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Abstract 

 

Cardiovascular complications, as a consequence of atherosclerosis, are the leading cause of 

mortality worldwide. Their onset exhibits a circadian incidence with a peak in the morning 

hours, thus indicating a circadian susceptibility to cardiovascular diseases. Circadian 

rhythmicity is controlled by the circadian clock and comprises rhythmic changes in 

physiological processes, immune cell functionality, and immune cell trafficking, hence leading 

to time-dependent susceptibilities to diseases and its outcomes.  

Here, we hypothesized a circadian control of leukocyte recruitment during early 

atherosclerotic lesion development. We observed rhythmic myeloid cell recruitment to 

atherosclerotic lesions in hypercholesterolemic Apoe-/- mice with elevated myeloid cell 

recruitment primarily during the transition from the activity to the resting phase. This 

phenotype was abolished in mice lacking the clock gene Bmal1 in myeloid but not endothelial 

cells, highlighting a leukocyte-intrinsic regulatory mechanism. Specifically, myeloid cell 

derived CCL2 exhibited diurnal rhythmicity and blockage of CCL2-CCR2 signaling abrogated 

rhythmicity in arterial leukocyte recruitment. In contrast, myeloid cell recruitment in the 

microcirculation peaked during the early activity phase and CCL2-CCR2 signaling blockage 

had only minor effects. Subsequently, timed pharmacological CCR2 neutralization during the 

activity phase ameliorated atherosclerosis without disturbing microvascular recruitment, while 

timed treatment during the resting phase did not affect the development of atherosclerotic 

lesions.  

 

Overall, we discovered a time-dependent leukocyte recruitment pattern to atherosclerotic 

lesions and with the identification of its underlying mechanism successfully established a 

novel chrono-pharmacological treatment strategy (Figure 1). 
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Figure 1: Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates 

atherosclerosis                                                                                                               

Myeloid cell recruitment to atherosclerotic lesions exhibited rhythmicity with a peak between 

ZT17 and ZT1 and a through between ZT5 and ZT13. Timed activation of the CCL2-CCR2 

axis regulated its rhythmicity. Blockage of CCR2 signaling, when leukocyte recruitment was 

at its highest, successfully ameliorated atherosclerosis, while treatment when leukocyte 

recruitment was at its lowest had no effect. ZT: Zeitgeber time. (Illustration from Winter et al. 

2018) 
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1.1 Atherosclerosis 

 

Atherosclerosis, the most common type of arteriosclerosis, describes a chronic inflammatory 

disorder leading to cardiovascular diseases. The main clinical manifestations are coronary 

artery disease (CAD) and cerebrovascular disease whose clinical outcome has severe life-

threatening consequences. Although treatment and prevention of associated risk factors 

such as hyperlipidemia, smoking, hypertension, diabetes, and obesity aim to reduce the 

development of the disease, CAD associated to atherosclerosis are still the leading cause of 

mortality worldwide (Roth et al. 2015).  

 

Atherosclerosis affects large and medium-sized arteries. Arteries consist of three major 

layers. The outermost layer is the tunica adventitia and it is characterized by loose 

connective tissue, nerves, and blood 

vessels. The external elastic layer 

separates the tunica adventitia from the 

middle layer called tunica media. Multiple 

layers of smooth muscle cells embedded 

in elastic tissue form the tunica media 

and allow vasoconstriction or 

vasodilation. The internal elastic layer 

separates the innermost layer tunica 

intima from the tunica media (Figure 2). 

Development of atherosclerosis occurs in 

the tunica intima, which consists of 

endothelial cells and some individual 

smooth muscle cells located within the intimal extracellular matrix. Atherogenesis is initiated 

by disturbed blood flow at regions of curvature, bifurcation, and branching points of arterial 

vessels. Disturbed blood flow induces low or high oscillatory shear stress on endothelial cells 

and modifies endothelial gene expression. Hence, the resulting altered endothelial structure 

and function favors the development of atherosclerosis (Chiu et al. 2011). Activated and 

dysfunctional endothelial cells express adhesion molecules and different chemokines to 

facilitate adhesion of leukocytes, lymphocytes, and activated platelets (Iiyama et al. 1999; 

Sakai et al. 1997; Hansson et al. 2011; Huo et al. 2003; Zernecke et al. 2008). Additionally, 

the permeability of blood vessels for lipid components in the plasma, such as low-density 

lipoproteins (LDL), increases. LDL particles function as cholesterol transporters in the 

Figure 2: Structure of arterial walls 

Arterial walls are surrounded by supportive tissue 

called adventitia. The following media regulates 

vasoconstriction or vasodilation. Subsequently, the 

intima, the innermost layer, defines the barrier to the 

blood. (modified illustration from Libby et al. 2002) 
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circulation. They contain esterified cholesterol and triglycerides surrounded by phospholipids, 

free cholesterol, and apolipoproteins. Their components bind to proteoglycans of the 

extracellular matrix in the subendothelial space through ionic interactions, hence facilitating 

LDL particle accumulation (Tabas et al. 2007). Glycation or oxidative modifications by 

myeloperoxidases or lipoxygenases derived from neutrophils or macrophages alter retained 

LDL particles. Modified LDL particles activate endothelial cells and macrophages, thus 

upregulating expression of adhesion molecules and chemokines to promote further leukocyte 

recruitment to atherosclerotic lesions. 

Leukocytes recruited to atherosclerotic lesions contribute to lesion development in distinct 

ways (Figure 3). Neutrophils release their granule proteins such as myeloperoxidase, 

azurocidin, and proteinase-3 upon stimulation, thus triggering monocyte recruitment, 

endothelial dysfunction, macrophage polarization, and foam cell formation (Taekema-

Roelvink et al. 2001). Recruited monocytes enter lesions, reside within the intima and 

differentiate into macrophages upon stimulation with the macrophage-colony stimulating 

factor. Macrophages uptake modified LDL particles by scavenger receptors (such as CD204 

and CD36), whose cholesterol esters and free cholesterol content gets hydrolyzed in their 

lysosomes (Kunjathoor et al. 2002). The intracellular accumulation of the resulting lipids 

promotes accumulation of lipid droplets, thus turning macrophages into foam cells (Moore et 

al. 2011). This commonly known process describes the transition from early atherosclerotic 

lesions into so called fatty streaks.  

Over a longer period of time these fatty streaks progress into mature atherosclerotic lesions 

with accumulating inflammatory-cell subsets and extracellular lipids in their central region 

surrounded by a subendothelial fibrous cap. Smooth muscle cells form the fibrous cap and 

promote plaque stability by producing elastin, collagen, and other matrix components. 

Subsequently, the pro-inflammatory environment triggers cell death of macrophages and 

smooth muscle cells (Kyaw et al. 2013). Continuous accumulation of free cholesterol in 

macrophages causes cellular stress, thus leading to the induction of apoptosis. Phagocytes 

clear apoptotic cell bodies in a process defined as efferocytosis. However, during advanced 

atherosclerosis apoptotic cells undergo secondary necrosis due to impaired efferocytosis. 

Hence, elevated apoptosis and necrosis in combination with impaired efferocytosis contribute 

to the necrotic core formation and expansion. Furthermore, apoptosis of smooth muscle cells 

induced by pro-inflammatory cytokines reduces the production of extracellular matrix 

components and leads to fibrous cap thinning (Clarke et al. 2006). Further mechanical 

weakening of the fibrous cap due to extracellular matrix degradation by metalloproteinases 

induces the degradation of the fibrous cap, thus favoring plaque rupture. During plaque 

rupture released pro-coagulant and pro-thrombotic contents from the lesion trigger thrombus 
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formation. Subsequently, oxygen and nutrient supply of the surrounding tissue is disrupted 

and can induce clinical outcomes such myocardial infarction, stroke or peripheral artery 

disease.  

 

       

Figure 3: Development of atherosclerosis     

a) Atherogenesis is initiated by recruitment of leukocytes and platelets to activated endothelial cells. 

b) Lesional monocytes uptake lipids and give rise to foam cells. Further immune cells transmigrate 

into the lesion area and consistently produce pro-inflammatory cytokines, thus triggering matrix 

deposition and fibroproliferative progression. c) A fibrous cap containing matrix and smooth muscle 

cell layer forms. Underneath has been established a necrotic core due to macrophage and smooth 

muscle cell apoptosis as well as impaired efferocytosis. Furthermore, neovascularization might occur 

within the plaque and rupture of these neovessels leads to plaque haemorrhage. d) Excessive 

expansion of the necrotic core and thinning of the fibrous reduce the stability of the atherosclerotic 

plaque. Eventually, the plaque ruptures and the resulting thrombus formation might cause myocardial 

infarction or stroke. (Illustration from Weber et al., 2008) 
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1.2 Myeloid cell recruitment to inflamed tissue 

 

1.2.1 Myeloid cells 

Myeloid cells are the most abundant haematopoietic cells in the human body. They originate 

from multipotent haematopoietic stem cells (HSCs) in the bone marrow and comprise 

granulocytes, monocytes, mast cells, erythrocytes, megakaryocytes or macrophages.   

 

1.2.1.1 Monocytes 

Monocytes are mononuclear cells of myeloid origin, functioning as immune effector cells of 

the innate immune response. In mice, monocytes represent up to 4 %, and in humans up to 

10 % of leukocytes in blood (Auffrey et al. 2009). Two functionally distinct subsets of 

monocytes exist in mice, known as inflammatory/classical (Ly6Chigh) and anti-

inflammatory/non-classical (Ly6Clow) monocytes.  

Classical monocytes are described as inflammatory cells due to their high expression of 

tumor necrosis factor (TNF)-α and interleukin (IL)-1 during inflammation. At site of 

inflammation they act as precursors of peripheral mononuclear phagocytes, including 

inflammatory dendritic cells (DCs) or macrophages (Ginhoux et al. 2014). Upon stimulation, 

classical monocytes secrete inflammatory cytokines resulting in immune activation, bacterial 

clearance, and induction of tissue damage (Graham et al. 2015). 

In contrast, non-classical monocytes are known as patrolling cells of the vasculature and 

participate in resolution of inflammation (Nahrendorf et al. 2007). Their patrolling behavior 

allows them to rapidly invade damaged or infected tissue (Auffray et al. 2007). At site of 

inflammation non-classical monocytes initiate the innate immune response but also 

resolution of inflammation by promoting myofibroblast accumulation, angiogenesis, and 

deposition of collagen (Auffrey et al. 2007; Nahrendorf et al. 2007).  

 

1.2.1.2 Neutrophils 

Neutrophils are short-lived, polymorphonuclear leukocytes and represent the most abundant 

immune cell population in human blood. In mice, about 10-25% of circulating leukocytes are 

neutrophils (Doeing et al. 2003). They act in the first line of host defense against invading 

pathogens but also as key mediators of sterile tissue injury. During terminal granulopoiesis in 

the bone marrow up to 700 proteins including serine proteases, myeloperoxidase or matrix 

metalloproteinases (MMPs) are produced and stored in granules of neutrophils (Rorvig et al. 
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2013). Neutrophils exhibit an antimicrobial activity through the production and release of 

reactive oxygen species (ROS), antimicrobial peptides or DNA structures named neutrophil 

extra-cellular traps (NETs), which are covered with granule proteins and histones to trap and 

eliminate bacteria. Besides their microbicidal function, activated neutrophils release 

inflammatory signals (alarmins) to initiate an inflammatory response, thus contributing to the 

recruitment and activation of monocytes, macrophages, and dendritic cell subsets.  

 

1.2.2 Leukocyte recruitment cascade 

Leukocyte recruitment during inflammation depends on the ability of leukocytes to track, 

adhere, and transmigrate into inflamed tissue. A multistep cascade including capturing, 

rolling, arrest, crawling, and transendothelial migration guides leukocytes across the barrier 

of the blood vessel wall (Vestweber et al. 2015). Adhesion molecules expressed on 

endothelial cells or leukocytes play an essential role during this leukocyte recruitment 

cascade (Figure 4).  

 

 

Figure 4: Leukocyte recruitment cascade. Distinct adhesion molecules regulate rolling, adhesion, 

crawling, and finally transmigration of leukocytes into tissue. (Illustration from Kolaczkowska et al. 

2013) 

 

 

1.2.2.1 Leukocyte rolling 

The first step of myeloid cell recruitment involves recognition of signals released from 

inflamed or infected tissues by circulating leukocytes. Pathogens or damaged cells in the 

inflamed tissue release pathogen-associated molecular patterns (PAMPs) or damage-

associated molecular patterns (DAMPs), thus activating resident immune cells. Production of 

cytokines and other pro-inflammatory mediators stimulates endothelial cells and induces 
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upregulation of E-selectins and P-selectins on their cell surface. Leukocytes express P-

selectin glycoprotein ligand 1 (PSGL1) that binds to selectins expressed on endothelial cells 

to mediate leukocyte rolling (Spertini et al. 1996). Additionally, L-selectin on leukocytes 

facilitates leukocyte-leukocyte and leukocyte-endothelium interactions by binding to PSGL1 

expressed on already adherent leukocytes or endothelial cells, a process known as 

secondary leukocyte capturing (Da Costa Martins et al. 2007; Ley et al. 2007).  

 

Furthermore, leukocyte rolling is mediated by integrins. Integrins consist of transmembrane 

heterodimers with one α-subunit and one β-subunit. Up to today, 24 different integrin 

receptors formed by combinations out of 18 α-subunits and 8 β-subunits are known 

(Campdell et al. 2011). The most important integrins involved in leukocyte recruitment are 

lymphocyte function-associated antigen 1 (LFA1, αLβ2), macrophage antigen 1 (Mac1, 

αMβ2), and very late antigen 4 (VLA4, α4β1) (Vestweber et al. 2015). 

Binding of PSGL1 to selectins triggers integrin activation. Subsequently, activated VLA4 and 

LFA1 switch to their intermediate affinity conformation, thus promoting leukocyte rolling by 

binding to members of the immunoglobulin superfamily, such as intercellular adhesion 

molecule-1 (ICAM1) or vascular cell adhesion molecule-1 (VCAM1), on endothelial cells.  

 

1.2.2.2 Leukocyte arrest 

Rolling leukocytes are able to sense immobilized chemokines on endothelial cells by their 

chemokine receptors. Chemokines and other chemoattractants are produced by 

inflammatory cells or endothelial cells. While endothelial cells directly release or deposit their 

chemokines on their cell surface, chemoattractants, produced by inflammatory cells in the 

surrounding tissue, are transported via transcytosis through endothelial cells to their cell 

surface (Mordelet et al. 2005). On the cell-surface, chemokines bind selectively to subsets of 

glycosaminoglycans, thus locally defined glycosaminoglycan patterns determine side specific 

chemokine presentation (Witt et al. 1994; Kuschert et al. 1999; de Paz et al. 2007). 

Furthermore, distinct patterns of chemokine presentation define functionality and hierarchy of 

chemokines and their receptors during leukocyte arrest (Weber et al. 1999). Overall, 

chemokine binding to their chemokine receptor on leukocytes activates integrins via inside-

out signaling. Integrins undergo a transition from low affinity conformation to high affinity 

conformation, thus facilitating cell arrest by binding to ICAM1 or VCAM1. Furthermore, 

integrin clustering and adhesion strengthening prevent leukocyte detachment.   
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1.2.2.3 Leukocyte transmigration 

Adherent leukocytes start to crawl along the endothelium until reaching exit sites to 

transmigrate. During transmigration leukocytes have to penetrate the endothelial-cell barrier, 

basement membrane, and pericytes. Transcellular migration is observed at “thin” parts of the 

endothelium and regulated by forming an intracellular channel, through which a leukocyte 

can transmigrate. Endothelial cells guide leukocytes to exit sites by forming ICAM1, VCAM1, 

and cytoplasmic molecules rich structures, so called “docking structures” (Barreiro et al. 

2002). These structures occur around adherent leukocytes, which either enter by a 

transcellular or paracellular route into surrounding tissues. Leukocyte membrane protrusions 

spread into the endothelial-cell body (transcellular) or endothelial-cell junctions (paracelullar) 

by ICAM1-Mac1 binding (Schenkel et al. 2004; Phillipson et al. 2006), thereby opening 

interendothelial contacts. Subsequently, leukocytes pass the endothelium and basement 

membrane to enter the surrounding tissue.  

 

1.2.3 Myeloid cell recruitment during atherogenesis 

Initiation of atherosclerotic lesion development is promoted by the accumulation of 

neutrophils and monocytes in the vessel wall. Monocytes and macrophages were identified 

as the first cells associated with atherosclerosis (Napoli et al. 1997). The number of 

circulating classical monocytes is dramatically increased in hypercholesterolemic Apoe-/- 

mice (Swirski et al. 2007, Tacke et al. 2007). Within the atherosclerotic lesion, monocytes 

differentiate into macrophages or dendritic cells. Upon uptake of modified LDL particles via 

micropinocytosis or scavenger-receptor mediated pathways, macrophages give rise to foam 

cells, whose release of pro-inflammatory cytokines amplifies the inflammatory response. 

Neutrophils, as the most abundant white blood cell, play an important role during early 

stages of atherosclerosis (Drechsler et al. 2010).  Hypercholesterolemia triggers neutrophilia 

due to enhanced granulopoiesis and mobilization from the bone marrow (Drechsler et al. 

2010). Recruited neutrophils into atherosclerotic lesions aggravate endothelial dysfunction by 

releasing their granule proteins. The granule proteins Proteinase-3 and α-defensin stimulate 

endothelial expression of adhesion molecules and chemokines, hence inducing leukocyte 

recruitment (Taekema-Roelvink et al. 2001; Chaly et al. 2000). Furthermore, neutrophils 

activate macrophages and promote their development into foam cells. Azurocidin and α-

defensin stimulate the formation of reactive oxygen species in macrophages, thus leading to 

enhanced pro-inflammatory cytokine release and phagocytic activity (Soehnlein et al. 2008b; 

Soehnlein et al. 2008c). In addition, LDL particles bind to neutrophil derived α-defensin, 
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which triggers retention of lipoproteins in the vessel wall and finally the development of foam 

cells (Bdeir et al. 1999).  

The recruitment of monocytes and neutrophils to atherosclerotic lesions depends on the 

classical steps of the recruitment cascade but also the cooperative and sequential function of 

different cell subsets. 

Different studies in mouse models of atherosclerosis identified a major role of distinct 

adhesion molecules, chemokines, and chemokine receptors during atherogenesis. On the 

one hand, upregulation of adhesion molecules on endothelial cells in atheroprone regions 

associates with atherosclerosis. Next to low or oscillatory shear stress the risk factor 

hypercholesterolemia induces upregulation of adhesion molecules VCAM-1 and ICAM-1 on 

endothelial cells of regions predisposed to atherosclerotic lesion development (Iiyama et al. 

1999; Nakashima et al. 1998). Furthermore, P- and E-selectin-double deficient mice with low 

density lipoprotein (LDL) receptor (Ldlr)- deficient background developed five times smaller 

atherosclerotic lesions compared to its respective control mouse strain after being 8 weeks 

on atherogenic diet (Dong et al. 1998).  

On the other hand, adhesion molecules expressed on leukocytes contribute to their own 

recruitment. In vivo experiments gave evidence of the important role of VLA-4 and LFA-1 in 

the initiation of atherosclerotic lesion development (Shih et al. 1999; Watanabe et al. 1998).  

Besides adhesion molecules, leukocytes express chemokine receptors whose signaling 

triggers leukocyte adhesion. The chemokine receptors CX3CR1 and CCR5 play a major role 

during atherosclerosis, thus blocking its signaling is associated with reduced atherosclerotic 

lesion size (Poupel et al. 2013; Zernecke et al. 2006). Furthermore, the CCR2-CCL2 axis 

contributes to the development of atherosclerosis; hence genetic deficiency of Ccl2 or its 

receptor Ccr2 resulted in less development of atherosclerotic lesions (Boring et al. 1998; Gu 

et al. 1998). Moreover, overexpression of CCL2 by leukocytes increased progression of 

atherosclerosis (Aiello et al. 1999). Next to CCL2, several other chemokines have been 

found to be involved in atherosclerotic lesion development, such as CCL5, CCL3, CCL4, 

CXCL1 or CX3CL1 (Reape et al. 1999; Saederup et al. 2008; Zhou et al. 2011).  

Taken together, distinct adhesion molecules, chemokine receptors, and chemokines 

expressed on endothelial cells or leukocytes contribute to atherosclerotic lesion development 

by guiding myeloid cell recruitment.  

Myeloid cells are the first cells entering atherosclerotic lesions and their recruitment pathway 

has been intensively studied. Neutrophils are recruited early to activated endothelial cells 

and play a major role in early lesion development. Leukotriene B4, platelet activating factor, 

CXCL8, and other distinct chemotactic agents released by macrophages or by already 
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infiltrated leukocyte subsets promote neutrophil attraction (Soehnlein et al. 2010). Their 

recruitment is regulated in a CCR1, CCR2, CCR5, and CXCR2 dependent manner 

(Drechsler et al. 2010). Expression of CD11b and CD18 on neutrophils facilitates binding to 

P-selectin, intracellular adhesion molecules-1 (ICAM1) and intracellular adhesion molecules-

2 (ICAM2) on endothelial cells (Ley et al. 2007). Once neutrophils emigrate into tissue, they 

sequentially release granule proteins including azurocidin, α-defensins, proteinase G, 

cathepsin G or cathelicidin (Doering et al. 2012; Soehnlein et al. 2010; Ortega-Gomez et al. 

