
Statistical Properties of the Cosmic
Density Field beyond 2-point Statistics:
Covariance Matrices and Density Split

Statistics

Oliver Friedrich

München 2018





Statistical Properties of the Cosmic
Density Field beyond 2-point Statistics:
Covariance Matrices and Density Split

Statistics

Oliver Friedrich

Dissertation

an der Fakultät für Physik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Oliver Friedrich

aus Potsdam

München, den 20. August 2018



Erstgutachter: Prof. Dr. Bender

Zweitgutachter: Prof. Dr. Weller
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Zusammenfassung

Dunkle Materie, dunkle Energie, kosmische Inflation - unser Verständnis der drei Hauptzu-
taten des kosmologischen Standardmodels ist nach wie vor gering. Das deutet auf allge-
meine Lücken in unserem Verständnis der Physik hin. Eine Observable mit dem Poten-
tial, diese Lücken zu schließen ist die großskalige Struktur von Dichtefluktuationen im
Universum. Beobachtungen der Entwicklung dieser Struktur bei unterschiedlichen Rotver-
schiebungen können Aufschluss über das genaue Verhalten von dunkler Materie und dun-
kler Energie geben. Außerdem erlauben solche Beobachtungen Rückschlüsse über die An-
fangsbedingungen des Universums, was uns Hinweise auf den genauen Mechanismus der
kosmischen Inflation geben kann.

Die späten Stadien in der Entwicklung der großskaligen Struktur sind besonders schwer
zu analysieren. Ein Grund dafür ist, dass die Differenzialgleichungen, die das Wachs-
tum von Dichtefluktuationen beschreiben, im späten Universum nicht mehr gut durch
lineare Gleichungen approximiert werden können. Mit dieser Arbeit präsentiere ich in
zweierlei Hinsicht Fortschritte in der Behandlung der späten Strukturbildung. Zum einen
verbessere ich Techniken zur Schätzung der statistischen Unsicherheiten in Messungen von
2-Punkt Statistiken des kosmischen Dichtefeldes. Das geschieht in einem ersten Schritt,
indem ich die Leistung vorhandener Methoden untersuche und verbessere. Und in einem
zweiten Schritt, indem ich eine eine völlig neue Methode präsentiere, die den exorbitanten
Rechenaufwand einer weit verbreiteten Prozedur umgeht.

Zum zweiten entwickle ich ein theoretisches Model für eine neue kosmologische Un-
tersuchungsmethode namens Density Split Statistics. Damit wird es ermöglicht die lokale
Wahrscheinlichkeitsdichtefunktion von Fluktuationen des Materiedichtefeldes zu studieren.
Das eröffnet ein reiches Spektrum an Informationen über die großskalige Struktur des Uni-
versums, die mit rein auf 2-Punkt Statistik basierenden Analysen nicht zu erhalten wäre.
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Abstract

Dark matter, dark energy, cosmic inflation - the three main ingredients of the cosmological
standard model remain poorly understood. This points to general gaps in our understand-
ing of physics. An observable that has the potential to fill these gaps is the large scale
structure of density fluctuations in the universe. Observations of the evolution of that large
scale structure over a range of different redshift can be used to study the exact behavior
of dark matter and dark energy. Also, such observations can improve our understanding
of the initial conditions of the universe and hence point us to the exact mechanism of
inflation.

The late stages in the evolution of the large scale structure are particularly difficult to
understand. One reason for this is that the differential equations governing the growth of
density fluctuations are not well approximated by linear equations in the late time universe.
In this work I advance the treatment of late time structure formation in two ways. First,
I improve techniques to estimate the statistical uncertainties in measurements of the 2-
point statistics of the cosmic density field. This is done in a first step by investigating and
refining the performance of existing estimators. And in a second step, by proposing an
entirely new method that can bypass the exorbitant computational needs of a prominent
existing procedure.

Secondly, I develop a theoretical model for a new cosmological probe called density
split statistics. This enables the study of the probability density function (PDF) of matter
density fluctuations in the universe. This opens up a rich amount of information about the
large scale structure of the universe that is otherwise missed if one only analyses 2-point
statistics.
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Chapter 1

Units and conventions

Units

Unless stated otherwise I use the natural unit system in this work, i.e. the units where
the vacuum speed of light c, the gravitational constant G, the reduced Planck constant
~ = h/2π and the Boltzmann constant kB are all set to 1 (which means that everything is
measured in units of these constants).

Vector and matrix notation

Lowercase bold letters such as v,w,d denote vectors. These might be vectors in 3-
dimensional space or vectors of data points in a data analysis. Uppercase bold letters
such as A,B,C but also uppercase bold Greek symbols such as Ψ denote matrices and
A−1 etc. are the corresponding inverse matrices.

Fourier transform

If f(x) is a function in real space, then its Fourier transform (if it exists) is defined as

f̂(k) =

∫
d3x f(x) e−ix·k . (1.1)

The inverse transform is then given by

f(x) =

∫
d3k

(2π)3
f(k) eik·x . (1.2)
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Special and General Relativity and 4-vector notation

In the context of special relativity symbols like xµ, uµ (resp. xν , xα, uν , uα) etc. denote the
components of contra-variant 4-vectors and any Greek indices can have values from 0 to
3. Latin indices (as in xi, uj etc.) are used to reference spatial components of 4-vectors
and range from 1 to 3. The Minkowsky metric is given by η = diag(1,−1,−1,−1) and its
components are denoted by ηµν (or with any other Greek indices). Latin indices as in ηij
reference the spatial part of η. The components of the inverse metric are denoted by ηµν

(and are within special relativity obviously identical to the metric components.)
When an index appear once as a subscript and once as a super script in an expression

(as, e.g. , in ηµνx
ν) than a summation over the possible values of that index is implied

(Einstein’s sum convention). For Greek indices this sum ranges from 0 to 3 and for Latin
indices it ranges from 1 to 3. The position of a Greek index can be lowered or raised by
contraction with the metric elements, i.e.

xµ ≡ ηµνx
ν , xµ = ηµνxν . (1.3)

Equivalent conventions apply in the context of general relativity, but with the metric
and inverse metric components ηµν and ηµν being replaced the metric tensor gµν and its
inverse gµν .



Chapter 2

The cosmological standard model

Before I discuss the topic and outline of this work I want to briefly summarize four major
phases of the evolution of the universe in the standard model of cosmology. This model is
also called the ΛCDM-model where Λ is the cosmological constant in Einstein’s equations
and CDM stands for Cold Dark Matter (see the explanations below). A detailed descrip-
tion of the model is, e.g. , given in the books of Peebles (1993) and Mukhanov (2005) or
in the reviews of Bernardeau et al. (2002); Bartelmann & Schneider (2001). Parts of the
ΛCDM-model will also be reviewed in more detail in chapters 4 and 5 of this work.

Cosmic Inflation
13 Billion years ago the universe was filled by the condensate of a scalar quantum field
ψ (the Inflaton field ; cf. chapter 5 of Mukhanov 2005 for the following statements). The
energy density ε and the pressure p of this condensate can be expressed in terms of the
Hamiltonian and Lagrangian density of ψ as

ε ≡H (ψ, ∂µψ)

=
1

2
∂µψ∂

µψ + V (ψ)

p ≡ L (ψ, ∂µψ)

=
1

2
∂µψ∂

µψ − V (ψ) , (2.1)

where V is the potential energy density of the field. The observable universe originates from
a region of this condensate where due to quantum fluctuations 1

2
∂µψ∂

µψ � V (ψ) such that
ε and p are related by p ≈ −ε. According to the theory of General Relativity (GR) such an
equation of state leads to an exponential expansion of spacetime in that particular region
of the condensate. This so-called Inflation continues for at least 60 e-folds, i.e. until that
region has expanded by at least a factor of > e60. During the expansion, the kinetic energy
of the Inflaton field grows and its potential energy decreases until 1

2
∂µψ∂

µψ ∼ V (ψ) at
which point the exponential expansion stops. The Inflaton field now decays into particles
of other quantum fields thus creating the matter content we observe in the universe today.
Due to quantum fluctuations in the initial field ψ the end of Inflation is not reached at the
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same time everywhere in the expanding patch. Instead, some parts of the universe expand
for a slightly longer or shorter period of time. This leads to curvature perturbations in
spacetime, which via the equations of GR propagate into inhomogeneities of the cosmic
density field (cf. chapter 8 of Mukhanov 2005 or section 14.8 of Padmanabhan 2010a).

It should be stressed that this is a direct interaction between quantum physics and
General Relativity!

Radiation dominated epoch
After the end of Inflation the universe is still expanding but at a much slower rate. This
further slows down continuously due to the gravity of the universe’s matter and radiation
contents. For the next ∼ 50.0001 years the energy content of the universe was dominated
by relativistic particles (i.e. by particles whose kinetic energy is much higher than their rest
frame mass) in plasma of tightly coupled matter and radiation. For most of this time, the
matter-radiation-plasma consists of photons and electrons as well as Hydrogen and Helium
nuclei that are coupled through electromagnetic scattering. Initial density fluctuations in
this plasma propagate in the form of sound waves. Especially, these fluctuations oscil-
late and cannot grow through gravitational attraction. The cosmic microwave background
(CMB) that reaches us today can be thought of as the last snapshot of this epoch (even
though it is produced ∼ 380.000 after the end of inflation, i.e. in the matter dominated
epoch of the universe that is explained below). It is created when the universe cools down
sufficiently to let electrons and Hydrogen nuclei combine to Hydrogen atoms - a process
called recombination (see, e.g. , section 3.6 of Mukhanov, 2005).

Matter dominated epoch
The temperature fluctuations in the CMB indicate that the typical amplitude of density
fluctuations in the matter-radiation-plasma wrt. its mean density ρ̄ is (Tegmark & Rees,
1998)

δ ≡ ρ− ρ̄
ρ̄
≈ 10−5 (2.2)

at the time of recombination. After recombination the newly formed Hydrogen (and also
the previously formed Helium) is not coupled to radiation anymore and its density fluc-
tuations can grow through gravitational interaction. The energy budget in the universe
is now mostly made up off non-relativistic massive particles and the growth of density
perturbations is approximately given by

δ ∼ 1

1 + z
, (2.3)

where z is the cosmological redshift at a given age of the universe (cf. chapter 5 of this
thesis, or chapter 6 of Mukhanov (2005)). This means that until today (z = 0) the initial
fluctuations at recombination (z ≈ 1100) can only have grown by a factor of ≈ 1100
to typical amplitudes of ∼ 10−2. This is in stark contradiction to the density contrast

1http://www.oxfordreference.com/view/10.1093/oi/authority.20110803100140589

http://www.oxfordreference.com/view/10.1093/oi/authority.20110803100140589
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observed on scales of galaxies and galaxy clusters today which can reach values of up to
δ ≈ 500!

The cosmological standard model resolves this contradiction by postulating a substance
called dark matter that interacts with other forms of matter and energy only via its grav-
itational force (see Plehn, 2017, and references therein). Hence, this substance would not
have been coupled to the matter-radiation-plasma through electromagnetic interactions
and its density fluctuations could have started to grow already during the radiation domi-
nated epoch. It is then assumed that after recombination the ordinary matter (Hydrogen,
Helium etc.) fell into the already existing gravitational potentials of dark matter density
perturbations which boosted the structure formation of the visible matter. In order for
this scenario to work, dark matter must make up about 80% of all non-relativistic matter
in the universe.

Phase of accelerated expansion
If the energy content of the universe consists only of the known form of matter and radiation
(and possibly dark matter) then the gravitational forces of these substances should ever
slow down the cosmic expansion. Observations have however shown that ∼ 3 ·109 years ago
the universe entered a new phase of accelerated expansion (e.g. Riess et al., 1998; Wang
et al., 2017). The cosmological standard model assumes that this is caused by an additional
substance called dark energy. The equation of state that relates the energy density ε and
pressure p of this substance is postulated to be p ≈ −ε, i.e. similar to that of the Inflaton
field at the beginning of Inflation. As cosmic expansion progresses the density of matter
decreases until it falls below the energy density of dark energy. At this point the equation
of state p ≈ −ε of dark energy starts to dominate and accelerates the expansion of the
cosmos again.

The nature of dark energy is as of yet unclear - it could be an additional term to be
added in the Einstein equations (the cosmological constant term), a non-zero energy density
of the vacuum, a dynamical field itself or any other deviation from the standard theories
of physics (though the latter two possibilities would infact go beyond the cosmological
standard model).
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Chapter 3

Subject and outline of this work

The gravitational forces within our solar system are very well described by the theory
of General Relativity (GR). It correctly derives the almost perfectly Keplerian motion of
most planets but also successfully predicts deviations from Newtonian physics such as the
perihelion shift of mercury, the time dilation of satellites around earth or the shift of stellar
positions due to gravitational lensing by the sun(see chapter 6 of Fließbach, 1990). Also, it
accurately describes the motion of stars close to the central black hole of our galaxy (Parsa
et al., 2017).

The interactions of atomic and subatomic particles on the other hand are astonishingly
well described by quantum theory. Predictions of quantum theory and observations agree
to a high precision, e.g. , regarding the magnetic dipole moment of the electron (Odom
et al., 2006) or the emission and absorption spectra of atoms (including such subtleties as
the Lamb shift of the ground state energy of the Hydrogen atom, Bethe 1947).

Despite the successes of both quantum theory and General Relativity it has been dif-
ficult to build up a theory that describes both quantum and general relativistic effects at
the same time. It is often believed that this should be accomplished by constructing a
linear space of geometries on which quantum superpositions of spacetimes could be defined
(Dewitt, 1967; Hartle & Hawking, 1983; Rovelli, 2000). Apart from theoretical difficulties,
progress on combining the two theories is also hindered by an experimental obstacle: so far
no laboratory experiment could be realized in which a quantum theory of the gravitational
field would be relevant.

Astronomical observations on cosmological scales (& 10 Mpc) have revealed a number
of shortcomings of our understanding of both GR and the standard model of particle
physics that might fill in this experimental gap. The standard model of cosmology that
was summarized in chapter 2 has three major ingredients that are not explained by our
standard theories of gravity and particle physics. These are:

• Inflation

A phase of cosmic inflation is, e.g. , needed to explain the large scale homogeneity
of the early universe as seen in CMB temperature fluctuations or the fact that the
universe is almost perfectly flat. It is also the only mechanism that can explain the
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generation of density fluctuations on small scales (see chapters 5 and 8 of Mukhanov,
2005). The Inflaton field is however not predicted by the standard model of particle
physics. But it must interact with the ingredients of that model since the Inflaton
field must decay into standard model particles at the end of Inflation. So - under the
assumption that Inflation indeed took place - the standard model of particle physics
must be an incomplete description of subatomic physics.

• Dark Matter

To explain the amplitude of density fluctuations today compared to those observed
in the CMB (but also to explain other observations such as galaxy rotation curves)
gravity must be stronger on the scales of galaxies and galaxy clusters than would
be expected from GR and the amount of Baryonic matter (i.e. ordinary matter that
interacts with the electromagnetic field). This could either be caused by the exis-
tence of a dark matter component or by deviations of gravity from Einstein’s theory
(see Plehn 2017 for a review about dark matter; see Milgrom 2001 for alternative
considerations). In any case, this would represent a shortcoming of either GR or the
standard model of particle physics. Recent hypotheses that link this excess gravity to
the thermodynamics of quantum degrees of freedom of spacetime might even signify
that this problem is directly relevant to the problem of a combined description of
quantum and gravitational physics (Verlinde, 2016, see also chapter 21 of this thesis
for a brief review).

• Dark Energy

If GR is valid on cosmological scales, then the accelerated expansion of the universe
(that has, e.g. , been observed by measuring the luminosities of Type Ia supernovae
or the angular size of the BAO feature as a function of redshift, Riess et al. 1998;
Wang et al. 2017) requires the existence of a substance with the exotic equation
of state p ≈ −ε. A candidate for this dark energy would be a constant energy
density of the vacuum. The standard model of particle physics indeed predicts such
a vacuum energy but with a value that is many orders of magnitudes higher than the
observed value of dark energy density (Adler et al., 1995). To correct this, a so-called
cosmological-constant-term would have to be added to the Einstein equations with
an amplitude that must be tuned to almost perfectly cancel the contributions of the
vacuum energy density. Such a fine tuning is ill motivated. Especially, it would mean
that Einstein’s equations know about the results of quantum Field theory.

Any of the above phenomena point to a possible breakdown of at least one of our two fun-
damental theories. This makes cosmology a rich subject for advancing our understanding
of fundamental physics (and possibly for answering the question of how to combine our
theories of gravity and quantum physics).

Large scale structure cosmology is the part of cosmology that analyses the properties
and evolution of density fluctuations in the universe. This includes the study of distinct
objects such as groups or clusters of galaxies or of the density contrast field δ(x) in the
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observable universe as a whole. To confront the observed large scale structure (LSS) of
the universe with cosmological theory one often (but not always) has to measure statistical
properties of δ(x) as opposed to its exact configuration. The reason for this is that the
theory of Inflation does not predict the exact initial conditions of the universe but only
their statistical properties. One quantities that can be used to characterize the LSS is the
2-point correlation function

ξ(∆x, t) = 〈δ(x, t)δ(x + ∆x, t)〉 . (3.1)

Here the expectation value 〈·〉 can be equivalently understood as a spatial average over all
positions x or as an ensemble average over all possible initial conditions (i.e. the quantum
fluctuations of the Inflaton field). Since Inflation predicts a perfectly homogeneous and
isotropic ensemble if initial conditions, the above definition depends neither in the location
x nor on the direction of ∆x, such that ξ is only a function of the absolute value ∆x = |∆x|.
In the late universe ξ(∆x, t) is typically decreasing with increasing ∆x, indicating that more
distant regions of the universe are less correlated wrt. their density contrast. Instead of
the correlation function ξ one often considers its Fourier transform

P (k, t) =

∫
d3∆x ξ(∆x, t) e−i∆x·k (3.2)

which is called the power spectrum. Because of the isotropy of the initial conditions it also
only depends on the absolute value k = |k|.

The exact shape of P (k, t) in the early universe can be used to test predictions of
Inflation (Mukhanov, 2013) or to determine the abundance of ordinary matter, dark matter
and radiation. A comparison of the amplitudes of P (k, t) at early and late times of the
universe can be used to characterize the growth of structure and hence to test how gravity
acts on cosmological scales. The power spectrum at the time of recombination can, e.g. , be
inferred from the temperature anisotropies in the cosmic microwave background (CMB).
To infer the late time power spectrum one can, e.g. , observe the distribution of galaxies.
Figure 3.1 shows a reconstruction of the power spectrum in the late universe derived by
Tegmark & SDSS Collaboration (2002). The galaxy density contrast (which I will denote
as δg) is however only a tracer of the total matter density contrast δ. Galaxies form in
small scale density peaks of the total density field and - depending on their mass - the
clustering of these peaks can be either enhanced or reduced compared to the total matter
density. This leads to a shift in the amplitude of the galaxy power spectrum wrt. the matter
power spectrum which is called galaxy bias. Further complications are that galaxies are
only sparse and stochastic tracers of the matter density field and also the fact that their
selection function can be quite complex, i.e. whether or not a galaxy appears in a galaxy
survey does not just depend on its mass and redshift but also on its optical properties.

An alternative way to measure the late time power spectrum is via the effect of grav-
itational lensing. As the light from distant galaxies travels towards us through the large
scale structure of the universe the gravitational tical forces of the intervening density fluc-
tuations distort the corresponding light cones. This leads to coherent distortion patterns
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Figure 3.1: Taken from Tegmark & SDSS Collaboration (2002) who reconstructed the
shape of the 3D matter power spectrum P (k, t) today from different large scale struc-
ture observables. The value of P at a given wavenumber k indicates the average squared
amplitude of density fluctuations with a wave length of λ ≈ 2π/k.
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of the corresponding galaxy images - the so-called cosmic shear field. Since the gravitation
of both dark and ordinary matter is assumed to act alike, the cosmic shear field is a tracer
of the total matter density field. Measurements of cosmic shear 2-point correlation func-
tions have been successfully used to determine the parameters of the cosmological standard
model (Kilbinger et al., 2013; Heymans et al., 2013; Abbott et al., 2016; Hildebrandt et al.,
2017; Troxel et al., 2017). Combined analyses of the 2-point correlation functions of the
cosmic shear field, the galaxy density field and the cross-correlation function of the two
fields have been used to improve these parameter constraints and to simultaneously de-
termine the bias of the used galaxy samples (van Uitert et al., 2018; DES Collaboration
et al., 2017). In these analyses, the 2-point functions have also been measured at a range of
redshifts. DES Collaboration et al. (2017) used this to determine the equation of state of
dark energy (DE) as a function of redshift and find no significant deviation from an exact
relation pDE ≡ −εDE.

A fundamental limit to such analyses is the fact that we can only observe one realization
of the universe. Future experiments such as Euclid (Laureijs et al., 2011) or LSST (Ivezic
et al., 2008) will already perform analyses based on 2-point statistics with a close to all-sky
coverage. At this point, if we want to extend the cosmological information obtained from
the low redshift universe, we need to probe the large scale structure beyond its 2-point
correlations. One way to do so is to study the abundance of density peaks in the universe
as a function of their mass. This has, e.g. , been done by measuring the abundance of
peaks in the cosmic shear field (Kacprzak et al., 2016; Shan et al., 2018; Martinet et al.,
2018) or by studying the mass function of galaxy clusters (Mantz et al., 2016). These peak
statistics are potentially very powerful but it is difficult to understand them theoretically
since they probe the density field far into its non-linear regime.

An alternative way to explore the large scale structure beyond its 2-point statistics
is to analyze higher order moments (i.e. moments beyond 2nd order) of the density field
on mildly non-linear scales, i.e. on scales that can still partly be addressed analytically.
Probes that are sensitive to the higher order moments of the density field have several
advantages over pure 2-point statistics (Bernardeau et al., 2002; Takada & Jain, 2002;
Pires et al., 2012; Uhlemann et al., 2018a): They can reduce the cosmic variance of LSS
observation because gravitational non-linearities constantly transfer information about the
initial conditions from the power spectrum to higher order spectra. They can be used to
test generic, parameter independent predictions of the cosmological standard model (the
ΛCDM-model) such as certain scaling relations between the variance of the density contrast
δ and its higher order moments. They can break degeneracies between ΛCDM parameters
and properties of the bias-relation between galaxies and total matter density. And, at high
redshifts and on large scales, they can be used to search for non-Gaussianities in the initial
density field which are predicted by models of Inflation that postulate more than just one
Inflaton field (see Jeong & Komatsu, 2009, and references therein).

Another reason why an understanding of the higher order moments of the density field
is important for a successful cosmological program is the fact that they appear in the
covariance matrix of any measure of 2-point statistics (Schneider et al., 2002; Joachimi
et al., 2008; Eifler et al., 2014; Crocce et al., 2016; Krause & Eifler, 2016). Estimating
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these covariances from simulated realizations of the 2-point function measurements (e.g.
in N-body simulations) is inherently noisy and can significantly deplete the obtained cos-
mological information even when a large number of simulations is available (Dodelson &
Schneider, 2013; Taylor & Joachimi, 2014; Friedrich & Eifler, 2018). Future experiments
hence require either an accurate analytical modeling of 4th order moments of the density
field or a more efficient class of covariance estimators from simulated data.

This work considers both aspects of higher order moments of the density field: as a cos-
mological probe of their own and as covariance matrices for measures of 2-point statistics.
Part I summarizes key concepts of large scale structure cosmology. I start with an overview
of cosmology in the Newtonian approximation (chapter 4) followed by the full, relativistic
treatment (chapter 5). Then I describe the evolution of density fluctuations within cosmo-
logical perturbation theory (chapter 6) and summarize the theory of computing the cosmic
density PDF (chapter 7).

Part II gives an overview on how the theory of the large scale structure can be con-
fronted wit observable quantities. This includes a summary of different cosmological dis-
tance measures (chapter 8), a description of angular power spectra and correlation functions
as line-of-sight projections of the corresponding 3-dimensional quantities (chapter 9) and
an introduction to the gravitational lensing effect (chapter 10). Also, I give a brief intro-
duction of the Dark Energy Survey (DES, chapter 11) which is the main source of data for
this work.

In part III I consider the task of estimating the covariance matrix for measures of
angular 2-point statistics of the density field. I summarize the role of covariance matrices
in cosmological analyses in chapter 12 and present an analysis of the performance of
different internal covariance estimators for cosmic shear 2-point correlation functions in
chapter 13 which is based on the journal article Friedrich et al. (2016). Chapter 14
presents a completely new way of estimating the inverse covariance matrix (the precision
matrix ) from simulated data. This chapter is based on the journal article Friedrich &
Eifler (2018) in which we call this method precision matrix expansion. In this method,
the precision matrix is expanded as a power series around an analytical guess of the true
matrix. We show there that the leading terms of this expansion can be estimated much
more efficiently then the entire matrix.

Part IV introduces Density Split Statistics (DSS) - a new cosmological probe based on
the theory of the cosmic density PDF. Chapter 15 summarizes the general idea behind
this probe as well as the results of a relevant precursor study. Chapter 16 is based on the
journal article of Friedrich, Gruen et al., 2018 and presents the modeling of density split
statistics that I have developed based on perturbation theory and a cylindrical collapse
approach. Chapter 17 summarizes our cosmological analysis of this probe in year-1 data
of the Dark Energy Survey and is based on the journal article by Gruen, Friedrich et al.,
2018.

Part V discusses conclusions from this work and gives a number of outlooks.



Part I

Background: Theory of cosmic
structure formation





Chapter 4

Cosmology in the Newtonian
approximation

In this chapter I will motivate important aspects of cosmology solely from considering the
expansion and collapse of a cloud of pressure less matter within the Newtonian theory
of gravity. The presentation mostly follows along the lines of Bernardeau et al. (2002);
Mukhanov (2005).

In classical hydrodynamics a fluid without shear and viscosity can be described by the
quantities

• ρ(t, r), the mass density of the fluid,

• v(t, r), the streaming velocity of the fluid,

• p(t, r), the pressure of the fluid.

The evolution of such a fluid is governed by the continuity equation,

∂ρ

∂t
+ ∇(ρv) = 0 , (4.1)

and the Euler equation,
∂v

∂t
+ (v ·∇)v +

1

ρ
∇p = g . (4.2)

Here g = g(t, r) is the acceleration due to external forces. If the only external force acting
on a fluid element is the gravitational force caused by the rest of the fluid then g becomes

ggrav(t, r) = −∇φgrav(t, r) , (4.3)

where the gravitational potential φgrav is given in terms of the fluid density as

φ(t, r) = −G
∫

d3x
ρ(t,x)

|r− x| ⇔ ∆φ(t, r) = 4πGρ(t, r) . (4.4)

Here G is the gravitational constant. The second equality of 4.4 is called the Poisson
equation.
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4.1 Expansion and collapse of a homogeneous, spher-

ical dust cloud

Consider a spherical, homogeneous cloud of dust (where dust denotes any fluid with van-
ishing pressure, p ≡ 0). In the absence of external forces the Euler equation for this cloud
reduces to

∂v

∂t
+ (v ·∇)v = −∇φgrav , (4.5)

while the continuity equation is still given by 4.1. If R0 is the radius of the cloud at time
t0, then its matter density is described by

ρ(t0, r) =

{
ρ0 if |r| ≤ R0

0 else .
(4.6)

Let us assume that the cloud has a homogeneous density distribution at all times. Looking
at 4.1 this means that ∇v within the radius of the cloud can only depend on t, i.e. within
|r| ≤ R(t) we have

∇v(t, r) = ϑ(t) (4.7)

end hence

v(t, r) =
1

3
ϑ(t)r +α(t) . (4.8)

Here α is a overall movement of the cloud that in the absence of external forces will be
independent of t. We set α ≡ 0 to keep the cloud centered around r = 0, arriving at

v(t, r) =

{
1
3
ϑ(t)r if |r| ≤ R0

0 else .
(4.9)

The velocity divergence ϑ describes an isotropic contraction or expansion of the cloud. As
a consequence, the matter density of the cloud evolves as

ρ(t, r) =

{
ρ0

(
R0

R(t)

)3

if |r| ≤ R(t)

0 else .
(4.10)

with a function R(t) for which R(t0) = R0. To determine R(t) consider a mass elements
dm at the very edge of the dust cloud. The gravitational force acting on dm due to the
matter inside the cloud is the same as the force that would be caused by a point mass at
r = 0 with mass

M =
4π

3
R3

0ρ0 . (4.11)

This force is

dFgrav = −dmMG

R(t)2
, (4.12)
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where the direction of the force is towards the center of the cloud. For the radial acceleration
of the element dm this gives

d2R

dt2
= −MG

R2

= −4π

3
GρR . (4.13)

Multiplying the first equality with Ṙ ≡ dR/dt and integrating it gives(
Ṙ
)2

= 2
MG

R
−K . (4.14)

Here K is an integration constant that depends on the initial conditions of the cloud or,
equivalently, on its total energy. The total energy of our dust cloud can be shown to equal

Etot = Ekin + Egrav

=
3M

10

(
Ṙ2 − 2

GM

R

)
= −3M

10
K . (4.15)

This shows that for K > 0 the cloud is gravitationally bound while K < 0 corresponds to an
unbound cloud. For both cases, parametric solutions for R(t) exist (Fosalba & Gaztanaga,
1998; Valageas, 2002a). For K = 0 an analytic solution is readily obtained by the ansatz
R ∼ tx as

RK=0(t) = R0

(
t

t0

)2/3

. (4.16)

Note that in Newtonian theory K is only determining the total Energy of the collaps-
ing/expanding cloud while in General Relativity it also obtains a geometric meaning (cf.
chapter 5). To conclude this section, consider the expansion rate H ≡ Ṙ/R with which
equation 4.14 can be transformed to

H2 =
8πG

3
ρ− K

R2
. (4.17)

This emphasizes the structural similarity between the expansion of a cloud of dust in
Newtonian theory and the Friedmann equations of relativistic cosmology (though the latter
are much more general, cf. chapter 5).

4.2 A universe filled with dust (R→∞)

For simplicity, let us from now on assume that K ≡ 0 (for a more general discussion see
chapter 5). Also, let us define the scale factor a(t) by

a(t) =
R(t)

R0

=

(
t

t0

)2/3

. (4.18)
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The time evolution of the cloud density is then given by

ρ(t) =
ρ0

a(t)3
(4.19)

and the expansion rate of the cloud can be equivalently defined as

H(t) =
ȧ

a
. (4.20)

Using the continuity equation, 4.1, one can furthermore express the velocity divergence ϑ
as

ϑ = − ρ̇
ρ

= 3H . (4.21)

Keeping t0 and ρ0 constant but taking the limit R0 → ∞ changes the time evolution of
neither a, ρ, H nor ϑ. This limit describes a universe that is completely filled with dust
and whose velocity field is everywhere given by

v(t, r) = H(t)r . (4.22)

Such a universe is the only one consistent with the so-called cosmological principle (Mukhanov,
2005). This principle states that (at least on large scales) the universe is homogeneous and
isotropic. Especially, changing the coordinate system to the inertial frame of any mass
element dm in the universe leaves the form of 4.22 unchanged. The velocity given by 4.22
is called the Hubble flow.

Note that the gravitational potential as given by 4.4 diverges is the limit R0 → ∞.
This is a conceptual short coming of the Newtonian approximation to cosmology that can
only be fully resolved within general relativity using Birkhoff’s theorem (see Birkhoff &
Langer, 1923; Padmanabhan, 2010a). For now, let us only note that the potential

φgrav(t, r) =
2πG

3
ρ(t)|r|2 (4.23)

is a solution of the Poisson equation (second relation in 4.4) which is consistent with the
Hubble flow described above.

4.3 Equations of motion for density fluctuations

The matter in the universe is obviously not distributed completely homogeneously. We
now consider density perturbations on top of a homogeneous background density, i.e. we
consider the density field

ρ = ρ̄ (1 + δ) , (4.24)
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where ρ̄ is given by 4.19 and depends only on t while δ = δ(t, r) describes a spatially
varying density contrast with respect to ρ̄.

The density fluctuations will also cause the velocity field to deviate from the Hubble
flow, 4.22. Let us parametrize these deviation as

v(t, r) = v̄(t, r) + υ(t, r) , (4.25)

where v̄(t, r) = H(t)r is the background Hubble flow and υ(t, r) are velocity perturbations.
The perturbed gravitational potential can be parametrized as

φgrav(t, r) =
2πG

3
ρ(t)|r|2 + ϕ(t, r) (4.26)

where the first term again represents the background potential governing the overall Hubble
flow. The potential perturbations ϕ and the density contrast δ are connected through the
modified Poisson equation (cf. equation 4.4)

∆ϕ(t, r) = 4πGρ̄(t)δ(t, r) . (4.27)

4.3.1 Coordinate transformations

To investigate how the fluctuations δ and υ evolve, it is convenient to introduce co-moving
coordinates that move with the Hubble flow, i.e. with the background expansion of the
dust cloud (or rather: the universe filled with dust). Following chapter 6 of Mukhanov
(2005) such coordinates can be defined in terms of the physical coordinates as

x(t, r) =
1

a(t)
r (4.28)

where the scale factor a(t) is defined in 4.18. Note that the definition in 4.28 is such that
co-moving coordinates x and physical coordinates r coincide at time t0. The differential
operators ∇ and ∆ in both coordinate systems are related via

∇co = a∇ph , ∆co = a2∆ph . (4.29)

Similarly, it is convenient to introduce the so-called conformal time η which can, e.g. , be
defined as

η =

∫ t

t0

dt′
1

a(t′)
, (4.30)

such that (cf. Mukhanov 2005)

∂

∂η

∣∣∣∣
x=const.

= a

{
∂

∂t

∣∣∣∣
r=const.

+ v̄ ·∇ph

}
. (4.31)

Here, the subscripts x, r = const. indicate that the derivatives should be taken along
trajectories of constant x resp. r (I will drop those subscripts now and imply this notion
unless explicitly stated otherwise).



20 4. Cosmology in the Newtonian approximation

In the new coordinates (x, η) the continuity becomes

0 = a

{
∂ρ

∂t
+ ∇ph(ρv̄ + ρυ)

}
= a

{
∂ρ

∂t
+ v̄ ·∇phρ+ ρ∇phv̄ + ∇ph(ρυ)

}
=
∂ρ

∂η
+ 3Hρ+ ∇co(ρυ) . (4.32)

Here we have defined H ≡ ȧ = a′/a where ′ denotes derivation wrt. η. From the fact that
ρ̄ ∼ a−3 it can be seen that the background density fulfills ∂ρ̄/∂η + 3Hρ̄ = 0. Hence, using
the definition of δ in 4.24 the continuity equation can be recast as

∂δ

∂η
+ ∇co[(1 + δ)υ] = 0 , (4.33)

where we have divided the equation by an overall factor of ρ̄.
The Euler equation in the new coordinates reads

−∇coφgrav = a

{
∂v

∂t
+ (v ·∇ph)v

}
=
∂v

∂η
+ (υ ·∇co)v

=
∂v

∂η
+Hυ + (υ ·∇co)υ

=
∂υ

∂η
+Hυ + (υ ·∇co)υ +

∂H
∂η

x , (4.34)

where we have used the fact that Hr = Hx. From 4.13 and the definition of H it can be
shown that ∂H/∂η = −4πG/3 ρ̄ a2 such that

φgrav(η,x) = −1

2

∂H
∂η
|x|2 + ϕ(η,x) . (4.35)

Thus the Euler equation becomes

∂υ

∂η
+Hυ + (υ ·∇co)υ = −∇coϕ . (4.36)

In chapter 6 I will summarize how to solve equations 4.33 and 4.36 perturbatively. This
perturbation theory if a corner stone of the model for density split statistics that I present
in chapter 16.



Chapter 5

Cosmology in General Relativity

This chapter of the thesis is based on the chapters 1 and 7 of Mukhanov (2005). See also
chapters 10 and 13 of Padmanabhan (2010a) for a similar presentation.

To describe the cosmic expansion within General Relativity (GR) we need to specify
a coordinate system xµ (µ = 0, 1, 2, 3) and a metric tensor with components gµν in this
coordinate system. The proper time interval dτ that an observer experiences along an
infinitesimal path dxµ is given by

c2dτ 2 = gµνdx
µdxν , (5.1)

where here and subsequently we will apply the convention that indices appearing once in
subscript and once in superscript are summed over (Einstein’s sum convention, cf. chapter
1). The quantity ds = cdτ is called the line element. For the rest of this chapter we will
return to the natural unit system in which c ≡ 1, such that the line element is equivalent
to the infinitesimal proper time interval.

Changing the coordinate system to new coordinates x̃α = x̃α(xµ) changes the compo-
nents of the metric tensor as

g̃αβ = gµν
∂xµ

∂x̃α
∂xν

∂x̃β
. (5.2)

In a coordinate system that is freely falling at a point xµ0 the metric reduces to the usual
Minkowsky metric at this location, i.e.

gµν(x
µ
0) = ηµν = (diag[1,−1,−1,−1])µν . (5.3)

In the following Greek indices will always range from 0 to 3 and denote spacetime indices,
while Latin indices will always run from 1 to 3 and denote spatial indices. gµν denotes
the inverse of the metric gµν and indices of the components of any tensor are lowered and
raised by contraction with the components of the metric or inverse metric respectively, e.g.
,

Aµ = gµνA
ν and Aµ = gµνAν (5.4)

for the components of covariant and contravariant vectors.
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If the universe is filled with ”materials” (fluids, fields, particles) whose combined energy-
momentum-tensor has components Tµν then according to GR the metric components have
to satisfy the Einstein equations

Gµν = 8πTµν . (5.5)

Here Gµν is the so-called Einstein tensor which contains derivatives of the metric com-
ponents up to the second order. We will not introduce any further concepts of GR and
instead refer the reader to textbook literature (e.g. Fließbach, 1990).

5.1 Friedmann Universe

This section is based on chapter 2 of Mukhanov (2005).

5.1.1 FLRW-metric and Friedmann equations

Based on the cosmological principle we postulate that the universe is homogeneous and
isotropic. Up to arbitrary coordinate transformations, the only metrics satisfying this
principle are of the form

ds2 = dt2 − a(t)hij(x)xixj (5.6)

where we introduced the notation xµ = (t,x)µ and where hij is a time independent metric
describing a 3-dimensional space of uniform curvature. Such a spatial metric can always
be put into the form (cf. chapter 1 of Mukhanov 2005)

ds2 = dt2 − a2(t)
(
dχ2 + Φ2

k(χ){dθ2 + sin2(θ)dφ2}
)
, (5.7)

where the function Φk(χ) depends on the curvature of the 3D subspaces and is given by

Φk(χ) = χ for zero 3D curvature (”flat” universe)

= sinχ for positive 3D curvature (”closed” universe)

= sinhχ for negative 3D curvature (”open” universe) . (5.8)

The meaning of the subscript k will become clear below. A universe with positive 3D
curvature is called closed because its t = const. subspaces are topologically closed 3D
spheres. For a flat universe the above line element becomes

ds2 = dt2 − a2(t)dx2, (5.9)

where x are the Cartesian coordinates of a flat 3-dimensional space and (χ, θ, φ) would be
a corresponding spherical coordinate system. The scale factor a(t) describes an isotropic
expansion of that space and the coordinates x (or χ, θ, φ in the general case) are co-moving
with this expansion. At any time t, a distance ∆x in the co-moving coordinates corresponds
to a physical distance ∆l = a∆x. The metric in equation 5.7 is called the Friedmann-
Lemâıtre-Robertson-Walker metric (FLRW metric, but we will sometimes simply call it
the Friedmann metric).
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The time coordinate t describes exactly the proper time measured by an observer at
rest in the above coordinate system. It is however convenient to introduce a different time
coordinate

η(t) =

∫ t

t0

dt′

a(t′)
(5.10)

with which the line element becomes

ds2 = a2(t)
(
dη2 − dχ2 + Φ2

k(χ){dθ2 + sin2(θ)dφ2}
)

( = a2(t)
(
dη2 − dx2

)
in the flat case. )

(5.11)

This is the conformal form of the FLRW metric and η is the conformal time (which was
already introduced in the context of a collapsing Newtonian gas cloud in section 4.3.1).

The evolution of the a universe with the FLRW metric in entirely encoded in the scale
factor a(t) resp. a(η). To determine the time dependence of the scale factor via Einstein’s
equations we approximate the energy content of the universe as a perfect fluid. The energy-
momentum-tensor of such a fluid is given by

Tµν = (ε+ p)uµuν − pgµν , (5.12)

where ε is the energy density of the fluid (in the rest frame of each mass element of the
fluid), p is its pressure and uµ is its four-velocity. To satisfy the cosmological principle the
fluid should rest in the expanding coordinates, such that in uµ in conformal time is given
by (see the text around equation 7.20 of Mukhanov, 2005)

u0 ≡ dη

dτ
= g00 =

1

a2

ui ≡ dxi

dτ
= 0 . (5.13)

The Einstein equations in this case simplify to the Friedmann equations

H′ = −4π

3
(ε+ 3p)a2

H2 + k =
8π

3
εa2 . (5.14)

Here we introduced the conformal expansion rate H = a′/a and ′ denotes derivative wrt.
η. Furthermore, k/a2 with k ∈ {−1, 0, 1} is exactly the 3D-curvature of the η ≡ const.
subspaces. Using the physical time t as time coordinate the Friedmann equations can be
recast as

ä = −4π

3
(ε+ 3p)a

H2 +
k

a2
=

8π

3
ε , (5.15)
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where H = ȧ/a and ˙ denotes derivative wrt. t. The first Friedmann equation is similar to
equation 4.13 which described the acceleration of a mass element dm, with the difference
that in GR the pressure of a fluid also acts as a source of gravity. The second Friedmann
equation coincides with Eq. 4.17 which described the expansion rate of a dust cloud in
the Newtonian approximation. The parameter k however, which in Newtonian theory was
linked to the total energy of the dust cloud, obtains a geometric meaning in GR.

We can see from equation 5.15 that there is a critical energy density

εcrit =
3H2

8π
(5.16)

for which the universe must be flat. Hence, the parameter

Ω =
ε

εcrit

(5.17)

is a measure for the curvature of the universe. Observations of the present day Hubble flow
indicate that the universe is flat (Riess et al., 1998), i.e. Ω = 1. We will hence consider
only flat universes and set k = 0 for the rest of this chapter.

5.1.2 Thermodynamics

To solve the Friedmann equations we need to know how the pressure p and energy density
ε evolve under a changing scale factor. To do so, let us consider a fixed volume Vco in the
co-moving coordinates. The corresponding physical volume at time t is

V = a3Vco . (5.18)

If the universe is filled with a homogeneous fluid with mass density ρ and energy density
ε then the total energy within the above volume is given by

E = M +Q

⇒ a3ε = a3ρ+Q , (5.19)

where we denote the heat energy contained in V as Q. The first law of thermodynamics
tells us that

dQ

dV
= −p

⇒ dQ

da
= −3pa2 . (5.20)

Here p again denotes the pressure of the fluid. To use equations 5.19 and 5.20 for deriving
ε and p as functions of a we need two more assumptions. First, we assume that there is
a linear relation between the energy density and the pressure of the fluid which can be
written as

ε = wp . (5.21)
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For an ideal gas such a relation alway exists and is called the equation of state of the gas
while w is called the equation of state parameter. Our second assumption is that ε is a
power law in a which we can write in the form

ε = ε0a
−γ . (5.22)

Equation 5.19 is then equivalent to

ε0a
3−γ =

M

Vco

+Q

⇒ (3− γ)a2−γ =
dQ

da
= −3wa2−γ

⇒ γ = 3(1 + w) , (5.23)

where we have used the fact that M/Vco is a constant. I will now derive the equation
of state parameter w for three important special cases and analyze how this affects the
evolution of the scale factor (following along the lines of Mukhanov, 2005; Padmanabhan,
2010a).

5.1.3 Dust: ε ∼ a−3 , w = 0

The energy density ε of cold matter is almost exclusively given by the density of its rest
mass. For this type of matter ε scales as a−3 since the physical volume of any fixed region
in co-moving coordinates is proportional to a3. The density can then be written as

ε(t) ≈ ε0

(
a0

a(t)

)3

, (5.24)

where a0 and ρ0 are the scale factor and density at some time t0. Without loss of generality
we can choose t0 as the present time and then rescale the co-moving coordinates such that
a0 = 1. Then we have

ε(t) ≈ ε0
a(t)3

. (5.25)

Comparing this to equations 5.22 and 5.23 we see that for cold matter w ≈ 0 and γ ≈ 3.
This means that indeed p� ε as is expected for cold matter (or dust, cf. section 4.1).

Based on equation 5.25 we can now solve the Friedmann equations 5.15 for a universe
that is filled purely with dust. Using the power law ansatz a(t) ∼ tα gives

a(t) =

(
t

t0

) 2
3

. (5.26)

(Remember that we consider only flat universe, i.e. k = 0, for the rest of this chapter.)
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5.1.4 Radiation: ε ∼ a−4 , w = 1
3

The energy density of radiation or any gas of ultra-relativistic particle scales as a−4 because
the density of density of particle in such a gas is still proportional to ∼ a−3 while the energy
of each individual particle is proportional to a−1. The reason for that is that the expansion
of the universe stretches the wavelength of each individual particle by a factor of a. Keeping
the same conventions as before regarding our choice of t0 and a0 this gives

ε(t) =
ε0
a(t)4

. (5.27)

Comparing this to equations 5.22 and 5.23 we see that for radiation w = 1
3

and γ = 4.
Using equation 5.27 we can again solve the Friedmann equations 5.15 and find that in

a flat universe filled with radiation the scale factor evolves as

a(t) =

(
t

t0

) 1
2

. (5.28)

5.1.5 Vacuum energy density: ε ≡ const. , w = −1

If the universe is filled with a constant vacuum energy density then obviously

ε(t) ≡ ε0 . (5.29)

This means that γ = 0 and w = −1. For such an equation of state a power law ansatz
a(t) ∼ tα does not solve the Friedmann equations any more. Instead, we have to use the
exponential ansatz a(t) ∼ eαt to derive

a(t) = eHΛ(t−t0) . (5.30)

Here HΛ is equal to the expansion rate H(t) which is now independent of time. The symbol
Λ is usually denotes the so-called cosmological constant in Einstein’s equations. It is used
here, because a non-zero, positive value of that constant would influence the expansion of
the universe in the same way as a constant vacuum energy density (cf. chapters 2 and 3).

5.1.6 The ΛCDM model

The energy content of the universe can be approximated as a mixture of cold matter,
radiation and dark energy (where the latter can be caused either by a positive cosmological
or by a non-vanishing energy density of the vacuum). The total energy density of the
universe can then be decomposed as

εtot(t) = εm(t) + εr(t) + εΛ(t) , (5.31)

where the subscript m stands for matter, the subscript r stands for radiation and Λ denotes
dark energy. Inserting the dependence of the different energy density contributions on the
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scale factor and denoting today’s expansion rate of the universe by H0 this can be written
as

εtot(t) =
εm,0
a(t)3

+
εr,0
a(t)4

+ εΛ,0

=
3H2

0

8π

(
Ωm,0

a(t)3
+

Ωr,0

a(t)4
+ ΩΛ,0

)
. (5.32)

Here ΩX is the ratio of the energy density of component X to the critical energy density
(cf. equation 5.16) and ΩX,0 is the value of that ratio today. Since we are considering a
flat universe we have Ωtot = 1 at all times.

Using the different equation of state parameter of the different energy components we
can decompose the total pressure in a similar way:

ptot(t) =
1

3

εr,0
a(t)4

− εΛ,0

=
3H2

0

8π

(
1

3

Ωr,0

a(t)4
− ΩΛ,0

)
. (5.33)

Using equations 5.32 and 5.33 we can rewrite the Friedmann equations for a flat universe
as

ä = −H
2
0

2
(
Ωm,0

a2
+ 2

Ωr,0

a3
− 2aΩΛ,0)

H2 = H2
0

(
Ωm,0

a3
+

Ωr,0

a4
+ ΩΛ,0

)
. (5.34)

Given the parameters Ωm,0, Ωr,0, ΩΛ,0 and H0 and initial conditions for a and H these
equations can be integrated numerically. The radiation fraction in the total energy budget
of the universe today is negligible so that the expansion of the universe today is influenced
mainly by the dark energy (Λ) and the cold dark matter component (CDM, cf. chapters
2 and 3). Hence, the above model for the expansion history of the universe is called the
ΛCDM model.

5.2 The inhomogeneous universe

In the last sections we have studied a perfectly homogeneous and isotropic universe. How-
ever, the observed universe is homogeneous and isotropic only on very large scales (∼ 100
Mpc). To obtain a more realistic description of the universe we have to consider perturba-
tions to the perfect Friedmann metric. For simplicity, we will do this only for the spatially
flat Friedmann universe.

In cosmology the most important perturbations are the so-called scalar perturbations,
since they inhibit gravitational instability and can grow during cosmic evolution. As shown,
e.g. , in chapter 7 of Mukhanov (2005) the line element with these perturbations becomes

ds2 = a(η)2
{

(1 + 2φ)dη2 − (1− 2ψ)dx2
}
, (5.35)
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where φ and ψ are two scalar functions. Equation 5.35 uses the so-called conformal
Newtonian gauge to fix ficticious degrees of freedom (cf. Mukhanov 2005). In the following,
we will derive the Einstein equations for the perturbations φ and ψ (this can also be found
in chapter 7 of Mukhanov 2005). The purpose of this section is to consistently derive the
equations of motions of the Newtonian approximation in a non-relativistic limit from these
Einstein equations. Especially, I want to demonstrate why some terms that are of 2nd
order in perturbations of the velocity field can be neglected while other such terms can’t.
This is important, because we need terms of second order in the velocity to develop non-
linear perturbation theory in chapter 6. I did not find references that do this derivation as
consistent as is presented here.

5.2.1 The Einstein tensor with perturbations

We want to express the Einstein tensor corresponding to the metric 5.35 as

Gν
µ = Ḡν

µ + δGν
µ , (5.36)

where Ḡν
µ is the Einstein tensor of a perfectly homogeneous Friedmann universe and δGν

µ

is a perturbation to that background universe. As shown in appendix A , at linear order
in ψ and φ these perturbations are given by

a2δG0
0 = −6Hψ′ − 6H2φ+ 2∆ψ

a2δGi
0 = −2∂j(ψ

′ +Hφ)

a2δGj
i = −δij

[
2(H2 + 2H′)φ+ 2ψ′′ + 2H(φ′ + 2ψ′) + ∆(φ− ψ)

]
− ∂i∂j(ψ − φ) . (5.37)

On cosmological scales ψ � 1 and φ � 1 is always fulfilled. In Fourier space we can see
that this also holds for the spatial derivatives of the perturbations since ∂/∂xi ∼ ki ∼ 1/L
where L is the typical size of cosmological density fluctuations (which is � 1 in natural
units). Also, ∂/∂η ∼ ω ∼ aH0 , where the age of the universe was approximated by
1/H0 � 1. As a consequence, the linear approximation of the Einstein tensor is an
excellent approximation in the regime relevant for this work.

5.2.2 Perturbations in T νµ for cold matter

The energy-momentum-tensor of the (cold) matter component is given by

T νµ = ρm uµu
ν , (5.38)

where ρm is the mass density of matter in its local rest frame and uµ = dxµ/ds is the
4-velocity field of the matter component. We would like to express this tensor in the form

T νµ = T̄ νµ + δT νµ , (5.39)
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where T̄ νµ is the energy momentum tensor of a perfectly homogeneous Friedmann universe
and δT νµ are perturbations to that. In order to do so, let us write ρm as

ρm = ρ̄m(1 + δm) . (5.40)

Here ρ̄m ∼ 1/a3 is the mean density of the universe and δm is the density contrast (which
we already encountered in the Newtonian treatment in section 4.3). Also, let vµ = dxµ/dη
denote the coordinate velocity of individual fluid elements (where the word fluid refers
to the cold matter component) and let υ = dx/dη be the spatial part of vµ. With this
definition the contravariant components of u are given by

uµ =
dxµ

dτ
=

dη

dτ

dxµ

dη
= u0 vµ =

vµ

a

1√
[1 + 2φ]− [1− 2ψ]υ2

, (5.41)

while the covariant components are given by

u0 =
v0g00

a

1√
[1 + 2φ]− [1− 2ψ]υ2

=
a(1 + 2φ)√

[1 + 2φ]− [1− 2ψ]υ2

ui =
vigii
a

1√
[1 + 2φ]− [1− 2ψ]υ2

= vi
−a(1− 2ψ)√

[1 + 2φ]− [1− 2ψ]υ2
. (5.42)

(Note that in the last line I temporarily ignored the Einstein sum convention.)
The perturbations of the energy momentum tensor are caused by φ, ψ, δm and υ. As

argued above, on the scales of interest for this work the perturbations φ and ψ are always
small and we only need to consider them in up to linear order. The amplitudes of the
perturbations δ and υ behave more complicated. For now, I will treat υ2 to have the same
order of magnitude as the metric perturbations, which at linear order gives

δT 0
0 ≈ ρ̄m[υ2 + δm(1 + υ2)]

δT i0 ≈ ρ̄m(1 + δm)vi

δT ji ≈ ρ̄m(1 + δm)vivj . (5.43)

Now the equations of motion for the perturbations can be obtained from the Einstein
equations. Since by definition the background Einstein tensor and background energy
momentum tensor satisfy their own Einstein equations, this leads to

δGν
µ = 8πδT νµ . (5.44)

I will investigate these equations in detail in section 5.2.3 , but first we need to discuss the
significance of terms ∼ O(υ2).

Magnitude of υ, υ2 and δ

As we will see in chapter 6 , we need to keep terms of the order ∼ δmv
i or ∼ vivj in order

to describe the evolution of δm and υ in non-linear perturbation theory. In fact, terms
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of such order were present in the exact equations 4.33 and 4.36 that were derived in the
Newtonian limit. Hence, in order to show that these equations follow from the Einstein
equations in the appropriate limit, can cannot simply ignore terms that are quadratic in υ.
Nevertheless, we can simplify the expressions for the energy momentum tensor obtained in
equations 5.43 by arguing as follows:

• At a sufficiently early time, the perturbations δm and υ will be small enough to
ensure that υ2 � δm.

• Non-linear perturbation theory becomes important as soon as υ2 ∼ φ, ψ, i.e. as soon
as terms ∼ υ2 cannot be ignored in the non-linear equations of motion anymore (see
chapter 6 or section 2 of Bernardeau et al., 2002). However, in this regime we also
have δm ∼ O(1). Hence, even at late time we can still assume that υ2 � δm.

Using this we can see that at any time

δT 0
0 ≈ ρ̄mδm and δT ji � δT 0

0 . (5.45)

Note especially, that the above reasoning is not sufficient to set δT i0 to 0.

5.2.3 The Einstein equations for perturbations and non-relativistic
limit

Using our above considerations for the energy momentum tensor we can now write the
Einstein equations for the perturbations as (cf. equations 7.38 to 7.40 of Mukhanov 2005)

4πa2ρ̄mδm = ∆ψ − 3Hψ′ − 3H2φ

−4πa2ρ̄m(1 + δm)vi = ∂i(ψ
′ +Hφ)

−4πa2δT ji = δij

[
(H2 + 2H′)φ+ ψ′′ +H(φ′ + 2ψ′) +

∆(φ− ψ)

2

]
+
∂i∂j(ψ − φ)

2
.

(5.46)

Small scale, non-relativistic limit

On co-moving scales L � 1/H the term ∆ψ will dominate the right hand-side of the 00-
component of the Einstein equations. These scales are the only relevant ones for this work.
Hence we can set

4πa2ρ̄mδm ≈ ∆ψ . (5.47)

From the ij-component of the Einstein equations we can see that

∂i∂j(ψ − φ) ∼ 4πa2δT ji � 4πa2δT 0
0 ∼ ∆ψ . (5.48)

Hence, within the approximations discussed in the end of section 5.2.2 we can set ∆ψ ≈ ∆φ
which gives

4πa2ρ̄mδm ≈ ∆φ . (5.49)
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This is equivalent to the Poisson equation 4.27 we encountered in the Newtonian approx-
imation. Taking the spatial divergence of the 0i-component of the Einstein equations
equations we furthermore get

−4πa2ρ̄m∇([1 + δm]υ) = ∆(ψ′ +Hφ)

≈ ∆(φ′ +Hφ)

=
(a∆φ)′

a

⇒ −a2ρ̄m∇([1 + δm]υ) ≈ (a3ρ̄mδm)′

a

≈ ρ̄m,0
δ′m
a

⇒ δ′m + ∇([1 + δm]υ) ≈ 0 . (5.50)

Here ρ̄m,0 = a3ρ̄m is the average matter density to day. The last line of the above equations
is exactly the continuity equation that was derived for perturbations in the Newtonian
approximation (cf. 4.33).

To complete our recovery of the Newtonian equations derived in chapter 4 we are still
missing the Euler equation. Since we are considering only cold matter without pressure,
the trajectories of individual fluid elements are geodesics. This means that the 4-velocity
field satisfies the geodesic equation

uα∇αu
µ ≡ uα∂αu

µ + Γµαβu
αuβ = 0 , (5.51)

where the first equality defines the so-called covariant derivative ∇α of the components of
a vector and Γµαβ are the Christoffel symbols which are derived in appendix A. Remember
that uµ = u0vµ with v0 = 1. Hence, the spatial part of the geodesic equation reads

0 = uα∇αu
i

= uα∂αu
i + Γiαβu

αuβ

= uα∂α(u0vi) + Γiαβu
αuβ

= viuα∂αu
0 + u0uα∂αv

i + Γiαβu
αuβ

= viuα(∂αu
0 + Γ0

αβu
β) + u0uα∂αv

i + Γiαβu
αuβ − viΓ0

αβu
αuβ

= viuα∇αu
0 + u0uα∂αv

i + Γiαβu
αuβ − viΓ0

αβu
αuβ . (5.52)

The first term on the right hand-side vanishes because it is proportional to the time com-
ponent of the geodesic equation. Dividing the overall equation by (u0)2 we get

0 = vα∂αv
i + Γiαβv

αvβ − viΓ0
αβv

αvβ

= (vi)′ + (υ∇)vi + Γi00 + 2Γi0kv
k + Γiklv

kvl − Γ0
00v

i − 2Γ0
0kv

kvi − Γ0
klv

kvlvi . (5.53)
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In appendix A I show that (see also Mukhanov, 2005)

Γi00 = ∂iφ

Γi0j = δij (H− ψ′)
Γkij = δij∂kψ − δki∂jψ − δjk∂iψ
Γ0

00 = H + φ′

Γ0
0i = ∂iφ

Γ0
ij = δij (H− ψ′) (5.54)

at linear order in φ and ψ. Inserting this above and ignoring all terms ∼ O(φυ, ψυ) (which
are ∼ O(υ2) in the early universe and ∼ O(υ3) in the late universe, cf. the discussion at
the end of section 5.2.2) we get

0 ≈ (vi)′ + (υ∇)vi + ∂iφ+Hvi . (5.55)

This is exactly the Euler equation 4.36 for the perturbations which was derived in the
Newtonian approximation.

