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Nomenclature:  

Gene names were written in small, italic letters for murine genes (“Runx2”) and in capital, italic letters 

for human genes (“RUNX2”). For murine and human protein names capital, non-italic letters were used 

(“RUNX2”). However, to improve readability, all gene and protein names in the discussion section were 

written in non-italic, capital letters
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1. ZUSAMMENFASSUNG 

 
Die Idiopathische Lungenfibrose (IPF) ist eine schwerwiegende Lungenerkrankung mit 

unklarer Ätiologie und eingeschränkten Therapieoptionen. Pathophysiologische Merkmale 

sind die (repetitive) Schädigung des Alveolarepithels sowie die Bildung fibroblastischer Foci 

mit vermehrter Produktion von Extrazellulärmatrix. In seltenen Fällen kann dieser Prozess bis 

zur pulmonalen Ossifikation führen. Runt-related transcription factor (RUNX) 2 ist ein für 

Ossifikationsprozesse essentieller Transkriptionsfaktor, dessen Expression über profibrotische 

Signalwege wie TGF-β und WNT/β-catenin reguliert wird. Ziel dieser Studie war die 

Bestimmung des zellspezifischen Expressionslevels sowie der pathophysiologischen Rolle 

von RUNX2 in der IPF. 

Die Expression von RUNX2 war sowohl im Bleomycin-induzierten Mausmodell der 

Lungenfibrose (BLEO) als auch in der humanen IPF erhöht. Die erhöhte Expression von 

RUNX2 in den Lungen von IPF Patienten korrelierte mit einer verringerten Diffusionskapazität 

und einer Hochregulation der IPF Biomarker SPP1 und MMP7. Durch 

Immunfluoreszenzfärbungen konnten wir Alveolarepithel Typ (AT) II Zellen als die wesentliche 

Quelle von erhöhten RUNX2-Spiegeln in der IPF identifizieren. Wir beobachteten die 

Expansion einer proSPC-positiven/RUNX2-positiven Zellpopulation in BLEO und IPF, während 

die Vergrößerung der αSMA-positiven Myofibroblasten-Population hauptsächlich durch 

RUNX2-negative Zellen verursacht wurde. Weiterhin konnten wir zeigen, dass aus IPF-Lungen 

isolierte Fibroblasten verringerte RUNX2-Spiegel exprimierten. Der siRNA-vermittelte 

Knockdown von RUNX2 führte in ATII Zellen zu einer reduzierten Expression von CCND1 und 

S100A4 und beeinträchtigte die Zellmigration in A549 Zellen. Im Gegensatz dazu führte eine 

Herunterregulation von RUNX2 in Lungenfibroblasten zu einer deutlich verstärkten Expression 

der mesenchymalen Marker ACTA2, TNC und COL1A1, während CCND und S100A4 reduziert 

waren.  

Zusammengefasst weisen die Ergebnisse der vorliegenden Arbeit auf einen signifikanten 

Beitrag des Proteins RUNX2 zur Lungenfibrose hin. Unsere Daten erlauben ein Modell, in dem 

die erhöhte Expression von RUNX2 in ATII Zellen die Zellproliferation und Zellmigration 

stimuliert, während die Herunterregulation von RUNX2 in Lungenfibroblasten zur verstärkten 

Ablagerung von Extrazellulärmatrix beiträgt. Die zell-spezifische, medikamentöse Regulation 

von RUNX2 könnte eine neuartige Behandlungsstrategie für die idiopathische Lungenfibrose 

darstellen. 
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2. SUMMARY 

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiology and limited 

therapeutic options. IPF is characterized by epithelial cell injury, impaired cellular crosstalk 

between epithelial cells and fibroblasts, and the formation of fibroblast foci with increased 

extracellular matrix (ECM) deposition. In rare cases, this can even lead to pulmonary 

ossification. We investigated the cell-specific expression and pathophysiologic role of runt-

related transcription factor (RUNX) 2, a master regulator of bone development linked to 

profibrotic signaling.  

RUNX2 expression was upregulated in experimental bleomycin-induced lung fibrosis (BLEO) 

as well as in lung homogenates from IPF patients. RUNX2 levels correlated with disease 

severity as measured by decreased diffusing capacity of the lung for carbon monoxide (DLCO) 

or increased levels of the IPF biomarkers MMP7 and SPP1. We observed nuclear RUNX2 

expression in proSPC-positive hyperplastic epithelial cells in IPF, demonstrated an increase of 

a proSPC-positive/RUNX2-positive epithelial cell population in IPF and BLEO and showed that 

RUNX2 expression was increased in alveolar epithelial type (AT) II cells isolated from 

bleomycin-treated mice. Interestingly, the increase in αSMA-positive myofibroblasts in 

pulmonary fibrosis was mainly due to an increase in a RUNX2-negative cell population. Further 

evidence demonstrated that primary human lung fibroblasts (phLF) isolated from IPF tissue 

displayed reduced levels of RUNX2. Functionally, siRNA-mediated RUNX2 knockdown 

decreased expression of S100A4 and CCND1 in murine ATII cells and impaired the migration 

of A549 cells. In phLF, RUNX2 knockdown led to an induction of mesenchymal markers 

ACTA2, TNC and COL1A1 while CCND1 and S100A4 were decreased. 

In summary, this study suggests that regulation of RUNX2 expression contributes to fibrotic 

processes in the lung. In alveolar epithelial cells, upregulation of RUNX2 induced cell 

proliferation and migration whereas the downregulation of RUNX2 in fibroblasts contributed to 

the increased ECM deposition. We conclude, that cell-specific targeting of RUNX2 may 

represent a novel therapeutic approach for IPF.  
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3. INTRODUCTION 

3.1 Idiopathic pulmonary fibrosis  

Idiopathic pulmonary fibrosis (IPF) is a chronic, irreversible lung disease and the most frequent entity in 

the family of idiopathic interstitial pneumonias (IIP). The term IIP comprises six major entities, idiopathic 

pulmonary fibrosis (IPF), nonspecific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia 

(COP), acute interstitial pneumonia (AIP), respiratory bronchiololitis-interstitial lung disease (RB-ILD) 

and desquamative interstitial pneumonia (DIP) (1, 2). The annual incidence of IPF is 2.8 -  9.3 cases 

per 100.000, with an increasing trend (3). Usually older people are affected, the median age of IPF 

diagnosis is 66 years (4). IPF predominantly affects men and is more prevalent in people with a history 

of smoking or exposure to organic and anorganic dust. Patients typically present with chronic dyspnea, 

dry cough and finger clubbing. Basally pronounced inspiratory crackles can sometimes be heard on 

auscultation (1). Diagnosis of IPF requires high-resolution CT (HRCT) with a typical usual interstitial 

pneumonia (UIP) pattern (Figure 1), the exclusion of other known causes of interstitial lung disease 

(ILD) and in case of an unclear HRCT a surgical lung biopsy showing characteristic histopathologic 

changes. The HRCT pattern consists of reticular opacities and honeycombing (clustered, cystic 

airspaces) that are found pronounced in peripheral and basal areas of the lung (1). 

 

Figure 1: CT patterns of definite UIP and possible UIP.  

High-resolution computed tomography (HRCT) images showing (A) subpleural basal honeycombing with traction bronchiectasis, 

reticular and ground glass opacities or (B) patchy, peripheral reticular opacities without obvious honeycombing (images modified 

from Sverzellati et al. (5) with permission from Springer Nature). 
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Histological slides of surgical lung biopsies of IPF patients show a heterogeneous distribution of areas 

of dense fibrosis, areas of epithelial hyperplasia and normal airways. Interstitial inflammation can be 

seen but usually plays a minor role (6). 

The median survival of IPF patients is 2 to 3 years (1). However, the clinical course of IPF can be 

variable. Most of the patients exhibit a slow and gradual decline of lung function, whereas a minority 

decreases rapidly. Rapid worsening can be triggered by acute exacerbations (4). Several comorbidities, 

e.g. lung cancer, pulmonary hypertension, gastro-oesophageal reflux and obstructive sleep apnoea are 

often associated with IPF, although it is unclear if a causal relation exists (7). Recently, two molecules 

have shown efficacy in modifying the disease course of IPF. Nintedanib, a multi-tyrosine kinase inhibitor, 

reduced lung function decline and the incidence of acute exacerbations in IPF patients in the INPULSIS-

trials (8, 9). The mechanism of action of the second approved drug, pirfenidone, has not been clearly 

identified yet. In animal models of pulmonary fibrosis, it has been demonstrated to exert pleiotropic 

antifibrotic effects by downregulating TGF-β levels and reducing collagen synthesis (10-13). In the 

ASCEND-trial, administration of pirfenidone reduced lung function decline, increased 6-minute walk 

distance and increased the time of progression-free survival (14). Of note, neither pirfenidone nor 

nintedanib had a significant effect on mortality (9, 14). According to the recent national and international 

guidelines, all symptomatic patients should be started on one of these drugs at the time of diagnosis 

(15). Ongoing trials investigate potential combination therapies. Further recommendations for IPF 

therapy are the use of supplemental oxygen therapy in patients with hypoxemia and finally lung 

transplantation (1).  

Although major advances have been made in the past years, IPF remains an incurable and devastating 

disease. Better understanding of IPF pathophysiology is urgently needed to design more effective 

treatments.  

3.1.1 IPF pathophysiology 

For a long time, IPF has been considered a mostly inflammation-driven disease. However the failure of 

anti-inflammatory drugs like azathioprine, prednisone or cyclosporine led to a paradigm-change (1, 16). 

Current pathophysiologic theories suggest that perpetuated microinjuries to the alveolar epithelium 

aberrantly activate repair mechanisms (17, 18).  
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Epithelial cell apoptosis leads to a hallmark of IPF, the re-epithelialization of injury sites with hyperplastic 

alveolar epithelial type II (ATII) cells (Figure 2), often overlying spots of activated myofibroblasts (18). 

These activated myofibroblasts form so-called myofibroblast foci with increased deposition of 

extracellular matrix (ECM) (Figure 2) (17). It has been suggested that disturbed epithelial-mesenchymal 

crosstalk is driven through the epithelial secretion of different growth factors, e.g. TGF-β, PDGF (19) 

and the reactivation of developmental pathways like WNT, SHH or Notch (20). 

 

 

Figure 2: Myofibroblast foci and hyperplastic alveolar epithelial type II cells are hallmarks of IPF.  

Immunoflourescence stainings were performed on paraffine sections of IPF and donor lungs. Staining with the myofibroblast and 

smooth muscle cell marker alpha smooth muscle actin (αSMA) and the alveolar epithelial type II cell marker pro-surfactant protein 

C (proSPC), is shown in green. 4′,6-Diamidin-2-phenylindol (DAPI) was used to visualize cell nuclei and is shown in blue. Scale 

bars represent 100 µm for αSMA stainings and 20 µm for proSPC stainings. 
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3.2 Bleomycin model of pulmonary fibrosis 

Bleomycin is an anticancer drug that is currently used for the treatment of a variety of cancer types, 

such as germ-cell tumors, squamous cell carcinomas and lymphomas (21). However, the use of 

bleomycin in clinical practice is limited by its severe pulmonary side effects which can lead to interstitial 

lung disease (ILD) (22). In this work, intratracheal instillation of bleomycin was used to study pulmonary 

fibrosis in mice. The bleomycin-model is one of the most commonly used models for the induction of 

pulmonary fibrosis (23). It reflects several pathophysiologic features of IPF, like the release of pro-fibrotic 

cytokines, myofibroblast activation and direct alveolar epithelial cell (AEC) injury leading to epithelial cell 

hyperplasia (23-25). Bleomycin causes an inflammatory response with activation of macrophages and 

neutrophils in the first week after instillation. Subsequently, murine fibrosis develops from day 10 and is 

most prominent at day 14 to day 28. After the fibrotic phase, Bleomycin-induced fibrosis gradually 

resolves, which is in contrast to the continuous and irreversible progression of human pulmonary fibrosis 

(24). 

3.3 RUNT-related transcription factors 

The RUNT-related transcription factors (RUNX) comprise a family of genes which are essential for 

regular organ development and which have been implicated in a variety of diseases.  

3.3.1 Structure and function of RUNX genes 

The three RUNX genes share several conserved features. Firstly, the highly homologous RUNT-domain, 

which is crucial for DNA binding and the interaction with the coactivator, core-binding factor, β-subunit 

(CBFB) (26, 27). Secondly, all RUNX factors possess a nuclear-matrix-targeting signal (NMTS), 

inducing nuclear translocation. Thirdly, the carboxyl terminus of RUNT proteins is formed by the 

VWRPY-domain, an interaction scaffold for Groucho proteins (Figure 3). Two different promotors 

encode slightly different RUNX proteins. The distal promoter (P1) generates a RUNT protein with an 

amino terminus of the amino acids MASXS, whereas the proximal one (P2), generates a RUNT protein 

with the ending MRIPV (28, 29).  
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Figure 3: Structure of RUNX genes.  

Scheme of the RUNX gene structure depicting the RUNT DNA-binding domain (RUNT), the activation domain (AD), the inhibitory 

domain (ID), the VWRPY domain and a region of tandem repeats of glutamine and alanine amino acids (QA, unique to RUNX2) 

(image modified from Ito et al. (30) with permission from Springer Nature). 

Whether RUNX proteins act as transcriptional activators or repressors depends on the binding of 

coregulatory proteins like SMADs, YAP1, p300 and HDACs (31) (Figure 4).  Post-translational 

modifications, namely acetylation and phosphorylation influence RUNX protein activity and stability and 

probably also play a role in shifting from a gene repressing to a gene activating function and vice versa.  

 

Figure 4: Function of RUNX genes. 

RUNX factors can act as both transcriptional activators and repressors, depending on binding of co-regulatory proteins and 

post-translational modifications (image modified from Blyth et al. (28) with permission from Springer Nature). 

3.3.2 Role of RUNX genes in development 

The striking phenotypes of RUNX knockout mice underline their importance in development: RUNX1-

null mice exhibit defects in hematopoiesis and are embryonically lethal (32). RUNX3-null mice die soon 

after birth of respiratory failure as a result of impaired alveolar epithelial cell differentiation (33). Knockout 

mice for RUNX2 do not develop calcified bone and die of respiratory failure as well (Figure 5) (34). This 

is assumed to be due to restricted respiration caused by lacking ribs, however, it has never been 
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investigated if RUNX2 also plays a role in alveolar epithelium. CBFB-null mice exhibit a phenotype that 

resembles combined RUNX1- and RUNX2-deficiency. 

 

Figure 5: RUNX2 knockout mice fail to develop calcified bone.  

Wild-type (A) and RUNX2 mutant (B) mice embryos were stained with Alcian blue (blue, stains cartilage tissue) and Alcian red 

(red, stains bone tissue) (image modified from Otto et al. (34) with permission from Elsevier). 

3.3.3 Role of RUNX genes in disease 

RUNX genes play important roles in tumor formation and progression through the regulation of basic 

cellular processes such as cell differentiation, proliferation and migration. Besides, they can act as both 

tumor suppressor genes or dominant oncogenes, depending on the cellular context (28).  

