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Zusammenfassung

Wir präsentieren eine neue Methode zur Entfernungsmessung im Universum unter Verwen-
dung der zeitverzögerten Ankunftszeiten des Lichts einer variablen Quelle, das durch eine
Galaxie im Vordergrund stark gebeugt wird. Die allgemeine Relativitätstheorie postuliert,
dass Masse die Raum-Zeit verzerrt. Somit wird die Trajektorie von Licht gebeugt wenn
es ein Objekt passiert das als Gravitationslinse agiert. Diese Verzerrung verursacht Ab-
weichungen in den Pfadlängen der Photonen, welche sich in unterschiedliche Richtungen
ausbreiten. Die Photonen wandern auf ihrem Pfad um die Gravitationslinse herum auch
durch unterschiedliche Gravitationspotentiale und erfahren eine Zeitdilatation. Dadurch
unterscheiden sich die Ankunftszeiten der Photonen beim Beobachter, auch allgemein be-
kannt als Zeitverzögerung. Die Zeitverzögerung ermöglicht somit einen Rückschluss auf
das entlang der Sichtlinie integrierte Gravitationspotential der Gravitationslinse, in der
Größenordnung von GM ln(r). Demgegenber steht die ungeordnete Bewegung der Sterne
welche der Gravitationsanziehung der (Linsen-)Galaxie entgegenwirkt und mit welcher sich
das Gravitationspotential, GM/r, der Gravitationslinse ebenfalls, durch die Messung der
stellaren Geschwindigkeitsdispersion, abschätzen lässt. Mit diesen beiden Informationen
der Gravitationslinse lässt sich die Größe r des Systems ableiten und durch den Vergleich
der physikalischen Größe r und der Winkelausdehnung θ, gemessen anhand der Abbil-
dungspositionen, die Winkelausdehnungsentfernung zur Linse ermitteln.

Die ursprüngliche Idee der Verknüpfung von Zeitverzögerungen und stellaren Geschwin-
digkeitsdispersionen zur Messung der Winkelausdehnungsentfernung wurde 2009 von Par-
aficz und Hjorth präsentiert. Nach einer Einführung in die Grundlagen des Gravitations-
linseneffekts erweitere ich ihre ursprüngliche Abschätzung, basierend auf einfachsten Lin-
senmodellen, um Massenprofile welche beliebigen Potenzgesetzen folgen können und eine
anisotrope Geschwindigkeitsstruktur besitzen. Wir bestätigen, dass die Distanzen auch
mit realistischeren Gravitationslinsensystemen abgeschätzt werden können. Eine bemer-
kenswerte neue Erkenntnis hierbei ist, dass bei der Berechnung der Winkelausdehnungs-
entfernung die Entartung der Linsenmasse, aufgrund der Existenz von Masse entlang der
Sichtlinie, sich aufhebt, welche eine der gravierendsten Einschränkungen für die Nutzung
des Gravitationslinseneffektes als kosmologische Probe darstellt. Wir wenden diese Metho-
de an zwei Linsen an und messen somit zum ersten mal ihre Winkelausdehnungsentfernung
mit einer Genauigkeit von 13-18%.

Die gemessene Winkelausdehnungsentfernung ist invers proportional zur radialen Kom-
ponente der stellaren Geschwindigkeitsdispersion, die aufgrund der Anisotropie der Ge-
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schwindigkeitsstruktur jedoch nicht direkt beobachtbar ist. Demnach spielt die Kinematik
der Linsengalaxie eine wichtige Rolle für die erfolgreichen Anwendung unserer Methode.
Wir untersuchen den Einfluss der Geschwindigkeitsanisotropie anhand zweier Modelle, ba-
sierend auf Osipkov und Merrit (1979 und 1985) und ihrer zwei-Parameter Erweiterung.
Wir wenden die sphärische Jeans Gleichung mit diesen parametrisierten Anisotropiemodel-
len an um die radiale Geschwindigkeitsdispersion zu berechnen, und projizieren sie entlang
der Sichtlinie um eine beobachtbare Dispersion zu ermitteln. Wir finden heraus, dass das
Verhältnis der Aperturgröße zum effektiven Radius der Linse die Messfehler in der vor-
hergesagten Geschwindigkeitsdispersion beeinflusst. Wir zeigen auf, dass Rap/Reff > 0.7
notwendig ist um die von der Anisotropie erzeugten Fehler geringer zu halten als die mo-
mentanen Messunsicherheiten. Vorausgesetzt dass die Geschwindigkeitsdispersion an einem
Radius gemessen werden kann an welchem der Einfluss der Anisotropie minimiert wird
(Idealpunkt), lässt sich die Unsicherheit in der Winkelausdehnungsentfernung aufgrund
der Anisotropie bis auf 12-13% verringern.

Ich zeige, dass Einschränkungen bezüglich der Kosmologie die mithilfe der Winkelaus-
dehnungsentfernung von Gravitationslinsen getroffen werden mit anderen Distanzproben
konkurrenzfähig sind. Unter Verwendung realistischer Abschätzungen für die Quell- und
Linsenverteilungen im bevorstehenden Large Synoptic Survey Teleskop (LSST) berechnen
wir die erwarteten Einschränkungen für die Kosmologie und vergleichen sie mit jenen an-
derer Proben wie z.B. Supernovae (SNe) Typ Ia, der kosmologischen Hintergrundstrahlung
(CMB) und baryonisch akustischen Oszillationen (BAO). Wir finden heraus, dass mit einer
5% (10%) Messgenauigkeit beider Linsensdistanzen, das heißt der Zeitdilatationsentfernung
und der Winkelausdehnungsentfernung je System, die momentanen BAO+CMB+SNe Vor-
hersagen bezüglich der zeitveränderlichen dunklen Energie Zustandsgleichung um einen
Faktor zwei (20%) verbessert werden. Im Vergleich zum Fall ohne Gravitationslinse las-
sen sich die Vorhersagen bezüglich der Gütezahl der dunklen Energie hierbei ebenfalls um
einen Faktor zwei (50%) verbessern. Wir zeigen, dass diese signifikante Verbesserung dem
Gravitationslinseneffekt zuzuschreiben ist, welcher die Entartung zwischen der Krümmung
und den Parametern der Zustandsgleichung aufzuheben vermag.

Zusammenfassend erläutere ich die Aussichten und Herausforderungen für die Beob-
achtung zeitverzögerter Gravitationslinsen. Untersuchungen, welche ein großes Volumen
am Himmel in der Zeitdomäne abdecken, werden in der nahen Zukunft zur Verfügung
stehen und es wird erwartet dass diese Untersuchungen die Anzahl der beobachteten zeit-
verzögerten Gravitationslinsen auf mehrere hundert anwachsen lässt. Die aufgrund star-
ker Gravitationslinsen erzeugten Bilder im beobachteten Volumen zu finden stellt jedoch
weiterhin eine große Herausforderung dar. Des Weiteren erfordert die Messung der Zeit-
verzögerung zwischen den Bildern und der Geschwindigkeitsdispersion der Gravitations-
linse eine speziell dafür vorgesehene Nachuntersuchung; hohe Kadenzüberwachung sowie
hoch aufgelöste Spektroskopie sind notwendig um Massenmodelle der Gravitationslinse er-
stellen zu können. Ich erörtere den momentanen Stand und mögliche Lösungen zu diesen
Herausforderungen.



Abstract

We present a new method to measure distances in the Universe using delays of arrival
times of lights of a variable source that is strongly lensed by a foreground galaxy. General
theory of relativity states that mass distorts space-time and thus bends the path of light
as it passes by an object which acts as a lens. This distortion creates differences between
the path lengths of photons propagating in different directions. These photons also go
through different gravitational potentials along the paths around the lens, and experience
time dilation. Thus the arrival times of the photons differ, which is called time delay. The
time delay thus gives a gravitational potential of the lens integrated along the line of sight,
giving approximately GM ln(r). On the other hand, as the random motion of individual
stars counteracts the gravitational attraction of the lens galaxy, one can estimate the
gravitational potential of the lens, GM/r, by measuring the stellar velocity dispersion.
With these two pieces of information of the lens, one can deduce the size of the system, r,
and by comparing the physical size of the lens r to the angular size θ measured from the
image positions, the angular diameter distance to the lens can be constrained.

The original idea of combining time delays and stellar velocity dispersions to measure
angular diameter distances was presented in 2009 by Paraficz and Hjorth. After introducing
the basics of gravitational lensing, in this thesis I first expand their original estimate based
on the simplest lens model, to include mass profiles with arbitrary power laws and the
velocity structure that is anisotropic. We confirm that the distances can still be estimated
from more realistic lens systems. A remarkable new finding is that in calculating the
angular diameter distance, the lens mass degeneracy due to the existence of external mass
along the line-of-sight cancels, which is one of the major limiting factors for gravitational
lenses as a cosmological probe. We apply this method to two lenses and measure their
angular diameter distances for the first time, with precision of 13-18%.

The measured angular diameter distance is inversely proportional to the radial compo-
nent of the stellar velocity dispersion, which is not observable directly due to anisotropy in
the velocity structure. Thus the kinematics of lens galaxies plays a crucial role in successful
application of our method. We investigate the impact of velocity anisotropy using two mod-
els based upon Osipkov and Merritt (1979 and 1985, respectively), and its two-parameter
extension. We use the spherical Jeans equation with these parametric anisotropy models
to calculate the radial velocity dispersion, then project it along the line-of-sight to compute
an observable dispersion. We find that the ratio of the size of the aperture to the effective
radius of the lens changes the uncertainty in the predicted velocity dispersion. We show
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that Rap/reff > 0.7 is required to keep the uncertainty caused by the anisotropy smaller
than the current measurement uncertainty. We also find that assuming that the velocity
dispersion can be measured at a radius where the impact of anisotropy is minimized (sweet
spot), the uncertainty in angular diameter distance due to anisotropy can be reduced to
12-13%.

I show that the constraints on cosmology from angular diameter distances of lenses is
competitive to other distance probes. Using realistic predictions of the source and lens
distributions expected from the upcoming Large Synoptic Survey Telescope (LSST), we
calculate the expected constraints on cosmology and compare them with those from the
other probes such as Supernovae (SNe) type Ia, Cosmic Microwave Background (CMB), and
Baryon Acoustic Oscillation (BAO). We find that with 5% (10%) precision measurement
of both lensing distances, the time-delay distance and the angular diameter distance per
system, would improve the current BAO + CMB + SNe constraints on time-varying dark
energy equation of state by a factor of two (20%), and those on the overall figure of merit
of dark energy by about a factor of two (50%) relative to the case with no lensing. We
show that this significant improvement is due to lensing’s ability to break the degeneracy
between curvature and the equation of state parameters.

To conclude, I give the future prospects and challenges in observing time-delay lenses.
Surveys covering large volumes of the sky in time domain are becoming available in the
near future, and it is expected that these surveys will increase the number of observed time-
delay lenses to hundreds. However, the problem of finding strongly lensed images in the
observed volume still remains a challenge. Also, measuring the time-delay between images
and the velocity dispersion of the lens requires dedicated follow-ups, both in monitoring
the images with high cadence and in obtaining high resolution spectroscopy to construct
the lens mass model. I discuss the current status and possible solutions to these challenges.



Chapter 1

Strong Gravitational Lensing

I start with a brief introduction to strong gravitational lensing. I begin by reviewing
the theory, then more to observable quantities, discuss model degeneracies and finally
applications to cosmology. The notation defined in this chapter will be used throughout
the paper.

1.1 Theory

The general theory of relativity predicts that the existence of mass distorts space time. A
light propagates through the curved space-time, its path appears to be bent to the observer,
which is known as gravitational lensing. In classical physics, the deflection of light path as
they pass through media with different refractive indices has been known and used for a
long time, which is where the phenomenon obtained its name “lensing”. One of the major
differences between gravitational lensing and optical lensing is that gravity is achromatic,
so there is no frequency dependence in gravitational lensing, except for specific cases where
the light propagates in a plasma [15]. The object which deflects the light is defined as a
lens, and the object which emits the light is the source (see schematic diagram in 1.1). As
the Universe is full of objects with mass, lensing is a very general phenomenon. However,
visual distortion of images is rare as the lens should have sufficiently high surface mass
density to cause strong distortion of space-time. Also, the lens and the source should be
in close proximity to each other in angular scale.

To state this quantitatively, gravitational lensing can be separated into two regimes,
weak and strong, depending on how massive the lens is - more precisely, the surface density
of the lens exceeding the critical density satisfies a sufficient condition for the system to
be in strong gravitational lensing regime. The relative position of the source and the lens
also plays a role: the source should be close enough to the lens to be strongly lensed. The
critical density, Σcr, is defined as follows:

Σcr ≡
c2Ds

4πGDdDds

, (1.1)
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Observer Lens(d)

Source(s)

Image i

Image j

~θi

~θj

~β

α̂i

α̂j

Dd Dds

Ds

bi

Figure 1.1: Configuration of a strong lens system, with definition of the variables used
throughout this thesis. All angles are measured with respect to the center of the lens
galaxy; ~θ is the angular position of the image; ~β is the angular position of the source in
the absence of the lens; ~α is the scaled deflection angle; α̂ is the deflection angle at the
lens plane; and ~b is the physical separation to the closest approach at the lens plane.

where D is the angular diameter distance and subscripts d and s stand for the deflector
and the source, respectively. When the surface density of the lens exceeds the critical
density, and when the alignment between the lens and the source is perfect, the images
will be stretched tangentially to form a ring around the lens, which is called an Einstein
ring. When the surface density of the lens is below the critical value, i.e. in weak lensing
regime, an image of a source will be distorted, resulting changes in ellipticity which cannot
easily be distinguished from its intrinsic shape. A statistical analysis based on assumptions
about the intrinsic shape of galaxies is applied to make use of weak lensing information.

In this thesis we focus on galaxy scale lensing, where both the source and the lens
are galaxies. In this case, both the source and the lens appear as extended images in the
observation, but for simplicity we consider the case of point sources in this section.

Let the angular position of the image be ~θ and that of the source be ~β, as shown in
fig. 1.1. The arrival time between photons from different images varies, which produces a
time delay. The absolute time delay per image can be written as

t(~θ, ~β) =
1

c
(1 + zL)

DdDs

Dds

φ(~θ, ~β), (1.2)

where φ is the so-called Fermat potential, which is defined as

φ(~θ, ~β) ≡ (~θ − ~β)2

2
− ψ(~θ). (1.3)
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The first and the second terms in equation (1.2) are geometrical and potential time-delay
terms, respectively. Here, ψ is the lens potential, which is calculated as

ψ(~θ) =
1

π

∫
d2θ′κ(~θ′) ln |~θ − ~θ′|, (1.4)

where the lensing convergence field, κ, is defined by

κ(~θ) ≡ Σ(~θ)

Σcr

. (1.5)

The projected surface mass density, Σ, is

Σ(~θ) =

∫ ∞
−∞

ρ[Dd
~θ, `] d`, (1.6)

where ` denotes the line-of-sight coordinate, and the critical surface mass density is defined
in 1.1. Physically, when κ > 1, the system satisfies the sufficiency condition to form
multiple images.

The absolute time delay, t, is not an observable as we cannot directly observe the source
without the lens, or the time difference between lensed and un-lensed images. However,
if we have multiple images, we can compare the relative time delay between image pairs
to calculate the time delay between two (or more) lensed images. Also, φ can be modeled
to satisfy observational constraints such as image positions, flux ratios and time-delay
differences between multiple pairs of images; thus, we can obtain the so-called time-delay
distance, which I will introduce in section 1.2.1.

In a differential form, the lens potential is related to the convergence field via

κ(~θ) =
1

2
∇2ψ(~θ), (1.7)

where ∇ is a derivative in ~θ coordinates. Now we can write the lens equation which relates
the observed image position to the source position in terms of the lens potential,

~θ − ~β = ∇ψ(~θ) = ~α, (1.8)

where ~α is the scaled deflection angle.
The magnification µ is defined in terms of the image, ~θ, and the source, ~β, in the

following way:

µ =
1

det (∂
~β

∂~θ
)
≡ 1

det A
, (1.9)

and describes the ratio of area between the image and the source. Here, A is the Jacobi
matrix that governs the mapping between the image plane and the source plane, or the
Hessian matrix of the projected potential ψ, which can be written as

A =

(
1− ψ,11 −ψ,12

−ψ,21 1− ψ,22

)
, (1.10)
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where x,i ≡ ∂x
∂θi

and thus ψ,12 = ψ,21. By separating the isotropic and anisotropic compo-
nents, A can be rewritten as

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
(1.11)

where κ ≡ ψ,11+ψ,22

2
(consistent with equation 1.7), γ1 ≡ ψ,11−ψ,22

2
and γ2 ≡ ψ,12. By

construction, the convergence κ only changes the size of images isotropically, while the
shear components γ1 and γ2 distort the shape of images. The eigenvalues of A are

λ± = 1− κ±
√
γ2

1 + γ2
2 , (1.12)

thus when λ± = 0, the magnification µ becomes infinity. The curve where the magnification
becomes infinite is the critical curve on the image plane, and the critical curve mapped
onto the source plane is called the caustic. Depending on λ, the line that corresponds to
λ+ is called the radial critical line and λ− is the tangential critical line. Near the radial
critical line the images are distorted perpendicular to the curve, while near the tangential
critical line the images are stretched tangentially along the curve. The number of images
changes depending on whether the source is located inside (quadruple) or outside (double)
the inner caustic, and the image configuration changes depending on where the source is
located with respect to the caustic (see Figure 1.2). In galaxy-galaxy strong lens systems,
the image configurations are either double (∼75%) or quadruple (∼ 25%) in most cases.