To summarize, on co-moving scales L� 1/H and for a universe filled with cold matter
we have derived the following equations for the evolution of the perturbations:

4πa2ρ̄mδm = ∆φ

δ′m + ∇([1 + δm]υ) = 0

υ′ + (υ∇)υ + ∇φ+Hυ = 0 . (5.56)

These are exactly the equations we derived within the Newtonian frame work. In chapter
6 I will use these to build up a perturbative scheme to calculate the non-linear evolution
of the perturbations δm and υ. Since I have only considered scalar perturbations, only the
scalar part of υ will play a role in this expansion (which is, e.g. , given by the divergence
θ ≡∇υ).



Chapter 6

Theory of cosmic structure formation

As discussed in sections 4.3 and 5.2 the evolution of perturbations in a background Fried-
mann universe filled with dust (i.e. pressure less matter) is described by the matter density
contrast δm, the co-moving velocity perturbations υ and the scalar metric perturbation φ.
The equations of motion for these perturbations are the Poisson equation,

4πa2ρ̄mδm = ∆φ , (6.1)

the continuity equation,

δ′m + ∇([1 + δm]υ) = 0 , (6.2)

and the Euler equation,

υ′ + (υ∇)υ + ∇φ+Hυ = 0 . (6.3)

Here ρ̄m is the mean matter density in the universe at any given time, ′ denotes derivation
wrt. the conformal time η and H = a′/a is the conformal expansion rate.

In this chapter I will analyze different exact and approximate solutions to these equa-
tions. In section 6.1 I describe the initial conditions of the perturbation as predicted by the
theory of inflation and in section section 6.2 I solve the linearized version of the equations
of motion. In section 6.4 I present the standard scheme to solve the non-linear equations
of motion perturbatively. And in section 6.3 I explore exact solutions of the equations of
motion for a set of highly symmetric initial conditions. As we will see in chapter 7 , these
symmetric collapse solutions are intimately related to the leading order of the perturbative
solutions. The derivations in this chapter follow closely to the review of Bernardeau et al.
(2002) and the book of Mukhanov (2005).

6.1 Initial conditions

Consider a field f(x) that is a realization of a random process (such a random process could,
e.g. , be the generation of density fluctuations δm(x) from quantum fluctuations of the
inflaton field). f is called a Gaussian random field if for any number of locations x1, ... , xN
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the joint probability density function (joint PDF) of the values [f(x1), ... , f(xN)] is of
the form (see, e.g. , appendix A of Hilbert et al. 2011)

p(f(x1), ... , f(xN)) =
1√

(2π)N |C|
exp

(
−1

2

N∑
i,j=1

[f(xi)− f̄(xi)] [f(xj)− f̄(xj)] (C−1)ij

)
.

(6.4)
Here f̄(x) = 〈f(x)〉 and the elements of the matrix C are given by the covariance (C)ij ≡
ξf (xi,xj) = 〈[f(xi) − f̄(xi)] [f(xj) − f̄(xj)]〉, where ξf is the 2-point correlation function
of f . Equation 6.4 is simply the definition of a multivariate Gaussian PDF. A Gaussian
random field f is said to be homogeneous if f̄(x) ≡ f̄ does not depend on x and if
ξf (xi,xj) only depends on xi − xj. If furthermore ξf (xi,xj) only depends on the absolute
value |xi − xj| then f is said to be isotropic.

At any time η the fields δm(η,x), φ(η,x) and ϑ(η,x) ≡ ∇υ(η,x) can be considered
random fields with a mean value of δ̄m = φ̄ = ϑ̄ = 0. The 2-point correlation functions of
these field are then given by

ξφ(∆x, η) ≡ 〈φ(η,x)φ(η,x + ∆x)〉 (6.5)

ξδ(∆x, η) ≡ 〈δ(η,x)δ(η,x + ∆x)〉 (6.6)

ξϑ(∆x, η) ≡ 〈ϑ(η,x)ϑ(η,x + ∆x)〉 , (6.7)

where the expectation values 〈·〉 in these definitions can either be though of as ensemble
averages over different realizations of the initial conditions or as averages over all locations
x in the universe. The power spectra corresponding to these correlation functions are
defined as

Pφ,δ,ϑ(k, η) =

∫
d2x e−ikx ξφ,δ,ϑ(x, η) . (6.8)

Let ηi be a time shortly after the end of inflation. Then the theory of inflation predicts
the following initial conditions for φ, δm and ϑ (see Bernardeau et al. 2002; Mukhanov
2005; these predictions are also quite insensitive to the particular model of inflation that
is assumed, see Mukhanov 2013):

• The fields δm(ηi,x), φ(ηi,x) and ϑ(ηi,x) are homogeneous, isotropic Gaussian random
fields. (For δm(ηi,x) this cannot exactly be true because of the condition δm ≥ −1.
But at time ηi the typical fluctuations in δm are � 1 and δm(ηi,x) is described by a
Gaussian random field to a high accuracy).

• The power spectrum of the scalar metric perturbation φ(ηi,x) has the form

Pφ(k, ηi) = As k
ns−4 , (6.9)

where As is an (unpredicted) amplitude and ns is close to but smaller that 1. The
variance of φ(k, ηi) when averaged over volumes of the size V ∼ (1/k)3 is approxi-
mately given by k3Pφ(k, ηi). Hence, equation 6.9 can be written in the form

(Var[φV ] ≈ ) k3Pφ(k, ηi) = As k
ns−1 . (6.10)
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Since ns is close to 1 this equation means that the fluctuation amplitude of φ(k, ηi)
when averaged over different volumes is scale independent (i.e. independent of the
size of these volumes).

The scalar potential φ and the matter density contrast δm are related through the Poisson
equation (6.1). In Fourier space this equation reads

4πa2ρ̄mδ̃m(k) = −k2φ̃(k) . (6.11)

Equation 6.9 then tells us that shortly after the end of inflation the power spectrum of δm
has had the shape

Pδ(k, ηi) = Aδ k
ns , (6.12)

where the amplitude Aδ is still unpredicted and has to be included as a free parameter into
analyses of measurement of the matter power spectrum.

In this chapter I am only considering a universe filled with pressure less matter. This
is however not an accurate description for the radiation dominated phase of the universe
which starts at the end of inflation ηi and lasts roughly until the time of recombination
ηrec. And even though this phase is short compared to the matter dominated era it has a
significant impact on the shape of the matter density power spectrum Pδ. Fluctuation in
the density of the radiation plasma evolve as sound waves during the radiation dominated
phase (cf. Mukhanov, 2005; Padmanabhan, 2010a). This leads to a rapidly oscillating
amplitude of the gravitational potential which suppresses the growth of matter density
fluctuations at small scales (even though at least the dark matter is not directly coupled
to the radiation). As a consequence the matter power spectrum at ηrec will have a shape
that is significantly different from equation 6.12 (see, e.g. , Eisenstein & Hu 1998 for an
approximate treatment of this effect or Lewis et al. 2000; Refregier et al. 2017 for an exact
numerical treatment).

6.2 Linear evolution

As a first step towards solving the equations of motion for the fields δm, φ and υ (resp.
ϑ) let us consider δm and υ to be small enough, such that we can neglect all terms in the
Euler and continuity equation that are of second order in the perturbations. This way the
continuity equation becomes

∂δm
∂η

+ ϑ = 0 (6.13)

and the Euler equation becomes

∂υ

∂η
+Hυ = −∇coϕ . (6.14)

Taking the divergence on both sides, the latter equation becomes an equation involving
only δ and ϑ,

∂ϑ

∂η
+Hϑ+ 4πGρ̄mδm = 0 . (6.15)
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Inserting the linearized continuity equation we get an equation of δm alone as

∂2δm
∂η2

+H∂δm
∂η
− 4πGρ̄mδm = 0 . (6.16)

This equation has the solution

δL,m(η,x) =
D(η)

D(ηi)
δm(ηi,x) (6.17)

where D solves equation 6.16 and is called the linear growth factor and where the subscript
L stands for linear.

The theory of inflation only predicts the statistical properties of the initial density con-
trast δm(ηi,x) and the other perturbations but not their exact configuration. To confront
these predictions with cosmological observations of the large scale structure of the universe
(cf. part II) we hence have to study statistical probes of the cosmic fields, such as their
power spectrum or 2-point correlation function. Since both the power spectrum Pδ and
the 2-point correlation function ξδ are second order statistics of δm, their evolution in the
linear approximation is given by

PL,δ(k, η) ≡
(
D(η)

D(ηi)

)2

Pδ(k, ηi) (6.18)

ξL,δ(∆x, η) ≡
(
D(η)

D(ηi)

)2

ξδ(∆x, ηi) . (6.19)

The linearized power spectrum of ϑ is then given in terms of PL as

PL,ϑ(k, η) =

(
∂ lnD(η)

∂η

)2

PL,δ(k, η) (6.20)

as can be seen from the linearized continuity equation 6.13. The factor ∂ lnD(η)/∂η is also
called the linear growth rate of structures.

Equation 6.16 can be solved numerically in a general ΛCDM universe. Since it is a
second order differential equation it requires 2 boundary conditions in order to sort out
a specific solution. The amplitude of D(η) is completely degenerate with the unknown
amplitude Aδ of the initial power spectrum. We can hence absorb our freedom of choice
in the normalization of D completely into the free parameter Aδ and set

D(η0) = 1 , (6.21)

where η0 is the value of the conformal time today. The second boundary condition can, e.g.
, be given by fixing the value of the time derivative D′ at some moment in time. An easier
way is however to note that equation 6.16 has a growing solution and a decaying solution
(Bernardeau et al., 2002). Hence, if we start the numerical integration of the equation at a
very early time then for any initial conditions the decaying mode will be negligible at the
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late (and physically relevant) times of the universe such that we effectively only need to
specify one initial condition (i.e. the amplitude). This procedure is, e.g. , adopted in the
code nicaea by Kilbinger et al. (2009) (see also https://www.cosmostat.org/software/

nicaea). In this work I take a different approach: At the time of recombination ηrec the
universe was matter dominated (as opposed to dark energy dominated) and the growing
mode solution in a matter dominated universe is known analytically (Bernardeau et al.,
2002). Hence I set D′(ηrec) to match this analytic solution. (Since ηrec is still at a very
early stage of structure formation, this approach is however almost identical to the one
used in nicaea.)

To complete our analysis of the linear evolution of the matter density power spectrum
we still need to incorporate its initial amplitude as a free parameter into the ΛCDM model.
This can directly be done using the parameter Aδ introduced in the previous section. It
is however customary to use a different approach. Let us first apply a smoothing to the
linear density contrast δL,m with a spherical aperture of radius R, i.e. we define

δL,R(η,x) ≡ 3

4πR3

∫
|y−x|<R

d3y δL,m(η,y) . (6.22)

The variance σ2
L,R(η) ≡ 〈δL,R(η,x)2〉 is given by

σ2
L,R(η) =

(
3

4πR3

)2 ∫
|x|<R

d3x

∫
|y|<R

d3y ξL,δ(y − x, η) (6.23)

or in a simpler way through the power spectrum by

σ2
L,R(η) =

∫
d3k

(2π)3
Ŵ 2
R(k) PL,δ(k, η) , (6.24)

where

ŴR(k) =
3

(R|k|)3
{R|k| cos(R|k|)− sin(R|k|)} (6.25)

is the Fourier transform of the aperture used for the smoothing. It is now common to
introduce the parameter

σ8 ≡ σ2
L,8Mpc(η0) , (6.26)

i.e. σ2
8 is the variance of the linear density contrast today within spheres of 8Mpc radius.

Specifying the value of σ8 completely fixes the initial power spectrum amplitude Aδ. Hence,
σ8 can be used to parametrize our ignorance of the amplitude of the initial density fluctua-
tions. This is frequently done in studies of the late time large scale structure of the universe
and I am also employing this parametrization in this work. (Note that the specific choice
of R = 8Mpc is simply for convenience, since σ8 turns out to be of O(1) in our universe.)

https://www.cosmostat.org/software/nicaea
https://www.cosmostat.org/software/nicaea


38 6. Theory of cosmic structure formation

6.3 Lagrangian coordinates and symmetric initial con-

ditions

As a first step beyond the linear approximation we want to study the evolution of pertur-
bations that exhibit a spherical, cylindrical or planar symmetry. As we will see in chapter
7 , these symmetric collapse solutions are closely related to the leading order of the per-
turbative solutions that will be introduced in the next section (see also Bernardeau, 1994;
Fosalba & Gaztanaga, 1998; Valageas, 2002a).

To study these symmetric solutions it is convenient to change spatial coordinates from
the co-moving coordinates x to the so-called Lagrangian coordinates q that are just labeling
the initial positions of all matter elements. The time derivative in at fixed co-moving and
fixed Lagrangian coordinates are related by

∂

∂η

∣∣∣∣
q=const.

=
∂

∂η

∣∣∣∣
x=const.

+ υ ·∇x . (6.27)

Note that there is potential for confusion here: The co-moving coordinates x are already
’Lagrangian’ in the sense that they follow the background Hubble flow (cf. section 4.3.1).
The coordinates q are now following the complete, disturbed flow υ. In the new coordinates
the continuity equation 6.2 becomes

0 = (1 + δm)ϑ+
∂δm
∂η

∣∣∣∣
q=const.

⇒ ϑ = − 1

1 + δm

∂δm
∂η

∣∣∣∣
q=const.

, (6.28)

where ϑ = ∇xυ is still the divergence of the velocity field in the old coordinates x.

6.3.1 Spherical collapse

We will start by studying spherically symmetric perturbations around q = x = 0. This
means that at fixed time η both δm and ϑ are functions of |q| resp. |x| only. Let us consider
the spherical average δR,Lag. of δm within a fixed Lagrangian radius R around q = 0, i.e.

δR,Lag.(η) ≡ 3

4πR3

∫
|q|<R

d3q δm(η,q) . (6.29)

Since the density field is perfectly isotropic we know that the evolution of δR,Lag.(η,q) only
depends on the total mass enclosed in the radius R and not in the exact profile of δm(η,q).
Hence, we can without loss of generality assume that

δm(η,q) ≡ δR,Lag.(η) for |q| < R . (6.30)
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From the continuity equation in Lagrangian coordinates 6.28 we can then conclude that
also ϑ(η,q) is spatially constant within the Lagrangian radius R. As a consequence we
must have

υ(η,q) =
ϑ(η,0)

3
x(q) for |q| < R , (6.31)

where the coordinates x have been expressed as functions of the coordinates q. For the
spatial derivatives of υ this means

∂vi

∂xj
=
ϑ

3
δji for |q(x)| < R . (6.32)

We can use this to simplify the Euler equation. Taking the divergence of 6.3 wrt. the old
coordinates x and using also the Poisson equation 6.1 one can show that the Euler equation
becomes

0 =
∂ϑ

∂η

∣∣∣∣
x=const.

+ (υ∇x)ϑ+
∑
i,j

∂vi

∂xj
∂vj

∂xi
+Hϑ+ 4πa2ρ̄mδm

=
∂ϑ

∂η

∣∣∣∣
q=const.

+
∑
i,j

∂vi

∂xj
∂vj

∂xi
+Hϑ+ 4πa2ρ̄mδm

=
∂ϑ

∂η

∣∣∣∣
q=const.

+
ϑ2

3
+Hϑ+ 4πa2ρ̄mδm for |q| < R . (6.33)

Inserting the continuity equation 6.28 for ϑ this becomes an equation for δm only:

∂2δm
∂η2

+H∂δm
∂η
− 4

3(1 + δm)

(
∂δm
∂η

)2

+ 4πa2ρ̄mδm(1 + δm) = 0 for |q| < R , (6.34)

where I have now dropped the indicator |q=const. and assume that all time derivatives are
taken in Lagrangian coordinates. Since we assumed δm ≡ δR,Lag. within |q| < R this
becomes a differential equation for δR,Lag.:

∂2δR,Lag.

∂η2
+H∂δR,Lag.

∂η
− 4

3(1 + δR,Lag.)

(
∂δR,Lag.

∂η

)2

+4πa2ρ̄mδR,Lag.(1+δR,Lag.) = 0 . (6.35)

Especially, as explained above, this equation is independent of the exact profile of δm and
does require the assumption δm ≡ δR,Lag. within |q| < R anymore. In the non-relativistic
limit equation 6.35 hence gives an exact description of spherical collapse (at least in the
absence of shell crossing, cf. Bernardeau et al., 2002). Alternative derivations of it can,
e.g. , be found in Fosalba & Gaztanaga (1998); Mukhanov (2005). Given the parameters
describing a ΛCDM background universe it is straight forward to integrate this equation
numerically.
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6.3.2 Cylindrical and planar collapse

The above results can be generalized to the collapse of cylindrically symmetric perturba-
tions (Bernardeau & Valageas, 2000; Uhlemann et al., 2018b). If the density field is cylin-
drically symmetric around the x3 axis then within a fixed Lagrangian radius R around this
axis we can assume

δm(η,q) ≡ δ2D
R,Lag.(η) for |(q1)2 + (q2)2| < R , (6.36)

where δ2D
R,Lag. is now the average of δm over an infinitely long cylinder. Within the cylinder

radius we then have

v1 =
ϑ

2
x1(q)

v2 =
ϑ

2
x2(q)

v3 = 0 . (6.37)

Along lines similar to the spherical case one then shows that

δ2D ′′

R,Lag. +Hδ2D ′

R,Lag. −
3

2

(
δ2D ′
R,Lag.

)2(
1 + δ2D

R,Lag.

) + 4πa2ρ̄mδ
2D
R,Lag.

(
1 + δ2D

R,Lag.

)
= 0 , (6.38)

where ′ denotes derivative wrt. conformal time.
Similarly, if the density field and the velocity field have a planar symmetry (e.g. perpen-

dicular to the x2 − x3-axis) then the density contrast in a fixed Lagrangian range around
the plane of symmetry evolves as

δ1D ′′

R,Lag. +Hδ1D ′

R,Lag. − 2

(
δ1D ′
R,Lag.

)2(
1 + δ1D

R,Lag.

) + 4πa2ρ̄mδ
1D
R,Lag.

(
1 + δ1D

R,Lag.

)
= 0 . (6.39)

(See, e.g. , Mukhanov 2005 for a derivation of this case.) More generally we can conclude
that

δND ′′

R,Lag. +HδND ′

R,Lag. −
N + 1

N

(
δND ′
R,Lag.

)2(
1 + δND

R,Lag.

) + 4πa2ρ̄mδ
ND
R,Lag.

(
1 + δND

R,Lag.

)
= 0 , (6.40)

where N = 3 for spherical collapse, N = 2 for cylindrical collapse and N = 1 for planar
collapse.

6.4 Non-linear perturbation theory

I will now derive the standard perturbative scheme to solve the equations 6.1 to 6.3 in
increasingly higher orders of the linear density contrast δL,m, following closely the presen-
tation in Bernardeau et al. (2002). To do so, we return to the co-moving coordinates x
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(the ones that follow only the Hubble flow but not the individual dust elements) and in-
troduce the corresponding Fourier space coordinates as k. As explained in section section
5.2 , we only consider scalar perturbations in this work. This means that υ is completely
determined through its divergence ϑ = ∇υ. In Fourier space this reads

ϑ̃ = −ikṽ

⇒ ṽ = i
k

k2
ϑ̃ . (6.41)

where ṽ and ϑ̃ are the Fourier space versions of the perturbations and k = |k|. Using
Equation 6.41 we can write the Fourier space version of the continuity equation as

δ̃′m(k) + ϑ̃(k) = −
∫

d3k1 δ̃m(k− k1)ϑ̃(k1)

[
1 +

(k− k1)k1

k2
1

]
= −

∫
d3k1d3k2 δ

D(k− k12)δ̃m(k2)ϑ̃(k1)

[
1 +

k2k1

k2
1

]
. (6.42)

where δD is the Dirac delta distribution and k12 = k1 + k2. (Also, I will not explicitly
note the dependence on conformal time η to keep the notation concise.) From the Poisson
equation we know that the metric perturbation φ and the matter density contrast δm are
related in Fourier space through

φ̃ = −4πa2ρ̄m
δ̃m
k2

⇒ ∇̃φ = 4πa2ρ̄m
ik

k2
δ̃m . (6.43)

Using both 6.41 and 6.43 we can write the Euler equation 6.3 in Fourier space as

i
k

k2
ϑ̃′(k) + 4πa2ρ̄m

ik

k2
δ̃m(k) + i

k

k2
Hϑ̃(k) = −i

∫
d3k1 ϑ̃(k− k1)ϑ̃(η,k1)

[(k− k1)k1]

|k− k1|2k2
1

k1 .

(6.44)
Multiplying this equation by −ik we get

ϑ̃′(k) + 4πa2ρ̄mδ̃m(k) +Hϑ̃(k) = −
∫

d3k1 ϑ̃(k− k1)ϑ̃(η,k1)
[(k− k1)k1]

|k− k1|2k2
1

kk1

= −
∫

d3k1d3k2 δ
D(k− k12)ϑ̃(k2)ϑ̃(η,k1)

[k2k1]

k2
2k

2
1

k12k1

= −1

2

∫
d3k1d3k2 δ

D(k− k12)ϑ̃(k2)ϑ̃(η,k1)
[k2k1]

k2
2k

2
1

k2
12 ,

(6.45)
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where in the last line we have used the freedom to relabel the integration variables k1 ↔ k2.
Introducing the kernel functions

α(k1,k2) = 1 +
k1k2

k2
1

β(k1,k2) =
k2

12

2

[k2k1]

k2
2k

2
1

(6.46)

we can write the continuity and Euler equation in the more concise form (cf. equations 37
& 38 of Bernardeau et al., 2002)

δ̃′m(k) + ϑ̃(k) = −
∫

d3k1d3k2 δ
D(k− k12)δ̃m(k2)ϑ̃(k1)α(k1,k2)

ϑ̃′(k) + 4πa2ρ̄mδ̃m(k) +Hϑ̃(k) = −
∫

d3k1d3k2 δ
D(k− k12)ϑ̃(k2)ϑ̃(η,k1)β(k1,k2) .

(6.47)

To solve these equations we assume that δ̃m and ϑ̃ can be written in the form

δ̃m(η,k) =
∞∑
n=1

δ(n)
m (η,k)

ϑ̃(η,k) =
∞∑
n=1

ϑ(n)(η,k) , (6.48)

where the terms δ
(n)
m , ϑ(n) are of the order O

(
δ̃nL,m

)
, i.e. of nth order in the linear density

contrast. With this ansatz 6.47 can be solved order-by-order by inserting the series’ 6.48
and equating only those terms on the left and right hand-side of 6.47 that are of the same
order in δ̃L,m. At first order this reads

δ̃(1) ′(k) + ϑ̃(1)(k) = 0

ϑ̃(1) ′(k) + 4πa2ρ̄mδ̃
(1)(k) +Hϑ̃(1)(k) = 0 , (6.49)

i.e. the first order gives exactly the linearized equations that were discussed in section 6.2
and we get

δ̃(1) = δ̃L,m , ϑ̃(1) = ϑ̃L . (6.50)

In part IV we will also need the second order perturbations δ̃(2) and ϑ̃(2) and I discuss
those in detail in section 16.B (which is part of the paper Friedrich et al. 2018). For a
detailed discussion of the complete perturbative series see Bernardeau et al. (2002) and
references therein (especially Fry, 1984, 1985).
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6.5 N-point functions

Consider a set of random variables f1 , ... , fN that are possibly correlated. The connected
part of their joint moment 〈f1f2...fN〉 is defined as (cf. sections 3.2 & 3.3 of Bernardeau
et al., 2002)

〈f1f2...fN〉c = 〈f1f2...fN〉 −
∑

partitions P of {1 , ... , N}
into subsets s

∏
s∈P

〈fs1 ... fs#s〉 . (6.51)

For N = 1, 2, 3 this definition, e.g. , gives

〈f1〉c = 〈f1〉
〈f1f2〉c = 〈f1f2〉 − 〈f1〉〈f2〉
〈f1f2f3〉c = 〈f1f2f3〉 − 〈f1f2〉〈f3〉 − 〈f2f3〉〈f1〉 − 〈f3f1〉〈f2〉 − 〈f1〉〈f2〉〈f3〉 . (6.52)

This definition is chosen exactly such that 〈f1f2...fN〉c = 0 for N ≥ 3 whenever f1 , ... , fN
have a joint Gaussian distribution.

Now if x1 , ... , xN are a set of locations in the universe, then the N-point correlation
function ξ

(N)
δ (x1 , ... , xN) of the matter density contrast field δm is defined as

ξ
(N)
δ (η,x1 , ... , xN) = 〈δm(η,x1)δm(η,x2)...δm(η,xN)〉c . (6.53)

For N = 2 this is exactly the 2-point correlation function. We can also consider connected
moments in Fourier space for Fourier modes k1 , ... , kN . Because of the statistical
homogeneity of the density field only modes with k1 + ... + kN = 0 can be correlated
(see section 3.2 of Bernardeau et al., 2002) which results in the factor δD(k1 + ... + kN)
in the expression

〈δ̃m(η,k1)δ̃m(η,k2)...δ̃m(η,kN)〉c = (2π)3δD(k1 + ... + kN)B
(N)
δ (η,k1 , ... , kN) . (6.54)

The functions B
(N)
δ (η,k1 , ... , kN) are the N-point spectra of δm and we have B

(2)
δ = Pδ.

Since the initial density contrast δm(ηi,x) is a Gaussian random field the linear density
contrast δL,m(η,x) is also a Gaussian random field. This means that all N-point correlations
of δL,m with N ≥ 3 vanish. Together with the perturbative series introduced in the previous
section this has the useful consequence, that all N -point correlation functions of the total,
non-linear density contrast can be expressed as a series

B
(N)
δ (η,k1 , ... , kN) =

∞∑
n=nmin

B
(N)
δ

(n)
(η,k1 , ... , kN) , (6.55)

where B
(N)
δ

(n)
is of the order (PL,δ)

n. Using the perturbative series of the previous section
and the fact that δL,m is Gaussian one can also show that the lowest non-zero order nmin

in equation 6.55 is given by
nmin = N − 1 . (6.56)
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I demonstrate this in detail for N = 3 in section 16.B (which is part of the paper Friedrich
et al. 2018) and a general derivation can, e.g. , be found in Fry (1984, 1985); Bernardeau
et al. (2002). The order nmin is called the tree level of perturbation theory, the next to
leading order is called the one-loop level, the second to leading order is called the 2-loop
level etc. .



Chapter 7

The cosmic density PDF

The N-point correlation functions ξNδ vanish for the initial density contrast field δm(ηi,x)
because it is a Gaussian random field (cf. the discussion of connected moments in section
6.5). As a consequence, all cosmological information is initially encoded in the 2-point
statistics of δm(ηi,x) (i.e. in its 2-point correlation function or equivalently in its power
spectrum). As the density field evolves the ξNδ become nonzero and the power spectrum
becomes an incomplete description of the cosmic density fluctuations. In other words,
the non-linear evolution of the density field migrates cosmological information from the
2-point correlation function to higher order statistics of the density field. When we are
using the late-time large scale structure of the Universe to test cosmological models it is
hence desirable to investigate probes that are sensitive to higher order statistical properties
of the density field.

One such probe that is important for this work is the probability density function
(PDF) of density fluctuations within a certain radius R. I.e. defining the smoothed density
contrast field

δR(η,x) ≡ 3

4πR3

∫
|y−x|<R

d3y δm(η,y) (7.1)

one goal of my work is to compare observations and theoretical predictions of the PDF
p(δR). As we will see in section 7.1 , this function is sensitive to all higher order correlation
functions of the density field. In section 7.2 I will review a way of theoretically predicting
p(δR) that was put forward by Valageas (2002a). This modeling approach can not directly
be applied to data since real observations are only sensitive projections of the density field
along our backward light-cone (cf. chapter 9). But it is possible to extend the 3D frame
work to projected versions of then density field (see, e.g. , Bernardeau & Valageas 2000
as well as chapter 16 of this work). A particular benefit of studying the density PDF is
that it can be modeled accurately even in the absence of an exact non-linear model for the
higher order correlation function. I will review how to do so in section 7.3.
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7.1 From the cumulant generating function to the

PDF

Because of the homogeneity of the universe the PDF of δR(η,x) does not depend on x and
I will hence drop the dependence on the spatial coordinates in the following. The moment
generating function of δR is defined as

ψR(y, η) =
∞∑
n=0

〈δR(η)n〉
n!

yn , (7.2)

where the expectation value 〈·〉 can either be understood as taking the ensemble average
over different realizations of the initial conditions or as averaging over the spatial coordi-
nates x. Using the connected moments instead of the plain moments (cf. section 6.5) gives
the definition of the cumulant generating function (CGF) as

ϕR(y, η) =
∞∑
n=0

〈δR(η)n〉c
n!

yn , (7.3)

It can be shown that the two functions are related through (Bernardeau et al., 2002, 2014)

eϕR(y,η) = ψR(y, η) . (7.4)

Using this we can express the CGF through the expectation value

eϕR(y,η) =

∫
dδR p(δR|η) eyδR , (7.5)

where p(δR|η) is the PDF of δR at time η. Equation 7.5 is simply the Laplace transform
of the PDF p(δR|η) and as long as the power series defining the CGF converges we can
invert the relation between CGF and PDF via the inverse Laplace transform (Bernardeau
& Valageas, 2000; Valageas, 2002a; Bernardeau et al., 2014). This is given by

p(δR|η) =

∫ ∞
−∞

dy

2π
e−iyδR+ϕR(iy) . (7.6)

A brief description of how to evaluate this integral numerically is given in appendix B of
Bernardeau et al. (2014).

The connected moments (or cumulants) 〈δR(η)n〉c are related to the N-point functions
of the density contrast field via

〈δR(η,0)n〉c =

(
3

4πR3

)n ∫
|x1|<R

d3x1 ...

∫
|xn|<R

d3xn 〈δm(η,x1)...δm(η,xn)〉c

=

(
3

4πR3

)n ∫
|x1|<R

d3x1 ...

∫
|xn|<R

d3xn ξ
(n)
δ (η,x1 , ... , xn) . (7.7)

Equation 7.6 then tells us that p(δR|η) depends on the N-point correlation functions of
the density field at all orders.
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7.2 Path integral approach for the CGF

Following Valageas (2002a) I will now review a way to predict the cumulant generating
function ϕR(y) without having to compute all cumulants 〈δR(η)n〉c individually.

Let δL,m be the linearly extrapolated initial conditions of the density field, i.e. δL,m(η,x) =
D(η)δm(ηi,x). This is a Gaussian random field. Since δR is completely determined by the
liner field δL,m we can express express it as a functional of the form δR[δL,m]. The ex-
pectation value in 7.5 can then be expressed as a Gaussian path integral over all possible
configurations of δL,m, i.e.

eφR(y,η) = |2π∆L|−
1
2

∫
DδL,m exp

{
yδR[δL,m]− 1

2
δL,m∆−1

L δL,m

}
. (7.8)

Here we introduced the notation

δL,m∆−1
L δL,m ≡

∫
d3x1 d3x2 δL,m(η,x1)δL,m(η,x2)∆−1

L (x1,x2|η) (7.9)

and the (infinite dimensional) matrix ∆L is given in terms of the linear power spectrum as

∆L(x1,x2|η) = ξδ(η,x1,x2) . (7.10)

Let us denote the exponent in 7.8 by −Sy. Then this path integral can be approximated
using Laplace’s method as

eφR(y,η) ≈ |2π∆L|−
1
2 |M/(2π)|− 1

2 e−Sy [δ∗L] (7.11)

where δ∗L,m is the global minimum of the functional Sy[·] and the matrix M is given by

M(x1,x2) =
δ2Sy

δ[δL(x1)]δ[δL(x2)]

∣∣∣∣
δ∗L,m

(7.12)

= −y δ2δR
δ[δL(x1)]δ[δL(x2)]

∣∣∣∣
δ∗L

+ ∆−1
L (x1,x2) . (7.13)

Define the matrix Ay through

δD(x1 − x2) + Ay(x1,x2) = ∆
1/2
L M∆

1/2
L (x1,x2)

≡
∫

d3y1d3y2 ∆
1/2
L (x1,y1) M(y1,y2) ∆

1/2
L (y2,x2) . (7.14)

Then the above approximation for the cumulant generating function becomes

φR(y, η) ≈ −Sy[δ∗L,m]− 1

2
ln |∆LM |

= −Sy[δ∗L]− 1

2
Tr ln(δD + Ay) . (7.15)
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It has been shown by Valageas (2002a,b) that the first term in the above approximation
contains the tree level perturbative results for the connected moments of δR (i.e. when
using only the tree level contribution the N-point functions when evaluating equation 7.7;
cf. section 6.5) while expanding the second term in powers of y is equivalent to the 1-loop
results.

Valageas (2002a) has shown that the minimum δ∗L,m of the action Sy is spherically
symmetric. The functional δR[δ∗L,m] can then be computed exactly by solving the spherical
collapse equation (cf. section 6.3). This means that it is possible to compute the tree level
contribution φR(y, η) ≈ −Sy[δ∗L] numerically.

7.3 Non-linear rescaling of the CGF

The accuracy of the tree level approximation φR(y, η) ≈ −Sy[δ∗L] can be significantly
boosted with a rescaling technique that has, e.g. , been employed by Bernardeau & Valageas
(2000); Valageas (2002a); Bernardeau et al. (2014, 2015). For this rescaling one defines the
coefficients

Sn ≡
〈δR(η)n〉c

{〈δR(η)2〉c}n−1 (7.16)

and re-expresses the cumulant generating function as

ϕR(y, η) =
∞∑
n=0

Sn
n!

{
〈δR(η)2〉c

}n−1
yn

=
1

〈δR(η)2〉c

∞∑
n=0

Sn
n!

{
y 〈δR(η)2〉c

}n
. (7.17)

The coefficients Sn have a very weak dependence on time η and smoothing radius R that is
well described by the tree level of perturbation theory for values of R ≥ 10Mpc (see figure
27 of Bernardeau et al. 2002). This means that even for the highly evolved density field
we may use the leading order of perturbation theory to approximate the Sn:

〈δR(η)n〉exact
c

{〈δR(η)2〉exact
c }n−1 = Sexact

n ≈ Stree
n =

〈δR(η)n〉tree
c

{〈δR(η)2〉tree
c }n−1 . (7.18)

This can be used to improve the tree level approximation ϕtree
R of the CGF through the

rescaling

ϕexact
R (y, η) ≈ 〈δR(η)2〉tree

c

〈δR(η)2〉exact
c

ϕtree
R

(
y
〈δR(η)2〉exact

c

〈δR(η)2〉tree
c

, η

)
. (7.19)

In Bernardeau & Valageas (2000); Valageas (2002a); Bernardeau et al. (2014, 2015) the
variance 〈δR(η)2〉exact

c of the evolved density contrast is left a free parameter that is to be fit
to observations. In this work, I instead use a fitting formula for the full non-linear power
spectrum (obtained from N-body simulations by Smith et al., 2003; Takahashi et al., 2012)
to derive predictions for 〈δR(η)2〉exact

c .
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As me and my collaborators demonstrated in Friedrich et al. (2018), this approximation
becomes quite accurate if 2D projections of the density field are considered instead of the
3D density field studied in this chapter (see chapter 16 of this work).
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Part II

Background: Observations of the
large scale Structure





Chapter 8

Distances and redshift estimation

8.1 Distance measures

In a Friedmann universe as described by the metric 5.7 there is no unambiguous concept of
distance between two points in space time. Instead several distance measures can be defined
(Hogg, 1999; Bartelmann & Schneider, 2001; Mukhanov, 2005). By determining some of
those distance measures as a function of redshift (see below) for a set of astronomical
objects one can study the geometry of the universe as well as its expansion history. In
the following we summarize the most important distance measures. The different distance
measure are also compared in figure 8.1 for a fiducial ΛCDM universe.

• Redshift:

Consider a photon from a distant light source (e.g. a distant galaxy) that reaches a
telescope on earth with a wavelength λobs in the rest frame of the telescope. The
redshift z of this photon describes a relative shift between that wavelength and the
wavelength λemit that the photon had in the rest frame of the light source when it
was emitted, i.e.

z :=
λobs − λemit

λemit

. (8.1)

This shift is found to be positive for most galaxies and it increases with the traveling
time of the photons. This was the first observational hint for the expansion of the
universe (Hubble, 1929).

In a perfectly homogeneous Friedmann universe the redshift is solely caused by the
expansion of the universe, i.e. the expanding space stretches the wavelength of a
photon while it is traveling towards us. In this case, the redshift can be expressed in
terms of the scale factor of the Friedmann metric as

1 + z =
a(tobs)

a(temit)
, (8.2)

where tobs is the time of observation and temit is the time of emission of the light.
In the real universe, an additional contribution to the redshift of galaxies and other
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Figure 8.1: Comparing different distance measures as a function of redshift in a universe
with Ωm,0 = 0.286, ΩΛ,0 ≈ 0.714 and a negligible (but realistic) value of Ωr,0. All distances
are measured in units of 1/H0 ≈ 4300 Mpc. Vertical dashed lines indicate the cosmological
time corresponding to different points along the redshift axis. Both luminosity distance
(DL, orange line) and co-moving distance (Dco, blue line) increase monotonically with
redshift. The angular diameter distance however (Dang, red line) decreases with increasing
redshift for z & 2.0. This means that above this redshift the angular sizes of objects on
the sky would increase if they would be moved to higher redshifts. It should be noted that
only Dang and DL are actually observable.
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distant light sources comes from the peculiar motions of those sources wrt. the rest
frame of the earth. If the velocity v of the source relative to the Hubble flow is � 1
and if we assume the observer to rest in the Hubble flow, then the total redshift is
given by

1 + z ≈ a(tobs)

a(temit)
+ v‖ , (8.3)

where v‖ is the component of v parallel to the line of sight of the observer.

• Co-moving distance:

If at time tobs we observe an event at time temit, then the co-moving distance to this
event is simply given by the conformal time between event and observation, i.e.

Dco(temit, tobs) = ηobs − ηemit =

∫ tobs

temit

dt

a(t)
. (8.4)

In contrast to the redshift of an object, the co-moving distance is not a direct ob-
servable but depends on our assumptions about cosmological parameters. This can
be seen most directly by expressing Dco as a function of redshift. Differentiating
equation 8.2 wrt. t one can see that

dz

dt
(t) = −a(tobs)

a(t)2
ȧ(t) = −H(t)

a(t)
, (8.5)

where we have assumed that the peculiar velocity of the observed object is negligible.
Using the fact that z(tobs) = 0 this gives

Dco(zemit) =

∫ zemit

0

dz

H(z)
. (8.6)

Assuming that the universe is adequately described by the ΛCDM model (cf. section
5.1.6), both a(t) and H(t) depend on the exact values of the parameters Ωm, Ωr, ΩΛ

and H0 that are used to integrate equations 5.34.

• Angular diameter distance:

Suppose the object that emits light towards us at time temit has a surface cross section
perpendicular to the line of sight of A and that the solid angle of this object on the
sky is δω. Then in a euclidean spacetime the distance to that object would be given
by

D ≈
√

A

δω
. (8.7)

In analogy to this we define the ratio
√
A/δω of an object in a Friedmann universe

to be the angular diameter distance. It is given in terms of the scale factor a by (cf.
Hogg, 1999)

Dang(temit, tobs) =
a(temit)

a(tobs)
· Φk(Dco) , (8.8)
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where the function Φk has been defined in equations 5.8 and depends on the 3D-
curvature of the universe (i.e. it describes the impact of the geometry of the universe
on the divergence or convergence of light beams).

Using equations 8.2 and 8.6 one can express Dang as a function of redshift. If the
physical size of an object as well as its redshift are known then one can measure Dang

at that redshift. Measuring this for several values of z then yields a reconstruction
of the function Dang(z). Just as we discussed for Dco, the redshift dependence of
Dang(z) is determined by the exact values of the parameters of the ΛCDM model.
Hence, a measurement of Dang(z) can be used to determine these parameters or more
generally, to test whether any parameters of that model give a good representation
of the observed universe. Such tests of the ΛCDM model based on measurements of
the angular diameter distance have indeed been carried out, see, e.g. , Wang et al.
(2017). This analysis is based on the Baryonic Acoustic Oscillation feature (BAO
feature) in the 2-point correlation function of the galaxy distribution, whose physical
size is known. (Any such feature or object with a known physical size is called a
standard ruler. A standard ruler alternative to the BAO feature is, e.g. , given by
the linear point of the correlation function, cf. Anselmi et al..)

• Luminosity distance:

If we receive a total flux of photon energy F from the object emitting at time temit

then in a Euclidean space this flux will we related to the luminosity L of the object
by

F =
L

4πD2
, (8.9)

where D is the distance to the object. In analogy to that the luminosity distance in
a Friedmann universe is defined as

DL =

(
L

4πF

) 1
2

. (8.10)

For the metric 5.6 one can show that DL is given by (cf. Hogg, 1999)

DL(temit, tobs) = Dang(temit, tobs) ·
(
a(tobs)

a(temit)

)2

. (8.11)

If we determine the redshift of objects with a known luminosity (so called standard
candles) then this can be used to measure DL as a function of z. As discussed for the
angular diameter distance, a measurement of DL(z) can be used to test the ΛCDM
model and to determine its parameters. This has been done for supernovae of type
Ia, e.g. , by Riess et al. (1998). This study revealed for the first time the existence
of a significant dark energy component in the total energy density of the universe.
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8.2 Redshift estimation

The redshift of a luminous object can, e.g. , be determined by identifying emission or
absorption lines in the spectral energy distribution (SED) of the light emitted by that object
and comparing the location of these lines the location expected in the rest frame of the
object (see, e.g. , Bolton et al., 2012, where this is described in detail for the Sloan Digital
Sky Survey). Such a spectroscopic redshift determination is very time consuming which
limits the amount of objects for which such redshift measurements have been obtained.

A less expensive method to determine the redshift values of, e.g. , a sample of galaxies
is the so-called photometric redshift estimation (photoz estimation). To obtain photoz
values for an individual galaxy one measures the flux of the light from that galaxy in
different spectral filters. The flux values in the different filters can that, e.g., be compared
to the convolution of these filters with model SEDs for fit for the redshift of these SEDs
(Bender et al., 2001; Greisel et al., 2013). Alternatively one can determine the relation
between redshift and photometric fluxes empirically using a small training sample for which
spectroscopic redshift measurements are available (e.g. using machine learning techniques,
see Collister & Lahav, 2004; Rau et al., 2015) or one can use a combined approach based
on both model SED fitting and machine learning (Hoyle et al., 2015).

Photometric redshift estimation can be considered a low-resolution version of spec-
troscopic redshift estimation. But while photoz estimates for individual galaxies can be
unreliable it is nevertheless possible to determine the overall redshift distribution of an
ensemble of object accurately enough to allow studies of the line-of-sight density field (Rau
et al., 2015; Hoyle et al., 2018, see also chapter 9).
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Chapter 9

2D power spectra and correlation
functions

9.1 2-point statistics on the sky

Consider the 3D density contrast field δ(η,x) that was defined in section 4.3, where η and x
are the coordinates of the conformal Friedmann metric. In section 6.1 we already defined
the 2-point correlation function and the power spectrum of this field as

ξδ(x, η) ≡ 〈δ(η,x0)δ(η,x0 + x)〉 (9.1)

and

Pδ(k, η) =

∫
d2x e−ikx ξδ(x, η) . (9.2)

Here, the expectation value 〈·〉 can be understood either as an ensemble average over
different realizations of the initial conditions or as an average over all locations x0 in the
universe. Because of the isotropy of the initial conditions we have ξδ(x, η) = ξδ(x, η) and
Pδ(k, η) = Pδ(k, η), i.e. both functions only depend on the absolute value of their spatial
arguments.

The functions ξδ and Pδ encode cosmological information. Given an observation of the
density contrast δ(η,x) we could measure these 2-point statistics - i.e. by evaluating 9.1 as
a spatial average - and use those measurements to test the validity of cosmological models.
There are however several reasons, why neither ξδ nor Pδ - at least in the above form - are
observable:

1. We only observe our past light cone, i.e. we only have access to those values of δ(η,x)
for which η and x are located on past light-like geodesics converging at our position.

2. We usually don’t have direct information about the total matter density field. In-
stead, we, e.g. , observe the galaxy density field or the cosmic shear field (cf. chapter
10) that are only tracing the total matter density field in a statistical way. Inferring
δ from such observations is subject to noise (e.g. shot-noise of the galaxy distribution
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or shape-noise of the cosmic shear field) and potentially biases (e.g. galaxy clustering
bias or intrinsic alignments in the shear field).

3. Even along the light cone, photometric surveys such as the Dark Energy Survey
(cf. chapter 11) have no exact information about the location of observed objects.
Instead, only a distribution of tracers along the redshift coordinate can be inferred
(cf. section 8.2).

We will address point 2 above briefly in sections 9.2 and 10.4.5 and in more detail in the
papers Friedrich, Gruen et al., 2018; Gruen, Friedrich et al., 2018 that are presented in
chapters 16 and 17.

Points 1 and 3 state that our actual observables are 2D projections of the density
contrast onto the celestial sphere. Such a line-of-sight projection can, e.g. , be expressed
as

δm,2D(n̂) =

∫ ∞
0

dw q(w) δm(η0 − w,wn̂) . (9.3)

Here, w is the co-moving distance along the light cone (cf. section 8.1), η0 is the value of
the conformal time today and q(w) is a particular projection kernel that describes how an
ensemble of tracer objects is distributed along the line-of-sight. δm,2D(n̂) is then a scalar
function on the sky and n̂ is a unit vector specifying a particular position on the sky.

The 3D correlation function ξδ is no direct observable but we can attempt to measure
the projected correlation function

ξ2D(^n̂1n̂2) = 〈δm,2D(n̂1)δm,2D(n̂2)〉

=

∫ ∞
0

dw1

∫ ∞
0

dw2 q(w1) q(w2) 〈δm(η0 − w1, w1n̂1)δm(η0 − w2, w2n̂2)〉 .
(9.4)

Because of the isotropy of the universe this only depends on the angle between the unit
vectors n̂1 and n̂2. The expectation value in the 2nd line of 9.4 is the correlation function
of 2 points that are located in different shells of co-moving distance. In the late time,
non-linear evolution of the density field this function is hard to predict theoretically, so
we would like to reduce equation 9.4 to an expression that only involves the single-time
correlation function ξδ(η, ·) . This can be done with the so-called Limber approximation
(Limber, 1953). A detailed derivation of this can be found in Bartelmann & Schneider
(2001). I want to repeat their arguments here because I would like the reader to be aware
of the exact meaning of this approximation.

The Limber approximation assumes that the inter-shell-correlation 〈δm(η0−w1, w1n̂1)δm(η0−
w2, w2n̂2)〉 approaches 0 much faster for ∆w = w2 − w1 → ±∞ than the average varia-
tions in the functions q(w1) and q(w2). Writing w = w1 and ∆w = w2 − w1 Limber’s
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approximation reads

ξ2D(^n̂1n̂2) ≈
∫ ∞

0

dw q(w)2

∫ ∞
−∞

d∆w 〈δm(η0 − w,wn̂1)δm(η0 − w, (w + ∆w)n̂2)〉

=

∫ ∞
0

dw q(w)2

∫ ∞
−∞

d∆w ξδ(η0 − w, |wn̂1 − (w + ∆w)n̂2|) . (9.5)

To simplify this further we need two additional assumptions. First, we assume that the
integrand ξδ(η0−w, |wn̂1−(w+∆w)n̂2|) is negligible for any values other than ∆w � Φk(w)
where Φk(w) is the function defined in equation 5.8 that depends on the spatial curvature
of the Friedmann universe. This assumption can still be considered a part of the Limber
approximation, since typical photometric galaxy survey the width of the projection kernel
q(w) is of the order of w itself (and in a flat universe w = Φk(w).). Secondly, we assume
that |^n̂1n̂2| � 1 i.e. we employ a small angle approximation. This is NOT part of the
Limber approximation, though the two are often used at the same time.

With the above assumptions we can approximate

|wn̂1 − (w + ∆w)n̂2|2 ≈ Φk(w)2(^n̂1n̂2)2 + ∆w2 (9.6)

and the 2D correlation function becomes

ξ2D(^n̂1n̂2) ≈
∫ ∞

0

dw q(w)2

∫ ∞
−∞

d∆w ξδ(η0 − w,
√

Φk(w)2(^n̂1n̂2)2 + ∆w2) . (9.7)

Since this assumes small angles we can approximate the sky by its tangential plane at
some region of interest. The angle ^n̂1n̂2 can then be represented by some vector θ in this
plane. This gives

ξ2D(θ) ≈
∫ ∞

0

dw q(w)2

∫ ∞
−∞

d∆w ξδ(η0 − w,
√

Φk(w)2θ2 + ∆w2) . (9.8)

Even if a prediction for the 3D correlation function ξδ is available, this expression is still
very tidious to evaluate numerically. We will however see that at the level of the power
spectrum - which contains the same cosmological information as the 2-point function - the
Limber equation is much more convenient.

Using the fact that ξδ and Pδ are related by a Fourier transform, we can write

ξ2D(θ) ≈
∫ ∞

0

dw q(w)2

∫ ∞
−∞

d∆w ξδ(η0 − w,
√

Φk(w)2θ2 + ∆w2)

=

∫ ∞
0

dw q(w)2

∫ ∞
−∞

d∆w

∫
d2k⊥ dk‖

(2π)3
∗

∗ Pδ

(
η0 − w,

√
k2
⊥ + k2

‖

)
exp(ik⊥θΦk(w) + ik‖∆w) . (9.9)



62 9. 2D power spectra and correlation functions

In this expression the integration over d∆w can be carried out to give a factor of 2πδD(k‖),
where δD is again the Dirac distribution. We hence get to

ξ2D(θ) ≈
∫ ∞

0

dw q(w)2

∫
d2k⊥
(2π)2

Pδ (η0 − w, k⊥) exp(ik⊥θΦk(w))

=

∫ ∞
0

dw
q(w)2

Φk(w)2

∫
d2`

(2π)2
Pδ

(
η0 − w,

`

Φk(w)

)
exp(i`θ)

=

∫
d2`

(2π)2
exp(i`θ)

∫ ∞
0

dw
q(w)2

Φk(w)2
Pδ

(
η0 − w,

`

Φk(w)

)
. (9.10)

Defining P2D as the Fourier transform of ξ2D we can see from the last line of 9.10 that

P2D(`) =

∫ ∞
0

dw
q(w)2

Φk(w)2
Pδ

(
η0 − w,

`

Φk(w)

)
. (9.11)

This is the power spectrum of the projected field δ2D using both the Limber and the flat sky
approximation. On the scales that are probed by galaxy surveys such as the Dark Energy
Survey (DES Collaboration et al., 2017) of the Kilo Degree Survey (van Uitert et al., 2018)
it can be shown that this approximation quite accurate (Lemos et al., 2017; Kitching et al.,
2017), though this statement will likely change with upcoming, more precise data. Kitching
et al. (2017) showed that the flat sky approximation can be partly corrected by setting

P spherical
2D (`) =

(`+ 2)(`+ 1)`(`− 1)(
`+ 1

2

)4 P flat
2D

(
`+

1

2

)
. (9.12)

9.2 Galaxy clustering 2-point function and galaxy bias

One situation in which a 2D projection of the density field is observed is the analysis of
the galaxy density field on the sky. In photometric surveys (i.e. surveys that don’t yield
exact redshift information about observed objects, cf. section 8.2) one can, e.g. , observe a
sample of galaxies which a certain distribution of redshift values ng(z). For low values of z
the distribution ng will typically be an increasing function of redshift because the volume
of any shell dz increases roughly quadratically with the distance from the observer. Above
some turnaround redshift, ng(z) will then start to decrease with increasing z because the
increasingly faint light of distant galaxies falls below a limited detector sensitivity. If the
survey depth is limited a cut in the apparent brightness of objects then these two effects
are sometimes put into an analytical form for ng(z) as (Brainerd et al., 1996; Hilbert et al.,
2011)

ng(z) =
3z2

2z3
0

exp

[
−
(
z

z0

)3/2
]
, (9.13)

where z0 is a free parameter that determines the median redshift of the distribution via
z0 = zmedian/1.412. Though this analytic expression for ng provides an intuition for the
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typical shape of observed redshift distributions, in real analyses of photometric surveys the
redshift distribution is usually estimated from the magnitudes of the observed objects in
different chromatic filters (see section 8.2). Also, one usually attempts to split an observed
galaxy sample into subsamples with different redshift distributions, e.g. , to study the
redshift evolution of 2-point statistics (Elvin-Poole et al., 2017; van Uitert et al., 2018;
DES Collaboration et al., 2017).

Given a particular redshift distribution ng(z) we can determine the corresponding pro-
jection kernel along co-moving distance as

dw qg(w) = dz ng(z)

⇒ qg(w) = ng(z(w))
dz

dw
= ng(z(w)) H(w) . (9.14)

This means that the galaxy density contrast we observe on the sky is given in terms of the
3D galaxy density contrast by

δg,2D(n̂) =

∫ ∞
0

dw ng(z(w)) H(w) δg(η0 − w,wn̂) . (9.15)

The 2-point correlation function of δg,2D is usually denoted with w(θ), i.e.

w(θ) = 〈δg,2D(α)δg,2D(α+ θ)〉 , (9.16)

where we have assumed flat coordinates α on the sky (instead of n̂) and used that due to
the isotropy of the universe w(θ) only depends on θ = |θ|.

Unfortunately, the galaxy density contrast δg is not identical to the total matter density
contrast δm. This is obvious from the fact the galaxies are located at discrete positions and
don’t form a continuous density field. But even when the galaxy density field is smoothed
over scales that are significantly larger than the average galaxy separation, there is still
a mismatch between the total density contrast of matter and that of the galaxies. One
reason for this is that the process of galaxy formation depends in a complicated, non-linear
way on the average matter density in a particular region. Very massive galaxies will, e.g.
, preferentially form in dense environments and their formation efficiency is a super-linear
function of that environment density. Such galaxies can hence be thought of as amplifying
the universe’s matter density contrast.

On large scales, the mismatch between galaxy density contrast and matter density
contrast can be approximated as a constant multiplicative factor between the two (see
chapter 16), i.e.

δg ≈ b · δm , (9.17)

where b is called the (linear) galaxy bias. Following the above considerations about massive
galaxies, it can be expected, that more massive galaxies have a higher galaxy bias. A
simple, heuristic explanation of how this bias arises has, e.g. , been given by Kaiser (1984,
the Kaiser bias model). We describe this model in figure 9.1 . The simply linear bias
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Figure 9.1: An illustration of the so-called Kaiser bias: Galaxies are assumed to form in
small density peaks (the peaks in the blue line of the upper panel) when the amplitude of
those peaks exceed a certain threshold (the red dashed line in the upper panel). Peaks that
are located in large scale overdensities are more likely to exceed this threshold than peaks
located in large scale underdensities. This leads to an enhancement of the galaxy density
contrast δg (orange line in the lower panel) wrt. total matter density contrast δm. Averaging
both the density and galaxy density field over large enough scales, this enhancement can
be described by a multiplicative factor - the linear bias factor b.
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assumption of equation 9.17 is only valid on large smoothing scales. On small scales
(. 10Mpc) is must be replaced by non-linear and also stochastic relations between δg and
δm (Dekel & Lahav, 1999; Seljak & Warren, 2004; Cacciato et al., 2012; Uhlemann et al.,
2018a; Friedrich et al., 2018). We investigate this point further in chapters 16 and 17 where
we present the papers Friedrich, Gruen et al., 2018 and Gruen, Friedrich et al., 2018.

One consequence of galaxy bias is that the 2-point correlation function of δg cannot
directly be compared to cosmological theory. If on scales where the linear bias assumption
is valid, the correlation functions of δg and δm are still only related via

ξg ≈ b2ξm (9.18)

such that there is no cosmological information in the amplitude of the galaxy correlation
function (at least in the absence of a fundamental theory of galaxy formation that predicts
the value of b). In addition to that, the bias of a particular galaxy sample might even
evolve with redshift (Clerkin et al., 2015) which can obscure observations of the growth of
structure from measurements of ξg at different redshifts.

Nevertheless, characteristic features in the slope of the 2-point correlation function,
that are independent of the amplitude, can be used to determine the expansion history of
the universe and to test cosmological models (see the discussion about angular diameter
distances in section 8.1). A probe of the 2-point correlation function that is not influenced
by galaxy bias are the so-called cosmic shear correlation functions. They are based on the
effect of gravitational lensing, which we describe in the next chapter (chapter 10).
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Chapter 10

Gravitational lensing

In this chapter we briefly review gravitational lensing, i.e. the deflection of light in a curved
spacetime. In section 10.1 we consider the deflection of light paths in a static spacetime
using the thin lens approximation. Section 10.4 generalizes this to cosmic shear, i.e. to
gravitational lensing by the large scale density field in a perturbed Friedmann universe.
Our main argument in deriving an expression for the lensing convergence of cosmic shear
is a rather heuristic one and we refer the reader to the reviews of Schneider et al. (2002)
and Bartelmann & Schneider (2001) and to the paper by Seitz et al. (1994) for a more
detailed derivation.

10.1 Gravitational light deflection

Gravitational lensing by a point mass can be described with the (exterior) Schwarzschild
metric. The line element of this metric takes the form (Schwarzschild, 1916)

ds2 =

(
1− 2m

r

)
dt2 − dr2

1− 2m

r

+ r2
(
dθ2 + sin2 θdφ2

)
. (10.1)

Here the singularity at r = 0 is the location of the point mass m and rs = 2m is the
so-called Schwarzschild radius. The are no light-like geodesics that lead from inside to
outside of this radius.

For r →∞ equation 10.1 becomes the line element of flat Minkowsky space. Hence, at
large distances from the point mass the trajectories of light rays become straight lines in
the Schwarzschild coordinates. This is however not the case in the vicinity of r = 0. There,
light-like geodesics are deflected from straight coordinate lines which leads to a deflection
angle of any light ray that approaches the point mass from infinity and then departs to
infinity again. This deflection of light rays by the gravitational field (or rather: by the
curvature of spacetime) is called gravitational lensing and the mass causing the deflection
is called the (gravitational) lens.

To investigate the effects of gravitational lensing, consider figure 10.1 . This figure from
Bartelmann & Schneider (2001) displays a situation where a gravitational lens is located
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somewhere between an observer an a light source. If the observer faces directly toward
the lens, two important planes perpendicular to the line-of-sight can be identified: the
so-called lens plane at the location of the gravitational lens and the source plane at the
location of the light source. We will denote the distance between observer and lens plane
by Dol, the distance between observer and source plane by Dos and the distance between
lens plane and source plane by Dls.

Observer

Lens plane

Source plane

θ

β

ξ

α^

η

D
ls

D
ol

D
os

Figure 10.1: Figure from Bartelmann &
Schneider (2001), see main text for a descrip-
tion (and note that the notation of the figure
was slightly altered compared to the original
version of Bartelmann & Schneider).

If the distances Dol and Dls are � rs
then the deflection of a light ray that passes
the lens can be approximated as a single
scattering event that takes place in the lens
plane. This is called the thin lens approx-
imation. Let ξ be 2D coordinates in the
lens plane and η be 2D coordinates in the
source plane such that η = 0 = ξ is the
line of sight of the observer. If light from a
source at |η| � Dls hits the lens plane at
a location ξ with rs � |ξ| � Dls then it is
deflected by an angle

α̂(ξ) = 4m
ξ

|ξ|2 . (10.2)

(The total angle of deflection is given by
the absolute value |α̂| but for later conve-
nience we define the deflection angle as a
2-dimensional vector, cf. equation 10.7 be-
low.)

