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1 SUMMARY 

Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall and the primary 

underlying maladaptive mechanism for developing cardiovascular events, with myocardial 

infarction or stroke being the most life-threatening ones. Another major contributor to the 

overall global burden of disease is depression with more than 300 million people worldwide 

suffering from this common mental disorder. Numerous studies strongly suggest an 

association between both diseases. Clinical data on potential cardiovascular effects of the 

most commonly used group of antidepressant drugs, selective serotonin reuptake inhibitors 

(SSRIs), are controversial. Beyond the antidepressant effect, which is considered to depend 

on the increased serotonin (5-hydroxytryptamine; 5-HT) concentration in the synaptic cleft 

through inhibition of the serotonin transporter (SERT), SSRIs also deplete the major peripheral 

5-HT storage in platelets by blocking SERT-mediated uptake.  

Based on the inconclusive findings in humans, the aim of this thesis was to investigate the 

effect of chronic intake of SSRIs on the onset and progression of atherosclerosis in a mouse 

model. To this end, the common SSRI fluoxetine (FLX) was administered orally to 

apolipoprotein E-deficient (ApoE-/-) mice accompanied by high fat diet feeding for 2, 4 or 16 

weeks. Drug efficiency was confirmed by an observed 88%-reduction of platelet-derived 5-HT 

measured in serum after 2 weeks of FLX treatment. Interestingly, atherosclerosis, determined 

by plaque size in the aortic roots, was aggravated at all stages upon treatment, with the 

strongest effect on early lesion formation. FLX-treated ApoE-/- mice exhibited a transient 

reduction of circulating leukocyte and platelet numbers after 2 weeks, which was not present 

at later time points. Changes in myelopoiesis or mobilization from bone marrow and spleen 

were excluded as possible causes. Notably, wild type mice receiving FLX for 2 weeks did not 

show the drop in circulating cell counts, suggesting that inflammatory conditions such as 

hypercholesterolemia are crucial. Plaques of FLX-treated mice revealed a more pronounced 

macrophage infiltration during early atherogenesis due to increased adhesion of myeloid cells 

in carotid arteries. A mechanistic explanation may reside in the enhanced vascular 

permeability and increased chemokine-mediated integrin binding capability discovered in FLX-

treated mice. In vitro stimulation of blood leukocytes revealed that FLX, but not 5-HT, directly 

promoted CCL5-evoked β1- and β2-integrin activation. Of note, FLX did not trigger integrin 

binding capability in the absence of CCL5, suggesting that the drug FLX directly alters 

leukocyte adhesion properties in an inflammatory setting in presence of enhanced chemokine 

levels, independent of 5-HT platelet depletion. Similar results were obtained with another SSRI 

escitalopram. Furthermore, augmented CCL5-induced integrin activation by FLX was also 

verified in human neutrophil-like HL-60 cells. The hypothesis that the pro-atherogenic effect of 

FLX is independent of platelet 5-HT depletion was corroborated by the observation that 
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inhibition of the 5-HT synthesizing enzyme tryptophan hydroxylase 1 did not aggravate 

atherogenesis. Instead, the pharmacological 5-HT depletion even caused a reduced lesion 

size at the early time point. In conclusion, the findings reveal a pro-atherogenic effect of the 

SSRI FLX in a mechanism independent of serotonin, which is of high clinical relevance in view 

of the increasing prescription of antidepressant drugs. Thus, chronic use of SSRIs should be 

carefully reconsidered and at least carefully monitored in patients with multiple cardiovascular 

risk factors. 
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2 ZUSAMMENFASSUNG 

Atherosklerose ist eine chronische Entzündung der arteriellen Gefäßwand und die häufigste 

Ursache für die Entstehung von Herz-Kreislauf-Erkrankungen. Myokardinfarkt und 

Schlaganfall sind die lebensbedrohlichsten Folgen der Atherosklerose und gehören weltweit 

zu den häufigsten Todesursachen. Neben diesen zählt die Depression mit derzeit mehr als 

300 Millionen Betroffenen ebenfalls zu einer der am meistverbreiteten Erkrankungen. Es gibt 

viele Hinweise darauf, dass das Auftreten von Depressionen das Risiko für Herz-

Kreislauferkrankungen erhöht. Klinische Studien über die Auswirkungen der am häufigsten 

verordneten Antidepressiva, den Selektiven Serotonin-Wiederaufnahmehemmern (SSRIs), 

auf das Herz-Kreislauf-System sind kontrovers. Die antidepressive Wirkung ist sehr 

wahrscheinlich bedingt durch erhöhte Serotonin (5-Hydroxytryptamin; 5-HT)-Spiegel im 

synaptischen Spalt als Folge der Hemmung des Serotonintransporters (SERT). Da SERT 

allerdings auch eine wichtige Rolle für die 5-HT Aufnahme in Thrombozyten spielt, führt die 

Behandlung mit SSRIs auch zur Depletion von 5-HT in den Thrombozyten, dem 

Hautspeicherort in der Peripherie.  

Aufgrund der widersprüchlichen Daten klinischer Studien war das Ziel dieser Arbeit, die 

Auswirkungen von SSRIs auf die Entstehung und den Verlauf der Atherosklerose im 

Mausmodell zu untersuchen. Hierfür wurden Apolipoprotein E-defiziente Mäuse mit dem 

weitverbreiteten SSRI Fluoxetin (FLX) parallel zu einer fettreichen Diät für 2, 4 oder 16 Wochen 

behandelt. Die Wirkung des Medikaments konnte nach zweiwöchiger Behandlung anhand 

einer 88%igen Senkung des thrombozytären 5-HT bestätigt werden. Interessanterweise führte 

die Behandlung zu vergrößerten atherosklerotischen Läsionen in den Aortenwurzeln. Diese 

proatherogene Wirkung von FLX konnte in allen Phasen der Atherogenese (2, 4 und 16 

Wochen) beobachtet werden, wobei der Unterschied im frühen Stadium besonders ausgeprägt 

war. Nach 2 Wochen wiesen FLX-behandelte Mäuse zudem eine verminderte Anzahl an 

Leukozyten und Thrombozyten im Blut auf. Da an späteren Behandlungszeitpunkten die 

Zellzahlen zwischen den Gruppen vergleichbar waren, ist von einem transienten Effekt 

auszugehen. Als Ursachen konnten Unterschiede in der Myelopoese sowie in der 

Rekrutierung aus dem Knochenmark oder der Milz ausgeschlossen werden. Da die FLX-

vermittelte transiente Reduktion der Zellzahlen im Blut nicht in Wildtyp-Mäusen, sondern nur 

in atherosklerotischen Mäusen beobachtet werden konnte, ist davon auszugehen, dass hierfür 

ein inflammatorisches Milieu, wie im Falle einer Hypercholesterinämie, ausschlaggebend ist. 

In frühen atherosklerotischen Plaques der FLX-behandelten Gruppe war eine vermehrte 

Akkumulation an Makrophagen festzustellen. Dies war durch eine verstärkte Adhäsion von 

myeloischen Zellen an das Endothel bedingt. Die vermehrte Rekrutierung lässt sich durch eine 

in FLX-behandelten Mäusen beobachtete erhöhte vaskuläre Permeabilität und verstärkte 
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Chemokin-induzierte Integrinaktivität erklären. Die in vitro Stimulation von Mausblut mit FLX 

oder 5-HT zeigte, dass lediglich FLX direkt die CCL5-vermittelte β1- und β2-

Integrinbindungsaktivität von Leukozyten verstärkte. Allerdings konnte in Abwesenheit von 

CCL5 keine Steigerung der Integrinaktivität gemessen werden. Diese Beobachtungen lassen 

vermuten, dass das Medikament FLX einen direkten, 5-HT-unabhängigen Effekt auf die 

Leukozytenadhäsion hat und dieser nur im Chemokin-reichen Milieu und somit unter 

inflammatorischen Bedingungen zum Tragen kommt. Zusätzliche in vitro Versuche mit 

Escitalopram, dem derzeit wirksamsten und für Patienten bestverträglichsten SSRI, führten zu 

vergleichbaren Ergebnissen. Zudem konnte der Effekt in der humanen Neutrophil-ähnlichen 

HL-60 Zelllinie reproduziert werden. Die Hypothese der 5-HT-unabhängigen, proatherogenen 

Wirkung von FLX, konnte darüber hinaus mit einem weiteren in vivo Experiment untermauert 

werden. In diesem pharmakologischen Ansatz wurde das periphere 5-HT durch die Injektion 

eines Inhibitors des peripheren 5-HT-synthetisierenden Enzyms Tryptophanhydroxylase 1 

depletiert. Im Gegensatz zur FLX-Behandlung führte die Inhibition der Tryptophan-

hydroxylase 1 nicht zur Steigerung der Atherosklerose, sondern verringerte sogar die 

Plaqueentwicklung bei zweiwöchiger Behandlung. Zusammenfassend zeigen die Ergebnisse 

dieser Arbeit eine proatherogene, 5-HT-unabhänige Wirkung von FLX. Diese Erkenntnis ist 

aufgrund der zunehmenden Verbreitung von SSRIs von hoher klinischer Relevanz. Die 

chronische Einnahme von SSRIs sollte demnach vor allem bei Patienten mit kardiovaskulärer 

Risikofaktoren neu bedacht oder diese Patienten zumindest umfassend überwacht werden. 
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3 INTRODUCTION 

3.1 Cardiovascular diseases  
Cardiovascular diseases (CVDs) generally encompass disorders affecting the heart and blood 

vessels. According to the World Health Organization (WHO), CVDs bear the blame for more 

than 30 % of deaths worldwide with annually more people dying from them than from any other 

diseases.1 The most life-threatening complications of CVDs are myocardial infarction and 

stroke, which are mainly caused by thrombotic occlusion of a coronary artery or cerebral 

microvessel preventing the blood flow to the heart or brain, respectively. The primary 

underlying mechanism in the blood vessels resulting in these severe acute cardiovascular 

events is referred to as atherosclerosis.1,2 Today, peoples’ lifestyle is marked by behavioral 

cardiovascular risk factors such as unhealthy diet, lack of physical exercise, smoking, or 

alcohol consumption. The long-term exposure to these behavioral risk factors gives rise to an 

enhanced prevalence for obesity, hypertension, diabetes and high blood cholesterol, which in 

turn lead to the increasing incidence of CVDs.1–3 So far, primary prevention is the most 

sustainable solution for CVDs,2 while the translation of therapeutic approaches from bench to 

bedside has been disappointing so far. A better understanding of the underlying mechanisms 

of atherosclerosis is urgently needed to discover novel therapies for the treatment of CVDs. 

3.2 Atherosclerosis 
Atherosclerosis, the most common underlying cause of CVDs, is a complex pathological 

process in the artery wall that develops over many years. It is characterized by a chronic 

inflammation of the vessel wall with subendothelial plaque formation. Typically, atherosclerosis 

remains unnoticed at the beginning of the development until severe stenosis causing ischemic 

episodes or plaque rupture leading to thrombus formation and subsequently to vessel 

occlusion.4  

3.2.1 Pathogenesis of atherosclerosis 

The pathogenesis of atherosclerosis can be divided in three different stages: the initiation 

including plaque formation, plaque progression and plaque rupture (Figure 1). Normal arteries 

comprise three layers (Figure 1A). The inner layer, called intima, is separated from the vascular 

lumen via a monolayer of endothelial cells. The middle layer, the media, is rich in smooth 

muscle cells (SMCs) and embedded in a complex extracellular matrix. It is surrounded by the 

outer layer, the adventitia, which contains different leukocyte cell types, mast cells, fibroblasts, 

nerve endings and microvessels embedded in a collagen-rich matrix.5 Under steady state 

conditions, the endothelium is a protective barrier preventing leukocyte adhesion. It reacts on 

hemodynamic forces such as high pressure and shear to maintain vascular integrity. This is 

achieved by suppressing inflammation through high endothelial nitric oxide synthase (eNOS) 
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expression, by decreasing cell turnover and by strengthening of endothelial cell-cell interaction, 

which in turn leads to diminished vascular permeabiltiy.6,7   

 
Figure 1: Development and progression of atherosclerosis. 
(A) The normal artery comprises three layers: intima, media and adventitia. The inner layer, the intima, 
is lined by a monolayer of endothelial cells as a border between vessel wall and vascular lumen. In 
humans the intima contains resident SMCs compared to many other species such as mice. The middle 
layer, the media, harbors SMCs surrounded by an extra cellular matrix. The outer layer, the adventitia, 
comprises collagen, nerve endings and microvessels and several cell types like mast cells and 
fibroblasts. (B) Atherosclerosis is initiated at sites of dysfunctional endothelium. Loss of endothelium 
integrity, for example as a consequence of pro-inflammatory stimuli, low shear stress or hyperlipidemia, 
results in increased permeability and upregulation of adhesion molecules. Lipids accumulate in the 
intima and circulating leukocytes, mainly monocytes, are recruited to the site of inflammation, followed 
by binding to adhesion molecules and subsequently transmigration to the intima. Monocytes differentiate 
to macrophages, which engulf lipids, thereby transforming into foam cells. (C) During lesion progression, 
SMCs migrate from the media to the intima, proliferate and synthesize collagen resulting in the formation 
of the fibrous cap. Dying SMCs and foam cells, extracellular lipids derived from dead cells, cholesterol 
crystals and other extracellular matrix material cause the development of the necrotic core. (D) Loss of 
cap stability due to collagen degradation leads to plaque rupture. The subsequent exposure of pro-
thrombotic material to blood triggers thrombus formation, which can cause vessel occlusion. (Adapted 
from Libby et al.)5  

At sites of disturbed blood flow, such as atheroprone arterial branching points, the endothelium 

is chronically inflamed characterized by an upregulation of adhesion molecules including 

intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1), 

enhanced turnover (proliferation and apoptosis) and subsequently enhanced permeability.7 

Endothelial dysfunction is additionally promoted by pro-atherogenic stimuli including 

dyslipidemia or oxidative stress.6 Disruption of the endothelial integrity leads to subendothelial 

accumulation of lipids, especially under hypercholesterolemia. The retention of infiltrating 

cholesterol-containing particles such as low density lipoprotein (LDL) particles is an initiating 
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step in the development of atherosclerosis.4 Thus, high blood lipid levels, more precisely LDL, 

have been shown to strongly correlate with the development of atherosclerosis.8 Trapped LDL 

is modified to oxidized LDL (oxLDL), which triggers inflammation by initiating the formation of 

chemotactic gradients. Circulating leukocytes including lymphocytes, neutrophils and 

predominately monocytes are recruited from the circulation to the site of inflammation. 

Recruited leukocytes bind to upregulated ICAM1 and VCAM1 on the activated endothelium, 

followed by transmigration through the endothelium into the intima triggered by a chemotactic 

gradient (Figure 1B).9 In response to granulocyte-macrophage colony-stimulating factor (GM-

CSF) and macrophage colony-stimulating factor (M-CSF) infiltrating monocytes differentiate 

into macrophages, which engulf oxLDL through the expression of scavenger receptors such 

as CD36 or SR-A1 leading to foam cell formation.4 As the so-called fatty streak progresses, 

the plaque becomes more complex (Figure 1C). SMCs migrate from the media into the intima 

upon secretion of inflammatory mediators by endothelial cells and macrophages. There, SMCs 

proliferate, produce extracellular matrix components such as collagen and form the fibrous cap 

covering the plaque.5 SMCs and collagen are essential for plaque stability. Transforming 

growth factor (TGF) β, known to be secreted by SMCs, endothelial cells and several immune 

cells,10 promotes collagen production by SMCs as well as collagen maturation providing 

mechanical strength to the fibrous cap.4 During lesion progression, continuous lipid-uptake by 

macrophage-derived foam cells eventually promotes cell death leading to accumulation of 

extracellular lipids. Likewise, SMCs may undergo apoptosis in advanced lesions. The 

inefficient clearance of dead cells by efferocytosis leads to the formation of the necrotic core 

consisting of apoptotic and necrotic cells as well as extracellular lipids, cell debris, cholesterol 

crystals and other extra cellular material, which in turn provokes further recruitment of immune 

cells.4,5 Counteracting the production of pro-inflammatory cytokines such as interferon (IFN) γ 

and tumor necrosis factor (TNF) α, distinct subsets of macrophages and T cells secrete anti-

inflammatory mediators like TGFβ and Interleukin (IL) 10. The balance between pro- and anti-

inflammatory agents elicits the slowly progressive chronic inflammation.11 Plaques generally 

cause symptoms either by stenosis leading to chronic tissue ischemia or plaque rupture 

causing an acute ischemic event. The latter occurs when the fibrous cap fails to withstand the 

force from the blood stream and ruptures, thereby leading to thrombus formation (Figure 1D). 

So far, the reason for plaque rupture is not completely understood. Vulnerable plaques, which 

are prone to rupture, are characterized by a collagen-poor thin fibrous cap, a large lipid-rich 

necrotic core, less SMC content and ongoing inflammation.4,5 It is believed that the release of 

IFNγ and other cytokines by activated T cells and macrophages inhibit SMC proliferation and 

subsequently the presence of mature collagen. Additionally, plaque cells secrete matrix 

metalloproteinases (MMPs) promoting collagen degradation. The loss of collagen together with 

the growing necrotic core cause plaque instability and eventually plaque rupture.4,11 Upon 
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plaque rupture, the highly pro-thrombogenic material of the plaque’s core is exposed to the 

blood stream rapidly triggering platelet activation, coagulation and ultimately thrombus 

formation. The thrombus possibly leads to vessel occlusion either locally at the site of plaque 

rupture or embolizes and block the blood stream in distal arteries causing life-threatening 

events such as myocardial infarction or stroke.11   

3.2.2 Mouse model of atherosclerosis  

To study atherogenesis, the mouse has become the predominant species for preclinical 

research because of its ease of breeding, rapid reproduction and therefore the benefit to 

explore the pathogenesis of atherosclerosis in a reasonable time frame. An additional 

advantage is the ease of genetic manipulation to investigate the contribution of cell types and 

proteins to the process of atherogenesis.12 Compared to humans with LDL being the main 

subfraction, the lipid profile of wild type mice reveals high density lipoprotein (HDL) as the 

major subset.13 Thus, wild type mice do not develop atherosclerosis and genetic manipulation 

is mandatory to study atherogenesis. The two major mouse models frequently used are based 

on a genetic modified cholesterol metabolism: Apolipoprotein E-deficient (ApoE–/–) and LDL 

receptor (Ldlr-/-)-deficient mice.12 With LDLR being the receptor for the clearance of LDL and 

ApoE being a ligand for LDLR, both gene knockouts lead to an increase in plasma cholesterol. 

Likewise, the models develop atherosclerotic plaques preferentially in aortic roots, the aortic 

arch and at branching points of the aorta. Compared to Ldlr-/- mice, ApoE–/– mice have some 

disadvantages such as a nonhuman-like lipid profile with very low density lipoprotein (VLDL) 

being the major subfraction13 and the loss of ApoE, which is a multifunctional protein that might 

affect atherosclerotic plaque development independent of plasma lipid levels. However, the 

advantages of ApoE–/– mice are the spontaneously and more rapid development of 

atherosclerosis with a more advanced, human-like plaque phenotype.12 Nevertheless, both 

models have the limitation that plaques do not rupture spontaneously, thus the mouse is a 

suitable model to study atherogenesis, but not plaque instability (at least not without surgical 

manipulation such as placement of a flow modifying tube around the carotid artery).12,14 In this 

study all atherosclerosis experiments were performed in ApoE–/– mice. 

3.2.3 Leukocyte trafficking – recruitment into the vessel wall 

Leukocyte trafficking from the bone marrow or the spleen into the vessel wall is an essential 

part of the pathogenesis of atherosclerosis. Under steady state, monocytes and neutrophils 

derive from hematopoietic stem cells (HSPCs) located in the bone marrow. However, during 

atherogenesis, secondary lymphoid organs such as spleen represent additional reservoirs for 

leukocytes, where extramedullary hematopoiesis occurs. In response to hypercholesterolemia, 

HSPC proliferation is induced and myeloid cell mobilization into the circulation is enhanced, 

which leads to monocytosis and neutrophilia (Figure 2). Subsequently, myeloid cells are 
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recruited to the site of inflammation resulting in lesional cell accumulation and increased 

atherosclerosis.15,16 

 

 

 

Figure 2: Leukocyte mobilization. 
During atherogenesis, HSPCs in the bone marrow 
(medullary hematopoiesis) and spleen (extra-
medullary hematopoiesis) proliferate and 
differentiate followed by mobilization into the 
circulation and subsequently recruitment to the 
site of inflammation. (Adapted from Swirski & 
Nahrendorf)15  

Although only few neutrophils are detectable within atherosclerotic lesions, several studies 

demonstrate the importance of neutrophils during atherogenesis.17,18 They are suggested to 

promote early lesion formation by releasing inflammatory mediators, thereby paving the way 

for monocytes.19 Studies in mice have shown that mainly bone-marrow derived circulating 

monocytes rather than resident macrophages give rise to lesional macrophages, which are the 

predominant cell type in the plaque.20 Moreover, monocyte recruitment is enhanced by 

hypercholesterolemia and accumulation increases in proportion to lesion size.21 Thus, 

circulating monocytes not only participate importantly in the pathogenesis of atherosclerosis 

but also have an active role and may commit for specific functions while still in circulation. 

Indeed, at least two phenotypically distinct subsets of monocytes are described in mice and 

humans: classical Ly6Chigh monocytes in mice corresponding to human CD14highCD16- blood 

monocytes and murine non-classical Ly6Clow monocytes corresponding to CD14+CD16+ 

monocytes in humans. While classical monocytes are known to be pro-inflammatory and 

rapidly infiltrate injured tissues, non-classical monocytes are considered as patrolling cells with 

an anti-inflammatory phenotype.22 In response to high fat diet (HFD), mice revealed induced 

patrolling activity of non-classical monocytes along the vascular wall during early 

atherogenesis.23 However, the exact role of these vascular housekeepers still needs to be 

explored.  

3.2.3.1 Leukocyte adhesion cascade 

Circulating leukocytes are recruited to the activated arterial endothelium. This requires a 

coordinated interplay of endothelial adhesion molecules with their counterparts on leukocytes 

(Table 1). The development of intravital microscopy imaging techniques, which enables live 

imaging of leukocyte trafficking in the microvasculature, yielded groundbreaking insights into 

this multistep process. The interaction of leukocytes with the vessel wall occurs in a series of 

events, the so-called leukocyte adhesion cascade, which starts with capture and rolling of 
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leukocytes, followed by slow rolling, arrest, crawling and ultimately transmigration, also known 

as extravasation (Figure 3).24 Because imaging in large arteries is technically challenging due 

to respiratory and pulsatile movements of these vessels,25 leukocyte-endothelium interactions 

are mainly studied in post-capillary venules of the microvasculature, accordingly the 

mechanism in large arteries is less well understood. The homing of leukocytes to sites of 

inflammation not only requires the expression of adhesion molecules on the part of the 

activated endothelium but also the activation of leukocytes themselves, which is mainly 

achieved by a local secretion of chemokines. These chemotactic mediators, released upon 

activation from endothelial cells, platelets, lymphocytes or macrophages, provoke local 

gradients by binding to glycosaminoglycans on cell surfaces leading to leukocyte activation 

and migration.26 Monocyte trafficking to inflamed arteries is mainly dependent on C-C motif 

chemokine ligand (CCL) 2 and CCL5.27  

 
Figure 3: Leukocyte adhesion cascade. 
Inflammation provokes the release of pro-inflammatory mediators causing the activation 
of the endothelium by upregulation of adhesion molecules, which in turns triggers a 
cascade of events leading to leukocyte adhesion: capture, rolling, firm adhesion and 
transmigration. Selectins and PSGL1 are the key players in capture of leukocytes followed 
by rolling on the endothelium, whereas integrins and cell adhesion molecules (CAMs) are 
mainly mediating the firm adhesion. The transmigration generally occurs at endothelial 
junctions and involves several adhesion molecules like PECAM1 and junctional adhesion 
molecules (JAMs).24 

The initial steps in leukocyte adhesion, serving as a tether system to capture circulating 

leukocytes from the rapid flowing blood, are primarily mediated by selectins (P-, E-, and L-

selectin) binding to glycosylated ligands. Their main ligand is P-selectin glycoprotein ligand-1 

(PSGL1), which is constitutively expressed on all leukocytes.28 E-selectin (CD62E) is solely 

found on endothelial cells and upregulated by enhanced transcription in the presence of 

inflammatory cytokines such as TNFα and IL1β. Aside from PSGL1, E-selectin also binds to 
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glycosylated CD44 and E-selectin ligand 1 (ESL1). In contrast, P-selectin (CD62P), which is 

stored in Weibel-Palade bodies of endothelial cells and in α-granules of platelets, is rapidly 

translocated to the cell surface in response to an inflammatory stimulus. L-selectin (CD62L), 

however, is expressed on several leukocytes, such as lymphocytes and neutrophils, and is 

shed upon activation.29  

Table 1: Main adhesion molecules involved in leukocyte adhesion 

Class 
Common  
name 

Immunological 
name 

Gene name 
(mouse) 

Main ligands Expressed on  

Selectins E-selectin CD62E Sele PSGL1, ESL1, CD44 Endothelial cells 

 L-selectin CD62L Sell PSGL1 
Endothelial cells 
Leukocytes 

 P-selectin CD62P Selp PSGL1 
Endothelial cells 
Platelets  

CAMs ICAM1 CD54 Icam1 LFA1 Endothelial cells 

 VCAM1 CD106 Vcam1 VLA4  Endothelial cells 

 PECAM1 CD31 Pecam1 PECAM1 
Endothelial cells 
Platelets 
Leukocytes 

Integrins LFA1 CD11a/CD18 ItgaI/Itgb2 ICAM1 Leukocytes 

 MAC1 CD11b/CD18 Itgam/Itgb2 several Leukocytes 

 p150,95 CD11c/CD18 Itgax/Itgb2 ICAM1, VCAM1 Leukocytes 

 VLA4 CD49d/CD29 Itga4/Itgb1 VCAM1 Leukocytes 

Adapted from Gerhardt et al.27  

The binding of PSGL1 on leukocytes to endothelial P-selectin plays a key role for the rolling 

on the endothelium,30 while the interaction of leukocytic PSGL1 with L-selectin on other 

leukocytes or activated platelets promotes the capture on the endothelium (secondary 

leukocyte capture).28,31 Classical monocytes express PSGL1 with a much higher abundance 

compared to non-classical monocytes, and thus reveal an enhanced binding to E-, P-and L-

selectin. Impaired recruitment of classical monocytes to lesions in ApoE-/- mice lacking PSGL1 

likely explains the preferential homing to atherosclerotic plaques of classical over non-classical 

monocytes.32 The expression of both E-selectin and P-selectin on the endothelium was shown 

to be enhanced during atherogenesis.33 The selectin-mediated leukocyte-endothelium 

interaction is rather weak and easily breaks due to the rapid blood stream causing the 

leukocyte rolling along the luminal surface. Chemoattractants deposited on the endothelium, 

mainly chemokines, stimulate the rolling of leukocytes, leading to the activation of integrins.24 

Chemokines are either released from endothelial cells or produced by proteolytic cleavage in 

activated mast cells or platelets and signal through binding to G protein-coupled receptors 

(GPCRs) on the target cell. Platelets for instance are known to induce leukocyte adhesion by 

depositing C-X-C motif chemokine ligand (CXCL) 4 or CCL5 on the inflamed endothelium. The 

integrin activation on leukocytes results in firm adhesion on the endothelial cell surface by 
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binding to ICAM1 and VCAM1. Most relevant integrins involved in leukocyte arrest are β1-and 

β2-integrins, of which very late antigen 4 (VLA4) and lymphocyte function-associated antigen 1 

(LFA1) are the best studied.28 Leukocytes crawl along the endothelium until they transmigrate, 

which mainly takes place at endothelial cell junctions (paracellular diapedesis). Several 

molecules such as platelet-endothelial cell adhesion molecule 1 (PECAM1; CD31) or 

junctional adhesion molecules (JAMs) are involved in this process.24  

Although most research on leukocyte trafficking was performed in the microvasculature, 

several in vivo studies inhibiting molecules or interactions involved in the leukocyte adhesion 

cascade have highlighted a key role of these players also during atherogenesis. For instance, 

the absence of P-selectin decreased fatty streak formation in cholesterol-rich-fed Ldlr-/- mice 

and mitigated advanced atherosclerosis in ApoE-/- mice under chow diet, suggesting an 

important role for P-selectin during early and advanced atherogenesis.34,35 Mice lacking L-

selectin, however, revealed aggravated plaque formation, proposing an atheroprotective role 

of L-selectin through an alteration of the immune cell composition within the peripheral blood 

and aortic wall.36 An additional study demonstrated that ApoE-/- mice deficient for E-, P-selectin 

or ICAM1 exhibited a reduction in atherosclerotic lesion sizes.37 Although animal studies 

aiming to suppress atherogenesis by targeting arterial recruitment were encouraging, testing 

candidate drugs in humans is still in early stages. This failure in clinical translation might be 

caused, among other, by the redundancy of molecules involved in adhesion. Consequently, 

selective inhibition of a single adhesion molecule might be insufficient. Additionally, targeting 

an adhesion molecule might interfere with other leukocyte functions, because ligand binding 

also initiates intracellular signaling aside from adhesion. Moreover, other inflammatory 

processes, which are essential for tissue injury healing and defense against pathogens, might 

also be affected by drugs targeting leukocyte adhesion. Further investigation of the molecular 

structure and function of involved molecules are needed for the design of more selective small-

molecule inhibitors.29 Advancements in live cell imaging enabled high-resolution imaging of 

leukocyte movement on the endothelium in atherosclerotic arteries in living mice.25 The 

improvement of intravital microscopy combined with flow cytometry and transcriptomics will 

shed further light on the understanding of how leukocyte recruitment drives atherogenesis.38 

In summary, leukocyte trafficking to atherogenic lesions including adhesion and extravasation 

is a complex mechanism depending on the interaction of numerous molecules. 