1.1.1 Observables

Strong lensing provides observables which can be used to estimate the mass distribution of
the deflector, including its substructures. Most of the observables are based on images: the
image positions and their fluxes are observable. Source properties such as position and flux
can be inferred, as the images are mapped back to the source plane as the deflector mass
is reconstructed, but they are usually not direct observables, as the light of the source are
all deflected and forms images instead of reaching the observer unlensed. This adds one
degree of freedom, the source position, to the lens mass modeling and causes degeneracies
in the model, which will be discussed in section 1.1.2.

When the source is variable, time-delay ∆t between images can be measured. Common
examples of variable sources are quasars and supernovae. However, the first detection
of a lensed supernova was not made until 2014 [85], due to the rarity of these events
[72, 78]. There are a handful of lensed quasars which are thoroughly studied, including
monitoring over extended periods to measure the time delay between images. One of the
major uncertainties in measuring time delay is micro-lensing by individual stars in the lens
galaxy. Having very high surface mass density, stars distort critical lines effectively, and as
a result the magnification of individual images varies stochastically as they pass through
the critical lines. The timescale of this variability is on the order of weeks. Quasars have
light curves which are also intrinsically stochastic, thus no light curve templates can be
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Figure 1.2: Critical curves / image positions (left of each panel) and caustic / source
positions (right of each panel) for an elliptical lens and a compact source. Two specific
configurations which form as the source reaches the caustic are shown in green: Image
configurations shown in the left panel are called folds, while the configurations on the right
are called cusps. When the source is positioned at the center of the caustic (red points),
the configuration is called cross. In each panel, each color corresponds to the images of
its source. The outer (inner) curves in the image planes are the tangential (radial) critical
lines, and the outer (inner) curves in the source plane are the radial (tangential) caustics.
Figure adopted from [76] and color coded by Massimo Meneghetti.

made. High cadence observation, with period on the order of a day, is required to effectively
measure time delay.

In most cases, the original flux of the source is not known (exceptions include type Ia
supernovae, where the absolute magnitude of the source is roughly known and can be cali-
brated from the shape of the light curve and the host galaxy properties), thus the absolute
magnification of an image with respect to the source is not known. However, as the bright-
ness of individual images is observable, the magnification ratio between images relative
to each other can be determined observationally. Assuming a smooth mass distribution,
the magnification ratio is well predicted by the configuration of the image positions, thus
deviations from the predicted magnification ratio indicate of anomalies, such as existence
of clumpy substructures in the halo [66, 70].

1.1.2 Degeneracies

Multiple degeneracies are present in estimating the lens mass distribution from lensing
observables. The fundamental problem arises as three-dimensional properties of the lens
are estimated from observables that are projected onto two dimensions. Also, in most
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cases the source is out-shined by the lens, so that the shape, position and brightness
of the source is not observable. The observables are thus relative properties between
images, rather than relations between the source and each image. Thus, direct mapping
from the source to the images is not possible. Instead, the multiplicity of the images is
used: by imposing a condition that each image should map back to the same source, the
validity of the lens mass model can be tested. Degeneracies preserve the image properties,
especially ones relative to each other, while modifications of the source properties, mass
model and its normalization are allowed. These degeneracies only relate to the effect
on lensing observables in global scales, and do not include local substructures that can
introduce various additional degeneracies and anomalies. Extra information, other than
lensing observables, is required to break these degeneracies.

Lensing conserves the surface brightness between the lens and the source, following
photon energy conservation. Thus, magnification is determined by the ratio between the
area of the images and that of the source, which is consistent with the definition in equation
1.9. Starting from the lens equation, [31, 39] have categorized the mass model degenera-
cies into three categories: Similarity transformation (ST), magnification transformation
(MT; later referred to as Mass-Sheet Transformation (MST)) and prismatic transforma-
tion (PT). Later, Source position transformation (SPT), which is a more general from of
lens convergence transformation that has been introduced in [92].

ST is when all the distances are scaled by the same factor, while the deflection an-
gle and the angular position of the source are not changed. Later, [89] approached these
transformations using the time-delay equation, and used a different definition of ST: the
transformation scales both geometric and potential time delays by the same factor. Ac-
cording to this definition, the previously defined ST is called distance degeneracy (DD).
Following this definition, [89] adds another transformation to ST, called angular degener-
acy (AD). The transformation scales geometric and potential time delays by a factor s,
while both image positions and the source position are scaled by

√
s. However, due to the

change in image positions, this degeneracy can be broken when the images are resolved.

MST is possible due to the unknown source properties. This transformation leaves the
observables (image positions and magnification ratios between images) unchanged, while
changes the time-delay, absolute magnification and the source position by a constant factor.
Also, while the total time delay is scaled by a constant factor, geometric and potential time
delays can be scaled by a different factor. Any family of transformations that follows

κ′(~θ) = sκ(~θ) + (1− s) (1.13)

are considered as MST, where s is an arbitrary constant. In a physical picture, the trans-
formation involves the addition of a constant convergence 1 − s, and rescales the lens
convergence by s to match the image positions. This changes the deflection angle by the
lens, and source position should be scaled by a factor of s to keep the image positions.
Because the source position is changed while image positions are invariant, magnification
is scaled by s−2. To account for the change in magnification while conserving the surface
brightness and the distances, the source luminosity should be scaled by s−2.
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Source position transformation (SPT) [92] allows the change in not only the normal-
ization of the lens mass distribution, but also the shape of the mass profile. Lensing is
sensitive to enclosed mass inside the Einstein radius, which is only sensitive to the local
mass profile at that radius. Thus when lens mass is reconstructed from lensing observables,
radii far from the Einstein radius cannot be constrained well, thus SPT is allowed. In terms
of lensing equation, SPT can be written as

~α(~θ) = ~θ − ~β → ~α′(~θ) = ~θ − ~β′(~θ − ~α), (1.14)

and any one-to-one transformation ~β → ~β′(~β) that preserves ~θi − ~α′(~θi) = ~θj − ~α′(~θj) can

be an SPT. MST is a special case of SPT, where ~β′ = s~β.
SPT covers a large range of transformation. However, not every function that satisfies
the aforementioned conditions is physically meaningful: Consider the Jacobi matrix of
transformed lens equation 1.14,

A′(~θ) =
∂~β′

∂~β

∂~β

∂~θ
≡ B(~β(~θ))A(~θ), (1.15)

where B(~β) is the Jacobi matrix of the SPT. As A′ is not guaranteed to be a symmetric
matrix, it is also not guaranteed that there exists a mass distribution κ′ which satisfies the
deflection law after the SPT (κ′,ij 6= κ′,ji). One solution for the problem is to impose an
axisymmetry of the lens to find SPTs that are exact: Furthermore, due to the uncertainties
caused by incomplete information of local components, such as non-smooth components
and inhomogeneous line-of-sight structure, various mass models that are not exactly in SPT
relations can still reproduce the same lensing observables, to an observationally acceptable
level. [104] has shown that an empirically known degeneracy between two widely used lens
mass models, a power-law and a cored power-law, can be accounted for the SPT by showing
that the differences between the lensing observables reproduced from these two models are
not significant enough to be distinguished with an angular resolution of ∼ 5 × 10−3θE.
Here, θE is the Einstein radius, and for galaxy-scale lensing, θE ∼ 1′′.
However, [114] has shown with Illustris Simulation [108] that for the massive elliptical
galaxies with velocity dispersion σ > 250 km/s, their density profile is close to a power
law on average, with 10-20 % scatter, empirically justifying the use of ”simple” lens mass
model in the strong lensing regime.

Tables 1.1 and 1.2 summarize the type of degeneracies mentioned above and the changes
in observables and models, respectively.

Other possible transformations are Prismatic transformation (also introduced in [39]),
where both the source position and the deflection angles are changed by the same constant.
Physically, it corresponds to having a very massive lens at a far distance transverse to the
main deflector, and the source position is shifted to the same amount in the opposite
direction to compensate for the change. However, this transformation is not considered as
important as the situation is not very likely in practice.
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Type of degeneracy ~θ µi/µj ∆t

ST (DD) ~θ invariant s∆t

ST (AD)
√
s~θ invariant s∆t

MT (=MST) ~θ invariant s∆t

Table 1.1: Summary of the degeneracies and their effect on observables. s is an arbitrary
constant. PT is not included as it is not considered much in practice, and SPT is not listed
as it is a family of transformations and cannot be summarized in a table.

Type of degeneracy µ D∆t κ or Σ ~β Ls

ST (DD) µ sD∆t Σ→ sΣ ~β s2Ls

ST (AD) µ D∆t Σ→ sΣ
√
s~β Ls

MT (=MST) µ/s2 D∆t (1− κ)→ s(1− κ) s~β Ls/s
2

Table 1.2: Summary of the mass model degeneracies and their effect on model quantities.
Ls is the source luminosity.

1.2 Strong Lensing in Cosmology

1.2.1 Time-delay Distance

In 1964, Refsdal first proposed that strongly lensed type Ia supernovae can be used to
determine cosmology, especially the Hubble constant, via the time-delay distance. This is
a distance-like quantity that is a combination of three distances in a lens system [86]. The
time-delay distance D∆t is defined as follows:

D∆t ≡
DdDs

Dds

. (1.16)

Using this definition, equation 1.2 can be written as

∆t =
1 + zL

c
D∆tφ(~θ, ~β). (1.17)

Thus, when ∆t and φ are constrained, the time-delay distance can also be constrained.
Each of the three distances in equation 1.16 are inversely proportional to the Hubble
constant, thus D∆t also follows the same inverse proportionality.

In calculating the time-delay distance, the main challenge is i) to model the mass

distribution of the lens, or the Fermat potential φ(~θ, ~β), from high-resolution imaging
data, and ii) to obtain the time delay ∆t from high-cadence monitoring. Having multiple
extended images from an extended source, one can reconstruct the mass by imposing
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that pixels from each image should be mapped to the source plane and reconstruct the
same source. However, as stated in section 1.1.2, the mass model of the lens has various
degeneracies, which are the main source of uncertainties in constraining cosmology using
the time-delay distance [98]. Some of the mass model degeneracies are shown to be broken
either by combining stellar kinematics data [55, 50], or by modeling the lens environment
using cosmological simulations [88, 41].

The power of the time-delay distance in cosmology comes from the fact that it contains
information at two different redshifts: the lens and the source. As it will be shown later
in this thesis, in combination with the angular diameter distance, the time-delay distance
can break the degeneracy between the dark energy equation of state and the curvature of
the universe [51, 64]. As distance depends on cosmological models, the time-delay distance
will allow us to constrain cosmological parameters, such as the Hubble constant in the
low-redshift Universe.

Independent measurements of H0 are receiving much attention of the cosmology com-
munity, as there are ongoing discussions on recently reported tensions between H0 as
measured from Planck and from local distance measurements. For example, [13] claimed
that the tension can indicate modified early-time physics, or differences between the nor-
malization of the two distance ladders anchoring the low redshift (H0) and high redshift
(sound horizon scale) Universe. Ongoing / completed analysis of five lensed quasars with
well-measured time delays and mass models has been conducted by the H0 Lenses in COS-
MOGRAIL’s Wellspring collaboration (H0LiCOW; [101]). The main goal of H0LiCOW is
to measure the Hubble constant with < 3.5% precision using strong time-delay lenses, and
to establish a baseline of strong lensing cosmography for upcoming observations that will
increase the number of time-delay lenses significantly.

1.2.2 Probing Dark Matter Substructures

As stated in section 1.1.1, the relative magnification between images is an important ob-
servable in strong lensing. The deflection angle (which determines the image position) is
the first derivative of the projected potential, while the magnification is proportional to
the derivative of the image position, which is the second derivative of the potential. Thus
magnification is more sensitive to local changes in the mass distribution than the image
positions, while image positions are mainly determined by the global distribution of the
smooth component. Anomalies in flux ratio have been used to probe clumpy and dark
substructures in lens galaxy halos [66, 70]. It is difficult to measure the flux ratio anoma-
lies of extended galaxies: thus, due to the compactness of the source, only strongly lensed
quasars have been studied as systems that exhibit flux ratio anomalies. There have been
discussions about the discrepancy between the substructure fraction from dark matter only
simulations and the observed number of systems with flux ratio anomalies. For example,
[113] have found that in comparison to what is reported in observations [25], the amount of
flux ratio anomalies is underpredicted in two high-resolution cold dark matter simulations,
Aquarius [95] and Phoenix [36]. Also, a recent work [42] has shown that some flux ratio
anomalies can be explained by adding macro structure to the lens mass model, such as an
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edge-on disk, which is motivated by deep observations using Keck-II Adaptive Optics and
the Very Large Baseline Array (VLBA). This paper has proven that the observed flux ratio
anomalies can argue for the existence of clumpy substructures only when more detailed
observations of individual systems are available to rule out the possibility of complex macro
models of the lens.

With deeper observations, fluctuations in surface brightness of the lensed images al-
low direct gravitational imaging [105, 56] that yields the mass and the position of the
substructure. In this case, as the distortion is visible, the ambiguity between the clumpy
substructure and the complex macro structure of the lens can be disentangled. For gravita-
tional imaging technique, the mass detection threshold is set by the S/N and the resolution
of the images as well as the position of the substructure with respect to the Einstein ring.
The current detection limits on the masses of substructures in main halos are between
108 and 109M� depending on the position of the substructure, based on the Wide-Field
Channel (WFC) of the Advanced Camera for Surveys (ACS) on the Hubble Space Tele-
scope (HST). With the forthcoming Very Large Baseline Interferometer (VLBI) at radio
wavelengths and the European Extremely Large Telescope (E-ELT) at optical wavelengths,
the angular resolution and hence the detection of substructures via lenses will be improved
significantly [107].

As different dark matter models predict different masses and abundances of substruc-
tures in a halo, detections and non-detections of substructures through flux ratio anoma-
lies and gravitational imaging can be used to discriminate between dark matter models
[106, 107]. The Strong lensing at High Angular Resolution Program (SHARP; [58]) has
been obtaining high resolution imaging data of known strong lenses in the optical and
near-infrared using HST and Keck adaptive optics for this purpose.



Chapter 2

Time-delay Lenses as Distance
Indicators

In this chapter I present a novel method to infer cosmological parameters by using strong
lenses as a standard ruler for measuring angular diameter distances to lenses. The idea
was first proposed in [84] with a singular isothermal sphere for the lens mass model. I show
how the method works analytically with an extended model. The contents of this chapter
are published in [50].

2.1 Model

2.1.1 The idea: a simple analysis using singular isothermal spheres

We review the basic idea with the simplest case in which the mass density profile of a lens
galaxy is given by an SIS. This case has been worked out by Paraficz and Hjorth in 2009
[84]. The density distribution of an SIS lens, ρSIS, is given by

ρSIS(r) =
σ2

2πGr2
, (2.1)

where σ2 is the three-dimensional isotropic velocity dispersion. The Einstein ring radius,
θE, is related to σ2 via

σ2 = θE
c2

4π

Ds

Dds

. (2.2)

Clearly, the relation between the two observable quantities, θE and σ, depends on the
distance ratio.

To extract the actual angular diameter distance to the lens, Dd, instead of the ratio,
we need to include the lensing time delay [86]. The presence of intervening mass between
the observer and the source, usually galaxies and/or clusters of galaxies, causes two dif-
ferent components on time delay: the geometrical time delay and the potential time delay.
Strongly lensed systems show multiple images as photons coming from the source take
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different paths: images are located at the closest approach to the lens of each path. The
geometrical part of the time delay is caused by the fact that the total path lengths differ,
while the potential part is caused by the difference in the depths of potential at each image
position of the path.

In a SIS lens, the time delay between two images can be written as

∆ti,j ≡ ti − tj =
1 + zL

2c

DdDs

Dds

(θ2
j − θ2

i ), (2.3)

where θi is the angular separation between the i-th image and the center of the lens galaxy,
and ti is the absolute time delay of the i-th image, i.e., the delay in comparison to the
case where the lens is absent [110]. The distance ratio that appears in this relation is the
time-delay distance, D∆t ≡ (1 + zL)DdDs/Dds, which depends primarily on H0 and has a
limited sensitivity to the other cosmological parameters, such as the equation of state of
dark energy.

Remarkably, when we combine the above equation with equation (2.2) and θE = (θi +
θj)/2, we obtain the angular diameter distance to the lens:

Dd(θj − θi) =
c3∆ti,j

4πσ2(1 + zL)
. (2.4)

The physical interpretation of the above analysis is as follows: the velocity dispersion
is determined by the gravitational potential of the lens, GM/r. The time delay gives
the mass of the lens system, GM , and thus dividing them gives the physical size of the
system, r. Since the angular scale of the system is directly observable via θj − θi, one
can estimate the angular diameter distance to the lens. Equation (2.4) indeed gives the
angular diameter distance as Dd ∝ ∆ti,j/[σ

2(θj − θi)]; thus, the uncertainty in Dd is given
by the quadrature sum of the uncertainties in the time delay, velocity dispersion, and image
position measurements.

