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Summary 
Functional genomics provide information beyond simple genotype-phenotype relationships. 

Whole genome and transcriptome sequencing is used to compare existing results to 

sequencing data from newly sequenced species and to thereby infer functions. With this 

approach, also analysis of organisms that are difficult to culture, or for which no 

transformation methods are available, is feasible. This applies e.g. to the Glomeromycota 

fungi, which are obligate symbionts and their hyphae contain thousands of nuclei in a 

common cytoplasm.  

The work presented here shows the different stages of functional genomics in three parts. In 

the first part, a complete and gap-less assembly of the bacterial genome of Rhizobium 
leguminosarum Norway was created by using different 2nd and 3rd generation sequencing 

techniques. This assembly shows the advantages of using short read assemblies in 

combination with long reads. This is particularly relevant to bridge for example long repeat 

regions and retain base accuracy, which is also applicable for larger genomes.   

In the second part, the assembly and analysis of the transcriptome of the early diverging 

glomeromycotan fungus Geosiphon pyriformis was performed. The results of functional 

annotation of the non-redundant virtual transcripts show higher similarity to Asco-, Basidio-, 

and Zygomycota than to Glomeromycota. This indicates that the different symbiotic life-style 

of G. pyriformis, compared to other Glomeromycota, also demands a different setup of 

expressed genes. On the other hand, the absence of the “Missing Glomeromycota Core 

Genes” set in this transcriptome suggests that there was a common obligate symbiotic 

ancestor, depending on either cyanobacteria or algae. In the course of this analysis three 

transcripts were identified that show similarities to genes encoding amyloid proteins and 

pose promising candidates for functional characterization.  

The third part regards the functional characterization of effector candidate genes that had 

been identified in Rhizophagus irregularis through a genome comparison approach. Using 

host induced gene silencing one effector candidate gene was downregulated and showed a 

strong phenotype in colonization and arbuscules. Further analyses indicate that the protein 

encoded by this gene is involved in trehalose biosynthesis and is not an effector. The 

phenotype of downregulation shows that trehalose biosynthesis plays an important role in the 

establishment or maintenance of a functional symbiosis. 

In conclusion, this work demonstrates the possibilities of functional genomics: creating and 

analyzing complete gap-less genomes, using the acquired data to find candidate genes for 

specific functions, and functionally characterizing newly identified genes in vitro.   
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Zusammenfassung 
Das Feld “Functional Genomics” ermöglicht Einblicke über einfache Genotyp-Phänotyp-

Beziehungen hinaus. Die vollständige Genom- und Transkriptom-Sequenzierung wird 

verwendet, um bestehende Ergebnisse mit Sequenzierungsdaten von neu sequenzierten 

Arten zu vergleichen und damit auf Funktionen zu schließen. Mit diesem Ansatz ist auch eine 

Analyse von Organismen möglich, die schwierig zu kultivieren sind oder für die keine 

Transformationsmethoden verfügbar sind. Dies gilt z.B. für Glomeromycota-Pilze, welche 

obligate Symbionten sind und in deren Hyphen Tausende von Kernen in einem 

gemeinsamen Zytoplasma enthalten sind.  

Die hier vorgestellte Arbeit zeigt die verschiedenen Stadien der funktionellen Genomik in drei 

Teilen. Im ersten Teil wurde ein vollständiges und lückenloses Bakteriengenom von 

Rhizobium leguminosarum Norway mit verschiedenen Sequenzierungstechniken der 2. und 

3. Generation erstellt. Dieses Assembly zeigt welche Vorteile die Verwendung einer 

Kombination aus kurzen und langen Sequenzier-Reads mit sich bringt, wie zum Beispiel die 

Möglichkeit lange “repeat regions” zu überbrücken, so dass sich diese Kombination auch gut 

auf größere Genome anwenden lässt. 

Im zweiten Teil wurde das Transkriptom des früh divergierenden Glomeromycota-Pilzes 

Geosiphon pyriformis assembliert und analysiert. Die Ergebnisse der funktionellen 

Annotation der “non-redundant virtual transcripts” zeigen eine höhere Ähnlichkeit zu Asco-, 

Basidio- und Zygomycota als zu Glomeromycota. Dies deutet darauf hin, dass der 

unterschiedliche symbiotische Lebensstil von G. pyriformis im Vergleich zu anderen 

Glomeromycota auch ein verändertes Genexpressionsprofil erfordert. Andererseits legt die 

Abwesenheit der "Missing Glomeromycota Core Genes" in diesem Transkriptom nahe, dass 

es einen gemeinsamen obligat symbiotischen Vorfahren gab, abhängig entweder von 

Cyanobakterien oder Algen. Im Zuge dieser Analyse wurden drei Transkripte identifiziert, die 

strukturell Ähnlichkeiten zu Genen aufweisen, welche für Amyloidproteinen kodieren, und 

vielversprechende Kandidaten für die funktionelle Charakterisierung darstellen. 

Der dritte Teil befasst sich mit der funktionellen Charakterisierung von Effektorkandidaten, 

die in Rhizophagus irregularis durch einen Genomvergleich identifiziert wurden. Unter 

Verwendung von "Host Induced Gene Silencing" wurde ein Kandidatengen herunterreguliert 

und zeigte in der Folge einen starken Phänotyp in Kolonisierung und der Form und Größe 

der Arbuskeln. Weitere Analysen zeigen, dass das von diesem Gen kodierte Protein an der 

Trehalose-Biosynthese beteiligt ist und kein Effektor ist. Der Phänotyp der Herunterregulation 

zeigt, dass die Trehalose-Biosynthese eine wichtige Rolle bei der Bildung oder 

Aufrechterhaltung einer funktionellen Symbiose spielt. 
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Zusammenfassend zeigt diese Arbeit die umfangreichen Möglichkeiten von “functional 

genomics” auf: Erstellung und Analyse vollständiger lückenloser Genome, Verwendung der 

gewonnenen Daten, um Kandidatengene für spezifische Funktionen zu finden, und 

funktionelle Charakterisierung dieser so identifizierten Gene in vitro. 
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1  Introduction 
1.1  Functional genomics 

Life is complex, but in the time of genomics, scientists have new possibilities to decipher it.  

There are millions of different species living on our planet. These range from as small as a 

fraction of a micrometer to as large as a 30-meter blue whale or even about 10 km2 clonal 

colonies of fungi1. These species range from unicellular to multicellular organisms with highly 

differentiated cell types. Despite their immense differences all living organisms have in 

common that their blue-prints are coded in DNA.  

Functional genomics is a field that emerged with the evolution of sequencing techniques and 

the generation of a big publicly available database of genome sequences and analysis tools. 

It is a collective approach to shed light on the connections between DNA, RNA, proteins and 

their biological function. 

In the classical candidate gene based approaches in biology, scientists focus mostly on only 

one gene or phenotype of a whole organism or ecosystem. These simple research 

approaches offer valuable results and have created huge amounts of knowledge in the past 

and present. The advantage of focusing on one gene or process is the possibility to 

formulate a sound hypothesis and the experiments are usually straightforward and offer clear 

results. On the other hand by focusing on only one gene/phenotype of a complex organism, 

important connections with other genes/processes may be neglected.  

Furthermore while it was formerly only feasible to sequence and analyze species from 

cultivation-based methods, now environmental samples can be sequenced from uncultivable 

or low abundant organisms. This enables us to identify new species and study these under 

natural conditions2. In functional genomics a lot of information can be deduced by 

comparison. Thereby it is possible to use the extensive knowledge base that was built up 

over decades of study on model organisms and specific genes, proteins and their functions 

using traditional methods. In studying microbes the term of a pan-genome was forged3. This 

includes the “core genome”, genes that are shared between all strains, the “dispensable 

genome”, shared by two or more strains, and “singleton genes”, unique to an individual 

strain3. For some bacterial species mathematical modeling showed that even after 

sequencing the genomes of hundreds or thousands of additional strains, novel unique genes 

will be discovered4.  

Similarly, with comparative genomics it is also possible to find core genes for a specific 

conserved function in different organisms with the same life-style. For example, Delaux et al. 
compared genomes and transcriptomes of arbuscular mycorrhiza (AM) host and non-host 

plant species in order to find presence or absence of known core symbiosis genes. Their 
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findings suggest that AM fungi shape the genome evolution of the host plants and the loss of 

AM symbiosis in different plant lineages leads to convergent modifications of their genomes5.  

Another part of functional genomics is phylogenomics, the study of evolutionary relationships 

based on genome-wide data. Resolving phylogenetic trees was for a long time based on 

morphology of species or multiple alignments of single genes (e.g. rRNA genes). 

Phylogenomics can make use of genome data that is nowadays vastly available; for example 

Spatafora and his collaborators thereby resolved the phylogenetic classification of 

zygomycete fungi. In this approach 46 fungal genomes were analyzed using profile hidden 

markov models of a pan-eukaryotic protein set. Instead of using alignments of single 

proteins, the single alignments were concatenated into a single super matrix alignment and 

analyzed6. The advantage of an approach like this is that single genes that may be outliers in 

their evolution are averaged by combining several conserved genes.  

The invention of new sequencing techniques together with the creation of higher computing 

capacity and applications to handle this big amount of data made all this new research 

possible.  

1.1.1  Evolut ion of sequencing techniques creates basis for functional 

genomics analyses 

In the beginnings of genome sequencing only a few organisms with small genomes and 

important model organisms were completely sequenced. These included between 1977 and 

2000 a lot of “firsts”: in 1977 the first ever DNA genome (bacteriophage PhiX174; genome 

size: ~5,375 bp)7, in 1995 the first prokaryote (Haemophilus influenza; genome size: 1.8 

Mb)8, in 1996 the first eukaryote (Saccharomyces cerevisiae; genome size: 12.1 Mb)9, in 

1998 the first animal (Caenorhabditis elegans; genome size: 97 Mb)10 and in 2000 the first 

plant (Arabidopsis thaliana; genome size: 115 Mb)11 were fully sequenced. 

One of the first large scale attempts of a holistic research approach was the human genome 

project. It was launched in 1990 and was the first initiative to sequence the complete human 

genome and the aim to deduce the function of all genes from this genetic information. In 

2003, more than 10 years after the start of the project, the compilation of genetic information 

of the human genome was finished at a cost of somewhere between $500 million and $1 

billion12. This project was mainly conducted with first generation sequencing techniques 

(Sanger), but during this time, research was conducted in order to improve old and invent 

new techniques13.  

Hand in hand with the improvements in micro-fabrication and high-resolution imaging, a 

stepping-stone was set for sequence-by-synthesis (SBS) based sequencing techniques. The 

so-called second generation sequencing (2ndGS, sometimes also called next generation 
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sequencing) techniques are mainly characterized by massively parallelized sequencing 

setups, thereby reducing time and cost per base sequenced. The cost of sequencing with 

these techniques was at $0.012 per Mb by July 2017. For the sequencing of a human 

genome, this would equate to $1,121 per genome14. 

The era of 2ndGS is mainly shaped by the sequencing platforms that are developed by 

Illumina (formerly Solexa). The technique used by Illumina relies on massively parallelized 

sequencing on a flow cell that is covered with a lawn of single stranded oligonucleotides. 

Single stranded DNA fragments that have adapters on both ends are distributed over this 

lawn. Here they can bind to the complementary oligo nucleotides, and are subsequently 

amplified via a solid phase (bridge) PCR. This results in clusters of DNA fragments of the 

same sequence on the flow cell. During the SBS step, fluorescently labeled dNTPs are 

incorporated. These dNTPs contain a terminator, so that the elongation process by 

polymerase is stopped after each incorporation event until the terminator is cleaved 

enzymatically. The fluorescent signal is documented in each cycle of incorporation (see Fig. 

1). Sequencing the DNA fragments from both sides allows paired end sequencing. Knowing 

the size of the fragments and the sequences on both ends is a great advantage for the 

assembly process. With the NovaSeq 6000 platform from Illumina, paired end read length of 

up to 2x150 bp are possible. One run takes 16-36 hours with the maximum output being 

6,000 Gb per run15 (see Table 1).  

More recently a third generation of sequencing (3rdGS) techniques has emerged. These 

techniques rely on the sequencing of single molecules (single molecule sequencing – SMS), 

which further reduces the time of library preparation and sequencing and removes any PCR 

biases from pre-sequencing PCR amplification steps. The two major players of 3rdGS are 

the single-molecule real-time (SMRT) technique developed by Pacific Biosciences, and 

nanopore sequencing developed by Oxford Nanopore Technologies. In SMRT technology 

the incorporation of single phospholinked dNTPs by polymerase is directly detected in a 

zero-mode waveguide. In contrast nanopore sequencing relies on the change of electric 

currents over a membrane. A nanopore is a very small hole with an inner diameter of about 1 

nm. This is at the same scale as the width of DNA strands. Protein nanopores are common 

in nature and can be genetically adjusted to fit the specific purposes for sequencing.  

The protein nanopores are placed into an electrically resistant polymer bilayer to which an 

electric field is applied and the characteristic nucleotide specific disruptions in the electric 

current are measured16,17 (see Fig. 1). Oxford Nanopore announced on their website that 

Martin Smith and collaborators from the Kinghorn centre for clinical genomics (Garvan 

institute for medical research) were able to sequence more than one million bases in one 

continuous read using this technology18. The average error rate of nanopore sequencing is 
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between 7-15%19. In this technique though, the base calling mistakes are unbiased and 

appear at random. This leads to a consensus accuracy of more than 99% by sequencing 

each molecule more than once (see Table 1).  

General advantages of the 3rdGS are long read length that can span several genes and also 

long repetitive regions. These are difficult to assemble with short reads from 2ndGS. 

Furthermore, there is no requirement of PCR amplification steps before sequencing thereby 

reducing introduced PCR biases. An additional advantage is that epigenetic modifications 
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like methylation of single bases or abasic sites can be detected through different changes in 

the ionic current during nanopore sequencing20,21. At present the long reads of 3rdGS are 

mainly used to guide de novo assembly of 2ndGS reads as scaffold. By combining the two 

methods gap-less genomes can be generated easily and repetitive regions can be 

deciphered.  

Table 1: Comparison of sequencing techniques. Sanger (1stGS), Illumina (2ndGS), SMRT and Nanopore 
(3rdGS) sequencing techniques19,22-26. 
 Read length 

[bp] 

Cost Run t ime Accuracy Other advantages/disadvantages 

Sanger 700  $2.3/Kb 1-3h 99.9% Impractical for whole genome 

sequencing 

I l lumina  2x50-600 $7-1,866 

/Gb 

4h-11d 75-

80%>Q30 

(>99.9%) 

Paired reads enable scaffolding 

PacBio 

(SMRT) 

10,000-12,000 $180-

300/Gb 

<6h 85-89% Accuracy of >99% when sequencing 

several passes of the same molecule; 

no PCR bias; reads spanning repetitive 

regions 

Nanopor

e 

MinION 

10,000 $170-

2,300/Gb 

1 min- 48 h 

(~10 Mb/h) 

85-93% Accuracy of up to 99.96% in consensus; 

no PCR bias; reads spanning repetitive 

regions 

1.1.2  Computing capacit ies and bioinformatics applications 

With the introduction of 2ndGS the capabilities of sequencing technology outcompeted the 

law of Moore regarding the price for sequencing. This law is usually addressed to computing 

capacity of microchips, which was predicted to double (measured by number of transistors 

per unit cost) approximately every two years27. The national human genome research 

institute (NHGRI) documented the costs of sequencing performed in their sequencing 

centers. With the introduction of 2ndGS in 2008 the cost of sequencing per Mb dropped 

drastically, from $102.13 in January 2008, to $0.52 two years later in January 2010 (see Fig. 

2)12. Accordingly instead of doubling, the capacity of sequencing (measured by Mb per cost 

unit) grew by a magnitude of about 200 in these two years.  

The advance in technology and reduction in cost per Mb (see Fig. 2, Table 1) resulted in a 

massive increase in sequencing data. Since 1982, the GenBank sequence database exists. 

By December 1982 only 606 (0.7 Mb) sequences were deposited in this database, but it has 

been growing ever since. In 1990 when the Basic Local Alignment Search Tool (BLAST)28 

was introduced, which can be used to search the database for similar sequences within 

seconds, there were already 41,057 (51.3 Mb) sequence entries. The number of bases in the 

database is doubling approximately every 18 months. And by April 2018 GenBank hosted 
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208.5 million sequences (260 Gb), and 2.8 Tb from whole genome sequencing (WGS) 

entries (see Fig. 2)29,30. By May 2018 a total of 79,448 genomes was sequenced and 

deposited at RefSeq, a non-redundant curated database. Of these publicly available 

genomes 50,406 are bacterial and 9,217 are fungal. This huge amount of data is publicly 

accessible allowing each researcher to search the database and compare the sequences 

they work on with already existing data.  

For handling of such amounts of data and for creating whole genomes from short sequences 

complex algorithms were developed. CLC Genomics Workbench (Qiagen), a program for 

analyzing genomics sequencing data, uses de Bruijn graphs31 to connect overlapping 

sequences by using sub-sequences of a certain length (“words”). With this algorithm it is 

difficult if not impossible to resolve repeat sequences that are longer than the used “words” or 

the sequence reads. This can be solved adding 3rdGS long sequencing reads as bridges on 

short read assembled repeat regions as for example with the command line program 

“Unicycler”32. 

After assembly a genome is nothing more than a succession of As, Cs, Gs and Ts. Only by 

running these sequences through an annotation process, the information about genes and 

their function can be deduced. For gene annotation the comparison of genomes and 
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transcriptomes of the same organisms can be of great support. Robust annotation can also 

be obtained by using BLAST based programs such as Blast2GO33 or online platforms such 

as MicroScope34 by comparison of unknown sequences to already annotated genes from 

other organisms in the database. More insight into the functional organization of an organism 

can be acquired by comparing the sequences to existing data-sets for certain functions such 

as the transporter classification database (TCDB)35 or the database for automated 

carbohydrate-active enzyme annotation (dbCAN)36. 
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1.2  Plant-Microbe symbioses – the art of thinking independently together 

A mutualistic symbiosis lifestyle describes the situation in which two organisms live together 

and each partner benefits from the other. When taking a closer look at the roots of a plant, 

we find a diverse community of organisms living in, on and around them (in the rhizosphere). 

Two key symbiotic players in the rhizosphere are mycorrhizal fungi and nitrogen-fixing 

bacteria.  

1.2.1  Root Nodule symbiosis 

During root nodule symbiosis (RNS) a group of diazotrophic bacteria known as Rhizobia 

colonize the roots of legume plants. Plants sense the presence of beneficial bacteria by 

detection of specific chemical compounds known as NOD factors, while the bacteria detect 

plant-secreted flavonoids. This specific cross talk is required for intracellular accommodation 

of the bacteria into plant roots. For the accommodation specialized organs, called nodules, 

are formed. Here, bidirectional nutrient exchange takes place between plants and bacteria37. 

The beneficial Rhizobia are able to fix atmospheric nitrogen and provide the plant with 

ammonia. In return the plant delivers carbon in the form of dicarboxylic acids to the 

bacteria38. However, this interaction is not always beneficial for the plant. So-called cheaters 

such as Rhizobium leguminosarum (Rl) Norway also exist39. These are bacteria that are able 

to initiate nodule formation and colonize them, but do not fix nitrogen. The genome 

organization of Rl is of one circular chromosome and several large plasmids. The number 

and size of the larger plasmids is varying between isolates40,41.  

1.2.2  Arbuscular mycorrhiza symbiosis  

1.2.2.1  Evolut ionary history 
Arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota6 engage in an 

endosymbiosis with more than 80% of all land plant species42, in total more than 200,000 

plant species out of 280,000 species43. Up to date, there are about 300 species known 

belonging to the phylum of Glomeromycota indicating a very wide host range for these 

fungi44. It is hypothesized that mycorrhizal fungi played a key role in the terrestrialization and 

true root development of plants45. When plants first came to land, the habitats were of poor 

soils and lacking water. Possibly AM fungi enabled plants to adapt to these harsh conditions 

from the former habitats in sea or freshwater. The emergence of land plants happened 

earlier than the oldest fossil evidence of fungal colonization available, but there is evidence of 

fossilized glomales-like fungal spores and hyphae from the Ordovician of Wisconsin (460 

million years ago (mya)). This supports the presence of mycorrhiza-like fungi at the time of 

land plant emergence46. Fossil evidence of fungi, which form arbuscule-like structures, exists 
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in land plants from the early Devonian period about 407 mya47 These early land colonizing 

plants were rootless, but it was shown that AMF are also capable of colonizing a great 

number of extant rootless hornworts48. Furthermore it was shown that key symbiotic genes 

(DMI1, DMI3, IPD3) that are required for mycorrhiza formation, are present in basal 

liverworts and hornworts and are able to rescue the respective mutants in Medicago 
truncatula49.  

The modern AMF are obligate symbionts and can’t complete their life cycle to form 

secondary fertile spores without a plant host50. AM symbiosis plays an important ecological 

role51. Many crop plants, like rice, maize, or soy can be colonized by AMF. The symbiosis 

increases crop yield and protects the plant from drought stress and some pathogens52,53. The 

plant alone is only able to take up nutrients from an area less than 1 cm around the root 

system54 (see Fig. 3). This area is called the root depletion zone as it is quickly deprived of 

nutrients. In symbiosis with a fungus though the nutrient uptake, mainly phosphate and 

nitrate, can take place via the fungal hyphae network that expands further into smaller soil 

pores. In turn the fungus receives photosynthetically fixed carbon in the form of sugars and 

lipids from the plant.  

1.2.2.2  Establ ishment of the symbiosis 
For the establishment of symbiosis, a crosstalk between the plant and the fungus takes 

place. Plant root exudates, containing strigolactones (SL) can trigger the germination of 

fungal spores and hyphal branching55. Also AM fungi send signals to the plant, collectively 

called Myc factors. A diffusible molecule was found that activates transcription of symbiosis 
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related genes in M. truncatula, when AM fungi are grown in vicinity of the plant but separated 

by a fungus-impenetrable membrane56.  

Plants detect invading species by the recognition of non-self molecules, which leads to the 

induction of a local and systemic immune response57. For the establishment of a successful 

symbiosis the symbiont must either evade the recognition by the immune system or must 

suppress the immune responses. Many fungi secrete so-called effector proteins, for immune 

suppression58. The presence of effector candidate genes in AM fungi suggests that effectors 

might be similarly employed by AM fungi59-61. The conservation of effector candidates 

between different fungal species in the Glomeromycota further indicates an important role for 

the establishment of symbiosis61. 

Based on structural similarity, it was postulated that AM effectors should be secreted and 

have one or more of the following characteristics: (1) nuclear localization signal (NLS), (2) be 

small and cysteine rich (SCR; less than 150 bp, cysteine content >3%), (3) be repeats 

containing (RCP)61. Recent genome and transcriptome analyses allowed the prediction of the 

effector repertoire of several AMF. In the closely related species Rhizophagus irregularis59,62 

and Rhizophagus clarus61, as well as in Gigaspora rosea60, a repertoire of secreted proteins 

was identified via in silico pipelines.  

So far only two effector proteins in AMF have been characterized in more detail. SP7 is a 

small, secreted protein that was identified in R. irregularis with an improved version of the 

yeast secretion sequence trap method63. Kloppholz et al. showed that SP7 is expressed in 

fungal tissue that is in contact with the plant and is localized to the nucleus when expressed 

in planta without the secretion signal. Furthermore SP7 suppressed defense responses 

associated with the plant protein ERF19, which is highly induced in the presence of the 

legume pathogen Colletotrichum trifolii63. The SL-induced putative secreted protein 1 (SIS1) 

in R. irregularis was identified in a screen of RNA-seq data of genes induced upon SL 

treatment or symbiosis. In a host induced gene silencing (HIGS; see Section 1.2.3, Fig. 6) 

approach, Tsuzuki et al. showed that downregulation of SIS1 expression leads to 

suppression of colonization and formation of stunted arbuscules64.  

After this presymbiotic stage, the fungal hyphae reach the plant root and form attachment 

structures, the so-called hyphopodia55. Four to five hours after hyphopodia formation, the 

plant cell actively forms a structure called prepenetration apparatus (PPA)50. During PPA 

formation the plant cell nucleus first moves to the expected point of fungal entry, and then 

moves ahead of the thick cytoplasmic bridge that is developing across the plant cell vacuole 

(see Fig. 3)65. Currently it is unknown if PPA formation is induced by any signal exchange. 

However, moving of the nucleus is also inducible by applying a needle to the epidermis, 

leading to nuclear movement towards the point of pressure application66. Nevertheless, the 
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disruption of gene expression of several plant symbiosis genes such as SYMRK or CCamK 

in L. japonicus (DMI2, DMI3 in M. truncatula respectively) leads to the abolishment of PPA 

formation65. Upon completion of PPA formation the fungal hyphae can enter the host cell and 

grow towards the inner cortex of the plant root65.  

Once the fungal hyphae reach the inner cortex, they start growing intercellularly in the 

apoplastic space along the longitudinal axis of the root67. Additionally, the fungus grows into 

the host cells of the inner cortex and starts forming hyper-branched structures, so-called 

arbuscules (from Latin ‘arbusculum’, meaning bush or little tree; see Fig. 3)68. The fungal 

hyphae branch repeatedly in a dichotomous manner, creating a very large symbiotic 

interface. On the plant side, the arbuscule is surrounded by the plant-derived periarbuscular 

membrane. Between plant and fungal plasma membrane is the periarbuscular space, formed 

mainly of plant cell wall components (e.g. cellulose, expansins, xyloglucans)69,70. The thick 

and rigid fungal cell wall surrounding the spores becomes thinner and thinner in the 

intracellular structures71. In the smallest arbuscular branches it is only a thin amorphous 

structure71. In this expanded symbiotic interface a number of membrane transporters can be 

found on the plant and the fungal side to facilitate the nutrient exchange72-75.  