3.2.3.2 Role of integrins in leukocyte recruitment during atherogenesis 

Integrins are transmembrane receptors which play a crucial role during leukocyte recruitment 

in atherogenesis and in particular during the rolling and adhesion phase as described above. 

These adhesion receptors facilitate cell-extracellular matrix or cell-cell interactions by binding 

to extracellular matrix ligands or to the counterpart on the surface of other cells, 
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respectively.39,40 Their presence on almost all cell types and the underlying complex signaling 

highlights the importance of integrins in a large variety of biological processes. Integrins are 

heterodimers assembled through non-covalent binding of one α-subunit with one β-subunit.41 

Currently, 18 α- and 8 β-subunits are known that assemble to 24 heterodimers.33 Both integrin 

subunits have a cytoplasmic tail, a transmembrane domain and a large extracellular domain. 

The activation of integrins is highly regulated and involves large conformational changes in the 

extracellular domains leading to an opened ligand-binding pocket which enables the cell to 

interact with their local environment. Integrins occur in at least two different conformational 

stages: an inactive bent conformation with low ligand affinity and an active, extended state with 

high affinity for the ligand (Figure 4). Since this transition process is triggered by signaling 

molecules inside the cell, it is referred to as inside-out signaling.40  

 
Figure 4: Integrin activation. 
Intracellular signals lead to activation of integrins by conformational changes from bent low-affinity state 
to extended high-affinity state (inside-out signaling). This conformational transition characterized by 
dramatic changes in the extracellular domain leads to the exposure of the ligand-binding pocket. The 
binding to the counterpart on the cell surface of other cells or to extracellular matrix ligands promotes 
cell adhesion. Besides adhesion, extracellular ligand binding can also induce intracellular signal 
transduction (outside-in signaling). By lateral movement, activated integrins can form clusters, which 
promote adhesion and further signaling.42 (Adapted from Ley et al.)40 

The exact molecular activation mechanism of integrins in atherogenesis is not well defined. 

Generally, it is suggested that chemokine-induced GPCR stimulation leads to phospholipase 

C (PLC)-mediated activation of the small guanosine triphosphatase (GTPase) Rap1, a 

member of the Ras family. Rap1 transmits downstream signaling through several effectors, 

which in turn leads to binding of cytoskeletal adapter proteins to the cytoplasmic tail. The 

interaction of the adapter molecules, of which talin and kindlin are the best studied, with the 

intracellular domain of the β-subunit breaks the salt bridge between the cytoplasmic tails of 

both subunits, resulting in integrin extension and consequently activation.33,39 The binding of 

the extracellular ligand also triggers an integrin-specific signal transduction inside the cell, a 
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process referred to as outside-in signaling that can regulate cell function.33,41 The initial 

interaction of leukocyte integrins to CAMs on the endothelium is not strong enough to prevent 

leukocytes from being carried away by the blood flow. Thus, ligand binding also stimulates the 

formation of hetero-oligo clusters, caused by the lateral movement of integrin heterodimers on 

the cell surface to the site of binding.24 This process known as integrin clustering leads to 

adhesion strengthening, which is particularly important during adhesion in large arteries.18 

Several adapter proteins have been linked to enhancing integrin clustering, but the molecular 

mechanism still remains to be uncovered.37  

In circulating cells such as platelets and leukocytes, integrins are mostly found in the bent 

conformation, masking the ligand binding pocket. The activation through inside-out signaling 

enables rapid initiation of adhesion of circulating leukocytes and platelets inducing leukocyte 

recruitment and thrombosis, respectively.33 Leukocytes express several integrin subsets that 

are involved in leukocyte-endothelium interaction (Figure 5). Integrins are dynamically up- or 

down-regulated depending on the leukocyte activation stage and each integrin exhibits a 

specific function in leukocyte recruitment.43 Among these integrins, six are exclusively 

expressed in leukocytes: the β2-subunit (CD18) with its four α-subunit binding partners αL 

(LFA1), αM (MAC1), αX (p150,95), αD and the β7-subunit with its two α-subunit binding 

partners α4 and αE. In addition to these six, leukocytes also express the β1-subunit (CD29) 

coupling to α4 (VLA4).40 

Figure 5: Integrin heterodimers in myeloid 
cells.  
Integrins are heterodimers composed of one α-
subunit coupling to one β-subunit. Leukocytes 
express numerous integrins of which the displayed 
ones except for VLA4 are exclusively expressed 
by leukocytes. They all mediate leukocyte-
endothelial interaction, of which LFA1 and VLA4 
are the best studied in atherogenesis.33,40 

While monocytes possess β1- and β2-integrins, neutrophils predominantly express β2-

integrins and only a low amount of β1-integrins, whereas lymphocytes show a pattern of β1-, 

β2- and β7-integrins dependent on their activation state.44 From these, LFA1 and VLA4 as well 

as p150,95 were shown to play a prominent role in leukocyte recruitment during atherogenesis. 

Like all β2-integrins, LFA1 binds to ICAM1, whereas the β1-integrin VLA4 functions as the 

primary leukocyte VCAM1 counterpart (Table 1). However, p150,95 has been shown to 

interact with VCAM1 as well. While genetic knockout of Vla4 was reported to be lethal,45 

blocking VLA4 revealed reduced myeloid cell adhesion as well as attenuated neointimal growth 

and fatty streak formation in atherosclerotic mice.46–48 Similarly, blocking antibodies against 

LFA1 significantly limited mononuclear cell recruitment in early atherogenesis and deletion of 

β2-integrins reduced early plaque formation, indicating that β2-integrins are also important in 
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monocyte homing to the plaque.49–51 In addition, integrin p150,95 was shown to be upregulated 

during hypercholesterolemia and the deletion decreased atherosclerosis.52,53 These studies 

are consistent with reduced plaque formation in mice lacking functional VCAM1 or ICAM1, thus 

highlighting the importance of those interactions during atherogenesis.33,37,54 

The essential role of integrins becomes evident in human genetic disorders. Inherited 

mutations in the Itgβ2 gene are known to give rise to a severe immunodeficiency named 

Leukocyte Adhesion Deficiency Type I (LADI), which is characterized by the insufficient or 

aberrant expression of the β2-subunit. Subsequently, leukocytes from patients suffering from 

this rare disease lack the ability to extravasate into tissue and fight against bacteria making 

this genetic deficiency a life-threatening disease.24 Leukocyte adhesion is the basis of any type 

of immune response, targeting this process to either boost a defective immune system or to 

suppress exaggerated inflammation is thus of high biomedical interest.40 So far, drugs against 

leukocyte integrins are applied in diseases such as multiple sclerosis and inflammatory bowel 

diseases. The benefit of integrin-based drugs in these patients leads to continued medical 

interest with currently around 80 clinical trials being listed involving integrin-interfering 

therapeutics.40 

3.2.3.3 Platelet-mediated leukocyte recruitment  

Platelets, also known as thrombocytes, are the smallest (2-3 µm) cells in circulation. These 

anucleate, megakaryocyte-derived cells are essential for maintaining vascular integrity. 

Platelets are mostly known for their role in blood clot formation (hemostasis) to stop bleeding 

after vessel injury. Their function is marked by exocytosis of their granules upon stimulation. 

The three major types of granules are α-granules, dense granules and lysosomes, which are 

packed with distinct cargos (Table 2).55 α-Granules, the most abundant secretory vesicles in 

platelets, carry mainly proteins comprising transmembrane receptors and soluble cargos 

including the chemokines CCL5 and CXCL4. Proteomic analysis revealed more than 300 

soluble proteins, which are involved in several processes such as wound healing, hemostasis 

and inflammation.56 The α-granule cargo protein P-selectin is widely used to determine platelet 

activation, since it is rapidly translocated to cell surface upon activation, and therefore easy to 

measure with flow cytometry.57 Dense granules are ten times less present than α-granules and 

mainly contain bioactive amines such as serotonin (5-HT), a high concentration of cations, 

mainly Ca2+, adenine nucleotides and polyphosphates.56 Platelet lysosomes are packed with 

several digestive enzymes such as cathepsin and collagenase. Their exact function, however, 

is not well understood.55,57 The initial formation of platelet granules starts in megakaryocytes 

with endogenous cargos or from endocytic origin. Though, the granule maturation continues 

in circulating platelets and includes cargo uptake from plasma.56 For instance, circulating 

platelets take up plasma 5-HT followed by translocation from platelet cytosol into dense 

granules.55 
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Table 2: Major types of granules in platelets with their main cargos 

Type α-Granules Dense granules Lysosomes  

Number/platelet 50-80  3-8 1-3 

Cargo Chemokines  
(e.g. CCL5, CXCL4) 

ADP, ATP Acid proteases 
(e.g. cathepsins, collagenases) 

Coagulation factors  Cations (e.g. Ca2+, Mg2+) Glycohydrolases 
(e.g. Glucosidases) 

Adhesion molecules  
(e.g. P-selectin, VWF) 

Bioactive amines        
(e.g. 5-HT, histamine) 

Immune mediators Polyphosphates 

Growth factors  

Angiogenic 
factors/inhibitors 

  

ADP = Adenosine diphosphate; ATP = Adenosine triphosphate; VWF = Von Willebrand factor; Adapted from Fitch-Tewfik et al.55 

Platelets have a lifespan of only 8-10 days after which they are removed from the circulation 

by phagocytosis in spleen or liver. In humans, to maintain the normal platelet count of 150-

400 x 106 cells/mL blood, 100 billion new platelets must be generated daily from 

megakaryocytes in the bone marrow. Of note, platelet counts in mice are with 900-1600 x 106 

cells/mL blood around 5 times higher than in humans.58 

Under steady state, they circulate at high shear stress as discoid cells. Following vessel injury 

marked by the exposure of extra cellular matrix material to the vascular lumen, platelets get 

activated and undergo drastic morphological changes.55,58 The initial step in platelet-

endothelial adhesion is the interaction of platelet glycoprotein (GP) Ib-V-IX complex with 

collagen-bound von Willebrand factor (VWF). This transient interaction enables stable platelet 

adhesion to collagen, which stimulates the release of platelet-stored effector molecules with 

high local concentrations, leading to further platelet recruitment and initiation of the coagulation 

cascade.58,59 In the context of atherosclerosis, platelets are activated when a plaque ruptures 

because of the exposure to highly pro-thrombogenic plaque-components such as collagen or 

VWF. Platelet aggregation and activation leads to thrombus formation and eventually to vessel 

occlusion.11 

Beyond their role in thrombosis and hemostasis, it is now widely recognized that platelets also 

promote endothelial leukocyte recruitment in diverse ways during inflammation. Activated 

platelets express P-selectin by which they can interact with the activated endothelium via VWF 

or PSGL1. However, leukocytes also express the P-selectin ligand PSGL1, thereby enabling 

activated platelets to capture leukocytes. On the one hand, they can interact in circulation 

forming so-called platelet-leukocyte aggregates (PLAs) and, on the other hand, endothelium-

bound platelets can facilitate leukocyte recruitment by forming an adhesive bridge between 

endothelium and blood leukocytes (Figure 6A,B).60 Furthermore, platelet-mediated deposition 

of effector molecules such as CCL5 on the endothelium can enable leukocyte recruitment 

(Figure 6C). Several in vivo studies reported that enhanced platelet-leukocyte interactions 
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promote atherogenesis. For instance, the injection of activated platelets derived from wild type 

mice induced monocyte arrest on atherosclerotic lesions, which was not observed with P-

selectin deficient platelets.61 In line with these results, platelet-specific P-selectin knockout 

reduced atherogenic lesions in ApoE-/- mice.62  

 

Figure 6: Pathways of platelet-mediated leukocyte recruitment. 
Platelets can mediate leukocyte recruitment and adhesion to the endothelium in different ways. 
(A) The activated endothelium expresses factors such as VWF, PSGL1 or P-selectin leading to 
platelet recruitment, binding and subsequently activation. Platelets can capture leukocytes by 
P-selectin-PSGL1 binding, thereby forming a bridge between the immune cells and the 
endothelium. (B) Activated platelets can form aggregates with leukocytes in circulation in a 
P-selectin-mediated manner enhancing the recruitment to the activated endothelium.  
(C) Inflammatory chemokines deposited by platelets can induce the activation on the one side 
of endothelial cells, and on the other side of leukocytes leading to leukocyte adhesion.63 

The formation of PLAs is also observed in healthy individuals, albeit with low frequency. 

Interestingly, the amount of PLAs positively correlated with the severity of inflammation. For 

instance, an augmented incidence was observed in stable coronary artery disease or during 

myocardial infarction and stroke.63 In mice, it was demonstrated that PLAs promote 

atherogenesis and P-selectin on activated platelets is crucial for their formation.61 Further 

studies showed that the deposition of chemokines by platelets provokes atherogenesis.61,64–66 

More precisely, deposition of platelet-derived CCL5 and CXCL4 is P-selectin-dependent and 

triggers integrin-mediated monocyte activation and recruitment to atherosclerotic lesions which 

in turn leads to aggravated atherosclerosis.61,64,65 Moreover, genetic ablation of CXCL4 

protected mice from atherosclerosis.66 Interestingly, CCL5 and CXCL4 were shown to form 

heteromers, which in turn promote monocyte arrest on the endothelium.67 Moreover, disruption 

of this interaction mitigated atherogenesis.68,69  

In summary, platelets can mediate leukocyte recruitment either by chemokine deposition or by 

direct leukocyte interaction. The latter can occur in three different ways during atherogenesis: 

First, activated, endothelium-adherent platelets can bind to blood leukocytes and thereby form 

a bridge between leukocytes and vessel wall; second, the formation of platelet-leukocyte 
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aggregates in circulation promotes leukocyte recruitment; third, during hemostasis leukocytes 

are recruited to the growing thrombus. Whether these interactions are causal or consequential 

in inflammatory disease still remains to be addressed.63  

3.3 The serotonergic system 

3.3.1 Central versus peripheral serotonin  

Serotonin (5-hydroxytryptamine, 5-HT), discovered by Rapport et al. 1948 as a vasoconstrictor 

compound,70 has two distinct sites of action: one as a neurotransmitter regulating mood, 

behavior, sleep, appetite and other brain functions, and one as a peripheral hormone 

(Figure 7). Although 5-HT is mainly known for its role as neurotransmitter in the brain, the vast 

majority of 5-HT (~95 %) is found in the periphery, where it is involved in a variety of different 

functions such as the regulation of the vascular tone,71 platelet aggregation and de-

granulation,72 vascular permeability,73 intestinal motility74 or immune-modulation.75 5-HT is 

synthesized from the essential amino acid tryptophan (Trp) in two steps with the initial and 

rate-limiting step being the hydroxylation to 5-hydroxytryptophan (5-HTP) by the enzyme 

tryptophan hydroxylase (TPH), followed by decarboxylation through the catalytic action of 

aromatic amino acid decarboxylase (AADC).76 

 
Figure 7: The effects of peripheral and central 5-HT. 
5-HT is synthesized from the amino acid tryptophan (Trp) in two steps: hydroxylation to  
5-hydroxytryptophan (5-HTP) by the rate-limiting enzyme tryptophan hydroxylase (TPH) 
followed by decarboxylation through the aromatic L-amino acid decarboxylase (AADC) to 
5-HT. Because 5-HT cannot pass the blood brain barrier, the central and peripheral pools 
are synthesized via two different enzyme isoforms: TPH1, which is found in the periphery, 
and TPH2, which is only expressed in neurons. In the central nervous system (CNS), 5-HT 
is associated with the regulation of several behaviors such as mood, sleep and anxiety. 
However, most of the body’s 5-HT can be found in the periphery where the majority is stored 
in circulating platelets. Peripheral 5-HT is involved in the regulation of a variety of different 
processes such as vascular tone, hemostasis and intestinal motility.75,76  

5-HT cannot pass the blood-brain barrier yielding two isolated 5-HT pools - one in the brain 

and one in the periphery. These are synthesized by two different TPH isoenzymes: TPH1, 

primarily localized in enterochromaffin cells in the gastrointestinal tract, and TPH2, exclusively 
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expressed in neurons.77 Once synthesized, 5-HT is packed into vesicles mediated by the 

vesicular monoamine transporter (VMAT) and stored until targeted secretion through 

exocytosis.76 The bioavailability of 5-HT is dependent on synthesis and metabolism. It is mainly 

degraded by monoamine oxidase (MAO) to the end product 5-hydroxyindoleacetic acid 

(5-HIAA) followed by excretion through the kidneys. Besides, 5-HT can be metabolized to 

melatonin, known to be involved in the circadian rhythm regulating sleep-wake timing. Age-

related decline in 5-HT might correlate with changes in sleep behavior linked with aging.76 

In neurons, upon activation, synthesized 5-HT is released into the synaptic cleft, where 

signaling takes place by binding to one of the several 5-HT receptors (5-HTRs) either in an 

autocrine or paracrine fashion (Figure 8). The signaling can be regulated by 5-HT reuptake 

through the serotonin transporter (SERT). Abnormalities in 5-HT signaling are associated with 

several neuropsychological conditions such as depression, anxiety disorders or 

schizophrenia.76  

 
Figure 8: Comparison of 5-HT in neurons and platelets.  
In neurons, 5-HT is synthesized from tryptophan (Trp) via 5-hydroxytryptophan (5-HTP) within the cell 
and stored in vesicles. In contrast, platelets do not synthesize 5-HT. Here, enterochromaffin cell-derived 
5-HT is taken up from plasma via SERT and stored in the dense granules. In both cell types, activation 
leads to 5-HT release by exocytosis and autocrine and/or paracrine signaling by binding to several 5-
HTRs. 5-HT signaling can be regulated on the part of the ligand 5-HT through 5-HT reuptake by SERT. 

Platelets represent the major storage site for peripheral 5-HT. However, they lack the enzyme 

TPH1 and thus cannot synthesize 5-HT themselves. Instead, they take up enterochromaffin 

cell-derived 5-HT from the plasma through SERT and store it in their dense granules.78 The 

translocation from the cytosol into the dense granules is mediated by VMAT2, which is driven 

through an electrochemical proton gradient.55 Under steady state, the 5-HT plasma 

concentration is very low (~10 nM). Upon platelet activation, the targeted release of 5-HT 

through exocytosis leads to rapidly increased levels of up to 10 µM and more.75 Secreted 5-HT 
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provokes signaling by binding to one of the 5-HT receptors (5-HTR), which is terminated on 

the part of the ligand by 5-HT-reuptake via SERT (Figure 8). Elevated plasma 5-HT levels have 

been associated with CVDs, including myocardial infarction, coronary artery disease, 

atherothrombosis and stroke.79 

Although most platelet 5-HT is stored in the dense granules, Walter et al. stated that 

cytoplasmic platelet 5-HT can be transamidated to small GTPases, a process named 

serotonylation. The covalent binding of 5-HT leads to the activation of GTPases resulting in α-

granule secretion, representing a receptor-independent intracellular 5-HT signaling pathway.80 

So far, this process has also been demonstrated in pancreatic β-cells and vascular SMC. Thus, 

serotonylation may also occur in other cell types such as leukocytes.81 Pathological function of 

peripheral 5-HT was shown to be implicated in several inflammatory diseases such as colitis,82 

asthma,83 inflammatory bowel disease,82 and obesity.84  

3.3.2 Components of the serotonergic system 

3.3.2.1 Serotonin receptors 

The wide range of functions mediated by 5-HT results from the existence of several 5-HTRs. 

In mammalians, seven distinct 5-HTRs (5-HTR1-7) are described with at least fourteen known 

subtypes (Figure 9). All 5-HTRs are GPCRs with the exception of 5-HTR3, which is a ligand-

gated cation channel (Na+ and Ca2+ influx, K+ efflux). GPCRs are seven transmembrane 

receptors characterized by the ability to activate heterotrimeric G proteins comprised of the 

three subunits α, β and γ. The complexity of the serotonergic system is further amplified by the 

fact that the 5-HTRs couple to different G proteins and may also assemble to receptor homo- 

and heterodimers.85  

Figure 9: 5-HTR subtypes and their 
main signaling pathways. 
Overview about the main signaling 
pathways of the different 5-HTRs. All 
5-HTRs are GPCRs with the 
exception of 5-HTR3, which is a 
ligand-gated cation channel. 5-HTR1 
and 5-HTR5 are associated with 
coupling to Gαi/o causing a decrease 
in cAMP, whereas 5-HTR4, 5-HTR6 
and 5-HTR7 are known to increase 
cAMP by activation of Gαs. 5-HTR2, 
however, couples to Gαq/11 leading to 
the release of intracellular calcium.86   

5-HTR1 and 5-HTR5 couple to Gαi/o, which inhibits adenylyl cyclases (ACs), resulting in 

downregulation of cyclic adenosine monophosphate (cAMP).86 The 5-HTR1 subfamily, which 

is linked with migraine and anxiety, consists of five subtypes: 5-HTR1a, 5-HTR1b, 5-HTR1d, 

5-HTR1e, 5-HTR1f. The subtype 5-HTR1c was reassigned to 5-HTR2c because of its different 

signaling. Little is known about the 5-HTR5 subfamily, which is comprised of 5-HTR5a and 
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5-HTR5b, mainly due to the lack of selective agonists.87 5-HTR4, 5-HTR6 and 5-HTR7 are 

known to activate ACs via Gαs causing an increase in cAMP. The 5-HTR2 subfamily 

encompasses the three subtypes 5-HTR2a, 5-HTR2b and 5-HTR2c and is associated with 

coupling to Gαq/11. This signaling pathway leads to the activation of PLC, which in turn 

hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to diacylglycerol (DAG) and inositol 

1,4,5-triphosphate (IP3), triggering the release of intracellular calcium.86 However, in cell 

culture 5-HTR2a and 5-HTR2c were also shown to exhibit Gαi/o activation.87   

To define a specific function for each 5-HTR is difficult, at least based on the current literature. 

For instance, contradictory reports were published about the role of 5-HTR2a in inflammation. 

