibitory EGFR-specific anti-
body did not reduce homophilic Dsg2 interactions (Fig. 2b), 
demonstrating that it does not bind un-specifically to Dsg2. 
In contrast, heterophilic Dsg2–EGFR binding was signifi-
cantly reduced similar to AFM measurements on living cells 
(Fig. 2b) underlining the specificity of measured binding 
events. Bearing in mind that the inhibitory EGFR-specific 
antibody blocks the ligand-binding site of EGFR, these data 
further raise the possibility that this binding site might be 
important for heterophilic EGFR–Dsg2 binding. Applica-
tion of the inhibitory Dsg2-specific antibody reduced both 
homophilic Dsg2–Dsg2 as well as heterophilic Dsg2–EGFR 
interactions (Fig. 2b). Given that the antibody is directed 
against the extracellular domains 3 and 4 of Dsg2, this 
result indicates that these subdomains may be required for 
EGFR–Dsg2 interaction. In addition, we also examined 
endogenous association between EGFR and Dsg2 in DLD1 
cells using co-immunoprecipitation studies. In line with the 
AFM-based adhesion studies, interaction of EGFR and Dsg2 

was detected in DLD1 cells (Fig. 2c). Moreover, we per-
formed a pull-down assay using the recombinant Dsg2-Fc, 
which also resulted in co-precipitation of EGFR and thus 
further indicates an interaction of EGFR with the extracel-
lular domain of Dsg2 (Fig. 2d).

Ligand binding to EGFR prevents its interaction 
with Dsg2 at the cell surface

The canonical EGFR signaling pathway involves binding of 
growth factors to EGFR resulting in receptor dimerization 
and subsequent cross-phosphorylation of cytoplasmic recep-
tor domains [25, 26, 28, 29]. Therefore, we applied EGF 
during AFM measurements on living DLD1 cells result-
ing in a significant reduction of binding frequency (Fig. 3a, 
b). This prompted us to ask whether EGF-mediated recep-
tor dimerization reduced binding to Dsg2 maybe through 
masking the binding site. Alternatively, the subsequent 
auto-phosphorylation might induce decreased Dsg2–EGFR 
interaction. Hence, we treated the cells with erlotinib, a spe-
cific EGFR tyrosine kinase inhibitor to assess whether the 

Fig. 2  Dsg2 and EGFR form heterophilic interactions via their extra-
cellular domains. a AFM cell topography image was created to select 
specific areas along the cell borders for Dsg2 adhesion measure-
ments (upper panel). Adhesion measurements using a Dsg2-coated 
AFM tip generated adhesion maps with each white pixel represent-
ing one binding event (lower panel). b Treatment with an inhibitory 
EGFR-specific antibody significantly reduced the amount of Dsg2 
binding events on living cells similar to an inhibitory anti-Dsg2 
antibody. Cell-free AFM measurements using a Dsg2 coated tip and 
mica sheets coated either with Dsg2 or with EGFR revealed a similar 

binding frequency of homophilic Dsg2–Dsg2 and heterophilic Dsg2–
EGFR interactions, which were significantly blocked by respective 
antibodies applied to the mica sheet. Graph shows fold-change val-
ues from at least three independent experiments ± SE. *p < 0.05. c 
Co-immunoprecipitation was performed with DLD1 cell lysates and 
an anti-Dsg2 antibody for immunoprecipitation (IP) of endogenous 
Dsg2. Immunoblotting for EGFR revealed co-IP of both proteins. 
FT flow through. d Pull-down assay was performed with DLD1 cell 
lysates and a Dsg2-Fc fusion protein. Immunoblotting for EGFR 
revealed co-IP of Dsg2-Fc and EGFR
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tyrosine kinase activity of EGFR affects its binding to Dsg2. 
Indeed, the inhibitor resulted in reduced binding frequency 
(Fig. 3a, b), indicating that EGFR kinase activity is impor-
tant. However, EGF also reduced the binding frequency in 
cell-free AFM measurements with a Dsg2-coated cantilever 
on EGFR-coated mica sheets (Fig. 3b), which raises the pos-
sibility that Dsg2–EGFR interaction might be also inhib-
ited through steric hindrance upon EGF binding to EGFR. 
Results from hanging drop bead aggregation assays that 
revealed a similar inhibitory effect of EGF on interaction 
of Dsg2- and EGFR-coated beads support this hypothesis 
(Fig. 3c, d). Next, we analyzed the measured interactions 
with regard to their unbinding forces to gain insight into 

the molecular interaction mechanism. Peak fit analysis of 
measured unbinding force curves under control conditions 
revealed a distribution peak at 31.56 pN (Fig. 3e) which is 
in accordance with previously measured unbinding forces 
using a Dsg2-coated AFM tip on living enterocytes [20]. 
Interestingly, unbinding forces were similar after applica-
tion of EGF, the inhibitory EGFR-specific antibody or erlo-
tinib (Fig. 3f). Given that, EGFR is internalized following 
ligand binding [38, 39], we hypothesized that reduced bind-
ing frequency might be due to less available EGFR at the 
cell surface. Therefore, we performed surface biotinylation 
assays. As expected, incubation with EGF reduced EGFR 
levels at the cell surface (IP) as well as in total lysate (Input) 

Fig. 3  EGF reduces Dsg2-specific binding events on the cell sur-
face of living DLD1 cells. a Dsg2 adhesion measurements were 
performed on living DLD1 cells under control conditions and after 
incubation with EGF or erlotinib. Shown are topography images of 
selected areas at cell borders and adhesion maps with each white 
pixel representing one binding event. b Quantification shows a sig-
nificant reduction of binding events on living DLD1 cells after incu-
bation with both, EGF or erlotinib. Application of EGF also reduced 
the amount of binding events in the cell-free AFM setup with a 
Dsg2-coated tip and EGFR-coated mica sheets. Graph bars represent 
fold-change values ± SE from at least four independent experiments. 
*p < 0.05. c Peak fit analysis of measured unbinding forces revealed 
a distribution peak of 31.56 pN under control conditions. d Distri-

bution-peak values of unbinding forces measured on DLD1 cells 
under control conditions and after incubation with EGF, anti-EGFR 
antibody, or erlotinib were compared and revealed similar values for 
all conditions. Graph shows distribution-peak values normalized to 
control. e, f Hanging drop bead aggregation assay confirms blockade 
of interaction between Dsg2 and EGFR through EGF. Beads coated 
with a human IgG Fc fragment served as control. *p < 0.05; n.s. not 
significant. g Western blot analysis of surface biotinylation assay 
revealed reduced Dsg2 and EGFR levels on the surface of DLD1 cells 
after incubation with EGF. h Quantification of Dsg2 and EGFR band 
intensity from at least seven independent experiments shows a sig-
nificant reduction of surface protein levels only after incubation with 
EGF. Graph bars represent fold-change values ± SE. *p < 0.05
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(Fig. 3g, h). Interestingly, Dsg2 cell surface levels were also 
reduced after EGF treatment (Fig. 3g, h), indicating that 
EGFR and Dsg2 might stabilize one another at the cell sur-
face. In contrast, the inhibitory EGFR-specific antibody as 
well as Erlotinib had no significant effect on cell surface 
protein levels of Dsg2 and EGFR (Fig. 3g, h), suggesting 
that reduced AFM-binding frequency is attributable to inhi-
bition of direct binding. In summary, our data demonstrate 
that interaction of Dsg2 and EGFR is disrupted upon ligand 
binding to EGFR as well as after inhibition of the tyrosine 
kinase activity, suggesting that both direct binding via their 
extracellular domains as well as ligand-independent activa-
tion of EGFR might be involved in this interaction.

Loss of Dsg2 reduces Src-dependent 
phosphorylation of EGFR

Inhibition of EGFR kinase activity reduced EGFR binding to 
Dsg2. Hence, we asked whether loss of Dsg2 might reduce 
phosphorylation of EGFR. As we hypothesized that ligand-
independent activation of EGFR is involved in Dsg2–EGFR 
complex formation and it has been shown that EGFR is 
phosphorylated on Y845 in an EGF-independent man-
ner [40], we focused on this phosphorylation site. Indeed, 
DLD1 cells deficient for Dsg2 displayed lower levels of 

Y845 phosphorylation (Fig. 4a, b). Similarly, loss of Dsg2 
in Caco2 cells reduced phosphorylation of EGFR at this site 
(Fig. S2A and B). Reconstitution of Dsc2 in DLD1 cells 
deficient for both desmosomal cadherins did not restore the 
level of phosphorylation. Moreover, loss of Dsc2 alone had 
no significant effect on phosphorylation levels (Fig. 4a, b), 
suggesting that Dsg2 and not Dsc2 is required for phospho-
rylation. Usually, the phosphorylation at Y845 is catalyzed 
by the tyrosine kinase Src [41–43], which has already been 
reported to play a role in cell adhesion signaling [40, 44, 
45]. Interestingly, Src localization to cell borders remained 
unchanged upon loss of Dsg2 (Fig. S2C). Furthermore, also 
protein levels of total and phosphorylated Src as well as dis-
tribution in the triton-soluble and -insoluble fractions were 
not affected (Figs. S2D and S2E). However, inhibition of Src 
activity using the Src-specific inhibitors PP2 and KX2-391 
resulted in reduced and fragmented EGFR and Dsg2 immu-
nostaining at cell borders in DLD1 cells (Fig. 4c). Intrigu-
ingly, where remaining both proteins were still co-localizing. 
Since Src is reported to associate with Dsg3 [45], we next 
performed immunoprecipitation to investigate whether it 
also forms a complex with Dsg2 and EGFR. Surprisingly, 
we found Src only associated with EGFR but not Dsg2 in 
DLD1 cells (Fig. 4d). Altogether, these data indicate that Src 
acts upstream of Dsg2 and EGFR; Src activity is required 

Fig. 4  Dsg2 knockout reduces Src-dependent phosphorylation of 
EGFR. a Level of phosphorylated EGFR at Y845 in DLD1 cells defi-
cient for Dsg2 and Dsc2 was analyzed via Western blot. Loss of Dsg2 
resulted in reduced level of pEGFR, which was not rescued by recon-
stitution of Dsc2. b Intensity of bands detected by a pEGFR-specific 
antibody was quantified using ImageJ and normalized to total EGFR. 
Shown are fold-change values ± SE of six independent experiments. 

*p < 0.05; n.s. not significant. c Immunostaining of Dsg2 and EGFR 
in DLD1 cells showed reduced and fragmented staining of both pro-
teins at the cell border after application of the Src inhibitors PP2 and 
KX2-391. Bar 10 µm. d DLD1 cell lysates were used for immunopre-
cipitation of EGFR (upper panels) or Dsg2 (lower panels) and sub-
jected to western blot analysis for Src, revealing a co-IP of Src with 
EGFR but not with Dsg2
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for proper localization of Dsg2 and EGFR to the cell bor-
ders and Src-mediated phosphorylation at Y845 stabilizes 
Dsg2–EGFR interaction.

Dsg2 via EGFR regulates the switch 
between adhesive and proliferative states 
in enterocytes

Finally, we were interested in the functional relevance of 
this new signaling complex. We have previously shown that 
loss of Dsg2 affects barrier properties via impaired down-
stream signaling of p38MAPK [20]. Here, we investigated 
whether EGFR signaling is involved in maintenance of bar-
rier properties in intestinal cells. To explore its role during 
barrier recovery, we performed  Ca2+-switch experiments 
and applied several EGFR-modulating agents at initiation 
of repletion. Treatment of DLD1 WT cells with EGF as well 
as the inhibitory EGFR-specific antibody did not disturb bar-
rier recovery, resulting in similar TER values compared to 
 Ca2+-switch alone (Fig. 5a, b). In contrast, application of 
erlotinib abolished barrier recovery significantly (Fig. 5a, b). 
Since we assume that Src activity is required for localization 
of EGFR to cell borders, we next tested whether inhibition 

of Src using the inhibitor PP2 affects barrier recovery after 
 Ca2+ switch. Similar to the effect of erlotinib, also Src inhi-
bition prevented barrier reformation significantly (Fig. 5a, 
b). Furthermore, inhibition of p38MAPK with the inhibitor 
SB202190 hampered barrier recovery (Fig. 5a, b), similar 
as published previously [20], which led us to the assump-
tion that p38MAPK might be regulated downstream of the 
Dsg2–EGFR signaling complex. We obtained similar results 
using Caco2 cells (Fig. S3A and B). Moreover,  Ca2+-switch 
experiments with DLD1 WT cells grown on filter inserts 
revealed no difference when applying EGF from apical side 
to basolateral side with both behaving similar to control 
conditions (Fig. S3C and D). Treatment with erlotinib in 
the trans-well system also disturbed barrier under both con-
ditions, but recovery was even more affected by applica-
tion from basolateral side (Fig. S3C and D). Furthermore, 
 Ca2+-switch experiments with DLD1 cells deficient for both 
Dsg2 and Dsc2 also revealed significantly impaired barrier 
recovery after inhibition of EGFR, Src, or p38MAPK, indi-
cating that desmosomal cadherins are not the only target of 
these signaling pathways in the process of barrier recovery 
(Fig. S3E and F). Since barrier properties are maintained 
by TJ, effects on claudins may also be possible. Therefore, 
we performed immunostaining for Claudin 4 (Cld4) after 
2 h repletion together with the respective mediator, which 
revealed linear staining along cell borders similar to control 
condition after repletion without any inhibitor or when sup-
plemented with EGF or a-EGFR, whereas staining appeared 
irregular after repletion in the presence of erlotinib, PP2, 
or SB202190 (Fig. S3G). Next, we analyzed whether the 
stability of newly formed cell junctions differs after reple-
tion with EGFR-modulating agents compared to control, 
using a dispase-based cell dissociation assay. Application 
of EGF and the inhibitory EGFR-specific antibody had no 
effect on cell adhesion after  Ca2+ switch (Fig. 5c) as well as 
when applied on a confluent monolayer (Fig. 5d). However, 
inhibition of EGFR tyrosine kinase activity using erlotinib 
increased the number of fragments significantly after  Ca2+ 
switch (Fig. 5c) and disrupted cell adhesion of a conflu-
ent cell monolayer (Fig. 5d). Similar, inhibition of Dsg2 
binding using the Dsg2-specific antibody and inhibition of 
p38MAPK with SB202190 increased cell monolayer frag-
mentation after  Ca2+ switch as well as under normal condi-
tions (Fig. 5c, d), further indicating that the Dsg2–EGFR 
complex might regulate a downstream signaling cascade 
that includes p38MAPK. Several studies implicate a role 
for Dsg2 in regulating downstream signaling cascades linked 
to proliferation [8, 22, 32]. In addition, the pivotal function 
of the EGFR is to drive cell growth and survival [46–48]. 
Therefore, we investigated whether loss of Dsg2 and, as a 
consequence, disruption of the Dsg2–EGFR complex affect 
cell proliferation. Indeed, DLD1 cells deficient for Dsg2 
and Dsc2 showed significantly increased cell proliferation 

Fig. 5  Dsg2 regulates EGFR activity, thereby suppressing prolifera-
tion and supporting an adhesive state in enterocytes. a Barrier recov-
ery of DLD1 WT cells after  Ca2+ switch was monitored via TER 
measurements showing impaired barrier recovery after inhibition of 
EGFR, Src and p38MAPK activity with respective inhibitors. Inhibi-
tors were applied together with  CaCl2 after 1 h depletion with EGTA. 
b TER values were quantified after 10 h of repletion with respective 
inhibitors and normalized to control repletion with respective vehicle. 
Repletion with erlotinib, PP2, and SB202190 resulted in significantly 
reduced TER values compared to control. Shown are fold-change 
values ± SE of 4–6 independent experiments. *p < 0.05; n.s. not sig-
nificant. c Cell adhesion of DLD1 cells was analyzed in a dispase-
based dissociation assay after  Ca2+ switch and treatment with sev-
eral inhibitors. Treatment with erlotinib, PP2, and SB202190 during 
repletion significantly increased monolayer fragmentation compared 
to control repletion with respective vehicle. Shown is mean ± SE of 
six independent experiments. *p < 0.05; n.s. not significant. d Con-
fluent DLD1 cell monolayer were treated with EGF, a-EGFR, erlo-
tinib, or SB202190, and analyzed for cell adhesion in a dispase-based 
cell dissociation assay. Inhibition of EGFR and p38MAPK activity 
significantly increased number of fragments in contrast to EGF and 
the EGFR-specific antibody. Shown is mean ± SE of five independ-
ent experiments. *p < 0.05; n.s. not significant. e Cell proliferation 
was determined by cell counting. 50,000 cells were seeded for each 
cell line with or without erlotinib and cells were counted after 24, 
48, 72, and 96 h. f Number of cells after 96 h was quantified. Shown 
is mean ± SE of at least five independent experiments. *p < 0.05. g 
Cell proliferation was determined after Dsg2 reconstitution in DLD1 
cells deficient for Dsg2 and Dsc2, 48 h after transfection. Shown is 
mean ± SE of four independent experiments. GFP-ev empty vector, 
*p < 0.05. h Model of Dsg2-mediated regulation of EGFR. Dsg2 
recruits EGFR to cell borders where it is phosphorylated by Src and 
induces downstream signaling, thereby strengthening adhesion maybe 
via p38MAPK. Loss of Dsg2 results in activation of the canonical 
EGFR signaling pathway resulting in proliferation

◂
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compared to WT cells (Fig. 5e, f). Stable reconstitution 
of Dsc2 in cells deficient for both desmosomal cadherins 
did not revert proliferation rate and loss of Dsc2 only did 
not result in increased proliferation compared to WT cells 
(Fig. 5e, f), suggesting that Dsg2 and not Dsc2 mediates this 
effect. Treatment with the EGFR tyrosine kinase inhibitor 
erlotinib diminished cell proliferation under all conditions 
resulting in values similar to WT cells (Fig. 5e, f). A similar 
result was obtained using WT and Dsg2-deficient Caco2 
cells (Fig. S3 H). These data suggest that increased cell 
proliferation caused by loss of Dsg2 was mediated through 
EGFR tyrosine kinase activity. In addition, we performed 
Dsg2 rescue experiments with transient re-expression of 
Dsg2–GFP to corroborate the effect on proliferation upon 
loss of Dsg2. Using confocal microscopy, we confirmed the 
successful expression of Dsg2–GFP that was found linearly 
along cell borders in DLD1 double knockout as well as 
Dsg2-deficient Caco2 cells (Fig. S3I). Analysis of prolif-
eration revealed that transient re-expression of Dsg2 was 
sufficient to reduce the increased proliferation rate in Dsg2-
deficient DLD1 and Caco2 cells (Fig. 5g; Fig. S3J).

Altogether, our study has identified a new role for Dsg2 
in regulating EGFR activity in intestinal epithelial cells via 
a novel signaling complex consisting of Dsg2, EGFR, and 
Src. In this model, EGFR binds to Dsg2 and is phosphoryl-
ated by Src, which results in increased adhesion maybe via 
modulating p38MAPK signaling. In cells deficient for Dsg2, 
unbound EGFR is activated by ligand binding that leads to 
dimerization and cross-phosphorylation, thereby inducing 
pro-proliferative signaling pathways (Fig. 5h).

Discussion

Although many cellular processes regulated by EGFR 
require a break-up of intercellular junctions and desmosomes 
are considered to play the leading role in intercellular cohe-
sion, only little is known about the functional interplay of 
EGFR and desmosomal cadherins. In this study, we propose 
a new mechanism of EGFR regulation in intestinal epithelial 
cells via a signaling complex consisting of Dsg2, EGFR, 
and Src. We demonstrate, for the first time, that Dsg2 and 
EGFR interact directly via their extracellular domains and 
that ligand binding as well as inhibition of EGFR tyros-
ine kinase activity prevent this interaction in AFM meas-
urements. In addition, inhibition of EGFR tyrosine kinase 
activity significantly reduced cell adhesion, suggesting that 
the Dsg2–EGFR complex stabilizes desmosomal adhesion. 
Dsg2 is required for EGFR to localize to cell borders where 
it binds to Src. In line with this, we detected reduced level 
of Src-mediated phosphorylation of EGFR at Y845 in Dsg2-
deficient cells. Moreover, inhibition of Src activity impaired 
barrier formation, which was accompanied by fragmented 

immunostaining of Dsg2 and EGFR at cell borders. Fur-
thermore, loss of Dsg2 enhanced cell proliferation that was 
restored by inhibition of EGFR kinase activity, indicating 
that Dsg2 modulates EGFR activity, thereby regulating the 
switch between adhesive and proliferative states in intestinal 
epithelial cells.

Our data are in line with the previous studies reporting 
reduced phosphorylation of EGFR on Y845 upon loss of 
Dsg2 [22, 32]. EGFR phosphorylation at Y845 is usually 
catalyzed by Src and regulates a variety of cellular functions 
through the activation of several downstream events [41–43]. 
Increased levels of Src and EGFR can be found in various 
cancer cells, and Y845 phosphorylation-mediated signal-
ing is linked to higher cancer malignancy due to enhanced 
cell transformation, motility, and invasion [42, 49–52]. 
Moreover, Src-mediated phosphorylation at Y845 has been 
reported to promote anti-apoptotic and pro-proliferative 
cell functions [53–56]. In accordance, recently published 
data show that reduced level of EGFR Y845 phosphoryla-
tion after Dsg2 downregulation suppresses cell proliferation 
[22, 32]. However, our study provides evidence that loss of 
Dsg2 and corresponding reduction of EGFR Y845 phospho-
rylation enhanced cell proliferation of intestinal epithelial 
DLD1 cells as well as of Caco2 cells. One has to consider 
that EGFR signaling highly depends on its spatial compart-
mentalization that determines the biological outcome [57]. 
After ligand-mediated activation at the cell surface, EGFR 
molecules are internalized and traverse different routes of 
the endosome network, while signaling continues [58–61]. 
EGFR is also known to act as transcription factor in the 
nucleus [62, 63]. Our data indicate a new mechanism by 
which EGFR directly interacts with Dsg2 at cell borders, 
thereby signaling towards adhesion and suppressing prolif-
eration. We observed that this direct interaction is blocked 
using specific antibodies directed against the extracellular 
domains of EGFR or Dsg2 in cell-free AFM measurements. 
A previous study reported that Dsg2 ectodomains, which are 
capable of binding to the same region as the Dsg2-specific 
antibody used in this study, inhibit intercellular adhesion 
and, in addition, increase intestinal epithelial cell prolifera-
tion [21], which fits well to our proposed model. Particu-
lar attention should be given to the close co-localization of 
Dsg2 and EGFR which we found not only in cell culture, but 
similarly in human enteroids as well as in human samples 
which supports the physiological relevance of direct inter-
action between Dsg2 and EGFR. Several studies reporting 
the presence of EGFR in the apical membrane in intestinal 
cells [64–66] where Dsg2 is located support these obser-
vations. Another study suggests EGFR activation through 
Dsg2-mediated disruption of EGFR association with lipid 
rafts without direct interaction of EGFR and Dsg2 [22]. 
Thus, presumably, a different signaling complex is formed, 
resulting in a different biological function. However, this 
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study was performed in keratinocytes which express more 
than one desmoglein isoform. This is in contrast to intestinal 
epithelial cells with only Dsg2 and Dsc2 being expressed 
[67, 68]. Hence, it is conceivable that desmosomal cadherins 
exert distinct functions in different tissues. In line with this, 
in keratinocytes, EGFR was shown to co-localize with Dsg1 
that suppressed EGFR activity to promote differentiation 
[9]. A recent study demonstrated a similar mechanism, by 
which the classical cadherin Ecad recruits EGFR to AJ and 
suppresses its activity to foster barrier stability [69]. This 
is in line with our proposed model, where Dsg2 localizes 
EGFR to cell borders, thereby suppressing its proliferative 
activity and strengthening cell adhesion. Similarly, Dsg2 has 
been reported to support differentiation and thus to act as 
tumor suppressor gene in gastric cancer [70]. Furthermore, 
our data indicate that this effect is mediated by increased 
EGFR phosphorylation at Y845 which appears to be impor-
tant for the formation of the Dsg2–EGFR signaling complex. 
Studies from the literature, demonstrating that Y845 phos-
phorylation induces cell cycle arrest and inhibits growth, 
also support our hypothesis [71, 72]. Interestingly, another 
group demonstrated that downregulation of Dsc2 increases 
proliferation in colon cancer cells, while downregulation of 
Dsg2 reduces proliferation, which is in contrast to our study 
[32, 73]. However, this study was conducted in cancer cells 
harboring a mutation that results in deregulated β-catenin 
signaling and increased expression of pro-proliferative genes 
[74, 75]. Given that the EGFR and β-catenin pathways are 
known to interact at multiple levels ranging from transcrip-
tional to posttranscriptional regulation [76–81], deregulated 
signaling events downstream of these pathways may account 
for the different impact on proliferation after Dsg2 downreg-
ulation. Similar to our study, EGFR Y845 phosphorylation 
was reduced upon loss of Dsg2, which points toward compa-
rable EGFR regulation but different downstream signaling. 
We observed increased proliferation rate in both DLD1 and 
Caco2 cells upon loss of Dsg2.

Previously, we have shown that Dsg2 regulates intesti-
nal barrier properties via p38MAPK that is activated upon 
loss of Dsg2 [20]. However, it is still an open question how 
Dsg2 regulates this signaling pathway. MAPK cascades are 
known to be downstream targets of the EGFR and increased 
p38MAPK phosphorylation after EGF stimulation has been 
reported previously [82, 83]. Furthermore, Src-dependent 
p38MAPK activation has been shown to modulate the EGF-
stimulated response towards migration instead of prolifera-
tion during wound closure in intestinal epithelial cells [84]. 
Hence, a signaling cascade consisting of Src being upstream 
of the Dsg2–EGFR complex and p38MAPK being regulated 
downstream of this complex, thereby supporting the adhe-
sive state of intestinal epithelial cells, is conceivable. How-
ever, our data do not rule out the possibility that other tar-
gets including adhesion molecules as well as other signaling 

cascades may be coordinated by Dsg2 together with EGFR. 
For instance, EGFR regulation has recently been linked to 
AJ [69] and we observed irregular staining of the TJ pro-
tein Cld4 after EGFR inhibition. Furthermore, it has been 
reported that the apical and basolateral fractions of EGFR 
exert differential signaling functions [85]. Although we 
observed no difference in outcome when applying EGFR-
modulating agents from apical side to basolateral side in this 
study, future studies may gain more insight into the molecu-
lar mechanism underlying the EGFR-mediated regulation of 
intestinal barrier properties.