1.2.2.3  Nutrient transport and transfer 
It is estimated that between 4% and 20% of the photoassimilates are transferred from the 

host to the fungus76,77. Within the plant, sucrose is transported via the phloem from the 

source tissues to the roots. Here, in the sink tissues, sucrose is converted to fructose and 

glucose by plant invertases78. Additionally, SWEET sugar exporters were characterized in 

potato and it was shown that they are differentially expressed upon AM colonization, 

suggesting a role in sugar transport towards the fungal partner79. SWEETs can transport 

sucrose to the periarbuscular space, where it is cleaved by cell wall bound invertases (see 

Fig. 4)78,80. On the other side of the periarbuscular space, two fungal monosaccharide 

transporters were so far identified. These are GpMST1, which transports glucose, mannose, 

galactose, and fructose with decreasing affinity81, and RiMST2 which is expressed in 

arbuscules and internal hyphae and able to transport glucose, xylose, mannose, and 

fructose75. In the fungus the imported hexoses are rapidly turned over to glycogen and 

trehalose, presumably to buffer the intracellular concentrations of glucose82,83.  

The gained carbohydrates are transported to the extraradical mycelium and growing hyphal 

tips84,85. In the extraradical hyphae glycogen can also be transformed to trehalose, a non-

reducing disaccharide consisting of two glucose moieties that are linked with an alpha,alpha-

1,1 bond. This sugar is present in AM fungal spores and was found to be the main storage 

sugar of AMF86. Additionally to sugars also lipids that are produced in the plant are 

transferred directly to the fungus as was shown in a recent study87. This is necessary, as 
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genomic mining of Glomeromycota genomes revealed that there is no de novo fatty acid 

synthase present in these fungi60,88,89. It was proposed that the transport of lipids towards the 

fungus is performed with the STR/STR2 complex in the plant membrane90. However so far 

this has not been experimentally verified (see Fig. 4).  

In the large underground network of AM symbiosis, which is connecting plants with the 

hyphal network, there is also nutrient transfer towards the plant. In rice plants that are 

colonized by AMF it was shown that about 70% of overall acquired phosphorus is coming 

over the fungal route91. There are a few characterized fungal phosphate transporters e.g. 

GvPT from Glomus versiforme74, GiPT from R. irregularis92, GmosPT from Glomus mossae93 

and GigmPT from Gigaspora margarita94. These transporters are expressed either in the 

extraradical mycelium and/or in arbuscules. Within the fungus poly-phosphate is transported 

from the extraradical hyphae to the arbuscules where inorganic phosphate is released and 

transported to the periarbuscular space. Also in the plant symbiosis-specific phosphate 

transporters exist, such as MtPT4 from Medicago truncatula73, LjPT4 from L. japonicus95 or 
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OsPT11 from Oryza sativa96. Through these transporters the plant can take up phosphate 

from the periarbuscular space.  

For the assimilation of the second major nutrient, nitrogen, the fungus can import nitrogen via 

amino acid permeases97 or ammonium transporters72,98,99. Most likely nitrogen is then 

translocated as arginine to the intraradical mycelium (IRM), where it is converted to 

ammonium via the urea cycle100,101. Ammonium transporters on the plant side of the 

symbiotic interface were shown to localize to the branch domain of the periarbuscular 

membrane. This indicates that the active transfer of ammonium is taking place in this 

area102,103. 

1.2.2.4  Sexuali ty of arbuscular mycorrhiza fungi 
All hyphae of AM fungi contain a common coenocytic cytoplasm that harbors thousands of 

nuclei and the propagation units, the spores, still contain hundreds of nuclei104. Sexual 

reproduction (i.e. karyogamy, meiosis) has never been observed, but the exchange of nuclei 

is possible through anastomosis (fusion of hyphae) between closely related strains105. The 

absence of sexual reproduction together with the long history of obligate biotrophy in which 

the genome of AM fungi stayed stable in the absence of selection imposes key questions106. 

One main question deals with genome organization of AM fungi. Are AM fungi heterokaryotic, 

meaning that they harbor genetically divergent nuclei in their cytoplasm thereby 

counteracting deleterious mutations in genes with copies of intact alleles present in 

alternative nuclei? Or are AM fungi homokaryotic with each hyphae containing genetically 

identical nuclei. A recent study showed that the size of single nuclei from different isolates 

suggests that their nuclei are haploid107. Single nucleotide polymorphism (SNP) analysis from 

genomic sequencing further suggests that some isolates contain two dominant divergent 

haploid nuclei (dikaryon), whilst others contain only one population of haploid nuclei 

(homokaryon)108.  

In several other genomic approaches a set of meiosis genes109, a vast expansion of high-

mobility group (HMG) coding genes110 and MAT-like mating type loci108 could be found in 

Glomeromycota species. HMG genes encode transcription factors known to be involved in 

mating of other fungi. These genes are usually found in the so-called mating type locus, 

together with e.g. homeodomain (HD), pheromones and pheromone receptor encoding 

genes111. Citing Riley et al. (2014): “ […] a fungal MAT locus is a genomic region found in 

most fungi that serves the common purpose of determining sexual compatibility between two 

individuals of outcrossing species, or a region required for sexual differentiation in self-fertile 

species”110.  

More recently a putative AMF mating-type locus was identified in R. irregularis108. This locus 

has two HD containing genes that are transcribed in opposite direction. Analysis of single 
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nuclei of different isolates showed that there are on the one hand dikaryon-like isolates 

containing two sets of nuclei with different alleles in this locus and on the other hand 

homokaryons, in which all nuclei contain the same alleles in this locus. Between the six 

isolates, five different sets of HD alleles were identified. Together, these findings suggest that 

these long thought ancient asexual organisms might well have some sort of cryptic sex or 

parasexual processes, which enables the exchange of genetic material between individuals.  

1.2.3  Two model systems, one symbiotic interface 

In this study two model systems were used for studying the symbiosis between a 

photoautotroph partner and a glomeromycotan fungus (see Fig. 5). These two model 

systems have certain similarities, but also differences that provide advantages for certain 

experimental setups. The first system is a symbiosis between Geosiphon pyriformis as fungal 

macro-symbiont with Nostoc punctiforme as cyanobacterial micro-symbiont. The second is 
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Rhizophagus irregularis as fungal micro-symbiont with Lotus japonicus as plant macro-

symbiont.  

G. pyriformis is a early diverging member of the Glomeromycota112. So far it has not been 

observed that this fungus is able to perform arbuscular mycorrhizal symbiosis with plant 

roots. However, a photosynthetic prokaryote is taken up by fungal hyphae via endocytosis, 

which subsequently swell and form so called “bladders”. These structures can grow up to two 

millimeters out of the soil. The engulfed cyanobacterial Nostoc filaments can grow and 

multiply in the bladders and can fix carbon photosynthetically113. In the classical AM 

symbiosis, which is performed by R. irregularis, the photosynthetic partner is the model 

legume L. japonicus. Here the micro- and macro-symbiont-roles are reversed and both 

partners are eukaryotes. Despite these differences, the symbiosis itself appears to be similar. 

The symbiotic interface in the Geosiphon-Nostoc symbiosis is built by the fungal plasma 

membrane, a thin and amorphous fungal cell wall that contains chitin, the Nostoc cell wall 

and the Nostoc plasma membrane. Also in the AM symbiosis the symbiotic interface is made 

of the fungal membrane, a thin fungal cell wall, a space containing plant cell wall components 

and the plant plasma membrane. In both types of symbiosis, this interface is structurally the 

same and the main point of nutrient exchange. Here the cyanobacteria, or the plant, trade the 

produced sugar for nutrients as phosphate and water. The striking similarity of this symbiotic 

interface suggests that many molecular aspects, e.g. transcription of symbiosis specific 

genes, must be the same in the early diverging glomeromycotan fungus Geosiphon and its 

relative Rhizophagus. For transcriptomic experiments however, it is difficult to retain pure 

fungal RNA from the symbiotic stage within the plant root in the case of R. irregularis. In the 

case of G. pyriformis, the fungal and bacterial transcripts can easily be separated, by taking 

advantage of the poly-adenilation of eukaryotic transcripts. A disadvantage of studying G. 
pyriformis is a current lack of cultured material and it also cannot be found any longer in its 

last known habitat (pers. communication Arthur Schüßler).  

1.2.3.1  Current cult ivat ion and experimental methods and avai lable data 
Due to the obligate biotrophic nature of AM fungi, cultivation always has to occur with a host 

plant in pots or with so-called root organ cultures (ROC) on plates. The latter system uses 

Agrobacterium rhizogenes transformed carrot (Daucus carota) or chicory (Cichorium intybus) 

roots and enables access to pure fungal material. As AM fungi have a coenocytic cytoplasm, 

containing thousands of nuclei, it is so far impossible to stably transform or create mutants of 

them.  

Lotus japonicus is a model legume plant that is used as a host to study the in vivo 

interactions between AM fungi and plants. In this system Agrobacterium rhizogenes 

mediated methods are available to transform host plant roots. Thereby it is possible to e.g. 
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overexpress putative fungal effector genes to study their function in planta on colonization 

levels or phenotypes. Also a method called host induced gene silencing (HIGS) has been 

described in two cases for studying the function of R. irregularis genes64,75. This method can 

be used to down-regulate fungal genes. The host roots are transformed with an RNAi 

construct that targets the fungal genes. This construct is transcribed and processed into 

small double stranded RNAs (dsRNAs) in planta and then translocated via an unknown 

process to the fungus at the interaction sites. In the fungus the targets are then silenced by 

the translocated dsRNAs (see Fig. 6).  

In order to functionally analyze fungal genes the use of heterologous systems is necessary. 

For cellular localization studies tobacco (Nicotiana benthamiana) leaves can be transiently 

transformed with the genes of interest fused to a fluorophore and analyzed by microscopy. 

Yeast mutants and expression strains offer a suitable system for functional characterization.  

The first glomeromycotan genome was published in 201359. This genome of the model 

fungus R. irregularis DAOM 197198 is 101 Mb big and contains 30,282 predicted genes. For 

the same fungal isolate also a sequenced transcriptome is available which is 20.3 Mb and 

contains 25,906 non redundant virtual transcripts (NRVTs)114. Furthermore two 

transcriptomes of Gigasporacea are sequenced and available, namely G. rosea (55.5 Mb, 
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86,332 NRVTs)60 and G. margarita (51.1 Mb, 86,108 NRVTs)89. For Rhizophagus clarus an 

effector candidate repertoire was predicted from a draft genome61. All of these available 

genome and transcriptome data can be used for comparison and function prediction in newly 

sequenced genomes and further for functional characterization of promising repertoires like 

the effector candidates.   
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1.3  Goals of the thesis 

In this thesis I present one example for each of the three stages of functional genomics: 

(1) Sequencing and assembly of a complete genome 

For the first part I used 2ndGS (Illumina) and 3rdGS (Nanopore) in order to sequence 

the genome of the bacterium Rhizobium leguminosarum Norway. Using a hybrid 

assembly algorithm, the sequencing reads of both techniques could be combined and 

resulted in a gap-less complete genome 

(2) Genome or transcriptome annotation and analysis 

In the second part the symbiotic transcriptome of Geosiphon pyriformis was analyzed 

and compared to already sequenced glomeromycotan transcriptomes. With these 

analyses a set of genes could be found that are promising candidates for future 

functional characterization.  

(3) Functional characterization of candidate genes in vivo and in heterologous systems 

The work of Sedzielewska Toro et al. was used as a basis for the third part. Here the 

genomes of Rhizophagus clarus and Rhizophagus irregularis have been used to 

identify conserved fungal effectors. Several of these were further functionally 

characterized, resulting in a deeper insight into fungal trehalose metabolism.  
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2  Results 
2.1  Assembly and annotation of the Rhizobium leguminosarum  Norway 

genome 

Rhizobium leguminosarum (Rl) Norway was identified as a so-called “cheater” strain, 

inducing ineffective nodules on a wide range of hosts, i.e. nodules in which little or no 

nitrogen fixation occurs39. To investigate the basis of this phenotype, a whole genome 

Illumina sequencing approach had been conducted (about 15 million paired 150 bp reads), 

resulting in an assembly with a total length of 7,765,030 bp in 83 contigs, with an average 

coverage of 309x (pers. communication, Macarena Marín). This amount of contigs is quite 

common for bacterial genomes assembled from the comparably short Illumina sequencing 

reads, due to unresolved regions likely from repetitive sections including repeats, 

pseudogenes, transposable elements, or rRNAs.  

In order to obtain a complete gap-less genome of this strain, additional long-read 3rdGS was 

performed with Oxford Nanopore MinION. This resulted in an additional 180,000 long 

Nanopore reads with an average length of about 6,000 bp. The command line program 

Unicycler was used to perform a hybrid assembly of these reads together with the above-

mentioned Illumina reads. Unicycler first uses the SPAdes algorithm to create a short read 

assembly of the provided Illumina reads. A range of k-mers (“words”) is used to identify the 

best assembly with the lowest number of contigs (here: 194) and dead ends (here: 22) (see 

Table 2, Fig. 7a).  

Table 2: SPAdes assembly of short reads with different K-mer length. The score function is 
1/(c*(d+2)), where c is the contig count and d is the dead end count. 

With this primary assembly Unicycler performed various cleaning procedures to remove 

overlaps and simplify the structure (see Fig. 7b). The long sequencing reads (Nanopore) 

where subsequently used for bridging to resolve repeat regions (see Fig. 7c). For the final 

polishing of the genome, all short reads were mapped against the bridged assembly (see 

K-mer Contigs Dead ends Score 

27   Too complex 

47 938 39 2.60x10-5 

63 446 22 9.34x10-5 

77 326 22 1.28x10-4 

89 269 22 1.55x10-4 

99 227 22 1.84x10-4 

107 215 22 1.94x10-4 

115 203 22 2.05x10-4 

121 197 22 2.12x10-4 

127 194 22 2.15x10-4 ß best 
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Fig. 7d). This removes errors that may have been introduced by less accurate long reads. 

Using Unicycler the start position of the circular contigs were defined by searching for a 

starting gene (dnaA or repA) and rotating the contig to start with that gene on the forward 

strand (see Fig. 7e).  

This hybrid assembly approach resulted in the complete gap-less genome of Rl Norway of 

7,788,085 bp (average base coverage of 380x), distributed on a circular chromosome 

containing 63% of the genomic information and five large circular plasmids ranging from 280-

1,098 Kb (see Fig. S1). The annotation of the complete genome was performed using the 

online tool MicroScope34. 
Table 3: Genome statist ics of Rl  Norway. 

The chromosome contains three identical rRNA operons and 54 tRNA genes, none of which 

is found on any of the five plasmids (see Table 3 and Fig. S1). In total 7,866 protein-encoding 

genes were identified. BUSCO analysis115 confirmed complete presence of the core bacteria 

dataset, which consists of 148 genes. All genes from the BUSCO core bacteria dataset are 

located to the chromosome, with only few additional gene duplications on the plasmid 

replicons. 6,016 of the protein coding genes have a functional class description (COG). Most 

are of the class “general function prediction only” (11.5%), followed by “amino acid transport 

and metabolism” (10.6%) and “carbohydrate transport and metabolism” (9.0%). The six 

replicons have a comparable mix of functional classes (see Fig. 8a).  

For genome comparison R. leguminosarum bv. viciae 3841 (Rlv 3841) was used, a well 

characterized nitrogen fixing Rl strain. The genomes of Rl Norway and Rlv 3841 have a very 

similar relative occurrence of genes encoding functional proteins (see Fig. 8b). Rl Norway  

contains more protein encoding genes than Rlv 3841 (7,866 vs. 7,263 genes), but the 

number of genes for which a functional annotation could be retrieved is almost identical 

(6,106 vs. 6,105 genes). The major difference is the number of functionally not classifiable 

genes (1,760 vs. 1,158 genes). 

Replicon Size 

[bp] 

GC 

content 

Protein 

encoding 

genes 

Proport ion 

coding 

sequences 

Mean 

protein 

length 

[aa] 

rRNA 

operons 

tRNA 

genes 

Chromosome 4,906,123 61.0% 5,045 87.6% 284 3 54 

pRLN1 1,098,158 60.5% 1,079 90.8% 308   

pRLN2 592,529 60.9% 595 88.9% 295   

pRLN3 557,386 57.4% 570 83.5% 272   

pRLN4 354,350 60.7% 312 89.0% 337   

pRLN5 279,539 61.3% 265 90.2% 317   

Total 7,788,085 60.3% 7,866 88.3% 302 3 54 
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Comparison of the replicons of Rl Norway and Rlv 3841 showed high similarity between the 

chromosomes of both strains, also large parts of pRLN1 and pRL12, pRLN2 and pRL11, 

pRLN4 and pRL9, and pRLN5 and pRL10 show similarities. pRLN3 does not show large 

segments similar to any of the replicons of Rlv 3841 (see Fig. 9). 

For genospecies classification, the Rl Norway genome was compared to representatives of 

the five proposed genospecies (gsA-gsE)116. The two highest average nucleotide identity 

(ANI) scores (Rl CC278f: 96.34%; Rl SM51: 95.59%) were found with members of the 

genospecies gsD. All other comparisons resulted in ANI scores below 95% (see Table 4). 

The ANI score between Rl Norway and Rlv 3841, which belongs to gsB, is only 93.26%.  

The nucleotide sequences of all replicons have been deposited at GenBank under the 

accession numbers CP025012-CP025017. 

Table4: Genome comparison of Rl  Norway with members of the f ive genospecies and respective 
ANI scores. 
 Norway vs One-way ANI 1 One-way ANI 2 Two-way ANI 

(gsA) WSM1325 93.45% 93.52% 93.70% 

gsB 3841 93.01% 93.06% 93.26% 

gsC TA1 93.75% 93.80% 93.94% 

gsD SM51 95.40% 95.40% 95.59% 

(gsD) CC278f 96.11% 96.19% 96.34% 

gsE 128C53 94.66% 94.75% 94.84% 
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2.2  Analysis of the Geosiphon pyri formis  symbiotic transcriptome 

2.2.1  Assembly of the G. pyri formis  transcriptome 

To obtain a G. pyriformis transcriptome, Illumina sequencing was performed on extracted 

cDNA inserts from a G. pyriformis expression library81, resulting in almost 100 million primary 

reads (see Fig. S2a). After quality trimming and removal of known contaminants the 

remaining ca. 62 million reads were assembled into 47,645 NRVTs (non-redundant virtual 

transcripts) with a minimum length of 200 bp. This initial assembly ("G. pyriformis before 

filtering"; average length: 985 nt; N50: 5,818 nt; GC content: 52%; total length: 46.9 Mb; 

average coverage: 137.5x) encompassed a total of 58,927,166 primary reads (see Fig. S2a). 

Blobplot analysis117 of the initial assembly revealed high contamination with sequences from 

other species, especially bacteria (see Fig. S2b). Subsequent filtering of NRVTs with best 

blastn28 hits under non-stringent conditions (e-value < 10) against archeabacteria, bacteria, 

plants, and viruses led to the removal of 23, 5,011, 610, and 62 NRVTs, respectively. The 

known Glomeromycota transcriptomes have a very low mean GC content of around 32% 

(see Table 5). Accordingly, 16,103 NRVTs with a GC content above 55% were also removed 

(see Methods). Later analyses revealed that 3,899 NRVTs with a GC content of about 40% 

belonged to three different repetitive primary transcripts from G. pyriformis (see below) and 

the associated primary reads were thus merged into three NRVTs. For the submission of the 

transcriptome data to NCBI all NRVTs shorter than 200 bp were removed and further NRVTs 
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identified by the automatic screening of NCBI upon upload had to be removed. Examination 

of the discarded NRVTs supported the elimination of mainly bacterial genomic sequences 

and artificially multiplied NRVTs from the G. pyriformis transcriptome (see Fig. S2c). 

After these filtering and removal steps a total of 17,604 NRVTs remained (average length: 

705 nt; N50: 1,110 nt; GC content: 41%; total length: 12.4 Mb; average coverage: 49x), 

encompassing around 33.5% of the primary cDNA library insert reads (see Fig. 10a).  

This Transcriptome Shotgun Assembly project has been deposited at DDBJ/EMBL/GenBank 

under the accession GGEK00000000. The version described in this work is the first version, 

GGEK01000000. 

In blobplot analysis, more than 90% of these NRVTs did not show similarity to known DNA 

sequences (blastn, e-value < 10) outside of the Glomeromycota (see Fig. S2d). Comparisons 

on the amino acid level using blastx28 revealed 64% NRVTs with matches against database 

sequences (e-value 1e-5), of which 8% were best hits to the R. irregularis genome59. All best 

matches are either to eukaryotic sequences or to sequences of unknown origin, indicating 

efficient removal of contaminating sequences of bacterial origin.  

In comparison to the other available glomeromycotan transcriptomes (see Table 5) a lower 

number of obtained NRVTs and accordingly a smaller total length is apparent. Furthermore 

G. pyriformis has a higher GC content (41% vs. 31-33%; Table 5), supporting the early 

divergence of other Glomeromycota and subsequent separate evolution.  

2.2.2  G. pyri formis  symbiotic transcriptome is val id for comparative analysis 

The completeness of the initial and the final G. pyriformis transcriptome assemblies were 

controlled by comparison against a set of 290 fungal BUSCOs115 in relation to the three 

published glomeromycotan transcriptomes (see Fig. 10b).  

In the original assembly before filtering (bf, 47,645 NRVTs) 181 complete BUSCOs could be 

identified; after filtering (af, 17,604 NRVTs) the number of complete BUSCOs was reduced to 
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159. Of these complete BUSCOs, the duplicated BUSCOs were reduced by 18 (bf: 27, af: 9), 

and there were only four less single-copy BUSCOs (bf: 154, af: 150). The number of missing 

BUSCOs increased from 32 to 50.  

In the R. irregularis transcriptome the number of complete and single-copy BUSCOs is 

comparable to that of G. pyriformis (154 vs. 150), but there are more fragmented and 

duplicated BUSCOs in R. irregularis (106 vs. 90), resulting in a lower number of missing 

BUSCOs (30 vs. 50). Both transcriptomes are not complete, when compared to the predicted 

complete R. irregularis transcriptome, although even here 9 BUSCOs are missing. The 

transcriptomes of G. rosea and G. margarita both appear to have a higher coverage of 

BUSCOs, but they also contain a much higher number of NRVTs.  

2.2.3  Allele frequency distr ibution of single nucleotide polymorphisms (SNPs) 

suggests homokaryosis 

To further establish the accuracy of the transcriptome and rule out increased numbers of 

sequence errors an analysis of SNP distribution was performed. These errors can originate 

from the amplification in E. coli, from PCR steps or by the sequencing itself.  

In the G. pyriformis transcriptome a frequency of 5.84 SNPs/Kb (72,468 SNPs in 6,656 

NRVTs) was identified. 3,246 NRVTs were highly polymorphic (> 10 SNPs; see Fig. S3a). 

The SNP allele frequency distribution with few NRVTs showing a frequency around 0.5 

indicates a homokaryotic genome organization (see Fig. S3b). G. pyriformis has a higher 

SNP frequency in comparison to other Glomeromycota, although it is still lower than the 

expected frequency for true heterokaryotic fungi (> 10 SNPs/Kb)118.  

2.2.4  KOG functional classif icat ion indicates l i fe style dif ferences to other 

Glomeromycota 

Comparison against the Refseq database revealed KOG functional classifications for only 

3,487 (19.9%) of the translated NRVTs (see Fig. S4a). Not surprisingly, when compared 

against sets of predicted fungal proteomes, conserved proteins with homologs present within 

Glomeromycota, Ascomycota, Basidiomycota, and Zygomycota show a much higher 

proportion of ortholog groups with KOG classification than Glomeromycota-specific proteins 

or proteins without known fungal homologs (49.3% vs. 5.4% vs. 2.0%). The KOG functional 

class distribution of G. pyriformis is quite distinct from other Glomeromycota (see Fig. 11a; 

Fig S3b) and much more similar to other fungi, independent of their life style, nicely illustrated 

by the results of a principal component analysis (see Fig. 11b; PC1 explaining 44.2% of 

variability, PC2 explaining 13.9% of variability, PC3 explaining 11.6% of variability). With 418 

NRVTs (12%) the most abundant KOG class is of “general function prediction only”, followed 

by “posttranslational modification, protein turnover, chaperones” (335 NRVTs, 9.6%) and 



Results 
 

 27 

“signal transduction mechanisms” (271 NRVTs, 7.8%) which is the most represented class in 

other glomeromycotan transcriptomes (26.3%). Another highly represented class in other 

glomeromycotan transcriptomes is “cell wall/membrane/envelope biogenesis” (7.2%), which 

is in G. pyriformis only represented by 1.6% of the classified NRVTs similarly to Asco-, 

Basidio- and Zygomycota (1.2%, 1.4%, 1.9% respectively).  
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2.2.5  The presence of meiosis-related genes is conserved among 

Glomeromycota 

Using a set of 86 fungal meiosis-related genes119, seven of which are meiosis-specific, a 

reciprocal blastx/tblastn search against the G. pyriformis transcriptome was performed. 57% 

of these genes are present (see Fig. 12, Table ES1), which is similar to the numbers 

identified in the transcriptomes of G. rosea60 and the genome of R. irregularis120. In 

comparison, in the R. irregularis transcriptome only 26% of the meiosis genes were found114. 

In the more complete G. margarita transcriptome 70% of the meiosis gene set could be 

identified.  

Of the seven meiosis-specific genes in this gene set, five (SPO11, DMC1, MSH5, HOP2, 

MND1) are present in the G. pyriformis transcriptome, and among the investigated 

transcriptomes only G. margarita contains all seven genes (additionally MSH4 and REC8). 

All seven are also present in the Rhizophagus genome but only two in the R. irregularis 

transcriptome.  

The G. pyriformis transcriptome was also searched for MATA-HMG genes and was able to 

identify 36 NRVTs with similarity (blastn, e-value < 1) to a set of 76 R. irregularis MATA-HMG 

genes (see Table S1)110. Although, compared to R. irregularis, G. pyriformis contains only 
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half as many of these genes, there is still an expansion of this group in comparison to other 

fungi, which contain a lot less (usually < 10) MATA-HMG genes110. 