As the velocity dispersion uncertainty is usually the biggest of all uncertainties, the
uncertainty in Dd is expected to be dominated by the velocity dispersion uncertainty. The
goal of this paper is to extend this analysis to more general lenses.

2.2 More realistic lenses

The analysis in section 2.1.1 assumes the simplest possible lens system: an SIS density
profile with an isotropic velocity dispersion. While the SIS profile is widely used to model
lens galaxies and is considered as a good approximation, several studies have shown that
slopes of density profiles of individual galaxies show a non-negligible scatter from the
SIS [54, 11, 12, 94]. In this section, we consider an arbitrary power-law density profile
(section 2.2.1) to show that, in such a model, we can still extract Dd from ∆ti,j, σ

2, and
image positions. We then show that the external convergence cancels out (section 2.2.2).
We note that spherical symmetry is assumed throughout the paper.
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2.2.1 Arbitrary slope of the spherical lens mass profile

Studies of early type galaxies (ETGs) as lenses have shown that the averaged total mass
density profiles can be well approximated as a power-law, and also typical ellipticity of
galaxies is fairly small [54, 11, 12, 94, 19]. Thus we allow the total mass density of a lens
to follow a general power-law with spherical symmetry:

ρ = ρ0

( r
r0

)−γ′
. (2.5)

The distribution becomes a SIS for γ′ = 2 (section 2.1.1). The lens potential also has a
power-law form, ψ(θ) ∝ θl, with l = 3 − γ′. The scaled deflection, ~α, which is given by

∇ψ = ~α, and the lens equation, ~β = ~θ − ~α, gives

ψ =
1

l
~θ · (~θ − ~β). (2.6)

Using this result in equation (1.2), we obtain the time delay between two images as

∆ti,j =
1 + zL

2c

DdDs

Dds

{
(~θi − ~β)2 − (~θj − ~β)2 − 2

l

[
~θi · (~θi − ~β)− ~θj · (~θj − ~β)

]}
. (2.7)

From the geometry of the system, the lens equation and the definition of the angular
diameter distance, the following relation between ~θ, ~β, and α̂ holds:

~θ − ~β = ~α =
Dds

Ds

α̂, (2.8)

where α̂ is the deflection angle at the lens plane. We substitute ~θ− ~β in equation (2.7) for
α̂, and write

∆ti,j = Dd
(1 + zL)

2c

[
(α̂i + α̂j) · (~θi − ~θj)−

2

l
(~θi · α̂i − ~θj · α̂j)

]
. (2.9)

The remaining task is to relate α̂ to observables. As the potential of a spherically symmetric
system only has a radial component with respect to the center, ~α, ~β and ~θ have only radial
components. Let us define α ≡ |α̂|, which is the magnitude of the deflection angle at the
lens plane. Under the power-law density profile model, α is given by

α(b) =
2GM(b)

c2b
F (γ′) ∝ b−γ

′+2, (2.10)

where b is the physical separation between the lens and the point of the closest approach
of the light ray, and

F (γ′) ≡
√
πΓ
[

1
2
(−1 + γ′)

]
Γ(γ

′

2
)

. (2.11)

The derivation of this formula is given in appendix A.
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Using the virial theorem, we obtain the radial velocity dispersion at a given radius r as

σ2
r(r) =

1

2(γ′ − 1)

GM(r)

r
∝ r−γ

′+2. (2.12)

If the velocity dispersion is isotropic, σ2
r(r) = 1

3
σ2(r), and the radial velocity dispersion is

the same as the line-of-sight velocity dispersion, which is observable. As both α and σ2
r(r)

scale with radii in the same way, we can write α(b) as

α =
4(γ′ − 1)

c2
F (γ′)σ2

r(b) =
4(γ′ − 1)

c2
F (γ′)σ2

r(r)

(
b

r

)−γ′+2

. (2.13)

We then obtain Dd from equation (2.9) with α given by equation (2.13),

Dd =
c3∆ti,j

4πσ2
r(r)(1 + zL)

(∆θ̃i,j)
−1, (2.14)

where1

(∆θ̃i,j)
−1 ≡

2π

{
2

−γ′+3

[
θj

(
θj
Θ

)−γ′+2

− θi
(
θi
Θ

)−γ′+2
]

+ (θi + θj)

[(
θi
Θ

)−γ′+2 −
(
θj
Θ

)−γ′+2
]}−1

F (γ′)(γ′ − 1)
,

(2.15)
and Θ is the angular position at which the velocity dispersion is measured, i.e., r = ΘDd.
For γ′ = 2, we obtain ∆θ̃i,j = θj − θi, and thus we can reproduce the result of the SIS
model (equation (2.4)).

Equation (2.14) still supports the basic physical picture that the ratio of ∆ti,j and σ2
r

gives some effective physical size of the lens, and dividing it by the appropriate angular
separation in the sky, ∆θ̃i,j, gives the angular diameter distance. The main difference
between the SIS and the power law density profiles is that, in the latter case, the velocity
dispersion is a function of radii. In general, image positions are different from the points
at which the velocity dispersion is measured. Thus, we need to correct for the mismatch
of the exact locations of the velocity dispersion measurement and the image positions.

This is why the
(
θ
Θ

)−γ′+2
term appears in the final expression of Dd: it scales the velocity

dispersion such that we can get the potential at the image position. This requires us to
measure (or model) the density slope, γ′, as well.

2.2.2 External convergence

In modeling realistic lens systems, one important factor to consider is the so-called “mass-
sheet transformation (MST)”. MST is a subset of the source-position transformation [92].
Degeneracy exists, such that there are many mass models of the lens galaxy that can

1We use θ̂i · θ̂j = −1 in reducing the vector dot products in equation (2.9) to the scalar products in
equation (2.15).
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simultaneously reproduce most of the lensing observables, such as image positions and
flux ratios, with different source positions [31]. This degeneracy constitutes one of the
dominant sources of uncertainty in measuring the time-delay distance [98, 97, 100, 91].
In this subsection, we show that the effect of MST cancels out, leaving no effect on the
inferred Dd.

Once we choose a model for the convergence field, κmodel(~θ), that matches the obser-

vations, we transform κmodel and ~α to obtain a new convergence field, κMST(~θ), and a new
scaled deflection, ~αMST, as

κMST(~θ) =λ+ (1− λ)κmodel(~θ), (2.16)

~αMST(~θ) =λ~θ + (1− λ)~αmodel(~θ) (2.17)

=λ~θ + ~αMST,lens(~θ), (2.18)

where λ is a constant which physically corresponds to the scaled convergence of a uniform
sheet of mass external to the lens galaxy. In equation (2.18), we decompose the trans-
formed deflection into two parts; a deflection from the lens, and that from the external
convergence. We define ~αMST,lens ≡ (1 − λ)~αmodel, whose meaning will be explained later
in this subsection. To satisfy the lens equation (1.8) while leaving the image positions
invariant, the source position must transform as

~βMST = (1− λ)~βmodel, (2.19)

which is why this transformation is a part of the family of transformation called the source-
position transformation.

Considering the following relation among κ , φ and ψ,

φ =
1

2
(~θ − ~β)2 − ψ, (2.20)

∇2ψ = 2κ, (2.21)

the transformed Fermat potential of the i-th image, φMST,i, becomes

φMST,i = (1− λ)φmodel,i −
λ(1− λ)

2
|~β|2. (2.22)

Since the source position ~β is the same for all the images, the second term in equation (2.22)
cancels out if we calculate the difference in the Fermat potential between two images i and
j. Thus, the difference, ∆φi,j, transforms as

∆φMST,i,j = (1− λ)∆φmodel,i,j. (2.23)

As the time delay is directly proportional to the Fermat potential, we find that ∆ti,j is
simply increased by a factor of 1− λ after the MST for fixed distances/cosmology.

If we assume that the physical origin of MST is an effective external convergence due to
mass structures along the line of sight, κext, we can identify λ with κext. In the following,
we apply the MST to the power-law mass model and show that the inferred Dd remains
unaffected by κext. We start first with the special case of SIS to gain intuition before
considering the general power-law profile.
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Singular isothermal sphere

Here we follow the steps from section 2.1.1, but with MST applied to it. From equation
(2.16), the transformed density profile of the lens is

ρSIS,MST = (1− κext)ρSIS,model. (2.24)

Note that the original transformation equation (2.16) is written in terms of the convergence,
κ; however, as the convergence and the density profile are proportional to each other
(equation (1.5)), we transform the density in the same way as the convergence. To satisfy
equation (2.1), the velocity dispersion must transform as

σ2
MST = (1− κext)σ

2. (2.25)

Equation (2.2) then becomes

σ2
MST = (1− κext)θE

c2

4π

Ds

Dds

. (2.26)

From equation (2.23), the time-delay equation (2.3) transforms as

∆tMST,i,j = (1− κext)
1 + zL

2c

DdDs

Dds

(θ2
j − θ2

i ), (2.27)

and by combining the above two equations, we get

∆tMST,i,j =
4π

c3
σ2

MST(1 + zL)Dd(θi − θj), (2.28)

in which κext cancels out. This equation is identical to equation (2.4), but with the trans-
formed quantities, ∆tMST,i,j and σ2

MST.
The reason is as follows. Suppose that we have a lens system which has a velocity

dispersion of σ2 and the time-delay difference of ∆t. We then try to model this system by
a lens plus an external convergence, κext. Then, the modeled σ and ∆t would be different
from the original ones by a factor of 1− κext, but the ratio of the two is invariant. As Dd

is proportional to the ratio of the two, we can measure the same Dd as before, regardless
of the existence of the external convergence.

Spherical power-law density profile

Now we study the effect of MST on the spherical power-law density profile lens galaxy
model, following section 2.2.1. Combining the time-delay transformation with equation
(2.9) yields

∆tMST,i,j =(1− κext)∆tmodel,i,j

=(1− κext)Dd
(1 + zL)

2c

×
[
(α̂model,i + α̂model,j) · (~θi − ~θj)−

2

l
(~θi · α̂model,i − ~θj · α̂model,j)

]
.

(2.29)
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Again, the density normalization of the lens galaxy, ρ0, transforms as

ρ0,MST = (1− κext)ρ0,model, (2.30)

and thus among the total deflection angle α, only a (1−κext) fraction of it is from the lens,
which is why we denoted this contribution as ~αMST,lens = (1− λ)~αmodel in equation (2.18).
Using this in equation (2.29) yields

∆tMST,i,j = Dd
(1 + zL)

2c

×
[
(α̂MST,lens,i + α̂MST,lens,j) · (~θi − ~θj)−

2

l
(~θi · α̂MST,lens,i − ~θj · α̂MST,lens,j)

]
.

(2.31)

As the measured velocity dispersion of the lens gives the estimate of the lens potential
only, the relation between the deflection angle from the lens and the velocity dispersion
does not change after the MST:

|α̂MST,lens| =
4(γ′ − 1)

c2
σ2
r(R)F (γ′)

(
b

R

)−γ′+2

. (2.32)

Thus, Dd can be calculated from the original equation (2.14) even after the MST.
This is an important finding. In the previous studies of the time-delay distance to

measure the Hubble constant, κext was the main obstacle in measuring H0 precisely [98].
On the other hand, we have shown that Dd measured from strong lensing, which combines
the time-delay, the image position, and the velocity dispersion data, does not suffer from
the effect of κext.

2.3 Error formula and implications for B1608+686

and RXJ1131−1231

2.3.1 Aperture-averaged line of sight velocity dispersion

We do not measure the radial component of the velocity dispersion, σ2
r(r). Rather, we

measure the luminosity-weighted line-of-sight velocity dispersion, σ2
p(R). We relate them

using the following equation:

σ2
p(R) ≡ Ip(R)σ2

s(R) = 2

∫ ∞
R

(
1− βani

R2

r2

)ρ∗(r)σ2
r(r)rdr√

r2 −R2
. (2.33)

Here, r denotes the three-dimensional radius, while R denotes the projected radius. We
shall use these two different radii notations for the rest of the paper. βani is the effect of
the velocity dispersion anisotropy, which will be studied in detail in section 2.4. In this
section, we set βani = 0. The other functions are: Ip(R) is the projected stellar distribution
function, σs(R) is the projected velocity dispersion and σr(r) is given by equation (2.12).
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For a stellar density profile, ρ∗, we consider two profiles that are known to describe well
the stellar light distributions of galaxies: the Hernquist profile and the Jaffe profile. These
two different profiles would also allow us to assess the effect of luminosity weighting on
σ2

p(R).
A generalized form of the stellar density distribution, which satisfies ρ∗ ∝ r−4 as r →∞,

can be expressed as

ρ∗ =
(3− γs)I0

4π

a

rγs(r + a)4−γs
, (2.34)

where 0 ≤ γs < 3, following [26]. The Hernquist profile corresponds to γs = 1 [40]:

ρ∗(r) =
I0a

2πr(r + a)3
, (2.35)

where I0 is a normalization and a is a scale radius determined by a = (21/(3−γs) − 1)r1/2

following [26], where r1/2 is the half-mass radius. Due to the projection effect, the two-
dimensional half-light radius Reff is related to the three-dimensional half-mass radius r1/2

as r1/2 = 1.33Reff for the Hernquist profile, thus the scale radius a = 0.551Reff . The
projected Hernquist distribution is known to provide a good fit for the stellar distribution
of elliptical galaxies that follow the de Vaucouleurs law,

Ip(R) =
I0

2πa2(1− s2)2
[(2 + s2)X(s)− 3], (2.36)

where s ≡ R/a is a scaled projected radius, and X(s) is defined as

X(s) ≡


1√

1− s2
sech−1 s for 0 ≤ s ≤ 1

1√
s2 − 1

sec−1 s for 1 ≤ s <∞
. (2.37)

We then examine the case where the stellar density profile has a steeper slope at the center,
by using the Jaffe model [49], which has γs = 2. We do not consider models with 2 < γs < 3
as they fail to represent the basic physical properties of a galaxy, e.g. diverging potential
/ velocity dispersion at the center. In the Jaffe model, the stellar density profile becomes

ρ∗ =
1

4π

a

r2(r + a)2
, (2.38)

and the projected surface brightness distribution, Ip(R), becomes

Ip(R) =
I0

4a2s
− I0

2πa2

1

s2 − 1

[
(s2 − 2)X(s) + 1

]
, (2.39)

where for the Jaffe profile r1/2 = 1.31Reff and a = 1.31Reff .
We note that both the Hernquist and Jaffe profiles for the stars are not single power-

laws, and neither are dark matter distributions such as the Navarro, Frenk and White
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profile [77]. Stars and dark matter have different radial distributions in galaxies with the
stars typically dominating over dark matter at the central parts and vice versa at outer
parts. The contributions of stars and dark matter are often comparable around the effective
radius. Despite the different radial distributions of stellar and dark matter, the total density
profile of stars and dark matter is remarkably well described by a power-law within a few
effective radius, as previous lensing and/or dynamical studies have shown (e.g.,[54, 12,
100, 19]). Therefore, our use of the Hernquist/Jaffe profiles for the luminosity weighting
to scale the velocity dispersion measured near the effective radius to the image positions
is consistent with the use of a power-law for the total density profile. For a total density
profile that is nearly isothermal, there is an inconsistency in the slope between the total
density profile and the Hernquist profile at the center (r . 0.1). However, the contribution
of the enclosed mass from this central region to the total enclosed mass within either
the Einstein radius or effective radius (approximately where we have lensing/dynamical
measurements) is insignificant. Thus, the central slope inconsistency between the stellar
and the total density has negligible impact on our lensing and dynamical analysis.

Ideally, we wish to measure the line-of-sight velocity dispersion profile as a function
of projected radii. In practice, however, most of the observations do not allow us to
spatially resolve the galaxy; rather they allow us to measure the luminosity-weighted,
aperture-averaged velocity dispersion inside an aperture of a fixed size [18]. We calculate
the luminosity-weighted aperture-averaged projected velocity dispersion, 〈σ2

p〉ap, as follows:

〈σ2
p〉ap ≡

∫
ap
Ipσ

2
sR dR dθ∫

ap
IpR dR dθ

. (2.40)

2.3.2 Analytic formula

In this section, we relate the statistical uncertainty in Dd to those of the observables, i.e.,
∆t, σ2

p, and γ′. (The effect of an anisotropic velocity dispersion will be discussed in detail
in section 2.4.) Assuming that these observables are independently measured, we write the
total uncertainty in Dd, hereafter SDd

, as

SDd
=

√(
∂Dd

∂∆ti,j

)2

S2
∆t +

(
∂Dd

∂σ2
p

)2

S2
σ2
p

+

(
∂Dd

∂γ′

)2

S2
γ′

=Dd

√(
1

∆ti,j

)2

S2
∆t +

(
1

σ2
p

)2

S2
σ2
p

+
1

D2
d

(
∂Dd

∂γ′

)2

S2
γ′ ,

(2.41)

where Sx is the measurement uncertainty in the variable x. Since image positions, θi,j, are
precisely measured, we do not include their uncertainties in this formula. In the following
sections 2.3.3 and 2.3.4, we shall apply this formula to two lens systems, B1608+656 and
RXJ1131−1231, respectively.
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Figure 2.1: Image of B1608+656, adopted from figure 1 of [98].