On the one hand, 5-HT2a stimulation was shown to trigger a pro-inflammatory response by 

IL6 release in vascular SMCs.88 In line with these findings, inhibition of 5-HTR2 blocked the 

TNFα-induced ICAM1 expression in human umbilical vein endothelial cells via nitric oxide (NO) 

release.89 On the other hand, a different report revealed anti-inflammatory properties of 5-

HTR2a in primary aortic SMCs. Specific activation led to the inhibition of TNFα-mediated 

inflammation including a decrease in the expression of ICAM1 and IL6.90 The little consistency 

in studies arise through the complexity of the serotonergic system. As different cell types 

express a different 5-HTR expression pattern, 5-HT function is diverse. For instance, 5-HT 

seems to have two faces in the regulation of the vascular tone. Firstly, 5-HT acts as a 

vasoconstrictor via the 5-HT2A receptor in VSMC. Secondly, 5-HT induces vasodilation 

through eNOS production via 5-HTR1b present on endothelial cells.91 Even within the same 

organ, different receptors can be stimulatory or inhibitory, leading to the bivalent action of 

increased or decreased 5-HT.76 Conflicting results in cell culture experiments may be explained 

by contaminations of 5-HT since fetal bovine serum (FBS) contains ~300 nM 5-HT, which is 

enough to stimulate most 5-HTRs.92 Moreover, the absence of sufficiently selective ligands 

makes it difficult to attribute a specific function to a receptor.93 A few years ago Wang et al. 

and Wacker et al. deciphered the GPCR crystal structures of the 5-HT subtypes 5-HTR1b and 

5-HTR2b.94,95 While both receptors show high similarity in the structure of the 5-HT binding 

site, there is a subtle difference in the width of the binding pocket, which is already enough to 

cause differences in signaling. This paved the way for the development of novel more selective 

compounds for these two receptors. Further research on 5-HTR crystal structures will provide 

a better understanding of the serotonergic receptor function and will enable the design of more 

selective compounds and thereby more specific drugs.96  

3.3.2.2 Serotonin transporter 

The 5-HT transporter (SERT or 5-HTT) is a Na+/Cl--dependent twelve transmembrane domain 

spanning monoamine transporter, which is encoded in humans by the gene solute carrier 

family 6, member 4 (SLC6A4).81 It is a key regulator for 5-HT signaling, which terminates 

signaling by removing extracellular 5-HT through transportation across the plasma membrane 
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into the cell. In this way, the 5-HT reuptake can mediate the duration as well as the strength of 

the autocrine and paracrine signaling of 5-HT. After reuptake, 5-HT is either recycled and 

packed into vesicles by VMAT or degraded by MAO. Although SERT is mainly studied and 

therapeutically targeted for controlling the 5-HT concentration in the synaptic cleft, it is also 

crucial for platelet function including the regulation of plasma 5-HT levels.76,79,81 Because of its 

important function, SERT is regulated in several ways. Like many receptors, SERT is not 

constitutively located on the plasma membrane but dynamically traffics due to post-

translational modifications such as phosphorylation. Apart from trafficking, phosphorylation 

was also postulated to modulate SERT activity. Thus, p38 mitogen activated protein kinase 

(MAPK)-dependent phosphorylation, induced by the pro-inflammatory cytokines IL1β and 

TNFα, enhances SERT activity.97 Moreover, 5-HT itself regulates the density of SERT on the 

plasma membrane. Increased 5-HT concentrations display a bivalent effect on SERT. In 

neurons, high extracellular 5-HT levels decrease the density of SERT on the membrane, 

whereas SERT on the surface of platelets is initially upregulated with increasing plasma 5-HT 

levels.98 However, with continuously rising plasma levels, the SERT density on platelets falls 

below normal levels, suggesting that 5-HT limits its own uptake into platelets by down-

regulating SERT.79 This is further supported by the observation that high intracellular 5-HT 

levels in platelets result in SERT internalization, which is dependent on GTPase 

serotonylation.81  

It is well established that SERT is implicated in mental disorders such as depression, although 

the precise mechanism is still debated.93 This is further supported by the observation that 

genetic variations and altered SERT expression are associated with behavioral phenotypes 

and disorders. Clinical evidence arises from polymorphisms in the promoter region of SERT, 

the so-called serotonin-transporter-gene-linked polymorphic region (5-HTTLRP), which has 

been associated with neuropsychiatric disorders.99 In accordance, mice deficient for SERT 

exhibit behavioral abnormalities linked to anxiety and depression. As a result, SERT is the 

primary target of many antidepressant medications. The most common antidepressants are 

the selective serotonin reuptake inhibitors (SSRIs). The effectiveness of SSRIs is assumed to 

be mediated by enhanced serotonergic neurotransmission. More precisely, SSRIs block SERT 

and thereby the 5-HT reuptake, resulting in an increased 5-HT concentration in the synaptic 

cleft and subsequently to an amplified signaling. Just recently, Coleman and colleagues were 

the first who described a high resolution structure of the human SERT bound to two different 

SSRIs.100,101 While others suggest that SERT functions by forming oligomers, Coleman et al. 

postulate that SERT-dimers observed in crystal form are unlikely to occur under physiological 

conditions in the cell membrane because the predicted membrane-spanning regions of each 

protomer are not properly aligned.100  
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3.3.3 Impact of platelet serotonin on immune function 

Davis and colleagues already stated in 1960 that platelet-derived 5-HT is linked to inflammation 

based on the observation that inflammation triggered by E.coli endotoxin coincided with a 

decrease in circulating platelet counts and serum 5-HT.102 In fact, platelets represent the main 

source of 5-HT for immune cells. Apart from mast cells, monocytes/macrophages and T cells 

are described to have the ability to synthesize small amounts of 5-HT, representing an 

additional but smaller 5-HT source for the immune system.92 The expression of 5-HTRs was 

determined on several immune cells as well as on platelets, endothelial cells and vascular 

SMCs (Table 3). Additionally, most immune cells were proposed to express SERT. However, 

the presence of serotonergic components on different cell types is rather controversial between 

studies, especially when it comes to neutrophils.75 This might be due to methodical problems 

based on unspecific primers or contaminations by other cell types during cell isolation.          

Table 3: Serotonergic components in immune cells 75,81,85,103–105 

Cell type 5-HTR SERT TPH1 

Monocytes 1a, 1e, 2a, 3, 4, 7 + + 

Neutrophils (1a, 1b, 2, 7) ? - 

T cells 1a, 1b, 2a, 2c, 3, 7 + + 

Platelets 2a, 3 + - 

Endothelial cells 1b, 2b, 4 + + 

Vascular SMCs 1b, 2a, 2b, 7 + + 

Activated platelets release 5-HT locally at the site of acute or chronic inflammation, leading to 

autocrine signaling or stimulation of other cell types such as leukocytes, SMCs and endothelial 

cells.98 Although the 5-HTR3 receptor was also reported to be expressed on platelets, the 

effects of 5-HT on platelets so far are assigned to serotonylation and mainly to the activation 

of 5-HTR2a.75 The latter induces a positive feedback loop by PLC-mediated increase of 

intracellular calcium. This in turn leads to amplified platelet activation and the recruitment of 

other circulating platelets.106 Contrariwise, 5-HTR2a activation without further platelet 

stimulation was shown to activate TNFα-converting enzyme (TACE), resulting in reduced 

platelet adhesiveness through shedding of GP Ibα and V from the VWF receptor complex 

GPIb–IX–V.107 

Several studies reported that platelet-derived 5-HT is implicated in multiple immune reactions, 

mainly caused by the regulation of cytokine secretion and alteration of leukocyte function.88–

90,98,108–110 The immunomodulatory effects of 5-HT depend on the different expression of the 

serotonergic components by immune cells. Thereby, the regulation can differ in terms of pro- 

or anti-inflammatory action depending on the cell type and the environment.81 For instance, it 

was shown that 5-HT induces proliferation of lymphocytes.108 Moreover, 5-HT enhances the 

phagocytotic activity of macrophages109 as well as the polarization to a more anti-inflammatory 
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phenotype.110 However, Sternberg et al. reported that 5-HT had inhibitory or stimulator effects 

on murine macrophage activity depending on the dose of IFNγ. At high concentrations, 5-HT 

suppressed the IFNγ-mediated phagocytotic activity, while at lower levels, it revealed 

stimulatory effects.75,111,112 Others showed that 5-HT promotes the LPS-induced release of 

cytokines such as IL1β and IL6 in human blood monocytes.105 However, TPH1 deficient mice, 

which lack non-neuronal 5-HT, are not immunocompromised, suggesting that 5-HT is not 

essential for immune response but rather has an immunomodulatory role.76,92 These data 

further illustrate the complexity of 5-HT signaling. 

It becomes even more complicated when considering endothelial inflammation. In this context, 

Cloutier et al. discovered an unpredicted role for platelets by amplifying vascular permeability 

in inflammatory arthritis in a 5-HT dependent manner.73 In vitro studies showed that 5-HT 

stimulates the release of Weibel-Palade bodies from endothelial cells,113,114 which are known 

to be packed with P-selectin and may thereby promote leukocyte rolling. In line with this 

mechanism, Duerschmied and coworkers reported that platelet 5-HT promotes E- and P-

selectin-mediated neutrophil rolling and adhesion on the endothelium of mesenteric 

veins.115,116 In addition, they showed that TPH1 deficient mice revealed improved wound 

healing and mitigated neutrophil extravasation in response to an acute inflammation, 

suggesting a pro-inflammatory role for 5-HT.115  

Although the reported immunomodulatory effects of 5-HT are somewhat controversial, they 

highlight that 5-HT is more than just a neurotransmitter for mood modulation. However, it is 

difficult to pinpoint a specific mode of 5-HT action, as it regulates several processes at multiple 

steps through different receptors, often with opposing mechanisms. Thus, even drugs targeting 

a specific 5-HTR are likely to have off-target effects, which is challenging for drug development. 

But at the same time, this may offer a pharmacologic opportunity.78 Hence, drugs targeting the 

serotonergic systems should be examined carefully. Michael Gershon, the so-called “father of 

neurogastroenterology”, once ironically stated that 5-HT has delighted every pharmacologist 

because something always happens and that the attempts to define the exact function of 5-HT 

is bedeviled because it has the ability to do too much.117 Thus, the knowledge about the 5-HT 

function remains poorly understood. Nevertheless, it is clear that 5-HT plays an important role 

as an immunomodulator.  

3.4 Antidepressants and cardiovascular diseases 

3.4.1 Depression – a cardiovascular risk factor 

Depression can affect anyone. According to the WHO depression is the leading cause of 

disability with more than 300 million people globally suffering from this mental disorder.118 

Interestingly, persons suffering from depression are more likely to develop CVDs and possess 

a higher mortality rate compared to healthy individuals.119 Moreover, Ladwig and colleagues 
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published a report in 2017 based on the data set from the MONICA/KORA study, where 3428 

male patients were monitored for ten years.120 They surprisingly found that depression 

represents a cardiovascular risk factor which is just as great as that posed by obesity and high 

cholesterol levels. Based on their findings, only hypertension and smoking are associated with 

a higher risk.120 Given that depression represents a widely accepted risk factor for CVDs the 

question is emerging if the treatment of depression may reduce the risk for CVDs.  

Depression has been implicated with a dysregulation of the serotonergic system. However, 

years of research still do not clarify which precise role 5-HT is playing in depression. Thus, the 

50 years ago proposed “serotonin hypothesis”, which says that a 5-HT deficiency is causal for 

the development of depression, is still highly debatable.121,122 Indeed, there are some 

arguments against this theory. For instance, the measurements of brain 5-HT levels are not 

feasible in living individuals. Given that 5-HT cannot pass the blood brain barrier, the 

measurement of 5-HT blood levels may not exactly reflect brain levels. Furthermore, carriers 

of the short (s) variant of the 5-HTTLRP polymorphism, which results in decreased expression 

of SERT and thereby higher extracellular 5-HT levels, are likely to suffer from depression. 

However, it seems too simplistic that a single neurotransmitter is the only cause for developing 

depression.122 Nevertheless, there is substantial evidence for an association of imbalanced 5-

HT signaling, and targeting the serotonergic system in depressed patients displays beneficial 

effects. With the increasing incidence of depression, antidepressants are one of the most 

prescribed drug classes nowadays.123 

3.4.2 Selective serotonin reuptake inhibitors – good or bad? 

The serotonergic system turned out to be an effective target for the treatment of depression. 

The most widely prescribed antidepressants are the SSRIs. They are a newer class of 

antidepressants targeting SERT and display higher efficacy and lower adverse effects, 

compared to the first generation drugs, the tricyclic antidepressants, even though their exact 

mechanism is not entirely elucidated.124 It is assumed that the antidepressant effect of SSRIs 

is caused by preventing the SERT-mediated 5-HT reuptake, which leads to an increase of 

extracellular 5-HT and in turn to an enhanced 5-HT signaling.76Table 4 shows the U. S. Food 

and Drug Administration (FDA)-approved SSRIs and their most common trade names,125 of 

which fluoxetine (FLX) and escitalopram are those who were used in this work (Figure 10). 

FLX, better known with its trade name Prozac, was approved as one of the first SSRIs for the 

treatment of depression. It is a racemic mixture of the (S)- and the (R)-enantiomer, of which 

the (S)-enantiomer is slightly more potent. Interestingly, the metabolite of FLX, norfluoxetine, 

is even more potent and has an extremely long biological half-life of 7-15 days.126 Escitalopram 

is the active (S)-enantiomer of the racemic citalopram and is the newest marketed SSRI.127  
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Table 4: FDA-approved SSRIs125 

Figure 10: Structure of FLX enantiomers and escitalopram.128 

All SSRIs are small molecules with diverse chemical structures and different functional groups, 

leading to different affinities to SERT.128 So far, little was known about the structural basis of 

how the diverse SSRIs bind to SERT, until Coleman and coworkers recently provided the 

structures of the human SERT bound to different SSRIs. More precisely, two years ago they 

were the first to describe X-ray crystallographic structures of human SERT bound to the SSRI 

escitalopram or paroxetine.100 More recently, they were also able to crystallize human SERT 

occupied with sertraline and fluvoxamine. This enables new insights into the interaction of 

different pharmacophores within the central cavity, paving the way for the development of new 

and better drugs.128 By binding in the central cavity, SSRIs lock SERT in an outward-open 

positon, directly inhibiting 5-HT binding (Figure 11A-D).  

 
Figure 11: SERT-inhibition by SSRIs. 
(A) Extracellular 5-HT is transported across the plasma membrane 
into the cytoplasm by SERT through binding to the central binding 
cavity. (B-C) SSRIs compete with 5-HT for the central binding site and 
lock SERT in an outward-open conformation, thereby inhibiting the 
transmembrane transport of 5-HT. In contrast to FLX, which only 
occupies the central binding site, escitalopram (ESC) was shown to 
bind at an additional allosteric binding cavity. This second binding at 
the allosteric site may explain the prolonged binding of ESC and the 
enhanced drug efficiency compared to other SSRIs. (D) Schematic 
illustration of SERT bound to a SSRI. Binding locks SERT in an 
outward open conformation, preventing 5-HT transmission. (Adapted 
from Caron & Gether and Coleman et al.)100,130 

Generic name Trade name  

Fluoxetine Prozac  

Citalopram Celexa 

Escitalopram Lexapro 

Fluvoxamine Luvox  

Paroxetine Paxil  

Sertraline Zoloft 

Vilazodone Viibryd 
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Escitalopram differs from the other SSRIs because two molecules bind to SERT at the same 

time. In addition to the central cavity, escitalopram also binds “above” at an allosteric site. This 

additional occupancy sterically prevents dissociation of the drug from the central binding site 

and thereby prolongs the blocking activity of escitalopram. The additional binding at the 

allosteric site probably explains the higher efficacy of escitalopram compared to other 

SSRIs.100,101 Thus, escitalopram has a recommended therapeutical range of 15-80 ng/mL, 

which is much lower compared to the one for FLX (120-300 ng/mL).129  

Although SSRIs are the first-line therapy for depression, the treatment is ineffective in one-

third of the patients. One of the underlying causes might be related to polymorphisms of the 

SERT gene.124 Another important issue in terms of SSRI intake is that SERT is not only 

expressed on neurons but also on the plasma membrane of several other cell types such as 

platelets (Table 3). As platelets are not able to synthesize 5-HT, chronic SSRI intake leads to 

the depletion of platelet 5-HT and thereby to the depletion of the major 5-HT storage in the 

periphery (Figure 12). Indeed, depressed patients taking SSRI have decreased intra-platelet 

5-HT content.131 The same was observed in mice treated with the SSRI FLX.115 Because 

released platelet 5-HT is known to provoke a positive feedback mechanism, thereby enhancing 

platelet activation, it is conceivable that SSRI treatment is associated with bleeding disorders. 

However, studies investigating the bleeding risk in patients taking SSRIs present contradictory 

results.132,133 Ideally, randomized double-blind studies would be important to determine the link 

between SSRI and bleeding risk.134 

 
Figure 12: Impact of SSRI intake on neurons and platelets. 
The antidepressant effect of SSRIs is supposed to underlie in blocking the SERT-mediated 5-HT uptake, 
thereby leading to increased 5-HT levels in the synaptic cleft and subsequently to an amplified 5-HT 
signaling. However, SERT is expressed by several other cell types and SSRIs are not selective for 
neuronal SERT. For instance, intake of SSRIs leads to the inhibition of 5-HT uptake in platelets and 
thereby to the depletion of the platelet 5-HT storage, which is the major source of 5-HT in the periphery.  
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The fact that depression poses a widely accepted risk factor for CVD raises the question if 

antidepressant medication reduces the risk for the incidence of a cardiovascular event. So far, 

there is still no clear answer to this question because clinical studies investigating the effect of 

SSRI intake on CVD risk are controversial (Table 5). Data from observational and experimental 

studies showed indeed a reduced cardiovascular risk for patients taking SSRIs.135–141 In 

contrast, other case-control and cohort studies claim that SSRI intake increases the risk for 

CVD,142–146 while some reports show no influence at all.147–155 An important issue of these 

conflicting results are the confounding effects by depression and behavioral risk factors. Given 

the rising number of people suffering from depression and SSRIs being the first-line therapy, 

answering the question if SSRIs treatment has an impact on the risk for the incidence of a 

cardiovascular event is of great importance and requires further investigation. Ideally, more 

randomized double-blinded controlled trials without depression as a confounding variable 

would be needed to address this issue.  
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Table 5: Selected clinical studies showing controversial findings regarding the effect of SSRI 
intake on CVD risk  

Observational studies 

Risk Study design Study group Cohort (SSRIs)# Ref

↑↓ Case-control study Stroke patients   44765*1 (3520) 147 

↑↓ Case-control study 
MI patients  
GPRD (General Practice Research 
Database) 

16458*2 (221) 148 

↑↓ Cohort study Subjects without a history of CVDs 14784 (299) 149 

↑↓ Cohort study 
MESA (Multi-Ethic Study of 
Atherosclerosis)  

6814 (324) 150 

↑↓ Case-control study Patients with stroke recurrence  19825*3 (239) 151 

↑ Cohort study ACS patients  457 (58) 142 

↑ Cohort study Postmenopausal women  136293 (3040)  143 

↑ Case-control study MI patients  442398*4 (12988) 144 

↑ Case-control study Patients with depression +/- CVE  7601 (2632) 145 

↑ Case-control study Patients with out-of-hospital cardiac arrest 19110 (1696) 146 

↓ 
Observational 
secondary analysis 

MI patients  1834 (301) 135 

↓ Case-control study MI patients  3465*5  (586) 136 

↓ Case-control study MI patients  5336*6 (223) 137 

↓ Cohort study Stroke patients  36175 (5833) 138 

Experimental studies 

Risk Study design Study group Intervention Sample size Ref

↑↓ 
Randomized controlled 
trial (double-blinded) 

Depressed 
heart failure 
patients 

Escitalopram vs. placebo 3720 152 

↑↓ 
Randomized controlled 
trial (double-blinded) 

Non depressed 
ACS patients 

Escitalopram vs. placebo 240 153 

↑↓ 
Randomized controlled 
trial (double-blinded) 

MDD patients Sertraline vs. placebo 369 154 

↑↓ 
Randomized controlled 
trial (double-blinded) 

Depressed 
heart failure 
patients 

Sertraline vs. placebo 469 155 

↓ 
Randomized controlled 
trial (double-blinded for 
SSRI treatment) 

MDD patients 
Sertraline, placebo, 
supervised exercise, 
home-based exercise 

202 139 

↓ 
Randomized controlled 
trial (single-blinded) 

Stroke patients FLX vs. no intervention  404 140 

↓ 
Randomized controlled 
trial (double-blinded) 

Depressed MI 
patients 

Sertraline vs. placebo 38 141 

ACS = Acute coronary syndromes; CVE = Cerebrovascular events; MDD = Major depressive disorder; MI = Myocardial infarction 

# Number of patients in total cohort receiving SSRIs. 
*The cohort includes the following number of controls: *1 40000, *2 13139, *3 7779, *4 378886, *5 2772, *6 4256. 

 



AIM OF THE STUDY 
 

30 

3.5 Aim of the study 
Depression is the leading cause of disability worldwide that can affect anyone. The WHO 

estimated that from 2030 onwards depression will not only be the largest contributor to global 

disease burden but also the illness that will be the number one financial health burden. With 

more than 300 million people worldwide being affected, it is not surprising that antidepressant 

medication finds widespread use.118,156 Several studies suggest an association between 

depression and CVDs.119,120 However, clinical studies investigating potential cardiovascular 

effects of SSRIs, the most common antidepressants, are controversial.135,136,145–154,137,155,138–144 A 

confounding factor is that depression per se is a well-established cardiovascular risk 

factor.119,157 Considering the rising importance of this disease and given the inconclusive 

findings in human studies, the aim of the thesis was to shed light on this topic by investigating 

the effect of chronic SSRI intake on the onset and progression of atherosclerosis in a mouse 

model. In particular, the impact of short- and long-term treatment of ApoE-/- mice with the 

common SSRI FLX on atherogenesis and underlying mechanisms were explored.  
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4 MATERIALS AND METHODS 

4.1 Materials 

4.1.1 Chemicals and reagents 

Table 6: Chemicals and reagents 

Chemical /Reagents Company 

1 kb Plus DNA ladder Invitrogen AG, Carlsbad, USA 

2-Methylbutane Sigma-Aldrich Chemie GmbH, Munich, Germany 

2-Propanol Sigma-Aldrich Chemie GmbH, Munich, Germany 

Agar AppliChem GmbH Darmstadt, Germany 

Agarose Sigma-Aldrich Chemie GmbH, Munich, Germany 

Albumin Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Ampicillin Sigma-Aldrich Chemie GmbH, Munich, Germany 

Aqua ad injectabilia B. Braun AG, Puchheim, Germany 

Citric Acid Merck KGaA, Darmstadt, Germany 

CountBright absolute counting beads Thermo Fisher Scientific, Waltham, USA 

Direct Red 80 Sigma-Aldrich Chemie GmbH, Munich, Germany 

DMEM Thermo Fisher Scientific, Waltham, USA 

DMSO Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

DPX Mountant Sigma-Aldrich Chemie GmbH, Munich, Germany 

EcoTransfect OZ Biosciences, Marseille, France 

EDTA Sigma-Aldrich Chemie GmbH, Munich, Germany 

Escitalopram oxalate  Sigma-Aldrich Chemie GmbH, Munich, Germany 

Ethanol 99% Klinikum der Universität München 

Ethanol 99% (absolute) VWR International, Radnor, USA 

Ethidium bromide Sigma-Aldrich Chemie GmbH, Munich, Germany 

Evans blue  Sigma-Aldrich Chemie GmbH, Munich, Germany 

FBS Sigma-Aldrich Chemie GmbH, Munich, Germany 

Fluoxetine (Prozac) Eli Lilly and Company, Neuilly-sur-Seine Cedex, France 

Fluoxetine hydrochloride Sigma-Aldrich Chemie GmbH, Munich, Germany 

Formamide Merck KgaA, Darmstadt, Germany 

Forskolin Sigma-Aldrich Chemie GmbH, Munich, Germany 

Gel Loading Dye 6x New England Biolabs, Ipswich, USA 

Glucose Merck KgaA, Darmstadt, Germany 

HBSS with Ca/Mg (10x) Thermo Fisher Scientific, Waltham, USA 

HCl 37 % Merck KGaA, Darmstadt, Germany 

Hematoxylin solution according to Mayer Sigma-Aldrich Chemie GmbH, Munich, Germany 

HEPES solution 1 M Sigma-Aldrich Chemie GmbH, Munich, Germany 

Hygromycin InvivoGen, San Diego, USA 

Immu-Mount Thermo Fisher Scientific, Waltham, USA 

Ketamine WDT eG, Garbsen, Germany 
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Luciferin-EF Promega GmbH, Madison, USA 

NAS-181 Tocris Bioscience, Bristol, United Kingdom 

Oil Red O Sigma-Aldrich Chemie GmbH, Munich, Germany 

Paraformaldehyde Merck KgaA, Darmstadt, Germany 

PBS Biochrom GmbH, Berlin, Germany  

Penicillin-Streptomycin Sigma-Aldrich Chemie GmbH, Munich, Germany 

PeqGold Trifast Peqlab Biotechnologie GmbH, Erlangen, Germany 

Picric acid solution Sigma-Aldrich Chemie GmbH, Munich, Germany 

Poly-D-Lysine Sigma-Aldrich Chemie GmbH, Munich, Germany 

Prostaglandin E1 Cayman Chemical, Ann Arbor, USA 

RBC Lysis/Fixation Solution (10x) BioLegend, San Diego, USA 

Roti-Histofix 4 % Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

RPMI-1640 Thermo Fisher Scientific, Waltham, USA 

Serotonin hydrochloride Sigma-Aldrich Chemie GmbH, Munich, Germany 

S.O.C. medium Thermo Fisher Scientific, Waltham, USA 

Sodium citrate tribasic dihydrate Sigma-Aldrich Chemie GmbH, Munich, Germany 

Sodiumchlorid 0.9% B. Braun AG, Puchheim, Germany 

TAE buffer (50X) AppliChem GmbH Darmstadt, Germany 

Tetracycline Sigma-Aldrich Chemie GmbH, Munich, Germany 

Thioglycolate broth Sigma-Aldrich Chemie GmbH, Munich, Germany 

Tissue-Tek O.C.T Sakura Finetek Germany GmbH, Staufen, Germany  

Tryptone AppliChem GmbH Darmstadt, Germany 

Tween 20 Sigma-Aldrich Chemie GmbH, Munich, Germany 

Tween 80 Sigma-Aldrich Chemie GmbH, Munich, Germany 

Xylazine WDT eG, Garbsen, Germany 

Xylene Sigma-Aldrich Chemie GmbH, Munich, Germany 

Yeast extract AppliChem GmbH Darmstadt, Germany 
DMEM = Dulbecco’s modified Eagle’s Medium; DMSO = Dimethyl sulfoxide; DNA = Deoxyribonucleic acid; EDTA = 
Ehylenediaminetetraacetic acid; HBSS = Hanks’ balanced salt solution; HEPES = 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid; PBS = Phosphate buffered saline; RBC = Red blood cell; RPMI = Roswell Park Memorial Institute; TAE = Tris-acetate-EDTA 

4.1.2 Buffers and solutions 

Table 7: Buffers, solutions and their composition  

Buffers and solutions  Composition  

0.1% Sirius Red solution 0.1 % (w/v) Direct Red 80 in picric acid solution 

1x TAE buffer 50x TAE diluted in H2O 

4 % Thioglycolate  4 % (w/v) thioglycolate broth in dH2O, autoclaved and allowed to 
stand for at least one week. 
 

ACD buffer 75 mM trisodium citrate, 38 mM citric acid, 139 mM glucose 
dextrose, pH 5.4 
 

ACK lysis buffer 150 mM NH4Cl, 10 mM KHCO3, 0.1 mM Na2EDTA, pH 7.4 
 

Adhesion medium 1.2 mM CaCl2, 1 mM MgCl2, 0.25 % (w/v) BSA, 0.1 % (v/v) 
glucose, 20 mM HEPES, pH 7.4 in HBSS 
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Antigen retrieval buffer 1.4 mM citric acid, 5.74 mM sodium citrate tribasic dihydrate, 
0.035 % (v/v) tween 20 
 

Aortic digestion cocktail 10 mg/mL collagenaseIV, 20 U/mL DNase I in PBS 

Blocking buffer  10 % (v/v) serum, 0.1% (v/v) Tween 20 in PBS 

Ethidium bromide solution Spatula tip of ethidium bromide in 15 mL H2O 

FACS buffer 0.5 % (w/v) albumin in PBS  

HBSS/HEPES buffer 20 mM HEPES in HBSS 

Integrin assay buffer 0.5 % (w/v) BSA in 1x HBSS(+Ca2+/Mg2+), pH 7.4  

LB medium 1 % (w/v) Trypton, 0.5 % (w/v) yeast extract, 1 % (w/v) NaCl, pH 
7.0, autoclaved  
For agar: 1.5 % (w/v) agar and 50 µg/mL ampicillin were added 
and poured into petridishes 
 

MACS buffer 0.5 % (w/v) BSA, 2 mM EDTA in PBS 

ORO stock solution  0.5 %  (w/v) ORO in 99 % 2-propanol 

Tyrode buffer 0.14 M NaCl, 3 mM KCl, 12 mM NaHCO3, 0.6 mM NaH2PO4H2O, 
5 mM HEPES, 0.2 % (w/v) albumin, 0.09 % (w/v) glucose 

ACD = Acid citrate dextrose; ACK = Ammonium chloride potassium; BSA = Bovine serum albumin; DNase = Deoxyribonucle-
ase; FACS = Fluorescence-activated cell sorting; LB = Lysogeny broth; MACS = Magnetic cell separation; ORO = Oil Red O 

4.1.3 Kits 

Table 8: Kits 

Kit Company 

Amplex Red Cholesterol Assay kit Invitrogen, Carlsbad, USA  

Cholesterol CHOP-PAP kit + Calibrator  Roche, Basel, Switzerland  

Serotonin Fast Track ELISA Labor Diagnostika Nord, Nordhorn, Germany 

Mouse CCL5 DuoSet ELISA R&D Systems, Inc., Minneapolis, USA 

Mouse CXCL4 DuoSet ELISA R&D Systems, Inc., Minneapolis, USA 

Monocyte Isolation kit  Miltenyi Biotec GmbH, Bergisch Gladbach, Germany 

Neutrophil Isolation kit  Miltenyi Biotec GmbH, Bergisch Gladbach, Germany 

peqGOLD Total RNA kit  Peqlab Biotechnologie GmbH, Erlangen, Germany 

KAPA PROBE FAST Universal qPCR kit  Peqlab Biotechnologie GmbH, Erlangen, Germany 

FLPR Calcium 5 Assay kit  Molecular Devices, LLC, USA 

PrimeScript RT Reagent kit  TaKaRa Bio Inc., Kusatsu, Japan 

Cytokine&Chemokine Mouse ProcartaPlex 
Panel 1 

eBioscience Inc, San Diego, USA 

VECTOR Red AP Substrate kit Vector Laboratories, Burlingame, USA 

QIAquick Gel Extraction kit Qiagen, Hilden, Germany 

QIAprep Spin Miniprep kit Qiagen, Hilden, Germany 

VECTASTAIN ABC-AP Staining kit Vector Laboratories, Burlingame, USA 

Vector Red AP Substrate kit Vector Laboratories, Burlingame, USA 
ELISA = Enzyme-linked immunosorbent assay; HRP = Horseradish peroxidase; qPCR = quantitative polymerase chain reaction; 
RNA = Ribonucleic acid 
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4.1.4 Primers 

Primers and probes for qPCR were either self-designed and purchased from MWG-Biotech 

AG or bought as a pre-made primer-probe mix from Life Technologies. Sequences or Assay 

IDs of primer-probe mixes are listed in Table 9. 

