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Space: the final frontier.  

These are the voyages of the starship Enterprise. 

Its continuing mission: to explore strange new worlds.  

To seek out new life and new civilizations. 

To boldly go where no one has gone before  

(Star Trek the Next Generation)
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For both humans and animals, the ability to orient oneself in an environment is essential 

for everyday functioning. This ability to navigate is affected by individual differences, 

such as age, gender, and cognitive strategies adopted for orientation. When it comes to 

strategy adoption in spatial navigation, the brain can either track a well-known route or 

plan a novel path using cognitive representation of the environment. These two 

strategies are known as route-based and map-based navigation. A similar dual strategy 

approach exists for value-based decision making. One strategy, the mode-free choice, is 

a repetition of previously successful behavior. In contrast, the model-based choice uses 

an internal representation of task structure to assess which future decision will lead to 

the most highly valued outcomes. The computational mechanisms of these two 

strategies in value-based decision making have been well explained using the 

Reinforcement Learning (RL) algorithms.  

 

To investigate the interplay between neural processes involved in spatial navigation and 

value-based decision making, we combined a Virtual Reality (VR) wayfinding paradigm, 

fMRI, and computational models based on RL algorithms. The core of our wayfinding 

task was a grid world where participants navigate in search of specific target objects. 

Participants were first allowed to freely explore the environment. They then proceeded 

through three experimental phases. These three phases encouraged the use of either 

route-based or map-based navigation without limiting the participants to either 

navigational strategy. We then modeled participants’ navigation strategies, as adapted to 

reach target objects, using either model-free, model-based, or a combination of the 

model-free and model-based RL algorithms. The key internal variables from RL 

modeling were then used as parametric regressors to elucidate the computational 

mechanism of strategy adoption during navigation.  
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This cumulative thesis consists of two manuscripts that studies computational 

mechanism and neural correlates of spatial navigation as explained by value-based 

decision making strategies. In the first manuscript, we tested the hypothesis that different 

navigational strategies relate to different neural computational mechanisms as is the case 

for making model-free and model-based choices. We found that participants’ choice 

behavior during the wayfinding task could be well explained by the RL algorithms. We 

also demonstrated that the BOLD signal in certain brain regions correlated well with the 

RL key internal variables, i.e. the model-free or model-based value signals. BOLD signal 

in the left ventromedial prefrontal cortex (vmPFC), retrosplenial complex (RSC), and 

caudate nucleus pertained to model-free value signals. In contrast, BOLD signal in the 

right parahippocampal gyrus extending to the medial temporal lobe (MTL), precuneus, 

and left RSC pertained to model-based value signals. In addition, we also showed that 

the BOLD signals in the left vmPFC and right parahippocampal gyrus were particularly 

well explained by the RL value signals in participants with propensity to model-based 

over the model-free choices.  

 

In the second manuscript, we introduced another element to our study, namely age. It 

has been extensively reported that navigation ability is among the most severely affected 

cognitive faculties in both normal aging and dementia. Thus, we conducted a similar 

experiment, as the one presented in the first manuscript, on two groups of participants: 

older adults between the age of 60 to 75, and younger adults between the age of 23 to 

35. The younger participants performed the wayfinding task on a 24’’ monitor in a lab 

setting. The older participants performed the same task while undergoing functional 

Magnetic Resonance Imaging (fMRI). In our task, we found that while younger 

participants used a mixture of route and map-based navigation across trials, the older 

participants would exhibit strong propensity towards route-based navigation. We also 

showed that the traversed routes in both groups of participants could be well explained 

by either the model-free or model-based reinforcement learning (RL) models. Significant 

correlations between navigation indices and key parameters from the RL models 

confirmed that RL models account for individuals’ variability in strategy adoption during 

navigation. With regard to neuroimaging results, correlation between BOLD activity and 

the model-free value signals provided evidence that the model-free RL algorithm explain 

how the aging brain computationally prefers to rely more on route-based navigation.  
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In brief, in spite of the use of RL and fMRI navigation paradigm for the past decades, 

there has been little integration of the two approaches, especially in human. Thus, this 

work leads to improved knowledge about the utility of RL algorithms to identify both 

the computational mechanism and neural correlates of strategy adoption in spatial 

navigation and wayfinding. Lastly, the studies described in this thesis are important to 

advancing the field of both spatial navigation and value-based decision making. This is 

because, both studies show the potential use of the RL models to improve the modeling 

of various cognitive processes involved in spatial orientation and/or cognition. 
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1 General Introduction 

 

 

 

 

 

Most of us can travel to and from work every day with little to no problems. Some of us 

even arrive at particular destination with little recollection of the path taken. The ability 

to find our way through a large-scale space is undoubtedly essential for successful 

function in the modern world. Consequently, spatial navigation has inspired a great deal 

of research, including neuroimaging studies of humans and single unit recordings of 

animals. Despite its importance, we often take our ability to navigate for granted.  We 

tend to ‘ignore’ this ability until we get lost in a new city or when it is compromised by 

old age.  

 

Furthermore, successful navigation recruits wide range of cognitive abilities including 

sensory processing, memory, and executive functions. This process is also informed by 

spatial knowledge derived from internal and external cues. Recent research has been 

particularly notable for increased understanding of not only the factors affecting human 

navigation but also the nature and properties of navigation strategies: route-based and 

map-based navigation (Wolbers and Wiener, 2014; Ekstrom et al., 2017).  

 

On the one hand, the route-based navigation, which allows habitual traversal of fixed 

routes (Golledge, 1999; Latini-Corazzini et al., 2010; Chersi and Burgess, 2015), relies on 

memory for sequences of distances and turns. On the other hand, the map-based strategy 

requires the encoding of spatial relationship between goals, landmarks, or other salient 

points in space (Golledge, 1999; Wolbers and Büchel, 2005; Nadel, 2012; Ekstrom et al., 

2014). Although computationally more demanding, the map-based navigation enables 

planning and selection of novel paths.  
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In most neuroimaging studies on spatial navigation (Aguirre and D'Esposito, 1997; Iaria 

et al., 2003; Bohbot et al., 2004; Wolbers et al., 2004; Wolbers and Büchel, 2005; Epstein 

and Higgins, 2007; Foo et al., 2007; Iaria et al., 2007; Doeller et al., 2008), the route-map 

dichotomy has been investigated in two different environments, two different trials, two 

different perspective encodings, or two different groups of participants, one for each 

kind of navigation strategy. These methodological choices offer the advantage of 

reduced risk of interference between the two strategies and thus highlight the two 

distinct networks involved in either route or map-based navigation. In the case of 

interactions between route-and map-based navigation, however, a comprehensive 

approach should consider that in everyday life these two strategies might work in parallel. 

Consequently, although there is a growing number of studies reporting neural correlates 

of spatial processing, the computational mechanism accounting for interaction of route 

and map-based navigation as well as its neural underpinnings remains a topic of debate, 

particularly in humans.  

 

One promising domain to dissect the computational mechanism of spatial navigation is 

value-based decision making. Similar to spatial navigation, there is a prominent view in 

value-based decision making that the brain engages two complimentary systems for 

value-based decision: model-free and model-based choices (Rangel et al., 2008). The 

former works by reinforcing successful actions and avoiding task structure. The latter, 

in contrast, relies on a cognitive representation of the task. This representation is used 

to evaluate which set of actions lead to the best outcome. Extensive studies have shown 

that the computational principles underlying these two value-based-choice systems are 

well explained by a number of reinforcement learning algorithms. In addition, combining 

reinforcement learning model and neuroimaging methods, studies also report how these 

two complimentary systems coexist in different corticostriatal circuits (Dayan and Niv, 

2008; Hare et al., 2008; Glascher et al., 2010; Daw et al., 2011; Wunderlich et al., 2011; 

Glascher et al., 2012; Wunderlich et al., 2012).  

 

This doctoral thesis focuses on bridging the gap between two rather separate fields: 

spatial navigation and value-based decision making. Using a novel wayfinding paradigm 

in a Virtual Reality (VR) setting and computational model based on reinforcement 

learning (RL), the studies presented in this thesis, tested whether the model-free choice 

that rests on forming association between stimuli and responses is comparable to route-
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based navigation that is based on linking cues in the environment with sequence of 

movement and landmarks. Likewise, model-based choice is performed by searching 

down a task structure that is notably similar to a spatial map. Moreover, by measuring 

blood oxygen level dependent (BOLD) signal while human subjects perform the 

wayfinding task, this thesis explore the idea that neural processing of reward based 

information and spatial navigation interact closely. Thus, they might share common 

neural networks. The reason for this hypothesis is that most navigation tasks require 

several decision processes to be solved.  

 

Based on the objective of this doctoral thesis, this chapter positions the thesis in relation 

to existing research. The literature of a number of pertinent issues, spanning different 

academic fields, is reviewed. Two broad areas are discussed: (1) spatial navigation and 

wayfinding, and (2) value-based decision making. The first half of this chapter will focus 

upon the body of literature concerned with strategy adoption in spatial navigation. It will 

begin by discussing the concept and definition of spatial navigation and wayfinding. 

Through survey of definitions, this chapter will gradually distil a working definition of 

two strategies in navigation.  Next, studies highlighting different methodologies in 

assessing navigation strategies are reviewed. Of particular interests are those attempting 

to compare real and virtual environment. This chapter then moves on to highlight neural 

basis of navigation strategies. The second half of this chapter will focus on value based 

decision making.  Of particular interests are studies dissecting different strategies in 

value-based decision making as well as neural correlates of reinforcement learning as a 

computational framework to represent choice behavior. This chapter then concludes 

with the aim of the thesis. 
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Before a deeper explanation into the topic of this thesis, it is helpful to define and clarify 

some of the basic assumptions, ideas, and terms that will be presented throughout this 

thesis. There are at least two ways to describe the processes behind human movement 

in a large-scale environment namely wayfinding and spatial navigation. Although in most 

literature the behavioral, cognitive, and neural process involved during navigation and 

wayfinding are typically used interchangeably, there are some crucial discrepancy 

between these processes. The first term, wayfinding, refers to the behavior of finding 

one’s way from an origin to one or more destinations (Heft, 2012). It involves selecting 

path segments from an existing spatial representation and evaluating these segments 

against previous spatial decisions as one travels along a specific path. The cognitive 

components of wayfinding center on the ability to know origins and seek destinations 

that may have never been visited, to determine turn angles in appropriate sequence, to 

maintain orientation, as well as to estimate location based on landmarks (Montello, 

1991).  

 

Furthermore, wayfinding is a purposive, directed and motivated activity that relies on 

existing spatial knowledge. This spatial knowledge is gathered from prior experience, 

maps, or even verbal descriptions. An example of individuals with a phenomenal 

wayfinding ability would be experienced taxi drivers. Studies have demonstrated that 

experienced taxi drivers can generate novel routes and remember street names better 

than pedestrians and bus drivers (Maguire et al., 2000). These findings are even 

supported by corresponding hippocampal neurogenesis that is suggested to reflect the 

development, storage, and use of a complex spatial representation (Spiers and Maguire, 

2006).  

 

The second term, spatial navigation, is used as a proxy for the processing of a variety of 

different forms of information regarding position and rate of travel between identifiable 

origins and destinations summarized as a course to be followed. The etymological roots 

of navigation come from the Latin word navis, which refers to the art of travelling, often 

by sea. Colloquially it means to deliberately walk or make one’s way through some space. 

In contrast to wayfinding, the focus of spatial navigation is on the action rather than the 

cognitive processes behind it.  
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The information used in navigation is most often visual but also vestibular, 

proprioceptive, somatosensory, and auditory (Wolbers, 2010). Although humans have a 

bias toward using visual information, vestibular input and the efference copy of self-

motion are extremely important for real-life navigation. Together, they all contribute 

(either in a combined fashion or independently) to extracting information about the 

environment (e.g., its shape and scale), the location of items, and our own location within 

it (Holden and Newcombe, 2012). While navigating, we become familiar with the 

environment and acquire knowledge about it, thereby extracting information from it and 

storing this information in our memory. This way, we can recall it later for a variety of 

purposes (Golledge, 1999). Based on these definitions, this is the distinction between 

wayfinding and spatial navigation to be used in this thesis.  
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Figure 1.1. The relationship between egocentric and allocentric reference frame 

In an egocentric coordinate system locations are represented relative to the body-orientation of a navigator 
as indicated by the arrow. An allocentric reference frame is located and oriented on an object or a location 
other than the navigator Stationary objects do not change their coordinates or bearings when the navigator 
(i.e., the representing system) is moving. Distance, direction and bearing of an object relative to the origin 
of the coordinate system are directly represented. Figure adapted from Wolbers and Wiener, 2014.  

 

 

In order to interact with space, during wayfinding and spatial navigation, humans need 

to integrate spatial information to new objects encountered and new motion 

information. This process is supposed to rely on reference frame (Gomez et al., 2014). 

This is because a reference frame determines what kind of spatial environment is 

represented, and how locations are specified within that environment (McCloskey, 

2001). Exceptions notwithstanding, there is a general agreement that there are two kinds 

of spatial reference frames (as depicted in Figure 1.1): egocentric and allocentric 

(Wolbers and Wiener, 2014).  

 

This doctoral thesis refers to egocentric or ego-relative spatial reference frames 

whenever locations are represented with respect to the particular perspective (be it of 

the present, remembered, or imagined) of an observer, as opposed to an external 

landmark (Filimon, 2015). The origin of the egocentric reference frame is centered on 

the observer. Thus, its orientation is defined by the observer’s heading.  

 

Furthermore, there are some assumptions in defining egocentric reference frame 

including: (1) all body parts of the observer are oriented in the same direction, (2) the 

observer’s heading coincides with the orientation of all egocentric reference frames, and 

(3) polar coordinate system is used (Wolbers and Wiener, 2014). Based on these 

assumptions and as shown in Figure, egocentric distance can be defined as the length of 
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vector connecting the observer and the object. The angle between the observers’ heading 

and that vector specifies its egocentric direction (Taylor and Brunye, 2012). 

 

Allocentric reference frame, also known as object-oriented or view-independent, is 

generally used to include any form of spatial reference where locations are encoded 

relative to points external to the observer. As shown in Figure 1.1, an object’s allocentric 

distance corresponds to the length of a vector connecting the origin of the coordinate 

system and the object. This distance is rarely defined with respect to an origin but rather 

to local representation of relative, object to object spatial relationships. Similarly, 

allocentric direction usually refer to the direction between two external objects (Taylor 

and Brunye, 2012; Wolbers and Wiener, 2014; Ekstrom et al., 2017).  

 

Based on these definitions, it is clear that the differences between egocentric and 

allocentric reference frames become crucial when the observer moves about in the 

environment (i.e. during wayfinding and navigation). For example, when an observer 

simply turns around, only object’s egocentric direction changes while its egocentric 

distance remains the same. In contrast, neither allocentric distance nor direction is 

affected by observer rotation. These differences are more pronounced for translational 

movements in which both allocentric distance and direction remain unaffected.   

 

 

Spatial knowledge, as the term used in this thesis, is knowledge of the locations of 

objects, places, and environmental features. This knowledge, which underpins 

navigation through an environment, can be classified into three distinct types: object-

place, route, and graph/survey knowledge (Siegel and White, 1975). The object-place 

knowledge is the knowledge of the identities and appearance of entities. It is usually the 

first to be acquired and become the building block of other types of spatial knowledge 

Some of these entities are considered objects e.g. coffee table, whereas others 

correspond to significant location of greater extent and less well-defined boundaries e.g. 

small city park. Landmarks are entities of special significant to wayfinding and 

navigation. These landmarks might be used as: (1) indicator of locations of other objects 

and places (e.g. the research center is at the top floor of the university hospital), (2) goal 
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of navigation (e.g. I am going to the post office), and (3) marking of decision points (e.g. 

turn left at the university main building).  

 

The second one, route knowledge, is typically associated with an egocentric reference 

frame. It consists of familiarity with sequences of landmarks and associated decisions 

and actions (Siegel and White, 1975). Actions specify the steps to get to the next 

landmark on the route. In route knowledge, the function of landmarks is comparable to 

associative cues. Route knowledge is assumed to be nonmetric early in acquisition, 

consisting only of the order of landmarks and associated actions. Through experience 

route knowledge can acquire metric properties and specify distances, temporal durations, 

and turning angles (Thorndyke and Hayes-Roth, 1982b). 

  

The most sophisticated form of spatial knowledge is survey knowledge (also frequently 

compared to a ‘map’ or a ‘graph’, the ‘top-down’ knowledge), which is associated with 

an allocentric reference frame. It is the knowledge of the overall spatial layout of an 

environment, and includes Euclidian distances as well as inter-point directions defined 

in a common reference system (Hegarty and Waller, 2005). A key characteristics of 

survey knowledge is that the spatial relations between locations can be inferred even if 

travel has never occurred between locations. As a consequence, behaviors that pinpoint 

the presence of survey knowledge may consists of the abilities to create efficient path 

e.g. taking shortcuts or to pinpoint to unseen location (Golledge, 1999; Nadel, 2012).  

 

Furthermore, spatial knowledge has several key properties including fragmented, 

distorted, hierarchical, and orientation dependent. First, spatial knowledge is typically 

fragmented. This means it consists of a patchwork of detailed knowledge of some areas 

and only spare knowledge of other areas (Appleyard, 1970). A second key property of 

spatial knowledge is that memories of spatial relations, such as distances, angles, and 

orientation, often differ from the physical values in systematic and predictable ways. 

Example of these distortions include greater estimates of Euclidian distances when 

locations are separated by boundaries (Wiener et al., 2009), asymmetric distance 

estimation under different task instructions (Takahashi et al., 2013), and angles of 

intersection between roads are remembered to being closer to 900 than they are in reality 

(Allen, 2006). Moreover, there is strong evidence that memories of locations of objects 

in the environment are organized categorically and hierarchically. Consequently, a region 
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of space may be represented as a whole and as a part. The former means that a region 

of space contains other regions and locations. On the contrary, the latter means that a 

region of space is contained in a larger regions. Lastly, humans recall and recognize 

spatial relations between objects more efficiently from some perspectives than from 

others. Thus, spatial knowledge is known to be orientation dependent.  
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As written in the beginning of this chapter, successful navigation may rely on two types 

of strategy adoption, generally termed as route-based and map-based navigation. Route-

based navigation involves recognizing an origin and a destination, and identifying route 

segments, turn angles, and the sequence of segments and angles that make up the desired 

path. In contrast, map-based navigation requires encoding of the spatial relationship 

between landmarks and/or locations. It relies on a cognitive map that supports flexible 

navigation within an environment. Building from this idea, much of this chapter is an 

elaboration of the characteristics of these two strategies and how normal aging affect 

strategy adoption in navigation.  

 

 

 

The major concern of route-based navigation is using the pattern of the path and the 

sequence of behaviors needed to traverse it, rather than learning the environment 

through which the route passes. Thus, it relies mainly on route knowledge and the 

egocentric spatial reference frame. When route-based navigation takes place, on-route 

information is dominant and take precedence over all off-route information. 

Environmental features such as landmarks are learned to support the acquisition of 

spatial knowledge at each segment of the path taken. This process is employed in a 

manner of stimulus-response pairings that involves relating a directional response with 

an encoded landmark at certain segments of the path taken. The behavioral response 

associated with successful route-based navigation are encoded relative to one’s body and 

thus, route-based navigation relies mostly on egocentric reference frame. Consequently, 

it supports accurate navigation when the position and orientation in the environment 

are known. 

 

Furthermore, environmental features that are spatially correspond with a goal location 

can be encoded as beacon. Subsequent recognition of encoded landmarks triggers a 

universal behavioral response that results in movement relative to the position of the 

landmark such as ‘turn right toward the train station’. This recognition of the encoded 

landmark during subsequent navigation facilitates the recall of the corresponding route 

knowledge, which is then used to inform spatial behavior.  
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Map-based navigation relies on cognitive map, a concept first introduced by Tolman in 

1948. Although the notion of a cognitive map has been used in many different ways 

since then, in this thesis, a cognitive map is defined as a mental representation of the 

environment that captures the spatial relations among geometrical structures in a defined 

region (Tolman, 1948; Golledge, 1999). Especially in human and other primates, the 

term cognitive map implies deliberate and motivated encoding of environmental 

information. This information can be used to: (1) determine where one is at any given 

moment, (2) locate where specific encoded objects are in surrounding space, (3) specify 

how to get from one place to another, and (4) communicate spatial knowledge to others. 

Note that it is not necessary to assume that a cognitive map looks like a map in the head. 

Nevertheless, it is commonly agreed that a cognitive map consists of points (such as 

landmarks and reference node), lines (such as routes and tracks), areas (for example, 

regions and neighborhoods), and surfaces (three dimensional characteristics of places) 

(Golledge, 1999; Nadel, 2012). 

 

There are three key features of a cognitive map. First, it represents information in a 

viewpoint-independent fashion. Another key feature is that it represents configurations, 

rather than simple associations, between features of the environment. This configuration 

of features can be attained in a variety of ways including defining boundaries around a 

certain region, integrating separately learned route information into a network, and 

overviewing from a survey point. Finally, a cognitive map depend on allocentric 

reference frame (Thorndyke and Hayes-Roth, 1982a; Maguire et al., 1999; Foo et al., 

2005; Smith and Mizumori, 2006; Iaria et al., 2007). There has been considerable debate 

about the relative importance and roles of egocentric versus allocentric reference frames 

in the formation of a cognitive map, and it is beyond the scope of this chapter and this 

thesis to join the debate.  

 

Given that a cognitive map represents environmental realities, it is acquired through 

interactions with the external world. These interactions can take, at least, three forms: 

(1) active search and exploration according to specific rules or heuristics, (2) a priori 

familiarization with secondary information sources about the environment, and (3) 

experience of the environment using controlled navigational practices (Golledge, 1999). 

Through these forms of interactions, various details of the environment are captured. 

The more interactions take place, the more details are acquired. Over some period of 
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time, given that one gains more exposure to the same environment, cognitive map of a 

given environment becomes progressively more detailed.  

 

 

 

Older age is associated with functional decline in selective aspects of cognitive 

performance including executive function, attention, verbal and visual explicit memory, 

as well as working memory (Park et al., 2001). Given that spatial navigation involves a 

multitude of cognitive functions and processes, it is not surprising that there is an age-

related preferential shift for one navigation strategy over the other. This preferential shift 

has been reported by a steadily accumulating literature investigating age related 

navigation differences in humans. This subsection reviews the extant literature in three 

categories: (1) studies that pointed out age-related preference for route-based to map-

based navigation, (2) studies that underlined age-related impairments in utilizing 

allocentric reference frame, and (3) studies that highlight the age-related difficulties in 

switching between reference frames. 

 

At least two experimental studies reported an age-related preferential use for route-based 

rather than map-based navigation (Rodgers et al., 2012; Goeke et al., 2015). By 

comparing the performance of older to younger adults in a virtual version of the Morris 

Water Maze (hMWM, details in section 1.3), Rodgers et al. (2012) reported that older 

adults achieved worst results. They travelled longer distance before finding the target 

location. Moreover, comparing the two groups on their preferential strategy through a 

virtual Y-maze task (details in section 1.3), the study found that older adults used route-

based navigation more often. The younger adults were almost equally distributed with 

46% preferred to use route-based navigation. In contrast, the older adults were more 

likely to adopt route-based navigation (82%). Similar age-related preference was reported 

by Goeke et al. (2015) using the tunnel paradigm. These authors concluded that age-

related alterations in the neural system supporting map-based navigation, especially in 

the medial temporal lobe (MTL), may drive the elderly to more frequent use of route-

based navigation. 
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Gazova et al. (2013) assessed the progressive deterioration of spatial reference frames 

among different age groups. The authors reported a quadratic effect of age and the ability 

of using allocentric reference frame (Gazova et al., 2013). Specifically, the allocentric 

decline was mainly observed at subjects older than 70 years of age. In line with this result, 

Wiener et al. (2012) showed that older adults have difficulties in route retracing. This 

indicates that older adults cannot indicate direction from the opposite site of the original 

learned route. In contrast, older adults performed reasonably well during the route 

learning task where they had to repeat the same learned route (Wiener et al., 2012). Along 

with findings from Moffat et al. (2006), these studies provide evidence toward specific 

allocentric, but not egocentric, impairments that may reflect age-related hippocampal 

decline.  

 

Furthermore, successful navigation depends largely on the ability to integrate 

information from different spatial reference frames. This ability is also affected by aging 

because older adults have difficulties in switching between reference frames. In both of 

their studies, Harries et al. (2012; 2014) reported that aging has a major effect on 

allocentric to egocentric translation. They did not, however, find any age-related 

impairments on the use of allocentric reference frame nor on the egocentric to 

allocentric translation (Harris et al., 2012; Harris and Wolbers, 2012). Contrary to these 

findings, two studies identified age-related declines in the opposite direction (Carelli et 

al., 2011; Morganti and Riva, 2014). Both studies used the Wisc-R papers and pencil 

(P&P) maze task and an equivalent virtual version of the task. To solve the virtual version 

of the task, survey knowledge from the P&P version needs to be translated into an 

egocentric frame. Older adults performed worse, especially in the virtual version of the 

task. This effect was strongly evident as age increased and positively correlated with the 

Mini Mental State Examination’s score (MMSE).   
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One fundamental question that is generally considered when assessing strategies in 

spatial navigation and wayfinding is how the environment will be presented during the 

assessment. Traditionally, most navigation studies are carried out in the so called real 

world. This setting offers, in addition to convenience, the possibility to produce patterns 

of behavior similar to daily life as a significant advantage (Sitzmann et al., 2018). 

Nevertheless, real world setting poses a number of challenges. Contrary to studies in a 

laboratory setting, influencing and constraining a real world environment can be 

challenging. Enforcing identical conditions for all participants or optimize task design 

might be influenced by potential disturbing factors such as weather conditions, traffic, 

noise (Gillner and Mallot, 1998; van der Ham et al., 2015). Furthermore, participants 

with prior knowledge of the test environment add experimental noise to the 

measurement. These challenges along with the rapid improvement of technology, 

particularly with regards to virtual environments, promote the use of virtual reality 

technology as a prominent tool in navigation research. Since the early 1990’s, when 

computers became powerful enough to simulate large-scale environment, the growth of 

papers in this topic has been exponential. This is largely due to the fact that with these 

virtual environments, wayfinding strategies can be studied in any possible type or set up 

of environment. In addition, behavioral responses can be recorded in great detail. In this 

section, studies comparing navigation in real and virtual environments as well as those 

proposing various set up to compare route and map-based navigation are reviewed.  

 

 

 

As mentioned in the beginning of this section, real world environments might arguably 

produce patterns of behavior that better reflect how humans navigate on a daily basis. 

In some cases, however, virtual environments can better facilitate the isolation of 

different processes that construct navigation. In this subsection we provide a brief 

overview of the benefits and challenges associated with VR in navigation research. We 

discuss its utility in three ways: (1) discerning advantages of VR over conventional 

stimulus presentation, (2) understanding the technological limitations of the 

methodology, and (3) investigating whether skills or knowledge can be carried over from 

the real world to the virtual world and vice versa.  
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To begin with, the term VR is often used interchangeably to refer to one of three 

systems: (1) a virtual environment shown on a flat screen, (2) a room-based system with 

sensors attached to one’s body, or (3) a head-mounted display (Wilson and Soranzo, 

2015). Though all three systems are quite different, a common feature of all three is the 

presence of depth. This feature creates an illusion that the viewer is seeing objects in a 

virtual space (Diemer et al., 2015). There are a number of advantages offered by this 

feature including greater control over stimulus presentation, variety in response options, 

and possibility of increasing ecological validity.  

 

There are several advantages in presenting experimental stimuli using VR technology, 

especially in spatial navigation and wayfinding research. First, VR can present a range of 

complex stimulus that would not be easily controllable in the real world and enabling 

the examination of both cognitive process such as attention and functional behaviors 

such as planning a series of actions along a path in a virtual maze (van der Ham et al., 

2015; Grubert et al., 2017). Consequently, in VR participants are enabled to responds to 

pertinent stimuli while being immersed in a larger environment which can itself be 

controlled (Waller et al., 2003). This differs from traditional experimental contexts where 

the pertinent stimuli may be controlled but the surrounding environment often cannot 

be. Second, virtual environments can be modeled and controlled to the experimental 

requirements, without having to build something similar in the real world (Dombeck 

and Reiser, 2012). Consequently, situations that would be impossible in the real world, 

such as teleportation, can be realized in a VR setting. Third, VR enables the development 

of new protocols to measure participant responding that goes beyond point and click 

exercise. This is especially important in navigation research where researchers need to 

strike a balance between controlled environment and ecological validity. Lastly, VR 

allows studies to be conducted in a lab setting. This means experimental conditions can 

be further constrained and remained comparable for all participants. This high level of 

control improves the validity and might improve the reproducibility of navigation studies 

(Schultheis et al., 2002).  

 

Despite the advantages of VR in navigation research, it is important to consider to what 

extent the technology itself affect the outcome of the experiment. These technological 

issues might arise from interface design, control of motion through the environment, 

and field of view of VR displays. Ruddle et al. (1997) used direction and distance tests 
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to determine whether there is a difference in patterns of movement between subjects 

navigating immersively and non-immersively. In this study, subjects used either a head-

mounted (immersive) or a desktop display (non-immersive). On the whole, they found 

that the proprioceptive feedback for the group using headset did not drastically improve 

their orientation judging ability. As a results, there were similar patterns of movement 

between immersive and non-immersive group (Ruddle et al., 1997).  

 

Following the work by Ruddle et al. (1997), Wells et al. (1996) tried to address the effects 

of navigational control devices. In particular, whether navigational control devices that 

used whole body movements are superior to control devices that are independent of 

body positions (such as joysticks). Using route learning and direction orientation task, 

they found that in simple environments, there was a negligible difference between 

devices. However, the body controlled device were superior as environments became 

more complex. Some other studies have also dealt with this topic and found that, in a 

complex environment, the performance of body controlled device is merely superior 

(Peterson et al., 1998).  

 

As for the effects of field of view (FOV), there has been some conflicting results (Bakker 

et al., 2001). Using headset of differing FOV and a number of homing tests, Peruch et 

al (2001) concluded that the amount of simultaneous environmental information is not 

a determiner of one’s comprehension of the environments. On the contrary, earlier work 

by Alfano and Michel (1990) found that restriction in FOV affect the performance of 

certain tasks related to navigation and wayfinding. These tasks include following a 

winding path, hand-eye coordination, and forming a mental representation of the 

environment (Alfano and Michel, 1990).  

 

Lastly, the question remains whether the results of VR studies are valid in comparison 

with traditional navigation research methods. Therefore, the final part of this subsection 

is dedicated to review what is known about the degree to which navigation behavior in 

VR and real environment is comparable. An early work by Witmer et al. (1996) examined 

how route knowledge gained in a simulation of a complex building can aid navigation in 

the real building. Comparing performance of three groups (route in real building, virtual 

simulation of the building, and color photographs), they measured subjects’ spatial 

knowledge acquisition and wayfinding ability. Their results suggested that virtual 
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environments that adequately represent real world complexity can be effective training 

media for learning complex routes in buildings (Witmer et al., 1996).  

 

In the same year, Thaulka and Wilson (1996) tested whether knowledge gained in the 

virtual world was flexible and independent of the orientation of the observer. There were 

two groups of participants: one group gained spatial knowledge through virtual 

environments, the other through examination of a map of the same environment. They 

found that while the group that had studied the map had orientation-specific knowledge 

of the world, the group that had navigated through the virtual environment had an 

orientation-free knowledge of the test environment. In other words, they suggested that 

real-world and simulated navigation both result in similar orientation-free cognitive 

representation of the environment. In addition, in accordance to previous work, they 

concluded that there is a great deal of equivalence of learning in simulated and real space 

(Richardson et al., 1999).  

 

Following these works, there have been several studies with a positive outlook towards 

comparability of navigation in real vs. virtual environments. These studies often perform 

a navigation study in both virtual and real environments and compare the results between 

groups. They find that participants are able to effectively navigate through virtual 

environments and are able to learn spatial relations in the virtual environment. 

Combining these findings with the promising features VR offers, for instance high 

controllability of stimuli and precise measurements, these studies concluded that VR can 

be successfully employed in assessing various characteristics of navigation and 

wayfinding behavior in humans (Gillner and Mallot, 1998; Schmelter et al., 2009). 

 

Despite these promising findings, several studies indicate that even though participants 

are indeed able to acquire some navigational knowledge from a virtual environment, 

navigation performance and spatial learning simply do not reach the same level as real 

world conditions. Their opinion about the application of VR are often more nuanced. 

Correlations between how well participants were able to learn virtual and real 

environments are found, as well as similar biases between the two groups. This seems to 

suggest that similar cognitive mechanisms are being used in virtual learning. Despite 

these promising findings, these studies also indicate that virtual environment learners 
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simply showed the poorer learning, than real world learners (Richardson et al., 1999; 

Waller et al., 2004; Schmelter et al., 2009). 