2.3.3 B1608+656

Figure 2.1 shows the image configuration of B1608+656 [99]. The information on image
configuration is important as our formula applies only to a circularly symmetric case. Thus,
the only image pairs we can use in this paper are the ones that are on the opposite sides
of the lens center. More thorough analysis using all the data will be presented elsewhere
(Suyu et al., in preparation). The data of B1608+656 are mostly from [98], but the image
positions are calculated from the data given in [55], the time delays are from [32], and the
redshifts are from refs. [33, 74]. For this system, the origin of the coordinates is set at the
image A. The data are summarized as :

zL =0.6304

zs =1.394

~θA =(0.0′′, 0.0′′)

~θB =(−0.7380′′,−1.9612′′)

~θC =(−0.7446′′,−0.4537′′)

~θD =(1.1284′′,−1.2565′′)

Reff =0.58′′

γ′ =2.08± 0.03

〈σ2
p〉1/2ap =260± 15 km/s

∆tAB =31.5+2.0
−1.0 days

∆tCB =36.0+1.5
−1.5 days

∆tDB =77.0+2.0
−1.0 days

∆tCD =∆tCB −∆tDB = −41.0+2.5
−1.8 days.

(2.42)
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Figure 2.2: Image of RXJ1131−1231, adopted from figure 1 of [97].

We use the CD pair. Also, as we write Dd in terms of σr(r) (e.g. 2.14), we normalize the
radial velocity dispersion profile, σr(r), using 〈σ2

p(R)〉ap given by the observation and using
equations (2.33) and (2.40). With these values, we find Dd = 1485.7 Mpc. For comparison,
Dd from the best-fit WMAP 7-year parameters is Dd = 1423.3 Mpc. We now use equation
(2.41) to compute SDd

:

SDd
= Dd

√
3.72× 10−3 + 1.33× 10−2 + 2.36× 10−3, (2.43)

where from the first term, each number indicates the fractional uncertainty in Dd con-
tributed by the time-delay measurement ∆ti,j, the line-of-sight velocity dispersion mea-
surement σ2

p, and the density profile index γ′. (Note that Sσ2
p
/σ2

p = 2Sσp/σp.) With this
value, the total uncertainty, including all the terms in equation (2.43), is SDd

= 0.14Dd,
i.e., 14% uncertainty. The dominant contribution comes from the uncertainty in σp, which
gives SDd

= 0.12Dd.

2.3.4 RXJ1131−1231

In this section we repeat the same analysis as above, but with another well-studied strong
lensing time-delay system, RXJ1131−1231, using data from refs. [102, 93] for the time
delays and the redshifts, respectively, and from [97] for the other quantities. The data for
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this system are

zL =0.295

zs =0.658

~θG =(4.411′′, 4.011′′)

~θA =(2.383′′, 3.412′′)

~θD =(5.494′′, 4.288′′)

Reff =1.85′′

γ′ =1.95+0.05
−0.04

〈σ2
p〉1/2ap =323± 20 km/s

∆tAB =0.7± 1.4 days

∆tDB =91.4± 1.5 days

∆tAD =∆tAB −∆tDB = −90.7± 2.1 days.

(2.44)

We use the AD pair. Using these values, we find Dd = 813.33 Mpc, and Dd from the
best-fit WMAP 7-year parameters is Dd = 876.5 Mpc. The total uncertainty in Dd is

SDd
= Dd

√
5.36× 10−4 + 1.53× 10−2 + 1.46× 10−3 = 0.13Dd. (2.45)

The velocity dispersion alone gives SDd
= 0.12Dd.

Therefore, we expect the existing data on these systems to yield Dd with 13 − 14%
precision per object, assuming the isotropic velocity dispersion. In the next section, we
shall study the effect of the largest source of systematic uncertainty in our method: an
anisotropic velocity dispersion, and how to reduce its effect in the estimation of Dd.

2.4 Anisotropic velocity dispersion

The anisotropic stellar motion changes the relation between the potential and the observed
line-of-sight velocity dispersion. As our method crucially relies upon knowing the potential
depth, we must take into account the anisotropic velocity dispersion of stars. We do this
by following [98], which uses spherical Jeans modeling to relate the observed line-of-sight
velocity dispersion to the mass distribution. We then study the effect of anisotropy on
the aperture-averaged value of the velocity dispersion (section 2.4.1) as well as on the
velocity dispersion measured at the so-called “sweet spot” (section 2.4.2). Finally, we use
Monte Carlo simulations to compute the effect of anisotropy on the uncertainty in Dd

(section 2.4.3).
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Figure 2.3: Ratio of σ2
p(R) to σ2

iso(R), as a function of the projected radius R, and n ≡
rani/Reff . The former is observable, while the latter is related more directly to GM/R. Two
vertical lines show the effective radius (Reff) and the sweet-spot radius (Rsweet) defined in
section 2.4.2.

2.4.1 Spherical Jeans equation

We solve the spherical Jeans equation for a given mass distribution (i.e., a power-law
density profile) to obtain the three-dimensional radial velocity dispersion σr,

1

ρ∗

d(σ2
rρ∗)

dr
+ 2βani

σ2
r

r
= −GM(≤ r)

r2
. (2.46)

Here, the anisotropy function, βani(r), is chosen as the Osipkov-Merritt (OM) anisotropy
[83, 68],

βani(r) ≡
r2

r2
ani + r2

= 1− σ2
T (r)

σ2
r(r)

, (2.47)

where σT (r) and σr(r) are the velocity dispersions in the tangential and radial directions,
respectively. Although the anisotropy is parametrized by a single variable, rani, under this
specific model, we can model almost any velocity structures by linearly superimposing the
solutions [68]. We then calculate σ2

p(R) from σ2
r(r) using equation 2.33, and 〈σ2

p〉ap using
equation 2.40.

To quantitatively demonstrate the behavior of the anisotropic velocity dispersion, we
again use the observations of B1608+656 introduced in section 2.3.3 for the analysis in this
and the following sections.

In figure 2.3, we show the ratio of σ2
p(R) to the isotropic velocity dispersion, σ2

iso(R),
with a = 0.551Reff and Reff = 0.58′′ for the Hernquist profile. The isotropic velocity
dispersion is a solution to the Jeans equation (2.46) with no anisotropy, βani ≡ 0; thus, it
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Figure 2.4: Ratio of 〈σ2
p〉ap to σ2

iso(Rap), as a function of n. For the stellar density distribu-
tion, we use the Hernquist and Jaffe profiles in the left and right panels, respectively. The
size of the aperture is fixed at Rap = 0.42′′. The upper limit of n, 5, is chosen since the
velocity dispersion does not differ much from the isotropic case beyond n of 5, while the
lower limit, 0.5, is determined by observations (e.g. [57]) and radial instability arguments
(e.g. [69, 96]). The unknown anisotropy dominates the uncertainty on 〈σ2

p〉ap.

is related more directly to GM/R. We have one free parameter, n, which parametrizes the
anisotropic radius as

rani ≡ nReff . (2.48)

For a given mass distribution of the lens, σ2
p(R) depends on n. We vary n from 0.5 to 50 in

logarithmic spacing. We find σ2
p(R)/σ2

iso(R) ≈ 1 to within 10% at R = Reff , except for the
highly anisotropic case of n = 0.5 when the stellar distribution follows Hernquist profile.

In figure 2.4, we show the ratio of 〈σ2
p〉ap to σ2

iso(Rap) as a function of n, where Rap is
fixed to 0.42”. In the left panel, this ratio reaches 26% for n = 0.5, and decreases as n
increases when the stellar distribution follows the Hernquist profile. In the right panel,
we show the same ratio for the Jaffe stellar distribution, with the ratio reaching 24% for
n = 0.5. Overall the difference in 〈σ2

p〉ap between Hernquist and Jaffe distributions is small
compared to the impact of the anisotropy. Therefore, for the remainder of the paper,
we consider only the Hernquist distribution as a conservative model, where the dominant
uncertainty on 〈σ2

p〉ap is due to the unknown anisotropy.
Since the inferred Dd is proportional to the inverse of the isotropic velocity dispersion,

having a large variation in the inferred isotropic velocity dispersion can cause a large
uncertainty in Dd. Unfortunately, anisotropy is not directly observable, unless we have a
three-dimensional velocity dispersion measurement. Clearly, a better approach is needed.

2.4.2 Sweet-spot method

It has been pointed out that, when the observations of the surface brightness profile and
the velocity dispersion profile are available, one can find the so-called sweet spot, Rsweet,
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at which the effect of the anisotropic velocity dispersion on the mass determination is
minimized [23]. Also see [111, 109]. The OM anisotropy model has an isotropic core and
a radial envelope. However, as we observe the projected velocity dispersion, there are
two components that play roles in the estimation of the observed velocity dispersion. The
anisotropy changes the ratio between tangential and radial components of the velocity
dispersion at a given radius, while the projection changes the magnitude of contributions
from radial and tangential components. Quantitatively, at a fixed radius of observation
R, σp(R) has contributions from infinitely many shells with radii r = R/cosx, where
x = [0, π/2]. At each radius r we can decompose the contributions to the projected velocity
dispersion into tangential and radial components as σT (r) cosx and σr(r) sinx, respectively.
Due to the weighting by the trigonometric functions, at small x, contributions from the
tangential component is bigger than that from the radial component, and vice versa at
large x. Now, let us assume that the total velocity dispersion, σ2(r) = σ2

T (r)+σ2
r(r), is the

same for the isotropic and anisotropic model for a given galaxy mass, as it is proportional
to the total kinetic energy. Then, when r = R/cosx is large, the tangential component
is suppressed while the radial component is enhanced compare to the isotropic case, due
to the anisotropy (since σT (r) becomes small for large r in equation (2.47)). As a result,
in comparison to the isotropic case where σT (r) = σr(r), anisotropic velocity dispersion
shows σp(R) > σiso(R) at small R, and σp(R) < σiso(R) at large R. Thus, if we observe an
anisotropic system, there exists a projected radius R at which the transition from one to
the other occurs, as we increase R from the center of a galaxy to the outskirt of it. This
transition radius is the sweet spot.

While the analytical derivation of Rsweet has been done assuming a constant βani, the
further study [65] shows that the method works for systems with a non-constant βani as well.
The sweet spot can be determined from the brightness profile of a massive elliptical galaxy
[65]. It is close to the projected radius at which R satisfies d ln I(R)/d lnR = −2. For a
Hernquist surface brightness profile, we find Rsweet ≈ 0.78Reff . It is also shown in [23] that
while the Sersic index changes from 1 to 12, Rsweet varies only about 0.3Reff , thus the sweet-
spot radius is fairly insensitive to the luminosity profile. In figure 2.3, the sweet-spot radius
is shown as the left vertical line. We find that the difference between projected velocity
dispersions with various anisotropy parameters is minimum around R = 0.78Reff = 0.45′′

with the data of B1608+656. It particularly reduces the effect of a highly anisotropic case
with n = 0.5, compared to using σ2

p(R) at the effective radius or the aperture-averaged σ2
p.

The uncertainty in the mass of massive ellipticals estimated from the sweet-spot method
is claimed to be 5-7 per cent. Therefore, the best approach is to use spatially-resolved
spectroscopic data of lens galaxies to obtain the velocity dispersion at the sweet spot.

2.4.3 Monte Carlo simulation

We use Monte Carlo simulations to study how much the velocity anisotropy inflates the
uncertainty in Dd, and how well we can mitigate it by using the sweet-spot method.

For two time-delay systems B1608+656 and RXJ1131−1231, we generate 11 discrete
radial profiles of anisotropic velocity dispersion by solving the Jeans equation, with log-



26 2. Time-delay Lenses as Distance Indicators

Figure 2.5: Simulated distribution of Dd to B1608+656. The solid and dashed histograms
show the distributions with the isotropic and anisotropic simulations, interpreted by the
isotropic model. We use the aperture averaged velocity dispersion, 〈σ2

p〉ap, with the aperture
size of 0.42′′. The standard deviation of the velocity dispersion used in simulations is
15 km/s. The fractional uncertainty in DA is 11.5% in the case of isotropic velocity
dispersion model, while in the case of anisotropic velocity dispersion model it is 16.9%.

arithmically spaced n = [0.5, 50]. The effective radius and the density profile index γ′

are fixed at the best-fit values given in sections 2.3.3 and 2.3.4. We randomly choose
one profile from the set of different anisotropy parameters to create a mock galaxy. We
then compute σ2

p from each mock galaxy in three ways: the aperture-averaged value 〈σ2
p〉ap

with the aperture size of 0.42′′ for both systems, σ2
p(R) with R = Reff , and σ2

p(R) with
R = Rsweet. As the uncertainty in Dd is dominated by that of σ2

p, we add a Gaussian
random noise to σ2

p with variance of S2
σ2
p

= 2S2
σp(S2

σp + 2σ2
p). We then compute Dd from

these simulated data with the best-fit values of the time-delay data and image positions
given in sections 2.3.3 and 2.3.4. (We do not add noise to time delays or image positions.)
While our simulated galaxies have anisotropic velocity dispersions, we use the isotropic
velocity dispersion model to calculate Dd. In this way we can quantify the effect of our
ignoring anisotropic velocity dispersion by marginalizing over it.

Figures 2.5, 2.6, and 2.7 show the distributions of Dd obtained from mock B1608+656
realizations using 〈σ2

p〉ap, σ2
p(Reff), and σ2

p(Rsweet), respectively. The solid and dashed his-
tograms in each panel show the realizations with the isotropic and anisotropic velocity
dispersions, respectively. The former realizations are used to check validity of our simula-
tions, as well as to make a direct assessment of the effect of anisotropy. The vertical dotted
lines show Dd = 1485.7 Mpc that we obtained in section 2.3.3.

We summarize the results from the analysis on B1608+656 and RXJ1131−1231 in tables
2.1 and 2.2, respectively. The uncertainties in Dd from isotropic simulations (interpreted
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Figure 2.6: Same as figure 2.5, but with σ2
p(Reff) and Reff = 0.58′′. The fractional uncer-

tainty in DA is 11.7% in the case of isotropic velocity dispersion model, while in the case
of anisotropic velocity dispersion model it is 14.5%.

by the isotropic model) agree with the analytical estimates given in sections 2.3.3 and
2.3.4. On the other hand, those from anisotropic simulations (again interpreted by the
isotropic model) show significantly larger uncertainties when 〈σ2

p〉ap or σ2
p(Reff) is used.

Fortunately, using σ2
p(Rsweet) eliminates most of the inflation of the uncertainty due to

velocity anisotropy.
Figure 2.7 shows that the peak is shifted in the anisotropic case in comparison to the
isotropic case, while in figure 2.6 the peak remains at the same position. This is due
to the marginalization of the anisotropy. In figure 2.3, we choose 6 different n values
that are spaced logarithmically, and choose two radii (Reff and Rsweet) to calculate the Dd

distributions for both the isotropic and anisotropic cases. At Rsweet, the scatter between
the curves is smaller compare to that at Reff ; however, at Rsweet, the curves are also shifted
toward higher velocity dispersions compared to the isotropic case. As a result, the whole
distribution of Dd is shifted toward lower values. On the other hand, at Reff , while the
scatter is larger, there is no systematic change in σ2

p relative to σiso (i.e. among 6 values
of n, two give σ2

p larger than the σ2
iso, two give smaller, and the other two give σ2

p almost
identical to the σ2

iso value). As a result, the peak position does not change, while we get
an extended tail towards higher Dd value. This does not mean that using Rsweet gives a
biased Dd, as we cannot assume that the velocity dispersion structure is isotropic. Also,
as the width of the distribution is much bigger than the shift of the peak, at the moment
the effect of this shift is negligible. As the distribution of Dd depends on the choice of
the anisotropy model as well as on the range/selection of n, we study another anisotropy
parameterization to see the robustness of the results against the choice of parameterization
in the next section.
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Figure 2.7: Same as figure 2.5, but with σ2
p(Rsweet) and Rsweet = 0.45′′. The fractional

uncertainty in DA is 11.9% in the case of isotropic velocity dispersion model, while in the
case of anisotropic velocity dispersion model it is 12.3%.

Table 2.1: Expected fractional uncertainty in Dd to B1608+656

Isotropic Anisotropic

Rap 11.5% 16.9%
Reff 11.7% 14.5%
Rsweet 11.9% 12.3%

2.4.4 Two Parameter Extension Model

To show that the sweet spot is not a unique characteristic of OM anisotropy, we repeat the
same analysis using a different spatially-varying anisotropy parameter, βani(r), from [5] :

βani(r) =
βinr

2 + βoutr
2
a

r2 + r2
a

, (2.49)

which we will call the TPE (Two Parameter Extension) model. Two additional parameters,
βin and βout, are added to the OM anisotropy. The OM model takes βin = 0 and βout = 1,
so as r → 0 the velocity dispersion becomes isotropic, while at the outskirt the velocity
dispersion becomes radial. We see that βani → βin toward the center, and βani → βout

toward the outskirts of the galaxy. We follow [5] and adopt flat priors on βin = [−0.6, 0.6]
and βout = [−0.6, 0.6], while the anisotropic radius, ra, is scaled in the same way as in the
OM model (equation 2.48).