2016). These granule proteins bind to endothelial proteoglycans or activate endothelial cells, 

thus promoting further synthesis of chemokines. Different studies performed in macro- and 

microcirculation point out the important role of neutrophils in monocyte recruitment. Depletion 

of neutrophils in hypercholesterolemic Apoe-/- mice reduced the number of infiltrated classical 

monocytes into aortic tissue (Drechsler et al. 2010). In agreement with this previous study, 

less adhesion and extravasation of classical monocytes was observed in the microcirculation 

of neutropenic mice. Interestingly, this deficiency could be rescued by the application of 

supernatant derived from activated neutrophils (Soehnlein et al. 2008a). Further examination, 

identified the granule proteins cathelicidin, proteinase 3, proteinase G, and azurocidin from 

neutrophils as major triggers for classical monocyte recruitment (Doering et al. 2012; 

Soehnlein et al. 2010; Ortega-Gomez et al. 2016). Next to these proteins, neutrophil derived 

human neutrophil peptide 1 (HNP1) forms a heterodimer with platelet-derived CCL5 and 

stimulates recruitment of monocytes by binding to CCR5 (Alard et al. 2015). Hence, 

neutrophils induce classical monocyte recruitment to sites of inflammation.  

Classical monocytes express different adhesion molecules including PSGL-1, CD62L (L-

selectin), and distinct integrins (Soehnlein et al. 2013). The chemokine receptors CCR1, 

CCR2, and CCR5 together with their respective chemokines have been identified to regulate 

classical monocyte recruitment during atherogenesis (Soehnlein et al. 2012, Tacke et al. 

2007). Recruitment of non-classical monocytes to atherosclerotic lesions occurs less 

frequently and seems to be of minor importance compared to classical monocyte 

accumulation (Tacke et al. 2007). Thus, depletion of non-classical monocytes in 

hypercholesterolemic Apoe-/- mice did not impact on lesion size, whereas lack of classical 

monocytes interfered with early lesion development (Soehnlein et al. 2012). However, a 

previous study investigated increased non-classical monocyte patrolling activity under 

hypercholesterolemia. The uptake of oxidized LDL (oxLDL) in the vasculature by the 

scavenger receptor CD36 on non-classical monocytes triggered their patrolling activity. 

Hence, indicating an atheroprotective role of non-classical monocytes during early 

atherogenesis (Marcovecchio et al. 2017).       
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In summary, neutrophil and monocyte recruitment is guided through different adhesion 

molecules, chemokine receptors, and their respective chemokines. Communication between 

neutrophils and monocytes as well as with endothelial cells regulates their recruitment to 

athero-prone regions. 

 

 

1.3 Circadian rhythms 

 

Many aspects in plants, humans or bacteria display temporal rhythmicity, which is controlled 

by an internal biological clock. These rhythms describe endogenous and entrainable 

oscillations, whose frequency range from seconds to years. Cycles with a short period length 

of seconds to about 20 h, such as heart rate, pulse or respiratory oscillations in yeast, are 

considered as ultradian rhythms (Gachon et al. 2004; Murray et al. 2001). In contrast, 

menstruation or circannual mating cycles describe infradian rhythms with a period from 30 h 

to decades. Circadian rhythms have a period length of approximately 24 h. The term 

circadian is derived from the Latin word circa diem, which means “for about a day” 

(Scheiermann et al. 2013). The first circadian rhythm was described in 1729, when the french 

geophysicist Jean Jacques d'Ortous de Mairan discovered a circadian rhythmicity in the 

folding and unfolding of leaves from Mimosa pudica (de Mairan 1729). 

In mammals, almost each cell has a cell autonomous clock, which is regulated by a central 

clock and peripheral clocks. Such regulatory mechanisms ensure synchronization of rhythms 

throughout the body and to the environment. Alignment of circadian rhythms with the 

environment is controlled by Zeitgebers (i.e. time givers). For instance, light represents one 

of the major Zeitgebers and is recognized by the central clock, thus followed adjustment of 

internal rhythms leads to an overlap with the earth´s rotation cycle. Additionally, food intake, 

body temperature, hormones, and autonomic innervation are able to regulate 

synchronization (Brown et al. 2002). However, circadian rhythms oscillate independent of 

Zeitgebers and are characterized by even functioning under constant darkness. Whereas, 

rhythms only observed under a 12 h light/dark cycle are considered as diurnal rhythms.  

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Circadian_rhythm#cite_ref-de_mairan_1729_7-0
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1.3.1 Molecular circadian clock 

Each cell autonomous clock is regulated by the rhythmic expression of the main core clock 

proteins circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNTL-like 

protein 1 (BMAL1, also known as ARNTL). BMAL1 and CLOCK belong to the family of basic-

helix-loop-helix (bHLH) and period-ARNT-single-minded (PAS) domain-containing 

transcription factors. Both proteins form a heterodimer and bind to DNA E-boxes, the most 

frequent promoter elements of clock controlled genes (CCGs) (King et al. 1997; Bunger et al. 

2000). Clock controlled genes can encode proteins involved in the regulation of the immune 

system or other transcription factors leading to up to 43% of clock controlled genes in 

mammals (Zhang et al. 2014).  

Their cell autonomous circadian expression is regulated by at least three transcriptional-

translational feedback loops (Figure 5). The central feedback loop is formed by BMAL1 and 

CLOCK. These proteins regulate their own expression and furthermore the expression of 

their own repressors PER1-3 and CRY1-2. When PER and CRY accumulate in the 

cytoplasma, they form a heterodimer and translocate back to the nucleus to interrupt the 

interaction of the heterodimer BMAL1:CLOCK with the gene promoter. This feedback loop 

controls rhythmic expression of bmal1, clock, per and cry (Anne M. Curtis et al. 2014). 

The nuclear receptors retinoic acid receptor-related orphan receptor-α (RORα) and reverse 

erythroblastosis virus-α (REV-ERBα) form a second feedback loop. These transcription 

factors bind to receptor-related orphan receptor response elements (ROREs) in the Bmal1 

promoter region to regulate its expression. While RORα functions as a transcriptional 

activator, REV-ERBα represses Bmal1 expression (Preitner et al., 2002; Sato et al. 2004).  

Additionally, this second loop regulates expression of the repressor nuclear factor interleukin 

3 (NFIL3). NFIL3 and the transcriptional activator albumin D-box binding protein (DBP) 

regulate a third feedback loop. Both transcription factors bind to the D-box of promoter 

regions to control expression of Per (Anne M. Curtis et al. 2014). Furthermore, post-

translational modifications ensure the maintenance of circadian rhythms. Thus, 

phosphorylation, acetylation, and ubiquitylation modulate clock proteins to regulate their 

activity and degradation (Bellet et al., 2010).  

Besides controlling their own rhythmic expression, core clock proteins were identified to bind 

to promoters of other genes, including proteins involved during inflammation. Nguyen et al. 

identified BMAL1 as a recruiter of the histone complex polycomb repressive complex 2 to the 

E-box binding site in the promoter region of Ccl2, thus regulating its rhythmic expression 

(Nguyen et al. 2013). Similar results were obtained for Ccl8, S100a8, Timp4, and Tlr9 (Silver 

et al. 2012; Lutshumba et al. 2018). 
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Figure 5: Molecular circadian clock 

Oscillations in the expression of the central circadian clock genes Bmal1 and Clock are regulated by 

three connected transcriptional-translational feedback loops. BMAL1 and CLOCK bind to E-box 

binding sites within promoter regions to regulate the expression of cry, per, clock controlled genes 

(CCG) and other genes involved in further feedback loops. CRY and PER inhibit their expression by 

interfering with the heterodimer BMAL1 and CLOCK. Proteins derived from the first feedback loop are 

involved in other feedback loop to control oscillations in circadian clock gene expression. (Illustration 

from Anne M. Curtis et al. 2014) 
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1.3.2 Regulatory mechanism of the circadian clock 

Circadian rhythms require regulatory mechanisms to ensure synchronized and effectively 

working circadian systems. A circadian pacemaker functions with a 24-hour rhythmicity even 

in the absence of environmental timing cues and it is also able to entrain oscillations 

according to the environment, thus functioning as the central clock (Herzog et al. 2007).  

The suprachiasmatic nuclei (SCN) have been identified as the master circadian pacemaker 

of daily rhythms in mammals (Ralph et al. 1990). It is located in the anterior part of the 

hypothalamus and can transmit environmental signals to the organisms due to nerve signals 

directly received from the retina. Loss of the SCN had no impact on the presence of circadian 

rhythms in peripheral tissues; however, the rhythms were desynchronized among tissues 

and animals (Yoo et al. 2004). Peripheral clocks are not only regulated by the central clock 

but also by local regulatory mechanisms. Evidence for a local regulatory mechanism was 

given by a study of Kornmann et al., demonstrating robust rhythmicity in a subset of 

transcripts, while most other hepatic transcripts became arrhythmic in the absence of a 

functional liver clock (Kornmann et al. 2007). Furthermore, parabiosis experiments between 

intact and SCN-lesioned mice indicate that circadian oscillations are controlled by non-

humoral and humoral pathways (Mohawak et al. 2012; Guo et al. 2005).  

Therefore, distinct peripheral clock entrainment pathways have been identified, such as the 

autonomic nervous system, body temperature, food intake or humoral signals (e.g. 

glucocorticoids).   

 

As the central clock, the SCN regulates many different body functions via humoral and 

neuronal signals. Light signals from the eye are forwarded via the retinohypothalamic tract to 

the SCN where the signal can either be translated by the hypothalamic-pituitary-adrenal axis 

(HPA axis) or by sympathetic innervation (Figure 6).  

According to the HPA axis, the hypothalamus controls the release of adrenocorticotropic 

hormone (ACTH) from the pituitary gland into the bloodstream, thus being transported to the 

adrenal gland. In the adrenal gland ACTH stimulates the release of steroid hormones, such 

as glucocorticoids from the adrenal cortex or catecholamines from the adrenal medulla. The 

effect of noradrenaline and adrenaline is mediated via seven-transmembrane-segment 

receptors. These receptors are classified into α1, α2 and β adrenergic receptors and have 

multiple impacts on immune cells (Cosentino et al. 2015). Glucocorticoids bind to intracellular 

glucocorticoid receptors (GR) that function as ligand-dependent transcription factors via 

glucocorticoid-response elements (GRE) in promoter regions, thus upregulating the 

expression of anti-inflammatory proteins (Barnes et al. 1998). Interestingly, the core clock 
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proteins CLOCK/BMAL1 were identified as negative regulator of glucocorticoid activity due to 

modification of the ligand binding domain of GRs by CLOCK (Nader et al. 2009). Additionally, 

sympathetic innervation of distinct tissues regulates oscillations by local release of 

noradrenaline (Scheiermann et al. 2012).   

 

In summary, the pacemaker of the circadian clock consists of the SCN, which regulates 

synchronization of peripheral clocks. Nevertheless, other entrainment pathways have been 

identified to affect circadian clocks, thus building up a complex feedback relationship.  

 

 

 

Figure 6: Regulatory mechanisms leading to entrainment and synchronization of peripheral 

clocks   

The suprachiasmatic nuclei (SCN) represent the central clock and regulate peripheral clocks by 

distinct pathways. Light can be sensed through the eye and provides an entrainment mechanism to 

align peripheral rhythms with the light cycle. The SCN regulates the release of different hormones from 

the adrenal gland as well as local sympathetic innervation of peripheral tissues to influence their 

circadian rhythmicity. (Illustration from Scheiermann et al. 2013) 
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1.3.3 Rhythmic immune cell trafficking 

Immune cell trafficking under steady state exhibits circadian rhythmicity. Rhythmic 

expression of adhesion molecules, chemokines, and their chemokine receptors regulates 

oscillatory lymphocyte and leukocyte trafficking from the bone marrow to peripheral tissues. 

In the light of disease outcome and mortality, previous research highlights the importance of 

understanding the circadian control of immune cell mobilization and recruitment.  

 

Under steady state circulating hematopoietic stem and progenitor cells (HSPCs) oscillate 

with a peak during the resting phase and a through during the activity phase. Rhythmic 

activation of β3-adrenergic receptors via local sympathetic innervation promotes oscillatory 

expression of the chemokine CXCL12 in stromal cells of the bone marrow, thus regulating 

HSPC egress or homing (Méndez-Ferrer et al. 2008). Additionally, rhythmic leukocyte 

trafficking to the bone marrow and peripheral tissues peaked during the activity phase and 

has been described as a consequence of rhythmic expression of adhesion molecules and 

chemokines by local sympathetic nervous system activation (Scheiermann et al. 2012). 

While oscillatory expression of Selp, Sele, and Vcam1 regulates leukocyte egress into the 

bone marrow, rhythmic expression of Icam1 and Ccl2 in endothelial cells of the skeletal 

muscle promotes leukocyte recruitment. Both described phenotypes were regulated by 

photic cues. Changes in light input disturbed rhythmic release of HSPCs or leukocytes from 

the bone marrow. These results point out light as an important entrainment factor being able 

to influence immune cell trafficking.  

In addition, monocyte and neutrophil trafficking to different tissues revealed rhythmicity under 

physiological conditions. Monocyte numbers in blood, spleen, and bone marrow exhibit 

diurnal oscillations. Monocyte numbers in blood and spleen peaked between ZT4-ZT8, while 

an opposing phenotype was observed in their cell number in the bone marrow (Ngyuen et al. 

2013). Circulating granulocytes in C57BL/6J mice peaked at ZT5 and were at their lowest 

level at ZT13. In contrast, neutrophil numbers in the heart represented a peak at ZT13 and a 

through at ZT5 (Schloss et al. 2016). Homeostatic clearance of neutrophils follows daily 

cycles by regulating their trafficking between blood and bone marrow. Circulating aged 

CD62low and CXCR4high neutrophils infiltrate back to the bone marrow at the end of the 

resting phase. In the bone marrow, macrophages phagocyte aged neutrophils, thus 

triggering a feedback mechanism by promote rhythmic egress of hematopoietic progenitors 

into the circulation (Casanova-Acebes et al. 2013).  

Furthermore, lymphocyte trafficking to lymph nodes exhibited circadian rhythmicity. 

Lymphocyte homing and egress was regulated by time-dependent clock-controlled 
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expression of the receptors Ccr7 and S1pr1 (Druzd et al. 2017). In addition, oscillations in 

the number of T cells were observed in human blood. While naive cells exhibited a peak at 

night, effector CD8 T cells peaked during daytime (Dimitrov et a. 2009). Interestingly, cortisol 

and epinephrine levels have been identified as regulators of T cell trafficking by regulating 

CXCR4 and CX3CR1 expression (Dimitrov et a. 2009). 

 

In summary, distinct regulatory components of the circadian clock were identified as 

influencers of leukocyte recruitment during steady state with predicted consequences on 

immune responses. 

 

 

1.3.4 Circadian clock controls inflammation 

The immune system consists of the innate and adaptive immune response. It protects the 

organism against pathogens such as bacteria, viruses or parasites with a complex interplay 

of different cell subsets and inflammatory/anti-inflammatory molecules.   

 

Monocytes and macrophages play a central role in the innate immune response. They 

contribute to initiation and resolution of inflammation by phagocytosis, activation of the 

adaptive immune system and release of inflammatory cytokines and reactive oxygen 

species. Circadian clock genes oscillate in circulating monocytes and macrophages from the 

spleen, lymph node, and peritoneum, thus influencing expression of downstream genes 

involved in inflammatory innate immune functions. Gene expression profiling in macrophages 

revealed that approximately 8% of the macrophage transcriptome is under circadian control 

(Keller et al. 2009). In detail, rhythmic expression of Ccl2 and Ccl8 was observed in myeloid 

cells (Nguyen et al. 2013). Furthermore, TNF-α and IL-6 secretion exhibited circadian 

rhythms in lipopolysaccharide (LPS) – challenged spleen macrophages (Keller et al. 2009). 

During inflammation myeloid cells recognize pathogens via pattern-recognition receptors 

(PRRs), such as TLR4 and TLR9. While there is no circadian rhythmicity in TLR4 expression, 

components of the downstream signaling pathway exhibit circadian oscillations, which 

promote time-dependent immune responses (Keller et al. 2009). In contrast, Tlr9 expression 

oscillates and regulates improved immune responses, when its expression is at its highest 

level (Silver et al. 2012). Additionally, the rhythmicity of blood monocytes impacts on Ly6Chigh 

inflammatory monocyte recruitment to sites of inflammation. Mice that were intraperitoneally 

infected with Listeria monocytogenes at a time with increased circulating Ly6Chigh monocyte 

numbers showed improved bacterial clearance (Nguyen et al. 2013). 



 
29 

 
 

Neutrophils are the most abundant circulating white blood cells and the first cells at sites of 

inflammation. They support host defense by phagocytosis of pathogens and release of 

antimicrobial agents. Rhythmic neutrophil recruitment has been described to be involved in 

outcomes of different diseases. Responses to pulmonary infections induced by 

lipopolysaccharide differed between distinct time points with the highest infiltration of 

neutrophils at CT0. These observations relied on epithelial club (clara), cells which promote 

neutrophil recruitment to injured lung tissue by rhythmic Cxcl5 expression (Gibbs et al. 2014). 

Furthermore, circadian neutrophil recruitment to the heart during myocardial infarction (MI) 

defined infarct size, healing, and cardiac function. Depletion of neutrophils when their 

recruitment was at its highest level at ZT13 revealed an improved cardiac function and infarct 

size (Schloss et al. 2016). In addition, other disease models, such as sickle cell disease and 

septic shock, are affected by circadian neutrophil recruitment. Overall survival in mouse 

models of sickle cell disease challenged with TNFα and in C57BL/6 mice challenged with 

LPS (septic model) was reduced at night (Scheiermann et al. 2012). Interestingly, a recent 

study describes circadian rhythmicity in parasite infection by Leishmania major with a 

daytime-dependent neutrophil and anti-inflammatory macrophage infiltration induced by 

rhythmic expression of chemokines (Kiessling et al. 2017). 

Next to myeloid cells, natural killer cells express clock genes and exhibit circadian rhythmicity 

in their cytotoxicity characterized by oscillations of granzyme B, perforin, and IFN-γ 

(Fernandez et al. 1969; Arjona et al. 2004). Disruption of the circadian clock by chronic shift-

lag revealed attenuated natural killer cell cytotoxicity and promoted tumor growth (Logan et 

al. 2012). 

In light of the adaptive immune system, lymphocytes contain a functional molecular 

clockwork (Silver et al. 2012; Bollinger at al. 2011). Recent research illustrated a time-of-day 

dependence in adaptive immune responses to immunization and pathogens. Elevated 

numbers of activated T cells and dendritic cells were present in lymph nodes at night onset. 

In the autoimmunity model of EAE, mice immunized at ZT8, when cell counts were high in 

lymph nodes, showed an accelerated disease severity compared to a control group 

immunized at ZT20 (Druzd et al. 2017). Similar results were obtained in mice infected with 

Helicobacter pylori or influenza A virus and highlight the importance of circadian rhythms in 

adaptive immune responses (Druzd et al. 2017). Furthermore, antibody levels due to 

vaccination were elevated after morning administration compared to afternoon vaccination 

(Long et al. 2016). 
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Taken together, circadian rhythms influence inflammation and disease outcomes due to 

oscillations in leukocyte recruitment and rhythmicity in the expression of inflammatory 

molecules.  

 

 

1.3.5 Circadian clock in atherosclerosis 

Increasing evidence points out the critical role of circadian rhythmicity in the pathogenesis of 

atherosclerosis. Different aspects of cardiovascular functions as well as major clinical 

consequences of atherosclerosis, such as myocardial infarction or stroke, exhibit diurnal 

variations in their frequency (Mueller et al. 1985). Regarding the influence of rhythmic gene 

expression on inflammation, expression profile analysis of aortic tissue discovered 330 

transcripts with circadian rhythmicity (Rudic et al. 2005). Further evidence is given by the 

discovery of cell-intrinsic molecular clocks in different cell types involved in atherosclerosis 

including leukocytes, macrophages, endothelial cells, and smooth muscle cells.  About 8% of 

the macrophage transcriptome from isolated macrophages from spleen, lymph node, and 

peritoneum is under circadian control (Keller et al. 2009). In murine smooth muscle cells 

rhythmic gene expression occurred for the tissue inhibitor of metalloproteinase 1 and 3, 

collagen 3a1, transgelin, and calponin (Chalmers et al. 2008). 