 

All in all, the majority of studies comparing navigation in real and virtual environments 

appear to be suggesting that we use real and virtual space analogously. In other words, 

knowledge gained in either one may be applied to the other. This conclusion clearly has 

many applications, especially with regards to assessment of wayfinding strategies. In the 

next segment of this section, different set ups of virtual environments that facilitate the 

investigation of wayfinding strategies will be presented.  

 

 

 

Because there are many advantages of using VR in spatial navigation research, a number 

of researchers started developing different assessment paradigm with the help of VR. 

Some of these researchers focused on the effect of technology and interface. Others 

performed wayfinding experiment by simply substituting virtual world for the real world. 

The one presented here are those that specifically target the strategy adoption in 

navigation.  

The most widely used paradigm for assessing wayfinding strategies is the Moris Water 

Maze Task (MWMT). It was originally developed by Richard Moris to examine the 

spatial memory of rodents. It consists of a circular pool containing opaque water and a 

hidden submerged target platform without the presence of proximal cues. Rodents are 

placed in the pool and rely on distal cues to find the platform. As the rodents became 

more familiar with the task, the can find the platform quicker. Several characteristics 

contributed to prevalent used of MWMT. These include lack of required pre-training 

phase, reliability across a wide range of tank configuration and testing procedures, as 

well as extensive evidence of validity as a measure of hippocampal-dependent map 

navigation (deBruin et al., 2001).  

 

The task has also been adapted in both laboratory and VE settings to test human 

participants (Astur et al., 2002; Moffat and Resnick, 2002; Driscoll et al., 2005; 
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Newhouse et al., 2007; Hamilton et al., 2009; Herting and Nagel, 2012). One example is 

the work by Doller et al. (2008). Using VR technology, they adapted MWMT into an 

object-location memory task (Figure 1.2) comprising a landmark, a circular boundary 

(analogous to the water tank), and distant cues. In the task, some objects maintained a 

fixed location relative to the environmental boundary. Other objects maintained a fixed 

location relative to a single landmark. Participants learned the locations of the objects by 

collecting and replacing them over multiple trials while being scanned by fMRI. The 

distinct incidental hippocampal activation suggest the use of cognitive map (Doeller et 

al., 2008). 

 

 

Figure 1.2. An overview of a human analog of the Morris Water Maze experiment 

Participants learned four object’s locations over four blocks, the landmark (red star) and boundary (large 
blue circle) moving relative to each other at the start of each block. Two objects were paired with the 
landmark (blue circles), and two objects were paired with the boundary (red squares).  
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Figure 1.3. An example of a Cross Maze task 

The left most panel is an overview of the training or the encoding phase. Participants learn to navigate 
from a fixed starting position to a goal arm. The middle and right panels are overview of the probe trial. 
The middle panel illustrates how subjects’ response when subjects use allocentric reference frame while 
the right panel illustrates subjects’ response when they use egocentric reference frame.  

 

The Cross Maze (Tolman, 1948; Schroeder et al., 2002; Wingard and Packard, 2008) was 

originally developed to investigate navigation behavior in rodents, and have since been 

adapted to study human spatial cognition. As shown in Figure 1.3, this paradigm features 

four arms radiating from a central junction. Experiment employing cross maze usually 

consists of a sequence of training and probe trials. During training, participants navigate 

from a fixed starting position, usually at the end of a radial arm to a goal arm located 

either to the left or right of the maze junction. Use of map-based navigation in this maze 

requires the knowledge of the spatial relationship between the goal arm and distal 

environmental cues. On the contrary, route-based navigation only involve a simple turn 

left/right response. Strategy preference is assessed by probe trials. During these trials, the 

starting position is different to that in training, usually shifted to a different radial arm.  

 

One example of the use of Cross Maze Task in VE setting is the work by Wiener et al. 

(2013). The authors used Cross Maze to construct a route-learning paradigm that 

investigates the effects of cognitive aging on the selection and adoption of navigation 

strategies in humans. Since participants were required to rejoin a previously learned route 

encountered from an unfamiliar direction, navigation to the position of the goal suggests 

presence of cognitive map (Figure 1.3). Likewise executing the same turning response as 

the one learned during the encoding phase is indicative of route-based navigation 

(Wiener et al., 2013).  
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Initially, the Radial Arm Maze (RAM) was employed to study spatial working memory 

in rodents (Chen et al., 1994). However, it has been recently modified to discriminate 

between map-based and route-based navigation. There are several variants of this task 

with the most common uses eight identical arms radiating outward from a circular center 

platform (Figure 1.4. A). Distal cues are placed surrounding the environment. Following 

an encoding phase, participants’ strategy preference is determined by the rate of 

navigational errors during subsequent probe trials, in which all available distal cues are 

obscured from view. As discussed in Subsection 1.2.1, map-based strategy requires the 

knowledge of spatial relationship among landmarks and other environmental features. 

Therefore, the absence of distal cues is partially detrimental to the use of map-based 

strategy (Iaria et al., 2003).  

 

The Starmaze paradigm (Figure 1.4. B) is constructed of 10 identical alleys. Five of these 

alleys form a central pentagon. The remaining alleys radiate from the ventrices of the 

pentagon. Similar to the RAM task, Starmaze task usually consists of encoding and probe 

trials. The objective of training trials is learning to navigate from a fixed starting position 

in one of the radial alleys to a goal located in a separate radial alley. To successfully 

navigate, participants can employ one of two strategies. On the one hand, map-based 

navigation by relying on allocentric reference frame to learn the location of the goal arm 

relative to surrounding distal cues. On the other hand, a sequential route-based 

navigation by relying on egocentric reference frame to learn the correct series of 

movement required to navigate to the goal arm.  

 

Wolbers et al. (2004) adapted the hexatown environment (Figure 1.5) developed by Gillner 

and Mallot to investigate the emergence of route knowledge and dissociate the 

contribution of retrosplenial and hippocampal region to the formation of a cognitive 

map in humans. This particular design has the advantage of allowing a route to be 

planned that covers the entire town by passing through every road section only once in 

each direction. As the roads were flanked on both sides by brick stone walls, participants’ 

view were restricted to the immediate straight direction. Granted that, remote road 



CHAPTER 1 

54 

sections or intersections were invisible. At four intersections, twelve distinct buildings 

were placed to serve as landmarks.  

 

During the encoding trials, participants were moved through the environment and 

instructed to memorize spatial relation between landmarks. During the probe trials, 

participants were asked to assess spatial position of one landmark (referred as target 

building) relative to another landmark. Results showed evidence of emergence of route 

knowledge in some participants (Wolbers et al., 2004; Wolbers and Büchel, 2005).  

 

 

 

Figure 1.4. An overview of a Radial Arm and Starmaze task 

A. During training, participants learn to navigate to radial arms containing hidden rewards. Participants’ 
strategy preference is then determined by navigation behavior during probe trials in which all landmarks 
are occluded from the view.  

B. The left panel is an overview of the subjects’ training during the encoding phase of the experiment. 
Subjects learn to navigate from a fixed starting position to a goal arm. The right panel is an overview of 
the probe trial. Subjects’ responses can indicate whether they employ either map-based or route-based 
strategy.  
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Figure 1.5. The hexatown paradigm 

The figure represents aerial view of the hexatown configuration adapted from Gillner and Mallot (1998). 
In the work by Wolbers and Büchel (2005), brick stone walls on both sides of the road restricted the view 
to the immediate straight ahead; remote road sections or intersections were invisible. Twelve distinct 
buildings serving as landmarks were placed at four intersections (three landmarks per intersection). These 
buildings were hidden behind walls unless subjects were standing directly in front of them. Stimuli for the 
retrieval task consisted of snapshots of all buildings from the same viewpoints as those encountered during 
navigation. 

 

 

Figure 1.6. An overview of the Dual Strategy Paradigm (DSP) 

A. A section of the training procedure. Subjects are passively transported along a route through the 
environment.  

B. An overview of the probe trial. Subjects must navigate from a known location to a target landmark (red 
star). The use of a novel short-cut is indicative of map-based navigation use, while following the original 
route suggests route-based navigation.  
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Unlike the other four paradigms discussed in this subsection, Dual Strategy Paradigm 

(DSP) allow both route-based and map-based strategy adoption to support accurate – 

albeit different – navigation (Marchette et al., 2011). In the DSP, participants were first 

transported passively along a route in a grid-like virtual maze. They were asked to learn 

the location of twelve unique objects. During a subsequent probe trials, participants 

navigated to target objects from a number of locations along the original route. When 

participants simply navigated along the original route, this behavior suggests that they 

employed route-based navigation. On the contrary, when participants employed novel 

short-cuts, the authors concluded that the participants have developed a spatial 

representation of the virtual maze (Figure 1.6).  
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Research has shown that route-based and map-based navigation rely on different neural 

substrates. When it comes to addressing the fine grained questions about information 

encoding and processing in certain brain region, researchers typically turn to single unit 

recording in animals (such as rodent and non-human primate). As the name indicate, the 

data from single-unit-recording experiments reflect the activity of a single functional unit 

within a brain region that may or may not contain multiple neurons. Single unit recording 

uses changes in firing rate of action potential in a given neuron as an index of whether a 

stimulus changes the information processing with which that neuron is associated. This 

method involves insertion of very fine electrodes, made of metal that is highly sensitive 

to high frequency electrical signal, into the neural tissues adjacent to neurons of interest. 

Due to its extraordinary temporal resolution, single unit recording offers direct 

information about the rate and timing of action potentials within a brain region. Data 

from single unit studies provide the ground work for many subsequent studies in spatial 

navigation.    

 

In humans, however, the neural correlates of spatial navigation and wayfinding are 

primarily investigated using non-invasive neuroimaging methods. These methods 

include functional magnetic resonance imaging (fMRI), positron emission tomography 

(PET), magnetoencephalography (MEG), and electroencephalography (EEG). Each 

method has its own superiorities and pitfalls. Functional magnetic resonance imaging 

(fMRI), which is by far the most commonly used method, measures brain activity via 

changes in blood flow (Huettel et al., 2004). These changes in blood flow take some 

time. Consequently, while fMRI offers relatively high degree of spatial precision, it 

suffers when it comes to temporal resolution (Logothetis, 2008). Position emission 

tomography (PET) uses glucose tracers to detect areas of the brain that are using the 

most energy. It is assumed that those areas are the most active, and thus are correlated 

with cognitive processes in question. Similar to fMRI, PET offers high spatial resolution 

but less temporal resolution. Due to the injection of tracers, it is often regarded as an 

invasive method. Consequently, it is not as widely used as the fMRI. In contrast to fMRI 

and PET, MEG and EEG offer better temporal resolution. Both MEG and EEG gauge 

the electrical activity (magnetic and electric field respectively) produced by the brain by 
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measuring neural oscillations. One limitation of both methods has to do with spatial 

resolution.  

 

Those various methods have uncovered many of the primary regions involved in either 

route-based or map-based navigation. Briefly, the striatal circuits, which are involved in 

learning and enacting stimulus-response associations (Stalnaker et al., 2010), have been 

shown to play crucial role in route-based navigation (De Leonibus et al., 2005). In 

contrast, different patterns of hippocampal place cell activity across discrete areas of an 

environment support the notion that map-based navigation rely on the hippocampus 

and surrounding structure (Wilson and McNaughton, 1993). This section focuses on 

three functional regions that are essentials for route-based and/or map-based navigation 

namely medial temporal lobe, the striatal complex, and the retrosplenial complex. 

Whenever relevant, this section also neural representation of strategy adoption in 

wayfinding changes due to normal aging.  

 

 

 

 

Figure 1.7. The Medial Temporal Lobe 

The medial temporal lobe consists of the hippocampal formation (blue-green) superiorly and the 
parahippocampal gyrus inferiorly. The entorhinal (brown) and perirhinal (yellow) cortices form the medial 
and lateral components, respectively, of the anterior portion of the parahippocampal gyrus,while the 
parahippocampal cortex (off-white) forms the posterior portion. Adapted  with permission from Raslau 
et al. (2014).  
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Medial temporal lobe (MTL, Figure 1.7) includes a system of anatomically related 

structures including the hippocampal regions (CA fields, dentate gyrus and subicular 

complex) and the adjacent perirhinal, enthorinal, and parahippocampal cortices (Squire 

et al., 2004). Since the case of patient H.M., who underwent a bilateral medial temporal 

lobectomy for intractable epilepsy, the MTL has been associated with episodic memory. 

Later on, in concordance with the discovery of place cells and the idea of cognitive map, 

this region is thought to be involved in spatial cognition and memory in both animals 

(O'Keefe and Nadel, 1978; Morris et al., 1982) and humans (Maguire et al., 1998; Spiers 

et al., 2001).  

 

In humans, several methods have been employed to pinpoint the role of MTL in spatial 

navigation and wayfinding. These methods include experimental lesion, anatomical MRI, 

functional MRI (fMRI), and invasive recordings. Similar to the works in rodents, findings 

from lesion studies suggest that damages to the human hippocampus impairs several 

forms of spatial cognition. Among these, the one that are crucial to strategy adoption 

include damage to memory for spatial relations of multiple objects in an arena (Bohbot 

et al., 1998), and for the spatial relation of objects within a scene (Hartley et al., 2003). 

In contrast to findings from hippocampal lesion, several studies showed that patients 

with parahippocampal lesion had profound deficits in the processing of visual-spatial 

information (Burgess et al., 2002; Bohbot and Corkin, 2007). These deficits, which 

include difficulties in learning new spatial routes and retrieving multiple new spatial 

routes, were not found in patients with a more exclusive hippocampal damage.  

 

Moreover, a voxel based morphometry study showed structural differences within the 

hippocampal region between licensed London taxi drivers and controls (Maguire et al., 

2000). These London taxi drivers must pass a rigorous test of their knowledge of London 

roads. In other words, they were expected to have a better spatial representation of the 

real world environment. On the one hand, the study found that the taxi drivers had larger 

posterior hippocampus. This portion of the hippocampus is crucial for both encoding 

and retrieval of spatial memory (Duarte et al., 2014). On the other hand, the anterior 

portion of the hippocampus was found to be smaller in the taxi drivers as compared to 



CHAPTER 1 

60 

control. This region has been suggested to be related to external attention and the dorsal 

attention network (Robinson et al., 2015).  

 

In a study where strategy adoption was specifically tested, Bohbot et al. (2007) found 

that in a virtual RAM task, map-based navigation correlated with the gray matter density 

in the hippocampus. Similarly, using a virtual city paradigm, Iaria et al. (2008) found that 

structural integrity of the right hippocampus was correlated with how effective 

participants formed and used cognitive maps (Iaria et al., 2008).  In line with these 

findings, Schinazi et al. (2013) found that as participants became increasingly familiar 

with a novel college campus, their performance in a pointing task was positively 

correlated with right hippocampal volume. The pointing task was specifically designed 

to rely on survey knowledge (Schinazi et al., 2013).  

 

Further evidence for MTL involvement in map-based navigation are provided by fMRI 

studies that explicitly compared strategy adoption. For example, using the virtual version 

of the MWMT (details in Subsection 1.3.2 and Figure 1.2), Parslow et al. (2004) found 

that hippocampal and parahippocampal activity increased during performance of task 

that required the participants to use map-based navigation, but not during the task that 

required route-based navigation (Parslow et al., 2004). Similarly, Shipman and Astur 

(2008) observed right hippocampal activity during the early stage of map-based 

navigation. This might reflect either: 1) an initial period of orienting oneself and 

determining the goal location, or 2) general memory encoding that is not necessarily 

specific for spatial navigation (Shipman and Astur, 2008). In a study by Jordan et al. 

(2004), participants were first asked to determine the shortest route between a start and 

an end position within a maze while being shown an overview of the maze. In a 

subsequent test phase, participants navigated between the start and end position in a 

virtual analog of the maze. In line with previous findings, compared to route-based 

navigation, map-based navigation was associated with increased activity in the left 

parahippocampal gyrus and the left hippocampus (Jordan et al., 2004; Zaehle et al., 

2007).  

 

Since map-based navigation relies on cognitive map, it is also important to understand 

how the MTL region supports the acquisition of survey knowledge. Early study by Grön 

et al. (2000) utilized a complex three dimensional maze containing several landmarks. 



GENERAL INTRODUCTION 

61 

Participants needed to build and utilize survey knowledge as they searched for the way 

out of the maze. Analysis of the fMRI data, revealed significant activity in the right 

hippocampus and parahippocampal gyrus during navigation (Gron et al., 2000). 

Furthermore, Wolbers and Büchel (2005) used participants’ improving knowledge of the 

spatial relationship between landmarks in a virtual town to assess the development of a 

survey knowledge. They found that the acquisition of new survey knowledge was 

associated with activity in the hippocampus (Wolbers and Büchel, 2005).  

 

To encourage participants to develop a cognitive map of a virtual environment, Moffat 

et al. (2006) informed them of two subsequent test tasks that required processing of 

survey knowledge. These tasks included reproducing an aerial map of the environment, 

and determining the shortest route to a target object. The results showed significant 

activity in the MTL (Moffat et al., 2006). With a similar objective in mind, in a study by 

Iaria et al. (2007), participants freely explored a virtual city until they could correctly 

indicate the location of the available landmarks on an overview of the environment. This 

was done, during the encoding phase, to demonstrate the development of an accurate 

cognitive map. During a subsequent test phase, participants were asked to navigate 

between different pairs of landmarks via the shortest route. Unlike study by Moffat et 

al. (2006), analysis of the fMRI data revealed involvement of the hippocampal region in 

both the formation and the use of cognitive maps. The left anterior hippocampal activity 

was observed during the encoding phase. On the contrary, the right posterior 

hippocampal activity was observed during the test phase (Iaria et al., 2007). In line with 

all of these findings, more studies showed that the he human hippocampus is associated 

with allocentric reference frame as well as the formation and the use of survey 

knowledge. This hippocampal-related functions allow accurate navigation from new 

starting locations based on either the configuration of environmental cues or the 

recognition of locations from a new viewpoint (Iaria et al., 2003; Doeller et al., 2008; 

Iglói et al., 2010; Lambrey et al., 2012).  

 

Based on the findings presented above, it clear that fMRI remains one of the few 

methods for observing neuronal activity in deep brain structure such as the MTL. 

However, fMRI is not a direct measure of neuronal activity. Additionally, the exact 

relation between BOLD signal and the underlying neural activity remains an area of 

active research. A direct measure on how neuronal activity within MTL supports 
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navigation and wayfinding is obtained through invasive recordings. While patients with 

epilepsy performed a virtual navigation task, Ekstorm et al. (2003) recorded neural 

activity from 317 neurons. These neurons were located within the hippocampus, 

parahippocampal gyrus, as well as frontal lobes and amygdala. The navigation task 

consisted of freely exploring a two-dimensional VE while searching for passengers and 

delivering them to salient landmarks. The results showed that certain neuronal cells in 

the hippocampus robustly responded to spatial location (Ekstrom et al., 2003). In line 

with findings in rodents (Ferbinteanu and Shapiro, 2003; Ainge et al., 2007), many of 

these cells also showed modulations according to a patient’s goal. In other words, the 

cells’ firing rate changed based on which salient landmark a patient searched for. These 

cells, however, did not show changes in firing rather when a patient simply viewed the 

landmarks. In contrast, increased firing of the neuronal cells in parahippocampal gyrus 

was dependent on what landmark the patients viewed. This is in line with previous study 

in primate that noted view-responsive neurons within the parahippocampal gyrus (Rolls 

and O'Mara, 1995). Replicating the findings from Ekstrom et al. (2003), Jacobs et al. 

(2010) found place responsive neurons while epileptic patients navigated in a virtual 

circular environment. Similar to findings in rodent, the study found that these neurons 

tend to be directionally turned on the circular track. Simply put, they only fired when the 

patient navigated one way around the track and not the other (Jacobs et al., 2010). Taken 

together, these findings support a possible division of labor between hippocampus and 

parahippocampal gyrus. In such manner that neurons in the human hippocampus are 

responsive to place/location, and the one in parahippocampal gyrus are responsive to 

landmarks.   

 

 

 

The striatal complex, which is located at the base of the forebrain, is a functional 

structure generally thought to be involved in the control of motor function (De Leonibus 

et al., 2001) and motivational processes (Delgado et al., 2008). Consequently, it has been 

commonly related to forms of cognitive process that requires the associations between 

instrumental response and a feedback (Kelley et al., 1997). More recent studies, however, 

demonstrate that manipulations of this region induce certain deficits in the processing 

of spatial information. For example pharmacological manipulations of the striatum have 
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been proven to affect performance in the Morris water maze, in the radial maze, or in 

tasks of spatial displacement (Colombo et al., 1989; Sutherland and Rodriguez, 1989; 

Roullet et al., 2001; Sargolini et al., 2003; Yin and Knowlton, 2004).  

 

The striatal complex receives information from the whole cortical mantle. It is not a 

homogenous structure and thus, can be differentiated based on two characteristics. First, 

based on its intrinsic biochemical compartments (Sharp et al., 1986). Second, based on 

its connectivity, i.e. the diverse afferent/efferent projections (Alexander et al., 1990; 

Adams et al., 2001). With regard to spatial navigation and wayfinding, of particular 

interests are the dorsal striatum (dorsolateral and dorsomedial) and nucleus accumbens. 

These two structures are thought to support stimulus-response associations and 

procedural memories, which are crucial for route-based navigation (De Leonibus et al., 

2005). 

 

The caudate nucleus plays an important role in learning and spatial memory. It is often 

activated during virtual navigation tasks in functional imaging studies (Iaria et al., 2003; 

Maguire et al. 1998; Moffat et al., 2006). Because of its extensive connections with the 

prefrontal cortex and hippocampus, the caudate is a part of distributed fronto-striatal 

and striato-hippocampal system. Consequently, studies investigating contributions of the 

caudate to human spatial navigation suggest that it may work in concert with the 

hippocampal systems (Voermans et al. 2004). In addition, it may also play a role in non-

spatial or procedural response (Hartley et al. 2003).   

 

Furthermore, fronto-striatal and striato-hippocampal system are especially vulnerable to 

aging. Therefore, it is not surprising that in older adults, the caudate nucleus plays a 

critical role in supporting navigation, sometimes even more than the hippocampus or 

other brain areas within the MTL. Study by Moffat et al. (2007) found that larger caudate 

volume was associated with better performance in both older subjects.  

 

 

 

This subsection focuses on the functional region of retrosplenial cortex/posterior 

cingulate/medial parietal region, close to the point where the calcarine sulcus joins the 
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parietal-occipital sulcus (Vann et al., 2009). The central location of this functional region 

makes it pivotally positioned to receive information from, and readily influence, many 

key brain regions responsible for the processing of spatial information. As retrosplenial 

cortex (BA 29 and 30) adjoins and is partially encircled by the posterior cingulate (BA 

23 and 31), these labels are often used somewhat interchangeably when describing the 

locations of functional activations (Van Hoesen and Pandya, 1975). Because of this 

ambiguities, this doctoral thesis uses the term retrosplenial complex (RSC, Figure 1.8) to 

refer to this functionally-defined region, which is not necessarily identical to the 

anatomically-defined retrosplenial cortex.  

 

Although there is clear evidence from both human and animal studies pinpoints RSC 

role in spatial cognition, there is no consensus as to its precise correlate when it comes 

to the dichotomy of route-based and map-based navigation. Instead, findings from 

lesion, single neuron, and neuroimaging studies propose that RSC functions in spatial 

navigation and wayfinding fall into three categories: (1) landmark processing, (2) spatial 

references, (3) spatial schema. The first category, landmark processing, argues that RSC 

has a specific function in the encoding of the spatial and directional characteristics of 

landmarks, independent of their identity. Second, with regard to spatial references, 

studies reported that RSC mediate the translation of information between different 

spatial references. Thus, allowing one to translate ‘you are here information’ into ‘your 

destination is to the left information’. The last category, which is by far the broadest of all, 

proposes that RSC is involved in formation and consolidation of hippocampus-

dependent spatial as well as episodic memories. Based on this three categories of RCS 

functions, it is not surprising that this region has been implicated in both route and map-

based navigation. 

 

One of the earliest evidence for RSC’s role in landmark processing comes from reported 

navigational difficulties when the regions is damaged either by stroke in humans or by 

lesions in rodents (Vann et al., 2009). Patients with retrosplenial damages have been 

reported to recognize buildings and landscape. However, the landmarks did not provoke 

directional information. Consequently, these patients could not determine which 

direction to proceed (Bottini et al., 1990; Takahashi and Kawamura, 2002; Greene et al., 

2006; Ino et al., 2007; Osawa et al., 2008). With regard to RSC’s role in integrating 

different spatial reference frames, patients with RSC damage could not use map to 
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indicate view point relative to certain landmark (Katayama et al., 1999). In line with these 

findings, other lesion studies reported patients’ difficulty in following a route when 

change of orientation is required (Miller et al., 2014). This inability to convert back and 

forth between reference frames denotes the underlying feature of RSC such that it has 

access to the same spatial information represented in different ways, and is needed in 

order to switch between egocentric and allocentric representations.   

 

Single neuron studies in rodent indicates that RSC neurons can encode a variety of spatial 

quantities including that of head direction (HD) cells (Chen et al., 1994a; Chen et al., 

1994b). These are cells that fire preferentially when animal faces in a particular global 

direction (Taube, 2007). A later study by Jacob et al. (2017) found a subpopulation of 

HD cells, the firing of which was controlled by the local environmental cues 

independently of the global HD signal (Jacob et al., 2017). In 2015 and later on in 2017, 

Alexander and Nitz found RSC cells that respond to specific combinations of location, 

direction, and movement (Alexander and Nitz, 2015, 2017). In addition to 

electrophysiological recordings in rodents, recordings from medial parietal neurons of 

macaque monkeys advocate the role of RSC in relating local and global spatial reference 

frames (Sato et al., 2006). Of the many neurons that responded strongly during the task, 

which involved following well-learned routes through a multi-room virtual-reality 

environment.  

 

Since the advent of fMRI in cognitive neuroscience, many studies have investigated RSC 

activation as human subjects perform tasks in the scanner, as described in Section 1.3. 

One of the earliest fMRI study show that RSC activation occurred during scene viewing 

and imagery (Park and Chun, 2009), mental imagination of navigation through familiar 

environment (Epstein and Higgins, 2007), route learning (Wolbers and Büchel, 2005), 

spontaneous trajectory changes as well as confirmation of expectations about the 

upcoming features of the outside environments. Other fMRI studies confirmed that RSC 

activity was specifically associated with thought of location and orientation, as opposed 

to simple object recognition (Epstein and Higgins, 2007; Iaria et al., 2007). Both studies 

also show that pattern of RSC activation differs from that of hippocampus, such that 

RSC is strongly active during both encoding and retrieval of spatial information. Similar 

line of works have investigated the encoding of location and/or direction as well as local 

or individual landmarks by RSC (Marchette et al., 2014; Robertson et al., 2016). In 
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contrast to these two studies that focus on RSC’s role in local encoding of direction, 

study by Shine et al. (2016) find evidence for global heading representation in the RSC. 

Given that there is evidence for both local and global encoding of directions in the RSC, 

it is often argues that RSC is involved in processes that require adaption of one or more 

navigation strategies. This is especially true when environmental cues are being used. 

 

 

 

Figure 1.8. Schematic of the Retrosplenial Complex (RSC) 

Adapted from Burles et al. (2017) 
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Value-based decision making is defined as choosing among actions based on their 

relative value of potential consequences in order to maximize reward and minimize 

punishment (Rangel et al., 2008). Similar to spatial navigation, there are at least two 

complimentary strategies involve in value-based decision making namely: model-free 

choice and model-based choice. Research in decision neuroscience has been seeking to 

build a biologically sound theory of how humans and animals employ these two choice 

strategies. The center of this effort is combining computational models and 

neuroimaging methods, such as single unit recordings and fMRI, to identify the types of 

signals and signal dynamics that are required by different value-dependent decision 

problems (O'Doherty et al., 2003b; O'Doherty et al., 2004; Daw et al., 2006; Valentin et 

al., 2007; Wunderlich et al., 2009; Glascher et al., 2010).  

 

Starting from this section, this chapter will focus on reviewing a computational 

framework from value-based decision making that is useful for dissecting different 

cognitive processes behind strategy adoption in spatial navigation and wayfinding. The 

review has three components. First, this section focuses on decision processes and how 

the two choice strategies support these processes. Second, Section 1.6 focuses on 

reinforcement learning (RL) algorithms that formally provides a computational 

framework in modeling choice strategies. Lastly, Section 1.7 focuses on neural correlates 

of reinforcement learning’s key variables in value-based decision making.   

 

 

 

There are five basic cognitive processes that are required for value-based decision 

making: identification, valuation, action selection, outcome evaluation, and updating. To 

better illustrate these processes, the explanation in this as well as the following 

subsection is organized around the diagram in Figure 1.9 and the simple rodent maze 

task shown in Figure 1.10. The maze has three decision points (A, B, and C) and four 

possible outcomes (cheese, nothing, water, and carrots). At each decision point, there 

are two possible actions: going left or going right.  
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The first cognitive process in value-based decision making is the identification of 

decision problem, which entails identifying internal states, external states, and potential 

course of action. In the simple maze example, there are three internal states: level of 

hunger, level of thirst, and level of cheese craving. In the subsequent cognitive process, 

the different actions that are under consideration need to be assigned a value based on 

the internal and external states. In order to make appropriate decisions, these value have 

to be a reliable predictors of the benefits that are likely results from each action. Going 

back to the maze example, when the rat is hungry, the cheese is assigned the highest 

value. Third, the different values need to be compared for the rat to be able to make a 

decision, i.e. select an action. When the rat is hungry, the cheese is more valuable than 

the water or carrot. In contrast, when the rat is thirsty, the order of valuation becomes 

water, carrot, and cheese. Fourth, after implementing the decision, the rat needs to 

measure the desirability of the outcome. This cognitive process is referred as outcome 

evaluation. Lastly, the feedback measures are used to update the other processes to 

improve the quality of future decisions.  

 

It is important to note that these five cognitive processes are not rigid. For instance, it 

is still debatable whether valuation (process no. 2) must occur before action selection 

(process no. 3), or whether both computations are performed in parallel. Nevertheless, 

the categorization of these processes is conceptually useful to breakdown the value-

based decision into a testable constituent processes.  

 

Furthermore, on the basis of a sizable body of animal and human behavioral evidence, 

there are at least two strategies to assign values during decision making processes: model-

free choice and model-based choice. Subsection 1.5.2 and 1.5.3 review the operational 

division of the two valuation strategies according to the style of computations that is 

performed by each. 

 

  

 

Model-free choice can learn, through repeated training, to assign value to a large number 

of actions (Dayan and Niv, 2008). The valuation based on model-free choice have four 

key characteristics. First, values are assigned to stimulus-response associations, which 
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indicate the action that should be taken in a particular state of the world, on the basis of 

previous experience. This is done through a series of trial and error without constructing 

a model or representation of the environment.  

 

Second, subject to some technical qualifications, model-free choice assign values to 

actions that is commensurate with the expected outcome that these action generate. This 

holds true as long sufficient practice is provided and the environment is sufficiently 

stable. Going back to the maze example, Figure 1.10. C shows the valuation based on 

model-free choice, i.e. model-free values, of each action at each location in the maze, 

assuming that the rat chooses optimally for the internal state of hunger. Such model-free 

values can be used without direct reference to a model of transitions or outcomes 

(Rangel et al., 2008).  

 

Third, because values are learned by trial and error, model-free choice is believed to be 

relatively slow. Consequently, it might forecast the value of actions incorrectly 

immediately after a change in the action-reward contingencies. Lastly, model-free choice 

is inflexible. Model-free values, such as those shown in Figure 1.10. C, are just numbers, 

unrelated from the outcomes that underlie them, or the statistics of the transitions in the 

environment. Should there be a change in the internal state, the model-free values will 

not change without further and statistically expensive updating (Rangel et al., 2008).  

 

 

 

In contrast to valuation based on model-free choice, model-based choice assign values 

using a model, or representation of state transition, of the environment. This 

representation should indicate the probability with which decision progress from one 

decision point to the next. The progression of the decision is based on which action is 

taken and the likely outcomes at each decision point (Daw et al., 2011). Figure 1.10. D 

shows the model of the simple maze. This representation is nothing more than the three 

of locations in the maze (external states) joined according to the actions that lead 

between them.  
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Given some systematic way to select action at each external state, models such as that 

shown in Figure 1.10. D, admit a conceptually very simple way of making predictions 

about the values of states or locations in the maze, namely searching forward in the 

model, accumulating expected values all the while. Unfortunately, valuation based on 

model-based choice, i.e. model-based values, places a huge burden on working memory. 

Thus, it is not as efficient as model-free approach.  

