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1 Summary 

 

Due to their innate tumor homing properties mesenchymal stem cells (MSCs) are being evaluated as 

potential vehicles for the targeted delivery of therapy genes deep into solid tumors. For successful 

therapeutic effects, engineered MSCs are required to home to and extensively infiltrate into tumor 

environments. To help facilitate the characterization of MSC bioactivity, a novel assay was established 

to quantify their tumor invasive potential in vitro. In this system, spheric cell aggregates, called 

spheroids, were generated from established tumor cell lines that then served as an invasion matrix for 

modeling the physiology of intervascular tumor microregions. Selective plane illumination 

microscopy (SPIM) was applied to image the three-dimensional distribution of MSCs within the 

spheroid after invasion. A strategy was developed for the automated quantification of their invasion 

characteristics following the pre-labeling of MSCs with a cell tracker dye. The method makes use of 

segmentation algorithms to detect single cells and the determination of the shortest distance of each 

MSC to the spheroid surface.  

The invasion assay was then used to characterize diverse aspects of MSC-based biology in the context 

of experimental tumor infiltration. Primary human bone-marrow derived MSC invasion into 

hepatocellular carcinoma cell (HUH7) spheroids revealed no effect of freezing and thawing of the 

MSCs directly prior to their application, but an increasing effect of genetic retroviral modification on 

tumor spheroid invasion was found. Whereas MSCs isolated under same conditions displayed little 

inter-donor variances, a significant variability was detected between MSCs derived from different 

tissue sources. Moreover, a deeper invasion of MSCs isolated and cultured under standard cell culture 

conditions as compared to good manufacturing practice (GMP) protocols was found. 

 

The general concept of immuno-oncology includes a cell-based tumor therapy where the adoptive 

transfer of CD8+ T cells or cytotoxic T lymphocytes (CTLs) expressing T cell receptors (TCRs) that 

recognize tumor associated antigens are applied to specifically eliminate cancer cells. Naturally 

occurring anti-tumor CTLs often are too weak to persist and operate within the immune-suppressive 

tumor micromilieu. Enhanced TCR binding affinity, resulting in so called high avidity T cells, has 

been linked to improved CTL function, but the overall functional significance of this in physiologic 

settings is a matter of contension.  

Expanding the potential use of the invasion assay, CTL migration into experimental spheroids was 

studied and the potential effect of TCR avidity for tumor antigens on the invasive potential was 

analyzed. To this end, a set of primary human CTLs were analyzed for their invasive capacity into 

experimental melanoma SKMel23 cell spheroids. Unspecific CTLs, or CTLs engineered with either a 

low or a high avidity TCR for the melanoma associated antigen tyrosinase were compared. Invasion 
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into the tumor spheroids was shown to be specificity-dependent, but avidity-independent. While 

unspecific, mock transduced CTLs did not migrate deeply into SKMel23 spheroids, both low and high 

avidity TCR CTLs were found to deeply infiltrate the spheroids within 24 h.  

Established cytotoxicity assays such as the chromium release assay, are well applied standard assays 

for CTL function. It is now clear, however, that they generally reflect somewhat artificial parameters. 

The use of the spheroid invasion assay was expanded to assess the CTL anti-tumor response in a more 

physiological context, with regards to spatial distribution, cellular interaction and 

microenvironmental influences. Higher functional responses of high avidity TCR CTLs were 

observed, with a complete tumor spheroid dissociation after 6 d. In addition, the surface expression of 

the clinically relevant and often targeted CTL inhibitor PD-L1 was found to be up-regulated in the 

melanoma cell line SKMel23 when cultured in 3D spheroids, but not in conventional 2D monolayer 

culture. This allowed the SKMel23 spheroids to be used as a suitable model system to further 

characterize a set of novel chimeric receptors (PD-1:28 and PD-1:BB) with regards to their potential 

effect on enhanced tumor killing. These constructs were generated using the extracellular domain of 

PD-1 and fusing it to the intracellular domains of CD28 or 4-1BB. This was done as an attempt to turn 

the normal PD-L1 mediated CTL inhibition seen into a potential activation. Using the spheroid 

invasion assay, an upgrading effect by these chimeric constructs of low avidity TCR CTLs to levels of 

high avidity TCR CTLs could be demonstrated in vitro on unmodified SKMel23 cells for the first time.  
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2 Zusammenfassung 

 

Aufgrund ihrer Eigenschaft, spezifisch zu Tumoren zu wandern, werden mesenchymale Stammzellen 

(MSCs) als potentielles Transportvehikel für Therapiegene gesehen, die diese tief in solide Tumore 

einbringen sollen. Therapeutische Effektivität setzt einen starken Tumortropismus und eine hohe 

Tumorinfiltration durch MSCs voraus. Um die Charakterisierung der biologischen Aktivität von 

MSCs zu erleichtern wurde hier ein neuer Assay etabliert, der ihr Tumorinvasionspotential in vitro 

quantifizieren soll. Dazu wurden aus etablierten Tumorzelllininen kugelförmige Zellaggregate 

generiert, sogenannte Sphäroide, die die Physiologie intervaskularer Tumor-Mikroregionen 

modellieren und hier als Invasionsmatrix dienten. Die Lichtblattmikroskopie erlaubte dann die 

Abbildung der dreidimensionalen Verteilung der MSCs im invadierten Sphäroid. Für die Auswertung 

wurde eine automatische Quantifizierungsstrategie der Invasionscharakteristika entwickelt, die durch 

eine vorherige Markierung der MSCs mit einem Zelltracker Farbstoff ermöglicht wurde. Diese 

Strategie basiert auf Segmentierungsalgorithmen, die Einzelzellen detektieren, und der Bestimmung 

der kürzesten Distanz jeder MSC zur Sphäroidoberfläche. 

Mit Hilfe dieses Invasionsassays wurden verschiedene Aspekte der MSC-Biologie untersucht mit 

Hinblick auf ihr Infiltrationsverhalten in experimentelle Tumore. Einfrieren und unmittelbares 

Auftauen vor der Anwendung von primären humanen, aus dem Knochenmark isolierten MSCs 

zeigten keinen Effekt hinsichtlich ihres Invasionspotentials in Leberkarzinomzell (HUH7)-Sphäroide. 

Im Gegensatz dazu wurde ein erhöhtes Invasionspotential nach genetischer retroviraler Modifikation 

der MSCs festgestellt. Während unter gleichen Bedingungen isolierte MSCs eine geringe Varianz 

innerhalb verschiedener Spender zeigten, wurde ein signifikanter Unterschied festgestellt zwischen 

MSCs, die aus verschiedenen Geweben isoliert wurden. MSCs zeigten eine tiefere Invasion, wenn sie 

unter Standard-Zellkulturbedingungen isoliert und kultiviert wurden, verglichen mit Zellen, die unter 

“good manufacturing practice” (GMP-) Konditionen gewonnen wurden.   

 

Der Begriff der Immunonkologie beinhaltet einen zellbasierten Ansatz, bei dem der adoptive Transfer 

von CD8+ T-Zellen oder cytotoxischen T-Lymphozyten (CTLs), die Tumor-assoziierte Antigen 

erkennende T-Zellrezeptoren (TCRs) exprimieren, Krebszellen spezifisch eliminieren soll. Natürlich 

vorkommende anti-Tumor-CTLs sind oft zu schwach, um im immunsuppressiven Tumormikromilieu 

zu bestehen und zu wirken. Erhöhte TCR-Bindeaffinität, die in so genannte hoch-avide T-Zellen 

resultiert, konnte mit verbesserter CTL Funktion in Verbindung gebracht werden, wobei deren 

letztendliche funktionale Bedeutung in einem physiologischen Umfeld umstritten ist. 

Unter Ausweitung des Anwendungsfeldes des Invasionsassays wurde die Migration von CTLs in 

experimentelle Sphäroide untersucht sowie der mögliche Effekt der TCR-Avidität gegen 
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Tumorantigene auf das Invasionspotential. Dazu wurde ein Satz primärer humaner CTLs auf ihr 

Invasionsvermögen in experimentelle Melanomzell(SKMel23)-Sphäroide hin charakterisiert. 

Verglichen wurden unspezifische CTLs und CTLs, die entweder mit einem niedrig- oder einem hoch-

aviden TCR gegen das Melanoma-assoziierte Antigen Tyrosinase ausgestattet wurden. Die Invasion in 

Tumorsphäroide zeigte sich als abhängig von der Spezifität, aber unabhängig von der Avidität. 

Unspezifische, mock-transduzierte CTLs wanderten nicht tief in SKMel23-Sphäroide ein, wohingegen 

sowohl niedrig- als auch hoch-avide TCR-CTLs innerhalb von 24 Stunden tief in die Sphäroide 

infiltrierten.  

Etablierte Cytotoxizitätsassays wie der Chrom-Release-Assay sind gut etablierte Standardassays für 

die CTL Funktionalität, wobei inzwischen klar ist, dass sie im Allgemeinen eher artifizielle Parameter 

simulieren. Die Anwendung des Sphäroid-Invasionsassays wurde auf die Erfassung der anti-Tumor-

Antwort von CTLs in einem physiologischeren Kontext ausgedehnt, mit Hinblick auf räumliche 

Verteilung, zelluläre Interaktion und mikroregionale Einflüsse. Beobachtet wurde eine höhere 

funktionale Antwort von hoch-aviden TCR-CTLs, mit einer kompletten Auflösung der Sphäroide 

nach 6 Tagen. Außerdem wurde festgestellt, dass die Oberflächenexpression des klinisch relevanten 

und oft addressierten CTL-Inhibitors PD-L1 auf der Melanomzelllinie SKMel23 hochreguliert war, 

wenn die Zellen in 3D Sphäroiden kultiviert wurden, nicht aber in konventioneller 2D Monolayer-

Kultur. Dies erlaubte es, die SKMel23-Sphäroide als geeignetes Modelsystem zu verwenden, um einen 

Satz neuer chimärer Rezeptoren (PD-1:28 und PD-1:BB) hinsichtlich ihres potentiellen Effekts einer 

verstärkten Tumorzellabtötung zu charakterisieren. Die entsprechenden Konstrukte wurden 

generiert, indem die extrazelluläre Domäne von PD-1 mit der intrazellulären Domäne von CD28 oder 

4-1BB fusioniert wurde, in einem Versuch, die normale PD-L1 vermittelte CTL Inhibition in eine 

potentielle Aktivierung umzukehren. Mit dem Sphäroid-Invasionsassay konnte eine Steigerung des 

Effekts niedrig-avider TCR-CTLs durch diese chimären Konstrukte auf ein Level hoch-avider TCR-

CTLs demonstriert werden, und zwar das erste Mal in vitro gegen unmodifizierte SKMel23 Zellen.  
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3 Introduction 

 

3.1 Cell-based tumor therapies 

 

3.1.1 Tumor characteristics and hurdles for therapy 

After heart disease, cancer represents the second most common cause of death worldwide with 8.8 

million deaths recorded in 2015. DNA mutations, in a background defined by genetic predispositions, 

are generated by physical (e.g. ultraviolet radiation), chemical (e.g. tobacco smoke components) or 

biological (e.g. hepatitis and human papilloma virus infections) carcinogens. These factors accumulate 

and eventually lead to transformation of normal cells into malignant tumor cells. These cells grow 

rapidly, invade healthy tissue and metastasize to other organs, the latter being the major cause of 

death from cancer (WHO 2018). 

Cancer treatment is complicated as it requires an attack on the body‘s own cells – targeting 

degenerated tumor cells, while sparing healthy tissues. Although there are phenotypes that are 

dominant or even exclusive for tumor cells, there’s also a vast heterogeneity between cancer types as 

well as constant cancer cell evolution over progressing stages of tumor growth. 

 

Classic cancer therapies include the surgical resection of solid tumors and locally restricted radiation 

therapy, both of which are ineffective as soon as tumor cells metastasize. Chemotherapies address 

cancer more systemically by attacking rapidly proliferating cells, a hallmark of tumor cells. 

Unfortunately, this growth characteristic is also seen in some healthy tissues including skin, hair, 

intestine and bone, and thus, the side effects of this systemic therapy can be severe.  

Research is constantly striving to develop more effective and targeted therapeutics for cancer patients. 

To this end, analysis of tumor-associated tissue composition has revealed two potential allies in the 

fight against cancer:  

 

- First, tumor homing mesenchymal stem cells (MSCs) that are employed as vehicles for the 

targeted delivery of therapy agents to tumor environments,  

and 

- second, anti-tumor cytolytic T lymphocytes (CTLs) that allow using the immune system itself 

as the most sophisticated defense system to selectively target cancer cells. 

 

When compared to the potential of chemotherapy drugs, cell-based therapeutics are much more 

complex to handle. However, their more selective and efficient mode of action makes them excellent 

candidates in the strategic battle against cancer.  
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3.1.2 Mesenchymal stem cells 

 

3.1.2.1 Biological and medicinal characteristics 

The Greek term “mesenchyme” means “middle infusion” and describes the ability of mesenchymal 

cells to migrate to, and fill, the space between the ectodermal and endodermal layer in early 

embryonic development. These essential characteristics allow these cell types to play a relevant role 

during wound repair (Caplan 1991). 

Mesenchymal stem cells - also referred to as marrow stromal cells - are adult stem cells with a 

multilineage potential, which are linked to tissue homeostasis and repair.  

There are a variety of tissue sources of MSCs, and diverse culture conditions for their propagation 

have been described. Importantly, no individual marker can distinctively define them. To address this 

issue, the International Society of Cell Therapy (ISCT) has released a set of minimal criteria to define 

“multipotent mesenchymal stromal cells” in scientific and clinical studies (Dominici et al. 2006). These 

criteria include: 

 

- MSCs are plastic-adherent when maintained in standard culture conditions. 

- MSCs express cluster of differentiation (CD) 105, CD73 and CD90, and lack expression of 

hematopoietic CD45, CD34, CD14 or CD11b, CD79α or CD19 and human leukocyte antigen – 

antigen D related (HLA-DR) surface molecules. 

- MSCs can differentiate into osteoblasts, adipocytes and chondroblasts in vitro. 

 

While originally described in bone marrow, MSCs are also present in perivascular cell populations 

throughout the body, and can be easily and rapidly culture-expanded in vitro, for example, from 

adipose tissue or umbilical cord blood (Crisan et al. 2008; Kern et al. 2006; Colter et al. 2000).  

MSCs can specifically home to sites of injury, where they replace damaged tissue cells and support 

tissue repair via facilitating neovascularization and immunomodulatory paracrine stimulation (Gojo 

et al. 2003; Qi et al. 2014). They are thought to differentiate into adipocytes, osteocytes, chondrocytes 

and myocytes, as well as hepatocytes, endothelial cells, cardiomyocytes, and even neural cells (Chen 

et al. 2016; Barry and Murphy 2004; Chivu et al. 2009; Tao et al. 2016; Sanchez-Ramos et al. 2000). 

 

What makes them especially applicable in the context of allogeneic transplantation is their general 

lack of immunogeneity: MSCs can escape T cell recognition due to low levels of MHC I, rare 

expression of MHC II, and a lack of the co-stimulatory molecules CD40, CD40L, CD80 and CD86 

required for T cell activation (Tse et al. 2003; Chamberlain et al. 2007). Although there is still a chance 

for T cells to detect nonself MSCs via weakly expressed MHC I complex, they won’t get activated 
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without further co-stimulation (see 3.1.3.3). For example, injecting allogeneic MSCs into a humanized 

immune mouse model did not evoke the immune responses that were seen upon allogeneic blood cell 

or fibroblast injections (Lee et al. 2014).   

 

The first stem cell transplantations – transfer of hematopoietic stem cells (HSCs) in leukemia patients – 

was successfully performed over 45 years ago (Storb 2012). In the past few years, also the utilization of 

MSCs has gained ground, with currently > 800 ongoing clinical trials being conducted worldwide for a 

wide range of indications (NIH. U.S. National Library of Medicine 2018). 

When transplanted together with HSCs in leukemia patients, MSCs can support hematopoietic cell 

engraftment, and act as immune suppressive agents (Lazarus et al. 2005). These immunomodulatory 

characteristics in MSCs have been used to reduce graft-versus-host disease and suppress autoimmune 

diseases, such as multiple sclerosis, where they also help in the regeneration of damaged neural tissue 

(Le Blanc et al. 2004; Bai et al. 2009; Yamout et al. 2010). Due to their osteogenic and chondrogenic 

differentiation potential, MSC transplants have been successfully used to repair bone defects or 

osteonecrosis (Quarto et al. 2001; Gangji et al. 2004). In vascular repair, MSCs have been shown to 

traffic to damaged heart tissue and to prevent myocardial scarring after infarction, as well as to help 

drive angiogenesis in critical limb ischemia (Maione et al. 2013; Williams et al. 2011). 

 

3.1.2.2 Mesenchymal stem cells in tumor therapy 

Tumors have been described to act like “wounds, that do not heal” (Flier et al. 1986). In that, they 

produce factors that help drive a constant tissue repair-like process including the mobilization and 

recruitment of MSCs. Indeed, both endogenous as well as adoptively applied MSCs have been shown 

to migrate to solid tumors and metastasis in brain, colon, liver, and skin (Nakamizo et al. 2005; 

Shinagawa et al. 2010; Niess et al. 2011; Wang et al. 2014). 

The homing mechanisms for MSC recruitment to tumor settings are thought to be similar to those at 

work during leukocyte recruitment towards sites of injury, and include: Recruitment, 

deceleration/rolling and firm arrest on the vascular surface, which is then followed by their 

transmigration across the endothelium, also called extravasation (Karp and Leng Teo 2009).  

 

Recruitment is mediated by gradients of chemokines such as stromal cell-derived factor (SDF)-1 that is 

secreted by inflamed or tumor tissues, and the corresponding CXC chemokine receptor (CXCR) type 4 

expressed on MSCs (Zhuang et al. 2009). The arrest and extravasation of MSCs is further driven by 

adhesion molecules like the integrin α4β1 heterodimer (Very Late Antigen (VLA)-4) that binds 

vascular cell adhesion molecule (VCAM)-1 on endothelial cells (Rüster et al. 2006). 
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Accordingly, the tumor homing capacity of MSCs has been shown to be improved by respective pre-

conditioning in vitro, such as proinflammatory cytokine stimulation resulting in the upregulation of 

chemokine receptors like CXCR4, or by transient genetic modification, for example with α4 integrin 

(Shi et al. 2007; Fan et al. 2012; Kumar and Ponnazhagan 2007). 

 

MSCs are thought to act as stromal progenitor cells in tumor microenvironments. Tumors depend on a 

close interaction with surrounding tumor stroma to persist and proliferate. Tumor stroma and its 

physiological contained cells are therefore cancer supporting factors. Indeed, MSCs differentiate into 

carcinoma-associated fibroblasts (CAFs), stimulating angiogenesis and malignant growth (Orimo et al. 

2005). By chemokine (C-C motif) ligand (CCL) 5 secretion, MSCs have been shown to also promote 

metastasis in experimental models (Karnoub et al. 2007). Moreover, they may deregulate the anti-

tumor immune response (Djouad et al. 2003). 

 

Because of their tumor-specific homing and differentiating properties, however, it is possible to 

employ MSCs to treat cancer. In a Trojan horse-like approach, they are used as vehicles for the 

targeted delivery of anti-cancer therapies deep into tumor environments. Oncolytic viruses loaded 

into MSCs, for example, have been shown to more efficiently target tumor sites as when injected 

directly into the body (Komarova et al. 2006; Hammer et al. 2015). 

Also single molecule based therapeutics often suffer from a short half-life and low stability when 

administered systemically. Genetic modifications of MSCs that allow continuous production of 

transgenic proteins, following their recruitment to tumors, have shown efficacy in diverse tumor 

models. For example, the immune stimulatory effects of interleukin (IL)-2, and the anti-proliferative 

effects of interferon (IFN)-β, when expressed by MSCs at tumor sites have been used to effectively 

reduce tumor growth (Stagg et al. 2004; Studeny et al. 2002). MSCs engineered to express growth 

factor antagonists such as the hepatocyte growth factor antagonist NK4, or pro-apoptotic proteins 

including tumor necrosis factor-related apoptosis induced ligands (TRAIL), have also shown positive 

results in various preclinical models (Kanehira et al. 2007; Reagan et al. 2012).  

 

An additional layer of therapeutic control can be delivered by transgenic proteins that do not 

counteract tumor cells themselves, but enzymatically activate a co-administered prodrug in the 

vicinity of the tumor setting. One of the most widely applied of such suicide gene systems makes use 

of the herpes simplex virus thymidine kinase (HSV-TK) gene, that encodes for an enzyme that 

activates the prodrug ganciclovir (GCV), or similar guanine analogues, through phosphorylation to 

their monophosphate form. Endogenous kinases then activate the agent to triphosphate guanine 

analogues that inhibit DNA strand elongation which finally leads to cellular apoptosis (Moolten 1986; 
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Rangel-Sosa et al. 2017). The HSV-TK/GCV system has been tested successfully in a series of anti-

cancer gene therapy approaches, and has been shown to be effective in killing not only the HSV-TK 

expressing cells, but also adjacent “bystander” cells (Mesnil and Yamasaki 2000). Niess et al. 

transfected MSCs with this suicide gene (Niess et al. 2011). In an in vivo mouse model they observed a 

significant therapeutic effect on hepatocellular carcinoma growth upon MSC recruitment to tumors.  

 

An additional level of tumor-selectivity has been achieved through the use of tissue or signal specific 

gene promoters that are used to drive MSC transgene expression (Bao et al. 2012). One approach has 

linked transgene expression to the response of MSCs to tumor derived signals. Activating therapeutic 

transgenes through specific differentiation-linked gene promoters ensures that the adoptively applied 

MSCs express the transgene only after their arrival and integration at tumor sites. In their study, Niess 

et al. successfully used the inflammatory cytokine induced gene promoter of CCL5/RANTES 

(regulated on activation, normal T cell expressed and secreted) to limit HSV-TK expression to liver 

tumors, and prevent expression in tissues that are potential normal targets of MSCs (e.g. skin, gut, 

secondary lymphatics, etc.) (Niess et al. 2011). This promising approach has progressed to the stage of 

phase I/II clinical trials, with phase I having been completed successfully (Niess et al. 2015; Einem et 

al. 2017).  
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3.1.3 Cytolytic T lymphocytes 

 

3.1.3.1 The immune system  

The immune system ensures the integrity of our body by protecting us against foreign intruders and 

harmful disease.  

From birth on, the innate immune system stands on guard, providing an immediate defense against 

infectious agents. It protects via epithelial barriers, components like inflammatory cytokines, and 

cellular leukocytes: macrophages and granulocytes, which engulf pathogens and natural killer (NK) 

cells, which can lyse infected cells. In addition, dendritic cells (DCs) patrol through tissues and collect 

and present peptides on their major histocompatibility complex (MHC) molecules. As professional 

antigen presenting cells (APCs), DCs mirror the antigenic composition of the body. 

Upon migration to secondary lymphoid organs, and their presentation of potential pathogenic, 

nonself peptides to T cells, DCs act as central players in the activation of the adaptive immune system.  

Upon induction, the adaptive immune system creates a complex, antigen-specific response. It can also 

generate a memory, and thus an adaptation towards previously encountered pathogens. This ensures 

a fast and effective response in case of secondary infections. The adaptive immune system is 

composed of three main types of cells: antibody producing B cells, CD4+ T cells, which regulate the 

immune response via stimulatory and inhibitory cytokines, and CD8+ T-cells, that exert besides 

cytokine secretion also direct cytolytic activity (Murphy and Weaver 2017). 

 

3.1.3.2 Cytolytic T lymphocytes – hit men of the immune system 

CD8+ T cells, or cytolytic T lymphocytes, identify and kill targets with high specificity. This selective 

process occurs via their individual T cell receptors (TCRs). T cells mature within the thymus, where 

the TCR repertoire becomes selected. Each TCR is generally composed of an α- and a β-chain with 

variable regions that determine its specificity and MHC restriction. As is seen for antibodies, the 

enormous repertoire of TCRs is created via the random V(D)J recombination of genes encoding for 

variable (V), diversity (D) and joining (J) segments.   

TCRs recognize nonself peptides presented on MHC class I surface proteins (Figure 1). Virtually every 

somatic cell expresses MHC I molecules on its cell surface. Bound to these are peptides that have been 

processed from cytoplasmic proteins. Thus, cells can be identified as either normal, or as infected or 

degenerated cells by the immune system. In humans, a series of MHC I proteins are individually 

encoded by human leukocyte antigen (HLA) genes.  

During their maturation in the thymus, T cells are positively selected for TCRs that recognize 

endogenous MHC I molecules. In addition, to avoid auto-immune reactions, they further undergo 

negative selection against TCRs that bind self-peptides too strongly.  
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Mature, but still naïve, CD8+ T cells migrate to secondary lymphoid organs such as lymph nodes, 

where they encounter APCs. T cells can become activated when their TCRs bind cognate peptide-

MHC complexes. They subsequently proliferate and differentiate into effector T cells. The now 

activated cells leave the secondary lymphatics and migrate through the body, and as “hit men” of the 

immune system, search for, and attack their targets: cells that express the appropriate peptide-MHC I 

complex (Murphy and Weaver 2017).  

 

In the course of target elimination, the CD8+ T cells release inflammatory cytokines, including 

interleukin (IL)-2, interferon (IFN)-γ and tumor necrosis factor (TNF)-α that condition the general 

immune milieu, and most importantly, induce apoptosis of the target cells. The latter is conducted via 

Fas ligand - when the respective receptor is present on the target cell - or by delivery of cytotoxins. 

CTLs form an immunological synapse on target cells towards which they transport lytic granules. 

These granules contain cytotoxic enzymes that are released into the synaptic cleft: i) perforin that 

opens pores in the target cell’s membrane resulting in influx of Ca2+, and ii), granzyme B that enters 

the cell and activates caspases (Murphy and Weaver 2017). 

 

3.1.3.3 Regulation of cytolytic T lymphocytes 

Immunological processes need to be tightly controlled to be effective, but safe. In the CTL response a 

series of regulatory mechanisms are seen.  

The strength of the CD8+ T cell response is directly correlated to the strength or avidity of TCR 

binding. Avidity can be seen as the sum of the binding affinities of multiple TCRs expressed on a T 

cell, and the peptide-MHC I complexes on the target cell. Although high avidity TCRs have a proven 

enhanced response against targets, a mixture of low, intermediate and high avidity TCR CTLs is 

thought to ensure effective and persistent target elimination over the course of disease. It has been 

proposed that a too high TCR avidity may result in a deleterious or ineffective T cell activity and is 

possibly depleted naturally (Viganò et al. 2012).   

The overall control of CTL activity is based on the integration of a series of receptors that induce either 

stimulatory or inhibitory signal cascades. A wide repertoire of co-stimulatory and co-inhibitory 

receptors is thought to help guide T cell action and effector function in different stages (Chen and Flies 

2013). In addition to TCR-mediated antigen recognition, co-stimulatory signals are needed to activate 

CTLs in the first place and have to be constantly provided for ongoing CTL function. APC expressed 

ligands such as CD80 and CD86 stimulate CTL receptors including CD28. This leads to a T cell that 

becomes fully effective, as opposed to tolerant or anergic. Both naïve and active T cells, however, also 

express a set of inhibitory receptors. Cytolytic T lymphocyte associated protein (CTLA)-4, for example, 

is a competitive homologue of CD28 that counterbalances the early activation of naïve CD8+ T cells, 



Introduction   12 

 

 

which makes a more stringent set of signals necessary to achieve effector function (Krummel and 

Allison 1995). Another inhibitor is the programmed cell death protein-1 (PD-1) receptor that is 

expressed on active CTLs to further control their action (Freeman et al. 2000). The PD-1 ligand PD-L1 

is expressed on various cell types including APCs and some tumor cells. Signaling through the PD-1 

receptor can block CTL effector activity. These various receptors and ligands that are able to inhibit 

and terminate a raising T cell response are called “immune checkpoints”. 

 

3.1.3.4 Cytolytic T lymphocytes used for tumor therapy 

In addition to pathogenic nonself antigens, T cells are also able to identify cancerous cells. This is 

possible due to mutation derived or highly overexpressed proteins in the cancer cells, or, for example, 

to the re-expression of proteins normally associated with development. These are collectively referred 

to as tumor associated antigens (TAAs). Tumor infiltrating lymphocytes (TILs) including T cells are 

found in many solid tumors (Hadrup et al. 2013). Successfully growing tumors have evolved ways to 

evade this immune surveillance. Most somatic cells display their inner composition via peptide 

presentation on MHC I on their surface. One immune evasion mechanism selects for tumor cells that 

have downregulated their MHC I expression, thus hiding their compromising antigens. Additional 

strategies include the passive or active inhibition of immune effector cells by tumor-associated 

conditions. The tumor milieu often lacks essential amino acids like tryptophan or arginine or displays 

high levels of immune suppressive cytokines or lactic acid. An also prominent hallmark of tumors is 

the expression of T cell inhibitory ligands like PD-L1 that can effectively block a robust CTL effector 

response (Hadrup et al. 2013).  

 

Recent insight into the mechanisms controlling tumor immune surveillance and escape has opened a 

whole new field for cancer therapy referred to as immuno-oncology. To date, over 25 

immunotherapies have been approved against cancer. These include the use of oncolytic viruses, 

cancer vaccines and cytokines, all of which have been shown to help drive anti-tumor immune 

activation. Monoclonal antibody-based drugs direct T cells to tumor cells as bispecific antibodies, or 

block the inhibitory PD-1/PD-L1 or CTLA-4 engagement as so called checkpoint inhibitors (Tang et al. 

2018). 

 

A promising new approach is referred to as adoptive T cell therapy (ATT). It makes use of anti-tumor 

CTLs as a cellular therapeutic agent. The extraction, ex vivo expansion and re-application of TILs with 

inherent tumor-specificity has already been shown to be effective in melanoma patients (Rosenberg et 

al. 2011). Alternatively, peripheral T cells from the patient (autologous) or taken from a donor 

(allogeneic) can be genetically engineered to gain an anti-tumor specificity. TAA-specific TCRs have 
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been identified via antigen-induced expansion of CTLs ex vivo. Wilde et al., for example, confronted T 

cells with DCs expressing a melanoma TAA, together with either an autologous or allogeneic MHC 

type (Wilde et al. 2009). Out of the heterogeneous T cell population, only cells with TAA-specific TCR 

proliferate. Against the allogeneic background, they were able to isolate melanoma specific TCRs with 

an unphysiologically high avidity. Re-transfected into T cells, these showed a high functional activity 

against melanoma cells.  