Table 9: Primers for qPCR analysis 

Gene Accession no 5’-3’ primer sequence or Assay ID  

5-Htr1b NM_010482.1 Fwd: GAGCAGGGTATTCAGTGCG 
Rev: GAGTCCTGGTAAATGTAGCCG 
P: FAM-TGTGGGAGAGGTTGGTGAGAGGTA-TAMRA 

5-Htr2a NM_172812.2 Mm00555764_m1 

5-Htr2b NM_008311.2 Mm00434123_m1 

5-Htr2c NM_008312.4 Mm00434127_m1 

5-Htr4 NM_008313.4 Mm00434129_m1 

5-Htr7 NM_008315.2 Mm00434133_m1 

Ccl2 NM_009915 Fwd: GAGCATCCACGTGTTGGCT 
Rev: TGGTGAATGAGTAGCAGCAGGT 
P: FAM-AGCCAGATGCAGTTAACGCCCCACT-TAMRA 

Ccl3 NM_011337 Fwd: CAGCCAGGTGTCATTTTCCT 
Rev: CCAAGACTCTCAGGCATTCAG 
P: FAM-AAGAGAAACCGGCAGATCTGCGCT-TAMRA 

Ccl5 NM_013653.3 Mm01302427_m1 

Ccr1 NM_009912.4 Mm00438260_s1 

Ccr2 NM_009915 Fwd: AGTAACTGTGTGATTGACAAGCACTTAGA 
Rev: CAACAAAGGCATAAATGACAGGAT 
P:FAM-ACAGAGACTCTTGGAATGACACACTGCTGC-TAMRA 

Ccr5 NM_009917.5 Fwd: AATATTTCCTTGAAAGTATTTTTAGCCGT 
Rev: TTAAAACTCTTTTGATTGAGAGTAAGCA 
P:FAM-AGATGTTATGTCCAAGCATG CAGTTTCGGA-TAMRA 

Cxcl1 NM_008176 Fwd: CATAGCCACACTCAAGAATGGT 
Rev: TGAACCAAGGGAGCTTCAG 
P: FAM-CGCGAGGCTTGCCTTGACC-TAMRA 

Cxcl2 NM_009140 Fwd: AGTGAACTGCGCTGTCAATG 
Rev: GCCCTTGAGAGTGGCTATGA 
P: FAM-AAGACCCTGCCAAGGGTTGACTTC-TAMRA 

Gapdh NM_001289726.1/ 
NM_008084.3 

Mm99999915_g1 

Hprt NM_013556 Fwd: GACCGGTCCCGTCATGC 
Rev: TCATAACCTGGTTCATCATCGC  
P: VIC-ACCCGCAGTCCCAGCGTCGTG-TAMRA 

Icam1 NM_010493.2 Mm00516023_m1 

Sert NM_010484.2 Mm00439391_m1 

Vcam1 NM_011693.3 Mm01320970_m1 

CCR = C-C motif chemokine receptor; Fwd = Forward; Gapdh = Glyceraldehyde 3-phosphate dehydrogenase; Hprt = 
Hypoxanthine-guanine phosphoribosyltransferase; Rev = Reverse 
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The following primers where used for colony PCR (4.3.5.5) and sequencing (4.3.5.7).  

Table 10: PCR primer 

Gene 5’-3’ primer sequence 

5-HTR2a (rev) AATTCTCGAGCACACAGCTCACCTTTTCATTCACTCCG 

CMV (fwd) CGCAAATGGGCGGTAGGCGTGTACG 

CMV = Cytomegalovirus 

4.1.5 Plasmids 

The plasmids in Table 11 were used to generate a HEK-293 cell line overexpressing the 5-

HTR2a under control of the CMV promoter in a tetracycline-inducible manner.  

Table 11: Plasmids used for generation of a 5-HTR2a overexpressing cell line 

Plasmid Description Resistance 

pcDNA5/FRT/TO Expression vector for gene of interest and eYFP under control 
of the CMV promoter in a tetracycline inducible manner. The 
Flp recombination target (FRT) site guarantees targeted 
integration into host cell line. 
 

Ampicillin, 
hygromycin  

pOG44 Coding for Flp recombinase under control of the CMV 
promoter. 

Ampicillin  

The pcDNA5/FRT/TO expression vector containing N-terminally the coding sequence for 

enhanced yellow fluorescent protein (eYFP) was used for incorporation of the 5-HTR2a coding 

sequence. The expression vector was transfected together with the pOG44 plasmid into the 

host Flp-In T-Rex-HEK-293 cell line (4.1.7). The pcDNA5/FRT/TO expression vector 

(Figure 13) comprises the hygromycin resistance gene lacking a promoter and the ATG 

initiation codon, which becomes active only upon correct integration into the cell genome.  

Figure 13: Schematic structure of the 
pcDNA5/FRT/TO expression vector. 
The pcDNA5/FRT/TO expression vector 
enables integration of the gene of interest 
(5-HTR2a) within the restriction sites of the 
enzymes BamHI and XhoI, leading to a 
fusion protein with eYFP. The expression 
is under the control of the strong CMV 
promoter (PCMV), which is regulated by the 
tetracycline operator 2 (TetO2). The signal 
sequence facilitates protein transport to the 
plasma membrane and finally membrane 
integration of the eYFP-5-HTR2a fusion 
protein. The FRT site serves as the binding 
and cleavage site for Flp recombinase. The 
hygromycin resistance gene permits selection of stable transfectants in mammalian cells when brought 
in frame with a promoter and an ATG initiation codon through correct Flp-mediated integration into the 
cell genome. The pUC origin (pUC ori) allows high-copy number amplification in E. coli. The ampicillin 
resistance gene permits selection of transfectants in E.coli cells.  
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4.1.6 Bacteria 

For plasmid amplification, the competent Escherichia coli (E. coli) strain JM109, purchased 

from Stratagene (San Diego, CA, USA), was used. The cultivation of bacteria was carried out 

in LB medium or on LB agar plates (Table 7) at 37 °C.  

4.1.7 Cell lines 

HEK-293 cells (Thermo Fisher Scientific, Waltham, USA ), SVEC4-10 cells (American Type 

Culture Collection, Manassas, USA) and HL-60 cells (American Type Culture Collection, 

Manassas, USA) were grown in the respective medium listed in Table 12 supplemented with 

10 % FBS and 100 U/mL penicillin/streptomycin and cultured at 37 °C and 5 % CO2 in a 

humidified incubator. The adherent HEK-293 cells and SVEC4-10 were split 1:10 using 

trypsin/EDTA solution every 3 days to keep them in culture. HL-60 suspension cells were 

passaged by splitting 1:10 every 3 days. For storage, cells were frozen in culture medium 

containing 7.5 % DMSO and kept at -150 °C. 

Table 12: Overview and description of cell lines 

Cell line Description  Culture medium 

Flp-In T-Rex 293 Human embryonic kidney (HEK) cells containing a FRT 
site, which allows targeted integration of a Flp-In 
expression vector (pcDNA5/FRT/TO) leading to stable 
expression levels of the gene of interest. 
 

DMEM 
 

F20 Flp-In T-Rex 293 Human embryonic kidney cells containing the FRT site 
and the stably integrated F20-vector, which codes for a 
luciferase with a cAMP binding site and a G418 
resistance. 
 

DMEM 

SVEC4-10 SV40 transformed murine endothelial cell line from 
axillary lymph node vessels. 
 

RPMI-1640 

HL-60 human promyelocytic leukemia cell line RPMI-1640 

4.1.8 Antibodies 

Most of the antibodies listed in the following tables were purchased from eBioscience (San 

Diego, USA), BD Bioscience (San Jose, USA) or BioLegend (San Diego, USA). 

Table 13: Murine FACS antibodies  

Antigen Clone Conjugation Dilution Provider 

ABCA1 polyclonal AF405 1:100 Novus Biologicals, 
Littleton, USA 

ABCG1 polyclonal - 1:100 GeneTex, Irvine, USA 

CD11a 2D7 PE/Cy7 1:500 BD Bioscience 

CD11b  M1/70 PerCP 1:500 BioLegend 

CD16/CD32 2.4G2 - 1:1000 BD Bioscience 
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CD18 C71/16 FITC 1:500 BD Bioscience 

CD31 390 PE/Cy7 1:400 BioLegend 

CD36 HM36 PE 1:400 BioLegend 

CD41  MWReg30 APC 1:400 eBioscience 

CD45 30-F11 APCeFluor780 1:500 eBioscience 

CD45.2 104 FITC 1:500 BD Bioscience 

CD45.2 104  APC 1:500 BD Bioscience 

CD49d R1-2 PE 1:500 BioLegend 

CD62l MEL-14 FITC 1:400 BD Bioscience 

CD62p  RMP-1 PE 1:100 BioLegend 

CD107a 1D4B BV421 1:100 BioLegend 

CD115 AFS98 APC 1:500 eBioscience 

Gr1 RB6-8C5 APCeFluor780 1:500 eBioscience 

ICAM1 Yn1/1.7.4 APC 1:400 BioLegend 

Ly6C AL-21 PE/Cy7 1:500 BD Bioscience 

Ly6G 1A8 PE 1:500 BD Bioscience 

Ly6G 1A8 ACP/Cy7 1:500 BioLegend 

Ly6G 1A8 FITC 1:500 BioLegend 

PSGL1 2PH1 PerCP 1:3000 BD Bioscience 

SR1 EPR7536 - 1:500 Abcam, Cambridge, UK 

VCAM1 429 PerCP/Cy5.5 1:800 BioLegend 

AF = AlexaFluor; ABC = ATP-binding cassette; APC = Allophycocyanin; BV = Brilliant violet; PE = Phycoerythrin; FITC = 
Fluorescein isothiocyanate; PerCP = Peridinin chlorophyll; Cy = Cyanine 

Table 14: Human FACS antibody  

Antigen Clone Source Dilution  Provider 

CD11/CD18 (LFA1) mAb24 mouse 1:20 Hycult Biotech, Uden, Netherlands 

mAb = Monoclonal antibody 

Table 15: Antibodies for intravital microscopy 

Antigen Clone Conjugation Provider 

CD11b M1/70 eFluor 650NC  eBioscience 

Ly6G 1A8 PE BioLegend 

NC = Nanocrystals 

Table 16: Antibodies used for immunohistochemistry 

Antigen Clone Source Dilution Provider 

MAC2 M3/38 Rat 1:400 Cedarlane, Burlington, Kanada 

α-SMA 1A4 Mouse 1:100 Dako Agilent Technologies, Santa Clara, USA 

SMA = Smooth muscle actin  
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Table 17: Isotype controls  

Immunoglobulin Dilution Provider 

Normal rat IgG 1:160 Santa Cruz Biotechnology, Dallas, USA 

Normal mouse IgG 1:500 Santa Cruz Biotechnology, Dallas, USA 

IgG = Immunoglobulin G 

Table 18: Secondary antibodies 

Antibody Source Conjugation Dilution Provider 

Anti-rabbit IgG donkey BV421 1:20 BioLegend 

Anti-rabbit IgG donkey AF488 1:400 JIR Inc, West Grove, USA 

Anti-mouse IgG donkey AF594 1:100 JIR Inc, West Grove, USA 

Anti-rat IgG goat Biotin 1:100 
Vector Laboratories, 
Burlingame, USA 

F(ab)2-anti mouse IgG goat AF488 1:100 Invitrogen AG, Carlsbad, USA 

Anti-human IgG Fc goat PE 1:500 eBioscience  

JIR = Jackson ImmunoResearch 

4.1.9 Enzymes and recombinant proteins 

Table 19: Enzymes 

Enzyme Final concentration  Company 

Collagenase IV 10 mg/mL Worthington Biochemical Corp., Lakewood, USA 

DNase I 20 U/mL  Roche, Basel, Switzerland 

Thrombin 0.5 U/mL Sigma-Aldrich Chemie GmbH, Munich, Germany 

BamHI-HF 1 U/µL New England Biolabs, Ipswich, USA 

XhoI 1 U/µL New England Biolabs, Ipswich, USA 

T4 ligase 20 U/µL New England Biolabs, Ipswich, USA 

Taq Polymerase 0.05 U/µL QIAGEN N.V, Hilden, Germany 

HF = High fidelity 

Table 20: Recombinant proteins  
Protein  Final concentration  Company 

TNFα 10 ng/mL BioLegend, San Diego, CA, USA 

Murine CCL5 5 µg/mL PeproTech, Rocky Hill, NJ, USA 

Humane CCL5 5 µg/mL AG von Hundelshausen, IPEK, LMU 

ICAM1/Fc chimera 2.5 µg/mL R&D Systems Inc., Minneapolis, MN, USA 

VCAM1/Fc chimera 2.5 µg/mL R&D Systems Inc., Minneapolis, MN, USA 
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4.1.10 Consumables 

Table 21: Material  

Material Company  

1.3 mL Citrate (3.2 %) micro tube Sarstedt AG & Co, Nümbrecht, Germany 

1.3 mL EDTA micro tubes Sarstedt AG & Co, Nümbrecht, Germany 

1.3 mL Serum Gel Z micro tubes Sarstedt AG & Co, Nümbrecht, Germany  

12-well polystyrene microplate Corning Inc., NY, USA 

384-well flat bottom microplate Corning Inc., NY, USA 

5 mL polystyrene tubes  
with cell strainer cap 

BD Bioscience, San Jose, USA 

70-µm cell strainer BD Bioscience, San Jose, USA 

96-well black clear bottom microplate PerkinElmer Inc., Waltham, USA 

96-well half area flat bottom microplate Corning Inc., NY, USA 

96-well white clear bottom microplate PerkinElmer Inc., Waltham, USA 

Disposable Capillaries (30-32 mm, 10 µL)   Hirschmann Laborgeräte GmbH, Eberstadt, Germany 

Microlance needles (25 G, 26 G, 27 G) B. Braun AG, Puchheim, Germany 

PE-10 catheter BD Bioscience, Franklin Lakes, NJ, USA 

Qiagen TissueLyser steel beads Qiagen, Hilden, Germany 

Safety scalpel B. Braun AG, Puchheim, Germany 

Semi-skirted 96-well qPCR plates VWR International, Radnor, USA 

Superfrost Plus microscope slides  Menzel-Gläser GmbH, Braunschweig, Germany 

Tissue-Tek cryomold Sakura Finetek Germany GmbH, Staufen, Germany 

White adhesive bottom seal  PerkinElmer Inc., Waltham, USA 

4.1.11 Equipment  

Table 22: Equipment 

Equipment Company 

7900 HT Fast Real-Time PCR System Applied Biosystems, Foster City, USA 

Autoclave LTA 400 Zirbus technology GmbH, Bad Grund, Germany 

Balance SE 203 LR VWR International, Radnor, USA 

Biorad Mini-Sub Cell GT Cell Bio-Rad Laboratories GmbH, Munich, Germany 

Centrifuges 
    Centrifuge 5418 R 
    Megafuge 1.0R 

 
Eppendorf AG, Hamburg, Germany 
Heraeus, Hanau, Germany 
 

CO2 incubator CB 160 BINDER GmbH, Tuttlingen, Germany 

Cryotome CM3050S  Leica Biosystems, Wetzlar, Germany 

FACS BD LSRFortessa 5L BD Bioscience, San Jose, USA 
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FACS Canto II flow cytometer BD Bioscience, San Jose, USA 

Gel imager INTAS 
Intas Science Imaging Instruments GmbH, Göttingen, 
Germany 

Hood HERAsafe  Heraeus, Hanau, Germany 

Laboratory pH Meter 766 Knick GmbH, Berlin, Germany 

LifeSep Magnetic Plate Holder 96F Sigma-Aldrich Chemie GmbH, Munich, Germany  

Luminex MAGPIX Instrument  Luminex, Austin, USA 

Tecan Infinite F200 PRO microplate reader  Tecan Group, Maennedorf, Switzerland 

Microscopes 
    LEICA DMi1 
    LEICA DMLB 
    LEICA DM6000 
    Olympus BX51 
    Leica TCSII SP8 3X 

 
Leica Biosystems, Wetzlar, Germany 
Leica Biosystems, Wetzlar, Germany 
Leica Biosystems, Wetzlar, Germany 
Olympus Corporation, Tokyo, Japan 
Leica Biosystems, Wetzlar, Germany 

Nanodrop ND1000 Peqlab VWR International, Radnor, USA 

PCR Plate Spinners VWR International, Radnor, USA 

PCR Thermocycler Biometra Tpersonal Biometra GmbH, Göttingen, Germany 

Power supply Kyoritsu Electrical Instruments Works, Tokyo, Japan 

Scil Vet ABC Hematology Analyzer Scil Animal Care Company, USA 

Thermomixer F1.5 Eppendorf AG, Hamburg, Germany 

TissueLyser LT  Qiagen, Hilden, Germany 

Vortex Mixer TX4 VELP Scientifica, Usmate, Italy 

Water Purification System Milli-Q Merck Millipore, Billerica, USA 

4.1.12 Software 

Table 23: Software 

Software Company  

ApE (A plasmid Editor) - 

BD FACSDiva software BD Bioscience, San Jose, USA 

FlowJo v10.3  Tree Star, Inc., OR, USA 

GraphPad Prism 7.00 GraphPad Software Inc, USA 

Imaris 8.4  Bitplane AG, Zurich, Switzerland 

LAS V4.3  Leica Biosystems, Wetzlar, Germany 

Olympus Excellence software Olympus Corporation, Tokyo, Japan 

ProcartaPlex Analyst 1.0 Thermo Fisher Scientific, Waltham, USA 

SDS2.4 Software Applied Biosystems, Foster City, USA 

xPONENT Software  Luminex, Austin, USA 
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4.2 Methods 

4.2.1 Mouse model  

4.2.1.1 Mice  

Mice do not develop atherosclerosis spontaneously. Therefore, ApoE-/- mice on C57Bl/6 

background (stock No. 002052, The Jackson Laboratory, Bar Harbor, ME, USA)158 were used 

as a mouse model to study atherosclerosis. To induce atherosclerosis, male mice at the age 

of 6-8 weeks were fed a HFD (Western type diet TD.88137: 0.21 % cholesterol and 21 % fat, 

ssniff Spezialdiäten GmbH; Soest, Germany) for different time periods as indicated in the 

particular experiment. For integrin activation assays, male C57Bl/6 wild type mice were 

purchased from Janvier Labs. For housing, care and breeding of mice institutional guidelines 

were followed. All animal experiments were approved by the local ethics committee (District 

Government of Upper Bavaria; License Number: 55.2-1-54-2532-111-13) and performed 

according to the national guidelines. 

4.2.1.2 Mouse dissection  

At the end of each experiment, mice were anesthetized by intraperitoneal (i.p.) injection with 

ketamine (80 mg/kg) and xylazine (12 mg/kg) using a 1 mL insulin syringe with a 30 G needle. 

Unless described otherwise, blood was obtained via cardiac puncture using a 26 G microlance 

needle flushed with 0.5 M EDTA into an EDTA micro tube. To remove remaining blood, mice 

were perfused with 10 mL of PBS and hearts, spleens and femurs were harvested. Aortas 

were dissected from the aortic arch to the iliac bifurcation. 20 µL of blood was used for 

leukocyte count and mean platelet volume (MPV) measurement with a hematology analyzer. 

Unless otherwise stated, plasma was obtained by centrifugation of EDTA-anticoagulated blood 

for 10 min at 2500 x g and stored at -80 °C until it was used for analysis. Hearts were frozen 

in tissue-tek and stored at -20 °C. Organs for RNA extraction were snap-frozen in liquid 

nitrogen. The organs which were used for flow cytometry analysis were placed in PBS on ice 

until processing.  
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4.2.1.3 Platelet 5-HT depletion via FLX treatment 

To investigate the effect of platelet 5-HT depletion on atherogenesis, ApoE-/- mice were treated 

with FLX (160 mg/L; Prozac, Lilly) via the drinking water73 in parallel to HFD feeding for 2, 4 or 

16 weeks (Figure 14A). As controls, mice received HFD only.  

 

Figure 14: Experimental setups for platelet 5-HT depletion. 

In one experiment, mice were pre-treated with FLX for 2 weeks before starting HFD feeding 

with continuous FLX treatment for 2 weeks (Figure 14B). To assess the effect of FLX on 

already established plaques, mice were fed a HFD for 16 weeks while receiving FLX treatment 

only in the last 4 weeks of HFD (Figure 14C). In one experiment, wild type C57Bl/6 mice were 

treated with FLX for 2 weeks.  

4.2.1.4 Pharmacological peripheral 5-HT depletion via TPH1 inhibition  

Pharmacological depletion of peripheral 5-HT was assessed via inhibition of the 5-HT-

synthesizing enzyme TPH1. Here, ApoE-/- mice, receiving a HFD for 2 or 4 weeks, were 

injected daily with the TPH1 inhibitor LP-533401 (25 mg/kg, i.p.; Dalton Pharma Services, 

Toronto, Canada) or vehicle (Figure 15).159 LP-533401 was dissolved in DMSO and diluted in 

aqua ad injectabilia.  

 

Figure 15: Experimental setup for pharmacological 5-HT depletion. 
  



MATERIALS AND METHODS 

43 

4.2.1.5 5-HTR1b antagonism 

ApoE-/- mice were injected every second day with the 5-HTR1b antagonist NAS-181 (3 mg/kg, 

i.p.; Tocris Bioscience, Bristol, United Kingdom) dissolved in PBS (Figure 16).160 As control, 

an equal volume of PBS was administered.  

 

Figure 16: Experimental setup for antagonism of 5-HTR1b. 

4.2.1.6 Induced peritonitis  

An acute peritonitis was induced to elicited neutrophil extravasation into the peritoneal cavity. 

For this experiment, FLX-treated (2 weeks) and untreated mice on wild type background were 

injected with 1 mL sterile 4 % thioglycolate (Table 7) using a 27 G needle (Figure 17). Because 

the influx of neutrophil peaks 2 h after injection, mice were euthanized at that time point via 

cervical dislocation. The outer skin of the peritoneum was carefully removed to expose the 

inner skin. 5 mL of ice cold PBS containing 5 mM EDTA was injected into the peritoneal cavity 

using a 27 G needle, followed by a gentle massage of the peritoneum for 3 min. The fluid 

containing the peritoneal cells was collected using a 25 G needle and placed on ice. 4 mL of 

the peritoneal lavage was centrifuged (400 x g, 5 min, 4 °C) and resuspended in 500 µL 

PBS/EDTA. The amount of extravasated cells was determined using a hematology analyzer.  

 

Figure 17: Experimental setup for induced peritonitis.  

4.2.1.7 Intravital microscopy 

Intravital microscopy of the left carotid artery was performed to examine leukocyte-endothelial 

interaction in vivo by fluorescence labeling of myeloid cells. To this end, control and FLX-

treated mice receiving a HFD for 4 weeks were anesthetized with ketamine/xylazine and the 

right jugular vein was cannulated with a catheter for antibody injection. To stain myeloid cells, 

antibodies against CD11b and Ly6G were injected and allowed to circulate for 10 min before 

starting the imaging. Leukocyte-endothelial interactions were examined in exposed left carotid 

arteries by using an Olympus BX51 microscope. Rolling flux was defined as number of cells 

passing a reference line perpendicular to blood flow within 30 s, while adhesion was 
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determined as cells being static for at least 30 s. Image acquisition and analysis was 

accomplished with the Olympus cell software.161  

4.2.1.8 In vivo permeability assay 

ApoE-/- mice fed a HFD for 2 weeks with or without FLX treatment were injected intravenously 

(i.v.) with 0.5 % Evans blue solution in 0.9 % saline (40 mg/kg). After 30 min, mice were 

anesthetized with ketamine/xylazine followed by perfusion with PBS. Hearts, spleens and 

kidneys were collected, air dried and weighted. Dried organs were incubated with 450 µL 

formamide at 56 °C for 24 h for Evans blue extraction.162 The optical density (OD) of the 

extracted dye was measured at 620 nm in supernatants using a Tecan Infinite F200 PRO 

microplate reader. Vascular permeability was defined as ng of Evans blue extravasated per 

mg tissue using a standard curve of Evans blue in formamide as reference. Vascular leakage 

in aortic arches was determined by confocal laser scanning microscopy. After dissection, aortic 

arches were fixed in 4 % paraformaldehyde solution, mounted in PBS on microscopy slides 

followed by imaging with a Leica TCSII SP8 3X. Whole arches were acquired as a tilescan of 

775x775x120-200 μm xyz stacks. Evans blue was excited with a continuous white-light laser 

tuned at 580 nm and the emitted fluorescence was collected in the 660-720 nm range. Tilescan 

volumes were reconstructed and processed using Imaris 8.4. Z-sectioning allowed to remove 

the external adventitial layer and to expose the underneath Evans blue-positive signal of the 

endothelium, which was calculated as a volume after application of an ad-hoc mask. 

4.2.2 Lipid analysis 

4.2.2.1 Plasma cholesterol measurement  

Total plasma cholesterol levels were quantified using a colorimetric assay (CHOD-PAP, 

Roche). Plasma samples were diluted 1:9 with 0.9 % saline. The calibrator was dissolved in 

3 mL dH2O (cholesterol concentration: 160 mg/dL) and standard curve was prepared by serial 

dilution (undiluted, 1:2, 1:4, 1:8, 1:16) in 0.9 % saline. 5 µL of each standard and the diluted 

plasma samples were pipetted in duplicates in a flat bottom 96-well microtiter plate. To 

increase the range of the assay, 10 µL of the undiluted standard was also included to the 

standard curve. 200 µL of CHOD-PAP CHOL reagent was added and after 30 min incubation 

at room temperature (RT) absorbance was measured at 450 nm with a Tecan Infinite F200 

PRO microplate reader. 