Taken together, we propose a new mechanism of EGFR 
regulation that is important for intestinal epithelial cell 
homeostasis. Deregulation of any of the involved proteins 
has potential to induce intestinal disorders such as inflam-
matory bowel disease (IBD) or cancer. Thus, EGFR signal-
ing has been shown to be reduced in IBD patients, while 
upregulated levels are often found in various types of can-
cers, indicating that a precise regulation of EGFR activity 
is crucial to maintain intestinal barrier integrity [42, 86]. In 
line with this, growth factors such as EGF promote wound 
healing in IBD but are also involved in the formation of 
neoplasia [87–89]. Likewise, Dsg2 is reduced in the mucosa 
of patients suffering from Crohn’s disease and is implicated 
in oncogenesis [17, 19]. In addition, tumor necrosis fac-
tor α (TNFα), a cytokine implicated in the pathogenesis 
of Crohn’s disease, has been reported to modulate EGFR 
activity, as well [90, 91]. Hence, understanding the molecu-
lar mechanism of EGFR regulation in intestinal cells might 
provide the molecular basis for new therapeutic approaches 
for the treatment of IBD or cancer in the future.

Materials and methods

Cell culture

DLD1 and Caco2 cells were cultured in Dulbecco’s modi-
fied Eagle medium (Life Technologies, Carlsbad, CA, USA) 
supplemented by 10% fetal bovine serum (Biochrom, Berlin, 
Germany), 50 U/mL penicillin, and 50 U/mL streptomycin 
(both AppliChem, Darmstadt, Germany), and cultivated 
in a humidified atmosphere containing 5%  CO2 at 37 °C. 
Experiments were performed 4 days after reaching full con-
fluence. DLD1 knockout cells were generated in the lab of 
Suzuki (Kwansei Gakuin University, Japan) [16] using the 
CRISPR/Cas9 system with the pX330 vector (Addgene, 
Cambridge, MA, USA) according to the method described 
by Cong et al. [92]. Briefly, human cDNAs for Dsg2 and 
Dsc2 were obtained by polymerase chain reaction (PCR) 
with nucleotide sequences that are published in the Gen-
Bank, and amplified and cloned into the expression vector 
pEF1 (Invitrogen, Carlsbad, CA, USA) accompanied with 
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the introduction of an HA tag at the C-terminus. DLD1 cells 
were co-transfected with the CRISPR/Cas9 construct and the 
expression vector pCAG-Flag-IRESpuro (Addgene, Cam-
bridge, MA, USA) using the lipofectamine LTX protocol. 
Puromycin was used for screening, resultant colonies were 
picked and cultured, and the expression of target protein was 
analyzed by immunoblotting. In addition, deletion of the 
target gene was confirmed by amplification of genomic DNA 
by PCR and subsequent sequencing. For stable expression of 
full-length Dsc2, cells were transfected with the DNA con-
struct using the Lipofectamine LTX protocol and screened 
in the presence of G418 (400 µg/mL) for about 2 weeks, 
followed by immunoblot analysis.

Human tissue samples

Colon samples were obtained from patients who required 
right or left hemi-colectomy due to colon carcinoma in 
which the surgical resection routinely involves a part of the 
healthy small intestine or colon, respectively. All patients 
gave their written informed consent prior surgery to inclu-
sion in the study and ethical approval was given by the Ethi-
cal Board of the University of Würzburg (proposal numbers 
113/13, 46/11, 42/16). Tissue samples were collected in a 
standardized procedure via the Interdisciplinary Bank of 
Biomaterials and Data Würzburg (IBDW) as described in 
detail previously [93]. For immunostaining, tissue samples 
were fixed in 4% paraformaldehyde, embedded in paraffin, 
and sectioned (1 μm).

Enteroids

Intestinal epithelial cells (IECs) were isolated from healthy 
human full-wall gut resections, 1 cm2 in size as described 
previously [94]. Briefly, villi were scraped off the muscle-
free mucosa using a sterile glass slide. The remaining tis-
sue was transferred into a 50 mL falcon tube with 20 mL 
4 °C cold HBSS (Sigma-Aldrich, St. Louis, MO, USA) and 
vortexed for 5 s, and the supernatant discarded. This wash-
ing step was repeated until the supernatant was completely 
cleared of cell debris. Afterward, the tissue was incubated 
in 4 °C cold 2 mM EDTA/HBSS solution (Sigma-Aldrich, 
St. Louis, MO, USA) for 30 min at 4 °C under gentle rota-
tion on a shaker. Subsequently, the tissue was washed once 
in 20 mL HBSS by manually inverting the tube five times. 
The mucosa was transferred in a new tube with 10 mL HBSS 
and manually shaken five times. This shaking procedure was 
repeated four times always using a new tube. Each cell frac-
tion was checked for the amount and size of crypts within 
small drops under the microscope. The supernatants contain-
ing the most vital appearing crypts were pooled and centri-
fuged at 350g for 3 min at room temperature (RT). Pellet was 
resuspended in 10 mL basal medium, DMEM-F12 Advanced 

(Invitrogen, Carlsbad, CA, USA) supplemented with N2, 
B27, Anti–Anti, 10 mM HEPES, 2 mM GlutaMAX-I (all 
from Invitrogen, Carlsbad, CA, USA), and 1 mM N-ace-
tylcysteine (Sigma-Aldrich, St. Louis, MO, USA), and the 
crypt number was estimated in a 10 µL drop by microscopy. 
Crypts were centrifuged in a nonstick 1.5 mL tube at 350g 
for 3 min at RT and the supernatant was removed. The tube 
with the cell pellet was placed on ice until further use. The 
pellet was resuspended in an appropriate amount of cold 
Matrigel (Corning, Hickory, NC, USA), that is, 5000 crypts/
mL. Drops of 50 µL per well were seeded in a 24-well plate 
and incubated for 10–20 min until the Matrigel was well 
solidified. The culture medium contained a mixture of 50% 
fresh basal medium and 50% Wnt3A-conditioned medium.

Furthermore, the following growth factors were added: 
500 ng/mL hR-Spondin 1 (PeproTech, Rocky Hill, NY, 
USA). 100 ng/mL IECs were isolated from human small 
intestinal tissue and expanded as organoid culture for 
3–4 weeks.

Test reagents

Epidermal growth factor receptor activity was inhibited 
using either a specific mouse anti-EGFR antibody (C225, 
sodium azide free, Merck Millipore, Darmstadt, Germany) 
at 0.5 µg/mL for 1 h or the tyrosine kinase activity inhibi-
tor erlotinib (Santa Cruz Biotechnology, Santa Cruz, CA, 
USA) at 2.5 µM for 1 h. For positive stimulation of EGFR 
activity, the growth factor EGF (Sigma-Aldrich, Munich, 
Germany) was used at 20 ng/mL for 1 h. Cells were cul-
tured in serum-free medium for 1 h prior to treatment with 
EGFR-modulating agents. PP2 (Calbiochem, Darmstadt, 
Germany) and KX2-391 (Biozol, Germany) were used at 
10 µM for 1 h to inhibit Src activity and SB202190 (Cal-
biochem, Darmstadt, Germany) was used at 30 µM for 1 h 
to inhibit p38 MAPK. Dsg2 binding was inhibited using 
a specific monoclonal mouse antibody directed against the 
second and third extracellular repeat domains of Dsg2 (clone 
10G11, sodium azide free, Progen, Heidelberg, Germany) 
applied 1:50. For western blot analysis and immunofluo-
rescence staining, following primary antibodies were used: 
mouse anti-Dsg2 (clone 10G11) and rabbit anti-Dsg2 (rb5, 
both Progen, Heidelberg, Germany), mouse anti-Dsc2/3 
(clone 7G6) and rabbit anti Claudin-4 (both Life Technolo-
gies, Carlsbad, CA, USA), rabbit anti-DP I/II (H-300), rabbit 
anti-EGFR (clone 1005-G), mouse anti-EGFR (clone A-10) 
and mouse anti-GAPDH (all from Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA), mouse anti-α-tubulin (Abcam, 
Cambridge, UK), and rabbit anti-phospho-EGFR Tyr845 
and rabbit anti-Src (both from Cell Signaling, Danvers, MA, 
USA). HRP-conjugated goat anti-mouse or goat anti-rabbit 
(Dianova, Hamburg, Germany) secondary antibodies were 
used for western blot analysis. Cy3- or Alexa488-labeled 
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goat anti-mouse or goat anti-rabbit antibodies (Dianova, 
Hamburg, Germany) were used for confocal microscopy, 
and Star580- and Star635P-labeled antibodies (Abberior) 
were used for STED. F-actin was visualized using Alexa488-
labeled phalloidin (Life Technologies, Carlsbad, CA, USA) 
and nuclei were counterstained with DAPI (Sigma-Aldrich, 
Munich, Germany).

Immunofluorescence

Cells were grown on 12 mm glass cover slides, fixed with 
2% paraformaldehyde in PBS for 10 min and, subsequently, 
permeabilized with 0.5% TritonX-100 in PBS containing 
0.02% Tween20 (PBS-T) for 10 min following 1 h of block-
ing in 2% BSA in PBS-T. Human tissue samples embedded 
in paraffin were sectioned in 1 µm slices and immunostaining 
was performed after removal of paraffin using 100% Xylol 
followed by an ethanol series from 100 to 70% and sera dest 
at the end. Then, samples were permeabilized with 0.1% 
TritonX-100 in PBS-T for 30 min followed by blocking in 
2% BSA in PBS-T. Primary and secondary antibodies were 
incubated for 1 h at room temperature each. Paraffin sections 
were incubated with primary antibodies at 4 °C over night. 
For confocal microscopy, coverslips were placed on glass 
slides with 60% glycerol in PBS, containing 1.5% N-propyl 
gallate (Serva, Heidelberg, Germany). Image acquisition was 
performed using a Leica SP5 confocal microscope with a 
63× NA 1.4 PL APO objective (both Leica, Wetzlar, Ger-
many. Co-localization analysis was performed by generating 
an intensity plot profile for each channel using the ImageJ 
software and calculating the Pearson’s correlation coefficient 
between the intensity distributions of two molecules of inter-
est. To this end, 35 cell borders from 7 independent experi-
ments were selected.

Stimulated emission depletion microscopy (STED)

After immunostaining, cells were mounted in 2.5% DABCO 
in MOWIOL/HEPES (self-made solution). Images were 
acquired with an Abberior 3D STED confocal microscope. 
Star580 and Star635P (both from Abberior) were excited 
at 594 and 638 nm, respectively, using pulsed diode lasers 
(PDL 594, Abberior Instruments; PiL063X, Advanced 
Laser Diode Systems). Depletion of fluorescent molecules 
was conducted at 775 nm with a pulsed fibre laser (PFL-
P-30-775B1R, MPB Communications) and emission was 
detected with an avalanche photodiode detector at 605–625 
and 650–720 nm range.

Western blot

Cells were lysed with SDS lysis buffer (25 mM HEPES, 
2 mM EDTA, 25 mM NaF, and 1% SDS) supplemented 

with a protease-inhibitor cocktail (Roche, Mannheim, 
Germany) followed by sonication and heating to 95 °C 
for 10 min in Laemmli buffer with 50 mM dithiothreitol 
(Applichem). Protein amount was determined using a BCA 
Protein Assay Kit (Pierce/Thermo Scientific, Waltham, 
MA, USA) and equivalent protein concentrations were 
resolved by reducing SDS-PAGE. After protein transfer to 
a nitrocellulose membrane (Life Technologies, Carlsbad, 
CA, USA) according to the standard protocols, membranes 
were probed with primary antibodies overnight at 4 °C 
followed by incubation with secondary antibodies for 2 h 
at room temperature. Bands were detected with an ECL 
reaction system (self-made solution) using the Amersham 
Imager 600 (GE Healthcare Life Sciences, Germany).

TritonX-100 protein extraction

Cells were washed with ice-cold PBS and incubated in a 
Triton buffer (0.5% Triton X-100, 50 mM MES, 25 mM 
EGTA, and 5 mM  MgCl2) supplemented with 1 mM PMSF 
(Roth, Germany), Aprotinin, Pepstatin A (both Applichem, 
Germany), and Leupeptin (VWR, Germany) for 15 min on 
ice under gentle shaking. Subsequently, cell lysates were 
centrifuged at 13,000 rpm for 5 min to separate the insolu-
ble from the soluble fraction and pellets were resuspended 
in SDS lysis buffer followed by sonication. Protein con-
centration of both fractions was calculated as described 
above and equivalent amounts of protein were used for 
western blot analysis.

Cell surface biotinylation

Cells grown in six-well plates were treated with test rea-
gents, washed with ice-cold HBSS, and incubated with 
0.25 mM membrane-impermeable EZ-Link Sulfo-NHS-
Biotin (Thermo Fischer Scientific, Waltham, USA) for 
1 h on ice to prevent internalization. Excess biotin was 
quenched by washing three times with ice-cold 100 mM 
Glycin followed by three times washing with ice-cold 
HBSS. Cells were lysed in lysis buffer (50 mM NaCl, 
10  mM PIPES, 3  mM  MgCl2, and 1% Triton X-100) 
for 15 min on ice followed by 5 min centrifugation at 
13,000 rpm and measurement of protein concentration 
of the recovered cell lysate supernatants as described 
above. For precipitation of biotin-labeled proteins, a pro-
tein amount of 500 µg was incubated with NeutrAvidin 
(High Capacity)-agarose beads (Thermo Fischer Scientific, 
Waltham, USA) over night at 4 °C. After four times wash-
ing with lysis buffer, cell surface proteins were eluted in 
Laemmli buffer containing 50 mM dithiothreitol at 95 °C 
and subjected to Western blot analysis.
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Co-immunoprecipitation

Cell monolayers were washed with ice-cold HBSS and incu-
bated with RIPA buffer (50 mM Tris–HCl, 150 mM NaCl, 
0.1% SDS, 1% NP-40, and 0.1 mM EDTA) supplemented 
with a protease-inhibitor cocktail (Roche, Mannheim, Ger-
many) for 30 min on ice while shaking. Cells were scraped 
and centrifuged at 13,000 rpm for 5 min at 4 °C, and pro-
tein concentration of the lysate was determined as described 
above. Cell lysates were precleared with protein-G beads 
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 1 h 
at 4 °C, followed by incubation with 1 µg of respective anti-
body or IgG control for 3 h at 4 °C with gentle rotation. 
Subsequently, protein-G beads were added and incubated 
over night at 4 °C. For pull-down assays with Dsg2-Fc, 
beads were incubated with 0.15 mg/mL Dsg2-Fc in HBSS 
at 4 °C over night, washed three times with RIPA buffer to 
remove unbound protein, and incubated with cell lysates at 
4 °C again over night. After three times washing with RIPA 
buffer, immunocomplexes were boiled in 20 µL Laemmli 
buffer containing 50 mM dithiothreitol at 95 °C for 10 min 
and subjected to Western blot analysis.

Atomic force microscopy (AFM)

Atomic force microscopy measurements were performed 
with a Nanowizard III AFM (JPK Instruments, Berlin, Ger-
many) mounted on an optical microscopy (Carl Zeiss, Jena, 
Germany). The whole setup was placed on a Halcyonics i4 
anti-vibration table (Accurion, Goettingen, Germany) in a 
closed hood to protect measurements from environmental 
noise. The application of AFM force microscopy on living 
cells was described in detail before [95]. All measurements 
were conducted in cell culture medium at 37 °C. For Dsg2 
adhesion studies, recombinant Dsg2-Fc (self-made) contain-
ing the complete extracellular domain (ED) of Dsg2 was 
linked to flexible Si3N4 AFM cantilevers (MLCT probes, 
Bruker, Calle Tecate, CA, USA) via a flexible bifunctional 
polyethylene glycol linker (Gruber Lab, Institute of Bio-
physics, Linz, Austria) as described elsewhere [96]. Prior 
to adhesion measurements on living cells, AFM topogra-
phy images of 50 × 50 µm and 128 × 128 pixels were cre-
ated using a force curve-based imaging mode (QI-mode) 
with a setpoint adjusted to 0.5 nN, a z length of 1500 nm, 
and a pulling speed of 50 µm/s. Adhesion measurements 
were performed in the force spectroscopy mode with a rela-
tive setpoint of 0.5 nN, a z length of 2 µm, and a pulling 
speed of 4 µm/s. The same cantilever was used under con-
trol conditions and after incubation for 1 h with inhibitory 
antibodies or EGFR-modulating agents. For each condition, 
several areas of 2 × 5 µm were selected with 1000 recorded 
force–distance curves per area. Cell-free AFM measure-
ments were carried out with mica sheets (SPI Supplies, West 

Chester, USA) instead of cell monolayers, functionalized 
with either Dsg2-Fc or EGFR-Fc (Sino Biological). To pro-
duce comparable results, setpoint was adjusted to the same 
value as for cell-based experiments. For each condition, sev-
eral areas of 25 µm × 25 µm with 400 force–distance curves 
per area were measured using a z length of 0.3 µm and a 
pulling speed of 1 µm/s. Acquired AFM data were processed 
using the JPK processing software. Analysis of unbinding 
force distribution was performed with Origin Pro 2016, 93G 
(Northampton, MA, USA).

Hanging drop bead aggregation assay

Protein-G-coated polystyrene microbeads (Dynabeads, 
diameter 2.8 µm; Thermo Fisher Scientific) were coated 
with recombinant Dsg2- or EGFR-Fc and aggregation assays 
were carried out as described previously [95]. Briefly, beads 
were washed with 100 mM sodium phosphate buffer (pH 
8.1), blocked with 5% BSA for 1 h at RT, and incubated with 
0.15 mg/mL Dsg2-, EGFR-Fc or control-Fc part of human 
IgGs (Merck Millipore, Darmstadt, Germany) over night at 
4 °C under slow overhead rotation. Following washing steps, 
beads were incubated with 500 mM dimethyl adipimidate·2 
HCl (DMA, Thermo Fisher Scientific) for 45 min at RT to 
covalently cross-link protein-G with Fc parts. After incuba-
tion with 200 mM ethanolamine (pH 8.0) for 2 h at RT and 
several washing steps, about 0.3 µg beads were resuspended 
in 10 µL HBSS containing 1.8 mM  Ca2+. Then, beads were 
allowed to aggregate in a hanging drop on the underside of 
a culture dish lid at 37 °C for 1 h, followed by 1 h incubation 
with EGF. After shaking on an orbital shaker at 1000 rpm 
for 3 min, a ratio was calculated from of the area covered 
with beads and the area of total bead extent and expressed 
as density of bead colonies in percentage.

Calcium switch assay

Cells were incubated with 4 mM EGTA for 1 h, thereby 
inducing disruption of  Ca2+-dependent cell junctions. Ref-
ormation of cell junctions was induced by addition of 8 mM 
 CaCl2 supplemented with test reagents or the respective 
vehicle. Time course of junctional disassembly and reas-
sembly was monitored by measuring the transepithelial 
resistance (TER) of cells grown on eight-well electrode 
arrays (Ibidi, 8W10E) with an ECIS model Z theta (Applied 
Biophysics, Troy, NY, USA) at 800 Hz for DLD1 cells and 
400 Hz for Caco2 cells. In addition, cells were grown on fil-
ter inserts (Corning, PET membrane, pore size 0.4 µm) and 
measured with the ECIS 8W Trans-Filter Adapter. Stability 
of reformed cell junctions was analyzed using a dispase-
based cell dissociation assay.
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Dispase-based dissociation assay

Dissociation assays were performed in 24-well plates. After 
treatment with test reagents, cell monolayer were washed 
with Hank’s buffered saline solution (HBSS; Sigma-Aldrich) 
and incubated with 150 µL dispase II (2.4 U/mL in HBSS, 
Sigma-Aldrich) at 37 °C for 25 min. Reaction was stopped 
by adding 200 µL HBSS and a defined shear stress was 
applied by pipetting three times with an electrical pipet. 
Resulting fragments were counted using a binocular micro-
scope (Leica). Every condition was performed in duplicates 
and each experiment was repeated at least four times.

Proliferation assay

Cellular proliferation was ascertained by counting the num-
ber of cells using a Neubauer chamber (Laboroptik, Lancing, 
UK). 50,000 cells were seeded in 24-well plates in complete 
DMEM with erlotinib (2.5 µM) or DMSO and counted after 
24, 48, 72, and 96 h. Medium was changed every day.

Transfection with Dsg2–GFP

The plasmid encoding for human wild-type Dsg2 with a 
C-terminal eGFP tag [97] was kindly provided by Katja 
Gehmlich (University of Oxford, UK). 50,000 cells were 
seeded and transfected right away with 1 µg endotoxin-free 
Dsg2–GFP plasmid DNA or the GFP empty vector [98] 
(pDEST-eGFP-N1, Addgene plasmid # 31796, gift from 
Robin Shaw, Cedars-Sinai Heart Institute, Los Angeles, 
USA) using TurboFect™ (Life Technologies) according to 
the manufacturer’s protocol and incubated for 48 h. Medium 
was changed 8 h after transfection.

Statistics

All experiments were repeated at least three times. Band 
intensity was quantified using ImageJ (National Institutes of 
Health, Bethesda, MD, USA). For statistical analysis, two-
tailed Student’s t test was used to analyze two-sample groups 
and one-way ANOVA followed by Bonferroni correction 
was used for multiple sample groups. Results are shown as 
mean ± SE. A p value of < 0.05 was considered significant.
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Supplementary Methods 

Generation of Dsg2 knockout in Caco2 cells by using the CRISPR/Cas9 system 

Disruption of the Dsg2 gene was carried out with the CRISPR/Cas9 system. Two sgRNA targeting exon 

3 and exon 13 of human Dsg2 were designed using the Chopchop-web based sgRNA design tool [1] 

and subcloned into the lentiviral vectors pLentiCRISPR v2 (kind gift from Feng Zhang, Addgene 

plasmid # 52961) and pLKO5.sgRNA.EFS.GFP (kind gift from Benjamin Ebert, Addgene plasmid # 

57822) respectively. HEK293T cells were used for production of lentiviral particles employing the 

second generation lentiviral packaging system comprising pPAX and pMD2 packaging plasmids. Caco2 

cells were infected with viral supernatant containing both viral particles, CrisprV2 and LKO-sgRNA-

EFS GFP accompanied with the addition of polybrene. Infected cells were selected using Puromycin 



(15µg/ml) for 1 week and positive clones were sorted for GFP-expression using FACS. Deletion of the 

target gene in single clones was assessed by immunoblotting and qPCR. 

Table 1: Primers used for synthesis of the Dsg2 construct and used for qPCR  

Primer name Sequence 

hDSG2-1 f 

hDSG2-1 r 

hDSG2-2 f 

hDSG2-2 r 

 

caccgCTTTGGCGCCCTTTCCGCAA 

aaacTTGCGGAAAGGGCGCCAAAGc 

caccgCTAAACATCCTCATTTAGTG 

aaacCACTAAATGAGGATGTTTAGc 

 

qPCR primer Sequence 

DSG2 f 

DSG2 r 

 

Aattgcgctcatgattttgg 

Gcaatggcacatcagcagta 

 

 

 

Supplementary figure legends 

Fig. S1 (A) Immunostaining for Dsg2 and EGFR in confluent Caco2 cell monolayer displayed linear 

localization of Dsg2 and EGFR along the cell borders in Caco2 WT cells, which was not present in Dsg2 

deficient Caco2 cells. Bar 10 µm (B) Triton X-100 protein extraction revealed reduced amount of EGFR 

in the insoluble fraction upon loss of Dsg2 in Caco2 cells. GAPDH served as loading control. (C) Band 

intensity of detected EGFR was analyzed from 4 independent experiments, resulting in a significant 

reduction of EGFR in both fractions in Dsg2-deficient Caco2 cells. Results are shown as means ± SE * 

p < 0.05 (D) Total protein level of EGFR in Caco2 cells was assessed by Western blotting resulting in 

reduced levels of EGFR in Dsg2-deficient Caco2 cells. GAPDH served as loading control. (E) Band 

intensity of detected EGFR bands was quantified from 5 independent experiments, showing a significant 

reduction of total EGFR protein levels upon loss of Dsg2 in Caco2 cells. Results are shown as means ± 

SE. * p < 0.05 



Fig. S2 (A) Phosphorylation of EGFR at Y845 in Caco2 cells was analyzed via Western blot. Reduced 

level of phosphorylation were observed in cells deficient for Dsg2. (B) Band intensity for detected 

pEGFR was quantified and normalized to total EGFR. Shown are fold change values ± SE of 6 

independent experiments. * p < 0.05 (C) Immunostaining for Src in DLD1 cells deficient for Dsg2 

and/or Dsc2 revealed similar localization of Src at cell borders in all cell lines independent of Dsg2 

expression. Alexa-phalloidin was used to visualize cell borders. Bar 10 µm (D) Western blot analysis of 

whole cell lysates of DLD1 cells revealed unaltered protein levels of total Src as well as phosphorylated 

Src in all knockout cell lines. GAPDH was used as loading control. Shown is representative blot of 3 

independent experiments. (E) Src is present in the TritonX-100 insoluble fraction despite loss of Dsg2 

and similar in all DLD1 knockout cell lines. GAPDH was used as loading control. Shown is 

representative blot of 3 independent experiments. 

Fig. S3 (A) Barrier recovery of Caco2 cells after Ca2+-switch was monitored by measuring the TER  

showing impaired barrier recovery after inhibition of EGFR, Src and p38MAPK activity with respective 

inhibitors. Inhibitors were applied together with CaCl2 after 1 h depletion with EGTA. (B) TER values 

were quantified 10 h after repletion with respective inhibitors revealing significantly reduced TER 

values after repletion with Erlotinib, PP2 and SB202190 compared to control repletion with respective 

vehicle. Shown are fold change values ± SE of 6 independent experiments. * p < 0.05; n.s. = not 

significant (C) Barrier recovery of DLD1 WT cells grown on filter inserts was analyzed via TER 

measurements. Test reagents were applied together with CaCl2 from the apical or basolateral site of cell 

monolayer, which resulted in impaired barrier recovery after inhibition of apical as well as of basolateral 

localized EGFR. (D) TER values were quantified 8 h after repletion showing significantly decreased 

values in the presence of Erlotinib compared to control repletion. Shown are fold change values ± SE of 

4 independent experiments. * p < 0.05; n.s. = not significant (E) Barrier recovery of DLD1 cells deficient 

for Dsg2 and Dsc2 after Ca2+-switch was analyzed using TER measurements revealing impaired 

recovery after repletion with added inhibitors for EGFR, Src and p38MAPK activity. (F) TER values 

were quantified 10 h after repletion showing a significant reduction in the presence of Erlotinib, PP2 

and SB202190. Shown are fold change values ± SE of 6-8 independent experiments. * p < 0.05; n.s. = 

not significant (G) Ca2+-switch assay was performed with confluent cell monolayer of DLD1 WT cells 



grown on coverslips and formation of TJ was assessed 2 h after repletion with several test reagents by 

immunostaining for Cld4. Alexa488-phalloidin was used to visualize cell borders. Bar 10 µm. (H) DLD1 

double knockout cells and Caco2 Dsg2-deficient cells were transfected with Dsg2-GFP or the GFP 

empty vector resulting in linear localization of Dsg2-GFP along the cell borders. Bar 10 µm (I-J) Cell 

proliferation of Caco2 cells deficient for Dsg2 was determined by cell counting. 50000 cells were seeded 

and treated with Erlotinib (I) or transfected with Dsg2-GFP (J) and counted after 48 h. Shown is mean 

± SE of 4 (I) and 5 (J) independent experiments. GFP-ev = empty vector, * p < 0.05 

 

1. Labun, K., Montague, T.G., Gagnon, J.A., Thyme, S.B., and Valen, E. (2016). CHOPCHOP v2: a 
web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44, W272-
276. 
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Abstract:  

Desmosomes are the least understood intercellular junctions in the intestinal epithelia 

and provide cell-cell adhesion via the cadherins desmoglein (Dsg)2 and desmocollin 

(Dsc)2. We studied these cadherins in Crohn's disease (CD) patients and in newly 

generated conditional villin-Cre DSG2 and DSC2 knockout mice (DSG2ΔIEC; DSC2ΔIEC). 

