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Zusammenfassung

Im Fokus dieser Arbeit steht die Mechanobiologie der extrazellulären Maschinerie
des Cellulosoms. Cellulosome sind Multiprotein-Komplexe und werden von Pilzen
und Bakterien sekretiert um enzymatisch Hemicellulose, Lignin und Cellulose effizi-
ent zu hydrolysieren. Das Cellulosom ist ein vielversprechendes Modellsystem um
verschiedene mechanoresistente Rezeptor:Liganden-Interaktionen zu untersuchen,
aber auch um die Dynamik und Komplexität eines Proteinnetzwerks zu verstehen.
Einzelmolekülkraftspektroskopie (SMFS) ermöglicht es individuelle, cellulosomale
Cohesin:Dockerin Interaktionen zu betrachten und so Rückschlüsse auf das ganze
Cellulosom zu ziehen. Dabei werden einzelne Proteine oder Rezeptor:Liganden-
Interaktionen mit einem Rasterkraftmikroskop (AFM) mechanisch belastet und deren
Entfaltungskraft aufgezeichnet, indem diese zwischen einer Glasoberfläche und der
Messnadel des AFMs fixiert werden.
In dieser Arbeit wurde die mechanische Stabilität des Cohesin:Dockerin Typ III
Komplexes aus Ruminoccous flavefaciens untersucht. Dabei wurden Abrisskräfte von
ca. 650 pN beobachtet, womit diese zu den höchsten gemessenen Abrisskräften eines
einzelnen Rezeptor:Liganden-Systems gehören.
Diese hohen Kräfte führen zur Überdehnung von Polyethylenglykol (PEG), Polymere
die bei AFM-Experimenten standardmäßig als Abstandhalter eingesetzt werden. Die
Konformation von PEG wechselt, bei einer Belastung von über 350 pN, von einer
gestauchten trans-trans-gauche Konformation in eine komplette trans Konformation,
welche die Konturlänge verändert.
Um sich dieser Angelegenheit anzunehmen wurde in dieser Arbeit mit biologischen
Polymeren gearbeitet, sog. Elastin-ähnliche Polypeptide (ELPs). ELPs können mit
gängigen posttranslationalen Proteinligationsmethoden mit dem Zielprotein ortss-
pezifisch verknüpft werden und so in AFM-Versuchen als Abstandhalter eingesetzt
werden. Die Peptidbindung der ELPs beeinflußt die eigentliche Dehnung der Ziel-
proteine nicht mehr. Außerdem können ELPs auf Grund ihrer biologischen Natur
leichter angepasst werden. So ist es möglich up- und downstream des ELP-Gens Sequen-
zen anzubringen, welche unterschiedliche, ortsspezifische Oberflächenanbindungen
ermöglichen.
Im Weiteren Verlauf der Arbeit wurde der Durchsatz bei SMFS-Experimenten verbes-
sert. Mit Hilfe zellfreier Expression konnten im kleinen Maßstab mehrere verschiede-
ne Proteine synthetisiert, räumlich getrennt auf einer Glasoberfläche immobilisiert
und im Anschluss mit der gleichen Messnadel vermessen werden. Somit können die
absoluten Entfaltungskräfte direkt miteinander verglichen werden.
Im letzten Teil der Arbeit wurden spezifische Proteinfunktionalisierungsstrategi-
en für SMFS- und Bulk-Affinitätsexperimente etabliert. So ist es nun möglich die
gleiche Anbinungsstrategie in oberflächengebundenen Affinitätsassays als auch in
Einzelmolekülkraftspektroskopiemessungen anzuwenden.
Zusammenfassend beschreibt diese Arbeit die Etablierung und Optimierung bioche-
mischer Werkzeuge, zur ortspezifischen und funktionellen Anbindung von Proteinen
des Cellulosoms in der SMFS und in biophysikalischen Bulkexperimenten, um wert-
volle Einsichten über deren Bindemechanik und Stabilität zu gewinnen.
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Abstract

The mechanobiology of the cellulosome, an extracellular multiprotein machinery was
the focus of this thesis. Cellulosomes are secreted by fungi and bacteria to efficiently
hydrolyze hemicellulose, lignin and cellulose, using different enzymes. The cellulo-
some is a promising model system to investigate mechanoresistant receptor:ligand
interactions as well as to understand the dynamics of a complex protein network.
Single molecule force spectroscopy (SMFS) allows the examination of individual
cellulosomal cohesin:dockerin interactions providing insights about the whole cellu-
losome. By immobilizing single proteins or receptor:ligand interactions between an
atomic force microscope (AFM) cantilever and a glass surface, they can be stretched
mechanically with an AFM to record unfolding behavior.
In this thesis, the mechanical stability of the type III cohesin:dockerin complex of
Ruminoccous flavefaciens was probed. Rupture forces of ca. 650 pN could be observed,
which rank amongst the highest rupture forces of a single receptor:ligand interaction.
Reaching these high forces leads to an overstretching of the standard linker polymer
polyethylene glycol (PEG) used in AFM SMFS. In an AFM experiment exceeding 350
pN, PEG undergoes a transition from the compressed trans-trans-gauche conforma-
tion to the all-trans conformation and thereby changes the contour length.
To address this issue biological polymers, so called Elastin-like polypeptides (ELPs)
were explored. ELPs are linked to a protein of interest with established post-translat-
ional ligation methods and can be employed as linkers for SMFS. The ELP peptide
bonds no longer distort the stretching of the protein of interest. The biological
nature of ELPs allows to easily customize them by incorporating sequences for post-
translational modification up- and/or downstream of the gene.
Furthermore, this thesis improved the throughput and comparability of AFM experi-
ments. Using cell-free expression several different proteins were produced in a small
scale and subsequently immobilized spatially separated on a glass slide, enabling
their measurement with a single cantilever. The resulting unfolding events were
comparable in absolute forces.
In the final part of this thesis, strategies for site-specific protein immobilization for
SMFS and bulk-affinity experiments were established. It is now possible to apply the
same surface immobilization strategies in surface-bound, label-free affinity assays
and in SMFS experiments.
In summary, this thesis establishes and optimizes tools from biochemistry for site-
specific and functional immobilization of different cellulosomal proteins in SMFS and
biophysical bulk assays, to gain insight in their binding mechanisms and mechanos-
tability.
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Chapter 1

Introduction

A hallmark of life is its capability to respond to changing environments. Cells, the
building blocks of organisms adapt with microscopic changes, as the environment
changes on a macroscopic level. These changes happen dynamically, orchestrated by
interactions between biomolecules: DNA, lipids and proteins. Their interplay senses,
processes and responds to a vast variety of environmental changes.
Each biomolecule fulfills specific tasks so that the cell as a whole is able to respond
efficiently. DNA delivers the basic blueprints for the molecular scheme [1], [2].
Lipids create reaction compartments to facilitate concentration gradients thus fueling
processes and enable spatially separated reactions [3]. Proteins are the most versatile
biomolecules as they provide a whole portfolio of tasks: For example, they bind,
transport and release compounds or open and close channels for agents to diffuse via
Brownian motion [4]. In form of the cytoskeleton they provide stability to a cell, or
transfer and buffer force in muscle cells [5], [6]. As enzymes, they catalyze crucial
chemical reactions by lowering the energy barrier for compound transformation.
In order to understand these complex protein networks, it is instrumental to isolate
individual interaction partners for analysis. Independent of their function, proteins
realize their task by close range, mostly non-covalent interactions [7]. Bottom-up
approaches have proven to be useful to examine them. Single interactions are studied,
and once understood, assembled into a larger picture like a jigsaw puzzle - piece by
piece.
Scanning probe atomic force microscopy (AFM) was shown to be a viable tool to
visualize processes on a nanometer scale. Besides AFM imaging, single molecule
force spectroscopy (SMFS) has evolved as a technique to probe the mechanostability
of proteins and receptor:ligand interactions. SMFS reveals the stability or interaction
of proteins in a real quantitative manner, measuring forces down to a low pN-range
[8].
In order to obtain accurate results, a bottom-up approach should mimic physiological
conditions in a simplified setup. Recent developments in bioconjugation allowed
to functionalize proteins in a site-directed manner for SMFS experiments to ensure
probing of their endogenous binding geometry [9], [10]. Specifically, genetically
encoded recognition sequences can be used to covalently fuse proteins to small
molecules or other peptide sequences. Advancements in cloning techniques allow the
custom construction of DNA sequences encoding the protein of interest with desired
modifications [11].
To efficiently measure the biomechanics of a protein of interest it is fused to a binding
handle of a receptor:ligand interaction with known unbinding forces. This fusion
protein is site-specifically immobilized on a surface. The complementary domain is
site-specifically immobilized on the cantilever of the experimental SMFS setup. Upon
approaching the cantilever, the complex of receptor and ligand can form. Then, the
cantilever is retracted and receptor:ligand complex as well as the protein of interest
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are loaded with force. Ideally, the protein domain of interest unfolds first and then
receptor and ligand dissociate. This strategy allows to probe several hundreds copies
of the same protein of interest sequentially.
A similar approach can be used to study receptor:ligand interactions. In this case
the binding handles are exchanged for an unknown receptor:ligand system and are
fused to protein domains with known unfolding characteristics (unfolding force dis-
tribution, possible sub-steps, added contour lengths), so called fingerprint domains.
Fingerprint domains provide unambiguous identification of specific single molecule
interactions. Only unfolding traces showing all expected unfolding events of finger-
print domains (e.g., surface and cantilever fusion protein) and complex dissociation
are used in the later analysis.
To provide enough conclusive statistics, sufficient characteristic unfolding traces
need to be sampled. A robust experimental setup is necessary, refolding fingerprint
domains and receptor:ligand interactions with high dissociation forces. High dis-
sociation forces ensure that the complex only ruptures, after the protein of interest
unfolded in the experiment [12].
The cellulosome has shown to be a gold mine for the search for robust and high affinity
binding handles as well as a model system for protein function and dynamics [13],
[14]. The cellulosome is a large multiprotein machinery, secreted by anaerobic bacteria
and fungi to hydrolyze the world’s most abundant biomass cellulose to glucose [15].
Initially, organisms need to hydrolyze hemicellulose and lignin, to access the high
energy polymer cellulose. Lignin is a very complex and heterogeneous compound,
which makes it necessary to employ several different enzymes, each specialized
for one type of chemical bond. Cellulolytic organisms organize these enzymes by
anchoring the extracellular cellulosome to their cell wall. The cellulosome is based
on framework proteins (scaffoldins), consisting of several binding domains called
cohesins. The scaffoldin often contains a carbohydrate binding domain (CBM),
which links cells in close proximity to cellulose. The cohesins on the scaffoldin are
recognized by dockerins, a binding domain of most cellulolytic enzymes. Hence,
different enzymes are placed in close distance to each other and the substrate to
generate a synergistic effect, increasing cellulose hydrolysis.
Consequently cohesin:dockerin interactions are optimized for high stability and
specific binding, motivating their investigation by SMFS.
Interdisciplinary approaches between biology, chemistry and physics dissect the
cellulosomal machinery, providing insights into the mechanism and developing new
synthetic applications, i.e. usage of cohesin:dockerin as robust binding handles in
SMFS.
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Chapter 2

Scientific Context

2.1 How Proteins Generate Mechanical Stability

All known life forms use the same set of 20+2 crucial building blocks - the natural
amino acids for protein synthesis. Plus two stands for selenocysteine and pyrrolysine,
which are only present in certain organisms [16], [17]. DNA encodes the sequence of
amino acids, which then determines protein structure and function. Three subsequent
base pairs of DNA (codons) encode one amino acid. Each codon is unique for one
amino acid, but because there are more than 20 permutations possible the genetic
code is degenerate, i.e. one amino acid can be encoded by several different codons
[18]. DNA is transcribed into mRNA which in turn is translated by ribosomes
into the amino acid sequence (primary structure). The sequence of amino acids
determines the folding of the protein [19]. Mostly two main secondary structures exist
in protein folding topology [20]: Helical shapes, termed α-helix or sheet like structures,
termed β-sheets. α-Helices and β-sheets are connected by variable loop regions which
altogether form the final fold of a monomeric protein (tertiary structure). Proteins
can also contain more than one subunit, the so called quaternary structure can be
homologous (repeat of a same domain) or heterologous (different folded protein
domains) [21].
Why do protein domains stay folded, how do multimeric protein domains stabilize
each other and how do different proteins fulfill different functions?
Figure 1 gives an overview of the most important interactions within a protein
and between a protein and its environment. Amino acids are linked together via
a condensation reaction and form a covalent peptide bond. In this reaction the α-
carboxyl-group of one amino acid reacts with the α-amino group of another amino
acid, releasing a water molecule. The resulting linear polymer contains a free amino-
group at one end (N-terminus) and a carboxyl-group at the opposite end (C-terminus)
[22]. Each amino acid has a unique side chain defining its property. They can be
grouped by the characteristics of the side chain: There are six polar/uncharged,
six non-polar/aliphatic, three positively charged, two negatively charged and three
non-polar/aromatic amino acids.
During initial protein folding the non-polar/hydrophobic amino acids are buried in
the protein core (hydrophobic collapse) whereas the polar/hydrophilic amino acids
are solvent exposed [23]. During the collapse α-helices and β-sheets form, because
neighboring side chains dictate their folding. After the collapse local rearrangements
take place and optimize solvent exposure of the globular protein domain, by moving
side chains inside (hydrophobic amino acids) or outside (hydrophilic amino acids) of
the protein core. Hydrophilic amino acids usually form hydrogen bonds with water
molecules at the outer shell of a protein.
Hydrogen bonds play a crucial role in stabilization of α-helices and β-sheets [24]. The
oxygen- and nitrogen-atoms of two different amide-groups in the protein backbone
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Figure 1. Overview of intra- and inter-molecular interaction of proteins. Schematic
and chemical structures of the molecular mechanisms of different interaction types in
proteins with corresponding binding distances and energies.

interact with each other, if they are no further than 2.5 Å apart. Different side chains
can also contribute to hydrogen bonding, i.e. glutamine or asparagine have a primary
amine-group which is able to interact with an oxygen-atom.
Negatively charged side chains (i.e glutamate or aspartate) can form salt bridges
with positively charged side chains of amino acids (i.e. lysines, arginines) to stabilize
a protein [25]. Salt bridges consist of two types of interactions: An electrostatic
interaction between oppositely charged groups and hydrogen bonding between
oxygen (carboxyl-group)- and hydrogen (amine-group)-atoms [26], [27]. Salt bridges
are mostly formed in the inner core of proteins, since physiological conditions often
contain counter-polarized salt ions, which shield the electrostatic charge of solvent-
accessible side chains [25], [28], [29].
The aromatic side chains (tryptophan, phenylalanine, or tyrosine) can interact with
each other [30], [31]. So called aromatic-aromatic interactions are based on interactions
between π-electron rings of two close aromatic side chains [32]. The π- electrons can
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also interact with charged residues or CH-groups. However, this is more important
for substrate recognition than for protein stabilization [33].
Anorganic matter coordination (cations, anions, and phosphate) is stabilized by
charged amino acid side chains, i.e. glutamate and aspartate, but also histidines, cys-
teines and tyrosine play a crucial role [34]. Flexible loops are stiffened by coordination
of metal ions, which contributes to the overall rigidity of proteins [35]–[38].
Cysteine is the only natural amino acid which is able to form a covalent bond via its
thiol side chain. Two cysteines can form a disulfide bond, called cystine, which grants
high mechanical stability in proteins by fixing the fold in certain positions [39]–[42].
These manifold interactions contribute to the unique 3D-conformation, but also
allow proteins to perform specialized tasks. For example, calmodulin changes its
conformation upon calcium binding and triggers a signal cascade [43]. Avidin, a
tetrameric protein, complexes a small molecule (biotin) with extremely high affinity in
the femtomolar range [44]. Hemoglobin coordinates, transports and releases oxygen
[45]. The cytoskeletal proteins actin, tubulin and intermediate filaments provide
stability in eukaryotic cells [46]. DNA polymerases recognize double stranded DNA,
repair DNA-damage and synthesize DNA [47]. GFP (green fluorescent protein)
emits green light upon excitation based on its unique fold, leading to chromophore
formation with three close interacting side chains [48].
A model system for the interplay of protein interactions, function and enzymatic
activity is the cellulosome, a fungal or bacerial multiprotein complex.
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2.2 The Cellulosome - A Model System for Biomechanics and
Protein Network Dynamics

Cellulosomes are highly structured multiprotein complexes secreted by anaerobic
fungi and bacteria to digest cellulose, hemicellulose and lignin. Cellulose is the most
abundant biomaterial on earth [49]. It can be found in all plants, some algae and even
some bacteria secrete cellulose fibers.
Cellulose is a linear polymer consisting of only β-1-4-glycosidic linked glucose
molecules (Figure 2) [50]. Repeats of cellobiose, two linked glucose molecules are sub-
units of cellulose. Usually cellulose is thousands of cellobiose repeats long [51]. The
two ends of each cellulose chain are termed reducing and non reducing end. At the re-
ducing end, the glucose ring can adopt an open conformation and an aldehyde-group
is freed, which has reducing potential. Some cellulolytic enzymes are specialized in
hydrolyzing reducing or non reducing ends of cellulose.

O

OO O

O

OOH

OH
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OH
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OH
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O
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OH

OH

O

OH

OH

OH
non reducing

end
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n

glucose

reducing 
end

A

B

Figure 2. Scheme of the complex nature of cellulose - the most abundant bioma-
terial on earth. A All plants contain cellulose. The red box shows the macroscopic
structure of cellulose (green). The linear polymer is surrounded by hemicellulose (red)
and gaps in-between are connected by lignin (yellow). The blue box shows the com-
position of cellulose a homogeneous, linear polymer. Cellulose microfibrils lay ontop
of each other and form a perfectly aligned cellulose fiber. B Chemical structure of the
cellulose polymer. Cellulose is a polymer consisting of glucose molecules connected
via a β-1-4-glycosidic bond. The polymer has a non reducing end (blue) and a reducing
end (red). The reducing end is able to open the glucose ring and form an aldehyde
group, which can act as a reducing agent. Cellobiose is labeled in green, which is the
smallest product obtained through cellulosomes. Glucose is highlighted in yellow.

Cellulose is stabilized by intra- and intermolecular hydrogen bonds [52]. Cellulose
polymer strands align next to another to form so called microfibrils [51]. Several
microfibrils form cellulose fibrils, which again form the macroscopically visible
cellulose fibers. If this overall alignment of cellulose fibers is present the cellulose is
called crystalline. Whenever the alignment is disturbed, i.e. microfibrils are twisted
and misaligned they cause disordered parts in the cellulose architecture, termed
amorphous regions.
Cellulose is a high-energy polymer, providing an efficient food source for living
organisms. However, cellulose is usually shielded from degradation by a protective
envelope consisting of hemicellulose and lignin [53]. Hence, to access cellulose
different chemical bonds need to be degraded beforehand. Especially lignin is a
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heterogeneous polymer, consisting of substances like xylose, mannose, or lichenin
[54].
As enzymes are usually highly specific for one chemical reaction a broad portfolio of
enzymes is necessary [55]. The discovery of the cellulosome explained how organisms
deal with the enormous substrate heterogeneity [56]. The architecture of the extracel-
lular, multienzyme complex is based on a crucial receptor:ligand interaction called
cohesin:dockerin (Figure 3) [15]. The basic principle of a cellulosome machinery is to
link as many enzymes as possible in close proximity to each other. This is realized by
framework proteins called scaffoldins. A scaffoldin is a repetitive protein with several
cohesin domains and sometimes a CBM. All endogenous cellulolytic enzymes consist
of a catalytic domain and a cohesin binding domain called dockerin. The interaction
between the enzymatic dockerin and the cohesin on the scaffoldin is classified as type
I [57].

Cell

Branched 
Cellulosomes

Simple

Cohesin I
Dockerin I

Cohesin III
Dockerin III

Cohesin II
Dockerin II

Endoglucanase Exoglucanase

Carbohydrate Binding Module

Figure 3. Schematic of cellulosomes. Cell-connected cellulosomes can be divided into
two major groups. Simple cellulosomes (left) mostly consist of one big scaffold where
enzymes can dock onto, connecting enzymes and cells very close to the substrate.
Branched cellulosomes (right) interconnect scaffolds to create a larger surface for
enzymes to dock onto.

Two more types of cohesin:dockerin interactions exist in the cellulosome, classified
by their position and function. Usually type II and III cohesin:dockerin interactions
facilitate the attachment of scaffoldins to cell walls and branching of the cellulosome
[58], [59], respectively. Gram-positive bacteria secret a cohesin possessing a LPXTG-
motif, which is recognized and covalently linked to the cell wall by a Sortase [60].
The cell wall-anchored cohesin is recognized by a dockerin containing scaffoldin and
constitutes the basis for the cellulosomal assembly. Depending on the architecture of
the scaffoldin, enzymes can dock or additional branching scaffoldins can bind. The
branching process is promoted by specific type II cohesin:dockerin interactions.
Cellulosomes usually consist of scaffoldins with different types of CBMs depending
on the substrate and its shape, i.e amorphous or crystalline cellulose [61]–[63].
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The combination of domains that anchor the cellulosome both to the substrate and
the cell enable the localization of enzymes in close proximity to their substrate and
allow an efficient uptake of the product by the host cell.
In order to transfer the highly specialized cellulosomal assembly principle to different
applications or to understand the underlying mechanisms of the cohesin:dockerin
interactions it is necessary to investigate their binding characteristics. Their affinities,
determined by SPR (surface plasmon resonance) [64], or ITC (isothermal titration
calorimetry) [65] are in the pico- or nanomolar range. Most of the known cohesins
and dockerins from different species do not bind each other, hence are highly species-
specific. However, due to their high grade of homology some cohesin:dockerin
cross-reactivity between different organisms is observed [64].
What defines the specificity of an interaction? Why do two binding partners build
strong complexes but do not interact with a third despite their high structural homol-
ogy?
The cellulosome is an ideal model system to investigate these questions. Single
molecule force spectroscopy (SMFS) with nanometer resolution is able to identify
the crucial amino acids involved in binding mechanics, generating binding affinity,
specificity and their mechanobiology.
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2.3 Probing Biomechanics of Single Molecules

Atomic force microscopy (AFM) has been used to study protein mechanics of cel-
lulosomal components. Results showed that binding affinity does not necessarily
correlate with mechanical stability. The type III cohesin:dockerin interaction, which
exhibits rupture forces around 650 pN [13] is much more mechanostable than the
type I cohesin:dockerin interaction with rupture force around 120 pN [66]. In contrast
to their binding affinities: Type I (pM range [64]) binds with higher affinity than type
III (about 20 nM [59]).
AFM SMFS can link force exerted on a molecule to its function and can supply insights
into the binding or folding characteristics on a nanometer scale. AFM experiments
investigated the mechanobiology of a scaffoldin from Clostridium thermocellum. Val-
buena et al. could find correlations between stability, function and position. They
showed that the mechanical stability of the cohesins was dependent on their position
in the scaffold [67]. Depending on the position of the cohesin domain - between
cell and CBM ("bridging cohesin") or free after the CBM adhering to the cellulose
("hanging cohesin") - their unfolding force differed. Bridging cohesins unfolded at
400 to 600 pN, hanging cohesins already at forces around 280 pN.
In order to obtain data that can be analyzed, single molecule interactions need to be
probed. Typically, a commercially available cantilever is used as a force probe and
functionalized with proteins. Figure 4 shows scanning electron microscope (SEM)
images of an Olympus BioLever mini, a cantilever that is commercially available and
commonly used in AFM.

10 µm
1

2

3

0.1 µm

10 nm

4

6

5

1 µm

1 Biolever Mini Chip

3 Cantilever Apex

2 Cantilever Base

6 Tip Apex

5 Electronic Beam
Deposition

4 Silicon

A

B C

Figure 4. Scanning electron microscope (SEM) pictures of a BioLever Mini. A The
structure of a BioLever mini acquired by SEM. The chip (1), the cantilever (2) and
the tip of the canilever (3) are depicted. B Magnification of the cantilever tip (3). C
Magnification of the tip apex. The actual apex of the very tip (6) is visible (dark grey),
which is roughly 20 nm in size (4). The lighter grey vincinity of the tip is the electronic
beam deposition (5), an image artifact generated by the sample preparation procedure
for the cantilever imaging. Pictures were kindly provided by Dr. Stephan Heucke.
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The apex of such a cantilever’s tip is roughly 20 nm in size. Assuming an average
protein size in the order of 10 nm [68], only a few proteins are expected to be immobi-
lized on the tip. This is important to ensure single-molecule interactions during an
SMFS experiment.
In a typical SMFS experiment, the cantilever is slowly approached manually to its
starting position, very close (low micrometer range) to the surface. When the tip of the
cantilever comes in close proximity to the surface, the thermal oscillations of the lever
are dampened, and therefore, the resonance frequency of the cantilever decreases.
The resonance peak of a free BioLever mini cantilever is slightly above 20 kHz, and
not detectable by the human ear. By listening to the thermal noise on the cantilever’s
deflection signal, the experimenter can carefully approach the cantilever and detect
surface proximity: When the resonance frequency shifts to lower frequencies, the
oscillation’s resonance peak moves into the audible range and the signal appears
louder. From this starting position on, a piezoelectric actuator moves the cantilever
towards the surface and pushes into it until a preset force is reached. Receptor and
ligand can form a complex, which upon retraction will be loaded mechanically. Upon
loading of the complex, the cantilever is bent proportionally to the acting force. The
laser beam, that is focused on its reflective back side gets deflected, resulting in a
differential bending-dependent signal on a four quadrant photodiode (Figure 5 A).
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Figure 5. Schematic of a typical AFM SMFS experiment. A The AFM signal is
detected via a four quadrant photodiode. After a complex between molecules on
surface and cantilever has formed, the retraction of the cantilever mechanically loads
the complex. The cantilever bends and deflects the laser beam. B Exemplary raw
data trace of an AFM experiment. Recorded deflection is plotted against the position
sensor signal of the piezoelectric actuator. C A typical force-distance diagram after
transformation of raw voltage data into forces acting on the cantilever and distances
of the cantilever tip to the surface is shown. First the linker molecules, usually PEG
spacers on both sides (cantilever and surface), are stretched by retracting the cantilever.
Then protein domains unfold hierarchically depending on their stability, the complex
ruptures last. Adapted from [12] with permission from Elsevier. Copyright 2017,
Elsevier.

The change of deflection is recorded by a four quadrant photodiode and converted
into force with the spring constant of the force sensor and the optical sensitivity of
the instrument. Piezo position z is recorded in nanometer by its capacitive sensor.
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The cantilever acts as a spring that is assumed to be linear, hence Hooke’s law can be
employed [69]:

F = kz (1)

With: k: Spring constant [pN nm−1], z: Piezo position [nm]

The spring constant k can be calibrated based on the thermal fluctuations of the canti-
lever. The equipartition theorem applies since at thermal equilibrium, energies of
oscillatory motion are equally distributed among its degrees of freedom [70]. Hutter
and Bechhoefer found that a typical AFM cantilever (spring constant: 0.05 N m−1)
with thermal fluctuations of 3 Å can be satisfyingly approximated by a simple har-
monic oscillator with only one degree of freedom. Calibration of the piezo extension
sensitivity is performed interferometrically by reflecting part of the deflection laser
beam on a gold surface and measuring the change in sum signal on the four quad-
rant photodiode during a defined piezo movement. With knowledge of the laser
wavelength, the piezo sensitivity can be derived from the recorded signal. These
calibration values allow conversion of the deflection and position voltage signals
into accurate force F and distance x values. Whenever the force is sufficient to let
the complex overcome its thermal energy barrier for unbinding, receptor and ligand
dissociate, and the cantilever relaxes into its initial state (Figure 5 B).
In order to verify a specific single-molecule interaction, a protein domain with known
unfolding characteristics (unfolding force distribution, possible sub-steps, added
contour lengths), a so called fingerprint domain is fused to the receptor and ligand
domain individually.
In general, two types of SMFS experiments are possible: On one hand, a protein
domain of interest can be probed by replacing one of the fingerprint domains. Ideally,
the domain on the surface is chosen, especially when no prior knowledge about
its refolding capabilities is given. On the other hand, it is possible to probe the
mechanostability of receptor:ligand domains. This setup requires to choose well-
known fingerprint domains with sufficiently low unfolding forces. Otherwise the
complex ruptures frequently at forces lower than the fingerprint unfolding, and so
control over the specificity is lost. Figure 5 C illustrates a typical AFM experiment:
The linker molecules are stretched first and then the complex as well as the fingerprint
domains are loaded with force simultaneously. Statistically, the weakest component
in the chain unfolds first, in Figure 5 C “Protein 1”, a fingerprint domain unfolds
in two substeps. The two derived increments yield the exact length of the unfolded
amino acid chain, known from previous experiments. Shortly after domain unfolding,
the force drops nearly to zero, since the loaded fold relaxes into an unstructured
and flexible amino acid chain, releasing additional free contour length. Next, the
second weakest protein unfolds, in this case “Protein 2”, yielding another increment
in contour length. Now, that all fingerprint domains are unfolded, the complex is
loaded with force until it ruptures. A new molecule can be probed, as long as the
protein on the cantilever is not irreversibly damaged or unfolded. This is an essential
requirement for a protein attached to a cantilever. The receptor domain and the
fingerprint domain ideally refold quickly after unfolding or unbinding.
With such an experiment, the force necessary to dissociate a complex or unfold a
protein domain at a given loading rate is obtained. In order to extract the contour
length from a force-extension recording, various theoretical models describing the
polymer elasticity have been developed. The worm-like chain (WLC) model describes
the stretching of a polymer, and can be imagined that a protein backbone approxi-
mates the protein fold as a flexible polymer chain. The WLC model is one of the most
commonly employed models in force spectroscopy (Figure 6) [69], [71], [72].
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Folded Protein Protein Polymer Flexible Polymer Chain

x

lc

lp

Figure 6. Illustration of WLC model. The WLC model describes the protein polymer
as a flexible polymer chain. The contour length (lc) is the length along the polymer
backbone. x describes the-end-to end distance of N to C-Terminus, and the persistence
length (lp) describes the stiffness of the system. The smaller the persistence length, the
more flexible the system.

The flexible polymer chain length is the contour length (lc), which represents the
whole protein backbone length. The persistence length lp describes the smallest dis-
tance between two points along the protein backbone, at which directional correlation
drops to e−1 [73]. For a given protein backbone, lp is not necessarily uniform, because
varying amino acid side chains influence the flexibility of the peptide backbone differ-
ently. For example smaller amino acids like alanine can move more unrestricted than
bulky amino acids like phenylalanine. Hence, the persistence length of a polyalanine
sequence is smaller than the polyphenylalanine sequence, despite both sequences
consisting of peptide bonds. In a site-specific AFM SMFS experiment, the molecule is
stretched and pulled apart from both termini. With unfolding of domains free contour
length (already unfolded protein backbone) converges more and more towards its
total contour length, since lc is “hidden” in the protein fold and unravels during an
unfolding experiment. Sub-domains under force unfold and stretch. The WLC model
is approximated by [69], [71], [72]:

F(x) =
kBT
lp

(
1

4(1− x
lc )

2 −
1
4
+

x
lc

)
(2)

With: F: Force [pN], kB: Boltzmann constant: [1.38× 10−23 J K−1], T: Temperature [K], lp: Persistence
length [nm], x: End-to-end distance [nm], lc: Contour length [nm]

The WLC model sufficiently describes the stretching behavior of a protein in a low
force regime up to approx. 100 pN, where mostly entropic contributions influence the
system [74]. Higher forces may deform bond lengths and angles. The WLC model can
be extended with an empirical, Hookean (specific) stiffness [69], [75], which accounts
for additional stretching of the protein backbone, considering enthalpic and entropic
contributions:

F(x) =
kBT
lp

(
1

4(1− x
lc )

2 −
1
4
+

x
lc

)
+ Φx (3)

With: Φ: Specific Stiffness [pN nm−1]

The extended WLC model describes protein unfolding behavior only sufficiently
within forces up to 200 pN. Hugel et al. incorporated a quantum mechanical correction
term, as an ab-initio alternative to the Hookean stiffness correction to account for
backbone stretching [76].
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Livadaru et al. established a dynamic model describing data for a larger force range
[77].

x
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'
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3kBT f or Fb
kBT < b

lp
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(

4Flp
kBT

)− 1
2 f or b

lp
< Fb

kBT <
lp
b

1− ( 2Fb
kBT )

−1 f or lp
b < Fb

kBT

(4)

With: a: Kuhn length [nm], b: Segment length [nm]

With the help of introduced models protein unfolding can be described, deriving en-
ergies necessary to unbind or unfold complexes and gain insight into their molecular
mechanics. Figure 7 illustrates the difference between kinetic unfolding (red) and
force-dependent unfolding (blue). While applying force to a system (F), the transition
state from folded to unfolded state is energetically lowered. The higher the applied
force, the lower the energy barrier becomes.
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Figure 7. Schematic of the influence of force on a two-dimensional unfolding en-
ergy landscape. Folded proteins are thermally excited across a transition state with an
unfolding rate kU or k(F)U and ∆G, the energy necessary. During force F application,
the energy barrier of the transition state is lowered, the unfolding is more probable
in a given time frame. The lowering of the energy barrier of the transition state only
happens in the force loaded path along x of the multi dimensional space of the energy
landscape, all the other directions and unfolding possibilities might not necessarily be
affected.

After an experiment, the obtained data traces can be analyzed with the appropriate
models. The probabilities of certain unfolding or unbinding events are dependent on
the loading rate r and can be described with F∗(r) [69], [78]–[81]:

F∗(r) = (
kBT
∆x

)ln(
r∆x

kBTko f f
) (5)

With: F∗(r): Most probable rupture force [pN−1], ∆x: Distance of folded to unfolded state on energy
landscape [nm], r: Loading rate [pN s−1], ko f f : Off-rate [s−1]

Rupture forces generally increase with the loading rate r (and therefore with the
pulling speed in constant speed protocols) [69], [82]. AFM experiments are typically
conducted at timescales of 10−3 to 101 s, at which thermal fluctuations dominate the
unbinding processes [69]. In the thermally driven region investigated with standard
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AFM SMFS, the unbinding or unfolding force often scales linearly with the logarithm
of the loading rate, according to the Bell-Evans model (see Equation 5) [80], [81]. The
higher the loading rate in an experiment, the shorter the time scale for dissociation or
unfolding. As a consequence, higher forces are necessary to lower the energy barrier
sufficiently to an extent for thermal unbinding or dissociation to take place (Figure
8).
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Figure 8. Illustration of the correlation of loading rate and force. Force scales loga-
rithmically with increasing loading rate. At higher loading rates the time scale of an
unfolding or dissociation event is shorter. To compensate the shortened time scale,
the rupture force increases, and thereby the energy barrier lowers, increasing the
probability to thermally overcome the barrier. Different pulling speeds within one
experiment can be plotted in force-loading rate plot. Fitted parameters in this plot
can be used to determine the theoretical off-rate at zero force for the AFM determined
unfolding path.

Theoretically it is possible to derive the zero force off-rate from the force-loading rate
dependency. However, this is only a single path on the energy landscape, biased by
force applied via AFM [69], [83]. This off-rate at zero force under a single unbinding
pathway does not necessarily reflect the bulk off-rate, which can be used to describe
the affinity of a complex. The bulk off-rate consists of a combination of different
unbinding pathways. The affinity of a receptor:ligand complex is defined by its ratio
of unbinding and binding rate [69], [84].

KD =
ko f f

kon
(6)

With: kon: On-rate [M−1 s−1], KD: Equilibrium constant [M]

Since the equilibrium constant KD is concentration dependent, a single molecule
complex is better described with its lifetime τ = (ko f f )

−1 [69], [81], [85], [86].

1
τ(F0)

= ω · e−(
∆G0

TS
kBT ) (7)

With: τ(F0): Lifetime at zero force [s], ω: Attempt frequency of a system [s−1], ∆G0
TS: Activation

Energy Barrier [J].

In order to determine accurate, force-dependent lifetimes τ of a complex, more
sophisticated experimental setups are necessary.
Typically, AFM experiments are performed in constant speed mode (constant move-
ment of z-piezo), because the experimental setup is relatively simple [87]. In constant



2.3. Probing Biomechanics of Single Molecules 15

speed mode force is usually plotted against extension to obtain information about
mechanical stability of a fold.
The more sophisticated force-ramp mode (constant loading rate) requires the im-
plementation of feedback loops in the experimental setup which is more difficult
to realize [88]. Fast reacting feedback loops are necessary to keep the loading rate
constant during an AFM experiment. If force is kept constant until an unfolding or
unbinding event occurs, essentially force-ramp mode at loading rate of 0 pN s−1, it is
called force-clamp mode. Force-clamp mode allows the determination of the lifetime
of a protein fold or complex at a given force [89].
The dissociation process can be accelerated by increasing the systems temperature
[90]. This also holds for a protein domain, an increase in temperature can be used
to usually accelerate protein unfolding. An increase in temperature increases the
fluctuations of the system and thus the attempt frequency to overcome the energy
barrier to the unfolded state.
In contrast to applying force, which lowers the energy barrier of a system (see
Equation 8). The higher the applied force the lower the average lifetime of a complex
τ(F). This correlation allows the derivation of a force-dependent lifetime τ(F), that
decreases exponentially with force [69], [91]:

1
τ(F)

= ω · e−(
∆G0

TS−F∆x
kBT ) (8)

Equation 7 and Equation 8 can be simplified to [69], [92]:

τ(F) = τ(F0) · e−(
F∆x
kBT ) (9)

Similar to force-loading rate plots, force-lifetime plots can be obtained by varying the
clamping force in a force-clamp experiment. A fit through all lifetime populations
allows extrapolation of the lifetime at zero force for that specific unfolding path.
Both methods, constant force and force ramp, are able to decipher molecular mecha-
nisms in protein folds and receptor:ligand interactions.
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2.4 AFM Data Analysis

Thousands of force-distance traces are recorded, during a AFM experiment. Only a
fraction contains single molecule curves with both fingerprint domain unfoldings
and final complex dissociation (Figure 9 A and B). Panel B shows a so called shielded
event in the final rupture. Usually, domains are likely to unfold sequentially from
weakest to strongest fold. Sometimes, a stronger domain topologically shields a
weaker (sub-)domain, which can only unfold after the stronger domain is unfolded
and is therefore termed shielded event. In the other recorded traces either no interac-
tion between receptor and ligand forms (Figure 9 C), or more than one complex was
formed, yielding non-usable multiple interaction traces (Figure 9 D), non-specific
interactions between cantilever and surface formed (Figure 9 E), or proteins did
already partially unfold before probing or do not unfold completely while probing
(Figure 9 F). It is necessary to filter all these unwanted curves (red traces) manually
or via algorithm sorting for fingerprint domain unfolding and receptor:ligand rupture
signatures. An automated routine can sort and analyze all suitable traces, for example
to identify protein folds, measure force dependencies or measure mechanical stability.

Fo
rc

e 
[p

N
]

Distance [nm]

Fo
rc

e 
[p

N
]

Distance [nm]

Fo
rc

e 
[p

N
]

Distance [nm]

Fo
rc

e 
[p

N
]

Distance [nm]

Fo
rc

e 
[p

N
]

Distance [nm]

Fo
rc

e 
[p

N
]

Distance [nm]

A

B

C

D

E

F

Figure 9. Overview of typical traces in an SMFS experiment. During an AFM ex-
periment different kinds of traces are obtained. Green are curves usually viable for
further data analysis (A/B). Red depicts non-usable curves for data analysis (C-F).
Characteristic curves are: A: A single receptor:ligand interaction with two finger-
print domains unfolding, B: A shielded single receptor:ligand interaction with two
fingerprint domains unfolding, C: A flat line without any interaction, D: Multiple
interactions between more than one receptor and ligand, E: A non-specific interaction
between cantilever and surface, F: An incomplete single receptor:ligand interaction
(here: only one fingerprint domain unfolded).

After sorting, usually 0.1 - 20 % of the curves yield clear single molecule interactions
with fingerprint unfolding events on both sides (Figure 10 I). The reduced data set
with all specific single interactions can then be analyzed in two alternative ways.
In the first approach, all curves are transformed from force-distance space into force-
contour length space (Figure 10 IIa) [93]. Contour length histograms are assembled.
An adequate bin size of the histograms usually leads to sharp distributions, which
can be cross-correlated (Figure 10 IIIa). A random curve is selected as initial template
and cross-correlated to another one on the contour length axis. Each curve is offset
for their maximum correlation value. Both aligned histograms are now added and
used as template to align the next curve. This procedure is repeated until all curves
are aligned. Finally, the outcome of the cross-correlation is aligned again against each
curve of the set, to reduce bias and referencing effects depending on the initial choice
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of curve. In the end, a probability density can be plotted for the whole experiment,
representing the most likely energy barrier positions given through the unfolding
events (Figure 10 IV) [94].
An alternative way of analyzing the data is to assemble a representative master
curve in force-distance space, formed from all specific unfolding traces. Here, single
force-distance traces are cross-correlated, similar to the method described above.
However, instead of transforming into contour length space, the traces are aligned in
the force-distance space (Figure 10 IIb) yielding a "master curve". This allows direct
data handling in the force-distance space, like fitting of WLC models to the traces
to describe the polymer elasticity and unfolding of domains. It is also possible to
transform the master curve into contour length space to determine energy barrier
positions. The master curve (Figure 10 IIIb) reflects the most probable pathway of all
curves from one experiment.
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Figure 10. Schematic of the data processing of AFM force traces. There are two
methods of analyzing the raw data. (Ia) In the first method, raw traces are transformed
into contour length space (IIa) and histograms with nanometer bin size are plotted
(IIIa). Then, the histograms are cross-correlated and aligned to obtain an overlay of all
curves (IV). In the second method, data traces in the force-distance space are cross-
correlated (IIb). A master curve of the aligned force-distance trace represents the most
probable unfolding trace of this set of curves (IIIb). As in the first method the master
curve can be transformed into contour length space and an energy barrier histogram
is obtained (IV). Adapted from [12] with permission from Elsevier. Copyright 2017,
Elsevier.

Independent of the method of data analysis, most probable rupture or dissociation
forces are obtained and can be used to address questions about the mechanobiolgy of
a complex or a protein fold.
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2.5 Linkers in SMFS

Linkers are crucial in SMFS studies. They provide proper passivation against non-
specific adsorption of the biomolecules to the surface [95]. Non-specific adsorption
is undesirable as molecules will be picked up by the cantilever, blocking cantilever
molecules bonding partners: Non-specifically adsorbed proteins are not covalently
anchored to the surface, hence they might not be removed from the cantilever upon
retraction. Once all binding domains on the cantilever side are saturated with non-
specifically adhered proteins, no new complexes can be formed, thus no new traces
are recorded - the experiment stalls until the complex dissociates naturally. However,
non-specifically adsorbed proteins on the cantilever are no problem since there is an
excess of surface-anchored proteins.
Most importantly, linker molecules provide spacing between the surface and the
biomolecule of interest. Otherwise proteins might interact with the surface and create
undesired unfolding artifacts, e.g. through partial adsorption to the surface.
The anchoring point of the linker molecule, especially on the cantilever, also influences
the experiment [96]. Different attachment sites lead to different unfolding pulling
angles and might result in varying unfolding forces and pathways, biasing the rupture
force distribution of a protein or complex.
The most commonly employed linker so far is polyethylene glycol (PEG). This poly-
mer is commercially available with different reactive groups and in different molecu-
lar weights and therefore lengths. However, with the advancement of SMFS to access
higher forces, new challenges appeared: PEG has a force-dependent conformational
change (Figure 11).
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Figure 11. Schematic of the force-induced conformational change of PEG. A PEG
is usually stabilized in water by hydrogen bonds in a trans-trans-gauche conforma-
tion. Increasing force shifts the equilibrium towards an all-trans state. The inset in
the middle shows the behavior only exists in aqueous systems (Red trace, in PBS
buffer), in organic solvents hydrogen bonds do not exist (Blue trace) [97]. Yellow
highlights the linear regime of the force-induced conformation transformation. B
The force-dependent distribution probability of PEG and its all-trans conformation
state. Adapted from [97], under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported (CC BY-NC-SA 3.0).

This phenomenon was first described by Oesterhelt et al. in SMFS [97]. In aqueous
environments, which all buffer systems for biomolecules are, PEG forms hydrogen
bonds with water molecules. The oxygen atoms of the PEG backbone interact with
hydrogen atoms of water, leading to a more compact conformation. Force increases
the probability of a conformational switch. With the robust receptor:ligand pair
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from type III cohesin:dockerin a high force regime is probed in an experiment (over
316 pN). Based on Oesterhelt’s theoretical framework the probability for the change
from trans-trans-gauche to all-trans conformation at 159 pN is 50 %. At forces of
316 pN the probability of PEG being in all-trans conformation is about 95 %. Hence,
in an experiment with elevated forces the PEG conformation change leads to a net
increase of the contour length, which complicates data analysis.
So, Tong et al. suggested alternative chemical linkers for force spectroscopy [98].
Instead of using PEG they synthesized a phosphoramidate-based linker. They showed
the feasibility of the linkers for DNA/DNA-, DNA/Protein- and Protein/Protein-
interactions. Furthermore they were able to produce monodisperse linkers, compared
to polydisperse PEG, leading to a more consistently functionalized surface. The
molecule which is linked closest to the tip apex forms complexes with the receptors
on the surface with the highest probability. Polydispersity in linkers broadens the area
with molecules available for complex formation and increases the binding probability
of different molecules. Producing these monodisperse, phosphoramidate-linkers
solves that issue, however due to their chemical, solid state-based synthesis they
require additional coupling steps to DNA, peptides or proteins.
With the new possibilities in protein conjugation techniques and DNA synthesis it is
now possible to employ biological linkers in SMFS [99]. In order to address that issue
Ott and Jobst et al. proposed to replace PEG with new recombinantly produced bio-
logical linkers - Elastin-like polypeptides (ELPs) [100]. ELPs are biological polymers
with a temperature-dependent cloud point: Exceeding a certain temperature ELPs
change their conformation and aggregate, which can be reversed by lowering the
temperature again. The cloud point is dependent on the amino acid composition of
the repeating pentapeptide sequence "VPGXG", with X being any amino acid except
proline (Figure 12). The inclusion of basic or acidic amino acids render the polymer
pH sensitive. Other factors influencing the cloud point are salt concentration or
molecular weight of the ELP, making them straight forward to purify by their unique
properties [101].
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Figure 12. Illustration of Elastin-Like Polypeptides. ELPs are composed of repeats
of the pentapeptide Valine-Proline-Glycine-X-Glycine. X represents any amino acid
except proline. ELPs collapse at a certain temperature and precipitate in solution,
which can be measured by absorption at 350 nm. The precipitation is reversible,
lowering in temperature leads to resolubilization of the ELPs and the solution becomes
clear again. The yellow boxes illustrate the process: ELPs change their conformation
and interact with each other, which leads to larger aggregates clouding the solution.

The benefit of smart polymers like ELPs is that they can be modified according to
the needs of the experiments as they can be produced recombinantly with different
conjugation tags already in place. Furthermore they can be easily purified with the
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inverse temperature cycling (ITC) method [102]. ITC precipitates and redissolves
ELPs by heating and cooling, whereas other proteins, i.e. contaminating host proteins,
remain precipitated. After a few iterations only pure ELPs are left in solution.
Like phosphoramidate linkers, and in contrast to PEG linkers, ELPs are monodisperse
an additional advantage to SMFS. Monodisperse and defined linkers minimize mea-
suring artifacts and increase the robustness of the system, contributing to reliability
and ease of analysis of obtained data.
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2.6 Surface Chemistry in Single Molecule Force Experiments

With the advances in surface chemistries and site-specific attachment strategies differ-
ent pulling geometries can be probed. Adding a tag for covalent surface chemistries
at either N- or C-terminus orients molecules correspondingly. In total, four differ-
ent full-length pulling geometries can be probed to gain insights into native and
non-native tethering geometries (Figure 13).
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C-N’, N-C’, C-C’, N-N’

Figure 13. Site-specific attachment sites and binding geometries. With site-specific
attachment the (un)binding geometry of complexes and proteins can be defined specif-
ically. Red illustrates the receptor, yellow the ligand. In total four different geometries
can be probed. Reprinted from [12] with permission from Elsevier. Copyright 2017,
Elsevier.

The tethering geometries of a molecule has an impact on its stability. Schoeler et al.,
showed that the type III cohesin:dockerin interaction depends on the orientation of
the cohesin. When the cohesin domain is located at the N-terminus rupture forces
up to 650 pN were achieved. When located at the C-terminus the complex already
ruptured at forces of 150 pN [13], [14]. Hence, it is necessary to anchor proteins
site-specifically to be able to differentiate between different unfolding or dissociation
forces.
Advancements in DNA synthesis, bioconjugation techniques and protein expression
and purification strategies enable a fast throughput in protein generation. Depending
on the requirements of the assays, it is possible to synthesize the same protein with
tags in different locations.
By now, several reliable covalent immobilization strategies are well established
(Figure 14) [12]. Most methods rely on certain reactive groups of different amino acid
side chains, i.e. amines from lysines or carboxyl-groups from glutamates, as well as
the N- and C-terminal amine- and carboxyl-groups to immobilize proteins. However,
most proteins contain more than one accessible, reactive residue, which results in
heterogeneous surface pull-down and thus orientation of molecules.
The less present cysteine is an attractive alternative to the employed amine- or
carboxyl-groups. Cysteine can be covalently linked to maleimide-groups via their
free thiol-group. However, it is only applicable when no other cysteine is accessible
and the protein needs to be insensitive against reduction agents. Reduction before
immobilization is necessary to break intermolecular disulfide bond formed during
protein production and purification.
A more robust and versatile approach is to rely on enzyme-mediated pull-down
strategies. Several enzymes were characterized and optimized during the last decades
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Figure 14. Schematic of possible protein immobilization strategies. Depending
on the surface material (gold or glass) and its surface functionalization (amino- or
carboxylsilane) different surface coupling strategies can be employed. It can be distin-
guished between non-specific and specific attachment. Coupling strategies are labeled
in blue, employed reagents in green. A The non-specific approaches rely on the inter-
action between charged residues of surface and molecules to be deposited. B Amine-,
carboxyl- or thiol-groups of proteins can be used to covalently link proteins to activated
groups on surfaces. The top row describes amine-thiol crossreacting strategies. In this
case the amine-group of the aminosilane is crosslinked with NHS-groups, which is
most often linked to maleimide-groups. Maleimide-groups react with thiol-groups.
A new approach represents the incorporation of non natural amino acids. They are
a bio-orthogonal chemistry and can be used to pull-down proteins internally. The
lower row describes strategies to crossreact carboxyl-groups with amine-groups. It
is possible to crosslink carboxylsilane with EDC/NHS and functionalize the glass
surface with amine-groups, i.e. amine-benzylguanine-PEG, necessary for hAGT or
SNAP-Tag technologies. Adapted from [12] with permission from Elsevier. Copyright
2017, Elsevier.

[12]. All these enzymes catalyze the covalent coupling of a small molecule or peptide
to a protein.
Two commonly used surface coupling strategies in force spectroscopy are enzyme-
based (Sfp and Sortase A) [12]. The easiest way to employ the two enzymes, is to start
with functionalization of surfaces and cantilever with aminosilane. The amine-groups
are subsequently crosslinked with NHS-maleimide, offering thiol-reactive surfaces
and cantilevers suitable for subsequent enzyme-mediated immobilization [103].
Sfp is a magnesium-dependent 4’-phosphopantetheinyl transferase from Bacillus
subtilis and couples Coenzyme A (CoA) to a hydroxyl-group of a serine of an 11
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amino acid long recognition sequence (ybbR-tag) [104]. CoA contains a thiol-group,
which is not important for the Sfp catalysis step, such that it can be used for coupling
to a maleimide-group.
The sortase A, from Staphylococcus aureus is an calcium-dependent peptidase, and
has been optimized for post-translational protein coupling strategies [105]. It ligates
N-terminal glycine residues (at least one) to a C-terminal LPETGG-peptide sequence.
For SMFS experiments a cysteine containing peptide with the LPETGG- or the GGG-
motif is coupled, depending on the orientation of the protein of interest, to the
maleimide-activated surface. During the reaction the C-terminal GG is cleaved and
the N-terminal glycines are linked to the C-terminus via a peptide bond, restoring the
LPETGG-motif. This means the product can be cleaved again if educt with N-terminal
glycine is still present or added.
Using Sortase A can be advantageous in force spectroscopy because it offers the
possibility of in situ protein ligation. Proteins can be produced with only a very small
N- or C-terminal Sortase-tag and anchored with an orthogonal tag on the opposite
terminus, e.g. a ybbR-tag. Small peptide tags are presumably minimal invasive, i.e.
do not influence the native fold of the protein and do not lower expression yield in E.
coli [106]. After surface functionalization with Sfp via ybbR-tag, the protein of interest
can be modified with a receptor domain via Sortase A, to be used as a binding handle.
The SpyTag-/-Catcher system is a relatively new development in biochemistry. Spy-
Catcher is a domain which recognizes the SpyTag, a short peptide sequence, and
spontaneously forms an isopeptide bond with it after binding. Hence, proteins can be
anchored to SpyCatcher-activated surfaces without addition of external, catalyzing
enzymes or reagents [107].
Whenever the mechanobiology of subdomains of a protein fold is subject of a study
it is necessary to immobilize the protein internally. Only internal immobilization
allows the direct stretching of an isolated subdomain, without biasing effect of
surrounding folds. Internal immobilization is not possible with Sortase A, since
it cleaves parts of the protein before ligation. Sfp- and SpyCatcher-based approaches
are also not optimal, as their recognition sequence are several amino acids long and
might interfere the overall fold of the protein. These approaches can only be used at
flexible loops which do not contribute to protein folding and are accessible for Sfp or
SpyCatcher.
Introducing an internal cysteine is one way to anchor proteins internally in force
spectroscopy experiments [108]. However, this method only works reliably if only
one accessible cysteine is present. Otherwise multiple geometries will be probed
during an experiment.
The development of non natural amino acid pull-down strategies, especially alkyne
and azide containing side groups, are a viable alternative. They are inert in biologi-
cally relevant reactions, i.e. cannot be inactivated during protein expression and do
not require any reduction steps [109].
Independent of the site-specific immobilization strategy, in an experiment chosen
proteins should be covalently and site-specifically attached to linkers at the apex of a
cantilever tip or the glass surface, so their biomechanics can be probed unambigu-
ously.
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2.7 Biomolecule Preparation for SMFS Experiments

Developments in DNA cloning techniques allow to combine desired DNA cod-
ing sequences for a protein, similar to assembling building bricks [11]. This facili-
tates production of proteins for SMFS studies. The protein of interest needs to be
tagged and modified in several ways for SMFS experiments: A purification-tag, an
immobilization-tag for site-specific attachment to surfaces and optionally a fingerprint
domain and a binding handle from a receptor:ligand system.
The immobilization- and purification-tags are usually attached at the N- or C-terminus
of the fingerprint domain, sufficiently spaced so that they do not interfere with
complex formation in the SMFS experiment.
DNA assembly methods are needed to combine all these coding sequences. Figure 15
depicts the basic principle of two established cloning methods for DNA preparation
in SMFS studies.

GoldenGate
Assembly

Gibson
Assembly

PCR

Synthesized
Gene

Genome
Binding Handle

Library

Target Gene Binding Domain

DNA
Assembly

Type IIS Restriction
Enzyme Exo-Nuclease

Polymerase

Ligase

Ligase

Customized Plasmid for SMFS Experiments

Figure 15. Schematic of two viable DNA assembly methods for SMFS experiments.
Modern DNA cloning methods allow scarless assembly of different DNA fragments.
A typcial SMFS construct contains a purification- and immobilization tag, a fingerprint
domain and a binding domain. Depending on the scientific question, purification
and immobilization strategy different suitable domains can be assembled. DNA is
amplified with customized primers in a PCR reaction. Primers are designed to leave
overlaps to neighboring DNA fragments. Templates for the reaction are synthesized
genes or genomes from living organisms. The different PCR products, encoding
necessary genes and domains are hierarchically assembled with either GoldenGate
or Gibson Assembly. In the end a scarless fusion of different domains is ligated and
subcloned into a vector.

Either genes are synthesized chemically or DNA from genomes or gene fragments
of interest are amplified via polymerase chain reaction (PCR). Depending on the
assembly method (GoldenGate [110] or Gibson Assembly [111]), primers need to be
designed correspondingly. Both methods are scarless, i.e. they generate no undesired
coding sequence that might change the native protein in the assembly process, which
is essential for single molecule studies.
GoldenGate relies on restriction digest facilitated by type IIS restriction enzymes,
which cut next to their recognition sequence [110]. Hence, primers can be designed
with their recognition site next to their annealing site. Upon DNA-cleavage by the
enzyme, the recognition site is removed and leaves sticky four base pair (bp) sequence
that overlaps with the adjacent part. A ligase, ideally one which does not ligate blunt
DNA-ends (i.e. T7 ligase), links the overlapping DNA fragments covalently. The
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short overlaps only consist of four bp, which makes GoldenGate approach suitable
for cloning of highly repetitive DNA.
Gibson Assembly relies on three enzymes working under isothermal reaction condi-
tions (50 ◦C) [111]. A heat-labile T5 exo-nuclease digests DNA from the 5’ to 3’ end
of double stranded DNA, generating DNA overlaps of several bp that can anneal
with other overlapping DNA fragments. The T5 exo-nuclease degenerates over time,
stopping it from fully digesting one DNA strand. The polymerase fills the excised
nucleotides (5’ to 3’ end) after annealing of single stranded overlaps. The ligase
covalently links the annealed fragments in parallel. The method relies on unique
overlapping regions, complicating the cloning of highly repetitive proteins, as align-
ment possibilities are not unique anymore. Unlike GoldenGate assembly, repetitive
motifs are hard to clone because the overlapping region is more than four bp long.
However, Gibson Assembly is convenient in generating libraries, i.e. plasmids with
different fingerprints from different templates since it is not required to delete any
undesired restriction sites prior to gene amplification.
The plasmid (Figure 16) can now be assembled. Additionally a plasmid contains
regulatory elements, i.e. antibiotic resistance gene to maintain the plasmid in cells.
The origin of replication is necessary for the plasmid multiplication. A lac repressor
enables the induction of protein expression.

pET28a
expression vector

SMFS construct

Lac Repressor

E. coli Promoter

T7 Promoter

Lac Operator

Ribosome 
Bindingsite

Antibiotic
Resistance

Origin of 
Replication

Immobilization Tag Gene of Interest

Gene for Binding DomainProtein Puri�cation Tag

Figure 16. Illustration of a pET28a expression vector used for protein biosynthesis.
A typical procaryotic expression vector contains different regulatory elements besides
the gene of interest. A repressor enables induction of protein synthesis at a given point
with a certain inducer molecule. In the case of pET28a the lac repressor (dark red)
attaches to the lac operator and inhibits mRNA synthesis of the gene of interest until
lactose or IPTG is supplied. The origin of replication (light cyan) ensures plasmid
amplification in E. coli cells. The selection marker (antibiotic resistance) is needed to
apply selection pressure to maintain the plasmid. A typical construct used in SMFS
contains a immobilization tag, a folded (fingerprint) domain, a binding domain and a
purification tag.

Depending on the assays and the protein of interest two expression methods are
suitable: The classical approach with recombinant expression in a host cell or the
cell-free approach in vitro. Figure 17 sketches the principles of protein expression in
vivo and in vitro.
The classical approach relies on recombinant protein production within host cells.
Most commonly E. coli is transformed with the plasmid for protein expression, but
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also yeast or insect cells are suitable.
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Figure 17. Sketch of protein expression principles and their application in cell-
based and cell-free environments. A In vivo protein expression it is necessary to
inhibit protein expression initially, because of the enormous metabolic load during
expression, thus securing fast growth to higher cell densities. This is facilitated through
binding of the basally expressed lac repressor to the lac operator (1). It blocks the
T7 RNA polymerase (RNAP) from synthesis of the target mRNA (2). B At high
cell densities an inducer is added to the media (3) that releases the lac repressor (4)
from the lac operator and enabling mRNA synthesis through T7 RNAP, ensuring
high protein expression yields C With cell-based protein synthesis strategies it is
possible to either produce proteins in the cytoplasmic or periplasmic space. This has
an impact on protein folding and formation of disulfide bonds, preferably generated
in the oxidizing environment of the periplasm. During a cell-free synthesis this is not
possible. However, proteins can be synthesized and immobilized in a one pot reaction.

In E. coli cells transcription of the used expression cassette is repressed in its basic
state [112]. This is ensured by the continuous expression of the lac repressor (on
plasmid) by an endogenous RNA polymerase (RNAP). The lac repressor binds to the
lac operator and sterically hinders the genomically encoded T7 RNAP to synthesize
the mRNA of the gene of interest (Figure 17 A). The exogenous T7 RNAP is used for
synthesis of the target mRNA, to minimally interfere with the metabolism of the host
cell [113]–[115]. At a defined point, an inducer molecule is added to the media which
starts protein expression by inducing conformational change in the repressor and
leading to its detachment from the lac operator (Figure 17 B). Now, the T7 RNAP can
transcribe the mRNA and ribosomes translate the mRNA to protein.
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Different expression and growth media have been developed over the years, employ-
ing the lac repressor/operator system for induction. Classically protein expression
is induced via addition of IPTG (Isopropyl β-D-1-thiogalactopyranoside), a lactose
derivate, which E. coli cannot metabolize. Alternatively modern complex growth me-
dia contain a sugar mix consisting of glucose, glycerol and lactose [116]. E. coli prefers
glucose over lactose as carbon source [117], only if all glucose has been consumed
it switches to its lactose metabolism. This has the advantage that cells can grow to
high densities initially upon glucose uptake and with its consumption they switch to
lactose, hence induce protein production automatically at a later stage in their growth
phase.
Subsequently cells are lysed which releases the proteins of interest. These can be
isolated from the cell debris and purified with their purification-tag. The two most
established purification systems are a HIS-tag (six repeats of histidine) or the StrepII-
tag (eight amino acid tag). The HIS-tag binds to nickel, which is usually complexed
with Nitrilotriacetic acid (NTA) bound to beads [118]. Streptactin binds the StrepII-
tag, which can also be fused to beads [119]. The beads can be filled into a column,
enabling a streamlined purification process. The cell lysate is applied to the column,
the protein of interest binds to the material, host contaminants are flushed trough
and washed away. Upon administration of an elution solution the pure protein of
interest is released and can be either stored for later use or directly immobilized and
probed in SMFS experiments.
Cell-free protein synthesis facilitate a faster throughput, since a plasmid with essential
components for living cells is not strictly required. Hence, a linear gene cassette
obtained from the DNA assembly is sufficient to produce proteins. The expression
reaction can be directly initiated without the need of DNA amplification in E. coli.
Additionally, cell-free approaches do not rely on induction because there is no need
to balance the metabolic load [120], [121].
Preparing linear DNA and applying it to a one pot reaction (biosynthesis of proteins
and immobilization reaction in parallel) is faster than the classical way of preparing
proteins and especially attractive for multiplexed SMFS studies. In addition to the
accelerated generation of biomolecules, different expression systems can be employed:
i.e. procaryotic, eucaryotic, plant or complete synthetic reaction mixes [120], [122],
[123]. Toxic proteins can also be expressed [124].
However, cell-free approaches can only produce proteins for a short amount of time
until they run out of resources. Also, large proteins, proteins forming disulfide
bridges, complex folds dependent on chaperone proteins or secretion, still need to be
produced in E. coli.
Independent of the protein production approach, constructs for SMFS contain usually
the immobilization-tag on the opposite end from the binding domain. This ensures
that only full-length constructs are probed in the experiments. Proteins which are not
fully translated can either not be immobilized or not be probed because of their lack
of either binding domain or immobilization-tag.
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Chapter 3

Recent Developments in Single
Molecule Force Spectroscopy

3.1 Summary

The atomic force microscope (AFM)-single molecule force spectroscopy (SMFS) com-
munity uses two approaches to probe molecules of interest. The classical approach
consists of subcloning the protein of interest in-between repeats of IG- or other well-
established fingerprint domains [125]. These large polyproteins are deposited on
surfaces and adhere non-specifically to the cantilever. A non-functionalized cantilever
moves over the surface and is picking up molecules by non-specific interactions. The
fingerprint domains are necessary to identify a single interaction between cantilever
and surface and to ensure that the protein of interest is fully loaded from its N-
to C-terminus. This approach is usually very cumbersome and has a low yield in
analyzable curves.
The alternative approach tries to combat this bottleneck and adapts techniques and
advancements from fields like molecular biology and (bio)chemistry. It is possible
to functionalize cantilever and surface site-specifically. This has the advantage of
yielding a homogeneous surface with all molecules oriented in the same geometry.
This strategy can be further improved by dividing the experimental setup of the
protein of interest in two halfs. Instead of subcloning the protein of interest within
a IG-scaffold, the protein is fused only to one binding domain of a receptor:ligand
interaction. This fusion protein can be either anchored to the surface or the cantilever.
The other part of the binding domain is coexpressed with a known fingerprint domain
and immobilized to the opposite part of the AFM setup. By approaching the cantilever
towards the surface the receptor:ligand interaction ensures a high number of specific
tethers, compared to the non-specific approach. Retracting the cantilever ideally leads
first to the unfolding of the fingerprint, then the protein of interest finally followed by
complex rupture. With this approach it is possible to probe protein domains as well as
receptor ligand interactions. Due to the advances in cloning it is possible to generate
a fusion protein consisting either of fingerprint and binding domain of interest or
a protein domain of interest with a characterized binding domain. Thus one can
assemble the experimental construct like building bricks. The other advantage of this
modular approach is the usability of the protein construct in other assays as well.
Associated publication P1 gives an overview of recent developments regarding AFM
techniques employing site-specific pull-down strategies. Moreover, details about
AFM theory, data handling and surface chemistry strategies are described.
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a b s t r a c t

Single-molecule force spectroscopy sheds light onto the free energy landscapes governing protein folding
and molecular recognition. Since only a single molecule or single molecular complex is probed at any
given point in time, the technique is capable of identifying low-probability conformations within a large
ensemble of possibilities. It furthermore allows choosing certain unbinding pathways through careful
selection of the points at which the force acts on the protein or molecular complex. This review focuses
on recent innovations in construct design, site-specific bioconjugation, measurement techniques, instru-
mental advances, and data analysis methods for improving workflow, throughput, and data yield of AFM-
based single-molecule force spectroscopy experiments. Current trends that we highlight include cus-
tomized fingerprint domains, peptide tags for site-specific covalent surface attachment, and polyproteins
that are formed through mechanostable receptor–ligand interactions. Recent methods to improve mea-
surement stability, signal-to-noise ratio, and force precision are presented, and theoretical considera-
tions, analysis methods, and algorithms for analyzing large numbers of force–extension curves are
further discussed. The various innovations identified here will serve as a starting point to researchers
in the field looking for opportunities to push the limits of the technique further.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

The field began in earnest with the introduction of fluid cells for
the (at that time) newly developed atomic force microscope (AFM)
(Drake et al., 1989). The early 1990s then saw an explosion of the
bio-AFM field, which opened the door to high-resolution imaging
of proteins and cell surfaces under near-native conditions (Müller
et al., 1995; Radmacher et al., 1996, 1992). Shortly thereafter came
the realization that individual proteins and DNA molecules, or sin-
gle receptor–ligand complexes, could be probed with the help of
nano- to microscale force transducers (e.g., cantilevers, optically
trapped beads, magnetically trapped beads) (Block et al., 1990;
Florin et al., 1995; Lee et al., 1994a,b; Smith et al., 1992; Svoboda
et al., 1993). It was furthermore discovered that natural polypro-
teins (e.g., Titin) with repetitive multi-domain structures provided
regularly repeating saw-tooth like features in force extension data
(Rief et al., 1997a). Artificial (i.e., recombinant) polyproteins
quickly came into fashion as internal molecular controls for

investigating mechanical properties of protein domains of interest.
Since then, engineering of polyproteins has provided a wealth of
information about mechanostable motifs in protein folds
(Carrion-Vazquez et al., 1999; Oberhauser et al., 1998; Oesterhelt
et al., 2000), directional dependence of protein mechanostability
(Brockwell et al., 2003; Carrion-Vazquez et al., 2003; Dietz et al.,
2006; Kim et al., 2011), and modulation of mechanostability by
molecular recognition (Hu and Li, 2014).

Today, force spectroscopy and bio-AFM in general are well
established as standard tools in the nanobiosciences, and are regu-
larly used for investigating cell adhesion and cell surface properties
(Helenius et al., 2008; Müller et al., 2009; Preiner et al., 2014;
Tsukasaki et al., 2007; Wildling et al., 2012), interrogating mem-
brane proteins (Beedle et al., 2015b; Janovjak et al., 2004; Müller,
2008; Müller and Engel, 2007), and measuring mechanical proper-
ties of proteins (Beedle et al., 2015a; Bu et al., 2012; Cao et al.,
2011; del Rio et al., 2009; Geisler et al., 2010), polysaccharides
(Kocun et al., 2011; Rief et al., 1997b) and DNA (Albrecht et al.,
2003). Recent studies have already begun to characterize mem-
brane proteins in vivo by probing their response to external forces
on native living cells (Alsteens et al., 2010; Pfreundschuh et al.,
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2015). There are a number of review articles that thoroughly cover
the field from the early years (Carvalho et al., 2013; Casuso et al.,
2011; Hoffmann and Dougan, 2012; Lee et al., 2007; Li and Cao,
2010; Marszalek and Dufrêne, 2012; Müller and Dufrêne, 2008;
Neuman and Nagy, 2008; Noy, 2011; Rief and Grubmüller, 2002;
Sirbuly et al., 2015; Woodside and Block, 2014).

