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Abstract

The present dissertation gives an account of a first-principles description of linear
response phenomena in the field of spin caloric transport or spincaloritronics and
closely related areas of condensed matter physics and materials science. Embed-
ded into the priority program SPP 1538 “Spin Caloric Transport (SpinCaT)” of the
DFG, the major aim was the development and application of computational methods
suitable for a parameter-free determination of material specific response coefficients
in metals and alloys. The underlying band structure method, the Korringa-Kohn-
Rostoker multiple scattering framework, provides an ideal basis for an accurate and
versatile representation of the systems under study in terms of the single-electron
Green function. Most importantly, this quantity serves as the fundamental variable
in Kubo’s linear response formalism that is employed for the calculation of charge
and spin conductivities as well as related electric-field-induced response coefficients.
Using and extending an approach to temperature-induced phenomena based on the
energy dependence of the electrical conductivity put forward by Mott, the diffusion
contribution to thermoelectric and spincaloritronic response properties can be as-
sessed. Making furthermore use of an efficient description of substitutional as well
as thermally-induced disorder by means of the coherent potential approximation
and the closely-related alloy analogy model for finite-temperature effects, a reliable
description of charge-, heat-, and spin-related transport properties of dilute as well
as concentrated alloys under realistic conditions can be achieved. The methodol-
ogy just outlined has been applied to various thermoelectric and spincaloritronic
phenomena such as the Seebeck effect and its magnetic anisotropy, the anoma-
lous and spin Nernst effects as well as to the corresponding electric-field-induced
material properties: anisotropic magnetoresistance, anomalous and spin Hall con-
ductivity. In addition so-called spinorbitronic responses have been studied, namely
the spin-orbit torque and the Edelstein or inverse spin-galvanic effect. Accompa-
nying space-time symmetry considerations on the transformation properties of the
respective operator-operator correlation functions in terms of the Kubo formula al-
lowed the model-independent determination of symmetry-restricted response tensor
shapes for direct and inverse effects, based on the crystallographic and magnetic
structure. The predictions of the occurrence and relation of tensor elements were
verified numerically by first-principles calculations in collinear, non-collinear as well
as non-coplanar magnetic configurations, providing in addition reliable estimates of
their magnitude.
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Kurzzusammenfassung

Die vorliegende Arbeit erstattet Bericht über eine ab initio-Beschreibung linearer
Antwortphänomene im Feld des spinkalorischen Transports oder der Spinkaloritronik
und eng verwandter Bereiche der Festkörperphysik und Materialwissenschaften.
Eingebettet in das Schwerpunktprogramm SPP 1538

”
Spin Caloric Transport (Spin-

CaT)“ der DFG, war das Hauptanliegen die Entwicklung und Anwendung rechner-
gestützter Verfahren zur parameterfreien Bestimmung materialspezifischer Antwort-
größen von Metallen und Legierungen. Das zugrundeliegende Bandstrukturver-
fahren, die Korringa-Kohn-Rostoker-Vielfachstreumethode, stellt eine ideale Basis
für die akkurate und vielseitige Darstellung der zu beschreibenden Systeme durch
ihre Ein-Elektronen-Greensche Funktion dar. Insbesondere dient diese Größe als
fundamentale Variable in Kubos linearem Antwortformalismus, der zur Berechnung
elektrischer und spinpolarisierter Leitfähigkeiten sowie verwandter, ebenfalls durch
ein elektrisches Feld hervorgerufene Prozesse beschreibende, Koeffizienten verwendet
wird. Durch Anwendung und Erweiterung eines auf Mott zurückgehenden Ansatzes
zur Beschreibung thermisch induzierter Phänomene mittels der Energieabängigkeit
der elektrischen Leitfähigkeit, kann der diffusive Anteil thermoelektrischer und spin-
kaloritronischer Antwortgrößen ermittelt werden. Des Weiteren kann unter Verwen-
dung einer effizienten Beschreibung substitutioneller sowie thermisch induzierter
Unordnung mittels der sogenannten Coherent Potential Approximation und des
nahe verwandten Alloy Analogy Model für endliche Temperaturen eine verlässliche
Beschreibung von Ladungs-, Wärme- und Spintransporteigenschaften in sowohl ver-
dünnten als auch konzentrierten Legierungen unter realistischen Bedingungen er-
reicht werden. Die soeben vorgestellte Methodik wurde auf eine Reihe thermoelek-
trischer und spinkaloritronischer Phänomene wie den Seebeck-Effekt und seine ma-
gnetische Anisotropie, den Anomalen und den Spin-Nernst-Effekt angewendet, sowie
auf die entsprechenden elektrisch induzierten Materialeigenschaften, den anisotropen
Magnetwiderstand, die anomale und die Spin-Hall-Leitfähigkeit. Zusätzlich wur-
den sogenannte spinorbitronische Antwortprozesse untersucht, namentlich der Spin
Orbit Torque und der Edelstein- oder inverse spingalvanische Effekt. Begleitende
Überlegungen zur Raum-Zeit-Symmetrie der zugrundeliegenden Operator-Operator-
Korrelationsfunktionen, ausgedrückt durch die Kubo-Formel, erlaubten eine modell-
unabängige Bestimmung der symmetriekonformen Tensorstruktur für die direkten
und inversen Effekte auf Basis der kristallographischen und magnetischen Struk-
tur. Die Vorhersagen zum Auftreten von Tensorelementen und ihrer Beziehung
wurden nummerisch durch ab initio-Berechnungen in kollinearen, nichtkollinearen,
sowie nichtkoplanaren Anordnungen magnetischer Momente verifiziert. Gleichzeitig
konnten hierdurch belastbare Aussagen über ihre Größe gemacht werden.
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Chapter 1

Introduction

The relatively new area of condensed matter physics termed Spin Caloritronics [1] is,
as the portmanteau of spintronics1 and the Latin calor (heat) suggests, dealing with
the coupling of spin, charge, and energy or heat transport on the micro- to nanome-
tre scale. This sub-field emerged from the connection of thermoelectrics, which is
concerned with the coupling of charge and heat currents, to the field of spintronics,
where the intrinsic spin angular momentum of the electron acts as a degree of free-
dom (partially) separated from its charge. Spin Caloritronics, spin caloric transport
or, preferentially, spincaloritronics was probably initiated by theoretical work on
non-equilibrium thermodynamics of spin, charge, and heat in layered metallic struc-
tures by Johnson and Silsbee [2], but gained considerable momentum only about
two decades later with the discovery2 of the spin Seebeck effect by Uchida et al. [4].
Since then a vast number of investigations have been performed, both theoretically
and experimentally, to some extent [3, 5–12] but by far not exclusively [13–21] on
the spin Seebeck effect. The rapidly developing field, see Ref. 22 for an early (2010)
and Ref. 23 for a current (as of 2018) collection of articles, has been reviewed, e.g.,
by Bauer et al. [24] and Boona et al. [25]. For an overview focusing on theoretical
aspects, see Ref. 26.

Bauer et al. [24] give a classification scheme for the various directions of research, di-
viding them into (i) independent electron, (ii) collective, and (iii) relativistic effects.
Class (i) is closest to what was initiated by Johnson and Silsbee [2], namely the ther-
moelectrics of layered systems employing the concept of explicitly spin-dependent
transport properties and their behaviour at interfaces [14, 16–18, 27]. This has been
recently extended to superconductor-ferromagnet tunnel junctions [28–30]. In fact,
the origin of the spin Seebeck effect was initially believed to be explicable on these
grounds [4]. As it turned out soon after, collective excitations such as phonons
and, in particular, magnons play an important, if not the most prominent, role in
this [31–36] and related effects [37–40], which therefore have to be assigned to a
class of their own, (ii). One might add a fourth class (iv) to this scheme, namely
the thermal analogues of spin torque effects such as the spin transfer torque [41–
44] and its inverse (more frequently called spin pumping [45–49] or spin-motive
force [50–52]) as well as the just recently discovered spin-orbit torque [53–56] and
its inverse [57, 58] (also called charge pumping). These include the thermal spin

1Which by itself is a contraction of spin electronics.
2Not really that of the transverse spin Seebeck effect as was originally stated [3], but it nevertheless
ignited the whole field.
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transfer torque [38, 59–61], thermal spin pumping [34], which can be regarded as its
reciprocal, as well as the direct and inverse thermal spin-orbit torques [62, 63] which
remain a theoretical conjecture to date. The same applies to the thermally-induced
Edelstein effect [64] and its reciprocal, which are the thermal analogues of the Edel-
stein or inverse spin-galvanic effect [65, 66] and the inverse Edelstein or spin-galvanic
effect [67]. The former is however believed to contribute to the so-called spin Nernst
magneto-thermopower [21] employed for the detection of the spin Nernst effect [68].

The present work is almost exclusively concerned with class (iii), the thermoelectric
generalisation of spin-orbit-induced response phenomena such as anisotropic mag-
netoresistance (AMR) [69, 70], the anomalous Hall effect (AHE) [71–75], and the
spin Hall effect (SHE) [76–80]. Contact will to some extent be made nevertheless
to the other classes, since there is of course a certain overlap between the three of
them. Treated only in passing, but also part of class (iii) are the thermal Hall effect
or Righi-Leduc effect [81] and the Maggi-Righi-Leduc effect [82] or thermal AMR.
Corresponding quasi-particle phenomena like the phonon Hall effect [83] and the
magnon Hall effect [84] belonging to class (ii) will not be considered herein.

current

charge

current

spin

electric−field−induced thermally−induced

a) b)

c) d)

ANEAHE

SNESHE

Figure 1.1: Transverse transport effects in response to electric fields (left column) and
temperature gradients (right column) in the form of spin-polarised charge (top row) and
pure spin currents (bottom row). From top left to bottom right, a)–d), the effects are called
anomalous Hall effect (AHE), anomalous Nernst effect (ANE), spin Hall effect (SHE), and
spin Nernst effect (SNE). While the former two occur only in magnetic systems, symbolised
by the magnetisation ~M , the latter two are present in non-magnetic systems as well.

To a considerable extent the present work will be concerned with transverse trans-
port effects, where transverse means that the response (a current or a generalised
flux, see Section 2.3.2.1) to an external perturbation (a field or a generalised force,
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Figure 1.2: Overview of linear response phenomena within the scope of this work. Each
coloured rectangle represents the response tensor associated with a correlation of two
fluxes/forces depicted on the left and on top: charge- (c), heat- (q), spin (s) currents, and
magnetic torque (t). The symbols LAB, LAB, and L̃AB will be used for the corresponding
linear response coefficients. For each tensor the rank is given at the bottom right and the
most prominent effects are named.

ibid.) is observed perpendicular to the latter. Those effects are associated with
the anti-symmetric part of the corresponding response tensor and are visualised in
Fig. 1.1. The anomalous Hall effect in the top left panel a) describes the occurrence

of a transverse spin-polarised charge current in response to an electric field ~E. Its
thermoelectric analogue is the anomalous Nernst effect shown at the top right in
panel b), here the perturbation is a temperature gradient ~∇T . The pure spin cur-
rents generated by the spin Hall (bottom left, c)) and the spin Nernst effect (bottom
right, d)) can occur in any magnetic as well as non-magnetic system, while AHE and

ANE require, at least locally, a finite magnetisation ~M . The ordinary Hall [71] and
Nernst [85] effects observable in non-magnetic samples in an externally applied field,
that can be explained in terms of the Lorentz force, will not be discussed. The focus
clearly will be on phenomena induced by spin-orbit coupling which manifests itself
in spin-dependent electron deflection or scattering leading to currents perpendicular
to the driving force.

Figure 1.2 depicts the zoo of linear response phenomena that will be, to varying
extents, covered in this work. The pictograms at the left and above represent the
generalised fluxes and forces that will be considered herein, each rectangle corre-
sponds to the tensor of associated response coefficients. The second rank tensor Lcc

at the top left is related to the electrical conductivity tensor, the galvanomagnetic
phenomena of interest are the above-mentioned AMR and AHE. The tensors to
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the right and below describe thermo(magneto)electric effects, the Seebeck effect [86]
and its magnetic anisotropy [87] are determined by the diagonal elements of the
former, their reciprocals (anisotropic) Peltier effect [82, 88, 89] are given in terms
of the latter. The anomalous Nernst conductivity [85, 90] corresponds to the anti-
symmetric off-diagonal elements of Lcq, the inverse anomalous Nernst or anomalous
Ettingshausen effect [82, 85, 91] accordingly to those of Lqc. The thermal conduc-
tivity is associated with the tensor Lqq, the Maggi-Righi-Leduc effect [82] due to
an anisotropy of the diagonal, in analogy to the AMR, will not be discussed, while
the thermal analogue of the AHE, the Righi-Leduc effect [81] will play a minor role.
Non-electronic related effects such as the phonon and magnon Hall effects are be-
yond the scope of this work.

The correlation between charge currents and static or dynamic spin polarisation
is described by the third rank tensor Lsc, encompassing spintronic effects such as
the already mentioned spin Hall and Edelstein effects, as well as the longitudinal
spin conductivity occurring in magnetic but also certain non-magnetic systems [92].
Corresponding inverse effects such as the inverse spin Hall effect [93–95], the inverse
Edelstein or spin-galvanic effect already mentioned, as well as a hypothetical inverse
longitudinal spin conductivity are described by the elements of the tensor Lcs in
the first row. The thermally-induced analogues of these spintronic phenomena, i.e.,
spincaloritronic effects in the proper sense of the word are encoded by the tensor
Lsq. These encompass of course the spin Seebeck effect that shall however not be
discussed in this work, the spin-dependent Seebeck effect (SDSE) [14, 15], which will
be briefly treated,3 the spin Nernst effect and the thermal Edelstein effect (TEE).
The corresponding inverse or reciprocal effects, the spin Peltier effect [40], the spin-
dependent Peltier effect [16], as well as the inverse spin Nernst or spin Ettingshausen
and the inverse thermal Edelstein effects, both of which are theoretical conjectures
based on space-time symmetry arguments discussed herein, are represented by Lqs.
Thermomagnetoelectric and spincaloritronic effects in layered heterostructures, i.e.,
the independent electron effects of class (i) in the scheme of Bauer et al. [24] will be re-
ferred to only occasionally. These include the (anisotropic) magneto-thermoelectric
power (MTEP [96, 97] or AMTEP [98]), the (tunnelling) magneto-Seebeck effect
in magnetic tunnel junctions (TMS) [17, 18], the tunnelling anisotropic magneto-
Seebeck effect [99], and the tunnelling anisotropic spin Seebeck effect (TASS) [100],
as well as their reciprocals such as the magneto-Peltier effect [101] (inverse magneto-
Seebeck effect).

The fourth rank tensor L̃ss describing spin-spin response phenomena will play only
a minor role in this work. The magnetic torque-related effects in the rightmost col-
umn and the bottom row of Fig. 1.2 will be, except for elements of Lst and Lts,
covered. Most importantly the so-called spin-orbit torque (SOT) will feature quite
prominently, its inverse (ISOT) and both of their thermal analogues, TSOT and
ITSOT, will only be discussed w.r.t. their symmetry properties. Finally, the torque-
torque correlation described by the Gilbert damping tensor at the bottom right will
be again mentioned only in passing.

An introduction to work concerned with materials properties relevant for spin trans-
port cannot do without advertising the great potential of this field in future micro-

3As a bulk effect belonging to class (iii).
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and nanoelectronics. To considerable extent this is already exploited, usually the
giant magnetoresistance (GMR) effect is cited in this respect, but the promises a
completely spin-based logic holds are by far not explored yet [102]. To the very
active and, for quite some time already, application-oriented research in spintronics
the field of spincaloritronics adds in particular another source for the generation
of pure spin currents: heat. It is inevitably generated in all electronic devices and
usually considered a parasitic effect, detrimental to their performance. Although
this certainly is a very promising field of research, it has to be noted that it is still
very much in its infancy. The field of spinorbitronics [103], that will also be en-
tered herein to some extent, on the other hand has seen a remarkably fast rise from
first theoretical predictions [104–106], their almost immediate experimental realisa-
tion [55, 56, 107], to application-oriented research [108].

The aim of the present dissertation is to give an account of recent activities in the
first-principles description and symmetry analysis of linear response coefficients rel-
evant to the field of spincaloritronics (and beyond), and to introduce the methods
and formalisms that were employed to this end. The structure is as follows:

Chapter 2 gives a brief overview of the theoretical methods and formalisms that have
been used to calculate linear response coefficients for spin, charge, and heat transport
from first principles. Starting with the fundamental electronic structure method of
choice, density functional theory (Section 2.1), followed by a brief introduction (Sec-
tion 2.2) into the Korringa-Kohn-Rostoker multiple-scattering framework employed
to obtain a representation of the ordered or disordered system under study in terms
of its single-electron Green function, finally the Kubo linear response formalism will
be outlined (Section 2.3), with an emphasis on its application to the description of
thermoelectric and spin caloric transport. This last part of the chapter includes a
brief overview on the history of the field, a comparison of alternative formulations of
the relevant linear response coefficients, an extended discussion of the Mott formula
for the thermopower and various generalisations of it, as well as a short introduc-
tion into a general group-theoretical approach to the space-time symmetry of linear
response coefficients.

In Chapter 3 applications and extensions of the methodology just outlined will be
presented, in the form of published articles and manuscripts to be submitted. In
Section 3.1 the thermomagnetoelectric or thermogalvanomagnetic transport proper-
ties of ferromagnetic Co1−xPdx alloys, in particular the magnetic anisotropy of the
Seebeck effect and the anomalous Nernst effect, are investigated in comparison to
the corresponding galvanomagnetic phenomena anisotropic magnetoresistance and
anomalous Hall effect. In addition a combined experimental and theoretical study
of the electrical and thermal conductivity and the Seebeck coefficient in Co1−xFex
is presented, with an emphasis on possible non-electronic contributions. Section 3.2
then focuses on a truly spincaloritronic phenomenon, the spin Nernst effect. First,
its relation to the spin Hall effect is investigated in Cu1−xAux alloys, furthermore, in
another cooperation with experimentalists, its first observation via the so-called spin
Nernst magneto-thermopower was supported by first principles calculations. Sec-
tion 3.3 deals with the space-time symmetry of linear response phenomena within
the Kubo formalism. The occurrence and interrelation of tensor elements of elec-
trical and spin conductivity is derived in a model-independent group-theoretical
framework. One of the predictions made is numerically confirmed in low-symmetric
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non-magnetic systems: the occurrence of longitudinal spin-polarised currents in non-
magnetic materials. In Section 3.4 a study on transverse transport and related
magneto-optical properties of non-collinear antiferromagnets is presented. Addition-
ally the occurrence of chirality-induced contributions in non-coplanar spin configura-
tions is investigated. Section 3.5 gives an account of the work done on the spin-orbit
torque and the Edelstein effect. Again this is a combination of group-theoretical
considerations and supporting first-principles calculations in a non-centrosymmetric
tri-layer alloy system. Results on finite-temperature transport properties will be pre-
sented in Section 3.6. A mean field description of the effect of uncorrelated lattice
displacements and spin fluctuations, the so-called alloy analogy model, is applied to
the temperature-dependent spin Hall effect in Au1−xPtx alloys. Once more this is a
joint experimental-theoretical work. Furthermore, the behaviour of resistivity and
anomalous Hall conductivity in a, at T = 0 K, compensated ferrimagnetic Heusler
alloy is studied as a function of temperature.

In the Appendices A.1-A.4 remarks on the phenomenological transport equations
of Kubo et al. [109] (Appendix A.1), supporting information and materials on the
first-principles description of thermoelectric and spincaloritronic response phenom-
ena (Appendix A.2), a concise comparison of spin-projected and -polarised formu-
lations (Appendix A.3), and additional notes on space-time symmetry considera-
tions (Appendix A.4) can be found. Appendix A.5 presents an implementation of a
two-dimensional formulation of the Kubo formalism and Appendix A.6 that of the
non-equilibrium Green function formalism for layered systems, both of which have
no immediate relevance for the remainder of this work, but are presently used within
other research projects.

In summary, the present thesis aims at investigating the symmetry and magnitude
of spincaloritronic and related response properties in transition metals and their
alloys from first principles based on the linear response Kubo formalism and a gen-
eralisation of Mott’s formula for thermally-induced phenomena. Predictions for and
comparison with experiment will be shown to be on a qualitative and often even
quantitative level of agreement.
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Chapter 2

Theoretical Framework

The following gives a brief introduction into the formal basis for determining the elec-
tronic structure of the systems investigated in the present thesis and for calculating,
based on this, their physical – in particular response – properties. Section 2.1 out-
lines the essential aspects of density functional theory (DFT), the method of choice
for treating solid state compounds, as it allows mapping the many-electron problem
of extended systems composed of several, possibly heavy atoms onto a single-particle
problem of just one electron moving in an effective potential. In the subsequent sec-
tion (2.2) the Korringa-Kohn-Rostoker Green function method (KKR-GF) will be
introduced, an ansatz based on multiple scattering theory for solving the electronic
problem via the (single-particle) Green function. Particular emphasis will be put on
the advantages of this method when dealing with disorder due to random occupa-
tion of lattice sites or due to thermally-induced vibrations and/or spin fluctuations,
and, when including these effects, calculating expectation values of single-particle
operators. Of central relevance to this work is the description of electronic transport
in solid state systems, which will be treated on the level of linear response theory
in Section 2.3. Starting with general remarks on Kubo’s linear response formalism,
tractable equations for the electrical conductivity on several levels of complexity will
be presented briefly. This is followed by a discussion of the Mott formula for the ther-
moelectric power and its generalisations to temperature-dependent thermoelectric
and spin caloritronic transport coefficients. Finally, a group-theoretical approach
to the space-time symmetry of the relevant response tensors will be outlined. If
not noted otherwise, atomic Rydberg units will be assumed throughout, that is, the
settings ~ = 2me = e2/2 = kB = 4πε0 = 1 are used. The elementary charge e is
furthermore distinguished from the electronic charge q = −|e|.

2.1 Density functional theory

Density functional theory has a quite long and successful history. The real break-
through came with the pioneering works of Hohenberg and Kohn [110] and Kohn
and Sham [111]. Originally DFT was formulated on a non-relativistic level aiming
at the ground state properties of non-spin-polarised systems, but since then it has
seen many extensions. The spin-polarised case was considered first by von Barth
and Hedin [112] and Rajagopal and Callaway [113] leading to spin density functional
theory (SDFT). Relativistic effects (RDFT) were included by the works of Ramana
and Rajagopal [114] and MacDonald and Vosko [115]. An improved framework to
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deal with orbital magnetism was set up by Vignale and Rasolt [116–118] who in-
troduced current density functional theory or CDFT. Another important aspect of
magnetism is the occurrence of non-collinear spin configurations. The technical is-
sues of such situations have been considered in particular by Kübler et al. [119],
Sandratskii [120] as well as Nordström and Singh [121]. Finally, the latest funda-
mental steps forward were superconducting density functional theory (SCDFT) [122]
and time-dependent density functional theory (TD-DFT). The latter was introduced
by Runge and Gross [123], providing a firm basis for linear response calculations and
investigations of the dynamics of electronic systems as for example encountered in
an ultra-fast demagnetisation process induced by a laser pulse [124].

The major achievements of the work of Kohn and Sham [111] were the introduction
of the auxiliary non-interacting particle system and the local density approximation
(LDA) that turned DFT from a mere concept into a practicable scheme. Since then
several refinements have been worked out to go beyond that simplification. These
developments are well documented in numerous review articles (e.g., [125–127]) and
text books (e.g., [128–130]). In particular the book of Engel and Dreizler [130] gives
a detailed overview over the various aspects mentioned above. In the following only
the key features of DFT relevant to this thesis will be summarised.

2.1.1 Non-relativistic formulation

In density functional theory the absolute square of the N -particle wave function
Ψ(r1, r2, ..., rN), the single-particle probability or, in case of electronic systems,
electron density n(r) = 〈Ψ|n̂(r)|Ψ〉 = 〈Ψ(r1, ..., rN)|Ψ(r1, ..., rN)〉1 is taken as the
fundamental property of a system. As such, it is formally sufficient for a complete
description of its ground state properties involving arbitrary interactions. The en-
ergy of the system is given as a functional of the density and the electronic structure
problem expressed in the time-independent Schrödinger- or, in case of a relativistic
description, Dirac-like equation ĤΨ = EΨ is solved by functional variation in three
rather than 3N dimensions.

The Hamiltonian Ĥ of the system under consideration is – within the Born-Oppen-
heimer approximation [131], assuming a complete decoupling of electronic and nu-
clear degrees of freedom due to their different time and energy scales2 – composed
of a kinetic part T̂ , describing the motion of the electrons, a potential (energy) term
accounting for all electron-electron interactions Û , and a static external potential
(energy) V̂ext,

Ĥ = T̂ + Û + V̂ext . (2.1)

The last term is the sum over local one-particle potentials

V̂ext =
N∑

i

vext(ri) , (2.2)

which represent the potential energy associated with an external field. In the most
simple case this is just the Coulomb interaction of electrons and nuclei, which are

1The concise Dirac bra-ket notation hides the fact that this is actually an integral in (N − 1) × 3
dimensions, leading to a three dimensional (ignoring spin and time dependence for now) object.

2In solids, this corresponds in particular to neglecting (non-adiabatic) electron-phonon coupling.
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– as stated above – assumed to remain fixed on the timescale of the electronic mo-
tion, and the repulsion of the nuclei V̂nn, which then just amounts to an additive
constant. Accordingly, it is omitted in the following. Furthermore, the nuclei usu-
ally are treated as point particles with a resulting singular Coulomb potential. The
kinetic and the electron-electron parts, T̂ and Û , are on the other hand system-
independent or universal. Obviously, the many-body problem is connected to the
latter of the two. In contrast to wave function-based methods of Quantum Chem-
istry or the diagrammatic approach to many-body perturbation theory that rely
on systematic expansion of Ψ or Ĥ, respectively, DFT provides an exact mapping
of the many-particle problem onto an effective single-particle problem without the
complex electron-electron interaction operator Û .

The use of the density as the central quantity for the description of an electronic sys-
tem had been proposed already quite early, namely just one year after Schrödinger
published his seminal work [132], independently by Thomas [133] and Fermi [134].
However, it took about 40 years until a theory emerged that could be used for actual
calculation of bound states, namely density functional theory introduced by Hohen-
berg and Kohn [110].

The (first)3 theorem of Hohenberg and Kohn [110] states that the external potential
in Eq. (2.1) is uniquely defined up to an arbitrary constant by the electron density.
This implies a bijective mapping between V̂ext (or Ĥ) and the electronic wave func-
tion Ψ as well as between Ψ and the electron density n(r). Since according to this
the wave function of any given system can be formulated as a functional of n(r),
the same is true for any ground-state observable:

O[n(r)] = 〈Ψ[n(r)]|Ô|Ψ[n(r)]〉 . (2.3)

In the original work [110] this was proven, by reductio ad absurdum, only for a
non-degenerate ground state Ψ0, but even if several degenerate ground-state wave
functions Ψi

0 would reproduce the same density n0, they all would also have the
same energy eigenvalue E0, which hence is a unique functional of n(r). An alterna-
tive proof of the Hohenberg-Kohn theorem including the possibility of degenerate
ground states was given independently by Levy [135, 136] and Lieb [137, 138] based
on a constraint minimisation procedure.

What is sometimes called the second theorem of Hohenberg and Kohn [110] now
states that the energy eigenvalue of an electronic system without an external po-
tential exists, being a particular case of Eq. (2.3), as a universal functional of its
density, F [n(r)] = 〈Ψ|(T̂ + Û)|Ψ〉4, that does not depend explicitly on the exter-
nal potential. Furthermore the sum E[n] = F [n] + Vext[n] becomes minimal for
the density of the actual ground state in the presence of Vext. This is the central
idea of the aforementioned constrained-search proof of the (first) Hohenberg-Kohn
theorem. This minimum principle, derived from the Rayleigh-Ritz variational prin-
ciple, implies that by starting from an arbitrary test density, which only has to obey

3There is some dissens in the literature concerning the number of theorems, ranging from one to
three.

4The real space position vector r ≡ −→r will be dropped in the following for functionals of the density,
i.e., X[n] ≡ X[n(r)].
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N [n] ≡
∫
d3r n(r) = N ,5 with N being the particle number, and with knowledge of

the exact energy functional, the global minimum of the energy E0 = E[n0] could be
found by functional variation,

δ

δn(r)

{
E[n]− µ

(∫
d3r n(r)−N

)}∣∣∣∣
n(r)=n0(r)

= 0 . (2.4)

With µ as a Lagrange multiplier6, the above is equivalent to the Euler-Lagrange
equation

δF [n]

δn(r)
+ Vext[n] = µ , (2.5)

and the subsidiary condition in Eq. (2.4) ensures correct normalisation of the density.
This equation shows that the external potential is uniquely defined by the density
of the ground state. The minimum principle just outlined, that can be expressed as
E[n0] ≤ E[n′], is of such central importance that it is sometimes given the status of
an additional Hohenberg-Kohn theorem [126]. Although density functional theory
is formally rigorous, extremely versatile and has proven its usefulness beyond doubt,
the obvious caveat of the above lies in the expression “knowledge of the exact energy
functional”. This problem will be addressed below.

Hence, the greatest challenge of this method lies in the search for an appropriate
density functional accurately describing the system under investigation. The basic
principle for this is the ansatz of Kohn and Sham [111], where the energy functional

Es[n] = Ts[n] + J [n] + Exc[n] +

∫
d3r vext(r)n(r) , (2.6)

is composed of the kinetic energy of the fictitious non-interacting Kohn-Sham sys-
tem7, Ts[n], the Coulomb energy J [n], the exchange-correlation energy Exc[n] and
finally the potential energy term arising from the external potential, Vext[n]. In the
most simple case this comprises only the Coulomb interaction between electrons and
nuclei. With this, the exchange-correlation functional containing all many-particle
interactions is defined as

Exc[n] ≡ T [n]− Ts[n] + U [n]− J [n] , (2.7)

the difference between exact kinetic energy as well as electron-electron interaction
(T [n] + U [n]) and the sum of Ts[n] and the bare Coulomb interaction J [n] (or
Hartree potential). This energy functional is obviously system-independent or uni-
versal, since it only depends on quantities which are independent on Vext and since
it is the same for any particle number.

The Kohn-Sham equations, which correspond to the Schrödinger equation for the
Kohn-Sham system, represented by the Kohn-Sham wave function Ψs(r1, r2, ..., rN)

5In addition it has to be connected to an anti-symmetric N -particle wave function as its probability
density, a non-trivial issue termed N -representability problem [139, 140].

6It can be interpreted as the chemical potential according to
∂E

∂N
= µ.

7This requires the density to be non-interacting ν-representable, i.e., a non-interacting ground state
Ψs[n] with ns(r) = n(r) has to exist.
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describing the inhomogeneous electron system, are usually expressed (in atomic
Rydberg units) as

[−∇2 + Veff (r)]φi = εiφi . (2.8)

The effective Kohn-Sham potential Veff (r) occurring in Eq. (2.8) is given by

Veff (r) = Vext(r) + VH(r) + Vxc(r)

= Vext(r) + 2

∫
d3r′

n(r′)

|r − r′| +
δExc[n]

δn(r)
, (2.9)

with
δExc(n)

δn(r)
= εxc[n(r)] + n(r)

∂ε[n(r)]

∂n(r)
(2.10)

and the particle density

n(r) =
N∑

i

∑

s

|ψi(r, s)|2 , (2.11)

expressed as a sum over N one-particle orbitals ψi with spin s. The Lagrange mul-
tipliers εi again are introduced to satisfy the above-mentioned condition of particle
number conservation and in this case can be interpreted as single-particle energy
eigenvalues. The Kohn-Sham wave function Ψs(r1, r2, ....rN) is constructed from the
Kohn-Sham orbitals φi(r, s) as a single Slater determinant [141]8, obeying the Pauli
principle [144]. These effective one-particle equations, Eqs. (2.8)-(2.11), obtained
via an exact mapping of the many-body problem, are to be solved self-consistently
by iteration, as they are implicit differential equations with the solutions themselves
being contained in the Hartree and exchange-correlation potentials, V and Vxc, re-
spectively.

As mentioned above, the greatest challenge of density functional theory remains the
problem to construct the universally “correct” exchange-correlation functional for
realistic systems. A simple, yet extremely – not to say astonishingly – successful
approximation to it is the so-called local density approximation (LDA)9, in which
the exchange-correlation energy is determined exclusively by n(r) at r, by setting

ELDA
xc [n(r)] = Eheg

xc [n(r)] =

∫
d3 r εhegxc (n(r))n(r) , (2.12)

which is the exchange-correlation functional of the interacting homogeneous electron
gas10 (heg), which has a locally constant density n by construction. The expression
εhegxc (n(r)) represents the mean exchange-correlation energy density per electron of
the homogeneous electron gas, where the exchange part can be determined analyti-
cally to be [145]

εhegx (n) = −3

4
(
3

π
)

1
3n

4
3 , (2.13)

leading to the simple expression

ELDA
x [n] = −3

4
(
3

π
)

1
3

∫
d3 r n(r)

4
3 . (2.14)

8Actually, Heisenberg [142] as well as Dirac [143] proposed this ansatz already some years earlier.
9This idea in fact dates back already to the Thomas-Fermi model [133, 134].

10To stress the importance of the electron-electron interaction some authors speak of a liquid here.
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The correlation energy εhegc however is a complicated many-body problem on its own
and not known exactly. Approximations for it used to be based on perturbation the-
ory, such as, e.g., the random-phase approximation [112], but nowadays usually are
obtained by parametrisation of results from Quantum Monte Carlo calculations for
the electron liquid (such as Ref. 146). The sum εhegx + εhegc = εhegxc , representing the
interacting homogeneous electron liquid, enters the Kohn-Sham equations for the
inhomogeneous electron gas Eq. (2.8) via Eq. (2.12) and the last term of Eq. (2.9).

As stated already above, the LDA proved to be remarkably successful. This is to
a large extent caused by a cancellation of errors in the exchange and correlation
terms. Nevertheless, the accuracy necessary for investigations on the stability and
energetics of molecules (chemical accuracy) is normally not achieved [126]. For this
reason ongoing research is aimed at developing more accurate schemes that however
(ideally) keep the simplicity of the local density approximation. For example an
improvement over the local ansatz in Eq. (2.12) is the so-called generalised gradient
approximation (GGA) [147–149] which considers in addition to the local density also
its gradient via the expression

EGGA
xc [n(r),∇n(r)] =

∫
d3r f(n(r),∇n(r)) . (2.15)

For both approximation schemes (LDA and GGA) a vast number of parametrised
functionals has been developed over the last decades, usually separated into an ex-
change and a correlation part, Ex and Ec, respectively. Still today there is an ever
increasing demand for more accurate and preferentially at the same time more gen-
eral and still computationally feasible approximations. To a good extent motivated
by the increasing interest of chemists in density functional theory for calculating
molecular properties, in recent years the inclusion of a wave-function based de-
scription of “exact” (Hartree-Fock) exchange, derived from the Kohn-Sham orbitals
rather than the density, has led to the so-called hybrid density functionals [150, 151].
Another noteworthy extension of Kohn-Sham-DFT are dispersion corrections, which
allow for example the description of van-der-Waals interactions [152]. For further
extensions fully within the framework of DFT see for example Refs. 153–155.

A completely different approach to remedy the shortcomings of the local density
approximation concerning the description of electronic correlation is to combine it
with many-body approaches. A simple version of such a scheme is the LDA+U
method [156, 157]. A more sophisticated treatment of electron-electron interaction
is the combination of dynamical mean field theory (DMFT) [158, 159] with the LDA,
leading to LDA+DMFT [160].

In this work, if not stated otherwise, the combined exchange-correlation parametri-
sation of Vosko, Wilk, and Nusair [161] within the local spin density approximation
(LSDA) that extends Eqs. (2.8-2.11) to the spin-polarised case has been used (see
below).
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2.1.2 Relativistic formulation

For most of the spincaloritronic phenomena studied in this work a proper treatment
of relativistic effects, in particular of the spin-orbit interaction, is essential. Hence
the so-called scalar-relativistic corrections to the Schrödinger or Kohn-Sham equa-
tions, i.e., the mass-velocity correction and the Darwin term connected to the Zit-
terbewegung of the electrons, are not sufficient. A corresponding relativistic version
of density functional theory (RDFT) has been worked out by various authors [113–
115]. With the electric four-current density as the fundamental electronic variable
this scheme in particular accounts for all magnetic aspects of a system. Accordingly,
replacing the Kohn-Sham Hamiltonian by the Dirac-(Kohn-Sham) Hamiltonian one
arrives at the Dirac-Kohn-Sham-equations (in SI units)

[−i~cα ·∇+ βmc2 + Veff (r) + eαAeff (r)]Ψi(r) = εiΨi(r) , (2.16)

where m is the electron’s rest mass, c the speed of light in vacuum, and αi and β
are the 4× 4 Dirac matrices [162]

αi=x,y,z =

(
0 σi

σi 0

)
, (2.17)

with the usual 2× 2 Pauli spin matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0

0 −1

)
, (2.18)

and the Dirac beta matrix

β =

(
I2 02

02 −I2

)
, (2.19)

where I2 is the two-dimensional unity. Accordingly, the wave function Ψi(r) is a
four-dimensional object as well, the so-called Dirac or bi-spinor.
The first term in Eq. (2.16) is the relativistic kinetic energy operator11, while the
second is the rest energy (or mass) term. Analogous to the non-relativistic case
there is an effective scalar potential,

Veff (r) = Vext(r) + e2

∫
d3r′

n(r′)

|r − r′| +
δExc[n(r), j(r)]

δn(r)
, (2.20)

that is again composed of an external, a classical or Hartree, and an exchange-
correlation part. In addition Eq. (2.16) however contains now a second potential
term, the effective vector potential Aeff (r) given by

Aeff (r) = Aext(r)− e

c

∫
d3r′

j(r′)

|r − r′| +
e

c

δExc[n(r), j(r)]

δj(r)
, (2.21)

which is like the relativistic effective potential once more composed of an external,
a classical12, and an exchange-correlation part.

11Note that the Laplacian of the Schrödinger or Pauli equation has been replaced by a first-order
differential operator.

12That arises from the so-called Breit interaction, see Ref. 163 and references therein.
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These two may be seen as the components of a four-component effective potential
V µ
eff = (Veff ,−eAeff ). The complete single-particle density has accordingly to be

seen as a four-component object, the relativistic four-current density Jµ = (J0, j)
with 1

c
J0 = n being the electron density and the three remaining parts the spatial

components of the electric current density. In comparison to Eq. (2.9), the last
term of Eq. (2.20) obviously implies a coupling between charge and current density
also for the effective potential. There is however no simple approximation to this
modified exchange-correlation potential, making relativistic CDFT impracticable.

Applying a Gordon decomposition of j into an orbital and a spin part and retaining
only the coupling of the spin current density to the magnetic field, neglecting the
orbital current density altogether, one arrives at relativistic spin density functional
theory (RSDFT) [113–115]. In this approach, the coupling of the spin current density
to the vector potential Aeff is represented by

−mBeff , (2.22)

with the spin magnetisation density

m = 〈Ψ|βσ|Ψ〉 (2.23)

and the effective magnetic field

Beff (r) = Bext(r) +
δExc[n(r),m(r)]

δm(r)
, (2.24)

leading to the simplified Dirac-Kohn-Sham-equations

[−i~cα ·∇+ βmc2 + Veff (r) + βσBeff (r)]Ψi(r) = εiΨi(r) , (2.25)

with a modified exchange-correlation potential

Vxc =
δExc[n(r),m(r)]

δn(r)
. (2.26)

Assuming moreover collinear magnetisation (at least locally), one can further sim-
plify Eq. (2.25) to the form

[−i~cα ·∇+ βmc2 + Veff (r) + βσzBeff (r)]Ψi(r) = εiΨi(r) , (2.27)

where the spin magnetisation as well as the effective magnetic field are oriented along
the local z axis according to Beff (r) = Beff (r)êz. With this, the magnetisation can
be represented by a scalar field as well, leading to the following basic variables of
the system

n(r) = n↑(r) + n↓(r) (2.28)

m(r) = m(r)êz = n↑(r)− n↓(r) , (2.29)

where the total density n(r) and the magnetisation m(r) have been expressed in
terms of the spin-dependent densities n↑(↓)(r) projected on the local z axis. All
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calculations presented in the following are based on Eq. (2.27) using, if not noted
otherwise, the local spin density approximation to

Vxc =
δExc[n(r),m(r)]

δn(r)
(2.30)

with the parametrisation as given by Vosko et al. [161].

In summary, density functional theory is a formally exact, extremely versatile, and
ever increasingly successful13 method for electronic structure calculations (and be-
yond). Given a suitable description of the exchange-correlation part of the energy,
highly accurate and reproducible [169] results can be obtained with comparably
modest computational effort.

13Among the most cited articles of Physical Review (as of July 2018), a majority is work related to
density functional theory, including that of Hohenberg and Kohn [110] and Kohn and Sham [111],
as well as on functional parametrisation [164–168].
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2.2 Multiple scattering theory

In multiple scattering theory, which is the basis of the Korringa-Kohn-Rostoker
(KKR) method for electronic structure calculations used throughout in this thesis,
the Green functionG(r, r′, E) is the central object representing the time-independent
electronic structure of the system under investigation.14 It is equivalent to the propa-
gator of the system and hence describes the motion of a particle, usually an electron,
from r′ to r, reflecting the scattering properties of the system. In contrast to most
other band structure methods the concept of the Green function is not restricted to
translation invariant systems as the use of Bloch wave functions. This allows the
treatment of disordered systems of arbitrary dimensions (0-3D) and scattering-based
phenomena in spectroscopy and transport in a rather straightforward manner [173–
176]. System properties like the aforementioned but also much simpler ones, as the
particle density, can be directly obtained from the Green function determined within
the framework of density functional theory.

2.2.1 Green operators and functions

The central quantity of multiple scattering theory is the single-particle Green func-
tion, that can be formally defined as the solution of an inhomogeneous Schrödinger-
like linear differential equation, as [173, 174, 177]

(E − Ĥ)Ĝ(E) = 1̂ . (2.31)

The Green operator is accordingly defined as

Ĝ = (E − Ĥ)−1 . (2.32)

It is the so-called resolvent of the Hamiltonian with the associated boundary con-
ditions, that contains all information on the spectrum of its solutions. Being the
Kernel of the integral operator inverse to the Hermitian differential operator Ĥ it
gives access to the solutions of any related inhomogeneous problem without having
to actually perform the differential operation.15 Moreover these solutions are auto-
matically satisfying the required homogeneous boundary conditions (i.e., continuity
of the wave function and its gradient, and finite or zero value at infinity) by con-
struction since the Green function fulfils them [173, 177].

An important property of the Green function is that it is analytic in the complex
energy plane. For a Hermitian Hamilton operator Ĥ one has in particular the
property

G†(z) = G(z∗) , (2.33)

where the complex energy argument has been emphasised by writing z. The spec-
trum of the Hamiltonian is reflected by poles and a continuous branch cut on the
real energy axis corresponding to localised and extended band states, respectively.
For that reason one is in general interested in the side limits

G±(E) = lim
ε→0

G(E ± iε) , (2.34)

14While the original works of Korringa [170] and Kohn and Rostoker [171] were aiming at Bloch
wave functions, it was Beeby [172] who introduced the use of Green functions.

15This can in particular be a numerical advantage, which was actually the original motivation of the
work of Korringa [170].
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leading to the so-called retarded (G+) and advanced (G−) Green functions with the
connection [G+(E)]† = G−(E) via Eq. (2.33). Because of this relation the following
will be restricted to G+(E) and the ”+” sign will be in general omitted.

According to Eq. (2.31) the real space representation of the Green functionG(r, r′, E)
is defined as the solution to the inhomogeneous equation

(E − Ĥ)G(r, r′, E) = δ(r − r′) . (2.35)

For the case of a free electron, i.e., in case of V̂ = 0 it is straightforward to derive
the following expression:

G0(r, r′, E) = − 1

4π

eik|r−r
′|

|r − r′| , (2.36)

with k =
√
E. For a system of scatterers, the retarded Green function can be

expressed by means of the so-called Lehmann spectral representation of the Green
operator Ĝ

G(r, r′, E) = lim
ε→0

∑

j

Ψj(r)Ψ∗j(r
′)

E − Ej + iε
. (2.37)

Here the sum runs over the eigenstates j and corresponding eigenenergies Ej of the
Hamiltonian.

This becomes more complicated in case of a relativistic treatment, i.e., when Ĥ is the
Dirac Hamiltonian and the eigenstates are bi-spinors, as the complex conjugation
has to be replaced by taking the Hermitian adjoint (†). Moreover left-hand-side
and right-hand-side solutions can no longer be assumed to be identical. In case
of general non-local and complex potentials (self energies) further complications
arise [178–180], leading to the most general expression

G(r, r′, z) =
∑

j

Φj(r, z)Ψ
†
j(r
′, z)

z − Ej(z)
. (2.38)

For the work presented herein this distinction however is not relevant and left- and
right-hand solutions will from now on be assumed to be identical.

As mentioned above, the Green function gives access to all physical properties of
the system under investigation. For example the particle density can be obtained
from it using the Dirac identity

− 1

π
Im lim

ε→0

1

x+ iε
= δ(x) , (2.39)

leading via

− 1

π
Im G(r, r′, E) =

∑

j

φj(r) φj(r
′)∗ δ(E − Ej) (2.40)

to

n(r) =
∑

jocc

φj(r)φj(r
′)∗

=

∫ EF

dE φj(r) φj(r
′)∗ δ(E − Ej)

= − 1

π

∫ EF

dE G(r, r′, E) , (2.41)
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where the energy integration runs up to the Fermi level corresponding to a sum over
all occupied states.

Similarly the density of states (DOS) is given by

n(E) =
∑

j

δ(E − Ej)

=
∑

i

∫

Ω

d3r φj(r) φj(r
′)∗ δ(E − Ej)

= − 1

π
Im

∫

Ω

d3r G(r, r′, E) . (2.42)

A natural choice of basis in solids are of course lattice periodic Bloch eigenstates,
leading for the Lehmann representation to

G(r, r′, E) = lim
ε→0

∑

jk

Ψjk(r)Ψ†jk(r′)

E − Ejk + iε
, (2.43)

with the sum over the band index j and the k-vectors [181]. Although of course
formally fully correct its application is in practice very tedious, as one would need
the whole spectrum of solutions. A much more efficient and versatile alternative to
this presents multiple scattering theory, which will be detailed in the following.

2.2.2 Single-site scattering

The basic electronic structure problem is to find a solution to the stationary Schrö-
dinger equation

ĤΨ(r) =
[
T̂ + V̂

]
Ψ(r) = EΨ(r) , (2.44)

or, within a relativistic treatment, to the Dirac equation. Within a spin-polarised
relativistic formulation the corresponding Dirac Hamiltonian [182] is

− i~cα ·∇+ βmc2 + V (r) , (2.45)

where in the most general case the potential is [179]

V (r) = V̄ (r) + βσ ·B(r) + eα ·A(r) . (2.46)

In addition one may add a non-local potential or an energy-dependent self-energy
to the Hamiltonian of Eq. (2.45) [180]. It is however conventionally employed in a
simplified version,

− i~cα ·∇+ βmc2 + V (r) + βσ ·Beff (r) , (2.47)

where V (r) is the spin-independent part of the potential and the full dependence
on the electromagnetic vector potential is approximated by βσ · Beff . Assuming
collinear magnetism within an atomic cell this is normally further simplified using
the expression βσzBeff .

In Eqs. (2.45)-(2.47) m is the electron’s rest mass, c the speed of light in vacuum,
and α and β are the 4× 4 Dirac matrices [162]
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αi=x,y,z = γj=1,2,3 =

(
0 σi

σi 0

)
, (2.48)

with the usual 2× 2 Pauli spin matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0

0 −1

)
(2.49)

and

β = γ0 =

(
I2 02

02 −I2

)
, (2.50)

where I2 is the two-dimensional unit matrix. The wave function in Eq. (2.44) ac-
cordingly has to be a four-dimensional object.

Dealing with atomic-like potentials it is most convenient to work with the Dirac
equation in spherical coordinates [180] and using atomic Rydberg units:16

Ĥ(r) = −icα ·∇+
1

2
c2(β − 1) + V (r)

= iγ5σrc

(
∂

∂r
+

1

r
− β

r
K

)
+

1

2
c2(β − 1) + V (r) , (2.51)

where σr = σ · r/r stands for the radial projection of the Pauli matrices, K is the
spin-orbit operator σ · l + 1 [183],

γ5 = iγ0γ1γ2γ3 =

(
0 I2

I2 0

)
, (2.52)

and the rest mass energy 1
2
c2 has been subtracted.

Instead of applying Eq. (2.44) to a solid directly, the problem is solved by dealing
first with the individual atoms seen as independent objects. Employing the so-
called muffin-tin approximation (MTA), the corresponding scattering potentials are
obtained by decomposing the space into two distinct areas, the so-called muffin-tin
spheres with radius rMT where the actual scattering takes place, and the remaining
interstitial region where the potential is taken to be constant,

V (r) =

{
V (r) for r < rMT

const. for r ≥ rMT

. (2.53)

Note that the muffin-tin construction implies non-overlapping and isotropic poten-
tials. Approaches beyond this like the atomic sphere approximation (ASA) and the
full potential (FP) scheme will be discussed below.

In the following introduction to the KKR-GF method we will first deal with the
non-relativistic Schrödinger equation

[
−∇2 + V (r)

]
Ψ(r) = EΨ(r) . (2.54)

16Atomic Rydberg units (ARU): ~ = 1, m = 1/2, e2 = 2.
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As an ansatz for the solution to the spherically symmetric single-site problem prob-
lem represented by Eq. (2.54) one inserts

ϕL(r) = R`(r, E) YL(r̂) with L =̂ (l,m) , (2.55)

i.e., the product of a complex spherical harmonics YL(r̂) (with the short-hand com-
bined angular momentum index L = (`,m)) and the regular (constant for r → 0)
solutions to the radial differential equation

[
(−1

r

d2

dr2
r +

l(l + 1)

r2
) + V (r)− E

]
R`(r, E) = 0 . (2.56)

In the interstitial region outside of the scattering potential the radial wave function is
constructed as a linear combination of spherical Bessel and von Neumann functions,
j` and n`, which are the free-space (V (r) = 0) solutions to Eq. (2.56),

R`(r, E) = eiη`(E) [cos η`(E) j`(kr)− sin η`(E)n`(kr)] . (2.57)

where E = k2 is the free electron energy (in ARU) and k the corresponding wave
vector. The phase shift η`(E) that is acquired upon interaction with the scatter-
ing potential can be obtained from the boundary conditions for the wave function,
namely by demanding that at r = rMT the function itself as well as its first derivative
have to be continuous. Using the logarithmic derivative w.r.t. the radius r,

L`(E) =
d lnR`(r, E)

dr
r=rMT

, (2.58)

the phase shift can be expressed by

tan η`(E) =
L`(E) j`(kr)− dj`(kr)/dr
L`(E)n`(kr)− dn`(kr)/dr r=rMT

. (2.59)

For r > rMT the incoming and outgoing (scattered) waves hence obviously are ex-
pected to show the same oscillatory behaviour in the radial part, only shifted by
η`(E) corresponding to elastic or on the energy shell scattering. Within the muffin-
tin sphere the radial part of the wave function exhibits a structure determined by
V (r), accordingly the solutions to Eq. (2.56) have to be obtained numerically. By
subsequently evaluating Eqs. (2.58) and (2.59) the scattered wave within the inter-
stitial region is given.

If the scattering at a potential V (r) is described as the perturbation of an incoming
plane wave ϕ0(r) via the Hamilton operator

H = H0 + ∆V (r) with H0 = −∇2 + V 0(r) , (2.60)

where in case of the muffin-tin construction ∆V (r) corresponds to V (r) and V 0 =
const., the perturbed wave ϕ(r) can be expressed, with the help of the free-electron
Green function G0(r, r′, E) obeying

(E −H0)G0(r, r′, E) = δ(r − r′) , (2.61)

via an implicit integral equation of Fredholm type as

ϕ(r) = ϕ0(r) +

∫
d3r′G0(r, r′, E)V (r′)ϕ(r′) . (2.62)
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This is the Lippmann-Schwinger equation [184], an equivalent to the time-independent
Schrödinger (or Dirac) equation, but already including boundary conditions. In
Dirac bra-ket notation and using a short-hand operator formulation omitting all
arguments, it reads

|ϕ〉 = |ϕ0〉+ Ĝ0 V̂ |ϕ〉 , (2.63)

with the formal solution
|ϕ〉 = (1− Ĝ0V̂ )−1|ϕ0〉 . (2.64)

Expanding this by a geometric series one arrives at the so-called Born series [185],
corresponding to a repeated insertion of the r.h.s. of Eq. (2.63) into itself.
By constructing the transition operator T̂

T̂ = V̂ (1− Ĝ0V̂ )−1 , (2.65)

one gets the relation
T̂ |ϕ0〉 = V̂ |ϕ〉 , (2.66)

that allows to recast Eq. (2.63) into

|ϕ〉 = (1 + Ĝ0 T̂ )|ϕ0〉 . (2.67)

Hence, formally the task of computing the scattered states from the incoming ones
is reduced to an inversion of the operator (1− Ĝ0V̂ ), assuming Ĝ0 is available.

In analogy to the Lippmann-Schwinger equation, Eq. (2.63), the Green function
G(r, r′, E) of the perturbed system can be connected to the free-electron reference
system represented by G0(r, r′;E) via a Dyson equation. In operator notation with
position and energy arguments again omitted this important relation reads

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ (2.68)

= Ĝ0 + Ĝ0T̂ Ĝ0 . (2.69)

Comparison of Eqs. (2.68) and (2.69) leads to the relation

T̂ Ĝ0 = V̂ Ĝ , (2.70)

that is a counterpart to Eq. (2.66). Multiplying Eq. (2.68) from the left by T one
obtains via Eq. (2.70) an implicit equation for the transition operator,

T̂ = V̂ + T̂ Ĝ0 V̂ = V̂ + V̂ Ĝ0 T̂ . (2.71)

For the single-site scattering problem Eq. (2.62) is now used to obtain the wave
function ϕL(r, E) = R`(r, E)YL(r̂) from the incoming spherical wave ϕ0(r, E) =
j`(kr)YL(r̂) and the Green function for the free particle G0(r, r′, E) using

R`(r, E) = j`(kr) +

rMT∫

0

r′2 dr′G0
`(r, r

′, E)V (r′)R`(r
′, E) . (2.72)

For r ≥ rMT the integral in Eq. (2.72) can be transformed, via

G0
`(r, r

′, E) = −i j`(kr<)h+
` (kr>) , (2.73)
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where r>(r<) assumes the value of either r or r′ depending on which is the larger
(smaller), and the outgoing wave represented by a Hankel function of 1st kind

h+
` (kr) = n`(kr) + ij`(kr) , (2.74)

into
[n`(kr)− ij`(kr)] k〈j`|V |R`〉 , (2.75)

where the matrix elements

〈j`|V |R`〉 =

rMT∫

0

r2drj`(kr)V (r)R`(r, E) (2.76)

can now be identified with the angular momentum representation of the transition
operator for a single scatterer. This means the t`(E) are the diagonal elements of the
single-site t matrix in the combined azimuthal and orbital quantum number index
L,

t`(E) = δLL′tLL′(E) = δLL′〈ϕ0
L|T̂ |ϕ0

L′〉 = δLL′〈ϕ0
L|V |ϕL′〉 = 〈j`|V |R`〉 . (2.77)

Inserting this first into Eq. (2.75), subsequently into Eq. (2.72), and comparing the
result to Eq. (2.57), one obtains

eiη`(E) cos η`(E) = 1− ikt`(E) (2.78)

or − eiη`(E) sin η`(E) = kt`(E) , (2.79)

and thus an expression for the t matrix in terms of the phase shift η`:

t`(E) = −1

k
sin η`(E) eiη`(E) . (2.80)

With the t-matrix determined, the regular wave function RL(r, E) is completely
fixed by its asymptotic behaviour outside the muffin-tin regime:

RL(r, E) = jL(r, E)− ikt`(E)h+
L(r, E) , (2.81)

with jL(r, E) = j`(kr)YL(r̂) and analogously for h+
L(r, E).

In addition one can introduce an irregular solution HL(r, E) to the Schrödinger
equation by the boundary conditions for r ≥ rMT,

HL(r, E) = h+
L(r, E) , (2.82)

while for r ≤ rMT it is a numerical solution for the finite single-site potential V (r).
The properly normalised set of functions, RL(r, E) and HL(r, E), allows now ex-
pressing the single-site Green function

G(r, r′, E) = −ik
∑

L

YL(r̂)R`(r<, E)H+
` (r>, E)YL(r̂′) (2.83)

as a solution of the differential equation Eq. (2.35) for an isolated potential well [186].

Dealing with the Dirac equation instead of the Schrödinger equation, the corre-
sponding derivation of the expression for the single-site t-matrix is conceptually
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analogous. Working with the Dirac Hamiltonian in spherical coordinates, as given
by Eq. (2.51), the corresponding spherical functions for the free-electron situation
V (r) = 0 are given by the bi-spinors

jΛ(r, E) =

(
j`(pr)χΛ(r̂)

ipcSκ
E+c2

j¯̀(pr)χ−Λ(r̂)

)
(2.84)

and analogously for h+
Λ(r, E), where Λ stands for the combined spin-orbit and mag-

netic quantum numbers (κ, µ), −Λ = (−κ, µ), p =
√
E(1 + E/c2) is the relativistic

momentum, Sκ = sign(κ), ¯̀= `− Sκ, and χΛ(r̂) are the spin-angular functions

χΛ(r̂) =
∑

ms

Cms
Λ Yµ−ms` χms (2.85)

with the Clebsch-Gordon coefficients17 Cms
Λ , real spherical harmonics Yµ−ms` , and

the Pauli spinors χms [162]. These functions are eigenfunctions to the spin-orbit
operator K

KχΛ(r̂) = −κχΛ(r̂) (2.86)

and obey the symmetry relation

σrχΛ(r̂) = −χ−Λ(r̂) . (2.87)

This allows to construct the free-electron Green function as a 4 × 4 matrix func-
tion [180]:

G0(r, r′, E) = −i(1 + E/c2)p
∑

Λ

jΛ(r, E)h+×
Λ (r′, E) θ(r′ − r)

+h+
Λ(r, E) j×Λ (r′, E) θ(r − r′) , (2.88)

where

j×Λ (r′, E) =

(
j`(pr)χ

†
Λr̂),
−ipcSκ
E + c2

j¯̀(pr)χ
†
−Λ(r̂)

)
(2.89)

and the corresponding h+×
Λ are the left-hand side solutions to the Dirac equation.

When applying the Dirac Hamiltonian of Eq. (2.47) involving a spin-dependent
potential the corresponding solutions have in general no pure spin-angular character
any more, i.e., one has for example

ΨΛ(r, E) =
∑

Λ′

ΨΛ′Λ(r, E) , (2.90)

with the bi-spinors

ΨΛ′Λ(r, E) =

(
gΛ′Λ(r, E)χΛ′(r̂)

ifΛ′Λ(r, E)χ−Λ′(r̂)

)
. (2.91)

This implies that the corresponding t-matrix is not diagonal w.r.t. Λ. Neverthe-
less, properly normalised regular and irregular scattering solutions, RΛ(r, E) and
HΛ(r, E), respectively, to the Dirac equation can be given in analogy to Eqs. (2.81)

17Transforming from the non-relativistic (`,m,ms) to the relativistic (κ, µ) representation.
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and (2.82). This normalisation is often called Jülich convention, as it was intro-
duced by Dederichs and co-workers [187]. An alternative normalisation, introduced
by Faulkner and Stocks [188, 189] and commonly called Bristol-Oak-Ridge conven-
tion, has some advantages in particular when dealing with alloys (see below). In
this case one has the regular and irregular solutions

ZΛ(r, E) =
∑

Λ′

jΛ′(r, E)mΛ′Λ(E)− iph+
Λ(r, E) (2.92)

JΛ(r, E) = jΛ(r, E) , (2.93)

with m(E) = t−1(E) being the inverse of the single-site t matrix in relativistic
spin-angular representation. Comparing with the normalisation in Eq. (2.81) and
Eq. (2.82) one finds the relations between the regular (R and Z) and irregular (H
and J) solutions to be

RΛ(r, E) =
∑

Λ′

ZΛ′(r, E) tΛ′Λ(E) (2.94)

−ipHΛ(r, E) = ZΛ(r, E)−
∑

Λ′

JΛ′(r, E)mΛ′Λ(E) . (2.95)

Again, with the free-electron Green function G0(r, r′, E) and the properly nor-
malised regular and irregular solutions for an isolated potential well available, one
can construct the corresponding relativistic single-site Green function

G(r, r′, E) = −ip̄
∑

Λ

RΛ(r, E)H+×
Λ (r′, E) θ(r′− r) +H+

Λ (r, E)R×Λ(r′, E) θ(r− r′) ,

(2.96)
where p̄ = (1 + E/c2)p and × labels again the left-hand side solutions to the Dirac
equation (see above and Refs. 179 and 180).

2.2.3 Multiple scatterers

As stated above, the electronic structure problem of many-atom systems can be re-
cast into solving the multiple scattering equations for an electron moving in an array
of potentials and being subjected to repeated scattering events at these individual
potentials. The most simple ansatz for the geometry of the potential is the so-called
muffin-tin approximation (MTA) that goes back to work of Slater [190]. In this case
the potentials are non-overlapping and spherically symmetric, separated by a region
of constant potential which is taken as the energy reference (muffin-tin zero). The
radii of the atomic spheres are usually chosen to minimise this interstitial region,
since the description of the electronic structure therein by free-electron solutions is
certainly not accurate.

The atomic sphere approximation (ASA) [191] goes one step further by allowing for
overlapping spheres and demanding that the sum of their volumina corresponds to
the volume of the unit cell. This way the interstitial region is eliminated, leading in
general to a better description of the electronic structure. For rather open crystal
structures the introduction of so-called empty spheres, i.e., atomic cells without a
nuclear potential, often is beneficial. This way the interstitial regime is in principle
enlarged, but treated as a spherically symmetric problem like regular atomic cells,
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and the intersection of the atomic spheres is at the same time reduced. This last
point touches a somewhat delicate issue of the ASA, namely that multiple scattering
theory is formally based on the assumption that the scattering events are clearly
separated in time and space, i.e., the interaction with one potential has to be fin-
ished before the electron enters the region of another. Hence, the overlap volume
should be kept as small as possible. In spite of this caveat, the ASA has proven
extremely successful in particular for the treatment of metallic systems due to its
relative simplicity and simultaneous remarkable accuracy. Since the present work
deals almost exclusively with transition metals, their compounds and alloys, the
ASA has been employed throughout.

An alternative to the ASA, to be mentioned here for the sake of completeness,
is the so-called full potential ansatz using a Wigner-Seitz construction or Voronoi
tessellation resulting in space-filling polyhedra centred at the atomic sites. Formally,
such a Voronoi polyhedron or Wigner-Seitz cell V n

WS centred at n can be expressed
via a three-dimensional Heaviside step function

Θn(r) =

{
1 for r ∈ V n

WS

0 for r /∈ V n
WS

(2.97)

=
∞∑

`

+∑̀

m=−`
f`m(r)Y`m(r̂) , (2.98)

using real spherical harmonics Y`m(r̂) and the so-called shape functions f`m(r). The
latter have to obey the point group symmetry of the unit cell with the additional
constraint

∑

n

∫
d3rΘn(r) =

∑

n

V n
WS = VUC , (2.99)

i.e., the sum of all Wigner-Seitz cells V n
WS has to reproduce the volume of the unit

cell VUC. The full potential (FP) approach to the division of space certainly is most
accurate and formally rigorous, yet also technically and computationally demanding.
Since most of the systems treated in the present thesis are closed packed and metallic
bulk materials, the ASA has been employed assuming the deviations to be of minor
importance for the general trends observed.
The decomposition of space via the muffin-tin, ASA, or FP scheme implies a corre-
sponding decomposition of the potential according to

V (r) =
∑

i

vi(r −Ri) ≡
∑

i

vi(ri) (2.100)

or V̂ =
∑

i

vi . (2.101)

In the last equation an operator notation has been used that simplifies the subse-
quent manipulations for the transition operator T̂ of the total system. Omitting
energy arguments from now on, one has from Eq. (2.71) and Eq. (2.101)

T̂ = V̂ + V̂ Ĝ0V̂ + V̂ Ĝ0V̂ Ĝ0V̂ + . . .

=
∑
i

vi +
∑
i,j

viĜ
0vj +

∑
i,j,k

viĜ
0vjĜ

0vk + . . .

=
∑
i

T̂i . (2.102)
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with the auxiliary operators

T̂i = viĜ
0
∑

j

T̂j . (2.103)

Introducing the single-site transition operator

t̂i = v̂i + v̂iĜ
0t̂i , (2.104)

that is related to T̂i via
T̂i = t̂i + t̂iĜ

0
∑

j 6=i
T̂j , (2.105)

Eq. (2.102) can be transformed into a Born series in terms of tiG
0

T̂ =
∑
i

t̂i +
∑
j 6=i

t̂iĜ0t̂j

+
∑
j 6=i

∑
k 6=j

t̂iĜ
0t̂jĜ

0t̂k + . . .

=
∑
i,j

τ̂ij . (2.106)

In the last line the so-called scattering path operator τij [192] has been introduced
that accounts for all scattering events on an arbitrary path connecting sites i and
j. For this operator one has the defining equation of motion

τ̂ij = t̂iδij + t̂iĜ
0
∑

k 6=i
τ̂kj

= t̂iδij +
∑

k 6=j
τ̂ikĜ

0t̂j . (2.107)

For practical applications a suitable set of basis functions has to be chosen for the
real space representation of the operators t̂i, Ĝ

0, and τ̂ij. Moreover, this expansion
will always have to be truncated at some point, otherwise one would have to deal
with matrices of infinite dimensions when dealing with real solids. From Eq. (2.107)
one obtains this way

τ = t+ tG0 τ

=
(
t−1 −G0

)−1
, (2.108)

where the double underline stands for matrices in the site index i and the combined
angular momentum index of the chosen representation. This is the fundamental
equation of multiple scattering theory since it gives the scattering path operators
τ ij connecting sites i and j in terms of the t-matrix ti representing the scattering
properties of the individual atoms or potential wells, and the so-called structure con-
stants G0

ij containing information on the geometric arrangements of the scatterers,
via

τ ij =
[(
t−1 −G0

)−1
]
ij
. (2.109)

Having solved the multiple scattering problem the real space representation of the
Green function G(r, r′, E) can now be given in terms of the scattering path op-
erator. For the non-relativistic case these steps have been described in detail by
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Faulkner and Stocks [189]. For the relativistic case the derivation runs completely
analogously [180], and one is led to

G(ri, r
′
j, E) =

∑

ΛΛ′

ZΛ(ri, E) τ ijΛΛ′(E)Z×Λ′(r
′
j, E)

−δij
∑

Λ

[
ZΛ(r, E) J×Λ (r′, E) θ(r′ − r)

+JΛ(r, E)Z×Λ (r′, E) θ(r − r′)
]
. (2.110)

Here ZΛ(r, z) and JΛ(r, z) are the regular and irregular single-site scattering so-
lutions to the radial Dirac equation as defined in Eqs. (2.92) and (2.93), where ×
denotes left-hand-side solutions.
The elements of the scattering path operator matrix, τ ij

ΛΛ′
(E), can formally (for

finite systems also in practice) be obtained by inversion of the equation of motion
Eq. (2.107)

τ ij
ΛΛ′

(E) =
{[
t−1(E)−G0(E)

]−1

ij

}

ΛΛ′
. (2.111)

For three-dimensional periodic, i.e., infinite systems a proper solution to the problem
can be obtained via lattice Fourier transformation leading to

τ ij
ΛΛ′

(E) =
1

ΩBZ

∫

ΩBZ

d3k [t−1(E)−G0(k, E)]−1

ΛΛ′
eik(Ri−Rj) , (2.112)

as an integral over the first Brillouin zone (BZ). Here G0(k, z) is the Fourier trans-
form of the real space free-electron Green function. The computational effort for
the integration can be considerably reduced by use of the point group symmetry of
the lattice allowing restriction to the irreducible part of the BZ.

Equations (2.111) and (2.112) are central to the Korringa-Kohn-Rostoker Green
function method, connecting the scattering properties of the system under investiga-
tion, expressed in terms of the single-site t-matrix, with the geometric arrangement
of the scatterers, defined via the structure constants G0ij

LL′(z) or structural Green
function matrix gij(z). The corresponding infinite sum over lattice vectors

G0(k, E) =
1

N

∑

i,j

G0ij(E)eik(Ri−Rj) (2.113)

to get the Fourier transformed structure constants is in practice evaluated by split-
ting into separate sums of real and reciprocal lattice vectors. This method, named
Ewald summation [193] after its discoverer who developed it for calculating the
electrostatic or Madelung potential in ionic crystals, considerably speeds up conver-
gence.

2.2.4 Calculating ground-state properties

The electron density can now be obtained from the single-particle Green function
as given by Eq. (2.110) via integration over energy up to the Fermi energy EF,

n(r) = − 1

π
ImTr

EF∫

−∞

dz G(r, r, z) , (2.114)
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where the trace refers to the 4×4 matrix structure of the relativistic Green function.
Here only the Green function for coinciding position arguments is required and
accordingly only the diagonal elements of the scattering path operator of Eq. (2.111)
have to be computed. Since G(r, r′, z) is analytic on the whole complex plane –
emphasised by writing z for the energy argument in Eq. (2.114) – except for the
real axis, this integration can in practice be performed on a complex path. Due to
the broadening of the structure of the integrand with increasing imaginary part of
the complex energy z = E + iη, the computational effort is reduced considerably.
The exact form of the path can be chosen according to specific needs, for the results
presented herein a semi-circular contour has been used. Details on computational
parameters can be found in Appendix A.7.

In practice, the energy integration is not starting from −∞, but from an energy be-
low the bottom of the valence band. Hence, the treatment of core states (atomic-like)
and valence states is separated. Depending on the situation, that is, the structure
and in particular chemical composition of a system, it might be necessary to include
high-lying so-called semi-core states into the valence band in order to correctly de-
scribe these. An example for this are rare earth metals with their incompletely
localised f electrons.

Eq. (2.114) constitutes the basis for a self-consistent determination of the electronic
ground state within the framework of density functional theory described in Sec-
tion 2.1. It is obviously a special case of the more general expression for the expec-
tation value

〈A〉 = − 1

π
ImTr

EF∫

−∞

dzÂG(r, r, z) (2.115)

of a single-particle operator Â. The (spin) magnetisation for the local frame of
reference quantisation axis along z is correspondingly obtained by setting Â to the
z component of the spin operator βσ:18

m(r) =
1

π
ImTr

EF∫

−∞

dz βσzG(r, r, z) . (2.116)

The electronic density of states (DOS) is obtained in an analogous fashion by inte-
grating over the volume Ω of interest (atomic or unit cell),

n(E) = − 1

π
ImTr

∫

Ω

d3r G(r, r, E) . (2.117)

Spin- and orbital-magnetic moments can accordingly be computed via

µspin =
1

π
ImTr

EF∫

−∞

dz

∫

Ω

d3r βσzG(r, r, z) (2.118)

µorb =
1

π
ImTr

EF∫

−∞

dz

∫

Ω

d3r lzG(r, r, z) . (2.119)

18Note that magnetisation and spin expectation value are anti-parallel.
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The band structure E(k) of an ideal periodic solid can be derived from the KKR
matrix M(k, E) = t−1(E) − G0(k, E) of Eq. (2.112) as well. Those values of k
for which τ ij(k, E) = [M(k, E)−1]ij is diverging indicate the poles of the Green
function and therefore the real eigenvalues of the Hamiltonian that correspond to
the determinant condition

det |t(E)−1 −G0(k, E)| = 0 . (2.120)

This is to be met for a given vector k by varying the energy E to yield the band
structure E(k), as t(E) as well as G0(k, E) explicitly depend on the energy.

The Bloch spectral function (BSF) AB(E,k) also gives a relation between the energy
E and the reciprocal lattice vector k, but in addition, taking the former two as
arguments, it gives a proper measure for the density of states in a k-resolved way:

n(E) =
1

ΩBZ

∫

ΩBZ

d3kAB(E,k) . (2.121)

This makes it applicable also for the description of the band structure (or remnants
thereof) in disordered systems such as alloys. For an ordered system AB(E,k) is just
a sum of δ-functions for E = E(k), i.e., it follows the dispersion relation, while for a
disordered system it shows a broadening in energy due to the disorder in the system
(see below). In the formulation given by Faulkner and Stocks [189] the definition
for the BSF reads

AB(E,k) = − 1

π
ImG̃(k = k′, E) , (2.122)

where
G̃(k,k′, E) =

∑

n

G(k +Kn,k
′ +Kn, E) , (2.123)

is the Fourier transformed Green function of, e.g., Eq. (2.110) for k and k′ within
the first Brillouin zone and the reciprocal lattice vectors Ki reflect the periodicity
of the underlying lattice. Alternatively one may write in a compact way

AB(E,k) = lim
z→E+

− 1

π
ImTr

1

N

N∑

i,j

eik(Ri−Rj)
∫

Ω

d3r G(r +Ri, r
′ +Rj, z) . (2.124)

The corresponding approximation to the scattering path operator and thereby the
Green function made in this work for the treatment of disordered alloys that provides
the basis to apply Eqs. (2.122) or (2.124) to such systems will be introduced in the
following section.

2.2.5 Treatment of disorder

In order to describe the electronic structure of disordered systems within the frame-
work of multiple scattering theory access to the configurational average of the Green
function 〈G〉c is required. For a lattice of N sites occupied by, in the simplest case,
two different types of scatterers, A and B, with probabilities cA = 1−x and cB = x
in principle all possible arrangements of cA ·N atoms of type A and cB ·N atoms of
type B have to be taken into consideration. Since this becomes increasingly infea-
sible with growing number of sites and occupants, an effective medium approach is
called for.
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The straightforward concentration-weighted superposition of two or more different
atomic potentials on a site is often termed virtual crystal approximation (VCA) [194,
195] and has a very limited realm of applicability. An improved description of the
effective scattering property of a randomly occupied site can be obtained using
the average t-matrix approximation or ATA [196, 197]. This ad-hoc construction
however still can lead to unphysical artefacts such as spurious band gaps. These
shortcomings can be cured by demanding for the effective scatterers that on average
there should be no further scattering when adding atoms of type A or B to the
medium,

cAtA + cBtB = 0 , (2.125)

with the effective t matrices

tX = (vX − v) + (vX − v)G
0
. (2.126)

This requirement is the foundation of the coherent potential approximation (CPA)
introduced by Soven [198]. Its formulation in terms of the site-diagonal scattering
path operators reads as

cAτ
ii
A + cBτ

ii
B = τ iiCPA . (2.127)

The type-projected scattering path operators τ iiX occurring in this equation can be
obtained from the configurationally-averaged one,

τ iiCPA = tiCPAδij +
∑

i 6=k
tiCPAG

0τ jkCPA , (2.128)

by means of the so-called CPA projectors DX

τ iiX = DXτ
ii
CPA = τ iiCPA[1 + (t−1

X + t−1
CPA)τ iiCPA]−1 , (2.129)

which themselves depend on τ iiCPA. Hence, the so-called CPA-equations Eqs. (2.127)-
(2.129) have to be solved for the effective single-site t-matrix tCPA and then τCPA
self-consistently by iteration.

The CPA provides a formally rigorous, very efficient and sufficiently accurate ac-
cess to the scattering properties of statistically randomly disordered systems such
as alloys. In particular it compares tremendously favourable to the use of super
cells concerning computational effort. However, as a mean-field theory it can nei-
ther directly account for changes to the local coordination geometry upon chemical
substitution, nor does it allow for local ordering effects. For the former one has
to recourse to either self-consistent structural relaxation based on the average po-
tential or use (super cell) structures obtained for specific configurations otherwise.
The effect of short-range order, on the other hand, is incorporated in the non-local
coherent potential approximation (NL-CPA) [199], that shall not be discussed here.
The concept of an effective medium approach to disorder based on a suitable aver-
aging of the scattering properties of the individual components can be extended to
thermally-induced disorder as well. In Refs. 200–202 a scheme called alloy analogy
model (AAM) has been introduced, that treats uncorrelated atomic displacements
and/or rotated spin moments using the configuration-averaging techniques of the
CPA to describe the influence of lattice vibrations and spin fluctuations on the
electronic structure. From the corresponding Green functions one can subsequently
obtain corresponding finite-temperature values for, in principle, any observable. In
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Chapter 3 a few selected results using the AAM will be discussed, in particular
concerning its application to thermoelectric (Section 3.1) and spincaloritronic (Sec-
tion 3.2) response coefficients and the limits of its range of applicability. Spintronic
and galvanomagnetic properties at finite temperatures are the subject of Section 3.6.

As all kinds of electronic response properties, regardless of stimulus and transported
quantity, are dependent on the type and concentration of scatterers present, a reli-
able description of disorder-induced scattering as provided by the CPA or the AAM
is a mandatory prerequisite for the description of transport in realistic materials.
Accordingly the above considerations will also play a role in parts of the following
section.
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2.3 Linear response theory

This work is mainly concerned with the response of solid state systems to pertur-
bations in the form of gradients of the electrochemical potential, defined as the
sum of the chemical potential µc and q = −|e| times the electric potential φ,
∇µ = ∇(µc + qφ) = ∇µc + eE, of the temperature, ∇T , and of possible spin
accumulations, represented by the fictitious field F s [203, 204]. In the linear re-
sponse regime, the resulting current densities of electronic charge, heat, and spin,
jc, jq, and J s, respectively, the fluxes or flows in the language of irreversible ther-
modynamics [205–210], are assumed to be linearly dependent on the aforementioned
perturbations, also termed generalised forces or affinities. This assumption is usu-
ally well justified for a low magnitude of the perturbation. The relationships between
these causes and effects can be conveniently expressed by a matrix of response ten-
sors,19



jc

jq

J s


 =



Lcc Lcq Lcs

Lqc Lqq Lqs

Lsc Lsq L̃ss






−∇µ
−∇T/T
F s


 , (2.130)

where the quantities LAB, as well as J s and F s are second rank tensors, usually
expressed w.r.t. the Cartesian coordinates x, y, z indexed by {µ, ν}. The sub-tensors

LAB are of rank three and L̃ss is a fourth rank tensor. Here the spin quantisation
axis will be indexed by ξ and only second-rank sub-tensors diagonal w.r.t. this will
be considered herein. The superscripts A,B ∈ {c, q, s} encode the nature of the re-
spective fluxes and forces whose correlation is expressed by these kinetic coefficients,
namely electrical, thermal or spin-related phenomena.

Writing Eq. (2.130) without spatial and temporal arguments implies a restriction to
a stationary situation with the various quantities representing averages over space
and time. In other words, the linear response coefficients LABµν are assumed to be
local in both space and time, i.e., the generalised flux J(r, t) depends only on the
value of the generalised force X(r, t) at the space-time position (r, t) [52, 205]. For
a translationally invariant solid that is assumed here, the perturbations and induced
current densities are to be seen as the average over the unit cell. The same holds
true for the response tensors connecting them. The symmetry and magnitude of
these quantities are the central topic of the present thesis.

Assuming the chemical potential to be constant,∇µc = 0, certainly justified for bulk
systems in the linear response regime, the gradient of the electrochemical potential
∇µ is reduced to that of the electric potential, the electric field E. If no other
driving forces are present and the only response of interest is the electric current
density jc, Eq. (2.130) is equivalent to Ohm’s law,

jc = σE or E = ρjc , (2.131)

with the conductivity or resistivity tensors, σ and ρ, respectively. Their explicit
shape is determined by the symmetry of the system (see Sections 2.3.4 and 3.3).

19That is sometimes called Onsager matrix, see, e.g., Ref. 26.
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Going beyond this textbook example, the main focus of this work is to describe
linear response phenomena connected with the driving forces electric field E, tem-
perature gradient ∇T , and the spin field F s, and the resulting electric, heat, and
spin current densities jc, jq, and J s, respectively. The corresponding effects are
usually classified as galvanic/electric when connected to E and thermal or using
the prefix thermo when related to ∇T . If additional magnetic fields B, external
or internal (as for spontaneously magnetised materials) are present,20 effects due
this anisotropy are addressed with either a prefix magneto or the suffix magnetic.
The names used for two of the main classes of phenomena that will be discussed
in the following illustrate this terminology: galvanomagnetic phenomena are for
example the anisotropic magnetoresistance [69, 70] (AMR) or the anomalous Hall
effect [71, 73–75], thermomagnetoelectric or thermogalvanomagnetic effects such as
the anisotropic magneto-Seebeck effect [87, 211, 212] or the anomalous Nernst ef-
fect [85, 90, 213–215] are their direct thermal analogues. Spin-related phenomena
are usually termed spintronic when electric fields are the driving force and spingal-
vanic if they are the response, spincaloritronic effects finally encompass a wide range
of ∇T -related phenomena (see Chapter 1). Unfortunately, the terminology is far
from uniform throughout the literature though.

The investigation of transport phenomena will be limited to electrons or holes as
carriers of charge, heat, and spin(-polarisation) in the present work. Phonons and
magnons will merely be considered as additional sources of elastic scattering. Fur-
thermore, as stated above, we restrict ourselves to stationary situations, i.e., only
time-independent perturbations will be considered. Finally, it should be stressed
that the application of linear response theory is of course not limited to the cases in-
troduced above, besides the already mentioned external magnetic fields, also optical
or pressure fields would be other common perturbations of interest, while induced
magnetisation, magnetic torque, and light absorption are further responses.

2.3.1 Kubo’s formalism

Kubo is the name usually associated with the correlation functions used to describe
linear response phenomena. While Green [216, 217] was the first to derive a cor-
responding expression for transport in liquids21 it was Kubo [219, 220] who first
treated electrical conductivity in solids using the very general linear response for-
malism outlined below.

The expectation value of an arbitrary operator Â in terms of the density matrix of
a system in thermodynamic equilibrium,

ρ0 =
e−βĤ0

Tr(e−βĤ0)
, (2.132)

with β = 1/(kBT ) and Ĥ0 the Hamiltonian, is given by

〈Â〉 = Tr(ρ0Â) . (2.133)

20They are however not considered as driving force or response here, i.e., no electromagnetic or mag-
netoelectric effects will be discussed. Also the Shubnikov-de Haas effect, which denotes oscillations
of the resistivity as a function of the strength of an external magnetic field, and related phenomena
will not be considered here.

21Also Mori [218] should be at least mentioned here.



34 2.3. Linear response theory

If a time-dependent perturbation Ĥ1(t) is applied, the expectation value for the
density matrix ρ(t) is itself time-dependent:

〈Â〉t = Tr(ρ(t)Â) . (2.134)

The von Neumann equation describes the time-evolution of the density matrix,

i~
∂ρI(t)

∂t
= [Ĥ1,I(t), ρI(t)] , (2.135)

where both the perturbation and the density matrix have been transformed from
the Schrödinger to the interaction picture indicated by the index I, via

XI(t) = eiĤ0t/~X(t)e−iĤ0t/~ , (2.136)

which allows eliminating Ĥ0 in the commutator. Transforming back to the Schrödinger
picture and integrating over time leads to

ρ(t) = ρ0 −
i

~

t∫

−∞

dt′e−iĤ0(t−t′)/~[Ĥ1(t′), ρ(t′)]eiĤ0(t−t′)/~ , (2.137)

where ρ(t′ = −∞) = ρ0 represents the unperturbed system and ρ(t) obviously
depends on ρ(t′) at an earlier time t′ < t. For small Ĥ1 it is justified to keep only
the first term linear in Ĥ1 when inserting the r.h.s. repeatedly into itself,

ρ(t) ≈ ρ̃(t) = ρ0 −
i

~

t∫

−∞

dt′e−iĤ0(t−t′)/~[Ĥ1(t′), ρ0]eiĤ0(t−t′)/~

= ρ0 −
i

~

t∫

−∞

dt′e−iĤ0t/~[Ĥ1,I(t
′), ρ0]eiĤ0t/~ . (2.138)

This leads for the expectation value in Eq. (2.134) to an expression that gives the re-
sponse in an arbitrary operator only in terms of the commutator of the perturbation
and the equilibrium density matrix:

〈Â〉t − Tr(ρ0Â) = − i
~

Tr




t∫

−∞

dt′e−iĤ0t/~[Ĥ1,I(t
′), ρ0]eiĤ0t/~Â


 . (2.139)

Or equivalently that of the operators representing perturbation and response,

〈Â〉t − 〈Â〉 = − i
~

t∫

−∞

dt′
〈

[Ĥ1,I(t
′), Â(t)]

〉

=
i

~

∞∫

−∞

dt′θ(t− t′)
〈

[Ĥ1,I(t
′), ÂI(t)]

〉
, (2.140)

The expectation value in equilibrium, 〈Â〉 = Tr(ρ0Â), furthermore vanishes if there
is no response in absence of Ĥ1.
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In the following we are primarily interested in the response to an electric field

E(t) = E0e
−i(ω+iδ)t , (2.141)

where the term iδ with δ → 0+ ensures that the perturbation vanishes for t→ −∞.
The coupling to the system is described by the interaction

Ĥ1(t) = −P̂E(t) , (2.142)

where

P̂ =
n∑

i=1

qiri (2.143)

is the electric dipole operator. As will be demonstrated below, restricting for the
moment the form of Ĥ1(t) to Eq. (2.142) does not exclude the discussion of the
response of a system to a temperature gradient.

The operator Â in Eq. (2.139) may represent any observable of interest. In the
case of charge transport as expressed in Eq. (2.131) one has for example Â = ĵ,
where ĵ is the electric current density operator with the conductivity tensor as the
corresponding response tensor. Another important example is spin transport with
the corresponding spin current density operator Ĵ that is obviously a second rank
tensor operator. The explicit form of Ĵ has been controversially discussed in the
literature [221–224]. It has been stressed in particular that a simple combination of
the Pauli spin operator σ̂ with the electric current density operator does not fulfil
an associated continuity equation. Here we use the approach suggested by Vernes
et al. [222] that focuses on the spin polarisation with the corresponding relativistic
spin-polarisation current density operator [221–224]

Ĵ ξ =

(
βΣξ −

γ5Πξ

mc

)
ecα , (2.144)

with the usual definition of the Dirac matrices (see Section 2.2.2), the kinetic mo-
mentum Π = (p̂+e/cA)I4, the canonical momentum p̂, and the vector potential A.
Σξ is the 4× 4 matrix resulting from the outer product of the 2× 2 Pauli matrices
σξ and I2, where ξ signifies the direction of polarisation of the spin current.

Apart from the two possibilities for the operator Â just mentioned in particular
two other responses to an electric field have been studied within this thesis. With
Â = T̂ the magnetic torque operator one gets access to the so-called spin-orbit
torque, while Â = m̂ for the spin magnetisation allows discussion of the Edelstein
or inverse spin-galvanic effect. Both phenomena will be the subject of Section 3.5.
The shape of the tensors arising from, in principle, arbitrary combinations of op-
erators for perturbation and response will be the subject of Section 2.3.4. In the
following we will replace Â by Ĵ without loss of generality.

The next steps to proceed from Eq. (2.139), see, e.g., Ref. 225, lead to the so-called
Kubo equation

σµν = V

∫ (kBT )−1

0

dλ

∫ ∞

0

dtTr
(
ρ0ĵν Ĵµ,I(t+ i~λ)

)
ei(ω+iδ)t , (2.145)

that gives the response function, here a conductivity tensor element, in terms of
an operator-operator correlation function with Â = Ĵ and B̂ = ĵ representing the
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perturbation. V is the volume of the system and λ corresponds to a complex time
variable [226].

Restricting to the static case (ω = 0) and adopting the independent particle picture
one arrives at

σµν =
1

V

(kBT )−1∫

0

dλ

∞∫

0

dt
∑

n,m

〈
e−λ(En−Em) f(Em) [1− f(En)] eit/[~(En−Em+i~δ)]

〈m | ĵν |n 〉〈n | Ĵµ |m 〉
〉

c

, (2.146)

where f(E) =
(
e(E−µc)/(kBT ) + 1

)−1
is the Fermi-Dirac distribution function and µc

the chemical potential. The angular brackets imply a configurational average over all
possible combinations of occupation of alloy sites where perturbation and response
are acting. Evaluation of the integrals w.r.t. λ and t leads to the expression

σµν =
i~
V

∑

n,m

〈
f(Em)− f(En)

(En − Em)(En − Em + i~δ)
〈m | ĵν |n 〉〈n | Ĵµ |m 〉

〉

c

. (2.147)

Making use of the definition of the Green function operator Ĝ±(E) = (E−Ĥ±iε)−1

one finally arrives at the Kubo-Bastin formula [227]

σµν =
i~
V

∫ ∞

−∞
dE f(E) Tr

〈
Ĵµ

dG+(E)

dE
ĵν δ(E − Ĥ)

− Ĵµ δ(E − Ĥ) ĵν
dG−(E)

dE

〉

c

. (2.148)

For practical applications the form (omitting the energy argument of G±(E) for
simplicity)

σµν = σIµν + σIIµν (2.149)

σIµν = − ~
4πV

∫ ∞

−∞
dE

df(E)

dE
Tr
〈
Ĵµ (G+ −G−) ĵν G

− − ĴµG+ ĵν (G+ −G−)
〉
c

(2.150)

σIIµν =
~

4πV

∫ ∞

−∞
dE f(E) Tr

〈
ĴµG

+ ĵν
dG+

dE
− Ĵµ

dG+

dE
ĵν G

+

−ĴµG− ĵν
dG−

dE
+ Ĵµ

dG−

dE
ĵν G

−
〉

c

(2.151)

of the Kubo-Bastin formula is most convenient. It is obtained, following Crépieux
and Bruno [228], by splitting the integrand of Eq. (2.148) in two parts and doing
a partial integration on one half. The δ functions, that have been replaced by
differences of retarded and advanced Green functions, of course cause numerical
problems when integrating, but this can be facilitated by going into the complex
energy plane.22 Nevertheless, Eq. (2.149) implies that in the most general case one
has contributions to transport not only from electrons in the vicinity of the Fermi
level (Fermi surface contribution) but also from all other occupied states (Fermi sea

22Details on the implementation can be found in Ref. 229.
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contribution). For the case that the perturbation and the observable are represented
by the same operator, as for the electrical conductivity, one can simplify Eq. (2.149)
for the athermal limit to the so-called Kubo-Středa equation [230]

σµν =
~

4πV
Tr〈ĵµ(G+ −G−)ĵνG

− − ĵµG+ĵν(G
+ −G−)〉c

+
e

4πiV
Tr〈(G+ −G−)(r̂µĵν − r̂ν ĵµ)〉c , (2.152)

where Ĵ has been replaced by ĵ. Here only electrons at the Fermi surface are
contributing to the transport, making evaluation of σµν much simpler. Restricting
finally to the symmetric part of the electrical conductivity tensor one arrives at the
Kubo-Greenwood equation [231]:

σµν =
i~

2πV
Tr〈ĵµImG+ĵνImG

+〉c . (2.153)

Applications of Eqs. (2.148), (2.152), and (2.153) using multiple scattering theory
started with the work of Butler [232]. This author worked out in particular an im-
plementation for disordered alloys within the framework of the CPA. His approach
led to a clear prescription to deal with the so-called vertex corrections that arise
from an incomplete configurational average over the product of two Green functions.
These play a central role for many response functions of magnetic as well as non-
magnetic solids, in particular in the case of anti-symmetric tensor elements. After
the non-relativistic implementation of the Kubo-Greenwood equation by Butler and
co-workers, Banhart worked out its fully relativistic counterpart for non-magnetic
solids [233, 234]. This was followed by a corresponding implementation for magnetic
systems by Banhart and Ebert [235]. The full conductivity tensor on the basis of
the Kubo-Středa equation was calculated by Lowitzer et al. [236], while the Kubo-
Bastin equation was finally implemented by Ködderitzsch et al. [237]. Similar work
was done on the basis of the LMTO method by Turek and co-workers [238, 239].

As this thesis is focusing to a great extent on linear responses to a thermal gradient,
the question of how such phenomena can be described within the framework just
outlined arises naturally. Luttinger [240] for example points out, that this is not as
straightforward as in the electrical case since there is no Hamiltonian that describes
a gradient of the temperature – it is a statistical property of the system. To get
access to the thermal conductivity this author introduces a gravitational field as
the source for energy and heat currents, and then uses an analogue of the Einstein
relation [241] to connect the obtained diffusion coefficient to the thermal conduc-
tivity. Deo and Behera [242] shortly afterwards gave a corresponding expression in
the language of Green functions. In the present work, however, phenomena induced
by a temperature gradient will be exclusively dealt with on the basis of the Mott
formula [243] and its generalisations [244, 245]. As will be outlined in Sections 2.3.2
and 2.3.3, this way all23 thermoelectric (spincaloritronic) and thermal transport
coefficients can be, under certain assumptions, obtained from the electrical (spin)
conductivity.

The symmetry and interrelation of response tensors whose elements can be expressed
by a Kubo formula as in Eq. (2.145) with, in principle, arbitrary pairs (or even
triples) of operators will be the subject of Section 2.3.4.

23This is slightly exaggerated, as will be discussed in Section 2.3.4.
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2.3.2 Thermo(magneto)electric transport

The history of thermoelectrics can be said to have begun almost two centuries
ago with the experiments of Seebeck [86, 246]. As the title Magnetische Polari-
sation der Metalle und Erze durch Temperatur-Differenz (Magnetic Polarisation of
Metals and Ores by a Temperature Difference) clearly indicates, he interpreted his
results as a thermomagnetic effect, as the observable was the magnetic field in-
duced by the electric current that arose from the temperature difference applied
to his metallic samples.24 The inverse phenomenon, a temperature difference in-
duced by an applied electric field, was shortly afterwards reported by Peltier [88].
William Thomson (Lord Kelvin) predicted and observed an effect closely related to
the two just mentioned, the Thomson effect describing the reversible (i.e., not Joule)
heating of a conductor by a temperature gradient [247]. In 1953, Wiedemann and
Franz [248] reported that die Metalle für Elektricität und Wärme eine nahezu gle-
iche Leitungsfähigkeit besitzen (metals have almost the same electrical and thermal
conductivity), which is nowadays known as the Wiedemann-Franz law.

The first observation of a truly thermomagnetoelectric effect, in the sense of being
inherently dependent on either an external magnetic field or the internal magnetisa-
tion, was by von Ettingshausen and Nernst [85]. They observed a transversal, i.e.,
perpendicular to the applied temperature difference, thermomagnetic current in a
Bi sample when a magnetic field was applied perpendicular to both. This effect is
commonly termed Nernst effect or first (von-)Ettingshausen-Nernst effect25 and can
be explained in terms of a Lorentz force that laterally deflects the carriers moving in
parallel to the electromotive force generated by the Seebeck effect. If the role of the
externally applied magnetic field is taken over by the internal magnetisation of a,
say, ferromagnet, the term anomalous Nernst effect (ANE) will be employed herein.
The first clear observation of the ANE can be attributed to Ky [249]. The inverse
phenomenon, the occurrence of a transversal heat current in response to an electric
field is called either Ettingshausen or second (von-)Ettingshausen-Nernst effect, in
reference to (the first of) the two discoverers of the direct effect, who however did not
make a corresponding observation themselves. Most likely Hall and Campbell [82]
can be credited with its discovery.

Von Ettingshausen and Nernst did however also observe a longitudinal thermoelec-
tric effect that depended on the strength but apparently not the direction of the
magnetic field. This effect, sometimes called longitudinal Nernst-Ettingshausen ef-
fect26, that will be referred to in this thesis as anisotropy of the Seebeck effect (ASE),
unfortunately has been given various names throughout the literature. The one most
often used by experimentalists is probably planar Nernst effect (PNE) [87, 251], in
reference to the planar Hall effect that is itself an unnecessary renaming of the
anisotropic magnetoresistance, of which the ASE/PNE is the thermoelectric ana-
logue. It might have been first observed by Hall and Campbell [82], who express it
as longitudinal thermomagnetic potential-difference and unsuccessfully tried to also

24One should not forget that at this time electromagnetism was in statu nascendi.
25Author names appear often reversed.
26See for example the Ph.D. thesis of Demars [250], which contains an instructive overview over

thermoelectric, thermomagnetic (thermoelectric and thermal effects in magnetic materials or in
presence of an applied magnetic field), and galvanomagnetic effects. Another concise overview can
be found in the book by Callen [210].
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measure its reciprocal longitudinal electromagnetic temperature-difference. In anal-
ogy to the A(M)SE this just recently confirmed effect has been called anisotropic
magneto-Peltier effect (AMPE) [89]. To avoid confusion with the reciprocal of the
magneto-Seebeck effect (see below), the prefix magneto will be omitted herein.