The resulting velocity dispersion profiles are shown in figure 2.8. Near the sweet spot,
the fractional uncertainty in the velocity dispersion becomes as small as 15%. Also we
note that the deviation from the isotropic velocity dispersion is not skewed at the sweet
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Table 2.2: Expected fractional uncertainty in Dd to RXJ1131−1231

Isotropic Anisotropic

Rap 12.5% 15.1%
Reff 12.4% 14.8%
Rsweet 12.5% 12.6%

Figure 2.8: Same as figure 2.3, but with TPE anisotropy model. The range of the two new
parameters, βin and βout, is [−0.6, 0.6] for both parameters, with steps of δβin = 0.1 and
δβout = 0.1.

spot, which keeps the peak of the posterior distribution of Dd at the same place as for the
isotropic dispersion model. The posterior distribution calculated at the sweet-spot radius
is shown in figure 2.9. We find that the uncertainty on angular diameter distance using this
parametrization is about 13% for B1608+656, and 14% for RXJ1131−1231, comparable to
those in section 2.4.3.

2.5 Conclusion

We have shown that we can determine Dd to strong lens systems with time delays. The
underlying physics is simple; thus, this method offers a robust determination of Dd to
individual systems. The key advantage of this method is that the external convergence does
not affect the distance determination. The uncertainty in the inferred Dd is dominated by
that in the velocity dispersion and its anisotropy. The effect of anisotropy can be minimized
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Figure 2.9: Same as figure 2.7, but with TPE anisotropy model. Note that we use more
realizations here in comparison to the previous analysis, as the parameter combination is
169 times as much as the one from OM parameterization, due to two additional parameters.
As a consequence, the result for the isotropic case is slightly different from figure 2.7. The
fractional uncertainty in DA is 12.1% in the case of isotropic velocity dispersion model,
while in the case of anisotropic velocity dispersion model it is 13.0%.

by measuring the velocity dispersion at the sweet-spot radius.
The existing data on B1608+656 and RXJ1131−1231 should yield Dd with 17% and

15% precision, respectively. If we use the velocity dispersions at the sweet-spot radii,
the precision improves to about 13%. In figure 2.10, we show the expected fractional
uncertainty in Dd to B1608+656 as a function of the uncertainty in the velocity dispersions,
σ. The σ at the sweet-spot radius measured with 260±7 km/s corresponds to σ2 measured
with 5% precision. This yields Dd with 7% precision, after marginalizing over velocity
anisotropy. We show the robustness of our results using two different parameterizations of
βani(R), but a further study may be needed for more general cases.
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Figure 2.10: Expected fractional uncertainty in Dd to B1608+656 as a function of the
uncertainty in σ in units of km/s. The dashed, dotted, and solid lines are for σ = 〈σ2

p〉
1/2
ap ,

σp(Reff), and σp(Rsweet), respectively.
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Chapter 3

Implementations and Measurements

The method presented in the previous chapter has been implemented in the full analysis
pipeline used by refs. [98, 97]. We show how dynamical models have been incorporated
into lensing chains, and present the results in this chapter. The contents are based on Jee
et al. in preparation.

3.1 Importance Sampling the Lensing Chain with Dy-

namical Models

To constrain the angular diameter distance using observational data, we use the poste-
rior probability density function (PDF) for the lens model parameters obtained via Monte
Carlo Markov Chain (MCMC) analysis using the lensing and time-delay data in [98, 100]
for B1608+656 and RXJ1131−1231, respectively. For the kinematics of the lens, we im-
portance sample [61, 98] the posterior PDF for the lens mass model parameters with the
likelihood of the kinematics data using Jeans modeling with anisotropic velocity dispersion
and with flat priors on the anisotropy parameters, as shown in section 2.4. The model
velocity dispersion is luminosity weighted and aperture averaged to be compared with the
observation. In this section I briefly summarize the data, models, and the marginalization
process, following the notation in [100].

Time-delay lensing cosmography requires multiple types of observations per lens, each
providing different information about the lens. First, the imaging data provide the surface
brightness distribution of the lens and the lensed source in a pixelated form, which enables
the reconstruction of the Fermat potential via modeling of the lens mass distribution. For
both lenses, HST Advanced Camera for Surveys (ACS) data were used. The imaging
data is denoted as dACS. This data include the lens light and the lensed source, which is
separated into extended host galaxy surface brightness and the point-like AGN light for
each AGN image. These components are blurred by the point spread function, which can
be modeled using stars in the field of view. Long-term monitoring of the variability of
individual images provides the time-delay between image pairs, ∆t. For B1608+656, the
time delay is measured by [33, 32]. For RXJ1131−1231, a new time-delay measurement
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by monitoring in optical wavelengths is provided in [102]. The spectroscopic data for the
lenses are obtained from the Low-Resolution Imaging Spectrometer (LRIS; [82]) on Keck
1. The spectroscopic data provide the luminosity-weighted, aperture-averaged line-of-sight
velocity dispersion of the lens, 〈σ2

ap〉1/2. For convenience, we denote this simply as σ in
this section. The process of obtaining the velocity dispersion from spectroscopic data
is described in [100]. In measuring the time-delay distance, the lens environment, denv,
should be modeled to break the mass-sheet degeneracy [31, 98, 91, 100]. This provides
information on the external convergence κext.

The lens mass distribution is modeled as an elliptical power-law profile with external
shear, the lens light as an elliptical Sersic profile, and the lensed source light is modeled with
an independent point-source AGN per image plus an extended source surface brightness on
a regular grid for the host galaxy. Once the lens mass distribution is constrained from the
image, the time delay between image pairs given the lens mass model can be calculated.
Thus, time delay pairs provide some constraints on the lens model as well as constraining
the time-delay distance. More details on the lens mass model and time delay are provided
in [98, 100]. We model the velocity dispersion using two parametric anisotropy models as
introduced in the previous chapter. The external convergence is estimated based on the
relative number count of galaxies neighboring the lens with respect to the field galaxies,
and calibrated using the Millennium Simulation [41].

Under the Bayesian framework, with the choice of physically motivated models for each
component, the problem then becomes finding the posterior PDF of the model parameter
set ξ,

P (ξ|dACS, σ,denv,∆t). (3.1)

The model parameters are ξ = {D, γ′, θE, γext,η,βani, κext}, where D = {Dd, Dds/Ds},
and η is a vector containing the rest of the lens model parameters that do not affect
kinematics. Two differences between the parameters we use here and the previous analysis
in [98, 100] are: i) Instead of calculating the posterior PDF of cosmological parameters
(denoted as π in the previous paper), we chose to directly calculate the posterior PDF of
Dd and Dds/Ds. This is because we want to constrain the angular diameter distance alone,
while the previous analysis focused on getting cosmological parameters and calculating the
joint constraint of the lensing time-delay distances and the Cosmic Microwave Background
(CMB) obtained from the Wilkinson Microwave Anisotropy Probe (WMAP) data. ii) We
test two velocity dispersion anisotropy models, thus instead of using rani, we use βani.

Bayes’ theorem states

P (ξ|d) =
P (ξ) P (d|ξ)

E(d)
(3.2)

where ξ is the parameter vector, d is the data vector, P (ξ) is the prior, P (d|ξ) is the
likelihood of the data d given the parameters and E(d) is the model evidence, which can
be used to compare different models. By applying Bayes’ theorem to equation 3.1, the
proportionality between the posterior PDF and likelihood can be stated as follows:

P (ξ|dACS, σ,denv,∆t) ∝ P (dACS, σ,denv,∆t|ξ)P (ξ). (3.3)
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As all observations are independent, the likelihood in equation 3.3 can be separated as

P (dACS, σ,denv,∆t|ξ) = P (dACS|ξ)P (σ|ξ)P (denv|ξ)P (∆t|ξ). (3.4)

Considering the data dependency of the parameters, and again, using Bayes’ theorem, the
above equation can be written further as

P (dACS, σ,denv,∆t|ξ) ∝ P (dACS,∆t|D, γ′, θE, γext,η, κext)P (σ|D, γ′, θE,βani, κext)

P (denv|γext, κext)P (D)P (γ′)P (θE)P (γext)P (η)P (βani)P (κext).

(3.5)

To obtain the posterior PDF ofD, we marginalize the full posterior P (ξ|dACS, σ,denv,∆t)
over the other parameters,

P (D|dACS, σ,denv,∆t) =

∫
dγ′ dθE dγext dη dβani dκextP (ξ|dACS, σ,denv,∆t), (3.6)

by importance sampling. Importance sampling states that the expectation value of a func-
tion, f(x) where x follows the PDF P1(x) can be calculated in the following way:

〈f(x)〉P1 =

∫
P1(x)f(x)dx =

∫
P1(x)

P2(x)
P2(x)f(x)dx = 〈P1(x)

P2(x)
f(x)〉P2 , (3.7)

where only P2(x) is available and P1(x) is not. In combination with Bayes’ theorem,
importance sampling allows us to separate the data in the posterior distribution. For
example, in our case, P1 = P (D, γ′, θE, γext,η,βani, κext|dACS, σ,denv,∆t), which is the
posterior from all the available data and P2 = P (D, γ′, θE, γext,η,βani, κext|dACS,∆t),
which is the posterior only from the lens image and time-delay data. Bayes’ theorem
yields

P (D, γ′, θE, γext,η,βani, κext|dACS, σ,denv,∆t)

∝ P (dACS, σ,denv,∆t|D, γ′, θE, γext,η,βani, κext)
(3.8)

and due to the independence of the individual observation as in equation 3.4, the likelihood
can be separated as follows:

P (dACS, σ,denv,∆t|D, γ′, θE, γext,η,βani, κext) =P (dACS,∆t|D, γ′, θE, γext,η,βani, κext)

P (σ|D, γ′, θE, γext,η,βani, κext)P (κext|denv).

(3.9)

Applying Bayes’ theorem again, we obtain

P (D, γ′, θE, γext,η,βani, κext|dACS, σ,denv,∆t) ∝P (D, γ′, θE, γext,η,βani, κext|dACS,∆t)

P (σ|D, γ′, θE, γext,η,βani, κext)P (κext|denv),

(3.10)
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Figure 3.1: Schematic diagram of importance sampling, showing that the dynamical model
is separately calculated and incorporated into the lensing chain, to constrain the posterior
PDF of the distances.

and thus
P1

P2

∝ P (σ|D, γ′, θE, γext,η,βani, κext)P (κext|denv). (3.11)

This shows that when calculating the posterior distribution of D, the lensing time-delay
chain can be weighted by the likelihood of σ and denv, then integrated over the rest of
parameters. For more details, see e.g. [61, 98].

As shown above, the kinematics likelihood can be calculated separately and incorpo-
rated into the lensing chain. The results we present in section 3.2 compare OM and TPE
velocity dispersion models for each lens.

We give flat priors to Dd, Dds/Ds and used PDF of κext from [41] as shown in figure
3.6. Figure 3.1 schematically summarizes the process.

3.2 Measurements

We show the result of our analysis to constrain the angular diameter distance with current
data. Our main results show i) the constraints on angular diameter distance are made by
including the kinematic data, and ii) the independence of angular diameter distance to the
external convergence (figures 3.2 - 3.5). We find that for B1608, the 1σ uncertainty on
measured angular diameter distance was similar for both models: for OM profile it is 13%,
and for TPE model it is 14%. However, for RXJ1131-1231, it is 14% for OM profile while
the uncertainty increases to 18% as we use the TPE model, which we further discuss in
section 3.2.2.
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Figure 3.2: The posterior distribution of the angular diameter distance to the lens
B1608+656. The left panel only includes lensing and time-delay information, while the
right panel shows the result combined with kinematics of the lens, which gives 13% mea-
surement of the angular diameter distance to the lens. The blue hatched distribution is
when the external convergence distribution is estimated by ray-tracing through the Millen-
nium Simulation [41], while the red is when the external convergence is set to be zero. The
similarity between red and blue distributions in the right panel shows that by combining
the kinematic information with lensing time delays, we can measure the angular diameter
distance that is essentially independent of κext.

3.2.1 Independence of the external convergence

We show in figures 3.2 - 3.5 the angular diameter distance constrained using the method,
without (left panel) and with (right panel) the velocity dispersion information. While the
external convergence shifts the posterior distribution of the distance without the velocity
dispersion, the distance becomes independent of the external convergence when the velocity
dispersion information is used. This is due to the fixation of the gravitational potential
from the velocity dispersion information, which normalizes the angular diameter distance.
The distances are constrained to 13-18%, for two systems with two anisotropy models. The
estimate on the distribution of external convergence for each lens is provided following [41],
which uses nearby galaxy number counts around the lens, which are then calibrated by ray-
tracing through the similar fields in the Millennium Simulation. We show the constraints
on the Hubble constant in figure 3.10.
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Figure 3.3: The same as figure 3.2, but for RXJ1131-1231. The right panel gives 15%
measurement of the angular diameter distance to the lens.

3.2.2 Optimal aperture size to effective radius ratio

Current observations of the lens galaxies provide the velocity dispersion measured over an
aperture of fixed physical size. The velocity dispersion is estimated via spectroscopy on
RXJ1131-1231 with a rectangular aperture of width 0.81′′, where the center of the aperture
is placed at the center of the lens galaxy. For RXJ1131-1231, the effective radius of the
galaxy is reff = 1.85′′, thus the width of the aperture is ∼22% of the effective radius.
For B1608+656, the width of the aperture is ∼72% of the effective radius. In Figure 3.7,
we vary the width of the aperture to show how anisotropic models of velocity dispersion
changes the predicted aperture-averaged velocity dispersion. As this is to test the effect of
the aperture size on the precision of Dd, we keep the rest of the parameters fixed. With
an infinite aperture width, the observed velocity dispersion reaches the virial limit, where
the uncertainty due to the anisotropy will be minimized and the difference due to the
density profile is the only factor determining the aperture averaged velocity dispersion [5].
However, the physical width of the aperture should be limited due to spatial broadening.
The slit disperses incoming photons along the direction of the width of the slit, thus having
a wide slit causes mixing of spatial and spectral dimension, which effectively causes extra
broadening. Spatial broadening thus increases the measurement uncertainty of velocity
dispersion.
However, for the velocity dispersion data we have, where the size of the aperture is some
fraction of the effective radius, the uncertainty due to the anisotropy is more significant.
For example, the vertical dot-dashed line is where the Rap/reff corresponds to that of
RXJ1131-1231 data. The red shaded region shows larger uncertainty than the blue one,
which is why the posterior distribution of the angular diameter distance of RXJ1131-1231
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Figure 3.4: The same as figure 3.2, but for TPE anisotropy model. The right panel gives
14% measurement of the angular diameter distance to the lens.

with TPE model is wider than that of the OM model. The dotted line is when Rap/reff

corresponds to B1608+656 value, where the width of two distributions are similar. In
terms of anisotropy, we predict that the Rap/reff > 0.7 is required to avoid uncertainty due
to anisotropy being bigger than the measurement uncertainty. Current measurements were
made with the aperture of half width ∼ 0.4′′, and with 20km/s measurement uncertainty in
velocity dispersion, which is mostly from the systematic uncertainties in the measurement.
This puts a limit on the effective radius of the lens galaxy that we can measure and model
reliably with the current method: reff < 0.57′′. We note that however, depending on the
anisotropy model, the mean of the velocity dispersion varies even with a large aperture to
effective radius ratio, which can introduce bias in the posterior distribution of the angular
diameter distance. With the current measurement uncertainty of velocity dispersion this
is not a significant problem, and this indicates that we need to measure spatially resolved
velocity dispersion to constrain both the velocity dispersion anisotropy and the mass profile
simultaneously.

3.2.3 Cosmological implications : Constraining Hubble constant
from inverse-distance ladder

The SNe type Ia provides an accurate shape of the expansion history of the Universe, as
they yield distances at multiple redshifts. While it can only constrain relative distances
between the SNe due to the systematic uncertainties, specifically in their intrinsic bright-
ness, in combination with absolute distances at any redshift they span, the SNe can be
normalized to yield absolute distances. Also, the absolute distance anchors the relative
distances SNe measure, that can be propagated to the zero redshift to yield the Hubble
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Figure 3.5: The same as figure 3.3, but for TPE anisotropy model. The right panel gives
18% measurement of the angular diameter distance to the lens.

constant. This is the so-called inverse-distance ladder method [24]. Using the Joint Light-
curve Analysis (JLA, [14]) SNe dataset with two lensing distances we measured as anchors,
we constrain the Hubble constant and the SNe nuisance parameters simultaneously. We
use Montepython [10] to perform the MCMC analysis. Figure 3.8 shows the resulting cos-
mological and nuisance parameter constraints from this analysis for flat ΛCDM model. In
figure 3.9, we show the Hubble diagram with these parameters. Repeating the same anal-
ysis for different cosmological models, we show the constrained Hubble constant using the
lensing distances with OM anisotropy, and the JLA for six different cosmological models
in 3.10. Depending on the choice of the curvature of the universe, Ωk, and the equation
of state of dark energy, w, the model is either flat (Ωk = 0) or open (Ωk 6= 0), and either
ΛCDM (w = −1), wCDM (w 6= −1) or waCDM (w(a) = w0 + (1 + a)wa, time-varying
equation of state). In case of open curvature (Ωk 6= 0), the constraints degrades and the
Hubble constant is constrained with less precision. However, the constraints on the Hubble
constant are nearly independent of the choice of a cosmological model, which shows the
robustness of the constraint from two angular diameter distances in combination with the
SNe type Ia. We summarize the cosmological and nuisance parameter constrained in tables
3.1 and 3.2, respectively.
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Model Ωfld Ωk h w0 wa

flat ΛCDM 0.702±3.48e-2 ≡ 0 0.833±7.90e-2 ≡ -1 ≡ 0

flat wCDM 0.778±0.122 ≡ 0 0.829±8.02e-2 -0.882±0.210 ≡ 0

flat waCDM 0.782±0.124 ≡ 0 0.832±7.91e-2 -0.904±0.214 -1.03±1.39

open ΛCDM 0.559±0.160 0.237±0.258 0.841±8.81e-2 ≡ -1 ≡ 0

open wCDM 0.419±0.199 0.418±0.287 0.842±8.83e-2 -1.73±0.750 ≡ 0

open waCDM 0.473±0.222 0.366±0.286 0.841±8.98e-2 -1.46±0.520 5.29e-2±1.20

Table 3.1: Summary of the cosmological parameters for six cosmological models tested.