Despite the high level of interest and well-developed method of
AFM-SMFS (Single Molecule Force Spectroscopy), there have
remained several limitations to the technique that prevent
researchers from fully taking advantage of mechano-phenotyping
of molecules and cell surfaces. Specifically, low experimental
throughput and low yield of useable single-molecule interaction
curves have both hampered the widespread adoption of the
method, and its application for studying a large number of proteins.
The purpose of this review is to highlight recent developments in
bioconjugate chemistry, instrumentation, and data processing/
algorithms which aim at improving the design process, yield, mea-
surement quality and throughput of AFM-SMFS experiments.

2. Unfolding fingerprints

In typical AFM-SMFS experiments, many thousand force–exten-
sion curves are recorded, but only a fraction of these curves contain
useable data that describe the behavior of a single molecule. Typi-
cally, the majority of curves (�80–99%) contain no interaction, a
multiplicity of interactions that are difficult to interpret, or unspeci-
fic adhesion events as measurement artifacts. The experimenter is
left searching for a needle in a haystack, looking for single-
molecule interactions among a vast excess of unusable force–
extension curves. In order to filter the data efficiently, the SMFS
community has identified a broad range of proteins that can be used
as specific identifiers in unfolding traces. We refer to these domains
as ‘fingerprints’ because they provide a unique unfolding step or
‘contour-length increment’ of defined length that can be used as a
filter duringdataprocessing. Thesefingerprintdomains are typically
globular protein domains with individual unfolding forces and
length increments varyingacross a large range. This ability to choose
the length increments and unfolding forces of the fingerprint
domains has enabled the design of custom fusion proteins with
well-controlled unfolding behaviors. Recent surveys of mechanical
properties of different protein domains are provided by Sułkowska
and Cieplak (2007), Hoffmann and Dougan (2012).

3. Receptor–ligand SMFS

Protein–protein and protein-small molecule interactions have
been widely analyzed with SMFS. Reports of receptor–ligand SMFS
include measurements on biotin–avidin (Florin et al., 1994; Lee
et al., 1994a,b; Moy et al., 1994; Rico and Moy, 2007; Yuan et al.,
2000), antigen–antibody interactions (Hinterdorfer et al., 1996;
Morfill et al., 2007; Schwesinger et al., 2000) along with several
other protein–protein or small molecule interactions (Lee et al.,
2007; Mitchell et al., 2007; Schmidt et al., 2012).

One limitation in the standard method of receptor–ligand SMFS
is that the signal lacks single-molecule specificity. Depending on
the proteins involved and the experimental conditions (i.e., block-
ing/passivation steps), and since typically no fingerprint molecules
are used, it can be difficult to differentiate non-specific interactions
from specific protein-protein recognition. A second limitation of
many receptor–ligand SMFS experiments is that pulling geometry
is not strictly controlled. While in a standard polyprotein experi-
ment, the force is applied strictly between the N- and C-termini
of each domain, coupling of receptors and ligands to AFM tips and
substrates is often done through amide linkages formed between
amine groups on the proteins and activated NHS-ester groups on

the surface or cantilever. This implicates a diversity of pulling
geometries which are not strictly controlled, resulting in rupture
force distributions that are smeared out or otherwise distorted.

4. Receptor–ligand SMFS with fingerprints

Our group has worked on improving the technique for recep-
tor–ligand SMFS out of sheer necessity (Fig. 1). We were interested
in studying a family of receptor–ligand proteins (i.e., cohesin–
dockerin, Coh–Doc) involved in carbohydrate recognition and
degradation by anaerobic bacteria (Jobst et al., 2015, 2013; Otten
et al., 2014; Schoeler et al., 2015, 2014; Stahl et al., 2012). These
protein receptor–ligand complexes are responsible for building
up large extracellular networks of structural scaffold proteins
and enzymes. They are linked into these structural networks in
well-defined and known orientations (e.g., N-terminal or C-
terminal anchoring points). It is important to note that when pull-
ing apart a receptor–ligand complex consisting of two proteins,
there are four possible terminal pulling configurations (i.e., N-N0,
N-C0, C-N0, C-C0) (Fig. 1B). Many of the Coh–Doc complexes we
are interested in possess a clear ‘physiological’ pulling configura-
tion found in nature, and ‘non-physiological’ or ‘non-native’ config-
urations. To understand their natural mechanical adaptations
giving rise to their remarkable assembly strategy, we sought to
characterize the mechanical stability of these receptor–ligand
complexes in both their native and non-native loading configura-
tions. We found a way to ensure specific interactions by basically
combining two previously separate modes of AFM-SMFS (i.e., on
polyproteins and receptor–ligand complexes). We fused the Coh
and Doc domains separately to different fingerprint domains, and
recombinantly produced each construct as a single fusion protein.
The fingerprints serve two purposes: (1) they provide site-specific
attachment sites through engineered cysteine residues or peptide
ligation tags (see section 5) to strictly control loading geometry;
(2) they provide predetermined increments in contour length
which allows us to filter the datasets for specific single-molecule
interactions (Jobst et al., 2015, 2013; Otten et al., 2014; Schoeler
et al., 2015, 2014; Stahl et al., 2012).

This configuration yields several advantages: We now have the
ability to study mechanical stability of receptor–ligand pairs and
unfolding of individual domains (i.e., the fingerprints) in a single-
experiment with high yield and specificity, eliminating measure-
ment artifacts. We also have a systematic and straightforward
way to probe effects of pulling geometry on receptor–ligand
unbinding, and to compare native and non-native pulling configu-
rations. The gene design (i.e., N- or C-terminal fingerprint domains)
directly reflects the conformation to be investigated. Furthermore,
a specific protein domain of interest can now easily be fused to a
mechanostable Coh–Doc receptor–ligand pair for characterization.
Depending on the expected domain unfolding forces, an appropri-
ately fitting protein receptor–ligand pair can be chosen from a
wide range of well-characterized molecules (Table 1). We note that
this table does not include every receptor–ligand probed by AFM.
For an extensive list of receptor–ligands that were explored with
AFM, see Lee et al. (2007). Currently, the mechanically most stable
receptor–ligand pair is a Coh–Doc type III complex derived from R.
flavefaciens, with loading-rate dependent rupture forces between
600 and 800 pN (Schoeler et al., 2015, 2014). Another interaction
in a similar force range is the trimeric titin–telethonin complex
described by Bertz et al. (2009).

5. Site-specific bioconjugation

Many polyprotein experiments rely on non-specific adsorption
of polyproteins onto surfaces (e.g., mica, gold). Receptor–ligand
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AFM-SMFS, however, requires covalent immobilization of the two
binding partners to the cantilever and surface, respectively, in
order to avoid clogging of the molecules on the cantilever tip.
Site-specific (i.e., residue specific) conjugation methods provide
strict control over the pulling geometry and result in higher accu-
racy, precision and reproducibility, compared to conjugation meth-
ods resulting in a multiplicity of possible linkage sites (e.g., amine-
targeting). Fig. 2 provides an overview of established surface chem-
istry strategies.

Another advantage of our modular system is the ability to use
one construct (i.e., fingerprints with immobilization site) in all
desired biochemical or biophysical assays, since immobilization
relies on a PEG derivative, which is orthogonal to conventional
specific pull down methods. It is compatible with a wide range of
binding assays like Western Blotting, ITC, SPR, and ELISA.

The Ni-NTA:HIS6-tag interaction can be used as force probe as
well. This interaction has been employed as an adhesion sensor
by probing a cell surface containing His-tagged protein. Since the
His-tag is only located at one of the protein’s termini, the insertion

direction of the protein as well as it’s position can be detected
(Alsteens et al., 2013; Dupres et al., 2009; Pfreundschuh et al.,
2015). This technique is especially useful since the His-tag can be
used as a protein purification tag and simultaneously provides a
single-molecule force handle.

5.1. Cysteines

Cysteines are relatively rare in proteins, making them attractive
as a point mutation residue. The thiol side chain of cysteine is
nucleophilic, and will spontaneously react with maleimide leaving
groups at neutral pH. It can be used to site-specifically attach pro-
teins to PEG coated surfaces for receptor–ligand AFM-SMFS. Alter-
natively, engineered cysteines can also be used as oligomerization
sites to create disulfide-linked polyproteins, as was done for green
fluorescent protein (GFP) (Dietz and Rief, 2006). However, cysteine/
thiol-based protein conjugation has some drawbacks, including the
tendency of cysteine-modified proteins to multimerize and ulti-
mately aggregate over time, and incompatibility with proteins dis-
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Fig. 1. Configuration for performing receptor–ligand SMFS with (poly)protein fingerprints. (A) Schematic of the measurement setup. The change of force is detected via the
differential signal of the laser beam deflection on a quadrant photodiode. (B) For a protein complex consisting of two domains, 4 terminal pulling configurations are possible
(N-N0 , N-C0 , C-N0 , C-C0). (C) Fingerprints (brown and blue) are site-specifically and covalently attached to the cantilever and surface. Receptor (orange) and ligand (yellow)
form a stable receptor–ligand complex. Note that the fingerprints can be individual sub-domains, or repetitive polyproteins in their own right. Shown is a typical force-
extension trace with unfolding of the fingerprints, followed by rupture of the receptor ligand complex. In order to observe unfolding of the fingerprints in sufficient numbers,
their most probable unfolding force should lie well below the most probable rupture force of the complex for the given loading rate.

Table 1
Overview of selected receptor–ligand pairs usable as specific handles for protein-based SMFS experiments. Rupture forces depend on immobilization sites for surface conjugation.
Note that rupture forces can also vary depending on probe spring constants and loading rates. Abbreviations: NHS: N-hydroxysuccinimide; PEG: poly(ethylene glycol); Mal:
maleimide; Cys: cysteine; CoA: coenzyme A; SFP: 40-phosphopantetheinyl transferase; ybbR-Tag: peptide sequence DSLEFIASKLA; LF: low force unbinding path; HF: high force
unbinding path. For the column ‘immobilization method’, the terminology X (Y) Z means: molecule X is attached to Z mediated by enzyme Y.

Protein handles Handle A:Handle B Sizes (kDa) Dissociation force (pN) Immobilization method Handle position (N/C) References

Cohesin:dockerin I 15.4/8.3 122 ± 18.5 NHS-PEG5000-Mal/Cys C:C Stahl et al. (2012)
Cohesin:dockerin III 21.6/26.2 606 ± 54 NHS-PEG5000-Mal/Cys N:C Schoeler et al. (2015)

111 ± 30 (LF) NHS-PEG5000-Mal/CoA (SFP) ybbR C:C Schoeler et al. (2015)
597 ± 67 (HF) NHS-PEG5000-Mal/CoA (SFP) ybbR

NiNTA:HIS6 0.2/0.8 153 ± 57 Gold-Cys n.a. Verbelen et al. (2007)
Avidin:biotin 66-69/0.2 160 ± 20 Biotinylated BSA n.a. Florin et al. (1994)
StrepTagII:streptavidin 1.1/52.8 253 ± 20 BSA/NHS-biotin n.a. Wong et al. (1999)
Streptavidin:biotin 52.8/0.2 200 Biotinylated BSA n.a. Rico and Moy (2007)
Calmodulin:CBP 16.7/1.1 16.5 ± 1.8 Pulldown via NI-NTA n.a. Junker and Rief (2009)
StrepTagII:mono-streptactin 1.1/58.4 116 NHS-PEG5000-Mal/Cys C:C Baumann et al. (2015)

46 NHS-PEG5000-Mal/CoA (SFP) ybbR N:C
Anti-GCN4 sFv:GCN4(7P14P) 26.7/4.0 70 NHS-PEG5000-Mal/Cys N:C Morfill et al. (2007)
Anti-digoxigenin:digoxigenin 170/0.4 40 NHS-PEG6000 n.a. Neuert et al. (2006)
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playing cysteines on their surfaces in their wild-type form. Hence
several other conjugation strategies were developed to overcome
this challenge. Most of the newer techniques rely on N- or C-
terminal attachment sites because the length of the requisite pep-
tide tags or fusion domains makes inclusion into internal sites of
a folded protein domain more challenging.

5.2. HaloTag

The active site of the haloalkane dehydrogenase (HaloTag) has
been used to covalently immobilize proteins on chloroalkane sur-
faces. The unfolding forces of the HaloTag depend on its loading
geometry (N-terminus: 131 pN; C-terminus: 491 pN). The domain
provides an unfolding fingerprint of defined contour length, which
also depends on the pulling geometry (N: 66 nm, C: 26.5 nm) (Popa
et al., 2013).

5.3. hAGT/SNAP tag

The DNA repair protein O6-alkylguanine–DNA-alkyltransferase
(hAGT, SNAP-tag) binds benzylguanine covalently as a substrate,
which can be attached to glass surfaces via an amino-
polyethylene glycol (Kufer et al., 2005). With 22 kDa, the SNAP-
tag is slightly smaller compared to the HaloTag (34 kDa).

5.4. SpyTag/Catcher

The versatile SpyTag/Catcher system can also be employed for
site-specific surface immobilization. The linkage between SpyTag
and Catcher is based on an internal protein interaction, which
forms an isopeptide (covalent) bond. Based on this observation,
the interaction was further developed and engineered, and now
consists of a 13 amino acid large SpyTag and the binding domain
Spy Catcher (Zakeri et al., 2012).

5.5. ybbR/SFP

The ybbR-Tag is an 11 amino acid protein sequence that is enzy-
matically linked to coenzyme A (CoA) by 40-phosphopantetheinyl

transferase (SFP) enzyme (Pippig et al., 2014; Yin et al., 2006; Yin
et al., 2005). Both ybbR-Tag and the SpyTag/Catcher system have
been shown to be N- and C-terminally active. Both tags can also
be inserted internally, if the structure of the protein allows it, how-
ever, proper folding is not guaranteed and must be evaluated on a
case-by-case basis.

5.6. Surface chemistry

Like the modular design of fingerprints and site-specific immo-
bilization tags, surface chemistry can also be modularized to
improve workflow.We note that the type of surface chemistry goes
hand in hand with the design of the bioconjugation tags for protein
production. Our standard approach follows the protocol described
by Zimmermann et al. (2010): amino-silanized glass slides and
cantilevers are functionalized with a hetero-bifunctional poly
(ethylene glycol) (PEG) polymer with an N-hydroxysuccinimide
group and a maleimide group at opposing ends. PEG coating pro-
vides a passivated surface that resists nonspecific protein adhesion,
reducing background and artifacts during measurement. The
entropic elasticity behavior of PEG (i.e., persistence length) is sim-
ilar, although not equal to that of protein backbones, making it a
suitable choice for surface conjugation in AFM-SMFS, without
interfering too strongly with data interpretation. The maleimide
group can then either be modified with CoA containing an inherent
thiol group to proceed with ybbR/SFP chemistry, or alternatively
directly be reacted with a protein domain displaying a reduced
cysteine residue. The PEG incubation can be modified or extended
depending on the requirements of the linker and the end group.

6. Advances in measurement techniques

Current advances in measurement resolution, instrument sta-
bility and accessible dynamic ranges open up new opportunities
for measurements of biomolecules. Here we highlight recent inno-
vations aimed at improving quality and precision of AFM-SMFS
measurements.
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Fig. 2. Surface chemistry and bioconjugation strategies for single-molecule force spectroscopy. The diagram is by no means exhaustive and is roughly divided into site-
specific conjugation methods that provide a single anchoring point for proteins to surfaces/cantilevers (right), and unspecific conjugation methods that provide a
heterogeneity of loading configurations (i.e., a multiplicity of pulling points) (left).
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6.1. Improved time resolution

In general, the timescales relevant for protein un-/folding and
the corresponding timescale for thermally induced crossing of
energy barriers are not fully detectable by common SMFS tech-
niques, which typically resolve slower than 50 ls. Early on, the
importance of developing high-speed AFM imaging and force spec-
troscopy through miniaturization of cantilevers with high reso-
nance frequencies and low viscous drag coefficients was
appreciated (Viani et al., 1999a,b). Nonetheless, only recent studies
were able to overcome timescale limitations to observe, for exam-
ple, extraordinarily slow protein misfolding transitions (�0.5 ms)
using optical tweezers (Yu et al., 2015). Furthermore, advanced sta-
tistical methods extended optical tweezers SMFS time resolution
to the �10 ls range (Žoldák et al., 2013), and optimization of
AFM cantilevers for SMFS has pushed the limit toward resolution
on the microsecond timescale (Edwards et al., 2015). These devel-
opments allow experimentally accessible ranges to approach the
lower limits of fast folding transition dynamics (Chung et al.,
2012; Schuler and Hofmann, 2013), resolving short-lived interme-
diate states and yielding important insights into other fast confor-
mational dynamics.

6.2. Bridging the timescale gap to steered molecular dynamics
simulations

Recently, experimental measurements were brought into prox-
imity (Dong and Sahin, 2011; He et al., 2012; Schoeler et al., 2015)
or even overlap (Rico et al., 2013) with all atom steered molecular
dynamics (SMD) simulations. Depending on the size and thus com-
plexity of the simulated system, it has so far been possible to
achieve SMD simulation timescales in the nanosecond to mid-
microsecond range (Freddolino et al., 2008; Heymann and
Grubmüller, 2001; Lee et al., 2009). Rico et al. developed a high
speed force spectroscopy AFM based on an Ando-type high speed
imaging AFM (Ando et al., 2001), with a high resonance frequency
(600 kHz) miniature multilayer piezoelectric actuator (calibrated
before each experiment and run in open loop mode), and a short
cantilever with a high resonance frequency (550 kHz in liquid),
and low viscous damping. This system was used to record protein
unfolding data at extremely high speeds. To reduce hydrodynamic
drag, the sample surface was tilted against the direction of the
movement. With these improvements and data acquisition in the
megahertz range, they were able to record meaningful and inter-
pretable data at pulling speeds of up to 4000 lm/s, which is about
2–3 orders of magnitude faster than conventional methods and
starts overlapping with the range of SMD simulations (Rico et al.,
2013). Despite these successes, care must be taken because under-
damped or ‘ringing’ cantilevers like the ones used here are not in
agreement with the basic assumptions of the traditional SMFS
framework, but can be improved by custom cantilever optimiza-
tion procedures at the cost of time resolution (Edwards et al.,
2015).

6.3. Long-term stability and force precision

Sophisticated measurements of complex biological systems or
single molecules often require extraordinarily stable low-drift
instruments, capable of continuous long-term data acquisition to
gain sufficient and reliable statistics. Active stabilization tech-
niques were developed to enable routine long-term stability and
Ångstrom scale precision at room temperature for optical trap set-
ups: differential sample position was measured and regulated with
two independently stabilized and MHz modulated lasers, backscat-
tered on sample and probe, and recorded separately on a single
photodiode using lock-in amplifiers (Walder et al., 2015). This

method is deemed applicable to surface-based and dual-beam
optical traps, magnetic tweezers, AFM setups and optical micro-
scopy, including super-resolution techniques.

AFM cantilever long-term stability and force precision can be
increased even further by partially removing the reflective gold
coating from the cantilever to dramatically reduce cantilever bend-
ing caused by the bimetallic effect (Churnside et al., 2012). Stability
and precision improvements, which still retain high measurement
bandwidths, enable and improve on picoscale force and sub-
nanoscale motion measurements of molecular properties and
dynamics in various biological systems. These may include ground-
breaking investigations like the observation of single RNA poly-
merase base pair stepping (Abbondanzieri et al., 2005; Zhou
et al., 2013), base pair unwinding of helicases (Cheng et al.,
2011) and prion misfolding pathways (Yu et al., 2015, 2012). More
details on long-term stability measurements and force precision
are covered in the recent review of Edwards and Perkins (2016).

6.4. Mapping molecular recognition events: multiparametric imaging
modes

The idea of mapping molecular recognition by simultaneously
measuring surface topography and force–extension data (‘force
volume mapping’ or ‘affinity imaging’) was introduced early
(Hinterdorfer et al., 1996; Ludwig et al., 1997), and refined to
remarkable temporal and spatial resolution. While these molecular
recognition imaging techniques turned out to be a valuable tool for
detecting and locating specific binding sites on surfaces, their
development into dynamic recognition force imaging
(Hinterdorfer and Dufrêne, 2006; Raab et al., 1999; Zhang et al.,
2014) greatly increased temporal and spatial resolution, while still
yielding information about surface elasticity and adhesion, as well
as identifying biomolecules at the same time.

Multiparametric imaging modes can simultaneously detect
physical properties of the surface and forces exerted on specific
biomolecular binding sites. The AFM cantilever oscillates with
amplitudes around 100 nm at sub- or low kilohertz frequencies
to measure force–distance data, and simultaneously records image
topography and other surface properties at sub- or low hertz line-
scanning frequencies. The recorded force and topography data is
collected orders of magnitude faster compared to force volume
mapping methods, yielding imaging speeds comparable to conven-
tional AFM imaging methods (Alsteens et al., 2012; Pfreundschuh
et al., 2014). Another benefit of this method is that a large range
of loading rates for receptor–ligand dissociation events can be
probed in a single experiment, due to the largely varying cantilever
tip velocities. Recently, this method was applied to gain nm-scale
resolution imaging data of a G protein-coupled receptor (PAR1)
in proteoliposomes while characterizing their ligand-binding
energy landscape (Alsteens et al., 2015) from loading rates ranging
between 1e3 and 1e6 pN/s, already two orders of magnitude
higher than conventional force–distance based SMFS. Another
recent study demonstrates the ability of this technique to distin-
guish two different binding events on opposite sides of engineered
PAR1 by their unbinding force, and thereby determine their orien-
tation within the lipid bilayer (Pfreundschuh et al., 2015).

6.5. Lateral force sensors

A slightly different approach developed a T-shaped cantilever
(Dong et al., 2009; Dong and Sahin, 2011) to drive it at its flexural
resonance frequency (�9 kHz) and record force data from can-
tilever torsion, resulting in a lateral laser deflection signal that
was acquired while imaging the sample in conventional tapping
mode. Due to the cantilever’s high torsional resonance
(�115 kHz), unbinding dynamics could be measured at the
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microsecond timescale and at extraordinarily high loading rates of
up to nearly 1e9 pN/s (Dong and Sahin, 2011), about four orders of
magnitude faster than conventional SMFS. Force curves and there-
fore unbinding events and their corresponding force values could
be mapped with high spatial and temporal resolution, while pro-
viding AFM images that were simultaneously recorded as surface
topography. Mechanical elasticity properties of the substrate were
also detected in the phase signal.

7. Theory and data analysis

7.1. The data analysis problem

Technical advances greatly increasing the throughput of AFM-
SMFS measurements have made automated data analysis protocols
an essential requirement. In practice, researchers face the problem
of extracting meaningful single molecule signal from large datasets
that contain an abundance of unusable data. The use of well-
defined fingerprint domains with known unfolding patterns facili-
tates this procedure greatly. To avoid tedious and time-consuming
manual sorting of thousands of data traces, and potential introduc-
tion of bias into the data analysis procedure, algorithms which
identify the fingerprint unfolding length increments and classify
the data correspondingly have been developed and implemented
with success (Bosshart et al., 2012; Jobst et al., 2015; Kuhn et al.,
2005; Puchner et al., 2008).

7.2. Polymer elasticity models and contour length transformations

Single molecule force measurements generally only gain access
to a protein’s extension under a given force. The stochastic nature
of domain unfolding or complex dissociation under force as well as
the non-linear elastic behavior of the polymer backbone chain
makes analysis in force-extension space difficult. The same unfold-
ing event is observed over a range of different positions in

force–extension curves for multiple measurement cycles as shown
in Fig. 3B i.

From a physicist’s point of view, mechanical stretching of an
unfolded protein domain is described by polymer elasticity models
such as the worm-like chain (WLC) (Bustamante et al., 1994), the
freely jointed chain (FJC) (Ortiz and Hadziioannou, 1999), or the
freely rotating chain (FRC) model (Livadaru et al., 2003). These
models contain the free contour length L of the polymer, including
surface tethers and unfolded protein backbone, as a parameter. The
free contour length is simply the length of the polypeptide along
the contour of the biopolymer chain, given a specific folding state
(e.g., Fig. 3A). Under a set of physically relevant constraints (L, x,
F > 0, x < L), these elasticity models provide one-to-one mappings
from force–extension space into force-contour length space. The
models can be solved for the contour length parameter (Jobst
et al., 2013; Puchner et al., 2008), yielding an expression for the
contour length as a function of force and extension L(F,x). This
function can be used to transform force–extension traces from con-
stant speed or force clamp/ramp experiments into contour length
space (Fig. 3B ii). The calculated contour length then can be binned
(Fig. 3B iii), aligned, and subsequently averaged to precisely locate
energy barriers (Fig. 3B iv) along a protein’s unfolding pathway,
and to classify data sets based on unfolding patterns. This idea
was first proposed by Puchner et al. (2008) and has been success-
fully applied in multiple AFM-SMFS studies (Jobst et al., 2015,
2013; Otten et al., 2014; Schoeler et al., 2014; Stahl et al., 2012;
Thoma et al., 2015).

7.3. Worm-like chains, freely-rotating chains and beyond

The WLC model accurately describes a protein’s stretching
response for forces up to approximately 150 pN. While many pro-
tein unfolding or dissociation events take place well within this
force regime, some interactions like titin Ig domain unfolding
(Rief et al., 1997a), cohesin unfolding (Valbuena et al., 2009), disso-
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ciation of skeletal muscle titin–telethonin bonds (Bertz et al., 2009)
or dissociation of cellulosomal adhesion complexes (Schoeler et al.,
2015, 2014) exhibit much higher unfolding or rupture forces. To
adequately describe the elastic response of polymers in such high
force regimes, models beyond the standard WLC are required. To
address this shortcoming, Hugel et al. (2005) developed quantum
mechanical corrections for polymer elasticity models to account
for polypeptide backbone stretching at high forces. These correc-
tions can be applied to obtain the contour length at zero force L0
(Puchner et al., 2008).

Livadaru et al. proposed a more sophisticated model exhibiting
three distinct regimes for a protein’s stretching response as a func-
tion of the applied force (Livadaru et al., 2003). For AFM based
SMFS, however, mainly the medium to high force regimes are rel-
evant. The medium force regime of protein stretching, roughly
between 10 and 125 pN, exhibits classical WLC stretching behav-
ior, whereas the high force regime shows the behavior of a discrete
chain, where the stretching response is independent of the persis-
tence length. This model is most suitable for studying high force
interactions, especially when combined with the aforementioned
quantum mechanical corrections for backbone stretching.

8. Kinetic and energetic parameters

In dynamic force spectroscopy of receptor–ligand pairs, kinetic
and energetic parameters of the complex are of interest. The
method most prominently used to extract this information from
SMFS experiments is to vary the loading rate by measuring the
rupture forces at different pulling speeds in constant speed mode
(Baumann et al., 2015; Schoeler et al., 2014; Stahl et al., 2012), or
with different slopes in force ramp mode (Oberhauser et al.,
2001). The obtained rupture force data are then assembled into a
dynamic force spectrum, a plot of most probable rupture forces
against their corresponding loading rates. In their comprehensive

guide to analysis of SMFS data sets, Noy and Friddle (2013) explain
the basic physics of bond stretching. An SMFS measurement corre-
sponds to the stretching of multiple elastic components in series,
including the projection of the bond potential onto the pulling axis,
the cantilever modeled as a harmonic spring and potential linker
molecules with nonlinear elasticity deviating from those under
investigation. Such a scenario gives rise to bound and unbound
states separated by free energy barriers. By pulling on the har-
monic spring, this energy landscape is constantly modulated. Since
thermal fluctuations are orders of magnitude faster than changes
in the external force, the transition from a bound to an unbound
state is thermally driven in common loading rate regimes, as
described by Bell (1978), Evans and Ritchie (1997), Izrailev et al.
(1997). These models describe a linear dependence of the rupture
force on the natural logarithm of the loading rate and give access to
the zero force off rate k0 (exponentially amplified under force) and
the distance to the transition state Dx. Theoreticians extended this
framework and accounted for modulation of Dx by the applied
force (Dudko et al., 2006), and the possibility of rebinding at slow
loading rates (Friddle et al., 2012). These newer models predict a
nonlinear dependence of the most probable rupture force on the
loading rate and give the height of the free energy barrier to
unbinding DG as an additional parameter. Such non-linear trends
were observed experimentally, and a comprehensive list of such
data sets is given in Friddle et al. (2012). Joint experimental and
computational data sets were also analyzed in recent studies
(Rico et al., 2013; Schoeler et al., 2015). As Noy and Friddle
(2013) point out, these models should only be used if the force
spectrum of interest indeed exhibits a non-linear trend. If this is
not given, fitting non-linear models results in non-meaningful fit
parameters and the phenomenological model should be used
instead.

Although in both bulk measurements and single molecule force
measurements at common loading rates, the unbinding process is
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Fig. 4. Schematic depiction of an (un)folding energy landscape. The bound state of a protein receptor–ligand complex can be thought of as a Brownian particle confined to a
complex multidimensional energy landscape. At equilibrium, the system can escape the bound state driven by thermal fluctuations. This escape can occur along any pathway
on the energy landscape. When measuring the thermal off-rate with bulk assays such as surface plasmon resonance biosensors, a weighted average of all thermally accessible
pathways is obtained. In a single-molecule pulling experiment, however, a small subset of pathways is selected, which is defined by the projection of the energy landscape
onto the pulling coordinate as illustrated by paths 1–3. Caution is required when comparing data obtained from single molecule techniques with bulk data. In cases where
SMFS probes a steep pathway with a high free energy barrier, the fitted zero-force off rate may greatly differ from values obtained by bulk techniques. Path 4 illustrates the
thermal escape (4b) versus the forced pathway across an additional energy barrier (4a) by the AFM cantilever.
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thermally driven, caution is required when comparing their data.
While at unbiased equilibrium, all thermally accessible pathways
from the bound state are sampled and the off rate is consequently
measured as a weighted average, single molecule force measure-
ments select only a small subset of these pathways due to the
defined pulling geometry, as illustrated by paths 1–3 in Fig. 4. In
cases where the energy landscape is highly asymmetric and the
pulling experiment probes a steep pathway, the off rates obtained
from single molecule vs. bulk measurements might differ greatly
(see Fig. 4, paths 4a vs 4b).

9. Summary and outlook

We highlighted recent advances in experimental design, molec-
ular design, sample preparation, measurement and analysis meth-
ods for AFM-SMFS on polyproteins and receptor–ligand complexes.
We summarized site-specific bioconjugation strategies to obtain
well-defined pulling geometries for improved reliability and repro-
ducibility of experiments. We also highlighted receptor–ligand
pairs with high mechanical strength (e.g., cohesin–dockerin), and
their application as specific pulling handles in AFM-SMFS for
improving experimental throughput and curve yield. Finally, we
touched on recent innovations in positional control and cantilever
microfabrication for improving time and force resolution and sta-
bility of the measurement, on emerging techniques for mapping
force responses of surfaces to their topologies, and we discussed
theoretical considerations for analyzing large numbers of curves.

In the future, there remain several technical challenges that
need to be addressed. One of the limitations of AFM is that it covers
a relatively high force range, yet there exist a multitude of biolog-
ical interactions in the low-force regime that are of interest. Fur-
ther technical advances in instrument design, cantilever
fabrication, and feedback control might further improve force res-
olution and thereby enable such experiments. A second area for
improvement involves sample throughput and parallel screening.
With the development of more elaborate, sophisticated and well
defined surface immobilization strategies and protein handles, sig-
nificant gains in throughput can be envisioned. Innovations of the
chemistry in combination with efficient data analysis protocols
and state of the art instrumentation may pave the way towards
in depth study of complex, multi-domain protein systems.

These advances in experimental design and throughput would
greatly benefit from refined theoretical frameworks that account
for parameters such as cantilever stiffness and ringing whilst
maintaining analytical tractability. Consequently, with improved
methodology we anticipate the community will be able to address
an even wider range of questions about mechanical adaptations of
proteins and protein complexes in the future.
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Chapter 4

Biomechanics of the Cellulosome

4.1 Summary

The cellulosome is an excellent model system to study the mechanobiology of single
molecule interactions. It is an extracellular multiprotein complex, relying on mul-
tidomain framework proteins, called scaffoldins. Scaffoldins contain several cohesin
domains and often a carbohydrate binding module (CBM). Cohesins recognize dock-
erin domains, which are fused to the catalytic subunits of enzymes. Thus different
enzymes are arranged in close proximity to each other on the scaffoldin through
cohesin:dockerin interactions. The CBM ensures the localization of the enzyme en-
semble to their substrate. The scaffoldin is connected to its secreting host cell with
an orthogonal cohesin:dockerin interaction (type II or III) than the one recruiting en-
zymes (type I), enabling a hierarchical assembly of host cell, scaffoldins and enzymes
[15]. The multitude of different non cross-reacting, high affinity interactions make it
an interesting object to study with single molecule force spectroscopy (SMFS).
Moreover, cellulolytic organisms live in turbulent environments (i.e. hot springs, ru-
men of cows, or digestive systems of humans) [126], rendering cellulosomes especially
attractive for biomechanical studies.
In associated publication P2 a unique type III interaction, between the cell and
scaffoldin from Ruminococcus flavefaciens, was probed. It was hypothesized that an
interaction between the cell and scaffoldin might resist high forces because of its
anchoring function. Indeed, with complex rupture forces of 650 pN one of the highest
single complex rupture forces could be observed. All-atom simulations revealed that
the high forces are caused by an increased binding interface area upon force loading.
Associated publication P3 continued working with the type III cohesin:dockerin
interaction and compared native with non-native pulling geometries. The cohesin
domain is natively located at the N-terminus, when the domain is moved to the
C-terminus of a pulling experiment unfolding forces drop. Again molecular dynamic
simulations explained the molecular mechanism. In the non-native configuration,
force propagates almost on a straight line through the protein, dissipating less me-
chanical load than in the native geometry.
SMFS studies can also resolve different binding modes of the same receptor:ligand
interaction, as shown in associated publication P4: A highly symmetric type I dock-
erin from Clostridium thermocellum can bind the corresponding cohesin in two modes,
that are rotated by 180◦. So far evidence for the dual binding mode only came from
crystal structures of mutants, that showed one or the other binding mode, but never
both [65], [127], [128]. The atomic force microscopy (AFM) study P4 showed that the
wildtype receptor:ligand interaction exerts two binding modes with two different
unbinding forces.
SMFS is also able to probe the mechanical stability of protein domains. In associated
publication P5 all cohesin domains of one scaffoldin from Acetivibrio cellulolyticus
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were probed. The scaffoldin connects the host cell with cellulose fibers via its CBM.
The CBM is located internally in the scaffoldin, so that some cohesins are located
between cell and cellulose (bridging) and some are free (hanging). Hence, mechanical
stability of bridging cohesins should be higher than the hanging ones. AFM mea-
surements confirmed this hypothesis. Furthermore, crucial amino acids, of the more
stable cohesins could be identified with all-atom simulations and transferred to the
weakest fold, increasing its mechanostabilty.
AFM SMFS is a valuable tool to probe biomechanics of a system. Insights can be
transfered directly to new applications, e.g. using the type III cohesin:dockerin as a
new binding handle in SMFS experiments.
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C
ellulosomes are protein networks designed by nature
to degrade lignocellulosic biomass1. These networks
comprise intricate assemblies of conserved subunits

including catalytic domains, scaffold proteins, carbohydrate
binding modules (CBMs), cohesins (Cohs), dockerins (Docs)
and X-modules (XMods) of unknown function. Coh:Doc pairs
form complexes with high affinity and specificity2, and provide
connectivity to a myriad of cellulosomal networks with varying
Coh:Doc network topology3–5. The most intricate cellulosome
known to date is produced by Ruminococcus flavefaciens (R.f.)6,7

and contains several primary and secondary scaffolds along with
over 220 Doc-bearing protein subunits8.

The importance of cellulolytic enzymes for the production of
renewable fuels and chemicals from biomass has highlighted an
urgent need for improved fundamental understanding of how
cellulosomal networks achieve their impressive catalytic activity9.
Two of the mechanisms known to increase the catalytic activity of
cellulosomes are proximity and targeting effects10. Proximity
refers to the high local concentration of enzymes afforded by
incorporation into nanoscale networks, while targeting refers to
specific binding of cellulosomes to substrates. Protein scaffolds
and CBM domains are both critical in this context as they
mediate interactions between comparatively large bacterial cells
and cellulose particles. As many cellulosomal habitats (for
example, cow rumen) exhibit strong flow gradients, shear forces
will accordingly stress bridging scaffold components mechanically
in vivo. Protein modules located at stressed positions within
these networks should therefore be preselected for high
mechanostability. However, thus far very few studies on the
mechanics of carbohydrate-active proteins or cellulosomal
network components have been reported11.

In the present study we sought to identify cellulosomal network
junctions with maximal mechanical stability. We chose an XMod-
Doc:Coh complex responsible for maintaining bacterial adhesion
to cellulose in the rumen. The complex links the R. flavefaciens
cell wall to the cellulose substrate via two CBM domains located
at the N-terminus of the CttA scaffold, as shown in Fig. 1a. The

crystal structure of the complex solved by X-ray crystallography12

is shown in Fig. 1b. XMod-Doc tandem dyads such as this one are
a common feature in cellulosomal networks. Bulk biochemical
assays on XMod-Docs have demonstrated that XMods improve
Doc solubility and increase biochemical affinity of Doc:Coh
complex formation13. Crystallographic studies conducted on
XMod-Doc:Coh complexes have revealed direct contacts between
XMods and their adjacent Docs12,14. In addition, many XMods
(for example, PDB 2B59, 1EHX, 3PDD) have high b-strand
content and fold with N- and C-termini at opposite ends of the
molecule, suggestive of robust mechanical clamp motifs at
work15,16. These observations all suggest a mechanical role for
XMods. Here we perform AFM single-molecule force
spectroscopy experiments and steered molecular dynamics
simulations to understand the mechanostability of the XMod-
Doc:Coh cellulosomal ligand–receptor complex. We conclude
that the high mechanostability we observe originates from
molecular mechanisms, including stabilization of Doc by the
adjacent XMod domain and catch bond behaviour that causes the
complex to increase in contact area on application of force.

Results and Discussion
Single-molecule experiments. We performed single-molecule
force spectroscopy (SMFS) experiments with an atomic force
miscroscope (AFM) to probe the mechanical dissociation of
XMod-Doc:Coh. Xylanase (Xyn) and CBM fusion domains on
the XMod-Doc and Coh modules, respectively, provided identi-
fiable unfolding patterns permitting screening of large data sets of
force-distance curves17–19. Engineered cysteines and/or peptide
tags on the CBM and Xyn marker domains were used to
covalently immobilize the binding partners in a site-specific
manner to an AFM cantilever or cover glass via poly(ethylene
glycol) (PEG) linkers. The pulling configuration with Coh-CBM
immobilized on the cantilever is referred to as configuration I, as
shown in Fig. 1c. The reverse configuration with Coh-CBM on
the cover glass is referred to as configuration II. In a typical
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experimental run we collected about 50,000 force extension traces
from a single cantilever. We note that the molecules immobilized
on the cantilever and glass surfaces were stable over thousands of
pulling cycles.

We sorted the data by first searching for contour length
increments that matched our specific xylanase and CBM
fingerprint domains. After identifying these specific traces
(Fig. 2a), we measured the loading rate dependency of the final
Doc:Coh ruptures based on bond history. To assign protein
subdomains to the observed unfolding patterns, we transformed
the data into contour length space using a freely rotating
chain model with quantum mechanical corrections for peptide
backbone stretching (QM-FRC, Supplementary Note 1,
Supplementary Fig. 1)20,21. The fit parameter-free QM-FRC
model describes protein stretching at forces 4200 pN more
accurately than the commonly used worm-like chain (WLC)
model20,22. The resulting contour length histogram is shown in
Fig. 2b. Peak-to-peak distances in the histogram represent
contour length increments of unfolded protein domains.
Assuming a length per stretched amino acid of 0.365 nm and
accounting for the folded length of each subdomain, we
compared the observed increments to the polypeptide lengths
of individual subdomains of the Xyn-XMod-Doc and Coh-CBM
fusion proteins. Details on contour length estimates and domain
assignments are shown in Supplementary Table 1.

Unfolding patterns in configuration I showed PEG stretching
followed by a three-peaked Xyn fingerprint (Fig. 1a, top trace,
green), which added 90 nm of contour length to the system. Xyn
unfolding was followed by CBM unfolding at B150 pN with
55 nm of contour length added. Finally, the XMod-Doc:Coh
complex dissociated at an ultra-high rupture force of B600 pN.
The loading rate dependence of the final rupture event for curves
of subtype 1 is plotted in Fig. 2c (blue). The measured complex
rupture force distributions are shown in Supplementary Fig. 2.

Less frequently (35–40% of traces) we observed a two-step
dissociation process wherein the XMod unfolded before Doc:Coh
rupture as shown in Fig. 2a (middle trace, orange). In these cases,
the final dissociation exhibited a much lower rupture force
(B300 pN) than the preceding XMod unfolding peak, indicating
the strengthening effect of XMod was lost, and XMod was no
longer able to protect the complex from dissociation at high force.
The loading rate dependency of Doc:Coh rupture occurring
immediately following XMod unfolding is shown in Fig. 2c (grey).

In configuration II (Fig. 2a, bottom trace), with the Xyn-
XMod-Doc attached to the cantilever, the xylanase fingerprint
was lost after the first few force extension traces acquired in the
data set. This indicated the Xyn domain did not refold within the
timescale of the experiment once unfolded, consistent with prior
work17,18. CBM and XMod unfolding events were observed
repeatedly throughout the series of acquired force traces in both
configurations I and II, indicating these domains were able to
refold while attached to the cantilever over the course of the
experiment.

We employed the Bell-Evans model23 (Supplementary Note 2)
to analyse the final rupture of the complex through the effective
distance to the transition state (Dx) and the natural off-rate (koff).
The fits to the model yielded values of Dx¼ 0.13 nm and
koff¼ 7.3� 10� 7s� 1 for an intact XMod, and Dx¼ 0.19 nm and
koff¼ 4.7� 10� 4 s� 1 for the ‘shielded’ rupture following XMod
unfolding (Fig. 2c). These values indicate that the distance to the
transition state is increased following XMod unfolding, reflecting
an overall softening of the binding interface. Distances to the
transition state observed for other ligand–receptor pairs are
typically on the order of B0.7 nm (ref. 17). The extremely short
Dx of 0.13 nm observed here suggests that mechanical unbinding
for this complex is highly coordinated. We further analysed
the unfolding of XMod in the Bell-Evans picture and found
values of Dx¼ 0.15 and koff¼ 2.6� 10� 6s� 1. The loading
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rate dependence for this unfolding event is shown in
Supplementary Fig. 3.

The exceptionally high rupture forces measured experimentally
(Fig. 2) are hugely disproportionate to the XMod-Doc:Coh
biochemical affinity, which at KDB20 nM (ref. 12) is comparable
to typical antibody–antigen interactions. Antibody–antigen
interactions, however, will rupture at only B60 pN at similar
loading rates24, while bimolecular complexes found in muscle
exposed to mechanical loading in vivo will rupture at B140 pN
(ref. 25). Trimeric titin–telethonin complexes also found in
muscle exhibit unfolding forces around 700 pN (ref. 26), while Ig
domains from cardiac titin will unfold at B200 pN (ref. 27). The
XMod-Doc:Coh ruptures reported here fell in a range from 600 to
750 pN at loading rates ranging from 10 to 100 nN s� 1. At
around half the rupture force of a covalent gold-thiol bond28,
these bimolecular protein rupture forces are, to the best of our
knowledge, among the highest of their kind ever reported. The
covalent bonds in this system are primarily peptide bonds in the
proteins and C-C and C-O bonds in the PEG linkers. These are
significantly more mechanically stable than the quoted gold-thiol
bond rupture force (B1.2 nN) (ref. 29) and fall in a rupture force
range 42.5 nN at similar loading rates. Therefore, breakage of
covalent linkages under our experimental conditions is highly
unlikely. We note that the high mechanostability observed here is
not the result of fusing the proteins to the CBM or Xyn domains.
The covalent linkages and pulling geometry are consistent with
the wild-type complex and its dissociation pathway. In vivo, the
Coh is anchored to the peptidoglycan cell wall through its
C-terminal sortase motif. The XMod–Doc is attached to the
cellulose substrate through two N-terminal CBM domains. By
pulling the XMod–Doc through an N-terminal Xyn fusion
domain, and the Coh through a C-terminal CBM, we
established an experimental pulling geometry that matches

loading of the complex in vivo. This pulling geometry was also
used in all simulations. The discontinuity between its
commonplace biochemical affinity and remarkable resistance to
applied force illustrates how this complex is primed for
mechanical stability and highlights differences in the unbinding
pathway between dissociation at equilibrium and dissociation
induced mechanically along a defined pulling coordinate.

Steered molecular dynamics. To elucidate the molecular
mechanisms at play that enable this extreme mechanostability, we
carried out all-atom steered molecular dynamics (SMD) simula-
tions. The Xyn and CBM domains were not modelled to keep the
simulated system small and reduce the usage of computational
resources. This approximation was reasonable as we have no
indication that these domains significantly affect the XMod–
Doc:Coh binding strength30. After equilibrating the crystal
structure12, the N-terminus of XMod–Doc was harmonically
restrained while the C-terminus of Coh was pulled away at
constant speed. The force applied to the harmonic pulling spring
was stored at each time step. We tested pulling speeds of 0.25,
0.625 and 1.25 Å ns� 1, and note that the slowest simulated
pulling speed was B4,000 times faster than our fastest
experimental pulling speed of 6.4 mm s� 1. This difference is
considered not to affect the force profile, but it is known to
account for the scale difference in force measured by SMD and
AFM31,32.

SMD results showed the force increased with distance until the
complex ruptured for all simulations. At the slowest pulling speed
of 0.25 Å ns� 1 the rupture occurred at a peak force of B900 pN,
as shown in Supplementary Fig. 4 and Supplementary Movie 1.
We analysed the progression and prevalence of hydrogen bonded
contacts between the XMod–Doc and Coh domains to identify
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Figure 3 | Analysis of binding interface and catch bond mechanism from SMD. (a) Surface plots for the main interacting residues of Coh (left)
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key residues in contact throughout the entire rupture process and
particularly immediately before rupture. These residues are
presented in Fig. 3a,c,d and Supplementary Figs 5,6. The
simulation results clearly reproduced key hydrogen bonding
contacts previously identified12 as important for Doc:Coh
recognition (Supplementary Fig. 5).

The main interacting residues are shown in Fig. 3a,b. Both Coh
and Doc exhibit a binding interface consisting of a hydrophobic
centre (grey) surrounded by a ring of polar (green) and charged
residues (blue, positive; red, negative). This residue pattern
suggests the hydrophilic side chains protect the interior
hydrophobic core from attack by water molecules, compensating
for the flat binding interface that lacks a deep pocket. The
geometry suggests a penalty to unbinding that stabilizes the
bound state. Further, we analysed the contact surface areas of
interacting residues (Fig. 3b–e). The total contact area was found
to increase due to rearrangement of the interacting residues when
the complex is mechanically stressed, as shown in Fig. 3e and
Supplementary Movie 2. Doc residues in the simulated binding
interface clamped down on Coh residues upon mechanical
loading, resulting in increased stability and decreased accessibility
of water into the hydrophobic core of the bound complex
(Fig. 3b). These results suggest that a catch bond mechanism is
responsible for the remarkable stability33 under force and provide
a molecular mechanism which the XMod–Doc:Coh complex uses
to summon mechanical strength when needed, while still allowing
relatively fast assembly and disassembly of the complex at
equilibrium. The residues that increase most in contact area
(Fig. 3c,d) present promising candidates for future mutagenesis
studies.

Among the 223 Doc sequences from R. flavefaciens, six
subfamilies have been explicitly identified using bioinformatics
approaches8. The XMod–Doc investigated here belongs to the
40-member Doc family 4a. A conserved feature of these Doc
modules is the presence of three sequence inserts that interrupt
the conserved duplicated F-hand motif Doc structure. In our
system, these Doc sequence inserts make direct contacts with
XMod in the crystallized complex (Fig. 1) and suggest an
interaction between XMod and Doc that could potentially
propagate to the Doc:Coh binding interface. To test this, an
independent simulation was performed to unfold XMod (Fig. 4).
The harmonic restraint was moved to the C-terminus of XMod so
that force was applied from the N- to C-terminus of XMod only,
while leaving Doc and Coh unrestrained. The results (Fig. 4b)
showed XMod unfolded at forces slightly higher than but similar
to the XMod–Doc:Coh complex rupture force determined from
the standard simulation at the same pulling speed. This suggested
XMod unfolding before Doc:Coh rupture was not probable, but
could be observed on occasion due to the stochastic nature of
domain unfolding. This was consistent with experiments where
XMod unfolding was observed in B35–40% of traces.
Furthermore, analysis of the H-bonding between Doc and
XMod (Fig. 4d, red) indicated loss of contact as XMod
unfolded, dominated by contact loss between the three Doc
insert sequences and XMod. Interestingly, XMod unfolding
clearly led to a decrease in H-bonding between Doc and Coh at
a later stage (B200 ns) well after XMod had lost most of its
contact with Doc, even though no force was being applied across
the Doc:Coh binding interface. This provided evidence for
direct stabilization of the Doc:Coh binding interface by XMod.
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As shown in Fig. 4e, the root mean squared deviation (RMSD) of
Doc increased throughout the simulation as XMod unfolded. Coh
RMSD remained stable until it started to lose H-bonds with Doc.
Taken together this suggests that, as XMod unfolded, Coh
and Doc became more mobile and lost interaction strength,
potentially explaining the increase in Dx from 0.13 to 0.19 nm on
unfolding of XMod in the experimental data sets. Apparently the
XMod is able to directly stabilize the Doc:Coh interface,
presumably through contact with Doc insert sequences that
then propagate this stabilizing effect to the Doc:Coh binding
interface.

In summary, we investigated an ultrastable XMod-Doc:Coh
complex involved in bacterial adhesion to cellulose. While
previously the role of XMod functioning in tandem XMod-Doc
dyads was unclear12,14, we show that XMod serves as a mecha-
nical stabilizer and force-shielding effector subdomain in the
ultrastable ligand–receptor complex. The Doc:Coh complex
presented here exhibits one of the most mechanically robust
protein–protein interactions reported thus far, and points
towards new mechanically stable artificial multi-component
biocatalysts for industrial applications, including production of
second-generation biofuels.

Methods
Site-directed mutagenesis. Site-directed mutagenesis of R. flavefaciens strain
FD1 chimeric cellulosomal proteins. A pET28a vector containing the previously
cloned R. flavefaciens CohE from ScaE fused to cellulose-binding module 3a
(CBM3a) from C. thermocellum, and a pET28a vector containing the previously
cloned R. flavefaciens XMod-Doc from the CttA scaffoldin fused to the XynT6
xylanase from Geobacillus stearothermophilus12 were subjected to QuikChange
mutagenesis34 to install the following mutations: A2C in the CBM and T129C in
the xylanase, respectively.

For the construction of the native configuration of the CohE-CBM A2C fusion
protein Gibson assembly35 was used. For further analysis CohE-CBM A2C was
modified with a QuikChange PCR36 to replace the two cysteins (C2 and C63) in the
protein with alanine and serine (C2A and C63S). All mutagenesis products were
confirmed by DNA sequencing analysis.

The XynT6-XDoc T129C was constructed using the following primers:
50-acaaggaaggtaagccaatggttaatgaatgcgatccagtgaaacgtgaac-30
50-gttcacgtttcactggatcgcattcattaaccattggcttaccttccttgt-30

The CBM-CohE A2C was constructed using the following primers:
50-ttaactttaagaaggagatataccatgtgcaatacaccggtatcaggcaatttgaag-30
50-cttcaaattgcctgataccggtgtattgcacatggtatatctccttcttaaagttaa-30

The CohE-CBM C2A C63S was constructed using the following phosphorylated
primers:

50-ccgaatgccatggccaatacaccgg-30
50-cagaccttctggagtgaccatgctgc-30

Expression and purification of Xyn-XMod-Doc. The T129C Xyn-XMod-Doc
protein was expressed in E. coli BL21 cells in kanamycin-containing media that also
contained 2 mM calcium chloride, overnight at 16 �C. After harvesting, cells were
lysed using sonication. The lysate was then pelleted, and the supernatant fluids
were applied to a Ni-NTA column and washed with tris-buffered saline (TBS)
buffer containing 20 mM imidazole and 2 mM calcium chloride. The bound protein
was eluted using TBS buffer containing 250 mM imidazole and 2 mM calcium
chloride. The solution was dialysed with TBS to remove the imidazole, and then
concentrated using an Amicon centrifugal filter device and stored in 50% (v/v)
glycerol at � 20 �C. The concentrations of the protein stock solutions were
determined to be B5 mg ml� 1 by absorption spectrophotometry.

Expression and purification of Coh-CBM. The Coh-CBM C2A, C63S fusion
protein was expressed in E. coli BL21(DE3) RIPL in kanamycin and chlor-
amphenicol containing ZYM-5052 media37 overnight at 22 �C. After harvesting,
cells were lysed using sonication. The lysate was then pelleted, and the supernatant
fluids were applied to a Ni-NTA column and washed with TBS buffer. The bound
protein was eluted using TBS buffer containing 200 mM imidazole. Imidazole was
removed with a polyacrylamide gravity flow column. The protein solution was
concentrated with an Amicon centrifugal filter device and stored in 50% (v/v)
glycerol at � 80 �C. The concentrations of the protein stock solutions were
determined to be B5 mg ml� 1 by absorption spectrophotometry.

Sample preparation. In sample preparation and single-molecule measurements
calcium supplemented TBS buffer (Ca-TBS) was used (25 mM TRIS, 72 mM NaCl,
1 mM CaCl2, pH 7.2). Cantilevers and cover glasses were functionalized according
to previously published protocols18,38. In brief, cantilevers and cover glasses were
cleaned by UV-ozone treatment and piranha solution, respectively. Levers and
glasses were silanized using (3-aminopropyl)-dimethyl-ethoxysilane (APDMES) to
introduce surface amine groups. Amine groups on the cantilevers and cover glasses
were subsequently conjugated to a 5 kDa NHS-PEG-Mal linker in sodium borate
buffer. Disulfide-linked dimers of the Xyn-XMod-Doc proteins were reduced for
2 h at room temperature using a TCEP disulfide reducing bead slurry. The protein/
bead mixture was rinsed with Ca-TBS measurement buffer, centrifuged at 850 r.c.f.
for 3 min, and the supernatant was collected with a micropipette. Reduced proteins
were diluted with measurement buffer (1:3 (v/v) for cantilevers, and 1:1 (v/v) for
cover glasses), and applied to PEGylated cantilevers and cover glasses for 1 h. Both
cantilevers and cover glasses were then rinsed with Ca-TBS to remove unbound
proteins and stored under Ca-TBS before force spectroscopy measurements.
Site-specific immobilization of the Coh-CBM-ybbR fusion proteins to previously
PEGylated cantilevers or coverglasses was carried out according to previously
published protocols39. In brief, PEGylated cantilevers or coverglasses were
incubated with Coenzyme A (CoA) (20 mM) stored in coupling buffer (50 mM
sodium phosphate, 50 mM NaCl, 10 mM EDTA, pH 7.2) for 1 h at room
temperature. Levers or surfaces were then rinsed with Ca-TBS to remove unbound
CoA. Coh-CBM-ybbR fusion proteins were then covalently linked to the CoA
surfaces or levers by incubating with Sfp phosphopantetheinyl transferase for 2 h at
room 37�. Finally, surfaces or levers were subjected to a final rinse with
Ca-TBS and stored under Ca-TBS before measurement.

Single-molecule force spectroscopy measurements. SMFS measurements were
performed on a custom built AFM40 controlled by an MFP-3D controller from
Asylum Research running custom written Igor Pro (Wavemetrics) software.
Cantilever spring constants were calibrated using the thermal noise/equipartition
method41. The cantilever was brought into contact with the surface and withdrawn
at constant speed ranging from 0.2 to 6.4 mm s� 1. An x-y stage was actuated after
each force-extension trace to expose the molecules on the cantilever to a new
molecule at a different surface location with each trace. Typically 20,000–50,000
force-extension curves were obtained with a single cantilever in an experimental
run of 18–24 h. A low molecular density on the surface was used to avoid
formation of multiple bonds. While the raw data sets contained a majority of
unusable curves due to lack of interactions or nonspecific adhesion of molecules to
the cantilever tip, select curves showed single-molecule interactions. We filtered the
data using a combination of automated data processing and manual classification
by searching for contour length increments that matched the lengths of our specific
protein fingerprint domains: Xyn (B89 nm) and CBM (B56 nm). After identifying
these specific traces, we measured the loading rate dependency of the final Doc:Coh
ruptures based on bond history.

Data analysis. Data were analysed using previously published protocols17,18,22.
Force extension traces were transformed into contour length space using the
QM-FRC model with bonds of length b¼ 0.11 nm connected by a fixed angle
g¼ 41� and and assembled into barrier position histograms using cross-correlation.
Detailed description of the contour length transformation can be found in
Supplementary Note 1 and Supplementary Fig. 1.

For the loading rate analysis, the loading rate at the point of rupture was
extracted by applying a line fit to the force vs time trace in the immediate vicinity
before the rupture peak. The loading rate was determined from the slope of the fit.
The most probable rupture forces and loading rates were determined by applying
Gaussian fits to histograms of rupture forces and loading rates at each pulling
speed.

Molecular dynamics simulations. The structure of the XMod-Doc:Coh complex
had been solved by means of X-ray crystallography at 1.97 Å resolution and is
available at the protein data bank (PDB:4IU3). A protonation analysis performed
in VMD42 did not suggest any extra protonation and all the amino-acid residues
were simulated with standard protonation states. The system was then solvated,
keeping also the water molecules present in the crystal structure, and the net charge
of the protein and the calcium ions was neutralized using sodium atoms as counter
ions, which were randomly arranged in the solvent. Two other systems, based on
the aforementioned one, were created using a similar salt concentration to the one
used in the experiments (75 mM of NaCl). This additional salt caused little or no
change in SMD results. The overall number of atoms included in MD simulations
varied from 300,000 in the majority of the simulations to 580,000 for the unfolding
of the X-Mod.

The MD simulations in the present study were performed employing the
NAMD molecular dynamics package43,44. The CHARMM36 force field45,46 along
with the TIP3 water model47 was used to describe all systems. The simulations were
done assuming periodic boundary conditions in the NpT ensemble with
temperature maintained at 300 K using Langevin dynamics for pressure, kept at
1 bar, and temperature coupling. A distance cut-off of 11.0 Å was applied to short-
range, non-bonded interactions, whereas long-range electrostatic interactions were
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treated using the particle-mesh Ewald (PME)48 method. The equations of motion
were integrated using the r-RESPA multiple time step scheme44 to update the van
der Waals interactions every two steps and electrostatic interactions every four
steps. The time step of integration was chosen to be 2 fs for all simulations
performed. Before the MD simulations all the systems were submitted to an
energy minimization protocol for 1,000 steps. The first two nanoseconds of the
simulations served to equilibrate systems before the production runs that varied
from 40 to 450 ns in the 10 different simulations that were carried out. The
equilibration step consisted of 500 ps of simulation where the protein backbone was
restrained and 1.5 ns where the system was completely free and no restriction or
force was applied. During the equilibration the initial temperature was set to zero
and was constantly increased by 1 K every 100 MD steps until the desired
temperature (300 K) was reached.

To characterize the coupling between Doc and Coh, we performed SMD
simulations49 of constant velocity stretching (SMD-CV protocol) employing three
different pulling speeds: 1.25, 0.625 and 0.25 Å ns� 1. In all simulations, SMD was
employed by restraining the position of one end of the XMod-Doc domain
harmonically (center of mass of ASN5), and moving a second restraint point, at the
end of the Coh domain (center of mass of GLY210), with constant velocity in the
desired direction. The procedure is equivalent to attaching one end of a harmonic
spring to the end of a domain and pulling on the other end of the spring. The force
applied to the harmonic spring is then monitored during the time of the molecular
dynamics simulation. The pulling point was moved with constant velocity along
the z-axis and due to the single anchoring point and the single pulling point the
system is quickly aligned along the z-axis. Owing to the flexibility of the linkers,
this approach reproduces the experimental set-up. All analyses of MD trajectories
were carried out employing VMD42 and its plug-ins. Secondary structures were
assigned using the Timeline plug-in, which employs STRIDE criteria50. Hydrogen
bonds were assigned based on two geometric criteria for every trajectory frame
saved: first, distances between acceptor and hydrogen should be o3.5 Å; second,
the angle between hydrogen-donor-acceptor should be o30�. Surface contact areas
of interacting residues were calculated employing Volarea51 implemented in VMD.
The area is calculated using a probe radius defined as an in silico rolling spherical
probe that is screened around the area of Doc exposed to Coh and also Coh area
exposed to Doc.
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Supplementary Figures
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Supplementary Fig. 1: Assembly of contour length histograms. a Force-extension traces are trans-
formed into contour length space using a QM-corrected FRC model with parameters γ = 41◦, and
b = 0.11 nm. b In force-contour length space, force and contour length thresholds are applied and the
data are histogrammed with a bin width of 1 nm to obtain the histogram in c. To obtain a master
histogram, individual histograms reflecting a specific unfolding pathway are cross-correlated and aligned
by offsetting by the maximum correlation value.
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Supplementary Fig. 2: Complex rupture force histograms for pulling speeds ranging from 100 nm s−1

to 6400 nm s−1. Pulling speeds are indicated next to the histograms. Only traces with an intact XMod
were taken into account (no XMod unfolding observed, corresponding to Fig. 2, trace 1). At the slowest
pulling speed data suggest the presence of a lower rupture force population.
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Supplementary Fig. 3: Dynamic force spectrum for XMod unfolding obtained from 654 force-extension
traces. The gray points show single XMod unfolding events. Black circles represent the most probable
rupture forces and loading rates obtained by Gaussian fitting at each pulling speed. Error bars are
±1 standard deviation. The dashed line is a least squares fit to the Bell-Evans model that yielded
∆x = 0.15 nm and koff = 2.6× 10−6 s−1.
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Supplementary Fig. 4: Force distance trace obtained by SMD at a pulling speed of 0.25 Å ns−1. Force
values at each time step are shown in gray, with average force calculated every 200 ps in black. The inset
is a snapshot of the XMod-Doc:Coh complex immediately prior to rupture. XMod is shown in yellow,
Doc in red and Coh in blue.
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Supplementary Fig. 6: Hydrogen bond contacts between XMod-Doc (yellow and red surface, respec-
tively) and Coh (blue surface). The residues that have hydrogen bonds lasting for more than 10% of the
simulation time are represented in a glossy surface. In the bottom of the figure the five most prevalent
hydrogen bond interactions are presented. The letter S or B indicate if the respective interaction is made
by the amino acid side chain or backbone.
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Supplementary Tables

Module Xylanase CBM X-module Cohesin Dockerin
No. amino acids, NA 260 (378) 159 117 205 119
Folded length, LF [nm] 6 2 7 2 2
Expected increment, ∆LE [nm] 89 56 36 72 42
Observed increment, [nm] 90± 4 55± 3 34± 2 − −

Supplementary Table 1: Domain assignment of observed contour length increments. The expected
contour length increment (∆LE) for each protein domain was calculated according to ∆LE = NA ·
0.365 nm− LF , where LF is the folded length, NA is the number of amino acids, and 0.365 nm2 is the
length per stretched amino acid. LF was measured for Xyn, CBM, and XDoc:Coh from PDB structures
1R85, 1NBC, and 4IU3, respectively. For the Xyn domain, only amino acids located C-terminal of the
C129 mutation which served as attachment point are considered. Errors for the observed increments
were determined from Gaussian fits to the combined contour length histogram shown in Fig. 2b.
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Supplementary Notes
Supplementary Note 1: QM-FRC Model for Polymer Elasticity
The freely rotating chain model3 considers bonds of length b, connected by a fixed angle γ. The
torsional angles are not restricted. The stretching behavior in the FRC picture is given by

x

L
=





Fa
3kBT for Fb

kBT
< b

p

1−
(

4Fp
kBT

)− 1
2 for b

p <
Fb
kBT

< p
b

1−
(
cFb
kBT

)−1
for p

b <
Fb
kBT

(1)

where a = b 1+cos γ
(1−cos γ) cos γ2

is the Kuhn length, and p = b
cos γ2

| ln(cos γ)| is the effective persistence length
in the FRC picture.

To account for backbone elasticity of the polypeptide chain at high force, quantum mechanical
ab-initio calculations can be used to obtain the unloaded contour length at zero force. A polynomial
approximation to these calculations can be used to obtain the unloaded contour length at zero force
L0:

F = γ1

(
L

L0
− 1

)
+ γ2

(
L

L0
− 1

)2
(2)

where the γ1 = 27.4 nN, and γ2 = 109.8 nN are the elastic coefficients reported for polypeptides4.

Supplementary Note 2: Bell-Evans Model for Mechanically Induced Receptor Ligand
Dissociation
The Bell-Evans model was used to estimate the distance to the transition state (∆x) and the natural
off-rate (koff ) of individual rupture events:

〈F 〉 = kBT

∆x ln ∆x · Ḟ
koffkBT

(3)

where kB is Boltzmann’s constant, T is the temperature and Ḟ is the loading rate at the point of
rupture.
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Supplementary Methods
Materials
Silicon nitride cantilevers (Biolever mini, BL-AC40TS-C2, Olympus Corporation) with a nominal
spring constant of 100 pN/nm (25 kHz resonance frequency in water) were used. Circular coverglasses,
2.4 cm in diameter, were obtained from Menzel Gläser (Braunschweig, Germany). 3-Aminopropyl
dimethyl ethoxysilane (APDMES) was purchased from ABCR GmbH (Karlsruhe, Germany). NHS-
PEG-Maleimide (5 kDa) was purchased from Rapp Polymer (Tübingen, Germany). Immobilized
TCEP Disulfide Reducing Gel was obtained from Thermo Scientific (Pittsburgh, PA). The following
standard chemicals were obtained from Carl Roth (Karlsruhe, Germany) and used as received:
tris(hydroxymethyl)aminomethane (TRIS, >99% p.a.), CaCl2 (>99% p.a.), sodium borate (>99.8%
p.a), NaCl (>99.5% p.a.), ethanol (>99% p.a.), and toluene (>99.5% p.a.). Borate buffer was 150
mM, pH 8.5. The measurement buffer for force spectroscopy was Tris-buffered saline (TBS, 25 mM
TRIS, 75 mM NaCl, pH 7.2) supplemented with CaCl2 to a final concentration of 1 mM. All buffers
were filtered through a sterile 0.2µm polyethersulfone membrane filter (Nalgene, Rochester, NY,
USA) prior to use.

Protein Sequences
Sequences of protein constructs used in this work are listed here. Domains as well as engineered
tags and residues are color-coded.

Xyn-XModDoc

Xylanase T129C
Linker or extra residues
X-module
Dockerin type III

M S H H H H H H K N A D S Y A K K P H I S A L N A P Q L D Q R Y K N E F T I G A
A V E P Y Q L Q N E K D V Q M L K R H F N S I V A E N V M K P I S I Q P E E G K
F N F E Q A D R I V K F A K A N G M D I R F H T L V W H S Q V P Q W F F L D K E
G K P M V N E C D P V K R E Q N K Q L L L K R L E T H I K T I V E R Y K D D I K
Y W D V V N E V V G D D G K L R N S P W Y Q I A G I D Y I K V A F Q A A R K Y G
G D N I K L Y M N D Y N T E V E P K R T A L Y N L V K Q L K E E G V P I D G I G
H Q S H I Q I G W P S E A E I E K T I N M F A A L G L D N Q I T E L D V S M Y G
W P P R A Y P T Y D A I P K Q K F L D Q A A R Y D R L F K L Y E K L S D K I S N
V T F W G I A D N H T W L D S R A D V Y Y D A N G N V V V D P N A P Y A K V E K
G K G K D A P F V F G P D Y K V K P A Y W A I I D H K V V P N T V T S A V K T Q
Y V E I E S V D G F Y F N T E D K F D T A Q I K K A V L H T V Y N E G Y T G D D
G V A V V L R E Y E S E P V D I T A E L T F G D A T P A N T Y K A V E N K F D Y
E I P V Y Y N N A T L K D A E G N D A T V T V Y I G L K G D T D L N N I V D G R
D A T A T L T Y Y A A T S T D G K D A T T V A L S P S T L V G G N P E S V Y D D
F S A F L S D V K V D A G K E L T R F A K K A E R L I D G R D A S S I L T F Y T
K S S V D Q Y K D M A A N E P N K L W D I V T G D A E E E
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Coh-CBM C2A, C63S

CBM (C2A, C63S)
Linker or extra residues
CohIII
ybbR-Tag

M G T A L T D R G M T Y D L D P K D G S S A A T K P V L E V T K K V F D T A A D
A A G Q T V T V E F K V S G A E G K Y A T T G Y H I Y W D E R L E V V A T K T G
A Y A K K G A A L E D S S L A K A E N N G N G V F V A S G A D D D F G A D G V M
W T V E L K V P A D A K A G D V Y P I D V A Y Q W D P S K G D L F T D N K D S A
Q G K L M Q A Y F F T Q G I K S S S N P S T D E Y L V K A N A T Y A D G Y I A I
K A G E P G S V V P S T Q P V T T P P A T T K P P A T T I P P S D D P N A M A N
T P V S G N L K V E F Y N S N P S D T T N S I N P Q F K V T N T G S S A I D L S
K L T L R Y Y Y T V D G Q K D Q T F W S D H A A I I G S N G S Y N G I T S N V K
G T F V K M S S S T N N A D T Y L E I S F T G G T L E P G A H V Q I Q G R F A K
N D W S N Y T Q S N D Y S F K S A S Q F V E W D Q V T A Y L N G V L V W G K E P
G E L K L P R S R H H H H H H G S L E V L F Q G P D S L E F I A S K L A
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ABSTRACT: Here we employ single-molecule force spec-
troscopy with an atomic force microscope (AFM) and steered
molecular dynamics (SMD) simulations to reveal force
propagation pathways through a mechanically ultrastable
multidomain cellulosome protein complex. We demonstrate
a new combination of network-based correlation analysis
supported by AFM directional pulling experiments, which
allowed us to visualize stiff paths through the protein complex
along which force is transmitted. The results implicate specific
force-propagation routes nonparallel to the pulling axis that are
advantageous for achieving high dissociation forces.