In analogy to the AMR-like ASE there are of course thermoelectric versions of the
GMR effect and related phenomena in 2D systems composed of alternating magnetic
and non-magnetic layers, possibly including insulating tunnel barriers (magnetic
tunnel junctions, MTJ). These effects, commonly termed (anisotropic) magneto-
thermo(electric)power or -Seebeck effect ((A)MTEP) [98, 252], that is related to
the MTGV observed by Gravier et al. [253], or tunnelling (anisotropic) magneto-
Seebeck effect (TMS [18], TAMS [99]), will however, as well as their reciprocals like
the (tunnelling) magneto-Peltier effect [101, 254] or a yet to be discovered anisotropic
magneto-Peltier effect, not be discussed further here.

To complete this phenomenological overview one has to also mention the class
of thermomagnetic effects that encompass in particular the (Righi-)Leduc effect
(RLE) [81] that is rightfully often referred to as thermal Hall effect, and the Maggi-
Righi-Leduc effect (MRLE), correspondingly the thermal AMR, which is also some-
times called planar Righi-Leduc effect [255]. Again it might have been observed for
the first time already by Hall and Campbell [82], as a longitudinal thermomagnetic
temperature-difference, although their experimental results were not fully conclusive.
Literature on this subject is in general rather scarce. For an overview over these and
the aforementioned thermomagnetoelectric effects see, e.g., Ref. 250 or the recent
review by Boona et al. [25] which includes also spincaloritronic phenomena that will
be the subject of Section 2.3.3.

The theoretical treatment of thermoelectrics, although for example also Sommer-
feld [256] made an important contribution27, is inseparable from the name Mott.
His derivation of the eponymous Mott formula for the thermoelectric power [243]
will be reviewed in some detail in Section 2.3.2.2. It gives a connection between the
energy derivative of the electrical conductivity at the Fermi level and the electron
diffusion contribution to the TEP or Seebeck effect. Still nowadays, this is the most
popular approach to thermoelectrics due to its simplicity and considerably wide
range of applicability. More on the shortcomings and possible extensions or gener-
alisations of Mott’s expression will be presented below and towards the end of this
chapter (see Sections 2.3.2.3, 2.3.3, and 2.3.4). Similar expressions for transverse
thermomagnetoelectric (ANE and AEE) and thermal effects (RLE) were given by
Sondheimer [258].

A first derivation of the Wiedemann-Franz law was given in terms of the Boltzmann
transport theory by Kohler [259], who also made important contributions towards
an understanding of the role of defects and their interactions [260]. The so-called
Nordheim-Gorter rule [261] can be loosely termed a Matthiessen’s rule for the ther-
moelectric power, because of being based on it and because it allows expressing the
total TEP due to several scattering mechanisms as a combination of individual con-
tributions. Of course this is a rule based on several assumptions, the most important
of which is clearly the same as for Matthiessen’s rule: the impurity concentrations
have to be close to the dilute limit, for which these have accordingly been devised.
Another central work in the theory of thermally induced transport is that by Chester

27See also Ref. 257.
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and Thellung [244], who proved, on the basis of Kubo’s linear response theory and
using a wave-function formulation, the Wiedemann-Franz law to be valid for inde-
pendent electrons interacting with impurities and lattice vibrations, regardless of
the interaction strength. Jonson and Mahan [245] later confirmed their findings
using a Green function formulation and made corresponding statements also for the
Mott formula. As Ref. 245 served as an important basis for this work it will be re-
viewed in greater detail below (Sections 2.3.2.1 and 2.3.2.3). Only one aspect shall
be briefly highlighted here, namely the importance of the formulation chosen for
the heat current operator entering the Kubo formulae describing thermal processes.
This to some extent still open issue has already been tackled by Luttinger [240]
in his work on the thermal conductivity, invoking an analogy of the temperature
gradient with that of a gravitational field. This issue, briefly mentioned before, will
be picked up at a later time. In this context the interested reader is also referred to
a later work by Jonson and Mahan [262] and to references therein.

First actual calculations of thermoelectric coefficients in alloys using the coherent
potential approximation have been performed presumably by Levin et al. [263], the
first KKR-CPA work is that of Butler and Stocks [264], who used the Boltzmann
transport equation based on the band structure of disordered AgPd alloys repre-
sented by the Bloch spectral function. Among the first to employ Kubo’s linear
response formalism in this context, to be precise the Kubo-Greenwood equation
[Eq. (2.153)], were Banhart and Ebert [265].

The first-principles description of thermomagnetoelectric (and later on spincalor-
itronic) transport phenomena within the framework of the KKR-CPA, that is pre-
sented in this thesis starts from the phenomenological transport equations as sum-
marised in Eq. (2.130). This set of equations allows dealing simultaneously with the
response to gradients of the electrochemical potential µ = µc + qφ with the chem-
ical potential µc , the charge q (−|e| for electrons), and the electric potential φ, of
the temperature, ∇T , and of the spin-polarised chemical potential µs, represented
by F s. Neglecting spin transport for the moment, one may write for the induced
current densities of charge and heat:

jc = −Lcc∇µ−Lcq∇T/T (2.154)

jq = −Lqc∇µ−Lqq∇T/T . (2.155)

The various response functions occurring here may be expressed by the correspond-
ing conductivities according to the generalised Mott relations [243, 245, 266, 267]:

Lccµν(T ) = − 1

|e|

∫
dE σ(cc)

µν (E)
(
−∂f(E,T )

∂E

)
(2.156)

Lcqµν(T ) = − 1

|e|

∫
dE σ(cc)

µν (E)
(
−∂f(E,T )

∂E

)
(E − EF ) (2.157)

Lqqµν(T ) = − 1

|e|

∫
dE σ(cc)

µν (E)
(
−∂f(E,T )

∂E

)
(E − EF )2 . (2.158)

Here the superscripts c and q again denote the nature of response and perturba-
tion, charge- or heat-related. Note that for each heat current density involved in
the process an energy factor (E − EF) appears in the integrand. For the materials
and temperature ranges considered in this thesis, EF and µc can be assumed to be
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identical [268]. In the following the temperature argument of the response func-
tions will usually be omitted for brevity. The tensor Lqc describing the heat current
or temperature gradient in response to an electric current or field, related to the
reciprocals or time-reversed counterparts of the Seebeck and (anomalous) Nernst
effects, the Peltier and the (anomalous) Ettingshausen28 effect, respectively, is, in
part, accessible via its (Onsager) relation to Lcq (see Section 2.3.4).

Unfortunately there are numerous different formulations of phenomenological equa-
tions like Eqs. (2.154) and (2.155) and the corresponding response functions or
kinetic coefficients describing charge and heat transport used in the literature. The
next section gives an overview over the different approaches, providing relations
interconnecting the various notations.

2.3.2.1 Alternative formulations of kinetic coefficients

The transport of charge and heat in response to an electric field and/or a gradient
of the temperature as expressed by the spin-independent part of Eq. (2.130) (i.e.,
the first two rows without the third column of the Onsager matrix) has been dis-
cussed by many authors. In the following the most commonly used definitions for
response functions are reviewed. Their differences and, if present, shortcomings are
highlighted and conversion prescriptions to connect them are given. In order to in-
troduce the general concepts and terminology a short introduction into irreversible
thermodynamics is necessary.

Irreversible thermodynamics

The extension to irreversible processes by Onsager [205, 206] has been such a funda-
mental advancement of thermodynamics that his reciprocal relations are sometimes
referred to as its fourth law. They relate the flows which occur in a system to the
forces that are responsible in a very general manner under the assumption of micro-
scopic reversibility. Another seminal contribution to the field is the work of Callen
and Welton [269], whose fluctuation-dissipation theorem relates, on a statistical-
mechanical basis, the fluctuations of an equilibrium property of a system with a
parameter that characterises an irreversible process. Based on this, first and fore-
most Kubo [109, 219, 220] developed what is nowadays known as linear response
theory.

Following Callen [210] (see also Refs. 243, 270 and 208), we consider a closed system
consisting of two parts and an extensive parameter taking the values Xk and X ′k in
those subsystems, their sum Xk +X ′k = c being constant. The equilibrium values of
the two are then determined by the condition

Fk ≡
(
∂S◦

∂Xk

)

X◦k

=

(
∂(S + S ′)

∂Xk

)

X◦k

=
∂S

∂Xk

− ∂S ′

∂X ′k
= Fk − F ′k

!
= 0 , (2.159)

for the partial derivatives of the equilibrium entropy S◦. Accordingly if the difference
of the two intensive parameters Fk and F ′k is non-zero, an irreversible process will

28Or second Nernst-Ettingshausen effect, see Chapter 1.
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bring the system into equilibrium. This process is said to be driven by the generalised
force or affinity Fk. For example if Xk is the internal energy U then the affinity is

Fk =
∂S

∂U
− ∂S ′

∂U ′
=

1

T
− 1

T ′
(2.160)

and heat will flow from one subsystem to the other until the difference in inverse
temperature vanishes. In general such a flux is defined by the rate of change of the
extensive parameter,

Jk ≡
dXk

dt
. (2.161)

Fluxes and affinities are complementary or conjugated entities, one is defined by the
other, and their relationship determines the rates of irreversible processes.
A useful strategy to find the relevant affinities in a system is to consider the rate of
entropy production

Ṡ =
dS

dt
=
∑

k

∂S

∂Xk

dXk

dt
=
∑

k

FkJk , (2.162)

which is a sum over all fluxes multiplied by the associated affinities.
This approach is in particular also applicable to continuous systems out of equilib-
rium, where the local entropy S(X0, X1, ...) is assumed to have the same dependence
on the extensive parameters as in equilibrium. Then

dS =
∑

k

Fk dXk (2.163)

with the local intensive parameters Fk also taken to have the same functional de-
pendence on the extensive parameters as in equilibrium. This is in fact what al-
lows defining a continuously varying temperature in a sample, despite temperature
strictly being an equilibrium property.
Assuming now a Markovian system in the sense of local fluxes depending only on
local affinities present at the same time, one can expand the fluxes Jk in powers of
affinities,

Jk =
∑

j

LkjFj +
1

2!

∑

i

∑

j

LkjiFjFi + ... , (2.164)

where

Lkj =

(
∂Jk
∂Fj

)

0

(2.165)

and

Lkji =

(
∂2Jk

∂Fj∂Fi

)

0

(2.166)

are called first and second order kinetic coefficients. Both as well as of course all
higher orders are functions of the local intensive parameters, for example of an
external magnetic field H . Neglecting all other intensive parameters this functional
dependence obeys for example in non-magnetic systems the symmetry relation

Ljk(H) = Lkj(−H) (2.167)

for the linear effects, which is nothing but the famous Onsager reciprocal relation.
All phenomena of interest to this thesis can be assumed to depend linearly on the
perturbation, that is quadratic and higher order terms in Eq. (2.164) are negligible,
since the deviations from equilibrium are small when considering commonly applied
voltages and temperature gradients in transport experiments.
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Kubo et al. & Kleiner

The phenomenological electronic charge and heat transport equations in the notation
used by Kleiner [271] based on earlier work of Kubo et al. [109] read

j = S(1)(H) (E + T/e∇ζ) + S(2)(H)
1

T
∇T (2.168)

q = −S(3)(H) (E + T/e∇ζ)− S(4)(H)
1

T
∇T , (2.169)

with the elementary charge e = |e|, the external magnetic field H , and the tem-
perature T . The response currents or fluxes/flows in the language of irreversible
thermodynamics are the electric current density j and the heat current density q.
The first generalised force or affinity in Eqs. (2.168) and (2.169) is the combination
of an electric field E and the gradient of a reduced chemical potential ζ = ς/T , i.e.,
altogether the gradient of the electrochemical potential µ = ς − eφ (with φ the elec-
tric potential) divided by e, 1

e
∇µ. The second generalised force is the temperature

gradient ∇T divided by T , 1
T
∇T . The kinetic coefficients S(n) with n = 1...4 that

linearly relate fluxes and forces are tensors of rank two. Eqs. (2.168) and (2.169)
can be brought into a more convenient matrix form

(
j

q

)
=

(
S(1)(H) S(2)(H)

−S(3)(H) −S(4)(H)

)(
1
e
∇µ

1
T
∇T

)
. (2.170)

Kinetic coefficients or response functions such as the S(n) can be most generally
expressed by means of the Kubo formula

τBµAν (ω,H) =

∞∫

0

dt e−iωt
β∫

0

dλTrρ(H)AνBµ(t+ i~λ;H), (2.171)

where Bµ is a Cartesian component of the operator for the response observable
in the Heisenberg picture, Bµ(t;H) = eiH(H)t/~Bµe

−iH(H)t/~, and Aν one of the
perturbation operator (t = 0), ω is the frequency of the external electric field, H an
(optional) external magnetic field, t is the time, β = 1/(kBT ), λ is essentially the
complex time, and ρ(H) = e−βH(H)/Tre−βH(H) is the equilibrium density operator
of the canonical ensemble in the presence of H . The trace in Eq. (2.171) represents
the thermal average of the operator product w.r.t. the canonical distribution.
In the dc limit (ω = 0) and for {A,B} = {j, q}, one obtains

S(n)
µν (H) =

∞∫

0

dt

β∫

0

dλ〈AνBµ(t+ i~λ;H)〉 , (2.172)

where the angular brackets indicate the thermal average. S(1) is the response func-
tion tensor for the case A = B = j, which is nothing but the electrical conductivity
tensor σ, for A = q and B = j, S(2) is obviously related to the Seebeck effect, while
for A = j and B = q the coefficient S(3) describes the reciprocal Peltier effect, fi-
nally for the case A = B = q, S(4) is in essence the electronic thermal conductivity
tensor. Kubo et al. [109] try to make an explicit connection between the S(n) and
more familiar transport coefficients electrical resistivity ρ, the heat conductivity κ,
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the absolute thermoelectric power per unit temperature difference −S/e, and the
Peltier coefficient π. This is done by rewriting Eqs. (2.168) and (2.169) as

E = ρj − 1

e
S∇T − 1

e
∇ζ (2.173)

q = πj − κ∇T +
1

T
ζj, (2.174)

with

ρ = [S(1)]−1 (2.175)

S = (eρS(2) − ζ)/T (2.176)

π = −S(3)ρ− ζ/T (2.177)

κ = (S(4) − S(3)ρS(2))/T . (2.178)

Unfortunately, there appear to be two misprints in Ref. 109 (see appendix A.1), that
have been corrected here. Moreover, the chemical potential is usually assumed to be
constant and therefore in general does not appear explicitly in the coefficients. In
case of the Peltier coefficient this is an unnecessary complication, most likely meant
to obtain a similar structure as the reciprocal S. Presumably for these reasons
Kleiner [271] did not give similar explicit expressions.

The Onsager relations [205, 206], valid for the non-magnetic case (or only for the

symmetric part of the tensor in the magnetic case), can be expressed as S
(1)
µν (H) =

S
(1)
νµ (−H), S

(4)
µν (H) = S

(4)
νµ (−H), and S(2)(H) = (S(3)(−H))T . The first two are

termed Onsager relations of the first kind, while the last one, connecting time-
reversed phenomena, is of the second kind.29 Here it is a generalisation of the Kelvin
relation TS = π, where S is the thermoelectric or Seebeck coefficient (denoted α in
Ref. 271) and π the Peltier coefficient. At least at this stage the additional terms ζ/T
have to be dropped however. It should be noted that these relations are certainly
also valid in the ac case, i.e., for ω 6= 0. For the anti-symmetric part of S(1) in

a magnetic material a slightly modified relation holds, S
(1),a
µν (H) = −S(1),a

νµ (−H)
(see, e.g., Ref. 219). Furthermore relations for the full, that is symmetric and anti-
symmetric, optical conductivity tensor at finite frequency,

Reσµν(ω,H) = Reσµν(−ω,H) (2.179)

Imσµν(ω,H) = −Imσµν(−ω,H) = Imσνµ(ω,−H). (2.180)

have been given by Kubo [219, 220].

Jonson and Mahan

In the notation used by Jonson and Mahan [245, 262], which derives from Barnard’s
work [272] and that was adapted and extended to spincaloritronics by the present
author [266, 267], the thermoelectric equations read [245]

jα = L11
αβ [−(1/T )∇β(µ+ eV )] + L12

αβ ∇β(1/T )] (2.181)

jQ,α = L21
αβ [−(1/T )∇β(µ+ eV )] + L22

αβ ∇β(1/T )] (2.182)

29This will be discussed extensively in Section 2.3.4.
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with e = −|e| the electronic charge30, T the temperature, and no external mag-
netic field considered. The above-mentioned authors assume electrons interacting
only with static impurities and phonons treated in the adiabatic approximation.
Concerning the symmetry relations of the coefficients, this is however irrelevant.

The fluxes or response quantities in Eqs. (2.181) and (2.182) are the electrical31

current j and the thermal current jQ, the subscript α stands for the Cartesian
component. The misleading notation of vector symbol combined with a subscript,
that has not been taken over here, has no further consequences since all response
tensors are later on assumed to be isotropic. The conjugated generalised forces or
perturbations are the gradients of the sum of the chemical potential µ plus eV , where
V is the electrostatic potential, and of the inverse temperature (1/T ), respectively.
Again β signifies a Cartesian component of the gradients. The frequency-dependent
coefficients or response functions are most generally written as

Lij(iω) = − iT

(iω) dΩ

β∫

0

dτeiωτ 〈Tτji(τ)jj(0)〉 , (2.183)

with now i, j = 1, 2 indexing the type of response and perturbation, respectively,
according to Eqs. (2.181) and (2.182), the frequency ω, dimensionality d, volume
Ω, β = 1/kBT , and Tτ being the time-ordering operator for the complex time τ .
Furthermore, the Cartesian indices have been dropped as an isotropic material is
assumed from now on.

For independent electrons with scattering on static impurities and phonons treated
in the adiabatic approximation one obtains by analytical continuation for the ω → 0
limit

Lij =
T

e2

∞∫

−∞

dE(−∂nF

∂E
)Ei+j−2σ(E) , (2.184)

where nF is the Fermi distribution function.
For constant chemical potential one obtains this way from Eqs. (2.181) and (2.182)

L11 = T/e2σ (2.185)

L12 = −|e|T L11 S =
T 2

−|e|σS = L21 (2.186)

L22 = T 2K +
L12L21

L11
, (2.187)

where σ is the electrical conductivity, S the thermoelectric or Seebeck coefficient,
and K is the electronic contribution to the thermal conductivity. Furthermore the
Lorenz number (or rather function) is given by

L =
K

σT
=

1

e2T 2

(L11L22 − L12L21)

(L11)2
. (2.188)

30Assumption based on comparing Eq. (1) for the Mott formula in Ref. 245 to, e.g., Eq. (1) of
Domenicali [273], who refers to Mott and Jones [243] (see Section 2.3.2.2) for a corresponding
expression in terms of the resistivity with a positive prefactor, writing explicitly |e|.

31Actually the particle current, see below.
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Onsager relations as such are not discussed by Jonson and Mahan, who merely
state concerning the symmetry properties of the response functions that the tensors
{Lij}αβ are diagonal in αβ for isotropic systems and L12 = L21.

To make the connection to the conventions used by Kubo et al. and Kleiner (see
previous section) we first note that Eq. (2.181)) describes in fact the particle cur-
rent and not the electric current jel = −|e|j. With this, E = −∇V (V ↔ φ),
and ∇(1/T ) = − 1

T 2∇T , Eqs. (2.181) and (2.182) become (dropping the Cartesian
indices)

j =
−|e|
T

L11 E − 1

T 2
L12 ∇T (2.189)

jel =
e2

T
L11 E − −|e|

T 2
L12 ∇T (2.190)

jQ =
−|e|
T

L21 E − 1

T 2
L22 ∇T . (2.191)

Comparing these equations with Eqs. (2.168) and (2.169) leads to the following
connections between the two formulations for the kinetic coefficients:

e2

T
L11 = S1 = σ (2.192)

−|e|
T

L12 = S2 (2.193)

|e|
T
L21 = S3 (2.194)

1

T
L22 = S4. (2.195)

This correspondence implies a modified second kind of Onsager relation, L12 =
−(L21)T , in absence of an external magnetic field.

Girvin and Jonson

Based on the works of Luttinger [240] and Mahan [226], Girvin and Jonson [274] give
a fundamental phenomenological expression describing the non-equilibrium particle
current density in a system under the influence of temperature (T ) and [electric]
potential (φ) as

Ji = L11
ij (e/T )∂jφ+ L12

ij ∂j(1/T ) , (2.196)

with −e the electronic charge. Accordingly, they define the thermopower via

∂iφ = −Sij∂jT (2.197)

as32

Sij = (−1/eT )(L11)−1
ik L

12
kj . (2.198)

Obviously, the coefficient L12 occurring in Eq. (2.196) differs from the one used
by Jonson and Mahan [245] [see Eq. (2.186)] only in sign, reflecting the assumed
difference in the definition of e. The relation of L11

ij to the electrical conductivity is
given as L11

ij = (T/e2)σij, consistent with Eq. (2.185).

32There appears to be a misprint in Ref. 274, that gives Eq. (2.198) with (L11)−1ij instead of (L11)−1ik .
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For the special case of an ideal 2DEG in a high magnetic field along the z direction,
they give the following symmetry relations

L11
xx = L11

yy = 0 (2.199)

L11
xy = −L11

yx 6= 0 (2.200)

L12
xx = L12

yy = 0 (2.201)

L12
xy = −L12

yx 6= 0 , (2.202)

where the detailed expressions for the quantised Hall and Nernst conductivities
are omitted here. These relations are consistent with later works of the same au-
thors [275, 276].

Callen

In the works by Callen [207, 210] the particle and heat currents are expressed by
the equations

−J = L11
1

T
∇µ+ L12∇

1

T
(2.203)

Q = L21
1

T
∇µ+ L22∇

1

T
, (2.204)

with the electrochemical potential µ = µc + µe = µc + eφ. Here e = −|e| is the
electronic charge and φ the electrostatic potential. Callen furthermore states the
conventional Onsager relation of second kind:

L12(H) = L21(−H) . (2.205)

The relations of the kinetic coefficients in Eqs. (2.203) and (2.204) to the correspond-
ing experimentally accessible quantities are found by considering special situations.
For ∇µc = 0, i.e., ∇µ = ∇µe, where 1

e
∇µe is the electric field, and ∇T = 0 one

has

σ = −eJ/1

e
∇µ

= e2L11/T . (2.206)

For J = 0 one obtains in turn the electronic part of the thermal conductivity

κ ≡ −Q/∇T . (2.207)

Finally, the expression

∇µ =
L12

TL11

∇T (2.208)

leads to the Seebeck coefficient

S = − 1

eT

L12

L11

=
e

T 2
σ−1L12 . (2.209)

In relation to the previously introduced definitions of the kinetic coefficients by
Jonson and Mahan, we accordingly have the interrelations:

LCal
11 = L11

JM (2.210)

LCal
12 = L12

JM (2.211)

LCal
21 = −L21

JM (2.212)

LCal
22 = L22

JM . (2.213)
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Barnard

Barnard [272], citing de Groot [208], Mott and Jones [243] and Onsager [205, 206]
writes

J = −L11
1

T
∇µ̄− L12

1

T 2
∇T (2.214)

JQ = −L21
1

T
∇µ̄− L22

1

T 2
∇T , (2.215)

with µ̄ = µ− |e|V the electrochemical potential and the electric current I = −|e|J .
The relations of the kinetic coefficients to the experimental parameters σ, S, Π, and
κ are

σ =
e2L11

T
(2.216)

S = − 1

|e|T
L12

L11

(2.217)

Π = − 1

|e|
L21

L11

(2.218)

κ =
1

T 2

(
L22 −

L21L12

L11

)
(2.219)

With the usual Onsager reciprocal relation L12 = L21, Eqs. (2.217) and (2.218) give
of course the (second) Kelvin relation Π = ST . The connection to the previously
introduced formulations is

LBar
11 = LCal

11 = L11
JM =

T

e2
S(1) (2.220)

LBar
12 = −LCal

12 = −L12
JM =

T

|e|S
(2) (2.221)

LBar
21 = −LCal

21 = L21
JM =

T

|e|S
(3) (2.222)

LBar
22 = LCal

22 = L22
JM = TS(4) . (2.223)

Other contributions in the field

There is of course an abundance of articles, books (or chapters therein), and reviews
on the basics of thermoelectric effects in the literature, as for example by Domeni-
cali [273, 277–279], de Groot and Mazur [208, 209, 270], Ziman [280], Chester and
Thellung [244], Luttinger [240], Smrčka and Středa [281] , Vilenkin and Taylor [282],
Mahan [226], Tauber et al. [20], Wimmer et al. [266, 267, 283]33. Most of these
authors either build on or are derived from one of the works reviewed above. Un-
fortunately, often additional conventions are introduced, mistakes or misprints are
carried over or added, increasing the already chaotic situation in the literature. For
this reason we have reviewed only a few selected contributions to the field, that are
the most relevant for the basic formalism used in this work. Aspects connected with
spin transport will be considered in Section 2.3.3.

33In the beginning repeating the mistake of Jonson and Mahan [245], which was later corrected [283].



Chapter 2. Theory 49

2.3.2.2 The Mott formula

The following compilation summarises the relevant expressions and relations in
Chapters VII.15 (thermoelectric transport), VII.5 (electric transport), and VI.1
(heat capacity) of the book The Theory of the Properties of Metals and Alloys
by Mott and Jones [243] . Using Boltzmann transport theory, these authors write
the electric and heat current due to a temperature gradient dT/dx and an electric
field F as

j =
2e

~
1

8π3

∫
∂E

∂kx

f(k)dk (2.224)

Q =
2

~
1

8π3

∫
E
∂E

∂kx

f(k)dk , (2.225)

with e = −|e|, E the energy of the electronic state k, and f(k) the steady state
Fermi distribution function. The rate of change of f due to F and dT/dx is given
by

− df

dt
=
∂f0

∂kx

eF

~
+
∂f0

∂x

dx

dt
, (2.226)

with the equilibrium distribution function f0 = (e(E−ζ)/kBT + 1)−1, where ζ is here
the chemical potential, and dx/dt = ~−1∂E/∂kx the velocity along the x axis. Since

∂f0

∂x
= −∂f0

∂E

(
∂ζ

∂T
+

(E − ζ)

T

)
∂T

∂x
(2.227)

the rate of change of f becomes

df

dt
= −1

~
∂f0

∂E

∂E

∂kx

[
eF −

(
∂ζ

∂T
+

(E − ζ)

T

)
∂T

∂x

]
. (2.228)

As in standard Boltzmann transport theory, i.e., without the temperature gradient,
the rate of change of f due to the external stimulus is equated with that due to
scattering and accordingly a relaxation time τ(k) is introduced. Since the second
term in Eq. (2.228) connected to the temperature gradient is independent of k
one can write the displaced Fermi distribution function in complete analogy to the
“electric-only” case as34

f = f0 −
τ(k)

~
∂E

∂kx

∂f0

∂E

[
eF −

(
∂ζ

∂T
+

(E − ζ)

T

)
∂T

∂x

]
. (2.229)

The currents from Eqs. (2.224) and (2.225) now become

j

e
=

[
eF +

(
ζ

T
− ∂ζ

∂T

)
∂T

∂x

]
K0 −

1

T

∂T

∂x
K1 (2.230)

Q =

[
eF +

(
ζ

T
− ∂ζ

∂T

)
∂T

∂x

]
K1 −

1

T

∂T

∂x
K2 (2.231)

where the (kinetic) coefficients Kn are given by

Kn = − 2

~2

1

8π3

∫
En

(
∂E

∂kx

)2
∂f0

∂E
τ(k)dk. (2.232)

34See Chapter VII, § 6.3 of Ref. 243.
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By abbreviating the k-space integral over the constant-energy surface E(k) = E ′

φ(E ′) =
2

~2

1

8π3

∫ ∫ (
∂E

∂kx

)2

τ(k)
dS

|∇E| , (2.233)

these may be written more compactly as

−Kn =

∞∫

0

φ(E)En∂f0

∂E
dE . (2.234)

For low temperatures ∂f0

∂E
is non-vanishing only close to the Fermi level E = ζ.

Accordingly, one can expand Eq. (2.234) in this case in powers of T ,

Kn = ζnφ(ζ) +
π2

6
(kBT )2 d

2

dζ2
[ζnφ(ζ)]... , (2.235)

corresponding to the well-known Sommerfeld expansion [256, 284–287] originally
employed in the theory of the electronic specific heat. From this one obtains to the
first order w.r.t. T for the thermal conductivity under the condition j = 0 (i.e., no
electric current)

Q =

(
K2

1

K0

−K2

)
1

T

∂T

∂x
= −κ∂T

∂x
=
π2

3
k2

BTφ(ζ) (2.236)

and for the electrical conductivity in the case ∂T/∂x = 0

σ = e2K0 = e2φ(ζ). (2.237)

Dividing Eq. (2.236) by Eq. (2.237) leads to the Wiedemann-Franz law

κ

σ
=
π2

3

k2

e2
T (2.238)

and further on to the Lorenz number

L =
κ

σT
=
π2

3

(
k

e

)2

≈ 2.45× 10−2 V2 K−2 . (2.239)

The thermoelectric power S and the Thomson coefficient µ, connected via

S =

T∫

0

µ

T
dT , (2.240)

are finally obtained by considering the energy production per unit time per unit
volume in the presence of an electric and a heat current as well as a temperature
gradient

U = Fj − ∂Q/∂x . (2.241)

Solving Eq. (2.230) for F and inserting into Eq. (2.231), one obtains

Q =
K1

K0

j

e
− K0K2 −K2

1

K0

1

T

∂T

∂x
, (2.242)
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which leads, neglecting contributions from the second term as they go with ∂2/∂x2

and (∂T/∂x)2 to
∂Q

∂x
=
j

e

∂

∂x

(
K1

K0

)
. (2.243)

With this, Eq. (2.241) becomes

U =
j2

K0e2
− j

e
T
∂T

∂x

∂

∂T

[
1

T

(
K1

K0

− ζ
)]

. (2.244)

The term in j2 is the irreversible Joule heating, hence one has for the remaining
reversible part by definition the Thomson coefficient

µ =
T

e

∂

∂T

[
1

T

(
K1

K0

− ζ
)]

(2.245)

and for the Seebeck coefficient via Eq. (2.240)

S =
1

e

[
1

T

(
K1

K0

− ζ
)]

. (2.246)

Using the coefficients Kn one has to the first order in kBT/ζ

S =
π2

3

k2T

e

[
∂(log σ(E))

∂E

]

E=ζ

, (2.247)

i.e., one arrives at the well-known Mott formula for the thermopower, where the
energy-dependent electrical conductivity is defined as

σ(E) =
2e2

~2

∫ (
∂E

∂kx

)2

τ(k)
dS

|∇E| . (2.248)

Comparison with the corresponding expressions of Kubo et al. and Kleiner (S(n) for
the isotropic case), and Jonson and Mahan (likewise Lij) given above leads to

e2K0 = S1 =
e2

T
L11 = σ (2.249)

e(K1 − ζK0) = S2 =
−|e|
T

L12 = TσS (2.250)

K2 = S4 =
1

T
L22 . (2.251)

Obviously Eq. (2.247) is only valid for low temperatures and, assuming the variation
of σ(E) to be linear in the vicinity of the Fermi level, linear in temperature. From
a simplistic phenomenological point of view this diffusion thermopower can be in-
terpreted as the charge imbalance built up due to the difference in conductivity for
hot and cold electrons flowing from opposite ends of the sample in response to the
applied temperature difference. The sign of the Seebeck coefficient S is then defined
by the sign of the derivative in Eq. (2.248), reflecting whether hotter electrons are
less scattered than colder ones or vice versa. An empirical expression devised by
Guénault [288] to account for the experimentally observed non-linearity of S in Ag
with non-magnetic and (traces of) magnetic impurities,

S = AT +BT 3 + C
T

T + T0

, (2.252)
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still assumes the diffusion contribution in the first term to be linear in T , while
the non-linearity comes about due to the so-called phonon-drag mechanism repre-
sented by the second term (that will have to be discussed later on), and the Kondo
effect [289] due to the magnetic impurities with the Kondo temperature T0 in the
third term. However, as will be shown for example in Section 3.1, even without
taking such effects as the latter two into account, the electronic contribution to
the Seebeck effect can be non-linear even in pure metals and even at relatively low
temperatures. Accordingly, one has to go beyond the Sommerfeld approximation
employed to arrive at the classical Mott formula in Eq. (2.247).

2.3.2.3 Generalisations and application of the Mott formula

The starting point for the first-principles description of thermo(magneto)electric
and, later on, spincaloritronic phenomena presented in this thesis has been the work
of Jonson and Mahan [245], whose definitions of the kinetic coefficients was briefly
reviewed above in Section 2.3.2.1. In fact, this was a re-derivation of earlier work
by Chester and Thellung [244] using the expressions of Kubo et al. [109] in a wave
function formulation, but instead employing the language of Green functions to prove
that the Mott formula for the thermoelectric power and the Wiedemann-Franz law
are exact for independent electrons interacting with static impurities and phonons
treated in the adiabatic approximation [245]. As such it was considered to be the
ideal basis for a Kubo linear response description within the DFT-based KKR-CPA
framework, in particular having the treatment of chemically- and thermally-induced
disorder in mind.

As it had already been recognised by Luttinger [240], a serious problem in the
quantum mechanical treatment of thermally-induced processes is to find a proper
formulation for the heat current operator. While his trick of invoking a gravitational
field is certainly elegant and insightful, it does not render tractable expressions that
give numerical access to the response coefficients. Jonson and Mahan [245] restricted
to the adiabatic approximation for the electron-phonon interaction, which neglects
the phonon momentum and effectively turns the interaction into a static potential
that is added to other impurity potentials, if present. These authors write the heat
current as

jq = jE − µcj , (2.253)

with the energy current

jE = Ṙ = −i[R̂, Ĥ] , (2.254)

given by the commutator of the energy position operator R̂ =
∑

i R̂iĥi and the

Hamilton operator Ĥ =
∑

i ĥi. The independent-electron many-body Hamiltonian
for the interaction with static impurities and phonons is most generally written (in
second quantisation) as

Ĥ =
∑

k

εkĉ
†
kĉk +

1

Ω

∑

q

V̂ imp(q)ρ̂imp(q) +
∑

qλ

Ŵλ(q)Q̂λ(q)ρ̂(q) , (2.255)

with the single-particle energies εk, creation and annihilation operators c†k and ĉk,

the volume of the system Ω, impurity potential and density operator, V̂ imp(q)
and ρ̂imp(q), respectively, and the electron-phonon interaction Ŵλ(q) as well as the
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phonon displacement operator Q̂λ(q) in the last term. With this, Eq. (2.254) be-
comes

jE =
∑

k

εkvkĉ
†
kĉk +

1

Ω

∑

q

V̂ imp(q)ρ̂imp(q)j(q)

+
∑

qλ

Ŵλ(q)Q̂λ(q)j(q)− i

M

∑

qλ

(
∇qŴλ(q)

)
P̂λ(q)ρ(q) , (2.256)

where vk =∇kεk, j(q) =
∑

k(vk +vq/2) c†k+qck and P̂λ(q) is the phonon momentum

operator. As stated above, Jonson and Mahan [245] set P̂λ(q) to zero and treat
Ŵλ(q)Q̂λ(q) as a random static potential. Based on this assumption, the authors
obtain expressions for the response functions at constant field (ω → 0) in the form
of Eqs. (2.156)-(2.158), compactly given by

Lij =
T

e2

∞∫

−∞

dE(− ∂f
∂E

)Ei+j−2 σ(E) , (2.257)

which for low temperatures allows recovering the Mott formula and the Wiedemann-
Franz law. The derivation has been coarsely sketched in Section 2.3.2.1 and shall
not be extended here, for this and also for a more extensive discussion on the va-
lidity of the assumptions made, see Ref. 245. A later work by the same authors,
Ref. 262, that goes beyond the adiabatic approximation might also be of interest,
moreover the reader is referred to Kontani [290] for a fairly recent perspective on
the subject. In conclusion of the above one should stress that, while obviously a
more sophisticated treatment of the heat current operator is possible and desirable,
in particular concerning inelastic scattering of electrons with phonons and magnons,
this would however most certainly lead to a breakdown of the Mott formula and the
Wiedemann-Franz law as already stated for example by Jonson and Mahan [245].
In Section 2.3.4 we will return to this issue in terms of a discussion from a group-
theoretical perspective.

Expressions like Eq. (2.257), in particular when both σ(E) and Lij are written as ten-
sors, have often been termed generalised Mott relations, for example by the present
author [266]. One should remark here, that generalised initially meant first of all an
extension to the non-isotropic case due to magnetism. See for example Jonson and
Girvin [276], who generalised it to finite magnetic fields for calculating Sxy in a non-
relativistic 2DEG model, as briefly reviewed on pp. 46 (see also Refs. 274 and 275).
Actually already Sondheimer [258] spoke of generalisations to finite temperatures
and magnetic fields, when deriving a Mott-like relation for the Ettingshausen-Nernst
coefficient often referred to as Sondheimer’s formula. He considers the limiting cases
of low and high temperature and derives approximate expressions for intermediate
situations. In addition he gives corresponding relations also for the Ettingshausen
effect and for the Righi-Leduc effect. Concerning the generalisation to finite (elec-
tronic) temperature one should note that of course already Eq. (2.234) by Mott and
Jones [243] is equivalent to Eq. (2.257). An expression for the thermoelectric power
in terms of an energy integral over the conductivity is for example also given in
Ref. 291.
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In the following, generalised will be used in the sense of both, an extension to ten-
sorial quantities and finite electronic temperatures, and furthermore the expressions
for the elements of Lij or, from now on, LAB [Eqs. (2.156)-(2.158)]

Lccµν(T ) = − 1

|e|

∫
dE σ(cc)

µν (E)
(
−∂f(E,T )

∂E

)
(2.258)

Lcqµν(T ) = − 1

|e|

∫
dE σ(cc)

µν (E)
(
−∂f(E,T )

∂E

)
(E − EF ) (2.259)

Lqqµν(T ) = − 1

|e|

∫
dE σ(cc)

µν (E)
(
−∂f(E,T )

∂E

)
(E − EF )2 , (2.260)

will be called generalised Mott relations. The term generalised Mott formula has
probably first been used in this context by Proskurin and Ogata [292], who deal
with longitudinal and transverse thermoelectric responses in graphene. As a further
generalisation the application to spin transport in terms ofLAB might be considered,
that will be detailed in the next section (2.3.3).
For convenience, the Onsager matrix, Eq. (2.130), summarising the relevant re-
sponses, perturbations and kinetic coefficient tensors connecting them is repeated
here: 


jc

jq

J s


 =



Lcc Lcq Lcs

Lqc Lqq Lqs

Lsc Lsq L̃ss






−∇µ
−∇T/T
F s


 . (2.261)

Neglecting the effect of the “spin force” F s and the associated sub-tensors for now
(see Section 2.3.3.1 and Appendix A.3 for considerations including it), i.e., assuming
absence of boundary conditions that could lead to a spin accumulation, one obtains
from the first row for open circuit conditions,

jc = 0 = −Lcc∇µ−Lcq∇T/T , (2.262)

and assuming a constant chemical potential µc, the definition of the Seebeck tensor,

E = − 1

eT
(Lcc)−1Lcq∇T = S∇T , (2.263)

relating the electric field to an applied temperature gradient. This corresponds to
the usual macroscopic definition of S = −∆V/∆T , since ∆→ −∇ and −∇V = E.
With the Nernst or thermoelectric conductivity tensor α = − 1

T
Lcq, which gives

the direct relation between charge current density and temperature gradient, and
with the electric conductivity tensor σ = −|e|Lcc, the Seebeck tensor can be more
conveniently expressed as

S = −σ−1α . (2.264)

Accounting for finite temperatures via the Fermi-Dirac distribution

f(E, µc, T ) =
1

e(E−µc)/kT + 1
(2.265)

with the single-particle energies E, the chemical potential µc ≈ EF, and what
will from now on be called electronic temperature T , contained in the definition
of the temperature-dependent response functions Lcc(T ) and Lcq(T ) [Eqs. (2.258)
and (2.259)], the generalised Mott formula for the thermopower is

S = − 1

eT

∫
dE (E − µc)σ(E) (− ∂f

∂E
)∫

dE σ(E) (− ∂f
∂E

)
. (2.266)
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Note that numerator and denominator just differ by the term (E − µc) in the ker-
nel. As shown in Section 2.3.2.2, for low temperatures employing the Sommerfeld
expansion [256, 284–287]

∞∫

−∞

dE(E)nσ(E)(− ∂f
∂E

) ≈ σ(0)δn,0 +
π2

6
(kBT )2[n(n− 1)En−2σ(E)

+2nEn−1σ′(E) + Enσ′′(E)]E=0 (2.267)

and keeping only first order derivatives, one recovers the classical Mott formula [243]

S = −πk
2
BT

3e

d lnσ(E)

dE

∣∣∣∣
EF

=
πk2

BT

3e

d ln ρ(E)

dE

∣∣∣∣
EF

. (2.268)

Note the difference in sign when comparing the first line with Eq. (2.247), that
comes about due to the, as usual not explicitly stated, different conventions used
for e (elementary vs electronic [243] charge).

Eq. (2.266) is in use for a first-principles description of thermoelectric properties
quite some time already, see for example Refs. 293–295 for applications within the
framework of Boltzmann transport theory and Ref. 296 that employs the Kubo for-
malism. The work of Oshita et al. [296] is of particular interest as it makes a direct
comparison between Boltzmann transport theory in the commonly employed relax-
ation time approximation (RTA)35 and the Kubo-Greenwood equation. Sivan and
Imry [297] derived a corresponding expression in terms of conductances or trans-
mission coefficients within the Landauer-Büttiker approach [298–300], which often
serves as the basis for calculations of thermoelectric and spincaloritronic properties
of 2D systems (cf. Refs. 18, 301–303).

The diagonal elements of the Seebeck tensor in Eq. (2.264) will be called (charge)
Seebeck coefficients, transverse effects (Nernst) will be represented by the anti-
symmetric part of the thermoelectric conductivity tensor

[α]µν = − 1

T

∫
dE(E − µc) [σ(E)]µν (− ∂f

∂E
) , (2.269)

which in the low-temperature limit becomes

[α]µν = −πk
2
B

3e

d [σ(E)]µν
dE

|EF
, (2.270)

the (anomalous) Nernst conductivity (ANC). This second, Mott-like formula for the
ANC is the so-called Sondheimer formula [258], that has been discussed for instance
in Refs. 214, 290, 304–307. Other authors, see for example Refs. 20, 215, and 292,
formulate off-diagonal anti-symmetric elements of Seebeck tensors and to some ex-
tent connection will be made to these definitions later on.36

35Which assumes the relaxation time appearing in σ(E) in both numerator and denominator of
Eq. (2.266) to be constant (in energy) and therefore negligible.

36These are either related to the ANC (Sxy in Refs. 215 and 292) or to a combination of spintronic
and spincaloritronic phenomena that will be discussed in Section 2.3.3 (Ss

yx in Ref. 20).
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Depending on the magnetic space group (see Section 2.3.4), the elements of the
Seebeck tensor, both diagonal and off-diagonal, might contain contributions from
diagonal as well as off-diagonal elements of the tensors Lcc ∝ σ and Lcq ∝ α . As
will be demonstrated later on, the latter ones can, in particular in case of them being
anti-symmetric tensor elements connected to anomalous transport effects (Hall and
Nernst) often be neglected in highly symmetric transition metals and their alloys
due to their considerably smaller magnitude in comparison to the diagonal elements.
In case of non-magnetic cubic systems the Seebeck effect even becomes isotropic.
However, the so-called spin Nernst magneto-thermopower (SMT) that will be dis-
cussed in the following section (2.3.3) and is the subject of Ref. 21 (reprinted here
in Section 3.2.2 on page 133) is precisely such a small modulation of the Seebeck
effect that has been used to indirectly observe the spin Nernst effect.

The electronic contribution to the thermal conductivity κ is in particular connected
to the response coefficient Lqq, that contains an additional factor of energy in the
kernel [Eq. (2.260)] as compared to Lqc and Lcq, which are giving usually only a
small correction for metals. The full expression reads

κ =
1

T 2

(
Lqq − L

qcLcq

Lcc

)
. (2.271)

The relevant elements of Lqc have been obtained in this thesis exclusively based
on their Onsager relation to Lcq (see Section 2.3.4). Of particular interest in this
context is of course the Wiedemann-Franz law (WFL)

κ

σ
= LT (2.272)

given here for the isotropic case. The Lorenz number L or rather Lorenz function
tensor, as it depends on temperature as well and can be anisotropic depending on
the magnetic space group, finally is

L = κσ−1T−1 =
1

e2T 2

LccLqq −LcqLqc
(Lcc)2

. (2.273)

Violation of the WFL is a popular catch phrase nowadays [308], occurring if charge
and heat transport are not mediated essentially by the electronic subsystem alone,
i.e., when the thermal conductivity due to phonons and magnons becomes signifi-
cant and/or inelastic scattering processes interconnect the subsystems. This issue
will be discussed in Ref. 309, reprinted in this thesis in Section 3.1.2. One should
note already here, that a temperature-dependent Lorenz number is however not a
sufficient precondition for a WFL-violation. Obviously, based on Eqs. (2.258) and
(2.260) the temperature dependence of the electrical and the electronic thermal con-
ductivity cannot be assumed to be identical even when only electronic temperatures
and elastic scattering are considered.

For the description of finite temperatures beyond the Fermi-Dirac statistics the so-
called alloy analogy model [202] (see Section 2.2.5 above and Sections 3.1.2, 3.1.3
and 3.6 for applications) is used to capture the effect of uncorrelated lattice vi-
brations and transverse spin fluctuations in a mean-field way based on the CPA.37

37Similar approaches based on the super-cell technique have been used for the former by Liu
et al. [310] and for the latter by Kováčik et al. [303]
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Accordingly those additional scattering mechanisms are entering the thermoelec-
tric coefficients only via the conductivity, the generalised Mott relations are left
unchanged. This is well justified, since the regime of the adiabatic approximation
of Jonson and Mahan [245] is never left. How well this assumption describes the
experimental reality is of course a completely different question. In particular phe-
nomena such as phonon drag [311, 312], magnon drag [313–315], and other inelastic
scattering mechanisms naturally are missing. But as Jonson and Mahan [262] have
shown for the electron-phonon interaction, they can in principle be included by a
correction that is small at low as well as high temperatures for metals.

A brief demonstration of the generalised Mott implementation used throughout this
thesis can be found in Appendix A.2. Computational details, including such for the
underlying electronic structure and Kubo linear response calculations are given in
Appendix A.7.

2.3.3 Spin caloric transport

As a brief introduction into the field of spin caloric transport or spincaloritronics has
already been given in Chapter 1, we will focus here on the aspects of linear response
theory and first-principles description, with a particular emphasis on classes (i) and
(iii) in the scheme of Bauer et al. [24].

Johnson and Silsbee [2] (see also Refs. 316–318) made the first steps towards a
coherent description of spincaloritronic phenomena by extending the formulation
of Callen [319] to the case of an electric, thermal, and magnetic perturbation, the
thermomagnetoelectric system,

−Jq =
L11

T
∇V + L12∇

1

T
+
L13

T
∇−H∗ (2.274)

JQ =
L21

T
∇V + L22∇

1

T
+
L23

T
∇−H∗ (2.275)

−JM =
L31

T
∇V + L32∇

1

T
+
L33

T
∇−H∗ (2.276)

with L11 = Tσ, L12 = L21 = −T 2σε, L22 = T 3σε2 + T 2κ and the magnetisation
potential H∗, that combines internal magnetisation and external field. As usual,
σ stands for the electrical conductivity, κ for the electronic thermal conductivity,
while the thermopower is denoted here by ε. The coefficients describing the mag-
netisation current are estimated from a free-electron model and following Aronov’s
postulate [320], JM = β

e
Jq (where β is the Bohr magneton), to be L31 = pβσT/e,

L32 = L23 = −p′βσT 2ε/e, and L33 = ςβ2σT/e2, with p 6= p′ the spin polarisation of
the conduction electrons and ς a phenomenological parameter assumed to be close
to unity. Johnson and Silsbee [2] also give a short introduction to the general irre-
versible thermodynamics in terms of entropy change/production, generalised fluxes
and forces, later on focusing on FM/NM interfaces. However the explicit expres-
sions given for the response coefficients are strongly simplified on the basis of model
considerations. Similar sets of phenomenological equations or Onsager matrices
have been for example proposed by Gravier et al. [321], Hatami et al. [59], Hatami
et al. [27], Bauer et al. [24], Wimmer et al. [322], Misiorny and Barnaś [323], Yu
et al. [26], and Meyer et al. [21]. In the following we will, if not stated otherwise,
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always refer to the formulation given in Eq. (2.130) or Eq. (2.261).

On this basis, the first-principles approach to spin caloric transport in the diffusion
limit has, naively or rather pragmatically, started by replacing σ by σξ or LcB by
LsB in the generalised Mott relations for thermoelectric transport [20]. The spin-
related response functions occurring in Eq. (2.261) are accordingly, in analogy to
Eqs. (2.258) and (2.259), expressed by the corresponding spin conductivities:

Lsc,ξµν (T ) = − 1

|e|

∫
dE σsc,ξµν (E)

(
−∂f(E,T )

∂E

)
(2.277)

Lsq,ξµν (T ) = − 1

|e|

∫
dE σsc,ξµν (E)

(
−∂f(E,T )

∂E

)
(E − EF ) . (2.278)

The spin(-polarised) conductivity σ(sc,)ξ is obviously given by −|e|Lsc,ξ for T → 0.
The bare spin Nernst conductivity, i.e., describing the response to ∇T alone, giving
rise to a spin polarised current transverse to the temperature gradient is defined as

αξµν =
Jξµ
∇νT

= − 1

T
Lsq,ξµν , (2.279)

with Lsq,ξµν obtained from the spin Hall conductivity via Eq. (2.278). For a discussion
on an electrical contribution [20, 324] to the spin Nernst effect due to Seebeck effect
and spin Hall effect, see Ref. 266 that is reprinted in this thesis in Section 3.2 on
page 122.

In analogy to the spin Hall angle θSH = σSH/σ quantifying the efficiency of conversion
of a longitudinal electric current into a transverse spin-polarised current, one can
introduce a spin Nernst angle (SNA). There are at least two (reasonable) possibilities
for its definition, either relating the spin(-polarised) current J in response to a
temperature gradient ∇T to the longitudinal heat current q created by the same
driving force [325, 326],

γ =
J ij
qk

=
αijk
−κkk

. (2.280)

Here J ij is the transverse spin current (i 6= j 6= k, i 6= k), qk the longitudinal heat
current parallel to ∇kT , αijk is the spin Nernst conductivity as introduced above in
Eq. (2.279), and κkk is the diagonal heat conductivity of the electrons as defined in
Eq. (2.271). Alternatively, one can define the spin Nernst angle as the ratio of the
transverse spin Nernst conductivity and a diagonal element of the thermoelectric
conductivity tensor defined above [21],

θSN =
αijk
αkk

=
J ij
jk
, (2.281)

which relates, as the SHA, spin(-polarised) and charge current densities to each
other, but now in response to a temperature gradient as opposed to an electric field
as in the case of the spin Hall angle. This is equivalent to the definition of the
SNA in terms of a transverse spin-dependent Seebeck coefficient (see below) and its
longitudinal charge counterpart as proposed in Ref. 20.

Each of the definitions clearly has its advantages. The first one is, by relating the
spin current to the primary response connected to the force, closer to the definition
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of the spin Hall angle and thus more in the spirit of a conversion efficiency. The
second definition on the other hand describes the same observables as the SHA,
thus relating two conversions to each other (heat-spin to heat-charge). A direct
connection between SHA and SNA can be made for both of them, once by using
the Wiedemann-Franz law relating heat and charge conductivity and once by the
Seebeck effect relating the thermoelectric or Nernst conductivity αkk to σkk.

A detailed treatment of spin-dependent contributions to the charge Seebeck effect
based on modifying the boundary conditions for the charge and spin current densi-
ties can be found in the following Section 2.3.3.1 as well as in Appendix A.3, and
in Ref. 21 which is reprinted in Section 3.2 on page 133. A spin-polarised See-
beck coefficient giving in particular access to the spin-dependent Seebeck effect can
be obtained from the symmetric part of Lsq,ξ. It should be noted, that a spin-
dependent heat [327] introduced as an affinity in a spin-projected formulation of
spincaloritronics is neglected here. Apart from the fact that an analogous spin-
polarised temperature gradient is questionable, within the relativistic framework
used herein a spin-polarised heat conductivity could of course be calculated using
Eq. (2.260) based on the energy-dependent spin conductivity σ

(sc)ξ
µν (E).

2.3.3.1 Remarks on spin-projected vs. spin-polarised thermoelectrics

Similar to the situation concerning the description of thermoelectric phenomena (see
Section 2.3.2.2) also the treatment of spin transport in response to electric fields
and/or temperature gradients is handled in various different ways in the literature.
Often a spin-projected formalism in the spirit of Mott’s two-current model [328, 329]
is adopted that assumes a parallel circuit of spin-up and spin-down currents [20].
This is opposed to working with spin-polarised currents as done for the first time in
Ref. 266 (reprinted in Section 3.2.1). This approach is based on a continuity equation
for the corresponding spin-polarisation current density and accounts coherently for
the impact of spin-orbit coupling.

Spincaloritronics in terms of spin-projected response functions

The spin-projected formulation of spin transport starts in a somewhat ad-hoc way
assuming for the response tensors of non-magnetic cubic materials, fcc Cu with 1 %
Ti, Au, and Bi, in a 2D geometry the form [20]:

ab =




abxx abxy 0

−abxy abxx 0

0 0 abzz


 ∀ a ∈ {σ, L0, L1} and ∀ b ∈ {↑, ↓} . (2.282)

Furthermore, L1′ and L2 should also have the same symmetry, with an Onsager
relationconnecting L1 and L1′ (see below). This is however not explicitly stated by
Tauber et al. [20]. More details on the relation and shapes of response tensors due
to symmetry restrictions of the magnetic Laue group can be found in the following
section (2.3.4) and in Ref. 283 (reprinted in Section 3.3).

Imposing time and space inversion symmetry leads to the interrelations

a↑xx = a↓xx, a↑xy = −a↓xy and a↑zz = a↓zz (2.283)
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or in matrix notation

a↓ =



a↓xx a↓xy 0

−a↓xy a↓xx 0

0 0 a↓zz


 =



a↑xx −a↑xy 0

a↑xy a↑xx 0

0 0 a↑zz


 = (a↑)T , (2.284)

where the z axis has been chosen as the the quantisation axis. It should be men-
tioned that a film or bar geometry is considered, as already reflected in Eq. (2.282),
i.e, the considered sample is assumed to be infinitely long in x, narrow in y and flat
in z direction.

As spin-flip scattering is not explicitly accounted for one has for the spin-averaged
and the spin(-polarised) conductivities

σ = σ↑ + σ↓ (2.285)

σs = σ↑ − σ↓ , (2.286)

respectively. The corresponding set of relevant transport equations reads [14]



j↑

j↓

jq


 =



L↑0 0 L↑1
0 L↓0 L↓1
L↑1′ L

↓
1′ L

↑
2 +L↓2






∇µ↑

∇µ↓

− 1
T
∇T


 , (2.287)

with

L↑(↓)n (T ) = −1

e

∫
dE σ↑(↓)(E)

(
−d f0(E, T )

dE

)
(E − µc)

n . (2.288)

Here the quantities L
↑(↓)
1′ are the reciprocal coefficients of L

↑(↓)
1 , connected via the

Onsager relation [283]

L
↑(↓)
1′ = −(L

↑(↓)
1 )T . (2.289)

Of course the symmetry of σ↑(↓)(E) is carried over to the response functions L↑(↓)n (T ).

Eq. (2.287) excludes a spin-dependent temperature gradient [327] with the response
sub-tensor related to the thermal conductivity, the bottom right element in the
tensor of Eq. (2.287), being simply the sum of both electronic contributions with
different spin, κ = κ↑ + κ↓, following, e.g., Ref. 24. This is not explicitly considered
by Tauber et al. [20].

Starting now from the spin-projected currents as responses to a spin-dependent
chemical potential ∇µ↑(↓) and to a temperature gradient ∇T ,

j↑(↓) = −L↑(↓)0 ∇µ↑(↓) −
1

T
L
↑(↓)
1 ∇T (2.290)

j = j↑ + j↓ = −(L↑0∇µ↑ +L↓0∇µ↓)−
1

T
(L↑1 +L↓1)∇T (2.291)

js = j↑ − j↓ = −(L↑0∇µ↑ −L↓0∇µ↓)−
1

T
(L↑1 −L↓1)∇T , (2.292)

one can, by setting the respective current jb with b ∈ {↑, ↓, , s} to 0, derive spin-
dependent Seebeck coefficients S↑(↓) from Eq. (2.290):

1

e
∇µ↑(↓) = − 1

eT
(L
↑(↓)
0 )−1L

↑(↓)
1 ∇T = S↑(↓)∇T . (2.293)
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For b =↑ one obtains for example the explicit expression for S↑,

S↑ = − 1

eT



L↑0,xx L↑0,xy 0

−L↑0,xy L↑0,xx 0

0 0 L↑0,zz




−1

L↑1,xx L↑1,xy 0

−L↑1,xy L↑1,xx 0

0 0 L↑1,zz




= − 1

eT




L↑0,xxL
↑
1,xx+L↑0,xyL

↑
1,xy

L↑0,xx

2
+L↑0,xy

2

L↑0,xxL
↑
1,xy−L

↑
0,xyL

↑
1,xx

L↑0,xx

2
+L↑0,xy

2 0

L↑0,xyL
↑
1,xx−L

↑
0,xxL

↑
1,xy

L↑0,xx

2
+L↑0,xy

2

L↑0,xxL
↑
1,xx+L↑0,xyL

↑
1,xy

L↑0,xx

2
+L↑0,xy

2 0

0 0 (L↑0,zz)
−1L↑1,zz




=



S↑xx S↑xy 0

−S↑xy S↑xx 0

0 0 S↑zz


 , (2.294)

that obviously has the same tensor shape as the responses quantities represented by
Eq. (2.282).

Analogously a charge Seebeck tensor S can be obtained from Eq. (2.291) by making
use of the relations given by Eq. (2.284),

0 = j = −(L↑0∇µ↑ +L↓0∇µ↓)−
1

T
(L↑1 +L↓1)∇T

= −(L↑0∇µ↑ + (L↑0)T∇µ↓)− 1

T
(L↑1 + (L↑1)T )∇T . (2.295)

Using again matrix notation, this is




0

0

0


 =−






L↑0,xx L↑0,xy 0

−L↑0,xy L↑0,xx 0

0 0 L↑0,zz






∇xµ

↑

∇yµ
↑

∇zµ
↑


+



L↓0,xx L↓0,xy 0

−L↓0,xy L↓0,xx 0

0 0 L↓0,zz






∇xµ

↓

∇yµ
↓

∇zµ
↓







− 1

T






L↑1,xx L↑1,xy 0

−L↑1,xy L↑1,xx 0

0 0 L↑1,zz


+



L↓1,xx L↓1,xy 0

−L↓1,xy L↓1,xx 0

0 0 L↓1,zz









∇xT

∇yT

∇zT




=−



L↑0,xx(∇xµ

↑ +∇xµ
↓) + L↑0,xy(∇yµ

↑ −∇yµ
↓)

−L↑0,xy(∇xµ
↑ −∇xµ

↓) + L↑0,xx(∇yµ
↑ +∇yµ

↓)

L↑0,zz(∇zµ
↑ +∇zµ

↓)




− 1

T




2L↑1,xx 0 0

0 2L↑1,xx 0

0 0 2L↑1,zz






∇xT

∇yT

∇zT


 . (2.296)

The first term on the r.h.s. of the second line containing sums and differences of spin-
dependent chemical potentials can be decomposed again into a response to an electric
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field E = 1
2e

(∇µ↑+∇µ↓) and one to a spin accumulation ∇µs = 1
2e

(∇µ↑−∇µ↓) !
=

1
2e
∇(µ↑ − µ↓):



0

0

0


 =− 2e



L↑0,xx 0 0

0 L↑0,xx 0

0 0 L↑0,xx






Ex

Ey

Ez


− 2e




0 L↑0,xy 0

−L↑0,xy 0 0

0 0 0






∇xµ

s

∇yµ
s

∇zµ
s




− 2

T



L↑1,xx 0 0

0 L↑1,xx 0

0 0 L↑1,xx






∇xT

∇yT

∇zT


 . (2.297)

From this expression one can derive Seebeck coefficients for two different scenarios.
Assuming closed spin current boundary condition, i.e., if a spin accumulation at the
edges (x or y direction) perpendicular to the applied temperature gradient (y or x
direction) cannot build up, the second term vanishes and one obtains by solving for
the electric field

E =− 1

eT



L↑0,xx 0 0

0 L↑0,xx 0

0 0 L↑0,zz




−1

L↑1,xx 0 0

0 L↑1,xx 0

0 0 L↑1,zz


∇T

=− 1

eT




L↑1,xx

L↑0,xx

0 0

0
L↑1,xx

L↑0,xx

0

0 0
L↑1,zz

L↑0,zz



∇T = S̃∇T. (2.298)

This corresponds to the expression for the charge Seebeck coefficient given by us
in Eq. (6) of Ref. 266, that was derived without considering a response to a spin
accumulation or the field F s in Eq. (2.130). This will be detailed in the following
part.
For open spin current boundary conditions on the other hand, i.e., if a spin accu-
mulation in x or y direction is present, this can be expressed by setting the spin
current in Eq. (2.292) to 0. Noting that the z component is irrelevant since it does
not mix in, one is led to



0

0

0


 =−






L↑0,xx L↑0,xy 0

−L↑0,xy L↑0,xx 0

0 0 L↑0,zz






∇xµ

↑

∇yµ
↑

∇zµ
↑


−



L↓0,xx L↓0,xy 0

−L↓0,xy L↓0,xx 0

0 0 L↓0,zz






∇xµ

↓

∇yµ
↓

∇zµ
↓







− 1

T






L↑1,xx L↑1,xy 0

−L↑1,xy L↑1,xx 0

0 0 L↑1,zz


−



L↓1,xx L↓1,xy 0

−L↓1,xy L↓1,xx 0

0 0 L↓1,zz









∇xT

∇yT

∇zT




=− 2e




0 L↑0,xy 0

−L↑0,xy 0 0

0 0 0






Ex

Ey

Ez


− 2e



L↑0,xx 0 0

0 L↑0,xx 0

0 0 L↑0,zz






∇xµ

s

∇yµ
s

∇zµ
s




− 2

T




0 L↑1,xy 0

−L↑1,xy 0 0

0 0 0






∇xT

∇yT

∇zT


 . (2.299)
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Solving this expression for ∇µs one has:



∇xµ

s

∇yµ
s

∇zµ
s


 =−




0
L↑0,xy

L↑0,xx

0

−L↑0,xy

L↑0,xx

0 0

0 0 0






Ex

Ey

Ez


− 1

eT




0
L↑1,xy

L↑0,xx

0

−L↑1,xy

L↑0,xx

0 0

0 0 0






∇xT

∇yT

∇zT


 .

(2.300)

Inserting this result into Eq. (2.297) and solving finally for the electric field, one
arrives at:



Ex

Ey

Ez


 =− 1

eT




L↑0,xxL
↑
1,xx+L↑0,xyL

↑
1,xy

L↑0,xx

2
+L↑0,xy

2 0 0

0
L↑0,xxL

↑
1,xx+L↑0,xyL

↑
1,xy

L↑0,xx

2
+L↑0,xy

2 0

0 0
L↑1,zz

L↑0,zz






∇xT

∇yT

∇zT


 , (2.301)

Obviously one obtains this way a second expression for the Seebeck coefficient S,
that differs from the one given by Eq. (2.298). The first two diagonal elements con-
tain now a product of two off-diagonal response coefficients, L↑0,xyL

↑
1,xy = −L↑0,xyL

↑
1,yx,

which in combination give a longitudinal response. This has to be interpreted as
a competition of the spin Nernst effect, creating (or trying to create) a spin accu-
mulation transverse to the temperature gradient, and the inverse spin Hall effect
transforming this gradient of spin polarisation into an electric field transverse to
itself, which is again longitudinal to the temperature gradient. One might say that,
without explicitly stating it, Tauber et al. [20] introduced the concept of the spin
Nernst magneto-thermopower (SMT), that was employed for the observation of the
spin Nernst effect in Ref. 21 (reprinted in Section 3.2). The boundary conditions
for the spin current were controlled in experiment by rotating the magnetisation in
a ferromagnetic insulator attached to the nonmagnet.

It should be noted that the tensor shape in Eq. (2.301) implies the symmetry of
the cubic crystal to be broken, since the diagonal entries are not identical. This
is due to the actual two dimensional situation one is looking at: the transverse (x
and y) directions of the sample are finite, in order to allow for a spin accumulation,
i.e., these dimensions are in the order of the spin diffusion length. In particular
starting with the tensor shape in Eq. (2.282) the z direction is already assumed to
be different from the x and y directions.
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The resulting Seebeck tensor, that contains the additional “spin Nernst × inverse
spin Hall effect”contribution, is identical to

1

2
(S↑ + S↓)∇T =

1

2






S↑xx S↑xy 0

−S↑xy S↑xx 0

0 0 S↑zz


+



S↓xx S↓xy 0

−S↓xy S↓xx 0

0 0 S↓zz





∇T

=
1

2
(S↑ + (S↑)T )∇T =

1

2






S↑xx S↑xy 0

−S↑xy S↑xx 0

0 0 S↑zz


+



S↑xx −S↑xy 0

S↑xy S↑xx 0

0 0 S↑zz





∇T

=



S↑xx 0 0

0 S↑xx 0

0 0 S↑zz


∇T = S∇T . (2.302)

This expression contains only the diagonal elements of S↑,

S↑xx = − 1

eT

L↑0,xxL
↑
1,xx + L↑0,xyL

↑
1,xy

L↑0,xx

2
+ L↑0,xy

2 (2.303)

and

S↑zz = − 1

eT

L↑1,zz

L↑0,zz

, (2.304)

and corresponds to Eq. (8) of Ref. 20.

Analogously, a spin-polarised Seebeck coefficient Ss for open spin-circuit conditions
can be derived from Eq. (2.300) by inserting the r.h.s of Eq. (2.301), − 1

eT
S∇T , for

the electric field. This leads to

∇µ = Ss∇T , (2.305)

with the spin-polarised Seebeck coefficient Ss = 1
2
(S↑−S↓) given for non-magnetic

materials as:

Ss = − 1

eT




0
L↑0,xyL

↑
1,xx−L

↑
0,xxL

↑
1,xy

L↑0,xx

2
+L↑0,xy

2 0

−L↑0,xyL
↑
1,xx−L

↑
0,xxL

↑
1,xy

L↑0,xx

2
+L↑0,xy

2 0 0

0 0 0




. (2.306)

In analogy to Eq. (2.302), this is identical to the off-diagonal elements of S↑ defined
in Eq. (2.293) and corresponds to Eq. (10) of Ref. 20.

One might, for the sake of completeness, consider a case where a spin accumulation
can build up in one direction (transverse w.r.t ∇T ), while charge is flowing in the
other (longitudinal w.r.t ∇T ), i.e., open circuit conditions for the spin current and
closed circuit conditions for the charge current. This is done by neglecting the effect
of the electric field on the spin accumulation entering Eq. (2.300). This special
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situation leads to a modified (reduced) spin-polarised Seebeck coefficient according
to

S̃
s

=
∇µs

∇T = − 1

eT




0
L↑1,xy

L↑0,xx

0

−L↑1,xy

L↑0,xx

0 0

0 0 0


 . (2.307)

Spincaloritronics in terms of spin-polarised response functions

In the following the formalism used in Refs. 322 and 266 will be outlined. As
sketched in Section 2.3.1, with a proper formulation for the operators represent-
ing charge and spin transport at hand, the corresponding conductivity tensors can
straightforwardly be expressed my means of Kubo’s linear response formalism. At
the same time group-theoretical considerations, see next section (2.3.4), allow with-
out further assumptions to determine the shape of these tensors in an unambiguous
way. Dealing for example with charge and spin transport induced by an electric field
(B = c) or a temperature gradient (B = q) in a non-magnetic cubic system, one
gets for the charge transport response functions a = σ or Lcc and Lcq, respectively:

acB =




acBxx 0 0

0 acBxx 0

0 0 acBxx


 (2.308)

and for the corresponding spin transport functions a = σξ or Lξ with ξ = z:

asB =




0 asBxy 0

−asBxy 0 0

0 0 0


 (2.309)

The response functions Lqq connected to thermal transport have the same structure
as acB, which will, as the relation between σAc, (L/L)Ac and (L/L)Aq, become ob-
vious from Eq. (2.311) below. Heat transport via phonons will not be considered
here, nor any other non-electronic transport mechanisms.

For the most general situation the set of relevant transport equations are summarised
as 


j

J s

jq


 =



Lcc Lcs Lcq

Lsc L̃ss Lsq

Lqc Lqs Lqq






−∇µ
F s

− 1
T
∇T


 (2.310)

with the corresponding transport coefficients to be determined by applying the gen-
eralised Mott relations

(L/L)(s/c)B(,ξ)(T ) = −1

e

∫
dE σ(s/c)c(,ξ)(E)

(
−d f(E, T )

dE

)
(E − EF )n , (2.311)

where B = c if n = 0 and B = q if n = 1. Obviously no assumptions concerning
boundary conditions have been made so far, i.e., no specific experimental geometry
is considered and the full symmetry of the three dimensional system is retained.
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In Eq. (2.310) Onsager relations of the second kind connect the off-diagonal tensors
when the role of response and force are interchanged, i.e. Lsc ↔ Lcs, Lcq ↔ Lqc

and Lsq ↔ Lqs. For the special case of a non-magnetic cubic system studied here,38

they are Lcq = (Lqc)T = Lqc, Lsc,ξ = −(Lcs,ξ)T = Lcs,ξ and Lsq,ξ = −(Lqs,ξ)T =
Lqs,ξ ∀ ξ ∈ {x, y, z}. This is because Lcq is diagonal and isotropic, the three sub-
tensors of Lsc,ξ are purely anti-symmetric and contain only one independent element
(the spin Hall conductivity), and the same holds true for Lsq,ξ, as j and jq transform
identically. Here the coefficient Lsq,zxy = −Lsq,zyx is of course connected to the spin
Nernst conductivity.

Although the precise form of F s is not so clear, it certainly can be for example
connected to the gradient of a spin accumulation. Also the mechanisms behind the
corresponding responses described by the elements of Lcs, L̃ss and Lqs are a matter
of debate. The first of the three is related to the inverse spin Hall effect, the third
one suggests the existence of an inverse spin Nernst or “spin Ettingshausen effect”.
The fourth rank response tensor L̃ss is the most enigmatic of them. It could for
example describe the generation of a spin current by a spin accumulation, which is
itself generated by, e.g., an electric field or a temperature gradient, via Lsc or Lsq,
respectively (spin Hall or Nernst effect). Most naively one could think of it in terms

of spin relaxation. In the following, the diagonal sub-tensors of L̃ss are assumed to
be identical to the charge conductivity tensor.39 This can be justified by considering
the spin polarisation to be transported exclusively by the electronic subsystem, i.e.,
magnons for example are neglected. In fact only the zz sub-tensor is needed here and
the polarisations will be assumed to be independent, i.e., no off-diagonal sub-tensors
have to be considered. In the following we will accordingly only consider the case
of ξ = z and drop the index altogether.

So far the fictitious field or spin force F s has not been considered explicitly as
a source for any induced currents. Accordingly, the Seebeck tensor S is simply
obtained by setting j in the first line of Eq. (2.310) to zero, dropping Lcs and
solving for the electric field. This way one obtains in analogy to Eq. (2.298) for
non-magnetic system having cubic symmetry:

E =− 1

eT



Lccxx 0 0

0 Lccxx 0

0 0 Lccxx




−1

Lcqxx 0 0

0 Lcqxx 0

0 0 Lcqxx


∇T

=− 1

eT




Lcqxx

Lccxx
0 0

0 Lcqxx

Lccxx
0

0 0 Lcqxx

Lccxx


∇T = S∇T . (2.312)

The charge Seebeck tensor is obviously diagonal and isotropic by construction, in
agreement with more general group-theoretical considerations [271] (See also Sec-
tion 2.3.4 and Section 3.3). A spin-polarised Seebeck coefficient connected, e.g., to
the spin-dependent Seebeck effect will be considered in the following.

38Magnetic Laue group m3̄m1′ without external magnetic field, see Ref. 283 in Section 3.3.1.
39See also Eq. (1) of Ref. 24.
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Comparison of the two formulations

The spin-projected formalism assumes that the total charge and the spin-polarisation
current densities, j and js, respectively, can be written as sum and difference of spin-
projected current densities j↑(↓), j = j↑+ j↓ and js = j↑− j↓. Accepting this point
of view allows connecting Eqs. (2.287) and (2.310) by starting from the definitions
Eqs. (2.291) and (2.292),




1 1 0

1 −1 0

0 0 1







j↑

j↓

jq


 = M




j↑

j↓

jq


 =




j

js

jq


 (2.313)

where js corresponds to the third (z) column of J s in Eq. (2.310) and obviously
j = jc. Applying M to the r.h.s. of Eq. (2.287) and inserting I3 = M−1M

M



L↑0 0 L↑1
0 L↓0 L↓1
L↑1′ L

↓
1′ L

↑
2 +L↓2






∇µ↑

∇µ↓

− 1
T
∇T


 (2.314)

=




L↑0
2

+
L↓0
2

L↑0
2
− L↓0

2
L↑1 +L↓1

L↑0
2
− L↓0

2

L↑0
2

+
L↓0
2

L↑1 −L↓1
L↑

1′
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where 2eE =∇µ↑ +∇µ↓ and 2e∇µs =∇µ↑ −∇µ↓ ≡∇(µ↑ − µ↓) is the force due
to a possible spin accumulation. Note that the response coefficients representing the
charge-charge coupling and the spin-spin coupling are indeed identical, as discussed
above. The same applies to that describing spin-charge and charge-spin correlation
as the tensors are fully anti-symmetric. The usual Onsager reciprocity also holds
for the charge-heat/heat-charge and spin-heat/heat-spin pairs, due to Eqs. (2.284)
and (2.289) as the former are sums and the latter differences.

Moving the factors 2 from the force vector in Eq. (2.314), i.e., the vector (221)T , to
the Onsager matrix of response tensors and writing this more compactly as
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with

L±n =



L↑n,xx ± L↓n,xx L↑n,xy ± L↓n,xy 0
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0 0 L↑n,zz ± L↓0,zz


 (2.317)
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and using Eq. (2.284) one gets for the full super-tensor
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Writing Eq. (2.310) explicitly for the spin-polarised formulation used in version 1 of
Ref. 322, again for the special case of a non-magnetic cubic system [283],
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(2.319)

one can see the correspondence between the two formalisms. For a constant chem-
ical potential µc, −∇µ = −∇(µc − eφ) = e∇φ = eE and identifying F s with the
spin accumulation in Eq. (2.297), or rather with 2e∇µs, there is a one-to-one cor-
respondence between Eq. (2.318) and the super-tensor in the above equation. All
“↑”-elements appearing in the former are identical to the respective “↓”-quantities
if longitudinal and equal in magnitude but different in sign if transverse transport
is considered. For that reason they have to be multiplied by the factor 2 to obtain
the coefficients appearing in Eq. (2.319). Applying the Onsager relations already
discussed above, the reciprocal off-diagonal tensors are identical, i.e., Lsc = Lcs,
Lcq = Lqc and Lsq = Lqs for the situation considered here. The comparison with
Eq. (2.318) furthermore suggests that the second-rank sub-tensor of L̃ss for a spin
current Jξ and a “spin force” Fξ with ξ ∈ {x, y, z} is identical to Lcc.
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Starting from Eq. (2.319) and the considerations above, by setting the charge current
j in the first line to 0 one has:




0

0

0


 =− e



Lccxx 0 0

0 Lccxx 0

0 0 Lccxx






Ex

Ey

Ez


+




0 Lscxy 0

−Lscxy 0 0

0 0 0






F z

x

F z
y

F z
z




− 1

T



Lcqxx 0 0

0 Lcqxx 0

0 0 Lcqxx






∇xT

∇yT

∇zT


 , (2.320)

Doing the same with the spin current Jz
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Solving now for Fz,
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and inserting the result into Eq. (2.320) gives




0

0

0


 =− e



Lccxx 0 0

0 Lccxx 0

0 0 Lccxx






Ex

Ey

Ez


+




0 Lscxy 0

−Lscxy 0 0

0 0 0






Lccxx 0 0

0 Lccxx 0

0 0 Lccxx




−1


e




0 Lscxy 0

−Lscxy 0 0

0 0 0






Ex

Ey

Ez


+

1

T




0 Lsqxy 0

−Lsqxy 0 0

0 0 0






∇xT

∇yT

∇zT







− 1

T



Lcqxx 0 0

0 Lcqxx 0

0 0 Lcqxx






∇xT

∇yT

∇zT


 . (2.323)

Solving finally for the electric field,
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one obtains an expression for the Seebeck coefficient corresponding to Eq. (2.301).
Correspondingly by inserting the r.h.s. of Eq. (2.324) for the electric field into
Eq. (2.322),
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one gets a formal expression describing a spin-polarised Seebeck effect corresponding
to Eq. (2.306). The difference (1

e
) in the prefactor in comparison to Eq. 2.306 comes

about due to the imposed relation between fictitious field and the gradient of the
spin-polarised chemical potential, Fz = 2e∇µs. A condensed version of the deriva-
tions of Eqs. (2.324) and (2.325) in compact notation can be found in Appendix A.3.

To summarise, based on the assumption that Mott’s two-current model holds true
also for thermally-driven spin transport, restricting to electrons as carriers of charge,
spin, and heat, and demanding for the part of the spin-spin correlation relevant to
the case under study to be adequately represented by the charge conductivity, the
equivalence of spin-projected and spin-polarised thermoelectrics in non-magnetic
systems could be shown. Most noteworthy is the fact that, while the former implic-
itly combines charge and spin transport, this has to be introduced in the latter by
choosing the appropriate boundary conditions for charge and spin current. The clear
advantage of the spin-polarised approach is certainly that it is much more general
and can be applied without further modifications to magnetic scenarios. Due to its
relativistic foundation it allows an unbiased description of spin-orbit-induced effects
for arbitrary magnetic order.

As a final note, quite obviously in complete analogy to the above, when perturbation
and response are reversed and one is in particular setting the heat and the spin
current to zero, the obtained Peltier coefficient expressing the temperature difference
induced by an applied electric field contains a term proportional to LqsLsc. For the
same situation considered before, i.e., a non-magnetic cubic system adjacent to a spin
current sink controlled by the magnetisation direction, this reciprocal to the spin
Nernst magneto-thermopower (SMT) discussed in Ref. 21 could be used to observe
the inverse spin Nernst effect or spin Ettingshausen effect (SEE). The mechanism
of the spin Ettingshausen magneto-Peltier effect40 is obviously exactly the inverse
of the SMT: the spin current generated by the electric field via the spin Hall effect
is, for open boundary conditions, converted into a heat current by the SEE. Of
particular interest in such an experiment would be of course the possibility to prove
the Onsager reciprocity between SNE and SEE and between SMT and SEMPE.

40It is impossible to resist suggesting the acronym SEMPE for it.
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2.3.4 Space-time symmetry of linear response coefficients

Lars Onsager was awarded the Noble Prize in Chemistry in 1968 for his Reciprocal
Relations in Irreversible Processes, sometimes called the fourth law of thermody-
namics, that give surprisingly simple relations between coefficients for irreversible
phenomena and their time-reversed counterparts [205, 206]. Originally strictly valid
only for scalar quantities, they have been extended to anisotropic media [330] and to
broken time-reversal symmetry in presence of a magnetic field [331, 332] or, equiv-
alently, in a magnetic sample.41

A modern formulation of these extended relations, given by Hals and Brataas [52],
is

LAB(H ,M ) = εAεBL
BA(−H ,−M) (2.326)

with H the external magnetic field and M the internal magnetisation or spin con-
figuration and εA/B = ±1, depending on whether response and perturbation are
time-reversal symmetric or anti-symmetric (i.e., even or odd under time-reversal).
In Eq. (2.326) the superscripts AB (BA) indicate the order of perturbation, B (A),
and response, A (B). For B = A, that is concerning the symmetry of a single
response tensor as, e.g., that of the electrical conductivity, one speaks generally of
Onsager relations of the first kind. While for B 6= A, i.e., the connection between
two different phenomena with cause and effect interchanged, the expression is ac-
cordingly Onsager relations of the second kind.

From an entirely different perspective, namely a group-theoretical analysis of the
transformation properties of the Kubo formula under the space-time symmetry of
magnetic solids, Kleiner [271, 333, 334] derived what he called generalised Onsager
relations that give the shape of thermogalvanomagnetic tensors (understood as elec-
trical conductivity and thermo(magneto)electric power) for all 1651 magnetic space
groups. His approach has been extended to response tensors involving three opera-
tors by Seemann et al. [283] and applied to spintronic and spincaloritronic [92, 283]
as well as spinorbitronic phenomena [335, 336]. As the corresponding publications
are reprinted in Section 3.3 (Refs. 283 and 92) and Section 3.5 (Refs. 335 and 336),
in the following only a brief introduction and overview will be given, together with
additional notes and observations made in hindsight or not extensively discussed in
the published works.

Of course Kleiner was not the first to combine the restrictions due to spatial symme-
try, Neumann’s principle, with that due to time-reversal symmetry, first considered
by Onsager. See for example Ref. 337 for a historical overview and a critical assess-
ment of Kleiner’s work. But as the author himself states, he was the first to treat
them on the same footing [271]. Starting from the Kubo formula in Eq. (2.171),

τBµAν (ω,H) =

∞∫

0

dt e−iωt
β∫

0

dλTrρ(H)AνBµ(t+ i~λ;H), (2.327)

where Aν represents a Cartesian component of the perturbation operator and Bµ

correspondingly for the response (for further details see page 43 and Refs. 271, 338,
339, and 283), two expressions for the transformation due to unitary (pure spatial)

41See Refs. 208 and 209 for an extensive discussion.
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and anti-unitary (including time-reversal) operations of the magnetic space group
of the solid under consideration, u and a, respectively, are obtained:

τBµAν (ω,H) =
∑

κλ

τBκAλ(ω,Hu)D
(B)(u)κµD

(A)(u)λν (2.328)

and
τBµAν (ω,H) =

∑

κλ

τA†λB
†
κ
(ω,Hu)D

(B)(a)∗κµD
(A)(a)∗λν . (2.329)

Here the D(X)(x) are the co-representation matrices of the symmetry operations
x ∈ {u, a} and the operators X ∈ {A,B}, and Hx is the transformed field.
Equation (2.328) obviously connects elements of the same response tensor while
Eq. (2.329) gives generalised Onsager relations between reciprocal or time-reversed
phenomena. Applying these equations to all pairs of Cartesian components of the
operators and going over all space-time symmetry operations of a magnetic space
group42, one obtains a set of linear relations between elements of τ and, in presence
of time-reversal symmetry, between elements of τ and τ ′ (representing the recip-
rocal phenomenon). Solving these leads to the tensor shape, in the sense of which
elements are non-zero and which (if any) are identical, and in addition to a possible
connection between elements of τ and τ ′. Kleiner applied his prescription to the
electrical conductivity tensor, that is the case of B = A = ĵ, the current density
operator, and for the case of B 6= A with one of them being ĵ and the other q̂,
the heat current density operator. Note that the precise form of the operators is
irrelevant here, it is their transformation properties under time and space inversion
that matters.

As stated before, the scheme can be applied to in principle any pair of operators. The
case of B representing the magnetic torque operator T̂ and A the electric current
density, leading to the so-called spin-orbit torque, has been discussed in Ref. 335,
reprinted in this thesis in Section 3.5, the case of both operators being T̂ leading to
the symmetry restrictions on the Gilbert damping tensor is discussed in Ref. 339.
The so-called Edelstein effect can be described by a response operator m̂ for the
magnetisation induced by an electric field represented by A = ĵ and is the subject
of Ref. 336, reprinted as well in Section 3.5. An extension of Kleiner’s prescription
to three operators has been worked out by Seemann et al. [283] and applied to the
spin conductivity and its spincaloritronic analogues in Refs. 283 and 92, that can be
found in Section 3.3. The results in Refs. 271 and 283 have been furthermore used
for the discussion of spincaloritronic effects in Ref. 21 (reprinted in Section 3.2 on
page 133), in the context of the anomalous Hall effect in compensated ferrimagnets
in Ref. 340 (reprinted in Section 3.6 on page 279), as well as for the discussion of
galvanomagnetic, thermomagnetoelectric, and thermomagnetic effects in Refs. 309
and 341 (reprinted in Section 3.1 on page 89 and 105, respectively) and for the dis-
cussion of transverse responses in non-collinear and non-coplanar antiferromagnets
in Section 3.4.

Kleiner’s prescription has been criticised by a number of authors, see for exam-
ple Refs. 342, 343, 344, 337, and 345. In the latter three works it is in particular

42Their number can be significantly reduced depending on the nature of the operators and on the
specific group.
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emphasised that time reversal should in fact be replaced by magnetic reversal to ob-
tain truly generalised Onsager relations between a system and its magnetic compan-
ion [344] (obtained by complete magnetic reversal, of the internal magnetic structure
as well as of an external magnetic field, if present). This certainly might be useful
when doing a projection to sub-lattices in collinear or Néel antiferromagnets [346],
but to obtain the tensor forms for the whole system (or the individual sublattices)
this is unnecessary. These space-time symmetry relations are what Kleiner called
generalised Onsager relations, connecting observables of one and the same system.
Moreover, it is questionable if comparing a system and its magnetic companion is of
any use at all (except for the case just mentioned). Most importantly, in the absence
of external fields the results of Kleiner [271] (and Ref. 283) and Butzal [344] (and
Butzal and Birss [347]) agree, as do those of Železný et al. [346] and Ref. 335.

Moreover, the results obtained for groups of Kleiner’s category (c) are precisely
the tensor shapes for the two sub-lattices of a collinear antiferromagnet, i.e., the
direct effect on one sub-lattice is identical to the inverse on the other. Taking as
the simplest possible example again the electrical conductivity, that is in this sense
self-inverse, the anti-symmetric off-diagonal elements of the two ferromagnetic sub-
lattices cancel each other, leading to a vanishing anomalous Hall conductivity. The
symmetry operation connecting the two sub-lattices of a Néel AFM is time reversal
connected with a spatial operation, the former is exactly what connects the direct
and inverse effects, the latter alone does not belong to the magnetic point group and
thus has no effect on the tensor shapes. Accordingly the Edelstein polarisations or
spin orbit torkances that act, in contrast to conductivities, locally on the magnetic
moments of individual sub-lattices in antiferromagnets are described by the tensors
for the direct and inverse effects [335, 346].

As a final note in this regard, the decomposition of linear response tensors into even
and odd components w.r.t. the magnetisation direction or into symmetric and anti-
symmetric parts, as done, e.g., already by Shtrikman and Thomas [348] as well as
Kleiner [334] and that is thoroughly discussed in Ref. 345, will not be considered
herein.

In order to introduce the anomalous Hall effect and related phenomena on a phe-
nomenological basis, quite commonly the electrical conductivity tensor shape for a
cubic ferromagnet is referred to [235, 349, 350],

σ =




σxx σxy 0

−σxy σxx 0

0 0 σzz


 , (2.330)

defining the anomalous Hall conductivity as the off-diagonal anti-symmetric element
σxy = −σyx. Often this is followed by the statement that this particular tensor shape
is found for any magnetic material with a principal rotation axis larger than three-
fold. Although this is not wrong as such, it is still highly misleading and probably
has been the reason for the wide-spread belief that an anomalous Hall effect can only
occur in materials with a finite global magnetisation, i.e., in ferro- or ferrimagnets.
The quite recent prediction [351] and observation [352] of an AHE in non-collinear
antiferromagnets has accordingly created quite a stir. In hindsight one is tempted
to say that a look into the tables of, e.g., Kleiner [271] and considerations of possi-
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ble spin structures in the magnetic Laue groups43 3, 4, 6, and ∞ of category (b) in
Table 4 and 2′, 2′2′2, 32′, 42′2′, 62′2′, and∞2′ of category (c) given in Table 6, could
have been made earlier. These are the groups whose conductivity tensors exhibit off-
diagonal anti-symmetric elements, i.e., that allow occurrence of the AHE. Mn3Ir as
discussed by Chen et al. [351] has the magnetic Laue group 32′ and Mn3Sn on which
the experiments of Nakatsuji et al. [352] were performed belongs to 2′2′2. Generally
spoken, all materials within a subgroup of the limiting Curie group ∞/mm′m′ can
exhibit a finite anomalous Hall conductivity. Although this is indeed exactly the
symmetry criterion for the existence of a globally finite magnetisation, that itself is
not required.

Another interesting observation that can be made on inspection of Kleiner’s ta-
bles is that there obviously are cases (3̄1′, 4/m1′, 6/m1′ in category (a) and 4′/m,
4′/mm′m, 6′/m′ in category (c))44 where the symmetry of σ is higher than that
of τ . Here the applicability of the Mott formula, generalised or not, has to be re-
considered. The reason for this difference in tensor shapes is that for the electrical
conductivity Eq. (2.329) imposes additional restriction on the tensor shape, while
for the thermoelectric power Eq. (2.328) alone determines the shape and Eq. (2.329)
connects τ and τ ′. This discrepancy does not apply to the Mott relations for the spin
conductivity, leading to the spin Nernst effect or the spin-dependent Seebeck effect,
or corresponding expressions for the spin-orbit torkance or the Edelstein response
tensor, leading to the thermal SOT and the thermal Edelstein effect, respectively.
In those cases the shapes of the tensors whose energy dependence gives rise to the
thermal analogues are not determined by anti-unitary operations, as perturbation
and response are represented by different operators and accordingly Eq. (2.329) and
the corresponding expression for three operators connect reciprocal phenomena. As
the electric current density operator is assumed to have the same symmetry as the
heat current density operator, electric-field- and thermally-induced phenomena have
accordingly the same tensor shapes. This should in principle apply of course as well
to the heat conductivity, at least concerning the first term in Eq. (2.271), whereas
the second one might also have to be reconsidered in light of its connection to the
combination of direct and inverse thermoelectric effects.

Effects related to the Peltier tensor, as for example the anomalous Peltier effect
(APE), that is the inverse to the ASE, or the anomalous Ettingshausen or sec-
ond Nernst-Ettingshausen effect (AEE), as well as such related to the inverse spin
conductivity tensor, i.e., the inverse spin Hall effect (ISHE) and an inverse of the lon-
gitudinal spin conductivity discussed in Ref. 92, and the reciprocals of SOT (ISOT)
and Edelstein effect (IEE) could in principle be calculated from corresponding Kubo
formulae interchanging the operators for perturbation and response. But due to the
generalised Onsager relations given by Kleiner [271], Seemann et al. [283], Wimmer
et al. [335], and Wimmer et al. [336], this is often45 not necessary, since they can be

43Obtained from the magnetic point group either by removal of the improper part of all opera-
tions [271] or by adding spatial inversion [283], see Ref. 283 in section 3.3 and Appendix A.4 for
details.

44One should note that the cases in (a) are exactly the MLGs where the results of Refs. 271 and 283
differ and that the case of 4′/mm′m in (c) is the result of a rotated coordinate system compared
to the equivalent group 4′/mmm′, see Appendix A.4.

45Not always, magnetic groups without any time-reversal symmetry as in category (b) in Kleiner’s
notation are an exception here.
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expressed by the coefficients for the direct effects. Accordingly, the effects inverse
to the related thermally-induced phenomena can be obtained from generalised Mott
and generalised Onsager relations combined, giving access to, e.g., spincaloritronic
effects as the inverse SNE or spin Ettingshausen effect, the spin-dependent Peltier
effect, as well as the inverse thermal spin-orbit torque and the inverse thermal Edel-
stein effect.

Finally one could consider possible future extensions, such as mechanical, gravita-
tional, acoustical, or optical effects, as long as they can be formulated as operator-
operator correlation within Kubo’s linear response formalism. Another extension of
the scheme is its application to non-linear response tensors, as done for example by
Huhne [353].
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Chapter 3

Results

In this chapter results obtained using the methods outlined in the previous chapter
are presented, in most cases in the form of reprints of published articles. Further,
so far unpublished results are compiled in manuscripts to be submitted. Additional
information related to the various sections is given in several appendices (A.2, A.3,
A.4, and A.7). The order of the following sections and results is not chronological
but rather sorted in a logical sequence going from fundamental aspects to more
complex properties. At the same time a certain hierarchy is implied, according to
the central topic of this thesis: Spincaloritronics.

With this in mind, the following order was chosen: The first section (3.1) is a collec-
tion of two published and one unpublished article on thermoelectrics in ferromagnetic
transition metals and alloys. Supporting information can be found in Appendix A.2.
The next section (3.2) features two published articles on the spin Nernst effect, a
truly spincaloritronic transport phenomenon and as such can be seen to be at the
heart of this thesis. Additional considerations on spin-dependent thermoelectrics
and results on another spincaloritronic effect, the spin-dependent Seebeck effect, are
collected in Appendices A.3 and A.2, respectively. Section 3.3 focuses on a more
fundamental aspect of linear response theory, namely the space-time symmetry of
the response tensors connecting perturbation and response. Two publications, one
on the formalism and another focussing on one of its predictions are presented,
additional information can be found in Appendix A.4. An application of the cor-
responding group-theoretical scheme, combined with first-principles calculations of
transport and magneto-optic properties in non-collinear and non-coplanar magnetic
systems is presented in Section 3.4 in the form of two unpublished manuscripts. The
focus of Section 3.5 is on two intimately related effects in response to an electric field:
the spin-orbit torque occurring in non-centrosymmetric magnetic systems and the
inverse spin-galvanic or Edelstein effect that describes the spin-polarisation induced
by an electric field in magnetic as well as non-magnetic materials without inversion
symmetry. The impact of finite temperature effects on transport coefficients is the
subject of Section 3.6, which presents a published article on the spin Hall effect in
AuPt alloys and an unpublished manuscript on the anomalous Hall effect in a com-
pensated ferrimagnetic Heusler alloy. Preceding each section a short introduction
into and an overview over its content is given. In most cases additional remarks and
errata are appended. Computational details can be found in Appendix A.7.
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3.1 Thermogalvanomagnetics

The following section summarises results on thermoelectric transport in magnetic
solids. Dealing with magnetic systems, which for the time being we will equate with
finite net magnetisation as in ferro- or ferrimagnetism, one encounters additional
transport anisotropies as compared to the case of non-magnetic solids. These so-
called galvanomagnetic effects are the anisotropic magnetoresistance (AMR), reflect-
ing the difference in resistivity parallel and perpendicular to the magnetisation, and
the occurrence of a charge current perpendicular to both applied electric field and
magnetisation, the anomalous Hall effect (AHE). These intrinsically spin-dependent
phenomena have their thermogalvanomagnetic counterparts, the anisotropy of the
Seebeck effect (ASE)2 and the anomalous Nernst effect (ANE), that are as such
spincaloritronic effects. The first publication in this section (3.1.1), Ref. 267, is a
study of the concentration dependence of these four types of effects in the proto-
typical ferromagnetic alloy CoxPd1−x. Additional remarks and errata can be found
on page 87. Another important aspect of thermoelectric transport in magnetic sys-
tems is the interaction of electrons with collective magnetic excitations, so-called
magnons. The second publication (3.1.2), Ref. 309, was a collaborative experi-
mental and theoretical effort within the SPP 1538 funded by the DFG aimed at
identifying the signatures of electron-magnon and electron-phonon scattering in the
electric, thermoelectric and thermal transport properties of CoFe alloys. The role of
the first-principles calculations in this study was that of a blank reference, provid-
ing as accurate as possible data without the effect of inelastic scattering. A by far
more detailed discussion of the concentration- and temperature dependence of the
various effects is given in a draft manuscript in Section 3.1.3, including additional
theoretical and computational details as well as unpublished results, in particular
also for transverse transport effects.