If the lens is not a point mass but an
object of finite size then as long as the spa-
tial extend of this object is � Dol, Dls we
can still employ the thin lens approximation
and equation 10.2 generalizes to

α̂(ξ) = 4

∫
d2ξ′ Σ(ξ′)

ξ − ξ′
|ξ − ξ′|2 . (10.3)

Here Σ is the surface mass density of the
lens. It is given in terms of the 3D density
distribution ρ of the lens as

Σ(ξ) =

∫
dz ρ(ξ, z) , (10.4)

where
∫

dz means integration along the observers line of sight (i.e. perpendicular to the
lens plane).
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In order for the light ray originating at η in the source plane and hitting the lens plane
at ξ to actually reach the observer we must have

η

Dos

=
ξ

Dol

− Dls

Dos

α̂(θ) . (10.5)

Defining the rescaled deflection angle as

α(θ) :=
Dls

Dos

α̂(θ) (10.6)

this can be turned into an equation about angular positions as seen by the observer:

β = θ −α(θ) . (10.7)

Here θ is the observed angular position of the light source and β would be its position if
the lens was removed. Note that these definitions employ the flat sky approximation, i.e.
we assume that all involved angles are small enough to approximate the sky by a 2D plane.
Equation 10.7 is called the lens equation.

For fixed β the lens equation may have several solutions θ. Any light source located at
such a position β would then be observed at several image locations. Defining the so-called
critical surface mass density

Σcr =
c2

4πG

Dos

dDls

(10.8)

one can formulate a sufficient condition for such multiple images to exist: if the surface
mass density Σ(ξ) of a lens decreases faster than |ξ|−2 and if Σ(ξ) > Σcr somewhere then
there exist positions η in the source plane for which the lens equation 10.5 (resp. 10.7) has
several solutions (cf. section 5.4 of Schneider et al., 1992).

10.2 Lensing potential, convergence and shear

The lens equation defines a mapping β(θ) from the lens plane to the source plane. This
mapping can be most conveniently studied using a number of quantities that have been
constructed by Schneider (1985): the deflection potential, the lensing convergence and the
shear field. In the following we will introduce these quantities and discuss their meaning
in terms of the lens mapping.

The so called convergence field of a thin gravitational lens is defined as

κ(θ) :=
Σ(Dolθ)

Σcr

. (10.9)

The rescaled deflection angle can be expressed in terms of the convergence field as

α(θ) =
1

π

∫
d2θ′ κ(θ′)

θ − θ′
|θ − θ′|2 . (10.10)
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Figure 10.2: The figure shows how spheri-
cal light sources are sheared into elliptic im-
ages for different values of the reduced shear
components g1 and g2 (cf. equation 10.21 for
their definition). Note that we ignore here
the isotropic magnification µ of the images.

Introducing the deflection potential

ψ(θ) =
1

π

∫
d2θ′ κ(θ′) ln(|θ−θ′|) (10.11)

we see that ψ indeed acts as a potential for
the deflection field,

α(θ) = ∇ψ(θ) , (10.12)

and that κ is the source of this potential,

κ(θ) =
1

2
∆ψ(θ) . (10.13)

To see how the lens mapping affects ex-
tended light sources, let us approximate
β(θ) around a location θ0 in the lens plane
as

β(θ) ≈ β(θ0) + A(θ0) · (θ− θ0) , (10.14)

where Aij = ∂βi/∂θj is the Jacobi matrix
of the mapping. Because the deflection an-
gle can be expressed as the gradient of a
potential, the Jacobian is actually a sym-
metric matrix. This especially means that
there is no rotational degree of freedom in
the lens mapping! The components of the matrix A are given by

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (10.15)

where we have defined

γ1 =
1

2
(∂1∂1 − ∂2∂2)ψ , γ2 = ∂1∂2ψ . (10.16)

These quantities can be combined to the complex number

γ := γ1 + iγ2 (10.17)

which is called the shear field. To determine the eigenvalues of A we solve

0 = (1− κ)2 + λ2 − 2λ(1− κ)− |γ|2
⇒ λ1,2 = (1− κ)± |γ| . (10.18)
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The inverse matrix A−1 describes how the light profile of a small (but extended) light
source at the position β(θ0) in the source plane appears around θ0 in the lens plane.
Consider, e.g. , a circular light source that in the absence of lensing would occupy a solid
angle δω on the sky. The mapping by A−1 will produce an image of that light source whose
angular area is increased wrt. δω by a factor of

µ = det A−1 =
1

λ1λ2

=
1

(1− κ)2 − |γ|2 . (10.19)

This is called the magnification factor. In addition to a magnification of the image, grav-
itational lensing also causes a distortion wrt. the original light profile of the source. The
circular source from the above example will, e.g. , be imaged as an ellipse with an axis
ratio given by

r =
λ2

λ1

=
1− |γ|

(1−κ)

1 + |γ|
(1−κ)

. (10.20)

Defining the so-called reduced shear as

g =
γ

1− κ (10.21)

this simplifies to

r =
1− |g|
1 + |g| . (10.22)

In figure 10.2 we display how a circular light distribution is imaged for different values
of the reduced shear components g1 and g2. Our findings about the properties of the lens
mapping can be summarized as follows:

• Gravitational lensing introduced a shift between the true and apparent angular posi-
tions of light sources. Within the thin lens approximation, this shift is given by the
gradient of the deflection potential ψ. The convergence field κ, which is proportional
to the surface mass density Σ of the lens, acts as a source for the deflection potential.

• Within the thin lens approximation, gravitational lensing cannot rotate the images
of light sources wrt. their original light distribution.

• The images of small but extended light sources are magnified wrt. the original solid
angle of the light distribution by a factor of µ = 1/((1 − κ)2 − |γ|2), where γ is the
gravitational shear defined in equation 10.17.

• Small circular light sources are imaged as ellipses with axis ratio r = (1−|g|)/(1+|g|)
where g is the reduced shear defined in equation 10.21.
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Figure 10.3: The Horse Shoe Galaxy, a distant spiral galaxy whose multiple images merge
into an almost perfect ring around a massive elliptical foreground galaxy. Such ring-like
images are also called Einstein rings. Image credit: Astronomy Picture of the Day, NASA,
https://apod.nasa.gov/apod/ap111221.html .

https://apod.nasa.gov/apod/ap111221.html
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10.3 Shapes of background galaxies as tracers of fore-

ground density

As discussed in the previous section, gravitational lensing affects the images of extended
light sources in 3 ways: it shifts the image positions (deflection), if magnifies images
(magnification) and it distorts the shapes of the images (shear). In the vicinity of massive
foreground objects (e.g. massive elliptical galaxies of galaxy clusters) these lensing effects
can be quite drastic, i.e. by imaging individual light sources at several distinct image
positions or even by distorting light sources into giant luminous arcs (see, e.g. , figure
10.3). The presence of such strong lensing effects indicates the so-called strong lensing
regime.

Farther away from the gravitational lenses, e.g. , in the outskirts of a galaxy cluster,
lensing effects become so weak that they can’t be inferred from individual objects. This
is, e.g. , the case when the lensing shear of an image is comparable to or smaller than the
intrinsic ellipticity of a light source. Assuming that the intrinsic orientations of distant
light sources are independent of each other, one can nevertheless infer the large scale shear
field by averaging over the ellipticity and orientation of a large sample of light sources. The
regime where this is necessary is called the weak lensing regime (the reviews of Bartelmann
& Schneider, 2001; Schneider, 2005, cover exactly that regime).

In order to average over galaxy ellipticities we need to quantify these ellipticities in a
way that can be related to the lensing shear field. One way to do so is to measure the
second order brightness moments of the light distribution I(θ) of a galaxy image on the sky
(where θ are again angular coordinates on the sky and I(θ) is the light intensity measured
for the image in different locations; cf. section 2.2 of Schneider 2005, which is the basis for
the following derivations). Employing a flat sky approximation we can first determine the
image center as

θ̄ =

∫
d2θ I(θ) qI[I(θ)] θ∫
d2θ I(θ) qI[I(θ)]

. (10.23)

Here qI represents a cut-off at low image intensities in order to avoid integration over
photon noise. The second order brightness moments are then given by

Qij =

∫
d2θ I(θ) qI[I(θ)] (θi − θ̄i)(θj − θ̄j)∫

d2θ I(θ) qI[I(θ)]
. (10.24)

From the Qij one can determine an estimate for the ellipticity of the light distribution I(θ)
as

ε =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)1/2

. (10.25)

As for the reduced lensing shear g = g1 + ig2, the complex quantity ε = ε1 + iε2 describes
both the eccentricity and the orientation of the distribution I(θ) on the sky (cf. figure
10.2). Consider a galaxy for which one has measured an image ellipticity ε in the presence
of lensing and for which - without lensing - we would have obtained a intrinsic ellipticity
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Figure 10.4: Taken from Umetsu (2010). The figure shows the lensing shear field estimated
around the cluster Abell 1689 (indicated by the white ticks) as well as the corresponding
reconstruction of the convergence field (color coding).

εint.. Then, in the absence of photon noise in the detector, Seitz & Schneider (1997) have
shown that ε, εint. and the reduced shear g are related by

ε =
εint. + g

1 + g∗εint.
, (10.26)

where ∗ denotes complex conjugation and we also assumed that |g| < 1. Seitz & Schneider
(1997) also showed that the ensemble average of ε over the possible orientations of the
intrinsic ellipticity εint. is exactly the reduced shear g. However, in real observations there
will be detector noise so that equation 10.26 does not hold. Hence, in real reconstructions
of the shear field from galaxy shapes one simply accepts the fact that any estimator of the
reduced shear is biased and then calibrates this bias. This can, e.g. , be done with the
help of image simulations or even by applying artificial shearing to real data (see, e.g. ,
Kitching et al., 2012; Sheldon & Huff, 2017; Zuntz et al., 2017a, and references therein).

An estimate of the shear field in a region on the sky can, e.g. , be used to reconstruct
the large scale mass profiles of individual massive objects (cf. Umetsu, 2010; Gruen et al.,
2013, 2014; Rehmann et al., 2018). As an example for that I show a reconstruction of the
shear and convergence profile of the galaxy cluster Abell 1689 by Umetsu (2010) in figure
10.4. In contrast to such studies of individual objects, one can also study the large scale
statistical properties of the shear field to infer the power spectrum of total matter density
fluctuations. I will discuss this technique, called cosmic shear, in the following section.
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10.4 Cosmic Shear

10.4.1 Lensing by the Cosmos

When we apply gravitational lens theory to lensing by the matter distribution of the whole
universe, we are facing two differences compared to the previous section: the thin lens
approximation doesn’t hold any more and the universe is not static anymore (not even
necessarily flat, though we will assume that in this chapter). In the reviews Bartelmann &
Schneider (2001) and Schneider (2005) (see also Seitz et al., 1994) it is thoroughly derived,
how in that case one can still define an effective convergence κeff and an effective deflection
potential, such that the lensing equation can be put into the same form as in the previous
section. I will present present only an informal derivation of these results and refer the
reader to the mentioned references for a more rigorous argument.

In chapter 5 we saw that the line element of of a perturbed Friedmann universe in the
presence of only scalar perturbations can be given the form

ds2 = a2
(
(1 + 2φ)dη2 − (1− 2ψ)dx2

)
. (10.27)

Defining the so-called Weyl potential Ψ as

Ψ =
φ+ ψ

2
(10.28)

this can be rewritten as

ds2 ≈ a2eψ−φ
(
(1 + 2Ψ)dη2 − (1− 2Ψ)dx2

)
, (10.29)

where we have ignored terms of higher than linear order in the potentials (which is a very
precise approximation on cosmological scales). The line element along light-like geodesics
is ds = 0. Hence the trajectories of light rays are described by the equation

0
!

= (1 + Ψ)dη2 − (1−Ψ)dx2 . (10.30)

Formally, this is identical to line element of light rays in non-expanding space in the New-
tonian approximation when Ψ is taken to be the Newtonian potential (cf. Padmanabhan,
2010a). However, in contrast to the non-expanding case, the source of the Weyl potential
is not given by the density field ρ(η,x). Instead, we have seen in section 5.2.2 that on
sub-horizon scales

∆Ψ ≈ ∆φ ≈ ∆ψ = 4πa2ρ̄mδm , (10.31)

where ρ̄m is the average matter density in the universe and δm is the matter density contrast.
Hence, the Poisson equation in the non-expanding Newtonian case has to be exchanged by

∆φNewton = 4πρ ↔ ∆Ψ = 4πa2ρ̄mδm , (10.32)

i.e. a2ρ̄mδm acts as a source for the gravitational potential in an expanding universe filled
with cold matter. Let us call δconf = a2ρ̄mδm the conformal matter density (which can have
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negative values). Using the fact that ρ̄m = ρ̄m,0/a
3 and the fact that the average matter

density today is ρm,0 = 2H2
0 Ωm,0/8π this can be written as

δconf =
3H2

0 Ωm,0

8π

δm
a
. (10.33)

(See section 5.1 for the definitions of H0 and Ωm,0 .) Then, in an infinitesimal shell at
co-moving distance w′ around an observer we can define a conformal surface density as

dΣconf(θ, w
′) = dw′ · δconf[w

′θ, w′]

= dw′ · 3H2
0 Ω0

8π

δm[fk(w
′)θ, w′]

a(w′)
. (10.34)

Note that for simplicity we have parametrized the time dependence of a by the co-moving
distance w′ along the light trajectory and not by the conformal time η′ = η0−w′ as we did
in chapter 9 . The critical density at this shell compared to source galaxies at a co-moving
distance w is

Σcrit(w
′, w) =

1

4π

Dso(w)

Dlo(w′)Dsl(w,w′)
=

1

4π

w

w′(w − w′) (10.35)

and the lensing convergence in that particular shell is then given by

dκ(θ, w′, w) =
dΣ(θ, w′)

Σcrit(w′, w)
. (10.36)

If a light source is located at co-moving distance w then the lensing convergence it experi-
ences on its way towards us is given by the sum of the contributions from each thin shell
between us and the source. This gives the effective convergence felt by the light from the
light source as

κeff(θ, w) =

∫ w

0

dw′ dκ(θ, w′, w)

=
3H2

0 Ω0

8π

∫ w

0

dw′
1

Σcrit(w′, w)

δm[w′θ, w′]

a(w′)

=
3H2

0 Ω0

2

∫ w

0

dw′
w′(w − w′)

w

δm[w′θ, w′]

a(w′)
. (10.37)

Note that we have assumed a flat universe in this derivation. As, e.g. , shown in Bartelmann
& Schneider (2001); Schneider (2005) 10.37 can be generalized to a universe with non-zero
spatial curvature by replacing

w′(w − w′)
w

↔ Φk(w
′)Φk(w − w′)
Φk(w)

δm[w′θ, w′] ↔ δm[Φk(w
′)θ, w′] , (10.38)

where Φk has been defined in equations 5.8 and depends on the spatial curvature of the
universe (i.e. the curvature of η = const. slices).
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10.4.2 Sources with a redshift distribution and convergence power
spectrum

If instead of a single light source at some redshift z we consider an ensemble of source with
redshift distribution p(z), then the average convergence field probed by these sources is

κeff(θ) =

∫ wmax

0

dw g(w) κeff(θ, w) . (10.39)

Here g(w) is the distribution in co-moving distance, i.e. g(w)dw = p(z)dz. Following
Bartelmann & Schneider (2001) this can be reformulated into a projection integral of the
matter density contrast δm as

κeff(θ) =
3H2

0 Ω0

2

∫ wmax

0

dw W (w) Φk(w)
δm[Φk(w

′)θ, w]

a(w)
, (10.40)

where

W (w) =

∫ wmax

w

dw′ g(w′)
Φk(w

′ − w)

Φk(w′)
. (10.41)

We will from now on drop the subscript eff and denote the effective lensing convergence of
a sample of source simply by κ. Equation 10.39 is in fact of the same form as equation
9.3 , i.e. κ is a 2D projection of the 3D density contrast with the projection kernel

q(w) =
3H2

0 Ω0

2

W (w)Φk(w)

a(w)
. (10.42)

Using our derivation of the Limber approximation in chapter 9 we can then express the
convergence power spectrum in terms of the power spectrum of the 3D density contrast as

Pκ(`) =
9H4

0 Ω2
m,0

4

∫ wmax

0

dw
W (w)2

a(w)2
Pδ

(
w,

`

Φk(w)

)
. (10.43)

(As for the scale factor a we have parametrized the time dependence of Pm here by the
co-moving distance w along the light trajectory and not by the conformal time η = η0−w
as we did in chapter 9 .)

10.4.3 Cosmic shear correlation functions

The lensing convergence is not a direct observable. But as explained in section 10.3 , the
ellipticities ε = ε1 + iε2 of galaxies provide a direct estimate of the reduced shear field
g = g1 + ig2. In this section we will define suitable 2-point statistics of this field, that can
be related to the 2-point correlation function and power spectrum of the convergence field
κ and hence, via Limber’s approximation, to the power spectrum of the 3D matter density
contrast δm. This section follows the derivations of Schneider et al. (2002).

Consider two galaxies at angular positions θa and θb on the sky and with ellipticities
εa and εb. Let us denote the separation vector of the two galaxies at θab = θb − θa. It is
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θ1

θ 2

α

g = g1 + ig2

θ̃1

θ̃ 2

R(α)

g̃ = gt + ig×

Figure 10.5: The shape g of a galaxy (e.g. the red ellipse in the upper panel) can be
decomposed into a tangential and a cross component wrt. a reference point (e.g. wrt. the
blue ellipse in the upper panel). To obtain the decomposition one can rotate that angular
coordinate system θ1, θ2 to new coordinates θ̃1, θ̃2 in which the line connecting the galaxy
and the reference point is parallel to the θ̃1-axis (lower panel). The shape g̃ in the rotated
coordinates is given by g̃ = gt + ig×, where gt is the tangential component and g× is the
cross component of the galaxy’s shape wrt. the reference point.
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useful to define the so-called tangential- and cross-components εt and ε× of the ellipticities
of these galaxies wrt. each other. This is done by rotating our coordinate system on the
sky to new coordinates θ̃ in which the separation vector θ̃

ab
is parallel to the θ1-axis (cf.

figure 10.5). This rotation will also change the complex ellipticities to new values ε̃a and
ε̃b. Using figure 10.2 we can now read off the tangential- and cross-components of the
as the 1- and 2-components of the ellipticities in the new coordinate system (Schneider,
2005), i.e.

ε̃a = −εat − iεa×
ε̃b = −εbt − iεb× . (10.44)

It should be stressed again, that these components have no absolute meaning and are only
defined for a pair of galaxies. Also, we again employed here the flat sky approximation.
It is however not difficult to generalize the above definition of εt and ε× to the curved sky
(cf. Kilbinger et al., 2013).

Now assume that we have measured the ellipticity ε for a large set of galaxies on the
sky. For each galaxy pair from that sample we can then define the tangential- and cross-
components of their ellipticities as detailed above. Using those we can define the following
2-point statistics:

ξ̂tt(θmin, θmax) =

 ∑
pairs i,j

θmin<|θi−θj |<θmax

εitε
j
t


/

Npair(θmin, θmax)

ξ̂××(θmin, θmax) =

 ∑
pairs i,j

θmin<|θi−θj |<θmax

εi×ε
j
×


/

Npair(θmin, θmax) . (10.45)

Here the sum is over all galaxy pairs whose separation |θi − θj| lies within the interval
(θmin, θmax) and Npair(θmin, θmax) is the number of such galaxy pairs. In analyses of the
cosmic shear field one typically considers the linear combinations

ξ̂+(θmin, θmax) = ξ̂tt(θmin, θmax) + ξ̂××(θmin, θmax)

ξ̂−(θmin, θmax) = ξ̂tt(θmin, θmax)− ξ̂××(θmin, θmax) . (10.46)

Schneider et al. (2002) showed that - as long as the intrinsic ellipticities of the galaxies
are independent of each other - the statistics ξ̂±(θmin, θmax) are unbiased estimators of the
so-called cosmic shear correlation functions ξ±(θ) (when the argument θ is averaged over
the bin (θmin, θmax) ). And the latter are related to the convergence power spectrum by

ξ+(θ) =
1

2π

∫ ∞
0

d` ` J0(θ`) Pκ(`)

ξ−(θ) =
1

2π

∫ ∞
0

d` ` J4(θ`) Pκ(`) , (10.47)
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where Jn are the Bessel functions of the first kind. Equations 10.47 again make use of the
flat sky approximation. Stebbins (1996) has shown how to modify these expressions to an
exact curved sky treatment. I summarize the curved sky expressions in appendix B .

At the same angular separation θ the functions ξ+(θ) and ξ−(θ) are sensitive to different
physical scales. This is caused by the different filter functions J0(θ`) and J4(θ`) in the
integrals on the right hand-side of 10.47. In figure 10.6 I explain which alignments of
source galaxies typically give the largest contribution to each of the correlation functions
and what configurations of lenses and sources cause such alignments. Also, I display the
functions J0(x) and J4(x) in figure 10.7 to demonstrate how ξ+(θ) and ξ−(θ) for the same
value of θ put weight on different modes ` in x = θ`.

Measurements of the cosmic shear correlation function can be used to the theoretical
predictions about the shape and amplitude of the matter power spectrum without the need
to model the bias between galaxies and the total matter density field (cf. section 9.2). Also,
measuring ξ̂± for source galaxy samples at different ranges of redshift allows to study the
time evolution of the power spectrum and hence to quantify the growth of structure in the
universe. By now the have been a number of cosmological analyses based on cosmic shear
(Kilbinger et al., 2013; Heymans et al., 2013; Hildebrandt et al., 2017; Troxel et al., 2017)
or on combining cosmic shear correlation functions and other 2-point statistics of the large
scale structure (van Uitert et al., 2018; DES Collaboration et al., 2017). In chapter 11
I will briefly review the results presented in Troxel et al. (2017) and DES Collaboration
et al. (2017) which were obtained within the Dark Energy Survey.

10.4.4 Galaxy-galaxy lensing

Another way to probe the matter power spectrum with gravitational lensing is to measure
the so called galaxy-galaxy lensing correlation function. To do so one considers 2 different
galaxy samples: galaxies at a high redshift range acting as light sources (the source galaxies)
and galaxies at a lower redshift range tracing the forground matter that is producing the
lensing effect (the lens galaxies). Given a lens galaxy at position θl and a source galaxy at
position θs with ellipticity εs = εs1 + iεs2 we can define the component εst of the ellipticity
that is tangential wrt. the position of the lens galaxy in the same way as describes in the
previous section (cf. figure 10.5 ).

Given a set of source and lens galaxies the galaxy-galaxy lensing correlation function
γt in a finitie angular bin (θmin, θmax) can then be estimated as

γ̂t(θmin, θmax) =

 ∑
pairs l,s

θmin<|θl−θs|<θmax

εst


/

Nlens-source pair(θmin, θmax)

−

 ∑
pairs r,s

θmin<|θr−θs|<θmax

εst


/

Nrandom-source pair(θmin, θmax) , (10.48)
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Figure 10.6: The largest contributions to the correlation function ξ+(θ) come from source
galaxy pairs that have a parallel alignment on the sky (upper left panel). The largest
contributions to ξ−(θ) come from source galaxy pairs whose alignments are mirrors of each
other along the line connecting the two galaxies (upper right panel). At the same angular
distance θ on the sky the function ξ+(θ) typically probes larger physical structures than
the function ξ−(θ) (cf. lower left and right panels).
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Figure 10.7: The filter functions J0 and J4 that appear in the relations between the cosmic
shear correlation functions ξ±(θ) and the convergence power spectrum Pκ(`). At a fixed
angular scale θ the filter J0(x) = J0(θ`) puts more weight on low frequencies ` than the
filter J0(x) = J0(θ`). As a consequence, the function ξ+(θ) is more sensitive to large scale
density fluctuations than the function ξ−(θ) at the same angular scale θ.
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where the first sum is over all lens-source pairs whose angular distance lies within the
angular bin (θmin, θmax) and in the second some the lens positions are replaced by a set of
random points that are uniformly distributed across the sky (or rather: the part of the sky
that is observed). When ensemble averaging over the intrinsic ellipticities of the source
galaxies the second term actually averages to 0, but including it help to reduce the noise
coming from field-to-field variations of the density field (the so-called cosmic variance, see,
e.g. , Prat et al. 2017).

If the intrinsic ellipticities of source galaxies are independent of each other, then in a
narrow angular bin around θ we have 〈γ̂t(θ)〉 = γt(θ) where γt(θ) is given by

γt(θ) =
1

2π

∫ ∞
0

d` ` J2(θ`) Pκ,g(`) . (10.49)

Here Pκ,g(`) is the cross power spectrum between the lensing convergence field kappa and
the 2D galaxy density contrast δ2D,g (cf. section 9.2). Assuming a linear bias, δ2D,g =
bδ2D,m, we can again use Limber’s approximation to express Pκ,g(`) in terms of the 3D
matter power spectrum as

Pκ,g(`) =
3H2

0 Ωm,0 b

2

∫ wmax

0

dw
W (w)qg(w)

a(w)2
Pδ

(
w,

`

Φk(w)

)
. (10.50)

Here W (w) is the lensing kernel defined in equation 10.41 and qg(w) is the distribution
of values of co-moving distance among the lens galaxy sample (cf. the notation in section
9.2).

As can be seen from equation 10.50 in the linear bias model Pκ,g(θ) and γt(θ) propor-
tional to the linear galaxy bias b. This is in contrast to the 2D galaxy clustering correlation
function w(θ) which was proportional to b2 (cf. section 9.2). As a consequence of that, a
combined measurement of w and γt breaks the degeneracy between galaxy bias and the
amplitude of the matter power spectrum and can hence be used to test theoretical pre-
dictions for the growth of density fluctuations (see, e.g. , Mandelbaum et al., 2013; Kwan
et al., 2017). The sketch in figure 10.8 provides a summary of the 2-point correlation
functions of the cosmic large scale structure that were introduced in sections 9.2, 10.4.3
and 10.4.4: the galaxy clustering correlation function w(θ), the cosmic shear correlation
functions ξ±(θ) and the galaxy-galaxy-lensing correlation function γt(θ).

10.4.5 Intrinsic alignments

The estimators defined in 10.46 only give unbiased measurements of the cosmic shear
correlation functions ξ± if the intrinsic shapes of close by source galaxies are independent
of each other. It has however been expected that galaxies forming in similar large scale
tidal fields are correlated in their alignment. I am not discussing this topic further in this
work and instead refer the reader to the papers Hirata et al. (2004); Troxel & Ishak (2015);
Krause et al. (2016); Hilbert et al. (2017); Blazek et al. (2017) and the references therein.

In recent analyses of lensing by the large scale structure the correlation of intrinsic
galaxy alignments has been incorporated into the models of the measured 2-point statistics
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Figure 10.8: Summary of the 2-point statistics of the large scale structure relevant for
this work. The shapes in the upper right part of the sketch indicate the position of lens
galaxies (orange) and the position and alignment of source galaxies (blue). Note that I
ignore here the fact that galaxies have an intrinsic ellipticity and assume the shape of the
source galaxies is entirely dictated by the lensing shear field. The figure in the lower part
of the sketch represents typical redshift distributions of lens galaxy samples (solid orange
line) and source galaxy samples (solid blue line) in use in cosmological studies today. Note
however, that modern surveys simultaneously analyze a number of lens and source redshift
bins (Heymans et al., 2013; van Uitert et al., 2018; Hildebrandt et al., 2017; Prat et al.,
2017; Elvin-Poole et al., 2017; Troxel et al., 2017; DES Collaboration et al., 2017). The
dashed blue line indicated the typical shape of the lensing kernel W defined in equation
10.41 that would correspond to a source redshift distribution given by the solid blue line.
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(see van Uitert et al., 2018; Köhlinger et al., 2017; Troxel et al., 2017, and combinations
thereof with other 2-point statistics). In these works only mild detections of the amplitude
of shape correlations have been obtained but notably, the studies of van Uitert et al.
(2018) and Köhlinger et al. (2017) find an opposite sign of this correlation eventhough
they are based on the same data set. In that context it has also been found that errors
in photometric redshift estimates (cf. section 8.2) can to some degree mimic the signal
expected from intrinsic alignments (Efstathiou & Lemos, 2018).
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Chapter 11

The Dark Energy Survey

The Dark Energy Survey (DES) is an optical imaging survey that will eventually cover
5000deg2 of the southern sky and will provide redshift and shape estimates for galaxies up
to z ∼ 1.5. It is run by the DES collaboration (see https://www.darkenergysurvey.org/
and Flaugher 2005) and is carried out at the Victor M. Blanco 4-meter Telescope at the
Cerro Tololo Inter-American Observatory (CTIO) in Chile. It images the sky with the
Dark Energy Camera (DECam, see Flaugher et al. 2015) using five different optical bands
(see the left panel of figure 11.1 taken from DES 2018b). The average seeing (i.e. the
blurring of images due to atmospheric turbulences) differs from band to band but is overall
located around 1 arcsecond (see the right panel of figure 11.1 which is also taken from
DES 2018b).

The DES data enable a variety of scientific studies from solar system research to anal-
yses of the large scale structure of the universe (see DES 2016 for an overview). A main
objective of DES is to quantify the growth of structure in the low-redshift universe in
order to test theoretical predictions for the evolution of cosmic density fluctuations. Es-
pecially, it is supposed to test whether the same parameters of the ΛCDM model that are
needed to describe the primary anisotropies of the Cosmic Microwave Background (i.e. its
temperature and polarization fluctuations which originate from the universe at z ≈ 1100)
can also describe the large scale structure of the low-redshift universe. In DES (2018a)
(and a number of companion papers, see references in DES 2018a) the DES collaboration
has published intermediate results from that effort based on its year-1 data (DESY1, data
taken between August 2013 and December 2014). These results were obtained by analyzing
measurements of the galaxy clustering 2-point correlation function w(θ), the cosmic shear
correlation functions ξ±(θ) and the galaxy-galaxy lensing correlation function γt(θ) that
have been introduced in sections 9.2, 10.4.3 and 10.4.4. These functions where measured
using overall 5 different lens galaxy samples and 4 different source galaxy samples. In
figure 11.2 I show a plot from DES (2018a) presenting the redshift distributions of these
samples. The measurements of the different 2-point correlation functions in the different
bins are shown in figures 11.3 and 11.4 (also taken from DES 2018a).

I was involved in this effort through the following contributions:

• designing and carrying out tests of the analytic covariance matrix of the 2-point

https://www.darkenergysurvey.org/
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0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
T

ra
n

sm
is

si
on

g r i z Y

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
FWHM (arcsec)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
D

F

g-band

r-band

i-band

z-band

Y-band

Figure 11.1: Taken from DES 2018b who present the public release of the DES year 1
data. The left panel shows the relative transmission of the 5 filters g, r, i, z, Y used for
DES observations as a function of wavelength. The right panel displays the distribution of
seeing conditions (i.e. widening of images due to atmospheric turbulence) in the different
bands.

functions measurements that was used to draw cosmological conclusions from those
measurements (see section III.B of Krause et al. 2017),

• supervising and supporting the creation of mock data based on the FLASK simulation
tool (by Xavier et al., 2016) for tests of systematic uncertainties (see Krause et al.,
2017; Prat et al., 2017; Troxel et al., 2017, for use of that data).

The analysis presented by DES (2018a) is the first one that was able to measure the
parameters of the ΛCDM model to a precision comparable to that previously achieved
through analyses of primary CMB anisotropies (Planck Collaboration et al., 2016). They
find that the ΛCDM model describes the DES measurements of w(θ), ξ±(θ) and γt(θ) well
(cf. figure 11.3 and 11.4) and that there is no significant tension with the results obtain by
Planck Collaboration et al. (2016). This especially means that current data of the large
scale structure of the universe is well described by a model with a constant dark energy
density resp. cosmological constant. Note that I don’t show the results of that paper here
because a proper discussion thereof is beyond the scope of this thesis.
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Figure 11.2: Taken from DES Collaboration et al. (2017) who present a cosmological
analysis based on 2-point function measurements in DES year 1 data. The upper panel
shows the redshift distributions of the 5 lens redshift bins used in their analysis. The lower
panel shows the redshift distributions of their 4 source redshift bins (see Hoyle et al., 2018,
for how the latter have been obtained).
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Figure 11.3: Taken from DES Collaboration et al. (2017) who present a cosmological
analysis based on 2-point function measurements in DES year 1 data. The figure shows
their measurements of the cosmic shear correlations functions ξ±(θ) (cf. section 10.4 ). The
solid blue line shows their best fit ΛCDM prediction. Gray areas have been cut from the
analysis because of modeling uncertainties in the matter power spectrum and the galaxy
bias model (see also Elvin-Poole et al., 2017).
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Figure 11.4: Taken from DES Collaboration et al. (2017) who present a cosmological anal-
ysis based on 2-point function measurements in DES year 1 data. The figure shows their
measurements of the galaxy-galaxy lensing correlation function γt(θ) in different combina-
tions of lens and source redshift bins as well as their measurements of the galaxy clustering
correlation function w(θ) in different lens bins (cf. sections 9.2 and 10.4). The solid blue
line shows their best fit ΛCDM prediction. Gray areas have been cut from the analysis
because of modeling uncertainties in the matter power spectrum and the galaxy bias model
(see also Elvin-Poole et al., 2017).
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Part III

Estimation of Covariance Matrices
for 2-point correlation functions





Chapter 12

Covariance matrices and the
derivation of parameter constraints

This work is about higher order moments (moments of order > 2) of the cosmic density
field. In this part of the thesis (chapters 12 to 14) we will encounter a 4th order statistic of
the density field - the covariance matrix of 2-point correlation functions and power spectra.

A main objective of measuring the 2-point statistics ξ±(θ), γt(θ) and w(θ) introduced in
previous chapters is to test theoretical predictions for these data vectors. If a cosmological
model is parametrized by a vector of parameters π, then testing this model means to
examine whether different measurements agree with predictions from that model for the
same values of the parameters π. In this chapter I briefly review different methods to decide
whether a measured data vector agrees with a theoretical prediction and how this can be
used to discriminate reasonable choices for the parameters π from unreasonable ones. To
carry out such a discrimination one typically requires knowledge of the covariance matrix.
Chapters 13 and 14 investigate different methods for estimating this matrix. Previous
chapters that are required to understand this part of my thesis are

• Chapter 5 - Cosmology in General Relativity

(Especially section 5.1 for the definition of the ΛCMD model and its parameters.)

• Chapter 6 - Theory of Cosmic Structure Formation

(Especially sections 6.1 and 6.2 for the definition of the matter power spectrum and
2-point correlation function as well as the definition of the ΛCMD parameter σ8.)

• Chapter 9 - 2D Power Spectra and Correlation Functions

• Chapter 10 - Gravitational Lensing

12.1 Covariance matrices

Consider a random vector x̂ that consists of D data points. To say that x̂ that is drawn
from a D-dimensional probability distribution function (PDF) p(x) means to say that the
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probability of finding x̂ within a volume dVx around x with size |dV | = dxD is given by

P (x̂ ∈ dV ) = dxD p(x) . (12.1)

Please note that I have not specified here, what I mean by probability. This will be discussed
further below.

Given the PDF p(x) we can define the expectation value µ of x̂ as

µ = 〈x̂〉

=

∫
dxD x p(x) . (12.2)

This integral does not necessarily converge, but I will assume so in the following. Given
the expectation value we can then define the covariance matrix C of x̂ as

C = 〈[x̂− µ] · [x̂− µ]T 〉

=

∫
dxD [x− µ] · [x− µ]T p(x) . (12.3)

Here []T means transposition and · means matrix multiplication. For the individual com-
ponents of the covariance matrix the definition of equation 12.3 reads

Cij =

∫
dxD [xi − µi][xj − µj] p(x) . (12.4)

From both definitions it can be seen that C is a symmetric matrix, i.e. C = CT .
Data vectors measured in cosmological analyses are often assumed to be Gaussian ran-

dom vectors (Kilbinger et al., 2013; Heymans et al., 2013; Abbott et al., 2016; Hildebrandt
et al., 2017; van Uitert et al., 2018; DES Collaboration et al., 2017). This means that one
considers these measurements to be realizations of a random process with the PDF

pGauss.(x) =
1√

(2π)D|C|
exp

{
−1

2
[x− µ]T ·C−1 · [x− µ]

}
. (12.5)

Here C−1 is the inverse of the covariance and |C| is its determinant. As for the cosmic shear
correlation function one would, e.g. , identify x̂ with ξ̂±(θmin, θmax) measured in a number
of D angular bins (θmin, θmax) (or D/2 angular bins if both ξ̂+ and ξ̂− are combined into
one data vectors) and the expectation value µ would correspond to the analytic functions
ξ± evaluated in these bins.

The assumption that measurements of cosmological 2-point functions have a Gaus-
sian distribution can be justified with the central limit theorem (Anderson, 2003): 2-point
statistics measured within a large area on the sky can be considered as averages of equiv-
alent measurements carried out on sub-patches of that area. And independent of what
the distribution of these sub-measurements is, their average should tend to a Gaussian
distribution on the limit of a large total area. Note however, that is has recently been
questioned whether the Gaussian assumption is accurate enough for current cosmic shear
surveys (Sellentin & Heavens, 2018; Sellentin et al., 2018). This question is still undecided
and is currently under investigation.
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12.2 Frequentist approach on constraining model pa-

rameters

It is far beyond the scope of this work to discuss the differences (and dispute?) between
the Bayesian and Frequentist approaches to statistics in sufficient detail. I will hence refer
the interested reader to references such as Neyman (1937); Abroe et al. (2002); Yèche
et al. (2006); Hobson et al. (2014); Trotta (2017) and will discuss here only my personal
viewpoint on the subject. Especially, I will introduce a definition of frequentist parameter
estimation that slightly differs from that adopted, e.g. , in Abroe et al. (2002); Yèche et al.
(2006) and that in my opinion prevents Bayes-like features (cf. criticism in section 12.2.3).

12.2.1 Choice of the figure-of-merit as a contract between scien-
tists

If the structure in the universe indeed originated from quantum fluctuations in the Inflaton
field, then any data vector x̂ that was ever measured in any experiment can be legitimately
considered as the results of a random process. And the ensemble of possible outcomes of
any experiment is well defined through the ensemble of possible initial quantum fluctuations
(+ the constraint that the experiment was indeed conducted with those initial conditions).
I will hence in the following take any data vector x̂ to be a realization of a random process
with PDF p(x).

To define a program of frequentism we need the following assumptions:

• We are given a model p(x|π) for the PDF p(x) which depends on a number of model
parameters π.

• For some values π0 of the parameters we have p(x|π0) ≡ p(x) (see section 12.2.3 for
criticism of this assumption).

Frequentism can then be considered as a contract between scientists in which they

• agree on a scalar quantity
F̂ [x̂, p(·|π)] (12.6)

that is to be formed out of the measurement x̂ and the model for the PDF of x̂ (the
figure-of-merit).

• agree on a criterion to reject parameters values π based on the value of F̂ . This
criterion should be chosen such that if π = π0 the probability of rejecting π has a
fixed value α.

Note that our model p(x|π) for the PDF of x̂ will also lead to a model p(F|π) for the
PDF of F̂ . The criterion in the second bullet point above can, e.g. , be based on that
PDF. Now, if all scientists conform to this contract, then the parameter values π0 will be
rejected in a fraction α of all experiments ever conducted.
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12.2.2 Prior knowledge and model parametrization

Assume that we have the prior information that certain parameters in the parameter vector
π can only take values within specific ranges (e.g. we might know from theoretical consid-
erations, that the mass of some particle cannot be negative, etc.). This prior knowledge
can be incorporated in the above contract by simply rejecting all parameter values outside
the ranges

π1,min < π1 < π1,max

π2,min < π2 < π2,max

... < ... < ... , (12.7)

where (πi,min, πi,max) is the allowed range for the parameter πi.

Let Np be the number of parameters. Then within the allowed ranges the parameters
describe an Np-dimensional manifold. A very convenient feature of the frequentist con-
tract is the following: whether or not a point on the parameter manifold is rejected is
independent of the particular set of coordinates chosen on the manifold (i.e. the particular
parametrization we have chosen for our model of the PDF p(x|π)). This is because our
criterion for rejecting a point only depends on our data vector x̂ and our model PDF p(x|π)
- i.e. it is a local criterion on this manifold. This feature is also not spoiled by the above
way of incorporating prior knowledge.

12.2.3 Criticism

Even though individual experiments (such as observations of the large scale structure of
the universe) cannot be repeated, the frequentist contract nevertheless allows a well defined
interpretation of scientific results as a whole. This is through the statement that a fraction
α of those experiments have rejected model parameters that correctly describe the PDF
p(x).

However, there are a number of practical reasons which (at least partially) exclude
frequentism from an application in cosmology. I list them in the following.

• As a premise underlying the frequentist contract I assumed that there exists a point
π0 in our model manifold that describes the distribution of x̂ perfectly. But no model
is a perfect representation of reality. Even in principle, current cosmological models
fail this assumption since model parameters such as the galaxy bias (cf. section 9.2)
are from the beginning only nuisance parameters that are only meant to approximate
more complex phenomena (such as the process of galaxy formation).

• It is questionable whether a universal scalar F̂ [x̂, p(·|π)] and a universal rejection
criterion can be defined that can be applied to all possible experiments. However,
this may not be a severe problem since different criteria and different figures-of-merit
could be defined for different types of data vectors.
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• The frequentist program cannot be used to derive marginalized constraints on only a
subset of the model parameters π = (π1, π2, ...). It can only neglect or not neglect
the parameter vector π as a whole and the rejection probability α only applies to
that entire vector and not to subsets of it. There are cosmological studies that try
to construct frequentist confidence intervals for individual parameters in a multi-
parametric model (e.g. Abroe et al., 2002; Yèche et al., 2006) but they implicitly
assume a (Bayesian) prior PDF for the remaining parameters. This is necessary
because it is generally not possible to construct a model for the PDF of x̂ of the form
p(x|π1) from a model p(x|π) without assuming a specific distribution for the values
of the parameters π2, π3, ... . This has already been stated by Neyman (1937) who
developed some of the foundations of frequentist parameter estimation.

The last point is infact the most severe point of critique since in cosmology we are
interested in constraining parameters such as Ωm after marginalizing over a reasonable
ensemble of values for nuisance parameters such as the galaxy bias b (and not in 2D
constraints on the vector [Ωm, b]).

12.3 Bayesian approach on constraining model pa-

rameters

12.3.1 Probability as degree of personal belief

Given a data vector x̂ and a model p(x|π) for its PDF Bayesian statistics attempts to
derive PDF p(π|x̂) on the model manifold as parametrized by the parameters π. For any
volume V in the parameter space this PDF will determine the probability that π is indeed
located in that volume.

Assigning probabilities to different ranges of the model parameters does not make sense
from a frequentist perspective. This is because from the frequentist point of view there is
only one true PDF of the data p(x) and only a fixed set of parameter combinations π0 will
provide exactly that true prediction p(x|π0) ≡ p(x). However, the definition of probability
in Bayesian statistics is different from that in frequentist statistics. For Bayesianism,
probability assignments over a set of statements D are just assignments of real numbers
P (E) to certain subsets E ⊂ D such that P (·) fulfills the so-called Kolmogorov axioms
(Anderson, 2003; Hobson et al., 2014; Trotta, 2017). The Bayesian interpretation of D and
P (·) is that D represents a set of elementary and mutually exclusive statements and that
P (E) represents the degree of belief (of someone) that the true statement s is included in
the subset E ⊂ D (Hobson et al., 2014; Trotta, 2017).

An important feature of Bayesian statistics is that any experiment can only update
an already existing belief. Assume that a measurement x̂ was conducted to estimate the
parameters π. Then the Bayesian program assigns the so-called a posteriori PDF to the
parameters as

p(π|x̂) =
p(x|π) pr(π)

N . (12.8)
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Here the PDF p(x|π) of the data vector is also called the likelihood of the parameters and
pr(π) is an a priori PDF that represent the belief before the experiment was carried out
(the so-called prior). The factor N ensures that p(π|x̂) is normalized upon integration
over π and is called the evidence. The assignment of the a posteriori PDF by equation
12.8 can be derived from Bayes theorem and from the fact that the Bayesian degree of
belief is supposed to follow the Kolmogorov axioms (Hobson et al., 2014; Trotta, 2017).

12.3.2 Criticism

The main criticism of Bayesian statistics come from the fact that there is no obvious way
to translate someones prior belief into a prior PDF pr(π) for the parameter values and
from the fact the a posteriori PDF p(π|x̂) depends on how exactly that translation has
been done (Abroe et al., 2002; Yèche et al., 2006). It is customary to simply use so-called
flat priors (Kilbinger et al., 2013; Hildebrandt et al., 2017; Troxel et al., 2017; Gruen et al.,
2018, and many other studies). This means that for a given parameter πi one determines
reasonable lower and upper boundaries πi,min and πi,max such that when fixing all other
parameters we get

pr(π) = const. for πi ∈ (πi,min, πi,max)

= 0 else. (12.9)

This procedure is however highly ambiguous: if we choose to parametrize the model mani-
fold with different parameters π̃ that are non-linear functions of the old parameters, then a
flat prior in the old parameters π will be a non flat one on the new parameters π̃. Hobson
et al. (2014); Trotta (2017) provide references to several different recipes for choosing a
sensible prior. In this work we employ two different kind of priors: for some parameters we
assume a flat prior distribution between certain fixed minimum and maximum values and
for some we assume Gaussian prior distributions around a value of highest prior confidence
(see chapters 16, 17 and 14 for details).



Chapter 13

Performance of internal covariance
estimators for cosmic shear
correlation functions

As explained in the previous chapter, if the noise of a measured data vector can be consid-
ered to have a Gaussian distribution, then the covariance matrix of that noise is everything
we need to know in order to test the agreement of that data vector with theoretical pre-
dictions. In the following chapter I will investigate the easiest, but also the most messy
way to get the covariance matrix: estimating it from the data itself.

The present chapter has been published as Friedrich, Seitz, Eifler & Gruen (2016)
in MNRAS. I exclusively performed the analysis in this article and also developed the
numerical tools to generate the mock data sets used in this study. Tim Eifler provided
the cosmology tool package CosmoLike that was used to perform the simulated likelihood
analyses. All authors contributed through discussions and proofreading.

Permission for non-commercial re-use of the material included in this thesis has been
granted by the MNRAS editorial office. Oxford University Press holds the copyright on
the paper.
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ABSTRACT
Data re-sampling methods such as delete-one jackknife, bootstrap or the sub-sample co-
variance are a common tool for estimating the covariance of large scale structure probes.
We investigate different implementations of these methods in the context of cosmic shear
two-point statistics. Using log-normal simulations of the convergence field and the corre-
sponding shear field we carry out realistic tests of internal covariance estimators. For a
survey of ∼ 5000 deg2 we find that jackknife, if implemented in what we call the galaxy-
scheme, provides the most reliable covariance estimates. Bootstrap, in the common im-
plementation of duplicating sub-regions of galaxies, strongly overestimates the statistical
uncertainties.

In a forecast for the complete 5-year DES survey we show that internally estimated
covariance matrices can provide a large fraction of the true uncertainties on cosmological
parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood
in the Ωm-σ8 plane as measured with internally estimated covariance matrices is on average
& 85% of the volume derived from the true covariance matrix. The uncertainty on the
parameter combination Σ8 ∼ σ8Ω0.5

m derived from internally estimated covariances is ∼ 90%
of the true uncertainty.

13.1 Introduction

Two-point statistics of cosmological random fields such as the cosmic shear correlation
functions or the galaxy clustering angular correlation function are common probes of the
large scale structure of the universe. Recent measurements of these correlation functions
are e.g. reported in Thomas et al. (2011); Kilbinger et al. (2013); de Simoni et al. (2013);
Becker et al. (2016). In order to use these statistics for constraining cosmological models
one needs a quantitative description of the joint distribution of the correlation function
estimators. When assuming multivariate Gaussian errors, this is given by the covariance
matrix. On large angular scales this covariance matrix can - both for cosmic shear and
galaxy clustering - be well described by a Gaussian approximation for the involved fields
(Schneider et al., 2002; Crocce et al., 2011). It has, however, been shown, that the Gaussian
approximation fails to describe the true PDF of the weak lensing convergence field (Taruya
et al., 2002; Vale & White, 2003) and that it underestimates the true covariance of the
cosmic shear correlation functions on small scales, which can be alleviated by an empirical
re-scaling (Semboloni et al., 2007; Sato et al., 2011), a log-normal approximation (Hilbert
et al., 2011), or halo model approaches (e.g. Cooray & Hu, 2001; Takada & Jain, 2009;
Eifler et al., 2014).

Alternatives to modeling the covariance matrix are to estimate it from many indepen-
dent realizations of cosmological N-body simulations or to estimate it internally, i.e. from
the data itself. The latter method is independent of assuming a particular cosmological
model and is hence often used to complement the other methods (Kilbinger et al. 2013;
Wang et al. 2013; Becker et al. 2016.).
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So far the performance of internal covariance estimators has only been systematically
studied for the galaxy clustering 2-pt function (in most detail by Norberg et al. 2009) or
for cross-correlations of the Cosmic Microwave Background (CMB) and the galaxy field
(Cabré et al., 2007). In our paper, we will concentrate on cosmic shear correlation func-
tions. We will show that the shape noise part of the covariance can be very accurately
estimated internally while the cosmic variance part is generally underestimated. Gaussian
simulations of the convergence field hence yield an overly optimistic test of internal covari-
ance estimators, since the Gaussian model underpredicts the cosmic variance contribution
to the covariance. We overcome this problem by employing log-normal simulations of the
convergence field.

In our paper we want to study the performance of internal covariance estimators such
as bootstrap, jackknife or the sub-sample covariance. There is no complete agreement
in the literature yet on whether internal covariance estimates can be used to constrain
cosmological parameters from measured 2pt-correlations or whether they are a mere tool
to generate reasonable errorbars in plots of correlation functions (see e.g. Norberg et al.
2009; Wang et al. 2013; de Simoni et al. 2013; Taylor et al. 2013). We want to address the
questions of how many internal re-samplings are required in order to get a stable covariance
matrix, whether internal estimators over- or underestimate the covariance matrix and
whether/how internal covariance estimates can yield unbiased estimates of the inverse
covariance matrix.

Our paper is organized as follows: In section 13.2 we introduce the cosmic shear corre-
lation functions and explain the Gaussian and the log-normal model for the covariance of
2-pt. function estimators. In section 13.3 we describe the simulations we use to generate
mock shape catalogs that follow any given input power spectrum and whose underlying
convergence field has a log-normal PDF. These are the simulations with which we will test
the performance of internal covariance estimators.

In section 13.4 we introduce two distinct ways of performing jackknife estimation of
the covariance of two-point measures - the pair-jackknife and the galaxy-jackknife. Fur-
thermore, we are explaining why jackknife, bootstrap and subsample covariance are almost
equivalent.

In section 13.5 we apply internal covariance estimators to simulated cosmic shear sur-
veys. We show that in the pair-scheme all estimators are almost identical and we demon-
strate the systematic effects of the different estimation schemes when varying the number
of re-samplings. Our method to find optimal estimation schemes has to be re-run for any
specific survey, because the performance of internal estimators depends crucially on the
depth and area of a survey. In the end of section 13.5 we configure our simulations to
match the complete, 5-year Dark Energy Survey (DES, The Dark Energy Survey Collabo-
ration 2005; Flaugher 2005) and test the accuracy of jackknife covariance matrices for this
particular setting. The code used for our simulations is made publicly available1.

In section 13.6 we discuss the results of our work.

1www.usm.uni-muenchen.de/people/oliverf/, the code also contains many other useful features, that e.g.
enable the user to create mock data suitable for galaxy-galaxy lensing or galaxy clustering measurements.
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13.2 Cosmic Shear Basics

13.2.1 Cosmic Shear Correlation Functions

Cosmic shear measures the correlated distortion of galaxy shapes due to gravitational
lensing by the large scale structure of the universe as a function of the angular distance of
galaxy pairs on the sky. We follow here the notation of Schneider et al. (2002) and employ
the flat-sky-approximation, i.e. we assume a tangential Cartesian coordinate system ϑ =
(ϑ1, ϑ2) on the sky.

In this coordinate system the comic shear field is at each point characterized by a
complex number γ(ϑ) = γ1 + iγ2. If the separation vector ∆ϑ = ϑ2−ϑ1 of two points on
the sky has the polar angle φ then the tangential and cross components of γ at ϑ2 and ϑ1

(with respect to each other) are defined as

γt = −Re
(
γe−2iφ

)
; γ× = −Im

(
γe−2iφ

)
. (13.1)

The cosmic shear correlation functions ξ±(θ) are defined as the expectation values

ξ±(θ) = 〈γt,1γt,2〉 ± 〈γ×,1γ×,2〉 , (13.2)

where θ is the absolute value of ∆ϑ. It can be computed in terms of the power spectrum
Pκ(`) of the scalar convergence field κ(ϑ) as

ξ±(θ) =
1

2π

∫
d` ` Pκ(`)J0/4(`θ) , (13.3)

where J0(x) (J4(x)) is the 0-th order (4-th order) Bessel function.
The shape of a galaxy can be characterized by a complex number ε which is to first order

the sum of the intrinsic shape εin of the galaxy and the distortion caused by gravitational
lensing, i.e. the value γ(ϑ) at the location ϑ of the galaxy,

ε = εin + γ . (13.4)

In a cosmic shear survey the shapes εi of many galaxies are measured and (cf. Schneider
et al. 2002) an estimator for the correlation function can be constructed as

ξ̂±(θ) =

∑
ij wjwj(εt,iεt,j ± ε×,iε×,j)∆θ(ij)∑

ij wjwj∆θ(ij)
, (13.5)

where we have allowed for some weighting scheme wi for the shape measurements and
where the filter ∆θ(ij) selects all galaxy pairs (i, j) in the survey whose angular separation
lies in some finite bin around θ. The normalization in equation 13.5 is the effective number
of galaxy pairs in a bin around θ, which we will abbreviate as

Np(θ) =
∑
ij

wjwj∆θ(ij) . (13.6)



13.2 Cosmic Shear Basics 105

13.2.2 Covariance of the Correlation Functions

The covariance matrix of the estimator in equation 13.5 is defined as

C±,±(θ1, θ2) = 〈(ξ̂±(θ1)− ξ±(θ1))(ξ̂±(θ2)− ξ±(θ2))〉
= 〈ξ̂±(θ1)ξ̂±(θ2)〉 − ξ±(θ1)ξ±(θ2) . (13.7)

In order to compute this covariance matrix it is convenient to split ξ±(θ) into the three
different contribution

ξ̂nn± (θ) =

∑
ij wiwj(ε

in
t,iε

in
t,j ± εin×,iεin×,j)∆θ(ij)

Np(θ)
,

ξ̂ss± (θ) =

∑
ij wiwj(γt,iγt,j ± γ×,iγ×,j)∆θ(ij)

Np(θ)
,

ξ̂sn± (θ) =

∑
ij wiwj(ε

in
t,iγt,j ± εin×,iγ×,j)∆θ(ij)

Np(θ)
(13.8)

which are the autocorrelation of the intrinsic shape noise, the autocorrelation of the shear
signal and their cross correlation. The whole estimator 13.5 is given in terms of these as

ξ̂±(θ) = ξ̂nn± (θ) + ξ̂ss± (θ) + 2 · ξ̂sn± (θ) .

Under the assumption that the shear signal and the shape noise are independent of each
other it is obvious that

〈ξ̂nn± (θ1)ξ̂sn± (θ2)〉 = 0 = 〈ξ̂ss± (θ1)ξ̂sn± (θ2)〉 .

If the intrinsic shape of any two galaxies is assumed to be uncorrelated, we can also conclude
that

〈ξ̂nn± 〉 = 0 for θ > 0 (13.9)

and hence
〈ξ̂nn± (θ1)ξ̂ss± (θ2)〉 = 〈ξ̂nn± (θ1)〉 · 〈ξ̂ss± (θ2)〉 = 0 for θ1, θ2 > 0 .

The covariance matrix can thus be split into three different contributions,

C±,± = Cnn
±,± + Css

±,± + Csn
±,± , (13.10)

namely

Cnn
±,±(θ1, θ2) = 〈ξ̂nn± (θ1)ξ̂nn± (θ2)〉 ,

Css
±,±(θ1, θ2) = 〈ξ̂ss± (θ1)ξ̂ss± (θ2)〉 − ξ±(θ1)ξ±(θ2) ,

Csn
±,±(θ1, θ2) = 4 · 〈ξ̂sn± (θ1)ξ̂sn± (θ2)〉 . (13.11)

The Css
±,± term depends on 4-point functions of the shear field and is called the cosmic

variance term. In order to evaluate it, further assumptions on the probability distribution
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function (PDF) of the shear or the convergence field are needed and we will discuss two
possible models for the convergence PDF in sections 13.2.2 and 13.2.2 - the Gaussian and
the log-normal model.

The contributions Cnn
±,± and Csn

±,± can be computed without additional assumptions. In
Joachimi et al. (2008) it is derived that they are given by2

Csn
±±(θ1, θ2) =

σ2
ε

πAn̄

∫
d` ` J0/4(`θ1) J0/4(`θ2) Pκ(`) ,

Cnn
++(θ1, θ2) = Cnn

−−(θ1, θ2)

=
σ4
ε

Np(θ1)
· δθ1,θ2 ,

Cnn
+−(θ1, θ2) = 0 , (13.12)

where A is the survey area, n̄ is the number density of galaxies, σε is the dispersion of the
intrinsic ellipticity which is defined as

σ2
ε := 〈εinεin∗〉 , (13.13)

and Pκ is again the convergence power spectrum.

Gaussian Approximation

In the paper series by Schneider et al. (2002), Kilbinger & Schneider (2004) and Joachimi
et al. (2008) the covariance matrix is studied in the Gaussian approximation, i.e. assuming
that the convergence field has a Gaussian PDF such that its 4-point correlation functions
can be expressed in terms of its 2-point correlation functions.

For the case where the survey geometry is much larger than the angular scales consid-
ered in the correlation functions, Joachimi et al. (2008) derive the following expressions for
the cosmic variance term:

Css
±±(θ1, θ2) =

1

πA

∫
d` ` J0/4(`θ1) J0/4(`θ2) P 2

κ (`) . (13.14)

However, due to the finite geometry of any given survey equation 13.14 generally overesti-
mates the covariance of Gaussian field as was demonstrated in Sato et al. (2011). This finite
area effect according to Sato et al. is not important for surveys larger than 1000 deg2. For
smaller surveys a method developed in Kilbinger & Schneider (2004) which doesn’t employ
an ensemble average over galaxy positions should be used to evaluate the Gaussian covari-
ance. This method was for example used in the analysis of CHFTLenS data in Kilbinger
et al. (2013). The finite area effect is also important for internal covariance estimation and
will be further discussed in section 13.4.2.

2as in Schneider et al. (2002) they employ an ensemble average over the galaxy positions to derive their
expressions.
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Shifted Log-Normal Approximation

As e.g. reported by Taruya et al. (2002), Vale & White (2003) or by Hilbert et al. (2011) the
Gaussian model fails to describe the true PDF of the convergence and especially on small
separations poorly represents the true covariance of the cosmic shear 2-point functions.