2.2.6  Carbohydrate-active enzyme (CAZyme) prof i le suggests adaptation to 

symbiotic l i festyle 

A total of 72 NRVTs encoding for 42 CAZyme families were identified. These NRVTs 

included nine auxiliary activities (AA), seven carbohydrate-binding module (CBM), 17 

carbohydrate esterases (CE), 26 glycoside hydrolases (GH) and 16 glycosyl transferases 

(GT) (see Fig. 13, Table S2). As in the G. rosea60 and R. irregularis114 transcriptomes, no 

polysaccharide lyases (PL), were found. Of these NRVTs seven belong to families that are 

plant cell wall degrading (CE1, GH5, GH27, GH31), and 21 belong to chitin metabolism 

involved families (AA11, CBM18, CBM19, CBM50, CE4, GH16, GH18, GH23, GT2). 

Compared to G. rosea60, R. irregularis114 and G. margarita (CAZyme analysis in this work) 

the numbers of CAZymes relative to the number of NRVTs are comparable. In total though, 

there are much less CAZymes in G. pyriformis (72) compared to the other analyzed 

transcriptomes (G. margarita: 632, G. rosea: 293, R. irregularis: 94). The percentage of plant 

cell wall degrading (PCW) families is similarly low in all four fungi, whereas chitin metabolism 

is overrepresented in the G. pyriformis CAZyme families. A clear difference between G. 
pyriformis and the other Glomeromycota is visible in the GT family. About one third of the 

CAZymes that are not involved in chitin metabolism or PCW degradation in the other 

Glomeromycota belong to GT families. G. pyriformis has only about 12.5%.  
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2.2.7  Missing Glomeromycota Core Genes (MGCGs)  

A set of 39 missing glomeromycotan core genes (MGCGs)60 was analyzed for their presence 

in the G. pyriformis transcriptome. The loss of this MGCG set is conserved among 

glomeromycotan fungi and can be connected to the obligatory biotrophic life-style of these 

fungi. In G. pyriformis most of these genes were missing. In a first screen five NRVTs coding 

for genes in the MGCG set were identified. However, subsequent blastx of the respective 

NRVTs against the NCBI database revealed that four of these NRVTs are most probably 

bacterial contaminations. One NRVT had similarities to URE2, a gene coding for a nitrogen 

catabolism repression transcriptional regulator that was also found in the R. irregularis 

genome (see Table S3)60.  

2.2.8  The G. pyri formis  transporter repertoire 

In this analysis a total of 1,726 NRVTs that are putative transporters were identified with a 

reciprocal BLAST approach. Blastx of these putative transporters revealed that 287 of the 

NRVTs might be of bacterial/protiste/plant origin and had to be removed from the analysis. 

This leaves 1439 NRVTs coding for putative G. pyriformis transporters in 219 transporter 

families (see Table ES2). The most abundant transporter families are the nuclear pore 

complex (NPC) family, the domain of unknown function 3339 (DUF3339) family and the ATP-

binding cassette (ABC) superfamily. Performing this analysis with the same parameters also 

for the transcriptomes of G. margarita, G. rosea and R. irregularis resulted in 5194 NRVTs 

(229 families), 3307 NRVTs (259 families) and 2182 NRVTs (215 families) respectively. 

Also in G. margarita and R. irregularis the NPC family is the most abundant transporter 

family. Although the number of putative transporter NRVTs in G. pyriformis is lower than in 

the other glomeromycotan transcriptomes, compared to the total number of NRVTs in the 

transcriptomes, they have similar numbers. Also in regard to superfamilies, class and 

subclass of the transporters, G. pyriformis shows similar numbers as R. irregularis and G. 
margarita. The already published ammonium transporters (AMT1, AMT2, AMT3)121 as well 

as the monosaccharide transporter MST181 of G. pyriformis could be identified as well as an 

additional NRVT showing similarities to R. irregularis MST475 and NRVTs similar to 

Rhizophagus sp. phosphate transporters74,92,122 and aquaporins123.  

2.2.9  The G. pyri formis  repertoire of secreted proteins 

The complete transcriptome was searched for putative secreted proteins. Therefore the 

predicted protein sequences were analyzed for the presence of a secretion peptide in 

combination with the absence of a transmembrane helix. Only proteins strongly predicted to 

be located in the secretory pathway (parameter LOC = S and Reliability class = 1) were 
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included. Thereby 104 secreted candidate proteins were obtained. The respective NRVTs 

were analyzed by blastx against the non-redundant protein sequences (nr) database and 15 

sequences of possible bacterial origin were removed. In the remaining 89 sequences there 

are 17 with a KOG functional classification including predicted lipase, palmitoyl protein 

thioesterase, 5’-3’ exonuclease HKE1/RAT1 and carbonic anhydrase. None of the CAZymes 

are secreted (see Table ES3).  

2.2.10  Identi f icat ion of three repeat containing proteins - GpRICs 

In three of the secreted proteins 34% of the G. pyriformis insert reads were assembled. 

These proteins contain repeats and were therefore called “Repeat containing proteins In 

symbiosis with Cyanobacteria” (GpRIC1, GpRIC2, GpRIC3). 22.3% of G. pyriformis reads 

mapped to GpRIC1, 5.0% to GpRIC2 and 3.0% to GpRIC3. As the assembly of the 

transcriptome was performed with short reads, the assembly algorithm was challenged by 

these repeat-containing sequences. This resulted in several misassembled contigs (GpRIC1: 

3,587; GpRIC2: 171; GpRIC3: 141), containing stretches of GpRICs sequences.  

In order to determine the correct sequences of these sequences colony hybridization was 

performed on the original cDNA expression library. Clones of all three GpRICs could be 

identified through this approach and were sequenced using Sanger sequencing.  

GpRIC1 is 435 aa long and contains 6 repeats of 68 aa. All of the repeats are separated by 

KEX2 recognition sites. There are three sites in the repeats with only 50% conservation, 

three sites with 67% conservation and seven sites with 83% conservation. With 32.6% 
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Asparagine and 25.5% Glycine the protein is mostly neutral without any charges (see Fig. 

14). GpRIC2 is 456 aa long and contains three perfect repeats, separated by two KEX2 

recognition sites. The repeats are 145 aa (last repeat without KEX2 cleavage site 143 aa) 

long. Also GpRIC2 contains mainly neutral amino acids with 38.9% Asparagine and 23.3% 

Glycine. GpRIC3 is with 470 aa the longest GpRIC. This one has less regular repeats 

compared to the other two. In total there are 20 KEX2 recognition sites, dividing the protein 

into four different classes of peptides: (a) three repeats of 55-58 aa length, (b) six repeats of 

32-36 aa length, (c) eight peptides of 7 aa length that start with an aspartic acid (D) and a 

proline (P) and (d) three peptides of 3-5 aa length without similarity. The sequence of these 

peptides is “a-c-c-b-b-b-c-c-c-c-b-b-a-c-c-b-a-d-d-d”. GpRIC3 has a similar amino acid 

composition as the other two GpRICs with 33.5% asparagine and 21.9% glycine.  

The cDNA as well as protein sequences are deposited at GenBank under the accession 

numbers MH580277 (GpRIC1), MH580278 (GpRIC2) and MH580279 (GpRIC3). 
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2.3  Host induced gene si lencing of R. irregularis  candidate effector genes 

Up-to-date no in vivo methods are available for the transformation of glomeromycotan fungi. 

This makes the functional characterization of glomeromycotan genes difficult. The 

establishment of a method called host induced gene silencing (HIGS) could therefore offer a 

valuable tool for these species. In HIGS, roots of the host plant are transformed with an RNAi 

construct targeting fungal genes. Upon colonization, the processed dsRNA is translocated 

via an unknown process to the fungus, where the target genes are silenced (see Fig. 6).  

In order to establish this method in our lab, a set of putative fungal effector genes was 

chosen. These genes are conserved between R. irregularis and R. clarus, two closely related 

species of the Glomeromycota, which makes it likely that they might play an important role in 

symbiosis establishment and an effect could be observed upon downregulation. 

2.3.1  Expression of selected R. irregularis  effector genes in roots 

To demonstrate that HIGS is working in this context, the native amount of mRNA of the target 

gene must be detectable. Therefore the expression of 19 putative R. irregularis effector 

genes (pers. comm. K. Sedzielewska Toro) was analyzed via qRT-PCR in colonized carrot 

roots (continuous root organ culture; EX_25359, EX_27056, EX_54675, NLS_30765, 

NLS_334409, NLS_343100, NLS_7749/RiTSL1, NLS_98735, RCP_230436, RCP_335225, 

RCP_340423, RCP_84949) or in colonized L. japonicus roots (5 weeks post inoculation; 

NLS_26232, NLS_320155, NLS_32853, NLS_349288, RCP+NLS_349824, SCR_339199, 

SCR_343180). Three of them were later excluded from the set of putative effectors (EX_). 

The other effectors included nine candidates with a nuclear localization signal (NLS_), four 

genes coding for repeat-containing proteins (RCP_), two genes coding for small and cysteine 

rich effectors (SCR) and one with a NLS and coding for a RCP.  

The mean relative expression (normalized to Ri_β-Tubulin) of three biological replicates 

ranged between 0.0001 and 0.36 (see Fig. 15). The lowest expression was detected for 

EX_54675, which was later excluded from the effector candidates (pers. comm. K. 

Sedzielewska Toro). The effector candidate with the highest expression was 

RCP+NLS_349824, which contains repeats as well as an NLS. For some of the effector 

candidates the expression of the different biological replicates varied up to 28-fold 

(RCP_335225). Others also showed substantial variation between the biological replicates, 

e.g. EX_54675: 6.8-fold, NLS_334409: 7.2-fold, NLS_26232: 8.6-fold, SCR_339199: 14.4-

fold. On the other hand there are also effector candidates that are more similarly expressed 

in the different biological replicates, e.g. NLS_320155: 1.07-fold, RCP_230436: 1.14-fold, 

NLS_343100: 1.18-fold. The effector candidates for HIGS targets were chosen considering a 

well detectable expression level and variation between biological replicates being not higher 
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than 6-fold. These parameters should ascertain that a significant downregulation is 

measureable. 

2.3.2  Downregulat ion of one effector candidate out of eight effectors tested 

Eight of the aforementioned effector candidates were chosen as HIGS targets. For three 

(NLS_98735, RCP_340423, NLS_7749/RiTSL1) two target sites were selected. For all others 

only one target site was used. Usually in hairy root transformation experiments not the 

complete root system is transformed. Therefore GFP was used as a transformation marker in 

all experiments. In a first experiment (NLS_98735, RCP_340423, NLS_7749/RiTSL1), the 

GFP-positive (+) roots and GFP-negative (-) L. japonicus roots were separated upon 

harvesting and subsequently analyzed separately. Only for NLS_7749/RiTSL1 a significant 

downregulation (two-sided t-test: EV+/Target1+ p-value: 0.02, EV+/Target2+ p-value: 0.03) 

could be observed (see Fig. 16). All of the other eight targets on seven effector candidate 

genes that were tested showed no significant difference between the expression in HIGS and 

EV control roots. The lower expression of RiTSL1 in HIGS roots appeared not only in the 

GFP-positive roots, but also in the GFP-negative roots.  
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2.3.3  Lower root length colonization and small  arbuscules in RiTSL1  HIGS 

roots 

In the above mentioned hairy root experiment, in which a lower expression of RiTSL1 in 

HIGS roots as compared to the EV control roots was observed, also a lower root length 

colonization was detected (see Fig. 17a). The total root length colonization, as well as 

internal hyphae and vesicles, were significantly less in roots with a lower expression of 

RiTSL1. The root length colonization is correlated with the expression of RiTSL1 (see Fig. 

17b; correlation coefficient: 0.64; adjusted R-squared value: 0.33). Also the form of the 

arbuscules in this experiment differed. In HIGS roots the arbuscules appeared to be smaller 

and not cell filling (see Fig. 17c, representative picture from different experiment). 

Furthermore, known symbiosis induced plant genes (AMT2.2, Bcp1, PT4, SbtM1), were 

expressed at lower levels in HIGS roots, confirming the lower root length colonization (see 

Fig. 17d).  
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The homologues of RiTSL1 in yeast (ScTSL1, ScTPS3) are involved in trehalose 

biosynthesis, together with two other proteins (ScTPS1, ScTPS2), where these proteins form 

a complex124-126. Also in R. irregularis two additional genes were identified that code for 

homologues of the yeast proteins (see Section 2.4.1). Therefore the expression of these 

other two R. irregularis genes involved (RiTPS1 & RiTPS2) was analyzed as well. Also 

RiTPS1 was significantly lower expressed in GFP-positive RiTSL1-HIGS (transformed) roots 

compared to GFP-positive EV-control roots (untransformed). RiTPS2 showed more variation 

in expression between the biological replicates and expression was not significantly lower in 

HIGS roots (see Fig. 17e).  

2.3.4  Downregulat ion of RiTSL1 via HIGS not reproducible 

The results of downregulation of RiTSL1 and the respective phenotype in a first experiment 

(see above, Table 6 HR4) looked very promising. To quantify the reduced size arbuscules 

and for confirmation of the results, further experiments with the same experimental setup 

were performed. In the following six experiments no downregulation of RiTSL1 in HIGS roots 

as compared to EV control roots was observed. Also decrease in root length colonization and 

the stunted arbuscules were only observed in one further experiment (HR5; see Table 6). 

The detection of hairpin cDNA to confirm that the RNAi construct was expressed was 

successful in HR4 and two further experiments in which no downregulation was detected 

(see Table 6). One attempt to directly apply a dsRNA substrate to the fungus grown on plate 

with root organ culture (PIGS1) also didn’t result in downregulation of RiTSL1.  

Table 6: HIGS-RiTSL1 hairy root transformation experiments (HR) and one PIGS experiment 
with occurrence of downregulation of RiTSL1 and respective phenotypes. 

Experiment 

name 

Stunted 

arbuscules 

Decrease in root 

length 

colonization 

Downregulation of 

RiTSL1 

Detection of 

hairpin dsRNA 

HR4 Yes Yes Yes Yes 

HR5 Yes Yes No Yes 

HR6 NA No NA NA 

HR7 Yes No NA NA 

HR8 No No No NA 

HR11 NA NA No Yes 

HR14* NA No NA NA 

PIGS1 NA NA No NA 

*Instead of 35S promoter, UBQ10 promoter for transformation marker (GFP); NA: not available 
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2.3.5  Arbuscule size measurements show sl ight reduction of size in the 

morning 

The fact that the HIGS results were not reproducible can have two possible reasons. Either in 

the first experiment HIGS indeed worked and is not reproducible to some unknown factors, or 

HIGS didn’t work and the downregulation in the first experiment was due to some other 

circumstances. One possible reason for the different size and shape of arbuscules could be 

the different time of harvest of EV control and HIGS-RiTSL1 roots. Arbuscules are short-lived 

structures. Therefore a time course experiment was performed to identify changes in the 

arbuscules. R. irregularis was grown in pots with L. japonicus. 5.5 weeks past inoculation 

(wpi) the roots were harvested each 3 h within a period of 24 h (T1-T8; see Fig. 18). For 

each time point four biological replicates (pooled roots from one pot containing five plants 

and R. irregularis) were harvested. Overall root colonization varied between the biological 

replicates so that for some replicates only few arbuscules could be measured. For each 

biological replicate 10-29 arbuscules were measured, which equals to a total of 61-103 

arbuscules per time point. The average arbuscule size compared to the arbuscule containing 

plant cell varied between 46 and 66% amongst all biological replicates. The average size of 

all arbuscules in one time point was smallest in T2 with 52% and largest in T4 and T8 with 

58% and 59%, respectively. Multicomparison analysis showed that the size of arbuscules 

differs significantly between these time points (see Fig. 18).  

For the above-mentioned HIGS-experiment all roots were harvested during the light phase. 

In this phase the arbuscules have overall the same size, meaning the observed stunted 

arbuscules are not caused by different times of harvest. This offers strong support that the 

observed arbuscule phenotype in HIGS-RiTSL1 roots compared to EV control roots was 

indeed the effect of a successful downregulation of RiTSL1 expression. 
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2.3.6  Expression of RiTPS1 ,  RiTPS2  and RiTsl1  shows a sl ight diurnal rhythm 

in L. japonicus  roots  

From yeast it is known that TSL1 is involved in trehalose metabolism together with TPS1 and 

TPS2. Trehalose is a disaccharide that is used as a storage sugar in AM fungi. As sugar 

from the plant may not be available at the same concentrations over the course of the day, it 

is possible that these fungal genes are differentially expressed depending on the time of the 

day. 

A time course experiment was performed to show the expression profiles of trehalose 

biosynthesis genes of R. irregularis in order to determine if the observed downregulation of 
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RiTSL1 in HIGS-RiTSL1 roots was due to different harvesting times of EV control and HIGS-

RiTSL1 roots. 

The experiment was performed in vivo in colonized roots of L. japonicus. For each time point 

four biological replicates were analyzed. There is no significant difference between the 

different time points in the expression of RiTPS1, RiTPS2 and RiTSL1 (see Fig. 19). 

Nevertheless a slight trend of rhythmicity is observable, especially for the higher expressed 

RiTPS2. RiTPS2 mean relative expression values ranged between 1.25 in the morning (T2 & 

T3) to 2.52 in the evening (T7). The average expression of RiTPS2 over all time points is 

3.3x and 6x higher than that of RiTPS1 and RiTSL1, respectively. For these two genes the 

relative expression values range from 0.46 (T2) to 0.66 (T7) for RiTPS1 and from 0.26 (T1) to 

0.37 (T7) for RiTSL1.  

This slight rhythmicity of expression of trehalose biosynthesis genes coincides with the size 

of arbuscules. T2 was the time point with smallest arbuscule size and lowest expression of 

RiTPS1, RiTPS2 and RiTSL1. On the other hand the largest arbuscules were observed just 

after the highest expression of trehalose biosynthesis genes (T8 and T7 respectively). 

The changes of expression are not significant indicating that the significantly lower 

expression of RiTSL1 in HIGS-RiTSL1 roots is indeed the result of successful 

downregulation.  
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2.4  Trehalose metabolism in R. irregularis  

Even though the downregulation of RiTSL1 was not reproducible, the respective phenotype 

indicates an important role for RiTSL1 in the establishment or maintenance of AM symbiosis. 

Further experiments were conducted to investigate the function of RiTSL1 in R. irregularis. 

The sequence of RiTSL1 shows homology to trehalose biosynthesis genes in yeast. 

Therefore knowledge of this process in yeast was used to elucidate the function of RiTSL1 

and other trehalose biosynthesis genes in R. irregularis.  

2.4.1  Trehalose-biosynthesis proteins in R. irregularis  fa l l  into three clades of 

OtsA/OtsB pathway that are found in most fungi 

A common biosynthesis pathway for trehalose is the OtsA/OtsB pathway (see Fig. 20a), 

known from archaea, bacteria, plants, arthropods and fungi. This pathway is composed of 

two consecutive enzymatic reactions, which are catalyzed by trehalose-6-phosphate-

synthase (TPS) and trehalose-6-phosphate-phosphatase (TPP). In the first step a glucose 

moiety is transferred from UDP-glucose to glucose-6-phosphate by TPS. In the subsequent 

step trehalose-6-phosphate (T6P) is dephosphorylated by TPP to trehalose. Most fungi 

possess three enzymes that contain either a TPS, a TPP or both of the domains.  

Also in the genome of R. irregularis three sequences containing both of the conserved 

domains were identified (see Fig. 20b). All three genes were isolated from cDNA of L. 
japonicus roots colonized with R. irregularis.  

The gene encoding RiTPS1 has 7 exons and a coding sequence (CDS) of 2331 nt resulting 

in a 777 aa protein. The length of the CDS of RiTPS2 is also 2331 nt, but the gene contains 

12 exons. The CDS of RiTSL1 is the longest with 2568 nt with a resulting 856 aa protein. All 

of the three proteins contain both TPS and TPP domains. In the conserved domain database 

(CDD) of the National Center for Biotechnology Information (NCBI) the TPS domain is 

described to have 13 active site residues whereas the TPP domain has 25 active site 

residues. RiTPS1 and RiTPS2 contain all 13 active site residues of TPS whereas RiTSL1 

only contains 11. All 25 active site residues of TPP are present in RiTPS2 and RiTSL1, 

whereas RiTPS1 only contains 23.  

To find further indications, which of the three proteins are taking over the TPS or TPP 

function, a phylogenetic analysis of 156 proteins containing only the TPS, or both TPS and 

TPP domains was performed. The TPS domains of these proteins from 41 different fungi, 

three oomycetes and one chlorophyte were aligned to each other and a maximum-likelihood 

phylogeny was calculated. The phylogeny resulted in a tree with three distinct clades (see 

Fig. 20c) that were also described by Avonce et al.127 as Fungi A, Fungi B and Fungi C for 

enzymes with TPS function, only regulatory function, and TPP function respectively. The 
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clades were named in my analysis regarding the presence of the yeast proteins ScTPS1 

(TPS function), ScTPS2 (TPP function) and ScTPS3 & ScTSL1 (regulatory function). RiTPS1 

falls into one clade with ScTPS1, RiTPS2 with ScTPS2 and RiTSL1 with ScTPS3 & ScTSL1. 

This indicates that RiTPS1 might have TPS function, RiTPS2 might have TPP function and 

RiTSL1 might play a putative regulatory role in the process of trehalose biosynthesis.  

In these analyses a conserved N-terminal region was identified in the proteins of the Fungi B 

clade (see Fig. 21a). In 35 of the 45 analyzed regulatory proteins the first 17-23 aa 

(Ascomycota), or the first 28-29 aa (Basidiomycota, Glomeromycota) are highly conserved. 
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In most of the proteins of Basidiomycota (15 of 18) and Glomeromycota (2 of 2) and some of 

the Ascomycota (3 of 15) this region is furthermore predicted to be a signal peptide (SP). To 

test the functionality of the SP a yeast secretion trap assay was performed.  

In this assay an invertase-deficient yeast strain is unable to grow on medium containing 

sucrose as a sole carbon source. An expression vector containing a gene for the N-terminal 

fusion of the SP of interest to invertase is created. By transforming a vector containing a 

functional SP to the invertase-deficient yeast strain, growth on sucrose is reestablished, 

showing that the predicted SPs of the two glomeromycotan TSL1 proteins (R. irregularis: 

RiTSL1, R. clarus: RcTSL1) are functional in yeast (see Fig. 21b).  

2.4.2  Yeast complementation confirms TPS function of RiTPS1 and TPP 

function of RiTPS2  

To confirm that RiTPS1 has TPS function and RiTPS2 has TPP function, while RiTSL1 

doesn’t have either of these, yeast complementation assays were performed. The test 
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condition for haploid W303 tps1∆ mutants was growth on glucose. Yeast cells that are able 

to produce T6P can grow on medium in which the sole carbon source is glucose. Knockout 

mutants that are not able to produce T6P show no growth on this medium (see Fig. S5). 

Transforming tps1∆ mutants with an expression vector for RiTPS1 resulted in the same 

growth as tps1∆ mutants transformed with an expression vector for ScTPS1. Both show the 

same growth rates as the wild type cells (see Fig. 22a). Expression of RiTPS2 and RiTSL1 

couldn’t complement the function of ScTPS1.  

Yeast W303 tps2∆ mutants accumulate the intermediate compound T6P and are unable to 

react to certain abiotic stresses. These mutants were unable to grow at 37°C (see Fig. S5). 

Expression of RiTPS2 in tps2∆ rescued the growth at 37°C the same as expression of 

ScTPS2 in these mutants. The growth rate of complemented yeast was below the growth 

rate of wild type cells. tps2∆ expressing RiTPS1 or RiTSL1 could not grow at 37°C (see Fig. 

22b). 

In both assays RiTSL1 was expressed either as full-length protein or as –SP protein, missing 

the first 22 aa, which were predicted to be a signal peptide. This predicted SP of RiTSL1 is 

functional when fused to an invertase protein in yeast (see Fig. 21b, Section 2.4.1). 

Removing the predicted SP ensures that the protein stays inside the yeast cell, on the other 

hand a possible important function of the N-terminal could only be observed in the full length 

protein.  

The results confirm the function of RiTPS1 as TPS and of RiTPS2 as TPP. No function was 

observed for RiTSL1. 
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3  Discussion 
Functional genomics consists of three key stages: whole genome/transcriptome sequencing 

and assembly; annotation and comparative analysis of a whole genome/transcriptome; 

functional characterization of candidate genes found in whole genome/transcriptome 

analysis.  

With the rise of new sequencing technologies, the possibility emerged to obtain great 

amounts of accurate sequencing data. These data can help to understand organisms and 

ecosystems in a greater context and allow the comparison and deduction of information on a 

large scale. By finding commonalities or differences between closely related species (and 

also more distantly related species), conclusions about the evolutionary context and function 

can be drawn.  

A good example for this is the arbuscular mycorrhiza symbiosis. Even though important 

symbiosis genes have been identified, still relatively little is known about how these fungi 

interact with their host plants. By comparing large data of symbiotic plants, a symbiotic 

“toolkit” of plant genes was identified. Presence or absence of these genes in host and non-

host species led to the conclusion that the loss of AM symbiosis was followed in several 

cases to the loss of parts or the entire set of genes required for symbiosis5. In the same 

study they also compared which other genes are absent in non-hosts and present in hosts. 

Thereby sets of 175 M. truncatula and 167 Oryza sativa genes (65 shared between the two) 

were identified. These sets were enriched in already known symbiosis related genes and 

contain promising candidates for further functional characterization.  

In another example the analysis of large sequencing datasets of glomeromycotan fungi 

showed that there is a conserved meiosis machinery in all of these species109. With this 

knowledge new light is shone on the hypothesis of “ancient asexuality” in these fungi, and 

specific experiments can be planned to identify the distinct mechanisms of their sexuality.  

The long-term interaction between plants and AM fungi appears to follow similar rules in a 

large group of host plants42. This points to a more conserved effectome for the interaction 

with their hosts, in contrast to pathogenic microbes, where effectors are under high selective 

pressure as plant immunity is adapting128. 

By comparing the genomes of R. irregularis and R. clarus a set of conserved effector 

candidates was identified61. With this availability of a distinct set of genes, identified through 

genome-wide analyses, arises the opportunity to characterize these genes in more detail and 

find how plants and fungi communicate. 