 

Note that an important difference between model-free choice and model-based choice 

has to do with how they respond to changes in the environment. This is because to carry 

out the necessary value computation, the model-based choice need to store both action-

outcome and outcome-value association. Consider the maze example and the valuations 

made by the rat, which has learned to obtain cheese, after it consumed the cheese to the 

level of satiation. The model-based choice has learned to associate the action ‘go left’ at 

decision point ‘B’ with the outcome ‘cheese’ and thus assign a value to the [B, go left] 

pair that is equal to the current value of ‘cheese’. In this example the value ‘cheese’ is 

low because the rat has consumed it to satiation. In contrast, the model-free choice will 

still assign a high value to the [B, go left] pair because this is the value that the rat learned 

during the pre-satiation time.  

 

 

 

 

Figure 1.9. Processes in the value-
based decision making 

Value-based decision making can be 
broken down into five basic processes. 
First, the construction of the decision 
problem. This entails identifying internal 
and external states as well as potential 
course of action. Second, the valuation of 
different actions under consideration. 
Third, the selection of one of the actions 
on the basis of their valuations. Fourth, 
after implementing the decision the brain 
needs to measure the desirability of the 
outcomes that follow. Finally, the 
outcome evaluation is used to update the 
other processes to improve the quality of 
future decisions.  
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Figure 1.10. Model-based and model-free choice in a simplified maze task 

A. A simple maze with three external states (S1, S2, S3), three internal states (hunger, thirst, and cheese 
satiation), two possible actions at each external state (left or right), and four outcomes (cheese, nothing, 
water, and carrot).  

B. The values of the outcomes under different internal states.  

C. Valuation based on model-free choice. Immediately after cheese satiation, these values do not change. 
It is only after direct experience with the cheese that the value associated with (S2, L) and subsequently 
(S1,L) is reduced.  

D. A tree-based model of the state action environment, which can be used to guide decision at each state 
and assign values according to the model-based choice.  
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Reinforcement learning (RL) was originally born out of mathematical psychology and 

operation research. It provides both qualitative and quantitative computational models 

on how natural and artificial systems can learn to predict the consequence of and 

optimize their behavior in making value-based decisions within certain environments 

(Sutton and Barto, 1998; Dayan and Niv, 2008). These decision environments are 

characterized by a few key concepts as illustrated in Figure 1.11. These key concepts are 

agent, environment, state spaces, sets of actions, a reward signal, a policy, a value 

function, and optionally a model of the environment.  

 

First, an agent is simply the decision maker. Everything outside the agent, with which it 

interacts, is called the environment. A state space or simply state is a signal conveying to 

the agent some sense of the condition of the environment at a particular time. In a more 

general sense, a state is defined as whatever information is available to the agent about 

its environment. A state space can take the form of board positions in a game, the 

existence or absence of different stimuli in an operant box, or, in the case of spatial 

navigation, a state space can simply be a specific location in a maze or in a city. An agent 

interacts with its environment by choosing one of several available actions. The agent 

then receives feedback, or reinforcement, from the decision environment in the form of 

a reward signal. A reward signal is defined as an immediate, possibly stochastic payoff 

that results from performing an action in a state. The learning task for the agent is to 

optimize either a sum or an average value of future rewards. A policy is how the learning 

agent maps perceived states of the environment to actions, which are about to be taken 

in those states. A value function is an estimate of the total, possibly discounted, future 

reward. A value function is computed to improve the policy. In other words, a value 

function indicates what is desirable in the long run. Lastly, for the environment within 

which an agent takes actions, the agent can build a transition model to plan actions. This 

is done by considering possible future states even before those states are actually 

experienced.   

 

RL algorithms can be divided into two broad classes, model-based and model-free, 

which perform optimization of choices in different ways. In this section, different 
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model-free and model-based RL algorithms are reviewed. Of particular interests are 

those that are used as computational framework to explain different valuation strategies 

in value-based decision making.  

 

 

 

Model-free reinforcement learning (RL) uses experience to learn directly one or more 

simpler quantities (state values, action values, state/action values, or policies). Thus, 

model-fee RL can achieve optimal behavior without constructing a representation of the 

environment. For a certain policy, a state has a value, which is defined in terms of the 

future utility that is expected to accumulate starting from that state. Crucially, correct 

values satisfy a set of mutual consistency conditions such that a state can have high value 

only if the actions specified at that state lead to one of these two conditions: (1) 

immediate outcomes with high utilities, and/or (2) states which promise large future 

expected utilities. Model free algorithms, in contrast to their model-based counterparts, 

are statistically less efficient. This is because the information from the environment is 

combined with previous, and possibly erroneous, estimates or beliefs about state values, 

rather than being used directly. Examples of model-free algorithms that are used to 

represent model-free choices in value-based decision making include, but not limited to 

Temporal Difference (TD) learning, Q-Learning, and SARSA (λ).  

 

 

 

Figure 1.11. The agent-environment interface and elements of reinforcement learning 

An agent interacts with its environment by selecting certain actions. The environment provides feedback 
to the agent through a reward signal, which is defines as the goal in a reinforcement learning problem. On 
each time step, the environment sends to the reinforcement learning agent a single number, i.e. the reward. 
The agent’s sole objective is to maximize the total reward it receives over the long run.  
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The most straightforward approach to learning state values is by sampling. This simply 

means that the value of the state is updated given the reward the agent receives such that 

the value is equivalent to the immediate expected reward Vs = rs. This is known as 

Rescola-Wagner learning algorithm. The basic idea behind this algorithm is that learning 

should occur only when observed events violate expectations. Thus, the value V of state 

S is updated with a prediction error: 

 

𝛿 ← 𝑟 −  𝑉𝑠 

and  

𝑉𝑠 ←  𝑉𝑠 +  𝛼 𝛿 

 

where α is the learning rate. This learning rate determines to what extent the newly 

acquired information will override the old information. A factor of 0 means that the 

agent does not learn anything, while a factor of 1 would make the agent consider only 

the most recent information.  

 

An expansion of the Rescola-Wagner learning algorithm is the Temporal Difference 

(TD) learning. The TD learning algorithm divides a series of action selection into smaller 

time points. At each time point t, an agent experiences a state st, which produces a reward 

rt. The goal of the agent is to estimate the value of a state V(st) in terms of its cumulative 

future rewards. The prediction error is then replaced by:  

 

𝛿𝑡 ←  𝑟𝑡 +  𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡), 

 

which is called TD prediction error and the value is updated using the following 

equation: 

𝑉𝑘+1(𝑠𝑡) ←  𝑉𝑘(𝑠𝑡) +  𝛼𝛿𝑡. 

 

Unlike the Rescola-Wagner algorithm, TD considers not only the immediate reward rt, 

but also accounts for the sum over all the rewards in the subsequent states. This way, 

TD algorithms extend the discrete Rescola-Wagner algorithm into a continuous time 

learning (O'Doherty et al., 2003b; Parslow et al., 2004; Samejima et al., 2005).  
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Another commonly used model-free RL algorithm is the Q-learning, which explicitly 

learns the state-action value Q(s,a). The way in which the state action value is updated is 

a variation on the theme of temporal difference learning and formulated as follow: 

 

𝑄(𝑠𝑡, 𝑎𝑡) ←  𝑄(𝑠𝑡, 𝑎𝑡) +  𝛼 𝛿𝑡, 

 

where 𝛿𝑡 is the TD reward prediction error and is computed by: 

 

𝛿𝑡 ←  𝑟𝑡 +  𝛾 𝑚𝑎𝑥⏟
𝑎

 𝑄(𝑠𝑡+1, 𝑎𝑡) −  𝑄(𝑠𝑡, 𝑎𝑡).  

 

The update takes place when the agent choose an action at, and receives a reward rt by 

moving from states st to st+1. In general, the Q-learning algorithm will converge to an 

optimal policy if the learning rate α decreases properly and all the state-action pairs are 

visited infinitely often (Tanaka et al., 2004; Knutson and Cooper, 2005; Daw et al., 2006; 

Glascher et al., 2010).  

 

λ

The name SARSA reflects the fact that the main function for updating the state action 

value Q(s,a) depends not only on the current state of the agent st, the chosen action at, 

the reward the agent gets for choosing this action, but also st+1 the state the agent will 

now be after taking action at as well as the next action at+1 the agent will choose in its 

new state. This approach is formulated as follow: 

 

𝑄(𝑠𝑡,𝑎𝑡) ← 𝑄(𝑠𝑡,𝑎𝑡) +  𝛼 [𝑟𝑡+1 +  𝛾𝑄(𝑠𝑡+1,𝑎𝑡+1) −  𝑄(𝑠𝑡,𝑎𝑡)] . 

 

A SARSA agent will interact with the environment and update the policy based on 

actions taken (instead of the minimum or maximum Q-value of the next state), known 

as an on-policy algorithm. In other words, it updates the Q-value of the policy being 

executed instead of the optimal Q-value. As expressed above, the Q(s,a) value for a state-

action is updated by an error, adjusted by the learning rate alpha. Q (s,a) values represent 

the possible reward received in the next time step for taking action at in state st, plus the 

discounted future reward (rt+1) received from the next state-action observation.  
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One disadvantage of SARSA algorithm is that in a situation where a series of actions, 

instead of a single action, is needed to reach reward, SARSA only updates the Q-value 

of the last action in the sequence. In many applications, such as in spatial navigation, it 

is desirable to be able to update a series of actions very fast and to be able to take into 

account anything that has changed. A method in which the update of Q-value extends 

over n steps within a series of actions is called n-step SARSA.  

 

Furthermore, an extension of n-step SARSA is implementing eligibility traces to SARSA 

algorithm, known as SARSA (λ). An eligibility trace λ is a temporary record of the 

occurrence of an event, such as visiting a state or the taking of an action. The trace marks 

the memory parameters associated with the event as eligible for undergoing learning 

changes. Using this parameter, the algorithm can distribute reward or penalty into 

previously taken series of actions more efficiently. Thus, unlike the n-step method that 

updates the values of actions within a sequence equally, eligibility trace ensures that the 

effect of older actions or visited states is less pronounced for the resulting behavior (Daw 

et al., 2006; Glascher et al., 2010; Simon and Daw., 2011). The complete SASRA (λ) 

algorithm is presented in Figure 1.12. Figure 1.13 illustrates the difference between one-

step SARSA, n-step SARSA, and SARSA (λ).  

 

 

Figure 1.12. The SARSA with eligibility trace algorithm 

The Q-value is updated at every step and weighted according to the geometrical distribution in every 
episode. The trace decay parameter λ for representing the use of eligibility traces in the algorithm.  
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Figure 1.13. Comparison of valuation based on various SARSA algorithms 

A. The path taken by an agent in a single episode. The initial estimated values were zeros except for a 

positive reward at the location marked by R. The arrows in the other panel show, for various SARSA 

algorithms, which action-values would be increased, and by how much upon reaching reward R.  

B. One-step SARSA would only update the last action value, i.e. the one directly lead to R. 

C. n-step SARSA (in this case n = 10) equally update n action values.  

D. SARSA with eligibility trace updates all the action values up to the beginning of the episode to different 
degrees, fading with recency. This algorithm provides the best tradeoff, strongly learning how to reach the 
goal from the right, yet not as strongly learning the roundabout path to the reward from the left that was 
taken in this single episode.   
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Model-based RL refers to learning optimal behavior indirectly by learning a model of 

the environment by taking actions and observing the outcomes that include the next 

state and the immediate reward (Wunderlich et al., 2011; Glascher et al., 2011; Glascher 

et al., 2012; Kahn et al., 2014). By a model of the environment, we are referring to 

anything that an agent can use to predict how the environment will respond to its actions 

(Dayan and Niv, 2008; Rangel et al., 2008). The models are used in lieu of or in addition 

to interaction with the environment to learn optimal policies. Moreover, given a state 

and an action, a model produces a prediction of the resultant next state and next reward. 

If the model is stochastic, then there are several possible next states and next rewards, 

each with some probability of occurring.  

 

Given a complete model of the environment, there is a collection of algorithms that can 

be used to compute values. This collection of algorithms is called Dynamic 

Programming (DP). The key idea of DP is that optimal policies can be obtained once 

optimal value functions satisfy the following Bellman optimality equations: 

 

𝑉∗(𝑠) =  𝑚𝑎𝑥⏟
𝑎

 E ⟨𝑅𝑡+1 +  𝛾 𝑉∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎⟩ 

𝑉∗(𝑠) =  𝑚𝑎𝑥⏟
𝑎

 ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 +  𝛾𝑉∗(𝑠′) ]

𝑠′

𝑟

 

or 

𝑄∗(𝑠, 𝑎) =  E ⟨𝑅𝑡+1 +  𝛾 𝑚𝑎𝑥⏟
𝑎

𝑄∗(𝑆𝑡+1, 𝑎′ )|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎⟩ 

𝑄∗(𝑠, 𝑎) =   ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 +  𝛾 𝑚𝑎𝑥⏟
𝑎

𝑄∗(𝑠′, 𝑎′) ]

𝑠′

𝑟

 

 

Common DP algorithms used to represent model-based choices are value iteration and 

policy iteration. In these approaches, both algorithms start with a randomly initialized 

value function or policy. In policy iteration, the algorithm calculates the value of the 

current policy and then loops through the state space, updating the current policy to be 

greedy with respect to the backed up values. This is repeated until the policy converges. 
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In value iteration, the algorithm loops through the state space, updating the value 

estimates of each state using Bellman backups, until convergence. In other words, value 

iteration starts at the end and then works backward, refining an estimate of 

either Q* or V*.  

 

Value iteration formally requires an infinite number of iterations to converge exactly to 

v∗. In practice, iteration stops once the value function changes by only a small amount 

in a sweep. Figure 1.14 shows a complete algorithm with this kind of termination 

condition.  

 

 

Figure 1.14. Value iteration algorithm 

Model-based reinforcement learning based on dynamic programming.  

 

 

One specific challenge in RL, which is not encountered in other types of learning, is the 

tradeoff between exploration and exploitation, i.e. explore-exploit dilemma. In order to 

accumulate rewards, an agent must prefer actions that it has tried in the past and found 

to be effective in producing reward, i.e. exploit. To discover such actions, however, an 

agent has to try actions that it has not chosen before, i.e. explore.  

 

An effective and popular means of balancing exploitation and exploration in 

reinforcement learning is by the mean of ε-greedy. Epsilon greedy (ε-greedy) is a way of 
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selecting random actions with uniform distribution from a set of available actions. Using 

this approach, a reinforcement learning agent can select either random action with ε 

probability or an action that gives maximum reward in a given state with 1 – ε probability. 

For instance, if in a given state an agent has to make 100 decisions, this method select 

random actions in 20 decisions if the value of ε is 0.2. In other words, the agent exploit 

in 80 decisions while explore in 20 decisions.   

 

One drawback of ε-greedy is that when it explores, it chooses equally among all actions. 

This means that it is just as likely to choose the worst appearing action as it is to choose 

the next-to-best. To overcome this drawback, the obvious solution is to vary the action 

selection probabilities as a graded function of estimated value. With this approach, the 

greedy action is still given the highest selection probability. All other actions are ranked 

and weighted according to their value estimates. This approach is called softmax action 

selection rules, which happens to be the most widely used approach in the studies of 

value-based decision making (Knutson and Cooper, 2005; Preuschoff et al., 2006; Hare 

et al., 2008; Preuschoff et al., 2008; Daw et al., 2011). The most common softmax 

method, which is the one used in this thesis, uses a Gibbs or Boltzmann distribution. 

The probability of choosing action a given state s, is given by the following equation.  

 

𝑃𝑟{𝐴𝑡 = 𝑎|𝑠} =  
𝑒𝑄(𝑠,𝑎)𝛽

∑ 𝑒𝑄(𝑠,𝑏)𝛽𝑘
𝑏=1

 

 

Parameter β represents inverse temperature. For high temperatures, all actions have 

nearly the same probability. The lower the temperature, the more expected rewards 

affect the probability of choosing certain action.  
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This doctoral thesis uses fMRI to test the neural validity of key internal variables from 

reinforcement learning models in predicting choice behavior during route-based and 

map-based navigation. This method, combining reinforcement learning models with 

fMRI data, is a specific fMRI approach that estimates how changes in the BOLD signal 

correlate with quantitative computational predictions of neural activity (Dayan and Niv, 

2008). Thus, it allows hidden variables and computational processes to be uncovered in 

ways not possible with traditional event related or parametric paradigm design 

(O'Doherty et al., 2003b; Parslow et al., 2004; Samejima et al., 2005; Daw et al., 2006; 

Hampton et al., 2006; Plassmann et al., 2007; Valentin et al., 2007; Hare et al., 2008; 

FitzGerald et al., 2009; Wunderlich et al., 2009; Daw et al., 2011; Simon and Daw, 2011; 

Wunderlich et al., 2011; Hunt et al., 2012).  

 

Using the same approach, along with findings from single unit recordings in rodents and 

primates, neural signals in different brain regions have been found to correlate with 

reward expectations, valuation, and outcome evaluation. Among those regions, the 

network of prefrontal and striatal regions remains the most well-documented findings 

in decision neuroscience. The questions of which reinforcement learning algorithms are 

best represented at neuronal level, and specifically, what brain structures execute 

different key variables of those algorithms are the primary focus of this section.  
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Figure 1.15. Major subdivisions of the frontal lobe 

A. Lateral view of major anatomical subdivisions of the frontal lobe. Adapted from Frank Gaillard, 
Radiopedia.org, rID: 46670. 

B. Major functional subdivisions of the prefrontal cortex (PFC). Adapted from Carlen (2017).  

 

 

 

As illustrated in Figure 1.15, the prefrontal cortex is the most anterior part of the frontal 

lobes of the brain. The posterior part of the frontal lobe forms the motor and premotor 

areas. Specifically elaborated in primates and humans, it is the cortical region that 

underwent the greatest expansion during evolution. Due to a late myelination of the 

axonal connections, the peak of its maturity arrives only at the end of adolescence 

(Wilson et al., 2010). Connectivity patterns to this area highlight a distinction between 

an orbitofrontal, a medial, and a lateral sub-networks in the PFC, a distinction that has 

been shown to have functional implications especially with regards to value-based 

decision making (Lee et al., 2012). For the remainder of this subsection, neural correlates 

of value-based decision making within the PFC is discussed based on the following 

functional subdivisions of the PFC: orbitofrontal cortex (OFC) and ventromedial 

prefrontal cortex (vmPFC), dorsolateral prefrontal cortex (dlPFC), and anterior cingulate 

cortex (ACC).  

 

The orbitofrontal cortex (OFC) is a large are cortical area located at the most ventral 

surface of the prefrontal cortex. It is situated directly above the orbit of the eye, hence 

the name, and includes parts of the medial wall between the hemispheres. The OFC 

consists of BA 11 and 47. A noteworthy feature of OFC’s anatomy is its connectivity. It 
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has remarkably close connections to all sensory areas as well as widespread connections 

to other parts of the frontal cortex, striatum, amygdala, and the hippocampus.  

 

While the ventromedial prefrontal cortex (vmPFC) does not have a universally agreed 

on demarcation, in this thesis the functional subdivision follow the ventromedial reward 

network of Ongur and Price (2000). This network includes BA 10, 14, 25, and 32. It is 

connected to and receives input from the ventral tegmental area, amygdala, the temporal 

lobe, the olfactory system, and the dorsomedial thalamus. In turn, it sends signal to many 

different brain regions including the temporal lobe, the hippocampus, and the cingulate 

cortex (Ongur and Price, 2000).  

 

Findings from lesion, single-unit recordings, and neuroimaging studies propose that 

vmPFC and OFC functions in value-based decision making fall into two categories: (1) 

global currency integrator, and (2) estimation of the expected value of each stimulus 

based on past experience.  

 

As global currency integrator, OFC represents economic value associated with a goal, in 

particular value that has to be calculated on-the-fly rather than learned from experience. 

This notion is supported by various recordings of neural activity in the OFC of monkeys 

(Tremblay and Schultz, 1999; Padoa-Schioppa and Assad, 2006). In particular, in the 

study by Padoa-Schioppa and Assad (2006), the authors showed that a proportion of 

recorded neurons showed firing activity that varies linearly with the subjective value of 

the goal regardless of the chosen option.  

 

This general finding, a reward representation that is independent of sensory or motor 

aspects of the option, is supported by a number of neuroimaging studies in humans. It 

is important to note that brain activity in the OFC and vmPFC, similar to findings in 

monkeys, does not only respond only to money. Instead, these areas are global currency 

integrators. Kim et al. (2006) reported an increase in activity in the vmPFC after 

successful avoidance of punishment. This avoidance of a negative reward can be seen as 

an intrinsic reward correlation, serving to reinforce avoidance (Kim et al., 2006). 

Moreover, Plassmann et al. (2007) showed correlations of the willingness-to-pay in the 

vmPFC. This willingness-to-pay, the maximum amount of money subjects are willing to 

pay in exchange for the presented choices, represents the value of a goal (Plassmann et 
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al., 2007). Again, this pattern has been shown in variety of goals whether it is pleasant 

odor (Rolls et al., 2003; Grabenhorst et al., 2007), tastes (Small et al., 2003), or face 

attractiveness (O'Doherty et al., 2003a). 

 

Alternatively instead of solely monitoring goal values and subsequent outcomes, 

expected values of different choices can be first estimated and then used to identify the 

choice with the largest benefit. Electrophysiological studies support this notion. In both 

studies by Padoa-Schioppa and Assad (2006 and 2008), some cells in the vmPFC are 

correlating positively with the chosen value, whereas others correlate negatively.  

 

Through neuroimaging findings, global correlation of estimated values can be observed. 

Values derived from reinforcement learning models are positively correlated with activity 

in the vmPFC (Tanaka et al., 2004; Knutson and Cooper, 2005; Daw et al., 2006; 

Glascher et al., 2010). This correlation is even observed for expected values of delayed 

rewards (Glimcher and Rustichini, 2004). Besides these typical results, some studies also 

reported that brain activity in the vmPFC reflects expectations of monetary losses (Tom 

et al., 2007; Basten et al., 2010). Boorman et al. (2009) demonstrated that vmPFC 

correlated positively with the chosen option and negatively with the rejected one, 

signaling a comparison between the different options (Boorman et al., 2009).   

 

The dorsolateral prefrontal cortex (dlPFC) serves as the end point of for the dorsal 

pathway. It is the most recently evolved and last to develop in adulthood. This part of 

the brain does not receive sensory information for the visual or auditory areas. It does 

not send motor command to the muscle. Instead, it is the association cortex that bridges 

input and output. Consequently, it is mainly involved with pausing and choosing action 

was well as planning and action sequencing. 

  

From seminal neurological observations to modern functional neuroimaging, substantial 

evidence implicates the dlPFC in model-based choice system. Findings from fMRI 

studies show that abstract action representations, such as plans for simple sequences or 

rules for selecting action based on context, are processed in the dlPFC (Petrides and 

Pandya, 1999). Moreover, to carry out the necessary computations, model-based choice 

needs to store the action-outcome and outcome-values associations. Studies across 
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methods and species showed that dlPFC encode appetitive goal-value signals in monkeys 

(Wallis and Miller, 2003; Barraclough et al., 2004) as well as humans (Plassmann et al., 

2007).  

 

The cingulate cortex lies in the medial wall of each cerebral hemisphere, above and 

adjacent to the corpus callosum. The more anterior portion surrounding the genus of 

the corpus callosum has been referred as rostral or ventral anterior cingulate cortex 

(ACC) and consists of BA 24, 25, 32, and 33. This area has connections to both the 

emotional limbic system and cognitive prefrontal cortex. Thus, the ACC has an important 

role for affect regulation as well as value-based decision making (Stevens et al., 2011).  

 

The roles of ACC in value-based decision making are well reported in both fMRI 

experiment on humans and single-unit recordings in monkeys. In general, these roles 

can be divided in two broad categories: (1) interaction of choice decisions and 

consequences of a freely made choice, and (2) coding a prediction error using reward 

and prediction.  

 

In an fMRI experiment on humans, Walton et al. (2004) pinpointed that ACC might use 

both rewards and errors to construct a history of choice-action associations. These 

associations can then be used to determine which future decisions should be taken 

(Walton et al., 2004). This role of ACC is supported by a single-unit recordings study by 

Kennerley et al. (2006). The authors could demonstrate that monkeys with ACC lesions 

were not impaired during reinforcement learning task with switched contingencies. 

However, the monkeys could not integrate value over time to adapt responses in a 

changing environment (Kennerley et al., 2006).  

 

With regard to coding prediction error, it might seem that ACC neurons have an activity 

pattern similar to dopaminergic neurons. However, there are important differences. On 

the one hand, the same dopamine cell encodes both positive and negative prediction 

errors. On the other hand, as reported by Matsumoto et al. (2007) and Hayden et al. 

(2009) cells inside ACC have specific roles. Some ACC cells encode positive feedback, 

others encode their negative feedback or rewards that were not received (Matsumoto et 

al., 2007; Hayden and Platt, 2010).  



CHAPTER 1 

86 

Similarly, other single-unit recordings studies confirm that ACC is crucial for adaptation 

of action value (Quilodran et al., 2008), and linking behavioral regulations to monitor 

action valuation (Amiez et al., 2006). Lastly, this role of ACC is also reported by fMRI 

studies in healthy humans.  Using a gambling task with changing reward state (i.e. high 

volatility), another study demonstrated that the BOLD signal in the ACC is correlated 

with the volatility estimate (Behrens et al., 2007). A more recent study by (Klein-Flugge 

and Kennerley, 2016) revealed that the network of regions involving dorsal ACC 

encodes the difference between the chosen and unchosen choices’ subjective values. 

 

  

 

Figure 1.16. Basal ganglia 

A. A frontal section of the brain showing the locations of the basal ganglia.  

B. Lateral view showing the major nuclei of the basal ganglia. 

Figure by RobinH at English Wikibooks - Transferred from en.wikibooks to Commons., CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=36970335 
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Basal ganglia (Figure 1.16), situated at the base of the forebrain, consists of several nuclei 

that includes the striatum, globus pallidus, ventral pallidum, substantia nigra, and 

subthalamic nucleus. The striatum is further divided into the dorsal striatum (caudate 

nucleus and putamen) as well as the ventral striatum (nucleus accumbens and olfactory 

tubercle). Due to its location, this subcortical structure is an excellent candidate for 

interactions with the executive functions. In particular, the striatum receives massive 

inputs from the neocortex.  

 

The first evidence of the basal ganglia’s role in reward and decision making comes from 

lesion studies in animal. It was shown that lesions of basal ganglia did not significantly 

affect fine movements. However, animals with basal ganglia lesions showed a decrease 

in actions needed to get specific reward (Konorski, 1967). Since then, many studies 

proved that neurons in several brain structures are sensitive to rewards. This is especially 

true for dopaminergic neurons. These neurons project from the substantia nigra, the 

ventral tegmental area, and the hypothalamus. They show short, phasic activation after 

presentations of rewards or after stimuli that predicts reward as well as an increase in 

activity for unpredicted rewards, i.e. reward prediction errors (RPE) (Schultz, 1998). This 

RPE signal is the key internal variable of model-free choice system in the sense of 

representing the avoidance of task structure. Thus, these studies became early precursors 

to the investigation of the model-free choice mechanism within the basal ganglia circuit.  

 

In humans, one of the earliest investigation of the BOLD signal correlates of RPE in 

the ventral striatum was the study by O’Doherty et al. (2003). In particular, they observed 

a signed prediction error. In other words, a negative prediction error led to a negative 

BOLD signal. Further study by Seymour et al. (2004) demonstrated separate functions 

of the ventral and dorsal striatum. They found that the ventral striatum was mainly 

responsible for the structure learning to predict future outcome. In contrast, the dorsal 

striatum was specifically involved in maintaining information about the rewarding action 

outcomes (Seymour et al., 2004). This finding has been widely supported by a number 

of studies demonstrating correlates of RPE in the ventral striatum (Knutson and Cooper, 

2005; Preuschoff et al., 2006; Hare et al., 2008; Preuschoff et al., 2008).  
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In 2010, however, Daw et al. (2011) showed that BOLD signal in the striatum reflected 

both model-free and model-based choices. Furthermore, the contribution of the model-

free and the model-based valuations was found to be a proportional match to those that 

determine choice behavior. The authors concluded that rather than a separate brain 

regions for either choice system, the dopaminergic neurons support a more integrated 

computational architecture for value-based decision making (Daw et al., 2011).  

 

Building on this idea, Wunderlich et al. (2012) designed a novel value-based decision 

task. This task consisted of two components, one for each choice system. The authors 

found that BOLD signals in the caudate pertained to individual computational 

components of model-based values. In contrast, signals in the posterior putamen 

selectively fluctuated with key internal variables of model-free choices. These results are 

direct evidence for multiple decision systems that operate independently and in parallel. 

These decision systems recruit neural structure along a mediolateral axis in the basal 

ganglia (Wunderlich et al., 2012).  

 

Moreover, results from fMRI studies show that age-related changes in value-based 

decision making is prominently seen within the striatum (Chowdury et al., 2013; 

Eppinger et al. 2013). These two studies reported a reduced correlation between reward 

prediction errors (i.e. hallmarks of model-free choice) and BOLD signal in the ventral 

striatum. In line with this result, Samanez-Larkin et al. (2010) found that suboptimal 

financial decision making in older adults is correlated with increased temporal variability 

of the ventral striatal BOLD signal. Other studies point out that age-related changes in 

decision making may depend on the complexity of the decision environment. Older 

adults mostly rely on the use of decision strategy with shorter temporal horizon. They 

also performed worse than their younger counterparts whenever they had to rely on 

model-based choice (Mata et al., 2010; Worthy et al., 2011). Taken together, these results 

are consistent with several theoretical proposals suggesting age-related changes in value-

based decision making might result from reduced dopaminergic projections from the 

mid-brain to the ventral striatum and vmPFC (Hämmerer and Eppinger, 2012).  
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As shown throughout this chapter, spatial navigation and wayfinding have been 

extensively studied from a variety of perspective including behavioral, 

electrophysiological, and brain imaging. These research efforts result in a wide range of 

findings: from the early breakthrough, such as those of Tolman (1948) that pointed 

toward internal representation of space, to the discovery of place cells (O’Keefe and 

Dostrovsky, 1971), head direction cells (Taube, Muller, and Ranck, 1990), and grid cells 

(Hafting et al., 2005). In human, various methods have been employed to discover the 

exact relation of brain structures with different elements of spatial navigation including 

strategy adoption. These studies provide insights into how the brain keeps track of our 

position as we move through space, and which brain region supports certain strategy 

adoption. Furthermore, each of these studies adds a piece of the multidimensional puzzle 

to solving navigational problems. In other words, each study contributes to the 

understanding on how the brain encodes, updates, manipulates, and uses spatial 

information.  

 

This thesis aims to add an important piece to this puzzle by bridging two rather separate 

fields: spatial navigation and value-based decision making. By adding computational 

models based on RL algorithms into the neuroimaging analysis, neuroimaging data show 

not only which brain activity is correlated with either route-based or map-based 

navigation but also how that brain area may carry out navigation task on a trial-by-trial 

basis. The key internal variables, such as values of the RL algorithms, calculated at each 

time step were used to test different hypotheses about the possible mechanisms that the 

brain implement to drive strategy adoption. Thus, a substantial part of this work focuses 

on how computational modeling based on RL algorithms can help us better understand 

how the brain uses a cognitive map, assigns values to certain part of the environment, 

and uses this information to make decisions and navigate accurately. Attempting to 

understand these processes even further, this thesis also investigates how certain factors, 

namely age, affects individual and group differences in spatial navigation. The following 

chapters present two studies that were performed within the scope of this doctoral 

thesis. 
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Human navigation is generally believed to rely on two types of strategy adoption, route-

based and map-based strategies. Both types of navigation require making spatial 

decisions along the traversed way. Nevertheless, formal computational and neural links 

between navigational strategies and mechanisms of value based decision making have so 

far been underexplored in humans. Here, we employed functional magnetic resonance 

imaging (fMRI) while subjects located different target objects in a virtual environment. 