4.2.2.2 Lipid analysis of blood leukocytes  

Neutral lipid content in circulating cells was measured with the Amplex Red Cholesterol Assay 

kit (Invitrogen)163 and determined as ratio of esterified to total cholesterol. After erythrocyte 

lysis in ACK lysis buffer (Table 7), cells were washed with cold PBS, resuspended in cold 1x 

reaction buffer provided by the kit and incubated on ice for 1 h for cell lysis. To degrade 
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endogenous esterases, samples were heated at 60 °C for 30 min, followed by shaking for 

30 min at RT. For measuring total and esterified cholesterol, the assay was performed 

according to the manufacturer’s protocol with and without esterase. 

4.2.3 Enzyme-linked immunosorbent assay (ELISA) 

ELISAs were performed to quantify the concentration of 5-HT or different cytokines in murine 

serum, plasma or platelet supernatant.  

4.2.3.1 5-HT ELISA 

5-HT levels were quantified in serum and plasma. Therefore, blood was taken retro-orbitally 

using a glass capillary. To verify platelet 5-HT depletion, 5-HT levels were measured in serum. 

For this purpose, blood was collected in Serum Gel Z tubes and allowed to clot for 30 min at 

RT. Plasma was obtained by collecting blood in EDTA tubes containing 1 µM prostaglandin 

E1 to avoid platelet activation. Blood was centrifuged at 1000 x g for 10 min, followed by 

16,000 x g for 1 min and stored at -80 °C until usage. 5-HT concentrations were measured 

using the competitive Serotonin Fast Track ELISA kit (Labordiagnostika Nord) according to the 

manufacturer’s instructions. Briefly, 5-HT was acylated to 5-HIAA by adding 25 µL sample, 

standards or controls to 500 µL acylation buffer containing 25 µL acylation reagent followed by 

incubation at RT for 15 min. 25 µL of the acylated samples, standards and controls were 

pipetted in duplicates on the 5-HIAA pre-coated 96-well plate provided by the kit, 100 µL of 5-

HT antiserum was added and the plate was incubated for 1 h at RT. Thereby, free 5-HIAA was 

competing with the bound 5-HIAA for antiserum binding sites. During washing, the free 5-HIAA 

and 5-HIAA-antiserum complexes were removed leading to lesser antiserum binding to the 

solid phase in samples originally containing higher 5-HT amounts. 100 µL anti-rabbit-IgG 

conjugated with HRP was added and incubated for 15 min at RT. After washing, 100 µL 

tetramethylbenzidine substrate was incubated for 15 min at RT and subsequently stopped by 

adding 100 µL of stopping solution. The HRP-mediated substrate conversion was analyzed 

with a Tecan Infinite F200 PRO microplate reader at 450 nm (reference wavelength: 650 nm). 

5-HT sample concentrations were determined by interpolation of the standard curve, obtained 

by plotting the absorbance readings against the corresponding standard concentrations using 

a non-linear regression (two-phase decay) for curve fitting. 

4.2.3.2 CXCL4 and CCL5 ELISA 

CXCL4 and CCL5 concentrations in serum and/or supernatant of activated platelets (4.3.3.1) 

were assessed with the DuoSet ELISA kits (R&D systems) according to the manufacturer’s 

protocol with slight alterations. To increase the sensitivity of the ELISA, the concentration of 

detection and capture antibodies were doubled. CXCL4 was measured in a 384-well plate, 

while CCL5 was determined in a 96-well half area plate, therefore half the reagent volumes 

were applied. The plate was coated with 50 µL capture antibody overnight at 4 °C. After 
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washing, blocking was performed with reagent diluent at RT for 1 h. 50 µL murine serum 

sample (for CXCL4: pre-diluted 1:1000; for CCL5: undiluted) or supernatant of stimulated 

platelets (for CXCL4: pre-diluted 1:1000) was added to the plate and incubated at RT for 2 h, 

followed by 2-hour incubation with 50 µL biotinylated detection antibody. After washing, 50 µL 

streptavidin-HRP was added and incubated for 20 min at RT. Afterwards the plate was washed 

again and 50 µL of substrate solution was added followed by an incubation for 20 min in the 

dark. Subsequently 25 µL stop solution was added and the OD at 450 nm (reference 

wavelength: 550 nm) was determined with a Tecan Infinite F200 PRO microplate reader. 

Sample values were interpolated in the standard curve generated by nonlinear regression 

(fourth order polynomial) curve fitting using GraphPad Prism 7.00. 

4.2.3.3 Multiplex immunoassay 

Multiple cytokine analysis in murine plasma was assessed using the ProcartaPlex ELISA-like 

immunoassay based on the Luminex xMAP technology (eBioscience). This procedure enabled 

the simultaneous measurement of the following 26 cytokines in plasma: IFNγ, IL12p70, IL13, 

IL1β, IL2, IL4, IL5, IL6, TNFα, GM-CSF, IL18, IL10, IL17A, IL22, IL23, IL27, IL9, CXCL1, 

CXCL2, CXCL10, CCL2, CCL3, CCL4, CCL5, CCL7, CCL11. The assay was performed 

according to the manufacturer’s protocol with slight modifications. Briefly, 25 µL analyte-

specific magnetic capture beads coated with target-specific capture antibodies were pipetted 

to the 96-well plate provided by the kit and washed using a magnetic plate holder. 25 µL 

plasma sample, which was recentrifuged at 10000 x g for 10 min at 4 °C to minimize lipids, 

was added to the plate together with 25 µL universal buffer and incubated at 500 rpm for 

120 min at RT. After washing, 12.5 µL of the biotinylated analyte-specific detection antibody 

mix was added and incubated with shaking at 500 rpm for 30 min at RT, followed by washing 

and incubation with 25 µL PE conjugated streptavidin at 500 rpm for 30 min at RT in the dark. 

Subsequently, 120 µL reading buffer was added after washing and samples were measured 

with Luminex MAGPIX Instrument controlled by the xPonent Software. Data analysis was 

carried out with the ProcartaPlex Analyst software. 

4.3 Histology and immunohistochemistry 
After perfusion with PBS, hearts were kept in PBS on ice until freezing. The heart base 

including the valve level was collected by transverse sectioning and placed in a cryomold 

containing OCT. For freezing, the bottom part of the cryomold was exposed to 2-methylbutane, 

which was cooled by liquid nitrogen. Frozen blocks were stored in airtight closed bags at  

-20 °C until further processing. Using a Cryotome CM3050S, 5 µm-thick serial sections were 

collected starting from the onset of the three aortic valves until they disappeared. Usually ten 

object slides containing eight serial sections were collected reflecting an area of 400 µm. Half 
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of the sections were fixed in 4 % Roti-Histofix for 10 min and stored at RT, unfixed sections 

were kept at -20 °C. 

4.3.1.1 Oil Red O staining 

To analyze the size of the atherosclerotic plaque, serial sections of aortic roots were stained 

with Oil Red O (ORO). To remove OCT, fixed sections were incubated in PBS for 5 min. After 

10-times dipping in 60 % 2-propanol, sections were stained for 15 min with freshly prepared 

ORO staining solution: 120 mL ORO stock solution (Table 7) diluted with 80 mL ddH2O and 

filtered after 1 h stirring. To remove surplus ORO, slides were dipped 10-times in 60 % 2-

propanol and rinsed for 5 min in tap water. Sections were counterstained with Hematoxylin 

solution for 3 min followed by rinsing for 5 min in tap water and subsequently embedding with 

Immu-Mount. Five sections per heart were utilized for plaque analysis using the LAS V4.3 

software. Plaque size was normalized to the circumference of the internal elastic lamina (IEL).  

4.3.1.2 Sirius Red staining  

The collagen content in the plaque was determined via Sirius Red staining. Cryosections were 

incubated in PBS for 5 min, subsequently stained with 0.1 % Sirius Red solution (Table 7) at 

RT for 1 h, followed by differentiation in 0.01 M HCl for 2 min. After dehydration according to 

an ascending ethanol series (Table 24), sections were embedded with DPX Mountant.  

Table 24: Dehydration protocol  

Solution Time 

H2O 4x dipping 

70 % Ethanol 4x dipping 

96 % Ethanol 4x dipping 

100 % Ethanol 4x dipping 

100 % Ethanol 4x dipping 

Xylene 2 min 

Xylene 2 min 

Sirius Red positive area was detected based on a threshold and analyzed with the LAS V4.3 

software as total collagen content or normalized to total plaque area.  

4.3.1.3 Immunohistochemistry 

4.3.1.3.1 Macrophage staining 

To analyze the macrophage content within the plaque, aortic roots were stained with MAC2 

(Table 16). Fixed sections were incubated in PBS for 5 min followed by antigen retrieval in 

citrate buffer (Table 7). The citrate buffer was heated until boiling using a microwave. Sections 

were added and the buffer was reheated for additional 10 min at 90 watts. Subsequently, 
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sections were washed two times with PBS for 5 min, followed by blocking with blocking buffer 

(Table 7) containing 10 % goat serum for 30 min. Sections were stained with the primary 

antibody MAC2 diluted in blocking buffer containing 1 % goat serum overnight at 4 °C in a 

moist chamber. As isotype control, sections were incubated with the same concentration of 

normal rat IgG (Table 17). The primary antibody binding was detected via alkaline 

phosphatase enzyme detection system using the VECTASTAIN ABC-AP staining kit (Vector 

Laboratories). Therefore, sections were washed three times with PBS for 5 min, followed by 

incubation with a biotinylated secondary anti-rat antibody (Table 18) for 45 min at RT in the 

dark. After washing, sections were incubated for 30 min with the ABC-AP working solution, 

which was prepared according to the manufacturer’s instructions and pre-incubated for 30 min 

at RT before use. Sections were washed three times with PBS for 5 min, one drop of substrate 

solution, which was prepared according to the manufacturer’s instructions of the VECTOR Red 

AP Substrate kit (Vector Laboratories), was added to each section, followed by incubation for 

20 min in the dark. The reaction was stopped by washing with water for 5 min in the dark. After 

counterstaining with hematoxylin solution for 3 min, sections were rinsed with tab water and 

mounted with Immu-Mount. Macrophage content was quantified with the LAS V4.3 software 

based on a threshold analysis as total MAC2-positive content or normalized to total plaque 

size.  

4.3.1.3.2 Smooth muscle cell staining 

To analyze the content of SMCs in the plaque, aortic roots were stained with an antibody 

against α-SMA (Table 16). Therefore, antigen retrieval, blocking and primary antibody staining 

was carried out as described above (4.3.1.3.1). As control, normal IgG mouse (Table 17) was 

used. After washing, sections were incubated with the secondary anti-mouse AF594 (Table 18) 

for 45 min at RT in the dark. At the end of the incubation time one drop of hoechst (1:1500 

diluted in PBS) was added for 2 min to stain the nuclei. After washing for three times with PBS, 

sections were mounted with Immu-Mount and stored in the dark at 4 °C. Images were recorded 

with the Leica DM6000 microscope. SMC content was analyzed with the LAS V4.3 software 

based on a threshold analysis and quantified as total α-SMA-positive area or normalized to 

total plaque area.  

4.3.2 Flow cytometry 

Flow cytometry analysis was applied for cell counting and protein expression analysis based 

on labeling with fluorescent antibodies (Table 13). Fc receptors on cells were blocked by 

resuspending cells in 50 µL FACS buffer (Table 7) containing an anti-CD16/CD32 antibody 

and incubating for 5 min at RT. 50 µL antibody master mix prepared in FACS buffer was added 

and incubated for 30 min at 4 °C in the dark. After washing, cells were resuspended in 300 µL 

FACS buffer and acquired with the BD FACSDiva software on a BD FACS Canto II flow 
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cytometer. Data was analyzed using FlowJo v10.2 software. Protein expression was 

determined via geometric mean fluorescence intensity (MFI). For total cell counts, acquisition 

volumes were determined. To this end, a standard curve was generated by acquiring a solution 

of CountBright absolute counting beads for various time periods under low, medium and high 

flow rate at the BD FACS Canto II. The resuspension of samples in a defined volume and the 

acquisition with a certain flow rate and time enabled the calculation of total cell counts.  

4.3.2.1 Determination of leukocyte counts in bone marrow and spleen  

Total leukocyte counts of spleen and bone marrow were assessed by flow cytometry. To obtain 

splenic single cell suspensions, harvested spleens were meshed through a 70 µm cell strainer. 

For erythrocytes lysis, pellets were resuspended in 1 mL ACK buffer (Table 7) and incubated 

on ice for 5 min. Bone marrow cells were obtained from femurs, which were positioned in a cut 

1 mL pipette tip placed in a 2 mL tube and centrifuged for 2 min at 9000 x g. Tips were 

discarded and pellets were resuspended in ACK buffer for lysis of erythrocytes. After washing 

and Fc-blocking, cells were stained with fluorochrome-conjugated anti-CD45.2-FITC, anti-

CD11b-PerCP, anti-Ly6G-PE, anti-CD115-APC and anti-Ly6C-PE/Cy7 antibodies at 4 °C for 

30 min. Myeloid cells were identified as CD45+ CD11b+, neutrophils as CD45+CD11b+Ly6G+ 

and classical monocytes as CD45+CD11b+CD115+Ly6Chigh. Total cell counts were calculated 

using the CountBright absolute counting beads curve.  

4.3.2.2 Protein expression on arterial endothelial cells and leukocytes 

For staining of aortic endothelial cells, PBS-flushed aortas were digested with 500 µL aortic 

digestion cocktail (Table 7) containing collagenase IV and DNase I (Table 19) at 750 rpm for 

40 min at 37 °C as previously described.164 Digested aortic tissues were filtered through a 

35 μm cell strainer. After washing, cells were incubated with Fc block followed by staining with 

anti-CD45-APCeFluor780 anti-CD31-PE/Cy7, anti-CD107a-BV421, anti-ICAM1-APC and anti-

VCAM1-PerCP/Cy5.5 antibodies. Aortic endothelial cells were defined as CD45-

CD31+CD107a+.  

For measurement of adhesion molecule expression and lipid transporters on blood leukocytes, 

50 µL blood was erylysed for 10 min on ice followed by Fc-blocking. Subsequently adhesion 

molecules were stained with anti-CD11b-PerCP, anti-CD11a-PE/Cy7, anti-CD18-FITC, anti-

CD49d-PE, anti-PSGL1-PerCP, anti-CD62L-FITC and anti-CD31-PE/Cy7 antibodies. Lipid 

transporters were stained with anti-CD36-PE, anti-SRI (+anti-rabbit BV421), anti-ABCA1-

AF405, anti-ABCG1 (+anti-rabbit AF488) antibodies.  

4.3.2.3 Assessment of platelet-leukocyte aggregates 

For assessment of circulating PLAs in mice, blood was carefully taken via cardiac puncture 

using a 26 G needle and a syringe containing 100 µL ACD buffer (Table 7). 150 µL blood was 
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added to 1 mL RBC Lysis/Fixation Solution (BioLegend) and incubated for 15 min at RT. After 

washing, cells were resuspended in Fc block followed by staining with anti-CD45.2-FITC, anti-

CD11b-PerCP, anti-Ly6G-ACP/Cy7, anti-CD115-PE and anti-CD41-APC antibodies for 20 min 

at RT. After washing, cells were resuspended in 300 µL FACS buffer (Table 7) and acquired 

for 5 min at low flow rate. Particular care was take to use a low acquisition speed, since it was 

reported that a high flow rate leads to false-positive PLA counts.165 PLAs were identified as 

leukocytes positive for the platelet marker CD41. 

4.3.3 Murine cell isolation  

4.3.3.1 Platelet isolation and in vitro stimulation  

For murine platelet isolation, blood was carefully taken by heart puncture using a 26 G needle 

and a syringe containing 100 µL ACD buffer (Table 7) and transferred into a citrate micro tube. 

Blood was centrifuged at 100 x g for 10 min at RT without break. The obtained platelet-rich 

plasma was diluted 1:2 with PBS and centrifuged again at 100 x g for 10 min at RT without 

break. After 1:2 dilution with pre-warmed ACD buffer, platelets were obtained by centrifugation 

at 2600 x g for 5 min at RT, resuspended in 300 µL pre-warmed tyrode buffer (Table 7) and 

counted using a hematology analyzer.  

For in vitro activation, 2x108 platelets/mL were stimulated with 0.5 U/mL thrombin (Table 19) 

for 20 min at 37 °C. After centrifugation at 2600 x g for 5 min at 4 °C, supernatants were 

collected for CXCL4 ELISA (4.2.3.2). Platelet activation was verified by anti-CD62P-PE 

antibody staining using flow cytometry analysis of geometric MFI. 

4.3.3.2 Isolation of monocytes and neutrophils from bone marrow 

To analyze messenger RNA (mRNA) levels of 5-HTRs in myeloid cells, neutrophils and 

monocytes were isolated from femurs of ApoE-/- mice. Therefore, femurs were centrifuged for 

2 min at 9000 x g, followed by erythrocyte lysis with ACK buffer (Table 7). After washing, bone 

marrow cells of three mice were pooled and filtered through a 70 μm cell strainer to obtain 

single cell suspensions. Neutrophils and monocytes were isolated by negative selection using 

a mouse Neutrophil/Monocyte Isolation kit (Miltenyi Biotec GmbH) followed by the 

manufacturer’s protocol. The obtained purity of neutrophils and monocytes was verified using 

FACS analysis (4.3.2). Isolated neutrophils and monocytes were pelleted and RNA was 

extracted (4.3.4.1). 

4.3.4 Biomolecular methods 

4.3.4.1 RNA isolation  

Total RNA was extracted from murine tissues or isolated cells. If not directly processed, 

samples were snap-frozen in a 2 mL microcentrifuge tube and stored at -80 °C until RNA 

extraction. Lysis of isolated cells was performed by up- and down-pipetting in 500 µL of 
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peqGOLD TriFast. For tissue lysis, Qiagen TissueLyser steel beads and 500 µL of peqGOLD 

TriFast were added to the frozen tissue and the lysis was accomplished using a TissueLyser 

(2 min; 50 Hz). Subsequently, lysates were centrifuged at maximal speed for 2 min and 

transformed to a new microcentrifuge tube. 100 µL of chloroform was added and the tube was 

shaken for 30 s followed by an incubation for 5 min at RT. Centrifugation at 12000 x g for 5 min 

at RT let to a separation into three phases: the lower red phenol-chloroform phase carrying 

proteins, the interphase reflecting the genomic DNA and the colorless upper aqueous phase 

bearing RNA. The latter was transferred into a new tube without touching the interphase to 

avoid contamination through genomic DNA. The RNA extraction was proceeded with the 

peqGOLD Total RNA Kit (Peqlab Biotechnologie) according to the manufacturer instructions. 

The RNA yield and purity was determined with a Nanodrop 100. 

4.3.4.2 Reverse transcription 

1 µg of the extracted RNA was transcribed into complementary DNA (cDNA) using the 

PrimeScript RT reagent kit (TaKaRa). The reverse transcription (RT) reaction mix was pipetted 

according to Table 25. 

Table 25: RT reaction mix 

Reagent Amount 

RNA 1 µg 

5x PrimeScript Buffer  2 µL 

PrimeScript RT Enzyme mix I 0,5 µL 

Oligo dt Primer (50 µM ) 0,5 µL  

Random6mers (100 µM) 2 µL  

RNase-free H2O ad 10 µL 
   RNase = Ribonuclease 

The RT was carried out in a PCR Thermocyler using the program shown in Table 26. The 

transcribed cDNA was diluted with RNase-free H2O to obtain a cDNA concentration of 5 ng/mL. 

Table 26: RT program 

Temperature Time 

37 °C 15 min 

85 °C 5 s 

4 °C  ∞ 

4.3.4.3 Quantitative real-time PCR (TaqMan) 

To analyze changes in gene expression in samples of different groups, a quantitative real-time 

PCR using the TaqMan technology was performed with the the KAPA PROBE FAST Universal 

qPCR kit (Peqlab Biotechnologie). For amplification of specific genes, primers and probes 

were either self-designed and purchased from MWG or bought as pre-designed primer-probe 

mixes from Life Technolgies (Table 9).  
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Table 27: Primer-probe mix  

Self-designed 4x primer-probe mix Pre-designed 4x primer-probe mix 

Primer fwd (100 µM) 4 µL Primer-probe-Mix  0.5 µL 

Primer rev (100 µM) 4 µL Nuclease-free H2O Ad 5 µL 

Probe (100 µM) 1 µL   

Nuclease-free H2O ad 250 µL   

After preparing a 4x primer-probe mix as shown in Table 27, the qPCR mix was pipetted 

according to Table 28. 

Table 28: qPCR reaction mix 

Reagent Amount

Master mix 2x 10 µL 

Primer-probe mix 5 µL 

Reference dye high 0.4 µL 

cDNA (5 ng/mL) 4.6 µL 

 

As negative control, nuclease-free H2O was used instead of cDNA. Samples were pipetted in 

duplicates on a semi-skirted 96-well qPCR plate and the qPCR was carried out on a 7900HT 

Sequence Detection System using the qPCR FAST program: 

Table 29: qPCR FAST program 

Temperature Time 

95 °C   20 s 

95 °C   1 s 

60 °C   20 s 

 

The analysis was accomplished via SDS2.4 Software. As endogenous control Hypoxanthin-

Guanin-Phosphoribosyltransferase (Hprt) was utilized. For the comparison of gene expression 

in isolated monocytes and neutrophils a second housekeeping gene Glycerinaldehyd-3-

phosphat-Dehydrogenase (Gapdh) was used. Target gene expression was normalized to the 

endogenous control and presented as fold change calculated according to the following 

equations: 

   dCt=Ct gene of interest -Ct endogenous control  

   ddCt=dCt treated -average dCt (untreated) 

   fold change=2-ddCt 

4.3.5 Generation of a 5-HTR2a-overexpressing cell line  

To investigate the signaling of 5-HTR2a, a Flp-In T-Rex-293 cell line overexpressing the 

receptor was generated. First, the coding sequence was cloned into a pcDNA5/FRT/TO 

expression vector, N-terminally flanked with the coding sequence for eYFP (Figure 13). 

40 cycles 
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Second, Flp-In T-Rex 293 cells (Table 12) were transfected with the plasmid and stable clones 

were generated.  

4.3.5.1 Restriction digest  

The plasmid harboring the human coding sequence of 5-HTR2a between BamHI (5') and XhoI 

(3’) restriction sites was purchased from cDNA Resource Center. To clone the 5-HTR2a 

sequence in the expression vector of interest, the purchased plasmid and the vector containing 

the backbone were digested with XhoI and BamHI-HF (Table 19) according to the protocol 

listed in Table 30. The digest was performed at 37 °C for 1 h: 

Table 30: Digestion mix 

Reagent  Amount 

Plasmid/PCR product 10 µg/10 µL 

CutSmart 10x buffer 2 µL 

BamHI-HF 1 µL 

XhoI 1 µL 

H20 ad 20 µL 

4.3.5.2 Agarose gel electrophoresis and gel extraction  

To separate DNA fragments, digested plasmids were loaded on a 1 % agarose gel. Therefore, 

1 g of agarose was dissolved in 100 mL 1x TAE buffer (Table 7) by heating. After cooling, 

14 µL of ethidium bromide solution (Table 7) was added and directly poured into a tray. The 

polymerized gel was covered with TAE buffer and the digested plasmids supplemented with 

the corresponding amount of 6x loading dye were loaded next to a 1 kb DNA ladder. After 

running the gel with 180 V for 20 min using an electrophoresis power supply (Kyoritsu), it was 

visualized with the Gel imager INTAS. The DNA fragments of interest were cut out and purified 

via the QIAquick Gel Extraction kit (Qiagen) following the manufacturer’s instructions. 

4.3.5.3 Ligation 

The ligation reaction mix was pipetted according to Table 31 and incubated at 16 °C for 1 h. 

Table 31: Ligation reaction mix 

Reagent  Amount 

Digested vector DNA  1 µL  

Digested insert DNA 5 µL  

T4 Ligase 10x Buffer 1 µL 

T4 Ligase 1 µL 

H20  ad 10 µL 
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4.3.5.4 Bacterial transformation 

For plasmid amplification a bacterial transformation was performed. Therefore, 50 µL JM109 

competent bacteria cells (4.1.6) were thawed on ice, mixed with 5 µL ligation reaction mix and 

incubated on ice for 30 min. After performing a heat shock at 42 °C for 30 s, cells were 

incubated for another 1.5 min on ice. 110 µL of pre-warmed S.O.C. medium was added, the 

mixture was shaken at 37 °C for 1 h, plated on an LB agar plate (Table 7) and incubated at 

37 °C overnight. 

4.3.5.5 Colony PCR 

Single cell colonies were screened for insert incorporation by performing a colony PCR. A 

single clone was picked with a tip and dipped into the reaction mix, which was pipetted 

according to Table 32. 

Table 32: Colony PCR mix 

Reagent Amount 

CoralLoad 10x 1.5 µL 

Q-solution 5x 3.0 µL 

CMV fwd (10 µM) 0.75 µL 

5-HTR2a rev (10 µM) 0.75 µL 

dNTPs (10 mM) 0.3 µL 

Taq Polymerase 0.15 µL 

H20 ad 15 µL 

 

The PCR reaction was carried out with the colony PCR program (Table 33) in a PCR 

Thermocycler. The whole reaction mix was loaded on a 1 % agarose gel (4.3.5.2), to verify the 

size of the amplified DNA fragment.  

Table 33: Colony PCR program  

Temperature Time 

94 °C 180 s 

94 °C 60 s 

55 °C 30 s 

72 °C 90 s 

72 °C 10 min 

4 °C ∞ 

4.3.5.6 Plasmid amplification and purification 

Clones positively tested for insert incorporation via colony PCR (4.3.5.5) were used to inoculate 

5 mL of LB medium (Table 7) supplemented with 10 µL ampicillin. The bacterial cultures were 

incubated at 37 °C overnight. After pelleting, plasmid DNA isolation and purification was 

25 cycles 



MATERIALS AND METHODS 

55 

performed using the QIAprep Spin Miniprep Kit (Qiagen) according to the manufacturer’s 

instructions. The DNA concentration was measured with a Nanodrop 100. 

4.3.5.7 Sequencing  

To verify the sequence of the inserted fragment, the plasmid was sent for sequencing of DNA 

to Eurofins MWG Operon (Ebersberg, Germany). The sequence was verified by alignment with 

the NCBI reference sequence using the software program ApE. 

4.3.5.8 Cell transfection 

For stable and inducible expression of the eYFP-5-HTR2a construct, Flp-In T-Rex 293 cells 

(Table 12) were transfected with the pcDNA5/FRT/TO plasmid harboring the gene of interest 

downstream of a hybrid human CMV/TetO2 promoter (Table 11, Figure 13). The Flp-In T-Rex 

293 cell line comprises a FRT site, which allows site directed construct integration. Co-

transfection of the pOG44 plasmid (Table 11) carrying the Flp recombinase and the 

pcDNA5/FTR/TO vector containing the gene of interest, results in homologous recombination 

between the FRT sites in pcDNA5/FRT/TO and on the Flp-In T-Rex 293 cells chromosome. 