RUNX1 has been shown to exert a tumor suppressive role and is often mutated in patients with acute 

myeloid leukemia (AML) (35). Expression of RUNX1 is increased in breast cancer and led to higher 

invasive potential of mammary epithelial cells (36). Furthermore, higher RUNX1 expression was found 

to correlate with lower survival of hormone-receptor negative breast cancer patients (37). Besides, a 

recent study demonstrated that RUNX1 enhances the proliferative capacity of mesenchymal stem cells 

and that a subsequent loss of RUNX1 leads to differentiation towards a myofibroblast phenotype (38).  

Due to the remarkable defects of RUNX2-knockout mice, RUNX2 was extensively studied in the context 

of bone physiology and disease. Recently, novel roles of RUNX2 in cancer were illuminated. Increased 

RUNX2 levels were demonstrated in breast, prostate, thyroid and pancreatic cancer as well as in 

malignant melanoma. RUNX2 function in these cancer types has been linked to increased cell migration, 

epithelial-to-mesenchymal transition (EMT) and sustained proliferation (39-44). Lung and breast cancer 

patients with higher RUNX2 expression demonstrated reduced survival (45, 46). In a model of ureteral-

obstruction induced kidney fibrosis, RUNX2 heterozygous knockout mice exhibited accelerated disease 
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progression, increased collagen deposition and upregulated αSMA expression, suggesting an 

antifibrotic role of RUNX2 (47). Interestingly, RUNX2 staining has been found in epithelium and 

fibroblastic stroma of a patient with pulmonary ossification (Figure 6), a rare condition in which actual 

bone is formed in the lung parenchyma. Pulmonary ossification is frequently associated with fibrotic lung 

diseases like idiopathic pulmonary fibrosis or pulmonary sarcoidosis (48-50). Although not proven, it is 

regarded as a metaplastic reaction to chronic lung injury with pulmonary fibroblasts differentiating into 

osteoblasts (48, 51).  

 

Figure 6: RUNX2 protein is expressed in pulmonary ossification.  

(A) CT image showing calcified lines and micronodules. (B) Hematoxylin and eosin staining of human lung showing bone tissue, 

partially containing bone marrow cells. (C) Immunohistochemical RUNX2 staining within an area of ossification (images A and B 

modified from Martinez et al. (52) with permission from Elsevier, image C modified from Kim et al. (53) with permission of The 

Korean Academy of Medical Science).  

RUNX3 is a tumor suppressor gene and has been shown to be frequently inactivated by epigenetic 

mechanisms in a variety of cancer types.  Hypermethylation of RUNX3 has been found in gastric, colon, 

bladder and lung cancer (54-58). Interestingly, RUNX3 knockout-mice showed impaired alveolar 

epithelial cell differentiation and spontaneously developed lung adenomas (33). 

3.3.4 RUNX2 and signaling pathways 

Several groups have found crosstalk of RUNX transcription factors with TGF-β, BMP and WNT-signaling 

(28, 59). These signaling pathways are crucial for normal embryologic development and often 

deregulated in cancer and other diseases, including IPF (20, 60). It has been demonstrated that 

canonical WNT signaling activates the RUNX2 promoter and induces RUNX2 gene expression (61). 

TGF-β signaling induced expression of RUNX2 in C2C12 mesenchymal stem cells (62), but inhibited 

RUNX2 transcription and activity in primary osteoblasts and the osteosarcoma cell line ROS 17/2.8 (63). 
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RUNX2 can also interact with TGF-β signaling via modulation of downstream signaling molecules, such 

as Smad3 or the TGF-β type I receptor (64). 

3.4 Aims of the study 

Little is known about RUNX genes in fibrotic diseases. Moreover, nobody has investigated the role of 

RUNX genes and proteins pulmonary fibrosis so far. Fibrosis-associated signaling pathways have been 

shown to modulate RUNX function and activity. Furthermore, RUNX2 staining has been shown in a 

patient with pulmonary ossification, a condition that is linked to pulmonary fibrosis. This led to the 

hypothesis that RUNX genes might be differentially regulated and contribute to disease pathogenesis 

and cellular dysfunction in pulmonary fibrosis.  

Aims of this study were:  

- to study the expression of RUNX genes on mRNA and protein level in experimental fibrosis 

induced by bleomycin  

- to study the expression of RUNX genes on mRNA and protein level in human idiopathic 

pulmonary fibrosis 

- to study the localization of RUNX genes in tissue sections in experimental fibrosis as well 

as in human idiopathic pulmonary fibrosis 

- to study the functional role of RUNX genes on gene expression in ATII cells and lung 

fibroblasts 
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4. MATERIALS & METHODS 

4.1 Materials 

4.1.1 Laboratory equipment and software 

Table 1: Laboratory equipment 

Product Manufacturer 

+4° Fridge, Medline LKV3912 Liebherr; Biberach an der Riß, DE 

-20° Freezer, Medline LGEX3410 Liebherr; Biberach an der Riß, DE 

-80° Freezer, U570 Premium New Brunswick; Hamburg, DE 
 Autoclave DX-45 Systec; Wettenberg, DE 
 Autoclave VX-120 Systec; Wettenberg, DE 
 Cell culture bench Herasafe KS180  Thermo Fisher Scientific; Darmstadt, DE 
 Centrifuge Mikro 200R Hettich Zentrifugen; Tuttlingen, DE 

Centrifuge Rotina 420R Hettich Zentrifugen; Tuttlingen, DE 

CO2 cell incubator BBD6620 Thermo Fisher Scientific; Darmstadt, DE 
 

Electrophoretic transfer cell, Mini Protean Tetra 
Cell 

Biorad; Hercules, USA 
 

Fluorescence microscope AxioImager M2 Zeiss; Oberkochen, DE 

Tissue homogenizer Sartorius Micro 
Dismembrator S 

Thermo Fisher Scientific; Darmstadt, DE 

Ice machine ZBE 110-35  Ziegra; Isernhagen, DE 

Imaging system Chemidoc XRS+ BioRad; Hercules, USA 

Incubator Heraeus B6 Thermo Fisher Scientific; Darmstadt, DE 

Liquid nitrogen cell tank BioSafe 420SC Cryotherm; Kirchen/Sieg, DE 

Liquid nitrogen tank Apollo 200 Cryotherm; Kirchen/Sieg, DE 

Lung function analysis machine FlexiVent SciReq; Montreal, CA 

Magnetic stirrer KMO 2 basic IKA,Staufen; DE 
 Mastercycler nexus Eppendorf; Hamburg, DE 

Medical decloaking chamber 
 

Biocare Medical; Concord, USA 

Microscope Axiovert 40C Zeiss; Oberkochen, DE 

Micro-Sprayer Aerosolizer, Model IA-1C Penn Century; Wyndmoor, USA 

Mini Microcentrifuge 230V Corning LSE; Kaiserslautern, DE 

Moticam 1080 BMH camera Motic; Kowloon Bay, HKG 

Multipipette stream Eppendorf; Hamburg, DE 

Nanodrop ND-1000, spectrophotometer Thermo Fisher Scientific; Darmstadt, DE 
 PCR platform Lightcycler 480 II Roche Diagnostics; Mannheim, DE 
 pH-meter InoLab pH 720 WTW; Weilheim, DE 

Pipettes Research Plus Eppendorf; Hamburg, DE 

Platereader Sunrise Tecan; Männedorf, Switzerland 

Platereader TriStar LB941 Berthold Technologies; Bad Wildbad, DE 

Powerpac Basic BioRad; Hercules, USA 

Roll mixer VWR International; Darmstadt, DE 

Scale XS4002s deltarange Mettler Toledo; Greifensee, DE 
 Thermomixer compact Eppendorf; Hamburg, DE 
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Ultrapure water supply MilliQ Advantage A10 Merck Millipore; Darmstadt,DE 

Vacuum concentrator plus Eppendorf; Hamburg, DE 
 Vacuum pump Ecovac 4 Schuett-Biotec; Göttingen, DE 

Vacuum pump Model No 22AN.18 KNF; Freiburg, DE 

Vortex mixer 230V Corning LSE; Kaiserslautern, DE 
 Water bath Aqua Line AL12 Lauda; Lauda-Königshofen, DE 

      

Table 2: Software 

Software Manufacturer 

Adobe CS5 Suite Adobe Systems; San Jose, USA  

Axio Vision Zeiss; Oberkochen, DE 

Endnote X8 Thomson Reuters; Munich, DE 

Image Lab 5.0 Biorad; Hercules, USA 

Lightcycler 480 Software 1.5 Roche; Mannheim, DE 

Magellan Platereader Software Tecan; Männedorf, CH 

Mendeley Desktop Mendeley Ltd.; London, UK 

Microsoft Office 2013  Microsoft Corporation; Redmond, USA 

Prism 5 GraphPad Software; La Jolla, USA 

 

4.1.2 Chemicals and reagents 

Table 3: Chemicals 

Substance Manufacturer 

0.25% Trypsin – EDTA solution Sigma-Aldrich; Munich, DE 

10xPCR Buffer II Thermo Fisher Scientific; Darmstadt, DE 

4′,6-Diamidin-2-phenylindol (DAPI) Sigma-Aldrich; Munich, DE 

Acetone AppliChem; Darmstadt, DE 

Agarose Sigma Aldrich; St. Louis, USA 

Ammoniumperoxodisulfat (APS) AppliChem; Darmstadt, DE 

Antibody diluent Zytomode Systems; Berlin, DE 

BCA Protein Assay Kit Thermo Fischer Scientific; Darmstadt, DE 

Bleomycin sulfate Almirall; Barcelona, Spain 

Bovine serum albumine (BSA) Sigma-Aldrich; Munich, DE 

Bromophenol blue AppliChem; Darmstadt, DE 

CHIR99021 R&D Systems; Wiesbaden-Nordenstadt, DE 

complete Mini, EDTA-free Roche; Mannheim, DE 

Dimethylsulfoxide (DMSO) Carl Roth; Karlsruhe, DE 

Dispase BD Bioscience; Heidelberg, DE 

Distilled Water, RNase/DNase-free Thermo Fisher Scientific; Darmstadt, DE 

Dithiothreitol (DTT) AppliChem; Darmstadt, DE 

Dulbecco's PBS (1x) Thermo Fisher Scientific; Darmstadt, DE 

ECL Western Blotting Substrate Thermo Fisher Scientific; Darmstadt, DE 

Ethanol p.a. AppliChem; Darmstadt, DE 

Fluorescence Mounting Medium Dako; Hamburg, DE 
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Glycine p.a. AppliChem; Darmstadt, DE 

Isopropanol p.a. AppliChem; Darmstadt, DE 

Lightcycler 480 SYBR Green I Master Roche; Mannheim, DE 

Lipofectamine RNAiMAX Transfection Reagent Thermo Fisher Scientific; Darmstadt, DE 

Methanol p.a. AppliChem; Darmstadt, DE 

MgCl2 solution Thermo Fisher Scientific; Darmstadt, DE 

Milk powder, non-fat, dried AppliChem; Darmstadt, DE 

MuLV Reverse transcriptase Thermo Fisher Scientific; Darmstadt, DE 

PCR Nucleotide Mix Thermo Fisher Scientific; Darmstadt, DE 

peqLab Gold DNase I Digest Kit VWR International GmbH; Erlangen, DE 

peqLab Gold Protein Marker V VWR International GmbH; Erlangen, DE 

peqLab Gold total RNA Kit VWR International GmbH; Erlangen, DE 

PhosStop Roche; Mannheim, DE 

Random Hexamers Thermo Fisher Scientific; Darmstadt, DE 

Restore Plus Western Blot Stripping Puffer Thermo Fisher Scientific; Darmstadt, DE 

RNase Inhibitor Thermo Fisher Scientific; Darmstadt, DE 

Roti-Block Carl Roth; Karlsruhe, DE 

Rotiphorese Gel 30 (37, 5:1) Carl Roth; Karlsruhe, DE 

Roti-Quick-Kit Carl Roth; Karlsruhe, DE 

Sodium Chloride Thermo Fisher Scientific; Darmstadt, DE 

Sodium Dodecyl Sulphate (SDS) Pellets Carl Roth; Karlsruhe, DE 

Tetramethylethylendiamin (TEMED) Thermo Fisher Scientific; Darmstadt, DE 

Tris, buffer grade AppliChem; Darmstadt, DE 

Triton X-100 AppliChem; Darmstadt, DE 

Trypan blue Sigma-Aldrich; Munich, DE 

Tween-20 AppliChem; Darmstadt, DE 

Western Blot substrate Super Signal West Dura Thermo Fisher Scientific; Darmstadt, DE 

Western Blot substrate Super Signal West Femto Thermo Fisher Scientific; Darmstadt, DE 

Xylene AppliChem; Darmstadt, DE 

Table 4: Recombinant proteins 

Recombinant protein Manufacturer 

Recombinant human TGF-β1 R&D Systems; Wiesbaden-Nordenstadt, DE 

Recombinant human WNT3a R&D Systems; Wiesbaden-Nordenstadt, DE 

Table 5: Media and media supplements 

Media / Media supplement Manufacturer 

DMEM F-12 Thermo Fisher Scientific; Darmstadt, DE 

Opti-MEM I Reduced Serum Medium Thermo Fisher Scientific; Darmstadt, DE 

Fetal Bovine Serum (FBS), Sera Plus PAN Biotech; Aidenbach, DE 

Penicillin/Streptomycin (P/S) 10000 U/ml Thermo Fisher Scientific; Darmstadt, DE 

GlutaMAX Thermo Fisher Scientific; Darmstadt, DE 

Table 6: pmATII medium 

Ingredient Amount 

DMEM 500 ml 

Glucose 1,8 g 

GlutaMAX 10 ml 
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Penicillin/Streptomycin 5 ml 

HEPES 5 ml 

FBS 50 ml 

 

4.1.3 Consumables 

Table 7: Consumables 

Consumable Manufacturer 

Cell culture flasks 75 cm2 Thermo Fisher Scientific; Darmstadt, DE 

Cell culture multiwell plates (6-well, 12-well) TPP; Trasadingen, CH 

Cell lifter Corning Inc.;  Corning, USA 

Falcon tubes 15 ml BD Bioscience; Heidelberg, DE 

Falcon tubes 50 ml BD Bioscience; Heidelberg, DE 

Filter tips Biozym Scientific; Hessisch Oldendorf, DE 

Glass slides Duran group; Wertheim, DE 

Grinding steel balls Neolab; Heidelberg, DE 

Multipipette tips Eppendorf; Hamburg, DE 

Nitril Gloves Rösner-Mautby Meditrade; Kiefersfelden, DE 

Nylon meshes pore size 100 µm, 20 µm, 10 µm Sefar; Heiden, CH 

Parafilm Bemis Packaging; Neenah, USA 

Pasteur pipettes Cellstar 5 ml, 10 ml, 25 ml, 50 ml Corning Inc.; Corning, USA 

PCR plates and sealing foil Kisker Biotech; Steinfurt, DE 

Reaction tubes 0.5 ml, 1.5 ml, 2.0 ml, 5.0 ml Greiner Bio-One; Frickenhausen, DE 

Western Blot Nitrocellulose membrane Biozym Scientific; Hessisch Oldendorf, DE 

Whatman blotting paper GE Healthcare; München, DE 

 