We then modelled their paths using reinforcement learning (RL) algorithms, which 

successfully explain decision behaviour and its neural correlates. Our results show that 

subjects used a mixture of route and map-based navigation, and their paths could be well 

explained by the model-free and model-based RL algorithms. Furthermore, the value 

signals of model-free choices during route-based navigation modulated the BOLD 

signals in the ventro-medial prefrontal cortex (vmPFC). On the contrary, the BOLD 

signals in parahippocampal and medial temporal lobe (MTL) regions pertained to model-

based value signals during map-based navigation. Our findings suggest that the brain 

might share computational mechanisms and neural substrates for navigation and value-

based decisions, such that model-free choice guides route-based navigation and model-

based choice directs map-based navigation. These findings open new avenues for 

computational modelling of wayfinding by directing attention to value-based decision, 

differing from common direction and distances approaches. 
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When we navigate in daily life, we commonly do so with a goal in mind, such as going 

to a restaurant. To reach this destination, we can follow a route that we know from 

previous journeys. Alternatively, we can work out the shortest path using our cognitive 

representation of the neighbourhood. These two possibilities exemplify the route-based 

and map-based navigation respectively, two prominent strategy adoptions in wayfinding 

and spatial navigation (Iaria et al., 2003; Igloi et al., 2009; Wolbers, 2010). The route-

based navigation, which is a form of response learning, relies on associations between 

landmarks and turns, as well as memory of travelled distances (Iaria et al., 2003; Bohbot 

et al., 2004; Latini-Corazzini et al., 2010 ). The medial prefrontal cortex, striatum, 

retrosplenial, and medial temporal regions appear to be important for route-based 

navigation (Aguirre and D'Esposito, 1997, 1999; Hartley et al., 2003; Wolbers et al., 2004; 

Latini-Corazzini et al., 2010). In contrast, a map-based or place navigation requires 

knowledge of the spatial relationship between goals, landmarks, or other salient points 

in space (Maguire et al., 1998; Shelton and Gabrieli, 2002; Wiener et al., 2013). This 

knowledge can be conceptualized as a cognitive map, which is defined as a mental 

representation of spatial environment. This representation enables one to acquire, store, 

code, and recall the relative locations as well as attributes of prior experience in that 

environment (Tolman, 1948; Redish, 1999; Eichenbaum and Cohen, 2014). The 

cognitive map is acquired by either active searching and exploration, or experiencing the 

environment using controlled navigational practices. Examples of controlled navigation 

practices include exploration using path integration and sequenced neighbourhood 

search (Golledge, 1999). Novel paths may be planned by first searching this map for the 

best path, and then translating this knowledge into a sequence of movements. Map-

based navigation engages a distributed system of brain areas including hippocampus 

(Wolbers and Büchel, 2005; Iglói et al., 2010; Marchette et al., 2011; Brodt et al., 2016), 

parahippocampal (Epstein et al., 2007; Zhang et al., 2012; Urgolites et al., 2016), and 

retrosplenial regions (Miller et al., 2014b). These studies have identified which neural 

pathways are involved in each strategy. However, the computational mechanisms 

accounting for interaction of route and map-based navigation as well as its neural 

underpinnings remain a topic of debate, particularly in humans.  

 



CHAPTER 2 

 

96 

In this study, we address these questions by combining a 3D virtual environment, as 

typically used in imaging studies of spatial navigation, and modelling techniques from 

the field of value-based decision making. In contrast to previous studies that mostly 

answered where in the brain different spatial navigation strategies take place, our 

approach allows us to also investigate how these processes might be solved 

computationally. In addition, this approach also offers an experimental investigation into 

the utility of the modelling techniques from value-based decision making research in 

characterizing strategy adoption in spatial navigation.  

 

Similar to the route-based and map-based strategies in spatial navigation, at least two 

complimentary systems have emerged as dominant behaviours for value-based decision 

making: model-free and model-based choice systems (Doya, 1999; Daw et al., 2005; 

Redgrave et al., 2010; Daw et al., 2011). In the model-free choice, associations are formed 

between stimuli and actions by reinforcing previously successful actions.  Knowledge of 

the task structure is not necessary for the model-free choice behaviour. The model-based 

choice, on the other hand, relies on a cognitive model of the task structure to evaluate 

which sets of actions lead to the best outcome. This is done by searching through a map 

or graph of the task. Extensive neuroimaging studies have suggested computational 

principles for these two decision systems. These studies also elucidated putative 

corticostriatal circuits that underlie these computations (Glascher et al., 2010; 

Wunderlich et al., 2011; Hunt et al., 2012; Meder et al., 2017).  

 

Since the computational principles underlying these two value-based choice systems 

successfully explain a multitude of decision behaviors, they may also provide a useful 

framework for spatial navigation. While links between spatial navigation and decision 

making have been previously suggested, mostly in investigations of animal wayfinding 

(van der Meer and Redish, 2011; Kurth-Nelson et al., 2012; Regier et al., 2015), these 

studies addresses more general questions than the one addressed by our hypothesis. We 

propose that the brain shares some of the key computational mechanisms for navigation 

and for making value-based decisions in a way that model-free choice guides route-based 

navigation while model-based choice directs map-based navigation. Therefore, we used 

reinforcement learning (RL) algorithms to model subjects’ traversed paths in the virtual 

environment. If RL algorithms form the basis of navigational strategies, they should (1) 

account for subjects’ behaviors when they are free to choose their own navigational 
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strategy, (2) distinguish the degree to which one system is used at each decision point, 

and (3) explain the role of different brain regions in processing navigational decisions by 

showing a correlation between BOLD activity and key internal variables of the RL 

algorithms.  

 

To test this hypothesis, we created a wayfinding task in a 3D virtual environment (VE) 

for human subjects. Functional magnetic resonance imaging (fMRI) was then used to 

investigate how blood oxygen level dependent (BOLD) signal is modulated by 

computational processes while subjects performed the wayfinding task. The 3D 

environment consisted of a 5 by 5 grid of rooms. Each room was distinctively furnished 

to allow subjects to distinguish individual rooms (see Figure 2.1. A and B). Every subject 

performed three phases of wayfinding tasks in the same environment. Subjects navigated 

by freely choosing one of the available doors. Since backtracking (leaving the room from 

the same door as entering it) was not allowed, rooms in the middle of the grid-world had 

three doors to choose from, rooms along the outside wall had two doors, and corner 

rooms had one. First, in the (1) encoding phase, subjects collected three rewards in the 

same predefined order and from the same starting position over eight trials. This 

repetition encouraged route-learning during the encoding phase. During the subsequent 

(2) retrieval phase subjects collected one randomly chosen reward in each trial from the 

same initial position as in the encoding phase. Lastly, during the (3) search phase, 

subjects collected one randomly chosen reward at a time, from a different starting 

location.  These phases, especially the retrieval and search phases, allowed subjects to 

use their preferred navigational strategy (further details on the wayfinding task are 

provided in the Supplementary Method). By analyzing the paths that the subjects took, 

we calculated three navigation indices. These indices describe the degree to which each 

subject followed previously learned routes (route-based navigation) or engaged in map-

based navigation. Based on reinforcement learning models, we also fitted a parameter 

(ω) that explains whether subjects relied more on model-free or model-based choices 

during navigation.  

 

In our task, our expectation was that subjects would use a mixture of route and map-

based navigation across trials, and that their traversed paths could be well explained by 

the model-free and model-based RL algorithms. Significant correlations between 

navigation indices and ω would then confirm that RL algorithms account for individuals’ 
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variability in strategy adoption during navigation. Moreover, we expected that correlates 

between BOLD activity and RL’s key internal variables, such as value signals, from the 

model-free and the model-based choice systems may provide evidence that these 

algorithms explain how the brain computationally solves the navigation problem.  
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During the early trials of the encoding phase, most participants started by exploring the 

environment. This was often seen by moving from one side of the maze to the opposite 

until all rewards were collected. Then subjects either found the shortest paths to go 

between one reward and the next or established a certain route to go from one reward 

to the other (Figure 2.1. C). During retrieval and search phases, some subjects (16 out 

of 27) used the optimal path at least 60% of the time to retrieve rewards. Others chose 

to follow the route they established during the earlier encoding phase. The latter was a 

clear sign of employing route-based navigation. Interestingly, during the search phase, 

when some subjects started on part of an established route they would simply follow it 

to reach the reward. However, when they started from a position that was not part of 

their established route, they located the reward using the shortest path. Those subjects 

might have constructed a cognitive map of the environment but used it only when 

required to plan a new path. Otherwise, they relented to the cognitively less demanding 

but potentially longer route strategy. Note that no subject chose exclusively one strategy 

over the other.  

 

As a first crude measure to quantify strategy adoption in our subjects, we calculated three 

navigation indices based on: (1) the number of trials in which the shortest path was used 

(adapted from (Marchette et al., 2011) and referred to as IPATH in this work), (2) the excess 

number of steps in comparison to the shortest path required to reach the target (referred 

as ISTEPS), (3) the number of repeated route trials (referred as IROUTE). Each navigation 

index was first calculated individually for each phase of the wayfinding task. For the 

search phase, we could distinguish whether subjects used novel shortest paths to retrieve 

rewards or simply followed the route they established during the earlier encoding phase. 

This distinction was sometimes not so clear cut for the retrieval phase because subjects 

had to find each reward from the same starting positon across several trials. 

Nevertheless, across three different phases, we still had enough trials to calculate indices 

that quantified strategy adoption.   
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Therefore, to get an overview on how subjects performed throughout the entire 

experiment, every navigation index was then averaged across three phases of the 

wayfinding task. For both IPATH and ISTEPS, a value of 1 indicates that a subject would 

have used the shortest path on every trial. In other words, the subject was primarily 

displaying a map-based strategy. As the definition suggested, we expected a significant 

correlation between IPATH and ISTEPS (R
2 = 0.85, P < 0.01). This is because, by design, only 

subjects who had a good spatial representation of the environment could have reached 

the rewards using the shortest paths. In contrast, subjects whose scores were close to 0 

predominantly used suboptimal long routes, suggesting that they lacked a map-like 

representation of the environment.  

 

Since IPATH and ISTEPS were calculated based on the trials when subject used optimal paths 

to locate rewards, one might argue that a low score (closer to 0) might reflect a lower 

performance level rather than an indication of subjects using route-based strategy. To 

address this issue and ensure that our measured are not confound by overall navigational 

success, we also calculated the index IROUTE. This index was calculated as a proportion of 

trials where subjects simply repeated previously learned routes and trials with the shortest 

path. A score of 1 in this index suggest that a subject kept repeating the same route 

throughout the experiment. A significant correlation between IPATH and IROUTE (R2 = 0.88; 

P < 0.01) as well as ISTEPS and IROUTE (R2 = 0.79, P < 0.01) suggested that a lower score on 

both IPATH and ISTEPS did not come exclusively from low performance.  

 

The distribution of different values of IPATH, ISTEPS, and IROUTE revealed that although there 

are some subjects that showed strong tendency toward either route or map-based 

navigation, the majority fell in between (Supplementary Table 2.1). Further details on 

the indices are provided in the Methods and the further details of navigation indices in 

each phase of the wayfinding task are provided in the Supplementary Information.  

 

To measure subjects’ general spatial cognitive ability, subjects performed a paper-based 

Mental Rotation Test (MRT). We found significant correlations between the score on 

the MRT (M = 25.63, SD = 9.43, N = 25) and IPATH (M = 0.42, SD = 0.19, r(25) = 0.72, 

two-tailed t-test P < 2.11 × 10-5), ISTEPS (M = 0.68, SD = 0.22, r(25) = 0.72, two-tailed t-

test P < 1.95 × 10-5) as well as IROUTE (M = 0.47, SD = 0.18, r(25) = -0.72, two-tailed t-

test P < 2.44 × 10-5). These results indicate that greater ability to mentally represent and 
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manipulate objects was associated with higher capability in planning shorter paths. These 

results are somewhat expected as object-based spatial ability (e.g. mental rotation, spatial 

visualization) is one of the prerequisites for good performance in map-based navigatiom 

(Hegarty and Waller, 2005). 

 

 

 

Similar to navigation in real-life, our wayfinding task is directed toward certain goals and 

requires decisions about directions along the traversed path. Subjects who used the 

shortest path could find the reward rooms more quickly and thereby accumulated more 

rewards. To computationally assess subjects’ navigation strategy at every decision point, 

we modelled subjects’ choice behaviour by fitting three different reinforcement learning 

(RL) algorithms: model-free, model-based, and a hybrid model. The hybrid model is 

formulated as a weighted combination of model-free and model-based algorithms. These 

algorithms exemplify two strategies in value-based decision making: (1) the model-based 

choice that creates a cognitive representation of the entire environment, and (2) the 

model-free choice that simply increases action values along the taken paths that 

previously led to rewards (Figure 2.2). The hybrid model assumes that subjects would 

employ both algorithms at a relative degree, represented by a fitted parameter weight (ω) 

(Glascher et al., 2010; Daw et al., 2011). We performed model fitting for each subject 

individually and assessed the relative goodness of fit in every phase (for details see 

Methods, Supplementary Methods, and Supplementary Table 2.2).  

 

The fitted ω (first fitted for every phase then averaged over three different phases) in the 

hybrid model (M = 0.50, SD = 0.23, N = 27) significantly correlated with spatial 

cognitive ability (as assessed by MRT, r(25) = 0.54, two-tailed t-test P < 0.0035) both 

IPATH (M = 0.42, SD = 0.19, r(25) = 0.88, two-tailed t-test P < 8.28 × 10-10) and ISTEPS (M 

= 0.68, SD = 0.22, r(25) = 0.80, two-tailed t-test P < 4.69 × 10-7). These results 

demonstrate that, across three phases of the wayfinding task, subjects who often took 

the shortest paths or a relatively small number of steps also showed a tendency towards 

the model-based choice (Figure 2.3. A and B). In line with these results, we also found 

significant negative correlation between ω and IROUTE (M = 0.48, SD = 0.18, r(25) = -
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0.82, two-tailed t-test P < 1.52 × 10-7). This shows that subjects who repeated learned 

routes are better explained by model-free RL (Figure 2.3. C).  

 

 

 

We then investigated neural responses pertaining to choice valuations in every room. A 

key internal variable of the RL algorithms is the value of the chosen action, a signal that 

has been reliably detected in BOLD fluctuations over a large number of studies 

(Wunderlich et al., 2009; Glascher et al., 2012; Kahnt et al., 2014). For every decision 

point, we took the values of the chosen action (i.e. go to the left, right, or straight ahead), 

calculated separately based on model-free and model-based RL, along the traversed path 

as parametric modulators for our fMRI data. By analysing 3 different phases of the 

wayfinding task in one GLM, we found that BOLD activity correlated significantly with 

the model-free value signals along left ventromedial prefrontal cortex [vmPFC , peak: x 

= -3, y = 47, z = -13] extending to left anterior cingulate cortex [ACC, peak: x = -3, y = 

38, z = 5]. Other clusters included retrosplenial complex [x = 6, y = -52, z = 32] and 

caudate nucleus [x = -9, y = 11, z = 14]. In contrast, significant correlations with the 

time series of model-based values were most prominently in the area of right 

parahippocampal gyrus [peak: x = 21, y = -46, z = 2] extending to hippocampus and 

bilateral calcarine gyrus. Additionally, activity in right precuneus [x = 27, y =-64, z = 29] 

and left retrosplenial complex [x = -12, y = -31, z = 44] correlated with model-based 

values. See Figure 2.4 for the activated areas and Supplementary Table 2.3 and 

Supplementary Table 2.4 for a list of all activated areas. For correction of multiple 

comparisons, we set our significance threshold at P < 0.05 whole-brain FWE corrected 

for multiple comparison at cluster level.  

 

These results show that our behavioural models explain subjects’ path choices and 

subjects’ brain activity represents crucial decision variables in this process. Therefore, 

we would expect that brain activity should be particularly well-explained in those subjects 

in whom our model also provides a good choice prediction. Specifically, model-free 

values should explain BOLD activity in vmPFC particularly well in those subjects for 

whom our hybrid model indicated a large route-based contribution. Similarly, brain 

activity in the parahippocampal/hippocampal area should be particularly well explained 
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by the model-based values in those subjects in which the hybrid model indicated a large 

map-based contribution. Across subjects this would be expressed in a relationship 

between strategy choice (represented by the ω parameter) and strength of the activity 

pertaining to the parametric value signals of the corresponding model (-parameter 

estimates in the general linear model) of the fMRI analysis. Consistent with our 

conjecture, we found a significant negative correlation (r(25) = -0.386, two-tailed t-test 

P = 0.046) between ω from the hybrid model and  estimates in ventromedial PFC for 

model-free value signals (Figure 2.5. A). Note that a smaller ω indicates a larger degree 

of route-based influences. As expected, we did not find a correlation (r(25) = -0.081, 

two-tailed t-test P = 0.687) between ω and the β estimates for the model-based value 

signals in the medial PFC (Figure 2.5. A). Similarly, we found a significant positive 

correlation (r(25) = 0.404, two-tail t-test P = 0.036) between ω and the extracted 

parameter estimates of the model-based value signals in right parahippocampal gyrus 

(Figure 2.5. B). Again, we did not find a significant correlation (r(25) = -0.0029, two-

tailed t-test P = 0.988) between ω and parameter estimates of the model-free β estimates 

in the parahippocampal area (Figure 2.5. B).  

 

Furthermore, these correlations confirms that our RL algorithms explain a larger 

proportion of the fluctuation in the neuronal data in those subjects whose choices are 

well explained by the respective model. That is, the more subjects lean towards one 

navigation strategy, the more clearly the computational value signals of the 

corresponding decision mechanisms are seen in either the vmPFC or the 

parahippocampal area. Note that we did not claim that there is a significant difference 

between the two correlations in both parahippocampal gyrus and mPFC. What we 

showed was that, across subjects and within a certain brain region, there is a selective 

relationship between strategy choice on the behavioural level and the representation of 

the corresponding value signal in the brain. In effect, these results show that BOLD 

activity in vmPFC and parahippocampal area reflected model-free or model-based 

valuations in proportion matching those that determine subjects’ use of route-based or 

map-based navigation.  

 

We also tested several alternative hypotheses for putative signals that the brain might 

keep track of during navigation. One such hypothesis is that the brain combines values 
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from the model-free and model-based using the relative weight parameter ω. We tested 

for this by looking for neural signals pertaining to values of the hybrid RL model, which 

is a weighted combination of model-free and model-based values. These signals did not 

survive cluster level correction for multiple comparison.  

 

We further explored the idea that the brain encodes the distance to goals during 

navigation. We found that while activity in the precuneus positively correlated with the 

distance to goal, activity in fusiform and caudate increased as subjects approach the goal. 

Consistent with previous studies, activity in precuneus may be indicative of a spatial 

updating process during navigation (Wolbers et al., 2008; Spiers and Barry, 2015). On 

the contrary, activity in fusiform gyrus and caudate nucleus increases as subjects 

approach the goal. Based on a previously demonstrated role of these regions in object 

recognition (Ekstrom and Bookheimer, 2007; Grill-Spector et al., 2006), it is conceivable 

that participants were more engaged in recognizing the object in the room to mentally 

simulate the goal’s location as they were getting closer to the goal.  Furthermore, while 

some studies suggest that BOLD signal in the entorhinal cortex (Spiers and Maguire, 

2007) and hippocampus (Howard et al., 2014) pertained to goal distance tracking, we did 

not find any clusters within the hippocampus and entorhinal cortex that are correlated 

either positively or negatively with distance to goal. This absence of activity, similar to 

the one reported by Slone et al. (2016), may suggest that the type of environment 

(network of rooms, open vista, or city space) affects distance-tracking neural circuitry. It 

is important to note that our finding of neural correlates of model-based value signals in 

the medial temporal region was still present when we accounted for the distance to goal 

as a potential confound. Our results suggest that medial temporal regions not only 

encode proximity or distance to the goal but may also represent value calculations during 

map search and wayfinding.  

 

Because there might be a functional relationship between distance to goal and model-

based choice values, we also tested if our earlier results for model-based choice values 

are indeed correlates of value signals, or could potentially be only a spurious result of 

this relation. To test for this we estimated a GLM containing both model-based value 

and distance parametric regressors without orthogonalization, letting them directly 

compete for variance. Any remaining activation in this analysis can be attributed uniquely 

to one or the other regressor. Importantly, we still found a significantly correlated BOLD 
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activity with model-based value signals in medial temporal region in this design (see 

Supplementary Figure 2.4). 
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We show that human subjects are adept at flexibly employing route-based and map-

based strategies while navigating in a wayfinding task. Their choices in each room 

correlated well with the fitted parameter ω from the hybrid model, which is a mixture of 

model-free and model-based RL algorithms. The computational processes of model-free 

and model-based RL were also represented at the neuronal level. Model-based valuation 

during map-based navigation strongly modulated activity in parahippocampal and medial 

temporal lobe (MTL) areas. In contrast, BOLD responses in striatum and vmPFC 

pertained to model-free valuations. Equally important, we found a direct link between 

the degree to which subjects used one navigation strategy and the neural representation 

of value signals associated with the corresponding decision mechanisms. 

 

Converging evidence from both animal and human studies has suggested that navigation 

predominantly relies on two types of strategy adoption generally termed as route-based 

and map-based navigation (Ekstrom et al., 2014; Wolbers and Wiener, 2014). In most 

previous studies on spatial navigation subjects were constrained to one navigation 

strategy, such as passively following a certain route during the encoding phase (Wolbers 

et al., 2004; Latini-Corazzini et al., 2010; Wiener et al., 2013). Our encoding phase was 

different in that we allowed subjects to explore.  This feature is helpful to elucidate the 

computational mechanisms accounting for route and map-based navigation. Because 

subjects were not constrained to one strategy over the other, we could observe the use 

of both strategies in the same environment. Even though our encoding phase 

emphasized the formation of a route between a single starting position and a sequence 

of three reward locations, it simultaneously allowed the formation of a map-like 

representation over time because subjects could freely move within the environment. 

The retrieval phase then allowed further memory formation of how every target location 

could be reached from the starting position.  

 

To our knowledge, one previous neuroimaging study on value-based decision making 

has attempted to characterize neural and computational substrates of reinforcement 

learning by incorporating some spatial elements (Simon and Daw, 2011). Albeit the task 

created for their study adopted a grid-world configuration commonly used in human 

navigation, their research questions were more concerned with value-based decision 
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making. For instance, their task included visual cues that constantly informed subjects 

about the location of the target. Moreover, throughout the experiment, there was an 

ongoing reconfiguration of the grid-world and occasional random teleportations of the 

subject. These features are useful to study neural mechanisms of reinforcement learning 

but preclude investigation of wayfinding using optimal or repeated routes. Consequently, 

in comparison to this study, our task mimics more of an everyday experience. This allows 

us to study human spatial navigation where subjects can combine and switch between 

different strategies depending on which is optimal in each situation. 

 

The properties and neural correlates of route and map-based strategies have been 

intensively investigated in both humans (Maguire et al., 1999; Ekstrom et al., 2014) and 

animals (Moser et al., 2008). Although the terminology has evolved, the route-map 

dichotomy is still valid. Previous studies have also investigated the emergence of route 

vs. map knowledge and suggested that landmark knowledge (necessary for route 

navigation) and survey knowledge can be acquired in parallel (Newman et al., 2007). In 

addition, preferential engagement of route and map-based navigation may be a 

dimension along which individuals vary (Marchette et al., 2011; Marchette et al., 2014). 

In the neuroimaging literature, some results strongly support the route-map dichotomy 

(Hartley et al., 2003; Iaria et al., 2003; Wolbers et al., 2004; Wolbers and Büchel, 2005; 

Iaria et al., 2007; Wolbers, 2010). Other data reveals overlapping or common activations, 

suggesting that in some cases, the dichotomy may not be so clear cut (Shelton and 

Gabrieli, 2002; Nori and Giusberti, 2006; Igloi et al., 2009; Latini-Corazzini et al., 2010). 

Our data supports not only a functional separation in wayfinding between medial 

prefrontal cortex for route based and medial temporal areas for map based strategies but 

also include common activations such as in the retrosplenial complex. 

 

In the parahippocampal and MTL area, we observed activations related to choice values 

that are likely correlates of model-based choice computations. The hippocampus has 

been shown to play a key role in processing relative spatial and contextual information, 

as well as in encoding cognitive maps of the spatial environment and the current position 

in space in both animals (O'Keefe and Nadel, 1978; Redish, 1999; Pfeiffer and Foster, 

2013) and humans (Ekstrom et al., 2003; Doeller et al., 2008; Jacobs et al., 2013). In our 

wayfinding task, these processes are crucial for forming a map-like representation of the 

environment. To do this, subjects need to not only keep track of their current location 
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relative to the reward location but also to integrate and transform spatial information 

into survey knowledge (or an allocentric reference system). Moreover, the 

parahippocampal gyrus responds selectively to visual scenes depicting places (Epstein 

and Kanwisher, 1998) and is also specifically involved in the retrieval of spatial context 

compared with non-spatial context (King et al., 2002; Bar et al., 2008; Wolbers et al., 

2011). In addition, this brain areas is also crucial for identification and retrieval of 

landmarks (O'Craven and Kanwisher, 2000; Burgess et al., 2002), as well as spatial 

relationship and relevance of landmarks encountered during navigation (Hartley et al., 

2003; Janzen and van Turennout, 2004; Rosenbaum et al., 2004; Rosenbaum et al., 2015). 

A coherent map-like representation of a complex environment, such as the one used in 

the present study, requires the ability to identify and retrieve different landmarks, as well 

as to form links between different landmark identities and the layout of local areas. 

Consequently, model-based computations in the parahippocampal and MTL area during 

our wayfinding task could be indicative of searching and planning within a mental 

representation of the virtual environment to find the shortest path to reach the goal.  

 

For the neural correlates of model-free choices, we observed activations in vmPFC and 

caudate nucleus, which are consistent with previous studies in animals and humans (Daw 

et al., 2005; Doeller et al., 2008; Chersi and Burgess, 2015). Our model-free RL algorithm 

assigns values to subjects’ choices along the taken path. This approach emphasizes the 

character of route-based navigation that includes temporal relations between landmarks 

and sequences of turns (Hartley et al., 2003; Wolbers et al., 2004; Foo et al., 2005; Igloi 

et al., 2009). In addition, different studies have proposed that vmPFC encodes stimulus-

reward associations (Hampton et al., 2006; Rushworth and Behrens, 2008; Balleine and 

O'Doherty, 2010; Basten et al., 2010; Daw et al., 2011; Apps and Ramnani, 2014). Thus, 

by representing model-free valuation, the brain may recall previously cached landmark-

action associations. Equally important, activity in the vmPFC has also been observed in 

spatial working memory tasks as well as during retrieval of information about order and 

context (Kolb et al., 1994; Kaplan et al., 2014; Shikauchi and Ishii, 2015; Moscovitch et 

al., 2016). In rats, the dorsolateral striatum (DLS) has been shown to be involved in a 

spatial learning process that relies on rewarded stimulus-response behavior, i.e. model-

free choices (van der Meer and Redish, 2011; Ferbinteanu, 2016). In other words, neural 

activity in this region correlates with learning of turns and response to stimuli, which is 

the hallmark of route-based navigation. In humans, several fMRI studies report that the 
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caudate is activated during route-following and route-recognition tasks (Iaria et al., 2003; 

Wolbers et al., 2004; Etchamendy and Bohbot, 2007; Latini-Corazzini et al., 2010; 

Marchette et al., 2011). Thus, we argue that the encoding of model-free valuations in the 

vmPFC and left caudate nucleus during our navigation study may reflect computational 

mechanisms necessary for encoding of relations between landmarks as well as tracing of 

sequence of turns and places, which are crucial for route-based navigation.  

 

The retrosplenial involvement in navigation has been demonstrated in 

electrophysiological, neuroimaging, and lesion studies (Ino et al., 2002; Wolbers et al., 

2004; Wolbers and Büchel, 2005; Epstein et al., 2007). This area is anatomically closely 

linked to various medial temporal regions and mid-dorsolateral prefrontal cortex. 

Patients with retrosplenial lesions have been reported to be unable to form or recall links 

between landmark identity and couldn’t derive navigational information from landmarks 

(Miller et al., 2014a). These two processes are crucial to route-based navigation. 

Moreover, neuroimaging studies reported performance dependent activation in 

retrosplenial complex (RSC) during mental navigation (Ino et al., 2002). Other studies 

suggested the correlation of retrosplenial activation with the amount of survey 

knowledge acquired following learning the spatial relation in an environment (Wolbers 

et al., 2004; Wolbers and Büchel, 2005). These findings, along with the modulated 

activity in this region by both model-based and model-free regressors, support its 

prominent role in processing landmark information and using landmarks to navigate and 

discern space. This role is important for both route and map-based navigation.  

 

Since our subjects were not confined to one navigation strategy or the other, they could 

apply both strategies during the experiment. One might speculate that using such a 

mixture could result in integrating information from both model-free and model-based 

computations in a weighted manner for every choice. In our experiment, however, we 

did not find direct evidence for such an integration as there was no significant correlation 

between value signals of the hybrid model and BOLD activity. This would support the 

hypothesis that route and map-based evaluations are not necessarily integrated on every 

decision point. Instead, we suggest there were trials when subjects relied heavily on either 

route or map-based strategy to guide their choices during navigation. Note, however, 

that by design, our hybrid model cannot finally discriminate between both hypotheses. 

Either way, our calculation of a behavioural weight of model-based versus model-free 
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computations is still meaningful since ω is fitted over all trials in a given phase and 

indicates an aggregated relative degree of model-based versus model-free choices over 

the course of the experiment. 

 

In our experiment, the target rooms that subjects had to find contained a reward 

(subjects were paid according to how many rewards they found) that we could use to 

update RL values. Therefore, one could argue that we only observed RL learning because 

of the rewarding nature of the task and this process might not be causally linked to 

making navigational choices. To rule out the influence of an external monetary reward 

on our results, we conducted an additional behavioural experiment. The wayfinding task 

was similar to the one presented here but without monetary rewards. We found no 

differences in subjects’ choice or navigation behaviour (see Supplementary Results, 

Supplementary Methods, and Supplementary Figure 2.3 for details and results). On a 

neural level, even in situations without explicit reward, goal-directed navigation requires 

the brain to represent the goal location as some form of intrinsic reward, and the brain 

employs the same reward learning machinery whether rewards are real or fictitious (Lin 

et al., 2012; Boedecker et al., 2013). Moreover, if our results were only due to the value 

of reward, we would expect that the observed brain activations would only mirror the 

one found in pure decision making. Here we find BOLD activity pertaining to value-

based computations in the medial temporal and retrosplenial regions. These regions are 

not commonly associated with RL but frequently reported during spatial navigation. 

Taken together, it is very likely that our findings indeed form the bases of wayfinding 

towards the goal state.  

 

In conclusion, our findings show that successful navigation requires the ability to flexibly 

integrate different strategies depending on the given situation. Importantly, our results 

also suggest that the neural computations during employment of these strategies might 

be algorithmically described by RL models. Such a link between value-based decision 

making and spatial behaviour seems plausible given the central role that choice has 

played in navigation from the beginning of the evolution of the central nervous systems. 
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27 right-handed females, 20 – 29 years of age, participated in the wayfinding task while 

undergoing functional Magnetic Resonance Imaging (fMRI). Prior to the fMRI 

experiment, we conducted an extensive pilot study where we tested both female and 

male participants. The results of our pilot study showed that more than half of the male 

participants reached performance ceiling effects at the given level of task complexity. 

Instead of varying task complexity (e.g. size of the labyrinth), we chose to recruit only 

female participants to reduce variance in performance and strategies across subjects and 

thereby increase power of the tests. This is a common practice in psychological 

experiments that are designed to study general population mechanism compared to 

individual differences within the population (Hanel and Vione, 2016). While this may 

limit generalizability of our findings here to men, we are currently conducting a follow 

up study that includes participants across different gender and age groups that will 

address these issues.  

 

Two additional participants were not included in the analysis because they did not 

complete all trials of the experiment. All participants had normal or corrected-to-normal 

vision and no history of either neurological/psychiatric illness or any other 

contraindications to the MRI environment. The study was approved by the ethics 

committee of the Medical Faculty of the Ludwig-Maximilian-University Munich. All 

participants gave written informed consent and were paid a compensation of 25 to 30 

EUR based on the number of collected rewards during the experiment.  

 

 

 

To quantify strategy adoption during the wayfinding task, we calculated three navigation 

indices. For each navigation index, we calculated the index separately for each phase of 

the wayfinding task (adapted from (Marchette et al., 2011)). We first measured (1) the 

number of trials when subjects used the shortest path to find the rewards, (2) the steps 

taken to complete one trial in excess of the minimal number of steps, and (3) number of 

trials where subjects repeated learned routes.  
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IPATH and ISTEPS 

We calculated the proportion of trials with the shortest path to the total number of trials 

in a respective run 

 

𝐼𝑃𝐴𝑇𝐻 =  
𝑛𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑡𝑟𝑖𝑎𝑙

𝑛𝑡𝑜𝑡𝑎𝑙_𝑡𝑟𝑖𝑎𝑙
         [2.1] 

 

nshortest_trial is the number of trials when subjects used the shortest path to find the rewards 

and ntotal_trial is the number of trials in a given phase.  