KEYWORDS: Force propagation, single molecule force spectroscopy, steered molecular dynamics, network analysis, cohesin−dockerin

Mechanical forces play a fundamental role in biological
systems. Cells are able to sense and respond to

mechanical cues in their environment by, for example,
modulating gene expression patterns,1 reshaping the extrac-
ellular matrix,2 or exhibiting differential biochemical activities.3

At the molecular level, these behaviors are governed by
mechanically active proteins. Such proteins are able to sense
and respond to force by undergoing conformational changes,4

exposing cryptic binding sequences,5 acting synergistically with
ion channels,6 or modulating their function in a variety of
ways.7−9

Experimental methods including AFM single-molecule force
spectroscopy (SMFS) allow direct measurement of molecular
mechanical properties. These studies have demonstrated the
importance of the shear topology involving parallel breakage of
hydrogen bonds in providing mechanical stability to protein
folds.10,11 Many globular domains and protein complexes also
exhibit a directional dependence in unfolding mechanics,
consisting of stiff and soft axes.12−18 Pulling geometry can be
defined by controlling the positions of the chemical linkages
between protein monomer units through a variety of
bioconjugate techniques.
Primary sequences of mechanically active proteins are

extremely diverse, essentially rendering them undetectable by
conventional bioinformatics approaches. Yet, another computa-
tional approach, namely, molecular dynamics (MD), allows

sampling of structural conformations of large and frequently
mechanostable protein complexes.19,20 Analysis of these
conformations from MD trajectories have recently led to the
development of network-based correlation methods for
investigating signal transmission and allosteric regulation in
proteins.21−23 In network models, local correlations of
positional fluctuations in a protein are represented as a web
of inter-residue connections. Within such a network, the
behavior of nodes that are highly correlated and within close
physical proximity can be analyzed to obtain the shortest path
between two network nodes (i.e., amino acids). This analysis
helps to identify which connecting residues are most important
for intramolecular communication.23−25 Examination of multi-
ple pathways, also known as suboptimal paths, within an
acceptable deviation from the optimal path helps to detect the
web of nodes critical for transmission of information.
Among MD methods, steered molecular dynamics (SMD)

simulations in which external forces are used to explore the
response and function of proteins have become a powerful tool
especially when combined with SMFS.6 SMD has been
successfully employed in a wide range of biological systems,
from the investigation of protein mechanotransduction,5,26 to
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permeability of membrane channels,27,28 and the character-
ization of protein−receptor interactions.29 SMD simulations
have also been used to study force propagation through
proteins by employing force distribution analysis (FDA).30,31 In
FDA, all pairwise forces, which are usually calculated in MD
simulations, are stored in N × N matrices, where N is the
number of atoms.32 These pairwise forces can then be used to
assess a protein’s response to a mechanical or allosteric signal.33

In the FDA approach, atoms under mechanical strain are
identified by subtracting forces of both loaded and unloaded
states for each pair of interacting atoms.31 However, to achieve
a sufficient signal-to-noise ratio, FDA will often require
exhaustive sampling of the conformational space.32,34 FDA,
therefore, requires more computational resources than usual
SMD studies, which are frequently already computationally
demanding. There is therefore a clear need for new analysis
methods that enable visualization of force propagation
pathways from a single SMD trajectory.
Here we implemented a novel combination of SMD,

network-based correlation analysis, and thermodynamic fluctu-
ation theory, supported by AFM-SMFS experiments to study
force propagation through a protein complex subjected to
different pulling geometries. We chose an ultrastable receptor−
ligand interaction as a model system because of its remarkably

high mechanical stability,29 which effectively improves the
signal-to-noise ratio. This complex consists of two interacting
protein domains called cohesin (Coh) and dockerin (Doc) that
maintain bacterial adhesion of Ruminococcus f lavefaciens to
cellulosic substrates. Doc is found within the same polypeptide
chain as a stabilizing ancillary domain called X-module
(XMod), located N-terminally of Doc. Based on its position
with the R. f lavefaciens cellulosomal network, Coh is
mechanically anchored in vivo at its C-terminal end to the
cell surface. Our prior work demonstrated that, when force is
applied to the complex in the native configuration (i.e., C-
terminal Coh, N-terminal XMod-Doc anchor points), the
complex is extremely stable, exhibiting high rupture forces of
600−750 pN at loading rates from 1−100 nN s−1.29 Since the
bulk equilibrium affinity of the complex is an unremarkable 20
nM,35 we hypothesized that the high mechanostability is
explained by a catch bond mechanism. AFM rupture force data
and SMD simulations supported this prediction, where it was
observed that the contact surface area of the two proteins
increased as mechanical force was applied.
To characterize the mechanisms behind Coh:Doc high

stability, here we additionally pulled the complex apart in a
non-native configuration (i.e., N-terminal Coh, N-terminal
XMod-Doc anchor points). In the non-native pulling

Figure 1. Single molecule force spectroscopy and steered molecular dynamics of XMod-Doc:Coh in two pulling configurations. (A) Crystal structure
of the XMod-Doc:Coh complex (PDB 4IU3) with orange spheres marking the termini where force was applied. (B) Experimental unfolding trace for
the native pulling configuration at a pulling speed of 1600 nm s−1. The inset shows a schematic of the pulling geometry. Unfolding signatures of the
Xyn and CBM marker domains are marked in orange and green, respectively. (C) Experimental unfolding trace for the non-native high force class
obtained at a pulling speed of 700 nm s−1. (D) Experimental unfolding trace for the non-native low force class obtained at a pulling speed of 700 nm
s−1. The additional 17−19 nm contour length increment attributed to N-terminal Coh unfolding is shown in red. (E) Dynamic force spectrum for
XMod-Doc:Coh unbinding in the native geometry obtained from experiment and simulations. Gray points and squares represent the rupture force/
loading rate pairs obtained from experiment and simulation, respectively. Black circles represent the most probable rupture force/loading rate
obtained from Gaussian fits to the experimental data at six pulling speeds. The black square shows the mean rupture force and loading rate for the
simulated rupture events. (F) Rupture force histograms obtained at a pulling speed of 800 nm s−1 for the native (gray, n = 46) and non-native high
force class (red, n = 48). Fitted probability densities p(F) are shown as solid black and red lines. Data for both pulling configurations were obtained
with the same cantilever to minimize calibration errors. (G) Dynamic force spectrum for XMod-Doc:Coh unbinding in the non-native low force class
obtained from experiments and simulation. The same representation as in (E) is used. (H,I,J) Unloaded and loaded surface contact areas for the
different pulling geometries ((H) native, (I) non-native high force class, and (J) non-native low force class).
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configuration, we found that the complex dissociated along two
competing pathways with very different mechanical character-
istics.
Our new dynamic network analysis protocol reveals how

different mechanical behaviors are attributable to differences in
the direction of force transmission across the binding interface.
Together, the experiments and simulations depict a simple
physical mechanism for achieving high complex rupture forces:
the complex directs force along pathways orthogonal to the
pulling axis.
Single-Molecule Pulling Experiments and SMD. For

SMFS experiments, XMod-Doc was produced as a fusion
protein with an N-terminal Xylanase (Xyn) domain. Coh was
produced as either an N- or C-terminal fusion domain with a
carbohydrate binding module (CBM). These fusion domains
were used for site specific immobilization to a glass surface and
AFM cantilever to achieve the two loading configurations
shown in Figure 1A and further served as marker domains with
known unfolding length increments to validate single-molecule
interactions and sort SMFS data traces.36

For the native pulling configuration found in vivo, Coh-CBM
and XMod-Doc are loaded from their C- and N-termini,
respectively (Figure 1A). A representative unbinding trace for
the native pulling configuration is shown in Figure 1B. We
measured the loading rate dependence of complex rupture
using both experimental and SMD data sets (unbinding trace
from SMD shown in Figure 3A) and plotted them on a
combined dynamic force spectrum (Figure 1E). The linear Bell
model produced fit parameters for the effective distance to the
transition state Δx = 0.13 nm, and the zero-force off rate kof f =
4.7 × 10−4 s−1. Both experimental and simulation data are well
described by a single Bell expression, despite the differences in
loading rates between experiments and simulation. The
observation suggests that the application of force does not
significantly change Δx for this particular configuration.
To test the influence of pulling geometry on mechanical

stability, we performed SMFS and SMD on the system where
Coh was pulled from the opposite terminus (i.e., non-native N-
terminus, cf. Figure 1A). Unlike the native pulling geometry,
this geometry exhibited two clearly distinct unbinding pathways
that are characterized by different force ranges (high or low) at
which the complex dissociated. We refer to these pathways as
non-native high force (HF) (Figure 1C) and non-native low
force (LF) (Figure 1D).
AFM data traces classified as non-native HF showed similar

characteristics as those in the native pulling configuration (cf.
Figure 1B,C,F). The non-native LF traces, however, exhibited a
markedly different unfolding behavior (Figure 1D). Xyn
unfolding (highlighted in orange) was regularly observed, but
CBM unfolding was only very rarely observed. The complex
usually did not withstand forces high enough to unfold CBM
when rupturing along the non-native LF path. Among non-
native LF curves, we regularly found an additional contour
length increment of 17−19 nm consistent with unfolding of
∼60 amino acids located at the N-terminus of Coh. This
unfolding occurred immediately following Xyn unfolding
(Figure 1D, red), or alternatively prior to Xyn unfolding, or
with a substep (Supplementary Figure S1). Taken together, it
appears that partial Coh unfolding from the N-terminus
destabilizes the complex, causing lower rupture forces (Figure
1G).
The experimental rupture forces from the non-native HF

class were indistinguishable from those arising in the native

configuration. To confirm this, we performed additional
measurements where both Coh configurations were alternately
probed with the same Xyn-XMod-Doc functionalized cantilever
(Supplementary Figure S2), eliminating inaccuracies intro-
duced through multiple cantilever calibration. Most probable
rupture forces at a pulling speed of 800 nm s−1 of 606 and 597
pN for the native configuration and non-native HF class,
respectively, were determined in the Bell Evans model (Figure
1F, Supplementary eq S2), demonstrating that the native and
non-native HF classes are experimentally indistinguishable.
For the LF class, we analyzed the final complex rupture event

and plotted the combined dynamic force spectrum (Figure
1G). Here, simulated and experimentally observed data were
not well described by a single Bell expression. In such cases
nonlinear models have been developed to obtain kinetic and
energetic information from dynamic force spectra.37,38 To fit
the combined data, we used the nonlinear Dudko−Hummer−
Szabo (DHS) model (Supplementary eq S3) and obtained
values of Δx = 0.42 nm and kof f = 0.005 s−1. The DHS model
further provides the free energy difference ΔG between the
bound state and the transition state as a fit parameter, which
was found to be ΔG = 129 kBT. The model fit produced a
distance to transition that was much longer than observed for
the native configuration. Independent SMD simulations for the
non-native pulling configuration were found to also lead to HF
and LF unbinding scenarios (see below, Figure 4A,D,
respectively).
The differential solvent contact area was calculated from

SMD simulations to estimate the intermolecular contact area in
the Doc:Coh complex. In the native configuration, the
simulated Doc:Coh contact area increased by 14% and 9%
for Coh and Doc, respectively (Figure 1H). For the non-native
HF class, the contact area increased by 11% and 12% for Coh
and Doc, respectively (Figure 1I). In the non-native LF class,
the contact area increased by only 7% for Coh and decreased by
3% for Doc (Figure 1J). Evidently, an increased surface contact
area for Doc in the native and non-native HF pathways
correlated with high mechanostability of the system.

Force Propagation Theory: A Simple Model. To further
understand the observed unbinding pathways, we sought to
identify paths through the molecule along which the externally
applied load propagates. From thermodynamic fluctuation
theory,39,40 it is known that the correlation of fluctuations of
atoms i and j and the force Fi on atom i are related through

⟨Δ Δ ⟩ = ∂
∂k Tr r

r

Fi j
T j

i
B

(1)

where Δri = ri(t) − ⟨ri(t)⟩ and ri is the position of atom i. The
derivative on the right-hand side of eq 1 states that neighboring
atoms i and j will move with high correlation due to an external
force Fi acting on atom i if the coupling between them is strong.
Hence, a given element of a correlation matrix Mij = ⟨ΔriΔrjT⟩
will be large in the case of a strong interaction potential
between i and j. When force is propagated through a molecule,
soft degrees of freedom will be stretched out along the path of
force propagation, while stiff degrees become more important
for the dynamics of the system.
Consequently, paths with high correlation of motion describe

the paths along which force propagates through the system. To
illustrate this behavior for a toy system, we employed the
NAMD41 SMD42 constant velocity protocol to a test pattern of
identical spheres connected with harmonic springs of different
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stiffness (Figure 2A). The position of one sphere was fixed
during the simulation, while another sphere on the opposite

side of the structure was withdrawn at constant velocity. The
strained structure at the end of the simulation is shown in
Figure 2B. We assigned weights to the lines between spheres
according to the Pearson correlation coefficient Cij (Supple-
mentary eq S4) between those network nodes (Figure 2C).
The Pearson correlation coefficient differs from the left-hand
side of eq 1 by a normalization factor ⟨Δ ⟩⟨Δ ⟩ −t tr r( ( ) ( ) )i j

2 2 1/2

and was chosen to make our analysis mathematically more
tractable. For a detailed discussion on this choice of correlation
measure, see Supporting Information. In a harmonic potential
approximation, the equipartition theorem can be applied to this
normalization factor resulting in the following expression for
Cij:

= ∂
∂C k k

r

Fij
j

i
i j,eff ,eff

(2)

where = + +
−⎛

⎝⎜
⎞
⎠⎟ki k k k,eff

1 1 1
1

xi yi zi
and kxi is the curvature of the

potential on atom i in the x direction. For a full derivation, see
Supporting Information. Equation 2 illustrates how Pearson
correlation is a suitable measure to identify the stiff paths in our
simple model. We then used dynamical network analysis
implemented in VMD49 to find the path of highest correlation
(Figure 2D). As expected from eq 1, we found this path to be
the one connected by the stiff springs.
Force Propagation through XMod-Doc:Coh Complex.

The simple pattern of spheres validated our general approach of
using local correlations to identify load-bearing pathways
through networks. We next employed dynamical network

analysis to understand force propagation through the XMod-
Doc:Coh complex.
The dynamic networks for the native configuration

(unloaded and loaded) are shown in Figure 3B,C, respectively.
While the network shows multiple suboptimal paths in the
unloaded scenario, the loaded case exhibits a well-defined main
path along which force propagates through the system.
Interestingly, in the loaded configuration, force propagates
through both binding helices of Doc, which results in a force
path with large normal components to the unbinding axis close
to the binding interface as illustrated in Figure 3D. It had been
shown for another ultrastable protein, namely, silk crystalline
units, that curving force paths distribute tension through the
entire system.31 A strategy that assumes an indirect path would
therefore allow the system to have more time to absorb the
tension from the applied force. The result here supports the
view that directing the force along a path with significant
perpendicular components to the pulling axis leads to high
mechanical stability. In a simple mechanical picture, a certain
amount of mechanical work, namely dW = F·ds, is required to
separate the two binding interfaces by a distance Δz and break
the interaction. In this simplified picture, ds points along the
unbinding axis, whereas the force F is locally largely
perpendicular to this direction. Consequently, a larger force is
required to break the interaction than in a scenario where the
force path would point along the unbinding axis.
To validate this picture, we repeated the same analysis for the

non-native HF and non-native LF pathways. The HF
simulation (Figure 4A) exhibited only a small stretching of
the flexible N-terminal region of Coh and complex dissociation
at approximately 800 pN and a pulling distance around 10 nm.
However, the LF case shown in Figure 4D exhibited a stepwise
N-terminal Coh unfolding, dissociating at a force of about 480
pN at a pulling distance of about 25 nm. This behavior
confirmed our assignment of the experimentally observed 17−
19 nm contour length increment to Coh unfolding up to
residue 62 in PDB 4IU3.
While the experimental data did not show a detectable

difference between the native configuration and the non-native
HF class, the propagation of force takes place along a different
pathway (Figure 4B). For N-terminal Coh pulling, helix 3 of
Doc is not involved in the propagation of force as it is for the
native geometry. In the native configuration, force propagates
through the center of Coh, while for non-native HF the path is
shifted toward the side of the molecule. Despite these
differences, there is a common feature between the native
and non-native HF pathways. At the binding interface, the
pathway again shows pronounced components perpendicular to
the unbinding axis (cf. Figure 4C), suggesting that this feature
is indeed responsible for the exceptional mechanical strength
observed for these two unbinding pathways.
Figure 4E shows the force propagation pathway for the non-

native LF class prior to rupture. Due to the unfolding of the N-
terminal Coh segment, the propagation of force is shifted even
further away from the central portion of Coh than for the non-
native HF class. Interestingly, force is propagated through the
small helical segment of Coh (ALA167-GLN179), a portion of
the molecule that is not involved in force propagation for any of
the other analyzed trajectories. Unlike in the aforementioned
scenarios, there is no pronounced tendency for perpendicular
force components at the binding interface for the non-native LF
class. In fact, the force is propagated along a path largely parallel
to the pulling axis (cf. Figure 4F). In cases where force

Figure 2. Network analysis test simulation. (A) Simulated pattern of
atoms depicted by spheres. Connecting lines between atoms represent
harmonic springs with different stiffnesses (red, k; blue, 5k; yellow,
7.5k; black, 10k). The green atom was fixed (anchor), while a second
green atom was withdrawn at constant speed (arrow). Black and
yellow atoms and their adjacent springs were introduced to maintain
the general shape of the pattern. (B) Deformed sphere pattern at the
end of the simulation. (C) Edges between nodes are weighted by the
corresponding correlation matrix elements. (D) The path with highest
correlation of motion is shown in red.
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propagation occurs parallel to the pulling axis, as in Figure 4E,
low mechanical stability was observed.
The aforementioned force propagation architecture along

with the effect of increasing contact surface area upon
mechanical loading combine for elevated mechanostability of
the system.29 In cases where we observed an N-terminal Coh
unfolding of 62 amino acids in the non-native geometry, the
system was no longer able to summon this mechanism, causing
dissociation at much lower forces.
Previously, our groups have reported on a family of

mechanically stable protein ligand receptor complexes that
are key building blocks of cellulosomes,29,44−46 the multi-
enzyme complexes used by select anaerobic bacteria to digest
lignocellulose. However, the molecular origins of the stability of
these complexes remained largely unclear. An initial clue was
obtained when, in a previous work, we were able to show that
contact surface area of the two proteins increased as mechanical
force was applied.29 In a different study,47 coarse-grained MD
simulations showed much smaller rupture forces at similar
loading rates both for native and non-native pulling than we
report here. This disagreement is likely due to the inability of
the coarse-grained model to capture the rearrangement of
amino acid side chains observed here. As we demonstrated,
force propagation calculation from network-based correlation
analysis helped in investigating the dramatic effect on the

mechanical stability of the Doc:Coh interaction when different
pulling geometries are applied. Our methodological approach,
to the best of our knowledge, has never been applied even
though network analysis of SMD trajectories was performed
before to probe the mechanism of allosteric regulation in
imidazole glycerol phosphate synthase.48

In summary, for both unbinding cases where we observed
high mechanostability, we found that across the binding
interface, force propagated along paths with strong normal
components to the pulling direction. Such a behavior was not
observed for the non-native LF class, where, presumably due to
N-terminal Coh unfolding, the system was no longer able to
direct the force across the binding interface at high angles.
From these findings, we conclude that the ultrastable complex
formed by Coh and Doc achieves its remarkable mechano-
stability by actively directing an externally applied force toward
an unfavorable angle of attack at the binding interface,
consequently requiring more force to achieve a given amount
of separation along the pulling direction. Our results show that
this mechanically stable complex uses an architecture that
exploits simple geometrical and physical concepts from
Newtonian mechanics to achieve high stability against external
forces. The analytical framework derived here provides a basis
for developing a deeper understanding of the functioning of
various mechanoactive proteins that are crucial for physiolog-

Figure 3. Force propagation through XMod-Doc:Coh in the native pulling configuration. (A) Unbinding trace of XMod-Doc:Coh obtained from
SMD at a pulling speed of 0.25 Å ns−1. The full trajectory is shown in gray. The black line represents a moving average with a box size of 500 steps.
The highlighted red areas denote the windows where dynamic networks and contact areas were calculated. (B) Network paths for the unloaded
system. The thickness of the orange tube represents the number of suboptimal correlation paths passing between two nodes. (C) Network paths for
the loaded system. A detailed 2D representation of the pathway, highlighting the amino acids present in the pathway, is shown in Supplementary
Figure S5. (D) Schematic model of force propagation across the Coh:Doc binding interface. Force takes a path across the binding interface with
large components perpendicular to the unbinding axis.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.5b02727
Nano Lett. 2015, 15, 7370−7376

7374

70 Chapter 4. Biomechanics of the Cellulosome



ically relevant processes such as mechanotransduction, cellular
mechanosensing, and pathogenesis. Additionally, it could
provide a design platform for development of artificial
mechanoactive systems with applications as tissue engineering
scaffolds or components in engineered nanomaterials.
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Comput. Biol. 2009, 5, e1000306.

(31) Xiao, S.; Stacklies, W.; Cetinkaya, M.; Markert, B.; Graẗer, F.
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1 Materials and Methods
1.1 Site Directed Mutagenesis
We performed site-directed mutagenesis of Ruminococcus flavefaciens strain FD1 chimeric
cellulosomal proteins. A pET28a vector containing the previously cloned R. flavefaciens CohE
from ScaE fused to cellulose-binding module 3a (CBM3a) from C. thermocellum, and a pET28a
vector containing the previously cloned R. flavefaciens XMod-Doc from the CttA scaffoldin fused
to the XynT6 xylanase from Geobacillus stearothermophilus 1 were subjected to QuikChange
mutagenesis to install the mutations described in the prior paper2. All mutagenesis products
were confirmed by DNA sequencing analysis.

1.2 Expression and Purification of Cysteine-Mutated Xyn-XMod-Doc
The Xyn(T129C)-XMod-Doc protein was expressed in E. coli BL21 cells in kanamycin-containing
media that also contained 2 mM calcium chloride, overnight at 16◦C. After harvesting, cells
were lysed using sonication. The lysate was then pelleted, and the supernatant fluids were
applied to a Ni-NTA column and washed with TBS buffer containing 20 mM imidazole and
2mM calcium chloride. The bound protein was eluted using TBS buffer containing 250 mM
imidazole and 2 mM calcium chloride. The solution was dialyzed with TBS to remove the
imidazole, and then concentrated using an Amicon centrifugal filter device and stored in 50%
(v/v) glycerol at ∼ 20◦C. The concentrations of the protein stock solutions were determined to
be ∼ 5 mg/mL by absorption spectrophotometry.

1.3 Expression and Purification of Coh-CBM and mutated Coh-CBM C63S
The Coh-CBM (C63S) fusion protein was expressed in E. coli BL21(DE3) RIPL in kanamycin
and chloramphenicole containing ZYM-5052 media3 overnight at 22◦C. After harvesting, cells
were lysed using sonication. The lysate was then pelleted, and the supernatant fluids were
applied to a Ni-NTA column and washed with TBS buffer. The bound protein was eluted using
TBS buffer containing 200 mM imidazole. Imidazole was removed with a polyacrylamide gravity
flow column. The protein solution was concentrated with an Amicon centrifugal filter device
and stored in 50% (v/v) glycerol at −80◦C. The concentrations of the protein stock solutions
were determined to be ∼ 5 mg/mL by absorption spectrophotometry.

1.4 Sample Preparation
Cantilevers and cover glasses were functionalized according to previously published protocols4.
Briefly, cantilevers and cover glasses were cleaned by UV-ozone treatment and piranha solution,
respectively. Levers and glasses were silanized using (3-aminopropyl)-dimethyl-ethoxysilane
(APDMES) to introduce surface amine groups. Amine groups on the cantilevers and cover
glasses were subsequently conjugated to a 5 kDa NHS-PEG-Mal linker in sodium borate
buffer. Disulfide-linked dimers of the Xyl-XMod-Doc proteins were reduced for 2 hours at room
temperature using a TCEP disulfide reducing bead slurry. The protein/bead mixture was rinsed
with TBS measurement buffer, centrifuged at 850 rcf for 3 minutes, and the supernatant was
collected with a micropipette. Reduced proteins were diluted with measurement buffer (1:3
(v/v) for cantilevers, and 1:1 (v/v) for cover glasses), and applied to PEGylated cantilevers and
cover glasses for 1 h. Both cantilevers and cover glasses were then rinsed with TBS to remove
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unbound proteins, and stored under TBS prior to force spectroscopy measurements. Site specific
immobilization of the Coh-CBM-ybbR fusion proteins to PEGylated cantilevers or coverglasses
was carried out according to previously published protocols5. Briefly, PEGylated cantilevers or
coverglasses were incubated with Coenzyme A (CoA) (20 mM) stored in coupling buffer for 1h
at room temperature. Levers or surfaces were then rinsed with TBS to remove unbound CoA.
Coh-CBM-ybbR fusion proteins were then covalently linked to the CoA surfaces or levers by
incubating with Sfp phosphopantetheinyl transferase for 2 hours at room 37◦. Finally, surfaces
or levers were subjected to a final rinse with TBS and stored under TBS prior to measurement.

1.5 Single Molecule Force Spectroscopy Measurements
SMFS measurements were performed on a custom built AFM controlled by an MFP-3D
controller from Asylum Research running custom written Igor Pro (Wavemetrics) software.
Cantilever spring constants were calibrated using the thermal noise / equipartition method. The
cantilever was brought into contact with the surface and withdrawn at constant speed ranging
from 0.2–6.4 µm/s. An x-y stage was actuated after each force-extension trace to expose the
molecules on the cantilever to a new molecule at a different surface location with each trace.
Typically 20,000–50,000 force-extension curves were obtained with a single cantilever in an
experimental run of 18-24 hours. A low molecular density on the surface was used to avoid
formation of multiple bonds. While the raw datasets contained a majority of unusable curves
due to lack of interactions or nonspecific adhesion of molecules to the cantilever tip, select
curves showed single molecule interactions with CBM and Xyn unfolding length increments.
We sorted the data using a combination of automated data processing and manual classification
by searching for contour length increments that matched the lengths of our specific protein
fingerprint domains: the xylanase (∼89 nm) and the CBM (∼56 nm). After identifying these
specific traces, we measured the loading rate dependency of the final Doc:Coh ruptures based
on bond history.

1.6 Data Analysis
Data were analyzed using slight modifications to previously published protocols4;6;7. Force
extension traces were transformed into contour length space using the QM-FRC model with
bonds of length b = 0.11 nm connected by a fixed angle γ = 41◦ and and assembled into barrier
position histograms using cross-correlation. For the loading rate analysis, the loading rate at
the point of rupture was extracted by applying a line fit to the force vs. time trace in the
immediate vicinity prior to the rupture peak. The loading rate was determined from the slope
of the fit. The most probable rupture forces and loading rates were determined by applying
probability density fits to histograms of rupture forces and loading rates at each pulling speed.

1.7 Molecular Dynamics Simulations
Connecting dynamics to structural data from diverse experimental sources, molecular dynamics
simulations allow one to explore off-equilibrium properties of protein structure complexes in
unparalleled detail8. More specifically, molecular dynamics simulations have always been viewed
as a general sampling method for the study of conformational changes9. The structure of the
XMod-Doc:Coh complex had been solved by means of X-ray crystallography at 1.97Å resolution
and is available at the protein data bank (PDB:4IU3). The system was then solvated and the net
charge of the protein and the calcium ions was neutralized using sodium atoms as counter-ions,
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which were randomly arranged in the solvent. Total system size was approximately 580k atoms.
The MD simulations in the present study were performed employing the molecular dynamics
package NAMD10;11. The CHARMM36 force field12;13 along with the TIP3 water model14 was
used to describe all systems. The simulations were carried out assuming periodic boundary
conditions in the NpT ensemble with temperature maintained at 300 K using Langevin dynamics
for pressure, kept at 1 bar, and temperature coupling. A distance cut-off of 11.0 Å was applied to
short-range, non-bonded interactions, whereas long-range electrostatic interactions were treated
using the particle-mesh Ewald (PME)15 method. The equations of motion were integrated using
the r-RESPA multiple time step scheme11 to update the van der Waals interactions every two
steps and electrostatic interactions every four steps. The time step of integration was chosen
to be 2 fs for all simulations performed. The first two nanoseconds of the simulations served
to equilibrate systems before the production runs, which varied from 200 ns to 1.3 µs in the
different simulations. To characterize the coupling between dockerin and cohesin, we performed
SMD simulations16 of constant velocity stretching (SMD-CV protocol) with pulling speed of
0.25 Å/ns. In all simulations, SMD was employed by restraining the position of one end of the
XMod-Doc domain harmonically, and moving a second restraint point, at the end of the Coh
domain, with constant velocity in the desired direction. The procedure is equivalent to attaching
one end of a harmonic spring to the end of a domain and pulling on the other end of the spring.
The force applied to the harmonic pulling spring is then monitored during the time of the
molecular dynamics simulation. All analyses of MD trajectories were carried out employing
VMD17 and its plugins. Surface contact areas of interacting residues were calculated employing
Volarea18 implemented in VMD. The area is calculated using a probe radius defined as an in
silico rolling sphere that is scanned around the area of the dockerin exposed to the cohesin
and also the cohesin area exposed to the dockerin. The Network View plugin19 on VMD17 was
employed to perform dynamical network analysis. A network was defined as a set of nodes, all
α-carbons, with connecting edges. Edges connect pairs of nodes if corresponding monomers are
in contact, and 2 nonconsecutive monomers are said to be in contact if they fulfill a proximity
criterion, namely any heavy atoms (nonhydrogen) from the 2 monomers are within 4.5 Å of
each other for at least 75% of the frames analyzed. As suggested by Sethi et al.20, nearest
neighbors in sequence are not considered to be in contact as they lead to a number of trivial
suboptimal paths. The dynamical networks were constructed from 20 ns windows of the total
trajectories sampled every 400 ps. The probability of information transfer across an edge is
set as wij = −log (| Cij |), where Cij is the correlation matrix calculated with Carma21. Using
the Floyd-Warshall algorithm, the suboptimal paths were then calculated. The tolerance value
used for any path to be included in the suboptimal path was −log (0.5) = 0.69. To calculate
the relevance of off-diagonal terms in the correlation matrix we employed Carma to calculate a
correlation matrix where x, y, z components of each atom were considered independently.

2 Protein Sequences
Sequences of protein constructs used in this work are listed here. Domains as well as engineered
tags and residues are color-coded.

2.1 HIS-Xyn(T128C)-XDoc
X-module
Dockerin type III

4
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Xylanase
Linker or extra residues

M S H H H H H H K N A D S Y A K K P H I S A L N A P Q L D Q R Y K N E F T I G A
A V E P Y Q L Q N E K D V Q M L K R H F N S I V A E N V M K P I S I Q P E E G K
F N F E Q A D R I V K F A K A N G M D I R F H T L V W H S Q V P Q W F F L D K E
G K P M V N E C D P V K R E Q N K Q L L L K R L E T H I K T I V E R Y K D D I K
Y W D V V N E V V G D D G K L R N S P W Y Q I A G I D Y I K V A F Q A A R K Y G
G D N I K L Y M N D Y N T E V E P K R T A L Y N L V K Q L K E E G V P I D G I G
H Q S H I Q I G W P S E A E I E K T I N M F A A L G L D N Q I T E L D V S M Y G
W P P R A Y P T Y D A I P K Q K F L D Q A A R Y D R L F K L Y E K L S D K I S N
V T F W G I A D N H T W L D S R A D V Y Y D A N G N V V V D P N A P Y A K V E K
G K G K D A P F V F G P D Y K V K P A Y W A I I D H K V V P N T V T S A V K T Q
Y V E I E S V D G F Y F N T E D K F D T A Q I K K A V L H T V Y N E G Y T G D D
G V A V V L R E Y E S E P V D I T A E L T F G D A T P A N T Y K A V E N K F D Y
E I P V Y Y N N A T L K D A E G N D A T V T V Y I G L K G D T D L N N I V D G R
D A T A T L T Y Y A A T S T D G K D A T T V A L S P S T L V G G N P E S V Y D D
F S A F L S D V K V D A G K E L T R F A K K A E R L I D G R D A S S I L T F Y T
K S S V D Q Y K D M A A N E P N K L W D I V T G D A E E E

2.2 Coh-CBM(C2A,C63S)-HIS-ybbR
CohIII
CBM (C2A, C63S)
ybbR-Tag
Linker or extra residues

M G T A L T D R G M T Y D L D P K D G S S A A T K P V L E V T K K V F D T A A D
A A G Q T V T V E F K V S G A E G K Y A T T G Y H I Y W D E R L E V V A T K T G
A Y A K K G A A L E D S S L A K A E N N G N G V F V A S G A D D D F G A D G V M
W T V E L K V P A D A K A G D V Y P I D V A Y Q W D P S K G D L F T D N K D S A
Q G K L M Q A Y F F T Q G I K S S S N P S T D E Y L V K A N A T Y A D G Y I A I
K A G E P G S V V P S T Q P V T T P P A T T K P P A T T I P P S D D P N A M A N
T P V S G N L K V E F Y N S N P S D T T N S I N P Q F K V T N T G S S A I D L S
K L T L R Y Y Y T V D G Q K D Q T F W S D H A A I I G S N G S Y N G I T S N V K
G T F V K M S S S T N N A D T Y L E I S F T G G T L E P G A H V Q I Q G R F A K
N D W S N Y T Q S N D Y S F K S A S Q F V E W D Q V T A Y L N G V L V W G K E P
G E L K L P R S R H H H H H H G S L E V L F Q G P D S L E F I A S K L A

2.3 CBM(T2C)-Coh-HIS
CBM (T2C)
CohIII
Linker or extra residues

M C N T P V S G N L K V E F Y N S N P S D T T N S I N P Q F K V T N T G S S A I
D L S K L T L R Y Y Y T V D G Q K D Q T F W C D H A A I I G S N G S Y N G I T S
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N V K G T F V K M S S S T N N A D T Y L E I S F T G G T L E P G A H V Q I Q G R
F A K N D W S N Y T Q S N D Y S F K S A S Q F V E W D Q V T A Y L N G V L V W G
K E P G G S V V P S T Q P V T T P P A T T K P P A T T I P P S D D P N A M A L T
D R G M T Y D L D P K D G S S A A T K P V L E V T K K V F D T A A D A A G Q T V
T V E F K V S G A E G K Y A T T G Y H I Y W D E R L E V V A T K T G A Y A K K G
A A L E D S S L A K A E N N G N G V F V A S G A D D D F G A D G V M W T V E L K
V P A D A K A G D V Y P I D V A Y Q W D P S K G D L F T D N K D S A Q G K L M Q
A Y F F T Q G I K S S S N P S T D E Y L V K A N A T Y A D G Y I A I K A G E P L
E H H H H H H

3 Supplementary Discussion
The Pearson correlation matrices of the Xmod-Doc:Coh complex before and after applying force
in the native pulling configuration are presented in Supplementary Figure S3 and S4, respectively.
For the unloaded complex, movements within Doc domain are seen to be highly correlated,
while XMod is seen to be divided into two anti-correlated sub-domains, one comprising the
β-sheet fragment close to the N-terminus (residues 5-15 and 45-66) and the other constituting
the rest of the domain. Intra-domain correlations of Coh exhibit more a complex pattern to
which both secondary (anti-parallel β-strands and β-sheet at the binding interface) and tertiary
structure (vicinity of C- and N-termini) contribute. Some of the inter-domain correlations in
the complex originate from spatial vicinity and direct interactions, specifically at the Doc:Coh
binding interface and at XMod contacts with Doc inserts. However, coupling between distant
parts of the complex is also present. For example, fluctuations of the non-binding part of Coh
are correlated with the N-terminal part of XMod and strongly anti-correlated with Doc domain.

4 Supplementary Notes
4.1 Constant Barrier Distance Model
The constant barrier distance model16, also referred to as the Bell-Evans model22, is commonly
used to estimate the distance to the transition state ∆x and the natural off-rate k0 of mechanically
induced receptor ligand dissociation from single-molecule force spectroscopy experiments. It
predicts that the most probable rupture force 〈F 〉 is linearly dependent on the logarithm of the
force loading rate16:

〈F (r)〉 = kBT

∆x ln ∆x · r
k0kBT

(S1)

where kB is Boltzmann’s constant, T is the temperature and r is the loading rate at the point
of rupture.

The probability density distribution of rupture forces at given loading rate r in this model is
given as16:

p (F ) = k0
r

exp
[ ∆x
kBT

F − k0 · kBT
∆x · r

(
e

∆x
kBT

F − 1
)]

(S2)
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4.2 Dudko-Hummer-Szabo Model
The Dudko-Hummer-Szabo (DHS)23;24 model describes a non-linear dependence for the most
probable rupture force on loading rate:

〈F (r)〉 = ∆G
ν∆x

{
1−

[
kBT

∆G ln
(
kBTk0
∆xr e

∆G
kBT

+γ
)]ν}

(S3)

where ∆G is the free energy of activation and γ = 0.577 is the Euler-Mascheroni constant. The
model parameter ν defines the single-well free-energy surface model used (ν = 2

3 for linear-cubic
and 1

2 for cusp free-energy. For ν = 1 and ∆G→∞ independent of ν the Eqs. (S1) and (S2)
are recovered.

4.3 Pearson Correlation and covariance matrix
4.3.1 Validation

An N ×N matrix of Pearson correlation coefficients Cij (Supporting Eq. S4) was calculated
from each atom’s x, y, z position throughout the simulation trajectory, which inherently ignores
off-diagonal elements of the atomic 3 × 3 submatrices Dmn

ij from the full normalized 3N ×
3N covariance matrix (i.e., correlations along orthogonal axes are neglected, see Supporting
Eqs. (S5) and (S6)) and Supporting Fig S8.

Although this quasi-harmonic approximation is commonly employed in correlation analy-
sis19;25–29, it is not a priori justified for complicated biomolecular interactions30. To validate
the use of Pearson correlations, we therefore first analyzed independently the contributions
from diagonal and off-diagonal elements of each 3 x 3 covariance submatrix for each pair of
α-carbons within the structure (Fig. S9A and B). Both with and without applied force, the
off-diagonal elements roughly follow Gaussian distributions centered around a correlation value
of 0. Interestingly, as force was applied, the standard deviation of the distribution of off-diagonal
correlation values decreased from σunloaded = 0.45 to σloaded = 0.29. This indicated a lesser
influence of off-diagonal elements on the highly (anti-)correlated motion within the system
under force (see Supporting Discussion 3). The diagonal elements of the sub-matrices that are
used for calculating the Pearson correlation values showed a dramatically different behavior.
Both in the unloaded and loaded state, the resulting distributions were strongly shifted towards
highly correlated motion, and the shape of the distribution remained mostly unchanged after
application of force. Since our analysis relies on the identification of paths of highest correlation
through proximate residues, the quasi-harmonic approximation implied by the use of Pearson
correlation is justified, especially for suboptimal pathway analysis. The resulting distributions of
on- and off-diagonal matrix elements of each covariance submatrix for the loaded configuration
HF class (Fig. S10A) and LF class (Fig. S10B) exhibited the same characteristics as previously
described for the native configuration, with off-diagonal elements showing symmetric correlations
around zero and diagonal elements showing highly correlated motions.

4.3.2 Supplementary Equations

The Pearson correlation coefficient Cij used in our dynamical network analysis protocol is given
by:

Cij = 〈∆ri (t) ·∆rj (t)〉
(〈

∆ri (t)2
〉〈

∆rj (t)2
〉) 1

2
(S4)
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where ∆ri (t) = ri (t)− 〈ri (t)〉.
The full 3N × 3N covariance matrix Mij for atoms i and j consists of 3× 3 submatrices of

the form:
〈

∆ri (t) ∆rj (t)T
〉

= Mij =



Mxx
ij Mxy

ij Mxz
ij

Myx
ij Myy

ij Myz
ij

M zx
ij M zy

ij M zz
ij


 (S5)

The full normalized correlation matrix is calculated from Mij :

Dmn
ij =

Mmn
ij√

Mmm
ij Mnn

ij

(S6)

Consequently, the Pearson correlation coefficient is calculated as the trace of the normalized
3× 3 submatrices (Cij = TrDij).

4.3.3 Derivation of Main Text Equation 2

Eq. 1 from the main text reads:
〈

∆ri∆rTj
〉

= kBT
∂rj
∂Fi

(S7)

Combining Eqs. (S7) and (S4) yields:

Cij = kBT
∂rj
∂Fi
·
(〈

∆r2
i (t)

〉〈
∆r2

j (t)
〉)− 1

2 (S8)

For an arbitrary potential Ui (r) of atom i, a Taylor expansion around the potential minimum
(set to be at 0) yields:

Ui (r) = 0 + rTi ∇U (0)︸ ︷︷ ︸
=0

+1
2rTi H (0) ri + ... (S9)

where H (0) is the Hessian matrix evaluated at the potential minimum. Assuming Schwarz’
theorem holds for Ui (r), H (0) is a symmetric matrix and therefore has real eigenvalues and
orthonormal eigenvectors. Hence, a change to the eigenbasis of H (0) is a rotation of the
coordinate system. In this new basis the Hessian is diagonal:

H (0)→ H ′ (0) =



kx′ 0 0
0 ky′ 0
0 0 kz′


 (S10)

This yields a simple expression for the second order term in Eq. (S9):

Ui
(
r′
)

= 1
2r′TH ′ (0) r′ = 1

2
(
kx′x

′2 + ky′y
′2 + kz′z

′2
)

(S11)

Now we inspect the normalization of Cij :

〈∆r2
i (t)〉 = 〈r2

i (t)− 2ri (t) 〈ri (t)〉+ 〈ri (t)〉2〉 (S12)
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In the harmonic approximation of the potential of atom i, 〈ri (t)〉 = 0, and therefore 〈∆ri (t)2〉 =
〈r2
i (t)〉. In the basis of H ′ (0) this becomes:

〈r′2i (t)〉 = 〈x′i (t)2 + y′i (t)2 + z′i (t)2〉 = 〈x′i (t)2〉+ 〈y′i (t)2〉+ 〈z′i (t)2〉 (S13)

Applying the equipartition theorem to this result yields:

〈x′i (t)2〉 = kBT

k′xi

(S14)

And therefore:
〈∆r′i (t)2〉 = kBT

(
1
k′xi

+ 1
k′yi

+ 1
k′zi

)
= kBT

k′i,eff
(S15)

Plugging this result into Eq. (S8), one finds:

Cij = kBT
∂rj
∂Fi
·
(
kBT

k′i,eff

)− 1
2 (
〈∆rj (t)2〉

)− 1
2 (S16)

Repeating the above steps for atom j yields the final result:

Cij = kBT
∂rj
∂Fi
·
(
kBT

k′i,eff

)− 1
2
(
kBT

k′j,eff

)− 1
2

(S17)

= ∂rj
∂Fi
·
√
k′i,eff · k′j,eff (S18)

5 Supplementary Figures
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Fig. S1: SMFS of the non-native low force curve class. A Typical unfolding fingerprints. All traces
showed a characteristic Xyn fingerprint (blue). A 17 − 19 nm increment corresponding to partial N-
terminal Coh unfolding (orange) occurs either prior to Xyn unfolding (traces 1-4), or just before complex
rupture (trace 5). It was observed as a single event (traces 1,3 and 5) or showed substructure (traces
2 and 4). B Traces were grouped and assembled into contour length histograms. One or more of the
unassigned increments combined into a 17− 19 nm increment.
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Fig. S2: Comparing the native geometry with the non-native high force class. Two exclude uncertainties in
cantilever calibration when comparing the native geometry with the non-native HF class, we immobilized
both Coh-CBM (native) and CBM-Coh (non-native) on two spatially separated spots on a single cover
glass. These spots where then alternately probed with the same Xyn-XMod-Doc functionalized cantilever.
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Fig. S3: Heat maps of the Pearson Correlation coefficient (Cij) of the unloaded Xmod-Doc:Coh complex.
α-helices and β-strands are highlighted with brown and orange rectangles, respectively. Black circles
indicate binding residues from the Coh and Doc binding interface.
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Fig. S4: Heat maps of the Pearson Correlation coefficient (Cij) of the Xmod-Doc:Coh complex loaded
with force in the native pulling geometry. α-helices and β-strands are highlighted with brown and orange
rectangles, respectively. Black circles indicate binding residues from Coh and Doc binding interfaces and
orange circles represent residues on the force propagation path.
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Fig. S5: Force propagation pathway through the loaded XMod-Doc:Coh complex in the native pulling
geometry (N-terminal pulling of Xmod-Doc, C-terminal pulling of Coh) obtained from dynamical network
analysis. Residues belonging to Xmod, Doc and Coh are colored in yellow, red and blue, respectively.
Connecting lines between residues represent edges identified in our Network Analysis protocol and
constitute the suboptimal paths between the pulling points. Edge thickness represents the number of
suboptimal paths going through the edge.
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Fig. S7: Force propagation pathway through the loaded XMod-Doc:Coh complex in the non-native
pulling geometry (N-terminal pulling of Xmod-Doc, N-terminal pulling of Coh) showing low-force
unbinding characteristics and partial N-terminal Coh unfolding. Residues belonging to Xmod, Doc and
Coh are colored in yellow, red and blue, respectively. Connecting lines between residues represent edges
identified in our Network Analysis protocol and constitute the suboptimal paths between the pulling
points. Edge thickness represents the number of suboptimal paths going through the edge.
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Fig. S8: Full unnormalized covariance Matrix Mij for a five atom system from which the full normalized
covariance matrix is calculated according to Eq. (S6). On- and off-diagonal elements from one of the
atomic submatrices are highlighted in yellow and blue, respectively.
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Fig. S9: Histograms showing contributions of diagonal and off-diagonal terms of the full covariance
matrix elements fulfilling proximity criteria for A, the native unloaded, and B the native loaded, scenario.
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matrix elements fulfilling proximity criteria for A, the non-native HF, and B the non-native LF, scenario.
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4IU3 EGK.YATTGYHIYWDER.LEVVATK..TG....AY.AKKGAALED...SS...LAKAENN 104
2ZF9 ADK.YAATGLHIQFDPK.LKLIPDE..DG....AL.ATAGRAARL...LE...LKKAEAD 97
4N2O DXQ.WNXCGIHIIYPDI.LKPEXK...DP.EERTVAFQKGDALEA...AT...GIVCXEW 106
1ANU PSKGIANCDFVFRYDPNVLEIIG.............IDPGDII.VDP..NPTKSFDTAIY 69
1TYJ T.N.FSGYQFNIKYNTTYLQPWDTIADEAYT.DSTMPDYGTLLQGR..FNA..TDMSKHN 80
2B59 K.N.FAGFQVNIVYDPKVLMAVDPETGKEFT.SSTFPPGRTVLKNN.AYGP..IQIADND 83
conservation ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

↑ ↑ ↑ ↑↑ ↑ ↑ ↑↑↑

4IU3 .G............NGVFVASGA...DD...D....FG.ADGVXWTVELKVPADAKAGDV 140
2ZF9 TD............NSFFTATGS...ST...N....NG.KDGVLWSFVLQVPADAQPGDK 134
4N2O .QEGLPPVLTENKKGCLFLTAXF...SG...N....QG.GEGDXATFRFKVPDNAEPGAV 154
1ANU PD.R..........KIIVFLFAEDSGTG.AY.....AITKDGVFAKIRATVKSSA....P 108
1TYJ LS.Q..........GVLNFGRLY..MNLSAYRASGKPE.STGAVAKVTFKVIKEIPA..E 124
2B59 PE.K..........GILNFALAY..SYIAGYKETGVAE.ESGIIAKIGFKILQKK....S 125
conservation ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

↑ ↑ ↑↑ ↑

4IU3 .YP.IDVAYQWDPSKG.D.....LFTDNKDSAQGKLXQA.Y.FFTQGIKSSSNPSTDEYL 190
2ZF9 .YD.VQVAYQSRTTNE.D.....LFTNVKKDEEGLLXQA.W.TFTQGIE........... 173
4N2O .YN.LGYYYXN..T...D.....LFINEQNI...PTYQK.Y.AFTH.XE........... 185
1ANU .GY.ITFD............EVGGFADNDLV...E..QK...V..S.FI........... 132
1TYJ GIKLATFENGS..SMNNAVDGT.MLFDWDGN...M..YSSSAY..K.VV........... 162
2B59 .TA.VKFQDTL..SMPGAISGT.QLFDWDGE...V..IT.G.Y..E.VI........... 159
conservation ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

↑↑ ↑ ↑↑↑

4IU3 VKANATYADGY.I.AIKA 206
2ZF9 ........QGY.I.QVES 181
4N2O ........GGT.I.TVEL 193
1ANU ........DGG.VNV... 138
1TYJ ........QPGLI.YPK. 170
2B59 ........QPDVL.SL.. 166
conservation ••••••••••••••••••

1

Fig. S11: Structure-aligned sequences of six crystallized cohesins. Residues on the force propagation
path are highlighted in yellow. Arrows indicate binding residues. Residue conservation is color-coded
from blue - lack of conservation, to red - residue fully conserved. Crystal structures used: 4IU3 ScaE Rf
FD-1, 2ZF9 ScaE Rf strain 17, 4N2O CohG Rf FD-1, 1ANU CohC2 CipC Ct, 1TYJ CohA11 ScaA Bc,
2B59 SdbA Ct.
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Fig. S12: Structure and sequence conservation of the force propagation pathway residues in Coh. CohE
from the ScaE cell anchoring protein, Rf FD-1 used in this work (PDB 4IU3) is highlighted in green.
Highly homologous structures of CohE from Rf strain 17 (PDB 2ZF9) and Coh G from Rf FD-1 (PDB
4A2O) are colored in orange and yellow, respectively. Residues lying in the force propagation path are
shown as sticks. XDoc from the CttA Rf FD-1 scaffold used in this work is shown in gray.
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Abstract Receptor-ligand pairs are ordinarily thought to interact through a lock and key

mechanism, where a unique molecular conformation is formed upon binding. Contrary to this

paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through

redundant dual binding modes consisting of two distinct conformations. Here, we combined site-

directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of

Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode,

and compared their single-molecule unfolding patterns as they were dissociated from Coh using an

atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to

resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-

molecule method we were able to discriminate the two modes based on distinct differences in their

mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium

thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given

the vast number of Doc domains with predicteddual binding modes across multiple bacterial

species, our approach opens up newpossibilities for understanding assembly and catalytic

properties of a broadrange of multi-enzyme complexes.

DOI: 10.7554/eLife.10319.001

Introduction
Cellulosomes are hierarchically branching protein networks developed by nature for efficient decon-

struction of lignocellulosic biomass. These enzyme complexes incorporate catalytic domains, carbo-

hydrate binding modules (CBMs), cohesin:dockerin (Coh:Doc) pairs, and other conserved features

(Demain et al., 2005; Bayer et al., 2004; Schwarz, 2001; Béguin and Aubert, 1994; Smith and

Bayer, 2013; Fontes and Gilbert, 2010). A central attribute of cellulosome assembly is the con-

served ~75 amino acid type-I Doc domain typically found at the C-terminus of cellulosomal catalytic

domains. The highly conserved consensus Doc sequence from Clostridium thermocellum (Ct) is

shown in Figure 1A. Dockerins guide attachment of enzymes into the networks by binding strongly

to conserved Coh domains organized within non-catalytic poly (Coh) scaffolds. In addition to their

nanomolar binding affinities, many archetypal Coh:Doc pairs are thought to exhibit dual binding

modes (Carvalho et al., 2007; Pinheiro et al., 2008; Currie et al., 2012). The bound Doc domain

can adopt two possible orientations that differ by ~180˚ rotation on the Coh surface, as shown in

Figure 1B. The two binding modes originate from duplicated F-hand sequence motifs, a conserved

structural feature found among type-I dockerins (Pagès et al., 1997). The duplicated F-hand motifs

resemble EF-hands found in eukaryotic calcium binding proteins (e.g., calmodulin), and provide

Jobst et al. eLife 2015;4:e10319. DOI: 10.7554/eLife.10319 1 of 19
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internal sequence and structural symmetry to Doc domains. Rotating Doc by ~180˚ with respect to

Coh (Figure 1B,C) results in an alternatively bound complex with similarly high affinity involving the

same residues on Coh recognizing mirrored residues within Doc. The dual binding mode is thought

to increase the conformational space available to densely packed enzymes on protein scaffolds, and

to facilitate substrate recognition by catalytic domains within cellulosomal networks (Bayer et al.,

2004). From an evolutionary perspective, the dual binding mode confers robustness against loss-of-

function mutations, while allowing mutations within Doc to explore inter-bacterial species cohesin-

binding promiscuity in cellulosome-producing microbial communities. Coh:Doc interactions and dual

binding modes are therefore important in the context of cellulose degradation by cellulosome-pro-

ducing anaerobic bacterial communities.

However, direct experimental observation of the dual binding modes for wild-type Doc has thus

far proven challenging. Ensemble average bulk biochemical assays (e.g., surface plasmon resonance,

calorimetry, enzyme-linked immunosorbent assays) are of limited use in resolving binding mode pop-

ulations, particularly when the binding modes are of equal thermodynamic affinity. Crystallography is

challenging because the complex does not adopt a unique molecular conformation, but rather

exhibits a mixture of two conformations thereby hindering crystal growth. Structural data on the

dual binding mode have typically been collected using a mutagenesis approach, where one of the

binding modes was destabilized by mutating key recognition elements (Carvalho et al., 2007;

Pinheiro et al., 2008). This approach, however, while resolving the structures of each bound com-

plex, cannot determine if one binding mode is dominant for wild-type Doc, or if that dominance is

species or sequence dependent. Coarse grained molecular dynamics has also predicted dual modes

of interaction between Coh and Doc (Hall and Sansom, 2009), but direct experimental evidence of

both binding modes for wild-type Doc has remained elusive. Improved fundamental understanding

of the dual binding mode could shed light onto the molecular mechanisms by which these multi-

eLife digest Some bacteria use cellulose, the main component of plant cell walls, as a food

source. The enzymes that break down cellulose are anchored onto a protein scaffold in a structure

called the cellulosome on the bacteria’s surface. This anchoring occurs through an interaction

between receptor proteins known as ‘cohesin’ domains on the scaffold proteins and ‘dockerin’

ligands on the enzymes.

Most receptor-ligand interactions only allow the two proteins to bind in a single, fixed

orientation. However, cohesins and dockerins are suspected to bind in two different configurations.

It has been difficult to investigate the populations of these different configurations because most

experimental techniques investigating protein binding take average measurements from many

molecules at once. As the binding modes are extremely similar, these methods have been unable to

distinguish between the two cohesin-dockerin binding configurations without introducing mutations,

in part because these configurations are very similar to each other.

Jobst et al. used a technique called single-molecule force spectroscopy to investigate cohesin-

dockerin interactions between individual molecules. This technique applies a force that separates, or

‘unbinds’, cohesin and dockerin, by pulling individual complexes of the two binding partners apart

with a nanoscale probe. In the experiments, E. coli bacteria were made to produce mutant versions

of dockerin that can only bind to cohesin in one orientation. This allowed each binding configuration

to be studied individually. The results of these experiments revealed the mechanical unbinding

patterns of each cohesin-dockerin configuration, and showed that it is possible to use these patterns

to distinguish between the two configurations. A complimentary set of experiments revealed that

wild-type (non-mutated) cohesin-dockerin complexes occupy both configurations in approximately

equal amounts, and do not switch modes once bound.

Further single-molecule experiments together with computer simulations will provide a more

detailed picture of how cohesin and dockerin fit together in the two configurations. Such

experiments could also reveal how cohesin and dockerin contribute to the break down of cellulose

inside living cells and how they could be used for the precise assembly of single proteins.

DOI: 10.7554/eLife.10319.002
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enzyme complexes self-assemble and achieve synergistic conformations, as well as provide a new

approach to designing systems for protein nanoassembly (Kufer et al., 2009; 2008).

Here, we used SMFS (Li and Cao, 2010; Engel and Müller, 2000; Woodside and Block, 2014)

to study wild-type and mutant Doc from exocellulase Cel48S of C. thermocellum (Ct-DocS). We

demonstrate that specific unfolding/unbinding trajectories of individually bound Coh:Doc complexes

Figure 1. Cohesin:Dockerin dual binding modes. (A) Secondary structure and consensus sequence logo (Crooks, 2004) assembled from 65 putative Ct

type-I Doc variants. Dots above the amino acid codes indicate residues involved in: Ca2+ coordination (yellow), mode A binding (black), and mode B

binding (gray). Letter colors represent chemical properties: Green, polar; purple, neutral; blue, basic; red, acidic; black, hydrophobic. Crucial Coh-

binding residues are located at positions 11, 12, 18, 19, 22, and 23 in each F-hand motif. (B) Coh:Doc complex crystal structures showing overlaid Doc

domains in the two binding modes. Images were generated by aligning the Coh domain (gray) from PDB 2CCL (green, binding mode (A) and 1OHZ

(red, binding mode (B) using the VMD plugin MultiSeq (Humphrey et al., 1996; Roberts et al., 2006). (C) View of the Doc binding interface for each

mode from the perspective of Coh. The conserved binding residues at positions 11, 12, 18, and 19 in the F-hand motif relevant for binding in the

corresponding mode are depicted as stick models (yellow). (D) Close-up view of the interface for each binding mode with arrows indicating the location

and direction of applied force. Binding residues 11, 12, 18, and 19 for binding mode A and 45, 46, 52, and 53 for binding mode B are shown as blue

stick models. The Coh domain is oriented the exact same way in both views.

DOI: 10.7554/eLife.10319.003
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are characteristic of the binding modes. To validate our approach, we produced Doc mutants that

exhibited a preferred binding mode. We performed single-molecule pulling experiments on bound

Coh:mutant Doc complexes and observed a strong bias in the probability of two clearly distinguish-

able unfolding patterns, termed ‘single’ and ‘double’ rupture types for each binding mode mutant.

We further probed the unbinding mechanism of the double rupture events using poly (Gly-Ser)

inserts to add amino acid sequence length to specific sections of Doc as a means to identify which

portions of Doc unfolded. Finally, we used the inherent differences in mechanical stability of each

binding mode, and the effects these differences had on the unfolding force distributions of an adja-

cent domain, to directly observe and quantify binding mode populations for wild-type Doc.

Results

Protein design
The wild-type and mutant Doc sequences used in this work were aligned (Beitz, 2000) and are pre-

sented in Figure 2. Among Ct-Doc domains, a Ser-Thr pair located at positions 11 and 12 of F-hand

motif 1 (N-terminal helix 1) is highly conserved (Figure 1A). This Ser-Thr pair is H-bonded to Coh in

binding mode A (Figure 1A, black dots). Analogously, binding mode B refers to the configuration

where the Ser-Thr pair from helix 3 dominates the H-bonding to Coh (Figure 1A, gray dots). Binding

mode B was previously crystallized for a homologous Ct-Doc (Carvalho et al., 2003). Mutation of

the Ser-Thr pair in helix 3 to Ala-Ala was used to bias binding and thereby crystallize binding mode

A for the same Doc (Carvalho et al., 2007). A similar targeted mutagenesis approach was also used

to obtain crystal structures of a Clostridium cellulolyticum Doc in each binding mode

(Pinheiro et al., 2008).

To preferentially select for a specific binding mode (A or B), we prepared Doc sequences that

incorporated 4 amino acid point mutations, referred to as quadruple mutants (‘Q’). To design qua-

druple mutants, we noted that recent structural work reported a set of Ct-Doc domains that differ

from the canonical duplicated Ser-Thr sequences. These non-canonical Docs were found to exhibit

only a single binding mode (Brás et al., 2012; Pinheiro et al., 2009). In one of these non-canonical

Doc domains, an Asp-Glu pair was found in place of Ser-Thr. Since the Coh surface is negatively

charged, we postulated that including Asp-Glu in place of Ser-Thr within one of the F-hands could

be used to effectively knock out a given binding mode for our canonical Doc. Additionally, we incor-

porated double alanine mutations to replace the conserved Lys-18 Arg-19 residues of a given F-

hand motif, further destabilizing a targeted binding mode. Q1 refers to a quadruple mutant where

helix 1 has been modified at four positions (i.e. S11D-T12E-K18A-R19A). Q3 refers to the quadruple

mutant where helix 3 has been modified at four positions (i.e. S43D-T44E-K50A-R51A). As a negative

Figure 2. Doc sequences used in this study (N- to C-terminus). Doc_wt: wild-type sequence; hydrophobicity and charge graphs are displayed for the

wild-type-Doc (red: positively charged, blue: negatively charged); (GS)x8_insert: A (Gly-Ser)8 linker was incorporated between helix 1 and helix 2;

Q1_mutant: Quadruple mutant in helix 1. Four point mutations (DE/AA) were incorporated into Doc helix 1 to knock out binding mode A; Q3_mutant:

Quadruple mutant in helix 3. Four point mutations (DE/AA) were incorporated into Doc helix 3 to knock out binding mode B; QQ_mutant: Non-binding

control with both binding modes knocked out. Numbers below indicate amino acid number of the fusion protein construct starting from the xylanase

N-terminus.

DOI: 10.7554/eLife.10319.004
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control, we prepared a mutant referred to as ‘QQ’ that incorporated quadruple mutations into both

helices 1 and 3.

Doc domains were expressed as fusion domains attached to the C-terminal end of xylanaseT6

(Xyn) from Geobacillus stearothermophilus to improve solubility and expression levels as previously

reported (Stahl et al., 2012). The Xyn domain also acts as a so-called fingerprint in AFM force exten-

sion traces to provide a means for screening datasets and searching for known contour length incre-

ments. We use the term ‘contour length’ to refer to the maximum length of a stretched (unfolded)

polypeptide chain. Our screening process identified single-molecule interactions and ensured cor-

rect pulling geometry. For the Coh domain, we chose cohesin 2 from Ct-CipA expressed as a C-ter-

minal fusion domain with the family 3a carbohydrate binding module (CBM) from Ct-CipA. In order

to exclude artifacts arising from fingerprint domains, protein immobilization or pulling geometry, a

second set of fusion proteins was cloned, expressed and probed in complementary experiments

using a flavoprotein domain from the plant blue light receptor phototropin (iLOV) (Chapman et al.,

2008). All protein sequences are provided in the ‘Materials and methods’ section.

Single-molecule unfolding patterns
The pulling configuration for single-molecule AFM experiments is shown in Figure 3A. CBM-Coh

was site-specifically and covalently attached to an AFM cantilever tip and brought into contact with

a glass surface modified with Xyn-Doc. The mechanical strength of protein domains and complexes

will strongly depend on the pulling points (i.e. sites at which the molecule is attached to cantilever/

surface). The site-specific attachment chemistry used here was precisely defined by the chosen resi-

due of immobilization, ensuring the same loading geometry was used on the complex for each and

every data trace. After formation of the Coh:Doc complex, the cantilever was retracted at a constant

speed that ranged from 200 to 3200 nm/s while the force was monitored by optical cantilever

deflection. The resulting force-distance traces were characteristic of the series of energy barriers

crossed by the protein complex along the unfolding/unbinding pathway. A sawtooth pattern was

consistently observed when molecular ligand-receptor complexes had formed. Sorting the data

using contour length transformation (Puchner et al., 2008) and identifying traces that contained a

Xyn contour length increment (~89 nm) allowed us to screen for single-molecule interactions

(Stahl et al., 2012), as described in our prior work on Coh:Doc dissociation under force (Stahl et al.,

2012; Schoeler et al., 2014; Jobst et al., 2013; Otten et al., 2014; Schoeler et al., 2015).

Typical single-molecule interaction traces from such an experiment are shown in Figure 3B,

C and in Figure 3—figure supplement 1. Following PEG linker stretching, an initial set of peaks

Figure 3. Overview of the experimental configuration and recorded single-molecule unfolding and unbinding traces. (A) Schematic depiction showing

the pulling geometry with CBM-Coh on the AFM Cantilever and Xyn-Doc on the glass substrate. Each fusion protein is site-specifically and covalently

immobilized on a PEG-coated surface. (B-C) Each force vs. extension trace shows PEG linker stretching (black), xylanase unfolding and subsequent

stretching (blue), and Coh:Doc complex rupture. The Coh:Doc complex rupture occurred in two distinct event types: single (B) and double (C) ruptures.

The 8-nm contour length increment separating the double peaks was assigned to Doc unfolding (C, green).

DOI: 10.7554/eLife.10319.005

The following figure supplement is available for figure 3:

Figure supplement 1. Representative sample of force traces.

DOI: 10.7554/eLife.10319.006
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sequentially decreasing in force was assigned to xylanase unfolding and stretching. This domain

when unfolded added ~89 nm of free contour length to the system. The final peak (s) corresponded

to rupture of the Coh:Doc complex, and occurred as either ‘single’ or ‘double’ rupture events. The

contour length increment between the two double event peaks was found to be ~8 nm, that is, 8 nm

of hidden contour length was added to the biopolymer during a sub-step of Doc unbinding (see

‘Discussion’). The 8-nm contour length increment was also observed in complementary experiments

employing other fusion domains: xylanase was swapped for an sfGFP domain and CBM was

swapped out for an iLOV domain. In these new fusions, the 8 nm Doc increment was still observed,

indicating it was not caused by a specific fusion domain. As we show below, double and single rup-

ture events were associated with binding modes A and B, respectively. CBM unfolding length incre-

ments (~57 nm) were only rarely observed because the Coh:Doc complex only rarely withstood

forces sufficiently high to unfold CBM (Stahl et al., 2012).

Ensemble average binding experiments
Binding experiments were carried out in bulk to evaluate the binding affinity of wild-type, Q1, Q3,

and QQ Doc sequences to wild-type Coh. Xyn-Doc fusion protein variants were immobilized in a

microwell plate and exposed to tag red fluorescent protein (TagRFP) (Merzlyak et al., 2007) fused

to Coh (TagRFP-Coh) across a range of concentrations, followed by rinsing and subsequent fluores-

cence readout (Figure 4A). The data clearly showed that Q1 and Q3 Doc sequences, each with a

mutated binding mode, maintained high-binding affinity with dissociation constants (Kd) in the nM

range. These values are in good agreement with previous reports on homologous type-I Doc

domains (Brás et al., 2012; Sakka et al., 2011). This suggested that mutant Doc domains with one

destabilized binding mode were still able to recognize fluorescent protein fused Coh with strong

affinity by relying on the alternative binding mode that was preserved. The QQ double knockout

mutant, however, showed no appreciable binding over the concentration range tested. This negative

control showed that DEAA quadruple mutations were in fact effective at eliminating binding for the

targeted modes.

Single-molecule rupture statistics of binding mode mutants
For each Doc tested, we collected tens of thousands of force-extension traces and selected for fur-

ther analysis only those traces showing the ~89 nm xylanase contour length increments and no other

anomalous behavior, resulting in typically 200–3000 usable single-molecule interaction curves per

experiment. We determined the number of Coh:Doc unbinding events that occurred as single or

double rupture peaks. The results are shown in Figure 4B. The wild-type Doc showed double rup-

ture events in ~57% of the cases, and single rupture events in ~43% of the cases. The mutant

designed to knock out binding mode A (Q1), showed a single event probability of ~77%, and a dou-

ble event probability of ~23%. The mutant designed to knock out binding mode B (Q3) showed a

single event probability of ~41%, and a double event probability of ~59%. It is clear from these data

that the Q1 mutant has a strong bias toward single peaks that is not observed in the wild-type lead-

ing to preliminary assignment of single peaks to binding mode B.

For all double events, we determined the force difference of the second peak relative to the first

(Figure 4C). Q1 and wild-type on average showed second peaks that were ~15–20% higher in force

than the first peak. Q3 meanwhile showed clearly different behavior. Although the ratios of single to

double peaks were nearly identical between wild-type and Q3, differences in the relative force

between the first and second peaks differentiated wild-type and Q3 (Figure 4C). Double peaks for

the Q3 mutant were more likely to show a shielded behavior, where the second peak was lower in

force than the first peak by ~10%. Although the Q3 mutant showed the same single vs. double event

probability as wild-type, the double events for Q3 were distinguishable from those of the wild-type

based on this observed decrease in the rupture force of the second peak. The second barrier of the

double events was therefore weaker in Q3 than for wild-type. This weaker 2nd double peak for the

Q3 mutant combined with similar single/double peak ratios as wild-type leads us to believe that the

number of double peaks is being underestimated systematically for the Q3 mutant. Generally, each

binding mode still allows for the occurrence of a single event (albeit with different likelihood), in

which the whole Doc domain unbinds without an additional unfolding substep. Since the second and

final energy barrier for complex dissociation is weaker than the first for the Q3 mutant, the
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probability for the molecule to pass both barriers simultaneously is increased, thus resulting in a

higher percentage of single events.

Probing the 8-nm length increment with poly (GS) inserts
We sought to identify the molecular origin of the 8 nm contour length increment separating the dou-

ble event peaks by engineering additional amino acid sequence length into the Doc domain. Amino

acid insert sequences have previously been used to probe length increments in AFM force spectros-

copy experiments (Bertz and Rief, 2009) (Carrion-Vazquez et al., 1999). By adding additional

amino acids to the polypeptide chain at a particular location, insert sequences increase the gain in

contour length following unfolding of a subdomain in a predictable way. Any change in the observed

length increment can be pinpointed to the position in the molecule where the unfolding event

occurs. In this case, we engineered flexible (GS)8 insert sequences directly into wild-type Doc

between helices 1 and 2, in a flexible loop that was not expected to interfere with either of the two

binding modes. Structural homology models (Figure 5A) of the wild-type Doc and (GS)8 insert

Figure 4. Bulk and single-molecule characterization of Doc mutants. (A) Fluorescence binding curve showing binding of TagRFP-labelled Coh to wild-

type and mutant Doc nonspecifically immobilized in a 96-well plate. Both Q1 and Q3 mutants bound TagRFP-Coh similarly to wild-type with

dissociation constants (KD) in the low nM range. The negative control QQ mutant showed no binding. Solid lines are 4 parameter logistic nonlinear

regression model fits to the data. Error bars represent the standard deviation of three independent samples. (B) Event probabilities for single (opaque

colors) and double (translucent colors) Coh:Doc rupture peaks determined for Doc wild-type and DE/AA quadruple mutants. Data originate from 947,

4959, and 1998 force-extension traces from wild-type, Q1 and Q3 variants, respectively. Error bars represent 95% Clopper-Pearson confidence intervals

based on the beta probability distribution. (C) Relative difference in double peak rupture forces for the different Doc variants. Positive values indicate a

stronger final peak. Histograms represent concatenated data from various pulling speeds. Drawn lines are kernel density estimates calculated on the

raw data.