4.1.4 Primer 

Table 8: Murine primer 

Gene Sequence 5‘ – 3‘ 
NCBI accession 
number 

Product 
length 
(bp) 

Acta2 
Forward primer: GCTGGTGATGATGCTCCCA 
Reverse primer: GCCCATTCCAACCATTACTCC 

NM_007392.3 81 

Cbfb 
Forward primer: TAAGTACACGGGCTTCAGGG 
Reverse primer: AAGTATACGATCTCCGAGCGA 

NM_022309.4 
NM_001161456.1 
NM_001161457.1 
NM_001161458.1 

93 

Ccnd1 
Forward primer: ATGCCAGAGGCGGATGAGA 
Reverse primer: ATGGAGGGTGGGTTGGAAAT 

NM_007631.2 104 

Cilp 
Forward primer: ATGCCCAAGACTAGCCTGAA 
Reverse primer: ACAATGTATGGGGTCTCTGCC 

NM_173385.2 71 

Col1a1 
Forward primer: CCAAGAAGACATCCCTGAAGTCA 
Reverse primer: TGCACGTCATCGCACACA 

NM_007742.4 129 

Fn1 
Forward primer: GGTGTAGCACAACTTCCAATTACG 
Reverse primer: GGAATTTCCGCCTCGAGTCT 

NM_010233.2 
NM_001276408.1 
NM_001276409.1 
NM_001276410.1 
NM_001276411.1 

92 
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NM_001276412.1 
NM_001276413.1 

Hprt 
Forward primer: CCTAAGATGAGCGCAAGTTGAA 
Reverse primer: CCACAGGACTAGAACACCTGCTAA 

NM_013556.2 86 

Runx1 
Forward primer: CATCGCTTTCAAGGTGGTGG 
Reverse primer: CGCGGTAGCATTTCTCAGTT 

NM_001111021.2 
NM_001111022.2 
NM_001111023.2 
NM_009821.3 

109 

Runx2 
Forward primer: ACGAGGCAAGAGTTTCACCT 
Reverse primer: TGTCTGTGCCTTCTTGGTTC 

NM_001146038.2 
NM_001145920.2 
NM_009820.5 
NM_001271627.1 
NM_001271630.1 

120 

Runx3 
Forward primer: TCTGAACCCAACCCCCTGA 
Reverse primer: TGCTCGGGTCTCGTATGAAG 

NM_019732.2 117 

S100a4 
Forward primer: AGGAGCTACTGACCAGGGAGCT 
Reverse primer: TCATTGTCCCTGTTGCTGTCC 

NM_011311.2 103 

Spp1 
Forward primer: GTTTGGCATTGCCTCC 
Reverse primer: GGATCTGGGTGCAGGCTGTA 

NM_001204201.1 
NM_001204202.1 
NM_001204203.1 
NM_009263.3 
NM_001204233.1 

84 

Tnc 
Forward primer: GGCCCCGGCTTGAAGA 
Reverse primer: GGGCTTGAACCAGGTGATCA 

NM_011607.3 105 

 

Table 9: Human primer 

Gene Sequence 5‘ – 3‘ 
NCBI accession 
number 

Product 
length 
(bp) 

ACTA2 
Forward primer: GAGATCTCACTGACTACCTCATGA 
Reverse primer: AGAGCTACATAACACAGTTTCTCCTTG 

NM_001141945.2 
NM_001613.2 
NM_001320855.1 

116 

CCND1 
Forward primer: CCGAGAAGCTGTGCATCTACAC 
Reverse primer: AGGTTCCACTTGAGCTTGTTCAC 

NM_053056.2 94 

CILP 
Forward primer: CCCAGCTGATTGTCATAGCATC 
Reverse primer: AGGAGTTGGTGGCATTCTGA 

NM_003613.3 105 

COL1A1 
Forward primer: CAAGAGGAAGGCCAAGTCGAG 
Reverse primer: TTGTCGCAGACGCAGATCC 

NM_000088.3 128 

FN1 
Forward primer: CCGACCAGAAGTTTGGGTTCT 
Reverse primer: CAATGCGGTACATGACCCCT 

NM_212482.2 
NM_002026.3 
NM_212478.2 
NM_212476.2 
NM_212474.2 
NM_054034.2 
NM_001306129.1 
NM_001306130.1 
NM_001306131.1 
NM_001306132.1 

81 

HPRT 
Forward primer: AAGGACCCCACGAAGTGTTG  
Reverse primer: GGCTTTGTATTTTGCTTTTCCA 

NM_000194.2 157 

MMP7 
Forward primer: GAACGCTGGACGGATGGTAG 
Reverse primer: CAGAGGAATGTCCCATACCCA 

NM_002423.4 94 

RUNX1 
Forward primer: TTCACAAACCCACCGCAAGT 
Reverse primer: TCTGCCGATGTCTTCGAGGTTC 

NM_001754.4 
NM_001001890.2 
NM_001122607.1 

88 



 

MATERIALS & METHODS | 16 

RUNX2 
Forward primer: TATGAGAGTAGGTGTCCCGC  
Reverse primer: TGCCTGGGGTCTGTAATCTG 

NM_001024630.3 
NM_001015051.3 
NM_001278478.1 

102 

RUNX3 
Forward primer: CTTTGGGGACCTGGAACGG 
Reverse primer: GAGGTGCCTTGGATTGGGGT 

NM_001031680.2 
NM_004350.2 
NM_001320672.1 

120 

S100A4 
Forward primer: TCTTGGTTTGATCCTGACTGC 
Reverse primer: AACTTGTCACCCTCTTTGCC 

NM_002961.2 105 

SPP1 
Forward primer: TCGCAGACCTGACATCCAGTACC 
Reverse primer: CCTTCCCACGGCTGTCCCAA 

NM_001040058.1 
NM_000582.2 
NM_001040060.1 
NM_001251829.1 
NM_001251830.1 

146 

TNC 
Forward primer: CCATCTATGGGGTGATCCGG 
Reverse primer: TCGGTAGCCATCCAGGAGAG 

NM_002160.3 139 

 

4.1.5 Antibodies and siRNA 

Table 10: Primary antibodies for Western Blotting 

Antigen Source Dilution Order No. Manufacturer 

ACTB Mouse 1:50000 A3854 Sigma 

αSMA Mouse 1:1000 A5228 Sigma 

CILP Rabbit 1:1000 ab192881 Abcam 

CCND1 Rabbit 1:1000 2978 Cell signaling 

COL1 Rabbit 1:1000 600-401-103 Rockland 

FN1 Rabbit 1:1000 sc9068 Santacruz 

RUNX2 Mouse 1:1000 D130-3 MBL Nagoya 

RUNX2 Mouse 1:1000 ab76956 Abcam 

TUBB Rabbit 1:1000 2146 Cell signaling 

 

Table 11: Secondary antibodies for Western Blotting 

Antigen Source Dilution Order No. Manufacturer 

Mouse IgG Sheep 1:4000 NA931V GE Healthcare 

Rabbit IgG Donkey 1:10000 NA934V GE Healthcare 

 

Table 12: Primary antibodies for immunofluorescence stainings 

Antigen Source Dilution Order No. Manufacturer 

αSMA Rabbit 1:100 ab5694 Abcam 

CK Rabbit 1:500 Z0622 Dako 

GAL3 Rabbit 1:100 sc20157 Santacruz 

proSPC Rabbit 1:100 AB3786 Millipore 

RUNX2 Mouse 1:50 ab76956 Abcam 
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Table 13: Secondary antibodies for immunofluorescence stainings 

Antigen Source Dilution Order No. Manufacturer 

Mouse IgG, 
Alexa-flour 555 
conjugate 

Goat 1:1000 A21424 Invitrogen 

Rabbit IgG, 
Alexa-flour 488 
conjugate 

Goat 1:1000 A11008 Invitrogen 

 

Table 14: siRNA 

siRNA Order No.  Manufacturer 

Control scrambled siRNA sc-37007 Santacruz 

Human RUNX2 siRNA sc-37145 Santacruz 

Murine Runx2 siRNA sc-37146 Santacruz 

 

4.1.6 Buffers and recipes 

Table 15: Buffers and recipes 

Solution Compound 
Amount / 
Concentration 

PBS 10x pH=7.4 

NaCl 160 g 

HNa2HPO4 23 g 

KCl 4 g 

KH2PO4 4 g 

H2O 2000 ml 

pH is adjusted to 7.4  

PBS 1x  
PBS 10x 900 ml 

H2O 100 ml 

BSA 0,1% in PBS 

PBS 10x 900 ml 

H2O 100 ml 

BSA 10 ml 

Citrate buffer pH=6.0 

Citric acid 2.1 g 

H2O 1000 ml 

pH is adjusted to 6.0  

Radioimmunoprecipitation buffer 
(RIPA) 

Tris HCl 20 mM 

NaCl 150 mM 

EDTA 1 mM 

EGTA 1 mM 

NP-40 1 % 

Na4P2O7 2.5 mM 

Sodiumdeoxycholate 1 % 

pH is adjusted to 7.4  

Tris HCl 1,5 M pH=8.8 Tris 80.9 g 
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H2O 500 ml 

pH is adjusted to 8.8  

Tris HCl 0,5 M pH=6.8 

Tris 30.3 g 

H2O 500 ml 

pH is adjusted to 6.8  

SDS 10% 
Sodium Dodecyl Sulfate 10 g 

H2O 100 ml 

TBS 10x  pH=7.6 

NaCl 80 g 

Tris 24.2 g 

H2O 1000 ml 

TBS 1x 

TBS 10x 100 ml 

H2O 900 ml 

Tween-20 1 ml 

Laemmli buffer 

Tris 1,5M 1,3 ml 

SDS 0,8 g 

Glycerol 87% 4 ml 

Bromophenol blue 0.002 g 

Dithiotreitol  0.61 g 

Running Buffer 1x 

Tris 25 mM 3.03 g 

Glycine 200 mM 14,4 g 

SDS 0,1% 1 g 

H2O 1000 ml 

Transfer Buffer 1x 

Tris 25 mM 60.6 g 

Glycine  288 mg 

H2O 2000 ml 

Western Blot Stacking gel 5% 

H2O 1.4 ml 

30% Acryl-bisacrylamide mix 0.33 ml 

1,5 M Tris pH=6.8 0.25 ml 

10% SDS 20 µl 

10% Ammonium Persulfate 20 µl 

TEMED 2 µl 

Western Blot Resolving gel 10% 

H2O 7.9 ml 

30% Acryl-bisacrylamide mix 6.7 ml 

1,5 M Tris pH=8.8 5.6 ml 

10% SDS 200 µl 

10% Ammonium Persulfate 200 µl 

TEMED 8 µl 
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4.2 Methods 

4.2.1 Animal experiments: bleomycin model 

Eight- to ten-week old C57BL/6N mice (Charles River Laboratories, Sulzfeld, DE) were used in this 

study.  Mice were housed under standard conditions and had free access to water and laboratory rodent 

chow. All animal experiments were approved by the Government of Upper Bavaria and registered under 

project number 55.2-1-54-2532-88-12.  Bleomycin instillations were performed by Sarah Hermann, 

Nadine Adam and Anastasia van den Berg. For the induction of pulmonary fibrosis, mice were instilled 

3 units bleomycin sulfate per kg body weight dissolved in 50 µl sterile phosphate-buffered-saline (PBS). 

Control mice were instilled 50 µl sterile PBS. Intratracheal instillation was performed using a Micro-

Sprayer Aerosolizer, Model IA-1C. At day 3, day 7, day 10 and day 14 after instillation, mice were 

sacrificed. Lung function analysis was performed on day 14 mice by using a Flexivent lung function 

machine. Afterwards, lungs were excised, flushed with saline to remove remaining blood, and snap-

frozen in liquid nitrogen for further analysis. 

4.2.2 Human samples 

Whole lung homogenates of IPF or healthy donor patients (lung explants not used for transplantation) 

were used for RNA and protein isolation. Paraffin-embedded tissue sections were used for 

immunofluorescent stainings. All lung tissue samples were collected in frame of the European IPF 

registry (eurIPFreg) and provided by the University of Giessen Lung Center Biobank (member of the 

DZL Platform Biobanking). The study protocol was approved by the Ethics Committee of the Justus-

Liebig-University Giessen (No. 111/08 and 58/15). 
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4.2.3 Cell culture  

4.2.3.1 A549 cells 

 

Figure 7: A549 cells in culture. 

The human epithelial lung cancer cell line A549 was purchased from the American Type Culture 

Collection (ATCC) and cultivated in DMEM-F12 media supplemented with 10% FBS and 0,1% P/S. 

4.2.3.2 Primary human lung fibroblasts 

 

Figure 8: Primary human lung fibroblasts in culture. 

Isolation of primary human lung fibroblasts (phLF) was approved by the local ethics committee of the 

LMU München (333-10). phLF were isolated by Katharina Heinzelmann as published previously (65). In 

brief, specimen of lung resections were cut in 1-2 cm2 pieces and digested with collagenase I at 37°C 

for 2 hours. Digested material was filtered through nylon filters with a pore size of 70 µm. After 

centrifugation at 400 g and 4°C for 5 minutes, cells were cultured under standard conditions, at 37°C, 

5% CO2 using Dulbecco’s Modified Eagle’s medium/Nutrient mixture F12 medium (DMEM/F12) 

supplemented with 20% FBS and 1% penicillin / streptomycin. Medium was changed every 24 – 48 

hours and cells were splitted when reaching 80-90% confluency.  
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4.2.3.3 Primary murine alveolar epithelial type II cells  

 

Figure 9: Primary murine alveolar type II cells in culture. 

Primary murine alveolar epithelial type II (pmATII) cells were isolated by Kathrin Mutze, Julia Kipp and 

Anastasia van den Berg as published previously (66, 67). In brief, mice lungs were excised after 

bronchoalveolar lavage and flushed with 0.9% NaCl solution through the right heart. Lungs were inflated 

with 1.5 ml dispase and subsequently perfused with 300 µl of 1% low melting point agarose. Agarose 

filled lungs were incubated for 45 minutes at room temperature. Lungs were then minced and filtered 

through nylon meshes with pore sizes of 100 µm, 20 µm and 10 µm. Samples were centrifugated at 200 

g for 10 minutes. The pellet was resuspended and the resulting cell suspension was incubated on petri 

dishes coated with antibodies against CD45 and CD16/32 for a negative selection of macrophages and 

lymphocytes. Negative selection for fibroblasts was performed by adherence on cell culture dishes for 

25 minutes. To ensure viability, cells were stained with trypan blue. Afterwards, cells were either snap-

frozen in liquid nitrogen for further RNA or protein isolation or seeded in DMEM medium containing 10% 

FBS, 2 mM L-glutamine, 3.6 mg/ml glucose, 10 mM HEPES and 1% Penicillin/Streptomycin.  