2Alternative names for this phenomenon were already mentioned in the introduction (Chapter 1).
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3.1.1 Published results on CoPd alloys

The following is a copy of the article Galvanomagnetic and thermogalvanomagnetic
transport effects in ferromagnetic fcc CoxPd1−x alloys from first principles [267],
reprinted (including Supplemental Material) with permission from

S. Wimmer, D. Ködderitzsch, and H. Ebert, Phys. Rev. B 89, 161101(R) (2014).
Copyright (2014) by the American Physical Society.
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The galvanomagnetic and thermogalvanomagnetic transport of the prototypical ferromagnetic transition-metal
alloy system fcc CoxPd1−x has been investigated on the basis of Kubo’s linear response formalism. The results for
the full electric conductivity tensor allow discussing the spin-orbit-induced anisotropic magnetoresistance and
the anomalous Hall effect. These are complemented by results for the corresponding thermogalvanomagnetic
transport properties anisotropy of the Seebeck effect and anomalous Nernst effect. The relation between the
respective response coefficients is discussed with the underlying electronic structure calculated relativistically
within the Korringa-Kohn-Rostoker coherent potential approximation band structure method for disordered
alloys.
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A ferromagnet subject to an external electric field and/or
thermal gradient shows a plethora of interesting transport
effects, with some of them already being exploited in tech-
nological applications. Depending on the direction of the
magnetization such materials show a variation of the electric
resistivity, denoted as anisotropic magnetoresistance (AMR).
Furthermore the anomalous Hall effect (AHE) gives rise to
components of the electric current transverse to the applied
electric field. Both effects, present also in the absence of an
external magnetic field, result from the relativistic coupling
of spin and orbital degrees of freedom [spin-orbit coupling
(SOC)].

The thermal counterparts to the AMR, the anisotropy of the
Seebeck effect (ASE) and to the AHE, the anomalous Nernst
effect (ANE) share the same origins. These anisotropic and
anomalous effects pose challenges to a theoretical description
starting from first principles, which is needed in order to give
material-specific parameters. While the AMR and the closely
related planar Hall effect have been extensively studied, there
are relatively few experimental investigations on the ASE and
planar Nernst effect (PNE) to be found in the literature [1–4],
and, to our knowledge, so far only one first-principles study
is available [5], which deals with the magnetic anisotropy
of the transmission through a Cu|Co|Cu trilayer system and
its enhancement due to the symmetry breaking at the Co|Cu
interface. To a much greater extent investigations have been
carried out on a closely related class of phenomena, namely
the magneto-thermopower or -Seebeck effect and its variations
(spin-dependent, tunneling, tunneling anisotropic) occurring
in various types of heterostructures [6–9].

Concerning the AHE [10–13] and ANE [13,14], strong
interest has arisen in recent years driven by progress in
the understanding of the microscopic origins of transverse
transport effects and by the (re)discovery of the spin Hall
effect [15–17]. The latter also has its thermoelectric analog,
the spin Nernst effect [18–20]. Disentangling the various
contributions to the anomalous and spin Hall effects [21] has
recently been supported by material-specific first-principles

*sebastian.wimmer@cup.uni-muenchen.de

calculations. Apart from an intrinsic contribution, a pure band
structure effect related to the Berry phase [14,22], there are
extrinsic contributions due to scattering at impurities [11,12].
Usually those are related to skew or Mott scattering [23]
and the side-jump mechanism [24] and are mainly discussed
in the dilute limit. In recent years several first-principles
calculations have been reported, dealing with the intrinsic
parts of anomalous Hall conductivity (AHC) [25,26] and spin
Hall conductivity (SHC) [27,28], a scattering-independent
side-jump contribution to the AHE [26,29] and the skew
scattering in the SHE [30,31]. To a lesser extent studies exist
treating all contributions on equal footing on a first-principles
level [31–34].

The thermally induced electron (and spin) transport, which
is much less explored on a quantitative theoretical level
than the responses to an electric field, has recently gained
tremendous impetus giving rise to the new field of spin
caloritronics [35]. Since there already exists a great deal
of insight into the microscopic mechanisms responsible for
longitudinal and transverse galvanomagnetic transport effects,
and their thermal counterparts share the same origin—namely
the spin-orbit interaction—one has an obvious starting point
for detailed investigations of the latter. Concerning explicitly
spin-dependent effects first-principles work has been done for
the spin Nernst effect using the Boltzmann formalism [36]
and Kubo linear response theory [37]. So far no clear-cut
experimental verification of this phenomenon could be made,
but there is substantial evidence [38]. For the symmetric part
of the corresponding response tensor (see below) Slachter
et al. [39] were able to show that indeed a spin-dependent
Seebeck effect exists and later on the same group reported
the observation of its reciprocal, the spin-dependent Peltier
effect [40]. The interest in the implicitly spin-dependent
phenomena (ASE/PNE [2–4] and ANE [3,41–43]) has been
revived lately by the fact that in experiments on the recently
discovered spin Seebeck effect (SSE) [44] its signal has to be
disentangled from those of the aforementioned effects having
the same symmetry [4,41,43,45].

It is therefore crucial to have a quantitative description of
those effects at hand in order to be able to extract the true
spin Seebeck signal. So far only a very few such investigations

1098-0121/2014/89(16)/161101(5) 161101-1 ©2014 American Physical Society
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have been carried out, e.g., for the ANE [14,46], but to our
knowledge not for the ASE/PNE and in particular not for
disordered alloys. This Rapid Communication aims at filling
this gap by presenting results for various galvanomagnetic and
thermogalvanomagnetic properties (AMR, ASE, AHE, and
ANE) of a prototypical ferromagnetic alloy, namely Co1−xPdx .
Using the concentration as an independent parameter allows
varying electronic properties and the strength of the spin-orbit
interaction.

Kubo’s linear response formalism allows relating the elec-
tric current densities �j c to the gradients of the electrochemical
potential μ and temperature T [47,48]:

�j c = −Lcc �∇μ − Lcq �∇T/T , (1)

with the gradient of the electrochemical potential �∇μ =
�∇μc + e �E, where μc is the chemical potential, e = |e| the
elementary charge and �E the electric field. Furthermore
�∇T denotes the temperature gradient. All elements of the
second rank response tensors Lij will be considered as
temperature dependent with the restriction to the electronic
temperature T , i.e., the phononic and magnonic temperatures
are neglected. The response tensors appearing in Eq. (1) can
be calculated from the corresponding conductivities in the
athermal limit (see Smrčka and Středa [49] or Jonson and
Mahan [50]). For the electric field along ν, with μ,ν ∈ {x,y,z}
one has:

Lcc
μν(T ) = −1

e

∫
dE σ cc

μν(E)D(E,T ), (2)

with D(E,T ) = (− ∂f (E,T )
∂E

), f (E,T ) the Fermi function, and
the energy-dependent charge conductivity σ cc

μν(E), which is
obtained by applying the Kubo-Středa formalism. In the zero
temperature limit one has −eLcc ≡ σ cc(EF), with EF being
the Fermi energy.

Assuming Cartesian coordinates and the sample being a
cubic collinear magnet with magnetization pointing in the
z direction the conductivity tensor has the structure (all the
following quantities are given for that particular symmetry of
the system) [51]:

σ cc =

⎛
⎜⎝

σxx σxy 0

−σxy σxx 0

0 0 σzz

⎞
⎟⎠ . (3)

The tensor for the residual resistivity is obtained by inversion
of the conductivity tensor: ρ = (σ cc)−1 and with the assumed
symmetry restriction the isotropic resistivity is ρiso = Tr(ρ) =
(2ρxx + ρzz)/3.

The anisotropic magnetoresistance (AMR), describing the
resistance of the magnetic system dependent on the mutual
angle of magnetization and current driving electric field is
given by

�ρ = ρzz − ρxx (4)

and the so called AMR ratio by �ρ/ρiso. Finally, the anoma-
lous Hall conductivity is given by the off-diagonal element σxy

in Eq. (3).

The transport coefficient L
cq
μν(T ) is expressed through

the energy dependence of the electric conductivity σ cc
μν(E)

as [49,50]:

Lcq
μν(T ) = −1

e

∫
dE σ cc

μν(E) D(E,T ) (E − EF). (5)

Considering a thermal gradient �∇T without an external electric
field �E the resulting electric current �j c vanishes when open-
circuit conditions are imposed. Equation (1) implies that an
internal electric field

�E = − 1

eT
(Lcc)−1Lcq �∇T = S �∇T (6)

builds up in order to compensate the charge imbalance induced
by �∇T , where S is the thermogalvanomagnetic tensor. It
has been shown by various authors (cf., e.g., Ref. [50])
that the expression for S implied by Eq. (6) reduces to the
original expression of Mott for T → 0 K. Obviously, the
resulting Seebeck effect connected with longitudinal transport
is expressed by the diagonal elements of the tensor

S = σ−1α . (7)

On the other hand the pure ANE—which is not restricted
to the open-circuit condition—connected with transverse
transport is represented in the following by the off-diagonal
elements of the tensor αcq (or Lcq). The chosen notation
is in line with the conventional symbol α

cq
μν = −L

cq
μν/T

for the Nernst [41,42,46] (or Peltier [52]) coefficient or
conductivity.

To investigate the transport properties of the ferromagnetic
fcc CoxPd1−x , seen as a prototype transition-metal alloy
system, in a most detailed way its electronic structure has
been determined in a first step by means of the fully relativistic
version of the Korringa-Kohn-Rostoker (KKR) band structure
method [53]. The corresponding calculations have been done
self-consistently within the framework of local spin density
functional theory (LSDA) with the substitutional disorder in
the alloys accounted for by the coherent potential approxi-
mation (CPA). In a second step, the transport coefficients Lcc

and Lcq were determined using Eqs. (2) and (5), respectively,
on the basis of the Kubo-Středa formalism [31,32,54,55].
For the athermal limit Mott’s classical formula for the
thermopower to obtain S/T and α/T has been used. It should
be noted that, whereas for determining the symmetric part
of the conductivity tensor [see Eq. (3)] the Kubo-Greenwood
approach is sufficient, for the calculation of the antisymmet-
ric components a Kubo-Středa or Kubo-Bastin approach is
needed.

Figure 1 shows the residual resistivity ρiso of CoxPd1−x as
a function of the composition in comparison with experiment.
As one notes, ρiso has a maximum at around 20% Co, which
is more pronounced for the calculations as in experiment [56],
for which it is probably not fully resolved. The strong
deviation from the Nordheim rule, which implies a symmetric
and parabolic dependence of ρiso on the concentration x,
can be explained by details of the electronic structure (see
below). A well-known property of the CoxPd1−x system is
its rather high anisotropic magnetoresistance (AMR), which
is one of the largest found in binary transition-metal alloys,
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FIG. 1. (Color online) Calculated (squares) and experimen-
tal [56] (circles) isotropic residual resistivity ρiso of CoxPd1−x as
a function of alloy composition.

although not as large as in FexNi1−x or CoxNi1−x alloys.
The calculated AMR ratio is shown in Fig. 2 (top) together
with experimental results [57]. Its steep rise between 0 and
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FIG. 2. (Color online) (Top) Calculated (squares) and experi-
mental [57] (circles) AMR ratio �ρ/ρiso of CoxPd1−x . (Bottom)
Calculated Seebeck coefficients in terms of −Sii/T for transport
perpendicular (xx) and parallel (zz) to the magnetization for the
athermal limit T → 0 K. In addition the anisotropy of the Seebeck
coefficient (ASE) calculated by Eq. (8) is given.

approximately 20–25 % Co is consistent with experiment.
For higher Co concentrations the experimental value stays
nearly constant over a large concentration range (approxi-
mately up to 70% Co), while the theoretical value drops.
A possible reason for this discrepancy could be structural
inhomogeneities of the investigated samples, e.g., caused by
clustering.

The Seebeck coefficients Sii for transport perpendicular (xx)
and parallel (zz) to the magnetization are shown in terms of
−Sii/T in Fig. 2 (bottom). As one notes these quantities show
a very prominent maximum slightly above 20% Co and differ
in particular in the region of the maximum. The corresponding
anisotropy of the Seebeck effect (ASE) can be expressed in
terms of the ratio:

ASE = Sxx − Szz

2
3Sxx + 1

3Szz

= �Sii

Siso
. (8)

As one can see in Fig. 2 (bottom) the ASE ratio also shows
a maximum at 20% Co, slightly lower than the AMR in
the top figure, reaching nearly the value of 0.2. In contrast
to the Seebeck coefficient itself, the ASE ratio still shows
appreciable values away from the maximum region as well.
Here one should note that so far relatively few experimental
investigations on the ASE (or PNE) can be found in the liter-
ature [1,2,4,43]. Measurements on the diluted ferromagnetic
semiconductor Ga1−xMnxAs, for example, gave for x = 0.039
a value of around 6% at 6 K [2], which is clearly lower than
the maximum value for CoxPd1−x found here.

The use of Mott’s formula for the Seebeck coefficient
implies an extrapolation T → 0 K (athermal limit) leading
to a constant value for −Sii/T . Using instead the generalized
Mott formula as given by Eq. (5) Sii(T ) has to be calculated for
each individual temperature T . Figure 3 shows for Co0.2Pd0.8

the Seebeck coefficients Sxx and Szz as a function of the
temperature. As one notes, there are clear deviations from
the simple linear behavior expected from Mott’s formula for
higher temperatures. In addition, one finds that the individual
temperature dependence of Sxx and Szz leads to an appreciable
temperature dependence of the ASE ratio with a broad
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FIG. 3. (Color online) Temperature dependence of the calculated
Seebeck coefficients Sxx and Szz (triangles up and down, respectively)
in Co0.2Pd0.8. In addition the corresponding anisotropy ratio ASE =
(Sxx − Szz)/( 2

3 Sxx + 1
3 Szz) is shown.
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FIG. 4. (Color online) (Top) Calculated AHC (VC, full squares)
together with its intrinsic contribution (NV, open squares) in compari-
son to low temperature experimental data [58] (circles). In addition the
theoretical Hall angle αH = σxy/σxx is shown. (Bottom) Calculated
ANC αxy (VC, full triangles) together with its intrinsic contribution
(NV, open triangles), in the athermal limit.

maximum around 150 K. (One should bear in mind that the
influence of phonons and magnons is not accounted for in these
calculations, which might not be negligible in this system. In
fact the Curie temperature for the alloy with 20% Co is around
500 K [60].)

The calculated AHC σxy of CoxPd1−x for T = 0 K shown
in Fig. 4 (top) is found in very satisfying agreement with
the corresponding low-temperature experimental data [58]. In
addition to the theoretical AHC that includes the so-called
vertex corrections (VC) [13,54], results are given for which
these were ignored (NV). The difference between these can
be identified with the extrinsic contributions to σxy due
to the skew scattering and side-jump mechanisms [21,32].
Obviously, there are pronounced extrinsic contributions in the
Pd-rich as well as Co-rich regimes having different sign. This
situation is very similar to that found for the spin Hall effect
in nonmagnetic transition-metal alloys [31]. In addition the
figure shows the Hall angle αH = σxy/σxx that—as the AHC
σxy—shows a sign change at around 35% Co. This is followed
by a very broad maximum around around 75% Co.

The anomalous Nernst conductivity (ANC) αxy for T → 0
corresponding to σxy is given in the bottom panel of Fig. 4.
Again a very prominent maximum around 20% Co is found. As

for the AHC, Fig. 4 (bottom) gives results for calculations in-
cluding (VC) and excluding the vertex corrections. In contrast
to σxy , these are relatively weak and remarkable only for the
Pd-rich side of the system. Altogether the intrinsic contribution
is dominant for all concentrations. As one notes from Fig. 4
there is no obvious direct relation between these transverse
thermoelectric and electric transport coefficients αxy and σxy ,
respectively (see below and Supplemental Material [59]).

The prominent maximum of the longitudinal transport
quantities ρiso and �ρ/ρiso shown in Figs. 1 and 2, respectively,
can be understood by having a look at the variation of the
electronic structure of CoxPd1−x with its composition (see
Supplemental Material [59]). For the majority channel, the
upper edges of the d-like bands at the X and W points in
the Brillouin zone touch the Fermi level for around 20% Co.
The latter in fact extends over almost the whole length of
the Z direction connecting W and X. For the minority spin
channel, on the other hand, the Fermi level crosses sp-like
bands that have a steep slope leading to a very different
conductivity for the two spin channels. The peculiar features
of the electronic structure of CoxPd1−x and its concentration
dependence clearly also determine the behavior of the more
complex transport quantities Sii (and the associated ASE),
σxy and αxy . Concerning the transverse AHC σxy one has to
account in addition for the prominent role of the spin-orbit
coupling that has a rather different strength for the two alloy
partners.

As mentioned above, there is no simple relationship
between the galvanomagnetic and their corresponding ther-
mogalvanomagnetic quantities, as AMR and ASE and AHC
and ANC, respectively. This has to be ascribed to the fact
that σxy is determined by the electronic structure in the range
kBT around the Fermi energy EF, while for αxy the first-
order weight (E − EF) enters in addition the corresponding
calculation.

In summary, a first-principles description of the galvano-
magnetic and thermogalvanomagnetic properties of the proto-
typical ferromagnetic transition-metal alloy system CoxPd1−x

has been presented. The results are in satisfying agree-
ment with corresponding available experimental results. The
prominent features of the concentration dependence of the
various transport properties could be related to characteristic
features of the underlying electronic structure as well as to
the prominent role of spin-orbit coupling. In particular for
a concentration of 20% Co in Pd a rather high ASE of
around 10% was found, exhibiting an interesting nonlinear
temperature dependence. For longitudinal as well as trans-
verse responses to electric field and temperature gradient,
different concentration dependences were found, which clearly
shows that there is no trivial relation between the two
classes of phenomena. The pronounced sensitivity of the
galvanomagnetic and, to an apparently even greater extent,
thermogalvanomagnetic transport effects to the electronic
structure obviously allows tuning them in a relatively wide
range by varying the composition of a substitutional alloy
system.

This work was supported financially by the Deutsche
Forschungsgemeinschaft (DFG) via the priority programme
SPP 1538 and the SFB 689.
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FIG. 1. BSF of Co0.15Pd0.85 for spin up (top) and down
(bottom).

Electronic structure of CoxPd1−x alloys with x ≈ 0.2

Many of the transport phenomena discussed in the
main paper show characteristic features at a Cobalt con-
centration of or close 20 %. In order to understand
this behavior the spin-dependent Bloch spectral functions
(BSF) of three alloys containing 15, 20 and 25 % of Co
were calculated. As visible from Figs. 1-3 the Fermi
level rises with growing Co content and at around 20 %
crosses the top of d-like bands of the majority channel at
and between the X- and W-points of the Brillouin zone.
In the minority channel the bands crossing the Fermi
level are of sp-character having in contrast large slopes.
This leads to very different conductivities and also energy
dependencies of the conductivities for the two channels.
From this the large AMR and, to some extent, also the
ASE for Cobalt concentrations of around 20% can be
understood. The transverse transport properties anoma-
lous Hall conductivity and anomalous Nernst conductiv-
ity certainly also are determined by subtle features of
the band structure, but due to the more complex nature
of the mechanisms behind them (intrinsic, side-jump and
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FIG. 2. BSF of Co0.2Pd0.8 for spin up (top) and down (bot-
tom).

skew scattering contributions) one in addition has to take
the role of spin-orbit coupling into account. On the basis
of one single alloy system (as discussed here) a simple
model at the moment is therefore not conceivable.

Energy dependence of the AHC and temperature
dependence of the ANC

To illustrate the connection between galvanomagnetic
and thermogalvanomagnetic effects in FIG. 4 the anoma-
lous Hall conductivity of Co0.2Pd0.8 is shown as a func-
tion of energy at the top and the corresponding anoma-
lous Nernst conductivity as a function of temperature,
calculated from the former via Eq. (5) of the main pa-
per, is shown at the bottom. Due to the energy depen-
dence of the vertex corrections, which in this case have
a larger impact at energies above the Fermi level, the
ANC with and without vertex corrections show a differ-
ent temperature dependence. Furthermore one observes
a deviation from linearity of ANC(T ) for higher temper-
atures, even more pronounced for the VC result. This
traces back to Eq. (5) being a measure for the asymme-
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FIG. 3. BSF of Co0.25Pd0.75 for spin up (top) and down
(bottom).
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FIG. 4. Energy-dependent anomalous Hall conductivity (top)
and temperature-dependent anomalous Nernst conductivity
(bottom), calculated from the former by Eq. (5) of the main
paper. For both quantities results with (VC, full squares) and
without (NV, open circles) vertex corrections are shown.

try of the AHC(E) curve in a certain energy interval
around EF . With increasing width of this interval, the
asymmetry becomes larger, and thus the deviation from
linearity–which would be expected from Mott’s classical
formula for the thermopower

S =
π2k2

BT
3e

d ln σ(E)
dE

∣∣∣
EF

=
π2k2

BT
3e

1
σ(E)

dσ(E)
dE

∣∣∣
EF

= σ−1α. (1)

The absolute value of the integral is smaller for the calcu-
lations including vertex corrections hence the ANC is as
well smaller for the whole temperature range considered
here.

* sebastian.wimmer@cup.uni-muenchen.de
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Additional remarks and errata

• Kudrnovský et al. [354] could later show that the rather poor agreement be-
tween calculated and measured AMR data for intermediate concentrations in
CoPd alloys (see Fig. 2, top panel, on page 82 of this thesis) can be traced
back to the structural anisotropy due to L10 ordering near equiatomic com-
position. To which extent this affects also the anisotropy of the Seebeck effect
is not settled, since to the best of the author’s knowledge no experimental
investigations on this property have been performed so far.

• The definition of the Seebeck coefficient S in terms of the thermoelectric con-
ductivity α in Eq. (7) of Ref. 267 (page 81 herein) as well as Eq. (1) of the
Supplemental Material (page 86 herein) is unfortunately inconsistent. Since S
was defined as −1/(eT )Lcq(Lcc)−1 in Eq. (6), σ = −eLcc and α = −Lcq/T , it
should be S = −ασ−1.

• The caption of Fig. 4 in the Supplemental Material to Ref. 267 (page 86 herein)
falsely states that results including vertex corrections (VC) are given as full
squares rather than circles.
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3.1.2 Published results on CoFe alloys

The following is a copy of the article Magnon scattering in the transport coefficients
of CoFe thin films [309], reprinted (including Supplemental Material) with permis-
sion from

S. Srichandan, S. Wimmer, S. Pöllath, M. Kronseder, H. Ebert, C.H. Back, and
C. Strunk, Phys. Rev. B 98, 020406(R) (2018). Copyright (2018) by the American
Physical Society.

https://link.aps.org/doi/10.1103/PhysRevB.98.020406
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Magnon scattering in the transport coefficients of CoFe thin films

S. Srichandan,1 S. Wimmer,2 S. Pöllath,1 M. Kronseder,1 H. Ebert,2 C. H. Back,1 and C. Strunk1

1Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
2Department of Chemistry, Physical Chemistry, Ludwig-Maximilians-Universität, D-81377 Munich, Germany

(Received 5 January 2018; published 13 July 2018)

Resistivity ρ, thermopower S , and thermal conductivity κ were measured simultaneously on a set of CoFe
alloy films. Variation of the Co content xCo allows for a systematic tuning of the Fermi level through the band
structure, and the study of the interplay between electronic and magnetic contributions to the transport coefficients.
While band-structure and magnon effects in ρ and κ are rather weak, they turn out to be very significant in S . A
decomposition of S into Mott and magnon drag contributions results in a systematic evolution between the two
limiting cases of pure Fe and pure Co. At low temperatures, we find an interesting sign change of the curvature
of S(T ) that indicates a corresponding sign change of the magnon drag.

DOI: 10.1103/PhysRevB.98.020406

Spintronics [1,2] and more recently spin caloritronics [3,4]
have sparked interest in the fundamental transport properties
of ferromagnetic thin films since devices engineered from
ultrathin ferromagnetic layer stacks have a potential for techno-
logical applications. While the measurement and interpretation
of electrical transport parameters is rather straightforward,
even for thin ferromagnetic films [5], the measurements and
interpretation of their thermal, thermoelectric, and magne-
tothermoelectric counterparts is much more difficult. However,
the optimization of spintronic and spin-caloritronic devices
depends on the accurate knowledge of the various thermal
transport parameters as well as the parameters governing the
relaxation mechanisms for electrons, phonons, and magnons in
thin-film ferromagnetic materials. Similarly, the exploitation of
magnon transport in temperature gradients for the transmission
and processing of information [6,7] depends on the under-
standing and quantitative knowledge of their thermoelectric
and thermomagnetic properties.

So far only a few experiments have addressed the interplay
of the magnetothermoelectric transport parameters using the
modern toolbox of nanotechnology [8–15]; these were mainly
focused on the prototypical ferromagnet permalloy while
systematic investigations as a function of alloy composition
are still lacking. On the theory side, significant progress has
been made in the description of spin-dependent transport
phenomena. The use of ab initio theory in combination with
a realistic description of alloys [16–19] allows now for a
fresh look at the transport properties of ferromagnetic alloys.
Of particular interest is the prediction of Flebus et al. [20],
who pointed out that besides the usual diffusion term in the
thermoelectric power (TEP), two contributions compete in the
magnon drag: one of hydrodynamic origin that drives majority
carriers towards the cold side of the sample, and a second one
in the opposite direction. The second contribution arises from
the accumulation of spin Berry phase in a time-dependent
magnetization texture [21], caused here by the thermally
excited spin waves.

Experimental evidence for magnon drag effects in the
TEP has been reported for elemental Fe [22] and Cr [23]

bulk samples. Only very recently was the topic taken up
again by Watzman et al. [24], who attributed an important
contribution to the TEP and the Nernst coefficient of elemental
Fe and Co to magnon scattering. Interestingly, the sign of
the presumed magnon contribution to the TEP is opposite
for both metals. Hence the natural questions arise, what is
the reason for this sign change and what is the evolution
of the TEP in CoFe alloys between the two elements. With
varying composition, not only does the electron density, but
also the phonon and magnon dispersion relations change. This
affects all sources of scattering processes for the electrons and
thus the temperature dependence of the transport coefficients.
So far only the electric and spin transport in CoFe alloys
were recently carefully studied, and the spin-wave damping
parameters α(xCo) measured [25,26].

Here, we investigate a series of CoFe alloy films on
SiNx -based suspended microcalorimeters. Simultaneous
measurements of several transport coefficients, i.e., the
resistivity ρ(T ), the TEP S(T ), and the thermal conductivity
κ(T ), are performed in a wide temperature range of 25–300 K
on the very same films. In this way, we directly probe the
variation of the spin-polarized band structure and the relevant
scattering mechanisms with the Co content, and the evolution
of magnon scattering in different observables. We find evidence
for magnon scattering effects most clearly in the TEP. The
magnon drag contribution Smag(T ,xCo) ∝ T 3/2 systematically
decreases with xCo, and changes sign near xCo � 0.6.

To fabricate the samples, (60–80)-nm-thick CoFe films are
deposited as rectangles (116 μm × 60 μm) by molecular beam
epitaxy in an ultrahigh vacuum chamber on 500-nm-thick SiNx

membranes [light blue in Fig. 1(b)] with an area of 500 μm ×
500 μm. The film is examined using atomic force microscopy
(AFM) for the determination of the surface roughness, by x-ray
photoelectron spectroscopy for stoichiometry determination,
and by electron diffraction for structural analysis. The crystal
structure for xCo = 0.3 turns out to be bcc while for xCo = 0.8
we find a clear admixture of fcc precipitations, similar to the
findings in Ref. [25].

Next, the contact leads and thermometers are patterned
using e-beam lithography (EBL) and a deposition of 50 nm

2469-9950/2018/98(2)/020406(5) 020406-1 ©2018 American Physical Society
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FIG. 1. (a) Resistivity ρ(T ) for several values of Co content xCo.
(b) Optical image of a typical device. (c) The phonon contribution to
the resistivity for xCo = 0.5 (open circles) fitted to a Bloch-Wilson
function for T � 100 K (red line). Double-headed arrow: Estimated
magnon contribution to ρ(T ). Blue line: Calculated resistivity taking
into account chemical disorder and lattice vibrations for xCo = 0.5
(see text). (d) Estimated ρmag for all samples (dots) vs temperature
with ρmag for bulk Fe from Ref. [29] (orange line).

of Al. The thermometers are 100-μm-long and 1.5-μm-wide
wires. The contact leads are also 1.5 μm wide. In a second EBL
step, two symmetrically placed meander heater structures are
patterned in a 40-nm-thick Au60Pd40 film. Finally, the parts of
the membranes that do not support the metal structures [black
area in Fig. 1(b)] are reactively etched using a CHF3/O2 plasma
for 10 min, leaving a freely suspended SiNx bridge. (More
details on the film characterization and sample layout are given
in the Supplemental Material [27].)

The measurements were performed in a helium flow cryo-
stat in vacuum. Radiation losses are minimized by virtue of
a radiation shield at the sample temperature. All resistances
were measured in a four-terminal configuration. The TEP
S(T ) and the thermal conductance K(T ) were determined
simultaneously by measuring the temperature difference �T

between the ends of the bridge versus heater current such
that �T/T < 0.01. The corresponding thermovoltage Vth is
measured using a nanovoltmeter and the TEP is extracted
from the slope of Vth(�T ). The total thermal conductance
K = PH/�T includes the thermal conductances KB and KL

of the bridge and the lead sections, respectively. PH is the
heater power. In the absence of radiation or convection losses,
the one-dimensional (1D) heat diffusion equation can be
solved to find KB and KL independently [15,28]. KB contains
both KCoFe and KSiNx

. To determine KSiN, we have prepared
four devices with bare SiNx . From the thermal conductance
KCoFe = KB − KSiNx

we calculate the thermal conductivity
κCoFe = κ using the known dimensions of the film for all the
samples with different compositions. The maximal uncertainty
of κ resulting from the variance of KSiN between the different
SiNx membranes is �7.5 W/(K m).

In Fig. 1(a) the resistivity ρ(T ) of all five samples is plotted
as a function of temperature. The resistivity is highest for
xCo = 0.20 and decreases monotonically with the addition of
Co. This decrease is mainly a consequence of the increase
in electron number. In addition, at xCo � 0.2, a d-like band
crosses the Fermi surface, resulting in a maximal ρ(xCo) (for
more details and a comparison with earlier experiments, see
the Supplemental Material [27]).

Next, we evaluate the magnon contribution ρmag to �ρ(T ).
According to the analysis of Refs. [29,30], ρmag becomes
sizable only above T � 100 K. Hence, we first determine
the phonon contribution by fitting the measured ρ(T ) to a
Bloch-Wilson (BW) function [27] from 26 up to 100 K. An
example is shown in Fig. 1(c) for xCo = 0.5. Extrapolating to
300 K, we can evaluate the magnon contribution ρmag(T ) by
subtracting the BW fit from the measured ρ(T ). The results
are plotted in Fig. 1(d): ρmag(T ) gradually decreases with
increasing xCo (with xCo = 0.36 being an outlier). The magnon
contribution is at most 6.5% of ρ at room temperature for xCo =
0.20, corresponding to about 1/5 of the phonon contribution.
The magnitude and temperature dependence of ρmag(T ) are
quite comparable to that of elemental Fe [29] [orange line in
Fig. 1(d)]. The blue line in Fig. 1(c) shows a first-principles
calculation of ρ(T ) for xCo = 0.5 within the Kubo formalism
accounting for chemical disorder via the coherent-potential
approximation (CPA) alloy theory and for thermal lattice
vibrations via the alloy analogy model [16]. The calculation
underestimates the absolute values and overestimates the slope
of ρ(T ) both by a factor of �2 as it does not include the
considerable structural disorder.

Next, we present the results for the thermopower in Fig. 2(a),
which constitutes our main result. At high temperatures, S(T )
is negative and varies roughly linearly with temperature. Note
that the approximately linear parts at T > 100 K do not
extrapolate to S = 0 at T = 0, as opposed to the expectation
from the Mott law. At low temperatures S(T ) is not linear.
This implies that S(T ) cannot be described by a Mott-like
dependence alone, but additional nonlinear contributions have
to be present. Moreover, the curvature clearly changes sign: It
is positive for lower Co content, i.e., xCo = 0.2 and 0.22, but
negative for xCo = 0.7 and 0.5. At the lowest temperatures,
S(T ,xCo = 0.7) becomes slightly positive.

By fitting the high-temperature part of S(T ) to a Mott-like
term linear in T , and a second term proportional to T 3/2, we
can decompose the TEP according to

S(T ) = S ′
MottT + S ′

magT
3/2 + Sres(T ). (1)

The coefficients S ′
Mott(xCo) and S ′

mag(xCo) describe the de-
pendencies of the Mott-like part SMott(T ) and magnon drag
contribution Smag(T ) on xCo. We have verified that these
coefficients are robust against a change of the fit interval within
100–300 K. Below 100 K a much smaller residual contribution
Sres(T ) � 1 μV/K remains (see Supplemental Material [27]).

Figure 2(b) shows the Mott-like contribution that is
proportional to T . The absolute values |SMott(T )| decrease
with increasing Co content, i.e., with increasing electron
density, which is consistent with the corresponding trend seen
in ρ(T ). The values of S ′

Mott contain a small contribution
S ′

Mott,Al = 3.7 nV/K2 from the diffusion thermopower of the
Al leads [31].

020406-2
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FIG. 2. (a) Measured thermopower vs temperature for all CoxFe1−x samples from 26 to 296 K, labeled on the right by at. %
Co. (b) Mott-like contribution SMott(T ) (half-solid triangles) as a function of temperature. Inset: SMott and Smag vs at. % Co at
296 K. (c) Magnon drag Smag(T ) ∝ T 3/2 contribution (half-solid circles); literature values for bulk Co and Fe [24] are shown as lines.
(d) Calculated thermopower taking into account chemical and vibrational disorder.

On the other hand, we find a substantial nonlinear contri-
bution Smag(T ) that increases proportionally to the magnon
number and is as large as 13.5 μV/K at 296 K for the film
with xCo = 0.2 [Fig. 2(c)]. The sign of the coefficient S ′

mag is
positive for xCo � 0.5 and negative for xCo = 0.7 (inset). This
is reflected in the sign change of Smag(T ) from positive for
the Fe-rich to negative for the Co-rich alloys, which agrees
with Smag for the case of elemental Fe and Co [24] at these
temperatures. The inset in Fig. 2(b) shows the evolution of the
coefficients S ′

Mott and S ′
mag with xCo.

In ferromagnets, the magnon drag contribution to the TEP
has a T 3/2 dependence at low T , provided that T > �mag/kB

(�mag being the gap in the magnon dispersion relation), which
reflects the variation of magnon density and specific heat with
T . The magnon drag peak normally occurs at a temperature
roughly one fifth to one half of the Curie temperature TC of
the material [22]. Due to the high TC of the studied CoFe
alloys the maximal magnon drag for our films is expected
above the temperature range investigated here. The magnon
damping in CoFe alloys is comparable to or even lower than
those of the pure elements [26]. Hence, alloying does not lead to
a substantial shortening of the magnon lifetime, and magnon
drag can survive in the presence of disorder, in contrast to
phonon drag [24].

The TEP can also be obtained from first-principles calcula-
tions [27]. The results are shown in Fig. 2(d). For the highest
and lowest Co concentration the calculation can reproduce
the size and systematics of the experimental data, but for in-
termediate concentrations it significantly underestimates both
the measured TEP in Fig. 2(a) and the linear contribution to

the TEP in Fig. 2(b). In this theory the curvature arises from
the rapid variation of the energy-dependent conductivity when
the d bands touch the Fermi energy around xCo � 0.2 (see
Supplemental Material for details [27]). At high temperatures,
this requires one to go beyond the term linear in T in the
Sommerfeld expansion. Taking into account also spin disorder
further reduces Stheo. Given the significant curvature of the
measured thermopower below 100 K, our experimental results
cannot be explained by the diffusion contribution alone.

The computed suppression of Stheo(xCo � 0.5) can, in part,
be reverted by the presence of fcc precipitations with intrinsi-
cally larger absolute values of Stheo and an opposite curvature
[27,32]. The relevance of such precipitations is also corrobo-
rated by the behavior of the thermal conductivity (see below).

Most interesting is the sign change observed for Smag when
xCo is tuned from the Fe- to the Co-rich side. As already
mentioned, recent theoretical work has calculated the spin-
motive forces in presence of a magnetization texture [20]:
(i) a Berry-phase contribution that drives the majority spins
towards the hot end and is controlled by the adiabatic damping
parameter β, and (ii) a hydrodynamic contribution that drives
the majority spins towards the cold end and is controlled by the
Gilbert damping α. A finite difference between majority- and
minority-spin-motive force results in an electromotive force
proportional to the magnon number (i.e., ∝T 3/2). The magnetic
texture induced by a thermally excited magnon generates a
magnon drag contribution to the TEP. The Gilbert damping
α(xCo) has been determined from ferromagnetic resonance
experiments [26]. So far the analysis of our data using this
strongly simplified model results in unphysically high values of

020406-3
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FIG. 3. (a) Measured thermal conductivity of the CoxFe1−x

films. (b) Calculated electronic contribution to κel including elastic
scattering on lattice vibrations. (c) Extracted Lorenz number L as
a function of bath temperature. The horizontal line indicates the
Sommerfeld value L0 = π 2/3 · (kB/e)2. (d) Positive deviations from
the Wiedemann-Franz law using the measured resistivity of the films
with low Co content.

β. On the other hand, the clear systematics that we observe calls
for a more quantitative theoretical treatment of magnon drag.

Finally, we investigate the thermal conductivity κ in the
films. As demonstrated in Fig. 3(a), κ(T ) increases with
temperature and then saturates at high temperatures for all
films. The individual curves are subjected to a ±10% random
shift from the slightly varying background contribution of the
different SiNx membranes (see Supplemental Material [27]).
The corresponding calculation of the electronic contribution
κel(T ) including temperature-dependent vibrational disorder
in Fig. 3(b) overall reproduces the systematics and the propor-
tions for samples of different Co contents, with the exception
that the monotonic increase of κ with xCo observed in the
calculated data is violated for xCo = 0.36 at high T in our
experiment. The absolute values of κ are overestimated by the
very same factor of �2, by which the theory underestimates
the electric resistivity in Fig. 1(c).

The Lorenz number L(T ) = κ(T )ρ(T )/T evaluated from
the measured set of ρ and κ is shown in Fig. 3(c). We observe a
significant violation of Wiedemann-Franz law (WFL, indicated
by the horizontal line). Enhancement of L above L0 is found
for xCo = 0.22, while L is smaller than L0 for xCo = 0.7 at

all temperatures. For intermediate xCo, L > L0 at low T and
vice versa at higher T . The positive deviation from WFL, i.e.,
L > L0, is naturally explained by the contribution κph from
phonons to the thermal conductivity. In the investigated T

regime the magnon contribution to κ is usually small compared
to the phonon contribution [33]. Only in films without fcc pre-
cipitations (xCo = 0.2 and 0.22) can one expect κph to become
significant, because such precipitations drastically shorten the
phonon mean free path. Hence we estimate κph � κ − T L0/ρ

[see Fig. 3(d); Supplemental Material [27]]; it shows clear
maxima around 100 and 200 K, respectively, which resemble
the well-known umklapp peak. They are shifted towards higher
temperatures with respect to the phononic umklapp peak for
pure Fe or Co.

The observed negative deviations from WFL can be ex-
plained by the gradual reduction of the phonon mean free
path in films with xCo � 0.36. Besides suppressing κph, the
electronic contribution κel is known to be enhanced in the
presence of inelastic (“vertical”) scattering of electron with
phonons [13,34], while these scattering events are not effective
in the resistivity. In addition, it is known that L < L0 for pure
Co in this temperature range [35], and is thus in agreement
with the behavior of L(T ) in Co-rich samples.

To summarize, simultaneous measurements of the electric,
thermoelectric, and thermal transport coefficients performed
on alloyed CoFe films have enabled us to understand the con-
tribution from electrons, phonons, and magnons qualitatively
and in part even quantitatively. In particular, the evolution of
the thermopower indicates a possible interplay of diffusion and
magnon drag contributions, the latter changing sign close to the
center of the concentration range. A generalized Mott theory
is also qualitatively consistent with the results. For the thermal
conductivity a pronounced violation of the Wiedemann-Franz
law is observed in structurally homogeneous samples with
low Co content. A quantitative understanding of the observed
systematic evolution of the thermoelectric power calls for a
more elaborate theory.
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FIG. S1. Optical image of a typical device with an allocation
of the different elements.

SCHEMATIC OF A TYPICAL DEVICE

Figure S1 shows an optical image of the central re-
gion of a typical suspended microcalorimeter for the
measurement of the transport coefficients as seen from
the top. The central rectangle constitutes the 80 nm
thick Co50Fe50 film. The 40 nm thick Au60Pd40 mean-
der heaters are placed onto trapezoidal islands at both
ends of the bridge. Thermometers and electrical leads are
made of 50 nm thick Al. The suspended 500 nm thick
SiN membrane appears as purple background, while the
etched regions are seen as dark empty areas.

STRUCTURAL CHARACTERIZATION

Electron diffraction at 300 keV in a transmission elec-
tron microscope (TEM) was employed for structural
characterization of our films deposited on 30 nm thick
SiN-membranes. The insets to Figs. S2(a,b) show diffrac-
tion patterns for two films with xCo = 0.3 and 0.8. These
compositions represent the two regimes, where pure bcc
and mixed bcc/fcc phases are expected [25]. The obser-
vation of bright diffraction rings indicates the polycrys-
talline nature of our films. The radially integrated lines-
can (integrated intensity versus scattering vector |~k| in
nm−1) corresponding to the inset in Fig. S2(a) is shown
in the main figure. The labels near the peaks (marked
by filled red circles) indicate the Miller indices hkl of the
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FIG. S2. (a) Electron diffraction pattern and radially inte-
grated linescan of the xCo = 0.3 film. (b) Electron diffraction
pattern and radially integrated linescan of the xCo = 0.8 film.

corresponding lattice planes. The measured sequence of
peak spacings matches very well the expectations for a
bcc lattice. No additional peaks are observed. The ab-
solute values of |~k| are listed for the first four peaks in
table I. The absolute accuracy is limited by the knowl-
edge of the precise distance between the sample and im-
age planes in the TEM, but matches within a few percent
with the literature values for xCo = 0.3 [36].

In the inset to Fig. S2(b), additional and slightly
fainter diffraction rings are observed for xCo = 0.8, when
compared to the inset to Fig. S2(a). In between the in-
dexed bcc-peaks, the corresponding line scan (main fig-
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Miller indices (hkl) Fe0.7Co0.3 Ref. [36] Fe0.2Co0.8 Ref. [37]

110 (bcc) 4.8 5 4.8 -

200 (bcc) 6.8 7 6.9 -

211 (bcc) 8.3 8.6 8.4 -

220 (bcc) 9.6 9.9 9.7 -

111 (fcc) - - 4.8 4.9

200 (fcc) - - 5.4 5.6

220 (fcc) - - 7.8 8

311 (fcc) - - 9.1 9.4

TABLE I. The miller indices and corresponding scattering

vectors |~k| (in nm−1 for films with xCo = 0.3 and xCo = 0.8
and literature values for xCo = 0.3 [36] and fcc Co [37].

ure) displays several additional peaks marked by open
circles. Their positions match very well the expected
scattering vectors for a fcc lattice with a spacing of (111)
planes identical to those of the (110) planes of a bcc lat-
tice. The positions of the additional peaks are listed in
table I and match very nicely those expected for a fcc
Co [37]. Note that for bcc lattices only reflexes with
h + k + l =even are allowed, while for fcc lattices only
those are allowed, where all indices are either even or
odd.

Thus the diffraction patterns evidence that the film
with xCo = 0.3 exhibits pure bcc crystal structure, while
the film with xCo = 0.8 consists of mixed bcc and fcc
crystallites. This is consistent with earlier observations
for FeCo-films on a different substrate [25]. Our struc-
tural analysis corroborates our interpretation of Fig. 3(c)
of the main text. There we linked the observed negative
deviation of Lorenz number from the Sommerfeld value
in case of CoxFe1−x thin films with xCo = 0.36, 0.5 and
0.7 to enhanced inelastic electron and phonon scattering.
The gradually increasing enhancement results from the
increasing weight of fcc domains in crystal structure with
increasing Co content in these films.

MORE DETAILS ABOUT THE RESISTIVITY

We decompose the total resistivity into a residual and
a T -dependent part: ρ = ρ0 + ∆ρ(T ). In Figure S3 the
residual resistivity ρ0(xCo) of all five samples at T = 26 K
is plotted. It is maximal near xCo = 0.20 then decreases
monotonically with addition of Co. Our data are well in
line with earlier data on bulk samples [38–40]. The solid
green line has been calculated within the Kubo formalism
accounting for chemical disorder via the CPA alloy theory
(see Sec. below). It systematically underestimates our
experimental data and for xCo < 0.4 also those of Ref. 38.

Taking into account chemical disorder only, ρ0(xCo)
is reproduced qualitatively by our model calculations.
When compared to pure Fe and Co, but also to bulk al-
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FIG. S3. Residual resistivity ρ(xCo) from this work at 26 K
(filled squares), after annealing (filled star), from literature
(20 nm Fe at 26 K (filled diamond [38]), 53 nm Co (open
diamond [39]), and bulk CoFe at 4.2 K (open squares [40]),
and the calculated contribution of chemical disorder at 0 K
(line).

loy samples, the values of ρ0 are significantly higher than
expected for purely chemical disorder, i.e., a perfect bcc
lattice with a random distribution of Fe and Co atom on
the lattice sites. This indicates a rather high degree of
additional structural disorder in our films. In order to
test this assumption we performed an annealing test at
400 ◦C for 5 minutes with a film with xCo = 0.7. The
annealing led to a significant drop of ρ from 6.94µΩ cm
to 3.68µΩ cm at 26 K [blue star in Fig. S3].

Next we discuss the separation of phonon and magnon
contributions to ∆ρ(T ). According to the analysis of
Ref. [29, 30] the magnon contribution ρmag becomes siz-
able only above T ' 100 K. We first determine the
phonon contribution by fitting the measured ρ(T ) to a
Bloch-Wilson (BW) function

∆ρphon(T ) = αep

(
T

ΘR

)3
ΘR/T∫

0

x3 dx

(ex − 1)(1− e−x)
(S1)

from 26 K up to 100 K, where the magnon contribution is
expected to be very small. The free parameters αep and
ΘR represent the electron-phonon coupling constant and
a characteristic phonon temperature ΘR, respectively.
We extract ΘR ' 260 − 280 K from these fits, which
is about 25% smaller than ΘDebye of pure Fe or Co [41].
Such a discrepancy between the characteristic tempera-
tures extracted from equilibrium and transport quantities
is not surprising, as the Debye model characterizes the
phonon spectrum only very roughly.

Figure S4 shows the results for films with 20, 22, 36 and
70 % Co. The disorder in our films is also reflected in the
temperature dependence ρ(296K)− ρ(26 K); ρ changes
by 2 ∼ 5µΩ cm between 26 and 296 K which is about
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FIG. S4. Resistivity data and Bloch-Wilson fits (see main
text) from 26 K to 100 K and extrapolated to 296 K (lines)
on measured data (open circles) as a function of temperature
for xCo = 0.2, 0.22, 0.36, 0.5, 0.7. ρmag is indicated as a double
headed arrow at the highest temperature.

half of the values 6.2µΩ cm and 10.4µΩ cm for bulk Co
and Fe, respectively. A similar reduction of the phonon
resistivity in thin films has been observed earlier [42].
Extrapolating to 300 K we can evaluate the magnon con-
tribution ρmag(T ) (marked by double-headed arrows) by
subtracting the BW-fit (lines) from the measured ρ(T ).
The magnon contribution is at most 6.5% of ρ at room
temperature for xCo = 0.20, and thus only a fraction of
the phonon contribution.
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FIG. S5. Measured thermovoltage as a function of ∆T for a
film with 36% Co at temperature of 32 K is shown as black
squares and the red line represents the linear fit of the data
with zero intercept.

res

measured

FIG. S6. Total measured thermopower (black dots) and cor-
responding fit function (red line) for a film with xCo=0.7.
The squares, triangles and the inverted triangles represent
the SMott, Smag and SRes respectively.

DETAILS OF TEP MEASUREMENT

As explained in the main text, the thermopower is de-
termined from the ratio of measured thermovoltage ∆Vth

and the temperature difference of ∆T . In particular at
lower bath temperatures T it is important to assure that
∆Vth depends linearly on ∆T . At a given base temper-
ature, the thermovoltage ∆Vth and the temperature dif-
ference ∆T between the islands is measured for a series
of applied heater powers. Figure S5 shows a typical plot
of ∆Vth vs. ∆T at 32 K while maintaining ∆T smaller
than ' 1% of the corresponding bath temperature.

The decomposition of the total thermopower into SMott

and Smag according to Eq. 2 has been explained in the
main text. Fig. S6 is an illustration of such a decom-
position for a film with xCo=0.7. The measured data
is shown as black dots to which Equation 2 is fitted as
a red line in the temperature range above 100 K. The
contributions SMott ∝ T and Smag ∝ T 3/2, are parame-

terized by the respective prefactors S
′
Mott and S

′
mag. The

resulting individual contributions are shown as squares
and triangles, respectively. Note that the curvature in
the raw data occurs predominantly at low temperature.
This evidences the necessity of a non-linear term in this
regime, where the Sommerfeld expansion for the diffusion
TEP is still valid.

In Figure S7 we show the small residual contribution to
the TEP that remains after subtraction of the Mott-like
and magnon drag contributions. For films in single bcc
phase, i.e., films with xCo=0.20 and 0.22, we find small
dips are reminiscent of the phonon-drag effect. For films
in mixed phase, the contribution from in-elastic scatter-
ing could produce such peaks. Additionally the diffusion
thermopower of Al contacts is included in Sres, it is pos-
sible that residues of a phonon-drag peak in the ther-
mopower of the Al leads provide a positive contribution
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FIG. S7. Residual thermopower Sres after subtraction of the
Mott- and magnon drag terms for all five CoxFe1−x films vs
temperature from 50 K-296 K. The numbers at the right in-
dicate Co concentration.

to the peak structures below 100 K.

THERMAL CONDUCTIVITY OF CoFe ALLOYS

Figure S8 shows the measured thermal conductivity
κ of the five CoFe films as a function of temperature.
For comparison we plot the electronic contribution to
κel as calculated from the measured resistivity using the
Wiedemann-Franz law: κel = 2.45 × 10−8 WΩ/K2×
T/ρ (lines in Fig. S8). Only for the films with lower
Co concentrations (20% and 22%), the difference κ− κel

is positive (see Fig. 3(c) in the main text) and can be
assigned to a phonon contribution (at lower T ) or to a
phonon/magnon scattering contribution (at higher T) to
the thermal conductivity. The magnon contribution to κ

FIG. S8. Thermal conductivity κ for all five CoxFe1−x films
vs temperature graph from 50 K-296 K is shown as squares.
The numbers at the right indicate Co concentration. The
lines represent the Wiedemann-Franz expectation value κe.

is usually visible below a few K only, when the phonon
contribution is already negligible.

DETAILS OF THE FIRST-PRINCIPLES
CALCULATIONS

The electronic structure of the bcc CoxFe1−x alloys
has been determined using the spin-polarised relativistic
Korringa-Kohn-Rostoker band structure method [43, 44]
as implemented in the Munich SPR-KKR program
package [45]. Chemical disorder is treated within the
Coherent Potential Approximation (CPA) [46, 47]. For
the entire concentration range considered here, the bcc
structure has been assumed. At selected intermediate
concentrations (30, 40, 50, 60, 70 at% Co) calculations
have been performed for the fcc phase as well, assuming
the same volume per atom as in the bcc structure of the
same composition. Lattice parameters have been taken
from literature [48] and interpolated appropriately for
intermediate [49] concentrations. For the self-consistent
determination of spin-polarised ground-state potentials
the fully relativistic version of the program has been
used. The exchange and correlation part is treated
within the Local Spin-Density Approximation (LSDA)
using the parametrisation of Vosko et al. [50]. All calcu-
lations were done in the Atomic Sphere Approximation
(ASA) [51] for the potential shape.

The symmetric and antisymmetric parts of the electric
conductivity tensor have been determined within Kubo’s
linear response framework using the Kubo-Greenwood
and -Středa formulae, respectively [52–59]. These are
derived in the athermal limit of the Kubo-Bastin equa-
tion [60, 61] and have been shown to yield numerically
identical results for the type of systems treated here (cu-
bic transition metals) in the limit T → 0 [62]. Inclu-
sion of the so-called vertex corrections (VC) [55, 63] is
necessary to correct for improper averaging within the
Coherent Potential Approximation (CPA) when dealing
with products of Green’s functions. For calculating elec-
tric, thermoelectric, and thermal transport properties at
finite electronic temperatures, the generalized Mott for-
mula [64? –67] and related expressions for the charge-
charge (cc), charge-heat (cq), and heat-heat (qq) current
correlation functions or response coefficients

Lccij (T ) = − 1

|e|

∫
dE σccij (E)

(
− ∂f(E,T )

∂E

)
(S2)

Lcqij (T ) = − 1

|e|

∫
dE σccij (E)

(
− ∂f(E,T )

∂E

)
(E − EF) (S3)

Lqqij (T ) = − 1

|e|

∫
dE σccij (E)

(
− ∂f(E,T )

∂E

)
(E − EF)2

(S4)
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FIG. S9. Calculated isotropic resistivity ρiso = (2ρxx + ρzz)/3
in Co0.50Fe0.50 accounting for lattice disorder (Tv, red), trans-
verse spin disorder (Tf , green), and both combined (Tvf ,
blue). In purple, orange and cyan corresponding results
are shown including in addition an energy-independent finite
imaginary part of the complex energy, =(z) = 8.5 · 10−4 Ry,
mimicking structural disorder in the experiment, results of
which are shown in black.

in terms of the energy-dependent electric conductivity
σccij (E) have been used. Here T is the (electronic) temper-
ature, entering via the Fermi-Dirac distribution f(E, T ),
e is the elementary charge, and the integral over real en-
ergies E contains the product of the energy-dependent
electrical conductivity σccij (E) with a kernel consisting of
the (negative) energy derivative of f(E, T ) and a factor of
(E − EF)n, where n equals the number of heat currents
q involved and EF is the Fermi energy. The Alloy Anal-
ogy Model [? ] for temperature-induced vibrational and
fluctuational disorder has been applied using calculated
M(T ) data from Kakehashi and Hosohata [68] as input
for the latter. For intermediate concentrations where re-
sults are not available in Ref. 68 linear interpolations
between fits to

M(T )/M(0) = (1− (T/TC)α)β (S5)

have been performed.

CALCULATED RESISTIVITY INCLUDING
VARIOUS SOURCES OF DISORDER

The isotropic residual resistivity ρiso = (2ρxx + ρzz)/3
is shown as a function of temperature for the exemplary
case of Co0.50Fe0.50 in Fig. S9. Temperature is treated
here on the level of the alloy-analogy model accounting
for either lattice displacements only (red squares), trans-
verse spin fluctuations only (green triangles), or both
combined (blue circles). The total result including both
sources of disorder simultaneously on the level of the

Green function is obviously dominated by the vibrational
disorder contribution and the two effects are nearly ad-
ditive following Matthiessen’s rule. As discussed in the
main text, the as-prepared samples show a considerable
amount of structural disorder. To compensate for this,
a finite and constant imaginary part of the complex en-
ergy z was chosen for a quantitative agreement at low
temperature with the experimental data shown as black
diamonds. Corresponding results are given in magenta
(Tv), orange (Tf ), and cyan (Tvf ). The finite imagi-
nary part, corresponding to an additional decrease of the
electronic lifetime, leads to an overall increase of the re-
sistivity without major modification of the temperature
dependence. Considering in addition the effect of a mod-
ified Fermi-Dirac statistics by means of Eq. S2 leads only
to minor changes at higher T (not shown).

CALCULATED SEEBECK COEFFICIENT

The Seebeck or thermoelectric tensor, expressing the
ratio of charge transport due to a temperature gradient
versus that in response to an electric field, is obtained
from Eqs. (S2) and (S3) as

S =− 1
eT (Lcc)−1Lcq = σ−1α =



Sxx Sxy 0

−Sxy Sxx 0

0 0 Szz




=




σxxαxx+σxyαxy

σ2
xx+σ2

xy

σxxαxy−σxyαxx

σ2
xx+σ2

xy
0

−σxxαxy−σxyαxx

σ2
xx+σ2

xy

σxxαxx+σxyαxy

σ2
xx+σ2

xy
0

0 0 αzz

σzz


 , (S6)

where σ = −eLcc is the electrical conductivity tensor
and α = − 1

T L
cq is the Nernst conductivity tensor. In

the limit of T → 0 K the energy integrals in Eqs. (S2)
and (S3) transform via the Sommerfeld expansion into
the well-known Mott formula.

When comparing to experimental results the isotropic
value Siso = 2

3Sxx + 1
3Szz, i.e., one third of the tensor in

Eq. (S6) is used. Neglecting off-diagonal contributions
as in Sii = − 1

eT L
cq
ii /L

cc
ii leads however, for the systems

and conditions considered in this work, only to minor
differences, since LABij << LABii holds for both Lcc and
Lcq. Additional contributions arising from direct and
inverse spin Nernst and Hall effects, such as the spin
Nernst magnetothermopower [? ], are neglected in this
work due to their vanishingly small size.

Figure S10 shows results for bcc CoxFe1−x with x =
0.20, 0.22, 0.36, 0.50, and 0.70 accounting for chemical
disorder only (Tel), including, by means of the alloy-
analogy model, the effect of lattice displacements alone
(Tv) or in combination with transverse spin fluctua-
tions (Tvf ). The effect of the additional temperature-
dependent disorder apparently leads to a reduction of
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FIG. S10. Calculated thermoelectric power for bcc CoxFe1−x

treating temperature either only on the level of the Fermi-
Dirac distribution (electronic temperature, Tel, triangles), in-
cluding in addition vibrational disorder (Tv, squares), and in-
cluding both, vibrational and spin-fluctuation disorder (Tvf ,
circles).

the TEP for low Co content (as well as to an increased
curvature), to minor enhancement for intermediate xCo

(0.36 and 0.50), and to sign change for xCo = 0.70. The
importance of spin disorder decreases with increasing Co
content, consistent with the decrease of the Curie tem-
perature and simultaneous increase of the slope of the
M(T ) curves [68] entering the calculations as input.

ENERGY-DEPENDENT CONDUCTIVITY

The theoretical results for the energy-dependent con-
ductivity are shown in Fig. S11 taking account the chemi-
cal disorder only (0 K) and including vibrational disorder
corresponding to a temperature of Tv = 100, K. At higher
T the rather sharp step in σ(E) qualitatively explains the
rather large values of the Mott-like contribution to the
TEP at low xCo. The step width is comparable to the
temperature so that the leading term in the Sommer-
feld expansion is not sufficient to calculate the TEP –
at higher temperatures this leads to a curvature in the
T -dependence of Fig. 2d in the main manuscript. The
temperature dependent contributions of vibrational and
spin disorder (not shown) tend to smear the step, in addi-
tion to a reduced overall magnitude. On the other hand,
σ(E) is rather flat on the high energy side, which leads
to much lower values of the TEP than observed in the
experiment for the Mott-like contribution.
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FIG. S11. Energy dependence of the conductivity of bcc
CoxFe1−x at zero temperature (empty symbols) and Tv =
100 K (full symbols). The vertical lines indicate the positions
of the respective Fermi levels at T = 0 K.

THERMOELECTRIC POWER IN THE FCC
PHASE

This discrepancy may result from fcc precipitations
which appear at higher xCo in the characterization. Such
precipitation are also consistent with the low phonon con-
tribution in the thermal conductivity. For this reason we
also calculated the TEP for the fcc structure. The re-
sults are plotted in Fig. S12, and show that for the fcc
lattice structure significantly larger values of the TEP are
found and that the curvature is opposite to that in the
bcc-structure for low Co concentrations. Thus the com-
petition between the contributions from both structures
may explain the observed evolution of the TEP with Co-
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FIG. S12. Calculated electronic contribution to the Seebeck
coefficient in bulk bcc and fcc CoxFe1−x for x = 0.30, 0.40,
0.50, 0.60, and 0.70.
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FIG. S13. Energy dependence of the conductivity of fcc
CoxFe1−x at zero temperature. The vertical lines indicate
the positions of the respective Fermi levels.

content at high temperatures.
The underlying energy-dependent electrical conductiv-

ities are shown in Fig S13 for T = 0 K, the Fermi levels
are again indicated by the vertical lines of corresponding
color. The major differences compared to the bcc curves
in Fig. S11 are the pronounced, approximately linear in-
crease of σ in the vicinity of the Fermi level and its rela-
tive position with respect to the step in the conductivity.
The former leads to the larger Seebeck coefficient in the
fcc phase for all concentrations and the latter to the neg-
ative curvature of Co0.3Fe0.7 and Co0.4Fe0.6. For these
two alloys with increasing temperature the step is close
enough to EF to be included in the interval for the energy
integration of Eq. S3 and therefore its strong asymmetry
enhances the TEP.

CALCULATED THERMAL CONDUCTIVITY

The electronic contribution to the thermal conductiv-
ity κ can be calculated, assuming only elastic scattering
at impurities, from the energy dependence of the electri-
cal conductivity using a generalized Mott-like expression
[65? ]. In Fig. S14 results are shown for the temperature-
dependent isotropic thermal conductivity,

κiso =
2

3
κxx +

1

3
κzz (S7)

with κii =
1

T

[
Lqq − L

cqLqc

Lcc

]

ii

(S8)

≈ 1

T

(
Lqqii −

(Lcqii )2

Lccii

)
(S9)

with the charge-charge, charge-heat, and heat-heat cur-
rent response functions of Eqs. S2-S4 and exploiting the
symmetry relations [69, 70] Lqc = Lcq and LABij = −LABji
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FIG. S14. Calculated electronic contribution to the thermal
conductivity for bcc CoxFe1−x treating temperature either
only on the level of the Fermi-Dirac distribution (electronic
temperature, Tel, triangles), including in addition vibrational
disorder (Tv, squares), and including both, vibrational and
spin-fluctuation disorder (Tvf , circles).

as well as the observation LABij << LABii . In the last line
of Eq. S7 the contribution from off-diagonal tensor el-
ements is neglected, the exact form of κ in 4/mm′m′

reads

κxx = κyy = 1
T

[
Lqqxx −

(
Lcc

xx((Lcq
xx)2−(Lcq

xy)2)

(Lcc
xx)2+(Lcc

xy)2

+
2Lcc

xyL
cq
xxL

cq
xy

(Lcc
xx)2+(Lcc

xy)2

)]
(S10)

κxy = −κyx = 1
T

[
Lqqxy −

(
Lcc

xy((Lcq
xy)2−(Lcq

xx)2)

(Lcc
xx)2+(Lcc

xy)2

+
2Lcc

xxL
cq
xyL

cq
xx

(Lcc
xx)2+(Lcc

xy)2

)]
(S11)

κzz = 1
T

[
Lqqzz − (Lcq

zz )2

Lcc
zz

]
, (S12)

leading to negligibly small corrections in case of conduc-
tive metals. The temperature dependence of the results
accounting only for the electronic temperature is fairly
linear and, with increasing iron content the curves fall
almost on top of each other. In particular for high tem-
peratures κ is strongly reduced by lattice displacements
and spin fluctuations as additional sources of disorder,
the effect of the latter being again of minor importance.

BAND STRUCTURE OF BCC CoxFe1−x ALLOYS

The transport phenomena discussed in this work show
characteristic features at Co concentrations of ∼ 20 at%.
To elucidate the composition dependence of the transport
coefficients discussed in this work, the spin-projected
Bloch spectral function (BSF) of the bcc alloys and their
clean limits have been calculated (1st and 4th column in
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FIG. S15. Spin-projected band structure (Bloch spectral function, BSF) in bcc CoxFe1−x for, from top to bottom, xCo = 0,
0.20, 0.22, 0.36, 0.50, 0.70, and 1 (hypothetical bcc Co), for majority spin up (left two columns, red) and minority spin down
(right two columns, blue). The first and fourth columns show the energy-dependence along high-symmetry lines in the Brillouin
zone between -0.5 and 0.5 eV around the Fermi level while the second and third columns depict constant-energy isosurfaces in
the Γ−N −H plane at E = EF.
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Fig. S15). Since the electronic contributions to the lin-
ear response properties are intimately (but not trivially)
connected to the band structure, one can expect to infer
a qualitative explanation for some of the concentration-
dependent characteristics. As visible in Fig. S15, the
overall shape of the bands is very different for the two
spin channels (majority “spin-up”, left two columns, in
red and minority “spin-down”, right two columns, in
blue) and so is the extent as well as the ~k-space position of
broadening effects on the band structure. The Fermi level
rises from top to bottom with growing Co content (as Fe
has one electron less than Co) and at around 22 % crosses
the top of d-like bands of the majority channel (left) at
the N point of the Brillouin zone (2nd and 3rd column
in Fig. S15). This qualitatively explains the maximum
of the resistivity in this concentration range, because the
Fermi level is located in flat and broadened regions. For
the energy dependence of the conductivity this results
in the pronounced step discussed above, giving rise to
distinct magnitudes and temperature dependencies for
different concentrations. In the minority channel (right
two columns) the bands crossing the Fermi level are pre-
dominantly of sp-character having large slopes for small
cobalt concentration (x > 0.4). At 40 % Co, the Fermi
level cuts through the bottom of a parabolic band in be-
tween H and N point. This should qualitatively explain
the additional resistivity peak at x = 0.4. The avoided
crossing at ∼ 1/4 of the distance between Γ and H point
could be connected to the local minimum around 25 %
cobalt content, where it is passing through EF.
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3.1.3 Additional results on CoFe alloys

The following is an unpublished manuscript on the electric, thermal, and thermo-
electric transport properties of CoFe alloys, providing more details and additional
theoretical results than what is published in Ref. 309 (3.1.2).



Galvanomagnetic, thermogalvanomagnetic, and thermal transport properties
of ferromagnetic bcc FexCo1−x bulk-alloys from first principles

S. Wimmer1,∗ S. Mankovsky1, S. Srichandan2, M. Kronseder2, C.H. Back2, C. Strunk2, and H. Ebert1
1Department of Chemistry, Physical Chemistry, Ludwig-Maximilians-Universität, D-81377 Munich, Germany and

2Institute of Experimental and Applied Physics,
University of Regensburg, D-93040 Regensburg, Germany

The ferromagnetic alloy system bcc FexCo1−x constitutes, due to its mutual miscibility over a
wide range of composition, an important test system for the study of transport phenomena in
response to electric fields and temperature gradients. A recent investigation by Srichandan et al.1

has focused on the impact of inelastic scattering processes, in particular electron-magnon scattering,
on electrical resistivity, Seebeck coefficient, and thermal conductivity. Here we present an extension
to this investigation, focusing on the composition- and temperature dependence of these coefficients
together with a detailed discussion on the basis of the underlying electronic structure, give results
for the pure limits bcc Fe and hcp Co in comparison to recent experiments by Watzmann et al.2 and
for transverse response properties such as anomalous Hall and Nernst effect as well as the electronic
contribution to thermal Hall or Righi-Leduc effect.

I. INTRODUCTION

The galvanomagnetic, thermogalvanomagnetic, and
thermal transport properties of bcc FexCo1−x alloys have
been investigated by performing first-principles band
structure and subsequent linear response transport cal-
culations. For this the Korringa-Kohn-Rostoker multiple
scattering Green function formalism in conjunction with
Kubo’s linear response formalism as implemented in the
Munich SPR-KKR package has been used. Temperature-
dependent response coefficients such as resistivity, See-
beck coefficient, and the electronic part of the thermal
conductivity have been obtained from an implementation
of the generalized Mott expressions following Jonson and
Mahan3. Effects beyond the simplistic “electronic tem-
perature” connected with the temperature dependence
of the Fermi-Dirac distribution have been accounted for
using the so-called alloy-analogy model (AAM) based on
the Coherent Potential Approximation (CPA). This work
has been triggered by recent experimental research on the
transport properties of FexCo1−x films at the University
of Regensburg and was in part published in Ref. 1. Here
we provide additional theoretical details of the transport
calculations and present an extended study of the con-
centration and in particular temperature dependence of
the various response coefficients. In addition results on
the antisymmetric tensor elements of the electric, ther-
moelectric as well as the electronic part of the thermal
conductivity are presented.

II. METHODS

The electronic structure of the bcc FexCo1−x alloys
has been determined using the spin-polarised relativistic
Korringa-Kohn-Rostoker band structure method4,5

as implemented in the Munich SPR-KKR program
package.6 Chemical disorder has been treated within the

Coherent Potential Approximation (CPA).7,8 For the
whole concentration range considered here, from 20 to
85 % Fe content, the bcc structure has been assumed.
The corresponding lattice parameters have been taken
from the literature9 and interpolated appropriately for
intermediate10 concentrations. For the self-consistent de-
termination of spin-polarized ground-state potentials the
fully relativistic version of the program has been used.
The exchange and correlation part is treated within
the Local Spin-Density Approximation (LSDA) using
the parametrization of Vosko et al.11. All calculations
were done in the Atomic Sphere Approximation (ASA).12

The symmetric and antisymmetric parts of the electric
conductivity tensor have been determined within Kubo’s
linear response framework using the Kubo-Greenwood
and -Středa formulae, respectively.13–20 These are de-
rived in the athermal limit of the so-called Kubo-Bastin
equation21,22 and have been shown to yield numerically
identical results for the type of systems treated here (cu-
bic transition metals) in the limit T → 0.23 Inclusion of
the so-called vertex corrections (VC)16,24 is necessary to
achieve a proper averaging within the Coherent Poten-
tial Approximation (CPA) when dealing with products
of Green functions. For calculating electric, thermoelec-
tric, and thermal transport properties at finite electronic
temperatures, the generalized Mott formula3,25–27 and re-
lated expressions for the charge-charge (cc), charge-heat
(cq), and heat-heat (qq) current correlation functions or
response coefficients

Lccij (T ) = − 1

|e|

∫
dE σccij (E)

(
− ∂f(E,T )

∂E

)
(1)

Lcqij (T ) = − 1

|e|

∫
dE σccij (E)

(
− ∂f(E,T )

∂E

)
(E − EF) (2)

Lqqij (T ) = − 1

|e|

∫
dE σccij (E)

(
− ∂f(E,T )

∂E

)
(E − EF)2 (3)
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in terms of the energy-dependent electric conductivity
σccij (E) have been used. Here T is the (electronic) tem-
perature, entering via the Fermi-Dirac distribution func-
tion f(E, T ), e is the elementary charge, and the integral
over real energies E contains the product of the energy-
dependent electrical conductivity σccij (E) with a kernel
consisting of the (negative) energy derivative of f(E, T )
and a factor of (E − EF)n, where n equals the number of
heat currents q involved and EF is the Fermi energy. The
Alloy Analogy Model28 for temperature-induced vibra-
tional and fluctuational disorder has been applied using
calculated M(T ) data from Kakehashi and Hosohata29

as input for the latter. For intermediate concentrations
where results are not available in Ref. 29 linear interpo-
lations between fits to

M(T )/M(0) = (1− (T/TC)α)β (4)

have been performed.

III. TRANSPORT PROPERTIES

A. Residual resistivity and anisotropic
magnetoresistance

Figure 1 shows results for the isotropic residual re-
sistivity ρiso (top) and the anisotropic magnetoresis-
tance (bottom) as a function of the Fe content x in bcc
FexCo1−x. As visible in the upper panel the calculated
residual resistivity (black squares) appears to follow the
Nordheim rule33 up to about x = 0.75, apart from a
slight shift of the maximum to x = 0.6, but then shows
a maximum at x ≈ 0.85. This behavior can be quali-
tatively explained by details of the band structure (see
Section IV below). It is in reasonably good qualitative
agreement with the experimental results of Freitas and
Berger31 (full blue circles), except for the local minimum
we observe at x ≈ 0.75 Fe content. A corresponding fea-
ture appears to be present in the experimental data at
x ≈ 0.7 as well. Quantitatively, theory and experiment
agree well for x < 0.6, the absolute values around the
resistivity maximum are considerably underestimated by
the calculations. The same applies to theoretical results
obtained by Turek and coworkers30 using a fully rela-
tivistic implementation of the Kubo-Bastin equation21,34

within the TB-LMTO-CPA method, shown in full red
squares. Although these data around the maximum are
rather scarce, it seems that the agreement with exper-
iment concerning magnitude and position of the max-
imum is slightly better in their case.35 Note that here
also a small local minimum exists around x ≈ 0.7. Com-
parison of the results of the present work ex- and in-
cluding vertex corrections (NV and VC, open and full
black squares) reveals that these are small and negative
throughout the whole range of concentrations considered.

In the lower panel the anisotropic magnetoresistance
(AMR) defined as ∆ρ/ρiso with ∆ρ being the difference
in (residual) resistivity parallel (ρzz) and perpendicular
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FIG. 1. Top: Composition dependence of the residual resis-
tivity ex- (NV) and including vertex corrections (VC) com-
pared to TB-LMTO-CPA results by Turek et al.30 and exper-
imental low-temperature data by Freitas and Berger31. Cen-
ter: The anisotropic magnetoresistance (AMR) ∆ρ/ρiso as a
function of Fe content x, in comparison to TB-LMTO-CPA re-
sults by Turek et al.30 and experimental low-temperature data
by Freitas et al.32. Note that the latter have been scaled by a
factor of five. Bottom: Resistivity anisotropy ∆ρ = ρzz − ρxx
compared to theoretical results by Turek et al.30 and exper-
imental data by Freitas et al.32 and Freitas and Berger31,
which are again scaled by 5.

(ρxx) to the magnetization direction (z) is shown. Again
results obtained within this work (full black squares) is

106 3.1. Thermogalvanomagnetics



3

compared to TB-LMTO data by Turek and coworkers36

and experimental low-temperature measurements by
Freitas et al.32. The latter have been scaled by a factor
of five to facilitate comparison of the concentration de-
pendence. Since the order of magnitude of the residual
resistivity ρiso is comparable in theory and experiment,
as visible in the upper panel of Fig. 1, this deviation is
due to a smaller magnetic anisotropy of the resistivity
in experiment, possibly caused by inhomogeneities of
the sample leading to incomplete alignment of magnetic
domains. Starting from about ∆ρ/ρiso = 0.13 at x = 0.2
the AMR monotonously decreases with increasing Fe
content, mostly due to the increase of ρiso. The absolute
difference ∆ρ (not shown) exhibits a maximum right in
the middle of the concentration range. This behavior of
the AMR is in qualitative and quantitative accordance
with the theoretical findings by Turek et al.36 and in
qualitative agreement with the experimental findings by
Freitas et al.32.
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FIG. 2. Top: Calculated Tel-dependent isotropic resistivity
for alloys with Fe contents x = 0.3, 0.5, 0.64, 0.78, and 0.8.
Bottom: Results including the effect of lattice displacements,
spin fluctuations and a finite imaginary part of the energy in
comparison to measured ρ(T ) data.

The top panel of Fig. 2 shows the dependence of the
isotropic resistivity ρiso on temperature in the range of

0–300 K for for Fe contents of x = 0.3, 0.5, 0.64, 0.78,
and 0.8. The temperature dependence is described using
Eq. (1) to account for the effect of the temperature on
the occupation of states via the Fermi-Dirac distribution
function (“electronic temperature” Tel). As can be seen,
this effect is negligibly small since all curves are more
or less constant, with slight deviations for x = 0.78 (ρ
increasing with T ) and 0.8 (ρ decreasing with T ). This
result is of course quite unintuitive and in fact unphysical.
Hence (as expected), a more sophisticated treatment of
finite-temperature effects, in particular lattice vibrations
and spin fluctuations is called for.

The experimental results for T between ∼ 25 and
300 K are given in the bottom panel as full diamonds.
In comparison to the theoretical Tel-data shown in
the upper upper panel, the experimental curves have
first of all a larger offset at 0 K (i.e., the residual
resistivity). This can be primarily ascribed to additional
scattering at grain boundaries, defects, and possibly
also the film geometry. Their temperature dependence
is in addition more pronounced, which certainly has
to be attributed to the simplified treatment of finite
temperatures in theory, as discussed in the preceding
paragraph. All experimental curves show an almost
linear T-dependence essentially in parallel to each other,
largest deviations occur for the alloy containing 78 %
Fe. The theoretical results in the lower panel of Fig. 2
were obtained by considering the additional disorder due
to lattice vibrations and (transverse) spin fluctuations
employing the alloy analogy model28 which transfers
the mean field approach of the CPA alloy theory to
finite temperature effects. The M(T ) data serving as an
input for the treatment of fluctuational disorder were
taken from calculations by Kakehashi and Hosohata29

using the finite-temperature theory of local-environment
effects. Moreover a finite and constant imaginary part
of the energy Im(E) was employed to account for the
structural disorder of the samples. This was chosen such
as to reproduce the low-temperature behavior of the ex-
perimental curves. As can be seen, the inclusion of finite
temperature effects leads to an improved agreement with
experiment concerning the temperature dependence.
However the rate of increase is overestimated, apparently
proportional to the increase of the overall magnitude
with rising Fe content. This has to be ascribed to the
contributions from inelastic scattering at phonons and
possibly magnons, as discussed in detail in Ref. 1.

Figure 3 gives a detailed account of the influence of lat-
tice vibrations and/or spin fluctuations on the tempera-
ture dependence of the resistivity for the alloy Fe0.5Co0.5.
The former are determined by the average Debye tem-
perature of the alloy and the latter by the Weiss field
evaluated from the temperature dependence of the atom-
resolved magnetization, which can be taken either from
experiment, from Monte-Carlo simulations based on the
Heisenberg model, or, as in the upper panel, from RDLM
calculations.28,37,38
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FIG. 3. Top: Temperature-dependent ρiso of Fe0.5Co0.5 for
Tel, Tv, Tf , and Tvf with M(T ) data from RDLM. Results
for the latter three are shown in addition with the alloy anal-
ogy model applied during the SCF calculation as well (always
Tvf). Bottom: Corresponding results for SCF at T = 0 K and
magnetization data from Kakehashi and Hosohata29. In ad-
dition the effect of a finite imaginary part of the energy Im(z)
is shown, added to account for structural disorder.

The resistivity for a given (finite) temperature has been
calculated within this approach using the self-consistent
potential obtained for the same temperature via RDLM
calculations (full symbols) as well as for T = 0 K (open
symbols, except for black). In the first case the electronic
structure calculations allow taking into account the mod-
ification of the local exchange field due to the thermally-
induced magnetic disorder in the system. For subsequent
electronic transport calculations this can be regarded as a
contribution of longitudinal spin fluctuations. The latter
approach of applying the AAM to transport calculations
based on potentials for T = 0 K can only account for the
effect of transverse spin fluctuations.

The temperature-dependent resistivity without mak-
ing use of the AAM in the transport calculations is shown
in black, open symbols stand again for the results from
Fig. 2 (Tel = T ), while the full symbols represent RDLM
potentials and transport for T = 0 K. As can be seen,
the effect of the additional temperature-induced disor-

der on the potentials is negligible for the resistivity. The
green triangles represent resistivities calculated account-
ing only for lattice vibrations, once based on the potential
for T = 0 K (open symbols) and once for RDLM poten-
tials (full symbols). Again the influence of the finite-
T potentials is small, but the AAM-transport calcula-
tions give significantly different and qualitatively (as a
function of T) as well as quantitatively somewhat more
satisfying results when comparing to the experimental
results shown as red full circles. Accounting only for
the influence of fluctuational disorder (blue up-side-down
triangles), the agreement with experiment at 100 K is
considerably improved. Unfortunately, the increase in
resistivity with temperature is much more pronounced
as compared to the results for Tv and apparently even
grossly overestimated at higher temperatures. This can
be related to the overestimation of the decay of M(T )
with temperature in the RDLM calculations.38 Taking
both random lattice displacements and tilted moments
into account (cyan diamonds), obviously the resistivity
is largest and for T = 100 K (accidentally) agrees well
with experiment. As for fluctuational disorder only, the
increase with temperature is exaggerated.

For all three temperatures considered here, the results
taking both vibrational and fluctuational disorder into
account is seemingly following Matthiessen’s rule.39

This behavior, i.e., that the effects of vibrations and
spin fluctuations on the resistivity add up as expected
for independent sources of scattering, is in fact rather
seldomly found in this type of calculations.28 This, as
well as the almost perfectly linear temperature depen-
dence of all curves shown here, might be attributed to
the large chemical disorder present in the Fe0.5Co0.5
alloy, effectively reducing vibrations and fluctuations to
uncorrelated additional sources of disorder.

The bottom panel of Fig. 3 shows in comparison re-
sults using only the potential for T = 0 K and taking
the M(T ) data from Ref. 29. Obviously the dominant
source for scattering responsible for the temperature de-
pendence of ρ seems to be the lattice vibrations (Tv),
whereas the spin fluctuations alone (Tf ) are almost neg-
ligible in this temperature range. Note, that the mag-
netization at 300 K is reduced by 10−3 relative to the
value at T = 0 K. Considering both effects at the same
time gives a slight increase of ρ, again in good agreement
with Matthiessen’s rule. The dominant source of scatter-
ing responsible for the absolute magnitude of ρ(T ) how-
ever is the structural disorder mimicked here by a finite
imaginary part of the energy as discussed above. Under
the assumption that this should be essentially tempera-
ture independent, the remaining disagreement with ex-
periment leaves room for inelastic processes as electron-
phonon and electron-magnon scattering.
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FIG. 4. Top: Seebeck coefficient in the athermal limit
(Tel = 1 K) as a function of Fe content x. Results ex- (NV)
and including vertex correction (VC) for the tensor elements
perpendicular (Sxx) and parallel (Szz) to the magnetization
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tom: Experimental and theoretical results for the isotropic
Seebeck coefficient Siso as a function of Fe content for tem-
peratures of 50 K (experiment: blue diamonds, theory (bcc):
cyan circles, theory (fcc): cyan squares) and ∼300 K (exper-
iment: red diamonds, theo. (bcc): magenta circles, theo.
(fcc): magenta squares).

B. Seebeck coefficient

Turning now to the thermoelectric properties of bcc
FexCo1−x alloys, that are expressed by the Seebeck co-
efficient S. It relates the electrical response to a temper-
ature gradient, the Nernst conductivity or Peltier coef-
ficient (tensor) α = − 1

T L
cq in terms of the charge-heat

response given by Eq. (2), to that caused by an exter-
nal electric field, the conductivity (tensor) σ = −eLcc
in terms of the charge-charge response in Eq. (1), as in
S = −σ−1α. Fig. 4 (top) depicts the concentration de-
pendence of the Seebeck coefficients perpendicular (Sxx,
red symbols) and parallel (Szz, blue symbols) to the mag-

netization along z

S =− 1
eT (Lcc)−1Lcq = −σ−1α =



Sxx Sxy 0
−Sxy Sxx 0

0 0 Szz




= −




σxxαxx+σxyαxy

σ2
xx+σ

2
xy

σxxαxy−σxyαxx

σ2
xx+σ

2
xy

0

−σxxαxy−σxyαxx

σ2
xx+σ

2
xy

σxxαxx+σxyαxy

σ2
xx+σ

2
xy

0

0 0 αzz

σzz


 (5)

as a function of Fe content x in the bcc alloys FexCo1−x.40

These as well as the isotropic values Siso = 2
3Sxx + 1

3Szz
are given for the athermal limit (“classical” Mott formula
or generalized Mott for T → 0)33. The anisotropy of the
Seebeck coefficient is apparently rather small and Sxx as
well as Szz, and therefore Siso, show a very similar con-
centration dependence. Starting from the Co-rich side S
has a very small and positive value of ∼ 10−4 aµV/K. In
fact Sxx is perpendicular to the magnetization is nega-
tive while the parallel Szz is slightly larger and positive,
making their sum (incl. VC) therefore very close to zero.
Increasing the Fe content there is a sign change at around
x = 0.35, at first sight consistent with the different sign
of S in bulk bcc Fe and hcp Co2,41. This will be discussed
in Sec. III E and IV. In the middle of the concentration
range the absolute values slowly increase until at x ≈ 0.75
a sharp peak sets on with an extremal value of almost
−0.2 µV/K at x = 0.8. Increasing the Fe content further
S drops again fast in magnitude, staying negative over
the remainder of the investigated concentration range.
For all concentrations Over the whole range the impor-
tance of the vertex corrections is, as already observed for
the residual resistivities, rather small.

Upon increasing the temperature, the isotropic See-
beck coefficient increases quite significantly, as visible in
the lower panel of Fig. 4, where calculated (full circles)
and measured values (squares) are shown for 50 K (cyan:
theo., blue: expt.) and 300 K (magenta: theo., red:
expt.). The theoretical values are in quite good qualita-
tive and quantitative agreement with the experimental
data for the lower temperature, except for the features
at x = 0.7. For the higher temperature the theoretical
values still show a sign change at around 0.35, then
follow the almost linear trend of the experimental results
up to 0.7, but with considerably smaller absolute values.
The steep decrease at x around 0.7 is still visible in the
calculated but not in the measured Seebeck coefficient.
It appears that an enhancement of the purely diffusive
Seebeck values due to temperature-related effects not
accounted for in the calculations is taking place, and
that the peculiar behavior around x = 0.7 is again most
likely related to band structure effects that are unstable
against additional thermally-induced disorder.

Fig. 5 (top) shows the temperature dependence of Siso

for alloys FexCo1−x with x = 0.2 − 0.8 calculated from
the generalized Mott formula, Eqs. (5,1,2), accounting
only for the electronic temperature. As observed before,
alloys with Fe contents < 0.3 have positive Seebeck coef-

Chapter 3. Results 109



6

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 10

 0  50  100  150  200  250  300  350  400  450  500

S
is

o
 (

µ
V

/K
)

T (K)

20% Fe
25% Fe
30% Fe
40% Fe
50% Fe
60% Fe
70% Fe
75% Fe
80% Fe

-35

-30

-25

-20

-15

-10

-5

 0

 5

 0  50  100  150  200  250  300

S
  
[µ

V
/K

]

T  [K]

30% Fe
fcc
50% Fe
fcc
60% Fe
fcc
75% Fe
80% Fe

FIG. 5. Top: Calculated temperature dependence of Siso

for bcc alloys with iron content x = 0.2 to 0.8. Only the
electronic temperature is accounted for (see text). Bottom:
Comparison to experimental S(T ) curves for x = 0.3, 0.5,
0.64, 0.78, and 0.8. In addition to theoretical results for the
bcc structure also such for fcc

ficients, which are increasing throughout the whole tem-
perature range considered here. In contrast the alloys
with x > 0.3 have monotonously decreasing negative val-
ues. For all alloys there are more or less pronounced
deviations from the classical Mott formula (Sommerfeld
approximation), particularly obvious at higher tempera-
tures, which leads in some cases (x = 0.5, 0.6, and 0.7) to
intersections of the curves. The two alloys Fe0.75Co0.25
and Fe0.8Co0.2 show considerably larger values of S than
the rest, especially the difference between x = 0.7 and
0.75 is striking. The bottom panel shows the experimen-
tally observed temperature dependence of alloys contain-
ing x = 0.3, 0.5, 0.64, 0.78, and 0.8 in comparison to cal-
culated S(T ) curves for bcc as well as fcc alloys. For the
latter the same volume per atom as in the former has
been assumed.

All measured Seebeck coefficients are negative, in-
cluding those of the alloy with x = 0.3, and they all
show a rather linear T-dependence at higher but some
deviations from linearity at lower temperatures. No
unsystematic temperature- or concentration dependence
as in the theoretical results for bcc structures can be

observed. As noted above, the absolute values are larger
in experiment, except for the two alloys Fe0.75Co0.25
and Fe0.8Co0.2 at T ≥ 50 K. For low to intermediate Fe
concentrations where fcc precipitations are likely1, these
could in part explain discrepancies between experiment
and theory, as they lead to a sign change for x = 0.3
as well as to an increase in magnitude. Including
the effect of finite temperatures via the alloy-analogy
model for thermally-induced lattice vibrations and spin
fluctuations leads to an appreciable improvement of the
agreement with experiment as discussed in Ref. 1 In
particular the magnitude of S at higher temperature is
reduced for alloys with large Fe content while for low
concentration a complete sign change can be observed.
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FIG. 6. Top: Ratio of Siso and temperature T as a function
of T for alloys from x = 0.2 to 0.8, as before T = Tel. Bottom:
Comparison to the experimental S/T ratio for 30, 50, 64, 78,
and 80 % Fe content.

To illustrate the deviation from the classical Mott
formula more clearly, in Fig. 6 the ratio of isotropic
Seebeck coefficient Siso and temperature T is given as a
function of the latter. The calculated values for concen-
trations ≤ 60 % Fe (top) behave quite “Mott-like”, i.e.,
they remain constant over the whole temperature range.
Larger deviations are (again) visible for, in particular,
x = 0.7 and 0.75 but also 0.8. Although only for high
temperatures (> 200 K) in case of the latter. Quite
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interestingly, the deviations for x = 0.7 and 0.75 have
opposite signs. The experimental S/T -ratios (bottom)
instead show rather pronounced non-linear behavior
at low T for all concentrations. For x = 0.78 and 0.8
these persist the longest with increasing temperature,
for the intermediate concentrations x = 0.5 and 0.64
already starting from T ≈ 50 K a linear relation is
found. Interestingly, only for x = 0.3 one observes a
positive deviation while all other alloys show larger,
more negative values at low temperatures than expected
from the Mott relation. Since these pronounced features
at low temperature do not appear in the calculated
S(T )/T curves it seems probable that they are caused
by vibrational and fluctuational disorder or rather
electron-phonon and electron-magnon coupling of some
form, that depends on a) the type and b) the extent of
substitutional disorder.

C. Thermal conductivity and Wiedemann-Franz
law

The electronic contribution to the thermal conduc-
tivity κ can be calculated, assuming only elastic scat-
tering at impurities, from the energy dependence of
the electrical conductivity using a generalized Mott-like
formula3,25. In the top panel of Fig. 7 results for the
temperature-dependent isotropic thermal conductivity,

κiso =
2

3
κxx +

1

3
κzz (6)

are shown for alloys with Fe concentrations correspond-
ing to experiment. Here the individual terms are deter-
mined from the relations

κii =
1

T

[
Lqq − L

cqLqc

Lcc

]

ii

(7)

≈ 1

T

(
Lqqii −

(Lcqii )2

Lccii

)
(8)

with the charge-charge, charge-heat, and heat-heat cur-
rent response functions of Eqs. (1-3) and exploiting the
symmetry relations42,43 Lqc = Lcq and LABij = −LABji
as well as the observation LABij << LABii . In the second
line of Eq. 7 the contribution from off-diagonal tensor el-
ements is neglected, the exact form of κ in systems with
4/mm′m′ symmetry reads

κxx = κyy = 1
T

[
Lqqxx −

(
Lcc

xx((L
cq
xx)

2−(Lcq
xy)

2)

(Lcc
xx)

2+(Lcc
xy)

2

+
2Lcc

xyL
cq
xxL

cq
xy

(Lcc
xx)

2+(Lcc
xy)

2

)]
(9)

κxy = −κyx = 1
T

[
Lqqxy −

(
Lcc

xy((L
cq
xy)

2−(Lcq
xx)

2)

(Lcc
xx)

2+(Lcc
xy)

2

+
2Lcc

xxL
cq
xyL

cq
xx

(Lcc
xx)

2+(Lcc
xy)

2

)]
(10)

κzz = 1
T

[
Lqqzz − (Lcq

zz)
2

Lcc
zz

]
, (11)
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FIG. 7. Top: Tel-dependence of the calculated isotropic
thermal conductivity κiso for FexCo1−x alloys with x = 0.3,
0.5, 0.6, 0.75, and 0.8 (open circles, left axis), compared
to experimental results (full circles, right axis). Bottom:
Comparison to experimental results for κ(T ) calculated from
the temperature-dependent resistivities via the Wiedemann-
Franz law (see text).

leading to negligibly small corrections in case of con-
ductive metals (see also discussion below). As seen in
Fig. (7) the temperature dependence is fairly linear and,
with increasing Fe content the curves fall almost on
top of each other. The experimentally obtained results
for κ(T ) are given for the concentrations as before by
full circles. The correspondingly colored dashed lines
are obtained from the temperature dependence of the
measured resistivities using the Wiedemann-Franz law,
i.e., via κ(T ) = 1

ρ(T )L0T using the free-electron-gas

value of the Lorenz number L0 = π2

3 (kBe )2. Obviously,
the Wiedemann-Franz law is quite significantly violated
for all alloys at higher temperatures (> 100 K). The
qualitative and, for x = 0.3, 0.5, and 0.64 also quantita-
tive agreement at low T (50–100 K) hints to the fact that
the thermal conductivity is dominated by the electronic
contribution and that its temperature dependence
is dominated by the energy dependence of impurity
scattering at low temperatures. For high temperatures κ
appears to be strongly reduced by lattice distortions and
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spin fluctuations as additional sources of disorder. Note
that it is at first sight rather puzzling that, while the
temperature dependence of the Seebeck coefficient was
more “Mott-like” at higher T, the thermal conductivity
κ behaves instead more “Wiedemann-Franz-like” at
low T. This seems to be due to the different power
n of energy terms (E − EF)n entering the respective
generalized Mott expressions (see Eqs.(2) and (3). The
coefficients Lcqij and Lqcij are linear in (E−EF ), therefore

probe the asymmetry of σij(E) in the vicinity of EF ,
while Lqqij , the (usually) dominant contribution to κij ,

is quadratic in the energy (E − EF )2 and therefore
related to the variance of σij(E). As can be seen from
the above equations, in fact κ contains contributions
from Lcqij and Lqcij as well, which are however of minor
importance in conductive metals where these terms are
a) small, b) appear as a product, and c) are weighted
by a large Lccij (essentially the conductivity). Comparing
the magnitude of theoretical and experimental values for
the thermal conductivity, the overestimation (roughly
by a factor of five) of the calculated results can again
most certainly be attributed to an underestimation of
scattering due to disorder (see Fig. 2 and corresponding

discussion). Inclusion of thermal lattice vibrations and
spin fluctuations leads to a far better agreement with
experiment concerning magnitude as well as temperature
dependence.1

Fig. 8 shows the calculated (top) and experimental
(bottom) values of the Lorenz function in dependence
of the electronic temperature. For the theoretical results
of the isotropic values

Liso =
2

3
Lxx +

1

3
Lzz (12)

the relations

Lii =
1

T 2

[
LccLqq −LcqLqc

(Lcc)2

]

ii

(13)

≈ 1

T 2

(
LcciiL

qq
ii − (Lcqii )2

(Lccii )2

)
, (14)

have been applied. In the last step again the same as-
sumptions as for the thermal conductivity have been
used. The exact expressions for the non-zero elements
of the Lorenz function tensor,

Lxx = Lyy = 1
T 2

[−2(2Lcq
xxL

cq
xy−Lcc

xyL
qq
xx−Lcc

xxL
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xy)L
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xy
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xy)
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xy)

4

− ((Lcc
xx)
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xy)

2)((Lcq
xx)

2−(Lcq
xy)
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xxL

qq
xx+L

cc
xyL

qq
xy)

(Lcc
xx)

4+2(Lcc
xx)

2(Lcc
xy)
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xy)

4

]
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xyL
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xxL
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xy
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xx)

4+2(Lcc
xx)
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xy)
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xy)

4
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2−(Lcc

xy)
2)(2Lcq

xxL
cq
xy−Lcc

xyL
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xxL
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(Lcc
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4+2(Lcc
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xy)

2+(Lcc
xy)

4

]
(16)

Lzz = 1
T 2

[
Lqqzz − (Lcq

zz)
2

Lcc
zz

]
, (17)

however lead again to only negligibly small numerical
differences compared to the approximate values. The
theoretical values are, apart from the special cases
already mentioned (Fe0.70Co0.30 and Fe0.75Co0.25),
rather close to the hypothetical value L0 (thin black
line). Although at higher temperatures deviations occur
for all alloys. Note, that all alloys converge more or
less exactly to a single value for T → 0, which differs
slightly from the ideal value L0. The experimentally
obtained Lorenz functions are given in the lower panel.
It is immediately obvious that deviations from the
Wiedemann-Franz law are much more pronounced here
for all alloys. Interestingly for the alloys with x = 0.3,
0.5, and 0.64 this applies to high temperatures whereas
for x = 0.78 and 0.8 agreement at low T is worse.
Going beyond the simplified treatment of temperature
via the Fermi distribution of the electrons alone, that
is, including again the effect of lattice displacements
and spin fluctuations, leads, as expected from a WFL-
conform description by Mott-like expressions, only

to minor modifications of L (not shown). These are
most prominent yet again for high (low) Fe (Co) content.

D. Transverse transport

All response tensors considered here, electric, ther-
moelectric, and thermal, share the same well-known
shape42,43

χ =



χxx χxy 0
−χxy χxx 0

0 0 χzz


 (18)

for a cubic ferromagnet with magnetization along the z
axis. The anisotropy of the resistivity has been consid-
ered already above (Fig. 1), while the anisotropy of the
Seebeck coefficient is visible in the top panel of Fig. 4
(not discussed). Furthermore the electronic part of the
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)2. Bottom: Comparison
to experimental results for L(T ) in alloys with Fe content of
x = 0.3, 0.5, 0.64, 0.78, and 0.80 (full circles with error bars).

thermal conductivity also depends on the relative ori-
entation of the magnetization (not shown). Results for
the antisymmetric part of the three response tensors are
shown in Fig. 9. In the top panel the residual anomalous
Hall conductivity (AHC) σyx (open black squares, axis
to the right) is plotted as a function of Fe concentration.
It exhibits a pronounced concentration dependence, de-
creasing with increasing Fe content until a minimum at
x = 0.7 and steeply rising again to a local maximum
at 0.8, then decreasing once more. The anomalous Hall
angle θAH = σyx/σxx in red shows an even more pro-
nounced variation with concentration due to the addi-
tional structure of the longitudinal conductivity σxx, in
particular around x = 0.75. This leads to a maximum of
θAH for x = 0.8 of ∼0.0025 or 0.25 %.