Model α β M ∆M

flat ΛCDM 0.141±6.82×10−3 3.11±8.30×10−2 -18.7±0.206 -0.0704±2.33×10−2

flat wCDM 0.141±6.71×10−3 3.11±8.30×10−2 -18.7±0.210 -0.0710±2.34×10−2

flat waCDM 0.141±6.79×10−3 3.11±8.47×10−2 -18.7±0.207 -0.0710±2.30×10−2

open ΛCDM 0.141±6.76×10−3 3.11±8.38×10−2 -18.6±0.229 -0.0707±2.36×10−2

open wCDM 0.141±6.75×10−3 3.11±8.63×10−2 -18.7±0.229 -0.0705±2.37×10−2

open waCDM 0.141±6.83×10−3 3.11±8.31×10−2 -18.7±0.232 -0.0705±2.37×10−2

Table 3.2: Summary of the nuisance parameters for six cosmological models tested.
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Figure 3.6: The distributions of external convergence κext used in the analysis for each
lens.

Figure 3.7: The luminosity weighted aperture averaged velocity dispersion for the OM
(blue shaded) and TPE (red hatched) anisotropy model, with normalization factors (mass,
angular diameter distance, and the Einstein radius) fixed to the posterior value. The left
panel is for B1608+656, and the right panel is for RXJ1131-1231. The density profile is
constrained tightly by the lensing analysis in range γ = 2.08 ± 0.03 for B1608+656 and
γ = 1.95 ± 0.05 for RXJ1131-1231, respectively, while we give wide range of flat priors
on the anisotropy parameters rani = [0.5, 5] (OM) and βin,out=[-0.6,0.6] (TPE). From the
densest to the least dense shaded areas are for 1, 2, and 3-σ velocity dispersion values,
respectively.
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Figure 3.8: One- and two-dimensional posterior distributions of cosmological and nuisance
parameters constrained using angular diameter distances from two lenses and JLA, for flat
ΛCDM model (solid line). The dark and light shaded area in two-dimensional contours
are for 68% and 95% Confidence Level. The dashed lines are for the average likelihood
distribution.
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Figure 3.9: The Hubble diagram with 740 SNe from JLA normalized by two lensing dis-
tances. We used the distances constrained from OM anisotropy model (green circle and
cyan triangle points). We overplot the distances constrained from TPE model (red dia-
mond and purple square points) for comparison. The solid line is flat ΛCDM model fitted
with the cosmological and nuisance parameters constrained from figure 3.8.
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Figure 3.10: The Hubble constant constrained from six cosmological models we tested.
The gray shaded area is the constraints using local distance measurements [87], and the
green line is from three time-delay distances measured by H0LiCOW collaboration [16].
The thick and thin solid lines are where the 68% and 95% Confidence Levels are.
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Chapter 4

Cosmological Implications from
Future Observations

We use predictions for detecting quadruply lensed quasars to calculate the expected cos-
mological constraints from lensing distances in future large-scale surveys. We compare
the constraints with other distance probes, in particular, type Ia supernovae and Baryon
Acoustic Oscillations (BAO). The contents are published in [51].

4.1 Method

Each well-modeled time-delay lens system yields two distance(-like) quantities, DA(EL)
and D∆t. The uncertainties of DA(EL) and D∆t are dominated by the velocity dispersion
and the external convergence, respectively. In this work, we make an optimistic assumption
that we can measure both distances with 5% uncertainties, which requires a few per cent
measurement of the spatially resolved velocity dispersion of the lens galaxy, as well as a
good understanding of the mass distribution along the line-of-sight, that is obtainable by
simulations and observations of the lens environment [100, 50]. Regarding the lens mass
model, the power-law density profile in ref. [50] is widely used due to its ability to fit the
imaging data near the image positions. The local density profile is well reconstructed with
the model if the images are spatially extended such that information from thousands of
intensity pixels can be used. However, ref. [91, 92] have pointed out that the information
obtained by the lensed images cannot uniquely determine the shape of lens mass profile
due to the so-called Source-Position Transformation (SPT). Specifically, they focused on
the degeneracy between composite density profiles and a power-law mass profile, and have
shown that fixing the shape of the lens mass profile as a power law can break the SPT.
However, they have also mentioned that these models can be distinguished if more infor-
mation is available: for example, if more than three images with time delays are observed,
the degeneracy can be broken as the general SPT does not conserve the time delay ratios.
In ref. [100], the robustness of the measured time-delay distance is tested with power law
and composite model under the presence of lens kinematics data and shown to be nearly
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independent of the choice of the model. Ref. [31] has shown that the so-called Mass-
Sheet Transformation (MST), which is a special case of the SPT, scales the time delays
by the same factor, and thus conserves the time-delay ratio, can bias the mass modeling.
However, ref. [114] has empirically shown using the Illustris simulation that most of the
early-type galaxies with high (σ > 200kms−1) velocity dispersion, which most of the lens
galaxies are, show nearly power-law behavior. The MST degeneracy can also be broken if
additional information on the lens galaxy (e.g. velocity dispersion) is obtained. Ref. [52]
has shown that the existence of substructures in the lens galaxy perturbs the time delay:
However, the effect of perturbation on the time delays (<1 day) is typically smaller than
the currently available time-delay measurement uncertainties, and thus both distances are
mainly determined by the global mass distribution rather than the substructures. Thus
we claim that these precision measurements on both distances are possible, but only when
good quality imaging / kinematics data as well as time-delay measurements are available.
The correlation between the two distances is negligible, because the uncertainties in the ve-
locity dispersion and the external convergence are uncorrelated. For completeness, and to
study the case in which 5% measurements are not achievable, we also quote the constraints
assuming the 10% measurements in the parentheses.

To study the expected cosmological constraints from lenses, we need to specify the
distribution of lens and source redshifts. We use the catalog of mock lenses in ref. [78]
to obtain the redshift distribution of time-delay lenses with double and quadruple images
expected for the Large Synoptic Survey Telescope (LSST) [2, 48]. Although LSST itself
is expected to find around ten thousand lensed quasars, there are only about 400 systems
that would have good time delay measurements [62]. To obtain distances from a lens
system with a reasonable accuracy, a good mass model of the lens galaxy is also required,
as both the time-delay distance and the angular diameter distance are sensitive to the
mass distribution of the lens. Ancillary data both in terms of high-resolution imaging and
spectroscopy of the lens systems are needed for accurate lens mass modeling. Therefore, we
select lens systems from the mock catalog with the following criteria for acquiring ancillary
data with relative ease: (1) the quasar image separation is > 1′′, (2) the third brightest
quasar image has an i-band magnitude mi < 21, and (3) the lens galaxy has mi < 22.
The criteria on the quasar image separation and brightness make it easier to measure the
time delays with high precision (uncertainty of a few percent). Furthermore, a sufficiently
wide quasar image separation is required for extracting the Einstein ring of the quasar host
galaxy and measuring the lens velocity dispersion for mass modeling. The lens galaxy also
needs to be of sufficient brightness for measuring the lens velocity dispersion. In this work,
we focus on quadruply imaged lens systems as they provide more information than doubly
imaged systems. After applying these criteria to the LSST mock lens sample, we obtain
55 quadruple lens systems as the best cases of obtaining ancillary data.

Figure 4.1 shows the source and the lens redshift distribution of quadruple lenses in
our mock catalog. For the visualization purpose, only in this figure, the total number of
detectable lenses is oversampled by a factor of 5 (based on the catalog from ref. [78]) to
populate the histogram. The expected constraints reported in this paper are derived from
the actual distribution of the 55 lenses.
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Figure 4.1: The distribution of source (zS) and lens (zL) redshifts of quadruply imaged
time-delay lenses expected for LSST [78]. These lens systems are the best ones to obtain
ancillary data and measure distances with required precision. For visualization purposes,
the number of the lenses is oversampled by a factor of five only in this figure (thus each
pixel does not necessarily have a multiple-of-5 value).

Since these are the bright lens systems, a fraction of these systems will already be
discovered in the current imaging surveys. In particular, we expect that ∼25% of these
systems will be discovered in the Dark Energy Survey (DES)1 and the Hyper Suprime-Cam
(HSC; [71])2 Survey. Furthermore, we expect a few more quadruple lens systems from the
northern areas of the HSC Survey that are not covered in DES and LSST. Therefore, even
though we focus here on the LSST sample, our cosmographic predictions are also relevant
for the upcoming years before the LSST era as new lens systems in the current imaging
surveys are discovered and monitored.

We explore constraints on two variations of ΛCDM model. Both assume a curved
universe (Ωk 6= 0) and an unknown equation of state of dark energy (w 6= −1). The first
model assumes that w is a constant (owCDM) with the following cosmological parameters:

~θ ∈ {Ωm,Ωk, w, h} (owCDM model). (4.1)

The second model further assumes that w varies in time with w = w0 + (1 − a)wa [63]

1http://www.darkenergysurvey.org/index.shtml
2http://www.naoj.org/Projects/HSC/surveyplan.html
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(owzCDM):
~θ ∈ {Ωm,Ωk, w0, wa, h} (owzCDM model). (4.2)

We choose the fiducial cosmology following Planck 2015 (Ωm = 0.308, Ωk = 0, w0 = −1,
wa = 0, and h = 0.678) [3].

We use the Fisher information matrix (hereafter the Fisher matrix) to calculate the con-

straining power of the cosmological probes. For a data vector ~d(~θ) with a set of parameters
~θ, the Fisher matrix F is given by

Fij =
∑
αβ

∂dα
∂θi

Cov−1
αβ

∂dβ
∂θj

, (4.3)

where indices α and β run over the observables, and Cov(~d) is the data covariance matrix.
For lenses, Covαβ = δαβσ

−2
α , where δαβ is the Kronecker delta as we assume no correlation

between the different lens systems and between the two measured lensing distances DA and
D∆t of each lens system. The uncertainty in each distance σα is σα = 0.05dα (σα = 0.1dα)
as we assume 5% (10%) precision measurements of both distances. The inverse of the
Fisher matrix, F−1, gives the covariance matrix of the parameters, and the marginalized
uncertainty on the i -th parameter is calculated as (F−1)

1/2
ii . If the normalization of F

increases by a factor of n, then the normalization of the parameter covariance matrix
decreases by a factor of n, thus the error bar on each parameter tightens by a factor of

√
n.

4.2 Single-probe constraints combined with the Planck

distance prior

In this section we investigate the constraining power of the time-delay lenses expected
from LSST in section 4.2.1, and compare the constraints to that of two other cosmological
distance probes, the BAO data from Baryon Oscillation Spectroscopic Survey (BOSS)
data release (DR) 11 in section 4.2.2, and the SNe data from Joint Light-curve Analysis
(JLA) in section 4.2.3. We examine the future prospects of constraints from BAO and SNe
using LSST data in section 4.2.4. We combine each probe with the CMB distance prior
calculated from the Planck 2015 result [4]. The distance prior is calculated using the shift
parameter, Rshift, and the multipole corresponding to the sound horizon at the moment of
last scattering, l∗. The definitions of these parameters are

Rshift ≡
√

ΩmH2
0DA(z∗)/c,

l∗ ≡ π
DA(z∗)

rs(z∗)
,

(4.4)

where z∗ = 1089.94 is the redshift of the last scattering surface, and rs(z∗) = 144.89 Mpc
is the size of the sound horizon at redshift z∗. The distance prior compresses information
in the CMB power spectrum relevant for dark energy to two numbers.



4.2 Single-probe constraints combined with the Planck distance prior 51

Figure 4.2: Logarithmic derivatives of distances T =(DA,D∆t) with respect to the cosmo-
logical parameters p =(w0,wa), as a function of redshift. Left panel: The solid lines show
T = DA, while the dashed lines show T =D∆t, with various combinations of the lens and
the source redshift. Each dashed line corresponds to one zL in range [0.2,1.0] in increments
of 0.2, and shows −∂ lnD∆t/∂p/0.01 as a function of zS. We only show zS which is higher
than the highest zL in this range. Right panel: The solid lines show −∂ lnDA/∂p/0.01 as
a function of zL. Each dashed line corresponds to one zS in range [1.0,3.0] in increments
of 0.5, and shows −∂ lnD∆t/∂p/0.01 as a function of zL. We only show zL which is lower
than the lowest zS in this range. Both panels show that DA is always more informative
than D∆t for constraining wa (i.e., |∂ lnDA/∂wa| > |∂ lnD∆t/∂wa|), and DA is often more
informative than D∆t on w0.

4.2.1 Time-delay lenses

We first show how sensitive D∆t and DA(EL) are to w0 and wa as a function of zL and zS.

In figure 4.2, we show ∂lnT/∂p (where T = (DA,D∆t) and p = (w0,wa) ). The larger
the absolute value of ∂ lnT/∂p is, the bigger the unmarginalized sensitivity of the distance
T becomes to the parameter p, with all the other cosmological parameters fixed at the
fiducial values. Also, equation 4.3 shows that the information is proportional to ∂T/∂p.
The higher zL is, the more sensitive D∆t becomes to both w0 and wa for a given zS, and
vice versa. We find that DA is always more sensitive to wa, when all the other parameters
are fixed at the fiducial values.

In figure 4.3, we show the expected 1-σ uncertainties in w for the owCDM model
and w0 for the owzCDM model (combined with the Planck distance priors), with all the
other parameters marginalized over. As the Fisher matrix is proportional to nquads, the
marginalized uncertainty in DA(EL) +D∆t scales as ∝ 1/

√
nquads. For owCDM (left panel

of figure 4.3), the Planck distance priors combined with either DA (blue dashed line) or
D∆t (red dotted) from lenses improve the constraint on w significantly compared to the
lens-only case (black dash-dot). Combining all improves the constraint further by 30%,



52 4. Cosmological Implications from Future Observations

Figure 4.3: The 1-σ uncertainty in w, denoted as σ(w), and that in w0, denoted as σ(w0),
from time-delay lenses as a function of the number of lenses for the left and the right panel,
respectively. The black dash-dot line is the lens-only data, while the other lines use the
Planck distance priors combined with DA (blue dashed), D∆t (red dotted), or both (green)
from lenses. (Left) owCDM model. (Right) owzCDM model marginalized over wa, as well
as all the other parameters.

in comparison to that of the D∆t + Planck. For owzCDM (right panel of figure 4.3),
we find that the lens-only (DA + D∆t) breaks the degeneracy between w0 and the other
parameters more efficiently than either combination of Planck + DA or Planck + D∆t,
yielding a tighter constraint. Combining all improves the constraint further by a factor
of 2 in comparison to D∆t + Planck. In case of 10% uncertainties on both distances, the
fractional improvement due to the addition of DA to Planck + D∆t is the same as that
for 5% uncertainties, but the overall constraints become weaker by a factor of 2. In other
words, the marginalized uncertainties in w0 and wa are proportional to the uncertainties
in the lensing distance measurements, as the Planck data alone are unable to constrain w0

and wa.

The left panel of figure 4.4 is useful for understanding these results. The marginalized
uncertainties in wa from either DA or D∆t individually are similar. The Planck distance
prior (the black line) provides a degenerate combination of w0 and wa, thus cannot be
marginalized. However, it is nicely orthogonal to the ones from DA (the blue contour)
and D∆t (the red contour). Thus, including the combination of DA and Planck with the
previous lensing constraints from D∆t reduces the uncertainty in wa significantly. We
also note that the constraint on wa from DA + D∆t (the green contour) is significantly
tighter than the naive addition of the blue and the red contour, which indicates that this
combination of distances effectively breaks the degeneracy between the equation of state
of dark energy and the other parameters over which we marginalize.