4.2.4 Cell treatments 

Recombinant human TGF-β1 was used in a concentration of 2 ng/ml, recombinant human WNT3a in a 

concentration of 100 ng/ml and the glycogen synthase kinase (GSK) 3-β inhibitor CHIR99021 in a 

concentration of 2 µM. Prior to treatment, cells were incubated with starvation medium containing 0.1% 

FBS. Cells were washed with warm PBS and subsequently TGF-β1 in starvation medium was added to 

the respective wells for the indicated period of time. 



 

MATERIALS & METHODS | 22 

4.2.4.1 Gene knockdown using siRNA-transfection 

siRNA-mediated knockdown was performed in pmATII cells and phLF. pmATII cells were plated in 12-

well plates in a density of 1 million cells per well. Transfection was started at day 2 after isolation. 

Lipofectamine RNAiMAX and 80 nm Runx2 siRNA or 80 nm scrambled siRNA were each diluted in 

OptiMEM. After 5 minutes incubation both solutions were mixed and left for 30 minutes. 200 µl of the 

Runx2 siRNA mix (siRUNX2) or the scrambled siRNA mix (scr) and 550 µl antibiotic-free ATII medium 

were added to each well of a 12-well plate. Cells were stopped with ice-cold PBS after 48 hours and 

stored at -80°C. 

phLF were transfected while seeding. RUNX2 siRNA or scrambled siRNA were used at a concentration 

of 20 nm. 500 µl of the siRUNX2 transfection mix or scrambled transfection mix were added to each 

well. Subsequently 250.000 cells in 1500 µl medium were added and incubated for the indicated period 

of time. 

4.2.5 Scratch assay 

A549 cells were seeded in 6-well plates at a confluence of 80%, transfected with siRUNX2 or control 

and starved for 12 hours. Confluent monolayers were wounded by scraping a pipette tip across the 

monolayer, as previously described (68). After washing with PBS, cells were cultured in starvation 

medium. Images were captured immediately after the scratch (t = 0h), then observed 24 and 48 hours 

after the scratch by using a Moticam 1080 BMH camera that was mounted on an inverted microscope 

with a x4 objective. Each condition was conducted in triplicates, and 3 areas were observed for each 

well. Images were blindly analysed for the wound area by using ImageJ, and data were expressed as 

the percentage of wound closure normalized to t = 0h. 

4.2.6 RNA analysis 

4.2.6.1 RNA isolation from tissue 

Snap-frozen murine lungs were homogenized using a Mikrodismembrator S shaking device. Lungs were 

put into a cryotube together with a small metal grinding ball and shaken at a frequency of 3000 shakes 

per minute for 30 seconds. 1 ml of Roti-Quick Kit solution 1 was added to the powder and incubated on 

ice for 20 minutes. 1 ml of Roti-Quick Kit solution 2 was added to lysate. The solution was vortexed and 
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again incubated on ice for 10 minutes. After centrifugation with 16000 g on 4°C for 15 minutes, the 

supernatant was transferred to another tube. Subsequently total RNA was isolated using the Peqlab 

Gold total RNA kit according to the manufacturer’s instructions. DNase incubation was performed to 

increase the purity of the yield. Columns were incubated for 5 minutes with 40 µl RNase free water and 

RNA was eluted at 5000 g for 5 minutes. The eluted RNA was then diluted 1:5. Finally, samples were 

stored at -80°C. 

4.2.6.2 RNA isolation from cells 

Total RNA was isolated using the Peqlab Gold total RNA kit according to the manufacturer’s instructions. 

DNase incubation was performed to increase the purity of the yield. 25 µl to 40 µl RNase free water 

were added onto the column, depending on the expected amount of RNA. After 2 minutes of incubation 

RNA was eluted at 5000 g for 1 minute. Subsequently, RNA samples were stored at -80°C. 

4.2.6.3 RNA concentration and quality measurement 

Using the Nanodrop ND-1000, RNA concentration and quality was measured. Samples were determined 

to be DNA-free, when A260/280 ratio was higher than 1.8.  

4.2.6.4 cDNA Synthesis 

1000 ng of total RNA were diluted in 20 µl RNase-free water. Firstly, RNA was denatured at 70°C for 10 

minutes in an Eppendorf Mastercycler. Thereafter, 20 µl of RT-PCR Mastermix (Table 16) were added 

per sample. Reverse transcription of RNA to cDNA was then performed in an Eppendorf Mastercycler, 

in three cycles: 10 minutes on 20°C, 75 minutes on 43°C, 5 minutes on 99°C. Samples were cooled 

down to 4°C, diluted 1:5 with RNase-free water and stored at -20°C. 

Table 16: Mastermix for RT-PCR 

Reagent Stock conc.  Mastermix conc. Units Volume 

10x Buffer II 100 20 mM 4 µl 

MgCl2 25 10 mM 8 µl 

dNTPs 10 1 mM 2 µl 

Random Hexamers 50 5 mM 2 µl 

RNase-Inhibitor 10 0.5 U 1 µl 

Reverse 
Transcriptase 

50 5 U 2 µl 



 

MATERIALS & METHODS | 24 

H2O    1 µl 

4.2.6.5 Quantitative Polymerase-Chain-Reaction (qPCR) 

qPCR was performed using a Roche Light Cycler 480 II and the compatible SYBR Green Mastermix. 

Each gene was run in duplicates and data was normalized to Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT). Data were analysed using the Roche Lightcycler Software and are 

depicted as ΔCt = Ct (HPRT) – Ct (target) or as fold change, calculated according to the 2-ΔΔCt method. 

Table 17: Mastermix for qPCR 

Substance Concentration Amount 

Light Cycler Roche 480 II SYBR Green Master 2x 5 µl 

Primer forward  10 µM 0.25 µl 

Primer reverse 10 µM 0.25 µl 

H2O  2 µl 

cDNA-Template  2.5 µl 

 

Table 18: Lightcycler program for qPCR 

Step Substep Temperature Time Repetitions 

Initial denaturation  95°C 5 min 1x 

Run Method 

Denaturation 95°C  1 sec 

45x Annealing 59°C 5 sec 

Elongation 72°C 10 sec 

Melting Curve 

 95°C 5 sec 

1x  65°C 1 min 

 97°C  

Cooling  40°C 30 sec 1x 

4.2.6.6 Primer design 

Murine and human primers were designed with Primer-BLAST (69) . They were designed to cover all 

transcript variants and to create a PCR product with a size of 70 to 120 base pairs (bp) as well as a 

melting temperature optimum of 59°C. Other selection criteria were an exon-exon junction-span, a 

guanine/cytosine content close to 50% and low self-complementary rates. Primers were synthesized at 

Eurofins Genomics. 
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4.2.6.7 Primer testing 

Primers were tested for working efficiency and dimerization with cDNA-dilutions of 1/8, 1/64 and 1/512. 

Furthermore, primertests included a no template control. Primer with an efficiency from 1.8 to 2.2 and 

melting curves with a single peak were further used for qPCR analyses.  

4.2.7 Protein analysis 

4.2.7.1 Protein isolation from tissue 

Lungs were pulverized as described in “RNA isolation from tissue”. Protein lysis buffer was prepared by 

adding 1 tablet of the proteinase inhibitor complete Mini and 1 tablet of phosphatase inhibitor PhosStop 

to 10 ml of RIPA buffer. 300 µl of this mixture were added to the powder and incubated on ice for 30 

minutes. Lysates were centrifuged for 30 minutes on 4°C and full speed. Supernatant was collected and 

stored on -80°C.  

4.2.7.2 Protein isolation from cells 

Cells in 6-well or 12-well plates were lysed with 100 µl to 300 µl of RIPA, depending on the expected 

amount of protein. The lysate was collected, snap frozen in liquid nitrogen and incubated on ice for 30-

60 minutes. After centrifugation for 20 minutes on 4°C and 13000 g, supernatant was collected and 

stored on -80°C. 

4.2.7.3 Protein concentration measurement  

Total protein content was measured using a Bicinchoninic acid assay (BCA) kit. Buffer A and Buffer B 

were mixed in a proportion of 50:1. 100 µl of the mix was added to each well of a 96-well plate. Serial 

dilutions of BSA served as standard curve. Tissue lysates were further diluted whereas cell lysates were 

used undiluted. 5 µl of protein lysate were added and the plate was incubated for 30 minutes at 37°C. 

Subsequently the absorption at 562 nm was determined in a plate reader. The standard curve was 

calculated and the protein concentration determined accordingly. 
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4.2.7.4 Western Blotting 

Gels were casted according to “Buffers and Recipes“ (Table 15). 4x Laemmli buffer was added to 15 µg 

protein lysate and RIPA buffer was added for equal volumes. Protein lysates were denatured at 95°C 

for 5 minutes and chilled on ice. Gels were loaded and run at 80 V for 10 minutes until the lysates fully 

entered the stacking gel. Subsequently, gels were run at increased voltage of 100 V for 80 minutes. 

Blotting on Nitrocellulose membranes was performed at 300 mA for 90 minutes. The blots were then 

blocked in 5% milk for 1 hour and incubated in a solution of primary antibody and Roti-Block overnight 

on 4°C. At the next day, blots were washed 3 times in TBS-T and incubated in a solution of the respective 

secondary antibody and 5% milk for 1 hour on room temperature. Blots were again washed 3 times and 

imaged in the BioRad Chemidoc using ECL, Supersignal West Dura or Supersignal West Femto as 

substrate. Image analysis was done with the software ImageLab. 

4.2.8 Immunofluorescence stainings 

Paraffin slides of murine and human lung tissue were incubated overnight at 60°C and subsequently 

deparaffinized in Xylol two times for 5 minutes, 100% alcohol two times for 2 minutes, 90% alcohol for 

1 minute, 80% alcohol for 1 minute, 70% alcohol for 1 minute and rehydrated in distilled water for 30 

seconds. Antigen retrieval was performed in a pressure cooker. The slides were covered in citrate buffer 

and heated at 125°C for 30 seconds. Afterwards, slides were washed three times with 1x Tris buffer and 

incubated with Triton-X 0.1% for 15 minutes. Slides were again washed three times with 1x Tris buffer 

and afterwards blocked with 5% BSA Tris for one hour to prevent unspecific binding of the antibody. 

After removal of the 5% BSA solution, the antibody of interest was diluted in antibody diluent in the 

respective concentration. The slides were incubated with the antibody solution overnight in a humidified 

dark chamber on 4°C. Next day, slides were washed three times with 1x Tris buffer and incubated with 

the respective fluorophore-labeled secondary antibody for 1 hour on room temperature. Slides were 

washed again and incubated for five minutes in 0.5 µg / ml DAPI solution for visualization of nuclei. After 

washing, slides were mounted using Dako fluorescence mounting medium and glass covers. Decalcified 

murine bone was used as positive control of RUNX2 staining. Negative control stainings with only 

secondary antibody were included. Slides were imaged using a Zeiss Axioimager Microscope. Semi-

quantitative analysis was performed using the software ImageJ on at least 3 images per sample. All 

images presented in one panel were captured by using identical detector settings. 
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4.2.9 Microarray analysis 

4.2.9.1 Gene expression of whole lung homogenates from IPF or donor patients: GSE 47460 

A microarray dataset published in the Gene Expression Omnibus (GEO) with the accession number 

GSE47460 – GPL14550 was used to compare gene expression of IPF and donor patients. Gene 

expression data of 122 IPF and 91 donor patients was extracted. 

4.2.9.2 Gene expression of lung fibroblasts isolated from IPF or donor patients: GSE 17978 

A microarray dataset published in the Gene Expression Omnibus (GEO) with the accession number 

GSE17978 (70) was used to compare gene expression of uncultured primary human lung fibroblasts, 

isolated from IPF or donor patients. A mean value for gene expression of each gene and patient was 

calculated by calculating the mean value of gene expression of phLF isolated from two to four different 

lung regions of one patient.   

4.2.10 Statistical analysis 

GraphPad Prism 5 was used for statistical analysis of all data. Statistics were performed as indicated in 

the figure legends. 
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5. RESULTS 

5.1 Characterization of the bleomycin model of pulmonary fibrosis 

IPF patients exhibit characteristic lung function changes: decreased diffusing capacity for carbon 

monoxide (DLCO), reduced forced vital capacity (FVC) as well as decreased compliance and increased 

resistance (71, 72). Murine lung fibrosis at day 14 after intratracheal bleomycin instillation was confirmed 

by a reduction of compliance (PBS: 0.042 ± 0.0053 mL / cm H2O vs. BLEO: 0.017 ± 0.0025 mL / cm 

H2O; p = 0.0056) and an increase in resistance (PBS: 0.54 ± 0.054 cm H2O s / mL vs. BLEO: 1.1 ± 0.015 

cm H2O s / mL; p = 0.012) as measured by lung function analysis (Figure 10). Altered lung function 

parameters correspond to fibrotic changes in lung architecture with increased lung stiffness similar to 

IPF lungs. 

 

Figure 10: Bleomycin deteriorates lung function in mice 14 days after intratracheal instillation. 

Lung function analysis was performed on mice 14 days after instillation of PBS or bleomycin, using a FlexiVent machine. n=4 for 

each group. Statistics: unpaired Student’s t-test, * p<0.05, ** p<0.01. 
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Experimental bleomycin-induced lung fibrosis does not fully recapitulate the histopathological pattern of 

IPF lungs (73). However, lung histology revealed distorted tissue architecture, increased cell count and 

increased cell density in hematoxylin & eosin (HE) stainings of BLEO treated lungs (Figure 11). 

 

Figure 11: Bleomycin induces changes in lung tissue architecture in mice 14 days after intratracheal instillation. 

Hematoxylin & eosin stainings were performed on paraffine sections of mice lungs 14 days after instillation of PBS or bleomycin. 

Representative images of three PBS and three BLEO lungs are shown. Scale bars represent 100 µm. 

Gene expression of extracellular matrix (ECM) components was analysed in whole lung tissue lysates 

over a time course from day 3 to day 14 after bleomycin instillation. Highly significant upregulation of 

mRNA levels was found for alpha-1 type I collagen (Col1a1) (day14: PBS: ΔCt 2.2 ± 0.37 vs. BLEO: 

ΔCt 4.6 ± 0.18; p < 0.001), tenascin-c (Tnc) (day14: PBS: ΔCt -3.3 ± 0.78 vs. BLEO: ΔCt 1.5 ± 0.19; p 

< 0.001) and fibronectin (Fn1) (day14: PBS: ΔCt 2.5 ± 0.24 vs. BLEO: ΔCt 5.2 ± 0.20; p < 0.001) (Figure 

12). It is important to notice that upregulation of ECM markers already starts early after lung injury (at 

day 3-7) and persists after day 10 when the transition towards the fibrotic phase takes place. 