Although boosting the TCR avidity to unphysiological strength seemed promising, it became clear 

however, that caution is advised. High TCR avidity can cause deleterious cross-reactivity to healthy 

tissue. TCRs with enhanced avidity against melanoma associated antigen (MAGE-A)-3 mediated 

lethal cytotoxicity against healthy cardiomyocytes in two patients (Linette et al. 2013). Moreover, it 

was proposed that low avidity TCR CTLs may be better serial killers as they detach faster from target 

cells, but still stay in contact long enough to deliver their toxic cargo (Jenkins et al. 2009). The range of 

TCR avidities that are potent but safe has to be assessed individually for each antigen.   

 

An alternative T cell based therapy uses a different approach to target tumor-expressed antigens. 

Instead of employing a transgene TCR, this therapy makes use of “engineered” receptors to redirect 

the patient’s own T cells. These so called chimeric antigen receptors (CARs) are fusion proteins based 

on antibodies and CTL stimulatory domains. A CAR‘s extracellular domain is derived from the 

variable region of an antibody that delivers a degree of tumor-specificity, but is MHC I independent. 

The intracellular CTL activating domain is derived from CD3ζ, a key protein in the TCR signaling 

pathway. To increase persistence and activity of CAR-engineered T cells, the intracellular domain of 

CARs can be further extended by one or more co-stimulatory signaling domains. Without those co-

stimulatory domains, the anti-tumor response from CAR T cells has been found to be not prolonged 

or sufficient for effective killing (Cartellieri et al. 2010). The two currently Food and Drug 

Administration (FDA) approved CARs contain an intracellular co-stimulatory domain derived from 

either CD28 or 4-1BB receptors (Sadelain 2017). T cells engineered with these CARs showed high 

persistence of up to 20 months and a durable response in leukemia patients (Neelapu et al. 2017; 

Maude et al. 2018). However, although co-stimulation is crucial for the efficacy of therapeutic T cells, 

the coupling of stimulatory and antigen-detecting domains within one receptor also harbors risks. 

These CAR T cells have a much lower activation threshold, and thus are more likely to attack healthy 

cells expressing the antigen at low physiological levels (Morgan et al. 2010).  

 

Similar to the co-stimulation coupled CARs, high avidity TCRs can also cause severe side-effects via 

cross-reactivity or on-target effects against healthy cells expressing TAAs at physiological levels. 

Using low avidity TCRs like those naturally occurring in TILs, for example, may be a better choice for 
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clinical application. Instead of boosting T cell activity and persistence via enhanced receptor avidity, 

we and others are working on co-stimulation that can be introduced as a separate mechanism into a 

therapeutic T cell to enhance the efficacy of low-avidity CTLs.  

The continuous stimulation of e.g. CD28 by CD80 expressed on target cells was found to promote 

durable T cell cytotoxicity (Krummel et al. 1999). By contrast, the PD-L1/PD-1 inhibitory axis 

counteracts CTL activity and is a prominent feature in many tumors that is linked to immune evasion. 

In a novel approach, chimeric receptors were designed to turn that inhibition into activation (Figure 

1). Here, extracellular inhibitory domains derived from PD-1 were fused to intracellular stimulatory 

CD28 or 4-1BB signaling domains. These chimeric receptors enhance potential T cell effector function 

when confronted with PD-L1 positive tumor cells (Prosser et al. 2012; Ankri et al. 2013). They provide 

a tool to upgrade TILs or low avidity T cells and fine-tune T cell activity for effective but safe tumor 

treatment. 

 

 

Figure 1 T cell signaling receptors. TCR binding to peptide-bound MHC initiates various T cell effector 

functions. Co-stimulation via CD28 bound by CD80 or CD86 or via 4-1BB bound by 4-1BB ligand (4-1BBL) is 

necessary for ongoing T cell effector function. T cell effector function is inhibited via PD-1 bound by PD-L1 

which is often expressed on tumor cells. Fusion of extracellular inhibitory domains, e.g. from PD-1, and 

intracellular stimulatory domains, e.g. from CD28 or 4-1BB, leads to chimeric co-stimulatory receptors that turn 

inhibition into stimulation. 
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3.2 Multicellular tumor spheroids 

 

3.2.1 Three dimensional cell culture 

Cell-cell and cell-matrix adherence is an important physical property for tissue formation in 

multicellular organisms. Conventional cell culture grows cells in monolayers that adhere to the 

culture vessel. This culture technique has been used for decades for the investigation of cell biology.  

Culturing cells in a 3D manner, however, is thought to provide a more physiological platform for in 

vitro analyses. A series of techniques have been established to rebuild and culture 3D organ structures. 

These approaches range from the use of multilayers, over matrix embedded or scaffold based cell 

cultures, and microfluidic systems, to whole “organs on a chip” (Friedrich et al. 2007; Huh et al. 2011). 

One classic and broadly applied method uses the culture of cells in 3D multicellular spheroids. These 

spheroids are comparatively easy to grow, maintain and handle, and add a significantly exploratory 

value when compared to monolayer cultures.  

 

3.2.2 Spheroid culture techniques 

Early studies performed in the 1950’s had already demonstrated the potential of embryonic 

suspension cells to reaggretate into compact clusters in vitro, and that these clusters “re-establish 

tissue-like relationships” (Moscona 1957). When deprived of a surface to grow on, adherent cells tend 

to attach to each other instead. They then form cellular aggregates and ultimately dense and spherical 

shaped spheroids.   

 

Spheroid formation can be induced via various culture techniques. For example by culture in roller 

tubes, spinner flasks or on gyratory shakers, settling of cells to the bottom of the culture set up is 

inhibited by the constant movement. These approaches allow the generation of spheroids at a large 

scale, but also require large amounts of media.  

Alternatively, the culture of spheroids in 96-well plates, or in hanging drops allows the use of smaller 

quantities of growth media and, in addition, the individual manipulation and analysis of single 

spheroids. Dishes or plates can be pre-treated to inhibit the adhesion of cells to the culture plastic. 

Coating with agarose, or with the hydrogel polyhydroxyethylmethacrylate (polyHEMA), has been 

used effectively. Spheroid cultures in single drops hanging from the lid of a culture dish simply 

exploit gravity to prevent cell attachment to plastic. Portioning cell suspensions in single wells or 

hanging drops generally results in the formation of single spheroids of a homogeneous size and shape 

(Figure 2). This thus allows consistent results from analyses based on individual spheroids (Friedrich 

et al. 2007).  
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Figure 2 Tumor spheroids. Homogeneous spheroids generated from different tumor cell lines, grown in 

hanging drops for 3 d. 

 

3.2.3 Spheroids as in vitro tumor models  

The application of spheroid techniques has proven to be a valuable model system in cancer research.  

Sutherland and colleagues were the first to use multicellular tumor cell spheroids to test therapeutic 

efficacy. The authors showed that tumor cells grown as spheroids were less sensitive to radiotherapy 

than were monolayer cells (Sutherland et al. 1970). Bissell et al. further fueled skepticism about the 

reliability of results generated with 2D culture systems by showing that the environment and shape of 

a cell direct its gene expression profile (Bissell et al. 1982). Culturing cells in multicellular aggregates 

allows 3D cell-cell interactions, and hence a more physiological shape than that seen on plastic. 

Indeed, both proteomic and genetic expression profiles of tumor cells differ with their culture 

dimensionality (Gaedtke et al. 2007; Witt Hamer et al. 2008).  

 

Another parameter that tumor spheroids are able to mimic quite precisely is the heterogeneous tumor 

microenvironment. Solid tumors are normally undervascularized, harboring microregions with 

decreased perfusion. This leads to oxygen and nutrient concentration gradients, and metabolic waste 

gradients. Hypoxic and acidic regions at a greater distance to blood vessels often become necrotic, 

whereas cells in proximity to the vasculature are highly proliferative. In between these regions the 

cells are generally quiescent. Tumor spheroids can reflect these intervascular microregions with 
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respect to heterogeneous environments and cellular phenotypes. As spheroids grow larger, the inner 

most cells become deprived of oxygen and nutrients and toxic metabolic waste accumulates. The 

undersupplied center can become necrotic. It is then surrounded by a layer of quiescent cells with an 

outer rim of proliferating cells (Figure 3, Sutherland 1988; Hirschhaeuser et al. 2010).  

In addition, the general cellular growth kinetics of spheroids has been shown to reflect those seen 

within their in vivo counterparts, with an early exponential growth, followed by a period of retarded 

growth (Mayer et al. 2001). 

 

 

Figure 3 Composition of a spheroid’s heterogeneous physiology displayed as combined images of median 

sections analyzed with different methods: autoradiography, the tunnel assay, bioluminescence imaging, and 

probing with oxygen microelectrodes (adapted from Hirschhaeuser et al. 2010). 

 

As proposed early on by Sutherland et al., these heterogeneous tumor conditions impact tumor cell 

drug resistance and therefore make tumor spheroids an excellent in vitro model to predict potential 

therapeutic efficacy in vivo (Sutherland et al. 1970).  

In addition to a decreased response to radiotherapy, tumor cells in spheroids also display increased 

resistance to chemotherapy. Diffusion gradients may limit the effect of therapeutic agents in cells 

deeper within the spheroid. Moreover, quiescent subpopulations are less susceptible to the 

chemotherapies that target proliferative cells (Shield et al. 2009). Spheroids also better reflect the 

suppressive effects seen on therapeutic immune cells in their in vivo solid tumor counterparts. In 

melanoma spheroids antigen-specific cytotoxic T lymphocytes display weaker effector activities than 
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that seen in 2D (Feder-Mengus et al. 2007). The authors suggest that steric hindrance within the 3D 

context and increased lactic acid levels, among other phenomena, are responsible for the decreased 

CTL effector function seen. 

 

The literature describes many examples of decreased therapy susceptibility when switching from 2D 

to 3D cultures. In these settings, the spheroid systems were better at predicting the clinical outcome 

(Hirschhaeuser et al. 2010). Therefore, tumor spheroids are currently under development as a more 

efficient drug screening platform, and a bridge between classic in vitro, and expensive and ethically 

critical in vivo experiments. They can also act as a potential tool for the early negative selection of 

drugs that initially seemed promising in 2D assays.  

Examples show that tumor spheroids can also be used for positive drug selection. Trastuzumab is a 

therapeutic monoclonal antibody that binds human epidermal growth factor receptor (HER) 2, thus 

blocking proliferative signaling. Tumor spheroids have shown an enhanced HER2 homodimer 

formation, leading to an increased activation of HER2 downstream signaling pathways. Consequently, 

trastuzumab evoked a stronger response in tumor cells in spheroids than that seen in 2D cultures 

(Pickl and Ries 2009). This demonstrates that tumor spheroid cultures have the potential to discover 

therapies that target alternative mechanisms that are less obvious in monolayer cell cultures. 

 

In addition, it appears that primary tumor cells maintain their in vivo phenotype when cultured in 

spheroids. Heterogeneous spheroid cultures from tumor biopsies have been shown to maintain their 

tumorigenic potential and their genomic stability (Witt Hamer et al. 2008). This theoretically enables 

the use of primary tumor spheroids for the evaluation of different therapeutic approaches as a pre-test 

in vitro, for a personalized medicine approach (Witt Hamer et al. 2009; Halfter et al. 2016, 

Vlachogiannis et al. 2018). 

 

To gain information from spheroid assays a spectrum of methods and analytical endpoints has been 

applied. The next section provides an overview over possible strategies.  

 

3.2.4 Analysis of three dimensional spheroids 

A 3D specimen such as seen with a tumor cell spheroid imposes special requirements on potential 

analysis methods.  

The dissociation of spheroids into cell suspensions does allow analysis at a cellular level, using the 

methods that are also available for classically cultured cells. Assessment of protein, RNA or DNA 

composition of spheroid cells is possible and broadly applied. Thus, for instance, the genomic stability 
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of primary cells, or surface expression of tumor-associated antigens can be monitored (Witt Hamer et 

al. 2008; Feder-Mengus et al. 2007).  

In addition to the characterization of a spheroid’s genetic or proteomic profile, cell viability represents 

a crucial read-out for drug testing. After dissociation, colony formation assays have been used to 

assess cell viability since the first application of spheroids as tumor models (Sutherland et al. 1970). 

Direct cell counting or flow cytometry based approaches after live/dead staining are also feasible.  

The spheroid volume, or rather its diameter, represents a faster and more direct method of assessing 

tumor cell viability. In high-throughput screenings, spheroids are monitored over time via widefield 

imaging. Treated and untreated spheroids in whole 96-well plates can be rapidly analyzed with 

regards to growth, stagnation, shrinkage or dissociation.  

Since the spheroid volume does not always correlate with cell viability, the respiratory or proliferative 

activity, as well as the cellular membrane integrity, can be measured. In this instance, assays based on 

absorption, luminescence or fluorescence of the supernatant or the spheroid itself can be employed.  

Furthermore, the potential effect of a treatment on the invasiveness of tumor cells can been assessed 

by determining the spheroid‘s potential to grow out onto, or into, a surrounding matrix (Hirschberg et 

al. 2006; Hirschhaeuser et al. 2010).  

 

For an in-depth analysis of spheroids that does not destroy their spatial integrity, other methods need 

to be employed. Assessment of the penetration or action of a therapeutic agent in context of the tumor 

spheroid depth and micromilieu, for example, requires observation in situ. Also, the analysis of cell-

cell interaction, spatial distribution of cells in mixed spheroids, or spheroid invasion by therapeutic 

cells depends on in situ measurements.  

Sectioning paraffin embedded or cryopreserved spheroids does allow these types of analyses, for 

example through (immuno)histologic approaches (Figure 3). Even a reconstruction of the 3D 

composition via computational re-arrangement of serial histological sections can be achieved (Wang et 

al. 2015). As the authors state, however, re-alignment of histological sections is impeded by dissimilar 

quality due to tissue disruption and staining artefacts.  

 

3D object reconstruction hugely benefits from advanced 3D imaging methods. They allow optical 

sectioning and reconstruction of 3D specimen without elaborate – and possibly distorting – sample 

processing. 3D microscopy techniques need to be able to penetrate the depth of complex and highly 

scattering samples. They accomplish this via different optical approaches (Figure 4). 

The historically most widely used 3D fluorescence microscopy techniques are confocal laser scanning 

microscopy (CLSM) and two-photon microscopy (2PM). In confocal microscopy, a pinhole blocks out-

of-focus signal, thus limiting the detected emission signal to the focal point. In contrast, two-photon 
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microscopy confines the excitation to the focal point. This is achieved via spatially and temporally 

focusing low energy photons. Only directly at the focal point is the energy high enough to excite 

fluorophores. Longer laser wavelengths providing low energy photons allow, in addition, deep 

penetration into light scattering samples. 

Both CLSM and 2PM are point-scanning microscopes imaging a sample voxel by voxel. While they 

provide good optical sectioning, they suffer from long acquisition times that effectively limit their 

speed in timelapse imaging. Moreover, especially CLSM exposes the whole sample to high excitation 

light intensity with each detected point. This causes photobleaching and phototoxicity, which is 

especially deleterious with repetitive acquisition over time.  

One attempt to increase acquisition speed and reduce photodamage was addressed with spinning disc 

confocal microscopy (SDCM). On a rapidly spinning disc an array of excitation and emission pinholes 

are arranged. It scans the field of view over 1000 times per second. While SDCM images faster and 

with lower peak excitation light density than does CLSM, it still illuminates the whole z-axis and 

suffers from low penetration depth (Fischer et al. 2011).  

When regarding the efficiency of sample illumination and fluorophore excitation, the most elegant 

method at present is selective plane illumination microscopy (SPIM), also known as light sheet 

fluorescence microscopy (LSFM). This method is based on the illumination of the sample from the 

side, with a thin sheet of light perpendicular to the detection axis. Thus, excitation is confined to the 

focal plane. At each z-position a charge-coupled device (CCD) camera takes a widefield image from 

the whole plane at once. This reduces inefficient exposure of fluorophores to laser light to basically 

zero. It also reduces acquisition time, only requiring scanning in z-direction instead of point-to-point. 

Extraordinarily low bleaching and phototoxicity as well as rapid acquisition makes SPIM the perfect 

tool for live imaging of multicellular organisms.  
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Figure 4 Optical principle of different fluorescent microscopes. Confocal laser scanning microscopy (CLSM), 

two-photon microscopy (2PM), spinning disc confocal microscopy (SDCM) and selective plane illumination 

microscopy (SPIM) or light sheet fluorescence microscopy (LSFM), compared are illumination (green) and 

detection (orange) paths as well as excited sample areas (red). PMT = photomultiplier tubes, CCD = charge-

coupled device (adapted from Fischer et al. 2011). 

 

Many SPIM devices implement the additional option to rotate the sample, and image it from several 

angles. In this setting, the illumination and the detection axes run horizontally, and the sample is 

mounted in a way such that it hangs parallel to gravity. Recording the image stacks from multiple 

directions, and subsequent fusion into one dataset improves image quality by several means. Limited 

penetration depth into the sample can be overcome by adding detectable cell layers from every side of 

the sample to the overall information. Dark regions that are in the lightpath behind an optically denser 

region, and therefore in shadow, can be better illuminated from another direction. And, most 

importantly, the inferior resolution in z can be compensated, resulting in an overall isotropic 

resolution. Despite the increase in acquisition time, and the need for computational post-processing, 

this method is widely used. Its power to generate homogeneous images over a similar depth from 

every side of an object makes SPIM an excellent microscope for round spheroids (Pampaloni et al. 

2013). By including a so-called deconvolution algorithm to the data processing workflow, the 

resolution of SPIM data can be greatly increased over that of confocal microscopy (Verveer et al. 2007). 

Open source projects like “openSPIM” make light sheet microscopy accessible for a broad scientific 

community (Pitrone et al. 2013). With a set of detailed instructions provided by this source, a 

homemade SPIM device is achievable at a comparably low cost, and was used within the scope of this 

thesis. 
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3.3 Objectives of this thesis 

 

Cell based cancer therapies represent new approaches for the treatment of malignancies. The goal of 

this thesis was to implement a new in vitro tool to quantify the invasion potential of therapeutic cells 

into experimental tumors, and to potentially assess relevant parameters linked to the biology in 

question. Tumor spheroids recapitulate in vivo intervascular microregions and thus were to be used as 

invasion matrix for therapeutic cells. The 3D microscopy technique SPIM was evaluated as a method 

to efficiently image whole infiltrated spheroids, and to localize single cells within 3D specimens.  

 Because of their innate tropism for tumor environments, and their ability to be extensively 

expanded, MSCs are under investigation as potential therapy vehicles for the delivery of 

agents deep into solid tumors. It has been shown that some pre-conditioning procedures can 

enhance the tumor homing and infiltration potential of MSCs. The spheroid invasion assay 

was designed to test the influence of various, clinically relevant parameters, on the ability of 

primary human MSCs to migrate into experimental tumors.  

 

 Cytotoxic T lymphocytes can selectively kill tumor cells. Increasing the avidity of a CTL T cell 

receptor can enhance its potential response to tumor cells. The spheroid invasion assay was 

adapted to measure important aspects of CTL behavior in a more physiologic tumor setting 

than that achieved with classic CTL assays. One question here was how the TCR avidity 

influences the killing capacity and the invasion of CTLs into experimental tumors.  

 

 Strong TCR avidity also harbors the risk of unwanted side effects. Activating co-stimulatory 

pathways instead of enhancing TCRs represents an alternative and potentially safer approach 

to achieve anti-tumor response. Chimeric co-stimulatory receptors PD-1:28 and PD-1:BB were 

developed in our laboratory. They were designed to turn CTL inhibition mediated by PD-L1 

(often overexpressed on tumor cells) into CD28 or 4-1BB related stimulation (Schlenker 2015). 

The tumor spheroid system with its specific milieu was to be employed in a 3D cytotoxicity 

assay to assess the potential effects of the chimeric co-stimulatory receptors. 
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4 Material 

 

4.1 Antibodies 

Immunogen Fluorochrome Species/ 

Isotype 

Clone Manufacturer Application, 

Dilution 

Primary Antibody 

HA - Rat IgG  Dr. med. E. Kremmer, 

Helmholtz-Zentrum, 

Munich, Germany 

Immune 

fluorescence, 

1:10 

PD-L1 

(CD274) 

FITC Mouse IgG1 MIH1 BD, Heidelberg, 

Germany 

Flow cytometry, 

1:8 

PD-L2 

(CD273) 

APC Mouse IgG1 MIH18 BD, Heidelberg, 

Germany 

Flow cytometry, 

1:8 

HLA-A2 - Mouse IgG1 HB54 In-house production Flow cytometry, 

1:2.75 

Secondary Antibody 

Rat IgG A594 Donkey IgG  Thermo Fisher 

Scientific, Schwerte, 

Germany 

Immune 

fluorescence, 

1:500 

 

4.2 Cell Culture 

 

4.2.1 Blood and human bone marrow samples 

Drawing of blood and human bone marrow samples from healthy donors was performed by trained 

personnel and approved by the local Ethics Committee. Donors gave their consent. 

 

4.2.2 Primary cells 

Cell line Type/ Modification Source 

hBMSC  Primary human bone marrow derived 

mesenchymal stem cell batches, 

cultured in DMEM culture medium or 

Bio-1  

 

 

 Batch   

 AP99  apceth, Munich, Germany 

 AP182  apceth, Munich, Germany 

 AP172  apceth, Munich, Germany 

 AP158-3  apceth, Munich, Germany 

 G01-AP182 Transduced with RANTES-HSV-TK 

construct 

apceth, Munich, Germany 
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 G01-AP141 Transduced with RANTES-HSV-TK 

construct 

apceth, Munich, Germany 

 G01-AP194 Transduced with RANTES-HSV-TK 

construct 

apceth, Munich, Germany 

 AP182 TD #202 Transduced with (constitutive 

promoter) EFS-HSV-TK construct 

apceth, Munich, Germany 

 hBMSC 110331 
 

 AKB Gauting, Stiftung Aktion 

Knochenmarkspende Bayern, 

Germany  

 hBMSC 130806 
 

 AKB Gauting, Stiftung Aktion 

Knochenmarkspende Bayern, 

Germany  

 hBMSC 141007 
 

 AKB Gauting, Stiftung Aktion 

Knochenmarkspende Bayern, 

Germany  

 hBMSC 140826 
 

 AKB Gauting, Stiftung Aktion 

Knochenmarkspende Bayern, 

Germany  

 hBMSC 130801  AKB Gauting, Stiftung Aktion 

Knochenmarkspende Bayern, 

Germany  

MSC Primary human mesenchymal stem 

cell batches cultured in DMEM culture 

medium 

PD Dr. Wolfgang Erl, Institut 

für Prophylaxe und 

Epidemiologie der 

Kreislaufkrankheiten, LMU 

Munich, Germany 

 Batch   

 YI-1 Umbilical cord blood derived  

 MSC 101003M 
 

Umbilical cord subendothelial derived  

 MSC 110501M 
 

Umbilical cord subendothelial derived  

CTL Primary human cytotoxic T 

lymphocytes, cultured in RPMI culture 

medium 

From PBMCs, isolated, 

activated and engineered at 

Prof. E. Nößner’s lab, 

Helmholtz Center, Munich, 

Germany 

 D115/Mock Transduced with D115-pMP71 and 

empty medium 

 

 D115/PD-1:28 Transduced with D115-pMP71 and 

PD-1:28TM-pMP71 

 

 D115/PD-1:BB Transduced with D115-pMP71 and 

PD-1TM:BB-pMP71 

 

 T58/Mock Transduced with T58-pMP71 and 

empty medium 
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 Mock/Mock Transduced twice with empty medium  

 

4.2.3 Cell lines 

Tumor cell lines Human tumor cell lines, DMEM 

culture medium 

 

 Batch   

 HT-29 Human colorectal adenocarcinoma 

cells  

ATCC, Manassas, Virginia, 

USA 

 HUH7  Human hepatocellular carcinoma cells JCRB Cell Bank, Osaka, Japan 

 LS174T  Human colorectal adenocarcinoma 

cells 

ATCC, Manassas, Virginia, 

USA 

Tumor cell lines Human tumor cell lines, cultured in 

RPMI culture medium  

 

 HEK GaLV Retroviral packaging cell line 

expressing gag, pol and env genes 

Kindly provided by Wolfgang 

Uckert, Max Delbrück Center 

Berlin, Germany 

 HEK293/PD-L1  

 

Human embryonic kidney cells, HLA-

A2+, transduced to express PD-L1 

Kindly provided by Matthias 

Leisegang, Max Delbrück 

Center Berlin, Germany 

 HEK293/Tyr  

  

 

Human embryonic kidney cells, HLA-

A2+, transduced to express tyrosinase 

Kindly provided by Matthias 

Leisegang, Max Delbrück 

Center Berlin, Germany 

 HEK293/Tyr/PD-L1  

 

Human embryonic kidney cells, HLA-

A2+, transduced to express tyrosinase 

and PD-L1 

Kindly provided by Matthias 

Leisegang, Max Delbrück 

Center Berlin, Germany 

 SKMel23 Human melanoma cells, HLA-

A2+/tyrosinase+ 

Monica C. Panelli, NIH, 

Bethesda, USA 

 A375 Human malignant melanoma cells, 

HLA-A2+/tyrosinase‒ 

Kindly provided by Prof Judy 

Johnson, LMU Munich, 

Germany 

 K562 Human chronic myelogenous 

leukemia cells, HLA-A2‒/tyrosinase‒ 

ATCC, Manassas, Virginia, 

USA 

 RCC26 Human renal cell carcinoma cells Helmholtz Center, Munich, 

Germany 

 WM266.4 Human melanoma cells from 

metastatic site, HLA-A2+/tyrosinase+ 

ESTDAB, Cambridge, UK 
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4.2.4 Media, supplements and others 

Bio-1     

DMEM low glucose  89 % Biochrom, Berlin, Germany 

Heparin  1 U/ml Ratiopharm, Ulm, Germany 

Platelet concentrate (TK-2)  6 % LMU, Munich, Germany 

FFP-1  5 % LMU, Munich, Germany 

    

DMEM culture medium    

DMEM, low glucose, 

GlutaMAX™ Supplement, 

pyruvate  

 89 % GIBCO Invitrogen, Darmstadt, Germany 

FCS  10 % Biochrom, Berlin, Germany 

Penicillin/Streptomycin  1 % PAA Laboratories, Marburg, Germany 

    

Serum-free DMEM    

DMEM, low glucose, 

GlutaMAX™ Supplement, 

pyruvate 

 100 % GIBCO Invitrogen, Darmstadt, Germany 

    

RPMI culture medium    

RPMI-1640 medium   87 % GIBCO Invitrogen, Darmstadt, Germany 

L-glutamine   1 %  GIBCO, Thermo Fisher Scientific, Schwerte, 

Germany 

Non-essential amino acids  1 %  GIBCO, Thermo Fisher Scientific, Schwerte, 

Germany 

Sodium pyruvate    1 % GIBCO, Thermo Fisher Scientific, Schwerte, 

Germany 

FCS  10 % GIBCO, Thermo Fisher Scientific, Schwerte, 

Germany 

    

Serum-free RPMI    

RPMI-1640 medium   100 % GIBCO Invitrogen, Darmstadt, Germany 
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Supplements  

Charcoal-stripped FCS (hormone 

reduced) 

Provided by Prof. Christine Spitzweg’s laboratory, 

Klinikum LMU Munich, Germany 

DPBS GIBCO Invitrogen, Darmstadt, Germany 

3,3‘,5‐Triiodo‐L‐thyronine (T3)  Sigma-Aldrich, Taufkirchen, Germany 

L‐thyroxine (T4)  Sigma-Aldrich, Taufkirchen, Germany 

Recombinant human IL-2 (rIL-2) Cancernova GmbH, Reute, Germany 

3,3‘,5,5‘‐Tetraiodothyroacetic acid (Tetrac)  Sigma-Aldrich, Taufkirchen, Germany 

Trypan Blue Sigma-Aldrich, Taufkirchen, Germany 

Trypsin/EDTA 1 x  GIBCO, Thermo Fisher Scientific, Schwerte, Germany 

 

4.2.5 Plasmids 

EFS-HSV-TK Coding for HSV-TK expression 

under control of the constitutive EFS 

promoter 

apceth, Munich, Germany 

RANTES-HSV-TK  Coding for HSV-TK expression 

under control of the CCL5/RANTES 

promoter (Figure 5) 

apceth, Munich, Germany  

 

T58 (b23m-p-a7m)-pMP71  Sequences of the HLA-A2 restricted, 

tyrosinase-specific TCRs T58 and 

D115 cloned into the pMP71 vector 

backbone (Vector for retroviral 

transduction combining the murine 

myeloproliferative sarcoma virus - 

long terminal repeats (MPSV-LTR) 

promoter-enhancer sequences and 

improved 5’ untranslated sequences 

derived from murine embryonic 

stem cell virus (MESV) )  

Kindly provided by Matthias 

Leisegang, Max Delbrück 

Center Berlin, Germany 

D115 (b8m-p-a22m)-pMP71 

 

PD-1:28TM-pMP71 Sequences of the chimeric signaling 

receptors PD-1:28tm or PD-1tm:BB 

cloned into the pMP71 vector 

backbone 

Generated by Ramona 

Schlenker (Helmholtz  Center, 

Munich, Germany), described 

in (Schlenker 2015)  

PD-1TM:BB-pMP71 

 

Generated by Stephan Weisz 

(Helmholtz Center, Munich, 

Germany), described in 

(Schlenker 2015) 
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Figure 5 Therapeutic RANTES-HSV-TK construct (according to apceth, Munich, Germany). Plasmid coding for 

herpes simplex virus type 1 thymidine kinase (HSV-TK) expression under control of the CCL5/RANTES promoter. 

HSV-TK specifically phosphorylates and therefore activates ganciclovir, a guanosine analogue prodrug. 