In this study, the possibility of assembling a complete gap-less genome with the help of 

2ndGS short and 3rdGS long sequencing reads was tested on the example of a bacterial 

strain, R. leguminosarum Norway. Further the symbiotic transcriptome of G. pyriformis, as an 
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early diverging member of the Glomeromycota with a different symbiotic partner and life-

style, was analyzed in order to compare the expressed genes to other glomeromycotan fungi. 

Lastly a set of R. irregularis effector candidates, identified through a genome-wide screen, 

was used for functional characterization, leading to insights on fungal trehalose metabolism.  
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3.1  Assembly of the complete and gap-less genome of R. leguminosarum  

Norway 

With 2ndGS short sequencing reads a lot of data were produced over the years. However, 

assemblies of the relatively short sequencing reads are challenging and the resulting 

genomes are often fragmented. This was also the case for the assembly of the Rl Norway 

genome performed with CLC Genomics Workbench (Qiagen) from about 15 million Illumina 

reads. The resulting genome had a length of 7,765,030 bp scattered on 83 contigs. The high 

amount of contigs is a problem of resolving sequence conflicts, which especially occurs in 

regions containing repeat sequences, pseudogenes, transposable elements, rRNA, LTR 

retrotransposons, or telomeres. 

Here it is shown that with the combination of 2ndGS (Illumina) and 3rdGS (MinION) 

techniques the assembly of a complete gap-less genome of Rl Norway was possible. Within 

the Unicycler program, which was used for performing the complete assembly, several sub-

processes give an insight on the advantage of using reads from both of these sequencing 

technologies. In the first sub-process only short reads from Illumina sequencing were used to 

create an assembly. Fig. 7a shows that this assembly with 194 contigs and 22 dead ends still 

has many unresolved regions, even more than the assembly done in CLC Genomics 

Workbench. Just by taking one step further and using the long reads from Nanopore 

sequencing, all of these regions could be resolved and resulted in six circular replicons, one 

chromosome and five large plasmids (see Fig. 7e). In comparison with the original CLC-

assembly this hybrid assembly is only about 23,000 bp larger. However, instead of a 

distribution on 83 contigs, now the assembly is arranged on the six complete circular 

replicons, giving a complete picture of the genome.  

That a combination of long and short reads increases the assembly quality greatly, even 

though the single long reads have high error rates was also demonstrated by Goodwin and 

colleagues. They therefore implemented a hybrid error correction for Nanopore long reads, 

similar to error correction pipelines for SMRT sequencing reads129. With this technique they  

showed for the S. cerevisiae genome that the assembly with Nanopore reads leads to greatly 

increased N50 values and is more contiguous across the entire size spectrum and across 

problematic regions than an Illumina-only assembly130. The possibility of having high quality, 

(close to) gap-less genomes opens many doors for research especially in non-coding and 

repetitive regions. Also for the research on AM fungi this technique is promising as here 

many assumptions are made on the basis of absence genes. With an estimated size of ~150 

Mb the genome of the model AM fungus R. irregularis is almost 20 times larger than that of 

Rl Norway. Complete and gap-less genome assemblies are more difficult with that size, but 
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improvements especially in repetitive regions, or regions with duplicated genes are to be 

expected.  
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3.2  Data-mining on the G. pyri formis  symbiotic transcriptome reveals 

common evolut ionary origin and special adaptations in glomeromycotan 

symbioses 

G. pyriformis poses a model system for an early diverging glomeromycotan fungus that lives 

in symbiosis with the cyanobacterium N. punctiforme. Compared to other Glomeromycota it 

has a symbiotic partner from a different kingdom (bacteria vs. plant) and it has a quite 

different life-style. In this symbiosis the fungus seems to be in control over the bacterial 

symbiotic partner, whereas in other Glomeromycota the plant seems to be in control over the 

fungus inside its roots131. The exchange of nutrients though appears to happen in the same 

way via a symbiotic interface harboring membrane transporters on each side. The 

comparison of G. pyriformis and other glomeromycotan fungi on a transcriptome level offers 

the opportunity to identify evolutionary changes for the adaptation to different hosts. Due to 

the nature of this symbiosis it was possible to construct a cDNA library of symbiotic fungal 

transcripts, removing bacterial transcripts by taking advantage of the lack of 

polyadenylation81.  

The analysis of a whole transcriptome opens up possibilities to find new important symbiosis 

genes and make large-scale comparisons between similar, but also more divergent 

organisms. In this work it was possible to sequence the transcriptome of G. pyriformis 

bladders, the symbiotic organs. Although the preparation of the cDNA library contained a 

step using poly-T primers, in order to only select eukaryotic sequences81, the original 

assembly contained many bacterial sequences. In the work of Holger Martin, who prepared 

the original cDNA library, 56 clones of the cDNA library were sequenced. Out of these 56 

clones, six didn’t show homology to any eukaryotic genes using BLAST (best hit)132. About 

the same amount of bacterial sequences (~10.5%) in the present assembly of Illumina 

sequencing reads was found. The high contamination rate is most likely due to non-sterile 

culturing conditions of the original G. pyriformis culture used for cDNA library construction. 

Together with non-specific binding of poly-T primers in the cDNA library construction this can 

be the origin of contaminations. Nevertheless, after filtering and removing contaminant 

sequences, a transcriptome comprising 17,604 NRVTs (average length: 705 nt; N50: 1,110 

nt; GC content: 41%; total length: 12.4 Mb; average coverage: 49x) could be generated, 

encompassing around 33.5% of the primary cDNA library insert reads (see Fig. 10a). In 

blobplot analysis, more than 90% of these NRTVs did not show similarity to known DNA 

sequences (blastn, e-value < 10; see Fig. S2d). Comparisons on amino acid level using 

blastx28 revealed 64% NRVTs with matches against database sequences (e-value 1e-5), of 

which 8% were best hits to the genome of R. irregularis. All best matches are either to 
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eukaryotic sequences or to sequences of unknown origin, indicating efficient removal of 

contaminating sequences of bacterial origin.  

In comparison to other available glomeromycotan transcriptomes (Table 5) a lower number of 

obtained NRVTs and accordingly a smaller total length is apparent. This could be a 

consequence of lower starting material complexity: the G. pyriformis cDNA library was 

constructed from symbiotic bladders with some attached hyphae. In contrast the R. 
irregularis114, G. rosea60, and G. margarita89 transcriptomes originate from a mix of different 

morphological structures, resulting in a larger variety of expressed genes. Interestingly, the 

G. pyriformis transcriptome has a higher GC content than the other Glomeromycota (41% vs. 

31-33%; Table 5). At present, without access to more glomeromycotan genomes and 

transcriptomes, it is unclear whether this is a sign of relative phylogenetic distance or a 

consequence of differences in symbiotic life style. 
 
A good measure for the completeness of a newly sequenced genome or transcriptome is the 

BUSCO115 assessment. In this analysis, a set of 290 core fungal genes was checked for 

presence in the assembled data. This analysis does not only provide an idea about 

completeness, but also about how much duplication or fragmentation is present in the 

assembly. In order to validate the filtering steps to remove contaminant NRVTs, the BUSCO 

results of the final transcriptome and the original assembly were compared. There was a 

slight increase in missing BUSCOs and no change in the fragmentation. Although there are 

less complete BUSCOs after filtering, most of them were duplicated in the original assembly. 

This indicates that the stringent filtering conditions did not result in a significant loss of G. 
pyriformis transcriptome sequences. 

In the R. irregularis transcriptome the number of complete and single-copy BUSCOs is 

comparable to that of G. pyriformis (154 vs. 150). However, there are more fragmented and 

duplicated BUSCOs in R. irregularis (106 vs. 90), resulting in a lower number of missing 

BUSCOs (30 vs. 50). The comparable completeness between the G. pyriformis and R. 
irregularis transcriptomes is surprising given the fact that the former contains 31% less 

NRVTs and has a 38% shorter total length (see Table 5). This further supports the 

hypothesis that the differences may concern differentially rather than constitutively 

transcribed genes. Both transcriptomes are not complete, as can be seen in comparison to 

the predicted complete R. irregularis transcriptome, although even here 9 BUSCOs are 

missing. The transcriptomes of G. rosea and G. margarita both appear to be more complete. 

However they also contain a much larger number of NRVTs. This is probably due to 

incomplete assembling of redundant transcripts, gene duplication, or expansion of gene 
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families60. The high number of duplicated BUSCOs in the G. margarita transcriptome would 

support the hypothesis at least for this species (see Fig. 10b).  

 

The quality of the G. pyriformis transcriptome is remarkable considering the nature of the 

starting material and confirms the validity of the dataset for further analysis. However taking 

into account the low sampling complexity, absence of genes in the G. pyriformis 

transcriptome that are differentially expressed in other species does not necessarily indicate 

absence in the genome itself. This should not be the case for genes encoding enzymes 

involved in general biosynthetic pathways. Construction of the cDNA library involved removal 

of transcripts smaller than 600 bp and a PCR amplification step81,132, which might have 

introduced single nucleotide changes by polymerization errors. Also, quantitative data may 

include possible amplification biases in the PCR as well as during amplification in E. coli. The 

final assembly of 17,604 NRVTs can be considered to be a conservative estimation of the G. 
pyriformis transcriptome present in the cDNA expression library.  
 
The genome organization of Glomeromycota has been a thoroughly debated subject133-135. 

Early studies showed a high degree of polymorphism in coding regions of certain genes in 

clonally grown isolates and it was proposed that the multinucleate organization in these fungi 

helps to cope with mutations in individual nuclei. However, more recent studies applying 

whole genome/transcriptome and single nucleus sequencing revealed low SNP frequencies 

with a range of 0.1-1 SNP/Kb106. In addition, one study analyzing single nuclei genomes from 

different R. irregularis isolates showed that some of them have SNP allele frequencies of 0.5, 

indicating a dikaryotic organization108.  

In the G. pyriformis transcriptome a frequency of 5.84 SNPs/Kb (72,468 SNPs in 6,656 

NRVTs) was identified (see Fig. S3a). 3,246 NRVTs were highly polymorphic (> 10 SNPs). 

The SNP allele frequency distribution indicates a homokaryotic genome organization (see 

Fig. S3b). G. pyriformis has a higher SNP frequency in comparison to other Glomeromycota, 

although it still is below the value of what would be expected for true heterokaryotic fungi (> 

10 SNPs/Kb) 118. The amplification and cloning steps during preparation of the cDNA library 

and the sequencing library before the final sequencing might have contributed to the larger 

SNPs number. For other Glomeromycota the possibility was proposed that the symbiosis 

with the plant host may have a regulatory effect on which nuclei to propagate and thereby on 

genome stability106,131. Such regulation would not be expected to happen in interaction with 

the cyanobacterial microsymbiont. 
 
Glomeromycota fungi are believed to be ancient asexuals136, because no sexual processes 

have ever been observed. The identification of meiosis-related genes120, a vast expansion of 
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mating-type high-mobility group (MATA-HMG) genes110, and the presence of different mating 

type loci encoding for homeodomain proteins137 in the genome of Glomeromycota suggest a 

form of cryptic sex for this phylum. An aim of this study was to investigate whether this 

potential is also present in G. pyriformis. Using a set of 86 fungal meiosis-related genes119, 

seven of which are meiosis-specific, a reciprocal blastx/tblastn search against the G. 
pyriformis transcriptome was performed. 57% of these genes are present (see Fig. 12; Table 

ES1), which is similar to the numbers identified in the transcriptomes of G. rosea60 and the 

genome of R. irregularis120. In comparison, in the R. irregularis transcriptome only 26% of the 

meiosis genes were found114. In the more complete G. margarita transcriptome 70% of the 

meiosis gene set could be identified.  

Of the seven meiosis-specific genes in this gene set, five (SPO11, DMC1, MSH5, HOP2, 

MND1) are present in the G. pyriformis transcriptome, and among the investigated 

transcriptomes only G. margarita contains all seven genes (additionally MSH4 and REC8). 

All seven are also present in the Rhizophagus genome but only two in the R. irregularis 

transcriptome. This suggests that the genes could also be present in the other genomes but 

are probably not sufficiently expressed in the tissues used for sampling.  

The G. pyriformis transcriptome was searched for MATA-HMG genes and it was possible to 

identify 36 NRVTs with similarity (blastn, e-value < 1) to a set of 76 R. irregularis MATA-HMG 

genes110. Although, compared to R. irregularis, G. pyriformis contains only half as many of 

these genes, there is still an expansion of this group in comparison to other fungi, which 

contain a lot less (usually < 10) MATA-HMG genes110. Together with the presence of 

meiosis-related genes this indicates that G. pyriformis might be able to perform sexual 

processes and that this ability is conserved among the Glomeromycota. 
 
A good starting point for transcriptome analyses is to predict biochemical functions to the 

proteins encoded by NRVTs. This is done by comparing the predicted protein sequences to 

sequences from other organisms with already known function. The database of eukaryotic 

orthologous groups (KOG) is a collection of functionally characterized and categorized 

protein sequences that can be used for this purpose. 

Comparison with the KOG database138 revealed KOG functional classifications for only 

19.9% of the translated NRVTs (see Fig. S4a). Not surprisingly, when compared to sets of 

predicted fungal proteomes, conserved proteins with homologs present within 

Glomeromycota, Ascomycota, Basidiomycota, and Zygomycota show a much higher 

proportion of ortholog groups with KOG classification than Glomeromycota-specific proteins 

or proteins without known fungal homologs (49.3% vs. 5.4% vs. 2.0%). Interestingly, the 

KOG functional class distribution of G. pyriformis is quite distinct from the other 
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Glomeromycota (see Fig 12a; Fig S3b). The main difference between other glomeromycotan 

fungi and G. pyriformis is found in “signal transduction mechanisms” and “cell 

wall/membrane/envelope biogenesis”. These two functional classes are highly represented in 

R. irregularis114, G. rosea60 and G. margarita possibly due to the adaptation to mycorrhizal 

symbioses, which involves intensive signaling processes60. As G. pyriformis is engulfing its 

bacterial microsymbiont, which subsequently has no other choice than to work in this new 

environment, it might not be necessary to exchange many signals. The overrepresentation of 

“cell wall/membrane/envelope biogenesis” in arbuscular mycorrhizal fungi is on par with 

arbuscule development. In this process a large membrane surface is built. In G. pyriformis on 

the other hand it is not necessary, as the symbiotic bladders do not comprise an equally vast 

enlargement of membranes. The overall distribution of NRVTs in the functional classes is 

much more similar to other fungi outside the Glomeromycota, independently of their life style 

(symbiotic, pathogenic, saprophytic). This is nicely illustrated by the results of a principal 

component analysis (see Fig. 11b).  

This difference indicates that the evolution of the symbiosis between Glomeromycota and 

plants went hand in hand with a major change in the expression profiles of distinct functional 

classes. Supporting this hypothesis, G. pyriformis, as an early diverging member of 

Glomeromycota and not engaging in arbuscular mycorrhiza symbiosis, did not go through the 

necessary adaptations and still has a similar functional class expression set-up as fungi from 

other clades. 
 
The set of missing glomeromycotan core genes, as proposed by Tang and colleagues60 is 

another example of the adaptations of glomeromycotan fungi to symbiosis. Many 

biosynthetic processes are no longer performed by the fungus, but by the plant. Therefore 

these fungi lost the ability to produce for example thiamine, or to do fatty acid de novo 

synthesis.  

Even in the early diverging member of this group, G. pyriformis, most of the genes of this set 

are missing. In a first screen five NRVTs coding for genes in the MGCG set were identified. 

Subsequent blastx against the NCBI database though revealed that four of these NRVTs are 

most probably bacterial contaminations that were not identified in the previous filtering steps 

based on blastn results. One NRVT had similarities to URE2, a nitrogen catabolism 

repression transcriptional regulator that was also found in R. irregularis60.  

These results suggest that the cyanobacterial symbiont took over all the necessary 

biosynthetic pathways known from plant - glomeromycotan fungi interactions. This indicates 

that dependency on a symbiotic partner must have developed before the split of G. pyriformis 

from the other Glomeromycota. Thus at some point a partner switch either from 
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cyanobacteria to green algae/plant, or the other way around probably has happened. Further 

indications for a possible partner switch are the close relationships of AM fungi in bryophytes 

with cyanobacteria. Here it was shown that when cyanobacteria are more abundant in the 

soil, AM fungi are less likely to associate with the hornwort as a symbiotic partner, possibly 

caused by a functional relationship between glomeromycotan fungi and cyanobacteria48. 
 
In several obligate biotrophic pathogenic and in mutualistic ectomycorrhizal and AM fungi 

plant-microbe interactions the repertoire of carbohydrate-active enzymes (CAZymes) is 

reduced60,114,139-142 compared to non-obligate phyto-pathogens143. These CAZymes are 

usually involved in degrading plant cell wall (PCW) polysaccharides and the reduced number 

of them likely prevents immune responses of the plant60,114,144. In the symbiotic bladders of G. 
pyriformis that were used in this study, the symbiosis does not involve a plant-partner but a 

cyanobacterial one. Therefore an even lower number would have been expected, 

considering that there are no PCW polysaccharides to degrade in the symbiotic bladders.  

A total of 72 NRVTs encoding for 42 CAZyme families were identified. As in the G. rosea60 

and R. irregularis114 transcriptomes, no polysaccharide lyases (PL), were found. Of these 72 

NRVTs seven belong to families that are plant cell wall degrading, and 21 belong to chitin 

metabolism involved families. Compared to G. rosea60, R. irregularis114 and G. margarita 

(CAZyme analysis in this work) the numbers of CAZymes relative to the number of NRVTs 

are comparable. In total though, there are much less CAZymes in G. pyriformis (72) 

compared to the other analyzed transcriptomes (G. margarita: 632, G. rosea: 293, R. 
irregularis: 94). The percentage of plant cell wall degrading families is similarly low in all four 

fungi, whereas chitin metabolism is overrepresented in the G. pyriformis CAZyme families. 

Plants are able to detect the fungal chitin oligosaccharides and subsequently activate their 

defense responses145,146. Since G. pyriformis does not interact with a plant host, chitin 

metabolism might be less restricted than in the other Glomeromycota.  

A clear difference between G. pyriformis and the other Glomeromycota is visible in the 

glycosyl transferase (GT) family. About one third of the CAZymes that are not involved in 

chitin metabolism or PCW degradation in the other Glomeromycota belong to GT families. G. 
pyriformis has only about 12.5%. GTs are enzymes that catalyze the glycosylation of 

proteins, which can be important for their secretion, stabilization or localization147. The low 

abundance of GTs in the G. pyriformis symbiosome could be due to its specific symbiotic life-

style. The control over the cyanobacterial partner may be the reason for less 

communication/secreted proteins from G. pyriformis, thereby less need for GTs. 

Furthermore also saprophytic fungi use CAZymes in order to degrade polysaccharides from 

the soil148. The low number of CAZymes in G. pyriformis therefore might also be an indication 
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for the adaptation to a symbiotic lifestyle in which additional carbohydrate nutrition from the 

soil is dispensable. 
 
The nutrient exchange between mutual symbiotic partners plays a key role in the 

establishment and maintenance of a successful relationship. In arbuscular mycorrhiza 

symbiosis the identification of transporters on the fungal (e.g. GiMST275, GigmPT94, 

GintAMT1, 2, 372,98,99) as well as on the plant side (e.g. SWEETs79, OsPT2, 6, 1196, 

LjAMT2;2149) is an indication of nutrient exchange at the interface between the two 

organisms. 

In G. pyriformis a symbiotic monosaccharide transporter (GpMST181) was identified. Also 

three ammonium transporters (GpAMT1, 2, 3121) were found, of which two (GpAMT1, 2) were 

localized to the plasma membrane in yeast and GpAMT3 was localized to the vacuolar 

membrane. Only GpAMT1 was able to complement an ammonium uptake deficient yeast 

mutant. Thus, nutrient exchange during the symbiosis likely occurs by similar means as 

between AM fungi and plants150.  

In this analysis using a reciprocal BLAST approach a total of 1726 NRVTs that are putative 

transporters could be identified. Blastx of these putative transporters revealed that 287 of the 

NRVTs might be of bacterial/protiste/plant origin and had to be removed from the analysis. 

This leaves 1439 NRVTs coding putative G. pyriformis transporters in 219 transporter 

families (see Table ES2). The most abundant transporter families are the nuclear pore 

complex (NPC) family, the domain of unknown function 3339 (DUF3339) family and the ATP-

binding cassette (ABC) superfamily. Performing this analysis using the same parameters for 

the transcriptomes of G. margarita, G. rosea and R. irregularis resulted in 5194 NRVTs (229 

families), 3307 NRVTs (259 families) and 2182 NRVTs (215 families) respectively. 

Also in G. margarita and R. irregularis the NPC family is the most abundant transporter 

family. The NPC family contains proteins that form the nuclear pores localized in the nuclear 

envelope and facilitate macromolecular transport in both directions151. It also plays an 

important role in many nuclear processes, for example gene activation and cell cycle 

regulation151. As the NPC is an integral part of a functioning nucleus, the presence of NRVTs 

coding for NPC proteins was expected. However the high amount of 135 NRVTs is 

surprising. It might be that this expansion of proteins with similarity to NPC proteins is 

actually due to a high similarity to protein kinases, which is the superfamily of NPCs.  

Although the number of putative transporter NRVTs in G. pyriformis is lower than in the other 

glomeromycotan transcriptomes, they have similar numbers when compared to the total 

number of NRVTs in the transcriptomes. Also in regard to superfamilies, class and subclass 

of the transporters, G. pyriformis shows similar numbers as R. irregularis and G. margarita. 
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The already published ammonium transporters (AMT1, AMT2, AMT3)121 as well as the 

monosaccharide transporter MST181 of G. pyriformis could be identified as well as an 

additional NRVT showing similarities to R. irregularis MST475 and NRVTs similar to 

Rhizophagus sp. phosphate transporters74,92,122 and aquaporins123. These results indicate 

that indeed the symbiotic interface between fungus and bacterium or fungus and plant 

requires a similar composition of the transporter repertoire as already proposed by Schüßler 

and colleagues81.  
 
The secretion of certain proteins is used as a tool by many pathogens, but also symbiotic 

fungi, to evade host immunity. The effector SP7 from R. irregularis is one of the few 

glomeromycotan secreted proteins already characterized. When expressed in planta, this 

protein is localized to the nucleus, where it can interact with ERF19, a protein that is usually 

highly expressed when the host is challenged by a pathogen. The interaction with ERF19 

counteracts the immune response of the plant and thereby facilitates fungal entry63. On the 

other hand fungal effectors that are secreted to their symbiotic partner may also activate 

certain cellular pathways in order to alter plant cell structure or function in a way beneficial for 

the fungus. 

In the Geosiphon-Nostoc symbiosis the fungus is the macrosymbiont and there is no need to 

counteract any plant immune response, as the photosynthetic microsymbiont is simply 

engulfed into the fungus. On the other hand effectors that activate biosynthesis pathways are 

expected to be present. Therefore a much lower number of secreted fungal proteins was 

expected, than in other fungi of the Glomeromycota. In the G. pyriformis transcriptome, 89 

putative secreted proteins were identified. In absolute numbers this is much less than in the 

G. rosea transcriptome and the R. irregularis genome (441 and 376 respectively)59,60. If 

compared to the transcriptome size, the relative numbers are similar to those in G. rosea 

(about 0.5% of all NRVTs). In the genome of the lichen-forming fungus Endocarpon pusillum 

135 secreted proteins were found, which is less than in the three in that study analyzed 

pathogenic fungi152. It is also less when compared to the other Glomeromycota analyzed in 

the present study. As in Geosiphon in this symbiosis the microsymbiont is a photosynthetic 

cyanobacterium (or alga). Other than in lichen, in the Geosiphon-Nostoc symbiosis the 

microsymbiont is engulfed in the fungus. Therefore the symbiosis with a macrosymbiont, a 

plant, could require more “crosstalk” between the two partners than the symbiosis with a 

unicellular, or even engulfed, photobiont. 

As of yet very little is known about fungal effectors. Unsurprisingly only for 17 of the 89 

NRVTs, KOG functional classes could be predicted (e.g. predicted lipase, palmitoyl protein 

thioesterase, 5’-3’ exonuclease HKE1/RAT1, carbonic anhydrase). Overall it is rather 
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unexpected that G. pyriformis in its symbiotic state is expressing so many genes coding for 

secreted proteins. This finding suggests that there might indeed be some signaling with the 

cyanobacteria or degradation of bacterial components in the perisymbiotic space. To 

elucidate this further, the predicted proteins would have to be characterized in detail.  
 
In the set of predicted secreted proteins three sequences were found, which have a very high 

sequencing coverage compared to the other NRVTs. Of all G. pyriformis reads 22.3%, 5.0% 

and 3.0% mapped to these three genes. BLAST analysis didn’t result in any known 

sequences on nucleotide level and only a few hits on protein level with hypothetical proteins 

and a maximum identity score of 52%.  

The most abundant of these proteins contains six almost identical amino acid repeats and 

was therefore named GpRIC1 (Repeat containing proteins In symbiosis with Cyanobacteria). 

As all three of them share certain characteristics, the other two were subsequently named 

GpRIC2 and GpRIC3. All three of these proteins harbor a secretion peptide, Kex2 recognition 

sites and a poly-A-tail. All of this indicates that they are not only secreted, but also cleaved 

into smaller peptides and that they are of eukaryotic origin and not from any contamination. 

Further, the three proteins show a very characteristic amino acid composition. With 22-26% 

glycine and 33-39% asparagine these proteins are mostly non-charged (neutral). This low 

complexity indicates that the proteins are disordered, and could be amyloid forming. Several 

online tools for prediction of protein disorder and aggregation support this (Globplot2153, 

pRANK154, Waltz155).  

Amyloids are proteins that can aggregate and form stable fibers with a cross β-sheet 

structure in which the β-strands run perpendicular to the fiber axis. These amyloids are 

insoluble and can be assembled and disassembled156. In humans they are often associated 

with neurodegenerative diseases, as Huntington’s, Alzheimer’s or Parkinson’s disease.  

Prions are a special kind of amyloids that are able to stimulate other prions in nonprion 

conformation to change into the prion conformation. In yeast this conformational change 

goes hand in hand with a change in phenotype, which can be inherited from mother to 

daughter cell157.  