 

Alternatively we determined a navigation index based on calculating the excess steps in 

each phase. We then defined this index as 

  

𝐼𝑆𝑇𝐸𝑃𝑆 =  
𝑛max _𝑠𝑡𝑒𝑝𝑠− 𝑛𝑜𝑏𝑠_𝑠𝑡𝑒𝑝𝑠

𝑛max _𝑠𝑡𝑒𝑝𝑠−𝑛𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑠𝑡𝑒𝑝𝑠
       [2.2] 

 

nmax_steps is the maximum number of steps found in each phase across all subjects, nshortest_steps 

is the  number of shortest steps to reach reward (i.e. number of steps in optimal path), 

nobs_steps is the number of steps a subjects actually took. A score of 1 on both indices 

suggests that a subject used the shortest path on every trial, i.e., the subject was primarily 

displaying a map-based strategy. In contrast, a score of 0 indicates that a subject always 

used a suboptimal longer path. 

 

IROUTE 

In both IPATH and ISTEPS, a score of 0 does not necessarily indicate that subjects simply 

followed previously established route to reach rewards. To address this issue, we also 

calculated the proportion of trials with the shortest paths and trials where subjects simply 

repeated previously learned routes. Note that for the encoding phase, this index might 

be less meaningful because subjects were still learning the environment and their task 

was to establish a certain route. We defined this index as 

 

𝐼𝑅𝑂𝑈𝑇𝐸 =  
𝑛𝑟𝑜𝑢𝑡𝑒_𝑡𝑟𝑖𝑎𝑙

𝑛𝑟𝑜𝑢𝑡𝑒_𝑡𝑟𝑖𝑎𝑙 + 𝑛𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑡𝑟𝑖𝑎𝑙 
       [2.3] 
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nroute_trial is the number of trials when subjects repeated learned routes. IPATH, ISTEPS, and 

IROUTE were first calculated for each phase separately. To get a general idea on how each 

participant navigate throughout the entire experiment, we averaged each index over 

three phases of the wayfinding task.  

 

 

We modelled the sequence of subjects’ choices (ai) by comparing them step by step to 

those predicted by different learning algorithms as having encountered the same state 

(s), action (a) and reward (r). As we had 5 by 5 grid, the wayfinding task consisted of 25 

states and in each state, subjects could have up to three actions depending on which 

direction the subject was facing.  

 

Because the wayfinding task consisted of three rewards, the goal for both model-free 

and model-based algorithms is to learn the state-action value function Q(s,a) mapping at 

each state-action pair to each reward. We assume no interference or generalization 

between the three rewards conditions, and thus each algorithm was subdivided into three 

independent task set, one for each reward.  

 

For model-free choice, we used the SARSA with eligibility traces (SARSA (λ)) to 

calculate model-free value or QMF (Sutton and Barto, 1998). This algorithm has three free 

parameters: learning-rate (α), inverse temperature (β) and eligibility parameter (λ). Each 

state-action pair is associated with a value QMF(s,a) all initially set to 0. The eligibility trace 

Z, set to 1 at the beginning of the trial and assumed not to be carried over from trial to 

trial, allows us to update each state-action pair along a subject’s encountered trajectory.  

For every trial t in which the subject located the reward (r), the state-action value is 

updated for each step i in that trial according to the following: 

 

 𝑄𝑀𝐹(𝑠𝑖,𝑡+1, 𝑎𝑖,𝑡+1) ←  𝑄𝑀𝐹(𝑠𝑖,𝑡, 𝑎𝑖,𝑡) +  𝛼 𝛿𝑖,𝑡 𝑍𝑖  ,     

where 

𝛿𝑖,𝑡  ← 𝑅 + 𝑄𝑀𝐹(𝑠𝑖+1,𝑡, 𝑎𝑖+1,𝑡) − 𝑄𝑀𝐹(𝑠𝑖,𝑡, 𝑎𝑖,𝑡),     

and 

𝑍(𝑠𝑖,𝑡, 𝑎𝑖,𝑡) ← λ 𝑍(𝑠𝑖,𝑡, 𝑎𝑖,𝑡).        
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A model-based choice learns the configuration of the grid world and computes action 

values by searching across possible trajectories to locate the reward (Simon and Daw, 

2011). Based on the grid-world configuration, we compute state-action values based on 

a planning process terminating at reward states. Specifically, for each action a in room s, 

we first initialized all QMB(s,a) to 0. Then, for all state-action pairs (s,a) and adjacent (next 

room) state-action pairs (s’, a’) we iteratively perform the following: 

 

𝑄𝑀𝐵(𝑠, 𝑎) ←  {
𝑅(𝑠′)

𝑚𝑎𝑥𝑎′∈𝐴𝑄𝑀𝐵(𝑠′, 𝑎′) − (𝛾 ∗ 𝑚𝑎𝑥𝑎′∈𝐴𝑄𝑀𝐵(𝑠′, 𝑎′))
     

𝑖𝑓 𝑅(𝑠′) ≠ 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [2.7] 

 

The algorithm has one fixed parameter γ that is set to 0.1.  We took model-based values 

(QMB) to be the values resulting after the algorithm converged (this occurred within 25 

iterations). Note that computations of model-based value did not depend on the trial t 

or step i of the subject. 

 

In addition to model-free and model-based algorithm, we also considered a hybrid model 

(Glascher et al., 2010; Wunderlich et al., 2012) in which the model predicted values for 

the actions are calculated as a weighted linear combination of the values from model-

free and model-based algorithms: 

 

𝑄ℎ𝑦𝑏𝑟𝑖𝑑 = (1 −  𝜔)𝑄𝑀𝐹 +  𝜔 𝑄𝑀𝐵       [2.8] 

 

The relative degree that the model-based algorithm contributed over the model-free is 

captured by the weight parameter (ω). We took this ω as a free parameter, which was 

fitted individually for each subject but assumed to be constant throughout a single phase 

of the wayfinding task. 

  

For each algorithm, we estimated a set of free parameters separately for each subject and 

for each phase of the wayfinding task by mean of hierarchical model fitting (Wunderlich 
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et al., 2012). Further details on the model fitting and calculation of model evidence are 

provided in the Supplementary Methods. 

 

 

 

The following software were used for the fMRI data analysis:  

SPM12 (https://fil.ion.ucl.ac.uk, RRID:SCR_007037); 

Xjview (https://alivelearn.net/xjview/, RRID:SCR_008642);  

SPM Anatomy Toolbox (https://fz-juelich.de/, RRID:SCR_013273);  

mricron (https://nitrc.org/mricron, RRID: SCR_002403). 

 

An event related analysis was applied on two levels using the general linear model 

approach as implemented in SPM12. Individual (random-effects) model parameters 

were used to generate regressors for the analysis of the fMRI data. The GLM included 

the following event (time) regressors covering the time when subjects saw (1) the 

instruction, (2) the room, (3) chose which direction they wanted to go (button press), (4) 

animation of movement, and (5) seeing the reward. Our analysis focused on the times 

when subject entered each room and the button press to indicate where to go next. For 

our primary hypothesis, the decision time points were parametrically modulated by (1) 

model-free values, and (2) model-based values. Parametric regressors were not serially 

orthogonalized, thus allowing each regressor to account independently for the response 

at each voxel. Using this approach, we let the model-free and model-based value 

regressor directly compete for variance in the BOLD signal. In this approach, only 

variance that is exclusively explained by one or the other regressor is assigned to the 

regressor but not the variance that is shared by both.  

 

All regressors were convolved with the canonical hemodynamic response function as 

provided by SPM12 and its temporal derivative. The six rigid-body motion parameters 

from the head motion correction were also included in the model as regressors of no 

interest.  At the first level, linear weighted contrasts were used to identify effects of 

interest, providing contrast images for group effects analysed at the second (random-

effect) level.   
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Second level analysis. Calculated linear contrasts of parameter estimates, from the first level 

GLM analysis, for each regressor were then brought to the separate second level 

random-effects analysis. At this level, one sample t-test provided effect for each 

regressor of interest. For correction of multiple comparisons, we set our significance 

threshold at P < 0.05 whole-brain FWE corrected for multiple comparison at cluster 

level. The minimum spatial extent, k = 25, for the threshold was estimated based on the 

underlying voxel-wise P value with a cluster defining threshold of P = 0.001. 

  

Details on the fMRI preprocessing are provided in the Supplementary Methods. 

 

 

 

We extracted data for all region of interest analyses using a cross-validation leave-one-

out procedure: we re-estimated our second-level analysis 27 times, always leaving out 

one subject. Starting at the peak voxel for the value signals in mPFC and right 

parahippocampal gyrus we selected the nearest maximum in these cross-validation 

second-level analyses. Using that new peak voxel, we then extracted the data from the 

left-out subject and averaged across voxels within a 4 mm sphere around that peak. 

 

We then extracted ß-parameter estimates using either model-free or model-based 

parametric value regressors in these ROIs and calculate the correlation between these  

and the fitted parameter ω from our behavioural hybrid learning model. This analysis 

provides additional information over the previous GLM analysis: the GLM identifies 

regions in which BOLD activity fluctuates with value signals of model-free and model-

based RL on a population level without considering to which degree an individual subject 

of the group uses the corresponding strategy. The ROI analysis the tests the hypothesis 

that activity in these regions, which correlate with value signals, is indeed related to the 

degree at which an individual subject employs that strategy behaviourally.  

 

Since circular analysis, the use of the same dataset and contrast for selection and selective 

analysis, has been a common pitfall in systems neuroscience (Kriegeskorte et al., 2009), 
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we pay particular attention to avoid it here. Our ROI analysis is not subject to such 

‘double-dipping’ for the following reasons:  

(1) We used a cross-validation leave-one-out procedure to define our regions of interest, 

ensuring that the data that is used to define the ROI is independent from the data 

extracted of this ROI. 

(2) The value-contrasts used in defining and extracting the ROI data (ß) are from a 

different RL model then the one providing the behavioural  parameter that is 

correlated against the ROI data, making both independent by design (see description 

above). 
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Figure 2.1. Wayfinding task and behavioral results 

A. Layout of the grid-world. The Virtual Reality (VR) environment consisted of a 5 by 5 grid of rooms. 
Each square represents a room which contained distinct furniture and objects to distinguish individual 
rooms.  Black square represents starting position, colored squares reward locations and the number 
represents the order in which they need to be found. The wayfinding task consisted of three phases: 
encoding, retrieval, and search phase. During the search phase, subject had to locate one randomly chosen 
reward at each trial, each time starting from a different starting position.  

B. Screenshots of the virtual reality environment. Each room is furnished with distinct objects to allow 
subjects to distinguish and recognize individual rooms. At each room (decision point) subjects could 
choose up to three directions (corner rooms had either one or two directions to choose). After a choice 
was made, an animation was leading to the room in the selected direction; this movement lasted 2.5 – 3 
seconds jittered uniformly. The next room and, if applicable, the reward were presented.  

C. Path from a representative participant (subject no. 1) who exhibited a tendency towards route-based 
strategy. During the encoding phase, the subject established by repetition a fixed route from one reward 
to the other. During the search phase, the subject still followed the established route to reach the reward 
when it started from a location on that previous route. However, when the subject started from a position 
which was not part of the original route, she could locate the reward room using the shortest possible 
path. 
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Figure 2.2. Reinforcement learning models and model fits 

The top panel displays action values, showing how valuable it is to move along the route in a certain state; 
the bottom panel shows the probability of taking certain actions in those state based on the action values. 
Black numbers are state values, blue numbers are probabilities of chosen action, green values refer to 
probabilities of other not chosen actions. Note that not all probabilities for non-preferred actions are 
shown.  

A. Model free valuation based on the SARSA (λ) algorithm. After reaching a reward this algorithm updates 
the values only along the traversed path.  

B. Model-based valuations derived from dynamic programming. The model-based algorithm updates 
values not only along the taken path, but across the entire grid world. 
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Figure 2.3. Correlation between navigation indices and weight parameters (n=27) 

A. Significant positive correlation between IPATH and ω parameters.  

B. Significant positive correlation between ISTEP and ω parameters. 

C. Significant negative correlation between IROUTE and ω parameters for the fMRI experiment.  

IPATH, ISTEP, IROUTE, and ω are averaged values for individual subject across three different phases of the 
wayfinding task. 
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Figure 2.4. Correlations of model predicted values with BOLD signals 

A. Correlates of model-free valuations in medial/vmPFC, striatum, and retrosplenial cortex.  

B. Correlates of model-based valuation in parahippocampal and medial temporal lobe region as well as the 
left retrosplenial cortex. 

Displayed results are significant at P < 0.05 whole brain FWE corrected at the cluster level. 

 

  



CHAPTER 2 

 

122 

 

Figure 2.5. Correlation between subjects' relative degree of model-based behavior and fMRI 
parameter estimates 

A. In vmPFC, we found a significant negative correlation between the ω parameter in the behavioural 
hybrid model and β-estimates in the GLM from the parametric regressor of model-free values. That 
means, across subjects, the larger the relative degree of model-free choice behaviour of a subject, the 
stronger was her representation of model-free values in the BOLD signal in vmPFC. No such relationship 
was found for the model-based value regressor. 

B. In the parahipocampal gyrus, we found a significant positive correlation between ω and β- estimates 
from the parametric regressor of model-free values. The larger the relative degree of model-based choice 
behaviour in a subject, the bigger was her representation of model-based values in the BOLD signal in the 
parahipocampal gyrus. No such correlation was found for the model-free value regressor. 
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To test if our RL algorithm captures the variability in strategy adoption during navigation 

we calculated correlation coefficients of both indices (IPATH and ISTEPS) with the fitted 

weight (ω) for each phase of the wayfinding task (Supplementary Figure 2.2).  

 

During the encoding phase, we found significant correlation between ω and IPATH (r = 

0.84, two-tailed t-test P < 5.8 × 10-8), ISTEPS (r = 0.87, two-tailed t-test P < 7.6 × 10-9), as 

well as IROUTE (r = -0.75, two-tailed t-test P < 8.7 × 10-6). Similarly, in retrieval phase, we 

found significant correlation between ω and IPATH (r = 0.73, two-tailed t-test P < 1.4 × 

10-5), ISTEPS (r = 0.52, two-tailed t-test P < 0.006), as well as IROUTE (r = -0.65, two-tailed 

t-test P < 2.6 × 10-4). Lastly, in the search phase, we also found significant correlation 

between ω and IPATH (r = 0.56, two-tailed t-test P < 0.003), ISTEPS (r = 0.40, two-tailed t-

test P < 0.03), as well as IROUTE (r = -0.45, two-tailed t-test P < 0.02). For aggregated data 

over all experimental phases see main text. 

 

To rule out the influence of an external monetary reward on our results, sixteen healthy 

female participants (19 – 29 years of age) took part in our additional behavioural 

experiment. The experimental procedure was almost the same as the main experiment, 

except subjects completed 12 trials (instead of as many as possible within a certain time) 

during the search phase. For this additional behavioural experiment, no reward is 

associated with target locations. In addition, subjects received a flat participation credit 

instead of monetary rewards for their participation.  

 

We compared the fitted parameters from this behavioural experiment to the ones from 

the fMRI experiment. Comparing the fitted parameters from the additional experiment 

(without reward) and the original experiment (with reward) using an independent-

samples t-test, we found no significant differences for all parameter values. Model free 

(α: t(41) = 0.44, P > 0.66; λ: t(41) = 0.61,  P > 0.54; β: t(41) = -0.78, P > 0.430), model-

based (β: t(41) = 0.52, P > 0.60), and hybrid model (α: t(41) = 0.79,  P > 0.22; λ: t(41) = 
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-0.58, P > 0.56; β: t(41) = 1.72, P > 0.09; and ω: t(41) = -1.62, P = 0.11).  In addition, 

we also replicate the correlation between parameter weight (ω) from the hybrid model 

and navigation indices. For the encoding phase, we found significant positive correlation 

between ω and IPATH (r = 0.54, two-tailed t-test P < 0.03) and ISTEPS (r = 0.61, two-tailed 

t-test P < 0.01). For the retrieval phase, we found significant correlation between ω and 

IPATH (r = 0.91, two-tailed t-test P < 4.7 × 10-7), ISTEPS (r = 0.60, two-tailed t-test P < 

0.01), as well as IROUTE (r = -0.822, two-tailed t-test P < 9.3 × 10-5). We also found 

significant correlation between ω and IPATH (r =0.83, two-tailed t-test P < 6.6 × 10-5), 

ISTEPS (r = 0.72, two-tailed t-test P < 0.001), as well as IROUTE (r = -0.78, two-tailed t-test 

P < 2.7 × 10-4) for the search phase.  

 

We tested a few exploratory hypotheses, in addition to the results presented in the main 

text, and mention the results here for completeness. 

 

First, there are several cognitive processes that subjects are faced with when entering 

each room, such as recognition of the objects, recall and matching to previously 

encountered rooms, identifying the location of the room in a cognitive map, calculating 

a navigation strategy and finally deriving an action choice from that. A lot of these 

processes have to take place before any decision can be made. Since our 3D environment 

is visually much more complex than a decision experiment where simple stimuli are 

presented, we expected the time of the response to be a better predictor than entering 

the room for when the brain computes navigation decisions. We therefore hypothesized 

that value signals would be represented strongest at the time of making a choice, which 

is the time information that we used in our GLM. However, we alternatively explored if 

there is any BOLD activity pertaining to model-free or model-based values already when 

subjects entered the room, i.e. preceding the actual decision point. From this analysis, 

we found neural correlates of model-free values in the right precuneus [x = 3, y = -70, z 

= 38] and of model-based values in right middle occipital gyrus [x = 39, y = -79, z = 14] 

but as expected those relationships were much weaker than when they are related to the 

time of the choice. 

 

We also tested if the brain tracks the frequency of entering the current room, frequency 

of entering the current room and choosing the same direction, time since last entering 
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the room, as well as whether the current room was located in the centre or the peripheral 

of the grid-world. We did not find any BOLD activity that are significantly correlated 

with these variables.  

 

We also tested the number of trials and MRT scores as covariates in our 2nd level GLM 

analysis. There was no significant correlation between these covariates and BOLD signal 

anywhere in the brain that survived correction for multiple comparisons.  

 

Lastly, since putting model-free and model-based regressors within one GLM might 

remove potentially important shared variance, we also created separate GLMs with 

model-free or model-based parametric modulators. In line with our main results, BOLD 

activity in medial prefrontal, striatal, and retrosplenial regions pertain to model-free 

valuations while BOLD activity in parahippocampal, hippocampal, and retrosplenial 

regions pertain to model-based valuations. We did not, however, find any differences in 

activity pattern across three different phases of the wayfinding task.  

 

 

 

 

We built two 3D virtual environments with a commercially available software that 

displays a first person point of view in a fully textured grid world (Vizard version 4.0; 

WorldViz, LLC https://worldviz.com). The 3D environment consisted of a 5 by 5 grid 

of rooms. Every room contained distinct furniture and objects as landmarks to 

distinguish individual rooms. Three rooms were designated as reward rooms. Each 

reward room contained one of three objects that subjects had to find while navigating 

through the maze. For the practice session, conducted three to five days before the fMRI 

scanning sessions, subject practiced on a smaller 4 by 4 grid world with different room 

furnishings but otherwise similar to the main task. Subjects could move from one room 

to another by pressing keys on a button box. Subjects could move forward, left or right. 

Backtracking was not allowed. Following their response, subjects viewed an animated 

movement sequence of the selected direction. It is important to note that a wayfinding 

task where participants are required to choose a direction and are then moved through 
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the environment based on their directional choices is well established in the field of 

spatial navigation (for more examples see the following references: (Harris et al., 2012; 

Latini-Corazzini et al., 2010; Shikauchi and Ishii (2015); Viard et al., 2011; Voermans et 

al., 2004, Wiener et al., 2013)). 

 

After entering the MRI, we instructed subjects to freely explore the 5 by 5 grid, without 

any rewards present, to learn to move with the button press and to get comfortable with 

the stimulus materials. Subjects had 35 choices to explore the setting which gave them 

enough time to explore all possible states of the environment, i.e. all the rooms, during 

this initial exploration. The following task consisted of three phases: (1) encoding, (2) 

retrieval, and (3) search. During the encoding phase, subjects always started in the same 

starting position and were asked to collect three rewards in a specific order over eight 

trials. During the retrieval phase, subjects were instructed to collect one specific reward 

at a time from the same starting position as in the encoding phase. Rewards were 

positioned at the same location as in encoding phase and selected in random order. 

Subject completed 15 trials in the retrieval phase. During the search phase, subjects had 

to collect a specific randomly chosen reward, each time starting from a different starting 

position. Subjects had 20 minutes to do as many trials as possible. Note that using short 

routes would allow subjects to reach target rooms more quickly and hence collect more 

rewards. After the experiment subjects a part of subjects’ financial compensation was 

related to the number of collected rewards. Use of a map-based strategy in this phase 

was therefore beneficial to subjects’ payment.  

 

The Vandenberg and Kuse Mental Rotation Test (MRT) is comprised of 24 items, six 

items on four separate pages in the test booklet (Vandenberg and Kuse, 1978). Each 

item is comprised of a row of five line drawings including a geometrical target figure in 

the left-most position followed by four response-choice figures: two rotated 

reproductions of the target and two distractors. The subject’s task is to indicate which 

two of the four response choice figures are rotated reproductions of the target figure. In 

each item there are always two and only two correct figures and two incorrect distractor 

figures. For each item, subjects were instructed to find two response choices with figures 

identical to the target figures. Subjects had 10 minutes to complete the task and were 

informed when there were 5 minutes remaining and again when there were 2 minutes 
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remaining. Instructions emphasized that subjects should refrain from guessing. Score of 

1 is given for every correct answer. Thus, the maximum score of the MRT is 48 (Caissie 

et al., 2009).  

 

For each algorithm, we calculated a probability of choice based on the following softmax 

decision rule (Luce choice rule): 

  

𝑝𝑡 =  
exp 𝛽𝑄𝑡(𝑠𝑡,𝑎)

∑ exp 𝛽𝑄𝑡(𝑠𝑡,𝑎′)𝑎′∈𝐴

        [S2.1] 

 

The parameter β is the inverse temperature representing the degree of stochasticity of 

subjects’ action selection.   

 

We estimated a set of free parameters (θ) for each algorithm separately for each subject 

by mean of hierarchical model fitting (Wunderlich et al., 2012). First we applied logistic 

(α, ω, λ) and exponential (β) transformation before fitting parameters to transform 

bounded parameter into Gaussian distributed parameter values with population mean 

and standard deviation. In the equation below, the Greek alphabets represent the 

parameters we used in the model, while the Latin alphabets stand for parameters in the 

logistic transformations that range from -∞ to ∞. 

   

𝛼 =
1

1+exp (−𝑎)
;   𝜔 =

1

1+exp (−𝑤)
;  λ=

1

1+exp (−𝑙)
;  𝛽 = exp (𝑏)  [S2.2] 

        

Next, we fitted these transformed parameters by maximizing the likelihood of all 

observed choices given the parameterized model: 

  

𝐿 = 𝑃(𝑐𝑖|𝜇𝑎, 𝜇𝑙, 𝜇𝑏, 𝜇𝑤, 𝜎𝑎, 𝜎𝑙, 𝜎𝑏, 𝜎𝑤) =  

∫ 𝑑𝑎𝑖𝑑𝑙𝑖𝑑𝑏𝑖𝑑𝑤𝑖 (𝑐𝑖|𝑎𝑖, 𝑙𝑖, 𝑏𝑖, 𝑤𝑖)(𝑎𝑖|𝜇𝑎, 𝜎𝑎)𝑃(𝑙𝑖|𝜇𝑙, 𝜎𝑙)𝑃(𝑏𝑖|𝜇𝑏, 𝜎𝑏) 𝑃(𝑤𝑖|𝜇𝑤, 𝜎𝑤)  [S2.3] 

 

We later estimated mean and variance of the parameter distribution in the population 

based on our subject sample. As an example, for parameter α:  
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𝜇𝑎 =  
1

𝑁
 ∑ 𝑎𝑖   𝑎𝑛𝑑 𝜎𝑎 =  √

1

𝑁
 ∑ (𝑎𝑖 −  𝜇𝑎)2𝑁

𝑖
𝑁
𝑖      [S2.4] 

 

Following mean and variance estimation, we refitted single subject parameter values by 

minimizing over both the negative log likelihood of subjects’ choice given the parameters 

and the negative log likelihood for individual subject parameter values given the 

distribution of parameters in the population:  

 

𝑃(𝑎𝑖, 𝑙𝑖, 𝑏𝑖, 𝑤𝑖|𝑐𝑖, 𝜇𝑎, 𝜇𝑙, 𝜇𝑏, 𝜇𝑤, 𝜎𝑎𝜎𝑙, 𝜎𝑏, 𝜎𝑤)   

∝ (𝑐𝑖|𝑎𝑖𝑙𝑖𝑏𝑖𝑤𝑖) × (𝑎𝑖, 𝑙𝑖, 𝑏𝑖, 𝑤𝑖|𝜇𝑎, 𝜇𝑙, 𝜇𝑏, 𝜇𝑤, 𝜎𝑎𝜎𝑙, 𝜎𝑏, 𝜎𝑤)   [S2.5] 

 

Estimation of the free parameters was implemented in Matlab using the Global 

Optimization Toolbox.  

 

To approximate the model evidence, we computed the Bayesian Information criterion 

(BIC) as follows: 

 

𝑙(𝜃) +  
𝑚

2
log 𝑛         [S2.6] 

 

where 𝑙(𝜃̂) is the negative log-likelihood of data at the maximum likelihood parameters 

θ; m is the number of free parameters optimized; and n is the number of choices the 

subject made. The BIC was calculated based on the hierarchical model fitting. Note that 

since subjects might employ either model-free or model-based strategy in individual 

trials, we did not choose RL model based on aggregated BIC of the subjects.  

 

We performed functional imaging using a 3T whole-body Siemens MAGNETOM Verio 

scanner with an 8-channel head coil located at the Klinikum der Universität München. 

T2* echo-planar images were obtained with 2390 ms repetition time (TR) with an 

acquisition matrix of 64 × 64, an echo time (TE) of 30 ms, a flip angle of 900, and field 

of view of 192 × 192 mm. Each volume consisted of 30 (3.0 × 3.0 × 3.0 mm3 voxels) 

axial slices with 15% gap. We completed five dummy scans at the beginning of each run 
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to allow for stabilization of the MR signal. In addition, a structural whole brain scan was 

acquired using an MP-RAGE T1-weighted sequence (TR/TE = 11.0 / 4.76 ms) with 

256 × 256 × 160 acquisition matrix, 1 × 1 × 1 mm3 voxel size, 150 flip angle, and a field 

of view of 256 × 256 mm. 

Neuroimaging data were processed and analysed using SPM12 toolbox 

(www.fil.ion.ucl.ac.uk/spm/software/spm12/). An event-related statistical analysis was 

applied to the images on two levels using the general linear model approach as 

implemented in SPM12. 

 

Functional images were realigned for head motion and coregistered between runs and 

to the structural images. The images were then spatially normalized to Montreal 

Neurological Institute (MNI) space using the normalization parameters generated during 

the segmentation for each subject’s anatomical T1 scan and resampled to 2 mm isotropic 

voxels. Subsequently, all images were smoothed with an 8 mm full width at half 

maximum (FWHM) Gaussian kernel. 
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Supplementary Figure 2.1. Example of five representative subjects' paths in encoding and search 
phases 

During the encoding phase, most subjects started by exploring the environment. They then either: A. 
established a certain route to go from one reward to the next or B. found the shortest paths to go between 
one reward and the next. During retrieval and search phases some subjects mostly used the C. shortest 
path to retrieve rewards while others either D. took a detour before reaching the reward or E. used the 
route they established during the earlier encoding phase. No subject chose exclusively one strategy over 
the other. Note that starting direction was always facing upward and subjects could not go backwards, so 
that from starting position S the downward path was not permitted  
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Supplementary Figure 2.2. Correlation of navigation indices with parameter weight on every 
phase of the wayfinding task 

A. For the encoding phase, significant correlation between ω and IPATH (r = 0.84, two-tailed t-test P < 5.8 
× 10-8), ISTEPS (r = 0.87, two-tailed t-test P < 7.6 × 10-9), as well as IROUTE (r = -0.75, two-tailed t-test P < 
8.7 × 10-6).  

B. For the retrieval phase, significant correlation between ω and IPATH (r = 0.73, two-tailed t-test P < 1.4 
× 10-5), ISTEPS (r = 0.52, two-tailed t-test P < 0.006), as well as IROUTE (r = -0.65, two-tailed t-test P < 2.6 × 
10-4).  

C. For the search phase, significant correlation between ω and IPATH (r = 0.56, two-tailed t-test P < 0.003), 
ISTEPS (r = 0.40, two-tailed t-test P < 0.03), as well as IROUTE (r = -0.45, two-tailed t-test P < 0.02).  

These correlations confirm that RL algorithms capture the variability in strategy adoption during 
navigation. 
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Supplementary Figure 2.3. Distribution of fitted parameters for the behavioural and fMRI 
experiments 

A. Distribution of fitted parameters from the additional behavioural experiment and the fMRI experiment 
for α, λ, and β from model free and parameter β from model-based. We found no significant difference 
between fitted parameters from the behavioural and fMRI experiment for model-free (α: P > 0.660; λ: P 
> 0.546; β: P > 0.430), model-based (β: P > 0.60).  

B. Distribution of fitted parameters from the additional behavioural experiment and the fMRI experiment 
for α, λ, β, and ω from hybrid model.  We found no significant difference between fitted parameters from 
the behavioural and fMRI experiment for hybrid model (α: P > 0.216; λ: P > 0.560; β: P > 0.067; and ω: 
P > 0.12).  