 

Distinct studies emphasize the role of circadian clock genes in the pathogenesis of 

atherosclerosis. By comparing conventional and inducible core clock gene deficiency in Ldlr-/- 

mice, constitutive lack of Bmal1 revealed accelerated atherogenesis, whereas inducible 

Bmal1 knockout mice developed less atherosclerotic lesions (Yang et al. 2016). In addition, 

human studies obtained a lower Cry1 mRNA expression in atherosclerotic patients (Yang et 

al. 2015). Its atheroprotective role was further investigated in mice. Cry1 overexpression by 

adenovirus-mediated gene transfer revealed a lower expression of proinflammatory 

cytokines, adhesion molecules, and improved hyperlipidemia (Yang et al. 2015). Similarly, 

specific lentiviral-mediated knockdown of Rev-erb in hematopoietic cells in Ldlr-/- mice 

enhanced atherosclerotic lesion development, while pharmacological activation of REV-ERB 

decreased atherosclerotic plaque size (Ma et al. 2013; Sitaula et al. 2015). 

 

Disruption of a functional circadian clock in tissue or specific cell types has 

pathophysiological relevance on key risk factors of cardiovascular diseases. Deficiency of 

Per2 in mice promotes endothelial dysfunction by reduced production of vasodilators and 

increased release of vasoconstrictors, thus Per2 maintains normal cardiovascular functions 
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(Viswambharan et al. 2007). Furthermore, in vivo models deficient of the core clock gene 

Bmal1 have a dramatic prothrombotic phenotype including elevated levels of circulating vWF, 

fibrinogen, and PAI-1 (Somanath et al. 2011). Risk factors of cardiovascular diseases are 

altered by circadian clock deficiency, but considering the opposite, risk factors have also 

been shown to change rhythmicity of molecular clocks. Hyperlipidemia induced altered 

rhythmicity and expression of circadian genes in Apoe-/- mice (Hou et al. 2009). Additionally, 

human plaque-derived vascular smooth muscle cells (VSMCs) exhibited different circadian 

rhythmicity from that of normal carotid VSMCs (Lin et al. 2014). 

Tissue intrinsic circadian clocks contribute to arteriosclerotic diseases. A study from 2011 

demonstrates the influence and importance of tissue clocks versus extrinsic clocks. Aortic 

grafts from Bmal1-/- or Per2,3-/- mice transplanted into WT mice developed arteriosclerotic 

disease, while aortic grafts from WT mice transplanted into clock disrupted mice revealed no 

lesion development, thus highlighting the importance of functional tissue intrinsic clocks 

(Cheng et al. 2011). Furthermore, cell intrinsic clocks promote the pathogenesis of 

atherosclerosis. Specific myeloid Bmal1 deletion affected lesion development. An increased 

lesion development was observed with a higher number of lesional macrophages and 

preferential differentiation of Ly6Chigh inflammatory monocytes into M1 macrophages (Huo et 

al. 2017). 

 

As a conclusion, much evidence has been given that the circadian clock influences the 

pathogenesis of atherosclerosis. However, the impact of the circadian clock on myeloid cell 

recruitment during atherogenesis and its regulatory mechanism is still unknown.      

 

 

 

 

 

 

 



 
32 

 
 

1.4 Research objective 

 

The circadian clock controls distinct components of the immune system, thus regulating 

inflammatory processes and susceptibility to diseases in a time-dependent manner. The 

higher incidence of myocardial infarction early in the morning together with previous studies 

on the atherogenic effect of core clock proteins already give indications of rhythmic 

inflammatory processes during atherosclerotic lesion development. However, these studies 

focused on the importance of the circadian clock proteins BMAL1 and CLOCK on the 

development of atherosclerosis without identifying circadian rhythmicity in leukocyte 

recruitment (Pan et al. 2013; Yang et al. 2016; Huo et al. 2017). Leukocyte recruitment to site 

of activated arterial endothelium plays a major role during the initiation of atherosclerotic 

lesion development. In regard that distinct components of the immune system exhibit 

circadian rhythmicity, thus modulating leukocyte recruitment during acute inflammation in a 

time-dependent manner, we questioned whether rhythmic leukocyte recruitment occurs 

during atherogenesis (Scheiermann et al. 2012; Nguyen et al. 2013). Therefore, the aim of 

this study was to investigate to what extent the circadian clock orchestrates leukocyte 

recruitment during the development of atherosclerosis and to identify its regulatory 

mechanisms for generating a chronopharmacological treatment strategy. 
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2. Materials and Methods 
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Table 1: Buffers and Media 

 

Red blood cell lysis buffer 150 mM NH4Cl; 10 mM KHCO3; 0.1 mM diNaEDTA, pH 7.4 

Hank’s buffer 
1X Hank’s buffered salt solution (HBSS), 0,06 % BSA, 0.5 mM 

diNaEDTA 

Digestion medium RPMI + 10% FBS (Thermo Fisher Scientific, Waltham, USA) 

Antibody staining solution 

50 µl PBS supplemented with 1,6 % BSA and 15,9 µl/ml mouse 

serum,rabbit serum and human serum (Sigma, Sigma-Aldrich, 

St. Louis, USA) + 50 µl Hank’s buffer 

Static adhesion buffer RPMI + 0.5% BSA (SERVA, Heidelberg, Germany) 

Oil red O staining solution 
1g Oil-red-o (Sigma, Sigma-Aldrich, St. Louis, USA) in 200 ml 2-

propanol (Merck, Darmstadt, Germany) 

Antigen retrieval solution 

12,6 ml Solution A (21,01g Citric Acid, 1 l Aqua dest.), 57,4 ml 

Solution B (29,4g Sodium Citrate, 1 l Aqua dest.), 350µl 

Tween20 (Merck, Darmstadt, Germany) 

Blocking solution 
6 ml PBS + 1% BSA (1%) + 3 drops horse serum (VECTA 

laboratories, Burlingame, USA) 

 

 

2.1 In vivo experiments 

2.1.1 Mice 

8 weeks old Apoe-/-, Cx3cr1gfp/WTApoe-/-, Lyz2CreBmal1fl/flApoe-/-, Lyz2CreApoe-/-, 

Bmal1fl/flApoe-/-, BmxCreERT2Bmal1fl/flApoe-/-, C57BL/6J and Ldlr-/- mice were used to study 

circadian oscillations in the pathogenesis of atherosclerosis. All mice were housed at a 12-

hour light/ 12-hour dark cycle (Lights on at 7 am, i.e. ZT0; lights off at 7 pm, i.e. ZT12) or 24-

hour dark cycle during the last two weeks before sacrifice. Starting at the age of 8 weeks 

mice were fed a high-fat diet (HFD) containing 21% fat and 0.15% cholesterol (ssniff, Soest, 

Germany) for four weeks to induce a hypercholesterolemia and the development of 

atherosclerotic lesions. 

Inducible knockout mouse strains were injected i.p. with 1 mg tamoxifen (T5648, Sigma-

Aldrich, St. Louis, USA) dissolved in coconut oil, daily for 5 days before initiation of HFD 

feeding. All animal experiments were approved by the local ethical committee for animal 

experimentation.  
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2.1.2 Genotyping 

C57BL/6J mice and Ldlr-/- mice were purchased from Janvier labs (Le Genest Saint Isle, 

France). The rest of strains derived from our own animal facility and was genotyped as 

described in the following section. For genotypic analysis a tail biopsy was obtained and 

incubated overnight at 56°C in 250 μl tissue lysis buffer supplemented with proteinase k 

solution (0,2 mg/ml, Qiagen, Hilden, Germany) for tissue digestion (Qiagen, Hilden, 

Germany). Afterwards, DNA was isolated with a QIAxtractor (Qiagen, Hilden, Germany) 

according to the manufacturer’s instructions.  

 

PCR reagent mixes were prepared for all genes as described below: 

Reaction component Final concentration 

5X Green Gotaq Flexi buffer (Promega, Fitchburg, USA) 1X 

25 mM MgCl2 (Sigma-Aldrich, St. Louis, USA) 1,5 mM 

dNTPs (Sigma-Aldrich, St. Louis, USA) 0,2 mM 

Forward Primer (Sigma-Aldrich, St. Louis, USA) 0,5 µM 

Reverse Primer (Sigma-Aldrich, St. Louis, USA) 0,5 µM 

GoTaq DNA polymerase (Promega, Fitchburg, USA) 0,05 U/µl 

Genomic DNA (Promega, Fitchburg, USA) 200 ng 

 

PCR reagent mixes were prepared containing either wildtype- or mutant allele-detecting 

primer pairs and the following PCR reaction programs were used. Afterwards, PCR products 

were analyzed by gel electrophoresis with a QIAxcel Advanced System (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. In every set of samples, a reaction 

with wildtype and mutant material as well as water was included as positive and negative 

controls, respectively. 

 

PCR reaction programs: 

Apoe 

Primer  

Apoe common forward 5’ GCC TAG CCG AGG GAG AGC CG 3’ 

Apoe wildtype reverse 5’ TGT GAC TTG GGA GCT CTG CAG C 3’ 

Apoe mutant reverse 5’ GCC GCC CCG ACT GCA TCT 3’ 

 

 

 

https://www.bing.com/local?lid=YN2000x5614276042243072744&id=YN2000x5614276042243072744&q=Janvier+Labs+CERJ&name=Janvier+Labs+CERJ&cp=48.0996398925781%7e-0.88467001914978&ppois=48.0996398925781_-0.88467001914978_Janvier+Labs+CERJ&FORM=SNAPST
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Cycling 

Step Temperature °C Time 

1 94 5 min 

2 94 30 sec 

3 60 30 sec 

4 72 30 sec 

5 Repeat steps 2-4 for 35 cycles 

6 72 5 min 

7 21 5 min 

 

Cx3cr1 

Primer  

Cx3cr1 common forward 5’ GGT TCC TAG TGG AGC TAG GG 3’ 

Cx3cr1 wildtype reverse 5’ TTC ACG TTC GGT CTG GTG GG 3’ 

Cx3cr1 mutant reverse 5’ GAT CAC TCT CGG GAT GGA CG 3’ 

 

Cycling 

Step Temperature °C Time 

1 94 5 min 

2 94 30 sec 

3 60 30 sec 

4 72 1 min 

5 Repeat steps 2-4 for 35 cycles 

6 72 5 min 

7 21 5 min 

 

Lyz2Cre 

Primer  

Lyz2Cre common forward 5’ CTT GGG CTG CCA GAA TTT CTC 3’ 

Lyz2Cre wildtype reverse 5’ TTA CAG TCG GCC AGG CTG AC 3’ 

Lyz2Cre mutant reverse 5’ CCC AGA AAT GCC AGA TTA CG 3’ 

 

Cycling 

Step Temperature °C Time 

1 94 3 min 

2 94 30 sec 
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3 60 30 sec 

4 72 50 sec 

5 Repeat steps 2-4 for 37 cycles 

6 72 3 min 

7 21 5 min 

 

Bmal1 

Primer  

Bmal1 forward 5’ ACT GGA AGT AAC TTT ATC AAA CTG 3’ 

Bmal1 reverse 5’ CTG ACC AAC TTG CTA ACA ATT A 3’ 

 

Cycling 

Step Temperature °C Time 

1 94 3 min 

2 94 30 sec 

3 60 60 sec 

4 72 60 sec 

5 Repeat steps 2-4 for 35 cycles 

6 72 5 min 

7 21 5 min 

 

BmxCre  

Primer  

BmxCre forward 5’ AAA TAC CTT CAG TTT TCA TCT 3’ 

BmxCre reverse 5’ TTG CGA ACC TCA TCA CTC GTT 3’ 

 

Cycling 

Step Temperature °C Time 

1 94 2 min 

2 94 30 sec 

3 60 30 sec 

4 72 1 min 

5 Repeat steps 2-4 for 35 cycles 

6 72 5 min 

7 21 5 min 
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2.1.3 In vivo CCR2-CCL2 inhibition 

The spiropiperidine compound RS102895 (Figure 7) is a small 

molecule antagonist of the CCR2 receptor. CCL2-CCR2 signaling was 

interrupted in hypercholesterolemic Apoe-/- mice by injecting daily a 

single dose of 5 mg/kg CCR2 antagonist (RS102895, Sigma-Aldrich, 

St. Louis, USA) or vehicle control at ZT5 or ZT17 during a period of 

four weeks. The CCR2 antagonist was dissolved in DMSO and diluted 

in PBS before the injection. The same concentration of DMSO in PBS 

served as a vehicle control. Because RS102895 has a short half-life, a dose of 5 mg/kg is not 

detectable in plasma beyond 9 hours after administration (Mitchell et al., 2013), thus avoiding 

a long-lasting CCR2 blockage. During the short term inhibition of CCR2-CCL2 signaling a 

single dose of 5 mg/kg CCR2 antagonist (RS102895, Sigma-Aldrich, St. Louis, USA) or 

vehicle control was injected 30 min before imaging.  

 

 

2.1.4 In vivo leukocyte depletion 

The medical substrate cyclophosphamide is used for chemotherapy and 

suppresses the immune system. Upon administration of 

cyclophosphamide the toxic metabolite phosphoramide mustard 

accumulates specifically in cells with low levels of aldehyde 

dehydrogenase (ALDH). Due to the formation of crosslinks between 

phosphoramide mustard and DNA strands, cells undergo apoptosis. 

High levels of ALDHs, as observed in bone marrow stem cells, prevent 

the formation of toxic metabolites and protect the cells from cell death. Peripheral leukocyte 

depletion was induced in hypercholesterolemic Apoe-/- mice by i.p. administration of 160 

mg/kg cyclophosphamide (CTX) (pharmacy of the LMU Munich, Germany) (Figure 8). 

Successful leukopenia was verified by quantifying leukocyte numbers in the blood with flow 

cytometry as described below (see section “2.4.1 Flow cytometry”). 

 

 

 

 

 

 

 

 

Figure 7: 

Structure of CCR2 

antagonist RS102895 

 

Figure 8:  

Structure of 

cyclophosphamide 
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2.1.5 In vivo glucocorticoid receptor inhibition 

Mifepristone inhibits the activity of progesterone and glucocorticoid receptor signaling. The 

glucocorticoid receptor belongs to the nuclear receptor superfamily by functioning as a 

ligand-dependent transcription factors. Mifepristone binds to the glucocorticoid receptor and 

prevents the translocation to the nucleus, thus inhibiting its function as a transcription factor. 

The glucocorticoid receptor activity was blocked by injecting 30 mg/kg Mifepristone i.p. 

(Sigma-Aldrich, St. Louis, USA) 24 hours and 12 hours before imaging. Mifepristone was 

dissolved in DMSO and diluted in PBS shortly before administration. The same concentration 

of DMSO diluted in PBS was used as a vehicle control. 

 

 

2.1.6 In vivo adrenergic receptor inhibition 

Adrenergic receptor signaling was inhibited by injecting 5 mg/kg of a β3-adrenergic receptor 

antagonist (Sigma-Aldrich, St. Louis, USA), 10 mg/kg of the β1/2-adrenergic receptor 

antagonist propranolol (Sigma-Aldrich, St. Louis, USA) and 5 mg/kg of the α-adrenergic 

receptor antagonist phentolamine (Sigma-Aldrich, St. Louis, USA) i.p. shortly before imaging. 

All antagonists were dissolved in DMSO and diluted in PBS before the injection. The same 

concentration of DMSO diluted in PBS was used as a vehicle control. 

 

 

2.1.7 LPS-induced lung injury 

Acute lung injury induced by LPS is a neutrophil-dependent lung disease model 

characterized by increased permeability of the alveolar-capillary endothelium and epithelium 

leading to edema formation and recruitment of neutrophils (Grommes et al. 2011).  

C57BL/6 mice (Janvier labs, Le Genest Saint Isle, France) were exposed to aerosolized LPS 

(500 µg/ml) from Salmonella enteritidis (Sigma-Aldrich, St- Louis, Germany) for 30 min. Two 

hours later 5 µl Gr1-FITC (RB6-8C5, BioLegend, San Diego, USA) was applied by tail vein 

injection to label intravascular neutrophils. Afterwards mice were sacrificed and non-adherent 

cells were removed by flushing the pulmonary vasculature with 20 ml PBS. Lungs were 

removed and processed according to the protocol described in section “2.4.1.1 Organ 

preparation protocol”. Neutrophils were labeled as described in section “2.4.1.2 Staining 

protocol”. Intravascular neutrophils were identified as CD45+, CD11b+, Ly6G+ and Gr1+ cells 

whereas interstitial neutrophils were characterized as CD45+, CD11b+, Ly6G+ and Gr1- cells.  

 

 

https://www.bing.com/local?lid=YN2000x5614276042243072744&id=YN2000x5614276042243072744&q=Janvier+Labs+CERJ&name=Janvier+Labs+CERJ&cp=48.0996398925781%7e-0.88467001914978&ppois=48.0996398925781_-0.88467001914978_Janvier+Labs+CERJ&FORM=SNAPST
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2.2 Intravital microscopy 

Intravital microscopy enables live imaging of leukocyte-endothelial cell interactions along the 

carotid artery and in the microcirculation of the cremaster muscle. Intravital microscopy was 

performed by Oliver Soehnlein.  

 

2.2.1 Macrocirculation 

First, a catheter (PE10, Becton Dickinson, Franklin Lakes, USA) was placed into the right 

jugular vein for injecting a PE-conjugated antibody to Ly6G (1 µg, 1A8, Thermo Fisher 

Scientific, Waltham, USA) and a FITC-conjugated antibody to Ly6C (1 µg, HK1.1, 

BioLegend, San Diego, USA) to visualize myeloid cells. Application of a Ly6C antibody was 

not necessary for already GFP labeled monocytes in the Cx3cr1egfp/WTApoe-/- mice. Second, 

the external carotid artery was imaged using an Olympus BX51 microscope equipped with a 

Hamamatsu 9100-02 EMCCD camera, and a 10× saline-immersion objective. The interaction 

of labeled myeloid cells with endothelial cells was imaged for 30 s. Afterwards one video per 

mouse was analyzed by counting the number of adherent myeloid cells.  

 

2.2.2 Microcirculation 

Live imaging of adherent or interstitial cells in the microcirculation was obtained by injecting 

antibodies as described above via a catheter in the right jugular vein and exposing the 

cremaster muscle for imaging. Videos were taken with an Olympus BX51 microscope 

equipped with a Hamamatsu 9100-02 EMCCD camera, and a 20× water-dipping objective. 

Cremasteric arterioles were discriminated from postcapillary venules by flow direction. 

Adherent myeloid cells were imaged for 30 s and finally the number of adherent cells was 

obtained by analyzing 5 different videos of each cremaster muscle per mouse.  

 

2.2.3 CCL2 rescue experiment 

Intravital microscopy in the carotid artery was used to study changes in the number of 

adherent cells after injecting the chemokine CCL2. Antibodies to visualize myeloid cells were 

injected via a jugular catheter as described in section “2.2.1 Macrocirculation”. The number 

of adherent myeloid cells to the carotid artery endothelium was recorded for baseline levels. 

Next, 300 ng CCL2 (Peprotech, Rocky Hill, NJ, USA) were injected via the jugular vein 

catheter and 30 min later the number of adherent myeloid cells to the carotid artery was 

recorded again.  
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2.3 Tracking intravascular leukocytes into tissues 

Trafficking of intravascular leukocytes was assessed by intravenous injection of a specific 

antibody to stain circulating leukocytes. Then, pre-labeled intravascular-derived cells were 

tracked into tissues. In order to establish the method, the antibody leakage through the 

endothelium of atherosclerotic lesions was tested to confirm that the intravenous injected 

antibodies labeled circulating but not tissue-resident leukocytes in atherosclerotic lesions. 

For that purpose, an antibody against collagen type IV alpha 1 (Novus Biologicals, Littleton, 

USA), a component of the endothelial basement membrane, was intravenously injected. The 

fenestrated endothelium in glomerular capillaries of the kidney served as a positive control 

for antibody leakage. Furthermore, the staining efficiency of the antibody, which was used to 

labeled circulating leukocytes (rat anti-CD45 antibody conjugated to APC-Cy7, clone: 30-

F11), was analyzed by flow cytometry of blood samples shortly after the intravenous 

injection. Sample preparation was performed according to the protocol “2.4.1.1 Organ 

preparation protocol”. Staining efficiency was analyzed by 

determining the percentage of pre-labeled CD45 APC-Cy7 

positive cells in the blood. 

After establishing the experimental set-up, Apoe-/- mice were 

fed with a HFD for 4 weeks and the amount of immigrated 

leukocytes into tissues was analyzed by labeling 

intravascular leukocytes two hours before harvesting at 

either ZT1 or ZT13 (Figure 9). Aorta and blood were 

analyzed by flow cytometry to determine the staining 

efficiency of circulating cells and the amount of intravascular-

derived leukocytes (see protocol “2.4.1 Flow cytometry”). 

Intravascular-derived and tissue-resident leukocytes were 

discriminated by being positive or negative for the 

intravascular injected CD45 antibody, respectively. 

Neutrophils and monocytes were stained according to the 

protocol “2.4.1.2 Staining protocol”. The heart was taken for 

staining intravascular-derived leukocytes in atherosclerotic lesions of aortic root sections. 

Processing and staining of the heart was performed in accordance to the protocol “2.7. 