In microorganisms there are also different classes of functional amyloids that can be 

cytotoxic but can also serve as support in biofilms or adhesins156. In fungi a form of amyloid 

proteins is known that enables aerial hyphae formation and is important for the transition of 

growth in a hydrophilic environment to growth in a hydrophobic environment (air)158. In the 

case of G. pyriformis there are several possible scenarios.  

First the localization of these secreted peptides is undetermined. As they have a secretion 

signal it is possible that they are secreted to the outside of the bladders, thereby building 



Discussion 
 

 59 

either a structural support or a water-repellent surface to enable these bladders to evade the 

soil and grow into the air.  

The second possibility is that they are secreted to the perisymbiotic space to build a matrix 

surrounding the cyanobacteria. These stable assemblies of peptides possibly create a firm 

structural support for the bladders, to keep cyanobacteria in the upper part of the bladders, or 

to prevent extensive growth and replication of the cyanobacteria. A less likely reason would 

be G. pyriformis providing these peptides as nutrition to the cyanobacteria. The 

cyanobacteria are photoautotroph and are not dependent on G. pyriformis for providing a 

carbon source. Also the cyanobacteria grow heterocysts inside the G. pyriformis bladders. 

Usually nitrogen is fixed in heterocysts, making the cyanobacteria thereby also independent 

regarding the nitrogen supply. 

It is further known from cyanobacteria that they are able to produce many different kinds of 

toxic compounds159. A less likely reason for the secretion of GpRICs by G. pyriformis is the 

counteraction of cyanotoxins as a filter for these toxins would have to be very specific and 

able to let other metabolites and nutrients pass.  

The identification of these promising genes demonstrates the power of functional genomics 

approaches. Further experiments to functionally characterize these genes could include 

heterologous expression in yeast in order determine if prions can be formed, which can be 

inherited or transmissible. Also the expression in E. coli could give insight to the possible 

amyloid fibril assembly and disassembly. Experiments including the combined expression of 

the three proteins or the shorter peptides can offer information, if all of them can act 

independently or if the formation of structures is dependent on a mix of two or all three of the 

GpRICs. For localization studies antibodies can be used in situ, although this option is only 

feasible if G. pyriformis can be isolated and grown in culture again. Elsewise the 

heterologous expression of these genes in pathogenic fungi could further give insights into a 

possible role in infection or control over the host.  
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3.3  Downregulat ion of RiTSL1 ,  a gene involved in trehalose biosynthesis 

In pathogenic as well as symbiotic microbes so called effector proteins play a crucial role in 

the successful infection of the host plant. Effectors are defined as “molecules that manipulate 

host cell structure and function, thereby facilitating infection (virulence factors or toxins) 

and/or triggering defense responses (avirulence factors or elicitors)”128. In plant pathogenic 

microbes already several effectors have been identified and characterized. Here there is a 

great selective pressure on the evolution and thereby diversification of effectors. The so-

called zig-zag-model describes this ongoing evolution, in which immunity mechanisms of the 

plant induce the evolution of pathogen effectors to the point that new plant immunity 

mechanisms have to evolve160. So-called microbial- or pathogen-associated molecular 

patterns (MAMPs or PAMPs) trigger the plant immune system, which in turn evolves PAMP-

triggered immunity (PTI) mechanisms to stop the pathogen from infection. To circumvent 

these mechanisms, the pathogen evolves effector molecules. In turn the plant evolves again 

mechanisms against the effect of these molecules. These stages alternate in an ongoing 

evolutionary process160.  

On the other hand in AM fungi the wide host range combined with similar infection 

mechanisms and structure suggest that effectors playing a fundamental role in the infection 

process are conserved between glomeromycotan species. This idea in mind Sedzielewska 

and Brachmann recently published the predicted effectome of R. clarus. They found a set of 

64 putative effector genes that is conserved between the R. clarus and R. irregularis 

genomes61.  

Thanks to recent whole genome/transcriptome sequencing projects for different 

glomeromycotan fungi there is a large amount of data available on putative effector 

proteins59,60. In the genome of R. irregularis 376 genes with signal peptide were identified, 79 

of which are induced in planta59 and in G. rosea 441 potential secreted proteins were found60. 

Despite the availability of candidate effectors, only two effector proteins were so far 

characterized in more detail in AM fungi (SP763 & SIS164, both in R. irregularis).  

As R. irregularis is a coenocytic fungus, containing thousands of nuclei in one common 

cytoplasm, there are as of yet no methods to transform this fungus or create mutants of it. 

Therefore for the functional characterization of effector candidates a “host induced gene 

silencing” (HIGS) approach was chosen. HIGS is a method in which the host plant is, in this 

case transiently, transformed with an RNAi construct targeting genes in the symbiotic 

partner75. In theory the primary, about 200 bp long, double stranded (ds) RNA is processed 

by Dicer in the plant host. This results in small dsRNAs that are about 21 bp long. By an 

unknown process these small dsRNAs are translocated to the fungal cytoplasm, where they 

are loaded into the AGO complex and the target mRNA transcripts are degraded (see Fig. 6). 
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In pathogens as the powdery mildew Blumeria graminis161 or the necrotrophic fungus 

Fusarium graminearum162 this method was shown to be very effective to identify proteins 

important for infection. In Fusarium it was also shown that direct application of a dsRNA to 

the pathogen on leaves targeting the three fungal cytochrome P450 lanosterol C14α-
demethylases showed inhibition of fungal growth163. 

In the present study a significant downregulation with an HIGS approach could be observed 

for the effector candidate NLS_7749/RiTSL1. The lower expression of RiTSL1 in HIGS roots 

appeared to be not only in the GFP-positive roots, but also in the GFP-negative roots of the 

same plants. The downregulation in GFP-positive roots as well as GFP-negative roots 

suggests that the RNAi effect is systemic, either via the plant, or via the fungus. Further 

experiments as for example split root setups or transformed and non transformed plants with 

one connecting fungal system in one pot would be necessary to confirm which systemic way 

is possible for the RNAi effect.  

In this successful experiment, in which a lower expression of RiTSL1 in HIGS roots as 

compared to the EV control roots was detected, also lower root length colonization was 

observed (see Fig. 18a). Furthermore the shape of arbuscules was abnormal and stunted 

(see Fig. 18c, representative picture from different experiment). Also known symbiosis 

induced plant genes (AMT2.2, Bcp1, PT4, SbtM1), were expressed at lower levels in HIGS 

roots, confirming the lower root length colonization (see Fig. 18d). These results indicate that 

RiTSL1 plays an important role in colonization.  

TSL1 is a gene involved in trehalose biosynthesis. Trehalose is a stable, nonreducing 

disaccharide composed of two glucose-moieties linked by an α,α-1,1-glycosidic bond. It can 

be found in most organisms except vertebrates and usually functions as an osmoprotectant, 

for protein and lipid bilayer stabilization, or as a storage sugar164,165. It was also shown that in 

many pathogenic fungi an intact trehalose biosynthesis pathway is important for virulence. 

For example in the leaf and glume blotch fungus Stagonospora nodorum the absence of 

TPS1 leads to smaller lesion size on leafs and reduced spore formation166.  

The other two fungal genes involved in this biosynthetic process (RiTPS1 & RiTPS2) were 

identified in R. irregularis and also analyzed in the HIGS experiment. The expression of 

RiTPS1 was significantly lower in GFP-positive RiTSL1-HIGS roots compared to GFP-

positive EV-control roots. RiTPS2 showed more variation in expression between the 

biological replicates and there was no significant lower expression in HIGS roots, although a 

trend is visible (see Fig. 18e). This implies that the three genes involved in trehalose 

biosynthesis are co-regulated. These results also suggest that, as in yeast, the proteins 

involved in trehalose biosynthesis might act closely together, or even form a complex. In this 
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case though it is quite unlikely that RiTSL1 is secreted towards the plant, whereas the other 

two players stay in the fungal cytoplasm (see below for further discussion).  

The results of downregulation of RiTSL1 in a first experiment (see above, Table 6, HR4) 

looked very promising. To quantify the reduced arbuscule size and for confirmation of the 

results, further experiments were performed. In the following six experiments though, no 

downregulation of RiTSL1 in HIGS roots as compared to EV control roots was observed. 

Also decrease in root length colonization and the stunted arbuscules were only observed in 

one further experiment (HR5; see Table 6). The experiments were set up in the same way 

with one difference: In the successful experiment HR4, EV roots and HIGS roots were 

harvested on subsequent days at different times and EV plants were watered the night 

before harvesting.  

In 1998 Schellenbaum et al. showed that mycorrhized maize plants that are exposed to a 12-

day drought treatment do not show a significant difference in root length colonization, and 

mycorrhizal structures were unchanged. The trehalose content though was much higher in 

drought-exposed plants compared to well-watered plants167. Shachar-Hill and colleagues 

showed that trehalose in mycorrhized roots is mainly produced by the fungus82. This 

indicates that the results of HR4 are not due to harvesting during drought stress. 
 
The question is: why can the results not be reproduced? Many unknown factors play a role in 

the setup of this experiment, and it is difficult to pin the reason to one of them. The hairpin 

dsRNA that is expressed in planta could be detected via PCR on the cDNA of HR4 and two 

experiments, where no downregulation could be shown (see Table 6). Possibilities are that 

the dsRNA was not processed into small dsRNAs in the plants, that the translocation process 

did not work efficiently, or that small dsRNAs could not be brought into vicinity to the target 

transcripts. Some of these possibilities would still be feasible to test. Small RNA extraction 

can be performed in order to show whether dsRNA is processed into small dsRNAs. The 

translocation of small RNAs into the fungus and whether the small dsRNAs get in contact 

with their mRNA target however seems difficult to prove.  

For eight further targets on seven additional effector candidates HIGS experiments were 

performed and none of them showed downregulation (see Fig. 16). Also in literature there 

are only two reports for a successful downregulation of R. irregularis genes, namely MST2 in 

201175 and SIS1 in 201664. For HIGS on the fungal MST2 the main differences are a slightly 

longer target region (300 bp vs. 200 bp), a different promoter (p35S vs. pLjUbi), a different 

plant host (Medicago truncatula vs. L. japonicus), and no off-target prediction75. Also for 

HIGS targeting SIS1 a slightly longer target region was used (330 bp vs. 200 bp); the same 

vector and plant host as for MST2 were used64.  
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As the expression of the hairpin construct was also detected in experiments without 

downregulation, the difference in promoter is unlikely to be the crucial point. A longer target 

region would lead to more small RNAs and a higher likelihood of the small RNAs to bind to 

the target mRNA. Also the plant host may play a role in transferring the small RNAs to the 

fungus, as it is unknown how this process works and it should be considered for future 

experiments. 
 
Even though the silencing effect mediated by HIGS could not be reproduced, the obvious 

phenotype of small and stunted arbuscules and reduced colonization that was observed in 

the first experiment led to the idea that RiTSL1, which plays a role in the fungal trehalose 

biosynthesis, may play an important role in the establishment and maintenance of the 

symbiosis. 

It was shown earlier that arbuscules are relatively short lived structures and can go from 

maturation to degeneration in as short as 24 h168. In the case of diurnal rhythmicity of 

maturation/degeneration cycles, the time of root harvesting for observation of arbuscule 

phenotype would need to be taken into consideration.  

In the present study the time of harvest for control and HIGS roots was not the same, 

therefore the changes in arbuscule size in wild type roots over the course of one day were 

analyzed. It could be shown that there is only slight but significant variation in the area of a 

plant cell that is filled by the arbuscule at different time points in one day. It was shown that 

arbuscules are slightly smaller in the morning time (end of dark phase/beginning of light 

phase, see Fig. 18).  

These results propose that for disruption of proteins with a very distinct phenotype such as 

above mentioned RiTSL1, but also plant proteins as MtSucS1169, MtRAM1170 or the fungal 

monosaccharide transporter MST275 the time of harvest will not change the outcome of the 

experiment. If on the other hand the observed phenotypes are rather subtle, the time of 

harvest should be taken into consideration carefully when planning the experiment. 

Most genes that were found to have an effect on arbuscule size or shape are involved in 

nutrient provision or exchange75,91,169,171-173. The observed smaller size of arbuscules in the 

morning might also be linked to nutrient exchange. Sugar production in plants is dependent 

on sunlight. During the day CO2 is photosynthetically fixed and excess sugar is stored in the 

leaves as starch. In the nighttime the starch is degraded and sucrose is released. In A. 
thaliana it was shown that in the late night phase there is a drop in sugar availability in the 

roots174. In L. japonicus colonized roots, this would mean that there are less 

monosaccharides from the plant available to the fungus. Therefore less glucose would be 

taken up into the fungal cytoplasm. Usually monosaccharides are quickly converted to 
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triacylglycerols (TAG), glycerol and trehalose to increase the sink strength for 

monosaccharides. For trehalose production, in the most common biosynthetic pathway two 

catalytic enzymes are important. TPS is producing the intermediate T6P and TPP 

subsequently dephosphorylates T6P to gain trehalose.  
 
In order to identify if the slight differences in arbuscule size are connected to the expression 

patterns of these trehalose biosynthesis genes in R. irregularis, they were analyzed over the 

course of one day. These analyses were also performed to elucidate whether possible 

fluctuations in sugar availability in L. japonicus roots, as in A. thaliana174, lead to a change in 

production of trehalose in R. irregularis. The expression of RiTPS2 is much higher than the 

expression of RiTPS1 and RiTSL1 during the whole day (see Fig. 19). This might lead to a 

shift in the T6P/trehalose ratio towards trehalose and remove T6P as fast as possible from 

the arbuscule. In plants it was shown that lower T6P levels are closely correlated with levels 

of sucrose. A decrease in T6P leads to an increase in sucrose and less conversion into 

storage products175. Since this process takes place in the fungus it is not known if it has a 

regulatory effect on the sucrose level in the plant. It is possible though that the immediate 

shift towards trehalose and no accumulation of T6P also increases the sink strength to make 

more sucrose available. Although there is no significant difference between the expression at 

the different time points, a clear trend of day-night rhythm is visible for RiTPS2 (see Fig. 19). 

The lowest expression was determined to be in the early morning. This low expression of 

RiTPS2 coincided with the smaller arbuscule size in the morning. These findings indicate that 

there is indeed a fluctuation of sugar availability in L. japonicus roots at different times of a 

day. These fluctuations would mean that R. irregularis also retrieves different amounts of 

carbon at different times of the day and thereby adapts the production of trehalose in the 

intraradical mycelium. As it was shown in RNAi plants of a symbiotic sucrose synthase169 and 

an experiment in which the expression of a fungal monosaccharide transporter was 

downregulated75, inhibition of sugar flow to the fungus results in a higher number of not fully 

developed or prematurely senescent arbuscules. In the normal case of day-night sugar 

fluctuations the arbuscules are probably not completely broken down, due to the fact that the 

differences in sugar availability are only slight and sugar flow towards the fungus is not 

completely at a halt.  
 
Avonce et al.127 showed that in bikonts (e.g. Rhizaria, Alveolates, Plants) and unikonts 

(Amoebozoa, Opisthokonts) there are three classes of TPS-TPP genes. The fusion of TPS 

and TPP domains into one gene probably already occurred in some bacterial and archaea 

groups. Here both domains in one fusion gene were still functional. Gene duplication events 

were proposed to have happened in the last eukaryotic common ancestor (LECA). Some 
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genes in unikonts (fungi) have lost the TPP domain127. In yeast the function of some of these 

proteins is known. ScTPS1 is performing the function of TPS and a deletion of this gene 

results in a growth defect on rapidly fermentable carbon sources like glucose due to an 

uncontrolled influx of glucose into glycolysis176. ScTPS2 is acting as TPP. The deletion of this 

gene results in the accumulation of T6P and subsequently in a defect in response to heat-

shock124. Normally trehalose plays an important role during abiotic stresses like heat, or salt 

stress due to its properties as a non-reducing sugar and osmoprotectant177. No enzymatic 

function was found for ScTSL1 and ScTPS3 and a regulatory function is proposed178.  

In R. irregularis three genes were identified, all of which contain both domains, TPS and 

TPP. The results of comparing the TPS domains of 156 proteins showed a clear clustering of 

the fungal proteins into three clades (see Fig. 20c). In Avonce et al.127 these three groups 

were described as Fungi A, Fungi B and Fungi C, containing proteins with TPS activity, 

regulatory function, and TPP activity, respectively. From the known functions of the yeast 

proteins the conclusions were drawn that RiTPS1 has TPS function, RiTPS2 has TPP 

function and RiTSL1 has neither TPS nor TPP function.  

In RiTSL1 a N-terminal region was identified that is conserved in many of the analyzed 

proteins in the Fungi B clade. This region is predicted to be a signal peptide in R. irregularis 

and most of the Basidiomycota, including saprophytes. It could be shown that the predicted 

signal peptides of RiTSL1 and RcTSL1 are indeed functional in a yeast secretion assay (see 

Fig. 21b). However, this alone does not yet prove that in the natural environment, i.e. R. 
irregularis, it is secreted and as well. The occurrence of the predicted SP also in 

saprophytes, which feed on dead plant material and have no need for secreted effectors 

targeting plant immunity or metabolism, speaks strongly against a putative role as an effector 

protein.  

The conservation of this N-terminal region in 35 of 45 proteins, and the fact that not all of 

them are predicted to be secreted, leads to the conclusion that this region may play some 

other important role. This could be in complex formation or regulation of trehalose 

biosynthesis.  

From the phylogenetic analysis the function of RiTPS1 (TPS), RiTPS2 (TPP) and RiTSL1 

(regulatory) can be hypothesized. Also the fact that in RiTPS1 and RiTPS2 all 13 active site 

residues of the TPS domain could be found and in RiTPS2 all 25 active site residues for the 

TPP domain could be found, gives a directive to their function. However also in RiTSL1 all 25 

active site residues for the TPP domain could be found, which might indicate a TPP function 

for this protein. Therefore the results of the phylogenetic analysis were confirmed by 

heterologous expression in yeast knockout mutants and complementation of the respective 

phenotypes.  
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The successful complementation of the growth defect on glucose of the yeast tps1∆ mutant 

when expressing RiTPS1 confirmed the expectations of this enzyme functioning as TPS (see 

Fig. 22a). Also the complementation of the heat intolerant phenotype in the yeast tps2∆ 

mutant with RiTPS2 confirmed the expected function as TPP (see Fig. 22b). The fact that 

RiTSL1 could neither complement the yeast tps1∆ nor the tps2∆ mutant leads to the 

conclusion that this protein in fact has no enzymatic function in trehalose biosynthesis and 

might play a regulatory role in R. irregularis such as ScTSL1 and ScTPS3 in yeast.  

In yeast it was shown that the trehalose biosynthesis proteins (ScTPS1, ScTPS2, ScTSL1, 

ScTPS3) form a complex. Also the deletion of all of the proteins in single or double, triple or 

quadruple mutants leads to a lower TPS activity in the exponential phase178. The co-

expression of RiTPS1, RiTPS2 and RiTsl1 in HIGS-RiTSL1 roots and in the time course 

experiment already give a hint that also in R. irregularis a complex is formed. To elucidate 

this possible complex-formation of the R. irregularis proteins, yeast-two-hybrid experiments 

can be performed.  
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3.4  Concluding remarks 

In this work I combined the work on three different projects using functional genomics on 

different microbe-photobiont-interactions. First I was able to show that in order to create a 

complete gap-less genome, the use of more than one next generation sequencing 

technology improves the assembly largely. By going away from only using the short reads 

from 2ndGS (Illumina) and additionally using long reads from 3rdGS as bridges a genome 

without any unresolved regions and without dead ends was created. This approach offers the 

basis for further sequencing efforts also on larger genomes, for example of AM fungi.  

Also the analysis of the G. pyriformis transcriptome provides valuable information. The 

results indicate that although G. pyriformis has this different life-style compared to other 

Glomeromycota there must have been a common obligate symbiotic ancestor. A set of three 

secreted proteins was identified, that show characteristics of amyloid forming proteins. 

Functional analysis of these proteins, as detection of localization, prion or amyloid fibril 

formation, or effect of heterologous expression in other symbiotic or pathogenic fungi could 

give insights into a special adaptation to the symbiosis with cyanobacteria.  

In the last part of my work I used a set of previously identified effector candidate genes in R. 
irregularis for functional characterization. Even though it was not possible to reproduce the 

results obtained by using HIGS, the effect of downregulation of RiTSL1 on the symbiosis 

were evident. This phenotype as a positive control can be helpful in order to establish this 

method and functionally characterize fungal effectors. 

In further steps of characterization it became apparent that RiTSL1 most probably is not an 

effector, but plays a role in trehalose biosynthesis, which happens in a slight diurnal rhythm 

in R. irregularis colonizing L. japonicus roots. Transcriptome time-course experiments 

together with monitoring metabolites in symbiotic roots could give further insights into 

possible diurnal rhythms of nutrient exchange between the two symbiotic partners.  

This work demonstrates step-by-step the results and the possibilities of functional genomics 

that arise by researching biological systems, organisms and molecular mechanisms on an “–

omics” scale. 
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4  Material and Methods 
4.1  Material 

4.1.1  Chemicals  

The chemicals used in this work were all of analytical grade and commercially available from 

AppliChem, Becton Dickinson, Fermentas, Gerbu, Merck, Roth and Sigma-Aldrich.  

4.1.2  Primers 

Primers were purchased from Sigma-Aldrich or Integrated DNA Technologies (HIGSP290-

301). A list of primers used in this work can be found in Table S4. 

4.1.3  Media, buffers and solut ions  

All media were autoclaved, sterile filtered or mixed from autoclaved/sterile filtered 

components. Recipes for media, buffers and solutions can be found in the respective 

sections of methods they were used in.  

4.1.4  Plasmids 

Plasmid vectors used in this study are listed in Table S5. Intermediate plasmids for 

sequencing in TOPO vectors (Invitrogen) or cloning in golden gate179 level I, or II vectors are 

not mentioned. 
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4.2  Methods 

4.2.1  Organisms and Cult ivat ions 

4.2.1.1  Bacteria 
For cloning and multiplication of plasmids Escherichia coli Top10 was used. Its genotype is: 

F-; mcrA; Δ(mrr-hsdRMS-mcrBC); φ80lacZΔM15; ΔlacX74; recA1; araD139; Δ(araleu)7697; 

galU; galK; rpsL(StrR); endA1; nupG; λ-. For selection for transformed organisms they were 

plated on LB medium (10 g/l Tryptone, 5 g/l yeast extract, 10 g/l NaCl) complemented with 

respective antibiotics (ampicillin 100 µg/ml, kanamycin 50 µg/ml). 

For transient hairy root transformation Agrobacterium rhizogenes 1193 was used. For 

selection of transformed organisms they were grown on LB medium complemented with 

three antibiotics (rifampicin 50 µg/ml, kanamycin 50 µg/ml, carbomycin 50 µg/ml).  

4.2.1.2  Rhizophagus irregularis 
The AM fungus R. irregularis DAOM 197198, Biosystematic Research Center, Ottawa, 

Canada180 was cultivated in in vitro root organ culture with A. rhizogenes transformed 

Cichorium intybus or Daucus carota roots. To continue the culture, the colonized roots were 

cut into pieces and transferred to the root compartments of new MSR plates181. 

4.2.1.3  Saccharomyces cerevisiae  
The following yeast strains were used in this work: 

AH109 (Clontech): MATa  trp1-901 leu2-3, 112 ura3-52, his3-200, gal4Δ, gal80Δ, 

LYS2::GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS- MEL1TATA-lacZ 

BY4741 tps3::kanMX: MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 tps3::KanMX 

W303 (Reed Wickner, pers. comm.): MATa/MATα leu2-3, 112 trp1-1 can1-100 ura3-1 ade2-
1 his3-11,15 [phi+] 
1686 (Reed Wickner, pers. comm.): MATα thr- 
18 (Reed Wickner, pers. comm.): MATa lys- 
YTK12 (Joe Win pers. comm.): suc2∆9, ura3-52, ade2-101, trp::hisG182  

Yeast was grown, if not otherwise stated, at 30°C on YPAD (10 g/l yeast extract, 20 g/l 

peptone, 20 g/l glucose, 0.08 g/l adenine sulfate) or selection media (SC medium (-LW/-

LWA/-LWAH): 6.7 g/l yeast nitrogen base without amino acids, 20 g/l glucose, appropriate 

dropout powder (-Leu, -Trp/-Leu, -Trp, -Ade/-Leu, -Trp, -Ade, -His), pH 5.8-6.0).  

4.2.1.4  Lotus japonicus 
Lotus japonicus ecotype MG20 was used for experiments with colonized roots. 

The plants were grown in sterile and semi-sterile conditions. For germination and 

transformation, seeds were scarified with sandpaper and sterilized in bleach solution (4% 

(v/v) hypochlorite, 0.1% (w/v) SDS) for 10 minutes at room temperature with agitation. Seeds 
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were washed five times with sterile ddH2O and after being imbibed they were put on 

bactoagar (8 g/l bactoagar) plates. For germination, the seeds were covered to keep them in 

dark and incubated for three days (Panasonic MLR-352H-PE growth chamber, 24°C, 16h 

light, 8h dark). After germination the plates were kept without the cover in the growth 

chamber for 10 days. One week before transferring the plants to pots, seedlings were put on 

1/2 Hoagland medium (0.025% (w/v) KNO3, 0.0059% (w/v) Ca(NO3)2 x 2 H2O, 0.0247% (w/v) 

MgSO4 x 7 H2O, 3.4 x 10-5% (w/v) KH2PO4, 0.0186% (w/v) KCl, 2.5 x 10-4% (w/v) Fe-citrate, 

8.65 x 10-6% (w/v) MnSO4 x 4 H2O, 1 x 10-6% (w/v) ZnSO4 x 7 H2O, 4 x 10-7% (w/v) CuSO4 x 

5 H2O, 1 x 10-5 (w/v) Na2B4O7 x 10 H2O, 5 x 10-7% (w/v) (NH4)6Mo7O2, 0.05% (w/v) MES, 

0.8% (w/v) Bactoagar, adjust to pH 6.1 with 1 M KOH). Plantlets were transferred to pots with 

sand/vermiculite (2/1 vol.) substrate. The plants were grown in a phytotron chamber (Imtech, 

22.2°C, 16 h light, 8 h dark) for five to six weeks. Twice a week they were watered with an 

autoclaved mix of H2O:dH2O (1:1), once a week with 1/2 B&D solution183. 