Only correct insertion into the FRT sites brings the ATG initiation codon and the SV40 promoter 

into frame leading to expression of the hygromycin resistance gene. Thus, cells containing a 

correctly integrated eYFP-5-HTR2a construct can be selected by hygromycin.  

Flp-In T-Rex 293 cells were seeded in a 12-well plate. Upon reaching 90 % confluence, 0.4 µg 

vector DNA and 1.6 µg pOG44 plasmid DNA were added to 50 µL DMEM without FBS. The 

plasmid solution was mixed with 50 µL DMEM supplemented with 4 μL EcoTransFect and 

incubated at RT for 15 min to allow complex formation. Directly before cell transfection, the old 

medium was replaced by 1 mL fresh culturing medium. Then, the transfection solution was 

carefully added to the medium. After 24 h, cells were transferred into a 10-cm dish using 

trypsin/EDTA solution. Upon reaching 70 % to 80 % confluence, culture medium was changed 

and supplemented with hygromycin (0.25 mg/mL) for selection. After 2 to 3 days, medium was 

changed to discard dead cells. Once single cell colonies were formed, at least three different 

clones were transferred to a 12-well plate and further cultured with culture medium 

supplemented with hygromycin. Clones of the newly established cell line were verified for 5-

HTR2a expression after tetracycline induction by measuring eYFP levels using flow cytometry 

and microscopy. 

4.3.6 Cell-based in vitro assays 

4.3.6.1 Calcium assay 

Changes in intracellular calcium concentrations upon stimulation of 5-HTR2a overexpressing 

HEK-293 cells were assessed with the FLPR Calcium 5 Assay kit (Molecular Devices) following 

the manufacturer's protocol. Cells were seeded in a black 96-well microplate with a clear 
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bottom with 100 µL DMEM supplemented with 10 % FBS, 100 U/mL penicillin/streptomycin 

and 2 % poly-D-lysine. 5-HTR2a expression was induced by adding 100 µL culture medium 

containing tetracycline (final concentration in the well: 0.5 µg/mL) and cells were incubated at 

37 °C for 48 h (80 % confluence). After washing with HBSS, 100 µL of HBSS was added to 

each well together with 100 µL loading buffer and incubated for 1 h at 37 °C. Fluorescence of 

the calcium sensitive dye (excitation: 485 nm, emission 525 nm) was measured at 37 °C with 

a Tecan Infinite F200 PRO microplate reader. First, basal levels were determined followed by 

measurement after ligand stimulation. Relative light units were normalized to basal level and 

displayed as x-fold over basal level.  

4.3.6.2 GloSensor cAMP assay 

To assess the signaling of Gαi/o coupled receptors, cAMP was measured using the GloSensor 

cAMP assay from Promega. This technology enables a luciferase-based biosensors for real-

time detection of intracellular cAMP changes. The GloSensor luciferase has a binding site for 

cAMP. Upon cAMP binding a conformational change in the luciferase occurs, leading to an 

increase in luminescence activity directly proportional to the amount of cAMP. The signaling 

of the two G protein Gαi/o-coupled receptors CCR1 and CCR5 upon CCL5 stimulation was 

assessed by the observed reduction of a cAMP signal generated by forskolin, a direct activator 

of adenylyl cyclases. 

F20 Flp-In T-Rex 293 cells (Table 12), expressing CCR1 or CCR5 in addition to the GloSensor 

luciferase, were seeded in white 96-well microplate with a clear bottom with 100 µL culture 

medium supplemented with 4 % poly-D-lysine. To induce the receptor expression, 1 µg/mL 

tetracycline (final concentration in the well: 0.5 µg/mL) was added in 100 µL culture medium 

and the cells were incubated at 37 °C for at least 48 h until reaching 100 % confluence. Cells 

were washed with HBSS/HEPES buffer (Table 7) and 2.5 % (v/v) of Luciferin-EF (Promega) 

was added in 67.5 µL HBSS/HEPES buffer followed by incubation in the dark for 1.5 h at RT. 

The clear bottom was covered with a white adhesive bottom seal and the basal glow 

luminescence was measured with a Tecan Infinite F200 PRO microplate reader at 25 °C for 

19 cycles. Afterwards, 7.5 µL FLX was added per well and possible changes in intracellular 

cAMP levels were assessed for 7 cycles (15 min) followed by addition of CCL5 and 

measurement for additional 19 cycles. 1 μM forskolin was added to each well and the 

increasing cAMP levels were followed for 15 cycles. Relative light units were normalized to 

basal level. 

4.3.6.3 Stimulation of SVEC4-10 cells 

ICAM1 and VCAM1 protein levels on endothelial cells upon stimulation were assessed by flow 

cytometry (4.3.2) using the murine endothelial cell line SVEC4-10 (Table 12). Therefore, cells 

were seeded in RPMI-1640 supplemented with 10 % FBS and 100 U/mL penicillin/strepto-
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mycin in a 12-well microplate and grown until reaching confluence. Cells were stimulated with 

different concentrations of 5-HT or FLX in serum-free medium for 15 min, followed by activation 

with TNFα (10 ng/mL) for 6 h. After washing with PBS, cells were stained with anti-ICAM1-

APC and anti-VCAM1-PerCP/Cy5.5 antibodies (Table 13) in FACS buffer (Table 7) at 4 °C in 

the dark for 15 min. After washing, cells were resuspended in 300 µL FACS buffer and 

acquired at a BD FACS Canto II. Protein expression levels were calculation via geometric MFI. 

4.3.6.4 Integrin activation assay 

4.3.6.4.1 Murine ICAM1/VCAM1 binding assay 

Integrin activity was assessed in the murine system by measuring ICAM1 and VCAM1 binding 

to blood leukocytes.161 Therefore, murine blood was taken carefully by cardiac puncture. All 

incubation and centrifugation steps were performed at RT. 50 µL blood was added to 3 mL 

ACK buffer (Table 7) for lysis of erythrocytes and incubated for 15 min. After addition of 1 mL 

integrin assay buffer (Table 7), cells were centrifuged at 300 x g for 5 min, followed by an 

additional washing step. Cells were resuspended in 100 μL recombinant ICAM1/Fc chimera or 

VCAM1/Fc chimera (Table 20), which were pre-labeled with an anti-human IgG1-PE antibody 

(Table 18) by 5 min incubation. 5-HT (1 µM), FLX (1 µM) or escitalopram (0.1 µM) was added 

and cells were treated for 15 min at 37 °C, followed by stimulation with murine CCL5 (5 μg/mL; 

Table 20) for additional 5 min. After washing, cells were stained with anti-CD45-APC, anti-

CD11b-PerCP, anit-Ly6G-FITC and anti-Gr1-APCeFluor780 antibodies (Table 13) for 15 min 

at RT. After washing, cells were resuspended in 200 μL assay buffer and measured by flow 

cytometry. Neutrophils were determined as CD45+CD11b+Gr1+Ly6G+ and classical monocytes 

as CD45+CD11b+Gr1highLy6G-. ICAM1 or VCAM1 binding was assessed via geometric MFI of 

PE-stained cells. 

4.3.6.4.2 Assessment of human high-affinity β2-integrin conformation 

In the human system, integrin activation was measured by assessing the high affinity 

conformation of LFA1, representing β2-integrin activation. As a cell culture model, human 

promyelocytic leukemia HL-60 cells (Table 12) were differentiated into neutrophil-like cells. 

Therefore, 1x106 HL-60 cells were seeded in 10 mL RPMI-1640 supplemented with 10 % FBS 

and 100 U/mL penicillin/streptomycin and incubated with 1.3 % DMSO for 6 days.166,167 After 

counting, cells were resuspended in adhesion medium (2x106 cells/mL; Table 7). 50 µL of the 

cell suspension was added to 50 µL adhesion medium containing FLX (1 µM) or 5-HT (1 µM) 

and the mAb24 antibody (Table 14), which only binds to the high affinity β2-integrin 

conformation.168 Simultaneously, cells were stimulated with human CCL5 (5 µg/mL; Table 20) 

or left unstimulated for 20 min at 37 °C. Cells were washed twice with PBS, stained with the 

AF488-conjugated (Fab’)2 antibody (Table 18) for 20 min on ice and fixated for 10 min on ice. 

After washing, cells were resuspended in 50 µL PBS and acquired with the FACS BD 
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LSRFortessa 5L. The high-affinity β2-integrin conformation was determined via MFI of Alexa 

Fluor 488-stained cells. 

4.3.7 Statistics 

Statistical analysis was performed using GraphPad Prism 7 software (Table 23). All data are 

shown as a mean ± standard error of the mean (SEM). Gaussian distribution was tested with 

D’Agostino Pearson omnibus or Shapiro Wilk normality test. If normally test failed, Mann 

Whitney U test was applied. In case of Gaussian Distribution, Student’s t-test was used for 

normally distributed data with equal variances after comparing variances via F test. If variances 

were significantly different Welch’s t-test was applied. For highly screwed datasets, log 

transformation was performed prior to statistical calculations. For multiple comparisons, 

depending on the distribution, either one-way analysis of variance (ANOVA) followed by 

Bonferroni post hoc test or Kruskal-Wallis test followed by Dunn’s post hoc test was applied. 

For two independent factors, two-way ANOVA followed by Bonferroni post hoc test was 

applied. Outliers were determined by Tukey’s method. P values <0.05 were considered as 

statistical significant.
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5 RESULTS 

5.1 Atherogenesis modulates the serotonergic system 
To investigate the influence of atherosclerosis on the components of the serotonergic system, 

the expression pattern of the proteins involved were analyzed in diverse tissues of ApoE-/- mice 

at different stages of the disease. Apart from aorta, bone marrow and spleen were analyzed 

because of their function as a cell reservoir during atherogenesis. ApoE-/- mice were 

euthanized for tissue harvest (0 weeks) or fed a HFD for 4 or 16 weeks prior to organ harvest 

and gene expression of 5-Htr2a, 5-Htr1b, 5-Htr2b and Sert was measured. 

 

  

 

Figure 18: Atherosclerosis affects the 5-HT 
system. 
ApoE-/- mice were fed a HFD for 0, 4 and 16 weeks 
and gene expression levels of various 5-Htrs and 
Sert were measured via qPCR in (A) aorta, (B) bone 
marrow and (C) spleen. Data show mean±SEM, n=5, 
two-way ANOVA followed by Bonferroni multiple 
comparison or Kruskal-Wallis test followed by 
Dunn’s multiple comparison test: *P<0.05, nd 
indicates not detectable. 

The transition from normal chow diet to HFD caused a decline in the 5-Htr2a expression in the 

aorta, while the expression of the other two receptors and Sert increased, at least at the onset 

of HFD (Figure 18A). The most important upregulation was observed for 5-Htr2b. In bone 

marrow (Figure 18B), the expression of 5-Htr2a also initially dropped, returning to baseline 

level with progressed atherosclerosis. Similar to the expression levels in aorta, 5-Htr1b, -2b 

and Sert expression increased during atherogenesis. A different expression pattern was 

observed in spleen (Figure 18C). Here, 5-Htr2a expression increased in association with HFD, 

while 5-Htr1b expression decreased. The mRNA level of Sert was unaffected and 5-Htr2b was 

not detectable. Moreover, 5-HT serum levels, reflecting the 5-HT platelet storage, 

progressively decreased with HFD feeding, possibly caused by enhanced platelet activation 
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during atherosclerosis (Figure 19). Taken together, the progression of atherosclerosis affects 

several components of the 5-HT system including platelet 5-HT storage as well as the gene 

expression of Sert and several 5-Htrs.  

 

Figure 19: Atherosclerosis leads to reduced 5-HT levels in  
serum. 
ApoE-/- mice were fed a HFD for 0, 14 and 28 days and 5-HT 
levels were measured in serum via ELISA. Data show 
mean±SEM, n=3-4, Kruskal-Wallis test followed by Dunn’s 
multiple comparison test: *P<0.05, ns indicates not significant. 
(Modified from Rami et al.)169 

5.2 Chronic FLX treatment leads to platelet 5-HT depletion without 
affecting 5-HT plasma levels 

In order to verify the efficiency of chronic FLX treatment, a time course experiment was 

performed. Therefore, ApoE-/- mice were treated for 0, 3, 7, 14 days with FLX, while feeding a 

HFD. FLX was administered orally with a dose of 160 mg/L via the drinking water as previously 

reported.73 Taking into account the daily drinking volume of 3-5 mL per mouse, the calculated 

oral intake of FLX in this experimental setting is approximately 18 mg/kg/day. In mouse, this 

was reported to result in FLX plasma concentrations equivalent to those determined in patients 

taking 20 to 80 mg FLX per day.170 

 

Figure 20: FLX treatment leads to platelet 5-HT depletion.  
ApoE-/ -mice were fed a HFD for 0, 1, 3, 7 and 14 days and in parallel treated +/- FLX via the drinking 
water. 5-HT levels in (A) plasma and (B) serum were m via ELISA. Data show mean±SEM, n=3, two-
way ANOVA followed by Bonferroni multiple comparison test: *P<0.05. (C) 5-HT depletion efficiency 
after 2 weeks of FLX treatment was quantified as a percentage of 5-HT serum levels of FLX-treated to 
control mice. Data show mean±SEM, n=3, Welch’s t-test: *P<0.05. (Modified from Rami et al.)169 

Plasma 5-HT levels representing the free circulating 5-HT, which is generally low, were not 

affected by chronic FLX treatment (Figure 20A). Serum 5-HT levels, reflecting the platelet 5-

HT storage, decreased with chronic FLX treatment with a significant reduction after 7 days of 

treatment (Figure 20B). After 2 weeks of treatment the achieved platelet 5-HT storage 

depletion, which reflects the drug efficiency was 88 % (Figure 20C).  
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5.3 FLX leads to reduced leukocyte extravasation in wild type mice 
Duerschmied and co-workers showed that during inflammation platelet serotonin promotes 

leukocyte recruitment and adhesion to mesenteric venous endothelium in mice. Moreover, they 

demonstrated that neutrophil extravasation in mice deficient for the enzyme TPH1, which are 

lacking non-neuronal 5-HT, is reduced in an acute peritonitis model.115 To investigate if the 

effect on extravasation can also be observed upon 5-HT depletion by FLX, we treated wild 

type C57Bl/6 mice for 2 weeks with FLX. Two hours after induction of an acute peritonitis by 

injection of 4 % thioglycolate the number of leukocytes obtained from the abdominal cavity 

lavage was significantly decreased in the FLX-treated group, mainly due to less neutrophil 

extravasation (Figure 21). Since leukocyte extravasation plays a crucial role in atherosclerosis, 

it was hypothesized that platelet 5-HT depletion via chronic FLX treatment reduces vascular 

inflammation leading to attenuated atherosclerosis.  

 

 

Figure 21: FLX impairs leukocyte extravasation in wild 
type mice. 
Male C57Bl/6 mice were treated with FLX for 2 weeks. Two 
hours after the induction of an acute peritonitis by 4 % 
thioglycolate solution, the number of white blood cells (WBC), 
lymphocytes (LYM), monocytes (MO) and granulocytes 
(GRA) in the peritoneal lavage was determined with a 
hematology analyzer. Data show mean±SEM, n=9-10, 
Student’s t-test: *P<0.05. 

5.4 Chronic FLX treatment aggravates atherosclerosis  
To investigate the effect of chronic FLX treatment on atherosclerosis, male ApoE-/- mice were 

treated for 2, 4 and 16 weeks with FLX accompanied by feeding a HFD. As expected, mice fed 

with a HFD had increased body weights and cholesterol levels, but both parameters were not 

affected by FLX treatment (Figure 22A,B). 

 
Figure 22: FLX does not affect body weight and cholesterol levels. 
ApoE-/- mice were treated for indicated periods of time with FLX while feeding a HFD. (A) Body weight 
was measured at the endpoint of the experiment. Data show mean±SEM, n=10-11 (2 weeks) n=10 
(4 weeks) n=8-10 (16 weeks), Mann-Whitney U test. (B) Total plasma cholesterol was measured with a 
colorimetric assay. Data show mean±SEM, n=5 (2 weeks), n=10 (4 weeks) and n=8-10 (16 weeks), 
Student’s t-test was performed to compare untreated vs FLX for each time point.  
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Atherogenesis was determined as lesion size in the aortic roots measured by ORO staining of 

cryosections. Unexpectedly, FLX treatment resulted in significantly increased lesion areas in 

all stages of atherosclerosis as evidenced by elevated absolute and normalized plaque size in 

the aortic root of FLX-treated mice compared to untreated control group (Figure 23). Of note, 

the strongest effect was observed at very early lesion formation (2 weeks) with a 1.7-fold 

increase, while at advanced atherogenesis (16 weeks) the difference was only 1.3-fold. 

 
Figure 23: FLX treatment enhances atherosclerosis.  
ApoE-/- mice were fed a HFD for 2, 4 and 16 weeks accompanied by FLX treatment via the drinking 
water, while control mice received normal drinking water. (A) Representative images of ORO staining 
of frozen sections of aortic roots for plaque quantification. Scale bar=200 µm. Quantitative analysis of 
ORO staining as (B) absolute lesion area or (C) normalized to IEL as measure of the vessel size. Data 
show mean±SEM. Student’s t-test: *P<0.05. (Modified from Rami et al.)169 

It has been reported that in hypercholesterolemia blood monocytes may contribute to the 

pathogenesis of atherosclerosis by accumulating lipids in the circulation and subsequently 

transporting them into atherosclerotic lesions.53,171,172 To clarify if chronic SSRI treatment 

affects lipid content in circulating leukocytes independent of total plasma cholesterol, free and 

esterified cellular lipid content was assessed after 2 weeks of treatment. However, the ratio of 

esterified cholesterol to total cholesterol was similar in FLX-treated and control mice 
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(Figure 24A). Similar, protein levels of cholesterol transporters ABCA1, ABCG1, CD36 and 

SR1 on circulating myeloid cells, of which non-classical monocytes showed the highest 

expression, did not differ between the two groups (Figure 24B). Thus, these results argue 

against the possibility that FLX may affect cholesterol efflux in circulating leukocytes.  

 
Figure 24: FLX has no effect on lipid loading in circulating leukocytes.  
ApoE-/- mice were fed a HFD for 2 weeks +/- FLX and lipid loading of circulating leukocytes was 
assessed. (A) Neutral lipid content of circulating leukocytes was measured with the Amplex Red 
Cholesterol Assay kit as ratio of esterified cholesterol (EC) to total cholesterol (TC). (B) Protein levels 
of cholesterol transporters ABCA1, ABCG1, CD36 and SR1 were analyzed on circulating non-classical 
monocytes (CD45+/CD11b+/CD115+/Ly6Clow) by flow cytometry via geometric MFI. Data show 
mean±SEM, n=5-6, Student’s t-test: *P<0.05. (Modified from Rami et al.)169 

To evaluate the effect of FLX on already established plaques, ApoE-/- mice were fed a HFD for 

16 weeks while FLX was administered in parallel only during the last 4 weeks. Interestingly, as 

seen in Figure 25, no differences were observed in total as well as in normalized plaque size 

of aortic roots between FLX-treated and control mice, suggesting that FLX rather affects lesion 

initiation than progression.  

 
Figure 25: FLX does no effect the progression of already established plaques. 
ApoE-/- mice were fed a HFD for 12 weeks before starting in parallel FLX administration for additional 
4 weeks. Lesion area was quantified in aortic roots via ORO staining. (A) Representative images. Scale 
bar=200 µm. (B) Quantitative analysis of ORO staining as absolute lesion area (left) or normalized to 
IEL (right). Data show mean±SEM. n = 5-6. Student’s t-test: *P<0.05. 

Remarkably, it was reported that an acute FLX treatment leads to temporary elevated plasma 

5-HT concentrations and promotes leukocyte endothelial interaction, as shown after 2 h of FLX 

treatment onset.116 To validate if transiently increased plasma 5-HT may cause the observed 

pro-atherogenic effect, mice were pre-treated with FLX for 2 weeks before starting HFD 

feeding with continuous FLX treatment for 2 weeks. Thereby, may occurring transiently 
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elevated plasma 5-HT levels at the onset of FLX treatment do not exhibit a possible 

confounding effect. However, the observed plaque phenotype in the pre-treatment experiment 

(Figure 26) was comparable with the one in the standard experimental setup (Figure 23). This 

excludes the possibility that the FLX-mediated pro-atherogenic effect is only due to potentially 

elevated 5-HT plasma levels at the beginning of the FLX treatment. 

 

Figure 26: Pre-treatment with FLX reveals similar results to standard experimental setup. 
ApoE-/- mice were pre-treated with FLX for 2 weeks before starting HFD feeding in parallel for 2 weeks. 
(A) Representative images of ORO staining of aortic roots of untreated and pre-treated FLX-mice. Scale 
bar=200 µm. (B) Quantitative analysis of total lesion area (left) or normalized to IEL (right). Data show 
mean±SEM, n=9, Student’s t-test: *P<0.05. (Modified from Rami et al.)169 

To investigate systemic inflammatory parameters upon FLX treatment, the impact of FLX on 

the plasma cytokine profile was assessed. Interestingly, plasma levels of IL22 were 

significantly decreased in the FLX-treated group (Figure 27A). The abundance of other tested 

cytokines was not affected by the treatment, except for a mild increase of IFNγ and CXCL1 

(Figure 27B).  

 

Figure 27: IL22 plasma levels were elevated by FLX treatment while the abundance of other 
cytokines was not affected.  
Plasma cytokine levels were measured in untreated and FLX-treated ApoE-/- mice after feeding a HFD 
for 4 weeks. (A) Plasma concentrations of IL22 and (B) a variety of other cytokines were assessed by 
multiplex immunoanalysis. Data show mean±SEM, n=8-9, Welch’s t test: *P<0.05. 

The early phase of atherosclerosis is mainly characterized by the recruitment of myeloid cells. 

Looking closer at aortic plaques after 4 weeks of treatment, FLX-treated mice showed an 

elevated neointimal macrophage content compared to the untreated control group, as 

evidenced by an augmented amount of MAC2-positive cells in the plaque (Figure 28). The 
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relative macrophage content was not changed, suggesting that the detected increase in plaque 

size in FLX-treated mice was mainly caused by macrophage accumulation.  

 

 

 

Figure 28: FLX treatment leads to elevated 
macrophage content in aortic lesions. 
Macrophage content in aortic plaques of 
control and FLX treated ApoE-/- mice after 
feeding a HFD for 4 weeks was determined by 
immunohistochemistry. (A) Quantitative ana-
lysis of macrophage plaque content as total 
MAC2-positive area (left) or normalized to 
plaque area (right). (B) Representative 
images. Scale bar=200 µm. Data show 
mean±SEM, n=14-18, Student’s t-test: 
*P<0.05. (Modified from Rami et al.)169 

 

 

 

Figure 29: FLX does not affect composition of advanced plaques. 
Plaque content of untreated and FLX treated ApoE-/- mice was examined after 16 weeks of feeding a 
HFD. Representative images of (A) staining with the macrophage marker MAC2, (C) Sirius red staining 
for total collagen and (E) α-SMA immunofluorescence staining for SMC content (dotted line delineates 
the plaque area). Scale bar=200 µm. Quantitative analysis of (B) macrophage, (D) collagen and (F) 
SMC content as total area (left) or normalized to plaque size (right). Data show mean±SEM, n=12-16, 
Student’s t-test. (Modified from Rami et al.)169 
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Interestingly, differences in macrophage content were no longer detectable at advanced 

atherogenesis (Figure 29A,B). Furthermore, the plaque content of collagen and SMC was not 

changed by FLX treatment (Figure 29C-F), indicating that FLX is not affecting plaque stability.  

5.5 FLX transiently lowers circulating leukocyte and platelet counts  
To verify the reason for elevated neointimal macrophage content in FLX-treated mice in early 

atherogenesis, leukocyte blood counts were measured.  

 
Figure 30: FLX leads to a transient decline in blood 
cell counts in ApoE-/- mice.  
(A) Control and FLX-treated ApoE-/- mice were fed a HFD 
for indicated time points and circulating granulocyte 
counts were measured with a hematology analyzer. Data 
show mean±SEM, n=3, Student’s t-test: *P<0.05. (B-E) 
Blood counts of white blood cells (WBC), lymphocytes 
(LYM), monocytes (MO), granulocytes (GRA) and 
platelets (PLT) were measured with a hematology 
analyzer after (B) 2 (C) 4 and (D) 16 weeks of HFD  
+/- FLX and (E) in wild type mice after 2 weeks +/- FLX. 
(B-E) Data show mean±SEM, n=9-10 (B), n=8 (C), n=8-9 
(D) and n=7-8 (E), Student’s t-test or Mann-Whitney U 
test: *P<0.05. (Modified from Rami et al.)169 

The investigation of blood leukocyte counts from the initial time course experiment (Figure 20) 

revealed a significant decline in granulocyte numbers after 14 days of treatment (Figure 30A). 

A more detailed analysis of this time point identified an overall drop in circulating white blood 

cell counts, which was mainly due to a decreased number of granulocytes and accompanied 

by a decline in platelet numbers (Figure 30B). However, this effect was no longer visible after 

4 and 16 weeks of treatment (Figure 30C,D) and was not present in wild type mice without 
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atherogenic background (Figure 30E). Thus, the transient reduction of circulating myeloid cells 

might reflect augmented platelet and neutrophil recruitment to the arterial wall, which is most 

pronounced in early lesion formation. 

5.6 FLX does not affect myelopoiesis and mobilization from bone 
marrow and spleen 

To subsequently verify potential changes in leukocyte production and mobilization from the 

bone marrow and spleen upon FLX treatment, cell counts were assessed in both organs by 

flow cytometric analysis. Absolute numbers of neutrophils and classical monocytes in spleen 

as well as in bone marrow were comparable between FLX and control group (Figure 31A-D). 

This indicates that FLX has no impact on myelopoiesis and mobilization of myeloid cells.  

 

Figure 31: FLX treatment has no impact on myelopoiesis and mobilization from bone marrow 
and spleen. 
(A) Representative gating strategy to identify neutrophils (CD45+/CD11b+/Ly6G+) and classical 
monocytes (CD45+/CD11b+/CD115+/Ly6Chigh) by flow cytometry. (B-D) Leukocyte counts of spleen (left) 
and femur (right) were measured in untreated and FLX-treated ApoE-/- mice after feeding a HFD for (B) 
2, (C) 4 and (D) 16 weeks. Data show mean±SEM, n=4-6 (B), n=9-11 (C) and n=8-10 (D), Student’s t-
test or Mann-Whitney U test: *P<0.05. (Modified from Rami et al.)169 
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5.7 Arterial adhesion of myeloid cells is enhanced by FLX  
Given that circulating leukocyte counts were transiently decreased at the onset of FLX 

treatment, which was not explained by changes in myelopoiesis or recruitment from bone 

marrow or spleen, FLX might enhance leukocyte adhesion to the inflamed endothelium in 

aortas of atherosclerosis-prone mice. To investigate arterial adhesion in vivo as well as rolling 

of myeloid cells on the endothelium intravital microscopy was performed at the carotid artery 

bifurcation, known as a predilection site for atherosclerotic plaque development. Myeloid cells 

were visualized by injecting fluorescent antibodies against CD11b and Ly6G in control and 

FLX-treated mice which had received a HFD for 4 weeks. Live imaging showed a 2.5-fold 

increase in the number of adhering CD11b-stained myeloid cells of FLX-treated mice 

compared to control (Figure 32A,B). This effect was even more striking when specifically 

analyzing neutrophils, identified as Ly6G-labeled cells, with a 3.4-fold higher count of adherent 

cells in the FLX-treated group. In contrast, rolling on the endothelium was not affected by FLX 

(Figure 32C).  