 

4.3 Consumables and equipment 

 

4.3.1 Consumables 

Name Manufacturer 

µ-Slide 8 well ibiTreat Ibidi, Planegg, Germany 

µ-Slide chemotaxis 3D Ibidi, Planegg, Germany 

Centrifuge tubes 15 ml, 50 ml Corning, Kaiserslautern, Germany 

Cover slips Menzel‐Gläser, Braunschweig, Germany 

Cryovials 2 ml Alpha laboratories, Hampshire, UK 

Eppendorf tubes 1.5 ml, 2 ml Eppendorf, Hamburg, Germany 

LumaPlate PerkinElmer, Rodgau, Germany 

Microscope slides Roth, Karlsruhe, Germany 

Microscope slides SuperFrost® Plus Thermo Fisher Scientific, Schwerte, Germany 

Nail polish p2 dm-drogerie markt, Karlsruhe, Germany 

Nylon filter cloth 315 µm pore size Fisher Scientific, Schwerte, Germany 

Petri dishes 100 mm Sigma-Aldrich, Taufkirchen, Germany 

Pipette tips 10 µl, 20 µl, 200 µl, 1000 µl Greiner Bio-One, Frickenhausen, Germany 

Serological pipettes 2 ml, 5 ml, 10 ml, 25 ml Greiner Bio-One, Frickenhausen, Germany 

Tissue culture dishes 100 mm Corning, Kaiserslautern, Germany 
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Tissue culture flasks 75 cm2 Greiner Bio-One, Frickenhausen, Germany 

Tubes for flow cytometry 1 ml Greiner Bio-One, Frickenhausen, Germany 

 

4.3.2 General laboratory equipment 

Name  Manufacturer  

Bio-Plex reader BIO-RAD, Munich, Germany 

Centrifuge Megafuge 2.0 R Heraeus Instruments, Hanau, Germany 

Centrifuge Universal 320/320 R Hettich, Tuttlingen, Germany 

Flow cytometer and cell sorter 

LSR II   BD FACSAriaTM Illu 
BD, Heidelberg, Germany 

Incubator Binder, Tuttlingen, Germany 

Integral water purification system Milli-Q® Millipore, Schwalbach, Germany 

Multichannelpipette  Eppendorf, Hamburg, Germany 

Neubauer counting chamber, depth 0.1 mm  Gesellschaft für Laborbedarf Würzburg, Würzburg, 

Germany 

Picture frame glasses for Neubauer counting 

chambers 20 x 26 mm, depth 0.4 mm  
Hirschmann Laborgeräte, Eberstadt, Germany 

Pipette set Research® 1000 μl, 200 μl, 20 μl, 10 μl  Eppendorf, Hamburg, Germany 

Pipetteboy Eppendorf, Hamburg, Germany 

Scintillator TopCount NXT PerkinElmer, Rodgau, Germany 

Sterile laminar flow hood HerasafeTM KS Thermo Fisher Scientific, Schwerte, Germany 

Thermomixer R  Eppendorf, Hamburg, Germany 

Ultrasonic bath Sonorex super Bandelin, Berlin, Germany 

Vortexer MS1 Minishaker IKA Werke GmbH &Co KG, Staufen, Germany 

 

4.3.3 Microscopes 

Microscope Name Parts list Manufacturer 

Binocular  SMZ745  Nikon, Düsseldorf, 

Germany 

Fluorescence cell Evosfl  Thermo Fisher Scientific, 
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imaging system Schwerte, Germany 

Fluorescence 

widefield microscope  

Leica DM IL  Leica Microsystems, 

Wetzlar, Germany 

  Jenoptik ProgRes CCD camera Jenoptik, Jena, Germany 

Selective plane 

illumination 

microscope 

SPIM  Assembled by Dr H. 

Harz (Center for 

Advanced Light 

Microscopy (CALM), 

Biocenter Martinsried, 

LMU Munich, Germany) 

according to 

(openspim.org); 

(Pitrone et al. 2013) 

  Parts as described on (openspim.org), plus: 

  Obis LS 561-50 561 nm laser Coherent, Santa Clara, 

California, USA 

Spinning disk 

confocal microscope 

Eclipse Ti-E   Nikon, Düsseldorf, 

Germany 

  CFI P-Apo 40x NA 0.95 objective Nikon, Düsseldorf, 

Germany 

  Differential interference contrast Nikon, Düsseldorf, 

Germany 

  CO2, 37°C incubator Okolab, Pozzuoli, Italy 

  IXON 888 Ultra EMCCD camera Andor, Belfast, Northern 

Ireland 

  SOLA SE II light source Lumencor, Beaverton, 

Oregon, USA 

  FL-Filterset HC BrightLine eGFP 

EX: 469/35 , DM: 497 , BA: 525/39 

BP 

Semrock, Rochester, New 

York, USA 

 

4.3.4 Computing server 

Server  sysGen/SUPERMICRO SuperServer SYS-1028GQ-TRT 

Processor  2 x Intel® Xeon® Broadwell-EP Series Processor E5-2680 v4, 2.40 GHz, 14-Core 
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RAM 256 GB DDR4  

Hard disk 3 x 960 GB Samsung SM863 Serie SSD 

Graphic card NVIDIA Geforce GTX Titan X 

 

4.3.5 Software 

Name  Application Source 

Chemotaxis and Migration 

Tool Software 

Migration assay analysis Ibidi, Planegg, Germany 

Fiji (Fiji is just ImageJ) 1.48q Image analysis Schindelin et al. 2012 

Fiji 3D Manager plugin SPIM data invasion analysis Ollion et al. 2013 

Fiji 3D Object Counter plugin SPIM data cell segmentation Bolte and Cordelières 2006 

Fiji 3D Watershed plugin SPIM data cell segmentation Ollion et al. 2013 

Fiji Manual Tracking plug-in Migration assay cell tracking Fabrice Cordelières, Orsay, 

France 

Fiji Multiview Reconstruction 

plugin 

SPIM data bead registration, 

fusion and deconvolution 

Preibisch et al. 2010; Preibisch et 

al. 2014 

Fiji μManager plugin  Leica DM Il and SPIM control 

software 

Edelstein et al. 2010 

GIMP 2.8.20 Image editing Free Software Foundation, 

Boston, Massachusetts, USA 

NIS elements, version 4.51.01 Eclipse Ti-E control software Nikon, Düsseldorf, Germany 

R Studio Version 3.0.2  Statistical analysis The R Foundation for Statistical 

Computing, Vienna, Austria  

 

4.4 Reagents, buffers and kits 

 

4.4.1 Reagents 

Name Manufacturer 

2-Hydroxyethylagarose, type VII, low gelling 

temperature 

Sigma-Aldrich, Taufkirchen, Germany 

51Cr Sodium chromate  Hartmann Analytic, Braunschweig, Germany 

7-AAD Thermo Fisher Scientific, Schwerte, Germany 
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BSA Thermo Fisher Scientific, Schwerte, Germany 

CellTrackerTM Green CMFDA Thermo Fisher Scientific, Schwerte, Germany 

Collagen I Bovine Protein GIBCO Invitrogen, Darmstadt, Germany 

DAPI Thermo Fisher Scientific, Schwerte, Germany 

DMSO  Sigma-Aldrich, Taufkirchen, Germany 

EDTA Sigma-Aldrich, Taufkirchen, Germany 

Ethanol ≥ 99.5 % Roth, Karlsruhe, Germany 

Fluo-3, AM Thermo Fisher Scientific, Schwerte, Germany 

Fluorescent microspheres, F-XC 050 Estapor  Merck, Darmstadt, Germany 

Fluorescent microspheres, F-Y 030 Estapor  Merck, Darmstadt, Germany 

Formaldehyde solution 30 %, methanol-free Roth, Karlsruhe, Germany 

Ganciclovir Sigma-Aldrich, Taufkirchen, Germany 

H2O, Milli-Q® purified In-house production 

HEPES (1M) GIBCO Invitrogen, Darmstadt, Germany 

Isopentane Chemos GmbH, Regenstauf, Germany 

KCl Roth, Karlsruhe, Germany 

KH2PO4 Merck, Darmstadt, Germany 

KHCO3 Sigma-Aldrich, Taufkirchen, Germany 

L-Glutamine, 200 mM Biochrom, Berlin, Germany 

Na2CO3  Sigma-Aldrich, Taufkirchen, Germany 

Na2HPO4 Roth, Karlsruhe, Germany 

NaCl Roth, Karlsruhe, Germany 

NaHCO3  GIBCO Invitrogen, Darmstadt, Germany 

NaN3  Sigma-Aldrich, Taufkirchen, Germany 

NaOH Merck, Darmstadt, Germany 

NH4Cl Sigma-Aldrich, Taufkirchen, Germany 

polyHEMA Sigma-Aldrich, Taufkirchen, Germany 

Propidium iodide  Sigma-Aldrich, Taufkirchen, Germany 

Propidium iodide solution Sigma-Aldrich, Taufkirchen, Germany 

Silica gel particles Fisher Scientific, Schwerte, Germany 
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SiRHoechst Spirochrome, Stein am Rhein, Switzerland 

Sucrose Sigma-Aldrich, Taufkirchen, Germany 

Tissue-Tek® O.C.T.TM Compound Sakura Finetek Europe B.V., Alphen aan den Rijn, 

Netherlands 

Titriplex III Na2-EDTA Sigma-Aldrich, Taufkirchen, Germany 

Triton X-100 Appli-Chem, Darmstadt, Germany 

Trypan blue Sigma-Aldrich, Taufkirchen, Germany 

Tween 20 Merck, Darmstadt, Germany 

Vectashield® mounting medium  Vector Laboratories, Peterborough, UK 

Verapamil Spirochrome, Stein am Rhein, Switzerland 

 

4.4.2 Buffers 

Name Formula 

10 x PBS 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 

mM KH2PO4 in H2O, adjust to pH 7.4 with HCl 

4 % PFA 4 % (v/v) formaldehyde in PBS 

1 x PBS 10 % (v/v) 10 x PBS in H2O 

Blocking solution 2 % BSA (v/v) in 1 x PBS 

Permeabilization buffer 0.5 % (v/v) Triton X-100 in PBST 

PBST 0.05 % (v/v) Tween® 20 in 1 x PBS  

Lysis buffer 8.29 g/l NH4Cl, 1 g/l KHCO3, 37 mg/l Titriplex III 

Na2-EDTA in H2O 

Flow cytometry buffer 2 mM EDTA, 2 % (v/v) FCS, 0.1 % (v/v) NaN3 in 

DPBS 

ELISA coating buffer  8.4 g/l NaHCO3, 3.56 g/l Na2CO3 in H2O, pH 9.5  

  

4.4.3 Kits 

Name Manufacturer 

Cytokine Bio-Plex Human, Th1/Th2 Cytoplex BIO-RAD, Munich, Germany 

ELISA Kit, human IL-2, IFN-γ, TNF-α  BD, Heidelberg, Germany 
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5 Methods  

 

5.1 Cell culture techniques 

 

5.1.1 Cultivation of cell lines and primary cells 

All cells were cultured at 37°C and 5 % CO2. Cell culture work was conducted in a laminar flow hood 

to prevent contamination. All reagents were warmed to room temperature prior to use. 

For subculturing, adherent cells at 70 – 90 % confluency were washed with DPBS and then detached 

using 1 x Trypsin-EDTA solution at 37°C for approximately 5 min. The reaction was stopped by 

adding an at least equal volume of medium containing 10 % FCS. Cells were passaged at ratios suiting 

their proliferation rate.  

Human CTLs from healthy donors were cultivated at 1-1.5 x 106 cells/ml in RPMI culture medium 

supplemented with 50 U/ml rIL-2 and split every 2-3 days. They were cultivated in 24-well plates. 

 

5.1.2 Freezing and thawing of cells 

Cells were frozen in their respective culture medium plus 10 % DMSO in cryo-tubes. They were 

cooled to -80°C for at least 24 h in an isopropanol container and subsequently transferred to the gas 

phase of a liquid nitrogen container. 

To thaw cells, the frozen cell suspensions were rapidly warmed to 37°C in a water bath. They were 

immediately transferred into a cell culture vessel filled with medium to dilute DMSO to a non-toxic 

concentration. Medium was exchanged immediately or within 24 h to remove DMSO completely. 

 

5.1.3 Counting of cells 

To determine cell numbers a Neubauer counting chamber was used. Cell suspensions were mixed 1:1 

with Trypan blue solution in order to differentiate viable from dead cells. 10 µl of the mixture was 

applied onto the Neubauer counting chamber and the number of cells/ml was calculated from the 

average number of cells per square x 104. 

 

5.1.4 Isolation and engineering of primary hBMSCs 

MSCs used for this work were isolated and engineered at apceth, Munich, or have been previously 

established in our laboratory according to the following protocol.  

Briefly, human bone marrow stromal cells were extracted from bone marrow of normal donors 

provided by AKB Gauting, Stiftung Aktion Knochenmarkspende Bayern. For isolation, the 
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erythrocytes were first removed by mixing the bone marrow 1:1 with lysis buffer. After incubation at 

room temperature for 10 min, stromal cells were pelleted for 5 min at 500 g and washed with DPBS. 

They were then resuspended in medium at a volume of 2 ml per ml bone marrow, plated and 

cultivated at 37°C and 5 % CO2. After two days medium was changed to remove all non-plastic-

adherent cell types.  

To verify isolation of MSCs, they were characterized according to the minimal criteria released by the 

International Society of Cellular Therapy (ISCT, Dominici et al. 2006). In addition to plastic-adherence, 

the cells were tested for their ability to differentiate into osteoblasts, adipocytes and chondroblasts. 

Furthermore, their flow cytometry-profile was verified to be CD14, CD19, CD34, CD45 and HLA-DR 

negative, as well as CD73, CD90 and CD105 positive.  

 

5.1.5 Isolation and engineering of primary human T cells 

Primary human T cells were isolated and engineered in Prof. Elfriede Nößner’s laboratory (Helmholtz 

Center, Munich, Germany) as described by Dr. Ramona Schlenker (Schlenker 2015).  

Briefly, peripheral blood mononuclear cells (PBMCs) were isolated from fresh human blood samples 

of healthy donors. From these, activated T cell blasts were expanded. To this end, PBMCs were 

activated for 2 d in anti-CD3 and anti-CD28 antibody coated wells in rIL-2 containing medium.  

Viral transduction was performed using non-replication competent retroviruses in an S2 laboratory. 

The respective viruse particles were harvested from the supernatant of the retrovirus packaging cell 

line HEK GaLV that expresses gag (Group Antigen encoding), pol (reverse transcriptase encoding) and 

env (envelope protein encoding) genes and have been transfected with one of the TCR or chimeric 

protein encoding retroviral vectors. Wells were coated with culture medium of retrovirus packaging 

cells with virus particles or, for mock transduction, without virus particles. Activated T cells were 

cultured in virus-coated wells for 4 d with rIL-2, then transferred into fresh wells and cultured with 

rIL-2 for another 9 d before they were used in experiments or frozen.  

To obtain comparable results, for every experiment only groups of T cells isolated from the same 

donor and with the same transduction and cultivation history were used. T cells from one donor were 

split into 3 groups and transduced first with either D115-TCR or T58-TCR or mock transduced. For a 

following second transduction T58-TCR and mock T cells were mock transduced. D115-TCR T cells 

were split into 3 groups, one was mock transduced and the others were transduced with either PD-

1:28 or PD-1:BB chimeric co-stimulatory receptor. All batches were cultured and frozen 

simultaneously.  
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5.2 The Invasion Assay protocol 

 

5.2.1 Spheroid generation 

The various methods used to generate spheroids are largely based on the general phenomenon that 

many adherent cell lines tend to attach to each other when deprived of a surface to grow on. 

 

5.2.1.1 Liquid overlay technique 

Cell attachment was inhibited by coating the culture flasks and dishes with the hydrogel polyHEMA. 

They were covered with 2 % polyHEMA in 95 % Ethanol and allowed to dry completely. This step 

was repeated once to create an even and smooth hydrogel layer. Tumor cells were cultivated in 

polyHEMA coated flasks at 37°C and 5 % CO2. After five to seven days, spheroids were grown to an 

appropriate size of 200 to 300 µm diameter. To exclude larger spheroids they can be filtered through a 

nylon filter with 315 µm pores.  

 

5.2.1.2 Hanging drop technique 

Tumor cell suspensions at specific cellular concentrations (Table 1) were seeded in drops of 25 µl 

culture medium in a petri dish lid (not treated for tissue culture, since the drop’s shape is more convex 

on a hydrophobic surface). The lid was flipped, put on the bottom filled with PBS and cultured in 

these hanging drops for 3 d. For proper spheroid formation an absolute protection from any vibrations 

has to be ensured. Spheroids with a diameter of ~ 300 µm were harvested and used for invasion.   

 

Table 1 Spheroids in hanging drops. Numbers of different cell types to generate spheroids with the hanging 

drop technique. 

Cell line Number of cells per ml Number of cells per 25 µl drop 

Hek293 2.4 x 10^4 cells/ml 600 

HUH7 2.4 x 10^4 cells/ml 600 

SkMel23 3.2 x 10^4 cells/ml 800 

 

5.2.2 MSC labeling 

Prior to invasion, MSCs were labeled with CellTracker™ Green CMFDA using the protocols provided 

by the company (Thermo Fisher Scientific, Schwerte, Germany). CMFDA belongs to the 

acetoxymethyl (AM) ester derivatives of fluorescent dyes. The modification of the dye’s carboxylic 

acids with AM ester groups results in an uncharged molecule that can permeate cell membranes. 

Within the cytoplasm, nonspecific esterases cleave the lipophilic blocking groups, resulting in a 
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charged form that leaks out of cells far more slowly. DMSO stock solutions must be kept anhydrous, 

since the solvent will readily take up moisture, leading to spontaneous hydrolysis of the dye. To 

ensure desiccated conditions, DMSO was stored anhydrous under nitrogen until used to prepare 10 

mM CMFDA stocks. To avoid several freezing and thawing cycles, small aliquots were prepared from 

the stock and stored well sealed, frozen, and desiccated in 50 ml centrifuge tubes with silica gel 

particles. 

 

MSCs were grown to a confluent layer. After washing once with PBS, they were incubated in serum-

free DMEM with 1 µM CMFDA for 30 min at 37°C and 5 % CO2. To allow the cells to regenerate and 

modify the dye to its impermeable and fluorescent form, they were incubated in culture medium 

containing FCS for an additional 30 min. The cells were then detached and used for the invasion assay. 

Staining of cells could also be conducted in suspension. Therefore, the same protocol was used with 

an additional pelleting (centrifugation 300 g for 5 min) and resuspension of cells for each washing or 

staining step.  

 

5.2.3 MSC application and invasion 

1.5 x 104 cells per spheroid were mixed in a volume of 50 µl each in a 1.5 ml reaction tube and shaken 

for 30 min at 37°C. MSCs that hadn’t attached within this period were washed away with 3 x 100 μl 

culture medium under a binocular. Spheroids were seeded back into hanging drops of 25 µl and 

incubated for 24 h under normal cell culture conditions. Subsequently, they were fixed for 2 h in 100 

µl 4 % PFA, washed with 3 x 100 µl PBS and stored at 4°C until imaging. 

 

5.2.4 CTL labeling, application and invasion 

CTL staining was conducted as described above for MSCs in suspension, but with 0.5 µM CMFDA in 

serum-free RPMI and centrifugation at 1200 g for 10 min. 

Application and invasion procedures were essentially the same as described above for MSCs, with one 

adjustment: It was observed that high avidity TCR T cells were washed away to a higher degree than 

low avidity TCR T cells, probably due to stronger attachment to dead tumor cells killed within the 30 

min of co-incubation. To avoid any ensuing unequal loss of T cells expressing differently avid TCRs, T 

cells were not washed away, but only thinned down by adding 1 ml medium to the 50 µl co-

incubation volume. Spheroids were then re-seeded into 25 µl drops from this diluted T cell 

suspension. 

Spheroids were fixed after 1 h, 1 d, 3 d, 4 d and 6 d. 
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5.2.5 Sample mounting, SPIM imaging and data processing 

Post-fixation nuclear staining allowed for later sub-segmentation of single cells and proper spheroid 

volume measurement. Fixed spheroids were incubated in 1 µg/ml 7-AAD (a DNA intercalator) in PBS 

overnight at room temperature. They were washed subsequently 3 x 5 min with PBS.  

Selective plane illumination microscopy is based on the principle of laser excitation confined to the 

focal plane. Specimens are illuminated by a laser light sheet perpendicular to the detection axis 

thereby depleting the out of focus signal to a minimum. Samples can be rotated to acquire stacks from 

several angles prior to computation of 3D reconstructions. 

The spheroids were embedded in 2 % low-gelling 2-hydroxyethylagarose in PBS mixed with 

fluorescent microspheres (F-XC 050 or F-Y 030 Estapor) at a 1:4000 dilution and aspirated into a glass 

capillary (for information about SPIM sample holders, refer to openspim.org). Mounted on an 

openSPIM set-up, they were imaged with the solidified agarose hanging directly in PBS in front of the 

detection lens. The SPIM application is available via open access hardware and open source software 

(Pitrone et al. 2013; openspim.org). SPIM imaging was performed using a 488 nm (2 mW laser power, 

80 - 120 ms exposure time) and a 561 nm laser (5 mW laser power, 60 - 120 ms exposure time) from 

five different angles equally spaced over 360°. Fusion and deconvolution of the five angles to one 

homogeneous image were performed using the fluorescent microspheres as fiducial beads via the Fiji 

Multiview Reconstruction plugin (Preibisch et al. 2010; Preibisch et al. 2014). All image processing 

steps were conducted in a semi-automated fashion via macros developed with Fiji. Codes were 

written by David Hörl. Workflow and macros are included in the appendix (11.1). 

To minimize data volume, images were acquired with a 2 × 2 binning. The resolution acquired with a 

20× water immersion objective (NA 0.5) and a lightsheet thickness of 15 μm full width at half 

maximum is 540 nm ± 112 in x, 599 nm ± 128 in y, and 3908 nm ± 954 in z for raw image stacks, 1159 

nm ± 185 in x, 862 nm ± 99 in y, and 1933 nm ± 1089 in z for fused data, and 378 nm ± 127 in x, 355 nm 

± 67 in y, and 978 nm ± 58 in z after deconvolution.  

 

5.2.6 Analysis – cytoplasmic or nuclear single cell segmentation 

The invasion potential of cell types was quantified by measuring the shortest distance of each invaded 

MSC to the surface of the spheroid, and of each CTL to the centroid of the spheroid.  

The automated detection of MSCs within the SPIM-imaged spheroids was originally conducted via 

threshold-based segmentation of the cytoplasmic CMFDA signal. This didn’t allow for sub-

segmentation of clustering MSCs. Therefore, the analysis macro was optimized to a watershed-based 

segmentation of 7-AAD nuclear signals of every cell and further selection of those lying within the 

CMFDA signal mask.  
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For small and non-clustering CTLs direct watershed segmentation of cytoplasmic CMFDA signal 

turned out feasible. 

All image processing and analysis steps were conducted in a semi-automated fashion via macros 

developed with Fiji. Workflow and exemplary macros are included in the appendix (11.2). 

 

5.2.6.1 Cytoplasmic MSC cluster segmentation 

This strategy was used before including 7-AAD nuclear staining in the workflow. The 488 nm channel 

CMFDA signals were segmented using the Fiji 3D Object Counter plugin (Bolte and Cordelières 2006). 

The fused 32-bit grayscale images were down sampled by a factor of 4 and converted into 8-bit by 

linearly scaling the display range from 0 to 9000 pixel values from the original. Hence, a segmentation 

threshold was typically set to 70 pixel values and the minimum size filter was set to 200 voxels (to 

exclude fiducial beads and artifacts). The autofluorescent spheroid was segmented in the same 

manner with a threshold between 14 and 18 pixel values (tested in advance) and a minimum size of 

105 voxels. Invasion depths were quantified by the measurement of distances from the center of each 

MSC cluster to the border of the spheroid using the Fiji 3D Manager plugin (Ollion et al. 2013).  

 

5.2.6.2 Nuclear single cell MSC segmentation 

Using the 7-AAD signals, all nuclei within the MSC-invaded spheroid were segmented. For the 

quantification of invasion depths, only nuclei within the CMFDA signal mask were taken into account 

and their shortest distances to the spheroid surface was measured. 

For nuclear segmentation, the fused and deconvolved 32-bit grayscale images from the 561 nm 

channel were converted into 8-bit by linearly scaling the display range from 0 to 0.6 pixel values from 

the original. A Difference of Gaussians filter (Rodieck 1965) enhanced image features by subtracting 

one image version blurred with 3D Gaussian kernels of δ = 2 pixel from a less blurred version with 3D 

kernels of δ = 4 pixel. Then, downsampling by a factor of 2 in x, y and z was used to accelerate all 

subsequent steps. The final nuclear segmentation was performed using the Fiji 3D Watershed plugin 

(Ollion et al. 2013) with a seeds threshold of 3 pixel values, an image threshold of 0 pixel values and a 

radius of 7.5 pixel. The segmentation mask of the CMFDA signal created via the 3D Object Counter 

plugin (Bolte and Cordelières 2006) (threshold determined individually for each 488 nm channel 

dataset, minimum size of 104 voxel) was applied to the nuclear segmentation file. The MSC nuclei 

detected were further filtered by size (> 300 voxel) to exclude tumor cell nuclei that partly overlap 

with the CMFDA signal. The spheroid object was also segmented with the 3D Object Counter plugin 

(threshold determined individually for each 488 nm channel dataset, minimum size of 104 voxel). 
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Finally, the MSC invasion depths were quantified by the measurement of distances from the center of 

each MSC nucleus to the border of the spheroid using the Fiji 3D Manager plugin (Ollion et al. 2013).  

 

5.2.6.3 Cytoplasmic single CTL segmentation and spheroid volume measurements 

Fused and deconvolved 32-bit grayscale images from both 488 nm and 561 nm channels were 

converted into 8-bit by linearly scaling the display range from 0 to 0.01 pixel values and 0 to 2 pixel 

values, respectively, from the original. Downsampling by a factor of 2 in x, y and z accelerated all 

subsequent steps.  

The spheroid object was segmented with the 3D Object Counter plugin (threshold determined 

individually for each 561 nm channel dataset, minimum size of 104 voxel). To exclude fiducial beads 

and restrict further CTL segmentation to the spheroid area, the mask of this segmented spheroid was 

applied to the 488 nm channel.  

Within the latter, the cytoplasmic segmentation was performed using the Fiji 3D Watershed plugin 

with a seeds and image threshold determined individually and a radius of 3 pixels. The CTLs detected 

were further filtered by size (≥ 100 voxel) to exclude oversegmented watershed objects. Finally, the 

CTL invasion depths were quantified by the measurement of distances from the center of each CTL to 

the centroid of the spheroid using the Fiji 3D Manager plugin. The spheroid object volumes were 

determined using the Fiji 3D Manager plugin as well.  
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5.3 HSV-TK expression 

 

5.3.1 Immunohistochemistry on monolayer 

Cells were seeded on coverslips and treated according to the respective experiment. Then, they were 

washed once with PBS and fixed with 4 % PFA for 10 min at room temperature. The fixing solution 

was exchanged stepwise with PBST to not dry out the cells completely. After permeabilizing the cells 

10 min with permeabilization buffer, they were incubated in blocking solution for 1 h. Anti-HA 

primary antibody was diluted 1:10 in blocking solution and added to the cells for 1 h. After three 

times washing with PBST, cells were incubated with the secondary antibody anti-rat-A592, diluted 

1:500 in blocking solution, for 1 h. Cells were washed for another three times with PBST, postfixed 

with 4 % PFA for 10 min and washed again three times with PBST. DNA was counterstained with 200 

ng/µl DAPI in PBST for 5 min. Cells were washed one last time with PBST, mounted on microscope 

slides in vectashield and sealed with nail polish.  

 

5.3.2 Cryosectioning 

Immunohistochemistry on whole mount 3D samples such as spheroids is not practicable as slow 

diffusion rates hinder a feasible workflow. Thus, spheroids were cryosectioned before 

immunostaining. Spheroids were collected into a plastic mold and embedded in 30 % sucrose solution 

overnight in a humid chamber. Sucrose solution was removed and the whole mold filled with Tissue 

Tek O.C.T™ Compound. Samples were frozen in isopentane at -80°C for 2 min. The cryostat’s knife 

temperature was adjusted to -21°C and the outer temperature to -24°C. The whole Tissue Tek block 

was cut into 18 µm sections. Spheroid sections were collected on SuperFrost® Plus microscope slides 

and stored at -20°C.  

 

5.3.3 Immunohistochemistry on cryosections 

Frozen sections on slides were thawed at room temperature for about 20 min. They were washed once 

with PBS and incubated for 30 min in 0.5 % Triton X-100 in PBS. After washing with PBS again, the 

samples were incubated overnight in anti-HA primary antibody diluted 1:10 in blocking solution. 

Samples were washed three times for 10 min with 0.05 % Triton X-100 in PBS. Subsequently, samples 

were incubated for 3 h in 1:500 anti-rat-A594 antibody and 1 µg/µl DAPI in blocking solution. They 

were washed three times 10 min with PBS, embedded in vectashield under cover slips and sealed with 

nail polish. 
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5.4 Other functional assays 

 

5.4.1 Migration Assay 

MSC migration was analyzed using the µ-slide Chemotaxis 3D system from ibidi. MSCs were seeded 

in collagen I matrix (Table 2) and subjected to a gradient between serum-free unconditioned medium 

and serum-free HUH7 conditioned medium (taken from 48 h HUH7 cultures).  

 

Table 2 Migration assay. Mixture of cells in a 1 mg/ml collagen matrix. 

 

 

Chemotaxis was monitored by time-lapse microscopy over a 24 h period on a Leica DM IL widefield 

microscope. Pictures were taken every 15 min. Twenty-five randomly selected cells per sample were 

tracked with the Fiji Manual Tracking plug-in and analyzed using the Chemotaxis and Migration Tool 

Software from ibidi (Figure 6). The migratory behavior of cells was quantified by several parameters: 

i) forward migration index (FMI), a measure of the efficiency of the migration of cells in relation to the 

conditioned medium gradient, ii) centre-of-mass (CoM) displacement, so called directionality, that is 

calculated from the averaged point of all cell endpoints, iii) cell velocity in µm/min, iv) mean 

Euclidean distance and v) mean accumulated distance of tracked cells in µm. 

 

Reagent  Volume 

H2O   10.11 µl  

10 x DMEM 1:10 2.50 µl     

200 mM L-Glutamin 1:50 0.5 µl       15 µl medium 

7.5 % NaHCO3 1:20 1.25 µl  

1 M NaOH VCollagen*0.025 0.25 µl  

HEPES 1:64 0.39 µl  

     

Collagen I 5 mg/ml 1:1.56 bzw 2.5        10 µl collagen I 

   

  

Cell suspension  1-3x106/ml       25 µl cells 
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Figure 6 µ-slide Chemotaxis 3D migration assay, ibidi. (A) Cells are seeded into a 3D collagen gel matrix 

between two chambers filled with chemoattractant or chemoattractant free medium. (B) Time lapse imaging 

allows tracking of migrating cells. (C) Chemotaxis is analyzed with Chemotaxis and Migration Tool software 

from ibidi (adapted from ibidi, Munich, Germany).  