Upregulation at day 14 corresponds to the increased ECM production and deposition in IPF (74, 75). In 

contrast, alpha smooth muscle actin (Acta2) which is known to be upregulated in human IPF, was 

unchanged in the bleomycin-model at day 14. 

PBS d14 BLEO d14
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Figure 12: Bleomycin increases mRNA expression of extracellular matrix genes in mice 14 days after intratracheal 

instillation. Total mRNA was isolated from murine lungs on day 3, day 7, day 10 and day 14 after PBS- or bleomycin instillation. 

Gene expression of fibrotic marker genes Col1a1, Acta2, Tnc and Fn1 was assessed by qPCR. Data was normalized to Hprt and 

is shown as ΔCt, mean ± SEM. n=3 for each PBS timepoint, n=4-5 for each BLEO timepoint. Statistics: ANOVA, post-test: 

Bonferroni, compared selected columns, * p<0.05, *** p<0.001. 

5.2 Expression of RUNX genes in bleomycin-induced fibrosis 

mRNA expression of RUNT-related transcription factors (Runx1, Runx2, Runx3) and their main binding-

partner core-binding factor beta (Cbfb) was determined over a timecourse from day 3 to day 14 after 

bleomycin instillation. Runx1 mRNA levels were not significantly altered on any of the four timepoints. 

Runx2 as well as Cbfb mRNA levels were exclusively increased at day 14, possibly indicating a fibrosis-

specific alteration (Runx2 d14: PBS: ΔCt -1.7 ± 0.19 vs. BLEO: ΔCt -0.94 ± 0.17; p < 0.05) (Cbfb d14: 

PBS: ΔCt -1.3 ± 0.57 vs. BLEO: ΔCt -0.72 ± 0.17; p < 0.05). Runx3, a known regulator of Wnt-signaling 

(76), was downregulated on mRNA level on day 7 and day 10, but unchanged on day 14 (Figure 13). 

Furthermore, the RUNX2 target gene osteopontin (Spp1) (77) was confirmed to be highly upregulated 

in bleomycin-induced fibrosis on all timepoints (Spp1 d14: PBS: ΔCt 0.72 ± 0.31 vs. BLEO: 4.8 ± 0.23; 

p < 0.001, data not shown). 
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Figure 13: Runx2 and Cbfb mRNA levels are increased on day 14, whereas Runx3 is decreased at day 7 and 10 in 

bleomycin-induced pulmonary fibrosis. Total mRNA was isolated from murine lungs on day 3, day 7, day 10 and day 14 after 

PBS- or bleomycin instillation. Gene expression of Runx1, Runx2, Runx3 and Cbfb was assessed by qPCR. Data was normalized 

to Hprt and is shown as ΔCt, mean ± SEM. n=3-4 for each PBS timepoint, n=4-5 for each BLEO timepoint. Statistics: ANOVA, 

post-test: Bonferroni, compared selected columns, * p<0.05, ** p<0.01, *** p<0.001. 

RUNX2 protein expression was assessed by Western Blot analysis. Whole lung protein lysates of 

bleomycin-treated mice demonstrated increased RUNX2 protein level compared to PBS-treated mice 

(PBS: 1.0 ± 0.16 vs. BLEO: 3.3 ± 0.46; p = 0.0034) (Figure 14). To ensure this data, increased RUNX2 

protein in bleomycin-induced fibrosis was confirmed with a different primary RUNX2 antibody (data not 

shown). 

 

Figure 14: RUNX2 protein level is increased in experimental pulmonary fibrosis.  

Protein expression of RUNX2 in whole lung homogenates on day 14 after instillation of PBS or bleomycin. Densitometric analysis 

was performed using β-actin (ACTB) as loading control. n=5 for PBS, n=9 for BLEO. Statistics: unpaired Student’s t-test, ** p<0.01. 
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5.3 Localization of RUNX2 in bleomycin-induced fibrosis 

 

Figure 15: RUNX2 is expressed in alveolar and bronchial epithelium as well as in fibroblasts and alveolar macrophages 

in bleomycin-induced fibrosis.  

Representative immunofluorescence stainings of lung sections of bleomycin- or PBS-treated mice. RUNX2 staining is shown in 

red, co-staining with cytokeratin (CK, panel I and II), alpha smooth muscle actin (αSMA, panel III) and galectin-3 (GAL3, panel IV) 

in green. 4′,6-Diamidin-2-phenylindol (DAPI) was used to visualize cell nuclei and is shown in blue. Control staining with only 

secondary antibody and DAPI is shown in panel V. Higher magnifications of white squares are shown to the right. Scale bars 

represent 100 µm. n=3 mice for each group. 

To determine which cells in murine lung fibrosis express RUNX2 protein, co-stainings of murine lung 

sections were performed with markers for epithelial cells, myofibroblasts and macrophages. Nuclear 

staining of RUNX2 was found in alveolar epithelium as well as in bronchial epithelium of fibrotic lungs 

as evident from co-staining with CK (Figure 15, panel I and II). Furthermore, some αSMA-expressing 

fibroblasts were found to be RUNX2-positive in PBS and BLEO (Figure 15, panel III). Gal3-expressing 
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macrophages (Figure 15, panel IV) also expressed RUNX2 protein, but showed a different staining 

pattern which was rather cytosolic than nuclear (Figure 15, panel IV). 

 

Figure 16: Bleomycin injury leads to an increase in a CK+/RUNX2+ epithelial subpopulation, while the increase in 

fibroblasts is mainly due to an expansion of an αSMA+/RUNX2- subpopulation. Semiquantitative analysis of IF stainings of 

Figure 15 was performed with ImageJ software using 3 representative 20x images per mouse and condition.  

Data shown as mean ± SEM. Statistics are given in Table 19. 

Semiquantitative analysis of IF stainings was performed for epithelial (CK+) and mesenchymal (αSMA+) 

cell populations. Fibrotic lungs demonstrated an increase in epithelial cells determined by CK staining 

(CK+ total: PBS: 34 ± 2.4 vs BLEO: 61 ± 10 cells / 0.15mm2, p = 0.064). The increased total number of 

epithelial cells in bleomycin-induced pulmonary fibrosis was most likely due to an expansion of a 

RUNX2-positive epithelial subpopulation (CK+/RUNX2+: PBS: 22 ± 2.4 vs BLEO: 46 ± 7.3 cells / 

0.15mm2, p = 0.035). Secondly, a strong increase in (myo-)fibroblasts was determined by αSMA 

stainings (αSMA+ total: PBS: 11 ± 1.2 vs BLEO: 52 ± 16 cells / 0.15mm2, p = 0.059). In the αSMA-

positive cell population in the non-fibrotic lungs (PBS), only a very small proportion of cells were RUNX2 

negative. Interestingly, within the expanded αSMA-positive population in the BLEO lungs, the increase 

in cells was largely due to a greater RUNX2-negative population (αSMA+/RUNX2-: PBS: 2.1 ± 0.95 vs 

BLEO: 24 ± 5.3 cells / 0.15mm2, p = 0.015). A smaller increase could also be noticed in the RUNX2-

positive population (Figure 16, Table 19). 
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Table 19: Bleomycin injury leads to an increase in a CK+/RUNX2+ epithelial subpopulation, while the increase in 

fibroblasts is mainly due to an expansion of an αSMA+/RUNX2- subpopulation. Semiquantitative analysis of IF stainings of 

Figure 15 was performed with ImageJ software using 3 representative 20x images per mouse and condition. Data shown as mean 

± SEM. Statistics: unpaired Student’s t-test. 

 
PBS 

(cells / 0.15mm2) 

BLEO 

(cells / 0.15mm2) 
P value 

CK+/RUNX2+ 22.22 ± 2.42 46.11 ± 7.25 0.0354 

CK+/RUNX2- 11.78 ± 0.11 14.56 ± 2.99 0.4053 

αSMA+/RUNX2+ 8.44 ± 1.44 28.00 ± 10.55 0.1402 

αSMA+/RUNX2- 2.11 ± 0.95 24.11 ± 5.28 0.0148 

 

5.4 Expression of RUNX genes in idiopathic pulmonary fibrosis 

Next, RUNX2 mRNA levels were assessed in whole lung tissue lysates of IPF or donor patients. Here, 

RUNX2 mRNA was found to be significantly upregulated in patients with IPF (Donor: ΔCt -0.58 ± 0.18 

vs. IPF ΔCt 0.79 ± 0.15, p < 0.001). We further detected the upregulation of osteopontin (SPP1) mRNA 

(Donor: ΔCt 1.6 ± 0.68 vs. IPF: ΔCt 4.7 ± 0.31, p < 0.001) as well as of matrix metalloproteinase 7 

(MMP7) mRNA, a protease that cleaves ECM products (Donor: ΔCt -0.18 ± 0.39 vs. IPF: ΔCt 4.2 ± 0.31, 

p < 0.001). These genes have been shown to correlate with the disease course of IPF and were 

discussed as potential IPF biomarkers (78, 79). Furthermore, we found higher mRNA levels of ACTA2 

(Donor: ΔCt 3.3 ± 0.27 vs. IPF ΔCt 4.7 ± 0.24, p < 0.001) and TNC (Donor: ΔCt 0.61 ± 0.41 vs. IPF: ΔCt 

2.5 ± 0.18, p < 0.001) in lungs from IPF patients. (Figure 17).  
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Figure 17: RUNX2 mRNA levels are increased in IPF patients.  

mRNA levels of RUNX2, SPP1, MMP7, ACTA2, TNC were assessed by qPCR in whole lung homogenates of IPF and donor 

patients. Data was normalized to HPRT and is shown as ΔCt, mean ± SEM. n=8-16 for donor, n=14-37 for IPF patients. Statistics: 

unpaired Student’s t-test, ** p<0.01, *** p<0.001. 

To validate these findings in a larger cohort, gene expression data of IPF and donor patients was 

extracted from a dataset published by the Lung Tissue Research Consortium (LTRC) with the GSE 

accession number 47460. Here, an increase of RUNX1 (Donor: 7.3 ± 0.097 vs. 7.8 ± 0.072, p < 0.001) 

and RUNX2 (Donor: 7.4 ± 0.051 vs. IPF 8.1 ± 0.047, p < 0.001) mRNA was found, as well as a decrease 

in RUNX3 mRNA (Donor: 9.7 ± 0.059 vs. IPF: 9.5 ± 0.043, p < 0.05). Additionally, the main binding 

partner of RUNT-related genes, CBFB was found to be increased in human pulmonary fibrosis (Donor: 

10.6 ± 0.0321 vs. IPF: 10.8 ± 0.0149, p < 0.001). RUNX1 and RUNX2 levels were negatively correlated 

to the diffusing capacity of the lung for carbon monoxide (DLCO) (RUNX1 to DLCO: Pearson r = -0.49, 

p < 0.001) (RUNX2 to DLCO: Pearson r = -0.49, p < 0.001). DLCO is a clinical measurement of gas 

exchange through the alveolar-capillary membrane, which decreases with the progression of IPF (71). 

Furthermore, RUNX1 and RUNX2 levels were positively correlated with MMP7 (RUNX1 to MMP7: 

Pearson r = 0.42, p < 0.001) (RUNX2 to MMP7: Pearson r = 0.70, p < 0.001) and SPP1 (RUNX1 to 

SPP1: Pearson r = 0.46, p < 0.001) (RUNX2 to SPP1: Pearson r = 0.67, p < 0.001). To a lesser extent, 

negative correlation with DLCO and positive correlation with IPF biomarkers was also found for CBFB 

(CBFB to DLCO: Pearson r = -0.26, p < 0.001; CBFB to MMP7: 0.37, p < 0.0001; CBFB to SPP1: 0.38, 

p <0.001). RUNX3 showed a slightly positive correlation with DLCO (RUNX3 to DLCO: Pearson r = 

0.15, p = 0.04) but no correlation with IPF biomarkers (Figure 18). 
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Figure 18: RUNX genes are differentially regulated in IPF and RUNX1, RUNX2 as well as CBFB correlate with parameters 

of disease progression. Analysis of microarray data published with the accession number GSE47460 by the Lung Genomics 

Research Consortium. Gene expression levels of RUNX1 (A), RUNX2 (B), RUNX3 (C) and CBFB (D) were assessed in IPF and 

donor patients. Gene expression was correlated with % predicted diffusing capacity for carbon monoxide (DLCO) or expression 

levels of matrix metalloproteinase-7 (MMP7) and osteopontin (SPP1). n=91 for donor, n=122 for IPF patients. Statistics: unpaired 

Student’s t-test, * p<0.05, *** p<0.001; Pearson r was used for correlation analysis. 

Protein levels of RUNX2 and αSMA were assessed by Western Blotting. RUNX2 protein expression 

was significantly increased in whole lung homogenates of IPF patients (Donor: 1.0 ± 0.17 vs. IPF: 1.5 ± 

0.11, p < 0.05) and seemed to correspond to levels of αSMA (Figure 19). 

 

Figure 19: RUNX2 protein level is increased in IPF patients.   

Protein expression of RUNX2 and αSMA was determined in whole lung homogenates of IPF and donor patients. Densitometric 

analysis was performed using β-actin (ACTB) as loading control. n=7 donor, n=7 IPF patients. Statistics: unpaired Student’s t-test, 

* p<0.05. 
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5.5 Localization of RUNX2 in idiopathic pulmonary fibrosis 

 

Figure 20: RUNX2 localizes to several cell types and is strongly expressed in proSPC-positive hyperplastic ATII cells. 

Representative immunofluorescence stainings were performed on paraffine sections of donor and IPF lungs. RUNX2 staining is 

shown in red, co-staining with pro-surfactant protein C (proSPC, panel I), alpha smooth muscle actin (αSMA, panel II) and galectin-

3 (GAL3, panel III) in green. 4′,6-Diamidin-2-phenylindol (DAPI) was used to visualize cell nuclei and is shown in blue. Control 

staining with only secondary antibody and DAPI is shown in panel IV. Higher magnifications of white squares are shown to the 

right. Scale bars represent 100 µm. n=3 patients for each group. 

Localization of RUNX2 protein in tissue sections of IPF and donor patients was performed by co-staining 

with pro-surfactant protein C (proSPC) as an ATII cell marker, alpha smooth muscle actin (αSMA) as a 

myofibroblast / smooth muscle cell marker and galectin-3 (Gal3) as a marker for alveolar macrophages. 

Nuclear RUNX2 staining was partly found in αSMA-positive myofibroblasts as well as in Gal3-positive 

alveolar macrophages. Myofibroblast foci seemed to display only few RUNX2 positive fibroblasts. 

Hyperplastic ATII cells, sometimes completely lining the altered alveoli of IPF lungs, showed the 

strongest signal with the majority of cells being positive for RUNX2, whereas less RUNX2-nuclear 

positive ATII cells were detected in donor lungs (Figure 20).  
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Figure 21: IPF lungs exhibit an expanded proSPC+/RUNX2+ epithelial cell population while the increase in fibroblasts is 

markedly due to an expansion of RUNX2- fibroblasts. Semiquantitative analysis of IF stainings of Figure 20 was performed 

with ImageJ software using 3 representative 20x images per patient and condition. Data shown as mean ± SEM. Statistics are 

given in Table 20. 