CD patients exhibited altered desmosomes and reduced Dsg2/Dsc2 levels. The 

intestines of both transgenic animal lines were histopathologically inconspicuous. 

However, DSG2ΔIEC, but not DSC2ΔIEC mice displayed an increased intestinal 

permeability, a wider desmosomal space as well as alterations in desmosomal and tight 

junction components. After dextran sodium sulfate (DSS)-treatment and C. rodentium 

exposure, DSG2ΔIEC mice developed a more pronounced colitis, an enhanced intestinal 

epithelial barrier disruption leading to a stronger inflammation and activation of 

epithelial pSTAT3 signaling. No susceptibility to DSS-induced intestinal injury was 

noted in DSC2ΔIEC animals. Dsg2 interacted with the cytoprotective chaperone Hsp70. 

Accordingly, DSG2ΔIEC mice had lower Hsp70 levels in the plasma membrane 

compartment, whereas DSC2ΔIEC mice displayed a compensatory recruitment of galectin 

3, a junction-tightening protein. Our results demonstrate that Dsg2, but not Dsc2 is 

required for the integrity of the intestinal epithelial barrier in vivo.  
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Introduction  

Epithelial cell layers in general provide an efficient barrier against the hostile 

environment. The intestinal epithelium has to facilitate both, protection of the 

underlying tissue from invading microorganisms and efficient uptake of nutrients and 

solutes. Intercellular junctions constitute a crucial part of this barrier and consist of tight 

junctions (TJs), adherens junctions (AJs) and desmosomes that together form the apical 

junctional complex (AJC).1 TJ are the primary structures sealing the intercellular space. 

However, pro-inflammatory signaling in epithelial cells alters the TJ composition leading 

to reduced barrier function, thereby contributing to the pathogenesis of multiple 

prevalent intestinal disorders such as inflammatory bowel disease, celiac disease or 

infectious gastroenteritis. 2, 3 This process is driven by molecular remodeling that results 

in decreased levels of claudin 1 and occludin and increased amounts of claudins 2 and 

15.1, 4 AJs are established mediators of cell-cell adhesion and play an important role in 

cell polarization and differentiation via the associated Wnt/β-catenin pathway.1  

Desmosomes represent the least studied AJC component. They are, similar to AJs, 

important for cell adhesion and cytoskeletal anchorage.5 Their importance becomes 

evident in inherited cardiomyopathies that are caused by mutation in desmosomal genes 

and blistering skin disorders elicited by desmosomal autoantibodies. Desmosomes are 

also altered in microbial infections in that their constituents are cleaved by bacterial 

toxins and become targeted in adenoviral respiratory infections.6-8 Desmosomes bear 

structural similarities with hemidesmosomes that with the help of integrins connect the 

cells to the extracellular matrix. The crucial importance of hemidesmosomes was recently 

demonstrated in mice with intestinal epithelial cell-specific α6 integrin ablation that 

develop colitis with spontaneous progression into high-grade intestinal carcinoma.9  

To connect the cells, desmosomes comprise transmembrane proteins termed 

desmosomal cadherins. These are subdivided into the desmoglein and desmocollin type 

(gene names: DSGs/DSCs, protein names: Dsgs/Dscs). While homo- and heterophilic 

interactions between the extracellular Dsg and Dsc domains have been described, the 

latter are preferred and accordingly, both protein types are needed for cellular adhesion.5, 

10 Dsgs/Dscs are expressed in a cell type-specific pattern with Dsc2 and Dsg2 being the 
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most wide-spread family members and the major desmosomal cadherins of digestive 

epithelia.6 On the cytoplasmic side, Dsg2/Dsc2 are connected to the armadillo proteins 

plakoglobin (PG) and plakophilin 2 (Pkp2), which, together with desmoplakin (Dsp), 

facilitate the attachment to the keratin cytoskeleton.5, 6  

Despite their presumed biological importance, only in vitro studies addressed the role of 

desmosomal cadherins in the intestine so far. The data available up to date suggest that 

although they are both functionally and structurally similar, they also display unique 

properties. 6, 11-13 For example, DSG2 knockdown resulted in a compensatory up-

regulation of Dsc2, whereas DSC2 loss did not lead to alterations in Dsg2 protein levels. 

14 Moreover, Dsg2 but not Dsc2 was cleaved during intestinal epithelial cell apoptosis 

and DSG2 down-regulation inhibited this cell death pathway. 15 In addition to 

experimental data pointing towards a functional importance of desmosomes, a selective 

decrease of Dsg2 was reported in patients with Crohn´s disease. 16  In cultured epithelial 

cells, this down-regulation was associated with increased permeability that was prevented 

by stabilization of desmosomal adhesion.16 These disease-related changes coupled with 

their established in vitro biological function as well as the crucial importance of 

intercellular junctions 1, 9 prompted us to analyze the in vivo properties of desmosomal 

cadherins in the intestine. To that end, we generated conditional villin-Cre mediated 

DSG2 knockout and DSC2 knockout (DSG2ΔIEC/DSC2ΔIEC) mice and analyzed 

desmosomal alterations in Crohn´s disease patients.  

In summary, we demonstrate that intestinal DSG2 but not DSC2 is required for the 

integrity of the intestinal epithelial barrier in vivo. These data might be of human 

relevance, since Crohn´s disease patients display altered desmosomes as well as reduced 

desmosomal cadherin levels. 
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Results  

Since patients with Crohn’s disease were reported to have reduced intestinal Dsg2 

levels,16 we performed transmission electron microscopy that revealed an altered 

ultrastructure of the apical junctional complex (Suppl. Fig. 1A). In particular, TJs lacked 

proper membrane annealing, while desmosomes were sometimes missing and/or 

exhibited irregular or asymmetric plaques with reduced intermediate filament insertion. 

In contrast, AJ were largely unaltered (Suppl. Fig. 1A). In line with that and previous 

findings,16 a significant reduction in both desmosomal cadherins, i.e. Dsg2 and Dsc2, 

was seen, whereas no obvious alterations were detected in E-cadherin (Suppl. Fig. 1B, 

C).  

Next, we directly addressed the biological relevance of desmosomal cadherins in the 

newly generated intestinal-specific knockouts. In agreement with previous reports,6 Dsg2 

and Dsc2 were the only desmosomal cadherins expressed in the mouse intestine (Fig. 

1A). Both cadherins were abundantly expressed in the intestine, while lower amounts 

were seen in other organs such as the kidney (Fig. 1B). The newly generated intestine-

specific Dsg2 knockout (DSG2ΔIEC) displayed a selective and efficient deletion of Dsg2 

in both small and large intestine (Fig. 1C, D, Suppl. Fig. 2A-D) and no upregulation of 

other desmoglein and desmocollin isoforms was observed (Suppl. Fig. 3A). 

Immunofluorescence staining confirmed the loss of Dsg2 while Dsc2/plakoglobin 

staining was retained and demonstrated an unaltered desmosome distribution (Fig. 2A). 

DSG2ΔIEC mice developed normally, displayed normal weight gain and colon length 

(Suppl. Fig. 4). No diarrhea was observed. Histological examination revealed a 

morphologically inconspicuous small and large intestine with correctly differentiated and 

localized cell types (Fig. 2B, Suppl. Fig. 5A,B and data not shown). Unaltered levels of 

the stem cell markers LGR5 and R-spondin and no changes in the basal cell proliferation 

were noted (Suppl. Fig. 5C,D Suppl. Fig. 6). No inflammation was observed at any 

analyzed time point (Suppl. Fig. 7 and not shown). Electron microscopy revealed largely 

normal desmosomal plaques whereas the intercellular space between the junctions was 

significantly wider in the small and large intestine (Fig. 2C, Suppl. Fig. 8). Biochemical 

analysis illustrated profound changes in other desmosomal components with up-

regulation of Dsc2 and down-regulation of Dsp and PG, while the levels of Pkp2 and 
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keratin 8 (K8) were not altered (Fig. 2D, Suppl. Fig. 9). The same alterations were 

observed in small and large intestine and the changes likely occurred at the 

posttranscriptional level since the mRNA expression of all analyzed desmosomal genes 

was unaltered (Fig. 2E and data not shown). Immunoblotting revealed decreased levels 

of occludin and claudin 1 that are often reduced in situations leading to barrier 

dysfunction, while no differences were observed in the tight junction proteins claudin 7 

and 15 and the adherens junction protein E-cadherin (Suppl. Fig. 10A). 

Immunofluorescence staining revealed a normal distribution of tight and adherens 

junction proteins (Suppl. Fig. 10B). Myosin II regulatory light chain (MLC) 

phosphorylation, that constitutes a key regulator of tight junction permeability, did not 

differ between DSG2ΔIEC and DSG2fl/fl control mice (Suppl. Fig. 10C). In line with 

the described changes in epithelial junctions, DSG2ΔIEC mice had an increased 

intestinal permeability (Fig. 2F).  

Given that DSG2ΔIEC mice did not show a spontaneous intestinal injury, we tested their 

susceptibility to DSS colitis. Even at low DSS doses, DSG2ΔIEC animals developed a 

profound weight loss with bloody diarrhea and intestinal lesions (Fig. 3A-C). As an 

additional sign of tissue destruction, DSS-treated DSG2ΔIEC mice had shorter colons 

(Fig. 3C). The histological examination revealed a marked epithelial loss with an edema, 

inflammatory reaction and goblet cell loss that resulted in significantly higher injury 

scores (Fig. 3D). The pronounced inflammation was confirmed by increased intestinal 

myeloperoxidase activity as well as by higher pro-inflammatory cytokine levels (Fig. 

3E,F). Analysis of mesenteric lymph nodes demonstrated increased bacterial 

translocation (Fig. 3E).  

To further delineate the mechanisms underlying the observed phenotype, we analyzed 

the effects of short-term DSS administration that led to modest histological changes 

(Fig. 4A). Compared to controls, DSG2ΔIEC animals displayed a more profound epithelial 

cell loss into the intestinal lumen as demonstrated by higher levels of the epithelial 

marker K8 in the luminal content of the colon and by histological observation (Fig. 4A). 

In DSG2ΔIEC mice, DSS treatment resulted in a marked increase in intestinal 

permeability, while only a moderate DSS effect was seen in DSG2fl/fl mice (Fig. 2F, 

4B). In line with the more pronounced epithelial leakiness, molecular analyses 
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demonstrated an increased mRNA expression of pro-inflammatory cytokines and an 

activated IL-22-STAT3 signaling (Fig. 4C-E). Immunostaining revealed that STAT3 was 

phosphorylated in the epithelial cells and is most likely responsible for the increased 

production of the antimicrobial peptide RegIIIβ (Fig. 4D,F). As another consequence 

of the increased intestinal leakiness, we detected elevated levels of cleaved caspase 1 in 

DSS-treated DSG2ΔIEC mice suggesting enhanced inflammasome activation (Fig. 4E).  

To test the susceptibility of DSG2ΔIEC animals to infectious colitis, we exposed mice to 

the murine pathogen C. rodentium. In line with previous reports, the treatment did not 

lead to weight loss (Suppl. Fig. 11A).17 During the peak of infection, DSG2ΔIEC animals 

displayed higher fecal C. rodentium CFU counts, however, both genotypes successfully 

cleared the infection around day 18 (Suppl. Fig. 11B). Histological analysis demonstrated 

characteristic epithelial detachment, crypt elongation and hyperproliferation that were 

more pronounced in DSG2ΔIEC mice (Fig. 5A,B). The latter was confirmed by increased 

amounts of Ki-67 positive epithelial cells and higher PCNA expression (Fig. 5B,D, 

Suppl. Fig. 11C). No significant alterations in the amount of goblet cells were seen 

(Suppl. Fig. 11D). Among the C. rodentium-treated animals, DSG2ΔIEC mice displayed a 

stronger inflammatory reaction, higher expression of pro-inflammatory cytokines and a 

higher epithelial cell stress response with activation of the STAT3 signaling pathway and 

its antimicrobial product RegIIIβ (Fig. 5C,D). Immunostaining revealed that STAT3 was 

phosphorylated to a large extent in epithelial cells (Fig. 5D). In contrast to previous in 

vitro studies,18, 19 untreated DSG2ΔIEC mice displayed no obvious alteration in EGFR and 

p38 pathways (not shown). On the other hand, exposure of DSG2ΔIEC mice to DSS or 

C. rodentium resulted in diminished EGFR and p38 levels (Suppl. Fig. 12A,B).  

To better understand the biological significance of desmosomal cadherins, we also 

assessed the role of Dsc2. Similarly to DSG2ΔIEC mice, DSC2ΔIEC mice developed 

normally (Suppl. Figs. 13). Unlike in DSG2-deficient mice, no profound changes in other 

desmosomal or TJ components were observed (Fig. 6A,B, Suppl. Figs. 14) and 

plakoglobin immunofluorescence revealed an unaltered desmosomal distribution (Fig. 

6B). Additionally, no upregulation of other desmocollin and desmoglein isoforms was 

noticed (Suppl. Fig. 15). Electron microscopy indicated a normal desmosomal 

ultrastructure (Fig. 6C). In line with that, DSC2ΔIEC mice showed no alteration in 
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intestinal permeability (Fig. 6D). A morphologically inconspicuous small and large 

intestine with properly localized cell types was noted (Fig. 7A, Suppl. Fig. 16). In 

particular, the amount of goblet cells did not differ between DSC2ΔIEC and DSC2fl/fl mice 

(Suppl. Fig. 16). Moreover, in both genotypes, treatment with 2.4% DSS resulted in a 

comparable weight loss and a similar histological injury (Fig. 7A,B). In line with that, 

comparable levels of pro-inflammatory cytokines and antimicrobial peptides were noted 

(Fig. 7C and data not shown). To identify the mechanisms responsible for the different 

biological impact of DSG2 vs. DSC2 loss, we collected plasma membrane protein 

fractions. These identified reduced amounts of the cytoprotective chaperone Hsp70 in 

DSG2ΔIEC but not DSC2ΔIEC animals, while the established Dsg2-interacting protein 

Galectin 320 was enriched in the plasma membrane fractions of Dsc2-deficient, but not 

Dsg2-deficient animals (Fig. 7D). As a potential molecular explanation, Hsp70 co-

immunoprecipitated with Dsg2 but not with Dsc2 (Fig. 7E and data not shown).  

To further understand the ability of Dsg2/Dsc2 to compensate for the loss of its 

counterpart, we examined colorectal adenocarcinoma DLD1 cells lacking either one or 

both desmosomal cadherins.18, 21 Immunofluorescence and immunoblotting confirmed 

the knockout of both cadherins as well as a complete re-expression of full-length Dsc2 

(FL Dsc2) in the double-knockout line (Suppl. Figure 17A,C). A simultaneous knockout 

of both cadherins resulted in a marked loss of membranous Dsp/PG staining, that was 

maintained in the lines lacking only one cadherin (Suppl. Figure 17B). Immunoblotting 

demonstrated that the altered Dsp staining pattern is not due to altered protein levels 

(Suppl. Figure 17C). With regard to functional properties, a knockdown of both 

cadherins resulted in a stronger decrease in the transepithelial electrical resistance (TER) 

than the loss of Dsc2 only, while a re-expression of Dsc2 was not sufficient to rescue 

the TER phenotype of double-knockout cells (Suppl. Figure 17D).  

In summary, our findings uncover the differential biological relevance of the 

desmosomal cadherins Dsg2 and Dsc2 that are both reduced in the human intestinal 

injury (Fig. 1B, Fig. 7F). 
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Discussion  

Our study analyzed the in vivo biological role of desmosomal cadherins in the intestine. 

We showed that desmosomal alterations as well as loss of Dsg2/Dsc2 occur in patients 

with Crohn´s disease. Since these patients display a strong activation of TNFα 

signaling,22 our data are in line with previous findings implicating TNFα in the loss of 

Dsg2 signal.16 In that respect, the regulation of Dsg2 is reminiscent of the regulation of 

TJ proteins, which undergo a strong inflammation-induced remodeling.1, 3, 4 On the other 

hand, E-cadherin as a key component of adherens junctions remained unaltered in all 

conditions.  

With regard to the biological importance of the desmosomal cadherins, DSG2ΔIEC and 

DSC2ΔIEC mice displayed morphologically normal desmosomes. In case of DSG2ΔIEC 

animals, this is not surprising since previous reports demonstrated that Dsg2 is not 

essential for desmosomal assembly.23, 24 On the other hand, the previous data on Dsc2 

were somewhat contradictory. It was reported to be indispensable for desmosomal 

assembly in an in vitro study,24 however, Dsc2 knockdown in cancer cell lines did not 

result in altered Dsg2 levels.14 In addition to normal appearing desmosomes, neither 

DSG2ΔIEC nor DSC2ΔIEC animals show an obvious epithelial injury under basal 

conditions. This is in line with the intestinal desmoplakin KOs, that do not exhibit an 

obvious pathology either.25 In contrast, cardiomyocyte-specific DSG2 ablation resulted 

in spontaneous arrhythmogenic cardiomyopathy 23 whereas deletion/mutation of other 

desmosomal cadherins led to defects in oral epithelia, skin and hair follicles.26 

Collectively, these data suggest that desmosomal cadherins are essential for integrity of 

mechanically challenged tissues, but are more dispensable in single-layered epithelia.  

While untreated mice displayed no obvious phenotype, altered desmosomal and TJ 

protein composition, wider desmosomal space and increased intercellular permeability 

were noted in DSG2ΔIEC but not DSC2ΔIEC mice (Figure 7F). With regard to the 

desmosomal composition and permeability, our data are consistent with Dsg2/Dsc2 

knockdowns performed in cancer cell lines and suggest that Dsg2 loss has a more 

profound impact on intercellular junctions than Dsc2 ablation.18, 19, 23 A potential 

explanation is that homophilic Dsg2 bonds, but not Dsc2 bonds are able to at least 
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partially compensate the ablation of the partner protein. In support of the latter, cell 

lines that lacked both Dsg2 and Dsc2 displayed similar TER as cells lacking Dsg2 only 

(Suppl. Figure 17D). Notably, although homophilic interactions of cadherins occur in 

epithelial cells, formation of heterophilic Dsg-Dsc interactions is preferred.10, 27 In 

addition to the strength of homophilic complexes, interactions with associated proteins 

might be also responsible for the differences between DSG2ΔIEC and DSC2ΔIEC 

mice. In particular, Hsp70 was found to interact with Dsg2 but not Dsc2 and 

accordingly, Dsg2ΔIEC mice displayed lower Hsp70 levels in their plasma membrane 

protein fractions. This finding is intriguing since Hsp70 is an established stress-

protective protein that ameliorates the development of intestinal injury 28, 29 and is known 

to interact with keratins, i.e. structures that are functionally tightly linked to 

desmosomes.30, 31 However, further studies are needed to delineate the functional 

importance of the diminished Hsp70 levels in Dsg2ΔIEC mice.  

On the other hand, DSC2ΔIEC mice (but not DSG2ΔIEC mice) displayed an accumulation 

of galectin 3 in their plasma membrane fractions. Of note, galectin 3 constitutes an 

established Dsg2-binding protein and an important mediator of adhesive strength.20 

Therefore, a perturbation in Hsp70 might account for the phenotype seen in DSG2ΔIEC 

mice, whereas galectin 3 may functionally compensate for the Dsc2 loss (Figure 7F). The 

reduced p38 levels seen in DSG2ΔIEC mice exposed to DSS or C. rodentium might be also 

of importance, since p38 in intestinal epithelia protects from colitis development.32  

While the moderate impairment of intestinal barrier seen in untreated DSG2ΔIEC mice 

is not sufficient to induce epithelial injury, it becomes more evident in the analyzed stress 

models. Two key events likely contribute to this finding: (i) inflammatory cytokines, in 

particularly TNFα, that are induced in the stress models,33, 34 further weaken the 

desmosomal adhesion,16 (ii) the injuries increase the leakiness of TJs that are known to 

constitute the major component of the intestinal barrier. The weakening of TJs is both 

a direct effect of an exposure to DSS/C. rodentium as well as a consequence of the 

resulting inflammatory reaction.1, 3, 4, 35-37 Moreover, our findings indicate that Dsg2 

ablation promotes TJ leakiness by decreasing the levels of tightening TJ components. 

This is supported by previous in vitro studies in which loss of Dsg2-mediated adhesion 

led to disruption of TJ integrity.15, 38 Consequently, peptides strengthening desmosomal 
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adhesion may present a viable therapeutic strategy in situations with impaired 

desmosomes.16  

The above described loss of epithelial barrier resulted in stronger bacterial translocation 

that induced the observed intestinal inflammation (Figure 7F). Two classic inflammatory 

pathways have been prominently activated: (i) production of pro-inflammatory cytokines 

IL-1β and TNFα; (ii) activation of IL-22-pSTAT3 signaling. IL-1β/TNFα are known to 

be produced as a direct reaction to microbial components.39, 40 Their increased levels 

likely contribute to the stronger epithelial loss seen after DSS treatment thereby leading 

to a vicious cycle of inflammation and epithelial injury (Figure 7C).40, 41 On the other 

hand, IL-22 belongs to anti-inflammatory cytokines that protect from development of 

colitis in several models.40, 42, 43 It stimulates, via STAT3 activation, epithelial cell 

proliferation and regeneration and likely contributes to the hyperplasia that was observed 

in the Citrobacter rodentium model. Since both signaling pathways become activated as a 

consequence of increased epithelial permeability after Dsg2 loss, the balance between 

IL-1β/TNFα and IL-22-pSTAT3 activation presumably dictates, whether DSG2ΔIEC 

animals will display increased epithelial loss (as seen in the DSS model) or increased 

regeneration (Citrobacter model).  

In summary, our findings reveal desmosomal alterations in patients with Crohn´s disease 

and demonstrate the differential importance of the desmosomal cadherins Dsg2/Dsc2 

for the desmosomal structure and susceptibility to intestinal injury (Figure 7F). Given 

that a TJ stabilizing agent showed promise in a clinical trial of celiac disease,44 further 

studies are warranted to explore the therapeutic potential of desmosome-stabilizing 

peptides.16  
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Materials and Methods  

Mouse experiments  

Mice with conditional (intestine-specific) Desmoglein 2 (Dsg2) or Desmocollin 2 

deletion were generated by crossing previously described DSG2 exon4/5 floxed 

(DSG2fl/fl) and DSC2 exon2 floxed (DSC2fl/fl) mice with mice expressing Cre under the 

control of the villin promotor (DSG2ΔIEC/DSC2ΔIEC).23, 45-47 All mice were on C57BL/6 

background and kept under standardized conditions (12 hours day/night cycle, 21-24°C, 

humidity ~50%) with free access to food and water. To induce colitis, 10 weeks old sex-

matched mice were exposed to dextran sodium sulfate (DSS, MP Biochemicals, 

Heidelberg, Germany) in the drinking water and sacrificed after four days (short-term 

DSS). Alternatively, DSS was administered for five days with a change to normal water 

afterwards and killing of animals at day 7 (long-term DSS). For DSG2ΔIEC and DSC2ΔIEC 

mice, we used 1.6% and 2.4% DSS, respectively. For an infectious model, Citrobacter 

rodentium strain DBS100 48 was grown in Luria-Bertani (LB) medium at 37 °C overnight 

by shaking (200 rpm). 9-10 weeks old sex-matched mice were infected by oral gavage 

with 1x109 C. rodentium and analyzed 14 or 21 days thereafter. At indicated time points, 

stool was collected, homogenized in sterile phosphate buffered saline (PBS) (Digital 

Disruptor Genie, Scientific industries, New York, US) and plated in serial dilutions on 

MacConkey agar plates (Roth, Karlsruhe, Germany) to count colony forming units 

(CFU) of Citrobacter rodentium. Untreated, age- and sex-matched littermates were used as 

controls.  

To examine intestinal permeability, mice were fasted for three hours and gavaged with 

0.6 mg/g of body weight 4kD FITC-labelled dextran (Sigma-Aldrich, Steinheim, 

Germany). Four hours later, blood was collected retroorbitally and the fluorescence 

intensity in serum was measured (excitation: 492 nm; emission: 525 nm, Cytation3 

imaging reader, BioTek, Bad Friedrichshall, Germany). The samples were prepared in 

duplicates and the results calculated according to the standard curve. All animals were 

weighted and sacrificed by an isoflurane overdose. In selected animals, the distal colon 

was analyzed via a mini-endoscope (Karl Storz, Tuttlingen, Germany). Rectal bleeding 

was examined using commercial hemoCARE fecal occult blood Guajak test using a 
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semi-quantitative scoring from 0 to 3 (0: no bleeding, 1: mild bleeding, 2: moderate 

bleeding, 3: severe bleeding). Mesenteric lymph nodes were dissected and homogenates 

were plated on Columbia sheep blood agar plates (Oxoid/Thermo Scientific, Munich, 

Germany) to evaluate the translocation of bacteria into the lymph nodes. Proximal 

intestinal parts were washed and stored as Swiss rolls in 4% formaldehyde for 

histological evaluation or embedded in O.C.T. compound (Tissue-Tek, Sakura, Staufen, 

Germany) for cryosectioning. Distal parts were washed and snap frozen in liquid 

nitrogen for biochemical and RNA analysis.  

Human samples  

As described in detail previously,38 human specimens were obtained from terminal ileum 

of patients who suffered from refractory Crohn’s Disease (CD) and/or had a 

complication that required surgical resection, such as stenosis, fistula, or abscesses. 