4.2.2  Cell and molecular biological methods 

4.2.2.1  Standard molecular biology methods 

4.2.2.1.1 Sanger sequencing 

Sanger sequencing was performed at the Genomics Service Unit (LMU Biocenter, Munich). 

4.2.2.1.2 Cloning 

(a) Gateway cloning 

For yeast complementation vectors, genes were cloned into 426-GPD-ccdB-HA according to 

Alberti et al.184. Therefore Gateway® LR Clonase® II Enzyme mix (Thermo Fisher Scientific) 

was used according to manufacturer`s instruction. 

(b) Golden gate cloning 

The target genes/regions were cloned with the golden gate based gene silencing kit179 into a 

binary expression vector.  

(c) TOPO cloning 

PCR-amplified genes/regions were cloned using the Zero Blunt TOPO PCR Cloning Kit 

(Incitrogen) according to manufacturer’s instruction into the pCR™Blunt II-TOPO vector 

4.2.2.1.3 PCR 

Different kinds of PCR were performed depending on template and/or product of the PCR. 

The standard PCR program is:  

TD/2 min; [TD/30 s; Tm/30s; Tex/tex]x25-35; Tex/5 min 

For PCR with primers containing overhangs, a two-step PCR program was used: 
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TD/2 min; [TD/30 s; Tm1/30s; Tex/tex]x10; [TD/30 s; Tm2/30s; Tex/tex]x25-35; Tex/5 min 

For PCR with very complex template a touch-down PCR program was used: 

TD/2 min; [TD/30 s; Tm1(-0.5°C/cycle)/30s; Tex/tex]x10; [TD/30 s; Tm2/30s; Tex/tex]x25-35; Tex/5 

min 

The denaturation temperature TD was chosen depending on the DNA polymerase (Taq: 

95°C; Polymerase: 98°C). Tm is the melting temperature of the primers (see Table S4). The 

extension temperature Tex was chosen depending on the DNA polymerase (Taq: 68°C; 

Phusion: 72°C), the extension time tex depends on the length of the PCR product and was 

chosen depending on the DNA polymerase (Taq: 1 min/kb; Phusion: 0.25 min/kb).  

(a) PCR with Taq DNA polymerase 

Colony PCRs or PCRs to check the length of a product were performed with Taq DNA 

polymerase. Reactions performed with Taq DNA Polymerase contain 1x Standard Taq Buffer 

(New England Biolabs (NEB)) and 0.125 u/µl Taq DNA Polymerase (NEB). The reactions 

were performed with 0.5 µM forward and reverse primers (see Table S4) and 0.25 mM 

dNTPs (NEB). 

 

(b) PCR with Phusion® HF DNA polymerase 

PCRs for cloning or sequencing were performed with Phusion® HF DNA polymerase (NEB). 

Reactions performed with Phusion® HF Polymerase contain 1x Phusion HF Buffer (NEB) 

and 0.02 u/µl Phusion® HF Polymerase (NEB). The reactions were performed with 0.5 µM 

forward and reverse primers (see Table S4) and 0.2 mM dNTPs (NEB). 

4.2.2.1.4 Agarose gel electrophoresis 

The PCR products were mixed with 1 x Orange G loading dye (5 ml glycerin 99.5%, 5 ml TE 

buffer (pH8.0), 20 mg Orange G) and loaded on a 1% or 1.5% (w/v) agarose (in 1xTAE buffer 

(40mM Tris, 20mM acetic acid, 1mM EDTA)) gel for analysis. 2-log DNA Ladder (NEB) was 

used as a length standard. The gels were run for 30-40 minutes with 8 V/cm in 1x TAE 

buffer. Afterwards they were stained for 5 to 10 minutes in an ethidium bromide bath (0.5 g/l), 

rinsed in water and analyzed with UV light (302 nm). 

4.2.2.1.5 DNA extraction from agarose gels 

The respective band of DNA was cut with a razor blade from the gel. Subsequently the 

GeneJET gel extraction kit (Thermo Fisher Scientific) was used according to manufacturer’s 

instructions.  
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4.2.2.1.6 Plasmid extraction 

For plasmid extraction the GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific) was 

used according to manufacturer’s instructions. 

4.2.2.2  Ink staining of roots 
Roots of R. irregularis inoculated plants were placed in 2 ml reaction tubes. The samples 

were covered with 1 ml 10% KOH and incubated for 15 min at 95°C. Afterwards the KOH 

solution was removed and the roots were rinsed three times with tap water and once with 

10% acetic acid. Subsequently the roots were covered with ink solution (5% (v/v) black ink 

(Pelikan), 5% (v/v) acetic acid) and heated for 5 min at 95°C. The ink solution was removed 

and the roots rinsed with tap water three to five times. Finally the roots were destained using 

5% acetic acid. 

4.2.2.3  Microscopy 
The successful transformation of hairy roots was validated by fluorescence microscopy using 

a stereo microscope (Leica M165 FC, magnification 7.3) with GFP filter (excitation light from 

the argon laser at 488 nm and detected at 500 - 550 nm). 

The colonization level of ink stained roots was quantified using a light microscope (Leica): 

The roots of each sample were cut into 1 cm long fragments, of which ten were analysed. On 

each fragment ten loci (defined by a pin in the ocular at magnification 20 x) were analyzed for 

presence of external hyphae, internal hyphae, arbuscules and vesicles. The percentage of 

colonization incidents per 100 loci is given as root length colonization.  

Pictures of arbuscules in ink-stained roots were taken with an inverted microscope (Leica 

DMI6000 B) in 10x and 20x magnification. Pictures were analyzed using FIJI185 by free-hand-

outlining the area of the arbuscule and the respective arbuscule-containing plant cell and 

taking the respective measurements. 

4.2.2.4  Harvesting of R. irregularis  spores 
Spores of R. irregularis are cultured on MSR medium181 plates. The agar was cut in small 

equal squares (approx. 1 cm2 in size, around 50 spores). Each square was transferred to 300 

μl citrate buffer (8.2% (v/v) 0.1 M sodium citrate, 1.8% (v/v) 0.1 M citric acid). The spores 

were placed on a shaker (1 h; 1000 rpm; room temperature) to dissolve the agar. 

4.2.2.5  Mycorrhization 
During potting the roots of L. japonicus were inoculated with R. irregularis by pipetting the 

citrate buffer containing the spores directly onto the roots while holding them over the holes 

in the potting substrate (vermiculite-sand (1:2) mix). Afterwards the plants were placed into 

those holes and stabilized by filling the holes with substrate. 
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4.2.2.6  Harvest of G. pyri formis  cDNA expression l ibrary 
A cDNA library of symbiotic G. pyriformis was generated by extracting polyA-RNA from a 

lysate of a non-sterile Geosiphon-culture in a symbiotic state with Nostoc punctiforme132. 

Inserts from the cDNA expression library of G. pyriformis, with 6 x 105 primary-insert-

containing clones81, were harvested by plasmid extraction. 

The E. coli primary cDNA-library was grown on solid dYT medium (16 g/l tryptone, 10 g/l 

yeast extract, 5 g/l NaCl; 1.3% (w/v) agarose; 200 μg/ml ampicilline) over night at 37°C. 

Before plating, the bacteria were diluted 1:20,000 in liquid LB medium (10 g/l Tryptone, 5 g/l 

yeast extract, 10 g/l NaCl). On each plate (50 plates; 14.5 cm diameter) 200 μl of the 

bacteria suspension were distributed, which resulted in about 20,000 colonies per plate.  

To harvest the bacteria from the plates, 2 ml LB-medium were added to each plate. The 

colonies were scraped from the plate with a spatula. This cell suspension was collected with 

a pipette and kept on ice. Another 2 ml LB-medium were added, to harvest remaining cells; 

this cell suspension was added to the next plate. These steps were repeated until all plates 

were harvested. The bacterial cells were harvested by centrifugation (12,000xg; 5 min). 

4.2.2.7  Plasmid extract ion of G. pyri formis  cDNA l ibrary clones 
Plasmid extraction was performed using the GeneJET Plasmid Miniprep Kit (Thermo Fisher 

Scientific) according to manufacturer’s instructions. The extraction was performed with 

pellets from 1.5 ml cell suspension. The final elution volume was 600 µl with a concentration 

of 291.6 ng/µl measured with NanoDrop (Thermo Scientific). 

4.2.2.8  Extraction of cDNA inserts from G. pyri formis  cDNA l ibrary clones 
100 µg of plasmid DNA was digested with SfiI (62.5 U/ml, 50°C, over night). DNA was 

precipitated with 1/10 vol. 3 M NaAc and 2½ vol. 100% ethanol (-20°C, 1 h). The sample was 

centrifuged (4°C, 45000xg, 15 min). The supernatant was discarded and the pellet was 

washed with 70% (v/v) ethanol. Subsequently another centrifugation-step (20°C, 14000xg, 10 

min) was performed. The supernatant was discarded and the pellet was air-dried. The dried 

pellet was dissolved in 100 μl 1x TE-buffer (10 mM Tris-HCl, pH8.0; 1 mM EDTA). Inserts 

were size-selected to obtain cDNA fragments within a size range from 600-6,000 bp on an 

agarose gel (0.8% (w/v)). The gel was run for 5 hours with 2.5-3.5 V/cm. The extraction of 

the DNA-fragments from the gel was performed using the GeneJET Gel Extraction Kit 

(Thermo Fisher Scientific) according to manufacturer’s instruction. 

4.2.2.9  I l lumina paired-end sequencing l ibrary preparation and sequencing of 
G. pyri formis  cDNA l ibrary 

Shearing of the cDNA-inserts was performed by using a M220 focused ultrasonicator 

(Covaris). 110 μl (2 μg) of cDNA insert plus 20 μl of 1xTE-buffer (10 mM Tris-HCl, pH8.0; 1 
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mM EDTA) were mixed in a snap-cap micro tube (Peak Incident Power (w): 50; Duty Factor: 

20%; Cycles per Burst: 200; Treatment Time (s): 75; Temperature (°C): 20). 

NEBNext DNA Library Prep Master Mix Set (NEB) was used according to manufacturer’s 

instructions with NEBNext Index 12. PCR cycling conditions for PCR enrichment of adapter 

ligated DNA were as follows: [98°C/30’’, (98°C/10’’, 65°C/30’’, 72°C/30’’)x8, 72°C/5’, 

4°C/hold].  

Two paired-end sequencing runs were performed on a MiSeq sequencer (Illumina) platform 

(run #1: 2x 150 bp, v2 chemistry; run #2: 2x 300 bp, v3 chemistry). All sequencing was 

performed at the Genomics Service Unit (LMU Biocenter, Munich). 

4.2.2.10  Colony hybridization for extracting clones of GpRIC1, GpRIC2 
and GpRIC3 

For retrieving the correct sequence of these repeat-containing genes, colony hybridization 

was performed on clones from the original cDNA-expression library using the DIG-High 

Prime DNA Labeling and Detection Starter Kit I (Roche) according to manufacturer’s 

instructions.  

4.2.2.11  Transformation  

4.2.2.11.1 E. coli 
For plasmid multiplication, competent E. coli TOP10 cells were transformed with plasmid 

DNA using a standard heat shock method186. Occasionally, LB medium (10 g/l Tryptone, 5 g/l 

yeast extract, 10 g/l NaCl) was used instead of SOC medium. The cells were selected on 

according selective plates. 

4.2.2.11.2 A. rhizogenes 
Electro-competent A. rhizogenes 1193 cells were transformed with binary expression vectors 

using the Bio-RAD MicroPulser, delivering an electric pulse of 1.8 kV. 

4.2.2.11.3 S. cerevisiae  
The transformation of yeast was performed according to the protocol "High-efficiency yeast 

transformation using the LiAc/SS carrier DNA/PEG method"187. The plates were incubated at 

30°C for 4 days. Afterwards yeast colonies were streaked on fresh plates to obtain single 

colonies.  

(a) with deletion cassettes 

The yeast strain W303 was transformed with 3 μg to 4 μg PCR product of deletion cassettes. 

Transformants were selected on YPA Gal (10 g/l yeast extract, 20 g/l peptone, 20 g/l 

galactose, 0.04 g/l adenine sulfate) +200 mg/l geneticin plates. For the double mutant the 

resulting strain W303 tps3Δ::kanMX was used and transformed with the appropriate LEU2 
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cassette. Transformants were selected on HC -L plates188. This way the diploid yeast gene 

deletion strains W303 tps1Δ::kanMX, W303 tps2Δ::kanMX and W303 tps3Δ::kanMX 

tsl1Δ::LEU2 were generated. 

(b) with complementation vectors 

For the transformation mix 100 ng of the respective vector was used. The transformants 

were selected on HC -U Gal (tps1Δ::kanMX strain) and HC -U Glc (tps2Δ::kanMX strain) 

plates188. This way the following strains were generated: 
Table 7: List of strains created by introducing complementation vectors.  

Resulting strain Original strain Vector 
W303 tps1Δ RiTSL1+SP W303 tps1Δ::kanMX HIGSV095 
W303 tps1Δ RiTSL1-SP W303 tps1Δ::kanMX HIGSV096 
W303 tps1Δ RiTPS1 W303 tps1Δ::kanMX HIGSV097 
W303 tps1Δ RiTPS2 W303 tps1Δ::kanMX HIGSV098 
W303 tps1Δ ScTPS1 W303 tps1Δ::kanMX HIGSV099 
W303 tps1Δ EV W303 tps1Δ::kanMX HIGSV101 
W303 tps2Δ RiTSL1+SP W303 tps2Δ::kanMX HIGSV095 
W303 tps2Δ RiTSL1-SP W303 tps2Δ::kanMX HIGSV096 
W303 tps2Δ RiTPS1 W303 tps2Δ::kanMX HIGSV097 
W303 tps2Δ RiTPS2 W303 tps2Δ::kanMX HIGSV098 
W303 tps2Δ ScTPS2 W303 tps2Δ::kanMX HIGSV100 
W303 tps2Δ EV W303 tps2Δ::kanMX HIGSV101 
W303 WT EV W303 HIGSV101 

4.2.2.11.4 Hairy root transformation of L. japonicus 

A. rhizogenes transformed with binary expression vectors were cultured at 28°C for two 

days. Working in sterile conditions, the bacteria were scraped with a razor blade from the 

plates and each culture was resuspended in 700μl ddH2O. The suspension was transferred to 

a sterile filter paper. L. japonicus seedlings were placed with the hypocotyl in the bacteria 

solution on the filter paper. They were cut at the hypocotyl above the roots with a scalpel, 

dipped into the suspension and transferred to B5 medium (0.2% (w/v) sucrose, 0.8% (w/v) 

bactoagar, 0.033% (w/v) Gamborg`s B5 salt, 1 x B5 vitamin mix; adjust pH to 5.5 with 1M 

NaOH) plates. Covered in aluminum foil or a dark box, they were placed into a growth 

chamber (Panasonic MLR-352H-PE growth chamber, 24°C, 16h light, 8h dark). After two 

days the foil was removed and the plates placed back into the growth chamber. After three 

days the seedlings were transferred daily to B5 medium with cefotaxim (300 µg/ml) for four 

subsequent days. Transformed L japonicus MG20 plantlets were transferred to 1/2 Hoagland 

medium (see Section 4.2.1.4). After one week plantlets were transferred to pots. 
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4.2.2.12  Pipett ing induced gene si lencing (PIGS) 
For PIGS 2 µg of a PCR product (RiTSL1: HIGSP252 & HIGSP253, GFP: HIGSP254 & 

HIGSP255) was used as a template for in vitro transcription with the T7 RNA Polymerase 

(NEB) according to manufacturer’s instructions. 11 µg of the resulting dsRNA in 20µl of 

sterile ddH2O was directly supplied to R. irregularis in root organ cultures with chicory roots 

(~2-3 weeks old) in a 24-well cell culture plate containing 500 µl MSR medium181 (with 

adjustments: 0.15% Gelrite, 3 g/l sucrose, 3µM phosphate). Roots were harvested 2-3 weeks 

after application of dsRNA.  

4.2.2.13  RNA extraction from roots 
RNA was isolated from shock frozen root tissue using the Spectrum Plant Total RNA Kit 

(Sigma-Aldrich) according to manufacturer’s instructions. The RNA was treated with DNase I 

amplification grade (Sigma-Aldrich) and tested for purity by PCR with primers 

HIGSP194&HIGSP195 and for quality using the 2100 Bioanalyzer (Agilent Genomics) with 

the Agilent RNA 6000 Nano kit and with the Plant RNA Nano program.  

4.2.2.14  cDNA synthesis 
Reverse transcription was performed with 300 ng RNA (concentration measured with 2100 

Bioanalyzer (Agilent Genomics)) using the Superscript III kit (Invitrogen) and cDNA was 

subsequently treated with RNase H (NEB). Successful cDNA synthesis was tested by PCR.  

4.2.2.15  Quantitat ive real-t ime PCR (qRT-PCR) 
qRT-PCR was performed with Fast SYBR Green Master Mix (Thermo Fisher Scientific) on a 

QuantStudio 5 – 384-Well Block (Thermo Fisher Scientific) or on the CFX96 Touch™ Real-

Time PCR Detection System (Bio-Rad). Primers were designed using Primer3plus189 with 

special settings “qPCR”. Cycling conditions were: 95°C/2 min; (95°C/5 sec; 60°C/30 sec)x45 

followed by dissociation curve analysis. The absolute expression values of R. irregularis 

genes were normalized to the geometric mean of three reference genes 

(KI300041.1/ERZ96911.1 – putative malate synthase; JEMT01026558.1/EXX58978.1 – 

Grx4; beta-tubulin), the arithmetic mean of two reference genes (beta-tubulin, elongation 

factor 1-alpha (EF1-alpha)), or only to one reference gene (beta-tubulin) according to the 

∆∆Ct method: 

 

2(!"!"#"!!"#! !"#"!!"!"#$%$"&' !"#") 
 

Each biological replicate is represented by two to three technical replicates. 
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4.2.2.16  Yeast growth assays 

4.2.2.16.1 Sporulation and tetrad dissection 

The diploid deletion mutant strains were sporulated and the tetrads dissected to generate 

haploid mutants of both mating types. A diploid mutant colony was streaked in a 16 cm2 

batch on a presporulation (10 g/l yeast extract, 100 g/l glucose, 20 g/l potassium acetate) 

plate and incubated for 4 days at 30°C. After incubation, from this plate cells were taken up 

with a flat toothpick, streaked on a sporulation (10 g/l potassium acetate, 1 g/l yeast extract, 

0.5 g/l glucose/galactose, 0.8 g/l leucine, 0.2 g/l histidine, 0.8 g/l tryptophan, 0.35 g/l uracil, 

0.7 g/l adenine) plate with glucose (for W303 tps1Δ::kanMX with galactose instead of 

glucose) and incubated for 4 days in the dark at RT. The sporulated cultures were examined 

with a light microscope (400x magnification) to confirm the formation of tetrads. For tetrad 

dissection the flat end of a sterile toothpick was used to transfer a dab of cells to 50 μl 

Zymolyase T100 (Zymo Research) (0.05 mg/ml in 1 M sorbitol) thawed on ice. The cells 

were resuspended and incubated at RT for 10 min. The digestion was stopped by placing the 

reaction tube on ice. A line of cells was drawn on the site of a flat and even YPA Gal (10 g/l 

yeast extract, 20 g/l peptone, 20 g/l galactose, 0.04 g/l adenine sulfate) plate using an 

inoculation loop. The plate was placed on the microscope stage of the Dissection Microscope 

MSM 400 (Singer Instruments). With a dissection needle (Singer Instruments) a cluster of 

four ascospores was picked and placed one below the other at a distance of ca. 1 cm using 

600x magnification. This was repeated for 7 more tetrads, which were placed next to each 

other. The Plate was incubated for 4 days at 30°C. 

4.2.2.16.2 Confirmation of deletion strains and determination of mating type 

After tetrad dissection (see Section 4.2.2.16.1) the haploid cells were first analyzed for 

insertion of the KanMX or LEU2 Cassette and for the mating type using a replicator stamp. 

For deletion strains, plates with 8 tetrads in a row were replica plated on YPA Gal (10 g/l 

yeast extract, 20 g/l peptone, 20 g/l galactose, 0.04 g/l adenine sulfate) +200 mg/l geneticin 

plates. Plates with the double knockout strain were additionally replica plated on a HC-L 

plate188. Only haploid cells with knockouts should be able to grow on the corresponding 

selection plate(s). For determination of the mating type the yeast strains 1686 (Matα) and 18 

(Mata) were used. With the flat end of sterile toothpicks a dab of both cell lines was taken up, 

each resuspended in 200 μl ddH2O and plated on YPA Gal plates. Afterwards the plates with 

dissected tetrads were replica plated on both a plate with mating type α  and on a plate with 

mating type a cells and incubated at 30°C over night. On the next day those plates were 

replica plated on SD minimal medium (6.7 g/l yeast nitrogen base without amino acids, 20 g/l 

glucose) plates which were then incubated at 30°C for another 2 days. On the minimal 
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medium plates, only those cells were able to grow which were in contact with cells of the 

opposite mating type. This way also haploid wild type cells could be detected. The identified 

cell lines were streaked onto new plates. The so found haploid knockout strains of each 

mating type and the diploid knockout strains were additionally confirmed by colony PCR. 

4.2.2.16.3 Determination of mutant complementation growth rate 

2 ml of an overnight preculture of transformed TPS1 Knockout strains were transferred into 2 

ml reaction tubes and spun down at 12,000 x g. The supernatant was removed and the cells 

washed once with ddH20 (sterile). The centrifugation step was repeated and the cell pellet 

was resuspended in 2 ml HC-U Glc188. Afterwards the OD600 of both the cell suspensions 

and the overnight cultures of the transformed TPS2 knockout strains were measured and 

diluted with HC‐U Glc medium to receive 100 μl suspension with an OD600 of 0.02 (2 x 105 

cells/ml) in a Microtest Plate 96 Well,F (Sarstedt). Additionally 6 wells were filled only with 

medium to blank the values. The growth rates were analyzed using the Infinite 200 PRO 

multimode reader (Tecan) with the following parameters: OD620 was measured every 15 min 

for 72 hours. In the meantime the plate was shaken orbital with amplitude of 3.5 mm to 

prevent sedimentation of the cells. For TPS1 knockout cells and wild type cells as a control 

the temperature was set to 30°C; for TPS2 Knockout cells and wild type cells for comparison 

the temperature was set to 37°C. Afterwards the data were analyzed using Excel 2011 

(Microsoft). The doubling time Td was calculated using the following formula: 

 

𝑇! = 4ℎ×  
log (2)

log (𝑞2𝑞1)
 

 

The optical densities of the wells with pure medium were averaged and subtracted from the 

OD620 of the wells with cell suspensions. The corrected OD620 values which were ≥ 0.15 

were taken as q1. The OD620 values 4 h later were used as q2. The growth rate k was 

calculated using the following formula: 

 

𝑘 =  
log (2)
𝑇!

 

 

4.2.2.16.4 Yeast secretion assay 

To test the functionality of the predicted secretion peptides (SP) of TSL1 from R. irregularis 

and R. clarus a yeast secretion assay182 was used. In brief, the predicted SPs of RiTSL1, 

RcTSL1 and the original SP of the yeast invertase SUC2 were cloned into the yeast signal 
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sequence trap vector pSUC2T7M13ORI. The yeast SUC2-minus strain YTK12 was 

transformed187 with the respective plasmids and the original vector without SP (pSUC2-[SP]). 

Transformed yeast was grown on HC dropout medium188 with glucose as sole carbon source 

for control and sucrose as sole carbon source for testing. Growth rates were calculated as 

described above.  

4.2.3  Bioinformatic methods 

4.2.3.1  Hybrid assembly of Rl Norway  genome, genome annotation and 
comparisons 

Hybrid genome assembly of Rl Norway was performed with Unicycler v0.4.0190 using default 

settings. Genome annotation was performed with RAST 2.0191,192 and MicroScope193. 

BUSCO analysis of completeness was performed with BUSCO115 version 3.0.2 and the 

lineage dataset “bacteria_odb9” (creation date: 2016-11-01; number of species: 3663; 

number of BUSCOs: 148) on the predicted protein sequences. 

Clusters of orthologous groups (COGs) of proteins were predicted using the COGNiTOR 

software. Genome comparisons were performed with Easyfig 2.2.2194 with concatenated 

sequences of whole chromosome and plasmids using blastn and default parameters. 

Comparison of plasmid contents was performed with BRIG195, lower identity threshold = 70%, 

upper identity threshold = 90%. 

Average nucleotide identity (ANI) comparison was performed with the genomes of members 

from the five proposed genospecies (gsA: WSM1325; gsB: 3841; gsC: TA1; gsD: CC278f & 

SM51; gsE: 128C53116 (pers. comm. Peter Young). ANI scores were computed using the ANI 

calculator at http://enve-omics.ce.gatech.edu/ani/ with default parameters. 

4.2.3.2  Basic Local Al ignment Search Tool (BLAST) analyses 
BLAST analyses were performed either using the online tools at 

https://blast.ncbi.nlm.nih.gov/Blast.cgi or using a locally installed version (blast 2.5.0, build 

Sep 9 2016 13:36:03) of the BLAST+ executables on a MacBook Pro (Retina, 15-inch, Late 

2013, OS X El Capitan, Version 10.11.6)28.  

4.2.3.3  Trimming of G. pyri formis  reads 
Analysis of sequencing reads was performed using the commercial software CLC Genomics 

Workbench v9.5 (Qiagen). Reads were trimmed based on quality scores (limit: 0.05), end 

ambiguity (maximum allowed number of ambiguities: 2), adapter sequences and a short 

artifact sequence that was found during analysis 

(ATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA). 
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4.2.3.4  Filter ing G. pyri formis  reads for known contaminants 
Reads of known contaminants (vector sequence pDR196sfi of cDNA expression library 

including stuffer fragment, E. coli DH10B and DH5a, Nostoc punctiforme 

(GCF_000020025.1), bacteria like organisms196) were discarded by mapping all reads 

against these sequences (match score =1, mismatch cost=2, linear gap cost, insertion 

cost=3, deletion cost=3, length fraction=0.5, similarity fraction=0.8, global alignment=no, 

auto-detect paired distances=yes, non-specific match handling=map randomly, stand-alone 

read mapping) and proceeding with unmapped paired reads. 