 

5.4.2 Live imaging of CTL-target interaction and Ca2+ signaling 

Fluo-3 AM is a membrane-permeable calcium ion indicator that exhibits an > 100-fold increase in 

fluorescence intensity upon binding Ca2+ (Thermo Fisher Scientific, Schwerte, Germany). Like 

CMFDA, it belongs to the acetoxymethyl ester derivatives and is handled and stored accordingly (see 

methods, 5.2.2). 

SKMel23 target cells were seeded into µ-slide ibidi 8-well plates at 3 x 104 cells in 300 µl overnight. 

Both target cells and CTLs were separately pre-incubated in 2.5 µM Fluo-3 AM for at least 45 min. µ-

slide imaging well plates were mounted onto a Nikon TiE microscope stage at 37°C and 5 % CO2 

under humidified atmosphere. Focus was adjusted, 3 x 104 CTLs in 300 µl 2.5 µM Fluo-3 AM 

containing culture medium exchanged with the medium in the well and imaging started immediately. 

Both differential interference contrast (DIC) and 488 nm fluorescence widefield images were taken 

every 30 s for 90 min.  
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Lethal interactions of single CTLs with single target cells were analyzed manually regarding the 

chronologic occurrence of contact/immunological synapse formation, Ca2+ peaks in and membrane 

blebbing of target cells.  

 

5.4.3 Standard assays to assess CTL activity 

The following assays for quantifying CTL activity were performed by Anna Brandl and Barbara 

Mosetter at the Helmholtz Center Munich in the laboratory of Prof. Elfriede Nößner. 

 

5.4.3.1 Enzyme-linked-immunosorbent assays (ELISA) for cytokine detection 

T cell and target cell mono- and co-culture supernatants were analyzed for IL-2, IFN-γ and TNF-α by 

“sandwich” ELISA according to the kit’s manufacturer’s protocol.  

Briefly, samples were analyzed on 96-well plates coated with antibodies against IL-2, IFN-γ or TNF-α. 

Once bound, the cytokine was detected using a second antibody via a different epitope. The second 

antibody was labeled with biotin which in turn was bound by peroxidase-conjugated avidin. 

Peroxidase converts the substrate 3,3’,5,5’-tetramethylbenzidine to a diimine that can be quantified in 

a spectrophotometer. From this intensity the cytokine concentration was interpolated from a standard 

curve generated using a standard cytokine dilution series.  

 

Samples for specificity tests were collected from co-cultures of D115/Mock, T58/Mock or Mock/Mock 

transduced T cells with SKMel23, WM266.4, A375 or K562 cells at an E:T ratio of 1:2. 0.5 x 105 T cells 

and 1 x 105 target cells were cultured in 200 µl RPMI culture medium. T cell and tumor cell mono-

cultures served as control. Supernatants were harvested after 24 h. 

For analysis of chimeric co-stimulatory receptors, the samples were collected from co-cultures of 

D115/Mock, D115/PD-1:28, D115/PD-1:BB and T58/Mock T cells with SKMel23, HEK293/Tyr or 

HEK293/Tyr/PD-L1 cells. At an E:T ratio of 1:1 2.5 x 104 cells of each type were cultured in 200 µl 

RPMI culture medium. Co-culture supernatants were harvested after 10 h and 24 h and analyzed for 

IFN-γ levels.  

All culture and co-culture supernatants were acquired as triplicates. 

 

5.4.3.2 Bio-Plex analysis for cytokine detection 

Cytokine secretion of T cells invading SKMel23 spheroids was assessed via Bio-Plex according to the 

kit’s manufacturer’s protocol. Cytokines were measured in supernatants harvested from hanging drop 

invasion cultures described earlier (see 5.2.4). Briefly, SKMel23 spheroids were incubated with T cells 
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for 30 min and individually seeded into hanging drops. After 24 h supernatants from these drops were 

collected for Bio-Plex analysis.  

Cytokines within the sample were bound by antibodies coupled to beads that were labeled with 

fluorescent dyes. Via a different epitope, cytokines were detected by biotinylated antibodies that bind 

to streptavidin-PE conjugates. Cytokines within the samples were quantified on a Bio-Plex-Array-

Reader. Various cytokines were detected simultaneously and distinguished via the fluorescent dyes 

within the beads. The concentration of each cytokine correlated with the signal emitted by PE, and 

was interpolated from a standard curve generated with a standard cytokine dilution series. The 

cytokines analyzed here and the corresponding detection limits were IL-2 with 0.001 ng/ml, IL-4 with 

0.004 ng/ml, IL-5 with 0.02 ng/ml, IFN-γ with 0.1 ng/ml, TNF-α with 0.1 ng/ml and GM-CSF with 0.04 

ng/ml. 

 

5.4.3.3 Chromium release assay 

The lytic activity of T cells was assessed by chromium release assay. Target cells were labeled with 

radioactive 51Chromium (51Cr) isotype and incubated with T cells. Target cells lysed by T cells release 

51Cr into the supernatant. The amount of lysed cells was calculated from radioactivity levels in the co-

culture supernatant.  

1 x 106 target cells were re-suspended in 100 µl FCS and labeled with 50 µCi 51Cr for 1 h at 37°C. Target 

cells were washed twice with culture medium. 50 µl with T cells of serial dilutions were added to each 

well of a 96-well plate. A constant number of 2 x 103 51Cr-labeled target cells were added to each well 

to yield respective effector to target cell ratios. Parallel wells included target cells without T cells to 

determine the spontaneous chromium release. After 4 h at 37°C, 50 µl of supernatants were pipetted to 

a filter plate (Luma plate). The maximal amount of radioactivity was assessed from 50 µl of 51Cr-

labeled target cells that were pipetted to a filter plate directly after labeling. The filter plates dried 

overnight. Radioactivity was detected with a scintillator and specific cell lysis was calculated with the 

following formula:   

  

   

5.5 Flow cytometry analysis of SkMel23 cells 

 

All centrifugation steps were performed at 472 g for 5 min at room temperature. All incubation steps 

were performed in the dark and on ice. 0.05-0.1 x 106 cells were transferred into 1 ml FACS tubes, 
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washed with 500 µl flow cytometry buffer and the supernatant removed leaving 50 µl in the tube. 

Antibodies to surface markers were added and incubated for 30 minutes. When staining included a 

non-labeled primary antibody, cells were washed again as described above and incubated with the 

secondary antibody for 30 minutes. After a final washing step as described above, flow cytometry 

analysis of cells was conducted. Fluorochromes were excited with respective lasers and emission 

detected with respective filters as shown in Table 3. 

 

Table 3 Flow cytometry. Characteristics of used fluorochromes, lasers and filters for detection at the LSRII. 

Fluorochrome Excitation 

maximum (nm) 

Emission 

maximum (nm) 

Laser wavelength 

(nm) 

Detection filter 

(center/width in nm) 

APC 650 660 633 660/20  

FITC 494 520 488 530/30  

PE 496 578 488 575/26  

 

 

5.6 Statistical analysis 

 

Statistical tests were performed using R Studio software. The Mann-Whitney U test (or Wilcoxon rank 

sum test) is a non-parametric test for the comparison of unpaired groups. The Wilcoxon signed rank 

test is a non-parametric test for the comparison of paired groups. The Kolmogorov Smirnov test is a 

non-parametric test to compare the distribution of two groups. The Chi-squared test is a non-

parametric test to analyze frequency distributions of nominal data. The Student’s t test is a parametric 

test, used within the scope of this thesis to compare independent groups after using a Fisher’s F-test to 

verify the homogeneity of variances. p-values < 0.05 were regarded as significant 

(*p<0.05; **p<0.01; ***p<0.001).  

  



Results   47 

 

 

6 Results 

6.1 Invasion assay – establishing a method for the quantification of the tumor 

invasion potential of therapeutic cells 

 

Based on their excellent homing potential to solid tumors and the fact that they can be relatively easily 

engineered to express various therapy genes, MSCs are under development as therapy vehicles for the 

treatment of cancer. Their efficacy relies on their ability to migrate to and infiltrate solid tumors and 

metastases. A tumor spheroid invasion assay was established to act as a new in vitro tool for the 

characterization of culture parameters linked to the infiltrative ability of MSCs into experimental 

tumor models.  

 

To this end, a standardized protocol was developed to compare the invasive capacity of MSCs under 

defined conditions.  

Because both numbers of therapeutic cells that had attached to a tumor spheroid, as well as their 

distance traveled in the spheroid in a specific period of time were relevant parameters, the following 

workflow was established (Figure 7). Spheroids were generated from human hepatocellular 

carcinoma (HUH7) cells using the liquid overlay technique, or in hanging drops, and selected at a size 

of approximately 300 µm. One spheroid and 1.5 x 104 labelled MSCs were co-incubated in a volume of 

50 µl culture medium in an Eppendorf tube, and placed for 30 min on a shaker. This ensured that each 

spheroid came in contact with a similar number of cells. A minimum of 1.5 x 104 cells were found to be 

necessary for the spheroid to be coated after 30 min with a sufficient number of cells to allow 

subsequent measurement. Cells that had not undergone attachment to the spheroid were washed 

away. The careful application of this protocol ensured a well synchronized initial starting point for all 

cells to evaluate their invasive ability. Invasion was stopped by fixation of the spheroids after 24 h 

(Figure 7 A). Selective plane illumination microscopy was then used for 3D imaging to determine the 

localization of therapeutic cells within the tumor spheroids. MSCs were segmented and their invaded 

distances were measured as representative value for their invasive potential (Figure 7 B).  

To accelerate performance of the assay system, the processing and analysis of multiple SPIM datasets 

was implemented as a semi-high-throughput, semi-automatic workflow based on macros written in 

Fiji (see appendix, 11.1 and 11.2). This method ensured that each step, from the processing of raw 

SPIM data, to fused and deconvolved datasets up to segmentation of spheroid and cell objects, had to 

be manually initiated only once for a whole file containing multiple datasets.  
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Figure 7 Invasion assay. (A) Wet laboratory protocol and (B) imaging, data processing and analysis workflow. 

 

An initial version of the invasion assay was based on the generation of spheroids using the liquid 

overlay technique with polyHEMA coated culture vessels, and a semi-automated detection and 

analysis of MSCs via the segmentation of their cytoplasmic CMFDA CellTracker signal was developed 

(published in Rühland et al. 2015). This protocol was then modified and optimized with respect to i) 

the generation of more homogeneous spheroids via the hanging drop method, and ii) an automated 

analysis which uses additional single cell nuclear staining, and a 3D watershed algorithm to 

subsegment MSC-clusters. Within clusters of MSCs, single cells could not be detected via CMFDA 

staining because of a continuous cytoplasmic signal of adjacent cells. To overcome this issue, but still 

make use of the easy-to-handle and low-toxic CMFDA CellTracker dye, 7-AAD nuclear staining of the 

whole fixed spheroid was implemented in addition to CMFDA labeling of the MSCs. Since nuclei of 

adjacent cells do not touch each other, the nuclear signal allowed segmentation of every single cell 

within the spheroid. This was achieved using Difference of Gaussians, and a 3D watershed algorithm 

implemented in Fiji (see methods, 5.2.6, and appendix, 11.1 and 11.2). MSC nuclei were then identified 

as those lying within the CMFDA positive areas (Figure 8).   
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Figure 8 Invasion analysis. Nuclear single cell segmentation of a 7-AAD stained HUH7 spheroid invaded by 

CMFDA labeled MSCs, imaged with SPIM. A section at a depth of 65 µm of a 3D 2-channel dataset, acquired 

with a 488 nm and a 561 nm laser is shown. Segmentation was performed via Difference of Gaussians method 

and a 3D watershed algorithm. For the analysis of the invasion potential of MSCs, the shortest distance of each 

detected cell lying within the CMFDA mask to the spheroid surface is measured (white arrow). 

 

Within the 3D datasets, the shortest distance from the centroid of each segmented cell to the spheroid 

surface was measured to extrapolate their invasive potential. Figure 9 shows that single cell 

segmentation significantly shifts measured distances to higher values. This is due to the fact that 

single cell based analysis now takes into account every cell in the larger MSC clusters. These clusters 

are mostly found in greater depths within the spheroids than are single cells. Thus, invaded distances 

were previously underrated when all cells within a cluster were only counted as one cell. 
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Figure 9 Invasion potential into HUH7 spheroids of primary human bone marrow-derived MSCs analyzed via 

cytoplasmic cluster, or nuclear staining based single cell segmentation. Cells were CMFDA stained before 

cryopreservation and thawed directly prior to invasion. MSCs were in passage three at the time of invasion. For 

a 24 h period, they were allowed to invade HUH7 tumor spheroids grown in hanging drops for 3 d to a size of 

approximately 300 µm in diameter. After invasion, spheroids were fixed, stained with 7-AAD and imaged via 

SPIM. Red scatterplots show measurements of the shortest distance from the centroid of each MSC or MSC 

cluster to the spheroid surface analyzed based on both cytoplasmic cluster and nuclear single cell 

segmentation. Blue scatterplots depict mean distances per spheroid and whisker-boxplots their distribution, 

with boxes showing the quartiles and median values and whiskers the rest of the distribution without ouliers; 

Mann-Whitney U test comparing mean values per spheroid, ***p-value < 0,001. 
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6.2 MSCs‘ invasion potential into tumor spheroids is dependent on culture 

conditions 

 

The clinical application of MSC-based therapeutics requires the establishment of robust cell isolation 

and ex vivo culture protocols. Because MSCs compromise only 0.001 – 0.01 % of all nucleated cells in 

the bone marrow, and enter replicative senescence after about 30 population doublings, an efficient 

protocol for their expansion to obtain a maximum yield of therapeutic MSCs represents an important 

issue (Fekete et al. 2012). Controlled conditions and the monitoring of cells are crucial to guarantee a 

stable medicinal cell product. In addition, the in vitro culture needed to generate these cells allows a 

window for the selective pre-conditioning of MSCs to enhance or modulate their potential to home to 

and migrate into tumor sites (Shi et al. 2007).  

In cooperation with apceth (Munich, Germany), a company producing therapeutic human MSCs 

under good manufacturing practice conditions, the spheroid invasion assay was employed to screen 

the effects of various parameters important for the clinical handling and production of cells, 

specifically as they may influence the invasive behavior of the MSCs. 

 

6.2.1 Activation of primary MSCs with expanded culturing under standard cell culture conditions  

It is controversially discussed if increased passaging of MSCs has an enhancing or attenuating impact 

on tumor recruitment in vivo. Whereas downregulation of some chemokine receptors and loss of 

homing property has been described in higher passaged MSCs, the paracrine signaling of chemotactic 

cytokines in MSC cultures could also increase MSC migration in vitro (Honczarenko et al. 2006; 

Kyriakou et al. 2008; Boomsma and Geenen 2012). 

Using the invasion assay detailed above and HUH7 spheroids, the tumor infiltrating capacity of 

primary human bone marrow-derived MSCs from increasing culture passages was evaluated. 

 

The MSCs for this assay were isolated and cultured at apceth under GMP conditions using a 

propriatory apceth culture medium without FCS (Bio-1). From passage three on, the cells were 

subsequently cultured in our laboratory under standard cell culture conditions using DMEM culture 

medium. Cells were taken after three, five and seven culture passages, and the spheroid invasion 

assay was performed based on the initial version of the implemented protocol with polyHEMA 

derived spheroids and cytoplasmic segmentation based image data analysis (see methods, 5.2.1.1 and 

5.2.6.1).  

A comparison of samples with increasing culture passages revealed a constant trend towards an 

enhanced invasion potential. Between passages three and five this increment was significant (Figure 

10). 
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Figure 10 Invasion potential of primary MSCs after different in vitro passages. Human bone marrow-derived 

MSCs obtained at passage three from good manufacturing practice (GMP) production and cultured in Bio-1 

medium (DMEM low glucose, 1 U/ml Heparin, 6% platelet concentrate, 5% human fresh frozen plasma) were 

harvested directly or at passage five or seven, while from passage three on continuously cultured using 

standard cell culture conditions in DMEM culture medium (DMEM low glucose with GlutaMAX™ Supplement 

and pyruvate, 10 % FCS, 1 % Penicillin/Streptomycin). The cells were CMFDA labeled and invasion was 

conducted for 24 h into HUH7 tumor spheroids grown on polyHEMA to a size of approximately 300 µm in 

diameter. After invasion, spheroids were fixed and imaged via SPIM. Red scatterplots show measurements of 

the shortest distance from the centroid of each MSC or MSC cluster to the spheroid surface based on 

automated analysis of invasion depths via cytoplasmic segmentation. Blue scatterplots depict mean distances 

per spheroid and whisker-boxplots their distribution, with boxes showing the quartiles and median values and 

whiskers the rest of the distribution without ouliers; Mann-Whitney U test comparing mean values per 

spheroid, *** p-value < 0.001. 

 

6.2.2 Variability of invasive behavior between different donors and sources of MSCs 

Due to their limited expansion potential the extraction of primary MSCs from a succession of different 

donors is inevitable. Therefore, the potential inter-donor variability of MSCs regarding their invasion 

potential was evaluated. Invasion assays were performed with MSCs derived from different donors 

and tissues, and extracted in different laboratories. These included GMP conforming and 

nonconforming procedures.  
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HUH7 spheroids grown on polyHEMA were used to compare the invasive capacity between three 

apceth-derived MSC batches (AP), and five MSC isolates established in our laboratory (hBMSC). AP 

and hBMSC both were bone marrow-derived, and were in passage three. AP were isolated and 

cultured with GMP conforming protocols in Bio-1, and hBMSC with GMP nonconforming protocols in 

DMEM culture medium. The invasion potential did not differ significantly between the various 

batches obtained from apceth (AP, Figure 11 A). In contrast, the variability between MSCs extracted 

from different donors in our laboratory was greater (hBMSC, Figure 11 A). Pooling all samples from 

each source revealed an overall higher difference between different source laboratories that was 

greater than that seen between different donors (Figure 11 B). A significantly deeper invasion was 

detected with cells extracted and cultured in our laboratory. A third source of MSCs was then 

evaluated. Two umbilical cord subendothelial-derived batches (MSC 101003M and MSC 110501M) 

and one umbilical cord blood-derived MSC isolate (YI-1) were established at the LMU Institut für 

Prophylaxe und Epidemiologie der Kreislaufkrankheiten (PD Dr. Wolfgang Erl), and cultured in 

DMEM culture medium to passage three. The subendothelial umbilical cord MSCs reached an 

invaded depth that was different in its median, but similar in the maximal distance measured (Figure 

11 A). When pooled, their invasion potential was found to be significantly higher than that seen for 

the bone marrow derived isolates, whereas blood-derived umbilical cord YI-1 was shown to invade at 

a significantly reduced efficiency into the experimental tumor spheroids (Figure 11 B). 

Overall, the variability in their invasion potential into tumor spheroids between MSC isolates was 

only marginally dependent on the donor, but appeared to be dominated by differences in the isolation 

and culture conditions in the respective source laboratory. In addition, the tissue from which the 

MSCs are isolated appeared to have a significant impact on the migratory behavior. As reported 

elsewhere, MSCs isolated from different sources indeed displayed a different composition of homing 

molecules (Becker and van Riet 2016).    
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Figure 11 Invasion potential of different MSCs from different donors and sources into HUH7 tumor spheroids. 

(A) Comparison of primary MSCs extracted from the bone marrow of three different donors at apceth (AP) and 

derived from five different donors in our laboratory (hBMSC), as well as MSCs extracted from the umbilical cord 

at the Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, LMU Munich, two batches 

subendothelial tissue-derived (MSC) and one blood-derived (YI-1). AP were cultured in Bio-1 and hBMSC, MSC 

and YI-1 in DMEM culture medium. All cells were in passage three. Invasion was conducted for 24 h into HUH7 

spheroids grown on polyHEMA to a size of approximately 300 µm in diameter. (B) For direct comparison of 

tissues and extraction conditions, results were pooled according to the four sources. Red scatterplots show 

measurements of the shortest distance from the centroid of each MSC to the spheroid surface based on 

automated analysis of invasion depths via nuclear single cell segmentation. Blue scatterplots depict mean 

distances per spheroid and whisker-boxplots their distribution, with boxes showing the quartiles and median 

values and whiskers the rest of the distribution without ouliers; Mann-Whitney U test comparing mean values 

per spheroid, ***p-value < 0.001 between all sources. 

 

6.2.3 Conventional migration assays support source-dependent differences in the ability of MSCs 

to respond to tumor-derived signals 

In addition to the tumor spheroid invasion potential, the migratory ability of MSCs along a tumor cell-

derived chemoattractant gradient was characterized using a µ-slide Chemotaxis 3D system from ibidi 

(Munich, Germany). In this assay, primary bone marrow-derived MSCs from apceth (GMP 

conforming conditions), or cells established in-house were seeded into a collagen gel matrix between 
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two chambers that were filled with chemoattractants or control media. Cell movement within the 

inter-chamber observation area was then imaged and analyzed as described (see Methods, 5.4.1).  

Of the MSC isolates analyzed above, three apceth-derived batches (AP182, AP194 and AP158-3) as 

well as four batches derived from our laboratory (hBMSC 110331, hBMSC 130806, hBMSC 141007 and 

hBMSC 140826) were investigated regarding their migratory behavior towards HUH7-conditioned 

medium. All MSCs were in passage three, while the AP cells were cultured in Bio-1, and the hBMSCs 

were grown in DMEM culture medium. In addition to the HUH7-conditioned chemoattractant 

gradient in the inter-chamber area, two controls were performed for each experiment, where both 

chambers were filled either with fresh culture medium (negative control) or with HUH7-conditioned 

medium. Five migration parameters were subsequently analyzed: forward migration index along the 

gradient axis y (yFMI), directionality, velocity, accumulated migrated distance, and eucledean 

migrated distance. Results were then pooled according to the source laboratory, apceth (AP) or our 

laboratory (hBMSC). All five values were found to be significantly higher when a HUH7 supernatant 

gradient condition was compared to both controls (Figure 12 A and B). The results for migration 

relevant parameters of both controls indicated a lower variability between the apceth-derived cells in 

general, and an additional synchronizing effect of the HUH7-conditioned medium (Figure 12 C). 

When comparing both sources, every parameter assessed under the gradient condition revealed a 

significantly enhanced migration potential of the in-house derived hBMSCs over that seen with the AP 

cells (Figure 12 D).  

Thus, in line with the enhanced invasion into tumor spheroids, MSCs from our laboratory also 

displayed a significantly higher migratory activity in a 3D collagen matrix in response to tumor-

derived chemoattractant gradients.  

 



Results   56 

 

 

 

Figure 12 Migration of human bone marrow-derived MSCs derived from different donors towards HUH7 

conditioned supernatant, pooled according to their source laboratory. MSCs (three batches from apceth – AP, 

four batches from our laboratory - hBMSC) were in passage three. AP cells were cultured in Bio-1, and hBMSC 

in DMEM culture medium. The cells were seeded in a collagen gel matrix in the 3D observation area of ibidi µ-

slides. The chambers were filled with HUH7-conditioned medium on the one side, and fresh medium on the 

other, or as controls with either HUH7-conditioned medium, or fresh medium in both chambers. Cells were 

imaged over-night using widefield microscopy. Cell movement was tracked and migration relevant parameters 

analyzed using the ibidi chemotaxis and migration tool. Shown are the pooled results from each source, AP 

MSC (blue) (A) and hBMSC (orange) (B) alone, and in comparison in control conditions (C) and gradient-

dependent (D); Scatterplots show measurements of single cells and whisker-boxplots their distribution, with 

boxes showing the quartiles and median values and whiskers the rest of the distribution;  Kolmogorov-Smirnov 

test (KS) and, if indicated, Mann-Whitney U test (MW), ns = not significant, *p-value < 0.05, **p-value < 0.01, 

***p-value < 0.001, ****p-value < 0.0001; the assay was performed in cooperation with Alexandra 

Wechselberger (Prof. Peter Nelson’s laboratory). 
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6.2.4 DMEM culture medium with FCS enhances the invasion potential of primary MSCs into 

experimental tumors 

The significant deviation in the migratory capacity of MSCs extracted and cultured in different 

laboratories suggested an effect of differing isolation or culture conditions on the ability of MSCs to 

respond to experimental tumor signals, and on their resulting potential to invade into tumor 

spheroids. 

The primary bone marrow-derived MSCs were isolated and cultured in apceth’s GMP conforming 

laboratory using a propriatory medium containing human serum (Bio-1). To determine if the 

migratory capacity of the MSCs could be altered by culture media components, a GMP-derived MSC 

isolate was split into two and cultured in parallel using the GMP conditions and standard culture 

DMEM medium containing 10 % FCS for 48 h. The latter was shown to significantly enhance invasion 

into spheroids, approximately doubling the average migrated distances seen with the GMP medium 

(Figure 13).  

This result suggests that the variances found between MSCs derived from apceth and our laboratory 

as shown above (Figure 11) are likely due to the effects of differing media supplements. The enhanced 

invasion potential shown in Figure 10 is probably due to culturing MSCs in FCS containing DMEM 

culture medium from passage three onward. 

 

Figure 13 Invasion potential of differently cultured primary human bone marrow-derived MSC batches into 

HUH7 tumor spheroids. Invasion of GMP derived MSC batches G01-AP141, AP182 and G01-AP194 cultured 
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under GMP conditions with Bio-1 medium (DMEM low glucose, 1 U/ml Heparin, 6% platelet concentrate, 5% 

human FFP), and G01-AP194 cultured in parallel in DMEM culture medium with 10 % FCS (DMEM low glucose 

with GlutaMAX™ Supplement and pyruvate, 10 % FCS, 1 % Penicillin/Streptomycin) for 48 h. Invasion was 

conducted for 24 h in spheroids that were grown in hanging drops for 3 d to a size of approximately 300 µm in 

diameter. On average 10 spheroids per condition were analyzed. Red scatterplots show measurements of the 

shortest distance from the centroid of each MSC to the spheroid surface based on automated analysis of 

invasion depths via nuclear single cell segmentation. Blue scatterplots depict mean distances per spheroid and 

whisker-boxplots their distribution, with boxes showing the quartiles and median values and whiskers the rest 

of the distribution without ouliers; Mann-Whitney U test comparing mean values per spheroid, ** p-value < 

0.01.    

 

6.2.5 Continuously cultured and freshly thawed MSCs show similar invasion into tumor 

spheroids 

The storage and transport of engineered MSCs in a frozen state would facilitate their use in clinical 

settings. To rule out an effect of freezing and thawing, cryopreserved MSCs were thawed directly 

prior to invasion and compared to MSCs taken from continuous culture. The former were CMFDA 

stained before freezing so that they could be confronted with spheroids directly after thawing. The 

same experiment was then conducted with native and genetically modified (transduced with the 

RANTES-HSV-TK therapy construct) MSCs from the same donor (AP182 and G01-AP182). All batches 

were cultured in Bio-1 and were in passage three when applied to the spheroids. Figure 14 A depicts 

the results from both experiments, revealing no significant differences between cultured and frozen 

MSCs of each batch. 

This suggests that storage and transport of MSCs in a frozen state, or thawing directly before 

application can be implemented into the clinical workflow.  
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Figure 14 Invasion potential into HUH7 spheroids of native or genetically modified primary bone marrow-

derived MSCs taken from continuous culture or frozen stocks.  Cells thawed immediately prior to invasion 

were CMFDA stained before cryopreservation. All MSCs were cultured in Bio-1 and were in passage three at the 

time of invasion. Invasion occurred for 24 h into HUH7 tumor spheroids grown in hanging drops for 3 d to a size 

of approximately 300 µm in diameter. Spheroids were fixed, stained with 7-AAD and imaged via SPIM. MSCs 

were analyzed based on cytoplasmic segmentation and measurement of the shortest distance of each MSC or 

MSC cluster to the spheroid surface. At least 12 spheroids per condition were analyzed (A). (B) shows pooled 

results of cultured and frozen MSCs according to their native or modified condition. Red scatterplots show 

measurements of single MSCs, blue scatterplots depict mean distances per spheroid and whisker-boxplots their 

distribution, with boxes showing the quartiles and median values and whiskers the rest of the distribution 

without ouliers; Mann-Whitney U test comparing mean values per spheroid, ns = not significant, ***p-value < 

0.001. 

 

6.2.6 Viral transduction of MSCs enhances their invasion potential 

To introduce the therapeutic transgene into MSCs genetic modification is required. Viral transduction 

was employed here as the method of choice to stably engineer transgenes into primary human MSCs. 

The invasion assay was employed as described above to determine if the procedures involved during 

viral transduction impacted MSC invasion potential. 

Figure 14 B shows the invasion depths of pooled cultured and frozen lots for a comparison of native 

versus modified MSCs. Viral transduction with the RANTES-HSV-TK therapy construct significantly 

enhanced the invasion potential of those primary bone marrow-derived MSCs.  
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The results presented suggest that the exposure of primary human MSCs to procedures such as viral 

transduction, and expansion in xenogeneic FCS enhanced their invasion potential into in vitro tumor 

spheroids. These modifications appear to modify MSCs in a way that they are more actively invasive 

than naive MSCs extracted and cultured under GMP conditions.  
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6.3 RANTES-induction in engineered MSCs within the tumor spheroid milieu  

 

Recruitment to tumor sites is essential for the use of engineered MSCs as vehicle for therapeutic 

agents. However, when the cells are systemically applied, they not only home to tumors and 

metastases, but they may also migrate to healthy and injured non-tumor tissues. Expression of the 

therapy transgene in normal tissue settings may then represent a potential side effect of this MSC-

based approach. The selectivity of transgene expression can be controlled to a degree by the use of 

tissue-specific gene promoters. Since MSCs are known to respond to different tumor-derived signals 

and to differentiate into specific tumor-associated cell types, related promoters have been used to limit 

therapy gene expression to cancer sites.  

As a next set of experiments, we sought to determine if invasion of MSCs into tumor spheroids could 

also be used to measure the induction of transgene expression driven by a cancer-tissue associated 

gene promoter that is currently being used in the context of phase I and II clinical trials (Niess et al. 

2015; Einem et al. 2017). Niess et al. first published the use of MSCs engineered with the therapy gene 

herpes simplex virus thymidine kinase under control of the human RANTES gene promoter (Niess et 

al. 2011). The RANTES gene promoter is generally thought to be activated by proinflammatory 

stimuli. Tumors in vivo have been shown to result in a robust induction of RANTES (Niess et al. 2011), 

but it was not clear if this could be efficiently modeled using in vitro cell culture. To test this, co-

cultures of engineered primary bone marrow-derived MSCs and HUH7 tumor cells in 2D and 3D 

cultures were analyzed with regards to RANTES-driven induction of gene expression. 