Control tissue samples of the terminal ileum were from patients that required right 

hemicolectomy in which the surgical resection routinely involves a part of the healthy 

small intestine (for further information see Suppl. table 1). For Western blot analyses, 

mucosa was mechanically dissected from the tissue immediately after the resection and 

transferred into lysis buffer containing 25 mmol/L HEPES, 2 mmol/L EDTA, 25 

mmol/L NaF, and 1% sodium dodecyl sulfate. Specimens were homogenized with 

TissueLyzer (Qiagen, Hilden, Germany) and normalized with BCA assay (Thermo 

Fisher, Waltham, MA). Anti-Dsg2 (Invitrogen, Carlsbad, CA), anti-Dsc2 (Abcam, 

Cambridge, UK) and anti E-cadherin (BD Biosciences, Franklin Lakes, NJ) primary 

antibodies were combined with a horseradish peroxidase-labeled goat anti-mouse 

antibody (Dianova, Hamburg, Germany).  

A second part of the tissue samples was fixed in 4% paraformaldehyde, embedded in 

paraffin and cut into 1 μm thick sections. Immunostaining was performed as described 

previously 49 using rabbit anti-Dsg2 (Invitrogen), anti-Dsc2 (Abcam) and mouse anti-E-

cadherin (BD Biosciences) antibodies in combination with a Cy3-labeled goat anti-

mouse- and a Cy2-labeled goat anti-rabbit antibody (Both Dianova, Hamburg, 

Germany). To analyze the tissue architecture, all specimens were stained with 

Hematoxylin and Eosin (H&E).  
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Cell culture experiments  

For the described experiments, we used previously published DLD1 cells with 

CRISPR/Cas9-mediated knockdown of Dsc2 (ΔDsc2) or both desmosomal cadherins 

(ΔDsg2 ΔDsc2), as well as a cell line in that the knockout of both cadherins was followed 

by a re-expression of Dsc2 (ΔDsg2 ΔDsc2 + FL Dsc2).21 The cells were cultured in 

Dulbecco’s modified Eagle’s medium (Life Technologies, Carlsbad, CA) containing 10% 

fetal bovine serum (Biochrom, Berlin, Germany), 50 U/ml penicillin and 50 U/ml 

streptomycin (AppliChem, Darmstadt, Germany) in 5% CO2 atmosphere at 37°C until 

they reached confluence.18  

Biochemical methods  

Total tissue lysates were prepared by homogenization of tissues in 3% SDS-containing 

buffer with protease and phosphatase inhibitors. To determine luminal protein 

composition, colon was removed, opened longitudinally and vigorously inverted fifteen 

times in PBS. The solution containing epithelial cells was centrifuged at 5000 rpm for 10 

minutes at 4°C and the pellet was used for homogenization. DLD1 cells were grown in 

24-well plates and lysed using 1% SDS lysis buffer supplemented with a protease-

inhibitor cocktail (Roche, Mannheim, Germany). Same amounts of proteins were 

separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) followed by transfer 

to PVDF/nitrocellulose membranes or staining with 0.1% Coomassie Brilliant Blue G-

250. The membranes were incubated with specific primary and HRP-coupled secondary 

antibodies, which were then visualized by an enhanced chemiluminescence detection kit 

(GE Healthcare/Amersham Biosciences, UK). The antibodies used in this study are 

summarized in Suppl. table 3.  

To determine myeloperoxidase (MPO) activity, colonic tissue was homogenized in ice-

cold 50 mM potassium phosphate buffer containing 0.5% 

hexadecyltrimethylammonium bromide. Equal volume of cell lysis buffer was added and 

the homogenates were freeze-thawed twice. After centrifugation, supernatant was 

removed and supplemented with reaction buffer (with o-dianisidine hydrochloride and 

0.001% H2O2) or standard solution. After three minutes of reaction time, the absorbance 

was spectrophotometrically measured at 450 nm (Cytation3 imaging reader). The 
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samples were prepared in duplicates and the results were calculated according to the 

standards.  

Plasma membrane protein fractions from colon scrapings were extracted according to 

the manufacturer’s protocol (Abcam, ab65400). Briefly, scrapings were homogenized in 

an appropriate volume of homogenization buffer containing protease inhibitor cocktail. 

Following centrifugation, the pellet that contains plasma membrane proteins was re-

suspended in the provided upper phase solution. Plasma membrane proteins were 

purified by repeated addition of lower phase solution that was later on removed by 

centrifugation at low speed. Finally, the plasma membrane proteins were pelleted via 

high-speed centrifugation at +4°C. The membrane fraction was dissolved in 0.5% 

Triton-X-100/PBS that was supplemented with Laemmli buffer (0.2 M Tris pH 6.8, 40% 

glycerol, 8% sodium dodecyl sulfate, 7.2% β-mercaptoethanol, 0.02% bromophenol 

blue).  

Immunoprecipitation 

Total lysates were prepared by homogenization of colon scrapings in RIPA buffer (2.5 

mM Tris-HCl pH 7.4, 0.025% sodium deoxycholate, 150 mM NaCl, 2 mM EDTA, 

0.01% NP-40). After conjugation of Dsc2 or Dsg2 antibody to Protein G Dynabeads 

(Thermo Fisher) for 10 minutes, the lysates were added to the beads-antibody complex 

and the solution was incubated upon a gentle rotation for 2 hours at +4°C. A magnet 

was used to collect the beads that were washed three times with a supplied washing 

buffer. The supernatant was discarded, the proteins were eluted via heating in SDS-

containing Laemmli buffer for 5 minutes at 95°C and further analysed by SDS-PAGE.  

Histological analysis  

The formaldehyde-fixed tissues were paraffin-embedded, cut into 3 μm thick sections 

and stained with H&E or periodic acid-Schiff (PAS). For the latter, deparaffinized slides 

were oxidized in 2% periodic acid solution for 5 minutes. After washing in distilled water, 

a staining with Schiff reagent for 15 minutes was performed and followed by 

hematoxylin counterstaining. Finally, the sections were blued in 1M Tris buffer (pH 8). 

Images were recorded with a Zeiss light microscope (Zeiss, Germany) and AxioVision 
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Rel 4.8 software (Zeiss, Germany). PAS-positive cells were counted as a mean from at 

least thirty different crypts by ImageJ software.  

A previously described semi-quantitative histopathological score50 with minor 

modifications was used for evaluation of DSS-treated samples. The following parameters 

were assessed: (i) submucosa thickening/edema, (ii) inflammatory cell infiltration, (iii) 

goblet cell loss (each parameter with a score 0-3: 0: normal; 1: mild; 2: moderate; 3: 

severe), (iv) epithelial damage/erosion (0: normal; 2: <1/3 of total area with altered 

epithelial cell morphology; 4: >1/3 of total area with altered epithelial cell morphology 

and/or mild erosions; 6: <10% of ulcerative areas; 8: 10-20% of ulcerative areas, 10: 

>20% of ulcerative areas).  

The C. rodentium exposed colons were semi-quantitatively scored. Following criteria were 

assessed: (i) epithelial detachment (0: normal, 0,5: low, 1: high); (ii) hyperplasia (0: 

normal, 1: low hyperplasia, 2: high hyperplasia); (iii) inflammation (0: normal, 1: 

moderate, 2: severe). Lengths of colonic crypts were measured in longitudinal 

orientation. At least 10 crypts per mouse were analysed and the results are presented as 

means. All analyses were performed in a blinded manner by AG and an experienced 

pathologist (PB).  

Study approval  

The animal experiments were approved by the state of North Rhine-Westphalia in 

Germany and the University of Aachen animal care committee and were conducted in 

compliance with the German Law for Welfare of Laboratory Animals. All CD patients 

had given their informed consent before surgery, and the study was approved by the 

Ethical Board of the University of Würzburg (proposal numbers 113/13 and 46/11).  

Data analysis and statistical methods  

Image quantifications were performed with ImageJ (National Institutes of Health, 

Bethesda, USA). Data were analyzed with an unpaired two-tailed Student´s t-test or 

Mann-Whitney test where appropriate. P-values below 0.05 were considered as 

statistically significant.  

For additional materials, see supplementary section.  
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Figure 1. Dsg2 and Dsc2 are the major cadherins expressed in the intestine and 

DSG2-deficient animals (DSG2ΔIEC) display an intestine-specific Dsg2 loss. 

(A,B) Expression levels of DSG2, DSC2 as well as the other desmoglein and desmocollin 

family members were assessed by real time RT-PCR in the indicated mouse organs (n=4-

5). (C) DSG2 mRNA expression was quantified in the highlighted mouse organs of 

DSG2ΔIEC (ΔIEC) and DSG2fl/fl (fl/fl) mice (n=4) by real time RT-PCR. Colonic 

desmoglein 2 (Dsg2) protein levels were assessed in both groups by immunoblotting 

(n=5). L7 (mouse ribosomal protein) gene and β-tubulin (βTub) were used as an internal 

and a loading control, respectively. Dsg, desmoglein; Dsc, desmocollin; Liv, liver; B. 

duct, common bile duct; G.bl, gallbladder; Kid, kidney; Stom, stomach; Duo, duodenum; 

Jeju, jejunum; Ile, ileum; Col, colon. Two-tailed Student’s t test was used for statistical 

analyses. **p<0.01, ***p<0.001.   
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Figure 2. DSG2-deficient animals (DSG2ΔIEC) display an altered desmosomal 

protein composition, a wider desmosomal space width and increased intestinal 

permeability. (A) The distribution of Dsc2, plakoglobin (PG) and Dsg2 in the colon of 

DSG2ΔIEC (ΔIEC) and DSG2fl/fl (fl/fl) mice was visualized by immunofluorescence. 

Scale bar = 20 μm. (B) Hematoxylin and eosin (H&E) staining revealed an unperturbed 

overall colon architecture. (C) Desmosomal ultrastructure of colon samples was assessed 

by electron microscopy with subsequent quantification of the desmosomal intercellular 

space (IS) width and length of the desmosomal plaque (n=5). Scale bar = 200 nm. AJ, 

adherens junctions; De, desmosomes; TJ, tight junctions (D,E) Immunoblotting and 



Manuscript in press in Mucosal Immunology  105 

RT-PCR were employed to study the impact of Dsg2 loss on desmosomal composition 

in the colon (n=5). Dsc2, desmocollin 2; Dsp, desmoplakin; Pkp2, plakophilin 2; K8, 

keratin 8. (F) Administration of 4kD FITC-dextran with subsequent quantification of 

serum FITC levels was utilized as a measurement of intestinal permeability (n=5). 

Average mRNA expression in DSG2fl/fl mice was arbitrarily set as 1 and levels in 

DSG2ΔIEC mice are presented as ratio. L7 (mouse ribosomal protein) gene and β-tubulin 

(βTub) were used as an internal and a loading control, respectively. Data in C,F are 

shown as dot plots. Two-tailed Student’s t test was used for statistical analyses. *p<0.05 
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Figure 3. DSG2-deficient animals (DSG2ΔIEC) exhibit an enhanced susceptibility 

to dextran sodium sulfate (DSS)-induced colitis. (A) Relative body weights of 

DSG2ΔIEC (ΔIEC) mice (grey rectangles) and their floxed littermates (black circles, 

DSG2fl/fl, fl/fl, n=7 each) were determined daily starting at the time of first DSS 

administration. (B-D) Macroscopic images of the colon mucosa obtained by 

colonoscopy, stool guaiac test with semi-quantitative scoring (n=6), colonic length and 

hematoxylin and eosin (H&E) staining of colon sections with morphometric 

quantification were used to assess the severity of colitis at day 7 after DSS administration 

(n=6). (E,F) The extent of colonic inflammation 7 days after DSS exposure was 

evaluated by myeloperoxidase (MPO) activity and real-time RT-PCR for TNFα and IL-

1β (n=3-6). The low cytokine expression in non-treated animals (ctrl) was arbitrarily set 

as 1. L7 (mouse ribosomal protein) gene was used as an internal control. Bacterial 

translocation into mesenteric lymph nodes (MLN) was quantified as the amount of 

colonies grown from total MLN homogenates on blood agar plates (n=7-8). Data in 

C,D,E are presented as dot plots. Two-tailed Student’s t test was used for statistical 

analyses of DSS-treated animals. *p<0.05, ***p<0.001.  
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Figure 4. DSG2-deficient animals (DSG2ΔIEC) subjected to dextran sodium 

sulfate (DSS) for four days display higher intestinal permeability and enhanced 

STAT3 signaling. (A) Hematoxylin and eosin (H&E) staining of colon sections from 

DSG2ΔIEC (ΔIEC) mice and their floxed littermates (DSG2fl/fl or fl/fl) was performed. 

Western Blot depicts the epithelial cell marker keratin 8 (K8) in the colonic luminal 

content. (B) Serum FITC levels were measured following gavage of 4kD FITC-dextran 

and presented as dot plots (n=6). (C-E) RT-PCR for TNFα, IL-1β and IL-22 as well as 

the antimicrobial peptide REGIIIβ was performed (n=4-9). Activation of selected 
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signaling pathways was assessed by immunoblotting. The low cytokine expression in 

non-treated animals (ctrl) was arbitrarily set as 1. All other values are presented as ratio. 

L7 (mouse ribosomal protein) gene and β-tubulin (βTub) were used as an internal and a 

loading control, respectively. (F) Immunohistochemistry visualizes phosphorylated 

STAT3 in colon sections of DSS-treated mice. Scale bar (A,F) = 100 μm. Two-tailed 

Student’s t test was used for statistical analysis of DSS-treated animals.*p<0.05, 

**p<0.01, ***p<0.001.  
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Figure 5. DSG2-deficient (DSG2ΔIEC) mice exhibit enhanced susceptibility to 

Citrobacter rodentium (C. rod.)-induced colitis. (A) Hematoxylin and eosin (H&E) 

staining of colon sections with quantification of epithelial hyperplasia (Hypl), 

detachment (Detachm) and inflammatory immune cell infiltration (Inflm) as well as 

colon crypt length determination was performed in DSG2ΔIEC mice and their floxed 

littermates (DSG2fl/fl or fl/fl) 14 days after oral infection with C. rod. (n=7). Scale bar = 

200 μm. Data are shown as dot plots. (B) Ki-67 immunohistochemistry with 

morphometric quantification visualize the proliferation in colon sections 14 days post 

infection with C. rod. (n=7). (C,D) Real time RT-PCR for the highlighted cytokines and 

the antimicrobial product REGIIIβ as well as immunoblotting for the indicated 

signalling molecules were conducted in untreated and in C. rod.-infected mice (n=4-7). 

L7 (mouse ribosomal protein) gene and β-tubulin (βTub) were used as an internal and a 

loading control, respectively. mRNA expression in untreated fl/fl mice was arbitrarily 

set as 1 and other levels are presented as ratio. Immunohistochemistry illustrates 

phosphorylated STAT3 in colon sections of C. rod.- infected mice. Scale bar (B,D) = 
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100 μm. Two-tailed Student’s t test (A,B, upper panels in C) or Mann-Whitney test 

(lower panels in C) were used for statistical analyses of C.rod.-exposed mice.*p<0.05, 

**p<0.01.  
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Figure 6. DSC2-deficient animals (DSC2ΔIEC) show an unaltered desmosomal 

plaque and no increased intestinal permeability. (A) Immunoblotting was 

performed on total colon lysates from DSC2ΔIEC (ΔIEC) mice and their floxed littermates 

(DSC2fl/fl, fl/fl) (n=5). β-tubulin (βTub) was used as a loading control. (B) 

Immunofluorescence depicts the distribution of Dsc2 and plakoglobin (PG) in the 

colons of both genotypes. Scale bar = 20 μm. (C) Desmosomal ultrastructure was 

assessed on colon samples by electron microscopy with subsequent quantification of the 

desmosomal intercellular space width and desmosomal length (n=3). Scale bar = 200 

nm. IS = intercellular space. (D) 4kD FITC-dextran was administered and serum FITC 

levels were quantified as a measurement of intestinal permeability (n=4). Data in C,D 

are shown as dot plots. Cldn1, claudin 1; Dsp, desmoplakin; E-cad, E-cadherin; K8, 

keratin 8; PG, plakoglobin; Pkp2, plakophilin 2. 
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Figure 7. DSG2ΔIEC and DSC2ΔIEC mice display differential phenotypes as well as 

alterations in their plasma membrane proteome. (A) Overall colon architecture of 

DSC2ΔIEC mice and corresponding floxed mice (DSC2fl/fl) was evaluated prior to (ctrl) 

and 7 days after DSS exposure by hematoxylin and eosin (H&E) staining. Scale bar = 

200 μm. (B) The relative body weight of DSC2ΔIEC mice (red rectangles, ΔIEC) and their 

floxed littermates (blue circles, fl/fl) was measured daily starting at the day of the first 

DSS administration (n=7). (C) The mRNA levels of the pro-inflammatory cytokine 

TNFα and the antimicrobial peptide REGIIIβ were evaluated prior to (ctrl) and 7 days 

after DSS exposure by real time RT-PCR. The cytokine expression in ctrl animals was 

arbitrarily set as 1. L7 (mouse ribosomal protein) gene was used as an internal control. 

(D) Plasma membrane protein fractions were isolated from colons of both genotypes 

and subjected to immunoblotting. Coomassie blue staining of blots was used as loading 

control. Gal3, Galectin 3; Hsp70, heat shock protein 70. (E) Colonic mucosa lysates 

from fl/fl animals were used for co-immunoprecipitation with Dsg2 (left panel) and 

Dsc2 (right panel), that was followed by immunoblotting. IgG-conjugated beads (IgG) 

and total lysates (Total) were used as a control and an input, respectively. (F) Schematic 

illustrates the molecular changes seen in DSG2ΔIEC and DSC2ΔIEC mice.  
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Supplementary Materials and Methods  

Immunohistochemistry  

Deparaffinized sections were boiled in either citrate-based antigen unmasking solution 

pH 6 (Vector laboratories, Burlingame, USA) or EDTA-based retrieval solution pH 9 

(DAKO, Hamburg, Germany). To reduce the endogenous peroxidase activity, slides 

were incubated with 3% H2O2 for 10 minutes. Based on supplier recommendations, the 

sections were blocked either with 2% BSA (bovine serum albumin) in Tris Base Saline 

Buffer with 0.1% Tween-20 (TBST) or 5% normal goat serum in PBS for 30 minutes. 

Afterwards, sections were incubated with anti-pSTAT3 (Tyr705, #9131, Cell Signalling, 

Leiden, Netherlands), anti-Ki-67 (M7249, Dako, Hamburg, Germany) or anti-Lysozyme 

(sc27958 (C-19), Santa Cruz, Heidelberg, Germany) antibody overnight at 4°C. After 

washing, biotinylated secondary antibodies (Vector laboratories) were applied for 30 

minutes followed by incubation with the Vectastain working solutions as recommended 

by the manufacturer (Vectastain ABC Kit, Vector laboratories). Staining was developed 

with 3,3’-diaminobenzidine (DAB, Vector laboratories) and hematoxylin was used as a 

counterstain. Lysozyme-positive cells were counted as a mean in at least twenty different 

crypts.  

Immunofluorescence staining  

Immunofluorescence staining was performed on frozen, O.C.T.-embedded tissues, that 

were cut into 2-3 μm and 5 μm thick sections, respectively and DLD1 cells that were 

seeded on 12 mm glass cover slides and grown for 4 days after reaching full confluence. 

Tissue specimen and cells were fixed in pre-cooled acetone or 2% paraformaldehyde in 

PBST for 10 minutes, respectively. Paraformaldehyde-fixed samples were permeabilized 

with 0.5% Triton X-100 in PBST for another 10 minutes. Blocking was performed for 

30 minutes at room temperature in 2% normal goat serum, 1% BSA, 0.1% cold fish skin 

gelatine, 0.1% Triton X-100, 0.05% Tween 20 in 1x PBS (tissue) or 2% BSA in PBST 

(cells). Afterwards the slides were exposed to following primary antibodies: anti-

Desmoglein 2 (tissue),1 anti-Desmoglein 2 (cells, #610121 (rb5), Progen, Heidelberg, 

Germany), anti-Desmocollin 2 (see below for details), anti-Desmocollin 2/3 (#326200, 

clone 7G6, Thermo Scientific, Munich, Germany), anti-Desmoplakin (NW6, gift from 
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Kathleen J. Green, Chicago, USA), anti-Plakoglobin (#61005 (PG 5.1.), Progen, 

Hamburg, Germany), anti-ZO-1(Mid) (#402200, Life technologies, USA) and anti-E-

cadherin (#3195, Cell signaling, Leiden, Netherlands) overnight at 4°C. After washing 

and incubation with Cy3 or Alexa-Fluor 488/568-conjugated secondary antibodies 

(Dianova, Hamburg, Germany and Invitrogen, Molecular Probes, Eugene, OR, USA) 

for 1 hour in the dark, slides were washed and mounted. The immunofluorescence for 

γ-catenin (PG) was performed on paraffin-embedded colon sections. In brief, the 

sections were deparaffinized, washed and boiled in citrate-based antigen unmasking 

solution pH 6 (Vector laboratories). Anti-γ-catenin (PG) (sc30997 K-20, Santa Cruz, 

Heidelberg, Germany) and anti-goat Alexa-Fluor 568 (Invitrogen) were used as primary 

and secondary antibodies, respectively. The sections were covered with ProLong 

antifade reagent containing DAPI (Invitrogen). DLD1 cells were mounted with 60% 

glycerol in PBS containing 1.5% N-propyl gallate (Serva, Heidelberg, Germany). 

Fluorescence images were acquired with Zeiss microscope Axio Imager Z1 (Zeiss, Jena) 

or a Leica SP5 confocal microscope with a 63 x NA 1.4 PL APO objective (Leica, 

Wetzlar, Germany).  

Transmission electron microscopy  

Murine samples were cut into ~1 mm³ pieces and fixed by a three step process with the 

following fixatives: (i) 3.7% formaldehyde, 1% glutaraldehyde, 11.6 g NaH2PO4xH2O 

and 2.7 g NaOH per liter ddH2O for two hours; (ii) 1% OsO4 for one hour; (iii) 0.5% 

uranylacetate/0.05 N sodium hydrogen maleate buffer (pH 5.2) for 2 hours (all at room 

temperature). Subsequently, tissues were dehydrated, embedded in araldite for 48 hours 

at 60°C and cut into 75 nm ultrathin sections that were treated with 3% uranylacetate 

for four minutes and with 80 mM lead citrate for three minutes to enhance the contrast. 

Images were acquired with an EM 10 (Zeiss) plus digital camera (Olympus) and iTEM 

software (Olympus). The intercellular space width and length were determined as a mean 

from at least ten different desmosomes per mouse.  

Human samples were fixed with 2.5% glutaraldehyde and cut into ~1 mm³ pieces. After 

three washing steps with PBS, samples were incubated with 2% osmium tetroxide 

solution for 1 hour at 4°C and subsequently dehydrated through an ascending ethanol 
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series from 20 to 100%. Samples were embedded with epon for 24 hours at 80°C and 

ultrathin sections (60 - 80 nm) were cut with a diamond knife. Staining was performed 

with a saturated solution of uranyl acetate for 40 minutes and lead citrate for 5 minutes. 

Images were acquired with the transmission electron microscope Libra 120 (Zeiss, 

Oberkochen, Germany).  

Quantitative real-time PCR  

Total RNA was isolated using RNeasy Mini Kit (Qiagen, Hilden, Germany) according 

to the manufacturer’s instructions and 1 μg was reverse-transcribed into cDNA using 

M-MLV Reverse Transcriptase Kit (Promega, Mannheim, Germany). Quantitative real-

time PCR was performed with the 7300 Fast Real-Time PCR System (Applied 

Biosystems). Samples were analyzed in duplicates with the ΔΔCt method relative to L7 

ribosomal protein as an internal control. All levels are reported as means +/- SEM. The 

primers used in this study are summarized in Suppl. table 2.  

Transepithelial Resistance Measurements (TER)  

Cells were grown on 8-well electrode arrays (Ibidi, 8W10E) and baseline TER was 

measured with an ECIS model Z theta (Applied Biophysics, Troy, NY) at 800 Hz as 

described previously.2  

Desmocollin 2 antibody generation  

To generate a peptide-specific anti-Dsc2 antibody, an antigen was obtained by 

conjugation of the synthetic peptide with sequence SRRGAGYHHHTLDPC to 

ovalbumin. Guinea pigs were immunized by subcutaneous injection of 240 μg of the 

peptide diluted in complete Freund’s adjuvant followed by three boostings with the same 

amount of antigen diluted in incomplete Freund’s adjuvant being performed every two 

weeks. Serum was collected 14 days after the last immunization. To purify the Dsc2-

specific antibodies, the serum was purified over a column that was adsorbed with the 

immunogenic peptide. After washing with 10 mM sodium phosphate (pH 6.8), the 

antibodies were retrieved with IgG Elution Buffer (Thermo Scientific, #21004). At the 

end, the solution was neutralized with 2 M K2HP04.  

 



Manuscript in press in Mucosal Immunology  117 

Suppl. table 1: Overview of the analyzed human samples  

 

AZT=Azathioprin, MTX=Methotrexate  
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Suppl. table 2: Primers used for genotyping and quantitative Real Time PCR  
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Suppl. table 3: Antibodies used for Western Blotting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120                                                            Manuscript in press in Mucosal Immunology 

Supplementary References  

1. Schlegel N, Meir M, Heupel WM, Holthofer B, Leube RE, Waschke J. Desmoglein 2-mediated 
adhesion is required for intestinal epithelial barrier integrity. American journal of physiology 
Gastrointestinal and liver physiology 2010; 298(5): G774-783.  
2. Ungewiss H, Vielmuth F, Suzuki ST, Maiser A, Harz H, Leonhardt H et al. Desmoglein 2 regulates 
the intestinal epithelial barrier via p38 mitogen-activated protein kinase. Scientific reports 2017; 
7(1): 6329. 

  



Manuscript in press in Mucosal Immunology  121 

  

 

Supplementary Figure 1. Desmosomes are altered and desmosomal cadherins are 

reduced in patients with Crohn’s disease. (A) Transmission electron microscopy 

images of terminal ileum specimens from patients with Crohn’s disease (CD) and from 

a healthy control individual (ctrl). Scale bar = 500 nm (left panels) and 250 nm (right 

panels). (B,C) Terminal ileum specimens from patients with Crohn´s disease (CD) 

(n=12) as well as from control individuals (ctrl) (n=10) were stained with antibodies 

against Dsg2, Dsc2 and E-cadherin. The corresponding protein lysates were subjected 

to immunoblotting with subsequent morphometric quantification. Hematoxylin and 

eosin (H&E) staining highlights the overall intestinal architecture. Scale bar 

immunofluorescence = 20 μm, scale bar H&E = 50 μm. Two-tailed Student’s t test was 

used for statistical analyses. *p<0.05  
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Supplementary Figure 2. DSG2-deficient animals (DSG2ΔIEC) reveal an 

intestine-specific Dsg2 loss. (A-D) Desmoglein 2 (Dsg2) protein levels were assessed 

in the indicated mouse organs of DSG2ΔIEC (ΔIEC) and DSG2fl/fl (fl/fl) mice by 

immunoblotting. βActin was used as a loading control.  