Semiquantitative analysis of IF stainings revealed similar to the bleomycin-induced model of pulmonary 

fibrosis a total increase in ATII cells as well as (myo-)fibroblasts in fibrotic lung sections. The increase in 

proSPC-positive ATII cells in IPF lung sections (proSPC+ total: Donor: 30 ± 6.6 vs IPF: 75 ± 12 cells / 

0.15mm2, p = 0.028) was further characterized by an expansion of a RUNX2-positive subpopulation 

(proSPC+/RUNX2+: Donor: 7.9 ± 1.5 vs IPF: 57 ± 9.5 cells / 0.15mm2, p = 0.007). Additionally, the 

number of αSMA-positive (myo-) fibroblasts was increased in pulmonary fibrosis (αSMA+ total: Donor: 

23 ± 7.1 vs IPF: 57 ± 14 cells / 0.15mm2, p = 0.092). Here, it was mainly the αSMA-positive/RUNX2-

negative subpopulation that was expanded in IPF lungs (aSMA+/RUNX2-: Donor: 12 ± 4.3 vs IPF: 37 ± 

11 cells / 0.15mm2, p = 0.092). 
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Table 20: IPF lungs exhibit an expanded proSPC+/RUNX2+ epithelial cell population while the increase in fibroblasts is 

markedly due to an expansion of RUNX2- fibroblasts. Semiquantitative analysis of IF stainings of Figure 20 was performed 

with ImageJ software using 3 representative 20x images per patient and condition. Data shown as mean ± SEM. Statistics: 

unpaired Student’s t-test.  

 
Donor 

(cells / 0.15mm2) 

IPF 

(cells / 0.15mm2) 
P value 

proSPC+/RUNX2+ 7.89 ± 1.46 56.67 ± 9.45 0.0070 

proSPC+/RUNX2- 22.00 ± 5.21 18.67 ± 2.34 0.5903 

αSMA+/RUNX2+ 11.17 ± 3.34 20.11 ± 3.23 0.1261 

αSMA+/RUNX2- 11.45 ± 4.33 36.78 ± 10.62 0.0917 

 

 

Figure 22: RUNX2 protein is expressed in the nucleus of hyperplastic ATII cells adjacent to a fibroblastic focus.   

Representative images from H&E stainings (a, b) and immunofluorescence co-stainings for proSPC (green) plus RUNX2 (red; c, 

d) or co-stainings for αSMA (green) plus RUNX2 (red; e, f). H&E staining is shown for better visualization of the underlying tissue 

architecture. Higher magnification of white squares in c, e is shown in d, f, respectively. Scale bars represent 100µm (c, e) and 

20µm (d, f). 

Serial section stainings showed that hyperplastic RUNX2-positive ATII cells were often in close proximity 

to αSMA-positive myofibroblast foci, suggesting an epithelial-mesenchymal interaction (Figure 22). 
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5.6 Influence of signaling pathways on RUNX2 gene expression 

5.6.1 TGF-β signaling 

TGF-β is one of the most important drivers of fibrotic diseases and plays a crucial role in the progression 

of idiopathic pulmonary fibrosis (60).  Interplay between TGF-β signaling and RUNX genes has been 

shown in various cell types and is relevant for fundamental biological processes such as cell proliferation 

and differentiation (80, 81). To identify the relation of RUNX factors and TGF-β in lung cells, primary 

human lung fibroblasts and the human alveolar epithelial cell line A549 were stimulated with 

recombinant human TGF-β1.  

RUNX1 and RUNX3 mRNA levels were significantly increased by TGF-β1 in phLF (RUNX1: ctrl: ΔCt 

2.2 ± 0.27 vs. TGF-β1: ΔCt 4.8 ± 0.15; p = 0.0019) (RUNX3: ctrl: ΔCt -2.8 ± 0.51 vs. TGF-β1: ΔCt -1.5 

± 0.49, p = 0.0005) (Figure 23). RUNX2 levels were increased, but this result did not reach statistical 

significance (RUNX2: ctrl: ΔCt -1.4 ± 0.38 vs. TGF-β1: ΔCt -0.45 ± 0.16; p = 0.078). ECM genes 

COL1A1, TNC, FN1 and the myofibroblast marker ACTA2 were increased upon TGF-β1 treatment.  

 

Figure 23: RUNX1 and RUNX3 mRNA levels are increased by TGF-β1 stimulation in phLF.  

Cells were treated with human recombinant TGF-β1 (2 ng/ml) for 12 hours. Gene expression was analysed by qPCR, normalized 

to HPRT and displayed as ΔCt compared to untreated cells, mean ± SEM. n=3 for control, n=3 for TGF-β1. Statistics: paired 

Student’s t-test, * p<0.05, ** p<0.01, *** p<0.001. 

Treatment of A549 cells with TGF-β1 revealed a significant induction of RUNX1 and RUNX2 mRNA 

levels (RUNX1: ctrl: ΔCt -2.4 ± 0.029 vs. TGF-β1: ΔCt -0.018 ± 0.065, p = 0.0003) (RUNX2: ctrl: ΔCt -

8.2 ± 0.34 vs. TGF-β1: ΔCt -5.1 ± 0.10, p = 0.0064). RUNX3 however, was unchanged. TGF-β1 also 

induced the expression of fibrotic marker genes COL1A1, TNC, FN1 whereas ACTA2 was unchanged 

(Figure 24). 

RUNX1 RUNX2 RUNX3 COL1A1 ACTA2 TNC FN1-5

0

5

10

15
control

TGF-1

p=0.078** *** ** * * *

d
e
lt
a
 C

t

re
la

ti
ve

 t
o
  

H
P

R
T



 

RESULTS | 42 

 

Figure 24: RUNX1 and RUNX2 mRNA levels are increased by TGF-β1 stimulation in A549 cells.  

Cells were treated with human recombinant TGF-β1 (2 ng/ml) for 12 hours. Gene expression was analysed by qPCR, normalized 

to HPRT and displayed as ΔCt compared to untreated cells, mean ± SEM. n=3 for control, n=3 for TGF-β1. Statistics: paired 

Student’s t-test, ** p<0.01, *** p<0.001. 

5.6.2 WNT/β-catenin signaling 

Reactivation of the WNT/β-catenin pathway plays a significant role in the development of pulmonary 

fibrosis and inhibition of WNT/β-catenin signaling was shown to ameliorate pulmonary fibrosis in mice 

(66, 82-84). Importantly, RUNX2 was found to be a target gene of WNT/β-catenin signaling in osteoblast 

precursor cells (61). To elucidate a potential effect of WNT/β-catenin signaling on RUNX2 expression, 

A549 cells, pmATII cells and phLF were treated with recombinant WNT3a protein or CHIR99021, a 

GSK3β-specific inhibitor that leads to WNT/β-catenin pathway activation.  

RUNX2 mRNA levels were strongly increased in A549 cells after a 24h treatment with CHIR99021 (fold 

change: CHIR99021: 17 ± 3.3, p = 0.0011) (Figure 25 A). An 8h treatment of A549 cells with recombinant 

WNT3a also led to the induction of RUNX2 mRNA (fold change: WNT3a: 3.8 ± 0.56, p = 0.016) (Figure 

25 B). WNT3a treatment of pmATII cells caused a minor increase in RUNX2 mRNA but did not reach 

statistical significance (Figure 25 C). An induction of RUNX2 mRNA was also seen in phLF upon 

treatment with CHIR99021 (fold change: CHIR99021: 5.3 ± 1.3, p = 0.035) (Figure 25 D). 
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Figure 25: RUNX2 mRNA expression is increased by WNT/β-catenin activation in A549 cells and primary human lung 

fibroblasts. A) A549 cells were treated with the WNT/β-catenin activating compound CHIR99021 (2 µM) or vehicle control for 

24h. n=5 for control, n=4 for CHIR99021. B) A549 cells were treated with recombinant human WNT3a (100 ng/ml) or vehicle 

control for 8h. n=3 for each group. C) pmATII cells were treated with recombinant human WNT3a (100 ng/ml) or vehicle control 

for 12h. n=3 for each group. D) phLF were treated with the WNT/β-catenin activating compound CHIR99021 (2 µM) or vehicle 

control for 24h. n=3 for each group. In all experiments, gene expression was analysed by qPCR, normalized to HPRT and 

displayed as fold change to vehicle control, mean ± SEM. Statistics: unpaired Student’s t-test, * p<0.05, ** p<0.01. 

5.7 Expression and function of RUNX2 in ATII cells 

Alveolar epithelial cell damage is a key feature of IPF (79). ATII cells are regarded as lung stem cells, 

giving rise to ATI cells and thereby initiating repair processes (85-87). However, in IPF ATII cells are 

often altered, displaying hyperplasia and exhibiting either apoptosis or hyperproliferation (88). RUNX2 

was localized to hyperplastic ATII cells by immunofluorescence stainings (Figure 20), therefore the 

function of RUNX2 was further studied in healthy and injured alveolar epithelial cells. 
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5.7.1 Expression of RUNX2 in primary murine ATII cells 

To evaluate if RUNX2 expression is differentially regulated in pmATII cells in bleomycin-induced fibrosis, 

pmATII cells were isolated on day 14 after intratracheal PBS- or bleomycin-instillation and total mRNA 

was extracted. qPCR analysis revealed a significant upregulation of Runx2 (PBS: ΔCt -3.4 ± 0.18 vs. 

BLEO: ΔCt -2.0 ± 0.22, p < 0.001), the pro-migratory gene S100 Calcium Binding Protein A4 (S100a4) 

(PBS: ΔCt -3.2 ± 0.16 vs. BLEO: ΔCt -0.53 ± 0.31, p < 0.001) and the pro-proliferatory gene cyclin D1 

(Ccnd1) (PBS: ΔCt 3.8 ± 0.18 vs. BLEO: ΔCt 4.4 ± 0.14, p < 0.05) in fibrotic lungs. Furthermore, the 

fibrotic marker genes Tnc and Fn1 were found to be increased (Figure 26). Runx1 and Cbfb mRNA 

levels were not altered in ATII cells isolated from fibrotic lungs compared to non-fibrotic lungs. 

 

Figure 26: RUNX2 is upregulated in primary murine ATII cells isolated from fibrotic mouse lungs.  

On day 14 after instillation of PBS or bleomycin, mice were sacrificed and ATII cells were isolated. Gene expression was analysed 

by qPCR, data was normalized to Hprt and is shown as ΔCt, mean ± SEM. n=4-8 for PBS, n=4-9 for BLEO.  Statistics: paired 

Student’s t-test, ** p<0.01, *** p<0.001. 

To evaluate RUNX2 protein expression and localization, ATII cells were isolated at day 14 after 

intratracheal instillation of PBS or bleomycin. After isolation, cells were seeded on coverslips and 

subjected to immunofluorescence staining. A clear increase in RUNX2 protein in ATII cells from fibrotic 

mice lungs compared to non-fibrotic lungs was noticed. RUNX2 was strongly expressed in the nucleus 

of fibrotic ATII cells and prominent staining was also seen in proliferating fibrotic ATII cells (Panel III). In 

comparison, RUNX2 staining in non-fibrotic ATII cells was less intense and RUNX2 mainly localized to 

the cytosol (Figure 27). Interestingly, RUNX2 staining was not homogenously distributed throughout the 

nucleus, but localized to certain nuclear areas, whereas other nuclear areas were spared out. 
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Figure 27: RUNX2 protein expression is upregulated in fibrotic pmATII cells and localizes to the cell nucleus. 

Representative immunofluorescence stainings of isolated ATII cells from non-fibrotic and fibrotic mouse lungs. RUNX2 staining is 

shown in red. DAPI was used to visualize cell nuclei and is shown in blue. Scale bars represent 50µm. n = 3 mice for each group. 

 

5.7.2 Knockdown of RUNX2 in primary murine ATII cells 

To delineate RUNX2 function in healthy and injured alveolar epithelium, RUNX2 knockdown 

experiments were performed in primary murine ATII cells isolated on day 14 after bleomycin or PBS 

instillation. RUNX2 knockdown was confirmed by qPCR in the PBS group (fold change to PBS scr: 

siRUNX2: 0.31 ± 0.057; p = 0.001) and in the BLEO group (fold change to BLEO scr: siRUNX2: 0.42 ± 

0.057; p = 0.0006). Loss of RUNX2 led to a decrease of S100a4 mRNA levels (fold change to PBS scr: 

0.48 ± 0.068; p = 0.0024) as well as to a reduction of Ccnd1 (fold change to PBS scr: 0.75 ± 0.074; p = 

0.021) in uninjured ATII cells. In ATII cells from bleomycin-treated mice only the reduction of Ccnd1 

mRNA (fold change to BLEO scr: 0.74 ± 0.075, p = 0.041) reached statistical significance upon loss of 

RUNX2. However, S100a4 expression seemed to go in similar direction with the knockdown as 

observed in the PBS ATIIs (Figure 28). Surprisingly, Spp1 was unaltered in the PBS- as well as in the 

BLEO-group. Previous studies suggested a role of RUNX2 in epithelial-mesenchymal transition in A549 

cells (89). Therefore, several epithelial (Spc, Zo-1, Cdh1, Ocln) and mesenchymal markers (S100a4, 

Acta2, Twist) as well as the EMT transcription factor Snai2 were evaluated by qPCR analysis. Except 
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for the described changes in S100a4 mRNA, no clear evidence for RUNX2 regulating EMT in primary 

ATII cells was found (data not shown). 

 

Figure 28: Loss of RUNX2 in pmATII cells decreases Ccnd1 and S100a4 mRNA levels. 

Primary murine ATII cells isolated on day 14 after instillation of PBS or bleomycin were cultured and transfected with RUNX2-

specific siRNA (siRUNX2) or scrambled siRNA (scr). Knockdown was performed for 48 hours. Gene expression was analysed by 

qPCR, normalized to HPRT and displayed as fold change compared to scrambled siRNA control, mean ± SEM. n=6 for PBS scr, 

n=6 for PBS siRUNX2, n=4-5 for BLEO scr, n=4-5 for BLEO siRUNX2. Statistics: paired Student’s t-test * p<0.05, ** p<0.01, *** 

p<0.001. 

The downregulation of CCND1 on mRNA level was confirmed on protein level by Western blotting of 

cell lysates of transfected pmATII cells (fold change to scr: siRUNX2: 0.72 ± 0.12 SEM) (Figure 29). 

 

Figure 29: Loss of RUNX2 in pmATII cells decreases CCND1 protein levels.  

Protein expression of CCND1 was determined in cell lysates of scr- or siRUNX2-transfected primary murine ATII cells isolated 14 

days after instillation of bleomycin. Densitometric analysis was performed using β-actin (ACTB) as loading control. 