MSCs engineered with a constitutively expressed HSV-TK construct (EFS-HSV-TK construct in AP182 

TD) were used to implement immunohistochemistry detection of a HVS-TK attached hemagglutinin 

(HA)-tag after invasion into HUH7 spheroids. Figure 15 shows reliable detection of HSV-TK 

expression in the engineered MSCs on cryosectioned spheroids. 
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Figure 15 HSV-TK expression in MSCs engineered with a constitutive therapy gene construct after invasion 

into HUH7-spheroids. Primary human bone-marrow derived MSCs engineered with a constitutive EFS-HSV-TK 

construct were CMFDA labeled prior to a 24 h invasion into HUH7 spheroids. After fixation, the spheroids were 

cryosectioned and HSV-TK expression visualised via immunohistochemistry against an integrated HA-tag. 

 

MSCs engineered with the therapeutic RANTES-HSV-TK construct (G01-AP182) were then used to 

investigate environment-dependent RANTES-induction. The results are summarized in Figure 16. 

MSCs cultured as a monolayer with, or without, 10 % FCS for 24 h showed no HSV-TK expression 

(Figure 16 A). Co-cultures with HUH7 tumor cells in monolayer for 24, 48 or 72 h at a ratio of 1:1, 

revealed a RANTES-induction in 44, 36 and 59 % of MSCs, respectively. However, when the MSCs 

were tested in the spheroid assay, after an invasion period into HUH7 spheroids of 24, 48, and 72 h 

only 26, 23 and 14 % of MSCs showed gene expression, respectively. In spheroids, the decrease over 

time was significant (Figure 16 B and C).  

This reduced transgene expression over time indicated impeding parametes within the 3D spheroid 

milieu, the individual determination of which would require further investigation. 
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Figure 16 HSV-TK expression under the control of the RANTES-promoter in engineered primary bone 

marrow-derived MSCs in monolayer or after invasion into HUH7 spheroids. MSCs engineered with 

therapeutic RANTES-HSV-TK construct were CMFDA stained and cultured with or without FCS, or in co-culture 

with HUH7 cells, or invaded into HUH7 spheroids for 24, 48 or 72 h. Spheroids were fixed and cryosectioned. 

(A) Summary of HSV-TK expression in all conditions detected via immunohistochemistry against the integrated 

HA-tag. (B) Ratios of HSV-TK positive MSCs to total MSC numbers, comparing spheroids alone over time or (C) 

to monolayer co-cultures; Chi-squared test, *p-value<0.05, ***p-value<0.001. 
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6.4 Effect of low and high avidity TCRs and chimeric co-stimulatory receptors on 

T cell invasion and tumor cell killing in a melanoma spheroid model 

 

The adoptive transfer of CTLs represents a second important class of cell-based therapy approaches 

for the treatment of cancer. For the second part of this thesis, the potential application of the tumor 

spheroid assay was tested for the characterization of functional aspects of CTLs and related platforms 

in the context of experimental tumor invasion.  

An open question in CTL-based tumor therapy is the impact of TCR avidity on the functional 

efficiency of CTLs. We hypothesized that the TCR avidity would influence the ability and speed of a 

CTL to migrate into experimental tumors. In addition, we proposed that the tumor spheroid model, 

with its specific milieu, could be exploited to obtain insight into the control of tumor growth by 

cytolytic T cells. Using a modified invasion assay protocol, various parameters linked to the effect of 

TCRs with either low or high avidity were studied, namely invasiveness, cytokine secretion and 

tumor growth control. In addition, the potential effect of a set of novel chimeric co-stimulatory 

receptors on similar parameters was evaluated.   

For all subsequent experiments, primary human CTLs generated from peripheral blood mononuclear 

cells (PBMCs) of healthy donors were used. For each experiment, CTLs from one donor that had 

undergone two rounds of viral transduction were used. In the first transduction, the T cells were 

divided into three parts and transduced with either a low avidity D115-TCR, or with a high avidity 

T58-TCR, or mock transduced as controls. Transduction efficiency was generally approximately 60 % 

for both the D115- and T58-TCR vectors. In the second transduction, the D115-TCR transduced CTLs 

were divided into three parts. One D115 population was transduced with the chimeric co-stimulatory 

construct PD-1:28 and one with PD-1:BB, while the third D115-TCR as well as T58-TCR and Mock 

CTLs were mock transduced. The resulting CTL populations D115/Mock, D115/PD-1:28, D115/PD-

1:BB, T58/Mock and Mock/Mock were stored frozen, thawed and cultured in parallel before used in 

experiments.  

 

6.4.1 Effect of TCR avidity on CTLs‘ response to tumor cells 

6.4.1.1 TCR-gene modified CTLs react antigen-specific and with TCR avidity controlled intensity 

Low avidity D115- and high avidity T58-TCRs recognize the same tyrosinase (AA366-377)-peptide, a well 

characterized melanoma associated antigen, presented on the MHC I allotype HLA-A2 (Wilde et al. 

2009).  

High avidity T58-TCR CTLs have been previously shown to elicit a stronger functional response in 

standard CTL assays (Wilde et al. 2009), an effect that was confirmed within this thesis. Using the 
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chromium-51 release assay as established standard assay for the quantification of cytotoxicity 

mediated target cell lysis, D115- and T58-TCR-transduced T cells showed specific recognition and 

functional response against HLA-A2+/Tyr+ melanoma cells SKMel23 and WM266.4, but no unspecific 

response was seen against HLA-A2+/Tyr‒ A375 or HLA A2‒/Tyr‒ K562 tumor cells (Figure 17 A). 

Specific lysis of SKMel23 cells tended to be slightly higher by high avidity T58-TCR transduced CTLs. 

Anti-tumor Th1 type cytokine quantification from supernatants of 24 h co-cultures at a 1:2 effector to 

target cell (E:T) ratio also revealed HLA-A2/Tyr specificity for both TCRs, and a significantly higher 

cytokine secretion of the high avidity T58-TCR T cells (Figure 17 B). 

 

 

Figure 17 Cytotoxicity and cytokine responses of CTLs engineered with low or high avidity TCRs, or without 

TCR construct. Low avidity TCR (D115/Mock), high avidity TCR (T58/Mock) and unspecific non- (Mock/Mock) 
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transduced CTLs were stored frozen and thawed 4 to 10 d before the experiment. During culture, they were 

supplied with 50 U/ml rIL-2 every 3 days, with a final addition of 50 U/ml 2 d or 20 U/ml 1 d before the assay. 

(A) T cells were used as effector cells against 
51

Cr-labelled SKMel23 (HLA-A2
+
/Tyr

+
), WM266.4 (HLA-A2

+
/Tyr

+
), 

A375 (HLA-A2
+
/Tyr‒) and K562 (HLA-A2‒/Tyr‒) cells at depicted effector:target cell (E:T) ratios. Target cell lysis 

was assessed by detecting released 
51

Cr after 4 h of co-culture. Shown are mean values of two replicates +/- 

standard deviation (SD). (B) T cells were stimulated with SKMel23, WM266.4, A375 or K562 cells at an E:T ratio 

of 1:2 (0.5 x 10
5
 CTLs with 1 x 10

5
 targets in 200 µl RPMI culture medium). Co-culture supernatants were 

harvested after 24 h and analyzed for IL-2, IFN-γ and TNF-α contents by ELISA. Depicted is the amount of 

cytokine secreted by 0.5 x 10
5
 T cells (mean ng/ml of triplicates +/- SD). Cytokines in cultures of only tumor cells 

or only T cells were below 0.07 ng/ml for all cytokines. 

 

6.4.1.2 High avidity TCR CTLs attack with higher frequency and kill significantly faster 

Upon contact and antigen recognition, CTLs form immunological synapses and attack target cells via 

perforin and granzyme B release (Murphy and Weaver 2017). Accumulating hits by CTLs ultimately 

induce apoptosis of the target cells. Since perforin-mediated pore-formation also elicit Ca2+ influx 

(Keefe et al. 2005), time-resolved imaging of 2D co-cultures of CTLs and target cells loaded with the 

Ca2+ indicator Fluo-3 allowed monitoring of the chronology of T cell/target interactions (Figure 18 A). 

Formation of the immunological synapse and initial Ca2+ peak in the target cell were observed mainly 

within 3 - 8 min for both D115- and T58-TCR CTLs. After this first hit, however, the high avidity T58-

TCR CTLs induced membrane blebbing, a sign of apoptosis (Coleman et al. 2001), after approximately 

17 min, within a minimum of 8 and a maximum of 24 min. By contrast, the target cell blebbing 

mediated by the low avidity D115-TCR T cells occurred only after approximately 24 min, with a much 

higher variation ranging from a minimum of 1 to a maximum of 45 min (Figure 18 B).  

Although the high avidity T58-TCR CTLs killed significantly faster, the target cells did not receive 

significantly less hits until membrane blebbing occurred (around 3 to 4, Figure 18 C). This suggests 

that the high avidity CTL delivered its hits within a shorter period of time, indicating a higher 

frequency. This is in accordance with Jenkins et al., who postulated that delivery of granules to the 

immunological synapse is triggered more efficiently with high avidity TCRs (Jenkins et al. 2009).  
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Figure 18 Chronology of interaction between D115/Mock or T58/Mock engineered CTLs and target cells. TCR 

engineered CTLs and SKMel23 were pre-stained with and then co-cultured in the presence of 2.5 µM Fluo-3 AM 

Ca
2+

 indicator staining (green). Images were taken every 30 sec. (A) Time series of microscopic images of T58-

TCR CTLs (small and round) interacting with adherent SKMel23 target cells. CTLs form an immunological 

synapse (0 min), resulting in Ca
2+

 influx into the target cell (3.5 min) and target cell membrane blebbing (21 

min); scale bar 50 µm. (B) Duration from synapse formation to first Ca
2+

 peak in the target cell and then to 

target cell blebbing, compared between D115/Mock and T58/Mock CTLs. (C) Numbers of Ca
2+

 peaks in target 

cells during the period from first Ca
2+

 peak to target cell membrane blebbing; n = 30 for each D115- and T58-

TCR CTLs; whisker-boxplots show the distribution of cells, with boxes showing the quartiles and median values 

and whiskers the rest of the distribution, with ouliers marked separately; Mann-Whitney U test, *** p-value < 

0.001. 
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6.4.1.3 CTLs show TCR dependent invasion, tumor cell killing and cytokine secretion in a 3D 

spheroid model 

As a next step, the effects of low and high avidity TCRs on CTL function were tested in the 

experimental 3D tumor models. The spheroid invasion assay was employed to assess potential 

differences in the invasion efficacy, and also in their cytotoxic response. 

Three day old melanoma cell SKMel23 spheroids grown in hanging drops were confronted with CTLs 

for 30 min, washed, and further incubated for 1 h to 6 d individually in hanging drops, then fixed and 

imaged. CTLs did not form clusters as was seen with MSCs (compare Figure 8 and Figure 19), thus 

they could be directly segmented via their cytoplasmic CMFDA signal using a 3D watershed 

algorithm. Nevertheless, whole spheroids were additionally stained with the nuclear dye 7-AAD after 

fixation to allow exact volume measurements.  

Figure 19 shows midsections through 3D light sheet microscopy acquisitions of nuclear stained 

spheroids invaded by CellTracker CMFDA-labelled CTLs and controls. As can be seen, the spheroids 

offered a matrix for CTL attachment and invasion. After three days in the spheroid, however, the 

CellTracker signal was found to be heterogeneous and weak such that reliable detection of CTLs 

within different depths of the light scattering spheroids was not possible. Thus, further analysis of 

CTL numbers and invaded depths was only conducted for the shorter time frames of 1 h and 24 h.  
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Figure 19 Imaging invasion of TCR-engineered CTLs into SKMel23 spheroids. D115/Mock, T58/Mock and 

unspecific Mock/Mock transduced CTLs were thawed 4 to 10 d prior to the experiment. During culture they 

were supplied with 50 U/ml rIL-2 every 3 days, with a final addition of 50 U/ml 2 d or 20 U/ml 1 d before the 

invasion assay. 1.5 x 10
4
 CMFDA labeled CTLs each were confronted with single 3 d old SKMel23 spheroids 

grown in hanging drops to a size of approximately 300 µm diameter. After shaking for 30 min, the co-cultures 

were filled with 1 ml of medium to dilute CTLs that were still in suspension. The CTL-coated spheroids were 

recovered from the suspensions and re-seeded into hanging drops for 1 h, 1 d, 3 d, 4 d or 6 d. After fixation, 

spheroids were nuclear stained with 7-AAD and imaged via SPIM. Shown are midsections through 3D spheroid 

data sets, masked onto 7-AAD positive area (7-AAD signal not shown), displaying invaded CMFDA labeled CTLs; 

scale bar 100 µm. 

 

In addition, the original protocol for invasion as established for the MSCs had to be modified to yield 

an equal starting number for the low and high avidity TCR engineered T cells attached to the 

spheroids. It was observed that after 30 min of co-incubation and subsequent washing of the spheroid 

to remove non-attached T cells, the numbers of the high avidity T58-TCR CTLs attached to the 

spheroid were always lower compared to those of the low avidity D115-TCR CTLs (data not shown). 

As a possible explanation we reasoned that the quicker killing activity of the high avidity T58-TCR 

CTLs (see section above, 6.4.1.2) caused the death of tumor cells at the spheroid rim within the 30 min 

attachment time. The subsequent three rounds of washing to get rid of excess CTLs then resulted in 
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the dissociation of this rim of dead or dying tumor cells from the spheroid and with it in the loss of T 

cells which were still attached to these tumor cells. The protocol was therefore modified omitting the 

washing step and, instead, applying a high dilution step to minimize the transfer of non-attached T 

cells to the further invasion culture.  

Using the modified protocol, the analysis of T cell numbers on spheroids 1 h after washing still 

yielded lower values for the high avidity T58-TCR T cells than the low avidity D115-TCR T cells 

(Figure 20 A), but the effect was less pronounced. Mock-transduced CTLs without killing specificity 

were observed at highest numbers. After 24 h, the detected numbers in spheroids of the low and high 

avidity D115- and T58-TCR T cells were similar and both significantly higher compared to the 

numbers of the mock-transduced T cell control as well as to their numbers observed at 1 h of invasion 

time. Apparently, T cell numbers in spheroids increased by 2- to 3-fold within 24 h upon specific TCR 

recognition of cognate peptide-MHC complexes on tumor cells. While that increase required TCR 

specificity, it was independent of the avidity.  

Now, it was asked if the avidity of the TCR influenced invasion depth into tumor spheroids. The 

method for measuring the invaded depths of CTLs was modified compared to that used for MSCs (see 

6.1), which used the spheroid surface as the reference position. CTLs were observed to reduce 

spheroid volumes already within 24 h, possibly due to tumor cell killing mechanisms that caused 

tumor cell loss from the spheroid rim inwards. Therefore, the spheroid surface was no longer a 

constant reference position for the quantification of invaded depths as it was for MSCs. As an 

alternative, the distance of each T cell to the spheroid centroid was used as a new measurement for 

invasion, with a closer position to the centroid indicating deeper invasion. Applying this principle, it 

was observed that CTLs with a TCR specific for a cognate peptide-MHC complex on the spheroid 

tumor cells invaded closer to the spheroid centroid than CTLs with unspecific TCRs (Figure 20 B). 

However, the invaded depths were similar for low and high avidity D115- and T58-TCR CTLs.  
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Figure 20 Analysis of TCR-engineered CTLs invaded into SKMel23 spheroids. Unspecific Mock/Mock, low 

avidity TCR D115/Mock and high avidity TCR T58/Mock CTL invaded spheroids were prepared as described in 

Figure 19. Three independent invasion experiments have been conducted with a total number of at least 5 

analyzed spheroids per group. Shown are: (A) Numbers of watershed segmented CTLs per spheroid after 1 h or 

1 d of invasion; each dot represents the number of CTLs in one spheroid and whisker-boxplots show their 

distribution, with boxes showing the quartiles and median values and whiskers the rest of the distribution 

without ouliers; Mann-Whitney U test, * p-value < 0.05; (B) density estimation of the distribution of invaded 

distances to the respective spheroid centroid after 1 h and 1 d of invasion; Mann-Whitney U test, ** p-value < 

0.01, *** p-value < 0.001 comparing mean distances per spheroid. 

 

In a next step, the activity of the T cells to kill tumor cells grown as experimental 3D tumors was 

assessed. It turned out that detecting CTL cytotoxicity within spheroids on a single target cell level 

was problematic. SKMel23 spheroids were too dense to be efficiently penetrated by apoptosis marker 

dyes, or to optically segment and count the number of living, nuclear stained tumor cells. As an 

alternative, spheroid volumes were measured after different times of CTL invasion and used as a 

general read-out for CTL-associated control of experimental tumor growth. As depicted in Figure 21 

A, after 1 h of CTL invasion, the volumes of all spheroids were largely similar independently whether 

the invading CTLs had no specific TCR (Mock/Mock CTLs) or a tumor-reactive TCR with low 

(D115/Mock CTLs) or high (T58/Mock CTLs) avidity, or whether no CTLs were present (Control). 

After 1 d of invasion, however, spheroid volumes were significantly reduced when invaded by CTLs 

with tumor-reactive TCRs, when compared to spheroids without CTLs, or non-tumor reactive CTLs. 
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Yet, there was no difference between the T cells expressing the low avidity D115-TCR or the high 

avidity T58-TCR. CTLs with antigen-specific TCRs D115 and T58 continued to reduce spheroid 

volumes until day 4, while volumes of spheroids without T cells or with antigen-unspecific T cells 

increased. After 6 d invasion, all spheroids that were invaded by T58-TCR CTLs had dissolved, 

whereas 11 % of the spheroids invaded by D115 CTLs were still intact, albeit presented with smaller 

volumes than the spheroids without or with unspecific T cells (Figure 21 B).  

In addition to direct tumor cell killing cytokine secretion of T cells in spheroids was assessed. After 24 

h of CTL invasion into spheroids supernatants from the hanging drop cultures were harvested and 

screened for CTL-secreted cytokines using the Bio-Plex Th1/Th2 kit. It was observed that supernatants 

of spheroids invaded by the T58-TCR T cells contained higher amounts of Th1 type cytokines IL-2, 

IFN-γ, TNF-α and GM-CSF than did the supernatants of spheroids with D115-TCR CTLs (Figure 21 

C). This pattern recapitulated the results seen in the 2D co-cultures (Figure 17 B). Anti-inflammatory 

Th2 type cytokines IL-4 and IL-5 were below detection limits (data not shown). 

 

The invasion assay has revealed that CTLs were able to reduce 3D tumor volumes if they expressed 

TCRs reactive to cognate peptide-MHC complexes on the tumor cells. CTLs with high avidity TCRs 

were able to dissolve all spheroids after 6 d while T cells with low avidity TCRs were less efficient. A 

stronger functional response of high avidity TCR CTLs within spheroids was also reflected by a 

higher Th1 cytokine secretion. 
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Figure 21 Effector function of TCR-engineered CTLs in SKMel23 spheroids. Unspecific Mock/Mock, low avidity 

TCR D115/Mock and high avidity TCR T58/Mock CTL invaded spheroids were prepared as described in Figure 

19. Per condition a number of spheroids as indicated (n) were analyzed regarding: (A) spheroid volumes after 

incubation for the times indicated; each dot represents one spheroid and whisker-boxplots show their 

distribution, with boxes showing the quartiles and median values and whiskers the rest of the distribution 

without ouliers; Mann-Whitney U test, * p-value < 0.05, ** p-value < 0.01; (B) percentages of spheroids still 

present after 6 d of all spheroids prepared for that timepoint; (C) cytokine IL-2, IFN-γ, TNF-α and GM-CSF levels 

detected by Bio-Plex in pooled hanging drop supernatants after 1 d of CTL invasion into SKMel23 spheroids 

(corresponds to approximately 5 x 10
7
 CTLs/ml; mean ng/ml of triplicates +/- SD). 
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6.4.2 Effect of chimeric co-stimulatory receptors on T cell function in 3D spheroid models 

CTLs used for adoptive T cell therapy often display low persistence and lose efficacy after injection 

into the patient. The co-stimulation pathway through CD28 provides survival signals to T cells and 

enhances the T cell’s functional capacity. Based on this knowledge and integrating new information 

on tumor-expressed proteins a novel strategy for enhancing the functional activity of CTLs uses 

chimeric receptors for CTL co-stimulation (Prosser et al. 2012; Ankri et al. 2013). Here, the developed 

3D spheroid system was applied to characterize the effect of two novel chimeric co-stimulatory 

proteins on T cells in the context of low and high avidity TCRs. 

 

6.4.2.1 Chimeric co-stimulatory receptors upgrade CTL response in dependency of PD-L1 

expression on targets 

The surface proteins CD80 and CD86 that interact with the co-stimulatory CD28 molecule on T cells 

are often absent on tumor cells of solid tumors. By contrast, the inhibitory PD-1 ligand (PD-L1) is 

typically upregulated on tumor cells which is thought to help protect the tumor cell from CTL activity. 

Dr. Ramona Schlenker (Prof. Elfriede Nößner’s laboratory) has linked the external domain of the 

inhibitory PD-1 protein to an internal domain of one of the co-stimulatory proteins CD28 or 4-1BB 

creating two chimeric co-stimulatory receptors, PD-1:28 and PD-1:BB (Schlenker 2015). In case of the 

PD-1:28 construct, the extracellular domain of the PD-1 construct was fused with the transmembrane 

and intracellular domains of CD28, whereas for the PD-1:BB construct the transmembrane domain of 

PD-1 was used successfully (Figure 22 A). Interacting with PD-L1 on tumor cells these PD-1 chimeric 

proteins should induce the CD28 or 4-1BB co-stimulatory pathway in the T cells instead of the 

inhibitory pathway the native PD-1 protein would activate (Figure 22 B). 
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Figure 22 Chimeric co-stimulatory receptors PD-1:28 and PD-1:BB. (A) Scheme of extracellular (ECD), 

transmembrane (TMD) and intracellular domains (ICD) of chimeric co-stimulatory receptors that (B) turn 

inhibition through native PD-1 into stimulation through CD28 or 4-1BB induced pathways.  

 

These constructs were transduced in concert with the low avidity TCR D115 to evaluate potential 

boosting effects that were compared to CTLs expressing the high avidity TCR T58. Since the functional 

performance of T cells changes with culture conditions (cytokines, time of culture) all differently 

transduced cell types (D115/Mock, D115/PD-1:28, D115/PD-1:BB and T58/Mock) had the same 

transduction and culture history when used in the same experiment (as described in 5.1.5).  

The cytotoxicity of D115 T cells expressing either PD-1:28 or PD-1:BB was first compared to that of 

D115/Mock and T58/Mock T cells in a standard chromium release assay. It was observed that the 

killing activity against the natural melanoma cell line SKMel23 grown in standard monolayer culture 

was similar for all four T cell lines, independently of the TCR avidity (D115 or T58) with no effect seen 

for the chimeric proteins PD-1:28 or PD-1:BB (Figure 23 A). To further assess effects in dependency of 

the crucial target markers tyrosinase and PD-L1 a HEK293 model system established in our laboratory 

was used. HEK293 expressing PD-L1 only (HEK293/PD-L1) were not killed by any of the T cells 

specific for the tyrosinase peptide-MHC complex, indicating that the chimeric receptors did not 

induce effector function by themselves. Using HEK293 expressing tyrosinase alone (HEK293/Tyr) or in 

addition to PD-L1 (HEK293/Tyr/PD-L1) as target cells induced higher killing activity in CTLs 

expressing high avidity T58-TCR compared to low avidity D115-TCR. Importantly, expression of the 

chimeric receptors PD-1:28 or PD-1:BB only enhanced killing activity in D115 T cells confronted with 
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HEK293/Tyr/PD-L1, while no effect was seen when HEK293 expressed tyrosinase alone without PD-

L1.  

T cell secreted cytokine IFN-γ levels after 10 h and 24 h co-culture with target cells were measured as 

an additional effector function (Figure 23 B). While SKMel23 target cells provoked a stronger response 

by CTLs expressing the high avidity T58-TCR, IFN-γ secretion was comparable between CTLs 

expressing D115-TCR alone or together with one of the chimeric receptors PD-1:28 or PD-1:BB. With 

the HEK293 system the cytokine secretion assay again revealed an enhancing effect of the chimeric 

receptors only when PD-L1 was expressed, similar to the results of the chromium release assay. 

Confronted with HEK293/Tyr/PD-L1 D115-TCR CTLs expressing PD-1:28 or PD-1:BB secreted IFN-γ 

at levels higher than CTLs with D115-TCR alone, but lower than CTLs with T58-TCR. 
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Figure 23 Cytotoxicity and cytokine responses of CTLs engineered with low avidity D115-TCR alone or 

together with chimeric co-stimulatory proteins. D115/Mock, D115/PD-1:28, D115/PD-1:BB and T58/Mock 

CTLs were stored frozen and thawed 4 to 10 d before the experiment. During culture, they were supplied with 

50 U/ml rIL-2 every 2 or 3 d, with a final addition of 50 U/ml 2 d or 20 U/ml 1 d before the assay. (A) T cells 

were used as effector cells at depicted E:T ratios against 
51

Cr-labelled SKMel23 melanoma cells or HEK293 cells 

transduced to express PD-L1 (HEK293/PD-L1), tyrosinase (HEK293/Tyr) or both (HEK293/Tyr/PD-L1). Target cell 

lysis was assessed by detecting released 
51

Cr after 4 h of co-culture. (B) T cells were stimulated with SKMel23 or 

HEK293/Tyr or HEK293/Tyr/PD-L1 cells at an E:T ratio of 1:1 (2.5 x 10
4
 of each cell type in 200 µl RPMI culture 

medium). Co-culture supernatants were harvested after 10 h and 24 h and analyzed for IFN-γ levels by ELISA. 

Depicted is the amount of cytokine secreted by 2.5 x 10
4
 T cells (mean ng/ml of triplicates +/- SD). 
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6.4.2.2 PD-L1 surface expression gets upregulated in spheroid culture 

To determine why no enhancing effect was seen for melanoma cell lines expressing the cognate 

Tyr/HLA-A2 endogenously, the PD-L1 expression on melanoma lines was determined by flow 

cytometry analysis (Figure 24). It was observed that SKMel23 cells grown in standard monolayer had 

very low to no detectable PD-L1 expression on the cell surface, while PD-L1 was readily detected on a 

renal cell carcinoma cell line RCC26. Culturing SKMel23 in hanging drops and growing them to 

spheroids of a size of 0.015 to 0.02 mm3 within 3 d increased PD-L1 expression on tumor cells. 

The alternative PD-1 ligand PD-L2 was found to be expressed at similar levels in both 2D and 3D cell 

culture conditions. Additionally, a significantly higher HLA-A2 surface expression was observed 

when SKMel23 cells were cultured in spheroids compared to 2D cultures.  

 

Since triggering the chimeric receptors requires the expression of its ligand PD-L1, the spheroid model 

seemed suitable to evaluate the biologic effects of the stimulatory receptors PD-1:28 and PD-1:BB in a 

more physiologic setting with unmodified tumor cells.  

 

Figure 24 PD-L1, PD-L2 and HLA-A2 expression on SKMel23 melanoma cells. Surface expression on SKMel23 

cells grown in 2D monolayer or 3D spheroids for 3 d in hanging drops was assessed via flow cytometry analysis. 

RCC26 renal cell carcinoma PD-L1 positive cells grown in monolayer served as control. Depicted are one 

exemplary histogram of PD-L1 antibody signals and delta (δ) median fluorescence intensity (FI) values of 4 

experiments +/- standard error of the mean (SEM); Student’s t test, *p-value < 0.05, **p-value < 0.001. 
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6.4.2.3 Chimeric co-stimulatory receptors mediate enhanced tumor cell control in the SKMel23 

spheroid model 

Monolayer cultures of melanoma cells are inappropriate to study the effects of PD-1 based chimeric 

receptors due to low expression levels of the respective ligand PD-L1. Increased PD-L1 expression on 

SKMel23 cells grown in spheroids, in contrast, seemed to open the possibility to evaluate effects of 

PD-1:28 and PD-1:BB in a more physiologic setting without the need of genetically engineering the 

melanoma cells. This was tested using the 3D spheroid assays as established above (6.4.1.3) and D115 

CTLs expressing PD-1:28 or PD-1:BB in comparison to D115 CTLs without chimeric proteins and T58 

CTLs. 

 

Upon invasion into spheroids, D115 CTLs engineered to express PD-1:28 secreted more of the 

cytokines IL-2, IFN-γ, TNF-α and GM-CSF, although levels secreted by T58 CTLs were still higher. 

Expression of the PD-1:BB protein did not alter cytokine secretion of D115 CTLs (Figure 25 A). 

Measuring spheroid volumes as surrogate of tumor growth control revealed that both chimeric 

receptors enhanced D115 CTLs enabling them to reduce spheroid size over 3 d of co-incubation to 

extents similar as observed with the high avidity T58 CTLs (Figure 25 B). Spheroids that were invaded 

by D115 CTLs without chimeric proteins remained significantly larger than those seen with T58 CTLs, 

while the volume reduction between D115/Mock and D115/PD-1:28 or D115/PD-1:BB did not reach 

significance. This was due to observed high variability in the results of three independently conducted 

experiments with different lots of T cells (see appendix, 11.5, Figure 28). A stronger tumor control by 

CTLs expressing chimeric constructs or high avidity T58-TCR compared to D115/Mock CTLs was not 

detected reliably, especially in the two first experiments where initial spheroid sizes were below 0.02 

mm3. Whether smaller spheroids display different surface expression levels of the crucial markers 

tyrosinase peptide-MHC complex or PD-L1 or whether a different tumor milieu conditioned an 

altered immunological response was not further analyzed, but these spheroid volume reduction 

results should be interpreted carefully. After 6 d, however, PD-1:28 as well as PD-1:BB proteins 

enabled D115 CTLs to dissolve all of the spheroids, similar to the T58/Mock CTLs, while around 33 % 

of the spheroids that were invaded by D115/Mock CTLs were still present (Figure 25 C). This attests 

enhancing effects of the chimeric proteins for D115 CTLs despite the variability in the volume 

reduction measurements seen on day 3 and 4.  

The invaded distances into the SKMel23 spheroids were similar for all CTLs independently of the TCR 

or the chimeric proteins (Figure 25 D). 
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Figure 25 Invasion of chimeric co-stimulatory receptor-engineered CTLs into SKMel23 spheroids. D115/Mock, 

D115/PD-1:28, D115/PD-1:BB and T58/Mock CTL invaded spheroids were prepared as described in Figure 19. 