Hilbert et al. (2011) propose a different model for the convergence PDF, namely that
of a zero-mean shifted log-normal distribution. In this approach the convergence at a given
point on the sky is assumed to be of the form

κ(θ) = exp[n(θ)]− κ0 (13.15)

where n(θ) is a Gaussian random field (not necessarily with a vanishing mean) and the
minimal convergence parameter κ0 is chosen such that 〈κ〉 = 0. Hilbert et al. (2011)
show that from the corresponding PDF a model for the shear-shear contribution to the
covariance matrix can be derived. Considering only the most important terms they also
provide a simplified log-normal covariance, which reads

Css
±±(θ1, θ2) =

1

πA

∫
d` ` J0/4(`θ1) J0/4(`θ2) P 2

κ (`)

+
8π

κ2
0A

ξ±(θ1)ξ±(θ2)

∫ θA

0

dθ θ ξ+(θ) , (13.16)

where θA represents the ’radius’ of the survey, given by

θA =

√
A

π
. (13.17)

Comparing equation 13.16 to equation 13.14 on can see that the simplified log-normal
approximation to Css

±± consists of only one correction term to the Gaussian model. In our
paper, we will simulate log-normally distributed convergence fields and use equation 13.16
to compute the cosmic variance part of our model covariance.

Finite bin width

The expressions presented above for the covariance of ξ̂± are derived under the assumption
of small angular bins (Schneider et al., 2002). However, in section 13.5.2 we need correct
covariance expressions also for data vectors where the relative bin width is ∼ 0.3, i.e. where
the assumption of small bins does not hold. This is in fact the more realistic case, since
broad bins are commonly used to reduce the number of data points (see e.g. Kilbinger
et al. (2013), Becker et al. (2016)).

Hence, in section 13.5.2 we proceed as follows: We first compute the log-normal model
for the covariance, eqn. 13.16, for a set of very small angular bins θ̃i, i = 1, . . . , Ñ . Then
we apply a linear transformation that takes the large data vector of the small angular bins
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to a smaller data vector by putting together p neighboring bins of the old data vector,

θj =

p·j∑
i=p·(j−1)+1

θ̃iNp(θ̃i)/

p·j∑
i=p·(j−1)+1

Np(θ̃i)

ξ̂(θj) =

p·j∑
i=p·(j−1)+1

ξ̂(θ̃i)Np(θ̃i)/

p·j∑
i=p·(j−1)+1

Np(θ̃i) ,

(13.18)

where Np(θ̃i) is the number of pairs in the ith bin of the finer data vector.
The same linear transformation is then applied to the covariance matrix of the large

data vector to get the covariance matrix of the compressed data vector. We find that for
ξ̂− this decreases the mixed- and cosmic variance part of the covariance by & 30%, while
for ξ̂+ it makes almost no difference. The reason is that adjacent bins in ξ+ are much more
correlated than adjacent bins in ξ−. Hence, if two bins in ξ+ are joined, the variance of
the joined bin is almost identical to that of the individual bins and eqn. 13.16 can still be
applied3.

13.3 Log-normal Simulations

Simon et al. (2004) describe a quick method to simulate cosmic shear surveys based on a
Gaussian convergence field for any given convergence-power-spectrum. On a quadratic grid
in 2D-Fourier space they generate at each point ` of the grid a value of the convergence

κ̂(`) = κ1(`) + iκ2(`)

where the components κi(`) are drawn from a Gaussian distribution with zero mean and
variance

σ2
` =

1

2V
Pκ(`).

Here Pκ is the desired convergence power-spectrum and V is the volume of the grid in
angular space which is given in terms of the grid spacing ∆` as

V =

(
2π

∆`

)2

. (13.19)

In order to achieve a convergence field that is real valued in angular space one has to
impose the condition

κ̂(`) = κ̂∗(−`)
and in Fourier space the shear field is related to the convergence field by the equation4

γ̂(`) =
`2

1 − `2
2 + 2i`1`2

`2
κ̂(`) . (13.20)

3a similar reasoning can be applied for the off-diagonal terms of the covariance
4see eqn. 2.1.11 of Kaiser & Squires (1993) or eqn. 25 of Simon et al. (2004)
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A Fourier transform then gives the shear field in angular space.
The main idea in generating a log-normal random field is to generate a Gaussian field

n(θ) with the method of Simon et al. (2004) and transform it into κ(θ) via equation 13.15.
According to Martin et al. (2012); Takahashi et al. (2014) the power spectrum of n(θ), Pn,
can be computed from Pκ as follows:

First, the 2-pt. function of κ(θ) is given in terms of the power spectrum Pκ by

ξκ(θ) =
1

2π

∫ ∞
0

d` ` Pκ(`) J0(`θ) .

Next, the 2-pt. function ξκ is related to the 2-pt. function of n(θ) via (see e.g. equation
B.8 of Hilbert et al. 2011)

ξn(θ) = ln
(
ξκ(θ)/κ

2
0 + 1

)
,

where κ0 is the minimal convergence parameter from eqn. 13.15. Finally, the power
spectrum of the Gaussian field n(θ) by

Pn(`) = 2π

∫ ∞
0

dθ θ ξn(θ) J0(`θ) . (13.21)

The field n(θ) can now be generated as described by Simon et al. (2004). However, this
way n(θ) will have a mean value of zero. In order to ensure that 〈κ〉 = 0 the mean value

µ = κ0 −
σ2

2
(13.22)

has to be added, where σ2 is the variance of the Gaussian field. The convergence field κ(θ)
now has to be transformed into Fourier space. Using equation 13.20 one can then compute
the Fourier modes of the shear field and another Fourier transform gives the desired shear
field in angular space.

13.3.1 Setup and Validation of the Simulations

The harmonic space grid we are using has a total number of (216)2 grid points and a grid
spacing of ∆` = 2. Hence, in each axis it ranges from −`max = −216 to `max = +216. All
modes γ(`) with |`| > `max (i.e. the corners of the grid) are set to zero. The mode γ0 is
also set to 0 and all other modes are generated as explained above. Especially, we have to
fix a cosmology and assume a certain redshift distribution of sources, p(z), to compute the
convergence power spectrum Pκ.

Following eqn. 13.19 the grid in angular space has a volume of V = 2π/2 ≈ 104 deg2.
Out of the center of that volume we will cut out a sub-grid of size A. Onto that sub-grid
we are uniformly placing galaxies with a certain number density ngal. The shear of each
individual galaxy is then determined by quadratic interpolation of the grid onto the galaxy
position. Finally, a Gaussian intrinsic shape noise with an ellipticity dispersion σε is added
to get the total shape of the galaxy. Note that we simply added the shear signal and
intrinsic ellipticity, hereby ignoring the effects of reduced shear.
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setup A [deg] ngal zmedian κ0

I 4900 20 1.0 0.032
IIa ∼ 150 6 0.7 0.019
IIb 5000 6 0.7 0.019
IIc 5000 10 0.7 0.019

Table 13.1: The different configurations of mock catalogs used in this paper.

In this work we always keep the cosmology fixed to that of Hilbert et al. (2011), i.e.
a flat ΛCDM universe with (Ωm,Ωb, σ8, h100, ns) = (0.25, 0.045, 0.9, 0.73, 1.0). To compute
the convergence power spectrum we employ halofit (Smith et al., 2003) using the open
source code nicaea5. The source distribution is taken to have the form

p(z) =
3z2

2z3
0

e
−
(
z
z0

)3/2

, where z0 =
zmedian

1.412
. (13.23)

This is the same form that was also assumed by Hilbert et al. (2011). The ellipticity
dispersion is always set to 0.3 per component, i.e. σε =

√
(2) ·0.3. All other quantities, i.e.

area A, source density ngal and median redshift zmedian, will be varied throughout section
13.5. The different setups are summarized in table 13.1.

The redshift distribution of setup I is exactly that of Hilbert et al. (2011) and imitates
a rather deep survey comparable, e.g. , to euclid. In this setup, we measure the 2-pt.
correlation functions in 35 logarithmic bins from θmin = 1′ to θmax = 150′. The area A was
taken to be a square of 70 deg×70 deg. The minimal convergence parameter κ0 was chosen
to be 0.032 as suggested by Hilbert et al. for this redshift distribution.

The area, galaxy density and redshift distribution of setup IIa are chosen to be similar
to that of DES science verification data (DES-SV) which was used in Becker et al. (2016).
In this setup, we measure the 2-pt. correlation functions in 15 logarithmic bins from
θmin = 2′ to θmax = 300′, which is also exactly the data vector used by Becker et al. (2016).
In this setup we also reproduce the irregular shape of DES-SV, i.e. we use an SV-shaped
healpix mask to cut out the sub-volume A.

The setups IIb and IIc are aimed at a forecast for the final 5-year DES data. In IIb
we are assuming the same source density as in DES-SV and in IIc a slightly higher one.
Note that in principle, when adjusting the source density, we should also adjust the source
median redshift of the sources. But we will ignore this point, since our redshift distribution
is anyway only a rough match to that of DES. Thus, for all setups IIa, IIb and IIc we take
a median redshift of 0.7. Furthermore, for all these setups we use an empirical formula
κ0(z) found by Hilbert et al. (2011) to fix the minimal convergence parameter. Inserting
the mean redshift of zmean ≈ 0.745 gives a value of κ0 = 0.019. The area in setups IIb and
IIc are simply taken to be square shaped.

To validate our simulations, we generate 1000 independent realizations of setup I. In
order to speed up the computations we decrease the number of galaxies with respect to

5by Kilbinger et al., www.cosmostat.org/software/nicaea/
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Figure 13.1: Comparison of the mean correlation functions from 1000 simulations (red dots)
and the input model (blue line). The the red error bars show the standard deviation of the
mean and the green errorbars show the standard deviation of the single correlation function
measurements. We used the redshift distribution of Hilbert et al. (2011) to compute
the input power spectrum and we also used their value of κ0 to generate the log-normal
convergence. Note that in section 13.5.2 we will use a different configuration.
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our jackknife analysis by a factor of 5, i.e. to ngal = 4/arcmin2, while at the same time
decreasing the ellipticity dispersion by a factor of

√
5. This way the covariance expressions

in equation 13.16 stay unaffected.
In figure 13.1 we show the mean measured correlation functions in the mock surveys.

The correlation function measurement was carried out using the TreeCorr tree code6.
The measured correlation functions and those derived from the input model agree well on
most scales. Only at small angular scales the measured value of ξ− differs significantly
from the input model. The reason is the artificial cut-off at high `-values in our Fourier
grid which both in the model and the simulation introduces artifacts - as can be seen from
the oscillatory behavior of ξ−. To keep our analyses in section 13.5 free from these artifacts
we will only consider those bins in ξ− that have θ & 4.5′. For ξ+ we continue to use a range
of 1′ < θ < 150′. Also, for the setups IIa to IIc (not shown here) the discrepancy in ξ−
turns out to be less significant. Hence for these setups we stay with θmin = 2′.

Figure 13.2 compares the sample covariance of the 1000 simulations to the predictions
from equation 13.16. The relative deviation between measured variance and the log-normal
model is ≤ 20% for ξ+ and ≤ 15% for ξ−. For both correlation functions these deviations
seem to be significant given the uncertainties of the sample covariance estimate. However,
the sample variance values at different angular scales are highly correlated, which makes
a ’χ-by-eye’ judgment of the fit impossible. When transforming the covariance matrices
into the eigenbasis of the model covariance (right-hand panel of figure 13.2), the variance
values become uncorrelated and the agreement of the covariance matrices becomes more
evident. The eigenvalues at which the log-normal covariance significantly differs from the
sample covariance of our simulations are 3 orders of magnitude smaller than the biggest
eigenvalues for ξ+ and more than 2 orders of magnitude smaller than the biggest eigen-
values for ξ− (c.f. right-hand panel of figure 13.2). Finally, our analyses in section 13.5
remain unchanged when the log-normal covariance is exchanged by the sample covariance
of the 1000 independent realizations, which validates the simulations for our purposes (cf.
appendix 13.A, figure 13.14).

13.4 Internal Covariance Estimation for two-point cor-

relation functions

Suppose the correlation functions ξ± have been measured in finite bins around a set of
angular distances θi, i = 1, . . . , d. Let ξ̂ be either one of the data vectors [ξ±(θ1), . . . , ξ±(θd)]
or the joint data vector of both correlation functions.

If ξ[π] is a model for the measurement ξ̂ which depends on a set of parameters π, then
a common statistic for constraining the possible values of π is the χ2 statistic (Kilbinger
& Schneider, 2004), i.e.

χ2[π] = (ξ̂ − ξ[π])TC−1 (ξ̂ − ξ[π]) , (13.24)

6by Jarvis et al., github.com/rmjarvis/TreeCorr
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Figure 13.2: Left: sample variance from 1000 independent simulations compared to the
log-normal input model. The errorbars are assuming a Wishart distribution, note however
that the different sample variance values are correlated. Right: in the diagonal basis of
the model covariance matrix the sample variance values should independently follow a χ2-
distribution. The model and the simulations are consistent for the ≈ 20 largest eigenvalues
of the model covariance matrix.
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where C is the covariance matrix of ξ̂. One way to get the covariance matrix is to model
it theoretically. As we have seen in section 13.2.2 the modeling of the covariance depends
crucially on the PDF of the convergence field (Schneider et al., 2002; Hilbert et al., 2011;
Sato et al., 2011) and neither the Gaussian nor the log-normal approximation match a
realistic convergence PDF. Also, the model covariance matrix will depend on cosmological
parameters itself which, at least for small surveys, has to be taken into account when
deriving parameter constraints (Eifler et al., 2009).

A way to get around modeling the covariance matrix directly is to use the sample
covariance of measurements of the correlation functions in a set of independent N-body
simulations (cf. Takahashi et al. 2009; Sato et al. 2009; Harnois-Déraps & van Waerbeke
2015 or for an application to data Kilbinger et al. 2013) which however still depends on
the model parameters, i.e. on the assumption of a particular cosmological model. Another
alternative to modeling the covariance matrix is to estimate it from the data itself. In
the following we will introduce three different internal covariance estimation methods - the
sub-sample covariance, the delete-one-jackknife and the bootstrap (cf. Norberg et al. 2009;
Loh 2008).

13.4.1 Subsample Covariance

Let us split the area A of our cosmic shear survey into N equally shaped and sized subre-
gions of the area AS = A/N . In each subregion α = 1, . . . , N , a measurement of the data

vector ξ̂
α

can be carried out. Assuming that each sub-region has approximately the same
number of galaxies and that the correlation functions are measured on scales much smaller
than

√
AS the measurement of ξ̂ in the whole survey is given by

ξ̂ ≈ ξ̄ :=
1

N

N∑
α=1

ξ̂
α
, (13.25)

i.e. it is the mean values of the measurements in the sub-regions. If the measurements ξ̂
α

are independent, then the ij-th element of their covariance matrix can be estimated by

〈∆ξ̂αi ∆ξ̂
α

j 〉 ≈
1

N − 1

N∑
β=1

(ξ̂
β − ξ̄)i (ξ̂

β − ξ̄)j , (13.26)

where ∆ξ̂
α

is the difference between ξ̂
α

and its expectation value

ξ = 〈ξ̂α〉 = 〈ξ̂〉 . (13.27)

Accordingly, if the assumption of independent sub-regions were true, the covariance of the
total measurement ξ̂ could be estimated by

ĈSC =
1

N(N − 1)

N∑
α=1

(ξα − ξ̄)T (ξα − ξ̄) . (13.28)
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We will call the estimator in equation 13.28 the sub-sample covariance (Norberg et al.,
2009). The main systematic effects of internal covariance estimation can be most eas-
ily understood in terms of this estimator. Hence, before introducing the jackknife and
bootstrap estimator, we will explain these systematics in the following two sections.

13.4.2 Correlation of sub-samples

The sub-sample covariance estimator relies on the assumption that the data is split into
independent sub-samples, i.e. that there is no correlation of the measurements of the
correlation functions in the different sub-regions,

〈∆ξ̂αi ∆ξ̂
β

j 〉
!

= 0 , for α 6= β . (13.29)

This can be seen from the fact that eqn. 13.28 simply rescales the sub-field-to-sub-field
covariance by a factor of 1/N to get the covariance of the whole survey. If the sub-samples
are correlated, this will underestimate the true covariance matrix (Nordman & Lahiri,
2007).

Another way to think about this is as follows: the sub-sample covariance estimator
assumes that the covariance matrix of ξ̂ is inversely proportional to the survey area A.
Hence it estimates the covariance of sub-regions of the size AS within the data and then
rescales it to the total area,

C =
AS

A
· CS =

1

N
· CS , (13.30)

where N is again the number of sub-regions. But already from the log-normal model for
the covariance it can be seen, that this rescaling is not valid. The log-normal correction
term to the Gaussian covariance matrix is given by

Css,log
±± (θ1, θ2) =

8π

κ2
0A

ξ±(θ1)ξ±(θ2)

∫ θA

0

dθ θ ξ+(θ) .

This term may be proportional to 1/A, but the upper integral boundary also depends on
the survey diameter θA. As A increases, the covariance therefore decreases slower than
1/A. Hence, assuming 1/A scaling when extrapolating from the covariance of the smaller
sub-fields to the covariance of the full area underestimates the full covariance. Also, note
that even the Gaussian covariance term in eqn. 13.16 is only an approximation for large
survey sizes A. It also suffers from a finite area effect as can be seen from its derivation in
Schneider et al. (2002) or its form given in Hilbert et al. (2011).

The fact that sub-samples should be as uncorrelated as possible is also the reason why
the re-sampling of the data should be done into spatially connected patches. If instead
the data would be randomly divided into sub-samples then the shear correlations in the
sub-samples would be almost identical. Hence, only the shape-noise contributions to the
covariance would be measured by such an estimator.
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Figure 13.3: Galaxies at the edge of a sub-region (in red) contribute less pairs to the
measurement of the correlation functions (i.e. to equation 13.5 applied to the sub-sample)
than galaxies in the center of the sub-region (in blue). Consequently, the area of the sub-
patch is not uniformly probed by the galaxy pairs. This increases the cosmic variance
between sub-regions and biases the covariance estimates high. Hence, it has an opposite
effect to the correlation of sub-samples, which biases the covariance estimates low. As seen
from the left-hand panel of figure 13.5, at large angular scales this can even lead to an
overestimation of the cosmic variance of ξ̂− (in the galaxy-scheme, c.f. also figure 13.4).
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Figure 13.4: Two basic schemes for dividing a set of galaxy pairs into sub-samples: For each
sub-region of the survey, there will be galaxy pairs crossing from that region into another
(upper panel, green and red). In the galaxy-scheme ξα is computed by considering only
pairs that completely lay within the sub-region α (lower right panel). In the pair-jackknife
scheme (lower left panel) half of the pairs that cross from α to another region (drawn in
green) are taken into account for computing ξα while only the other half (red) is discarded.
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13.4.3 Galaxy pairs crossing between sub-samples

A problem specific to the internal covariance estimation for two-point correlation functions
is the question of what to do with pairs of galaxies where each galaxy lies in a different
sub-region of the survey.

In fact, the pieces of information in a cosmic shear survey are not the individual galaxy
shapes but the pairs of galaxy shapes. If the pairs crossing between sub-regions are com-
pletely ignored when computing the sub-measurements ξ̂α, then one is re-sampling a data
set that has less information than the total measurement of ξ± and hence a larger vari-
ance. Note, that this does not only influence the shape-noise part of the covariance but
also the cosmic variance part. The reason is that galaxies at the edge of a sub-region
contribute less terms to the correlation function measurement than galaxies in the center
of the sub-region (c.f. figure 13.3), i.e. the area of the sub-patch is not uniformly probed
by the galaxy pairs and the measured shear correlations are dominated by the inner part
of the patch. In contrast to the correlation of sub-samples discussed before, this increases
the cosmic variance between the sub-samples and can bias the covariance estimate high -
especially on large angular scales.

This effect can in principle be resolved by re-sampling the set of pairs (instead of the

set of galaxy shapes), i.e. by defining the sub-measurement ξ̂
α

as

ξ̂α±(θ) =

∑
pairs in α(εitε

j
t ± εi×εj×) +

∑
half of cross pairs(ε

i
tε
j
t ± εi×εj×)

Npairs

.

(13.31)

How this re-sampling of galaxy pairs can be done is illustrated in figure 13.4. Especially
one has to make sure that each galaxy pair enters exactly one of the ξ̂

α
. We call this

procedure the pair-scheme while we will call the standard procedure of considering only
the individual galaxies in sub-region α when computing ξ̂

α
as galaxy-scheme.

In figure 13.5 we demonstrate this effect along with the effect of correlated sub-samples
that was discussed before. The left-hand panel shows sub-sample estimates of the variance
of ξ̂± in a simulated survey (corresponding to setup I in table 13.1) where the shape noise
was put to zero and where 400 sub-samples were used. Both the variance of ξ̂+ and ξ̂− are
severely underestimated on small scales, which is due to the correlation of sub-samples. At
large angular scales, the galaxy-scheme yields systematically higher value for the variance
than the pair-scheme and at least for ξ̂− it can even overestimate the variance. This is due
to the missing cross-pairs in the re-sampling.

For the right-hand panel of figure 13.5 we have generated a catalog of pure shape noise
(σε, A, ngal as in setup I). This is the only situation where the assumption of uncorrelated
sub-samples is valid. You can see that in this case the pair-scheme is able to estimate
the variance without bias. The galaxy-scheme overestimates the variance for the reasons
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Figure 13.5: Different variance estimates using the sub-sample covariance estimator and
400 sub-samples. Left: Variance estimates for ξ̂+ (solid lines) and ξ̂− (dotted lines) in a
mock catalog without shape noise that is otherwise following setup I. The red lines show the
galaxy-scheme estimate (c.f. section 13.4.3), the blue lines show the pair-scheme estimate
and the black lines show the log-normal input model. Right: Sub-sample estimates of the

variance of ξ̂+ in a mock catalog that only consists of shape noise and has the same area
and density as in setup I. It is only in this situation (and in the pair-scheme) that internal
estimation of the covariance yields unbiased results.

explained before. A downside of the pair-scheme is that the shear signals in the sub-
measurements ξ̂

α
become even more correlated, as can also be seen from the left-hand

panel of figure 13.5.

13.4.4 Jackknife

Another method of covariance estimation that Norberg et al. (2009) investigate is the
delete-one-jackknife. Instead of estimating the covariance of the measurements ξα and
rescaling it to the size of the whole survey the jackknife is considering the measurements

ξ̂∗α± (θ) =

∑
{i,j not in α}(ε

i
tε
j
t ± εi×εj×) ·∆θ(|θi − θj|)∑

{i,j not in α}∆θ(|θi − θj|)
, (13.32)

i.e. the jackknife-sample α is generated by cutting out the subregion α and measuring the
correlation functions in the rest of the survey. The jackknife estimate for the covariance
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matrix is then given by (Efron, 1982; Norberg et al., 2009)

Ĉjack =
N − 1

N

N∑
α=1

(ξ∗α − ξ̄∗)T (ξ∗α − ξ̄∗) , (13.33)

where ξ̄
∗

is the mean of all jackknife measurements.
If we again assume that all subregions have the same galaxy density and that the

correlation functions are measured on scales much smaller than the sub-region size then
ξ∗α is approximately given by

ξ∗α ≈ 1

N − 1

∑
β 6=α

ξ̂
β
. (13.34)

From this it also follows that

ξ∗α − ξ̄∗ ≈ 1

N − 1

∑
β 6=α

ξ̂
β − 1

N

∑
β

ξ∗β

=
N · ξ̄ − ξ̂α

N − 1
− 1

(N − 1) ·N
∑
β

∑
γ 6=β

ξ̂
γ

=
N · ξ̄ − ξ̂α

N − 1
− N − 1

(N − 1) ·N
∑
γ

ξ̂
γ

=
N · ξ̄ − ξ̂α

N − 1
− ξ̄

=
ξ̄ − ξ̂α

N − 1
. (13.35)

Inserting this into the definition of Ĉjack gives exactly the subsample covariance ĈSC, i.e.
on small angular scales the two methods are approximately equivalent7.

In jackknife estimation one can in principle also differentiate between a pair scheme
and a galaxy scheme. Using eq. 13.32 for ξ∗α corresponds to the galaxy scheme. This is
equivalent to disregarding all pairs in the top panel of figure 13.4 when computing ξ∗α.
The pair-scheme is given by disregarding all pairs in the lower left panel of figure 13.4 when
computing ξ∗α. In the pair scheme jackknife and sub-sample covariance become exactly
equivalent when (assuming that each sub-patch has the same number of galaxies).

13.4.5 Bootstrap Covariance

The so called block bootstrap estimator of the covariance also divides the data into sub-
samples. If the data is split into N sub-regions, then a number of Nboot bootstrap re-
samplings of the data are generated by randomly drawing with replacement N of the sub-
samples and combining then into one re-sampled data set (Norberg et al., 2009; Nordman

7This is no general statement on the jackknife method. It holds only in our particular situation.
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& Lahiri, 2007; Loh, 2008; Efron, 1982). If the correlation function measured in the re-
sampled data i (i = 1, . . . , Nboot) is called ξboot,i, then the bootstrap estimate of the
covariance is given by

Ĉboot =
1

Nboot − 1

Nboot∑
i=1

(ξboot,i − ξ̄boot
)T (ξboot,i − ξ̄boot

) , (13.36)

where ξ̄
boot

is now the mean of all ξboot,i.
Again, the question arises of whether one should consider the single galaxies or the

galaxy pairs as the actual data (cf. section 13.4.3). In what we will call galaxy-bootstrap
one simply adds a copy of all galaxies in a sub-region α to the re-sampled data set i each
time the sub-region α gets drawn.

In the pair-bootstrap one adds all pairs associated to sub-region α to the list of pairs
that is used to compute ξboot,i. The difference between the two bootstrap schemes is mainly
the following: if the sub-region α gets drawn n times, then each pair in α gets a weight of
n in the pair-scheme and a weight of n2 in the galaxy-scheme.

Note that the pair-bootstrap is very similar to what Loh (2008) describes as marked
point bootstrap, the only difference being, that we chose to split pairs between sub-regions
evenly among these regions.

We will see in section 13.5 that the galaxy-bootstrap severely overestimates the covari-
ance. The other covariance estimators perform very similar to each other and suffer in
similar ways from the systematics explained in subsection 13.4.2 and 13.4.3.

13.4.6 Stability and Inversion of the Covariance Estimate

All effects that bias the internal covariance estimate can in principle be minimized by
dividing the data into very large sub-regions. This decreases both the correlation of the
different sub-regions and the influence of pairs crossing between sub-regions. However, this
also decreases the possible number of re-samplings and hence increases the variance of the
covariance estimator itself.

In order to derive constraints on the number of re-samplings let us assume that we are
in the limit were the correlations between sub-regions are small. Small here means that

〈∆ξ̂αi ∆ξ̂
β

j 〉 � 〈∆ξ̂
α

i ∆ξ̂
α

j 〉 , for α 6= β . (13.37)

As explained before, this is the only limit in which internal covariance estimation is valid.
In this limit the sub-sample covariance is just a rescaling of the sample covariance of
independent realizations of the sub-regions. Hence - in the limit considered here and
under the assumption that the data vector behaves Gaussian - the sub-sample covariance
estimates are distributed according to a Wishart distribution (cf. Taylor et al. 2013). Also,
the pair-jackknife is almost equivalent to the pair-version of the sub-sample covariance, i.e.
to equation 13.28 when ξ̂

α
is computed with equation 13.31. Hence, also the pair-jackknife

estimates should approximately follow a Wishart distribution.



122
13. Performance of internal covariance estimators for cosmic shear correlation

functions

The most important consequence of this is that the inverse of the covariance matrix
estimate will be a biased estimate of the true inverse covariance matrix, and the bias is
approximately given by (Hartlap et al., 2007; Taylor et al., 2013):

〈Ĉ−1
SC〉 ≈

N − 1

N − d− 2
C−1

true , (13.38)

where N is the number of sub-regions and d is the number of data points in ξ̂. Especially,
this factor has to be accounted for when computing the χ2 statistic, eq. 13.24, i.e. it has
an influence on the constraints derived on cosmological parameters when using internal
covariance estimation.

Taylor et al. (2013) also give constraints on N with respect to d when a certain accuracy
in the final parameter constraints is demanded.8 We take their criterion,

N
!
>

2

ε2
+ (d+ 4) , (13.39)

where ε is the required fractional accuracy on parameter constraints, as a guideline also for
internal covariance estimation. This is however under the assumption of an exact Wishart
distribution, i.e. that the data vector is Gaussian and that the sub-regions are large enough
to not cause systematic biases in the covariance estimate. Demanding a fractional accuracy
of ε = 0.2 for the parameter constraints, this yields a necessary number of N > 54 + d
re-sampling. Below this number there is no chance for internal covariance estimation to
yield parameter constraints that are accurate to more that 20%.

13.5 Testing internal Covariance Estimators on sim-

ulated cosmic Shear Surveys

We will now use the simulations described in section 13.3 to test the performance of internal
covariance estimators. First, we will use setup I (cf. 13.1) corresponding to a rather deep
survey. We carry out 50 independent realizations of this survey. In each survey we measure
the correlation functions in the range and binning that was explained in section 13.3. We
then estimate the covariance of the measured correlation functions using the different
internal estimation schemes that were introduced in section 13.4. Throughout this section
- except for subsection 13.5.2 - we consider the log-normal model that was explained in
section 13.2.2 as the true covariance of the simulated surveys. This is justified by the fact
that our results don’t change if we instead use the sample covariance of 1000 independent
realizations that were presented in section 13.3 (cf. appendix 13.A, figure 13.14).

In figure 13.6 we compare the sub-sample, jackknife and bootstrap estimates of the
diagonal elements of the covariance matrix (both in the galaxy- and pair-scheme) when
splitting the survey into N = 225 sub-regions. The most impressive finding is, that in

8However, they are ignoring the impact that the variance in the inverted covariance estimate has on
parameter constraints, which is investigated by Taylor & Joachimi (2014).
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Figure 13.6: A comparison of the different internal estimation schemes when splitting the
survey into N = 225 sub-regions. Green: galaxy-bootstrap, purple: pair-bootstrap, red:
galaxy-jackknife, blue: pair-jackknife and cyan: sub-sample covariance compared to the
analytical covariance (black line). We show the sub-sample covariance only in the galaxy-
scheme because in the pair-scheme it is almost identical to jackknife and bootstrap. As
explained in section 13.4, at large angular scales the different treatment of galaxy pairs
crossing between sub-region leads to an overestimation of the variance by the galaxy-scheme
and an underestimation of the variance by the pair-scheme.
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the galaxy-scheme the bootstrap severely overestimates the variance. This is in agreement
with the findings of Norberg et al. (2009) for galaxy clustering correlation functions. The
duplication of whole sub-volumes of galaxies creates bootstrap samples that are in fact
unrealistic, i.e. these bootstrap samples contain regions with no sources at all and on
the other hand regions with a very high source density. Each original galaxy pair gets
weighted by a factor of n2 when the corresponding region is drawn n times. This puts a
very high weight on small sub-areas of the bootstrap sample and creates an unphysically
high variance between the bootstrap samples.

In the pair-scheme however, all three internal estimators perform almost identical. This
is not surprising, because in that scheme the bootstrap is just an approximation to the
sub-sample covariance and sub-sample and jackknife covariance are almost identical in the
pair-scheme. As explained in section 13.4.3, in the galaxy-jackknife scheme the two effects
of correlated sub-regions and false re-sampling of pairs partly cancel each other. Hence the
galaxy-jackknife comes closest to the true variance at large scales. The performance of the
sub-sample covariance (in the galaxy-scheme) only slightly differs from that.

Because of the strong similarity between the different estimator we will restrict the
following analyses to the pair-jackknife and the galaxy-jackknife. We now investigate the
influence of sub-region size on internal covariance estimation. Hence we split the surveys
into 3 different numbers of sub-regions: 102, 152 and 202 corresponding to sub-region areas
of approximately 7.0 × 7.0 deg2, 4.67 × 4.67 deg2 and 3.5 × 3.5 deg2. In figure 13.7 we
compare the mean value of the 50 jackknife estimates of the variance of ξ̂± (the diagonal
elements of the covariance matrix) to the true underlying log-normal model. A comparison
of the off-diagonal behavior of the jackknife estimates to that of the input-covariance can
be found in appendix 13.A. The errorbars in figure 13.7 represent the standard deviation
of the 50 jackknife estimates, i.e. they illustrate the noise of the internal estimators. You
can see in this figure the biases in the jackknife estimates that we explained in the previous
section. For ξ+, both jackknife schemes underestimate the variance. At large scales, this
is in the galaxy-jackknife scheme partly compensated by the false re-sampling of galaxy
pairs. For ξ−, the pair-jackknife underestimates the variance while the galaxy-jackknife
overestimates it. ξ− is a much more local measure in the sense that the different sub
regions are less correlated in ξ̂− and that the covariance matrix is much more dominated
by the shape noise contributions. Hence, the severe systematic underestimation of the
variance that can be seen for ξ+ does not appear as strongly for ξ−.

When increasing the number of sub-regions for the jackknife estimators, the noise in the
variance estimates becomes smaller but the deviations from the true variance also become
stronger. This is because for smaller sub-regions the estimated ξ̂

α
become more correlated

and because there will be more galaxy pairs crossing from one sub-region to another.

13.5.1 Constraints on cosmological Parameters

We will now take the 50 simulations as mock observations and try to constrain the dark
matter density parameter Ωm and the power spectrum normalization σ8. To do so we
sample the Ωm-σ8 plane on a fine grid while keeping the other cosmological parameters
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Figure 13.7: Mean values of 50 jackknife estimates of the variance of ξ+ (left) and ξ− (right).
Galaxy-jackknife was used for the red points while pair-jackknife was used for the blue points and
the errorbars show the sample standard deviation of the single estimate (as estimated from the 50
jackknife matrices). The black line corresponds to the log-normal input model of the simulations.
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fixed. Following a Bayesian approach we take the probability density in the parameter
space to be proportional to the likelihood,

p(π) ∼ L(π) ∼ exp

(
−1

2
χ2[π]

)
, (13.40)

where we assume our data vector ξ̂ to be Gaussian such that

χ2[π] = (ξ̂ − ξ[π])TC−1 (ξ̂ − ξ[π]) . (13.41)

Here ξ[π] are our model predictions for 〈ξ̂〉 which we again compute with the nicaea
package. We are assuming a prior of Ωm ∈ [0.1, 0.4] and σ8 ∈ [0.8, 1.1], which is well
centered around our input cosmology. For C we will either insert the log-normal model
covariance or the jackknife estimates of the covariance. We will de-bias the inverse of the
latter in the way explained in section 13.4.6. Note that the reasoning in section 13.4.6
is in principle only valid for the pair-jackknife. And also for the pair-jackknife it is only
valid in the case of almost uncorrelated sub-regions. We will nevertheless carry out the
de-biasing in the same way for both jackknife schemes. Furthermore, we will also ignore
the variance of the inverted covariance estimate (Taylor & Joachimi, 2014), as explained
in the end of section 13.4. Our data vector ξ̂ will be either ξ̂+ or ξ̂− or the joint data
vector of both correlation functions, in which case we will also take into account the cross
covariance between the two.

For each mock observation ξ̂ and for each available covariance matrix we use equa-
tion 13.40 to compute marginalized 1σ constraints on Ωm and σ8, i.e. we consider the
marginalized probability densities

pΩ(Ωm) =

∫
dσ8 p(Ωm, σ8)

pσ(σ8) =

∫
dΩm p(Ωm, σ8) (13.42)

and we define 1σ confidence interval to be that interval around the best fit parameter value
which encloses ∼ 68% of the probability and which has equal values of the probability
density at each interval boundary9.

Because of the strong degeneracy between Ωm and σ8 (Kilbinger et al., 2013; Kilbinger
& Schneider, 2004), even little uncertainties in the modeling of ξ[π]10 or in our simulations
could shift the best-fit values of the parameters along the degeneracy. Fortunately, this
does not affect our analysis because we only have to compare the constraints derived from
the jackknife covariance estimates to the constraints obtained from the true (log-normal)
covariance matrix. Furthermore, our results don’t change noticeably, if instead of the log-
normal covariance matrix we use the sample covariance estimated from 1000 simulations

9Without the last statement the definition of the 1σ confidence interval would be ambiguous.
10In our modeling we are for example not considering the finite bin width in our measurement of ξ̂.
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(c.f. section 13.3). Hence in any case, our analysis provides a fair test of internal covariance
estimators.

In figure 13.8 we show the mean values of the upper and lower boundaries on Ωm and
σ8 as well as their mean best fit value for different numbers of jackknife re-samplings (red
points and errorbars). The mean is taken with respect to all 50 confidence intervals we
computed from the 50 mock observations. We also compare the jackknife constraints to
those we get when using the true covariance matrix (blue lines). These figures only show
the results for the galaxy-jackknife, which in the situation considered here yields the best
agreement with the true covariance.

We compare galaxy-jackknife and pair-jackknife in figure 13.9. Here we show the mean
width of the confidence intervals obtained with galaxy-jackknife, pair-jackknife and the
true covariance matrix. For ξ−, the width of the confidence intervals agrees well with
the confidence intervals obtained from the true covariance matrix. This is because the
covariance matrix of ξ− is dominated by its shape noise component, which is very accurately
captured by jackknife. In fact, even for the pair-scheme and even for 400 jackknife re-
samplings the width of the confidence intervals from ξ− alone is not underestimated. This
seems to contradict figure 13.7, where the pair-scheme systematically underestimates the
covariance. One reason for this is probably, that the variance in the inverted covariance
estimate increases parameter uncertainties (Taylor & Joachimi, 2014). Note especially,
that this is not the same effect as the de-biasing in eqn. 13.4.6. For ξ+, the strong
underestimation of the covariance matrix by jackknife also leads to an underestimation of
the uncertainties on Ωm and σ8. Again one can see that the variance in the width of the
confidence intervals (the errorbars in figure 13.9) becomes smaller, when more jackknife re-
samplings are used. In turn, this increases the overall underestimation of the uncertainties.
If both correlation functions are combined and 225 re-samplings are used, the parameter
uncertainties are underestimated by ∼ 10%.

We have not shown results from the pair-jackknife estimates in figure 13.8, but the best
fit values of Ωm and σ8 agree very well between the two jackknife schemes (i.e. within the
green errorbars in figure 13.8), if only ξ̂+ or ξ̂− are used to constrain the parameters. In
figure 13.10 we compare the pair-jackknife and galaxy-jackknife best fit values when using
the full data vector. Here the pair-jackknife seems to yield a stronger bias of the best fit
values with respect to the true covariance.

The above results indicate that internal covariance estimation can reproduce the con-
straints on parameters from the true covariance quite well, especially when the galaxy-
jackknife scheme is used. However, these results are not generalizable. In general, internal
estimation of the covariance works best if the covariance matrix is shape noise dominated.
Hence, the answer to what is the best estimation scheme and how well it can reproduce the
true errorbars on cosmological parameters depends on the depth of the considered survey.
A shallower survey not only has a smaller source density and hence a bigger shape noise. It
also has a smaller convergence power spectrum which in turn reduces the cosmic variance
part of the covariance.

The procedure we presented above to investigate the performance of internal covariance
estimators thus has to be re-run for each survey under consideration. One can consider
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Figure 13.8: Mean 1σ constraints on Ωm and σ8 using galaxy-jackknife (red errorbars). The green
errorbars show the standard deviation of the mean best-fit values (i.e. the standard deviation of
the best fit values divided by

√
50). The blue lines indicate the constraints that are obtained when

the true covariance is used in each mock catalog. Note that the error bars are very symmetric.
For surveys as big as our simulations the constraining power becomes large enough to turn the
- usually banana shaped - degeneracy between Ωm and σ8 into almost elliptical contours in the
parameter plane (cf. appendix 13.B).
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Figure 13.9: Mean width of the 1σ uncertainty on Ωm and σ8 using pair-jackknife (blue) and
galaxy-jackknife (red). The errorbars show the standard deviation the 50 estimated confidence
intervals. The black dotted line indicates the mean width of the confidence intervals when the
true covariance is used in each mock catalog.
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Figure 13.10: Mean best fit values of Ωm and σ8 using pair-jackknife (blue) and galaxy-
jackknife (red). The errorbars show the standard deviation of the mean, as estimated from
the 50 best fit values. The black dotted line indicates the mean best fit value when the
true covariance is used in each mock catalog.
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the log-normal model as a good model for the true covariance of our simulations for mock
catalogs with an area of & 1000 deg2 and a simple, connected geometry. For smaller
surveys the finite-area-effect should not be ignored (Sato et al., 2011; Kilbinger et al.,
2013). However, these surveys can be simulated fast enough with our public code to
generate a large sample of independent realisations of the mock data which provides a
good sample covariance estimate of the true covariance matrix. This estimate can then be
compared to an ensemble of internal covariance estimates as we have done it above.

13.5.2 Matching the procedure to DES science verification and
year 5 Data

We will now present an application of our method. Our attempt is to determine the
performance of internal covariance estimation for

• setup IIa: Dark Energy Survey science verification data (DES-SV)

• setup IIb: DES year five data (DES-Y5) assuming a low source density

• setup IIc: DES year five data assuming a high source density.

For the area, shape noise, source density and source redshift distribution cf. table 13.1
and section 13.3.1. A source density of 10 arcmin−2 is forecasted for the final DES data
while a density of ∼ 6 arcmin−2 roughly corresponds to the current status of DES science
verification data. Note also, that we are using a mask similar to the footprint of DES-SV
to simulate mock shape catalogs for setup IIa. Setups IIb and IIc are simply simulated to
be square shaped.

We adjust our data vector to that used by Becker et al. (2016), i.e. for both ξ+ and ξ−
we now use 15 logarithmic bins ranging from θ = 2 arcmin to θ = 300 arcmin. We will
cut the survey into 100 sub-regions for setup IIa. Note that this way our biggest angular
scales by far exceed the diameter of our subregions which is ∼ 45 arcmin. Hence, this can
be considered an on-the-edge test of internal covariance estimators. A good tool to define
sub-regions in an irregular survey geometry is the kmeans algorithm11. For setups IIb and
IIc we decide to split the survey into 225 sub-regions which corresponds to a diameter of
∼ 4.7 arcmin. This should give a more stable estimate of the covariance while still yielding
much larger sub-regions than in setup IIa.

In figure 13.11 we compare the internal variance estimates to the true covariance. The
latter is taken to be the log-normal model for the Y5 simulations and a sample variance
computed from 1000 independent realizations for the SV simulations. Because of the fewer
number of bins we are now using the procedure described in section 13.2.2 to compute
the log-normal covariance matrix. As you can see, for ξ̂− the pair-jackknife now becomes
the best estimator of the variance. For ξ̂+ the situation is similar to what we have seen
before, i.e. both schemes mostly underestimate the variance and the galaxy-jackknife is

11implemented by Erin Sheldon for python, www.github.com/esheldon/kmeans radec
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Figure 13.11: Variance estimates for DES-SV like data (left), DES-Y5 like data with a
low density (middle) and with a high density (right). Red dots show the galaxy-jackknife
estimates and blue dots the pair-jackknife estimates. For the Y5 case the log-normal model
together with eqn. 13.18 was taken as a reference covariance (black lines) while for the SV
case we estimated the true covariance from 1000 independent realizations of the mock data
in order to account for the finite-area-effect. The errorbars indicate the standard deviation
of the single estimates as obtained from 10 independent measurements.
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overall closer to the true variance. Hence, judging from figure 13.11 we conclude that
galaxy-jackknife should be used in order to not under estimate the true uncertainties in
the data vector. However, these statements only hold for the diagonal elements of the
covariance matrix. A convenient way to compare the complete covariance estimates is to
derive likelihood contours from them in the desired parameter space.

We carry out a likelihood analysis in the Ωm-σ8 plane for the 10 simulations that have
a Y5-like area and a source density of 6 arcmin−2 which is the highest density currently
achieved in DES science verification data (Becker et al., 2016). In figure 13.12 we show
the likelihood contours obtained from one of the simulations when using galaxy-jackknife,
pair-jackknife and the log-normal model for the covariance matrix. The contours were ob-
tained from Monte-Carlo-Markov-Chains (150.000 steps) using the COSMOLIKE package
by Eifler et al. (2014). We present the likelihood contours from the other 9 independent
simulations in appendix 13.B. As expected, jackknife estimation underestimates the uncer-
tainties. The input cosmology lies within the 1-σ contour in 6 of 10 simulation, when the
log-normal covariance is used. It lies within the 1-σ contour in 5 of 10 simulation, when
the covariance is estimated with jackknife (either scheme).

In table 13.2 we show the average ratio of the volume in the Ωm-σ8 plane enclosed by the
1σ- and 2σ-contours when using jackknife to that when using the true covariance matrix.
Since the 1σ- and 2σ-ellipses obtained from jackknife and from the true covariance lie well
on top of each other, this ratio can be considered as the fraction of the true uncertainties
that is recovered by the jackknife covariance matrices. You can see from table 13.2 that the
volume inside contours of constant likelihood in the Ωm-σ8 plane estimated with galaxy-
jackknife is on average & 85% of the true volume while the volume estimated with pair-
jackknife recovers only & 70% of the true volume. This agrees with the impression (from
figures 13.15 and 13.16) that the contours obtained with galaxy-jackknife match better to
the contours obtained from the true covariance. Note also, that the ellipses obtained from
pair-jackknife have in some cases a strong off-set along the degeneracy between Ωm and
σ8 compared to the true covariance and the galaxy-jackknife estimates. This is probably
because pair-jackknife strongly underestimates the variance of ξ̂± at large angular scales,
which causes even small fluctuations at these scales to shift the contours considerably.

Finally, we want to see how well jackknife matrices recover the uncertainties perpendicu-
lar to the degeneracy between Ωm and σ8. To do so, we consider the parameter combination

Σ8 :=
σ8

0.9

(
Ωm

0.25

)0.5

. (13.43)

Contours of constant Σ8 are roughly parallel to the degeneracy that can be seen in figures
13.12, 13.15 and 13.16. For each of our 10 realizations we bin our MCMC’s in Σ8 to estimate
its probability density. Table 13.3 displays the average ratio of the 1σ and 2σ uncertainties
obtained from jackknife to the uncertainties obtained from the true covariance. This time,
we find that galaxy-jackknife on average yields ∼ 90% of the true uncertainties while pair-
jackknife yields ∼ 85%. Hence, when the degeneracy between Ωm and σ8 is broken by other
probes (such as the power spectrum of temperature fluctuation in the cosmic microwave
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background) the performance of jackknife covariance matrices slightly improves.
Judging from the above numbers and from the contours in appendix 13.B we deem

that & 85% of the true uncertainties on Ωm and σ8 in a 2D cosmic shear analysis can be
recovered without the use of large suits of N-body simulations or covariance models. When
other probes like the CMB are used to break the degeneracy between the two parameters,
the performance of jackknife even increases, because the deviations from the true covariance
mostly take place along the direction of degeneracy between Ωm and σ8.

13.6 Conclusions

We have explored the performance of internal covariance estimation for cosmic shear 2-pt.
correlation functions. We devised two different jackknife schemes and explained in de-
tail when these schemes underestimate the true covariance and when overestimation takes
place. Furthermore, we explained why the sub-sample covariance and the pair-bootstrap
covariance yield results that are very similar to jackknife estimation of the covariance
matrix. Based on the pair-jackknife scheme we have argued that the Anderson-Hartlap-
Kaufman (Kaufman, 1967; Hartlap et al., 2007) de-biasing factor should also be applied
when inverting jackknife covariance matrices. Based on empirical findings we also recom-
mend the use of this factor for the galaxy-jackknife scheme.

We have demonstrated our findings in an exemplary study using log-normal simulations
of the convergence field and the corresponding shear field. We found the performance of
all internal covariance estimators - except for the bootstrapping of galaxies - to be very
similar. For the investigated cases, jackknife covariance matrices could provide accurate
uncertainties on cosmological parameters as compared to the true covariance matrix of
our simulations. Our conclusions regarding the two possible re-sampling schemes are the
following:

• galaxy-bootstrap severely overestimates the covariance, which is in agreement with
the finding of Norberg et al. (2009) for galaxy clustering correlation functions.

• from ξ− alone, the pair-jackknife scheme reconstructs the parameter constraints most
faithfully (cf. figure 13.8).

• from ξ+ alone and when combining the two correlation functions, we find that the
parameter constraints are best reconstructed by the galaxy-jackknife.

The performance of the galaxy-scheme turns out to be better in most situations, because
two systematic errors (cf. sections 13.4.2 and 13.4.3) cancel each other partly in the that
scheme. The pair-jackknife suffers from only one of these systematics and hence always
yields lower (absolute) values for the covariance than the galaxy-jackknife and always
underestimates the (absolute) values of the true covariance matrix.

Our results can not be generalized to arbitrary surveys, i.e. our paper rather demon-
strates a general method to find a good covariance estimation scheme for any particular
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galaxy-jackknife pair-jackknife
V1σ,jack/V1σ,true 0.86± 0.08 0.72± 0.09
V2σ,jack/V2σ,true 0.87± 0.08 0.74± 0.09

Table 13.2: Ratio of the volume within the 1σ and 2σ contours in the Ωm − σ8 plane
obtained from jackknife and true covariance (setup IIb). The errors are given by the
standard deviation of a sample of 10 independent simulations. The combined data vector
of ξ+ and ξ− was used.

galaxy-jackknife pair-jackknife
∆Σ8 1σ,jack/∆Σ8 1σ,true 0.91± 0.08 0.86± 0.10
∆Σ8 2σ,jack/∆Σ8 2σ,true 0.90± 0.08 0.85± 0.09

Table 13.3: Ratio of the 1σ and 2σ uncertainties on Σ8 ∼ σ8Ω0.5
m obtained from jackknife

and true covariance (setup IIb). The errors are given by the standard deviation of a sample
of 10 independent simulations. Again, the combined data vector of ξ+ and ξ− was used.

survey. In making our simulation code public we provide our readers with a tool to re-
do the presented analyses for their desired set-up. As an application example we tested
jackknife estimation of the covariance for a 2D cosmic shear analysis of the Dark Energy
Survey. We found that for the complete, 5-year DES survey internal covariance estimators
can provide reliable parameter constraints in a 2D cosmic shear analysis. We recommend
a scheme of ∼ 15× 15 jackknife re-samplings to yield a stable covariance matrix. Judging
from figures 13.12, 13.15 and 13.16, we find as before that the likelihood contours in the
Ωm-σ8 plane are best reconstructed by the galaxy-jackknife scheme, if both correlation
functions ξ+ and ξ− are combined. This way, on average & 85% of the true uncertainties
are captured by the internally estimated covariance matrix. If the degeneracy between Ωm

and σ8 is broken, this value increases to ∼ 90%. Hence, up to ∼ 90% of the true uncertain-
ties in a 2D cosmic shear analysis can be provided from internally estimated covariance
matrices.
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Figure 13.12: 1-σ and 2-σ contours in the Ωm-σ8 plane obtained from the two jackknife
schemes (red and blue) and the true covariance (log-normal covariance, black) and using the
combined data vector (ξ̂+, ξ̂−). The input cosmology lies within the 1-σ contour in 6 of 10
simulation, when the log-normal covariance is used. It lies within the 1-σ contour in 5 of 10
simulation, when the covariance is estimated with jackknife (either scheme). In appendix
13.B we show the contours obtained from the other simulations. The underestimation of
the uncertainties by jackknife mainly takes place along the direction of the degeneracy
between Ωm and σ8.



13.6 Conclusions 137

Acknowledgments

This work was supported by SFB-Transregio 33 ‘The Dark Universe’ by the Deutsche
Forschungsgemeinschaft (DFG). We also acknowledge the support by the DFG Cluster of
Excellence ”Origin and Structure of the Universe”. The simulations have been carried
out on the computing facilities of the Computational Center for Particle and Astrophysics
(C2PAP). Part of the research was carried out at the Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

This paper has gone through internal review by the DES collaboration. We thank
David Bacon, Gary Berstein, Stefan Hilbert, Klaus Honscheid, Benjamin Joachimi and
Bhuvnesh Jain for very helpful comments and discussions during the review process.

Funding for the DES Projects has been provided by the U.S. Department of Energy,
the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the
Science and Technology Facilities Council of the United Kingdom, the Higher Education
Funding Council for England, the National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at
the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio
State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas
A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de
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13.A Correlation Matrices and Constraints from em-

pirical Covariance

To see how jackknife estimates of the covariance matrix capture the cross-correlations
between different bins of x̂i± we are looking at the correlation matrix. This matrix is given
in terms of the covariance matrix elements Covij as

Corrij =
Covij√

CoviiCovjj
. (13.44)

In the top panel of figure 13.13 we compare the correlation matrix obtained from the log-
normal model covariance to the correlation matrix obtained from averaging all 50 jackknife
estimates of the covariance matrix that were presented in section 13.5, i.e. using setup I
from table 13.1 (we show here the jackknife with 400 re-samplings which divided the survey
into the smallest sub-regions). The lower left corner shows the auto correlations of ξ̂+ and
the upper right corner shows the auto correlations of ξ̂−. The upper left and lower right
corners show the cross-correlations between the two correlation functions. Furthermore, the
lower right half of the plot shows the correlations obtained from the log-normal model and
the upper left half shows the correlations obtained from the average jackknife covariance
estimate. Each column and row of pixels represents one angular bin and the bins range
from 1′ to 150′, starting on the lower left corner.

The top panel of figure 13.13 indicates, that jackknife is able to capture the general
structure of the correlation matrix of the 2-pt correlation functions. Given that internal
covariance estimators mostly underestimate the variance of ξ̂± one can hence conclude that
the covariance elements Covij are approximately underestimated by the same amount as
the square root of CoviiCovjj (cf. eqn. 13.44).

In the bottom panel of figure 13.13 we show the same plot but using the empirical
covariance matrix obtained from 1000 independent realizations of setup I in the lower right
half of the plot. The empirical covariance matrix is obviously noisier than the log-normal
model covariance matrix. In order to confirm, that there are nevertheless no significant
deviations of our simulations from the log-normal input model, we show in figure 13.14
again the constraints on Ωm and σ8 that where presented in figure 13.8, but this time using
the empirical covariance to compute the reference constraints.

13.B Likelihood Contours

Figures 13.15 and 13.16 show the 1- and 2-σ contours in the Ωm-σ8 plane computed with
COSMOLIKE when using galaxy-jackknife and pair-jackknife to estimate the covariance
matrix (red and blue lines) and compare them to the same contours obtained from the true
covariance matrix (black lines). The simulations are configured to mimic the complete, 5
year Dark Energy Survey (cf. section 13.5.2 or table 13.1, setup IIb). The only thing that
differs from simulation to simulation is the random seed that was used to generate the
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correlation matrix: 400 jackknife re-samplings vs. log-normal covariance
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correlation matrix: 400 jackknife re-samplings vs. empirical covariance
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Figure 13.13: Correlation matrix of ξ̂±. Bins 0 to 34 belong to ξ̂+ and bins 35 to 69 belong to
ξ̂−. For each 2-pt function the bins range from 1′ to 150′, starting on the lower left corner. Top
panel: the lower right half of the plot displays the correlation coefficients of ξ̂± obtained from the
log-normal model and the upper left halt displays the correlation coefficients obtained from the
average jackknife covariance estimate (using 400 re-samplings). Bottom panel: same plot, but
this time the empirical covariance from 1000 realizations of setup I. Note that we are averaging
over 50 different jackknife estimates of the covariance matrix here, which makes the empirical
covariance matrix seem noisier than the jackknife covariance.
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Figure 13.14: These plots are identical to the ones shown in figure 13.8, except that this
time the blue lines indicate the mean best fit values and 1 − σ constraints obtained from
the empirical covariance matrix, i.e. from the sample covariance of 1000 independent
realizations of setup I.
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log-normal fields and the shape noise. The green dots represent the input cosmology of
the simulations.
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Figure 13.15: 1- and 2-σ contours in the Ωm-σ8 plane obtained from the first 6 simulations.
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Figure 13.16: 1- and 2-σ contours in the Ωm-σ8 plane obtained from the remaining 4
simulations.
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Chapter 14

Precision matrix expansion – efficient
use of numerical simulations in
estimating errors on cosmological
parameters

The data we are gathering about the large scale structure of the universe is increasing
rapidly, and so is the size of data vectors used in cosmological analyses (∼ 400 data
points were used in the analysis of DES Collaboration et al. 2017). To estimate the inverse
covariance matrix (the precision matrix ) of such huge data vectors from simulated data, one
would require thousands of high resolution N-body simulations. In the following chapter
I show, how this requirement can be reduced drastically when using information from a
theoretical first guess of the covariance matrix.

This chapter has been published as Friedrich & Eifler (2018) in MNRAS. I have exclu-
sively developed the method presented in this article and carried out the analysis of its
performance. Tim Eifler provided the cosmology tool package CosmoLike that was used to
perform the simulated likelihood analyses and he computed the model covariance matrices
used in this work. His comments also helped to significantly improve an early draft of the
article.

Permission for non-commercial re-use of the material included in this thesis has been
granted by the MNRAS editorial office. Oxford University Press holds the copyright on
the paper.
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ABSTRACT
Computing the inverse covariance matrix (or precision matrix) of large data vectors is cru-
cial in weak lensing (and multi-probe) analyses of the large scale structure of the universe.
Analytically computed covariances are noise-free and hence straightforward to invert, how-
ever the model approximations might be insufficient for the statistical precision of future
cosmological data. Estimating covariances from numerical simulations improves on these
approximations, but the sample covariance estimator is inherently noisy, which introduces
uncertainties in the error bars on cosmological parameters and also additional scatter in
their best fit values. For future surveys, reducing both effects to an acceptable level requires
an unfeasibly large number of simulations.

In this paper we describe a way to expand the true precision matrix around a covariance
model and show how to estimate the leading order terms of this expansion from simula-
tions. This is especially powerful if the covariance matrix is the sum of two contributions,
C = A + B, where A is well understood analytically and can be turned off in simulations
(e.g. shape-noise for cosmic shear) to yield a direct estimate of B. We test our method
in mock experiments resembling tomographic weak lensing data vectors from the Dark
Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST). For DES we find
that 400 N-body simulations are sufficient to achieve negligible statistical uncertainties on
parameter constraints. For LSST this is achieved with 2400 simulations. The standard
covariance estimator would require > 105 simulations to reach a similar precision. We
extend our analysis to a DES multi-probe case finding a similar performance.

14.1 Introduction

Wide area surveys such as the currently running Dark Energy Survey (DES, Flaugher,
2005) or the upcoming Large Synoptic Survey Telescope (LSST, Ivezic et al., 2008) will
collect vast amounts of data about the large scale structure on the universe. In cosmolog-
ical analyses this data can e.g. be compressed into measurements of 2-point correlation
functions of galaxy clustering or cosmic shear. In a redshift-tomographic analysis this will
easily accumulate to data vectors with several hundreds of data points. Testing cosmologi-
cal models from a measurement of such a large data vector requires precise knowledge of the
inverse covariance matrix of the noise in this data vector. There has been extensive research
on the impact of errors associated with covariance estimation on the constraints derived
on cosmological parameters. Hartlap et al. (2007) discussed the fact that the inverse of
an unbiased covariance estimator is not an unbiased estimator for the inverse covariance
matrix (the precision matrix ). They also described a way to correct for this when assuming
that the covariance estimate follows a Wishart distribution (see also Kaufman 1967 and
Anderson 2003). The noise properties of this corrected precision matrix estimator and its
impact on the constraints derived on cosmological parameters was e.g. investigated by
Taylor et al. (2013); Dodelson & Schneider (2013); Taylor & Joachimi (2014).