To investigate a potential effect of RUNX2 on cell migration, siRNA-mediated knockdown of RUNX2 was 

performed in A549 cells and a pipet tip scratch was made in an almost confluent cell layer. Cell migration 

into the scratch was captured for 48h. Already 24h after the scratch a significant reduction in cell 

migration could be observed in the siRUNX2-transfected cells compared to scr-transfected cells (scr: 
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21% ± 1.2% vs siRUNX2: 7.3% ± 1.3% wound closure, p < 0.01). This effect was even more prominent 

after 48h (scr: 34% ± 1.7% vs siRUNX2: 10% ± 1.4% wound closure, p < 0.001). 

 

Figure 30: Knockdown of RUNX2 reduces cell migration. A pipet-tip scratch was made in a cell layer of A549 cells transfected 

with RUNX2-specific siRNA (siRUNX2) or scrambled siRNA (scr). Representative images (n = 3) at 0 and 48h are shown (left). 

Original magnification, 4x. Data are expressed as percentage of wound closure normalized to wound area at t = 0h, mean ± SEM; 

n = 3 for each group. Statistics: unpaired Student’s t test, *** p<0.001. 

5.8 Expression and function of RUNX2 in lung fibroblasts 

Myofibroblasts are thought to be the main cell type responsible for extracellular matrix (ECM) deposition 

and are known for the expression of fibrotic marker genes COL1A1, ACTA2, TNC and FN1 (90). Since 

immunofluorescent stainings suggested decreased RUNX2 in myofibroblasts, expression levels of 

RUNX2 and its function were studied in isolated primary human lung fibroblasts (phLF). 

5.8.1 Gene expression of cultured IPF and donor fibroblasts 

To determine if RUNX genes were differentially expressed in phLF in IPF, fibroblasts were isolated from 

IPF and donor lungs. Fibroblasts were cultured until passage 3, harvested and total mRNA and protein 

were extracted. No differences in RUNX2 mRNA and protein expression (data not shown), nor in the 

expression of fibrotic marker mRNA (COL1A1, ACTA2, TNC, FN1) or protein (FN1, αSMA) was 

observed (Figure 31).  
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Figure 31: Cultured IPF and donor fibroblasts do not show differential expression of fibrotic marker genes.  

Primary human lung fibroblasts were isolated from IPF and donor lungs and cultured until passage 3. (A) Gene expression was 

analysed by qPCR, normalized to HPRT and displayed as ΔCt, mean ± SEM. n=3 for each group. (B) Protein expression of FN1 

and αSMA was determined by Western Blot analysis. β-tubulin (TUBB) was used as loading control. Statistics: unpaired Student’s 

t-test. 

5.8.2 Gene expression of non-cultured IPF and donor fibroblasts 

Recently, it has been demonstrated that gene expression of IPF fibroblasts is strongly dependent on the 

ECM the fibroblasts are cultured on (91). To rule out that gene expression patterns were altered due to 

cell culture on plastic dishes, we analysed a publicly available microarray dataset (GSE17978) where 

total mRNA was processed right after the isolation of fibroblasts (70). Here, we found significant 

downregulation of RUNX2 (Donor: 0.87 ± 0.049 vs. IPF 0.55 ± 0.061; p = 0.0031) but not of RUNX1 or 

RUNX3 in IPF fibroblasts and identified a significant negative correlation between mRNA levels of 

RUNX2 and the fibrotic markers COL1A1 (RUNX2 to COL1A1: Pearson r = -0.52; p = 0.028) and ACTA2 

(RUNX2 to ACTA2: Pearson r = -0.51; p = 0.029) (Figure 32). 
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Figure 32: RUNX2 mRNA levels are decreased in non-cultured fibroblasts isolated from IPF lungs and negatively 

correlate with COL1A1 and ACTA2 mRNA levels.  

Analysis of microarray data published with the accession number GSE17978. Gene expression levels of RUNX2 were assessed 

in non-cultured fibroblasts, isolated from IPF and donor lungs and correlated to expression levels of COL1A1 and ACTA2. Fibrotic 

marker genes COL1A1, ACTA2 and TNC were evaluated in this dataset. Statistics: unpaired Student’s t-test, ** p<0.01, *** 

p<0.001. Pearson r was used for correlation analysis. 

5.8.3 Knockdown of RUNX2 in primary human lung fibroblasts 

siRNA-mediated knockdown of RUNX2 decreased RUNX2 mRNA levels (fold change to scr: 0.056 ± 

0.0072; p = 0.0001). Notably, similar gene expression alterations as in the siRNA treated pmATII cells 

could be observed: S100A4 (fold change to scr: 0.47 ± 0.054; p = 0.0093) and CCND1 mRNA levels 

(fold change to scr: 0.57 ± 0.039; p = 0.0039) were reduced. Interestingly, ECM marker genes COL1A1 

(fold change to scr: 2.4 ± 0.13; p = 0.0005), ACTA2 (fold change to scr: 2.5 ± 0.30; p = 0.0054) and TNC 

(fold change to scr: 2.2 ± 0.43; p = 0.041) were upregulated upon knockdown of RUNX2 (Figure 33 A). 

We furthermore assured that RUNX1 levels were unaffected (data not shown). Western blotting of whole 

cell lysates followed by densitometry to β-actin confirmed RUNX2 knockdown (fold change to scr: 0.57 

± 0.049; p = 0.012) and COL1 upregulation (fold change to scr: 2.5 ± 0.078; p = 0.0029) on protein level 

(Figure 33 B). 
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Figure 33: Loss of RUNX2 increases expression of ECM genes and decreases S100A4, CCND1 mRNA in phLF.  

Cells were transfected with RUNX2-specific siRNA (siRUNX2) or scrambled siRNA (scr). Knockdown was performed for 72 hours. 

(A) Gene expression was analysed by qPCR, normalized to HPRT and displayed as fold change compared to scrambled control, 

mean ± SEM. n=4 for scr, n=4 for siRUNX2. (B) Protein expression of RUNX2 and type I collagen (COL1) was determined in cell 

lysates of scr- or siRUNX2-transfected primary human lung fibroblasts. Densitometric analysis was performed using β-actin 

(ACTB) as loading control. n=4 for scr, n=4 for siRUNX2. Statistics: paired Student’s t-test, * p<0.05, ** p<0.01, *** p<0.001. 

5.8.4 Knockdown of RUNX2 in primary human lung fibroblasts combined with TGF-β 

treatment 

Given the importance of TGF-β signaling in pulmonary fibrosis and myofibroblast differentiation, a 

combination of RUNX2 knockdown and TGF-β1 treatment was performed. Interestingly, RUNX2 

knockdown seemed to potentiate the TGF-β1 stimulation, as mRNA levels of COL1A1, TNC and FN1 

were significantly increased in phLF in the siRUNX2 + TGF-β1 group compared to phLF in the scr + 

TGF-β1 group (COL1A1: scr + TGF-β1: 3.2 ± 0.39 vs. siRUNX2 + TGF-β1: 4.9 ± 0.40; p < 0.01 ) (TNC: 

scr + TGF-β1: 3.6 ± 0.62 vs. siRUNX2 + TGF-β1: 7.8 ± 1.5; p < 0.01 ) (FN1: scr + TGF-β1: 2.6 ± 0.096 

vs. siRUNX2 + TGF-β1: 4.1 ± 0.46; p < 0.001 )  (Figure 34). 
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Figure 34: Loss of RUNX2 enhances TGF-β1 induced ECM gene expression. 

siRNA-mediated knockdown of RUNX2 was performed for 24 hours. Subsequently, cells were starved and afterwards stimulated 

with 2 ng/ml TGF-β1 for 12 hours respectively. Gene expression was analysed by qPCR, normalized to HPRT and displayed as 

fold change compared to scrambled control, mean ± SEM. n=6 for scr, n=6 for siRUNX2. Statistics: One-way ANOVA, Bonferroni's 

Multiple Comparison Test, * p<0.05, ** p<0.01, *** p<0.001. 
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6. DISCUSSION 

Idiopathic pulmonary fibrosis is a chronic lung disease characterized by excessive scar formation in the 

lungs. Patients, predominantly aged males, suffer from progressive dyspnea that finally leads to 

respiratory failure. The prognosis of IPF is poor and to date, therapeutic options remain limited (92). 

Numerous biological processes have been implicated in IPF, amongst them the reactivation of 

developmental pathways like WNT/β-catenin or SHH as well as the secretion of growth factors like TGF-

β or PDGF that stimulate myofibroblast differentiation and lead to excessive deposition of extracellular 

matrix (92, 93). The Runt-related transcription factors are a family of three genes essential for cell 

differentiation, proliferation, apoptosis and lineage specification (28, 30) that have a close 

interconnection with TGF-β and WNT/β-catenin pathways (64, 80, 81). RUNT genes have been shown 

to play major roles in development and disease of multiple organs and RUNX2 as well as RUNX3 have 

previously been demonstrated to play roles in alveolar epithelial cells (30, 33, 89, 94). RUNX2 has 

further been found in lungs with pulmonary ossification, a rare disease linked to pulmonary fibrosis (53). 

Interestingly, RUNX2 was also found to have beneficial effects in murine kidney fibrosis (47). While 

recent studies have reported that RUNX2 might be involved in the pathogenesis of pulmonary 

hypertension and asthma (95, 96), RUNX2 has not been studied in the context of pulmonary fibrosis 

and only little is known about RUNX2 function in organ fibrosis in general.  

6.1 Characterization of the bleomycin model of pulmonary fibrosis 

This study was partially based on a mouse model of pulmonary fibrosis induced by single intratracheal 

instillation of bleomycin. This model is commonly used for IPF research and captures several 

pathological characteristics of IPF: First, deterioration of lung function parameters (Figure 10) with 

fibrotic lungs displaying reduced compliance and increased resistance. This corresponds well to lung 

function alterations in IPF patients, who usually exhibit decreased DLCO, decreased forced vital 

capacity (FVC) and increased resistance (71, 72). Second, bleomycin injury led to changes in lung 

architecture with patchy fibrosis patterns (Figure 11). Fundamental changes in whole lung and cell-

specific gene expression patterns mimicked the situation in IPF lungs, e.g. the upregulation of ECM 

genes like COL1A1, TNC and FN1 (Figure 12, Figure 26). In contrast to human IPF however, ACTA2 

mRNA, which encodes the protein alpha smooth muscle actin, was not increased on day 14 in our 
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experiments. Few ATII cells were found to be hyperplastic, as typically seen in IPF. This feature of 

pulmonary fibrosis can more prominently be observed in models with repetitive intratracheal bleomycin 

instillations (23). Confirmation of the bleomycin-induced pulmonary fibrosis model is additionally 

provided by data that the newly approved IPF drugs nintedanib and pirfenidone were effective in 

reducing fibrosis severity (73, 97). It is important to mention that bleomycin-induced fibrosis in mice does 

not recapitulate all characteristics of human IPF. In the murine model, fibrosis develops subsequent to 

an inflammatory phase, whereas inflammation only plays a minor role in IPF. Pulmonary fibrosis in the 

single bleomycin model resolves by itself after a variable time, which is in sharp contrast to the 

progressive nature of IPF. Furthermore, the histopathological pattern of bleomycin-induced fibrosis does 

not display fibroblastic foci as in the human disease (23, 73).  

Consequently, our experiments did not only involve samples derived from bleomycin-induced pulmonary 

fibrosis but included numerous IPF patient samples, from lung tissue specimen to primary human 

fibroblasts to large, publicly available datasets generated by other researchers. 

6.2 RUNX genes are differentially expressed in pulmonary fibrosis 

Initially, the expression of all three runt-related transcription factors, together with their cofactor CBFB, 

was studied in experimental and human pulmonary fibrosis. RUNX1 was not significantly altered on any 

of the timepoints from day 3 to day 14 in bleomycin-induced fibrosis but was upregulated in human IPF 

and correlated with IPF biomarkers SPP1 and MMP7 as well as with reduced lung function, measured 

by DLCO. TGF-β1 induced the expression of RUNX1 in both primary human lung fibroblasts and the 

human lung epithelial cell line A549. RUNX1 is a key factor in hematopoiesis and the induction of 

leukemia (98). It functions as a tumor suppressor gene as determined by loss-of function mutations in 

leukemia and breast cancer or reduced expression in aggressive lung adenocarcinoma (99-101). 

However, several studies also demonstrated an oncogenic role for RUNX1 with an increased expression 

in a variety of tumor cell types and associated increased cell proliferation and survival (102, 103). 

RUNX1 has not been studied in human or experimental fibrosis yet. Kim et al. found a role for RUNX1 

in mesenchymal stem cell renewal, while the subsequent downregulation of RUNX1 in these cells 

induced myofibroblast differentiation, an essential feature of fibrotic diseases (38). Interestingly, 

interdependent regulation of S100A4 and RUNX1 has been demonstrated in lung adenocarcinoma 
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(104). This is of particular interest, since we demonstrated that S100A4 is upregulated in fibrotic pmATII 

cells and because RUNX2 mediated S100A4 expression in pmATII cells and phLF. In the human IPF 

dataset we analysed, the nearly similar expression pattern of RUNX1 and RUNX2 as well as the similar 

correlation with DLCO stood out. Together, this might point towards an overlapping function of RUNX1 

and RUNX2 in IPF, as it has been suggested in leukemia cells (103, 105). Further studies have to 

elucidate cell-specific localization of RUNX1 and its function on target genes and biological mechanisms 

in pulmonary fibrosis. 

RUNX3 mRNA was significantly downregulated on day 7 and day 10 in bleomycin-induced fibrosis. This 

is of interest, since day 10 represents a transition between the inflammatory and the fibrotic phase of 

this model (22). RUNX3 was also downregulated in IPF patients but only correlated to a minor extent to 

DLCO and did not correlate at all with MMP7 or SPP1. RUNX3 has previously been shown to decrease 

the activity of WNT/β-catenin-signaling by interaction with the β-catenin/TCF4 complex (76). WNT-

signaling has been implicated in the pathophysiology of IPF as a driver of exaggerated healing 

processes, leading to scar formation in the lung (106). Therefore, downregulation of RUNX3 might 

contribute to the development of fibrosis by sustaining aberrant repair by reduced inhibition of WNT 

signaling. RUNX3 has further been described to be both tumor suppressor and oncogene and is 

dysregulated in a variety of cancer types (30). Interestingly, loss of RUNX3 led to spontaneous EMT in 

gastric epithelial cells while reduced RUNX3 expression in ATII cells was associated with EMT in 

bronchopulmonary dysplasia (94, 107). As EMT has been suggested to contribute to the 

pathophysiology of IPF, further studies are needed to clarify the role of RUNX3 in alveolar epithelial cells 

in IPF. 