Three independent invasion experiments have been conducted with a total number of analyzed spheroids per 

group as indicated (n). Shown are: (A) Cytokine IL-2, IFN-γ, TNF-α and GM-CSF levels detected in hanging drop 

supernatants after 1 d of CTL invasion into SKMel23 spheroids (mean ng/ml of triplicates +/- SD); (B) spheroid 

volumes after indicated time points; each dot represents one spheroid and whisker-boxplots show their 

distribution, with boxes showing the quartiles and median values and whiskers the rest of the distribution 

without ouliers; Mann-Whitney U test, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001; (C) percentage 

of spheroids still intact after 6 d; and (D) density estimation of the distribution of invaded distances to the 

respective spheroid centroid after 1 h and 1 d of invasion.  
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7 Discussion 

 

7.1 Spheroids and their capacity as in vitro tumor model  

 

Due to their unique characteristics, tumor spheroids represent an essential tool in research and drug 

development. Comparison to monolayer cell cultures strongly demonstrates the potential impact of a 

3D cellular environment on the phenotype of cells. The shape and interaction of cells in three 

dimensions as well as chemical gradients that develop with additional cell layers strongly influence 

gene expression, cell metabolism and proliferation (Bissell et al. 1982; Sutherland 1988). Although they 

still do not replicate a whole mulitfaceted tumor, spheroids are able to mimic certain physiological 

aspects of intervascular tumor microregions that monolayer cell cultures lack. The invasion assay 

developed here makes use of tumor spheroids as a dense 3D matrix, reflecting the cancer tissue that 

infiltrating cells have to navigate through in vivo. In addition, spheroids can mimic characteristics 

inherent to intervascular tumor microregions, such as oxygen and chemical gradients, and altered 

tumor cell phenotypes. The influence of these features on therapeutic cells could be investigated with 

regard to migration as well as anti-tumor action. 

 

The size and age of a spheroid determines its characteristics. Sutherland et al. observed that 

undervascularized tumors with a size of 1 mm diameter show necrotic regions and induce 

angiogenesis (Sutherland 1988). The distance that oxygen can diffuse in solid tumor tissue was 

measured to be 100 – 200 µm (Olive et al. 1992). Accordingly, spheroids with a diameter up to 150 – 

200 µm are reported to reflect gene expression profiles that are attributable to 3D cell-cell and cell-

matrix interactions, but not hypoxic conditions. Gradients of oxygen, nutrients and catabolites are 

only seen in spheroids that are larger than 200 µm in diameter. A necrotic core is generally formed 

when the spheroids reaches a size of 500 – 600 µm, while those typically display a 100 – 300 µm rim of 

viable cells (Friedrich et al. 2007; Friedrich et al. 2009; Hirschhaeuser et al. 2010). The tumor spheroids 

used within this thesis generally measured between 300 – 500 µm in diameter. Therefore, they 

provided a 3D tumor matrix that could model oxygen as well as other chemical gradients. Although 

lacking a necrotic center, a heterogeneous division into highly proliferative and quiescent cells was 

likely present.   

 

There are many techniques available for the characterization of various physiological stages of 

spheroids. These include measurements with microelectrodes to probe oxygen at different depths. 

Autoradiography has been used to track the distribution of radioactively labeled substrates, thus 
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localizing ATP, glucose or lactate metabolites. In addition, immunofluorescent and histological 

staining of spheroid sections allows the specific localization of proliferating or apoptotic cells (see 

Figure 3, Hirschhaeuser et al. 2010).  

To identify an appropriate size and age for the spheroids used here, we adhered to consistent values 

about the development of a tumor-like milieu throughout the different microlayers of a spheroid 

reported in literature and refrained from directly analyzing them. However, the following findings 

did suggest a tumor reflecting milieu within the spheroids employed.  

The first finding was a higher PD-L1 surface expression on SKMel23 melanoma cells grown in 

spheroids compared to cells grown in monolayer cultures. PD-L1 is generally overexpressed in 

tumors, whereas tumor cells grown in vitro often lack this expression (Flies and Chen 2007). It has 

been proposed that PD-L1 upregulation in tumor cells is mainly induced by IFN-γ, and occurs as a 

result of lymphocyte recruitment (Spranger et al. 2013). In addition, recent studies have identified a 

direct positive regulation of PD-L1 via the transcription factor hypoxia-inducible factor (HIF)-1α 

(Noman et al. 2014). Since elevated PD-L1 levels on SKMel23 cells in spheroids were detected here in 

the absence of infiltrating T cells that produce IFN-γ, hypoxia is the likely factor leading to the 

upregulation seen in our setting. Low PD-L1 on SKMel23 cells grown in 2D cultures has been a 

confounding issue in our attempts to evaluate the PD-L1 dependent effects of the chimeric co-

stimulatory proteins PD-1:28 and PD-1:BB (Figure 23 and Figure 24). In addition to xenograft mouse 

models, where PD-L1 could be re-established on SKMel23 cells as well, the application of spheroid 

models now offers a viable in vitro alternative.  

A second finding indicating tumor-like conditions in spheroids was the observation of increased 

expression of MHC I type HLA-A2 on the SKMel23 cells when grown as a spheroid, as compared to 

monolayer cultures. Like PD-L1 expression, MHC I expression has been linked to hypoxia. Hypoxia 

leads to upregulation of the endoplasmatic reticulum oxidoreductase (ERO) 1-α, which in turn 

mediates oxidative folding of MHC I heavy chains in the ER. This results in enhanced surface 

presentation of MHC I, and subsequently enhanced recognition of tumor cells by CTLs (Kajiwara et al. 

2016). The latter is the reason why tumor cells in vivo are subject to immune selection. Tumor cells that 

despite hypoxia downregulate MHC I are in general those that persist (Garrido et al. 2016). 

Alltogether, elevated MHC I on tumor cells suggests that tumor-like conditions with regard to oxygen 

levels may be established in spheroids, but comprises an artificial phenotype itself by failing to reflect 

immune selection mechanisms. This should be considered with regard to the strength of target cell 

recognition by CTLs that might be unphysiologically high in in vitro spheroids. 

Regarding the induction of the therapy gene HSV-TK under control of the CCL5/RANTES promoter in 

engineered MSCs the spheroid model conditions did not replicate the in vivo biology. Whereas studies 
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in a mouse model showed strong activation of the RANTES promoter in tumor settings (Niess et al. 

2011), its induction was found to be reduced in spheroids over time.  

 

A limitation for the use of spheroid based assays is the fact that not all tumor lines form those 3D cell 

aggregates. The renal cell carcinoma lines RCC26 and RCC53, for example, did not establish spheroids 

under the conditions employed here. To form compact spheroids, cells require expression of specific 

membrane adhesion proteins (Cui et al. 2017). A tumor cell line’s capacity to grow in spheroid culture 

is likely linked to differing levels of these critical surface molecules. Also, the ability of other cell types 

to attach and invade tumor spheroids is probably associated with the tumor cell’s specific surface 

molecule composition. For example, other than the cell lines HUH7 and LS174T tested here, the HT29 

cell line did not seem to offer an appropriate substrate for MSC attachment (see appendix, 11.3, Figure 

26). The analysis of HT29 cell membrane composition has revealed a lack of connexin Cx43 and 

reduced E-cadherin expression which could limit formation of gap or adherens junctions, curtailing 

the necessary physical and chemical cell-cell interactions for attachment (Nicholas et al. 2003; Han et 

al. 2013). Thus, the ability of cells to form spheroids, as well as their adhesive characteristics, could 

provide additional important information regarding a tumor’s characteristics and behavior upon 

therapy. 

Migration and metastasis linked proteins that tumor cells express when grown as spheroids are under 

investigation in assays that model the tumor spheroid’s potential to invade a surrounding tissue or 

matrix (Hirschberg et al. 2006; Vinci et al. 2015). The ability of primary tumor single cell suspensions 

to form spheroids relies both on their proliferative and adhesive characteristics, and has been 

proposed as a general measure of cancer cell “stemness” (Ishiguro et al. 2017). Accordingly, the 

adhesion of therapeutic cells to tumor spheroids as measured here (see appendix, 11.3, Figure 26) may 

provide useful information with regards to cell - tumor interaction characteristics and clinical 

outcome. This may be especially relevant for the culture of primary tumor cells extracted from 

biopsies, or tumor resections, which have been shown to benefit from spheroid technologies. Because 

primary tumor cells grown in spheroid culture maintain important phenotypes seen in vivo (Witt 

Hamer et al. 2008), they are used for “personalized medicine” approaches to devise patient-specific 

therapy. Parameters tested in primary tumor cell spheroids allow a prediction of epithelial - 

mesenchymal transition (EMT) characteristics, invasive capacity or cancer stemness, and susceptibility 

to drug treatment (Lin et al. 2015; Ishiguro et al. 2017; Vlachogiannis et al. 2018). Defining the adhesive 

and invasive features of therapeutic cells on different tumor spheroids as well as their capacity to kill 

the tumor cells, as performed within the scope of this thesis, integrate well into such diagnostic assays. 
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7.2 Therapeutic mesenchymal stem cells – optimal pre-conditioning for effective 

tumor homing 

 

The pre-conditioning that occurs during ex vivo expansion of therapeutic MSCs can influence the 

tumor homing behavior of these cells. Since spheroids can reflect conditions of intervascular tumor 

microregions, they were employed here as a potential platform to study conditions that impact the 

MSCs capacity of tumor infiltration before applying the cells in vivo. Since mechanisms driving tumor 

homing and infiltration are complex, it remains to be clarified if the effects seen here are stable and 

predictive of the behavior upon application to a patient and still retain a safe therapeutic cell product 

without side effects at non-tumor sites. MSC migration mechanisms as well as safety issues shall be 

discussed in the following. 

 

7.2.1 Assays to analyze MSC recruitment to tumor sites 

Therapeutic MSCs that are systemically applied via intravenous injection undergo a series of steps 

during their recruitment to tumor sites (Karp and Leng Teo 2009). These include de-acceleration and 

arrest on the endothelium, extravasation and migration towards the depth of a tumor. The alternative 

direct intratumoral injection is not possible for every tumor type and excludes the effective treatment 

of metastases. Moreover, it has been discussed that each of the steps involved in tumor homing can 

impact and prime MSCs for optimal differentiation in a therapeutic context (Bao et al. 2012). Thus, in 

vitro modelling of only one aspect of recruitment might not be able to completely reflect in vivo cell 

behavior. 

A series of in vitro assays have been applied to investigate specific steps in the recruitment process. 

Smith et al. employed an array of analyses to study a broad spectrum of MSC recruitment 

characteristics. The authors used a microfluidic adherence assay to investigate the attachment of MSCs 

to an endothelial cell monolayer under physiologic flow. They then employed a modified Boyden 

chamber as a transendothelial migration assay to analyze the extravasation capacity of MSCs by 

means of their ability to cross an endothelial cell monolayer. And finally, chemotaxis was analyzed via 

monitoring cell migration along a chemotactic gradient within a channel of a microfluidic device, or 

from the upper to the lower chamber of a transwell plate. The authors reported that the pre-

conditioning of MSCs with glioma-conditioned medium, fibronectin or laminin, enhanced their 

activity in all homing steps in vitro, and the general effects could eventually be validated in vivo (Smith 

et al. 2015). By comparison, the methods used here, namely migration in a collagen matrix and 

invasion into tumor spheroids, largely analyze processes downstream of MSC extravasation. 

However, both the migration assay performed using a 3D collagen matrix, and the tumor spheroid 

invasion assay provide an additional 3D matrix context, and model cell locomotion in a potentially 
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more physiological manner. The invasion assay into tumor spheroids developed here may represent 

the first in vitro assay reported that mimics MSC locomotion within the three dimensional tumor 

micromilieu.  

 

Hypoxia was found to specifically induce chemokine IL-6 secretion in breast cancer cells. IL-6 has 

been shown to attract MSCs towards hypoxic tumor cells by inducing an enhanced migratory activity 

via cytoskeletal reorganization to actin stress fibers (Rattigan et al. 2010). As discussed above, a 

hypoxic inner core is probably present within the spheroids used here and should presumptively 

result in chemokine gradients. Invaded distances of MSCs along this gradient should thus be an 

appropriate measure to quantify the cells’ potential for directional migratory activation within the 

tumor spheroid.  

 

7.2.2 Biologic mechanisms underlying MSC recruitment to tumor sites 

The individual steps in MSC homing are mediated by a series of molecules. Key proteins in this 

regard include chemokine receptors, of which the following have been described to be expressed on 

MSCs: CCR1, CCR2, CCR3, CCR4, CCR7, CCR8, CCR9, CCR10, CXCR1, CXCR2, CXCR3, CXCR4, 

CXCR5, and CXCR6 (Lüttichau et al. 2005; Bao et al. 2012). Chemokine receptors mediate the tissue-

specific homing of diverse cell types, including stem cells and leukocytes, and may also play a role in 

the tissue distribution of tumor metastases (Kakinuma and Hwang 2006). The binding of chemokines 

to chemokine receptors can be redundant, or specific. The chemokine CXCL12 (SDF-1) / receptor 

CXCR4 axis represents a highly specific interaction and has been proposed to play a dominant role in 

MSC recruitment to tumors. CXCL12 binding to CXCR4 activates cells for adhesion and extravasation. 

This signal alters the affinity of MSC-expressed integrins for their respective adhesion molecules, for 

example VCAM-1, on endothelial cells, thus supporting arrest on the vasculature surface (Kakinuma 

and Hwang 2006). Moreover, it has been reported that CXCR4 also triggers downstream activation of 

Akt and MAP kinase pathways, and induces the expression of matrix metalloproteinase MMP-9 

(Chinni et al. 2006). MMPs are essential in cellular extravasation and for their migration through tissue 

as they help degrade the extracellular matrix (ECM) proteins and disassemble focal adhesions, thus 

clearing the way for migrating cells. 

Whereas the mechanisms controlling MSC recruitment towards a tumor site including endothelial 

rolling, arrest and extravasation, are thought to be similar to that seen during leukocyte recruitment, 

chemotactic migration through tissue appears to follow a different set of mechanisms (Bear and 

Haugh 2014). Both leukocytes and MSCs sense chemotactic gradients, which drive signaling and 

cytoskeletal responses. The mode of trafficking in 3D settings, though, differs with regard to speed 

and mechanism. Fast leukocytes twist through tissues using strongly polarized protrusions, called 
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pseudopods, and only marginally rely on anchor points on the ECM or other cells. Mesenchymal cells, 

by contrast, migrate slower and are less efficiently polarized. Their mode of locomotion is poorly 

understood, but is thought to be composed of a different set of mechanisms. Mesenchymal cells 

usually display multiple protrusions, called lammelipodia and filopodia, and show strong adhesion to 

the ECM. In leukocytes, the cytoskeleton is organized into a pushing uropod opposite to the cell front. 

In mesenchymal cells, the cytoskeleton forms contractile actin stress fibers anchored to focal adhesions 

all over the cell. Thus, they rather pull themselves forward, especially when they move in a so called 

haptotactic mode: MSCs translocate along immobilized ligands on the ECM to which their integrins 

bind and form focal adhesions as anchor points for contractile stress fibers (Rattigan et al. 2010, Bear 

and Haugh 2014). 

Surface molecules such as chemokine receptors and integrins are involved both in the homing of 

MSCs from the peripheral circulation towards tumor sites, and in their migration along chemotactic 

gradients within the tumor tissue. Thus, effects that positively impact invasion into spheroids may 

similarly enhance the general efficiency of systemically injected MSC recruitment to tumor settings.  

This was demonstrated in a parallel study of the effects of thyroid hormones on MSC recruitment that 

made use of the invasion assay developed within this thesis. Thyroid hormones act via cytoplasmic 

hormone receptors, but also via signaling through the αvβ3 integrin. This signaling can be blocked by 

the competitive binding of tetraiodothyroacetic acid (tetrac) (Bergh et al. 2005). Exposing primary 

human MSCs to the thyroid hormones triiodo-l-thyronine (T3) and l-thyroxine (T4) was found to 

enhance their in vitro migration towards hepatocellular carcinoma cell HUH7-derived conditioned 

medium, and to specifically enhance their invasion into HUH7 spheroids (see appendix, 11.4, Figure 

27). Importantly, this effect could be replicated in an in vivo setting that showed both enhanced MSC 

recruitment and tumor infiltration of adoptively applied MSCs in the context of hyperthyroid 

conditions. The αvβ3 integrin-specific inhibitor tetrac could reverse those effects (published in 

Schmohl et al. 2015). As outlined above, integrins play a role in arrest of circulating cells on the 

endothelium and the hapto-/chemotactic migration of mesenchymal cells. This may help explain the 

positive effects of integrin stimulation with T3 and T4 thyroid hormones, on both the homing of MSCs 

and their invasion into in vivo and in vitro tumor tissue.  

 

7.2.3 Pre-conditioning and growth conditions can enhance MSC homing and tumor infiltration 

The efficiency of adoptively applied MSCs to migrate to damaged tissue can be enhanced (Becker and 

van Riet 2016). The general biology and biodistribution of MSCs after their systemic injection is poorly 

understood. Due to their relatively large size after in vitro expansion, MSCs become entrapped in lung 

and splenic microvessels within minutes after intravenous injection. They are cleared from the 

microvasculature within a few days, and subsequently home to liver and secondary lymphatics, and 
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at lower frequencies, to other organs such as skin, intestines, kidney and bone marrow (Karp and 

Leng Teo 2009, Leibacher and Henschler 2016). When compared to intravenous injection, intra-arterial 

injection was shown to significantly reduce the initial localization within the lung and enhance 

homing to peripheral sites. Importantly, the presence of inflammatory signals alters the 

biodistribution of MSCs towards sites of tissue injury or cancer. MSCs were shown to be cleared 

significantly faster from the circulation of mice bearing tumors, as compared to healthy mice. They 

were found to actively home to solid tumors and metastases (Xie et al. 2017). Still, also homing to 

pathophysiological sites is sought to be optimized. 

 

As seen with the thyroid hormone enhanced integrin dependent effects, many homing related 

molecules are involved in several substeps. Thus, pre-conditioning related effects seen in tumor 

spheroid invasion may also positively impact previous recruitment processes.  

The tumor spheroid invasion assay revealed an enhanced invasive activity of MSCs that were cultured 

for an increased number of passages, and when FCS was used for cell culture in the place of human 

serum components. Although a positive effect of autocrine signaling via cytokines secreted by MSCs 

in culture has been described (Boomsma and Geenen 2012), expanded growth in vitro is mostly 

reported to downregulate chemokine receptors and decrease homing behavior (Becker and van Riet 

2016). The enhanced invasion potential identified here of MSCs between passage three and five may 

be due in part to the switch in culture medium from human serum to FCS conditions. Indeed, FCS 

culture was shown to enhance SDF-1α secretion by MSCs and their migration in vitro (Goedecke et al. 

2011). MSCs cultured in FCS containing medium also display an increase in focal adhesions and stress 

fibers, mediating a stronger interaction with the surrounding matrix (Fernandez-Rebollo et al. 2017). 

As detailed earlier, MSCs depend on these focal adhesions for locomotion.  

However, the use of FCS in clinical applications is contraindicated. MSCs expanded in FCS may 

expose patients to the risk of zoonotic infections, for example transmittable spongiform 

encephalopathy (TSE) variants like bovine spongiform encephalopathy (BSE) or Creutzfeldt-Jakob 

disease (CJD) (Asher 1999). Thus, human serum components are required instead in the 

manufacturing processes of biological agents. But although human platelet lysate is thought to be a 

safer culture supplement than FCS, and MSCs show similar or even enhanced proliferation when it is 

used (Fekete et al. 2012, Fernandez-Rebollo et al. 2017), one or several components of the fetal serum 

may still represent a useful culture supplement to enhance MSC homing efficiency. The invasion 

assay, in line with other in vitro assays that evaluate homing mechanisms, provides a tool to screen 

systematically for those components to identify safe and effective pre-conditioning supplements 

during MSC expansion.   
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In conclusion, the invasion assay developed here can be used to measure effects of growth conditions 

and pre-conditioning treatments on the invasive behavior of MSCs. In this regard, it provides a new in 

vitro tool for testing parameters linked to the recruitment of MSCs to tumor sites. By mimicking an 

important step in recruitment, the invasion of MSCs into the depth of tumors, the spheroid invasion 

assay closes a gap. It provides a model of the target structure and general milieu. Although all steps in 

tumor homing are essential for a successful application of cellular therapy, the spheroid invasion 

assay is able to predict tumor infiltration and potential activation of engineered MSCs. Within the 

scope of this thesis, it was successfully included into the test pipeline of primary human MSCs 

isolated, expanded and engineered for anti-tumor therapy and revealed important effects of different 

manufacturing processes on their invasion potential.  
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7.3 Assessing CTL activity in vitro 

 

The design and application of therapeutic T cells represents a balancing act between efficiency and 

safety. Naturally occuring T cells with tumor antigen recognizing T cell receptors are often too weak 

to eliminate a malignancy. Issues that are addressed when considering CTL-based immune therapy of 

cancer include the low avidity of endogenous anti-tumor T cell receptors, a lack of co-stimulation, or 

an active inhibition of T cells, due either to a hostile tumor milieu characterized by high levels of lactic 

acid, or the expression of inhibitory molecules on the tumor cells (Hadrup et al. 2013, Vinay et al. 

2015). Each of these issues can contribute to the phenomenon of T cell exhaustion often seen in tumor 

settings leading to a shutdown of their cytolytic activity (Pauken and Wherry 2015, Roufas et al. 2018). 

Although transgenic high avidity TCRs or CARs can improve a CTL response (Wilde et al. 2009), they 

may still not allow persistent anti-tumor activity in vivo (Janicki et al. 2008). Moreover, they may 

increase the risk of potential side effects. Unphysiologially high T cell avidity has been shown to 

critically enhance CTL action against healthy cells expressing tumor associated antigens at low levels 

(on-target off-tissue) (Johnson et al. 2009). In addition, artificially modified TCRs have a high risk to 

generate off-target off-tissue activity, as was observed with a high avidity TCR against melanoma 

associated antigen MAGE-A3 that attacked cardiomyocytes with fatal consequences (Linette et al. 

2013). The use of standard CTL assays and mouse models failed to detect important cross-reactivity of 

the respective TCR directed against the human titin antigen. Cameron et al. described a method to 

predict possible target peptides by identifying the amino acids essential for TCR binding and using an 

in silico approach to search for respective homologues among endogenous peptides (Cameron et al. 

2013). However, this requires an elaborate process and altering a TCR binding domain remains risky. 

By contrast, the use of chimeric co-stimulatory receptor designs may offer a safer approach to enhance 

CTL activity that turns the inhibition normally mediated by PD-1 via PD-L1 expressed on many tumor 

cells, into stimulatory signals (Prosser et al. 2012; Ankri et al. 2013). This approach may allow 

functional enhancement and application of naturally selected, thus safer, intermediate or low avidity 

TCRs heterologously expressed on CTLs. As observed here, low avidity D115-TCR CTLs with anti-

melanoma activity displayed a lower cytotoxicity against SKMel23 spheroids, but became almost as 

effective as the high avidity T58-TCR CTLs when the chimeric receptors PD-1:28 or PD-1:BB designed 

in our laboratory were co-expressed. The application of these chimeric co-stimulatory receptors brings 

naturally occurring TILs with endogenous anti-tumor TCRs back into play for adoptive T cell therapy, 

as well as a large library of known low avidity TCRs.  

 

Current standard CTL in vitro assays are often insufficient in their prediction of effective in vivo CTL 

responses. For example, the cross-reactive anti-MAGE-A3 CTLs described above were not found to 



Discussion   90 

 

 

attack cardiac-derived cells in vitro, due to the downregulated titin expression that occurred in 2D 

culture. A physiologic titin expression, and a resulting anti-cardiomyocyte CTL response, could only 

be established in special cultures of induced pluripotent stem cell-derived cardiomyocytes (Cameron 

et al. 2013). Culture conditions that better reflect physiological phenotypes are therefore needed to 

predict the sensitive crosstalk of immunological processes. In the case of the chimeric co-stimulatory 

constructs evaluated here, analysis of effects that depended on PD-L1 expression benefitted from the 

increased PD-L1 expression on SKMel23 melanoma cells seen when grown as spheroids. This is an 

additional example of the potential benefit of using spheroid cultures in the context of physiological 

assay systems.  

The study of immune cell and tumor cell biology using 3D spheroids was found to have significant 

advantages as compared to classical 2D immune assays. Sutherland et al. were the first to study 

immune cell interactions with tumor cell spheroids, and suggested beneficial insights with regards to 

immune cell – tumor infiltration and interaction (Sutherland et al. 1977). As discussed earlier, some of 

the tumor characteristics that spheroid based assays model include low oxygen levels and lactic acid 

accumulation. Hypoxia can potentially alter the surface expression of target or inhibitory molecules as 

described here. Elevated lactate levels in tumor spheroids allow the investigation of a potential 

inhibition of immune cells via this pathophysiological factor (Gottfried et al. 2006). In addition, 

spheroid invasion assays can better reflect aspects regarding immune cell distribution, ratio to target 

cells, and general geometrical interactions of effector and target cells than those seen in 2D cultures. 

How these spatial characteristics can influence CTL efficiency, and what this implies for in vitro assay 

systems will be discussed in the following sections.  

 

Since its implementation in 1961, the chromium release assay has become the in vitro gold standard to 

determine specific cell lysis by immune system components (Goodman 1961; Brunner et al. 1968). In 

this assay, target cells are first loaded with radioactive 51Cr. Upon cell lysis, 51Cr is released and 

detectable in the culture supernatant. This is then used to determine the specific quantifiable 

cytotoxicity by CTLs in vitro. Although it has been thought to be a reliable, quick and relatively precise 

assay, the chromium release assay can be seen as limited by the somewhat artificial conditions needed. 

Due to cytotoxicity seen with 51Cr itself, and the subsequent spontaneous lysis that occurs, it allows 

only relatively short incubation times, with a typical endpoint applied after 4 h. Short duration studies 

require the use of large numbers of T cells and high effector to target cell ratios to detect specific 

effects. Typical E:T ratios can reach levels up to 50:1. Alternative assays have been developed for real-

time investigation of target cell killing, that run over longer time periods, and at lower E:T ratios 

(Noto et al. 2013; Peper et al. 2014). Still, these approaches generally rely on artificial 2D cell 

distributions. The same issues apply when using the cytokine secretion assays that are also broadly 
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applied to measure T cell response. These assays are based on the detection of cytokines like IFN-γ 

that are produced by activated T cells in 2D co-cultures. These studies are usually performed at lower 

E:T ratios of about 2:1 or 1:1, but cellular interactions also occur in a 2D environment.  

 

One goal of this thesis was to determine if the tumor spheroid invasion assay developed here could be 

also used to better assess different CTL functions relevant for the evaluation of their efficiency. These 

include their general mobility or migration, cytokine production and target cytotoxicity, all studied in 

a more physiologic 3D tumor context. In the invasion assay established here, after 24 h co-incubation, 

approximately 1000 - 1500 CTLs could be detected per spheroid. Spheroids grew from an initial 

approximately 800 cells per hanging drop, to aggregates composed of about 6000 cells. This resulted in 

an E:T ratio of approximately 1:6. However, exact CTL numbers were not determinable at time points 

after three days due to the loss of CMFDA CellTracker signal. This dye is generally stable, and based 

on the manufacturer, can be detectable for longer than 72 h, and for up to three to six generations. The 

rapid decrease in signal strength observed here, as well as the increase in CTL numbers from about 

300 CTLs/spheroid at 1 h to more than 1000 CTLs/spheroid at 24 h of invasion, suggests a high 

proliferation rate of CTLs within target spheroids. Kawai et al. tracked CTL proliferation in tumor 

spheroids over time. They observed strong CTL proliferation, and reported effective spheroid 

destruction after a few days when E:T ratios had reached levels ≥ 4:1 (Kawai et al. 2001). 

In any case, there are suggestions that rather than the final E:T ratio, the overall T cell density is more 

crucial for an effective immune response against cancer (Budhu et al. 2010). Given that approximately 

1000 CTLs were detected in the tumor spheroids of roughly 0.02 mm3 volume, this would correlate 

with a concentration of 5 x 107 CTLs/ml. This value is in concordance with the general concentration of 

107 CTLs/ml experimentally found to be necessary for successful melanoma cell eradication. Budhu et 

al. suggested that a constant presence of mouse OT-1 CTLs at these concentrations led to elimination 

of 100 % of mouse melanoma B16 cells in a 3D in vitro assay using collagen gel-based culture systems, 

that was independent of the E:T ratio. In vivo, however, the critical T-cell concentration was found to 

be about 10-fold higher. The authors suggest that this disparity was due to the presence of immune 

evasion mechanisms seen in solid tumors. Accordingly, the concentrations of human CTLs necessary 

to eradicate tumor spheroids as observed here might not be sufficient to eliminate tumor cells 

completely in vivo. In addition, the observed upregulation of MHC I HLA-A2 on SKMel23 spheroids 

can probably account for an unphysiologically high T cell response. In fact, in vivo MHC I is often 

downregulated on tumor cells due to immune selection (Garrido et al. 2016). 

Complete tumor spheroid elimination at E:T ratios below 1 suggests the ability of CTLs for serial 

killing. A single CTL was found to be able to kill multiple targets, not only sequentially, but even 

simultaneously (Wiedemann et al. 2006). While cytokine production requires constant and strong 
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antigen stimulation, lytic granule delivery occurs at lower thresholds, and is delivered towards all 

targets a CTL is in contact with. This underscores the importance of the geometrical distribution of 

target cells around a CTL. Within spheroids, the kill mode and rate of CTLs are certainly much better 

reflected with regards to tumor biology in vivo than that seen in 2D assay conditions where T cells 

need to cross a plastic surface to migrate from cell to cell. Gadhamsetty et al. mathematically modelled 

T cell-target cell interactions as a function of their spatial environment, comparing 2D and 3D settings. 

They reported striking differences. In a 3D environment the maximal killing rate a CTL can exploit 

was achieved at lower CTL numbers than in 2D, because a given CTL can be simultaneously in contact 

with a higher number of potential targets. In addition, in a 3D environment the CTL – target cell 

contact stability was decreased, which was attributed to the pushing and pulling environment of 

migrating neighbor cells (Gadhamsetty et al. 2016).  