C. For the encoding phase, significant correlation between ω and IPATH (r = 0.54, two-tailed t-test P < 
0.03) and ISTEPS (r = 0.61, two-tailed t-test P < 0.01). (D) For the retrieval phase, significant correlation 
between ω and IPATH (r = 0.91, two-tailed t-test P < 4.7 × 10-7), ISTEPS (r = 0.60, two-tailed t-test P 
< 0.01), as well as IROUTE (r = -0.822, two-tailed t-test P < 9.3 × 10-5). (E) For the search phase, 
significant correlation between ω and IPATH (r =0.83, two-tailed t-test P < 6.6 × 10-5), ISTEPS (r = 
0.72, two-tailed t-test P < 0.001), as well as IROUTE (r = -0.78, two-tailed t-test P < 2.7 × 10-4). 
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Supplementary Figure 2.4. Distance and model-based regressor in one GLM 

Neural correlates of model-based regressor in A. parahippocampal/hippocampal area 
and B. retrosplenial cortex. Even when we put model-based and distance regressors as 
non-orthogonalized parametric modulators in the same GLM, we still see the correlated 
BOLD activity to model-based valuations. Note that the model-based algorithm 
computed value regressors using both subject’s state (i.e. location relative to goal) and 
chosen action. Consequently, for some trials, model-based regressors did not necessarily 
reflect the optimal value of the subject’s state.  These findings rule out that the BOLD 
correlations with model-based value signals are only a spurious correlate of the distance 
to the reward.  
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Supplementary Table 2.1. Navigation Indices, Fitted Parameter Weight (ω), and MRT Score 

 

Subject IPATH ISTEPS IROUTE Weight (ω) Aggregate BIC  MRT 

    Encoding Retrieval Search Average MF MB Hybrid  

1 0.12 0.36 0.80 0.19 0.09 0.06 0.11 321.2 359.3 337.1 14 

2 0.46 0.84 0.38 0.18 0.34 0.56 0.36 205.0 206.0 214.5 33 

3 0.35 0.65 0.49 0.05 0.73 0.67 0.48 319.7 321.1 329.6 31 

4 0.06 0.15 0.88 0.02 0.02 0.37 0.13 520.9 543.3 536.4 7 

5 0.76 0.96 0.23 0.86 0.96 0.94 0.92 198.8 130.3 168.6 36 

6 0.48 0.88 0.43 0.60 0.77 0.92 0.76 228.7 175.6 214.2 18 

7 0.31 0.42 0.53 0.13 0.41 0.11 0.22 445.7 440.0 457.6 9 

8 0.62 0.83 0.33 0.84 0.71 0.59 0.71 173.1 176.4 174.5 17 

9 0.58 0.83 0.37 0.67 0.57 0.65 0.63 219.4 204.3 229.0 37 

10 0.45 0.63 0.44 0.55 0.53 0.78 0.61 223.0 206.9 227.7 23 

11 0.53 0.75 0.32 0.79 0.75 0.62 0.72 260.8 227.3 255.9 21 

12 0.49 0.77 0.36 0.67 0.60 0.68 0.65 242.4 211.5 238.8 36 

13 0.58 0.81 0.26 0.87 0.95 0.73 0.85 260.5 219.0 247.3 26 

14 0.25 0.67 0.64 0.64 0.45 0.26 0.45 337.6 332.7 349.3 19 

15 0.55 0.90 0.41 0.78 0.05 0.63 0.49 170.0 157.8 167.3 32 

16 0.15 0.28 0.78 0.02 0.32 0.89 0.41 527.1 522.4 546.1 16 

17 0.33 0.53 0.46 0.04 0.83 0.10 0.33 407.1 393.6 417.9 31 

18 0.48 0.80 0.44 0.84 0.11 0.53 0.49 189.1 178.3 194.2 36 

19 0.18 0.42 0.68 0.01 0.03 0.58 0.21 497.7 499.9 513.6 20 

20 0.55 0.82 0.34 0.79 0.20 0.66 0.55 225.6 214.1 223.5 35 

21 0.48 0.75 0.29 0.34 0.61 0.82 0.59 281.3 259.3 280.1 33 

22 0.46 0.79 0.42 0.45 0.11 0.47 0.34 220.5 215.5 226.1 34 

23 0.71 0.97 0.36 0.82 0.87 0.91 0.87 175.2 115.6 153.8 38 

24 0.16 0.57 0.72 0.05 0.26 0.37 0.23 399.8 393.5 413.8 11 

25 0.13 0.28 0.78 0.02 0.35 0.11 0.16 310.5 398.0 326.8 18 

26 0.60 0.83 0.37 0.63 0.87 0.63 0.71 223.2 202.3 220.6 34 

27 0.52 0.91 0.35 0.83 0.49 0.52 0.61 191.7 156.7 183.5 27 
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Supplementary Table 2.2. Distribution of subjects’ individual maximum likelihoods and 

parameter estimates 

 

               Model-free Model-based 
 

Hybrid 
  

Random 
 

Encoding Phase 
           

β 5.70 11.06 13.43 3.01 10.39 19.54 11.61 13.93 17.67    

γ     - 0.1 - - 0.1 -    

α  0.08 0.36 0.62    0.09 0.23 0.76    

λ  0.67 0.78 0.90    0.74 0.89 0.95    

ω        0.08 0.59 0.78    

NLL  79.13 95.63 210.32 68.81 94.42 232.85 68.04 91.53 210.22 116.29 129.74 238.42 

BIC  86.39 103.19 218.78 71.26 96.94 235.69 78.86 138.24 222.52 116.29 129.74 238.42 

             

Retrieval Phase            

β 5.08 6.16 9.20 9.79 13.49 19.06 8.63 11.17 15.34    

γ    - 0.1 - - 0.1 -    

α  0.32 0.89 0.96    0.58 0.97 0.99    

λ  0.55 0.88 0.94    0.41 0.83 0.97    

ω        0.22 0.49 0.75    

NLL  20.15 27.25 43.21 17.43 27.20 41.82 17.23 27.03 41.24 51.39 55.44 65.70 

BIC  25.92 33.20 49.31 19.36 29.19 43.91 25.93 35.97 50.41 51.39 55.44 65.70 

             

Search Phase            

β 1.89 2.49 3.53 3.43 6.55 9.05 2.89 5.05 7.15    

γ       - 0.1 -    

α  0.38 0.87 0.97    0.56 0.87 0.97    

λ  0.6 0.86 0.86    0.63 0.86 0.97    

ω        0.39 0.62 0.72    

NLL  78.29 96.19 117.23 77.22 94.69 118.74 76.14 96.13 116.81 116.65 124.48 132.06 

BIC  85.87 103.69 124.77 79.59 97.20 121.31 85.92 106.13 126.86 116.65 124.48 132.06 

             

ρ2 0.17 0.29 0.35 0.11 0.31 0.38 0.16 0.32 0.40 

 

   

Quartiles (median in bold) of best fitting parameters for the three algorithms used to produced regressors for the imaging 
analysis, along with the negative log likelihood (NLL), BIC estimated evidence, and pseudo-r2 measure of individual fit. 
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Supplementary Table 2.3. Activation at decision points for model-free valuation across three 

phases of the wayfinding task 

 

  

Regions Peak Coordinates Hemi TPEAK Z score k 
 x y z 

 
    

    
Medial PFC  

    Superior medial gyrus  
  

6  
  

59  
  

20  
  

R  
 

6.29 
 

4.86 
 

524 
    Middle orbital gyrus  -3  47  -13  L  5.43 4.83 524 

      
  Anterior Cingulate Cortex  

      

  
-3  
  

  
38  

  

  
5  
  

  
L  
  

 
4.58 

 

 
4.40 

 

 
524 

 

  Precentral gyrus  
      

  
-6  

  
-25  

  
68  

  
L  

 
5.92 

 
4.67 

 
120 

      -30  -28  59  L  4.59 3.89 120 

      
      

12  
  

-31  
  

74  
  

R  
  

5.33 
 

4.34 
 

49 
 

  Caudate Nucleus  
      

-9  
  

11  
  

14  
  

L  
  

4.69 
 

4.11 
 

29 
 

  Middle temporal gyrus  
        

  
51  

  
-34  

  
-1  

  
R  

 
6.47 

 
4.95 

 
73 

        
        

-45  
  

-7  
  

-16  
  

L  
  

5.10 
 

4.21 
 

35 
 

  Superior temporal gyrus  
        

  
51  

  
-10  

  
17  

  
R  

 
5.86 

 
4.64 

 
52 

        
        

60  
  

-22  
  

2  
  

R  
  

4.09 
 

4.54 
 

52 
 

  Retrosplenial cortex (RSC)  
    

  
-15  

  
-40  

  
35  

  
L  

 
5.85 

 
4.63 

 
130 

    6  -52  32  R  4.72 3.98 130 

    6  -19  41  R  5.22 4.28 37 

    
  Cuneus  

    

  
0  
  

  
-85  

  

  
26  

  

  
L  
  

 
4.28 

 

 
3.84 

 

 
63 

 

  Calcarine gyrus  -3  -94  8  L  6.49 4.94 63 

 
Regions showing correlated BOLD activity with model-free values as parametric regressors across three different phases of 

the wayfinding task. Statistical significance was determined at the group level using a random-effect analysis. Regions listed 

exhibited significant peak voxels at probability threshold of P < 0.05 based on a FWE cluster level small volume correction (k 

= 25). Peak voxel MNI coordinates x, y, z are given in millimeters. L, left; R, right. 
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Supplementary Table 2.4. Activation at decision points for model-based valuation across three 

phases of the wayfinding task 

  

   
Regions Coordinates Hemi TPEAK Z score k 

 x y z     

 

Lateral PFC 

Inferior frontal gyrus 

 

 

-51 

 

 

29 

 

 

14 

 

 

L 

 

 

5.29 

 

 

4.32 97 

Inferior frontal gyrus 

 

54 

 

23 

 

17 

 

R 

 

4.93 

 

4.11 

 

35 

 

Cuneus 15 -79 35 R 5.26 4.30 61 

Precuneus 

 

27 

 

-64 

 

29 

 

R 

 

4.39 

 

3.77 

 

61 

 

Supramarginal gyrus 

 

66 

 

-28 

 

26 

 

R 

 

4.51 

 

3.84 

 

30 

 

Middle temporal gyrus 42 -55 14 R 4.69 3.95 43 

 

Fusiform gyrus 

 

 

-39 

 

 

-49 

 

 

-16 

 

 

L 

 

 

6.85 

 

 

5.13 

 

 

36 

 

PPA 

Parahippocampal gyrus 

 

 

21 

 

 

-46 

 

 

2 

 

 

R 

 

 

4.54 

 

 

3.85 

 

 

153 

 

 

Calcarine gyrus 

 

 

-3 

 

-67 

 

17 

 

L 

 

5.08 

 

4.20 

 

153 

 5 -75 14 R 4.38 3.75 153 

Retrospinal cortex (RSC) -12 -31 44 L 4.39 3.75 56 

 
Regions showing correlated BOLD activity with model-based values as parametric regressors across three phases of the 
wayfinding task. Statistical significance was determined at the group level using a random-effect analysis. Regions listed 
exhibited significant peak voxels at probability threshold of P < 0.05 based on a FWE cluster level small volume 
correction (k = 25). Peak voxel MNI coordinates x, y, z are given in millimeters. L, left; R, right. 
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The ability to find one’s way in a complex environment is crucial to everyday functioning. 

This navigational ability relies on the integrity of several cognitive functions and different 

strategies, route and map-based navigation, that individuals may adopt while navigating in 

the environment. As the integrity of these cognitive functions often decline with age, 

navigational abilities show marked changes in both normal aging and dementia. Combining 

a wayfinding task in a virtual reality (VR) environment and modeling technique based on 

reinforcement learning (RL) algorithms, we investigated the effects of cognitive aging on 

the selection and adoption of navigation strategies in human. The older participants 

performed the wayfinding task while undergoing functional Magnetic Resonance Imaging 

(fMRI), and the younger participants performed the same task outside the MRI machine. 

Compared with younger participants, older participants traversed a longer distance. They 

also exhibited a higher tendency to repeat previously established routes to locate the target 

objects. Despite these differences, the traversed paths in both groups could be well 

explained by the model-free and model-based RL algorithms. Furthermore, neuroimaging 

results from the older participants show that BOLD signal in the ventromedial prefrontal 

cortex (vmPFC) pertained to model-free value signals. This result provide evidence on the 

utility of the RL algorithms to explain how the aging brain computationally prefer to rely 

more on the route-based navigation.  
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Successful navigation requires not only spatial knowledge but also the adoption of 

appropriate strategies. Two separate strategies, namely the route-based and map-based 

navigation, can be used to navigate in the environment (Packard et al., 1989; Packard and 

McGaugh, 1996; Iaria et al., 2003; Voermans et al., 2004). The former relies on route 

knowledge and egocentric spatial reference frame. It critically involves learning a series of 

stimulus-response associations, such as patterns of right and left turn from a specific 

starting position (White and McDonald, 2002). The map-based navigation, in contrast, form 

an internal representation of relationships between different objects. This strategy, which 

relies on survey knowledge and allocentric spatial reference frame, is characterized by 

flexibility. In other words, it allows one to derive a novel path from a given starting position 

(Bohbot et al., 1998; Maguire et al., 1998; Naveh-Benjamin, 2000; Davachi and Wagner, 

2002). Adopting either the route-based or map-based navigation involves complex 

cognitive faculties that may deteriorate in both normal aging and dementia.  

 

Furthermore, brain areas that play a key role in map-based navigation, such as the 

hippocampus and medial temporal lobe (MTL), exhibit more extensive degradation in aging 

than other brain regions  (Driscoll et al., 2003; Du et al., 2003). These regions also showed 

reduced functional activation during navigation with age (Moffat et al., 2006). Some aspects 

of navigation, such as repeating previously established route (i.e. route-based navigation) 

have been reported to be less susceptible to aging (Jansen et al., 2010). Consequently, older 

adults may need to rely more on the route-based navigation. It is therefore not surprising 

that many studies have reported the difficulties in adapting map-based navigation among 

older adults (Moffat and Resnick, 2002; Moffat et al., 2006; Iaria et al., 2009; Wiener et al., 

2011; Harris et al., 2012; Harris and Wolbers, 2012; Wiener et al., 2013). However, the 

specific computational mechanism, accounting for route-based navigation preference in 

older adults remains a matter of debate.  

  

In this study, we combined modeling techniques from value-based decision making (model-

based and model-free reinforcement learning) and wayfinding task in a virtual reality (VR) 

environment to (1) test the hypothesis that cognitive aging results in a shift away from map-

based navigation, (2) identify the computational mechanism accounting for this shift, and 
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(3) identify neural correlates pertaining to the preference of route-based navigation among 

older adults. 

  

The core of our wayfinding task was a 4 by 4 grid world. Each room within this arena was 

distinctively furnished to allow participants to distinguish individual room (Figure 3.1. A 

and B). We conducted our experiment on two groups of participants: older adults between 

the age of 60 to 75, and younger adults between the ages of 23 to 35. The older participants 

performed the same task while undergoing functional Magnetic Resonance Imaging (fMRI). 

The younger participants performed the wayfinding task on a 24-inch monitor outside the 

MRI scanner. Since backtracking (leaving the room from the same door as entering it) was 

not allowed, rooms in the middle of the grid-world had three doors to choose from, rooms 

along the outside wall had two doors, and corner rooms had only one.  

 

Each participant performed one training phase and three test phases of the wayfinding task. 

Participants navigated by freely choosing one of the available doors. During the training 

phase, participants were asked to follow the instructions appearing on the screen. 

Instructions indicated which door to take in each decision point, and thus ensured that 

participants visited all the rooms in the arena. The paths followed during this training phase 

were the same for all participants. These paths did not correspond to the paths the 

participants should take to retrieve the rewards, and the rewards were hidden from 

participants’ plain sight. The main purpose of this phase was to allow all participants to get 

used to navigating with the button press and to explore the virtual environment. The test 

phase includes (1) encoding, (2) retrieval, and (3) search. During the encoding phase, 

participants always started in the same starting position and were asked to collect three 

rewards in a specific order over eight trials. During the retrieval phase, participants were 

instructed to collect one specific reward at a time from the same starting position as in the 

encoding phase. Rewards were positioned at the same location as in encoding phase and 

selected in random order. Participants completed 12 trials in the retrieval phase. During the 

search phase, participants had to collect a specific randomly chosen reward, each time 

starting from a different starting position. Participants completed 15 trials in the search 

phase (Figure 3.1. A and B). 

 

In our task, we expected that younger participants would use a mixture of route and map-

based navigation across trials, whereas the older participants would exhibit strong 
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propensity towards route-based navigation. We also expected that the traversed paths in 

both groups of participants could be well explained by the model-free and model-based RL 

algorithms. Significant correlations between navigation indices and key parameters from the 

RL models would then confirm that these algorithms account for individuals’ variability in 

strategy adoption during navigation. Moreover, we expected that correlates between BOLD 

activity and RL models’ key internal variables, such as value signals may provide evidence 

that these algorithms explain how the aging brain computationally prefer to rely more on 

route-based navigation.   
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As a measure of spatial ability, participants performed paper-based Mental Rotation Task 

(MRT, details in the Supplementary Method). This test measures a specific visuo-spatial 

ability, which involves the process of imagining how a two- or three-dimensional object 

would look if it is rotated away from its original upright position. Using an independent 

sample t-test to compare the two groups of participants, we found a significant difference 

(t(58) = 2.008, P < 5 × 10-13) between younger (M = 25.97, SD = 9.67, N = 42) and older (M 

= 10.54, SD = 2.36, N = 22) participants with the younger participants performed better 

than the older cohorts (Figure 3.3. A and Supplementary Table 3.1, 3.2, and 3.3). This result 

is consistent with previous studies reporting a large age difference in mental rotation 

performance (Kaltner and Jansen, 2016). The older participants however, performed better 

during the post navigation test (Younger Participants: M = 10.93, SD = 2.88, N = 42; Older 

Participants: M = 12.91, SD = 2.88, N = 22; t(58) = 2.001, P < 0.002; Figure 3.3. B).  

 

During the encoding phase, most participants started by exploring the environment. This 

was often seen by moving from one side of the arena to the opposite until all rewards were 

collected. On the one hand, half of younger participants either found the shortest paths to 

go from one reward to the next, or established a certain route to go from one reward to the 

other. On the other hand, all older participants established a certain route to go from one 

reward to the other. This trend was also observed during the retrieval and search phase.  

 

As a first crude measure to quantify strategy adoption in our subjects, we calculated two 

navigation indices based on: (1) the number of trials in which the shortest path was used 

(adapted from (Marchette et al., 2014; Marchette and Vass, 2015) and referred to as IPATH in 

this work), (2) the number of repeated route trials (referred as IROUTE). Each navigation index 

was first calculated for each subject individually on every phase of the wayfinding task. 

While we could distinguish whether subjects used novel shortest paths to retrieve rewards 

or simply followed the route during the search phase, this distinction was sometimes not so 

clear cut for the retrieval phase. This is because subjects had to find each reward from the 

same starting positon across several trials. Therefore, to get an overview on how every 

subject performed throughout the entire experiment, every navigation index was then 

averaged across three phases of the wayfinding task. For IPATH, a value of 1 indicates that a 
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subject would have used the shortest path on every trial. In other words, the participant was 

primarily displaying a map-based strategy. This is because, by design, only subjects who had 

a good spatial representation of the environment could have reached the rewards using the 

shortest paths. In contrast, participants whose scores were close to 0 predominantly used 

suboptimal long routes, suggesting that they lacked a map-like representation of the 

environment. In contrast, for IROUTE, a score of 1 indicates that a participant repeated 

previously established route, i.e. showed a tendency towards route-based strategy.   

 

Looking at the distribution of IPATH and IROUTE across different phases of the wayfinding 

task, the usage of optimal paths (as represented by higher IPATH) improved over experimental 

phase for younger participants. In contrast, the older cohorts showed little change in 

strategy use over the three phases of the wayfinding task.  

 

To quantify strategy preference and changes thereof, we ran separate ANOVAs for each 

index (IPATH and IROUTE) with age (young vs. old) as between group factor and phase 

(encoding, retrieval, and search) as within-subjects factor. Main effect of age revealed that 

young participants relied more strongly on the map-based navigation than older participants 

(F(1,62) = 84.99, P < 2 × 10-16). The main effect of phase (F(1,62) = 48.04, P < 2 × 10-16) was 

driven by the strong increase in the use of optimal paths by the younger participants, which 

is reflected in the significant age × phase interaction (F(2,62) = 4.62, P < 0.02). As for IROUTE, 

we also found main effect of age. The older group, compared with younger participants, 

relied more strongly on the route-based navigation (F(1,62) = 73.22, P < 4.26 × 10-15). There 

were also significant main effect of phase (F(1,62) = 117.69, P < 2 × 10-16) and phase × age 

interaction (F(2,62) = 17.39, P < 7.5 × 10-8).  

 

To get an overview on how the two groups differed in performance throughout the entire 

experiment, we compared the average of IPATH and IROUTE (across three phases of the 

wayfinding task) between the two groups (Figure 3.3. C and D). This revealed that, as a 

group, younger participants showed a higher tendency toward map-based navigation, i.e., 

higher IPATH score (t(58) =, P < 1.34 × 10-11). In contrast, older participants showed an overall 

preference for route-based strategy, i.e., higher IROUTE (t(58) =, P < 6.92 × 10-11). Such 

systematic preference for one strategy strongly suggests that the suboptimal longer routes 

taken by the older participants was not unspecific. Rather, it showed that they relied more 

on route-based navigation. 
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Furthermore, it has been traditionally accepted that males have an overall better 

performance than females in various tasks that involve spatial skills (Keeley et al., 2013; 

Sneider et al., 2015). Therefore, there is a potential of gender effect in our findings. To rule 

out this effect, we also compared strategy adoption between our male and female cohorts 

among our younger adult participants. We found no significant differences (details in the 

Supplementary Results and Discussion) were found among the two groups in either the 

optimal phase (IPATH Female: M = 0.39, SD = 0.19; Male: M = 0.49, SD = 0.22; two-tailed 

t-test P = 0.133), or the repeated runs ratio (IROUTE Female: M = 0.24, SD = 0.10; Male: M 

= 0.26 , SD = 0.12; two-tailed t-test P = 0.529). 

 

 

 

To computationally assess subjects’ navigation strategy at every decision point, we modelled 

subjects’ choice behaviour by fitting three different reinforcement learning (RL) algorithms: 

model-free, model-based, and a hybrid model. The hybrid model is formulated as a 

weighted combination of the model-free and the model-based algorithms. These algorithms 

exemplify two strategies in value-based decision making: the model-based choice that 

creates a cognitive representation of the entire environment, and the model-free choice that 

simply increases action values along the taken paths that previously led to rewards (Figure 

3.2). The hybrid model assumes that participants would employ both algorithms at a relative 

degree, represented by a fitted parameter weight (ω) (Glascher et al., 2010; Daw et al., 2011). 

We performed model fitting for each participant individually and assessed the relative 

goodness of fit in every phase (for details see Methods, Supplementary Methods, and 

Supplementary Table 3.4 and 3.5). 

 

In the younger participants, the fitted ω (fitted individually for every phase of the wayfinding 

task, then averaged over the three different phases) from the hybrid model (M = 0.42, SD 

= 0.26, N = 42) significantly correlated with spatial cognitive ability (as assessed by MRT, 

r(40) = 0.46, two-tailed t-test P < 0.0025) and IPATH (M = 0.44, SD = 0.21, r(40) = 0.66, two-

tailed t-test P < 1.98 × 10-6). We did not find significant correlation between fitted ω 

(averaged over three different phases) in the hybrid model (M = 0.25, SD = 0.15, N = 22) 

and the MRT score (r(20) = -0.015, two-tailed t-test P < 0.95) in the older cohort. 

Nevertheless, in older cohort, we found significant correlation between ω and IPATH (M = 
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0.14, SD = 0.08, r(20) = 0.49, two-tailed t-test P < 0.02). These results demonstrate that, 

across three phases of the wayfinding task, those who often took the shortest paths s also 

showed a tendency towards the model-based choice (Figure 3.3. E and F). 
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We then investigated neural responses pertaining to choice valuations in every room. A key 

internal variable of the RL algorithms is the value of the chosen action, a signal that has 

been reliably detected in BOLD fluctuations over a large number of studies (Wunderlich et 

al., 2009; Glascher et al., 2012; Kahnt et al., 2014). For each decision point, we calculated 

the values of the chosen action (i.e. go to the left, right, or straight ahead) based on model-

based and model-free RL algorithms. We took these computed values along the traversed 

paths and used them as parametric modulators to analyse the fMRI data.  

 

We analysed 3 different phases of the wayfinding task in one GLM instead of analysing 

each phase separately. The reason for this is that in even though there was a main effect of 

age x phase in our wayfinding task, this main effect was mainly driven by the younger 

participants who exhibit a tendency toward map-based navigation during the retrieval and 

search phase. Since we did not find this tendency in the older participants, and to improve 

statistical power when we analysed the fMRI data, we aggregate our GLM analysis into one.  

 

We found that BOLD activity correlated significantly with the model-free value signals 

along bilateral medial prefrontal cortex [mPFC , peak in the right hemisphere (superior 

medial gyrus): x = 6, y = 42, z = 40, T = 10.35, k = 3559; peak in the left hemisphere 

(medial frontal gyrus): x = -6, y = 28, z = -10, T = 6.11, k = 132] extending to right anterior 

cingulate cortex [ACC, peak: x = 4, y = 34, z = 20, T = 8.78, k = 3559]. Other clusters 

included retrosplenial complex [x = 4, y = -24, z = 38, T = 9.23, k = 4729] and precuneus 

[x = -6, y = -58, z = 28, T = 8.37, k = 4729]. We did not find correlates of model-based 

signals that survived correction for multiple comparisons. See Figure 3.6 for the activated 

areas. For correction of multiple comparisons, we set our significance threshold at P < 0.05 

whole-brain FWE corrected for multiple comparison at cluster level.  
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Previous studies have reported age-related changes in the selection and subsequent use of 

navigation strategies as well as neural computation and representation of space (Schuck et 

al., 2015; Lester et al., 2017). On the one hand, younger adults are adept at choosing an 

appropriate strategy based on their wayfinding needs. On the other hand, older adults often 

employed route-based navigation irrespective of task demands (Bohbot et al., 2012; 

Rodgers et al., 2012). This change in strategy preference across the adult lifespan has 

primarily been attributed to aged-related decline in hippocampal function that affects one’s 

ability to acquire and utilize allocentric spatial reference frame and survey knowledge 

(Moffat and Resnick, 2002; Rosenzweig and Barnes, 2003; Raz et al., 2005; Moffat et al., 

2006; Moffat et al., 2007; Moffat, 2009). In contrast, route-based navigation, which relies 

on egocentric reference frame, is relatively unaffected by age (Raz et al., 2004; Raz et al., 

2005; Raz et al., 2010). In line with these findings, we found that younger participants used 

a mixture of route and map-based navigation across trials, whereas the older cohorts 

exhibited substantial tendency towards route-based navigation. Moreover, the traversed 

paths in both groups could be well explained by the model-free and model-based RL 

algorithms. Importantly, fMRI results from the older participants show correlated between 

BOLD signal in the mPFC and the model-free value signals from the RL algorithm. 

  

In this study, we combined VR-based wayfinding paradigm, RL algorithms, and fMRI to 

investigate the effects of cognitive aging on the adoption of navigation strategies. Our 

approach differs from others used in aging research (Moffat and Resnick, 2002; Moffat et 

al., 2006; Moffat et al., 2007; Moffat, 2009; Wiener et al., 2009; Wiener et al., 2011; Wiener 

et al., 2012; Wiener et al., 2013), in a number of important aspects. First, participants were 

not confined to one strategy over the other. This means navigational strategy was measured 

in conditions that allowed either one of them or combination of both to prevail. To a certain 

degree, this is more comparable to the real-world situation. Furthermore, our encoding 

phase emphasized the formation of a route between a single starting position and three 

reward locations. Nevertheless, this phase still allowed the formation of a map-like 

representation, because participants could freely move within the environment. The 

retrieval phase then allowed further memory formation of how each of the three rewards 

can be reached from the starting position. During the search phase, different starting 

positions allowed participants to plan the shortest path using a map-like representation.  
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Finally, we also calculated behavioral measures. These behavioral measures were calculated 

(1) based on whether subjects took the shortest path, and (2) by modelling subjects’ choice 

by choice progression using model-free, model-based, and hybrid model algorithms of RL. 

Significant correlation between these two behavioral measures show that choice behaviors 

of participants who could find the shortest path were better explained by the model-based 

algorithm. This suggests that, in both groups, the hallmarks of navigation strategies are seen 

at the population level and within many individuals. These hallmarks of navigation strategies 

are well captured by the reinforcement learning models. It is important to note that there 

might be between-subject variability in their deployment. 

  

During the retrieval and search phase of the wayfinding task, participants navigated to find 

one specific reward per trial. To do so optimally, they needed to use map-based navigation. 

Looking at the distribution of the navigation indices, more than half of our younger 

participants showed clear evidence for integrating map-based navigation. This trend was 

also supported by a significant correlation of IPATH and fitted parameter ω. In contrast, only 

3 out of 22 older participants integrated map-based navigation while searching for rewards 

during the retrieval and search phase. A possible explanation for the discrepancy between 

the two groups is age-related impairment in both formation and the use of a cognitive map. 

Iaria et al. (2009) reported that older adults required more time to form cognitive map. In 

addition, compared to younger adults, older adults took more time and made more errors 

when they used the cognitive map to solve the navigation task (Iaria et al., 2009). This 

finding is supported by more recent studies that point towards older adults’ inability to 

utilize viewpoint-independent survey knowledge (Taillade et al., 2015; Lester et al., 2017). 

  

Furthermore, empirical research in spatial navigation (Harris et al., 2012; Harris and 

Wolbers, 2014) and other cognitive domains (Kray and Lindenberger, 2000; Terry and 

Sliwinski, 2012; Butler and Weywadt, 2013) has demonstrated that older adults are more 

vulnerable to switching costs. Given these findings, one could hence argue that the 

discrepancy between older and younger participants could also reflect an inability to switch 

from a firmly established route-based navigation to a map-based navigation. In our study, 

we observed that older participants, when they started from a new starting position, often 

retraced a path that might lead them to a familiar location. From this location, they then 

followed the established path that lead them to the target reward. These results make the 
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strategy switching account unlikely and point instead to an age-related deficit in building a 

cognitive map in novel environments. 

 

Going beyond the behavioral results, it is noteworthy that most attention in research and 

one age differences in human navigation has focused on the role of hippocampus and 

associated structures. This focus comes as no surprise in light of the prominent stage of the 

MTL in models of human spatial and episodic memory. It is important to note, however, 

findings from numerous neuroimaging studies reveals that navigation elicits activation in 

widespread cortical and subcortical regions beyond the hippocampus. In line with these 

findings, we found correlate of model-free values in the prefrontal region, i.e. mPFC and 

ACC, and the retrosplenial complex (RSC). This result has two important implications. 

First, it supports observation from both anatomical (Rajah et al., 2011) and functional 

neuroimaging studies that suggest that successful navigation in humans requires substantial 

contributions from the prefrontal circuit and associated cognitive systems (Chersi and 

Burgess, 2015; Dumont and Taube, 2015). Study by Moffat et al. (2007), for example, found 

that larger volumes of the prefrontal cortex grey and white matter were positively correlated 

with navigational performance in older adults. Furthermore, studies in nonhuman species 

confirm important contributions from the (medial) prefrontal regions in solving the Morris 

Water Maze (MWZ). Using the route and map-based version of the task, respective roles 

of the frontal cortex and hippocampal system have been delineated. Some studies even 

reported double dissociations in a way that hippocampal lesions impair map-based 

navigation and frontal cortex lesions impair route-based navigation (de Bruin et al., 1997; 

de Bruin et al., 2001). 

  

The second important implication is that our fMRI results argue against a strictly 

hippocampal/memory explanation of age related changes. This notion is supported by both 

behavioral and fMRI findings. Several behavioral observations suggest that age-related 

deficit in wayfinding task cannot be fully accounted by models of performance focusing 

solely on spatial memory. In particular, some studies reported that healthy older adults 

performed worse than their younger counterparts even during the early trials of the 

wayfinding task when memory for the target location was not yet crucial (Moffat and 

Resnick, 2002; Driscoll et al., 2005). Likewise, in our study, older participants performed 

significantly better in the post navigation task. In other words, they have better memory of 

objects that they encountered during the task. Lastly, we also found that older participants 
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performed significantly worse in the mental rotation task. This could be an indication that 

decline in basic spatial ability contributes to age-related changes in navigation. Taken 

together, we could speculate that the discrepancy observed among older and younger adults 

may be partially attributed to impaired executive and strategic functions. 

  

Equally important, several studies reported reduced or completely absent hippocampal 

activation among the older adults (Meulenbroek et al., 2004; Moffat et al., 2006; Antonova 

et al., 2009). In particular, when compared to younger adults, older participants showed 

reduced activation in the hippocampus and parahippocampal gyrus and medial parietal. In 

contrast, BOLD activity in the medial frontal lobe is relatively higher. In line with these 

findings, we also did not find correlates between RL’s key internal variables and the BOLD 

signal in the MTL. Therefore, it would be critical to understand how different cortical 

systems work in concert with the hippocampal system. This understanding may further 

delineate how changes in the neural systems may manifest in the specific components and 

sub-processes responsible for age-related discrepancy in strategy adoption during spatial 

navigation. 

   

In summary, the results of the present study replicate extant findings of age-related 

differences in spatial navigation and contribute new evidence toward understanding of their 

neural signatures. Of particular importance, these results indicate that successful navigation 

does not depend solely on the medial temporal lobe. Instead, it is associated with multiple 

cortical and subcortical structures and draws on task-specific spatial memory resources. 
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Sixty-four participants [42 younger (22 females; mean age: 26.3 years); 22 older (10 females; 

mean age: 62.6 years)] took part in the experiment. The Mini Mental State Examination 

(MMSE) was administered to all participants to screen for mild cognitive impairment 

(MCI). Three additional older participants and two additional younger participants were not 

included in the analysis. All participants had normal or corrected-to-normal vision and no 

history of either neurological/psychiatric illness or any other contraindications to the MRI 

environment.  

 

We had a larger cohort of younger participants because in addition to comparing strategy 

adoption between younger and older adults, we also examined the possibility of gender 

effects in strategy adoption in the group of our younger adult participants. Traditionally, it 

has been accepted that males have an overall better performance than females in tasks 

involving spatial skill (Keeley et al., 2013; Sneider et al., 2015). However, these results could 

be attributed to gender stratification, that is, the difference in opportunities that women 

have in different cultures (details on possible gender effects in strategy adoption is provided 

in the Supplementary Results and Discussion).  

 

 

 

Participants provided information on their age, gender, and computer experience prior to 

the experiment. The younger participants performed the wayfinding task on a standard 

desktop computer with a 24-inch widescreen monitor. The older participants performed 

the wayfinding task while undergoing a functional Magnetic Resonance Imaging. The 

wayfinding task was designed to assess the route-based and map-based strategy adoption 

(details in Supplementary Methods). In addition to the wayfinding task, participants also 

performed Mental Rotation Task (MRT) and post-navigation test (details on both tasks in 

Supplementary Method). 

 

The study was approved by the ethics committee of the Medical Faculty of the Ludwig-

Maximilian-University Munich. Participants were made fully aware of the details of the 
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experimental procedures and gave written informed consent. Younger participants were 

paid a compensation of 20€ and older participants were paid a compensation of 100€ to 

partake in the study, which took 70 to 90 minutes to complete. 

 

 

 

To quantify strategy adoption during the wayfinding task, we calculated three navigation 

indices. For each navigation index, we calculated the index separately for each phase of the 

wayfinding task (adapted from (Marchette et al., 2011)). We first measured (1) the number 

of trials when participants used the shortest path to find the rewards, and (2) number of 

trials where participants repeated learned routes.  