4.2.3.5  Assembly of G. pyri formis  reads 
The assembly of these reads from both sequencing runs was also performed using CLC 

software (Qiagen) with default settings. 

4.2.3.6  Filter ing of NRVTs from G. pyri formis  assembly for unknown 
contaminants 

In order to further remove contaminant sequences, the assembled NRVTs were compared to 

the NCBI nt DNA database (Nov 30th, 2016) using blastn (NCBI-BLAST 2.2.29+, e-value < 

10). All contigs with taxon IDs (best hit) from archaea, bacteria, plant, or virus were 

discarded. Transcriptomes of R. irregularis114 and G. rosea60 have a mean GC content of 

around 32%. Therefore, NRVTs with GC content higher than 55%, corresponding to the 

minimum between two apparent peaks at 40% and 66%, were also discarded. All remaining 

contigs longer than 7000 bp were split into smaller parts and compared again to the NCBI nt 

database using blastn to remove bacterial sequences that were not recognized as best hit 

before. All NRVTs smaller than 200bp were discarded. During subsequent analyses 3,587, 

171, and 141 NRVTs were identified to be distinct assemblies of the repetitive GpRIC1, 

GpRIC2, and GpRIC3 transcripts, respectively, and each were pooled into one NRVT. 

4.2.3.7  Blobplot analysis of G. pyri formis  assembly and f inal transcriptome 
Blobplots were created using blobtools117 with default parameters. Blobplots were created for 

all initial NRVTs, for all NRVTs removed due to filtering and for all NRVTs in the final 

assembly.  

4.2.3.8  BUSCO assessment of completeness of the G. pyri formis  
transcriptome 

BUSCO analysis was performed with BUSCO v1.22115. The dataset used for assessment 

was fungi_odb9 (21.10.2016) with default parameters for transcriptome analysis. 

4.2.3.9  Comparison of G. pyri formis  transcriptome to other fungal proteomes 
NRVTs were compared to proteomes of other fungi (see Table ES4) using blastx (e-value < 

1e-5). 
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4.2.3.10  Reciprocal BLAST for the identi f icat ion of dif ferent sets of genes 
in the G. pyri formis  transcriptome 

Reciprocal BLAST (e-value < 1e-5) was performed with NRVTs and a set of 86 meiosis-

related genes (Malik et al., 2007) from Saccharomyces cerevisiae and, if present, from 

Sordaria macrospora, Neurospora crassa, Rhizophagus spp. Only one best hit from tblastn 

of meiosis genes against NRVTs was checked against 20 best hits from blastx of NRVTs 

against meiosis genes. Pairs that were found in both directions were considered as true 

homologs. For the identification of HMG-domain containing genes reciprocal BLAST (e-value 

< 1) was performed with a set of 25 fungal HMG-domain containing proteins (see Table 8). 

The best 20 hits of each BLAST direction were compared to each other to find HMG-domain 

containing proteins.  
Table 8: List of HMG domain containing proteins used for reciprocal BLAST analysis. 

Accession Species 

AAF00498.1 Davidsoniella eucalypti 
AAG42810.1 Fusarium graminearum 
AAG42812.1 Fusarium graminearum 
AAK15315.1 Candida albicans 
AAK83343.1 Cryphonectria parasitica 
AAK83344.1 Cryphonectria parasitica 
AAL30836.1 Zymoseptoria tritici 
AAP13349.1 Pneumocystis carinii 
AET35419.1 Syzygites megalocarpus 
AET35422.1 Syzygites megalocarpus 
BAA33018.1 Coprinopsis cinerea 
BAC66503.1 Cordyceps tenuipes 
CAA06843.1 Pyrenopeziza brassicae 
CAA06846.1 Pyrenopeziza brassicae 
CAD21099.1 Neurospora crassa 
C7U331.1 Schizosaccharomyces pombe 
P25042.1 Saccharomyces cerevisiae 
P35693.2 Podospora anserina 
P25042.1 Schizosaccharomyces pombe 
P36981.2 Neurospora crassa 
Q02991.1 Cochliobolus heterostrophus 
Q08143.1 Podospora anserina 
Q10116.1 Neurospora crassa 
Q99101 Ustilago maydis 

Missing Glomeromycota core gene (MGCGs)60 sequences were retrieved from 

theyeastgenome.org. Reciprocal BLAST (e-value < 1e-5) was performed to compare NRVTs 

to this set of MGCGs. The best 20 hits of each BLAST direction were compared to each 
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other to find homologues. For the prediction of transporters, reciprocal BLAST (e-value < 1e-

5) was performed with NRVTs and the transporter classification database (TCDB)35. 20 best 

hits of blastx (NRVTs against TCDB) were compared to 200 best hits of tblastn (TCDB 

against NRVTs). With these parameters, already published Glomeromycota transporters 

could be found.  

4.2.3.11  Predict ion of amino acid sequences of the G. pyri formis  
transcriptome 

Amino acid sequences were predicted using Blast2GO v4.1.933 with default parameters.  

4.2.3.12  Predict ion and analysis of euKaryotic Orthologous Groups (KOG) 
for predicted amino acid sequences of the G. pyri formis  transcriptome 

Functional annotation of KOG classes was performed using the WebMGA138 server with 

default parameters. The predicted amino acid sequences of the G. pyriformis transcriptome 

were used as input sequences. Principal component analysis (PCA) was performed in R197.  

4.2.3.13  Predict ion of CAZyme classes of G. pyri formis  transcriptome 
The predicted amino acid sequences of the G. pyriformis transcriptome were used to predict 

CAZyme classes on the dbCAN server36 using default parameters. 

4.2.3.14  Detection and analysis of SNPs in the G. pyri formis  transcriptome 
For SNP detection trimmed reads were mapped to NRVTs and the basic variant detection 

tool was used with following parameters (Ploidy =2, Ignore positions with coverage above = 

100,000, Restrict calling to target regions = Not set, Ignore broken pairs = Yes, Ignore non-

specific matches = Reads, Minimum coverage = 10, Minimum count = 2, Minimum frequency 

(%) = 2.0, Base quality filter = No, Read direction filter = No, Relative read direction filter = 

Yes, Significance (%) = 1.0, Read position filter = No, Remove pyro-error variants = No; CLC 

Genomics Workbench 9.5.3, Qiagen).  

4.2.3.15  Predict ion of secreted proteins in the G. pyri formis  transcriptome 
The predicted amino acid sequences were used for the prediction of secreted proteins. This 

was performed as described in60. Proteins were not filtered for length or starting amino acid.  

4.2.3.16  Detection of redundant sequences in the G. pyri formis  
transcriptome 

In order to detect redundant transcripts, all nucleotide sequences of the G. pyriformis 

assembly after filtering were blasted against each other (e-value < 1e-5). Edges were created 

by leaving only non-self BLAST-hit pairs in the list. Using the igraph package198 in RStudio 

(Version 1.1.442) an igraph data frame was created 

(graph.data.frame(edges,directed=TRUE)) and entries with less than 11 connections were 

deleted (delete.vertices(igraph_df, V(igraph_df)[degree(igraph_df)<11])). The resulting .gml-



Material and Methods 
 

 85 

file was analyzed with Cytoscape (Version 3.6.0). Sequences that had common BLAST hits 

were clustered and assembled using CLC Genomics Workbench (Minimum aligned read 

length = 50, Alignment stringency = Medium, Conflicts = Vote (A, C, G, T)). The consensuses 

of the assembled sequences were analyzed regarding the previously obviously redundant 

sequences of GpRIC1. Meaning the presence of repeats, a high amino acid content of 

asparagine and glycine and the presence of Kex2 recognition sites. The in silico detected 

hypothetical sequences were subsequently found in vitro by colony hybridization.  

4.2.3.17  Statist ical analyses of qPCR data 
Statistical analyses of qPCR data were performed using RStudio (Version 1.0.136). An 

“Analysis of Variance Model” (ANOVA) was fit to the data calling the “aov()”-function, 

subsequently “Tukey Honest Significant Differences” were computed calling the 

“TukeyHSD()”-function. With the “multicompView” package199 a letter summary of similarities 

and differences was computed based on ANOVA and Tukey output.  

For comparison of only two values a two-sided t-test was performed. 

4.2.3.18  Phylogenetic analysis of trehalose biosynthesis proteins 
Homologues of TPS1, TPS2 and TSL1 in R. irregularis and other fungi, oomycetes and one 

chlorophyte (11 Ascomycota, 27 Basidiomycota, three oomycetes) were found by blasting 

ScTPS1, ScTPS2, ScTPS3 or ScTSL1 against NCBI database or other fungal genome 

databases200. Homologues of Rhizophagus clarus and Geosiphon pyriformis were found by 

blasting the proteins from R. irregularis against the unpublished genome (R. clarus), or 

transcriptome (G. pyriformis) sequenced at the Genomics Service Unit (LMU Biocenter, 

Munich). TPS and TPP domains of the proteins were identified by blasting the proteins 

against the “non-redundant protein sequences” (nr) database (NCBI) and by checking for 

conserved domains. For the phylogenetic comparison the TPS domains of 52 TPS1, 59 

TPS2 and 45 TSL1 proteins were aligned using CLC Main Workbench (Qiagen). A maximum 

likelihood phylogeny was produced using CLC Main Workbench (Qiagen) with the 

construction method neighbor joining and 1000 replicates. For the comparison of the N-

terminus of TSL1 proteins, a selection of the N-terminal sequences up to the start of the TPS 

domain was aligned. The maximum length of a predicted secretion peptide was taken and 

the length of the sequences was adapted so that the alignment will end three amino acids 

after that point. Secretion peptide prediction was performed using SignalP4.1201 with settings 

for eukaryotes.  

4.2.3.19  Identi f icat ion of RNAi target regions in R. irregularis  effector 
candidate genes 
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200 bp regions with a GC-content of about 40% were selected and off-target prediction was 

carried out with si-Fi3 (http://labtools.ipk-gatersleben.de/) or Next-RNAi202.  
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Supplementary tables 

Table S1: List of NRVTs identif ied as HMG-genes in G. pyriformis .  
NRVT HMG E-value Score 
Contig_10772 P25042.1 9.98E-10 49.3 
Contig_11291 BAC66503.1 7.62E-09 43.9 
Contig_11821 AAF00498.1 9.57E-12 49.7 
Contig_12164 CAA06843.1 0.001 30 
Contig_1226 CAD21099.1 0.012 27.7 
Contig_12300 CAD21099.1 3.38E-14 64.7 
Contig_13149 BAC66503.1 0.000125 30.8 
Contig_137 AAK83344.1 0.006 29.6 
Contig_13858 P36631.2 1.47E-11 55.1 
Contig_13859 AAL30836.1 1.36E-05 36.2 
Contig_14826 BAC66503.1 0.000118 33.1 
Contig_15623 AET35422.1 0.00071 28.9 
Contig_1569 AAC71053.1 0.007 28.1 
Contig_16229 AET35422.1 8.05E-07 39.7 
Contig_17299 C7U331.1 0.000821 30 
Contig_17611 Q99101 5.93E-08 43.1 
Contig_17875 AET35419.1 2.78E-05 31.2 
Contig_18462 AAG42812.1 0.000538 28.5 
Contig_19567 BAC66503.1 0.001 28.5 
Contig_21333 P36981.2 1.42E-09 45.1 
Contig_21363 AAG42810.1 1.70E-06 37 
Contig_2140 C7U331.1 1.48E-05 34.7 
Contig_29916 CAD21099.1 0.000341 28.1 
Contig_3232 AAG42812.1 0.000623 27.3 
Contig_3344 Q99101 2.57E-05 36.6 
Contig_4059 P36981.2 0.001 30.4 
Contig_4235 P36981.2 2.25E-06 39.7 
Contig_5635 AAF00498.1 9.10E-11 50.4 
Contig_7334 Q02991.1 0.000183 30.4 
Contig_7834 P25042.1 0.002 30.4 
Contig_8150 Q02991.1 2.93E-07 42.7 
Contig_8190 P25042.1 0.003 31.2 
Contig_8621 AAF00498.1 0.000442 30.4 
Contig_8948 P35693.2 0.002 31.2 
Contig_9242 AAK83344.1 4.77E-15 63.2 
Contig_9620 C7U331.1 1.99E-26 90.5 
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Table S2: List of NRVTs identif ied as CAZymes in G. pyriformis .  * indicates that more than one class 
was assigned to the respective NRVT. 

Query Subject E-value 
Subject 
Start 

Subject 
End 

Query 
Start 

Query 
End 

Covered 
fract ion 

Contig_3214* AA11 1.10E-25 26 146 59 187 0.628 
Contig_4653 AA11 3.20E-12 44 149 129 228 0.550 
Contig_9826 AA11 2.00E-11 21 145 85 199 0.649 
Contig_2942 AA2 3.30E-64 3 254 108 360 0.984 
Contig_10566 AA5 2.80E-104 582 1018 5 495 0.340 
Contig_135 AA5 3.50E-126 556 1027 26 525 0.368 
Contig_11795 AA6 6.40E-76 1 193 3 195 0.985 
Contig_1224 AA7 1.30E-18 6 182 48 227 0.384 
Contig_1725 AA7 1.80E-67 3 455 35 482 0.987 
Contig_10623* CBM18 1.40E-10 1 36 15 52 0.921 
Contig_10623* CBM18 7.20E-13 2 36 96 130 0.895 
Contig_3858* CBM18 1.40E-08 2 36 28 63 0.895 
Contig_3214* CBM19 5.30E-07 6 44 317 358 0.844 
Contig_6888 CBM4 0.00011 5 77 17 91 0.571 
Contig_34302 CBM50 4.20E-14 1 39 26 68 0.950 
Contig_6639 CBM50 3.60E-15 1 40 111 161 0.975 
Contig_12349 CE1 2.30E-13 14 207 3 207 0.850 
Contig_6151 CE1 2.50E-09 32 208 1 187 0.775 
Contig_9814 CE1 1.20E-06 3 216 40 255 0.938 
Contig_12436 CE10 1.70E-30 98 298 1 197 0.587 
Contig_1282 CE10 4.20E-55 93 333 142 381 0.704 
Contig_5626 CE10 5.00E-34 136 313 10 183 0.519 
Contig_28453 CE14 3.70E-11 3 73 2 61 0.565 
Contig_12461 CE16 7.70E-18 3 266 50 310 0.985 
Contig_18138 CE16 1.80E-06 105 203 10 103 0.367 
Contig_2415 CE16 2.20E-18 1 215 32 234 0.801 
Contig_3345 CE16 3.60E-13 1 216 32 234 0.805 
Contig_7312 CE16 1.20E-22 1 266 50 309 0.993 
Contig_9417 CE16 1.40E-28 32 264 62 300 0.869 
Contig_17173 CE4 4.70E-15 54 125 2 74 0.546 
Contig_3524 CE4 2.10E-27 9 123 133 249 0.877 
Contig_3858* CE4 2.20E-31 6 126 125 251 0.923 
Contig_42234 CE4 3.60E-11 23 68 54 99 0.346 
Contig_7677 GH109 2.00E-10 2 118 44 155 0.921 
Contig_17859 GH125 3.40E-63 4 228 1 244 0.557 
Contig_8355 GH125 3.20E-155 1 402 76 499 0.998 
Contig_6070 GH13 1.00E-27 130 292 3 168 0.542 
Contig_712 GH13 2.40E-23 22 280 69 357 0.863 
Contig_2022 GH133 2.20E-150 6 371 233 691 0.981 
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Query Subject E-value 
Subject 
Start 

Subject 
End 

Query 
Start 

Query 
End 

Covered 
fract ion 

Contig_1098 GH15 1.00E-80 3 360 88 465 0.989 
Contig_16539 GH16 1.60E-24 22 159 19 154 0.725 
Contig_4024 GH16 4.90E-27 2 188 87 316 0.984 
Contig_2309 GH17 1.60E-28 15 306 138 389 0.936 
Contig_3086 GH17 2.20E-29 22 307 125 367 0.916 
Contig_25898 GH18 8.80E-26 94 193 1 134 0.334 
Contig_1913 GH20 7.70E-93 8 336 208 575 0.973 
Contig_7223 GH20 1.60E-44 155 336 2 190 0.537 
Contig_32098 GH23 1.60E-07 66 114 2 76 0.356 
Contig_7580 GH27 4.00E-43 179 346 1 152 0.445 
Contig_9721 GH31 5.70E-90 199 427 2 233 0.534 
Contig_12205 GH37 6.40E-90 133 418 1 324 0.580 
Contig_5851 GH37 2.70E-101 168 489 1 362 0.654 
Contig_10165 GH38 4.30E-91 3 260 267 523 0.955 
Contig_13893 GH47 3.50E-101 122 446 13 354 0.726 
Contig_8157 GH47 1.10E-79 38 249 2 210 0.473 
Contig_20073 GH5 9.40E-06 164 261 10 104 0.353 
Contig_3454 GH5 4.10E-45 27 275 87 397 0.902 
Contig_8780 GH63 6.60E-08 318 492 17 146 0.305 
Contig_7110 GH99 1.50E-87 68 314 1 255 0.737 
Contig_12167 GT2 1.80E-09 99 164 1 67 0.387 
Contig_15162 GT2 1.50E-17 73 164 32 124 0.542 
Contig_2881 GT2 3.00E-06 106 164 4 63 0.345 
Contig_3294 GT2 1.30E-35 1 166 71 250 0.982 
Contig_3933 GT2 2.20E-46 1 168 9 179 0.994 
Contig_42559 GT2 1.50E-11 3 58 17 71 0.327 
Contig_5714 GT2 2.70E-29 1 130 15 146 0.768 
Contig_10332 GT22 1.30E-62 4 360 13 465 0.915 
Contig_3304 GT3 2.50E-140 316 623 1 315 0.482 
Contig_12481 GT31 1.20E-31 19 191 9 179 0.896 
Contig_9054 GT39 5.50E-29 121 223 1 105 0.457 
Contig_15245 GT4 4.20E-10 51 107 7 69 0.350 
Contig_7597 GT41 4.70E-10 17 243 170 457 0.321 
Contig_2929 GT49 7.30E-07 220 327 14 121 0.318 
Contig_10337 GT62 3.40E-50 117 268 12 158 0.563 
Contig_6701 GT8 6.20E-53 30 254 17 259 0.872 
  



Supplementary information 
 

 113 

Table S3: List of Missing Glomeromycota core genes (MGCGs) and identif ied NRVT in G. 
pyriformis .  Gp: G. pyriformis, Gm: G. margarita, Gr: G. rosea, Ri: R. irregularis 
Gene ID Name Descript ion Gp Gm  Gr Ri 

Thiamine Metabolism/Transport 	 	 	 	

YGR144W THI4 Thiazole synthase Missing Missing Missing Missing 

YPL214C THI6 
Bifunctional enzyme with thiamine-phosphate 
pyrophosphorylase and 4-methyl-5-beta-
hydroxyethylthiazole kinase activities 

Missing Missing Missing Missing 

YLR237W THI7 
Plasma membrane transporter responsible for the 
uptake of thiamine 

Missing Missing Missing Missing 

YOL055C THI20 
Multifunctional protein with 
hydroxymethylpyrimidine phosphate (HMP-P) 
kinase and thiaminase activities 

Missing Missing Missing Missing 

YPL258C THI21 Hydroxymethylpyrimidine phosphate kinase Missing Missing Missing Missing 

YPR121W THI22 hydroxymethylpyrimidine phosphate kinases Missing Missing Missing Missing 

YOR192C THI72 Transporter of thiamine or related compound Missing Missing Missing Missing 

YOR071C NRT1 High-affinity nicotinamide riboside transporter Missing Missing Missing Missing 

Allantoine Metabolism/Transport     

YIR028W DAL4 Allantoin permease Missing Missing Missing Missing 

Alcohol Metabolism/Fermentation     

YGL256W ADH4 Alcohol dehydrogenase isoenzyme type IV Missing Missing Missing Missing 

YOL165C AAD15 Putative aryl-alcohol dehydrogenase Missing Missing Missing Present 

Uracil  Metabolism/Transport 	 	 	 	

YBL042C FUI1 High affinity uridine permease Missing Missing Missing Missing 

YBR021W FUR4 Uracil permease Missing Missing Missing Missing 

Detoxif ication/Stress Response 	 	 	 	

YER185W PUG1 
Plasma membrane protein with roles in the uptake 
of protoprophyrin IX and the efflux of heme 

Missing Missing Missing Missing 

YGR213C RTA1 Protein involved in 7-ami-cholesterol resistance Missing Missing Missing Missing 

YGR234W YHB1 Nitric oxide oxidoreductase Missing Missing Missing Missing 

YIL053W RHR2 DL-glycerol-3-phosphatase Missing Missing Missing Missing 

YPR201W ARR3 Arsenite transporter  Missing Missing Missing Missing 

YGL196W DSD1 
D-serine dehydratase (aka D-serine ammonia-
lyase) 

Missing Missing Missing Missing 

YHR044C DOG1 2-deoxyglucose-6-phosphate phosphatase Missing Missing Missing Missing 

YHR043C DOG2 2-deoxyglucose-6-phosphate phosphatase Missing Missing Missing Missing 

Chaperones 	 	 	 	

YBR227C MCX1 Mitochondrial matrix protein Missing Present Missing Missing 

Proteases/Peptidases 	 	 	 	

YHR132C ECM14 Putative metalloprotease  Missing Missing Missing Missing 

Aromatic Aminoacid Metabolism 	 	 	 	

YGL202W ARO8 Aromatic ami-transferase I Missing Missing Missing Missing 

YHR137W ARO9 Aromatic ami-transferase II Missing Missing Missing Missing 

Channels/Transporters 	 	 	 	

YJL093C TOK1 Outward-rectifier potassium channel  Missing Missing Missing Missing 

YBR296C PHO89 Na+/Pi cotransporter Missing Missing Missing Present 
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Gene ID Name Descript ion Gp Gm  Gr Ri 
YKL221W MCH2 monocarboxylate permeases Missing Missing Missing Missing 

Mating Type/Cell Cycle/Budding 	 	 	 	

YIL140W AXL2 
Integral plasma membrane protein required for 
axial budding in haploid cells 

Missing Missing Missing Missing 

ER Quality Control 	 	 	 	

YPL096W PNG1 
Conserved peptide N-glycanase required for 
deglycosylation of misfolded glycoproteins during 
proteasome-dependent degradation 

Missing Missing Missing Missing 

YBR015C MNN2 Alpha-1,2-man-syltransferase Missing Missing Missing Missing 

YJL186W MNN5 Alpha-1,2-man-syltransferase Missing Missing Missing Missing 

Others 	 	 	 	

YLL057C JLP1 
Fe(II)-dependent sulfonate/alpha-ketoglutarate 
dioxygenase, involved in sulfonate catabolism for 
use as a sulfur source 

Missing Missing Missing Missing 

YNL229C URE2 
Nitrogen catabolite repression transcriptional 
regulator  

Contig_867
1 

Missing Missing Present 

YLR047C FRE8 
Iron/copper reductases, involved in iron 
homeostasis 

Missing Missing Missing Missing 

YLR278C YLR278C Zinc-cluster protein Missing Missing Missing Missing 

YIL162W SUC2 Invertase Missing Missing Missing Missing 

YKL182W FAS1 Fatty Acid Synthase Missing Missing Missing Missing 

YPL231W FAS2 Fatty Acid Synthase Missing Missing Missing Missing 
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Table S4: List of primers used in this work. 