Histology and Immunohistochemistry”. Visualization of infiltrated intravascular-derived 

leukocytes (pre-labeled with anti-CD45 APC-Cy7 antibody) in atherosclerotic lesions was 

performed by an additional staining with a secondary anti-rat antibody conjugated to 

Dylight550.  

 

Figure 9: Experimental layout  

Mice have been injected with an 

anti-CD45 antibody conjugated 

with APC-Cy7 to label blood 

leukocytes two hours before 

harvesting. ZT=Zeitgeber time, 

HFD=high fed diet. Apoe= 

Apolipoprotein E   
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2.4 Protein assays 

 

2.4.1 Flow cytometry 

Flow cytometry is a laser-based method to determine the 

expression of cell-surface and intracellular molecules by using 

specific fluorescent-labeled antibodies. This technique allows 

to distinguish cell types within a cell population and to analyze 

the expression of interest such as chemokines or chemokine 

receptors. During flow cytometry analysis, fluorescently labeled 

single cells of a cell suspension pass through a laser beam. 

Thereby, forward and side scattered light, as well as 

fluorescence signals are measured by several detectors 

(Figure 10). Measurements of forward scattered (FSC) light 

provide information about cell size, whereas side scattered 

(SSC) light allows discrimination by cell granularity. 

Fluorescence measurements enable to determine molecule 

expression according to the fluorescence intensity.  

The number of red blood cells and platelets were calculated by 

an automated blood cell counter (Scil ABC Vet Blood Counter). 

 

2.4.1.1 Organ preparation protocol 

Blood: Blood was taken by punctuation of the retrobulbar 

venous plexus and collected in tubes containing Ethylenediaminetetraacetic acid (EDTA) to 

avoid coagulation by chelating calcium ions. Afterwards, red blood cell lysis was performed 

using 3 ml of red blood cell lysis buffer (Table 1) per 100 µl of blood for 15 min at room 

temperature (RT). The lysis was stopped by adding 10 ml of HANKs buffer. After spinning 

down at 300 x g for 5 min, cells were suspended in antibody staining solution (see section 

2.4.1.2 Staining protocol). 

 

Bone marrow: The bone marrow for cell type analysis was extracted from the femur, which 

was stored on ice, in a petri dish containing HANKs buffer until tissue processing. To obtain 

the bone marrow both ends of the femur were cut with a scalpel before being flushed with 3 

ml of cold HANKs buffer out of a syringe (size: 5 ml and a 23G needle). Afterwards, cell 

suspension was spun down for 5 min at 300 x g and 1 ml of red blood lysis buffer was added 

for 1 min at RT. Lysis was stopped by adding 10 ml of HANKs buffer. After spinning down for 

 

Figure 10: Flow cytometry 

principle Single cells labeled 

with cell type specific markers 

are analyzed by their side 

scattered (SSC) light, forward 

scattered (FSC) light, and 

fluorescence signals.  
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5 min at 300 x g the cell pellet was suspended in 1 ml HANKs buffer. 100 µl of cell 

suspension were used for staining (see section 2.4.1.2 Staining protocol). 

For analyzing bone marrow stromal cells, cleaned and crushed tibias were washed with 1X 

HBSS supplemented with 2% BSA and 10 mM HEPES. Afterwards, fragmented bones were 

digested in DMEM+0.2% collagenase D for 1 h at 37°C. After washing twice, filtering through 

a 70 µm cell strainer (70 µm, Sysmex, Norderstedt, Germany) and red blood cell lysis, cell 

staining was performed (see section 2.4.1.2 Staining protocol). 

  

Lung: The right lung was taken, cut into small pieces and added to 300 µl of digestion 

medium supplemented with 1,25 mg/ml liberase (Roche, Rotkreuz, Switzerland). The 

digestion of lung tissues occurred at 37°C for 1 hour. Afterwards, 1 ml of HANKs buffer was 

added and the lysate was filtered through a 50 µm cell strainer (70 µm, Sysmex, Norderstedt, 

Germany). The filtered cell suspension was spun down for 10 min at 300 x g. The 

supernatant was carefully removed and the cell pellet was dissolved in 2 ml of HANKs buffer. 

100 µl of cell suspension were additionally filtered through a 35 µm cell strainer cap, washed 

with 500 µl of HANKs buffer (5 min at 300 x g) and finally suspended in antibody staining 

solution (see section 2.4.1.2 Staining protocol).  

 

Spleen: After harvesting, spleens were stored on ice, in a petri dish containing HANKs buffer 

until further tissue processing. A cell suspension was obtained by smashing 1/3 of the spleen 

through a 30 µm filter with 3 ml of HANKs buffer. Afterwards, the sample was spun down at 

300 x g for 5 min. For red blood cell lysis the cell pellet was dissolved in 1 ml of lysis buffer 

and incubated for 1 min at RT. Red blood cell lysis was stopped by adding 10 ml of HANKs 

buffer. Then, cells were spun down for 5 min at 300 x g. The cell pellet was dissolved in 1 ml 

HANKs buffer and only 50 µl of cell suspension were used for staining (see section 2.4.1.2 

Staining protocol).  

 

Aorta: Whole aorta was collected in 300 µl of digestion medium (Table 1) and cut into small 

pieces. After adding 1,25 mg/ml liberase (Roche, Rotkreuz, Switzerland) aortic tissues were 

incubated at 37°C for 1 hour to allow tissue digestion. The digestion was stopped by adding 

500 µl of HANKs buffer. Cell suspension was filtered through a 35 µm cell strainer cap and 

spun down for 5 min at 300 x g. Whole cell pellet was suspended in antibody staining 

solution (see section 2.4.1.2 Staining protocol).  
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2.4.1.2 Staining protocol 

Each cell suspension was labeled with 100 µl of antibody staining solution supplemented 

with the antibodies of interest at the indicated concentrations: 

 

cell marker antibody clone company amount/sample 

CD45 30-F11 ThermoFisher Scientific 

0.5 µg 

CCL2 eH5 ThermoFisher Scientific 

CD140b APB5 BioLegend 

CD31 MEC13.3 BioLegend 

CD45 I3/2.3 BioLegend 

Ly6C  HK1.4 BioLegend 

TER-119 APC/Cy7 BioLegend 

CD11b M1/70 BioLegend 

0.2 µg 

Gr1 RB6-8C5 BioLegend 

CD115 AFS98 BioLegend 

Ly6G 1A8 ThermoFisher Scientific 

CD11a M17/4 BioLegend 

CD62L MEL-14 ThermoFisher Scientific 

CD18 M18/2 ThermoFisher Scientific 
1 µg 

CCR5 HM-CCR2 (7A4) ThermoFisher Scientific 

CCR2 #475301 R&D Systems 
10 µl/1 million 

cells 
CXCR2 #242216 R&D Systems 

CXCR4 #247506 R&D Systems 

 

 

Cell surface staining was performed for 20 min on ice and the tubes were protected from 

light. After staining, non-bound antibodies were washed away by adding 500 µl of HANKs 

buffer and spinning down for 5 min at 300 x g. Supernatant was removed and cell pellet was 

suspended in 400 µl of HANKs buffer. Samples were kept on ice until analysis by flow 

cytometry.   

Intracellular staining was performed after cell surface staining. First, the cells were fixed with 

Fixation buffer (BioLegend, San Diego, USA) for 15 min at RT, then permeabilized by adding 

2 ml of PermWash buffer (BioLegend, San Diego, USA) and finally washed for 10 min at 300 

x g. This step was repeated two times. Finally, the sample were stained with an antibody to 

CCL2 (eH5, Thermo Fisher Scientific, Waltham, USA) in PermWash buffer for 1 hour at RT in 
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the dark. After staining, the cells were washed with PermWash buffer and resuspended in 

HANKs buffer. The sample was kept on ice until analysis by flow cytometry. 

 

Certain surface markers (CD45, CD11b, Gr1, CD115, Ly6C and Ly6G) were used to 

discriminate among myeloid cell populations; classical monocytes, non-classical monocytes, 

neutrophils and macrophages. In addition, stromal cells in bone marrow were identified by 

being positive for PDGF receptor β and negative for cell lineage markers. The following cell 

surface markers were used to differentiate the above mentioned cell types in distinct organs:  

 

 Blood/Bone marrow/Spleen Aorta/Lung 

Neutrophils CD45+,CD11b+,Gr1high,CD115- 
CD45+,non-autofluoresent cells, 

CD11b+,Gr1high, Ly6G+,SSChigh 

Classical monocytes CD45+,CD11b+,Gr1high,CD115+ 
CD45+,non-autofluoresent, 

CD11b+,Gr1high,Ly6Chigh,SSClow 

Non classical 

monocytes 
CD45+,CD11b+,Gr1low,CD115+ 

CD45+,non-autofluoresent, 

CD11b+,Gr1low, Ly6Clow,SSClow 

Macrophages CD45+,autofluoresent cells CD45+,autofluoresent cells 

Bone marrow stromal 

cells 

CD45-,TER119-,CD31-,PDGF 

receptor β+ (CD140b) 
- 

 

 

2.4.1.3 Analysis 

Flow cytometry was performed with a FACSCanto II (BD Bioscience, San Jose, CA, USA). 

CountBright™ absolute counting beads (Invitrogen, Carlsbad, CA, USA) were used to 

assess the absolute cell number in each analyzed organ. Flow cytometry data were analyzed 

with FlowJo Software (10.1 Flowjo LLC, Ashland, USA). The expression levels of non-

lineage markers are presented in geometrical mean fluorescence intensity (MFI).  

 

2.4.2 Quantification of plasma chemokines 

Screening of plasma chemokines levels was performed by using the Luminex Multiplex 

Immunoassay ProcartaPlexTM (ThermoFisher Scientific, Waltham, USA) while further single 

analysis of CCL2 (MCP-1) plasma levels was performed by using a mouse MCP-1 ELISA kit 

(Sigma-Aldrich, Hilden, Germany).  
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2.4.2.1 Plasma generation 

Blood samples were collected in EDTA tubes and spun down at 3000 x g for 15 min at 4°C to 

separate the plasma from blood cells.  Plasma samples were collected and frozen at -80°C 

until measurement.  

 

2.4.2.2 Luminex Multiplex Immunoassay ProcartaPlexTM 

ProcartaPlexTM Immunoassays (ThermoFisher Scientific, Waltham, USA) allows to detect and 

quantify multiple proteins simultaneously in a single sample by xMAP® technology. Thereby, 

proteins are labeled with fluorescent-dyed beads and analyzed according to their bead size.  

 

During processing each plasma sample was spun down at 10,000 x g for 10 min at 4 °C to 

separate plasma from lipid and platelet contaminations. First, the standard series was 

generated by preparing a 4-fold serial dilution with the “sample type-specific standard buffer” 

and the reconstituted antigen standard. Second, 50 µl of each antibody magnetic bead was 

added per well to a 96-well plate, fixed on a handheld magnetic washer, and washed with 

150 µl of wash buffer. After allowing the beads to accumulate on the bottom of each well the 

wash buffer was removed by inverting the plate. Next, 25 µl of each standard and sample 

were added into dedicated wells. The plate was sealed, removed from the handheld 

magnetic washer and incubated for 120 min at RT, rocking at 500 rpm. Afterwards, the plate 

was fixed again on the handheld magnetic washer, the solution in each well was removed by 

inverting the plate and 150 µl of wash buffer was added into each well. After allowing beads 

to accumulate on the bottom of each well for 30 sec the wash buffer was removed by 

inverting the plate. This washing step was repeated 5 times. In the next step, 25 µl of 

detection antibodies was added into each well and the plate was removed from the handheld 

magnetic washer, sealed and placed on a shaker at 500 rpm for 30 min at room temperature. 

Then, the plate was fixed on the handheld magnetic washer and each well was washed 

again as described above before adding 50 µl of Streptavidin-PE solution into each well. 

After sealing and removing it from the handheld magnetic washer, the plate was incubated at 

500 rpm for 30 min at room temperature. Afterwards, the plate was fixed again on the 

handheld magnetic washer and washed as described above. In the last step, 120 µl of 

reading buffer was added into each well. The plate was sealed, fixed on the magnetic 

handheld washer and incubated for 5 min at room temperature, rocking at 500 rpm. Finally, 

the analysis was performed with an Infinite 200 PRO plate reader (TECAN, Männedorf, 

Switzerland). 
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2.4.2.3 CCL2 (MCP-1) ELISA 

A solid-phase sandwich Enzyme-Linked Immunosorbent Assay was used to detect plasma 

CCL2 levels. During the first step the standard was reconstituted in standard diluent buffer to 

generate a stock solution at a concentration of 5000 pg/ml. This standard stock solution was 

further diluted to generate seven standards at concentrations ranging from 39 pg/ml to 2500 

pg/ml. Next, 100 µl of standard and plasma samples were added to the wells and incubated 

for 2 hours at RT to allow CCL2 to bind the antibodies on the well surface. Afterwards, non-

bound proteins were removed by washing wells six times with 1X Wash buffer. Then, 100 µl 

of mouse anti-CCL2 biotin conjugate solution was added into each well and incubated for 45 

min at RT. This solution contains biotin conjugated antibodies that recognize bound CCL2 on 

captured antibodies. Afterwards, non-bound antibodies were removed by washing wells six 

times with 1X Wash buffer. During the next step 100 µl of 1X streptavidin-HRP was added 

and incubated for 45 min at RT. This detection antibody is linked to the enzyme horseradish 

peroxidase (HRP) and binds to the biotin of the previous added antibody. Non-bound 

antibodies were removed by washing wells six times with 1X Wash buffer. In the last step 

100 µl of stabilized chromogen substrate (TMB) was added to each well and incubated for 30 

min at RT in the dark. The enzyme HRP catalyzes the conversion of TMB into a blue 

product, which turns yellow after adding 100 µl of stop solution. The absorbance was 

measured at 450 nm with an Infinite 200 PRO plate reader (TECAN, Männedorf, 

Switzerland). 

 

 

2.5 Confocal imaging 

Confocal microscopy is an optical imaging method that captures two-dimensional images at 

different depths to achieve the three-dimensional structure.  

 

2.5.1 Imaging of CCR2 and intracellular CCL2 expression 

Whole blood cells were lysed with 3 ml lysis buffer/100 µl blood. Afterwards, cells were 

suspended in cell culture medium RPMI-1460 supplemented with 0.5% bovine serum 

albumin (BSA) (ThermoFisher Scientific, Waltham, USA) and added to a Poly-L-Lysine 

coated slide (ThermoFisher Scientific, Waltham, USA) for 15 min at 37°C. Non adherent cells 

were removed by washing with RPMI-1640+0.5% BSA. Adherent cells were fixed with 4% 

paraformaldehyde for 30 min at RT and stained with an antibody to CCR2 (EPR19698, 

abcam) and to Ly6G (1A8, BD Bioscience, San Jose, CA, USA) or Ly6C (HK1.4, BioLegend, 

San Diego, USA) for monocytes or neutrophils identification. Nuclei were counterstained with 
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4',6-Diamidino-2-phenylindol (DAPI, ThermoFisher Scientific, Waltham, USA). Secondary 

staining was performed with anti-rabbit Dylight550 (ThermoFisher Scientific, Waltham, USA) 

and anti-rat Dylight488 (ThermoFisher Scientific, Waltham, USA).  

For the intracellular CCL2 staining cells were fixed with 4% paraformaldehyde and stained 

with an antibody to Ly6G (1A8, BD Bioscience, San Jose, CA, USA) or Ly6C (HK1.4, 

BioLegend, San Diego, USA). The sample was then permeabilized with 0,05% TritonX-100 

(Sigma-Aldrich, St- Louis, USA) for 10 min at RT. Afterwards, the cells were washed three 

times before adding an antibody to CCL2 (2H5, ThermoFisher Scientific, Waltham, USA) and 

DAPI (ThermoFisher Scientific, Waltham, USA). Secondary staining was performed with anti-

rat Dylight488 (ThermoFisher Scientific, Waltham, USA) and anti-armenian hamster Cy3 

(Jackson ImmunoResearch, Cambridgeshire, UK). The samples were imaged with a Leica 

TCS SP8 3X microscope in confocal mode. Image acquisition and processing was performed 

using LasX software (Leica, Wetzlar, Germany). 

 

 

2.6 Static adhesion assay 

Static adhesion assays aim to quantify adhesion of cells to an immobilized substrate under 

static conditions. In our experiment setup, isolated murine blood cells were either suspended 

in static adhesion buffer or plasma obtained from different mouse strains. Isolated blood cells 

suspended in static adhesion buffer were added to a well coated with immobilized murine 

proteins while isolated blood cells suspended in plasma were added to wells coated with a 

murine endothelial cell monolayer. 

 

2.6.1 Murine endothelial SVECs 

Murine endothelial cells SVEC4-10 (#CRL-2181, ATCC) were cultured in Dulbecco's 

modified Eagle's medium (DMEM) supplemented with 10% FCS in a 75 cm2 Cellstar® flask 

with a specific surface-treatment to improve cell adhesion (Greiner bio-one, Kremsmünster, 

Austria). The cells were kept at 37°C with a concentration of 5 % CO2 and they were split 

every three days with a subculture ratio of 1:8. To cover wells with a murine endothelial cell 

layer, SVEC4-10 cells were detached from the flask by adding 0,05% of Trypsin-EDTA. 

Trypsin is a serine protease that hydrolyzes surface adhesion molecules while EDTA 

removes calcium that is necessary for cell adhesion. One day before the experiment, wells of 

a 96 well plate were coated with 40 µg/ml collagen (Merck, Darmstadt, Germany) for 30 min 

at 37°C. Afterwards, 40.000 SVECs were seeded into each well and incubated overnight at 

37°C with a concentration of 5 % CO2. 
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2.6.2 Protein coating of wells 

The wells of a 96 well plate were coated with immobilized proteins by adding 2 µg/ml of 

murine VCAM1, ICAM1, E-selectin, and P-selectin (R&D Systems, Minneapolis, USA) in 50 

µl of PBS supplemented with 1 mM calcium and 1 mM magnesium into each well. To allow 

coating of the well surface, plates were incubated for 2 hours at 37°C with a concentration of 

5 % CO2. Afterwards non-specific binding sites were blocked by adding 50 µl of PBS 

supplemented with 5% BSA. Coated plates were kept at 4°C overnight before performing the 

static adhesion assay.   

 

2.6.3 Cell adhesion and analysis 

Whole blood cells were isolated from hypercholesterolemic Apoe-/- mice or 

hypercholesterolemic Lyz2CreBmalflox/floxApoe-/- mice. Blood cell lysis was performed by using 

3 ml of red blood cell lysis buffer per 100 µl of blood for 15 min at RT. Cells were washed 

with HBSS and spun down at 300 x g for 5 min. Afterwards cells were either suspended in 

static adhesion buffer, plasma or plasma supplemented with the CCR2 antagonist 

(RS102895, 100 ng/ml) before being added to the wells. Cells were allowed to adhere for 15 

min at 37°C. Non-adherent cells were carefully removed by washing the wells with PBS three 

times. After each washing step PBS was carefully removed by turning the plate and slowly 

blotting it on several paper towels. Thereafter, adherent cells were fixed with 4% 

paraformaldehyde (PFA). To visualize adherent monocytes and neutrophils, cells were 

stained with directly conjugated anti-Ly6G (1A8, BioLegend, San Diego, USA) and anti-Ly6C 

(HK1.4, BioLegend, San Diego, USA) for 15 min at room temperature. To quantify number of 

adherent cells images of each well were acquired with an Olympus IX81 inverted microscope 

with a 10x/0.3 objective. Number of adherent cells was counted in 5 pictures per well using 

ImageJ software.  

 

 

2.7 Histology and Immunohistochemistry 

Histology is used to study microstructure of tissue whereas immunohistochemistry is an 

antibody-based method for imaging proteins of interest in tissue sections.  

 

2.7.1 Tissue preparation:  

Mice were euthanatized and their circulation was flushed with PBS to remove blood cells. 

Hearts and kidneys were dissected and prepared by fixation with 4 % PFA for 24 hours and 

subsequently, samples were incubated in 30 % sucrose for 24 hours at 4°C. Afterwards, 
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hearts and kidneys were embedded in Tissue-Tek® O.C.T. Compound (A.Hartenstein, 

Würzburg, Germany) snap frozen and stored at -20°C until further processing. Sections of 

the aortic root were generated with a thickness of 4 µm with a cryostat (Leica, Wetzlar, 

Germany) and three sections from each mouse were analyzed. 

 

2.7.2 Histology: 

Lesion size was assessed in aortic root cross-sections by staining for lipid deposition with oil 

red O (Sigma-Aldrich, St. Louis, USA) and hematoxylin and eosin (H&E) staining.  

H&E staining is used to visualize tissue types and morphological changes. Hematoxylin 

binds to basophilic substances, such as DNA, while Eosin stains acidophilic substances, 

such as positively charged amino acids of proteins. At the beginning of the staining 

procedure, the sections were washed by dipping them three times into aqua destillata. Then, 

sections were stained in a hematoxylin solution (Merck, Darmstadt, Germany) for 5 min. 