 
Figure 32: FLX enhances arterial adhesion of myeloid cells.  
Intravital microscopy of the left carotid artery was performed in ApoE-/- mice, which were fed a HFD for 
4 weeks +/- FLX. To track myeloid cells or neutrophils antibodies against CD11b or Ly6G were injected 
intravenously 10 min before measurement. (A) Representative images of adherent myeloid cells. Scale 
bar=100 µm. (B) Number of counted adherent CD11b+ (left) and Ly6G+ (right) cells per field. (C) Number 
of counted rolling CD11b+ (left) and Ly6G+ (right) cells. Data show mean±SEM, n=9-10, *P<0.05, 
Welch’s t test or Mann-Whitney U test. (Modified from Rami et al.)169 

  



RESULTS 

69 

5.8 5-HTR1b antagonism has no influence on atherogenesis 
It was shown that stimulation of 5-HTR1b receptor expressed on the endothelium leads to an 

increase in NO production via the Akt/eNOS pathway.91 Since an increase in NO is well known 

to block the expression of adhesion molecules, we aimed to investigate the influence of  

5-HTR1b signaling in atherogenesis. Based on the fact that a loss of NO results in an 

upregulation of adhesion molecules,7 antagonism of 5-HTR1b was hypothesized to enhance 

atherosclerosis. To examine this hypothesis, ApoE-/- mice were injected every second day with 

a selective antagonist for 5-HTR1b for 2 weeks accompanied by HFD feeding. However, mice 

administered with the antagonist showed similar plaque sizes (Figure 33A,B) and blood cell 

counts (Figure 33C) compared to vehicle group. This suggests that the observed FLX-

mediated increase in atherosclerosis is not caused by the loss of 5-HTR1b signaling through 

the depletion of peripheral 5-HT.  

 
Figure 33: Injection of 5-HTR1b antagonist 
does not alter atherosclerosis. 
ApoE-/- mice were injected with the 5-HTR1b 
antagonist NAS-181 (3 mg/kg, i.p.) or vehicle 
every second day while feeding a HFD for 
2 weeks. (A) Representative images of ORO 
staining of aortic roots of vehicle and NAS-181 
treated mice. Scale bar=200 µm. (B) Quantitative 
analysis of atherosclerosis as total lesion area 
(left) or normalized to IEL (right). (C) Blood counts 
of white blood cells (WBC), lymphocytes (LYM), 
monocytes (MO), granulocytes (GRA) and 
platelets (PLT) were measured with a hematology 
analyzer. Data show mean±SEM, n=10, Student’s 
t-test: *P<0.05. 
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5.9 FLX does not alter platelet characteristics 
Circulating activated platelets are known to interact with leukocytes to form PLAs. This leads 

to enhanced leukocyte adhesiveness to inflamed endothelium by depositing CCL5 and CXCL4 

on the monocyte and endothelial surface, which in turn promotes formation of atherosclerotic 

lesions.61 The depletion of platelet 5-HT storage might crucially affect these pro-atherogenic 

properties. However, CCL5 and CXCL4 serum levels were not affected by FLX (Figure 34A,B). 

Moreover, in vitro activation of isolated platelets after 2 weeks treatment did not reveal any 

differences in CXCL4 release between control and FLX-treated group (Figure 34C).The MPV 

is a marker for platelet activity and the increase is associated with larger and more active 

platelets. For instance, patients with acute myocardial infarction or stable coronary artery 

disease exhibit a significantly higher MPV.173 However, MPVs of control and FLX-treated mice 

were comparable (Figure 34D).  

 

 

 

 

Figure 34: FLX does not affect platelet 
characteristics. 
ApoE-/- mice were fed a HFD for 2 weeks +/- FLX. 
(A) CCL5 and (B) CXCL4 serum levels were 
determined via ELISA. (C) CXCL4 content of 
isolated and with 0.5 U/mL thrombin stimulated 
platelets was analyzed via ELISA. (D) MPV was 
assessed with a hematology analyzer. Data 
show mean±SEM, n=3 (A, B), n=5-6 (C) and 
n=10 (D), Student’s t-test: *P<0.05. (Modified 
from Rami et al.)169 

The common platelet activation marker CD62P (P-selectin), is essential for PLA formation, 

since it mediates platelet-leukocyte binding. Upon activation, CD62P is rapidly translocated 

from the α-granules to the platelet surface making it an ideal marker to assess platelet 

activation with flow cytometry.57 However, CD62P surface levels of in vitro activated and 

isolated platelets of mice after 2 weeks of treatment were similar in the two groups (Figure35A). 

In line with this result, no differences were detected in circulating platelet-leukocyte aggregates 

(Figure35B,C). Of note, flow cytometry analysis was performed with low acquisition speed 

since Mauler et al. noted false-positive PLA counts when measuring with increasing flow 

rate.165 These results suggest that the observed enhanced leukocyte adhesion and the 

transient reduction in circulating platelet counts in FLX-treated mice were not caused by 

augmented binding of activated platelets to leukocytes in circulation.  
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Figure 35: FLX does not affect PLA formation. 
ApoE-/- mice were fed a HFD for 2 weeks +/- FLX. (A) 
Platelets of control and FLX-treated mice were isolated 
and stimulated with 0.5 U/mL thrombin. CD62P surface 
protein levels were measured by flow cytometry and 
quantified via geometric MFI. (B) Gating strategy to 
identify PLAs in blood. (C) Quantification of myeloid cells 
(CD45+CD11b+), neutrophils (CD45+CD11b+Ly6G+) and 
mono-cytes (CD45+CD11b+CD115+) which are positive 
for the platelet marker CD41. Data show mean±SEM, 
n=5-6, Student’s t-test. (Modified from Rami et al.)169 
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5.10 FLX enhances vascular permeability 
In atherosclerosis, endothelial function is disturbed leading to destabilized vascular integrity 

and consequently enhanced permeability. The disrupted endothelial barrier facilitates 

transendothelial migration of leukocytes to the arterial intima.6 To investigate whether 

increased macrophage accumulation in FLX-treated lesions occurred due to changes in 

vascular integrity, vessel leakage was measured by an in vivo permeability assay using Evans 

blue.  

 

Figure 36: FLX aggravates vascular 
permeability. 
ApoE-/- mice fed a HFD for 2 weeks +/- 
FLX were injected with Evans blue (EB; 
40 mg/kg, i.v.) and vascular permeability 
was assessed in different tissues by 
measuring the extravasation of EB. (A) 
Quantification of EB-extravasation in 
spleen, heart and kidney by OD620 
measurement in supernatants. (B) 
Quantification of EB-positive volume in 
aortic arches assessed by confocal laser 
scanning microscopy. (C) Represen-
tative tilescan 3D reconstructions of 
aortic arches acquired with confocal 
microscopy. EB-positive regions are 
shown in yellow. Red represents 
autofluorescence of the adventitia. Scale 
bars=1 mm. Data show mean±SEM, 
n=7-8, Student’s t-test or Welch’s t-test: 
*P<0.05. (Modified from Rami et al.)169 

FLX-treated mice showed aggravated vascular leakage compared to control mice, as 

evidenced by an increased Evans blue extravasation in spleen, kidney and heart (Figure 36A). 

In line with these findings, confocal imaging of aortic arches revealed Evans blue-positive area 

tend to be larger in FLX-treated mice (Figure 36B,C). 

5.11 FLX does not affect adhesion molecule expression 
Since FLX did not alter platelet properties, the in vivo detected enhanced cell adhesion to the 

arterial endothelium might be provoked by increased expression of proteins involved in 

leukocyte recruitment on the endothelium itself or on circulating leukocytes. At first, mRNA 

expression of the adhesion molecules Icam1 and Vcam1 as well as of several chemokines and 

chemokine receptors was assessed in aortas of control and FLX-treated mice after 4 weeks of 

treatment. However, no modification in mRNA expression was detected which would 

corroborate enhanced leukocyte recruitment (Figure 37A). 
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Figure 37: FLX does not induce expression of molecules involved in adhesion.  
(A) ApoE-/- mice were fed a HFD for 4 weeks +/- FLX and mRNA expression of adhesion molecules, 
chemokines and chemokine receptors was determined in aortas using qPCR. (B) The expression of 
adhesion molecules on aortic endothelial cells (CD45-CD31+CD107a+), identified with the indicated 
gating strategy, was assessed from ApoE-/- mice fed a HFD for 2 weeks +/- FLX via flow cytometry. Data 
show mean±SEM, n=9-10 (A) and n=7 (B), Student’s t-test or Mann-Whitney U test. (C) Murine 
endothelial cells (SVEC4-10) were treated with FLX (1 µM) or 5-HT (1 µM) before TNFα-stimulation and 
VCAM1 and ICAM1 surface protein levels was measured by flow cytometry and normalized to control 
(TNFα). Data show mean±SEM, at least 4 independent experiments were performed, Student’s t-test. 
(D) The surface protein levels of adhesion molecules on blood neutrophils of ApoE-/- mice fed a HFD for 
2 weeks +/- FLX were determined via flow cytometry. Data show mean±SEM, n=7, Student’s t-test. 
*P<0.05. (Modified from Rami et al.)169 

Since changes in surface levels can also be caused by post-transcriptional regulations, 

measurement of mRNA expression might not be sufficient. Therefore, surface protein levels of 

ICAM1 and VCAM1 on aortic endothelial cells were determined using a new protocol for 

enzymatic digestion of aortas followed by flow cytometric analysis.164 However, no elevated 

proteins levels of endothelial adhesion molecules were identified in FLX-treated mice (Figure 

37B). In line with these results, in vitro treatment of TNFα-stimulated murine SVEC4-10 

endothelial cells with FLX did not show an elevated amount of ICAM1 or VCAM1 on the cell 

surface (Figure 37C). Additionally, 5-HT stimulation did also not influence adhesion molecule 

levels. Given that no changes on the endothelium were observed, the surface levels of 

adhesion molecules and integrins on blood neutrophils were measured (Figure 37D). Again, 

no significant differences were identified. 
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5.12 FLX amplifies chemokine-mediated integrin activation on 
myeloid cells  

In the process of leukocyte recruitment, adhesion and transmigration, it is well documented 

that selectins mediate the rolling, while integrins are more involved in adhesion of leukocytes. 

Given that intravital microscopy analysis (Figure 32) revealed an effect of FLX on myeloid cell 

adhesion but not rolling suggests that the treatment alters integrin- rather than selectin-

mediated binding. Integrins are mostly regulated by activation through conformational 

modifications instead of changes in their expression levels.40 Consequently, integrin activation 

of circulating leukocytes was studied after stimulation with CCL5, a chemotactic molecule 

which is considered to be important in arterial myeloid cell recruitment.61,64,65 Activation of β1- 

and β2-integrins of blood leukocytes of control and FLX-treated mice receiving a HFD for 

2 weeks was assessed by binding to their natural ligands ICAM1 and VCAM1. To this end, 

blood cells were incubated with recombinant mouse ICAM1 and VCAM1 chimeras, which were 

fused to a human Fc domain. The use of an anti-human IgG1-PE antibody enabled the 

measurement of integrin binding via flow cytometry. Interestingly, circulating monocytes and 

neutrophils of in vivo FLX-treated mice revealed an enhanced ligand binding capability of β1- 

and β2-integrins (Figure 38) compared to untreated control group.  

 

 

 

 

 

Figure 38: FLX-treated mice show 
enhanced CCL5-mediated integrin 
activation. 
CCL5-mediated integrin binding to 
ICAM1 and VCAM1 by blood 
leukocytes of control and FLX-
treated ApoE-/- mice fed a HFD for 
2 weeks was measured via flow 
cytometry. (A) Gating strategy to 
identify integrin activity by ICAM1 
and VCAM1 binding of neutrophils 
(CD45+CD11b+Gr1+Ly6G+) and cla-
ssical monocytes (CD45+CD11b+ 

Gr1highLy6G-) expressed as geo-
metric MFI. Data show mean±SEM, 
n=8-9, Welch’s t-test: *P<0.05. 
(Modified from Rami et al.)169 

To elucidate whether the elevated integrin binding activity in chronically FLX-treated mice is 

caused by the lack of peripheral 5-HT or by the drug FLX itself, blood cells of wild type C57Bl/6J 

mice were pre-stimulated in vitro with FLX or 5-HT to determine CCL5-evoked integrin binding 
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capability to ICAM1 and VCAM1. Based on literature, a working concentration of 1 µM FLX 

was used, similar to the one observed in serum of mice treated with 18 mg/kg FLX per day.170  

 

 

Figure 39: In vitro stimulation with FLX, but not 5-HT promotes CCL5-mediated integrin binding 
activity of murine blood leukocytes.  
Integrin binding activity of blood leukocytes of C57Bl/6J wild type mice was analyzed after in vitro 
stimulation with FLX (1 µM) or 5-HT (1 µM) in the presence or absence of CCL5 via flow cytometry. (A) 
Histogram overlays of integrin activity by neutrophils (CD45+CD11b+Gr1+Ly6G+) or classical monocytes 
(CD45+CD11b+Gr1highLy6G-) binding to recombinant ICAM1/Fc chimera or VCAM1/Fc chimera. 
Quantitative analysis of the effect of FLX or 5-HT on integrin activation (B) in the presence or (C) 
absence of CCL5. Data show mean±SEM, n=9 (B) and n=7-8 (C), one-way ANOVA followed by 
Bonferroni multiple comparison test or Kruskal-Wallis test followed by Dunn’s multiple comparison test: 
*P<0.05. (Modified from Rami et al.)169 

Surprisingly, pre-treatment with FLX strongly enhanced the CCL5-induced activation of β1- 

and β2-integrins on neutrophils and classical monocytes, whereas the presence of 5-HT did 

not alter the binding to ICAM1 and VCAM1 (Figure 39A, B). However, in the absence of CCL5, 
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FLX did not trigger integrin activation, but rather reduced ICAM1 binding of classical monocytes 

(Figure 39C). These findings suggest that FLX directly alters leukocyte adhesion properties in 

an inflammatory setting in presence of enhanced chemokine levels, which is independent of 

5-HT platelet depletion.  

To examine whether the FLX-mediated effect on murine myeloid cells also occurs in human 

cells, integrin activation was assessed in neutrophil-like HL-60 cells. In human cells, activated 

β2-integrins can be monitored by the antibody mAb24, which recognizes an epitope only 

existing in the fully extended conformation state.168 As shown in Figure 40, CCL5 induced the 

switch of β2-integrins to the activated state, which was further amplified in the presence of FLX 

as evidenced by enhanced mAb24 binding. This effect was not observed upon 5-HT treatment, 

supporting the results obtained in murine myeloid cells. Moreover, FLX alone did not promote 

mAb24 binding.  

 

Figure 40: FLX triggers CCL5-mediated integrin activation in human neutrophil-like cells.  
Human HL-60 cells, which were differentiated into neutrophil-like cells, were stimulated with CCL5 in 
the presence of FLX (1 µM) or 5-HT (1 µM). CCL5-mediated β2-integrin activation was quantified as 
binding to mAb24, which was measured by MFI using flow cytometry. Data show mean±SEM, n=9 (A), 
n=5 (B), one-way ANOVA followed by Bonferroni multiple comparison test: *P<0.05. (Modified from 
Rami et al.)169 

To elucidate whether the CCL5-dependent induction of integrin activation is solely triggered by 

FLX or is possibly also evoked by other SSRIs, additional murine integrin activation assays 

were performed using the newest generation SSRI escitalopram. This drug blocks SERT not 

only by orthosterically binding in the central cavity, but additionally by binding at an allosteric 

site, leading to a prolonged SERT blocking activity. Thus, escitalopram shows higher efficiency 

compared to other SSRIs explaining the lower standard dose of ≤20 mg/day.127 Based on the 

reported therapeutically used range of 0.05-0.2 µM in plasma of patients,129 a concentration of 

0.1 µM escitalopram was utilized for the in vitro experiments. Interestingly, escitalopram 

strongly augmented CCL5-triggered β1-integrin binding capability of murine myeloid cells as 

evidenced by enhanced binding to VCAM1 (Figure 41). However, ICAM1 binding reflecting β2-

integrin activation was less affected. Similar to FLX, escitalopram alone had no effect on 
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ICAM1 or VCAM1 binding in the absence of CCL5. These findings suggest that SSRIs might 

more generally influence leukocyte activation.  

 

Figure 41: Escitalopram induces CCL5-evoked β1-integrin activation on mouse blood leukocytes 
after in vitro stimulation.  
Integrin binding activity by blood leukocytes of C57Bl/6J wild type mice was evaluated after in vitro 
stimulation with escitalopram (ESC; 0.1 µM) in the presence or absence of CCL5 via leukocyte binding 
to recombinant ICAM1/Fc or VCAM1/Fc chimera measured by flow cytometry. (A) Representative 
histogram overlays of ICAM1 and VCAM1 binding of neutrophils (CD45+CD11b+Gr1+Ly6G+) and 
classical monocytes (CD45+CD11b+ Gr1highLy6G-). (B) Quantitative analysis of integrin binding activity 
of neutrophils and classical monocytes via geometric MFI. Data show mean±SEM, n=8-9, one-way 
ANOVA followed by Bonferroni multiple comparison test: *P<0.05. (Modified from Rami et al.)169 

5.13 FLX does not induce a calcium response via 5-HTR2a 
Although it is generally assumed that FLX is highly specific for SERT, it was previously reported 

that it also binds to several 5-HTRs even though with a lower affinity.174 To further understand 

the mechanism behind the FLX-evoked enhanced integrin activation, the presence of 5-HTRs 

and SERT in myeloid cells was analyzed. Therefore, murine monocytes and neutrophils were 

isolated from pooled bone marrow cells and purity was verified by flow cytometric analysis. 

The average of the obtained purity of the three pools of monocytes and neutrophils was 85 % 

and 98 %, respectively (Figure 42A). Since staining for platelet marker CD41 was negative a 

contamination with platelets was excluded. Gene expression analysis was performed in the 

three pools of isolated neutrophils and monocytes via qPCR. While mRNA levels of 5-Htr2b, 

5-Htr2c, 5-Htr4 and 5-Htr7 were below the limit of detection, expression of 5-Htr1b, 5-Htr2a 

and Sert was verified in both monocytes and neutrophils (Figure 42B). Of note, the mRNA 
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levels of 5-Htr1b, 5-Htr2a and Sert in monocytes compared to neutrophils were higher by  

2-fold, 14-fold and 88-fold respectively.  

  

 

Figure 42: Monocytes and neutrophils express 
5-Htr1b, 5-Htr2a and Sert. 
Femurs of nine ApoE-/- mice were harvested and 
bone marrow cells of three mice were pooled to 
isolate monocytes and neutrophils with a 
Neutrophil or Monocyte Isolation kit, respectively. 
(A) Representative gating strategy to determine 
purity of isolated monocytes and neutrophils using 
flow cytometry. (B) Gene expression of several 5-
Htrs and Sert was analyzed by qPCR using Hprt 
and Gapdh as endogenous controls. Data show 
mean±SEM, n=3, nd indicates not detectable. 
(Modified from Rami et al.)169 

Additionally, possible FLX-mediated effects on gene expression of 5-Htrs and Sert were 

investigated in aortas of mice fed a HFD for 2 or 4 weeks. After 2 weeks treatment, Sert and 

receptor expression only tended to be changed by FLX (Figure 43A). After 4 weeks, 5-Htr2a 

expression was induced whereas 5-Htr2b and Sert expression was decreased in FLX-treated 

mice compared to untreated control group (Figure 43B). 5-Htr2c and 5-Htr4 and 5-Htr7 mRNA 

levels were below the limit of detection. 

 

Figure 43: FLX treatment 
alters expression of 5-Htrs 
and Sert in aorta. 
Gene expression of 5-Htrs and 
Sert was determined via qPCR 
in ApoE-/- mice treated for (A) 2 
or (B) 4 weeks with FLX while 
feeding a HFD. mRNA levels 
were analyzed via fold change 
of treated versus untreated 
mice. n=4-5 (A) and n=8-10 
(B), Student’s t-test or Mann-
Whitney U test: *P<0.05. 
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Literature reports of binding assays identified 5-HTR2a, 5-HTR2b and 5-HTR2c with the 

highest affinity for FLX of all tested 5-HTRs.174 Given that 5-Htr2c was neither detectable in 

aortas nor in murine myeloid cells and 5-Htr2b expression was below the detection limit in 

myeloid cells (Figure 42B), further experiments focused on the receptor 5-HTR2a. Similar to 

most other 5-HTRs, 5-HTR2a is a GPCR. It is coupled to G αq/11
175 and activation leads to an 

increase of calcium flux, which is described to be essential for integrin activation.44,176,177 To 

elucidate the possibility that FLX might provoke an induction in intracellular calcium levels via 

5-HTR2a binding, calcium assays based on human HEK-293 cells were carried out. Therefore, 

5-HTR2a-overexpressing Flp-In T-Rex 293 cells were generated. To obtain the expression 

vector, a restriction digest was performed with a commercially available plasmid coding for the 

human 5-HTR2a sequence and with a pcDNA5/FRT/TO plasmid containing N-terminally the 

coding sequence for the marker gene eYFP (Figure 44A). The digest of the plasmid containing 

the human 5-HTR2a sequence (line 1) resulted in a band located between 1000 bp and 

1650 bp which matches the expected size of 1420 bp for the 5-HTR2a fragment. This band as 

well as the digested pcDNA5/FRT/TO backbone (line 2) were cut out, purified and ligated 

followed by bacterial transformation. Several clones were picked and verified for incorporation 

of 5-HTR2a via colony PCR (Figure 44B). All tested clones showed the expected size 

(1420 bp+720 bp) for the fusion protein eYFP-5-HTR2a. The DNA sequence of the plasmid of 

one of the positively tested clones was verified by sequencing and used for transfection of the 

inducible Flp-In T-Rex 293 cells. After selection with hygromycin, the expression of the eYFP-

5-HTR2a fusion protein of a single cell clone was induced by tetracycline and verified by flow 

cytometry (Figure 44C) and microscopy (Figure 44D).  

Figure 44: Generation of a 5-HTR2a-
overexpressing HEK-293 cell line. 
5-HTR2a-overexpressing HEK-293 cell 
line was generating by first, cloning the 
cDNA into a pcDNA5/FRT/TO expression 
vector, N-terminally flanked with the 
coding sequence for eYFP and second, 
transfection of Flp-In T-Rex 293 cells. (A) 
Agarose gel of restriction digest with XhoI 
and BamHI. M = marker, 1 = digested 
commercially purchased plasmid carrying 
the coding sequence for human 5-HTR2a, 
2 = digested pcDNA5/FRT/TO expression 
vector. (B) Colony PCR to verify 
incorporation of 5-HTR2a sequence.  
M = marker, 1-4 = different clones. (C) 
Representative histogram of eYFP-5-
HTR2a-overexpressing HEK-293 cells 
after induction with tetracycline (Tet). (D) 
Image of eYFP-5-HTR2a-overexpressing 
HEK-293 cells recorded with confocal 
microscopy. Scale bar=8 µm.  
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The functionality of the 5-HTR2a-overexpressing cell line was tested by measuring the calcium 

response upon 5-HT stimulation. 5-HT stimulation led to a concentration-dependent increase 

in intracellular calcium efflux (Figure 45A). However, FLX, did not induce a calcium response 

in stably 5-HTR2a-overexpressing HEK-293 cells (Figure 45B), suggesting that FLX does not 

act via 5-HTR2a. 

 
Figure 45: FLX does not trigger a calcium response via 5-HTR2a. 
Intracellular calcium was measured in 5-HTR2a-overexpressing HEK-293 cells in responds to 
stimulation with (A) 5-HT or (B) FLX using the FLPR Calcium 5 Assay kit. Non-transfected cells served 
as negative control. Data show mean±SEM, n=4 (A) and n=3 (B). (Modified from Rami et al.)169 

5.14 FLX co-stimulation of chemokine receptors reveals inconclu-
sive findings 

Since FLX-mediated integrin activation only occurred in the presence of CCL5, it is possible 

that FLX affects integrin activity through signaling via acting directly on CCL5 chemokine 

receptors CCR1 and/or CCR5. In view of this possibility further in vitro experiments with HEK-

293 cells stably expressing CCR1 or CCR5, respectively, were performed. These cells express 

in addition to the receptor a luciferase fused to a cAMP binding site. Binding of cAMP to this 

fusion protein induces luciferase activation, leading to an enhanced luminescence activity in 

the presence of the appropriate substrate. The signaling of the two G protein Gi-coupled 

receptors upon CCL5 stimulation was assessed by the observed reduction of a cAMP signal 

generated by forskolin, a direct activator of adenylyl cyclases. An additive effect of FLX on 

CCL5-induced CCR1 and CCR5 signaling would be monitored by a further reduction in cAMP 

levels. Although dose-dependent CCL5-induced inhibition of cAMP responses in CCR1 and 

CCR5 expressing cell clones was reproducible (Figure 46A and B), the co-treatment with FLX 

did not reveal conclusive findings (Figure 46C and D). Therefore, a conclusion on synergistic 

effects of FLX on CCL5-induced CCR1 and/or CCR5 signaling cannot be drawn.  
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Figure 46: Measurement of CCR1 and CCR5 signaling. 
Concentration-response curves for cAMP levels in (A) CCR1- and (B) CCR5-overexpressing HEK-293 
cells after stimulation with CCL5 prior to forskolin (1 µM) treatment using the GloSensor Technology. 
(C-D) Examples for inconclusive co-stimulation with FLX (1 µM), 15 min prior to CCL5 treatment 
followed by forskolin in CCR5-overexpressing HEK-293 cells. Representative results of 2 experiments 
are shown, obtained with the same clone.   

5.15 Pharmacologic TPH1 inhibition does not enhance athero-
genesis 

To further investigate the hypothesis that the pro-atherogenic effect mediated by FLX was not 

a consequence of platelet 5-HT depletion but solely caused by the drug, a final in vivo 

experiment with a different approach for peripheral 5-HT depletion was performed. To this end, 

LP-533401, an inhibitor of the peripheral 5-HT synthesizing enzyme TPH1, was daily 

administered to ApoE-/- mice for 2 or 4 weeks, respectively, in parallel to HFD feeding. First, 

inhibition efficiency was verified by measuring serum 5-HT levels. At both time points, 5-HT 

serum levels were significantly decreased upon treatment confirming effective TPH1 inhibition 

(Figure 47A). Of note, after 2 weeks of injection, overall 5-HT serum levels were very low. More 

precisely, vehicle mice had with 0.295 µg/mL much lower 5-HT levels compared to normal 

serum concentration (> 2 µg/mL) in ApoE-/- mice (Figure 19). At this time point the depletion 

efficiency was 91 %. After 4 weeks of treatment, vehicle 5-HT serum concentrations were 

comparable with normal levels of ApoE-/- mice, while the 5-HT depletion efficiency was only 
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36 %. At both time points, neither body weight nor total plasma cholesterol levels were affected 

by the treatment (Figure 47B,C). Interestingly, in contrast to FLX treatment, TPH1 inhibition 

did not promote atherosclerosis. In fact, 2 weeks treatment revealed smaller plaque size in 

aortic roots, which was no longer observed after 4 weeks of treatment (Figure 47D-E).  