14.2 Parameter constraints from noisy covariance estimates 147

Sellentin & Heavens (2016, hereafter SH16a) have presented a different approach: given
a covariance estimate they marginalize over the posterior distribution of the true precision
matrix to compute the likelihood in parameter space. Assuming that the covariance esti-
mate follows a Wishart distribution they have derived a simple, closed-form expression for
the resulting likelihood function. In Sellentin & Heavens (2017) they have extended these
results to derive the information loss in parameter space due to noisy covariance estimates.
A fully non-Gaussian treatment of the effects discussed in Dodelson & Schneider (2013,
hereafter DS13) is however still missing.

Prior knowledge on the sparsity of the covariance matrix and the precision matrix was
used by Paz & Sánchez (2015) and Padmanabhan et al. (2016) to improve estimates of
the precision matrix from few simulations. Pope & Szapudi (2008) investigated shrinkage
estimators of the covariance, i.e. a mixing of estimated and modeled covariance matrices.
This however raises the task of finding an equivalent to the Kaufman-Hartlap correction
for such a mixture of estimated and analytic matrices. More recently, Joachimi (2017)
describes a non-linear extension of that estimator which combines covariance estimates from
two sets of independent data vector realizations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision matrix around a covariance
model as a power series in the deviation between model and true covariance. Assuming a
Wishart realization for the true covariance and using the results on invariant moments of
the Wishart distribution by Letac & Massam (2004) we derive an unbiased estimator for
the up to second order expansion of the true precision matrix. This becomes especially
powerful if parts of the covariance matrix that are well understood analytically can be
turned off in simulations in order to yield a direct estimate of the remaining covariance
parts. In Sect. 14.3 we recap the main problems of estimating parameter constraints
from noisy covariance estimates and present our method of ”Precision Matrix Expansion”
(PME). In Sect. 14.4 we perform numerical experiments that mimic data from the Dark
Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST) likelihood analyses
to test the performance of our idea. Sect. 14.5 concludes with a discussion of our results.

14.2 Parameter constraints from noisy covariance es-

timates

We begin by outlining the main task of this paper. Let ξ̂ be a vector of Nd data points
measured from observational data and let ξ[π] be a model for this data vector that depends
on a vector of Np parameters π. If C is the covariance matrix of ξ̂ then a standard way

to constrain the parameters π is to assign a posterior distribution p(π|ξ̂) to them as

p(π|ξ̂) ∼ exp

(
−1

2
χ2
[
π | ξ̂,C

])
p(π) (14.1)
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Figure 14.1: Left: Best fit parameter pairs (Ωm, σ8) obtained from random realizations of
a DES-like weak lensing data vector with 450 data points when using different approaches
to compute the precision matrix. The red points assume that the true covariance ma-
trix is known while for the green points we draw a Wishart realization of the covariance
(Ns = 450 + 200 = 650 simulations) for each data vector. The blue points are obtained
with the method of precision matrix expansion (and allowing only 200 simulations to es-
timate the expansion). The black contours display the 1σ and 2σ Fisher contours derived
from our fiducial covariance. Right: For one of the random realizations we perform a
complete likelihood analysis and show the 1σ and 2σ contours in the Ωm − σ8 plane after
marginalizing over w0 and wa (see Sec. 14.4 for details). The contours obtained from the
Wishart realization of the covariance are clearly offset from those obtained from the true
covariance matrix. We recommend to account for this by expanding the likelihood around
its maximum (of the full parameter space, which in this figure is 4-dimensional) with the
factor derived by DS13. This leads to a decreased constraining power of our mock survey.
The use of PME manages to significantly decrease this contour offset.
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with

χ2
[
π | ξ̂,C

]
=
(
ξ̂ − ξ[π]

)T
C−1

(
ξ̂ − ξ[π]

)
(14.2)

and p(π) being a prior density incorporating a priori knowledge or assumptions on π.
These expressions in fact ignore that C also can be dependent on π. We will do this
throughout this paper and refer the reader to Eifler et al. (2009) who investigated the
impact of cosmology dependent covariance matrices on cosmic shear likelihood analyses.
Another assumption that goes into Eq. 14.1 is that the measured data vector ξ̂ is drawn
from a multi-variate Gaussian distribution. In wide area surveys this is justified in the
limit where one can consider the survey to consist of many independent sub-regions, such
that the measurements in those regions add up to a Gaussian data vector by means of the
central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be estimated from N-
body simulations. If ξ̂i, i = 1...Ns, are a number of independent measurements of ξ in
simulations then an unbiased estimate of C is given by

Ĉ :=
1

ν

Ns∑
i=1

(
ξ̂i − ξ̄

)(
ξ̂i − ξ̄

)T
, (14.3)

where ν = Ns−1 and ξ̄ is the sample mean of the ξ̂i. We will assume Ĉ to have a Wishart
distribution with ν degrees of freedom which follows from our assumption that ξ̂ and the
ξ̂i are Gaussian distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 14.1 we need to know the precision matrix, i.e. is the
inverse covariance matrix Ψ = C−1. According to Kaufman (1967, see also Hartlap et al.
2007; Taylor et al. 2013) an unbiased estimator for Ψ can be constructed from Ĉ as

Ψ̂ =
ν −Nd − 1

ν
Ĉ−1 (14.4)

and we will call the factor of (ν − Nd − 1)/ν the Kaufman-Hartlap-correction (Nd being
again the dimension of the data vector).

Given a measurement ξ̂ of the data vector one can derive the posterior density of the
model parameters p(π|ξ̂) by means of equations 14.1 and 14.2. A noisy precision matrix
estimate influences this inference in two ways:

• it adds noise to the width of likelihood contours derived from inserting the precision
matrix estimate into the figure of merit χ2 (Eq. 14.2).

• it adds noise to the location of likelihood contours. E.g. the maximum likelihood
estimator for the parameters π would be

π̂ML = min
π

{(
ξ̂ − ξ[π]

)T
Ψ̂
(
ξ̂ − ξ[π]

)}
. (14.5)

When using a noisy precision matrix the uncertainties of π̂ML have contributions
from both the noise in ξ̂ and the noise in Ψ̂.
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The astro-statistics literature has so far focused on the first effect, i.e. on the uncertainties
on contour width due to noise in the estimate Ψ̂ (Taylor et al., 2013; Taylor & Joachimi,
2014; Sellentin & Heavens, 2016, 2017). Sellentin & Heavens (2017) provide the most com-
plete demonstration that Ψ̂ yields a good estimate of the width of the posterior contours
as long as Ns −Nd � Np.

The more critical effect however is the additional noise of π̂ML. DS13 (also see appendix
14.A) showed that the uncertainty on the position of likelihood contours from noise in Ψ̂
is only negligible if Ns − Nd � Nd − Np which is a much more demanding criterion for
current cosmological data vectors. We demonstrate this in the left-hand panel of Fig. 14.1,
where we show 100 randomly drawn realizations of a DES-like weak lensing data vector
with Nd = 450 and a halo model covariance matrix (see Sec. 14.4 for further details). For
each of the 100 data vectors we have also generated Wishart realizations of our covariance
matrix corresponding to an estimate from Ns = 650 simulations. Using either the true
covariance or the estimated one, we then determine the best fitting parameters Ωm and
σ8 (after marginalizing over equation-of-state parameters of dark energy, w0 and wa). The
best-fits obtained from a noisy covariance (green points) clearly display a much larger
scatter than those obtained from the true covariance (red points). Also shown are the
best fits obtained by precision matrix expansion (PME, blue points) which we are going
to introduce in the next section. Here we assumed that only Ns = 200 simulations are
available to estimate the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(π|ξ̂) (e.g. from a Monte-Carlo-Markov-Chain) this can lead to
significant offsets between likelihood contours inferred from the true covariance matrix and
likelihood contours inferred from a covariance estimate – even if the overall width of the
likelihood contours is captured well by the covariance estimate. We demonstrate this in
the right-hand panel of figure 14.1. DS13 have derived a factor (see appendix 14.A) by
which parameter contours obtained from a Wishart realization of the covariance should be
expanded in order to account for this additional scatter. However, their derivation relies
on the assumption of a Gaussian parameter likelihood and is only applicable to the extent
that a Fisher analysis is accurate. The current state of the art for dealing with noisy
covariance estimates is hence a combination of SH16a and DS13: expanding the contours
derived from the SH16a likelihood by the DS13 factor. We implement this idea for the
cyan contours in Fig. 14.1 and show that this brings the contours derived from a standard
covariance estimate into consistency with those derived from the true covariance.

Downsides of this approach are a large increase of the uncertainties on cosmological
parameters and the fact that one still needs at least as many realizations as data points in
the data vector to even derive a precision matrix estimate. We now want to introduce an
alternative method to estimate the precision matrix which is able to drastically decrease
the offset of contours seen for the standard precision matrix estimator.
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14.3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A + B , (14.6)

where for matrix A we have an accurate model (e.g. the shape-noise contributions to the
covariance of cosmic shear correlation functions) and for B we have a model Bm which we
know to be imperfect. We want to include this prior knowledge of the covariance matrix
when estimating the precision matrix. Starting from

C = M + (B−Bm) , (14.7)

where M = A + Bm is our model for the complete covariance matrix, we rewrite

C = (1 + X) M , (14.8)

where 1 is the identity matrix and we have defined

X := (B−Bm) M−1 . (14.9)

The precision matrix Ψ = C−1 can then be expressed as the following power series in X:

Ψ = M−1

(
∞∑
k=0

(−1)kXk

)
= M−1

(
1−X + X2 +O

[
X3
])

. (14.10)

We will call this series the precision matrix expansion (PME). In appendix 14.C we show
that it converges under a wide range of conditions. There we also demonstrate that the
series yields at each order a symmetric approximation of Ψ and that at second order it is
always positive definite (at each order if the series converges).

14.3.1 Estimating the expansion of Ψ

Suppose we have an estimate B̂ of the matrix B from a number of N-body simulations.
This especially assumes that all covariance contributions included in A can be turned
off in the simulations (i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to use B̂ to construct
unbiased estimators for the first order and second order term of the series in Eq. 14.10.

Our assumptions state that B̂ is drawn from a Wishart distribution with expectation
value B. In this case also M−1B̂M−1 is Wishart distributed but with the expectation value
M−1BM−1. Hence an unbiased estimator for the first order PME is given by

Ψ̂1st = M−1 −M−1
(
B̂−Bm

)
M−1 . (14.11)
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Note that this does not involve the inversion of an estimated matrix. According to Taylor
et al. (2013) the standard deviation of diagonal elements of an inverse-Wishart distributed
matrix is proportional to 1/

√
Ns −Nd − 4 while for Wishart distributed matrices it is only

proportional to 1/
√
Ns − 1. Hence, avoiding the occurrence of an inverted matrix estimate

greatly reduces the estimation noise.
The second order term involves squares of Wishart matrices. Using the results of Letac

& Massam (2004) on invariant moments of the Wishart distribution (cf. appendix 14.B)
it is still possible to construct an unbiased estimator for the second order PME as

Ψ̂2nd = M−1 + M−1BmM−1BmM−1

−M−1
(
B̂−Bm

)
M−1

−M−1B̂M−1BmM−1

−M−1BmM−1B̂M−1

+M−1
ν2B̂M−1B̂− νB̂ tr

(
M−1B̂

)
ν2 + ν − 2

M−1 . (14.12)

The estimator in Eq. 14.12 is the key result of our paper. It has two advantages over the
Anderson-Hartlap corrected standard estimator. First, it only requires matrix multiplica-
tions. As a consequence, it can even be used if Ns ≤ Nd. Second, it only needs an estimate
of B instead of the whole covariance C, i.e. it allows to incorporate a priori knowledge on
the covariance in the form of M (and A).

In the next section we demonstrate that this significantly eases the requirement of
Ns −Nd � Nd −Np. Hence, in a likelihood analysis the noise in Ψ̂2nd becomes negligible
for a much smaller number of N-body simulations than required by the standard precision
matrix estimator. In appendix 14.C we also show that the bias in parameter constraints
which arises from cutting the power series in Eq. 14.10 after a finite number of terms
is negligible even for very strong deviations of our covariance model M from the N-body
covariance C.

14.4 Examples: parameter errors for LSST weak lens-

ing and DES weak lensing and multi-probe anal-

yses

We investigate the performance of our method in the context of ongoing and future sur-
veys using DES and LSST as specific examples. These surveys differ in terms of survey
area, galaxy number density, and redshift distribution and have different demands on the
precision matrix. For DES we consider summary statistics in real space, i.e. auto- and
cross-correlation functions of galaxy shear and position, for LSST we consider the corre-
sponding Fourier quantities of a shear-shear only data vector. A summary of the scenarios
considered is given in Table 14.1 and a more detailed description of the considered data
vectors is given in appendix 14.D.
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Figure 14.2: Contours in the Ωm-σ8 plane obtained from realizations of our DES-like weak
lensing data vector after marginalizing over all other parameters. For each random seed also
new Wishart realizations B̂ and Ĉ of the matrices B and C were drawn in order to simulate
new realizations of the second order PME estimator and the standard precision matrix estimator.
Ns = 200 simulations where assumed for the estimation of the PME while Ns = Nd + 200 = 650
simulations where assumed for the standard estimator.
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Figure 14.3: Same as Fig. 14.2 but for the LSST-like weak lensing data vector. Ns = 400
simulations where assumed for the estimation of the PME while Ns = Nd + 400 = 2600
simulations where assumed for the standard estimator.
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setup survey lens bins source bins Ndata data
Ia DES 0 5 450 real space
Ib DES 3 5 630 real space
II LSST 0 10 2200 Fourier

Table 14.1: Number of tomographic bins, total number of data points and type of data
vector for the different setups used to test the performance of precision matrix expansion.

In order to test the performance of PME we set up mock experiments where we assume
the true covariance matrix of each survey to be the analytic halo-model covariance described
in Krause & Eifler (2016). This model divides the covariance into three contributions: a
noise-only part that consists of shape- and shot-noise contributions, Cnn, a contribution
from the cosmic variance of the signal, Css,halo, and a mixed term including noise and signal
contributions, Csn. For shear-shear only covariances we set

A = Cnn + Csn (14.13)

and

B = Css,halo . (14.14)

The shape-noise contributions to the covariance can be modeled reliably since the ellipticity
dispersion can be measured from the data itself and since the mixed term Csn involves only
the modeling of two-point statistics of the shear field. The B term comprises the more
complex 4-point statistics of the shear field, which can be estimated from simulations by
turning off shape-noise. This is more complicated for galaxy clustering where shot-noise is
included in the covariance matrix (cf. 14.4.1).

In order to simulate a situation where our covariance model M = A + Bm deviates
from the true covariance we degrade it as

Bm = αCss,Gauss + β
(
Css,halo −Css,Gauss

)
(14.15)

where Css,Gauss contains only the parts of the cosmic variance that are also present in
a Gaussian covariance model. Hence, we allow the Gaussian and non-Gaussian cosmic
variance parts to be over- or underestimated by a constant multiplicative factor. If not
stated differently in this section we will use α = 1.0 and β = 0.5. In appendix 14.C
we explore a wider range of re-scalings and also consider more complex deformations of
our fiducial covariance to show that the PME remains robust under more complicated
deviations of M from the true covariance matrix. All simulated likelihood analyses in this
paper are computed using the CosmoLike cosmology package (Krause & Eifler, 2016; Eifler
et al., 2014).
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14.4.1 Performance for DES weak lensing data vector

We now carry out mock likelihood analyses for DES and LSST weak lensing data vectors,
varying the parameters Ωm, σ8, w0 and wa. Our fiducial values for these parameters are

(Ωm, σ8, w0, wa) =

(0.3156, 0.831, −1, 0) . (14.16)

We start by drawing random Gaussian realizations of our fiducial data vectors according
to a covariance given by the halo model. For each realization we also draw new Wishart
realizations B̂ and Ĉ of cosmic variance and total covariance to compute the PME esti-
mate Ψ̂2nd and the standard estimator Ψ̂. In practice, this is done by drawing additional
realizations ξ̂i , i = 1 . . . Ns, of our fiducial data vector from a multivariate Gaussian dis-
tribution whose covariance is B respectively C. These realizations represent measurements
from N-body simulations and inserting them into Eq. 14.3 generates the desired Wishart
realizations B̂ and Ĉ of the two matrices.

Using CosmoLike we then run likelihood chains to infer a posterior distribution for
our parameters using Ψ̂2nd, Ψ̂ and the true precision matrix C−1. When computing the
likelihood from C−1 and Ψ̂2nd we simply use standard ansatz given in Eq. 14.1. When
deriving contours from the Wishart realization Ĉ we furthermore compute the parameter
likelihood as

p(π|ξ̂) ∼

1 +

(
ξ̂ − ξ[π]

)T
Ĉ−1

(
ξ̂ − ξ[π]

)
Ns − 1


−Ns/2

(14.17)

which SH16a have shown to be a more accurate than using the Kaufman-Hartlap correction
and the standard Gaussian likelihood. We however found only small differences to using
the standard likelihood ansatz, which is due to the fact that in all cases considered in this
paper Ns −Nd � Np.

In Fig. 14.2 and 14.3 we show see the resulting 1σ and 2σ contours in the Ωm-σ8

plane (after marginalizing over the other parameters) for 3 different random draws of data
vector and Wishart matrices. For each realization of the DES data vector we assumed
that Ns = 200 simulations are available to estimate the PME and Ns = Nd + 200 = 650
simulations for the standard estimator. For each realization of the LSST data vector we
assumed Ns = 400 simulations for the PME and Ns = Nd + 400 = 2600 simulations for the
standard estimator.

Even though in each case we assumed many more simulations for the standard estimator
than for the PME, the PME is significantly better in reconstructing the contours from the
true precision matrix. In particular we find that deviations from the true contours are
much smaller than the corresponding 1σ and 2σ uncertainties of the parameters.

Next we generalize the findings in Figs. 14.2 and 14.3. We generate 1000 Wishart
realizations of the matrices Ĉ and B̂ for different assumptions on the number of available N-
body simulations Ns. For each of the 1000 sets of matrices we also generate 10 realizations
ξ̂ of our fiducial data vector (i.e. overall 10 000 different realizations ξ̂). Hence for each type
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of precision matrix estimate we perform overall 10 000 likelihood analyses. In each analysis
we determine the best fit parameters π̂ML and check whether our fiducial cosmology is
outside the 68.3% confidence contour around these parameters. In order to make this
computationally feasible, we are now linearly approximating the calculations of CosmoLike
around our fiducial cosmology π0, i.e. we use

ξsimple[π] = ξexact[π0] +

Np∑
i=1

(πi − π0,i)
∂ξexact

∂πi
[π0] . (14.18)

This allows us to analytically determine the maximum likelihood parameters and the 68.3%
confidence contours in each likelihood analysis. It is also the situation where a Fisher-
matrix formalism and hence the derivations of DS13 hold exactly.

We define F>1σ as the fraction of times that our fiducial cosmology is outside of the
68.3% confidence contour around the best fit parameters and we use it as a metric for
comparing the different precision matrix estimators. In Fig. 14.4 we show this fraction for
all different types of precision matrices introduced before. The solid, dashed, and dotted
lines show the fractions achieved when using the noise-less matrices C−1, M−1 and Ψ2nd.
Especially, the noise-less matrix Ψ2nd would be the PME-estimator in the limit of infinitely
many simulations and C−1 would be the standard estimator in the same limit. The red
and blue dots show the fraction achieved when using the noisy precision matrix estimates
Ψ̂ and Ψ̂2nd.

As expected, F>1σ is very close to 32% when using the true covariance C in the likelihood
analyses. For the deformed halo model covariance M we assumed the two cases α = 0.7,
β = 0.5 (left panel) and α = 1.0 and β = 0.5 (right panel). For α = 0.7 and β = 0.5 our
fiducial cosmology is regarded as outside the 68.3% contour in more than 40% of the cases.
For both choices of M the noise-free PME significantly corrects that fraction towards the
optimal value of ∼ 32%. Especially promising is that the PME estimate performs very
similar to the noise-free PME. If 200 simulations are available to estimate the PME, it
essentially converges to its best possible performance. And even if only 100 simulations
are available to estimate the PME, its value of F>1σ comes closer to 32% than when using
M to derive the contours.

When inferring the likelihood from the standard precision matrix estimator F>1σ is
greater than 50% even if we allow Ns = Nd+800 simulations for the covariance estimation,
which corresponds to 1250 simulations. This is due to the additional variance of π̂ML caused
by the noise of the precision matrix (cf. Eq. 14.5). Using the results of DS13 we can derive
predictions for this effect (cf. appendix 14.A). As can be seen from the red dashed lines
in Fig. 14.4 these predictions agree well with what we find in our simulated likelihood
analyses. Extrapolating the results of DS13 to higher values of Ns we can also estimate,
how many simulations would be required for the standard precision matrix estimator in
order to achieve the same value of F>1σ as the second order PME. For the left panel of
Fig. 14.4 we find that it would take ∼ 8000 simulations for the standard estimator to get
as close to F>1σ = 32% as the PME with only 200 simulations. This statement however
depends on the model covariance M since it determines how well the PME has converged
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Figure 14.4: The figure compares F>1σ, the number of times that our fiducial cosmology was
considered outside the 68.3% confidence contour in our simulated likelihood analyses when
using different precision matrix estimates for computing the posterior parameter likelihood.
In order to carry a sufficient number of mock analyses, we simplified our modeling of the
data vector by linearly approximating the full computation around our fiducial cosmology.
For the DES-like weak lensing data vector we varied the four parameters (Ωm, σ8, w0, wa).
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after its second order.
An M-independent way of comparing standard estimator and PME estimator is to

see how many simulations it takes each to have F>1σ within 1% of their best possible
performance. It would take the standard estimator ∼ 24 000 simulations to be within 1%
of F>1σ = 32%. The PME estimator is well within 1% of its best possible performance for
only 200 simulations.

Note that with the results of DS13 one can in principle correct a likelihood analysis
for the additional variance caused by the standard precision matrix estimator. This would
result in a decreased constraining power of the analysis and it would hence be the main
benefit of the PME to prevent this loss.

Larger covariance matrices: LSST weak lensing data vector

We repeat the above analysis for the LSST-like weak lensing data vector. Fig. 14.5 shows
the fractions F>1σ obtained from PME and standard precision matrix estimator. The PME
estimator now requires ∼ 2400 simulations to be less than 1% away from its best possible
performance. As before, this statement does not include any additional biases between
PME and true precision matrix that might arise from the biased model matrix M used
to carry out the matrix expansion. The standard precision matrix estimator would need
Ns > 115 000 simulations to be less than 1% away from its best possible performance.

Defining A and B for multi-probe covariances

We now repeat the analysis of Fig. 14.4 for a DES-like multi-probe data vector. This vector
includes contributions from galaxy clustering and galaxy-galaxy lensing, which introduces
shot-noise terms to the covariance. These shot-noise contributions are in principle well
understood theoretically and include, similar to the cosmic shear case, at most two-point
statistics of the cosmic density field. Hence, one could absorb them into the matrix A
(cf. Eq. 14.6) and use N-body simulations only for the remaining part of the covariance
- i.e. to define B as only the cosmic variance. This is however difficult since most N-
body simulations provide only simulated galaxy catalogs that are affected by shot noise
themselves, which makes it impossible to independently estimate the cosmic variance. If
however all shot-noise contributions are included in B when defining and estimating the
PME, then the estimator Ψ̂2nd will have a higher variance in many of its elements. Hence,
the additional scatter of best fit parameters due to a noisy precision matrix might not be
negligible anymore.

In Fig. 14.6 we compare the fractions F>1σ obtained from different estimates of the
precision matrix in our simulated likelihood analyses - this time for the DES multi-probe
data vector. In each likelihood analysis we now vary 7 parameters, since for each lens bin
we include a galaxy bias parameter in our model. The fiducial bias values are

(b1, b2, b3) = (1.35, 1.50, 1.65) (14.19)

in order of increasing redshift. Fig. 14.6 shows the results obtained for each of the men-
tioned options of defining B. It is clear that the noisy PME approaches its best possible
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Figure 14.5: Same as Fig. 14.4 but for the LSST-like weak lensing data vector.
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Figure 14.6: Same as Fig. 14.4 but for the DES multi-probe data vector. For this case
the 7 parameters (Ωm, σ8, w0, wa, b1, b2, b3) were varied in each likelihood analysis. Green
points assume that cosmic variance can be estimated from simulations without shot-noise.
This would significantly improve the performance of PME for low numbers of available
simulations.
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performance already for a smaller number of simulations if the cosmic variance can be
estimated directly. In practice this would however require density maps in thin redshift
slices for each simulation in order to measure the correlation functions of the projected
density fields without shot-noise.

Assuming one can directly measure the cosmic variance from simulations we again want
to asses how many simulations are required for the standard precision matrix estimator
and the PME estimator to be within 1% of their best possible performance. Extrapolating
the results of DS13 we find that it would take the standard estimator ∼ 44 000 simula-
tions to be within within 1% of F>1σ = 32%. The PME estimator is within 1% of its
best possible performance for 1600 simulations. For Ns = 2000 the performance of the
PME becomes almost solely restricted by the deviation between M and C in our mock
experiment. However, below Ns = 1600 there seems to be significant additional scatter of
the best fitting parameters due to the noise of the PME estimate. We demonstrate this
in Fig. 14.7 for Ns = 400. Regardless of how B is defined, we can nevertheless conclude
that also for multi-probe covariances the PME poses a vast improvement over the standard
precision matrix estimator.

14.5 Conclusions

It was the starting point of our analysis to find a method for using a priori knowledge
about the covariance matrix when estimating the precision matrix from simulations. This
requires finding an equivalent of the Kaufman-Hartlap correction when only parts of the
covariance are estimated. Using the results of Letac & Massam (2004) we partly solved
this task by calculating an expansion of the precision matrix and showing how the leading
terms of this expansion can be estimated from simulations. Our method enables the use
of preexisting knowledge on the covariance structure to improve the convergence of the
PME and to reduce the noise in its estimation. It also has the advantage that the relative
uncertainties of the elements of the PME estimate scale with the number of available
simulations Ns as ∼ 1/

√
Ns − 1, which is typically much smaller than the uncertainties of

the standard precision matrix estimator. The latter also depend on the number of data
points Nd and scale as ∼ 1/

√
Ns −Nd − 4.

We demonstrated that the PME converges even for drastic deviations between the
model covariance and the N-body covariance and we also showed that it provides a much
less noisy estimate of the parameter likelihood compared to estimating the precision matrix
in the standard way. For a DES weak lensing data vector Ns & 8000 simulations would be
required for the standard estimator to reconstruct the likelihood similarly well as the PME
with only Ns = 200 - even if the model covariance heavily underestimates Gaussian and
non-Gaussian covariance parts. If we assume more realistic deviations between model and
N-body covariance, up to 24 000 simulations would be needed for the standard estimator
to reconstruct the 1σ quantile of the parameter distribution at the same precision as the
PME with only 200 simulations. For an LSST-like weak lensing data vector with Nd = 2200
we found that up to 115 000 simulations would be required for the standard estimator to
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Figure 14.7: Same as Fig. 14.2 but for the multi-probe data vector. Ns = 400 simulations where
assumed for the estimation of the PME while Ns = Nd + 400 = 1030 simulations where assumed
for the standard estimator. Even with fewer simulations the PME is much better in reconstructing
the contours from the true precision matrix. However, below Ns = 1600 a significant offset of the
contours persists.
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reconstruct the 1σ quantile as well as the PME with only 2400 simulations. It should
however be stressed that these statements depend on the quality of the model covariance
M that was used to compute the PME.

Additional complications arise when galaxy clustering correlation functions are included
in the data vector. A performance similar to the weak lensing case can still be achieved
if one manages to estimate the cosmic variance of the correlation functions directly, i.e.
without shot-noise. For this case, we find that a DES-like multi-probe data vector requires
up to 44 000 simulations for the standard precision matrix estimator to reconstruct the 1σ
quantile of the parameter distribution as well as the PME with 1600 simulations.

One aspect that should be addressed in future work, is to find a priori criteria for
the convergence of the PME. In appendix 14.C we demonstrate that it converges for very
strong deformations of the halo-model covariance, but one can not be certain whether and
how fast it will converge for all possible data vectors and covariance models. As we show
in appendix 14.C, situations where the PME does not converge can at least be identified
a posteriori by a comparison of the first order and second order expansion. A strong
oscillation of likelihood contours derived from the first and second order PME indicate
a significant deviation of model and N-body covariance. This way, the PME provides a
clear criterion for testing covariance models with simulations – even when the number of
available simulations is small.
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14.A Influence of noisy covariance estimates on the

scatter of best fitting cosmological parameters

Using a noisy precision matrix estimate to determine the best fitting cosmological param-
eters

π̂ML = min
π

{(
ξ̂ − ξ[π]

)T
Ψ
(
ξ̂ − ξ[π]

)}
. (14.20)

leads to an additional scatter in these parameters. Especially, this additional noise is
not accounted for by the width of contours generated from the precision matrix estimate.
This effect has e.g. been described by Dodelson & Schneider (2013) who also derived a
prediction for the additional noise assuming a Gaussian parameter likelihood. They find
that the actual parameter covariance when using an inverse-Wishart realization of the
precision matrix is given by

Cπ̂ML
= F−1

(
1 +

(Nd −Np)(Ns −Nd − 2)

(Ns −Nd − 1)(Ns −Nd − 4)

)
, (14.21)

where Np is the number of considered parameters and F is the Fisher matrix computed
from the true precision matrix. Hence, in the case of a Gaussian parameter likelihood, best
fit parameters π̂ML that are computed from a Wishart realization of the covariance have
also a Gaussian distribution but with a rescaled parameter covariance.

14.B Unbiased estimator of the square of a Wishart

matrix

Let Ĉ be distributed according to a Wishart distribution with ν degrees of freedom and
expectation value C. Then 〈

Ĉ2
〉
6= C2 . (14.22)

However, using the results of Letac & Massam (2004) it is possible to devise an unbiased
estimator of C2. It is given by

(̂C2) =
ν2Ĉ2 − νĈtrĈ

ν2 + ν − 2
, (14.23)

where trĈ denotes the trace of Ĉ. Using this formula, it is straight forward to derive the
estimator of the second order PME given in Eq. 14.12.
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14.C General properties and convergence of the power

series

14.C.1 General properties

In order to derive some general properties of the PME series, let us slightly change the
notation of Sec. 14.3. First, let M1/2 be the unique symmetric and positive definite matrix
such that

M1/2M1/2 = M . (14.24)

This matrix exists as long as our covariance model M is positive definite. Let us then
re-define

X = M−1/2 (B−Bm) M−1/2 (14.25)

where M−1/2 is the inverse of M1/2, and B and Bm are the same as in Sec. 14.3. The
complete covariance can then be written as

C = M1/2 (1 + X) M1/2 (14.26)

and the precision matrix expansion now reads

Ψ = M−1/2

(
∞∑
k=0

(−1)kXk

)
M−1/2

= M−1/2
(
1−X + X2 +O

[
X3
])

M−1/2 . (14.27)

Since both M−1/2 and X are symmetric matrices, it is immediately clear that this gives a
symmetric approximation of Ψ at each order of the power series. The series converges if
and only if all eigenvalues of X fulfill

|λi| < 1 , i = 1 , ... , Nd . (14.28)

In each eigendimension of X the series (1−X + X2 +O [X3]) is simply the geometric
series. For |λi| < 1 the value of this series is > 0 at each finite order. At second order, the
value of this series is > 0 regardless of the values of λi. Hence, the second order PME is
always positive definite.

14.C.2 Special cases

Rescaling of the covariance

Let us investigate the convergence properties of the power series in Eq. 14.10 in a couple of
special cases. We start by assuming that our model for the covariance matrix, M, under-
or overestimates the true covariance matrix by a constant factor α, i.e.

M = αC . (14.29)
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In this case we have

X = M−1/2 (C− αC) M−1/2

=
1− α
α

C−1/2CC−1/2

=
1− α
α

1 . (14.30)

Hence, all eigenvalues of X are given by λ = 1−α
α

. This has absolute value smaller than 1
for all α > 0.5. This especially means that the series used to define the PME converges
even if the model covariance overestimates the true covariance by an arbitrarily high overall
factor. Since we cut Eq. 14.10 after the second order we must however look at how well
the series is converged after that order. The relative error on each element of the precision
matrix is given by

Ψij −Ψ2nd,ij

Ψij

= λ3 =
(1− α)3

α3
. (14.31)

This is < 10% for α ∈ [0.69, 1.86] and < 1% for α ∈ [0.83, 1.27].

Partial rescaling of the covariance

Now let us assume that C falls into two contributions A and B and that only B is mis-
characterized by a constant factor in our model,

M = A + αB . (14.32)

Let us furthermore assume that B has a dominant eigenvalue λ and that v is an eigenvector
to it. If

|λv −Cv| � |λv| (14.33)

then the matrix C and – for values of α that are not too small – also the matrix M will
have an eigendimension close the that of B with eigenvalues λC ≈ λ and λM ≈ αλ. As a
consequence, the matrix X will have an eigendimension with eigenvalue close to λX ≈ 1−α

α

which allows the same conclusion in 14.C.2.
In section 14.4 we considered a deformation of the halo model covariance of the form

M = A + Bm with

Bm = αCss,Gauss + β
(
Css,halo −Css,Gauss

)
. (14.34)

This is similar to the situation described above. To illustrate how the rescaling factors α
and β impact the convergence of the PME we can e.g. compare the Fisher contours derived
from C−1, M−1, Ψ1st and Ψ2nd. In Fig. 14.8 we show the 1σ and 2σ Fisher-contours for the
parameter pair Ωm-σ8 derived for the DES multi-probe data vector using different values
of α and β. The figure shows that the PME manages to correct the bias between contours
derived from C−1 and contours derived from M−1 even for rather drastic choices of the
rescaling factors. Especially for α, β > 1.0 the convergence is very robust. As predicted
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Figure 14.8: We show the 1σ and 2σ Fisher contours in the Ωm-σ8 plane around our fiducial cosmology
using the DES multi-probe data vector and keeping all other cosmological parameters fixed. For the black
contours the Fisher matrix was derived from the fiducial covariance matrix C of our experiment – the halo-
model covariance. For the red contours we rescaled the Gaussian and non-Gaussian parts of the cosmic
variance in C by constant factors α and β to create our model covariance matrix M (cf. Eq. 14.15). The
blue contours show the constraints derived from the 1st order PME (dashed lines) and 2nd order PME
(solid lines) of C around M. The PME manages to significantly correct the miss estimation of the Fisher
matrix by the model precision matrix for most values of the rescaling factors. Only for α, β < 0.5 the
convergence of the PME seems to break down and a strong oscillation between 1st order and 2nd order
correction occurs. We discuss this behavior in detail in appendix 14.C where we also study examples of
more complicated deviations between M and C.
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by our considerations above, it however breaks down for α, β < 0.5 where one can see
strong oscillations between Ψ1st and Ψ2nd. The convergence of the contours in Fig. 14.8 is
very similar when other parameter combinations are considered or when the contours are
derived for the other data vectors considered in this paper.

Log-normal motivated approximation to the halo-model covariance

Motivated by the work of Hilbert et al. (2011) on approximating the shear-shear covari-
ance matrix with a log-normal approach (cf. their equation 26) we approximate the non-
Gaussian parts of the covariance of shear correlation functions as

〈∆ξA±(θi)∆ξ
B
±(θj)〉non Gauss. = ξA±(θi)ξ

B
±(θj)RAB (14.35)

where θi labels the different angular bins, A and B label the different auto- and cross-
correlation functions and RAB is just a constant factor (depending only on the pair A,B
and not on whether ξ+ or ξ− are involved). We fix the values of RAB by demanding that
our approximation coincides with the halo-model for 〈∆ξA+(θ)∆ξB+(θ)〉non Gauss. where θ is
a certain angular scale which we chose to be either our smallest angular bin (θ ≈ 3′) or
a slightly larger scale (θ ≈ 20′). Note that this is a very crude approximation – even to
the log-normal model by Hilbert et al. (2011) since they have not even considered cross-
correlations between redshift bins.

We nevertheless use the above matrix as our model covariance M for the DES shear-
shear data vector and compare it to the halo-model covariance C and the PME. All eigen-
values of matrix X have in that case |λi| < 1. The three most dominant eigenvalues
are

λ1 = 0.776

λ2 = −0.675

λ3 = 0.197

(14.36)

in the case where we match the amplitudes of M and C at θ ≈ 20′ and

λ1 = 0.966

λ2 = −0.442

λ3 = 0.203

(14.37)

when we match the amplitudes at θ ≈ 3′. In both of these cases the PME in principle
converges. However, in the second case at least one eigenvalue comes dangerously close to
1. In Fig. 14.9 we show that in terms of the Fisher contours in the Ωm-σ8-plane the PME
nevertheless converges and significantly corrects for the deviations between halo-model and
log-normal motivated covariance. We have also checked other parameter combinations and
find similar results. The reason that a matching at larger scales gives smaller eigenval-
ues (i.e. better agreement between halo-model and log-normal motivated covariance) is
probably that the scaling of Eq. 14.35 fails at small scales.
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Figure 14.9: Top: 1σ and 2σ Fisher contours in the Ωm-σ8 plane for the DES weak lensing data
vector. The black contours are derived from our fiducial halo-model covariance C. For the red
contours we used a model covariance M that was motivated from the general structure of the
log-normal covariance model for shear-shear correlation functions by Hilbert et al. (2011, see
main text). The PME (blue dashed contours) still manages to correct for the deviation between
the two models. It should however be noted that in this case one eigenvalue of the deviation
matrix X comes dangerously close to one (λmax = 0.966). As we discuss in the main text, this
situation stabilizes if we match the amplitudes of the halo-model and the log-normal motivated
covariance at intermediate angular scales (θ ∼ 20′) instead of the smallest scale of our data vector
(θ ∼ 3′). Bottom: we applied a scale dependent rescaling of the halo-model covariance for the
multi-probe data vector motivated by findings of Friedrich et al. (2016). The PME converges also
in this case.



172
14. Precision matrix expansion – efficient use of numerical simulations in

estimating errors on cosmological parameters

Scale dependent rescaling of the cosmic variance of the multi-probe data vector

Another alternative way to deform the halo-model covariance is to apply different rescaling
factors α and β for the Gaussian and non-Gaussian cosmic variance parts for different
angular scales (cf. Eq. 14.15). If e.g. the finite area of a survey is not correctly accounted
for in a covariance model, the results of Friedrich et al. (2016) indicate that this leads to
a scale dependent miss-characterization of the Gaussian cosmic variance and to an almost
scale independent over- or underestimation of the non-Gaussian parts. Covariance parts
involving shape- or shot-noise on the other hand are less sensitive to the survey area (only
to the product of area and galaxy density which is the total number of galaxies).

Motivated by this we replace Eq. 14.15 by

Bm,ij = αijC
ss,Gauss
ij + β

(
Css,halo
ij − Css,Gauss

ij

)
(14.38)

where we choose β = 0.5 and αij =
√
aiaj setting ai to 1.0 at the smallest scales and to

0.5 at the largest scales of the data vector and linearly interpolating for intermediate bins
(interpolating in terms of the bin-index).

The most dominant eigenvalues of the matrix X for this choice of the matrix M are

λ1 = 0.709

λ2 = −0.440

λ3 = 0.242 ,

(14.39)

i.e. the PME converges. The bottom panel of Fig. 14.9 also shows that the Fisher contours
derived from the 2nd order PME around this model almost coincide with the ones derived
from the halo-model covariance again.

14.C.3 Convergence in the General Case

Let us now consider the general case. We want invert the equation

C = M1/2 (1 + X) M1/2 (14.40)

where
X := M−1/2(B−Bm)M−1/2 . (14.41)

Since both M and C are positive definite matrices we can immediately infer that also the
matrix 1 + X must be positive definite, i.e. all its eigenvalues must be greater that 0. As
a consequence, all eigenvalues λi of X must fulfill

λi > −1 ∀i . (14.42)

In order to invert 1 + X let us change into the eigenbasis of X by means of an orthogonal
matrix U, i.e.

1 + X = UTdiag(1 + λi)U . (14.43)
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It is not a priori clear whether we can invert this by means of the geometric series, since we
do not know a priori that |λi| < 1. As discussed in section 14.5 in the case that |λi| > 1 the
PME can at least help to identify differences between a covariance model and covariance
from (possibly very few) simulations since in that case the 1st order and 2nd order PME
will display a divergent behavior. However, since we know a priori that λi > −1 we can in
principle apply a trick to let the PME series converge in any case. This trick is to expand
1/(1 + λ) not around λ0 = 0 but around some other point λ0 = a > 0:

1

1 + λ
=

1

1 + a

[
1−

(
x− a
1 + a

)
+

(
x− a
1 + a

)2

− · · ·
]
. (14.44)

In terms of the PME series this is in fact equivalent to replacing the model covariance M
by (1 + a)M. This way, one can in principle always ensure convergence of the series. This
however comes at the expense of the series converging very slowly for eigenvalues of X that
are already close to or smaller than 0. Since in a real case scenario M is assumed to be our
best guess for the true covariance we hence recommend to stay with a = 0 and interpret a
divergent PME as a significant difference between model and N-body covariance.

14.D Data vectors

14.D.1 Weak lensing data vectors

The redshift distribution and tomographic binning used for our LSST-like weak lensing
data vector was chosen to be exactly that of Krause & Eifler (2016, see section 3). This
means we assumed an overall source density of 26arcmin−2 and a source distribution with a
median redshift of ≈ 0.7 that extends out to z & 3.0. The tomographic bins were defined by
first splitting the redshift distribution into 10 non-overlapping bins of equal source density
and then assuming a Gaussian photoz uncertainty of σz = 0.05. The intrinsic ellipticity
dispersion of the sources was assumed to be σε = 0.26 per ellipticity component.

The redshift distribution for the DES-like data vector was chosen to be shallower as
for the LSST case reflecting the smaller depth of DES. Here our source distribution has
a median redshift of ≈ 0.5 and extends out to z = 2.0. The overall source density was
taken to be 10/arcmin2 and the 5 tomographic bins where defined assuming a photoz
uncertainty of σz = 0.08. The intrinsic ellipticity dispersion was chosen to be the same as
for the LSST-like case.

14.D.2 Lens galaxies

For the DES multi-probe data vector we also considered galaxy clustering and galaxy-
galaxy lensing correlation functions. For this we were assuming a sample of foreground
galaxies with a constant co-moving density motivated by the DES redMaGiC sample
(Rozo et al., 2016) divided into 3 tomographic bins whose redshift ranges are (0.20, 0.35),
(0.35, 0.50) and (0.50, 0.65). For these galaxies we assumed zero redshift uncertainties



174
14. Precision matrix expansion – efficient use of numerical simulations in

estimating errors on cosmological parameters

motivated by the fact that the redMaGiC redshift errors are small compared to the
values for our source samples. The overall density of foreground galaxies was taken to be
0.15/arcmin2.

14.D.3 Binning and scales

The real space data vectors use 15 logarithmic angular bin from θ = 2.5′ to θ = 250′ for each
correlation function and the Fourier space data vector uses 40 logarithmic bin from ` = 20
to ` = 5000 for each power spectrum. Data vector I contains the correlation functions
ξ+ and ξ− for each possible combination of source bins. Data vector Ia also contains the
auto-correlation of the lens bins and all possible combinations of lens-source correlations
(i.e. only those combinations where the sources are at higher redshifts than the lenses).
Data vector II contains the auto- and cross-power spectra of all possible combinations of
source bins.



Part IV

Density Split Statistics





Chapter 15

Idea and formalism

The topic of this thesis are the higher order moments of the cosmic density field (where
higher order is any order > 2). In the previous part (chapters 12 to 14) we only needed
these moments to describe the statistical uncertainties of 2-point statistics. In this part
(chapters 15 to 17) I investigate their potential as a cosmological probe in its own. In
particular, I will describe density split statistics (DSS) which is a new cosmological probe
that I helped develop and that is sensitive to the local probability density function (PDF)
of the matter density contrast. As we saw in chapter 7 the PDF depends on the moments
of the density field at all orders. Previous chapters that are required to understand this
part of my thesis are

• Chapter 6 - Theory of Cosmic Structure Formation

(Especially section 6.4 about non-linear perturbation theory.)

• Chapter 7 - The Cosmic Density PDF

• Chapter 9 - 2D Power Spectra and Correlation Functions

(Especially section 9.2 about galaxy bias.)

• Chapter 10 - Gravitational Lensing

Unfortunately, the total matter density field in the universe is not a direct observable. As
a consequence, there is no direct way to measure the PDF of density fluctuations. One
can instead consider the galaxy density field and measure the PDF of fluctuations in that
field. But as was explained in section 9.2 , galaxies are both a biased and stochastic tracer
of the total density field. I will examine this issue in more detail in chapter 16 but for
now it suffices to acknowledge: galaxy density and matter density are correlated, but not
identical.

Gravitational lensing on the other hand is directly caused by fluctuations of the total
matter density (cf. chapter 10). This can be used indirectly to translate galaxy density
into matter density. Recall that the lensing convergence κ is a line-of-sight projection of
the density contrast (weighted by a geometric kernel; cf. section 10.4 ). Also recall that the



178 15. Idea and formalism

  

Lensing by overdensity: Lensing by underdensity:
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Figure 15.1: Left part of the sketch: The images of light sources behind a massive fore-
ground object will appear tangentially stretched around this object due to gravitational
lensing. Such a situation is typically described by a positive lensing convergence κ and a
positive tangential component γt of the shear field (but not always; a region with κ < 0
can still cause a positive γt if it is surrounded by regions of even smaller κ). Right part of
the sketch: The images of light sources behind an underdense region will appear radially
stretched around this object due to gravitational lensing. Such a situation is typically
described by a negative lensing convergence κ and a negative tangential component γt of
the shear field).
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tangential shear γt around a point on the sky quantifies how much images of light sources
appear tangentially stretched around that point (cf. section 10.4.4 ). Then the tangential
shear averaged along a circle of angular radius θ is related to the lensing convergence within
that circle via

〈γt〉θ = 〈κ〉<θ − 〈κ〉θ . (15.1)

Here 〈κ〉<θ is the convergence averaged within the circle and 〈κ〉θ is the average convergence
at the circle. In figure 15.1 I sketch the typical tangential shear signals that one expects
around overdense and underdense signals in the sky. Around an overdense region, the
line-of-sigh density will typically drop and approach the average density of the universe
from above. This means that the right hand-side of equation 15.1 will be positive, leading
to a positive tangential shear signal. Around underdense regions, the line-of-sigh density
will typically rise and approach the average density of the universe from below. This will
lead to a negative tangential shear signal (with signifies radial alignment of images).

This behavior of the tangential shear signal signal can be used to relate a map of
galaxy density to the underlying matter density. If galaxy density and matter density are
indeed correlated, then γt around points located in galaxy underdensities is expected to be
negative while γt around points located in galaxy overdensities is expected to be positive.
I sketch this in figure 15.2.

As I explain in chapter 16 , the exact amplitude of γt around a region of a given galaxy
density depends on two things: the matter density PDF and the relation between galaxies
and matter. And as I also explain in chapter 16 , one can disentangle these two influences
by measuring in addition to γt also the PDF of galaxy density. This is the program of
DSS. It can be summarized in the following steps:

1. Consider a sample of low redshift galaxies. Based on the positions of these galaxies,
construct as map of projected galaxy density on the sky. This requires to smooth the
discrete field of galaxy positions by some angular aperture -, e.g. , a circular top-hat
filter of radius θT .

2. Measure the PDF of galaxy density (averaged over the radius θT ). This will be one
part of the data vector analyzed by DSS.

3. Split the map into quantiles of galaxy density. This could, e.g. , be the 20% of the
area that has the lowest galaxy density or the 20% of the area that has the highest
galaxy density. (The choice of 20% is arbitrary at this point; but I argue in chapter
16 that it is indeed a good choice.)

4. Around a uniform set of points in each quantile, measure the tangential shear γt(θ) at
a number of radii θ. This will be the second part of the data vector analyzed
by DSS.

As I demonstrate in chapter 16 these measurements can be used to simultaneously deter-
mine

• the relation between galaxy and total matter density,
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Figure 15.2: The tangential shear γt (of the images of background sources) around a uni-
form set of points on the sky is zero on average (upper panel). Around points in overdense
regions γt will on average be > 0 (middle panel). And around points in underdense regions
γt will on average be < 0 (lower panel; γt < 0 indicates radial alignment).
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• the properties of the matter density PDF,

• parameters describing the background ΛCDM model.

This is significantly more qualitative information then obtained in analyses of 2-point
statistics (see, e.g. , Kilbinger et al., 2013; van Uitert et al., 2018; DES Collaboration
et al., 2017). The reason why DSS can provide that information is the following: it is not
only sensitive to the amplitude of the galaxy density and matter density fields but also
to their higher order moments (mostly their skewness). If one can predict the properties
of the density PDF from within the ΛCDM model, then DSS also quantitatively becomes
a competitive probe of that model (cf. chapter 17 where I present the results of Gruen,
Friedrich et al., 2018).

However, the more interesting aspect of DSS is that it can be used to test predictions
about the behavior of higher order density moments in a way that is almost independent
of the exact parameters of the ΛCDM model. In particular we can measure the value of
the scaling coefficient

S3 =
〈δ3
R〉c

{〈δ2
R〉c}

2 (15.2)

that relates the skewness 〈δ3
R〉c of matter density to its variance 〈δ2

R〉c (cf. section 7.3 for
the definition of the coefficients Sn). The ΛCDM predictions for this parameter are almost
independent of the parameters Ωm and σ8 that are typically a focus of 2-point statistical
analyses. Another interesting aspect of DSS is that it probes the relation of galaxies and
their environment in much more detail than can be achieved with 2-point statistics (see
the next chapter for details).

I have contributed to the following 3 journal articles related to DSS:

• Gruen, Friedrich et al., 2016, MNRAS:

In this paper we tested for the first time Daniel Gruen’s idea of measuring the tan-
gential shear profile around quantiles of different galaxy density. My part of this
work was to derive a model for these profiles based on the assumptions that

a) both the matter density contrast and the lensing convergence are Gaussian
random fields,

b) the relations between the matter density contrast and the density contrast of
luminous red galaxies can be described with a linear bias model + Poissonian
shot-noise.

With this model we could show that the main features of density split statistics can
be derived from simple assumptions within the ΛCDM model. In figure 15.3 I show
the values of γt measured along different angular radii θ around the 20% most under-
dense and the 20% most overdense area of early DES data (Rozo et al., 2016, using
the redMaGiC sample of luminous red galaxies to determine overdensities and un-
derdensities). As you can see in that figure, there is an asymmetry in the amplitudes
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of the overdense and underdense signal that is not captured by the Gaussian model.
This disagreement was not significant in that early data but is let us suspect, that
the skewness of the density field or density dependence in the relation of galaxies and
matter might indeed be detectable with DSS.

• Friedrich, Gruen et al., 2018, PRD:

In this paper I developed a more realistic model for DSS that uses cosmological
perturbation theory to predict the behavior of the density PDF and that allows for a
density dependence in the behavior of galaxies and matter. We then test the accuracy
of this model using N-body simulations. This paper is presented in chapter 16.

• Gruen, Friedrich et al., 2018, PRD:

In this paper we analyze year 1 data of DES based on the improved model. I sum-
marize the results of this paper in chapter 17.

In figure 15.4 I compare plots of the lensing signals obtained in each of the papers (see
chapters 16 and 17 for details).
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Figure 15.3: Figure from Gruen, Friedrich et al., 2016. The blue points show measure-
ments of γt around the 20% of the area of early DES data that was most underdense in
terms of redMaGiC galaxies (Rozo et al., 2016). The red points show the corresponding
measurements around the 20% of the area of early DES data that was most overdense. Our
map of galaxy density was constructed using a circular top-hat filter of radius θT = 10′.
This explains why signals drop off at θ < 10′. The blue solid and red dashed lines show
the model that I developed, assuming that the density field is a Gaussian random field.
As you can see, there is an asymmetry in the amplitudes of the overdense and underdense
signal that is not captured by the Gaussian model (though this is not yet significant in
this early data).
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Gruen, Friedrich et
al., 2016:
Measurement in DES
science verification
data compared to a
Gaussian model. This
early model does not
capture the skewness
of the cosmic density
field.

Friedrich, Gruen et
al., 2018:
Our updated model
model compared to
simulated data. The
error bars represent
uncertainties of DES
year 1 data.
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Figure 15.4: Description see main text.



Chapter 16

Density split statistics:
joint model of counts and lensing in
cells

In Gruen, Friedrich et al., 2016 we presented an exploratory study of density split statistics
(DSS) in early DES data (the so-called science verification data set). We did not perform
a cosmological analysis of DSS in that data. The model we used in Gruen, Friedrich et al.,
2016 was too unrealistic for that, because it assumed that the matter density contrast is a
Gaussian random field.

In the following chapter I will present an improved model that uses cosmological per-
turbation theory to predict the behavior of the density PDF and that allows for a density
dependence in the behavior of galaxies and matter. This model was the basis of our cos-
mological analysis of DES year 1 data and SDSS data presented in Gruen, Friedrich et al.,
2018. (The results of that paper are summarized in chapter 17.)

The present chapter has been published as Friedrich, Gruen, DeRose, Kirk, Krause, Mc-
Clintock, Rykoff, Seitz, Wechsler, Bernstein, Blazek, Chang, Hilbert, Jain, Kovacs, Lahav
et al. (2018) in PRD. I exclusively developed the model for density split statistics presented
in that article (building on earlier work done by Francis Bernardeau, Patrick Valageas and
others that is referenced in the paper). I also exclusively designed the numerical code used
to calculate predictions from that model and programmed most of that code by myself.
Furthermore, I carried out the majority of the analysis presented in this paper (exceptions
are mentioned below).

Daniel Gruen and I have in cooperation developed the concept of density split statistics
(DSS) on which this article is based. DSS is a generalization of trough lensing, which was
first proposed by Mr. Gruen. He also contributed to this article in particular in several
ways: He prepared some of the data vectors, the covariance matrix and in part also the
projected density maps used in this work from simulated data. He has programmed the
likelihood pipeline used in this study as well as the C++-to-python interface that links my
modeling code with this pipeline. Together with Donnacha Kirk he has also carried out
the measurements of galaxy bias and galaxy stochasticity that are used to test individual
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ingredients of the presented model. Finally, Mr. Gruen has in part written the sections
16.3.2 and 16.4.3.

Joe DeRose, Eli Rykoff and Risa Wechsler have developed and produced the mock data
from the Buzzard N-body simulations that is used in this work. From these simulations
Joe DeRose has also derived particular data products needed for this analysis and he is
the author of section 16.3.1.

Elisabeth Krause and Tom McClintock helped to significantly increase the speed of my
modeling code. Elisabeth Krause also contributed through discussions about our galaxy
bias and stochasticity model and her insight into large scale structure cosmology helped
us to put the project into adequate context with other cosmological probes.

Stella Seitz contributed through frequent, detailed discussions about the project (es-
pecially emphasizing the galaxy evolution aspect of it and helping to define future per-
spectives). All authors mentioned above have contributed to discussions and proofreading.
Authors that are not mentioned have contributed to the overall infrastructure of the Dark
Energy Survey.

Permission for non-commercial re-use of the material included in this thesis has been
granted by the PRD editorial office. The American Physical Society holds the copyright
on the paper.



16.1 Introduction 187

ABSTRACT
We present density split statistics, a framework that studies lensing and counts-in-cells as a
function of foreground galaxy density, thereby providing a large-scale measurement of both
2-point and 3-point statistics. Our method extends our earlier work on trough lensing and
is summarized as follows: given a foreground (low redshift) population of galaxies, we divide
the sky into subareas of equal size but distinct galaxy density. We then measure lensing
around uniformly spaced points separately in each of these subareas, as well as counts-in-
cells statistics (CiC). The lensing signals trace the matter density contrast around regions
of fixed galaxy density. Through the CiC measurements this can be related to the density
profile around regions of fixed matter density. Together, these measurements constitute
a powerful probe of cosmology, the skewness of the density field and the connection of
galaxies and matter.

In this paper we show how to model both the density split lensing signal and CiC
from basic ingredients: a non-linear power spectrum, clustering hierarchy coefficients from
perturbation theory and a parametric model for galaxy bias and shot-noise. Using N-body
simulations, we demonstrate that this model is sufficiently accurate for a cosmological
analysis on year 1 data from the Dark Energy Survey.

16.1 Introduction

The large-scale structure (LSS) observed today is thought to originate from almost per-
fectly Gaussian density perturbations in the early Universe. This means that there was a
complete symmetry in the abundance and amplitude of underdense and overdense regions
in very early times. Gravitational attraction then caused initial overdensities to collapse to
small but highly overdense structures such as galaxy clusters, while initial underdensities
expanded but stayed moderately underdense and e.g. became voids. As a consequence
the majority of the volume in the late-time Universe is underdense, compensated by the
presence of few highly overdense spots. Or, in other words, a positive skewness in the
distribution of density fluctuations emerges due to gravitational collapse.

A variety of probes have been used to study the statistical properties of the late-time
density field and to thereby understand the physics of gravitational collapse as well as the
processes responsible for the properties of the initial density fluctuations. So far, the most
extensive studies have been carried out on the 2-point statistics of density fluctuations, i.e.
on measuring the variance of density fluctuations as a function of scale. This has e.g. been
done through measurements of cosmic shear 2-point correlation functions (e.g. Wittman
et al., 2000; Van Waerbeke et al., 2000; Benjamin et al., 2007; Fu et al., 2008; Schrabback
et al., 2010; Kilbinger et al., 2013; Becker et al., 2016; Jee et al., 2016; Hildebrandt et al.,
2017; Troxel et al., 2017), galaxy clustering (e.g. Crocce et al., 2016; Elvin-Poole et al.,
2017; Alam et al., 2017) and galaxy-galaxy lensing (e.g. Brainerd et al., 1996; Hudson et al.,
1998; Wilson et al., 2001; van Uitert et al., 2011; Brimioulle et al., 2013; Clampitt et al.,
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2017; Prat et al., 2017) as well as combined measurements thereof (e.g. Mandelbaum et al.,
2013; van Uitert et al., 2018; DES Collaboration et al., 2017).

While 2-point statistics are only sensitive to the overall amplitude of density fluctua-
tions, higher-order statistics also know about the skewness arising from the different behav-
ior of underdense and overdense regions. This does not necessarily mean that higher-order
statistics are better than 2-point statistics in discriminating between particular choices of
cosmological parameters (Barreira et al., 2017). But they scale differently with parame-
ters such as Ωm, σ8, galaxy bias and galaxy stochasticity than their 2-point counterparts.
Hence, in a cosmological analysis that varies a large number of parameters, probes that are
sensitive to both 2-point and higher order statistics have the power to break degeneracies
between these parameters (Bernardeau et al., 1997; Takada & Jain, 2002; Pires et al., 2012;
Uhlemann et al., 2018a).

Observations of higher-order statistical features of the density field include measure-
ments of three point correlation functions (Semboloni et al., 2011), shear peak statistics
(Lin & Kilbinger, 2015; Liu et al., 2015; Kacprzak et al., 2016) and the cluster mass func-
tion (Mantz et al., 2016). Also, a number of probes have been suggested (and in some
cases measured in data) that study the correlation of 2-point statistics and background
density. Chiang et al. (2015) have measured this by means of the integrated bispectrum.
Simpson et al. (2011, 2013, 2016) have proposed a clipped power spectrum approach, where
2-point statistics are measured on the sky after excluding high density regions. They have
shown that these measurements contain information complementary to the corresponding
measurements on the full sky.