Afterwards, sections were washed in tap water for 5 min and stained with eosin (Carl Roth, 

Karlsruhe, Germany) for additonal 5 min. The sections were again washed in tap water for 5 

min. Dehydration of the sections was performed by dipping or incubating the sections in 

distinct solutions according to the following protocol: 

 

Solution Procedure 

EtOH 50% dip 3x 

EtOH 70% dip 3x 

EtOH 96% dip 5x 

EtOH 100% dip 10x 

EtOH 100% dip 10x 

Xylene 1 2 min 

Xylene 2 2 min 

 

Finally, sections were mounted with in Roti Histokitt II medium (Carl Roth, Karlsruhe, 

Germany) and stored at RT before imaging.  

Oil red O is a fat-soluble dye, which stains neutral triglycerides and lipids in frozen sections. 

First, sections were washed in PBS for 5 min and dipped 10 times in 60% 2-propranol. The 

staining was performed in the oil red O staining solution (see Table 1) for 15 min at RT. 

Afterwards, sections were washed again by dipping the sections 10 times in 60% 2-
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propranol, incubating them in tap water for 5 min and aqua destillata for 30 sec. Nuclei were 

counterstained by incubating the sections in the hematoxylin solution for 30 sec. After a final 

washing step for 5 min in tap water, the sections were mounted in Shandon-MountTM medium 

(ThermoFisher Scientific, Waltham, USA).  

All images were taken with a Leica DM4000 microscope (Leica Microsystems, Wetzlar, 

Germany) followed by computerized image analysis and quantification (Leica Qwin Imaging 

software, Wetzlar, Germany). 

 

2.7.3 Immunohistochemistry: 

Antigen retrieval was performed for every fixed tissue section. The sections were washed in 

PBS. Afterwards, the antigen retrieval solution (see Table 1) was warmed up in a microwave 

at maximum power. As soon as the antigen retrieval solution cooled down, the sections were 

placed into the solution and warmed up at 90 Watt for 10 min. Then, the sections were 

washed in PBS for 5 min at RT. Before performing specific stainings, unspecific binding sides 

were blocked with the blocking solution (see Table 1) for 30 min at RT. Specific antibody 

staining solutions with the following antibody concentrations were added afterwards. The 

content of macrophages in atherosclerosic lesions was analyzed by staining aortic root 

sections with 2,5 µg/ml anti-Mac2 (CL8942AP, Cedarlane, Burlington, USA). Adhesion 

molecules on endothelial cells were stained with antibodies to VCAM1 (429, BD Bioscience, 

San Jose, CA, USA), ICAM1 (3E2, BD Bioscience, San Jose, CA, USA), P-Selectin 

(RB40.34, BD Bioscience, San Jose, CA, USA) or E-Selectin (10E9.6, BD Bioscience, San 

Jose, CA, USA) at a concentration of 10 µg/ml. Expression of CCL2 on endothelial cells was 

measured by staining with an antibody to CCL2 (eH5, ThermoFisher Scientific, Waltham, 

USA) and endothelial cells were counterstained with an antibody to CD31-Alexa Fluor647 

(MEC13.3, BioLegend, San Diego, USA) at a concentration of 5 µg/ml of each antibody. 

Expression of CCL2 in lesional macrophages of aortic root cross-sections was obtained by 

staining with an antibody to CCL2 (eH5, ThermoFisher Scientific, Waltham, USA) at a 

concentration of 5 µg/ml and an antibody to Mac2 (M3/38, Cedarlane, Burlington, USA) at a 

concentration of 2,5 µg/ml. Secondary antibody staining was performed with a donkey anti-

Rat IgG-Dylight488 (1 µg/ml, ThermoFisher Scientific, Waltham, USA) and an anti-armenian 

hamster IgG-CyTM3 antibody (1 µg/ml, Jackson ImmunoResearch, Cambridgeshire, UK). To 

visualize CD45 pre-labeled leukocytes the sections were stained with donkey anti-rat IgG-

Dylight550 (1 µg/ml, ThermoFisher Scientific, Waltham, USA). Nuclei were counterstained 

with 4',6-Diamidino-2-phenylindol (DAPI, ThermoFisher Scientific, Waltham, USA). A Leica 

DM4000 microscope with a 20x objective (Leica Microsystems, Wetzlar, Germany) and a 
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Leica DFC 365FX camera were used to capture images. Leica Qwin Imaging software 

(Leica, Wetzlar, Germany) was employed for image analysis.  

 

2.8 Plasma cholesterol and triglyceride measurement 

Blood samples were collected in EDTA tubes to avoid coagulation. Plasma separation was 

obtained by spinning it down at 3000 x g for 15 min at 4°C. Afterwards, plasma samples were 

collected and frozen at -80°C until measurement.  

Plasma cholesterol and triglyceride levels were quantified in murine plasma by an enzymatic 

reaction that uses these compounds as a substrate and generates H2O2. The byproduct H2O2 

is then used in a reaction catalyzed by the peroxidase, leading to a product whose 

absorbance can be measured at 500 nm to determine indirectly the concentration of 

cholesterol and triglycerides. 

 

Total cholesterol was measured according to the following reaction sequence:  

 

 

 

Triglyceride levels were quantified according to the following reaction:  

 

 

 

First, plasma samples were thawed on ice. A standard solution series was generated for 

cholesterol (0,05 µg/µl - 1,56 µg/µl) and triglycerides (0,04 µg/µl – 1,35 µg/µl) and added to a 

96 well plate. Plasma samples for cholesterol measurements were diluted 1:5 while plasma 

samples for triglyceride measurements were used undiluted and 5 µl of each sample or 

standard were added to the plate. Finally, 200 µl of the reaction solution including all 

substrates necessary for the enzymatic reaction to analyze cholesterol and triglyceride levels 
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were added to each well. The plate was incubated for 30 min in the dark at RT before 

measuring the absorbance at 505-510 nm with a Thermo Scientific Multiskan Ex plate reader 

(ThermoFisher Scientific, Waltham, USA). 

 

2.9 mRNA expression analysis 

2.9.1 Isolation of primary cells 

Blood was collected into EDTA tubes and red lysis was performed by adding 3 ml red lysis 

buffer to 100 µl of blood. After 15 min of lysis at RT cells were washed by adding HANKs 

buffer. Afterwards, neutrophils were isolated with the Neutrophil Isolation Kit (Miltenyi Biotec, 

Bergisch Gladbach, Germany) and monocytes were isolated with the CD115 MicroBead Kit 

(Miltenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturer’s instructions. 

Purity of the resulting neutrophils and monocytes was verified by flow cytometry analysis. 

Cell pellets were stored at -80°C until further RNA extraction (see section 2.9.2 RNA 

isolation). 

 

2.9.2 RNA isolation 

RNA was extracted using the Quick-RNATM MicroPrep kit (Zymo Research, Irvine, USA) 

according to the manufacturer’s protocol. RNA concentration was determined using a 

NanoDrop 2000 (Thermo Fisher Scientific, Waltham, USA). Samples were stored at -80°C 

until further processing.  

 

2.9.3 cDNA synthesis 

cDNA synthesis was carried out with the QuantiNovaTM Reverse Transcription Kit (Qiagen, 

Hilden, Germany) in accordance with manufacturer’s instructions. 

 

2.9.4 Quantitative real-time PCR 

Quantitative real-time PCR was performed using the QuantiNovaTM SYBR® Green PCR kit 

(Qiagen, Hilden, Germany) on a 7900HT Fast Real-Timer PCR System according to the 

manufacturer’s protocol. The following primers have been used: Mm_Vcam1_1_SG, 

Mm_Icam1_1_SG, Mm_Selp_1_SG, Mm_Sele_1_SG, Mm_Ccl2_1_SG, and 

Mm_Rn18s_3_SG (Qiagen, Hilden, Germany). For quantifying the myeloid specific Bmal1-

knockout the following designed primers were used: Fw_5’-AGA GGT GCC ACC AAC CCA 

TA-3’ and Rv_5’TGA GAA TTA GGT GTT TCA GTT CGT CAT-3’ (Metabion, Planegg, 

Germany). 18S served as a house-keeping gene in all performed mRNA expression 

analyses. Relative quantification was performed by using the ΔΔCT method which compares 
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two different experimental RNA samples and normalizes them to a housekeeping gene with 

the following formula: 

Fold change= 2-∆∆CT = [(CT gene of interest – CT internal control) sample A – (CT gene of 

interest – CT internal control) samples B)]  

 

2.10 Masspectometry 

C57Bl/6J mice (Janvier labs, Le Genest Saint Isle, France) were injected i.p. with a single 

dose of 5 mg/kg CCR2 antagonist (RS102895, Sigma) at ZT1 or ZT13. Plasma was taken 

after indicated time points and stored at -80°C until pharmacokinetic analysis. Mass 

spectrometry analysis was performed by Hessel Poelman from the research group of Dr. 

Gerry A.F. Nicolaes (Department of Biochemistry; Maastricht University) according to an 

already published protocol by Mitchell et. al. 2013. A concentration step and adaptation to 

the specific LC-MS setup were added this protocol. A calibration curve ranging from 1 to 500 

ng/ml was generated by adding RS102895 into blank samples. Additionally, all samples were 

spiked with an internal standard (RS504393) to a final concentration of 200 ng/ml and 

0.003% DMSO. A volume of 200 μl cold acetonitrile supplemented with 0.1% formic acid was 

added to 100 µl of each sample to precipitate proteins. Afterwards samples were spun down 

and 200 µl of supernatant was taken for concentration using SpeedVacTM (Savant SC110, 

drying rate on low for 2 h). The concentrated solution was spun down again and 50 μl of the 

supernatant were taken for UPLC-MS measurement, performed using the Waters™ 

(Milford,MA,USA) XEVOG2QToF system. During this measurement, chromatography was 

performed with the Acquity UPLC Peptide BEH C18 column 130 Å, 1.7 μm, 2.1mm × 50mm 

with guard filter. The settings for flow rate were 0.25 ml min−1 and the volume for sample 

injection contained 10 μl. Buffer A (0.1% formic acid) and buffer B (10% water and 0.1% 

formic acid in acetonitrile) were used for the mobile phase. Buffer B was increased linearly 

from 10% at 1.5 min to 67% at 11 min. The following settings were used for mass 

spectrometry operating in ESI+TOF MS/MS mode with a range from 350 kDa to 450 kDa: 

capillary voltage 2.5kV, sampling cone 30V, extraction cone 4.0V, source temperature 

120°C, desolvation temperature 450°C, cone gase 20lh−1, desolvation gas 800lh−1, collision 

energy off. Acquisition settings were set follows: Polarity Positive, Analyser mode Sensitivity, 

Dynamic range Normal, Target enhancement 391 Da up until 7 min and 419 Da after, 

corresponding to the elution times and respective masses of analyte and internal standard. 

Peak areas were integrated using Waters Quanlyx software (V4.1 SCN802).  

 

 

https://www.bing.com/local?lid=YN2000x5614276042243072744&id=YN2000x5614276042243072744&q=Janvier+Labs+CERJ&name=Janvier+Labs+CERJ&cp=48.0996398925781%7e-0.88467001914978&ppois=48.0996398925781_-0.88467001914978_Janvier+Labs+CERJ&FORM=SNAPST
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2.11 Statistics 

Statistical analysis was performed with GraphPad Prism 7 (GraphPad Software Inc.).  

All data are expressed as mean ± SEM and statistical parameters including exact value of n, 

definition of center, statistical analysis and significance are reported in the figure legends. 

Significance was judged with a p<0.05. Normality was tested for each data set by 

D’Agostino-Pearson omnibus test. Afterwards, Mann-Whitney test, unpaired t test or paired t 

test were used to compare two samples. For multiple group comparisons, one-way ANOVA 

analysis was performed followed by Tukey´s multiple comparison tests. Cosinor analyses 

were performed by using the Matlab 9.4 software.  
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3. Results 
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The impact of the circadian clock on myeloid cell recruitment during atherosclerosis was 

investigated in the well established Apoe-/- mouse model. ApoE is present on the surface of 

most lipoproteins. It functions as a ligand for lipoprotein receptors, thus mediating the uptake 

of chylomicrons, very low-density lipoprotein (VLDL), and their remnants by hepatic LDL-

receptors. Due to the Apoe knockout, these mice develop a hyper- and dyslipoproteinemia, 

severe hypercholesterolemia, and atherosclerotic lesions (Zhang et al. 1992). Furthermore, 

ApoE is found on the cell surface of hematopoietic stem and multipotential progenitor cells 

(HSPCs), where it regulates cholesterol efflux pathways (Murphy et al. 2011). HSPCs lacking 

ApoE accumulate cholesterol intracellularly, thus increasing HSPC proliferation, neutrophilia, 

monocytosis, and the development of atherosclerosis (Murphy et al. 2011).  

Upon high fat diet feeding, the process of atherosclerotic lesion development is accelerated 

in Apoe-/- mouse. In our study, leukocyte recruitment to early atherosclerotic lesions was 

investigated in Apoe-/- mice that were fed with a high fat diet for 4 weeks. 

Studies on circadian or diurnal rhythmicity use a specific time system called the Zeitgeber 

time (ZT) to define the time of day. The Zeitgeber time relates to one of the most important 

Zeitgebers, namely the light. Zeitgeber time point 0 describes the time point when the light is 

turned on, while Zeitgeber time point 12 describes the time point when the light is turned off. 

According to the 12-hour light/ 12-hour dark cycle in our animal facility, the Zeitgeber time is 

defined as presented by the following graph:  

 

 

 

In contrast, the circadian time (CT) is not defined by the Zeitgeber light and represents an 

estimation of the subjective time under constant darkness. Thus, CT0 defines the beginning 

of a subjective day and CT12 describes the beginning of a subjective night.  

 

 

 



 
58 

 
 

3.1 Myeloid cell recruitment to atherosclerotic lesions oscillates in a 

time-dependent manner 

In the first experiments, we investigated whether arterial myeloid cell recruitment exhibits 

diurnal rhythmicity during atherogenesis.  

 

3.1.1 Rhythmic myeloid cell adhesion to atherosclerotic prone regions 

During atherogenesis leukocytes are released from the bone marrow or spleen into the 

circulation and transmigrate into atheroprone regions of the carotid artery. In steady state 

and acute inflammation myeloid cell trafficking exhibits rhythmicity (Scheiermann et al. 2012; 

Nguyen et al. 2013). To investigate whether myeloid cell recruitment during atherosclerosis 

appears time-dependent, oscillations in myeloid cell numbers were assessed by flow 

cytometry in 4 hours-intervals in distinct organs of hypercholesterolemic male 

Cx3cr1gfp/WTApoe-/- mice. We observed that numbers of neutrophils and classical monocytes 

in spleen and bone marrow were at their lowest at ZT17 (Figure 11 A). In contrast, circulating 

neutrophils and classical monocytes peaked between ZT17 and ZT1 with lowest counts at 

ZT13 (Figure 11 B). Further experiments aimed to identify rhythmicity in the number of 

adherent myeloid cells to atherosclerotic prone regions. Thus, intravital microscopy was 

performed on the carotid artery bifurcation in hypercholesterolemic male Cx3cr1gfp/WTApoe-/- 

mice. Rhythmic myeloid cell adhesion to the arterial endothelium peaked between ZT17 and 

ZT1 and was at their lowest at ZT13 (Figure 11 C). In agreement with oscillatory arterial 

leukocyte adhesion, aortic myeloid cell numbers analyzed by flow cytometry peaked at ZT1 

and exhibited a trough at ZT13 (Figure 11 D), while cell counts of aortic macrophages 

remained unchanged (Figure 11 H). Furthermore, no rhythmicity was observed for other 

parameters including platelets, red blood cells, and plasma lipids (Figure 11 E-G). 

In summary, numbers of myeloid cells fluctuated in distinct organs under 

hypercholesterolemia. Furthermore, myeloid cell adhesion to atherosclerotic prone regions in 

the carotid artery exhibited diurnal rhythmicity. Due to the significant difference of myeloid 

cell adhesion between ZT1 and ZT13, we focused only on these two time points in further 

experiments. 
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Figure 11: Rhythmic myeloid cell adhesion to atherosclerotic prone regions 

(A-D) Numbers of myeloid cells in bone marrow and spleen (A), in blood (B), adherent to the carotid 

artery bifurcation (C) and in aorta (D) were assessed in male hypercholesterolemic Cx3cr1
gfp/WT

Apoe
-/-

 

mice at indicated time points. Representative images illustrate quantification of adherent neutrophils 

(Ly6G
+
) or monocytes (gfp

+
). Scale bar, 100 µm. n=9-18 per time point. Statistical analyses were 

made by one-way ANOVA. **p<0.001 vs ZT1, ***p<0.0001 vs ZT1. Exact p values in D were 

calculated by unpaired t-test between indicated groups. Circadian rhythmicity was confirmed in B and 

C by cosinor analysis with zero-amplitude test.  (E-H) Numbers of platelets (E), red blood cells (B), 

plasma lipid levels (G), and aortic macrophages (H) were determined at indicated time points in 

hypercholesterolemic Cx3cr1
gfp/wt

Apoe
-/-

 mice. n=6-11. Data were analyzed by Kruskal Wallis test. All 

data are presented as mean±SEM. 
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3.1.2 Time-dependent myeloid cell entry into atherosclerotic lesions 

Our previous results identified elevated myeloid cell adhesion in the carotid artery at ZT1. In 

addition, higher numbers of myeloid cells were observed in whole aortic tissue at ZT1. 

However, these results do not reveal whether myeloid cells enter atherosclerotic lesions in a 

time-dependent manner. To investigate time-dependent myeloid cell transmigration into 

atherosclerotic lesions, a short-term cell tracking experiment was performed in 

hypercholesterolemic Apoe-/- mice. Intravascular leukocytes were labeled by intravenous 

administration of a CD45 antibody two hours before harvesting to enable discrimination of 

vascular derived leukocytes in atherosclerotic lesions. First, the staining efficacy was tested 

two hours after intravenous injection. More than 95 % of neutrophils and classical monocytes 

were CD45 positive (Figure 12 A). Second, the specificity of CD45 labeling was investigated 

by testing the leakage of the antibody through the continuous endothelium of atherosclerotic 

lesions. Therefore, an antibody to collagen type IV was intravenously injected. Collagen type 

IV is a component of the basement membrane located underneath endothelial cells, thus 

providing an optimal target for testing antibody leakage. Fenestrated endothelium of the 

kidney is permeable and served as a positive control. Indeed, no staining of collagen type IV 

was observed in the basement membrane of atherosclerotic lesions (Figure 12 B, upper left 

panel). In contrast, the antibody leaked through the fenestrated endothelium of blood vessels 

in the kidney, hence being positive for collagen type IV (Figure 12 B, upper right panel). 

Direct collagen type IV staining confirmed the antibody performance and presence of 

collagen type IV in the basement membrane of atherosclerotic lesions (Figure 12 B, lower 

panels). 
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Figure 12: Short-term cell tracking with high efficacy and specificity 

Two hours before harvesting, an anti CD45-APC/Cy7 antibody and an anti-collagen type IV antibody 

were administered intravenously. (A) Labeling efficacy was determined by flow cytometry analysis. (B) 

No basement membrane staining was detected for the subendothelial matrix in arteries (top left), 

positive basement membrane staining occurred in fenestrated endothelium of the kidney (top right). 

Direct staining of aortic root (bottom left) and kidney (bottom right) cross sections served as positive 

control. Scale bar, 100 µm. 