In the central panel of Fig. 9 results for the ther-
moelectric analogue to the anomalous Hall conductiv-
ity, the anomalous Nernst conductivity (ANC) αyx are
given as a function of (electronic) temperature. The
ANC is the antisymmetric off-diagonal element of the
Nernst conductivity or Peltier tensor α, usually defined
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tivity κyx = −κxy = κthAH related to the anomalous thermal
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via S = −σ−1α. These data suggest that there should
be a sign change observable depending on the Fe concen-
tration x at ∼0.7, even more pronounced at high temper-
atures. Assuming that phonon- or magnon contributions
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to the anomalous Nernst conductivity will most likely be
suppressed at elevated temperatures, this should in prin-
ciple be accessible experimentally.

Finally, the temperature dependence of the off-
diagonal antisymmetric element of the electronic thermal
conductivity tensor κ connected to the (electronic con-
tribution to the) thermal Hall or Righi-Leduc effect is
shown in the bottom panel of Fig. 9. Again only the ap-
proximated values according to Eq. (6) are shown, but as
for the isotropic value the influence of the additional con-
tributions in Eq. (9) have been confirmed to be marginal.
All alloys show the same sign and a similar, linear tem-
perature dependence of κyx, in fact very much resembling
that of the isotropic value κiso in Fig. 7. The absolute
values are decreasing with increasing Fe content. Slight
deviations from this behavior are once more found for
x = 0.75 and 0.8, in the latter case already at low temper-
atures. Again this quantity should be measurable in con-
centrated alloys at elevated temperatures (to distinguish
from phonon- and magnon-related effects), although the
absolute values are more than two orders of magnitude
smaller than the isotropic values.

All three transverse antisymmetric transport proper-
ties certainly are affected by scattering at phonons and
magnons. This has been again investigated employing
the alloy analogy model to account for the elastic
contributions. As can be seen in Figure 10 (top) for
the anomalous Hall conductivity σyx finite tempera-
ture induced disorder leads to a significant reduction.
The rate of decrease with temperature appears to be
proportional to the residual value, it amounts to more
than 50 % for 70 % Co content, about 30-40 % for 20
and 50 % Co and ∼25 % for 22 and 36 % Co. The
lattice vibrations are again the dominating effect, for
low Co content at high temperature the spin fluctuations
however are appreciable as well. The anomalous Nernst
conductivity αyx in the middle panel behaves rather
similar concerning the impact of thermal effects. For all
concentrations but 20 % Co these lead to a decrease of
the AHC as compared to the results for Tel. The sign
remains unaffected in the temperature range considered,
for higher Co contents at T > 300 K a sign change might
take place. The thermal Hall effect in the bottom panel
of Fig. 10 shows again a pronounced decrease when
considering lattice vibrations and spin fluctuations, the
temperature dependence is modified as well, suggesting
a saturation at T > 300 K. In fact this is very much
alike the observations made for the longitudinal thermal
conductivity in Ref. 1.

In all three cases it might be necessary to go beyond
the presently employed Kubo-Středa formula to prop-
erly account for the contribution of Fermi sea terms to
the intrinsic conductivities by means of the Kubo-Bastin
formalism.23 This is far beyond the scope of the present
and therefore left for future work.
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FIG. 10. Anomalous Hall conductivity σyx (top), anomalous
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ric thermal conductivity κyx (bottom) as functions of temper-
ature for alloys with x = 0.3, 0.5, 0.64, 0.78, and 0.8. Results
accounting for the electronic temperature alone (Tel), includ-
ing the effect of thermally-induced lattice vibrations Tel = Tv

as well as in addition spin fluctuations Tel = Tvf are shown.

E. Results for pure hcp Co and bcc Fe

So far only concentrated FexCo1−x alloys have been
considered but it is of course a natural question if their
properties are continuously varying between the pure lim-
its of cobalt and iron. A recent study by Watzmann et
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al.2 was dealing with the electric, thermoelectric, and
thermal transport properties of Fe, Co, and Ni, focusing
on the magnon-drag contribution to the thermopower.
In order to suppress the effect of phonons porous and/or
polycrystalline samples have been chosen. Comparison
with single crystalline samples revealed, by absence of a
characteristic phonon-drag peak at low temperature, that
the mean-free path of the phonons could be sufficiently
reduced this way.

Figure 11 shows a comparison of first-principles results
for the Seebeck coefficient with experimental data from
Ref. 2. As can be seen in the top panel for hcp Co the
agreement with experiment for all theoretical results is
acceptable concerning the temperature dependence while
the absolute values are almost one order of magnitude
too low. The results in black include only the effect of an
electronic temperature Tel, the underlying conductivities
were calculated in the athermal limit by adding a small
imaginary part to the energy. This corresponds to a con-
stant relaxation time that enters nominator and denomi-
nator of the generalized Mott formula and drops out, the
two curves for Im(E) = 10−3 and 10−4 accordingly fall
on top of each other. Inclusion of lattice vibrations (Tv,
red symbols) and in addition spin fluctuations (Tvf , blue
symbols) further reduces the absolute value of S but does
not lead to a major modification of the variation with T .

For bcc Fe in the central panel the situation is sig-
nificantly different: Already the results for Tel devi-
ate strongly from experiment, inclusion of non-electronic
thermal effects even changes the sign of S. Under the
assumption that the main difference between theoretical
and experimental results for the polycrystalline sample
is the inelastic electron-magnon scattering contribution,
this suggests that is significant not only for the magni-
tude but also for the sign of S.

The bottom panel of Fig. 11 shows the energy-
dependent conductivities of bcc Fe and hcp Co, calcu-
lated in the limit T → 0. From these curves one can
immediately read of the difference in sign of the ther-
mopower for T = Tel in hcp Co and bcc Fe.

The electronic contribution to the thermal conductiv-
ity κ was calculated under the same conditions as de-
scribed above for the thermopower. The corresponding
results for κ are shown in Fig. 12. It should be noted
that the above-mentioned relaxation time approximation
does not hold here, as κ contains contributions of unbal-
anced fractions of L coefficients (see Eq. (6)). The by far
dominating one is of course from the Lqq tensor. For Co
shown in the top panel the results for smaller imaginary
part and T = Tel quite nicely reproduce the low temper-
ature behavior of the experiment on the ingot while for
larger imaginary part match those of the porous sample.
In both cases however already below 50 K the deviations
become significant. Upon inclusion of thermal effects the
calculations agree quite well with the high temperature
data for the ingot. For bcc Fe quite similar observations
can be made, although here both samples behave much
more alike.
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of thermal lattice vibrations, Tel = Tv (red triangles), and
including furthermore temperature-induced spin fluctuations,
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IV. ELECTRONIC STRUCTURE AS A
FUNCTION OF IRON CONTENT

Most of the transport phenomena discussed in the pre-
vious sections show characteristic features at Fe concen-
trations between x = 0.6 and 0.85. In order to under-
stand this behavior the spin-dependent Bloch spectral
functions (BSF) of alloys containing x = 0.3, 0.4, 0.5, 0.6,
0.7, 0.75, 0.8, and 0.85 were calculated. Since the linear
response properties are intimately connected to the band
structure –although within Kubo linear response theory
not as transparent as in the Boltzmann approach– and
its energy dependence in case of the Mott relations, it is
hoped that an at least qualitative picture of some of the
concentration-dependent features in the measured and
calculated properties can be deduced.

As visible from Fig. 13 the overall shape of the bands
is very different in the two spin channels (majority
“spin-up”, left column, in red and minority “spin-down”,
right column, in blue) and so is the extent as well as
the k-space position of broadening effects on the band
structure. The Fermi level sinks with growing Fe content

(as Fe has one electron less than Co, see also Fig. 14
below) and at around x = 0.80 crosses the top of the
d-like bands of the majority channel (left) at the N
point of the Brillouin zone. This qualitatively explains
the maximum of the resistivity in this concentration
range, because the Fermi level is located in regions
where the Bloch spectral function is flat and broadened.
In the minority channel (right) the bands crossing the
Fermi level are predominantly of sp-character having
large slopes for large Fe concentrations (x > 0.6). At
x = 0.6 the Fermi level cuts through the bottom of a
parabolic band in-between the H and the N point. This
qualitatively explains the additional resistivity peak at
x = 0.6. The avoided crossing between the Γ and the H
point could be connected to the local minimum around
x = 0.75.

For the electronic contribution to the Seebeck coef-
ficient the energy dependence of the band structure is
crucial, as it is calculated directly from the energy-
dependent conductivity. Due to the additional energy
factor (E−EF) in the integral of Eq. (2) it is the asymme-
try of σ(E) that determines both its sign and magnitude,
together with a normalization by the conductivity itself.
Increasing the electronic temperature leads by means of
the Fermi distribution to an increasing number of states
contributing to transport and hence a larger energy range
in which the asymmetry is probed. A change in concen-
tration is most importantly reflected in the position of
the Fermi level, as stated above, and accordingly it de-
termines the relevant energy window. Moreover it leads
to a change in the extent of broadening of energy bands
and which bands are affected. The most obvious exam-
ple for this interplay is again the region around x = 0.8
where not only the resistivity maximum lies but also the
change in σ(E) is most pronounced. Accordingly the
Seebeck coefficient is largest here as well. The negative
sign is caused by the positive slope of σ(E) (see supple-
mental material of Ref. 1) leading in the Mott-limit to a
positive derivative w.r.t. the energy or more generally a
positive thermoelectric conductivity α. As the conduc-
tivity is positive, the minus sign leads to S < 0. A more
detailed discussion is given in Ref. 1, in particular in the
supplemental material.

An interesting point to mention here is, that although
the Seebeck coefficient changes sign as a function of Fe
concentration x (see Fig. 5), going from positive values
at low x to negative at large x, this is in obvious contra-
diction to the results for elemental Co and Fe in Fig. 11
(top and center, respectively). There are several impor-
tant factors underlying this behavior. Firstly, starting
from bcc Fe the Fermi level lies in hole-like bands with
positive curvature leading to a decrease of conductivity
with energy, see Fig. 11 (bottom), causing S to be pos-
itive (Fig. 11 (center, black symbols)). For x = 0.85 at
the bottom of Fig. 13 the Fermi energy is, as previously
discussed, situated in a flat d-like band. As discussed in
detail in Ref. 1 there is a sharp step-like increase in con-

116 3.1. Thermogalvanomagnetics



13

FIG. 13. Band structure (Bloch spectral function, BSF) of bcc FexCo1−x for, from top to bottom, x = 0.3, 0.4, 0.5, 0.6, 0.7,
0.75, 0.8, and 0.85 for majority spin up (left) and minority spin down (right).
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ductivity when going from closely below the Fermi level
to energies slightly above. This leads to the large and
negative Seebeck coefficient for high Fe content. Upon in-
creasing the Co concentration, that is going from bottom
to top in Fig. 13, as already mentioned the Fermi level
shifts upwards due to the increasing number of electrons,
away from the step in σ(E). This leads to a reduction
of |S|. At the same time the importance of minority
spin carriers increases whose bands become increasingly
broadened (see right column of Fig. 13). There is a com-
petition between increasing slope of the bands towards
higher energies for both spin channels and the Fermi
level approaching a flat and broadened d-like band in
the minority spin channel, leading to a modest decrease
of conductivity with energy and in turn to a small posi-
tive Seebeck coefficient for x < 0.3. Finally for pure hcp
Co the Fermi level lies in regions of bands with predomi-
nantly positive curvature, resulting in a positive slope of
σ(E) (Fig. 11 bottom) and accordingly a negative See-
beck coefficient (Fig. 11 top, black symbols).

The transverse transport properties anomalous Hall
conductivity, anomalous Nernst conductivity, and
anomalous (electronic) thermal Hall conductivity or
anomalous Righi-Leduc coefficient and their concen-
tration dependence certainly also are determined by
subtle features of the band structure. Due to the
more complex nature of the mechanisms behind them
(intrinsic, side-jump and skew scattering contributions)
one in addition has to take the decisive role of spin-orbit
coupling into account, as it is done here by using a fully
relativistic approach. This makes a direct comparison
of Bloch spectral function and transverse transport
properties next to impossible.
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FIG. 14. Density of states at the Fermi level n(EF) (full black
squares, left y axis), and normalized Fermi level EF, spin- and
orbital magnetic moments, µspin and µorb, (full red circles,
full blue triangles, and full magenta up-side-down triangles;
all right y axis) as a function of Fe content.

As visible in Fig. 14, the density of states at the Fermi
level decreases upon increasing the Fe content until a

minimum at x = 0.75 is reached, from which on n(EF)
increases again. The Fermi level itself decreases from
a flat maximum at x = 0.3 onwards. As it has been
argued by Ebert et al.44 for the composition dependence
of the Gilbert damping parameter α in bcc FexCo1−x,45

the resistivity seems to be dominated by the electronic
structure at the Fermi level. To a fair extent this seems
to apply even directly to the density of states, as one
would in fact expect from a simple Drude picture of
the resistivity. Guessing from the magnitude of the
spin-magnetic moment as a function of concentration,
the effect of spin fluctuations might be more pronounced
at higher Fe concentrations.

V. CONCLUSIONS

To summarize, we have presented first-principles lin-
ear response calculations of the galvanomagnetic, ther-
mogalvanomagnetic, and thermal transport properties of
bulk bcc FexCo1−x alloys. The current study is an ex-
tension to a joint experimental and theoretical investi-
gation on Magnon scattering in the transport coefficients
of CoFe alloys by Srichandan et al..1 Residual resistivity
and anisotropic magnetoresistance were found in fair ac-
cordance with experimental low-temperature data. The
temperature dependence of the isotropic resistivity was
found to depend significantly on the treatment of non-
electronic thermal effects such as lattice vibrations and
spin fluctuations. In comparison to experiment a consid-
erable amount of structural disorder prevented quantita-
tive agreement. The electronic contribution to the See-
beck coefficient could be shown to compare reasonably
well with experimental data already on the level of the
generalized Mott formula treating temperature only via
a modified Fermi-Dirac distribution function. In partic-
ular the concentration dependence found in experiment
could be reproduced. Even without considering inelas-
tic scattering on phonons and magnons a deviation from
the classical Mott behavior was observed and could be
traced back to pronounced changes of the band structure
around the Fermi level. The thermal conductivity ac-
cordingly does deviate from the Wiedemann-Franz law as
well, in case of high Fe content even the Lorenz function
shows a considerable variation with temperature. The
antisymmetric transport properties anomalous Hall and
Nernst effect were found to exhibit a strong concentra-
tion dependence with distinct features again at high Fe
content around x = 0.7 − 0.8. For the AHE a minimum
is found in this regime whereas the ANE even changes
sign. The electronic contribution to the thermal Hall
effect as a function of temperature behaves in contrast
very similar to the isotropic thermal conductivity, its ab-
solute values are however much lower. Finally a direct
comparison to experimental data on the Seebeck coeffi-
cient and the thermal conductivity in elemental bcc Fe
and hcp Co obtained by Watzmann et al.2 was made,
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supporting the suggested relevance of inelastic scattering
process on magnitude and even sign of the Seebeck co-
efficient. The thermal conductivity was found to be in
reasonable quantitative agreement at elevated tempera-
tures employing the alloy analogy model for the descrip-
tion of elastic scattering on lattice vibrations and spin
fluctuations.

Future work is planned to achieve a more realis-
tic treatment of structural disorder and sample geom-
etry and to extend the investigations to explicitly spin-
dependent spintronic and spincaloritronic transport phe-
nomena such as spin Hall and spin Nernst effect as well
as the spin-dependent Seebeck effect.
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8 B. Velický, Phys. Rev. 184, 614 (1969).
9 B. Predel, “Landolt-Börnstein - Group IV Physical Chem-

istry,” (Springer Berlin Heidelberg, Berlin, Heidelberg,
1993) Chap. Co-Fe (Cobalt-Iron), pp. 1–13.

10 That is, not for the whole range between the pure metals
as in Vegard’s law.

11 S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58,
1200 (1980).

12 O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
13 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
14 D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).
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3.2 Spincaloritronics

At the heart of spin caloric transport or spincaloritronics is the occurrence of spin
currents due to temperature gradients, induced either macroscopically by heating
and/or cooling opposite ends of a conductor or by local heating with a laser. The
most promising spincalor(itron)ic effects that could be exploited in an application
are the Spin Seebeck effect (SSE) mentioned in the introduction, the spin-dependent
Seebeck (SDSE) and the spin Nernst effect (SNE). While the first phenomenon will
not be discussed here and the second only in passing, the spin Nernst effect is the cen-
tral issue of the following. As in the SSE, the SNE can be used to generate a pure spin
current in a non-magnetic system.3 From its theoretical prediction [324, 358, 359],
soon followed by first-principles calculations [20], it took only a few years until its
experimental verification in Pt [21] and W [360]. Both experimental results could a
little later be confirmed independently [361].

In the following two publications will be presented. The first one [266] verified
the predictions of the spin-projected formalism of Ref. 20 for dilute copper alloys
using a spin-polarised relativistic formulation. It furthermore gave an extensive
comparison of spin Hall and spin Nernst conductivities, in particular concerning
their decomposition into intrinsic and extrinsic contributions, and extended the
discussion to the concentrated regime in AuxCu1−x alloys. Moreover, it had two
important additional aspects: First, a large spin Hall angle close to equiatomic
composition was found in the calculations that later on could be indeed observed
in experiment [362]. Second, ensuing discussions with D. Fedorov (MLU Halle) on
spin-projected vs. spin-polarised approaches (see Section 2.3.3.1 and Appendix A.3)
lead to first considerations on the mechanism underlying the so-called spin Nernst
magneto-thermopower (SMT) from a first-principles perspective. Of course only the
bulk contribution had been considered at that time. An erratum to Ref. 266 can be
found on page 131.

The second publication, Ref. 21, was a collaborative effort between experimental
and theoretical groups, with the later ones applying model as well as first-principles
methods, that resulted in the first experimental observation of the spin Nernst effect.
The above-mentioned SMT, derived from the nowadays established concept of the
spin Hall magnetoresistance (SMR) (see Refs. 363 and 364 and references therein),
was employed to measure indirectly the spin current generated by the SNE via the
inverse spin Hall effect. The interpretation of the experimental results was supported
by finite-temperature linear response calculations which could confirm both, relative
sign and magnitude of (inverse) spin Hall effect and spin Nernst effect. Additional
details on the experimental aspects can be found in Ref. 365.

3Other sources of such currents are, e.g., the spin Hall effect, lateral spin valves [355, 356], spin
pumping [46], and the photo-spin-voltaic effect [357].
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3.2.1 Published results on the spin Nernst effect in Cu alloys

The following is a copy of the article First-principles linear response description
of the spin Nernst effect [266], reprinted (including Supplemental Material) with
permission from

S. Wimmer, D. Ködderitzsch, K. Chadova, and H. Ebert, Phys. Rev. B 88, 201108(R)
(2013). Copyright (2013) by the American Physical Society.
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A first-principles description of the spin Nernst effect, denoting the occurrence of a transverse spin current
due to a temperature gradient, is presented. The approach, based on an extension to the Kubo-Středa equation for
spin transport, supplies in particular the formal basis for investigations of diluted as well as concentrated alloys.
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In recent years, transverse transport phenomena have
moved into the focus of many studies, the enormous interest
being of twofold origin: first, due to their promising potential
use in applications; second, because of the intriguing un-
derlying physics—the delicate and nontrivial entanglement
of the electrons’ spin and orbital degrees of freedom due
to relativistic effects. Prominent examples for these are the
anomalous Hall effect (AHE) in magnetically ordered solids1–3

and the spin Hall effect (SHE) occurring in nonmagnetic
solids.4–6 While these transverse charge (AHE) and spin (SHE)
transport phenomena are connected with an electric field �E
applied to a sample, corresponding phenomena can also be
induced by a temperature gradient �∇T , giving rise to the
anomalous Nernst (ANE)7,8 and spin Nernst (SNE)9–11 effects.

Spin-orbit interaction is the ultimate origin of all the
aforementioned transverse transport phenomena, and different
mechanisms giving contributions to the transverse conduc-
tivities have been identified. For pure systems they consist
of an intrinsic contribution that can be connected to the
so-called Berry curvature,7,12,13 as has been demonstrated
by various first-principles investigations on the AHE14–16 as
well as the SHE.17–19 It has been suggested that for pure
systems the intrinsic contribution has to be complemented
by a concentration-independent side-jump contribution, which
is meant to account for inevitable impurities. Corresponding
first-principles work has been done for the AHE16 and ANE.20

For diluted alloys skew or Mott scattering and the side-
jump mechanisms have been identified as additional extrinsic
contributions.1,2 Recently, model calculations on the basis of
Friedel’s impurity model have demonstrated for the SHE of
5d-transition metals diluted in Cu that both contributions may
be of the same order of magnitude.21 Corresponding first-
principles work on the SHE22 as well as the SNE23,24 has been
done using the Boltzmann formalism that gives so far access
to the skew scattering contribution only. As an alternative
to this, the Kubo-Středa formalism, which is applicable to
pure systems as well as diluted and concentrated alloys, has
been used to deal with the AHE25,26 and the SHE.27 In the
case of concentrated alloys, a decomposition into intrinsic and
extrinsic contributions to the transport coefficients has been
suggested25,27 on the basis of their relation to the so-called
vertex corrections1,28,29 (which correspond to the scattering-in
term of the Boltzmann equation) and the scaling laws connect-
ing transverse and longitudinal transport coefficients.1,2 This
approach led for diluted alloys to contributions due to the skew

scattering mechanism in full agreement with results based on
the Boltzmann formalism.27

Among the various transport phenomena, the SNE has so
far been considered only by a relatively few authors.9–11,23,30–32

Only recently, the first calculations from first principles for
the skew scattering contribution have been performed for
diluted alloys.23 As suggested by previous work,33 the concept
of a spin-projected conductivity has been used for this. As
demonstrated in this Rapid Communication, this simplifying
concept34 can be avoided by working throughout with the
spin current density and its related transport coefficients.
This, together with a fully relativistic first-principles band
structure scheme, allows to include all spin-flip transitions.35

Finally, as demonstrated below, the extension of the Kubo-
Středa formalism for spin transport leads to a first-principles
description of the SNE that accounts for all possible contri-
butions and that can be applied to pure as well as disordered
systems. Furthermore, it supplies a proper basis to deal with
nonmagnetic solids, as done here, but also to discuss thermally
induced spin transport in magnetic solids.

Kubo’s linear response formalism allows to relate the
electric and heat current densities, �jc and �jq , respectively,
to the gradients of the electrochemical potential μ and
temperature T .36,37 These standard relations may be extended
to include an induced spin current density J s and can formally
be written (see, e.g., Ref. 33)

�jc = −Lcc �∇μ − Lcq �∇T/T , (1)

�jq = −Lqc �∇μ − Lqq �∇T/T , (2)

J s = −Lsc �∇μ − Lsq �∇T/T , (3)

with the gradient of the electrochemical potential �∇μ =
�∇μc + e �E, where μc is the chemical potential,38 e = |e| the
elementary charge, �E the electric field, and �∇T denotes the
temperature gradient. Here, the Lij and J s are tensors of sec-
ond rank and Lij denote tensors of third rank. In the following
we will consider only the response to the vector fields �E and
�∇T . All elements of the response tensors will be considered
as temperature dependent with the restriction to the electronic
temperature T . In addition T which appears in the forces is
interpreted as the average sample temperature and not as a
microscopic T (�r) due to the temperature gradient, assuming
that we are in the regime of linear response. Furthermore
only the carrier diffusion contribution to the thermoelectric

201108-11098-0121/2013/88(20)/201108(5) ©2013 American Physical Society
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effects will be considered; collective phenomena such as the
phonon-drag effect are not accounted for.

The response tensors appearing in Eqs. (1) and (2) can be
calculated from the corresponding conductivities in the ather-
mal limit, as was demonstrated, e.g., by Smrčka and Středa39

or Jonson and Mahan.40 Extending existing approaches em-
ploying a spin-projection scheme in the spirit of Mott’s
two-current model and avoiding the use of spin-dependent
electrochemical potentials,23,33 the present relativistic formu-
lation leads to analogous expressions for the spin response
coefficients. In particular, the underlying spin conductivity σ sc

(≡ −eLsc for T → 0 K) may be calculated by an expression
analogous to the Kubo-Středa formula for σ cc (≡ −eLcc for
T → 0 K).27,41 Numerical checks against the Kubo-Bastin
formula42 proved this to be justified for the metallic systems
considered here. Therefore it is possible to use the concept of
an energy-dependent conductivity σ sc(E) providing the basis
for calculating the response to �∇T following the conventional
scheme. For the spin-polarization axis along ξ , the spin current
along μ, and the electric field along ν, with μ(ν,ξ ) ∈ {x,y,z},
one obtains

Lsc,ξ
μν (T ) = −1

e

∫
dE σ sc,ξ

μν (E)D(E,T ), (4)

with D(E,T ) = − ∂f (E,T )
∂E

, f (E,T ) the Fermi function, and
the energy-dependent spin conductivity σ sc,ξ

μν (E), which is
obtained by applying the Kubo-Středa formalism in the
framework of KKR-CPA,25,27,29,43 using a relativistic spin
current density operator.27,44

In analogy to the connection between the transport coeffi-
cient L

cq
μν(T ) and the energy-dependent electrical conductivity

σ cc
μν(E),40 the temperature-dependent spin transport coefficient

Lsq,ξ
μν (T ) is expressed in terms of the energy-dependent spin

conductivity σ sc,ξ
μν (E):

Lsq,ξ
μν (T ) = −1

e

∫
dE σ sc,ξ

μν (E) D(E,T ) (E − EF ), (5)

with EF the Fermi energy.
Considering a thermal gradient �∇T without an exter-

nal electric field �E, the resulting electric current den-
sity �jc vanishes when open-circuit conditions are imposed.
Equation (1) implies that an internal electric field

�E = − 1

eT
(Lcc)−1Lcq �∇T = S �∇T (6)

builds up in order to compensate the charge imbalance
induced by �∇T , where S is the thermo(magneto)electric tensor.
Equations (4), (5), and (6) are in their combination sometimes
called the generalized Mott formula for the thermopower (e.g.,
Refs. 20 and 45) and it has been shown by various authors (e.g.,
Ref. 40) that this expression reduces to the original expression
of Mott for T → 0 K. Using Eq. (3) together with Eq. (6) a
spin-polarized current as a response to a temperature gradient
is obtained under the aforementioned conditions for the charge
current:

J s = Lsc(−e �E) + Lsq (−�∇T/T ) = αscq �∇T , (7)

with the third-rank tensor

αscq = −eLscS − Lsq/T

= Lsc(Lcc)−1Lcq/T − Lsq/T , (8)

with notation chosen to be in line with the conventional symbol
α

cq
μν = −L

cq
μν/T for the Nernst20,46,47 (or Peltier48) coefficient

or conductivity. In the following α
sq,ξ
μν = −Lsq,ξ

μν /T will be
used accordingly for the spin Nernst conductivity.

Obviously, the properties of the tensors appearing in Eq. (8)
allow to decide in a most general way whether a thermal
gradient may give rise to longitudinal and/or transverse
spin currents. To investigate the symmetry properties of
the tensor Lsc we have extended the symmetry scheme of
Kleiner49 in an appropriate way and applied it to σ sc(E).50 For
nonmagnetic cubic solids as considered here one obtains for
spin-polarization along ξ = z

σ sc,z =

⎛
⎜⎝

0 σ z
xy 0

−σ z
xy 0 0

0 0 0

⎞
⎟⎠ , (9)

which by virtue of Eqs. (4) and (5) leads to the same structure
for Lsc,ξ and Lsq,ξ , respectively. Cyclic permutations of the
indices μ, ν, and ξ do not change the value of σ ξ

μν , while
anticyclic permutations reverse its sign. It should be mentioned
that the structure of σ ξ

μν given by Eq. (9) is obtained accounting
only for the spatial symmetry operations of the cubic point
group. Inclusion of time-reversal symmetry does not give
further restriction to the shape of the tensor σ sc but introduces
Onsager relations among tensors of response coefficients when
response and force are interchanged.

As for the situation considered here (nonmagnetic, cubic)
the conductivity tensor σ cc (derived from Lcc) is diagonal and
isotropic, a temperature gradient cannot create a longitudinal
spin current. However, for the transverse components with
respect to the polarization axis in ξ = z one finds for example
in the open electrical circuit case the nonvanishing term

αscq,z
yx = −eLsc,z

yx Sxx − 1

T
Lsq,z

yx (10)

= αsc,z
yx + αsq,z

yx , (11)

consisting of the “electrical” and “thermal” contributions, αsc,z
yx

and α
sq,z
yx , respectively.51

The second term of Eq. (10) represents the energy depen-
dence of the spin-polarized transverse (spin Hall) conductivity
in the vicinity of the Fermi level weighted with the asymmet-
rical occupation of states due to the temperature gradient [see
Eq. (5)]. The first term, which is caused by zero charge current
conditions, couples the thermoelectric effect in the direction of
the temperature gradient via the generated charge imbalance
(or internal electric field) to a transverse spin current. In the
linear response regime this can be equivalently interpreted as
an additional charge current (balancing the effect of �∇T ) with
a transverse (spin) component at the mean temperature of the
sample or the action of the internal field on two heat currents
(mediated by electrons) with opposite directions and hence on
their off-diagonal spin-dependent components (as described in
the second term without the field).

201108-2
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TABLE I. Longitudinal charge (σxx) and transverse spin (σ z
yx) conductivities (in μ�−1 cm−1) at the Fermi energy, longitudinal charge

Seebeck coefficient Sxx (in μV/K), and both contributions to αscq,z
yx , αsc,z

yx = σ z
yx(T )Sxx(T ) and the conventional spin Nernst conductivity αsq,z

yx

(in A K−1 m−1), always for T = 300 K, for the diluted alloys Cu0.99M0.01 with M = Ti, Au, Bi. Comparison is made to experimental data for
the electrical conductivity (Ref. 53) and for all quantities to the Boltzmann results of Tauber et al. (Ref. 23).

σxx(EF ) σ z
yx(EF ) σ z

yx(300 K) Sxx(300 K) αsc,z
yx (300 K) αsq,z

yx (300 K)

M Exp. Boltz. Kubo Boltz. Kubo (this work) Boltz. Kubo Boltz. Kubo Boltz. Kubo

Ti 0.12 0.09 0.08 3.24 × 10−4 4.28 × 10−4 4.29 × 10−4 5.83 5.72 0.19 0.25 0.43 0.50
Au 1.92 2.64 2.28 2.67 × 10−2 2.11 × 10−2 2.11 × 10−2 0.08 1.41 0.21 2.98 −15.1 −28.4
Bi 0.20 0.23 0.19 2.02 × 10−2 2.05 × 10−2 2.05 × 10−2 −1.49 −1.02 −3.01 −2.10 −2.01 −0.20

A fully relativistic implementation of the Korringa-Kohn-
Rostoker (KKR) band structure method52 is used to determine
the electronic structure of the various investigated systems
self-consistently with disorder in the alloys accounted for by
the coherent potential approximation (CPA). In a second step,
the transport coefficients Lcc, Lcq , Lsc, and Lsq are determined
using the Kubo-Středa formalism together with Eqs. (4) and
(5). For the athermal limit we use Mott’s classical formula for
the thermopower to obtain S/T and α/T .

Table I gives for the three diluted alloys Cu0.99M0.01 with
M = Ti, Au, and Bi the resulting longitudinal conductivity
σxx that is found in good agreement with experiment53 as
well as theoretical data obtained by Tauber et al.23 using the
Boltzmann formalism. Also the transverse spin conductivity
σ z

yx (for T = 0 and 300 K) and spin Nernst conductivity α
sq,z
yx

obtained via the Boltzmann23 and Kubo-Středa formalisms are
found in fairly good agreement. Furthermore, the “electrical”
contribution to α

scq,z
yx , αsc,z

yx (T ) = −eLsc,z
yx (T )Sxx(T ) is given

for T = 300 K. The large discrepancy between the Kubo-
Středa and Boltzmann result for M = Au for this quantity are
mostly related to the strong deviations in Sxx , which is shown
in the table as well. Possible sources for the deviations seen in
Table I are discussed in the Supplemental Material.50

The transverse conductivities given in Table I reflect
that these are induced by spin-orbit coupling (SOC) and
accordingly most pronounced for the diluted Au and Bi
systems. In fact, a model study for Cu0.99M0.01 with M being
one of the heavy elements from Lu to At for which the
SOC of Cu and the element M has been manipulated clearly
showed that σ z

yx is primarily caused by the SOC of the element
M (see Supplemental Material50). However, along the series
M = Lu to At the electronic structure of M at the Fermi energy
EF is dominated by d states for the transition-metal elements
and by p states for the later elements. In addition, the SOC
strength of the d electrons showing a maximum at M = Tl
is weaker than for the p electrons. As a consequence, there
is a crossover of the dominance of d to p states for σ z

yx

around M = Pt when going through the periodic table. The
spin Hall conductivity is found to be maximal at M = Hg.
As Eq. (5) connects σ z

yx and αz
yx the latter transport quantity

could be expected to show a similar behavior along the series.
However, as Table I clearly shows there is no strict one-to-one
correspondence between σ z

yx and α
sq,z
yx as for M = Au and Bi

the values for the first quantity are nearly identical while those
for the latter differ by two orders of magnitude. The different
behavior of σ z

yx and α
sq,z
yx is obviously caused by the fact that

the latter is not only determined by the electronic structure

at the Fermi energy EF but by its variation around EF (see
below). A detailed discussion of the deviations between the
two theoretical approaches for the spin Nernst conductivity is
given in the Supplemental Material.50

In contrast to the Boltzmann approach,22 the Kubo-Středa
formalism can be applied straightforwardly to concentrated
alloys. Figure 1 shows results for the residual resistivity ρ, i.e.,
the inverse of the longitudinal conductivity σxx for the energy
E = EF . Evaluating the equation with (VC) and without
(NV) vertex corrections shows that these give only a minor
reduction of ρ of a few percent for this system. Including
finite-temperature effects in analogy to the expression in
Eq. (4) gives rise to a negligibly small increase of ρ when
going from 0 to 5 K. These results are in fairly good agreement
with the experimental data for T = 4 K and show in particular
the nearly parabolic concentration dependence.

As the extrinsic contributions to the transverse spin Hall
conductivity σ z

yx can be ascribed to the vertex corrections27

its intrinsic part (σ z intr
yx ) is obtained by ignoring these within

the calculations. As Fig. 2 shows, σ z intr
yx is rather small

and increases nearly linearly with concentration when going
from Cu to Au, obviously reflecting the increase of the
average SOC strength. Including the vertex corrections leads to
strong—apparently diverging—extrinsic contributions in the
low-concentration regimes (x close to 0 or 1, respectively).
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FIG. 1. (Color online) Longitudinal residual resistivity
ρ = [σxx(EF )]−1 in AuxCu1−x calculated with (VC) and without
(NV) vertex corrections for T = 0 K. In addition the resistivity
ρ = [−eLcc

xx]−1 for T = 5 K obtained by an expression analogous to
Eq. (4) is shown.

201108-3

124 3.2. Spincaloritronics



RAPID COMMUNICATIONS

S. WIMMER, D. KÖDDERITZSCH, K. CHADOVA, AND H. EBERT PHYSICAL REVIEW B 88, 201108(R) (2013)

0 0.2 0.4 0.6 0.8 1
concentration x

0

5

10

15

20

σz yx
(E

F
) 

 (
m

Ω
 c

m
)-1

σ (NV)
σ (VC)

0 0.2 0.4 0.6 0.8 1
concentration x

0

0.2

0.4

0.6

0.8

1

α 
=

 σ
z yx

/σ
xx

  (
10

-2
)

α (NV)
α (VC)

Cu Au

FIG. 2. (Color online) Spin Hall conductivity σ z
yx and spin Hall

angle α = σ z
yx/σxx of AuxCu1−x calculated with (VC) and without

(NV) vertex corrections for T = 0 K. In both cases σxx contains the
vertex corrections.

In contrast to this behavior, the spin Hall ratio α = σ z
yx/σxx ,

which is most relevant for applications, shows a rather smooth
and simple behavior. Taking only the intrinsic part of the spin
Hall conductivity the ratio σ z intr

yx /σxx goes to 0 in the limit
x → 0 and x → 1, respectively, while the full ratio σ z

yx/σxx

stays finite also in these limits. Making use of the different
scaling behavior1,2 of the extrinsic contributions to σ z

yx (σ z extr
yx )

one finds that the side-jump part of σ z extr
yx is as σ z intr

yx quite small
and weakly concentration dependent but opposite in sign. As
a consequence, the skew scattering part of σ z extr

yx dominates
by far in the low-concentration regimes (see Supplemental
Material50).

The electrical and thermal contributions to the total spin
Nernst conductivity divided by T , αsc,z

yx /T , and α
sq,z
yx /T ,

respectively, for AuxCu1−x are shown in Fig. 3. As one
notes, the intrinsic contributions obtained by ignoring the
vertex corrections (NV) are quite small and vary nearly
linearly with concentration for both terms. Including the
vertex corrections, the concentration dependence of the elec-
trical contribution αsc,z

yx /T is obviously following that of
the spin Hall conductivity σ z

yx with a diverging behavior
in the low-concentration regimes [see Eq. (10) and Fig. 2].
The thermal contribution α

sq,z
yx /T also shows a diverging

behavior but with opposite sign for x → 0 and x → 1.
This clearly demonstrates that there is no simple one-
to-one correspondence between the spin Hall conductivity
σ z

yx and α
sq,z
yx /T as one can already expect from Eq. (5).
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FIG. 3. (Color online) Components of the total spin Nernst
conductivity (for T → 0) in AuxCu1−x , excluding and including the
vertex corrections.

Making again use of the connection of the vertex corrections
to the extrinsic contributions to the spin conductivity and of the
scaling laws, one finds—similarly to the SHE—only small and
linearly varying intrinsic contributions to the SNE. Also the
extrinsic contribution, namely once again the skew scattering
part, is prevailing in the dilute-concentration regimes of
AuxCu1−x (see Supplemental Material50).

In summary, a first-principles description of the spin Nernst
effect has been presented that is based on the Kubo-Středa
formalism. It is demonstrated that the concept of a spin-
projected conductivity can be avoided allowing in particular an
unambiguous symmetry analysis for the various transport co-
efficients involved. Numerical implementation of the scheme
using the KKR-CPA method led to satisfying agreement
with previous results for diluted alloys obtained using the
Boltzmann formalism. In addition, the first application of the
approach presented to diluted and concentrated alloys allowed
accessing all contributions to the SNE. For the investigated
alloy system AuxCu1−x the extrinsic skew scattering contribu-
tion was found to dominate in the low-concentration regimes
of the system.
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Y. Mokrousov, Phys. Rev. Lett. 107, 106601 (2011).
17Y. Yao and Z. Fang, Phys. Rev. Lett. 95, 156601 (2005).
18G. Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa, Phys. Rev.

Lett. 100, 096401 (2008).
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Symmetry considerations

Kleiner [1] introduced a very flexible scheme to investi-
gate the symmetry relations for arbitrary response func-
tions with the perturbation represented by a vector op-
erator. We extended this scheme for the case that the
response is given by a combination of two vector opera-
tors. For the spin current density considered here care
has to be taken furthermore for the fact that one operator
is an axial and the other one a polar vectorial quantity.
With this accounted for the structure of the spin conduc-
tivity as well as spin Nernst conductivity tensors are de-
termined applying the restrictions imposed by the cubic
point group. Any other lattice symmetry can be treated
in the same way. In addition, application to magnetically
ordered systems runs completely analogously.

More detailed comparison to previous results

In Table I results for several transport properties are
compared to those obtained by Boltzmann transport the-
ory in the work by Tauber et al. [2]. The following Fig. 1
shows the comparison for the charge Seebeck coefficient
Sxx [3] in more detail, namely its temperature depen-
dence. As a function of temperature all three systems
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Au - Kubo
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FIG. 1. (Color online) Temperature dependence of the charge
Seebeck coefficient Sxx in Cu0.99Ti0.01 , Cu0.99Au0.01, and
Cu0.99Bi0.01 obtained within Kubo and Boltzmann [2] trans-
port theory.

show a linear increase in magnitude, reflecting the basi-

cally linear behavior of the underlying σxx(E) in the con-
sidered energy interval, as can be seen from Fig. 2. The
different sign of the Seebeck coefficient in Cu0.99Bi0.01

directly traces back to the increase of the longitudinal
conductivity as a function of energy in the vicinity of
the Fermi level, as opposed to decreasing σxx(E) for
Cu0.99Ti0.01 and Cu0.99Au0.01.

A corresponding comparison is shown in Fig. 3
for the total spin Nernst conductivity as well as its
individual, electrical and thermal, contributions. Again
the temperature dependence is approximately linear for
all contributions and all three systems. The differences
in the constitution of the total spin Nernst conductivity,
i.e. the relative magnitudes and signs of the two terms
αsc,z

yx and αsq,z
yx found in Ref. [2] are reproduced. Just

as for the Seebeck coefficient, magnitude, sign and
temperature dependence of the spin Nernst conductivity
(SNC) can be already qualitatively estimated from the
σ(E) curves in Fig. 2. Note that for Cu0.99Bi0.01 the
deviation from linearity is the most prominent, which
results in a moderately non-linear T-dependence of αsq,z

yx

(nearly invisible in Fig. 3, bottom).

Results for both quantities show very good agree-
ment for Cu0.99Ti0.01 but pronounced deviations for
the two other systems containing heavy elements. For
Cu0.99Au0.01 this concerns mostly the longitudinal See-
beck coefficient but also transverse transport properties
while for Cu0.99Bi0.01 the spin Nernst conductivities, es-
pecially their thermal contributions, deviate. This could
possibly be ascribed to the neglect of spin-flip contribu-
tions by Tauber et al. [2], that indeed are expected to
increase with the atomic number. But particularly for
longitudinal transport coefficients in Cu0.99Au0.01 they
could be ruled out to be of significance [4]. Another
possible source for the discrepancies is the the fact that
the Kubo-Středa formalism used here gives the full con-
ductivities including in particular the intrinsic as well as
the extrinsic side-jump contributions. These are given
explicitly for Cu(Au) in the dilute limit below and can
be shown to be too small to serve as an explanation.
Furthermore, as the two approaches for determining the
electronic structure of the alloy differ insofar as here the
CPA is used whereas in Ref. [2] an embedded cluster
method has been employed, differences in the response
coefficients are to be expected. In particular, the energy
dependence of the conductivities around the Fermi en-
ergy seems to be very sensitive. Another possible expla-
nation for the discrepancies is the description of the spin
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FIG. 2. (Color online) Energy dependence of the longitu-
dinal charge and the transverse spin Hall conductivity, σxx

and σz
yx respectively for (from top to bottom) Cu0.99Ti0.01,

Cu0.99Au0.01, and Cu0.99Bi0.01.

current density, on the one hand by the use of the four-
component polarization operator [5] and on the other
hand via the spin polarization of the Bloch states as out-
lined in Ref. [6]. Still in all cases the overall agreement
concerning magnitude, sign and temperature dependence
is satisfactory.
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FIG. 3. (Color online) Temperature dependence of the spin-
dependent Nernst conductivity and its constituents for, from
top to bottom, in Cu0.99Ti0.01, Cu0.99Au0.01, and Cu0.99Bi0.01

obtained within Kubo and Boltzmann [2] transport theory.

Results for diluted Cu-alloy series

The discussion presented on the results of Cu0.99Au0.01

and Cu0.99Bi0.01 is supported by an additional study of
the spin Hall conductivity for diluted Cu-M alloys. The
underlying principles and the used formalism are out-
lined in Ref. 7. Suppressing the spin-orbit coupling on
the host element Cu hardly changes the spin Hall con-
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ductivity as shown in Fig. 4. Applying the manipulation
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FIG. 4. (Color online) Spin Hall conductivities obtained
for manipulated spin-orbit coupling (SOC) strength in
Cu0.99M0.01.

for the heavy element M on the other hand leads to a
strong variation of the spin Hall conductivity (SHC), in
particular for elements around Hg. For this impurity the
spin Hall conductivity with full spin-orbit coupling has
the largest value. Performing the manipulation individ-
ually on the p- and d-channels shows that the relative
importance of the p-channel increases drastically start-
ing from M = Au.[8] Up to M = Hg also the SOC of
the d-channel contributes considerably, for Au and Hg as
impurities it even diminishes the SHC. The correspond-
ing spin-orbit coupling strength for the elements M (see
Fig. 5) is found to be minimal in the p-channel at M
= Hg, shifted by one to higher atomic numbers, at Tl,
the d-channel has its maximum. Furthermore the den-
sity of states at the Fermi energy shows a crossover of
the dominance of d- to p-states between M = Au and Hg
when going from light to heavy elements, as depicted in
Fig. 6. All this does not yet provide a full explanation of
the behavior of the SHC as a function of impurity type,
it only hints, by highlighting the necessary ingredients,
on the route one has to take in order to understand the
underlying mechanisms in more detail.

Decomposition of spin Hall and spin Nernst
conductivity

Making use of the connection of the vertex corrections
to the extrinsic contributions to the spin Hall and spin
Nernst conductivities these have been split accordingly
into their intrinsic and extrinsic parts. For the intrinsic
contributions (calculated excluding vertex corrections) in
both cases a linear variation with the concentration is
found, as shown in Fig. 7.
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FIG. 5. (Color online) Spin-orbit coupling strength of impu-
rity M from Lu to At in Cu0.99M0.01

Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At

impurity M

0

5

10

15

20

25

D
O

S(
E

F) 
 (

st
s.

/R
y/

ty
pe

)

M s
M p
M d
M f
M tot
Cu tot

FIG. 6. (Color online) Density of states (DOS) at the Fermi
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For the former elements the contributions of the l-channels
up to f are given in addition.

Using the scaling behavior [9, 10] of the extrinsic
contribution due to the skew scattering and side-jump
mechanisms w.r.t. to the longitudinal conductivity a
corresponding decomposition has been made in addi-
tion. Fig. 7 shows that the side-jump contributions
for both quantities are in the same order of magnitude
as the intrinsic one and also vary only slightly with
concentration. The skew scattering contribution, on
the other hand, gives rise to the diverging behavior
of both SHC and SNC when approaching the dilute limit.
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Errata

• The first two curves in Fig. 3 on page 4 of Ref. 266 (page 125 herein) should be
labelled αsq,zyx /T (NV/VC), as the thermal contribution to αscq,zyx /T is shown.

• Likewise the axis label of the bottom panel of Fig. 7 on page 4 of the Supple-
mental Material to Ref. 266 (page 130 herein), should read αsq,zyx /T (AK−2m−1).
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3.2.2 Published results on the spin Nernst magneto-thermopower

The following is a preprint copy of the article “Observation of the spin Nernst
effect” [21], reprinted (including Supplementary Information) from

S. Meyer, Y.-T. Chen, S. Wimmer, M. Althammer, T. Wimmer, R. Schlitz, S. Geprägs,
H. Huebl, D. Ködderitzsch, H. Ebert, G.E.W. Bauer, R. Gross, and S.T.B. Goen-
nenwein, arXiv:1607.02277 [cond-mat.mtrl-sci] (2016), published in Nat. Mater. 16,
977 (2017).
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The observation of the spin Hall effect [1, 2, 3] triggered intense
research on pure spin current transport [4]. With the spin Hall ef-
fect [1, 2, 5, 6], the spin Seebeck effect [7, 8, 9], and the spin Peltier
effect [10, 11] already observed, our picture of pure spin current
transport is almost complete. The only missing piece is the spin
Nernst (-Ettingshausen) effect, that so far has only been discussed
on theoretical grounds [12, 13, 14, 15]. Here, we report the obser-
vation of the spin Nernst effect. By applying a longitudinal tem-
perature gradient, we generate a pure transverse spin current in a
Pt thin film. For readout, we exploit the magnetization-orientation-
dependent spin transfer to an adjacent yttrium iron garnet layer,
converting the spin Nernst current in Pt into a controlled change
of the longitudinal and transverse thermopower voltage. Our ex-
periments show that the spin Nernst and the spin Hall effect in Pt
are of comparable magnitude, but differ in sign, as corroborated by
first-principles calculations.

1 Main letter

Transverse transport is a key aspect of charge and/or spin motion in the
solid state. In the charge channel, the Hall effect [16] and the Nernst effect
[17] sketched in Fig. 1 (a), (b) enshrine transverse charge motion due to a
gradient in the longitudinal potential imposed by an electric or thermal stimulus,
respectively. Since the magnitude of the Hall charge current jHall

c ∝ θH jc ×H
(parameterized by the Hall angle θH, the applied charge current jc and the
external magnetic field H) is governed by the density of mobile charge carriers
in simple metals and semiconductors, Hall effect experiments quickly became
a standard tool for material characterization. As sketched in Fig. 1(b), the
transverse Nernst charge current jNernst

c ∝ θN∇T ×H is driven by a temperature
gradient ∇T or the corresponding heat current jh = −κ∇T , where κ is the
thermal conductivity and θN the Nernst angle.

While first experiments in the spirit of the spin Hall effect have been conducted
in the 1970s [18] , only recently, electrically driven transverse spin transport in
the form of the spin Hall effect (SHE) [19, 20] resulted in a new paradigm for
spin-electronic device design [3, 21, 4]. The SHE refers to a transverse pure
spin current jSH

s ∝ θSH jc× s driven by a charge current density jc, see Fig. 1(c).
The spin Hall angle θSH characterizes the charge-to-spin conversion efficiency
[4, 22]. Analogous to the Nernst effect, the spin Nernst effect (SNE) describes
a transverse pure spin current jSN

s ∝ θSN jh × s arising from a longitudinal
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temperature gradient, cf. Fig. 1(d). Here, θSN is the spin Nernst angle [12, 13,
14, 15]. In linear response and Sommerfeld approximation:




jc
jh
js,i


 = σ




1 ST θSHi×
ST L0T 2 STθSNi×
θSHi× STθSNi× 1







∇µ0/e
−∇T/T
∇µsi/(2e)


 , (1)

where the gradients of the electrochemical potential µ0, T and spin accumulation
µsi are connected via a tensor to jc, jh and the pure spin current js,i (with spin
polarization s and i ∈ {x, y, z}). The response tensor contains the electrical
conductivity σ, the Seebeck coefficient S, the Lorenz constant L0 and the
spin Hall (Nernst) angle θSH (θSN) (for more details see SI). In spite of its
fundamental importance for the understanding of pure spin current transport,
the SNE has remained a theoretical conjecture.

In this Letter, we report direct experimental evidence for the spin Nernst
effect in platinum. In order to quantify the spin Nernst spin current, we
modulate the transverse spin current transport boundary conditions and detect
the spin accumulation induced by the spin Nernst effect (SNE) in the charge
channel, via the inverse spin Hall effect (ISHE) [6]. In model calculations, we
show that the combined action of SNE and ISHE results in a thermopower
along (and normal to) the applied temperature gradient. This spin Nernst
magneto-thermopower (SMT) is present in any electrical conductor with spin
orbit coupling, but usually cannot be discerned from the conventional Seebeck
effect, since it has the same symmetry. However, by selectively changing the
spin transport boundary conditions, the SMT can be quantitatively extracted
and analyzed.
The concept is illustrated in Fig. 2(a-d). A paramagnetic metal film is exposed
to a temperature gradient ∇T ||−x. Through the Seebeck effect, a thermopower
arises along x. Furthermore, because of the SNE, a transverse spin current jSN

s is
flowing along z with spin polarization along y, resulting in a spin accumulation
at the metal film boundaries, as sketched in Fig. 2(a). The ensuing spin
accumulation in turn drives a diffusive spin current jb

s . In the steady state,
the spin current back flow jb

s = −jSN
s exactly balances the spin Nernst spin

current, such that the net transverse spin current flow vanishes. Through the
ISHE, both jb

s and jSN
s are accompanied by inverse spin Hall charge currents

(cf. Fig. 2(b)). Since the latter are of equal magnitude but opposite in sign,
they cancel. In that case the charge current vanishes and thereby the SMT.
In contrast, when the transverse spin transport is short-circuited, the spins
can not accumulate at the interface [Fig. 2(c)], such that jb

s is suppressed.
As a consequence, only jSN

s drives an ISHE charge current that leads to a
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Figure 1: Charge and spin-related electric and thermal effects. (a) In the
Hall effect, a transverse charge current density jHall

c arises when a magnetic
field H and a charge current density jc are applied normal to each other.
(b) The Nernst effect is the thermal analogue of the Hall effect. The electric
effects are shown for negative charge carriers (electrons), translating into
negative Hall and Nernst angles. (c) In the spin Hall effect, a transverse
spin current density jSH

s perpendicular to the charge current density jc is
generated due to spin orbit coupling. (d) A transverse spin current density
jSN
s is also generated by a longitudinal temperature gradient. This effect

has been named spin Nernst effect and is experimentally demonstrated here.
The spin effects are shown for negative spin Hall and spin Nernst angles.
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net charge current jISHE,SN
c along x, i.e., along the direction of the thermal

bias [cf. Fig. 2(d)]. The combination of spin Nernst and inverse spin Hall
effects thereby induces a thermopower along the temperature gradient with
a magnitude depending on the transverse spin current boundary conditions.
This SMT can be distinguished from the conventional Seebeck effect when
modulating the transverse spin current boundary conditions by the spin transfer
torque (STT) at the ferromagnetic insulator/normal metal (FMI/N) interface
[23, 24]. The STT depends on the orientation of the magnetization M in the

transverse spin current

      
   open circuit

- T

js

js
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Figure 2: Boundary conditions for the spin Nernst magneto-thermopower
(SMT): (a): A temperature gradient ∇T along −x evokes a spin current
density jSN

s along z, leading to a spin-dependent chemical potential along
z. Open circuit boundary conditions depicted in (a) block the transverse
spin current, generating a spin current back flow jb

s = −jSN
s . (b) Both spin

current densities jSN
s and jb

s give rise to charge current densities jISHE,SN
c

and jISHE,b
c parallel and antiparallel to x. (c) Short-circuiting the spin

transport along z suppresses the spin-dependent chemical potential and
jback
s . (d) The absence of jback

s enhances the net charge current. (e,f) We
utilize an insulating ferrimagnet (FMI) attached to the metal layer (N) to
switch between open (no spin transfer torque, panel (e)) and short-circuit
(finite spin transfer torque, panel (f)) boundary conditions by the FMI
magnetization orientation M.

magnetic insulator. When s and M are collinear (either parallel or antiparallel),
the STT vanishes. This situation corresponds to open transverse spin transport
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boundary conditions [cf. Fig. 2(e)]. In contrast, when s and M enclose a finite
angle, the STT is finite, becoming maximal for s orthogonal to M [short-circuit
boundary conditions, Fig. 2(f)]. We control the transverse spin current boundary
conditions by systematically changing the orientation of the magnetization in
the FMI layer, and record the ensuing spin Nernst driven changes in the
thermopower, i.e., the SMT. The phenomenology of the SMT is similar to the
recently established spin Hall magnetoresistance (SMR) [25, 26].
We model the SMT, by the spin diffusion equation in the metal with quantum
mechanical boundary conditions at the ferromagnet, as detailed in the SI. The
(longitudinal) thermopower Vthermal can be expressed in terms of an effective
Seebeck coefficient as:

Vthermal
l

= −[S + ∆S0 + ∆S1(1−m2
y)]∂xT (2)

with
∆S1
S

= −θSNθSH
λ

tN
Re

2λG tanh2( tN2λ)
σ + 2λG coth( tNλ )

. (3)

Here, tN, σ and λ are the thickness, electrical conductivity, and spin diffusion
length of the N film, respectively, G the spin mixing conductance of the FMI/N
interface, l the sample length and my = M · y/|M|. The tN-dependence of
∆S1/S in Eq. (3) is identical to that of the SMR [27].

The sample is a yttrium iron garnet (Y3Fe5O12, YIG)|Pt bilayer [28] pat-
terned into a Hall bar as shown in Fig. 3(a). An additional YIG|Pt strip
extending in y direction serves as an on-chip heater. We heat one side of the
sample by applying a constant electric power of 286 mW to the on-chip heater
and connect the other end of the sample to a heat sink. This generates a
temperature difference ∆T = Thot − Tcold = 18.0 K between the two ends of the
Hall bar as measured by on-chip resistive thermometry (see SI), while the dip
stick is kept at Tbase = 220 K; the average sample temperature for these heater
settings amounts to Tsample ≈ 255 K(see SI).
The external magnetic field of µ0H = 1 T is much larger than the demagnetiza-
tion and anisotropy fields of YIG, such that M ‖ H. Then, H||y corresponds
to M||s and thus open boundary conditions (no spin current flow across the
interface), while for H||x and H||z the ferrimagnet represents an efficient spin
current sink resulting in maximum spin current flow across the interface. The
thermopower Vthermal = (S̃+∆S1)∆T measured along x [cf. Fig. 3(b)] contains
the conventional Seebeck effect of the Pt Hall bar with the Seebeck coefficient S̃
(for details see SI). For Pt, S̃ < 0, such that the corresponding thermopower is
negative. By rotating H and therefore the magnetization M of the YIG within
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the film plane from α = 0◦ (H ‖ x) to α = 90◦(H ‖ y), the spin current bound-
ary conditions are switched from short-circuit (finite transverse spin current) to
open circuit (vanishing transverse spin current) conditions. The thermopower
therefore shows a characteristic modulation as expressed by Eq. (2).
Our measurements confirm this expectation: For open boundary conditions,
Vthermal = −66.225µV is about ∆Vthermal = 100 nV larger than for short-
circuit conditions, with a relative signal amplitude of |∆Vthermal/Vthermal| =
(1.5 ± 0.3) × 10−3, see Fig. 3(e). We reproduced this behavior for full 360◦

rotations of the applied field in the sample plane spanned by x and y, leading to
a sin2 α behavior of Vthermal with minima for short-circuit boundary conditions
(α = 0◦, 180◦), and maxima for open boundary conditions (α = 90◦, 270◦). We
can also switch the boundary conditions by rotating the magnetic field in the
(normal) plane spanned by y and z, see Fig. 3(f). Starting at β = 0◦ from
H ‖ y (open boundary conditions), the thermal voltage decreases while rotating
H towards z (β = 90◦, short-circuit boundary conditions) and the minimal
and maximal levels of Vthermal coincide with the ones obtained in the first
geometry. Rotating H out-of-plane perpendicular to y [Fig. 3(g)], the signal
is almost constant and coincides with the lower signal levels observed for the
other rotation planes. This is exactly the behavior expected from Eq. (2), since
H ⊥ s is fulfilled for every magnetization orientation in this rotation geometry,
causing a maximum spin Nernst spin current flow. Also the observed transverse
thermopower agrees very well with theory (see SI, Fig. 6). Spurious effects can
be ruled out by their symmetries. For example, a spin Seebeck voltage arising
from ∇T along z would result in a sin(α) [cos(β)] dependence of Vthermal in
the (x,y) [(y,z)] rotation plane, which is not observed (see also SI). Control
experiments conducted on a GGG/Pt sample exhibit no SMT signature (see SI).
Using λ = 1.5 nm, θSH = 0.11 and Re(G) = 4× 1014 Ω−1m−2 [29] in Eq. (3), the
observed ∆Vthermal/Vthermal = −1.5× 10−3 corresponds to a spin Nernst angle
of θSN = −0.20 for Pt. Our first-principles calculations for the spin transport
in bulk Pt confirm the relative sign and suggest θSH/θSN = −0.6 at Tsample(see
SI). This is in fair agreement with θSH/θSN(exp.) = −0.5. For different heating
powers between 100 mW and 286 mW as well as for two different magnetic field
values µ0H = 0.5 T and 1 T, we obtain identical SNE signatures. The relative
amplitude of the modulation of the thermal voltage does not depend on both
heating power and external magnetic field, as expected (see SI). Note that
the observed field dependence excludes interference by the spin Seebeck effect
[7, 8, 9].
In summary, we report an SMT signal in Pt|YIG hybrids proportional to an
in-plane temperature gradient that reveals the spin Nernst effect in Pt, thereby
opening a new strategy for the thermal generation of spin currents. The spin
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Figure 3: (a) Setup of the SMT experiments. A YIG|Pt (tF = 40 nm/tN = 4.1 nm)
thin film is patterned into a Hall bar (width w = 250µm, length l = 3150µm).
An additional heater strip is defined along y, d = 250µm beyond the top of
the Hall bar. By applying an electric current with power Pheater to the heater
strip, one end of the Hall bar is hotter than the other end that is connected
to a heat sink provided by the sample holder (see supplementary information
for details), leading to a temperature gradient −∇T along x. (b)-(d)
The magnetization vector M of the YIG layer is rotated by an external
magnetic field µ0H = 1 T in three different rotation planes spanned by (x,
y) (panel (b)), (y, z)(panel (c)) and (x, z)(panel (d)). The measured
thermal voltage Vthermal for all three geometries and Pheater = 286 mW (or
∆T = 18.0 K along the Hall bar, corresponding to Tsample ≈ 255 K) is
depicted in panels (e) for the (x, y)-plane, (f) for the (y, z)-plane and (g)
for the (x, z)-plane.
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Nernst and spin Hall angles are of equal magnitude in Pt but of opposite sign,
as corroborated by first principle calculations. With the observation of the spin
Nernst effect, the “zoo” of magneto-thermo-galvanic effects is complete. We
anticipate that this spin Nernst magneto-thermopower can help in the opti-
mization of spintronic devices harvesting ubiquitous temperature gradients e.g.
from Joule heating hot spots. Note added: While writing this manuscript, we
became aware of an additional experiment on the spin Nernst effect in metallic
multilayers. [30]
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2 Methods summary

In our experiments, an yttrium iron garnet (Y3Fe5O12, YIG) thin film was
epitaxially grown on a (111)-oriented gadolinium gallium garnet (Gd3Ga5O12,
GGG) substrate by pulsed laser deposition, covered in-situ with Pt by electron
beam evaporation [28]. The YIG film is a an insulating ferrimagnet with a
saturation magnetization of 120 kA/m. The Pt layer is polycrystalline with
a resistivity of 430 nΩm at room temperature. The thicknesses of the YIG
and Pt layers were determined by x-ray reflectometry as tF = (40± 2) nm and
tN = (4.1 ± 0.2) nm, respectively. The 5 × 5 mm2 sample is patterned into a
Hall bar with an additional heating strip as shown in Fig. 3(a). For temperature
differences ∆T ≤ 18.0 K between both ends of the Hall bar, the voltage signal
Vthermal is measured while rotating a magnetic field of constant magnitude
µ0H = 1T in different planes. µ0H is much larger than the saturation field of
YIG to ensure the alignment of the magnetization M of the FMI parallel to the
external field even in the presence of magnetic and shape anisotropies. More
details on the experimental methods are given in the SI.
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1 Supplementary Information (SI)

1.1 Theory of the spin Nernst magnetothermopower

Here we present a theoretical analysis of the SMT effect in N|FMI bilayer systems
in terms of a non-equilibrium proximity effect caused by the simultaneous action
of the spin Nernst effect (SNE) and the inverse spin Hall effect (ISHE). This
effect scales like the product of the spin Hall and spin Nernst angle, and is
modulated by the magnetization direction in YIG via the spin transfer at the
N|FMI interface. Our explanation is a generalization of that of the spin Hall
magnetoresistance [1, 2], and is based on the spin-diffusion approximation in
the N layer in the presence of spin-orbit interaction [3] and quantum mechanical
boundary conditions at the interface in terms of the spin-mixing conductance
[4, 5].

We consider a N|FMI bilayer homogeneous in the x-y plane (z = 0 defines the
interface), and calculate the spin accumulation, spin currents and finally the
measured charge currents that are compared with the experimental SMT. We
also find that the imaginary part of the spin-mixing conductance generates an
anomalous Nernst effect (ANE) (that appears to be too small to be observable,
however).
The spin current density in the weakly relativistic limit

js = −en< v× σ + σ × v >

2 = (js,x, js,y, js,z)T = (jx
s , jy

s , jz
s) (1)

is a second-order tensor (in units of the charge current density jc = −en < v >),
where −e (e > 0) is the electron charge, n is the density of the electrons, v is
the velocity operator, σ is the vector of Pauli spin matrices, and < ... > denotes
the thermodynamic expectation value for a non-equilibrium state. The row
vectors js,i = −en < v×σi +σi×v > /2 are the spin current densities polarized
in the i direction, while the column vectors jj

s = −en < vj × σ + σ × vj > /2
denote the spin current densities with polarization η flowing in the j direction.
On the other hand, the heat current reads jh = n < (E − EF)v >, where E
stands for the energy of the particle, EF represents the Fermi energy. Ohm‘s
Law for metals with spin-orbit interactions can be summarized by the relation
between thermodynamic driving forces and currents that reflects the Onsager
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reciprocity by the symmetry of the response matrix [2, 3]



jc
jh
js,x
js,y
js,z




= σ




1 ST θSHx× θSHy× θSHz×
ST L0T 2 STθSNx× STθSNy× STθSNz×

θSHx× STθSNx× 1 0 0
θSHy× STθSNy× 0 1 0
θSHz× STθSNz× 0 0 1







∇µ0/e
−∇T/T
∇µsx/(2e)
∇µsy/(2e)
∇µsz/(2e)




(2)
where µs = (µsx, µsy, µsz)T − µ01 is the spin accumulation, i.e. the spin-
dependent chemical potential relative to the electrochemical potential µ0, σ is
the electrical conductivity, S = −eL0T∂E(ln (σ))|EF

is the Seebeck coefficient,
L0 = (π2/3)(kB/e)2 is the Lorenz number with kB the Boltzmann constant,
θSH (θSN) is the spin Hall (Nernst) angle, and × denotes the vector cross
product operating on the driving forces. The spin Hall (Nernst) effect [6, 7] is
represented by the lower non-diagonal elements that generate the spin currents
in the presence of an applied electric field (temperature gradient), while the
inverse spin Hall (Nernst) effect is governed by elements above the diagonal that
connect the gradients of the spin accumulations to the charge (heat) current
density. The Mott relations, expressing the response to a temperature gradient
in terms of the energy derivative of the electric response (as done above for
the Seebeck coefficient), are the leading terms in the Sommerfeld expansion of
the linear response coefficients given by Eqns. (20) and (21). They are exact in
the limit of sufficiently low temperatures. Deviations from the Mott relations
at elevated temperatures can be parameterized by a temperature-dependent
effective Lorenz number. The ab-initio calculations detailed below, however,
do not make use of the Sommerfeld approximation. In this study, we focus on
the charge current generated by an external temperature gradient and thus
the driving force is chosen to be a temperature gradient in the x direction
∇T = x∂xT which drives a charge current jc0x = −σS∂xTx via the Seebeck
effect.
The spin accumulation µs is obtained from the spin-diffusion equation in the
normal metal

∇2µs = µs
λ2 (3)

where the spin-diffusion length λ =
√
Dτsf is expressed in terms of the charge

diffusion constant D and spin-flip relaxation time τsf [8]. For films with thickness
tN in the z direction,

µs(z) = Ae−z/λ + Bez/λ (4)

where the constant column vectors A and B are determined by the boundary
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conditions at the interfaces. According to Eq. (2), the spin current in N consists
of diffusion and spin Nernst drift contributions. Since our system is homogeneous
in the x-y plane, we focus on the spin current density flowing in the z direction,

jz
s(z) = σ

2e∂zµs − jSN
s0 y, (5)

where jSN
s0 = −θSNσS∂xT is the bare spin Nernst current, i.e., the spin current

generated directly by the SNE. The boundary conditions require that jz
s is

continuous at the interfaces z = tN and z = 0. The spin current at a vacuum
(V) interface vanishes, js(V ) = 0. The spin current density j(F)

s at a magnetic
interface is governed by the spin accumulation and spin-mixing conductance:[4]

ej(F)
s (m) = Grm× (m× µs) +Gi(m× µs) (6)

where m = (mx,my,mz)T is a unit vector along the magnetization and G =
Gr + ıGi the complex spin-mixing interface conductance per unit area and
ı =
√
−1. The imaginary part Gi can be interpreted as an effective exchange

field acting on the spin accumulation. A positive current in Eq. (6) corresponds
to up spins flowing from the FMI towards N. With these boundary conditions
we determine the coefficients A and B, which leads to the spin accumulation in
the bilayer system

µs(z) = yµ0
s

sinh 2z−tN
2λ

sinh tN
2λ
− j(F)

s (m)2eλ
σ

cosh z−tN
λ

sinh tN
λ

(7)

where µ0
s = (2eλ/σ)jSN

s0 tanh (tN/2λ) is the spin accumulation at the interface
in the absence of spin transfer, i.e., when G = 0. Following Ref. [2], the spin
accumulation reads

µs(z)
µ0

s
= y

sinh 2z−tN
2λ

sinh tN
2λ

− [m× (m× y)Re + (m× y)Im] 2λG
σ + 2λG coth tN

λ

cosh z−tN
λ

sinh tN
λ

(8)
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which leads to the distributed spin current in the N

jzs (z)
jSN
s0

= y
cosh 2z−tN

2λ − cosh tN
2λ

cosh tN
2λ

− [m× (m× y)Re + (m× y)Im]
2λG tanh tN

2λ
σ + 2λG coth tN

λ

sinh z−tN
λ

sinh tN
λ

(9)

The ISHE drives a charge current in the x-y plane by the diffusion spin current
component flowing along the z direction. The total longitudinal (along x) and
transverse or Hall (along y) charge currents become

jc,long(z)
jc0

= 1 + θSHθSN

[
cosh 2z−tN

2λ
cosh tN

2λ
+ (1−m2

y)Re
2λG tanh tN

2λ
σ + 2λG coth tN

λ

sinh z−tN
λ

sinh tN
λ

]

(10)

jc,trans(z)
jc0

= θSHθSN(mxmyRe−mzIm)
2λG tanh tN

2λ
σ + 2λG coth tN

λ

sinh z−tN
λ

sinh tN
λ

(11)

For an open-circuit configuration for the charge current, the observable in the
experiment (thermal voltage) is expressed as an electric field Eth = Eth,xx +
Eth,yy which compensates jc,long and jc,trans:

Eth,x =
[
1 + θSHθSN

[
cosh 2z−tN

2λ
cosh tN

2λ
+ (1−m2

y)Re
2λG tanh tN

2λ
σ + 2λG coth tN

λ

sinh z−tN
λ

sinh tN
λ

]]
S∂xT

Eth,y = θSHθSN(mxmyRe−mzIm)
2λG tanh tN

2λ
σ + 2λG coth tN

λ

sinh z−tN
λ

sinh tN
λ

S∂xT. (12)

Averaging the electric field components along x and y over the film thickness
z, we obtain

Eth,x = [S + ∆S0 + ∆S1(1−m2
y)]∂xT (13)

Eth,y = (∆S1mxmy −∆S2mz)∂xT (14)

which includes
∆S0 = SθSHθSN

2λ
tN

tanh tN
2λ (15)

∆S1 = −SθSHθSN
λ

tN
Re

2λG tanh2 tN
2λ

σ + 2λG coth tN
λ

(16)
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∆S2 = −SθSHθSN
λ

tN
Im

2λG tanh2 tN
2λ

σ + 2λG coth tN
λ

(17)

∆S1 (caused mainly by Gr) contributes to the SMT, while ∆S2 (caused mainly
by Gi) contributes only when there is a magnetization component normal to
the plane (anomalous Nernst effect).
The voltages detected in our experiments are linked to the electric field compo-
nents in Eq. (13) via

Vthermal = −
∫
Eth,x(x)dx (18)

Thus, the spin current generated by the SNE generates additional contributions
∆S0 and ∆S1 to the Seebeck coefficient. For longitudinal thermopower measure-
ments, we therefore expect a magnetization orientation dependent contribution
to S and thus to the thermopower voltage Vthermal proportional to ∆S1(1−m2

y).
This is caused by the spin transport across the N|FMI interface described mainly
by Gr. Comparing Eq. (13) with the longitudinal SMR (cf. Ref. [2]), we find
the same magnetization orientation dependence proportional to m2

y. We thus
expect that the SMT has a similar fingerprint as the SMR, with modulations
in Vthermal when the magnetization of the FMI (the YIG) is rotated in planes
spanned by x and y as well as in planes spanned by z and y, while we expect
no modulations in Vthermal when the magnetization of the FMI is rotated in
(x,z) plane.

1.2 First principles description of the spin Nernst effect

In an independent theoretical effort, we derive the magnitude of the spin Hall
and the spin Nernst angles in bulk platinum from first principles. Assuming
a constant chemical potential and considering both an electric field E and a
temperature gradient ∇T as generating forces for a spin-polarized current

J s = −eLscE− Lsq∇T/T (19)

the tensors Lsc and Lsq describe the response of the system under investigation.
For a spin-polarization axis along i, the spin current along j, and the electric
field along k, with i(j, k) ∈ {x, y, z}, one obtains for the former

Lsc,i
jk (T ) = −1

e

∫
dE σsc,i

jk (E)D(E,EF , T ) , (20)

with D(E,EF , T ) =
(
−∂f(E,EF ,T )

∂E

)
, f(E,EF , T ) the Fermi function, EF the

Fermi energy (or chemical potential of the electrons at T = 0 K), and the
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energy-dependent spin conductivity σsc,i
jk (E) at T . The latter is obtained by

applying the Kubo-Bastin linear response formalism and an appropriate form
of the spin current density operator [9, 10] in combination with the relativistic
KKR (Korringa-Kohn-Rostocker) band structure method [11, 12, 13] and the
alloy analogy model [14] to account for thermally-induced structural disorder.

In analogy to the relation between the transport coefficient Lcq
jk (T ) and the

energy-dependent electrical conductivity σcc
jk (E) [15], the temperature-dependent

spin transport coefficient Lsq,i
jk (T ) is expressed in terms of the energy-dependent

spin conductivity σsc,i
jk (E):

Lsq,i
jk (T ) = −1

e

∫
dE σsc,i

jk (E)D(E,EF , T ) (E − EF ) . (21)

Considering a temperature gradient ∇T without an external electric field E,
the electric current density

jc = −eLccE− Lcq∇T/T (22)

vanishes when open-circuit conditions are imposed. Equation (22) implies that
an internal electric field

E = − 1
eT

(Lcc)−1Lcq∇T = S∇T (23)

compensates the charge imbalance induced by ∇T , where S is the thermo-
(magneto-) electric tensor. The ratios Lsc,i

jk /Lcc
kk = θSH, i.e. the spin Hall angle

(θSH), and Lsq,i
jk /Lcq

kk = θSN, i.e. the corresponding spin Nernst angle (θSN),
express the efficiency of conversion of a longitudinal charge current density into
a transverse spin current density, generated by an electric field or a temperature
gradient, respectively (see Eq. (2)). Since the conversion of the y-polarized spin
current along z, generated by the SNE, back into an electric field along x is
expressed by the inverse spin Hall conductivity σ′,y

xz = σy
xz = −σy

zx (See Ref. [16]),
the relevant (inverse) spin Hall angle θSH is the ratio Lsc,y

xz /Lcc
xx = −Lsc,y

zx /Lcc
xx.

The spin Nernst angle θSN is given by Lsq,y
zx /Lcq

xx. Using Eq. (23) and the
expressions for the electrical and thermoelectrical conductivities in terms of
Eqs. (20) and (21), σxx (σy

zx) = −eLcc
xx (−eLsc,y

zx ) and αxx (αy
zx) = − 1

T L
cq
xx

(− 1
T Lsq,y

zx ), their (temperature-dependent) ratio can be written as

θSH
θSN

(T ) = −σ
y
zx(T )

σxx(T )
αxx(T )
αy

zx(T ) = +Sxx(T )σ
y
zx(T )
αy

zx(T ) . (24)
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Following the notation of the previous section, σxx corresponds to σ in Eq. (2),
−σy

zx to θSHσ, αxx to −σS and αy
zx to −θSNσS. The energy-dependent conduc-

tivities entering Eqs. (20) and (21) and the corresponding expressions for the
longitudinal transport coefficients were calculated for a set of energy points E
around EF for each temperature T accounting for the effect of uncorrelated
lattice displacements via the alloy analogy model [13].

Figure 1 shows the calculated values of σxx(E) (top) and σy
zx(E) (bottom)

for T = 200 K (blue pluses), 250 K (black triangles), and 300 K (red squares).
The temperature-dependent Seebeck coefficient, spin Hall conductivity and spin
Nernst conductivity subsequently obtained from these are shown in Fig. (2) at
the top left, top right and bottom left, respectively.

They were calculated using the fitted σ(E) curves from Fig. 1 in the integrands
of Eqs. (20) and (21), i.e. without making use of the Sommerfeld approximation,
which would lead to the Mott relations for the Seebeck coefficient and spin
Nernst conductivity. Finally, the ratio of the spin Hall and the spin Nernst
angle, expressed by the above quantities as in Eq. (24), is shown as a function
of temperature in Fig. (2), bottom right. As can be seen, for the conventions
and definitions chosen here, the two angles have opposite signs for the whole
temperature range considered here and θSN is larger than θSH for T > 210 K.

1.3 Experimental methods

The sample used in this study is a YIG|Pt thin film heterostructure. YIG
hereby stands for Yttrium Iron Garnet (Y3Fe5O12). The 40 nm thick YIG
layer was epitaxially grown on a 500µm thick, single crystalline, (111)-oriented
Gadolinium Gallium Garnet (GGG, Gd3Ga5O12) substrate via pulsed laser
deposition using a stoichiometric targets [17]. The deposition was carried out
in an oxygen atmosphere of 25µbar, with a laser energy density of 2 J/cm2 at
the target, and a substrate temperature of 550 ◦C. The YIG layer is capped
in-situ, without breaking the vacuum, with a 4.1 nm thick Pt layer via electron
beam evaporation at room temperature. The thicknesses of the YIG and Pt
layer were determined by high-resolution X-ray reflectometry (HR-XRR) to
tF = (40± 2) nm and tN = (4.1± 0.2) nm, respectively. High-resolution X-ray
diffraction (HR-XRD) measurements confirmed the polycrystallinity of the Pt
thin film and revealed no secondary phases.

After pre-characterization, the sample was patterned into a Hall bar structure
with the additional on-chip heater strip as sketched in Fig. 3(a) via optical
lithography and Ar ion beam milling. The Hall bar has a width of w = 250µm,
a length of l = 3150µm and a contact separation of s = 625µm, the heating
strip along y is wh = 250µm wide and lh = 1175µm long, the distance between
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Figure 1: Energy dependence of longitudinal charge (a) and transverse spin-polarized
conductivity (b), σxx(E) and σy

zx(E), respectively. Calculations were per-
formed at fixed temperatures T = 200 − 300 K in steps of 10 K using the
alloy analogy model. Only the results for 200 K (blue pluses), 250 K (black
triangles), and 300 K (red squares) are shown here.

Page 9 of 27

154 3.2. Spincaloritronics



(a)

(c)

(b)

(d)

200 250 300

T (K )

− 3.5

− 3

− 2.5

S
xx

(1
0−

6
V
K

−
1
)

200 250 300

T (K )

− 4.6

− 4.59

− 4.58

σ
y zx

(1
05

Ω
−

1
m

−
1
)

200 250 300

T (K )

− 2.5

− 2

− 1.5

α
y zx

(A
K

−
1
m

−
1
)

200 250 300

T (K )

− 1

− 0.75

− 0.5
θ S

H
/θ

SN
=

S
xx

·σ
y zx
/α

y zx

Figure 2: Temperature dependence of (a) the Seebeck coefficient Sxx, (b) the spin
Hall conductivity σy

zx, (c) the spin Nernst conductivity, αy
zx, and (d) of the

ratio θSH/θSN as defined in Eq. (24).

Hall bar and heating strip is d = 250µm. The sample is mounted onto a massive
copper sample holder with one end, using GE 7031 thermally conductive varnish.
The other end of the sample (with the heater strip) is connected to a Vespel
block, again with GE varnish. In this way, the sample is thermally anchored
to the sample holder on one end, and can be heated on the other, thermally
’isolated’ end attached to the Vespel. All bonding pads at the Hall bar as well as
the heater strip were connected to a printed circuit connector board with 30µm
thick Al wires via wedge bonding. The bonded sample is mounted on a dedicated
magnet cryostat dipstick. This dipstick is enclosed in an evacuated steel jacket,
such that the sample resides in vacuum. A pressure of (5 ± 1) × 10−6 mbar
within the sample space was kept constant during the experiments.

Our Oxford Instruments 3D vector magnet cryostat, equipped with a variable
temperature insert (VTI), allows to apply magnetic fields ≤ 2 T in any desired
orientation to the sample, while at the same time adjusting the VTI temperature
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in the range 2 K ≤ T ≤ 300 K. In all magneto-transport experiments discussed
here, we used external magnetic field magnitudes µ0Hext ≥ 500 mT, which
exceed the saturation magnetization µ0MF

Sat ≈ 170 mT of our YIG thin films
at room temperature by at least about 3 times [18]. Thus, the magnetization
vector M of the YIG layer is always aligned parallel to µ0Hext.

On-chip thermometry

The base temperature of the sample holder (to which the cold end of the sample
is anchored) was set to 220 K and stabilized using the PID feedback loop of
a LakeShore LS340 temperature controller. Using the on-chip thermometry
described below, we found that the temperature was stable within fluctuations
of ∆Tbase = 3 mK (given by the temperature fluctuations displayed by the
temperature controller) after a thermalization time of six hours. By applying
heating currents of up to 20 mA to the heater strip next to the Hall bar by
means of an Agilent B2900A Precision Source Measure Unit, corresponding to
heating powers up to 286 mW, we created a temperature gradient along the Hall
bar direction x. The temperature profile along the Hall bar was determined
by resistive thermometry (see Fig. 3) along two transverse Hall bar contact
pairs separated by a distance of l1 = 2500µm using two Keithley K2400 Source
Measure Units and currents of 10µA [cf. Fig. 3(a)]. In order to calibrate our
’on-chip Pt temperature sensors’, we first stabilized the sample (viz the sample
holder) temperature to 220 K (no heating current applied to the on-chip heater
strip) and measured R1,2(T ) at either end of the Hall bar while sweeping the
sample temperature with 1 K/min up to 270 K using the temperature control of
the dipstick just described. These resistance vs. temperature curves, shown in
Fig. 3 (c) are used as calibration curves. After that, we again cooled the sample
down to the base temperature of 220 K and determined R1,2(Pheater) while
applying different heating powers up to 286 mW [cf. Fig. 3 (b)]. Comparing
R1,2(Pheat) with the calibration curves taken before allow to recalculate the
local sample temperature, such that a temperature profile of the sample with
an experimental error of ∆Tlocal ≈ 0.4 K [see Fig. 3 (d)] is established. Please
note that the error of ∆Tlocal ≈ 0.4 K is determined at the platinum strips by
resistive thermometry , while the fluctuation ∆Tbase = 3 mK of the heat bath
was determined by a Cernox temperature sensor at the sample holder.
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Figure 3: (a) Experimental setup for SMT experiments. A YIG|Pt (tF = 40 nm/tN =
4.1 nm) thin film sample is patterned into a Hall bar geometry (width w =
250µm, length l = 3150µm). An additional heater strip (width wh = 250µm,
length lh = 1175µm) is defined along y, separated by d = 250µm beyond
the top of the Hall bar. (b,c) Concept of the resistive thermometry: In
a first step (b), the resistance vs. temperature curves R1(T ) and R2(T )
along two transverse contact pairs are measured, while no power is applied
to the heater. Here, the sample temperature is homogeneous and given by
the dipstick temperature Tdipstick. R1(T ) and R2(T ) serve as calibration
curves for the thermometry. Afterwards (c), the dipstick temperature is kept
constant (Tbase = 220 K) while the electric power Pheater at the on-chip heater
is increased stepwise. R1 and R2 are now taken as a function of Pheater.
Panel (d) shows both the calibration curves R1(T ) and R2(T ) and the
heater dependent resistance values (horizontal lines). From those calibration
curves, the local temperatures can be calculated as a function of Pheater.
Here, we show three different heater powers (I) Pheater = 70 mW, (II)
Pheater = 159 mW and (III) Pheater = 286 mW. The extracted temperature
differences ∆T along the Hall bar as a function of Pheater are shown in (e).
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Power scaling

We find a linear dependence of the temperature difference along the Hall bar
on the applied heating power. Accordingly, we expect an almost linear scaling
between thermopower and applied heater power [19]. The maximum generated
temperature difference between the contacts separated by the distance l1 was
found to be 18.0 K for Pheater = 286 mW. In Fig. 4, we show the thermopower
voltage taken along the Hall bar direction for different, constant heating cur-
rents applied to the on-chip heater. Although the presence of a magnetic field
usually is not required for the determination of the thermoelectric voltages,
we applied a magnetic field of 1 T along x in theses experiments, in order
to orient the magnetization of the YIG film and thus induce a reproducible
contribution from the SMT. As evident from Fig. 4, we find an increase in
the absolute value of Vthermal with increasing Iheater, as expected for a ther-
mopower effect from Vtherm = S∆T . For the highest heater current applied,
we extract S = −3.7µV/K using ∆T = 18.0 K. With respect to the average
sample temperature T̄ = (Thot − Tcold)/2 = 255.4 K extracted from the resistive
thermometry shown above, S is in excellent agreement with the literature value
for Pt, S(260 K) = −3.8µV/K [19].

Power modulation

To generate large temperature differences along the Hall bar, we use the on-chip
heating strip consisting of the same YIG|Pt hybrid structure as the Hall bar.
Since the YIG|Pt heterostructure shows spin Hall magnetoresistance (SMR)
(i.e., a magnetization-orientation dependent resistance), a modulation of the
heating power Pheater = Rheater× I2

heater with magnetization orientation must be
taken into account. We measured the magnitude of the SMR effect in our sample
to be ∆ρ1/ρ0 = (1.0 ± 0.1) × 10−3 at Tbase = 220 K with Pheater = 286 mW
applied to the heating strip. To avoid a SMR-based modulation of the heater
power in our magnetization-orientation dependent thermopower measurements,
we use a closed-loop control to adjust the applied heater current depending
on magnetization orientation, such as to provide a constant heater power of
Pheater = 286.30 mW. Using this method, the applied heater power is stabilized
with fluctuations smaller than 0.04 mW, see Fig. 5.

1.4 Fingerprint of the SMT

For SMT experiments, we remove all current sources from the Hall bar (Iq = 0)
and thermalize the sample to Tbase = 220 K. In order to apply a temperature
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Figure 4: Longitudinal thermal voltage Vthermal taken for a stepwise increase of cur-
rents applied to the heater strip. 20 mA correspond to Pheater = 286 mW.

gradient along x as a driving force, we bias the on-chip heater with the appropri-
ate, magnetization orientation-dependent heater current, such that a constant
heater power of Pheater = 286 mW independent of the magnetic field orientation
is applied. We rotate a constant external magnetic field µ0H in the three
orthogonal planes defined by x, y, and z and detect the longitudinal and trans-
verse (Vthermal,trans) voltages with an Agilent 34420A nanovoltmeter. We use a
digital filter to detect the signal and average over 100 power line cycles using
internal filter functions. We define the longitudinal Ethermal = −Vthermal/llong
and transverse Ethermal,trans = −Vthermal,trans/ltrans electric fields, where llong
and ltrans are the edge-to-edge separations of the contacts (Al-wire bonds) used
for measuring Vthermal and Vthermal,trans, respectively.

Figure 6 shows the evolution of Ethermal and Ethermal,trans as a function of the
magnetization orientation while rotating the external magnetic field µ0H = 1 T
and 0.5 T in in-plane (ip, (x,y)-plane, panels d, g, j, and m), out-of-plane
perpendicular x (oopx, (y, z)-plane, panels e, h, k, and n) and out-of-plane
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Figure 5: Heater power Pheater as a function of the YIG magnetization orientation
in (a) ip, (b) oopx and (c) oopy configuration for µ0H = 1 T. During this
measurement, we modulated the current Iheater applied to the on-chip heater
to keep the heating power constant.

perpendicular y (oopy, (x, z)-plane, panel f, i, l, and o) configuration. For
the ip data of Ethermal(1 T) [cf. Fig. 6(d),(j)], we find a sin2 α dependence
with ∆Ethermal(1 T) ≈ −30µV/m, ∆Ethermal(0.5 T) ≈ −28µV/m on top of
the thermopower signal given by the Seebeck effect of Pt. This modulation is
smallest for H ‖ x and H ‖ −x, and largest for H ‖ y and H ‖ −y.

In the oopx rotation geometry [cf. Fig. 6(e),(k)], we find a similar, cos2 β mod-
ulation on top of the thermopower signal with an amplitude ∆Ethermal(1 T) ≈
−31µV/m and ∆Ethermal(0.5 T) ≈ −29µV/m. Again, a maximum is recorded
for H ‖ y and H ‖ −y and the signal level coincides in good approximation
with the one found for the ip rotation. For this oopx geometry, the minima
are located at H ‖ z and H ‖ −z and the voltage level for H ‖ z is in good
agreement with the signal detected at H ‖ x in ip rotations.

For the oopy rotation [cf. Fig. 6(f),(l)], however, we find no angular depen-
dence of Ethermal within the noise level of our voltage measurement.

For the transverse thermopower signal Etherm,trans, we observe for the ip rota-
tion plane a cosα sinα-dependence with a modulation amplitude ∆Ethermal,trans(1 T) ≈−
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40µV/m and ∆Ethermal(0.5 T) ≈− 39µV/m, in good agreement with the mod-
ulation amplitude ∆Ethermal observed for the longitudinal thermopower and
Eqs. (13),(14). As discussed in more detail below, the experimental data can be
consistently fitted using one single value for ∆Ethermal and ∆Ethermal,trans (E1
in Eqs. (25) and (26)). The additional magnetic field orientation independent
background in Etherm,trans can be attributed to a spurious longitudinal Seebeck
signal caused by a small misalignment (≈ 25µm) of the two voltage probes on
the Hall bar.

For the oopx and oopy rotation Etherm,trans exhibits a sine dependence, that is
dominated by the ordinary Nernst effect of Pt. A more detailed investigation of
the field dependence of the modulation amplitude can identify the spin Nernst
contributions in the spirit of Ref. [17].

The data sets shown in Fig. 6 and Fig. 3 in the main text can be understood
in terms of the spin Nernst magneto-thermopower: In our geometry, the tem-
perature gradient along x induces a spin Nernst spin current along z with
spin polarization s ‖ y. Thus, H ‖ y and H ‖ −y correspond to the spin
current open circuit boundary condition, since a spin transfer towards the YIG
is prohibited for H ‖ s ‖ y. On the other hand, both H ‖ ±x and H ‖ ±z
correspond to perfect spin current short-circuit boundary conditions since they
allow for a spin transfer. We compare the measurements with Eqs. (13),(14)
in the theory section, by the red lines in Fig. 6 that represent a simulation for
Etherm and Etherm,trans based on the following set of equations:

Etherm = E0 − E1m
2
y, (25)

Etherm,trans = Eoff + E1mxmy − E2mz, (26)

and assuming that the magnetization m is always aligned parallel with the
external applied magnetic field H. The field-independent parameters E0 =
25.51 mV/m, E1 = 42 µV/m, Eoff = 620 µV/m, E2 = 42 µV/m lead to an
excellent agreement within the noise limit, such that the experimental set of
data can completely be understood in the theoretical framework provided by
the spin Nernst magnetothermopower. These findings thus leave little room for
alternative explanations. We note that for the parameter E2 a more systematic
investigation in the spirit of Ref. [17] will be necessary to separate Spin Nernst
contributions from additional effects like the ordinary Nernst effect.

Spurious effects can be ruled out by the observed angular dependence of the
thermopower voltages. For example, ∇T along z drives a pure spin current
along z with the spin polarization parallel to the magnetization direction of
the YIG by the longitudinal spin Seebeck effect [20]. The inverse spin Hall
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effect in Pt would generate a sin(α) and cos(β) modulation of Etherm in the
(x,y) and (y, z) rotation planes, while for Etherm,trans a cos(α) and cos(γ)
modulation would be present for the (x,y) and (x, z) rotation planes. This
is not consistent with the observed angular dependence in the experiment. A
temperature gradient along y would lead to a pure spin current flowing along z
with the spin polarization parallel to the magnetization direction of the YIG
because of the transversal spin Seebeck effect [21, 22]. The inverse spin Hall
effect in Pt would then generate a sin(α) and cos(β) modulation of Etherm and
a cos(α) and cos(γ) modulation of Etherm,trans in the (x,y), (y, z) and (x,y),
(x, z) rotation planes, respectively, which is contradicted by the observations.
Moreover, a magnon current driven by ∇T along x could lead to a pure spin
current along z with a spin polarization parallel to m of YIG due to the magnon
Hall effect [23]. Due to the inverse spin Hall effect in Pt this spin current will
lead to a sin(α) dependence of the longitudinal and a cos(α) dependence of the
transverse thermopower voltage in the (x,y) rotation plane. We do not observe
such a modulation in our experiments. Taken together, spurious effects such
as the ones mentioned above can be ruled out as the cause for the observed
angular dependence of the thermopower signals.

1.5 Power and field dependence

On the same sample, we repeated the angle dependent magneto-thermopower
measurements for different heating powers between 100 mW and 286 mW result-
ing in temperature differences between 7.7 K and 18.0 K along the Hall bar as
well as for two different magnetic field strengths (0.5 T and 1 T). To extract
the modulation amplitudes ∆Vthermal and ratios ∆Vthermal/Vthermal from our
experimental data, we performed cos2 δ fits.

We observe an increase in the absolute value of the modulation voltage
∆Vthermal with increasing Pheater in ip and oopx rotations. This is shown in
Fig. 7(d) and (e) for two different magnetic field magnitudes. For both 0.5 T
(red triangles) and 1 T (black squares), ∆Vthermal increases with increasing
Pheater and the difference between the 0.5 T and 1 T data points is within the
experimental error of ±5 nV given by the thermal stability of the nanovolt-
meters. As the SMT can be interpreted as a modulation on the thermal voltage
due to a spin current flow across the YIG|Pt interface, the relative amplitude
of the modulation of the longitudinal voltage is expected to be independent
of both heating power Pheater and external magnetic field strength µ0H, as
long as a thermally driven spin current is generated. We find that, within the
experimental error, the ratio is almost constant as a function of Pheater and µ0H
for ip and oopx, ∆Vthermal/Vthermal ≈ 1.2 × 10−3. For the temperature range
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studied here (the average sample temperature rises with increasing Pheater, see
Fig. 3), θSH is known to be almost independent of temperature [24]. Consider-
ing ∆Vthermal/Vthermal ≈ const., which is proportional to θSHθSN, the data in
Fig. 7(d) and (e) suggest that the temperature dependence of the spin Nernst
angle θSN is rather weak.
The power dependence of the oopy signal is depicted in Fig. 7(f). As stated by
Eq. (13), we expect a constant SMT signal as a function of the magnetization
orientation in this geometry. While ∆Vthermal scales with Pheater [cf. Fig. 7(d,
e)] for ip and oopx rotations, we find that the modulation amplitude observed
in oopy is almost constant [∆V oopy

thermal ≈ −25 nV, cf. Fig. 7(f)].Thus, the origin
of the modulation in oopy rotations is not related to the spin Nernst magneto-
thermopower. However, this power independence can not be explained by the
interpretation of ∆V oopy

thermal with a non-vanishing y component of ∇T . Addition-
ally, ∆V oopy

thermal seems to increase with increasing magnetic field strength. The
decrease of ∆V oopy

thermal(Pheater) also results in a negative power dependence of
the voltage ratio ∆V oopy

thermal/Vthermal. With increasing heater power, the voltage
modulation in oopy decreases slightly. This again is at odds with the results
found for ip and oopx rotations. In conclusion, due to the absence of a power
dependence, the modulation of the thermal voltage in oopy rotations can neither
be attributed to the SMT concept for ∇T · y 6= 0, nor to parasitic thermopower
effects.

1.6 Calculation of the spin Nernst angle

Now, we utilize the theory of Sec. 1.1 to extract the heat to spin conversion
efficiency for Pt, i.e. the spin Nernst angle θSN. To this end, we calculate
the relative thermopower ratio between open and short-circuit spin current
boundary conditions,

∆Vthermal
Vthermal

= Vthermal(H ‖ y, open)− Vthermal(H ⊥ y, short)
Vthermal(H ‖ y, open) . (27)

Via Eq. (13), the definitions of Vthermal(H ‖ y, open) and Vthermal(H ⊥ y, short)
read

Vthermal(H ‖ y, open) = − (S + ∆S0) ∆T (28)

and
Vthermal(H ⊥ y, short) = − (S + ∆S0 + ∆S1) ∆T (29)

with ∆T = Thot − Tcold > 0. Thus, ∆Vthermal/Vthermal corresponds to −∆S1/S̃
with S̃ = S + ∆S0.
We find ∆Vthermal/Vthermal = −100 nV/66.225µV = −1.5× 10−3 from the raw
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data taken at 1 T in the oopx plane shown in Fig. 3(f) in the main text. Based
on Eq. (16), we calculate the spin Nernst angle θSN via

θSN ≈ −
∆S1
S

tN
θSHλ

σN + 2λGr coth tN
λ

2λGr tanh2 tN
2λ

. (30)

We use Gr = 4.0 × 1014 Ω−1m−2, λ = 1.5 nm and θSH = 0.11 determined in
Ref. [24] for YIG|Pt hybrids at T = 250K comparable to T̄ = 255K used in our
thermopower measurements for this sample. With these parameters, we obtain
θSN = −0.20 from Eq. (30).