This introduces an additional parameter concerning CTL-tumor cell interactions that the invasion 

assay can provide, and that is the effect of cell-to-cell migration. No hindrance of CTL infiltration into 

the depth of an experimental tumor spheroid was detected with high avidity TCRs. An early 

hypothesis proposed in the present study was that CTL binding to a target cell with high avidity 

would potentially prevent the cell from migrating deeper into the spheroid due to their constant 

triggering. We were able to show here that both D115- and T58-TCRs allowed CTLs to infiltrate 

through the entire spheroid within 24 h. Lymphocyte migration at a velocity of about 10 µm/min is 10-

fold faster than that seen with mesenchymal migration which occurs at less than 1 µm/min (Bear and 

Haugh 2014). To determine if the incubation time of 24 h was too long to detect if one CTL type 

reached the spheroid core more rapidly, a shorter time frame was studied. An additional endpoint 

with spheroid fixation at 1 h after co-incubation and washing showed no difference between the 

depths invaded of high and low avidity CTLs. In addition, the measurement of live cell migration into 

spheroids by real-time imaging was attempted. Unfortunately, due to technical issues related to the 

confocal microscopy platform used, the sample numbers assessed here were rather small, with a 

maximum of seven spheroids tested per condition analyzed. However, the preliminary results 

suggested that CTL migration velocities rather depend on local concentrations of the CTLs, than on 

their TCR avidity (data not shown).  

 

The spheroid invasion assay was used here to model the migration of engineered human CTLs within 

an experimental 3D tumor microenvironment. As discussed, migration was not found to be impaired 

by high avidity TCRs in a setting where a CTL is surrounded by potential targets. Mechanisms of cell-

to-cell migration could be explained in part by Gadhamsetty et al.’s mathematical model that showed 

a frequent disruption of contacts in a 3D environment simply by physical forces. According to the in 

vitro data shown here, tumor infiltration was dependent on specific target recognition, but 
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independent of TCR avidity. Instead, the local CTL density seems to impact effective T cell activation 

and influences both migratory and cytotoxic efficiency. This is in concert with the critical T cell 

concentration concept reported by Budhu et al. and Kawai et al. who suggested that tumor spheroid 

elimination only occurred following considerable CTL proliferation (Budhu et al. 2010; Kawai et al. 

2001). 3D assay systems such as the spheroid invasion assay implemented here, can provide better 

insight into these mechanisms. For effective tumor therapy, CTLs have to be generated with optimal 

responsive behavior. This not only includes high cytotoxicity at a single target cell level, but also an 

understanding of optimal behavior regarding simultaneous and serial killing, as well as accumulation, 

proliferation and persistence at the tumor site. In this regard, spheroid assays provide an important in 

vitro tool to analyze this behavior under physiological conditions with regard to cellular phenotypes 

and spatial distribution. 

 

  



Conclusion   94 

 

 

8 Conclusion 

Tumor spheroids are currently used in drug development and as an ex vivo tool to predict cancer 

therapy outcome. The choice of therapeutic treatments ranges today from conventional surgical 

treatment, to radio- and chemotherapy up to sophisticated approaches that target diverse aspects of 

tumor biology. These include oncolytic viruses, cancer vaccines and therapeutic antibodies, and also 

the use of adoptively applied cellular approaches. Among these, mesenchymal stem cells are under 

development as tumor homing vehicles for the delivery of pro-apoptotic agents. Furthermore, the 

transfer of cytotoxic T cells carries the potential for both precise targeting and efficient tumor 

elimination and has been successfully employed in clinical applications. The tumor spheroid based 

invasion assay developed here offers a useful tool to further understand and analyze the migration 

and functional activity of these therapeutic cells and to select those with the best therapeutic behavior. 

Tumor spheroids used as an invasion matrix modeled physiologic tumor conditions and allowed the 

study of migratory and effector behavior, providing insight into therapy cell mode of action within the 

intervascular tumor niche. SPIM imaging was successfully used for the in situ analysis of the 3D 

distribution of therapeutic cells within the entire spheroid. The largely automatic image analysis 

developed here enabled a semi-high-throughput screening of different conditions, relevant for 

determining aspects of anti-tumor efficiency. The invasion assay appeared convenient to test the 

impact of pre-conditioning on the MSC tumor invasion potential, and could be applied to optimize a 

clinical product. With regards to the study of adoptive T cell therapy, the spheroid invasion assay was 

successfully used to model a complex tumor – immune cell interaction, including CTL infiltration and 

control of tumor growth. The results also suggest that the invasion assay could be employed in the 

context of a “personalized medicine” platform to help assess the potential sensitivity of a patient’s 

tumor to cell based therapies.  

It is of note here that tumor spheroids do not reflect the complexity of a whole organism. The invasion 

assay therefore is not capable of modeling mechanisms that occur prior to therapeutic cell tumor 

infiltration, impacting clinical outcome as well. The investigation of activation, recruitment towards 

tumor sites and, importantly, off-target effects still often requires in vivo experiments. However, in the 

attempt to break down all essential steps involved in these processes to in vitro models (Smith et al. 

2015), the invasion assay certainly has its raison d’être. 

 

 

 

 

 

  



Abbreviations   95 

 

 

9 Abbreviations 

 

2D 2-dimensional 

2PM Two-photon microscopy 

3D 3-dimensional 

51Cr 51chromium isotope 

7-AAD 7-Aminoactinomycin 

A594 Alexa Fluor 594 

AA     Amino acid 

AM Acetoxymethyl 

APC Allophycocyanin 

APC      Antigen presenting cell 

ATP Adenosine triphosphate 

ATT Adoptive T cell therapy 

BSA Bovine serum albumin 

BSE Bovine spongiform encephalopathy 

Ca2+ Calcium/calcium ions 

CAF Cancer associated fibroblast 

CAR Chimeric antigen receptor 

CCD     Charge-coupled device 

CCL5    Chemokine (C-C motif) ligand 

CCR Chemokine (C-C motif) receptor 

CD Cluster of differentiation 

CJD Creutzfeldt-Jakob disease 

CLSM Confocal laser scanning microscopy 

CMFDA 5-Chloromethylfluorescein diacetate 

CO2 Carbon dioxide 

CoM Centre of mass 

CTL Cytotoxic T lymphocyte 

CTLA-4 Cytolytic T lymphocyte associated protein 4 

CXCL Chemokine (C-X-C motif) ligand 

CXCR Chemokine (C-X-C motif) receptor 

DAPI 4’,6-Diamidine-2’-phenylindole dihydrochloride 

DC     Dendritic cell 

DIC Differential interference contrast 

DMEM Dulbecco’s modified eagle medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DPBS Dulbecco’s phosphate buffered salt solution 

e.g. for example (lat. exempli gratia) 

E:T ratio Effector to target ratio 

ECD Extracellular domain 

ECM      Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid 
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EFS Embryonal Fyn-Associated Substrate 

ELISA Enzyme-linked-immunosorbent assay 

ER  Endoplasmatic reticulum 

ERO 1-α Endoplasmatic reticulum oxidoreductase 1-α 

et al. And others (lat. et alii) 

etc. And other similar things (lat. et cetera) 

FACS Fluorescence-activated cell sorting 

FCS Fetal calf serum 

FDA    Food and Drug Administration 

FFP Fresh frozen plasma 

FI Fluorescence intensity 

FITC Fluorescein isothiocyanate 

FMI Forward migration index 

GCV Ganciclovir 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

GMP Good manufacturing practice 

H2O Dihydrogen monoxide, water 

HA Human influenza hemagglutinin 

hBMSC Human bone marrow derived mesenchymal stem cell 

HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 

HER2 Human epidermal growth factor receptor 2 

HLA Human leukocyte antigen 

HSC Hematopoietic stem cell 

HSV-TK Herpes simplex virus thymidine kinase 

ICD Intracellular domain 

IFN  Interferon 

IgG Immunglobulin G 

IL Interleukin 

ISCT International Society of Cell Therapy 

KCl Potassium chloride 

KH2PO4 Monopotassium phosphate 

KHCO3 Potassium bicarbonate 

LMU Ludwig-Maximilians-University 

LSFM Light sheet fluorescence microscopy 

MAGE-A3 Melanoma associated antigen A3 

MAP kinase Mitogen-activated protein kinase 

MESV Murine embryonic stem cell virus 

MHC  Major histocompatibility complex 

MMP Matrix metalloproteinase 

MPSV-LTR Murine myeloproliferative sarcoma virus - long terminal repeats 

MSC Mesenchymal stem cell 

n number 

NA Numerical aperture 

Na2CO3  Sodium carbonate 

Na2-EDTA EDTA disodium salt 

Na2HPO4 Disodium phosphate 
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NaCl Sodium chloride 

NaHCO3  Sodium bicarbonate 

NaN3  Sodium azide 

NaOH Sodium hydroxide 

NH4Cl Ammonium chloride 

NIH National Institutes of Health 

NK cell Natural killer cell 

ns Not significant 

p/p-value Probability value 

PBMC Peripheral blood mononuclear cell 

PBS Phosphate buffered salt solution 

PBST Phosphate buffered saline with Tween-20 

PD-1 Programmed cell death protein-1 

PD-L PD-1 ligand 

PE Phycoerythrin 

PFA Paraformaldehyde 

PMT Photomultiplier tube 

polyHEMA Poly (2-hydroxyethyl methacrylate) 

RAM Random access memory 

RANTES Regulated on activation, normal T cell expressed and secreted protein 

rIL-2 Recombinant IL-2 

RNA Ribonucleic acid 

RPMI Roswell Park Memorial Institute 

S2 Safety level 2 

SD Standard deviation 

SDCM Spinning disc confocal microscopy 

SDF-1 Stromal cell-derived factor 1 

SEM Standard error of the mean 

SPIM Selective plane illumination microscopy 

t Time 

T3 3,3‘,5‐Triiodo‐L‐thyronine  

T4 L‐thyroxine  

TAA Tumor associated antigen 

TCR T cell receptor 

Tetrac Tetraiodothyroacetic acid  

Th1 Type 1 T helper cell 

Th2 Type 2 T helper cell 

TIL Tumor infiltrating lymphocyte 

TK Thrombozytenkonzentrat (Platelet concentrate) 

TMD Transmembrane domain 

TNF-α Tumor necrosis factor α 

TRAIL Tumor necrosis factor-related apoptosis induced ligand 

TSE Transmittable spongiform encephalopathy 

Tyr Tyrosinase 

V(D)J Variable, diversity and joining segments 

VCAM-1 Vascular cell adhesion molecule 1 
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VLA-4 Very Late Antigen 4 

WHO World Health Organisation 

  

Units  

° Degree 

°C Degree Celsius 

µCi Microcurie 

µg Microgram 

µl Microliter 

µm Micrometer 

µM Micromolar 

Bp     Base pair 

cm2 Square centimeter 

d Day 

g Gram 

GB Gigabyte 

GHz Gigahertz 

h Hour 

M Molar  

min Minute  

ml Milliliter  

mm Millimeter 

mM Millimolar  

mm3 Cubic millimeter 

ms Millisecond 

mW Milliwatt 

MW Megawatt 

ng Nanogram 

nm Nanometer 

s Second  

U/ml Units per milliliter 
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11 Appendix 

11.1 Fiji macros and workflow for SPIM data processing 

 

All SPIM data files were processed semi-automatically using the Fiji Multiview Reconstruction plugin 

according to the following workflow: 

 

1. Data files were processed automatically with a macro combining the Fiji Multiview Reconstruction 

plugin functions to split original files into single channels, define datasets for multiview 

reconstruction, resave in HDF5 format, detect interest points and register datasets based on interest 

points: 

1_SplitDefineHDF5DetectRegister.py 

 

2. To reduce image size a bounding box was defined manually for each dataset on the HDF5 files 

using the MultiView Reconstruction Application.  

 

3. Data files were processed automatically with a macro to fuse and deconvolve datasets: 

3_FuseAndDeconvolve.py 

 

Macros: 

1_SplitDefineHDF5DetectRegister.py 

By David Hoerl 
from ij import IJ; 
from ij import ImagePlus; 
from ij import ImageStack; 
from ij.process import ImageProcessor; 
from ij.io import DirectoryChooser 
import os.path; 
import os; 
import glob; 
import re 
import xml.etree.ElementTree as ET 
 
# input directory goes here 
dc = DirectoryChooser("Choose directory to process!") 
inputDir = dc.getDirectory() 
# set to True if you want to process all subdirectories of input 
# or False if you only want to process the one input dir 
processSubdirs = True; 
# subdirectories to be ignored 
ignoreDirectories = ["488", "561", "562", "convert", "mv-workspace"] 
 
xdist = ".650" 
ydist = ".650" 
zdist = "6" 
channelWithBeads = "1" 
radius1 = "1" 
radius2 = "2" 
sigma1 = '1.8' 
threshold = "0.002" 
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threshold_dog = '0.008' 
# channelsToFuse = [1,2] 
channelsToDeconvolve = ["1"] 
downsample=1 
nIterations = 10 
 
def splitChannelsForMV(path): 
 if not path.endswith(os.sep): 
  path += os.sep; 
 # create output directory 
 if not os.path.exists(path + "mv-workspace"): 
  os.makedirs(path + "mv-workspace"); 
 if os.path.exists(os.path.join(path, "mv-workspace", "0SPLITDONE")): 
  print("Already processed that dir. To redo it, delete the OSPLITDONE file!") 
  return 
 # get all image files (*.ome.tif) 
 imageFiles = glob.glob(path + "*.ome.tif"); 
 for f in imageFiles: 
  img = IJ.openImage(f); 
  # create new Stack for each channel 
  channelStacks = []; 
  nChannels = img.getNChannels(); 
  for i in range(nChannels): 
   channelStacks.append(img.createEmptyStack()); 
  # print(img.getNSlices()); 
  for i in range (1, img.getNSlices() + 1): 
   for j in range(1, nChannels+1): 
    img.setC(j); 
    img.setZ(i); 
    channelStacks[j-1].addSlice(img.getProcessor()); 
  channelImgs = []; 
  for i in range(1, nChannels + 1): 
   channelImgs.append(ImagePlus("channel " + str(i), channelStacks[i-1])); 
  for i in range(1, nChannels + 1): 
   (h, t) =  os.path.split(f); 
   newFile = h + "/mv-workspace/" + t.split(".ome.tif")[0] + "_Channel" + str(i) + ".ome.tif" 
   print("saving: " + newFile); 
   IJ.saveAsTiff(channelImgs[i-1] , newFile); 
 open(os.path.join(path, "mv-workspace", "0SPLITDONE"), 'a').close() 
 
def anyMatches(strings, regex): 
 # check wether any of the strings in strings ends with a suffix 
 p = re.compile(regex) 
 for s in strings: 
  if p.match(s): 
   return True 
 return False 
 
def registerMV(path, doDoG = True): 
 if os.path.exists(os.path.join(path, "1REGISTERDONE")): 
  print("Already processed that dir. To redo it, delete the 1REGISTERDONE file!") 
  return  
 files = os.walk(path).next()[2]  
 pref = set() 
 posnrs = set() 
 chnrs = set()  
 p = re.compile("(.*)Pos(\d+)_Channel(\d+)\.ome\.tif") 
 
 for f in files: 
  m = p.match(f) 
  if m: 
   pref.add(m.groups()[0]) 
   posnrs.add(m.groups()[1]) 
   chnrs.add(m.groups()[2]) 
 if len(pref) != 1: 
  print("Filenames in this dir don't match. Please name files in the form: *_Pos{a}_Channel{c}.ome.tif") 
  return 
 filepattern = iter(pref).next() + "Pos{a}_Channel{c}.ome.tif" 
 
 ### DEFINE DATASET 
 datadef = "Define Multi-View Dataset" 
 commandDatadef = ('''type_of_dataset=[Image Stacks (ImageJ Opener)] 
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    xml_filename=dataset.xml multiple_timepoints=[NO (one time-point)] 
multiple_channels=[YES (one file per channel)] 
    _____multiple_illumination_directions=[NO (one illumination direction)] 
multiple_angles=[YES (one file per angle)] 
    image_file_directory=''' + path 
    + ''' image_file_pattern=''' + filepattern 
    + " channels_=" + ",".join(chnrs) + " acquisition_angles_=" + ",".join(posnrs) + 
    ''' calibration_type=[Same voxel-size for all views] calibration_definition=[User define 
voxel-size(s)] 
    imglib2_data_container=[ArrayImg (faster)] 
    pixel_distance_x=''' + xdist +  " pixel_distance_y=" + ydist + " pixel_distance_z=" + 
zdist + " pixel_unit=um" 
    ) 
   
 
 IJ.run(datadef, commandDatadef) 
 
 ### DETECT INTEREST POINTS 
 detectip = "Detect Interest Points for Registration" 
 
 if not doDoG: 
  commandDetectIP = ("select_xml=" + os.path.join(path, "dataset.xml") + 
       " process_angle=[All angles] process_channel=[Single channel (Select from List)]" + 
       " process_illumination=[All illuminations] process_timepoint=[All Timepoints] "+ 
       "processing_channel=[channel "+ channelWithBeads +"] 
type_of_interest_point_detection=[Difference-of-Mean (Integral image based)]"+ 
    " label_interest_points=beads subpixel_localization=[3-dimensional quadratic fit] 
interest_point_specification=[Advanced ...] " + 
     "radius_1="+radius1+" radius_2="+radius2+" threshold="+threshold+" find_maxima" 
             ) 
 else: 
  commandDetectIP = ("select_xml=" + os.path.join(path, "dataset.xml") + 
    " process_angle=[All angles] process_channel=[Single channel (Select from List)]" + 
    " process_illumination=[All illuminations] process_timepoint=[All Timepoints] " + 
    "processing_channel=[channel "+ channelWithBeads +"] 
type_of_interest_point_detection=Difference-of-Gaussian"+ 
    " label_interest_points=beads downsample_images subpixel_localization=[3-
dimensional quadratic fit] interest_point_specification=[Advanced ...] "+ 
    "downsample_xy=2x downsample_z=1x sigma="+ str(sigma1) + " threshold=" + 
str(threshold_dog) + " find_maxima compute_on=[CPU (Java)]" 
          ) 
     
 IJ.run(detectip, commandDetectIP) 
 
 ### REGISTER 
 register = "Register Dataset based on Interest Points" 
 commandRegister = ( "select_xml="+ os.path.join(path, "dataset.xml") + 
   " process_angle=[All angles] process_illumination=[All illuminations] process_timepoint=[All 
Timepoints]" + 
   " registration_algorithm=[Fast 3d geometric hashing (rotation invariant)] " + 
   "type_of_registration=[Register timepoints individually] interest_points_channel_1=" +  

"beads" if channelWithBeads == "1" else "[(DO NOT register this channel)]" + 
   " interest_points_channel_2="+ "beads" if channelWithBeads == "2" else "[(DO NOT register this 
channel)]" + 
   "fix_tiles=[Fix first tile] " + 
   "map_back_tiles=[Do not map back (use this if tiles are fixed)] "+ 
   "transformation=Affine allowed_error_for_ransac=5" 
      ) 
 IJ.run(register, commandRegister) 
 
 ### COPY REGISTRATION TO ALL CHANNELS 
 
 dupTransform = "Duplicate Transformations" 
 commandDupTransform = ("apply=[One channel to other channels]"+ 
    " select_xml="+ os.path.join(path, "dataset.xml") + 
    " apply_to_angle=[All angles] apply_to_illumination=[All illuminations] "+ 
    "apply_to_timepoint=[All Timepoints] source="+ channelWithBeads +" target=[All 
Channels] "+ 
    "duplicate_which_transformations=[Replace all transformations]" ) 
 
 IJ.run(dupTransform, commandDupTransform) 
  
 open(os.path.join(path, "1REGISTERDONE"), 'a').close() 
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def checkBoundingBoxAlreadyExists(xml, bbName='My Bounding Box'): 
 tree = ET.parse(xml) 
 root = tree.getroot() 
 
 bbs = root.find('BoundingBoxes') 
 bb = [bbi for bbi in bbs.findall('BoundingBoxDefinition') if bbi.get('name') == bbName] 
 return len(bb) < 1 
  
### HDF5 
def hDF(path): 
    asHDF = "As HDF5" 
    commandAsHDF = ("select_xml=" + os.path.join(path, "dataset.xml") +  
                    " resave_channel=[All channels] resave_illumination=[All illuminations] resave_timepoint=[All Timepoints] 
subsampling_factors=[{ {1,1,1}, {2,2,1}, {4,4,1} }] " + 
                    "hdf5_chunk_sizes=[{ {32,32,4}, {32,32,4}, {16,16,16} }] timepoints_per_partition=1 setups_per_partition=0 
use_deflate_compression " + 
                    "export_path=" + os.path.join(path, "dataset.xml")) 
 
    IJ.run(asHDF,commandAsHDF) 
 
#### CHANNEL SPLITTING 
### main() 
## handle subdirs 
if processSubdirs: 
 dirs = os.walk(inputDir) 
 sdirs = list() 
 for d in dirs: 
  skip = False 
  for di in ignoreDirectories: 
   if di in d[0].split(os.sep): 
    skip = True 
  if skip: continue 
  if anyMatches(d[2], ".*Pos\d+\.ome\.tif"): 
   sdirs.append(d[0]) 
 
 print("-- Handling multiple input directories:"); 
 for i in sdirs: 
  print("- Handling dir: " + i); 
  splitChannelsForMV(i); 
 
## handle only one directory 
else: 
 print("-- Handling one input directory: " + inputDir); 
 splitChannelsForMV(inputDir); 
 
print("Finished."); 
 
##### REGISTRATION 
### main() 
## handle subdirs 
if processSubdirs: 
 dirs = os.walk(inputDir) 
 sdirs = list() 
 for d in dirs: 
  if d[0].endswith("mv-workspace"): 
   sdirs.append(d[0]) 
 
 print("-- Handling multiple input directories:"); 
 for i in sdirs: 
  print("- Handling dir (Registration): " + i); 
  registerMV(i); 
 
## handle only one directory 
else: 
 print("-- Handling one input directory: " + inputDir); 
 registerMV(inputDir); 
print("Finished."); 
 
##### HDF5 
### main() 
## handle subdirs 
if processSubdirs: 
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    dirs = os.walk(inputDir) 
    sdirs = list() 
    for d in dirs: 
        if d[0].endswith("mv-workspace"): 
            sdirs.append(d[0]) 
 
    print("-- Handling multiple input directories:"); 
    for i in sdirs: 
        print("- Handling dir (HDF5): " + i); 
        hDF(i); 
 
## handle only one directory 
else: 
    print("-- Handling one input directory: " + inputDir); 
    hDF(inputDir); 
 
print("Finished."); 

 

3_FuseAndDeconvolve.py 

By David Hoerl 
from ij import IJ; 
from ij import ImagePlus; 
from ij import ImageStack; 
from ij.process import ImageProcessor; 
from ij.io import DirectoryChooser 
import os.path; 
import os; 
import glob; 
import re 
import xml.etree.ElementTree as ET 
 
# input directory goes here 
dc = DirectoryChooser("Choose directory to process!") 
inputDir = dc.getDirectory() 
# set to True if you want to process all subdirectories of input 
# or False if you only want to process the one input dir 
processSubdirs = True; 
# subdirectories to be ignored 
ignoreDirectories = ["488", "561", "562", "convert", "mv-workspace"] 
 
xdist = ".650" 
ydist = ".650" 
zdist = "6" 
channelWithBeads = "1" 
radius1 = "1" 
radius2 = "2" 
sigma1 = '1.8' 
threshold = "0.002" 
threshold_dog = '0.008' 
channelsToFuse = [1,2] 
channelsToDeconvolve = ["1","2"] 
downsample=1 
nIterations = 10 
 
def checkBoundingBoxAlreadyExists(xml, bbName='My Bounding Box'): 
 tree = ET.parse(xml) 
 root = tree.getroot() 
 bbs = root.find('BoundingBoxes') 
 bb = [bbi for bbi in bbs.findall('BoundingBoxDefinition') if bbi.get('name') == bbName] 
 return len(bb) < 1 
 
def fuseAllChannels(path, bbEstimateBG=1, bbName="My Bounding Box"): 
  fuse = "Fuse/Deconvolve Dataset" 
 fuseCmd = ( "select_xml="+ os.path.join(path, "dataset.xml") + 
    " process_angle=[All angles] process_channel=[All channels] process_illumination=[All 
illuminations] [process_timepoint]=[All Timepoints]"+ 
    " processing_channel=[channel 1] type_of_image_fusion=[Weighted-average fusion]"+ 
    " bounding_box=[Use pre-defined Bounding Box] + 
    " fused_image=[Save as TIFF stack] bounding_box_title=[" + bbName + "] "+ 
    "downsample=" + str(downsample) +" pixel_type=[32-bit floating point] 
imglib2_container=[CellImg (large images)] "+ 
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    "process_views_in_paralell=All blend interpolation=[Linear Interpolation] "+ 
    "output_file_directory=" + os.path.join(path, "")) 
 
 IJ.run(fuse, fuseCmd) 
 
def deconvolveAllChannels(path): 
 deconvolve = "Fuse/Deconvolve Dataset" 
 deconvolveCmd = ("select_xml="+os.path.join(path, "dataset.xml")+ 
   " process_angle=[All angles] process_channel=[All channels]"+ 
   " process_illumination=[All illuminations] process_timepoint=[All Timepoints] "+ 
   " type_of_image_fusion=[Multi-view deconvolution]"+ 
   " bounding_box=[Use pre-defined Bounding Box] )" + 
   "fused_image=[Save as TIFF stack] "+ 
   "imglib2_container=[CellImg (large images)] imglib2_container_ffts=ArrayImg 
type_of_iteration="+ 
   "[Efficient Bayesian - Optimization I (fast, precise)] image_weights=[Virtual weights (less 
memory, slower)] "+ 
   "osem_acceleration=[1 (balanced)] number_of_iterations="+str(nIterations)+ 
   " use_tikhonov_regularization tikhonov_parameter=0.0060 "+ 
   "compute=[in 512x512x512 blocks] compute_on=[GPU (Nvidia CUDA via JNA)] "+ 
   "psf_estimation=[Extract from beads] psf_display=[Do not show PSFs] "+ 
   "cuda_directory=/home/ruehland/Fiji.app/lib/linux64 
select_native_library_for_cudafourierconvolution=libFourierConvolutionCUDALib.so " + 
   "gpu_1 detections_to_extract_psf_for_channel_1=beads 
detections_to_extract_psf_for_channel_1=[Same PSF as channel 1] " + 
   "psf_size_x=19 psf_size_y=19 psf_size_z=25 " + 
   "output_file_directory="+path) 
 
 IJ.run(deconvolve, deconvolveCmd) 
 
def checkBoundingBoxNotEmpty(xml, bbName='My Bounding Box'): 
 tree = ET.parse(xml) 
 root = tree.getroot() 
 bbs = root.find('BoundingBoxes') 
 bb = iter([bbi for bbi in bbs.findall('BoundingBoxDefinition') if bbi.get('name') == bbName]).next() 
 mins = bb.find('min').text.split(' ') 
 maxs = bb.find('max').text.split(' ') 
 empty = False 
 for i in range(len(mins)): 
  if mins[i] >= maxs[i]: 
   empty = True 
 return not empty 
 
def fuseMV(path): 
 if os.path.exists(os.path.join(path, "2FUSEDONE")): 
  print("Already processed that dir. To redo it, delete the 2FUSEDONE file!") 
  return 
 #fuseAllChannels(path) 
 deconvolveAllChannels(path) 
 open(os.path.join(path, "2FUSEDONE"), 'a').close() 
 
##### FUSION 
### main() 
## handle subdirs 
if processSubdirs: 
 dirs = os.walk(inputDir) 
 sdirs = list() 
 for d in dirs: 
  if d[0].endswith("mv-workspace"): 
   sdirs.append(d[0]) 
 
 print("-- Handling multiple input directories:"); 
 for i in sdirs: 
  print("- Handling dir (Fusion): " + i); 
  fuseMV(i); 
 
## handle only one directory 
else: 
 print("-- Handling one input directory: " + inputDir); 
 fuseMV(inputDir); 
 
print("Finished."); 
  



Appendix   119 

 

 

11.2 Fiji macros and workflow for invasion assay analysis 

 

All SPIM data files were processed and analyzed semi-automatically using different Fiji plugins 

according to the following workflows and with respective macros: 

 

11.2.1 Cytoplasmic segmentation of MSC clusters 

4. Spheroid and MSCs were segmented and invaded depths measured automatically. 

4_InvasionAnalysisOld.py 

 

Macro:  

 

4_InvasionAnalysisOld.py 

# author: David Hoerl 
from Utilities import Counter3D 
from mcib3d.geom import Object3D, Vector3D, Point3D 
from mcib3d.geom import Object3DPoint, Object3DSurface 
from mcib3d.image3d import Segment3DImage 
from javax.vecmath import Point3f 
from java.util import ArrayList 
from java.lang import Integer 
from ij.plugin import Resizer 
from ij.io import DirectoryChooser, OpenDialog 
from ij import IJ, ImagePlus 
from ij.process import StackConverter, StackProcessor 
import os 
import re 
import sys 
 
# USER DEFINED PARAMETERS 
channelWithMSC = "1" 
channelWithSphero = "1" 
spheroThreshold = 13 
spheroMin = 80000 
# spheroMax = Integer.MAX_VALUE 
mscThreshold = 40 
mscMin = 800 
# mscMax = Integer.MAX_VALUE 
downsampleXY = 1 
downsampleZ = downsampleXY 
# handle Directories starting with any of this 
# dirPrefixes = ["F", "G"] 
# END USER DEFINED PARAMETERS 
 
def startsWithAny(s, prefixes): 
    ''' 
    check whether s starts with any of the prefixes in prefixes 
    ''' 
    for p in prefixes: 
        if s.startswith(p): 
            return True 
    return False 
 
def assayMV(path, spheroT=spheroThreshold, mscT=mscThreshold, segmentWholeSpheroVolume=False): 
    ''' 
    run the invasion assay - image files should be in directory path 
    @return: list of distances (in pixels, consider downsampling) 
    ''' 
    files = os.walk(path).next()[2] 
    fileMSC = "" 
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    fileSphero = "" 
    # fused/deconvolved (.tif) files should start with TP0_Ch + channel nr. 
    reMSC = re.compile("TP0_Ch" + channelWithMSC + ".*?tif") 
    reSphero = re.compile("TP0_Ch" + channelWithSphero + ".*?tif") 
         
    for f in files: 
        # find the two input files 
        if reMSC.match(f): 
            fileMSC = os.path.join(path, f) 
        if reSphero.match(f): 
            fileSphero = os.path.join(path, f) 
 
    print fileMSC 
    print fileSphero 
    # load images 
    imageMSC = IJ.openImage(fileMSC) 
    imageSphero = IJ.openImage(fileSphero) 
     
    # convert to 8bit (TODO: set min/max?) 
    StackConverter(imageMSC).convertToGray8() 
    StackConverter(imageSphero).convertToGray8() 
 
    # downsample images 
    imageMSC = Resizer().zScale(imageMSC, int(imageMSC.getNSlices() * downsampleZ), 0) 
    newW = int(imageMSC.getWidth() * downsampleXY) 
    newH = int(imageMSC.getHeight() * downsampleXY)     
    imageMSC.setStack(StackProcessor(imageMSC.getStack()).resize(newW, newH)) 
     
    imageSphero = Resizer().zScale(imageSphero, int(imageSphero.getNSlices() * downsampleZ), 0) 
    newW = int(imageSphero.getWidth() * downsampleXY) 
    newH = int(imageSphero.getHeight() * downsampleXY)     
    imageSphero.setStack(StackProcessor(imageSphero.getStack()).resize(newW, newH)) 
     
    # segment cells and get objects     
    IJ.log("segmenting cells...") 
    mscSegmenter = Segment3DImage(imageMSC, mscT, Integer.MAX_VALUE) 
    mscSegmenter.setMinSizeObject(mscMin) 
    mscSegmenter.segment()     
    mscObjects = mscSegmenter.getSurfaceObjectsImage3D().getObjects3D() 
    IJ.log("segmenting cells... done.") 
    IJ.log("found " + str(len(mscObjects)) + " cells.") 
     