A similar direction was investigated by Gruen et al. (2016) who separately measured
the lensing power spectrum in underdense and overdense lines of sight. The framework
presented in this paper is based on their concept of trough lensing. We will call it density
split lensing when only lensing measurements are involved and density split statistics when
it is combined with counts-in-cells measurements. This method can be summarized as
follows: we consider a foreground (low redshift) population of galaxies and smooth their
position field with a circular top-hat aperture. This smoothed density field is then used
to divide the sky into sub-areas of equal size but distinct galaxy density. In this paper we
consider in particular 5 sub-areas and call them quintiles of galaxy density. As a next step,
we use a background (high redshift) population of galaxies to measure the tangential shear
of these galaxies around a set of uniformly spaced points within the area of each density
quintile. The resulting lensing signals trace the matter density contrast around regions of
fixed foreground galaxy density. This data vector is then complemented by the histogram
of counts-in-cells of the foreground galaxies to pin down their bias and stochasticity. As
we show in this paper, a cosmological analysis based on this density split data vector has
a number of desirable features:

• it allows for an accurate analytic modeling with the help of cosmological perturbation
theory and a non-linear power spectrum,

• it yields high signal-to-noise measurement,
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• it avoids systematics common to cosmic shear such as additive shear biases or intrinsic
alignments (as long as tracer sample and source sample do not overlap in redshift),

• it has a very intuitive interpretation.

This paper is a companion paper of Gruen et al. (2018), where we present our actual data
analysis, including tests for systematic effects as well as a description of how we estimate
the covariance of our signal. This paper is presenting the modeling framework used in
that analysis. Our section 16.2 gives a general overview of density split statistics: we
describe our data vector, explain how it can be modeled and also present forecasts on
cosmological parameter constraints, both for a ΛCDM model and an extended model that
allows gravitational collapse to behave differently than within general relativity. In section
16.3 we describe the simulated data used in this work. Section 16.4 explains details of
the model presented in section 16.2. There we also compare individual components of
this model directly to measurements in N-body simulations. In section 16.5 we show that
our model for a data vector combining density split lensing and counts-in-cells statistics
is accurate enough to recover the cosmology underlying our N-body simulations. Any
possible deviation between our model and the simulations is shown to be well within
statistical uncertainties of year 1 data of the Dark Energy Survey (DES Y1).

In appendix 16.A, we review a number of differential equations that govern gravitational
collapse. In appendix 16.B, we review the leading order perturbative calculation of the 3-
point statistics of the cosmic density field for a general ΛCDM model. Appendix 16.C
qualitatively compares our model of the cosmic density PDF to a second set of N-body
simulations as a complement to the comparison carried out in the main text. Appendix
16.D derives properties of joint log-normal random fields and appendix 16.E repeats the
validation of our model for an alternative shot-noise parametrization.

16.2 Density split statistics: data vector, modeling

and forecasts

This section provides an introduction to the program of density split statistics. In section
16.2.1 we describe how we obtain the density split lensing signal and how this signal can
be further complemented with information on galaxy bias and stochasticity from counts-
in-cells. In section 16.2.2 we outline our modeling of this signal (but postponing technical
details of this model to section 16.4). In section 16.2.3 we provide forecasts on the cosmo-
logical information that can be obtained with a measurement of density split statistics in
year-1 data of the Dark Energy Survey (DES Y1).

16.2.1 Measuring density split statistics

Density split lensing is a generalization of trough lensing (Gruen et al., 2016) and can be
described in three steps:
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Figure 16.1: Top panel: splitting the lines of sight in one DES-Y1 like Buzzard simulation
into 5 quantiles of galaxy density (color coding from cyan, most underdense, to red, most
overdense). The map uses a 20 arcmin top-hat radius and redMaGiC galaxies with a
redshift range of 0.2 . z . 0.45. Bottom left: histogram of redMaGiC galaxy counts in
20 arcmin radii (counts-in-cells). We show the mean histogram from 4 Buzzard realizations
of DES-Y1 (black points), our model based on perturbation theory and cylindrical collapse
(solid line) and a model that assumes the projected density contrast to be a Gaussian
random field (dotted line). The color coding corresponds exactly to the density quantiles
in the top panel. Bottom right: Lensing signals around random points split by the density
quantile in which these points are located. We show the mean measurement from 4 Buzzard
realizations (black points), our perturbation theory model (solid line) and a model that
assumes projected density contrast and lensing convergence to be joint Gaussian random
variables (dotted line). Color coding is the same as in the other panels. The asymmetry
between the lensing signals around the most underdense and most overdense lines-of-sight
indicates the skewness of the cosmic density PDF.
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Figure 16.2: Redshift distributions of the tracer galaxy sample and the source samples of
our N-body realizations of DES-Y1.

1.) Splitting the sky into quantiles of different foreground galaxy density

Consider a sample of low-redshift galaxies that are tracing the line-of-sight density of
matter with some redshift distribution nl(z). We will call these galaxies the foreground
sample. For an angular radius θT , which we will call the top-hat aperture radius, we define
NT (n̂) to be the number of galaxies found within a radius θT around the point on the
sky specified by the vector n̂ on the unit sphere. The field NT (n̂) can be used to divide
the sky into regions of different galaxy density. Gruen et al. (2016) have done this by
discretizing the sky with a healpix1 grid and sorting the pixels according to their value of
NT (n̂). Then they considered the 20% of the pixels with the lowest values of NT , calling
them troughs. In the limit of a fine pixelization these pixels can be considered the most
underdense quintile of the sky area. This can be generalized to the second most underdense
quintile, the third most underdense quintile etc. or even to finer splits using more then
just 5 quantiles.

We stick to a division into 5 quantiles (quintiles) throughout this paper. The upper
panel of figure 16.1 illustrates such a subdivision on a patch of a simulated sky (from the
Buzzard flock, see section 16.3 and especially DeRose et al. (2018) for details). There we
use a top-hat aperture radius θT = 20′ and the tracer galaxies have the redshift distribution
that is displayed by the solid line in Figure 16.2. Figure 16.1 shows the most underdense
quintile of the simulated patch in cyan, the most overdense quintile in red and the three

1See Górski et al. (2005) for details on healpix.
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intermediate quintiles in blue, green and orange.
Note that the sum of the 5 lensing signals will vanish on average (we subtracted 1/5

times the shear around random points from each signal, but due to boundary effects their
sum will not vanish exactly). This means that roughly 4 of the 5 signals contain inde-
pendent information. We have not investigated, whether our choice of 5 quantiles is in
any way optimal. Choosing 3 quantiles would leave us with 2 independent signals and
would hence suffice to be sensitive to both the variance and skewness of the density field.
5 quantiles enable a sensitivity beyond the 3rd moment of the density field. And they also
allow us to explicitly show, that the median universe is underdense (which we could not do
with 4 quantiles). In section 16.4 we investigate different radii of our top-hat aperture and
find that θT = 20′ is the smallest radius at which our model is reliable (given the redshift
distribution we use in Gruen et al. (2018)).

2.) Tracing the mean dark matter density in each sky quintile with gravitational lensing

Now consider a second sample of galaxies at higher redshifts than the foreground sample
(the source sample, see e.g. the dashed and dotted redshift distributions in Figure 16.2).
As the light of these galaxies passes the large-scale structure of the foreground density
distribution it undergoes gravitational lensing effects such as gravitational shear (see e.g.
Bartelmann & Schneider, 2001). The density split lensing signal around each quintile of the
sky is obtained by measuring the stacked radial profile of tangential shear around random
points located within that quintile. These points are constrained to lie within the part of
the sky covered by a certain quintile of galaxy density but are otherwise random in their
location. Because these random points are split according to the density quintile they are
located in, their stacked shear signals trace the average profile of density contrast around
each quintile.

In the lower right panel of Figure 16.1 we show the signals measured for each density
quintile in our mock data. The points show the average measurement from 4 Buzzard real-
izations of DES year-1 data (using the highest redshift source population shown in Figure
16.2) and the solid lines show predictions by the model presented in this paper. The error
bars are derived from a set of log-normal realizations (using the FLASK tool by Xavier et al.
(2016); in Gruen et al. (2018) we describe in detail how we configured FLASK to generate
our mock catalogs). Two main features of the density split lensing signals are apparent:
first, the amplitude of the radial shear around the 20% most underdense pixels is lower
than the amplitude of the tangential shear around the 20% most overdense pixels. This
is reflecting the skewness of the cosmic density PDF. Secondly, the signal around points
in the third quintile is still significantly negative, which reflects the fact that the median
universe is underdense. A more subtle feature is the fact that the underdense signals fall
off less rapidly with increasing scale than the overdense signals. This is because on large
scales the density field becomes Gaussian and hence recovers its initial symmetry between
overdensities and underdensities.

3.) Measuring the average counts-in-cells in each density quintile to obtain additional in-
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formation on galaxy bias and stochasticity

If galaxy counts and the matter density field were perfectly correlated, then a split of the
sky by galaxy density would be identical to a split by matter density. Hence, in this limit
the density split lensing signals would be independent of the bias of the tracer galaxies. In
a realistic scenario however, shot-noise of the galaxies smears out our attempts to divide
the sky into areas of different matter density. Hence the density split lensing signals obtain
a dependence on galaxy bias, but also on galaxy stochasticity. Increasing the linear bias
of galaxy clustering will sharpen the tracers’ ability to distinguish between overdensities
and underdensities. Thus, increasing this bias will increase the amplitudes of the signals.
This means that linear bias is to some degree degenerate with the amplitude of density
fluctuations, σ8. But σ8 and bias influence the third moments of the density field in
different ways and their degeneracy is not complete. As a consequence, it is possible to
obtain constraints on cosmological parameters from the lensing signals alone (cf. section
16.2.3 and the blue contour in the left panel of figure 16.3).

But additional information on bias and stochasticity nevertheless helps to tighten these
constraints. In this paper we decided to add that information in the form of normalized
quantiles of the counts-in-cells (CiC) histogram of the tracer galaxies: we measure the
histogram of tracer counts within the same aperture that was used to identify our density
quintiles. Then we identify the parts of this histogram that correspond to these quintiles
(cf. lower left panel of Figure 16.1). For each quintile q we then determine the mean
galaxy count in that quintile, Nq, and normalize it by the overall mean galaxy count in our
aperture, N̄ . i.e. for each quintile we add Nq/N̄ to our data vector. This indeed helps to
tighten constraints on cosmological parameters (cf. section 16.2.3 and the green contour
in the left panel of figure 16.3).

16.2.2 Modeling density split statistics

We now outline a general framework for modeling the data vector described above, leaving
details of this framework to section 16.4. Unless stated differently, we will assume a flat
ΛCDM universe throughout this paper.

Let us start by introducing the quantities whose relations need to be modeled. First,
we denote with δm,2D the line-of-sight projection of the 3D density contrast according to
the redshift distribution nl(z) of our foreground galaxy sample, i.e.

δm,2D(n̂) =

∫
dw ql(w) δm,3D(wn̂, w) (16.1)

where n̂ denotes a unit vector on the sky, w is co-moving distance and the projection kernel
ql(w) is given in terms of nl(z) as

ql(w) = nl(z[w])
dz[w]

dw
. (16.2)



194
16. Density split statistics:

joint model of counts and lensing in cells

We furthermore define δm,T to be the average of δm,2D over top-hat filters with aperture
radius θT , i.e.

δm,T (n̂) =

∫
|n̂,n̂′|<θT

dΩ′
δm,2D(n̂′)

2π(1− cos θT )
. (16.3)

Here |·, ·| denotes the angular distance between two points on the sky.
We identify regions of different density by means of our foreground galaxy sample.

When smoothed with a top-hat filter of radius θT , these galaxies are biased and possibly
stochastic tracers of δm,T (n̂). Hence our model also needs to include a description of how
NT (n̂), the number of tracer galaxies found within an angular radius θT around the line-
of-sight n̂, relates to δm,T (n̂).

Finally, in order to describe the density split lensing signal, we need to consider the
lensing convergence field for our population of source galaxies. Given the source redshift
distribution ns(z), the convergence κ is given by the line-of-sight projection

κ(n̂) =

∫
dw Ws(w) δm,3D(wn̂, w) , (16.4)

where Ws is the lensing efficiency, which is defined by

Ws(w) =
3ΩmH

2
0

2c2

∫ ∞
w

dw′
w(w′ − w)

w′ a(w)
qs(w

′) , (16.5)

and qs(w) = ns(z[w])dz[w]
dw

is the line-of-sight density of the sources. Smoothing the conver-
gence field with a circular aperture of radius θ results in a field which we will denote by
κ<θ(n̂).

Because of the isotropy of the universe, we will now omit the dependence of the above
quantities on n̂. To model the density split lensing signal one needs to answer the following
questions:

• Given the number of galaxies NT found around a line-of-sight n̂, what distribution can
be inferred for the matter density contrast δm,T in that line-of-sight? i.e. what is the
expectation value 〈δm,T |NT 〉?

• Given the matter density contrast δm,T in the line-of-sight n̂, what lensing convergence
κ<θ is expected inside an angular distance θ from that line-of-sight? i.e. what is the
expectation value 〈κ<θ|δm,T 〉? The tangential shear profile around that line-of-sight can
then be inferred from the convergence profile as

〈γt(θ)|δm,T 〉 = 〈κ<θ|δm,T 〉 − 〈κθ|δm,T 〉

=
cos θ − 1

sin θ

d

dθ
〈κ<θ|δm,T 〉 , (16.6)

where κθ is the average convergence at the radius θ.
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The first of the above questions can be answered in the form of a conditional PDF of δm,T
given a certain value of NT , i.e. p(δm,T |NT ). Using Bayes’ theorem this can be written as

p(δm,T |NT ) =
P (NT |δm,T ) p(δm,T )

P (NT )
, (16.7)

where P (NT |δm,T ) is the probability of finding a number of galaxies NT given that the
density contrast is δm,T and where p(δm,T ) and P (NT ) are the total PDF of δm,T and the
total probability of finding NT tracer galaxies. The average convergence profile around a
circle with NT galaxies is then given by

〈κ<θ|NT 〉 =

∫
dδm,T 〈κ<θ|δm,T , NT 〉 p(δm,T |NT )

≈
∫

dδm,T 〈κ<θ|δm,T 〉 p(δm,T |NT ) , (16.8)

where in the second step we have assumed that the expected convergence within θ only
depends on the total matter density contrast within θT .

We now divide the sky into different quintiles of tracer galaxy density. Let us denote
with Q[0.0, 0.2] the 20% of the lines-of-sight on the sky that have the lowest value of NT .
There will be a maximal value NT ≤ Nmax in this quintile and the stacked convergence
profile around these lines-of-sight is given by

〈κ<θ|Q[0.0, 0.2]〉 =

1

0.2

( ∑
N<Nmax

P (N)〈κ<θ|NT = N〉+ α 〈κ<θ|NT = Nmax〉
)

. (16.9)

Here the factor α in the second term accounts for the fact that the lines-of-sight with
exactly NT = Nmax might have to be split between the quintile Q[0.0, 0.2] and the quintile
Q[0.2, 0.4]. It is given by

α = 0.2 −
∑

N<Nmax

P (N) . (16.10)

This can be easily generalized to the other quintiles Q[qmin, qmax] and also to the case of
dividing the sky into more than 5 density regimes. Finally, we also add the average of the
counts-in-cells in each quintile normalized by the mean galaxy count N̄ to our data vector.
For the quintile Q[0.0, 0.2] this is given by

〈NT |Q[0.0, 0.2]〉
N̄

=
1

0.2N̄

( ∑
N<Nmax

P (N) N + α Nmax

)
, (16.11)

which is also straightforward to generalize to other quantiles Q[qmin, qmax].
The probabilities P (N) can be computed from the normalization of equation 16.7.

Hence, our model for the density split lensing signal needs the following three ingredients:
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(i) The PDF of matter density contrast, smoothed with a top-hat filter of radius θT ,

p(δm,T ) . (16.12)

(ii) The expectation value of convergence inside a distance θ given the density contrast
inside θT ,

〈κ<θ|δm,T 〉 . (16.13)

(iii) The distribution of galaxy counts inside the top-hat radius θT given the density contrast
within that radius,

P (NT |δm,T ) . (16.14)

Gruen et al. (2016) assumed δm,T and κ<θ to have a joint Gaussian distribution. This
allowed them to compute (i) and (ii) solely from the dark matter clustering power spectrum.
To compute (iii) they assumed a linear galaxy bias and Poissonian shot-noise of the tracer
galaxies. These assumptions allowed a sufficient model for their measurements made on
DES Science Verification data. But as can be seen from the dotted lines in the lower panels
of Figure 16.1, a Gaussian model for the density PDF is not sufficient within the much
smaller uncertainty of DES-Y1. Also, in section 16.4 we demonstrate that the shot-noise
of the tracer galaxies can not necessarily be assumed to be Poissonian. In this work we
hence want to revise their model.

For each of the model components (i) and (ii) we investigate two different modeling
approaches - a baseline approach and an approach with increased complexity used to check
the validity of the baseline model. In the following we briefly outline each approach. The
reader interested in details of each modeling ansatz is referred to section 16.4. Readers
who are not interested in this technical part of the paper should feel free to skip section
16.4.

(i) Baseline model for p(δm,T ):

In our fiducial model we assume δm,T to be a log-normal random field (Hilbert et al., 2011).
The PDF of such a variable can e.g. be fixed by specifying the variance 〈δ2

m,T 〉 and skewness
〈δ3
m,T 〉. We predict the variance of δm,T from the non-linear matter power spectrum (cf.

Gruen et al., 2016). The latter is computed using halofit (Smith et al., 2003; Takahashi
et al., 2012) and an analytic transfer function (Eisenstein & Hu, 1998). We then use lead-
ing order perturbation theory to compute a scaling relation between the bispectrum and
the power spectrum of the density field. Together with our power spectrum this fixes the
skewness of δm,T .

Alternative model for p(δm,T ):

As an alternative we compute the PDF p(δm,T ) from its cumulant generating function (see
section 16.4 for a definition and further details). To model this function we use a cylindrical
collapse approach based on the work of Bernardeau (1994), Bernardeau & Valageas (2000)
and Valageas (2002a).
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(ii) Baseline model for 〈κ<θ|δm,T 〉:
In our fiducial model we assume that κ<θ can be expressed as the sum of two random
variables,

κ<θ = κ<θ,corr. + κ<θ,uncorr. , (16.15)

where κ<θ,uncorr. is assumed to be completely uncorrelated to δm,T and hence doesn’t con-
tribute to the density split lensing signal. As a result we have

〈κ<θ|δm,T 〉 ≡ 〈κ<θ,corr.|δm,T 〉 . (16.16)

We assume a joint log-normal PDF for the two random variables δm,T and κ<θ,corr.. The
expectation value 〈κ<θ,corr.|δm,T 〉 is then fixed by specifying the moments

〈δ2
m,T 〉 , 〈δ3

m,T 〉 (16.17)

as well as
〈κ<θδm,T 〉 ≡ 〈κ<θ,corr.δm,T 〉 (16.18)

and
〈κ<θδ2

m,T 〉 ≡ 〈κ<θ,corr.δ
2
m,T 〉 . (16.19)

Second order moments are again computed from our non-linear power spectrum while third
order moments are inferred from perturbation theory. (The introduction of κ<θ,uncorr. is
only necessary for consistency reasons: a joint log-normal PDF of δm,T and κ<θ charac-
terized by the above moments would be inconsistent with the variance 〈κ2

<θ〉 derived from
our power spectrum.)

Alternative model for 〈κ<θ|δm,T 〉:
As an alternative we compute 〈κ<θ|δm,T 〉 from the joint cumulant generating function of
the variables δm,T and κ<θ. This function can also be modelled in a cylindrical collapse
approach.

For model component (iii) we also investigate two different modeling approaches - one
ansatz introducing 2 free parameters and one ansatz introducing 3 free parameters. We
find that our simulated tracer catalogs are well described by the 2-parametric model. But
- anticipating real galaxies to behave more complicated than simulated ones - we do not
consider either of these models as our baseline model and instead apply both approaches
to DES data in Gruen et al. (2018). We summarize both ansatzes here, but the interested
reader is again referred to section 16.4 for details of each ansatz.

(iii) Model 1 for P (NT |δm,T ):
In our fiducial model we introduce an auxiliary field δg,T such that our foreground galaxies
are Poissonian tracers of that field, i.e.

P (NT |δg,T ) =

[
N̄(1 + δg,T )

]NT
NT !

e−N̄(1+δg,T ) . (16.20)
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δg,T can be thought of as a smooth (shot noise free) galaxy density contrast. We then
assume that δg,T and δm,T are joint log-normal random variables with

〈δ2
g,T 〉 = b2〈δ2

m,T 〉 , 〈δ3
g,T 〉 = b3〈δ3

m,T 〉 (16.21)

and

〈δg,T δm,T 〉 = br〈δ2
m,T 〉 . (16.22)

The parameters b and r will be called galaxy bias and galaxy stochasticity and are free
parameters of the model.

Model 2 for P (NT |δm,T ):

As an alternative we assume P (NT |δm,T ) to be a generalization of the Poisson distribution,
that allows for

〈N2
T |δm,T 〉 6= 〈NT |δm,T 〉+ 〈NT |δm,T 〉2 , (16.23)

i.e. for a shot-noise that is either enhanced or suppressed wrt. the Poisson case. The
enhancement of shot-noise is also allowed to be a function of δm,T of (approximately) the
form

〈N2
T |δm,T 〉 − 〈NT |δm,T 〉2
〈NT |δm,T 〉

≈ α0 + α1δm,T . (16.24)

This model introduces an alternative bias parameter b̃ such that

〈NT |δm,T 〉 = N̄ [1 + b̃δm,T ] . (16.25)

For the model components (i) and (ii) and on the scales considered in this paper, the
baseline and alternative modeling approaches yield almost indistinguishable predictions
(cf. section 16.4). For component (iii) the modeling ansatzes 1 and 2 are not necessarily
identical, because they introduce a different number of degrees of freedom. Figure 16.1
as well as all parameter contours shown in this paper are using the baseline model for
components (i) and (ii) and ansatz 1 for component (iii). The predictions derived from
different modeling approaches are however almost indistinguishable (cf. figure 16.5).

16.2.3 Data vector and forecasts on parameter constraints

Binning and scales

Throughout this paper, we assume that one sample of tracer galaxies is used to identify
density quintiles and that the lensing profiles around these quintiles are measured with
two source redshift bins (cf. redshift distributions in Figure 16.2). To identify the different
density quintiles, we use a top-hat filter with fiducial smoothing radius of θT = 20′.
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Figure 16.3: Left panel: Forecast of 1σ and 2σ constraints on Ωm and σ8 achievable with
density split lensing and counts-in-cells in DES Y1 data. The constraints are marginalized
over Ωb, ns, h100, redMaGiC galaxy bias b and galaxy-matter correlation coefficient r.
For the parameters Ωb, ns, h100 we have assumed the same flat priors as used in the DES
Y1 combined probes analysis presented in DES Collaboration et al. (2017). Right panel:
∆S3/S3 measures relative deviations from our fiducial perturbation theory prediction of the
scaling coefficient S3 ≡ 〈δ3〉

〈δ2〉2 (cf. equation 16.30 and section 16.4 for details). It can hence
be thought of as the bispectrum amplitude. We show 1σ constraints on this parameter
achievable with density split lensing and counts-in-cells in DES data alone (solid lines) and
using additional information on cosmology from Planck (dashed lines, no lensing). The
sharp cut-off of the contours for low values of Σ8 is caused by the requirement that matter
density and a shot-noise free galaxy density field must have a correlation coefficient r ≤ 1.
All likelihoods are centered around our fiducial cosmology, i.e. the parameters describing
the Buzzard simulations.
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Figure 16.4: Forecast of posterior constraints on galaxy bias b and galaxy-matter correlation
coefficient r achievable with density split lensing and counts-in-cells in DES Y1 data.
The constraints are marginalized over Ωm, σ8, Ωb, ns and h100, where for the last three
parameters we have assumed the same flat priors as used in the DES Y1 combined probes
analysis presented in DES Collaboration et al. (2017).

We measure the density split lensing signal in 24 log-spaced angular bins with

5′ < θ < 600′ . (16.26)

But in the parameter forecasts and likelihood contours shown in the following, we exclude
bins with scales ≤ θT . This reduces all lensing signals to 17 log-spaced angular bins with

20′ . θ < 600′ . (16.27)

The scales with θ < θT are excluded from our analysis for a number of reasons: first,
the signal-to-noise ratio of our lensing profiles drops quickly below θT (cf. Figure 16.1).
Second, we chose our fiducial value of θT = 20′ because we still trust the modeling of the
density PDF described in section 16.4 on this scale, and we do not want smaller angular
scales to contribute to our fiducial data vector. Third, the approximation made in equation
16.8 might fail at scales smaller than our aperture.

The sum of all 5 lensing signals will be very close to zero (though not exactly zero
because of masking effects), so that they are not an independent set of observations. Hence,
we only include the 2 most overdense and the 2 most underdense quintiles in our analysis,
i.e. the cyan, blue, orange and red lines in Figure 16.1. For the same reason, we also use
the normalized mean galaxy count only in four of the five quintiles of the counts-in-cells
histogram to complement the lensing measurement. The total number of data points in
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parameter fiducial value prior in DES-Y1 constraints DES-Y1 constraints DES-Y1 constraints

(in Buzzard) likelihood analysis without ∆S3/S3 with ∆S3/S3 without ∆S3/S3

(lensing only)

σ8 0.82 [0.2, 1.6] ±0.05 ±0.10 ±0.11
Ωm 0.286 [0.1, 0.9] ±0.04 ±0.06 ±0.06
Ωb 0.047 [0.01, 0.07] - - -
ns 0.96 [0.7, 1.3] - -
h100 0.7 [0.55, 0.91] - - -
b 1.618 [0.8, 2.5] ±0.11 ±0.27 ±0.57

(lensing only:[0.0, 4.5])

r 0.956 [0.0, 1.0] ±0.10 ±0.11 ±0.18
∆S3/S3 0.0 [−1.0, 2.0] - ±0.20 -

Table 16.1: Model parameters of the forecast described in section 16.2.3. The second
column shows our fiducial values (the values describing the Buzzard simulations). The
third column shows the parameter priors used to cut our prediction for the posterior
distribution of best-fit parameters. The priors on Ωb, ns and h100 are informative and
chosen to be the same as used by the DES Collaboration et al. (2017). The prior on r
is needed for mathematical consistency. And the other priors only have to be introduced
formally since we are approximating our analytic posterior by an MCMC. The 4th column
shows the standard deviation of each parameter (as computed from the MCMC) after
marginalization over all other parameters. The 5th column shows the same standard
deviations but for the case where also ∆S3/S3 is introduced as a free parameter of our
model. In column 6, we again fix ∆S3/S3 but assume that only the lensing part of the
data vector is used. These forecasts can be compared to the actual errors we find in Gruen
et al. (2018, their tables 2 and 3) which are close despite marginalizing over systematic
uncertainties.

our data vector is thus

Ndata = Nlens +NCiC

= [Nquant. − 1] ·Nsource ·Nang + [Nquant. − 1]

= 4 · 2 · 17 + 4

= 140 . (16.28)

Model parameters and forecast on constraining power

We now investigate what constraints on model parameters can be expected from the above
data vector when measured in DES-Y1 data. For this, we assume the optimistic case that
component (iii) of our model is sufficiently described by two parameters, i.e. by modeling
approach 1 in the previous section.2 This means that our model is determined by the

2Gruen et al. (2018) will also consider modeling approach 2.
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following 7 parameters:

1.) Ωm: present total matter density in units the critical density of the universe,

2.) σ8: amplitude of present day density fluctuations in spheres of 8Mpc/h radius as pre-
dicted by the linear power spectrum,

3.) Ωb: present density of baryonic matter in units of the critical density of the universe,

4.) ns: the spectral index of the primordial power spectrum,

5.) h100: the present day Hubble parameter in units of 100Mpc/(km/s),

6.) b: linear bias of the tracers w.r.t. matter density (cf. equation 16.21),

7.) r: correlation coefficient between δm,T and δg,T (cf. equation 16.22).

We summarize these parameters and our fiducial values for them in Table 16.1. Throughout
this paper, we assume the universe to be flat.

If πα and πβ are any two of the above parameters then let π̂α,ML and π̂β,ML be maximum
likelihood estimates of these parameters based on a measurement of density split statistics.
The covariance of π̂α,ML and π̂β,ML can be estimated by

Cov[π̂α,ML, π̂β,ML]−1 ≈ ∂dTth
∂πα

·C−1
d ·

∂dth

∂πβ
, (16.29)

where dth is our model of the density split data vector and Cd is the covariance matrix of a
measurement of this signal in DES-Y1. We will in the following use an estimate of Cd from
log-normal mocks and real DES Y1 shape noise (see section 16.3.2 for a brief summary of
our covariance estimation and Gruen et al. 2018 for details). The parameter covariance
computed with equation 16.29 can then be used to approximate the expected distribution
of our best-fit parameter estimates with a multivariate Gaussian distribution.

Since the three parameters Ωb, ns and h100 are only poorly constrained by our data
vector we are forced to assume prior knowledge on them. To do so, we cut the Gaussian
posterior predicted from the parameter covariance with flat informative priors. These priors
are chosen to be the same used by the DES Collaboration et al. (2017). For reasons of
mathematical consistency we furthermore have to demand that r ∈ [0, 1]. These hard cuts
of our originally Gaussian approximation to the posterior distribution of best-fit parameters
make it difficult to marginalize over individual parameters. We hence numerically evaluate
our analytic posterior with a Monte-Carlo Markov-Chain (MCMC). This chain is used in
the following visualizations. Since we are using an MCMC to trace our analytic posterior,
we have to formally define priors for all other model parameters. These are chosen to be flat
and to extend well beyond the single-parameter standard deviations of the posterior. In
the third column of table 16.1, we summarize the priors chosen for each model parameter.

The left panel of Figure 16.3 shows the 1σ and 2σ constraints achievable in the Ωm-σ8

plane. These contours are marginalized over the other model parameters, using the priors
mentioned above. The blue contours assume that only the density split lensing signal
has been used while the green contours allow for complementary information from the
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tracer counts-in-cells histogram. In the fourth column of table 16.1 we show the standard
deviation of each parameter as found in our approximation to the posterior (and assuming
the full data vector, including lensing and counts-in-cell).

Density split statistics is complementary to an analysis based on 2-point statistics not
just because it has a different dependence on the connection of galaxies and matter, but
also since it is sensitive to higher order moments of the density field. We demonstrate this
by introducing an additional degree of freedom in our model, described by an additional
parameter:

8.) ∆S3/S3: a factor multiplying all third order statistics in our predictions. The notation
for this parameter is based on the ratio

S3 ≡
〈δ3〉
〈δ2〉2 (16.30)

which connects third and second moments of the density contrast and hence characterizes
the amplitude of the density bispectrum (see section 16.4.1 for details). In our fiducial
setup we compute it from leading order perturbation theory and ∆S3/S3 hence describes
a relative deviation from that result.

Within the ΛCDM model and at leading order in perturbation theory, the scaling between
2-point and 3-point statistics of the density field is almost independent of the cosmological
parameters Ωm and σ8 (Bernardeau et al., 2002). Hence, a value of ∆S3/S3 6= 0 would
allow for deviations from the leading order result that cannot be compensated by changing
Ωm or σ8. Such deviations could be caused non-standard physics of dark matter and
dark energy that affect overdensities and underdensities differently (see e.g. Multamäki
et al. (2003); Lue et al. (2004); though f(R) modified gravity theories have been shown
to largely preserve the ΛCDM scaling, cf. Jain & Zhang (2008); Borisov & Jain (2009)).
Alternatively, they could indicate a break down the perturbative scaling relations due to
highly non-linear evolution of the density field or any small scale Baryonic physics that
do not follow the scaling relations of perturbation theory (cf. Bernardeau et al., 2002;
Uhlemann et al., 2018a; Jeong & Komatsu, 2009).

In the right panel of Figure 16.3 we show how density split statistics including lensing
and counts-in-cells can simultaneously constrain ∆S3/S3 and the parameter

Σ8 = σ8

√
Ωm , (16.31)

even after marginalization over the other model parameters. We also project how these
constraints will improve when moving to year 5 (Y5) data of DES or when adding cosmo-
logical information from the cosmic microwave background. For the latter we estimated
the parameter covariance in a Planck chain3 and added this covariance as an additional
Gaussian prior around our fiducial cosmology.

3plikHM_TT_lowTEB in COM_CosmoParams_base-plikHM_R2.00.tar.gz from the Planck legacy archive
https://pla.esac.esa.int/pla/, no lensing, cf. Planck Collaboration et al. (2016)

https://pla.esac.esa.int/pla/
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With DES Y1 alone, we will be able to constrain the amplitude of third order statistics
of the density field to about 20% accuracy (cf. last column of table 16.1). Combining DES
Y5 and Planck, this improves to about 5%. And this is even underestimating the power
of DES-Y5: to project our constraints onto year-5 we simply divided our covariance by a
factor of 4 in order to account for the larger area of the final DES survey. But this does not
take into account the fact that DES Y5 will also be deeper than DES-Y1, which reduces
shape noise and opens up the possibility of analyzing a larger number of redshift bins.

16.3 Simulated data and covariance matrix

In this work we use two sets of simulated data: the Buzzard galaxy catalogs which are
constructed from high-resolution N-body simulations (DeRose et al., 2018; Wechsler et al.,
2018; MacCrann et al., 2018) and simulated random fields on the sky generated by the
FLASK tool (Xavier et al., 2016). We briefly describe these data sets in the following
sections.

16.3.1 Buzzard mock galaxy catalogs

Here we describe the key aspects of the Buzzard galaxy catalogs for the purposes of this
work and refer the reader to more detailed descriptions elsewhere (DeRose et al., 2018;
Wechsler et al., 2018; MacCrann et al., 2018). We use four independent realizations of a
DES Y1-like survey in version Buzzard-v1.1. These catalogs were constructed from N-body
simulations run using L-Gadget2 (Springel, 2005), a version of Gadget2 modified for
memory efficiency. Second-order Lagrangian perturbation theory initial conditions (Crocce
et al., 2006) were employed using 2LPTIC (Crocce et al., 2006), and light-cones were
output on the fly. Each galaxy catalog is built from a set of three nested light-cones using
progressively larger volume and lower resolution at higher redshifts. The force resolution
in each box is 20, 35 and 53 kpc/h with the boundaries between the light-cones falling at
redshifts z = 0.34 and z = 0.9.

The galaxy catalogs are constructed from the light-cones using the ADDGALS algo-
rithm (Wechsler et al., 2018) which assigns galaxy luminosities and positions based on the
relation between redshift, r-band absolute magnitude, and large-scale density, p(δ|Mr, z),
found in a sub-halo abundance matching (SHAM) model (Conroy et al., 2006; Reddick
et al., 2013, e.g.), in a high resolution N-body simulation. Spectral Energy Distributions
(SEDs) are given to each simulated galaxy by finding a SDSS DR7 galaxy (Cooper et al.,
2011) that has a close match in Mr and distance to its fifth nearest neighbor galaxy and
assigning the SDSS galaxy’s SED to the simulated galaxy. Galaxy sizes and ellipticities
were assigned by drawing from distributions fit to high resolution SuprimeCam i‘-band
data (Miyazaki et al., 2002). Observed magnitudes in griz were generated by redshifting
the SEDs to the observer frame and integrating over the DES passbands. Photometric
errors were added using the DES Y1 Multi Object Fitting (MOF) depth maps.
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The effects of weak gravitational lensing are calculated using the multiple-plane ray-
tracing algorithm CALCLENS (Becker, 2013). The ray-tracing is done on a nside = 4096
HEALPIX (Górski et al., 2005) grid yielding an effective angular resolution of 0.85

′
. At

each lens plane, the inverse magnification matrix of the ray closest to every galaxy is
interpolated to the galaxy’s 3D position and used to shear and magnify the galaxy.

With galaxy catalogs with magnitudes, sizes and lensing effects in hand, redMaGiC
and metacalibration (Zuntz et al., 2017b; Sheldon & Huff, 2017; Huff & Mandelbaum,
2017) samples of galaxies are selected from the simulations in an effort to approximate the
selections done in the data. In the case of redMaGiC, the same algorithm which is used
for selection in the data is applied to the simulations, resulting in a tracer galaxy catalog
of equivalent volume density and at least comparable bias. For the metacalibration
sample, as we do not run full image simulations, we must make approximate cuts on signal
to noise of the galaxies to create a facsimile of the source sample in the data. For in depth
comparisons of these simulated samples to their data counterparts see DeRose et al. (2018).

For the density split analysis in this work, we use redMaGiC high density tracer
galaxies (L > 0.5Lstar, ρ = 10−3Mpc−3 co-moving density) selected at a redMaGiC pho-
tometric redshift estimate of 0.2 < z < 0.45. For the source redshift split lensing signals, we
bin source galaxies by the expectation value of their p(z) as estimated with BPZ (Beńıtez,
2000; Hoyle et al., 2018) from the Buzzard mock photometry. Bin limits are chosen such
that the true mean redshifts of the bins match the mean redshifts of the two highest redshift
source samples defined in Hoyle et al. (2018).

16.3.2 Simulated density and convergence fields from FLASK and
covariance matrix

For testing the numerical implementation of the model described in the following section
and for estimating a covariance matrix of the density split lensing and counts-in-cells signals
in the Buzzard simulations and the DES data, we use log-normal realizations of matter
density and convergence fields. We summarize their properties here, with details given in
appendix A of Gruen et al. (2018).

We generate these fields as all-sky healpix maps of matter density and convergence
using the FLASK software (Xavier et al., 2016). For the matter field, we choose the true red-
shift distribution of redMaGiC galaxies in the Buzzard simulations, selected as described
in subsection 16.3.1. The matter field is sampled by a tracer population with redMaGiC
density, bias of b = 1.54, and Poissonian noise, from which lines of sight of different density
are identified by the same algorithm as in Buzzard or in the data. For the convergence
fields, we choose the estimated redshift distributions of DES source galaxies in the two
highest redshift bins of Hoyle et al. (2018). Log-normal parameters of the density and
convergence fields are set by the perturbation theory formalism described in the following
section.

960 of these realizations are used to estimate large-scale structure and shot noise con-
tributions to the covariance matrix of the signals modeled herein. The contribution of
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shape noise is estimated by measuring the lensing signals in actual DES Y1 data with 960
realizations of the metacalibration shape catalog (Zuntz et al., 2017b) in which each
galaxy ellipticity was rotated by a random angle.

16.4 Modeling details and comparison to simulations

In this section we present the approximations used to compute the ingredients (i), (ii)
and (iii) of our model that are listed at the end of section 16.2.2. We also test the model
ingredients (i) and (iii) directly against our N-body simulations.

Section 16.4.1 describes our model for the PDF of projected density contrast within
the top-hat smoothing radius θT , p(δm,T ). Section 16.4.2 describes how we model the
convergence profile 〈κ<θ|δm,T 〉 around apertures of fixed density contrast δm,T . And in
section 16.4.3 we describe our modeling of the probability P (NT |δm,T ) of finding NT tracer
galaxies in an aperture with density contrast δm,T .

Section 16.4.4 summarizes our fiducial model and the approximations used therein.

16.4.1 Projected density PDF

The computation of the PDF of the density field when smoothed by top-hat filters has
e.g. been adressed by Bernardeau (1994), Bernardeau & Valageas (2000) and Valageas
(2002a) (see also more recent developments in Bernardeau et al. (2014, 2015); Codis et al.
(2016a); Codis et al. (2016b); Uhlemann et al. (2018a) which however do not yet enter our
formalism). Bernardeau & Valageas (2000) demonstrated how to extend methods for the
computation of the 3D density PDF to the weak lensing aperture mass which is a projected
quantity. In the following we show how to modify their formalism in order to compute the
line-of-sight density PDF in angular circles of radius θT . To do so, we have to consider the
cumulant generating function (CGF) of the field δm,T (n̂). The moment generating function
(MGF) of δm,T (n̂) is defined as

ψ(y) =
∑
k

〈δm,T (n̂)k〉
k!

yk . (16.32)

Due to the isotropy of the universe it does not depend on n̂. The CGF ϕ(y) is given in
terms of the MGF ψ(y) as

ϕ(y) = lnψ(y)

≡
∑
k

〈δm,T (n̂)k〉c
k!

yk , (16.33)

where in the last line we have defined the connected moments or cumulants 〈δm,T (n̂)k〉c of
δm,T (n̂). The CGF of δm,T (n̂) is related to its PDF via

eϕ(y) =

∫
dδm,T e

yδm,T p(δm,T ) , (16.34)
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which is the Laplace transform of the PDF. Hence, if ϕ(y) is a known analytic function,
then p(δm,T ) can be computed by the inverse Laplace transform

p(δm,T ) =

∫ ∞
−∞

dy

2π
e−iyδm,T+ϕ(iy) . (16.35)

This integral in the complex plain is most efficiently evaluated along the path of steepest
descent (cf. Bernardeau et al. (2014), especially their appendix B). The cumulants of
δm,T (n̂) can be approximated as (cf. Bernardeau & Valageas (2000))

〈δm,T (n̂)k〉c ≈
∫

dw

〈
{δcy.,θw,L(wn̂, w)ql(w)L}k

〉
c

L
.

(16.36)

Here ql is the line-of-sight density of tracer galaxies defined in equation 16.2 and δcy.,R,L is
the average of δm,3D over a cylinder of length L and radius R, where L has to be chosen such
that correlations of δm,3D over a distance L vanish for all practical purposes. Equation 16.36
employs a small angle approximation and a Limber-like approximation (Limber, 1953).
This means it assumes that any n-point correlation function between density contrast at
different redshifts zi, i = 1...n, varies much more quickly with the redshift differences ∆zij
than the projection kernel ql. Comparing 16.33 and 16.36 we see that the CGF of δm,T can
be computed in terms of the CGF of δcy.,R,L as

ϕ(y) ≈
∫

dw
ϕcy.,θw,L(ql(w)Ly,w)

L
. (16.37)

Hence, we have reduced the task of computing p(δm,T ) to the task of computing the con-
nected moments of matter contrast in a long 3D cylinder.

To proceed we consider two different ansatzes. The first is to approximate p(δm,T ) by
a log-normal distribution which is fixed by the first three connected moments of δm,T (n̂).
The second ansatz is to compute ϕcy.,θw,L(y) as a whole in a way similar to the one of
Bernardeau (1994) and Valageas (2002a) for the matter contrast in a 3-dimensional sphere.
Using 16.37 we can then attempt to solve the integral in 16.35 directly. We present details
of both approaches in the following subsections.

Log-normal approximation for the PDF

Instead of computing the complete cumulant generating function of δm,T via equation 16.37
we start with an approach that only requires knowledge of the second and third cumulant,
i.e. the moments 〈δ2

m,T 〉c and 〈δ3
m,T 〉c (implicitly we also assume 〈δm,T 〉c ≡ 0 for the first

cumulant). To do so, we approximate δm,T as a shifted log-normal random variable (Hilbert
et al., 2011; Xavier et al., 2016). In this case the PDF of δm,T is given by

p(δm,T ) =
exp

(
− [ln(δm,T /δ0−1)+σ2/2]2

2σ2

)
√

2πσ(δm,T − δ0)
(16.38)
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if δm,T > δ0 and p(δm,T ) = 0 otherwise. The expectation value of this PDF is zero, as
is appropriate. The variance and skewness of δm,T are given in terms of the parameters
parameters δ0 and σ by (Hilbert et al., 2011)

〈δ2
m,T 〉c = δ2

0

(
eσ

2 − 1
)

〈δ3
m,T 〉c =

3

δ0

〈δ2
m,T 〉2c +

1

δ3
0

〈δ2
m,T 〉3c . (16.39)

The ansatz of a log-normal PDF has been shown to be consistent with early DES data
by Clerkin et al. (2017). For the 3-dimensional density contrast δm,3D this can be reason-
ably motivated from theory by observing that at leading order in perturbation theory the
skewness of δm,3D scales as

〈δ̂3
m,3D〉c ∼ 〈δ̂2

m,3D〉2c (16.40)

with corrections of the order 〈δ̂2
m,3D〉3c . This is exactly the scaling obeyed by the log-normal

distribution and choosing the parameter δ0 appropriately allows one to exactly reproduce
the scaling coefficients predicted by perturbation theory.

At least for a power law power spectrum, the same kind of scaling is observed also for
2-dimensional, projected versions of the density field. Hence, one of the ansatzes used in
this paper to compute the PDF of δm,T is to derive its variance and skewness as described
in appendix 16.B and fix δ0 and σ by demanding that the PDF in 16.38 has the same
second and third moments.

Tree level computation of ϕcy.,θw,L(y, w) in the cylindrical collapse model

Let us first consider the cumulant generating function ϕ3D(y, τ) of the 3-dimensional den-
sity contrast δ3D(x, τ). To compute ϕ3D at tree-level in perturbation theory it is sufficient
to assume spherical symmetry around a particular point x (see e.g. Valageas, 2002a). Doing
so, we can directly compute δ3D(x, τ) as a function of the linear density contrast δ3D,lin.(x, τ)
by means of the spherical collapse model (Fosalba & Gaztanaga, 1998; Valageas, 2002a),
i.e.

δ3D(x, τ) = F [δ3D,lin.(x, τ), τ ] (16.41)

where F is determined by one of the differential equations presented in appendix A. Hence,
using the assumption that the linear density contrast has a Gaussian distribution with
variance σ2

3D,lin.(τ) we can express the cumulant generating function as (cf. equation 16.34)

exp {ϕ3D(y, τ)}

=

∫
dδ3D eyδ3D p(δ3D, τ)

=

∫
dδ3D,lin.√

2πσ2
3D,lin.(τ)

exp

(
yF [δ3D,lin., τ ]−

δ2
3D,lin.

2σ2
3D,lin.(τ)

)
,

(16.42)
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where in the last step we simply performed a change of variables from δ3D to δ3D,lin.. We
now employ Laplace’s method, which states that a function f(x) which strongly peaks
around x0 fulfills ∫

dx ef(x) ≈
√

2π

|f ′′(x0)|e
f(x0) . (16.43)

This way we can approximate the last line of 16.42 as

eϕ3D(y,τ) ≈
√

1

|1− yF ′′[δ∗, τ ] σ2
3D,lin.(τ)| ×

× exp

(
yF [δ∗, τ ]− δ∗2

2σ2
3D,lin.(τ)

)
, (16.44)

where δ∗ is the linear density contrast that maximizes the exponent in 16.42 and ′ denotes
derivation wrt. δ . In the quasi-linear limit of σ2

3D,lin. → 0 this gives

ϕ3D(y, τ) ≈ yF [δ∗, τ ]− δ∗2

2σ2
3D,lin.(τ)

, (16.45)

where δ∗ has to be determined by the implicit equation

δ∗

σ2
3D,lin.(τ)

= yF ′[δ∗, τ ] . (16.46)

It should be noted that equations 16.45 and 16.46 reproduce exactly the tree-level results
for the cumulant generating function (cf. Bernardeau, 1994; Valageas, 2002a; Bernardeau
et al., 2002, 2015) ! As described in Bernardeau et al. (2002) the coefficients

Sn =
〈δn〉c
〈δ2〉n−1

c

(16.47)

are given quite accurately by the lowest order of perturbation theory. Hence, using halofit
(Smith et al., 2003; Takahashi et al., 2012) and an analytic transfer function (Eisenstein
& Hu, 1998) to compute the non-linear matter power spectrum, we can compute the non-
linear variance 〈δ2〉c,non.lin and then rescale the leading order CGF to its non-linear version
via

ϕnon.lin(y, τ) =
〈δ2〉c,lin
〈δ2〉c,non.lin

ϕlead

(
y
〈δ2〉c,non.lin

〈δ2〉c,lin
, τ

)
. (16.48)

To perform the projection integral in equation 16.37 we need to know the cumulant
generating function of the density contrast in a long cylinder of radius R and length L >>
R, δcy.,R,L. Bernardeau (1994; see also Valageas, 2002a, and the other references above)
have generalized equation 16.45 to the case of matter density in a spherical aperture. Their
results can easily be transferred to cylindrical apertures, yielding

ϕcy.,R,L(y, τ) ≈ yFcyl.[δ
∗, τ ]− δ∗2

2σ2

R
√

1+Fcyl.[δ∗],L,lin.
(τ)

, (16.49)
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Figure 16.5: The PDF of projected density contrast in Buzzard compared to several models for various
smoothing scales (δm,T is the projected density contrast δm smoothed by our top-hat radius θT ). In the
upper panel of each plot the black line shows a histogram of δm,T measured in an all-sky map from Buzzard.
The gray lines show histograms measured in 14 DES year1 shaped patches of that all-sky map. The blue
lines show the PDF predicted by our tree-level computation of the cumulant generating function, the green
lines show the PT-motivated log-normal model and the red lines show a Gaussian PDF with the same
variance as the other two models. The bottom panels of each plot are showing the ratio of each PDF to
the one measured in the Buzzard all-sky. For all aperture radii our halofit power spectrum is predicting
a standard deviation of δm,T that is & 2% higher than what we find in Buzzard (cf. figure 16.6). For
θT = 20′ and 30′ this is the dominant source of mismatch.
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Figure 16.6: This figure shows the ratio of moments of δm,T measured in a Buzzard all-sky
density map to the moments predicted by our model as a function of θT . The errorbars
represent the standard deviations of the moments found in a set of 14 DES Y1-sized patches
in the Buzzard map. At our fiducial radius θT = 20′ we find a ∼ 2.4% deviation between
the variance of δm,T measured in Buzzard and that predicted by our model. This would
correspond to a ∼ 1.2% deviation in σ8.

where σ2
R,L,lin. is the variance of linear density contrast in a cylinder, Fcyl. is now determined

by cylindrical collapse and δ∗ has to be determined by the implicit equation

1

2

d

dδ∗
δ∗2

σ2

R
√

1+Fcyl.[δ∗],L,lin.
(τ)

= yF ′[δ∗, τ ] . (16.50)

Using equation 16.48 we can again rescale this leading order result for the generating
function to its non-linear counterpart.

The validity of equation 16.48 is ultimately limiting the accuracy of our model for
the distribution of the density contrast inside the aperture radius θT , p(δm,T ). In figure
16.5 we compare the PDF measured in the Buzzard simulations to both the log-normal
model and the full CGF computation of the PDF for aperture radii θT = 10′, 20′, 30′. For
both θT = 20′ and 30′ our model PDF’s and the Buzzard simulations agree within DES-Y1
cosmic variance as can be seen in the residuals shown in the lower panels of each plot. Also,
the difference between log-normal approximation and full CGF computation is completely
negligible. To investigate the agreement of Buzzard and our models more quantitatively,
we also compare the variance and skewness of each PDF. In figure 16.6 we show the ratio
of these moments as found in Buzzard to our predictions. For θT = 10′, the density field
in Buzzard seems to have a significantly higher skewness than predicted by our model.
We attribute this indeed to the failing of the Quasi-linear rescaling, Eq. 16.48. For the
other radii the skewness values agree to within 2 − 3%. A similar relative agreement is
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achieved for the variance of the distributions. At our fiducial radius θT = 20′ the variances
of Buzzard and our model differ by about 2.4%. This corresponds to a disagreement in the
fluctuation amplitude σ8 of about 1.2%.

For comparison, we also show a Gaussian model for the density PDF in figure 16.5,
using the same variance as for the other PDF models. It can clearly be seen, that p(δm,T )
cannot be well described by a Gaussian distribution for any of the considered smoothing
radii.

16.4.2 Convergence profile around lines-of-sight of fixed density
contrast δm,T

We now want to know the average lensing convergence κ<θ inside a radius θ around a
line-of-sight with a given value of δm,T . By means of equation 16.6 this can be turned into
a prediction of the density split lensing signal. We start by looking at the joint moment
generating function of κ<θ and δm,T ,

ψθ(y, z) =
∑
k,l

〈δkm,T κl<θ〉
k! l!

yk zl , (16.51)

and their joint cumulant generating function defined by

ϕθ(y, z) = lnψθ(y, z)

≡
∑
k,l

〈δkm,T κl<θ〉c
k! l!

yk zl . (16.52)

Using a Limber-like approximation similar to the one employed in eq. 16.37, one can
write ϕθ(y, z) as a line-of-sight projection of the CGF of matter density contrasts that are
smoothed over concentric cylindrical apertures with length L and radiiR1, R2 , ϕcyl.,R1,R2,L(y, z, w):

ϕθ(y, z) ≈
∫

dw
ϕcyl.,θTw,θw,L(ql(w)Ly,Ws(w)Lz,w)

L
.

(16.53)

Here, ql(w) is again the line-of-sight density of lens galaxies and Ws(w) is the lensing
efficiency defined in Eq. 16.5.

The joint PDF of κ<θ and δm,T is related to ϕθ via

p(δm,T = s, κ<θ = r) =

∫ ∞
−∞

dy dz

(2π)2
e−iys−izr+ϕθ(iy,iz) . (16.54)
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The expectation value of κ<θ given a certain value of δm,T is then given by

〈κ<θ|δm,T = s〉 =

∫
dr p(δm,T = s, κ<θ = r)

=

∫ ∞
−∞

dy dz

(2π)2
e−iys+ϕθ(iy,iz)

∫
dr r e−izr

=

∫ ∞
−∞

dy dz

2π
e−iys+ϕθ(iy,iz) i

d

dz
δD(z)

=

∫ ∞
−∞

dy

2π
e−iys+ϕm,T (iy) Gθ(iy) ,

(16.55)

with

Gθ(y) =
d

dz
ϕθ(y, z)

∣∣∣∣
z=0

=
∑
k

〈δkm,T κ<θ〉c
k!

yk . (16.56)

Using equation 16.53 we can express Gθ(y) by the corresponding cylindrical, 3-dimensional
quantity:

Gθ(y) ≈
∫

dw Ws(w) Gcyl.,θTw,θw,L(ql(w)Ly,w) .

(16.57)

We again pursue two ansatzes for computing Gθ(y): one involving a log-normal model for
the joint cumulants of κ<θ and δm,T and one involving the model of cylindrical collapse
to compute a leading order perturbation theory prediction for Gcyl.,θTw,θw,L(y, w). We are
detailing these ansatzes in the following subsections.

Log-normal model for the joint cumulants of κ<θ and δm,T

From equation 16.56 one can see that only joint cumulants of the form

〈δkm,T κ<θ〉c (16.58)

enter the convergence profile around a given density contrast. Hence, in a spirit similar to
section 16.4.1 we only compute the leading order cumulants 〈δm,T κ<θ〉c and 〈δ2

m,T κ<θ〉c as
described in appendix 16.B and use these moments to fix a joint log-normal PDF for κ<θ
and δm,T . Note that this is indeed not assuming, that κ<θ is a log-normal random variable.
It rather assumes that

κ<θ = κlog−normal + κuncorr. , (16.59)
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where κlog−normal is log-normal and κuncorr. is an unspecified random variable that is un-
correlated with δm,T . Only κlog−normal will actually contribute to the density split lensing
signal and we can model the expectation value 〈κ<θ|δm,T = s〉 by the following relation
holding for two joint log-normal variables:

〈κ<θ|δm,T = s〉
κ0

= exp

(
C(2 log(1 + s/δ0) + V − C)

2V

)
− 1 (16.60)

with

V = log

(
1.0 +

〈δ2
m,T 〉c
δ2

0

)
C = log

(
1.0 +

〈δm,T κ<θ〉c
δ0 κ0

)
κ0 =

〈δm,T κ<θ〉2c eV
〈δ2
m,T κ<θ〉c − 2〈δm,T κ<θ〉c〈δ2

m,T 〉c/δ0

(16.61)

and δ0 determined as described in section 16.4.1.
It should be noted that the log-normal parameter κ0 which we use to approximate

the contribution of κ<θ to the lensing signal is dependent on the smoothing scale θ. This
indicates even further, that we do indeed not approximate κ as a log-normal field.

Tree level computation of Gcyl.,R1,R2,L(y, w) in the cylindrical collapse model

For convenience we will shorten the notation of section 16.4.1 by defining

G(y) ≡ Gcyl.,R1,R2,L(y, w)

ϕ(y, z) ≡ ϕcyl.,R1,R2,L(y, z, w)

F [δ] ≡ Fcyl.[δ, τ ]

σR ≡ σR,L,lin.

Ri,L(δ) ≡ Ri

√
1 + F [δ] , i = 1, 2 . (16.62)

The joint cumulant generating function of density contrast in concentric cylinders is then
(in complete analogy to equation 16.49; see also Bernardeau & Valageas, 2000, who present
very similar calculations) given by

ϕ(y, z) ≈ yF [δ∗1] + zF [δ∗2]− 1

2

∑
i,j

δ∗i δ
∗
j

(
C−1
)
ij
, (16.63)

where the elements of the matrix C are given by C11 = σ2
R1,L(δ∗1), C = σ2

R2,L(δ∗2) and C12 = C21

is the linear covariance of density contrasts in concentric cylinders of radii R1,L(δ∗1) and
R2,L(δ∗2). This time the critical linear density contrasts δ∗2 and δ∗2 are given by the implicit
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equations

1

2

∂

∂δ∗1

∑
i,j

δ∗i δ
∗
j

(
C−1
)
ij

= yF ′[δ∗1] (16.64)

1

2

∂

∂δ∗2

∑
i,j

δ∗i δ
∗
j

(
C−1
)
ij

= zF ′[δ∗2] . (16.65)

Note that these conditions force each δ∗i to be a function of both y and z, i.e. δ∗i = δ∗i (y, z).
To predict the convergence profile around apertures of a given density contrast δm,T by

means of equations 16.55 and 16.57 we are interested in computing the function

G(y) =
∂

∂z
ϕ(y, z)

∣∣∣∣
z=0

. (16.66)

Using the conditions 16.64 and 16.65 one can see right away that

G(y) = F [δ∗2(y, 0)] . (16.67)

Furthermore, for z = 0 equations 16.64 and 16.65 can be simplified to

1

2

d

dδ∗1

δ∗1
2

C11

= yF ′[δ∗1] (16.68)

δ∗2 =
C12

C11

δ∗1 . (16.69)

This way we obtain a solution for G(y) at leading order in perturbation theory. In appendix
16.B we argue that for R2 ≥ R1 the cumulants 〈δkR1

δR2〉c approximately follow the scaling
relation

〈δkR1
δR2〉c ∼ 〈δR1 δR2〉c 〈δ2

R1
〉k−1
c . (16.70)

This can be used to correct the tree-level approximation of G(y) for the non-linear evolution
of the power spectrum. To do so, we first determine the proportionality factors of the
relation 16.70 at leading order by fitting a polynomial in y to the function G(y) and
extracting the cumulants 〈δkR1

δR2〉c from the polynomial coefficients. In practice, we do this
with a polynomial of degree 10, but already a polynomial of degree 5 gives almost identical
results4. Then, we use the revised halofit of Takahashi et al. (2012) to compute a late-time
version of the right-hand-side of 16.70. This, together with the tree-level proportionality
factors determined before, yields a non-linear approximation of the polynomial coefficients
representing G(y). We use those to re-compute G(y) and then carry out the projection
integral in equation 16.57.