 

IPATH 

We then calculated the proportion of trials with the shortest path to the total number of 

trials in a respective run 

 

𝐼𝑃𝐴𝑇𝐻 =  
𝑛𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑡𝑟𝑖𝑎𝑙

𝑛𝑡𝑜𝑡𝑎𝑙_𝑡𝑟𝑖𝑎𝑙
          [3.1] 

 

nshortest_trial is the number of trials when participants used the shortest path to find the rewards 

and ntotal_trial is the number of trials in a given phase. A score of 1 on this index suggests that 

a subject used the shortest path on every trial, i.e., the subject was primarily displaying a 

map-based strategy. In contrast, a score of 0 indicates that a subject always used a 

suboptimal longer path. 

 

IROUTE 

To analyze whether participants simply followed previously established route to reach 

reward, we also calculated the proportion of trials with the shortest paths and trials where 

participants simply repeated previously learned routes. Note that for the encoding phase, 

this index might be less meaningful because participants were still learning the environment 

and their task was to establish a certain route. We defined this index as 

 

𝐼𝑅𝑂𝑈𝑇𝐸 =  
𝑛𝑟𝑜𝑢𝑡𝑒_𝑡𝑟𝑖𝑎𝑙

𝑛𝑟𝑜𝑢𝑡𝑒_𝑡𝑟𝑖𝑎𝑙 + 𝑛𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑡𝑟𝑖𝑎𝑙 
        [3.2] 
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nroute_trial is the number of trials when participants repeated learned routes. IPATH, ISTEPS, and 

IROUTE were first calculated for each phase separately. To get a general idea on how 

participants navigate throughout the entire experiment, we averaged each index over three 

phases of the wayfinding task. 

 

 

 

We modelled the sequence of participants’ choices (ai) by comparing them step by step to 

those predicted by different learning algorithms as having encountered the same state (s), 

action (a) and reward (r). As we had 4 by 4 grid, the wayfinding task consisted of 16 states 

and in each state, participants could have up to three actions depending on which direction 

the subject was facing.  

 

Since the wayfinding task consisted of three rewards, the goal for both model-free and 

model-based algorithms is to learn the state-action value function Q(s,a) mapping at each 

state-action pair to each reward. We assume no interference or generalization between the 

three rewards conditions, and thus each algorithm was subdivided into three independent 

task set, one for each reward.  

 

Model-free reinforcement learning  

For model-free choice, we used the SARSA with eligibility traces (SARSA (λ)) to calculate 

model-free value or QMF (Sutton and Barto, 1998). This algorithm has three free parameters: 

learning-rate (α), inverse temperature (β), and eligibility parameter (λ). Each state-action pair 

is associated with a value QMF(s,a) all initially set to 0. The eligibility trace Z, set to 1 at the 

beginning of the trial and assumed not to be carried over from trial to trial, allows us to 

update each state-action pair along a subject’s encountered trajectory.  For every trial t in 

which the subject located the reward (r), the state-action value is updated for each step i in 

that trial according to the following: 

 

 𝑄𝑀𝐹(𝑠𝑖,𝑡+1, 𝑎𝑖,𝑡+1) ←  𝑄𝑀𝐹(𝑠𝑖,𝑡, 𝑎𝑖,𝑡) +  𝛼 𝛿𝑖,𝑡 𝑍𝑖  ,     [3.3] 

where 

𝛿𝑖,𝑡  ← 𝑅 + 𝑄𝑀𝐹(𝑠𝑖+1,𝑡, 𝑎𝑖+1,𝑡) − 𝑄𝑀𝐹(𝑠𝑖,𝑡, 𝑎𝑖,𝑡),     [3.4] 
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and 

𝑍(𝑠𝑖,𝑡, 𝑎𝑖,𝑡) ← λ 𝑍(𝑠𝑖,𝑡, 𝑎𝑖,𝑡).        [3.5] 

 

Model-based reinforcement learning 

A model-based choice learns the configuration of the grid world and computes action 

values by searching across possible trajectories to locate the reward (Simon and Daw, 2011). 

Based on the grid-world configuration, we compute state-action values based on a planning 

process terminating at reward states. Specifically, for each action a in room s, we first 

initialized all QMB(s,a) to 0. Then, for all state-action pairs (s,a) and adjacent (next room) 

state-action pairs (s’, a’) we iteratively perform the following: 

 

𝑄𝑀𝐵(𝑠, 𝑎) ←  {
𝑅(𝑠′)

𝑚𝑎𝑥𝑎′∈𝐴𝑄𝑀𝐵(𝑠′, 𝑎′) − (𝛾 ∗ 𝑚𝑎𝑥𝑎′∈𝐴𝑄𝑀𝐵(𝑠′, 𝑎′))
     

𝑖𝑓 𝑅(𝑠′) ≠ 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [3.6] 

 

The algorithm has one fixed parameter γ that is set to 0.1.  We took model-based values 

(QMB) to be the values resulting after the algorithm converged (this occurred within 25 

iterations). Note that computations of model-based value did not depend on the trial t or 

step i of the subject. 

 

Hybrid model 

In addition to model-free and model-based algorithm, we also considered a hybrid model 

(Glascher et al., 2010; Wunderlich et al., 2012) in which the model predicted values for the 

actions are calculated as a weighted linear combination of the values from model-free and 

model-based algorithms: 

 

𝑄ℎ𝑦𝑏𝑟𝑖𝑑 = (1 −  𝜔)𝑄𝑀𝐹 +  𝜔 𝑄𝑀𝐵        [3.7] 

 

The relative degree that the model-based algorithm contributed over the model-free is 

captured by the weight parameter (ω). We took this ω as a free parameter, which was fitted 

individually for each subject but assumed to be constant throughout a single phase of the 

wayfinding task. 
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For each algorithm, we estimated a set of free parameters separately for each subject and 

for each phase of the wayfinding task by mean of hierarchical model fitting (Wunderlich et 

al., 2012). Further details on the model fitting and calculation of model evidence are 

provided in the Supplementary Methods. Estimation of the free parameters was 

implemented in Matlab using the Global Optimization Toolbox.  

 

 

 

 

The following software were used for the fMRI data analysis:  

SPM12 (https://fil.ion.ucl.ac.uk, RRID:SCR_007037); 

Xjview (https://alivelearn.net/xjview/, RRID:SCR_008642);  

SPM Anatomy Toolbox (https://fz-juelich.de/, RRID:SCR_013273);  

mricron (https://nitrc.org/mricron, RRID: SCR_002403). 

 

General Linear Model (GLM) for fMRI data analysis 

An event related analysis was applied on two levels using the general linear model approach 

as implemented in SPM12. Individual (random-effects) model parameters were used to 

generate regressors for the analysis of the fMRI data. The GLM included the following 

event regressors covering the time when participants saw (1) the instruction, (2) the room, 

(3) chose which direction they wanted to go (button press), (4) animation of movement, (5) 

seeing the reward, and (6) six seconds resting period in between trials. Our analysis focused 

on the times when subject entered each room and the button press to indicate where to go 

next. For our primary hypothesis and based on the results of the model-fitting, the decision 

time points were parametrically modulated by model-free values and (2) model-based 

values. Parametric regressors were not serially orthogonalized, thus allowing each regressor 

to account independently for the response at each voxel. Using this approach, we let the 

model-free and model-based value regressor directly compete for variance in the BOLD 

signal. In this approach, only variance that is exclusively explained by one or the other 

regressor is assigned to the regressor but not the variance that is shared by both.  
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All regressors were convolved with the canonical hemodynamic response function as 

provided by SPM12 and its temporal derivative. The six rigid-body motion parameters from 

head motion correction were also included in the model as regressors of no interest.  At the 

first level, linear weighted contrasts were used to identify effects of interest, providing 

contrast images for group effects analysed at the second (random-effect) level.   

Second level analysis. Calculated linear contrasts of parameter estimates, from the first level 

GLM analysis, for each regressor were then brought to the separate second level random-

effects analysis, wherein one sample t-test provided effect for each regressor of interest. For 

correction of multiple comparisons, we set our significance threshold at P < 0.05 whole-

brain FWE corrected for multiple comparison at cluster level. The minimum spatial extent, 

k = 25, for the threshold was estimated based on the underlying voxel-wise P value with a 

cluster defining threshold of P = 0.001. Details on the fMRI preprocessing are provided in 

the Supplementary Methods. 
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Figure 3.1. Wayfinding task and examples of participants' path 

A. Layout of the grid-world. The Virtual Reality (VR) environment consisted of a 4 by 4 grid of rooms. Each 
square represents a room which contained distinct furniture and objects to distinguish individual rooms.  Black 
square represents starting position, colored squares reward locations and the number represents the order in 
which they need to be found. The test phase of wayfinding task consisted of three phases: encoding, retrieval, 
and search phase. During the encoding phase, participants always started in the same starting position and 
were asked to collect three rewards in a specific order over eight trials. During the retrieval phase, participants 
were instructed to collect one specific reward at a time from the same starting position as in the encoding 
phase. During the search phase, subject had to locate one randomly chosen reward at each trial, each time 
starting from a different starting position.  

B. Screenshots of the virtual reality environment. Each room is furnished with distinct furniture to allow 
participants to distinguish and recognize individual rooms. At each room (decision point) participants could 
choose up to three directions (corner rooms had either one or two directions to choose). After a choice was 
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made, an animation was leading to the room in the selected direction; this movement lasted 2.5 – 3 seconds 

jittered uniformly. The next room and, if applicable, the reward were presented.  

C. Path from a representative younger participant who exhibited a tendency towards map-based strategy. 
During the encoding phase, the subject established by repetition a fixed route from one reward to the other. 
During the search phase, the participant managed to find the shortest path to reach the reward.   

D. Path from a representative older participant who exhibited a tendency towards route-based strategy. During 
the encoding phase, the subject established by repetition a fixed route from one reward to the other. During 
the search phase, the subject still followed the established route to reach the reward.  
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Figure 3.2. Reinforcement learning models and model fitting 

A. Calculation of action values, showing how valuable it is to move along the route in a certain state, based 
on either model-free or model-based RL algorithm. The top panel displays the path the participant take to 
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reach the first reward. The middle panel displays model-free valuation based on the SARSA (λ) algorithm. 
After reaching a reward this algorithm updates the values only along the traversed path. Lastly, the bottom 
panel displays how model-based algorithm updates values. The model-based RL algorithm, derived from 
dynamic programming, updates values not only along the taken path, but across the entire grid world in 
iterative manner. For this bottom panel, black numbers are state values, red numbers are model-based values 
of chosen action, and green numbers refer to model-based values of the unchosen actions.  

B. Calculation of probability of taking certain actions in those state based on the action values. Purple numbers 
are probabilities of chosen action, brown numbers refer to probabilities of other unchosen actions. Note that 
not all probabilities for non-preferred actions are shown. 
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Figure 3.3. Behavioral Results 

A. Performance on the MRT. Comparing MRT score between the older and younger participants, results 
indicate a significant difference (P < 0.0007), with younger participants generally performing better than the 
older cohort.  

B. Performance on the Post Navigation Test. Comparing the score between the two groups of participants, 
results indicate a significant difference (P < 0.005), with older participants generally performing better than 

the younger cohort.  

C. Significant difference between the two group results (P < 1.3E-11), older participants scoring (on average) 
lower than the younger participants.  

D. Significant difference between the two group results (P < 7.1E-11), older participants scoring (on average) 
higher than the younger participants.  

E. Significant positive correlation between IPATH and ω parameters for the older group.  

F. Significant positive correlation between IPATH and ω parameters for the younger group. 
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Figure  3.4. BOLD activity pertaining to model-free value signals 

A. Correlates of model-free valuations in medial prefrontal cortex (mPFC) 

B. Correlates of model-free valuations in retrosplenial complex (RSC) 
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In addition to comparing strategy adoption between younger and older adults, we also 

examines the gender effects in strategy adoption in the group of our younger adult 

participants. Traditionally, it has been accepted that males have an overall better 

performance than females in tasks involving spatial skill (Keeley et al., 2013; Sneider et al., 

2015). However, these results could be attributed to gender stratification, that is, the 

difference in opportunities that women have in different cultures. For instance, the spatial 

skills acquired in engineering careers (where males have traditionally been predominant) 

and videogames (also an activity usually associated with males) could account for most of 

these differences. Moreover, recent meta-analysis studies have shown how the divergence 

in spatial skills among genders is not as wide as it was usually assumed (Hyde, 2016) and 

can be reduced even further with proper training (Uttal et al., 2012).  

 

Among the types of spatial skills, the biggest difference favouring males is found on 

performance in 3D mental rotation tasks (Hyde, 2016). Comparing male and female’s MRT 

scores through a t-test, we found a significant effect of gender on MRT scores (Female: M 

= 21.80, SD = 9.25; Male: M = 29.77, SD = 8.82; two-tailed t-test P < 0.005), with males 

generally performing better than females. This result allowed us to corroborate some 

previous finding in this field.  

 

When comparing performance between the male and female younger adult participants 

during the wayfinding task, no significant differences were found among the two groups in 

either the optimal phase (IPATH Female: M = 0.39, SD = 0.19; Male: M = 0.49, SD = 0.22; 

two-tailed t-test P = 0.133), or the repeated runs ratio (IROUTE Female: M = 0.24, SD = 0.10; 

Male: M = 0.26 , SD = 0.12; two-tailed t-test P = 0.529).  

 

Lastly, the post-navigation test aimed to estimate the importance participants gave to 

landmarks, and intended to be an indicator on how much they relied on landmark 

information during the wayfinding task. Comparing the test scores of the male and female 

younger adults participants, we found a significant difference between the two group results 

(Female: M = 12.05, SD = 2.76; Female: M = 9.91, SD = 2.74; two-tailed t-test P < 0.01), 



MANUSCRIPT 2:  AGE-RELATED DIFFERENCES IN NAVIGATION 

181 

with females scoring higher than males. Higher scores on this test showed that females gave 

more attention to spatial landmarks, which are more closely related to route-based 

navigation as opposed to geometrical cues.  

 

 

 

The Virtual Environment (VE) consisted of an arena divided into 16 square rooms (4-by-4 

grid). The rooms were distributed in a grid-like manner, and each one of them was 

connected to the adjacent room. Every room was furnished in with unique set of furniture, 

making it different from all other rooms. While inside one of the room, no information 

from neighbouring room could be perceived. 

 

The virtual environment was presented on a 24 inch computer screen (behavioral 

experiment) or 32 inch NNL screen (fMRI experiment). Participants navigated by pressing 

left, right, or forwad button. There was no way of going directly backwards, and therefore, 

participants could not leave a room by the same door they just entered it. 

 

The complete experiment consisted of one training phase and three test phases. During the 

training phase, participants were asked to follow the instructions appearing on the screen. 

Instructions indicated which door to take in each decision point, and allowed the 

participants to visit all the rooms in the arena. The paths followed during this training phase 

were the same for all participants. These paths did not correspond to the paths the 

participants should take to retrieve the rewards. The main purpose of this phase was to 

allow all participants to get used to navigating with the button press to suppress any 

variability caused by previous experience with this type of device. However, since the 

composition of the rooms remained unchanged, this training phase also gave all participants 

the opportunity to explore the virtual environment. 

 

During the encoding phase, participants were instructed to find three rewards in the exact 

order. This was ensured by making each reward visible only if the previous reward had been 

already encountered. Once the participants had found all three rewards, they were brought 

back to the same starting position and had to perform the exact same task seven more times 
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(8 trials in total). During the retrieval phase, participants were only asked to find one reward 

at a time for 12 trials in total. Lastly, during the search phase, participants were, once again, 

instructed to find only the reward indicated on the screen. This time, however, the starting 

position for every new trial (15 trials in total) was different from the previous phase. 

 

For the older adult participants, there was a practice session conducted three to five days 

before the fMRI scanning sessions. They practiced on a similar 4 by 4 grid world with 

different room furnishings but otherwise similar to the main task. 

 

The Mental Rotation Task (MRT) consisted on 24 target items, which were graphic 

representations of a three-dimensional object. Next to the target item, four additional 

testing figures were presented, and participants were required to identify two rotated images 

of the target item among those alternatives. After a training session where participants could 

get used to the task and practice with some additional examples, participants were given 10 

minutes to complete as many items as possible. One point was awarded for each correct 

choice, resulting in a possible score ranging from 0 to 48. 

 

After the navigational task in the virtual environment, participants completed post-

navigation test. The test was used to assess how many landmarks that the participants 

observed. The test had 15 questions, each of them consisting on 4 images representing 

different types of furniture. Among those four images, two of them represented furniture 

that were found in the virtual environment, while the other two were not present in the VE 

arena. Participants were asked to identify the two objects belonging to the VE arena, and a 

point was only awarded in case the subject successfully identified two correct options in a 

single test question. Therefore, scores ranged from 0 to 15. 

For each algorithm, we calculated a probability of choice based on the following softmax 

decision rule (Luce choice rule): 

  

𝑝𝑡 =  
exp 𝛽𝑄𝑡(𝑠𝑡,𝑎)

∑ exp 𝛽𝑄𝑡(𝑠𝑡,𝑎′)𝑎′∈𝐴

        [S3.1] 
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The parameter β is the inverse temperature representing the degree of stochasticity of 

participants’ action selection.   

 

We estimated a set of free parameters (θ) for each algorithm separately for each subject by 

mean of hierarchical model fitting (Wunderlich et al., 2012). First we applied logistic (α, ω, 

λ) and exponential (β) transformation before fitting parameters to transform bounded 

parameter into Gaussian distributed parameter values with population mean and standard 

deviation. In the equation below, the Greek alphabets represent the parameters we used in 

the model, while the Latin alphabets stand for parameters in the logistic transformations 

that range from -∞ to ∞. 

   

𝛼 =
1

1+exp (−𝑎)
;   𝜔 =

1

1+exp (−𝑤)
;  λ=

1

1+exp (−𝑙)
;  𝛽 = exp (𝑏)  [S3.2] 

        

Next, we fitted these transformed parameters by maximizing the likelihood of all observed 

choices given the parameterized model: 

  

𝐿 = 𝑃(𝑐𝑖|𝜇𝑎, 𝜇𝑙, 𝜇𝑏, 𝜇𝑤, 𝜎𝑎, 𝜎𝑙, 𝜎𝑏, 𝜎𝑤) =  

∫ 𝑑𝑎𝑖𝑑𝑙𝑖𝑑𝑏𝑖𝑑𝑤𝑖 (𝑐𝑖|𝑎𝑖, 𝑙𝑖, 𝑏𝑖, 𝑤𝑖)(𝑎𝑖|𝜇𝑎, 𝜎𝑎)𝑃(𝑙𝑖|𝜇𝑙, 𝜎𝑙)𝑃(𝑏𝑖|𝜇𝑏, 𝜎𝑏) 𝑃(𝑤𝑖|𝜇𝑤, 𝜎𝑤) [S3.3] 

 

We later estimated mean and variance of the parameter distribution in the population based 

on our subject sample. As an example, for parameter α:  

 

𝜇𝑎 =  
1

𝑁
 ∑ 𝑎𝑖   𝑎𝑛𝑑 𝜎𝑎 =  √

1

𝑁
 ∑ (𝑎𝑖 −  𝜇𝑎)2𝑁

𝑖
𝑁
𝑖      [S3.4] 

 

Following mean and variance estimation, we refitted single subject parameter values by 

minimizing over both the negative log likelihood of participants’ choice given the 

parameters and the negative log likelihood for individual subject parameter values given the 

distribution of parameters in the population:  

 

𝑃(𝑎𝑖, 𝑙𝑖, 𝑏𝑖, 𝑤𝑖|𝑐𝑖, 𝜇𝑎, 𝜇𝑙, 𝜇𝑏, 𝜇𝑤, 𝜎𝑎𝜎𝑙, 𝜎𝑏, 𝜎𝑤)   

∝ (𝑐𝑖|𝑎𝑖𝑙𝑖𝑏𝑖𝑤𝑖) × (𝑎𝑖, 𝑙𝑖, 𝑏𝑖, 𝑤𝑖|𝜇𝑎, 𝜇𝑙, 𝜇𝑏, 𝜇𝑤, 𝜎𝑎𝜎𝑙, 𝜎𝑏, 𝜎𝑤)   [S3.5] 
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To approximate the model evidence, we computed the Bayesian Information criterion 

(BIC) as follows: 

 

𝑙(𝜃) +  
𝑚

2
log 𝑛         [S3.6] 

 

where 𝑙(𝜃̂) is the negative log-likelihood of data at the maximum likelihood parameters θ; m 

is the number of free parameters optimized; and n is the number of choices the subject 

made. The BIC was calculated based on the hierarchical model fitting. Note that since 

participants might employ either model-free or model-based strategy in individual trials, we 

did not choose RL model based on aggregated BIC of the participants. 

 

Neuroimaging data were collected using a 3T whole-body Siemens MAGNETOM Skyra 

scanner with 64 channel head coil located at the Klinikum der Universität München. T2* 

echo-planar images (with a multiband factor of 4) were collected with repetition time (TR) 

= 1760 ms, a matrix size of 106 x 106, an echo time (TE) = 38.6 ms, 45 deg flip angle, and 

field of view (FOV) = 212 x 212 mm. 60 axial slices were included in every volume. The 

voxel resolution is 2.0 x 2.0 x 2.0 mm3. The phase encoding direction was from anterior to 

posterior. Five dummy scans at the beginning of each run were discarded to allow for 

stabilization of the MR signal. The structural brain images were acquired applying an MP-

RAGE T1-weighted sequence (TR/TE = 2.4 / 2.17 ms) with 320 x 256 matrix size, 

resolution 0.75 x 0.75 x 0.75 mm3, 12 deg flip angle, and a FOV of 240 x 240 mm. 

 

Neuroimaging data were processed and analysed using SPM12 toolbox 

(www.fil.ion.ucl.ac.uk/spm/software/spm12/). An event-related statistical analysis was 

applied to the images on two levels using the general linear model approach as implemented 

in SPM12. 

 

Functional images were realigned for head motion and coregistered between runs and to 

the structural images. The images were then spatially normalized to Montreal Neurological 

Institute (MNI) space using the normalization parameters generated during the 
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segmentation for each subject’s anatomical T1 scan and resampled to 2 mm isotropic 

voxels. Subsequently, all images were smoothed with an 8 mm full width at half maximum 

Gaussian kernel. 
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Supplementary Figure 3.1 Path during the training phase 

During the training phase, participants were followed the instructions appearing on the screen to go through 
4 different paths. Instructions indicated which door to take in each decision point, and allowed the participants 
to visit all the rooms in the grid-world. The paths followed during this training phase were the same for all 
participants. These four paths did not correspond to the paths the participants should take to retrieve the 
rewards. Rewards were hidden from participants’ plain sight.  

 

  



MANUSCRIPT 2:  AGE-RELATED DIFFERENCES IN NAVIGATION 

187 

 

Supplementary Figure 3.2. Influence of gender on spatial ability 

A. Significant difference between the two group results, with females scoring higher than males. 

B. Significant difference between the two group results, with females scoring higher than males. 

No significant differences were found among the two groups in either the C. optimal performance ratio (P = 
0.133) or D. the repeated runs ratio (P = 0.529).  
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Supplementary Table 3.1. Navigation Indices, MMSE Score, Fitted Parameter Weight, and MRT 
Score of the Older Participants 

 

Subject IPATH ISTEPS MMSE Weight (ω) Aggregate BIC  MRT 
    Encoding Retrieval Search Average MF MB Hybrid  

            
1 0.17 0.35 28 0.03 0.05 0.49 0,19 252.2 290.3 259.4 12 
2 0.04 0.43 27 0.02 0.03 0.03 0,03 196.1 241.5 203.2 9 
3 0.11 0.49 28 0.02 0.07 1.00 0,36 214.5 262.0 224.3 13 
4 0.35 0.42 27 0.15 0.53 0.70 0,46 263.4 308.9 268.4 7 
5 0.11 0.39 28 0.03 0 0.08 0,04 195.5 220.9 202.2 8 
6 0.02 0.44 27 0.02 0 0.03 0,02 162.0 218.5 168.8 7 
7 0.13 0.38 28 0.39 0 0.73 0,37 236.7 259.3 242.0 14 
8 0.13 0.41 29 0.46 0 0.03 0,17 330.2 332.8 336.9 8 
9 0.22 0.36 26 0.03 0.02 0.61 0,22 425.3 431.7 433.5 8 

10 0.16 0.37 28 0.28 0.02 1.00 0,43 299.4 307.4 305.3 12 
11 0.07 0.38 26 0.19 0.32 0.69 0,40 273.7 300.7 280.6 11 
12 0.02 0.62 27 0 0.16 0.61 0,26 172.8 283.2 177.8 9 
13 0.07 0.46 27 0 0 0.61 0,20 240.9 282.9 247.8 9 
14 0.09 0.56 27 0 0 0.44 0,15 138.3 228.5 144.8 8 
15 0.07 0.54 26 0.02 0.14 0.46 0,21 115.4 250.4 121.4 10 
16 0.07 0.48 25 0.02 0.03 0.68 0,24 103.4 218.3 106.3 12 
17 0.22 0.48 28 0.03 0.05 0.03 0,04 198.4 310.2 206.1 15 
18 0.23 0.42 25 0.22 0.20 0.67 0,36 284.9 309.1 290.7 13 
19 0.18 0.46 26 0 0.34 0.03 0,13 338.3 358.4 346.4 14 
20 0.18 0.57 25 0.50 0.10 0.62 0,41 185.3 251.0 187.1 12 
21 0.17 0.36 26 0.80 0.02 0.82 0,55 405.6 390.3 412.7 10 
22 0.17 0.38 25 0.05 0.03 0.74 0,27 357.8 354.0 365.3 11 
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Supplementary Table 3.2. Navigation Indices, MMSE Score, Fitted Parameter Weight, and MRT 

Score of the Female Younger Participants 

 

Subject IPATH ISTEPS MMSE Weight (ω) Aggregate BIC  MRT 

    Encoding Retrieval Search Average MF MB Hybrid  

            

1 0.50 0.31 27 0.32 0.30 0.63 0.42 158.9 153.8 157.6 18 
2 0.47 0.26 28 0.07 0.77 0.87 0.57 187.8 193.5 184.8 15 

3 0.81 0.38 27 0.10 0.76 1.00 0.62 116.3 113.9 117.3 44 

4 0.19 0.06 28 0.05 0.07 0.28 0.13 429.6 425.0 437.5 17 

5 0.56 0.22 26 0 0.48 0.06 0.18 218.2 224.6 221.8 11 

6 0.22 0.08 27 0.05 0.07 1.00 0.37 469.6 459.1 477.5 26 

7 0.22 0.36 27 0 0.07 0.03 0.04 121.2 204.9 128.2 43 

8 0.36 0.26 28 0 0.31 0.70 0.34 219.2 242.6 223.0 25 

9 0.88 0.39 28 0.69 0.83 0.87 0.80 89.0 75.3 77.2 31 

10 0.42 0.17 26 0.28 0.65 0.41 0.45 217.3 220.3 220.7 15 

11 0.22 0.22 27 0.02 0.07 0.03 0.04 289.2 300.6 296.3 13 

12 0.42 0.19 28 0.03 0.07 0.66 0.26 353.7 343.7 360.5 14 

13 0.22 0.06 28 0.01 0.51 0.66 0.39 400.9 405.9 406.9 27 

14 0.22 0.32 27 0.06 0.80 0.03 0.30 148.0 192.5 139.0 17 

15 0.33 0.29 26 0.01 0.46 0.80 0.42 209.5 217.4 213.4 21 

16 0.33 0.17 28 0.03 0.07 0.03 0.05 353.5 353.8 360.6 17 

17 0.14 0.22 28 0.06 0.38 0.35 0.26 331.4 405.7 337.0 12 

18 0.58 0.29 27 0.84 0.87 1.00 0.90 154.9 142.2 147.4 26 

19 0.44 0.36 28 0.16 0.24 0.52 0.31 164.1 171.1 167.3 23 

20 0.31 0.24 28 0.02 0.46 0.44 0.31 234.0 256.9 238.8 21 
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Supplementary Table 3.3. Navigation Indices, MMSE Score, Fitted Parameter Weight, and MRT 

Score of the Male Younger Participants 

 

Subject IPATH ISTEPS MMSE Weight (ω) Aggregate BIC  MRT 

    Encoding Retrieval Search Average MF MB Hybrid  

            

1 0.08 0.33 27 0.03 0.05 0.49 0.19 234.7 282.8 242.0 29 
2 0.38 0.24 27 0.02 0.03 0.03 0.03 168.9 157.9 169.2 24 

3 0.56 0.14 28 0.02 0.07 1.00 0.36 157.6 157.5 149.1 23 

4 0.56 0.31 28 0.15 0.53 0.70 0.46 135.0 143.8 140.0 30 

5 0.33 0.19 27 0.03 0.00 0.08 0.04 246.2 258.3 254.6 14 

6 0.50 0.50 26 0.02 0.00 0.03 0.02 131.2 150.0 133.8 32 

7 0.22 0.19 26 0.39 0.00 0.73 0.37 306.4 311.5 313.7 25 

8 0.17 0.06 27 0.46 0.00 0.03 0.17 393.8 388.9 402.3 28 

9 0.44 0.22 28 0.03 0.02 0.61 0.22 230.8 225.0 233.4 28 

10 0.25 0.11 27 0.28 0.02 1.00 0.43 400.7 394.3 408.8 19 

11 0.76 0.40 27 0.19 0.32 0.69 0.40 90.6 81.7 81.5 33 

12 0.40 0.17 28 0.00 0.16 0.61 0.26 345.4 335.1 350.6 23 

13 0.78 0.38 26 0.00 0.00 0.61 0.20 96.5 86.0 90.2 25 

14 0.68 0.22 28 0.00 0.00 0.44 0.15 123.0 102.1 107.2 36 

15 0.85 0.38 28 0.02 0.14 0.46 0.21 89.5 78.9 81.8 40 

16 0.58 0.31 27 0.02 0.03 0.68 0.24 122.6 146.1 126.1 14 

17 0.28 0.14 27 0.03 0.05 0.03 0.04 401.2 404.0 410.8 28 

18 0.31 0.17 28 0.22 0.20 0.67 0.36 256.7 268.1 260.7 40 

19 0.57 0.32 27 0.00 0.34 0.03 0.13 120.0 106.2 109.2 44 

20 0.76 0.35 28 0.50 0.10 0.62 0.41 98.4 89.4 89.0 39 

21 0.81 0.51 28 0.80 0.02 0.82 0.55 86.8 100.0 91.4 46 

22 0.58 0.19 28 0.05 0.03 0.74 0.27 149.6 131.6 144.1 35 
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Supplementary Table 3.4. Results of Model Fitting for the Older Participants 

 

               Model-free Model-based 
 

Hybrid 
  

Random 
 

Encoding Phase 
           

β 1.79 2.60 4.11 1.26 3.51 4.12 2.32 3.04 5.02    

γ     - 0.1 - - 0.1 -    

α  0.86 1 1    0.80 1 1    

λ  0.93 0.98 1    0.94 1 1    

ω        0 0.05 0.21    

NLL  23.84 67.14 87.29 74.04 97.04 130.07 23.87 66.88 87.33 80.71 97.21 141.32 

BIC  30.93 74.51 95.06 77.40 99.68 132.70 33.32 76.71 97.70 80.71 97.21 141.32 

             

Retrieval Phase            

β 1.01 1.63 3.57 1.64 1.83 3.23 1.09 1.88 3.88    

γ    - 0.1 - - 0.1 -    

α  0.76 1 1    0.73 1 1    

λ  0.25 0.95 1    0.27 0.92 1    

ω        0.02 0.05 0.07    

NLL  36.60 62.80 74.85 67.89 75.91 85.81 34.80 62.22 75.18 71.39 85.44 88.70 

BIC  43.28 69.31 81.56 70.05 78.12 87.81 43.71 70.90 84.17 71.39 85.44 88.70 

             

Search Phase            

β 1.35 1.61 2.37 1.43 1.54 1.65 1.35 2.0 3.39    

γ       - 0.1 -    

α  0.1 0.14 0.80    0.02 0.13 0.82    

λ  0.07 0.20 0.71    0.05 0.20 0.62    

ω        0.17 0.61 0.70    

NLL  66.73 98.71 109.72 79.28 99.91 115.32 65.68 97.91 74.96 82.91 115.21 132.06 

BIC  73.69 106.11 117.27 81.68 102.38 117.87 74.96 107.93 120.31 82.91 115.21 132.06 

             

ρ2 0.18 0.29 0.45 0.11 0.32 0.39 0.16 0.28 0.31 
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Supplementary Table 3.5. Results of the RL Model Fitting for the Male Younger Participants 

 

               Model-free Model-based 
 

Hybrid 
  

Random 
 

Encoding Phase 
           

β 2.14 4.17 20.0 0.76 2.97 8.77 2.34 7.29 17.30    

γ     - 0.1 - - 0.1 -    

α  0.08 0.58 1.0    0.10 0.54 1.0    

λ  0.41 0.75 0.89    0.56 0.83 0.96    

ω        0.05 0.06 0.50    

NLL  55.24 97.21 156.42 62.62 108.61 162.67 49.75 96.40 156.37 106.29 131.74 226.12 

BIC  62.11 104.73 164.55 64.93 111.13 165.38 58.70 106.35 167.20 106.29 131.74 226.12 

             

Retrieval Phase            

β 2.43 3.39 6.19 3.01 7.56 15.99 3.18 5.65 16.32    

γ    - 0.1 - - 0.1 -    

α  0.47 1.0 1.0    0.43 1.0 1.0    

λ  0.55 0.74 1.0    0.58 0.84 1.0    

ω        0.07 0.47 0.79    

NLL  14.40 24.03 42.93 18.42 33.67 59.25 12.14 23.95 40.96 52.49 57.74 67.52 

BIC  18.22 28.97 49.11 19.69 35.42 61.31 18.09 30.53 48.94 52.49 57.74 67.52 

             

Search Phase            

β 1.02 1.83 2.69 2.12 5.64 9.29 1.87 3.34 7.26    

γ       - 0.1 -    

α  0.42 1.0 1.0    0.37 0.96 1.0    

λ  0.39 0.76 0.92    0.27 0.64 0.98    

ω        0.08 0.51 0.85    

NLL  29.88 46.71 75.37 32.47 48.79 78.49 27.28 45.53 74.79 96.65 114.38 136.26 

BIC  35.98 52.92 82.53 34.42 50.93 80.88 35.36 52.0 84.34 96.65 114.38 136.26 

             

ρ2 0.27 0.36 0.45 0.21 0.37 0.42 0.22 0.42 0.48 
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Supplementary Table 3.6. Activation at decision points for model-free valuation across three phases 

of the wayfinding task 

 

 Regions Peak Coordinates Hemi TPEAK k 
  x y z    

        
Medial PFC       
 Superior medial gyrus 6 42 40 R 10.35 3559 
 Medial frontal gyrus -6 28 -10 L 6.11 132 
        
Anterior Cingulate Cortex 4 34 20 R 8.78 3559 
        
Middle Temporal Gyrus 48 -40 4 R 8.64 3886 
  54 -24 -8 R 7.3 3886 
  -56 -56 24 L 10.64 6052 
        
Inferior Frontal Gyrus 52 18 6 R 8.64 2520 
        
Cuneus -4 -90 22 L 10.06 4729 
        
Retrosplenial Complex 4 -24 38 R 9.23 4729 
        
Precuneus -6 -58 28 L 8.37 4729 

 

        
Regions showing correlated BOLD activity with model-free values as parametric regressors across three different phases of the 

wayfinding task. Statistical significance was determined at the group level using a random-effect analysis. Regions listed exhibited 

significant peak voxels at probability threshold of P < 0.05 based on a FWE cluster level small volume correction (k = 25). Peak 

voxel MNI coordinates x, y, z are given in millimeters. L, left; R, right. 
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4 General Discussion 

 

 

 

 

 

This chapter discusses the relevance of the findings of the thesis, and places these findings 

in relation to the existing literatures. In this thesis, the principal hypotheses were tested 

through analysis of empirical data that addressed the following research questions:  

 

(1) the utility of using reinforcement learning (RL) models to account for strategy 

adoption during spatial navigation, 

(2) the role of different brain regions in processing navigational decision by showing a 

correlation between BOLD activity and key variables of RL models, 

(3) the effects of normal aging on strategy adoption and its neural correlates.  