 

 

 

 

Finally, this experiment setup was used to track intravascular derived leukocytes into 

atherosclerotic lesions of hypercholesterolemic Apoe-/- mice at ZT1 and ZT13. The CD45 

antibody was administered two hours before harvesting. Similar staining efficacies assessed 

by flow cytometry were obtained at ZT1 and ZT13 (Figure 13 A and B). Analysis of 

intravascular derived leukocytes in whole aortic tissue from hypercholesterolemic  Apoe-/- 

mice revealed a higher number of CD45 positive classical monocytes and neutrophils at ZT1 

compared to ZT13 (Figure 13 C and D). To investigate the number of transmigrated 

leukocytes we analyzed the number of CD45 positive cells in atherosclerotic lesions by 

immunofluorescence. Indeed, a higher number of intravascular derived leukocytes was 

observed at ZT1 (Figure 13 E). In conclusion, myeloid cell adherence and entry into 

atherosclerotic lesions peaked at ZT1.  
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Figure 13: Time-dependent myeloid cell recruitment into atherosclerotic lesions                                   

(A-E) Myeloid cell transmigration into atherosclerotic lesions in hypercholesterolemic Apoe
-/- 

mice at 

ZT1 and ZT13. (A) Representative images of the staining efficacy at ZT1 and ZT13. (B) Percentage of 

circulating CD45 positive cells at indicated time points. Representative images (C) and quantification 

of aortic CD45 positive myeloid cells (D) at indicative time points analyzed by flow cytometry. (E) 

Number of intravascular derived CD45 positive cells (red) counterstained with DAPI (blue) in 

atherosclerotic lesions analyzed per section. Scale bar, 50 µm. Data were quantified by unpaired t-

test. n=14-15 in D and 9-10 in E,B. All data are presented as mean±SEM. CM, classical monocytes; 

ZT, Zeitgeber time. 
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3.1.3 Arterial myeloid cell adhesion remained time-dependent under different 

conditions  

In the following experiments we investigated whether rhythmic myeloid cell adhesion to the 

carotid artery occurred even under different conditions. Therefore, we investigated the 

number of adherent cells by intravital microscopy in distinct mouse models. First, the 

influence of gender was assessed by analyzing the number of adherent cells in 

hypercholesterolemic female Cx3cr1gfp/WTApoe-/- mice at ZT1 and ZT13. Time-dependent 

myeloid cell adhesion was maintained with a peak at ZT1, thus indicating that these diurnal 

differences occur independent of gender (Figure 14 A). Second, time-dependent myeloid cell 

recruitment was investigated in another mouse model of atherosclerosis, namely 

hypercholesterolemic Ldlr-/- mice. The LDL receptor plays a major role in the clearance of 

ApoB and ApoE containing lipoproteins. LDL receptor deficiency triggers 

hypercholesterolemia and atherosclerotic lesion development (Ishibashi et al. 1993). Similar 

results with a peak in the number of adherent myeloid cells at ZT1 were found in female and 

male hypercholesterolemic Ldlr-/- mice (Figure 14 B/C). Hence, these results indicate a robust 

rhythmic myeloid cell recruitment phenotype under hypercholesterolemia. In addition, 

circadian rhythms oscillate independent of Zeitgebers, thus the endogenous circadian origin 

was confirmed in different mouse models by keeping the mice in constant darkness (D:D) for 

two weeks prior harvesting. Indeed, hypercholesterolemic male Cx3cr1gfp/WTApoe-/- mice and 

Ldlr-/- mice of both genders still exhibited time-dependent myeloid cell adhesion under D:D 

conditions (Figure 14 D-F). These results conclude a time-dependent arterial myeloid cell 

recruitment phenotype of bona fide endogenous circadian nature.  
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Figure 14: Robust time-dependent arterial myeloid cell adhesion in distinct conditions 

Myeloid cell adhesion was studied in female Cx3cr1
gfp/WT

Apoe
-/-

 (A,D) and male (B,E) or female (C,F) 

Ldlr
-/-

 mice by intravital microscopy at ZT1 and ZT13. (A-C) Mice were fed with a high fat diet for 4 

weeks and kept in L:D conditions. (D-F) Mice were fed with a high fat diet for 4 weeks and kept in D:D 

conditions during the last 2 weeks prior harvesting. Data were analyzed by Mann-Whitney test (A-C 

and E/F) or Student’s t-test (D). n=7-9 in (A), n=5 in (B, E, F), n=4 in (C), n=10 in (D). All data are 

presented as mean±SEM. L:D, light:dark conditions; D:D, dark:dark conditions; ZT, Zeitgeber time; 

CT, circadian time. 

 

 

 

3.2 Leukocytic expression of adhesion molecules, chemokine 

receptors, and CCL2 plasma levels exhibit time-dependent 

differences 

Circadian myeloid cell recruitment can be triggered by oscillations in distinct components of 

the recruitment cascade such as adhesion molecules, chemokines, and chemokine 

receptors. Furthermore, regulatory mechanisms of the circadian clock such as hormones 

released from the adrenal gland or the core clock proteins itself might play an important role 

during circadian myeloid cell recruitment. The following paragraph focuses on identifying the 

regulatory mechanism that triggers fluctuations in arterial myeloid cell recruitment.  
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3.2.1 Glucocorticoid or adrenergic receptor signaling does not affect time-

dependent myeloid cell recruitment 

Rhythms in peripheral clocks are known to be regulated by glucocorticoids or 

catecholamines, which are released from the adrenal gland into circulation. Glucocorticoids 

regulate gene transcription by binding to intracellular located glucocorticoid receptors. Upon 

binding of glucocorticoids, glucocorticoid receptors translocate into the nucleus to function as 

transcription factors. Catecholamines, such as noradrenaline and adrenaline, bind to 

adrenergic receptors expressed on the cell surface of different cell types to activate an 

intracellular signaling cascade.  

We tested whether glucocorticoids or catecholamines regulate rhythmic myeloid cell 

recruitment by blocking their signaling. Hypercholesterolemic Cx3cr1gfp/WTApoe-/- mice were 

administered with the glucocorticoid receptor antagonist mifepristone or a cocktail of 

antagonists blocking α/β adrenergic receptor signaling before performing intravital 

microscopy at the carotid artery. Inhibition of α/β adrenergic receptor signaling resulted in a 

reduced number of adherent neutrophils at ZT1 and ZT13, however, time-dependent 

neutrophil adhesion was maintained (Figure 15 A). No effect of both treatments was 

observed on monocytes adherence to the carotid artery at ZT1 and ZT13 (Figure 15 B). In 

summary, these results conclude that glucocorticoid or catecholamine signaling has no 

impact on the time-dependent differences in arterial myeloid cell adhesion.  

 

                                  

Figure 15: Glucocorticoid and α/β adrenergic receptor signaling does not regulate time-

dependent myeloid cell adhesion 

(A/B)  Glucocorticoid signaling was blocked by the administration of RU-485 (mifepristone), while 

inhibition of α/β adrenergic receptor signaling was achieved with a cocktail containing a β3-adrenergic 
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receptor antagonist, a β1/2-adrenergic receptor antagonist propranolol, and α-adrenergic receptor 

antagonist phentolamine. Data were analyzed by Mann-Whitney test. n=3 (+ RU-486), n=4 (+ vehicle) 

and n=6 (+ adr.rec.ant.). All data are presented as mean±SEM. adr.rec.ant., α-adrenergic receptor 

antagonists; ZT, Zeitgeber time. 

 

3.2.2 Arterial endothelial cell adhesion molecules do not exhibit time-

dependent differences 

Adhesion molecules expressed on endothelial cells regulate leukocyte recruitment to 

atherosclerotic lesions. Rhythmicity in their expression has previously been reported under 

steady state (Scheiermann et al. 2012; Gao et al. 2014). To investigate whether time-

dependent arterial myeloid cell recruitment is regulated by distinct expression of endothelial 

cell adhesion molecules at ZT1 and ZT13, we analyzed the expression of VCAM-1, ICAM-1, 

P-selectin, and E-selectin on endothelial cells of atherosclerotic lesions in 

hypercholesterolemic Apoe-/- mice. These adhesion molecules did not exhibit rhythmic 

expression on a protein or mRNA level (Figure 16 A-C).       

       

             

 

Figure 16: Expression of arterial endothelial cell adhesion molecules does not exhibit time-

dependent differences 

(A) Representative images of endothelial adhesion molecules vascular cell adhesion molecule-1 

(VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), P-selectin, and E-selectin expressed on 

lesional endothelium at indicated ZT. Scale bar, 50 µm. (B) Analysis of the expression on endothelial 

cells of atherosclerotic lesions. n=9-15. Unpaired t-test.  (C) mRNA expression analysis of endothelial 

adhesion molecules Vcam1, Icam1, Selp and Sele in isolated aortic tissue from hypercholesterolemic 

Apoe
-/-

 mice. Results were calculated as fold change of ZT1 over ZT13. n=4-11 per analyzed gene. All 

data are presented as mean±SEM. ZT, Zeitgeber time. 
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3.2.3 Time-dependent expression of adhesion molecules and chemokine 

receptors on leukocytes 

Next to adhesion molecules expressed on endothelial cells, the leukocyte itself expresses 

distinct adhesion molecules and chemokine receptors, thus triggering cell adhesion. To 

investigate whether adhesion molecules and chemokine receptors expressed on circulating 

classical monocytes and neutrophils exhibit time-dependent differences, their expression 

was assessed by flow cytometry in hypercholesterolemic Apoe-/- mice at ZT1 and ZT13.  

Both integrin heterodimers, Mac-1 (CD11b/CD18) and LFA-1 (CD11a/CD18) expressed on 

leukocytes contribute to cell adhesion on the endothelium (Sumagin et al. 2010). The 

expression of integrin CD11b (Integrin α-M) on classical monocytes was reduced at ZT13, 

while its expression on neutrophils remained unchanged (Figure 17 A). In contrast, 

neutrophils expressed a lower amount of CD11a (Integrin α-L) at ZT13, but its expression on 

classical monocytes did not change (Figure 17 B). Less expression of CD18 (Integrin β-2) 

was observed on neutrophils and classical monocytes at ZT13 (Figure 17 C). Additionally, 

selectins facilitate leukocyte recruitment and indeed less L-selectin was detected on classical 

monocytes at ZT1 (Figure 17 D). 

Furthermore, the expression of distinct chemokine receptors involved in leukocyte 

recruitment was analyzed on circulating classical monocytes and neutrophils at ZT1 and 

ZT13. No time-dependent differences were observed for the expression of CXCR2 or CCR5 

(Figure 17 E/F). Interestingly, CCR2 expression was increased on neutrophils and classical 

monocytes at ZT1 (Figure 17 G). Confocal images of monocytes and neutrophils obtained at 

ZT1 or ZT13 and stained for CCR2 represent a higher expression of CCR2 at ZT1 (Figure 17 

H). 

In summary, slightly increased expression of distinct integrins on either classical monocytes 

or neutrophils was observed at ZT1. Less CCR2 expression on both cell types at ZT13 might 

in combination with oscillatory integrin expression regulate rhythmic myeloid cell recruitment.  

 

 

 

 

 

 



 
68 

 
 

                    

Figure 17: Expression of adhesion molecules on leukocytes exhibit time-dependent differences 

(A-D) Expression of CD11b (A), CD11a (B), CD18 (C), and CD62L (D) on circulating neutrophils and 

classical monocytes at indicated time points. n>15. Unpaired t-test. (E-G) Expression of CXCR2 (E), 

CCR5 (F), and CCR2 (G) on intravascular myeloid cells. n>15. Unpaired t-test. (H) Representative 

images of classical monocytes and neutrophils from blood stained for CCR2 (red), DAPI (blue) and 

Ly6G/Ly6C (green) at ZT1 and ZT13. All data are presented as mean±SEM. ZT, Zeitgeber time; FMO, 

fluorescence minus one; CM, classical monocytes; MFI, mean fluorescence intensity. ZT, Zeitgeber 

time. 
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3.2.4 Plasma levels of cytokines 

Chemokines and proinflammatory cytokines trigger leukocyte recruitment to sites of 

inflammation. We investigated whether cytokine levels exhibit time-dependent differences by 

measuring their protein levels in plasma of hypercholesterolemic Apoe-/- mice at ZT1 and 

ZT13. No differnces in protein levels were observed for CCL5, GM-CSF, TNFα, and IL10 

(Figure 18 A-C). A slightly trend of increase of plasma levels of CXCL1, G-CSF, and IL6 was 

observed at ZT1 (Figure 18 A-C), however, these differences did not reach statistical 

significance. Interestingly, CCL2 plasma levels were elevated at ZT1 compared to ZT13 

(Figure 18 A). Hence, enhanced CCL2 plasma levels might play a role during time-

dependent myeloid cell recruitment. 

 

 

 

 

 

 

Figure 18: Plasma CCL2 level exhibit diurnal differences 

(A-C) Protein levels of the chemokines CXCL1, CCL5, and CCL2 (A), the growth factors G-CSF and 

GM-CSF (B), and the cytokines TNFα, IL6, and IL10 (C) were assessed in plasma obtained from 

hypercholesterolemic Apoe
-/-

 mice at ZT1 and ZT13. ZT. Data were analyzed by Mann-Whitney test or 

Student’s t-test. n=8-15. All data are presented as mean±SEM. ZT, Zeitgeber time. 
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3.3 Time-dependent arterial myeloid cell adhesion is triggered by 

the CCL2-CCR2 axis 

Previous results revealed higher plasma levels of CCL2, as well as a higher expression of 

CCR2 on leukocytes at ZT1, indicating that time-dependent myeloid cell recruitment is 

regulated by the CCR2-CCL2 axis. To further strengthen this hypothesis, we focused on 

studying CCL2 as the regulatory molecule of time-dependent leukocyte adhesion. 

 

3.3.1 Leukocytes regulate time-dependent differences in CCL2 plasma levels 

The chemokine CCL2 guides leukocytes to sites of inflammation by forming a concentration 

gradient. However, during arterial myeloid cell adhesion, the immobilized CCL2 on 

endothelial cells is of higher interest for leukocyte arrest. In line with that, we discovered a 

higher CCL2 coverage on endothelial cells of the carotid artery at ZT1 compared to ZT13 

(Figure 19 A). Furthermore, we identified the source of time-dependent CCL2 plasma levels 

by measuring CCL2 expression in distinct cell types. Bone marrow mesenchymal stem cells 

(MSCs) express CCL2 upon bacterial infection, thus regulating monocyte trafficking into the 

blood stream (Shi et al. 2011). Additionally, CCL2 released from lesional macrophages 

promotes leukocyte recruitment to atherosclerotic lesions (Nazari-Jahantigh et al. 2012). 

However, expression of CCL2 in both MSCs and lesional macrophages did not exhibit time-

dependent differences (Figure 19 B/C). In contrast, we identified time-dependent expression 

of CCL2 in circulating leukocytes and lymphocytes (Figure 19 D-F). Due to a higher 

expression of CCL2 in classical monocytes and neutrophils as compared to its expression in 

lymphocytes, we focused on leukocytes as the source of time-dependent differences in 

CCL2 plasma levels. In agreement with these findings, depletion of leukocytes by 

cyclophosphamide (CPM) treatment significantly reduced CCL2 plasma levels at ZT1 to a 

similar level observed at ZT13 (Figure 19 G/H). In conclusion, time-dependent CCL2 plasma 

levels derive from circulating leukocytes.  
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Figure 19: Time-dependent CCL2 plasma levels derive from circulating leukocytes                                    

Arterial CCL2 coverage and CCL2 expression in distinct cell types were analyzed in Apoe
-/-

 mice after 

being four weeks on high fat diet. (A) CCL2 coverage on arterial endothelial cells. Scale bar, 50µm. 

n=4. Mann-Whitney test. (B) Quantification of CCL2 expression in bone marrow mesenchymal stem 

cells determined by flow cytometry and its gating strategy. n=10. Unpaired t-test. (C) Analysis of CCL2 

expression in lesional macrophages in aortic root sections. n=12-13. Unpaired t-test. (D) Intracellular 

CCL2 content in distinct cell types assessed by flow cytometry and representative histograms. n=4-7. 

Mann-Whitney test. (E) Representative confocal images stained for Ly6G/Ly6C (green), CCL2 (red) 

and DAPI (blue) at ZT1 and ZT13. (F) Relative mRNA expression of CCL2 in neutrophils and 

monocytes. n=6. No signal was detected in 5 out of 6 samples for neutrophils and 4 out of 6 samples 

in monocytes at ZT13. (G/H) CCL2 plasma levels in leukopenic hypercholesterolemic Apoe
-/-

 mice at 

ZT1 and ZT13. n=6-7. Mann-Whitney test. All data are presented as mean±SEM. CPM, 

cyclophosphamide. ZT, Zeitgeber time. 
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3.3.2 Time-dependent myeloid cell recruitment depends on a leukocyte intrinsic 

effect 

Our previous data indicate that rhythmic myeloid cell recruitment depends on a leukocyte 

intrinsic effect, rather than an endothelial cell triggered phenotype. In order to confirm these 

findings, Apoe-/- mice with a specific deletion of the core clock gene Bmal1 in arterial 

endothelial cells or myeloid cells were used. BMAL1 (brain and muscle ARNT 

[arylhydrocarbon receptor nuclear translocator]-like) is one of the core clock proteins 

controlling circadian gene expression at a molecular level. Hence, its deficiency leads to a 

disruption of the molecular circadian clock. Here, we used hypercholesterolemic 

Lyz2CreBmal1fl/flApoe−/− mice carrying a myeloid-specific Bmal1 knockout and 

hypercholesterolemic BmxCreERT2Bmal1fl/flApoe−/− mice with a specific Bmal1 deficiency in 

arterial endothelial cells. While time-dependent myeloid cell adhesion was maintained in 

hypercholesterolemic BmxCreERT2Bmal1fl/flApoe−/− and the respective control mice, time-

dependent differences in myeloid cell adhesion were abolished in hypercholesterolemic 

Lyz2CreBmal1fl/flApoe−/− mice (Figure 20 A-E). Interestingly, oscillations in circulating 

leukocyte numbers remained time-dependent in hypercholesterolemic 

Lyz2CreBmal1fl/flApoe−/− mice (Figure 20 F). Deficiency of Bmal1 in neutrophils and classical 

monocytes was confirmed by mRNA expression analyses (Figure 20 G). Furthermore, 

plasma CCL2 levels were reduced at ZT1 to a similar level as observed at ZT13 in 

Lyz2CreBmal1fl/flApoe−/− mice (Figure 20 H), suggesting that CCL2 could indeed function as 

regulator of rhythmic arterial leukocyte recruitment. 
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Figure 20: Time-dependent myeloid cell recruitment depends on a leukocyte intrinsic effect                     

(A-C) Analysis of myeloid cell adhesion to the carotid artery by intravital microscopy in 

hypercholesterolemic Bmal1
fl/fl

Apoe
-/-

 (A), BmxCre
ERT2

Bmal1
fl/fl

Apoe
-/-

 (B), Lyz2CreBmal1
fl/fl

Apoe
-/-

 mice 

(C), BMXCre
ERT2

Apoe
-/-

 mice (D), and Lyz2Cre
l
Apoe

-/- 
mice at ZT1 and ZT13. Images in C represent 

arterial leukocyte adhesion in Lyz2CreBmal1
fl/fl

Apoe
-/-

 mice. Scale bar, 100 µm. n=4 in (A), n=7 in 

(B/D/E), n=15-17 in (C). Statistical analyses were made with Mann-Whitney test (A/B/D/E) or unpaired 

t-test (C). (F) Number of circulating neutrophils and monocytes in Lyz2CreBmal1
fl/fl

Apoe
-/-

 mice. n=12-

16. unpaired t-test (G) Bmal1 expression in circulating neutrophils and monocytes of 

hypercholesterolemic Lyz2CreBmal1
fl/fl

Apoe
-/-

 mice. n=4-5 (H) Plasma CCL2 levels in 

hypercholesterolemic Lyz2CreBmal1
fl/fl

Apoe
-/-

 mice at ZT1/ZT13. n=4-7. Mann-Whitney test. All data 

are presented as mean±SEM. ZT, Zeitgeber time. 

 

 

3.3.3 CCL2-CCR2 signaling triggers time-dependent myeloid cell adhesion 

The hypothesis of CCL2 as the regulator of time-dependent leukocyte adhesion was 

confirmed by studying the impact of CCL2 on leukocyte adhesion in vivo and ex vivo at 

different time points.  In previous experiments, time-dependent myeloid cell adhesion and 

differences in CCL2 plasma levels between ZT1 and ZT13 were abolished in 

hypercholesterolemic Lyz2CreBmalfl/flApoe−/− mice. Therefore, we investigated whether the 

time-dependent myeloid cell adhesion phenotype could be rescued by inducing an enhanced 



 
74 

 
 

CCL2 plasma level at ZT1. During the experiment the number of adherent myeloid cells was 

determined by intravital microscopy in hypercholesterolemic Lyz2CreBmalfl/flApoe−/− mice at 

ZT1 before and after intravenous administration of a low dose of CCL2 (Figure 21 A). As 

expected, intravenous delivery of CCL2 into Lyz2CreBmalfl/flApoe−/− mice at ZT1 enhanced 

myeloid cell adhesion (Figure 21 A). A similar experiment setup was used to study whether 

myeloid cell recruitment can be enhanced in hypercholesterolemic Cx3cr1gfp/WTApoe−/− mice 

at ZT13, when CCL2 plasma levels were low as observed in previous experiments. And 

indeed, CCL2 delivery to Cx3cr1gfp/WTApoe−/− mice at ZT13 resulted in a higher number of 

adherent myeloid cells (Figure 21 B). 