 

Supplementary Figure 3. Knockout of DSG2 does not alter the expression of other 

desmoglein and desmocollin isoforms. Expression levels of the desmoglein family 

members DSG1a, DSG1b and DSG3 (A) as well as the desmocollin members DSC1 

and DSC3 (B) were assessed in the colon of DSG2ΔIEC (ΔIEC) and DSG2fl/fl (fl/fl) mice 
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by real time RT-PCR (n=3-4). Skin was used as a positive control (PC). L7 (mouse 

ribosomal protein) gene was used as an internal control. Average mRNA expression in 

fl/fl mice was arbitrarily set as 1 and levels in ΔIEC mice as well as the skin represent a 

ratio.  

 

 

 

Supplementary Figure 4. DSG2-deficient animals (DSG2ΔIEC) display normal 

body weight and colon length. The body weights and the colon lengths of 11 weeks 

(11w), 6 months (6M) and 11 months (11M) old DSG2ΔIEC (ΔIEC) mice and their floxed 

littermates (fl/fl) are displayed in form of dot plots (n=6-20).  
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Supplementary Figure 5. Small and large intestine of DSG2-deficient animals 

(DSG2ΔIEC) show no obvious defects in tissue morphology and differentiation. (A) 

Periodic acid-Schiff (PAS) staining demonstrated a similar amount of goblet cells in 

colons from DSG2ΔIEC (ΔIEC) mice and their floxed littermates (DSG2fl/fl or fl/fl). The 

results were confirmed by real time RT-PCR for mucin 2, a major goblet cell product 

(n=6). (B) Hematoxylin and eosin (H&E) staining demonstrates a regular architecture 

of the small intestine (SI). Immunohistochemistry for the small intestinal Paneth cell 

marker lysozyme with quantification of lysozyme-positive cells/crypt revealed no 

differences between both genotypes (n=4). Scale bar (A,B) = 100 μm (C,D) Real time 

RT-PCR demonstrated similar expression levels of the stem cell markers LGR5 and R-
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spondin 1 (Rspo1) in the transgenic animals. Small (SI) and large intestine (LI) were 

analysed (n=6-7). L7 (mouse ribosomal protein) gene was used as an internal control, 

respectively. Average mRNA expression in fl/fl mice was arbitrarily set as 1 and levels 

in ΔIEC mice represent a ratio.  

 

 

 

Supplementary Figure 6. DSG2-deficient animals (DSG2ΔIEC) show no changes 

in basal cell proliferation. To evaluate the proliferation grade in the small intestine (SI) 

and large intestine (LI) of DSG2ΔIEC (ΔIEC) mice and their floxed littermates (fl/fl), the 

S-phase marker PCNA was assessed by real time RT-PCR (n=7) and immunoblotting. 

L7 (mouse ribosomal protein) gene and β-tubulin (βTub) were used as an internal and a 

loading control, respectively. Average mRNA expression in fl/fl mice was arbitrarily set 

as 1 and levels in ΔIEC mice were presented as ratio.  
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Supplementary Figure 7. DSG2-deficient animals (DSG2ΔIEC) display no obvious 

inflammation under basal conditions. The inflammatory markers TNFα, IL-1β and 

IL-6 were evaluated in the small (SI; A) and large intestine (LI; B) of 11 weeks old 

DSG2ΔIEC (ΔIEC) mice and their floxed littermates (fl/fl) by real time RT-PCR (n=4-6). 

L7 (mouse ribosomal protein) gene was used as an internal control. Average mRNA 

expression in fl/fl mice was arbitrarily set as 1 and levels in ΔIEC mice were presented 

as ratio.  

 

 

Supplementary Figure 8. DSG2-deficient animals (DSG2ΔIEC) exhibit a wider 

desmosomal intercellular space in the small intestine. The desmosomal 

ultrastructure of small intestine samples from DSG2ΔIEC (ΔIEC) and DSG2fl/fl (fl/fl) 

mice was assessed by electron microscopy with quantification of the desmosomal 

intercellular space (IS) and the length of the desmosome (n=4). Data are shown as dot 

plots. Two-tailed Student’s t test was used for statistical analysis. *p<0.05  
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Supplementary Figure 9. DSG2-deficient animals (DSG2ΔIEC) display an altered 

desmosomal protein composition. The OD (optical density) values from the 

immunoblots of colonic tissues from DSG2ΔIEC (ΔIEC) mice and their floxed littermates 

(fl/fl) were normalized to the OD values of β-tubulin (n=3) (for representative pictures 

see Figure 2D). Average levels in fl/fl mice were arbitrarily set as 1 and the amounts in 

ΔIEC mice were presented as ratio. Dsp, desmoplakin; PG, plakoglobin; Pkp2, 

plakophilin 2; K8, keratin 8; Tub, β-tubulin. Two-tailed Student’s t test was used for 

statistical analyses. *p<0.05, **p<0.01, ***p<0.001.  
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Supplementary Figure 10. DSG2-deficient animals (DSG2ΔIEC) have altered levels 

of the tight junction proteins claudin 1 and occludin. (A,C) Immunoblotting was 

used to study the impact of Dsg2 deficiency on the composition of key tight/adherens 

junction proteins in the colons of DSG2ΔIEC mice and their floxed littermates (DSG2fl/fl). 

The activation of myosin II regulatory light chain (MLC) signalling as the regulator of 

tight junction permeability was also assessed. β-tubulin was used as a loading control. 

(B) The distribution of tight and adherens junctions in the colonic sections was visualized 

with antibodies against E-cadherin, ZO-1, Claudin 1 and Claudin 15, respectively. Scale 

bar = 20 μm. ZO-1, zonula occludens-1.  
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Supplementary Figure 11. DSG2-deficient animals (DSG2ΔIEC) infected with C. 

rodentium display higher PCNA levels. (A) The relative body weight of DSG2ΔIEC 

mice (red rectangles, ΔIEC) and their floxed littermates (blue circles, fl/fl) was measured 

(n=7). (B) Citrobacter rodentium colonization in the stool was quantified as the amount of 

colony forming units (CFUs) on MacConkey agar plates at the indicated days (n=5). (C) 

Colonic PCNA mRNA expression was assessed by real time RT-PCR (n=4-7). (D) 

Periodic acid-Schiff (PAS) staining with subsequent quantification of PAS-positive 

cells/crypt indicated a similar amount of goblet cells in colons from both genotypes 

(n=8). Real time RT-PCR and histological analysis were performed 14 days after oral 

infection with C. rodentium. L7 (mouse ribosomal protein) gene was used as an internal 

control. Average mRNA expression in fl/fl mice was arbitrarily set as 1 and levels in 

ΔIEC mice were presented as ratio. Two-tailed Student’s t test were used for statistical 

analyses.*p<0.05   
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Supplementary Figure 12. DSG2-deficient animals (DSG2ΔIEC) do not show an 

activation of the analyzed signaling pathways. Immunoblotting revealed no obvious 

activation of EGFR and p38 signaling pathways in colons of DSG2-deficient (ΔIEC) 

mice compared to their floxed littermates (fl/fl). Mice were analysed after 4 days of DSS 

treatment or 14 days after exposure to C. rodentium. β-tubulin (βTub) was used as a 

loading control. p, phospho. 

 

 

 

Supplementary Figure 13. DSC2-deficient animals (DSC2ΔIEC) demonstrate 

normal body weight and small and large intestinal lengths. (A) The body weights 

of 11 weeks old DSC2ΔIEC (ΔIEC) mice and their floxed littermates (fl/fl) were analysed 

(n=12). (B) The large (LI) and small intestinal (SI) lengths were measured in both 

genotypes (n=8). Data are shown as dot plots. 
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Supplementary Figure 14. DSC2-deficient animals (DSC2ΔIEC) show no obvious 

alterations in the desmosomal and tight junction protein composition. (A,B) The 

OD (optical density) values were determined from the immunoblots of colonic tissues 

from DSC2ΔIEC (ΔIEC) mice and control littermates (fl/fl). The values were normalized 

to the OD values of β-tubulin (n=5) (for representative pictures see Figure 6A,B). The 

values in fl/fl mice were arbitrarily set as 1 and levels in ΔIEC mice were presented as 

ratio. Cldn1, claudin 1; Dsp, desmoplakin; PG, plakoglobin; Pkp2, plakophilin 2; K8, 

keratin 8. Two-tailed Student’s t test was used for statistical analyses. ***p<0.001.  
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Supplementary Figure 15. Knockout of DSC2 does not alter the expression of 

other desmoglein and desmocollin isoforms. mRNA levels of the desmoglein family 

members DSG1a, DSG1b, DSG2 and DSG3 (A) as well as the desmocollin members 

DSC1 and DSC3 (B) were analyzed in the colon of DSC2ΔIEC (ΔIEC) and DSC2fl/fl (fl/fl) 

mice by real time RT-PCR (n=4). Skin was used as a positive control (PC) and L7 (mouse 

ribosomal protein) as an internal control. Average mRNA expression in fl/fl mice was 

arbitrarily set as 1 and levels in ΔIEC mice as well as the skin represent a ratio.  
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Supplementary Figure 16. DSC2-deficient animals (DSC2ΔIEC) display no 

alteration in the goblet cell amount. Periodic acid-Schiff (PAS) staining with 

subsequent quantification of PAS-positive cells/crypt showed a similar amount of goblet 

cells in colons of DSC2ΔIEC (ΔIEC) and floxed control mice (DSG2fl/fl or fl/fl) (n=4). 

Scale bar = 200 μm. 

 

 

Supplementary Figure 17. Knockout DLD1 cells lacking both desmoglein 2 

(Dsg2) and desmocollin 2 (Dsc2) display a loss of membranous desmoplakin 
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(Dsp) and plakoglobin (PG) staining and exhibit a decreased transepithelial 

electrical resistance (TER). (A, B) The distribution of Dsc2, Dsg2, plakoglobin (PG) 

and desmoplakin (Dsp) in DLD1 wildtype (WT) and knockout cell lines was visualized 

by immunofluorescence. Scale bar = 10 μm. ΔDsg2 ΔDsc2 = knockout of both 

Dsg2/Dsc2, ΔDsg2 ΔDsc2 + FL Dsc2 = Dsg2/Dsc2 knockout + re-introduction of 

full length Dsc2, ΔDsc2 = Dsc2 knockout. (B) Immunoblotting was employed to study 

the impact of desmosomal cadherin loss on desmosomal protein levels. α-tubulin (αTub) 

was used as a loading control. (C) TER values were assessed in DLD1 WT and the 

corresponding knockout cells (n ≥ 10), **p < 0,001, ***p < 0,001 compared to control.
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2.4 Glial cell-line derived neutrotrophic factor (GDNF) regulates 

intestinal barrier function in inflammatory bowel diseases by 

stabilization of desmoglein 2 

__________________________________________________________ 
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Abstract 

Background / Aim 

Breakdown of the intestinal epithelial barrier (IEB) is a hallmark in the pathogenesis of 

inflammatory bowel diseases (IBD). Glial cell line derived neurotrophic factor (GDNF) 

secreted by enteric glial cell promotes IEB function by undefined mechanisms. We 

hypothesized a critical contribution of GDNF on loss of IEB in IBD and investigated 

the underlying mechanism.  

Methods 

Gut specimen of patients suffering from IBD were analyzed. In vitro, conventional cell 

biology methods in Caco2 cells and human intestinal enteroids were applied. In vivo, 

Dextran Sodium Sulfate (DSS) was used to induce colitis in C57Bl6 mice. 

Results 

In intestinal specimen from IBD patients GDNF was significantly reduced in inflamed 

parts of the tissues. This reduction was paralleled by a loss of desmosomal junctional 

protein desmoglein2 (Dsg2), changes of the intermediate filament (IF) system, increased 

phosphorylation of p38 mitogen-activated protein kinase (MAPK) and cytokeratins. In 

Caco2 cells GDNF recruited Dsg2 to the cell borders and augmented Dsg2-mediated 

intercellular adhesion. The specificity of these effects on Dsg2 was proven in Dsg2-

deficient cells that did not respond to GDNF. Incubation of Caco2 cells and enteroids 

with TNFα led to impaired IEB function with reduced Dsg2, which was mediated by 

p38MAPK-dependent phosphorylation of cytokeratins. TNFα-induced changes were 

blocked by GDNF. Similarly, in mice with DSS-colitis loss of Dsg2, breakdown of IEB, 

phosphorylation of p38MAPK and cytokeratins were all attenuated by treatment with 

GDNF. 

Conclusion 

GDNF attenuated inflammation-induced breakdown of IEB caused by p38MAPK-

dependent cytokeratin phosphorylation leading to loss of Dsg2. Reduced GDNF in IBD 

patients indicates a disease-relevant contribution to breakdown of IEB.  
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Introduction 

Inflammatory bowel diseases (IBD) i.e. Crohn’s disease (CD) and ulcerative colitis (UC) 

are caused by a complex interplay between environmental factors, the composition of 

gut microbiota and an inappropriate immune response in genetically predisposed 

individuals (Geremia et al., 2014; Uhlig, 2013). In addition, recent evidence suggests that 

dysregulation of the intestinal epithelial barrier (IEB) plays a major role in the 

development and perpetuation of IBD (Martini et al., 2017).   

Under normal conditions, the IEB is built by a monolayer of polarized enterocytes, 

which are sealed and held together by different junctional proteins such as tight 

junctions, adherens junctions and desmosomes (Farquhar and Palade, 1963b; Luissint et 

al., 2016). Previously it was shown that besides profound changes in tight junction 

integrity, loss of the desmosomal cadherin desmoglein2 (Dsg2) in intestinal epithelium 

plays a critical role in the pathogenesis of barrier dysfunction in patients with CD 

(Vielmuth et al., 2015). Desmosomes in intestinal epithelium consist of the cadherin-

type adhesion molecules desmoglein 2 (Dsg2) and desmocollin 2 (Dsc2), which are 

tethered to the intermediate filament cytoskeleton through specific desmosomal plaque 

proteins. Therefore, desmosomal function is dependent from dynamics in the 

intermediate filament system which is known to be regulated by p38 mitogen-activated 

protein kinase (p38MAPK) (Berkowitz et al., 2005; Kitajima, 2014). The pro-

inflammatory cytokine tumor necrosis factor D (TNFD) which is regarded as the critical 

link between increased intestinal permeability and immune reaction in IBD (Sanders, 

2005) was shown to increase intestinal epithelial permeability by p38MAPK-dependent 

loss of Dsg2-mediated adhesion (Vielmuth et al., 2015).   

It is known that the enteric nervous system (ENS) and factors secreted by enteric glial 

cells are critically involved in the regulation of IEB and therefore may be an 

unappreciated pathogenicity factor in the development of IBD (Neunlist et al., 2003). In 

support of this idea, it was reported that enteric glial cells in specimen of patients 
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suffering from IBD were reduced and experimental studies showed that toxic or 

autoimmune ablation of enteric glial cells lead to loss of the IEB (Bush et al., 1998; 

Cornet et al., 2001). A potential key player that is secreted by enteric glial cells is Glial 

cell-line derived neurotrophic factor (GDNF). Loss of GDNF in experimental models 

leads to morphological and functional abnormalities of IEB similar to those seen in IBD 

patients (Brun et al., 2013; Steinkamp et al., 2003). Furthermore, GDNF shows anti-

inflammatory effects in a murine model of colitis (Zhang et al., 2010a) and was 

previously shown to exert direct effects on enterocytes in vitro which lead to the 

maturation of tight junctions in the IEB by largely unknown mechanisms (Meir et al., 

2015a; Meir et al., 2016). 

Based on this, we tested the hypothesis that GDNF critically regulates Dsg2-dependent 

integrity of the intestinal barrier and is thereby involved in the pathogenesis of barrier 

dysfunction in IBD.  
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Materials and Methods 

Test reagents 

Caco2 cells and human enteroids were treated with 100ng/ml recombinant human 

GDNF (PeproTech, Hamburg, Germany)(Meir et al., 2015a). TNFα (Biomol, Hamburg, 

Germany) was used at 100ng/ml (Vielmuth et al., 2015). The p38MAPK inhibitor 

SB202190 was used at 30µM (Callbiochem, Darmstadt, Germany) and anisomycin 

(Sigma-Aldrich, Munich, Germany) was used at 60 Pmol/l to activate p38MAPK (Meir 

et al., 2015a).  

Human tissue samples 

Human tissue samples derived from patients suffering from IBD with an indication for 

surgical resection. Tissue samples from patients with Crohn’s disease (n= 9) derived 

from the terminal ileum. They were taken from the center of the inflamed parts of the 

resection specimen and from the periphery were no inflammation was seen. During the 

surgical procedure the extent of inflammation in the resection specimen was estimated 

by the surgeon using a semi-quantitative score according to the macroscopic impression 

(+ major inflammation, - minor inflammation). In patients with ulcerative colitis (n= 9) 

a sample of the affected colon was taken. Control tissue samples (colon or terminal 

ileum) from patients not suffering from IBD derived from patients that required right 

or left hemi-colectomy due to colon carcinoma in which the surgical resection routinely 

involves a part of the healthy small intestine or colon, respectively. All patients had given 

their informed consent before surgery, and ethical approval was given by the Ethical 

Board of the University of Würzburg (proposal numbers 113/13, 46/11, 42/16).  

For Western blot analyses, samples of the mucosa and whole gut wall were taken 

immediately after resection from each specimen and then snap frozen in liquid nitrogen 

and processed for Western Blot analyses. A second part of the tissue samples was fixed 

in 4% paraformaldehyde embedded in paraffin, sectioned (1 Pm) and immunostaining 

was performed as described previously(Vielmuth et al., 2015) and in supplementary methods. 
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Cell Culture 

Caco2 cells were acquired from ATCC (Wesel, Germany) and were cultured in Eagle’s 

Minimum Essential Medium (EMEM, ATCC, Wesel, Germany) supplemented with 50 

U/ml Penicillin-G, 50µg Streptomycin and 10% fetal calf serum (FCS, Biochrom, Berlin, 

Germany). Cultures were used for experiments when grown to confluent monolayers. 

For experiments, cells were serum-starved for 24h. 

Generation of CRISPR/Cas9-mediated gene knockout for Dsg2 in Caco2 cells 

Caco2 cells deficient for Dsg2 were generated using the CRISPR/Cas9 technique as 

described in the supplementary methods. 

Enteroids 

IECs were isolated from human whole gut wall resections, 1cm² in size as described in 

the supplementary methods and as described previously (Schweinlin et al., 2016).  

Animal experiments 

After animal care committee approval (Laboratory Animal Care and Use Committee of 

the district of Unterfranken; AZ 2-272), experiments were performed on male 

C57BL/6J mice. Animals were kept under conditions that conformed to the National 

Institutes of Health “Guide for the Care and Use of Laboratory Animals” approved by 

the Government of Unterfranken and Germany as well as for those of the US National 

Institutes of Health. Animals were kept on a standard diet at 12h day-and-night cycles.  

Experimental setup 

We used Dextran Sulfate Sodium (DSS) as a murine model for induction of colitis. 8 

weeks old male mice received 2.5% DSS in autoclaved drinking water ad libitum. Mice 

were monitored daily to document a disease activity index (DAI) for body weight, 

changes of stool consistency and presence of blood in the stool using Haemocult (Care 

diagnostica, Voerde, Germany) as suggested previously using following scoring 

system(Chassaing et al., 2014): Normal stool consistency with negative haemoccult (0); 

soft stools with positive haemoccult (1); very soft stools with traces of blood (2); watery 

stools with visible rectal bleeding (3). Animals were randomized in two groups. GDNF 
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treated animals (n=9) received 5µg/kg bodyweight of GDNF in 100µl 0.9% NaCl 

intraperitoneally, while DSS-alone animals (n = 9) received 100µl 0.9 % NaCl every 24 

hours.  

Measurement of intestinal permeability and tissue harvesting 

After 6 days, the mice were anaesthetized using isoflurane (Forene, Abbott, Wiesbaden, 

Germany). In deep anesthesia, a median laparotomy was performed and the colon was 

mobilized and opened at the ileocaecal valve and at the upper rectum.  

After a flush with warm PBS to remove blood and stool the colon was ligated and 200µl 

of 4kDa FITC dextran (1mg/ml) was injected in the ligated colon to determine intestinal 

permeability by measuring the translocation of 4 kDa FITC dextran in the blood. For 

this, blood from the inferior vena cava was taken after 1h and centrifuged at 13.400 rpm 

for 10 minutes at 4°C. Afterwards the luminescence of the serum was quantified using 

Genios Pro Reader (Tecan, Maennedorf, Switzerland). 

Thereafter mice were sacrificed by exsanguination. The complete colon was harvested 

and Colon length was measured. The ligations of the colon were loosened and afterwards 

the Colon was cut into two pieces. One part was fixed in 4% paraformaldehyde 

embedded in paraffin and sectioned. Two blinded investigators quantified the 

inflammation of the tissue in H.E.-stained sections of the colon using the following 

inflammation score(Erben et al., 2014): Extent of inflammatory cell infiltration (none 

=1, mucosal infiltration =2, submucosal infiltration =3 transmural infiltration =4) and 

severity of epithelial damage (no epithelial damage =1, focal lesions =2, multiple lesions 

=3, extended ulcerations =4), resulting in a total scoring range of 2 –8 per mouse. The 

other half of the colon was lyzed and homogenized with a Tissue Lyzer (Quiagen, 

Hilden, Germany) in a SDS lysis buffer and used for Western Blot analysis and 

quantification of GDNF concentrations using GDNF ELISA (Promega, Mannheim, 

Germany). The GDNF ELISA is described in the supplementary methods. 

Immunocytochemistry 

Immuncytochemistry is described in the supplementary methods in detail.  
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Western Blotting 

Cells, human and animal tissue lysates were prepared and processed for Western Blots 

as described in the supplementary methods. 

Membrane Protein Extraction Assay 

Protein fractionation was carried out using Mem-Per Plus Kit (Thermo Fischer, 

Waltham, MA, USA). Cells were harvested in growth media by scraping them from the 

bottom with a cell scraper. After centrifugation at 300rpm for 5 minutes and washing 

three times, the cells were permeabilized with a permeabilisation buffer to release the 

cytosolic fraction. The cytosolic fraction was separated by centrifugation at 16000rpm 

for 15 minutes. The pellet containing the membrane-associated proteins was then re-

suspended in a solubilisation buffer. The suspension was centrifuged another time at 

16000rpm for 15 minutes to remove particulate material. Then the cytosolic and 

membrane-associated supernatants were used for Western Blot analysis. 

Atomic Force Microscopy (AFM) 

Cells were grown on glass coverslips and treated with GDNF (100ng/ml) 1 day before 

getting confluent or with 4mM EGTA for 30 min after finished control measurements. 

For analysis of Dsg2 interactions on the surface of living cells, a Nanowizard III AFM 

(JPK Instruments, Berlin, Germany) mounted on an optical microscopy (Carl Zeiss, 

Jena, Germany) was used. The approach of AFM force spectroscopy on living cells was 

described in detail before (Vielmuth et al., 2015) and was carried out as described in the 

supplementary methods. 

Dispase-based enterocyte dissociation assays 

As described previously (Vielmuth et al., 2015), confluent cells in 24-well plates were 

exposed to the test reagents as indicated below, washed with Hank’s buffered saline 

solution (HBSS, Sigma-Aldrich, Munich, Germany) and incubated with Dispase-II 

(Sigma-Aldrich, Munich, Germany) for 30 minutes to release the monolayer from the 

well bottom. Afterwards, the cell sheet was exposed to shear stress by pipetting 5 times. 

Four fields of view were photographed with BZ-9000 (BIOREVO, Keyence, Osaka, 

Japan) and numbers were quantified. 
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Measurements of Transepithelial Electrical Resistance (TER) 

To measure transepithelial electrical resistance (TER) we used ECIS trans-Filter Adapter 

for ECIS 1600R across cell monolayers (Applied Biophysics, Ibidi GmBH, Martinsried, 

Germany). Cells were seeded on 24-well transwell chambers and measurement started 

immediately. At confluency of monolayers cells were treated with or without mediators 

as indicated below. 

Statistics 

Statistical analysis was performed using Prism (GraphPad Software, La Jolla, CA, USA). 

Data are presented as means ± SE. Statistical significance was assumed for p<0.05. 

Paired Student's t-test was performed for two-sample group analysis after checking for 

a Gaussian distribution. Analysis of variance (ANOVA) followed by Tukey’s multiple 

comparisons test and Bonferroni correction was used for multiple sample groups. 
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Results  

Reduced GDNF in the terminal ileum and colon of IBD patients is associated 

with loss of barrier function  

Western Blot analyses of specimen from patients suffering from CD or UC showed a 

significant loss of GDNF in full wall lysates when compared to control lysates. This was 

not observed in uninflamed parts of the tissues of CD patients (Figure 1A). Loss of 

GDNF in CD and UC was paralleled by loss of the desmosomal adhesion protein Dsg2 

at the cell borders in immunostaining of inflamed terminal ileum of CD patients (Figure 

1Bc, d) or inflamed colon of UC patients (Figure 1Bk, l) compared to healthy controls 

of the terminal ileum (Figure 1Ba, b) and colon (Figure 1Bi, j) where Dsg2 was regularly 

distributed along the cell borders. The intermediate filament system as revealed by 

cytokeratin 18 staining was profoundly deranged in both CD and UC samples (Figure 

1Bg, h, o, p) when compared to healthy controls (Figure 1Bm, n). Western blot analyses 

showed a significant reduction of Dsg2 in CD and UC samples (Figure 1C). Because 

Dsg2 is known to be regulated by p38MAPK (Ungewiss et al., 2017) and we observed 

alterations of cytokeratins in immunostaining we tested whether phosphorylation of 

these proteins was altered in IBD. In CD and in CU samples phosphorylation of 

p38MAPK as well as phosphorylation of cytokeratins 18 and 8 were significantly 

increased in Western Blot analyses (Figure 1C). The activation of p38MAPK and the 

phosphorylation of cytokeratin appeared to be dependent on the extent of inflammation 

(Suppl. Fig. 1 and 2). 

GDNF effects on IEB are mediated via Dsg2 

These observations in patients led to the hypothesis that GDNF might be critically 

involved in the regulation of Dsg2 and thereby contribute to loss of barrier function in 

IBD. In a first step, the effects of GDNF on Dsg2 were evaluated in Caco2 monolayers. 