Name Sequence (5'->3') Information 
Tm1 
(nearest 
Neighbor) 

Tm2 
(nearest 
Neighbor) 

HIGSP004 CTCCCAAACCAGCCATAATC qPCR Ri NLS_98735 RV 50.3°C  
HIGSP006 GACGTGGAAAAGGCACCATA qPCR Ri beta-tubulin RV 51.6°C  
HIGSP007 CGTTCAAGCAAGTTGTCGAG qPCR Ri EX_25359 FW 53.5°C  
HIGSP008 AACCATTCTACCAGCCCAAG qPCR Ri EX_25359 RV 51.4°C  
HIGSP009 AGCGGGTGGATGTGGTATAA qPCR Ri EX_27056 FW 51.9°C  
HIGSP010 CCAGTGCCTGTTGATCTGAA qPCR Ri EX_27056 RV 52.3°C  
HIGSP011 TGGTCTCGTCCTTTTGAAGC qPCR Ri NLS_30765 FW 52.5°C  
HIGSP012 CACGATCAAGACATGCGAGA qPCR Ri NLS_30765 RV 54.0°C  
HIGSP013 CGATATGAACTCATTGCCAAC qPCR Ri NLS_334409 FW 50.6°C  
HIGSP014 TGGGGCTTAGGAACAGAGAA qPCR Ri NLS_334409 RV 52.3°C  
HIGSP015 TGCCACCGAACCTTTACCTA qPCR Ri RCP_335225 FW 52.2°C  
HIGSP016 TTGGACCAGAACCTACAGCA qPCR Ri RCP_335225 RV  52.1°C  
HIGSP017 GAGGCACTGCTCAATTAAACG qPCR Ri RCP_340423 FW 53.5°C  
HIGSP018 GCTGGCTGATATGCTTTTCC qPCR Ri RCP_340423 RV 52.4°C  
HIGSP019 GATCCGCCAGGTGAATTATC qPCR Ri NLS_343100 FW 50.5°C  
HIGSP020 GAAGGCAAAGAAGGTTCACG qPCR Ri NLS_343100 RV 52.0°C  
HIGSP021 CACATGCAGCTAGTTGTGAGAG qPCR Ri EX_54675 FW 55.9°C  
HIGSP022 AATCGCGTTCTCCTTTTTCC qPCR Ri EX_54675 RV 51.6°C  
HIGSP023 GACATCGCACGAATATGTGG qPCR RiTSL1/NLS_7749 FW 51.9°C  
HIGSP024 CGTTGGCACACTCCTGATAA qPCR RiTSL1/NLS_7749 RV 52.4°C  
HIGSP025 TGGTAAATGTGGAGCGACAG qPCR Ri RCP_84949 FW 52.4°C  
HIGSP026 ACATCCTGTACCGCAATGGT qPCR Ri RCP_84949 RV 52.3°C  
HIGSP027 TACGTAATGTGGCAGGACCA qPCR Ri RCP_230436 FW 52.1°C  
HIGSP028 TTACGTCGGGCTCACTGAAT qPCR Ri RCP_230436 RV 53.5°C  
HIGSP029 CGCGAGTTGAAGTCGAAGA qPCR Ri NLS_98735 FW 54.1°C  
HIGSP030 GCCATACCGCTCATATTGCT qPCR Ri EF1-alpha FW 53.4°C  
HIGSP031 TTAACGATAGCGGCATCTCC qPCR Ri EF1-alpha RV 53.3°C  
HIGSP032 CTCCAACTTATGGCGATCTCA qPCR Ri beta-tubulin FW 53.4°C  
HIGSP033 ATGGTCTCCCACCGTTAGATTATGACG

GTAC 
Cloning RNAi target1 Ri NLS_7749 
+BsaI CACC FW 40.7°C 61.6°C 

HIGSP034 ATGGTCTCACCTTAAATGTACCTCATT
CCTAG 

Cloning RNAi target1 Ri NLS_7749 
+BsaI CCTT RV 43.6°C 60.2°C 

HIGSP035 ATGGTCTCTCACCTTCAAGTGCTTGGC
AG 

Cloning RNAi target2 Ri NLS_7749 
+BsaI CACC FW 45.6°C 64.1°C 

HIGSP036 ATGGTCTCGCCTTATCTTCATCTGTTC
GATC 

Cloning RNAi target2 Ri NLS_7749 
+BsaI CCTT RV 43.8°C 63.1°C 

HIGSP039 ATGGTCTCTCACCCAATCTTGTCAATT
AGCTG 

Cloning RNAi target2 Ri RCP_340423 
+BsaI CACC FW 45.1°C 62.8°C 

HIGSP040 ATGGTCTCGCCTTAACAGCAGCAATCA
TAAC 

Cloning RNAi target2 Ri RCP_340423 
+BsaI CCTT RV 44.8°C 63.7°C 

HIGSP041 ATGGTCTCACACCGTTTACACTTCTGC
TTAATA 

Cloning RNAi target1 Ri NLS_98735 
+BsaI CACC FW 43.6°C 61.9°C 

HIGSP042 ATGGTCTCACCTTCTAAAACGCGAATC
GTG 

Cloning RNAi target1 Ri NLS_98735 
+BsaI CCTT RV 47.3°C 63.2°C 

HIGSP043 AAGGTCTCTCACCAAGTATCGTAGTTA
TTCATC 

Cloning RNAi target2 Ri NLS_98735 
+BsaI CACC FW 42.9°C 60.8°C 
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Name Sequence (5'->3') Information 
Tm1 
(nearest 
Neighbor) 

Tm2 
(nearest 
Neighbor) 

HIGSP044 ATGGTCTCGCCTTCATCAATGTCATAC
CTTC 

Cloning RNAi target2 Ri NLS_98735 
+BsaI CCTT RV 41.4°C 62.3°C 

HIGSP045 TGTTGTTGATGTGATTACAG Sequencing RNAi vector pLjUbi FW 45.6°C  
HIGSP046 TCTCTCTTTGAAACCGTTG Sequencing RNAi vector insert RV/ 

Test-PCR hairpin detection RV 48.0°C  

HIGSP047 TCGGAAGTGATAAAGTTATG Sequencing RNAi vector insert FW/ 
Test-PCR hairpin detection 46.1°C  

HIGSP048 TTGCGGACTCTAGCATG Sequencing RNAi vector 35S term RV 49.2°C  
HIGSP051 GAATAAAGGGGCCAAAATCG qPCR LjPT4 3'_F2 (pers. Comm. 

Caroline Gutjahr)  49.6°C 	

HIGSP052 GCTGTATCCTATCCCCATGC qPCR LjPT4 3'_R2 (pers. Comm. 
Caroline Gutjahr) 51.8°C 	

HIGSP053 TGGTTCAACTTTTCGTTCCA qPCR LjAMT2.2 F (pers. Comm. 
Caroline Gutjahr) 49.3°C 	

HIGSP054 CTTATCACCCTGACCCCAGA qPCR LjAMT2.2 R (pers. Comm. 
Caroline Gutjahr) 51.8°C 	

HIGSP055 CACGTTGTTAGGACCCCAAT qPCR LjSbtM1 3'_F (pers. Comm. 
Caroline Gutjahr) 50.8°C 	

HIGSP056 TTGAGCAGCACCCTCTCTATC qPCR LjSbtM1 3'_R (pers. Comm. 
Caroline Gutjahr) 55.0°C 	

HIGSP057 TCATCTGTCCTTGGGGTCAT qPCR LjBcp1_F (pers. Comm. Caroline 
Gutjahr) 51.2°C 	

HIGSP058 CAGCTGCAGAAGTTGCATTT qPCR LjBcp1_R (pers. Comm. Caroline 
Gutjahr) 53.3°C 	

HIGSP059 ATGCAGATCTTCGTCAAGACCTTG qPCR LjUbi F (pers. Comm. Caroline 
Gutjahr) 57.4°C 	

HIGSP060 ACCTCCCCTCAGACGAAG qPCR LjUbi R (pers. Comm. Caroline 
Gutjahr) 51.5°C 	

HIGSP061 CAGGTCTCACACCATGTCACCGCCTTT Cloning RiTSL1+SP part1 +BsaI CACC 
FW 40.0°C 62.4°C 

HIGSP065 CGGGTCTCGGTTTCAAAAGCCAACATC Cloning RiTSL1 part1 +BsaI GTTT RV  43.2°C 61.1°C 

HIGSP066 CGGGTCTCCAAACTTTCCTCACGATG Cloning RiTSL1 part2 +BsaI AAAC FW 43.3°C 60.6°C 

HIGSP068 AGGGTCTCTCACCATGTTTGATATTGG
TAAAGACA 

Cloning RiTSL1-SP part1 +BsaI CACC 
FW 40.9°C 62.4°C 

HIGSP081 GCGGTCTCACCTTATCGTTACTAGCTA
ATATT 

Cloning RiTSL1 -STOP codon part2 
+BsaI CCTT RV  41.4°C 61.8°C 

HIGSP096 TGCGGATTTCTTACATGAGC qPCR Ri NLS_26232 FW 51.6°C  
HIGSP097 GGTTCGTTACTGGATCTTGAGTG qPCR Ri NLS_26232 RV 54.1°C  
HIGSP098 CCTATAGCGTTGTTTCAAGACG qPCR Ri NLS_320155 FW 54.0°C  
HIGSP099 CTTTCGAGAAAATCCAATGTCC qPCR Ri NLS_320155 RV 51.1°C  
HIGSP100 TCCGGTCATAGTTTGTGGTG qPCR Ri NLS_32853 FW 51.0°C  
HIGSP101 TGAACTTCGACCATCATAGCC qPCR Ri NLS_32853 RV 52.7°C  
HIGSP102 GGTGATGCAAAAGGAGGAAC qPCR Ri RCP+NLS_349824 FW 50.4°C  
HIGSP103 GCTGGTTGACCATTTGTTCG qPCR Ri RCP+NLS_349824 RV 51.7°C  
HIGSP104 GATCAAGGCACGTGATGATG qPCR Ri RCP_349288 FW 51.8°C  
HIGSP105 CGGCAGGCTTCGATATTAAC qPCR Ri RCP_349288 RV 52.7°C  
HIGSP106 TGTCCCGTCACATCTTTCAG qPCR Ri SRC_343180 FW 51.8°C  
HIGSP107 CATGGAACAGCCCAAAACAG qPCR Ri SRC_343180 RV 51.5°C  
HIGSP108 CTTAAACGTGGCACTTCCATC qPCR Ri SCR_339199 FW 52.1°C  
HIGSP109 TTGCGTGCTTGGAAAAGAC qPCR Ri SCR_339199 RV 51.2°C  
HIGSP142 ATGGTCTCACACCCCACGACACCATTA

A 
Cloning RNAi target1 Ri 
SCR+RCP_84949 +BsaI CACC FW 39.2°C 60.5°C 

HIGSP143 ATGGTCTCACCTTGGACCGGTAATATC
AG 

Cloning RNAi target1 Ri 
SCR+RCP_84949 +BsaI CCTT RV 40.6°C 60.6°C 

HIGSP144 ATGGTCTCACACCCAAGAGGAATTCGC Cloning RNAi target1 Ri SCR_339199 
+BsaI CACC FW 38°C 61.1°C 
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Name Sequence (5'->3') Information 
Tm1 
(nearest 
Neighbor) 

Tm2 
(nearest 
Neighbor) 

HIGSP145 ATGGTCTCACCTTGGAAGTGCCACGT Cloning RNAi target1 Ri SCR_339199 
+BsaI CCTT RV 39.0°C 61.3°C 

HIGSP146 ATGGTCTCACACCATGACCACCACTGC
C Cloning ScTPS2 +BsaI CACC FW 43.3°C 62.5°C 

HIGSP147 ATGGTCTCACCTTAACCTTTGCGCCGG Cloning ScTPS2 +BsaI CCTT RV 46.6°C 63.3°C 

HIGSP148 TAGAAGACTATACGGGTCTCACACCAT
GACTACGGATAACG 

Cloning ScTPS1 part1 +BsaI CACC 
FW 41.1°C 67.3°C 

HIGSP151 TAGAAGACTATACGGGTCTCACCTTGT
TTTTGGTGGCAGAG Cloning ScTPS1 part2 +BsaI CCTT RV 42.8°C 67.8°C 

HIGSP156 TAGAAGACTATACGGGTCTCACACCAT
GGTTTCTTCGGCA Cloning RiTPS2 +BsaI CACC FW 42.1°C 68.1°C 

HIGSP160 ATGGTCTCACACCTGATGCACTCAAGC Cloning RNAi target1 Ri RCP_349288 
+BsaI CACC FW 38.8°C 61.9°C 

HIGSP161 ATGGTCTCACCTTAGCATCACGATCAG Cloning RNAi target1 Ri RCP_349288 
+BsaI CCTT RV 38.9°C 60.6°C 

HIGSP162 ATGGTCTCACACCAAAATGGTTGTCCA
AGG 

Cloning RNAi target1 Ri SCR_343180 
+BsaI CACC FW 42.1°C 60.9°C 

HIGSP163 ATGGTCTCACCTTAAACAGCACCCGTT
T 

Cloning RNAi target1 Ri SCR_343180 
+BsaI CCTT RV 42.1°C 60.5°C 

HIGSP164 ATGGTCTCACACCCGTAGAGAATCAAT
CAA 

Cloning RNAi target1 Ri RCP_230436 
+BsaI CACC FW 40.6°C 60.9°C 

HIGSP165 ATGGTCTCACCTTGCATCAACTATACT
AGC 

Cloning RNAi target1 Ri RCP_230436 
+BsaI CCTT RV 40.5°C 60.9°C 

HIGSP174 GGGTCTCACCTTTTCGTTCAGCTTCTG Cloning RiTPS2 +BsaI CCTT RV 41.8°C 61.2°C 

HIGSP179 CGGGTCTCGGAcACCAAACAAACATC Cloning ScTPS1 part1 +BsaI mut RV 40.3°C 59.6°C 

HIGSP180 GCGGTCTCCTgTCGTCCACCCG Cloning ScTPS1 part2 +BsaI mut FW 42.0°C 61.8°C 

HIGSP181 CAAGAGATGGTATGAATCTCGTGTC Sequencing RTPS1 FW 55.6°C  
HIGSP182 TCCATCATGCCCCATGGCCTAG Sequencing ScTPS2 FW 58.1°C  
HIGSP183 TGGAATAGCTGCAGCTGGGTC Sequencing ScTPS2 RV 57.2°C  
HIGSP184 AAGACTCCCCGATGCTGCG Sequencing RTPS2 FW 57.1°C  
HIGSP185 AGTTAGATCACGCCCAGAAACG Sequencing RTPS2 RV 56.0°C  
HIGSP186 CGTTCCAGATCATGATTTTGAAGG Sequencing RTSL1 FW 54.5°C  
HIGSP187 AACTATCGGACGTTCTTCCGC Sequencing RTSL1 RV 55.4°C  
HIGSP188 TTGGAGGTCAGACCAACATC qPCR RiTPS2 FW 50.3°C  
HIGSP189 ATCGGTTCGATCATCTCCAG qPCR RiTPS2 RV 52.5°C  
HIGSP190 CCGGAATTTGGTTCATGG qPCR RiTPS1FW 47.3°C  
HIGSP191 GACTTATCAACCGCAGATGG qPCR RiTPS1 RV 51.3°C  
HIGSP192 CGGGTCTCACACCATGTCGCAATCTGT

TAAC Cloning RiTPS1 +BsaI CACC FW 44.5°C 63.9°C 

HIGSP193 CGGGTCTCACCTTTAATTCTTTAGCTA
ATCTTTC 

Cloning RiTPS1 -STOP codon +BsaI 
CCTT RV 43.4°C 61.7°C 

HIGSP194 ACTGATCATATTGTGGGTGATGAC Test-PCR DNAse treatment Lj Bcp1 
FW 52.9°C  

HIGSP195 ATGCAAAGAAAGCTGTGATGAC Test-PCR DNAse treatment Lj Bcp1 
RV 53.1°C  

HIGSP196 CCGTTAGATTATGACGGTAC Test-PCR hairpin detection in RiTSL1 
target FW 48.2°C  

HIGSP197 ACAATCTCGATTCTCATTTTCTTTG Cloning Sctps2∆::KanMX cassette FW 53.3°C 
 HIGSP198 AGAACAAGGAACAAAGTCCAAGC Cloning Sctps1∆::KanMX cassette FW 54.1°C 
 HIGSP199 CTGCAGCGAGGAGCCGTAAT KanMX confirmation primer RV 58.7°C 
 HIGSP200 GGGAGAGAAAGAAAGAGAGAGAAAA Cloning Sctps1∆::KanMX cassette RV 55.1°C 
 HIGSP201 GTAGTACCCTCTTTTACCTACCGCT Cloning Sctps2∆::KanMX cassette RV 56.5°C 
 HIGSP213 TAACACCTAACCTCGATAGAGTTGC Cloning Sctps3∆::KanMX cassette FW 56.0°C 
 HIGSP214 ACCACCTTTAGTGTTTTTCTTACCC Cloning Sctps3∆::KanMX cassette RV 53.2°C 
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Name Sequence (5'->3') Information 
Tm1 
(nearest 
Neighbor) 

Tm2 
(nearest 
Neighbor) 

HIGSP215 CATAGTCGAGCGGTCCGTTCTG Confirmation Sctps1∆::KanMX FW 59.0°C 
 HIGSP216 CTTCTCGTTCTCTACGTAAGGAACTTG Confirmation Sctps2∆::KanMX FW 58.7°C 
 HIGSP217 GGGTAGCCGTGCCTCGTCTG Confirmation Sctsl1∆::KanMX FW 58.7°C 
 HIGSP218 GCAACGCAACGTACCCTGGGAC Confirmation Sctps3∆::KanMX FW 58.7°C 
 

HIGSP219 
CGAGAAAAGCGGGTCACCCCCGCCCCT
GCATTTTGATATGGCGTATTTGGCCTC
GAGGAGAACTTCTAGTATATCCAC 

Cloning Sctsl∆LEU2 cassette FW  
not underlined: LEU2 complementary 
binding site; underlined: ScTSL1 
recombination site 58.8°C 78.4°C 

HIGSP220 
TTAGAATATTGGGCTTGAAGGTTATCT
TACTATTTTCGCTGTTCATCGACTCGA
CTACGTCGTAAGGCCGTTTCT 

Cloning Sctsl∆LEU2 cassette RV  
not underlined: LEU2 complementary 
binding site; underlined: ScTSL1 
recombination site 60.9°C 75.3°C 

HIGSP231 CTGCGGTCAAGATATTTCTTGAATCAG Confirmation LEU2 RV 58.3°C 
 

HIGSP234 GCGAATTCATGTCACCGCCTTTGAGTA
TTCATAGAGTTGTAGTTGTTTC 

Cloning full length RiTSL1 SP  
underlined1: EcoRI RS 
underlined2: complementary overlap 
with HIGSP235 35.9°C 69.2°C 

HIGSP235 TTCTCGAGAGAAGCAGTATACGGAAGA
AAAAGAGAAACAACTACAACTC 

Cloning full length RiTSL1 SP  
underlined1: XhoI RS 
underlined2: complementary overlap 
with HIGSP234 35.9°C 69.1°C 

HIGSP246 CCCAGCCATGTTCTCAAATG qPCR RirG193020 Grx4 FW 51.5°C  
HIGSP247 AGTTCGGGGAATTTCTCAGC qPCR RirG193020 Grx4 RV 52.3°C  
HIGSP248 GAAGCGAGACTTTGGAATGAC qPCR RirG173060 Malate Synthase 

FW 52.4°C  

HIGSP249 CGGCAAGGATGGTTTCTATC qPCR RirG173060 Malate Synthase 
RV 51.2°C  

HIGSP282 CGCCATTTGACCATTCATCCCCAGTTG
ACATTTCC 

Cloning probe "GpRIC1" (with BKRSV 
overhang) FW 46.5°C 65.2°C 

HIGSP283 CTCGTAGACTGCGTACCAGGAAGTTCT
AATGGTGATTC 

Cloning probe "GpRIC1" (with LUF 
overhang) RV 45.6°C 66.8°C 

HIGSP284 CGCCATTTGACCATTCA Cloning PCR on BKRSV overhang 46.3°C  
HIGSP285 CTCGTAGACTGCGTACCA Cloning PCR on LUF overhang 51.0°C  
HIGSP286 TCTCTCTCTTGCTACTTC Sequencing GpRIC1 5' --> 46.0°C  
HIGSP287 TTTTTAGGTTGCACTTCAC Sequencing GpRIC1 <--3' 45.3°C  
HIGSP288 ATTTCAACTACTAGATACTC Sequencing GpRIC1 3'--> 42.1°C  
HIGSP289 AAGCTTGACGTTTCTCCG Sequencing GpRIC1 <--5' 50.5°C  
HIGSP290 GTTTCCAACGTTGTTACCG Cloning probe "GpRIC2" FW 48.3°C  
HIGSP291 GTGACTTCAATGGCAACG Cloning probe "GpRIC2" RV 48.2°C  
HIGSP292 CGCCATTTGACCATTCAGTTTCCAACG

TTGTTACCG 
Cloning probe "GpRIC2" (with BKRSV 
overhang) FW 48.3°C 66.0°C 

HIGSP293 CTCGTAGACTGCGTACCAGTGACTTCA
ATGGCAACG 

Cloning probe "GpRIC2" (with LUF 
overhang) RV 48.2°C 68.7°C 

HIGSP294 CCGTCCCTATTATTGTTGCC Cloning probe "GpRIC3" FW 50.4°C  
HIGSP295 GGCTGGTGGTGGAAACG Cloning probe "GpRIC3" RV 50.2°C  
HIGSP296 CGCCATTTGACCATTCACCGTCCCTAT

TATTGTTGCC 
Cloning probe "GpRIC3" (with BKRSV 
overhang) FW 50.4°C 66.6°C 

HIGSP297 CTCGTAGACTGCGTACCAGGCTGGTGG
TGGAAACG 

Cloning probe "GpRIC3" (with LUF 
overhang) RV 50.2°C 69.7°C 

HIGSP298 GGCATTTTCAACACCATCTA Sequencing GpRIC2 3' --> 47.8°C  
HIGSP299 TAGATGGTGTTGAAAATGCC Sequencing GpRIC2 <-- 3' 47.8°C  
HIGSP300 CGGGAAGAGACAGGAGGAA Sequencing GpRIC3 3' --> 52.6°C  
HIGSP252 TAATACGACTCACTATAGGGGTTAGAT

TATGACGGTAC 
PIGS RiTsl1-RNAiT1 +(underlined) T7 
promoter sequence FW 40.7°C 62.7°C 
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Name Sequence (5'->3') Information 
Tm1 
(nearest 
Neighbor) 

Tm2 
(nearest 
Neighbor) 

HIGSP253 TAATACGACTCACTATAGGGCTCATTC
CTAGATTAG 

PIGS RiTsl1-RNAiT1 +(underlined) T7 
promoter sequence RV 35.6°C 63.1°C 

HIGSP254 TAATACGACTCACTATAGGGGCAGTGC
TTCAGCCGCTAC 

PIGS GFP-RNAiT +(underlined) T7 
promoter sequence FW 56.8°C 70°C 

HIGSP255 TAATACGACTCACTATAGGGGAAGTCG
ATGCCCTTCAGCT 

PIGS GFP-RNAiT +(underlined) T7 
promoter sequence RV 55.2°C 68.9°C 

GGP5 GCTCAACACATGAGCGAAACC Confirmation	hairpin	cDNA	RV	(pers.	
comm.	Andreas	Binder)	 54.7°C 

 G114 AAACACAGATTATCATCACTAATTGGA Confirmation	hairpin	cDNA	FW	(pers.	
comm.	Andreas	Binder)	 53.2°C 
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Table S5: List of vectors created in this work. Kan: Kanamycin, Amp: Ampicillin. 
Name Insert Backbone Resistanc

e Reference 

HIGSV001 F1-2 pLjUbi:RiTSL1_RNAi_target1>F2-3 ins>F3-4 
dy>F4-5 ins>F5-6 p35S:GFP LIII fin - BB52 Kan This study 

HIGSV002 F1-2 pLjUbi:RiTSL1_RNAi_target2>F2-3 ins>F3-4 
dy>F4-5 ins>F5-6 p35S:GFP LIII fin - BB52 Kan This study 

HIGSV004 F1-2 pLjUbi:Ri_340423_RNA_target2>F2-3 ins>F3-4 
dy>F4-5 ins>F5-6 p35S:GFP LIII fin - BB52 Kan This study 

HIGSV005 F1-2 pLjUbi:Ri_98735_RNAi_target1>F2-3 ins>F3-4 
dy>F4-5 ins>F5-6 p35S:GFP LIII fin - BB52 Kan This study 

HIGSV006 F1-2 pLjUbi:Ri_98735_RNAi_target2>F2-3 ins>F3-4 
dy>F4-5 ins>F5-6 p35S:GFP LIII fin - BB52 Kan This study 

HIGSV007 F1-2 dy>F2-3 ins>F3-4 dy>F4-5 ins>F5-6 p35S:GFP LIII fin - BB52 Kan This study 

HIGSV008 F 1-2: A-B pLjUbi>B-E Esp3I dy>E-F 35S Term>F-G dy LIIc F 1-2 - BB30 Amp This study 

HIGSV009 R 3-4: A-C p35S>C-D GFP>D-E dy>E-F nos Term>F-G 
dy LIIc R 3-4 - BB34 Amp This study 

HIGSV015 F1-2 dy>F2-3 dy>F3-4 dy>F4-5 ins>R5-6 
p35S:Cerulean:35S Term LIII fin - BB52 Kan This study 

HIGSV031 F1-2 pUbi:RiTSL1+SP-STOP-mCherry>F2-3 ins >F3-4 
dy>F4-5 ins>R5-6 p35S:Cerulean:35S Term LIII fin - BB52 Kan This study 

HIGSV032 F1-2 pLjUbi:RiTSL1∆SP-STOP-mCherry:nos Term>F2-3 
ins>F3-4 dy>F4-5 ins>R5-6 p35S:Cerulean:35S Term LIII fin - BB52 Kan This study 

HIGSV054 F1-2 pLjUbi:Ri339199_RNAi_target1> R3-4 35S:GFP HIGSV081 Kan This study 

HIGSV055 F1-2 pLjUbi:Ri349288_RNAi_target1 > R3-4 35S:GFP HIGSV081 Kan This study 

HIGSV056 F1-2 pLjUbi:Ri230436_RNAi_target1 > R3-4 35S:GFP HIGSV081 Kan This study 

HIGSV060 F1-2 pLjUbi:Ri84949_RNAi_target1 > R3-4 35S:GFP HIGSV081 Kan This study 

HIGSV061 F1-2 pLjUbi:Ri343180_RNAi_target1 > R3-4 35S:GFP HIGSV081 Kan This study 

HIGSV080/ 
pre RNAi 

F1-2 pLjUbi:Esp3Idy:35S Term>F2-3 ins>R3-4 
p35S:GFP:nos Term>F4-6 dy LIII fin - BB52 Kan This study 

HIGSV081/ 
Fin. 
silencing 

F1-2 pLjUbi:ccdb:35S Term>F2-3 ins>R3-4 
p35S:GFP:nos Term>F4-6 dy HIGSV080 Kan This study 

HIGSV095 RiTSL1+SP 426-GPD-ccdB-HA Amp/URA3 This study 

HIGSV096 RiTSL1∆SP 426-GPD-ccdB-HA Amp/URA3 This study 

HIGSV097 RiRiTPS1 426-GPD-ccdB-HA Amp/URA3 This study 

HIGSV098 RiTPS2 426-GPD-ccdB-HA Amp/URA3 This study 

HIGSV099 ScTPS1 426-GPD-ccdB-HA Amp/URA3 This study 

HIGSV100 ScTPS2 426-GPD-ccdB-HA Amp/URA3 This study 

HIGSV101 dy 426-GPD-ccdB-HA Amp/URA3 This study 

E006 ScInv+SP pSUC2T7M13ORI Amp/TRP1 
pers. comm. K. 
Sedzielewska 
Toro 

E007 ScInv∆SP pSUC2T7M13ORI Amp/TRP1 
pers. comm. K. 
Sedzielewska 
Toro 

E015 SP(Rc-7749) pSUC2T7M13ORI Amp/TRP1 
pers. comm. K. 
Sedzielewska 
Toro 

HIGSV132 SP(Ri-7749) pSUC2T7M13ORI Amp/TRP1 This study 
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complement the respective yeast phenotypes. 
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