DOI: 10.7554/eLife.10319.007

The following source data is available for figure 4:

Source data 1. Probability Data.

DOI: 10.7554/eLife.10319.008
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sequence were calculated using the Phyre server (Kelley and Sternberg, 2009). If the 8-nm contour

length increment was caused by sequential unbinding of Doc helices 1 and 3 in wild-type Doc, then

double peaks for the poly (GS) constructs should show an increase in the double peak contour

length increment. As shown in Figure 5B,C and D, the contour length histogram for (GS)8 Doc was

indistinguishable from the wild-type Doc. No additional contour length was gained due to additional

amino acids inserted between Doc helices 1 and 2. Since the Doc was anchored to the glass slide

through an N-terminal xylanase domain, this result indicated that the unfolding event responsible for

the 8-nm length increment must be located upstream (i.e. N-terminal) from the site of the (GS)8-

insert. This result suggested that unfolding of calcium binding loop 1 and helix 1 in Doc was the

source of the 8-nm length increment.

Single-molecule evidence of dual binding mode
To finally confirm the presence of both bound conformations in wild-type Coh:Doc complexes, we

replaced xylanase with sfGFPand CBM with iLOV as the contour length marker or fingerprint

domains. iLOV was chosen as a superior unfolding fingerprint domain because it does not show mul-

tiple unfolding substeps (in contrast to xylanase), which simplified analysis. Also iLOV has an unfold-

ing force distribution that lies in a similar range as the Coh:Doc complex dissociation single and

Figure 5. Probing the final contour length increment with Poly (GS) inserts. (A) Structural homology model overlay of wild-type and mutant Doc

containing a (GS)8-linker between helix 1 and helix 3. The wild-type Doc is shown in green. The 16 amino acid long GS-insert is shown in purple

(Kelley and Sternberg, 2009) (remaining Doc domain not shown). (B) Typical force extension trace with final double rupture event depicted in green

(arrow). (C) Histogram and kernel density estimate of the transformation of the single force extension trace in panel B into contour length space (black)

and kernel density estimate of the whole dataset of single molecule Xyn-Doc:Coh-CBM traces bearing xylanase fingerprint and final double rupture

(gray, offset in y-direction for readability) in contour length space. (D) Histograms (bars, bin width: 1 nm), kernel density estimates (drawn lines,

bandwidth: 0.75 nm, gaussian kernel), and statistical test (Kolmogorov-Smirnov, ‘KS test’) are each calculated on the raw data of the final increments

(peak-to-peak distances) in contour length space (x-distance between arrow 1 and 2 in panel (C). Maxima for final double event increments lie at 7.75

nm and 7.73 nm for iLOV-Coh:Doc (wild-type)-sfGFP (N = 255) and Xyn-Doc (GS)8:Coh-CBM (N = 320) final ruptures, respectively (a two-sample KS test

on the raw data indicates no significant difference in the data distributions (p-value of 21.7%).

DOI: 10.7554/eLife.10319.009
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double peaks, allowing for effective biasing of the iLOV unfolding force distributions by the inherent

stability difference between single and double event peaks. Figure 6A shows characteristic single

and double event curves containing iLOV unfolding (36-nm contour length increment) followed by

Coh:Doc rupture as a single or double event. The rupture force distributions of the single and dou-

ble event (second peak) ruptures are shown in Figure 6B. The most probable rupture force for single

events was ~104 pN, while for double events this value was ~140 pN at a pulling speed of 800 nm/s.

We next calculated the unfolding force distributions of the iLOV domain for curves that terminated

with single events or double events. If the Coh:Doc complex ruptured before iLOV unfolding was

observed, the curve was eliminated from the dataset because it lacked a fingerprint domain length

increment. This criterion for inclusion in the dataset results in a biasing of the iLOV unfolding forces,

since the maximum of the fingerprint unfolding force distribution that can be observed must lie

below that of the Coh:Doc complex. The fact that we observed a downward shift in the iLOV unfold-

ing forces (Figure 6C) for curves that terminated in the less mechanically stable single rupture event

is confirmation that the single- and double-event peaks arise from separate bound conformations.

Each mode has a distinct mechanical stability and energy landscape that is set at the time of recep-

tor-ligand binding, that is once bound, the conformation of the complex does not change. If single-

and double-event unbinding patterns were simply two competing pathways out of the same bound

state, then the downward shift in rupture force distribution would not be observed for the iLOV

unfolding forces. Although this shift in rupture force distributions is comparatively subtle, it can be

observed accurately with high statistical significance. We note that the datasets for both binding

modes were measured with the same cantilever throughout the runtime of the whole experiment.

Calibration and drift issues therefore did not interfere with the required accuracy.

Figure 6. Biasing of unfolding force distributions by dual binding mode. (A) Typical force traces showing iLOV unfolding with final single (green) and

double (purple) complex ruptures. The curve terminating in a double peak is offset in the y-direction for clarity. (B) Final complex rupture force

distribution for single and double events. Double events are more mechanically stable. (C) iLOV domain unfolding forces for final single (green) and

double (red) events at a pulling velocity of 800 nm/s. Histograms (bars), kernel density estimates (lines), and statistical tests are each obtained from the

raw data. Maxima for iLOV unfolding lie at 96.0 pN and 102.7 pN for single (N = 172) and double (N = 277) final ruptures, respectively. A two-sample

Kolmogorov-Smirnov test showed significant differences in the data distributions (p-value of 0.09%). Since the data were all recorded with a single

cantilever and both event types were distributed equally throughout the runtime of the measurement, no systematic biasing is expected. Because of

the lower force distribution of final single peaks, the iLOV unfolding force distribution is truncated compared to final double peak force traces,

supporting the notion that the binding mode is set prior to mechanical loading of the complex.

DOI: 10.7554/eLife.10319.010
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Discussion
The relatively small ~8 kDa Doc domains exhibit an internal sequence and structural symmetry that is

believed to give rise to a dual mode of binding to Coh, as shown in Figure 1. In order to study this

remarkable plasticity in molecular recognition in greater detail, we prepared a series of mutants (Fig-

ure 2) designed to either knock out a specific binding mode or add length to the molecule at a spe-

cific position. Bulk experiments showed that Doc mutants Q1 and Q3, originally designed to

suppress one of the binding modes, were still able to bind Coh with high affinity, while the double

knockout did not bind (Figure 4A). The equilibrium affinities of Coh binding to Q1, Q3, or wild-type

were all similarly high with KDs in the low nM range, in good agreement with literature values

(Sakka et al., 2011), suggesting the two binding modes are thermodynamically equivalent and ren-

dering them indistinguishable with conventional methods such as ELISA or calorimetry. Techniques

like surface plasmon resonance could possibly show differing values for on- and off-rates for the

mutants, but would still not be able to resolve the binding modes within a wild-type population.

Force spectroscopy with the AFM interrogates individual molecules, and measures their mechani-

cal response to applied force. Since the technique is able to probe individual members of an ensem-

ble, it provided a means to quantify binding mode configurations by assigning unfolding/unbinding

patterns to the binding mode adopted by the individual complexes. Site-directed Q1 and Q3 muta-

tions supported the assignment of binding mode A to a characteristic double rupture peak dissocia-

tion pathway. Single events were assigned to binding mode B and showed no Doc unfolding sub-

step prior to complex rupture.

We consistently observed 8 nm of added contour length that separated the Doc double peaks.

Since force is applied to Doc from the N-terminus, we analyzed the Doc sequence starting at the N-

terminus and searched for reasonable portions of Doc that could unfold in a coordinated fashion to

provide 8 nm of contour length. The results from the GS-insert experiments (Figure 5) indicated no

change in the double-event contour length increment, regardless of the added GS-insert length

located between helix 1 and 3 in Doc. This result is consistent with the 8 nm length increment being

located N-terminally from the GS-insert site, implicating unfolding of Doc calcium binding loop 1

and helix 1 as the source of the 8 nm. This length accurately matches the estimated length increment

for unfolding calculated from the crystal structure (Figure 1D).

Although this result could also be consistent with the 8 nm increment being located somewhere

outside the Doc domain in the polyprotein, we deem this scenario highly unlikely. The 8 nm incre-

ment cannot be located in the Xyn or CBM domains because we have accounted for Xyn and CBM

lengths in their entirety based on the observed 89 nm and rare 57 nm length increments here and in

a previous study (Stahl et al., 2012), and for confirmation swapped out those domains for different

proteins completely (i.e. iLOV and GFP). The remaining possibility that the 8 nm is located within the

Coh domain is also not likely since the barrel-like structure of the Coh is known to be mechanically

highly stable (Valbuena et al., 2009; Hoffmann et al., 2013). Also, if the 8-nm length increment

were due to partial Coh unfolding, the Q1 and Q3 mutants would not be expected to affect the sin-

gle/double peak ratio or force differences between the double event peaks as was observed

(Figure 4B, C). The GS-insert data suggest the 8-nm length increment is located within Doc,

upstream (N-terminal) from the GS-insert site implicating calcium loop 1 and helix 1 in this unfolding

event.

Finally, we observed that an inherent difference in the mechanical stability of single and double

event rupture peaks (Figure 6B) could be used as a feature by which to discriminate the binding

modes. Our analysis algorithm accepted only the force curves that first showed iLOV fingerprint

domain unfolding followed by either a single- or double-rupture peak. By observing a small but sig-

nificant downward shift in the iLOV unfolding force distribution when analyzing curves that termi-

nated in the less stable single-event peak, we confirmed the single-event peaks originate from a

unique conformation that is ‘set’ at the time of complex formation.

Taken together, we propose an unbinding mechanism where the first barrier of the double peaks

represents unfolding of the N-terminal calcium binding loop and unraveling of alpha helix 1 up to

the Lys-Arg pair at sequence positions 18 and 19 in the wild-type structure in binding mode A.

Based on a length per stretched amino acid of 0.4 nm, the expected contour length for unfolding

the Doc domain up to this position would be 7.6 nm, in good agreement with the measured value of

8 nm within experimental error. A portion of the N-terminal calcium binding loop (i.e. residues S11-
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T12) is involved in binding to D39 in Coh. The first peak of the double events is attributed to break-

age of this interaction and simultaneous unfolding of calcium loop 1 and alpha helix 1 up to the Lys-

Arg pair at sequence positions 18 and 19. Another contributing factor is the intramolecular clasp

that has been identified as a stabilizing mechanism among similar type-I Doc domains (Slutzki et al.,

2013). A recent NMR structural study (Chen et al., 2014) on the same wild-type Doc used in this

work confirmed a hydrophobic ring-stacking interaction between Tyr-5 and Pro-66. Confirmation of

this clasp motif by NMR means the head and tail of the Doc are bound together, additionally stabi-

lizing the barrier that is overcome in the first of the double event peaks. In this scenario, subsequent

to breaking the interactions between the calcium binding loop and Coh, disrupting the intramolecu-

lar clasp and unfolding the N-terminal loop-helix motif, the remaining bound residues including Lys-

18, Arg-19, Lys-50, Leu-54, and Lys-55 stay bound to Coh and are able to withstand substantial force

on their own, eventually breaking in the second and final of the double rupture peaks. Prior work fur-

ther supports this unbinding mechanism, revealing that a progressive N-terminal truncation of Doc

did not affect the interaction largely, unless the truncation reached the Lys-18 and Arg-19 residues

(Karpol et al., 2009). This corroborates the idea of the C-terminal end of helix 1 being a crucial part

of the binding site within the complex. Single rupture peaks were thus observed when the wild-type

complex was bound in binding mode B, and no unfolding of Ca-binding loop 1 or helix 1 occurred.

Force was propagated directly to bound residues Lys-18, Leu-22, and Arg-23 which when broken

resulted in complete complex dissociation.

Given the fingerprint biasing phenomenon (Figure 6C), we finally sought to correct the single/

double peak counting statistics (Figure 4B) in order to correct for undercounting of single peaks

due solely to their failure to reach sufficiently high forces to unfold the fingerprint domain. Only

traces showing a fingerprint were analyzed to ensure defined unfolding geometry. Using the rupture

force distributions of singles, doubles, iLOV, and xylanase domains, we calculated the probability of

occurrence of fingerprint unfolding at a force higher than the single-event ruptures. This overlap

probability was found to be 0.85 for iLOV and 0.40 for xylanase. When the single/double peak ratios

for were corrected for this effect, the final binding mode ratios (binding mode A/binding mode B, i.

e., doubles/singles) were found to be 0.95 and 0.87 for xylanase-Doc and iLOV, respectively. These

ratios are close to 1 indicating comparable probability of each binding mode after accounting for

biasing the single/double peak counting statistics due to fingerprint domain stability. We note that

these numbers are also slightly lower than unity due to the exclusion of double peaks that occurred

before unfolding of the fingerprint domains. Further details on rupture force distributions and over-

lap statistics are shown in Figure 7. As the magnitude of biasing changes with the unfolding force

distributions of each fingerprint domain, overlaps in the probability distributions allow for normaliz-

ing single/double event ratios of experimental data sets with different fingerprinting domains. For

the Coh:Doc complex unbinding event, biasing (undercounting) is more pronounced for the mechan-

ically weaker single ruptures. This normalization procedure shows the relative difference of biasing

between single and double events, as double events are less biased than single events.

The biological significance of Coh-Doc interactions in the context of cellulosome assembly and

catalysis cannot be overstated. Their high affinity and specificity, along with their modularity, ther-

mostability, and their ultrastable mechanical properties all make Coh-Doc unique from a biophysics

perspective, and attractive from an engineering standpoint. Dual binding mode Doc domains are

broadly predicted among many cellulosome producing bacteria (e.g. C. thermocellum, C. cellulolyti-

cum, R. flavefaciens), however relatively few have been confirmed experimentally (Carvalho et al.,

2007; Pinheiro et al., 2008; Brás et al., 2012). In fact, the direct effect of single vs. dual binding

modes on the ability of cellulosomes to convert substrate into sugars is currently unknown. It is

therefore unclear whether or not dual binding modes affect, for example, the catalytic properties of

native or engineered synthetic cellulosomes.

However, it is important to note that cellulosome producing bacteria invariably live among com-

munities with other microorganisms, which may be producing cellulases and cellulosomes of their

own. In such an environment, a dual binding mode could enable organisms to produce enzymes that

are able to bind to a neighboring species’ scaffoldins, yet still retain high-affinity interactions with

host scaffoldins. They would be able to combine resources with neighboring cells in a mixed micro-

bial consortium. The dual binding mode could therefore allow genetic drift to explore interspecies

protein binding. Indeed, cross-species reactivity between Coh and Doc has been reported

(Haimovitz et al., 2008). Cellulosome-producing microbes may therefore be pursuing a middle
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Figure 7. Fingerprint unfolding and complex unbinding forces. (A) Rupture force distribution of final complex

ruptures for single (green), first (purple) and second (red) double unbinding events. (B) Overlap area (purple) of

iLOV domain unfolding force distribution (red) (iLOV-doubles curve class) with the rupture force distribution

(green) for single-event complex ruptures. (C) Overlap area (purple) of Xyn domain unfolding force distribution

(red) (Xyn-doubles curve class) with the rupture force distribution (green) for single-event complex ruptures.

Overlaps in probability distributions allow normalizing single-event counts to double events to account for

different biasing caused by the different unfolding forces of the fingerprint domain. Biasing occurs, because for

overlapping force distributions of fingerprint unfolding and complex ruptures, unbinding events are more likely to

take place without fingerprint unfolding if the two distributions are closer together. For the Coh:Doc unbinding,

this effect is more pronounced for the weaker single ruptures. Because double events are also biased, this still

does not give a true quantification, but only compensates for the differences of biasing. The non-bell-evans-like

shape of the single rupture peaks, especially in the region of the 1st double event peak (A) suggests that this class

of curves does not contain a single type of unbinding mechanism, but rather a superposition of different event

types.

DOI: 10.7554/eLife.10319.011
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ground between protein synthesis strictly for selfish vs. communal usage. By distinguishing the pres-

ence of each binding mode for wild-type Doc domains, the single-molecule biophysical approach

presented here based on differences in mechanical hierarchies will facilitate further study into the

significance of the dual binding mode.

In summary, the dual binding mode of Coh:Doc domains has so far proven resistant to explicit

experimental characterization. Crystallography combined with mutagenesis has provided snapshots

of the two modes, but resolving each of the modes for wild-type Doc under near native conditions

has up until now not been possible. We have demonstrated the advantages of a single-molecule

approach in resolving these subtle differences in molecular conformations of bound complexes.

Despite having equal thermodynamic binding affinity, when mechanically dissociated by pulling from

the N-terminus of Doc, binding mode A was more mechanically stable with an additional energy bar-

rier. This mechanical difference was exploited to probe the two binding modes independently from

one another, providing direct observation of this unique mechanism in molecular recognition. In the

future, harnessing control over binding modes could offer new approaches to designing molecular

assembly systems that achieve defined protein orientations.

Materials and methods

Site-directed mutagenesis of plasmid DNA
A pET28a vector containing the previously cloned xylanaseT6 from Geobacillus stearothermophilus

(Salama-Alber et al., 2013) and DocS dockerin from Clostridium thermocellum Cel48S were sub-

jected to QuikChange mutagenesis (Wang and Malcolm, 1999) to install the following mutations:

Q1, Q3, and QQ in the dockerin and T129C in the xylanase, respectively.

For insertion of the (GS)4 and (GS)8 linkers into the Doc domain, exponential amplification with

primers bearing coding sequences for the inserts at their 5’-ends was performed with a Phusion

High-Fidelity DNA polymerase (New England Biolabs, MA). PCR products were then blunt end

ligated using KLD Enzyme Mix and KLD Reaction Buffer from the Q5 site directed mutagenesis kit

(New England Biolabs, MA). The modified DNA constructs were used to transform Escherichia coli

DH5-alpha cells, grown on kanamycin-containing agar plates and subsequently screened. All muta-

genesis products were confirmed by DNA sequencing analysis.

Primers used for inserting the (GS)8 linker into the Doc domain:

Fw 5’-ggttctggctccggttctggctccagcatcaacactgacaat-3’

Rev 5’-agaaccggagccagagccggaacctatacctgatctcaaaacatatct-3’

Protein expression and purification
Fusion proteins HIS-CBM A2C-Coh2 (C.t.) were expressed in E. coli BL21(DE3)RIPL cells in kanamy-

cin-containing media supplemented with 2mM calcium chloride overnight at 16˚C. After harvesting,
cells were lysed by sonication, and the lysate was subjected to heat treatment at 60˚C for 30 min to

precipitate the bulk of the host bacterial proteins, leaving the expressed thermophilic proteins in

solution. The lysate was then pelleted, and the supernatant fluids were applied to a beaded cellulose

column and incubated at 4˚C for 1 hr. The column was then washed with 50 mM Tris buffer (pH 7.4)

containing 1.15 M NaCl, and the protein was eluted using a 1% (vl/v) triethylamine aqueous solution.

Tris buffer was added to the eluent and the solution was neutralized with HCl.

Fusion proteins HIS-Xyn T129C-DocS (C.t.) wild-type, Q1, and Q3 mutants were expressed as

described above. Following heat treatment, the supernatant fluids were applied to a Ni-NTA column

and washed with TBS buffer containing 20mM imidazole and 2mM calcium chloride. The bound pro-

tein was eluted using TBS buffer containing 250 mM imidazole and 2 mM calcium chloride. The solu-

tion was then dialyzed to remove the imidazole.

Fusion proteins ybbR-HIS-CBM A2C-Coh2 (C.t.), ybbR-HIS-Xyn T129C-DocS (C.t.) wild-type and

QQ mutants and ybbR-HIS-Xyn T129C-DocS (C.t.) (GS)4 insert were expressed in E. coli BL21(DE3)

RIPL cells; ybbR-HIS-Xyn T129C-DocS (C.t.) (GS)8 insert fusion protein variants were expressed in E.

coli NiCo21(DE3)RIPL cells. Cultivation and expression was done in ZYM-5052 autoinduction media

(Studier, 2005) containing kanamycin (and chloramphenicol, in case of the NiCo21(DE3)RIPL cells)

overnight at 22˚C, overall 24 hr. After harvesting, cells were lysed using sonication. The lysate was

then pelleted by centrifugation at 39,000 rcf, the supernatant fluids were applied to Ni-NTA columns
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and washed with TBS buffer. The bound protein was eluted using TBS buffer containing 200 mM

imidazole. Imidazole was removed with polyacrylamide gravity flow columns or with polyacrylamide

spin desalting columns.

All protein solutions were concentrated with Amicon centrifugal filter devices and stored in 50%

(v/v) glycerol at -20˚C (ybbR-free constructs) or -80˚C (ybbR-bearing constructs). The concentrations

of the protein stock solutions were determined to be in the order of 1–15 mg/mL by absorption

spectrophotometry at a wavelength of 280 nm.

ELISA-like binding assay
1 mM of Xyn-Doc fusion proteins (wild-type Q1, Q3, QQ Doc fusions) bearing either wild-type or

mutant Doc domains were adsorbed onto surfaces of the wells of a 96-well nunc maxi sorp plate

(Thermo Scientific, Pittsburgh, PA). After blocking (2% (w/v) BSA, 0.05% Tween 20 in TBS buffer)

and several rinsing steps, a red fluorescent protein-cohesin (StrepII-TagRFP-Coh2 (C.t.), Addgene ID

58,710 (Otten et al., 2014)) fusion construct was incubated to the unspecifically immobilized Doc

fusion proteins over a range of concentrations. After further rinsing, the fluorescence of the TagRFP

domain was measured with a multi-well fluorescence plate reader ( M1000 PRO, Tecan Group Ltd.,

Männedorf, Switzerland). Fluorescence values were plotted against their corresponding concentra-

tion values for each protein variant, and 4 parameter logistic nonlinear regression model functions

were fitted to the data to determine the transition point of the curve.

Surface immobilization strategies
The Xyn domain had a cysteine point mutation at position 129 (Xyn T129C) to facilitate covalent

attachment to a glass surface via Polyethylene glycol (PEG)-maleimide linkers. There were no other

cysteines within the Xyn or Doc domains, which ensured site-specific immobilization of the molecule

and defined mechanical loading of Doc from the N-terminus for the AFM experiments. The CBM

domain likewise contained an A2C cysteine point mutation for covalent attachment to the cantilever

tip via PEG-maleimide linkers. The second set of fusion proteins sfGFP-Doc and iLOV-Coh was cova-

lently attached to coenzyme A bearing PEG linkers by their terminal ybbR tags.

AFM sample preparation
For AFM measurements, silicon nitride cantilevers (Biolever mini, BL-AC40TS-C2, Olympus Corpora-

tion nominal spring constant: 100 pN/nm; 25 kHz resonance frequency in water), and glass coverslips

(Menzel Gläser, Braunschweig, Germany; diameter 22mm) were used. 3-Aminopropyl dimethyl

ethoxysilane (APDMES, ABCR GmbH, Karlsruhe, Germany), a-Maleinimidohexanoic-w-NHS PEG

(NHS-PEG-Mal, Rapp Polymere, Tübingen, Germany; PEG-MW: 5 kDa), immobilized tris (2-carboxy-

lethyl)phosphine (TCEP) disulfide reducing gel (Thermo Scientific, Pittsburgh, PA), tris

(hydroxymethyl) aminomethane (TRIS, >99% p.a., Carl Roth, Karlsruhe, Germany), CaCl2 (>99% p.a.,

Carl Roth, Karlsruhe, Germany), sodium borate (>99.8% p.a., Carl Roth, Karlsruhe, Germany), NaCl

(>99.5% p.a., Carl Roth, Karlsruhe, Germany), ethanol (>99% p.a.), toluene (>99.5% p.a., Carl Roth,

Karlsruhe, Germany) were used as received. Sodium borate buffer was 150 mM, pH 8.5. Measure-

ment buffer for AFM-SMFS was tris-buffered saline supplemented with 1 mM CaCl2 (TBS, 25 mM

TRIS, 75 mM NaCl, 1 mM CaCl2 pH 7.2). All buffers were filtered through a sterile 0.2 mm polyether-

sulfone membrane filter (Nalgene, Rochester, NY) prior to use.

Force spectroscopy measurement samples, measurements and data analysis were prepared and

performed according to previously published protocols (Jobst et al., 2013;Otten et al., 2014). In

brief, NHS-PEG-Maleimide linkers were covalently attached to cleaned and amino-silanized silicon

nitride AFM cantilevers and cover glasses. The respective protein constructs were covalently linked

either via engineered cysteine residues to the maleimide groups of the surface on the sample

directly, or via Sfp phosphopantetheinyl transferase-mediated attachment of a terminal ybbR tag to

coenzyme A, which was previously attached to the maleimide groups of the surface.

AFM-SMFS measurements
AFM data were recorded in 25 mM TRIS pH 7.2, 75 mM NaCl and 1mM CaCl2 buffer solution (TBS).

Retraction velocities for constant speed force spectroscopy measurements varied between 0.2 and

3.2 mm/s. Cantilever spring constants were calibrated utilizing the thermal method applying the
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equipartition theorem to the one dimensionally oscillating lever (Hutter and Bechhoefer,

1993; Cook et al., 2006). Measurements were performed on custom built instruments, deploying an

Asylum Research (Santa Barbara, CA, USA) MFP-3D AFM controller and Physik Instrumente (Karls-

ruhe, Germany) or attocube (Munich, Germany) piezo nanopositioners (Gumpp et al., 2009). After

each measurement, the xy-stage was actuated by 100 nm to probe a new spot on the surface and

measure new individual Xyn-Doc fusion molecules. Instrument control software was programmed in

Igor Pro 6.3 (Wavemetrics). The retraction speed was controlled with a closed-loop feedback system

running internally on the AFM controller field-programmable gate array (FPGA).

Force-extension data analysis
Data analysis and plotting was performed in Python (Python Software Foundation. Python Language

Reference, version 2.7. Available at http://www.python.org) utilizing the libraries NumPy and SciPy

(van der Walt et al., 2011) and Matplotlib (Hunter, 2007).

Measured raw data were analyzed by determining the zero force value with the baseline position

and applying a cantilever bending correction to the z-position. The resulting force distance traces

were coarsely screened for peaks as sudden drops in force and curves with less than three peaks

(such as in Figure 3—figure supplement 1, panel F) were excluded, as they contain no clearly iden-

tifiable signal. Force-distance traces were transformed into contour length space with the inverse

worm-like-chain model (Jobst et al., 2013), assuming a fixed persistence length of 0.4 nm. Screen-

ing for the 89 nm xylanase, the 36nm iLOV and the final 8 nm final double rupture increment was

performed by finding their corresponding local maxima in a kernel density estimate with bandwidth

b = 1 nm. Thresholds in force, distance, and peak counts were applied to sort out nonspecific and

multiple interactions. All curves were ultimately selected for the xylanase or iLOV fingerprint and

checked manually. For the counting statistics, double peaks were detected as an increment of 8 +- 4

nm in contour length for final rupture peaks in the contour length plot, given that the curve showed

one of the fingerprints. If a double peak was detected, the force difference was determined as the

percentual difference between the first and the final rupture peak force.

Barrier position diagrams were assembled using optimal alignment through cross-correlation

(Puchner et al., 2008; Otten et al., 2014). The numbers of points included in fitted histograms are

provided in the figure captions, along with the statistical tests and significance values obtained.

Amino acid sequences
pET28a-HIS-XynT129C-DocS (C.t.) wild-type
MSHHHHHHKNADSYAKKPHISALNAPQLDQRYKNEFTIGAAVEPYQLQNEKDVQMLKRHFNSIVAENV-

MKPISIQPEEGKFNFEQADRIVKFAKANGMDIRFHTLVWHSQVPQWFFLDKEGKPMVNECDPVKREQNK-

QLLLKRLETHIKTIVERYKDDIKYWDVVNEVVGDDGKLRNSPWYQIAGIDYIKVAFQAARKYGGDNIKLYM-

NDYNTEVEPKRTALYNLVKQLKEEGVPIDGIGHQSHIQIGWPSEAEIEKTINMFAALGLDNQITELDVSM-

YGWPPRAYPTYDAIPKQKFLDQAARYDRLFKLYEKLSDKISNVTFWGIADNHTWLDSRADVYYDANGNV-

VVDPNAPYAKVEKGKGKDAPFVFGPDYKVKPAYWAIIDHKVVPGTPSTKLYGDVNDDGKVNSTDAVALK-

RYVLRSGISINTDNADLNEDGRVNSTDLGILKRYILKEIDTLPYKN

pET28a-ybbR-HIS-XynT129C-DocS (C.t.) 16aa GS Insert
MGTDSLEFIASKLALEVLFQGPLQHHHHHHPWTSASKNADSYAKKPHISALNAPQLDQRYKNEFTIGAAV-

EPYQLQNEKDVQMLKRHFNSIVAENVMKPISIQPEEGKFNFEQADRIVKFAKANGMDIRFHTLVWHSQVP-

QWFFLDKEGKPMVNECDPVKREQNKQLLLKRLETHIKTIVERYKDDIKYWDVVNEVVGDDGKLRNSPWY-

QIAGIDYIKVAFQAARKYGGDNIKLYMNDYNTEVEPKRTALYNLVKQLKEEGVPIDGIGHQSHIQIGWPSE-

AEIEKTINMFAALGLDNQITELDVSMYGWPPRAYPTYDAIPKQKFLDQAARYDRLFKLYEKLSDKISNVTFW-

GIADNHTWLDSRADVYYDANGNVVVDPNAPYAKVEKGKGKDAPFVFGPDYKVKPAYWAIIDHKVVPGT-

PSTKLYGDVNDDGKVNSTDAVALKRYVLRSGIGSGSGSGSGSGSGSGSSINTDNADLNEDGRVNSTDLGI-

LKRYILKEIDTLPYKN

pET28a-HIS-XynT129C-DocS (C.t.) Q1 mutant
MSHHHHHHKNADSYAKKPHISALNAPQLDQRYKNEFTIGAAVEPYQLQNEKDVQMLKRHFNSIVAENV-

MKPISIQPEEGKFNFEQADRIVKFAKANGMDIRFHTLVWHSQVPQWFFLDKEGKPMVNECDPVKREQNK-
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QLLLKRLETHIKTIVERYKDDIKYWDVVNEVVGDDGKLRNSPWYQIAGIDYIKVAFQAARKYGGDNIKLYM-

NDYNTEVEPKRTALYNLVKQLKEEGVPIDGIGHQSHIQIGWPSEAEIEKTINMFAALGLDNQITELDVSM-

YGWPPRAYPTYDAIPKQKFLDQAARYDRLFKLYEKLSDKISNVTFWGIADNHTWLDSRADVYYDANGNV-

VVDPNAPYAKVEKGKGKDAPFVFGPDYKVKPAYWAIIDHKVVPGTPSTKLYGDVNDDGKVNDEDAVALA-

AYVLRSGISINTDNADLNEDGRVNSTDLGILKRYILKEIDTLPYKN

pET28a-HIS-XynT129C-DocS (C.t.) Q3 mutant
MSHHHHHHKNADSYAKKPHISALNAPQLDQRYKNEFTIGAAVEPYQLQNEKDVQMLKRHFNSIVAENV-

MKPISIQPEEGKFNFEQADRIVKFAKANGMDIRFHTLVWHSQVPQWFFLDKEGKPMVNECDPVKREQNK-

QLLLKRLETHIKTIVERYKDDIKYWDVVNEVVGDDGKLRNSPWYQIAGIDYIKVAFQAARKYGGDNIKLYM-

NDYNTEVEPKRTALYNLVKQLKEEGVPIDGIGHQSHIQIGWPSEAEIEKTINMFAALGLDNQITELDVSM-

YGWPPRAYPTYDAIPKQKFLDQAARYDRLFKLYEKLSDKISNVTFWGIADNHTWLDSRADVYYDANGNV-

VVDPNAPYAKVEKGKGKDAPFVFGPDYKVKPAYWAIIDHKVVPGTPSTKLYGDVNDDGKVNSTDAVALK-

RYVLRSGISINTDNADLNEDGRVNDEDLGILAAYILKEIDTLPYKN

pET28a-HIS-XynT129C-DocS (C.t.) QQ mutant
MSHHHHHHKNADSYAKKPHISALNAPQLDQRYKNEFTIGAAVEPYQLQNEKDVQMLKRHFNSIVAENV-

MKPISIQPEEGKFNFEQADRIVKFAKANGMDIRFHTLVWHSQVPQWFFLDKEGKPMVNECDPVKREQNK-

QLLLKRLETHIKTIVERYKDDIKYWDVVNEVVGDDGKLRNSPWYQIAGIDYIKVAFQAARKYGGDNIKLYM-

NDYNTEVEPKRTALYNLVKQLKEEGVPIDGIGHQSHIQIGWPSEAEIEKTINMFAALGLDNQITELDVSM-

YGWPPRAYPTYDAIPKQKFLDQAARYDRLFKLYEKLSDKISNVTFWGIADNHTWLDSRADVYYDANGNV-

VVDPNAPYAKVEKGKGKDAPFVFGPDYKVKPAYWAIIDHKVVPGTPSTKLYGDVNDDGKVNDEDAVALA-

AYVLRSGISINTDNADLNEDGRVNDEDLGILAAYILKEIDTLPYKN

pET28a-ybbR-HIS-sfGFP-DocIS (C.t.)
MGTDSLEFIASKLALEVLFQGPLQHHHHHHPWTSASSKGEELFTGVVPILVELDGDVNGHKFSVRGEGEG-

DATIGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGKYK-

TRAVVKFEGDTLVNRIELKGTDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFTVRHNVEDGSVQL-

ADHYQQNTPIGDGPVLLPDNHYLSTQTVLSKDPNEKRDHMVLHEYVNAAGITHGMDELYKKVVPGTPST-

KLYGDVNDDGKVNSTDAVALKRYVLRSGISINTDNADLNEDGRVNSTDLGILKRYILKEIDTLPYKN

pET28a-ybbR-HIS-CBM A2C-Coh2 (C.t.)
MGTDSLEFIASKLALEVLFQGPLQHHHHHHPWTSASMCNTVSGNLKVEFYNSNPSDTTNSINPQFKVTNT-

GSSAIDLSKLTLRYYYTVDGQKDQTFWCDHAAIIGSNGSYNGITSNVKGTFVKMSSSTNNADTYLEISFTG-

GTLEPGAHVQIQGRFAKNDWSNYTQSNDYSFKSASQFVEWDQVTAYLNGVLVWGKEPGGSVVPSTQP-

VTTPPATTKPPATTIPPSDDPNAGSDGVVVEIGKVTGSVGTTVEIPVYFRGVPSKGIANCDFVFRYDPNVLEII-

GIDPGDIIVDPNPTKSFDTAIYPDRKIIVFLFAEDSGTGAYAITKDGVFAKIRATVKSSAPGYITFDEVGGFAD-

NDLVEQKVSFIDGGVNVGNAT

pET28a-ybbR-HIS-iLOV-Coh2 (C.t.)
MGTDSLEFIASKLALEVLFQGPLQHHHHHHPWTSASGSPEFIEKNFVITDPRLPDNPIIFASDGFLELTEYSR-

EEILGRNARFLQGPETDQATVQKIRDAIRDQRETTVQLINYTKSGKKFWNLLHLQPVRDQKGELQYFIGV-

QLDGSDHVGSVVPSTQPVTTPPATTKPPATTIPPSDDPNAGSDGVVVEIGKVTGSVGTTVEIPVYFRGVPSK-

GIANCDFVFRYDPNVLEIIGIDPGDIIVDPNPTKSFDTAIYPDRKIIVFLFAEDSGTGAYAITKDGVFAKIRATV-

KSSAPGYITFDEVGGFADNDLVEQKVSFIDGGVNVGNAT

pET28a-StrepII-TagRFP-Coh2 (C.t.)
MWSHPQFEKVSKGEELIKENMHMKLYMEGTVNNHHFKCTSEGEGKPYEGTQTMRIKVVEGGPLPFAFDI-

LATSFMYGSRTFINHTQGIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSLQDGCLIYNVKIRGVNFPS-

NGPVMQKKTLGWEANTEMLYPADGGLEGRSDMALKLVGGGHLICNFKTTYRSKKPAKNLKMPGVYYVD-

HRLERIKEADKETYVEQHEVAVARYCDLPSKLGHKLNGSVVPSTQPVTTPPATTKPPATTIPPSDDPNAGSD-

GVVVEIGKVTGSVGTTVEIPVYFRGVPSKGIANCDFVFRYDPNVLEIIGIDPGDIIVDPNPTKSFDTAIYPDRKII-

VFLFAEDSGTGAYAITKDGVFAKIRATVKSSAPGYITFDEVGGFADNDLVEQKVSFIDGGVNVGNAT
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ABSTRACT: Cellulosomes are polyprotein machineries that efficiently degrade
cellulosic material. Crucial to their function are scaffolds consisting of highly
homologous cohesin domains, which serve a dual role by coordinating a multiplicity
of enzymes as well as anchoring the microbe to its substrate. Here we combined two
approaches to elucidate the mechanical properties of the main scaffold ScaA of
Acetivibrio cellulolyticus. A newly developed parallelized one-pot in vitro tran-
scription−translation and protein pull-down protocol enabled high-throughput
atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS)
measurements of all cohesins from ScaA with a single cantilever, thus promising
improved relative force comparability. Albeit very similar in sequence, the hanging cohesins showed considerably lower unfolding
forces than the bridging cohesins, which are subjected to force when the microbe is anchored to its substrate. Additionally, all-
atom steered molecular dynamics (SMD) simulations on homology models offered insight into the process of cohesin unfolding
under force. Based on the differences among the individual force propagation pathways and their associated correlation
communities, we designed mutants to tune the mechanical stability of the weakest hanging cohesin. The proposed mutants were
tested in a second high-throughput AFM SMFS experiment revealing that in one case a single alanine to glycine point mutation
suffices to more than double the mechanical stability. In summary, we have successfully characterized the force induced unfolding
behavior of all cohesins from the scaffoldin ScaA, as well as revealed how small changes in sequence can have large effects on
force resilience in cohesin domains. Our strategy provides an efficient way to test and improve the mechanical integrity of protein
domains in general.

■ INTRODUCTION

Multidomain protein scaffolds organize cellulolytic enzymes
and provide adhesion between the host cell and its substrate. In
cellulosomes, these so-called scaffoldins utilize various
orthogonal high-affinity receptor−ligand interactions between
cohesins and dockerins to anchor themselves to the cell’s
exterior membrane and to coordinate a broad arsenal of
cellulolytic enzymes.1−3 Cellulosomes are extracellular poly-
protein complexes produced by many microorganisms for the
efficient degradation of cellulose and hemicellulose, two of
nature’s most abundant polymers. In addition to multiple
repeats of cohesin domains, scaffoldins may also contain other
ancillary domains, such as enzymatic subunits or carbohydrate-
binding modules (CBMs).4 Cellulosomes represent an advanta-
geous strategy compared to the secretion of freely soluble
enzymes for cellulose degradation, because they achieve both
robust adhesion to the substrate and synergistic and
cooperative interplay between the enzymes. This complex
synergy is based on the spatial organization and enhanced local

concentration. Due to their remarkable ability to achieve these
complex tasks, cellulosomes have become a prime instructive
example of molecular systems offering modularity, self-
assembly, and highly efficient enzymatic catalysis.5 Aside from
the unique role they play in the degradation of cellulolytic
material, cellulosomal scaffoldins are especially interesting as
building blocks in a biotechnological toolbox. Cohesin−
dockerin interactions with orthogonal specificities can be used
to post-translationally incorporate selected enzymes or other
auxiliary domains in specific locations by self-assembly within
rationally designed multicomponent complexes.6−8

In this study, we focused on a scaffoldin of the cellulosome-
producing organism Acetivibrio cellulolyticus, a gram-negative,
anaerobic bacterium found in mechanically demanding environ-
ments, such as sewage sludge9 or the bovine rumen.10 Although
A. cellulolyticus expresses an exceptionally branched and diverse
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cellulosome,11 the assembly of the majority of its cellulolytic
enzymes relies mainly on a single scaffoldin (ScaA)12 (Figure
1). Simultaneously, ScaA has the essential function of targeting
specific substrates and anchoring the cell to the cellulose fibril
via its single CBM. ScaA therefore serves a dual purpose for the
organism by incorporating catalytic modules into the
cellulosome complex and by adhering the bacterium to the
cellulosic substrate, making it the key player in A. cellulolyticus
cellulosome.
ScaA consists of an N-terminal glycoside hydrolase domain,

seven type-I cohesins, a CBM located between cohesins 3 and
4, and a C-terminal type-II dockerin domain. Cohesins 4
through 7 are located between the CBM and the anchoring
type-II Doc and form the so-called “bridging” region of the
scaffoldin, while cohesins 1 through 3 are located exterior from
the CBM and form the “hanging” region of this scaffoldin. It
had been hypothesized that the cohesins of the bridging region
will be subjected to higher mechanical stress compared to the
hanging cohesins because the CBM anchors the cell to the
cellulose substrate and the domains located within the hanging
region are not expected to be mechanically stressed in vivo.13

The organism may have adapted the bridging cohesins to these
conditions, and therefore, they should be able to withstand
higher mechanical stress in order to maintain a folded structure.
This hypothesis of bridging versus hanging cohesins within

cellulosomal scaffoldins has previously been successfully tested
in part for the CipA scaffoldin of Clostridium thermocellum.
These prior results showed that cohesins from the bridging
region withstood higher unfolding forces compared to those
from the hanging region.13 This behavior has been attributed to
slight differences in the stability of the mechanical clamp motifs,
which are structural elements formed by backbone hydrogen
bonds between parallel β-strands of the N- and C-terminal ends
of the cohesin protein domains.
Since the mechanobiology of cellulosomes is key to their

function, we investigated the mechanostability of cohesins of
the ScaA scaffoldin as well as several derived mutants at the
single molecular level. The high sequence similarity between
the selected cohesins raises the question of how differently
these cohesins withstand mechanical stress. It is known that
small variations in cohesin primary sequences are responsible
for determining the specificity of interactions with their
dockerin binding partners,14,15 but very little is known about

how sequence variations affect mechanical stability. To address
these points, we performed automated atomic force microscope
(AFM)-based single molecule force spectroscopy (SMFS)
experiments, a technique that has been established as a robust
standard approach to investigate the mechanics of individual
molecules.16−22 The fast dynamics and particularly the large
force range of AFM-SMFS made it a prime choice for our
investigations. To ensure improved relative force comparability
and high experimental throughput, we developed a parallelized
AFM sample preparation method, which utilizes a one-step
protein expression and surface immobilization protocol which
is a simplified and easy-to-use version of work previously
introduced by our group.23 At the same time, we carried out
steered molecular dynamics (SMD) simulations on structural
protein models derived from a homology modeling strategy,
which improved our understanding of the cohesin mechanost-
ability at the submolecular level. By employing cross-correlation
based network analysis on simulation trajectories, we identified
regions involved in structural stability outside the mechanical
clamp motif and proposed mutations to pin down single crucial
amino acids involved in fold strength. This so-called dynamical
network analysis has been successfully employed before to
investigate force propagation pathways in cohesin−dockerin
complexes24 and in filamins.25 We tested the proposed mutants
experimentally to verify the influence of the proposed
alterations on mechanical stability. Employing this combined
computational/experimental approach, we were able to predict
and verify, among others, a single point mutation outside of the
mechanical clamp motif of cohesin 1, which increased its
mechanical stability 2.6-fold. The ability to predict such a
remarkable difference in mechanostability reveals the potential
of our combined approach to characterize and manipulate the
mechanical properties of protein domains.

■ RESULTS

AFM-Based SMFS. As specific pulling handles throughout
this study we used a type-III cohesin−dockerin complex
(Coh3:XDoc3) from Ruminococcus f lavefaciens, which ensured a
high yield of single-molecule interaction curves because of its
high specificity and long-term stability. This pulling handle
enabled the unfolding of mechanically rigid cohesins due to its
high receptor−ligand rupture force of more than 600 pN.26 It is
important to note here that the Coh3:XDoc3 interaction, which

Figure 1. Simplified schematics of the cellulosome of A. cellulolyticus. The scaffoldin ScaA binds up to 7 cellulolytic enzymes via cohesin−dockerin
interactions and attaches the multienzyme complex to the cellulose microfibril through a CBM module, ensuring close proximity of the enzymes and
substrate. Simultaneously, ScaA anchors the assembled cellulosome to the cell wall of the microbe via a type-II cohesin−dockerin complex. The
bridging cohesins 4−7 in particular have to withstand the forces between the cellulose fibril and microbe caused by flow gradients in the
environment.
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we employed as a specific pulling handle, is orthogonal to the
ScaA cohesin domains that were unfolded under force and thus
does not interact with them. ScaA cohesin domains from the
bridging or hanging region were cloned in frame with XDoc3
and synthesized using cell-free expression (see below). The
cohesins of interest therefore carried the XDoc3 domain at
their C-termini, which was able to bind to the Coh3 on the
cantilever. The cantilever carried covalently and site-specifically
immobilized Coh3 domains, which were recombinantly ex-
pressed as fusion proteins with the fourth immunoglobulin rod
filamin domain from Dictyostelium discoideum (ddFLN4).27,28

We used the ddFLN4 as fingerprint domain within the
molecular chain to reliably rule out data traces with unspecific
or multiple interactions. The fingerprint domain unfolds at
relatively low forces (∼100 pN) and its contour length
increment (∼34 nm) differs significantly from the expected
contour length increments of the cohesins (∼45 nm).
Furthermore, based on our experience we knew that ddFLN4
reliably refolds following mechanical unfolding when bound to
the cantilever.
As calibration errors of up to 15% come with cantilever-based

force measurements,29 the precision and therefore the
comparability of individual SMFS experiments is limited by
the accuracy of the calibration of the cantilever spring constant.
This limitation can be circumvented by presenting a set of
molecules in a covalently linked microarray format on a single
glass slide in predetermined positions.23 Taking advantage of
this setup, the proteins of interest can all be measured with a
single cantilever in a high-throughput fashion, and large sets of
molecular constructs can be compared in a single AFM
measurement session. Although the systematic error of
cantilever calibration will still be up to 15%, the relative
stability of the proteins can be assessed with extremely high

precision, allowing us to detect differences in stability well
below 15%.
We have previously reported the use of microfluidics in

combination with an intricate multistep in vitro on-chip protein
expression and covalent surface attachment protocol.23 Here we
were able to reduce the complexity of the setup significantly,
gaining throughput as well as flexibility. We developed a new
sample preparation protocol, which is schematized in Figure 2a.
Briefly, a silicone mask was placed on a glass slide to form
microwells, and the resulting spots were covalently function-
alized with PEG−Coenzyme A. The individual wells were filled
with an in vitro transcription/translation (IVTT) system, along
with the plasmid DNA encoding for the fusion proteins and
phosphopantetheinyl transferase (Sfp).30 In a single incubation
step, this mixture resulted in cell-free protein synthesis, and
simultaneous covalent ligation of the protein library onto the
surface through a ybbR-tag30 at the N-terminus. The mask was
removed from the glass slide and the spatially separated protein
spots were probed in series using a single functionalized
cantilever. The combination of a site-specific N-terminal
enzyme-mediated immobilization strategy, and a specific C-
terminal pulling handle ensured that only fully expressed
constructs were probed by the AFM. We recorded 2000 pulling
cycles per protein spot while continuously cycling through the
array in an automated fashion. No further user interaction was
required after the start of the experiment, which allowed long-
term multiday measurements to build up large statistics for each
construct.
A typical force versus distance trace is shown in Figure 2b.

The cantilever approached the surface, and Coh3 bound to
XDoc3. Upon retraction of the cantilever with constant speed,
the polypeptide chain stretched until the ddFLN4 fingerprint
unfolded in a distinct two-step pattern, followed by the

Figure 2. Schematics of the experimental design and exemplary force curve. (a) A multiwell mask is attached to a glass slide, and the surface is
functionalized with PEG−Coenzyme A. In a one-pot reaction, an IVTT-kit expresses the proteins of interest containing a ybbR-tag at their N-
termini, and an XDoc3 domain at their C-termini. Sfp catalyzes a reaction to bind the constructs site-specifically and covalently to the PEG−CoA
spacers. After removal of the multiwell mask, the different constructs are probed by the same AFM tip in an automated fashion. (b) Exemplary
force−distance trace showing the unfolding of ybbR−cohesin−XDoc3 immobilized on the surface and the Coh3−ddFLN4−ybbR bound to the
cantilever, when the cantilever is retracted from the surface with constant speed. A typical curve shows a two-step unfolding and subsequent
stretching of the ddFLN4 fingerprint domain (blue), followed by the unfolding (indicated by an arrow) and stretching of the cohesin domain under
investigation (red) and a final rupture of the Coh3:XDoc3 complex.
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unfolding of the respective cohesin under investigation. Finally
the Coh3:XDoc3 bond ruptured typically at forces of ∼780 pN
at force loading rates of ∼105 to 106 pN/s. The heights of the
various peaks are plotted in the histograms of Figures 3 and 5.
Only force curves displaying a distinct combination of contour
length increments (ddFLN4 ∼ 34 nm,27,28 cohesin ∼ 45 nm)
were included in our analysis. Alignments of all relative contour
length increments from all pulling experiments can be found in
the Supporting Information (Supplemental Figure S1).
AFM-Based SMFS on ScaA’s Wild-Type Cohesins. To

investigate the mechanical stability of A. cellulolyticus’ scaffoldin
ScaA, seven distinct surface spots (one for each cohesin) were
prepared using the one-step expression/immobilization reac-
tion described above. All data were collected using a single
cantilever. Figure 3 shows the resulting unfolding and rupture
force distributions. The outer histograms show very similar
force distributions of the fingerprint domain ddFLN4 and of
the pulling handle Coh3:XDoc3 independent of the measured
molecular construct, which agreed with previously reported
literature values.26,27 Coh3:XDoc3 showed a sharp peak at
∼780 pN and a minor shoulder at ∼600 pN, both of which are
known features of this molecular complex.26 The remarkable
consistency in force among different molecular constructs
indicated low force drift during the course of the experiment
and confirmed our ability to achieve precise relative
comparability of the unfolding forces of the cohesins. Following
work done by the Schulten31 group and Evans and Ritchie32 in
1997, the cohesin unfolding force distributions can be fitted
using a two-state model (from here on called the Bell−Evans
model).

With the exception of cohesin 1, all unfolding force
distributions could be fitted using the Bell−Evans model,
indicating a stable fold and a single barrier unfolding pathway
dominating the unfolding process, and most probable rupture
forces were obtained. The measured unfolding forces of cohesin
1 resulted in a more complex force distribution. Individual
AFM force−distance traces gave no hints of any peculiarities in
comparison to the unfolding traces of the other cohesins. We
hypothesize that cohesin 1 exhibits more than one distinct fold
or has several multibarrier unfolding pathways that precluded
its unfolding force distribution to be fitted using a simple two-
state model. In this case, we used kernel density estimation
(KDE) as a means to smooth the unfolding force histogram
and obtain the most probable unfolding force. As originally
hypothesized, the three hanging cohesins showed in fact a
considerably lower most probable unfolding force (for full
width at half-maximum (fwhm) errors, see Figure 3) (cohesin
1, 139 pN; cohesin 2, 402 pN; cohesin 3, 346 pN) compared to
the four bridging cohesins (cohesin 4, 578 pN; cohesin 5, 587
pN; cohesin 6, 461 pN; cohesin 7, 523 pN).

Cohesin Homology Models. Since structural data were
not available for any of the ScaA cohesins, a homology
modeling strategy was adopted,33 employing Modeller 9.1734 to
obtain structural models for all the cohesins investigated here
(Figure 4b). Using BLAST,35 we obtained homologous cohesin
structures (PDB IDs 1G1K, 4DH2, 2VN6, and 4UMS) within
the Protein Data Bank36 (PDB). These structures were then
used as templates to derive the homology models that were
further refined with molecular dynamics (MD) simulations.
Equilibration for 100 ns was performed using NAMD37

Figure 3. Unfolding and rupture force histograms of wild-type ScaA cohesins. Histograms showing the unfolding and unbinding forces of the
fingerprint domain ddFLN4 (blue), the hanging (light red) and bridging (dark red) cohesins of ScaA, and the Coh3:XDoc3 receptor−ligand pulling
handle (gray). The force distributions of the ddFLN4 fingerprint and the Coh3:XDoc3 handle are independent of the measured ScaA cohesin
construct, which allows for improved relative force comparability of the ScaA cohesins. Unfolding force distributions of cohesins 2−7 were fitted
following the Bell−Evans model (dashed lines). A kernel density estimation (KDE) was used to obtain the most probable unfolding force (±fwhm)
of cohesin 1 (dotted line). All data were recorded using a single cantilever with a spring constant of 225 pN/nm at a retraction speed of 1600 nm/s
during a 24 h automated SMFS experiment.
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through its QwikMD interface38 (see Supplemental Figures S2,
S3, and S4). Comparison of the aligned structures (Supple-
mental Figure S5A) reveals that all seven cohesins of ScaA
show a similar general fold. Even though the range of identity
between our model cohesins and the best available structural
templates was between 33% and 45%, cohesins always present a
very similar fold, helping the structure prediction.
SMD Simulations and Network Analyses. To evaluate

the behavior of ScaA’s cohesins under force, we performed
SMD simulations31,39 using NAMD and QwikMD, where the
N-termini of the constructs were fixed and the C-termini were
pulled with constant velocity. Employing four different pulling
speeds, we investigated first all the unfolding steps in long (on
the order of microseconds) SMD simulations. For all cohesins,
the first part to unfold with highest peak force is the C-terminal
region with β-strand I, followed by β-strand H losing its
structure (see Supplemental Figure S7). Next, in the N-

terminal region, both β-strands A and B lose their structure
almost at the same time in most simulations. β-strands C−G
finally lose structure under relatively low force (see
representative unfolding analysis in Supplemental Figure S8).
The force necessary to break any of the cohesin folds was
observed to be equal to the force required to unfold the C-
terminal segment of these cohesins. Therefore, to obtain
statistically relevant mechanical stability behavior, we per-
formed many 20 ns long simulation replicas (at least 25 replicas
per construct). Figure 5a shows the peak unfolding forces, as
well as the sequence identity between the cohesins of ScaA and
their respective best available structural template. With few
exceptions, the simulation replicas revealed qualitatively the
same general trend of the unfolding force peak distributions as
measured by SMFS (Figure 3). The absolute forces however
are shifted in the simulations toward higher values
(Supplemental Figure S9), which was to be expected due to

Figure 4. Sequence alignment and modeling workflow. (a) Sequence alignment of all cohesins of ScaA reveals high overall conservation. The amino
acids thought to be primarily involved in mechanical stability13 are represented by green boxes. Regions primarily involved in dockerin recognition
and binding are represented in red boxes. The background colors of the letters represent BLOSUM 70 sequence alignment score, from high (dark
blue) to low (red). A high resolution version can be found in Supplemental Figure S6. (b) Schematic representation of molecular modeling and
dynamics protocol. Homologous protein structures were obtained by running the sequences of the cohesins against the Protein Data Bank using
BLAST. Most highly identical structures with high sequence coverage were then used as templates to obtain structural models using Modeller 9.17.
Models were properly solvated employing QwikMD and equilibrated for 100 ns of unbiased molecular dynamics simulations using NAMD. A very
similar fold was observed for all seven cohesins, here colored ranging from red to blue based on its residue index number. SMD simulations were
performed by holding the N-termini and pulling the C-termini with constant velocity.
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much higher force loading rates of the simulations compared to
the AFM experiments.
A force offset between MD simulations and SMFS

experiments can easily be understood in view of the Bell−
Evans model, which predicts a linear dependence of the
unfolding force from the logarithm of the force loading rate. To
corroborate this assumption, we varied the pulling rate in the
SMFS experiments of cohesin 3 and plotted the measured
unfolding forces together with the corresponding MD
simulations in Figure 5b. The dashed line represents the best
fit to the experimental data extrapolated to the MD time
domain; the dotted line fits both the experimental and the
simulation data. The resulting distances to the transition state
of 0.14 ± 0.012 nm and 0.17 ± 0.0015 nm agree very well with
literature values of comparable cohesin protein struc-
tures.13,15,26 It is important to note that the slope in the
dynamic force spectrum can change with increasing pulling
speeds, resulting in a nonlinear upturn at higher pulling
velocities as shown by Rico et al.18 This effect is caused by a
shift from a stochastic to a deterministic unfolding regime. In
the former, the unfolding process is governed by spontaneous,

thermal unfolding under a given force, while in the latter, the
high pulling velocities leave the protein insufficient time to
sample its energy landscape. As described in the Dudko,
Hummer, and Szabo model (DHS model), the regime
transition can happen at different loading rates and is
characterized by the critical force, Fc = 2ΔG/Δx.40 The
position of the transition from stochastic to deterministic
regime therefore strongly depends on the general mechanical
stability of the system under investigation. Fitting the DHS
model to the data in Figure 5b resulted in a critical force Fc ≈
2500 pN, suggesting that our SMD simulations were carried
out at loading rates where unfolding is still dominated by
stochastic fluctuations. This indicates that the SMD simulations
provide an accurate description of the unfolding process of the
system in this study.
The aforementioned results motivated a detailed analysis of

the molecular structures and interactions, which could give rise
to the particular properties of the different cohesins. Using
Pearson cross-correlation-based force propagation analysis, a
recently introduced protocol for the analysis of load
distributions in molecular complexes,24 we calculated the

Figure 5. SMD peak force results, dynamic force spectrum, force propagation pathways, and community analysis. (a) SMD peak unfolding forces
from each simulation replica (black dots) and average peak force per cohesin (red line ± SEM) for the different natural cohesins of ScaA. Sample
force versus distance profiles are found in Supplemental Figure S10. Statistical significance between the unfolding forces of all cohesins can be found
in Supplemental Figure S11. Also shown is the sequence identity to the respective PDB homology modeling template. (b) Dynamic force spectrum
for unfolding events of cohesin 3. Varicolored points represent rupture force/loading rate data from an experiment with 5 different pulling speeds.
Brown squares represent rupture force/loading rate data from SMD simulations. Black points represent the most probable rupture force/loading rate
of each pulling speed obtained from kernel density estimates. Error bars represent the fwhm. Gray lines represent least-squares fits of the Bell−Evans
model to the experimental and to both the experimental and the simulation data with fitting parameters (±SD) Δx = 0.17 ± 0.012 nm, k0 = (6.7 ±
6.3) × 10−4 s−1 and Δx = 0.14 ± 0.0015 nm, k0 = 4.9 × 10−3 ± 8.9 × 10−4 s−1, respectively. The red dotted line represents a least-squares fit of the
DHS model to the combined experimental and the simulation data with fitting parameters (±SD) of Δx = 0.19 ± 0.024 nm, k0 = (1.4 ± 2) × 10−4

s−1, and ΔG = 60 ± 13 kBT. For detailed representation of experimental data, see Supplemental Figure S12. (c) Force propagation pathways through
selected cohesins calculated using Pearson correlation (yellow tubes). The thickness of the pathway edges represents the normalized probability of
force propagating through the particular edge. (d) Network-based community analysis in selected cohesins showing regions with high internal
correlation during pulling simulations calculated using generalized correlation. Communities are colored individually, and thick connections
correspond to high correlation.
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suboptimal force propagation pathways, revealing that force
propagates mainly through β-strands A, B, and I (see
Supplemental Figure S13). Figure 5c shows the force
propagation pathways through cohesin 1 and the two strongest
cohesins within their respective group, cohesins 2 and 5.
Cohesin 1 predominantly showed a single path between the N-
and C-terminal β-sheets that carried the entire mechanical load,
suggesting a badly formed mechanical clamp motif. The other
cohesins show multiple possible force pathways suggesting a
better distribution of force propagating from the N- to the C-
terminus through a multitude of backbone hydrogen bonds
(see Supplemental Figure S13).
In addition, we investigated the communities formed in the

systems by employing dynamic network analysis41 and
generalized correlation42 (see Supplemental Figure S14).
These communities correspond to sets of residues that move
in concert with each other and can be used to investigate
regions that are generally more strongly connected during
pulling simulations. Figure 5d shows the individual commun-
ities of cohesins 1, 2, and 5 in different colors, where thicker
connections between the amino acids correspond to higher
correlation between them. While cohesins 2 and 5 showed

pronounced communities connecting the C-terminus to its
surroundings (Figure 5d, red dashed circle region), cohesin 1
showed weak communities in this area of the protein,
suggesting high and uncorrelated flexibility and therefore
loose intraprotein contacts between the N- and C-terminal β-
sheet. Particularly, the area between β-sheets G and H turned
out to be most flexible in the case of cohesin 1. The same
region of cohesin 1 was observed to be highly flexible also
during the 100 ns MD equilibration, and was not as flexible in
any other cohesin investigated here. Taken together, our results
suggested that this is a critical region responsible for cohesin 1
lower stability under mechanical force.

Mutant Design and SMD Simulations. Since the region
between β-sheets G and H in cohesin 1 was found to be the
most flexible during the equilibrium MD and the analysis of
cross-correlation communities suggested that weak commun-
ities in this same area could be responsible for the badly formed
mechanical clamp motif of cohesin 1, we aligned the sequences
of all hanging cohesins in this region (Figure 6a). Despite the
high overall sequence similarity of ∼85% among A.
cellulolyticus’s hanging cohesins, major differences exist between
the weaker cohesin 1 and the stronger cohesins 2 and 3 in the

Figure 6. Mutant design and SMD peak force results. (a) Sequence alignment of the C-terminal end of the hanging cohesins 1−3. From the
community analysis, we deduced that the low force resilience of cohesin 1 originated from the loss of sequence identity in the flexible area around
amino acids 103−108. Based on comparison with cohesins 2 and 3, we designed three point mutations (A105G, P106G, and T107S) and a triple
mutant (A105G P106G T107S (referred to as mutant “GGS”)). A high resolution version can be found in Supplemental Figure S15. (b) Left,
homology model of cohesin 1 showing the β-sheets involved in the mechanical clamp motif in green and unique amino acids within the group of
hanging cohesins in red. The linker region around amino acids A105, P106, and T107 was observed to be most flexible in the SMD simulations and
was therefore suggested for mutation studies. Right, comparison of the homology models of cohesin 1 and its mutant A105G with molecular
representation of the aforementioned region of interest. A seemingly small point mutation from an alanine to a glycine (from a methyl to a proton
side chain) at position 105 changed the fold of the protein in this region significantly, resulting in much closer β-strands in the mechanical clamp
motif. (c) SMD peak force from each simulation replica (black dot) and average peak force per cohesin (red line ± SEM). The significantly increased
peak forces of the mutants A105G and GGS suggest an increased stability compared to wild-type cohesin 1, while mutants P106G and T107S
showed no significant change in average peak unfolding force. The single A105G mutation was able to recover forces in the same range of cohesin 3
(see Figure 5a). Statistical significance between the unfolding forces of all cohesins can be found in Supplemental Figure S16.
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region between β-strands G and H, more precisely from amino
acid 103 to 108. Considering the results of the SMD
simulations, force propagation, community analysis, and the
sequence comparison with cohesin 2 and 3, we proposed four
mutants of cohesin 1, namely, A105G, P106G, and T107S, and
a triple mutant that we refer to here as GGS (A105G, P106G,
and T107S). To investigate if these mutants would show a
higher force resilience compared to their wild-type counter-
parts, we followed the same modeling and simulation steps as
previously discussed for the wild-type cohesins.
After the 100 ns MD equilibration, mutated cohesins showed

significant structural differences compared to the wild-type
cohesin 1. A single alanine to glycine mutation (A105G), for
example, already stabilized the nearby regions of the protein,
resulting in a flawlessly folded β-stranded C-terminus, as shown
in Figure 6b. SMD simulations, as shown in Figure 6c, revealed
that A105G and GGS displayed a significantly higher unfolding
force than cohesin 1, with A105G showing a mean unfolding
force similar to that of cohesin 3. Analysis of the force
propagation profiles and communities of the A105G mutant
revealed a behavior that resembles one of the stronger cohesins,
as shown in Supplemental Figures S13 and S14.
AFM-Based SMFS on Hanging Cohesins and Mutants

of Cohesin 1. In order to test the predictions from the SMD
simulations and to identify the amino acids responsible for the
low force resilience of cohesin 1, we prepared a second set of
AFM-based SMFS experiments similar to the ones described in
Figure 3. We compared the mechanical stability of the
proposed mutants A105G, P106G, T107S, and the triple
mutant GGS with the three hanging cohesins, again using a

single cantilever to ensure improved relative force comparability
(Figure 7). Similar to Figure 3, force distributions not following
the Bell−Evans model (cohesin 1, P106G, and T107S) were
smoothed using a KDE to obtain meaningful most probable
rupture forces. Most remarkably, mutant A105G showed a
dramatic increase in most probable rupture force to 370 pN,
making it around 2.6 times stronger than its parent structure
cohesin 1 and therefore about as strong as cohesin 3. While the
mutant unfolding simulations predicted a slight decrease in
mechanical stability for the P106G mutant, the experimentally
obtained unfolding force histogram shows no considerable
change compared to wild-type. Mutant T107S exhibited a
bimodal unfolding force distribution with most probable
rupture forces of 138 pN and 339 pN roughly similar to the
most probable unfolding forces of wild-type cohesins 1 and 3. A
detailed examination of individual unfolding traces from
different force regimes showed no distinctive features that
could explain its bimodal unfolding force distribution. We can
only theorize that this construct might exhibit a combination of
strongly differing folded conformations or unfolding pathways.
Such behavior was not observed in the simulations. The triple
mutant GGS showed a most probable rupture force of 440 pN,
making it as strong as cohesin 2.

■ DISCUSSION

Mechanical Stability of Highly Homologous ScaA
Cohesins. The high precision comparison of the mechanical
stability of seven homologous cohesin domains from A.
cellulolyticus’ scaffoldin ScaA was enabled by the development
of a novel SMFS sample preparation method, where several

Figure 7. Unfolding and rupture force histogram of the hanging cohesins and mutants of cohesin 1. Histograms showing the unfolding and
unbinding forces of the fingerprint domain ddFLN4, the wild-type hanging cohesins 1−3 (red), mutants of cohesin 1 (orange), and the
Coh3:XDoc3 receptor ligand binding handle (gray). The force distributions of the ddFLN4 fingerprint and the Coh3:XDoc3 handle are
independent of the measured ScaA cohesin construct. Similar to Figure 3, force histograms were fitted following a Bell−Evans model where possible
(cohesin 2, cohesin 3, A105G, and GGS; dashed line). A KDE was used to find the most probable rupture forces (±fwhm) in all other cases (cohesin
1, P106G, and T107S; dotted line). All data were recorded using a single cantilever with a spring constant of 163 pN/nm at a retraction speed of
1600 nm/s during a 72 h automated SMFS experiment.
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constructs were produced by cell-free in vitro expression and
covalent linkage to the surface in parallel in individual
microwells. The proteins were probed sequentially with a
single cantilever, enabling precise comparison of unfolding
force distributions between multiple domains by eliminating
relative error in calibration of cantilever spring constant values.
All constructs contained a ddFLN4 domain, which served as a
molecular fingerprint and allowed clear identification of single-
molecule force−distance traces showing specific interactions
through their unique contour length increments. This overall
approach facilitated high-throughput SMFS of multiple proteins
and allowed for fast and automated data analysis.
A clear trend can be seen in the most probable unfolding

force of all cohesin domains from ScaA (Figure 3). The three
cohesins on the far side of the substrate-anchoring CBM (i.e.,
hanging cohesins) showed in fact a considerably lower most
probable unfolding force compared to the four bridging
cohesins, which are exposed to force in vivo. This result
strongly supports the hypothesis that higher mechanical
stability is a repeatable feature of cohesins in the bridging
region of cellulosomal scaffoldins, despite the fact that all
domains tested show high levels of sequence homology (see
Figure 4a).
To elucidate the origins of the large differences in

mechanostability of the cohesin domains, we generated
structural homology models for all seven cohesins under
investigation. The combination of knowledge-based informa-
tion from structural templates together with modern force fields
and molecular dynamics allowed us to employ a real-space
structural prediction and refinement strategy to obtain all ScaA
cohesin structures.33 However, the computational prediction of
three-dimensional protein structures has its limitations, and the
accuracy of the predicted models is strongly dictated by the
availability of close structural templates.43 The range of identity
between our model cohesins and the best available structural
templates was between 33% and 45%, implying rather poor
homologues. To check the fold stability, all structural models
were subjected to 100 ns of equilibrium MD, and the final
structures were superimposed. The results showed that, even
though four different templates were employed, all cohesins
generated highly similar structural models (see Figure 4b and
Supplemental Figure S5).
The seven structural models were then stretched in silico

using a constant velocity SMD protocol. It is noteworthy that,
with the exception of cohesin 4, the forces of all distributions
were shifted by a constant value (±SD) of 782 ± 29 pN (see
Supplemental Figure S9). This finding is remarkable if one
takes into account the relatively low identity between the
modeled systems and their templates (33%−45%). Simulations
showed that although cohesin 4 has the highest identity to its
template (45%, PDB 2VN6), it might have been a suboptimal
choice resulting in a nonideal folding state, as it shows an N-
terminal region with wobbly β-strand formation (see
Supplemental Figures S4 and S5).
Comparing the force peaks between the simulations and

experiments served as a validation for the homology structures.
Figure 5b shows a direct comparison between results obtained
with AFM SMFS across a range of loading rates from ∼103 pN/
s and ∼105 pN/s, and those obtained from in silico SMFS at
∼1014 pN/s. Fitting the DHS model to the data suggests that
the loading rates used in our SMD simulations fall into the
stochastic regime. This finding, which bridges 11 orders of
magnitude in force loading rate, indicates that the homology

models provide an accurate description of the unfolding
process, validating the predictive power of both comparative
modeling and in silico SMFS. We want to emphasize that this
only holds true for remarkably strong proteins like the cohesins
investigated here. At similar loading rates of ∼1014 pN/s,
weaker systems may be unfolded in the deterministic regime. In
this case, a slower pulling velocity would have to be chosen,
requiring considerably more computational time.