It seems surprising that we are able to confirm the sign of the spin Nernst
angle by transport experiments. Since SMR depends on the square of the
spin Hall angle and cannot be used to measure its sign. Similarly, the SMT
depends on the product of θSN and θSH, so from these data alone we cannot
conclude that θSN < 0. We come to our conclusion only because spin pumping
measurements conclusively find a positive spin Hall angle in Pt [25]. We note
that from a physical point of view θSN < 0 is not problematic at all. For S < 0,
θSN < 0 corresponds to αy

zx > 0, i.e. the spin Nernst conductivity is positive. For
θSH > 0, one finds σy

xz > 0 and accordingly due to Onsager symmetry σy
zx < 0.

In the Sommerfeld limit (T → 0) this implies that the spin Hall conductivity σy
zx

and its energy derivative at the Fermi energy, which is proportional to αy
zx, have

the same sign, as θSH represents the inverse spin Hall conductivity σy
xz = −σy

zx
and θSN the (direct) spin Nernst conductivity αy

zx. Indeed, our first-principles
calculations of the ratio between θSH and θSN find θSH/θSN ≈ −0.6 at 250 K [see
Sec. 1.2 and Fig. 2(d)]. This beautifully agrees with the ratio θSH/θSN ≈ −0.5
found in our experiments.

1.7 Control Experiments

In the spirit of recent magnon-mediated magnetoresistance experiments [26,
27, 28, 29, 30, 31, 32], we conducted further control experiments to exclude
spurious signals leading to the observed SMT. We investigated two samples:
a GGG/YIG/Pt, and a GGG/Pt heterostructure. The GGG/YIG/Pt het-
erostructure was fabricated starting from a single crystalline (111) oriented
GGG substrate onto which a 2 µm thick YIG film was deposited by liquid-
phase epitaxy. After cleaning in a piranha solution, a 10 nm thick Pt film
was deposited on the YIG film by electron beam evaporation [33]. For the
second sample, we used a bare single crystalline (111) oriented GGG substrate,
which also was cleaned in a piranha solution and then covered with a 5.8 nm
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thick Pt film by electron beam evaporation. Subsequently, the Pt films on
both samples were patterned into thin stripes using electron beam lithography
and Argon ion beam milling, as described in more detail e.g. in Refs. [27, 28].
As sketched in Fig. 8(a), for the GGG/YIG/Pt heterostructure, the Pt strips
had a width of wN1 = 0.5 µm and length of lN1 = 148 µm, both strips being
separated by dN1 = 1.6 µm. For the GGG/Pt sample (see Fig. 8(b)), the strip
dimensions were wN2 = 1 µm, lN2 = 148 µm, and dN2 = 2.6 µm. Both samples
were mounted into the very same superconducting 3D-vector magnet cryostat,
that was also used for the SMT experiments discussed in the main text, and
cooled down to a sample temperature of Tbase = 220 K. For both samples a
constant DC electrical current Idrive was applied to one strip by a Keithley
2400 current source, while the voltage Vnl across the other strip was recorded
using a Keithley 2182A Nanovoltmeter. As detailed in [34, 26, 27], Idrive, on
one hand, generates a local thermal gradient owing to the Joule heating power
Pheater associated with the charge current flow. The presence of this thermal
gradient induces non-local thermopower voltages in the second Pt strip. On
the other hand, when a magnetic insulator is located beneath the Pt strip, a
non-equilibrium magnon population is injected into the magnet by virtue of
the spin Hall spin accumulation. Magnon diffusion to the second Pt contact
results in a non-local Ohmic voltage signal in the second strip, also called
magnon-mediated magnetoresistance. We separate the non-local thermal and
resistive contributions to Vnl by current reversal [35]: for each data point, the
current polarity applied to the first strip is changed from positive (+Idrive) to
negative (−Idrive) and the voltage signals Vnl(+I) and Vnl(−I) are recorded for
the two different bias current polarities. The thermal voltage is then extracted
as Vnl,therm = (Vnl(+I) + Vnl(−I))/2, which is even with respect to current
reversal. The MMR signal corresponds to Vnl,MMR = (Vnl(+I) − Vnl(−I))/2.
In the following, we concentrate on the thermal signal. We carried out SMT
measurements for both samples with similar heater power and thermal gradients
being present along x. While the exact magnitude of the thermal gradient is
difficult to quantify (the detector contact is very close to the ”heater” and rather
wide (w ≈ d), such that it cannot be used for reasonable spatially resolved Pt
thermometry), we find in SMT experiments in the oopy configuration that the
ordinary Nernst signal recorded across the detector contact in the two samples
is the same (to within 20 %).

In Fig. 8(c) we show the results obtained for the GGG/YIG/Pt sample for
an external magnetic field of 1 T rotated in the x− y plane and a heater power
of 8.68 mW (I = 1 mA). Vnl,therm exhibits a clear cos(α) dependence, which
we attribute to a commonly observed spin Seebeck contribution due to a local
thermal gradient along z [26, 29]. We fit the data with a cosine function for
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both clockwise and counterclockwise rotations and extract an amplitude of
19.3µV for the spin Seebeck signal. Subtracting the fitted cosα function from
the data we obtain the thermal voltage signal ∆Vnl,therm plotted in Fig. 8(e).
This signal exhibits the same angular dependence as the transverse spin Nernst
thermopower signal in Fig. 6(g). We thus attribute this signal again to the
SMT. Here, the modulation amplitude ∆Vnl,therm is 0.15 µV, which corresponds
to an electric field of 1 mV/m. This signal is much larger than the SMT signal
observed in standard SMT experiments because the small spacing between
heater and detector strip implies a much larger in-plane temperature gradient.

Repeating the thermopower experiments on the GGG/Pt sample, again using
an external magnetic field of 1 T and a heater power of 12.2 mW, we obtain the
results compiled in Fig. 8(d). For the GGG/Pt we do not observe any angular
dependence of Vnl,therm for the ip geometry as expected considering that no
SSE should be present in the absence of a magnetic insulator layer (for the
oopx and oopy geometry we observe the ordinary Nernst effect of the Pt, as
mentioned above). We subtract a (already small) constant voltage offset of
0.655 µV from Vnl,therm to obtain a ∆Vnl,therm. The result of this procedure
is shown in Fig. 8(f) (on the same scale as for Fig. 8(e)). Again, there is no
systematic angular dependence for ∆Vnl,therm in the GGG/Pt sample. This
shows that the presence of a magnetic insulator layer (YIG layer) is mandatory
for the SMT to arise, as expected in the SNE picture proposed in the main
manuscript. This control experiment thus further corroborates the notion that
the SMT observed in YIG/Pt heterostructures indeed originates from the spin
Nernst effect.

Taken together, the results compiled in Fig. 8 demonstrate that the SMT signal
is only observed in YIG/Pt heterostructures while it is absent if only a GGG/Pt
bilayer is used. Thus, these results further confirm our model predictions for the
SMT and provide additional evidence for our first experimental observation of
the spin Nernst effect. Moreover, these results show that the SMT is observable
in non-local sample geometries, which broadens its appeal and relevance.
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Figure 6: (a)-(c) The magnetization vector M of the YIG layer is rotated by an
external magnetic field in the three different rotation planes spanned by (x,
y) (panel (a)), (y, z)(panel (b)) and (x, z)(panel (c)). The measured
thermal electric field Ethermal (black circles) for all three geometries and
Pheater = 286 mW (or ∆T = 18.0 K along the Hall bar) is depicted in panels
(d),(j) for the (x, y)-plane, (e),(k) for the (y, z)-plane and (f),(l) for
the (x, z)-plane, for µ0H = 1 T and µ0H = 0.5 T, respectively. The
transverse electric field Ethermal,trans (black squares) for all three geometries
is displayed in panels (g),(m) for the (x, y)-plane, (h),(n) for the (y,
z)-plane and (i),(o) for the (x, z)-plane, for µ0H = 1 T and µ0H = 0.5 T,
respectively. The average sample temperature during these measurements
was 255 K. Red lines in the graphs are calculations based on our spin Nernst
thermopower model via Eqs. (25),(26).
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Figure 8: Non-local thermopower signals for GGG/YIG/Pt and GGG/Pt samples.
(a) sample sketch for the GGG/YIG/Pt heterostructure, with two Pt strips
(tN1 = 10 nm, wN1 = 0.5 µm) separated by dN1 = 1.6 µm. (b) GGG/Pt
control sample with two Pt strips (tN2 = 5.8 nm, wN2 = 1 µm) separated
by dN2 = 2.6 µm. (c) Thermal voltage obtained for the GGG/YIG/Pt
sample in the ip configuration. A sinusoidal signal is observed, which
originates from the longitudinal spin Seebeck signal due to an out-of-plane
temperature gradient. (d) Absence of an ip angular dependence of the
thermal voltage in the GGG/Pt control sample. (e) Thermal voltage signal
for the GGG/YIG/Pt sample after subtracting the spin Seebeck signal, which
confirms the transverse spin Nernst magnetothermopower symmetry. (f)
Thermal voltage signal for the GGG/Pt control sample shows no angular
dependence even after subtraction of a constant voltage offset.
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3.3 Space-time symmetry of response tensors

As outlined in Section 2.3, most phenomena relevant to the field of spintronics can
be described by a linear response coefficient, that in turn can be expressed and cal-
culated within the framework of Kubo’s linear response formalism. Obviously, the
shape of the corresponding tensor of response coefficients, in particular the presence
of non-vanishing elements, decides wether a phenomenon occurs or not. As demon-
strated by Kleiner [271] in the 1960-ies, for the electrical and heat transport tensors,
their shape is uniquely determined by the magnetic space group of a material. The
concept of Kleiner has been extended to deal with more complex situations rele-
vant for spintronics and spincaloritronics. In a first application of the formalism
the focus was on the spin-conductivity tensor that allows in particular a description
of the spin Hall effect. The extended formalism, comparison to established results
for electric and thermoelectric transport, and the tensor shapes for direct and in-
verse spin-conductivity for all magnetic Laue groups is presented in Ref. 283. Later
applications were devoted to the spin-orbit torque (SOT) and the Edelstein effect
(EE) and their corresponding response tensors. These will be the subject of one of
the following sections (Section 3.5). Inspection of the tables giving the shape of the
spin-conductivity tensor for all magnetic Laue groups, the possibility of a longitu-
dinal spin-polarised current in non-magnetic solids emerged. This group-theoretical
prediction could be independently verified by subsequent numerical investigations,
detailed in Ref. 92, that demonstrated that the possible longitudinal spin current
occuring in low-symmetric materials may be in the same order of magnitude as the
transversal spin current due to the spin Hall effect. Errata and additional consider-
ations to Refs. 283 and 92 can be found on page 187 and 197, respectively.
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3.3.1 Published results on the symmetry of response tensors

The following is a copy of the article Symmetry-imposed shape of linear response
tensors [283], reprinted with permission from

M. Seemann, D. Ködderitzsch, S. Wimmer, and H. Ebert, Phys. Rev. B 92, 155138
(2015). Copyright (2015) by the American Physical Society.

http://dx.doi.org/10.1103/PhysRevB.92.155138
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Symmetry-imposed shape of linear response tensors
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Department Chemie/Phys. Chemie, Ludwig-Maximilians-Universität München, Germany

(Received 17 July 2015; published 23 October 2015)

A scheme suggested in the literature to determine the symmetry-imposed shape of linear response tensors is
revised and extended to allow for the treatment of more complex situations. The extended scheme is applied
to discuss the shape of the spin conductivity tensor for all magnetic space groups. This allows in particular
investigating the character of longitudinal as well as transverse spin transport for arbitrary crystal structure and
magnetic order that give rise, e.g., to the spin Hall, Nernst, and the spin-dependent Seebeck effects.

DOI: 10.1103/PhysRevB.92.155138 PACS number(s): 75.76.+j, 61.50.Ah, 72.15.Jf, 72.25.Ba

I. INTRODUCTION

The shape of a linear response tensor is of central im-
portance as it decides whether a physical phenomenon may
occur and what anisotropy may be expected for a solid with
given crystal symmetry and magnetic order. A prominent and
common example for this is the anomalous Hall effect in
ferromagnetic solids, which is connected with the nonzero
antisymmetric contributions to the electrical conductivity
tensor. Accordingly, several schemes were suggested in the
past to predict the shape of linear response tensors on the basis
of group-theoretical arguments (for a corresponding review see
for example Ref. [1]). Among the various schemes suggested,
that of Kleiner [2–4] seems to be most convincing as it is
starting from the expression for linear response tensors as
given by Kubo’s linear response formalism and as it uses only
the behavior of the involved operators under the appropriate
space and time transformations of the relevant magnetic space
group. A further appealing feature of Kleiner’s scheme is that
it does not make use of Onsager’s relations but allows deriving
them in a most general way.

Kleiner’s scheme was originally derived having response
quantities in mind that are connected with the perturbation
as well as the observable represented by the components of
a single vector operator. A more general starting point is
adopted in this contribution to allow the treatment of situations
involving three operators. As a first simple application the
tensors representing the charge and heat transport in response
to an electric field and thermal gradient are considered. As
a more complex transport quantity the corresponding spin
conductivity is considered for all magnetic space groups.
Among other things this allows the discussion of the transverse
spin transport as occurring for the spin Hall [5,6] and spin
Nernst [7,8] effects. In particular, it is demonstrated that
these effects may be discussed without use of spin-projected
conductivities [8,9].

II. SYMMETRY OF RESPONSE FUNCTIONS

Within Kubo’s linear response formalism, the change of the
expectation value of an observable B̂i due to a time-dependent
perturbation Âj can be expressed by the corresponding

*diemo.koedderitzsch@cup.uni-muenchen.de
†sebastian.wimmer@cup.uni-muenchen.de

response function [10]

τB̂i Âj
(ω,H)

=
∫ ∞

0
dt e−iωt

∫ β

0
dλ Tr[ρ(H)Âj B̂i(t + i�λ; H)]. (1)

Here ρ(H) = e−βĤ (H)/Tr(e−βĤ (H)) is the density operator
for the unperturbed system, the operators B̂i and Âj in
the Heisenberg picture are assumed to be the Cartesian
components of a corresponding vector operator, and H is an
external magnetic field.

Equation (1) was used by Kleiner [2] as the starting point
to investigate the symmetry of the tensors τ that describe the
charge and heat transport due to an electric field or thermal
gradient. Kleiner’s scheme, however, is quite general and can
be easily extended to deal with more complex situations. In
the following, Kleiner’s scheme will be adopted to the case
when the observable is represented by an operator product
of the form B̂iĈj , again with the operators Ĉi , B̂j , and Âk

being the Cartesian components of a vector operator. In this
case the corresponding response function is obviously given
by

τ(B̂i Ĉj )Âk
(ω,H) =

∫ ∞

0
dt e−iωt

∫ β

0
dλ Tr

× [ρ(H)ÂkB̂i(t + i�λ; H)Ĉj (t + i�λ; H)],

(2)

where by using the parentheses in the symbol τ(B̂i Ĉj )Âk
it is

made clear that it is the observable and not the perturbation
that consists of a product of two operators. The shape of
the response tensor τ in Eq. (2), i.e., the occurrence and
degeneracy of nonzero elements, has to reflect the symmetry of
the investigated solid. This shape can be found by considering
the impact of a symmetry operation of the corresponding space
group on Eq. (2), as this will lead to an equation connecting the
elements of τ or possibly of a complementary tensor τ ′ (see
below). Collecting the restrictions imposed by all symmetry
operations the shape of τ is obtained. In this context it is
important to note that the magnetic structure of the system, if
present, has to be considered. In this case, the set of symmetry
operations contains unitary pure spatial (u), but also antiunitary
symmetry operations (a).

1098-0121/2015/92(15)/155138(12) 155138-1 ©2015 American Physical Society
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The general transformation properties of the operators X̂ ∈
{Â,B̂,Ĉ} in Eq. (2) under unitary (u) and antiunitary symmetry
operations (a) can be written as

uX̂iu
−1 =

∑
j

X̂jD
(X̂)(u)ji , (3)

aX̂ia
−1 =

∑
j

X̂jD
(X̂)(a)ji , (4)

where D(X̂)(u) and D(X̂)(a) are the representation matrices cor-
responding to the operator X̂ and operation u or a, respectively.
The group properties are reflected by the following relations:

D(uu′) = D(u) D(u′), (5)

D(aa′) = D(a) D(a′)∗. (6)

For all unitary operations u the expression under the trace in Eq. (2) can be reformulated by cyclic permutation and by inserting
the factor u−1u = 1:

Tr[e−βĤ (H)ÂkB̂i(t + i�λ; H)Ĉj (t + i�λ; H)] = Tr
[
u−1ue−βĤ (H)u−1uÂku

−1uB̂j (t + i�λ,H)u−1uCi(t + i�λ; H)
]

= Tr
[
(ue−βĤ (H)u−1)(uÂku

−1)(uB̂i(t + i�λ,H)u−1)(uĈj (t + i�λ,H)u−1)
]
. (7)

The four expressions grouped in parentheses can now be dealt with separately. The term containing Âk can be rewritten using
Eq. (3). For the term containing B̂j one has accordingly

uB̂i(t + i�λ,H)u−1 =
∑
m

B̂m(t + i�λ,Hu)D(B̂)(u)mi, (8)

with Hu the transformed field

uĤ (H)u−1 = Ĥ (Hu) (9)

connected with the operation u. For the term containing Cj (t + i�λ,H) an analogous expression is obtained. Inserting these
relations into Eq. (7) one obtains

Tr
[
e−βĤ (H)ÂkB̂i(t + i�λ,H)Ĉj (t + i�λ,H)

]
=

∑
lmn

Tr
[
e−βĤ (Hu)ÂlB̂m(t + i�λ,Hu)Ĉn(t + i�λ,Hu)D(Â)(u)lk D(B̂)(u)mi D

(Ĉ)(u)nj
]
. (10)

This equation must hold for any operators Âk , B̂j , and Ĉi , i.e., also in the special case Âk = B̂j = Ĉi = 1, leading to

Tr(e−βĤ (H)) = Tr(e−βĤ (Hu)). (11)

Inserting the two last equations into Eq. (2) for the general transport coefficients, one obtains the transformation behavior of τ

under a unitary symmetry operation u:

τ(B̂i Ĉj )Âk
(ω,H) =

∑
lmn

τ(B̂mĈn)Âl
(ω,Hu)D(Â)(u)lk D(B̂)(u)mi D

(Ĉ)(u)nj . (12)

A similar procedure can be applied for antiunitary operators a that contain the time-reversal T , i.e., that can be decomposed
as a = vT with v a unitary operator describing a pure spatial operation. For antiunitary operators cyclic permutation under the
trace does not hold, but one may use the relation

Tr(aa′) = [Tr(a′a)]∗. (13)

This expression can be used to transform Eq. (2) in a similar way as done for Eq. (7) leading to

Tr
[
e−βĤ (H)ÂkB̂i(t + i�λ,H)Ĉj (t + i�λ,H)

] = Tr
[
a−1ae−βĤ (H)a−1aÂka

−1aB̂i(t + i�λ,H)a−1aĈj (t + i�λ,H)
]

= {
Tr

[
(ae−βĤ (H)a−1)(aÂka

−1)(aB̂i(t + i�λ,H)a−1)(aĈj (t + i�λ,H)a−1)
]}∗

. (14)

Of the four expressions in parentheses, the second one is directly given by Eq. (4), while the first one can be rewritten by
introducing Ha via the definition

aĤ (H)a−1 = Ĥ (Ha). (15)

Expressing the last two terms according to

aB̂i(t + i�λ,H)a−1 =
∑
m

B̂m(−t + i�λ,H)D(B̂)(a)mi, (16)

155138-2
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which follows directly from the fact that a contains the time-reversal operation, and inserting these expressions into Eq. (14) one
arrives at

Tr
[
e−βĤ (H)ÂkB̂i(t + i�λ,H)Ĉj (t + i�λ,H)

] =
∑
lmn

Tr
[
e−βĤ (Ha )ÂlB̂m(−t + i�λ,Ha)Ĉn(−t + i�λ,Ha)

]∗
D(Â)(a)∗lk

×D(B̂)(a)∗mi D
(Ĉ)(a)∗nj . (17)

Using the relation [11]

Tr[e−βĤ ÂB̂(τ )Ĉ(τ )] = Tr[e−βĤ Â(−τ )B̂Ĉ] (18)

one arrives at an expression that is completely analogous to Eq. (10):

Tr
[
e−βĤ (H)ÂkB̂i(t + i�λ,H)Ĉj (t + i�λ,H)

] =
∑
lmn

Tr
[
e−βĤ (Ha )Ĉ†

nB̂
†
mÂ

†
l (t + i�λ,Ha)D(Â)(a)∗lk D(B̂)(a)∗mi D

(Ĉ)(a)∗nj
]
, (19)

where

(Tr L)∗ = Tr(L†), (20)

with L being a linear operator was used. Again, this equation must also hold for the special case Â = B̂ = Ĉ = 1, thus

Tr(e−βĤ (H)) = Tr(e−βĤ (Ha )). (21)

Finally, inserting all these relations one obtains the transformation behavior for τ as

τ(B̂i Ĉj )Âk
(ω,H) =

∑
lmn

τ
Â

†
l (Ĉ†

nB̂
†
m)(ω,Ha)D(Â)(a)∗lk D(B̂)(a)∗mi D

(Ĉ)(a)∗nj , (22)

which is the counter part of Eq. (12), but for antiunitary operators a.

It is important to note that in general the tensors τ(B̂i Ĉj )Âk
and

τ
Â

†
k (B̂†

i Ĉ
†
j ) are different objects representing different response

functions which are only interrelated by Eq. (22). Accordingly,
the symbols τ and τ ′ will be used below to distinguish
them. Obviously the two tensors τ and τ ′ coincide only if all
operators and their adjoined ones are the same, i.e., Âi = B̂i

and so on.
Equations (12) and (22) relate the elements of the tensor τ

with all the elements of τ and τ ′, respectively. As mentioned
above, these relations impose for each symmetry operation
restrictions on the shape of τ that determine which elements
have to be zero and which are degenerate. However, to find the
final shape of τ it is not necessary to derive restrictions for all
symmetry operations of the relevant space group. Instead, it is
sufficient to use only a generating set of symmetry operations
[2]. Finally, as was stressed by Kleiner [2], for the application
of Eqs. (12) and (22) it is not necessary to know the explicit
form of the operators Âi , B̂j , and Ĉk , but only their behavior
under a symmetry operation expressed by Eqs. (3) and (4).

III. APPLICATIONS

A. Symmetry operations and magnetic Laue groups

For a periodic solid, the corresponding unitary symmetry
operations u can be represented by the Seitz symbol [12]

u = {R | t}, (23)

where R describes a (proper or improper) rotation and t

describes a translation. The application of this symmetry
operation on a three-dimensional vector v is defined as

u v = D(R) v + t, (24)

where D(R) is the three-dimensional matrix representation of
the rotation R and t is a three-dimensional translation vector.
For an antiunitary symmetry operation a, the time-reversal
operation T has to be considered in addition to the spatial
symmetry operations. It can be included in the Seitz symbol
according to

a = {R | t} T . (25)

The transformation properties of a vector v under a depend
now on its behavior under space inversion and time reversal.
A vector that reverses its orientation under space inversion is
called a spatial vector (or polar vector), if it stays unaltered it
is called a pseudovector or axial vector.

Generally, the transformation of a vector field v(r) under
an arbitrary symmetry operation s is given accordingly by

s v(r) = ±D(R) v(s−1r), (26)

where the sign is determined by the behavior of v(r) under
time-reversal T that may by part of s. On the other hand, a
pseudovector field v(r) transforms as

s v(r) = ± det (D(R)) D(R) v(s−1r). (27)

An example for this is the magnetic field H. As H changes
sign under time reversal, the minus sign in Eq. (27) applies. In
particular one has

I H = +H, (28)

T H = −H, (29)

for the application of space inversion I and time reversal T . In
the following we will use in parallel the symbols 1̄ and 1′ for
I and T , respectively.
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TABLE I. Magnetic point groups of category (a) and their
corresponding magnetic Laue group. In parentheses the magnetic
Laue group according to its old definition used by Kleiner [2] is
given (see text). Because equivalent magnetic point group and Laue
group symbols have not been removed (see text) there are 62 and 12
instead of 53 and 11, respectively, entries.

Magnetic point group Magnetic Laue group

11′, 1̄′, 1̄1′ 1̄1′ (1′)
21′, m1′, 2/m1′, 2′/m, 2/m′ 2/m1′ (21′)
2221′, mm21′, m′mm,
mmm1′, m′m′m′ mmm1′ (2221′)
41′, 4̄1′, 4/m′, 4/m1′, 4′/m′ 4/m1′ (41′)
4221′, 4mm1′, 4̄2m1′,
4̄m21′, 4/m′mm, 4′/m′m′m,
4/mmm1′, 4′/m′mm′, 4/m′m′m′ 4/mmm1′ (42221′)
31′, 3̄′, 3̄1′ 3̄1′ (3′)
3121′, 31m1′, 3̄′1m, 3̄′1m′, 3̄1m1′ 3̄1m1′ (3′2)
3211′, 3m11′, 3̄′m1, 3̄′m′1, 3̄m11′ 3̄m11′ (3′2)
61′, 6̄1′, 6′/m, 6/m′, 6/m1′ 6/m1′ (61′)
6221′, 6mm1′, 6̄m21′,
6̄2m1′, 6/m′mm, 6′/mm′m,
6′/mmm′, 6/mmm1′, 6/m′m′m′ 6/mmm1′ (6221′)
231′, m′3̄′, m3̄1′ m3̄1′ (23′)
4321′, 4̄3m1′, m′3̄′m, m′3̄′m′, m3̄m1′ m3̄m1′ (43′2)

Taking into account the time-reversal operation, the full
symmetry of a periodic solid is represented by its magnetic
space group G that combines all symmetry operations of the
type given in Eqs. (23) and (25). Altogether there are 1651
magnetic space groups that fall into three categories [13]:

(a) G contains the time-reversal operation T as an element,
(b) G does not contain T at all, neither as a separate element

nor in a combination,
(c) G contains T only in combination with another sym-

metry element.
Only nonmagnetic solids possess one of the 230 space

groups of category (a), while magnetically ordered solids
belong either to category (b) or (c). Category (b) consists
of 230 space groups, isomorphic to the nonmagnetic space
groups, and category (c) combines the remaining 1191 space
groups.

Since the operators X̂ appearing in Eqs. (12) and (22)
are translational invariant, it is sufficient to consider only
the corresponding magnetic point group operations instead
of all elements of the magnetic space group. If the operators
representing perturbation and response behave identically
under space inversion, as it is, e.g., the case for the elec-
trical conductivity (see below), it is possible to restrict the
consideration further to the corresponding magnetic Laue
group of a solid that is generated by adding the inversion
operation I to the crystallographic magnetic point group.
This conventional definition [14] deviates from the older one
used by Kleiner [2] that derives the Laue group from the
corresponding crystallographic point group by removing from
each improper rotation R = PRI its improper part I . For this
reason we list in Tables I–III all magnetic point groups of the
three categories together with their corresponding magnetic

TABLE II. Magnetic point groups of category (b) and their
corresponding magnetic Laue group. In parentheses the magnetic
Laue group according to its old definition used by Kleiner [2] is
given (see text). Because equivalent magnetic point group and Laue
group symbols have not been removed (see text) there are 37 and 12
instead of 32 and 11, respectively, entries.

Magnetic point group Magnetic Laue group

1, 1̄ 1̄ (1)
2, m, 2/m 2/m (2)
222, mm2, mmm mmm (222)
4, 4̄, 4/m 4/m (4)
422, 4mm, 4̄2m, 4̄m2, 4/mmm 4/mmm (422)
3, 3̄ 3̄ (3)
312, 31m, 3̄1m 3̄1m (32)
321, 3m1, 3̄m1 3̄m1 (32)
6, 6̄, 6/m 6/m (6)
622, 6mm, 6̄m2, 6̄2m, 6/mmm 6/mmm (622)
23, m3̄ m3̄ (23)
432, 4̄3m, m3̄m m3̄m (432)

Laue group. The symbol in parentheses gives in addition the
magnetic Laue group as used by Kleiner [2].

Deriving the symbols for the magnetic point and Laue
groups from those for the magnetic space groups, one may be
led in some cases to two symbols that differ only concerning
the sequence of the second and third generators (one of these
might be a dummy 1). As this depends on the chosen coordinate
system and because the shape of the response tensor may
depend on this choice, both symbols are listed although being

TABLE III. Magnetic point groups of category (c) and their
corresponding magnetic Laue group. In parentheses the magnetic
Laue group according to its old definition used by Kleiner [2] is
given (see text). Because equivalent magnetic point group and Laue
group symbols have not been removed (see text) there are 52 and 13
instead of 37 and 10, respectively, entries.

Magnetic point group Magnetic Laue group

2′, m′, 2′/m′ 2′/m′ (2′)
2′2′2, m′m2′, m′m′2, m′m′m m′m′m (2′2′2)
4′, 4̄′, 4′/m 4′/m (4′)
4′2′2, 4′m′m, 4̄′2′m,
4̄′m′2, 4′/mm′m 4′/mm′m (4′22′)
4′22′, 4′mm′, 4̄′2m′,
4̄′m2′, 4′/mmm′ 4′/mmm′ (4′22′)
42′2′, 4m′m′, 4̄2′m′,
4̄m′2′, 4/mm′m′ 4/mm′m′ (42′2′)
312′, 31m′, 3̄1m′ 3̄1m′ (32′)
32′1, 3m′1, 3̄m′1 3̄m′1 (32′)
6′, 6̄′, 6′/m′ 6′/m′ (6′)
6′2′2, 6′m′m, 6̄′m′2,
6̄′2′m, 6′/m′m′m 6′/m′m′m (6′22′)
6′22′, 6′mm′, 6̄′m2′,
6̄′2m′, 6′/m′mm′ 6′/m′mm′ (6′22′)
62′2′, 6m′m′, 6̄m′2′,
6̄2′m′, 6/mm′m′ 6/mm′m′ (62′2′)
4′32′, 4̄′3m′, m3̄m′ m3̄m′ (4′32′)
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completely equivalent. This applies to 3̄1m1′ and 3̄m11′ of
category (a), 3̄1m and 3̄m1 of category (b), and 4′/mm′m and
4′/mmm′, 3̄1m′ and 3̄m′1, as well as 6′/m′m′m and 6′/m′mm′
of category (c). Furthermore, it should be noted that for the
magnetic Laue groups 2/m1′ of category (a), 2/m of category
(b), and 2′/m′ of category (c), the coordinate system has been
chosen according to cell choice 1 of space group 2/m as
documented in the International Tables for Crystallography
[15].

B. Thermoelectric coefficients

Within linear response theory, the induced electric current
density j and the heat current density q are given by [2](

j
q

)
=

(|e|L11 |e|L12
−L21 −L22

)( ∇μ
1
T
∇T

)
, (30)

with e = |e| the elementary charge and the electrochemical
potential μ which is related to the chemical potential μc and
the electric potential ϕ via

μ = μc − |e|ϕ. (31)

As explicitly demonstrated by Kleiner [2] as well as below,
the coefficients Lij satisfy Onsager relations of the form

L11(H) = L11(−H), (32)

L22(H) = L22(−H), (33)

L12(H) = LT
21(−H). (34)

Identifying the operators Âi and B̂i with one of the components
of the electric current density operator ĵ and the heat current
density operator q̂ and setting Ĉi = 1, Eqs. (12) and (22)
reduce to the expressions given by Kleiner to investigate the
symmetry properties of the thermoelectric coefficients Lij . His
derivation will be repeated here in a modified way as we use the
conventional definition for the Laue group and as the results
will be used later on.

Expressing the electric current density operator ĵ = −|e|v̂
as a product of the electronic charge −|e| and the velocity
operator v̂ one can see that ĵ transforms as a vector that changes
sign under time-reversal T and space inversion I :

I ĵi = −ĵi , (35)

T ĵi = −ĵi . (36)

The same relations apply for the heat current density operator
q̂i [2,16]. The corresponding 3 × 3 matrix representation for
a unitary operator u = {R|t} and an antiunitary operator a =
{R|t}T to be used in Eqs. (12) and (22) is

D(ĵ)(u) = D(q̂)(u) = D(R), (37)

D(ĵ)(a) = D(q̂)(a) = −D(R). (38)

Equations (12) and (22) (with Ĉi = 1) can be brought into
a more convenient form by replacing every D(R) by D(R−1)
and H by Hu−1 or Ha−1 , respectively. Thus, Eq. (12) for unitary

operators u simplifies to

τB̂i Âj
(ω,H(R)) =

∑
kl

τB̂kÂl
(ω,H) D(R)ki D(R)lj (39)

and Eq. (22) for antiunitary operators a to

τB̂i Âj
(ω, − H(R)) =

∑
kl

τÂl B̂k
(ω,H) D(R)ki D(R)lj , (40)

where

H(R)i =
∑

j

D(PR)ijHj . (41)

Here we used the fact that the matrices D(R) are real and that H
is a pseudovector. A further simplification can be achieved by
splitting R in a proper rotation PR and the space inversion I , if
it is contained in R. Explicitly, this means that R = PR if R is a
proper rotation and R = PRI if R is an improper rotation. For
proper rotations one has det (D(R)) = +1 while for improper
rotations det (D(R)) = −1 holds. Because the space inversion
amounts to a simple multiplication with −13, this splitting can
be expressed by

D(R) = det (D(R)) D(PR). (42)

Since the matrix D(R) appears twice in Eqs. (39) and (40),
the two factors det (D(R)) compensate each other, regardless
whether R is a proper or an improper rotation. Thus, the final
equation for the unitary operators is

τB̂i Âj
(ω,H) =

∑
kl

τB̂kÂl
(ω,H)D(PR)kiD(PR)lj , (43)

and for antiunitary operators

τB̂i Âj
(ω, − H) =

∑
kl

τÂl B̂k
(ω,H)D(PR)kiD(PR)lj . (44)

This splitting of R enables one to consider the symmetry
property of the thermogalvanic coefficients of a solid on the
basis of its magnetic Laue group instead of its magnetic point
group. This applies whether the conventional definition of
the Laue group (see Sec. III A) is applied or that used by
Kleiner [2]. In the latter case the removal of the ineffective
inversion I happens already when constructing the Laue group.
In the former case, one may add improper rotations R = PRI ,
where again I is ineffective and PR is an element of both
groups. Working only with the magnetic Laue group has the
obvious advantage that less cases have to be considered (see
Tables I–III) as there are only 32 magnetic Laue groups, while
there are 122 different crystallographic magnetic point groups.

On the basis of Eqs. (43) and (44) it is now rather
straightforward to give explicit forms for the response tensors
Lij in Eq. (30). For this purpose the abbreviations τij = τÂi B̂j

,

τ ′
ij = τB̂i Âj

, and σij = τÂi Âj
will be used, where Â and B̂ can

stand for ĵ or q̂. Accordingly, τ and τ ′ represent either L12
or L21 or the other way around, and σ represents L11 or L22,
respectively, which obviously have to have the same structure.
It is interesting to note that Eq. (44) can lead to restrictions on
the tensor elements in addition to those imposed by Eq. (43).
These hold even for the tensors of type τ ′.

In the case of a magnetically ordered solid having a
magnetic space group of category (b) the restrictions to the
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TABLE IV. Tensor forms for magnetic Laue groups of category (a).

Magnetic
Laue group τ ′ σ

1̄1′

⎛
⎝τxx τyx τzx

τxy τyy τzy

τxz τyz τzz

⎞
⎠

⎛
⎝σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

⎞
⎠

2/m1′

⎛
⎝τxx 0 τzx

0 τyy 0
τxz 0 τzz

⎞
⎠

⎛
⎝σxx 0 σxz

0 σyy 0
σxz 0 σzz

⎞
⎠

mmm1′

⎛
⎝τxx 0 0

0 τyy 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σyy 0
0 0 σzz

⎞
⎠

3̄1′,4/m1′,
6/m1′

⎛
⎝τxx −τxy 0

τxy τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

3̄1m1′, 3̄m11′,
4/mmm1′, 6/mmm1′

⎛
⎝τxx 0 0

0 τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

m3̄1′, m3̄m1′

⎛
⎝τxx 0 0

0 τxx 0
0 0 τxx

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σxx

⎞
⎠

shape of the thermogalvanic tensors result only from the
application of Eq. (43) as there are no antiunitary operations.
As a consequence, all tensors σ , τ , and τ ′ have the same shape.
Accordingly, only the shape of τ is given in Table V, that is in
full agreement with Kleiner’s Table IV [2].

For magnetic space groups belonging to category (a) or
category (c) Eq. (44) has to be applied in addition to Eq. (43).
In general, this leads to different symmetry restrictions for the
tensors of type τ ′ and σ . The resulting shape of the tensors for
category (a) is given in Table IV. These results agree with those
given by Kleiner’s Table V [2], apart from those for the Laue
groups 3̄1′, 4/m1′, and 6/m1′. Since the magnetic Laue groups
in category (a) differ from those in (b) only by the time-reversal
1′ as an element of its own, the tensor shapes in Table IV

TABLE V. Tensor forms for magnetic Laue groups of category (b).

Magnetic Laue group τ

1̄

⎛
⎝τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

⎞
⎠

2/m

⎛
⎝τxx 0 τxz

0 τyy 0
τzx 0 τzz

⎞
⎠

mmm

⎛
⎝τxx 0 0

0 τyy 0
0 0 τzz

⎞
⎠

3̄, 4/m, 6/m

⎛
⎝ τxx τxy 0

−τxy τxx 0
0 0 τzz

⎞
⎠

3̄1m, 3̄m1, 4/mmm, 6/mmm

⎛
⎝τxx 0 0

0 τxx 0
0 0 τzz

⎞
⎠

m3̄, m3̄m

⎛
⎝τxx 0 0

0 τxx 0
0 0 τxx

⎞
⎠

TABLE VI. Tensor forms for magnetic Laue groups of category
(c). The tensor forms for the groups 4′/mm′m and 4′/mmm′ are
related to each other by a rotation of the coordinate system around
the principal (z) axis by π/4.

Magnetic
Laue group τ ′ σ

2′/m′

⎛
⎝ τxx −τyx τzx

−τxy τyy −τzy

τxz −τyz τzz

⎞
⎠

⎛
⎝ σxx σxy σxz

−σxy σyy σyz

σxz −σyz σzz

⎞
⎠

m′m′m

⎛
⎝ τxx −τyx 0

−τxy τyy 0
0 0 τzz

⎞
⎠

⎛
⎝ σxx σxy 0

−σxy σyy 0
0 0 σzz

⎞
⎠

4′/m

⎛
⎝ τyy −τxy 0

−τyx τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

4′/mm′m

⎛
⎝ τxx −τxy 0

−τxy τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

4′/mmm′

⎛
⎝τyy 0 0

0 τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

3̄1m′, 3̄m′1,

4/mm′m′,
6/mm′m′

⎛
⎝ τxx τxy 0

−τxy τxx 0
0 0 τzz

⎞
⎠

⎛
⎝ σxx σxy 0

−σxy σxx 0
0 0 σzz

⎞
⎠

6′/m′

⎛
⎝τxx −τxy 0

τxy τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

6′/m′m′m,

6′/m′mm′

⎛
⎝τxx 0 0

0 τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

m3̄m′

⎛
⎝τxx 0 0

0 τxx 0
0 0 τxx

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σxx

⎞
⎠

alternatively can be deduced from those in Table V simply
by considering in addition the effect of 1′. In case of σ this
can lead to additional restrictions (degeneracies and zero
elements) since in this case the antiunitary time reversal
connects σ with itself according to its definition given
above. For the thermoelectric tensor on the other hand,
this just states the usual Onsager relations as expressed by
τ ′
ij (H) = τji(−H) [see Eq. (34)]. Table VI gives the results

for category (c) that are in full agreement with those given by
Kleiner’s Table VI [2]. Obviously the results presented in
Tables IV–VI fulfill the Onsager relations given by Eqs. (32)
to (34) that are not postulated a priori.

Kleiner’s scheme was applied here to derive the shape of
the tensors representing homogeneous bulk systems. However,
it may also be applied to investigate the symmetry restrictions
on the so-called layer-resolved conductivity tensor σ IJ with
I and J labeling atomic layers of a two-dimensional periodic
system [17]. This concept may be used for example in the
context of electrical transport in layered GMR systems [18,19]
or magneto-optical properties of surface systems [20,21].
Another extension of Kleiner’s scheme is the discussion of
nonlinear effects [17].

C. Shape of the spin conductivity tensor

Spin transport as reflected for example by the spin Hall
effect is usually described by use of the spin conductivity σ k

ij
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that gives the current density along direction i for the spin
polarization with respect to the k axis induced by an electrical
field along the j axis. Within a single-particle description of
the electronic structure the Kubo formalism leads for σ k

ij to an
expression analogous to the Kubo-Bastin equation [22] for the
electrical conductivity [23,24]:

σ k
ij = i�

V

∫ ∞

−∞
dE f (E) Tr

〈
Ĵ k

i

dG+(E)

dE
ĵj δ(E − Ĥ )

−Ĵ k
i δ(E − Ĥ ) ĵj

dG−

dE

〉
c

. (45)

Here Ĥ is the Hamiltonian of the system, G+(E) and G−(E)
are the corresponding retarded and advanced Green functions,
and ĵj is the ordinary electrical current density operator.
A straightforward definition for the spin current density
operator Ĵ k

i = 1
2 {v̂i ,σk} consists in the anticommutator of the

conventional velocity operator v̂i and the Pauli spin matrix σk

[25]. As the spin conductivity is caused by spin-orbit coupling
a coherent relativistic implementation of Eq. (45) seems to
be more appropriate. This implies that the electrical current
density operator ĵj = −|e|cαj is expressed in terms of the
4 × 4 Dirac α matrices [26]. A corresponding expression for
the spin current density operator Ĵ k

i = T̂kĵi was suggested by
Vernes et al. [27] that involves the spatial part T̂k of the spin
polarization operator introduced by Bargmann and Wigner
[28]:

T̂k = β�k − 1
mc

γ5�k. (46)

Here β, γ5, �k are again standard 4 × 4 Dirac matrices, m is
the electron mass, and �k stands for the kinetic momentum
[26]. In fact this approach was adopted by Lowitzer et al.
[23,24] when dealing with the spin Hall effect of disordered
alloys. However, as mentioned above, for an investigation of
the shape of a response tensor the explicit expressions for
the involved operators are not relevant but only their behavior
under symmetry operations. Both definitions of Ĵ k

i given above
consist of a combination of the current density operator ĵi

with an operator that represents the spin polarization of an
electron. In contrast to ĵi [see Eq. (38)], the latter one (e.g., T̂k)
transforms as a pseudovector which changes sign under time
reversal. Accordingly, one has for the transformation matrices

D(T̂k)(u) = det(R)D(R), (47)

D(T̂k )(a) = − det(R)D(R), (48)

corresponding to Eqs. (5) and (6).
Identifying now Âi = ĵj , B̂j = ĵi , and Ĉk = T̂k in Eqs. (12)

and (22) one finds the behavior of σ k
ij under unitary transfor-

mations

σ k
ij =

∑
lmn

det(R) D(R)li D(R)mj D(R)nk σ n
lm, (49)

and under antiunitary transformations

σ k
ij = −

∑
lmn

det(R) D(R)li D(R)mj D(R)nk σ ′n
lm, (50)

respectively. In analogy to the treatment of thermoelectric
coefficients presented above one may again split the rotation

R into its proper part PR and, if present, improper part as given
in Eq. (42). The resulting equation for unitary transformations
is then

σ k
ij =

∑
lmn

D(PR)li D(PR)mj D(PR)nk det(R)4 σn
lm (51)

=
∑
lmn

D(PR)li D(PR)mj D(PR)nk σ n
lm (52)

and

σ k
ij = −

∑
lmn

D(PR)li D(PR)mj D(PR)nk σ ′n
lm (53)

for antiunitary transformations, respectively. As a conse-
quence, as found for the thermoelectric coefficients by Kleiner
[2] also for the spin conductivity tensor it is sufficient to
consider the magnetic Laue group of the solid.

Using Eqs. (52) and (53) the shape of the inverse spin
conductivity tensor was determined with the results given in
the left column of Tables VII–IX for magnetic Laue group of
categories (a)–(c).

It should be noted that these tables for the spin conductivity
and its inverse effect can be seen as an equivalent to the
generalized Onsager relations derived by Kleiner for the
thermogalvanic transport tensors τ and τ ′. In particular, they
give the shape of the tensors σ ′k representing the Onsager
reciprocal quantity, e.g., the inverse spin Hall effect (ISHE)
as counterpart to the spin Hall effect (SHE), as discussed for
instance by Shi et al. [25].

Because ĵ and q̂ have the same transformation properties
and because the tensors τ(B̂i Ĉj )Âk

and τ
Â

†
l (B̂†

mC
†
n) in Eq. (22) are

different objects in both cases, the tensor shapes for tensors
describing the connection between spin currents and heat
currents have exactly the same shape as those tabulated in
the left column of Tables VII, VIII, and IX.

For convenience, it is possible to alter the notation of these
symmetry-restricted matrices in such a way that the symmetry
of the spin conductivity tensor is easier to recognize at first
sight. This is achieved by removing the time-reversal operator
1′ from every antiunitary operation (or by omitting it if it
appears on its own). However, this reduction leads to the loss
of the specific meaning, i.e., the generalized Onsager relations,
contained in the tensors σ ′k . The reduced tensors are tabulated
for categories (a), (b), and (c) in the right column of Tables VII,
VIII, and IX, respectively.

As discussed in the context of the charge and heat current in
response to an electric field the corresponding operators ĵi and
q̂i have the same symmetry properties. As a consequence the
tensors L11 and L22 in Eq. (30) have the same shape given by σ

in Tables IV–VI. For the same reason the tensor representing
the spin current induced by a thermal gradient has the same
shape as that connected with an electric field with both given
by the right column of Tables VII–IX.

One of the major benefits of Tables VII–IX is obviously the
prediction of all possible linear response spin transport phe-
nomena induced by an electric field or a thermal gradient for
any solid based on its magnetic space group. The occurrence
of antisymmetric off-diagonal elements in the tensor σ k (k =
x,y,z) in Table VII implies that the transverse spin Hall effect
is, in principle, allowed by symmetry in any paramagnetic
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solid. However, one has to stress that in case of the magnetic
Laue groups 1̄, 2/m, and mmm1′ the shape of the tensor is not
purely antisymmetric. The same is true for a ferromagnetic
solid according to Tables VIII and IX, i.e., the spin Hall and
Nernst effects are symmetry allowed in any magnetic solid as
well (again not all cases show purely antisymmetric elements).
Considering as an example a ferromagnetic cubic solid with
the magnetic Laue group 4/mm′m′ (e.g., bcc-Fe or fcc-Ni with
the magnetization along the z direction) its spin conductivity
tensor is very different from the form of its nonmagnetic
counterpart with m3̄m1′. For the nonmagnetic case only the
elements σ k

ij with i �= j �= k �= i are nonzero. In addition, these
are the same for a cyclic permutation of (i,j,k) and change
the sign for an anticyclic one. For the ferromagnetic case addi-
tional off-diagonal elements may appear, with the degeneracies
depending on the spin projection component k, and the tensors
are no longer purely antisymmetric. In particular one notes
that there are diagonal elements that imply the occurrence of
a longitudinal spin current induced by an electric field that
in general will depend on whether the electric field is along
(σ z

zz) or perpendicular (σ z
xx = σ z

yy) the magnetization. These
tensor elements are obviously responsible for the occurrence
of the spin-dependent Seebeck effect [29]. Interestingly, for
a nonmagnetic solid there are several magnetic space groups
that also imply a nonvanishing diagonal tensor element σ k

ii ,
i.e., a longitudinal current along the direction of the applied
electric field or thermal gradient. This was demonstrated
recently by corresponding numerical work on nonmagnetic
(Au1−xPtx)4Sc showing that the longitudinal spin conductivity
can be comparable in magnitude to the transverse spin Hall
conductivity [30].

D. Implementation

The symmetry restrictions imposed on the thermogalvanic
tensors by Eqs. (43) and (44) as well as on the spin conductivity
tensor by Eqs. (52) and (53), respectively, were determined by
means of a Python script that is based on the Computational
Crystallography Toolbox, cctbx [31]. Although this library
provides support only for the nonmagnetic crystallographic
operations, it is also of great value when dealing with magnetic
solids. To determine the magnetic space group of a solid all
possible magnetic space groups are simply scanned through
and checked which fits to the system under investigation.
The corresponding symmetry operations are taken from the
magnetic space group data file magnetic_data.txt [13,32].
Once the magnetic point group has been found, the u and
a operators needed for an application of Eqs. (43) and (44)
or Eqs. (52) and (53), respectively, are fixed. Going through
all elements of the magnetic point group leads to a set of

connecting equations between the tensor elements which can
then be solved to get the shape of the tensor. For these symbolic
calculations the SymPy library [33] is used. Although in
principle the generators of a magnetic point group are sufficient
to obtain all symmetry restrictions, it turned out to be more
convenient to apply all symmetry operations since the cctbx
library and the magnetic space group tables do not provide a
set of generators.

Finally, it should be mentioned that the results for the spin
conductivity tensor σ z for the spin polarization along the z axis
have been checked against the output of the SPRKKR program
package [34] that allows calculating this tensor on the basis
of the relativistic Kubo formalism [35]. For all investigated
magnetic Laue groups of categories (a) (1̄1′, mm1′, 2/m1′,
4/m1′, 4/mmm1′, 6/mmm1′, m3̄m1′), (b) (4/m), and (c)
(2′/m′, m′m′m, 4/mm′m′, 3̄m′1, 6/mm′m′) the numerical
results for σ z were found to be completely in line with the
analytical predictions given in Tables VII–IX.

IV. SUMMARY

Kleiner’s scheme to determine the shape of a linear response
tensor has been extended to deal with more complex situations.
The resulting set of equations has been used to revise the
shape of the electric charge and heat conductivity tensors for
all magnetic space groups. It was demonstrated that for this
only the magnetic Laue group of a solid is relevant. This also
holds for the spin conductivity tensor that is used among other
to discuss the longitudinal spin-dependent Seebeck effect as
well as the transverse spin Hall and Nernst effects. Results for
all magnetic space groups are presented in an easily accessible
way, by giving in addition to the tensors σ ′k containing the
generalized Onsager relations also the reduced tensor forms
σ k . Furthermore, the axis conventions of the space groups
are preserved when constructing the magnetic Laue groups
and therefore, although redundant, the tensor forms are given
in both coordinate systems whenever there is an ambiguity.
Interestingly, several magnetic Laue groups for nonmagnetic
solids were identified that should show a new longitudinal spin
transport phenomenon [30]. Finally, it should be stressed that
the scheme presented here can be applied straightforwardly to
any other response function. Examples relevant for spintronics
and related fields are the response tensors representing spin-
orbit torque, Gilbert damping, or the Edelstein effect [36].
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Errata and additional considerations

• On the r.h.s. of Eq. (18) on page 3 of Ref. 283 (page 177 herein), the vector
operator Â(−τ) should read Â(−τ), i.e., boldface instead of italic.

• On page 3 of Ref. 283 (page 177 herein), right column, the sentence around
Eq. (26) should end “...that may be part of s.”

• On page 5 of Ref. 283 (page 179 herein), the Onsager relations expressed in
Eqs. (32)-(34) are only valid for non-magnetic systems. Hence the sentence
preceding these should read “As explicitly demonstrated by Kleiner [2] as well
as below, in non-magnetic solids the coefficients Lij satisfy Onsager rela-
tions of the form...”
Accordingly, on page 6 (page 180 herein) the last sentence of the paragraph
below TABLE VI should be “Obviously only the results presented in Table
IV fulfil the Onsager relations given by Eqs. (32) to (34) that are not postu-
lated a priori. For magnetic systems different relations hold, termed
generalised Onsager relations by Kleiner. For category (b) these
state that σ, τ , and τ ′ have the same shape, but the latter two are
unconnected. For magnetic Laue groups in (c), the relation of τ ,
and τ ′ depends on which spatial operations have to be connected
with time reversal to be a symmetry operation of the group.”

• In Table VIII on page 9 of Ref. 283 (page 183 herein), all tensor elements in
the first three columns should be primed. There is no connection between σk

and σ′k, since there are no anti-unitary operations in groups of category (b).

• Note that according to TABLE IV on page 6 of Ref. 283 (page 180 herein), in
non-magnetic solids with a (magnetic) Laue group of 3̄(1′), 4/m(1′), or 6/m(1′)
one should be able to observe an anomalous Nernst and Ettingshausen effects.
These are exactly the three Laue groups for which the tensor forms differ from
Kleiner [271].
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3.3.2 Published results on longitudinal spin transport in
nonmagnets

The following is a copy of the article Spin-orbit-induced longitudinal spin-polarized
currents in non-magnetic solids [92], reprinted (including Supplemental Material)
with permission from

S. Wimmer, M. Seemann, K. Chadova, D. Ködderitzsch, and H. Ebert, Phys. Rev. B
92, 041101(R) (2015). Copyright (2015) by the American Physical Society.
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Spin-orbit-induced longitudinal spin-polarized currents in nonmagnetic solids
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For certain nonmagnetic solids with low symmetry the occurrence of spin-polarized longitudinal currents is
predicted. These arise due to an interplay of spin-orbit interaction and the particular crystal symmetry. This
result is derived using a group-theoretical scheme that allows investigating the symmetry properties of any
linear response tensor relevant to the field of spintronics. For the spin conductivity tensor it is shown that only the
magnetic Laue group has to be considered in this context. Within the introduced general scheme also the spin Hall
and additional related transverse effects emerge without making reference to the two-current model. Numerical
studies confirm these findings and demonstrate for (Au1−xPtx)4Sc that the longitudinal spin conductivity may be
on the same order of magnitude as the conventional transverse one. The presented formalism only relies on the
magnetic space group and therefore is universally applicable to any type of magnetic order.

DOI: 10.1103/PhysRevB.92.041101 PACS number(s): 72.25.Ba, 61.50.Ah, 71.15.Rf, 72.15.Qm

The discovery of the spin Hall effect [1–3] (SHE) with its
particular feature of converting a longitudinal charge current
into a transverse spin current has sparked numerous studies
that finally led to a deep understanding of many effects that are
spin-orbit induced. Among them are the enigmatic anomalous
Hall effect (AHE) that shares the same origin as the SHE
and many new phenomena emerging from a coupling of spin,
charge, and orbital degrees of freedom in electric fields as well
as temperature gradients. Examples of these are the Edelstein
effect (EE [4,5]) and the spincaloritronic pendants to the SHE
and AHE, namely the spin and anomalous Nernst effects
(SNE [6,7], ANE [8,9]), respectively. Many models have
been formulated that aim to capture particular contributions
to theses effects. For instance, the concept of the semiclassical
Berry phase that can be determined on the basis of the band
structure of perfect crystalline systems is connected to so called
intrinsic contributions [10–12]. Extrinsic contributions arising
from scattering at impurities in nonperfect systems can, for
example, be obtained from diagrammatic methods [13] or
Boltzmann transport theory [14].

The aforementioned transport phenomena and their differ-
ent contributions being linear in the driving fields should, in
principle, be described using the fundamental Kubo formula
for the corresponding response function [15],

τij (ω) =
∫ ∞

0
dte−iωt

∫ β

0
dλ Tr[ρÂj B̂i(t + i�λ)] . (1)

The effects then emerge from the characteristics of the
underlying Hamiltonian, the pair of chosen operators for
perturbation (Âj ) and observable (B̂i), and the symmetry
of the system. Due to the intractability of the problem to
exactly solve the Kubo formula for a realistic system in
practice one has to resort to approximations and/or models.
However, irrespective of this problem one can still analyze the
transformation properties of response tensors τ determined by
the Kubo formula to make statements about which effects are
in principle allowed, i.e., which nonvanishing tensor elements

*sebastian.wimmer@cup.uni-muenchen.de
†diemo.koedderitzsch@cup.uni-muenchen.de

may occur given a particular transformation property of the
operators appearing in Eq. (1). This route has been followed
by Kleiner [15,16], who demonstrated that the occurrence of
the AHE is predicted by such a space-time symmetry analysis.
Furthermore, considering in addition heat currents he derived
general Onsager reciprocity relations.

Here, by extending this approach and applying it in the
context of spin current operators [17] we demonstrate that in
certain nonmagnetic low-symmetry systems an electric field
can induce a longitudinal spin-polarized current [18] that has
hitherto evaded perception, and complements the transverse
spin Hall effect. Furthermore two additional transverse effects
are found which differ from the SHE by the direction of
polarization. The results of the group-theoretical analysis are
independently verified for an alloy bulk system performing rel-
ativistic first-principles Kubo-type transport calculations. The
presented formalism is furthermore very general, because (i) it
allows identifying nontrivial response phenomena as nonzero
elements in respective response tensors, as, e.g., the AHE, (ii)
it applies to both magnetic and nonmagnetic systems, and (iii)
it is free of the notion of a two-current model often used as an
approximation in discussing spintronic phenomena; instead it
is based on the concept of spin (polarization) current densities.

The material-specific features of any transport property
may be discussed on the basis of the corresponding response
function tensor τ . Concerning this, the shape of the tensor
τ , i.e., the occurrence and degeneracy of nonzero elements,
reflecting the symmetry of the investigated solid, is obviously
of central importance. To find, in particular, the shape of
the spin conductivity tensor, Kleiner’s scheme [15] to deal
with the symmetry properties of ordinary transport tensors
has been extended to the case when the response observable
is represented by an arbitrary operator product of the form
(B̂iĈj ) while an operator Âk represents the perturbation and the
operators Âk , B̂j , and Ĉi are seen as the Cartesian components
of vector operators. Within Kubo’s linear response formalism
the corresponding frequency-(ω)-dependent response function
is then given by

τ(B̂i Ĉj )Âk
(ω,H) =

∫ ∞

0
dt e−iωt

∫ β

0
dλ Tr[ρ(H)Âk

× B̂i(t + i�λ; H)Ĉj (t + i�λ; H)], (2)
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TABLE I. Electrical (σ ) and spin (σ k) conductivity tensor forms for the magnetic Laue groups discussed in the text [18,19]. Below each
group symbol an example for a material is given in parentheses.

Magnetic Laue Group σ σ x σ y σ z

m3̄m1′

(fcc-Pt)

⎛
⎝σxx 0 0

0 σxx 0

0 0 σxx

⎞
⎠

⎛
⎝0 0 0

0 0 σ x
yz

0 −σ x
yz 0

⎞
⎠

⎛
⎝ 0 0 −σ x

yz

0 0 0

σ x
yz 0 0

⎞
⎠

⎛
⎝ 0 σ x

yz 0

−σ x
yz 0 0

0 0 0

⎞
⎠

4/mm′m′

(fcc-FexNi1−x)

⎛
⎝ σxx σxy 0

−σxy σxx 0

0 0 σzz

⎞
⎠

⎛
⎝ 0 0 σ x

xz

0 0 σ x
yz

σ x
zx σ x

zy 0

⎞
⎠

⎛
⎝ 0 0 −σ x

yz

0 0 σ x
xz

−σ x
zy σ x

zx 0

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0

0 0 σ z
zz

⎞
⎠

4/m1′

(Au4Sc)

⎛
⎝σxx 0 0

0 σxx 0

0 0 σzz

⎞
⎠

⎛
⎝ 0 0 σ x

xz

0 0 σ x
yz

σ x
zx σ x

zy 0

⎞
⎠

⎛
⎝ 0 0 −σ x

yz

0 0 σ x
xz

−σ x
zy σ x

zx 0

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0

0 0 σ z
zz

⎞
⎠

2/m1′

(Pt3Ge)

⎛
⎝σxx σxy 0

σxy σyy 0

0 0 σzz

⎞
⎠

⎛
⎝ 0 0 σ x

xz

0 0 σ x
yz

σ x
zx σ x

zy 0

⎞
⎠

⎛
⎝ 0 0 σ

y
xz

0 0 σ
y
yz

σ
y
zx σ

y
zy 0

⎞
⎠

⎛
⎝σ z

xx σ z
xy 0

σ z
yx σ z

yy 0

0 0 σ z
zz

⎞
⎠

where as usual [15] ρ stands for the density operator, β =
1/kBT with kB the Boltzmann constant, T is the temperature,
and H is a magnetic field that might be present.

The shape of τ can be found by considering the impact
of a symmetry operation of the space group of the solid on
Eq. (2), as this will lead to equations connecting elements of τ .
Collecting the restrictions imposed by all symmetry operations
the shape of τ is obtained. In this context it is important to note
that the relevant space group of the considered system may
contain not only unitary pure spatial (u) but also antiunitary
symmetry operations (a) that involve time reversal.

The transformation properties of the operators X = Ai , Bi ,
or Ci in Eq. (2) under symmetry operations can be expressed
in terms of the corresponding Wigner D-matrices [15] D(X̂)(u)
and D(X̂)(a) belonging to the operator X̂ and the operation u or
a, respectively. Starting from Eq. (2) and making use of these
transformation relations one gets the transformation behavior
of τ under a unitary (u) or antiunitary (a) symmetry operation,
respectively [19]:

τ(B̂i Ĉj )Âk
(ω,H) =

∑
lmn

τ(B̂mĈn)Âl
(ω,Hu)

×D(Â)(u)lk D(B̂)(u)mi D
(Ĉ)(u)nj , (3)

τ(B̂i Ĉj )Âk
(ω,H) =

∑
lmn

τ
Â

†
l (B̂†

mĈ
†
n)(ω,Ha)

×D(Â)(a)∗lk D(B̂)(a)∗mi D
(Ĉ)(a)∗nj . (4)

It should be noted that in general the tensors τ(B̂i Ĉj )Âk
and

τ
Â

†
k (B̂†

i Ĉ
†
j ) are different objects representing different response

functions which are only interrelated by Eq. (4). It nevertheless
imposes restrictions on the shape of τ(B̂i Ĉj )Âk

giving rise to
(generalized) Onsager relations.

Assuming Ĉi = 1 and B̂i = Âi = ĵi with ĵi the current
density operator τ corresponds to the ordinary electrical
conductivity tensor σ . Using the behavior of ĵi under sym-
metry operations [15], it turns out that only the magnetic
Laue group of the system has to be considered, that is
generated by adding the (space) inversion operation I to
the crystallographic magnetic point group [20]. The resulting

shape of the conductivity tensor σ is given in Table I for four
different magnetic Laue groups [19].

When considering the spin conductivity tensor its elements
σ k

ij give the current density along direction i for the spin
polarization with respect to the k axis induced by an electrical
field along the j axis. In this case the perturbing electric
field is still represented by Âi = ĵi while the induced spin
current density is represented by the corresponding operator
Ĵ k

i = (B̂iĈk). As the explicit definition of Ĵ k
i is not relevant for

the following, but only its symmetry properties, the frequently
used nonrelativistic definition Ĵ k

i = 1
2 {v̂i ,σk} may be used that

consists of a combination of the Pauli spin matrix σk and
the conventional velocity operator v̂i [21]. Alternatively, one
may use the relativistic definition of the spin current operator
Ĵ k

i = T̂kĵi as suggested by Vernes et al. [22] that involves the
spatial part T̂k of the spin polarization operator [23].

Expressing the transformation behavior of Ĵ k
i in terms

of the Wigner matrices allows deducing the shape of the
corresponding spin conductivity tensor on the basis of Eqs. (3)
and (4). As for the electrical conductivity it turns out again that
one has to consider only the magnetic Laue group; i.e., there
are only 37 different cases. Table I gives for the four cases
considered here the shape of the various subtensors σ k , where
k specifies the component of the spin polarization.

Considering a nonmagnetic metal with fcc or bcc structure
(m3̄m1′) Kleiner’s scheme naturally leads to an isotropic
electrical conductivity tensor σ . The extension to deal with
the spin conductivity tensor sketched above gives in this
case only a few nonvanishing elements that are associated
with the SHE and are symmetry related according to σ x

yz =
σ

y
zx = σ z

xy = −σ x
zy = −σ

y
xz = −σ z

yx; i.e., cyclic permutation of
the indices gives no change while anticyclic permutation
changes the sign. In contrast to other derivations, there is
obviously no need to artificially introduce a spin-projected
conductivity or to make reference to the conductivity tensor
of a spin-polarized solid. For a ferromagnetic metal with fcc
or bcc structure (4/mm′m′) with the magnetization along
the z direction, the well-known shape of the conductivity
tensor σ is obtained that reflects the anomalous Hall effect
(σxy) as well as the magnetoresistance anisotropy (σxx �= σzz)
with the symmetry relations σxy = −σyx and σxx = σyy. The
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spin conductivity tensor σ z shows as for the nonmagnetic
case antisymmetric off-diagonal elements that represent the
transverse spin conductivity. This implies the occurrence of the
spin Hall effect in ferromagnets that was investigated recently
for diluted alloys [24]. For polarization along the x and y
axes, however, different although still interrelated elements
appear as compared to the nonmagnetic case since fewer
symmetry relations survive in the presence of a spontaneous
magnetization. Additionally, in contrast to the nonmagnetic
case also a longitudinal spin-polarized conductivity (σ z

ii)
occurs in a ferromagnet, that for example gives rise to the
spin-dependent Seebeck effect [25]. A simple explanation for
the corresponding longitudinal spin transport would be based
on Mott’s two-current model assuming different conductivities
for the two spin channels. However, it is well known that
spin-orbit interaction leads to a hybridization of the spin
channels and influences even the longitudinal conductivity of a
ferromagnet this way [26]. Accordingly, it cannot be ruled out
that the longitudinal tensor elements σ z

ii are not only reflecting
the spontaneous spin magnetization of the material but are to
some extent due to spin-orbit coupling.

Indeed the scheme presented above leads for nonmagnetic
systems having low symmetry not only to off-diagonal ele-
ments reflecting transverse spin conductivity, i.e., the SHE, but
also to diagonal elements reflecting longitudinal spin transport,
that was not observed so far. For the two magnetic Laue groups
4/m1′ and 2/m1′ for nonmagnetic solids considered in Table I,
a 4- and 2-fold, resp., rotation axis is present. As a consequence
longitudinal spin currents show up only with spin polarization
along this principal axis of rotation.

To verify the results of our group-theoretical approach
independently we calculated the full spin conductivity tensor
for solids having different structures corresponding to different
magnetic Laue groups. This work employs a computational
scheme that has been used before for numerical studies on the
SHE in nonmagnetic transition metal alloys [27]. Performing
these calculations without making use of symmetry led
numerically to a spin conductivity tensor that was always fully
in line with the analytical group-theoretical results concerning
the shape and degeneracies of the tensor.

To get a first estimate of the order of magnitude of the
longitudinal spin-polarized conductivity in nonmagnets, cal-
culations have been done for the system (Au1−xPtx)4Sc having
the magnetic Laue group 4/m1′ for varying Pt concentration x.
Figure 1 (top) shows the corresponding electrical conductivity
that is, in agreement with Table I, diagonal and slightly
anisotropic; i.e., σxx = σyy ≈ σzz.

Furthermore, the conductivities σii are strongly asymmetric
with respect to the concentration x when replacing Au with
prominent sp character at the Fermi level by Pt with dominant
d character. Furthermore, one notes a relatively strong impact
of the vertex corrections on the Au-rich side of the system (x ≈
0) while these are much less important on the Au-poor side
(x ≈ 1). This observation is well known from binary transition
metal alloys, such as Cu1−xPtx [28] or Ag1−xPdx [29], where
the dominance of sp character changes to d character when x

is varied from 0 to 1.
The transverse spin conductivity σ x

ij is shown in the middle
panel of Fig. 1 for x polarization of the spin. As Table I
shows going from m3̄m1′ to 4/m1′ symmetry the relation
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FIG. 1. (Color online) Top: Longitudinal conductivity σii for
(Au1−xPtx)4Sc as a function of the concentration x calculated without
(NV) and with (VC) the vertex corrections. Middle: Transverse
spin conductivities σ x

ij . Bottom: Transverse and longitudinal spin
conductivity σ z

xy and σ z
xx, respectively.

σ x
yz = −σ x

zy disappears; i.e., the corresponding subtensor is
not antisymmetric anymore. A symmetric component, which
is by definition not present in the ordinary SHE, indeed can
be seen in Fig. 1 (middle) although the deviations are not
very pronounced. In line one finds (except for x → 0) for
the additional nonzero tensor elements σ x

xz ≈ −σ x
zx. The first

coefficient relates a spin current j x
x polarized in the direction

of motion to an electric field Ez, whereas σ x
zx describes a

spin current j x
z transverse, but with the spin polarization

parallel to the driving electric field Ex. To our knowledge
the corresponding effects have not been considered so far.
Interestingly, both elements occur simultaneously for a given
magnetic Laue group or both are absent. However, compared
to the spin-Hall-like elements σ x

yz and σ x
zy they are smaller. For
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FIG. 2. (Color online) Top: Energy-dependent component-(α)-
resolved DOS nα(E) for (Au0.5Pt0.5)4Sc. Bottom: Component-
resolved DOS nα(EF) at the Fermi energy EF for (Au1−xPtx)4Sc
as a function of the concentration x.

y polarization of the spin the corresponding tensor elements
are uniquely related to those for x polarization according
to Table I and for this reason not given here. The tensor
elements σ z

ij for z polarization are given in the lower panel
of Fig. 1. In line with Table I they obey the symmetry relation
σ z

xy = −σ z
yx (i.e., describing the pure SHE) and differ from

σ x
yz. This difference however is, except again for x → 0, not

very pronounced. In particular, σ x
yz and σ z

xy show a similar
variation with concentration x that differs clearly from that of
the longitudinal spin conductivity σ z

xx shown as well in Fig. 1
(bottom). Although this new type of tensor element is overall
somewhat smaller in magnitude than the dominating transverse
elements it has nevertheless the same order of magnitude,
especially in the Au-rich regime, and for that reason it should
be possible to determine it experimentally.

As can be seen in Fig. 1 the curves for the spin conductivity
tensor elements σ k

ij as function of the concentration x are
much more structured than the electrical conductivity σii ; i.e.,
they are much more strongly affected by the variation of the
electronic structure with composition. In particular the spin

conductivities σ k
ij show pronounced peaks or dips for x ≈ 0.8.

This behavior can be related to the variation of the density of
states (DOS) with x as can be seen from Fig. 2. The figure
shows the component-resolved DOS nα(E) as a function of
the energy E for (Au0.5Pt0.5)4Sc (top) and at the Fermi energy
EF for (Au1−xPtx)4Sc as a function of the concentration x

(bottom). As mentioned above, at the Fermi energy the partial
DOS nAu(EF) of Au is dominated by sp states while that of Pt
has dominant d character. The pronounced dip of the Pt DOS
nPt(EF) at x ≈ 0.8 is apparently responsible for the prominent
features in the spin conductivity curves shown in Fig. 1
(middle and bottom panels). As mentioned before, for the
longitudinal conductivity σii inclusion of the vertex corrections
has primarily an impact at the Au-rich side of the system. The
same behavior is found for the transverse (σ k

ij ) as well as the
longitudinal (σ z

ii) spin conductivity components. For the trans-
verse spin Hall conductivity it could be demonstrated that the
contribution connected with the vertex corrections corresponds
to the so-called extrinsic contribution that is primarily caused
by the skew scattering mechanism [24,27]. The very similar
dependence of σ k

ij and σ z
ii on the vertex corrections suggests

that this applies also for the longitudinal spin conductivity.
In summary, a group-theoretical scheme has been presented

that allows determining the shape of response tensors relevant
for the field of spintronics. Application to the spin conductivity
tensor gave a sound and model-independent explanation for the
occurrence of the transverse tensor elements responsible for
the spin Hall effect and two additional, closely related effects.
In addition it was found that for low symmetry longitudinal
elements show up in addition even for nonmagnetic solids
that were not considered before. Independent numerical
investigations confirmed these results and demonstrated for
(Au1−xPtx)4Sc that the longitudinal spin conductivity may be
on the same order of magnitude as the transverse one. It should
be noted that the discussion of the spin conductivity tensor
was referring to the dc limit ω = 0. However, the tensor forms
given in Table I also hold for finite frequencies, implying
the occurrence of the ac counterparts to the discussed effects.
In addition, the formalism is applicable to numerous other
linear response phenomena as, e.g., the AHE, anisotropic
magnetoresistance (AMR), the Edelstein effect [4,5], Gilbert
damping [30], spin-orbit torques [31], etc. Furthermore, using
the fact that the operators for electrical and heat currents share
the same transformation properties the presented formalism
can be applied to spincaloritronic phenomena as well.

This work was supported financially by the Deutsche
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SPP 1538 (Spin Caloric Transport) and the SFB 689
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I. DERIVATION OF EQ. (3)

In the following we sketch the derivation of the trans-
formation relation Eq. (3) in the manuscript of a response
function τ under a unitary symmetry operation u. For
Eq. (4) in the manuscript referring to an antiunitary sym-
metry operation a the derivation is similar.

Within Kubo’s linear response formalism1, the change
of the expectation value of an observable represented by
an operator product of the form B̂iĈj due to a time-

dependent perturbation Âj (with the operators Ĉi, B̂j ,

and Âk being the Cartesian components of a vector op-
erator) can be expressed by the corresponding response
function:

τ(B̂iĈj)Âk
(ω,H) =

∫ ∞

0

dt e−iωt

∫ β

0

dλTr
(
ρ(H)ÂkB̂i(t + iℏλ;H)Ĉj(t + iℏλ;H)

)
, (1)

with ρ(H) = e−βĤ(H)/Tr(e−βĤ(H)) being the density op-
erator for the unperturbed system and H an external
magnetic field.

The expression under the trace in Eq. (1) can be re-
formulated by cyclic permutation and by inserting the
factor u−1u = 1:

Tr
(
e−βĤ(H)ÂkB̂i(t + iℏλ;H)Ĉj(t + iℏλ;H)

)
= Tr

(
u−1ue−βĤ(H)u−1uÂku−1uB̂j(t + iℏλ,H)u−1uCi(t + iℏλ;H)

)

= Tr
[(

ue−βĤ(H)u−1
)(

uÂku−1
)(

uB̂i(t + iℏλ,H)u−1
)(

uĈj(t + iℏλ,H)u−1
)]

. (2)

The four expressions grouped in parenthesis can be dealt
with separately. The term containing Âk can be rewrit-
ten using the general transformation properties of the
operators Xi = Ai, Bi or Ci in Eq. (1) under a unitary
symmetry operation u:

uX̂iu
−1 =

∑

j

X̂jD
(X̂)(u)ji , (3)

where D(X̂)(u) are the Wigner D-matrices correspond-

ing to the operator X̂ and operation u. For the term
containing B̂j one has accordingly :

uB̂i(t + iℏλ,H)u−1 =
∑

m

B̂m(t + iℏλ,Hu) D(B̂)(u)mi ,(4)

with Hu the transformed field

uĤ(H)u−1 = Ĥ(Hu) (5)

connected with the operation u. For the term contain-
ing Cj(t + iℏλ,H) an analogous expression is obtained.
Inserting these relations into Eq. (2) one arrives at:

Tr
(
e−βĤ(H)ÂkB̂i(t + iℏλ,H)Ĉj(t + iℏλ,H)

)
=

∑

lmn

Tr

(
e−βĤ(Hu)ÂlB̂m(t + iℏλ,Hu)Ĉn(t + iℏλ,Hu)

D(Â)(u)lk D(B̂)(u)mi D(Ĉ)(u)nj

)
. (6)

This equation must hold for any operators Âk, B̂j and Ĉi, i.e. also in the special case Âk = B̂j = Ĉi = 1, leading
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to:

Tr
(
e−βĤ(H)

)
= Tr

(
e−βĤ(Hu)

)
. (7)

Inserting the two last equations into Eq. (1) for the gen-
eral transport coefficients, one obtains the transforma-
tion behavior of τ under a unitary symmetry operation
u:

τ(B̂iĈj)Âk
(ω,H) =

∑

lmn

τ(B̂mĈn)Âl
(ω,Hu)

D(Â)(u)lk D(B̂)(u)mi D(Ĉ)(u)nj .(8)

II. APPLICATION OF EQ. (3) AND EQ. (4) TO
THE SPIN CONDUCTIVITY TENSOR

Spin transport may be expressed in terms of the spin
conductivity tensor σk

ij that gives the current density
along direction i for the spin polarization with respect
to the k axis induced by an electrical field along the j
axis. A straightforward but sufficient definition for the
central spin current density operator Ĵk

i = 1
2{v̂i, σk} con-

sists in a combination of the Pauli spin matrix σk and the
conventional velocity operator v̂i

2 (for an alternative def-
inition see e.g. Vernes et al.3).

Eq. (3) has now to be considered individually for each
of the various operators occurring in Eq. (1). For the
present context it is important to note that, in contrast to
the current density operator ĵi = |e|v̂i, Ĵk

i transforms as
a pseudo-vector which changes sign under time reversal.
Identifying Âj = ĵj , B̂i = ĵi and Ĉk = σ̂k in Eq. (8) one
finds the behavior of σk

ij under unitary transformations

σk
ij =

∑

lmn

det(R) D(R)li D(R)mj D(R)nk σn
lm (9)

and an analogous expression for antiunitary symmetry
operations.

Eq. (9) and its counterpart connected with antiunitary
symmetry operations can be used to deduce the shape
of the spin conductivity tensor σk

ij for any solid on the
basis of its magnetic space group. Similar to the case
of the electrical conductivity tensor only the magnetic
Laue group has to be considered for this purpose, i.e.
there are only 37 different cases. Table I gives the
corresponding results for the case of a nonmagnetic
solid for which time inversion symmetry (1’) is present.
Complementary results for the remaining magnetic Laue
groups of magnetic solids have been obtained as well (to
be published).

III. NOTE ON FIRST-PRINCIPLES APPROACH

To verify the results of our group-theoretical approach
independently we calculated the full spin conductivity

magnetic
Laue
group

σx σy σz

1̄1′
(

σx
xx σx

xy σx
xz

σx
yx σx

yy σx
yz

σx
zx σx

zy σx
zz

) (
σy

xx σy
xy σy

xz

σy
yx σy

yy σy
yz

σy
zx σy

zy σy
zz

) (
σz

xx σz
xy σz

xz

σz
yx σz

yy σz
yz

σz
zx σz

zy σz
zz

)

2/m1′
(

0 0 σx
xz

0 0 σx
yz

σx
zx σx

zy 0

) (
0 0 σy

xz

0 0 σy
yz

σy
zx σy

zy 0

) (
σz

xx σz
xy 0

σz
yx σz

yy 0
0 0 σz

zz

)

mmm1′
(

0 0 0
0 0 σx

yz

0σx
zy 0

) (
0 0σy

xz

0 0 0
σy

zx 0 0

) (
0 σz

xy 0
σz

yx 0 0
0 0 0

)

4/m1′,
6/m1′

(
0 0 σx

xz

0 0 −σy
xz

σx
zx −σy

zx 0

) (
0 0 σy

xz

0 0 σx
xz

σy
zx σx

zx 0

) (
σz

xx σz
xy 0

−σz
xy σz

xx 0
0 0 σz

zz

)

4/mmm1′,
6/mmm1′

(
0 0 0
0 0 −σy

xz

0−σy
zx 0

) (
0 0σy

xz

0 0 0
σy

zx 0 0

) (
0 σz

xy 0
−σz

xy 0 0
0 0 0

)

3̄1′
(

σx
xx σy

xx σx
xz

σy
xx −σx

xx −σy
xz

σx
zx −σy

zx 0

) (
σy

xx −σx
xx σy

xz

−σx
xx −σy

xx σx
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σy
zx σx

zx 0

) (
σz

xx σz
xy 0

−σz
xy σz

xx 0
0 0 σz
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)

3̄1m1′
(

σx
xx 0 0
0 −σx
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0 −σy
zx 0

) (
0 −σx

xx σy
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−σx
xx 0 0

σy
zx 0 0

) (
0 σz

xy 0
−σz

xy 0 0
0 0 0

)

3̄m11′
(

0 σy
xx 0

σy
xx 0 −σy

xz

0 −σy
zx 0

) (
σy

xx 0 σy
xz

0 −σy
xx 0

σy
zx 0 0

) (
0 σz

xy 0
−σz

xy 0 0
0 0 0

)

m3̄1′
(

0 0 0
0 0 σz

xy

0σy
xz 0

) (
0 0σy

xz

0 0 0
σz

xy 0 0

) (
0 σz

xy 0
σy

xz 0 0
0 0 0

)

m3̄m1′
(

0 0 0
0 0 σz

xy

0−σz
xy 0

) (
0 0−σz

xy

0 0 0
σz

xy 0 0

) (
0 σz

xy 0
−σz

xy 0 0
0 0 0

)

Table I: Shape of the spin conductivity tensor σk
ij for

the magnetic Laue groups of nonmagnetic solids.

tensor for solids having different structures correspond-
ing to different magnetic Laue groups. This work em-
ploys a computational scheme that has been used before
for numerical studies on the SHE in nonmagnetic transi-
tion metal alloys 4. In brief, a single-particle description
of the electronic structure within the framework of den-
sity functional theory was adopted. Spin-orbit coupling
was accounted for by the use of a fully relativistic ver-
sion of the Korringa-Kohn-Rostoker (KKR) Green func-
tion band structure method. This approach allowed in
addition dealing with disordered systems making use of
the CPA (Coherent Potential Approximation) alloy the-
ory 5. Performing these calculations without making use
of symmetry led numerically to a spin conductivity tensor
that was always fully in line with the analytical group-
theoretical results concerning the shape and degeneracies
of the tensor.
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Additional considerations

• Upon inspection of Table I on page 2 of the Supplemental Material to Ref. 92
(page 195 herein) one notices that it is in fact more common, on the level of
magnetic Laue groups, that a non-magnetic solid can exhibit the longitudinal
spin transport effect (6 groups4) opposed to have it symmetry-forbidden (5
groups). This does of course not account for a) the number of magnetic point
groups that have the same magnetic Laue group, b) the number of magnetic
space groups with the same magnetic point group, and c) the abundance of
naturally occurring or synthesisable materials with the corresponding mag-
netic space groups. It is however possible to give a simple criterion for the
symmetry-allowed occurrence of a longitudinal spin conductivity tensor ele-
ment in nonmagnets: the absence of mutually perpendicular 5 mirror planes.
In mmm1′, 4/mmm1′ & 6/mmm1′, m3̄1′, and m3̄m1′ there are such mirror
planes (always three of them), hence no longitudinal spin transport is possi-
ble. For the remaining magnetic Laue groups, 1̄1′, 2/m1′, 4/m1′ & 6/m1′, 3̄1′,
3̄1m1′ (3̄m11′), it is.

• The tensor shapes given in Table I on page 2 of the Supplemental Material
to Ref. 92 (page 195 herein) have been reprinted in Table VII on page 8
(page 182 herein) of Ref. 283 (last three columns), together with the shapes
for the tensors σ′k containing in addition the (generalised) Onsager relations
between σ′k and σk.

4Note that 3̄1m1′ and 3̄m11′ just differ by a rotation of the coordinate system, see Ref. 283 in
Section 3.3.1.

53̄1m1′ (3̄m11′) has three vertical mirror planes, which naturally are not perpendicular to each
other.
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3.4 Transverse response properties of non-collinear

antiferromagnets

In the following two manuscripts will be presented that deal with, in particular, anti-
symmetric response properties of cubic and hexagonal Mn3X compounds. Starting
from group-theoretical considerations the occurrence of the anomalous Hall and
related effects in spite of absence of a globally finite magnetisation will be dis-
cussed in Ref. 366. This is followed by results on the magneto-optic Kerr effect
(MOKE) and the X-ray circular magnetic dichroism (XMCD) in Mn3Ir, both of
which are connected to the frequency-dependent (optical) anti-symmetric conduc-
tivity. Moreover the concentration dependence of the anomalous Hall and spin Hall
effects in Mn3Ir1−xPtx and Mn3Pt1−xRhx alloys will be investigated. The hexagonal
Heusler compound Mn3Ge will be considered in addition, concerning its transport
and magneto-optical properties in the spin-compensated state, but moreover an ex-
tensive study of the chirality-induced or topological contributions to various response
properties will be presented in Ref. 367. By rotating the magnetic moments out of
the Kagome planes a chiral and non-coplanar spin configuration is obtained, that
gives rise to a so-called emergent electromagnetic field which leads to intrinsic anti-
symmetric contributions to anomalous and spin Hall effects, as well as to spin-orbit
torque and Edelstein polarisation. To prove that these effects are not induced by
spin-orbit coupling, the limit of vanishing SOC is investigated in locally and globally
chiral magnetic as well as antiferromagnetic structures.
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3.4.1 Cubic and hexagonal Mn3X (X = Ir,Ge)

The following is an unpublished manuscript on the occurrence of transverse anti-
symmetric elements of the frequency-dependent conductivity tensor in the non-
collinear antiferromagnets cubic Mn3Ir and hexagonal Mn3Ge. In addition to space-
time symmetry considerations, first-principles calculations of the anomalous and
spin Hall effects, the magneto-optical Kerr effect, and the X-ray magnetic circular
dichroism will be presented.
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Previous studies on the anomalous Hall effect in coplanar non-collinear antiferromagnets are
revisited and extended to magneto-optic properties, namely magneto-optic Kerr effect (MOKE) and
X-ray magnetic dichroism (XMCD). Starting from group-theoretical considerations the frequency-
dependent conductivity tensor shapes for various actual and hypothetical spin configurations in
cubic and hexagonal Mn3X compounds are determined. Calculated MOKE and X-ray dichroism
spectra are used to confirm these findings and to give estimates of the size of the effects. For Mn3IrPt
and Mn3PtRh alloys the concentration dependence of the anomalous and spin Hall conductivity is
studied in addition.

I. INTRODUCTION

The anomalous Hall effect (AHE) in magnetically or-
dered materials is usually considered to scale with the
corresponding magnetization.1–4 The same applies to the
magneto-optical Kerr effect5,6 (MOKE) that is used in
particular to monitor the magnetization dynamics.7,8

While the linear relationship of the AHE and the MOKE
with the magnetization appears plausible, there seems to
be no strict formal justification given for this in the lit-
erature apart from numerical studies based on ab initio
calculations.9 Nevertheless, a sum rule has been derived
that relates the integrated off-diagonal optical conductiv-
ity to the orbital magnetic moment of the material.10,11

The magnetic circular dichroism in X-ray absorption
(XMCD) is very closely related to the MOKE.12 To make
full use of this local magnetic probe several authors have
derived the so-called XMCD sum rules13–15 that allow
for example to deduce from the integrated L2,3-spectra
of 3d-transition metals their spin and orbital magnetic
moments. In line with the sum rules an angular depen-
dency according to cos(m̂ · q̂) is assumed, where m̂ and q̂
are the orientation of the local moment probed by XMCD
and that of the incident X-ray beam. This simple relation
implies in particular that in spin-compensated antiferro-
magnetic systems the XMCD should vanish. For such
systems information on the local magnetic moment can
nevertheless be obtained by exploiting the linear mag-
netic X-ray dichroism (XMLD) for which two spectra
with linear polarization parallel and perpendicular to the
local magnetization are recorded.16

In contrast to this situation, Chen et al.17 pointed out
that perfect spin-compensation in an antiferromagnet is
not a sufficient criterion for the AHE to be absent. In fact
these authors give symmetry arguments that the AHE
can indeed occur for example in spin-compensated non-
collinear antiferromagnets as Mn3Ir that is commonly
employed in spin-valve devices. Numerical work by Chen
et al. for Mn3Ir gives in fact a rather large anomalous
Hall conductivity, comparable in size to the values for
Fe, Co, and Ni. Kübler and Felser18 numerically con-
firmed the results of Chen et al. and investigated in addi-

tion the non-collinear antiferromagnetic hexagonal com-
pounds Mn3Ge and Mn3Sn considering various copla-
nar and non-coplanar triangular magnetic configurations.
Also in this case several spin-compensated configurations
were identified that were predicted to exhibit an AHE.
These predictions recently could indeed be experimen-
tally verified in Mn3Sn19 and Mn3Ge20,21.

Here one should stress that the occurrence of off-
diagonal anti-symmetric conductivity tensor elements
has been unambiguously determined much earlier. In
particular Kleiner22 gave the space-time symmetry-
restricted tensor forms for the electrical conductivity in
all magnetic solids based on the transformation proper-
ties of the corresponding Kubo formula under the sym-
metry operations of the relevant magnetic group. These
results in particular do not rest on the assumption of
collinear magnetic order or a finite magnetization. More-
over, they apply to the frequency-dependent or optical
conductivity just as well and therefore state the presence
of MOKE as well as XMCD signals concomitant with
the AHC. The former has been studied in chiral cuprates
based on tight-binding model calculations of the Berry
curvature23 and, using first-principles methods, in cubic
Mn3Ir-type compounds24. The symmetry criteria for the
presence of the spin Hall effect (SHE) have recently been
given by the present authors25, extending the approach
by Kleiner22 to more complex situations. The SHE in
non-collinear antiferromagnets is currently the subject of
intensive theoretical efforts26–29 and has been observed
in experiments on Mn3Ir30 via its contribution to the
so-called spin-orbit torque. Due to the identical trans-
formation properties of electronic charge and heat cur-
rent operators22,25 the occurrence of AHE and SHE im-
ply the existence of corresponding thermally-induced ef-
fects, the anomalous and spin Nernst effects. These have
been studied in hexagonal Mn3X using the Berry curva-
ture approach and a Mott-like formula.31 The anomalous
Nernst effect has recently been observed experimentally
in Mn3Sn.32 Of particular current interest in the thriv-
ing field of non-collinear magnetism is the occurrence
of chirality-induced or so-called topological effects aris-
ing from the emergent electromagnetic field created by a
non-trivial real- or reciprocal-space texture.33 This will
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be the subject of another contribution.34

In the following we present a theoretical study on
the transverse transport and optical properties of non-
collinear coplanar antiferromagnets. The next section
(II) gives a brief overview on the theoretical framework
and methods applied. The major part of this contribu-
tion is devoted to results for the cubic prototype system
Mn3Ir in section III and a number of possible magnetic
configurations of hexagonal Mn3Ge in section IV.

II. THEORETICAL FRAMEWORK

A. Magnetic symmetry and shape of the
conductivity tensor

For the specific case of Mn3Ir the occurrence of a non-
vanishing AHE was predicted by Chen et al.17 by explic-
itly considering Kagome-type sub-lattices occupied by
Mn-atoms with triangular antiferromagnetic order (see
below) in combination with a suitable model Hamilto-
nian. A more general scheme to search for a finite AHE
in spin-compensated systems is to use Kleiner’s tables
that give among others the shape of the frequency depen-
dent conductivity tensor σ(ω) for any material.22 These
tables were constructed by starting from Kubo’s linear
response formalism and making use of the behavior of
the current density operator under all symmetry opera-
tions of the relevant magnetic space group. It turns out
that only the magnetic Laue group of a material has to
be known to fix unambiguously the shape of σ(ω). Un-
fortunately, Kleiner22 used an old definition for the Laue
group that is obtained by removing the inversion from
all improper symmetry operations of the magnetic point
group leading to the magnetic Laue Group 32′ in the case
of Mn3Ir.22 With the (magnetic) Laue group defined35 to
be the (magnetic) point group artificially extended by the
inversion one is led to the magnetic Laue group 3m′ in-
stead. Kleiner’s tables have been updated recently by
Seemann et al.25 to account in particular for the revised
definition of the magnetic Laue group.

Having determined the magnetic Laue group of a solid,
for this the program FINDSYM36,37 was used here, the
specific shape of its conductivity tensor σ(ω) can be read
from these tables. The presence of an anti-symmetric
part for the off-diagonal tensor elements in particular
indicates the simultaneous occurrence of the AHE, the
MOKE as well as the XMCD (see below).

B. First-principles calculations of the anomalous
Hall effect, the magneto-optical Kerr effect and the

X-ray magnetic dichroism

The qualitative investigations on the occurrence of the
AHE, the MOKE and XMCD of various materials pre-
sented below, had been complemented by corresponding
numerical work. The underlying electronic structure cal-

culations have been done within the framework of rel-
ativistic spin density functional theory with the corre-
sponding Dirac Hamiltonian given by:38

HD = cα · ~p+ βmc2 + V (~r) + βΣzB(~r) . (1)

Here all quantities have their usual meaning39, with
the spin-averaged and spin-dependent exchange corre-
lation contributions V̄xc(~r) and Beff(~r), respectively, to
the effective potential V (~r) set up using the parametriza-
tion of Vosko et al.40. To deal with the resulting four-
component Dirac equation the spin-polarized relativis-
tic (SPR) formulations of the Korringa-Kohn-Rostoker
(KKR)41,42 and linear-muffin-tin-orbital (LMTO)43–45

methods have been used. With the electronic Green
Function G+(~r, ~r ′, E) supplied by the SPR-KKR method
the dc-conductivity tensor σ has been evaluated on the
basis of the Kubo-Středa equation:46

σxy =
~

4πNΩ
Trace

〈
ĵx(G+ −G−)ĵyG

−

−ĵxG+ĵy(G+ −G−)
〉

c

+
e

4πiNΩ
Trace

〈
(G+ −G−)(r̂xĵy − r̂yĵx)

〉
c
.(2)

See for example Ref. 47 concerning the implementation
of this expression.

The optical conductivity tensor σ(ω) for finite frequen-
cies, on the other hand, has been determined using the
SPR-LMTO method and the standard expression for the
absorptive part of the diagonal and off-diagonal tensor
elements, σ1

λλ(ω) and σ2
λλ′(ω), respectively:12,48,49

σ1
λλ(ω) =

πe2

~ωm2V

∑

j′~k occ.

j~k unocc.

|Πλ
jj′ |2δ(ω − ωjj′) (3)

σ2
λλ′(ω) =

πe2

~ωm2V

∑

j′~k occ.

j~k unocc.

=
(

Πλ
j′jΠ

λ′
jj′

)
δ(ω −Πλ

j′j)

(4)

with the matrix elements Πλ
j′j = 〈φj′~k|Hλ|φj~k〉 of the

Bloch states |φj~k〉 and their energy difference ωjj′ =

Ej~k−Ej′~k. The dispersive part was determined in a sec-

ond step by means of a Kramers-Kronig transformation.
With the full tensor σ(ω) available, the Kerr rotation an-
gle θK was obtained from the standard expression:12,49

θK ' <


 σxy(ω)

σxx(ω)
√

1− 4πi
ω σxx(ω)


 , (5)

that clearly shows that the Kerr rotation – as the Kerr
ellipticity – is connected one-to-one with the off-diagonal
element σxy(ω) of the conductivity tensor.
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FIG. 1. Left: Cubic unit cell of Mn3Ir in the triangular an-
tiferromagnetic structure. Ir atoms are colored in gold (light
gray), Mn atoms in purple (dark gray). Black arrows indi-
cate the direction of the magnetic moments on the Mn sites,
the gray-shaded surface marks the (111) plane. Right: View
along [111] on the Kagome planes, Mn atoms and moments
in alternating layers are colored in red and blue.51

Finally, the X-ray absorption coefficients µλ(ω) for
polarization λ have been calculated using the SPR-
KKR Green function method on the basis of the
expression:12,50

µλ(ω) ∝
∑

i occ

〈Φi|H†λ =G+(Ei+~ω)Hλ|Φi〉 θ(Ei+~ω−EF) ,

(6)
where the functions Φi represent the probed core states
i at energy Ei and EF is the Fermi energy.

The corresponding XMCD signal ∆µ(ω) = 1
2 (µ+(ω)−

µ−(ω)) is defined as the difference in absorption for left
and right circularly polarized radiation. Expressing the
absorption coefficient µλ(ω) in terms of the absorptive
part of the corresponding conductivity tensor element:12

µλ(ω) =
4π

c
σ1
λ(ω) , (7)

with σλ given by

σ±(ω) =
√

1/2 (σxx(ω)± iσxy(ω)) , (8)

one sees immediately that the occurrence of the off-
diagonal element σxy(ω) implies the occurrence of a
XMCD signal ∆µ(ω).