Next, we study the degeneracy structure of parameters constrained from lensing dis-
tances, by shifting a parameter and calculating the response of the other parameters to the
shift in order for the likelihood to be maximized. Specifically, we describe the degeneracy
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Figure 4.4: (Left) The 68 per cent CL in the w0-wa plane constrained from 55 lenses for the
owzCDM model. The blue line is the marginalized constraint from DA, the red line is the
marginalized constraint from D∆t, and the green line is the marginalized constraint from
the combination of the DA and D∆t. The black line is the unmarginalized constraint from
Planck only. The horizontal and vertical dashed lines correspond to the fiducial values of
w0 = −1 and wa = 0, respectively. (Right) Zoom in of the left panel, with degeneracy
directions plotted as arrows. The arrows show the response of w0 and wa to the shift
∆Ωk = 0.02. The blue arrow is the response for DA(EL), the red arrow is for D∆t, and the
green arrow is for the combination of two. The larger the arrow is relative to the contour,
the more sensitive the distance is to Ωk. The alignment between the arrows and the major
axis of the contours indicate that the constraints from DA (the red arrow and the red
contour) and D∆t (the blue arrow and the blue contour) are individually dominated by
Ωk. However, the degeneracy between Ωk and w is shown to be broken when DA and D∆t

are combined. For visualization purposes, the sizes of the arrows are inflated by a factor
of 100.

between the curvature density Ωk and the equation of state parameters w0 and wa. When
Ωk is shifted by an amount ∆Ωk, to maximize the likelihood at the new fiducial value
Ωk + ∆Ωk, all the other parameters have to be shifted accordingly. The general expression
for the shift in an arbitrary parameter ∆θi due to a shift in a fixed, single parameter ∆θk
that maximizes the likelihood can be calculated as

∆θi =
∑
k

∆θk
(F−1)ik
(F−1)kk

, (4.5)

where F−1 is the inverse of the Fisher matrix. In figure 4.4, the right panel shows the
projection of the shift vectors to w0-wa plane as arrows, along with the marginalized
constraint contour at the fiducial parameter to display it quantitatively. For each of DA

and D∆t, the degeneracy directions are parallel to the major axes of the contours, which
indicates that the degeneracies with Ωk dominate the dependences of w0 and wa to other
parameters. However, when the two distances are combined, the curvature degeneracy



54 4. Cosmological Implications from Future Observations

Figure 4.5: The marginalized 68 per cent CL constraints from 55 lenses in the (left) Ωm-w
plane for the owCDM model, and (right) w0-wa plane for the owzCDM model. The black
dash-dot lines show the lens-only constraints from DA + D∆t, the blue dashed lines the
constraints from DA + Planck, the red dotted lines the constraints from D∆t +Planck, and
the green solid lines the combination of the two distances + Planck.

breaks and the alignment between the error contour and the shift disappears (the green
arrow and the green contour are not aligned). The relative size of the arrow to the contour
shows the sensitivity of the probe to Ωk: the bigger the vector is with respect to the
contour, the more sensitive the probe is to the change in Ωk. By comparing the relative
size of the red and the blue arrows to the red and the blue contours, we show that DA and
D∆t are comparably sensitive to ∆Ωk, but the combination of two increases the sensitivity
significantly (the green arrow and the green contour).

The left panel of figure 4.5 shows the joint constraints on Ωm and w for owCDM. We
find that the Planck distance prior plays an important role in constraining Ωm, while using
both DA and D∆t combined with Planck distance prior improves the constraint on w by
about 30% compared to the case of D∆t combined with Planck distance prior. The right
panel of figure 4.5 shows the same for w0 and wa for owzCDM. We also show the lensing
distances + Planck constraint on H0 in Appendix B.

Next, we compare these constraints with those from Planck + BAO and Planck + SNe.
We calculate the constraints from BAO and SNe using currently available data (BOSS
DR11 for BAO, JLA sample for SNe).

4.2.2 BAO

BOSS DR11 provides the volume-averaged distance, DV ≡ (cz(1 + z)2D2
A/H)

1/3
, at two

effective redshifts (0.32, 0.57) obtained from the BAO peak position in the spherically
averaged two-point functions. The lower redshift is the LOWZ sample, and the higher
redshift is the CMASS sample. Also, by separately measuring the two point functions
along the line of sight and the direction perpendicular to it, the DR11 CMASS sample
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separately constrains the angular diameter distance DA and the Hubble parameter H at
z = 0.57 [9, 90]. To account for the correlation among DV , DA and H, we use the full
likelihood of the CMASS sample for the analysis provided by the BOSS collaboration [9].

In our analysis we assume that the sound horizon scale at the baryon drag epoch, rs,drag,
is fixed as rs,drag = 149.28 Mpc [9]. We then combine the cosmological constraints from
DV at z = 0.32, and DA and H at z = 0.57 with the Planck distance prior. We calculate
the Fisher matrix by taking the derivatives of the log likelihood at the fiducial cosmology.
The results are shown in figure 4.6. The precision of the BAO data yields the narrowest
contours on the Ωm-w (for owCDM) and w0-wa (for owzCDM) planes. However, due to
the limited number of redshifts (z = 0.35 and z = 0.57), the degeneracy is not broken
efficiently; thus, the expected Planck + lens from 55 lenses can improve the constraints
significantly, even though the precision of lensing data per redshift is not as precise as
BAO.

4.2.3 SNe

We now study the constraints from Planck + SNe. We use the JLA data [14] to calculate
the constraints from SNe. JLA uses Supernovae Legacy Survey (SNLS), Sloan Digital
Sky Suvey-II (SDSS-II) Supernova survey and a few low-redshift samples. The redshift of
subsamples are: the low-redshift sample (z < 0.1), SDSS-II (0.05 < z < 0.4), and SNLS
(0.2 < z < 1). There are 740 spectroscopically confirmed type Ia SNe in JLA. SDSS-II is
used for anchoring the distances, and also an empirical relation between the host galaxies
and the supernovae brightness is used as an extra calibration for the absolute magnitude
of the SNe. For the calibration, there are 4 additional nuisance parameters that are taken
into account in JLA: α, which scales the stretch of the light curve in time-domain; β, which
scales the color at the peak of the light curve; M , which is the absolute B band magnitude
of the SNe at the peak of the light curve; and ∆M , which characterizes the peak absolute
magnitude change due to the stellar mass of the host galaxy.

We use Montepython [10] to sample the JLA likelihood. Specifically, we run Markov
Chain Monte Carlo to sample the likelihood surface, and compute the covariance matrix
in the cosmological parameters. We then use its inverse as the JLA Fisher matrix. The
results are shown in figure 4.6. While the absolute distances, such as those from BAO and
lenses, are effective at measuring Ωk when combined with CMB [53], the relative distances
from SNe are not. Thus, when Ωk is set free, the constraints on Ωm for owCDM from 55
lenses combined with Planck are significantly better than those from 740 SNe combined
with Planck.

4.2.4 Comparison to future BAO and SNe predictions

With several billion galaxies expected to be detected with LSST, BAO will allow measure-
ments of distances with ∼2% precision in the redshift range 1 < z < 3 [115]. Combined
with Planck, BAO will constrain w0 with uncertainty ∼0.4 and wa with ∼1 [1]. Also,
500,000 SNe are expected to be detected in 10 years of LSST operation in the redshift
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Figure 4.6: The marginalized 68 per cent CL constraints from strong lenses, SNe, and BAO,
each combined with the Planck distance prior, in the (left) Ωm-w plane for the owCDM
model, and (right) w0-wa for the owzCDM model. The green lines show the constraints
from Planck + lens, the red lines Planck + JLA, and the black lines Planck + BOSS.

range 0.1 < z < 1.2. With a subsample of 50,000 SNe only, the data will constrain w0 with
uncertainty ∼0.05, and wa to order unity, assuming a flat universe [2]; in combination with
Planck, the full sample of SNe constraints will be ∼0.25 for w0 and ∼1.2 for wa for the
owzCDM model [1]. We note that a modest sample of 55 lenses combined with the Planck
distance prior constrains w0 and wa to ∼0.4 (∼0.7 for the case of 10% uncertainties on the
lensing distances) and ∼1.2 (∼2.5), respectively (see, e.g., Figure 6), which is comparable
in precision to those expected from future BAO or SNe samples in the LSST era, when each
is combined with Planck. Therefore, strong lenses provide an independent and competi-
tive probe of dark energy. Needless to say, lensing, SNe, and BAO are affected by different
systematic errors, and thus cross-checking the results using these three low-redshift probes
of the expansion of the universe will be powerful.

4.3 Pivot redshift

The equation of state of dark energy, w(z), can be re-written as

w = w0 + (1− a)wa = wp + (ap − a)wa, (4.6)

where wp ≡ w0 + (1 − ap)wa [44]. In this parameterization, the pivot redshift zp = 1
ap
− 1

is defined as the redshift where the uncertainty in w is minimized. The uncertainty in wp
shows how well a probe can measure the equation of state w, as wp is orthogonal to wa by
construction, and thus is not coupled to the time variation of w [44, 8]. zp shows at which
redshift the main constraint on w is coming from: this pivot redshift varies depending
on the probes, their redshift distributions and the measurement uncertainties, and can be
negative. Figure 4.7 shows the constraints on (wp,wa) using the lens distances alone in
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Figure 4.7: Same as figure 4.4, but in wp-wa plane. zp is calculated separately for each
probe: zp(DA) = −0.226, zp(D∆t) = 0.0251, and zp(DA +D∆t) = 0.0759.

wp-wa plane. The constraint on wp from DA alone is much weaker than that from D∆t,
while the constraints on wa from both distances are comparable. However, by combining
the two distance measures, the constraint on wp improves by a factor of 2, and that on wa
improves by a factor of 24, due to complementary degeneracy directions as shown in figure
4.4.

The pivot redshift, zp, and the uncertainties in wp and wa for two combinations of
probes (Planck + BOSS + JLA, and 55 lenses (denoted by Lens) + Planck + BOSS +
JLA) for three different cosmological cases ((1) Ωk = 0 and Ωm = 0.309, (2) Ωk = 0 and
marginalized over Ωm, and (3) marginalized over both Ωk and Ωm) are summarized in
table 4.1. In comparison to Planck + BOSS + JLA, adding 55 lenses tightens the FoM
by a factor of 2.78 (1.62), 1.79 (1.45) and 2.17 (1.41) for the three models, respectively,
given 5% (10%) distance measurements. In particular, when Ωk is allowed to vary, the
uncertainty in wa is reduced by almost a factor of 2 by including the lenses, which shows
that the combination of DA and D∆t is powerful in breaking the Ωk-w degeneracy. This is
consistent with our argument in section 4.2.1. Also zp becomes higher as we include the
lens distances in every case, which is typically beneficial when combining these probes of
geometry with probes of the growth of cosmic structure.
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Cosmological model Probe zp σ(wp) σ(wa) FoM

Flat, fixed Ωm
CMB+BAO+SNe 0.288 0.0375 0.364 73.3

Lens+CMB+BAO+SNe 0.487 0.0296 0.166 204

Flat, marginalized over Ωm
CMB+BAO+SNe 0.358 0.0487 0.413 49.7

Lens+CMB+BAO+SNe 0.386 0.0310 0.363 88.9

Marginalized over Ωm and Ωk

(owzCDM)
CMB+BAO+SNe 0.215 0.0625 1.03 15.5

Lens+CMB+BAO+SNe 0.245 0.0479 0.621 33.6

Table 4.1: Pivot redshift, zp, uncertainties in wp and wa, and the Figure of Merit (FoM)
for Planck + BOSS + JLA and Lens + Planck + BOSS + JLA. We test three cases: (1)
Ωk = 0 and Ωm = 0.309, (2) Ωk = 0 and marginalized over Ωm, and (3) marginalized over
both Ωk and Ωm. As there is no correlation between wp and wa, FoM = 1/(σ(wp)σ(wa)).

4.4 Conclusion

There is more valuable cosmological information in the strongly lensed systems than mea-
surements of the Hubble constant from time delays. In this chapter, we have demonstrated
that the addition of the angular diameter distance measurements to the quantity (D∆t)
that captures the cosmological information from time delays in the same sample of lenses
provides crucial help in breaking cosmological parameter degeneracies. This improvement
is most significant in some of the most interesting parameterizations that are currently be-
ing studied, such as when curvature of the universe and the time-variation in the equation
of state of dark energy are allowed to be nonzero.

We have calculated the lensing constraints based on the predictions for the LSST survey,
adopting a catalog of 55 quadruply imaged lenses (out of a much larger total number) that
should have sufficiently good information that all observable quantities of interest in the
lenses can be accurately measured. We have combined the forecasted lensing information
from both the angular diameter distance and the time-delay distance. We then compared
this lensing constraints with that from the BOSS DR11 and from the JLA type Ia supernova
sample – each combined with the Planck 2015 distance prior.

We find that the combined lensing information significantly helps constrain the cosmo-
logical parameters, particularly when curvature is allowed to vary and when the equation
of state of dark energy is allowed to be time-dependent. For example, 5% (10%) precision
measurement of lensing distances would improve the current BAO+CMB+SN constraints
on wa by a factor of two (20%), and those on the overall figure of merit of dark energy
by about a factor of two (50%) relative to the case with no lensing (see Table 4.1 and
figure 4.8). Key to this significant improvement is lensing’s ability to break the degeneracy
between curvature and the equation of state parameters; see figure 4.4.

We are therefore very optimistic about the prospects of a select, accurately observed
subsample of strong gravitational lenses to improve our constraints on dark energy. For-
tunately, the lensing samples are a guaranteed product of the current and upcoming wide-
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Figure 4.8: The marginalized 68 per cent CL from strong lenses, combined with Planck,
BAO and SNe in the (left) Ωm-w plane for the owCDM model, (right) w0-wa for the
owzCDM model.

field, deep surveys such as HSC, DES and LSST.
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Chapter 5

Current & Future Perspectives:
Challenges in Strong Lensing
Cosmography

I have shown that strong lensing is a prominent tool in cosmology. By considering both
the time-delay distance and the angular diameter distance per system, lensing distances
become more competitive to other distance probes than it has been previously appreci-
ated. Specifically, strong lensing is useful because it does not require any cosmological
assumptions except for the general theory of relativity on cosmological scales, and is in-
dependent of other distance measurements. However, instead of relying on cosmological
assumptions, individual properties of the lens (such as mass distribution and the potential
estimate via kinematics) should be constrained via dedicated observations of each system.
This requires deep imaging and spectroscopic observations with high spatial resolution, as
well as high cadence monitoring to measure the time delay. In this chapter, I outline the
current status and the future perspective in strong lensing cosmography. First I review the
past and current programs that discovered known time-delay lenses from imaging surveys,
and list other algorithms that have been proposed to improve the performance of the cur-
rent methods. Then I discuss ongoing and upcoming cadenced imaging surveys. Currently
the main targets are SNe, but with deeper observations, wide-field cadenced surveys are
ideal for detecting lensed transient. I introduce a proposed algorithm that will enable the
automated detection of lensed SNe type Ia from cadenced surveys. Finally, I introduce
follow-up observations that are required to obtain crucial data for cosmography.

5.1 Time-delay Lens Detections in Wide-field Surveys

Starting from the discovery of the twin quasar SBS 0957+561 in 1979, many of the lensed
quasars are discovered through archival searches of known quasar catalogs. Wide-field
surveys have been providing a wealthy pool of quasars from which the lensed quasars
can be discovered. The Cosmic Lens All-Sky Survey (CLASS; [75, 17]) combined with the
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Jordell Bank VLA Astrometric Survey (JVAS) focused on finding lensed radio sources with
a few arcsecond of separation as lens candidates, mainly using Very Large Array (VLA)
at 8.4 GHz. Candidates from these observations were then followed up by MERLIN and
Very Large Baseline Array (VLBA) for better resolution to do the surface brightness and
morphology test on the candidates. JVAS/CLASS have found 22 lenses, among many of
which are still being studied. The SDSS Quasar Lens Surveys (SQLS; [79, 80, 81, 45, 46,
47]) first spectroscopically selected quasars in the SDSS sample, then searched for objects
with extended morphology and nearby companions with the same color among the pre-
selected quasars. The SQLS final catalog from the Data Release 7 (DR7) contains 62 lensed
quasars that are confirmed by additional observations. The same algorithm was applied
to the SDSS-III BOSS data (BOSS Quasar Lens Survey, BQLS), reporting detections of
13 spectroscopically confirmed doubly lensed quasars, and 11 apparent quasar pairs that
can potentially be lensed [73]. The STRong lensing Insight in the Dark Energy Survey
(STRIDES; [103]) program is using observations from the Dark Energy Survey (DES),
reporting detections of two strongly lensed quasars [7]. The detections of lensed quasars are
done in multiple steps of observations, as large surveys can provide only limited information
about individual targets: The candidate confirmation process is described in section 5.2.1.
In section 5.1.1, I will discuss various approaches that are designed to be applied to large
data to search for the lens candidates.

5.1.1 Finding Lens Candidates by Image Inspection

Upcoming large surveys promise discoveries of hundreds of thousands of strong lenses,
among which hundreds will be time-delay lenses. However, from wide-field, deep survey
volumes, a problem of finding strongly lensed systems still remains. In searching for lenses
from imaging data, several image inspection algorithms have been proposed. The key
requirements are speed, high completeness and purity; these algorithms are tested with
both real and simulated lenses and non-lenses, to give estimates of their performances.

CHITAH, an algorithm presented in [20], uses simple lens mass models to test the image
configuration. The method uses color information to disentangle the lens light from the
image light, as source quasars tend to be bluer than the lens galaxies, which are typically
elliptical galaxies. The algorithm then tests whether the images can be mapped back to
a single source position under the given simple mass model. The method can detect both
double and quadruple lenses. However, the true positive rate is shown to be higher in
detecting quadruple lenses, which are more useful in cosmography. The algorithm was
tested using a set of simulated lenses that resembles the Canada-France-Hawaii Telescope
Legacy Survey (CFHTLS). For the best subset, which are bright (mz < 22.5) quadruply
lensed images with wide separations (rein > 1.1′′), the true positive rate was ∼90% and the
false positive rate was ∼3%. The method has been applied to Hyper-Suprime Cam (HSC)
data, cross-matched with the Galaxy And Mass Assembly (GAMA) survey [21], finding 10
galaxy-galaxy lensing candidates.