Investigation of the Low Force Resilience of Cohesin
1. Our simulation results in combination with calculated force
propagation pathways and correlation communities suggested
that the high flexibility in the region around amino acids 100−
110 could be responsible for a badly formed mechanical clamp
between the N- and C-terminal β-sheets of cohesin 1. We
proposed the aforementioned mutants, A105G, P106G, T107S,
and the triple mutant GGS carrying all three mutations, in an
attempt to affect the folding and the formation of the
mechanical clamp motif and, ideally, improve mechanical
stability.
Following the same modeling and equilibration protocol

followed previously, we obtained structural models for the
mutants. An inspection of these structures, after 100 ns of MD,
revealed how the fold can be affected by a single A105G
mutation, as shown in Figure 6b. The A105G point mutation
resulted in a longer mechanical clamp between the N- and C-
terminal β-sheets. SMD simulations predicted an increase in
unfolding forces both for mutant A105G and for mutant GGS,
the latter being the most promising as shown in Figure 6c. It is
noteworthy that the simulations revealed that the single A105G
mutation already increases the force necessary to unfold
cohesin 1 up to the same levels of the cohesin 3.
We want to emphasize that a strategy of carrying out only a

couple of SMD simulations with low pulling velocity might give
an incomplete picture of a biomolecular system under shear
force. The approach adopted here, of simulating many fast
pulling simulations (totaling over 350 independent SMD runs),
showed that the force distribution in simulations is as widely
distributed as in experiments, and therefore a small in silico
sampling might reveal differing trends to those observed
experimentally. A possibility to sample both with slow pulling
and many replicas would be to employ coarse-grained methods,
which are less computationally demanding. However, our
simulations revealed that seemingly small mutations, like
changing a methyl group to a hydrogen, can cause enormous
differences in folding and therefore force resilience. With such
minor changes in the biomolecule, exploratory studies to design
new mutants using coarse-grained molecular dynamics
simulations would be hardly reliable, as they would lack atomic
detail.
In order to test the predictions from the SMD simulations,

we compared the proposed mutants to the wild-type hanging
cohesins experimentally (Figure 7). We found that the two
promising mutants, A105G and GGS, showed a considerable
increase in mechanical stability. Mutant A105G showed an
increase of most probable rupture force by nearly 2.6-fold to
370 pN, relative to its wild-type cohesin 1, which unfolded at
142 pN. As predicted by the SMD simulations, this seemingly
small change from an alanine to a glycine outside of the
mechanical clamp motif influenced the fold of the protein
enough to make it as strong as cohesin 3. The triple mutant
GGS showed, again as predicted by the SMD simulations, the
largest increase in unfolding force to 440 pN, making it as
strong as cohesin 2, the strongest cohesin within the group of

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.7b07574
J. Am. Chem. Soc. 2017, 139, 17841−17852

17849

124 Chapter 4. Biomechanics of the Cellulosome



hanging cohesins, which unfolded at 431 pN. The experimental
results confirm the amino acids responsible for the low force
resilience of cohesin 1 and the predicted increase in
mechanostability of the proposed mutants, thus corroborating
the in silico approach.

■ CONCLUSIONS
Multienzyme molecular devices like cellulosomes rely on
scaffoldins for the organization of their active constituents.
Since these large protein structures can sometimes be subjected
to sizable forces, their mechanical stability is a prerequisite for
proper and sustained function. This holds particularly true for
the scaffoldin ScaA of A. cellulolyticus, which anchors the
microbe to a cellulose fibril through a CBM in addition to
spatially organizing an ensemble of cellulolytic enzymes.
Another interesting aspect is that cellulosome scaffoldins are
mainly composed of highly similar cohesin domains with very
different mechanical properties. Our in vitro and in silico SMFS
studies not only show that the mechanical stability of all
cohesins from the scaffoldin ScaA is consistent with the
hypothesis proposed by Valbuena et al.13 that bridging cohesins
are mechanically stronger than hanging cohesins but, moreover,
how minimal differences in protein sequence can lead to very
different behavior under shear force.
We elucidated the surprisingly low unfolding force of cohesin

1, when compared to the other ScaA cohesins. We found that
the point mutation A105G increased the mechanical stability of
cohesin 1 more than 2-fold when compared to wild-type. The
remarkably strong influence on the mechanical stability of
cohesin 1 of a single alanine to glycine mutation, which
effectively only substitutes a methyl group by a hydrogen atom,
raises the question why evolutionary pressure has not favored
this mutant, as it comes at virtually no additional cost for the
organism. Possibly not all cohesins are supposed to display high
mechanical stability, since cellulosomal organisms have already
been shown to be able to regulate their gene expression
patterns depending on potentially varying substrates.44,45 Thus,
occasionally un- and refolding cohesins would ensure that
cellulosomal components can be exchanged in case of changing
environmental conditions.
Both approaches, in silico and in vitro, of our combined

approach started from the genetic information coding for the
protein, from which the homology models for the former were
derived and the samples for the latter were expressed. Given the
large number of cellulosome producing microorganisms with
sequenced genomes, a wide spectrum of novel combinations,
for example, cohesin−dockerin pairs with similar or orthogonal
affinities and tunable strengths, may be analyzed, modified, and
combined. The fact that cellulosomes are extracellular
organelles of microbes that live in largely diverse ambient
environments, including the human gut,46,47 guarantees robust-
ness of its molecular building blocks and their interactions. This
is reflected in the extremely high unfolding barriers and rupture
forces of its molecular constituents and qualifies them for a
large range of potential applications.
As viable candidates for source materials in a rationally

designed artificial protein nanomachine, cellulosomes have
demonstrated large potential in molecular engineering
applications.1,6,8 The development of recombinant designer
cellulosomes using so-called chimeric scaffoldins allowed
control over the position of each enzyme in the cellulosomal
complex.7 Synthetic scaffolds containing orthogonal cohesin
domains have furthermore been successfully displayed on the

surface of yeast cells, allowing dockerin-tagged cellulases to
bind and improve ethanol production almost by a factor of 3
compared to free enzymes.48 In terms of industrial cellulose
degradation, the incorporation of mechanically stronger cohesin
domains and cohesin−dockerin interactions with higher
affinities will make designer cellulosomes more durable and
efficient. A better understanding of individual cellulosomal
components can improve upcoming designs and lead to more
efficient and reliable multienzyme molecular devices. For
example, the new-found properties of ScaA recommend this
scaffoldin and its cohesin domains to be part of a potential
versatile molecular breadboard for the programmed self-
assembly of molecular devices with designed properties.
From a technical point of view, we were able to measure

seven constructs using a single cantilever in two separate
experiments by utilizing a fast and parallelized sample
preparation method, while still achieving sufficient statistics
(N = 1420 in 24 h and N = 7869 in 72 h). Furthermore, we
have shown that even in the absence of crystallized protein
structures, SMD simulations, when combined with protein
homology modeling, are a powerful tool to investigate the
intricate mechanisms governing protein mechanics. Particularly
force propagation and community analyses have proven
instrumental, not only allowing us to analyze the origins of a
particular molecular property, such as the low mechanical
stability of cohesin 1, but also opening new means to identify
crucial regions for point mutations aiming at locally altering the
mechanics of the protein of choice. In summary, our newly
developed methods are enabling novel investigations of protein
unfolding and rational modification of structural aspects of
proteins based on common design principles across different
families of proteins well beyond the cellulosome community.
Our results demonstrate a strategy that can be applied in fine-
tuning mutations that can change the mechanostability of
protein domains and also raise further questions about the
evolutionary pressures that can result in mechanically stronger
or weaker proteins. Considering the vast number of
cellulosomal constituents yet to be explored, the combination
of techniques presented here can potentially accelerate the
probing and design of scaffolding domains, starting from
nothing more than their genetic code, presenting new
opportunities in molecular engineering and biotechnology.
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Pentikaïnen, O. T.; Schulten, K.; Permi, P.; Ylan̈ne, J.; Pentikaïnen, U.
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Materials and Methods 
All reagents were at least of analytical purity grade and all buffers were filtered using a 0.2 µm                  
polyethersulfone membrane filter (Nalgene, Rochester, NY, USA) prior to use. All incubation steps were              
done at room temperature, if not otherwise stated. 

Gene construction, protein expression and purification 
All genes were codon optimized for E. coli and synthesized (Invitrogen GeneArt Gene Synthesis - Thermo                
Fisher Scientific Messtechnik GmbH, Regensburg, Germany). All constructs were cloned into pET28a            
vectors using the Gibson assembly strategy1 (New England Biolabs, MA, USA). All protein sequences can               
be found in the Supplementary Information. 
 
ScaA cohesin mutant plasmid DNA was constructed using individually designed primers (Eurofins            
Genomics GmbH, Ebersberg, Germany) and the Phusion High-Fidelity PCR Kit (Thermo Fisher Scientific             
Messtechnik GmbH, Regensburg, Germany). The resulting double stranded linear DNA was ligated,            
phosphorylated and the template DNA was digested, in parallel, using a homemade reaction mix (1µl               
CutSMART buffer, 1µl ATP, 1µl T4 Polynucleotide Kinase, New England Biolabs, MA, USA, 1µl DpnI, 1µl                
T4 DNA ligase and 0.5µl PEG-6k, Thermo Fisher Scientific GmbH, Regensburg, Germany, combined with              
4.5µl unpurified PCR product) incubated at 37°C for 15min, 22°C for 45min and finally at 80°C for 5min.                  
All plasmids used in in vitro protein expression were amplified in DH5-alpha cells, purified using the                
QIAprep Spin Miniprep Kit (Qiagen, Hilden, Germany), eluted with ultrapure water and stored at -20° C.                
All sequences were finally checked by DNA sequencing (Eurofins Genomics GmbH, Ebersberg,            
Germany). 
 
Coh3-ddFLN4-HIS-ybbR protein was expressed in E. coli NiCo21(DE3) cells (New England Biolabs, MA,             
USA). Precultures of 5 mL in LB medium, grown overnight at 37°C, were inoculated in ZYM-5052                
auto-induction media containing kanamycin and grown for 6 h at 37°C followed by 24 h at 25°C2. Bacteria                  
were spun down, and stored at -80°C. The pellet was resuspended and cells were lysed through                
sonication followed by centrifugation at 18000 g for 1 h at 4°C. The supernatant was applied to a Ni-NTA                   
column (GE Healthcare, MA, USA) for HIS-Tag purification and washed extensively using HIS wash              
buffer (25mM TRIS, 500mM NaCl, 0.25% Tween-20, 10 % (v/v) Glycerol, 20mM imidazole, pH 8.5 @                
4°C), followed by a elution using HIS elution buffer (HIS wash buffer with 200mM imidazole instead of                 
20mM). Fractions containing protein were concentrated over regenerated cellulose filters (Amicon, Merck            
KGaA, Darmstadt, Germany), exchanged into measurement buffer (TBS- Ca: 25 mM Tris, 72 mM NaCl,               
1mM CaCl2, pH 7.2) using desalting columns (Zeba, Thermo Scientific, MA, USA), and frozen with 25 %                 
(v/v) glycerol in liquid nitrogen to be stored at -80°C until used in experiments. 

AFM Sample preparation 
The sample preparation in these experiments follows in principle previously published protocols.3–5 In             
brief, both the AFM cantilevers (Biolever Mini, Olympus, Tokyo, Japan) and the microscope slides              
(76mmx26mm, Carl Roth GmbH, Karlsruhe, Germany) were cleaned and silanized using           
(3-aminopropyl)-dimethyl-ethoxysilane (APDMES, abcr GmbH, Karlsruhe, Germany) by baking at 80°C          
for 1h. A multiwell mask (CultureWell Gasket, Grace Bio-Labs, Bend, USA) was cleaned by sonication in                
a 1:1 mixture of isopropyl alcohol (IPA) and ultrapure water and then dried in a stream of nitrogen. The                   
mask was attached to the glass slide to allow compartmentalization of the surface. The cantilevers were                
incubated with heterobifunctional NHS-PEG-Maleimide (5 kDa; Rapp Polymere, Tübingen, Germany) in           
100mM HEPES buffer pH 7.4 for 45 min. The surfaces in the wells however were incubated with a 1:100                   
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mixture of NHS-PEG-Maleimide and NHS-PEG-CH3 (both 5 kDa; Rapp Polymere, Tübingen, Germany) in             
100mM HEPES buffer pH 7.4, which, as experience has shown, will later result in the right surface                 
density of immobilized protein for SMFS measurements in these experiments. After rinsing with ultrapure              
water, both the cantilevers and the surfaces were incubated with 1 mM Coenzyme A (CoA) in a 1 mM                   
sodium phosphate pH 7.2, 50 mM NaCl, 10 mM EDTA buffer for at least 1 h. After a final ultrapure water                     
rinse the cantilevers were incubated with 40μM Coh3-ddFLN4-HIS-ybbR and 5 μM phosphopantetheinyl            
transferase (Sfp) for 2 h with magnesium chloride supplemented measurement buffer (TBS- Ca: 25 mM               
Tris, 72 mM NaCl, 1mM CaCl2, 20mM MgCl2 pH 7.2). The glass slide with the multiwell mask still                  
attached was stored under Argon for later use. The cantilevers were rinsed extensively with measurement               
buffer (TBS- Ca: 25 mM Tris, 72 mM NaCl, 1mM CaCl2, pH 7.2) and finally stored in it until use in                     
measurement. 

One-step in vitro expression and protein pulldown 
PURExpress® IVTT-kit was thawed on ice and supplemented with 5 μM Sfp, 0.8 U/µl RNase inhibitor                
(NEB #M0314), 10 ng/μl Plasmid-DNA, 0.05% v/v Triton X-100 (Sigma-Aldrich Chemie GmbH,            
Taufkirchen, Germany) and ultrapure water resulting in total volumes of 10µl for each reaction mix. There                
was no need to supply this reaction mix with additional MgCl2 for the Sfp coupling reaction, since the                  
PURExpress® IVTT-kit already contains 13mM MgCl26. The reaction mixes were transferred to the wells              
onto the CoA functionalized glass slide and incubated at 37°C for 3h. During this time the cell free                  
expression kit is constantly producing proteins, while at the same time the Sfp couples expressed protein                
to the surface via the ybbR tags. Both cantilevers and surfaces were rinsed extensively with               
measurement buffer (TBS- Ca: 25 mM Tris, 72 mM NaCl, 1mM CaCl2, pH 7.2) before measurement and                 
finally the multiwell mask was removed from the surface and stored in a 1:1 mixture of IPA and ultrapure                   
water for further use. 

AFM SMFS measurements 
A custom build AFM connected to a MFP3D controller (Asylum Research, Santa Barbara, CA, USA) was                
used for all measurements. Acquisition- and instrument control software was written in Igor Pro 6               
(Wavemetrics, OR, USA). The cantilever was aligned to each measurement spot by moving the sample               
using a 25mmx25mm piezomotor stage (PI, Karlsruhe, Germany) using a camera mounted below the              
sample. These positions were saved in the software for later use. The cantilever was brought in close                 
proximity to the surface and constant speed measurements with retraction speeds of 1600 nm/s were               
started. The glass surface was moved horizontally by 100 nm in a snail-like-pattern within each protein                
spot. After 2000 approach- and retract-cycles the AFM-head was automatically lifted by a linear piezo               
actuator (Newport, CA, USA) and the surface was moved horizontally by typically ~300 µm to expose the                 
cantilever to the next protein spot. Cantilevers were calibrated using the equipartition theorem method7. 
 

AFM SMFS Data Analysis 
Data analysis was carried out following previous work8. In short, data were transformed into physical units                
and corrected for cantilever bending, laser spot- and baseline-drift. Force peaks and rupture events were               
detected and transformed to contour length space. The Worm Like Chain model (WLC)9 was used to fit                 
relevant peaks. All curves showing a ddFLN4 and cohesin contour length increment (ddFLN4: 34nm8,10,              
cohesin: 45nm) were used to assemble unfolding force histograms, which were then fitted following the               
Bell-Evans model11,12, which is commonly used to estimate the distance to the transition state ∆x and the                 
natural off-rate k0 of mechanically induced receptor ligand dissociation from single-molecule force            
spectroscopy experiments. 
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Bell-Evans probability density function at given loading rate r: 

(F )  exp[ F (e )] p = r
k0 Δx

k TB
− r Δx
k  k T0 B FΔx

k TB − 1  

The Bell-Evans model predicts a linear dependence between the most probable rupture force <F> and               
the logarithm of the force loading rate r: 

(r) = ) ln( ) < F > ( Δx
k TB  r Δx

k  k T0 B
 

The Dudko-Hummer-Szabo model13 describes a non-linear dependence for the most probable rupture            
force on loading rate: 

(r) =  < F > ΔG
νΔx 1{ − ln[ ΔG

k TB  exp( r Δx
k  k T0 B ( ΔG

k TB
+ γ))]ν}   

where ∆G is the free energy of activation and ≈ 0.577... is the Euler-Mascheroni constant. The model          γ          
parameter defines the single-well free-energy surface model used ( = 2/3 for linear-cubic and = 1/2ν          ν      ν   
for cusp free-energy). 

Structural Model Determination 
The amino acid sequence of all seven cohesins under investigation were obtained from the GenBank               
(GenBank: AAF06064.1) proteomic server14,15. The template search was performed employing the           
similarity search algorithm in the protein Blast server (http://blast.ncbi.nlm.nih.gov/Blast.cgi)16 using the           
Protein Data Bank17 (http://www.pdb.org) as database and the default options. Using VMD’s18 multiseq19             
analysis tool, sequences were aligned to templates employing ClustalW algorithim20. The construction of             
cohesin models were performed using MODELLER 9.17 software21 that employs spatial restriction            
techniques based on the 3D-template structure. The best model was selected by analyzing the              
stereochemical quality check using PROCHECK22 and overall quality by ERRAT server.23 All structures             
were subjected to 100 ns of equilibrium MD, as described below, to ensure conformational stability. All                
structures shown in this manuscript are from post-equilibration simulations. 

Molecular dynamics simulations 
Employing advanced run options of QwikMD,24 structural models were solvated and the net charge of the                
proteins were neutralized using a 75 mM salt concentration of sodium chloride, which were randomly              
arranged in the solvent. The overall number of atoms included in MD simulations varied from 50,000 in                 
the equilibrium simulations to near 300,000 in the pulling simulations. The MD simulations in the present                
study were performed employing the NAMD molecular dynamics package.25 The CHARMM36 force            
field26,27 along with the TIP3 water model28 was used to describe all systems. The simulations were                
performed assuming periodic boundary conditions in the NpT ensemble with temperature maintained at             
300 K using Langevin dynamics for pressure, kept at 1 bar, and temperature coupling. A distance cut-off               
of 11.0 Å was applied to short-range, non-bonded interactions, whereas long-range electrostatic           
interactions were treated using the particle-mesh Ewald (PME)29 method. The equations of motion were              
integrated using the r-RESPA multiple time step scheme25 to update the van der Waals interactions every                
two steps and electrostatic interactions every four steps. The time step of integration was chosen to be                 
2 fs for all simulations performed. Before the MD simulations all the systems were submitted to an energy                 
minimization protocol for 1,000 steps. MD simulations with position restraints in the protein backbone              
atoms were performed for 10 ns and served to pre-equilibrate systems before the 100 ns equilibrium MD                 
runs, which served to evaluate structural model stability. During the 10 ns pre-equilibration the initial               
temperature was set to zero and was constantly increased by 1 K every 1,000 MD steps until the desired                  
temperature (300 K) was reached. 
 
With structures properly equilibrated and checked, solvent boxes were enlarged in the Z coordinate to               
allow space for protein unfolding during SMD simulations. The new solvent boxes were equilibrated for 10                
ns keeping the protein atoms restrained in space. SMD simulations11 were performed using a constant               
velocity stretching (SMD-CV protocol), employing four different pulling speeds: 250, 25, 2.5 and 0.5 Å/ns.               

S4 

4.5. Associated Publication P5 131



Simulation replicas (at least 25 per system), used in all the plots in this manuscript, were performed with                  
constant pulling speed of 2.5 Å/ns. Values for force over the pulling spring were saved every 50 steps.                  
The spring constant of the pulling spring was set to 5.0 kcal/mol/Å2, while the holding spring had a                  
constant of 10 kcal/mol/Å2. In all simulations, totaling over 350 SMD simulations, SMD was employed by                
harmonically restraining the position of N-terminal amino acid residue of the cohesin domain, and moving               
a second restraint point, at the C-terminal of the cohesin domain, with constant velocity in the +z                 
direction. The procedure is equivalent to attaching one end of a harmonic spring to the end of a domain                   
and pulling on the other end of the spring. The force applied to the harmonic spring is then monitored                   
during the time of the molecular dynamics simulation. The pulling point was moved with constant velocity                
along the z-axis and due to the single anchoring point and the single pulling point the system is quickly                   
aligned along the z-axis. Owing to the flexibility of the linkers between the cohesins and fingerprint                
domains, this approach reproduces the experimental set-up. All analyses of MD trajectories were carried              
out employing VMD18 and its plug-ins. Secondary structures were assigned using the Timeline plug-in,              
which employs STRIDE criteria.30 
 
The Network View plugin31 on VMD was employed to perform dynamical network analysis. A network was                
defined as a set of nodes, all α-carbons, with connecting edges. Edges connect pairs of nodes if                 
corresponding monomers are in contact, and 2 non-consecutive monomers are said to be in contact if                
they fulfill a proximity criterion, namely any heavy atoms (non-hydrogen) from the 2 monomers are within                
4.5Å of each other for at least 75% of the frames analyzed. As suggested by Sethi et al.31 nearest                   
neighbors in sequence are not considered to be in contact as they lead to a number of trivial suboptimal                   
paths, which can be understood as allosteric signaling pathways or force propagation pathways 32.              
Suboptimal paths are defined as paths that are slightly longer than the optimal path, with a given                 
suboptimal path visiting a node not more than once. These multiple communication paths are nearly               
equal in length, and not all residues along these paths need be considered important for allostery.                
Instead, only residues or interactions that occur in the highest number of suboptimal pathways need to be                 
conserved to guarantee an effective pathway for allosteric communication. The thickness of the edges              
connecting the nodes reveals the least and most used paths. Allostery can be understood in terms of                 
pathways of residues that efficiently transmit energy, here in the form of mechanical stress, between               
different binding sites33. The dynamical networks were constructed from 20 ns windows of the total               
trajectories sampled every 400 ps. The probability of information transfer across an edge is set as wij =                  
−log (| Cij |), where Cij is the correlation matrix calculated with Carma34. Using the Floyd-Warshall                
algorithm, the suboptimal paths were then calculated. The tolerance value used for any path to be                
included in the suboptimal path was −log (0.5) = 0.69. To calculate the relevance of off-diagonal terms in                  
the correlation matrix we employed Carma to calculate a correlation matrix where x, y, z components of                 
each atom were considered independently. As previously investigated by our group 32, Pearson             
correlation is ideal for force propagation calculation. However, due to its nature, communities analysis              
would benefit from an information-theory-based method, so here we employed generalized correlation35 to             
the community analysis. Tightly correlated groups of atoms are clustered into communities, indicating             
functional domains of biomolecules and important interfaces between multi-molecule complexes. 
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Figure S1: Frequency of observed relative contour lengths increments determined by transforming            
multiple force traces into contour length space via the worm-like chain model and aligning them. The                
individual increments (f.l.t.r.) correspond to the unfolding of the ddFLN4 fingerprint domain, the ScaA              
cohesins and the occasional unfolding of the X-module of the Coh3.XDoc3 complex36. 
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Figure S2: Root-Mean-Square Deviation (RMSD) for equilibrium simulations. All constructs were           
simulated with position restraints of the backbone atoms during 10 ns and free of restraints during 100 ns.                  
All plots show stable structures after approximately 30ns. It is noteworthy that hanging cohesins have a                
higher RSMD value, particularly cohesin 1.  

S7 

134 Chapter 4. Biomechanics of the Cellulosome



 
Figure S3: Secondary Structure evolution during equilibration simulations. Secondary structure          
content was evaluated using VMD’s Timeline during the equilibration simulations. All constructs were             
simulated with position restraints of the backbone atoms during 10 ns and free of restraints during 100 ns.                  
All conformations show stable structures.  
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Figure S4. Structural model of studied cohesins after 100ns of MD simulation. All structures were               
obtained using Modeller 9.17 and subjected to 100 ns of molecular dynamics equilibration using QwikMD               
and NAMD. All images were prepared using VMD. 
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Figure S5. Structural model for ScaA cohesins after 100ns of MD simulation. (A) Using Modeller,               
very similar model structures were obtained for ScaA cohesins. The region highlighted in the circle was                
observed to be the most flexible one in cohesin 1, presenting a different behavior than the other cohesins.                  
(B) Sequence alignment shows that, in the highlighted region of (A), 3 amino acid residues of cohesin 1                  
were different, compared to cohesin 2 and 3, namely ALA105, PRO106 and THR107. (C) (D) Two                
different viewpoints of cohesin 1 with highlighted ALA105, PRO106 and THR107. 
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Figure S6.  
Sequence 
alignment of  
all cohesins of   
ScaA. The  
amino acids  
thought to be   
primarily 
involved in  
mechanical 
stability are  
represented by  
green boxes.  
Regions 
primarily 
involved in  
dockerin 
recognition and  
binding are  
represented in  
red boxes. The   
background 
colors of the   
letters represent  
BLOSUM 70  
sequence 
alignment 
score: From  
high (dark blue)   
to low (red). 
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Figure S7. Secondary Structure evolution during pulling simulations. Secondary structure content           
was evaluated using VMD’s Timeline during the SMD simulations. Here we show the evolution of the                
secondary structure during the first 50nm of pulling, which corresponds to the region where the peak force                 
is observed. The plots present a representative simulation (one of the replicas) for each system studied.                
In all simulations presented the C-terminal region is the first to unfold, showing that the highest peak                 
corresponds to losing the last beta-strand structure. 
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Figure S8. Cohesin 1 secondary structure evolution during pulling simulations. Secondary structure            
content was evaluated using VMD’s Timeline during the SMD simulations. Here we show the evolution of                
the secondary structure during the whole unfolding process.  
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Figure S9. Experimental unfolding force vs. simulated peak unfolding force of all wild type              
cohesins. A linear fit shows a clear trend between measured and simulated unfolding forces with offset                
fitting parameter (±SD) F0 = 782 ± 29 pN. Cohesin 4 (red) was excluded from the fit since, as explained in                     
the main text, its homology modeling template was a suboptimal and likely resulted in a non-ideal initial                 
folded state. 
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Figure S10. Force profile during pulling simulations. For the first 50 nm of pulling, the plots present a                  
representative simulation (one of the replicas) for each system studied.  
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Figure S11. Statistical significance between the simulated unfolding forces of all wild type             
cohesins. P-values were calculated using the Kolmogorov-Smirnov test.  
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Figure S12. Experimental dynamic force spectrum for unfolding events of cohesin 3. Varicolored             
points represent rupture force/loading rate data from an experiment with 5 different pulling speeds. Black               
points represent the most probable rupture force/loading rate of each pulling speed obtained from kernel               
density estimates. Error bars represent the full width at half maximum. Gray lines represent least-squares               
fits of the Bell-Evans model to the experimental, and to both the experimental and the simulation data with                  
fitting parameters (±SD) ∆x=0.17 ± 0.012 nm, k0=6.7⋅10-4 ± 6.3⋅10-4 s-1 and ∆x=0.14 ± 0.0015 nm,                
k0=4.9⋅10-3 ± 8.9⋅10-4 s-1, respectively. The red dotted line represents a least-squares fit of the DHS                
model to both the combined experimental and the simulation data with fitting parameters (±SD) of               
∆x=0.19 ± 0.024 nm, k0=1.4⋅10-4 ± 2⋅10-4 s-1 and ∆G=60 ± 13 kBT. In this range of loading rates the                    
Bell-Evans fit through the experimental data falls along the DHS fit. 
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Figure S13. Network-based force propagation analysis calculated using Pearson correlation.          
Suboptimal force paths were calculated using VMD during the first 5nm of pulling simulation. Note that for                 
all the systems beta-strands A,B and I are the main regions involved in the force propagation. 
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Figure S14. Network-based community analysis calculated using generalized correlation.         
Communities were calculated using VMD during the first 5nm of pulling simulation. Each color represents               
a different community. Colors of the communities in different systems are not related, and should not be                 
compared as being the same community in different systems. Thickness of the network represents the log                
of the normalized correlation value. Thick connections represent highly correlated regions.  
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Figure S15. High resolution version of the sequence alignment of the           
C-terminal end of the hanging cohesins 1-3.  
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Figure S16. Statistical significance between the simulated unfolding forces Cohesin 1 and its four              
mutants. P-values were calculated using the Kolmogorov-Smirnov test. 
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Protein Sequences 
ybbR-tag - linker and additional residues - Cohesin - linker - XDoc3 
 
MGTDSLEFIASKLALEVLFQGPLQHHHHHHPWTSAS 
 
Cohesin 1 
TGFTVNVDSVNGNVGEQIVVPVSFANVPSNGVSTADMTITYDSSKLEYVSGAAGSIVTNPTVNFGINKEA
DGKLKVLFLDYTMSTGYISTNGVFANVTFKVLNSAPTTVGITGATFGDKNLGNISATINAGSINGG 
 
Cohesin 2 
TGFTVNVDSVNGNVGEQIVVPVSFANVPSNGISTADMTITYDSSKLEYVSGDAGSIVTNPTVNFGINKETD
GKLKVLFLDYTMSTGYISTNGVFAKVTFKVLNAGGSSVGITGATFGDKNLGSVSATINAGSINGG 
 
Cohesin 3 
TGFTVSVDSVNGNVGEQIVIPVSFANIPANGISTADMTITYDSSKLEYVSGVPGSIVTNPDVNFGINKETDG
KLKVLFLDYTMSTGYISTSGVFTKVTFKVLSSGGSTVGITGATFGDKNLGNVSATINAGSINGG 
 
Cohesin 4 
NAMAVAVGAVQGGVGETVTVPVTMTKVPTTGVSTADFTVTYDATKLEYVSGAAGSIVTNPDVNFGINKEA
DGKIKVLFLDYTMATEYISKDGVFANLTFKIKSTAAAGTTAAVGIAGTATFGDSALKPITAVITDGKVEII 
 
Cohesin 5 
KAMKVVIANVSGNAGSEVVVPVSIEGVSANGVSAADFTITYDATKLDYVSGAAGSIVKNPDVNFGINKEAD
GKLKVLFLDYTMATEYISADGIFANLTFKIKSTAVNGDVAAISKSGTATFGDKNLGPISAVIKDGSVTVG 
 
Cohesin 6 
TGFNLSIDTVEGNPGSSVVVPVKLSGISKNGISTADFTVTYDATKLEYISGDAGSIVTNPGVNFGINKESDG
KLKVLFLDYTMSTGYISTDGVFANLNFNIKSSAAIGSKAEVSISGTPTFGDSTLTPVVAKVTNGAVNVV 
 
Cohesin 7 
NAFKVSIDTVKAATGTQVVVPVSFVNVPATGISTTDMTITYDATKLQYVSGDAGSIVTNPGVNFGINKEAD
GKLKVLFLDYTMTTQYISEDGVFANVTFKVIGTDGLAAVNAEDATFGDSSLSPVTASVVNGGVNIG 
 
Cohesin 1 A105G 
TGFTVNVDSVNGNVGEQIVVPVSFANVPSNGVSTADMTITYDSSKLEYVSGAAGSIVTNPTVNFGINKEA
DGKLKVLFLDYTMSTGYISTNGVFANVTFKVLNSGPTTVGITGATFGDKNLGNISATINAGSINGG 
 
Cohesin 1 P106G 
TGFTVNVDSVNGNVGEQIVVPVSFANVPSNGVSTADMTITYDSSKLEYVSGAAGSIVTNPTVNFGINKEA
DGKLKVLFLDYTMSTGYISTNGVFANVTFKVLNSAGTTVGITGATFGDKNLGNISATINAGSINGG 
 
Cohesin 1 T107S 
TGFTVNVDSVNGNVGEQIVVPVSFANVPSNGVSTADMTITYDSSKLEYVSGAAGSIVTNPTVNFGINKEA
DGKLKVLFLDYTMSTGYISTNGVFANVTFKVLNSAPSTVGITGATFGDKNLGNISATINAGSINGG 
 
Cohesin 1 A105G P106G T107S 
TGFTVNVDSVNGNVGEQIVVPVSFANVPSNGVSTADMTITYDSSKLEYVSGAAGSIVTNPTVNFGINKEA
DGKLKVLFLDYTMSTGYISTNGVFANVTFKVLNSGGSTVGITGATFGDKNLGNISATINAGSINGG 
 
VVPNTVTSAVKTQYVEIESVDGFYFNTEDKFDTAQIKKAVLHTVYNEGYTGDDGVAVVLREYESEPVDITA
ELTFGDATPANTYKAVENKFDYEIPVYYNNATLKDAEGNDATVTVYIGLKGDTDLNNIVDGRDATATLTYY
AATSTDGKDATTVALSPSTLVGGNPESVYDDFSAFLSDVKVDAGKELTRFAKKAERLIDGRDASSILTFYT
KSSVDQYKDMAANEPNKLWDIVTGDAEEE 
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Coh3 - linker - ddFLN4 - linker and additional residues - ybbR 
 
MGTALTDRGMTYDLDPKDGSSAATKPVLEVTKKVFDTAADAAGQTVTVEFKVSGAEGKYATTGYHIYWD
ERLEVVATKTGAYAKKGAALEDSSLAKAENNGNGVFVASGADDDFGADGVMWTVELKVPADAKAGDVY
PIDVAYQWDPSKGDLFTDNKDSAQGKLMQAYFFTQGIKSSSNPSTDEYLVKANATYADGYIAIKAGEPGS
VVPSTGSADPEKSYAEGPGLDGGESFQPSKFKIHAVDPDGVHRTDGGDGFVVTIEGPAPVDPVMVDNG
DGTYDVEFEPKEAGDYVINLTLDGDNVNGFPKTVTVKPAPGSELKLPRSRHHHHHHGSLEVLFQGPDSL
EFIASKLA 
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Chapter 5

Multiplexing of AFM Experiments

5.1 Summary

Cell-free molecular biology allows high throughput protein production on a smaller
scale [131]. Since single molecule techniques operate in a nanomolar concentration
range cell-free approaches are a good match. With robust and efficient immobi-
lization techniques it is possible to localize proteins with high densities at specific
points, allowing the use of microfluidics to increase throughput in atomic force mi-
croscope (AFM) experiments. Associated publication P6 describes an approach for
multiplexed AFM studies.
A PDMS (Polydimethylsiloxane)-based microfluidics chip contains several hundred
spatially separated chambers, where proteins can be synthesized, immobilized and
analyzed. The microfluidics chip is designed such that an experimental compartment
consists of two units [132]. A back-chamber where the DNA is localized and a
front-chamber where protein immobilization takes place. First the glass slide is
functionalized and passivated for site-directed pull-down capabilities. Then a cell-
free extract is flushed into the back-chamber to transcribe DNA to mRNA and to
translate it into a protein. The DNA encodes immobilization-tag, protein of interest
and binding domain. Immobilization-tag and binding domain are at opposite termini
to ensure only fully translated proteins are probed later on one surface with the same
cantilever.
After protein synthesis, the spatially separated chambers (back and front) are con-
nected by opening the separating valve and the newly synthesized proteins diffuse
to the activated surface in the front. The microfluidics chip that served as reaction
compartment can now be removed and the glass slide can be mounted under an AFM
head, presenting an array of individually and spatially separated proteins of interest
to be probed on one surface.
In this study different fingerprint domains were fused with a type I dockerin (from
Clostridium thermocellum) and probed with a cantilever having a type I cohesin at-
tached. Several proteins could be probed with the same cantilever over a longer
period of time, increasing comparability of absolute unfolding forces of the different
fingerprint domains.
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interrogate the mechanical behavior of different proteins in a 
parallel and streamlined format with the same cantilever would 
offer distinct advantages. Such a screening approach could char-
acterize single-molecule properties such as unfolding forces, 
interdomain mechanical signatures and mechanically activated 
catch-bond behavior1. Screening of these properties could find 
applications in biotechnology and human health studies in which 
mechanical dysregulation or misfolding is suspected to play a 
role in pathology11.

Here we developed a platform for parallel characterization of 
individual protein mechanics in a single experiment (Fig. 1). 
Microspotted gene arrays were used to synthesize fusion proteins 
in situ using cell-free gene expression. Proteins were covalently 
immobilized inside multilayer microfluidic circuits. A single can-
tilever was then positioned above the protein array and used to 
probe the mechanical response of each individual protein via a 
common C-terminal dockerin (Doc) fusion tag. Genes of interest 
were chosen such that each gene product exhibited an identifiable 
unfolding pattern when loaded from the N to the C terminus. Each 
target protein was expressed with an N-terminal 11-amino-acid  
ybbR tag, which was used to covalently and site-specifically link 
the protein to the surface via Sfp synthase–catalyzed reaction with 
coenzyme A (CoA)12. At the C terminus the proteins contained a 
75-amino-acid cellulosomal Doc from Clostridium thermocellum13  
as a specific handle targeted by the cohesin (Coh)-modified  
cantilever.

The gene microarray was aligned and reversibly bonded to 
a microfluidic chip known as MITOMI (mechanically induced 
trapping of molecular interactions). The chip has been used in the 
past for screening transcription factors14,15 and mapping interac-
tion networks16. More recently, our group employed MITOMI 
chips for molecular force assays17. In this work, MITOMI chips 
featured 640 dumbbell-shaped unit cells in a flow layer and 2,004 
micromechanical valves in a control layer. Each unit cell was 
equipped with pneumatic ‘neck’, ‘sandwich’ and ‘button’ valves 
(Fig. 1a) according to design principles of soft lithography18. Each 
neck valve protected the microspotted DNA in the back cham-
ber from exposure to other reagents during surface patterning 
in the front chamber. The sandwich valves prevented chamber- 
to-chamber cross contamination, ensuring that only a single  
protein variant was present in each sample spot. For surface 
chemistry in the front chamber, the button valves were actuated 
to shield the sample spots, allowing n-dodecyl β-d-maltoside 
passivation in the surrounding area. Releasing the button valves 
allowed subsequent functionalization with CoA-poly(ethylene 
glycol) (CoA-PEG) in the sample area under the buttons serving 
as the protein immobilization site. We expressed the genes by 

from genes to protein 
mechanics on a chip
Marcus Otten1,2,4, Wolfgang Ott1,2,4, Markus A Jobst1,2,4, 
Lukas F Milles1,2, Tobias Verdorfer1,2, Diana A Pippig1–3,  
Michael A Nash1,2 & Hermann E Gaub1,2

single-molecule force spectroscopy enables mechanical testing 
of individual proteins, but low experimental throughput limits 
the ability to screen constructs in parallel. We describe a 
microfluidic platform for on-chip expression, covalent surface 
attachment and measurement of single-molecule protein 
mechanical properties. a dockerin tag on each protein molecule 
allowed us to perform thousands of pulling cycles using a single 
cohesin-modified cantilever. the ability to synthesize and 
mechanically probe protein libraries enables high-throughput 
mechanical phenotyping.

Mechanical forces play a pivotal role in biological systems by 
performing tasks such as guiding cell adhesion1, inducing gene 
expression patterns2 and directing stem cell differentiation3. At 
the molecular level, mechanosensitive proteins act as sensors and 
transducers, communicating the presence and direction of applied 
forces to downstream signaling cascades. Conformational changes 
in response to mechanical forces4 and energetic barriers along 
unfolding pathways can be probed by single-molecule force spec-
troscopy (SMFS) techniques4. Such techniques, including optical 
tweezers, magnetic tweezers and atomic force microscopy (AFM), 
have been used to interrogate high-affinity receptor-ligand bind-
ing5, measure unfolding and refolding dynamics of individual 
protein domains6–8, observe base-pair stepping of RNA polymer-
ases9 and identify DNA stretching and twisting moduli10.

Despite these successes, SMFS experiments have been limited 
by low throughput. Experimental data sets typically contain a 
majority of unusable force-distance traces owing to the measure-
ment of multiple molecular interactions in parallel or a lack of spe-
cific interactions. Typical yields of interpretable single-molecule  
interaction traces in SMFS experiments vary between 1% and 
25%. The incapacity of SMFS to quickly screen libraries of 
molecular variants has hindered progress toward understanding 
sequence-structure-function relationships at the single-molecule  
level. In particular, the need to prepare each protein sample  
and cantilever separately increases experimental workload and 
gives rise to calibration uncertainties. Therefore, methods to 
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incubating an in vitro transcription and translation cell extract 
at 37 °C with the spotted DNA in the back chamber. The syn-
thesized proteins then diffused to the front chamber, where they 
were covalently linked to the surface via an Sfp-catalyzed reac-
tion of surface-bound CoA with solution-phase N-terminal ybbR 
peptide tags (Fig. 1b). Partial pressurization of the button valve19 
was used for tagging an outer concentric portion of the sample 
area with a fluorescently (TagRFP) tagged Coh that specifically 
bound to the C-terminal Doc tag of each target protein, thereby 
confirming successful protein synthesis and surface immobiliza-
tion (Supplementary Fig. 1). Finally, the microfluidic device was 
removed from the glass slide to provide access to the protein array 
from above. Using this approach, we generated microarrays of site-
specifically and covalently immobilized proteins for subsequent 
SMFS experiments, starting from a conventional gene array.

An inverted three-channel total-internal-reflection 
fluorescence/atomic force microscope (TIRF-AFM)20 was used 
to position the cantilever in the center of the fluorescent rings 
in the protein array and perform SMFS measurements (Fig. 1c). 
The Coh-modified cantilever was used to probe the surface for 
expressed target proteins containing the C-terminal Doc tag. 
Upon surface contact of the cantilever, formation of a Coh-Doc 

complex allowed measurement of target-protein unfolding in a 
well-controlled pulling geometry (N to C terminus). We retracted 
the probe at constant velocity and recorded force-extension traces 
that characterized the unfolding fingerprint of the target protein. 
This approach-retract process could be repeated many times at 
each array address to characterize each expression construct.

Several unique features of the C-terminal Doc tag make it 
particularly suitable as a protein handle for SMFS. Its small size 
of 8 kDa does not notably add to the molecular weight of the 
gene products, which is advantageous for cell-free expression. 
Additionally, Doc exhibits a specific and high-affinity inter-
action with Coh domains from the C. thermocellum scaffold  
protein CipA. Coh was used both for fluorescence detection of the 
expression constructs and for modification of the cantilever. On 
the basis of our prior work, the Coh-Doc interaction is character-
ized to be high affinity, with a dissociation constant Kd in the low 
nanomolar range and rupture forces >125 pN at a loading rate of 
10 nN/s (ref. 21). Our prior work also indicated that upon forced 
dissociation, Doc exhibited a characteristic double sawtooth rup-
ture peak with a contour length increment of 8 nm separating 
the two peaks. We used this two-pronged double rupture event 
at the end of each force-extension trace as a positive indicator 
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figure 1 | Method workflow. (a) A gene array  
was spotted onto a glass slide. Genes were  
designed with a common set of flanking  
sequences, including a T7 promoter region,  
ybbR tag, dockerin tag and T7 terminator  
(term.). The multilayer microfluidic chip  
featuring 640 unit cells was aligned to the  
DNA microarray and bonded to the glass slide.  
Each unit cell comprised a DNA chamber, a  
protein chamber, and superseding elastomeric  
control valves actuated by pneumatic pressure.  
PDMS, poly(dimethylsiloxane). (b) Control  
valves were used for spatially selective surface  
modification of each protein chamber with  
poly(ethylene glycol)–coenzyme A (PEG-CoA)  
and for fluidic isolation of each chamber before  
in vitro expression of the microspotted DNA.  
Fluorescence labeling with TagRFP-cohesin  
was achieved by partial button-valve  
pressurization, leaving only an outer  
concentric ring of immobilized gene products exposed to the labeling solution. DDM, n-dodecyl β-d-maltoside. (c) After removal of the microfluidic 
device, the resulting well-defined, covalently attached protein microarray was accessed from above with a cohesin-functionalized atomic force 
microscope (AFM) cantilever. Single-molecule unfolding traces of each of the protein constructs were thus acquired sequentially at each corresponding 
array address with a single cantilever in a single experiment.
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figure 2 | Representative single-molecule  
force traces recorded in different protein spots  
on a single chip with a single cantilever.  
(a–d) Four proteins of interest, anchored  
between the coenzyme A (CoA)-functionalized  
surface and the cohesin-functionalized  
cantilever, were probed: fibronectin tetramer (a), 
spectrin dimer (b), xylanase monomer (c)  
and sfGFP monomer (d). The crystal  
structure and pulling configuration (top) are  
shown for each construct. Each single-molecule  
force-distance trace (bottom) shows the  
individual unfolding fingerprint of the  
respective protein of interest followed by a  
common, final double sawtooth peak (gray) that is characteristic of the cohesin-dockerin rupture. Experimental data were fitted with the worm-like 
chain model (dashed lines). Unfolding intermediates were also observed (fitted for only xylanase in c; dotted colored line).
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that the gene of interest was completely expressed through to 
the C terminus (Fig. 2). Furthermore, this double rupture peak 
indicated that the interaction with the Coh-modified cantilever 
was specific and that the pulling geometry was strictly controlled 
such that force was applied to the molecule of interest from the 
N to the C terminus.

To validate and demonstrate our approach, we expressed genes of 
interest comprising well-known fingerprint domains in the SMFS 
literature. We produced multimeric polyproteins including tetra-
meric human type-III fibronectin (FBN)22 and dimeric chicken 
brain α-spectrin (SPN)23. We also synthesized monomers of endo-
1,4-xylanase T6 from Geobacillus stearothermophilus (XYL)21, 
superfolder GFP (GFP)24 and twitchin kinase25. In all cases, the 
target proteins were fused to N-terminal ybbR and C-terminal Doc 
tags (Supplementary Figs. 2–6). Unfolding data for FBN, SPN, 
XYL and GFP were obtained using a single cantilever to probe a 
single microarray (Figs. 2 and 3). Twitchin kinase was found not to 
express in sufficient yield to provide reliable unfolding statistics.

We transformed force-extension data (Fig. 2) into contour 
length space26 using the worm-like chain model and compared the 
measured contour length increments with the amino acid sequence 
lengths of each protein and literature values. The observed con-
tour lengths and rupture forces were consistent with our expec-
tations. FBN showed a fourfold-repeated sequence of rupture 
peaks at contour length increments of 32 nm (∆Lc

FBN; Fig. 2a)  
frequently interrupted by an intermediate peak at 10–12 nm, both  
features characteristic of FBN22. SPN showed two regular  
sawtooth-like peaks with contour lengths of 33 nm (∆Lc

SPN; Fig. 2b)23.  
XYL exhibited a decreasing multipeaked unfolding fingerprint 
with a contour length increment of 92 nm (∆Lc

XYL; Fig. 2c),  
occasionally showing additional increments corresponding to 
unfolding of remaining XYL subdomains, a result consistent with 
the prior study and accounting for N-terminal immobilization 
of XYL21. GFP unfolding showed a contour length increment of  
74 nm (∆Lc

GFP; Fig. 2d)24. As each protein in the array contained 
the same C-terminal Doc tag, the final two rupture peaks in all 
force traces represented rupture of the Coh-Doc complex regard-
less of the protein of interest.

In our system, surface densities of expressed proteins were  
comparable to those obtained in conventional SMFS experiments. 
Uninterpretable and nonspecific interactions were excluded 
from the analysis (Supplementary Fig. 7). By collecting multiple 
unfolding traces, we assembled contour length diagrams for each 
protein of interest26,27 (Fig. 3a) and confirmed the predicted con-
tour length increments on the basis of the encoded amino acid 
sequences in each DNA spot. Coh-Doc rupture events for all 
protein constructs in the array clustered to the same population  
in the force-loading rate plot, independently of the preceding  

rupture peaks from the protein of interest (Fig. 3b). The Coh-Doc 
ruptures agreed with previously reported values at similar loading 
rates21. The unfolding events of the proteins of interest produced 
distinct populations in the force-loading rate plots (Fig. 3c). The 
unfolding events depended on the internal structure and the unfold-
ing pathway of the fingerprint domain when stretched between its N 
and C termini. SPN, for example, an elongated 3-helix bundle, was 
previously reported to exhibit a broader energy well (∆x = 1.7 nm;  
ref. 23) and showed a flatter distribution of unfolding forces than 
that of the more compact globular FBN domain with a shorter, 
steeper potential (∆x = 0.4 nm; ref. 22).

In summary, our flexible approach efficiently streamlines pro-
tein expression, purification and SMFS into a single integrated 
platform (Supplementary Discussion). The approach should 
be compatible with other in vitro expression systems including 
extracts derived from insects, rabbit reticulocytes and human 
cell lines, and it is capable of introducing post-translational  
modifications and non-natural amino acids, allowing, for exam-
ple, the screening of site-directed mutants. Our method allows for 
synthesis of cytotoxic proteins or proteins with a tendency to form 
inclusion bodies during bulk expression. In addition to provid-
ing greatly improved throughput, our system has the advantage 
of measuring multiple constructs with one cantilever, thereby 
eliminating errors introduced when performing multiple cali-
brations on different samples with uncertainties of ~10% (ref. 28).  
Detecting subtle differences in mechanical stability with this 
high-throughput approach could therefore be used to perform 
mechanical phenotyping experiments on similarly stable families 
of mutant proteins. This workflow opens the door to large-scale 
screening studies of protein nanomechanical properties.

methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Addgene: pET28a-ybbR-HIS-sfGFP-DocI, 
58708; pET28a-ybbR-HIS-CBM-CohI, 58709; pET28a-StrepII-
TagRFP-CohI, 58710; pET28a-ybbR-HIS-Xyl-DocI, 58711; 

0.8 160

Cohesin-dockerinfibronectin
Cohesin-dockerinspectrin
Cohesin-dockerinxylanase
Cohesin-dockerinsfGFP

Fibronectin
Spectrin
Xylanase
sfGFP

120

80

R
up

tu
re

 fo
rc

e 
(p

N
)

U
nf

ol
di

ng
 fo

rc
e 

(p
N

)

40

0

160

120

80

40

0

102 103 104

Force loading rate (pN/s)

Fibronectin
tetramer

a b

c

Spectrin
dimer

Xylanase
monomer

sfGFP
monomer

F
re

qu
en

cy
 (

a.
u.

)

∆Lc
FBN

∆Lc
SPN

∆Lc
XYL

∆Lc
GFP

0.4

0

0.8

0.4

0

0.8

0.4

0

0.8

0.4

0
0 50 100 150 200 250 300

Contour length (nm)

figure 3 | Unfolding and rupture statistics from multiple force traces. 
(a) Relative frequency of observing given contour lengths determined by 
transforming and aligning multiple force traces into contour length space 
via the worm-like chain model. Shown are diagrams for the fibronectin 
tetramer (n = 27, ∆Lc

FBN = 33 nm), spectrin dimer (n = 50, ∆Lc
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xylanase monomer (n = 91, ∆Lc
XYL = 93 nm) and sfGFP monomer (n = 25, 

∆Lc
GFP = 79 nm). (b) Rupture force versus loading rate of the final cohesin-

dockerin dissociation event. (c) Unfolding force versus loading rate for 
each protein of interest. The populations in b and c were fitted with 
two-dimensional Gaussians. Respective means and s.d. are plotted in the 
corresponding colors as solid symbols and error bars. a.u., arbitrary units.
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pET28a-ybbR-HIS-10FNIII(x4)-DocI, 58712; pET28a-ybbR-
HIS-Spec(x2)-DocI, 58713.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Chip fabrication. Ready-to-use wafers for flow and control layers 
of the 640-chamber MITOMI design were obtained from Stanford 
Microfluidics Foundry (design name DTPAd)14. The flow wafer 
features 15-µm-high features, rounded by photoresist reflow, 
whereas the control wafer features a rectangular cross-section.

Microfluidic chips were cast in poly(dimethylsiloxane) (PDMS) 
from these wafers. For the control layer, Sylgard 184 (Dow 
Corning) base and curing agent were mixed at a ratio of 5:1 by 
weight, poured onto the wafer, degassed and partially cured for 
20 min at 80 °C. For the flow-layer wafer, a 20:1 base–to–curing  
agent mixture of Sylgard 184 was spin-coated for 75 s at  
1,600 r.p.m. and partially cured for 30 min at 80 °C. The control 
layer chips were cut out, inlet holes were punched and the chips 
were aligned onto the spin-coated PDMS on the flow-layer wafer. 
After the two-layer chips were baked for 90 min at 80 °C, they 
were cut and removed from the wafer, and inlet/outlet holes were 
punched. Microfluidic chips were stored for up to 6 weeks.

Cloning. For the construction of the fusion proteins, Gibson 
assembly29 was used. A ratio of 0.07 pmol vector to 0.3 pmol of 
insert was used for the fusion reaction. The primer sequences are 
provided in Supplementary Table 1. A pET28a plasmid was lin-
earized with primers 1 and 2. The dockerin type I–encoding gene 
was isolated from the xylanase-dockerin type I construct21 with 
primers 3 and 4. Codon-optimized sequences were purchased 
from GeneArt/Invitrogen. The genes of interest were designed 
in such a way that they already contained sequences overlapping 
those of their neighboring partners (pET28a and dockerin type I).  
In the case of the spectrin, two domains were linked with a flexible  
glycine-serine (×6) linker. For fibronectin, four type III domains 
were fused separated by glycine-serine (×6) linkers. The  
expression vector in all cases was a pET28a plasmid with a  
modified multiple cloning site (sequence attached: plasmids are 
available at Addgene, Supplementary Table 2). After construction, 
clones were verified via sequencing and amplified in NEB 5-alpha 
Escherichia coli cells. Following plasmid preparation, samples  
were concentrated up to 500 ng/µl before microspotting.

DNA microspotting. A 24 × 60–mm #1 thickness coverslip 
(Thermo Scientific) was silanized with 3-aminopropyldimethyl-
ethoxysilane (ABCR) following literature protocols30.

The DNA solution containing 1% (w/v) nuclease-free bovine 
serum albumin (Carl Roth) in nuclease-free water was microspot-
ted under humid atmosphere onto the silanized coverslip using 
the GIX Microplotter II (Sonoplot) and a glass capillary with a 
30-µm tip diameter (World Precision Instruments) according to 
the manufacturer’s instructions in a rectangular 40 × 16 pattern 
with 320-µm column pitch and 678-µm row pitch. Alignment 
of the DNA array and the microfluidic chip was done manually 
using a stereomicroscope. Bonding between the glass cover slip 
and microfluidic device was achieved by thermal bonding for  
5 h at 80 °C on a hot plate.

Protein synthesis on-chip. The microfluidic device was oper-
ated at a pressure of 4 p.s.i. in the flow layer and 15 p.s.i. in the 
control layer. Operation started with the button and neck valves 
actuated for surface passivation. The flow layer was passivated 
by flushing through standard buffer (25 mM Tris, 75 mM NaCl,  

1 mM CaCl2, pH 7.2) for 5 min and 2% n-dodecyl β-d-maltoside 
(Thermo Scientific) in nuclease-free H2O for 30 min (ref. 31). 
Next the button valve was opened, and borate buffer (50 mM 
sodium borate, pH 8.5) was flushed through for 30 min to depro-
tonate aminosilane groups on the glass surface.

For maleimide/coenzyme A functionalization, a solution of  
5 mM NHS-PEG-maleimide (MW = 513 Da, Thermo Scientific) 
in borate buffer was flushed through for 45 min. The device was 
then rinsed with nuclease-free H2O for 5 min, followed by 30 min  
of 20 mM coenzyme A (Merck) in coupling buffer (50 mM sodium 
phosphate, pH 7.2, 50 mM NaCl, 10 mM EDTA). The button 
valve was then actuated to protect the functionalized surface area  
followed by 5 min of rinsing with standard buffer.

S30 T7 HY (Promega) in vitro transcription and translation mix, 
supplemented with 1 µL T7 polymerase (Promega) and 0.5 µL  
RNase inhibitor (Invitrogen), was then flushed into the chip,  
filling the DNA chambers (neck valve open).

The neck valve was then closed, and the channels were filled 
with 4′-phosphopantetheinyl transferase (Sfp synthase) in Sfp 
buffer (50 mM HEPES, 10 mM MgCl2). The chip was then incu-
bated at 37 °C on a hot plate. After 1 h of incubation, the neck and 
the button valves were opened to allow Sfp synthase–catalyzed 
linkage of expressed protein to the coenzyme A–functionalized 
area below the button. At the same time the sandwich valves were 
actuated to avoid chamber-to-chamber cross-contamination. 
After another 1.5 h of incubation, the neck and button valves 
were closed, the sandwich valves were opened and the chip was 
rinsed with standard buffer for 20 min.

To verify successful protein expression and immobilization 
on the functionalized surface area, a fluorescent detection con-
struct (TagRFP–cohesin type I (2 µg/ml) in standard buffer) 
was flushed through the device for 10 min with the button valve 
actuated. The sandwich valves were then actuated, and the but-
ton valve partially released by decreasing the pressure to 11 p.s.i. 
After 20 min of incubation at room temperature, the sandwich 
valves were opened, and the chip flushed with standard buffer for  
20 min. Fluorescence images of all chambers were recorded on an 
inverted microscope with a 10× objective (Carl Zeiss), featuring 
an electron-multiplying charge-coupled device (EMCCD) camera 
(Andor). Prior to force spectroscopy experiments, the chip was 
stored in buffer at 4 °C.

Directly before measurement, the PDMS chip was peeled off from 
the glass substrate under buffer, revealing the microarray while 
avoiding drying of the functionalized surface. The array surface 
was then rinsed several times with buffer. We did not encounter any 
problems with cross-contamination between chambers.

Cantilever functionalization. A silicon-nitride cantilever bearing 
a silicon tip with a tip radius of ~8 nm (Biolever mini, Olympus) 
was silanized with ABCR as described previously30. Protein 
functionalization was performed in a similar way as reported  
previously27,31. Briefly, a 50 µM solution of CBM A2C–cohesin 
from C. thermocellum in standard buffer was incubated with  
1:2 (v/v) TCEP beads (Tris (2-carboxyethyl) phosphine disulfide 
reducing gel, Thermo Scientific), previously washed with standard 
buffer, for 2.5 h. The cantilever was submerged in borate buffer for  
45 min to deprotonate primary amine groups on the silanized 
surface and then incubated with 20 mM NHS-PEG-maleimide 
(MW = 5 kDa, Rapp Polymere) in borate buffer for 60 min.
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The cantilever was rinsed sequentially in three beakers of 
deionized H2O. TCEP beads were separated from the protein 
solution by centrifugation at 1,000g for 1 min. Next the cantilever 
was incubated for 60 min with reduced protein solution, which 
was diluted to a concentration of 1 mg/mL with standard buffer. 
Finally the cantilever was rinsed sequentially in three beakers 
of standard buffer and stored submerged in standard buffer in 
humid atmosphere at 4 °C for up to 24 h before use.

Force spectroscopy. A custom-built TIRF (total internal reflec-
tion fluorescence)-AFM (atomic force microscope) hybrid20,30 
was used to conduct the force spectroscopy measurements. The 
TIRF microscope was used to image fluorophores in up to three 
different color channels simultaneously using an iChrome MLE-S 
four-color laser (Toptica Photonics), an Optosplit III triple emis-
sion image splitter (Cairn Research) and a Xion3 EMCCD camera 
(Andor). A long-range stick-slip xy piezo nanopositioning sys-
tem (ANC350, Attocube Systems) allowed access to the whole 
microchip array as well as fine spatial sampling of different sur-
face molecules on the nanometer scale within each protein spot. 
Cantilever actuation in the z direction was performed by a LISA 
piezo-actuator (Physik Instrumente) driven by an MFP3D AFM 
controller (Asylum Research).

The following force spectroscopy protocol was performed 
repeatedly in each functionalized protein target area. The canti-
lever approach velocity was 3,000 nm/s, dwell time at the surface 
was 10 ms and retract velocity was 800 nm/s. Data were recorded 
with 6,250-Hz sampling rate. The cantilever typically had a spring 
constant in the range of 100 pN/nm and a resonance frequency of 
25 kHz in water. Accurate calibration of the system was performed 
by the nondestructive thermal method32,33 using corrections to 
account for discrepancies from the original theory27,34.

Data and statistical analysis. The raw data were converted from 
photodiode voltages into force values in newtons, and the follow-
ing standard corrections were applied. The zero force value for the 
unloaded cantilever in each curve was determined by averaging 
over 40-nm extension after the final complex rupture and sub-
tracting this value from each force value in the curve. The position 
of the surface was determined by finding the force value closest to 
0 in a small neighborhood of the first non-negative force value in 
the force-extension trace. The z piezo position was corrected for 
the true tip-sample separation due to deflection of the lever as a 
function of the force for a Hookean spring.

A pattern-recognition software based on a package described 
previously26 and adapted in-house chose the curves show-
ing worm-like chain force responses of the stretched protein  
constructs. Example curves showing multiple, unspecific or no 
interactions are shown in Supplementary Figure 7, together with 
a single xylanase trace for comparison. The expected protein 
backbone contour length increments for each construct were 
detected in contour length space: the real part of the following 
numerically solved inverse worm-like chain (WLC) formula27 

was used to transform force-extension data into force–contour 
length space for every measured force curve: 

L x
x

u
u

u u

g u
g u( )

( )
( )= + + − + +









6

3 4
9 3 4 2

where 

       g u u u u u u( ) ( )= − + − + − − −( )







27

27

2
36 8

3 3

2
4 3 1082 3 2 3

1

3

and

 
u F

L

kT
= p

 

with L the contour length, x the extension, F the force, Lp the 
persistence length, k Boltzmann’s constant and T the temperature. 
Transformed data points were combined in a Gaussian kernel 
density estimate with a bandwidth of 1 nm and plotted with a 
resolution of 1 nm. In these resulting energy-barrier position dia-
grams, the contour length increments could easily be determined. 
The transformation was performed with the following parameters: 
persistence length Lp = 0.4 nm, thermal energy kT = 4.1 pN nm. 
Force and distance thresholds were applied at 10 pN and 5 nm, 
respectively. The measurement data sets in each protein spot on 
the chip typically showed a yield of 0.5–5% specific interactions.

The force peaks corresponding to protein domain unfolding 
events, as well as those corresponding to final ruptures, were line 
fitted in force-time space to measure the loading rate of each 
individual event.

WLC fits for demonstrative purposes in Figure 2 were done by 
using the following formula:
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with F the force, k the Boltzmann’s constant, T the temperature, Lp 
the persistence length, x the extension and L the contour length.

Discrepancies between contour length increments in fitted 
single-molecule traces and aligned contour length diagrams are 
artifacts caused by the fixed persistence length in the contour 
length transformation, whereas the WLC fits to single force traces 
treat both contour length and persistence length of each stretch as 
free parameters. An overview of the yield of interpretable curves 
of all constructs is available in Supplementary Table 3.
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32. Hutter, J.L. & Bechhoefer, J. Rev. Sci. Instrum. 64, 1868 (1993).
33. Cook, S.M. et al. Nanotechnology 17, 2135–2145 (2006).
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Corrigendum: From genes to protein mechanics on a chip
Marcus Otten, Wolfgang Ott, Markus A Jobst, Lukas F Milles, Tobias Verdorfer, Diana A Pippig, Michael A Nash & Hermann E Gaub
Nat. Methods 11, 1127–1130 (2014); published online 7 September 2014; corrected after  print 5 November 2014

In the version of this article initially published, the grant “European Research Council Grant Cellufuel (Advanced Grant 294438)” was 
mistakenly left out of the Acknowledgements. The error has been corrected in the HTML and PDF versions of the article.

NATURE METHODS

CORRIGENDA

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

162 Chapter 5. Multiplexing of AFM Experiments



Supplementary Figure 1 

Microfluidic chip overview. 

(a) Photograph of a microfluidic chip bonded to a glass slide with a US dime for scale. Control channels are filled with food dye for 
better visualization. (b) Pattern of a typical DNA array, consisting of repeats of rows with four different genes and one row with nothing
spotted as negative control. (c) Photograph of a bonded PDMS chip onto the glass slide with DNA spots in the back chamber. The
orange highlighted frame shows a zoom in of the bottom left corner. (d) Typical fluorescence collage assembled from 640 single 
fluorescence micrographs of each protein chamber on one single chip shows pattern of expressed protein (assembly not to scale). 
Fluorescence signal of TagRFP reveals expression levels and Dockerin specificity. Here, low passivation of the protein chamber
facilitates visualization. (e) Three of 640 adjacent dumbbell-shaped chambers, one with sfGFP DNA spotted (left), one with Xylanase
DNA (center) and one negative control without DNA (right). Control channels are visualized with food dye: neck valve (green), sandwich
valve (red), and button valve (blue). (f) Fluorescence images showing GFP signal (top) from expressed and immobilized ybbR-sfGFP-
Dockerin (left), ybbR-Xylanase-Dockerin (center) with negative control lacking the spotted DNA (right). The bottom row shows the
signal from the TagRFP detection construct, which specifically bound to the Dockerin tag via the Cohesin domain. 
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Supplementary Figure 2 

Diagram of the expression vector pET28a with an individual gene of interest.  

Nature Methods: doi:10.1038/nmeth.3099

164 Chapter 5. Multiplexing of AFM Experiments



Supplementary Figure 3 

Schematic of the fibronectin tetramer gene cassette. 

Nature Methods: doi:10.1038/nmeth.3099
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Supplementary Figure 4 

Schematic of the sfGFP dimer gene cassette. 

Nature Methods: doi:10.1038/nmeth.3099

166 Chapter 5. Multiplexing of AFM Experiments



Supplementary Figure 5 

Schematic of the spectrin dimer gene cassette. 

Nature Methods: doi:10.1038/nmeth.3099
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Supplementary Figure 6 

Schematic of the xylanase gene cassette. 

Nature Methods: doi:10.1038/nmeth.3099
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Supplementary Figure 7 

Exemplary force traces 

Example curves showing (a) uninterpretable interaction, (b) non-specific interaction of cantilever with surface, (c) no interaction, and (d) 
a specific Xylanase-Dockerin unfolding and unbinding trace. Curves similar to those shown in a-c were excluded from the analysis. 
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Supplementary Discussion 
Typically in SMFS experiments, rupture force – loading rate plots are used to 
characterize koff and Δx, the unbinding (or unfolding) probability per time unit and the 
distance to the transition state along the reaction coordinate, respectively, providing 
direct information about the energy landscape governing protein folding1. SMFS 
experiments are also complemented by all-atom simulations of such systems in silico. 
Recently, it was shown that high speed SMFS experiments could be performed at 
speeds achievable in molecular dynamics simulations2, overcoming a long standing 
discrepancy between experiment and simulation.  

In analyzing single-molecule unfolding curves (i.e., Fig. 2), we note that the spotted DNA 
at the measured array addresses correctly corresponded to the domain of interest 
encoded by the corresponding spotted DNA at that position. For example, the fibronectin 
tetramer was measured at array position (237), the spectrin dimer at position (239), the 
xylanase monomer at position (196), and the sfGFP monomer at position (238), 
corresponding to the correct genes deposited into the expression chambers at those 
array positions (Fig. 2). Typically 10–15 immobilization chambers per microarray were 
measured. Typically several thousand force curves were acquired giving rise to dozens 
of interpretable single-molecule interaction curves. 
 
Upper force limit 
Here we extend the discussion regarding the upper force limit for the SMFS-MITOMI 
system. In all force-distance data traces, the last rupture events represent unbinding of 
the Coh-Doc complex, not unfolding of a domain. This rupture force of the Coh-Doc 
complex represents an upper limit in force for the entire construct, since the Doc is used 
as a handle sequence grabbed by the Coh-modified cantilver. The system we described 
can therefore interrogate domains with mechanical rupture forces that lie below that of 
Coh-Doc (~125 pN at 10 nN/s). If proteins with larger unfolding forces should be 
investigated, other Coh-Doc domains that show even higher complex rupture forces can 
be used. The Coh-Doc pair from R. flavefaciens, for example (PDB 4IU3) exhibits 
rupture forces over 600 pN at these loading rates (unpublished data). This could 
alternatively be used as a handle sequence to interrogate mechanically more stable 
domains of interest.   
 
Computerized image analysis can be used to automate cantilever positioning above the 
fluorescent rings and subsequent acquisition of unfolding traces at each array address in 
combination with online force curve analysis to further increase throughput. Additionally, 
well-characterized reference proteins on the same chip may serve as calibration 
standards further minimizing uncertainty in absolute force values.  