Immunostaining showed that application of 100 ng/ml recombinant GDNF in 

confluent monolayers resulted in augmented staining patterns of Dsg2 at the cell borders 

(Figure 2A). While GDNF application did not increase total protein levels of Dsg2 

(Figure 2B), triton extraction assays showed Dsg2 to be significantly increased in the 
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insoluble fraction which is considered to contain cytoskeleton-bound proteins following 

GDNF treatment (Figure 2C).  

To explore the functional effect of GDNF on Dsg2 binding properties and distribution 

on the cell surface atomic force microscopy (AFM) was applied on living enterocytes 

similar to recent studies (Schinner et al., 2017; Ungewiss et al., 2017; Vielmuth et al., 

2015). Imaging of the cell surface topography revealed a microvillus covered surface 

typical for polarized Caco2 cells and elevated cell-cell borders which allowed specific 

measurements at these areas (Fig. 2D). To examine Dsg2 binding properties, adhesion 

measurements with a Dsg2-coated tip of a flexible AFM cantilever on living cells were 

performed. For this purpose, 2 cell-cell border containing areas were selected for each 

condition with 1000 recorded force-distance curves for each area. To ensure 

comparability between different conditions, measurements under control conditions and 

on cells incubated with GDNF or EGTA were always performed with the same AFM 

cantilever. Under control conditions, binding events were detected with an unbinding 

force of around 29 pN as revealed by peakfit analysis (Fig. 2E) which resembles the 

values of previously measured Dsg2 specific unbinding forces on the surface of living 

enterocytes (Ungewiss et al., 2017). Application of GDNF significantly increased the 

amount of measured binding events by around 50 % (Fig. 2F, G). Additionally, EGTA 

was applied to demonstrate specificity of measured binding events as Ca2+ depletion 

disrupts Ca2+--dependent cadherin binding. After 30 min of EGTA-mediated Ca2+ 

depletion, binding frequency was significantly reduced by around 40 % compared to 

control conditions (Fig. 2G). Since measured binding events after incubation with 

GDNF appeared to be more prominent at cell-cell borders (Fig. 2F), it was examined 

next whether the localization of Dsg2 specific binding events was altered compared to 

control conditions. Therefore, a distribution ratio defined as the percentage of measured 

binding events along the cell borders (cb) versus measured binding events on the cell 

surface was calculated (cs) (Fig. 2H). Indeed, the distribution ratio was significantly 

increased after incubation with GDNF.  Together, these data indicate that application 

of GDNF either results in a redistribution of existing Dsg2-specific interactions or 

promotes the emergence of new Dsg2-specific interactions along the cell borders. 
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To verify that effects of GDNF on the IEB were primarily mediated by its effects on 

Dsg2 a Dsg2-deficient Caco2 (Dsg2 (-/-)) cell line was generated using the 

CRISPR/CAS9 technique (Figure 2I). In Caco2 cells transfected with nonsense vectors 

application of 100 ng/ml recombinant GDNF led to increased TER values of 1.5-fold 

compared to untreated controls (Figure 2J). In Dsg2 (-/-) Caco2 cells application GDNF 

did not show any effect on TER (Figure 2K) which confirmed that GDNF effects were 

dependent on Dsg2.  

TNFD-induced cytokeratin retraction and loss of Dsg2 are blocked by GDNF 

TNFD was used to mimic inflammation-induced alterations in differentiated Caco2 

monolayers. Application of TNFD induced a significant reduction of TER to 0.73r0.05-

fold of baseline values after 8h (Figure 3A). Combined treatment of monolayers with 

TNFD and GDNF completely blocked TNFD-induced loss of TER. Following 

application of GDNF Dsg2 was significantly reduced in triton extraction assays in the 

insoluble fraction i.e. in the cytoskeleton-bound fraction compared to controls. 

Combined treatment of cells with TNFD and GDNF inhibited loss of Dsg2 in the triton-

insoluble fraction (Figure 3B; Suppl. Figure 3A). This observation was confirmed in 

immunostaining when Dsg2 which was regularly distributed at the cell borders in 

differentiated Caco2 cells (Figure 3Ca, arrows) and in enteroids (Figure 3Da, arrows) 

under control conditions was reduced after application of TNFD (Figure 3Cc and 3Dc). 

The loss of Dsg2 from the cell borders was attenuated by simultaneous application of 

TNFD and GDNF in Caco2 monolayers (Figure 3Ce, arrows) and in enteroids (Figure 

3De, arrows).  

Intermediate filaments visualized by cytokeratin18 immunostaining were present as a 

keratinring in the cell periphery under control conditions (Figure 3Cd, arrows). 

Application of TNFD led to a significant retraction of the intermediate filament ring 

(Figure 3Cd, arrows) which was diminished after combined treatment of cells with 

TNFD and GDNF (Figure 3Cf). The visual impression of changes within the 

intermediate filament system were quantified und thereby confirmed by measurements 



150  Under revision in J Clin Invest 
 

of fluorescence intensity at the cell borders and distance of retraction of the keratinring 

from the cell borders (Suppl. Figure 3B, C).  

In human intestinal enteroids, comparable observations were made for cytokeratin18: 

The keratinring was present in the cell periphery under control conditions (Figure 3Dd) 

and was profoundly deranged after TNFD application (Figure 3Dd). Following 

application of TNFD and GDNF attenuated TNFD-induced changes of intermediate 

filaments (Figure 3Df). 

In dispase-based enterocyte dissociation assays incubation of differentiated Caco2 

(Caco2 Dsg2 (+/+)) cells with TNFD led to a significantly increased number of cell 

fragments which was completely blocked by simultaneous application of TNFD and 

GDNF (Figure 3E). In Caco2 Dsg2 (-/-) we found increased cell dissociation compared 

to Caco2 Dsg2 (+/+) under basal conditions which was significantly augmented after 

application of TNFD. However, in the absence of Dsg2 increased cell dissociation was 

not blocked by application of GDNF (Figure 3F). Application of GDNF alone had no 

effect on basal cell dissociation in both cell lines. 

Inflammation-induced effects on Dsg2 are mediated by activation of p38MAPK 

and phosphorylation of cytokeratin18 

Given the alternating activation or inactivation of p38MAPK by TNFD and GDNF, we 

hypothesized that epithelial barrier protection by GDNF is mediated by affecting 

p38MAPK followed by modulation of the intermediate filament system. Accordingly, 

phosphorylation of p38MAPK was significantly increased following incubation with 

TNFD in Caco2 cells and in enteroids (Figure 4A, B). Simultaneous application of TNFD 

and GDNF significantly attenuated phosphorylation of p38MAPK while GDNF alone 

did not alter phosphorylation of p38MAPK significantly below baseline levels (Figure 

4A, B, suppl. Figure 4A, B).  

Because a correlation of phosphorylated cytokeratins with intestinal barrier function was 

suggested previously (Majumdar et al., 2012) phosphorylation of cytokeratins 18 and 8 

were analyzed following treatment with TNFD or TNFD and GDNF, respectively. In 
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both, Caco2 cells and in enteroids application of TNFD resulted in significantly 

augmented phosphorylation of cytokeratin 18 at serin52 and cytokeratin 8 at serin74 in 

Caco2 cells and in enteroids (Figure 4A, B, suppl. Figure 4B, C, D). In contrast, no 

changes of phosphorylation patterns were detected for cytokeratin 18 at serin33 (suppl. 

Figure 5C, D). Application of TNFD together with GDNF blocked phosphorylation of 

both cytokeratin 18 and cytokeratin 8 (Figure 4A, B, suppl. Figure 4B, C, D).  

Further experiments showed that increased phosphorylation of cytokeratin 18 and 8 by 

TNFD was inhibited by simultaneous treatment of cells with p38MAPK inhibitor 

SB202190. Application of SB202190 alone resulted in reduced phosphorylation of 

cytokeratin 18 and 8 below control levels (Figure 4C; suppl. Figure 5A, B). Vice versa, 

activation of p38MAPK by incubating Caco2 cells with anisomycin (Vielmuth et al., 

2015) resulted in significantly increased phosphorylation of cytokeratin 18 and 8. These 

experiments demonstrated that cytokeratin phosphorylation in intestinal epithelial cells 

is mediated by activation of p38MAPK. 

In immunostaining of Caco2 monolayers application of TNFD and SB202190 blocked 

TNFD-induced loss of Dsg2 at the cell borders (Figure 4Dc, e) and cytokeratin retraction 

as revealed by cytokeratin 18 immunostaining was not detectable any more (Figure 4Dd, 

f). While treatment of cells with SB2021090 alone did not induce visible alterations of 

Dsg2 and cytokeratin staining (Figure 4Dg, h), application of anisomycin to activate 

p38MAPK showed a strong increase in phosphorylation of both cytokeratins 18 and 8 

which resulted in loss of Dsg2 at the cell borders in immunostaining and cytokeratin 

retraction, comparable to the effects observed after TNFD treatment (Figure 4Di, j). 

GDNF attenuates loss of IEB and inflammation in DSS-colitis 

To determine the effects of GDNF on IEB in an in vivo model of intestinal inflammation 

we induced acute colonic injury with 2.5% DSS in mice. C57Bl6 mice (n=18) received 

2.5% DSS in autoclaved drinking water ad libitum, while control mice received normal 

drinking water. The DSS mice were divided into two groups. One group (n=9) was 

treated daily with 5µg/kg bodyweight of GDNF in 100µl 0.9% NaCl intraperitoneally 

(DSS + GDNF) whereas the other group received 100µl of 0.9% NaCl (DSS). The 
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effective administration of GDNF had been verified in preliminary experiments in 

ELISA-based measurements of GDNF serum concentrations and in tissue lysates of the 

colon (suppl. Figure 6A, B). 

Following DSS application, a significant increase to 2.11±0.26 of the DAI was obvious 

after 5 days (Figure 5A). This was attenuated in the DSS+GDNF group where DAI was 

significantly lower at 1.22±0.15. Measurements of colon length was 70.05± 1.48mm in 

the control group. Due to DSS-induced inflammation the colon length was significantly 

reduced to 49.11± 0.84mm (suppl. Figure 6D). GDNF application in the DSS+GDNF 

group led to a significantly less reduction of colon length to 55.1±1.7mm. Intestinal 

permeability as revealed by measurements of 4 kDa FITC-dextran flux across the IEB 

was significantly increased to 9.9± 1.3-fold of controls (Figure 5B). Treatment of animals 

with GDNF (DSS+GDNF) significantly attenuated inflammation-induced loss of the 

intestinal barrier.  

Histological analyses of H.E.-staining revealed an acute inflammation of the colon 

following DSS administration with an inflammation score of 6.7± 0.8 (Figure 5Ca-c, D). 

Treatment of animals with GDNF resulted in a visible reduction of inflammation in 

H.E.-staining (Figure 5Cc) which was reflected by a significant reduction of the 

inflammation score (Figure 5D). Comparable to observation made in patients with IEB, 

in Caco2 monolayers and in enteroids immunostaining of animals with DSS-colitis 

showed significant loss of Dsg2 at the cell borders which was attenuated by treatment 

of DSS animals with GDNF (Figure 5Cd-f suppl. Figure 6 E). Similarly, deranged 

organization patterns of cytokeratin 18, which was observed in DSS animals were 

blunted by treatment of animals with GDNF (Figure 5Cg-i). In Western Blot analyses 

phosphorylation of p38MAPK and cytokeratin18 was significantly increased in DSS-

colitis, which was both attenuated by treatment with GDNF (Figure 5E, suppl. Figure 6 

F). 
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Discussion 

In the present study, we show a novel mechanism which contributes to the loss of IEB 

in patients with IBD: The neurotrophic factor GDNF was reduced in samples from IBD 

patients, which correlated with loss of Dsg2 and alterations of the intermediate filament 

system. In vitro experiments in Caco2 cells showed that GDNF acts via stabilization of 

desmosomal protein Dsg2, which was proven by the fact that Caco2 cells deficient for 

Dsg2 showed no response when stimulated by GDNF. In Caco2 cells and in human 

enteroids GDNF was effective to protect against inflammation-induced loss of Dsg2 

and breakdown of intestinal barrier function as revealed by measurements of TER, 

immunostaining and dispase-based enterocyte dissociation assays. Inflammation-

induced loss of IEB by application of TNFD was mediated by activation i.e. 

phosphorylation of p38MAPK which then augmented phosphorylation of cytokeratins 

8 and 18 and consecutively reduced Dsg2 at the cell borders, which is a newly 

characterized mechanism in this context. Protective effects of GDNF on IEB were 

mediated by inhibiting TNFD-induced phosphorylation of p38MAPK and cytokeratins. 

The relevance of this mechanism in vivo was confirmed in a murine model of DSS-

induced colitis where we observed increased phosphorylation of p38MAPK and 

cytokeratins followed by loss of Dsg2. Breakdown of IEB in DSS-colitis was 

demonstrated by increased flux of 4 kDa FITC dextran across the intestinal barrier. All 

inflammation-induced effects were attenuated by therapeutic administration of 

recombinant GDNF. Finally, the strong correlation of all these findings i.e. loss of 

GDNF and Dsg2, increased phosphorylation of p38MAPK and cytokeratins in samples 

from patients with CD and UC point to a disease-relevant role and mechanism of 

GDNF-dependent effects in IBD.  

Loss of GDNF in IBD contributes to inflammation-induced breakdown of the 

IBD 

Our present data clearly show that GDNF was significantly reduced in Western blot 

analyses in samples from patients with CD and UC. In a previous study, which 

investigated endoscopically collected colon samples from patients with IBD, GDNF was 

found to be significantly increased in immunostaining (von Boyen et al., 2011). Given 
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that patients in the latter study and in our study both displayed severe inflammation this 

difference of GDNF levels can hardly be explained by different stages of the diseases in 

the two studies. Rather, the fact that in the latter study endoscopic samples which usually 

comprise very small sections including only parts of the gut wall were analyzed whereas 

in our study larger samples of the whole gut wall that derived from surgical resection 

were analyzed it can be assumed that specimen in our study led to more representative 

results.  

Since uninflamed parts of the terminal ileum of patients with CD showed no reduction 

of GDNF compared to healthy controls argues against a primary loss of GDNF in the 

context of IBD at a first glance. However, it can be speculated that there may be 

increased susceptibility of enteric glial cells leading to alterations of GDNF secretion. 

This is supported by previous data from biopsies of patients with IBD and animal 

models of IBD consistently suggested a role of inflammatory effects on the ENS in the 

generation of symptoms associated with IBD (Lakhan and Kirchgessner, 2010). The 

significant role for enteric glial cells and especially GDNF in the context of inflammatory 

response was pointed out by a study in which TLR2-deficient mice displayed disturbed 

architecture of the ENS, which resulted in reduced GDNF expression and caused 

breakdown of the IEB (Brun et al., 2013). In the latter study, application of GDNF led 

to reconstitution of the ENS but potentially direct effects of GDNF on enterocytes 

remained unexplored (Brun et al., 2013). In contrast to these observations recent studies 

demonstrated that enteric glial cells are not required for maintenance of the epithelium 

in mice (Rao et al., 2017) and do not acutely effect gut permeability (Grubisic and 

Gulbransen, 2017). While this is still under discussion, it must be considered that in 

addition to alterations of enteric glial cells in IBD smooth muscle cells in the gut wall 

and even enterocytes represent an additional source of GDNF which both may be 

critically involved in the regulation of intestinal GDNF levels in health and disease (Brun 

et al., 2015; Meir et al., 2015a). This idea conforms to the observation of Steinkamp et 

al., which observed an increase of solely epithelial GDNF in immunostaining in 

specimen of patients with IBD and proposed that increased epithelial GDNF may be a 

rescue mechanism following inflammation (Steinkamp et al., 2003).  
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GDNF attenuated all inflammation-induced effects in intestinal epithelial cells 

Previous studies suggested that IEB is stabilized by GDNF indirectly by inducing anti-

apoptotic effects on colonic enterocytes and immunomodulation (Langness et al., 2017; 

Reinshagen et al., 2000; Steinkamp et al., 2003; Zhang et al., 2010a). According to our in 

vitro data in Caco2 cells and in human enteroids application of GDNF resulted in direct 

effects on enterocytes, which prevented inflammation-induced loss of IEB. In previous 

studies, we and other groups confirmed the presence of GDNF receptors and 

responsiveness to GDNF in enterocytes (Meir et al., 2015a; Steinkamp et al., 2003). For 

the first time, we provide evidence that GDNF effects are primarily mediated by 

strengthening Dsg2 function, which was shown by the fact that Dsg2-deficient cells 

showed no response to GDNF. The effects on Dsg2 by GDNF were substantiated by 

immunostaining, triton-extraction and AFM where application of GDNF resulted in 

increased Dsg2 at cell borders and augmented Dsg2-mediated adhesion. Furthermore 

inflammation-induced loss of Dsg2 at the cell borders was restored by GDNF in vivo and 

in vitro while increased cell-cell adhesion was observed in dispase-based enterocyte 

dissociation assays. Again, in Dsg2-deficient Caco2 cells GDNF was not effective to 

restore TNFD-induced loss of cell-cell adhesion underlining the importance of Dsg2 in 

this context. In summary, all these data not only show a novel target of GDNF-induced 

effects in enterocytes but also support the growing evidence for the importance of 

desmosomal integrity to maintain the IEB in health and disease (Jiang et al., 2014; 

Kamekura et al., 2014; Kamekura et al., 2015; Schlegel et al., 2010; Vielmuth et al., 2015). 

p38MAPK-dependent phosphorylation of intermediate filaments induces loss of 

IEB in inflammation 

Regulation of desmosomal adhesion has been extensively investigated in the context of 

the skin blistering disease pemphigus in keratinocytes where autoantibody-induced loss 

of desmoglein3 (Dsg3)-mediated adhesion results in activation of p38MAPK and keratin 

filament reorganization (Berkowitz et al., 2005; Kitajima, 2014). Additionally, it was 

recently shown that adhesive forces of Dsg3 in keratinocytes are mediated by keratin-

dependent regulation of p38MAPK (Vielmuth et al., 2017). Our present data 

demonstrate that p38MAPK was phosphorylated in both CU and in CD, which 



156  Under revision in J Clin Invest 
 

correlated with loss of Dsg2. While our own study detected loss of Dsg2 in CD in our 

previous study (Vielmuth et al., 2015) this was not described for patients with CU before. 

The barrier destabilizing effect of phosphorylated p38MAPK by TNFα in intestinal 

epithelium is also supported by our previous study in which inflammatory stimuli 

induced strong activation of p38MAPK followed by loss of Dsg2-mediated adhesion 

(Vielmuth et al., 2015), so that p38MAPK activation appears to be detrimental for 

intestinal barrier integrity. On the other hand, it was reported that a proper balance of 

p38MAPK activation is important since activation of p38MAPK was also required for 

barrier recovery following Ca2+-depletion in a cell culture model of enterocytes 

(Ungewiss et al., 2017). It must be considered however that in the latter study Dsg2-

mediated adhesion was directly targeted by Ca2+ depletion or antibodies directed against 

the extracellular domain of Dsg2 (Ungewiss et al., 2017). In contrast, in the present study 

a cytokine stimulus i.e. TNFD via its receptor led to activation of p38MAPK, which 

obviously resulted in barrier-compromising effects. Therefore, the role of p38MAPK in 

intestinal barrier regulation may differ depending on the type of activation. 

Following p38MAKP activation we observed the phenomenon of keratin retraction as 

has amply been described in keratinocytes after stimulation with pemphigus 

autoantibodies directed against Dsg3 which then led to internalization of Dsg3 (Calkins 

et al., 2006). In the context of inflammatory bowel diseases, it was recognized earlier that 

patients with CD or UC have missense mutations in keratin 8 (Owens et al., 2004) which 

led to the assumption that his may lead to augmented susceptibility in intestinal 

epithelium. In support of this it was shown that interleukin6-dependent expression of 

keratin 8 protected the intestinal barrier from inflammatory stimuli (Wang et al., 2007). 

Cytokeratin8 phosphorylation at Ser74 has previously been identified as a substrate for 

phosphorylation by p38MAPK and it was observed that under certain conditions of 

inflammation increased keratin 8 phosphorylation occurs which was linked to increased 

susceptibility of the IEB by unknown mechanisms (Majumdar et al., 2012). This 

hypothesis is now substantiated by our present data where cytokeratin 8 and 18 

phosphorylation is indeed critically involved in the process IEB regulation most likely 

by affecting desmosomal integrity. In general, it is known that phosphorylation of 

keratins changes the distribution of keratins in the cell, alters its polymerization behavior, 
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and is associated with keratin granule formation (Fois et al., 2013; Magin et al., 2007). 

Moreover, it was shown in keratinocytes that keratins control intercellular desmosomal 

adhesion since desmosomes that lack the tethering to intermediate filaments by adapter 

proteins undergo a more rapid endocytosis with consecutive loss of intercellular 

adhesion (Kroger et al., 2013). A comparable mechanism can be assumed in our present 

data in enterocytes since phosphorylation of keratins led to retraction of the peripheral 

keratinring. This may reduce tethering of Dsg2 to the intermediate filaments with 

consecutive loss of desmosomal adhesion and intestinal barrier function. 

In summary, inflammation-induced cytokeratin phosphorylation by activation of 

p38MAPK which led to loss of Dsg2 as shown here in vitro, in vivo and in patients’ 

samples suffering from IBD points to a novel and important pathomechanism for 

barrier dysregulation in CD and UC. GDNF-induced inhibition of this pathway as 

outlined above rises not only a novel view for its role in the pathogenesis of barrier 

dysregulation in IBD but also implies an interesting potential for novel therapeutic 

options.  
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Figure 1: Reduction of GDNF correlated with loss of Dsg2, activation of 

p38MAPK and alteration of intermediate filaments in patients with IBD  

A In Western Blot analyses resection specimen from patients with Crohn’s Disease (CD) 

(n= 9) and ulcerative colitis (n= 9) were analyzed for GDNF levels. In inflamed parts of 

the terminal ileum of CD patients (left) and colon from CU patients, (right) GDNF was 

significantly reduced. B Immunostaining was performed for Dsg2 (a-d, i-l) or cytokeratin 

18 (e-h, m-p) from resection specimen of patients with CD from the terminal ileum (a-

h) or patients with CU (from the colon (i-p). In controls of the terminal ileum (a, b) or 

the colon (i,j) Dsg2 is regularly distributed along the cell borders and cytokeratin18 

staining shows a regular peripheral intermediate filament ring under control conditions 

(e,f, m,n). Patients with CD (c,d) and CU (k, l) showed loss of Dsg2 at the cell borders 

which was paralleled by a profoundly deranged cytokeratin18 staining pattern (g,h, o, p). 

Scale bar is 20 µm. C In Western Blot analyses of CD and UC samples significant loss 

of Dsg2, augmented phosphorylation of p38MAPK, cytokeratin18 and cytokeratin8 

were found. Western Blots are representative for n= 9 patients for each group. OD= 

optical density values normalized to β-actin or to total p38MAPK, cytokeratin18 or 8 are 

indicated below the Western Blots, * p<0.05 compared to control, # p<0.05 compared 

to uninflamed tissue. 
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Figure 2: GDNF stabilizes the intestinal barrier via Dsg2 

A Immunostaining of Caco2 monolayers at confluence showed faint Dsg2 staining 

patterns (a) at the cell borders which was augmented by application of 100 ng/ml GDNF 

for 24h (b). Images shown are representative for n>5 experiments. B In Western Blot 

analyses application of GDNF did not result in significantly increased protein amounts; 

OD= optical density values normalized to β-actin; representative for n>5 experiments. 

C In triton extraction experiments GDNF led to augmented Dsg2 in the triton-insoluble 

fraction; representative for n>5 experiments. D AFM measurements were performed 

on living Caco2 cells at 37°C. Cell topography images were created for selection of 

specific areas at cell borders (left panel). Force measurements with a Dsg2 coated AFM 

cantilever revealed binding events on the surface of Caco2 cells with each white dot 

representing one binding event (right panel).  E Analysis of measured Dsg2-specific 

unbinding forces resulted in a distribution-peak of 29,3 pN.  F Cell topography of Caco2 

cells was imaged after incubation with GDNF (left panel). Force maps of Dsg2 adhesion 

measurements display more binding events along the cell border (right panel) after 

application of GDNF.  G Quantification of measured binding events points out a 

significantly increased binding frequency after application of GDNF and a significantly 

decreased binding frequency after EGTA mediated Ca2+ depletion (means ± SEM, n = 

6 for GDNF, n = 3 for EGTA; * p < 0.05).  H Distribution ratio of Dsg2-specific 

binding events was calculated as the quotient of measured binding events along the cell 

border (cb) and measured binding events on the surrounding cell surface (cs) (shown are 

means ± SE, n= 6, * p < 0.05). I Western Blot analyses for Dsg2 is shown to 

demonstrate the effective knock-out of Dsg2 in the Caco2 Dsg2 (-/-) cell line in 

comparison to Caco2wt (control) and Caco2 cells transfected with nonsense plasmids; 

OD= optical density values normalized to β-actin; representative for n>5 experiments. 