III. CUBIC Mn3Ir

The structure and magnetic configuration of Mn3Ir is
given in Fig. 1 showing a non-collinear antiferromagnetic
spin arrangement. The Mn moments are lying in the
{111} planes of the underlying Cu3Au (L12) lattice and
are oriented along the 〈112〉 directions, forming a Kagome
lattice of corner-sharing triangles. Calculated values for
spin and orbital moments are given in Table I. Obviously,
the magnetic moment of the Mn atoms is dominated by
the spin contribution. For Ir on the other hand the very
small induced moment is primarily due to its orbital part.

The magnetic structure leads to the magnetic space
group R3m′ that has to be considered instead of the

µspin(µB) µorb.(µB) µ̂

Mn 2.849 0.066 〈112〉
Ir -0.001 -0.033 [111]

tot. -0.001 -0.033 [111]

TABLE I. Spin and orbital magnetic moments of Mn3Ir,
atomic type-resolved as well as total values are given in units
of µB. Their directions are given in the last column.

space group Pm3m (221) of the Cu3Au structure. The
magnetic point group corresponding to R3m′ is 3m′ and
independent of the definition used for the magnetic Laue
group, this implies the following shape of the conductiv-
ity tensor:

σ(ω) =




σxx(ω) σxy(ω) 0
−σxy(ω) σxx(ω) 0

0 0 σzz(ω)


 . (9)

Here the indices refer to a coordinate system that is con-
form with the symmetry of the system having the z-axis
along the conventional [111]-direction of the cubic Cu3Au
(L12) lattice, while the x- and y-axes lie in the (111)-
plane.

Obviously, σ(ω) has exactly the same shape as any
fcc or bcc ferromagnetic material with the magnetization
along the z-axis that coincides with the [001]-direction.12

This implies that any gyro-magnetic and magneto-optical
phenomena occurring for this well-known situation will
also be present for the non-collinear antiferromagnet
Mn3Ir. For the corresponding spin conductivity tensor
shapes see Ref. 25.

A. Anomalous and spin Hall effect

In the DC-limit (ω = 0) the conductivity tensor σ(ω)
given by Eq. (9) becomes real. For pure systems the diag-
onal elements representing longitudinal conductivity di-
verge for T = 0 K, while the off-diagonal anomalous Hall
conductivity (AHC) σxy = −σyx stays finite. Chen et
al.17 calculated the AHC using an expression in terms of
the Berry curvature. Their result σAH = 218 Ω−1cm−1 is
comparable in size with that for the ferromagnets Fe, Co,
and Ni. In the present work the Kubo-Středa linear re-
sponse formalism46,47,52 was used, that for pure systems
is completely equivalent to the Berry curvature approach.

The values obtained for the intrinsic anomalous and
spin Hall conductivities at T = 0 K in pure Mn3X with
X = Ir, Pt, and Rh using the Kubo-Středa formula are
collected in Table II. For the AHC in Mn3Ir reasonable
agreement with previous results by Chen et al.17 (|218|
S/m) and Zhang et al.27 (-312 S/m) is achieved. The
clear trend of increasing AHC as well as SHC with atomic
number is however in disagreement with the findings of
the latter authors.

Figure 2 shows results for the concentration depen-
dence of the AHC in Mn3Ir1−xPtx (top) as well as for
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AHC SHC

Mn3Rh -85 -125
Mn3Ir -280 -230
Mn3Pt -360 -250

TABLE II. Anomalous and spin Hall conductivities, AHC
= σxy and SHC = σz

xy, respectively, for pure cubic Mn3X
compounds with X = Rh, Ir, and Pt in units of [S/m]. The
z direction corresponds to the [111] direction perpendicular
to the Kagome planes. Results are obtained using the Kubo-
Středa formula.

AHC and SHC in Mn3Rh1−xPtx (middle and bottom,
respectively). While for σxy in Mn3Ir1−xPtx the usual
divergence of the values including vertex corrections is
found, followed by a non-trivial concentration depen-
dence, in Mn3Rh1−xPtx the impact of these is large for
the whole investigated range. The spin Hall conduc-
tivity in this system behaves very similar to its charge
counterpart. The fact that both conductivities without
vertex corrections (NV) do not clearly converge towards
the intrinsic values when approaching the dilute limits
x → 0/1 still has to be clarified. For AHC and SHC in
Mn3Rh1−xPtx an almost linear increase with increasing
concentration of the heavier alloy partner Pt can be ob-
served, the intrinsic contribution (NV) in particular for
the AHC however appears to behave again non-trivially
for intermediate concentrations.

B. Magneto-optical Kerr effect (MOKE)

For finite frequencies the absorptive part of the corre-
sponding optical conductivity tensor σ(ω) has been cal-
culated in the energy regime ~ω = 0 − 10 eV using the
fully relativistic LMTO band structure method.43–45 Fig-
ure 3 (top) shows the corresponding real parts of the opti-
cal conductivity, σ1

ii(ω). A reasonable qualitative agree-
ment with earlier theoretical work by Feng et al.24 is
achieved. The small difference between σ1

xx(ω) = σ1
yy(ω)

and σ1
zz(ω) obviously reflects the anisotropy of the sys-

tem due to the underlying lattice structure as well as the
magnetic ordering. Accordingly it will give rise to corre-
sponding magneto-optical phenomena.12 As a reference,
Fig. 3 (top) gives also corresponding results for ferro-
magnetic bcc-Fe. In this case the anisotropy, i.e., the
difference between σ1

xx(ω) and σ1
zz(ω), is only due to the

magnetic ordering. As it is much less pronounced than
for Mn3Ir only σ1

xx(ω) is given.
Figure 3 (middle) shows the imaginary part of the

off-diagonal transverse optical conductivity, σ2
xy, that

is the counterpart to the AHC and that in particular
gives rise to the polar Kerr rotation. Interestingly, σ2

xy

for Mn3Ir is in the same order of magnitude as for
ferromagnetic Fe. Accordingly one finds θK of Mn3Ir
and Fe to be comparable in magnitude (see bottom
panel of Fig. 3). Again reasonable qualitative agreement
with Ref. 24 is obtained.
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FIG. 2. Anomalous Hall conductivity of Mn3Ir1−xPtx (top)
and Mn3Rh1−xPtx (middle) as well as spin Hall conductivity
of Mn3Rh1−xPtx alloys (bottom) as a function of concentra-
tion x. Open symbols are results excluding vertex corrections
(NV) and filled symbols such including them (VC), see text
for details. The intrinsic values of the pure compounds are
shown in addition. All results were obtained using the Kubo-
Středa formula.

C. X-ray absorption spectroscopy

Fig. 4 (upper panel) shows results of calculations for
the X-ray absorption coefficient µ̄ = 1

2 (µ+ + µ−) at the
Mn L2,3-edges for polarization-averaged radiation. These
spectra show the typical L2,3-edges of a 3d transition
metal shifted against each other by the spin-orbit split-
ting of the 2p core states. The two curves shown have
been obtained for the radiation wave vector ~qrad along the
[111]-direction and along the direction m̂Mn of the mag-
netic moment of one of the three equivalent Mn-atoms

2043.4. Transverse response properties of non-collinear antiferromagnets
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FIG. 3. Absorptive part of the optical conductivity tensor
elements σ1

xx, σ1
zz (top) and σ2

xy (middle) of Mn3Ir (full lines)
together with the Kerr rotation angle θK (bottom). In addi-
tion, corresponding results for ferromagnetic bcc-Fe are given
(dashed lines).

in the unit cell. Similar to σ1
xx and σ1

zz in the optical
regime discussed above the difference is quite small, i.e.
only a weak anisotropy occurs. The lower panel of Fig. 4
gives the corresponding XMCD curves ∆µ. For the po-
lar geometry ~qrad ‖ m̂Mn with the artificial restriction to
one of the Mn sites the highest XMCD signal can be ex-
pected. Indeed for the L3-edge about 20 % is found for
the ratio ∆µ/µ̄. This is the typical order of magnitude
found in ferromagnetic transition metals.12 Considering
instead the geometry ~qrad ‖ [111] with the X-ray beam
perpendicular to the Mn magnetic moments, no XMCD
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FIG. 4. Total absorption coefficient µ̄ at the L2,3-edge of
a single Mn atom of non-collinear antiferromagnetic Mn3Ir
(top) and corresponding circular dichroism spectra ∆µ (bot-
tom), both for incidence ~qrad perpendicular (along [111]) and
polar w.r.t. the magnetization direction.

signal is expected following the standard arguments.12 In
contrast to this, Fig. 4 (lower panel) clearly shows that
there is indeed a finite XMCD present as one had to ex-
pect on the basis of Eqs. (7), (8) and (9). In addition
one has to emphasize that the individual XMCD for the
three Mn sites are identical, i.e. they do not compen-
sate each other as in the case of ~qrad ‖ m̂Mn but add up.
Comparing the two XMCD spectra in Fig. 4 one notes
that ∆µ for ~qrad ‖ [111] is very similar in shape to that
for ~qrad ‖ m̂Mn but about one order of magnitude smaller
in amplitude. Nevertheless, this implies that it should
be possible to detect this XMCD signal in experiment
provided one domain dominates in the regime exposed
to the X-ray beam (see also comment by Chen et al.17).

In the top panel of Figure 5 the difference in total
absorption ∆µ̄ = µ̄i − µ̄j with µ̄i = 1

2 (µi,+ + µi,−) for
incidence along pairs of high symmetry directions (i, j =
x, y, z) and along intermediate directions (i = xy, xz, yz)
compared to the corresponding linear combinations of x,
y, z is shown. Note that in contrast to the conventional
X-ray magnetic linear dichroism, here the polarization
of the incoming light is not rotated. The Cartesian di-
rections x and y were chosen to be in the (111) plane
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FIG. 5. Top: Differential polarization-averaged X-
ray absorption spectra ∆µ̄ comparing incidence along high-
symmetry directions in Mn3Ir. Bottom: X-ray magnetic cir-
cular dichroism (XMCD) spectra ∆µ in Mn3Ir for incidence
along the same directions as in the top panel.

(indicated in gray in Figure 1), i.e., corresponding to the
crystallographic directions [112̄] (x) and [1̄10] (y), while
z is parallel to the [111] direction (the space diagonal of
the cubic unit cell shown in Fig. 1). As can be seen, the
absorption is isotropic in the (111) plane (µ̄x = µ̄y), but
different for incidence perpendicular to it, i.e., along the
[111] direction (µ̄z 6= µ̄x). This agrees with the diagonal
of the tensor in Eq. (9), since the first two elements are
identical, σxx = σyy, and different from the third (σzz).
Furthermore the absorption for intermediate directions
(xy, xz and yz) can be described by a linear combina-
tion of the absorption coefficients along Cartesian axes,
such as e.g. µ̄xz = 1

2 (µ̄x + µ̄z), i.e., no symmetric off-
diagonal elements are present in the absorption tensor.
In the lower panel of Figure 5 the circular dichroism for
several directions of incidence is compared. Again the re-
sults are in agreement with the tensor shape of Eq. (9),
inasmuch that the only linearly independent non-zero
anti-symmetric tensor element is ∆µz, corresponding to
σxy = −σyx.

IV. HEXAGONAL Mn3Ge

A. Magnetic structure and symmetry

The hexagonal Mn3Ge compound crystallizes, as its
siblings Mn3Sn and Mn3Ga, in the D019 structure with
space group P63/mmc (194). The non-magnetic unit cell
is shown in Fig. 6 and will be labeled NM in the following.
The Mn atoms on the Wyckoff positions 6h in the {0001}
planes colored in magenta (dark gray) form triangular,
so-called Kagome lattices, stacked alternatingly along the
[0001] (z) direction. Ge atoms occupying the Wyckoff
positions 2h are colored in light gray.

FIG. 6. Non-magnetic unit cell of Mn3Ge in space group
P63/mmc (194). Mn atoms on the Wyckoff positions 6h are
colored in magenta (dark grey) and Ge atoms (Wyckoff posi-
tions 2h) are colored in light gray.51

A number of non-collinear but coplanar antiferromag-
netic alignments of the moments in the two Kagome sub-
lattices have been discussed for Mn3Ge and related com-
pounds in the literature.18,53–57 These are collected in
Figure 7 together with further, hypothetical spin com-
pensated structures.

The structure AFM0 has the same spin arrangement
in both Kagome planes with the Mn moments pointing
alternatingly towards the center of the corner-sharing tri-
angles or away from it. The two sub-lattices are con-
nected by a 63 operation, i.e., a rotation around [0001] (z)
by 60◦ combined with a translation along z by half of the
corresponding lattice constant. This leads to a bipartite,
globally chiral lattice with the non-magnetic Laue group
6/mmm1′. It corresponds to Fig. 3(a) of Ref. 57. The
structures AFM1-4 have been discussed by Kübler and
Felser18, see Figs. 2, 3(a), 3(b), and 5 therein. The struc-
ture AFM3 is reported to be obtained by a self-consistent
calculation starting from AFM2. An anomalous Hall ef-
fect has been predicted for AFM3 and AFM4 by these au-
thors, as well as for an additional non-coplanar structure
which will not be discussed herein. The structures AFM5
and AFM6 are obtained from AFM0 by rotating all mo-
ments in the Kagome planes by 30◦, counterclockwise and
clockwise, respectively. AFM7, AFM8, and AFM10 are
hypothetical structures. AFM9 is obtained from AFM0

2063.4. Transverse response properties of non-collinear antiferromagnets
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FIG. 7. Antiferromagnetic structures of Mn3Ge, AFMi with i = 0...19, discussed in this contribution.51

by reversing the moments in one Kagome layer (here
the one in blue), leading to opposite chirality in the two
planes and global inversion symmetry. The sub-lattices
are connected by 6′3, i.e., a screw rotation in combina-
tion with time reversal. It corresponds to Fig. 3(b) of
Ref. 57. The structures AFM11 and AFM12 are 60◦

and 90◦ clockwise rotations of all moments in AFM0.
AFM13 and AFM14 have been proposed in Ref. 20, the
first experimental verification of an anomalous Hall ef-
fect in Mn3Ge. AFM13 should furthermore correspond
to the magnetic structure of Mn3Sn in Ref. 19, the very
first reported observation of the AHE in a non-collinear
antiferromagnet of the hexagonal Mn3X Heusler type. In
AFM15, AFM16, and AFM17 the moments are 30◦, 60◦,
and 90◦ clockwise rotated from AFM9. Finally, AFM18
and AFM19 are proposed in Refs. 21, 27–29, and 58, the
latter of the two has been reported by Zhang et al.57 to
be the most stable for Mn3X (X = Ga, Sn, Ge) based on
DFT calculations. One should stress here again, that all
of the above magnetic structures are coplanar and fully
spin-compensated, i.e., no weak ferromagnetism59 due to

an out-of-plane rotation is taken into account here.
The magnetic space and Laue groups corresponding

to the structures in Figs. 6 and 7 as well as of a ferro-
magnetic alignment of the Mn moments along the [0001]
direction are given in Table III. For convenience also the
magnetic Laue group following the definition of Kleiner22

is given in parentheses. As can be seen, a number of
structures have the same magnetic space group and more-
over a number of these lead to the same magnetic Laue
groups.

The corresponding symmetry-restricted tensor shapes
are:22,25

σNM =



σxx 0 0
0 σxx 0
0 0 σzz


 (10)

σFM =




σxx σxy 0
−σxy σxx 0

0 0 σzz


 (11)
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label magn. space group magn. Laue group

NM P63/mmc 6/mmm1′ (6221′)
FM P63/mm

′c′ 6/mm′m′ (62′2′)
AFM0 P63/m

′m′c′ 6/mmm1′ (6221′)
AFM1 Am′m′2 m′m′m (2′2′2)
AFM2 P 6̄′2c′ 6′/m′mm′ (6′22′)
AFM3 Pm′ 2′/m′ (2′)
AFM4 Am′m′2 m′m′m (2′2′2)
AFM5 P63/m

′ 6/m1′ (61′)
AFM6 P63/m

′ 6/m1′ (61′)
AFM7 Am′a′2 m′m′m (2′2′2)
AFM8 Cm′c′m′ mmm1′ (2221′)
AFM9 P6′3/m

′m′c 6′/m′m′m (6′22′)
AFM10 Pm′ 2′/m′ (2′)
AFM11 P63/m

′ 6/m1′ (61′)
AFM12 P63/m

′mc 6/mmm1′ (6221′)
AFM13 Cmc′m′ mm′m′ (2′2′2)
AFM14 Cm′cm′ m′mm′ (2′22′)
AFM15 P6′3/m

′ 6′/m′ (6′)
AFM16 P6′3/m

′ 6′/m′ (6′)
AFM17 P6′3/m

′mc′ 6′/m′mm′ (6′22′)
AFM18 Cm′cm′ m′mm′ (2′22′)
AFM19 Cm′cm′ m′mm′ (2′22′)

TABLE III. Magnetic space and Laue groups of the mag-
netic structures shown in Fig. 7, as well as of the non-magnetic
unit cell in Fig. 6 (NM) and a ferromagnetic structure (FM)
with all moments along the [0001] direction. The magnetic
Laue groups are given following the definition introduced by
the present authors25 as well as the one used by Kleiner22

(in parentheses). The conventional setting concerning the se-
quence of generators is used for the space groups and carried
over to point and Laue groups.60

σAFM0,2,5,6,9,11,12,15,16,17 =



σxx 0 0
0 σxx 0
0 0 σzz


 (12)

σAFM1,4,13,18,19 =




σxx 0 σxz
0 σyy 0
−σxz 0 σzz


 (13)

σAFM3,10 =




σxx σxy σxz
σxy σyy σyz
−σxz −σyz σzz


 (14)

σAFM7,AFM14 =



σxx 0 0
0 σyy σxz
0 −σxz σzz


 (15)

σAFM8 =



σxx 0 0
0 σyy 0
0 0 σzz


 . (16)

In fact, for the twenty actual and hypothetical struc-
tures in Fig. 7 obviously only four different tensor shapes
are found: a) The non-magnetic shape of Eq. (10)

with the crystallographic anisotropy σxx = σyy 6= σzz
that applies for a number of antiferromagnetic struc-
tures [see Eq. (12)], b) the ferromagnetic shape of
Eq. (11) with an additional off-diagonal anti-symmetric
element representing the AHE. This is found again for
five antiferromagnetic structures in Eq. (13) and two
others in Eq. (15), only with different principal axes,
c) the full tensor with two anomalous Hall conduc-
tivities in Eq. (14), and finally d) the diagonal fully
anisotropic form of AFM8 in Eq. (16). Note that all
configurations assumed in experimental (AFM1319,20,
AFM1420,21, AFM18/1921) as well as theoretical (AFM1-
418, AFM18/1927–29,58) investigations on the anomalous
Hall effect in hexagonal Mn3X compounds are found to
exhibit at least one off-diagonal anti-symmetric element
of σ, with the exception of AFM1 for which no AHE is
predicted in Ref. 18.

Corresponding tensor forms for direct and inverse spin
conductivity can be found in Ref. 25, those for the spin-
orbit torkance and the Edelstein polarization in chiral
structures are given in Refs. 61 and 62, respectively.

B. X-ray absorption spectroscopy

The tensor shapes presented above were confirmed for
selected representative cases using first-principles calcu-
lations of X-ray absorption spectra for circularly polar-
ized light. Figures 8-11 show for the structures AFM1-4
the difference in polarization-averaged spectra, ∆µ̄, along
high-symmetry (Cartesian and intermediate) directions
in the top panels and the corresponding spectra giving
the difference in absorption for left and right circularly
polarized X-rays, the XMCD signals, in the bottom pan-
els. As stated above (see section III C), a finite ∆µ̄ signal
in the upper panels of Figs. 8-11 indicates an anisotropy
in the symmetric part of the optical conductivity ten-
sor, i.e., a difference on the diagonal and/or presence of
symmetric contributions to off-diagonal elements. For
the XMCD spectra in the lower panel a finite signal ∆µ
along a Cartesian direction i confirms the presence of
anti-symmetric off-diagonal elements of σ(ω) with indices
j, k 6= i. Moreover, an XMCD for incidence along inter-
mediate directions 〈110〉 is in all cases, if present, found
to be a linear combination of the corresponding signals
for incidence along the Cartesian axes. Taken together, in
all four cases the predicted tensor shapes are confirmed.

V. CONCLUSIONS

Based on general and model-independent symme-
try arguments for the occurrence of galvano-magnetic
and magneto-optical phenomena in materials with arbi-
trary magnetic order, the implications of in particular
off-diagonal anti-symmetric elements of the frequency-
dependent conductivity tensor in the coplanar non-
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FIG. 8. Top: Differential polarization-averaged X-
ray absorption spectra ∆µ̄ comparing incidence along high-
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ture (see Fig. 7). Bottom: Corresponding X-ray magnetic
circular dichroism (XMCD) spectra ∆µ.
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FIG. 9. Top: Differential polarization-averaged X-
ray absorption spectra ∆µ̄ comparing incidence along high-
symmetry directions in Mn3Ge with AFM2 magnetic struc-
ture (see Fig. 7). Bottom: Corresponding X-ray magnetic
circular dichroism (XMCD) spectra ∆µ.
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ray absorption spectra ∆µ̄ comparing incidence along high-
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circular dichroism (XMCD) spectra ∆µ.
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FIG. 11. Top: Differential polarization-averaged X-
ray absorption spectra ∆µ̄ comparing incidence along high-
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ture (see Fig. 7). Bottom: Corresponding X-ray magnetic
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collinear antiferromagnets Mn3X with X = Ir and Ge
have been investigated. For the cubic Mn3Ir-type com-
pound the results of first-principles Kubo linear response
calculations of the anomalous and spin Hall conductivi-
ties could be shown to be in reasonable agreement with
previous findings. In addition the concentration depen-
dence of the anomalous and spin Hall effects in substi-
tutionally disordered alloys is found to be non-trivial in
particular concerning the AHE. A clear increase of the
intrinsic values for both, AHE and SHE, with increasing
atomic number in the pure compounds Mn3Rh, Mn3Ir,
and Mn3Pt is however in agreement with expectations
concerning the relevance of spin-orbit coupling. The
magneto-optical properties of pure Mn3Ir are again found
to be in agreement with the shape of the optical conduc-
tivity tensor as well as with previous theoretical work.
Comparison with corresponding results for the diagonal
and off-diagonal optical conductivities in bcc Fe moreover
shows that the magneto-optical Kerr effect is of similar
magnitude in both. Calculated polarization-averaged X-
ray absorption and magnetic circular dichroism spectra
confirm expectation concerning their symmetry and in
addition the size of the XMCD signal suggests the pos-

sibility of experimental confirmation. For the hexago-
nal Heusler compound Mn3Ge a number of proposed as
well as additional hypothetical spin-compensated non-
collinear configurations has been studied w.r.t. to mag-
netic symmetry and consequent electrical conductivity
tensor shape. The occurrence of at least one indepen-
dent anomalous Hall conductivity can be confirmed for all
magnetic structures usually assumed in the experimen-
tal and theoretical literature. For selected representative
cases the tensor shapes have been confirmed by X-ray ab-
sorption spectroscopy calculations. The implications of a
non-coplanar spin texture in chiral and achiral magnetic
structures of Mn3Ge on the linear response properties
will be discussed in a separate contribution.34
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3.4.2 Chirality-induced phenomena in hexagonal Mn3Ge

The following is an unpublished manuscript on the effect of non-coplanar spin tex-
tures on the linear response properties of hexagonal Mn3Ge. First-principles cal-
culations of anomalous and spin Hall conductivity as well as spin-orbit torkance
and Edelstein polarisation in the non-relativistic limit demonstrate the relevance of
chirality-induced or topological contributions. Space-time symmetry aspects, orbital
magnetism, and X-ray magnetic dichroism are discussed in addition.



Chirality-induced linear response properties in non-coplanar Mn3Ge

Sebastian Wimmer,1, ∗ Sergiy Mankovsky,1 and Hubert Ebert1
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Taking the non-collinear antiferromagnetic hexagonal Heusler compound Mn3Ge as a precursor,
the contributions to linear response phenomena arising solely from the chiral coplanar and non-
coplanar spin configurations are investigated. Orbital moments, X-ray absorption, anomalous and
spin Hall effects, as well as corresponding spin-orbit torques and Edelstein polarizations are studied
depending on a continuous variation of the polar angle relative to the Kagome planes of corner-
sharing triangles between the non-collinear antiferromagnetic and the ferromagnetic limits. By
scaling the speed of light from the relativistic Dirac case to the non-relativistic limit the chirality-
induced or topological contributions can be identified in the absence of spin-orbit coupling.

I. INTRODUCTION

Chiral magnetic order, its origins and consequences,
continues to be a fascinating area of current solid state
science.1–5 Particularly intriguing is the occurrence of
mesoscopic quasiparticles formed by a continuously vary-
ing non-coplanar spin texture with defined topology, so-
called Skyrmions.6–8 Their properties, creation, as well
as detection and manipulation is a very active field of
research,9–14 motivated by potential future applicability
in magnetic storage.15–18 Electric-field-induced transport
plays an important role in this context, as corresponding
charge and spin currents can be utilized to detect and ma-
nipulate Skyrmions15,16,19 and Antiskyrmions.20 Due to
the non-coplanar spin texture a so-called emergent elec-
tromagnetic field arises, that leads to chirality-induced
or topological, in the sense of arising from the real-space
topology of the spin configuration, contributions to phe-
nomena commonly associated with spin-orbit coupling.
The most fundamental of them are the occurrence of
topological orbital moments21–26 and of the related topo-
logical Hall effect.27–34 A corresponding spin Hall effect
arising from the real-space topology of the spin texture35

is of particular interest in antiferromagnetic skyrmions,
where the THE vanishes.36

A second heavily investigated type of chiral mag-
netic order is that of bulk antiferromagnets with non-
collinear spin arrangements. The anomalous Hall effect
(AHE) has been studied extensively in such compounds
both theoretically21,31,37–39 and experimentally.40–46 Its
relation to the magneto-optic Kerr effect of chiral
magnets47,48 and the X-ray circular dichroism25,49, both
connected to the optical conductivity tensor, suggests an
alternative, magneto-optical approach to non-collinear
magnetic order. Of particular relevance to the field are
the hexagonal Heusler compounds Mn3X with X =Ga,
Ge, and Sn, in which the AHE has recently been con-
firmed experimentally.42–44 Its spin-polarized counter-
part, the spin Hall effect (SHE), in these and other
non-collinear antiferromagnets also stimulated theoret-
ical efforts39,50–52 and has been measured in the achiral
cubic system Mn3Ir.53,54 In Ref. 54 it has been further-
more shown, that the SHE contributes to the so-called
spin-orbit torque (SOT), the current-induced magnetic

torque that can be utilized to efficiently switch the mag-
netization. Thermally-induced analogues to the AHE
and SHE, the anomalous and spin Nernst effects have
been studied in Mn3X (X = Sn, Ge, Ga) from first prin-
ciples using the Berry curvature approach and a Mott-like
formula.55 The anomalous Nernst effect could in fact be
measured recently in Mn3Sn.56

The merger of these two fields, topological antiferro-
magnetic spintronics57 aims at exploring the potential
of topologically protected quasiparticles with non-trivial
real- or momentum-space topology. This work presents a
first-principles study on the chirality-induced or topolog-
ical contributions to orbital moments, X-ray absorption
spectra, anomalous and spin Hall effect, as well as to
spin-orbit torques and the closely related Edelstein effect
(EE). Two coplanar non-collinear antiferromagnetic spin
structures in Mn3Ge, one chiral and the other achiral,
will be used as basis for investigations on the impact of
non-coplanarity by rotating the magnetic moments out
of the Kagome planes. Scaling the speed of light allows
assessing the topological contributions to the various ef-
fects in absence of spin-orbit coupling. This will be ac-
companied by analysis of the corresponding symmetry-
restricted response tensor shapes.

The article is organized as follows: In section II the
underlying methods used for obtaining the results in sec-
tion III will be outlined. The crystallographic and mag-
netic structures will be discussed in section III A, includ-
ing the corresponding symmetry-restricted tensor shapes
for electrical and spin conductivity as well as spin-orbit
torkance and Edelstein polarization. Topological orbital
moments and their signatures in X-ray absorption spec-
tra are the subjects of sections III B and III C, respec-
tively. The chirality-induced contributions to anomalous
and spin Hall effect will be discussed in section III D,
corresponding results for the spin-orbit torque and the
Edelstein effect will be presented in section III E. Finally,
hypothetical non-coplanar antiferromagnets will be in-
vestigated in section III F. A brief summary and outlook
will be made at the end (IV), additional information can
be found in the Appendix A.
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II. METHODS

The space-time symmetry analysis of the linear re-
sponse tensors for charge58,59 and spin conductivity59,
spin-orbit torque60 and Edelstein polarization61 per-
formed in this work is based on the magnetic space group
determined using the software FINDSYM62,63. The
electronic structure as well as subsequent Kubo linear
response64–68 and X-ray absorption spectroscopy69 cal-
culations are performed with the fully relativistic SPR-
KKR program package70 within the framework of the
local spin density approximation (LSDA). For the cal-
culation of electric-field induced response properties the
Kubo-Středa71 formula has been used throughout. To
study the impact of the spin texture in absence of spin-
orbit coupling, the non-relativistic limit of the Dirac for-
malism has been explored by scaling the speed of light.

III. RESULTS

A. Magnetic structure and symmetry

The hexagonal Mn3Ge compound crystallizes, as its
siblings Mn3Sn and Mn3Ga, in the D019 structure with
space group P63/mmc. The non-magnetic unit cell is
shown in Fig. 1 and will be labeled NM in the following.
The Mn atoms on the Wyckoff positions 6h in the {0001}
planes colored in magenta (dark gray) form triangular,
so-called Kagome lattices, stacked alternatingly along the
[0001] (z) direction. Ge atoms occupying the Wyckoff
positions 2h are colored in light gray. Figure 2 shows

NM

FIG. 1. Hexagonal unit cell of Mn3Ge with space group
P63/mmc (labeled NM in the following). The Mn atoms
on the Wyckoff positions 6h are colored in magenta (dark
gray) and Ge atoms (Wyckoff positions 2h) are colored in
light gray.72

the situation of a field-aligned ferromagnetic structure
with all moments (only shown on Mn) oriented along
the [0001] or z direction (c axis of the unit cell). The
corresponding magnetic space group is P63/mm

′c′. This
structure will be labeled FM in the following.

FM

FIG. 2. Unit cell of hexagonal ferromagnetic (FM) Mn3Ge
with magnetic space group P63/mm

′c′. Use of colors as
in Fig. 1, magnetic moments on Mn sites are indicated as
vectors.72

A number of non-collinear but coplanar antiferromag-
netic alignments of the moments have been discussed
for Mn3Ge and related compounds in the literature (cf.
Ref. 73 and references therein). Recently an overview
on actual and hypothetical spin-compensated configu-
rations has been given by the present authors.49 Two
of these structures discussed therein, both hypothetical,
are shown in Fig. 3. The one in the upper panel, la-
beled ncAFM0, has the moments in the two alternating
Kagome planes, indicated by different colors (red and
blue), pointing towards the center of the triangles formed
by the Mn atoms. The two magnetic sub-lattices are con-
nected, e.g., by a 63 screw rotation about an axis going
through the center of both triangles, but also by inver-
sion half-way along this direction followed by time re-
versal. Reversing all moments in one layer (here blue),
one obtains the structure ncAFM9 shown in the bottom
panel. Here the operation connecting the two sub-lattices
involves an additional time-reversal (6′3), leading to a
centrosymmetric or achiral structure with an inversion
center half-way along c. Both structures will serve as
references for the investigations on the consequences of
non-coplanarity of the Mn moments in this article.

Rotation of the moments out of both Kagome planes by
the same polar angle θ between the [0001] direction and
the {0001} planes leads for θ = 45◦ to the non-coplanar
spin arrangements depicted in Fig. 4. The one in the
upper panel, ncpM0 derived from ncAFM0, is obviously
still chiral. The structure derived from ncAFM9, labeled
ncpM9 and shown in the lower panel of Fig. 4 accordingly
remains achiral, the inversion center connecting the two
sub-lattices is indicated as an orange dot.

The main aim of the present work is the numeri-
cal study of chirality-induced or topological effects in
transport and related properties. While the individual
Kagome sub-lattices in the antiferromagnetic structures
just discussed are chiral, as they have a finite vector spin

chirality ~Si × ~Sj + ~Sj × ~Sk + ~Sk × ~Si, the anomalous
Hall conductivity arising from this is vanishing globally.

2143.4. Transverse response properties of non-collinear antiferromagnets
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ncAFM0

ncAFM9

FIG. 3. Non-collinear antiferromagnetic reference structures
of Mn3Ge, ncAFM0 (top) and ncAFM9 (bottom). The copla-
nar Mn atoms in alternating Kagome planes are colored red
and blue. The achiral structure ncAFM9 in the lower panel is
obtained from ncAFM0 by reversing all moments in one plane
(blue).72

This can be unambiguously derived from the space-time
symmetry properties of the current-current correlation
function in terms of the Kubo formula for the electri-
cal conductivity.58 The transformation under all sym-
metry operations of the so-called magnetic Laue group
(see Ref. 59 for its definition used here) is sufficient to
give the symmetry restricted tensor shape. The mag-
netic space and Laue groups for all spin configurations
discussed in this work are given in Table. I. For con-
venience the Laue group is given also according to the
definition of Kleiner58.

The electrical conductivity tensor shapes derived from
this are as follows:58,59

σNM =



σxx 0 0

0 σxx 0

0 0 σzz


 = σncAFM0,9 = σncpAFM0,9

(1)

σFM =




σxx σxy 0

−σxy σxx 0

0 0 σzz


 = σncpM0,9 . (2)

As stated above, the non-collinear coplanar antiferromag-
netic structures in Fig. 3 have the same conductivity ten-

ncpM0

ncpM9

FIG. 4. Non-coplanar magnetic structures of Mn3Ge derived
from ncAFM0 and ncAFM9 (see Fig. 3) by rotating the mo-
ments out of the Kagome planes by θ = 45◦. While the one
in top panel, labeled ncpM0, is chiral, the structure ncpM9
in the bottom panel has an inversion center that is indicated
as an orange dot.72

label MSG MPG MLG

NM P63/mmc1
′ 6/mmm1′ 6/mmm1′ (6221′)

FM P63/mm
′c′ 6/mm′m′ 6/mm′m′ (62′2′)

ncAFM0 P63/m
′m′c′ 6/m′m′m′ 6/mmm1′ (6221′)

ncAFM9 P6′3/m
′m′c 6′/m′m′m 6′/m′m′m (6′22′)

ncpM0 P63m
′c′ 6m′m′ 6/mm′m′ (62′2′)

ncpM9 P 3̄m′1 3̄m′1 3̄m′1 (32′)

ncpAFM0 P 3̄′1m′ 3̄′1m′ 3̄1m1′ (3′2)

ncpAFM9 P6′3m
′c 6′m′m 6′/m′m′m (6′2′2)

TABLE I. Magnetic space (MSG), point (MPG) and Laue
groups (MLG) of the magnetic structures shown in Figs. 3
and 4, the Laue groups are given following the standard def-
inition used by Seemann et al.59 as well as the one used by
Kleiner58 (in parentheses). The conventional setting concern-
ing the sequence of generators is used for the space groups
and carried over to the point and Laue groups.74

sor shape as the non-magnetic one. This applies as well to
the non-coplanar antiferromagnetic structures that will
be discussed in Section III F. The non-coplanar magnetic
structures of Fig. 4 have the same shape of σ as the fer-
romagnetic (FM) case. However, as will be shown below,
a chirality-induced contribution to the anomalous Hall
conductivity σxy = −σyx can be identified here.

The corresponding spin conductivity tensor shapes for
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polarization along the z or [0001] direction are:59

σz,NM =




0 σz
xy 0

−σz
xy 0

0 0 0


 = σz,ncAFM0,9 = σz,ncpAFM0,9

(3)

σz,FM =




σz
xx σz

xy 0

−σz
xy σz

xx 0

0 0 σz
zz


 = σz,ncpM0,9 . (4)

The antiferromagnetic structures, regardless whether
coplanar or non-coplanar, chiral or achiral, all show only
one independent non-zero element, the spin Hall conduc-
tivity σz

xy = −σz
yx as in the non-magnetic case. Note

however, that the tensors for the other two polarization
directions differ for the structures ncAFM9, ncpAFM0,
and ncpAFM9 (see Ref. 59). The non-coplanar magnetic
structures have the same shape for σz as the ferromag-
netic one. While ncpM0 has the same magnetic Laue
group (6/mm′m′) and accordingly the same shapes for
all σk as the FM structure, the other two polarizations,
x and y, behave again differently for ncpM9. Also here
a sizable chirality-induced contribution will be shown to
exist.

The Edelstein polarization tensor shapes for the non-
centrosymmetric spin configurations ncAFM0, ncpM0,
ncpAFM0, and ncpAFM9 are as follows:61

pncAFM0 =



pxx 0 0

0 pxx 0

0 0 pzz


 (5)

pncpM0 =




pxx pxy 0

−pxy pxx 0

0 0 pzz


 (6)

pncpAFM0 =



pxx 0 0

0 pxx 0

0 0 pzz


 (7)

pncpAFM9 =




0 pxy 0

−pxy 0 0

0 0 0


 . (8)

Finally, the shapes of the spin-orbit torkance tensors
t are identical to the ones given for p in Eqs. (5)-(8).60

Note that for these two response properties the tensor
shape is determined by the magnetic point group and
not by the magnetic Laue group.
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FIG. 5. Orbital moment as a function of polar angle θ in the
non-coplanar chiral magnet ncpM0. Results including spin-
orbit coupling (SOC) are shown as full (black) circles, those
for vanishing SOC are given as open (red) circles. A fit of the
latter to the scalar spin chirality χ(θ) (see text) is shown as
solid (red) line.

B. Orbital moments

The occurrence of chirality-induced orbital moments
in non-coplanar spin arrangements has been predicted
already quite some time ago.21,22 First-principles calcu-
lations in, e.g., atomic-scale spin lattices23,24, tri-atomic
clusters of ferromagnetic 3d-elements on a surface25, and
bulk γ-FeMn26 could verify these in the limit of vanish-
ing spin-orbit coupling. The (non-)coplanarity between
three spins can be expressed compactly by the so-called

scalar spin chirality χijk = ~Si · (~Sj × ~Sk). If the vol-
ume of the parallelepiped spanned by the three vectors
is non-zero, they obviously are non-coplanar. In Fig-
ure 5 the orbital moment75 is shown for ncpM0 as a
function of the polar angle θ between the [0001] direc-
tion and the {0001} planes. In case of vanishing spin-
orbit coupling (no SOC, red open circles) the orbital
moment can indeed be fairly well fitted with a function
∝ cos(θ) sin2(θ). The zeros of this function correspond
to the ferromagnetic state (θ = 0◦, 180◦) and the non-
collinear antiferromagnetic state (θ = −90◦, 90◦, 270◦).
The extremal values are found for integer multiples of
θ = arccos(1/

√
3) ≈ 54.7356◦, i.e., for the magic angle.

Note, that the total energy shows a sharp peak here, in-
dicating a pronounced instability.

Figure 6 shows spin and orbital moments for the struc-
ture ncpM9 as a function of polar angle θ, again with and
without spin-orbit coupling. For the spin moment (black
squares) spin-orbit coupling is, as to be expected, of neg-
ligible relevance. The orbital moment (red circles) again
has a large chirality-induced component, whose angular
dependence however does not appear to be simply pro-
portional to the scalar spin chirality. While the even
symmetry about θ = 0◦ and the odd symmetry around
θ = 90◦ is obeyed, the behavior in-between seems to be
more complicated. Note that, despite the global inver-
sion symmetry connecting the two Kagome sub-lattices,
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FIG. 6. Spin and orbital moment as a function of polar angle
θ in the non-coplanar achiral magnet ncpM9. Results includ-
ing spin-orbit coupling (SOC) are shown as full symbols, those
for vanishing SOC are given as open symbols.

these have, as in the case of ncpM0, the same finite scalar
spin chirality.

C. X-ray absorption spectra

X-ray absorption spectroscopy has a long and success-
ful history concerning its application as a local probe
to magnetic systems. In particular the so-called XMCD
sum rules76–78 allow for example to deduce from the inte-
grated L2,3-spectra of 3d-transition metals their spin and
orbital magnetic moments. In line with the sum rules an
angular dependence according to cos(m̂ · q̂) is normally
assumed, where m̂ and q̂ are the orientation of the lo-
cal moment probed by XMCD and of the X-ray beam.
This simple relation implies that in spin-compensated an-
tiferromagnetic systems the XMCD should vanish. How-
ever, both XMCD49 as well as the magneto-optic Kerr
effect (MOKE)37,47 are in fact, due to their relation to
the frequency-dependent conductivity tensor,69 expected
to be observable in any magnetic structure that allows
for a finite anomalous Hall conductivity.

In order to elucidate whether also the chirality-induced
orbital moment discussed in Section III B can be deduced
from X-ray absorption as suggested by Dos Santos Dias
et al.25, we perform first-principles calculations of XAS
spectra as a function of polar angle θ. The XMCD sig-
nals in the non-coplanar magnetic structure ncpM0 in-
and excluding spin-orbit coupling is shown in Figure 7 in
the top and bottom panels, respectively. The absorp-
tion for incidence along the [0001] direction is calculated
for the L2,3-edge of Mn and summed over all sites of the
unit cell. Suppressing spin-orbit coupling obviously leads
to a degeneracy of the 2p initial states, accordingly only
one edge is visible in the lower panel, that however indeed
shows an XMCD signal. In both cases the strength of the
signal is decreasing with increasing θ and anti-symmetric
w.r.t. reversal of the global z component of the magneti-
zation. The same applies to the XMCD spectra for the

0 10 20

E − EF [eV]

−10

−5

0

5

∆
µ

M
n

L
2

,3
[M

b
]

θ = 0◦

θ = 15◦

θ = 30◦

θ = 45◦

θ = 60◦

θ = 75◦

θ = 90◦

θ = 105◦

0 10 20

E − EF [eV]

−1

0

1

2

∆
µ

M
n

L
2

,3
[M

b
]

θ = 0◦

θ = 15◦

θ = 30◦

θ = 45◦

θ = 60◦

θ = 75◦

θ = 90◦

θ = 105◦

FIG. 7. X-ray magnetic circular dichroism (XMCD) spec-
tra ∆µMn

L2,3
at the Mn L2,3-edge in the non-coplanar chiral

magnetic structure ncpM0 with (top) and without (bottom)
inclusion of spin-orbit coupling (SOC). The polar angle θ gives
the tilt of the moments w.r.t. the [0001] direction.

achiral structure ncpM9 in Fig. 8. Here the fine structure
at the L2-edge is slightly different from that in ncpM0 for
the fully relativistic spectra in the top panel and quite so
for the non-relativistic ones in the bottom panel.

As the XMCD signal is determined by both spin and
orbital magnetic moment, in order to assess the chirality-
induced contribution to the latter by X-ray absorp-
tion spectroscopy a clear-cut decomposition is desirable.
Since the standard XMCD sum rules cannot be applied
here and their generalization to non-collinear magnetic
order is still on open issue, an approximate scheme follow-
ing the proposal in Ref. 25 as been employed. Figures 9
and 10 show the difference between the average XAS and
the XMCD signals for the field-aligned (ferromagnetic,
FM, θ = 0◦) limit and the non-collinear structures with
θ 6= 0◦ in ncpM0 and ncpM9, respectively. As stated
above, this follows the proposed protocol of Dos Santos
Dias et al.,25 devised for magneto-optic experiments in
skyrmionic systems. A remaining obstacle is however the
assessment of the spin-moment-induced contribution for
which a linear and spin texture-independent relation to
the polar angle has been assumed by these authors. Ob-
viously an unambiguous separation into spin- and orbital
as well as spin-orbit- and chirality-induced contributions
is duly needed. Note that due to the simplified assump-
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FIG. 8. X-ray magnetic circular dichroism (XMCD) spec-
tra ∆µMn

L2,3
at the Mn L2,3-edge in the non-coplanar achiral

magnetic structure ncpM9 with (top) and without (bottom)
inclusion of spin-orbit coupling (SOC). The polar angle θ gives
the tilt of the moments w.r.t. the [0001] direction.

tion of a collinear arrangement of moments the standard
XMCD rules certainly have to be revised in order to make
full use of the proposed procedure.

D. Transport results: (T)AHE and (T)SHE

The anomalous Hall conductivity σxy is shown as a
function of θ in the top panel of Figure 11 for ncpM0. As
can be seen both AHC and the chirality-induced or topo-
logical contribution σT

xy obtained in the non-relativistic
limit c0/c → 0 (see Appendix A) are anti-symmetric
or odd w.r.t. magnetization reversal around θ = 90◦.
The chirality-induced component is clearly not simply
proportional to the scalar spin chirality (see Fig. 5),
similar to the observation made by Hanke et al.26 in
γ-FeMn. The largest values for σT

xy are for example
found for θ = 60◦ and 120◦ and not for the magic an-
gle. In addition we observe two sign changes between
the coplanar antiferromagnetic structure (θ = 90◦) and
the ferromagnetic states at θ = 0◦ and 180◦. In these
limits σT

xy vanishes and the AHC is purely spin-orbit-
induced. Note, that the calculations were performed at
a finite temperature T = 300 K represented by uncorre-
lated lattice displacements via the so-called alloy analogy
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FIG. 9. Difference between ferromagnetic and non-collinear
polarization-averaged XAS spectra (top) and X-ray magnetic
circular dichroism (XMCD) spectra (bottom) at the Mn L2,3-
edge in the chiral magnetic structure ncpM0. The polar angle
θ gives the tilt of the moments w.r.t. the [0001] direction.
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FIG. 10. Difference between ferromagnetic and non-collinear
polarization-averaged XAS spectra (top) and X-ray magnetic
circular dichroism (XMCD) spectra (bottom) at the Mn L2,3-
edge in the achiral magnetic structure ncpM9. The polar
angle θ gives the tilt of the moments w.r.t. the [0001] direction.
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FIG. 11. Top: Anomalous Hall conductivity σxy and its
chirality-induced or topological contribution σT

xy as functions
of polar angle θ in ncpM0. Bottom: Corresponding results
for the (topological) spin Hall conductivity σxy (σz,T

xy ).

model (AAM).79 This was done in order to circumvent

the numerical difficulties arising for the ~k-space integra-
tion in perfectly ordered systems, however the conduc-
tivities are almost entirely intrinsic in the sense of neg-
ligible relevance of the so-called vertex corrections asso-
ciated with the thermally-induced disorder. Accordingly
it is the magnetic band structure that determines the an-
gular dependence of the AHC, are alternatively its Berry
curvature.80,81 Skew scattering contributions arising from
the presence of impurities82 or locally correlated fluctu-
ating spins83 will not be considered herein. The spin Hall
conductivity in the relativistic and non-relativistic limits,
σz
xy and σz,T

xy , given in the lower panel of Fig. 11 is even
around the ferromagnetic limits 0◦ and 180◦, but shows
no distinctly symmetric angular dependence in-between.
It is however strongly dependent on the non-coplanar
spin texture and quite differently so for its spin-orbit-
and chirality-induced contributions. These can be of the
same or of different sign, leading to partial or even nearly
complete cancellation as for θ ≈ 54.7356◦. Quite inter-
estingly, at θ = 105◦ both appear to vanish. Note that in
the ferromagnetic limit at θ = 0◦ and 180◦ the total value
is small but non-zero, while the topological contribution
σz,T
xy vanishes.

Quite similar observations can be made in Figure 12
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FIG. 12. Top: Anomalous Hall conductivity σxy and its
chirality-induced or topological contribution σT

xy as functions
of polar angle θ in ncpM9. Bottom: Corresponding results
for the (topological) spin Hall conductivity σxy (σz,T

xy ).

for the achiral spin structure ncpM9 shown for the range
θ = −15 − 105◦. As can be seen, the AHC in the top
panel is found to be anti-symmetric (odd) w.r.t. magne-
tization reversal whereas the SHC in the bottom panel is
asymmetric. The detailed angular dependence is distinct
from that in ncpM0 for both quantities, i.e., the two hy-
pothetical structures could be distinguished experimen-
tally. We propose that the abundance of assumed spin
configurations in hexagonal Mn3X compounds could be
confirmed or discarded via corresponding transport mea-
surements rotating an applied magnetic field supported
by first-principles calculations.

The longitudinal charge transport is even w.r.t. mag-
netization reversal and anisotropic, i.e., σxx = σyy 6= σzz.
In the absence of spin-orbit coupling and the associ-
ated anisotropic magneto-resistance, the anisotropy of
the spin texture as well as the bare crystalline anisotropy
already present in the non-magnetic case remain. Simi-
lar observations can be reported for the longitudinal spin
conductivities σz

xx = σz
yy 6= σz

zz, however these are not
fully even w.r.t. magnetization reversal. The other polar-
izations either show large chirality-induced contributions
as well (σk

xy = −σk
yx with k = {x, y}) or are exclusively

SOC-induced (σk
iz 6= −σk

zi with i 6= k = {x, y}). Note
that all of them are even w.r.t. magnetization reversal.

Chapter 3. Results 219



8

E. Spinorbitronic effects: (T)SOT and (T)EE

Naturally the question arises whether the so-called
spinorbitronic phenomena spin-orbit torque (SOT) and
Edelstein effect (EE) also exhibit chirality-induced con-
tributions leading to finite values in the absence of spin-
orbit coupling. Employing the same Kubo linear re-
sponse framework used for the charge and spin trans-
port calculations in the previous section, but exchanging
the operator for the response, the (spin) current den-
sity operators, by either the magnetic torque operator60

or the spin magnetization operator61, the torkances tij
and Edelstein polarizations pij can be computed from
first principles. Figure 13 shows the polar-angle depen-
dence of the torkance tensor elements txx = tyy (top),
txy = −tyx (middle), and tzz (bottom) in the chiral com-
pound ncpM0. The diagonal torkances in the top and
bottom panels are obviously even w.r.t. magnetization
reversal, i.e., anti-symmetric w.r.t. θ = 90◦, while the
off-diagonal anti-symmetric element txy = −tyx in the
middle panel is odd. For this as well as for the txx = tyy
indeed a sizable chirality-induced contribution is found
that appears to be largest at θ = 30◦ and 150◦. The
diagonal torkance tzz in the bottom panel, correspond-
ing to a rotation of the moments about the [0001] or z
axis coinciding with the direction of the applied electric
field, is almost exclusively spin-orbit-driven. In all three
cases the full torkances vanish in the ferromagnetic limit
(θ = 0◦ and 180◦) due to inversion symmetry.

The Edelstein polarization is one of the two micro-
scopic mechanisms usually discussed as a source for the
SOT, namely the (Rashba-)Edelstein torque, while the
spin-Hall torque is attributed to the spin-transfer-torque-
like action of a spin-polarized current on the local mag-
netization. The elements of the tensor p are shown in
Fig. 14 as a function of polar angle θ. The elements pij
are found to behave very similar to the corresponding
elements of t , i.e., the diagonal elements are even, the
off-diagonal ones are odd, and pxx = pyy (top) as well
as pxy = −pyx (middle) are overall chirality-dominated
while pzz in the bottom panel is again essentially SOC-
induced. Note however, that the correspondence between
tij and pij is not trivial, as an additional crossproduct
with the local magnetization is contained in the response
operator for the torkance. This leads for example for
the odd torkance txy = −tyx in the middle panel of
Fig. 13 to a different angular dependence as compared
to pxy = −pyx in particular close to the ferromagnetic
limits at the left and right ends. For the topological con-
tributions this is even more pronounced. While the odd
Edelstein polarization is chirality-dominated close to the
antiferromagnetic configuration at θ = 90◦, the SOT-
and chirality-induced torkances are even of different sign
here. The achiral coplanar and non-coplanar structures
ncAFM9 and ncpM9 are found to be numerically zero as
demanded by the inversion symmetry (see Section III A).
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FIG. 13. Spin-orbit torkances txx = tyy (top), txy = −tyx
(middle), and tzz (bottom) as functions of polar angle θ in
ncpM0. The chirality-induced contributions tTij are given as
red open squares.

F. Non-coplanar antiferromagnets

By rotating the moments in the two Kagome planes in
opposite directions by the same angle θ, non-coplanar
antiferromagnetic structures as shown in Fig. 15 for
θ = ±45◦ are obtained. The upper panel is derived
from the co-planar AFM structure ncAFM0, while the
ncpAFM9 structure in the lower panel is obtained from
the achiral ncAFM9 structure. As θ differs for both mag-
netic sub-lattices, the inversion symmetry is obviously
broken, i.e., a chiral structure results. Note, that for nc-
pAFM0 inversion combined with time-reversal (1̄′) is still
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FIG. 14. Edelstein polarizations pxx = pyy (top), pxy =
−pyx (middle), and pzz (bottom) as functions of polar angle
θ in ncpM0. The chirality-induced contributions pTij are given
as red open squares.

a symmetry operation.

The tensor shapes for charge and z-polarized spin
conductivity correspond for both structures to the non-
magnetic case, i.e., diagonal with σxx = σyy 6= σzz and
only one independent element of σz, the spin Hall con-
ductivity σz

xy = −σz
yx. The shapes of σx and σy for nc-

pAFM0 and ncpAFM9, however, differ from each other
as well as from the ones for the NM structure.59 For the
torkance and the Edelstein polarization the tensor shapes
are given in Eqs. (7) and (8). Obviously there is a fi-
nite Edelstein polarization as well as spin-orbit torkance
present for both structures. However, the correspond-

ncpAFM0

ncpAFM9

FIG. 15. Non-coplanar antiferromagnetic structures ob-
tained from Fig. 3 by rotating the moments in the two
Kagome planes into opposite directions by the same angle.
The structure in the top panel has the same chirality in both
sub-lattices (ncpAFM0), while in the lower panel they are of
opposite sign (ncpAFM9).72

ing tensor shapes differ from each other, as the magnetic
point group has to be considered here.60,61

Figure 18 shows the Edelstein polarization tensor ele-
ments pxx, pxy, and pzz for both structures at θ = ±45◦

as a function of a scaled speed of light c (see Appendix A
for details). Confirming the tensor shapes in Eqs. (7)
and (8), in the upper panel only the diagonal elements
are non-zero, while in the lower panel only pxy is. Fur-
thermore it can be stated that for ncpAFM0 again pzz
is smaller than pxx and vanishes in the non-relativistic
limit (c0/c → 0), while pxx has a large chirality-induced
contribution. The anti-symmetric Edelstein polarization
pxy for ncpAFM9 shown in the bottom panel of Fig. 18
is even almost exclusively arising from the spin texture.

In agreement with the absence of off-diagonal anti-
symmetric conductivity tensor elements the XMCD sig-
nals of the two chiral magnetic sub-lattices cancel each
other numerically exactly (not shown). The same applies
to the anomalous Hall conductivity shown in Fig. 17,
while the spin Hall conductivities are found to be finite
with sizable topological contributions.

IV. CONCLUSIONS

To summarize, the effect of a non-collinear and non-
coplanar spin texture on orbital moments, X-ray ab-
sorption, charge and spin transport as well as spin-orbit
torque and Edelstein polarization has been investigated
by first-principles calculations in hexagonal Mn3Ge. By
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FIG. 16. Edelstein polarizations pxx, pxy, and pzz in nc-
pAFM0 (top) and ncpAFM9 (bottom) as functions of c0/c.
For both structures the polar angle θ is 45◦. The relativistic
limit is on the right (c0/c = 1), the non-relativistic one on the
left (c0/c→ 0).

smoothly varying the polar angle w.r.t. to the Kagome
planes of corner-sharing triangles in two hypothetical ref-
erence structures, one globally chiral one achiral, the
chirality-induced or topological contributions are com-
pared to the spin-orbit-induced parts. To obtain the for-
mer in absence of the latter, the non-relativistic limit
has been taken by scaling the speed of light c. The key
findings are first of all the occurrence of topological or-
bital moments in presence and absence of global inversion
symmetry, in the latter case following the angular de-
pendence expected from the scalar spin chirality. A pro-
posal of its experimental verification by XMCD measure-
ments in a rotating external magnetic field is supported
by a comparison of spectra for the field-aligned ferromag-
netic case with those of non-coplanar spin configurations.
Also here the limit of vanishing spin-orbit coupling has
been investigated, conclusive statements could however
not yet been made due to limitations of the standard
XMCD sum rules. Furthermore the presence, angular de-
pendence, as well as magnitude of the chirality-induced
contributions to the anomalous and spin Hall conductiv-
ities has been demonstrated. Similar calculations of the
spin-orbit torkance and the Edelstein polarization reveal
sizable topological contributions also here, that can, de-
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FIG. 17. Anomalous and spin Hall conductivities, σxy and
σz
xy, respectively, in ncpAFM0 (top) and ncpAFM9 (bottom)

as functions of c0/c. For both structures the polar angle θ
is 45◦. The relativistic limit is on the right (c0/c = 1), the
non-relativistic one on the left (c0/c→ 0).

pending on which quantity and which tensor element is
considered as well as on the polar angle, enhance or sup-
press the spin-orbit-induced effects and be either domi-
nating or vanishing.

Future studies on realistic non-collinear antiferromag-
nets of the hexagonal Mn3X type with X = Ga, Ge, or
Sn based on the experimentally assumed or theoretically
proposed spin structures could help determining the ac-
tual configuration and the relevance of chirality-induced
contributions in measured response properties. A pro-
posed extension of the XMCD sum rules to non-collinear
magnetic order and the absence of spin-orbit coupling
should be able to support experimental efforts on the
quantification of topological orbital moments.
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Appendix A: Manipulating the spin-orbit coupling

The topological contributions to the various response
quantities discussed were determined by either setting
the spin-orbit coupling explicitly to zero in the self-
consistent calculations (orbital moments) or by scaling
the speed of light c in the X-ray absorption and Kubo
linear response calculations. The limit c0/c→ 0 with the
speed of light in vacuum c0, or equivalently c/c0 → ∞,
corresponds to the non-relativistic case. Obviously not
only the spin-orbit coupling is affected this way, but
also the so-called scalar-relativistic effects. However,
for the properties relevant to this work it is the by far
dominating term.

Figure 18 shows the anomalous (black symbols) and
spin Hall (red symbols) conductivities as a function of
the scaled speed of light c0/c for the ferromagnetic state
(top), the non-coplanar magnetic state ncpM0 depicted
in the top panel of Fig. 4 (middle), and the coplanar non-
collinear antiferromagnetic state ncAFM0 (bottom). Go-
ing from the relativistic limit on the right side to the non-
relativistic on the left, both σxy and σz

xy vanish for the

ferromagnet, revealing their purely SOC-driven nature.
In the non-coplanar magnetic state (θ = 45◦) in the mid-
dle panel both are finite for c0/c→ 0, i.e., they exhibit a
chirality-induced or topological contribution arising from
the spin texture. For both quantities this is sizable, the
so-called topological Hall effect (THE) is even dominat-
ing in the relativistic limit, while the topological spin Hall
effect (TSHE) is of opposite sign when compared to the
SOC-induced contribution and about half as large. For
the non-collinear antiferromagnetic structure ncAFM0 in
the bottom panel the anomalous Hall effect vanishes due
to symmetry (see Table I and Eq. 1), while the TSHE is
even larger than the total SHE. This means that here the
contribution due to spin-orbit coupling is again of oppo-
site sign and but now the chirality-induced part is about
twice as large.

Corresponding results for the structures ncpM9 (again
for θ = 45◦) and ncAFM9 are presented in Fig. 19. Here
the relation of chirality- and SOC-induced contributions
is somewhat different. The former is smaller and of op-
posite sign for the AHE, while of the same sign for the
SHE in the non-coplanar magnetic structure (top). In
the coplanar antiferromagnetic state (bottom) the AHE
is again vanishing, whereas the SHE is predominantly
chirality-induced.
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3.5 Spin-orbit torque & Edelstein effect

Spin orbitronics [103] is one of the latest developments in the wider field of spintron-
ics, adding a number of spin-orbit induced phenomena that include in particular the
so-called spin-orbit torque (SOT) and the Edelstein effect (EE), as well as their On-
sager reciprocals. The spin-orbit torque holds great promise for a spin-based logic
in ever greater efficiency and smaller size, as it allows switching magnetic layers in,
e.g., MRAM devices without the need for magnetic reference layers as its prede-
cessor, the spin-transfer torque, does. The Edelstein effect or inverse spin-galvanic
effect has certainly been revived by studies on the SOT, first discussed mainly as
a prominent contribution to the torkance due to interface inversion asymmetry, the
Rashba-Edelstein torque. But it deserves to be regarded as a phenomenon on its
own, in particular as it may occur also in non-magnetic systems.

In the following two published articles and one unpublished manuscript will be
presented. The first publication, Ref. 335, deals with the space-time symmetry re-
strictions on the spin-orbit torque as an extension to earlier work, Ref. 283, reprinted
in Section 3.3 on page 175. The tensor shapes of the torkance, the linear response
coefficients describing the correlation of an electric current as perturbation and a
magnetic torque as response, as well as of its time-reversed counterpart connected
to the inverse spin-orbit torque are presented and discussed. This is accompanied
by first-principles calculations for a model tri-layer alloy system and a discussion of
the results focussing on the various contributions and underlying mechanisms. The
second article, Ref. 368, is concerned with the SOT and its relation to the so-called
Dzyaloshinskii-Moriya interaction, another manifestation of spin-orbit coupling, that
leads to a non-collinear alignment of spin moments in non-centrosymmetric sys-
tems. In addition the transverse transport properties of the system under study
are discussed, the Mn1−xFexGe alloy with B20 crystal structure. It is an important
exemplar of those materials in which so-called Skyrmions, i.e, mesoscopic quasipar-
ticles composed of a defined arrangement of non-collinear spins can be observed.
Finally, in Section 3.5.2 so far unpublished work on the direct and inverse Edelstein
effect will be presented, again focussing first on group-theoretical aspects, followed
by numerical investigations on the same model system as used in the work on the
SOT [335]. Particular emphasis is put here on the close connection of the two spinor-
bitronic phenomena concerning symmetry properties and underlying mechanisms,
in addition the relation to the charge and spin conductivity is investigated.
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3.5.1 Published results on the spin-orbit torque

The following is a copy of the article Fully relativistic description of spin-orbit torques
by means of linear response theory [335], reprinted with permission from

S. Wimmer, K. Chadova, M. Seemann, D. Ködderitzsch, and H. Ebert,
Phys. Rev. B 94, 054415 (2016). Copyright (2016) by the American Physical Society.

http://dx.doi.org/10.1103/PhysRevB.94.054415
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Fully relativistic description of spin-orbit torques by means of linear response theory

S. Wimmer,* K. Chadova, M. Seemann, D. Ködderitzsch, and H. Ebert†

Department Chemie/Phys. Chemie, Ludwig-Maximilians-Universität München, Germany
(Received 12 April 2016; revised manuscript received 21 June 2016; published 11 August 2016)

Symmetry and magnitude of spin-orbit torques (SOT), i.e., current-induced torques on the magnetization of
systems lacking inversion symmetry, are investigated in a fully relativistic linear response framework based on
the Kubo formalism. By applying all space-time symmetry operations contained in the magnetic point group
of a solid to the relevant response coefficient, the torkance expressed as torque-current correlation function,
restrictions to the shape of the direct and inverse response tensors are obtained. These are shown to apply
to the corresponding thermal analogs as well, namely the direct and inverse thermal SOT in response to a
temperature gradient or heat current. Using an implementation of the Kubo-Bastin formula for the torkance into a
first-principles multiple-scattering Green function framework and accounting for disorder effects via the so-called
coherent potential approximation, all contributions to the SOT in pure systems, dilute as well as concentrated
alloys can be treated on equal footing. This way, material specific values for all torkance tensor elements in the
fcc (111) trilayer alloy system Pt|FexCo1−x |Cu are obtained over a wide concentration range and discussed in
comparison to results for electrical and spin conductivity, as well as to previous work—in particular concerning
symmetry with respect to magnetization reversal and the nature of the various contributions.

DOI: 10.1103/PhysRevB.94.054415

I. INTRODUCTION

Spin-orbit torques (SOT), denoting the response of a
magnetization to an electric current by changing its orientation,
have evolved from a theoretical conjecture [1–3] via exper-
imental verification [4–6] to their imminent technological
application in SOT-MRAM devices [7] in a remarkably short
period of time. This can be attributed to the fact that unlike most
[8] other ways of defined manipulation of magnetic moments
it does not require external magnetic fields or auxiliary
magnetic layers, offering an enormous advantage concerning
information storage density, nonvolatility, and scalability [9].
The combined effect of spin-orbit interaction and exchange
coupling in systems lacking inversion symmetry offers thus the
possibility to switch the magnetization of spintronics devices
by applying an electric current. Unlike its close relative, the
spin-transfer torque mechanism [10,11], it does not rely on the
presence of a “polarizer” magnetic layer, allowing for much
simpler device architecture and reducing necessary critical
current densities [12]. The intrinsic relativistic spin-orbit
interaction can transfer orbital to spin angular momentum in
a magnetic material having a suitable structure, leading to an
effective magnetic field exerting a torque on the magnetization.

Recent experiments [13–15] were able to measure the SOT
directly as a function of magnetization direction, whereas
earlier evidence has only been indirect [4–6,9,16–18]. Two
symmetrically distinct contributions to the SOT could be
observed this way, one being even and the other odd with
respect to magnetization reversal. To lowest order in the
magnetization direction m̂, the even torque in response to an
in-plane current j was found to go by m̂ × (j × m̂), whereas
the odd one scales with m̂ × j. While initial work on spin-orbit
torques was focused on transition metal FM | NM bilayers [5,6]
or dilute magnetic semiconductors [4], recent experiments

*sebastian.wimmer@cup.uni-muenchen.de
†hubert.ebert@cup.uni-muenchen.de

[19–22] demonstrate the possibility to switch ferromagnetic
moments by SOTs originating from antiferromagnets, and
Wadley et al. [23] were even able to switch the antiferromagnet
itself. Corresponding predictions of so-called Néel-order spin-
orbit torques, the local SOTs of alternating (collinear) spin
sublattices, had been made earlier [24]. On the ferromagnetic
side it could be shown that magnetic insulators can be
switched by SOTs as well [25]. Exploiting the large spin-orbit
coupling of bismuth and the pronounced ferromagnetism of
Cr-doped BixSb1−xTe3, topological insulator heterostructures
were shown to be promising candidates for SOT-based memory
and logic devices [26,27]. Although the nature of the spin-orbit
torque certainly is not yet fully understood in all details,
its ability to deterministically switch magnetic moments,
without the need for external magnetic fields [28], has been
demonstrated beyond doubt. Currently, experimental research
is already heading towards fully functional devices [29,30], en
route exposing further interesting aspects of SOTs [31,32].

Early theoretical work on the SOT in bilayer systems
proposed two distinct mechanisms, namely a torque arising
from the Rashba effect at the asymmetric interface [2,33–35],
and a spin transfer torque due to the spin current generated
in the heavy-metal layer by the spin Hall effect [17,18,36].
The “Rashba” torque was initially found to be dominated
by a fieldlike component [3,33,37] being odd with respect
to magnetization reversal, whereas the “spin Hall” torque
was believed to consist mostly of an even (anti-)damping-
or spin transfer-like contribution [9,17,18,37]. This picture
has however turned out to be too simple [13,14], as these
mechanisms appear to be only the limiting cases of a more
complex scenario [13,38], involving terms of higher orders in
the magnetization direction [13] and in addition an intrinsic
contribution, arising from the band structure in a single ferro-
magnetic layer alone [39,40]. First-principles calculations of
the torkance tensor [41–43] can be used to help to disentangle
the various contributions by providing model-independent
material parameters. The pioneering works of Freimuth et al.
[42,43] demonstrated this for FM | NM bilayer systems using
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the Kubo linear response formalism to calculate layer-resolved
torkances.

It has been noted quite early on [44] that there ex-
ists of course an Onsager reciprocal to the spin-orbit
torque, i.e., by interchanging perturbation (electric field or
charge current) and response (torque on the magnetization)
one arrives at the inverse spin-orbit torque (ISOT), describing
the electric field induced by magnetization dynamics [45].
The reciprocity of the two, SOT and ISOT, has been discussed
recently in great detail by Freimuth et al. [46], who noted
that both phenomena can be described by the torkance tensor.
In this work, by performing a symmetry analysis of the
linear response expressions describing SOT and ISOT, we
will give explicit tensor shapes for both properties in terms
of the torkance, thereby demonstrating, where applicable, the
presence and exact form of their reciprocity. As will be shown,
these shapes remain unchanged when replacing the electric
field by a temperature gradient, giving a justification for the
use of a Mott-like expression for direct and inverse thermal
SOT discussed by Géranton et al. [47] and Freimuth et al. [48].

The present paper focuses on two aspects of the spin-orbit
torque. First, an extensive space-time symmetry analysis based
on group-theoretical grounds and not restricted to special
cases is performed that allows determining the tensor shapes
of both direct and inverse SOT from their respective Kubo
linear response expressions, based on the magnetic point group
alone [49]. Secondly, by making use of the coherent potential
approximation (CPA) within multiple scattering theory the
possibility to study the concentration dependence of the
torkance in alloys is demonstrated, thereby paving the way
for a materials design approach to the SOT.

This paper is organized as follows. In Sec. II we introduce
the underlying linear response formalism used to calculate
the torkance tensor, discuss its implementation into a multiple
scattering framework, with particular emphasis on the treat-
ment of disorder, and finally outline the application of symme-
try considerations leading to restrictions to the tensor shapes
of both direct and inverse spin-orbit torques. The outcome of
this group-theoretical analysis for all magnetic point groups
allowing for the existence of a locally finite magnetization, as
in ferro-, ferri-, as well as antiferromagnets, will be presented
together with corresponding results for the electrical and spin
conductivity tensors. In Sec. III we present the results of
our numerical investigations on a Pt|FexCo1−x |Cu trilayer
system, elucidating the impact of substitutional disorder on
the various contributions to the torkance. By comparing
concentration-dependent results for the torkance tensor with
such for electrical and spin conductivity we will discuss their
(partial) interconnection. Finally, contact will be made to
previous work, in particular concerning the separation of the
torkance into contributions based on the structure of the linear
response expression (Fermi sea and Fermi surface terms) and
on symmetry arguments (even or odd symmetry with respect
to magnetization reversal). We conclude with a summary of
the presented and an outlook on future work in Sec. IV.

II. FORMALISM

A well-known application of Kubo’s linear response for-
malism is the derivation of an expression for the electrical

conductivity tensor σ that describes the electric current density
j = σ E in response to an electric field E. In analogy one
can derive an expression for the torkance tensor t that gives
the torque T = t E as a response to E [42,43]. Replacing the
operator ĵμ representing the component μ of the current by the
operator T̂μ for the torque one can straightforwardly adopt the
derivation of the so-called Kubo-Bastin formula for σ [50,51]
leading to a corresponding expression for the torkance t [52]:

tμν = − �
4π

∫ ∞

−∞
dε

df (ε)

dε
Tr〈T̂μ(G+ − G−)ĵνG

−

− T̂μG+ĵν(G+ − G−)〉 + �
4π

∫ ∞

−∞
dε f (ε)Tr

×
〈
T̂μG+ĵν

dG+

dε
− T̂μ

dG+

dε
ĵνG

+ − “(G+ → G−)”

〉
,

(1)

where f (ε) = [e(ε−μ)/kBT + 1]−1 is the Fermi-Dirac distribu-
tion with the electrochemical potential μ [EF = μ(T = 0 K)]
and G+(−) is the retarded (advanced) Green function. This
implies that in the limit T → 0 K for the temperature the first
term in Eq. (1) has to be evaluated only for the Fermi energy
EF (Fermi surface term t Iμν), while the second one requires an
integration over the occupied part of the valence band (Fermi
sea term t II

μν).
The operator ĵν = −|e|cαν in Eq. (1) represents the

perturbation due to the electric field component Eν . Adopting
a fully relativistic formulation to account coherently for the
impact of SOC, ĵν is expressed by the corresponding velocity
operator v̂ν = cαν , where c is the speed of light and αν is one
of the standard 4×4 Dirac matrices [53]. The torque operator
T̂μ on the other hand represents the response in form of a
change of the magnetization component mμ with time. Using
the classical definition of the torque on the magnetization m
due to an effective field Beff , T = m × Beff = û × ∂E

∂û
with

û = m/|m| and the total energy E, and applying the Hellmann-
Feynman theorem, the torque operator can be written as
[54,55]

T̂μ = ∂

∂uμ

Ĥ(û × n̂)μ

= β(σ × êz)μBxc(r). (2)

For the second line use has been made of the specific form of Ĥ
for a magnetic solid within the framework of local spin density
formalism (LSDA) where Bxc(r) stands for the difference in
the exchange potential for electrons with spin up and down
[56] in reference to the local quantization axis êz ‖ n̂ and σ is
the vector of the 4×4 Pauli spin matrices [53].

In Eq. (1) the electronic structure is represented in terms of
the retarded and advanced Green functions G+(E) and G−(E),
respectively. Using this approach has the big advantage
that one can deal straightforwardly with disordered systems.
Considering for example chemical disorder the brackets 〈· · · 〉
in Eq. (1) stand for the configurational average in a disordered
alloy. For the applications presented below relativistic multiple
scattering theory was used to determine the Green function
[57,58]. The average over alloy configurations was determined
by means of the coherent potential approximation (CPA) alloy
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theory as done in the context of the electrical conductivity
[59,60], spin conductivity [61], and Gilbert damping parameter
[55]. This implies in particular that the so-called vertex
corrections, that ensure that the proper average 〈T̂μG±ĵνG

±〉 is
taken instead of the simpler one 〈T̂μG±〉〈ĵνG

±〉, are included
in the calculations.

Expressing the electric field induced torque by means of lin-
ear response formalism allows investigating straightforwardly
the condition for which the SOT may show up or not. This
can be done using a scheme worked out by Kleiner [62]
and extended recently by Seemann et al. [63]. Making use
of the behavior of the torque operator T̂μ and of the current
density operator jν under symmetry operations one is led to
the relations that restrict the shape of the torkance tensor t:

tμν =
∑
κλ

tκλD(R)κμD(R)λν det(R), (3)

tμν = −
∑
κλ

t ′λκD(R)∗κμD(R)∗λν det(R), (4)

where D(R) is the 3×3 transformation matrix associated with
the pure spatial operation R and det(R) is the corresponding
determinant of that matrix. In Eq. (3) only unitary pure
spatial symmetry operations are considered, while in Eq. (4)
antiunitary operations are considered that involve apart from
the spatial operation R also the time reversal operation. As
a consequence Eq. (4) relates the torkance tensor t with the
tensor t ′ that is associated with the effect inverse to the SOT,
i.e., Eq. (4) is equivalent to an Onsager relation for t .

Considering Eq. (3) for all symmetry operations of a
magnetic point group, the corresponding symmetry-allowed
shape of the direct and inverse torkance tensors, t and t ′,
can be determined. Tables I to VI give the results for all
magnetic point groups leading to a nonvanishing torkance
tensor. Note that the symmetry analysis was performed for
a general direction of the local magnetization. If this axis is
uniquely fixed by the magnetic point group, all direct (inverse)
torkance elements with corresponding first (second) Cartesian
index vanish due to the additional restriction imposed by the
form of Eq. (2). In addition the tensor shapes for electrical
and spin conductivity for polarization along the principal axis
are given for the respective magnetic Laue groups obtained by
adding the spatial inversion operation [62,63]. Naturally, this
leads to redundancies since different magnetic point groups
have the same magnetic Laue group.

Magnetic symmetry groups that allow for locally finite
magnetization in general can be subdivided into two categories
[62,63], one without any time-reversal symmetry, neither as
an operation on its own nor in combination with a spatial
operation, category (b) (Table I), the other containing time
reversal only connected with a spatial operation, category
(c) (Tables II–VI). Naturally, this excludes all magnetic point
groups of category (a) corresponding to a nonmagnetic solid,
i.e., that contain time reversal as a separate element [62,63].
Groups that permit existence of a ferromagnetic state are given
in boldface.

Comparing the results for magnetic point groups of cate-
gories (b) in Table I and (c) in Tables II–VI, one notes that those

of the former exhibit identical direct and inverse torkance ten-
sor shapes, t and t ′, while for those of the latter the two tensors
usually differ in shape but nevertheless are connected to each
other. This becomes obvious when looking at Eq. (4): if there
was time reversal as a separate operation, as in a group of cat-
egory (a), the corresponding spatial operation R would be the
identity, and therefore tμν = −t ′νμ for all tensor elements, i.e.,
something quite similar to the usual Onsager relations would
hold [64]. When there are no time-reversal-connected, that is,
antiunitary, operations in the group, as in category (b), Eq. (4)
does not apply at all and the shape of t ′ is given exclusively by
Eq. (3) and thus identical to that of t . For the magnetic point
groups of category (c), where time reversal appears only in con-
nection with a spatial operation R, the shapes are determined
by D(R), the nature of the operation(s) connecting t and t ′.

In addition one notices that none of the magnetic point
groups listed in Tables I–VI contains the spatial inversion
as an element. This central restriction—missing inversion
symmetry—has been pointed out before by Manchon and
Zhang [1,2] as well as Garate and MacDonald [3] on the
basis of restricted model considerations. This basic require-
ment is explained here on group-theoretical grounds by the
transformation properties of the operators appearing in the
linear response expression. The torque operator, represented
by the vector product of magnetization and effective magnetic
field—both pseudovectors symmetric under spatial inversion
but antisymmetric under time reversal—hence transforms as
a time-reversal symmetric pseudovector, while the electric
current operator as a proper vector is antisymmetric under both.
Therefore, the product of the two is both time-reversal and
inversion antisymmetric. Correspondingly, the shapes of direct
and inverse torkance tensors are determined by the magnetic
point group of a solid, in contrast for example to the electrical
conductivity and thermoelectric tensors [62], as well as to the
spin conductivity and related spincaloritronic transport tensors
[63]. Note however, that missing inversion symmetry is not a
sufficient precondition for the occurrence of a finite torkance
(to zeroth order in the magnetization direction [66]), as can be
seen from the absence of the noncentrosymmetric groups 6̄,
6̄2m, and 4̄3m from Table I.

Since the operators for electric and heat current densities
transform identical under all space-time symmetry operations
relevant for solids [62,63], the tensor shapes will stay unaltered
when the electric field is replaced by a temperature gradient.
In other words, the shapes given here apply also for the direct
and inverse thermal spin-orbit torque effect discussed recently
by Géranton et al. [47] and Freimuth et al. [48].

A special remark is in order concerning collinear antiferro-
magnets: here the two spin sublattices can be transformed
into each other by the combination of a spatial operation
plus time reversal, i.e., the lattice belongs to category (c).
Therefore, the tensor shapes of the torkance on the individual
sublattices are described by the tensors t and t ′ in Tables II–VI,
which can—but not necessarily has to—lead to a vanishing net
torkance. However, although there is no net magnetization the
moments of the individual sublattices nevertheless are subject
to local spin-orbit torques provided the magnetic point group
does not contain spatial inversion [65] and can therefore be
switched by an applied electric field [23,24,66].
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TABLE I. Shape of the direct and inverse torkance tensors, t and t ′, for all magnetic point groups of category (b). Note that since these do
not contain time reversal, neither as an element on its own nor in combination with a spatial operation, the two tensors are unconnected and
identical in shape. The third and fourth columns show the electrical conductivity tensor σ and the spin conductivity tensor σ k for polarization
along the principal axis k, respectively, for the corresponding magnetic Laue groups. See Ref. [63] for the two remaining polarization directions
and further details on conventions and notation. Magnetic point groups that allow for the existence of a ferromagnetic state are given in boldface.

Magnetic point group t t ′ Magnetic Laue group σ σ k
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TABLE I. (Continued.)

Magnetic point group t t ′ Magnetic Laue group σ σ k
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Finally, it should be mentioned that the results for the
torkance tensors presented in Tables I–VI have been indepen-
dently checked for a number of systems, including m′m′m,
4/mm′m′, 6/mm′m′, 3̄m′ with vanishing torkance and 1,
1̄′, m′, 2/m′, 2′/m, m′m′2, 4̄2′m′, 3m′, 6̄′2m′, 6/m′m′m′
with finite torkance, by numerical calculations using the
implementation described above.

III. RESULTS

To investigate the impact of chemical disorder and the
ability to tailor the torkance via the alloy composition the
multilayer system Pt|FexCo1−x |Cu has been investigated over
the full range of concentration x (0.01 − 0.99). Figure 1 shows
the hexagonal structure of the model system for which a

TABLE II. Shape of the direct and inverse torkance tensors, t and t ′, for magnetic point groups of category (c). Note that the two tensors
usually differ in shape, depending on which spatial operation(s) is (are) combined with time reversal. The third and fourth columns show the
electrical conductivity tensor σ and the spin conductivity tensor σ k for polarization along the principal axis k, respectively, for the corresponding
magnetic Laue groups. See Ref. [63] for the two remaining polarization directions and further details on conventions and notation. Magnetic
point groups that allow for the existence of a ferromagnetic state are given in boldface. This table contains only groups with a principal axis of
order O(k) � 2 (triclinic, monoclinic, and orthorhombic groups) and is continued in Tables III–VI.
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y
xz

0 σ
y
yy 0

σ
y
zx 0 σ

y
zz

⎞
⎠

2′/m

⎛
⎝ 0 txy 0

tyx 0 tyz

0 tzy 0

⎞
⎠

⎛
⎝ 0 tyx 0

txy 0 tzy

0 tyz 0

⎞
⎠ 2/m1′

⎛
⎝σxx 0 σxz

0 σyy 0
σxz 0 σzz

⎞
⎠

⎛
⎝σ

y
xx 0 σ

y
xz

0 σ
y
yy 0

σ
y
zx 0 σ

y
zz

⎞
⎠

2′2′2

⎛
⎝txx txy 0

tyx tyy 0
0 0 tzz

⎞
⎠

⎛
⎝−txx tyx 0

txy −tyy 0
0 0 −tzz

⎞
⎠ m′m′m

⎛
⎝ σxx σxy 0

−σxy σyy 0
0 0 σzz

⎞
⎠

⎛
⎝σ z

xx σ z
xy 0

σ z
yx σ z

yy 0
0 0 σ z

zz

⎞
⎠

m′m′2

⎛
⎝txx txy 0

tyx tyy 0
0 0 tzz

⎞
⎠

⎛
⎝ txx −tyx 0

−txy tyy 0
0 0 tzz

⎞
⎠ m′m′m

⎛
⎝ σxx σxy 0

−σxy σyy 0
0 0 σzz

⎞
⎠

⎛
⎝σ z

xx σ z
xy 0

σ z
yx σ z

yy 0
0 0 σ z

zz

⎞
⎠

m′m2′

⎛
⎝ 0 txy 0

tyx 0 tyz

0 tzy 0

⎞
⎠

⎛
⎝ 0 −tyx 0

−txy 0 tzy

0 tyz 0

⎞
⎠ m′m′m

⎛
⎝ σxx 0 σxz

0 σyy 0
−σxz 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ z

yx 0 σ z
yz

0 σ z
zy 0

⎞
⎠

m′m′m′

⎛
⎝txx 0 0

0 tyy 0
0 0 tzz

⎞
⎠

⎛
⎝txx 0 0

0 tyy 0
0 0 tzz

⎞
⎠ mmm1′

⎛
⎝σxx 0 0

0 σyy 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

m′mm

⎛
⎝0 0 0

0 0 tyz

0 tzy 0

⎞
⎠

⎛
⎝0 0 0

0 0 tzy

0 tyz 0

⎞
⎠ mmm1′

⎛
⎝σxx 0 0

0 σyy 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠
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TABLE III. Table II continued for tetragonal groups with O(k) = 4.

Magnetic point group t t ′ Magnetic Laue group σ σ k

4′

⎛
⎝txx txy 0

tyx tyy 0
0 0 tzz

⎞
⎠

⎛
⎝−tyy txy 0

tyx −txx 0
0 0 −tzz

⎞
⎠ 4′/m

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝σ z

xx σ z
xy 0

σ z
yx σ z

yy 0
0 0 σ z

zz

⎞
⎠

4̄′

⎛
⎝txx txy 0

tyx tyy 0
0 0 tzz

⎞
⎠

⎛
⎝ tyy −txy 0

−tyx txx 0
0 0 tzz

⎞
⎠ 4′/m

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝σ z

xx σ z
xy 0

σ z
yx σ z

yy 0
0 0 σ z

zz

⎞
⎠

4/m′

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠

⎛
⎝txx −txy 0

txy txx 0
0 0 tzz

⎞
⎠ 4/m1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

4′/m′

⎛
⎝txx txy 0

txy −txx 0
0 0 0

⎞
⎠

⎛
⎝txx txy 0

txy −txx 0
0 0 0

⎞
⎠ 4/m1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

4′22′

⎛
⎝txx 0 0

0 tyy 0
0 0 tzz

⎞
⎠

⎛
⎝−tyy 0 0

0 −txx 0
0 0 −tzz

⎞
⎠ 4′/mmm′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

42′2′

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠

⎛
⎝−txx −txy 0

txy −txx 0
0 0 −tzz

⎞
⎠ 4/mm′m′

⎛
⎝ σxx σxy 0

−σxy σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

4′mm′

⎛
⎝ 0 txy 0

tyx 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 txy 0

tyx 0 0
0 0 0

⎞
⎠ 4′/mmm′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

4m′m′

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠ 4/mm′m′

⎛
⎝ σxx σxy 0

−σxy σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

4̄′2m′

⎛
⎝txx 0 0

0 tyy 0
0 0 tzz

⎞
⎠

⎛
⎝tyy 0 0

0 txx 0
0 0 tzz

⎞
⎠ 4′/mmm′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

4̄′m2′

⎛
⎝ 0 txy 0

tyx 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 −txy 0

−tyx 0 0
0 0 0

⎞
⎠ 4′/mmm′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

4̄2′m′

⎛
⎝txx txy 0

txy −txx 0
0 0 0

⎞
⎠

⎛
⎝−txx txy 0

txy txx 0
0 0 0

⎞
⎠ 4/mm′m′

⎛
⎝ σxx σxy 0

−σxy σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

4/m′m′m′

⎛
⎝txx 0 0

0 txx 0
0 0 tzz

⎞
⎠

⎛
⎝txx 0 0

0 txx 0
0 0 tzz

⎞
⎠ 4/mmm1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

4/m′mm

⎛
⎝ 0 txy 0

−txy 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 −txy 0

txy 0 0
0 0 0

⎞
⎠ 4/mmm1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

4′/m′m′m

⎛
⎝txx 0 0

0 −txx 0
0 0 0

⎞
⎠

⎛
⎝txx 0 0

0 −txx 0
0 0 0

⎞
⎠ 4/mmm1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

stacking of fcc (111) atomic planes along the z axis has been
assumed, using the lattice spacing of Pt (7.408 a0).

To examine the connection of the torkance with other
related response quantities we calculated the electrical and spin
conductivity tensors in addition. Replacing the torque operator
T̂μ in Eq. (1) by the operator ĵμ one gets, apart from some
constants, the corresponding expressions for the electrical
conductivity tensor σ . From this one can see immediately that
the longitudinal conductivities σii are connected only with
the first Fermi surface term in Eq. (1); accordingly they are

determined for T = 0 K by the electronic structure at the
Fermi energy EF while the second Fermi sea term vanishes.
Due to the magnetic Laue group (3̄m′) of the investigated
system the conductivity tensor σ has only the nonvanishing
elements σxx = σyy 	= σzz and σxy = −σyx [63], the well-
known shape of ferromagnetic systems with a principal axis
k of order O(k) � 3 and neither additional purely spatial
rotation axes perpendicular to it, nor vertical mirror planes.
The corresponding results for Pt|FexCo1−x |Cu are shown in
Fig. 2 as a function of the concentration x. As to be expected
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TABLE IV. Table II continued for trigonal groups with O(k) = 3.

Magnetic point group t t ′ Magnetic Laue group σ σ k

3̄′

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠

⎛
⎝txx −txy 0

txy txx 0
0 0 tzz

⎞
⎠ 3̄1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

312′

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠

⎛
⎝−txx −txy 0

txy −txx 0
0 0 −tzz

⎞
⎠ 3̄1m′

⎛
⎝ σxx σxy 0

−σxy σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

31m′

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠ 3̄1m′

⎛
⎝ σxx σxy 0

−σxy σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

3̄′1m′

⎛
⎝txx 0 0

0 txx 0
0 0 tzz

⎞
⎠

⎛
⎝txx 0 0

0 txx 0
0 0 tzz

⎞
⎠ 3̄1m1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

3̄′1m

⎛
⎝ 0 txy 0

−txy 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 −txy 0

txy 0 0
0 0 0

⎞
⎠ 3̄1m1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

TABLE V. Table II continued for hexagonal groups with O(k) = 6.

Magnetic point group t t ′ Magnetic Laue group σ σ k

6′

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠

⎛
⎝−txx txy 0

−txy −txx 0
0 0 −tzz

⎞
⎠ 6′/m′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

6̄′

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠

⎛
⎝txx −txy 0

txy txx 0
0 0 tzz

⎞
⎠ 6′/m′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

6/m′

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠

⎛
⎝txx −txy 0

txy txx 0
0 0 tzz

⎞
⎠ 6/m1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

6′22′

⎛
⎝txx 0 0

0 txx 0
0 0 tzz

⎞
⎠

⎛
⎝−txx 0 0

0 −txx 0
0 0 −tzz

⎞
⎠ 6′/m′mm′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

62′2′

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠

⎛
⎝−txx −txy 0

txy −txx 0
0 0 −tzz

⎞
⎠ 6/mm′m′

⎛
⎝ σxx σxy 0

−σxy σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

6′mm′

⎛
⎝ 0 txy 0

−txy 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 txy 0

−txy 0 0
0 0 0

⎞
⎠ 6′/m′mm′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

6m′m′

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠

⎛
⎝ txx txy 0

−txy txx 0
0 0 tzz

⎞
⎠ 6/mm′m′

⎛
⎝ σxx σxy 0

−σxy σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ σ z

xx σ z
xy 0

−σ z
xy σ z

xx 0
0 0 σ z

zz

⎞
⎠

6̄′2m′

⎛
⎝txx 0 0

0 txx 0
0 0 tzz

⎞
⎠

⎛
⎝txx 0 0

0 txx 0
0 0 tzz

⎞
⎠ 6′/m′mm′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

6̄′m2′

⎛
⎝ 0 txy 0

−txy 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 −txy 0

txy 0 0
0 0 0

⎞
⎠ 6′/m′mm′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

6/m′m′m′

⎛
⎝txx 0 0

0 txx 0
0 0 tzz

⎞
⎠

⎛
⎝txx 0 0

0 txx 0
0 0 tzz

⎞
⎠ 6/mmm1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

6/m′mm

⎛
⎝ 0 txy 0

−txy 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 −txy 0

txy 0 0
0 0 0

⎞
⎠ 6/mmm1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠
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TABLE VI. Table II continued for cubic groups.

Magnetic point group t t ′ Magnetic Laue group σ σ k

m′3̄′

⎛
⎝txx 0 0

0 txx 0
0 0 txx

⎞
⎠

⎛
⎝txx 0 0

0 txx 0
0 0 txx

⎞
⎠ m3̄1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σxx

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ

y
xz 0 0
0 0 0

⎞
⎠

4′32′

⎛
⎝txx 0 0

0 txx 0
0 0 txx

⎞
⎠

⎛
⎝−txx 0 0

0 −txx 0
0 0 −txx

⎞
⎠ m3̄m′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σxx

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ

y
xz 0 0
0 0 0

⎞
⎠

4̄′3m′

⎛
⎝txx 0 0

0 txx 0
0 0 txx

⎞
⎠

⎛
⎝txx 0 0

0 txx 0
0 0 txx

⎞
⎠ m3̄m′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σxx

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ

y
xz 0 0
0 0 0

⎞
⎠

m′3̄′m′

⎛
⎝txx 0 0

0 txx 0
0 0 txx

⎞
⎠

⎛
⎝txx 0 0

0 txx 0
0 0 txx

⎞
⎠ m3̄m1′

⎛
⎝σxx 0 0

0 σxx 0
0 0 σxx

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

for T = 0 K one finds a divergent behavior for the longitudinal
conductivities σxx and σzz in the dilute regime, i.e., when x goes
to 0 or 1, respectively. In both cases the variation with x is rather
symmetric around the composition x = 0.5 as the two alloying
components, Fe and Co, respectively, do not differ too much
concerning their electronic properties in this fcc (111)-like
structure. Apart from this general behavior one notes that
one has σxx > σzz for all concentrations. This is due to the
simple fact that for σxx one has electronic transport parallel to
the atomic layers while σzz implies transport perpendicular to
the layers; the finite conductivity is not only because of the
chemical disorder in the Fe-Co layers but in addition due to a
strong geometrical confinement and corresponding interface
scattering. Figure 2 (top) shows also the conductivity σxx

and σzz calculated without the vertex corrections. As one can
see, this restriction hardly changes the numerical results. This
finding is very typical for transition metal systems with a high
density of states at the Fermi energy implying a short mean free
path length [67]. In contrast to the longitudinal conductivity
σii the transverse conductivity σxy has contributions from
the Fermi surface as well as Fermi sea terms [see Eq. (1)]
when the Kubo-Bastin formula is used (see comment below).
Corresponding results for Pt|FexCo1−x |Cu are shown in the
middle panel of Fig. 2. As one notes, the Fermi surface
and sea contributions are comparable in magnitude but have
opposite sign leading to a partial cancellation. Obviously,
both contributions vary rather smoothly with concentration
and show for the considered concentration range (0.01 � x �
0.99) in contrast for example to the binary alloys FexPd1−x

and NixPd1−x [60] practically no divergent behavior in the
dilute limit (x → 0 or x → 1). As discussed before [60]
a divergent behavior of σxy can be ascribed to a strong
skew scattering contribution that scales with the longitudinal
conductivity σxx [68]. On the other hand, this extrinsic source
for the transverse transport is accounted for by the contribution
to σxy that is connected with the vertex corrections [60].
Inspecting Fig. 2 (middle) that shows results for the Fermi
surface contribution to σxy obtained with and without the
vertex corrections, one finds that these give rise only to minor
corrections throughout the considered concentration regime.
With the skew scattering mechanism being negligible and the
intrinsic contribution dominating the system is obviously in

the so-called dirty regime [68,69]. Considering the Fermi sea
contribution to σxy (Fig. 2, middle) one finds no impact of the
vertex corrections at all. This is fully in line with the findings
of Turek et al. [70] who could show that this property has
to be fulfilled for formal reasons within the TB-LMTO-CPA
formalism. As a consequence, this implies that the skew
scattering mechanism is, as to be expected, connected only
to the Fermi surface contribution to σxy. This is a seemingly
trivial precondition to get the full skew scattering contribution
to σxy when performing Boltzmann type of calculations for
the dilute regime that are restricted to the Fermi energy EF

[71]. In fact, this is to be expected because for the electrical
conductivity tensor it is possible for the case T = 0 K to go
from the Kubo-Bastin to the Kubo-Středa equation that has
only contributions from the Fermi surface [51,72], i.e., the
Fermi sea term can be eliminated exactly.

Considering the spin conductivity tensor the nonvanishing
tensor elements σ k

ij can again be found from symmetry

FIG. 1. Structure of the investigated multilayer system
Pt|FexCo1−x |Cu consisting of a stacking of fcc (111) planes along
the z axis. Cu atoms are colored in blue, FexCo1−x sites in red, and
Pt atoms are represented in light gray.

054415-8

Chapter 3. Results 235



FULLY RELATIVISTIC DESCRIPTION OF SPIN-ORBIT . . . PHYSICAL REVIEW B 94, 054415 (2016)

0 0.2 0.4 0.6 0.8 1
x

0

2

4

6

8

σ 
(1

0-6
Ω

 c
m

)-1

σxx (NV)
σxx (VC)
σzz (NV)
σzz (VC)

Pt | FexCo1-x | Cu

0 0.2 0.4 0.6 0.8 1
x

-6

-4

-2

0

2

4

6

8

σ xy
 (1

0-3
Ω

 c
m

)-1

sea (NV)
sea (VC)
surf (NV)
surf (VC)
tot (NV)
tot (VC)

0 0.2 0.4 0.6 0.8 1
x

-8

-6

-4

-2

0

2

4

6

σz xy
 (1

0-3
Ω

 c
m

)-1

sea (NV)
sea (VC)
surf (NV)
surf (VC)
tot (NV)
tot (VC)

FIG. 2. Top: the longitudinal components σxx = σyy and σzz

of the conductivity tensor σ of Pt|FexCo1−x |Cu as a function of
the concentration x. Middle: the corresponding anomalous Hall
conductivity σxy = −σyx. Bottom: the spin Hall conductivity σ z

xy =
−σ z

yx. Open symbols represent calculations without vertex corrections
(NV) and filled symbols those including vertex corrections (VC). The
blue squares correspond to the Fermi sea contribution (sea), the green
diamonds represent contributions from the Fermi surface (surf), and
red circles give the total result (tot).

considerations [63]. Restricting here to the z component
of the spin polarization one has the nonvanishing elements
σ z

xx = σ z
yy 	= σ z

zz and σ z
xy = −σ z

yx, i.e., σ z has the same shape
as σ . Comparing the corresponding numerical results for the

transverse spin conductivity shown in the lower panel of Fig. 2
with their counterparts connected with the transverse conduc-
tivity σxy one finds a very similar behavior in the investigated
concentration regime as follows. (i) The Fermi sea and surface
contributions are comparable in magnitude but have different
sign leading to a partial cancellation. (ii) The individual
terms vary only slightly with concentration without showing
a pronounced divergent behavior in the investigated range
(0.01 � x � 0.99). (iii) The Fermi surface contribution shows
a very weak impact of the vertex corrections. (iv) The Fermi sea
contribution is hardly affected at all by them . The findings (iii)
and (iv) again imply that the extrinsic contributions and with
this the skew scattering contribution are very small. Finding
(iv) that so far has been demonstrated only numerically is now
(in contrast to the case of the electrical conductivity) by no
means trivial. While the use of a Kubo-Středa-like equation for
σ z

xy turned out to be very successful when applied to metallic
alloys [61], it nevertheless has to be seen as approximate
[73]. For that reason the finding that there are hardly any
vertex corrections to the Fermi sea part but essentially only for
the Fermi surface part is now an important precondition for
getting all relevant skew scattering contributions to σ z

xy when
performing calculations exclusively at the Fermi surface, e.g.,
based on the Boltzmann equation [71,74,75].