It is possible to operate the MITOMI device in a simplified way without the need for 
microspotting template DNA and chip alignment. This manual option should encourage 
the interested community to apply the suggested method to their single molecule force 
spectroscopy experiments. MITOMI enables the experimenter to prepare up to 16 
different constructs in one column with 40 repeats each by flow-loading the DNA. Since 
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the valves are pressure sensitive it is also possible to operate these manually. This way 
it is possible to make use of the parallelized method without having the automation 
tools.Supplementary Materials & Methods 

DNA Sequences 

Supplementary Table 1. Overview of primers	  

 

Supplementary Table 2. Overview of DNA plasmids available at Addgene database	  

Addgene ID Construct 

58708 pET28a-ybbR-HIS-sfGFP-DocI 

58709 pET28a-ybbR-HIS-CBM-CohI 

58710 pET28a-StrepII-TagRFP-CohI 

58711 pET28a-ybbR-HIS-Xyl-DocI 

58712 pET28a-ybbR-HIS-10FNIII(x4)-DocI 

58713 pET28a-ybbR-HIS-Spec(x2)-DocI 

 Name Sequence 

1 FW-w/o C-Tags MCS TAACTCGAGTAAGATCCGGCTGC 

2 REV-N-Tags MCS GCTAGCACTAGTCCATGGGTG 

3 FW-DocI GA AAAGTGGTACCTGGTACTCC 

4 REV-XylDocI-GA CGGATCTTACTCGAGTTAGTTCTTGTACGGCAATGTATC 

5 FW 10FNIII GA CGCACCGGCTCTGGCTCTGGCTCTGTTAGTGATGTTCCGCGTG 

6 REV 10 FNIII GA GGAGTACCAGGTACCACTTTGGTGCG 

7 REV 10FNIII (auf GS Li) GA ACTAACAGAGCCAGAGCCAGAGCCGGTGCGATAATTGATTGAAATC 

8 FW sfGFP (auf MCS) GA   CACCCATGGACTAGTGCTAGCAGCAAAGGTGAAGAACTGTTTAC 

9 REV sfGFP (auf DocI) GA GGAGTACCAGGTACCACTTTCTTATACAGCTCATCCATACCATG 
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Multiple cloning site for the protein of interest: 
 

N terminal region 

T7 promoter | lac operator | RBS | ATG | ybbr Tag | HRV 3C 
protease site | HIS Tag (x6) 

TAATACGACTCACTATAGG|GGAATTGTGAGCGGATAACAATTCC|CCTGTAGAAATAATTTTGT
TTAACTTTAAG|AAGGA|GATATACAT|ATG|GGTACC|GACTCTCTGGAATTCATCGCTTCTAA
ACTGGCT|CTGGAAGTTCTGTTCCAGGGTCCG|CTGCAG|CACCACCACCACCACCAC|CCATGG
ACTAGTGCTAGC  

C terminal region 

Dockerin Type I | T7 terminator 

AAAGTGGTACCTGGTACTCCTTCTACTAAATTATACGGCGACGTCAATGATGACGGAAAAGTTAA
CTCAACTGACGCTGTAGCATTGAAGAGATATGTTTTGAGATCAGGTATAAGCATCAACACTGACA
ATGCCGATTTGAATGAAGACGGCAGAGTTAATTCAACTGACTTAGGAATTTTGAAGAGATATATT
CTCAAAGAAATAGATACATTGCCGTACAAGAAC|TAA|CTCGAGTAAGATCCGGCTGCTAACAAA
GCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAA|CTAGCATAACCCCTTGGGG
CCTCTAAACGGGTCTTGAGGGGTTTTTT 

 

10 FibronectinIII (4x): 

Glycin-Serin Linker (x6) 

GTTAGTGATGTTCCGCGTGATCTGGAAGTTGTTGCAGCAACCCCGACCAGCCTGCTGATTAGCTG
GGATGCACCGGCAGTTACCGTTCGTTATTATCGTATTACCTATGGTGAAACCGGTGGTAATAGTC
CGGTTCAAGAATTTACCGTTCCGGGTAGCAAAAGCACCGCAACCATTAGCGGTCTGAAACCGGGT
GTTGATTACACCATTACCGTTTATGCCGTTACCGGTCGTGGTGATTCACCGGCAAGCAGCAAACC
GATTAGCATTAACTATCGTACCGGTAGCGGTAGTGGTAGCGTTTCAGATGTGCCTCGCGACCTGG
AAGTGGTGGCTGCCACACCGACCTCACTGCTGATCTCATGGGATGCCCCTGCCGTGACCGTGCGC
TATTATCGCATCACATATGGCGAGACAGGTGGCAATTCACCTGTGCAAGAATTCACAGTTCCTGG
TTCAAAAAGTACCGCCACAATTTCTGGCCTGAAACCTGGCGTGGATTACACAATCACAGTGTATG
CAGTGACAGGTCGCGGTGATAGTCCGGCAAGTTCAAAACCGATTTCAATCAATTATCGCACCGGC
TCTGGCTCTGGCTCTGTTAGTGATGTTCCGCGTGATCTGGAAGTTGTTGCAGCAACCCCGACCAG
CCTGCTGATTAGCTGGGATGCACCGGCAGTTACCGTTCGTTATTATCGTATTACCTATGGTGAAA
CCGGTGGTAATAGTCCGGTTCAAGAATTTACCGTTCCGGGTAGCAAAAGCACCGCAACCATTAGC
GGTCTGAAACCGGGTGTTGATTACACCATTACCGTTTATGCCGTTACCGGTCGTGGTGATTCACC
GGCAAGCAGCAAACCGATTAGCATTAACTATCGTACCGGTAGCGGTAGTGGTAGCGTTTCAGATG
TGCCTCGCGACCTGGAAGTGGTGGCTGCCACACCGACCTCACTGCTGATCTCATGGGATGCCCCT
GCCGTGACCGTGCGCTATTATCGCATCACATATGGCGAGACAGGTGGCAATTCACCTGTGCAAGA
ATTCACAGTTCCTGGTTCAAAAAGTACCGCCACAATTTCTGGCCTGAAACCTGGCGTGGATTACA
CAATCACAGTGTATGCAGTGACAGGTCGCGGTGATAGTCCGGCAAGTTCAAAACCGATTTCAATC
AAttaTCGCACC 
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sfGFP: 

AGCAAAGGTGAAGAACTGTTTACCGGTGTTGTTCCGATTCTGGTTGAACTGGATGGTGATGTTAA
TGGCCACAAATTTTCAGTTCGTGGTGAAGGCGAAGGTGATGCAACCATTGGTAAACTGACCCTGA
AATTTATCTGTACCACCGGCAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTAT
GGTGTTCAGTGTTTTAGCCGTTATCCGGATCATATGAAACGCCACGATTTTTTCAAAAGCGCAAT
GCCGGAAGGTTATGTTCAAGAACGTACCATCTCCTTTAAAGACGACGGTAAATACAAAACCCGTG
CCGTTGTTAAATTTGAAGGTGATACCCTGGTGAATCGCATTGAACTGAAAGGCACCGATTTTAAA
GAGGATGGTAATATCCTGGGCCACAAACTGGAATATAATTTCAATAGCCACAACGTGTATATCAC
CGCAGACAAACAGAAAAATGGCATCAAAGCCAATTTTACCGTGCGCCATAATGTTGAAGATGGTA
GCGTGCAGCTGGCAGATCATTATCAGCAGAATACCCCGATTGGTGATGGTCCGGTTCTGCTGCCG
GATAATCATTATCTGAGCACCCAGACCGTTCTGAGCAAAGATCCGAATGAAAAACGTGATCATAT
GGTGCTGCATGAGTATGTTAATGCAGCAGGTATTACCCATGGTATGGATGAGCTGTATAAG 

alpha-Spectrin repeat 16 (chicken brain) (x2): 

Glycin-Serine Linker (x6) 

CGTGCTAAACTGAACGAATCTCACCGTCTGCACCAGTTCTTCCGTGACATGGACGACGAAGAATC
TTGGATCAAAGAAAAAAAACTGCTGGTTTCTTCTGAAGACTACGGTCGTGACCTGACCGGTGTTC
AGAACCTGCGTAAAAAACACAAACGTCTGGAAGCTGAACTGGCTGCTCACGAACCGGCTATCCAG
GGTGTTCTGGACACCGGTAAAAAACTGTCTGACGACAACACCATCGGTAAAGAAGAAATCCAGCA
GCGTCTGGCTCAGTTCGTTGACCACTGGAAAGAACTGAAACAGCTGGCTGCTGCTCGTGGTCAGC
GTCTGGAAGAATCTCTGGAATACGGTAGCGGTAGCGGTTCACGTGCTAAACTGAACGAATCTCAC
CGTCTGCACCAGTTCTTCCGTGACATGGACGACGAAGAATCTTGGATCAAAGAAAAAAAACTGCT
GGTTTCTTCTGAAGACTACGGTCGTGACCTGACCGGTGTTCAGAACCTGCGTAAAAAACACAAAC
GTCTGGAAGCTGAACTGGCTGCTCACGAACCGGCTATCCAGGGTGTTCTGGACACCGGTAAAAAA
CTGTCTGACGACAACACCATCGGTAAAGAAGAAATCCAGCAGCGTCTGGCTCAGTTCGTTGACCA
CTGGAAAGAACTGAAACAGCTGGCTGCTGCTCGTGGTCAGCGTCTGGAAGAATCTCTGGAATAt 

Xylanase: 

AAGAATGCAGATTCCTATGCGAAAAAACCTCACATCAGCGCATTGAATGCCCCACAATTGGATCA
ACGCTACAAAAACGAGTTCACGATTGGTGCGGCAGTAGAACCTTATCAACTACAAAATGAAAAAG
ACGTACAAATGCTAAAGCGCCACTTCAACAGCATTGTTGCCGAGAACGTAATGAAACCGATCAGC
ATTCAACCTGAGGAAGGAAAATTCAATTTTGAACAAGCGGATCGAATTGTGAAGTTCGCTAAGGC
AAATGGCATGGATATTCGCTTCCATACACTCGTTTGGCACAGCCAAGTACCTCAATGGTTCTTTC
TTGACAAGGAAGGTAAGCCAATGGTTAATGAATGCGATCCAGTGAAACGTGAACAAAATAAACAA
CTGCTGTTAAAACGACTTGAAACTCATATTAAAACGATCGTCGAGCGGTACAAAGATGACATTAA
GTACTGGGACGTTGTAAATGAGGTTGTGGGGGACGACGGAAAACTGCGCAACTCTCCATGGTATC
AAATCGCCGGCATCGATTATATTAAAGTGGCATTCCAAGCAGCTAGAAAATATGGCGGAGACAAC
ATTAAGCTTTACATGAATGATTACAATACAGAAGTCGAACCGAAGCGAACCGCTCTTTACAATTT
AGTCAAACAACTGAAAGAAGAGGGTGTTCCGATCGACGGCATCGGCCATCAATCCCACATCCAAA
TCGGCTGGCCTTCTGAAGCAGAAATCGAGAAAACGATTAACATGTTCGCCGCTCTCGGTTTAGAC
AACCAAATCACTGAGCTTGATGTGAGCATGTACGGTTGGCCGCCGCGCGCTTACCCGACGTATGA
CGCCATTCCAAAACAAAAGTTTTTGGATCAGGCAGCGCGCTATGATCGTTTGTTCAAACTGTATG
AAAAGTTGAGCGATAAAATTAGCAACGTCACCTTCTGGGGCATCGCCGACAATCATACGTGGCTC
GACAGCCGTGCGGATGTGTACTATGACGCCAACGGGAATGTTGTGGTTGACCCGAACGCTCCGTA
CGCAAAAGTGGAAAAAGGGAAAGGAAAAGATGCGCCGTTCGTTTTTGGACCGGATTACAAAGTCA
AACCCGCATATTGGGCTATTATCGACCAC 
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Detection construct RFP-Cohesin: 
 

TagRFP-Cohesin: 

T7 promoter | lac operator | RBS | ATG | StrepII Tag | TagRFP | 
Linker | Cohesin | T7 terminator 

 

TAATACGACTCACTATAGG|GGAATTGTGAGCGGATAACAATTCC|CCTGTAGAAATAATTTTGT
TTAACTTTAAG|AAGGA|GATATACAT|ATG|GGTACC|TGGTCTCACCCGCAGTTCGAAAAA|G
TTTCTAAAGGTGAAGAACTGATCAAAGAAAACATGCACATGAAACTGTACATGGAAGGTACTGTT
AACAACCACCACTTCAAATGCACCTCTGAAGGTGAAGGTAAACCGTACGAAGGTACTCAGACCAT
GCGTATCAAAGTTGTTGAAGGTGGTCCGCTGCCGTTCGCTTTCGACATCCTGGCTACCTCTTTCA
TGTACGGTTCTCGTACCTTCATCAACCACACCCAGGGTATCCCGGACTTCTTCAAACAGTCTTTC
CCGGAAGGTTTCACCTGGGAACGTGTTACCACCTACGAAGACGGTGGTGTTCTGACCGCTACCCA
GGACACCTCTCTGCAAGACGGTTGCCTGATCTACAACGTTAAAATCCGTGGTGTTAACTTCCCGT
CTAACGGTCCGGTTATGCAGAAAAAAACCCTGGGTTGGGAAGCTAACACCGAAATGCTGTACCCG
GCTGACGGTGGTCTGGAAGGTCGTTCTGACATGGCTCTGAAACTGGTTGGTGGTGGTCACCTGAT
CTGCAACTTCAAAACCACCTACCGTTCTAAAAAACCGGCTAAAAACCTGAAAATGCCGGGTGTTT
ACTACGTTGACCACCGTCTGGAACGTATCAAAGAAGCTGACAAAGAAACCTACGTTGAACAGCAC
GAAGTTGCTGTTGCTCGTTACTGCGACCTGCCGTCTAAACTGGGTCACAAACTGAAC|GGCAGTG
TAGTACCATCAACACAGCCTGTAACAACACCACCTGCAACAACAAAACCACCTGCAACAACAATA
CCGCCGTCAGATGATCCGAATGCA|GGATCCGACGGTGTGGTAGTAGAAATTGGCAAAGTTACGG
GATCTGTTGGAACTACAGTTGAAATACCTGTATATTTCAGAGGAGTTCCATCCAAAGGAATAGCA
AACTGCGACTTTGTGTTCAGATATGATCCGAATGTATTGGAAATTATAGGGATAGATCCCGGAGA
CATAATAGTTGACCCGAATCCTACCAAGAGCTTTGATACTGCAATATATCCTGACAGAAAGATAA
TAGTATTCCTGTTTGCGGAAGACAGCGGAACAGGAGCGTATGCAATAACTAAAGACGGAGTATTT
GCAAAAATAAGAGCAACTGTAAAATCAAGTGCTCCGGGCTATATTACTTTCGACGAAGTAGGTGG
ATTTGCAGATAATGACCTGGTAGAACAGAAGGTATCATTTATAGACGGTGGTGTTAACGTTGGCA
ATGCAACA|TAA|CTCGAGTAAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTG
CTGCCACCGCTGAGCAATAA|CTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTT
TTT 

Molecular weights of synthesized fusion proteins 

ybbR-(Fibronectin)4-Dockerin Type I: 53 kDa 
ybbR-(Spectrin)2-Dockerin Type I: 40 kDa 
ybbR-Xylanase-Dockerin Type I: 56 kDa 
ybbR-sfGFP-Dockerin Type I: 39 kDa 
ybbR-Twitchin-Dockerin Type I: 52 kDa 
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Supplementary Table 3. Yield of interpretable curves	  

Construct Interpretable Curves 

GFP 25 out of 15258 = 0.16 % 

Fibronectin 27 out of 26653 = 0.1 % 

Xylanase 91 out of 5553 = 1.64 % 

Spectrin 50 out of 10344 = 0.48% 

 
References 
 

1. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of 
receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–
53 (1999). 

2. Rico, F., Gonzalez, L., Casuso, I., Puig-Vidal, M. & Scheuring, S. High-Speed Force 
Spectroscopy Unfolds Titin at the Velocity of Molecular Dynamics Simulations. 
Science 342, 741–743 (2013). 

 

Nature Methods: doi:10.1038/nmeth.3099

5.2. Associated Publication P6 175





177

Chapter 6

Elastin-Like Polypeptides in Single
Molecule Force Spectroscopy

6.1 Summary

The discovery and characterization of high-force complexes in single molecule force
spectroscopy (SMFS) opened a new force-regime for experiments. In site directed
immobilization approaches polyethylene glycol (PEG) is the standard linker polymer.
PEG serves two purposes. First, it acts as spacer between the target protein and
the surface to passivate against any interfering protein:surface interactions. Second,
commercially available PEG has a wide variety of reactive groups that can be used in
protein pull-down techniques.
However, PEG undergoes a trans-trans-gauche to all-trans conformation under force
[97]. At low forces water molecules stabilize PEG in a more compact form (trans-trans-
gauche) via hydrogen bonds. Whenever force is applied to the fused protein complex
the PEG polymer is loaded as well, increasing the probability of the conformational
change of PEG. The higher the force, the higher the probability of overall PEG
conformational change which leads to an increase in the net contour length recorded
in an experiment. Hence, the conformational change of PEG biases the real contour
length of the particular stretched domains. To solve this issue more inert linker
molecules are needed.
Associated publication P7 describes a new PCR-based approach to clone and purify
these biological linkers. Elastin-like poylpeptides (ELPs) meet the requirements for
linkers in single molecule force spectroscopy (SMFS) studies: It is possible to create
ELPs with defined length and monodisperse composition for custom made linker
molecules in SMFS experiments. Additionally they are easy to produce and to purify
[134].
Basis for the approach is a short, synthesized ELP gene, which is amplified by PCR
and ligated via GoldenGate Assembly [110]. Up to three fragments can be joined in
one assembly reaction, which enables a screening-free modular assembly of ELPs
with defined length.
Associated publication P8 employs the customized ELPs as linkers in an atomic force
microscope (AFM) experiments. ELPs contain a cysteine and a Sortase A-recognition
sequence at opposite ends. Hence, they can be immobilized on a maleimide activated
surface via their cysteine and the proteins of interest are enzymatically fused to
the ELPs by Sortase A. Thus all components that are loaded with force are fully
protein-based. Compared to PEG, ELPs showed advantageous behavior, as SMFS
experiments yielded homogeneous, monodisperse and accurate force-distance traces
across all force regimes probed.
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Germany
§Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universitaẗ München, 81377 Munich, Germany
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*S Supporting Information

ABSTRACT: Repetitive protein-based polymers are impor-
tant for many applications in biotechnology and biomaterials
development. Here we describe the sequential additive ligation
of highly repetitive DNA sequences, their assembly into genes
encoding protein−polymers with precisely tunable lengths and
compositions, and their end-specific post-translational mod-
ification with organic dyes and fluorescent protein domains.
Our new Golden Gate-based cloning approach relies on
incorporation of only type IIS BsaI restriction enzyme
recognition sites using PCR, which allowed us to install
ybbR-peptide tags, Sortase c-tags, and cysteine residues onto either end of the repetitive gene polymers without leaving residual
cloning scars. The assembled genes were expressed in Escherichia coli and purified using inverse transition cycling (ITC).
Characterization by cloud point spectrophotometry, and denaturing polyacrylamide gel electrophoresis with fluorescence
detection confirmed successful phosphopantetheinyl transferase (Sfp)-mediated post-translational N-terminal labeling of the
protein−polymers with a coenzyme A-647 dye (CoA-647) and simultaneous sortase-mediated C-terminal labeling with a GFP
domain containing an N-terminal GG-motif in a one-pot reaction. In a further demonstration, we installed an N-terminal cysteine
residue into an elastin-like polypeptide (ELP) that was subsequently conjugated to a single chain poly(ethylene glycol)-
maleimide (PEG-maleimide) synthetic polymer, noticeably shifting the ELP cloud point. The ability to straightforwardly
assemble repetitive DNA sequences encoding ELPs of precisely tunable length and to post-translationally modify them
specifically at the N- and C- termini provides a versatile platform for the design and production of multifunctional smart protein−
polymeric materials.

■ INTRODUCTION

Repetitive polymers of controlled length and tunable phase-
transition behavior are urgently needed for a variety of
applications in the nano/biosciences, including drug delivery1,2

and medical diagnostics.3 Such stimuli-responsive polymeric
materials are of high interest for fundamental investigations into
biomolecules under the influence of mechanical, thermal, and
chemical denaturants using biophysical methods such as single-
molecule AFM force spectroscopy4,5 and microscale thermo-
phoresis.6 Elastin-like polypeptides (ELPs) are artificial proteins
derived from naturally occurring elastomeric proteins.7,8

Recombinant ELPs consist of repeats of the amino acid
sequence Val-Pro-Gly-Xaa-Gly, where Xaa represents any
amino acid except proline. ELPs exhibit a reversible lower
critical solution temperature (LCST) and undergo a phase
transition that can be triggered by temperature.9 Other
environmental stimuli like pH or ionic strength can also be
used to collapse ELPs under isothermal conditions. The guest

residue (Xaa) can be used to influence the pH/thermal phase
transition properties of the resulting protein−polymers.
Insertion of acidic residues such as glutamate or aspartate in
the guest residue position results in pH-responsive behavior.
The transition temperature is strongly dependent on the
concentration and molecular weight, with longer ELP
sequences collapsing at lower temperatures. One can also
tune the cloud point by changing several environmental
parameters at once (e.g., temperature, pH, salt), thereby
shifting the transition to lower or higher temperatures as
desired.10

These unique properties of ELPs make them attractive for a
variety of applications and scientific investigations.11 Chroma-
tography free protein purification, for example, can be
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performed by producing a target protein as an ELP fusion and
precipitating it from cellular extracts, avoiding the need for
affinity tags. This method allows for purification of recombinant
proteins under mild conditions. Moreover, it is reported that, in
combination with maltose binding proteins, ELPs can improve
the solubility of fusion domains and thereby improve
expression yields.12−14

In the field of biomaterials science, ELPs represent a viable
option as a scaffold material for tissue engineering or as carriers
for drug molecules. Applications for in vivo systems demand
high predictability and controllability of the biophysical
behavior of the molecules. Since ELPs consist only of amino
acids, they are competitive in terms of biocompatibility and
biodegradation in vivo as compared to their synthetic organic
polymer counterparts.15,16 ELPs possess the added advantage of
complete monodispersity. More fundamentally, the phase
transition characteristics of ELPs have served as an ideal
model system for theoretical calculations and modeling
studies.17−21 Additionally, conjugates of ELPs and synthetic
polymers (e.g., PEG) are of high interest and benefit from site-
specific conjugation approaches.22,23

In order to fully leverage the versatility of repetitive protein−
polymers such as ELPs, modular and straightforward
approaches to cloning and site-specific post-translational
modification are highly desirable. Standard solid-phase gene
synthesis methods are, so far, not able to produce the long
(>600 bp) strands of repetitive DNA required for encoding
thermally responsive elastin-like polypeptides (ELPs) with
lengths >200 amino acids. Typically rationally designed ELPs
are constructed using recursive directional ligation (RDL),
which requires plasmid amplification and restriction digestion
and imposes certain restrictions (i.e., the absence of restriction
sites).24 Larger ELP genes can also be obtained with the
OERCA (overlap extension rolling circle amplification)
method, which generates a distribution of unspecified lengths
of repetitive DNA sequences.25

Compared to the RDL method, our Golden Gate approach
presented here avoids cloning scars due to the use of type IIS
restriction enzymes and is able to cut scarlessly within the
coding region.24,26 The PRe-RDL (RDL by plasmid recon-
struction) method relies on several type IIS restriction enzymes

and requires certain modifications of the backbone before-
hand.27

Our method is applicable to a broad spectrum of plasmids,
since the only limitation is one type IIS restriction enzyme with
a recognition site not present in the backbone. Along with this
advantage, it is likewise ideal for adding ELPs to an existing
gene-containing plasmid to create fusion proteins with different
length ELPs. The combinational possibilities also do not rely
on a plasmid library, but can be designed using a bottom-up
block assembly approach. Our approach can also be used in a
complementary way with the existing RDL and OERCA
methods, for example, by easily generating fast and reliable
plasmid libraries which can then be further extended by
combining with RDL or OERCA methods.
We present a sequence independent approach based on the

Golden Gate technology employing polymerase chain reaction
(PCR) amplification of short ELP repeats and ligation into a
plasmid backbone to produce repetitive ELP genes with specific
peptide tag end groups for covalent post-translational
modification. A single type IIS restriction enzyme is used to
create unique ends and guarantee the order of DNA block
assembly. Using this method, repetitive DNA sequences up to
hundreds of nm in length (i.e., 120 pentapeptide repeats of
ELPs) can be rationally designed and created. The 5′ and 3′
peptide tags for post-translational modifications were readily
incorporated during the cloning workflow, providing many
further possibilities for downstream conjugation and labeling.
We were able to install a ybbR28 tag and sortase c-tag to the
ELP, enabling enzyme-catalyzed ligation to fluorescent proteins
and organic dyes (as shown below). Our approach builds on
the prior method shown by Huber et al. which demonstrated
fusion of different kinds of repetitive DNA to create chimeras of
ELPs, silk peptides, and similar proteins.29 Our methodology is
also compatible with their approach with the advantage of using
only one type IIS restriction enzyme.
Alternatively, it is possible to modify the carrier plasmid in

the first amplification round and add ELP flanking tags or
protein domains easily. Since the reaction starts new every
three fragments, one can easily define block patterns that build
up an overall sequence. For example, pH responsive blocks can
be interspersed with pH-insensitive blocks. In regard to user-

Table 1. Overview of Employed Primersa

primer sequence 5′−3′
(1a) FW ELP I ybbR TATATAGGTCTCCTGGCTGTGCCGGGAGAAGGAGTCCCTGGTGTCGGTGTCCCAGGCG
(1b) REV ELP I GGTCTCCTCCTTCACCCGGAACGCCACCCCCCGGAACACCGCCGC
(2a) FW ELP II TATATAGGTCTCAAGGAGTACCAGGCGAAGGCGTGCCGGGTGTC
(2b) REV ELP II ATATATGGTCTCACCCTCACCCGGAACGCCACCCCCCGGAACACCGCCGC
(3a) FW ELP III TATATAGGTCTCGAGGGTGTACCAGGCGAAGGGGTGCCGGGTGTC
(3b) REV ELP III LPETGG ATATATGGTCTCCGGCAGACCTTCACCCGGAACGCCACCCCCCGGAACACCGCCGC
(4) REV ELP III ATATATGGTCTCCACCTTCACCCGGAACGCCACCCCCCGGAACACCGCCGC
(5) FW backbone LPETGG ATATATGGTCTCCTGCCGGAAACCGGCGGCTAACTCGAGTAAGATCCGGCTGC
(6) REV backbone ybbR ATATATGGTCTCAGCCAGTTTAGAAGCGATGAATTCCAG
(7) FW backbone ybbR GACTCTCTGGAATTCATCGCTTCTAAACTGGCTGGTCTCCAGGTGTGCCGGGA
(8) FW ELP II ybbR TATATAGGTCTCCTGGCGGTACCAGGCGAAGGGGTGCCGGGTGTC
(9) FW ELP III ybbR TATATAGGTCTCCTGGCGGTACCAGGCGAAGGCGTGCCGGGTGTC
(10) FW ELP N Cys GACTCTCTGGAATTCATCGCTTCTAAACTGGCTGGTCTCCTGCGTGCCGGGAGAAGGAG
(11) REV backbone CCCGGCACAGCCAGTTTAGAAGCGATGAATTCCAGAGAGTCGGTCTCACATATGTATATC

aPrimers 1−7 are employed for the cloning of the ELPs with three fragments growth every cycle. Primers 1−4 are necessary for insert amplification
and primers 5−7 are used for amplification of the backbone. Primers 8 and 9 are only important for ELP cloning procedures with the addition of one
or two fragments. Primers 10 and 11 were used to change the 5′ flanking site of the ELP gene from the gene for the ybbR-tag to a cysteine. DNA
sequence is styled in different ways: bold (annealing region), underlined (BsaI recognition site), and italic (BsaI restriction site).
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friendliness, the presented method is advantageous because it
relies on the same ELP gene inserts, which can be reused. Once
successful amplification and purification of the sequences is
achieved, the PCR amplicons can be stored and used again as
needed. This way it is possible to create a whole library of gene
sequences and, if desired, shuffle these each ligation cycle. Post-
translational fusion of ELPs using Sortase ligation circumvents
the known issue of low protein yields for N-terminally located
ELP domains in fusion proteins.30,31 Instead of optimizing
expression conditions for proteins of low yield, a protein of
interest can be produced in its native state and fused afterward
post-translationally with the ELP domain. To the best of our
knowledge, this represents the first report using a Sortase-based
recognition sequence to fuse ELP proteins to other
proteins.13,32

■ MATERIALS AND METHODS
All used reagents were of analytical purity grade and were purchased
from Sigma-Aldrich (St. Louis, MO, U.S.A.) or Carl Roth GmbH
(Karlsruhe, Germany).
Monomer Gene Synthesis. A synthetic gene encoding 150

nucleotides (10 pentapeptide repeats) for the (VPGVG)5-(VPGAG)2-
(VPGGG)3 peptide (Centic Biotech, Heidelberg, Germany) served as
starting material (see Supporting Information, DNA Sequence 1 and
Protein Sequence 1).
Cloning. Golden Gate cloning was employed to create the different

rationally designed ELP constructs.26 PCR (Backbone: 98 °C 2 min,
(98 °C 7 s, 72 °C 2 min 30 s) x30, 72 °C 5 min; Insert: 98 °C 2 min,
98 °C 7 s, 60 °C 7s, 72 °C 5 s) x30, 72 °C 5 min) was performed with
a Phusion high fidelity polymerase master mix. A typical 20 μL PCR
mix contained 10 μL of Phusion high fidelity polymerase master mix
(Thermo Fisher Scientific Inc., Waltham, MA, U.S.A.), 0.5 μL per
forward and reverse primer (10 μM), 1.5 μL DMSO, 1 ng of template,
and water. All primers (biomers.net, Ulm, Germany) used in this study
are listed in Table 1.
In the first round of PCR (see backbone PCR above, 55 °C 7s

annealing), the backbone of a modified pET28a vector (Merck KGaA,
Darmstadt, Germany) was linearized. The PCR product contained at
the 5′ end the sequence for a ybbR-tag (DSLEFIASKLA) and at the 3′
end a C-terminal Sortase recognition sequence (LPETGG).33,34

Sequences of all PCR fragments (backbone, ELP I, II, III, IV) and a
description for primer design (see Supporting Information, Primer 12)
based on an original pET28a vector are attached in the Supporting
Information (Figures S1−S9, DNA sequences 1−6 and Figures S14−
S18).
The superfolder GFP (sfGFP) plasmid was created with Gibson

Assembly.35 The gene (Addgene ID: 58708)36 was amplified with
overlaps to match a linearized vector containing sequences encoding
N-terminal HIS6-tag, a TEV protease cleavage site, and two glycines
(compare the PCR program above; 55 °C annealing and an extension
time of 1 min 30 s; see Supporting Information, DNA sequence 8 and
protein sequence 4).
All PCR products were digested (37 °C, 1−12 h) with FD-DpnI

(Thermo Fisher Scientific Inc., Waltham, MA, U.S.A.) and purified
either with QIAquick PCR purification kit or gel extraction kit
(Qiagen, Hilden, Germany; Supporting Information, Figures S10 and
S13). DpnI was added to digest the methylated plasmids serving as
starting material (template) in the PCRs, to reduce number of false
positive clones in the following transformation.
Typically, a 25 μL Golden Gate reaction (2.5 μL CutSmart buffer

(10×), 1.25 μL T7 ligase, 1.25 μL BsaI-HF and 2.5 μL ATP (10 mM),
New England Biolabs, Ipswich, MA, U.S.A.) was set up. The inserts
were added in 10-fold molar excess to the backbone (ratio of 0.1 pmol
insert to 0.01 pmol backbone). The reaction was performed in a
thermo cycler (25× 37 °C 2 min, 25 °C 5 min; 37 °C 10 min; 80 °C
10 min). For the Gibson Assembly reaction, 10 μL of the master mix
(2×, New England Biolabs, Ipswich, MA, U.S.A.) were mixed with
0.01 pmol vector and 0.1 pmol insert. The reaction was incubated for 1

h at 50 °C. For the replacement of the ybbR-tag with cysteine, the
PCR linearized product was first digested with BsaI-HF together with
FD-DpnI (1 h, 37 °C, 5 min, 80 °C). The reaction was supplied with 1
μL of dNTPs (10 mM, New England Biolabs, Ipswich, MA, U.S.A.), 1
μL of Klenow Fragment (10 U/μL, Thermo Fisher Scientific Inc.,
Waltham, MA, U.S.A.), and incubated (37 °C, 15 min, and 75 °C, 10
min). After a gel extraction, the corresponding band was excised and a
blunt end reaction (6.5 μL PCR product, 1 μL ATP (10 mM), 1 μL
CutSmart buffer (10×), 0.5 μL PEG-6000, 1.0 μL T4 Polynucleotide
Kinase, 1.0 μL T4 Ligase) was set up (37 °C 15 min, 22 °C 45 min, 80
°C 7 min).

In case of the Golden Gate reaction, 10 μL, and in case of the
Gibson Assembly or the blunt end ligation, 2 μL, were used to
transform DH5α cells (Life Technologies GmbH, Frankfurt,
Germany; 30 min on ice, 42 °C 1 min, 1 h 37 °C). The transformed
culture was plated on appropriate antibiotic LB-Agar plates. A small
number (<10) of clones were analyzed by colony PCR, or analytical
restriction digestion (FD-EcoRI, Thermo Fisher Scientific Inc.,
Waltham, MA, U.S.A.) followed by sequencing (Supporting
Information, Table S1).

Protein Expression. For ELP expression, chemically competent E.
coli NiCo21(DE3) (New England Biolabs, Ipswich, MA, U.S.A.) were
transformed with 50 ng plasmid DNA.37 The cells were incubated in
kanamycin containing, autoinducing ZYM-5052 media (supplemented
with an amino acid mix 0.1 mg/mL) 24 h at 25 °C.38−40 After
harvesting, ice cooled cells were lysed using sonication (Bandelin
Sonoplus GM 70, Tip: Bandelin Sonoplus MS 73, Berlin, Germany;
40% power, 30% cycle 2 × 10 min). The supernatant of the lysate
(15000 g, 4 °C, 1 h) was heated to 60 °C for 30 min to denature most
of the E. coli host proteins. In a second step, the collapsed ELPs within
this clouded solution were rehydrated by incubating under continuous
mixing for 2 h at 4 °C. This allowed the resolubilization of the ELPs
while the precipitated host proteins remained insoluble. A
centrifugation step (15000 g, 4 °C, 30 min) was used to separate
the soluble ELPs and remaining proteins from precipitated cell debris.
The clear supernatant turned immediately cloudy after adding 1 M
acetate buffer (final concentration 50 mM, pH 3.5), and 2 M NaCl in
crystalline form. The mixture was incubated for 30 min at 60 °C. The
collapsed ELPs were collected by centrifugation (3220 g, 40 °C, 75
min). The obtained pellet was resolubilized in 50 mM Tris-HCl (pH
7.0) and incubated overnight at 4 °C. The remaining precipitated
debris were removed by a final centrifugation step (3220 g, 4 °C, 60
min). The supernatant was mixed again with acetate buffer and sodium
chloride to collapse the ELPs. After the heated incubation and
centrifugation step, the pellet was resolubilized in buffer (50 mM Tris-
HCl, pH 7.0).14,41

The purity of the ELP was confirmed by SDS-PAGE (Any kD Mini-
PROTEAN Stain-Free Gels, Bio-Rad Laboratories GmbH, Hercules,
CA, U.S.A.), in order to detect any remaining contaminant host
proteins. The ELPs were labeled with CoA-647 (New England Biolabs,
Ipswich, MA, U.S.A.) and Sfp (37 °C, 1 h, 5 mM MgSO4) to visualize
them. After labeling, the ELPs were mixed with 6× loading buffer and
heated to 95 °C for 10 min.42 Usually a purity grade of >95% was
obtained. Purity analysis was performed by overlaying the UV active
Stain-Free technology from Bio-Rad (labeling all tryptophan side
groups of E. coli host proteins) and a fluorophore specific red channel
for the CoA-647-ELP constructs (Supporting Information, Figure
S11). MALDI-TOF analysis of ELP samples ELP30−50 was performed
to increase confidence in the high purity of the samples (Supporting
Information, Figure S19). ELPs were stored at 4 °C in 50 mM Tris-
HCl, pH 7.0.

The final ELP concentration was photometrically determined at 205
nm (Ultrospec 3100 pro, Amersham Biosciences (Amersham,
England) and TrayCell (Hellma GmbH & Co. KG, Müllheim,
Germany)).43

For the expression of HIS6-TEV-GG-sfGFP, 50 ng plasmid DNA
was used to transform E. coli NiCo21(DE3) cells. Kanamycin
containing, autoinducing ZYM-5052 growth media was inoculated
with an overnight culture.38 After 24 h incubation at 25 °C, the cells
were harvested, lysed, and centrifuged as described above. The
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supernatant was applied on a HisTrap FF (GE Healthcare Europe
GmbH, Freiburg, Germany). After washing five times with wash buffer
(25 mM Tris-HCl pH 7.8, 300 mM NaCl, 20 mM imidazole, Tween
20 0.25% (v/v), 10% (v/v) glycerol), the bound protein was eluted
(25 mM Tris-HCl pH 7.8, 300 mM NaCl, 300 mM imidazole, Tween
20 0.25% (v/v), 10% (v/v) glycerol).
HIS6-TEV-GG-sfGFP fusion protein (TEV cleavage site: EN-

LYFQG) was dialyzed immediately after elution with the TEV
protease (4 °C, 50 mM Tris-HCl, pH 7.0) overnight. The cleaved
product was separated from the uncleaved construct by applying the
reaction mix on a HisTrap FF 5 mL column. The successfully cut
fragment in the flow through was collected. The fraction was dialyzed
against 50 mM Tris-HCl, pH 7.0, and stored in 50% (v/v) glycerol at
−80 °C. The purity of the elution and the cleaved fraction was
analyzed via a SDS-PAGE analysis. The specific extinction coefficient
of GFP at 485 nm was used to determine the concentration of GG-
sfGFP.
Turbidity Measurements. For the turbidity measurements, a

photometer with a Peltier heating element was used (JASCO V-650,
JASCO Germany GmbH, Gross-Umstadt, Germany). The turbidity
was determined at 350 nm, while the temperature was ramped at a rate
of 2 °C/min. Measurements were taken every 0.5 °C between 20 and
80 °C. ELPs were dialyzed against double distilled water, diluted into
50 mM Tris-HCl, pH 7.0, followed by addition of sodium chloride to
achieve the desired final concentration.
For NaCl titration, 100 μM of the ELP constructs were tested in a

range of 0−3 M sodium chloride. The 6× ELP construct was also
probed in a concentration range of 25−200 μM with different NaCl
concentrations.
For pH titrations, stock solutions of 0.1 M phosphate-citrate buffer

at different pH values were mixed with solutions of water solubilized
ELPs. Hereby a final concentration of 0.05 M of the phosphate-citrate
buffer was obtained.
Data analysis of the transition temperature curves (for NaCl, pH,

concentration dependency, and PEG-ELP fusions) was performed by
fitting the measured data points with a four-parameter logistic function
to obtain the corresponding transition temperature.

Sortase and Sfp-Mediated Protein Ligation. For highest
ligation efficiencies, enhanced Sortase (eSortase) was used in the
reaction.44 The reaction conditions for both Sfp and eSortase enzymes
were chosen according their reported reaction maxima to achieve
highest activities.28 ELPs in excess were added to a solution containing
50 mM Tris-HCl, pH 7.5, 15 μM ELP, 0.5 μM GG-sfGFP, 0.2 μM
eSortase, 1 μM Sfp, 5 mM CaCl2, 5 mM MgCl2, 5 μM CoA-647. The
ligation reaction was incubated for 2 h at 37 °C.

Cysteine-Maleimide Bioconjugation Reaction. Cysteine-con-
taining ELPs were reduced with 5 mM tris(2-carboxyethyl)phosphine
(TCEP, (Thermo Fisher Scientific Inc., Waltham, MA, U.S.A.)). After
the removal of TCEP with Zeba Spin Desalting Columns 7K (Thermo
Fisher Scientific Inc., Waltham, MA, U.S.A.) cysteine-ELPs were mixed
with Alexa647-C2-Maleimide (Thermo Fisher Scientific Inc., Waltham,
MA, U.S.A.) and incubated for 1 h at 37 °C (100 mM Tris-HCl, pH
7.0; Supporting Information, Figure S20).

PEG (MW: 20000 Da, α-methoxy-ω-maleimide, Rapp Polymere
GmbH, Tübingen, Germany) was used in different molar ratios in the
bioconjugation reaction with cysteine-ELP60 or ELP60. A total of 75
μM of the reduced ELPs were mixed with Tris-HCl (pH 7.0, 100
mM), PEG, and incubated for 1 h at room temperature. After that they
were mixed with 5 M NaCl and to a final concentration of 3 M NaCl,
and their cloud point was determined as described above.

■ RESULTS AND DISCUSSION
Our sequence-independent Golden Gate-based method
provides an easy way to create defined repetitive DNA
sequences.26 We designed and produced gene cassettes
encoding repetitive proteins several hundreds of amino acids
in length. Figure 1 outlines the principle of primer design and
the following logical and stepwise workflow. The sequence of
the starting synthetic gene was designed in such a way that the
codon usage within the first and last 15 nucleotides was unique
within the otherwise repetitive 150 bp sequence. This was
necessary to ensure specific annealing of primers at the 5′ and
3′ end. Desired modifications were introduced by overhangs of
the primers at their 5′ end (i.e., BsaI recognition site) or at their

Figure 1. Cloning schematic: (A) The schematic describes the process of sequence independent PCR amplification of unique inserts (I−III) from
the same template. The amplification of the first backbone (plasmid A) enables subcloning of the first three inserts, which leads to plasmid B.
Plasmid B is linearized at the N-terminal ybbR-tag, as are all the following backbones. The new ELP amplicons can always be inserted upstream of
the old ELP repeats. (B) Repetitive rounds of cloning add subsequently more ELP inserts until the desired length is achieved.
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3′ region (codon shuffling of nucleotides). It was then possible
to create 150 bp ELP genes with different flanking regions from
the same template (Primers 1−3; Figure 1A) using PCR
primers that annealed at the 5′ and 3′ ends of the synthetic
gene.
In the first amplification and linearization reaction of the

plasmid, primers annealed at the desired ELP gene insertion
site, that is, at the opening location on the plasmid during the
first PCR. In our case this was downstream of the T7 promoter
and upstream of the T7 terminator (see Supporting
Information, Figures S8 and S9). However, due to the freedom
of primer design and plasmid choice, the insertion site can in
principle be anywhere in the plasmid. The primers linearized
the plasmid and introduced tags at the 5′ (ybbR-tag) and 3′
(Sortase c-tag) ends, as well as BsaI recognition sites (Primers 5
and 6; vector A; Figure 1 A). In our case, a modified pET28a
vector, already containing a ybbR-site downstream of the T7
promotor immediately following the start codon AUG, served
as template. Hence, only the Sortase c-tag was newly
introduced (see Supporting Information for primers for the
standard pET28a vector). The continuing general ELP
expansion principle relies on having three different PCR
amplified ELP fragments (I−III) with different codon usages at
their 5′ and 3′ end, within the BsaI-restriction site (Supporting
Information, Figures S1−S6). This design made logical and
block-wise gene assembly possible. The selected primers
introduced a shuffled 3′ end that matched the 5′ end of the
subsequent fragment. In the first ELP assembly round, the 5′

end of fragment I matched the ybbR-tag of the linearized
backbone. The 3′ end of fragment III had compatible sticky
ends with the Sortase c-tag of the linearized plasmid (Figure
1B, first round). After successful annealing of sticky ends, the
T7 ligase covalently linked the three ELP fragments seamlessly
into the plasmid without any undesirable cloning scars in
between.
The forward primer (Figure 1A, second: primer 7) for the

following plasmid linearization rounds annealed at a different
site within the ELP-containing plasmid, compared to the initial
linearization round (Figure 1A, first: primer 5). It annealed at
the ybbR-tag and the 5′ end of the ELP gene. Right in between
the two coding regions, a nonannealing loop encoding a BsaI
recognition site was introduced (Figure 1A, second, and Figure
1B, second round) with the primer. The annealing at the ybbR-
tag was necessary to ensure high temperature-dependent
primer annealing specificity at the very 5′ end of the ELP
gene; otherwise, the primer would anneal at every fragment I
throughout the whole assembled ELP gene cassette. High
annealing temperatures minimize undesired PCR side products,
that is, only partly ELP-containing, linearized vectors. The
reverse primer was the same for all plasmid linearization
reactions (Figure 1A; vector B). After the restriction digestion
reaction, the linear plasmid now had a Sortase c-tag sticky end
at the 3′ end and an ELP fragment I sticky end at the 5′ end.
Now only the last ELP fragment (Figure 1A, insert IV) had

to be amplified with a different reverse primer (Figure 1A,
primer 4) to yield a PCR product with a compatible 3′ end to

Table 2. Biophysical Properties of the Characterized ELP Constructs

ELP repeats
(5)x

ε205
43

(1/M cm)
mol wt45

(Da)
glutamate residues in ELP

repeat
isoelectric
point45

amino acids in ELP repeats
(total)

total length46

(nm)

10 196690 5893.7 2 3.91 50 (68) 24.82
20 335690 9908.2 4 3.77 100 (118) 43.07
30 474690 13922.8 6 3.67 150 (168) 61.32
40 613690 17937.3 8 3.59 200 (218) 79.57
50 752690 21951.9 10 3.53 250 (268) 97.82
60 891960 25966.4 12 3.47 300 (318) 116.07
Cys-60 855980 24894.2 12 3.20 300 (308) 112.42

Figure 2. Post-translational ligation of the ELP peptide. (A) Schematic of the ELP constructs containing a N-terminal ybbR-tag and a C-terminal
Sortase-tag. A post-translational one-pot reaction was used to fuse a CoA-647 fluorescent dye to the N-Termini via an Sfp-catalyzed reaction. In
parallel, the eSortase fuses a GG-sfGFP toward the C-terminal LPETGG. (B) An image of a SDS gel obtained following dual labeling of ELPs under
different reaction conditions and ELP lengths. The image shows only the red CoA-647 dye (ex: 530/28, em: 695/55 nm). (C) Fluorescent image of
the same gel as in B, but this time with blue excitation (ex: 470/30, em: 530/28 nm), hence, only the native GFP specific bands are visible. (D)
Overlay of B and C plus additional UV illumination which excites tryptophan side group converted fluorophores enabled by the Bio-Rad Stain-Free
technology.
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the already existing ELP cassette. The growing ELP insert in
the plasmid always started with fragment I. This made the reuse
of the amplified insert sequences (I, II, IV) for every following
expansion cloning round possible (Figure.1B, >third rounds).
This method not only allows a logical assembly of repetitive

gene patterns, but also makes the modification of flanking
regions or mutation of the first base pairs at 5′ end 3′ end
possible. For example, we introduced two glutamates in each of
the fragments at their 5′ and 3′ ends by changing the codon
from the “X” guest residue at the 5′ and 3′ end of the VPGXG
motif to a glutamate (VPGEG). The primers did not align
completely with the template and introduced the glutamate
mutation during PCR amplification. The chemically synthe-
sized sequence also had some minor mistakes at the 3′ end,
which were corrected with primers within the initial PCR. The
final ELP substructure of all ELPs used in this study consisted
of 10 pentapeptide repeats (VPGXG10, X being [EV4A2G2E]).
For the rest of the manuscript this motif is referred as ELPn,
with n being the number of pentapeptide repeats of this motif
(see Supporting Information, DNA sequence 2, protein
sequence 2, and DNA sequence 7, protein sequence 3).
We ligated three 150 bp fragments with a linearized vector of

choice in one step. It was possible to modify the 5′ and 3′ ends
of the fragments with overhang primers prior to ligation, in our
case with an N-terminal ybbR and a C-terminal Sortase tag

(Figure 1B). Overall, seven different ELP constructs were used
in this study for biophysical characterization of the peptide
sequence, while ten were successfully cloned. The largest ELP
gene contained 120 pentapeptide repeats. All ELP constructs
were built with the four different ELP PCR products from the
same batch. PCR gels from the fragments and an overview of
cloning efficiencies can be found in the Supporting Information
(Figure S9 and Table S1). Typical yields after the purification
were 56−138 mg protein/l culture, while the ELP10 repeat had
the lowest yield (2 mg protein/l culture).
Table 2 shows biophysical characteristics of the ELPs

characterized in this study. Each ELP was produced with a
ybbR-tag at the N-terminus and a Sortase c-tag at the C-
terminus. In the bottom right corner of the schematic (Figure
1), FD-EcoRI digested plasmids are shown on an agarose gel.
The gel analysis shows the successful construction of plasmids
containing 10 to 120 pentapeptide repeats.
Following successful cloning, expression and purification, we

tested the functionality of the attached terminal tags. Figure 2A
shows the scheme for post-translational protein ligation
reactions. The ELPs of varying lengths contain an N-terminal
ybbR-tag and a C-terminal Sortase recognition sequence (i.e.,
LPETGG). Figure 2B and C show an SDS-PAGE image of the
same gel with different excitation and emission filters. Using a
reaction catalyzed by Sfp, it was possible to fuse a fluorescently

Figure 3. Cloud point characterization of the 10−60 pentapeptide ELP repeats. (A) Characteristic decrease in the transition temperature of the ELPs
with increasing sodium chloride concentration and ELP length. (B) Relation between decreasing transition temperature and increasing molecular
weight. (C) Correlation between pH, NaCl, and transition temperature. (D) Concentration dependency of the transition temperature for the 60
pentapeptide ELP repeat. Data points for the plots were obtained from triplicates. Error bars represent the standard deviation of the average
transition point.
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labeled CoA-647 to the ELP (N-terminal ybbR-tag). Results of
the specific excitation for the CoA-647 dye are shown in Figure
2B. Brightest are the CoA-647-ELP fusions proteins, but also
the CoA-647-ELP-sfGFP fusion proteins are visible above the
bright monomer band. Fully denatured proteins appear slightly
higher in the gel due to their different running behavior. The
Sortase-tag was simultaneously utilized for fusion of different
proteins to the ELP sequences (C-terminal LPETGG). A GG-
sfGFP was fused to the ELPs, which was excited with blue LED
light and detected within the green emission of sfGFP (Figure
2C). Nonligated and nondenaturated GFP appears at the top of
the gel, since it does not run according its molecular weight in
its native (i.e., correctly folded) state (see Supporting
Information, Figure S12). No GFP fluorescence is visible in
the heated samples due to complete denaturation of the GFP.
Figure 2D shows an overlay of Figure 2B and C, visualizing the
successful post-translational ligation of GG-sfGFP and CoA-
647 to the different ELP peptides within a one-pot reaction.
The ligation efficiency of the Sortase never goes to 100%
completion. Due to the Sortase reaction mechanism, a dynamic
equilibrium is eventually reached and complete fusion of GG-
sfGFP to ELP is therefore not to be expected.47

After confirming the biochemical accessibility and function-
ality of the terminal ybbR- and Sortase-tags, we characterized
the phase behavior of the modified ELPs. Figure 3 presents an
overview of the lower critical solution temperatures (LCSTs) of
the characterized ELPs under various conditions. First the

temperature dependence of the ELP10-60 constructs were
probed against different sodium chloride concentrations, at
neutral pH (50 mM Tris-HCl, pH 7.0; Figure 3A). The 10
pentapeptide repeat ELP did not collapse below 80 °C, which is
in agreement with the remainder of the data set if one looks at
the increasing transition temperature with decreasing size of the
construct. The 20 pentapeptide ELP repeat, for example, only
collapsed with 3 M of sodium chloride at 60 °C. Figure 3B
clarifies the correlation between salt concentration, molecular
mass and transition temperatures. Only the longest ELP
construct collapsed across all given sodium chloride concen-
trations in the temperature range from 20 to 80 °C. Salt-
induced cloud point shifts are a well-known characteristic of
ELPs.15,24,48

The incorporation of two glutamates per ten pentapeptides
resulted in pH-dependent transitions. ELPs with glutamates
were expected to show pH-responsiveness. Above their pKa the
ELPs have a relatively high transition temperature, since the
glutamates are deprotonated and ionized and therefore
electrostatically repel each other. Below or close to their
corresponding pKa, the transition temperature significantly
decreases due to protonation and neutralization of the negative
charge (Figure 3C). The decreasing influence of salt at lower
pH is similar to that demonstrated by MacKay et al.49 Figure
3D illustrates the dependence of transition temperature on the
ELP concentration. At concentrations above 100 μM, the 60
pentapeptide ELP (150 and 200 μM) already collapsed at room

Figure 4. Cloning schematic and bioconjugation of cysteine-ELPs with a maleimide-dye and PEG-maleimide. (A) Illustration of the cloning
schematic for changing the ELP flanking regions (i.e., replacement of the ybbR-sequence with a cysteine). The ybbR-sequence was deleted via a PCR
reaction, and a cysteine was introduced (see primers 10 and 11 in Table 1). The flanking restriction sites were digested with BsaI-HF and the
remaining sticky ends were filled in with Klenow fragment. Finally, the linear product was circularized with T4 ligase. (B) Procedure of the
bioconjugation reaction. Cysteine-ELPs were reduced with TCEP and conjugated to a maleimide dye or a PEG-maleimide polymer. A gel image on
the right shows the successful conjugation reaction between the dye and the ELP. (C) Bioconjugation of a 20 kDa PEG-maleimide to CYS-ELP60
shifted the cloud point up by ∼4 °C (left panel). The cloud point of ELP60 lacking cysteine (middle panel) was not influenced by the addition of
maleimide PEG. The right panel shows the cloud point shift (ΔT) due to addition of different concentrations of PEG-maleimide. Data points for the
plot were obtained from triplicates. Error bars account for Gaussian error propagation due to calculation of the difference of the average transition
point from three samples.
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temperature; hence, it was not possible to determine an exact
transition point. The ligated product between the 60
pentapeptide ELP repeat and the sfGFP did not show any
transition compared to the pure 60 pentapeptide ELP (data not
shown). This concentration dependence is also a well-known
characteristic of ELPs.10

This PCR-based method can also be employed to change the
flanking sequences of the ELP very quickly. Figure 4A shows
the underlining principle of the cloning procedure used to
install cysteine as an end residue with no cloning scar. Due to
the repetitive structure of the ELP gene it was necessary to
design primers which anneal at the site of replacement. A BsaI
recognition loop between ELP annealing and deletion
annealing site was necessary to remove the deletion site again
afterward. BsaI digestion left incompatible 5′ and 3′ sticky ends;
therefore, a Klenow fragment was employed to fill the ends. A
standard blunt end ligation circularized the linear plasmid
(Figure 4A and Supporting Information, Figures S13−S18).
This procedure provided an N-terminal cysteine that could be
used for bioconjugations to various (macro)molecules (see
Supporting Information, DNA sequence 9, protein sequence
5). The cysteine in the ELP is able to form disulfide bonds with
different cysteine containing proteins, but also is able to be
clicked to other reactive groups like maleimide (i.e., a
maleimide-PEG (Figure 4B)). The cloud point determination
of Figure 4C shows the influence of PEG conjugation on the
ELP cloud point, confirming a shift toward higher temperatures
(Figure 4C, CYS-ELP60) due to conjugation of the hydrophilic
synthetic polymer. However, the same PEG added to a solution
of the same ELP that lacked the cysteine functionality did not
significantly influence the cloud point (Figure 4C, ELP60).

■ CONCLUSION

The presented approach shows an alternative way to create fast
and convenient functional ELPs with sequence lengths up to
600 amino acids, or hundreds of nm in stretched contour
length. It allows a straightforward fusion of gene sequences
encoding the ELP repeats without any prior vector
modifications. We used this approach to demonstrate facile
incorporation of functional peptide tags as end groups into
ELPs. We demonstrate how this approach was useful for
developing end-labeled ELPs through enzyme-mediated site-
specific ligation to organic dyes and fluorescent proteins, and
show how terminal cysteine incorporation expands the versatile
toolbox of bioconjugation opportunities. Since we used a PCR
and primer-based approach, our method is essentially sequence
independent and does not leave cloning scars. In the future, we
anticipate that such a tool for straightforward end-group
modification of ELPs will prove useful for developing custom
engineered macromolecular systems.
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Original synthesized DNA-Sequence (5’ to 3’): 

DNA Sequence 1: 

GTACCAGGCGTTGGTGTGCCGGGTGTCGGTGTCCCAGGCGTGGGTGTTCCGGGTGTG

GGCGTTCCAGGCGTAGGCGTACCGGGCGCGGGTGTTCCTGGTGCTGGTGTTCCGGGC

GGCGGTGTTCCGGTTGGTGGCGTTCCGGGTGGCGGT  

Translated Protein-Sequence (N-Terminus to C-Terminus): 

Protein Sequence 1: 

VPGVGVPGVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPVGGVPGGG 

PCR modified DNA-Sequence (5’ to 3’): 

DNA Sequence 2: 

GTGCCGGGAGAAGGAGTCCCTGGTGTCGGTGTCCCAGGCGTGGGTGTTCCGGGTGT

GGGCGTTCCAGGCGTAGGCGTACCGGGCGCGGGTGTTCCTGGTGCTGGTGTTCCGGG

CGGCGGTGTTCCGGGGGGTGGCGTTCCGGGTGAAGGA 

Translated Protein-Sequence (N-Terminus to C-Terminus): 

Protein Sequence 2: 

VPGEGVPGVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEG 
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Sequence Maps were built with SnapGene 3.0.3 (GSL Biotech LLC, Chicago, IL, USA) 

Sequence of original pET28a-Vector with aligned Primers: 

Forward and reverse primer flanking the multiple cloning site of the pET28a vector, and deleting 

the restriction sites, HIS-tags as well as the thrombin site and the T7-tag (Fig. S1). 

 

  

Figure S1. MCS of pET28a vector with two primers suitable for linearization and insertion of the ybbR- and sortase 

c-tag. The linear vector serves as starting template for the ELP insertion. 

 

DNA Sequence (5’ to 3’): 

Colored letters represent the annealing region of the forward (green) and reverse (red) primer. 

 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAA

TTTTGTTTAACTTTAAGAAGGAGATATACCATGGGCAGCAGCCATCATCATCATCAT

CACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGGCTAGCATGACTGGTGGACA

GCAAATGGGTCGCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTC

GAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGC

TGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAA

ACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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FW backbone LPETGG (Primer 5, Table 1, Main text) 

ATATATGGTCTCCTGCCGGAAACCGGCGGCTAACTCGAGTAAGATCCGGCTGC 

 

REV pET28a (ybbR_BsaI) (Primer 12) - Theoretical primer, not used in this study: 

ATATATGGTCTCAGCCAGTTTAGAAGCGATGAATTCCAGCATGGTATATCTCCTTC 
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Sequence of the modified pET28a-vector already containing a ybbR-tag: 

 

Figure S2. MCS of modified pET28a vector used in this study already having a ybbR-tag. The linear vector serves 

as starting template for the ELP insertion. 

 

DNA Sequence (5’ to 3’): 

Colored letters represent the annealing region of the forward (green) and reverse (red) primers. 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTGTAGAAATA

ATTTTGTTTAACTTTAAGAAGGAGATATACATATGGACTCTCTGGAATTCATCGCTTC

TAAACTGGCTCTGGAAGTTCTGTTCCAGGGTCCGCTGCAGCACCACCACCACCACCA

CCCATGGACTAGTGCTAGCTCTACTAAATTATACGGCGACGTCAATGATGACGGAAA

AGTTAACTCAACTGACGCTGTAGCATTGAAGAGATATGTTTTGAGATCAGGTATAAG

CATCAACACTGACAATGCCGATTTGAATGAAGACGGCAGAGTTAATTCAACTGACTT

AGGAATTTTGAAGAGATATATTCTCAAAGAAATAGATACATTGCCGTACAAGAACT

AACTCGAGTAAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCT

GCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAG

GGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

FW backbone LPETGG (Primer 5, Table 1, Main text) 

ATATATGGTCTCCTGCCGGAAACCGGCGGCTAACTCGAGTAAGATCCGGCTGC 
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REV backbone ybbR (Primer 6, Table 1, Main text) 

ATATATGGTCTCAGCCAGTTTAGAAGCGATGAATTCCAG 

Cloning Site of Vector A (Fig. 1): 

 
 

 
 

 
Figure S3. Top: Illustration of the linearized plasmid after PCR amplification, Middle: Zoom in of the BsaI-digested 

5’-end, Bottom: Zoom in of the BsaI-digested 3’-end. 
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PCR Product ELP I (5’ to 3’): 

 

 

Figure S4. PCR Product “ELP I” (top) with the two corresponding primers (FW ELP I (Primer 1a, Table 1, Main 

text) ybbR, REV ELP I (Primer 1b, Table 1, Main text)). The bottom figure shows the BsaI-digested fragment. 

 

DNA Sequence of ELP I: 

DNA Sequence 3: 

TATATAGGTCTCCTGGCTGTGCCGGGAGAAGGAGTCCCTGGTGTCGGTGTCCCAGGC

GTGGGTGTTCCGGGTGTGGGCGTTCCAGGCGTAGGCGTACCGGGCGCGGGTGTTCCT

GGTGCTGGTGTTCCGGGCGGCGGTGTTCCGGGGGGTGGCGTTCCGGGTGAAGGAGG

AGACC  
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PCR Product ELP II (5’ to 3’): 

 

Figure S5. PCR Product “ELP II” (top) with the two corresponding primers (FW ELP II (Primer 2a, Table 1, Main 

text), REV ELP II (Primer 2b, Table 1, Main text)). FW ELP II ybbR (Primer 8, Table 1, Main text) would be 

necessary if the ELP II fragment should be ligated first to the ybbR-tag on the linearized backbone instead of the 

fragment ELP I. The bottom figure shows the BsaI-digested fragment. 

 

DNA Sequence of ELP II: 

DNA Sequence 4: 

TATATAGGTCTCAAGGAGTACCAGGCGAAGGCGTGCCGGGTGTCGGTGTCCCAGGC

GTGGGTGTTCCGGGTGTGGGCGTTCCAGGCGTAGGCGTACCGGGCGCGGGTGTTCCT

GGTGCTGGTGTTCCGGGCGGCGGTGTTCCGGGGGGTGGCGTTCCGGGTGAGGGTGA

GACCATATAT  
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PCR Product ELP III (5’ to 3’): 

 

 
Figure S6. PCR Product “ELP III” (top) with the two corresponding primers (FW ELP III (Primer 3a, Table 1, Main 

text), REV ELP LPETGG (Primer 3b, Table 1, Main text)). FW ELP III ybbR (Primer 9, Table 1, Main text) would 

be necessary if the ELP III fragment is to be ligated first to the ybbR-tag on the linearized backbone instead of the 

fragment ELP I. REV ELP III (Primer 4, Table 1, Main text) is necessary to create a compatible sticky end for the 

ELP growing reaction after inserting the first three ELP fragments (I, II, III). The bottom figure shows the BsaI-

digested fragment. 

 

DNA Sequence of ELP III: 

DNA Sequence 5: 

TATATAGGTCTCGAGGGTGTACCAGGCGAAGGGGTGCCGGGTGTCGGTGTCCCAGG

CGTGGGTGTTCCGGGTGTGGGCGTTCCAGGCGTAGGCGTACCGGGCGCGGGTGTTCC

TGGTGCTGGTGTTCCGGGCGGCGGTGTTCCGGGGGGTGGCGTTCCGGGTGAAGGTCT

GCCGGAGACCATATAT  
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PCR Product ELP IV (5’ to 3’): 

 

 
Figure S7. PCR Product “ELP IV” (top) with the two corresponding primers (FW ELP III (Primer 3a, Table 1, 

Main text), REV ELP III (Primer 4, Table 1, Main text)). FW ELP III ybbR (Primer 9, Table 1, Main text) would be 

necessary if the ELP III fragment is to be ligated first to the ybbR-tag on the linearized backbone instead of the 

fragment ELP I. REV ELP III LPETGG (Primer 3b, Table 1, Main text) is necessary to create a compatible sticky 

end for the initial ELP insertion with fragments ELP I, II and III. ELP IV is necessary for the expansion reaction of 

the ELP insert (ELP IV replaces ELP III). The bottom figure shows the BsaI-digested fragment. 

 

DNA Sequence of ELP IV: 

DNA Sequence 6: 

TATATAGGTCTCGAGGGTGTACCAGGCGAAGGGGTGCCGGGTGTCGGTGTCCCAGG

CGTGGGTGTTCCGGGTGTGGGCGTTCCAGGCGTAGGCGTACCGGGCGCGGGTGTTCC

TGGTGCTGGTGTTCCGGGCGGCGGTGTTCCGGGGGGTGGCGTTCCGGGTGAAGGTG

GAGACCATATAT  
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Insertion site for ELP plasmid (3x 10 pentapepitdes upwards) 

 

Figure S8. Illustrating the insertion site for the plasmid linearization reaction. FW backbone ybbR (Primer 7, Table 

1, Main text) and REV backbone ybbR (Primer 6, Table 1, Main text) open the plasmid right after the N-terminal 

ybbR-tag and the first following ELP fragment I. The three following ELP fragments I, II and IV are ligated in 

between. 

 

Linearized PCR product: 

The construct now has a ybbR-tag at the 5’- and 3’- end and gets cleaved off after BsaI digestion 

at the 5’ end, leaving an ELP I sticky 5’ end for the Golden Gate reaction and a ybbR-sticky end 

at the 3’ end. For the linearization reactions of growing ELP constructs the insertion site always 

remains the same. This means that the structure of the linear backbone is:  

- 5’ ybbR-[ELP I-ELP II-ELP III]n-LPETGG-Backbone-ybbR 3’ 

- BsaI Digestion: 5’-[ELP I-ELP II-ELP III]n-LPETGG-Backbone-ybbR 3’ 

- Inserts are added between the sticky ends of the ybbR-tag and the first ELP I fragment. 
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Figure S9. Top: Illustration of the linearized plasmid after PCR amplification with the primers “FW backbone ybbR 

(Primer 7, Table 1, Main text) and REV backbone ybbR (Primer 6, Table 1, Main text) and REV backbone ybbR”, 

Middle: Zoom in of the BsaI-digested 5’-end, Bottom: Zoom in of the BsaI-digested 3’-end.  
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Cloning efficiencies: 

Table S1. Overview of cloning efficiencies. 

Pentapeptide 

Repeats 

Number of colonies 
analyzed with colony 

PCR/ restriction 

digestion (*) 

Number of clones 
with correct size in 

colony PCR/ restriction 

digestion 

Number of 
sequencing 

reactions 

performed 

Correct clones 

(#) 
Ratio 

10 14 6 2 2 100.00% 

20 14 6 3 2 66.67% 

30 14 4 1 1 100.00% 

40 14 1 1 1 100.00% 

50 14 3 3 2 66.67% 

60 14 3 3 2 66.67% 

70 14 4 1 1 100.00% 

80 14 4 1 1 100.00% 

90 14 4 1 1 100.00% 

120 14 2 2 1 50.00% 

60 with 

Cysteine 
6 6 2 2 100.00 % 

(*) Constructs longer than 60 pentapeptide repeats were analyzed by restriction 

digestion. 

(#) Wrong results missed 1x ELP Fragment (10 Pentapeptides)  
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Gel pictures of the PCR amplified ELP fragments I-IV and the different linearized plasmids used 

in this study: 

 

Figure S10. Gel pictures showing PCR products of insert (top) and linearized plasmid (bottom). Bands with a red 

arrow are the corresponding linearized plasmids and were isolated via gel extraction to separate them from the side 

products. 
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Exemplary sequence of ybbR-ELP30-LPETGG: 

ybbR-Tag 

ELP 1 

ELP 2 

ELP 3 

Sortase c-tag (LPETGG) 

 

DNA Sequence 7 (5’ to 3’): 

 

ATGGACTCTCTGGAATTCATCGCTTCTAAACTGGCTGTGCCGGGAGAAGGAGTCCCT

GGTGTCGGTGTCCCAGGCGTGGGTGTTCCGGGTGTGGGCGTTCCAGGCGTAGGCGTA

CCGGGCGCGGGTGTTCCTGGTGCTGGTGTTCCGGGCGGCGGTGTTCCGGGGGGTGGC

GTTCCGGGTGAAGGAGTACCAGGCGAAGGCGTGCCGGGTGTCGGTGTCCCAGGCGT

GGGTGTTCCGGGTGTGGGCGTTCCAGGCGTAGGCGTACCGGGCGCGGGTGTTCCTGG

TGCTGGTGTTCCGGGCGGCGGTGTTCCGGGGGGTGGCGTTCCGGGTGAGGGTGTACC

AGGCGAAGGGGTGCCGGGTGTCGGTGTCCCAGGCGTGGGTGTTCCGGGTGTGGGCG

TTCCAGGCGTAGGCGTACCGGGCGCGGGTGTTCCTGGTGCTGGTGTTCCGGGCGGCG

GTGTTCCGGGGGGTGGCGTTCCGGGTGAAGGTCTGCCGGAAACCGGCGGCTAA 

 

Protein Sequence 3 (N- to C-terminus): 

 

MDSLEFIASKLAVPGEGVPGVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPGGG

VPGEGVPGEGVPGVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEGVP

GEGVPGVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEGLPETGG 

 

Growing ELP constructs had repeats of the ELP 1, 2 and 3 segments inserted in between the 

ybbR-tag and the following ELP sequence. 
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Protein purification and Sfp-mediated labeling: gels with samples from different steps: 

 

Figure S11. Gel of purification steps of the ELP40 (lane 1-8) via ITC with different illumination methods. Lane 9-14 

shows the purified ELP10-60 constructs. Sfp appears at about 25 kDa throughout all lanes. Subset A shows the 

fluorescence of the Sfp catalyzed labeling reaction of CoA-647 dye to the ybbR-tag containing ELP constructs. 

Panel B shows the UV activated tryptophan labeling (ELPs not labeled) via Bio-Rad Stain-Free
TM
 technology. C 

shows the overlay of A (red) and B (blue).  
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Negative control confirming native GG-sfGFP on top of SDS-Gel (Figure 2) 

 

Figure S12. Negative control for Figure 2 B-D, showing the electrophoresis running behavior of native GG-sfGFP. 