RUNX2, as well as the main binding partner of RUNX proteins, CBFB, were exclusively upregulated on 

day 14, when fibrosis starts to peak in the bleomycin model and not significantly changed on the 

inflammation-dominated timepoints. This might indicate a fibrosis specific mechanism for the regulation 

of these two genes. We discovered that mRNA level of RUNX2 was significantly increased in two cohorts 

of IPF patients. RUNX2 was not only upregulated on transcriptional level, strong upregulation of RUNX2 

protein in experimental fibrosis and human IPF could also be seen by Western Blot analysis. We showed 

that high expression levels of RUNX2 were correlated to decreased lung function and increased injury 

biomarkers. Correlation analysis stated similar correlation of both RUNX1 and RUNX2 to decreased 

lung function, however, the correlation to SPP1 and MMP7 was closer for RUNX2. It is not clearly 
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possible to state if high RUNX2 levels were causal to decreased lung function. It is also conceivable that 

progression of the disease led to increased RUNX2 expression. Parallel to this observation, it was 

reported that RUNX2 is upregulated in different epithelial tumors including lung cancer and frequently 

correlates with poor prognosis (45, 46, 108, 109). It has been shown that IPF patients have higher 

incidence of lung cancer and several similarities in signaling pathways involved in fibrosis and 

tumorigenesis have been highlighted (110, 111). Therefore, we propose that future studies should 

evaluate RUNX2 as a prognostic marker in IPF and dissect the common roles of RUNX2 in lung cancer 

and fibrosis. Further experiments localized changes in RUNX2 expression to alveolar epithelial cells and 

lung fibroblasts and its functional role in these cells was studied. The results will be discussed in the 

following, respective paragraphs. 

6.3 RUNX2 does not regulate SPP1 expression in ATII cells or phLF 

Osteopontin (SPP1) has previously been demonstrated to be one of the most upregulated genes in 

murine and human pulmonary fibrosis (91). We confirmed its upregulation on mRNA level in our model 

and found significant increases on all observed timepoints. It is known that SPP1 is not specific for 

(pulmonary) fibrosis but plays a general role in a variety of processes and diseases that involve 

inflammation, tissue regeneration and repair (92-94). Osteopontin also has a significant role in lung 

development as seen in a study of SPP1 knockout mice (112). In the context of bone, SPP1 is a classical 

target of RUNX2, therefore it was assumed to be an indicator of RUNX2 activity (75). However, in the 

following siRNA experiments, SPP1 could not be proven to be regulated by RUNX2 in pmATII cells or 

phLF. This might be due to a distinct set of RUNX coactivators or repressors in these cells. However, it 

is still possible that SPP1 might be regulated by RUNX2 in bronchial epithelium or macrophages in IPF.  

6.4 Increased RUNX2 in ATII cells stimulates CCND1 and proliferation 

ATII cells are cuboidal shaped cells that have been shown to be stem cells in the lung during steady-

state conditions and following lung injury (87). Rock et al. demonstrated that ATII cells are responsible 

for the regeneration of ATI cells after bleomycin-induced lung injury (86). Underlining the central role of 

ATII cell injury in the pathophysiology of IPF, disturbed ATII cell homeostasis e.g. in patients with 

surfactant protein mutations causes familial pulmonary fibrosis whereas targeted ATII cell injury directly 
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leads to pulmonary fibrosis (113-115). Colocalization studies in lung tissue of experimental fibrosis and 

human IPF demonstrated an increased RUNX2-positive epithelial cell population in fibrosis. 

Interestingly, increased nuclear RUNX2 protein was specifically found in hyperplastic alveolar epithelial 

type II cells in IPF, often closely located to fibroblastic foci. Confirmatory, a prominent increase in nuclear 

RUNX2 was found in fibrotic ATII cells isolated from bleomycin-treated mice. Intranuclear localization of 

RUNX2 indicates RUNX2 activity, due to its function as transcriptional activator or repressor (116). 

Previous reports showed that ATII cells in pulmonary fibrosis undergo apoptosis and necrosis (88, 117, 

118). Controversially, ATII cells isolated from fibrotic murine lungs exhibited increased proliferative 

capacity (66) and IPF patient lungs displayed higher levels of the proliferation marker and WNT-target 

gene CCND1 (83). This might be due to different subpopulations of ATII cells, one undergoing apoptosis 

after injury whereas another population becomes hyperproliferative to reconstitute the damaged 

epithelium. In our experiments, loss of RUNX2 in ATII cells led to decreased expression of CCND1, 

suggesting that higher RUNX2 levels enhance epithelial proliferation. In line with these findings, 

depletion of RUNX2 is associated with reduced regenerative potential in mammary epithelium and 

interferes with mammary organoid formation (119). Of note, RUNX2 expression in the mammary gland 

was localized to mammary basal cells, a compartment where mammary stem cells are thought to reside 

(120). Murine RUNX2-negative breast cancers showed reduced levels of CCND1 and KI-67 expression 

compared to RUNX2-positive breast cancers (121). Furthermore, in a study with 137 human breast 

cancer specimen a significant correlation between high RUNX2 levels and elevated levels of the 

proliferation marker KI-67 was demonstrated (109). It is therefore proposed that overexpression of 

RUNX2 in ATII cells is an essential element in an attempt of regeneration and/or stem cell self-renewal 

following lung injury. 

6.5 Increased RUNX2 in ATII cells stimulates S100A4 and migration 

In addition to cell proliferation, several other cellular functions and phenotypes have been associated 

with alveolar cell alterations and reprogramming in IPF (122). It has been reported that ATII cells isolated 

from fibrotic lungs are able to partly acquire fibroblast properties, e.g. the enhanced expression of 

mesenchymal genes like COL1 and αSMA (123-125). RUNX2 has been demonstrated to play a 

significant role in epithelial-to-mesenchymal transition (EMT) in the lung epithelial cell line A549, as well 

as in breast cancer and thyroid carcinoma cells (41, 44, 89). While we did not observe differences in 
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epithelial marker gene expression (such as Snai2, E-Cadherin, or tight junction protein 1) upon RUNX2 

knockdown (data not shown), we discovered that S100A4, a mesenchymal marker and migratory gene, 

was positively regulated by RUNX2 in ATII cells. S100A4 was initially described as a fibroblast marker 

upregulated in experimental and human lung fibrosis (126). We found increased S100A4 expression in 

fibrotic ATII cells, which might indicate reprogramming of these cells. Other groups demonstrated 

increased S100A4 staining in TTF1-positive epithelial cells in experimental lung fibrosis (127). Further 

studies highlighted that S100A4-positive fibroblasts were partly derived from lung epithelium after 

bleomycin injury, however they rarely showed a myofibroblast phenotype (128). RUNX2-dependent 

regulation of S100A4 has been linked to a migratory profile associated with metastasis in breast and 

prostate cancer (39, 41). Additionally, high RUNX2 expression was significantly correlated to higher 

incidence of metastasis in breast and lung cancer (45, 46). Confirmatory, RUNX2 silencing reduced 

migration of A549 cells in a wound healing assay. Altogether, the data indicate that RUNX2 initiates a 

process of reprogramming in alveolar epithelial cells and exerts a migratory effect through the induction 

of S100A4 in injured alveolar epithelium. This concept is in line with a recent study demonstrating that 

S100A4-positive cells, surrounding fibroblastic foci in IPF, are highly proliferative and constitute an active 

fibrotic front (129). 

6.6 Decreased RUNX2 in phLF enhances myofibroblast differentiation 

Another hallmark of IPF is the accumulation of activated αSMA-positive myofibroblasts in fibroblastic 

foci, producing excessive amounts of extracellular matrix. There are several hypotheses regarding the 

origin of these activated myofibroblasts. Potential sources include bone-marrow derived mesenchymal 

progenitor cells, fibrocytes, proliferating residential lung fibroblasts or alveolar epithelial cells that 

become fibroblast-like through EMT (17, 130). A recent study proved that targeted apoptosis of 

myofibroblasts was able to partially reverse dermal fibrosis and thus might also represent a promising 

therapeutic strategy for pulmonary fibrosis (131). In this work we found decreased expression of RUNX2 

protein in fibrotic foci, decreased mRNA expression of RUNX2 in isolated fibrotic fibroblasts and 

observed an increase in a RUNX2-negative αSMA-positive cell population in IPF. Our data revealed that 

RUNX2 silencing in fibroblasts enhanced myofibroblast differentiation through the induction of COL1A1, 

ACTA2 and TNC genes. Notably, we analysed a publicly available microarray data set comparing IPF 

and donor fibroblasts, in which we found that loss of RUNX2 correlated with increased COL1A1 and 
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ACTA2 expression. Similar to our findings, it has been reported that downregulation of RUNX1 is 

necessary for the differentiation of mesenchymal stem cells towards myofibroblasts. The authors 

reported that knockdown of RUNX1 led to upregulation of myofibroblast markers TNC and ACTA2 (38). 

Since we excluded alterations in RUNX1 expression in our studies, this goes in line with the partially 

overlapping function of RUNX genes. Furthermore, RUNX2 has been shown to suppress the expression 

of type 1 collagen in non-osseous mesenchymal cells (132). Importantly, upregulation of αSMA, COL1 

and COL3 have been reported in a RUNX2 heterozygous knockout mice subjected to a ureteral 

obstruction model of kidney fibrosis (47). We further demonstrated that RUNX2 regulated the expression 

of S100A4 and CCND1 in lung fibroblasts, similar to the regulation in epithelial cells. Recently Xia et al. 

showed that fibroblastic foci consist of an αSMA-positive/Procollagen-positive/KI-67-negative core, with 

an active fibrotic surface, that is S100A4-positive/KI-67-positive (129). This is in agreement with our 

data, suggesting that fibroblastic foci are primarily RUNX2 negative, and that downregulation of RUNX2 

in these fibroblasts leads to increased ECM production and decreased proliferative capacity. It will be 

necessary to elucidate the cell-specific contribution of RUNX2 by studying pulmonary fibrosis in 

fibroblast-specific RUNX2 knockout mice in the future. 

6.7 RUNX2 is a target of TGF-β and WNT/β-catenin signaling 

Chronic epithelial injury and subsequent hyperplasia of ATII cells with the release of growth factors and 

cytokines are key features of IPF that contribute to distorted epithelial-mesenchymal crosstalk and 

myofibroblast function (133). Several signaling pathways have been demonstrated to be involved in 

fibrogenesis, among them are the TGF-β and WNT/β-catenin pathways (17). Our findings of differential 

RUNX2 expression in experimental and human IPF raise the question which mechanisms are involved 

in either up- or downregulating RUNX2 in different cell types. We observed that WNT/β-catenin 

activation induces a robust increase of RUNX2 in epithelial cells and lung fibroblasts. This is in 

agreement with previous reports that demonstrated RUNX2 to be a WNT/β-catenin target gene in 

osteoblastic cells and mammary epithelium (61, 119). We further showed that RUNX2 was upregulated 

upon treatment with TGF-β1 in A549 cells, but not in lung fibroblasts. Interestingly, excessive interplay 

between RUNX genes and TGF-β signaling has been described. RUNX2 can modulate the expression 

of TGF-βRI and/or downstream targets of TGF-β signaling such as SMAD3 (39, 47, 64). Enhanced TGF-

β signaling can in turn upregulate RUNX2 on transcriptional level, as observed in this study, and further 
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at the posttranscriptional level through the phosphorylation of RUNX2 by ERK1/2 (28, 134). WNT-

induced RUNX2 expression and the subsequent modulation of TGF-βRI by RUNX2 might represent a 

regulatory crosstalk of both signaling pathways and might further serve as a feedback loop enhancing 

RUNX2 overexpression (64). However, our results raise the question how RUNX2 is downregulated in 

myofibroblasts. This might be explained by the distinct availability of secreted profibrotic mediators within 

the local microenvironment between alveolar epithelial cells and fibroblasts.  With respect to WNT 

signaling, which can be divided into two main pathways (a canonical WNT/β-catenin signaling and a 

non-canonical β-catenin independent pathway) (135), we and others have provided evidence of a 

differential WNT ligand signature, with an increase of non-canonical WNT ligand (such as WNT5A and 

WNT5B) expression by fibroblasts (136, 137). This altered signaling pattern might act differentially on 

several cell types depending on the expression of specific WNT surface receptors. The transcription 

factor TWIST1 represents another potential regulator of RUNX2 expression in fibroblasts. TWIST1 has 

been demonstrated to downregulate RUNX2 expression in zebrafish embryos (138) as well as in human 

mesenchymal stem cells by directly binding to the RUNX2 promotor (139). Interestingly, several groups 

have shown that TWIST1 is expressed in human IPF as well as in murine models of pulmonary fibrosis. 

Two studies demonstrated TWIST1 staining in alveolar epithelial cells and fibroblasts, whereas another 

study exclusively located TWIST1 to fibrotic fibroblasts (140-142). Therefore, increased TWIST1 

expression in fibrotic fibroblasts might be responsible of downregulating RUNX2, leading to 

myofibroblast differentiation and increased ECM deposition. 

6.8 Future perspective 

Emerging evidence points towards a significant role for RUNX genes mediating p53-dependent 

apoptosis after DNA-damage (143, 144). Ozaki et al. demonstrated that a complex of RUNX2 and p53 

binds to p53-target promotors and inhibits pro-apoptotic activity of p53 in response to adriamycin 

treatment (144). Kaminski et al. discovered that the administration of aerosolized thyroid hormone 

ameliorates pulmonary fibrosis in mice by reducing apoptosis in alveolar epithelial cells (145). 

Interestingly, RUNX2 can be regulated through activation of the thyroid hormone receptor (146). Thus, 

it is imaginable that RUNX2 upregulation in alveolar epithelial cells contributes to reducing epithelial cell 

death after bleomycin-exposure in experimental pulmonary fibrosis as well as in IPF. Further studies 
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might elucidate the contribution of RUNX2 to IPF pathophysiology in regard to the interaction with 

apoptosis and thyroid hormone pathways. 

One limitation of this study resides in the lack of in vivo evidence concerning the cell-specific contribution 

of RUNX2 to the development and progression of lung fibrosis. In future studies, this should be 

addressed using transgenic mice with conditional and cell-specific deletion of RUNX2 and would also 

help to identify cell-specific RUNX2 activators/repressors that could be investigated as therapeutic 

targets for IPF.   

6.9 Conclusions 

 

Figure 35: Model of RUNX2 function in pulmonary fibrosis. 

A simplified model of our findings is shown in Figure 35. In summary, we found upregulation of RUNX2 

in whole tissue of fibrotic lungs, correlating with disease progression. At the cellular level, we found 

altered RUNX2 expression in ATII cells and lung fibroblasts. Increased expression of RUNX2 in epithelial 

cells might represent an attempt of regeneration, preserving cells in a proliferating and undifferentiated 

state. Importantly and in contrast to the alveolar epithelial cell compartment, our data suggest that the 

αSMA-positive myofibroblast population, which is increased in pulmonary fibrosis, is primarily RUNX2-

negative. Knockdown experiments depicted that reduced RUNX2 expression in lung fibroblasts 
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correlated with the upregulation of fibrotic marker genes, thereby contributing to myofibroblast 

differentiation and ECM deposition. The results of this study indicate that RUNX2 levels might serve as 

a novel surrogate marker of IPF progression and that cell-specific modulation of RUNX2 could be a 

therapeutic approach for treating IPF patients in the future. 
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