[6] proposed the use of data mining to find lensed quasars using imaging data. The
algorithm takes two steps: the first uses an artificial neural network to preselect targets
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using their apparent magnitude in each color band and the second moment, which are
position angles and axis ratios of the galaxies in the images. Then a machine learning
algorithm is applied to the targets, trained using color-morphology information on a pixel-
by-pixel basis, to confirm the final candidates. It has been claimed that this method can be
easily extended and its performance will be improved by the use of temporal information
from time domain surveys. The strength of the method is in its speed, while also achieving
60% completeness and 70% purity. By the nature of machine learning, the performance will
be significantly improved with bigger datasets. Also, with tremendous ongoing advances
in machine learning, this method has big potential in automated candidate selection for
upcoming wide-field surveys.

Space Warps [67] is a program proposed to use volunteers from the general public to
crowd-source visual inspections. They conducted a test using samples from CFHTLS and
using its mock simulations. They provided color-composite lensed images to the volunteers
where the images are a mixture of observed and simulated lenses. The participants are
asked to separate lensed objects into three categories: lensed galaxies, lensed quasars and
cluster lenses. Each time the participants make choices, they get feedback in real time to
improve their performances. From the test, the program reported 90% completeness and
30% purity of the final candidates.
These methods can be used together to complement each other, to provide reliable candi-
dates for large volume surveys which should be followed-up for the purpose of cosmography.
The details of follow-ups are descried in section 5.2.
As time-delay lenses have variable sources, surveys that are designed to find transients also
suits to find these objects. In the following section, I discuss the status of present and
future cadenced surveys and introduce a proposed strategy to find lensed SNe type Ia in
these surveys.

5.1.2 Cadenced Wide-Field imaging Surveys

Visiting the same region in the sky periodically, cadenced surveys have opened a new era of
time-domain cosmology. Transient sources, such as SNe and quasars, can be easily found
by comparing the brightness on the sky observed at different times.
Ongoing cadenced surveys, such as High Cadence Transient Survey (HiTs; [35]) and Inter-
mediate Palomar Transient Factory (iPTF; [60]) are mainly aiming for discoveries of SNe
in the local Universe. However, with deeper observations, finding lensed transients is also
possible.
LSST is the most ambitious upcoming cadenced wide-filed survey planned to date. One
of the science goals of LSST [48] is to discover rare transient events in the optical sky,
enabling detections of lensed quasars and SNe. With six bands covering wavelengths from
320 − 1050nm, The survey is designed to have universal cadence (in the optimistic case,
3-4 days) and will uniformly cover 18000 square degrees of the sky in 10 years of its main
deep-wide-fast survey mode. [78] has predicted that LSST will be able to find around 8000
lensed quasars and 130 lensed SNe.
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5.1.3 Lensed SNe type Ia in Cadenced Surveys

In the case of lensed type Ia SNe, automated detection is easier due to their known bright-
ness. The first lensed type Ia SNe was detected by iPTF in 2016 [38]. The target can be
found among over a billion detections of variability, first narrowed down to a few hundred
based on an algorithm presented in [37]. The method relies on three pieces of information:
i) the absolute brightness of a type Ia SNe at its peak luminosity is roughly known, ii)
unresolved and magnified, multiply imaged lensed type Ia SNe will appear brighter than
the unlensed type Ia SNe and iii) early type galaxies only host type Ia SNe, while other
types of galaxies can host both type Ia SNe and core collapse SNe. Due to the sharp 4000
Angstrom break in the quiescent early type galaxies, the photometric redshift of the host
galaxies can be easily determined. After assuming a cosmology, the luminosity distance,
and thus the apparent brightness of the SNe can be determined. Thus, from ii), any object
that appears brighter than the predicted apparent magnitude at the host galaxy redshift
becomes lensed SNe candidate. The algorithm suggests cross-matching existing samples
of galaxies with secure photometric redshifts against variability detections from cadenced
surveys (e.g. SDSS and iPTF), so that the variables hosted by the quiescent galaxies can
be selected. Then the absolute brightness cut is applied to the sample to finalize the can-
didate selection. AGNs or core-collapse SNe are potential contaminants of the method,
but these can still be used for the purpose of lensing cosmography.

5.2 Follow-ups

For individual lens candidates, high-resolution imaging and spectroscopic follow-ups are
both required, to confirm the candidacy, to construct the lens mass model, to constrain
the lens environment and its line-of-sight structures and to obtain kinematics information
of the lens. High cadenced monitoring is also required to measure the time delay. Also,
spatially resolved kinematics data is becoming more important, as it can be used to break
the mass-anisotropy degeneracy and improve the constraints on angular diameter distance.

5.2.1 Candidate Confirmation

As the purity of the candidates from the binary classification test on imaging data is
not 100%, a follow-up observation is required to confirm individual systems as lenses.
SQLS proposed strategic use of optical imaging, spectroscopy and near-infrared imaging
to confirm the candidates [45, 46]. When the candidates were selected morphologically,
optical imaging can reject a large fraction of non-lenses. When the candidates were selected
based on their color, the false-positive rate was higher than that of morphological selection,
and spectroscopic observation of stellar components and the imaging of the lensing object
for individual candidates are both required to confirm gravitational lens systems [47].
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5.2.2 High-resolution Imaging: Adaptive Optics (AO)

With limited resources in high-resolution imaging, such as HST, AO is becoming a promi-
nent tool in improving the spatial resolution of ground-based imaging observations. The
main idea of AO is to measure the deformation of the incoming wavefront in real time using
guide stars (sometimes with a laser), and change the surface of the mirror accordingly such
that the deflected wavefront will be corrected. This technique is applied to instruments in
observatories such as Keck, and have been shown to improve the resolution from ∼ 1′′ to
0.03− 0.06′′. However, modeling lensed quasars with AO observations is a challenge as the
PSF is unknown and unstable. The light from the central point source component (AGN)
is hard to separate from the extended host galaxy, unlike non-AO observations where PSF
is simpler and for most purposes can be approximated as a Gaussian. Thus AGN light acts
as a contaminant to the image arcs, preventing precise modeling of the lens mass using the
extended components of the images. To overcome the limitation, an iterative reconstruc-
tion of the point function (PSF) has been carried out for a lensed system, RXJ1131-1231
and two mock simulations of it in [22]. Their analysis simultaneously models the PSF, the
point source (AGN) and the extended component (host galaxy) of the images as well as
the lens light. They have successfully separated these three components, showing that the
Keck telescope AO can provide spatial resolution twice as high as HST. They also have
shown that the resulting cosmological parameters constrained by the time-delay distance
of the system with AO observations are consistent with those from HST within 1-σ. Thus,
further ground-based high-resolution imaging observations with AO will be a good alterna-
tive in following up lens candidates to allow further modeling of lenses with good precision,
with the eventual goal of a few per cent level constraint on the Hubble constant.

5.2.3 Monitoring the Time delay

The first time-delay measurement of a lensed quasar, QSO0957+561A was made in 1984
[34]. With only a few measurements per year, however, the resulting time-delay remained
controversial with uncertainty of half a year, and the controversy lasted until 30 years of
further observation finally improved the measurement. Even in recent times, the most
time-consuming component in observing time-delay lenses for cosmography is to monitor
the time delay of each quasar image, which takes ∼ 10 years per system. Optical mon-
itoring of known quasar lenses has been conducted by the COSmological MOnitoring of
GRAvItational Lenses (COSMOGRAIL collaboration; [29]). As the cadence is the most
important factor in assessing the light curve of stochastic variables, COSMOGRAIL used
multiple small, but dedicated telescopes to monitor the lenses as regularly as possible. The
typical frequency of visits is once per a few days during the observing season; a season lasts
for ∼8 months and the monitoring last for ∼5-10 years per system. The program provided
time-delay measurements for about a dozen quasar lenses to date, with precision of a few
per cent.

After measuring the light curve, obtaining the time-delay between image pairs still
requires thorough analysis. Time-delay Challenge (TDC; [27, 62]) did a performance com-
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parison between multiple algorithms that calculate the time delay from thousands of mock
light curves. The simulated light curves were created including microlensing and stochastic
AGN light curves using a damped random walk. To mimic realistic observations, photo-
metric and systematic errors are also simulated. Observing frequency and duration, i.e.
cadence, season length (the continuous monitoring period per system with given cadence:
typically ∼months) and campaign length (total duration of time the system is monitored:
∼ years) were controlled to match those of COSMOGRAIL and optimistic / realistic cases
of LSST. Their results have shown that only 20-40% of the simulated light curves yield
time-delay measurements, and the success rate depends on the season and campaign length.
They also reported that the accuracy of the time delay measurement depends on the du-
ration of the monitoring, while the precision can be improved with higher cadence. The
algorithms with the best performance could achieve sub-percent accuracy, which is better
than the current few percent level time-delay measurements.
On the other hand, SNe do not require similarly long follow-ups to measure time delay,
as the shape of its light curve is well defined, and also the brightness decays within a few
weeks. However, due to this decay in brightness, the monitoring should be done in a short
period of time as the peak of the light curve is crucial in determining the characteristics of
the SNe.

5.2.4 High-resolution spectroscopy

Kinematic measurements of lenses are becoming more important as the final pieces of in-
formation in time-delay lenses, as it is crucial in constraining the angular diameter distance
[50], and also it can break the mass-sheet degeneracy when lens mass profile is known [114].
Specifically, it is shown that when the external convergence is constrained via simulations,
spatially resolved kinematics of the lens galaxy can also breaks the mass-anisotropy degen-
eracy (Anowar, Treu and Agnello, 2017, submitted).
Spatially resolved kinematics of the lens requires observations with integral field unit spec-
trographs (IFU), which measure spectra in two dimensions. To guarantee high signal-to-
noise ratio over multiple pixels in the image, the telescope should have large aperture.
Currently instruments such as OH-Suppressing Infrared Integral Field Spectrograph (OSIRIS;
[59]) on Keck, and the Spectrograph for INtegral Field Observations in the Near Infrared
(SINFONI; [30]) on the Very Large Telescope (VLT) are IFU instruments operating with
AO, providing diffraction-limited spatial resolution. In the future, Near Infrared Spectro-
graph (NIRSPEC) on James-Webb Space Telescope (JWST) and Infrared Imaging Spec-
trometer (IRIS; [112]) on the Thirty-Meter Telescope (TMT) will be available for studying
spatially resolved lens kinematics as well.

5.3 Discussion & Conclusion

Strong lensing cosmography is a relatively new tool in cosmology. While the idea was
proposed a few decades ago, the observational data only became available in the past
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ten years. In the future, however, as large quantities of high-quality data are becoming
available, lensing cosmography will be a prominent tool in improving our understanding of
the Universe. As I reviewed in this chapter, various works have been put together to expand
the number of known time-delay lenses and to overcome the observational challenges, both
in terms of hardware and algorithms. On the cosmological side, as stated in chapter 1 of
this thesis, H0LiCOW will provide the baseline for measuring time-delay distances. Their
data can also be used for the angular diameter distance measurements that are presented in
this thesis. The combination of these two distances per lens will open a new era for strong
lensing cosmography; as the number of well-measured time-delay lenses increases, lensing
cosmography can easily reach the statistical and systematic uncertainties assumed in [51].
This will provide a unique opportunity to probe the expansion history of the low-redshift
Universe.



685. Current & Future Perspectives: Challenges in Strong Lensing Cosmography



Appendix A

Deflection angle of an arbitrary
power-law density profile

We derive the expression for a deflection angle near a galaxy with the density profile
following a power-law with arbitrary density profile index. When the density profile is
given as equation (2.5), the mass contained within a radius r is

M(r) =

∫ r

0

4πr2ρ0r
γ′

0 r
−γ′dr =

4πρ0r
γ′

0

−γ′ + 3
r−γ

′+3, (A.1)

which yields an acceleration given by

~g(~r) = −4πGρ0r
γ′

0

3− γ′
r−γ

′
~r, (A.2)

on the test mass located at the radius r. According to the post-Newtonian approximation
in General Relativity, the rate of change of the direction of the velocity vector of the test
mass, ~u, is given as

c2d~u

dt
= −2~u× (~u× ~g). (A.3)

We define a new parameter α to be the angle by which the light is deflected as it passes
near the lens galaxy. In the cases we consider, the deflection angle will be small. Thus, we
can choose coordinates such that the path of the light is roughly along the x-axis, and the
line connecting the center of the lens galaxy to the point of the closest approach is along the
y axis. Again, because the deflection angle is small, we use the thin lens approximation,
namely, light is bent sharply at the closest approach to the lens. Thus, the separation
from the center of lens to the light path, r, becomes r2 = b2 + x2, and, more importantly,
~u× (~u× ~r) = −c2~b.

We define the deflection angle at the lens plane, α̂, as the total change in the photon
propagation direction, and the magnitude of the deflection angle as α. Then,

α̂ ≡ 1

c

∫
d~u = −α ~r

r
, (A.4)
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where the minus sign indicates that the deflection happens toward the lens center. Then
α becomes
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assuming γ′ > 1.



Appendix B

Lensing constraints on H0

B.1 H0 in owCDM and owzCDM models

We show the constraints on H0 from DA and D∆t combined with the Planck distance prior.
Figure B.1 shows the expected 1-σ uncertainties in h from strong lenses combined with
the Planck distance priors. As D∆t is mostly sensitive to H0, the constraining power of
D∆t + Planck (red dotted line) is more powerful than that of DA + Planck (blue dashed
line). When w is fixed as a constant (owCDM model, left panel), D∆t + Planck are more
powerful than D∆t + DA (black dot-dashed line). When w is allowed to vary (owzCDM
model, right panel), however, D∆t + DA is more powerful than D∆t + Planck. This is due
to the degeneracies between H0, Ωk and w from the linear CMB constraints alone [28],
which cannot be broken by D∆t. However, ref. [43] has shown that the main degeneracy
from CMB constraints is between w and H0, and as shown in section 4.2.1, the combination
of lensing distances is powerful in breaking the degeneracy between Ωk and w. Thus, the
combination of Planck and the lensing distances shows 30% improvement in constraining
h.

B.2 H0 in flat ΛCDM model

We show the constraints on H0 for the ΛCDM model in figure B.2. Assuming that 5%
precision measurements in individual distance (both DA and D∆t) are achievable from lens
systems, 10 lenses are enough to measure the Hubble constant to the same precision as
Planck. The number of required lenses to achieve the same precision increases to 25 if
constraints are from D∆t only.

B.3 Constraints assuming the flat universe

In section 4.2.1, we have shown that the lensing distances are powerful probes for the
curvature of the universe. Specifically, DA and D∆t respond to curvature differently in
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Figure B.1: The 1-σ uncertainty in h = H0/100 km/s/Mpc from time-delay lenses as a
function of the number of quadruply imaged lenses for the (left) owCDM model, and (right)
owzCDM model.

w0-wa plane, thus the combination of two gives a strong constraint on Ωk. We repeat the
same analysis for the flat universe model (Ωk ≡ 0). The model parameters are summarized
as

~θ ∈ {Ωm, w, h} (flat wCDM model), (B.1)

and
~θ ∈ {Ωm, w0, wa, h} (flat wzCDM model). (B.2)

The constraining contours for these models are shown in figures B.3 and B.4.
Figure B.3 shows that under the flatness assumption, the constraints fromD∆t + Planck

are already as tight as those from DA + D∆t + Planck, i.e., the constraining power from
DA in flat universe is minor. Figure B.4 shows that the 55 lenses combined with Planck
still constrain the equation of state better as compared to Planck + JLA and Planck +
BOSS for the flat wCDM model (left panel), and comparably well as Planck + BOSS for
the flat wzCDM model (right panel).
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Figure B.2: Same as figure B.1, but for the flat ΛCDM model. Here the blue dashed,
red dotted and black dash-dot lines are from the lensing distances alone, not combined
with Planck. We show the constraints from Planck as the horizontal magenta solid line
and Planck + lensing distances as the green solid line. Planck-precision constraint in h
is achievable with 10 lenses when we use both DA and D∆t, while we need 25 lenses to
achieve the same constraint from D∆t alone.

Figure B.3: Same as figure 4.5, but for the flat (left) wCDM and (right) wzCDM model.
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Figure B.4: Same as figure 4.6, but for the flat (left) wCDM and (right) wzCDM model.



Appendix C

Full constraints and the Hubble
Diagram from Lensing Angular
Diameter Distance combined with
SNe type Ia

This appendix show the full cosmological and nuisance parameter constraints from angular
diameter distances to two lenses and 740 SNe from JLA sample. The resulting cosmological
and nuisance parameters are summarized in tables 3.1 and 3.2, respectively.
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Figure C.1: Same as figure 3.8, but for flat wCDM model.
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Figure C.2: Same as figure 3.9, but for flat wCDM model fitted with the cosmological and
nuisance parameters constrained from figure C.1.
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Figure C.3: Same as figure 3.8, but for flat waCDM model.
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Figure C.4: Same as figure 3.9, but for flat waCDM model fitted with the cosmological
and nuisance parameters constrained from figure C.3
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Figure C.5: Same as figure 3.8, but for open ΛCDM model.
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Figure C.6: Same as figure 3.9, but for open ΛCDM model fitted with the cosmological
and nuisance parameters constrained from figure C.5
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Figure C.7: Same as figure 3.8, but for open wCDM model.
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Figure C.8: Same as figure 3.9, but for open wCDM model fitted with the cosmological
and nuisance parameters constrained from figure C.7.
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Figure C.9: Same as figure 3.8, but for open waCDM model.
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Figure C.10: Same as figure 3.9, but for open waCDM model fitted with the cosmological
and nuisance parameters constrained from figure C.9.
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Distance combined with SNe type Ia
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