Sortase in lane 3, 4, 7, and 8 at ca. 18 kDa. Sfp in lane 2, 4, 6 and 8 at ca. 25 kDa. GG-sfGFP (native) in lane 1-4 at 

ca 75 kDa and GG-sfGFP (denatured) lane 5-8 at ca. 25 kDa. 
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Sequence of HIS-TEV-GG-sfGFP: 

HIS6-Tag 

TEV-Site 

Glycines 

sfGFP 

 

DNA Sequence 8 (5’ to 3’): 

 

ATGCACCACCACCACCACCACGGAGAAAACCTGTACTTCCAGGGAGGGGGCGGTAG

CAAAGGTGAAGAACTGTTTACCGGTGTTGTTCCGATTCTGGTTGAACTGGATGGTGA

TGTTAATGGCCACAAATTTTCAGTTCGTGGTGAAGGCGAAGGTGATGCAACCATTGG

TAAACTGACCCTGAAATTTATCTGTACCACCGGCAAACTGCCGGTTCCGTGGCCGAC

CCTGGTTACCACCCTGACCTATGGTGTTCAGTGTTTTAGCCGTTATCCGGATCATATG

AAACGCCACGATTTTTTCAAAAGCGCAATGCCGGAAGGTTATGTTCAAGAACGTACC

ATCTCCTTTAAAGACGACGGTAAATACAAAACCCGTGCCGTTGTTAAATTTGAAGGT

GATACCCTGGTGAATCGCATTGAACTGAAAGGCACCGATTTTAAAGAGGATGGTAA

TATCCTGGGCCACAAACTGGAATATAATTTCAATAGCCACAACGTGTATATCACCGC

AGACAAACAGAAAAATGGCATCAAAGCCAATTTTACCGTGCGCCATAATGTTGAAG

ATGGTAGCGTGCAGCTGGCAGATCATTATCAGCAGAATACCCCGATTGGTGATGGTC

CGGTTCTGCTGCCGGATAATCATTATCTGAGCACCCAGACCGTTCTGAGCAAAGATC

CGAATGAAAAACGTGATCATATGGTGCTGCATGAGTATGTTAATGCAGCAGGTATTA

CCCATGGTATGGATGAGCTGTATAAGTAA 

Protein Sequence 4 (N- to C-terminus): 

 

MHHHHHHGENLYFQGGGGSKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATIGK

LTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISF

KDDGKYKTRAVVKFEGDTLVNRIELKGTDFKEDGNILGHKLEYNFNSHNVYITADKQK

NGIKANFTVRHNVEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQTVLSKDPNEKRD

HMVLHEYVNAAGITHGMDELYK 

 

After TEV digestion: 

 

GGGGSKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATIGKLTLKFICTTGKLPVP

WPTLVTTLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGKYKTRAVVKF

EGDTLVNRIELKGTDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFTVRHNVED

GSVQLADHYQQNTPIGDGPVLLPDNHYLSTQTVLSKDPNEKRDHMVLHEYVNAAGITH

GMDELYK 
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Gel picture of the PCR amplified, linearized and mutated Cysteine-ELP60-LPETGG: 

 
 

Figure S13. Gel picture showing the PCR products of the linearized and mutated Cysteine-ELP60-LPETGG bands at 

67 and 72°C annealing temperature. The red arrows indicate the desired PCR product. 
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PCR product (5’ to 3’): 

 

Figure S14. Illustration of PCR product before BsaI restriction. The plasmid was linearized with the primers “FW 

ELP N Cys (Primer 10, Table 1, Main text) and REV backbone (Primer 11, Table 1, Main text)”. 

 

Figure S15. Zoom in 5’ end of PCR product before BsaI restriction. 
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Figure S16. Zoom in 3’ end of PCR product before BsaI restriction. 

 

 

Figure S17. Zoom in 5’ end of PCR product after BsaI restriction. 
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Figure S18. Zoom in 3’ end of PCR product after BsaI restriction. 

 

The digested ends were filled to blunt ends with Klenow Fragment and ligated with the T4-

Ligase as described in the main text (methods).  
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Sequence of final Cysteine-ELP60-LPETGG: 

Cysteine 

ELP 1 

ELP 2 

ELP 3 

Sortase c-tag (LPETGG) 

 

DNA Sequence 9 (5’ to 3’): 

 

ATGTGCGTGCCGGGAGAAGGAGTCCCTGGTGTCGGTGTCCCAGGCGTGGGTGTTCCG

GGTGTGGGCGTTCCAGGCGTAGGCGTACCGGGCGCGGGTGTTCCTGGTGCTGGTGTT

CCGGGCGGCGGTGTTCCGGGGGGTGGCGTTCCGGGTGAAGGAGTACCAGGCGAAGG

CGTGCCGGGTGTCGGTGTCCCAGGCGTGGGTGTTCCGGGTGTGGGCGTTCCAGGCGT

AGGCGTACCGGGCGCGGGTGTTCCTGGTGCTGGTGTTCCGGGCGGCGGTGTTCCGGG

GGGTGGCGTTCCGGGTGAGGGTGTACCAGGCGAAGGGGTGCCGGGTGTCGGTGTCC

CAGGCGTGGGTGTTCCGGGTGTGGGCGTTCCAGGCGTAGGCGTACCGGGCGCGGGT

GTTCCTGGTGCTGGTGTTCCGGGCGGCGGTGTTCCGGGGGGTGGCGTTCCGGGTGAA

GGTGTGCCGGGAGAAGGAGTCCCTGGTGTCGGTGTCCCAGGCGTGGGTGTTCCGGG

TGTGGGCGTTCCAGGCGTAGGCGTACCGGGCGCGGGTGTTCCTGGTGCTGGTGTTCC

GGGCGGCGGTGTTCCGGGGGGTGGCGTTCCGGGTGAAGGAGTACCAGGCGAAGGCG

TGCCGGGTGTCGGTGTCCCAGGCGTGGGTGTTCCGGGTGTGGGCGTTCCAGGCGTAG

GCGTACCGGGCGCGGGTGTTCCTGGTGCTGGTGTTCCGGGCGGCGGTGTTCCGGGGG

GTGGCGTTCCGGGTGAGGGTGTACCAGGCGAAGGGGTGCCGGGTGTCGGTGTCCCA

GGCGTGGGTGTTCCGGGTGTGGGCGTTCCAGGCGTAGGCGTACCGGGCGCGGGTGT

TCCTGGTGCTGGTGTTCCGGGCGGCGGTGTTCCGGGGGGTGGCGTTCCGGGTGAAGG

TCTGCCGGAAACCGGCGGCTAA 

 

Protein Sequence 5 (N- to C-terminus): 

 

MCVPGEGVPGVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEGVPGE

GVPGVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEGVPGEGVPGVG

VPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEGVPGEGVPGVGVPGVGVP

GVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEGVPGEGVPGVGVPGVGVPGVGVPG

VGVPGAGVPGAGVPGGGVPGGGVPGEGVPGEGVPGVGVPGVGVPGVGVPGVGVPGA

GVPGAGVPGGGVPGGGVPGEGLPETGG 
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MALDI-TOF analysis of ELP30, ELP40 and ELP50 

For further analysis, three ELP samples were sent to MALDI-TOF analysis to check their grade 

of purity. 

 

Figure S19. MALDI-TOF Analysis of ELP30 (A, 13914 Da), ELP40 (B, 17926 Da) and ELP50 (C, 21974 Da). 
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SDS-Gel of Bioconjugation Reactions: 

 

Figure S20. An SDS gel picture confirming Sfp-mediated ELP conjugation to a CoA-647 dye (Lanes 1-6; ELP10-

ELP60). Lanes 7 and 8 of the gel show the result of the Alexa647-maleimide-dye bioconjugation to the cysteine-ELP30 

(7) and cysteine-ELP60 (8). It was not possible to label the cysteine-ELPs with the CoA-647 dye, since it did not 

carry a ybbR-tag anymore. Vice versa, the Alexa647-maleimide dye did not label the standard ybbR-containing ELPs, 

which do not have a cysteine (data not shown). Red is the dye fluorescence (excitation: 530/28 nm and emission: 

695/55 nm). The marker lane is shown in blue. 
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ABSTRACT: Single-molecule force spectroscopy (SMFS)
is by now well established as a standard technique in
biophysics and mechanobiology. In recent years, the
technique has benefitted greatly from new approaches to
bioconjugation of proteins to surfaces. Indeed, optimized
immobilization strategies for biomolecules and refined
purification schemes are being steadily adapted and
improved, which in turn has enhanced data quality. In
many previously reported SMFS studies, poly(ethylene
glycol) (PEG) was used to anchor molecules of interest to
surfaces and/or cantilever tips. The limitation, however, is
that PEG exhibits a well-known trans−trans−gauche to all-
trans transition, which results in marked deviation from standard polymer elasticity models such as the worm-like chain,
particularly at elevated forces. As a result, the assignment of unfolding events to protein domains based on their
corresponding amino acid chain lengths is significantly obscured. Here, we provide a solution to this problem by
implementing unstructured elastin-like polypeptides as linkers to replace PEG. We investigate the suitability of tailored
elastin-like polypeptides linkers and perform direct comparisons to PEG, focusing on attributes that are critical for single-
molecule force experiments such as linker length, monodispersity, and bioorthogonal conjugation tags. Our results
demonstrate that by avoiding the ambiguous elastic response of mixed PEG/peptide systems and instead building the
molecular mechanical systems with only a single bond type with uniform elastic properties, we improve data quality and
facilitate data analysis and interpretation in force spectroscopy experiments. The use of all-peptide linkers allows
alternative approaches for precisely defining elastic properties of proteins linked to surfaces.

KEYWORDS: single-molecule force spectroscopy, elastin-like polypeptides, biopolymer spacer, sortase coupling, protein ligation

Refined Techniques in SMFS. Single-molecule force
spectroscopy (SMFS) is a state-of-the-art technique in the
rapidly growing field of molecular biomechanics.1−3 Tools and
methods are being steadily developed to improve ease of
sample handling, sensitivity, reproducibility, and reliability.4,5 In
parallel, the biochemical toolbox is expanded continuously,
enabling analysis of more complex and demanding biological
systems. Improvements such as the use of orthogonal binding
handles,6−9 diverse biomolecule immobilization strategies,10−14

and alternative methods for protein synthesis (i.e., recombinant
bulk expression or cell-free in vitro expression) are all examples
of significant technical advances that have been achieved in
recent years.15

Requirements for Recording Large Data Sets and
Challenges Arising Therefrom. A key requirement to probe
multiple different protein domains in a single experiment is the

ability to use a single cantilever over extended periods of time
to achieve a large number of force−extension traces. For this
purpose, two main advances are worth noting, the first of them
being the improvement of geometrically defined covalent
surface tethering and the second being the discovery and
characterization of the type III cohesin−dockerin (Coh:Doc)
interaction.7 Coh:Doc receptor−ligand pairs can withstand
remarkably high forces in a SMFS assays and exhibit extremely
high long-term functionality. This latter property is particularly
important for carrying out multiplexed experiments where
many proteins deposited onto the same surface and spatially
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separated are pulled apart using the same receptor-modified
cantilever. In such a configuration, Coh:Doc is used as a
binding handle to successfully and continuously unfold target
proteins for over 24 h of measurement time without significant
loss of binding activity. Data sets of typically several tens of
thousands of force−extension curves can easily be obtained
using type III Coh:Doc, dramatically outperforming other
mechanostable interactions (e.g., biotin−avidin).
The ability to measure with a single cantilever over several

days allows interrogation of different types or variants of
proteins immobilized on different positions of the same
substrate (i.e., protein microarrays) and to achieve statistical
significance over the course of a single experiment. This leads
to large data sets and requires the use of sophisticated
algorithms to identify and extract specific single-molecule
interactions among a large number of traces with poor signal,
such as empty traces, multiple interactions in parallel, or
nonspecific interactions. Independent of the size of the data
sets though, elasticity models whether applied as part of
elaborate algorithms or fitted manually to single curves have in
the past been required to account for the different elastic
contributions stemming from heterogeneous stretching behav-
ior of mixed poly(ethylene glycol) (PEG)−protein polymer
backbone.
Conformational Changes of PEG Linker Molecules

Obscure Molecular Characteristics of Interest. When
performing SMFS in an elevated force regime using PEG as
linker molecules, additional challenges arise. A conformational
transition of PEG occurs in a force range of up to ca. 300 pN,
resulting in an approximately linear force−extension re-
gime.16−18 In aqueous solutions, PEG exhibits a trans−trans−
gauche conformation. With rising force on the polymer, the
occupancy of conformations is shifted to all-trans, effectively
increasing the net polymer contour length. Analysis methods
such as fitting standard elasticity models to the data or
detecting contour length increments within said force range are
therefore compromised and would, for a quantitative
description, require improved heterogeneous elasticity models.
PEG is a highly flexible polymer with a low persistence

length, while peptide bonds have restricted degrees of freedom.
These restrictions alter the stretching behavior and give rise to
marked differences in comparison to PEG. Furthermore, the
ratio of PEG linker length to unfolded protein backbone length
is not constant over the course of an unfolding trace, which
means fitting parameters must be optimized for different
sections of the curve as more domains unfold. This issue
becomes particularly significant and noticeable when probing
protein unfolding and receptor−ligand unbinding in a high
force regime and is also problematic when unfolding occurs
across a broad range of forces.
Benefits of ELP Linkers in SMFS. In this study we

investigate the feasibility of biological peptide polymers to
circumvent this problem. We selected well-characterized
elastin-like polypeptides (ELPs) as a suitable candidate for
this purpose. The progression of cloning techniques of
repetitive genes in recent years has set the stage for precisely
defined protein polymers and opened up the ability to design,
produce, and purify protein spacers of well-defined contour
length and chemical composition for single-molecule experi-
ments.19−22 ELPs exhibit similar elasticity behavior as unfolded
protein backbone and are completely monodisperse, a key
advantage compared to synthetic polymers such as PEG.
Monodisperse ELP linkers fused directly to a protein of interest

allow for complete control of the lengths of a nanomechanical
system from the surface up to the force transducer, which is not
true for the chemically synthesized PEG polymers with non-
negligible polydispersity. Since ELPs are expressed recombi-
nantly in Escherichia coli (E. coli), their production is easily
scaled up, resulting in lower costs compared to commercially
available heterobifunctional PEGs. Furthermore, ELPs can be
produced with N-/C-terminal protein ligation tags, which can
be used for specific and bio-orthogonal surface chemistry in
SMFS sample preparation.
ELPs are synthetic biopolymers derived from tropoelastin

domains. They are composed of a repetitive amino acid
heptamer “Val-Pro-Gly-Xaa-Gly”,23 where Xaa is a guest residue
that can be any amino acid apart from proline. The guest
residue influences the hydrophobicity of the protein and
impacts the lower critical solution temperature, the point at
which the ELP undergoes a soluble-to-insoluble phase
transition. At this environment-dependent cloud point, ELPs
change their conformation and precipitate, resulting in clouding
of the solution.
ELPs are intrinsically disordered proteins that do not fold

into well-defined secondary and tertiary structures, but rather
remain unfolded and flexible, a property that is ideally suited to
their application as spacer/linker molecules for SMFS.24 We
hypothesized that ELPs would therefore be a suitable choice to
achieve both surface passivation and site-specific immobiliza-
tion in single-molecule nanomechanical experiments. The bulky
yet flexible features of ELPs inhibit nonspecific protein binding
to the surface, while enabling ligation of other proteins due to
the high degree of accessibility of N- or C-terminally fused
peptide tags. Post-translational protein ligation methods have
made it possible to move from organic chemical conjugation
methods toward enzyme-mediated covalent immobilization, for
example utilizing sortase A or Sfp.14,25 Both enzymes catalyze
sequence- and site-specific reactions yielding uniform protein
orientation at the surface.
ELPs have previously been the subject of atomic force

microscopy (AFM) studies. For example, AFM was used to
support theoretical predictions about the behavior of ELPs
above and below their cloud point, as well as to study ELP
elasticity.26−28 This study was carried out entirely below the
cloud point, so that intermolecular interactions between ELPs
were negligible. In contrast to prior studies, we employ ELPs as
spacer molecules with other protein domains attached. Our
results show that ELPs provide several benefits over PEG
linkers in SMFS attributable primarily to the features of having
uniform elastic properties and monodisperse linkers.
This study offers an attractive substitute for established PEG

systems using all-protein ELP linkers. The immobilization
strategy provides precise control over the elastic properties of
multicomponent protein mechanical systems linked between a
glass surface and a force transducer. Our approach transfers
advances in smart polymer research to SMFS experiments and
describes the improvements achieved through this alternative
surface anchoring strategy.

RESULTS AND DISCUSSION
SMFS with Receptor−Ligand Polyproteins Employing

Site-Specific Immobilization. Typically PEG linkers with an
N-hydroxysuccinimide (NHS) group are linked to an amino-
silanized surface. The other end of the PEG contains a reactive
group for protein immobilization, which in most cases is a thiol-
reactive maleimide group. Figure 1A illustrates a Coh:Doc-
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based SMFS experiment. Proteins anchored to a functionalized
glass surface are probed by the corresponding receptor fusion
protein covalently linked to the cantilever tip. A characteristic
unfolding curve recorded at constant speed is shown in Figure
1B. After the Coh:Doc complex is formed by contacting the
cantilever with the surface, force is applied by retracting the
base of the cantilever. The signal is detected by a quadrant
photodiode with a laser that is reflected off the back side of the
cantilever. Bending of the cantilever is translated into a
differential voltage output of the photodiode. Upon retraction
of the cantilever base at constant speed, the polymer linker is
stretched first (Figure 1B, I). Subsequently, the weakest
component in the system unfolds. In this case two carbohydrate
binding modules (CBMs) are unfolded consecutively (Figure
1B, II and III). Finally, the force increases to a level where the
receptor ligand pair dissociates. Following Coh:Doc rupture,
the force drops to zero (Figure 1B, IV) and the cantilever is free
to probe another molecule at a different location on the surface.
In order to identify data traces that show specific single-

molecule interactions, a multilevel sorting algorithm is used to
search for characteristic unfolding patterns of the fingerprint
domains. This algorithm takes into account the unfolding forces
and the measured increases in contour length (i.e., contour
length increments) of the peptide backbone upon unfolding of
the various fingerprint domains.29 Independent of the analysis
method, however, accurate polymer elasticity models are
required to quantify the hidden lengths of the folded proteins
that are released by the unfolding events, giving rise to the
limitations of PEG systems described above.
Adaptation of Surface Chemistry to Tether Protein

Domains to ELP Linkers. The comparison of PEG with ELP
linkers was carried out by cloning and recombinantly expressing
two different ELPs both with 120 nm theoretical contour
length (ELP120 nm, assuming 0.365 nm per amino acid).30 One
ELP linker contained an N-terminal sortase-tag (“GGG”) and a
C-terminal cysteine. The other ELP linker had a sortase-tag at
its C-terminus (“LPETGG”) and a cysteine at the N-terminus.
Two analogous bioconjugation routes were used to attach ELP
or PEG linkers to cantilevers and glass surfaces (Figure 2). To
achieve a direct comparison, 15 kDa PEG linkers of similar
contour lengths (∼120 nm) were used. For PEG experiments,
15 kDa NHS-PEG-maleimide was immobilized onto an amino-
silanized glass slide (PEG120 nm). The maleimide groups of the

PEG reacted with a GGGGG-Cys peptide, leaving the sortase
N-tag available for subsequent derivatization. For ELP
experiments, a small-molecule cross-linker (sulfosuccinimidyl
4-(N-maleimidomethyl)cyclohexane-1-carboxylate, sulfo-
SMCC), which added negligible contour length (0.83 nm) to
the system, was first immobilized onto amino-silanized glass,
followed by coupling with GGG-ELP120 nm-Cys. Both strategies
resulted in the sortase N-tag being available for conjugation via
sortase-mediated enzymatic ligation. The protein of interest
(CohIII-CBM-LPETGG) was linked by sortase A to ELP or
PEG (Figure 2). The same strategy was used for the cantilever,
except GGG-Xmod-DocIII was conjugated by sortase A to Cys-
ELP120 nm-LPETGG or to PEG120 nm-coupled Cys-LPETGG.
Our enzyme-mediated protein immobilization approach has the
advantage of site-specific linkages and results in a homogeneous

Figure 1. (A) SMFS configuration: Cantilevers are functionalized with CBM-Xmod-DocIII fusion proteins. Glass slides are modified with
CohIII-CBM constructs. (B) Coh:Doc-based SMFS unfolding trace. Following Coh:Doc complex formation at zero extension, retraction of
the cantilever results in mechanical stretching of the receptor:ligand-linked polyprotein. (I) Spacer molecules are fully extended and stretched.
(II, III) The weakest links in the chain, usually the fingerprint domains (here: CBM), are unfolded in series. (IV) Finally, the Coh:Doc
complex dissociates under force. The unfolded CBM domains can then refold after the complex rupture. The cantilever is now free to probe a
different molecule on the surface. The insets on the right side qualitatively illustrate the differences in linker stretching in the high-force
regime as observed in the final peak for constructs immobilized using PEG and ELP linkers. A quasi-linear regime of PEG stretching
attributable to the conformational transition from trans-trans-gauche to all-trans is clearly visible for PEG in contrast to ELP.

Figure 2. Comparison of immobilization strategies. For standard
immobilization with PEG spacers, NHS chemistry was used to link
PEG to amino-silanized surfaces. Protein constructs were then
coupled via cysteine-sortase tag peptides to the maleimide end-
groups on the PEG spacers. For immobilization with ELP linkers, a
small-molecule NHS-maleimide cross-linker with a negligible
contour length of 0.83 nm was used to couple cysteine-ELP
spacers with a sortase-tag to the amino-silanized surface. In both
cases, a fusion protein of interest, consisting of a CBM fingerprint
domain and a mechanostable Coh receptor, was enzymatically
coupled to the immobilized molecules on the surface in a
subsequent step. Depicted is the functionalization of the glass
surface with CohIII. The functionalization of the cantilever tip with
DocIII followed a similar scheme.
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orientation of the proteins at the surface. Such uniformly
immobilized proteins lead to a well-defined propagation of the
applied force through the molecular complex under inves-
tigation and to well-defined distributions of the unfolding/
rupture events in the force−extension curves. The use of N-
and C-terminal tags for surface chemistry also ensured that only
full-length (i.e., fully translated) ELPs were measured in the
experiment.
AFM experiments performed with ELPs as linkers showed a

higher percentage of clearly identifiable single-molecule
unfolding traces. We attribute this to the bulky character of
the ELPs. They provide a less dense surface immobilization of
the biomolecules of interest when compared to PEG-based
immobilization. This behavior is advantageous since high
surface density frequently causes multiple interactions between
surface- and cantilever-bound molecules in SMFS experiments
(Supplemental Figure S1). Multiple interactions are generated
when more than one receptor−ligand interaction is formed in
parallel. The complicated unfolding and unbinding traces that
result from multiple bonds pulled in parallel are hardly
interpretable and therefore discarded from the analysis
(Supplemental Figure S2). Efficient passivation of glass surfaces
against nonspecific adhesion of proteins requires a dense PEG
surface layer, to prevent proteins from nonspecifically sticking
to the glass surface. Approaches such as titrating functional (i.e.,
maleimide end-groups) with nonfunctional (i.e., CH3 end-
groups) PEG or changing the concentration of binding agents
or proteins of interest can improve the process. In our
experience, however, surface immobilization with ELP instead
of PEG linkers leads to better passivation of the surface and a
higher percentage of single-molecule traces without the need
for any titration of functional and nonfunctional linkers.
Comparison of Dispersity between PEG and ELP

Linkers. All unfolding traces were presorted by an automated
analysis routine, selecting for single interactions that display
two consecutive CBM unfolding events. Following the
automated sorting, deletion of obviously erroneous curves
(typically 10%) caused by, for example, baseline drift was
performed manually.7,29 PEG unfolding traces showed wildly
varying initial extensions prior to the first CBM unfolding
event. This is likely caused by the non-negligible polydispersity
of PEG, as we did not observe multiple discrete populations
with ELP experiments. The intrinsic monodispersity of ELP
molecules is a clear advantage. Since they are produced
recombinantly in E. coli with functional tags in vivo, only full-
length protein sequences have the necessary terminal peptide
tags that allow for surface immobilization. Additionally, ELPs
were purified with inverse transition cycling (ITC), a method
developed for ELP purification based on their reversible
precipitation behavior. Possibly shorter ELPs are removed
during the process, since their cloud point is higher than for
ELP120 nm. Although the polydispersity of chemically synthe-
sized PEGs (mass distribution ∼10−20 kDa) is sufficiently low
for many applications, it leads to a noticeable impact in SMFS.
The influence of PEG polydispersity on the SMFS data is

illustrated in Figure 3A, which shows SMFS traces recorded
with both PEG and ELP linkers and also shows example traces
of the shortest and largest extensions found in a typical type III
Coh:Doc data set. Figure 3B shows a histogram of extension
values at which the first CBM unfolding event occurred. For
ELPs, the distribution shows one peak centered at an extension
value that is expected based on the known ELP linker length. In
the case of the PEG experiment, however, three distinct

populations are observed. This can be understood by
considering that at the level of single molecules a polydisperse
distribution results in discrete peaks representing the
corresponding lengths of the discrete polymeric linkers on
the cantilever tip. We interpret the distributions as being caused
by three different PEG molecules with different lengths
attached to the tip. Although the discrete distributions could
conceivably be caused by different positions of the molecule
attachment points to the AFM cantilever tip, this effect should
be the same for ELPs. Moreover, varying linker lengths also
reflect in varying steepness of the force−extension trace peaks,
which would not occur simply because of attachment geometry
(Figure 3A, PEG traces). We exclusively observed monomodal
distributions for ELPs; therefore an anchor position effect
seems not to play a major role. This polydispersity is clearly
disadvantageous, since multiple linker lengths render data
analysis more difficult. Curves cannot simply be overlaid in
force−distance space due to varying loading rates. Furthermore,
for constant-speed SMFS experiments, loading rate populations
in dynamic force spectra will be broadened due to the
probabilistic nature of the thermally driven rupture events.
We note that the PEG-modified surfaces are softer than ELP-

modified surfaces during indentation of the tip into the polymer
brush, as determined by the curvature at the beginning of each
trace. The firmer ELP-modified surfaces require a lower
indentation force to reach a linear force−distance regime
after the initial soft indentation. For calibrating the inverse
optical lever sensitivity, this is advantageous since high
indentation forces can damage the molecules attached to the
tip through adsorption and denaturation processes.31

Uniform ELP Stretching Behavior Minimizes Artifacts.
We hypothesized that by replacing synthetic PEG linkers with
biological ELP linkers, and thereby having a single type of
polymer backbone throughout the mechanical system, better
defined elasticity properties for the recording of force curves
would be achievable. The persistence lengths of ELP peptide
backbones should be comparable to those of unfolded protein

Figure 3. Comparison of dispersity of PEG and ELP linkers. (A)
Typical force−extension traces for PEG (purple) and ELPs (blue).
In the PEG linker experiment, the unfolding events occur over a
wider range of absolute extension values, whereas unfolding events
with ELP linkers occur over a narrow range. (B) Histograms
showing the distribution of extension values corresponding to the
first CBM unfolding event in each curve (PEG: N = 219; ELP: N =
521). Due to the polydispersity of the PEG linkers, three discrete
populations with different extensions are clearly visible, while for
ELPs only one population is observed.
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domains, since they both consist of the same type of peptide-
bonded polymer chains. This matching of the persistence
length should be advantageous compared to PEG, which
contains repeats of ethylene oxide groups with lower stiffness.
Accurate description of the mechanical system under
investigation by elasticity models plays a crucial role in
determining characteristic parameters such as persistence
lengths and contour length increments.
Previous studies had shown that at forces below 100 pN PEG

elasticity may be satisfactorily described by standard elasticity
models.16 In a systematic study in this force range, we
compared ELP and PEG linkers and corroborated these earlier
results. The data and a thorough discussion thereof are given in
the Supporting Information (see particularly Supplemental
Figure S3).
At elevated forces, however, stretching of PEG through its

conformational transition causes marked deviations from ideal
polymer behavior. In aqueous environments, water molecules
bridge neighboring ethylene oxide monomers by hydrogen
bonding to two adjacent oxygen groups in the PEG backbone.
By this means, water stabilizes the trans−trans−gauche
configuration with a binding energy of around 3 kT. When
PEG is stretched, however, the subunits of the backbone are
forced increasingly into a slightly longer all-trans configuration
and the bound water molecules are released. This conforma-
tional change, which contributes prominently to the polymer
elasticity in the force range of up to ca. 300 pN, causes an
increase in the measured net contour length of the polymer
backbone.16,17

Figure 4A shows assemblies of multiple data traces (“master
curves”) of PEG- and ELP-linked proteins, respectively. The
master curves are obtained by first aligning force−extension
traces along the extension axis using an algorithm to maximize
cross-correlation values in contour length space and then
finding most probable force values of aligned traces in force
distance space (see the Materials and Methods section). A
recently introduced worm-like chain (WLC) approximation
model32 with an ab initio quantum mechanical correction for
backbone stretching at high forces33 (qmWLC) was then fitted
to the traces with a fixed persistence length of 0.4 nm.
In the case of PEG linkers, a pronounced linear regime

between 100 and 300 pN is visible in the last stretch prior to
Coh:Doc rupture. As a consequence, the qmWLC cannot
model this polymer correctly. ELPs do not show such a
conformational change to this extent, and therefore the
elasticity model fits satisfyingly. A fitting approach where the
persistence length is also a free fit parameter is shown in
Supplemental Figure S4. This approach misused the persistence
length to compensate for the gauche-to-trans conformational
change in the polymer; therefore, it resulted in largely
unrealistic values for the contour length increments.
Figure 4B shows details of the last stretch before the

Coh:Doc dissociation, highlighting the difference between PEG
and ELP linkers. Two separate fits in the respective low- and
high-force regimes illustrate the differences in polymer length
before and after the conformational transition. We note that
ELPs were also reported to have a force-induced conforma-
tional change, in this case based on proline cis−trans

Figure 4. Elasticities of PEG and ELP linkers. (A) Superposition of multiple protein unfolding curves (“master curves”) from SMFS
experiments with PEG (purple, N = 73) and ELP linkers (blue, N = 151). The lower plots of each graph in panel A show the residuals of each
WLC fit. Note that the residual plots are split into two subranges, shown in two windows from −35 to 120 pN (lower window) and from 120
to 1100 pN (upper window). The applied WLC model was extended by ab initio quantum mechanical calculations to correct for the enthalpic
stretching of the polymer backbone.33 Data were fitted with a fixed persistence length of 0.4 nm. The fits show that the stretching behavior of
the mixed polymer system with PEG linkers deviates markedly at elevated forces from the predictions of the elasticity model, whereas the ELP
curves agree reasonably well. (B) Final stretch and the Coh:Doc rupture event were fitted with the qmWLC model with two different contour
lengths in the lower and upper force regime. The PEG molecules undergo a conformational transition,16 resulting in different measured
contour lengths for each force regime. For ELP molecules, a comparable transition was reported,27,34 which apparently contributes to a much
lower extent, so that SMFS experiments are much less affected. The differences in fitted contour length between the two fits are 29.5 nm for
PEG linkers and 4.4 nm for ELP linkers. (C) Contour length transformations29,35 of PEG and ELP master curves (purple and blue points).
Ideally, the transformation results in data points aligning on vertical lines, where each line represents an energy barrier position for each
stretching regime between two peaks in force−extension space. A KDE (Gaussian kernel, bandwidth: 2.5 nm) was calculated for the
transformed data. The ELP data set showed the expected three peaks for the three unfolding and dissociation events, whereas the PEG data
exhibit an irregular distribution with additional maxima.
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isomerization that also extends the contour length.27,34

However, the low number of prolines in the overall sequence
(every fifth amino acid) in the ELP motif renders this effect
much smaller compared to the conformational change of PEG
and will be camouflaged by signal noise in typical experiments
with proteins.
Figure 4C shows the transformation into contour length

space using the qmWLC model. A kernel density estimate
(KDE) was used (Gaussian kernel, bandwidth of 2.5 nm) to
generate smooth functions describing the contour length
increments observed between unfolding or rupture events,
which in this case included 2× CBM unfolding and Coh:Doc
dissociation. In the case of PEG linkers, the KDE−contour
length distribution shows several peaks. This is because of the
failure of the qmWLC model to accurately describe the force
response of the polymer. Determining the contour length
increments between the peaks of the KDE proves problematic
even for this relatively simple exemplary case of two large
fingerprint unfolding events and a receptor ligand dissociation.
Smaller unfolding steps or even folding intermediates, which
appear as substeps, would be even harder to pinpoint with the
PEG system. In the case of ELP-immobilized proteins, only
three distinct peaks appear, with much more clearly identifiable
contour length increments between the peaks.

CONCLUSION
PEG linkers have successfully been employed in numerous
studies to anchor biomolecules of interest to surfaces for SMFS.
In the low-force regime (below 100 pN) the extended WLC
model describes their elastic properties with sufficient accuracy
for the majority of applications. For elevated forces, however,
the conformational transitions in the PEG backbone would
necessitate further development of elasticity models for a
convincing description.16 Moreover, the inherent polydispersity
of PEGs, together with their complex elasticity, complicates
data analysis and reduces the amount of information that can be
deduced from SMFS.
The ELP-based linkers, however, have proven in our studies

to be significantly improved linker molecules for surface
immobilization and passivation purposes in single-molecule
force experiments. ELPs are monodisperse, are highly flexible,
and readily allow for direct, site-specific tethering. We showed
that these features lead to more accurate measurements of
contour length increments in receptor−ligand polyprotein force
spectroscopy experiments. A well-established elasticity model
suffices for the data analysis.
Even at low forces, the PEG subunits already start to change

their conformational state occupancy. At 50 pN, the probability
for their elongated state is already above 10%.16 Therefore, the
findings we present here are also relevant for investigations at
lower forces or in systems that should be analyzed over a large
range of forces. PEG linkers may still deliver satisfying results,
as long as data in similar force ranges can be compared. In some
cases, elasticity parameters such as the Kuhn length or
persistence length can heuristically compensate for effects not
explicitly described by the model. As soon as different force
ranges of multiple domains need to be compared, though, the
varying proportions of elongated (all-trans) versus non-
elongated (trans−trans−gauche) PEG subunits cannot simply
be accounted for by the elasticity parameter, and therefore
measured contour length increments get distorted. Different
biochemical approaches like those described here are thus
necessary to gain meaningful insights. These scenarios include,

for example, shielded unfolding events or small substeps, where
the force cannot drop sufficiently in between stretching events.
The ELPs investigated here represent only one formulation

of the vast variety of smart polymer linkers that could be
utilized in SMFS experiments. Further studies are required to
evaluate other nonstructured, non-proline-containing protein
linkers to determine their suitability for SMFS studies, since the
amino acid side chain composition may affect the persistence
length36,37 or give rise to nonentropic behavior. Biotechno-
logical characteristics, i.e., recombinant production yields and
ease of purification, are as important as the biophysical
requirements, which renders the easily produced ELPs
particularly attractive. Other smart polymers should be similarly
accessible to perform as suitable alternatives. The reported
approach can be applied to enhance SMFS studies with purified
proteins on functionalized surfaces as shown here or
alternatively to modify cantilevers for chemical recognition
imaging and force spectroscopy on artificial membranes or cell
surfaces. It can easily be adopted by standard molecular biology
equipped laboratories to streamline the procedure and improve
data quality for resolving smaller unfolding features with high
accuracy. Studies on smart polymers as tethers for SMFS
experiments might also help to develop environmentally
responsive surfaces, which bear potential for exciting
applications in the nanobiosciences.

MATERIALS AND METHODS
All reagents were at least of analytical purity grade and were purchased
from Sigma-Aldrich (St. Louis, MO, USA) or Carl Roth GmbH
(Karlsruhe, Germany). All buffers were filtered through a 0.2 μm
poly(ether sulfone) membrane filter (Nalgene, Rochester, NY, USA)
prior to use. The pH of all buffers was adjusted at room temperature.

A 300 amino acid long ELP was the basis for the AFM linker
constructs used in this study, and the underlying cloning and protein
purification procedure of the ELP is described in detail elsewhere.19

The ELP sequence was [(VPGVG)5-(VPGAG)2- (VPGGG)3]6 and is
referred to as ELP120 nm.

Standard molecular biology laboratories capable of producing
recombinant proteins are equally capable of expressing ELPs, since
both rely on the same principles, reagents, and instrumentation. With
our plasmids provided at Addgene, cloning can even be avoided and
production of ELP linkers for protein immobilization can be
performed right away.

Cloning. A detailed description of the cloning procedure of the
constructs can be found in the Supporting Information (Figures S5−
S11). ELP sequences used in this study, along with 40 nm length
variants and binding handles, are deposited at Addgene and available
upon request (Addgene accession numbers: 90472: Cys-ELP120 nm-
LPETGG, 90475: Cys-ELP40 nm-LPETGG, 91571: GGG-ELP40 nm-
Cys, 91572: GGG-ELP120 nm-Cys, 91697: CohIII-CBM-HIS-LPETGG,
91698: GGG-HIS-CBM-Xmod-DocIII).

Transformation of Cells. A 2 μL amount of Gibson assembly or
ligation reaction transformed DH5α cells (Life Technologies GmbH,
Frankfurt, Germany; 30 min on ice, 1 min at 42 °C, 1 h at 37 °C in
SOC medium) was used. The cells were plated on 50 μg/mL
kanamycin-containing LB agar and incubated overnight at 37 °C.
Clones were analyzed with Colony PCR, and clones with amplicons of
appropriate lengths were sent to sequencing.

Protein Expression. Chemically competent E. coli NiCo21(DE3)
(New England Biolabs, Ipswich, MA, USA) were transformed with 50
ng of plasmid DNA for the expression of all constructs used in this
study. Transformed cells were incubated in autoinduction ZYM-5052
media (for ELP containing constructs supplemented with 5 mg/mL
proline, valine, and 10 mg/mL glycine; 100 μg/mL kanamycin) for 24
h (6 h at 37 °C, 18 h at 25 °C).38 Expression cultures were harvested
via centrifugation (6500g, 15 min, 4 °C), the supernatant was
discarded, and the pellets were stored at −80 °C until further lysis.
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Throughout the whole purification process, for ELPs containing a
cysteine, 1 mM tris(2-carboxyethyl)phosphine (TCEP, Thermo Fisher
Scientific Inc., Waltham, MA, USA) or 1 mM of dithiothreitol (DTT)
was added to the respective buffers. Cell pellets with proteins
containing no HIS-tag were solubilized in 50 mM Tris-HCl pH 7.5
(supplemented with cOmplete, EDTA-free protease inhibitor cocktail,
Sigma-Aldrich, St. Louis, MO, USA), and all other pellets in lysis
buffer (50 mM Tris, pH 8.0, 50 mM NaCl, 10% (w/v) glycerol, 0.1%
(v/v) Triton X-100, 5 mM MgCl2, DNase I 10 μg/mL, lysozyme 100
μg/mL).
Cys-ELP120 nm-LPETGG and GGG-ELP120 nm-Cys were purified

with the ITC method.39 After resolubilization, the cells were lysed by
sonication (Bandelin Sonoplus GM 70, tip: Bandelin Sonoplus MS 73,
Berlin, Germany; 40% power, 30% cycle, 2 × 10 min). The cells were
kept on ice during the sonication procedure. The soluble fraction was
separated from the insoluble cell debris by centrifugation (15000g, 4
°C, 1 h). In a first heating step (60 °C, 30 min) of the supernatant,
most of the E. coli host proteins precipitated. The fraction of the
collapsed ELPs was resolubilized by cooling the suspension for 2 h to 4
°C on a reaction tube roller. The insoluble host proteins were pelleted
by centrifugation (15000g, 4 °C, 30 min). Further purification steps
were necessary to increase the purity of the ELP solution. This was
done by repeated thermoprecipitation of the ELP followed by
redissolution.
The ELP solution was clouded by adding 1 M acetate buffer (final

concentration 50 mM, pH 2.5) and 2 M NaCl. A heating step (60 °C,
30 min) ensured all ELPs were collapsed. A hot centrifugation (3220g,
40 °C, 75 min) was necessary to separate the high-salt, low-pH
solution from the ELP pellet, which was resolubilized in 50 mM Tris-
HCl (pH 7.0) after discarding the supernatant. The solution was
incubated for 2 h at 4 °C to resolubilize all ELPs completely. A cold
centrifugation step (3220g, 4 °C, 60 min) isolated the remaining
insoluble fraction of the suspension. After decanting the supernatant,
the salt concentration was increased and pH lowered, to precipitate the
ELPs again. This cycle was repeated three times or extended if the
purity of the solution was not high enough.
The constructs CohIII-CBM-HIS-LPETGG and GGG-HIS-CBM-

Xmod-DocIII were expressed and lysed as described above. After the
first centrifugation, the supernatant was, however, filtered (0.45 μm)
and applied to a HisTrap FF (GE Healthcare Europe GmbH, Freiburg,
Germany). Unspecifically bound proteins on the column were
removed by washing five column volumes (25 mM Tris-HCl pH
7.8, 500 mM NaCl, 20 mM imidazole, Tween 20 0.25% (v/v), 10%
(v/v) glycerol). Finally, the desired HIS-tag containing protein was
eluted (25 mM Tris-HCl pH 7.8, 500 mM NaCl, 300 mM imidazole,
Tween 20 0.25% (v/v), 10% (v/v) glycerol).
For long-term storage the protein solutions of the different

constructs were concentrated (Amicon Ultra-15 centrifugal filter
units 10K MWCO, Merck KGaA, Darmstadt, Germany) and reduced
with 5 mM TCEP overnight (at 4 °C) for constructs that contained a
cysteine. The buffer of the reduced ELP solution was exchanged (Zeba
spin desalting columns 7K, Thermo Fisher Scientific Inc.) to 50 mM
sodium phosphate, 50 mM NaCl, 10 mM EDTA, with a pH of 7.2, and
10% (v/v) glycerol and flash frozen in liquid nitrogen in small aliquots
to be stored at −80 °C. All other proteins were exchanged with 25
mM Tris-HCl, 75 mM NaCl, and 5 mM CaCl2 with a pH of 7.2 and
supplemented with a final glycerol concentration of 20% (v/v). No
loss of functionality of the ELPs (cross-linking and passivation
capability) could be detected, when stored buffered or lyophilized in
small aliquots at −80 °C, over the duration of more than one year.
SDS-PAGE (Any kD Mini-PROTEAN stain-free gels, Bio-Rad

Laboratories GmbH, Hercules, CA, USA) was employed to detect any
impurities. Since ELPs could not be stained with the stain-free
technology, an Alexa Fluor 647-C2-maleimide dye (Thermo Fisher
Scientific Inc.) was incubated for 1 h at room temperature with the
ELP solution. An appropriately diluted protein solution was mixed
with 5× loading buffer (250 mM Tris-HCl, pH 8.0, 7.5% (w/v) SDS,
25% (v/v) glycerol, 0.25 mg/mL bromophenol blue, 12.5% (v/v) 2-
mercaptoethanol) and heated for 5 min at 95 °C.

ELP concentration was photometrically determined at 205 nm
(Ultrospec 3100 Pro, Amersham Biosciences, Amersham, England,
and TrayCell, Hellma GmbH & Co. KG, Müllheim, Germany). For all
other constructs an absorption measurement at 280 nm led to the
concentration (NanoDrop UV−vis spectrophotometer, Thermo
Fisher Scientific Inc.). The extinction coefficient was determined
theoretically for ELPs at 205 nm40 and 280 nm41 for all other fusion
proteins.

AFM Sample Preparation. Force spectroscopy samples, measure-
ments, and data analysis were prepared and performed according to
previously published protocols.10,35 Silicon nitride cantilevers (Biolever
mini, BL-AC40TS-C2, Olympus Corporation, Tokyo, Japan; nominal
spring constant: 100 pN/nm; 25 kHz resonance frequency in water)
were used as force probes. Surface chemistry for cantilevers was similar
to that for coverslips (Menzel Glas̈er, Braunschweig, Germany;
diameter 24 mm). Surfaces were amino-silanized with 3-
(aminopropyl)dimethylethoxysilane (APDMES, ABCR GmbH, Karls-
ruhe, Germany). α-Maleinimidohexanoic-ω-NHS PEG (NHS-PEG-
Mal, Rapp Polymere, Tübingen, Germany; PEG-MW: 15 kDa) was
used as a linker for the sortase peptides (GGGGG-C and C-LPETGG,
Centic Biotec, Heidelberg, Germany) in PEG-linked experiments. The
cysteine-containing ELPs were linked to the surface with a
sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate)
cross-linker (sulfo-SMCC, Thermo Fisher Scientific Inc.). PEG or
cross-linker (10 mM) was dissolved in 50 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) pH 7.5.

Sortase-catalyzed coupling of the fingerprint molecules (GGG-
CBM-Xmod-DocIII and CohIII-CBM-LPETGG) was done in 25 mM
Tris-HCl, pH 7.2, 5 mM CaCl2, and 75 mM NaCl at 22 °C for 2 h.
Typically, 50 μM ELP or sortase peptide was coupled with 25 μM
fingerprint molecule and 2 μM sortase enzyme.

In between both of the cross-linking steps (PEG, SMCC, or ELP,
peptide reaction) surfaces were rinsed with water and dried with
nitrogen. After immobilization of the fingerprint molecules, surfaces
were rinsed in measurement buffer (25 mM Tris-HCl, pH 7.2, 5 mM
CaCl2, 75 mM NaCl). The reaction of the different surface chemistry
was done spatially separated by using silicone masks (CultureWell
reusable gaskets, Grace Bio-Laboratories, Bend, OR, USA). The mask
was applied after silanization and removed under buffer after the last
immobilization step.

AFM-SMFS Measurements. Data were taken on custom-built
instruments (MFP-3D AFM controller, Oxford Instruments Asylum
Research, Inc., Santa Barbara, CA, USA; piezo nanopositioners: Physik
Instrumente GmbH & Co. KG, Karlsruhe, Germany, or Attocube
Systems AG, Munich, Germany).

Instrument control software was custom written in Igor Pro 6.3
(Wavemetrics Inc., Portland, OR, USA). Piezo position was controlled
with a closed-loop feedback system running internally on the AFM
controller field-programmable gate array. A typical AFM measurement
took about 12 h and was done fully automated and at room
temperature. Retraction velocity for constant-speed force spectroscopy
measurements was 0.8 μm/s. Cantilever spring constants were
calibrated after completing all measurements on different spots on
the surface using the same cantilever. This was done by utilizing the
thermal method applying the equipartition theorem to the one
dimensionally oscillating lever.31,42

Force−Extension Data Analysis. Obtained data were analyzed
with custom-written software in Python (Python Software Foundation,
Python Language Reference, version 2.7, available at http://www.
python.org), utilizing the libraries NumPy, SciPy, and Matplotlib.

Raw voltage data traces were transformed into force distance traces
with their respective calibration values after determining the zero force
value with the baseline position. A correction of the force-dependent
cantilever tip z-position was carried out. Force distance traces were
filtered for traces showing two CBM unfoldings and a subsequent type
III cohesin−dockerin dissociation, without preceding Xmodule
unfolding.7 This screening was carried out by detecting maximum-
to-maximum distances of kernel density estimate (Gaussian kernel,
bandwidth 1 nm) peaks in contour length space in each single trace,
after applying thresholds for force, distance, and number of peaks. For
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sorting data sets, transformation of force distance data into contour
length space was done with a manually fixed persistence length of 0.4
nm, to measure distances of energy barrier positions.29,43 Sorting was
done allowing generous errors to the expected increments to account
for the conformational stretching of the spacer molecules. Fits to the
force−extension data with the WLC model had the following
parameters additionally to the values mentioned in the figure captions,
if not stated otherwise: initial guess for persistence length: 0.4 nm; fit
precision: 1 × 10−7. For assessment of transformation quality, the
inverse worm-like-chain model was applied for transformation of force
distance traces into the contour length space in a force window of 10
to 125 pN and with a persistence length previously fitted to each peak
separately: The global mean value of each data set for each peak was
used. Final alignments of the whole data sets were assembled by cross-
correlation.
Master Curve Assembly. The master curves were assembled by

cross-correlation of each force−distance trace of a presorted data set
with all previous curves in contour length space, starting with a
random curve. Each curve was shifted on its x axis to fit the maximum
correlation value and added to the set assembly in contour length
space. Subsequently, a second run was performed, cross-correlating
each curve with the previously assembled set, to facilitate an equal
correlation template for every curve, independent of its occurrence.
Finally, the most probable shift was calculated by a KDE and
subtracted from each curve to get representative absolute distances
with respect to the origin. Distance and correlation value thresholds
were applied to filter out less probable PEG populations and otherwise
badly fitting data. In a final step, all overlaid raw data points in force−
distance space were binned on the x axis into nanometer-sized slices,
and their densities on the y axis were estimated by a KDE for each
slice. Near the rupture events, where the kernel density estimates
cannot unambiguously identify maxima of the data slices, the value was
set to zero. Therefore, after each rupture, a small “gap” is visible, which
was not included in data points used for fitting. Their most probable
value and the corresponding full width at half-maxima then assembled
the master curve. Although by this procedure representative absolute
rupture forces for the domains are not necessarily reproduced to the
highest accuracy, the most probable and most representative pathway
of the elastic behavior in between peaks is resembled well.
qmWLC model. For WLC fits and transformations into contour

length space, a recently improved approximation, solved for the
extension, was used,32 adding correction terms for quantum
mechanical backbone stretching.33

With the abbreviations
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where y1 and y2 are the ab initio parameters from the original
publication.
Transformations were performed with the model contour length:
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With the reverse quantum mechanical correction for zero force
contour length,
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with x being the extension, Lc the model contour length, F the force,
Lp the persistence length, k Boltzmann’s constant, T the temperature,
y1 and y2 the quantum mechanical correction parameters, Lcorr the qm-
corrected contour length, and Lc,0 the reverse qm-corrected contour
length at zero force. As a nonlinear fitting algorithm, a Levenberg−
Marquardt least-squares minimization method was applied.
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Supporting Information 

 

Supplemental Figure S1. Number of curves within a 1 h timeframe were binned in one histogram bar. 

Multiple traces were traces with more than 10 peaks (Supplemental Figure S2 shows an exemplary 

multiple interaction trace). Left (purple) is the PEG-lever versus the PEG-immobilization and right (blue) 

ELP-lever versus ELP-immobilization. The two top panels show number of multiple interactions over time. 

The bottom panels show number of single specific interactions over time. 

  
Supplemental Figure S2. A typical example trace displaying multiple interactions. 
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Supplemental Figure S3: Performance of contour length transformations. (A) Observed persistence 

lengths. Upper plot: observed persistence lengths preceding each CBM and Coh:DocIII unfolding/rupture 

peak as measured by WLC fits in the force range of 30 to 125 pN (ELP: 0.35, 0.44, and 0.49 nm; PEG: 

0.20, 0.25, and 0.27 nm). Lower plot: same data normalized to the respective last peak means. The 

qualitative behavior over the unfolding of the peaks is similar for both constructs. (B) Assessment of 

transformation quality. Coefficient of variation (CV) as a measure of distribution broadness and distance 

of mode to mean as a measure of peak symmetry show better performance for ELP data for the first 

peaks. Later peaks show better performance of PEG data, although the differences are negligible. 

Transformations were done with the inverse WLC model only for data points between 10 and 125 pN. 

Persistence lengths for the transformations were chosen as the mean values of the WLC fits to each peak 

as shown in panel (A). (C) Alignment of transformed ELP curves in contour length space. Two CBM 

increments and one Xmod unfolding prior to Coh:Doc rupture are clearly detectable. 

 

Low force performance of ELP linkers 

For this analysis, only forces in a range from 10 to 125 pN were taken into account, to minimize 

the effects of conformational stretching. The elastic properties of the first stretching event of a 

data trace are dominated by the linker molecules. As more protein domains unfold, the peptide 

backbone of the unfolded domains contributes increasingly to the overall elastic response. 

Contour length transformations of force distance data were performed with the mean fitted 

persistence lengths of each peak, as shown in Supplemental Figure S3, Panel A (0.35, 0.44, 

and 0.49 nm for ELP data peaks; 0.20, 0.25, and 0.27 nm for PEG data peaks), to account for 
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varying persistence lengths over the course of each pulling cycle. The persistence length as a 

measure for the stiffness of a polymer is lower for PEG than for ELP with bulky side chains and 

rotational restrictions of the peptide backbone. Comparable changes of persistence lengths over 

the course of an unfolding experiment were also observed earlier in other studies.1,2 The 

distribution width and asymmetry of each peak in contour length space were evaluated 

separately by the coefficient of variation and the calculated difference of statistical mode and 

mean. A comparison of all datasets revealed that for the first unfolding peak, ELP datasets 

display slightly superior properties: the first peak for data with ELP linker tethering is sharper 

and more symmetric (Supplemental Figure S3, Panel B) as indicated by the narrower 

distribution and lower coefficient of variation. For the subsequent peaks 2 and 3, both PEG and 

ELP linkers perform similarly and the differences become negligibly small. Although the impact 

on data quality in this low force regime examined here, was not as severe as expected, ELP 

linkers seem to exhibit advantageous behavior for the first stretching events of each curve, and 

might improve accuracy in determining the following contour length increments to identify 

protein domains. 

 

 
Supplemental Figure S4: Master curves fits with persistence lengths as an additional free fit 

parameter. If the persistence length is not kept fix, but also fitted to the data, it is clearly visible, that this 

parameter is optimized to compensate the conformational stretching effect for PEG datasets. While the 

qmWLC model fit itself looks better and has lower residuals compared to the fixed persistence length fit, 

the resulting contour length increment is way off and does not yield any meaningful value, rendering the 

model useless to extract information from the data. The two CBM domains have the exact same amino 

acid sequence and therefore should show the same contour length increments upon unfolding. 
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Cloning of ELP linkers. Standard PCR was used for amplification of DNA (Phusion High-

Fidelity PCR Master Mix, Thermo Fisher Scientific Inc., Waltham, MA, USA). Melting 

temperatures were adjusted according to the employed primers (see Table S1, below). 

A plasmid encoding ybbR-ELP120 nm-LPETGG described earlier3 was modified to yield the 

plasmid Cys-ELP120 nm-LPETGG. PCR amplification of the plasmid with primers annealing at and 

downstream of the ybbR-tag was the first step (Supplemental Figure S5). The gene for the 

ELP is a highly repetitive sequence, hence it was necessary to anneal the forward primer at the 

ybbR-tag to create a unique attachment site. Since the ybbR-tag had to be removed, a BsaI 

restriction site was incorporated with a primer downstream of the annealing region of the 

forward primer. The reverse primer had a cysteine encoded at its 5’ end. After successful PCR 

amplification, the product was digested (BsaI and DpnI) and blunted (1h, 37°C, 5 Min, 80°C). 

The blunting reaction was performed in parallel with 1 µl of Klenow Fragment enzyme and the 

addition of 1 mM dNTPs (Thermo Fisher Scientific Inc., Waltham, MA, USA)). 

After purification (QIAquick PCR purification kit or gel extraction kit (Qiagen GmbH, Hilden, 

Germany) the ligation reaction was set up: 1 µl of a T4 Ligase (10U/µl, Thermo Fisher Scientific 

Inc., Waltham, MA, USA was supplemented with 1 µl ATP (10 mM), 0.5 µl PEG-6000, 1 µl T4 

Polynucleotide Kinase (PNK) and buffered in CutSmart buffer (New England Biolabs, Ipswich, 

MA, USA). 

 

Supplemental Figure S5. Cloning scheme for Cys-ELP120 nm-LPETGG. 
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For the creation of the TEV-GGG-ELP60 nm-LPETGG plasmid, a plasmid encoding ybbR-ELP60 

nm-LPETGG1 was mutated with one QuikChange primer4, annealing up- and downstream of the 

ybbR-tag introducing DNA encoding a TEV-site and a triple glycine. The TEV cleavage site was 

introduced to ensure full cleavage of the N-terminal methionine. This was assumed to be 

necessary, since Sortase A only works with glycines at the very N-terminal start of a protein. 

The QuikChange reaction was done with 50 ng DNA template, 1 µl of primer (10 pmol/µl) in 20 

µl Phusion High-Fidelity PCR Master Mix (Thermo Fisher Scientific Inc., Waltham, MA, USA, 

see Supplemental Figure S6). 

 

 
 

Supplemental Figure S6. Cloning scheme for TEV-GGG-ELP60 nm-LPETGG. 
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The newly obtained plasmid was modified again with QuikChange to exchange the C-terminal 

Sortase-tag with a ybbR-tag (Supplemental Figure S7). 

 

 

 
 

Supplemental Figure S7. Cloning scheme for TEV-GGG-ELP60 nm-ybbR. 
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The ELP gene cassette was duplicated by insertion of a gene sequence encoding [(VPGVG)5-

(VPGAG)2-(VPGGG)3]3 into the linearized vector containing TEV-GGG-ELP60 nm-ybbR. This was 

done by GoldenGate cloning.5 For this purpose, both vector and insert were amplified with 

primers encoding flanking BsaI restriction sites. The BsaI sites were designed to match the 

corresponding end of insert and backbone, without leaving any cloning scars. After BsaI 

digestion and purification of the PCR product via gel extraction, both of the parts were ligated 

with their corresponding sticky ends (2.5 µl CutSmart buffer, 1.25 µl T7 ligase, 2.5 µl ATP (10 

mM); New England Biolabs, Ipswich, MA, USA, see Supplemental Figure S8). 

 

 

 
 

 

Supplemental Figure S8. Cloning scheme for TEV-GGG-ELP120 nm-ybbR. 

 

 

  

232 Chapter 6. Elastin-Like Polypeptides in Single Molecule Force Spectroscopy



Experiments showed that the E. coli methionine aminopeptidases already fully digested the N-

terminal methionine proceeding the polyglycine. Hence, removal of the TEV cleavage site was 

desired to simplify the ELP production process. This was achieved by a linearization reaction, 

BsaI digestion and religation as described above. Primers were designed to anneal at the TEV-

site and encoded a BsaI restriction site upstream of the triple glycine (Supplemental Figure 

S9). 

 
 

Supplemental Figure S9. Cloning scheme for GGG-ELP120 nm-ybbR 
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Finally, the C-terminal ybbR-tag was switched to a cysteine. The reverse primer attached at the 

codons of the ybbR-tag with a BsaI restriction site. The forward primer encoded a cysteine at its 

5’ end and annealed downstream of the stop codon. The linear plasmid was processed as 

described above (Supplemental Figure S10). 

 
 

Supplemental Figure S10. Cloning scheme for GGG-ELP120 nm-Cys 
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Cloning of GGG-HIS-CBM-Xmod-DocIII and CohIII-CBM-HIS-LPETGG. 

Basis for the construction were two plasmids published by Schoeler et al.6 The plasmid 

encoding the gene for CohIII-CBM was linearized with primers encoding the Sortase C-tag. 4.5 

µl of the PCR product was directly digested with 1 µl DpnI (Thermo Fisher Scientific Inc., 

Waltham, MA, USA), 3’ ends were phosphorylated with 1 µl T4 PNK (New England Biolabs, 

Ipswich, MA, USA) and the ends were religated with 1 µl T4 Ligase (10U/µl, Thermo Fisher 

Scientific Inc., Waltham, MA, USA) (15 Min at 37°C, 45 Min 22°C). The 10 µl reaction was 

supplemented with 1 µl ATP (10 mM), 0.5 µl PEG-6000 and 1 µl CutSmart buffer (10x, New 

England Biolabs, Ipswich, MA, USA). 

 

The plasmid encoding the CohIII domain had a cloning scar (encoding the amino acids “GT”) at 

the N-terminus. Glycine and threonine were removed since one single glycine is already 

reactive with the “LPETGG” in a Sortase A catalyzed reaction. This was done with a sequential 

linearization and religation reaction (as described above). 

 

The CBM-Xmod-DocIII gene was subcloned with Gibson Assembly into a linearized vector with 

a TEV site followed by a Sortase N-tag. 10 µl of the HiFi MasterMix (2x, New England Biolabs, 

Ipswich, MA, USA), were mixed with a 10-fold molar excess of insert to the backbone (reaction 

volume 20 µl, 1 hr, 50°C; Supplemental Figure S11). Similar to the GGG-ELP120 nm-Cys, the 

unnecessary TEV site was removed, since E. coli already digested the N-terminal methionine 

sufficiently. This was achieved by employing the same procedure as described for CohIII-CBM 

linearization and religation. 

 

 
 

Supplemental Figure S11. Cloning scheme for TEV-GGG-CBM-Xmod-DocIII 
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Supplemental Table S1. Overview of primers 

Name Sequence (5’-3’) 

Construction of Cys-ELP120 nm-LPETGG 

FW N-Cys BsaI GACTCTCTGGAATTCATCGCTTCTAAACTGGC
TGGTCTCCTGCGTGCCGGGAGAAGGAG 

REV BsaI ybbR CCCGGCACAGCCAGTTTAGAAGCGATGAATTC
CAGAGAGTCGGTCTCACATATGTATATC 

Construction of TEV-GGG-ELP60 nm-LPETGG 

QuikChange Primer ybbR to TEV-GGG GACACCAGGGACTCCTTCTCCCGGCACACCG
CCCCCTCCCTGGAAGTACAGGTTTTCCATATG
TATATCTCCTTC 

Construction of TEV-GGG-ELP60 nm-ybbR 

QuikChange Primer LPETGG to ybbR GACACCAGGGACTCCTTCTCCCGGCACACCG
CCCCCTCCCTGGAAGTACAGGTTTTCCATATG
TATATCTCCTTC 

Construction of TEV-GGG-ELP120 nm-ybbR 

FW backbone BsaI GAAAACCTGTACTTCCAGGGAGGGGGGTCTC
GGGGTGTGCCGGGAGAAGGAG 

REV backbone BsaI ATATATGGTCTCGACCGCCCCCTCCCTGGAAG
TACAGGTTTTC 

FW insert TEV-GGG BsaI CCAGGGAGGGGGGTCTCGCGGTGTGCCGGG
AGAAGGAG 

REV insert BsaI TCGAGTTAAGCCAGTTTAGAAGCGATGAATTC
CAGAGAGTCGGTCTCCACCCTCACCCGG 

Construction of GGG-ELP120 nm-ybbR 

FW ELP GGG GGGGGCGGTGTGCCGGGAG 

REV BsaI TEV GGCACACCGCCCCCTCCCTGGAAGTACAGGT
TTTCGGTCTCACATATGTATATCTCCTTC 
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Construction of GGG-ELP120 nm-Cys 

FW backbone Cys GCCAGTTTAGAAGCGATGAATTCCAGAGAGTC
GGTCTCCACCTTCACCC 

REV ybbR BsaI TGCTAACTCGAGTAAGATCCGGCTGCTAACAA
AGCCC 

 
Construction of GT-CohIII-CBM-HIS-LPETGG 

FW backbone TAACTCGAGTAAGATCCGGCTGC 

REV CBM LPETGG GCCGCCGGTTTCCGGCAGCGGACCCTGGAAC
AGAAC 

Construction of CohIII-CBM-HIS-LPETGG 

FW CohIII GCGCTCACAGACAGAGGAATG 

REV backbone without GT CATATGTATATCTCCTTCTTAAAGTTAA 

Construction of TEV-GGG-HIS-CBM-XDocIII 

FW backbone CTCGAGTAAGATCCGGCTGC 

REV backbone ACCGGGTTCTTTACCCC 

FW insert GTATGGGGTAAAGAACCCGGTGGCAGTGTAG
TACCATC 

REV insert CGGATCTTACTCGAGTTATTCTTCTTCAGCATC
GCCTG 

Construction of GGG-HIS-CBM-XDocIII 

FW CBM ATGGCCAATACACCGGTATCA 

REV backbone TCCGTGGTGGTGGTGGTGGTGACCGCCCCCC
ATATGTATATCTC 
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Supplemental Table S2. Biophysical parameters of the employed ELPs. 

ELP 

 repeats 

(5)x 

ε205 

[1/M cm]
7 

Molecular 

 weight [Da]
8 

Isoelectric 

 point
 

Amino acids in ELP 

repeats (total)
8
 

Total 

 Length [nm]
9 

(.365 nm per aa)
 

Cys-ELP120 nm-

LPETGG 851370 24763.08 3.20 300 (307) 112.06 

GGG-ELP120 nm-

Cys 843030 24379.63 3.23 300 (304) 110.96 

 

Protein Sequences 

 

GGG-ELP120 nm-Cys 

 

Sortase N-Tag 

ELP 

Cysteine 

 

GGGVPGEGVPGVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEGVPGEGV

PGVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEGVPGEGVPGVGVPGVG

VPGVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEGVPGEGVPGVGVPGVGVPGVGVPGV

GVPGAGVPGAGVPGGGVPGGGVPGEGVPGEGVPGVGVPGVGVPGVGVPGVGVPGAGVPG

AGVPGGGVPGGGVPGEGVPGEGVPGVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVP

GGGVPGEGC 

 

Cys-ELP120 nm-LPETGG 

Cysteine 

ELP 

Sortase C-Tag 

  

MCVPGEGVPGVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEGVPGEGVP

GVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEGVPGEGVPGVGVPGVGV

PGVGVPGVGVPGAGVPGAGVPGGGVPGGGVPGEGVPGEGVPGVGVPGVGVPGVGVPGVG

VPGAGVPGAGVPGGGVPGGGVPGEGVPGEGVPGVGVPGVGVPGVGVPGVGVPGAGVPGA

GVPGGGVPGGGVPGEGVPGEGVPGVGVPGVGVPGVGVPGVGVPGAGVPGAGVPGGGVPG

GGVPGEGLPETGG 
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MGGG-HIS-CBM-Xmod-Dockerin III 

Sortase N-Tag 

His6-Tag 

CBM 

Linker 

Xmod 

Dockerin III 

  

MGGGHHHHHHGMANTPVSGNLKVEFYNSNPSDTTNSINPQFKVTNTGSSAIDLSKLTLRYYYT

VDGQKDQTFWSDHAAIIGSNGSYNGITSNVKGTFVKMSSSTNNADTYLEISFTGGTLE 

PGAHVQIQGRFAKNDWSNYTQSNDYSFKSASQFVEWDQVTAYLNGVLVWGKEPGGSVVPST

QPVTTPPATTKPPATTIPPSDDPNAVVPNTVTSAVKTQYVEIESVDGFYFNTEDKFDTA 

QIKKAVLHTVYNEGYTGDDGVAVVLREYESEPVDITAELTFGDATPANTYKAVENKFDYE 

IPVYYNNATLKDAEGNDATVTVYIGLKGDTDLNNIVDGRDATATLTYYAATSTDGKDATT 

VALSPSTLVGGNPESVYDDFSAFLSDVKVDAGKELTRFAKKAERLIDGRDASSILTFYTK 

SSVDQYKDMAANEPNKLWDIVTGDAEEE 

  

Cohesin III-CBM-HIS-LPETGG 

Cohesin III 

Linker 

CBM 

His6-Tag 

Sortase C-Tag 

  

MALTDRGMTYDLDPKDGSSAATKPVLEVTKKVFDTAADAAGQTVTVEFKVSGAEGKYATT 

GYHIYWDERLEVVATKTGAYAKKGAALEDSSLAKAENNGNGVFVASGADDDFGADGVMWTV

ELKVPADAKAGDVYPIDVAYQWDPSKGDLFTDNKDSAQGKLMQAYFFTQGIKSSSNPSTDEYL

VKANATYADGYIAIKAGEPGSVVPSTQPVTTPPATTKPPATTIPPSDDPNAMANTPVSGNLKVE

FYNSNPSDTTNSINPQFKVTNTGSSAIDLSKLTLRYYYTVDGQKDQTFWSDHAAIIGSNGSYNGI

TSNVKGTFVKMSSSTNNADTYLEISFTGGTLEPGAHVQIQGRFAKND 

WSNYTQSNDYSFKSASQFVEWDQVTAYLNGVLVWGKEPGELKLPRSRHHHHHHGSLEVLFQ

GPLPETGG 
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Linker Length. The artefacts generated by PEG linkers at elevated forces can be reduced by 

shortening the linker molecules. Usually our force spectroscopy experiments employ spacers 

with 40 nm length. Many SMFS assays utilize these 5 kDa PEG linkers, where the effect is 

scaled down proportionally with length, however still present. Further truncation would minimize 

the influence of the conformational change of PEG spacers, but in return raise other concerns: i) 

reduced mechanical isolation of the molecules under investigation by low pass filtering from 

transducer oscillations, to ensure purely thermally driven unfolding and dissociation events and 

defined loading rates10, ii) reduced passivation of the surfaces against nonspecific adsorption, 

and iii) influence of surface effects and effects of the linker molecules themselves on the 

domains of interest. Employing peptide based smart polymers as linkers offer a new solution to 

this issue, avoiding linker artefacts almost entirely. 

 

 

 
 

Supplemental Figure S12. Conversion of PEG molecular weights with functional end groups into their 

corresponding lengths. Based on the molecular weight of PEGs with functional groups maleimide and 

NHS, the number of subunits for various PEGs can be determined. Subsequently, the PEG contour 

lengths for a given number of subunits can be calculated. The data were obtained from the NHS-PEG-

maleimide portfolio of Thermo Scientific and Rapp Biopolymers. 
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Supplemental Table S3. Overview of average molecular weight and length of PEG-Polymers. In blue are 

the calculated polymer sizes, in black the data the calculation is based on. Number of subunits were 

always round to the next integer. 