Our rescaling of the coefficient corresponding to the cumulant 〈δ2
R1
δR2〉c is in fact more

complicated than described here, cf. appendix 16.B.5. But we find our prediction of the
density split lensing signal to be insensitive to the details of the rescaling procedure.

4The coefficients of linear and quadratic order in y are always obtained from the exact perturbation
theory computation of appendix 16.B.
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16.4.3 Shot-noise, stochasticity and Counts-in-Cells

We now want to model the conditional probability P (NT |δm,T ) of finding NT galaxies in an
angular radius of θT , when the projected density contrast in that radius is δm,T . This is the
third ingredient of the framework described in section 16.2 and completes our modeling of
the density split lensing signal as well as the counts-in-cells histogram.

To analyze the relation of NT and δm,T in a systematic way, let us introduce the auxiliary
field δg,T . We assume that δg,T (n̂) is a smooth field in the sky and that NT is a Poissonian
tracer of this field. This means we will assume that

P (NT = N |δg,T ) =

[
N̄(1 + δg,T )

]N
N !

e−N̄(1+δg,T ) , (16.71)

where N̄ ≡ 〈NT 〉. A consequence of this assumption is that the expectation value of NT

for fixed δg,T is given by

〈NT |δg,T 〉 = N̄(1 + δg,T ) (16.72)

and that the variance of NT for fixed δg,T fulfills

Var [NT |δg,T ]

〈NT |δg,T 〉
= 1 . (16.73)

To connect the galaxy field to the lensing convergence we however need to know the relation
between NT and δm,T . Assuming a generic joint PDF of δm,T and δg,T we can write the
expectation values of NT for fixed δm,T as

〈NT |δm,T 〉 =

∫
dδg,T p(δg,T |δm,T )〈NT |δg,T 〉

= N̄(1 + 〈δg,T |δm,T 〉) . (16.74)

Also, it can be shown that the variance of NT for a fixed value of δm,T is given by

Var [NT |δm,T ] = 〈NT |δm,T 〉+ N̄2Var [δg,T |δm,T ] . (16.75)

From equation 16.75 we can see that the distribution of NT given δm,T can only be a Poisson
distribution if Var [δg,T |δm,T ] ≡ 0. This is the simplest model for the connection of NT and
δm,T that we test in this work and in Gruen et al. (2018). If Var [δg,T |δm,T ] 6= 0 we will say
that there is a stochasticity between the galaxy field and the matter density field, and we
cannot assume a Poisson distribution for P (NT |δm,T ). We note that “stochasticity” in this
context could arise from a nonlinear biasing relationship between δg,T and δm,T , including,
e.g. , a dependence on higher powers of δm,T or effects from halo exclusion (Baldauf et al.,
2013), or from physical stochasticity in galaxy formation.

We explore two ways to account for a possible stochasticity (see also Dekel & Lahav
(1999), who have discussed similar concepts). In our first approach we introduce a free
parameter to our model - a Pearson correlation coefficient r 6= 1 between the random fields
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δg,T and δm,T . Within our log-normal framework we show that this automatically leads to
a δm,T -dependence of the ratio in Eq. 16.77. We explain the details of this in section 16.4.3.

In our second approach we employ a generalized Poisson distribution for P (NT |δm,T )
that allows for

Var [NT |δm,T ]

〈NT |δm,T 〉
6= 1 . (16.76)

In this approach we introduce 2 parameters, α0 and α1, to our model such that

Var [NT |δm,T ]

〈NT |δm,T 〉
≈ α0 + α1 δm,T . (16.77)

The details of this are explained in section 16.4.3.
Both of our approaches match our simulated data equally well (cf. Figure 16.8). This

means that, for the galaxies in these realizations, the model based on the correlation
coefficient r is a sufficient description. It will thus be the fiducial model in this paper, used
in all figures unless otherwise noted. In Gruen et al. (2018) we will nevertheless apply both
this and the two-parametric model to account for the possibility that the shot-noise of real
galaxies behaves in a more complicated way than that of our simulated galaxies.

Shot-noise model 1: correlation r 6= 1 between galaxy density and matter den-
sity

In our fiducial model of P (NT |δm,T ) we approximate the joint distribution of both δm,T
and δg,T with a joint log-normal distribution (cf. Eq. 16.38 and Hilbert et al. (2011) for
properties of joint log-normal distributions). The joint PDF of two log-normal random
variables is characterized by 5 parameters, e.g. by the variance and skewness of each
variable and the covariance between the two variables.

In our case, we compute the variance and skewness of δm,T as described in section 16.4.1
and set the variance and skewness of δg,T to

〈δ2
g,T 〉c = b2〈δ2

m,T 〉c
〈δ3
g,T 〉c = b3〈δ3

m,T 〉c (16.78)

where the galaxy bias b is a free parameter. The covariance of δm,T and δg,T is parametrized
by their correlation coefficient

r =
〈δg,T δm,T 〉c√
〈δ2
g,T 〉c 〈δ2

m,T 〉c

=
〈δg,T δm,T 〉c
b 〈δ2

m,T 〉c
, (16.79)

i.e.
〈δg,T δm,T 〉c = rb 〈δ2

m,T 〉c . (16.80)
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The log-normal model for the joint PDF of δm,T and δg,T now allows us to compute the
variance of galaxy counts as a function of δm,T and more generally to compute P (NT |δm,T ).
We present the necessary derivations in detail in appendix 16.D.

In our data analysis we consider b and r as free parameters. The only restrictions we
impose on them are

0 < b , 0 ≤ r ≤ 1 . (16.81)

To test how accurately this model describes the behavior of our mock redMaGiC catalogs
based on the Buzzard N-body simulations we nevertheless want to determine what values
of b and r are underlying our simulations. To this end, we generate healpix maps of δm,T
with different top-hat aperture radii θT = 10, 20, 30 arcmin, based on particle count maps at
resolution Nside = 8192 in slices of co-moving 50h−1Mpc thickness. We co-add these maps
to reproduce a redshift range close to that of our fiducial analysis, z = 0.2100 . . . 0.4453.
We then select redMaGiC galaxies with true redshift in this range and determine their
counts around the same healpix pixel centers and within the same aperture radii. The
redMaGiC mock catalogs have a complex mask similar to that of real DES data, which
adds complication because the fraction of masked area in each aperture must be equal in
order to meaningfully sort lines of sight by galaxy count. To this end, we convert all counts
to a masking fraction of 20 per-cent of area within the aperture radius using the stochastic
method of Gruen et al. (2018, their section 2.1). This leaves us with simulated 2D maps
of δm,T and NT within a DES-Y1 shaped mask.

We can then measure the variances of these maps, Var(δm,T ) and Var(NT ), as well as
their covariance Cov(NT , δm,T ). These fulfill the relations

Var(NT ) = N̄ + N̄2 b2Var(δm,T ) . (16.82)

and
Cov(NT , δm,T ) = N̄ b r Var(δm,T ) (16.83)

which then fixes b and r. The values determined in this way are shown in table 16.2.
We now need to check whether these value for b and r together with our assumption

of a log-normal PDF for δm,T and δg,T describe the properties of our tracer galaxies well.
Using our simulated maps of δm,T and NT we can measure the expectation value

〈δg,T |δm,T 〉 =
〈NT |δm,T 〉

N̄
− 1 (16.84)

as a function of δm,T . Within the log-normal model (cf. appendix 16.D for the relevant
formulas) this is very well approximated by

〈δg,T |δm,T 〉 ≈ rb δm,T (16.85)

which becomes exact for Gaussian random variables. In Figure 16.7 we compare mea-
surements of 〈δg,T |δm,T 〉 with the different smoothing radii θT = 10, 20, 30 arcmin to the
prediction of the log-normal model. We find that in our simulations 〈δg,T |δm,T 〉 is consistent
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Smoothing Scale b r
[arcmin]

10 1.644 ± 0.008 0.938 ± 0.001
20 1.618 ± 0.008 0.956 ± 0.001
30 1.603 ± 0.008 0.961 ± 0.001

Table 16.2: Best-fit values galaxy bias and correlation coefficients of our simulated tracer
galaxies within the model presented in section 16.4.3. Error bars are estimated from a
jackknife approach.

Smoothing Scale b̃ α0 α1

[arcmin]
10 1.54 ± 0.001 1.15 ± 0.001 0.22 ± 0.003
20 1.54 ± 0.002 1.26 ± 0.002 0.29 ± 0.010
30 1.54 ± 0.002 1.39 ± 0.003 0.45 ± 0.020

Table 16.3: Best-fit values galaxy bias and shot-noise parameters of our simulated tracer
galaxies within the model presented in section 16.4.3. Error bars are again estimated from
a jackknife approach.

with a linear relation in δm,T . Interestingly, the scale dependence of b and r we find in
table 16.2 almost perfectly cancels to give a scale independent proportionality coefficient

rb ≈ 1.54 . (16.86)

Next, we also measure the variance of galaxy counts NT as a function of δm,T in our
simulated maps and compare to the prediction of the log-normal model. In Figure 16.8 we
indeed find that

Var [NT |δm,T ]

〈NT |δm,T 〉
6= 1 (16.87)

and that the δm,T -dependence is very well described by the log-normal model and the values
of b and r we determined before. Finally, in figure 16.9 we show the residuals between our
baseline prediction of the counts-in-cells histogram with θT = 20arcmin5 and the average
of measurements in 4 Buzzard realizations of DES Y1 data (cf. figure 16.1). The residuals
are well contained within DES Y1 errorbars.

Shot-noise model 2: Parametric model for super-Poissonianity

Our model of shot-noise based on galaxy bias b and galaxy matter correlation coefficient
r describes our simulated tracer catalog well. But it contains the arbitrary assumption
that both the variance and the skewness of δm,T and δg,T are related through the bias
parameter b (cf. equation 16.78). To account for the possibility that real galaxies might

5This is the smoothing radius used in our data analysis (Gruen et al., 2018).
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Figure 16.7: Average galaxy overdensity δg,T as a function of matter overdensity, δm,T ,
for our simulated maps at different smoothing scales: 10 arcmin [left], 20 arcmin [middle]
and 30 arcmin [right]. Solid lines show a linear bias model with the bias parameters
obtained from maximizing the likelihood in equation 16.94 and the residual between the
two are shown in the bottom panels. Note that the coefficient of linearity found with 16.94
(≈ 1.54) is almost identical to the value of the product b · r determined with equation
16.85. To indicate the range of δm,T that is relevant to our computation, we also show the
density PDFs of figure 16.5 as shaded regions. The errorbars were derived from a jackknife
approach.
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Figure 16.8: Ratio of the variance in the galaxy count distribution to average galaxy counts
in our simulated maps as a function of matter overdensity. Differently colored solid lines
show the result for each smoothing scale. The dashed black lines show the predictions of
the 2-parametric shot-noise model described in section 16.4.3. The blue dotted lines show
the corresponding prediction of the alternative, 1-parametric model described in section
16.4.3. The horizontal solid line shows the expectation if shot noise was purely Poissonian.
The colored regions show the 95% confidence limits derived from jackknife re-sampling.
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Figure 16.9: For the fiducial smoothing radius of our data analysis presented in Gruen
et al. (2018), θT = 20arcmin, we show the residuals between our baseline prediction of
the counts-in-cells histogram and the average of measurements in 4 Buzzard realizations of
DES Y1 data. Blue error bars represent the uncertainties we expect for DES Y1 while green
error bars show the actual uncertainties of the mean measurement from our simulations.
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behave in a more complicated way, we also consider a more flexible model of the conditional
distribution P (NT |δm,T ).

Gruen et al. (2016) assumed that there is no stochasticity in the relation of δm,T and
δg,T and that galaxies trace the matter density with a linear bias and Poissonian shot noise.
This means they set

P (NT = N |δm,T = s) =

exp
(
N ln[N̄(1 + b̃s)]− [N̄(1 + b̃s)]− ln Γ(N + 1)

)
,

(16.88)

where b̃ is the galaxy bias, and where we now use a generalizable definition of the Poisson
distribution based on the Gamma function Γ, for reasons that will appear later. The galaxy
bias b̃ defined this way is not identical to the definition in our fiducial model. We now
rather have

δg,T ≡ b̃ δm,T . (16.89)

We test this in our simulated maps of NT and δm,T by fitting a linear relation to the mean
smoothed galaxy contrast as a function of dark matter contrast that was shown in Figure
16.7. We indeed find that this linear biasing model describes the simulations very well and
that b̃ ≈ br as expected from our arguments in section 16.4.3.

The model used by Gruen et al. (2016) however predicts that

Var [NT |δm,T ]

〈NT |δm,T 〉
≡ 1 (16.90)

which is not what we find in Figure 16.8. To account for the deviations we observe from
pure Poissonian shot-noise, we hence model the distribution of NT given δm,T as

P (NT = N |δm,T = s) ∼ N ×

exp

{
N

α
ln

[
N̄T

α
(1 + bs)

]
− ln Γ

(
N + 1

α

)
− N̄T

α
(1 + bs)

}
,

(16.91)

where the parameter α > 0 generalizes the distribution to one where groups of α galaxies
appear with Poissonian noise and where the normalization coefficient N is needed to ensure
that

∫
P (NT = N) dN = 1. We find N to be very close to α−1 and identical to α−1 in the

case where α is an integer value.
To account for the observed increase of super-Poissonianity with density, we allow α to

depend on δm,T ,

α(δm,T ) = α0 + α1 × δm,T . (16.92)

This indeed leads to a δm,T -dependence of the variance of galaxy counts that is close to
the relation mentioned in Eq. 16.77. In our analysis we treat α0 and α1 as free parameters
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within the ranges

α0 ∈ [0.1, 3.0]

α1 ∈ [−1.0, 4.0] . (16.93)

In principle we could allow any value α0 > 0 but we choose the boundary 0.1 < α0 because it
is numerically difficult (and slow) to predict the CiC histogram for values close to α0 = 0.0.
The other boundaries roughly enclose the 2-σ region of the posterior distribution of α0 and
α1 we infer with DES Y1 like errors around the mean signal measured in Buzzard (after
marginalizing over our other model parameters, cf. appendix 16.E). Also, the constraints
on α0 and α1 we derive in Gruen et al. (2018) on DES data are well contained within our
prior distributions.

Nevertheless, these priors must be considered mildly informative. We expect that even
stronger priors can be motivated theoretically. Baldauf et al. (2013) find that for their
most massive halos shot-noise is reduced wrt. Poisson expectation by a factor of ≈ 2,
indicating that α0 & 0.5, while for halo masses comparable to redMaGiC halo masses
(cf. Clampitt et al. (2017)) they find shot-noise to be close to Poissonian. Also, there is
evidence that the fraction of red galaxies that are satellites (resp. the fraction of satellite
galaxies that are red) increases with environment density (see e.g. Mandelbaum et al.
(2006); Peng et al. (2012)). According to Baldauf et al. (2013) this will cause an increase
of galaxy stochasticity with environment density, corresponding to α1 > 0.0. We intend to
investigate implications of models for halo occupation distributions (HOD) on our shot-
noise parameterizations in future studies (see e.g. the work by Cacciato et al. (2012);
Dvornik et al. (2018) on connecting HOD models and parametric models of galaxy bias
and stochasticity).

To compare this parametric shot-noise model to our simulations, we are nevertheless
interested in the particular value of α0 and α1 that describe these simulations. From
the tuples of (NT , δm,T )i measured in our simulated maps, we can constrain bias and the
α0/1 parameters with a likelihood L that is simply the product of the probabilities of the
individual tuples from Equation 16.91,

lnL =
∑
i

[
Ni/α(δim,T )

]
ln
[
(N̄i/α(δim,T ))(1 + b× δim,T )

]
−
[
N̄i/α(δim,T )

]
(1 + b× δim,T )

− lnG
[
Ni/α(δim,T ) + 1

]
− lnα(δim,T ) .

(16.94)

Because the tuples have correlated counts and densities, this is not an exact expression
for the likelihood of our measurements, but it should be sufficient to obtain reasonable
best fit values for b, α0 and α1. We determine the uncertainties of these best-fit values
by finding the maximum of Equation 16.94 on jackknife re-samplings of the simulations.
The resulting parameter values are shown in Table 16.3 and displayed in Figure 16.7 and
Figure 16.8. We find that our simulated redMaGiC galaxies are indeed well described as
linearly biased tracers of the density field with a small, but significant, scale and density
dependent super-Poissonian shot-noise.
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16.4.4 Summary of fiducial model and approximations therein

For each ingredient (i) to (iii) of the framework described in section 16.2 we have introduced
at least two different modeling ansatzes. We want to once more describe our baseline
model built from these ansatzes (cf. also section 16.2.2). This is the model we consider
in section 16.5 and which we use in the data analysis presented in Gruen et al. (2018).

(i) p(δm,T ): We find that the log-normal model (section 16.4.1) and our model based in

cylindrical collapse (section 16.4.1) describe the PDF of projected density contrast equally
well. The computations based on the log-normal model are however significantly faster.
Hence in our fiducial analysis we employ the log-normal model.

(ii) 〈κ<θ|δm,T 〉: We also introduced a log-normal model (section 16.4.2) and a model based

on cylindrical collapse (section 16.4.2) for the convergence profile around lines-of-sight with
fixed density contrast δm,T . Both models lead to almost identical predictions for the density
split lensing signal. Hence we again choose the log-normal model for our fiducial analysis,
because of the shorter computation time.

(iii) P (NT |δm,T ): We introduced two models for the distribution of tracer counts NT in lines-
of-sight of matter density δm,T . The first was based on linear galaxy bias b and galaxy-
matter-correlation coefficient r (section 16.4.3). The second was based on an alternative
definition of galaxy bias and on two parameters α0 and α1 describing density dependent
deviations from Poissonian shot-noise (section 16.4.3). Both models describe the behavior
of our simulated tracer galaxies in Buzzard-v1.1 similarly well. But anticipating that real
galaxies might behave in a more complicated way, we will consider both ansatzes in our
fiducial analysis.

In the following list, we are summarizing the approximations that went into the derivation
of our baseline model.

1.) We assumed, that for fixed value of δm,T the convergence within angular radius θ is not
dependent on NT (cf. equation 16.8).

2.) All second order moments in our formalism are computed with a halofit power spec-
trum (Takahashi et al., 2012) using an analytic approximation for the transfer function
(Eisenstein & Hu, 1998).

3.) Equations 16.36, 16.37, 16.53 and 16.57 employ a small angle and a Limber-like approx-
imation (following Bernardeau & Valageas, 2000).

4.) We compute the cumulant generating function of density contrast in long cylinders by
means of the cylindrical collapse approximation (cf. section 16.4.1).

5.) We assume that the tree-level result of the cumulant generating function can be corrected
for the full non-linear evolution of the density field by means of equations 16.47 and 16.48.
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6.) We approximate the PDF of δm,T resulting from a cylindrical collapse approximation by
a log-normal PDF (cf. section 16.4.1).

7.) We employed approximations similar to 4.), 5.) and 6.) for the joint distribution of δm,T
and κ<θ (cf. section 16.4.2, equation 16.70 and section 16.4.2).

8.) We assume that galaxies are linearly biased tracers of the density field. We consider
two different models for shot-noise (resp. stochasticity), assuming that the full distribution
P (NT |δm,T ) is well described by either two parameters (b, r) or three parameters (b̃, α0, α1).

Despite this long list of approximations, this baseline model describes our measurements
in the Buzzard simulations well within DES Y1 errorbars (cf. figure 16.1). As shown in
the next section, the model is also accurate enough to recover the true cosmology of our
simulation within DES Y1 uncertainties in a simulated likelihood analysis. In Gruen et al.
(2018) (and using an extended set of simulations) we furthermore show that the values of χ2

found between our fiducial model and individual simulation measurements are consistent
with the χ2-distribution expected from our number of data points, and that the coverage
(i.e. the fraction of times the true simulation cosmology is within the confidence interval)
matches expectations.

16.5 Recovering cosmology in N-body simulations

In this section we want to test whether the modeling that was described in sections 16.2 and
16.4 is sufficient to recover the cosmology underlying a density split data vector measured
in N-body simulations. The simulations we use are described in section 16.3.1. They are
the same simulations against which we tested the ingredients of our model in the previous
section. A likelihood analysis based on a density split data vector measured in these
simulations in presented in section 16.5.1. We only run a cosmological analysis on the
mean data vector measured on 4 DES-Y1 realizations. The goal of this is to show that
any possible systematic deviations between our modeling of density split statistics and the
behavior of our N-body simulations is smaller than the statistical uncertainties of DES-Y1.
A more extensive validation of our likelihood pipeline is presented in Gruen et al. (2018).

16.5.1 Simulated likelihood analysis

We now measure the data vector that was described in section 16.2.3 in 4 N-body real-
izations of DES-Y1. We always use the mean of these 4 data vectors. In order to further
reduce the noise of this measurement, we turn off the shape noise in our simulated source
catalogs, i.e. we measure our signal directly from the gravitational shear acting each galaxy.
We then run Monte-Carlo Markov Chains of our model around this data vector. For this
we assume a Gaussian likelihood function with the full covariance (i.e. including shape
noise) that was estimated by Gruen et al. (2018) for a DES-Y1 data set. The goal of this
analysis is to test whether the fiducial cosmology of the Buzzard simulations is well con-
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Figure 16.10: To test our model for possible systematic deviations from N-body simulations,
we try to recover the Buzzard cosmology in a simulated likelihood analysis. Top panel:
1σ and 2σ contours in the Ωm-σ8 plane from a likelihood computed around the mean of
4 shape noise free realizations of DES Y1 (but assuming the full covariance matrix for a
single DES Y1). The green contours are marginalized over Ωb, ns, h100, redMaGiC galaxy
bias b and galaxy-matter correlation coefficient r. For the parameters Ωb, ns, h100 we have
assumed the same flat priors as used in the DES Y1 combined probes analysis presented in
DES Collaboration et al. (2017). The red contours are marginalized only over b and r and
the blue contours only vary Ωm and σ8. Even when going to this small parameter space,
our model agrees with Buzzard within 1σ errors of DES Y1. Bottom panel: Same contours
but in the Σ8-∆S3/S3 plane and varying one additional parameter, ∆S3/S3.
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tained within the 1σ constraints derived from this likelihood analysis. A more extensive
validation of our likelihood pipeline is presented in Gruen et al. (2018).

In the top panel of Figure 16.10 we show the 1σ and 2σ constraints obtained from our
simulated likelihood analysis in the Ωm-σ8 plane after marginalizing over different sets of
parameters. First, we only vary Ωm and σ8, setting other cosmological parameters to the
inputs of the Buzzard simulations and the parameters connecting galaxy count and matter
density to the values we found from the Buzzard galaxy and density maps. Note that
those values would be inaccessible in a real measurement. The corresponding constraints
are very tight, but the fiducial values of our parameters are still well contained in the 1σ
contour. Then, we also marginalize over the galaxy bias b and the galaxy stochasticity r,
demanding that 0 < r ≤ 1. The contours now widen, and the fiducial values of Ωm and
σ8 are still located well within the corresponding 1σ contour. Finally, we also marginalize
over Ωb, ns and h100, using the same informative priors that have been used in the DES-Y1
combined probes analysis (DES Collaboration et al., 2017). The contours widen further,
but our model and our simulations still agree well within 1σ uncertainty.

In the bottom panel of Figure 16.10 we repeat this analysis, but now also vary the
parameter ∆S3/S3 that was introduced in section 16.2.3. This parameter allows for de-
viations of the 3-point statistics of the density field from our fiducial model. Within our
statistical uncertainties we find that the scaling between 3-point and 2-point statistics in
our simulations is well described by our fiducial assumptions (∆S3/S3 = 0).

We repeat this analysis with our alternative shot-noise model in appendix 16.E.

16.6 Discussion & conclusions

In this work we introduced density split statistics, a technique to separately measure con-
tributions to weak lensing and counts-in-cells from regions of different foreground galaxy
density. Based on the pioneering work of Bernardeau (1994), Bernardeau & Valageas
(2000) and Valageas (2002a) (see also references therein) on modeling the cosmic density
PDF we were able to model the density split lensing signal as well as the counts-in-cells
histogram from basic principles. With the help of this model, we then showed that density
split statistics has two features that make it a potentially powerful cosmological probe:

• it is able to constrain the cosmological parameters Ωm and σ8 even if the relation of
galaxy density and matter density is assumed to have 2 degrees of freedom: galaxy bias
and galaxy-matter-correlation coefficient,

• it is able to constrain the amplitude of 3-point statistics of the density field with almost
no degeneracy to constraints on the amplitude of 2-point statistics.

In our fiducial model we predict 3-point statistics from cosmological perturbation theory.
Deviations from that fiducial prediction may hint to non-standard physics, that affect over-
dense and underdense parts of the matter field differently, or to any non-linear dynamics
or small scale physics that break the scaling relations of ΛCDM perturbation theory. We
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showed that a DES-Y5 data set combined with data form the cosmic microwave back-
ground can measure the amplitude of 3-points statistics to a 1σ accuracy of . 5%. This is
a conservative estimate since our projections neglect the fact that DES-Y5 will be a deeper
data set than DES-Y1. Also, we so far neglected the possibility of a combined analysis
including density split statistics and measurements of 2-point correlation functions.

Using measurements in high-resolution N-body simulations we showed that our model of
the density split lensing signal and the counts-in-cells histogram is accurate to well within
the statistical uncertainties of the DES-Y1 data set. Especially, in a mock likelihood
analysis we were able to recover the input cosmology of our simulations to well within
DES-Y1 parameter errors. Cosmological constraints from DES-Y1 data based on density
split statistics are presented in Gruen et al. (2018).
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Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento
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16.A Friedmann equations, linear growth, spherical

collapse and cylindrical collapse

Throughout this section we set G = 1 = c and we assume a flat ΛCDM universe. In
proper co-moving time t the Friedmann equations take the form

H2 =
8π

3
(ρ̄m + ρ̄Λ) (16.95)

dH

dt
+H2 = −4π

3
(ρ̄m − 2ρ̄Λ) , (16.96)

where H = d
dt

ln a. In conformal time, defined by dt = adτ , this changes to

H2 =
8π

3
a2 (ρ̄m + ρ̄Λ) (16.97)

dH
dτ

= −4π

3
a2 (ρ̄m − 2ρ̄Λ) , (16.98)

where H = d
dτ

ln a. We will from now put d
dτ
≡ ˙ .

In the Newtonian approximation, i.e. on scales much smaller that the curvature horizon
of the universe, the evolution of a spherical, cylindrical or planar perturbation δ is given
by the equation

d2δ

dt2
+ 2H

dδ

dt
− N + 1

N

1

1 + δ

(
dδ

dt

)2

= 4πρ̄mδ(1 + δ) , (16.99)

where N = 3 for a spherical perturbation, N = 2 for a cylindrical perturlation and N = 1
for a planar perturbation (see Mukhanov (2005) where this is demonstrated for N = 3 and
N = 1).
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In conformal time this equation reads

δ̈ +Hδ̇ − N + 1

N

δ̇2

1 + δ
= 4πρ̄ma

2δ(1 + δ) . (16.100)

To linear order in δ this becomes

δ̈ +Hδ̇ = 4πρ̄ma
2δ , (16.101)

which is indeed independent of the particular shape of the perturbation.

16.B ΛCDM perturbation theory

Consider the matter density contrast δ and the divergence of the velocity field θ = ∇υ.
In the Newtonian approximation the Fourier space equations of motion of δ and θ are (cf.
Bernardeau et al., 2002)

∂δ̃(k, τ)

∂τ
+ θ̃(k, τ) = −

∫
d3k1d3k2 δD(k− k12) α(k1,k2) δ̃(k1, τ) θ̃(k2, τ)

∂θ̃(k, τ)

∂τ
+H θ̃(k, τ) +

3Ω0
mH

2
0

2a
δ̃(k, τ) = −

∫
d3k1d3k2 δD(k− k12) β(k1,k2) θ̃(k1, τ) θ̃(k2, τ) ,(16.102)

where k12 = k1 + k2 and α and β are given by

α(k1,k2) = 1 +
1

2

k1 · k2

k1k2

(
k1

k2

+
k2

k1

)
β(k1,k2) =

1

2

k1 · k2

k1k2

(
k1

k2

+
k2

k1

)
+

(k1 · k2)2

k2
1k

2
2

. (16.103)

In the following we will abbreviate the integrals involving α and β as α[δ̃, θ̃,k] and β[θ̃, θ̃,k].
In perturbation theory we write δ̃ and θ̃ as

δ̃(k, τ) =
∞∑
n=1

δn(k, τ) and θ̃(k, τ) = −∂ lnD+(τ)

∂τ

∞∑
n=1

θn(k, τ) , (16.104)

where δn and θn are of order n in the linearly approximated fields δ1 and θ1 and D+(τ)
is the linear growth factor. (We will ignore the decaying mode of linear growth here.) At
linear order we have

δ1(k, τ) = θ1(k, τ) =
D+(τ)

D+(τ0)
δ1(k, τ0) ≡ D+(τ)δ1,1(k) , (16.105)

where we have assumed that D+(τ0) = 1 at present time τ0 and introduced the notation
δ1,1(k) = δ1(k, τ0) whose purpose will become clear at the end of this section. To get δ̃ at
second order we first note that

∂θ̃(k, τ)

∂τ
+H θ̃(k, τ) =

1

a

∂

∂τ

(
aθ̃(k, τ)

)
. (16.106)
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Hence, multiplying the first of equations 16.102 with a and differentiating wrt. τ and then
multiplying with 1/a we get

∂2δ̃(k, τ)

∂2τ
+H∂δ̃(k, τ)

∂τ
+
∂θ̃(k, τ)

∂τ
+H θ̃(k, τ) = − α

[
∂δ̃

∂τ
, θ̃,k

]
−α
[
δ̃,
∂θ̃

∂τ
,k

]
−H α

[
δ̃, θ̃,k

]
.

(16.107)
Now the second of equations 16.102 can be used to eliminate θ̃ from the right-hand-side,
giving

∂2δ̃(k, τ)

∂2τ
+H∂δ̃(k, τ)

∂τ
− 3Ω0

mH
2
0

2a
δ̃(k, τ) = β[θ̃, θ̃,k]− α[

∂δ̃

∂τ
, θ̃,k]−α[δ̃,

∂θ̃

∂τ
,k]−H α[δ̃, θ̃,k] .

(16.108)
At second order in perturbation theory this equation becomes

∂2δ2(k, τ)

∂2τ
+H∂δ2(k, τ)

∂τ
− 3Ω0

mH
2
0

2a
δ2(k, τ)

=

(
∂D+

∂τ

)2

β[δ1,1, δ1,1,k] +

(
D
∂2D+

∂τ 2
+DH∂D+

∂τ
+

(
∂D+

∂τ

)2
)
α[δ1,1, δ1,1,k]

=

(
∂D+

∂τ

)2

β[δ1,1, δ1,1,k] +

(
3Ω0

mH
2
0

2a
D2 +

(
∂D+

∂τ

)2
)
α[δ1,1, δ1,1,k]

= α[δ1,1, δ1,1,k]

(
3Ω0

mH
2
0

2a
D2 + 2

(
∂D+

∂τ

)2
)

+ (β[δ1,1, δ1,1,k]− α[δ1,1, δ1,1,k])

(
∂D+

∂τ

)2

. (16.109)

This is solved by
δ2(k, τ) = D2,1(τ)δ2,1(k) +D2,2(τ)δ2,2(k) (16.110)

where

D2,1(τ) ≡ D2
+(τ) , δ2,1(k) = α[δ1,1, δ1,1,k] , δ2,2(k) = β[δ1,1, δ1,1,k]− α[δ1,1, δ1,1,k]

(16.111)
and D2,2 is given by the differential equation

∂2D2,2(τ)

∂2τ
+H∂D2,2(τ)

∂τ
− 3Ω0

mH
2
0

2a
D2,2(τ) =

(
∂D+

∂τ

)2

. (16.112)

16.B.1 Second order of δ in Einstein-de Sitter universe

Let us define 1− µ ≡ D2,2/D
2
+. Then the general solution to 16.109 is given by

δ2(k, τ) = D2
+ ([1− µ]β[δ1,1, δ1,1,k] + µα[δ1,1, δ1,1,k]) . (16.113)
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In an Einstein-de Sitter Universe where Ω0
m = 1 and D ≡ a we have

D2,2 =
2

7
D2

+ , µ =
5

7
(16.114)

and δ2 is hence given by

δ2(k, τ) = D2
+

(
2

7
β[δ1,1, δ1,1,k] +

5

7
α[δ1,1, δ1,1,k]

)
=

∫
d3k1d3k2 δD(k− k12) F2(k1,k2) δ1,1(k1) δ1,1(k2)

(16.115)

with

F2(k1,k2) =
5

7
α(k1,k2) +

2

7
β(k1,k2)

=
5

7
+

1

2

k1 · k2

k1k2

(
k1

k2

+
k2

k1

)
+

2

7

(k1 · k2)2

k2
1k

2
2

. (16.116)

16.B.2 Second order of δ in ΛCDM universe

In a general ΛCDM universe the function F2 becomes time dependent. It is given by

F2(k1,k2, τ) = µ(τ) +
1

2

k1 · k2

k1k2

(
k1

k2

+
k2

k1

)
+ [1− µ(τ)]

(k1 · k2)2

k2
1k

2
2

. (16.117)

A useful property or this kernel is that

F2(k,−k, τ) = µ(τ) +
1

2

−k2

k2
(1 + 1) + [1− µ(τ)]

k4

k4
= µ(τ)− 1 + 1− µ(τ) = 0 . (16.118)

Denoting the angle between k1 and k2 with φ one can also arrive at the following form
of F2(k1,k2, τ) which will be useful when computing the skewness of matter inside a long
cylinder:

F2(k1,k2, τ) =
1

2

{(
1 +

k1

k2

cosφ

)
+

(
1 +

k2

k1

cosφ

)}
+ [1− µ(τ)](cos2 φ− 1) . (16.119)

16.B.3 Bispectrum and 3-point function at leading order

The bispectrum B(k1, k2, k3, τ) of δ is defined by

〈δ̃(k1, τ)δ̃(k2, τ)δ̃(k3, τ)〉 = δD(k1 + k2 + k3) B(k1, k2, k3, τ) . (16.120)

At leading order in perturbation theory this can be calculated as

〈δ̃(k1, τ)δ̃(k2, τ)δ̃(k3, τ)〉2nd.

= D2
+

∫
d3q1d3q2 δD(k3 − q12) F2(q1,q2, τ) 〈δ1,1(k1) δ1,1(k2)δ1,1(q1) δ1,1(q2)〉

+ cycl. , (16.121)
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where ′cycl.′ indicates that the integral on the right-hand-side should appear for all possible
permutations of k1, k3 and k3. Since we assume the linear density field to be a Gaussian
random field, the expectation value on the left-hand-side factorizes as

〈δ1,1(k1)δ1,1(k2)δ1,1(q1)δ1,1(q2)〉

= 〈δ1,1(k1)δ1,1(k2)〉〈δ1,1(q1)δ1,1(q2)〉+ 〈δ1,1(k1)δ1,1(q1)〉〈δ1,1(k2)δ1,1(q2)〉
+〈δ1,1(k1)δ1,1(q2)〉〈δ1,1(k2)δ1,1(q1)〉

= δD(k1 + k2)δD(q1 + q2)Plin,0(k1)Plin,0(q1) + δD(k1 + q1)δD(k2 + q2)Plin,0(k1)Plin,0(q2)

+δD(k1 + q2)δD(k2 + q1)Plin,0(k1)Plin,0(q1) (16.122)

Because of equation 16.118 the contribution of the first term to the bispectrum is zero.
Using the symmetry 1↔ 2 between the second and third term we hence get

〈δ̃(k1, τ)δ̃(k2, τ)δ̃(k3, τ)〉2nd. = 2D2
+ δD(k1 + k2 + k3) F2(k1,k2, τ)Plin,0(k1)Plin,0(k2)

+ cycl. . (16.123)

16.B.4 Variance and skewness of the density contrast in long
cylinders at leading order in perturbation theory

Consider a cylinder with radius R and length L. In Fourier space the top-hat filter for this
cylinder is given by

WR,L(k) =
1

(2π)3
WL(k‖)WR(k⊥) (16.124)

where we denote the component of k parallel to the cylinder axis with k‖ and the compo-
nents orthogonal to it are represented by the two-dimensional vector k⊥ and WL and WR

given by

WL(k‖) =
sin(Lk‖/2)

Lk‖/2
, WR(k⊥) =

2J1(Rk⊥)

Rk⊥
. (16.125)

Here k⊥ = |k⊥| and Jν are the cylindrical Bessel functions. At leading order or tree level
in perturbation theory the variance of matter contrast within the cylinder is then given by

〈δ2
R,L〉tree(τ)

= D2
+(τ)

∫
dk‖,1dk‖,2d2k⊥,1d2k⊥,2 WL(k‖,1) WL(k‖,2) WR(k⊥,1) WR(k⊥,2)〈δ1,1(k1)δ1,1(k2)〉

= D2
+(τ)

∫
dk‖d

2k⊥ WL(k‖)
2 WR(k⊥)2 Plin,0(k) . (16.126)

Here Plin,0(k) is today’s linear power spectrum. For L � R we can actually approximate
WL by

WL(k‖)
2 ≈ 2π

L
δD(k‖) (16.127)
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such that in this limit we get

〈δ2
R,L〉tree(τ) ≈ 2πD2

+

L

∫
dk k WR(k)2 Plin,0(k) . (16.128)

The third moment at tree level is given by

〈δ3
R,L〉tree(τ)

= 3D2
+

∫
dk‖,1dk‖,2dq‖d

2k⊥,1d2k⊥,2d2q⊥ WL(k‖,1) WL(k‖,2) WL(q‖) WR(k⊥,1) WR(k⊥,2) WR(q⊥)

〈δ1,1(k1)δ1,1(k2)δ2(q, τ)〉

= 3D4
+

∫
dk‖,1dk‖,2dq‖d

2k⊥,1d2k⊥,2d2q⊥d3q1d3q2 WL(k‖,1) WL(k‖,2) WL(q‖) WR(k⊥,1) WR(k⊥,2)

WR(q⊥)δD(q− q1 − q2)F2(q1,q2, τ)〈δ1,1(k1)δ1,1(k2)δ1,1(q1)δ1,1(q2)〉

= 3D4
+

∫
dk‖,1dk‖,2d2k⊥,1d2k⊥,2d3q1d3q2 WL(k‖,1) WL(k‖,2) WR(k⊥,1) WR(k⊥,2)

WR(q⊥,1 + q⊥,2) WL(q‖,1 + q‖,2)F2(q1,q2, τ)〈δ1,1(k1)δ1,1(k2)δ1,1(q1)δ1,1(q2)〉 . (16.129)

Since we assume the linear density field to be a Gaussian random field, the expectation
value on the left-hand-side factorizes as

〈δ1,1(k1)δ1,1(k2)δ1,1(q1)δ1,1(q2)

= 〈δ1,1(k1)δ1,1(k2)〉〈δ1,1(q1)δ1,1(q2)〉+ 〈δ1,1(k1)δ1,1(q1)〉〈δ1,1(k2)δ1,1(q2)〉
+〈δ1,1(k1)δ1,1(q2)〉〈δ1,1(k2)δ1,1(q1)〉

= δD(k1 + k2)δD(q1 + q2)Plin,0(k1)Plin,0(q1) + δD(k1 + q1)δD(k2 + q2)Plin,0(k1)Plin,0(q2)

+δD(k1 + q2)δD(k2 + q1)Plin,0(k1)Plin,0(q1) (16.130)

Because of equation 16.118 the contribution of the first term to the skewness is zero. Using
the symmetry 1↔ 2 between the second and third term we hence get

〈δ3
R,L〉tree(τ)〉 = 6D4

+

∫
dq‖,1dq‖,2d2q⊥,1d2q⊥,2 WL(q‖,1) WL(q‖,2) WL(q‖,1 + q‖,2)

WR(q1) WR(q2) WR(q1 + q2)Plin,0(q1)Plin,0(q2)F2(q1,q2, τ) .

(16.131)

For L� R we can use the approximation

WL(q‖,1) WL(q‖,2) WL(q‖,1 + q‖,2) ≈ 1

L2
δ2
D(q‖,1, q‖,2) . (16.132)

This gives

〈δ3
R,L〉tree(τ)〉 =

6D4
+

L2

∫
d2q1d2q2 WR(q1)WR(q2)WR(q1+q2) Plin,0(q1)Plin,0(q2)F2(q1,q2, τ) ,

(16.133)
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where we will consider all vectors to be 2-dimensional from now on. Using equation 16.119
to express F2 in terms of q1, q2 and φ we can simplify this to

〈δ3
R,L〉tree(τ)〉 =

12πD4
+

L2

∫
dq1dq2 q1WR(q1) q2WR(q2) Plin,0(q1)Plin,0(q2) ∗

∗
∫

dφ WR

[√
q2

1 + q2
2 + 2q1q2 cosφ

]
F2(q1, q2, φ, τ) . (16.134)

Using relations given in Bernardeau (1995) or Buchalter et al. (2000) one can simplify the
integral over φ as∫

dφ WR

[√
q2

1 + q2
2 + 2q1q2 cosφ

]
F2(q1, q2, φ, τ)

=
1

2

∫
dφ WR

[√
q2

1 + q2
2 + 2q1q2 cosφ

]{(
1 +

k1

k2

cosφ

)
+

(
1 +

k2

k1

cosφ

)}
+[1− µ(τ)]

∫
dφ WR

[√
q2

1 + q2
2 + 2q1q2 cosφ

]
(cos2 φ− 1)

= 2πWR(q1)WR(q2) +
π

2

{
WR(q1) Rq2

∂WR(x)

∂x

∣∣∣∣
x=Rq2

+WR(q2) Rq1
∂WR(x)

∂x

∣∣∣∣
x=Rq1

}
−π[1− µ(τ)]WR(q1)WR(q2)

= π[1 + µ(τ)]WR(q1)WR(q2) +
π

2

∂

∂ lnR
{WR(q1)WR(q2)} . (16.135)

For the third moment of δR,L this gives

〈δ3
R,L〉tree(τ)

= [1 + µ(τ)]
12π2D4

+(τ)

L2

∫
dq1dq2 q1q2 WR(q1)2 WR(q2)2 Plin,0(q1)Plin,0(q2)

+
6π2D4

+(τ)

L2

∫
dq1dq2 q1q2 WR(q1) WR(q2)

∂

∂ lnR
{WR(q1)WR(q2)}Plin,0(q1)Plin,0(q2)

= 3[1 + µ(τ)]

(
2πD2

+(τ)

L

∫
dq1 q WR(q)2 Plin,0(q)

)2

+
3π2D4

+(τ)

L2

∂

∂ lnR

∫
dq1dq2 q1q2WR(q1)2 WR(q2)2 Plin,0(q1)Plin,0(q2)

= 3[1 + µ(τ)]

(
2πD2

+(τ)

L

∫
dq1 q WR(q)2 Plin,0(q)

)2

+
3

4

∂

∂ lnR

(
2πD2

+(τ)

L2

∫
dq1 q WR(q)2 Plin,0(q)

)2

= 3[1 + µ(τ)]
(
〈δ2
R,L〉tree(τ)

)2
+

3

4

∂

∂ lnR

(
〈δ2
R,L〉tree(τ)

)2
. (16.136)
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Especially we have

S3 ≡
〈δ3
R,L〉tree(τ)

〈δ2
R,L〉tree(τ)2

= 3[1 + µ(τ)] +
3

2

∂ ln〈δ2
R,L〉tree(τ)

∂ lnR
. (16.137)

For an Einstein-de Sitter universe and a power law power spectrum P (k) ∼ kn this gives
S3 = 36/7− 3/2 (n+ 2). The leading order prediction for S3 is surprisingly good, even in
the mildly non-linear regime (see Bernardeau et al., 2002, and references therein). Hence
in order to predict the non-linear skewness, we simply employ the approximation

〈δ3
R,L〉non−lin.(τ) ≈ S3 〈δ2

R,L〉non−lin.(τ)2 , (16.138)

where we compute the non-linear variance with the use of halofit as detailed in Takahashi
et al. (2014) which is a revised version of Smith et al. (2003).

16.B.5 The moment 〈δ2
RA,L

δRB ,L〉tree

For predicting the density split lensing signal we are also interested in the moment 〈δ2
RA,L

δRB ,L〉tree,
where RA and RB are two different Radii. The above derivations can be generalized to
give

〈δ2
RA,L

δRB ,L〉tree(τ)

= Var(RA) Cov(RA, RB)

{
2[1 + µ(τ)] +

1

2

∂ ln Var(RA)

∂ lnRA

+
∂ ln Cov(RA, RB)

∂ lnRA

}
+ Cov(RA, RB)2

{
[1 + µ(τ)] +

∂ ln Cov(RA, RB)

∂ lnRB

}
(16.139)

where we defined

Var(RA) = 〈δ2
RA,L
〉tree , Cov(RA, RB) = 〈δRA,L δRB ,L〉tree . (16.140)

To correct this expression for the non-linear evolution of the power spectrum, we compute
Var(RA) and Cov(RA, RB) with our halofit power spectrum whenever they appear outside
of the logarithmic derivatives. This is a generalization of the rescaling of Var(RA) by means
of S3.

ForRB � RA this rescaling is dominated by first term on the right hand-side of equation
16.139. For RB ≈ RA it reduces to equation 16.138. As a consequence, using the procedure
described around 16.70 to correct for the non-linear power spectrum evolution yields a
prediction for the density split lensing signal that is almost identical to the procedure
described here. Also, it can be considered accurate to the extend that equation16.138
is accurate. We nevertheless rescale the 3rd order moments in the more elaborate way
described here.
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16.B.6 The moment 〈δnRA,L
δRB ,L〉tree

Using a diagrammatic representation of perturbation theory (see, e.g. , Bernardeau et al.
2002) one can see that the tree-level result for the moment 〈δnRA,L δRB ,L〉c will consist of
terms that scale as

∼ Cov(RA, RB)k Var(RA)n−k , 1 ≤ k ≤ n . (16.141)

For RB ≈ RA each of these scalings reduces to ∼ Var(RA)n (cf. 16.138 and the def-
inition of Sn+1 in 16.47). On the other hand, for RB � RA the terms scaling as ∼
Cov(RA, RB) Var(RA)n−1 are the dominant contributions (cf. the last section for the case
n = 2). This is why we use 16.70 when rescaling moments with n > 2 inGcyl.,θTw,θw,L(ql(w)Ly,w)
(see also 16.57).

16.C Comparison with Millennium simulation

In Figure 16.11, we compare our model for the PDF of projected density contrast to another
set of N-body simulations, the Millennium Run (MR Springel et al., 2005). The MR has
a smaller simulation volume of only (500h−1 Mpc)3 co-moving, but a force resolution of
5h−1 kpc that is 4-10 times higher than that of the Buzzard simulations. The fiducial
model and the log-normal model describe the distribution of δm,T measured from the MR
well considering the large statistical uncertainty on p(δm,T ) due to the limited simulated
sky area.

16.D Galaxy stochasticity

Consider the field of galaxy density contrast δg,T and the field of matter density contrast
δm,T , where both fields are assumed to be smoothed over a fixed circular aperture. The
number of galaxies found inside such an aperture is assumed to be a Poissonian random
variable with first and second moments for a given value of δg,T are given by

〈N̂ |δg,T 〉 = N̄(1 + δg,T ) (16.142)

and
〈N̂2|δg,T 〉 = N̄(1 + δg,T ) + N̄2(1 + δg,T )2 . (16.143)

Let Varm be the variance of δm,T and Varg = b2Varm the variance of δg,T , where b is the
galaxy bias. Then the galaxy stochasticity r is defined by Covmg = rbVarm, i.e. it is the
correlation coefficient of δg,T and δm,T .

We will now assume both δg,T and δm,T to be joint log-normal random variables, i.e.

δm,T = [enm − 1] δm,0

δg,T = [eng − 1] δg,0 , (16.144)
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Figure 16.11: The PDF of projected density contrast δm,T in the Millennium Run (MR)
compared to our model. In each plot, the black line shows a histogram of δm,T measured
from 64 patches of 4 × 4 deg2 made from the MR by projecting the 3D density contrast
with a constant selection function ql between 0.19 . z . 0.43, i.e. with a constant co-
moving density between those redshifts. The blue lines display the PDF predicted by our
PT-motivated log-normal model, and the red lines show a Gaussian PDF with the same
variance. The grey band is using the subsample covariance to estimate the error on the
mean of all patches (Friedrich et al., 2016).
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where nm and ng have a joint Gaussian distribution and δg,0 = bδm,0. The variances of nm
and ng are given by

σ2
m = ln

{
1 +

Varm
δ2
m,0

}
σ2
g = ln

{
1 +

Varg
δ2
g,0

}
= σ2

m (16.145)

and their covariance is given by

ξmg = ln

{
1 +

Covmg
δm,0δg,0

}
= ln

{
1 + r

Varm
δ2
m,0

}
. (16.146)

Let us denote the correlation coefficient of the Gaussian field by

ρ =
ξmg
σ2
m

=
ln
{

1 + rVarm
δ2
m,0

}
ln
{

1 + Varm
δ2
m,0

} . (16.147)

Note that ρ will depend on scale even of b and r do not.

Now we want to compute the conditional moments 〈δg,T |δm,T 〉 and 〈δ2
g,T |δm,T 〉. First,

〈eng |nm〉 = e〈ng |nm〉+σ
2
g(1−ρ2)/2

= eρ(nm+σ2
m/2)−σ2

gρ
2/2

= eσ
2
g(ρ−ρ2)/2eρnm . (16.148)

Second,

Var (eng |nm) =
(
eσ

2
g(1−ρ2) − 1

)
e2〈ng |nm〉+σ2

g(1−ρ2)

=
(
eσ

2
g(1−ρ2) − 1

)
eσ

2
g(ρ−ρ2)e2ρnm . (16.149)
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Now what is Var(N̂ |δm,T )?

〈N̂2|δg,T 〉 = 〈N̂2|nm〉

=

∫
dδg,T p(δg,T |nm)×

×
(
N̄ [1 + δg,T ] + N̄2[1 + δg,T ]2

)
= N̄ + N̄2 +

∫
dδg,T p(δg,T |nm)×

×
(
δg,T [N̄ + 2N̄2] + N̄2δ2

g,T

)
= N̄ + N̄2 + [N̄ + 2N̄2]〈δg,T |nm〉+

+N̄2
(
Var (δg,T |nm) + 〈δg,T |nm〉2

)
⇒ Var(N̂ |δm,T ) = N̄(1 + 〈δg,T |nm〉) + N̄2Var (δg,T |nm)

= N̄(1 + 〈δg,T |nm〉) + N̄2δ2
g,0Var (eng |nm)

(16.150)

The probability P (NA|δm,T ) can be computed in a similar way, by numerically evaluating

P (NA|δm,T ) =

∫
dδg,T p(δg,T |δm,T ) P (NA|δg,T ) , (16.151)

where p(δg,T |δm,T ) can be computed from basic relations for joint log-normal random vari-
ables.

16.E Validation of alternative shot-noise model

In our data analysis (Gruen et al., 2018) we investigate both shot-noise parameteriza-
tions introduced in section 16.4.3. We hence check whether our alternative shot-noise
parametrization, i.e. the one that uses three parameters to describe the relation between
matter and galaxies (b, α0 and α1, cf. section 16.4.3), recovers the true cosmology and
shot-noise parameters of our mock data.

In figure 16.12 we show the posterior constraints derived for the two shot-noise param-
eters α0 and α1, when marginalizing over different sets of model parameters. Our priors
0.1 < α0 < 3.0 and −1.0 < α1 < 4.0 are mildly informative. We however expect that even
stronger priors can be motivated (cf. our discussion in section 16.4.3) and will investigate
this in future work. Figure 16.13 shows that our alternative shot-noise parametrization
also recovers the correct Buzzard cosmology (cf. figure 16.10, which presents the same test
for our baseline model).
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Figure 16.12: 1σ and 2σ contours in the α0-α1 plane from a likelihood computed around
the mean of 4 shape noise free realizations of DES Y1 (but assuming the full covariance
matrix for a single DES Y1). The blue contour only varies α0 and α1. The red contour
marginalizes over Ωm, σ8 and galaxy bias b. The green contour additionally marginalizes
over Ωb, ns, h100, assuming the priors used by DES Collaboration et al. (2017). And the
black contour also allows variation of the parameter ∆S3/S3. Dotted lines show the values
of α0 and α1 that were found to describe our mock data best in section 16.4.3.
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Figure 16.13: In analogy to figure 16.10, we test whether our alternative shot-noise
parametrization can recover the Buzzard cosmology in a simulated likelihood analysis.
Top panel: 1σ and 2σ contours in the Ωm-σ8 plane from a likelihood computed around the
mean of 4 shape noise free realizations of DES Y1 (but assuming the full covariance matrix
for a single DES Y1). The green contours are marginalized over Ωb, ns, h100, redMaGiC
galaxy bias b as well as the shot-noise parameters α0 and α1. For the parameters Ωb, ns,
h100 we have assumed the same flat priors as used in the DES Y1 combined probes analysis
presented in Abbott et al. (in prep.). The red contours are marginalized only over bias
and shot-noise parameters and the blue contours only vary Ωm and σ8. Even when going
to this small parameter space, our model agrees with Buzzard within 1σ errors of DES
Y1. Bottom panel: Same contours but in the Σ8-∆S3/S3 plane and varying one additional
parameter, ∆S3/S3. Dotted lines show the true Buzzard cosmology and our fiducial value
of ∆S3/S3 = 0.



Chapter 17

Density split statistics: cosmological
constraints from counts and lensing
in cells in DES Y1 and SDSS

Based on the modeling framework I developed in the previous chapter, we have analyzed
year 1 data of the Dark Energy Survey (DES Y1) as well as data from the Sloan Digital Sky
Survey (SDSS). This analysis has been published as Gruen, Friedrich, Krause, Cawthon,
Davis, Elvin-Poole, Rykoff, Wechsler et al. (2018) in PRD (from here Gruen, Friedrich et
al., 2018). In the following I will summarize the content of that paper and present its main
results.

My own contributions to Gruen, Friedrich et al. (2018) are the following:

• I provided the code used to model the measured signals. In that context I also wrote
parts of section III.

• I computed the input power spectra and the so-called log-normal shift parameters
(Xavier et al., 2016) that were required to generate the log-normal simulations used
in this work. In that context I also wrote parts of appendix B.

• I contributed to general discussion and proofreading.

17.1 Analysis overview

The main steps of the analysis presented in Gruen, Friedrich et al. (2018) are the following:

1. Preparing a sample of lens galaxies and a set of source galaxies from DES Y1 and
SDSS data. In particular we used the redMaGiC sample available for both surveys
(Rozo et al., 2016) as lenses and shape catalogs obtained with metacalibration
(Sheldon & Huff, 2017) as sources.
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2. Using the lens sample to create a map of galaxy density, smoothed by a circular
top-hat radius. For this we used an angular radius of θT = 20′ because this was the
smallest radius at which we could successfully validate our model in Friedrich, Gruen
et al., 2018.

3. Splitting the sky into density quantiles (based on the above map) and measuring the
density split lensing signals. Also, measuring the Counts-in-Cells histogram (the CiC
histogram, which is equivalent to the galaxy density PDF).

4. Generating log-normal realizations of the projected matter density field as well as
the lensing convergence field (using the flask tool by Xavier et al., 2016) in order
to

- estimate the cosmic variance part of the covariance matrix of our signals (i.e.
the part of the covariance that is shape noise free),

- validate the likelihood pipeline with which we constrain the different parameters
of our model.

5. Computing the shape noise part of our covariance matrix from random rotations of
the ellipticities of our source galaxies. Also, estimating a covariance matrix with the
jackknife method as a cross check.

6. Validating our likelihood pipeline wrt. the above mentioned log-normal simulations
as well as wrt. an extended set of N-body realizations (that where not yet available
when we prepared Friedrich, Gruen et al., 2018).

7. Testing whether changes in our analysis choices significantly impact our results. In
particular the following changes to our analysis were investigated:

- using a shape catalog from an alternative shape measurement algorithm,

- excluding the lowest and highest redshift bin from the analysis,

- using a different photometric redshift estimation procedure to estimate our red-
shift distributions,

- changing our angular scale cuts,

- neglecting a systematic effect that arises when lenses and sources overlap in
redshift (see section III.D of the paper for details).

8. Deriving cosmological parameter constraints. In particular, we obtained information
about the following aspects of the large scale structure of the universe:

- the bias and stochasticity of redMaGiC galaxies wrt. the total matter density
field,

- the skewness of the matter density PDF,
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Figure 17.1: Taken from Gruen, Friedrich et al. (2018). The gray, shaded area shows
the redshift distribution of our lens sample. This is almost identical for the DES and
SDSS parts of the analysis. The dashed lines (purple, red and yellow) show the redshift
distributions of the 3 source galaxy bins used in the DES analysis. The blue dotted line
shows the redshift distribution of the single source galaxy bin used for the SDSS analysis.
The black line indicates how the amplitude of our lensing signals increases with redshift.
The fact that some of the source bins overlap in redshift with our lens sample has to be
accounted for with a new nuisance parameter - see the discussion in section III.D of Gruen,
Friedrich et al. (2018).

- the parameters Ωm and σ8 of the ΛCDM model that was underlying our analysis.

The results of our analysis are robust wrt. the tested changes in the analysis setup, indi-
cating that they are also robust wrt. a wide range of systematic uncertainties. Also, when
applying our likelihood pipeline to simulated data we recovered parameter constraints that
are consistent wrt. the input models of that data.

Our fiducial analysis was carried out using one lens redshift bin and overall 3 source
redshift bins of DES Y1. SDSS data was analyzed mainly as a consistency check for the
DES analysis. Because SDSS has a lower depth than DES we only used one source redshift
bin in the SDSS part of the analysis. Figure 17.1 shows the redshift distribution of the
different samples and figure 17.2 shows the distribution of galaxy counts in apertures of
θT = 20′ radius that we found in DES and SDSS resp.