In further ex vivo experiments myeloid cell adhesion to equally coated surfaces was 

investigated at ZT1 and ZT13. Ex vivo adhesion of monocytes and neutrophils obtained at 

ZT1 or ZT13 was similar, hence leukocyte adhesion is not regulated through a cell intrinsic 

pathway (Figure 21 C). To study the impact of plasma on myeloid cell adhesion, monocytes 

and neutrophils isolated from hypercholesterolemic Apoe−/− mice at ZT1 were treated with 

plasma obtained from hypercholesterolemic Apoe−/− mice at ZT1 or ZT13. Interestingly, 

myeloid cell adhesion was reduced in the presence of plasma obtained from 

hypercholesterolemic Apoe−/− mice at ZT13 (Figure 21 D). Moreover, plasma obtained from 

Lyz2CreBmalfl/flApoe−/− mice at ZT1 reduced the number of adherent myeloid cells, which 

were isolated from hypercholesterolemic Apoe−/− mice at ZT1, more efficiently than plasma 

obtained from Apoe−/− mice at ZT1 (Figure 21 E). These results indicate the importance of a 

soluble factor in guiding time-dependent cell adhesion. Finally, we identified CCL2 as the 

regulating soluble factor by blocking its signalling via CCR2. Neutralization of CCR2 signaling 

with a small molecule CCR2 antagonist RS102895 in myeloid cells obtained from 

hypercholesterolemic Apoe−/− mice at ZT1 resulted in less myeloid cell adhesion ex vivo 

(Figure 21 F). Consistent with these observations, in vivo disruption of CCL2-CCR2 signaling 

in Apoe−/−Ccr2-/- mice abolished time-dependent myeloid cell adhesion by reducing the 

number of adherent myeloid cells to the carotid artery at ZT1 (Figure 21 G), although 

oscillations in numbers of circulating cells were maintained (Figure 21 H). In summary, 

CCR2-CCL2 signaling triggers rhythmic myeloid cell adhesion to the carotid artery.  
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Figure 21: CCR2-CCL2 signaling impacts on time-dependent myeloid adhesion  

(A/B) Numbers of adherent monocyte and neutrophil in hypercholesterolemic Lyz2CreBmal1
fl/fl

Apoe
-/-

 

at ZT1 (A) or hypercholesterolemic Cx3cr1
gfp/WT

Apoe
-/-

 mice at ZT13 (B) before and after administration 

of CCL2. n=4. Paired t-test. (C) Analysis of ex vivo adhesion of myeloid cells from 

hypercholesterolemic Apoe
-/-

 mice obtained at ZT1 or ZT13 in the presence of static adhesion buffer. 

n=4-10. Mann-Whitney test. (D) Ex vivo adhesion of myeloid cells from hypercholesterolemic Apoe
-/-

 

mice obtained at ZT1 in the presence of plasma isolated at ZT1 or ZT13. n=10-16. Unpaired t-test. (E) 

Ex vivo myeloid cell adhesion obtained from hypercholesterolemic Apoe
-/-

 mice at ZT1 in presence of 

plasma from Apoe
-/-

 mice or Lyz2CreBmal1
fl/fl

Apoe
-/-

 mice isolated at ZT1. n=8-9. Unpaired t-test. (F) 

Number of adherent myeloid cells isolated from hypercholesterolemic Apoe
-/-

 mice at ZT1 in the 

presence of Apoe
-/-

 plasma obtained at ZT1 and with an inhibitor to CCR2 (RS102895, 100 ng/ml) or 

the respective control. n=5-6. Mann-Whitney test. (G) Number of adherent cells to the carotid artery of 

hypercholesterolemic Ccr2
-/-

Apoe
-/-

mice at ZT1 and ZT13. n=7-8. Mann-Whitney test. (H) Number of 

circulating myeloid cells in Ccr2
-/-

Apoe
-/-

mice at ZT1 and ZT13. n=7-8. Mann-Whitney test. All data are 

presented as mean±SEM. IVM, intravital microscopy; HFD, high fat diet; ZT, Zeitgeber Time.  
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3.3 Chrono-pharmacological treatment strategy prevents early 

lesion development 

In light of the observed importance of the CCL2-CCR2 axis during time-dependent myeloid 

cell adhesion to atheroprone regions, we designed a chrono-pharmacological treatment 

strategy to prevent the development of atherosclerosis by targeting CCL2 signaling in a time-

dependent manner. 

3.3.1 Diverse time-dependent recruitment patterns in the macro- and 

microcirculation 

Due to proposed side effects and failed attempts to inhibit chemokine driven lesional 

leukocyte recruitment in the past, we defined the site- and time-specificity of leukocyte 

recruitment by performing near-simultaneous intravital microscopy in the carotid artery 

(macrocirculation) and cremaster muscle (microcirculation) in hypercholesterolemic Apoe−/− 

mice. In contrast to the leukocyte recruitment pattern in the macrocirculation, an opposing 

recruitment phenotype with a peak at ZT13 and a trough at ZT1 was observed in the 

cremasteric microcirculation (Figure 22 A-E).  

Next, we investigated whether pharmacological disruption of CCL2 signaling affects 

leukocyte adhesion in macro- and microcirculation in the same manner. In the 

macrocirculation, less adherent monocytes and neutrophils occurred after CCR2 blockage at 

ZT1, while treatment at ZT13 had no impact on myeloid cell adhesion (Figure 22 B-C). In 

contrast, disruption of CCL2-CCR2 signaling in the microcirculation reduced the number of 

adherent monocytes at ZT13, but was without effect on neutrophil adhesion (Figure 22 D/E). 

Numbers of circulating myeloid cells were not changed upon pharmacological CCR2 

blockage (Figure 22 F/G). Furthermore, the comparable decay of the CCR2 antagonist in 

plasma at ZT1 and ZT13 confirmed a similar drug metabolism at both time points (Figure 22 

H).  

Taken together, these results propose timed CCR2 blockage as a promising chrono-

pharmacological treatment strategy in atherosclerosis, possibly with only minor side effects. 
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Figure 22: Diverse effect of CCR2 blockage on time-dependent cell adhesion in the macro- and 

microcirculation  

(A-E) Number of myeloid cell adhesion in the cremaster muscle and the carotid artery. (A) Near-

simultaneous intravital microscopy in hypercholesterolemic Cx3cr1
gfp/WT

Apoe
-/-

 mice treated with the 

CCR2 antagonist (RS102895, 5 mg/kg) or vehicle control 30 min before recording at indicated ZT. 

(B/C) Number of adherent neutrophils (B) and classical monocytes (C) in the macrocircuation. (D/E) 

Number of adherent neutrophils (D) and classical monocytes (E) in the microcirculation. Scale bar, 

100 µm in (B/C) and 50 µm in (D/E). n=5-13 in (B/C) and n=9-15 in (D/E). Statistical analyses were 

made with Mann-Whitney test (B/C) or unpaired t-test (D/E). (F/G) Number of circulating neutrophils 

(F) and classical monocytes (G) in hypercholesterolemic Cx3cr1
gfp/WT

Apoe
-/-

 mice treated with the 

CCR2 antagonist (RS102895, 5 mg/kg) or vehicle control. (H) Pharmacokinetic analysis of the CCR2 

antagonist RS102895 (5 mg/kg) injected i.p. at indicated ZT. Plasma levels of RS102895 were 

assessed by mass spectrometry. n=3 per time point. All data are presented as mean±SEM. ZT, 

Zeitgeber time. 
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3.3.2 Chrono-pharmacological treatment strategy prevents early lesion 

development 

We designed a chrono-pharmacological treatment strategy with timed blockage of CCL2-

CCR2 signaling. Apoe-/- mice were treated daily with the CCR2 antagonist at ZT5 or ZT17 

while being on HFD for 4 weeks. The small molecules CCR2 antagonist RS102895 has a 

short half-life and is not detectable in plasma 9 hours after i.p. administration of 5 mg/kg 

(Mitchell et al., 2013). Therefore, administration of RS102895 at ZT5 blocked CCL2-CCR2 

signaling when arterial leukocyte adhesion was low, whereas administration of RS102895 at 

ZT17 blocked CCL2-CCR2 signaling when arterial leukocyte adhesion was at its highest 

(Figure 23 A).  

After four weeks of HFD and daily timed CCR2 blockage, Apoe-/- mice were sacrificed at ZT1 

and ZT13 for further leukocyte adhesion and atherosclerotic lesion analyses. The number of 

adherent myeloid cells to the carotid artery was reduced at ZT1 after treating these mice with 

the CCR2 antagonist at ZT17 (Figure 23 B/C). In contract, no difference in the number of 

adherent myeloid cells was observed at ZT13 after CCR2 antagonist treatment at ZT5 

(Figure 23 B/C). Circulating leukocyte counts and time-dependent differences in CCL2 

plasma levels were not affected by prolonged CCR2 neutralization (Figure 23 D-F). 

Atherosclerotic lesion analyses revealed less atherosclerotic lesion formation and less 

lesional macrophage content after prolonged CCR2 antagonist treatment at ZT17, while 

treatment at ZT5 had no impact on early atherosclerotic lesion development (Figure 23 G/H). 

Hence, timed blockage of CCL2 signaling during the phase of elevated leukocyte adhesion 

successfully reduced atherosclerotic lesion development.  
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Figure 23: Timed CCR2 blockage reduces atherosclerotic lesion development without affecting 

time-dependent differences in blood cell counts and CCL2 plasma levels 

Apoe
-/-

 mice were treated daily with a CCR2 antagonist (5 mg/kg) or vehicle control at ZT5 or ZT17 

while being on HFD for four weeks. (A) Experimental setup (B/C) Analysis of adherent neutrophils (B) 

and adherent classical monocytes (C) to the carotid artery assessed by intravital microscopy. (D/E) 

Quantification of circulating neutrophils (D) and classical monocytes (E) in Apoe
-/-

 mice was 

determined by flow cytometry. n=8. Unpaired t-test. (F) Quantification of plasma CCL2 levels. n=5-8. 

Mann-Whitney test. (G) Quantification of atherosclerotic lesion size. Representative images of oil red 

O staining are displayed. Scale bar, 100 µm. (H) Amount of lesional Mac2
+
 macrophages. n=8 per 

group, 3 sections were analyzed per mouse. Unpaired t-test. All data are presented as mean±SEM. 

ZT, Zeitgeber time. 
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3.3.3 Impact of the established chronotherapy on acute lung inflammation 

Although chrono-pharmacological treatment of atherosclerosis successfully prevented early 

lesion development, its therapeutic relevance was further proven by assessing the impact of 

timed CCR2 blockage on a disease model occurring in the microcirculation, such as bacterial 

pneumonia. Bacterial pneumonia mainly occurs in the elderly and leads to acute lung injury 

characterized by lung edema and rapid neutrophil influx (Grommes et al. 2011). The 

influence of CCR2 neutralization was tested in a mouse model of acute lung inflammation to 

investigate whether timed chrono-pharmacological treatment of early lesion development 

impacts on bacterial pneumonia. After administration of the CCR2 antagonist at ZT5 or ZT17, 

C57BL/6J mice were exposed to aerosolized LPS to induce acute lung injury (Figure 24 

A/C). The number of infiltrated cells into the lung was assessed at ZT1 and ZT13 by flow 

cytometry. Interestingly, administration of the CCR2 antagonist at ZT1 was without effect on 

myeloid cell infiltration into the lungs at ZT1, however, neutrophil infiltration was reduced at 

ZT13 (Figure 24 A-D). Hence, chrono-pharmacological treatment of early lesion development 

could be of important therapeutic relevance due to its reduced side effects and increased 

efficacy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Myeloid cell recruitment to lungs at ZT1 is not affected by timed CCR2 neutralization  

(A/C) C57BL/6J mice received a single dose of CCR2 antagonist (5 mg/kg) or vehicle control at ZT5 or 

ZT17. Afterwards, mice were exposed to aerosolized LPS (500 µg/ml) at ZT23 or ZT11. Myeloid cell 

influx into the lungs was determined by flow cytometry. (A/C) Quantification of infiltrated myeloid cells 

into lungs at ZT1 (A) and ZT13 (C). (B/D) Number of circulating myeloid cells of the same mice at ZT1 

(B) and ZT13 (D). n=7-8 per group. Mann-Whitney test. All data are mean±SEM. ZT, Zeitgeber time. 
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4. Summary 
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Leukocyte recruitment to sites of activated arterial endothelium plays a major role during 

initiation of atherosclerotic lesion development. In regard that distinct components of the 

immune system exhibit circadian rhythmicity, thus modulating leukocyte recruitment during 

inflammation in a time-dependent manner, we questioned whether rhythmic leukocyte 

recruitment occurs during atherosclerosis (Scheiermann et al. 2012; Nguyen et al. 2013). 

With the importance of the circadian clock in immune responses, previous studies focused 

on investigating the impact of the core clock proteins BMAL1 and CLOCK on the 

development of atherosclerosis (Pan et al. 2013; Yang et al. 2016; Huo et al. 2017). 

However, little was known about the influence of the circadian clock on inflammatory 

processes during early atherosclerotic lesion development. Therefore, the aim of this study 

was to investigate to what extent the circadian clock orchestrates time-dependent leukocyte 

recruitment during atherogenesis and to identify its regulatory mechanisms for generating a 

chronopharmacological treatment strategy.  

In this current study, leukocyte infiltration into atherosclerotic lesions was monitored for the 

first time in hypercholesterolemic Apoe-/- mice over a time period of 21 hours. Leukocyte 

recruitment to atherosclerotic lesions peaked at ZT1, while leukocyte recruitment was at its 

lowest at ZT13. Rhythmic leukocyte recruitment also occurs to peripheral organs under 

physiological conditions or to sites of acute injury (Scheiermann et al. 2012; Nguyen et al. 

2013). Under these conditions, endothelial cell adhesion molecules or chemokines 

expressed in a time-dependent manner guide time-dependent differences in leukocyte 

trafficking. However, we did not observe differences in the expression of cell adhesion 

molecules on endothelial cells of atherosclerotic lesions at different time points. Moreover, 

time-dependent activation of the CCR2-CCL2 axis regulated differences in the infiltration of 

leukocytes into atherosclerotic lesions at ZT1 and ZT13. Elevated plasma levels of leukocyte 

derived CCL2 were observed at ZT1, thus increased immobilized CCL2 on the endothelium 

of atherosclerotic prone regions triggers enhanced leukocyte adhesion. In light of the 

importance of the CCR2-CCL2 axis on time-dependent lesional leukocyte recruitment, 

blockage of CCR2 signaling via treatment with a CCR2 antagonist abolished time-dependent 

leukocyte recruitment in the macrocirculation, but had only minor effects in the 

microcirculation. These new insights lay the foundation for a novel chronopharmacological 

treatment therapy to ameliorate atherosclerosis. Subsequently, timed disruption of CCL2-

CCR2 signaling reduced the development of atherosclerosis without causing side effects 

during acute lung injury.  

In summary, our extended understandings of time-dependent inflammatory mechanisms 

during atherogenesis illustrate the necessity for developing novel chrono-pharmacotherapies 

to improve drug efficacy and to reduce side effects. 
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5. Discussion 
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5.1  Rhythmic leukocyte recruitment to atherosclerotic lesions 

Rhythmicity in the recruitment of leukocytes into distinct tissues has already been 

investigated under steady state and acute inflammation (Scheiermann et al. 2012; Nguyen et 

al. 2013). Previous studies also indicate that the circadian clock modulates chronic 

inflammatory diseases, such as atherosclerosis (Pan et al. 2013; Yang et al. 2016; Huo et al. 

2017). Myeloid cell specific deletion of the core clock protein BMAL1 worsens diet-induced 

obesity and insulin resistance (Nguyen et al. 2013). Furthermore, Bmal1 deficiency in 

myeloid cells promotes atherosclerosis due to enhanced recruitment of Ly6Chi monocytes to 

atherosclerotic lesions (Huo et al. 2017). The entry of leukocytes into atherosclerotic lesions 

is of crucial importance to the development of atherosclerosis. Consequently, the influence of 

cell adhesion molecules, chemokines, and their respective chemokine receptors on arterial 

leukocyte recruitment has been intensively studied. However, nothing was known so far 

about the rhythmic recruitment of leukocytes during early atherosclerotic lesion formation, 

thus, this is the first study describing time-dependent leukocyte recruitment during 

atherogenesis.  

Next to time-dependent myeloid cell recruitment to atherosclerotic lesions, we investigated 

oscillations in the number of myeloid cells in bone marrow and spleen of 

hypercholesterolemic Apoe-/- mice. Previous studies have demonstrated rhythmic circulating 

leukocyte numbers with a peak at ZT5 in C57B/L6 mice under steady state (Scheiermann et 

al. 2012). Opposing cell numbers were observed in the bone marrow, whereas cell numbers 

in the spleen showed almost similar rhythmic patterns as observed in blood (Scheiermann et 

al. 2012; Nguyen et al. 2013). These results conclude that elevated circulating cell numbers 

derive from the bone marrow during the resting phase. In the experimental study presented 

here, a drop of leukocyte counts occurred in the bone marrow and spleen, when numbers of 

circulating cells begin to increase. Furthermore, time-dependent changes in the number of 

leukocytes in bone marrow and spleen were similar, which is in contrast to observations 

made in recent studies (Scheiermann et al. 2012; Nguyen et al. 2013). Overall, our results 

indicate that circulating myeloid cells derive from the spleen and bone marrow in 

hypercholesterolemic Apoe-/- mice. Circulating monocytes and neutrophils develop from 

HSCs, whose number undergoes circadian changes in human bone marrow with a peak at 

daytime (Abrahamsen et al. 1998). Furthermore, rhythmic modulation of the hematopoietic 

niche in bone marrow has been observed in mice (Casanova-Acebes et al. 2013, Méndez-

Ferrer et al. 2008). Previous studies point out that hypercholesterolemia induces 

monocytosis and neutrophilia due to enhanced hematopoiesis in the spleen and the bone 

marrow (Swirski et al. 2012; Drechsler et al. 2010). In addition, Robbins et al. identified the 
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spleen as an extramedullary site that contributes to the production of circulating inflammatory 

cells during chronic inflammation (Robbins et al. 2012). Hypercholesterolemia enhances 

hematopoiesis by increasing the accumulation of cholesterol in HSPCs (Murphy et al. 2011). 

The accumulation of cholesterol elevates the expression of the common β-subunit of the 

interleukin-3 receptor and granulocyte/macrophage colony-stimulating factor receptor, thus 

enhancing HSPCs proliferation (Murphy et al. 2011). Up to date, it is not known whether one 

of those receptors is expressed in a time-dependent manner to regulate rhythmicity in 

myeloid cell proliferation. However, it provides a possible mechanism how 

hypercholesterolemia could interfere with the rhythmic production of neutrophils and 

monocytes. Furthermore, the peak in the number of circulating leukocytes was observed 

earlier in hypercholesterolemic Apoe-/- mice as compared to observations made for 

circulating leukocytes under steady state (Scheiermann et al. 2012; Nguyen et al. 2013). 

Endothelial cells in the bone marrow regulate rhythmic release of leukocytes by time-

dependent expression of Selp, Sele and Vcam1 in endothelial cells (Scheiermann et al. 

2012). Furthermore, hypercholesterolemia is known to cause a reprogramming of the 

rhythmic transcriptome in hepatic tissue (Eckel-Mahan et al. 2013). Whether high fat diet 

feeding also changes the rhythmic transcriptome in endothelial cells of the bone marrow and 

spleen, thus modifying the egress and homing of leukocytes from and to the bone marrow 

under hypercholesterolemia, has not been studied so far. In summary, indications are given 

that the phase shifted phenotype observed in the number of circulating leukocytes and the 

diverse phenotype observed in spleen and bone marrow according to previous studies relate 

to the possible influence of hypercholesterolemia on immune cell production and trafficking.  

In follow up experiments, we investigated the influence of external factors on time-dependent 

myeloid cell adhesion. Entrainment of circadian rhythms by light or food intake ensures 

synchronization of the internal circadian clock with the environment. Disruption of the 

circadian clock by shift work results in an increased risk for an acute cardiovascular event 

(Knutsson et al. 1986). Furthermore, misalignment of the rest/activity phases with metabolic 

processes due to chronic circadian disruption enhances the susceptibility for metabolic 

disorders (Feng et al. 2012). Therefore, it is important to investigate the influence of 

entrainment factors on inflammatory processes. Here, we confirmed bona fide circadian 

rhythmicity for time-dependent leukocyte recruitment in hypercholesterolemic Apoe-/- mice 

that were kept in constant darkness for two weeks. In previous studies, similar results were 

observed for circadian oscillations of lymphocyte numbers in lymph nodes and leukocyte 

trafficking into tissues, which were sustained in constant darkness and entrained by photic 

cues (Druzd et al., 2017; Scheiermann et al. 2012). We did not investigate the influence of 
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the entrainment factor light on leukocyte recruitment during chronic inflammation. 

Nevertheless, determining the effect of photic cues on rhythmic myeloid cell recruitment 

during atherogenesis will draw further conclusions, how jetlag or shift work impacts on 

atherosclerotic lesion development. Next to changes in the environmental light/dark cycle, 

changes in meal times represent another consequence of shift work or time-zone transition. 

Previous studies observed that feeding periods entrain circadian gene expression in 

peripheral clocks, while having no impact on the circadian rhythmicity in the SCN (Damiola et 

al. 2000). One study demonstrates that restricted feeding during the day results in a phase 

shifted diurnal gene expression of clock genes in liver (Nguyen et al. 2013). However, 

restricted feeding had no impact on circadian gene expression in peritoneal macrophages, 

thus diurnal monocyte trafficking remained unchanged (Nguyen et al. 2013). Although 

feeding restriction had no effect on diurnal monocyte oscillations in steady state, its influence 

might have a bigger impact during chronic inflammation induced by hypercholesterolemia 

(Nguyen et al. 2013). Follow up studies are necessary to reveal the influence of food intake 

on rhythmic leukocyte recruitment to atherosclerotic lesions. Besides the time of food intake, 

the type of diet represents an additional factor that is known to influence circadian 

rhythmicity. Hypercholesterolemia induced in Ldlr-/- mice with a high fat diet containing 42.7% 

kcal carbohydrate, 20.4% kcal protein, and 36.9% kcal fat leads to circadian abnormalities in 

their behavior (Akashi et al. 2017). Another study with a similar diet provides evidence that a 

high caloric diet alters the expression and cycling of canonical circadian clock genes in the 

hypothalamus, liver, and adipose tissue (Kohsaka et al. 2007). Moreover, high fat diet 

characterized by containing 60% kcal from fat generates a reorganization of specific 

metabolic pathways, thus modulating transcriptional reprogramming in the circadian clock 

(Eckel-Mahan et al. 2013). According to the impact of specific diets on circadian rhythmicity 

and metabolic pathways, the impact of our high fat diet (containing 21% fat and 0.15% 

cholesterol) and especially of the feeding period on rhythmic leukocyte recruitment is of 

interest for future investigations. 