    # segment the spheroid 
    IJ.log("segmenting spheroid...") 
    spheroSegmenter = Segment3DImage(imageSphero, spheroT, Integer.MAX_VALUE) 
    spheroSegmenter.setMinSizeObject(spheroMin) 
    spheroSegmenter.segment() 
     
    ### Segment the whole sphero instead of just the surface 
    # this allows checking whether a cell lies inside the volume 
    # however, the whole volume will be colored in the control image! 
    if segmentWholeSpheroVolume:     
        spheroObjects = spheroSegmenter.getLabelledObjectsImage3D().getObjects3D() 
    else: 
        spheroObjects = spheroSegmenter.getSurfaceObjectsImage3D().getObjects3D() 
    IJ.log("segmenting spheroid... done.") 
     
    # skip dataset if no sphero was found 
    if len(spheroObjects) == 0: 
        IJ.log("ERROR: no spheroid could be found") 
        return(list(), None) 
     
    maxVolume = 0 
    biggestObject = 0 
    for i in range(len(spheroObjects)): 
        if spheroObjects[i].getVolumePixels() > maxVolume: 
            biggestObject = i 
            maxVolume = spheroObjects[i].getVolumePixels() 
             
    spheroObject = spheroObjects[biggestObject] 
     
    if len(spheroObjects) != 1: 
        IJ.log("WARNING: found " + str(len(mscObjects)) + " spheroid objects. Using the biggest.") 
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    # color copy of msc-image to label segmentations in 
    imageControl = imageMSC.duplicate() 
    StackConverter(imageControl).convertToRGB() 
    # mark spheroid in red 
    spheroObject.draw(imageControl.getStack(), 255, 0, 0)     
    #closedSphero = spheroObject.getObject3DSurface() 
    #closedSphero.draw(imageControl.getStack(), 0, 0, 255) 
     
    # calculate distances 
    distances = list() 
    nCells = len(mscObjects) 
    curCell = 1 
    for o in mscObjects: 
        IJ.log("handling cell " + str(curCell) + " of " + str(nCells)) 
        curCell += 1 
                
        cellCenter = Point3D(o.getCenterX(), o.getCenterY(), o.getCenterZ()) 
         
        # skip cells not inside sphero ONLY IF whole sphero was segmented 
        if not spheroObject.inside(cellCenter) and segmentWholeSpheroVolume: 
            IJ.log("not inside spheroid, skipping.") 
            continue 
         
        distances.append(o.distCenterBorderUnit(spheroObject)) 
        # IJ.log(str(o.distCenterBorderUnit(spheroObject))) 
        # mark mscs in green 
        o.draw(imageControl.getStack(), 0, 255, 0) 
         
    # save control image 
    # IJ.save(imageControl, os.path.join(path, "control.tif")) 
    # save distances as CSV 
    outfile = os.path.join(path, "distances.csv") 
    outfd = open(outfile, "w+")     
    outfd.write("distance\r") 
     
    for d in distances: 
        strValue = str(d) 
        strValue = strValue.replace('.', ',') 
        outfd.write(strValue + "\r") 
         
    outfd.close() 
    return (distances, imageControl) 
     
# MAIN SCRIPT 
# let user pick a directory, process all subdirs 
dc = DirectoryChooser("Choose directory to process!") 
inputDir = dc.getDirectory() 
dc2 = OpenDialog("Choose parameter file!") 
paramFile = open(os.path.join(dc2.getDirectory(), dc2.getFileName()), "r") 
paramDict = dict() 
 
for l in paramFile: 
    ls = l.split(",") 
    print(ls[3].startswith("CELLSOUTSIDE")) 
#    if ls[1]: 
#        paramDict["_".join(ls[0:4])] = (int(ls[5]), int(ls[4]), ls[6].startswith("CELLSOUTSIDE")) 
    if ls[0]: 
        paramDict[ls[0]] = (int(ls[2]), int(ls[1]), ls[3].startswith("CELLSOUTSIDE")) 
 
if inputDir.endswith(os.path.sep): 
    inputDir = inputDir[:-1] 
     
dirs = os.walk(inputDir) 
sdirs = list() 
# process only the "mv-workspace" directories    
# of directories starting with specified prefixes 
for d in dirs: 
    print(d[0]) 
    if d[0].split(os.path.sep)[-1] in paramDict.keys() and "mv-workspace" in d[1]: 
    #if "mv-workspace" in d[1]: 
        sdirs.append(os.path.join(d[0], "mv-workspace")) 
    



Appendix   122 

 

 

resultFd = open(os.path.join(inputDir, "resultsCELLSOUTSIDE.csv"), "w") 
delimiter = ";" 
 
IJ.log("-- Handling multiple input directories:"); 
for i in sdirs: 
    experimentName = i.split(os.path.sep)[-2] 
    IJ.log("- Handling dir: " + i); 
    IJ.log("sphero Threshold: " + str(paramDict[experimentName][0])) 
    IJ.log("MSC Threshold: " + str(paramDict[experimentName][1])) 
    (tDists, resImage) = assayMV(i, paramDict[experimentName][0], paramDict[experimentName][1], 
paramDict[experimentName][2]); 
    resultFd.write(experimentName + delimiter) 
    resultFd.write(delimiter.join(map(str, tDists)).replace('.', ',')) 
    resultFd.write("\n") 
     
    if resImage: 
        IJ.save(resImage, os.path.join(inputDir, experimentName + "_control.tif"))    
resultFd.close() 
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11.2.2 Nuclear segmentation of single MSCs 

4. Segmentation of MSCs is done automatically with a macro. All nuclei within the spheroid are 

segmented individually based on the 7-AAD nuclear staining with a Difference of Gaussians and a 3D 

watershed algorithm. The spheroid is segmented based on its autofluorescence signal in the 488 nm 

channel. Within that mask the CMFDA signal is segmented. All MSC nuclei are determined within 

CMFDA signal masks.  

4_NuclearSegmentationMSC.ijm 

 

5. A macro automatically adds the segmented spheroid objects and their respective MSC objects to the 

3D Roi Manager and calculates the shortest distance of each MSC to the spheroid surface. 

5_InvasionAnalysis_NuclearSegmentation.ijm 

 

Macros: 

4_NuclearSegmentationMSC.ijm 

// Open Image 
input = getDirectory("pick Input directory!"); 
output = input; 
ch1 = "TP0_Ch1_Ill0_Ang1,0,2,3,4"; 
ch2 = "TP0_Ch2_Ill0_Ang1,0,2,3,4"; 
spheroThreshold = 12; 
mscThreshold = 60; 
 
// loop to process whole folder 
list = getFileList(input); 
for (i = 0; i < list.length; i++){ 
 //segmentation(input, output, list[i]); 
 masks(input, output, list [i]); 
} 
 
function segmentation(input, output, file) { 
 // Open image: 
 print(input + file + "mv-workspace/" + ch2 + ".tif"); 
 open(input + file + "mv-workspace/" + ch2 + ".tif"); 
 setMinAndMax(0, 0.23); 
 run("8-bit"); 
 run("Duplicate...", "duplicate"); 
 selectWindow(ch2 + ".tif"); 
 run("Gaussian Blur 3D...", "x=2 y=2 z=2"); 
 selectWindow(ch2 + "-1.tif"); 
 run("Gaussian Blur 3D...", "x=4 y=4 z=4"); 
 imageCalculator("Subtract create stack", ch2 + ".tif", ch2 + "-1.tif"); 
 run("Bin...", "x=2 y=2 z=2 bin=Max"); 
 run("3D Watershed", "seeds_threshold=3 image_threshold=0 image=Result seeds=Automatic radius=7.5"); 
 // Save segmented image 
 selectWindow("Watershed"); 
 saveAs("tiff", input + file + "Watershed.tif"); 
 print("Watershed finished. Saved " + input + file + "Watershed.tif"); 
 //Close Images 
 selectWindow(ch2 + ".tif"); 
 close(); 
 selectWindow(ch2 + "-1.tif"); 
 close(); 
 selectWindow("Result of " + ch2 + ".tif"); 
 close(); 
} 
 
function masks(input, output, file) { 
 // Create Sphero mask 



Appendix   124 

 

 

 open(input + file + "mv-workspace/" + ch1 + ".tif"); 
 selectWindow(ch1 + ".tif"); 
 Stack.getStatistics(null, null, min, max); 
 setMinAndMax(min, max); 
 run("8-bit"); 
 run("Bin...", "x=2 y=2 z=2 bin=Max"); 
 run("3D OC Options", "show_masked_image_(redirection_requiered) redirect_to=Watershed.tif"); 
 run("3D Objects Counter", "threshold=" + spheroThreshold + " slice=100 min.=10000 max.=45925560 objects"); 
 selectWindow("Objects map of " + ch1 + ".tif redirect to Watershed.tif"); 
 saveAs("tiff", input + file + "SpheroObject.tif"); 
 print("Saved " + input + file + "SpheroObject.tif"); 
 
 selectWindow("Masked image for " + ch1 + ".tif redirect to Watershed.tif"); 
 saveAs("tiff", input + file + "SpheroWatershed.tif"); 
 print("Saved " + input + file + "SpheroWatershed.tif"); 
 close(); 
 selectWindow(ch1 + ".tif"); 
 close(); 
   
 // Create CMFDA mask  
 open(input + file + "mv-workspace/"  + ch1 + ".tif"); 
 Stack.getStatistics(null, null, min, max); 
 setMinAndMax(min, max); 
 run("8-bit"); 
 run("Bin...", "x=2 y=2 z=2 bin=Max"); 
 selectWindow("SpheroObject.tif"); 
 run("3D OC Options", "show_masked_image_(redirection_requiered) redirect_to=" + ch1 + ".tif"); 
 run("3D Objects Counter", "threshold=1 slice=100 min.=10000 max.=45925560 objects"); 
 selectWindow("SpheroObject.tif"); 
 close(); 
 selectWindow("Objects map of SpheroObject.tif redirect to " + ch1 + ".tif"); 
 close(); 
 
 selectWindow("Masked image for SpheroObject.tif redirect to " + ch1 + ".tif"); 
 run("3D OC Options", "show_masked_image_(redirection_requiered) redirect_to=Watershed.tif"); 
 run("3D Objects Counter", "threshold=" + mscThreshold + " slice=100 min.=50 max.=45925560 objects"); 
  
 selectWindow("Objects map of Masked image for SpheroObject.tif redirect to " + ch1 + ".tif redirect to 
Watershed.tif"); 
 saveAs("tiff", input + file + "MSCObject.tif"); 
 print("Saved " + input + file + "MSCObject.tif"); 
 close(); 
 
 selectWindow("Masked image for Masked image for SpheroObject.tif redirect to " + ch1 + ".tif redirect to 
Watershed.tif"); 
 saveAs("tiff", input + file + "MSCWatershed.tif"); 
 print("Saved " + input + file + "MSCWatershed.tif"); 
 close(); 
 selectWindow("Masked image for SpheroObject.tif redirect to " + ch1 + ".tif"); 
 close(); 
 selectWindow("Watershed.tif"); 
 close(); 
 selectWindow(ch1 + ".tif"); 
 close(); 
} 
 

 

5_InvasionAnalysis_NuclearSegmentation.ijm 

input = getDirectory("pick Input directory!"); 
output = input + "/ResultsFiltered/"; 
Objects = "MSCWatershed.tif"; 
Sphero = "SpheroObject.tif" ; 
 
run("Clear Results"); 
// loop to process whole folder 
list = getFileList(input); 
for (i = 0; i < list.length; i++){ 
 distances(input, output, list[i]); 
} 
 
// function 
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function distances(input, output, filename) { 
 open (input + filename + Objects); 
 open (input + filename + Sphero); 
// distances 
 run("3D Manager"); 
 selectWindow(Sphero); 
 Ext.Manager3D_AddImage(); 
 Ext.Manager3D_Count(nb); 
// initialize min and max 
 Ext.Manager3D_Measure3D(0,"Vol",V); 
 max=V;  
 maxobj=0; 
// loop to find max and min volumes 
 for(i=1;i<nb;i++) { 
  Ext.Manager3D_Measure3D(i,"Vol",V); 
  if(V>max) { 
   max=V; maxobj=i; 
  } 
 } 
// delete all objects except of the largest 
 Ext.Manager3D_GetName(maxobj, maxname); 
 for(i=0;i<nb;i++) { 
  Ext.Manager3D_GetName(i,actname) 
  if(actname!=maxname){ 
   Ext.Manager3D_MonoSelect(); 
   Ext.Manager3D_Select(i); 
   Ext.Manager3D_Delete(); 
   Ext.Manager3D_Count(nb); 
  } 
 } 
// measure and save spheroid volume 
 Ext.Manager3D_Measure3D(0,"Vol", vol); 
 index = lastIndexOf(filename, "/"); 
 if (index!=-1) filename = substring(filename, 0, index); 
 setResult(filename,0,vol); 
 selectWindow(Objects); 
 Ext.Manager3D_AddImage(); 
 Ext.Manager3D_Count(nb); 
// delete all nuclei smaller than certain volume 
 toDelete = newArray(); 
 toDelete = Array.concat(toDelete, 1); 
 for (i = 2; i < nb; i++) { 
  Ext.Manager3D_Measure3D(i,"Vol",V); 
  if(V<300){ 
   toDelete = Array.concat(toDelete, i); 
  } 
 } 
 Ext.Manager3D_DeselectAll(); 
 Ext.Manager3D_MultiSelect(); 
 for (i = 0; i < toDelete.length; i++){ 
  Ext.Manager3D_Select(toDelete[i]); 
 } 
 Ext.Manager3D_Delete(); 
 
// measure distances  
 Ext.Manager3D_Count(nb_obj); 
 for (i = 1; i < nb_obj-1; i++) { 
         Ext.Manager3D_Dist2(0,i,"c2b1",dist);  
         index = lastIndexOf(filename, "/"); 
   if (index!=-1) filename = substring(filename, 0, index); 
   setResult(filename,i,dist); 
  } 
// save results 
 run("Set Measurements...", "  mean limit redirect=None decimal=0"); 
 saveAs ("Results", output + filename + ".txt"); 
 Ext.Manager3D_Close(); 
 close(filename); 
 close(Sphero); 
 close(Objects); 
} 
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11.2.3 Cytoplasmic segmentation of single CTLs  

4. Datasets were opened, converted to 8-bit, downsampled and saved automatically with a macro, 

thresholds for spheroid and cell segmentation were defined manually.  

4_FindThresholdsManually.ijm 

 

5. Segmentation of objects of interest is done automatically with a macro. The spheroid is segmented 

based on the 7-AAD nuclear staining signal and its mask applied to both 488 nm and 561 nm channels. 

All nuclei within the spheroid are segmented individually based on the 7-AAD nuclear staining and 

all T cells are segmented individually based on their cytoplasmic CMFDA signal. Single cell 

segmentation is based on a 3D watershed algorithm. 

5_TC-Nuclear-Segmentation.ijm 

 

6. All datasets are opened and merged automatically with their respective binary segmented object 

files to control spheroid and cell segmentation.  

6_ControlComposites.ijm 

 

7. A macro automatically adds the segmented spheroid objects and their respective T cell objects to the 

3D Roi Manager and calculates the shortest distance of each T cell to the spheroid surface. 

7_InvasionAnalysis.ijm 

 

8. Since the distance to the spheroid surface is not a reliable parameter for cell invasion in case of 

cytotoxic T cells, a macro finally calculates the shortest distance of each T cell to the spheroid centroid 

with the 3D Roi Manager. 

8_Centroids.ijm 

 

Macros: 

4_FindThresholdsManually.ijm 

input = getDirectory("pick Input directory!"); 
ch1 = "TP0_Ch1_Ill0_Ang0,1,2,3,4"; 
ch2 = "TP0_Ch2_Ill0_Ang0,1,2,3,4"; 
  
open(input + "mv-workspace/" + ch1 + ".tif"); 
setMinAndMax(0, 0.1); 
run("8-bit"); 
run("Bin...", "x=2 y=2 z=2 bin=Max"); 
saveAs("tiff", input + "ch1Binned.tif"); 
 
open(input + "mv-workspace/" + ch2 + ".tif"); 
setMinAndMax(0, 2); 
run("8-bit"); 
run("Bin...", "x=2 y=2 z=2 bin=Max"); 
saveAs("tiff", input + "ch2.tif"); 
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5_TCAndNuclearSegmentation.ijm 

// Open Image 
input = getDirectory("pick Input directory!"); 
output = input; 
ch1 = "TP0_Ch1_Ill0_Ang0,1,2,3,4"; 
ch2 = "TP0_Ch2_Ill0_Ang0,1,2,3,4"; 
thresholds = File.openAsString(input + "thresholds.csv"); 
 
// loop to process whole folder 
list = getFileList(input); 
for (i = 0; i < list.length; i++){ 
 masks(input, output, list [i]); 
} 
 
function threshold(file) { 
 rows=split(thresholds, "\n"); 
 for(i=0; i<rows.length; i++){ 
 columns=split(rows[i],","); 
 if (columns[0] == file) { 
  spheroThreshold = parseInt(columns[1]); 
  TC = parseInt(columns[2]); 
  IT = parseInt(columns[3]); 
  print(spheroThreshold,TC, IT); 
  } 
 }  
} 
 
function masks(input, output, file) { 
 rows=split(thresholds, "\n"); 
 thresholdfound = false; 
 for(i=0; i<rows.length; i++){ 
 columns=split(rows[i],","); 
 if (columns[0] == file) { 
  spheroThreshold = parseInt(columns[1]); 
  TC = parseInt(columns[2]); 
  IT = parseInt(columns[3]); 
  print("SpheroThreshold = " + spheroThreshold + ", TC = " + TC + ", IT = " + IT); 
  print("SpheroThreshold = " + spheroThreshold); 
  thresholdfound = true; 
  } 
 }  
 if (!thresholdfound) { 
  print("Thresholds not found."); 
  return; 
  }; 
 
// Create Sphero-masked images of Channel 1 and 2 
 print("Processing " + file); 
 open(input + file + "ch2.tif"); 
 open(input + file + "ch1Binned.tif"); 
 selectWindow("ch2.tif"); 
 run("3D OC Options", "show_masked_image_(redirection_requiered) redirect_to=ch1Binned.tif"); 
 run("3D Objects Counter", "threshold=" + spheroThreshold + " slice=100 min.=10000 max.=45925560 objects"); 
 selectWindow("Objects map of ch2.tif redirect to ch1Binned.tif"); 
 saveAs("tiff", input + file + "SpheroObject.tif"); 
 print("Saved " + input + file + "SpheroObject.tif"); 
 selectWindow("SpheroObject.tif"); 
 close(); 
 selectWindow("ch1Binned.tif"); 
 close(); 
 
// nuclear segmentation 
 selectWindow("ch2.tif"); 
 run("3D Watershed", "seeds_threshold=30 image_threshold=26 image=ch2 seeds=Automatic radius=3"); 
 saveAs("tiff", input + file + "Nuclei.tif"); 
 print("Saved " + input + file + "Nuclei.tif"); 
 close(); 
 selectWindow("ch2.tif"); 
 close(); 
  
// segment TCells 
 selectWindow("Masked image for ch2.tif redirect to ch1Binned.tif"); 
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 saveAs("tiff", input + file + "ch1.tif"); 
 run("3D Watershed", "seeds_threshold=" + TC + " image_threshold=" + IT + " image=ch1 seeds=Automatic 
radius=3"); 
 saveAs("tiff", input + file + "TCObjects.tif"); 
 print("Saved " + input + file + "TCObjects.tif"); 
 close(); 
 selectWindow("ch1.tif"); 
 close(); 
} 

 

6_ControlComposites.ijm 

input = getDirectory("pick Input directory!"); 
 
// loop to process whole folder 
list = getFileList(input); 
for (i = 0; i < list.length; i++){ 
 composite(input, list [i]); 
} 
 
function composite(input, file) { 
 open(input + file + "ch1.tif"); 
 open(input + file + "ch2.tif");  
 open(input + file + "TCObjects.tif"); 
 run("8-bit"); 
 open(input + file + "SpheroObject.tif"); 
 setThreshold(1, 255); 
 run("Convert to Mask", "method=Default background=Dark"); 
 run("3D Fill Holes"); 
 run("Merge Channels...", "c1=TCObjects.tif c3=SpheroObject.tif c4=ch1.tif c5=ch2.tif create"); 
 selectWindow("Composite"); 
 rename(file); 
} 

 

7_InvasionAnalysis.ijm 

input = getDirectory("pick Input directory!"); 
output = getDirectory("pick Output directory!"); 
TC = "TCObjects.tif"; 
Sphero = "SpheroObject.tif" ; 
 
// loop to process whole folder 
list = getFileList(input); 
run("Clear Results"); 
for (i = 0; i < list.length; i++){ 
 distances(input, output, list[i]); 
} 
 
// save results 
 run("Set Measurements...", "  mean limit redirect=None decimal=0"); 
 saveAs ("Results", output + "Results.txt"); 
 
// function to measure spheroid volume, T cell and apoptotic cell distances in pixel 
function distances(input, output, filename) { 
 open (input + filename + TC); 
 open (input + filename + Sphero); 
 setThreshold(1, 255); 
 run("Convert to Mask", "method=Default background=Dark"); 
 run("3D Fill Holes"); 
 run("3D Manager"); 
 selectWindow(Sphero); 
 Ext.Manager3D_AddImage(); 
 Ext.Manager3D_Count(nb); 
// initialize min and max 
 Ext.Manager3D_Measure3D(0,"Vol",V); 
 max=V;  
 maxobj=0; 
// loop to find max and min volumes 
 for(i=1;i<nb;i++) { 
  Ext.Manager3D_Measure3D(i,"Vol",V); 
  if(V>max) { 
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   max=V; maxobj=i; 
  } 
 } 
// delete all objects except of the largest 
 Ext.Manager3D_GetName(maxobj, maxname); 
 for(i=0;i<nb;i++) { 
  Ext.Manager3D_GetName(i,actname) 
  if(actname!=maxname){ 
   Ext.Manager3D_MonoSelect(); 
   Ext.Manager3D_Select(i); 
   Ext.Manager3D_Delete(); 
   Ext.Manager3D_Count(nb); 
   i=i-1; 
  } 
 } 
 
// measure and save spheroid volume 
 Ext.Manager3D_Measure3D(0,"Vol", vol); 
 index = lastIndexOf(filename, "_"); 
 end = lastIndexOf(filename, "/"); 
 if (index!=-1) type = substring(filename, 0, index); 
 if (index!=-1) series = substring(filename, index + 1, end); 
 n = nResults(); 
 setResult("Type",n, type); 
 setResult("Series",n, series); 
 setResult("Variable",n, "Volume"); 
 setResult("Value",n, vol); 
 print("Spheroid volume saved."); 
// measure T cells  
 selectWindow(TC); 
 Stack.getStatistics(area,mean); 
 if (mean >0) { 
 Ext.Manager3D_AddImage(); 
 Ext.Manager3D_Count(nb); 
// delete all cells smaller than certain volume 
 Ext.Manager3D_DeselectAll(); 
 for (i = 1; i < nb; i++) { 
  Ext.Manager3D_Measure3D(i,"Vol",V); 
  if(V<100){ 
   Ext.Manager3D_MonoSelect(); 
   Ext.Manager3D_Select(i); 
   Ext.Manager3D_Delete(); 
   Ext.Manager3D_Count(nb); 
   i=i-1; 
  } 
 } 
// measure distances  
 Ext.Manager3D_Count(nb_obj); 
 for (i = 1; i < nb_obj-1; i++) { 
         Ext.Manager3D_Dist2(0,i,"c2b1",dist);  
   index = lastIndexOf(filename, "_"); 
   end = lastIndexOf(filename, "/"); 
   if (index!=-1) type = substring(filename, 0, index); 
   if (index!=-1) series = substring(filename, index + 1, end); 
   n = nResults(); 
   setResult("Type",n,type); 
   setResult("Series",n,series); 
   setResult("Variable",n, "TC"); 
   setResult("Value",n, dist); 
 } 
 } 
 Ext.Manager3D_Close(); 
 close(Sphero); 
 close(TC); 
} 

 

 

8_InvasionAnalysisCentroids.ijm 

input = getDirectory("pick Input directory!"); 
output = input; 
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// loop to process whole folder 
list = getFileList(input); 
for (i = 0; i < list.length; i++){ 
 centroids(input, output, list [i]); 
} 
 
// save results 
 run("Set Measurements...", "  mean limit redirect=None decimal=0"); 
 saveAs ("Results", output + "CentroidResults.txt"); 
 
function centroids(input, output, file) { 
  
// Create Sphero Centroid 
 
 print("Processing " + file); 
 open(input + file + "SpheroObject.tif"); 
 open(input + file + "TCObjects.tif"); 
 selectWindow("SpheroObject.tif"); 
 run("3D Objects Counter", "threshold=1 slice=100 min.=10000 max.=45925560 centroids"); 
 selectWindow("Centroids map of SpheroObject.tif"); 
 saveAs("tiff", input + file + "SpheroCentroid.tif"); 
 selectWindow("SpheroObject.tif"); 
 close(); 
 run("3D Manager"); 
 selectWindow("SpheroCentroid.tif"); 
 Ext.Manager3D_AddImage(); 
  
// measure T cells  
 selectWindow("TCObjects.tif"); 
 Stack.getStatistics(area,mean); 
 if (mean >0) { 
 Ext.Manager3D_AddImage(); 
 Ext.Manager3D_Count(nb); 
  
// delete all cells smaller than certain volume 
  
 Ext.Manager3D_DeselectAll(); 
 for (i = 1; i < nb; i++) { 
  Ext.Manager3D_Measure3D(i,"Vol",V); 
  if(V<100){ 
   Ext.Manager3D_MonoSelect(); 
   Ext.Manager3D_Select(i); 
   Ext.Manager3D_Delete(); 
   Ext.Manager3D_Count(nb); 
   i=i-1; 
  } 
 } 
 
// measure distances  
 Ext.Manager3D_Count(nb_obj); 
 for (i = 1; i < nb_obj-1; i++) { 
         Ext.Manager3D_Dist2(0,i,"c2b1",dist);  
   index = lastIndexOf(file, "_"); 
   end = lastIndexOf(file, "/"); 
   if (index!=-1) type = substring(file, 0, index); 
   if (index!=-1) series = substring(file, index + 1, end); 
   n = nResults(); 
   setResult("Type",n,type); 
   setResult("Series",n,series); 
   setResult("Variable",n, "TC-Centroid"); 
   setResult("Value",n, dist); 
   } 
 } 
 
 Ext.Manager3D_Close(); 
 close("SpheroCentroid.tif"); 
 close("TCObjects.tif"); 
} 
 
 
 

  



Appendix   131 

 

 

11.3 MSC attachment to tumor spheroids depends on tumor cell line 

 

 

Figure 26 Invasion potential of primary bone marrow-derived MSCs into different tumor spheroids. Invasion 

was evaluated with CMFDA stained MSCs that invaded spheroids from human hepatocellular carcinoma HUH7 

cell line and the human colorectal adenocarcinoma lines LS174T and HT29. Spheroids were grown on 

polyHEMA to a size of approximately 300 µm diameter. Invaded spheroids were fixed after 24 h, stained with 7-

AAD and analyzed via nuclear single cell segmentation and measurement of the shortest distance of each MSC 

to the spheroid surface. Three spheroids per condition were analyzed. Red scatterplots show distant 

measurements of single MSCs, blue scatterplots depict mean distances per spheroid and whisker-boxplots their 

distribution, with boxes showing the quartiles and median values and whiskers the rest of the distribution 

without ouliers.    
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11.4 Effect of thyroid hormones and tetrac on MSC invasion into tumor spheroids 

 

 

Figure 27 Invasion potential of primary human MSCs (AP99) into HUH7 spheroids upon stimulation with 

thyroid hormones triiodo-l-thyronine (T3) or l-thyroxine (T4) and integrin αvβ3 inhibitor tetrac. MSCs of 

passages 3, 5 and 7 were grown for 24 h in DMEM + 10 % charcoal-stripped FCS and stimulated for another 24 

h with either 1 nM T3 or 1 µM T4, with or without 100 nM tetrac. They were CMFDA labeled and invaded for 24 

h into HUH7 tumor spheroids grown on polyHEMA with a diameter of about 300 µm. After invasion they were 

fixed and imaged using SPIM. Automated analysis of invasion depths was conducted via cytoplasmic 

segmentation and measurement of the shortest distance of each MSC to the spheroid surface. Red scatterplots 

show measurements of single MSCs, blue scatterplots depict mean distances per spheroid and whisker-

boxplots their distribution, with boxes showing the quartiles and median values and whiskers the rest of the 

distribution without ouliers;  Mann-Whitney U test, *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001. 
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11.5 Effect of chimeric co-stimulatory constructs on CTL cytotoxicity in SKMel23 

spheroids – single experiments 

 

 

Figure 28 Invasion assay single experiments with chimeric co-stimulatory receptors. Three independent 

invasion experiments (Experiment 1 – 3) have been conducted as described in Figure 19 with PD-1:28
 
and PD-

1:BB expressing D115 CTLs in comparison to D115/Mock and T58/Mock CTLs, with a total number of analyzed 

spheroids per group as indicated (n). Shown are numbers of watershed segmented CTLs per spheroid after 1 h 

or 1 d invasion and spheroid volumes after incubation for the times indicated; Mann-Whitney U test, * p-value 

< 0.05, ** p-value < 0.01.  
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