J, K TER measurements of Caco2 Dsg2 (+/+) cells transfected with nonsense plasmids 

(J) and Caco2 Dsg2 (-/-) following application of 100 ng/ml GDNF are shown. While 

in of Caco2 Dsg2 (+/+) GDNF application resulted in a significant increase of TER 

values no effect on TER was observed in Caco2 Dsg2 (-/-); n=6 experiments for each 

condition; *p<0.05. 
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Figure3: GDNF attenuated all inflammation-induced effects in Caco2 cells and 

in human enteroids 

A In TER measurements application of TNFα resulted in significant reduction of TER 

which was attenuated by simultaneous application of GDNF; n=6 experiments for each 

condition; *p<0.05 compared to control. B In triton extraction experiments TNFα led 

to a reduction of Dsg2 in the triton-insoluble fraction. Simultaneous application of 

GDNF blocked TNFα-induced loss of Dsg2 and application of GDNF alone 

augmented Dsg2 in the triton-insoluble fraction; representative for n>5 experiments; 

OD= optical density values normalized to β-actin; representative for n>5 experiments, 

p<0.05 compared to control. C, D Immunostaining was performed in Caco2 cells (C) 

and in human enteroids for Dsg2 (Ca,c,e, Da, c, e) and for cytokeratin18 (Cb, f, h, Db, 

f, h). Under control conditions Dsg2 and cytokeratin 18 were both found regularly at the 

cell borders (arrowheads) in Caco2 (C) and in enteroids (D). TNFα induced loss of Dsg2 

at the cell borders (arrowheads) in Caco2 (Cc) and in enteroids (Dc) which was blocked 

by simultaneous application of GDNF (arrowhead in Ce, De). TNFα led to retraction 

of the cytokeratin ring from the cell borders in Caco2 cells (arrowheads Cd) which was 

attenuated by GDNF (Cf). In enteroids, cytokeratin18 architecture was profoundly 

deranged following TNFα (arrowhead Dd) which was blocked by simultaneous 

application of GDNF (arrowhead Df). Images are representatives; for n>6 experiments; 

scale bar is 20 µm. E, F Dispase-based enterocyte dissociation assays were performed in 

Caco2 Dsg2 (+/+) (E) transfected with nonsense plasmids or Caco2 Dsg2 (-/-) (F), 

respectively. Application of TNFα to Caco2 Dsg2 (+/+) cells (E) resulted in a 

significantly increased number of fragments which was blocked when cells were treated 

with GDNF. No effect was observed when cells were treated with GDNF alone. In 

Caco2 Dsg2 (-/-) (E) an increased number of fragments compared to Dsg2 (+/+) was 

observed under baseline conditions which was further increased following incubation 

with TNFα. Co-incubation with GDNF and GDNF had no influence on the number of 

fragments. n>6 individual experiments. 
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Figure 4: TNFα-induced cytokeratin phosphorylation is p38MAPK-dependent 

A, B, C Western Blot analyses were performed in Caco2 cells (A, C) and in enteroids 

(B). Following application of TNFα phosphorylation of p38MAPK, cytokeratin18 and 

8 were significantly increased. Co-incubation of GDNF blocked TNFα-induced 

phosphorylation in Caco2 and in enterocytes while application of GDNF alone did not 

change phosphorylation compared to controls. Inhibition of p38MAPK using SB202190 

attenuated TNFα-induced phosphorylation of cytokeratin 18 and 8 whereas activation 

of p38MAPK using anisomycin augmented phosphorylation of both cytokeratin above 

control levels. OD= optical density values normalized to loading controls; representative 

for n>5 experiments, *p<0.05 compared to control; # p<0.05 compared to TNFα. 

D Immunostaining of Dsg2 (a,c,e,g,i) and cytokeratin 18 (b, d, f, h, i) were performed in 

Cacp2 monolayers. Application of TNFα resulted in loss of Dsg2 at the cell borders (c) 

and induced cytokeratin retraction (d). This was blocked by co-incubation of TNFα with 

SB202190 when Dsg2 (e) was regularly distributed at cell borders and cytokeratin 

retraction was blunted (f). SB202190 (g,h) alone did not show changes when compared 

to controls (a, b)  whereas anisomycin induced loss of Dsg2 at the cell borders (i) and 

cytokeratin retraction (j). Experiments shown are representative for n>6; scale bar is 20 

µm. 
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Figure 5 GDNF stabilizes intestinal barrier function in DSS-colitis 

A Disease activity index (DAI) for DSS animals is shown. Application of GDNF led to 

significant reduction of DAI; *p< 0.05 compared to DSS alone B Intestinal permeability 

was measured by translocation of 4kDa FITC-dextran from the intestinal lumen into the 

blood. In DSS-colitis intestinal permeability was significantly increased which was 

attenuated by treatment with GDNF. C H.E. staining of representative images of colon 

sections from mice are shown for controls (a), DSS-colitis (b) and DSS colitis with 

GDNF treatment (c). Inflammation was reduced by GDNF treatment. Immunostaining 

of Dsg2 (d-f) showed reduced Dsg2 at the cell borders in DSS-colitis (e) which was 

restored following application of GDNF (f). Immunostaining for cytokeratin18 (g-i) was 

deranged in DSS-colitis which was not observed after treatment of GDNF (i). Scale bar 

is 20 µm.  D Inflammation score was evaluated in H.E. staining. In DSS-colitis 

inflammation score was significantly increased above control values. Treatment with 

GDNF resulted in significantly reduced inflammation scores. E Western Blots from 

colon tissue lysates of animals are shown. Dsg2 reduction in DSS-colitis was blocked by 

application of GDNF. Augmented phosphorylation of p38MAPK, cytokeratin18 and 

cytokeratin8 in DSS-colitis was attenuated by treatment with GDNF.  OD= optical 

density values normalized to loading controls; representative for n>5 experiments, 

*p<0.05 compared to control; # p<0.05 compared to DSS. 
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Supplemental Figure 1 

A Western blot analyses of resection specimen of patients suffering from Crohn’s disease 

showed a significant loss of Dsg2, an augmented phosphorylation of p38 MAPK, 

cytokeratin 18 at Serin 52 and cytokeratin 8 at Serin 74 in the inflamed parts of the tissue. 

These changes were not seen in the uninflamed resection margins. (- uninflamed; + 

inflamed). B Analysis of Dsg2 protein levels, through measurements of the optical 

density of western blots, demonstrated a reduction of Dsg2 in the inflamed parts of the 

specimen to 0.33± 0.10 (equates 0.21± 0.05 of controls) compared to 1.91± 0.56 in 

control specimen. In the uninflamed resection, margins of the specimen no changes 

compared to controls were observed when OD was 0.66 ± 0.22. (OD = optical density, 

n=9) C Quantification of the optical density resulted in a significant increase of 

phosphorylation of p38 MAPK to 2.37± 0.42 (-fold of controls) in the inflamed areas 

of the tissue that was not seen in the non-inflamed specimen when OD was 0.76± 0.22 

(OD = optical density, n=9).  D In inflamed tissue phosphorylation of cytokeratin 18 at 

Serin 52 was increased to 1.92± 0.15 compared to 1.29± 0.36 in the non-inflamed tissue 

(OD = optical density, n=9). E Increased phosphorylation of cytokeratin 8 at Serin 74 

was observed dependent in inflamed tissue specimen (OD = optical density, n=9). 
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Supplemental Figure 2 

A Western blot analyses of resection specimen of patients suffering from ulcerative 

colitis revealed a significant loss of Dsg2, an increased phosphorylation of p38 MAPK, 

cytokeratin 18 at Serin 52 and cytokeratin 8 at Serin 74 compared to non-inflamed colon 

of control specimen. B Statistic analysis of optical density of Dsg2 demonstrated a 

significant reduction of Dsg2 in inflamed colon specimen of patients suffering from 

ulcerative colitis (OD = optical density, n=9) C- E The loss of desmoglein2 in specimen 

of ulcerative colitis was paralleled by an increase in phosphorylation of p38MAPK, 

cytokeratin18 at Serin52 and cytokeratin 8 at Serin74 as shown by an augmented optical 

density of western blots (OD = optical density, n=9). 
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Supplemental Figure 3 

A Quantification of the optical densities of Dsg2 western blot signaling in Caco2 cells 

after Triton assay are shown. TNFα led to a reduced signal in the triton-insoluble 

fraction. In contrast incubation with GDNF increased the intensity of Dsg2 in the triton-

insoluble fraction and blocked the effects of TNFα (OD = optical density, n=5). B 

Analyses of the cytokeratin immunostaining revealed a shift of the intensity peak away 

from the cell border after incubation with TNFα. Co-incubation with GDNF attenuated 

the effect of TNFα (n = 6). C The distance of keratin retraction is shown. The distance 

between the highest intensities and the cell borders was determined. TNFα increased the 

keratin retraction to 43.52± 4.48 pixel compared to 9.84± 1.14 after co-incubation of 

TNFα with GDNF (n=6) 

  



Under revision in J Clin Invest  177 

 

 

 

 

 

 



178  Under revision in J Clin Invest 
 

Supplemental Figure 4 

A, C, E Measurements of the western blot intensity after application of TNFα and 

GDNF in Caco2 cells demonstrate that TNFα showed increased phosphorylation of 

p38MAPK, cytokeratin18 at Serin 52 and cytokeratin 8 at Serin 74. This was attenuated 

following co-incubation of TNFα with GDNF, where phosphorylation patterns were 

comparable to control levels (OD = optical density, n=6). B, D, F TNFα enhanced 

phosphorylation of p38MAPK and cytokeratin 18 at Serin 52 in human enteroids, which 

was not that strong for cytokeratin 8 at serin 74. Application of GDNF reduced this 

effect of TNFα-induced phosphorylation (OD = optical density, n=6). 
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Supplemental Figure 5 

A Phosphorylation of cytokeratin 18 at Serin 52 was altered following modulation with 

p38MAPK inhibitor SB202190 and p38MAPK activator anisomycin. Anisomycin led to 

a significant increase in phosphorylation, while Sb202190 attenuated phosphorylation of 

cytokeratin 18 at Serin 52 (OD = optical density, n=6). B Anisomycin increased 

phosphorylation of cytokeratin 8 at Serin 74 and vice versa Sb202190 reduced this 

phosphorylation (OD = optical density, n=6). C In contrast, TNFα and GDNF did not 

influence the phosphorylation of cytokeratin 18 at Serin 33 (OD = optical density, n=4). 
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Supplemental Figure 6 

A The concentration of GDNF in murine lysates of the colon was determined with a 

GDNF ELISA. The application of 100µg GDNF intraperitoneally led to a significant 

increase of GDNF after 24h (n=4). B In murine serum concentration of GDNF 

increased after 1h following the intraperitoneal injection of 100µg GDNF (n=4). C 

Dextran Sodium Sulfate in the drinking water of the mice led to a significant reduction 

of their bodyweight compared to controls. Intraperitoneal application of 100µg GDNF 

did not block this effect of Dextran Sodium Sulfate (n=9). D The colon of the mice was 

significantly shortened following the application of Dextran Sodium Sulfate in mice. 

Intraperitoneal injection of GDNF for 6 days attenuated this effect on the colon length 

(n=9). E Western blots of murine colon lysates showed a significant increase of the 

signal of Dsg2 in the Dextran Sodium Sulfate mice that were treated with GDNF 

compared to the Dextran Sodium Sulfate alone group (n=6). F Quantification of the 

phosphorylation of p38MAPK is shown. In SDD animals phosphorylation of 

p38MAPK was significantly increased which was blocked by treatment with GDNF 

(OD = optical density, n=6). 
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Supplementary Methods 

Generation of CRISPR/Cas9-mediated gene knockout for Dsg2 in Caco2 cells 

sgRNA for SpCas9-mediated genome editing were designed using the Chopchop-web 

based sgRNA design tool (Labun et al., 2016). Two oligos targeting exon 3 and exon 13 

of human Dsg2 were designed and subcloned into two lentiviral vectors; sgRNA 

targeting exon 3 into pLentiCRISPR v2 (was a gift from Feng Zhang, Addgene plasmid 

# 52961) and sgRNA targeting exon 13 in pLKO5.sgRNA.EFS.GFP (was a gift from 

Benjamin Ebert, Addgene plasmid # 57822). Lentiviral particles were produced using 

HEk293T cells utilising second generation lentiviral packaging system comprising pPAX 

and pMD2 packaging plasmids. Caco-2 cells were seeded in 6 well plates and 24h later 

infected in the presence of polybrene, with viral supernatant comprising both viral 

particles, LKO-sgRNA-EFS GFP and CrisprV2.  

3 days post infection infected cells were selection with Puromycin (15ug/ml) for 1 week 

with medium changes every two days. Puromycin-positive clones were FACS sorted for 

GFP-expression and reseeded as single cells in a 24 well plate. Single clones were 

propagated and loss of Dsg2 was assessed in single clones by western blot and qPCR.  

Primer name Sequence 

hDSG2-1 f 

hDSG2-1 r 

hDSG2-2 f 

hDSG2-2 r 
 

caccgCTTTGGCGCCCTTTCCGCAA 

aaacTTGCGGAAAGGGCGCCAAAGc 

caccgCTAAACATCCTCATTTAGTG 

aaacCACTAAATGAGGATGTTTAGc 
 

qPCR primer Sequence 

DSG2 f 

DSG2 r 
 

Aattgcgctcatgattttgg 

Gcaatggcacatcagcagta 
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Enteroids 

IECs were isolated from human full-wall gut resections, 1cm² in size as described 

previously (Schweinlin et al., 2016). Briefly, villi were scraped off the muscle-free mucosa 

using a sterile glass slide. The remaining tissue was transferred into a 50mL falcon tube 

with 20mL 4°C cold HBSS (Sigma-Aldrich, St. Louis, MO, USA), vortexed for 5s and 

the supernatant discarded. This washing step was repeated until the supernatant was 

completely cleared of cell debris. Afterward, the tissue was incubated in 4°C cold 2 mM 

EDTA/HBSS solution (Sigma- Aldrich, St. Louis, MO, USA) for 30min at 4°C under 

gentle rotation on a shaker. Subsequently, the tissue was washed once in 20 mL HBSS 

by manually inverting the tube five times. The mucosa was transferred in a new tube 

with 10mL HBSS and manually shaken five times. This shaking procedure was repeated 

four times always using a new tube. Each cell fraction was checked for the amount and 

size of crypts within small drops under the microscope. The supernatants containing the 

most vital appearing crypts were pooled and centrifuged at 350g for 3 min at room 

temperature (RT). Pellet was resuspended in 10mL basal medium, DMEM-F12 

Advanced (Invitrogen, Carlsbad, CA, USA) supplemented with N2, B27, Anti-Anti, 

10mM HEPES, 2 mM GlutaMAX-I (all from Invitrogen, Carlsbad, CA, USA), 1 mM 

N-acetylcysteine (Sigma-Aldrich,St. Louis, MO, USA),and the crypt number was 

estimated in a 10µL drop by microscopy. Crypts were centrifuged in a nonstick 1.5 mL 

tube at 350g for 3 min at RT and the supernatant was removed. The tube with the cell 

pellet was placed on ice until further use. The pellet was resuspended in an appropriate 

amount of cold Matrigel (Corning, Hickory, NC, USA) that is, 5000 crypts/mL Drops 

of 50µl per well were seeded in a 24- well plate and incubated for 10–20 min until the 

Matrigel was well solidified. The culture medium contained a mixture of 50% fresh basal 

medium and 50% Wnt3A-conditioned medium. 

Furthermore, the following growth factors were added: 500 ng/mL hR-Spondin 1 

(PeproTech, Rocky Hill, NY, USA), 100 ng/mL IECs were isolated from human small 

intestinal tissue and expanded as organoid culture for 3–4 weeks.  
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GDNF-ELISA 

GDNF ELISA was performed according to manufacturer’s protocol (Promega, 

Mannheim, Germany). The assay is an antibody sandwich ELISA in which 96-well plates 

are coated with anti-GDNF monoclonal antibody, which binds soluble GDNF. 

Nonspecific bindings were blocked with block & sample buffer. 100µl GDNF standard 

or test samples were added to the 96-well plate and incubated with shaking for 6h. As 

test samples either mouse serum or tissue lysates of mouse gut were used. Mouse serum 

was collected during the animal surgery as described above. 10µl serum was diluted in 

40µl PBS. Tissue lysates were obtained from the mouse gut by homogenization using 

tissue lyzer in 500µl buffer. After centrifugation (30min, 4°C, 13.000g), the supernatant 

was used for the ELISA measurements. After several wash steps, an anti-human GDNF 

primary antibody was added to the 96-well plate followed by incubation at 4°C overnight 

and by several washing steps. Next, anti-Chicken IgY HRP conjugate was incubated for 

2 hours. As a final step, TMB One solution was added, reaction was stopped with 1N 

hydrochloric acid and color change was detected with an ELISA reader at 450nm.  

Immuncytochemistry 

Cultured cell monolayers were prepared for immunostaining as described previously 

(Schlegel et al., 2012). In brief, epithelial cells were grown to confluence on coverslips or 

transwell chambers (0.4 µm pore size, Falcon, Heidelberg, Germany). After incubation 

with or without different mediators, cells were fixated with 2% formaldehyde for 10 

minutes and treated with 0.1% Triton-X for 15 minutes afterwards, at room temperature. 

The human and animal tissue samples and enteroids embedded in paraffin were 

sectioned in 1µm slices. Immunostaining was performed after removal of paraffin as 

described for epithelial monolayers (Schlegel et al., 2010). Then monolayers and tissue 

slides were incubated at 4° C overnight using following primary antibodies at 1:100 in 

phosphate-buffered saline (PBS): rabbit anti-Desmoglein2 (Merck Milipore, Darmstadt, 

Germany); mouse anti-Cytokeratin 18 and 8 (both Santa Cruz Biotechnology, 

Heidelberg, Germany). As secondary antibodies, we used Cy3- or 488- labeled goat anti-

mouse, goat anti-rabbit, or mouse anti-goat (all diluted 1:600, Dianova, Hamburg, 

Germany). Coverslips and filters were mounted on glass slides with Vector Shield 
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Mounting Medium as anti-fading compound, which included DAPI to stain cell nuclei 

additionally (Vector Laboratories, Burlingham, CA). Representative experiments were 

photographed with a fluorescence microscope BZ-9000 (BIOREVO, Keyence, Osaka 

Japan) and a confocal microscope (Leica TCS SP2, Wetzlar, Germany). . 

Western blot 

For Western blot analysis cells were grown on 6-well plates and homogenized in SDS 

lysis buffer containing 25mmol/l HEPES, 2mmol/l EDTA, 25mmol/l NaF and 1% 

sodium dodecyl sulfate. To analyze human enterocytes, the mucosa was mechanically 

dissected from the underlying tissue immediately after the resection. Full wall specimen 

were used for analyses of the animal experiments. 

Then the specimens were lyzed in a SDS lysis buffer using TissueLyzer (Quiagen, Hilden 

Germany). In similar fashion, a part of the distal murine colon was lyzed in SDS lysis 

buffer with TissueLyzer.  

SDS gel electrophoresis and blotting were carried out after normalization of the protein 

amount using BCA assay (Thermo Fisher, Waltham, MA), as described previously 

(Schlegel et al., 2011).  Antibodies against pp38MAPK and p38MPAK (Cell Signaling 

Technology, Cambridge, UK), Phospho-Cytokeratin18 Serin52 (abcam, Cambridge, 

UK), Phospho-Cytokeratin18 Serin33 (abcam, Cambridge, UK), Cytokeratin 18 (Santa 

Cruz biotechnology, Heidelberg, Germany), Phospho-Cytokeratin 8 Serin74 (Thermo 

Fisher, Waltham, MA), Desmoglein2 goat anti-mouse (Life technologies, Carlsbad, CA) 

and GDNF (R+D Systems, Abingdon, UK) were used at a dilution of 1:1000 in 5% 

bovine serum albumin (BSA) and 0.1% Tween. As secondary antibodies horseradish 

peroxidase-labeled goat anti-rabbit IgG, goat anti-mouse IgG (all Santa Cruz 

Biotechnology, Heidelberg, Germany) were used (1:3000 in 5% BSA, 0.1% Tween). To 

validate normalization Peroxidase-labeled β-Actin and GAPDH (both Sigma-Aldrich, 

Munich, Germany) antibodies were applied. Chemiluminescence signal detection and 

quantification were performed by densitometry (ChemicDoc Touch Bio-Rad 

Laboratories GmbH, Munich, Germany). Optical densities (OD) were quantified in each 

Western Blot using Image Lab ChemicDoc Touch Bio-Rad Laboratories GmbH, 

Munich, Germany)  for statistical evaluation.  
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Atomic force microscopy 

Cells were grown on glass coverslips and treated with GDNF (100ng/ml) 1 day before 

getting confluent or with 4mM EGTA for 30 min after finished control measurements. 

For analysis of Dsg2 interactions on the surface of living cells, a Nanowizard III AFM 

(JPK Instruments, Berlin, Germany) mounted on an optical microscopy (Carl Zeiss, 

Jena, Germany) was used. The approach of AFM force spectroscopy on living cells was 

described in detail before (Vielmuth et al., 2015). Imaging and force measurements were 

performed in cell culture medium using flexible Si3N4 AFM cantilevers (MLCT probes, 

Bruker, Calle Tecate, CA, USA) coated with a flexible bifunctional polyethylene glycol 

linker (Gruber Lab, Institute of Biophysics, Linz, Austria) and recombinant Dsg2-Fc 

containing the complete extracellular domain (ED) of Dsg2, as outlined elsewhere 

(Andreas et al., 2007). At first, AFM topography images of 50 x 50 µm and 128 x 128 

pixels were created using a force curve-based imaging mode (QI-mode) with a setpoint 

adjusted to 0,5 nN, a z-length of 1500 nm and a pulling speed of 50 µm/s. For adhesion 

measurements, a small area of 2 x 5 µm was selected and 1000 force-distance curves 

were recorded for each area using the force mapping mode with a relative setpoint of 

0,5 nN, a z-length of 3 µm and a pulling speed 5 µm/s. JPK data processing software 

(JPK instruments) was applied for processing AFM images and analysis of force distance 

curves and Origin 9.1 (Originlab, Northampton, MA, USA) was used for peakfit analysis 

of measured unbinding force curves. 
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3 Discussion 
 

3.1 Cultured enterocytes as suitable model for the human intestinal 

epithelium 

Aim of this study was to analyze the adhesive and signaling function of Dsg2 in the 

intestinal epithelium. The usage of in vitro cell culture represents a convenient and low 

cost approach that is suitable for genetic manipulation and allows easy stimulation with 

activators, inhibitors, cytokines or growth factors (Fig. 8). In contrast, in vivo studies are 

cost-expensive, difficult to manipulate without inducing physiological complications and 

can raise ethical concerns. In addition, some techniques are not applicable in an in vivo 

or ex vivo model of the intestine, such as the AFM to measure binding properties of 

desmosomal cadherins. Here, two human colon carcinoma cell lines were used, DLD1 

and Caco2 cells, which were derived from different patients (Caro et al., 1995; Chen et 

al., 1995; Dexter et al., 1981). A thorough characterization revealed that both cell lines 

were polarized after growing for four (DLD1) or six (Caco2) days post confluence, with 

mature cell junctions at the apical side, characteristic microvilli on the cell surface and 

fully developed desmosomes similar as seen in human tissue samples. Moreover, they 

form a cell monolayer that physically and functionally resemble an intestinal epithelial 

barrier, with a steady transepithelial resistance that was maintained over days. This is in 

line with previous studies that also reported the development of a mature epithelial 

barrier (Artursson et al., 1993; Matsumoto et al., 1990; Schlegel et al., 2010; Wang et al., 

2008; Wilson et al., 1990; Zweibaum A., 1991). Furthermore, several results obtained in 

cell culture, were also reproducible in an in vivo mouse model, organoid cultures and 

human tissue samples, which suggests that cultured enterocytes represent a suitable 

model to investigate the biological functions of Dsg2. However, one has to consider that 

the human intestinal epithelium is composed of several different cell types and 

differences in gene expression profiles are present along the crypt-villus axis as well as 

along the diverse sections of the gastrointestinal tract (Anderle et al., 2005). Although 

enterocytes make up the largest portion in the intestinal epithelium, the specific 

functions of other cell types shape the environment of the intestinal epithelium, which 
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is missing in the enterocyte cell culture. For instance, Caco2 as well as DLD1 cells 

produce no or only moderate amounts of mucus (Dexter et al., 1981; Engle et al., 1998), 

which might affect the binding properties of Dsg2 on the cell surface. Hence, a co-

culture system of enterocytes and goblet cells could provide further insights into the real 

physiological situation and should be tested in future studies. However, complex 

interactions with the immune system highly influences the barrier properties in vivo 

(Luissint et al., 2016), which cannot or only partly be simulated in a cell culture system. 

Furthermore, some considerations must be taken into account when choosing a cell line 

for studies. Since the various available cell lines derived from different carcinomas, they 

differ in their genetic profiles (Ahmed et al., 2013), which might influence the outcome 

of a study and could explain contradictory results of the same investigation in different 

labs. For instance, in this study using Caco2 and DLD1 cells, loss of Dsg2 had a 

proproliferative effect, while another study conducted in SW480 cells reported the 

opposite (Kamekura et al., 2014). A constitutive active β-catenin signaling and 

deregulated expression of pro-proliferative genes that are present in SW480 but not in 

DLD1 cells (Rowan et al., 2000; Yang et al., 2006) might be an explanation. Hence, it is 

reasonable to conduct a study in different cell lines to assure that the outcome is 

universal, as it has been done in this thesis. All in all, cultured enterocytes represent a 

suitable model to study functions of proteins in the intestinal epithelium. 

Figure 8. Advantages 
and disadvantages of 
intestinal cell culture 
model. Several 
advantages argue in 
favor of using cultured 
enterocytes (confluent 
Caco2 cells are shown) 
as model system to 
study functions of 
proteins in the 
intestinal epithelium. 
Disadvantages such as 
diverging genetic 
profiles should be 
considered when 
choosing a cell line and 
co-culture systems 
with multiple cell types 
might provide more 
insights.  



Discussion  191 

3.2 Dsg2 as cell surface receptor for signal transduction of 

environmental stimuli 

Dsg2 constitutes the adhesive core of desmosomes (Owen and Stokes, 2010), which 

until recently have been considered to provide first and foremost the mechanical 

strength to intercellular cohesion (Green and Simpson, 2007). In the mature intestinal 

epithelium, desmosomes are located beneath the TJ and AJ, thereby sealing the 

paracellular space, which is also referred to as the “terminal bar “ (Capaldo et al., 2014; 

Farquhar and Palade, 1963a). A previous study reported that a specific antibody targeting 

the ED of Dsg2 impaired barrier function and led to rupture of TJ (Schlegel et al., 2010). 

However, the underlying mechanism was not investigated. The authors speculated that 

the antibody might bind to Dsg2 present outside of desmosomes, thus inducing signaling 

events, rather than passing the AJC and interfering with desmosomal Dsg2. From studies 

on pemphigus, it is already known that binding of desmoglein-specific autoantibodies to 

extradesmosomal desmoglein molecules on the cell surface of keratinocytes, activates 

intracellular signaling cascades, leading to impaired desmoglein-mediated cell adhesion 

(Berkowitz et al., 2008a; Kawasaki et al., 2006; Saito et al., 2012; Spindler et al., 2013; 

Tsunoda et al., 2011; Waschke et al., 2005). However, nothing was known about 

extradesmosomal Dsg2 on the surface of intestinal epithelial cells. This study 

demonstrates for the first time that extradesmosomal Dsg2 is present on the surface of 

cultured polarized enterocytes. Moreover, immunostaining of human tissue samples and 

enteroids revealed extradesmosomal Dsg2 on the cell surface, as well. Binding of an 

antibody directed against the ED of Dsg2 led to impaired cell adhesion, which was 

preceded by p38MAPK activation, indicating that Dsg2 transmits the extracellular 

stimuli thereby activating signaling events that control intercellular adhesion. Along this 

line, Dsg2 has been reported as a receptor utilized by adenoviruses to infect intestinal 

epithelial cells. Adenovirus interaction with Dsg2 activated intracellular signaling 

cascades such as PI3K and Erk1/2, resulting in the opening of intercellular junctions 

(Wang et al., 2011). Since desmosomal Dsg2 in polarized epithelial cells is inaccessible 

for adenoviruses, this underlines the appearance of extradesmosomal Dsg2 on the cell 

surface. In accordance to the present study, in which binding of the Dsg2-specific 

antibody to the ED 3 activates p38MAPK signaling, Dsg2 ED 3 is also critical for 
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adenovirus binding thereby inducing activation of the MAPK pathway (Vassal-Stermann 

et al., 2018; Wang et al., 2011). Similarly, in keratinocytes an antibody targeting the Dsg3 

ED 3 and 4 caused p38MAPK-mediated endocytosis of Dsg3 (Saito et al., 2012). Hence, 

beside its adhesive function, Dsg2 can transmit extracellular signals through ED 3. At 

present, it is unclear how this function is achieved. Given that no enzymatic activity of 

the cytoplasmic Dsg2 tail is known to date, interaction with enzymatic active proteins 

might be involved. A possible candidate is the RTK EGFR.  