For the magnetization along the z axis Pt|FexCo1−x |Cu has
the magnetic point group 3m′ [76] leading to an antisymmetric
torkance tensor with nonvanishing elements txx = tyy 	= tzz and
txy = −tyx (see third row of Table IV). Actually, because of the
restrictions imposed by the form of the torque operator given
in Eq. (2) the element tzz that would represent a change in the
magnitude of the magnetic moment along the z direction does
not show up in the calculations. This impact of an external
electric field has to be considered as a direct manifestation of
the Edelstein effect [77,78] and can be described by a response
quantity formulated appropriately. To this end, the torque
operator in Eq. (2) has to be replaced by βσ , the bare spin
polarization operator. Accordingly, the difference between the
two response phenomena only lies in the interaction with the
local magnetization, if present [79]. The top panel of Fig. 3
gives the numerical results for the diagonal torkance element
txx. As one can see, it has many properties in common with the
longitudinal conductivity σxx as follows. (i) There is no Fermi
sea contribution. (ii) It shows a divergent behavior in the dilute
limit x → 0 or x → 1, respectively. (iii) The variation with
composition is moreover again quite symmetric around the
equiatomic center. (iv) Finally, as for σxx, we find only a very
weak impact of the vertex corrections on the Fermi surface con-
tribution that furthermore does not significantly increase to-
wards the pure limits. This implies that there are no significant
contributions due to skew scattering or the side-jump mecha-
nism and accordingly the odd torkance txx is dominated by the
intrinsic contribution. As a consequence, this torkance tensor
element will only to a very limited extent be accessible by
calculations based on the Boltzmann formalism. Considering
txy one finds from Figs. 2 and 3 that this tensor element behaves
much like σxy and σ z

xy as follows. (i) The Fermi sea and surface
contributions are quite comparable in magnitude but have
different sign leading to a partial cancellation. (ii) Both parts
are weakly concentration dependent with a more pronounced
variation for the Fermi surface term on the Co-rich side. (iii)
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FIG. 3. Top: the longitudinal component txx = tyy of the SOT
depending on the concentration. Bottom: the transverse component
txy = −tyx of the SOT depending on the concentration. Use of symbols
and colors as in Fig. 2. The black dotted line represents the total spin
conductivity σ x

zy in (10−3 � cm)−1 including vertex corrections.

The Fermi surface contribution shows a very weak impact
of the vertex corrections. (iv) The Fermi sea contribution is
almost unaffected by them. Again, from (iii) and (iv) one may
conclude that the extrinsic contributions due to, e.g., the skew
scattering are very small. As for txx, calculations based on the
Boltzmann formalism are only able to account for this minor
contribution to txy. The comparable concentration dependence
of the spin “Hall” conductivity σ x

zy = −σ
y
zx (black dotted line

in Fig. 3, bottom) and the even torkance txy seems to support
previous suggestions that they are intimately connected [80].

The first ab initio investigations on the spin-orbit torque
by Freimuth et al. [42,43] were dealing among others
with Co/Pt(111) having the same symmetry as the system
Pt|FexCo1−x |Cu considered here. As shown by these authors,
the mirror planes perpendicular to the atomic layers imply the
txx and txy to be odd and even, respectively, under reversal of
the magnetization direction, i.e., one has txx(m) = −txx(−m)
and txy(m) = txy(−m). Our numerical results are fully in
line with this basic symmetry restriction. Freimuth et al.
also used the Kubo-Bastin formalism, however, with the
Green function represented in terms of Bloch functions and
energy eigenvalues. This restricted the investigation to the
very dilute limit with the impact of chemical or structural

disorder represented by a broadening parameter �. Calculating
the diagonal torkance element txx as a function of � leads in
the limit � → 0 to a divergent behavior. This is obviously in
full accordance with the CPA results shown in Fig. 3 (top) that
also show a divergence for the concentration x → 0 or x → 1,
implying that the major impact of disorder on the diagonal
torkance is essentially independent of the impurity type and
does not arise due to the vertex corrections. Accordingly, the
relevant aspect appears to be the lifetime broadening that
is sufficiently well accounted for within the framework of
the Gaussian disorder model used by Freimuth et al. [43].
A qualitative agreement between the two approaches in the
dilute limit is also observed for the off-diagonal element txy.
While txy given in Fig. 3 appears to vary between two finite
values for pure Co (x = 0) and Fe (x = 1), without any sign
of divergence in the considered composition regime, txy of
Co/Pt(111) as calculated by Freimuth et al. [43] as a function
of the broadening parameter takes a constant and finite value
in the limit � → 0. This suggests that in the dilute limit both
approaches give access to the intrinsic contribution to the
torkance. Concerning the decomposition of the torkance into
Fermi sea and Fermi surface contributions, the results in Fig. 3
are again in qualitative agreement with the findings of Freimuth
et al. [42,43]: the odd torkance element txx (top) has no
Fermi sea contribution, whereas to the even txy (bottom) both
Fermi sea and Fermi surface contribute significantly. Finally,
as suggested before—amongst others by the aforementioned
authors—the similar composition dependence of txy and the
spin conductivity σ x

zy seems to support at least in part the
notion “spin Hall” torque.

IV. CONCLUSIONS

In summary, based on Kubo’s linear response formalism,
the symmetry and magnitude of spin-orbit torques in met-
als and alloys can be investigated using group-theoretical
considerations for the former and an implementation of the
Kubo-Bastin formula for the torkance in a multiple-scattering
framework for the latter. The resulting tensor shapes for direct
and inverse torkance for all magnetic point groups allowing
for locally finite magnetization, as in ferro-, ferri-, as well as
antiferromagnets, have been presented. The former have been
independently confirmed for a number of systems by numerical
calculations. For nonmagnetic point groups, i.e., neglecting
the antiunitary operations involving time-reversal altogether,
Železný et al. [66] obtained results for the direct torkance
that are completely in line with Table I. By investigating
the concentration dependence of two symmetrically distinct
tensor elements in an fcc (111) trilayer system, contact and
extensions could be made to previous work concerning the
various contributions to the SOT and possible underlying
mechanisms. While the odd torkance was found to bear a
striking resemblance to the electrical conductivity concerning
its dependence on the alloy composition in the ferromagnetic
layer, the even component could be demonstrated to behave
more like the transverse transport properties anomalous and
spin Hall conductivity. The key advantage of the CPA alloy
theory over simpler models of disorder is the possibility to
calculate material-specific parameters very efficiently, paving
the way for a computational materials design approach to
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direct and inverse spin-orbit torques. As has been shown, the
electronic contribution to the corresponding thermally induced
phenomena, direct and inverse thermal spin-orbit torques,
can in principle be calculated from the torkance employing
a Mott-like expression. Future work will focus on the close
connection between direct and inverse SOTs to the direct and
inverse Edelstein effects as well as spin conductivities.
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[72] P. Středa, J. Phys. C 15, L717 (1982).
[73] D. Ködderitzsch, K. Chadova, and H. Ebert, Phys. Rev. B 92,

184415 (2015).
[74] M. Gradhand, D. V. Fedorov, P. Zahn, and I. Mertig, Phys. Rev.

B 81, 020403 (2010).
[75] C. Herschbach, D. V. Fedorov, I. Mertig, M. Gradhand, K.

Chadova, H. Ebert, and D. Ködderitzsch, Phys. Rev. B 88,
205102 (2013).

[76] More precisely 31m′ or 3m′1, depending on the axis convention
for the corresponding space group. Results for the former are
given here; the tensors for the other can be obtained by a rotation
of the coordinate system by π/2 around the principal axis. See
Ref. [63] for details .

[77] A. G. Aronov and Y. B. Lyanda-Geller, JETP Lett. 50, 431
(1989).

[78] V. M. Edelstein, Solid State Commun. 73, 233 (1990).
[79] The close connection between spin-orbit torques and the

Edelstein effect has already been mentioned earlier [3–5] and we
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The composition-dependent behavior of the Dzyaloshinskii–Moriya interaction (DMI), the spin-orbit torque
(SOT), as well as anomalous and spin Hall conductivities of Mn1−xFexGe alloys have been investigated by
first-principles calculations using the relativistic multiple scattering Korringa–Kohn–Rostoker (KKR) formalism.
The Dxx component of the DMI exhibits a strong dependence on the Fe concentration, changing sign at x ≈ 0.85
in line with previous theoretical calculations as well as with experimental results demonstrating the change of spin
helicity at x ≈ 0.8. A corresponding behavior with a sign change at x ≈ 0.5 is predicted also for the Fermi-sea
contribution to the SOT, because this is closely related to the DMI. In the case of anomalous and spin Hall effects
it is shown that the calculated Fermi-sea contributions are rather small and the composition-dependent behavior
of these effects are determined mainly by the electronic states at the Fermi level. The spin-orbit-induced scattering
mechanisms responsible for both these effects suggest a common origin of the minimum of the anomalous Hall
effect and the sign change of the spin Hall effect conductivities.

DOI: 10.1103/PhysRevB.97.024403

I. INTRODUCTION

During the last decade skyrmionic magnetic materials
have moved into the focus of scientific interest because their
unique properties hold promise for various applications in
magnetic storage and spintronic devices [1]. The key role
for the formation of a skyrmion magnetic texture is played
by the Dzyaloshinskii–Morirya interaction (DMI) [2,3]. Its
competition with the isotropic exchange interaction, magnetic
anisotropy, and the Zeeman interaction in the presence of an
external magnetic field determines the size of skyrmions and
the region of stability in the corresponding phase diagram.
Another important characteristic feature of skyrmions is their
helicity (i.e., the spin spiraling direction), which is determined
by the orientation of the involved Dzyaloshinskii–Morirya
interaction vectors and can be exploited as an additional degree
of freedom for the manipulation of skyrmions [4–6]. The
correlation between the skyrmion helicity and crystal chirality
has already been discussed in the literature [7,8]. Recent
experiments have demonstrated in addition a change of the
skyrmion helicity with the chemical composition in the case of
B20 alloys [9,10] while the crystal chirality was unaltered. This
finding opens an alternative possibility for DMI engineering
in order to manipulate the skyrmion helicity.

This holds particularly true for the Mn1−xFexGe alloy
system which is in the center of interest for the present
investigation. Experimentally, it was found [9,11] that the
size of skyrmions in this material can be tuned by changing
the Fe concentration, reaching a maximum at x ∼ 0.8 [11],
i.e., at the concentration when the skyrmion helicity changes
sign without a change of the crystal chirality. This behavior
was investigated theoretically [12,13] via first-principles
calculations of the DMI and analyzing the details of the
electronic structure that may have an influence on it. Gayles
et al. [12] have demonstrated that the sign of the DMI in
Mn1−xFexGe can be explained by the relative positions in
energy of the d

↑
xy and d

↓
x2−y2 states of Fe which change

when the Fe concentration increases above x ∼ 0.8. As a
consequence, a flip of the chirality of the magnetic texture
occurs. Similar conclusions have been drawn by Koretsune
et al. [13]. While these calculations have been done by treating
chemical disorder within the virtual crystal approximation
(Ref. [12]) or even by employing the rigid-band approximation
(Ref. [13]), the present work is based on the coherent-potential
approximation (CPA) alloy theory, which should give more
reliable results for the electronic structure of disordered alloys.

In addition we investigate the concentration dependence
of the response properties connected to spin-orbit coupling
(SOC) in the presence of an applied electric field, i.e., the
spin-orbit torque (SOT), the anomalous Hall effect (AHE),
and the spin Hall effect (SHE), because these are important
for practical applications. Especially, we focus on the SOT,
expecting common features with the DMI according to recent
findings by Freimuth et al. [14].

This article is organized as follows: We start with theoretical
details on the formalisms employed to calculate DMI param-
eters and linear-response coefficients from first principles in
Sec. II. Results for the Mn1−xFexGe alloy system are presented
and discussed in Sec. III, subdivided into Dzyaloshinskii–
Morirya interaction (III A), spin-orbit torque (III B), anoma-
lous and spin Hall conductivity (III C), and symmetry consid-
erations (III D). We conclude with a brief summary in Sec. IV.
Additional derivations connected to the expressions in Sec. II
are given in the appendix.

II. THEORETICAL DETAILS

All calculations were performed by using the fully rel-
ativistic Korringa–Kohn–Rostoker (KKR) Green’s function
method [15,16] within the framework of local spin-density
approximation (LSDA) to density functional theory (DFT) and
the parametrization scheme for the exchange and correlation
potential as given by Vosko et al. [17]. A cutoff lmax = 3
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was used for the angular-momentum expansion of the Green’s
function. The chemical disorder was treated within the
coherent-potential approximation (CPA) alloy theory [18,19].

To investigate the composition-dependent behavior of the
skyrmion size and helicity observed in experiment, we have
calculated the Dxx element of the micromagnetic DMI tensor
as a function of Fe concentration x. As was demonstrated
previously [20], this quantity can be calculated in two dif-
ferent ways: Either by performing a direct evaluation of the
expression

Dμν = 1

π
Re Tr

∫ EF

dE(E − EF)

× 1

�BZ

∫
d3k

[
O(E)τ (k,E)T μ(E)

∂

∂kν

τ (k,E)

− T μ(E)τ (k,E)O(E)
∂

∂kν

τ (k,E)

]
, (1)

with the overlap integrals and the matrix elements of the torque
operator T̂μ = β[σ × ẑ]μBxc(r) [21],

[O]��′ =
∫

�

d3rZ×
�(r,E)Zj

�′(r,E),

(2)

[T μ]��′ =
∫

�

d3rZ×
�(r,E)T̂μZ

j

�′(r,E),

or by using the interatomic D
ij
μ interactions

Dμν =
∑
ij

Dij
μ (Rj − Ri)ν, (3)

which are calculated in an analogous way [20].
The current-induced torkance [22] and the anomalous [23]

and spin [24] Hall conductivities were calculated within the
Kubo linear-response formalism using the expression

Rμν = RI
μν + RII

μν

= − h̄

4π�

∫ ∞

−∞

df (E)

dE
Tr〈B̂μ(Ĝ+ − Ĝ−)ÂνĜ

−

− B̂μĜ+Âν(Ĝ+ − Ĝ−)〉dE + h̄

4π�

∫ ∞

−∞
f (E)

×Tr

〈(
B̂μĜ+Âν

dĜ+

dE
−B̂μ

dĜ+

dE
ÂνĜ

+
)

− ([· · · Ĝ− · · · ])

〉
dE, (4)

where RI
μν and RII

μν are the Fermi-surface and Fermi-sea
contributions, respectively. The operator Âν representing in
all three cases the perturbation is the electric current-density
operator ĵν = −|e|cαν . For the calculations of the anomalous
Hall conductivity one has for the response B̂ = Â, for the
spin Hall conductivity B̂ = P̂Â with the relativistic spin-
polarization operator P̂ [25,26], while for the calculations of
the spin-orbit torkances tμν the torque operator B̂μ = T̂μ has
to be used. Additional calculations for the Fermi-sea torkance
have been performed by following the relationship between
this quantity and the DMI parameters as suggested by Freimuth
et al. [14]. In line with Eq. (2), these calculations were based

on the expression

t sea
μν = − e

π
Re Tr

∫ EF

dE

× 1

�BZ

∫
d3k

[
O(E)τ (k,E)T μ(E)

∂

∂kν

τ (k,E)

− T μ(E)τ (k,E)O(E)
∂

∂kν

τ (k,E)

]
, (5)

which obviously differs, apart from prefactors, from Eq. (2)
only by the weighting factor (E − EF). Both expressions for
t sea
μν should be equivalent, as can be demonstrated for the

particular case of a translationally invariant system. In this
case the relationship between Eq. (6) and the Fermi-sea term
t sea
μν in Eq. (4) can be established by using the expression for

the group velocity suggested by Shilkova and Shirokovskii
discussed below [27–29] (see Sec. A).

Alternatively, we have

tμν =
∑
ij

t ijμ (Rj − Ri)ν, (6)

with the interatomic torkance terms

t ijμ = −
( e

2π

)
Im Tr

∫ EF

dE
∑

�1�2�3�4

× [
O

j

�4�1
(E)τ ji

�1�2
(E)T i

μ,�2�3
(E)τ ij

�3�4
(E)

−Oi
�4�1

(E)τ ij

�1�2
(E)T j

μ,�2�3
(E)τ ji

�3�4
(E)

]
, (7)

which are obtained in analogy to the interatomic DMI param-
eters.

III. RESULTS AND DISCUSSION

A. Dzyaloshinskii–Moriya interaction

In the following we first focus on the behavior of the DMI
in Mn1−xFexGe as a function of Fe concentration x. The
dependence of the DMI parameter Dxx(x) on x is plotted in
Fig. 1(a) in comparison with available theoretical results from
other groups [12,30]. The results calculated by using an explicit
expression for Dxx derived recently [20] are given by open
diamonds, while those based on the interatomic interaction
parameters Dij are given by solid circles. Although the latter
value has contributions only from the Dij

Fe-Fe, Dij

Mn-Mn, and
Dij

Fe-Mn interatomic DMI pair interaction terms, both results
are in very good agreement with each other. They also fit
reasonably well to the theoretical results by other groups shown
by dashed [12] and dashed-dotted [30] lines. The deviations
between these and the present work are most likely caused by
the different approach used to treat the chemical disorder in
the alloy. As was mentioned above, the CPA alloy theory was
used in the present work, while the previous results [12,30]
have been obtained by using the so-called virtual crystal
approximation. As follows from Fig. 1(a), Dxx(x) changes sign
at x ≈ 0.8, in line with the experimental observation [11]. A
very similar concentration dependence is also observed for the
Dyy(x) component (open squares). The deviation from Dxx(x),
which is allowed by crystal symmetry (see Sec. III D), is itself a
function of x but small throughout. From the element-projected
plots shown in Fig. 1(b) one can see that DFe

xx(x) and DMn
xx (x)

024403-2

242 3.5. Spin-orbit torque & Edelstein effect



COMPOSITION-DEPENDENT MAGNETIC RESPONSE … PHYSICAL REVIEW B 97, 024403 (2018)

0 0.2 0.4 0.6 0.8 1
xFe

-15

-10

-5

0

5

10

15

D
  (

m
eV

·Å
)

Dxx  via Dx
ij (Eq. (3))

Dxx via micromagn. DMI (Eq. (1))
Dyy via micromagn. DMI (Eq. (1))
Gayles et al. [12]
Kikuchi et al. [30]

Mn1-xFexGe

(a)

0 0.2 0.4 0.6 0.8 1
xFe

-15

-10

-5

0

5

10

15

D
xx

  (
m

eV
·Å

)

Mn - (Mn,Fe)
Fe - (Mn,Fe)
(Mn,Fe) - (Mn,Fe)

Mn1-xFexGe

(b)

FIG. 1. (a) Results for Dxx(x) in Mn1−xFexGe calculated by
using Eq. (3) (circles) and for Dxx(x) (diamonds) and Dyy(x)
(empty squares) calculated by using using Eq. (2) in comparison
with the results of other calculations from Ref. [12] (filled squares)
and Ref. [30] (triangles). (b) The element-resolved Dzyaloshinskii–
Moriya interaction in Mn1−xFexGe DMn

xx (triangles up) and DFe
xx

(triangles down). The total Dxx(x) function is again shown as circles
as in panel (a).

have their maxima at a different Fe concentration, i.e., at
x ≈ 0.3 and x ≈ 0.6 for Fe and Mn, respectively. As one
notes, DFe

xx(x) changes its sign at x ∼ 0.8 if x increases, while
DMn

xx (x) does not change sign. In the case of the DMI strength
approaching zero, the system exhibits a ferromagnetically
(FM) ordered structure. Grigoriev et al. [11] have reported
the experimentally measured Curie temperature TC = 234.3
K for the Mn1−xFexGe alloy at x = 0.75. The Curie temper-
ature calculated via Monte Carlo simulations in the present
work for x = 0.8 is TC ≈ 290 K, slightly overestimating the
experimental value. Note however, that these calculations are
based on exchange coupling parameters calculated for the FM
reference state at T = 0 K, while more accurate results require
calculations based on the magnetically disordered state, which
can be performed within the so-called disordered local moment
(DLM) scheme [31,32].

The observed concentration dependence of the DMI was
associated in the literature [12,13,30] with specific features
of the electronic structure and their modification with the
Fe concentration x. Figure 2 shows corresponding results
of electronic structure calculations making use of the CPA
alloy theory, i.e., the spin- and element-resolved density of

states (DOS) on Mn [Fig. 2(a)] and Fe [Fig. 2(b)] sites in
Mn1−xFexGe for the three different concentrations x = 0.1,
0.5, and 0.9. As one can see in the bottom panels, the
occupied majority-spin states of Mn and Fe are very close
to each other and hardly depend on the Fe concentration.
Obviously, chemical disorder has only a weak impact for this
spin subsystem, leading to a rather weak disorder-induced
smearing of the energy bands. This can be seen as well in
Figs. 3(c) and 3(d), which show the Bloch spectral function
for majority-spin states in Mn0.9Fe0.1Ge and Mn0.1Fe0.9Ge,
respectively. On the other hand, the different exchange splitting
for the electronic states on Mn and Fe sites leads to different
positions for their minority-spin states and as a consequence to
a pronounced disorder-induced smearing of the energy bands
for the disordered Mn1−xFexGe alloys. Again this can be
seen in the upper panels of Figs. 2(a) and 2(b), as well as
in Figs. 3(a) and 3(b), showing the Bloch spectral function for
minority-spin states in case of x = 0.1 and 0.9, respectively.
Moreover, the exchange splitting for Fe and Mn both decreases
upon increasing the Fe concentration. As a consequence, the
Fe and Mn spin magnetic moments decrease simultaneously,
as can be seen in Fig. 4.

Figure 2 indicates that the concentration-dependent modi-
fication of the electronic structure has twofold character. First,
the Fe minority-spin d

↓
x2−y2 states move down in energy from

their position above the Fermi level at small Fe concentration
[x = 0.1, solid line in Fig. 2(b)] to a position below the Fermi
energy at high Fe content [x = 0.9, dashed line in Fig. 2(b)].
Additionally, a weak shift of the majority-spin d

↑
xy states of Fe

towards the Fermi energy can be observed. This behavior, as
discussed previously [12,13], leads to a sign change of the Fe-
projected as well as the total DMI at x ∼ 0.8. At the same time,
Fig. 2(a) shows that the minority-spin d

↓
x2−y2 states of Mn stay

essentially unoccupied over the whole concentration range. As
a consequence, DMn

xx (x) does not exhibit any sign changes. As
the positions of the element-projected minority-spin states of
Fe and Mn are rather different (see Fig. 2), the increase of
the contributions of minority-spin Fe states with increasing x

in parallel with the decreasing contribution of corresponding
Mn states leads for the alloy system to an apparent shift of
the electronic energy bands. According to Refs. [12,13], this
should also lead to a sign change of the DMI parameter.

Finally, it is worth mentioning that there are different trends
in the behavior of the DMI parameter in the Mn-rich limit when
comparing theoretical results (both present and previous) with
experimental data [11]. As was remarked by Gayles et al. [12],
the origin of this difference is not clear and the authors suggest
certain mechanisms to be responsible for that. We would
like to add here that the micromagnetic DMI components
are the results of a summation of pair interactions over all
neighbors. Although the Mn-Mn DMI have in general even
larger magnitude than the Fe-Fe interactions, their summation
leads to a small total DMI due to their oscillating behavior
as a function of distance. This leads in the case of MnGe to
a significant compensation of all contributions. For a more
realistic description of the experimental situation at finite
temperature, involving in particular noncollinear spin texture,
Monte Carlo simulations based on atomistic spin models might
be important [33].
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FIG. 2. The spin- and element-resolved DOS on (a) Mn and (b) Fe atoms in Mn1−xFexGe for x = 0.1, 0.5, and 0.9.

B. Spin-orbit torque

The torkance tensor element txx(x) representing the spin-
orbit torque (SOT) calculated for Mn1−xFexGe within the
Kubo formalism [22] is represented in Fig. 5(a) by filled
squares. In contrast to Dxx(x), it changes sign three times
when x increases. However, one has to note that this behavior
is caused by two contributions to the torkance, showing a
quite different concentration dependence: the Fermi-surface
contribution from electronic states at the Fermi energy (open
circles) and the Fermi-sea contribution due to all states below
the Fermi energy (filled circles). Both contributions vary
nonmonotonically with x and both change sign at x ∼ 0.5,

having however an opposite slope in the vicinity of this
point. As a consequence, their combination leads to a partial
cancellation in the total torkance that has a completely different
concentration dependence when compared with the individual
contributions.

Despite similarities in the behavior of Dxx(x) and the Fermi-
sea torkance t sea

xx (x), they change sign at different x values (0.8
and 0.5, respectively). To make a more detailed comparison,
we calculate the Fermi-sea torkance by using the expressions
in Eqs. (5) and (6). The results are plotted in Fig. 5(b) (triangles
and squares, respectively) in comparison with the results
based on the linear-response expression Eq. (4) (circles),
demonstrating good agreement between all three types of

FIG. 3. The spin-resolved Bloch spectral function in Mn0.9Fe0.1Ge and Mn0.1Fe0.9Ge for (a), (b) minority- and (c), (d) majority-spin states,
respectively.
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calculations. The difference in the concentrations when the
Dxx(x) and t sea

xx (x) functions change sign can obviously be
attributed to the weighting factor (E − EF) in the expression
for the DMI [20], which results in a different energy region
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as its Fermi surface (empty circles) and Fermi sea (filled circles)
contributions in Mn1−xFexGe calculated via the Kubo–Bastin for-
malism [Eq. (4)]. (b) Comparison of Fermi-sea contribution to the
torkance calculated via Eq. (4) (circles) with results obtained using
the expressions (5) (triangles) and (6) (squares).
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for the dominating contributions to the Dxx(x) function when
compared with the torkance term t sea

xx (x). This is demonstrated
in Fig. 6, which gives the energy-resolved DMI parameter and
the Fermi-sea torkance for two different Fe concentrations.
In addition, note that the contributions to t sea

xx (x) associated
with the alloy components Mn and Fe, shown in Fig. 5(b)
by dashed and dash-dotted curves, change sign at different
concentrations x. Nevertheless, because of the strong exchange
interaction between these two components located on the same
sublattice, one has to discuss the component-averaged torkance
when considering the SOT in the alloy.

Finally, considering the Fermi-surface and Fermi-sea con-
tributions to the SOT separately in the pure limits, i.e., for
the MnGe and FeGe compounds [see Fig. 5(a)], one finds
a different sign for these contributions. This allows us to
conclude that the intrinsic torkance is mainly responsible
for the sign change of the SOT when the Fe concentration
changes from 0 to 1. It is determined by the characteristics of
the electronic structure discussed above. On the other hand,
in the case of disordered Mn1−xFexGe alloys the extrinsic
contributions to the SOT cannot be completely neglected.
Although small and only relevant at the Fermi surface, they
are responsible together with the intrinsic contribution for the
concentration dependence of the SOT and jointly determine
the exact composition at which the torkance changes its sign.

C. Anomalous and spin Hall conductivity

To have a more complete picture of the SOC-induced
response to an external electric field in Mn1−xFexGe, we briefly
discuss the corresponding results for the transport-properties
anomalous Hall effect (AHE) and spin Hall effect (SHE) (see,
e.g., Refs. [35,36], respectively). As is the case for the current-
induced spin-orbit torkance, these phenomena are caused by
a SOC-induced spin asymmetry in the electron scattering.
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FIG. 7. (a) Anomalous Hall conductivity calculated for
Mn1−xFexGe via the CPA–Kubo–Bastin formalism (circles),
compared with calculations using the Berry-curvature approach
and the virtual crystal approximation [12] (triangles), and with
low-temperature experimental data (squares) [34]. (b) Anomalous
Hall coefficient calculated via the Kubo–Bastin equation (circles)
compared with experimental data at 50 K (squares) [34].

Because of this, one can expect certain correlations concerning
their composition-dependent behavior.

For the investigated alloy system Mn1−xFexGe, the anoma-
lous Hall conductivity (AHC) σxy calculated within the Kubo–
Bastin formalism [Eq. (4)] is given in Fig. 7(a) as full circles. As
can be seen, σxy does not change sign in going from MnGe to
FeGe, in agreement with previous first-principles calculations
[12] and experiment [34]. Note that the chemical disorder is
treated on fundamentally different levels in the two theoretical
approaches. While the present work employs the coherent-
potential approximation, the results of Ref. [12] are based on
the virtual crystal approximation. This difference should be
mainly responsible for the deviations between the two sets
of theory data visible in the upper panel of Fig. 7, which are
most pronounced on the Fe-rich side of the concentration range
where even the signs appears to differ. As shown later, however,
this is not due to the extrinsic or incoherent contributions.
Unfortunately, reliable experimental data in this region could
not be obtained because both the Hall and the longitudinal
resistivity are small under the experimental conditions [34].

Comparison of the anomalous Hall coefficient SH = σxy/μ

to the experimental results of Kanazawa et al. [34] in the
lower panel of Fig. 7 shows good agreement for the Mn-rich
side of the concentration range (except for pure MnGe, see
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FIG. 8. (a) Anomalous and (b) spin Hall conductivities σxy and
σ z

xy , respectively, as functions of x in Mn1−xFexGe calculated via
the Kubo–Bastin formalism. Fermi- surface contributions are given
in red, those from the Fermi sea in blue, and their sum in black.
The superscripts 0 and 1 indicate on- and off-site terms. Results for
the latter are shown excluding (NV) and including vertex corrections
(VC).

below), while deviations on the Fe-rich side are quite large.
Here one should note that the measurements were performed
at 50 K while the calculations assume T = 0 K, meaning in
particular perfect ferromagnetic order. As can be seen in Fig. 3
of Ref. [34], the temperature dependence of magnetization as
well as anomalous Hall conductivity is quite substantial for
MnGe and even more so for FeGe. As mentioned above for
the anomalous Hall conductivity, the experimental uncertainty
is in addition rather high in the pure-Fe limit. For a more
detailed understanding of these discrepancies investigations
including the effects of finite temperature, sample geometry,
and noncollinear magnetic structure are necessary.

Having a closer look at the Kubo–Bastin equation (4),
one can decompose the full response coefficient into several
contributions with distinct physical meaning. Most obviously,
the two terms RI

xy and RII
xy differ in the absence or presence of

contributions from occupied states below the Fermi level, i.e.,
these are the Fermi-surface and Fermi-sea terms, respectively.
They are plotted in Fig. 8(a) in red (Fermi surface) and blue
(Fermi sea), further decomposed into on-site (surf0 and sea0,
crosses) and off-site (surf1 and sea1, squares and triangles,
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respectively) contributions. For the latter results are shown
once excluding (NV, empty symbols) and once including
the so-called vertex corrections (VC, full symbols) arising
from the difference in the product of configuration-averaged
Green’s functions versus the configuration average of the
product. These give rise to the so-called extrinsic or incoherent
contribution and are connected to the scattering-in term of the
Boltzmann equation [37].

Comparing now the various terms, one first of all notices
that on-site terms are large [note that they are scaled by a factor
of (−)0.1], opposite in sign and almost identical in magnitude,
leading to an almost perfect cancellation. Turning to the off-site
terms one observes a similar concentration dependence and
a dominance of the Fermi-surface contribution, except for
x 
 0.1 and at the Fe-rich side of the concentration range.
This means that the anomalous Hall conductivity is dominated
by the states at the Fermi level, in particular for intermediate
concentrations. Obviously, already for this reason a clear cor-
relation between anomalous Hall coefficient and DMI strength,
as suggested by Kanazawa et al. [34], is not supported by our
findings. Finally, the vertex corrections are, as observed before
[22,38,39], only relevant for the Fermi-surface term and in this
system only noticeable in the dilute limits, particularly on the
Fe-rich side. Note that, as discussed before, there the density of
states at the Fermi level is largest and has predominantly d-like
character. Interestingly, the seemingly diverging behavior for
x → 0 (1) is not caused by the extrinsic contribution [24].

Because the same spin-dependent scattering mechanisms
are responsible for the SHE and AHE, both, transverse spin and
charge currents can be present in the FM-ordered Mn1−xFexGe
system. However, in contrast to σxy , the transverse spin con-
ductivity σ z

xy shown in Fig. 8 (bottom) does change its sign at
x ∼ 0.7. Thus, the total transverse current should be dominated
by opposite spin characters in these limits. Interestingly, the
AHC has a minimum of its absolute value close to the Fe
concentration corresponding to the sign change of the SHC.
In fact, the Fermi-sea contributions to σxy and σ z

xy as well
as both on-site terms behave very similarly over the entire
concentration range, whereas the Fermi-surface contributions
agree only on the Mn-rich side up to the minimum or sign
change, respectively.

The spin Hall conductivity of the Mn1−xFexGe alloy system
presented in Fig. 8 (bottom) as a function of Fe concentration
changes sign approximately at the same composition as the
DMI parameter Dxx and, accordingly, also the torkance txx .
However, one can again see a leading role of the Fermi-surface
contribution to the spin Hall conductivity, in particular at the
Fe-rich side after the sign change. This implies that the sign
of the SHE conductivity is determined to a large extent by the
character of the states at the Fermi energy and their spin-orbit
coupling, which changes with concentration according to the
discussion above. Note however, that in pure FeGe the Fermi-
surface and Fermi-sea contributions are of equal magnitude but
opposite sign, leading to their partial cancellation. Concerning
the importance of the vertex corrections the spin Hall conduc-
tivity behaves again similar to the AHC, in as much as they
are only present at the Fermi surface and negligible over the
entire concentration range considered here—again apart from
the Fe-rich limit.

A more detailed analysis of the anomalous and spin Hall
conductivities in terms of underlying scattering mechanisms
based on their scaling behavior with respect to the longitudinal
(charge) conductivity in the dilute limits has been so far
precluded by the large numerical cost and is left for future work.
Note also, that the anomalous and spin Hall conductivities
in the present work were calculated for the FM structure.
Introducing a chiral noncollinear spin texture, one can expect
additional contributions from the topological anomalous [6]
and spin Hall [40] effects, most likely displaying different
concentration-dependent features.

D. Symmetry considerations

We conclude with a few remarks on magnetic symmetry and
the corresponding shapes of the response tensors discussed
above. The B20 structure of the Mn1−xFexGe alloy system has
the (nonmagnetic) space group P 213, for ferromagnetic order
with magnetization along z (one of the 21 axes), this leads
to the magnetic space group (MSG) P 2′

12′
121, the magnetic

point group (MPG) 2′2′2, and finally the magnetic Laue group
(MLG) m′m′m (or 2′2′2 in the convention of Ref. [41]). The
corresponding symmetry-allowed tensor forms for electrical
(σ ) and spin (σ ξ ) conductivity [42] and the current-induced
torkance [22] are1

σ (z) =

⎛
⎜⎝

σ (z)
xx σ (z)

xy 0

−σ (z)
xy σ (z)

yy 0

0 0 σ (z)
zz

⎞
⎟⎠, (8)

and

t =
⎛
⎝txx txy 0

tyx tyy 0
0 0 0

⎞
⎠. (9)

Note that this is not the highest symmetric FM-ordered
structure because for m ‖ (111) (along the three-fold axes)
one would have MSG R3, MPG 3, and MLG 3̄, leading to
the tensor shapes

σ (z) =

⎛
⎜⎝

σ (z)
xx σ (z)

xy 0

−σ (z)
xy σ (z)

xx 0

0 0 σ (z)
zz

⎞
⎟⎠, (10)

and

t =
⎛
⎝ txx txy 0

−txy txx 0
0 0 0

⎞
⎠. (11)

Figure 9 shows all nonzero tensor elements of t for m ‖ z
as chosen in this work. Apparently, the deviations between
the diagonal torkances txx and tyy are negligibly small over
the whole concentration range; the largest differences occur
once more on the Fe-rich side. For the off-diagonal torkances,
tyx 
 −txy holds as well with the above exception. Note, that
these torkances, in contrast with txx and tyy , only contain
contributions from the Fermi surface, as discussed before [22]

1The spin conductivity is given for polarization ξ along z here, for
x- and y-polarization see Ref. [42].

024403-7

Chapter 3. Results 247



S. MANKOVSKY, S. WIMMER, S. POLESYA, AND H. EBERT PHYSICAL REVIEW B 97, 024403 (2018)

0 0.2 0.4 0.6 0.8 1

xFe

−2

−1

0

1

t i
i
[1

0−
3
0

C
m

]

0

10

20

t i
j

[1
0−

3
0

C
m

]

txx

tyy

txx

-tyx

FIG. 9. Comparison of all nonzero torkance tensor elements
as functions of x in Mn1−xFexGe calculated via the Kubo–Bastin
formalism. The diagonal elements txx and tyy (left y scale) are given as
black squares and red circles, respectively, the off-diagonal torkances
(righty scale) txy and−tyx are given as blue up- and green down-facing
triangles.

and, as the diagonal elements, are dominated by the intrinsic
contribution. Irrespective of the magnetic point group [m′m′m
for m ‖ (001) or 3 for m ‖ (111)], the diagonal elements are
even, while the off-diagonal ones are odd with respect to
reversal of the magnetization direction. The same applies to
both the electrical and the spin conductivity tensors.

IV. SUMMARY

To summarize, we have presented results of calculations
for the Dxx and Dyy components of the DMI vector in the
B20 Mn1−xFexGe alloys as a function of Fe concentration.
The sign change of this quantity evidences the change of spin
helicity at x ≈ 0.85, in line with experimental results as well
as with theoretical results obtained by other groups. Although
the approach used in the present work is more appropriate for
disordered systems when compared with those used in the pre-
vious investigations, all calculations demonstrate reasonable
agreement, because of the virtual-crystal-like behavior of the
majority spin states [12,30]. In addition, we discussed the con-
centration dependence of the total spin-orbit torkance txx and
its Fermi-surface and Fermi-sea contributions. It was shown
that, for all Fe concentrations, both parts have the same order
of magnitude but their sign is opposite, leading to a significant
compensation. By using different approaches to calculate the
Fermi-sea contribution to the SOT its composition-dependent
features in common with the DMI were discussed. In the case
of the AHE and SHE the calculated Fermi sea contributions
are rather small and the behavior of these effects as functions
of composition are determined mainly by the electronic states

at the Fermi level. The common SOC-induced mechanisms
responsible for these effects, for the investigated concentration
range (0.05 < x < 0.95) these are predominantly of intrinsic
origin, result in the correlation of their dependence on the Fe
concentration. This is demonstrated by the finding that the
minimum of the AHE magnitude and the sign change of the
SHC occur at approximately the same composition.
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APPENDIX

According to the suggestion by Shilkova and Shirokovskii
[27,28], the electron group velocity can be represented by the
expression

vn(k) = ∂λn(E,k)

∂k

∣∣∣∣
E=En(k)

/
∂λn(E,k)

∂E

∣∣∣∣
E=En(k)

. (A1)

Here λn(E,k) are the eigenvalues of the KKR matrix
M(E,k) = τ−1(E,k) that are determined by solving the eigen-
value problem [29]

M(E,k)bn(E,k) = λnbn(E,k) (A2)

and vanish at E = En(k) corresponding to zeros of the deter-
minant ||M(E,k)||. Herebn

�(k) are the associated eigenvectors.
With this one arrives at the expression

bn†(k)
∂τ (E,k)

∂k
bn(k)

∣∣∣∣
E=En(k)

= vn(k)bn†(k)
∂τ (E,k)

∂E
bn(k)

∣∣∣∣
E=En(k)

. (A3)

Finally, use is made of the relation for the group velocity
[27,28]:

vn(k) =
∑
�,�′

b
n†
� (k)(cα�,�′)bn

�′(k), (A4)

with

α�,�′ =
∫

�

d3rZ×
�(r,E)αZ�′(r,E), (A5)

where c is the speed of light and α is the vector of Dirac
matrices, which represents the relativistic current operator ĵ =
−ev̂ = −ecα. With this one finally arrives at the relationship
between Eq. (6) and the Fermi-sea term in Eq. (4).
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3.5.2 Additional results on the Edelstein effect

The following is an unpublished manuscript on the Edelstein effect and its reciprocal
phenomenon, focussing on space-time symmetry aspects as well as first-principles
results, both based on Kubo’s linear response formalism. As the Edelstein effect is
closely related to the spin-orbit torque discussed in particular in Ref. 335 reprinted
in Section 3.5 on page 228, the two effects will be extensively compared.



Symmetry and magnitude of the direct and inverse Edelstein effect:
A KKR-CPA-Kubo approach
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The symmetry restrictions concerning the occurrence of the direct and inverse Edelstein or inverse
and direct spin-galvanic effects are investigated. The shapes of the corresponding response tensors
are given for all non-centrosymmetric magnetic point groups. These group theoretical considerations
are accompanied by first-principles calculations of the Edelstein response on the basis of the corre-
sponding Kubo-Bastin equation. Results for the fcc(111) tri-layer alloy-system Pt |FexCo1−x |Cu
are presented and discussed in relation to results for the electrical and spin conductivity as well as
the spin-orbit-induced torkance.

I. INTRODUCTION

The Edelstein effect (EE) denotes the phenomenon
that an electric field applied to a non-centrosymmetric
solid may induce a spin polarization.1,2 While there
was previous work on a corresponding photo-galvanic
effect,3,4 it seems that the magneto-electric effect pro-
posed by Edelstein2 is the first unambiguous prediction
of what is nowadays understood as the EE.5 Attempts
to highlight also the (somewhat) close relation to the
(Bychkov-)Rashba effect6 or to recognize the contribu-
tion by Aronov and Lyanda-Geller1 led to the alternative
names Rashba-Edelstein effect (REE)7,8 and Aronov-
Lyanda-Geller-Edelstein effect (ALGE)9. Yet another, so
to speak more diplomatic, term in use is current-induced
spin polarization (CISP)10.

The Edelstein effect could be unambiguously verified
in experiment presumably for the first time by Silov
et al.11 and Kato et al.12 (see also Refs. 13, 14, and
15).16 As the EE can be identified with the inverse of the
so-called spin-galvanic effect17 or the closely related cir-
cular photo-galvanic effect18, it is accordingly also called
inverse spin-galvanic effect (see, e.g., Refs. 19 and 20).
The first experimental realization of the inverse Edelstein
effect (IEE) in non-magnetic materials was achieved by
Rojas Sánchez et al.21.

Following the works of Aronov and Lyanda-Geller1 and
Edelstein2 a theoretical description of the EE/ISGE was
developed by various groups. Most work in this field
was based so far on simplified (Rashba) models.22–25 The
same holds true for theoretical efforts on the inverse Edel-
stein effect.26–29 First-principles calculations on the other
hand are rather rare in the literature so far.10,30 Ref. 10
in particular also dealt with the restrictions imposed on
the EE by the crystallographic symmetry of the system
under investigation, aiming at the tensor shapes of the
so-called spin-orbit torkance31–35 in ferro- and antiferro-
magnets. The close connection between those two lin-
ear response phenomena was realized (in fact utilized)
already by Manchon and Zhang31. While the absence
of inversion symmetry as a precondition for both effects
was of course well-known, it was Železný et al.10 who did
the first systematic analysis based on group theoretical
considerations. Focusing on a projection of the Edel-

stein polarization or torkance on sub-lattices in collinear
antiferromagnets those authors however neglect the ef-
fect of time-reversal giving in particular rise to the gen-
eralized Onsager relations36 between direct and inverse
effects. In the present work the full space-time symme-
try of all relevant (non-centrosymmetric) magnetic space
groups will be considered. Moreover, based on consid-
erations of the transformation properties of charge and
heat current operators, corresponding statements for the
thermal analogues, direct and inverse thermal Edelstein
effects can be made. The former has recently been con-
sidered as a possible contribution or side effect in the spin
Nernst magnetothermopower (SMT)37 by Tölle et al.38.
The latest member of the Edelstein family, the orbital
Edelstein effect39 will not be discussed herein.

The present work focuses, besides group-theoretical
analysis, on the magnitude of the Edelstein response ten-
sor or polarization as obtained from linear response calcu-
lations of a suitable Kubo formula for the charge current-
spin polarization correlation. A corresponding Kubo-
Bastin implementation into a fully-relativistic KKR-CPA
framework40,41 allows in particular giving material spe-
cific values of the Edelstein polarization in alloys as well
as the discussion of intrinsic and extrinsic scattering
mechanisms and the relevance of Fermi sea and Fermi
surface terms. By comparison with other linear response
phenomena, electrical and spin conductivity as well as of
course with the spin-orbit torque, their partial intercon-
nection is elucidated.

This article is organized as follows: In Section II we
introduce the underlying linear response formalism used
to calculate the Edelstein tensor, discuss its implementa-
tion into a multiple scattering framework, with particular
emphasis on the treatment of disorder, and finally outline
the application of symmetry considerations leading to re-
strictions to the tensor shapes of both, direct and inverse
Edelstein effect. The outcome of this group-theoretical
analysis for all magnetic point groups will be presented
together with corresponding results for the electrical and
spin conductivity tensors. The connection between Edel-
stein effect, spin-orbit torque, and spin conductivity will
be discussed. In Section III we present the results of our
numerical investigations on a Pt |FexCo1−x |Cu tri-layer
system, highlighting the impact of disorder effects (impu-
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rity scattering) on the various contributions to the Edel-
stein response. By comparing concentration-dependent
results for the Edelstein tensor with such for torkance
and spin conductivity we will discuss their interrelation.

II. FORMALISM

A well-known application of Kubo’s linear response for-
malism is the derivation of an expression for the electri-
cal conductivity tensor σ that allows giving the electri-
cal current density j = σE in response to an electri-
cal field E. In analogy one can derive an expression for
the Edelstein tensor p that gives the spin polarization

s = pE induced by E.1,2 Replacing the operator for the

response, ĵµ representing the component µ of the current
density, by an operator for the spin polarization along
the µ axis, which in relativistic four-component Dirac
notation reads42,43

P̂µ = βΣµ =


I2 02

02 −I2


 (σµ ⊗ I2) =


σµ 02

02 −σµ


 , (1)

with σµ being one of the standard 2 × 2 Pauli matri-
ces, one can straightforwardly adopt the derivation of the
so-called Kubo-Bastin formula for σ ,44 leading to a cor-
responding expression for the Edelstein response tensor
p:

pµν = − ~
4π

∫ ∞

−∞
dε
df(ε)

dε
Tr
〈
P̂µ(G+ −G−)ĵνG

− − P̂µG+ĵν(G+ −G−)
〉

+
~

4π

∫ ∞

−∞
dεf(ε)Tr

〈
P̂µG

+ĵν
dG+

dε
− P̂µ

dG+

dε
ĵνG

+ − “
(
G+ → G−

)
”

〉
, (2)

where f(ε) is the Fermi-Dirac distribution and G+ (G−)
is the retarded (advanced) single-particle Green function
at energy ε (arguments have been dropped for the sake
of readability). This implies that in the limit T → 0 K
for the temperature the first term in Eq. (2) has to be
evaluated only for the Fermi energy EF (Fermi surface
term pIµν), while the second one requires an integration
over the occupied part of the valence band (Fermi sea
term pIIµν).

The current (density) operator ĵν = −|e|cαν in Eq. (2)
represents the perturbation due to the electric field com-
ponent Eν . Adopting a fully relativistic formulation to
account coherently for the impact of SOC, ĵν is expressed
by the corresponding velocity operator v̂ν = cαν , where
c is the speed of light and αν is one of the standard
4 × 4 Dirac matrices.43 The spin-polarization operator
P̂µ on the other hand represents the spin-magnetic mo-
ment along the µ axis induced by the electric field, and
is therefore most conveniently expressed by Eq. (1).

In Eq. (2) the electronic structure is represented in
terms of the retarded and advanced Green functions
G+(ε) and G−(ε), respectively. Using this approach has
the big advantage that one can deal straightforwardly
with disordered systems. Considering for example chem-
ical disorder the brackets 〈...〉 in Eq. (2) stand for the
configurational average for a disordered alloy. For the
applications presented below relativistic multiple scat-
tering theory was used to determine the Green func-
tions G±(ε).40,45 The configurational averaging over al-
loy configurations was determined by means of the Co-
herent Potential Approximation (CPA) alloy theory as
done in the context of the electrical conductivity,46,47

spin conductivity,48 Gilbert damping parameter,49 and
recently to the spin-orbit torque.50 This implies in par-
ticular that the so-called vertex corrections, that ensure
that the proper average 〈P̂µG±ĵνG±〉 is taken instead of

the simpler product 〈P̂µG±〉〈ĵνG±〉, are included in the
calculations.

Expressing the electric field induced spin-polarization
by means of linear response formalism allows to investi-
gate straightforwardly the condition for which the Edel-
stein effect may show up or not. This can be done using
a scheme worked out by Kleiner51, recently extended by
Seemann et al.,52 and already applied to direct and in-
verse spin-orbit torques.50 Making use of the behavior
of the spin-polarization operator P̂µ and of the current
density operator jν under symmetry operations one is led
to the relations that restrict the shape of the Edelstein
response tensor p:

pµν =
∑

κλ

pκλD(R)κµD(R)λν det(R) (3)

pµν =
∑

κλ

p′λκD(R)∗κµD(R)∗λν det(R) , (4)

where D(R) is the 3 × 3 transformation matrix associ-
ated with the pure spatial operation R and det(R) is
the corresponding determinant of that matrix. In Eq.
(3) only unitary pure spatial symmetry operations are
considered, while in Eq. (4) anti-unitary operations are
considered that involve apart form the spatial operation
R also the time reversal operation. As a consequence Eq.
(4) relates the Edelstein tensor p with the tensor p′ that
is associated with the time-reversed effect, i.e., Eq. (4) is
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a generalized Onsager relation for the direct and inverse
Edelstein effect.

Considering Eqs. (3) and (4) for all symmetry op-
erations of a magnetic point group, the corresponding
symmetry-allowed shape of the direct and inverse Edel-
stein response tensors, p and p′, can be determined.
Tables I to VII give the results for all magnetic point
groups leading to a non-vanishing Edelstein polariza-
tion tensor. These groups can be subdivided into three
categories36,52, one with time-reversal as a symmetry op-
eration, category (a), one without time-reversal involved,
neither as an operation on its own nor in combination
with a spatial rotation, category (b), the other contain-
ing time-reversal in connection with a spatial rotation,
category (c). The groups 6̄1′, 6̄2m1′ (6̄m21′), 4̄3m1′ of
category (a), 6̄, 6̄2m (6̄m2), 4̄3m of category (b), and
6̄2′m′ (6̄m′2′) of category (c) are non-centrosymmetric
but nevertheless have vanishing Edelstein response (at
least to zeroth order in the magnetization direction10).

In addition, one notices that none of the magnetic
point groups listed in Tables I through VII has the spa-
tial inversion as an element. This central restriction –
missing inversion symmetry – has been pointed out for
the torkance before by Manchon and Zhang32 as well as
Garate and MacDonald33 on the basis of restricted model
considerations and proven on group-theoretical grounds
by the present authors.50 The torkance and Edelstein re-
sponse both are describing the response to an electric
current represented by the current density operator ĵν .
As the operators for the torque, T̂µ, and the spin polar-

ization due to the Edelstein effect, P̂µ, are both pseudo
vectors53 that are transforming identically under unitary
symmetry operations (see below), the absence of spatial
inversion symmetry is a precondition54 for the Edelstein
effect as well. Moreover, for the same reason the shapes
of the direct torkance50 and Edelstein response tensors
are identical for all magnetic point groups of categories
(b) and (c). It should be noted that the magnetic point
groups under category (a) apply to non-magnetic mate-
rials only. In this case the Edelstein effect may show up,
while there is no (global) torkance as this requires a finite
spontaneous magnetization.

Železný et al.10 obtain completely identical results for
the current induced spin polarization (CISP) or direct
Edelstein response for crystallographic (non-magnetic)
point groups (category (a), see Table I) using a similar
approach. These authors discuss in addition an expan-
sion of the response tensor in powers of the magnetiza-
tion direction, of which only the zeroth order term is
considered here. Note, that in Ref. 10 only non-magnetic
non-centrosymmetric solids are considered, i.e., those 21
point groups of category (a) that have no spatial inver-
sion symmetry. This is done having in particular the
projection onto the sub-lattices of collinear (Néel) anti-
ferromagnets in mind, where the operations connecting
the two sub-lattices are spatial operations combined with
time-reversal that reverses the direction of the moments.
It is however precisely this kind of symmetry operation

that gives the connection between direct and inverse ef-
fects, SOT and ISOT. Therefore these generalized On-
sager relations36 are not contained in the prescription of
Železný et al.10.

The close connection between spin-orbit torques
and the Edelstein effect has already been mentioned
earlier10,31–33,55–57. It derives from the identical trans-
formation properties of the operators representing the
responses in the two cases, magnetic torque and spin
polarization, under spatial operations. However, since
the spin-polarization operator P̂µ, representing in prin-
ciple a spin magnetic moment, is a pseudo vector anti-
symmetric w.r.t. time-reversal, in contrast to the torque
operator T̂µ, which is given as a cross-product of two
time-reversal anti-symmetric operators leading to a time-
reversal symmetric pseudo vector, the torkance and the
Edelstein response differ concerning their transformation
behavior under anti-unitary operations (by a minus sign).
This can in fact be deduced already by inspection of the
explicit forms of the two operators, given in Eq. (1) above

for P̂µ and in Eq. (2) of Ref. 50 for T̂µ. The additional
factor Bxc(r) in the latter, the spin-polarized exchange
potential, is of course time-reversal anti-symmetric, as
the operator βΣµ itself. This leads to slightly modified
generalized Onsager relations for the two.

Since the operators for electrical and heat current (den-
sity) transform identical under all space-time symmetry
operations relevant for solids, the tensor forms will stay
unaltered when the electric field is replaced by a temper-
ature gradient. This means that the shapes given here
apply also for the direct58 and inverse thermal Edelstein
effect.

A close connection between the Edelstein polarization
and the spin conductivity, in particular the spin Hall ef-
fect, has been proposed based on model considerations by
numerous authors. See for example Refs. 25 and 59,60 as
well as the review on the SHE by Sinova et al.20. Com-
paring the tensor shapes for p and σk in Tables I-VII
however one has to state that there is no universal re-
lationship between the two phenomena concerning their
space-time symmetry. The Edelstein polarization tensor
p sometimes is identical in shape to one of the tensors

σk, sometimes to that of the electrical conductivity ten-
sor σ and cases where it is distinct from all four of them
can be found as well. In fact, a general rule for their
interrelation is not to be expected as, although the same
form of the polarization operator can also be employed
in the spin current density operator and the operator
representing the perturbation is the same in both cases,
the additional current density operator for the response
of course affects the space-time symmetry properties as
well. Accordingly, the only definite statement concerning
the shape of p that can be made, is that it is identical in
shape to t.

From the mechanistic point of view one might find a
rather indirect connection between the two phenomena,
the link being the spin-orbit torque. It has been stated
early on61, that two distinct contribution to the torkance
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Table I. Shape of the direct and inverse Edelstein tensors, p and p′, for all magnetic point groups of category (a). The third
column shows the electrical conductivity tensor, σ, and in columns four to six the spin conductivity tensors for polarization
along the Cartesian axes k = x, y and z, σk, are given. See Ref. 52 for further details on conventions and notation.
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Table II. Shape of the direct and inverse Edelstein tensors, p and p′, for all magnetic point groups of category (b). The third
column shows the electrical conductivity tensor, σ, and in columns four to six the spin conductivity tensors for polarization
along the Cartesian axes k = x, y and z, σk, are given. See Ref. 52 for further details on conventions and notation.
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Table III. Shape of the direct and inverse Edelstein tensors, p and p′, for magnetic point groups of category (c). The third
column shows the electrical conductivity tensor, σ, and in columns four to six the spin conductivity tensors for polarization
along the Cartesian axes k = x, y and z, σk, are given. See Ref. 52 for further details on conventions and notation. This table
is continued in Tables IV-VII.

are conceivable: a Rashba(-Edelstein)- or field-like torque
and a spin Hall- or (anti-)damping-like torque. The for-
mer obviously always contributes, the latter might as
well.

III. NUMERICAL INVESTIGATIONS

While the group theoretical considerations presented
above allow unambiguous prediction of the occurrence
of the direct and inverse Edelstein effect, they give no
information concerning the absolute and relative magni-
tude of the respective tensor elements. In order to get
more insight into this aspect, calculations of the Edelstein
polarization tensor p have been performed on the arti-
ficial multilayer alloy-system Pt |FexCo1−x |Cu for the
full range of concentration x. Fig. 1 shows the hexago-
nal structure of this model system for which a stacking
of fcc(111)-like atomic planes along the z-axis has been
assumed.

For the magnetization along the stacking direction
Pt |FexCo1−x |Cu has the magnetic point group 3m′,62

leading to an anti-symmetric Edelstein tensor with

non-vanishing elements pxx = pyy 6= pzz and pxy = −pyx
(see row three of Tab. V). Corresponding numerical
results for the elements of the tensor p are given in
Fig. 2. To provide a wider basis for the discussion of
the results for the EE, the non-vanishing elements of the
torkance tensor t in the same system obtained before
are reproduced from Ref. 50 for convenience in Fig. 3.
In addition calculations have been performed on the
spin conductivity tensors with the corresponding results
given in Fig. 4. Results for the electrical conductivity
have been presented before as well50, but will not be
repeated here.

The top panel of Fig. 2 gives the numerical results for
the concentration dependence of the diagonal Edelstein
tensor element pxx (= pyy) perpendicular to the magne-
tization. As in Ref. 50, the so-called Fermi sea contribu-
tion, corresponding to the second term in Eq. (2), is rep-
resented by blue squares, the Fermi surface contribution,
accordingly the first term in Eq. (2), is shown as green di-
amonds, their sum is given as red circles. Empty symbols
are results without vertex corrections (NV), full symbols
include them (VC). The antisymmetric off-diagonal el-
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Table IV. Table III continued for tetragonal groups.

ement pxy = −pyx is shown in the middle panel, the
use of symbols is the same as in the top panel. In con-
trast to the torkance tensor for the same magnetic point
group, the element pzz in the bottom panel obviously
does not vanish. This means that a current parallel to
the magnetic moment along the z-direction changes its
magnitude. The pronounced concentration dependence
of the vertex corrections to the Fermi surface term will
be discussed below.

When comparing the results for torkance (see Fig. 3)
and Edelstein response one of the first observations is
that the concentration dependence of the diagonal (xx)
and of the off-diagonal (xy) elements seem to have been
interchanged. The former, pxx in the top panel of Fig. 2,
is an almost linear and flat function of the concentra-

tion, while the latter, pxy in the middle panel, shows
the conductivity-like divergences at the boundaries. This
inverted behavior of course reflects the additional cross-
product of the current-induced spin polarization with the
magnetization, that is the essential difference between
Edelstein effect and spin-orbit torque.

Analyzing the numerical results in more detail, one
finds that all three non-vanishing tensor elements are
dominated by the contributions from the Fermi surface.
Comparing now txx (Fig. 3, top) and pxy (Fig. 2, mid-
dle) one sees that the slight asymmetry of the torkance is
more pronounced for the Edelstein response, and in addi-
tion reversed concerning the dependence on x, i.e., pxy is
larger (absolutely) for 10 % Fe than for 10 %Co. A sim-
ilar observation can be made comparing txy (Fig. 3, bot-
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Table V. Table III continued for trigonal groups.
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0 0 pzz

) (−pxx 0 0
0 −pxx 0
0 0 −pzz

)
6′/m′mm′

(
σxx 0 0
0 σxx 0
0 0 σzz

) (
0 σy

xx 0
σy
xx 0 −σy

xz

0 −σy
zx 0

) (
σy
xx 0 σy

xz

0 −σy
xx 0

σy
zx 0 0

) (
0 σz

xy0
−σz

xy 0 0
0 0 0

)

6̄′m2′
(

0 pxy0
−pxy 0 0

0 0 0

) (
0 pxy0
−pxy 0 0

0 0 0

)
6′/m′mm′

(
σxx 0 0
0 σxx 0
0 0 σzz

) (
0 σy

xx 0
σy
xx 0 −σy

xz

0 −σy
zx 0

) (
σy
xx 0 σy

xz

0 −σy
xx 0

σy
zx 0 0

) (
0 σz

xy0
−σz

xy 0 0
0 0 0

)

6/m′m′m′
(
pxx 0 0
0 pxx 0
0 0 pzz

) (−pxx 0 0
0 −pxx 0
0 0 −pzz

)
6/mmm1′

(
σxx 0 0
0 σxx 0
0 0 σzz

) (
0 0 0
0 0 −σy

xz

0−σy
zx 0

) (
0 0σy

xz

0 0 0
σy
zx0 0

) (
0 σz

xy0
−σz

xy 0 0
0 0 0

)

6/m′mm

(
0 pxy0
−pxy 0 0

0 0 0

) (
0 pxy0
−pxy 0 0

0 0 0

)
6/mmm1′

(
σxx 0 0
0 σxx 0
0 0 σzz

) (
0 0 0
0 0 −σy

xz

0−σy
zx 0

) (
0 0σy

xz

0 0 0
σy
zx0 0

) (
0 σz

xy0
−σz

xy 0 0
0 0 0

)

Table VI. Table III continued for hexagonal groups.

tom) and pxx (Fig. 2, top), here the torkance is stronger
on the Co-rich side while the Edelstein response is larger
for higher iron content. Note that this is not trivially
related to the magnitude of the local spin magnetic mo-
ment, which is in fact increasing with x, but has to be

attributed to the different selection rules for the operator
matrix elements. Another striking difference is the rel-
ative importance and sign of the Fermi sea and surface
contributions. While for the even torkance txy the Fermi
sea term is not negligible and moreover of opposite sign
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mpg p p′ mLg σ σx σy σz

m′3̄′
(
pxx 0 0
0 pxx 0
0 0 pxx

) (−pxx 0 0
0 −pxx 0
0 0 −pxx

)
m3̄1′

(
σxx 0 0
0 σxx 0
0 0 σxx

) (
0 0 0
0 0 σz

xy

0σy
xz 0

) (
0 0σy

xz

0 0 0
σz
xy0 0

) (
0 σz

xy0
σy
xz 0 0
0 0 0

)

4′32′
(
pxx 0 0
0 pxx 0
0 0 pxx

) (
pxx 0 0
0 pxx 0
0 0 pxx

)
m3̄m′

(
σxx 0 0
0 σxx 0
0 0 σxx

) (
0 0 0
0 0 σz

xy

0σy
xz 0

) (
0 0σy

xz

0 0 0
σz
xy0 0

) (
0 σz

xy0
σy
xz 0 0
0 0 0

)

4̄′3m′
(
pxx 0 0
0 pxx 0
0 0 pxx

) (−pxx 0 0
0 −pxx 0
0 0 −pxx

)
m3̄m′

(
σxx 0 0
0 σxx 0
0 0 σxx

) (
0 0 0
0 0 σz

xy

0σy
xz 0

) (
0 0σy

xz

0 0 0
σz
xy0 0

) (
0 σz

xy0
σy
xz 0 0
0 0 0

)

m′3̄′m′
(
pxx 0 0
0 pxx 0
0 0 pxx

) (−pxx 0 0
0 −pxx 0
0 0 −pxx

)
m3̄m1′

(
σxx 0 0
0 σxx 0
0 0 σxx

) (
0 0 0
0 0 σz

xy

0−σz
xy 0

) (
0 0−σz

xy

0 0 0
σz
xy0 0

) (
0 σz

xy0
−σz

xy 0 0
0 0 0

)

Table VII. Table III continued for cubic groups.

Figure 1. (Color online) Structure of the investigated mul-
tilayer system Pt |FexCo1−x |Cu consisting of a stacking of
fcc(111) planes along the z axis. Cu atoms are colored in
blue, FexCo1−x sites in red and Pt atoms are represented in
light grey.

compared to the Fermi surface term, for the longitudinal
Edelstein response pxx the Fermi sea does not contribute
significantly but with the same sign as the Fermi sur-
face term. The vertex corrections are in both cases only
significant at the Fermi surface and only in the very di-
lute limits. For the Edelstein polarization pxy the Fermi
sea contribution is numerically zero, in agreement with
the situation for the odd torkance txx. The Fermi sur-
face contribution is essentially purely intrinsic for both,
i.e., the vertex corrections are insignificant. The very
strong concentration dependence of pzz (bottom panel),
including several sign changes is indeed very puzzling, be-
cause lacking convergence w.r.t. k-point density (usually
the biggest numerical challenge in linear response calcu-
lations in solids) can be ruled out as a reason for this
behavior. In fact, the structure is caused by the vertex

corrections to the Fermi-surface contribution (surf), re-
flecting the very delicate dependence of this term on the
various system parameters. The vertex corrections to the
Fermi sea term are negligibly small for all elements of p
and t.

Concerning the behavior of the tensor elements w.r.t.
magnetization reversal, the longitudinal elements pxx =
pyy and pzz change sign when changing the magnetization
direction from z to −z, i.e., these elements have perfect
odd symmetry. The off-diagonal antisymmetric elements
pxy = −pyx in contrast remain unchanged and represent
therefore a purely even contribution to the Edelstein ef-
fect. These symmetry properties are identical to that of
the torkance tensor, where also txx was odd and txy even
w.r.t. magnetization reversal; i.e., completely opposite to
the behavior of σ. These findings obviously reflect the
transformation properties of the various vector operators
involved.

When reversing the layer sequence from
Pt |FexCo1−x |Cu to Cu |FexCo1−x |Pt and keep-
ing the global magnetization direction fixed along z,
both – symmetric and anti-symmetric – parts of the ten-
sor change sign. Since this corresponds to magnetization
reversal plus inversion of the coordinate system (for a
rotation around x: x → x’ = x, y → y’ = −y, z → z’ =
−z), this of course does not mean both are odd, since
px′y′(z

′) = −pxy(z′) = pxy(z).

Finally, it should be noted that when changing the lat-
tice parameter in addition from that of fcc Pt to that of
fcc Cu, the absolute values slightly change due to the
modified electronic structure (presumably in particular
at the interface). This is more pronounced for the Edel-
stein response than for the torkance, reflecting once more
the fact that the polarization tensor is more sensitive to
the computational parameters than the torkance tensor.

Figure 4 shows all non-zero elements of the spin con-
ductivity tensors σx and σy (top and middle) and σz

(bottom). All results are the sum of Fermi sea and
Fermi surface terms and include the vertex corrections.
In agreement with the predicted tensor shapes the former
two are related such that six elements suffice to express
all spin conductivities with polarization perpendicular to
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Figure 2. (Color online) Longitudinal component pxx =
pyy (top), transverse component pxy = −pyx (middle),
and longitudinal component pzz 6= pxx (bottom) of the
Edelstein polarization depending on the concentration x
in Pt |FexCo1−x |Cu. Open symbols represent calculations
without vertex corrections (NV) and filled symbols such in-
cluding vertex corrections (VC). The blue squares correspond
to the Fermi sea contribution, the green diamonds represent
contributions from the Fermi surface and red circles give the
total results.

the layer stacking (x and y). Furthermore there is no re-
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Figure 3. (Color online) The longitudinal component txx =
tyy (top) and the transverse component txy = −tyx of the
SOT depending on the concentration x in Pt |FexCo1−x |Cu.
Use of symbols and colors corresponds to Fig. 2. Reprinted
from our previous work on the SOT, Ref. 50.

lation to the elements of σz (bottom), of which there are
only 3 independent ones: the longitudinal in-plane spin
conductivity σzxx = σzyy, the longitudinal perpendicular
spin conductivity σzzz, and the transverse and antisym-
metric spin Hall conductivity σzxy = −σzyx.

For the tensor elements shown in the top panel of Fig. 4
with direction of spin polarization (superscript) and elec-
tric field (second subscript) coinciding with either pxx or
pxy (first index polarization, second electric field) in the
top and middle panels of Fig. 2, respectively, no imme-
diate connection can be made to the corresponding el-
ements of p. While two show divergences in the dilute
limits and two do not, the overall concentration depen-
dence is clearly distinct from both that of pxx or pxy.
Note, however, that also here the vertex corrections are
essentially negligible over the whole concentration range
for all elements (not shown). The same applies also to
the spin conductivities in response to an electric field
along z shown in the middle panel. For the elements
of σz in the bottom panel the above-mentioned obser-
vation can be made, that the diagonal elements behave
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Figure 4. (Color online) Top: All independent non-zero
elements of the spin conductivity tensors σx and σy where
the direction of electric field and polarization are the same as
for either pxx or pxy Middle: Independent non-zero elements
of the spin conductivity tensors σx and σy with the direction
of the electric field along z. Bottom: Independent non-zero
elements of the spin conductivity tensor σz. In all cases the
total spin conductivities are shown, i.e., including all terms
and the vertex corrections, for σz

xy in the bottom panel results
excluding them (NV) are shown in addition.

very much conductivity-like and in that respect are sim-
ilar to pxy and txx, while the spin Hall conductivity σzxy

shows a pronounced variation with concentration includ-
ing in particular three sign changes. The first of these at
low Fe concentration x is caused entirely by the vertex
corrections, the other two at large x are present in the
intrinsic contribution. Moreover, the relevance of the ver-
tex corrections in the dilute limits is considerably greater
here than in any of the other responses discussed. In
conclusion, the earlier suggestions that there might be a
close connection between Edelstein polarization and spin
(Hall) conductivity cannot be unequivocally supported
by our results.

IV. SUMMARY

Based on Kubo’s linear response theory, the symmetry
and magnitude of the direct and inverse Edelstein effects
in metals and alloys can be investigated using group-
theoretical considerations for the former and an imple-
mentation of the Kubo-Bastin formula for the Edelstein
response tensor (or Edelstein conductivity, as it is some-
time called29,59) in a multiple-scattering framework for
the latter. The resulting tensor shapes for direct and
inverse Edelstein response for all magnetic point groups
have been presented. These have been independently ver-
ified for a number of systems by numerical calculations
using the implementation described herein. By inves-
tigating the concentration dependence of three distinct
tensor elements in an fcc(111) tri-layer alloy model sys-
tem and comparing these results to those for the torkance
and spin conductivity tensors, the partial interconnection
of the three phenomena was elucidated. It was found
that the behavior of even and odd Edelstein polarization
as a function of concentration x in Pt |FexCo1−x |Cuis
reversed to that of the corresponding torkance tensor el-
ements. The odd polarization pxx = pyy exhibits a mild,
almost linear increase with increasing Fe content, simi-
lar to the variation of the transverse transport properties
anomalous and spin Hall conductivity, σxy = −σyx and
σzxy = −σzyx. The latter, however, decreases approxi-
mately linearly with x for intermediate concentrations,
while in the dilute limits the typical divergent behavior
can be observed, preceded by changes in sign. A similar
behavior has been found earlier50 for the even torkance
txy = −tyx. The even component of the Edelstein re-
sponse tensor p, pxy = −pyx, in contrast behaves con-
cerning its concentration dependence more like the longi-
tudinal electrical conductivity as well as the diagonal ele-
ments of the spin conductivity tensor σz, showing a pro-
nounced variation as a function of x with a divergence-
like behavior towards the dilute limits. The symme-
try w.r.t. reversal of the magnetization direction, i.e.,
which tensor elements are even or odd in that respect,
is however the same for torkance and Edelstein polariza-
tion. The zz-element of p, describing the electric-field-
induced spin polarization in the direction of the magne-
tization, leading to modification of its magnitude, was
found to be most sensitive to computational parameters.

Chapter 3. Results 261



12

Although a simple lack of convergence can be ruled out,
its strong variation with concentration involving several
sign changes has to be taken with caution. In particular
it should be noted, that the corresponding element of the
torkance is zero by definition.

A trivial connection between Edelstein polarization
and spin (Hall) conductivity could not be established,
neither on a group-theoretical level comparing the space-
time symmetry-allowed tensor shapes, nor by analyz-
ing their concentration dependence and the relevance
of the various contributions (Fermi surface vs. Fermi
sea, intrinsic vs. extrinsic mechanisms) based on a first-
principles Kubo-Bastin implementation within the KKR-
CPA framework.

The key advantage of the CPA alloy theory over sim-
pler models of disorder is the possibility to calculate
material-specific parameters very efficiently, opening the
way to a computational materials design approach to the
direct and inverse Edelstein polarization. As has been
shown, the electronic contribution to the corresponding
thermally-induced phenomena, direct and inverse ther-
mal Edelstein effect, can in principle be calculated from

the Edelstein polarization employing a Mott-like expres-
sion and using, if present, generalized Onsager relations
between the reciprocal effects.

Future investigations should be aimed at a first-
principles determination of the Edelstein polarization
tensor in realistic non-centrosymmetric and conductive
bulk materials such as for example Weyl semi-metals, or
in metallic surface or interface systems where the inver-
sion symmetry is broken by construction. Of particu-
lar use for experimental investigations might be, symme-
try considerations left aside, the relative magnitude of
the tensor elements and, in case of magnetic systems,
their relation to the corresponding spin-orbit-induced
torkances.
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Rev. Lett. 95, 046601 (2005).

25 R. Raimondi, P. Schwab, C. Gorini, and G. Vignale, Ann.
Phys. 524, 153 (2012).
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3.6 Charge and spin transport at finite tempera-

tures

The movement of electrons through a solid is fundamentally affected by scattering
at deviations from the ideal periodic lattice at absolute zero. Interaction with a
modified potential at a lattice site is usually termed impurity scattering. In this
context, the most prominent sources for scattering are random occupation with dif-
ferent atoms in an alloy and dislocation of atoms from their ideal positions, so-called
Frenkel defects, creating interstitial defects and vacancies. These effects lead to a
finite resistivity already at T = 0 K: The residual resistivity. At finite tempera-
ture additional lattice imperfections arise due to atomic vibrations and, in magnetic
solids, also due to fluctuations concerning direction and amplitude of the magnetic
moments. While the coherent motion of atoms and moments, phonons and magnons,
and their interactions with the electrons are a true challenge concerning a first-
principles linear response description, the so-called alloy analogy model (AAM) [202]
provides an efficient yet realistic scheme to treat the elastic scattering of electrons
due to thermally-induced disorder. As the name suggests, it boroughs the concept
of a mean-field description of disorder from the coherent potential approximation
(CPA) to the theory of alloys. Both, CPA as well as AAM, were briefly introduced
in Chapter 2, Section 2.2.5. In the following, two applications of the alloy analogy
model to charge and spin transport at finite temperatures are presented in the form
of reprints of published articles.

The first one, Ref. 369, is a joint experimental and theoretical study of the spin Hall
angle in AuxPt1−x alloys as a function of concentration x and temperature. The first-
principles calculations, based on a relativistic implementation of the Kubo-Bastin
equation for spin-polarised conductivities (see Section 2.3.1), could demonstrate that
the large spin Hall angle observed for intermediate concentrations arises due to an
interplay of an only weakly temperature-dependent intrinsic contribution to the spin
Hall conductivity and a strongly supressed longitudinal charge conductivity. An ad-
ditional remark is made on page 277.

The second publication [340] is a theoretical investigation on the anomalous Hall
effect in the compensated (at T = 0 K) ferrimagnetic Heusler alloy Mn1.5V0.5FeAl.
Again the alloy analogy model is employed to account for thermally-induced lattice
vibrations and, in particular, transverse spin fluctuations. For the latter an approx-
imate projection of the experimentally determined temperature dependence of the
magnetisation on the different magnetic sub-lattices has been applied. The results
for residual resistivity and anomalous Hall effect are in very satisfying agreement
with recent experiments [370]. Moreover, by tuning the individual sub-lattice mag-
netic moments to full compensation the symmetry-allowed occurrence of the AHE
in spite of a vanishing net-magnetisation could be numerically demonstrated.
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3.6.1 Published results on the spin Hall angle in AuPt alloys

The following is a copy of the article Tuning Spin Hall Angles by Alloying [369],
reprinted (including Supplemental Material) with permission from

M. Obstbaum, M. Decker, A.K. Greiner, M. Haertinger, T.N.G. Meier, M. Kro-
nseder, K. Chadova, S. Wimmer, D. Ködderitzsch, H. Ebert, and C.H. Back,
Phys. Rev. Lett. 117, 167204 (2016). Copyright (2016) by the American Physical
Society.

http://dx.doi.org/10.1103/PhysRevLett.117.167204


Tuning Spin Hall Angles by Alloying

M. Obstbaum,1 M. Decker,1 A. K. Greitner,1 M. Haertinger,1 T. N. G. Meier,1 M. Kronseder,1 K. Chadova,2

S. Wimmer,2 D. Ködderitzsch,2 H. Ebert,2 and C. H. Back1
1Institut für Experimentelle und Angewandte Physik, Universität Regensburg, 93040 Regensburg, Germany

2Department Chemie, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
(Received 20 March 2016; revised manuscript received 16 September 2016; published 14 October 2016)

Within a combined experimental and theoretical study it is shown that the spin Hall angle of a
substitutional alloy system can be continuously varied via its composition. For the alloy system AuxPt1−x a
substantial increase of the maximum spin Hall angle compared to the pure alloy partners could be achieved
this way. The experimental findings for the longitudinal charge conductivity σ, the transverse spin
Hall conductivity σSH, and the spin Hall angle αSH could be confirmed by calculations based on Kubo’s
linear response formalism. Calculations of these response quantities for different temperatures show
that the divergent behavior of σ and σSH is rapidly suppressed with increasing temperature. As a
consequence, σSH is dominated at higher temperatures by its intrinsic contribution that has only a rather
weak temperature dependence.

DOI: 10.1103/PhysRevLett.117.167204

Magnetization switching in thin ferromagnetic films
under the influence of spin transfer torques (STTs) [1–3]
enables universal memory concepts. Focusing on ferro-
magnetic–normal-metal (FM-NM) bilayers, a pronounced
STT on the magnetization of the FM can be achieved by
utilizing the spin Hall effect (SHE) in the NM [4–6]. For
that reason, the SHE and its inverse, i.e., the ISHE, have
received a lot of interest over the last decade. In this
context, many different experimental techniques have been
applied to study the efficiency of the SHE in various NMs,
with the corresponding figure of merit given by the spin
Hall angle αSH. When using a combination of electrical spin
injection with nonlocal spin detection in the experiments
[7–11], αSH is usually defined as the ratio between the
transverse (spin Hall) and the longitudinal conductivity of
the NM, i.e., αSH ¼ σSH=σ. Examining, on the other hand,
in experiment the magnetization dynamics in the presence
of STTand/or spin pumping [12–20], αSH is defined via the
ratio of generated to injected spin and charge currents, Js
and Jc, respectively. However, one should stress that the
two different definitions of αSH are fully consistent with
each other as demonstrated, for example, in Ref. [21].
Concerning the charge to spin current conversion, the

most efficient elemental NMs found so far are Pt, Pd, W,
and Ta. Their spin Hall angles could be exceeded for some
dilute alloys as for example Pt in Au [11] and Bi in Cu [10].
In these cases, the rather large observed spin Hall angles
were ascribed to the skew scattering mechanism, although
a reliable confirmation of this by means of numerically
reliable ab initio electronic structure methods is by no
means trivial [22].
Because of the complexity of the relativistic band

structure of metals [23] and the ensuing transport properties
[24], simple models are not capable of obtaining spin Hall

angles in a material specific way. In recent years, efforts to
calculate transverse transport properties from first princi-
ples succeeded in solving this task. Approaches calculating
transverse transport properties with a formulation employ-
ing the Berry phase are able to describe perfect crystalline
systems [25,26]. On the other hand, approaches employing
the Boltzmann formalism [24,27], and Green function
techniques that are used to solve the Kubo-Středa or
Bastin transport equations [28] are able to treat disordered
systems.
In this Letter we report on an experimental study on the

ISHE in Ni81Fe19=AuxPt1−x bilayers with the spin Hall
angles αSH determined for a wide range of composition.
Our experimental findings that are confirmed by accom-
panying first principles calculations clearly show that αSH
can be tuned for AuxPt1−x over an extremely wide span
with a pronounced maximum value for x ≈ 0.5.
In our experimental setup (see Fig. 1), pure spin currents

are injected via spin pumping [29–32] into AuxPt1−x by
means of ferromagnetic resonance (FMR). To unambigu-
ously extract voltage signals caused by the ISHE, the
experimental approach already applied successfully to
investigate pure Pt and Au on Ni81Fe19 [20] is used.
A similar approach has been used by other authors to
determine αSH for Ni81Fe19=Pt [19] who pointed out the
reliability of the experimental method. By varying the angle
ϕH between the static magnetization component and the
attached voltage probes the contribution to the measured
signal due to the anisotropic magnetoresistance (AMR) can
be reliably separated from that due to the ISHE for the
investigated Ni81Fe19=AuxPt1−x bilayer systems. This way
the voltage signals caused by the ISHE in the AuxPt1−x
alloys can unambiguously be obtained. The subsequent
determination of the spin Hall angle αSH is performed by
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fitting the pure ISHE voltage spectra at FMR to a
Lorentzian line shape. Figure 2 shows a typical voltage
trace for the Ni81Fe19=Au0.47Pt0.53 bilayer recorded for
ϕH ¼ 45° at a frequency of 12 GHz. Using the expressions
(see Supplemental Material [33]) for the dc-voltage signals
due to the AMR and the ISHE, VISHE and VAMR, respec-
tively, the measured voltage V can be split into a symmetric
and antisymmetric part, as shown in Fig. 2.As the symmetric
part at distinct angles stems only from the ISHE, one gets
direct access to the corresponding spin Hall angle αSH that is
proportional to VISHE.
To quantify αSH it is advantageous to keep the magneti-

zation at ϕH ¼ 0° allowing for a frequency dependent
recording of the voltages Voop

ISHE. In this case the formula
for αSH [15,20,34,35] reduces to

αSH ¼ Voop
ISHEσðtNM þ tFMÞM2

S

efg↑↓F ℑðχresz0z0 Þχresy0z0 jhzj2lλsd tanhðtNM2λsd
Þ
; ð1Þ

where σðtNM þ tFMÞ is the conductivity of the bilayer
system depending on the individual thicknesses tNM and
tFM, respectively, MS is the saturation magnetization of
the FM film, g↑↓F is the effective spin mixing conductance
which contains the backflow correction, χresz0z0 and χresy0z0 are
elements of the Polder susceptibility tensor, l is the length
of the wire and λsd is the spin diffusion length.
Obviously, the spin Hall angle depends on several param-

eters and their quantification is crucial for obtaining reliable
results for αSH. The effective spinmixing conductance g↑↓F of
the different Ni81Fe19=AuxPt1−x interfaces is extracted from
spin pumping experiments (again including the backflow
correction) performed on corresponding calibration squares
next to thewire. For this, the increase of the Gilbert damping
constant α relative to the damping constant α0 of uncapped
Ni81Fe19 is used. For the data analysis it is assumed
that the spin mixing conductance of the bilayer system
Ni81Fe19=AuxPt1−x decreases linearlywithAu concentration
x. This is well justified by measurements of g↑↓F for various
compositions (see Supplemental Material [33]). Most of
the other magnetic parameters, including the susceptibility
tensor elements, are determined on the basis of available data
from experimental investigations on Ni81Fe19=AuxPt1−x
bilayers [36]. The excitation field hz generated by the
coplanar waveguide is estimated using electromagnetic
simulation software and subsequent numerical evaluation.
Since the spin diffusion length λsd enters Eq. (1) in an
exponential manner, it is a crucial parameter concerning the
determination of αSH. In order to estimate λsd for all
investigated AuxPt1−x alloys, VISHE has been measured as
a function of the thickness for selected AuxPt1−x-layers. The
analysis of the data (see Supplemental Material [33])
suggests that the λsd increases with increasing conductivity
of the AuxPt1−x alloys (see Fig. 3 and SupplementalMaterial
[33]). Using these data together with the measured value of
λsdðPtÞ ¼ 1.9 nm for pure Pt, leads to the estimated values
for λsd given in Fig. 3. For pure Au, λsd ¼ 34 nm is assumed
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y
z H
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x‘
y‘

FIG. 1. Integration of a Ni81Fe19=AuxPt1−x-bilayer wire
together with voltage probes in the experimental setup. The
Ni81Fe19 layer is shown in green and the AuxPt1−x layer is shown
in red. In this geometry the excitation field is perpendicular to the
bilayer. The angle ϕH gives the angle between the voltage probes
and the static magnetization. x0, y0, z define the local coordinate
system of the magnetization.
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FIG. 2. Measured dc-voltage signal at FMR (green curve)
for ϕH ¼ 45° and a precession frequency of 12 GHz for a
Ni81Fe19=Au0.47Pt0.53 bilayer. LS and LA denote the symmetric
(red curve) and antisymmetric (blue curve), respectively, con-
tribution according to a fit to a Lorentzian line shape.
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FIG. 3. Spin diffusion length λsd, of AuxPt1−x alloys determined
assuming a linear dependence of λsd on the conductivity σAuPt.
The inset shows λsd on an enlarged scale for the investigated
concentration x below 0.8
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[37]. Figure 3 shows that the spin diffusion length drops
quickly when Pt is added to Au and that it is already
comparable to the value for pure Pt for about 30% Pt in Au.
With a reliable estimate for the spin diffusion length

available, the spin Hall angle αSH of AuxPt1−x can finally be
evaluated on the basis of Eq. (1), where σ stands for the
conductivity of the complete Ni81Fe19=AuxPt1−x bilayer
(see Fig. 4 and Supplemental Material [33]). The corre-
sponding values forαSH are given in the top panel of Fig. 4 as
a function of the composition. In particular, because of the

delicate dependence of αSH on λsd as given by Eq. (1), the
errors bars are relatively large. Nevertheless, it is obvious
that αSH for the concentrated alloys substantially exceeds
the values for the pure components Pt and Au, respectively.
This major experimental result of the present work clearly
demonstrates that alloying and working with concentrated
alloys opens a promising route to tune the spinHall angle in a
simple and robust way (see discussion below). Figure 4
gives the longitudinal charge conductivity σ (middle panel)
of AuxPt1−x corresponding to the resistivity given in the
Supplemental Material [33] and the transverse spin con-
ductivity σSH (bottom panel) as deduced from αSH and σ. As
one notes, σSH varies for the considered composition regime
nearly linearly with concentration x.
To support the interpretation of our experiments, ab initio

investigations on the transport properties of AuxPt1−x
alloys have been performed on the basis of Kubo’s linear
response formalism. These are based on a calculation of the
underlying electronic structure by means of the KKR-GF
(Korringa-Kohn-Rostoker Green function) method that
gives direct access to the electronic GF. This allows us
to account straightforwardly for random disorder in sub-
stitutional alloys by means of the coherent potential
approximation (CPA). The CPA also offers a very reliable
platform to deal with the so-called vertex corrections that
occur when dealing with response functions. In the present
case they give rise in particular to the extrinsic contribution
to the spin Hall conductivity that is dominated by the skew
scattering mechanism [28,38]. A most reliable treatment of
this central spin-orbit induced transport property is ensured
by using the fully relativistic formulation of the KKR-GF
formalism [40]. For technical details see Ref. [41] and the
Supplemental Material [33].
In contrast to previous theoretical work in the field, we

accounted explicitly for the impact of finite temperatures
on the transport properties. This is achieved by treating
thermal lattice vibrations using the alloy analogy model
[42]. Within this approach that is based on the adiabatic
approximation, the temperature induced atomic displace-
ments are seen as a random, quasistatic and temperature
dependent distortion of the lattice with a corresponding
distortion of the potential. The resulting temperature
induced disorder of the potential is treated using the
CPA as it is done for chemical disorder due to alloying.
The results for the longitudinal conductivity σðx; TÞ for

T ¼ 0 K given in Fig. 4 (middle, open squares) show as a
prominent feature the typical divergent behavior σðx; 0Þ ≈
σ̄hostðsoluteÞ=xsolute in the dilute regime [43], where we find
for the reduced conductivities σ̄PtðAuÞ ≲ σ̄AuðPtÞ [28], i.e., for
Pt in Au and Au in Pt, respectively. This behavior reflects
the fact that σðx; 0Þ for a perfectly periodic solid (x¼0 or 1)
at T ¼ 0 K becomes infinite and accordingly its resistivity
becomes zero. On the other hand, for concentrations
0 < x < 1 one has even for T ¼ 0 K a finite conducti-
vity corresponding to the residual resistivity. For finite
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FIG. 4. Spin Hall angle αSH (top), longitudinal charge conduc-
tivity σ (middle), transverse spin Hall conductivity σSH (bottom),
of AuxPt1−x as a function of the concentration x. The full red
circles give experimental data for T ¼ 300 K, while the full
(open) squares give results obtained using Kubo’s linear response
formalism in combination with the alloy analog model for T ¼
300 K (T ¼ 0 K). The thin dashed lines give theoretical results
for the temperature range between 0 and 350 K in steps of 50 K.
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temperatures, σðx; TÞ becomes finite even in the case of
pure elements due to electron-phonon scattering or, equiv-
alently, thermally induced disorder [44]. As to be expected,
because of the very different density of states at the Fermi
energy, the corresponding conductivity drops much faster
with temperature for pure Pt than for pure Au. For the dilute
AuxPt1−x alloys with x≲ 0.1 or x≳ 0.9, respectively, one
finds σðx; TÞ also to be finite but one still notices a
reminiscence of the divergence of σðx; 0Þ for x → 0 or
1, respectively. For the concentrated alloys (0.2≲ x≲ 0.8),
on the other hand, only a moderate change of about 20% for
σðx; TÞ is found when going from T ¼ 0 to 300 K. This
implies that the scattering due to chemical disorder is more
pronounced than that due to thermal lattice vibrations.
Figure 4 (middle) shows that the calculations reproduce the
experimental data for the conductivity σ measured at room
temperature very well. This obviously also holds for the
spin conductivity σSH that is given in Fig. 4 (bottom).
For the dilute regimes, the theoretical spin conductivity

σSHðx; TÞ also shows a 1=xsolute divergence reflecting
that σSHðx; TÞ is dominated by its skew scattering
contribution σskewSH ðx; TÞ as this scales for T ¼ 0 K linearly
with σðx; 0Þ according to σskewSH ðx; 0Þ ≈ ShostðsoluteÞσðx; 0Þ ¼
ShostðsoluteÞσ̄hostðsoluteÞ=xsolute, where ShostðsoluteÞ is the so-
called skewness factor (see Supplemental Material [33])
[28,39,45]. Because σ̄PtðAuÞ ≲ σ̄AuðPtÞ and SPtðAuÞ ≈
−SAuðPtÞ=7.2 [28] the divergent behavior of σSHðx; 0Þ is
much more pronounced on the Au-rich side of the system
than on the Pt-rich side. As found before for several other
systems [28], one notes that the divergence leads to a strong
increase of σSH on the Au-rich side while σSH decreases on
the Pt-rich side for xsolute → 0. This behavior again reflects
the fact that the divergence is primarily due to the skew
scattering (represented by the skewness factor S) with its
magnitude and sign determined by the difference in the
strength of the spin-orbit coupling for the host and solute
atom [27]. As Fig. 4 shows, the divergent behavior of σSH
in the dilute regime disappears very rapidly with rising
temperature. In line with the behavior of σ, this change with
temperature is much more pronounced for the Pt-rich than
for the Au-rich side. For both sides of the system, however,
the divergent behavior disappears completely at room
temperature. In contrast to σ, the spin conductivity σSH
shows only a very weak temperature dependence in the
concentrated alloy regime. Further inspection of the theo-
retical results clearly shows that the extrinsic contributions
to σSH connected with the vertex corrections hardly
contribute in that regime. This means that the skew
scattering mechanism can be ignored while the intrinsic
contribution to σSH dominates. The data in Fig. 4 then
imply in particular that the intrinsic contribution is essen-
tially temperature independent as it is indeed found by the
calculations (see Supplemental Material [33]).
Altogether, one notes that for the concentrated compo-

sition regime, AuxPt1−x shows the so-called dirty behavior

[45] with negligible contributions to σSH due to the skew
scattering mechanism and its intrinsic part dominating.
This counterintuitive behavior was recently discussed in the
context of the impact of chemical disorder on the anoma-
lous Hall effect [46]. Here we find that not only chemical
but also thermal disorder may drive a system into the dirty
limiting behavior.
The spin Hall angle αSH resulting from the calculated σ

and σSH values is given in the top panel of Fig. 4. Because
of the dependence of the individual conductivities on
temperature and composition (see Supplemental Material
[33]) one finds a very pronounced temperature dependence
for αSH on the Pt-rich side of the system that continuously
gets diminished by alloying until it more or less disappears
at the Au-rich end. This temperature dependence of αSH for
a given concentration x is primarily determined by that of σ
as σSH depends rather weakly on T. In line with this, one
finds that αSH increases monotonically with temperature
when x is kept fixed. Also the strongly asymmetric
temperature dependence of αSH is explained this way as
the temperature dependence of σ is much more pronounced
on the Pt-rich than on the Au-rich side of the system.
Because of the pronounced minimum of σ that is located
around x ≈ 0.5 and the moderate concentration dependence
of σSH one finds a clear maximum for αSH more or less for
the same alloy composition. Because of the very different
temperature dependence of σ and σSH discussed, the
maximum occurs for all temperatures with a weak shift
towards pure Pt with increasing temperature. Finally, it
should be noted that αSH is not well defined in the case of
pure systems (x ¼ 0, or 1) at T ¼ 0 K as σ becomes infinite
(see Supplemental Material [33]). The corresponding limit-
ing value αSH ≈ ShostðsoluteÞ for xsolute → 0 to be expected
from the properties of σ and σSH discussed above is
obviously not yet reached for the compositions considered
in Fig. 4 as the intrinsic contribution to σSH is that large (see
Supplemental Material [33]).
In summary, it has been demonstrated that the FMR-

based experimental setup used before to determine the spin
Hall angle for pure elements can also be applied success-
fully for the investigation of substitutional alloy systems
throughout the whole concentration regime. Working with
concentrated alloys has the big advantage that one avoids
the delicate dependence of the spin conductivity σSH on the
concentration that is in general found for dilute alloys
because of the divergent behavior of the skew scattering
contribution. As it was demonstrated for the alloy system
AuxPt1−x, it is nevertheless possible to surpass substantially
the spin Hall angle αSH of the pure components in the
concentrated regime, i.e., to vary αSH over a wide range via
the concentration. All experimental findings could be
quantitatively confirmed by the accompanying theoretical
work based on Kubo’s linear response formalism. As a new
feature of such a type of calculations, the effect of finite
temperatures could be accounted for. These calculations
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clearly demonstrated that the divergent behavior of σSH in
the dilute regime due to the skew scattering is rapidly
suppressed with increasing temperature. For its intrinsic
contribution, on the other hand, only a weak temperature
dependence has been found.
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A. Sample preparation

The investigated Ni81Fe19 and AuxPt1−x films are successively deposited onto a GaAs substrate using magnetron
sputtering in a UHV chamber. Unless stated differently, each layer is 12 nm thick. In order to cover the full composition
range of AuxPt1−x alloys the following procedure is used. A 1 cm2 piece of GaAs substrate was put across a lateral
gradient of a AuxPt1−x particle beam. The gradient is achieved by simultaneous operation of neighboring sputtering
sources with the substrate located at the lateral mid-position above them. The GaAs substrate is covered by a mask
of electron beam lithography (EBL) resist, allowing fabrication of wires and 1 mm2 square patterns onto the GaAs
substrate. The wires are 5 µm wide and 400 µm long. They are electrically connected to voltage probes and integrated
into coplanar waveguides (CPW) by successive EBL-steps.

For a sketch of the sample design and the integrated bilayer wire see Fig. 1 of the manuscript. The overlap of the
electrical connections leads to an effective wire length of 350 µm. Each wire is exposed to the same Au-Pt beam as
a corresponding calibration square which is used for the determination of its composition via x-ray photo electron
spectroscopy (XPS). For the analysis the well separated 4p3/2 core level peaks of Au and Pt are used. The resulting

error for the concentration x is estimated to be ±5 %.