 

All in all, this chapter highlights the merit of combining RL, VR-based wayfinding task, and 

fMRI as a way of bridging the gap between two rather separate fields: value-based decision 

making and spatial navigation. More importantly, this thesis opens new avenues for 

computational models of spatial navigation and wayfinding by directing attention to 

decisions, differing from common directions and distances approaches.  
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In the first study (Chapter 2 – Manuscript 1), 27-right handed females (between 20 to 29 

years of age) performed a VR-based wayfinding task while undergoing functional Magnetic 

Resonance Imaging (fMRI). The core of the task was a 5-by-5 grid of connected rooms 

where three different target objects, i.e. rewards, were to be found. To find the rewards, 

subjects could rely on route-based navigation, map-based navigation, or combination of 

both. We then modeled subjects’ traversed paths using reinforcement learning (RL) 

algorithms. These algorithms have successfully explained decision behavior and its neural 

correlates. We found that subjects used a mixture of route and map-based navigation across 

trials. Their paths could be well explained by a combination of model-free and model-based 

RL algorithms. Using key internal variables from the RL algorithms, the model-free and 

model-based values, we aimed to elucidate the computational mechanism accounting for 

neurobiological underpinnings behind route and map-based navigation. Consistent with 

previous findings from both spatial navigation and decision literatures, the BOD signals in 

the ventromedial prefrontal cortex (vmPFC) pertained to model-free value signals. In 

contrast, the computed value signals of model-based choices the BOLD signals in the 

medial temporal lobe (MTL). Based on these findings, we argue that the brain might share 

computational mechanisms and neural substrates for navigation and for making value-based 

decisions.  

 

The second experiment (Chapter 3 – Manuscript 2) was a cross sectional aging study 

investigating the age-related shift in strategy adoption during spatial navigation in healthy 

adults. In total, 42 younger adults and 25 older adults (data from 3 older adults were not 

included in the analysis) participated in the study. We employed similar approach to the first 

study. However, we used a smaller grid world for the wayfinding task (4-by-4 instead of 5-

by-5), and only the older participants performed the task inside the MRI scanner. As 

underlined by a growing number of studies, there are shifts from map-based navigation to 

route-based navigation with increasing age (Rodgers et al., 2012; Wiener et al., 2012). Some 

studies even demonstrated reduced or absent hippocampal/parahippocampal activation in 

the older adults as compared to the younger adults (Atonova et al., 2009; Moffat et al., 

2006).   In line with these findings, we found that older participants travelled longer 

distances to reach rewards. They also had a higher propensity to repeat previously 

established routes to locate target objects. Replicating the findings from the first study, the 
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traversed paths in both groups could be well explained by the model-free and model-based 

RL algorithms. Importantly, neuroimaging results from the older participants show that 

BOLD signals in the vmPFC pertained to model-free value signals. These results provide 

evidence that model-free RL explain how the aging brain computationally prefer to rely 

more on route-based navigation.  
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The core idea of this thesis is a computational framework for studying route and map-based 

navigation. We developed this framework by combining a novel wayfinding paradigm, 

computational models based on RL, and fMRI. Our approach provided a more flexible 

quantitative assessment than many other existing paradigms (Section 1.3.2). The reason for 

this is that our approach allowed us to measure one strategy preferentially compared with 

the other. There is one common approach often taken in the human spatial navigation 

literature, which we did not implement in this thesis. This approach, as mentioned in the 

beginning of this thesis (see introductory section of Chapter 1), is to dissociate route and 

map-based navigation by selectively studying several factors that may be unique to either 

type of navigation strategy. These factors include how information is acquired (route 

knowledge vs. survey knowledge), the context of the experimental task (navigating, 

pointing, drawing a map), or the reliability of the spatial information that has been acquired 

and integrated into the cognitive map. Although these works put the best effort to 

specifically design the task to be ‘purely’ route-based or ‘purely’ egocentric or ‘purely’ 

allocentric, during active navigation, no wayfinding task can guarantee a strict dichotomy of 

route and map-based navigation. It can, however, tip the spectrum toward one strategy, one 

spatial knowledge, or one reference frame.  

 

Motivated by previous works in navigation research, we designed our wayfinding task 

without putting a restriction on which strategy subjects needed to use in which trial or phase 

of the experiment. As a measure of strategy preference, we used navigation indices and 

parameter ω from RL models.  These two behavioral measures allow the measure of strategy 

preference to be a continuum along which individuals may vary. As presented throughout 

this thesis and summarized in Section 4.1, our approach yielded promising results. In the 

following two subsections, we will discuss how our approach contributes to the existing 

knowledge. Specifically, on how computational mechanisms behind model-free and model-

based choices may explain how the human brain encodes, updates, and uses spatial 

information. These subsections are organized based on cognitive processes pertaining to 

route-based and map-based navigation.  
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There are three cognitive processes that are crucial to and the highlights of the route-based 

navigation. These processes include place recognition, sequence and response learning, as 

well as forming association.  

 

During wayfinding, we must know our location in order to take the appropriate action. 

Depending on the navigator’s spatial knowledge for a given environment, place recognition 

can have different implications (Philbeck and Sargent, 2012). One can use a scene or view-

based system to recognize a unique place, which may only require object-place knowledge. 

As explained in details in Subsection 1.1.2, object-place and route knowledge do not require 

additional spatial localization within the environment.  

 

In this thesis, we argue that our participants used scene-based place recognition when they 

recognized their current position based on the unique furniture in the room. Drawing a 

parallel to cognitive processes in value-based decision making (Subsection 1.5.1), place 

recognition is comparable to identifying external states. This is because, using this scene 

and view-based place recognition, participants could indicate ‘I am at the living room’.  In 

day to day navigation, this process translates to the ability to indicate ‘I am at the train 

station’ or ‘I am at the bank’. Once participants recognized their current location (i.e. 

external states), they could identify which doors were available to choose from (i.e. possible 

course of actions). 

 

Moreover, the results of post-navigation task (Manuscript 2 – Subsection 3.3.1, Figure 3.3) 

showed that older participants relied more on this scene-based cognitive processes. They 

scored significantly better on the post-navigation task compared to the younger cohorts. 

This is an indication that they had better object-place knowledge, and may rely more on 

scene-based place recognition in solving the wayfinding task. In line with this result, fitted 

parameter ω also indicated that, on average, older adults showed stronger propensity 

towards model-free choice.  
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Sequence learning is an important cognitive process in route-based navigation, because the 

ordinal relationship between landmarks provides important clues about where to turn, the 

proximity to goal, and importantly monitoring for errors. In our experiment, this cognitive 

process guides participants to encode ‘down this path, first I will encounter the dining room, 

then the living room, and then the wine cellar’. If the next expected landmark in a sequence 

does not appear, it is possible that the participants made a wrong turn at the previous 

location. Using this discrepancy between expected landmark and the one they actually 

encountered after making a choice, they could then update their current location. We can 

see that monitoring for errors in sequence learning is somewhat comparable to updating 

the prediction error, which is a hallmark of model-free choices (for details on value-based 

decision making and model-free choices, see Subsection 1.5.1 and 1.5.2).  

 

Response learning enables one to take the necessary action at a location. This cognitive 

process is often studied in contrast with place learning. This classification is related to the 

longstanding distinction in the animal learning literature based on a conception of multiple 

parallel systems for learning and memory (O’Keefe and Nadel, 1978), and the two systems 

may indeed involve distinct reinforcement learning mechanisms (Simon and Daw, 2011). 

In this thesis, we argue that response learning is the cognitive process that guided our 

participants to ‘choose left in the dining room’. In a day to day context, this translates to 

‘turn left at the bank’. Response learning is, thus, less flexible and involves associating each 

place or view with a particulate response in order to follow a known path to find reward.   

 

Forming associations, which is a key cognitive process of route-based navigation, occurs at 

many points in navigation tasks. However, it might be carried out with differing purposes 

and outcomes. Forming association between a place and an action is crucial to response 

learning (Taylor and Brunye, 2012). Moreover, this cognitive process is not only important 

for spatial navigation. In value-based decision making, it is well reported that model-free 

choice behavior is motivated by the onset of a stimulus that is associated with certain 

outcomes. These stimulus-responses patterns are acquired by virtue of the extent to which 

a particular response give rise to positive or negative reinforcement (Section 1.5, for detailed 

review see O’Doherty et al., 2017).  
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In the context of the experiments presented in this thesis, forming stimulus-response 

patterns enabled our participants to deliberate whether to ‘choose left in the dining room 

that would take them to the living room’ or ‘choose right that would take them to the wine 

cellar’. Importantly, our results showed that subjects who exhibited a tendency toward 

route-based navigation were better explained by the model-free RL. Thus, we argued that 

we provide quantitative evidence that route-based navigation and model-free choice share 

similar computational mechanism.  

 

 

 

There are two cognitive processes that are crucial to map-based navigation and may share 

computational mechanisms with model-based choice. These processes include place 

recognition within the larger environment and locating the goal.  

 

In contrast to place recognition in route-based navigation, place recognition in map-based 

navigation requires situating the location within the broader environmental knowledge 

(Chrastil, 2012). In this thesis, this cognitive process means the ability to indicate ‘I am in 

the living room, which is on the left side of the arena and is near the dining room’. In day 

to day navigation, this may translate to ‘I am at the train station, which is on the east side 

of the town and is near the central bank’.   

 

As explained in Subsection 1.1.2, survey knowledge require some information about a 

location beyond simple recognition. In other words, map-based place recognition require 

the knowledge of how a certain place fits within the larger scope of the environment. This 

cognitive process explains navigational behaviors of our participants that could not be 

logically reduced to associative learning between specific stimuli and rewarded behavioral 

response, especially during the retrieval and search phases. We observed that, for example, 

participants whose choice behaviors were well explained by the model-based RL, would 

plan a direct path to reach rewards if the established route took them longer. We concluded 

that these participants have had access to spatial knowledge about the arena, akin to the 

spatial knowledge obtainable from a map. 
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When traveling to a specific goal, one must have some knowledge of where the goal is 

located within the larger environment. Some might argue that this process is no different 

with place recognition. However, knowledge of goal location means spatially relating the 

goal’s location to the present location. This cognitive process is most important to map-

based navigation. In route-based navigation, one may intend to reach a certain goal. 

However, one does not need to know where the goal is located within the large 

environment. Instead, following a series of place-action (i.e. stimulus-response) patterns is 

sufficient to reach the desired location.  

 

Going back to the value-based decision making, model-based choice is motivated and 

directed toward a specific outcome (details in Subsection 1.5.3). It may also be thought of 

as prospective in that it leverages internal model of the decision problem to flexibly revalue 

states and actions (i.e. relating the reward state to the present state). Similar to map-based 

navigation, model-based choice facilitates a highly flexibly system. This means, allowing one 

to adapt to changes in the environment without having to resample environment 

contingencies directly (O’Doherty et al., 2017).  

 

In addition to understanding where the goal is located relative to the current position, map-

based navigation also involves cognitive processes that allow the transformation of spatial 

information into useable action. This spatial information can be derived either from survey 

knowledge or allocentric reference frame. This means, information containing the 

connections of location or metric information must be transformed to how a navigator 

must move, turn, or choose certain direction in order to locate the goal. Again, this is 

analogous to model-based choice in a way that it calculates values of all relevant states and 

actions to determine which type of action yield the best outcome (Dayan and Niv, 2008; 

Rangel et al., 2008). Our results, subjects who used shortest paths to reach reward showed 

propensity toward model-based RL, provided quantitative evidence that map-based 

navigation and model-based choice share similar computations.  
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This thesis is now set for the focal point of the general discussion: a critical appraisal of the 

neural correlates of cognitive processes involved in spatial navigation, and of their 

relationship to the proposed reinforcement learning (RL) framework. This section is 

organized based on the cognitive processes regardless whether they are associated with 

route-based or map-based navigation. At the end of this section, it will become clear, even 

in the broader sense of navigation, how spatial navigation and value-based decision making 

share various neural substrates.  

 

 

 

For objects or landmarks to aid place recognition, they must first be processed by the 

perceptual systems. There are three regions of the human brain that have been implicated 

in this function on the basis of their strong fMRI response during viewing of landmarks. 

These regions include:  

(1) The parahippocampal place area (PPA), which is a functional region that includes the 

parahippocampal cortex and nearby fusiform gyrus along the collateral sulcus near the 

posterior parahippocampal/anterior lingual boundary.  

(2) The retrosplenial complex (RSC), located in the parietal-occcipital sulcus (POS), 

posterior to and partially overlapping with BA 29/30 (details on RSC in Subsection 1.4.3). 

(3) The occipital place area (OPA), located in the dorsal occipital love near the transverse 

occipital sulcus. These regions were initially studied in term of their strong activation to 

visual scenes.  

 

However, recent work suggests that these regions may be involved in processing both 

scene-like and object-like landmarks (Epstein and Vass, 2014). Consequently, activation in 

these regions, as reported in this thesis, indicate their substantial roles in place recognition 

during our wayfinding task.  

 

Starting with a PET study in 1997 by Maguire et al., the PPA appeared to be involved in 

view-based scene recognition. The landmark task induced PET activation of the PPA, but 



CHAPTER 4 

 

206 

not the hippocampus, as compared with baseline (Maguire et al., 1997). This area also 

showed increased fMRI activity for scenes and landmarks presented in spatial context 

relative to faces and objects presented in isolation (Epstein and Kanwisher, 1998). In line 

with these findings, single unit recordings in humans showed that cells in the 

parahippcampal gyrus are more likely to respond to a particular view than are the 

hippocampal cells (Ekstrom and Bookheimer, 2007).  

 

Furthermore, as discussed in Section 4.2, place recognition does not stop at recognizing a 

unique place based on scene or view. An additional step in place recognition, which is 

crucial to map-based navigation, is situating the location within the broader environmental 

context. In other words, anchoring landmarks to the cognitive map. Recent findings in 

human neuroimaging have provided evidence that the PPA is responsible for general 

contextual learning and for forming associations between objects and their location (Bar et 

al., 2008; Aminoff et al., 2013). This contextual learning effect appear to be strongest at 

slow presentation rates. Thus, it is often speculated that mental imagery of spatial location 

may be behind some of the activity in the parahippocampal cortex.  

 

The results of our first study (Subsection 2.3.3) showed BOLD signals pertaining to model-

based values, but not model-free, along the parahippocampal gyrus extending to the 

hippocampus and medial temporal lobe (MTL). As our behavioral results suggest that 

subjects who exhibited tendency toward model-based choice were more likely to rely on 

map-based navigation. Thus, model-based computations in the parahippocampal and MTL 

area during our wayfinding task could be indicative of forming links between landmark 

identity and their location within the broader environmental context. 

 

As briefly mentioned in Subsection 1.4.3, one of the earliest fMRI study show that RSC 

activation occurred during scene viewing and mental imagery (Park and Chun, 2009). In 

line with this finding, of the three place recognition regions, RSC appears to be particularly 

important for using environmental cues for anchoring the cognitive map. fMRI response 

to scenes in RSC is significantly increased when subjects attempt to recover the location or 

implied heading of the scene within the broader spatial environment. In other words, RSC 

activation is particularly stronger when participants use the scene to localize or orient 

themselves (Epstein et al., 2007). In our first study, we found BOLD signals in the RSC 

pertaining to both model-free and model-based values. In our second study, we replicated 
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the neural correlates of the model-free values. This indicates that RSC roles are not limited 

to either route-based or map-based navigation. Instead, computations within the RSC might 

be the key process involving the use of environmental cues to determine the orientation 

and displacement within the cognitive map. The role of RSC associated with both route 

and map-based navigation will be elaborated in Subsection 4.2.5 

 

 

 

All three cognitive processes involves forming associations between place or view and a 

particular response. The main objective is to follow a known route to a goal. Using radial 

arm maze (Subsection 1.3.2) in a desktop VR, Iaria et al. (2003) found that individuals who 

relied on spatial relations between objects and distal landmarks (i.e. place learning) had an 

increase BOLD signal in the hippocampus. On the contrary, those who relied on the 

response learning and forming association between cues and actions showed increased 

BOLD signal in the caudate nucleus. Anatomical analysis of the caudate nucleus also 

reported that sequence and response learners had a greater density in the caudate nucleus 

instead of the hippocampus (Bohbot et al., 2007). In line with these findings, in the study 

by Doller et al. (2008), participants who learned to navigate to a location based on actions 

at a local landmark, showed increased BOLD signals in the dorsal striatum.  

 

Furthermore, using a dual-strategy paradigm (DSP, details in Subsection 1.3.2), Marchette 

et al. (2011) found that some participants preferred to use map-based navigation in a 

complex maze by taking shortcuts to a target. Others, however, chose to use the response 

learning. These participants simply followed a known route, which is the hallmark of route-

based navigation. BOLD activity in the response learning group showed marked increase 

in the caudate nucleus, regardless of participants’ accuracy in the task.  

 

From the perspective of value-based decision making, evidence suggested that the dorsal 

striatum is critical for learning the stimulus-response associations. Tricomi et al. (2009) 

demonstrated a link between BOLD signal in the human posterior striatum and response 

learning. Using reinforce devaluation test, they showed that increasing activity in the human 

posterior striatum is a function of training and the emergence of habitual control (Tricomi 

et al., 2009). Moreover, more recent studies supported these results by showing that activity 
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in this area correlated with the value of over-trained actions (Wunderlich et al., 2012) or 

model-free value signals (Horga et al., 2015).  

 

In our experiments, we found correlates of model-free value signals in the caudate nucleus. 

Along with our results, findings from spatial navigation and value-based decision making 

literature presented above show that stimulus-response associations in both domains 

activate the caudate nucleus. This has important implication. That is, this thesis provide 

direct evidence that spatial navigation and value-based decision share not only 

computational mechanisms accounting for different cognitive processes, but also their 

neural substrates. 

 

 

 

In many studies of map-based navigation, it is not trivial to determine which aspects of the 

task are specific to identifying the goal, and which relate the goal to the current location. 

Spiers and Maguire (2006) observed increased activity in certain brain areas, relative to a 

coasting baseline, during sections of experiment where participants planned path to the 

target location. These brain areas included bilateral hippocampus, left parahippocampal 

cortex, the retrosplenial cortex, and the lateral and medial prefrontal cortex. The authors 

suggested that there areas may be important for identifying the location of the goal as well 

as the general sequence of the planned path (Spiers and Maguire, 2006). It has also been 

reported that microstructural integrity of the hippocampus is correlated with faster times 

navigating to a goal (Iaria et al., 2008). In addition, Viard et al. (2011) also reported that 

hippocampal activity increased with proximity to the goal. In the posterior hippocampus, 

some cells even appear to selectively respond to the navigation’s goal (Ekstrom et al., 2003; 

Viard et al., 2011).  However, these results might pinpoint to three possible cognitive 

processes including (1) navigator’s ability to relate the goal with current location, (2) 

transformation between allocentric and egocentric reference frame, and (3) the use of 

metric distance information.  

 

Another aspect of identifying the goal’s location is transforming spatial information from 

one reference frame to the other. In a route-learning task Wolbers et al. (2004) found 

increased BOLD signal in the retrosplenial cortex during encoding compared to baseline. 
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The level of neural activity in the retrosplenial cortex was found to be stable throughout 

the encoding session (Wolbers et al., 2004). In a follow up study, Wolbers and Büchel (2005) 

asked participants to determine the relative location of a target object relative to the current 

location. Interestingly, this time they found that retrosplenial cortex showed performance-

related increases in activity with each encoding session. The more information participants 

acquired about the maze, the greater the retrosplenial activity. In other words, the 

retrosplenial cortex was sensitive to the amount of spatial knowledge (Wolbers and Büchel, 

2005).  

 

The findings regarding how the retrosplenial cortex relates to navigation are somewhat 

conflicting. This region appears to be active in both route-based (Ino et al., 2002) and map-

based navigation (Galati et al., 2000; Epstein and Higgins, 2007; Epstein et al., 2007). As 

mentioned in Subsection 4.3.1, we also found correlates of BOLD signal pertaining to both 

model-free and model-based value signals. Based on previous findings, the modulated RSC 

activity by both model-based and model-free values may reflect the robust integration of 

different sources of spatial information. We speculate that this region may serve as a 

transition zone between inputs in egocentric and allocentric reference frames. This is also 

consistent with the idea that RSC allows the translation from ‚you are here’ information to 

‚your goal is to the left’ information 
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In previous sections, findings from the studies presented in this thesis are critically discussed 

in the context of initial hypotheses and existing literature. During the development of this 

research, it became clear that several new aspects may be considered. In addition, there are 

also several avenues of inquiry that could advance the fields considerably. Thus, the first 

two subsections outline some of the remaining gaps in the literature and suggest ways in 

which these gaps may be filled (Subsection 4.4.1 and 4.4.2).   

 

 

The literatures reviewed in this thesis are largely consistent with the classical models of the 

neural basis of route-based and map-based navigation. In other words, there are some 

degrees of specialization in the brain regions that code spatial processing pertaining to either 

route-based or map-based navigation. The results presented in this thesis are also consistent 

with these existing literatures. However, the results of other studies reveal that in some 

cases, the route-map dichotomy is not so clear cut. For instance, there is now growing 

evidence for some degree of redundant, distributed coding across brain areas. Early findings 

from neuroimaging studies of spatial navigation was in fact reporting a range of different 

brain regions that activate in contrasts (Galati et al., 2000; Committeri et al., 2004). 

Additionally, there is also growing consensus that the hippocampus and MTL respond to a 

larger variety of variables than just location, including viewing landmarks, directions, and 

conjunctions of these variables with spatial location (Ekstrom et al., 2003; Ekstrom and 

Bookheimer, 2007). Altogether, instead of being the specialized focus of a single brain 

region, the pattern of literatures suggests a sharing of computations related to spatial 

processing across many brain regions. Our approach in this thesis, cannot yet account for 

this emerging concept. 

 

Furthermore, in this thesis, key parameters of the RL model were fitted as a single value for 

each phase of the wayfinding task. For example, parameter ω was assumed to be constant 

throughout the entire encoding phase. This was also true for the retrieval and search phases. 

This approach provide a snapshot of how individual subject integrate route and map-based 

navigation in solving the wayfinding task. It did not, however, elucidate how or whether 

individual subject switch strategy from one trial to the next. This would be especially 

interesting for the search phase, where subjects were forced to decide whether to plan a 
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novel path or trace a path to a familiar location and follow an established route from that 

familiar location.  

 

The last potential research constraint concern with the cross sectional study of aging. Cross- 

sectional studies, comparing two groups of participants, of aging tend to produce large 

effect sizes. In addition, the results are relatively consistent and reproducible, as 

demonstrated by the results of the second study in this thesis (Subsection 3.3.3). 

Nevertheless, within the framework of cross-sectional study, it is impossible to discern the 

influence of life-long individual differences in the brain and cognitive variables from true 

longitudinal declines. Moreover, some studies also reported gender as a factor that may 

influence individual differences in spatial navigation. Cross-sectional studies in older 

populations may allow for a snapshot of main effect of gender, but cannot resolve the issue 

of whether men and women may manifest different rates of navigation decline.  

 

These constraints raised ideas for future direction of research in spatial navigation that will 

be elaborated in the next subsection.  

 

 

There are a least three important implications that our results bring for the future of spatial 

navigation research. These include the importance of (1) looking at neural correlates as a 

network of brain regions instead of assigning a specific cognitive process to a specific brain 

region, (2) longitudinal studies in navigation research, and (3) clinical potential of spatial 

navigation because, in many cases, reports of impaired spatial behavior are a major trigger 

to the diagnosis.  

 

The reviewed literature along with the results presented in this thesis suggest that there is 

some specialization in the involvement of brain regions in different cognitive processes that 

are crucial for spatial navigation. Importantly, however, the same previous findings also 

provide a clear evidence for shared, distributed representations across brain regions. For 

example, the hippocampus, parahhipocampal gyrus, and RSC all carry information about 

location, heading, and distance between locations. Altogether, the emerging pattern of 
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results suggests a sharing of computations related to spatial processing across many brain 

regions.  

 

Moreover, this network conceptualization also allows a continuous form of route and map-

based navigation. This continuous form may be viewed as the navigation counterpart of the 

hybrid algorithm of the RL model. This rather fluid interpretation of route and map-based 

dichotomy would otherwise be difficult to conceptualize in a scenario where one brain 

region pertains specifically to one cognitive process. Further work on the hybrid algorithm 

of the RL model, such as allowing the parameter ω to vary from trial to trial, may better 

facilitate this network conceptualization. This way, we don’t have to assume whether route-

based navigation and model-free values or map-based navigation and model-based values 

are integrated at every trial or calculated separately. Both forms of navigation strategy as 

well as decision making strategies can simultaneously coexist and be called on to solve a 

task, depending on the current demands.  

 

When it comes to aging study, based on the constraints explained in the previous 

subsection, the first and most obvious need in the field is for longitudinal research. On the 

one hand, longitudinal research may elucidate individual differences in rates at which 

cognitive declines affect navigation. Additionally, longitudinal approach may resolve the 

debate on what constitutes of ‘normal aging’ participants. In most aging studies, including 

the one presented in this thesis, ‘normal aging’ is defined as older adults who are healthy, 

living in the community, and willing to participate in the experiment. More recently, 

however, there has been a push to put a distinction between ‘usual’ and ‘successful’ aging 

within the construct of normal aging. Those who are aging successfully suffer few if any 

cognitive problems. With cross-sectional studies, oftentimes these two subgroups of normal 

older adults are mixed in the same group resulting in higher group variance compared to 

the younger adults. In contrast, with longitudinal research, we can compared paired data 

from the same individuals as they age.  

This thesis highlights the behavioral manifestations and putative neural substrates of 

strategy adoption in spatial navigation. When it comes to the effect of aging on spatial 
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navigation, this thesis focuses on normal aging – that is, cognitive and brain aging that 

occurs in the absence of diagnosed neuropathology. Having stated that, it is important to 

recognize that both neuroscientists and the lay public are intensely interested in pathological 

aging. Alzheimer’s disease (AD) and mild cognitive impairment (MCI) being the public 

concern when it comes to age-related cognitive deficits. A common, though currently 

underexplored aspect of AD is that of topographical disorientation. Even very early AD 

patients may become disoriented. The early emergence of topographical disorientation in 

AD is to be expected. This is because of the overlap of the neural substrates of spatial 

computation with AD pathology. This overlap includes the regions of MTL and RSC (Braak 

et al., 2006; Pengas et al., 2010). Motivated by this observation, we are proposing three 

potential aspects on how the combination of RL modeling, wayfinding task, and fMRI can 

be useful in the clinical domain.  

 

To begin with, in this thesis, we showed that subjects’ tendency toward route or map-based 

navigation was well explained by the RL algorithms. Thus, key variables of RL models and 

how these variables correlate with BOLD signals may have the potential utility as 

biomarkers for certain age-related pathologies. This stems from observations and findings 

that reported substantial navigations impairment in AD and MCI in wayfinding tasks that 

require substantial translation from an allocentric reference frame to an egocentric reference 

frame (Serino and Riva, 2013). Moreover deficits in route-based navigation in early AD 

have been associated with hypometabolism in the RSC, thalamus, and parietal cortex 

(Pengas et al., 2012). Cumulatively, these findings suggests that changes in the navigation 

circuit may be a predominant and early consequences of AD. These changes manifest as 

behavioral deficiencies in spatial navigation. Since the combination of RL and fMRI analysis 

allow us to analyze how MRI signal changes correlate with quantitative measure of 

behavioral performance, this approach may prove to be particularly useful in developing a 

biomarkers for certain age-related pathologies.  

 

A second aspect of potential clinical utility is using RL’s key variables and their correlates 

to neural data as predictors of future AD or MCI onset on individual basis. Going back to 

the arguments presented in the previous subsection, the importance of longitudinal studies 

in clinical context lies on their potential to elucidate the rate of conversion to AD among 

MCI patients. One such study (Laczo et al., 2010) demonstrated that MCI patients who 

progressed to AD showed higher deficits in both route and map-based navigation. Should 
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these deficits can be quantified using RL models and these trends also present on the 

neuronal level, this approach may prove useful for early diagnosis and intervention.  

 

Lastly, aiding treatment and prevention. In this domain, the combination of wayfinding task 

with RL modeling and fMRI can be used both as an outcome variable and as an 

intervention. As an outcome variable, this approach may be useful to assess the efficacy of 

clinical or pharmacological intervention. In addition, behavioral interventions in the form 

of cognitive training may enhance cognitive performance in healthy elderly. These 

interventions may also delay the onset or ameliorate the symptoms of dementia.  

 

In the foreseeable future, we expect that more researchers and clinicians will incorporate 

wayfinding tasks into clinical research and practice. However, the challenges remain to 

establish the gold standard of wayfinding task to be used in clinical settings. Such task needs 

to be quick to administer, requires minimal training, and meet quality criteria for diagnostic 

tests. 
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From finding one’s car in a parking lot to getting home from work, from finding one’s 

cubicle in a new office building to finding a subway stop in an unfamiliar location, successful 

navigation requires the ability to identify and adopt the most suitable wayfinding strategy 

according to the task’s demands. Strategy use, however, varies among individuals and 

changes significantly with ages. Some people are adept at flexibly change or integrate 

different wayfinding strategies. Others, such as older adults, experience increasing 

difficulties with the use of map-based navigation. This thesis contributes to a body of 

research that brings together spatial cognition and space syntax approaches. It offers a novel 

methodology for examining individual as well as age-related differences in strategy use. 

Importantly, it proposes a computational methodology for identifying brain areas that are 

crucial for successful navigation.   
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