 

3.2.1 Direct interaction of Dsg2 and EGFR via their extracellular domains 

regulates cell adhesion and proliferation 

In this study, a direct interaction between the extracellular part of Dsg2 and EGFR has 

been shown for the first time. Dsg2 is required for localization of EGFR to the cell 

borders where it is phosphorylated at Y845, which is catalyzed by the kinase Src. In 

Dsg2-deficient cells, phosphorylation at Y845 is reduced and EGFR is retracted from 

cell borders. Moreover, proliferation is drastically increased upon loss of Dsg2 and can 

be restored by inhibition of EGFR activity as well as by reintroduction of Dsg2. These 

findings led us to propose a new mechanism that Dsg2 interacts directly with its 

extracellular domain with EGFR, shapes EGFR function towards adhesion, and 

suppresses proliferation (Fig. 9). In concordance, reduced phosphorylation of EGFR 

Y845 upon loss of Dsg2 was also reported in other studies (Kamekura et al., 2014; 

Overmiller et al., 2016). EGFR phosphorylation at Y845 activates a series of downstream 

events, thus regulating various cellular functions (Biscardi et al., 1999; Maa et al., 1995; 

Sato et al., 1995). Enhanced cell transformation, motility and invasion have been linked 

to Y845 phosphorylation-mediated signaling and increased levels of EGFR and Src are 

observed in several cancer cells (Chung et al., 2009; Jung et al., 2011; Jung et al., 2013; 

Kannangai et al., 2006; Maa et al., 1995). Furthermore, Src-mediated phosphorylation at 

Y845 has been shown to inhibit apoptosis and to promote proliferation (Ray et al., 2007; 

Tice et al., 1999). Along this line, recent studies reported that reduced levels of EGFR 

Y845 phosphorylation upon loss of Dsg2 result in decreased cell proliferation 

(Kamekura et al., 2014; Overmiller et al., 2016). This is contradictory to our data, 

showing that reduced phosphorylation at EGFR Y845 upon loss of Dsg2 enhances cell 
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proliferation. However, and in support of our data, Y845 phosphorylation is also known 

to induce cell-cycle arrest and to inhibit growth (Godek et al., 2011; Sato et al., 2003). 

Several reasons are conceivable for the diverging outcomes that are triggered by the same 

phosphorylation site. First of all, EGFR signaling is spatially compartmentalized (Bakker 

et al., 2017). EGFR is activated upon ligand binding at the cell surface, which is followed 

by its internalization and passage of different routes of the endosome network, whereby 

signaling continues (Francavilla et al., 2016; Haugh et al., 1999; Vieira et al., 1996; Wu et 

al., 2012). Thus, different mechanisms leading to the observed EGFR Y845 

phosphorylation might explain diverging outcomes. Consistently, the study reporting a 

decreased proliferation after loss of Dsg2, suggests EGFR activation through Dsg2-

mediated displacement of EGFR from lipid rafts (Overmiller et al., 2016), while our data 

propose direct interaction of Dsg2 and EGFR that suppress proliferation. In addition, 

we demonstrate that antibodies targeting the ED of Dsg2 or of EGFR inhibit the 

interaction. In line with this, another study shows that Dsg2 ED fragments capable of 

binding to the same region as the inhibitory antibody, disrupt intercellular adhesion and 

enhance proliferation of IECs (Kamekura et al., 2015), thus underpinning our hypothesis 

that Dsg2-EGFR interaction fosters adhesion and suppresses proliferation. In addition, 

Dsg2 has been shown to support differentiation and thus acts as tumor suppressor gene 

in gastric cancer (Yashiro et al., 2006), which also points to an anti-proliferative function 

of Dsg2. Moreover, beside our results from experiments with cultured cells, we observed 

a close co-localization of Dsg2 and EGFR also in human tissue samples and enteroids, 

which supports the physiological relevance of this newly discovered complex. 

Furthermore, our collaboration-study on intestine-specific Dsg2 knockout mice revealed 

increased proliferation under inflammatory conditions in the Dsg2-KO. This further 

indicates that Dsg2 might inhibit EGFR-mediated proliferation under normal conditions 

and that loss of Dsg2-EGFR interaction enables proliferation for instance to induce 

wound healing during inflammation. Although EGFR is generally thought to be located 

in the basolateral membrane of polarized epithelial cells (Bishop and Wen, 1994; 

Scheving et al., 1989), several studies report its presence also in the apical membrane in 

IECs (Gonnella et al., 1987; Kelly et al., 1992; Yoo et al., 2011). Hence, a receptor 

complex consisting of Dsg2 and EGFR at the apical cell surface is plausible. Recently, a 

similar complex consisting of EGFR and the AJ component Ecad was reported, which 
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likewise suppresses EGFR activity and stabilizes cell adhesion (Rubsam et al., 2017b). 

Furthermore, apical and basolateral located EGFR has been demonstrated to exert 

differential functions (Kuwada et al., 1998), which might also explain diverging outcomes 

of EGFR phosphorylation at Y845.  

 

 
 
Figure 9. Schematic model of Dsg2-mediated signaling functions through direct binding to 
Dsg2. Direct interaction with RTK and binding of adenoviruses or Dsg2-specific antibodies (ab) to 
Dsg2 molecules can induce signaling cascades that modulate intercellular adhesion. Mechanisms include 
Dsg2-mediated inhibition of the canonical EGFR-triggered proliferation pathway. Adenovirus-binding 
leads to activation of downstream signaling molecules such as PI3K and Erk1/2, resulting in opening of 
other junctions (Wang et al., 2011) and activation of MMPs and ADAM proteins that cleave Dsg2 ED 
(Wang et al., 2015). Dsg2-specific antibody binding results in activation of p38MAPK.  
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3.2.2 Indirect activation of Dsg2 signaling function through environmental 

stimuli 

Here, we suggest that Dsg2 functions as receptor on the cell surface and that direct 

binding to Dsg2, such as binding of other receptors, autoantibodies or adenoviruses, 

activates intracellular signaling pathways. However, there is evidence that Dsg2 signaling 

is activated through environmental stimuli, such as cytokines or growth factors, in an 

indirect manner, as well (Fig 10).  

 Activation of Dsg2 signaling function through inflammatory cytokines 

Inflammatory cytokines such as TNFα, INFγ or IL-1β are known to alter epithelial 

barrier function and to be increased in IBD (Koch and Nusrat, 2012; Nava et al., 2010; 

Rogler and Andus, 1998; Sanders, 2005), which also display deregulated Dsg2 function 

(Spindler et al., 2015). Cytokines influence Dsg2 function by activation of MMPs and 

ADAM proteins, whose activities are known to be enhanced in IBD (Baugh et al., 1999; 

Rogler and Andus, 1998). Activated proteinases cleave the ED of Dsg2, which on the 

one hand reduces intercellular adhesion through disruption of the adhesive core of 

desmosomes, on the other hand the fragments can serve as ligands for other receptors. 

For instance, soluble Dsg2 fragments have been demonstrated to bind to HER2 and 

HER3 receptors, resulting in activation of the Akt/mTOR and MAPK pathway and 

subsequently enhanced proliferation (Kamekura et al., 2015). Although, in this case 

proliferation was induced through Dsg2 fragment-mediated activation of HER2 and 

HER3, Dsg2 ED fragments can likewise bind homophilic to Dsg2 and thus might 

possibly lead to disruption of Dsg2-EGFR binding that induces EGFR-mediated 

proliferation. In addition, it is not clear whether desmosomal or extradesmosomal Dsg2 

is cleaved. In this study, we observed ultrastructural changes of desmosomes in samples 

from CD patients, or found them to be completely missing, indicating that desmosomal 

Dsg2 molecules might be cleaved under inflammatory conditions, which results in loss 

of functional desmosomes. In this line, endocytosis of desmosomal Dsg2 has been 

reported to be regulated by ADAM proteins (Klessner et al., 2009). However, direct 

binding of adenoviruses to Dsg2 has been reported to induce Dsg2 ED shedding, as 

well (Wang et al., 2015). Since desmosomal Dsg2 is not accessible to the virus, it is likely 
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that the virus binds to extradesmosomal Dsg2. One could speculate that cleavage of 

desmosomal and extradesmosomal Dsg2 induces different signaling events. In addition, 

it is not clarified whether the cleaved Dsg2 fragments induce autocrine signaling, or act 

on neighboring cells. A recently published study propose that cleaved Dsg2 fragments, 

resulting from apoptotic stimuli, induce proliferation of neighboring cells to promote 

wound closure (Yulis et al., 2018). In case of adenovirus-mediated Dsg2 shedding, it is 

more likely that shedding-mediated signaling occurs in the same cell, as the goal of 

adenovirus binding to Dsg2 is to increase access to receptors trapped in intercellular 

junctions (Wang et al., 2015; Wang et al., 2011). 

 Activation of Dsg2 signaling function through growth factors 

We demonstrated a direct interaction of Dsg2 and EGFR in this study, hence activation 

of Dsg2 signaling via growth factor binding to EGFR, is expectable. In line with the 

above findings, we observed that EGF inhibits the interaction and induces 

internalization of both, EGFR as well as Dsg2. Thus, it is likely that interaction with 

EGFR stabilizes Dsg2 at the cell surface. A possible mechanism for stabilizing Dsg2 

might involve tyrosine phosphorylation of Dsg2 that has been shown to be blocked by 

EGFR tyrosine kinase inhibitors (Lorch et al., 2004). Furthermore, EGFR mediated 

phosphorylation of Dsg2 associated plaque proteins such as PG, upon stimulation with 

growth factors, has been assumed critical in modulating the association of the cadherin-

catenin complex with the cytoskeleton (Gaudry et al., 2001; Kanai et al., 1995; Shibamoto 

et al., 1994; Valles et al., 1990), which supports stability of desmogleins at cell borders. 

Moreover, EGF stimulation is known to activate p38MAPK (Frey et al., 2004; 

Vergarajauregui et al., 2006) that is a well-known modulator of Dsg2 signaling. Finally, 

EGFR activity has also been shown to induce MMPs (Lochter et al., 1997; McCawley et 

al., 1998), which cleave Dsg2 molecules as described above.  

Recently, another growth factor was identified to regulate intestinal barrier functions, 

namely the GDNF that enhances barrier properties of IECs (Meir et al., 2015b). A 

further objective of this thesis was, to address the impact of GDNF on Dsg2 function, 

which was part of a study investigating how GDNF regulates intestinal barrier function 

in IBD. Here, AFM analyses revealed that GDNF increases Dsg2 binding at cell-cell 
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borders, either through redistribution of existing Dsg2 molecules or through formation 

of new Dsg2 interactions at cell borders. In line with this, decreased levels of GDNF 

have been associated with a barrier breakdown of the intestinal epithelial barrier in mice, 

underlining its beneficial function for barrier properties (Brun et al., 2013). Moreover, 

analyses of immunostainings for cytokeratin18 after stimulation with the cytokine TNFα 

and GDNF revealed a significant retraction of the keratin cytoskeleton after TNFα-

stimulation, which was prevented by simultaneous application of GDNF. Furthermore, 

the data suggest that this protective effect is mediated via reduced p38MAPK and 

cytokeratin phosphorylation. This is in line with a previous study, showing that 

stimulation with TNFα induced p38MAPK phosphorylation and subsequent loss of 

Dsg2-mediated adhesion (Spindler et al., 2015). However, the role of p38MAPK activity 

in barrier regulation seems to differ depending on the type of activation, since Dsg2-

deficient enterocytes show impaired barrier properties despite reduced p38MAPK 

activity and activation of p38MAPK enhanced barrier formation. Thus, p38MAPK has 

a central role in regulating intercellular adhesion and a proper balance of its activity is 

required. Furthermore, stimulation with GDNF alone did not alter phosphorylation of 

p38MAPK, but enhanced Dsg2 binding frequency as well as its distribution at cell 

borders in AFM experiments. In conclusion, this data indicates that GDNF prevents 

p38MAPK-mediated keratin retraction and subsequent loss of cell adhesion but also 

directly enhances Dsg2-mediated cell adhesion at cell borders. Since GDNF is clearly 

reduced in samples from patients suffering from CD or UC, our data points to a new 

pathomechanism for barrier dysregulation in IBD and offers new possibilities for 

therapeutic approaches. Accordingly, GDNF has already been proposed to serve as 

rescue mechanism during inflammation (Steinkamp et al., 2003).  
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Figure 10. Schematic model of indirect activation of Dsg2-mediated signaling functions. Dsg2 
mediated signaling function is induced indirectly via extracellular stimuli such as growth factors and 
cytokines. EGF binding to EGFR blocks its interaction with Dsg2 and induces the canonical signaling 
cascade resulting in cell proliferation. In addition, activated EGFR results in phosphorylation of the 
Dsg2 cytoplasmic tail (Lorch et al., 2004) or plaque proteins such as PG (Gaudry et al., 2001; Shibamoto 
et al., 1994), thus modulating anchorage to the cytoskeleton. GDNF has protective function by inhibiting 
phosphorylation of p38MAPK and keratins but also influences Dsg2 distribution at cell borders. 
Cytokines induce Dsg2 ED shedding, resulting in reduced adhesion and increased proliferation 
(Kamekura et al., 2015). 
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3.3 Tissue dependent function of desmogleins 

In previous studies, our group has characterized what mechanisms regulate desmosomal 

adhesion in keratinocytes. In this context, several key players were identified that play 

also a role in regulating cell adhesion in IECs. However, the functional mechanism in 

keratinocytes differs from that in IECs. For instance, in keratinocytes Dsg2 has been 

found to be less important for cell cohesion than Dsg3 and does not influence 

p38MAPK activity. Moreover, activated p38MAPK was shown to reduce intercellular 

cohesion and was found in a complex with Dsg3 but not Dsg2 (Hartlieb et al., 2013; 

Hartlieb et al., 2014; Spindler et al., 2013). In contrast, this study demonstrates that IECs 

require p38MAPK activity for barrier formation and maintenance. Furthermore, Dsg2 

is indispensable for cell cohesion and regulates the activity of p38MAPK. Collectively, 

these results point towards a tissue-specific function of desmosomal cadherins. 

Although p38MAPK activity is known to be dependent on the cell type and stimulus, as 

its signaling has been shown to promote cell death in some cell lines, while enhancing 

survival, cell growth and differentiation in different cell lines (Cuenda and Rousseau, 

2007), the diverging mechanisms that regulate cell adhesion pathways might also come 

from tissue-specific expression pattern of desmogleins. Simple epithelia, like the 

intestinal epithelium, comprises only two desmosomal cadherin isoforms, Dsg2 and 

Dsc2. In contrast, seven desmosomal cadherin isoforms can be found in multilayered 

stratified epithelia like the human epidermis, with a differential distribution between the 

specific layers and very low levels of Dsg2 and Dsc2 (Dusek et al., 2007; Garrod and 

Chidgey, 2008; Mahoney et al., 2006) (Fig. 11). In one individual cell, several isoforms 

are expressed and various isoforms can be found in one single desmosome (North et al., 

1996; Nuber et al., 1996; Shimizu et al., 1995). Thus, functions associated with 

desmosomal cadherins can be distributed on several isoforms in keratinocytes, whereas 

in IECs they have to be combined in Dsg2 and Dsc2. In keratinocytes, desmosomal 

cadherin isoforms have specific functions in epithelial differentiation. For instance, Dsg2 

is concentrated in basal layers where proliferation takes place and is absent in suprabasal 

layers, whereas Dsg1 gets expressed on initiation of differentiation that is paralleled by 

cell movement into the first suprabasal layer and shows highest expression rates in 

suprabasal layers (Johnson et al., 2014).  
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Figure 11. Schematic outline of tissue-dependent expression of desmosomal cadherins in simple 
and stratified epithelial tissue. While simple columnar epithelial cells express only two desmosomal 
cadherin isoforms, seven isoforms are expressed in stratified epithelia in a differentiation dependent 
pattern. Dsg2, which is the only desmoglein in simple epithelia, is concentrated in basal proliferative 
layers in stratified epithelia and is absent in suprabasal layers where Dsg1 levels are at their highest. 
 
 
Their distinct functions become clear when expression of a desmosomal cadherin is 

forced in the wrong layer. Hence, it has been shown that ectopic expression of Dsg2 in 

the suprabasal skin layer acts contrarily to Dsg1 and induces enhanced proliferation as 

well as activation of growth and survival pathways (Brennan et al., 2007). Therefore, it 

is not surprising that loss of Dsg2 has diverging effects on signaling pathways, depending 

on tissue type. In keratinocytes, loss of Dsg2 has been reported to reduce the 

phosphorylation level of EGFR resulting in decreased cell proliferation (Overmiller et 

al., 2016), while our data from IECs revealed an enhanced proliferation. Furthermore, 

Dsg2-deficient pancreatic cells display increased levels of EGFR phosphorylation at 

Y845 (Hutz et al., 2017), which is also in contrast to IECs, showing decreased levels of 

Y845 phosphorylation. The manifold functions of Dsg2 become even more apparent 

when it comes to its role in human cancer. Several studies report Dsg2 expression to be 

downregulated in diffuse-type gastric cancer, prostate cancer and pancreatic cancer 

(Barber et al., 2014; Ramani et al., 2008; Yashiro et al., 2006). In human breast cancer 

cells, Dsg2 is believed to be a putative tumor suppressor and to reduce cell aggregation, 

invasion and motility (Davies et al., 1997). In contrast, other studies suggest an 

oncogenic function of Dsg2, as it has been shown to be overexpressed in non-small cell 

lung cancer, skin squamous cell carcinoma as well as basal cell carcinoma and its loss 

suppressed colon cancer proliferation (Brennan and Mahoney, 2009; Fukuoka et al., 
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2007; Kamekura et al., 2014). Hence, it is likely that desmosomal cadherin functions in 

a spatiotemporal fashion, which implies the involvement of specific interaction partners 

or protein modifications that modulate their function. 

 
 
3.4 Differential biological functions of Dsg2 and Dsc2 

In this study, we investigated the adhesive and signaling functions of Dsg2 in IECs. 

However, beside Dsg2, a second desmosomal cadherin is expressed in the intestinal 

epithelium, namely Dsc2, which raises the question whether and, if so, how their 

functions differ. Although, both homo- and heterophilic interactions between Dsg2 and 

Dsc2 ED can be found in desmosomes, heterophilic interactions have been reported to 

be preferred and that both protein types are required for cell cohesion (Harrison et al., 

2016; Nekrasova and Green, 2013). Moreover, it is assumed that a specific ratio of 

desmogleins and desmocollins is essential to maintain intercellular adhesion (Getsios et 

al., 2004). In contrast, another study reported that Dsc2 alone is sufficient to form 

functional desmosomes in IECs (Fujiwara et al., 2015), while a study on pancreatic cells 

revealed that silencing of Dsg2 but not Dsc2 results in loss of cell cohesion (Hutz et al., 

2017). 

Our data demonstrate that both proteins have unique properties. We observed that 

Dsg2, but not Dsc2, regulates activity of p38MAPK. Furthermore, we detected co-

localization between Dsg2 and EGFR, which did not appear between Dsc2 and EGFR. 

In line with this, loss of Dsc2 had no effect on localization as well as protein levels of 

EGFR, while loss of Dsg2 led to decreased EGFR levels, decreased EGFR 

phosphorylation at Y845 and EGFR redistribution away from cell borders. Moreover, 

loss of Dsg2 increased cell proliferation of IECs via EGFR signaling, whereas loss of 

Dsc2 resulted in similar proliferation as seen in WT cells. In addition, we participated in 

a study that explored the properties of Dsg2 and Dsc2 in the intestinal epithelium with 

regard to their importance under inflammatory conditions. Comparison of TER values 

from different KO cell lines revealed a lower resistance for cells deficient for both 

desmosomal cadherins, which was not restored by reintroduction of Dsc2. Along this 

line, that study shows that mice deficient for Dsg2 in the intestinal epithelium, display 
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increased intestinal permeability, which was not noted in Dsc2 deficient mice. However, 

we observed that loss of Dsc2 in cultured IECs resulted in reduced TER values, as well, 

albeit the values were not as much reduced as upon loss of Dsg2. In addition, 

unpublished data from our lab shows a significantly reduced intercellular cohesion in 

DLD1 cells lacking Dsc2 compared to cells lacking Dsg2. Collectively, these data 

indicates that Dsc2 is required to provide strong cohesion, while Dsg2 might exert rather 

regulatory functions. This hypothesis is supported by a study, reporting that a global 

Dsg2 knockout in mice is not viable, while Dsc2 knockout mice do not display any 

defects (Eshkind et al., 2002). Hence, this points to a crucial signaling function of Dsg2, 

whereas the adhesive function of Dsc2 might be compensated more easily. However, a 

compensatory up-regulation has been observed for Dsc2 upon loss of Dsg2, but not for 

Dsg2 upon loss of Dsc2 (Kolegraff et al., 2011). In addition, another study reports a 

signaling function for Dsc2, as well, and proposes Dsg2 and Dsc2 to act in an opposing 

way (Kamekura et al., 2014). Hence, this issue is still an open question and awaits further 

investigation. A possible starting point could be the analysis of putative interaction 

partners that might specifically shape the Dsg2 and Dsc2 function. In this study, we 

identified EGFR as interaction partner for Dsg2 and that its function is influenced by 

loss of Dsg2 but not Dsc2. Data from our cooperation study, investigating the properties 

of Dsg2 and Dsc2 in knockout mice, show an interaction of the chaperone heat shock 

protein 70 (Hsp70) with Dsg2 but not with Dsc2. Furthermore, comparison of so far 

known interaction partners for Dsg2 and Dsc2 using the BioGRID Database (Stark et 

al., 2006) revealed 52 physical interactors for Dsg2 and 26 physical interactors for Dsc2, 

of which only 10 interaction partners overlap, pointing towards different interactomes 

that might regulate specifically the functions of Dsg2 and Dsc2 (Fig. 12). 
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Figure 12. Overview of up to date known interactomes of Dsg2 and Dsc2. Comparison of physical 
interaction partners of Dsg2 and Dsc2, published on the BioGRID Database (Stark et al., 2006) reveals 
different interactomes for Dsg2 and Dsc2, with 52 interaction partners for Dsg2, 26 interaction partner 
for Dsc2 and only 10 interaction partners found in both datasets.  
 
 

In conclusion, this study reveals new functional properties for Dsg2, beside its adhesive 

function and suggests a receptor like mechanism to transmit extracellular stimuli. In the 

rapidly renewing intestinal epithelium, Dsg2 might act as a sensor to regulate the switch 

between adhesive and proliferative or apoptotic state for instance to enable cell shedding 

of senescent cells at the villus tip or to promote wound healing in response to 

inflammatory stimuli. Furthermore, this study demonstrates that Dsg2 and Dsc2 have 

unique properties and are likely to be regulated differentially. Thus, identification of 

interactomes specific for Dsg2 or Dsc2 might unveil new targets for protein regulation 

that could be useful for the development of therapeutic approaches for diseases such as 

IBD that evince dysregulated Dsg2 function.   
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4.2 Abbreviations 

% per cent 

(Co-) IP (Co-) Immunoprecipitation 

°C degree Celsius 

µl microliter, 10-6 l 

µM micromolar, 10-6 M 

ADAM A disintegrin and metalloproteinase domain-containing protein 

AFM Atomic force microscopy 

AJ Adherens junctions 

AJC Apical junctional complex 

AMP Antimicrobial peptides 

APC Adematous polyposis coli 

Ca2+ Calcium 

CaCl2 Calcium chloride 

CD Crohn’s disease 

Cld4 Claudin 4 

Cld2 Claudin 2 

CNS Central nervous sytem 

C.rod Citrobacter rodentium 

Cxs Connexins 

DP Desmoplakin 

Dsc2 Descmocollin 2 

Dsg2 Desmoglein 2 

DSS Dextran sodium sulphate 

DTD Desmoglein terminal domain 

DUR Desmoglein unique region 

EA Extracellular anchoring domain 

EC Extracellular cadherin repeat 

Ecad E-cadherin 

ED Extracellular domain 

EGC Enteric glial cell 
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EGF Epidermal growth factor 

EGFR Epidermal growth factor receptor 

EGTA Ethylene glycol tetraacetic acid 

ENS Enteric nervous system 

Fc Constant effector-determining region 

Fig. Figure 

FL Full-length 

GAPDH Glycerinaldehyd-3-phosphat-Dehydrogenase 

GDNF Glial-derived neurotrophic factor 

GFP Green Fluorescent Protein 

GJ Gap junctions 

h Hour 

HER2 Human epidermal growth factor receptor 2 

HER3 Human epidermal growth factor receptor 3 

Hsp70 Heat shock protein 70 

Hz Hertz 

IA Intracellular anchoring domain 

IBD Inflammatory bowel disease 

ICS Intracellular cadherin-like sequence 

IEC Intestinal epithelial cells 

IF Immunofluorescence 

IgG Immunoglobulin G 

IL-1β Interleukin 1 beta 

INFγ Interferon gamma 

IPL Proline rich linker region 

JAMs Junctional adhesion molecules 

kD kilo dalton 

KO Knockout 

MAPK Mitogen-activated protein kinase 

min Minute 

MLCK Myosin light chain kinase 
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MMP Matrix metallo protease 

Ncad N-cadherin 

nm nanometer 

n.s. not significant 

PG Plakoglobin 

Pkp Plakophilin 

pN pico newton 

RTK Receptor tyrosine kinase 

RUD Repeat unit domain 

SE Standard error 

SIM Structured illumination microscopy 

siRNA small interefering ribonucleic acid 

Src Rous sarcoma kinase 

STAT3 Signal transducer and activator of transcription 3 

STED Stimulated emission depletion microscopy 

Suppl. Supplementary 

TER Transepithelial resistance 

TGF Transforming growth factor 

TJ Tight junctions 

TM Transmembrane domain 

TNFα Tumor nucrose factor alpha 

UC Ulcerative colitis 

WT Wildtype 

ZO1 Zonula occludens 1 
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