B. Experimental determination of the Spin Hall angle

For the investigated Ni81Fe19/AuxPt1−x-wires the voltage signals are recorded at FMR. For this the static com-
ponent of the magnetization is always in the x-y-plane and saturated along the external field H with its orientation
specified by the in-plane angle φH (see Fig. 1 of the manuscript). As the excursion angles of the magnetization M
are kept small it is helpful to define a second coordinate system whose x′-axis points along the static component of
M. The magnetization dynamics is then confined to the y′-z-plane and the equation of motion for the magnetization
components My′ and Mz reduces to a two dimensional problem. In this framework the possible dc-voltage signals
due to AMR and ISHE are given by the following two equations [15,20,34,35]:

VISHE = αSH
e

σ

g↑↓F ω

2πM2
S

λsd
tNM + tFM

tanh
( tNM

2λsd

)
l

×
(
=(χres

y′y′)χ
res
z′y′h

2
x cos(φH) sin2(φH) + =(χres

z′z′)χ
res
y′z′h

2
z cos(φH)

)
(∆H)2

(H −H0)2 + (∆H)2
(1)

VAMR =
1

2

IRA

MS
sin(2φH)

×
((
−={χres

y′y′}hx sin(φH) + χres
y′zhz sin(ξ)

) ( ∆H(H −H0)

(H −H0)2 + (∆H)2

)

+χres
y′zhz cos(ξ)

( (∆H)2

(H −H0)2 + (∆H)2

))
. (2)

Here αSH is the spin Hall angle, e the electron’s charge, σ is the conductivity of the bilayer, g↑↓F is the effective spin
mixing conductance which contains the backflow correction, ω the angular frequency Ms the saturation magnetization
of Ni81Fe19, λsd the spin diffusion length in the normal metal and tNM and tFM are the thicknesses of the normal
metal and the ferromagnetic layers, respectively. l is the length of our device. χres

y′y′ , χ
res
z′y′ , χ

res
z′z′ and χres

y′z′ are elements
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FIG. 1: The amplitudes of the fitted symmetric (AS, red open squares) and antisymmetric (AA, blue open squares) parts of
the Lorentzian line plotted as a function of φH for the Ni81Fe19/Au0.47Pt0.53 bilayer. The amplitudes AS and AA are fitted to
the expressions (c sin(φH) + d) sin(2φH) + e cos(φH) and (a sin(φH) + b) sin(2φH), respectively.
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FIG. 2: The value of VISHE from the fit of angular dependent measurements at 12 GHz plotted as a function of the concentration
x for the AuxPt1−x alloy system.

of the Polder susceptibility tensor. The microwave driving field components are hz and hx. I is the current through
the device and RA its resistivity. Finally the resonance field is given by H0 and the line width at resonance by ∆H.
As shown in [20] it is important to include terms for in-plane excitation even for the out-of-plane excitation scheme
used here and shown in Fig. 1 of the manuscript.

In-plane fields are generated at the position of the Ni81Fe19-layer due to a current flowing through the conductive
NM-capping. This effect is always present to a certain extent due to capacitive and inductive coupling between CPW
and bilayer-wire. The mutual phase shift of the currents flowing through the CPW and the bilayer-wire is denoted by
ξ. While not done here, from this phase shift one might determine the relative amplitude of the excitation field due to
CPW and NM as well as obtain information about the type of coupling. The term λsd/(tNM + tFM) tanh(tNM/2λsd)
in Eq. (1) assumes spin diffusion and gives the average spin current density in the NM [14,15,19,20].

From Eqs. (1) and (2) it is obvious that a voltage signal across FMR caused by the ISHE is characterized by a
symmetric Lorentzian function whereas the contribution due to AMR has both symmetric and antisymmetric parts
(see Fig. 2 of the manuscript). These parts of the voltage trace are determined by fits to the data. Their amplitudes
AS and AA are plotted as a function of φH in Fig. 1. The solid lines are angular dependent fits to the data according
to Eqs. (1) and (2). This data analysis is done for all Ni81Fe19/AuxPt1−x-bilayers. The resulting voltage signal VISHE

due to the ISHE under the influence of hz is plotted in Fig. 2 as a function of the concentration x. These data already
suggest that there is a sizable ISHE for the whole composition range of AuxPt1−x.
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Another central quantity entering the determination of the spin Hall angle is the conductivity of the system. The
experimental data measured for AuxPt1−x are represented in Fig. 3 in terms of the corresponding measured resistivity
ρ for Ni81Fe19/AuxPt1−x bilayer wires as well as bare alloy films.
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FIG. 3: The resistivity of the 5 µm wide and 400 µm Ni81Fe19/AuxPt1−x bilayer wires (black open circles) plotted as a function
of AuxPt1−x-composition and compared to the resistivity of the bare alloy films (blue open triangles).

Setting φH = 0◦ allows to deduce the spin Hall angle αSH from Eq. (1) of the manuscript, with the spin diffusion
length λsd being one of the most crucial parameters that enters this expression. To determine λsd in a reliable
manner it has been measured as a function of the thickness for selected AuxPt1−x layers. Corresponding results for
Au0.72Pt0.28 and Au0.66Pt0.34 are shown in Fig. 4. VISHE is measured for frequencies of 7 to 12 GHz in steps of
0.5 GHz. Each data point displayed in Fig. 4 is the average of in total 10 voltage traces which are normalized with
respect to frequency dependent parameters (the susceptibilities and the applied microwave power) and furthermore
in terms of bilayer resistance and frequency.

The solid lines plotted in Fig. 4 show the function A tanh(tNM/2λsd) for various values of λsd ranging from λsd =
0.6 nm to 4.0 nm. The measured data are best represented by λsd = 2.8 nm and 0.8 nm, respectively, for Au0.72Pt0.28
and Au0.66Pt0.34. This suggests that the spin diffusion length increases with increasing conductivity of the AuxPt1−x
alloys. Note that we use the results for the Au0.72Pt0.28 alloy (λsd = 2.8 nm), the literature value for pure Au
(λsd = 34 nm [37]) and the results for pure Pt ( λsd(Pt) = 1.9 nm) together with the resistivity data to obtain
an estimate for the spin diffusion length of all the alloys. Corresponding results are summarized in Fig. 3 of the
manuscript. The overall trend shows that the spin diffusion length is already very short for an amount of approximately
30 % of Pt in Au.

The effective spin mixing conductance g↑↓F of the different Ni81Fe19/AuxPt1−x-interfaces is extracted from spin
pumping experiments (again including the backflow correction) performed on corresponding calibration squares next
to the wire. For this the increase of the Gilbert damping constant α relative to the damping constant α0 of uncapped
Ni81Fe19 is used. As can be seen in Fig. 5 a linear dependence of the effective spin mixing conductance can be observed
as a function of Au concentration x.

C. Computational details and additional theoretical results

In order to support the interpretation of our experimental results the conductivities are calculated using a particular
form of the Kubo-Bastin equation [41] implemented using the fully relativistic multiple-scattering Korringa-Kohn-
Rostoker Green function (KKR-GF) method [40]

σzµν = σz,Iµν + σz,IIµν (3)

σz,Iµν =
~

4πΩ
Tr
〈
Ĵzµ(Ĝ+ − Ĝ−)ĵνĜ

− − ĴzµĜ+ĵν(Ĝ+ − Ĝ−)
〉

(4)

σz,IIµν =
~

4πΩ

∫ EF

−∞
Tr

〈
ĴzµĜ

+ĵν
dĜ+

dE
− Ĵzµ

dĜ+

dE
ĵνĜ

+ −
(
ĴzµĜ

−jν
dĜ−

dE
− Ĵzµ

dĜ−

dE
ĵνĜ

−
)〉

dE , (5)

Chapter 3. Results 273



4

0 4 8 12
tNM (nm)

0

1

2

3
V

no
rm

f−
1R
−

1
(n

V
/(W

kΩ
G

H
z)

)
Au72Pt28: λsd = 2.8 nm

0.8 4.8

λsd, δ = 0.2 nm

0 4 8 12
tNM (nm)

0

1

2

3

V
no

rm
f−

1R
−

1
(n

V
/(W

kΩ
G

H
z)

)

Au66Pt34: λsd = 0.8 nm

0.2 2.8

λsd, δ = 0.2 nm
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power, resistance of the respective bilayer wire and frequency. Every data point is the average of 10 voltage amplitudes from
fits in a frequency range of 7 to 12 GHz.
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FIG. 5: Effective spin mixing conductance determined from spin pumping experiments as a function of alloy concentration.

where here the form applicable for T = 0 K is given. In this case terms I and II denote contributions from the Fermi-
surface and Fermi-sea, respectively. Accordingly, the Green functions in Eq. (4) are evaluated at the Fermi energy
EF and the energy arguments of the GFs have been omitted throughout. In the employed relativistic formalism the

electric current operator is given by ĵ = −|e|cα, while the relativistic spin (z-polarization) current density operator

Ĵz, used for the calculation of the spin conductivity is given by Ĵzµ =
(
βΣz − γ5p̂z

mc

)
|e|cαµ , µ ∈ {x, y} [28]. Here

the quantities e, m, c and p̂z have their usual meaning, while the other quantities are the standard 4 × 4 matrices
occurring in the Dirac formalism.

The real space representation of the Green function operator Ĝ was obtained by using the spin-polarized relativistic
version of multiple-scattering (MS) theory [40] with a cutoff of `max = 3 for the MS-expansion. The electronic struc-
ture embodied in the underlying effective single-particle Dirac Hamiltonian for the GF is determined employing the
framework of Kohn-Sham-Dirac (KSD) spin density functional theory (KSD-SDFT) using the LDA as approximation
for the xc-functional. The atomic sphere approximation has been used as shape approximation in the construction
of the cell potentials. The lattice constants for the pure systems Au and Pt have been taken as 4.08 Å and 3.92 Å
respectively and have been linearly interpolated between these values in the alloy case.

To describe the effect of disorder the Coherent Potential Approximation (CPA) has been used in the self-consistent
determination of the single particle potentials as well as in the configurational averaging of the transport expression as
indicated by the angular brackets in Eqs. (4) and (5). In the latter case the so-called vertex corrections are included
that are crucial to describe the scattering processes at impurities (e.g. skew- and side-jump scattering) [23,43]. In
fact this approach allows a decomposition of the spin Hall conductivity σSH into its intrinsic and extrinsic parts, σintr

SH
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and σextr
SH , respectively. In the dilute alloy regime the latter one is dominated by its skew scattering contribution [28].

As has been shown in the context of the anamolous Hall conductivity [45]. One may therefore write for the spin Hall
conductivity σSH in the dilute alloy regime [28]:

σSH = σintr
SH + σextr

SH

≈ σintr
SH + σskew

SH

≈ σintr
SH + S σ (6)

where the scaling behavior σskew
SH = S σ has been used with S the so-called skewness factor and σ the longitudinal

conductivity. These expressions show in particular that the asymptotic behavior of the Hall angle αSH = σSH/σ in the
dilute limit approaches for σintr

SH ≈ constant asymptotically the limit αSH = S because σ scales with the concentration
of the solute xsolute as 1/xsolute [43]. The values for αSH given in Fig. 4 (top panel) are in line with this, i.e. the
limiting value for x → 0 or 1 is non-zero (see the detailed discussion of the scaling behavior below). For x = 0 or
x = 1 and T = 0 K, on the other hand, αSH is not well defined as σ gets infinite.

As mentioned in the manuscript the implementation of the Kubo-Bastin equation on the basis of the KKR-CPA
formalism has been used to account simultaneously for chemical as well as thermally induced disorder. Corresponding
results for the intrinsic contribution σintr

SH to the spin Hall conductivity σSH are shown in Fig. 6 as a function of the
concentration for a sequence of temperatures from 50 to 350 K. Obviously, only in the dilute limit a noteworthy
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FIG. 6: Calculated intrinsic contribution σintr
SH to the spin Hall conductivity σSH of AuxPt1−x as a function of the concentration

x for a sequence of temperatures T from 50 to 350 K.

dependence of σSH on the temperature is found.

The scaling behavior of the spin Hall conductivity expressed in Eq. (6) has been investigated in detail in Ref. 28
for the case T = 0 K. The corresponding plot of σSH(x, 0) versus σ(x, 0) for T = 0 K is given in the left panel of Fig.
7 by the thick dashed line. This curve clearly shows the linear variation of σSH(x, 0) with σ(x, 0) on the Au and Pt
rich sides of the system if the concentration x seen as an implicit parameter is varied from 0 to 1. The thin dashed
lines give corresponding plots for σSH(x, T ) and σ(x, T ) for a sequence of fixed temperatures from 50 to 350 K. As
one notices, the slope of the curves in the dilute regime diminishes quickly implying that the skewness parameter
correspondingly diminishes with rising temperature. This again implies that the temperature induced disorder has
the same impact on σSH(x, T ) as the chemical disorder due to alloying.

As in Ref. 28 the total spin Hall conductivity was considered in the left panel of Fig. 7. The right panel shows
corresponding plots restricting to the extrinsic contribution to σSH(x, T ) stemming primarily from the skew scattering
mechanism, i.e. without the intrinsic part σintr

SH shown in Fig. 6. These curves once more demonstrate the linear
scaling behavior expressed by Eq. (6) and clearly show a different sign of the skewness parameter on the Au and Pt
rich sides of the system that can be related to the difference in spin-orbit strength of the alloy partners (see e.g. [28]).
These curves also demonstrate that the rather large positive intrinsic spin Hall conductivity σintr

SH (x, T ) throughout
the concentration regime of AuxPt1−x is responsible that the total spin Hall conductivity σSH(x, T ) is also positive
for the full concentration and temperature range.
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FIG. 7: Scaling behavior of the spin Hall conductivity σSH(x, T ) of AuxPt1−x w.r.t. its longitudinal conductivity σ(x, T )
with the concentration x as an implicit parameter for a sequence of temperatures T from 50 to 350 K with the red arrow
indicating increasing temperature. Left: total spin Hall conductivity σSH(x, T ); right: extrinsic contribution σextr

SH to the spin
Hall conductivity. Thick dashed (full) lines represent results for T = 50 (300) K.
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Additional remark

• The measurements on AuPt have been repeated by Zhu et al. [371], qualita-
tively confirming the concentration dependence, but reporting twice as large
values for σSH and θSH . This is attributed to a considerably larger spin dif-
fusion length found in the direct spin-orbit torque experiments as compared
to that obtained using spin pumping and inverse spin Hall measurements in
Ref. 369.
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3.6.2 Additional results on galvanomagnetic effects in a fer-
rimagnet

The following is a reprint of the article Temperature-dependent charge transport
in the compensated ferrimagnet Mn1.5V0.5FeAl from first principles [340], reprinted
from

R. Stinshoff, S. Wimmer, H. Ebert, G.H. Fecher, C. Felser, and S. Chadov,
arXiv:1710.04453 [cond-mat.mtrl-sci] (2017), submitted to Phys. Rev. B.

https://arxiv.org/abs/1710.04453


ar
X

iv
:1

71
0.

04
45

3v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  1
2 

O
ct

 2
01

7

Temperature-dependent charge transport in the compensated ferrimagnet
Mn1.5V0.5FeAl from first principles

R. Stinshoff,1 S. Wimmer,2 H. Ebert,2 G. H. Fecher,1 C. Felser,1 and S. Chadov1

1Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
2Ludwig-Maximilians-Universität, Dept. Chemie, Butenandtstr. 11, 81377 München, Germany

We present an ab-initio study of the temperature-dependent longitudinal and anomalous Hall
resistivities in the compensated collinear ferrimagnet Mn1.5V0.5FeAl. Its transport properties are
calculated using the general fully relativistic Kubo–Bastin formalism and their temperature depen-
dency is accounted for magnetic and structural disorder. Both scattering sources, together with the
residual chemical disorder, were treated equally provided by the CPA (Coherent Potential Approx-
imation) SPR-KKR (Spin-Polarized Relativistic Korringa-Kohn-Rostoker) method. All calculated
properties showed good agreement with a recent experimental results, providing useful specific in-
formation on the chemical and magnetic arrangement as well as on the influence of disorder. Finally,
we demonstrated that the anomalous Hall effect in such compensated systems occurs regardless of
the vanishing net spin moment.

PACS numbers: 75.50.Gg, 72.80.Ng, 85.30.Fg
Keywords: compensated ferrimagnets, conductivity, anomalous Hall effect, disorder

Magnetically compensated systems provide an attrac-
tive base for the next generation of spintronic devices [1].
Their investigation is motivated by potential applications
in various technological fields, such as new types of RAM,
detectors, microscopic tips, etc, in which the interest is
focused on an alternative manipulation of spins, absence
of stray fields and higher operating frequencies. Mag-
netically compensated systems have different order pa-
rameters than ferromagnets, such as staggered magneti-
zation [2, 3] or magnetic chirality [4–6], which can be ma-
nipulated and detected by either magnetic fields or pulsed
electric currents. However, the absence of net magnetiza-
tion does not exclude the possibility that such materials
will exhibit the anomalous Hall effect (AHE) [7], Kerr
effect [8] or high spin-polarization [9–11]. For example,
in case of the planar noncollinear antiferromagnets (e.g.,
Mn3Ir) AHE has been predicted [12] for the case when
the mirror symmetry is broken. By considering magnetic
compensation in the cubic ferrimagnets, it is important
to note that, both typical cubic structures with Fm3̄m
or F4̄3m space groups correspond to I4/mm′m′ or I4̄m′2 ′

magnetic space groups, respectively. Both cases belong
to the magnetic Laue group 4/mm′m′ [13, 14] which leads
to the following shape of the conductivity tensor:

σ =




σxx σH 0
−σH σxx 0

0 0 σzz


 , (1)

where σH is the anomalous Hall component. Obvi-
ously, σH will have a non-vanishing amplitude if there
is a difference between the spin-up and -down projec-
tions of the electronic structure, which can be fulfilled
if the magnetic moment of one atom type is compen-
sated by the antiparallel moments from the other atom
types. It is particularly easy to realize such systems
using cubic Heusler alloys since most of them obey

the Slater–Pauling rule [15, 16], suggesting that com-
pensated ferrimagnets can be found among compounds
having 24 electron formula units. Some compensated
Heusler ferrimagnets have been already reported, such
as MnCo4/3Ga5/3 [17]. Ferrimagnetic compensation can
also be induced in the tetragonal structures [18], e.g.,
in the case of Mn1.4Pt0.6Ga [19]; however, the deviation
from the Slater–Pauling rule does not allow for a clear
recipe for the exact compensating stoichiometry.

The first experimental evidence of non-zero AHE in
compensated cubic ferrimagnets was given recently [20,
21] for the Heusler compound Mn1.5V0.5FeAl. Addi-
tional calculations [21] have shown that this system is
half-metallic in agreement with the Slater-Pauling rule,
indicating that the observed AHE is due to the aforemen-
tioned strong asymmetry of the spin-channels. Here, we
investigate this scenario by first-principles calculations
on the system Mn1.5V0.5FeAl and verify that the ex-
perimental non-zero AHE is an intrinsic property of the
compensated ferrimagnets, rather than a consequence of
the small remaining magnetization induced by deviations
from stoichiometry. We employed the fully-relativistic
SPR-KKR (Spin-Polarized Relativistic Korringa-Kohn-
Rostoker) method using the standard generalized gradi-
ent approximation [22] for the exchange-correlation po-
tential. The structural information on Mn1.5V0.5FeAl is
taken from a recent experiment [20].

Though the origins of AHE being well understood the-
oretically, a realistic combined first-principles descrip-
tion still remains a challenging computational task. At
present, the most general approach for equally consid-
ering the sources of AHE is the so-called Kubo-Bastin
formalism. Being implemented within the SPR-KKR
method [23, 24], it allows us to deal with the charge
transport in solids by treating various disorder effects
on the basis of the CPA (Coherent Potential Approxima-
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FIG. 1: Mn1.5V0.5FeAl within (a) F4̄3m (SG216, with 4c and
4d Wyckoff sites occupied by Mn and Fe, respectively) and
(b) Fm3̄m (SG225, for which 4c and 4d sites become equiva-
lent by changing to common type 8c with random Mn0.5Fe0.5

occupation). Other sites, 4a and 4b, occupied by Mn0.5V0.5

and Al, respectively, remain the same in both structures.
Arrows indicate the spin moments of Mn atoms. (c) and
(d) show the corresponding (to (a) and (b), respectively) spin-
resolved (red - spin-up, blue - spin-down) spectral densities.
(e) The total energy as a function of x (occupation parame-
ter), i.e., the amount of Mn in 4d position: x = 0 corresponds
to (a), x = 0.5 - to (b).

tion) [25, 26].

Since the X-ray diffraction (XRD) refinement [20] does
not unambiguously resolve the occupancies of the 4c and
4d Wyckoff positions, we first specified the chemical or-
der in the system. Most of the integral characteristics
of the system, such as the magnetization, are not very
sensitive to the partial ordering; however partial order-
ing might significantly influence the charge transport.
Treating our system within the F4̄3m symmetry, we as-
sumed 4c and 4d sites were different. This allowed us
to mix Mn with Fe, gradually going from the most or-
dered case (Mn)4d(Fe)4c (F4̄3m) to the most disordered
case (Mn0.5Fe0.5)4d(Mn0.5Fe0.5)4c, which has higher ef-
fective symmetry (Fm3̄m). Both variants are shown in
Fig. 1 a and b. Even though their electronic structures
(Fig. 1 c, d) were looking similar, increased broadening of
the spin-down states was observed in the vicinity of the
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FIG. 2: Residual resistivities as a function of the Fermi en-
ergy shift ∆EF = E′

F − EF. (a) Longitudinal resistivity ρ,
(b) anomalous Hall resistivity ρH. Red and blue curves cor-
respond to the x = 0 and x = 0.5 variants; empty circles are
the experimental values [21] measured at low temperatures
(indicated explicitly).

Fermi energy EF for the case (d), which was caused by
the additional Mn/Fe disorder. This broadening should
impose a drastic difference in the transport properties
of the case (d) with respect to case (c). Calculating
the total energy as a function of the occupation rate
x: (MnxFe1−x)4d(Mn1−xFex)4c, 0 ≤ x ≤ 0.5, provided
information concerning the most stable phase. As shown
in Fig. 1 e, the total energy decreased monotonically with
x and reached its minimum at x = 0.5. This behavior
indicates that Mn1.5V0.5FeAl effectively has Fm3̄m sym-
metry.

Having specified the chemical order, we proceeded with
the precise calibration of the Fermi energy EF. Again,
small deviations of EF do not influence the integral prop-
erties as the magnetization, but might be crucial for the
transport properties. These deviations can occur both
in experiment (e.g., due to chemical and structural im-
perfections) as well as in calculations (e.g., due to the
spherical approximation of the atomic potentials). For
this reason, we computed both ρ = 1/3 · (2ρxx + ρzz) and
ρH = ρxy as functions of the EF position (Fig. 2). For
x = 0.5 we observed a strong dependence on EF for both
ρ and ρH, which showed the best simultaneous agreement
with experiment at ∼ 20meV above the nominal EF. At
the same time, for x = 0 both quantities strongly devi-
ated from experiment within the whole range of ∆EF.

The temperature dependency of the charge trans-
port for x = 0.5 was examined by considering two basic
sources of disorder induced by temperature: phonons and
magnons. Here they are considered in an approximate
way as an additional quasi-static disorder: phonons - as
positional disorder, magnons - as spin-orientation disor-
der [27]. In addition, we neglected the T -dependency
of the Fermi-Dirac statistics and identified the actual
chemical potential µ(T ) with EF. The ability to treat
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both thermal disorder sources within the CPA formalism
made this approach especially convenient. Even though
the non-local details and the specific features of the ther-
mal oscillatory modes are neglected, the practical use of
this approach has been convincingly demonstrated [27–
29].

The T -dependency of the mean amplitude of the
atomic displacements was determined here by the De-
bye theory (the effective Debye temperature was taken
as an average over atomic types), whereas the directions
of displacements were selected along the basis vectors
to keep the conformity with the lattice. The atomic
spins were assumed to have T -independent amplitudes
mi (i = 1, .., N ; N is the number of atoms in the unit
cell), and thus were calculated from first principles, but
the adequateness of the T -dependency of their angu-
lar distribution expressed by weights, must be deter-
mined. At a fixed temperature T , the angular distri-
bution of the i-th atomic spin gives its effective aver-
age value: mi

∑
ν piν(T )~eν = 〈~mi〉(T ) ({~eν} is a fixed

set of all possible spatial directions). The angular dis-
tribution was assumed to be Gibbs-like (see Eqs. 13-15
in Ref. [27]) with weights {piν(T )} determined by fit-
ting the experimental value: 〈~mi〉(T ) = ~mexp

i (T ). Such
a mapping is unique only for a single magnetic sublat-
tice, where the experimental magnetization unambigu-
ously defines the angular distribution of each atomic spin,
since ∀i : mexp

iz = Mexp/N (index “z” denotes a projec-
tion on the common magnetization axis). In the present
case, even though Mexp(T ) is known, the unit cell con-
tains five different magnetic sublattices: i = V(4a),
Mn(4a), V(4b), Fe(8c) and Mn(8c). We simplified this
situation by assuming that the same form of the T -
dependency applies to all atomic spins that randomly
share the same Wyckoff site, which reduced the number
of magnetic sublattices from five to three (i.e., i = 4a,
4b and 8c). To avoid the remaining ambiguity, we as-
sumed some reasonable form of the T -dependency for
each sublattice, e.g., by implying a sublattice-specific
Bloch’s law: 〈miz〉(T ) = miz (1 − (T/Ti)

αi)βi , where αi,
βi and Ti (playing the role of an ordering temperature
for the i-th sublattice) are T -independent fitting pa-
rameters and miz = miz(0) - the ground-state atomic
spin moments calculated from first principles. Thus,
we fitted Mexp(T ) by using the following expression:∑

i miz (1 − (T/Ti)
αi)

βi = Mfit(T ) −→ Mexp(T ), with i
running over three atomic sublattices entering the unit
cell with the corresponding multiplicities, which are im-
plicitly included in miz. The fit (see Fig. 3) resulted
in rather close sets for the ordering temperatures Ti =
345.6, 345.0 and 345.0K, as well as for the power fac-
tors αi = 2.52, 2.92 and 3.10, βi = 0.56, 0.35 and 0.55
for sites 4a, 4b and 8c, respectively. These factors ap-
peared to have the same order of magnitude as those in
the conventional Bloch’s law (α = 3/2, β = 1/3).

The conductivities σ and σH calculated as functions of

0 100 200 300
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FIG. 3: Experimental magnetization [21] in µB/f.u. (black
solid line) versus fit (black dashed line) together with the z-
projections of the sublattice spin moments derived from the
fit (red, blue and green correspond to 8c (Mn0.5Fe0.5), 4a
(Mn0.5V0.5) and 4b (Al), respectively).

T are shown in Fig. 4. The effects of spin-fluctuations
and atomic vibrations are demonstrated by two addi-
tional curves, where the calculation accounts either only
for spin-fluctuations (marked as “fluct.”) or only for
atomic vibrations (“vib.”). These scattering sources can-
not be combined, neither as parallel nor as sequential re-
sistors (i.e., neither of these combinations gives the blue
curve), even at low temperatures. On the other hand,
the result based on the spin-fluctuations alone (green)
followed the total curve (blue) more closely indicating
that the spin disorder is the dominant scattering source.
Both computed σ and σH reasonably agreed with the
experimental values over the whole temperature range.
The strongest deviation from experiment was simulta-
neously observed around 100K for both quantities (in
case of σH@100K the deviation was more than 50%,
however due to σH/σ ∼ 10−3, for the absolute deviation
the relation δσH ∼ σH ≪ δσ ≪ σ holds). The main rea-
son for the deviations are the aforementioned assump-
tions about the angular distribution of the spin moments,
which might deviate from the actual distribution more
strongly in the T -range where the dispersion is already
large, but the distribution is still far from uniform. The
adequate description of this temperature regime becomes
rather complicated, but it can be improved by systemat-
ically considering different aspects influencing the distri-
bution of the local moments, such as the specific features
of the magnon dispersion, additional angular correlations
imposed by relativistic effects, and possible longitudinal
spin fluctuations.

In addition to the determination of the chemical order,
the present calculations explain several aspects specific to
ferrimagnets, such as the directions of local moments in
the magnetically compensated state. Since the reversal of
local moment occurs simultaneously with the sign change
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triangles) curves correspond to the case when only either
magnetic fluctuation or atomic vibrations, respectively, are
taken into account. The blue curve (circles) corresponds to
the simultaneous inclusion of both scattering sources. Hollow
squares stand for experimental values [21].

of σH, σH < 0, the moments of Mn and Fe on 8c positions
are positive (aligned along an infinitesimal small external
magnetic field), whereas those of Mn and V on 4a are neg-
ative. Further, the residual chemical disorder is shown to
reduce the AHE: in the Kubo–Bastin formalism [24], the
transverse conductivity is the sum of the Fermi-surface
term (σI, the contribution from the conducting electrons
at EF) and the Fermi-sea term (σII, the contribution from
the occupied states), σH = σI + σII ∼ −10−5 (µΩcm)−1,
which appear to be large quantities with opposite sign:
σI ∼ −σII ∼ 5 · 10−3 (µΩcm)−1. This relation holds in
the whole temperature range up to the magnetic criti-
cal point, where both terms simultaneously vanish (see
Fig. 5 a). While σII is almost insensitive to the residual
disorder, σI is strongly dependent on disorder and van-
ishes only close to the perfect limit, thereby increasing
the total sum σH. However, this does not apply to the
present material as it is strongly disordered.

The non-trivial observation in which the ideally
compensated collinear ferrimagnet can exhibit a
non-zero AHE does not unambiguously follow from
the above data since neither the experimental nor
the theoretical situations are ideal. Small residual
magnetization is present both in experiment and in
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scaled up by a factor 50, as well as the experimental values [21]
(σexp

H , hollow squares). (b) σH vs residual magnetization Mres.
Annotated values correspond to the stoichiometric variation
δ on 4a site, Mn0.5+δV0.5−δ, which controls Mres.

the ground-state calculations; the computed value is
Mres = Mspin + Morbital = 0.0097 + 0.0421 = 0.05 µB/f.u.
for the nominal (non-shifted) EF. The applied cali-
bration shift ∆EF = 20meV slightly influences Mres

further. To demonstrate the nonzero AHE at M = 0,
we have adjusted the stoichiometry so that Mres = 0
within the numerical precision (see Fig. 5 b). This can
be achieved, for instance, by a slight excess of Mn on the
4a site: Mn0.5+δV0.5−δ. Some non-zero values of Mres

are negative since we do not change the directions of the
atomic moments, in order to preserve the sign of σH. As
it follows, σH continuously changes with Mres and does
not show any minimum in the amplitude by approaching
Mres = 0. Thus, the AHE should not vanish in the
ferrimagnets because of magnetic compensation. We
emphasize that the aspect of full compensation is rather
fundamentally than technologically relevant, since it is
almost impossible in practice to remove small rest of the
magnetization even in antiferromagnets. On the other
hand, this makes the verification of a non-vanishing
AHE technically difficult, since σH (or ρH) changes its
sign with the reversal of the external magnetic field and
thus passes through zero [20, 30].

To conclude, we provided an extended first-principles
description of the temperature-dependent charge trans-
port in the compensated ferrimagnet Mn1.5V0.5FeAl,
which was in good agreement with experiment. In par-
ticular, we analyzed the influence of disorder on a charge
transport and proved the possibility of a non-zero anoma-
lous Hall effect in the ideally compensated state.
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Chapter 4

Conclusion

The main aim of the present work as part of the DFG priority program “Spin Caloric
Transport (SpinCaT)” was to apply the combination of a spin-polarised relativis-
tic band structure method and a corresponding linear response transport formalism
to the first-principles determination of spin-dependent thermoelectric coefficients of
metals and alloys. To this end the Korringa-Kohn-Rostoker multiple scattering for-
malism and Kubo’s linear response theory as implemented in the Munich SPR-KKR
program package were extended by a generalisation of Mott’s formula for the ther-
moelectric power. Making furthermore use of the coherent potential approximation,
a single-site alloy theory, and an analogous scheme for the mean-field description of
thermally-induced lattice vibrations and spin fluctuations, the so-called alloy anal-
ogy model, finite-temperature transport properties of ordered as well as (chemically)
disordered systems could be investigated. In addition, group-theoretical concepts
were applied to the symmetry analysis of electric and thermoelectric responses and
extended to spintronic and spincaloritronic effects as well as to the spinorbitronic
phenomena spin-orbit torque and Edelstein effect.

The underlying methods and formalisms were introduced in Chapter 2. Starting
with a short treatise on density functional theory focused on the aspects relevant to
this work in Section 2.1, an overview over the KKR multiple scattering framework
giving access to the single-electron Green function as the fundamental object for the
description of the electronic structure of a system and its properties was given in Sec-
tion 2.2. Of particular relevance to the results presented in Chapter 3 is Section 2.3,
that sketches Kubo’s linear response formalism and focuses on its application to
thermoelectric and spincaloritronic transport properties. A historical overview on
the field was given and alternative approaches to the phenomenological description
of charge and heat currents in response to electric fields and temperature gradients
were reviewed. Generalisations to the Mott formula for the thermopower were out-
lined and an extensive comparison of spin-projected and spin-polarised approaches
to spincaloritronics was made. A brief introduction to a model-independent group-
theoretical approach to the space-time symmetry of linear response phenomena was
given in addition.

Chapter 3 presented a collection of published articles and unpublished manuscripts
on spincaloritronic and related response properties. Examples for phenomena that
could be quantitatively studied using all or a subset of the above-mentioned methods
are the anisotropy of the Seebeck effect or anisotropic magneto-thermopower and
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the anomalous Nernst effect in ferromagnets (Section 3.1), as well as the spin Nernst
effect and its manifestation in the spin Nernst magneto-thermopower (Section 3.2).
An extensive study on electric, thermoelectric, and thermal transport in Co1−xFex
alloys aimed at supporting experimental investigations in search for signatures of
quasiparticles was presented in Section 3.1 as well. The spin-orbit-induced scat-
tering mechanisms known from the theory of the anomalous and spin Hall effects
could be shown to give rise to distinct contributions also to the spin Nernst effect
(Section 3.2). Its role in the so-called spin Nernst magneto-thermopower used for
its experimental verification was supported by first-principles calculations of finite
temperature spin Hall and spin Nernst angles. The space-time symmetry of linear
response phenomena based on their respective flux-force correlation in terms of the
Kubo formula were investigated. An extension to three operators for the description
of direct and inverse spin conductivities in response to electric fields or temperature
gradients led in particular to the prediction and numerical confirmation of longi-
tudinal spin currents in non-magnetic systems (Section 3.3). Transverse transport
and related magneto-optical properties in non-collinear antiferromagnets were inves-
tigated in Section 3.4. Their occurrence was shown to be most generally deductible
from established group-theoretical considerations. In addition, the so-called topo-
logical or chirality-induced contributions to various linear response phenomena in
chiral coplanar and non-coplanar spin configurations were studied numerically in
the non-relativistic limit. Extending the group-theoretical framework of Section 3.3
to the spin-orbit torque and the Edelstein effect allowed giving tensor shapes for
direct and inverse effects in all magnetic point groups (Section 3.5). Supporting
first-principles calculations for a non-centrosymmetric tri-layer alloy system could
be used to investigate the relevance of various contributions and underlying mecha-
nisms to these effects. Finite temperature effects beyond the Fermi-Dirac statistics,
namely thermally-induced lattice displacements and spin fluctuations were studied
concerning their effect on the spin and anomalous Hall effects in Section 3.6. In a
joint experimental and theoretical study it could be shown that the intrinsic con-
tribution to the spin Hall effect dominates at elevated temperatures. Moreover,
the temperature dependence of the galvanomagnetic response properties of an un-
compensated ferrimagnet were demonstrated to be accurately modelled based on a
projection of the temperature-dependent magnetisation on sub-lattices .

Furthermore, the implementation of the generalised Mott relations used for the first-
principles determination of thermoelectric and spincaloritronic response coefficients
was presented in Appendix A.2. Implementations of a two-dimensional formulation
of the Kubo formalism and the non-equilibrium Green function formalism for lay-
ered systems, both not used throughout this thesis, were sketched and applied in
Appendices A.5 and A.6, respectively. The latter two hold great promises for future
investigations of more complex scenarios such as electric-field- or thermally-induced
linear response phenomena of heterostructures as for example multilayer and sur-
face systems with complex non-collinear and non-coplanar magnetic structures as
well as non-equilibrium phenomena under applied external biases. One particu-
larly interesting application in this respect is the proposed first-principles descrip-
tion of the so-called electric-field-induced X-ray magnetic circular dichroism (EFI-
XMCD) employed for the detection of transient spin polarisation in non-magnetic
metals [372, 373].
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To some extent one has to admit that the comment by Vilenkin and Tylor in 1978
[282], that there were an embarrassment of richly suitable phenomena with which to
explain almost any result1 stills holds largely true. Using a currently quite popu-
lar expression, this is of course to a great deal owed to the fact that many effects
are emergent phenomena [374], coming about precisely due to the intricate inter-
play of several complicated individual processes. In particular electronic correlations
and collective excitations such as phonons and magnons still pose a great challenge
to their first-principles description. But to end on a less gloomy tone, the steady
progress in the computational physics approach to transport coefficients allowing
ever more complications to be included on a first-principles level enables us to give
reliable numbers for already quite complex scenarios. Based on these, in oftentimes
even quantitative comparison with likewise increasingly reliable experimental re-
sults, the discrepancies can be ascribed to physical phenomena that lie beyond the
present capabilities of a first-principles approach.

Future first-principles investigations in the field of spincaloritronics based on the
methodology and extending the applications presented in this work should certainly
be aimed at two-dimensional structures such as surfaces and interfaces. To the re-
markable achievements already made in the direction towards a realistic description
of experimental conditions [18, 62, 63, 302, 303, 375–378], the approach presented
herein could add the merits of a fully-relativistic description of linear response phe-
nomena in chemically, structurally as well as thermally disordered systems.

1Which itself was a somewhat disappointed update of earlier statements by Wilson (1936 and
1953, see references in Ref. 282) that experiment and theory of thermoelectric phenomena are
irreconcilable.
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Appendices

A.1 Linear response coefficients as used by Kubo

et al.

Supplementary to the discussion in Section 2.3.2.1, pp. 43, the connection between
the phenomenological equations for charge and heat current densities, Eq. (4.2) of
Ref. 109, and the commonly used response tensors given in Eq. (4.5) is revisited in
the following.

The starting point is Eq. (4.2) of Kubo et al. [109]:

j = S(1)(E +
T

e
∇ξ) + S(2) 1

T
∇T (A.1)

q = −S(3)(E +
T

e
∇ξ)− S(4) 1

T
∇T , (A.2)

where a first apparent misprint, a missing T in the prefactor of ∇ξ in the second
line, has been corrected already by Kleiner [271]. Here S(n) are tensors of rank two,
E is as usual the electric field, and ξ = ζ/T is the reduced chemical potential.

From the first line for the electric(al) current density one obtains via

E =

(
j − S(2) 1

T
∇T

)
(S(1))−1 − T

e
∇ξ (A.3)

and by using the first line of Eq. (4.5) of Ref. 109,

ρ = (S(1))−1 = σ−1 , (A.4)

as well as

T

e
∇ξ =

T

e
∇ ζ

T
=

T

e

T∇ζ − ζ∇T
T 2

=
1

e
∇ζ − ζ

eT
∇T , (A.5)

the expression for the electric field in the first line of Eq. (4.4) of Ref. 109:

E = ρj − 1

e
S∇T − 1

e
∇ζ . (A.6)

Here

S =
e(S(1))−1S(2) − ζ

T
(A.7)
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is −e times the absolute thermoelectric power per unit temperature difference [109].

Inserting Eq. (A.3) into the second line of Eq. (A.1) gives

q = −S(3)

[(
ρj − 1

eT
(eS(1))−1S(2) − ζ)∇T − 1

e
∇ζ
)

+
T

e
∇ξ
]
− S(4) 1

T
∇T

= −S(3)ρj +

(S(3)(S(1))−1S(2) − S(4)

T

)
∇T

+S(3)

(
1

eT
ζ∇T − 1

e
∇ζ +

T

e
∇ξ
)
. (A.8)

Using Eq. (A.5), the three terms in the last bracket of the second line cancel each
other, and one may write

q =

(
−S(3)ρ− ζ

T

)

︸ ︷︷ ︸
π

j −
(S(4) − S(3)(S(1))−1S(2)

T

)

︸ ︷︷ ︸
κ

∇T +
ζ

T
j , (A.9)

which is, apart from the prefactor of the last term, identical to the second line of
Eq. (4.4) of Kubo et al. [109]. As this term serves as a compensation for the second
term in π, the prefactor −1

e
of Kubo et al. seems to be erroneous, which can be seen

already when inspecting the units.
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A.2 Implementation of the generalised Mott re-

lations

In this appendix first tests and applications of an implementation of the gener-
alised Mott relations [Eqs. (2.156)-(2.158)] and their low temperature limits, Mott’s
formula for the thermopower [Eq. (2.268)] and Sondheimer’s for the (anomalous)
Nernst conductivity [Eq. (2.270)] will be presented. These calculations have been
performed as preliminary work for Sections 3.1 and 3.2. Computational details can
be found in Appendix A.7.
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Figure A.1: Thermoelectric power of AgxPd1−x as a function of x at T = 1 K (left),
83 K (middle) and 237 K (right). Comparison is made to experimental data [379, 380] and
other first-principles calculations [264, 296]. Moreover the Mott formula and its finite-
temperature generalisation as well as two different angular momentum expansions are
compared.

Figure A.1 shows the concentration dependence of the Seebeck coefficient in fcc
AgxPd1−x alloys at three different temperatures. In the left panel the low tempera-
ture limit S/T at T = 1 K calculated via Eq. (2.268) is compared for two different
angular momentum expansions (full black circles: `max = 2, empty circles: `max = 3)
against results by Butler and Stocks [264] (red full circles, `max = 2) and experimen-
tal low-temperature data from Guénault [379] (green squares). For a discussion of
the concentration dependence and the relevance of vertex corrections see Refs. 264
and 265. These authors also discuss the impact of the angular momentum expansion
cut-off (`max), which is less pronounced w.r.t. the magnitude as in the resistivity,
but leads to a shift of the extremum in the middle of the concentration range.
Results obtained from the generalised Mott formula [Eq. (2.266)] at T = 1 K are
indistinguishable from the Mott results shown here. The central panel gives results
for T = 83 K using the generalised Mott formula in comparison to experimental
data obtained by Taylor and Coles [380]. Again the theoretical results for smaller
`max accidentally compare more favourable to experiment. In addition to S(T ) also
data for S/T × T is shown, i.e., the Mott results from the left panel multiplied by
T = 83 K. Only minor differences in the vicinity of the extremum are visible. For
T = 273 K in the right panel these differences obviously become more pronounced,
the reduced magnitude and the broadening of the extremum are in agreement with
experiment. Its slightly wrong position is again due to the use of `max = 3, the re-
sults obtained by Oshita et al. [296] for `max = 2 and using Eq. (2.266) are however
not substantially better.
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Figure A.2: Spin-dependent Seebeck coefficient and its magnetic anisotropy (left) and
spin Nernst conductivity (right) as a function of x in CoxPd1−x. In both cases the low
temperature limits obtained from Mott- or Sondheimer-like formulae are shown.

In Figure A.2 the spincaloritronic response properties spin-dependent Seebeck co-
efficient (left) and spin(-dependent) Nernst conductivity (right) are shown for the
ferromagnetic alloy CoxPd1−x. Both were calculated from spin-polarised conductiv-
ities (s ≡ z) using the Mott and Sondheimer formulae, Eqs. (2.268) and (2.270),
respectively. The spin-dependent Seebeck effect shows, as its charge counterpart
discussed in Ref. 267, a dependence on the relative orientation of applied temper-
ature gradient and magnetisation (along z). The difference of the spin-polarised
Seebeck coefficients in relation to the isotropic value, ∆(Ssii/T )/(Ss/T ), is termed
anisotropy of the spin-dependent Seebeck effect (ASSE) in analogy to the anisotropic
Seebeck effect (ASE) and the anisotropic magnetoresistance (AMR). As the indi-
vidual Ssii/T , it is largest for x ≈ 0.2, in line with most other response properties
of CoxPd1−x [267]. Note that a spin-projected formulation of the spin-dependent
Seebeck coefficient as S↑ − S↓ leads to appreciable differences (not shown). More-
over, the quite commonly employed definition of a spin-dependent Seebeck coefficient
Ss = (σ↑S↑−σ↓S↓)/(σ↑+σ↓) differs from the spin-polarised Seebeck coefficient used
here in that it relates a spincaloritronic response in the numerator to the electric
conductivity σ = σ↑+σ↓ in the denominator. The right panel of Fig. A.2 shows the
spin(-polarised) Nernst conductivity in the athermal limit, αsxy/T as a function of x.
Again the most prominent feature, the sign change, occurs at x ≈ 0.2, the concen-
tration for which, e.g., the anomalous Nernst conductivity shows a maximum [267].
For this quantity a definition in terms of spin-projected Nernst conductivities is
possible, provided a suitable spin projection scheme [223] is employed.
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A.3 Spin-dependent thermoelectrics

By defining spin-projected thermoelectric coefficients and using their sum and dif-
ference for charge and spin-dependent Seebeck tensor elements respectively, Tauber
et al. [20] obviously combine the information about charge and spin related pro-
cesses. Thereby, without explicitly mentioning it, their expression for the diagonal
part of the Seebeck coefficient in reduced dimensions contains a term which we in-
terpret as the combination of the spin(-dependent) Nernst and the inverse spin Hall
effect. This gives in total a contribution to the electric field in the direction of the
temperature gradient which one would miss when considering Eq. (1) of Ref. 266
alone. By explicitly combining the charge and spin-polarised parts, Eqs. (1) and (3)
of Ref. 266,

jc + J s,ξ = (Lcc +Lsc,ξ)E − (Lcq +Lsq,ξ)∇T
eT

, (A.10)

and setting both currents to zero it is possible to obtain a relation between the
electric field created by both charge and spin-polarisation rearrangement due to the
temperature gradient. So for jc = 0 and independently J s,ξ = 0,

E = (Aξ)−1Bξ (−∇T
eT

) = Sc+s,ξ ∇T . (A.11)

Here Aξ = Lcc +Lsc,ξ and Bξ = Lcq +Lsq,ξ where we assume that the polarisation
axes are orthogonal and hence the inversion of the third rank tensor Lsc can be
performed as an inversion of separate second rank tensors. Considering now only
the polarisation along z, we obtain for a cubic system the charge- and spin-dependent
Seebeck tensor Sc+s,z, which in matrix form is

Sc+s,z = − 1

eT

1

N




Azxx −Azxy 0

Azxy Azxx 0

0 0 N
Azzz







Bz
xx Bz

xy 0

−Bz
xy Bz

xx 0

0 0 Bz
zz


 , (A.12)

where N = (Azxx)2 + (Azxy)2.

Assuming now a non-magnetic system where off-diagonal charge- and diagonal spin-
dependent elements of the response tensors of type L and L vanish, i.e.,

Lccxy = Lcqxy = Lsc,zxx = Lsq,zxx = 0 , (A.13)

the diagonal elements Sc+s,zxx referring to an axis (x) orthogonal to the spin quanti-
sation axis become

Sc+s,zxx = − 1

eT

LccxxL
cq
xx + Lsc,zxy Lsq,zxy

(Lccxx)2 + (Lsc,zxy )2
. (A.14)

This expression is exactly identical to the one given by Tauber et al. [20] [Eq. (8)],
but obviously not to Eq. (6) of Ref. 266. Numerically they give almost the same
result, since the off diagonal spin-dependent contributions are orders of magnitude
smaller than the diagonal charge-dependent ones. As stated above, the additional
information contained in Eq. (A.14) is connected to the coupling of the temperature
gradient to the longitudinal charge rearrangement via two transverse effects, namely
the spin Nernst and the inverse spin Hall effect.
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Analogously, the off-diagonal charge- and spin-dependent Seebeck coefficient Sc+s,zyx ,
which connects the field created in y direction to the temperature gradient in x
direction, which is given for a cubic system by

Sc+s,zyx = − 1

eT

AzxxB
z
yx − AzyxB

z
xx

(Azxx)2 + (Azxy)2
, (A.15)

can in the non-magnetic limit be reduced to

Sc+s,zyx = − 1

eT

LccxxLsq,zyx − Lsc,zyx Lcqxx

(Lccxx)2 + (Lsc,zyx )2
(A.16)

by using Eq. (A.13). Again one finds this expression to be identical to the corre-
sponding expression given in Ref. 20, namely

Ssyx = − 1

eT

L↑0,xxL
↑
1,yx − L↑0,yxL

↑
1,xx

(L↑0,xx)2 + (L↑0,yx)2
, (A.17)

which actually contains information about charge as well as spin-polarisation.

Furthermore it has to be stressed, that Sc+s is not the simple sum of a charge- and
a spin-dependent thermoelectric tensor. Additionally it is of course only in the non-
magnetic case valid to construct it from spin-projected thermoelectric tensors by
taking their sum and difference for diagonal and off-diagonal elements, respectively.
In particular one has to be aware of the fact that when doing so one is explicitly
mixing charge and spin.
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A.4 Magnetic Laue groups and rotation of spin

conductivity tensors

Alternative definitions of magnetic Laue groups

Kleiner [271] defines a magnetic Laue group (MLG) as the group obtained from the
magnetic point group by removing the improper part of every rotation (operator),
if present. Seemann et al. [283, 338, 339] instead adhered to the commonly used
definition of a Laue group, namely the group obtained from a (magnetic) point
group upon addition of the spatial inversion operator (1̄). So the MLGs obtained
this or that way are really different groups of symmetry operations and can, in
principle, lead to different tensor shapes for certain response functions. The reason
why there are no such cases concerning the symmetry of τ ′, τ and σ is that the
improper part of the operator is irrelevant for the restriction it imposes on the shape
of the electrical conductivity and the thermoelectric tensors. This is because the
symmetry operation acts twice on identically transforming operators (electrical and
heat current density) and its improper part gives just a factor of −I3, twice. Hence
if two MLGs just differ by additional (or missing) improper rotations generated by
adding the space inversion (or removing the improper part from every improper
rotation), their tensor shapes must be identical. The proper rotations de facto
determining the tensor shapes are, as demanded, the same in both cases.

Spin conductivity tensors in equivalent coordinate

systems

In Ref. 283, reprinted in Section 3.3, the tensor forms for the inverse thermoelectric
tensor τ of the magnetic Laue groups 4′/mm′m and 4′/mmm′ of category (c) [p. 180]
and the direct and inverse spin conductivity tensors of the groups 3̄1m1′ and 3̄m11′

of category (a) [p. 182], 3̄1m and 3̄m1 of category (b) [p. 183], as well as 4′/mm′m
and 4′/mmm′, 3̄1m′ and 3̄m′1, and 6′/m′m′m and 6′/m′mm′ of category (c) [p. 184]
were stated to be pairwise related to each other by rotations of the coordinate
system around the respective principal axes. This shall be demonstrated here for
the direct (reduced) and inverse spin conductivity tensors in category (c), collected
in Tables A.1 and A.2, respectively.

Rotation around the principal axis (z), corresponding to the generator at the first
position of the group symbol or the primary direction, by the angle between the
secondary and tertiary directions leads to the tensors in Tables A.3 and A.4. The
respective angles are θ = π/4 for 4′/mm′m and 4′/mmm′ and θ = π/2 for 31m′ and
3m′1 as well as for 6′/m′m′m and 6′/m′mm′. Note that the full third-rank tensors
have to be rotated. Relabelling the elements σkij(θ) of Tab. A.3 and accounting for
degeneracies leads for the reduced tensor forms to Table A.5. Doing the same with
Tab. A.4 and using furthermore the elements of Tab. A.5, one obtains Table A.6.

Now when comparing Tables A.5 and A.1 as well as Tables A.6 and A.2 the equiva-
lence of the pairs of magnetic Laue groups becomes obvious. Note, that the lines are
of course swapped, i.e., σ(′)x(θ) of 4′/mm′m is to be compared to σ(′)x of 4′/mmm′,
etc., since the equivalent coordinate systems have been transformed into each other.
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magnetic
Laue
group

σx σy σz

4′/mm′m

 0 0 σxxz
0 0 −σyxz
σxzx −σyzx 0

  0 0 σyxz
0 0 −σxxz
σyzx −σxzx 0

  σzxx σzxy 0
−σzxy −σzxx 0

0 0 0



4′/mmm′

0 0 0
0 0 σxyz
0 σxzy 0

  0 0 σyxz
0 0 0
σyzx 0 0

  0 σzxy 0
σzyx 0 0
0 0 0



3̄1m′, 3̄m′1

σxxx σyxx σxxz
σyxx −σxxx −σyxz
σxzx −σyzx 0

  σyxx −σxxx σyxz
−σxxx −σyxx σxxz
σyzx σxzx 0

  σzxx σzxy 0
−σzxy σzxx 0

0 0 σzzz



6′/m′m′m

σxxx 0 0
0 −σxxx −σyxz
0 −σyzx 0

  0 −σxxx σyxz
−σxxx 0 0
σyzx 0 0

  0 σzxy 0
−σzxy 0 0

0 0 0



6′/m′mm′

 0 σyxx 0
σyxx 0 −σyxz

0 −σyzx 0

 σyxx 0 σyxz
0 −σyxx 0
σyzx 0 0

  0 σzxy 0
−σzxy 0 0

0 0 0



Table A.1: Reduced polarisation tensor forms for magnetic Laue groups of category (c).

magnetic
Laue
group

σ′x σ′y σ′z

4′/mm′m

 0 0 σxxz
0 0 −σyxz
σzxx −σzxy 0

  0 0 σyxz
0 0 −σxxz
σzxy −σzxx 0

  σxzx σyzx 0
−σyzx −σxzx 0

0 0 0



4′/mmm′

0 0 0
0 0 σxyz
0 σzyx 0

  0 0 σyxz
0 0 0
σzxy 0 0

  0 σyzx 0
σxzy 0 0
0 0 0



3̄1m′

−σxxx σyxx σxxz
σyxx σxxx −σyxz
σzxx −σzxy 0

 σyxx σxxx σyxz
σxxx −σyxx σxxz
σzxy σzxx 0

  σxzx σyzx 0
−σyzx σxzx 0

0 0 σzzz



3̄m′1

 σxxx −σyxx σxxz
−σyxx −σxxx −σyxz
σzxx −σzxy 0

 −σyxx −σxxx σyxz−σxxx σyxx σxxz
σzxy σzxx 0

  σxzx σyzx 0
−σyzx σxzx 0

0 0 σzzz



6′/m′m′m

σxxx 0 0
0 −σxxx −σyxz
0 −σzxy 0

  0 −σxxx σyxz
−σxxx 0 0
σzxy 0 0

  0 σyzx 0
−σyzx 0 0

0 0 0



6′/m′mm′

 0 σyxx 0
σyxx 0 −σyxz

0 −σzxy 0

 σyxx 0 σyxz
0 −σyxx 0
σzxy 0 0

  0 σyzx 0
−σyzx 0 0

0 0 0



Table A.2: Polarisation tensor forms for magnetic Laue groups of category (c).
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magnetic
Laue
group

σx(θ) σy(θ) σz(θ)

4′/mm′m

(
0 0 0
0 0 (−σxxz − σyxz)
0 (−σxzx − σyzx) 0

) (
0 0 (−σxxz + σyxz)
0 0 0

(−σxzx + σyzx) 0 0

)  0 (−σzxx + σzxy) 0

(−σzxx − σzxy) 0 0
0 0 0



4′/mmm′


0 0

(σxyz+σ
y
xz)

2

0 0
(σxyz−σ

y
xz)

2
(σxzy+σ

y
zx)

2

(σxzy−σ
y
zx)

2
0




0 0
(−σxyz+σ

y
xz)

2

0 0
(−σxyz−σ

y
xz)

2
(−σxzy+σ

y
zx)

2

(−σxzy−σ
y
zx)

2
0




(σzxy+σzyx)

2

(σzxy−σ
z
yx)

2
0

(−σzxy+σzyx)

2

(−σzxy−σ
z
yx)

2
0

0 0 0



3̄1m′,
3̄m′1

−σyxx σxxx σxxz
σxxx σyxx −σyxz
σxzx −σyzx 0

 σxxx σyxx σyxz
σyxx −σxxx σxxz
σyzx σxzx 0

  σzxx σzxy 0

−σzxy σzxx 0

0 0 σzzz



6′/m′m′m

 0 σxxx 0
σxxx 0 −σyxz

0 −σyzx 0

 σxxx 0 σyxz
0 −σxxx 0
σyzx 0 0

  0 σzxy 0

−σzxy 0 0
0 0 0



6′/m′mm′
−σyxx 0 0

0 σyxx −σyxz
0 −σyzx 0

  0 σyxx σyxz
σyxx 0 0
σyzx 0 0

  0 σzxy 0

−σzxy 0 0
0 0 0



Table A.3: Reduced polarisation tensor forms for magnetic Laue groups of category (c)
(see Tab. A.1), transformed by a rotation of the coordinate system around the principal
(z) axis.

magnetic
Laue
group

σ′x(θ) σ′y(θ) σ′z(θ)

4′/mm′m

0 0 0
0 0 (−σxxz − σyxz)
0 (−σzxx − σzxy) 0

  0 0 (−σxxz + σyxz)
0 0 0

(−σzxx + σzxy) 0 0

 (
0 (−σxzx + σyzx) 0

(−σxzx − σyzx) 0 0
0 0 0

)

4′/mmm′


0 0

(σxyz+σ
y
xz)

2

0 0
(σxyz−σ

y
xz)

2
(σzxy+σzyx)

2

(−σzxy+σzyx)

2
0




0 0
(−σxyz+σ

y
xz)

2

0 0
(−σxyz−σ

y
xz)

2
(σzxy−σ

z
yx)

2

(−σzxy−σ
z
yx)

2
0




(σxzy+σ
y
zx)

2

(−σxzy+σ
y
zx)

2
0

(σxzy−σ
y
zx)

2

(−σxzy−σ
y
zx)

2
0

0 0 0



3̄1m′
−σyxx −σxxx σxxz−σxxx σyxx −σyxz
σzxx −σzxy 0

 −σxxx σyxx σyxz
σyxx σxxx σxxz
σzxy σzxx 0

  σxzx σyzx 0
−σyzx σxzx 0

0 0 σzzz



3̄m′1

σyxx σxxx σxxz
σxxx −σyxx −σyxz
σzxx −σzxy 0

  σxxx −σyxx σyxz−σyxx −σxxx σxxz
σzxy σzxx 0

  σxzx σyzx 0
−σyzx σxzx 0

0 0 σzzz



6′/m′m′m

 0 σxxx 0
σxxx 0 −σyxz

0 −σzxy 0

 σxxx 0 σyxz
0 −σxxx 0
σzxy 0 0

 (
0 σyzx 0
−σyzx 0 0

0 0 0

)

6′/m′mm′
−σyxx 0 0

0 σyxx −σyxz
0 −σzxy 0

  0 σyxx σyxz
σyxx 0 0
σzxy 0 0

 (
0 σyzx 0
−σyzx 0 0

0 0 0

)

Table A.4: Polarisation tensor forms for magnetic Laue groups of category (c) (see
Tab. A.2), transformed by a rotation of the coordinate system around the principal (z)
axis.
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magnetic
Laue
group

σx(θ) σy(θ) σz(θ)

4′/mm′m

0 0 0
0 0 σxyz(θ)
0 σxzy(θ) 0

  0 0 σyxz(θ)
0 0 0

σyzx(θ) 0 0

  0 σzxy(θ) 0
σzyx(θ) 0 0

0 0 0



4′/mmm′

 0 0 σxxz(θ)
0 0 −σyxz(θ)

σxzx(θ) −σyzx(θ) 0

  0 0 σyxz(θ)
0 0 −σxxz(θ)

σyzx(θ) −σxzx(θ) 0

  σzxx(θ) σzxy(θ) 0
−σzxy(θ) −σzxx(θ) 0

0 0 0



3̄1m′, 3̄m′1

σxxx(θ) σyxx(θ) σxxz(θ)
σyxx(θ) −σxxx(θ) −σyxz(θ)
σxzx(θ) −σyzx(θ) 0

  σyxx(θ) −σxxx(θ) σyxz(θ)
−σxxx(θ) −σyxx(θ) σxxz(θ)
σyzx(θ) σxzx(θ) 0

  σzxx(θ) σzxy(θ) 0
−σzxy(θ) σzxx(θ) 0

0 0 σzzz(θ)



6′/m′m′m

 0 σyxx(θ) 0
σyxx(θ) 0 −σyxz(θ)

0 −σyzx(θ) 0

 σyxx(θ) 0 σyxz(θ)
0 −σyxx(θ) 0

σyzx(θ) 0 0

  0 σzxy(θ) 0
−σzxy(θ) 0 0

0 0 0



6′/m′mm′

σxxx(θ) 0 0
0 −σxxx(θ) −σyxz(θ)
0 −σyzx(θ) 0

  0 −σxxx(θ) σyxz(θ)
−σxxx(θ) 0 0
σyzx(θ) 0 0

  0 σzxy(θ) 0
−σzxy(θ) 0 0

0 0 0



Table A.5: Rotated reduced polarisation tensor forms σk(θ) for magnetic Laue groups
of category (c), i.e., same content as in Tab. A.3, relabelled to facilitate the recognition of
degeneracies.

magnetic
Laue
group

σ′x(θ) σ′y(θ) σ′z(θ)

4′/mm′m

0 0 0
0 0 σxyz(θ)
0 σzyx(θ) 0

  0 0 σyxz(θ)
0 0 0

σzxy(θ) 0 0

  0 σyzx(θ) 0
σxzy(θ) 0 0

0 0 0



4′/mmm′

 0 0 σxxz(θ)
0 0 −σyxz(θ)

σzxx(θ) −σzxy(θ) 0

  0 0 σyxz(θ)
0 0 −σxxz(θ)

σzxy(θ) −σzxx(θ) 0

  σxzx(θ) σyzx(θ) 0
−σyzx(θ) −σxzx(θ) 0

0 0 0



3̄1m′

 σxxx(θ) −σyxx(θ) σxxz(θ)
−σyxx(θ) −σxxx(θ) −σyxz(θ)
σzxx(θ) −σzxy(θ) 0

 −σyxx(θ) −σxxx(θ) σyxz(θ)
−σxxx(θ) σyxx(θ) σxxz(θ)
σzxy(θ) σzxx(θ) 0

  σxzx(θ) σyzx(θ) 0
−σyzx(θ) σxzx(θ) 0

0 0 σzzz(θ)



3̄m′1

−σxxx(θ) σyxx(θ) σxxz(θ)
σyxx(θ) σxxx(θ) −σyxz(θ)
σzxx(θ) −σzxy(θ) 0

 σyxx(θ) σxxx(θ) σyxz(θ)
σxxx(θ) −σyxx(θ) σxxz(θ)
σzxy(θ) σzxx(θ) 0

  σxzx(θ) σyzx(θ) 0
−σyzx(θ) σxzx(θ) 0

0 0 σzzz(θ)



6′/m′m′m

 0 σyxx(θ) 0
σyxx(θ) 0 −σyxz(θ)

0 −σzxy(θ) 0

 σyxx(θ) 0 σyxz(θ)
0 −σyxx(θ) 0

σzxy(θ) 0 0

  0 σyzx(θ) 0
−σyzx(θ) 0 0

0 0 0



6′/m′mm′

σxxx(θ) 0 0
0 −σxxx(θ) −σyxz(θ)
0 −σzxy(θ) 0

  0 −σxxx(θ) σyxz(θ)
−σxxx(θ) 0 0
σzxy(θ) 0 0

  0 σyzx(θ) 0
−σyzx(θ) 0 0

0 0 0



Table A.6: Rotated polarisation tensor forms σ′k(θ) for magnetic Laue groups of cat-
egory (c), i.e., same content as in Tab. A.4, relabelled using the elements of σk(θ) in
Tab. A.5.
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A.5 Implementation of the Kubo formalism for

2D transport

Based on earlier work by Butler et al. [381] a fully-relativistic formulation of the
Kubo linear response formalism suitable for the description of transport in layered
systems has been implemented into the Munich SPR-KKR program package [382].
The layer-resolved conductivity, relating the current J Iµ on layer I in the direction
µ to the electric field EJ

ν on layer J in the direction ν as in a discrete formulation
of Ohm’s law,

J Iµ =
∑

J,ν

σIJµν E
J
ν , (A.18)

can essentially be expressed by an integral over the two-dimensional Brillouin zone
of area Ω,

σIJµν ∝
1

4

∑

p,p′=±1

(pp′)

∫

Ω

d2k‖M
I
µ(z) τ IJ(k‖, z)M

J
ν (z′) τJI(k‖, z

′) . (A.19)

Here z(′) = E + ip(′)η is the complex (Fermi) energy with a small imaginary part

p(′)η, M
I/J
µ/µ are the current operator matrix elements, and τ IJ is the scattering path

operator connecting layers I and J . As further details can be found in Refs. 381
and 232, in the following only results of test calculations and first applications will
be presented.

Figure A.3 shows a direct comparison to the results by Butler et al. [381] for three
different test cases: a free-electron-like jellium model, a non-magnetic Cu, and a
ferromagnetic Co system. As can be seen, the agreement is satisfying in all cases,
in particular when a sufficiently large angular momentum cut-off `max is chosen.
Remaining discrepancies, most prominent for the on-site contribution σ00

ii , might be
attributed to numerical details as well as to the difference in the current operator
formulation (non- vs fully-relativistic).

An important consistency check for a layer-resolved formulation is of course its
convergence towards the bulk values of the conductivity with increasing number of
layers. Figure A.4 shows corresponding results for a system of bcc (001) Fe layers,
longitudinal conductivities summed over layers, σii =

∑
IJ σ

IJ
ii , are given in the left

panel and the transverse anti-symmetric anomalous Hall conductivity σxy = −σyx,
σij =

∑
IJ σ

IJ
ij with i 6= j, is shown on the right. The magnetisation is oriented

along the [001] or z direction. Obviously, the on-site terms σ0
ij do not depend on the

number of layers (NI) in a homogeneous system, while the inter-site contributions
σ1
ij show a rather slow convergence towards the bulk value with increasing NI. One

should note here, that only layers within the finite 2D structure are summed over,
i.e., the translation symmetry along the z direction is neglected. When looking only
at the layer-resolved conductivity σIij =

∑
J σ

IJ
ij of the central layer the convergence

is obviously much faster (not shown).

This is exemplified in Fig. A.5 (left) for the spin-polarized conductivities σI,zxy , i.e.,
the spin Hall conductivity, and σI,zxx , i.e., the in-plane longitudinal spin conductivity,
in a 56 layer bcc (001) Fe system. Starting from the left- or rightmost layer and
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Figure A.3: Layer-resolved in-plane (σ0J
xx , left) and perpendicular-to-plane (σ0J

zz , right)
conductivities for the first layer (I = 0) in a free-electron-like (jellium) model (top),
non-magnetic fcc Cu (middle), and ferromagnetic fcc Co (bottom), always with stacking
direction along [111] (z). For comparison the results of Butler et al. [381] are shown in
black, calculations using SPR-KKR are given for different angular momentum expansions.

going towards the center, the spin Hall conductivity (left y axis) converges extremely
fast to the bulk value shown as a red horizontal line, even faster than σI,zxx (right y
axis). The right panel of Fig. A.5 shows the temperature dependence of the longitu-
dinal layer-integrated conductivity in fcc (111) Cu. The temperature is accounted
for by employing the alloy analogy model [202] for thermally-induced uncorrelated
lattice displacements. The behaviour as a function of T is similar for all system
sizes shown and corresponds to that of the bulk conductivities shown in black. Only
results including the vertex corrections (VC) are shown, which are however of minor
relevance here. It should be noted that they apply only to the so-called interaction
zone of layers with two-dimensional periodicity, while the semi-infinite leads were
neglected. With increasing system size the artificial geometric anisotropy of σxx and
σzz decreases and the absolute values approach those of the bulk.
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Figure A.4: Layer-integrated longitudinal (left) and transverse (right) conductivities in
a bcc (001) Fe system as a function of total number of layers NI. A decomposition into
on-site (σ0

ij) and multiple scattering contributions (σ1
ij) is made. The horizontal lines give

the corresponding bulk conductivities.

Figure A.6 (left) shows results for the layer-integrated charge Seebeck coefficient in
fcc (111) Cu0.5Au0.5 as a function of temperature. Results were obtained using the
generalised Mott formula, Eq. (2.266), based on energy-dependent layer-integrated
conductivities. The vertex corrections are taken into account, again only for the
interaction zone while the leads are composed of pure fcc Cu. With growing number
of layers the pronounced non-linearity appears to vanish and the bulk result shown
in black is approached. The middle panel of Fig. A.6 shows corresponding results for
the layer-integrated spin Nernst conductivity. Here as well the strongest deviation
from linearity is found for the smallest system, the convergence with increasing
systems size is faster than for the Seebeck coefficient, however it appears not to be
towards the bulk result. In the right panel of Fig. A.6 the layer-resolved spin Nernst
conductivity is shown, ex- (NV, empty symbols) and including vertex corrections
(VC, full symbols), for the outermost alloy layers (4 & 57), the innermost layers (30 &
31), and for intermediate layers (7 & 54). One notices that: 1) mirror symmetry (left-
right) is obeyed, 2) the vertex corrections are less significant for the outermost layers,
while they lead to a sign change already three layers away from the Cu|Cu0.5Au0.5

interface, and 3) the innermost layers are obviously very much bulk-like.
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Figure A.5: Left: Layer-resolved spin-polarized conductivities as a function of layer
index I in bcc (001) Fe. Right: Layer-integrated longitudinal charge conductivities in fcc
Cu (111) as a function of temperature, represented by uncorrelated lattice vibrations via
the alloy analogy model, and number of layers NI.
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Figure A.6: Left: Layer-integrated charge Seebeck coefficient as a function of tem-
perature and system size in fcc (111) Cu0.5Au0.5. Middle: Layer-integrated spin Nernst
conductivity. Right: Layer-resolved spin Nernst conductivity for selected layers (see text)
of the 60-layer system. In all cases corresponding bulk results are given in black.

As a first application to systems of physical relevance the GaAs(001)/Fe structure
was chosen, for which Hupfauer et al. [383] observed an anisotropy of the in-plane
transport in the bcc (001) Fe film induced by the lower (C2v) symmetry of the
Zincblende structure of the GaAs substrate. Figure A.7 (left) shows a top view of
the system. For simplicity only one layer of Fe is shown, its atoms are positioned
either on top of Ga atoms of the sub-interface layer of the As-terminated substrate
or on top of Ga sites in the fourth layer. To be clear, the sequence is: bulk-Ga-As-
Ga-As-Fe-vacuum. The results presented here were performed on systems with an
Fe film consisting of 6 layers. In the middle panel of Figure A.7 the layer-resolved
in-plane conductivities σIxx and σIyy are shown for T = 100 and 300 K, represented by
uncorrelated lattice displacements via the alloy analogy model. The magnetisation
is oriented along the [010] direction, i.e., along the diagonal in between [110] (x)
and 1̄10 (y). Accordingly, a magnetic anisotropy (planar Hall effect or AMR) is not
responsible for the observed anisotropy, it is the lowered rotational symmetry (2-
vs. 4-fold) due to the substrate that modifies the electronic structure of the Fe film.
Note that the difference of σIxx and σIyy is largest actually not for the Fe layer closest
to the interface but for the surface layer. This can be attributed to a resonance
of the interface states at the surface due to the small thickness of the film. With
increasing temperature not only the absolute values of the conductivities decrease,
but the anisotropy does as well. A similar trend was observed experimentally [383],
it is caused by the fact that the thermally-induced disorder tends to make the
Fermi surface more isotropic. Figure A.7 (right) shows the angular dependence of
the layer-integrated conductivities, σxx and σyy, in the same system. Clearly the
behaviour of σii(φ) is different for longitudinal transport along x and y, the angular
dependence is a combination of the magnetic and the crystallographic anisotropy.
Based on these preliminary results corresponding investigations were performed in
support of experiments on the anisotropy of the Gilbert damping parameter in the
same system [384].

In a second application the in-plane transport properties of a Bi2Se3 (111) surface
system were studied. Figure A.8 (left) shows the BSF relative to the Fermi level
arbitrarily shifted into the bulk band gap in order to directly probe the topological
surface state that is characterised by its Dirac-cone-like dispersion. In the right panel
all symmetry-allowed in-plane charge and spin conductivity tensor elements are
shown as a function of layer index represented by the occupying species. The (111)
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Figure A.7: Left: Structural model of the GaAs(001)/Fe system with indicated crystal-
lographic in-plane directions and their correspondence to the Cartesian coordinates. The
coloured symbols I indicate the high-symmetry directions of the current, the magnetisa-
tion M is arbitrarily oriented in between. Middle: Layer-resolved in-plane conductivities
σIii for two different temperatures accounted for by means of the alloy analogy model for
vibrational disorder. The Cartesian indices correspond to the left sub-figure, the magneti-
sation is pointing along [010]. Right: Angular dependence of the layer-integrated in-plane
conductivities for the same system. φ denotes the angle between the magnetisation and
the [110] direction.

surface has the magnetic Laue group 3̄1m1′. Accordingly, see Tables IV and VII of
Ref. 283, the relevant conductivities are σxx = σyy, σ

x
xx = −σx

yy = −σy
xy = −σy

yx,
and σzxy = −σzyx. As to be expected, the conducting region is more or less limited
to the surface region, the largest values are however found in sub-surface layers.
Moreover the surface state appears to penetrate quite deep into the bulk and the
spin-polarised transport is found to be of longer range than the charge transport.
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Figure A.8: Left: Bloch spectral function of the surface Se layer in Bi2Se3(111) along
the high-symmetry directions Γ̄ − K̄ and Γ̄ − M̄ . The energy is given relative to the
arbitrarily chosen Fermi level indicated by the horizontal line. Right: In-plane charge
and spin conductivities as a function of layer index I, represented by the corresponding
occupying atomic type.

In summary, a two-dimensional version of the Kubo linear response formalism has
been implemented into the SPR-KKR program package. Test calculations in com-
parison to previous work by Butler et al. [381] demonstrated its reliability. The in-
ternal consistency between the two- and three-dimensional formulations has been ex-
tensively checked, including more advanced features such as chemical and thermally-
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induced vibrational disorder. First real applications were the calculation of thermo-
electric and spincaloritronic response quantities via the generalised Mott relations in
Cu0.5Au0.5 alloys, the crystallographic anisotropy of the charge transport in bcc(001)
Fe films deposited on GaAs(001), and the charge and spin transport properties of
the topological surface state in Bi2Se3(111). Current investigations are aimed at
transport through coplanar (Bloch and Néel) and non-coplanar domain walls.
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A.6 Implementation of the non-equilibrium Green

function formalism

This appendix deals with an implementation of the so-called non-equilibrium Green
function (NEGF) formalism into the Munich SPR-KKR program package [382]. The
work has been based on two alternative approaches to the self-energy appearing in
the fundamental Keldysh equation [385] for the non-equilibrium or lesser Green
function,

G<(ε) = −
∑

α=L,R

G+(ε)
[
(Σα(ε+)− Σα(ε−))f(ε− µα)

]
G−(ε) , (A.20)

that describes the coupling of a system out of equilibrium to its surroundings in
terms of the self energies Σα. For the definition of retarded and advanced Green
functions, G±(ε), see Section 2.2. The formulation chosen for Eq. (A.20) is adapted
to the layered geometry that will be considered in the following. Accordingly, two
self energies appear, one for each interface between the region of interest (interac-
tion zone) to the left (α = L) or right (α = R) semi-infinite bulks or leads. In the
work by Achilles [386] (see also Ref. 387 and references therein), the self-energy is
obtained by introducing an artificially decoupled reference system, while Ogura and
Akai [388] exploited the so-called tight-binding KKR scheme [187, 389] where the
connection between interaction zone and semi-infinite bulk is described by the so-
called surface Green function (SGF). Both approaches are aimed at the description of
layered systems under the effect of externally applied biases, as for example electric
fields.2 A potential difference between left and right lead can be imposed by shifting
the chemical potentials µα against each other. In the following only results of the
two alternative implementations will be presented, for details of the formalisms the
reader is referred to the original publications. The approach of Achilles et al. [387],
itself based on earlier work by Henk et al. [390] and Heiliger et al. [391], was im-
plemented in a fully-relativistic way in cooperation with S. Achilles and M. Ogura.
It will be called SA approach in the following. The alternative scheme proposed
by Ogura and Akai [388] was implemented in cooperation with M. Ogura in Osaka,
accordingly it will be referred to as MO approach.
Figure A.9 shows results for the layer-resolved density of states (DOS) at the Fermi
level in a homogeneous layered bcc Li system, stacked in the [001] direction. The
results in the left figure are obtained from the decoupling-potential approach to the
self-energy (SA approach [386, 387, 390, 391]). As can be seen, the DOS calculated
from G< converges with decreasing imaginary part of the energy Im(ε) to the one
obtained from G+, as expected since only in this limit the equivalence of both is given
(in fact Eq. (A.20) is valid only for Im(ε) → 0). One notices a quite pronounced
layer-dependent bowing of the NEGF results, that can be attributed to the neglect
of contributions that would ensure a connection between G< and G+ also for finite
Im(ε) (see also Ref. 386). Those contributions are proportional to the imaginary
part of ε, accordingly with its decrease the bowing gets less pronounced. In addition
one notices an oscillation of the DOS as a function of layer index, that is an artefact
of the decoupling-potential approach. The self-energy Σ is obtained by a comparison
between the physical and a reference system, where the coupling of the interaction

2This can of course be extended to temperature gradients based on a (generalised) Mott expression,
as done by Heiliger et al. [17, 18].
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Figure A.9: Comparison of the DOS at the Fermi level in bcc(001) Li calculated from
G< within the SA approach (left) and the MO approach (right). In both cases the corre-
sponding implementations by the Osaka and Munich groups are compared directly against
each other and against the DOS calculated from the retarded Green function, DOS(G+).
Different colours represent the finite imaginary part of the energy used (see text).

zone to the leads has been cut by introducing a barrier region with constant repulsive
potentials. This creates a quantum-well like situation with corresponding eigenstates
whose signatures are precisely those oscillations just mentioned. The self-energy is
defined here only in the barrier region, chosen to consist of six layers on each side,
and G< can accordingly only be computed in the remainder of the interaction zone.
Turning to the results based on the MO approach [388] on the right side of Fig. A.9,
one notices a slightly stronger dependence on Im(ε) and the absence of quantum-well
states. Both findings are connected to the different way of obtaining the self energies
of the leads, i.e., not by introducing an artificially decoupled reference system, but
instead by exploiting the fact that in the TB-KKR method for layered systems, the
connection between leads and interaction zone is expressed by the SGF. From these,
one for each lead, the corresponding self energies can be derived (see Ref. 388 for
details), which in particular contain by construction no single-site contribution as
opposed to the ones in the SA approach. One could argue that, as Σ is describing
the coupling between two systems it is formally only defined at the interface. This
should also hold true in the limit of infinitesimally small width. It is also because
of the SGF-approach to the self energies that G< is defined over the whole range
of the interaction zone, accordingly the DOS can be obtained for all non-bulk layers.

Due its higher robustness, in particular against artefacts connected to the decou-
pling, and its reduced computational effort, as only the physical system has to be
considered, the Osaka or MO approach has been chosen as the basis for subsequent
developments. One of these shall be presented in the following, the implementa-
tion of a scheme to calculate the transmission through layered systems under an, in
principle, finite bias. The expression used for the transmission function is based on
work by Caroli et al. [392]:

T (ε) = Tr
[
ΓL(ε)G+(ε)ΓR(ε)G−(ε)

]
, (A.21)

with the anti-Hermitian part of the self-energy

Γα(ε) = i
(
Σα(ε+)− Σα(ε−)

)
. (A.22)

Further details can be found in Refs. 386–388, and references therein. Note in
particular, that the limit of zero bias is assumed herein.
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Li: T ↑(k‖) Cu: T ↑(k‖) Fe: T ↑(k‖) Fe: T ↓(k‖) Ni: T ↑(k‖) Ni: T ↓(k‖)
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Figure A.10: Spin-projected transmission in [001] direction through 42 layers of, from
left to right, bcc Li, fcc Cu, bcc Fe, and fcc Ni, in the latter two cases first for spin up, then
for spin down. Results are given for the Fermi level and as a function of k‖ = (kx, ky, 0)
with Nkx = Nky = 200 for the full Brillouin zone. In the upper row the fully-relativistic
implementation has been used, in the lower row the spin-orbit coupling has been switched
off (scalar-relativistic limit).

Figure A.10 shows the k‖-resolved transmission through a number of layered homo-
geneous test systems for a small but finite imaginary part of the energy. Note that
the transmission is very close to integer values for all k‖ in all systems, indicating
the number of contributing bands. In the top row the results were obtained using
the fully-relativistic implementation, while in the bottom row the spin-orbit cou-
pling (SOC) was switched off to make contact to a corresponding scalar-relativistic
implementation by Achilles et al. [387]. Comparison to Fig. 5 of Ref. 387 indicates
excellent agreement for Fe and Ni without SOC (bottom row of Fig. A.10) and for
Li and Cu including it. While for the latter two the impact of SOC is obviously neg-
ligible, for Fe and Ni in the top row one notices a number of minor changes brought
about by SOC-induced lifting of degeneracies. Spin-orbit coupling of course leads in
addition to a mixed spin character, because of which the separation into T ↑(k‖) and
T ↓(k‖) is only approximate. This corresponds to a neglect of the so-called spin-flip
terms, which however have not been investigated in detail.

As a first application to physically more relevant systems, the transmission through
a Co|Cu|Co spin-valve has been calculated. Changing the relative orientation of the
magnetisation in the two Co regions separated by a non-magnetic Cu spacer, the
so-called giant magnetoresistance (GMR) effect can be observed. Figure A.11 (left)
shows test calculations for a small system composed of 4 layers Co in the leads with
a fixed orientation of the magnetisation M1 in either [001] (z, stacking direction)
or [100] (x, in-plane direction), 6 layers Cu spacers, and again 4 layers Co in which
the magnetisation M2 is rotated. The dependence of the k-integrated transmission
per area, or conductance G = 2e

hA
T , on the direction of the fixed magnetisation M1

and on the precise SCF treatment is obviously only minor. On the right side several
different systems with either Co or Cu in the leads and varying thickness of magnetic
and non-magnetic regions are compared against each other and against literature
([1]: Ref. 393, [2]: Ref. 391). Here G is seen to be quite significantly dependent
on the setup of the system, in particular the fact that all test systems were chosen
to be mirror symmetric (left-right) while the literature geometries are not, appears
to be relevant. In all cases a collinear self-consistent calculation was taken as the
starting point, the non-collinear situations were not re-converged.
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Figure A.11: Conductance G = 2e
hAT (see text) in a Co|Cu|Co spin-valve test system

as a function of θ, the angle between the magnetisation directions in the two ferromag-
netic regions (M1 and M2). Left: Dependence on absolute orientation of M1 and self
consistency conditions. Right: Dependence on sequence of regions and their thickness.

To summarise, an implementation of the NEGF formalism into SPR-KKR has been
presented. Two alternative formulations of the self-energy have been compared. The
one based on the surface Green function inherent to the TB-KKR scheme (Osaka or
MO approach [388]) has been found to be more promising for future applications. An
implementation of a Caroli-like [392] transmission expression has been demonstrated
to give reliable results in agreement with previous work in the scalar-relativistic limit.
Based on this, as a first application calculations for a Co|Cu|Co spin-valve system
have been performed. The resulting GMR curves show a certain dependence on
computational parameters but compare quite well to literature.

Future developments could be aimed at the so-called spin transfer torque (STT),
following the work of Haney et al. [393] and Heiliger et al. [391]. First attempts
have been made, but the results are not convincing yet. Another transport-related
application of the NEGF formalism is the so-called spin mixing conductance, which
allows a proper description of the scattering processes at interfaces. Corresponding
developments have been made in the LMTO scheme by Carva and Turek [394].
A current development is the extension to finite biases, with the aim of a first-
principles description of X-ray magnetic circular dichroism experiments on electric-
field induced (transient) spin polarisation in non-magnetic materials [372, 373].
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A.7 Computational details

The electronic structure of all investigated bulk and layered systems was treated in
the framework of spin density functional theory within the local spin density approx-
imation (LSDA) using the parametrisation for exchange and correlation potential by
Vosko et al. [161]. If not noted otherwise, a fully relativistic implementation of the
Korringa-Kohn-Rostoker (KKR) multiple scattering formalism based on the Dirac
equation for spin-polarised potentials was used [382]. For surface and layer struc-
tures a tight-binding version of the KKR method was employed that, by making use
of an artificial reference system of repulsive potentials, allows treatment of a large
number of atoms. In general, lattice parameters were taken from experiment when
available or, in case of alloys, obtained by interpolation of concentration-dependent
data. Apart from the results on GaAs(001)/Fe (Appendix A.5), where structural
relaxations were obtained self-consistently using VASP [395–397] by S. Polesya, the
atoms were assumed to occupy ideal lattice positions. The atomic sphere approxi-
mation (ASA) to the potential shape was used throughout.

For the self-consistent part of the calculation a well converged Fermi level (5-6 sig-
nificant digits) was the primary aim, having in mind subsequent calculations of
transport properties that are fully (or at least to a great extent) determined by the
states at EF. For the energy integration first 32 and then 64 points on a semi-circular
grid (GRID = 5) in the complex energy plane were used. Convergence w.r.t. k-point
density for the integration over the irreducible part of the Brillouin zone (BZ) using
a regular sampling was ensured by step-wise increasing the input parameter NKTAB,
roughly corresponding to the number of points in the irreducible BZ, up to 5000 for
bulk systems. For layered systems approximately 100 × 100 points in the full BZ
were used (Appendices A.5 and A.6). For the expansion of the Green function in
angular momenta, the cut-off value `max was set to 3 (NL = 4), i.e., including f -like
functions to ensure proper description of final states for scattering of d electrons.
The tolerance criteria for the potential and the CPA were set to TOL = 10−8. Lloyd’s
formula was used to determine EF. For tight-binding calculations of layered systems
the radius of the real space cluster for the reference Green function was chosen such
as to contain at least 60 atoms. Before moving on to linear response calculations,
the ground state properties (band structure, i.e., Bloch spectral function (BSF),
density of states, magnetic moments) were confirmed to be in satisfying agreement
with available experimental and first-principles theoretical literature data.

In the Kubo linear response calculations, all results were converged w.r.t. the k-
space integration as far as possible, e.g., up to (232

2
− 1)/48 points in the irreducible

BZ for cubic systems. All results are for NL = 4, except for most 2D systems
(Appendices A.5 and A.6) where memory limitations usually enforced NL = 3. To
obtain the intrinsic contributions to linear response coefficients in pure systems, an
Im(E) → 0 convergence was performed, usually down to IME = 10−5 Ry, while en-
suring in parallel convergence w.r.t. NKTAB. In some very clean metals (usually low
impurity concentration) this had to be done as well. In Kubo-Bastin calculations
the number of energy points on GRID = 5 was set to NE = 32. In case of doubt the
convergence w.r.t. this was checked. For finite temperatures within the alloy analogy
model (AAM), the lattice displacements were applied in the 14 highest-symmetry
directions of a cubic lattice (6× 〈001〉, 8× 〈111〉), the Debye temperatures defining
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the mean square displacements were in general used as implemented in SPR-KKR.
On very few occasions NL had to be increased for large displacements. In case of
spin fluctuations in magnetic systems the M(T ) data were usually taken from liter-
ature and interpolated numerically, convergence w.r.t. number of polar (NFTET) and
azimuthal (NFPHI) angles was ensured. While the required NFTET strongly depends
on temperature, the lower T , the more angles on an equidistant spherical mesh are
necessary to represent M(T ), NFPHI = 3 was found to be sufficient in most situa-
tions. The tolerance criterion for CPA and/or AAM was set to TOL = 10−8.

For the evaluation of the generalised Mott relations [Eqs. (2.156)-(2.158)] a series
of Kubo-Středa or Kubo-Bastin calculations of σ(k)(E) were performed on, usually
two, interleaved equidistant energy meshes. Each consisted of 8-10 points, one with
smaller increment to ensure reasonable integration at low temperature, the other
wider to reduce computational effort at higher T . The conductivity at E = EF

was always included in addition. The difference between chemical potential µc and
Fermi energy EF was assumed to be negligible for the materials and temperature
ranges considered in this work, i.e., kBT << EF [268]. The energy range necessary

for LABij (T ) at a given T was estimated from the decaying behaviour of ∂f(E,EF ,T )
∂E

as a function of energy E following Ref. 325. If finite temperature effects were
included in the underlying conductivity calculations via the AAM, the electronic
temperature (Tel) was chosen to match the vibrational and/or fluctuational ones
(Tv, Tf , or Tvf ). In case of low T and pure systems or little scattering in one
spin channel, the convergence w.r.t. the density of the energy mesh occasionally
had to be ensured by adding or removing points or by imposing a finite Im(E)

in the Kubo calculations. In some cases σ
(k)
ij (E) was approximated by non-linear

least-squares fits. The convergence of the conductivity calculations was ensured as
described above. The obtained set of σ

(k)
ij (E) values was interpolated using third-

order Lagrangian polynomials, the subsequent energy integrations were performed
using the (extended) three-point Simpson’s rule. The convergence of the generalised
Mott relations in the limit T → 0 K towards the classical expressions in terms of
energy derivatives was always confirmed. As a final note, quite regularly the diagonal
elements of, in particular, Lcq probing the asymmetry of σii(E) in the vicinity of
EF were numerically most demanding, the critical parameter usually being NKTAB.
The difference between charge and spin conductivity is only minor in this respect,
since the computational effort concerns the BZ integration of the product of two
scattering path operators, the operator matrix elements are of little relevance w.r.t.
convergence.
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A.8 List of used software

• BibTEX

• cctbx [398]

• cif2cell [399] (https://sourceforge.net/projects/cif2cell/)

• git (https://github.com/git/git)

• gnuplot (http://www.gnuplot.info/)

• (xm)grace (http://plasma-gate.weizmann.ac.il/Grace/)

• Inkscape (https://inkscape.org/en/)

• ISOTROPY software suite [400, 401]

• kile (http://kile.sourceforge.net)

• LATEX 2ε

• linux (https://github.com/torvalds/linux)

• LRZ Sync+Share (https://syncandshare.lrz.de)

• (wx)maxima (http://andrejv.github.io/wxmaxima/)

• POV-Ray (http://www.povray.org/)

• PY-LMTO [402, 403]

• Python (https://www.python.org/)

• pyxplot (http://pyxplot.org.uk/)

• sage (http://www.sagemath.org/)

• Space-Time-Symmetry code by Seemann [339]

• SPR-KKR [382]

• SymPy [404]

• VASP [395–397]

• vasp2cif (https://github.com/egplar/vasp2cif)

• Vesta [405]

• xband (olymp.phys.chemie.uni-muenchen.de/ak/ebert/xband.html)

https://sourceforge.net/projects/cif2cell/
https://github.com/git/git
http://www.gnuplot.info/
http://plasma-gate.weizmann.ac.il/Grace/
https://inkscape.org/en/
http://kile.sourceforge.net
https://github.com/torvalds/linux
https://syncandshare.lrz.de
http://andrejv.github.io/wxmaxima/
http://www.povray.org/
https://www.python.org/
http://pyxplot.org.uk/
http://www.sagemath.org/
https://github.com/egplar/vasp2cif
olymp.phys.chemie.uni-muenchen.de/ak/ebert/xband.html
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A.9 List of acronyms

• AAM alloy analogy model

• AFM antiferromagnet(ic)

• AH(A/C/E) anomalous Hall (angle/conductivity/effect)

• AMR anisotropic magnetoresistance

• AMTEP anisotropic magneto-thermopower

• AN(C/E) anomalous Nernst (conductivity/effect)

• ASA atomic sphere approximation

• ASE anisotropy of the Seebeck effect

• bcc body-centered cubic

• BSF Bloch spectral function

• CPA coherent potential approximation

• DFT density functional theory

• DOS density of states

• EE Edelstein effect

• expt experimental

• ext external

• fcc face-centered cubic

• FM ferromagnet(ic)

• GF Green function

• HK Hohenberg-Kohn

• KB Kubo-Bastin

• KG Kubo-Greenwood

• KKR Korringa-Kohn-Rostoker

• KS Kohn-Sham or Kubo-Středa

• L(S)DA local (spin) density approximation

• LMTO linear(-ized) muffin-tin orbital (method)

• LS(C/T) longitudinal spin (conductivity/transport)

• MLG/MPG/MSG magnetic Laue/point/space group
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• MOKE magneto-optical Kerr effect

• MS(T) multiple scattering (theory)

• MT(A) muffin-tin (approximation)

• ncAFM non-collinear antiferromagnet(ic)

• ncp(AF)M non-coplanar (antiferro)magnet(ic)

• NEGF non-equilibrium Green function (method)

• NM non-magnet(ic)

• NV no (/without) vertex corrections

• SDSE spin-dependent Seebeck effect

• SH(A/C/E) spin Hall (angle/conductivity/effect)

• SMT spin Nernst magneto-thermopower

• SN(A/C/E) spin Nernst (angle/conductivity/effect)

• SOC spin-orbit coupling

• SOT spin-orbit torque

• SPR spin-polarised relativistic

• TB tight-binding

• theo theoretical

• T(M)E thermo(magneto)electric

• TM transition metal

• VC (including) vertex corrections

• VWN Vosko-Wilk-Nusair (Exc parametrisation)

• WS Wigner-Seitz

• XAS X-ray absorption spectroscopy

• XM(C/L)D X-ray magnetic (circular/linear) dichroism

• xc exchange-correlation
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[252] L. Gravier, A. Fábián, A. Rudolf, A. Cachin, J.-E. Wegrowe, and J.-P. Anser-
met, J. Magn. Magn. Materials 271, 153 (2004).

http://nbn-resolving.de/urn:nbn:de:bvb:19-216095
http://nbn-resolving.de/urn:nbn:de:bvb:19-216095
http://stacks.iop.org/0022-3719/15/i=22/a=005
http://stacks.iop.org/0370-1328/71/i=4/a=306
http://dx.doi.org/10.1103/PhysRevB.31.3260
http://dx.doi.org/10.1080/13642819808206385
http://dx.doi.org/10.1080/13642819808206386
http://dx.doi.org/10.1209/0295-5075/32/6/010
http://dx.doi.org/10.1103/PhysRevLett.105.266604
http://dx.doi.org/10.1103/PhysRevLett.105.266604
http://dx.doi.org/10.1103/PhysRevB.92.184415
http://dx.doi.org/10.1103/PhysRevB.86.014405
http://dx.doi.org/10.1103/PhysRevB.89.064405
http://dx.doi.org/10.1103/PhysRev.135.A1505
http://dx.doi.org/10.1002/andp.200590005
http://dx.doi.org/10.1103/PhysRev.141.738
http://dx.doi.org/10.1088/0370-1328/77/5/309
http://dx.doi.org/10.1103/PhysRevB.21.4223
http://dx.doi.org/10.1017/S0370164600027310
http://dx.doi.org/10.1002/andp.18531650802
http://dx.doi.org/10.1002/pssb.19660170261
http://www.ruor.uottawa.ca/fr/bitstream/handle/10393/7252/NK16799.PDF?sequence=1
http://dx.doi.org/10.1103/PhysRevLett.109.196602
http://dx.doi.org/10.1103/PhysRevLett.109.196602
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmmm.2003.09.022


BIBLIOGRAPHY 327

[253] L. Gravier, S. Serrano-Guisan, F. Reuse, and J.-P. Ansermet, Phys. Rev. B
73, 052410 (2006).

[254] L. Gravier, S. Serrano-Guisan, and J.-P. Ansermet, J. Appl. Phys. 97, 10C501
(2005).

[255] B. Madon, D. C. Pham, J.-E. Wegrowe, D. Lacour, M. Hehn, V. Polewczyk,
A. Anane, and V. Cros, Phys. Rev. B 94, 144423 (2016).

[256] A. Sommerfeld, Z. Phys. 47, 43 (1928).

[257] A. Sommerfeld and N. H. Frank, Rev. Mod. Phys. 3, 1 (1931).

[258] E. H. Sondheimer, Proc. Roy. Soc. Lond. A 193, 484 (1948).

[259] M. Kohler, Ann. Phys. 432, 601 (1942).

[260] M. Kohler, Z. Phys. 126, 481 (1949).

[261] L. Nordheim and C. Gorter, Physica 2, 383 (1935).

[262] M. Jonson and G. D. Mahan, Phys. Rev. B 42, 9350 (1990).
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[346] J. Železný, H. Gao, A. Manchon, F. Freimuth, Y. Mokrousov, J. Zemen,
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