In figure 17.3 I show the density split lensing signals obtained from one of our source
bins. The signals obtained for the other DES source bins as well as for SDSS can be found



246
17. Density split statistics: cosmological constraints from counts and lensing

in cells in DES Y1 and SDSS

0 20 40 60 80 100 120
N

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
(N

)

DES, fmask = 0.2

SDSS, fmask = 0.1

Figure 17.2: Taken from Gruen, Friedrich et al. (2018). The blue histogram shows the
distribution of redMaGiC galaxy counts found within apertures of θT = 20′ radius in
DES Y1 (the CiC histogram). The red histogram shows the corresponding distribution
found in SDSS. The DES and SDSS redMaGiC samples used in our analysis had almost
identical redshift distributions. The reason why the SDSS sample nevertheless has a larger
number density, is that DES Y1 has a larger masking fraction due to wholes in the survey
mask. See section II.A of Gruen, Friedrich et al. (2018) for how we treated the masking
fraction in our analysis. The solid lines show our best fit model for the CIC histograms and
the color coding thereof indicates the 5 density quantiles into which we split the survey
areas (cf. figure 16.1).
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Figure 17.3: Taken from Gruen, Friedrich et al. (2018). The points show our measurements
of the tangential shear profile γt(θ) around redMaGiC density quantiles in DES Y1 as
measured with our intermediate source redhift bin (from the most underdense quantile in
cyan to the most overdense quantile in red). The dotted line indicate our best fit model.

in the paper. Both figure 17.2 and figure 17.3 demonstrate that our best fit model is able
to describe the measured signals of our density split analysis. The best-fit values of our
fiducial model give a reduced χ2 of

χ2
best fit

degrees of freedom
≈ 0.88 (17.1)

with expected uncertainty

σ

{
χ2

best fit

degrees of freedom

}
≈ 0.10 . (17.2)

We will investigate in future work, whether our log-normal simulations slightly overestimate
the covariance matrix.
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Figure 17.4: Taken from Gruen, Friedrich et al. (2018). Constraints on galaxy bias b, galaxy
stochasticity r, the parameter S3 that describes the scaling between 2nd and 3rd moments
of the density field and the ΛCDM parameters Ωm and σ8 (i.e. the fraction of matter in
the total energy content of the universe and the amplitude of density fluctuations) which
are here compressed into the parameter S8 = σ8

√
Ωm that is best constrained by cosmic

shear 2-point statistics. The ratio ∆S3/S3 describes the relative deviation of S3 wrt. its
ΛCDM value.
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Figure 17.5: Taken from Gruen, Friedrich et al. (2018). Constraints on Ωm and σ8 and
galaxy bias b when fixing the scaling parameter S3 to its ΛCDM value. The black contours
are obtained with a model that assumed linear galaxy bias and Poisson shot noise of
galaxies wrt. matter (model 1 in the main text). The green contours are obtained from
a model that allows for an additional stochasticity between galaxies and matter beyond
Poisson noise (model 2 in the main text). The red contours are obtained with a model
that allows for an arbitrary slope of the density dependence in the shot noise amplitude
(model 3 in the main text). For comparison we show the contours of the DES Y1 2-point
analysis (DES Collaboration et al., 2017) in blue.
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17.2 Constraints on the skewness of the density PDF

During the validation of our analysis we have employed a blinding strategy to avoid con-
firmation bias. This strategy is described in section V.D of the paper. Once the validation
was successful we unblinded and performed a cosmological analysis of the measured data
vectors based on the model presented in the previous chapter. Our parameter constraints
were obtained in the framework of Bayesian parameter inference (cf. section 12.3; also, see
table I of the paper for our parameter priors). To compare different models we compute the
so-called Bayes factors or Bayesian evidence ratios. Recall from equation 12.8 that the
posterior distribution p(π|x̂) of the model parameters π given the measured data vector x̂
is computed through

p(π|x̂) =
p(x̂|π) pr(π)

N , (17.3)

where p(x̂|π) is the PDF of x̂ given the parameters π and pr(π) is the prior distribution
assumed for the parameters π. The factor N normalizes p(π|x̂) such that its integral over
the parameters is 1. N is also called the evidence. Two models 1 and 2 will have different
evidences N1 and N2 and their ratio

E =
N1

N2

(17.4)

is the Bayes factor. A Bayes factor close to 1 is supposed to indicate that both models
describe the data equally well. A Bayes factor � 1 is supposed to indicate that model 2
should be favored over model 1. We investigate the behavior of E when comparing different
versions of our model with the help of our log-normal simulations. This is described in
appendix D of the paper and it confirms the above interpretation.

In figure 17.4 I show the constraints obtained on parameters of our fiducial model when
allowing that the skewness of the density PDF deviated from its ΛCDM value. This figure
demonstrates the claim made previously that density split statistics can simultaneously
provide information about 3 different aspects of the large scale structure of the universe:

• the relation of galaxies and dark matter (in the form of galaxy bias b and galaxy
stochasticity r),

• the skewness of the cosmic density PDF (in the form of the scaling parameter S3),

• the parameters Ωm and σ8 of the ΛCDM model (i.e. the fraction of matter in the
total energy content of the universe and the amplitude of density fluctuations). In
figure 17.4 these parameters have been compressed into the combined parameter
S8 = σ8

√
Ωm/0.3 .

Figure 17.4 shows that DES Y1 data is indeed consistent with the ΛCDM predictions of
the skewness of the density field. Fixing the scaling parameter S3 to its ΛCDM prediction
will then improve the constraints on our other model parameters.
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17.3 Comparing different models of the matter-galaxy

relation

Figure 17.5 shows the parameter constraints we obtain from DES Y1 when fixing S3 in our
analysis. This figure also shows how our parameter constraints change if we use different
models for the relation of galaxies and matter. These models are:

1. Linear bias + Poisson noise:

a model in which we assume a linear relation 〈δg〉 = b · δm between galaxy den-
sity contrast and matter density contrast and a Poissonian shot noise (without any
additional stochasticity).

2. Linear bias + stochasticity:

a model that allows for stochasticity beyond Poisson noise.

3. Linear bias + density dependent stochasticity:

a model that allows for an arbitrary slope of the density dependence in the shot noise
amplitude.

These models have been discussed in detail in section 16.4.3. Figure 17.5 shows that
the exact choice of our bias and stochasticity model indeed impacts our cosmological con-
straints. An analysis based on Bayesian evidence ratios implies that these differences are
not significant (see section VI.A of the paper). Nevertheless, this results is surprising,
considering the fact that our data from N-body simulations was equally well described by
the model 2 and model 3 of the enumeration above.

The main difference of our findings in the data wrt. our N-body simulations is the
following: the shot noise between matter and galaxies seem to be a steeper function of
density in DES Y1 data than is is in our simulated data. To understand this see figure
16.8, where both model 2 and model 3 describe the shot noise of galaxy counts as a function
of matter density equally well. In our data however, model 3 prefers this function to be
steeper than allowed by the parametrization of model 2. We are still investigating whether
these findings are significant. Tables 17.1 and 17.2 summarizes the results of our analysis.
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Table 17.1: Taken from Gruen, Friedrich et al. (2018). The table shows constraints on
our model parameters when fixing the scaling coefficient S3 to its ΛCDM prediction. See
sections V.C and VI.A of the paper for a discussion of Bayes factors. The last row shows
corresponding constraints obtained from the analysis of 2-point statistics in DES Y1 (DES
Collaboration et al., 2017).

Data Model Bayes S8 Ωm σ8 b r α0 α1

factor

DES b, r ≡ 1.0 0.90+0.11
−0.08 0.26+0.04

−0.03 0.97+0.07
−0.06 1.45+0.10

−0.11 0.77+0.10
−0.13 - -

SDSS b, r ≡ 1.0 0.78+0.13
−0.08 0.25+0.05

−0.04 0.86+0.06
−0.05 1.48+0.09

−0.09 0.70+0.16
−0.14 - -

DES b, α0, α1 0.7 0.78+0.05
−0.04 0.28+0.05

−0.04 0.80+0.06
−0.07 1.75+0.22

−0.26 - 1.5+0.4
−0.6 1.7+1.1

−0.9

SDSS b, α0, α1 1.6 0.76+0.08
−0.07 0.28+0.07

−0.05 0.80+0.08
−0.11 1.18+0.37

−0.23 - 2.3+0.3
−0.5 2.9+1.1

−1.0

3× 2pt, fixed ν 0.80+0.02
−0.02 0.26+0.02

−0.03 0.85+0.06
−0.05 1.54+0.09

−0.10 DES Collaboration et al. (2017)

Table 17.2: Taken from Gruen, Friedrich et al. (2018). The table shows constraints on our
model parameters when varying the scaling coefficient S3 (∆S3/S3 is the relative deviation
from its ΛCDM prediction). See sections V.C and VI.A of the paper for a discussion of
Bayes factors. The latter have been computed wrt. to the model where S3 is fixed to its
ΛCDM prediction.

Data Model Bayes S8 Ωm σ8 b r α0 α1 ∆S3/S3

factor

DES b, r,∆S3 0.3 0.91+0.10
−0.10 0.26+0.07

−0.05 0.96+0.17
−0.13 1.37+0.32

−0.27 0.72+0.14
−0.10 - - −0.08+0.25

−0.20

SDSS b, r,∆S3 0.4 0.76+0.12
−0.09 0.28+0.09

−0.07 0.72+0.17
−0.13 1.64+0.44

−0.46 0.73+0.15
−0.15 - - 0.06+0.40

−0.27

DES b, α0, α1,∆S3 0.3 0.80+0.06
−0.05 0.26+0.07

−0.05 0.86+0.10
−0.13 1.48+0.41

−0.32 - 1.7+0.4
−0.6 2.0+1.1

−0.9 −0.18+0.25
−0.22

SDSS b, α0, α1,∆S3 0.6 0.78+0.07
−0.08 0.27+0.09

−0.05 0.80+0.14
−0.12 0.98+0.49

−0.17 - 2.5+0.3
−0.5 4.0+0.0

−1.9 −0.14+0.44
−0.39
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Summary and open questions





Chapter 18

Contributions of my thesis to the
field of large scale structure
cosmology

In cosmological analyses, higher order moments of the density field (i.e. moments of order
> 2) play a 2-fold role: they are used to describe the covariance matrix of 2-point correlation
functions and power spectra and they can serve as cosmological probes by themselves (cf.
chapter 3). With this thesis I helped to improve our understanding of higher order moments
(and higher order statistics in general, such as the cosmic density PDF) in both of these
contexts. Since there have already been separate concluding sections in chapters 13, 14 and
16, I will not interpret the results of the corresponding papers again here. Instead, I will
summarize the original contributions of this thesis in the following and outline a number
of open questions pointing to future work in chapters 19, 20 and 21.

The original contributions of this work can be summarized as follows:

• In Friedrich et al. (2016) I have for the first time systematically analyzed the per-
formance of internal covariance estimators for the covariance matrix of cosmic shear
correlation functions. This includes a detailed investigation of different ways to treat
galaxy pairs between the different subregions used for the internal re-sampling tech-
niques. That is also relevant for other 2-point correlation functions of the cosmic
density field and has been lacking in the most cited study of internal covariance
estimators for 2-point correlation functions (Norberg et al., 2009). The main conclu-
sion of Friedrich et al. (2016) is that parameter uncertainties in the Ωm − σ8 plane
are underestimated by 10− 15% when using internal covariance estimates in a non-
tomographic cosmic shear analysis (see section 13.6 for the detailed conclusions of
that paper).

• In Friedrich & Eifler (2018) I have developed a completely new estimator for the
inverse covariance matrix (the precision matrix ) that allows the integration of a
priori knowledge about the covariance matrix into matrix estimates from a set of
simulated data. This method derives corrections to a modeled precision matrix in
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the form of a power series (see equation 14.10) and estimates the terms of that
series from simulated data. In Friedrich & Eifler (2018) we show that this method
can correct severe deficits in a covariance model. Also, we show that this method
decreases the number of (e.g. N-body) simulations required for a good estimate of the
precision matrix by a factor between 10 and 100. Here good means that the fraction
of analyses in which the true cosmological parameters lie within a 68% confidence
region derived from the estimated precision matrix should be between 67% and 69%.
The detailed conclusions of that paper are given in section 14.5.

• My part in Gruen, Friedrich et al., 2016 was to develop a model for the newly
discovered trough lensing effect based based on the assumptions that

a) both the matter density contrast and the lensing convergence are Gaussian
random fields

b) the relations between the matter density contrast and the density contrast of
luminous red galaxies can be described with a linear bias model + Poissonian
shot-noise.

Using this model we found hints in early DES data that there is either a skewness in
the distribution of the matter density field or that there is a density dependence in
the relation between galaxies and matter. (In Friedrich, Gruen et al., 2018; Gruen,
Friedrich et al., 2018, we found that both hypotheses are correct.)

• In Friedrich, Gruen et al., 2018 I developed an improved model for trough lensing
and its generalization density split statistics. This model uses an approach based on
cosmological perturbation theory and spherical collapse to derive the PDF of the line-
of-sight projected matter density contrast and to predict the relation between that
density contrast and the lensing convergence field. I also improved our modeling of
the relation between matter density and galaxy density by incorporating a stochastic
noise between the two that can deviate from Poisson noise and whose amplitude
can be density dependent. Using a set of high-resolution N-body simulations (see
DeRose et al., 2018, for the details of those simulations) we showed that this model
is accurate enough to perform a cosmological analysis on DES year 1 data.

The paper Gruen, Friedrich et al., 2018 presents such an analysis based on the above
model. This is the first cosmological analysis of the low-redshift universe based on
the PDF of the cosmic density field. In that study we were able to confirm ΛCDM
predictions for the skewness of the matter density field and we also showed (with a
mild, 2σ significance) that there is a stochastic bias between the matter density field
and the density of luminous red galaxies on scales of . 10Mpc.



Chapter 19

Open questions in covariance
estimation

In this chapter I give a review of current open questions in the estimation and use of
covariance matrices as well as an outlook on future work.

19.1 Non-Gaussian likelihoods

As discussed in chapter 12 , cosmological analyses often assume that the statistical un-
certainties of measured data vectors have a Gaussian distribution (Kilbinger et al., 2013;
Heymans et al., 2013; Abbott et al., 2016; Hildebrandt et al., 2017; van Uitert et al., 2018;
DES Collaboration et al., 2017). This mean that if x̂ is a measured data vector with ex-
pectation value µ and covariance matrix C it is often assumed that the PDF of x̂ is given
by

p(x) =
1√

(2π)D|C|
exp

{
−1

2
[x− µ]T ·C−1 · [x− µ]

}
. (19.1)

It has recently been argued by Sellentin & Heavens (2018); Sellentin et al. (2018) that
this assumption is not sufficiently accurate for the distribution of measurements of cosmic
shear correlation functions. To explain their argument, let us consider any random field
f(n̂), where n̂ is a unit vector pointing on a location of the sky (f might, e.g. , be the
lensing convergence field or the projected galaxy density contrast in the sky). A particular
realization f̂ of f can be expanded into spherical harmonics Y`m(n̂) as

f̂(n̂) =
∞∑
`=0

∑̀
m=−`

â`mY`m(n̂) . (19.2)

If f is a Gaussian random field with vanishing expectation value, then the coefficients a`m
are also Gaussian random variable with vanishing expectation value. Given a particular
realization f̂ the angular power spectrum Cf

` of f can be estimated from the coefficients
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â`m as (Peebles, 1993)

Ĉf
` =

1

2`+ 1

∑̀
m=−`

|â`m|2 . (19.3)

Now, even if the a`m are Gaussian random variable, the above estimator of Cf
` is clearly

not since it is a sum of squared Gaussian random variables. Instead, Ĉf
` has a Gamma

distribution (Sellentin et al., 2018). For large values of ` this is not a problem because
the sum in the definition of Ĉf

` will be over many identically distributed random variables
(that are also independent, if the field f is isotropic) and the central limit theorem will
nevertheless lead to an approximately Gaussian distribution (Anderson, 2003). But for low
values of ` estimators like the one in 19.3 will show significantly skewed distributions (see,
e.g. , Planck Collaboration et al., 2014).

Sellentin et al. (2018) argue that any estimator of a particular 2-point correlation func-
tion ξf (θ) can be approximated as

ξ̂(θ) ≈
∑
`

F`(θ)Ĉ
f
` , (19.4)

where the coefficients F`(θ) depend on the particular type of correlation function (appendix
B gives those coefficients for the correlations functions ξ±(θ), γt(θ) and w(θ)). The central
limit theorem will again lead to an approximately Gaussian distribution for ξ̂ when the
sum in 19.4 gives similar weight to a lot of similarly distributed modes Ĉf

` . But if the
coefficients F`(θ) peak around a small number of modes, then one expects a significant
non-Gaussianity. This is typically the case on scales comparable to the area on the sky
that is observed by a particular survey and Sellentin & Heavens (2018); Sellentin et al.
(2018) argue that this effect is indeed significant for current cosmic shear surveys since
they are falsely approximating the skewed distribution of ξ̂ with a symmetric, Gaussian
one. However, the results of Sellentin et al. (2018) where derived for a survey comparable
to the CFHTLenS survey (e.g. Kilbinger et al., 2013) whose area is ∼ 10 times smaller
than the area of DES year 1 and ∼ 30 times smaller that that of the final DES survey. The
DES collaboration is currently investigating whether the findings of Sellentin et al. (2018)
affect such a large survey in a significant manner.

Even if non-Gaussian distribution should be found to have a significant impact on
cosmological parameters constraints, any non-Gaussian ansatz for the data likelihood will
most likely depend on the covariance matrix of the measured 2-point statistics (see, e.g.
, Sellentin & Heavens 2016 and the appendix Hilbert et al. 2011 for how to construct
log-normal PDFs from the corresponding Gaussian ones).

19.2 Covariance estimation for analyses that combine

different cosmological probes

Current DES data has been analyzed with a number of different probes to constrain cos-
mological parameters. These are, e.g. , 2-point statistics of the shear and galaxy density
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field (DES Collaboration et al., 2017), shear peak statistics (Kacprzak et al., 2016), density
split statistics (Friedrich et al., 2018; Gruen et al., 2018) or the counts of galaxy clusters
as a function of their mass (DES in prep.; see McClintock et al. 2018 the calibration of
DES cluster masses using their lensing profile). To put cosmological theories to the most
stringent test possible, it is desirable to combine several (or all) of these probes into a joint
cosmological analysis. To do so, a joint covariance matrix for the data vectors obtained
from all the combined probes is required.

It is unlikely, that the number of N-body simulations in which all of these probes can be
obtained to a sufficient accuracy will be large enough to obtain a good covariance estimate
for these combined probes (cf. MacCrann et al., 2018, where even for the DES 2-point
analysis alone only 18 simulations could be considered). Unfortunately, also the modeling
of such a combined probe covariance is very challenging (Krause & Eifler, 2016). But
there are many subparts of such a covariance matrix that can be estimated from separate
techniques:

• The small scale cosmic variance of 2-point functions can still be estimated from
N-body simulations -, e.g. , through the so-called response approach (Barreira &
Schmidt, 2017) or by cutting large N-body boxes into smaller sub-volumes that still
capture the important modes.

• The part of the cluster lensing covariance that is due to intrinsic variations of the
cluster mass profile can be estimated from the cluster-to-cluster variations in high
resolution N-body simulations.

• Shape noise contributions to the covariance of shear peak statistics or cluster lensing
profiles can be obtained by randomly rotating the orientation of galaxies (Kacprzak
et al., 2016; McClintock et al., 2018).

• Shape noise and shot noise contributions to the covariance of 2-point functions can be
estimated from the data itself (see appendix C for a demonstration of this approach).
This could be especially useful in the light of Troxel et al. (2018), who found that
these parts have been the most troublesome in covariance models used for recent
2-point analyses.

• Effects of masking and survey geometry on the large scale part of the 2-point function
covariance can be estimated from (cheap) log-normal realizations of the density field
(Xavier et al., 2016; Krause et al., 2017).

It is straight forward to generalize the PME method presented in chapter 14 (based on
Friedrich & Eifler 2018) to the case where several different parts of the covariance matrix
are estimated from different sources. To do so one would generalize the formalism derived
in section 14.3 to the case where the covariance matrix C is split into a number of
contributions as

C = A + B1 + ... + BN , (19.5)
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where A is the part of the covariance model that is trusted and B1, ... ,BN are parts
of the covariance for which we have independent estimates B̂1, ... , B̂N . An approach
that integrates different covariance estimates, e.g. , in this way should be constructed in
preparation for the upcoming multi-probe analyses.



Chapter 20

Open questions and tasks for density
split statistics

The main benefit of density split statistics (DSS) is that it simultaneously probes the
relation between the galaxy and matter density field as well as gravitational non-linearities
(i.e. the evolution of higher order moments of the density field). There are several ways
how to improve and extend the analysis of Friedrich, Gruen et al., 2018; Gruen, Friedrich
et al., 2018 in order to make full use of these 2 pieces of information.

20.1 Improving the analysis of matter-galaxy relation

To gain a better understanding of the relation between matter and galaxies, the analysis
should be extended in the following ways:

• We should study DSS at different smoothing scales θT in order to probe the scale
dependence of galaxy bias and galaxy stochasticity.

• We should study DSS in several different lens redshift bins to study the redshift
evolution of those parameters.

• We should perform the density splits in different lens galaxy samples to compare the
relation of matter and galaxies for different galaxy types.

To interpret the information gained by such an extended study, a major improvement of
our theoretical modeling must be achieved:

• We have to understand the relation between the mere nuisance parameters b (galaxy
bias) and r (galaxy stochasticity) and the more physical parameters from the frame-
work of halo occupation distributions (HOD; see, e.g. , Cacciato et al., 2012; Park
et al., 2016; Dvornik et al., 2018).

Determining HOD parameters for different types of galaxies will enable us to infer the
different environments in which these galaxies reside (resp. the different masses of typical
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Figure 20.1: Instead of measuring the lensing profile around different quantiles of galaxy
density we can also measure the galaxy clustering profile around those quantiles. As has
been shown in the context of 2-point statistics (Park et al., 2016), this yields complemen-
tary information on the matter-galaxy relation and can improve our ability to disentangle
non-linearities in that relation from gravitational non-linearities. The figure shows the av-
erage of measurements in 4 DES year 1 like patches from the Buzzard N-body simulations
(DeRose et al., 2018) and can be directly compared to the corresponding lensing measure-
ments in Friedrich et al. (2018) - cf. figure 16.1. The solid lines show theoretical predictions
along the same lines as for the density split lensing signals presented in Friedrich et al.
(2018).

host halos for these galaxies). This will allow us to study galaxy evolution in a cosmological
context.

20.2 Improving the analysis of gravitational non-linearities

To gain a better understanding of gravitational non-linearities the analysis should be ex-
tended in the following ways:

• We should analyze density splits at larger scales and higher redshifts to study the
onset of non-linear evolution.

• In addition we should analyze density splits on small, highly non-linear scales to
study the end product of that evolution.
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• We should increase the number of density quantiles used to perform the density splits
and put focus not only on the moments of the density PDF but on the shape of its
high and low density tails (see, e.g. , Brouwer et al., 2018, who extend our analysis
to a finer binning in density).

• Instead of measuring only the lensing signals around different density quantiles we
should also investigate the galaxy clustering profile around these quantiles. This
would allow for an even better separation of gravitational non-linearities and non-
linearities in the matter-galaxy relation (see, e.g. , Park et al., 2016, who do this in
the context of 2-point statistics). I demonstrate in figure 20.1 that our model can
be extended to these profiles.

To make full use of this extended information, several improvements of our theoretical
modeling must be achieved:

• We have to improve our understanding of the moments of the density field. Right
now, we approximate the cumulant generating function (CGF) of the density field
with the rescaled tree level CGF that was described in chapters 7 and 16. This means
we compute the tree level CGF as

ϕtree
R (y, η) = −Sy[δ∗L] (20.1)

and then compute the non-linear CGF as a rescaling thereof (cf. section 7.3), i.e.

ϕexact
R (y, η) ≈ 〈δR(η)2〉tree

c

〈δR(η)2〉exact
c

ϕtree
R

(
y
〈δR(η)2〉exact

c

〈δR(η)2〉tree
c

, η

)
. (20.2)

In Friedrich et al. (2018) we have shown that this approximation breaks down on
scales . 5 Mpc. A possible way to improve this approximation is to also include the
1-loop contribution of equation 7.15 , i.e. to use

φ1-loop
R (y, η) = −Sy[δ∗L]− 1

2
Tr ln(δD + Ay) . (20.3)

While the first term on the right hand-side of this equation can be computed purely
through the equations of spherical collapse (cf. chapter 7 which summarized the
results of Valageas 2002a) the second term has most likely contribution from non-
spherical configurations. It should be possible though to compute these contributions,
e.g. , along the lines of Zibin (2008); Clarkson et al. (2009).

• To analyze the high density and low density tails of the matter density PDF in more
detail (following the suggestion of Brouwer et al., 2018) we have to improve our
modeling of these tails. Ansatzes of how to do that have, e.g. , been laid out by
Valageas (2002a,b). It would especially be interesting to work out, how primordial
non-Gaussianities (i.e. non-Gaussianities in the initial density field) would impact
these high and low density parts of the PDF.
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• We have to improve our understanding of how baryonic effects impact the dynamics
of dark matter on small scales. It has, e.g. , been shown that these effects can be
incorporated within an effective field theory of the large scale structure (Senatore,
2015; Lewandowski et al., 2015). Usually, simulated data is required to calibrate such
an approach (Lewandowski et al., 2015). However, a combined analysis of density
splits of the lensing and clustering power spectrum could be used to disentangle
non-linear effects in the dark matter dynamics from those baryonic effects (cf. figure
20.1).

An extended analysis based on such an improved modeling would allow for an unprece-
dented test of the non-linear dynamics of matter and especially of dark matter.



Chapter 21

Cosmology and thermodynamics of
spacetime

Early analyses of cosmological gravitational lensing such as Heymans et al. (2013); Hilde-
brandt et al. (2017); Köhlinger et al. (2017) seemed to indicate a mild tension between
the parameters of the ΛCDM model determined from the cosmic microwave background
(CMB Planck Collaboration et al., 2016) and the parameters obtained from the large scale
structure of the low-redshift universe. Especially, the amplitude of density fluctuations
found in Heymans et al. (2013); Hildebrandt et al. (2017); Köhlinger et al. (2017) was
slightly lower than expected from the CMB observations, indicating that structures pos-
sibly formed slower than predicted by the ΛCDM model. Analyses of the Dark Energy
Survey such as Abbott et al. (2016); Kacprzak et al. (2016); DES Collaboration et al. (2017)
or the density split analysis of Friedrich et al. (2018); Gruen et al. (2018) could so far not
confirm this disagreement. And studies such as Efstathiou & Lemos (2018); Sellentin et al.
(2018); Troxel et al. (2018) indicate that at least part of the initial disagreement between
high-redshift and low-redshift observations was due to systematic effects.

However, even if the ΛCDM model continues to describe cosmological observations,
this cannot not be considered a successful confirmation of cosmological theory because the
three major ingredients of this model are as of yet not understood. It is still unclear, what
mechanism has driven the epoch of cosmic inflation (though there is increasing evidence
for a purely slow roll, single field scenario, cf. Planck Collaboration et al., 2018). The
nature of dark matter - i.e. of the CDM component - is not yet understood (Plehn, 2017).
And finally, the origin of dark energy - i.e. of the Λ component - is still unknown (Frieman
et al., 2008).

If the ΛCDM model persists, then it will be a major task for physicists to explain these
phenomenological model ingredients. I think that recent theoretical ideas about emergent
gravity (EG) could provide such explanations. Therefore I want to conclude this work with
a brief review of these ideas.

Proposals of EG try to describe gravity as an emergent phenomenon that arises from the
thermodynamic behavior of microscopic degrees of freedom of spacetime (Padmanabhan,
2010b; Verlinde, 2011, 2016). In the following I give a (necessarily incomplete) list of
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theoretical developments that led to these proposals.

• Black holes and thermodynamics:

Observing similarities between black hole physics and thermodynamic laws, Beken-
stein (1973) argued that an entropy could be assigned to the black hole event horizon.
Hawking (1974) showed that black holes radiate with the spectrum of thermodynamic
black bodies and Hawking (1975) showed that these radiating black holes fulfill a re-
lation reminiscent of the second law of thermodynamics if one assigns an entropy
to the black hole horizon that is of the same order of magnitude as the expression
proposed before by Bekenstein (1973). Hayward (1998) derived a unified version of
black hole and ordinary thermodynamics.

• Horizons and thermodynamics:

It was found that horizons other than black hole event horizons - such as the Unruh
horizon of an accelerated observer, the horizon of de Sitter space or the apparent
horizon in general Friedmann universes - also radiate with black body spectra and
that entropy (per unit area) can be assigned to these horizons as well (Unruh, 1976;
Gibbons & Hawking, 1977; Padmanabhan, 2002; Cai et al., 2009, see Hayward 1998
for the definition of an apparent horizon).

• General relativity as a thermodynamic equation:

Cai & Kim (2005) have shown that the Friedmann equations can be put into the
form

−dE

dt
= T

dS

dt
, (21.1)

where T and S are the temperature and entropy of the apparent Horizon (which in a
flat universe is the Hubble horizon) and dE/dt is the energy that crosses this horizon
per unit time. In the form 21.1 the Friedmann equations then appear as the first law
of thermodynamics. Requiring a similar equation to hold for the apparent horizons
of all accelerated observers (i.e. for their local Unruh horizon) the complete Einstein
equations themselves can be formulated as a first law of thermodynamics (Jacobson,
1995). This caused Padmanabhan (2010b) to speculate that the theory of general
relativity describes a Thermodynamic equilibrium between the degrees of freedom of
ordinary matter and microscopic degrees of freedom of spacetime.

As proposed by Verlinde (2016); Padmanabhan & Padmanabhan (2017); Capozziello &
Luongo (2018), a thermodynamic origin of gravity could also have implications for the
dark matter and dark energy components of the universe. They point out that in a dark
energy dominated universe the Hubble horizon approaches a constant maximal size. Since
the horizon entropy is proportional to the horizon area (Bekenstein, 1973; Gibbons &
Hawking, 1977), this can be interpreted as a complete thermalization of the horizon degrees
of freedom in the near future. From this point of view, the accelerated expansion of the
universe just signifies that the horizon approaches its maximum entropy bound. Verlinde
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(2016) even argues, that dark matter is only an apparent phenomenon associated with this
thermalization process (see also Cai et al., 2017, for similar arguments).

Different proposals of EG can be divided into roughly two points of view:

• Verlinde EG:

The version of EG proposed by Verlinde (2011, 2016) considers gravity as an entropic
force, i.e. as an apparent force that originates from the 2nd law of spacetime thermo-
dynamics. This approach has been criticized by Dai & Stojkovic (2017), who noted
that this might contradict the fact that in the Newtonian limit gravity is infact a
conservative force.

• Padmanabhan EG:

The version of EG that is, e.g. , promoted in Padmanabhan (2010b); Padmanabhan
& Padmanabhan (2017) states that the curvature of spacetime results from the 1st
law of a combined thermodynamics of spacetime and ordinary degrees of freedom.
The motion of particles in such a curved spacetime is then still governed by the
usual geodesic equations, which means that this version of EG is not affected by the
criticism of Dai & Stojkovic (2017).

I find the EG proposal intriguing since it promises a physical explanation of the acceler-
ated expansion of the universe (and possibly of dark matter). Furthermore, it may allow
to interpret different gravity theories in terms of different equations of state of the space-
time degrees of freedom (Eling et al., 2006; Akbar & Cai, 2006; Padmanabhan, 2010b).
Steps that could be pursued to confront these ideas with cosmological observations are the
following:

1. One should construct a concrete model for the spacetime degrees of freedom - see, e.g.
, Cao et al. (2017) for an attempt based on quantum tensor networks or Padmanabhan
(2010b) for an attempt based on a light-like vector field.

2. From these models one should derive predictions for the expansion history of the
universe and for the evolution of density perturbations. For the latter, even linear
perturbation theory might be sufficient to test the EG proposal on large cosmological
scales.

Brouwer et al. (2017) have already presented a pioneering attempt to test the proposal of
Verlinde (2016) with the help of galaxy-galaxy lensing in the KiDS and GAMMA surveys.
As explained by Brouwer et al. themselves, their analysis has a number of shortcomings.
Most notably, they applied formulae from Verlinde (2016) that are only valid in an ex-
act de Sitter space. I want to contribute to these efforts in the future by working out
the expansion history and gravitational dynamics of concrete EG models and confronting
those predictions with observations of the (dark) matter density field such as density split
statistics.
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Appendix A

The Einstein tensor in conformal
Newtonian gauge

A.1 Without Perturbations

In a flat universe the line element is

ds2 = a(η)2
{
dη2 − d~x2

}
. (A.1)

First lets compute the Christoffel symbols:

Γ0
00 =

g00

2
∂0g00

=
1

2a2
· 2aa′

= H
Γ0

0i =
1

2a2
(∂0g0i + ∂ig00 − ∂0g0i)

= 0

Γ0
ij =

1

2a2
(∂jg0i + ∂igj0 − ∂0gji)

=
−δij
2a2

∂0gii

= δijH

Γi00 =
−1

2a2
(2∂0g0i − ∂ig00)

= 0

Γi0j =
−1

2a2
(∂0gji + ∂jg0i − ∂ig0j)

= δijH
Γkij =

−1

2a2
(∂igjk + ∂jgki − ∂kgij)

= 0. (A.2)
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The Ricci tensor then is

R00 = ∂αΓα00 − ∂0Γα0α + ΓαακΓ
κ
00 − Γα0κΓ

κ
α0

= −3∂0H + Γαα0Γ0
00 − Γα0κΓ

κ
α0

= −3∂0H
R0j = ∂αΓα0j − ∂jΓα0α + ΓαακΓ

κ
0j − ΓαjκΓ

κ
α0

= ΓααkΓ
k
0j − Γ0

jκΓ
κ
00 − ΓljκΓ

κ
l0

= 0

Rij = ∂αΓαij − ∂jΓαiα + ΓαακΓ
κ
ij − ΓαjκΓ

κ
αi

= δij∂0H + Γαα0Γ0
ij − ΓαjκΓ

κ
αi

= δij∂0H + 4δijH2 − Γlj0Γ0
li − Γ0

jkΓ
k
0i

= δij∂0H + 4δijH2 − Γlj0Γ0
li − Γ0

jkΓ
k
0i

= δij∂0H + 2δijH2. (A.3)

The Ricci scalar is

R =
−2

a2

(
3∂0H + 3H2

)
. (A.4)

This can also be expressed interms of t and H as

R = −6

(
∂H

∂t
+ 2H2

)
. (A.5)

For the Einstein tensor Gαβ = Rαβ − gαβ
2
R we get

G00 = −3∂0H + 3∂0H + 3H2

= 3H2

G0i = 0

Gij = δij ·
(
∂0H + 2H2 − 3∂0H− 3H2

)
= −δij ·

(
2H′ +H2

)
. (A.6)

A.2 With scalar Perturbations

With scalar perturbations the line element is

ds2 = a(η)2
{
e2φdη2 − e−2ψd~x2

}
. (A.7)

Note that we slightly deviate here from the notation of equation 5.35 since this makes the
following calculations simpler. But the two notations are identical at linear order in the
perturbations ψ and φ.
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The Christoffel symbols are:

Γ0
00 =

g00

2
∂0g00 =

e−2φ

2a2
·
(
2aa′ + 2a2φ′

)
e2φ

= H + φ′

Γ0
0i =

e−2φ

2a2
(∂0g0i + ∂ig00 − ∂0g0i) =

e−2φ

2a2
· 2a2∂iφe

2φ

= ∂iφ

Γ0
ij =

e−2φ

2a2
(∂jg0i + ∂igj0 − ∂0gji) = −δij

e−2φ

2a2

(
−2aa′ + 2a2ψ′

)
e−2ψ

= δij (H− ψ′) e−2(φ+ψ)

Γi00 =
−e2ψ

2a2
(2∂0g0i − ∂ig00)

= e2(φ+ψ)∂iφ

Γi0j =
−e2ψ

2a2
(∂0gji + ∂jg0i − ∂ig0j) = δij

−e2ψ

2a2

(
−2aa′ + 2a2ψ′

)
e−2ψ

= δij (H− ψ′)

Γkij =
−e2ψ

2a2
(∂igjk + ∂jgki − ∂kgij)

= δij∂kψ − δki∂jψ − δjk∂iψ . (A.8)

Note especially the following equalities:

Γα0α = 4H + φ′ − 3ψ′

Γkki = δik∂kψ − δki∂kψ − δkk∂iψ
= −3∂iψ

Γααi = ∂iφ+ Γkki
= ∂iφ− 3∂iψ

∂kΓ
k
ij = ∂k (δij∂kφ− δki∂jφ− δjk∂iφ)

= δij∆ψ − 2∂i∂jψ

∂kψΓkij = ∂kψ (δij∂kψ − δki∂jψ − δjk∂iψ)

= δij

(
~∇ψ
)2

− 2∂iψ∂jψ

∂kφΓkij = ∂kφ (δij∂kψ − δki∂jψ − δjk∂iψ)

= δij

(
~∇φ~∇ψ

)
− 2∂iφ∂jψ . (A.9)
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The Ricci tensor then is

R00 = ∂αΓα00 − ∂0Γα0α + ΓαακΓ
κ
00 − Γα0κΓ

κ
α0

=
1

2

[
e2ψ∆e2φ +

(∇e2ψ
)
·
(∇e2φ

)]
− 3 (H′ − ψ′′) + Γαα0Γ0

00 + ΓααkΓ
k
00 − Γα0κΓ

κ
α0

=
1

2

[
e2ψ∆e2φ +

(∇e2ψ
)
·
(∇e2φ

)]
− 3 (H′ − ψ′′) + (4H + φ′ − 3ψ′) (H + φ′)

+e2(φ+ψ)(∂kφ− 3∂kψ)∂kφ− Γα0κΓ
κ
α0

=
1

2

[
e2ψ∆e2φ +

(∇e2ψ
)
·
(∇e2φ

)]
− 3 (H′ − ψ′′) + (4H + φ′ − 3ψ′) (H + φ′)

+e2(φ+ψ) (∇φ− 3∇ψ) ·∇φ− Γ0
00Γ0

00 − 2Γ0
0kΓ

k
00 − Γl0kΓ

k
l0

=
1

2

[
e2ψ∆e2φ +

(∇e2ψ
)
·
(∇e2φ

)]
− 3 (H′ − ψ′′) + (4H + φ′ − 3ψ′) (H + φ′)

−3

4

(∇e2ψ
)
·
(∇e2φ

)
+
e2(ψ−φ)

4

(∇e2φ
)2

−Γ0
00Γ0

00 − 2Γ0
0kΓ

k
00 − Γl0kΓ

k
l0

=
1

2

[
e2ψ∆e2φ +

(∇e2ψ
)
·
(∇e2φ

)]
− 3 (H′ − ψ′′) + (4H + φ′ − 3ψ′) (H + φ′)

−3

4

(∇e2ψ
)
·
(∇e2φ

)
+
e2(ψ−φ)

4

(∇e2φ
)2

− (H + φ′)
2 − e2(ψ−φ)

2

(∇e2φ
)2 − 3 (H− ψ′)2

=
1

2

[
e2ψ∆e2φ +

(∇e2ψ
)
·
(∇e2φ

)]
− 3 (H′ − ψ′′) + (4H + φ′ − 3ψ′) (H + φ′)

−3

4

(∇e2ψ
)
·
(∇e2φ

)
− e2(ψ−φ)

4

(∇e2φ
)2 − (H + φ′)

2 − 3 (H− ψ′)2

=
1

2

[
e2ψ∆e2φ +

(∇e2ψ
)
·
(∇e2φ

)]
− 3 (H′ − ψ′′) + 3 (H(φ′ + ψ′)− ψ′(φ′ + ψ′))

−3

4

(∇e2ψ
)
·
(∇e2φ

)
− e2(ψ−φ)

4

(∇e2φ
)2

=
e2ψ

2
∆e2φ − 3 (H′ − ψ′′) + 3 (H(φ′ + ψ′)− ψ′(φ′ + ψ′))

−1

4

(∇e2ψ
)
·
(∇e2φ

)
− e2(ψ−φ)

4

(∇e2φ
)2

= ∆φ− 3 (H′ − ψ′′) + 3H(φ′ + ψ′) +O(φ2, ψ2, φψ) . (A.10)



A.2 With scalar Perturbations 273

R0j = ∂αΓα0j − ∂jΓα0α + ΓαακΓ
κ
0j − ΓαjκΓ

κ
α0

= ∂jφ
′ + ∂j (H− ψ′)− ∂j (4H + φ′ − 3ψ′) + ΓαακΓ

κ
0j − ΓαjκΓ

κ
α0

= 2∂jψ
′ + (4H + φ′ − 3ψ′) ∂jφ+ ΓααkΓ

k
0j − ΓαjκΓ

κ
α0

= 2∂jψ
′ + (4H + φ′ − 3ψ′) ∂jφ+ (H− ψ′) (∂jφ− 3∂jψ)

−Γ0
j0Γ0

00 − Γlj0Γ0
l0 − Γ0

jkΓ
k
00 − ΓljkΓ

k
l0

= 2∂jψ
′ + (4H + φ′ − 3ψ′) ∂jφ+ (H− ψ′) (∂jφ− 3∂jψ)

−(H + φ′)∂jφ− (H− ψ′)∂jφ− Γ0
jkΓ

k
00 − ΓljkΓ

k
l0

= 2∂jψ
′ + (3H− 3ψ′) ∂jφ− 3∂jψ (H− ψ′)

−Γ0
jkΓ

k
00 − ΓljkΓ

k
l0

= 2∂jψ
′ + 2 (H− ψ′) ∂jφ− 3∂jψ (H− ψ′)− ΓljkΓ

k
l0

= 2∂jψ
′ + (H− ψ′) (2∂jφ− 3∂jψ) + 3∂jψ(H− ψ′)

= 2∂jψ
′ + 2 (H− ψ′) ∂jφ

= 2∂jψ
′ + 2H∂jφ+O(φψ) . (A.11)
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Rij = ∂αΓαij − ∂iΓαjα + ΓαακΓ
κ
ij − ΓαiκΓ

κ
αj

= ∂0Γ0
ij + δij∆ψ − 2∂i∂jψ − ∂i∂j(φ− 3ψ) + ΓαακΓ

κ
ij − ΓαiκΓ

κ
αj

= δij [H′ − ψ′′ − 2(φ′ + ψ′)(H− ψ′)] e−2(φ+ψ) + δij∆ψ − ∂i∂j(φ− ψ) + ΓαακΓ
κ
ij − ΓαiκΓ

κ
αj

= δij [H′ − ψ′′ − 2(φ′ + ψ′)(H− ψ′)] e−2(φ+ψ) + δij∆ψ − ∂i∂j(φ− ψ)

+Γαα0Γ0
ij + ΓααkΓ

k
ij − ΓαiκΓ

κ
αj

= δij [H′ − ψ′′ − 2(φ′ + ψ′)(H− ψ′)] e−2(φ+ψ) + δij∆ψ − ∂i∂j(φ− ψ)

+δij(4H + φ′ − 3ψ′)(H− ψ′)e−2(φ+ψ) + ΓααkΓ
k
ij − ΓαiκΓ

κ
αj

= δij [H′ − ψ′′ + (4H− φ′ − 5ψ′)(H− ψ′)] e−2(φ+ψ) + δij∆ψ − ∂i∂j(φ− ψ)

+δij
[
(∇φ∇ψ)− 3 (∇ψ)2]+ 6∂iψ∂jψ − ∂iφ∂jψ − ∂iψ∂jφ

−Γ0
i0Γ0

0j − Γki0Γ0
kj − Γ0

ikΓ
k
0j − ΓlikΓ

k
lj

= δij [H′ − ψ′′ + (4H− φ′ − 5ψ′)(H− ψ′)] e−2(φ+ψ) + δij∆ψ − ∂i∂j(φ− ψ)

+δij
[
(∇φ∇ψ)− 3 (∇ψ)2]+ 6∂iψ∂jψ − ∂iφ∂jψ − ∂iψ∂jφ

−∂iφ∂jφ− 2δij(H− ψ′)2e−2(φ+ψ) − ΓlikΓ
k
lj

= δij [H′ − ψ′′ + (2H− φ′ − 3ψ′)(H− ψ′)] e−2(φ+ψ) + δij∆ψ − ∂i∂j(φ− ψ)

+δij
[
(∇φ∇ψ)− 3 (∇ψ)2]+ 6∂iψ∂jψ − ∂iφ∂jψ − ∂iψ∂jφ− ∂iφ∂jφ

− (δik∂lψ − δli∂kψ − δkl∂iψ) (δjl∂kψ − δkj∂lψ − δlk∂jψ)

= δij [H′ − ψ′′ + (2H− φ′ − 3ψ′)(H− ψ′)] e−2(φ+ψ) + δij∆ψ − ∂i∂j(φ− ψ)

+δij
[
(∇φ∇ψ)− 3 (∇ψ)2]+ 6∂iψ∂jψ − ∂iφ∂jψ − ∂iψ∂jφ− ∂iφ∂jφ

−∂lψ (δjl∂iψ − δij∂lψ − δli∂jψ)

+∂kψ (δji∂kψ − δkj∂iψ − δik∂jψ)

+∂iψ (δjl∂lψ − δlj∂lψ − δll∂jψ)

= δij [H′ − ψ′′ + (2H− φ′ − 3ψ′)(H− ψ′)] e−2(φ+ψ)

+δij
[
∆ψ − (∇ψ)2 + (∇φ∇ψ)

]
+∂iψ∂jψ − ∂iφ∂jψ − ∂iψ∂jφ− ∂iφ∂jφ− ∂i∂j(φ− ψ)

= δij
[
2H2 +H′ − ψ′′ + ∆ψ −H(φ′ + 5ψ′)− 2(2H2 +H′)(φ+ ψ)

]
−∂i∂j(φ− ψ) +O(φ2, ψ2, φψ) . (A.12)
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The Ricci scalar is given by

a2R = a2
(
g00R00 + gijRij

)
= e−2φ

{
e2(φ+ψ)

[
∆φ+ (∇φ)2 − (∇ψ) · (∇φ)

]
−3 (H′ − ψ′′) + 3 (H(φ′ + ψ′)− ψ′(φ′ + ψ′))}
−e2ψ

{
3e−2(φ+ψ) [H′ − ψ′′ + (2H− φ′ − 3ψ′)(H− ψ′)]

+3∆ψ − 2 (∇ψ)2 − (∇φ)2 + (∇φ∇ψ)−∆(φ− ψ)
}

= e2ψ
{

∆φ+ (∇φ)2 − (∇ψ∇φ)− 3∆ψ + 2 (∇ψ)2 + (∇φ)2 − (∇φ∇ψ) + ∆(φ− ψ)
}

−3e−2φ {H′ − ψ′′ − (H(φ′ + ψ′)− ψ′(φ′ + ψ′)) + [H′ − ψ′′ + (2H− φ′ − 3ψ′)(H− ψ′)]}
= 2e2ψ

{
∆φ− 2∆ψ + (∇φ)2 − (∇ψ∇φ) + (∇ψ)2}

−3e−2φ
{

2H2 + 2H′ − 2ψ′′ − 2H(φ′ + 3ψ′) + 2φ′ψ′ + 4ψ′2
}

= −6H2 − 6H′ + 2∆φ− 4∆ψ + 3φ′′ + 3ψ′′ + 6H(φ′ + 3ψ′) + 12(H2 +H′)φ+O(φ2, ψ2, φψ)

(A.13)

For the Einstein tensor Gαβ = Rαβ − gαβ
2
R this means

G00 = −3 (H′ − ψ′′) + 3 (H(φ′ + ψ′)− ψ′(φ′ + ψ′))

+e2(φ+ψ)
[
∆φ+ (∇φ)2 − (∇ψ∇φ)

]
−e2(φ+ψ)

[
∆φ− 2∆ψ + (∇φ)2 − (∇ψ∇φ) + (∇ψ)2]

+
3

2

(
2H2 + 2H′ − 2ψ′′ − 2H(φ′ + 3ψ′) + 2φ′ψ′ + 4ψ′2

)
= 3H2 − 6Hψ′ + 3ψ′2 + e2(φ+ψ)

[
2∆ψ − (∇ψ)2]

G0i = 2∂jψ
′ + 2 (H− ψ′) ∂jφ

Gij = δij [H′ − ψ′′ + (2H− φ′ − 3ψ′)(H− ψ′)] e−2(φ+ψ)

+δij
[
∆ψ − (∇ψ)2 + (∇φ∇ψ)

]
+∂iψ∂jψ − ∂iφ∂jψ − ∂iψ∂jφ− ∂iφ∂jφ− ∂i∂j(φ− ψ)

+δij
[
∆φ− 2∆ψ + (∇φ)2 + (∇ψ)2 − (∇ψ∇φ)

]
−3δij

[
H2 +H′ − ψ′′ −H(φ′ + 3ψ′) + φ′ψ′ + 2ψ′2

]
e−2(φ+ψ)

= δij
[
−H2 − 2H′ + 2ψ′′ + 2H(φ′ + 2ψ′)− 2φ′ψ′ − 3ψ′2

]
e−2(φ+ψ)

+δij
[
∆(φ− ψ) + (∇φ)2]

+∂iψ∂jψ − ∂iφ∂jψ − ∂iψ∂jφ− ∂iφ∂jφ− ∂i∂j(φ− ψ) . (A.14)

To first order in the perturbation this gives

G00 = 3H2 − 6Hψ′ + 2∆ψ

G0i = 2∂j(ψ
′ +Hφ)

Gij = δij
[
−H2 − 2H′ + 2(H2 + 2H′)(φ+ ψ) + 2ψ′′ + 2H(φ′ + 2ψ′) + ∆(φ− ψ)

]
+∂i∂j(ψ − φ) (A.15)
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or

a2G0
0 = 3H2 − 6Hψ′ − 6H2φ+ 2∆ψ

a2Gi
0 = −2∂j(ψ

′ +Hφ)

a2Gj
i = −δij

[
−H2 − 2H′ + 2(H2 + 2H′)φ+ 2ψ′′ + 2H(φ′ + 2ψ′) + ∆(φ− ψ)

]
−∂i∂j(ψ − φ) (A.16)

or

a4G00 = 3H2 − 6Hψ′ − 12H2φ+ 2∆ψ

a4G0i = −2∂j(ψ
′ +Hφ)

a4Gij = δij
[
−H2 − 2H′ + 2(H2 + 2H′)(φ− ψ) + 2ψ′′ + 2H(φ′ + 2ψ′) + ∆(φ− ψ)

]
+∂i∂j(ψ − φ) . (A.17)

A.3 Perturbations of Tµν

The perturbed energy momentum tensor is

T00 = (ρ0 + δρ+ p0 + δp)a2(1 + 2φ)− (1 + 2φ)a2(p0 + δp)

= (ρ0 + δρ)a2(1 + 2φ)

= 0T00 + a2(δρ+ 2φρ0)

Tii = (1− 2φ)a2(p0 + δp)

= 0Tii + a2(δp− 2φp0)

T0i = (ρ0 + δρ+ p0 + δp)a
√

1 + 2φδui

= (ρ0 + p0)aδui. (A.18)

Note that in order to have pure scalar perturbations the velocity field δui needs to be the
divergence of some scalar field.
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2-point correlation function on
curved sky

The angular clustering correlation function of galaxies w(θ) is given in terms of the galaxy
clustering power spectrum Cgg

` as

w(θ) =
∑
`

2`+ 1

4π
P` (cos θ)

(
Cgg
` +

1

n

)
, (B.1)

where n is the galaxy density per steradian. The term proportional to 1
n

is usually ommited
(cf. Ross et al. 2011) since it sums up to1

1

2πn

∑
`

2`+ 1

2
P` (cos θ) =

1

2πn
δD(cos θ − 1)

=
δD(θ)

2πn sin θ
, (B.2)

which has to be interpreted as a 2-dimensional Dirac delta function on the sphere.
According to de Putter & Takada (2010) (see also Stebbins (1996)) the galaxy-galaxy

lensing correlation function γt(θ) is given in terms of the galaxy-convergence cross-power
spectrum Cgκ

` as

γt(θ) =
∑
`

2`+ 1

4π`(`+ 1)
P 2
` (cos θ)Cgκ

` , (B.3)

where Pm
` are the associated Legendre Polynomials.

Finally, the cosmic shear correlation functions ξ±(θ) are given by

ξ±(θ) =
1

2π

∑
`≥2

2`+ 1

`2(`+ 1)2
∗

∗
[
CE
`

(
G+
`,2(x)±G−`,2(x)

)
+ CB

`

(
G−`,2(x)±G+

`,2(x)
)]

,

(B.4)

1from
∑

`
2`+1
2 P`(x)P`(y) = δD(x− y) - see N. Bronstein & A. Semendjajew (1979) for this and other

properties of Legendre polynomials.
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where CE
` and CB

` are the E-mode and B-mode power spectra of shear, x = cos θ and the
functions G±`,2(x) are defined in eq. 4.182 of Stebbins (1996). Eq. B.4 can be expressed
in terms of associated Legendre polynomials by using eq. 4.19 of Stebbins (1996), which
gives

G+
`,2(x)±G−`,2(x) = P 2

` (x)

{
4− `± 2x(`− 1)

1− x2
− `(`− 1)

2

}
+P 2

`−1(x)
(`+ 2)(x∓ 2)

1− x2
. (B.5)

2Note that a factor of 1/i sin(θ) is missing in the second line of this equation.



Appendix C

Use case for combining internal
covariance estimates and PME

At first glance it seems like the 4-point function of the density field that appears in the
cosmic variance part of any 2-point function covariance is the most difficult part when mod-
elling the covariance matrix of 2-point function measurements (Schneider, 2005; Joachimi
et al., 2008; Sato et al., 2009; Hilbert et al., 2011; Eifler et al., 2014; Krause & Eifler,
2016). However, a recent study by Troxel et al. (2018) found that the covariance model
used by Hildebrandt et al. (2017); van Uitert et al. (2018) (and to a smaller degree also
the model used by DES Collaboration et al. (2017)) suffered most from inaccuracies in
how they accounted for masking effects and survey geometry in the noise parts of their
covariance (i.e. in the shape-noise and shot-noise parts).

Apart from masking and survey geometry, there are other effects that would mainly
impact the noise-terms of the covariance. There is e.g. doubt on whether the shot-noise
of galaxies is indeed Poissonian (Hamaus et al., 2010; Cacciato et al., 2012; Baldauf et al.,
2013; Dvornik et al., 2018; Friedrich et al., 2018; Gruen et al., 2018). Also, the quality of
galaxy shape measurements could be a function of the intrinsic shapes of the individual
galaxies (Miller et al., 2013; Huff & Mandelbaum, 2017; Sheldon & Huff, 2017) and it has
not been investigated yet, whether this affects the shape-noise part in the covariance matrix.
As we have shown in Friedrich et al. (2016), internal covariance estimators can in principle
give unbiased estimates of the noise parts of the covariance matrix. In combination with
the PME hybrid estimator developed in Friedrich & Eifler (2018) this could be used to
derive corrections to modelled noise terms in the covariance from the data itself.

To demonstrate the feasibility of this approach, I measured the 2-point correlation
functions ξ+(θ), ξ−(θ), γt(θ) and w(θ) in one source galaxy bin and one lens bin of the
log-normal simulations that we also used in Gruen, Friedrich et al., 2018 (cf. chapter 17).
I measured those correlation functions in Ns ≈ 880 of these simulations using angular
scales comparable to the scales used in the 2-point function analysis of DES Collaboration
et al. (2017). By construction, the shot-noise in these log-normal simulations should be
Poissonian and the intrinsic ellipticities of the source galaxies were drawn randomly (i.e.
no actual shape measurement took place). Hence, it is possible to contruct a model for
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Figure C.1: Histogram of χ2 values obtained for the residual of simulated data defined in
equation C.2 using different approximations to the precision matrix: a model covariance
that correctly describes the shape-noise and shot-noise in the simulated data (black solid
line), a model covariance that underestimates this noise by 30% (red bars) and correction
of this wrong covariance using data-internal estimates of the noise terms in the PME
technigue (blue bars). The black dashed line shows the distribution of χ2 that would be
expected it the model with the correct noise term would be the exact covariance matrix
of the simulated data (and if that data had a perfectly Gaussian distribution). However,
our model covariance is based on the Gaussian covariance model (Schneider et al., 2002;
Joachimi et al., 2008) while the simulations are based on log-normal realisations of the
density field (Hilbert et al., 2011; Xavier et al., 2016).
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the shot-noise and shape-noise components of the covariance that exactly describes the
simulations. In addition to this model I also contructed an estimate of these noise terms
from each simulation using an internal resampling technique similar to the ones described
in Friedrich et al. (2016). However, to make sure that this estmate only measures the noise
parts of the covariance, I did the resampling without any regard for the location of galaxies,
i.e. without cutting the simulations into spatial subregions. I then consider the following
situation that mimics the use case of the precision matrix expansion we introduced in
Friedrich & Eifler (2018):

• A covariance model that includes the correct noise terms acts as the (unknown) true
covariance matrix. This would be the matrix C in equation 14.7.

• A covariance model in which the noise terms are multiplied by a factor of 0.7 acts
as a (wrong) model covariance matrix. This would be the matrix M in equation
14.7, while the wrong noise part itself would correspond to the matrix Bm in that
equation.

• The internal estimate of the noise terms in the covariance then serve as a estimate
B̂ of the matrix B in equation 14.7.

Inserting the matrices M, Bm and B̂ equation 14.12 we can then correct the mistake made
by the inverse model covariance M−1.

To judge the performance of this method I want to look at a χ2-like quantity. Let xi
be the combined data vector of all measured correlation functions in simulation i. Then
we can define the sample average

x̄ =
1

Ns

∑
i

xi (C.1)

as well as the deviation vector

∆xi = xi − x̄ . (C.2)

If C is the covariance matrix of the xi and C∆ is the covariance matrix of the ∆xi the we
have (Anderson, 2003)

C∆ =
Ns − 1

Ns

C . (C.3)

The quantities

χ2
i ≡

Ns

Ns − 1
∆xTi C−1∆xi (C.4)

should then have a χ2-distribution where the number of degrees-of-freedom equals the
dimension of the xi (at least if the xi have a Gaussian distribution, cf. the previous section).
We can then compare the values of χ2

i obtained in each simulation with the alternative
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quantities

χ2
i,M ≡

Ns

Ns − 1
∆xTi M−1∆xi

χ2
i,PME ≡

Ns

Ns − 1
∆xTi Ψ̂2nd∆xi , (C.5)

where Ψ̂2nd is the correction of the modelled precision matrix derived with equation 14.12.
The total number of data points in each data vector xi of this experiment was 44. This
would be the expectation value of χ2 is the xi have a perfectly Gaussian distribution. Using
the 3 different precision matrices C−1, M−1 and Ψ̂2nd we get the average values

1

Ns

∑
i

χ2
i ≈ 45.1

1

Ns

∑
i

χ2
i,M ≈ 56.6

1

Ns

∑
i

χ2
i,PME ≈ 46.8 . (C.6)

This shows that the PME method significantly improves the overestimated χ2 values that
are obtained from the wrong model covariance M. This can also be seen from figure C.1
where I compare the histograms of χ2 values obtained from the 3 different methods.
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Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL),
Observatoire de Sauverny, 1290 Versoix, Switzerland

C. Chang

Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

S. Hilbert

Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679 Munich, Germany

Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching, Germany

B. Jain

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

A. Kovacs

Institut de F́ısica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology,
Campus UAB, 08193 Bellaterra (Barcelona) Spain

O. Lahav

Department of Physics & Astronomy, University College London, Gower Street, London, WC1E
6BT, UK

F. B. Abdalla

Department of Physics & Astronomy, University College London, Gower Street, London, WC1E
6BT, UK

Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South
Africa

S. Allam

Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA

J. Annis

Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA

K. Bechtol

LSST, 933 North Cherry Avenue, Tucson, AZ 85721, USA

A. Benoit-Lévy
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Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil

G. Gutierrez

Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA

K. Honscheid

Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210,
USA

Department of Physics, The Ohio State University, Columbus, OH 43210, USA

D. J. James

Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195, USA

M. Jarvis

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

K. Kuehn

Australian Astronomical Observatory, North Ryde, NSW 2113, Australia



287

N. Kuropatkin

Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA

M. Lima

Departamento de F́ısica Matemática, Instituto de F́ısica, Universidade de São Paulo, CP 66318,
São Paulo, SP, 05314-970, Brazil
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RJ - 20921-400, Brazil

M. March

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

J. L. Marshall

George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and
Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA

P. Melchior

Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544,
USA

F. Menanteau

Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801, USA

National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA

R. Miquel
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