Besides entrainment factors, catecholamines and glucocorticoids contribute to the regulatory 

branch of the circadian clock machinery by modulating peripheral clocks. Levels of 

glucocorticoids and catecholamines oscillate within 24 hours (Ikeda et al. 2013; Prinz et al. 

1979). Moreover, activation of the sympathetic nervous system guides leukocyte recruitment 

to peripheral tissues through adrenergic receptor signaling (Scheiermann et al. 2012). 

Therefore, it was tempting to investigate whether glucocorticoid and adrenergic receptor 

signaling affects rhythmic myeloid cell recruitment. However, blocking of glucocorticoid 
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signaling had no impact on rhythmic myeloid cell adhesion, whereas blocking of adrenergic 

receptors had only minor effects on the number of adherent neutrophils.  

 

5.2 CCL2-CCR2 axis guides time-dependent leukocyte adhesion  

Myeloid cell recruitment during atherogenesis is regulated through distinct adhesion 

molecules expressed on lesional endothelial cells, but also by many chemokines and its 

respective receptors. The CCL2-CCR2 axis has been determined in the past to play a major 

role in early lesion development (Boring et al. 1998; Gu et al. 1998). Here, we identified the 

CCL2-CCR2 axis as the trigger for rhythmic myeloid cell recruitment during atherogenesis.  

By investigating the regulatory mechanism of rhythmic myeloid cell recruitment, we studied 

the expression of adhesion molecules on endothelial cells of atherosclerotic lesions. 

Adhesion molecules guide leukocytes to activated arterial endothelial cells. Rhythmic 

expression of endothelial E-selectin, P-selectin, VCAM1, and CXCL12 regulates time-

dependent recruitment of leukocytes to the bone marrow, while ICAM1 and CCL2 drive 

rhythmic leukocyte recruitment in the skeletal muscle (Scheiermann et al. 2012). Under acute 

inflammation in cremaster-muscle tissue, ICAM1 expression was increased and its circadian 

oscillation remained unchanged, thus still promoting rhythmic leukocyte recruitment 

(Scheiermann et al. 2012).  In our study, we did not observe any rhythmic expression of 

adhesion molecules on endothelial cells of atherosclerotic lesions. According to the distinct 

rhythmic gene expression of adhesion molecules in the bone marrow, cremasteric muscle 

and cardiac tissue, our investigations in arterial endothelial cells could represent a tissue 

specific phenotype (Scheiermann et al. 2012; Schloss et al. 2016). These tissues specific 

phenotypes might derive from the impact of different shear stresses on the phenotype of 

endothelial cells in distinct tissues. Shear stress regulates NF-κB transcriptional pathways or 

endothelial gene expression, thus modifying the circadian clock and its rhythmic 

transcriptome (Dai et al. 2004; Baratchi et al. 2017). Furthermore, distinct rhythmic gene 

expression in lesional endothelial cells might relate to a disturbed circadian clock caused by 

chronic inflammation within the atherosclerotic lesion. Indications for chronic inflammation as 

a disturbing factor of the circadian clock are already given by another chronic inflammatory 

disease model, namely rheumatoid arthritis (RA). Synovial fibroblasts from RA patients 

display altered circadian expression of clock components triggered by inflammatory stimuli 

(Kouri et al. 2013). 

Besides the unchanged expression of adhesion molecules on endothelial cells under 

hypercholesterolemia, we observed controversial CCL2 plasma levels in 



 
88 

 
 

hypercholesterolemic Lyz2CreBmal1fl/flApoe−/− mice. A previous study reported that the 

heterodimer BMAL1/CLOCK recruits the polycomb repressive complex 2 (PRC2) to silence 

chemokine gene expression (Nguyen et al. 2013). Surprisingly, we observed low CCL2 

plasma levels in hypercholesterolemic Lyz2CreBmal1fl/flApoe−/− mice, although its repressor 

BMAL1 was deactivated. Nevertheless, increased expression of Ccl2 does not directly 

modify plasma CCL2 protein levels due to the involvement of further regulatory mechanisms 

in chemokine release. However, our observations in endothelial and myeloid cells indicate a 

different rhythmic gene expression pattern under chronic inflammation induced by 

hypercholesterolemia as compared to observations that were made under steady state or 

acute inflammation. Next to chronic inflammatory processes, hypercholesterolemia 

represents another disturbing factor of the circadian clock. Specific diets are known to 

change the circadian gene expression in hepatic tissue, thus raising the question whether 

hypercholesterolemia also leads to a reprogramming of the rhythmic transcriptome in 

endothelial cells and myeloid cells (Eckel-Mahan et al. 2013). High fat diet feeding causes 

phase-shifted or reduced recruitment of the BMAL1/CLOCK complex to its target promoters, 

thus causing a reprogramming of circadian expressed genes (Eckel-Mahan et al. 2013). 

Furthermore, high fat diet changes the presence and pattern in oscillations as well as the 

recruitment of other transcription factors, thus providing additional transcriptional pathways to 

regulate circadian rhythmicity (Eckel-Mahan et al. 2013). The circadian clock is also directly 

coupled with metabolism by the SIRT1 NAD-dependent deacetylase, which plays a major 

role during energy metabolism and gets modified under high fat diet feeding (Chalkiadaki et 

al. 2012). SIRT1 modulates the circadian clock by directly modulating the gene expression of 

core clock proteins, hence providing another possible mechanism how high fat diet interferes 

with the rhythmic transcriptome (Chang et al. 2013; Nakahata et al. 2008; Asher et al. 2008). 

Overall, the rhythmic expression profile under hypercholesterolemia differs and could explain 

our observations according to the expression of adhesion molecules and chemokines in 

hypercholesterolemic Apoe−/− mice. Nevertheless, the regulatory mechanism of the circadian 

clock and its outcomes under hypercholesterolemia and chronic inflammation in different cell 

types has to be further investigated in detail.  

According to the importance of BMAL1 in leukocyte recruitment during steady state and 

acute inflammation, it was tempting to speculate that BMAL1 regulates rhythmic leukocyte 

recruitment during atherogenesis (Scheiermann et al. 2012; Nguyen et al. 2013). Here, 

hypercholesterolemic Lyz2CreBmal1fl/flApoe−/− mice carrying a myeloid-specific Bmal1 

knockout exhibited an abolished rhythmicity in leukocyte recruitment with a low number of 

adherent cells at ZT1 similar to the number of adherent cells observed at ZT13. In contrast, a 
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previous study identified diurnal oscillations for Ly6Chigh inflammatory monocytes and 

observed a pro-inflammatory phenotype in Lyz2CreBmal1fl/fl mice (Nguyen et al. 2013). In 

detail, Lyz2CreBmal1fl/fl mice infected with Listeria monocytogenes in the peritoneum exhibit 

an increased recruitment of Ly6Chigh monocytes to the inflamed tissue, thus amplifying the 

inflammatory response by a significant increase in CCL2, CCL8, IL1β and IL6 expression. In 

agreement with this previous study, we also observed an increase in the number of 

circulating myeloid cells in hypercholesterolemic Lyz2CreBmal1fl/flApoe−/− mice. However, 

according to the enhanced pro-inflammatory phenotype in Lyz2CreBmal1fl/fl mice, we 

expected to observe an elevated number of recruited myeloid cells to atherosclerotic lesions. 

But we discovered a reduced number of adherent cells in hypercholesterolemic 

Lyz2CreBmal1fl/flApoe−/− mice. These controversial results highlight diverse regulatory 

mechanisms of rhythmic myeloid cell recruitment in two distinct disease models, namely 

chronic and acute inflammation.  In addition, both studies focused on different tissues. While 

our study investigated inflammation in atheroprone regions of aortic tissue, the study of 

Nguyen et al. focused on inflammatory processes in the peritoneum. Nevertheless, future 

studies investigating tissue and model specific differences in the circadian modulation of 

immune responses will provide further insights.   

In addition, distinct leukocyte recruitment patterns have been described in the macro- and 

microcirculation. For instance, cathepsin G is a chemotactic protein stored in neutrophil 

azurophil granules and controls myeloid cell adhesion in the carotid artery, but not in the 

microcirculation of the cremaster muscle (Ortega-Gomez et al. 2016). Furthermore, the 

expression of distinct endothelial adhesion molecules differs between different organs, thus 

regulating cell recruitment in a tissue-specific manner (Rossaint et al. 2013). Here, we 

observed a different rhythmic leukocyte recruitment pattern in the macro- and 

microcirculation in hypercholesterolemic Apoe−/− mice. The CCL2-CCR2 axis plays an 

important role in myeloid cell recruitment in the carotid artery, but it is less important in 

microvessels of the cremaster muscle. CCL2 coverage on endothelial cells in the carotid 

artery was higher at ZT1, but we did not observe a difference in endothelial CCL2 coverage 

between ZT1 and ZT13 in the microcirculation of cremasteric tissue (data not shown). Thus, 

our results highlight the CCR2-CCL2 axis as another factor that differs in the macro- and 

microcirculation and regulates tissue specific leukocyte recruitment patterns. These results 

also raise the questions to what extent glycosaminoglycans regulate tissue specific or 

rhythmic leukocyte recruitment. Glycosaminoglycans are located on the cell-surface and bind 

selectively to chemokines via electrostatic interactions (Middleton et al. 2002). Side specific 

glycosaminoglycan patterns define distinct chemokine presentations, thus controlling 
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functionality and hierarchy of chemokines and their receptors during leukocyte arrest (Witt et 

al. 1994; Kuschert et al. 1999; de Paz et al. 2007; Weber et al. 1999). However, time-

dependent differences of endothelial glycosaminoglycans in the macro- and microcirculation 

have not been studied so far. Nevertheless, our findings provide further evidence of distinct 

leukocyte recruitment patterns in the macro- and microcirculation and underline the diverse 

importance of the CCR2-CCL2 axis in leukocyte recruitment.   

 

5.3 Chronopharmacological treatment strategy ameliorates atherosclerosis 

Chronopharmacological treatment strategies describe timed drug administration according to 

the rhythmic appearance or activity of its target, thus leading to enhanced efficacy and less 

side effects. The majority of best-selling drugs targets circadian expressed proteins (Zhang 

et al. 2014). In detail, current attempts to reduce the risk of cardiovascular diseases aim at 

proteins with circadian rhythmicity such as angiotensin II receptor blockers, β-adrenoreceptor 

antagonists, and aldosterone receptor blockers (Zhang et al. 2014). There are several 

examples, where the time of administration resulted in improved drug efficacies. For 

example, statins taken in the evening, when cholesterol synthesis is increased, revealed a 

significantly lower cholesterol level as compared to the effect of statins taken in the morning 

(Saito et al. 1991). Furthermore, a delayed delivery system of verapamil provides the optimal 

plasma concentration in the early morning, when blood pressure is at its highest (White et al. 

1995). Similar experiences are observed with a new chronotherapeutic formulation of 

propranolol, Innopran XLTM, which was designed to be taken at night and to release 

propranolol after a lag phase of 4-5 hours (Sica et al. 2003). Importantly, the wrong timing of 

administration can even result in unintended effects as shown by a clinical study on the time-

dependent effect of aspirin in hypertensive patients. The blood pressure of hypertensive 

patients, who received aspirin in the evening, was significantly reduced (Hermida et al. 

2005). In contrast, administration of aspirin in the morning slightly elevated blood pressure in 

hypertensive patients (Hermida et al. 2005). In summary, chronotherapy improves drug 

efficacy and is already used in clinic to successfully reduce the effect of risk factors for 

cardiovascular diseases. However, timed treatment strategies targeting the underlying cause 

of cardiovascular diseases, namely atherosclerosis, are still missing in clinic. Here, we 

present a novel chronopharmacological treatment strategy, which ameliorates 

atherosclerosis in a mouse model by efficiently reducing arterial leukocyte recruitment. 

Previous approaches targeting leukocyte recruitment during inflammation by blocking 

adhesion molecule interactions largely failed due to severe side effects (Ulbrich et al. 2003). 
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Furthermore, treatment strategies blocking CCR2 showed promising results in rheumatoid 

arthritis and multiple sclerosis, however, clinical trials failed (Karpus et al. 1997; Ogata et al. 

1997; Beaulieu et al. 2006). Another study aimed at reducing atherogenesis by prolonged 

blocking of CCR2 signaling with the CCR2 antagonist 15a (Bot et al. 2017). This treatment 

strategy successfully reduced atherosclerotic lesion development (Bot et al. 2017). But, the 

prolonged blockage of CCR2 signaling resulted in reduced numbers of circulating 

monocytes, thus enhancing the risk of side effects (Bot et al. 2017). In the established 

chronotherapy presented here, timed treatment with the CCR2 antagonist RS102895 at 

ZT17 only targeted the period, when leukocyte recruitment was at its highest, due to the 

short half-life of the antagonist. Timed administration of the CCR2 antagonist reduced 

atherosclerotic lesion development without affecting the number of circulating cells or CCL2 

plasma levels. Furthermore, we reduced unwanted secondary effects by considering distinct 

recruitment patterns in other tissues. Therefore, we determined the time- and side specificity 

of rhythmic myeloid cell recruitment in the macro- and microcirculation. The number of 

adherent myeloid cells peaked in the macrocirculation at ZT1, while an opposing phenotype 

with a peak at ZT13 occurred in the microcirculation. This data is in agreement with previous 

studies and highlights distinct rhythmic leukocyte recruitment patterns in diverse tissues, 

which are beneficial for reducing side effects and defining treatment specificity (Scheiermann 

et al. 2012). In our study, the time- and side specificity of rhythmic myeloid cell recruitment 

already proposed minor side effects and indeed, timed CCR2 blockage had no severe effects 

on acute lung injury, a disease model involving microcirculation. Hence, the results of our 

study underline the importance of defining circadian rhythmicity of drug targets to enhance 

drug efficacy and to reduce the magnitude of side effects.                                                                                                                            

Next to considering the rhythmic presence or activity of the drug target, time-dependent drug 

absorption, distribution, metabolism, and excretion play an important role in 

chronotherapeutic trials by influencing the drug effective period. Genome-wide analysis of 

gene expression revealed a circadian rhythm in the expression of many genes encoding 

proteins responsible for drug metabolism, thus resulting in time-dependent bioavailability and 

chronotoxicity (Panda et al. 2002; Gachon et al. 2006). We confirmed a similar 

pharmacokinetic of the CCR2 antagonist RS102895 at ZT1 and ZT13. In contrast, other 

drugs such as benzodiazepines, paracetamol, and antidepressants revealed a 

chronopharmacokinetic effect with an enhanced drug absorption and metabolism early in the 

morning (Nakano et al. 1983; Kamali et al. 1987; Müller et al. 1987). These examples 

emphasize the existence of time-dependent fluctuations not only at the level of drug targets 

but also in drug distribution, metabolism, and elimination.  
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The successful establishment of a chronotherapy to ameliorate atherosclerosis with only 

minor side effects in mice leads to the question whether this treatment strategy can be 

transferred into humans. Circadian rhythmicity was observed for CCR2 on circulating 

classical monocytes in humans (Schloss et al. 2017). However, transferring chronotherapy 

into humans is practically difficult due to distinct rhythmic gene expression in individuals 

mediated by the influence of distinct life styles. Shift work, type of diet, mealtimes or stress 

impact on the circadian clock and affect the life of an individual person to a different extent 

(Leone et al. 2015; Zarrinpar et al. 2014; Eckel-Mahan et al. 2013). Although examples for 

timed treatment strategies as mentioned above are already used in clinic, each 

chronotherapy has to be taken with caution before applying it to an individual person. 

Furthermore, patients in clinic already suffer from clinical outcomes caused by advanced 

atherosclerotic lesions. But our treatment strategy targets leukocyte recruitment during the 

early development of atherosclerosis, hence our established pharmacotherapy would only be 

useful for patients who did not developed atherosclerotic lesions so far. Future research on 

circadian rhythmicity in advanced atherosclerotic lesions and in humans will provide a new 

platform for possible chronotherapies, which might be more beneficial to be transferred into 

clinic. Taken together, our novel chronopharmacological treatment strategy to prevent the 

development of atherosclerosis highlights the importance and benefits of timed therapies. 

However, limitations are given by transferring this chronotherapy into humans. 

 

5.4 Outlook 

Integral parts of the immune system display circadian rhythmicity, thus modulating immune 

responses (Keller et al. 2009; Scheiermann et al. 2012; Nguyen et al. 2013; Gibbs et al. 

2014). Previous studies identified the influence of core clock proteins on the development of 

atherosclerosis (Pan et al. 2013; Yang et al. 2016; Huo et al. 2017). However, little is known 

about to what extent inflammatory processes in atherosclerosis exhibit circadian rhythmicity, 

thus providing targets for chronopharmacological treatment strategies. Due to the novelty of 

this study that rhythmic leukocyte recruitment in early lesion development is guided through 

the CCL2-CCR2 axis, a chronopharmacological treatment strategy was generated to 

ameliorate atherosclerosis. Hence, these results comprehensively expend our knowledge 

about circadian rhythmicity during chronic inflammation and highlight the success of timed 

chronotherapy. But, our study also raises further questions for future research projects. 

With the identification of circadian rhythmicity in components of the immune system, which 

play a major role during the early stage of atherosclerosis, our study indicates a complex 
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regulatory mechanism of the circadian clock during distinct disease models. Due to 

controversial results observed during leukocyte recruitment in steady state or acute 

inflammation as discussed above, the influence of diet, tissue specificity or chronic 

inflammation on the rhythmic transcriptome and leukocyte recruitment needs to be further 

investigated in detail.  

While our study focused on the impact of the circadian clock on early atherosclerotic lesion 

development, it also attracts attention to investigate circadian rhythmicity in further stages of 

atherosclerosis. In a later stage of atherosclerosis, an advanced atherosclerotic lesion has 

been established. Advanced atherosclerotic lesions contain a necrotic core surrounded by a 

fibrous cap that prevents the lesion from breaking apart. The main cell types controlling 

inflammation and stability within this lesion are macrophages and smooth muscle cells, while 

leukocyte recruitment is less important. After a period of time, continuous inflammation with 

enhanced cell death and fibrous cap thinning causes instability and finally lesion rupture with 

severe clinical outcomes, such as myocardial infarction or stroke. Previous studies describe 

circadian rhythmicity in distinct inflammatory processes such as pro-inflammatory cytokine 

release, cell death, and resolution of inflammation, which also play an important role in 

advanced atherosclerotic lesions (Young et al. 1995; Spengler et al. 2012; Wang et al. 2015; 

Huo et al. 2017). However, these rhythmic inflammatory processes might differ in distinct cell 

types and in a chronic inflammatory environment. Therefore, further research on identifying 

rhythmicity in inflammatory processes in different cell types within an advanced 

atherosclerotic lesion will provide new insights into the relation of the circadian clock and 

atherosclerosis. Overall, identifying peaks in inflammatory processes within 24 hours could 

also give conclusions why the incidence of myocardial infarction or stroke peaks early in the 

morning (Mueller et al. 1985). Furthermore, determining rhythmic inflammatory processes will 

provide a new platform for possible pharmacological targets. 

The generation of a novel chronopharmacological treatment strategy that ameliorates early 

atherosclerotic lesion development in an animal model, questions whether this 

chronotherapy can be transferred into humans. Therefore, future investigations in humans 

are necessary to provide conclusions about similarities in rhythmic inflammatory processes. 

However, most patients in clinic already suffer from advanced atherosclerotic lesions. Thus, 

the established chronopharmacological treatment strategy presented here could only be 

beneficial for patients with a high risk for cardiovascular diseases, who did not development 

atherosclerosis so far. To avoid the inconveniences of a prolonged pharmacotherapy to 

prevent early atherosclerotic lesion development, future studies on circadian rhythmicity in 

advanced atherosclerotic lesions are adjuvant to generate a novel chronotherapy for 
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patients, who are already in clinic. Furthermore, the concept of chronotherapy can also be 

transferred to other oscillating targets including PPARγ and TNF, whose pharmacological 

targeting has thus far failed, or evoked serious side effects under untimed regimes (Ryan et 

al., 2011; Nissen et al., 2007).  

Taken together, future research focusing on rhythmic inflammatory processes during the 

pathogenesis of atherosclerosis and on chronopharmacology will improve therapeutic 

strategies for cardiovascular diseases.  
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