Molecular Weight [Da] Number of Subunits Length [nm] 

513.3 4 2.5 

601.6 6 3.2 

689.71 8 3.9 

865.92 12 5.3 

1394.55 24 9.5 

1000 15 6.4 

5000 106 38.3 

10000 220 78.1 

15000 333 118.0 
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Chapter 7

Immobilization Strategies for
Single Molecule and Bulk Assays

7.1 Summary

Advances in enzyme-based surface coupling strategies allow to modularize the
immobilization procedure. Since most of the enzymes catalyzing the immobilization
are orthogonal, it is possible to first fuse the protein of interest to a surface and then
post-translationally ligate the binding domains. This is especially interesting for large
proteins or for proteins which do not fold properly with fusion domain.
Associated publication P9 describes a modular approach for single molecule force
spectroscopy (SMFS) experiments. Proteins of interest are expressed (in vivo and in
vitro) with only short amino acid tags (Sortase A- and ybbR-tags) at their termini.
The protein of interest is immobilized with Sfp and the ybbR-tag to a surface. At
the opposite end of the protein of interest a Sortase recognition sequence is used to
post-translationally fuse a binding domain. Based on this approach, it is possible to
covalently immobilize a protein of interest first and then modify it with the binding
handle of choice, preserving the protein fold, as it is not co-expressed with the handle.
The immobilization techniques that have been adopted and optimized for SMFS exper-
iments can be transfered to surface-based label-free bulk techniques for kinetic mea-
surements, like SPR (Surface Plasmon Resonance) or BLI (Biolayer-Interferometry).
These methods rely on immobilization techniques with reactive groups. In order
to locate proteins in close proximity to the reactive groups it is necessary to either
charge the protein positively via lowering the pH below their isoelectric point or
shield the charges with the addition of high salt concentrations. Both conditions
are harsh and might harm the ligand and moreover, orient proteins randomly. As-
sociated manuscript M1 describes more mild, enzyme-based approaches (Sortase
A, OaAEP1- and Sfp) to functionalize BLI-sensors site-specifically with a protein of
interest. Furthermore it is now possible to fuse proteins which are not able to be
immobilized under non-specific conditions by site-specific tags.
Being able to functionalize surfaces for bulk assays with the same chemistry used for
single molecule assays increases comparability.
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ABSTRACT: Single-molecule force spectroscopy greatly bene-
fits from site-specific surface immobilization and specific probing
with a functionalized cantilever. Here, we describe a streamlined
approach to such experiments by covalently attaching mechan-
ically stable receptors onto proteins of interest (POI) to improve
pickup efficiency and specificity. This platform provides
improved throughput, allows precise control over the pulling
geometry, and allows for multiple constructs to be probed with
the same ligand-modified cantilever. We employ two orthogonal
enzymatic ligation reactions [sortase and phosphopantetheinyl
transferase (Sfp)] to covalently immobilize POI to a pegylated
surface and to subsequently ligate the POI to a mechanically
stable dockerin domain at the protein’s C-terminus for use as a
high-strength pulling handle. Our configuration permits
expression and folding of the POI to proceed independently from the mechanically stable receptor used for specific probing
and requires only two short terminal peptide sequences (i.e., ybbR-tag and sortase C-tag). We applied this system successfully to
proteins expressed using in vitro transcription and translation reactions without a protein purification step and to purified
proteins expressed in Escherichia coli.

■ INTRODUCTION

In recent years, the field of single-molecule force spectroscopy
(SMFS) has implemented many developments in bioconjuga-
tion to improve upon the classical approach of nonspecific
pulling experiments by moving to specific, often covalent
surface functionalization.1,2 Traditionally, polyproteins are
recombinantly expressed as fusion constructs framed by several
repeats of marker domains of known unfolding patterns (often
Ig-like domains) and nonspecifically deposited onto a surface.3

A bare cantilever tip is then indented into the surface in an
attempt to pickup and stretch single polyprotein chains on
opposing ends by nonspecific adhesion. In case the number of
domain unfoldings in the recorded data trace exceeds the
number of domains on each side of the proteins of interest
(POI), an N- to C-terminal stretching of the POI can be
concluded.
In contrast to the nonspecific attachment, site-specific

anchoring and probing approaches offer many advantages.
They allow for homogeneous surface preparation as the
immobilization geometry is defined; the usage of spacer
molecules such as polyethyleneglycol (PEG) diminishes
possible surface interaction effects. Drawbacks of unspecific
probingsuch as low-pickup efficiencies or the requirement of
recombinant expression of large polyproteinshave been
addressed by utilizing the receptor−ligand pairs as pulling

handles to provide a specific interaction by which force can be
applied to the POI. Systems such as StrepII-tag-Strep-Tactin,4

streptavidin−biotin,5,6 GCN4-peptide−antibody,7 and cohe-
sin−dockerin domains8−10 are only a few of the interactions
that have been employed for this purpose.
These pulling handles classically are genetically appended to

the POI and expressed as fusion proteins. The fusion proteins
are then covalently immobilized through one end of the POI
and probed by ligand-functionalized cantilever-tips that
recognize the respective receptor on the other end. A wide
range of forces are accessible by utilizing short tags such as the
StrepII-tag (116 pN at a loading rate of 4 nN s−1 if the tag is C-
terminal and 46 pN at 4 nN s−1 if the tag is N-terminal4) and
biotin (257 pN5), as well as that with larger handles such as the
interaction between type-3 dockerin and cohesin E from
Ruminococcus flavefaciens, reaching up to 700 pN at 100 nN
s−1.10 These high-force interactions allow characterization of
very stable proteins such as the unfolding of several Titin-Ig
domains in series.
However, recombinant expression of a fusion between a

(possibly large) POI and a large handle-protein (e.g., 29 kDa
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for CohE) can be cumbersome. The resulting fusion proteins
might be insoluble or the correct folding of the POI might be
affected by the presence of the fusion domains during
translation and folding. Here, we utilize two orthogonal
enzymatic ligation reactions to achieve sortase and phospho-
pantetheinyl transferase (Sfp)-mediated covalent surface attach-
ment and post-translational modification of several POIs with
dockerin handles by sortase-mediated11,12 ligation. This allows
the expression of only the protein domain of interest without
risking to affect proper folding. The very robust interaction of
type-3 dockerin and cohesin from R. flavefacienswas already
shown to be functional over repeated measurements of about
24 h,10 which is an important requirement for multiplexing
atomic force microscopy (AFM) experiments.
Furthermore, we combined this technique with in vitro

expression of the POI in a cell-free system. Because smaller
proteins are, in general, expressed with higher yields,13 the
reduced size of the protein construct to be expressed is
beneficial. This allows for a fast and easy workflow from
plasmid DNA to covalently immobilized proteins containing
mechanostable handles without the need for bulk expression.
We anticipate that our approach will aid in highly parallel
mechanical screening of mutant proteins, which benefits from
the in vitro expression, obsoleting the need for protein
purifications and benefitting from the enhancements in force
spectroscopy throughput and robustness.

■ MATERIALS AND METHODS

Experimental Design. We selected Titin-Ig domains14 and
superfolder green fluorescent protein (sfGFP)15 as the
exemplary POIs for this study, as they are well-documented
in the literature, and enable comparison with established
methods. The POIs were cloned with a ybbR-peptide tag16 at
their N-terminus and a sortase A recognition sequence17

LPETGG at their C-terminus. For force-spectroscopy handles,
we used GGG-dockerin,10 which was recombinantly expressed
in Escherichia coli, purified, and ligated to the C-terminus of the
POI using ligation with sortase A. While preliminary experi-

ments were carried out with wild-type sortase A, an evolved
mutant18 was ultimately used because of its superior perform-
ance. On the cantilever side, CohE-CBM-ybbR was used and
immobilized at the ybbR-tag via Sfp-catalyzed ligation.16

The two specific enzymatic recognition sites located on the
termini of the POI ensure that only fully expressed proteins are
measured in SMFS-experiments. Figure 1 shows a schematic
overview of the experiment.

Cloning. Modified pET28a plasmids encoding for ybbR-
His-XylanaseT6(T129C) (Geobacillus stearothermophilus)-Doc3
(R. flavefaciens), ybbR-His-sfGFP-DocI (Clostridium thermocel-
lum), and Titin-Ig domains (repeats 27 to 32, repeat 34,
human) were used as templates for polymerase chain reaction
(PCR) with subsequent reconstitution by Gibson19 assembly.
The previously reported18 d59 sortase(P94R/D160N/D165A/
K190E/K196T) mutant was created by introducing the
mutations via overlap extension PCR followed by ligating the
linearized plasmid using Kinase−Ligase−DpnI (KLD) enzyme
mix and KLD reaction buffer from the Q5 site-directed
mutagenesis kit (New England Biolabs, MA, USA). The
chemically competent E. coli DH5-α cells were transformed
[Life Technologies GmbH, Frankfurt, Germany; 30 min on ice,
30 s heat shock at 42 °C followed by 37 °C for 1 h in a super
optimal broth with catabolite repression medium] and plated
on kanamycin-supplemented agar plates. For amino acid
sequences, see the Supporting Information.

Protein Expression and Purification. All proteins were
expressed in NiCo21(DE3)RIPL cells, which were cultivated in
ZYM-5052 autoinduction media20 supplemented with kanamy-
cin and chloramphenicol. After pelleting, the cells were lysed by
sonication and then centrifuged at 4 °C, 39 000 rcf for 60 min.
The supernatant was filtered to 0.22 μm and applied to Ni-
NTA columns (HisTrap FF, GE Healthcare Europe GmbH,
Freiburg, Germany). After washing with 6 column volumes of a
buffer containing 25 mM Tris, pH 8.4, 300 mM NaCl, 20 mM
imidazole, and 0.5 vol % Triton X-100, the bound fraction was
eluted with an elution buffer containing 25 mM Tris, pH 8.4,
300 mM NaCl, and 300 mM imidazole.

Figure 1. Schematic of the experimental setup. (I) POIs were either expressed in bulk or synthesized using a cell-free expression mix. POIs contained
a ybbR-tag at the N-terminus and a sortase LPETGG tag at the C-terminus. (II) Surface-bearing PEG-coenzyme A is covalently modified with POIs
via Sfp-catalyzed ligation. (III) Next, GGG-Doc is ligated to the POI at the C-terminal end using the LPETGG sortase-tag for use as a force
spectroscopy pulling handle. (IV,V) Unfolding experiments are conducted by approaching and retracting a CohE-CBM-functionalized cantilever.
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All protein solutions were concentrated using Amicon
centrifugal filter units (10k MWCO, Merck KGaA, Darmstadt,
Germany), followed by buffer exchange to Ca-TBS buffer (25
mM Tris, pH 7.2, 75 mM NaCl, and 1 mM CaCl2) using
polyacrylamide spin desalting columns. Proteins were stored at
−80 °C with glycerol added to 10% (v/v). For cell-free
expression, 25 μM reactions of PURExpress In Vitro Protein
Synthesis Kit (New England Biolabs, Ipswich, Massachusetts)
were incubated for 2 h at 37 °C, containing 300 ng plasmid
DNA coding for the POIs.
In case of MGGG-His-Doc, the N-terminal methionine

cleavage in E. coli was sufficient for the preparation of GGG-
His-Doc, so that no additional protease digestion was
necessary.
Surface Preparation. Surfaces and cantilevers for force

spectroscopy were silanized using (3-aminopropyl)-dimethyl-
ethoxysilane (APDMES, ABCR GmbH, Karlsruhe, Germany)
and PEGylated with α-maleimide-hexanoic-ω-NHS PEG
(NHS-PEG5000-Mal, Rapp Polymere, Tübingen, Germany)
dissolved to 25 mM in 4-(2-hydroxyethyl)-1-piperazineethane-
sulfonic acid buffer (HEPES), 50 mM, pH 7.5 to provide
suitable conditions for NHS coupling. Then, the PEGylated
surfaces and cantilevers were coupled to coenzyme A (CoA, 1
mM) in sodium phosphate buffer, pH 7.2.
Silicon nitride cantilevers (BioLever mini BL-AC40TS-C2,

Olympus, Tokyo, Japan) were used as force probes. Silicone
masks with a grid of 1 mm-diameter holes (CultureWell
Reusable Gaskets, Grace Bio-Labs, Bend, OR, USA), were
applied to the CoA-functionalized glass slides to create
separated incubation wells. Each purified POI was diluted to
50 μM in Ca-TBS that was supplemented with 20 mM MgCl2
and Sfp enzyme was added to 10 μM. The reaction mixtures
were added to the single incubation wells in the mask, enabling
covalent immobilization via Sfp-catalyzed ligation of CoA and
the ybbR tags.
For cell-free expression of the POIs, the cell-free expression

reaction mix (PURExpress, New England Biolabs, MA, USA)
was prepared to contain 100 ng of plasmid DNA. The
expression mix was incubated at 37 °C for 2 h, then
supplemented with Sfp enzyme to 10 μM and directly applied

to the micowells without further purification. Sfp ligation
reactions were performed for 2 h at room temperature. After
subsequent rinsing with Ca-TBS, the wells were incubated with
100 μM GGG-Doc protein and 10 μM sortase A for 1 h. After
rinsing with Ca-TBS, the silicon mask was removed, providing
an array of covalently linked proteins that were modified with
the dockerin handle at one end.
The sortase-catalyzed ligation reactions for Figure 2

contained 10 μM ybbR-Titin-LPETGG, 10 μM GGG-Doc,
and 10 μM of either wild-type d59 sortase or the evolved
pentamutant.18 The ligation reactions were incubated for 1 h at
37 °C.
For surface functionalization tests, CohE-CBM-ybbR was

labeled with CoA647 (New England Biolabs, MA, USA) in a
reaction containing 25 μM CoA647, 10 μM CohE-CBM-ybbR,
and 2 μM Sfp in Ca-TBS supplemented with 20 mM MgCl2.
The labeling reaction was incubated for 4 h at 37 °C. Free dye
and Sfp enzyme were removed via preparative gel filtration with
Ca-TBS as the running buffer through a Yarra 3 μm SEC-3000
(Phenomenex, Torrance, California, USA) column. Appropri-
ate fractions [evaluated via sodium dodecyl sulfate polyacryla-
mide gel electrophoresis (SDS-PAGE)] were pooled, diluted to
3 μM, supplemented with glycerol to 10% (v/v), and stored at
−80 °C.
Labeled surfaces were imaged using ChemiDoc MP (Bio-

Rad, Hercules, California, USA), with 625(30) nm/695(55)
nm emission/excitation filters. The exposure time was 30 s; for
background subtraction, a blank and clean cover slip was
imaged with the same settings and an average background
signal was subtracted from the measured average intensities.
Intensities were quantified via Image Lab 5.2 (Bio-Rad,
Hercules, California, USA) volume tool.

Single-Molecule Force Spectroscopy. All data were
obtained using Ca-TBS. Measurements were taken with
custom-built instruments (driven by PI-731 piezo actuators,
Physik Instrumente, Germany) in conjunction with MFP-3D
AFM controllers (Asylum Research, Santa Barbara, USA).
Upon approaching the sample surface with the cantilever tip,
the complex between cohesin/dockerin (C/D) was formed,
and the cantilever was retracted from the surface at a constant

Figure 2. (A) Averaged fluorescence intensities of a CohE-CBM-ybbR-CoA647-labeled surface functionalized with ybbR-Titin-Ig-LPETGG and
ybbR-sfGFP-LPETGG. Each protein was immobilized at two separate spots that were then incubated with either GGG-dockerin and sortase or
GGG-dockerin but not with sortase. To test for successful ligation of dockerins, CohE-CBM-ybbR-CoA647 was allowed to bind for 10 min at 300
nM, then rinsed and imaged immediately afterward. Fluorescent intensities of each construct were normalized to the intensity of the sortase-positive
spot. (B) SDS-PAGE demonstrating the ligation of GGG-dockerin to ybbR-Titin-LPETGG with wild-type sortase A (wt-Srt), pentamutant sortase A
(eSrt), or no sortase as negative control. The red arrows are indicating the ligation products.
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velocity of 800 nm s−1 while recoding the distance and
cantilever deflection at a sampling rate of 12 500 Hz. After each
force−extension curve was recorded, the sample was moved
laterally by 100 nm to probe a different molecule. For data
analysis, force−distance curves were transformed into contour
length space using a freely rotating chain model with quantum
mechanical corrections for peptide backbone stretching21 and
then sorted by contour length increments.22 Loading rates prior
to domain unfolding or complex dissociation were extracted by
applying a linear fit to the last 3 nm before the respective event
and then used in fitting the rupture-force histograms with the
Bell−Evans model.23

■ RESULTS AND DISCUSSION
To test for successful surface functionalization, we incubated
surfaces that had been prepared as described in the Materials
and Methods section with fluorescently labeled cohesin. Figure
2A confirms that if sortase is ommited, no dockerin
functionalization is achieved, whereas if sortase was present
to perform the ligation reaction, binding of CoE-CBM-ybbR-
CoA647 is observed. Figure 2B demonstrates successful ligation
of GGG-dockerin to ybbR-Titin-LPETGG and illustrates the
superior performance of the evolved sortase mutant d95/
P94R/D160N/D165A/K190E/K196T18 in comparison with
wild-type sortase A.
Typical single-molecule force−distance unfolding patterns

for the sortase-incubated spots are shown in Figure 3A. They
exhibit the unbinding pattern of CohE−Doc dissociation as
characterized in previous publications,10 where dissociation can
occur with or without unfolding of the dockerin subdomain
called x-module. The resulting force−distance curves were
transformed into contour length space and then sorted by

comparing the observed unfolding increments (3B). Only
curves exhibiting the 56 nm increment corresponding to a full
unfolding of the CBM-domain were classified to be the result of
probing a CohE−Doc complex. Furthermore, the curves were
sorted to exhibit no more than one increment corresponding to
the unfolding of sfGFP 79 nm and no more than seven
increments corresponding to Titin-Ig unfolding 28 nM. These
increments result from the added free contour length of the
peptide chain upon unfolding the folded protein domains and
match the previously reported values.14,15,24 For these traces,
unfolding forces of the domains of interest were histogrammed
with a bin width of 20 pN (Figure 3C).
Despite its narrow tip apex, each cantilever is typically

functionalized with multiple cohesin-anchors; hence, multiple
receptor−ligand complexes can form if dockerin-decorated
surface is densely populated. Therefore, we went for a rather
sparse surface functionalization which can be tuned by the
incubation times of Sfp and sortase-catalyzed ligation reactions
and/or the substrate concentrations. Alternatively, cantilevers
with blunter tips could be used when more interactions are
desired. The achieved surface densities were in a suitable range
for SMFS, sparse enough to avoid multiple interactions but
dense enough to acquire good statistics. Probing attempts
(1.24%) resulted in single molecule unfolding traces satisfying
the outlined criteria. In total, 142 Titin-Ig and 92 sfGFP single
molecule traces were obtained within 11 h of measurement
with a single cantilever (spring constant: 0.093 N m−1). If
sortase had been omitted, no traces showing unfolding of CBM
and one of the POI were recorded. For probing of in vitro-
expressed Titin-Ig, 0.33% of attempts were successful, yielding
72 Titin-Ig unfoldings in 9 h of measurement, which was also
probed with a single cantilever (spring constant: 0.097 N m−1).

Figure 3. SMFS on Ctta-dockerin-labeled 7× Titin-Ig and sfGFP. (A) Force distance traces showing complete unfolding of the POI (Titin-Ig
unfolding is shown in the upper trace, sfGFP in the lower trace). (B) Transformation of traces from (A) into contour-length space. (C) Force
histograms of complex dissociation events and unfolding events of the POI: the upper two panels contain data from the bulk-expressed proteins and
the lower two panels contain data from in vitro-expressed proteins. C/D complex dissociation can occur with [as in both sample traces shown in
(A)] or without prior unfolding of the x-module, which is a subdomain of the dockerin, resulting in two populations of the dissociation forces. Each
population was fitted with the Bell−Evans model.23
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Figure 3C shows force histograms for unfolding events of
sfGFP, the last of seven Titin-Ig domain to unfold and the
complex dissociation itself. This was carried out for bulk-
expressed and purified sfGFP and Titin-Ig, as well as for Titin-
Ig expressed in the cell-free system. Complex dissociation
events cluster into two populations that are characteristic of
Doc/Coh unbinding.10 The most probable forces at which the

POI unfold are +−( )124 24
16 pN for sfGFP, +−( )257 36

24 pN for

the first, and +−( )365 33
22 pN for the last Titin-Ig domain to

unfold ( +−( )271 42
28 and +−( )404 45

30 pN for Titin-Ig expressed

in the cell-free system), the asymmetrical full widths at half
maximum of the distributions are given in brackets. The most
probable forces were determined by fitting each histogram of
unfolding forces with the Bell−Evans model.23
The differences between the most probable unfolding forces

observed for the POI expressed in the cell-free system and the
bulk-expressed proteins are within tolerance of errors resulting
from cantilever calibration.25

This method can be easily applied to any recombinantly
expressed protein by adding the terminal peptide tags necessary
for covalent surface attachment and post-translational sortase-
mediated ligation. Owing to the terminal location of these tags,
only nondigested and fully expressed proteins are probed. This
is especially advantageous for cell-free expression systems,
where the small quantity of expressed protein often makes the
usually necessary affinity purification cumbersome.

■ CONCLUSIONS

We developed a method that enables acquisition of SMFS
datasets of specifically probed and covalently immobilized
single molecules. By post-translationally modifying the POI
with the high-force interactions of the Coh/Doc receptor−
ligand system via sortase ligation, we can probe even resilient
proteins such as Titin-Ig domains with high specificity and
throughput, improving on the nonspecific polyprotein method
and eliminating the requirement of expressing the POI as large
fusion constructs with handle domains. The modular system of
post-translational attachment of the mechanostable pulling
handle allowed us to probe different proteins with the same
cantilever. We also applied this approach to proteins expressed
in cell-free systems without further purification while still
selecting for only fully expressed proteins owing to the
specificity provided by the high-affinity pulling handle.
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Sequences

pET28a-MGGG-HIS-DocIII

MGGGHHHHHHGVVPNTVTSAVKTQYVEIESVDGFYFNTEDKFDTAQIKKAVLHTV

YNEGYTGDDGVAVVLREYESEPVDITAELTFGDATPANTYKAVENKFDYEIPVYY

NNATLKDAEGNDATVTVYIGLKGDTDLNNIVDGRDATATLTYYAATSTDGKDATT

VALSPSTLVGGNPESVYDDFSAFLSDVKVDAGKELTRFAKKAERLIDGRDASSILTF

YTKSSVDQYKDMAANEPNKLWDIVTGDAEEE

pET28a-CohE-CBM(C63S)-HIS-ybbR

MGTALTDRGMTYDLDPKDGSSAATKPVLEVTKKVFDTAADAAGQTVTVEFKVSG

AEGKYATTGYHIYWDERLEVVATKTGAYAKKGAALEDSSLAKAENNGNGVFVAS

1
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GADDDFGADGVMWTVELKVPADAKAGDVYPIDVAYQWDPSKGDLFTDNKDSAQ

GKLMQAYFFTQGIKSSSNPSTDEYLVKANATYADGYIAIKAGEPGSVVPSTQPVTTP

PATTKPPATTIPPSDDPNAMANTPVSGNLKVEFYNSNPSDTTNSINPQFKVTNTGSS

AIDLSKLTLRYYYTVDGQKDQTFWSDHAAIIGSNGSYNGITSNVKGTFVKMSSSTNN

ADTYLEISFTGGTLEPGAHVQIQGRFAKNDWSNYTQSNDYSFKSASQFVEWDQVTA

YLNGVLVWGKEPGELKLPRSRHHHHHHGSLEVLFQGPDSLEFIASKLA

ybbR-HRV3C-HIS-sfGFP-LPETGG

MDSLEFIASKLALEVLFQGPLQHHHHHHPWTSASSKGEELFTGVVPILVELDGDVNG

HKFSVRGEGEGDATIGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMK

RHDFFKSAMPEGYVQERTISFKDDGKYKTRAVVKFEGDTLVNRIELKGTDFKEDG

NILGHKLEYNFNSHNVYITADKQKNGIKANFTVRHNVEDGSVQLADHYQQNTPIGD

GPVLLPDNHYLSTQTVLSKDPNEKRDHMVLHEYVNAAGITHGMDELYKLPETGG

ybbR-HRV3C-HIS-Titin-LPETGG

MDSLEFIASKLALEVLFQGPLQHHHHHHPWTSASLIEVEKPLYGVEVFVGETAHFEI

ELSEPDVHGQWKLKGQPLAASPDCEIIEDGKKHILILHNCQLGMTGEVSFQAANTKS

AANLKVKELPLIFITPLSDVKVFEKDEAKFECEVSREPKTFRWLKGTQEITGDDRFE

LIKDGTKHSMVIKSAAFEDEAKYMFEAEDKHTSGKLIIEGIRLKFLTPLKDVTAKEK

ESAVFTVELSHDNIRVKWFKNDQRLHTTRSVSMQDEGKTHSITFKDLSIDDTSQIRV

EAMGMSSEAKLTVLEGDPYFTGKLQDYTGVEKDEVILQCEISKADAPVKWFKDGK

EIKPSKNAVIKADGKKRMLILKKALKSDIGQYTCDCGTDKTSGKLDIEDREIKLVRP

LHSVEVMETETARFETEISEDDIHANWKLKGEALLQTPDCEIKEEGKIHSLVLHNCR

LDQTGGVDFQAANVKSSAHLRVKPRVIGLLRPLKDVTVTAGETATFDCELSYEDIP

VEWYLKGKKLEPSDKVVPRSEGKVHTLTLRDVKLEDAGEVQLTAKDFKTHANLFV

KAPHVEFLRPLTDLQVREKEMARFECELSRENAKVKWFKDGAEIKKGKKYDIISKG

AVRILVINKCLLDDEAEYSCEVRTARTSGMLTVLECLPETGG

2
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Abstract 
Interaction of proteins within a complex network appear chaotic at first glance and without              
direction. Bottom-up approaches enable the dissection of binding pathways and probe them            
individually to gain insights in their dynamic behaviour. Surface-bound affinity assays, like            
surface plasmon resonance (SPR) or biolayer interferometry (BLI) techniques, allow the           
characterization of individual ligand:analyte interactions. While it is critical to these methods that             
a permanent and uniform surface functionalization is achieved, ligand immobilization for SPR            
and BLI are commonly immobilized non-specifically via lysine residues. To provide a uniform             
and defined surface preparation and to achieve comparability to single molecule measurements            
like single molecule force spectroscopy, we here examine three different enzyme-mediated           
approaches to surface immobilization for bulk kinetic measurements. A 4´-phosphopantetheinyl          
transferase from Bacillus subtillis, Sortase A from Staphylococcus aureus and an asparaginyl            
endopeptidase from the plant Oldenlandia affinis were established for biosensor          
functionalization. All three enzymes were successfully employed in this study. 
A major advantage of these enzymes is a homogeneous surface orientation of the molecules              
since only one anchor site per molecule exists. Secondly, proteins with lysine-residues in their              
active site can be immobilized, where amine-based conjugation could potentially interfere with            
their functionality. Thirdly, the reaction conditions are mild and do not require harsh pH or salt                
conditions, and work also for proteins which are not able to be immobilized via their               
amine-groups. And lastly, due to the versatility of the utilized tags it is possible to design and                 
produce protein constructs in a single batch, which can then be probed in complementary              
assays. 
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Introduction 
Complex formation between biomolecules are fundamental to the function and organization of            
any organism. Their association and dissociation kinetics govern the spatial arrangement of its             
constituents as well as they induce or inhibit signaling pathways. To study the binding properties               
of each of these isolated complexes in vitro, numerous assays were developed during the last               
decades. Many methods like Isothermal Titration Calorimetry (ITC)1 determine only the           
equilibrium constant (besides parameter ΔG, ΔH, ΔS) but fail to deliver any information about              
the kinetics of the binding. So far, only surface-based biophysical techniques are well             
established in the scientific communities to probe on- and off rates of ligand and analyte               
systems. The two most commonly used methods are based on surface plasmon resonance             
(SPR)2 or biolayer interferometry (BLI)3,4. To probe any ligand-analyte system reliably, it is             
necessary to stably anchor one of the binding partners onto a surface. In general, the smaller                
ligand is preferably linked to the surface, as this enhances resolution and sensitivity due to the                
thinner surface layer prior to association and larger signal upon binding. 
Several methods for biosensor functionalization have been established, each with different           
strengths and disadvantages5. 
The most commonly used method for surface immobilization utilizes covalent linking via            
amine-6, carboxyl-7, or thiol-groups8. This way, accessible side chains of corresponding amino            
acids can be employed to covalently link the ligand to a surface. Covalent linkage of ligands                
allows for harsh regeneration conditions as well as it enables measuring complexes with             
extremely low off-rates, since the ligands themselves cannot dissociate. However, proteins           
mostly contain more than one reactive residue, which leads to inhomogeneous surface            
anchoring. Consequently, sensorgrams represent the response of a superposition of multiple           
populations of differently attached ligands. Different attachment sites may strongly influence           
binding kinetics solely because of molecule orientation, but especially when ligands have been             
immobilized via residues close to its binding sites, binding can be affected or even prevented               
(Figure 1 A)9. 
 
In this study, we expand the toolbox for biosensor functionalization by transferring and adapting              
advances in enzyme-based protein modification strategies. 
We investigate three different enzyme-mediated pull-down methods to site-specifically and          
covalently link ligands via small recognition peptide tags to the sensor surface, hence achieving              
homogeneous loading of a surface (Figure 1 B). This enables us to link the ligand of interest to                  
a biosensor interface in very mild reaction conditions while using only low micromolar quantities              
of ligand. This stands in great contrast to the non-specific attachment, which depends on a               
preconcentration step, where pH buffer conditions must be chosen such that sensor surface and              
ligands are predominantly oppositely charged, thereby attracting each other, which leads to a             
strong local concentration increase at the sensor surface. The close proximity of ligand to the               
surface is necessary to facilitate the reaction between reactive groups of sensor and ligand, like               
EDC/NHS-activated carboxyl-groups and amine-groups. 
Low ionic strength of the utilized buffer is a prerequisite for surface preconcentration, since salt               
concentrations as they are commonly used in physiological buffers screen surface charges to             
an extent which prevents preconcentration. As a result, the chosen buffer conditions for             

7.3. Associated Manuscript M1 257



preconcentration might cause unfolding issues, which could lead to aggregation10. Also, proteins            
with a low isoelectric point might not be able to be fully protonated and remain negatively                
charged. 
 
We chose biolayer interferometry (BLI) as method development platform because of its fast and              
flexible assay format. The BLI’s sensors dip subsequently into wells of a 96 plate, allowing a                
high throughput of reagent sampling and reuse of stable reagents. Also, sample handling is              
somewhat easier, compared to an SPR’s microfluidic system, because no liquids need to be              
pumped. Hence, BLI is a good choice for method development.  
The underlying principle of a BLI makes use of light reflection at interfaces between media of                
different optical densities, analyzing the spectral shift of interference signals upon binding (and             
thus modifying the optical path length) to the sensor11,12. From this, a signal is reconstructed               
which changes whenever binding/unbinding to the sensor fiber occurs (Figure 1, C). While the              
presented results were obtained with a biolayer interferometer, the methods should be readily             
transferable to SPR assays, as the surface immobilization relies on the same chemistry. 
 

 
 

Figure 1. Schematic of BLI Kinetics. (A) illustrates non-specific immobilization of the ligand on the sensor in different geometries                   
because of several accessible amine-groups. (B) sketches the specific and site-directed immobilization of a ligand to a biosensor.                  
All ligands are homogeneously orientated. The red arrows hint to possible different binding probabilities (non-specific               
immobilization), whereas for the specific attachment every binding occurs about the same probability. (C) shows the principle of a                   
BLI kinetic experiment. A ligand-functionalized biosensor immerse into an analyte solution. The increasing signal shows binding of                 
the system. After the sensor is saturated as much analytes associate as dissociate - the system is in an equilibrium, thus the signal                       
does not change. The sensor is moved to a buffer solution, the ligand starts to dissociate and the detected signal decreases again. 

 
The employed enzymes in this study are a 4´-phosphopantetheinyl transferase (Sfp), an            
evolved Sortase A (d59SrtA, P94R/D160N/D165A/K190E/K196T)13, and an engineered        
asparaginyl endopeptidase from the plant Oldenlandia affinis OaAEP1(C247A). All of these           
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enzymes recognize a specific amino acid sequence (tag) and covalently attach the tags to other               
amino acid sequences (Srt A14 and OaAEP115,16) or to Coenzyme A (CoA) (Sfp)17. In case of                
Sortase A and OaAEP1 the tags have to be at the very termini of the protein, whereas the                  
ybbR-tag (11 amino acids) for Sfp can be also internally (if accessible) since its ligation               
mechanism does not rely on peptidase activity. These tags can be fused to proteins and               
employed in surface pull-down strategies.  
 
Advances in bioconjugation methods and optimization of ligating enzymes18 made their use            
feasible in many applications. The presented enzymes are used for post-translational protein            
modifications, especially for protein labeling strategies19. Low micromolar amounts of protein           
and, i.e. a dye, allow these reactions to proceed. Strategies moved from the classical amine-,               
thiol- or carboxyl-group labeling to the use of site-specific tags20. This way, the stoichiometry of               
the labeling of proteins is precisely defined, and therefore, quantification of dynamics down to              
the single molecule level are made possible. 
 
Sfp- and Sortase A-based chemistry is already well established in single molecule force             
spectroscopy21–23. Also, for high affinity complexes it is necessary to have a reliable and              
covalent surface chemistry. The high rupture force of up to 700 pN (at 100 nN s–1) of the cohesin                   
dockerin type III complex24 requires covalent surface pull-down strategies to prevent           
detachment from the surface. The enzyme-mediated approach provides covalent and          
site-specific tethering, yielding in a homogeneous orientation of molecules on a surface at the              
same time. 
 
Since the employed tags are very small in size, they should not influence the overall               
functionality of the protein. This makes it very attractive to use same constructs characterized in               
a surface based assay as well as for other bulk and single molecule studies. For a ligand                 
composed of a binding domain and a catalytic or characteristic domain, recombinant expression             
ensures that only fully translated proteins are probed in the assay. Since the immobilization tag               
is ideally located at one terminus and the binding domain at the opposite terminus of the protein                 
23. 
Especially for a combined approach of single molecule studies and bulk characterization of             
protein complexes, these small tags are very advantageous. They can be used for             
post-translational protein modifications, i.e. attachment of a fluorescent dye25, a protein binding            
domain22,26 or as a pull-down technique23. This way, label-free and label-dependent techniques            
can be used with the same batch of proteins. 
Work on non-covalent but site-specific antibody orientation in SPR measurements, via Protein            
A, pull-down, has been done before27,28. Depending on the antibody, a difference between             
specific pull-down strategies and non-specific adsorption could be detected. Hence,          
investigation and improvement of direct surface coupling strategies should be pursued. 
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Results and Discussion 
In order to establish enzyme-mediated pull-down strategies for surface-based assays the           
well-known cohesin dockerin type III interaction of Ruminococcus flavefaciens was chosen as            
model interaction. This cohesin dockerin pair was already characterized in bulk studies29 as well              
as single molecule studies22,24,26,30,31. 
Non-Specific Sensor Immobilization. A cohesin construct was diluted in different buffers with            
varying pH, below the cohesin’s isoelectric point. None of the conditions could successfully             
immobilize functional cohesin domains. Cohesin also contains lysines in its binding pocket,            
hence it is possible that the immobilization signal produced was based on these (Figure 2,               
Blue, Red and Green Trace). A second approach with high salt conditions to shield              
electrostatic interactions also was not viable to bind enough cohesin to the surface (Figure 2,               
Purple Trace). 
 

 
Figure 2. Sensorgram for the non-specific immobilization. In order to react amine-groups to the BLI-sensor it needs to be 
activated with EDC/NHS (1). Different non-specific immobilization techniques were probed (2): 0.2 nM cohesin was diluted in 10 mM 
Na-Acetate buffers with a pH range of 4 - 6 (below the pI of the cohesin) to enable electrostatic attraction. In purple an alternative 
approach is illustrated: shielding all electrostatic interactions by adding 1 M of NaCl and increasing the cohesin concentration to 5 
µM. (3) Tris-Queching followed to disable all remaining, reactive EDC/NHS-groups. (4) Casein passivation followed to inhibit 
non-specific interaction of sensor with analyte. (5 and 6) shows negligible association and dissociation of dockerin. 
 

Site-Specific Sensor Immobilization. We found that all three enzymes are feasible to catalyze             
surface attachment of ligands. Basis for all of the specific pull-down experiments were             
amine-reactive sensors, which contain carboxyl-groups. Carboxyl-groups can be activated with          
EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) and NHS (N-Hydroxysuccinimide) to      
create amine-reactive NHS-esters. 
 
Sfp chemistry. In order to immobilize ybbR-tagged proteins with the magnesium-dependent           
enzyme Sfp, sensors need to be functionalized with its substrate Coenzyme A (CoA). Sfp              
catalyzes a covalent, irreversible reaction between CoA and the serine residue of a ybbR-tag              
(DSLEFIASKLA). Since only amine reactive sensors are available one has to make use of the               
amine-thiol crosslinking reagent PDEA (2-(2-pyridinyldithio)ethaneamine hydrochloride). PDEA       
contains an amine-group and a disulfide-bond with a leaving group facilitating thiol exchange             
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with other thiols. PDEA binds with its amine-group to the EDC/NHS-activated surface and in a               
subsequent step is able to bind CoA via thiol exchange, since CoA contains a thiol-group not                
necessary for the Sfp-reaction (Figure 3, left). The CoA-Biosensor is now dipped into the well,               
containing Sfp and ybbR-tagged protein to catalyze the sensor loading reaction. 
 
Sortase A chemistry. The calcium-dependent Srt A needs peptide-functionalized biosensors          
(n-terminal ligand coupling: -LPETGG, c-terminal ligand coupling: GGG-). Hence, a specific           
peptide is linked to a EDC/NHS activated surface either via its n-terminal amine (LPETGG,              
Figure 3, middle) or via a cysteine and the above described PDEA-approach (GGG). 
LPETGG does not contain any amines besides its n-terminal one, in order to improve reactivity               
and to increase the isoelectric point of the peptide (easier preconcentration) the linker sequence              
KKGSGSGS was added to the peptide (KKGSGSGS-LPETGG). After functionalization of the           
BLI-sensor with the peptide SrtA is able to link a polyglycine (n-Terminus) with a glycine from                
the c-terminal tag (LPETGG). It is important to note, that this covalent connection is able to be                 
recleaved again by SrtA. Since the reaction intermediate LPET・is prone to hydrolysis,            
functionalization can decay again for prolonged reaction times when sensors presenting the            
c-terminal recognition sequence LPETGG are used. 
 
OaAEP1 chemistry. The recent discovered and characterized OaAEP1 recognizes the N-tag           
(GLP) and covalently links it to a (NGL) at the c-terminus 15,16. Similarly to the Sortase A                 
chemistry a KKGSGSGS-NGL-peptide is fused to a EDC/NHS-activated surface (Figure 3,           
right). OaAEP1 can now catalyze the GLP-cohesin attachment to the sensor. While OaAEP1 is              
a transpeptidase as well, production of shunt product due to hydrolysis seems to occur at a                
much slower rate when compared to Sortase A, as we could not observe any degradation of the                 
functionalization even at long reaction times. 
 
All three sensors are then passivated with Casein, it should be noted that other protein systems                
might need different passivation agents. The passivated, specific reactive sensors can then be             
incubated with the ligand protein of interest with the appropriate tag and the catalytic enzyme of                
choice to attach the ligands covalently and homogeneously to the sensor. 
Sortase A and OaAEP1 based chemistries can also be inverted with peptides containing a              
cysteine at the c-terminus and relying on the PDEA approach (See Supplemental Information,             
Figure S3). 
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Figure 3. Overview of the different site-specific immobilization techniques. Three different enzyme-catalyzed techniques,             
employed in this study are shown. The sensors were passivated with Casein after the specific functionalization steps. Left: Sfp                   
catalyzes the reaction between ybbR-tag of a cohesin and Coenzyme A. PDEA first reacts with the EDC/NHS activated sensor via                    
its amine-group. It also contains a reactive thiol-group, which can be used for Coenzyme A functionalization. Middle: OaAEP1                  
recognizes the C-terminal amino acids NGL and fuses it to cohesins containing the N-terminal amino acids GLP. EDC/NHS                  
activated sensors were reacted with the amine-groups of a KK-GSGS-NGL peptide. Right: Sortase A links C-terminal LPETGG with                  
N-terminal GGG. In the shown case a KK-GSGSGS-LPETGG peptide was reacted with the EDC/NHS sensor to any of its three                    
N-terminal primary amines.  
 

Surface-Functionalization in Real time Detectable. Figure 4 shows an example signal trace            
for the Sfp functionalization. A sensor, in MES-buffer equilibrated, dips into the EDC/NHS             
solution (Figure 4, 1). An increase in signal can be detected. The following PDEA step also                
shows binding (Figure 4, 2). Next an amine quenching is necessary, because CoA also              
contains amine-groups. When linked via its amine-groups, CoA cannot be ligated to the             
ybbR-tag (Figure 4, 3). The thiol exchange reaction between CoA and PDEA can now take               
place. It is noteworthy that CoA does not generate any signal upon binding at concentrations               
below 20 mM (Figure 4, 4). Next, the sensor needs to be passivated with a passivation agent                 
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suited for the ligand-analyte pair. In our case, Casein worked best (Figure 4, 5). The               
site-specific Sfp reaction can now take place. In green a trace is shown with added Sfp, in red                  
only the ligand was added, Sfp was omitted (Figure 4, 6). The sensor of the red trace is dipped                   
into a well with only cohesin, hence the small increase in signal is due to non-specific binding.                 
We therefore can correct for the content of non-specific binding during the enzyme-catalyzed             
reaction (Figure 3, 6, Green Trace). During the association and dissociation of the dockerin to               
and from cohesin (Figure 3, 7 and 8) a very small signal of interaction between non-specifically                
adsorbed cohesin (red trace) is detected. The positive binding signal can be later corrected with               
this value. The almost vertical jumps in the signal traces are due to changing buffer conditions                
which cause an abrupt change in the signal. 
 
 

 
Figure 4. Exemplary Sensorgram for the Sfp-based chemistry. First the carboxyl-group is activated with EDC/NHS (1) which 
reacts with the amine-group of PDEA (2). (3) Tris quenches all the unreacted, but active EDC/NHS-groups. Coenzyme A (4) shows 
no increase in the sensorgram but nevertheless links to the PDEA. (6) shows the specific Sfp reaction (green) and the non-specific 
adsorption of the ybbR-dockerin to the sensor (red). After this functionalization the sensor is ready to measure association and 
dissociation of analytes (7 and 8). 
 

In order to exclude any binding caused by potentially non-specifically adsorbed Sfp and the              
ybbR-HIS-Xmod-DocIII further negative controls were made (See Supplemental Information,         
Figure S1 and S2). A CoA-modified sensor was dipped into a Sfp containing mix. After               
dissociation and equilibration of the sensor in measuring buffer the sensor was moved into a               
cohesin containing mix. No binding was observed at the employed concentrations (5 µM Sfp              
and 1 µM cohesin), which are above the determined KD of 20 nM29. Hence, the generated                
interaction of the negative sensor (Figure 4, Red Trace) is based on non-specific cohesin              
adsorption and the binding of dockerin.  
 
For the CoA-chemistry, as well as when peptides presenting the n-terminal tags for SrtA or               
OaAEP1 ligation are used, sensor surfaces are modified via disulfide exchange to the PDEA              
crosslinker molecule. This makes it possible to regenerate the sensor by adding a reducing              
agent. However, it is not possible to measure the binding kinetics under reducing conditions,              
otherwise the ligand would detach from the sensor. If reducing conditions are required, then              
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sensors can be functionalized via the c-terminal tags for Srt A or OaAEP1 via the amine-groups                
of the peptides. 
 
The sensors of the BLI can also be functionalized offline, once the reaction conditions are               
optimized with the optical readout. Offline functionalization means, that the sensors are            
manually moved from one well to the next one in the sensor tray. This is especially                
advantageous for the Octet K2, since it only can operate two sensors at a time. 
 
Specific immobilization of cohesin possible. Cohesin could be attached site-specifically and           
biologically active with Sortase A and Sfp, in contrast to the non-specific immobilization. Figure              
5 shows the results of the experiment, with all steps necessary to load a ligand and probe its                  
analyte binding. In case of SrtA either a dockerin (Figure 5, A) or a cohesin (Figure 5, B) was                   
immobilized to probe both immobilization strategies (n- or c-terminal anchoring). Cohesin and            
dockerin were chosen, because their native tethering orientation is mirrored (n-terminal:           
dockerin, c-terminal: cohesin). Depending on the immobilized molecule a different unbinding           
behaviour can be observed. This might be caused due to different binding and unbinding              
geometries or a varying interaction of sensor and ligand. The n-terminally immobilized dockerin             
with OaAEP1 (Figure 5 C), deviates slightly in its unbinding behavior from the Sortase A               
tethered dockerin. 
Figure 5 D depicts the loading of cohesin to BLI-sensors with Sfp-based chemistry. In this case                
the c-terminal cohesin dissociation varies from the c-terminal SrtA-based dissociation, which           
might be caused by a higher degree of flexibility, due to the PDEA-based surface chemistry.  
 
In general it is now possible to anchor ligands to surfaces without relying on harsh conditions                
and cumbersome screening runs to find and optimize ligand loading conditions, however further             
optimization is necessary since all strategies should return same (un)binding behaviour. Once            
optimized mild anchoring strategies are available and investigating differences in binding           
geometries is possible. 
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Figure 5. Binding Kinetics of the different surface chemistries. A complete sensorgram of each surface chemistry is shown.                  
Dark colors represent the positive signal (enzyme + ligand in loading step), light colors the negative control (only ligand in loading                     
step). The grey box highlights association and dissociation phase.The right graph shows corrected and normalized sensor signal                 
over time of association and dissociation (positive signal subtracted with negative signal and binding signal normalized to 1). (A)                   
shows the Sortase-A-based GGG-dockerin functionalization. (B) represents the sensorgram of the inverse Sortase A coupling with                
cohesin-LPETGG (C) Sensorgram of OaAEP1-based chemistry with GLP-dockerin. (D) shows in purple the Sfp-based chemistry               
with cohesin-ybbR. 
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Outlook 
Single molecule studies rely on site-specific surface anchors. With the here presented strategies             
one and the same constructs can be used in bulk and single molecule assays, an important step                 
towards comparability. Independent of the functionalization strategy, all ligands could be loaded            
to the sensor, in contrast to all non-specific approaches. Ensemble averaged results obtained             
from single molecule experiments can be used to interpret bulk assays. Also, it is easy to                
observe and optimize different coupling steps with the BLI and transfer the so obtained insights               
to the single molecule sample preparation. 
 
The here presented techniques are shown for sensor modification of BLI. They also can be               
easily adopted for SPR chips, since both rely on the same chemistries. While passivation,              
reaction times and concentrations of the compounds may likely require optimization for each             
ligand, the enzymatic immobilization approaches greatly facilitate surface immobilization as no           
buffer conditions suitable for preconcentration need to be found. This also counts for new              
receptor ligand interactions, where buffer conditions may need optimization. Overall, the           
site-directed immobilization techniques present a viable, easily implementable alternative to the           
classical non-specific approach.  
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Methods 
 
All materials employed in this study were at least from analytical purity grade and purchased               
from Sigma Aldrich Chemie GmbH (Taufkirchen, Germany) and Carl Roth + Co. KG (Karlsruhe,              
Germany). 
All buffers were filtered (0.22 µm) and degassed via sonication. The pH of the buffers were                
adjusted at room temperature.  
 
 
Cloning. 
All constructs were subcloned into a modified pET28a vector with Gibson Assembly32. In order              
to perform Gibson Assembly, the inserts were ordered as a gene string with overlapping              
sequences to the plasmid, up- and downstream of the insert or amplified with primers containing               
the overlaps. The reaction was performed at 50°C for 1 hr (10 µl 2x HiFi MasterMix; New                 
England Biolabs, Ipswich, MA, USA, mixed with 0.1 nmol of vector and 0.2 nmol of insert). Later                 
modifications were done with a plasmid linearization reaction via PCR and recircularization            
reaction (4.5 ml of PCR product, 1 µl ATP (10 mM, Thermo Fisher Scientific Inc., Waltham, MA,                 
USA), 0.5 µl PEG-6000 (Thermo Fisher Scientific Inc.), 1 µl CutSmart buffer (10x, New England               
Biolabs), 1 µl T4 Polynucleotidekinase (Thermo Fisher Scientific Inc.), 1 µl DpnI (Thermo Fisher              
Scientific Inc.), 1 µl T4 Ligase (10 U/µl,Thermo Fisher Scientific Inc.). This reaction was              
performed 15 Mins at 37°C and 45 Mins at 22°C. 
DH5α cells (Life Technologies GmbH, Frankfurt, Germany) were thawed on ice, 1 µl of the               
reaction mix was added to the cells to transform them. After 30 Mins on ice a heat shock at                   
42°C for 1 Min was done. Finally the cells grew shaking (850 rpm) for 1 hr at 37°C in 1 ml of                      
SOC Medium. Usually 100 µl of the transformed culture was used to streak on a LB-Kanamycin                
containing plate. It was incubated overnight at 37°C. Plasmids of a small amount of clones (less                
than 5) were amplified and sent to sequencing to verify their sequence. 
 
The gene for OaAEP1 was ordered via gene string (Thermo Fisher Scientific Inc.) and              
subcloned via Gibson Assembly. Sortase A was cloned and modified as described by Durner et               
al22.  
 
CohE-HIS-ybbR, ybbR-HIS-Xmod-DocIII, CohE-HIS-LPETGG, MGGG-HIS-Xmod-DocIII and     
MGLP-HIS-Xmod-DocIII were created with the above described linearization and         
recircularization reaction. The underlying constructs were ybbR-HIS-CBM-Xmod-DocIII and        
CohE-CBM-HIS-ybbR published by Schoeler et al24. 
  
Protein Expression and Purification. 
NiCo21(DE3) (New England Biolabs) cells were transformed with the appropriate plasmid (50            
ng), and incubated overnight at 37°C on LB-Agar plates with kanamycin (50 ng/µl). One clone               
was inoculated in 5 ml LB-Kanamycin liquid culture (37°C, 200 rpm, 12-16 hrs). This starter               
culture was used to inoculate a larger 400 ml autoinduction media culture (100 ng/µl              
kanamycin)33. Usually the cultures were incubated for 24 hrs (4 hrs 37°C, 20 hrs 18°C; 120                
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rpm). Cells were harvested via centrifugation (6500 g, 20 Mins, 4°C), the supernatant discarded              
and the pellets frozen at -80°C until further use.  
The frozen pellets were resolubilized in 40 ml lysis buffer (50 mM Tris             
(tris(hydroxymethyl)aminomethane)-HCl, pH 8.0, 50 mM NaCl, 5 mM MgCl2, 10 % (v/v) glycerol,             
0.1 % (v/v) Triton X-100 and supplemented with 10 µg/ml DNase I and 100 µg/ml lysozyme). To                 
enhance the chemical lysis the cells were sonicated with a sonication lance twice for 7 Mins on                 
ice (50 % Power, 50 % Cycle; Bandelin Sonoplus GM 70, tip: Bandelin Sonoplus MS 73, 
Berlin, Germany). The cell lysate was centrifuged (30.000 g, 4°C) for 1 hr. The supernatant was                
filtrated (0.45 µm) and applied to a Ni-NTA column (5 ml HisTrap FF, GE Healthcare Europe                
GmbH, Freiburg, Germany), since all proteins contained a HIS-tag. The protein was eluted after              
washing (25 mM Tris-HCl pH 7.8, 500 mM NaCl, 20 mM imidazole, 0.25 % (v/v) Tween 20, 10                  
% (v/v) glycerol) with 6 column volumes with elution buffer (25 mM Tris-HCl pH 7.8, 500 mM                 
NaCl, 300 mM imidazole, 0.25 % (v/v) Tween 20 (v/v), 10% (v/v) glycerol). The eluted proteins                
were checked on a SDS-gel for digestion and purity. 
The buffer of the protein solution was exchanged with ZebaSpin columns (Zeba spin desalting              
columns 7K, Thermo Fisher Scientific Inc.) to 50 mM Tris-HCl, pH 7.2, 72 mM NaCl, 1 mM                 
CaCl2 and 20 % (v/v) of glycerol was added. Small aliquots were flash frozen in liquid nitrogen                 
and stored at -80°C.  
 
Production of OaAEP1. 
Expression and Purification of OaAEP1 roughly followed recently published protocols15,16. 
SHuffle® T7 Competent E. coli (New England Biolabs) were transformed with a plasmid             
encoding for HIS-Ub-OaAEP1(C247A) and plated on LB-Agar plates with kanamycin (50 ng/µl). 
A 5 ml LB-Kanamycin liquid culture was inoculated with one colony (30°C, 200 rpm, 12-16 hrs). 
A 1 l culture of ZY-505 medium was inoculated with this preculture and grown to an OD of 4,                   
when expression was induced by adding IPTG to a concentration of 100 µM and the               
temperature was lowered to 16°C. After 18 hours, cells were harvested by centrifugation (6500              
g, 10 minutes, 4°C), the supernatant discarded and the pellets frozen at -80°C until purification. 
For purification, the frozen pellet was resolubilized, lysed and applied to a Ni-NTA column as               
described above. Eluate containing HIS-Ub-OaAEP1(C247A) was pooled and its pH was           
adjusted to 4 by adding acetic acid, enabling the autocatalytic activation during which both              
termini of OaAEP1 are cleaved. After 10 hours at 37°C, precipitate was removed by              
centrifugation and the supernatant was concentrated using Amicon centrifugal filter units (10k            
MWCO, Merck KGaA, Darmstadt, Germany). 
To remove cleaved fragments and to exchange the buffer (to 100 mM NaAcetate, 50 mM NaCl,                
pH 5.5), the concentrate was applied to a Superdex 75 Increase column (GE Healthcare Europe               
GmbH). Fractions containing cleaved OaAEP1(C247A) were pooled and supplemented with          
glycerol to 10% (v/v), then flash-frozen in liquid nitrogen and stored at -80°C. 
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BLI Sensor Modification. 
 
Basic sensor preparation 
For all surface immobilisation strategies the AR2G - Amine Reactive 2nd Generation sensors 
(Pall ForteBio LLC, Fremont, CA, USA) were used. Sensors were equilibrated in 50 mM MES 
(2-(N-morpholino)ethanesulfonic acid) buffer, pH 6.0 for at least 15 minutes at room 
temperature.  
After proper rehydratation, they were activated to an amine reactive state by incubating the              
sensors with a mixture of 50 mM EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) and 50           
mM NHS (N-Hydroxysuccinimide) (in 50 mM MES buffer, pH 6.0) for 10 minutes. 
Sensors were moved into 50 mM HEPES ((4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid)), pH 7.5 after, specific or non-specific, loading of the sensor with the ligand. This ensured 
same conditions for the recording of the binding kinetics. 
 
Non-specific Sensor Immobilization 
The EDC/NHS-activated sensor was immobilized with GGG-cohesin-HIS (0.2 µM) in 10 mM            
Na-Acetate buffer, pH 4.0, 5.0, 6.0 for 10 minutes. 
Also a non preconcentration run was tested with 5 µM GGG-cohesin-HIS in 100 mM HEPES,               
pH 7.5 and 1 M NaCl. Two subsequent quenching steps followed with 100 mM Tris-HCl (pH 8.5)                 
and measuring buffer (25 mM Tris-HCl, pH 7.2, 72 mM NaCl, 1 mM CaCl2, 0.1 % (v/v) Casein,                  
0.1 % (v/v) Tween-20) for 10 minutes each. 
 
Specific Sensor Immobilization 
 
Basic sensor preparation 
If the specific protocol relied on a disulfide exchange reaction, the now amine reactive sensors               
were dipped for 10 minutes into a 40 mM solution of PDEA (2-(2-pyridinyldithio) ethaneamine              
hydrochloride, GE Healthcare Europe GmbH) (dissolved in 50 mM borate buffer, pH 8.5) to              
covalently immobilize the thiol reactive compound to the biosensor. In order to quench             
remaining reactive EDC/NHS-groups, the PDEA modified sensors were incubated for 10           
minutes in 100 mM Tris-HCl, pH 8.5.  
 
Sfp Chemistry. 
Sensors were modified with PDEA as described under basic sensor preparation. 
Since Coenzyme A (CoA, Merck KGaA Darmstadt, Germany) contains an accessible           
thiol-group, the PDEA modified sensors can react with them. 1 mM CoA in coupling buffer (50                
mM sodium phosphate, 50 mM NaCl, 10 mM EDTA, pH 7.2) was fused to the sensors for 10                  
minutes. A final quenching step with 0.1 % (v/v) Casein (Sigma-Aldrich) passivated the             
remaining sensor surface against non-specific attachment. 
The ligand of choice with a ybbR-tag was covalently attached to the CoA with the help of Sfp                  
(25 µM ligand, 5 µM Sfp in 25 mM Tris-HCl, pH 7.2, 72 mM NaCl, 1 mM CaCl2, 5 mM MgCl2, 0.1                      
% (v/v) Casein, 0.1 % (v/v) Tween-20) for 30 minutes. The sensors are now ready for kinetic                 
binding measurements. 
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Sortase and OaAEP1 Chemistry. 
For the peptide based Sortase or OaAEP1-mediated sensor functionalizations, two different           
strategies were employed. Either, peptides containing the c-terminal Sortase or OaAEP1           
recognition sequences were directly coupled to the sensors via primary amines. 
For functionalizing the sensors with the n-terminal recognition sequences, the ‘adapter           
molecule’ PDEA was employed to pull-down the peptides bearing a cysteine at their c-termini              
via a disulfide exchange to the cysteines’ SH-groups. 
 
Sortase C-tag.  
Sensors were brought to an amine reactive state as described under basic sensor preparation. 
Amine reactive sensors were then dipped for 10 minutes into a solution of 200 µM               
KKGSGSGSLPETGG peptide (GenScript, Piscataway, USA) in 10 mM Tris-HCl, pH 7.2. With            
two lysines located at the n-terminus, conjugation can occur to any of the three amine-groups of                
the peptide, the c-terminal Sortase recognition sequence is connected by a 3xGS linker. To              
quench any potentially remaining amine-reactivity, sensors were then incubated in 100 mM            
Tris-HCl, pH 8.5 for 5 minutes. To prevent non-specific adhesion in the following steps, sensors               
were then passivated by incubating them with 0.1 % (v/v) Casein (Sigma-Aldrich). For             
functionalization with the desired ligand (exhibiting the n-terminal Sortase-Tag GGG), sensors           
were incubated with 10 µM ligand, 1 µM Sortase enzyme and 0.1 % (v/v) Casein in 25 mM                  
Tris-HCl, pH 7.2, 72 mM NaCl, 1 mM CaCl2) until a desired functionalization density is reached,                
usually for about 5 to 10 minutes. 
 
Sortase N-tag. 
Sensors were prepared to a thiol reactive state by modifying them with PDEA as described               
under basic sensor preparation. 
Thiol reactive sensors were then loaded with GGGGGC peptide by performing a disulfide             
exchange reaction, replacing the PDEA’s leaving group with the peptide. This reaction was             
performed by incubating the sensors for 20 minutes in a solution of 200 µM peptide in 10 mM                  
sodium acetate buffer at pH 4.5. 
Subsequently, sensors were then passivated by incubating them with 0.1 % (v/v) Casein             
(Sigma-Aldrich). For functionalization with the desired ligand (exhibiting the c-terminal          
Sortase-Tag LPETGG), sensors were incubated with 20 µM ligand, 1 µM Sortase enzyme and              
0.1 % (v/v) Casein in 25 mM Tris-HCl, pH 7.2, 72 mM NaCl, 1 mM CaCl2, 0.1 % (v/v) Tween-20)                    
until a desired functionalization density is reached, usually for about 5 to 10 minutes. 
 
OaAEP1 C-tag. 
Sensors were prepared to an amine reactive state as described under basic sensor preparation. 
Amine reactive sensors were then coupled to KKGSGSGSNGL peptides by dipping them into a              
solution of 200 µM peptide in 10 mM HEPES-HCl at pH 7.2. 
Hereafter, potentially remaining amine reactive groups were quenched with 50 mM Tris-HCl, pH             
8.5 for 5 minutes. 
Sensors were then passivated with a solution of 0.1 % (v/v) Casein (Sigma-Aldrich). 
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For functionalization with the desired ligand (exhibiting the c-terminal OaAEP1-Tag NGL),           
sensors were incubated with 20 µM ligand, 1 µM OaAEP1 enzyme and 0.1 % (v/v) Casein in 25                  
mM Tris-HCl, pH 7.2, 72 mM NaCl, 1 mM CaCl2, 0.1 % (v/v) Tween-20) until a desired                 
functionalization density is reached, usually for about 5 to 10 minutes. 
 
OaAEP1 N-tag. 
Sensors were prepared to a thiol reactive state by modifying them with PDEA as described               
under basic sensor preparation. 
Thiol reactive sensors were then loaded with GLPGSC peptide by performing a disulfide             
exchange reaction, replacing the PDEA’s leaving group with the peptide. This reaction was             
performed by incubating the sensors for 20 minutes in a solution of 200 µM peptide in 10 mM                  
sodium acetate buffer at pH 4.5. 
Subsequently, sensors were then passivated by incubating them with 0.1 % (v/v) Casein             
(Sigma-Aldrich). For functionalization with the desired ligand (exhibiting the C-terminal          
OaAEP1-Tag NGL, sensors were incubated with 10 µM ligand, 1 µM OaAEP1 enzyme and 0.1               
% (v/v) Casein in 25 mM Tris-HCl, pH 7.2, 72 mM NaCl, 1 mM CaCl2, 0.1 % (v/v) Tween-20)                   
until a desired functionalization density is reached, usually for about 5 to 10 minutes. 
 
BLI measurements. 
All measurements were done at 30°C with an Octet® K2 System (Pall ForteBio LLC.). Sensors,               
functionalized with the ligand, were equilibrated for 2 minutes in measurement buffer (25 mM              
Tris-HCl, pH 7.2, 72 mM NaCl, 1 mM CaCl2, 0.1 % (v/v) Casein, 0.1 % (v/v) Tween-20). Two                  
sensors were moved synchronously into wells with analyte. One of the two sensors was              
functionalized specifically with the ligand, the other was prepared as a reference sensor by              
ommitting the ligating enzyme during functionalization so that no ligand is presented at the              
sensor surface. The association was done for 2 minutes, after that the sensors moved back into                
the wells with measurement buffer and dissociation was recorded for more than 20 minutes. 
 
Raw Data was exported as csv from ForteBio Data Analysis 9.0 and then fitted using a custom                 
script written in Python (Python Software Foundation, Python Language Reference, version 2.7,            
available at http://www.python.org), utilizing the libraries NumPy, SciPy, and Matplotlib. 
In brief, data from the reference channel was subtracted from that of the functionalized channel. 
Then, a single exponential decay (eq. 1) was fitted to the dissociation under optimization of               kof f
and an offset . The so obtained off-rate was used to fit the on-rate to eq. 2 under   yof f                
optimization of  .kon  
 

) exp(− t ))y = (y0 − yof f *  kof f * ( − to,dissociation + yof f  
)y (1 xp(− conc ) t )y =  0 − e ( * kon + kof f * ( − t0,association  
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Protein Sequences. 
 
Enzymes 
sfp-HIS 
MKIYGIYMDRPLSQEENERFMTFISPEKREKCRRFYHKEDAHRTLLGDVLVRSVISRQYQLDKS
DIRFSTQEYGKPCIPDLPDAHFNISHSGRWVIGAFDSQPIGIDIEKTKPISLEIAKRFFSKTEYSDL
LAKDKDEQTDYFYHLWSMKESFIKQEGKGLSLPLDSFSVRLHQDGQVSIELPDSHSPCYIKTYE
VDPGYKMAVCAAHPDFPEDITMVSYEELLEASHHHHHH 
 
Sortase A-HIS 
MQAKPQIPKDKSKVAGYIEIPDADIKEPVYPGPATREQLNRGVSFAEENESLDDQNISIAGHTFID
RPNYQFTNLKAAKKGSMVYFKVGNETRKYKMTSIRNVKPTAVGVLDEQKGKDKQLTLITCDDY
NEETGVWETRKIFVATEVKHHHHH 
 
HIS-Ubiquitin-OaAEP1(C247A) 
MHHHHHHGSGSQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRT
LSDYNIQKESTLHLVLRLRGGARDGDYLHLPSEVSRFFRPQETNDDHGEDSVGTRWAVLIAGS
KGYANYRHQAGVCHAYQILKRGGLKDENIVVFMYDDIAYNESNPRPGVIINSPHGSDVYAGVPK
DYTGEEVNAKNFLAAILGNKSAITGGSGKVVDSGPNDHIFIYYTDHGAAGVIGMPSKPYLYADEL
NDALKKKHASGTYKSLVFYLEACESGSMFEGILPEDLNIYALTSTNTTESSWAYYCPAQENPPP
PEYNVCLGDLFSVAWLEDSDVQNSWYETLNQQYHHVDKRISHASHATQYGNLKLGEEGLFVY
MGSNPANDNYTSLDGNALTPSSIVVNQRDADLLHLWEKFRKAPEGSARKEEAQTQIFKAMSHR
VHIDSSIKLIGKLLFGIEKCTEILNAVRPAGQPLVDDWACLRSLVGTFETHCGSLSEYGMRHTRTI
ANICNAGISEEQMAEAASQACASIP 
 
Ligand/Analyte 
 
CohE-HIS-ybbr 
MALTDRGMTYDLDPKDGSSAATKPVLEVTKKVFDTAADAAGQTVTVEFKVSGAEGKYATTGY
HIYWDERLEVVATKTGAYAKKGAALEDSSLAKAENNGNGVFVASGADDDFGADGVMWTVELK
VPADAKAGDVYPIDVAYQWDPSKGDLFTDNKDSAQGKLMQAYFFTQGIKSSSNPSTDEYLVKA
NATYADGYIAIKAGEPHHHHHHDSLEFIASKLA 
 
ybbR-HIS-Xmod-DocIII 
MDSLEFIASKLAHHHHHHGVVPNTVTSAVKTQYVEIESVDGFYFNTEDKFDTAQIKKAVLHTVY
NEGYTGDDGVAVVLREYESEPVDITAELTFGDATPANTYKAVENKFDYEIPVYYNNATLKDAEG
NDATVTVYIGLKGDTDLNNIVDGRDATATLTYYAATSTDGKDATTVALSPSTLVGGNPESVYDD
FSAFLSDVKVDAGKELTRFAKKAERLIDGRDASSILTFYTKSSVDQYKDMAANEPNKLWDIVTG
DAEEE 
 
 
 
 

7.3. Associated Manuscript M1 273



CohE-HIS-HRV3C-LPETGG 
MALTDRGMTYDLDPKDGSSAATKPVLEVTKKVFDTAADAAGQTVTVEFKVSGAEGKYATTGY
HIYWDERLEVVATKTGAYAKKGAALEDSSLAKAENNGNGVFVASGADDDFGADGVMWTVELK
VPADAKAGDVYPIDVAYQWDPSKGDLFTDNKDSAQGKLMQAYFFTQGIKSSSNPSTDEYLVKA
NATYADGYIAIKAGEPELKLPRSRHHHHHHGSLEVLFQGPLPETGG 
 
 
MGGG-HIS-Xmod-DocIII 
MGGGHHHHHHGVVPNTVTSAVKTQYVEIESVDGFYFNTEDKFDTAQIKKAVLHTVYNEGYTGD
DGVAVVLREYESEPVDITAELTFGDATPANTYKAVENKFDYEIPVYYNNATLKDAEGNDATVTV
YIGLKGDTDLNNIVDGRDATATLTYYAATSTDGKDATTVALSPSTLVGGNPESVYDDFSAFLSD
VKVDAGKELTRFAKKAERLIDGRDASSILTFYTKSSVDQYKDMAANEPNKLWDIVTGDAEEE 
 
MGLP-HIS-Xmod-DocIII 
MGLPHHHHHHGVVPNTVTSAVKTQYVEIESVDGFYFNTEDKFDTAQIKKAVLHTVYNEGYTGD
DGVAVVLREYESEPVDITAELTFGDATPANTYKAVENKFDYEIPVYYNNATLKDAEGNDATVTV
YIGLKGDTDLNNIVDGRDATATLTYYAATSTDGKDATTVALSPSTLVGGNPESVYDDFSAFLSD
VKVDAGKELTRFAKKAERLIDGRDASSILTFYTKSSVDQYKDMAANEPNKLWDIVTGDAEEE 
 
 
Peptides 
 
KKGSGSGSLPETGG 
KKGSGSGSNGL 
GLPGSC 
GGGGGC 
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Supplemental Figure S1. Negative control for Sfp:ybbR-Interaction. First the carboxyl-group is activated with EDC/NHS (1) and                
reacts with PDEA (2) Tris quenching (3), Coenzyme A functionalization (4) and Casein (5) quenching steps followed. (6) shows the                    
Sfp binding to Coenzyme A (green) and plain buffer interaction without Sfp (red). Both sensors were moved into a ybbR-cohesin                    
solution and no binding signal was detected (7 and 8). 
 
 

 
 
Supplemental Figure S2. (A) schematic of the Sfp-based surface functionalization of dockerin to the BLI-sensor. First                
carboxyl-groups are activated with EDC/NHS and coupled with PDEA. PDEA is thiol reactive and couples in this case Coenzyme A.                    
Coenzyme A is recognized by Sfp and covalently links a ybbR-containing dockerin. The sensor is now able to bind the                    
corresponding cohesin. (B) shows association and dissociation of cohesin to the dockerin functionalized sensor. Each trace                
represents one control where one reagent was left out in the proper surface chemistry. Blue represents the positive control with all                     
added substances.   
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Supplemental Figure S3. Overview of the all immobilization strategies. Non-specific immobilization (red box) relies on               
amine-groups of a ligand resulting in different orientation of the molecules on the surface.  
Three different site-specific, enzyme-based strategies are shown in the green boxes: 
Left:. Sortase A links C-terminal LPETGG with N-terminal GGG. Either a KK-GSGSGS-LPETGG peptide or a GGGGG-C was                 
reacted with the EDC/NHS sensor to any of its three N-terminal primary amines of the LPETGG-peptide or via PDEA in case of the                       
GGGGG-peptide.  
Middle: OaAEP1 recognizes the C-terminal amino acids NGL and fuses it to proteins containing the N-terminal amino acids GLP.                   
EDC/NHS activated sensors were reacted with the amine-groups of a KK-GSGS-NGL peptide or via PDEA for the GLP-C case. 
Right: Sfp catalyzes the reaction between ybbR-tag of a protein and Coenzyme A. In order to enable the reaction PDEA is used to                       
crosslink EDC/NHS-activated sensors with Coenzyme A. 
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