 

Figure 47: TPH1 inhibition does not promote atherosclerosis. 
TPH1 inhibitor LP-533401 (25 mg/kg, i.p.) or vehicle was daily administered to ApoE-/- mice parallel to 
feeding a HFD for 2 weeks or 4 weeks, respectively. (A) TPH1 inhibition was verified by measurement 
of serum 5-HT levels by ELISA (left) and 5-HT depletion efficiency was determined as reduction of 5-
HT serum levels upon treatment (right). (B) Body weight and (C) total plasma cholesterol levels of mice 
after 2 and 4 weeks treatment. (D) Quantitative analysis of atherosclerosis as total plaque size (left) or 
normalized to IEL (right) after 2 (n=6-9) and 4 (n=11) weeks of treatment. (E) Representative images of 
ORO staining of aortic roots. Scale bar=200 µm. Data show mean±SEM, Student’s t-test: *P<0.05. 
(Modified from Rami et al.)169 

Contrary to FLX treatment, TPH1 inhibition did not transiently decrease leukocyte or platelet 

counts (Figure 48A). Also, MPV was not affected by pharmacological 5-HT depletion 

(Figure 48B). Similarly, the surface protein levels of ICAM1 and VCAM1 on aortic endothelial 

were comparable between groups (Figure 48C). Focusing on the analysis of adhesion 

molecule on blood neutrophils revealed that protein levels of L-selectin (CD62L) tend to be 

decreased and PSGL1 increased, while the amount of integrins and CD31 was not affected by 

LP-53340 treatment (Figure 48D).  
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Figure 48: Effect of TPH1 inhibition on blood cell counts and adhesion molecule levels. 
ApoE-/-mice were injected daily with TPH1 inhibitor LP-533401 (25 mg/kg, i.p.) or vehicle parallel to HFD 
feeding. (A) blood counts of white blood cells (WBC), lymphocytes (LYM), monocytes (MO), 
granulocytes (GRA) and platelets (PLT) were measured with a hematology analyzer after 2 (left) or 4 
(right) weeks treatment. (B) MPV was measured using a hematology analyzer. The protein levels of 
adhesion molecules were assessed on (C) aortic endothelial cells (CD45-CD31+CD107a+) after 2 weeks 
treatment and on (D) blood neutrophils after 4 weeks treatment by flow cytometry. Data show 
mean±SEM, n=8-9 (A-C) and n=10-11 (D), Student’s t-test or Mann-Whitney U test: *P<0.05. 

 



 

84 



DISCUSSION 

85 

6 DISCUSSION 

CVD and depression are among the most frequent health problems of our society.1,118 It is 

widely accepted that there is a link between both diseases. This is evident not just by the high 

prevalence of depression among CVD patients, but also by the finding that depression poses 

an independent cardiovascular risk factor.119,120 However, it is not merely a risk factor, but 

depression was also reported to worsen the outcome of CVDs.178,179 The underlying 

mechanism of this association, however, remains poorly understood. One aspect might be the 

behavior and lifestyle of people suffering from depression.180 The question thus arises if 

antidepressant treatment may reduce the incidence of CVDs. So far, several studies 

investigated the potential effect of SSRIs, the most prescribed antidepressants, on the 

incidence of cardiovascular events. However, the findings are inconclusive.135,136,145–154,137,155,138–

144 In this thesis, the impact of the common SSRI FLX on the onset and progression of 

atherosclerosis was investigated in a mouse model. The rational of this experimental setting 

was to minimize confounding effects by depression and behavioral risk factors.  

6.1 FLX treatment enhances atherogenesis by promoting leukocyte 
recruitment 

The effect of FLX intake on the different stages of atherosclerosis was studied in ApoE-/- mice 

which were fed with a Western diet. Unexpectedly, FLX exhibited a pro-atherogenic effect 

already observed after 2 weeks of treatment, which was preserved up to 16 weeks. This 

observe pro-atherogenic effect can be explained by increased vascular leakage and enhanced 

myeloid cell recruitment due to amplified CCL5-induced integrin activation upon FLX treatment. 

An alternative approach for peripheral 5-HT depletion by pharmacological TPH1 inhibition did 

not phenocopy the FLX-mediated pro-atherogenic effect, indicating that FLX enhances plaque 

formation despite 5-HT platelet depletion.  

Although FLX therapy was described to be associated with a reduction of body weights and 

cholesterol levels in patients,181,182 both parameters were similar in control and FLX-treated 

mice at any end point of the treatment. The weight loss in patients was assigned to only occur 

temporarily due to an impact on appetite, since chronic treatment revealed no differences.181 

In mice, transient changes in body weight at the onset of the treatment might be blunted when 

changing from normal chow to Western diet. As to the opposing findings in cholesterol levels, 

these may rely on the different lipid profiles between humans and mice. The reduction of 

cholesterol levels in patients was caused by a decrease in LDL levels. In wild type mice, 

however, the main subfraction is HDL while ApoE-/- mice have a massive increase in the VLDL 

fraction.12 However, given that total cholesterol levels were not affected by FLX treatment, a 

detailed analysis of cholesterol subfractions was not performed. 
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Chronic FLX administration is known to deplete intra-platelet 5-HT, which reflects the major 

peripheral 5-HT storage site. This has been reported in depressed patients treated with SSRIs 

as well as in mice receiving the same drug.115,131 Indeed, after seven days of FLX 

administration, mice possessed a significant decrease in serum 5-HT. Because several studies 

associate platelet 5-HT with a pro-inflammatory role in diseases such as colitis,82 asthma83, 

inflammatory bowel disease,82 and obesity,84 the pro-atherogenic effect of FLX in 

atherogenesis was surprising. Herr et al. described that an acute FLX treatment leads to 

transiently elevated plasma 5-HT levels within the first hours, thereby promoting leukocyte-

endothelial interactions.116 However, the same pro-atherogenic effect of FLX was observed 

irrespective of the time point of FLX onset, with or without FLX pretreatment for 2 weeks before 

starting the atherogenic diet. Thus, temporary increased 5-HT concentrations were excluded 

as underlying cause for the observed increase in plaque formation. FLX administration neither 

altered the plaque composition in advanced lesions, nor the progression of already established 

plaques. Remarkably, the FLX-mediated increase in lesion size was most pronounced during 

the early phase of atherogenesis. These findings suggest that FLX may affect the processes 

involved in plaque formation such as myeloid cell recruitment, enhanced platelet activity and 

endothelial activation. Indeed, FLX-treated mice exhibited an increased neointimal 

macrophage accumulation. This might be caused by enhanced transendothelial migration, 

since FLX-treated mice revealed an augmented vascular permeability and increased arterial 

adhesion of myeloid cells.  

As already mentioned above, myeloid cell recruitment to the arterial wall is a crucial step in 

plaque formation. The interaction of circulating leukocytes with the endothelium involves a 

coordinated interplay of endothelial adhesion molecules with their counterparts on 

leukocytes.24 On the part of the endothelium, an FLX-induced modulation of the adhesion 

molecules was excluded. This contradicts previously published in vitro data, which reported 

that FLX decreased TNFα-induced ICAM-1 and VCAM-1 protein levels in human aortic 

endothelial cells.183 However, apart from direct in vitro stimulation of murine immortalized 

endothelial cells, the observation that FLX does not affect endothelial adhesion molecules was 

confirmed by mRNA and protein measurement in aortas of FLX-treated mice. This provides 

evidence that FLX is not altering protein levels of adhesion molecules in these settings. Cell 

transmigration is also dependent on the vascular integrity, which can be regulated and 

maintained by platelets.56 5-HT is known to provoke platelet activity by a positive feedback 

mechanism leading to amplified platelet activation.106 One may speculate that the detected 

increase in vascular permeability upon FLX-treatment is caused by reduced platelet activation. 

However, platelet characteristics were similar between control and FLX-treated mice. Thus, 

the aggravated endothelial permeability might be rather a secondary consequence of FLX-

mediated leukocyte recruitment. The barrier function of the endothelium is not only maintained 



DISCUSSION 

87 

by platelets but also by multiple proteins regulating the intercellular junctions between 

endothelial cells. By altering the strength of the endothelial cell-cell interactions, the organism 

can adjust vascular permeability to adapt to particular needs. In addition, endothelial 

permeability is increased by inflammatory stimulation. Several proteins are involved in the 

regulation of permeability of which claudins, occludins and JAMs are the best known.6 It is 

conceivable that FLX affects endothelial intercellular junctions, which was not further 

investigated in this study.  

Lesional leukocytes originate from bone marrow and spleen, from where they are recruited 

into the circulation and subsequently to the vessel wall. An effect of FLX on these organs was 

excluded, based on the observation that similar myeloid cell counts in these organs were 

determined in FLX treated mice compared to the control group. The observed transient 

decrease in circulating leukocyte and platelet counts might be a consequence of enhanced 

arterial adhesion. In humans and mice, the increased frequency of circulating PLAs is 

associated with more severe inflammation.61,63 However, FLX-treated mice did not reveal a 

higher incidence of PLAs, which could be one explanation for decreased platelet number and 

amplified adhesion. The detected neutropenia and enhanced endothelial recruitment is 

somehow in conflict with previously published data obtained in mice lacking peripheral 5-HT.115 

Duerschmied and colleagues observed a mild neutrophilia and less neutrophil adhesion to 

mesenteric post-capillary venules in mice deficient for TPH1 as well as in wild type mice treated 

with FLX.115 The opposing findings might arise from the different vascular beds examined by 

Duerschmied et al. and the present study. While Duerschmied et al. assessed leukocyte 

adhesion in the microvasculature, the present study performed intravital microscopy of 

atherosclerosis-prone carotid arteries, which refers to macrovasculature. In large arteries 

under high blood pressure, leukocyte recruitment to the endothelium may require other 

mechanisms than those described in post-capillary venules to facilitate adhesion.33 Indeed, 

dissimilarities in leukocyte adhesion between micro- and microvasculature were observed 

before.17,18 Drechsler et al. found that recruitment of neutrophils to large arteries is dependent 

on the chemokine receptors CCR1, CCR2, CCR5, and CXCR2, whereas recruitment to 

peripheral veins is independent of CCR1 and CCR5 and only requires CCR2 and CXCR2. 

They propose that this is ascribed to the deposition of the CCR1 and CCR5 ligand CCL5 on 

the endothelium by platelets, which occurs in arteries but not in veins.17 Similarly, Ortega-

Gomez et al. demonstrated that neutrophil-derived cathepsin G preferentially binds to arterial 

rather than venular endothelium in a CCL5-dependent manner, thereby inducing integrin 

clustering, which in turn results in arterial-specific myeloid cell adhesion.18 They speculate that 

differences in the composition of surface molecules on the arterial endothelium are causing 

these observations.18 In fact, shear forces are much higher in macrocirculation compared to 

microcirculation. As a consequence, the endothelium and the mechanisms involved in 
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leukocyte adhesion are adapted to withstand those high flow rates. Scott et al. highlighted the 

heterogeneity that exists on the endothelium from different vascular beds. For example, ICAM1 

and VCAM1 expression patterns upon inflammatory stimulation differ between endothelial cells 

from different origins. Furthermore, they also found that N-glycan profiles on the cell surfaces 

are vascular bed-specific,184 which may explain the vessel-dependent dissimilarities in CCL5 

binding.18 Thus, site-specific differences in this study (macrovasculature) compared to the one 

from Duerschmied et al. (microvasculature) may explain the opposing findings. Another 

important aspect is the underlying hypercholesterolemia in ApoE-/- mice receiving a HFD. 

These mice display a chronic inflammation including endothelial dysfunction. The relevance of 

the inflammatory setting and the site-specificity is corroborated by the findings that non-

atherogenic wild type mice treated with FLX did not exhibit the transient reduction in blood 

counts and showed less neutrophil extravasation in an acute peritonitis model. 

The recruitment of leukocyte to the site of inflammation is not only dependent on alterations of 

the endothelium but also on the activation of leukocytes.24 The leukocyte-endothelial binding 

is mediated by the interaction of selectins and integrins with their corresponding ligands. FLX 

treatment neither altered the surface levels of adhesion molecules such as PSGL1 and CD62L 

nor the protein levels of several integrins on circulating neutrophils. The in vivo imaging of 

leukocyte adhesion revealed that FLX affects adhesion but not rolling. The main adhesion 

proteins involved in this process are the integrins. These molecules are rather regulated by 

activation than changes in expression. Several studies described that integrin activation and 

clustering are important events in atherogenesis.18,161 Indeed, neutrophils and monocytes of 

FLX-treated mice revealed an increased CCL5-induced integrin activity, which was observed 

in both β1- and β2-integrins. Remarkably, in vitro stimulation of blood leukocytes of wild type 

mice and human neutrophils-like cells with FLX amplified CCL5-induced integrin binding 

capacity. However, this effect only occurred in the presence of CCL5. This positively supports 

the hypothesis that the observed FLX-mediated pro-atherogenic effect is site-specific and 

dependent on the presence of enhanced chemokine levels, as in the case of chronic 

hypercholesterolemia. The fact that 5-HT in vitro stimulation of mouse and human cells did not 

affect integrin capability provides evidence that the in vivo detected pro-atherogenic phenotype 

of FLX is independent of 5-HT platelet depletion.  

6.2 Atherosclerosis affects the serotonergic system 
Several components of the serotonergic system are present in cells which are involved in 

atherogenesis. While 5-Htr1b is highly expressed by endothelial cells and 5-Htr2a by vascular 

SMCs,104 immune cells express several 5-Htrs.75,81,85,105 In this study, 5-Htr1b and 5-Htr2a as 

well as Sert were detectable in murine monocytes and neutrophils isolated from the bone 

marrow. Apart from 5-Htr2a and Sert, which are known to be expressed by monocytes, 5-Htr1b 
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was also found to be present, which was not reported before. However, transcripts for 5-Htr4 

and 5-Htr7, which were measured in other studies, were under the detection limit. Less is 

known about the existence of 5-Htrs and Sert in neutrophils.75 To my knowledge, this is the 

first study showing a clear signal for Sert in murine neutrophils, even though it is much weaker 

than the transcript level in monocytes. Inconsistencies between different studies may arise 

from methodical issues, such as qPCR sensitivity, or the activation status of the examined 

cells. For example, in naïve T cells the expression of 5-Htr1b and 5-Htr2a was reported to be 

undetectable, while T cell activation led to a substantial increase of mRNA and protein levels.185 

In the current study, cells were isolated from the bone marrow instead of blood to avoid a 

contamination by leukocyte-bound platelets. The purity of monocytes and neutrophils was 

85 % and 98 %, respectively. Therefore, minor contaminations cannot be fully excluded. Novel 

technologies such as single-cell RNA sequencing would be helpful to unravel in-depth the 5-

Htr expression profiles of immune cells. Nevertheless, it is undoubtful that monocytes as well 

as neutrophils comprise several components of the serotonergic system. Interestingly, 

atherogenesis affected the serotonergic system, as evidenced by the analysis of Sert and 5-

Htr expression patterns in aorta, bone marrow and spleen. Given that 5-Htrs and Sert are 

differentially expressed in many leukocytes as well as in endothelial cells and vascular SMC, 

a shift in the cell-composition within the measured organs with progressing atherosclerosis 

might be a possible explanation for the observed changes in relative expression levels of Sert 

and 5-Htrs. In addition, cell activation during atherogenesis might alter the expression pattern 

within the different cell types. Apart from the receptors, 5-HT serum levels decreased with 

advanced atherosclerosis, possibly linked to augmented platelet activity. This is in line with a 

publication showing that plasma 5-HT levels are elevated during atherogenesis as a 

consequence of an enhanced release of 5-HT by activated platelets in patients with 

atherosclerosis.186 

6.3 The underlying molecular mechanism of FLX-mediated integrin 
activation requires further investigation 

A limitation of this study is that the exact mechanism how FLX enhances CCL5-induced 

integrin activity in myeloid cells was not elucidated. One possible mechanistic explanation 

might reside in an interaction between SERT and integrin signaling. Indeed, there seems to be 

a link between SERT and integrins. In platelets, a physical interaction between αIIbβ3 integrin 

and SERT has been described to influence SERT trafficking and activity.187 Potentially there is 

a mutual interaction between these two membrane-bound proteins, hence, SERT stimulation 

might also affect integrin function. Another conceivable explanation might be that FLX 

mediates integrin activity independent of SERT signaling via binding to one of the 5-HTRs. 

There are publications revealing that SSRIs are able to act through pathways different from 

their canonical mode of action. Citalopram, for instance, was recently reported to inhibit platelet 
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function at high concentrations in vitro by a yet unknown mechanism, which is independent of 

SERT-mediated 5-HT transport.188 Furthermore, FLX causes bone resorption by interfering 

with calcium–calmodulin signaling in osteoclasts in a 5-HT-reuptake-independent pathway.189 

Although SSRIs are considered to be highly selective for SERT, a binding study, however, 

revealed that FLX displays affinity for some 5-HTR-subtypes, even though much lower than 

for SERT. FLX had a Ki value of 119 nM for 5-HTR2a, 118 nM for 5-HTR2c and 2514 nM for 

5-HTR2b, respectively, while the affinity mainly arises from the (R)-enantiomer.174 Whereas 5-

Htr2c was neither detectable in aortas nor in murine myeloid cells and 5-Htr2b was below the 

detection limit in myeloid cells, 5-Htr2a was present in myeloid cells and regulated upon FLX 

treatment in aortas. Thus, one may speculate that the action of FLX is mediated by 5-HTR2a. 

This receptor is GPCR coupled to Gαq/11, thus stimulation leads to a PLC-mediated release of 

calcium from the intracellular storages.86 The exact mechanism of integrin inside-out signaling 

is not well defined. It is believed that chemokine-induced GPCR stimulation triggers PLC-

mediated Rap1 GTPase activation. Downstream signaling leads to integrin extension to their 

high affinity conformation, consequently resulting in integrin activation and thereby enabling 

ICAM1/VCAM1 binding.33,39 Interestingly, FLX was shown to provoke intracellular calcium 

release in a lymphoma and bladder carcinoma cell line.190,191 However, the possibility that FLX 

induces a calcium response by 5-HTR2a stimulation was excluded by in vitro assays with 5-

HTR2a-overexpressing HEK-293 cells. In contrast to FLX, 5-HT stimulation caused a strong 

calcium signal. Thus the question arises why 5-HT in vitro did not enhance integrin activity in 

myeloid cells. The two detected 5-HTRs on myeloid cells, 5-HTR2a and 5-HTR1b, are coupling 

to different G proteins, since 5-HTR1b signals via Gαi/o.87 While FLX was found to bind to 5-

HTR2a, the reported Ki value for 5-HTR1b was >5000 nM, indicating that FLX has no affinity 

for this receptor.174 As a result, FLX- and 5-HT-induced 5-HTR signaling may differ depending 

on the receptor affinities, which in turn results in alternative responses. 

Given that the FLX-mediated increase in integrin activation only occurred in the presence of 

CCL5, another likely cause may reside in a synergistic effect of FLX and CCL5 on the CCL5 

chemokine receptors CCR1 and CCR5. However, in vitro assays investigating a possible 

additive effect on CCR1 or CCR5 revealed inconclusive findings, although dose-dependent 

CCL5-induced signaling was reproducible. Thus, at this time point a clear statement on this 

issue cannot be made. Apart from that, the transfected HEK-293 only presents signaling 

responses of individual overexpressed receptors. Therefore, co-activation and interaction 

between different chemokine receptors and 5-HTRs cannot be excluded as a potential 

mechanism affecting integrin binding capability. Furthermore, it is also probable that FLX is not 

directly amplifying integrin activation but prevents integrin inactivation and thereby prolongs 

the activity. Thus, the exact underlying molecular mechanism by which FLX promotes the 

binding of integrin to ICAM1 and VCAM1 still remains to be clarified. 
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6.4 TPH1 inhibition as therapeutic target  
The notion that the FLX-mediated pro-atherogenic phenotype is independent of platelet 5-HT 

depletion was further supported by the finding that pharmacological depletion of peripheral 5-

HT did not enhance atherosclerosis. The TPH1 inhibition was accomplished by using LP-

533401, a peripheral TPH1 inhibitor, which has already been patented for treating diabetes 

and obesity.192,193 However, so far there are no clinical studies using this drug for the treatment 

of both diseases.194 Remarkably, the TPH1 inhibition by LP-533401 even mitigated lesion 

plaque formation after 2 weeks of treatment. In the FLX experiments, the pro-inflammatory 

phenotype of FLX might override the anti-inflammatory effect caused by platelet 5-HT 

depletion. In fact, FLX-treated mice also displayed some anti-inflammatory markers as shown 

by a significant reduction of Ccl5 expression in aortas. To confirm this statement further 

analyses of mice treated with the TPH1 inhibitor are needed. Interestingly, the anti-atherogenic 

phenotype of LP-533401 observed after 2 weeks was no longer present at the later time point. 

One possible reason could be the lower inhibition efficiency detected after 4 weeks of 

treatment compared to 2 weeks. Notably, at the early time point both treated and vehicle group 

revealed very low 5-HT serum levels compared to those of ApoE-/- mice without injections. This 

might be a stress-related phenomenon due to daily injections at the beginning of the 

experiment. Another conceivable explanation is that the pharmacological peripheral 5-HT 

depletion affects only the very early lesion formation. A previous study demonstrated that mice 

deficient for JAM-A in platelets exhibit accelerated plaque formation in aortic roots at the very 

early stage after 2 weeks, which was no longer present at a later time point. The authors claim 

that this effect is caused by platelet hyper-reactivity, most profoundly on events involved in the 

onset of atherogenesis.195 Thus, TPH1 inhibition might alter platelet reactivity, which is 

particularly relevant at lesion initiation. To confirm this hypothesis, the analysis of the platelet 

function in LP-533401-treated mice is an interesting part of future studies. Furthermore, 

generation of genomic Tph1 knockout in mice with an atherogenic background would help to 

further understand the role of peripheral 5-HT in atherosclerosis.  

Consistent with findings of Duerschmied et al. obtained in Tph1-/- mice, pharmacological TPH1 

inhibition by LP-533401 revealed an almost significant reduction of L-selectin in circulating 

neutrophils.115 The authors postulated that the decreased L-selectin density on the cell surface 

of neutrophils is a consequence of enhanced shedding, which results in diminished neutrophil-

endothelium interactions. While they observed that PSGL-1 levels are not affected, LP-533401 

treatment showed a mild induction. Whether chronic LP-533401 administration also affects 

leukocyte adhesion to the arterial wall will be an important issue of future experiments.   

A previous study by Crane and colleagues showed that LP-533401 treatment protects mice 

from HFD-induced obesity via activation of brown adipose tissue thermogenesis.159 The 

reduction in body weight was significant after 6 weeks of treatment. Thus, no effect on body 
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weights in ApoE-/- mice after 2 and 4 weeks of LP-533401 injection are in line with the 

observations of Crane et al. Whether the use of LP-533401 may not only be a beneficial 

treatment for obesity159 and other related diseases such as type 2 diabetes,159 but also for 

atherosclerosis deserves further investigation. 

6.5 FLX-mediated aggravation of atherosclerosis – a drug class 
specific effect? 

FLX mediated a pro-atherogenic effect caused by enhanced leukocyte adhesion due to 

amplified integrin activation. Given that the SSRI escitalopram also triggered integrin binding 

capability, this effect is probably not unique for the drug FLX but SSRI class specific. This is 

further supported by a previous published study with primates, which showed that diet-induced 

coronary artery atherosclerosis was aggravated in cynomolgus macaques treated with the 

SSRI sertraline.196  

SSRIs are small molecules with diverse chemical structures, which differ not only in the binding 

affinity to SERT but also in the structural basis of binding.100,128 For example, escitalopram is 

described to occupy, in addition to the central binding cavity, a second so-called allosteric 

binding site.100 This likely accounts for the slight dissimilarity in integrin activation between FLX 

and escitalopram with the latter preferentially activating β1-integrins over β2-integrin. Future 

studies have to address the question if the treatment with other SSRIs also leads to a pro-

atherogenic phenotype.  

6.6 Conclusion and future perspectives  
Given the increasing incidence of depression and CVDs, it is of crucial importance to clarify a 

possible influence of SSRIs, the first line antidepressant medication, on cardiovascular risk. 

The results from this thesis make an important contribution to that issue by providing the first 

experimental proof that FLX induces atherogenesis in a mouse model. While this study found 

an unexpected effect of FLX on integrin activation in myeloid cells, further experiments a 

required to understand additional mechanistic details. At this stage, it can only be concluded 

that the integrin activation is a direct effect of the drug itself, but not a consequence of its 

pharmacological effect in lowering 5-HT serum levels. First, it would be interesting to elucidate 

how exactly FLX induces integrin activation. Therefore, the question should be addressed if 

the SSRI-mediated effect on integrin activation is dependent on interference with the 

serotonergic system or with other proteins such as chemokine receptors. Further in vitro and 

in vivo experiments using specific antagonists for 5-HTRs and mice deficient for SERT, CCR5 

and CCR1 would be needed to assign the function to a specific molecule. Moreover, the 

analysis of integrin clustering (based on confocal or atomic force microscopy), a process of 

high importance to achieve effective adherence under high-shear flow in large arteries,18 would 

also provide further insight into the impact of SSRIs on integrin regulation.  
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Patients with major depression possessed decreased lymphocyte blood counts after intake of 

escitalopram for 8 weeks, while monocyte and neutrophil counts were not affected.197 Since 

the observed reduction in the mouse model was only transient, it would be interesting to assess 

blood count changes in patients after the onset of SSRI treatment in a time course experiment. 

It should be noted that the time point of blood sampling is crucial, because the number of 

circulating leukocytes in the blood oscillates due to the circadian rhythm.198 Although FLX 

affected human neutrophil-like cells similar to murine cells, additional studies are needed to 

corroborate the relevance for humans. Besides, the metabolite of FLX, norfluoxetine, plays an 

important role for the therapeutic effect in patients,199 which was not taken into account in the 

in vitro assays. Therefore, integrin activation should be assessed in leukocytes from depressed 

patients with and without hypercholesterolemia before and after the onset of SSRI treatment. 

In summary, the present study is the first report of a pro-atherogenic effect of the SSRI FLX, 

which is provoked by enhanced CCL5-induced integrin activation in a 5-HT-independent 

manner (Figure 49). These novel mechanistic insights are of broad scientific interest, as they 

suggest that FLX potentially increases the risk for acute cardiovascular events such as 

myocardial infarction. Due to possible pro-atherogenic effects of SSRIs, the use of these drugs 

should be carefully reconsidered especially in cardiovascular risk patients or at least these 

patients should be carefully monitored. 

 

 

 

 

 

Figure 49: Summary of the effect 
of chronic SSRI intake on athero-
sclerosis in a mouse model.  
ApoE-/- mice were treated with the 
SSRI FLX in parallel to HFD feeding. 
Aside from the expected depletion in 
platelet 5-HT, FLX treatment leads to 
enhanced integrin activation on 
myeloid cells. This was accompanied 
by augmented vascular permeability 
and increased leukocyte adhesion, 
which in turn leads to aggravated 
atherosclerosis. These findings were 
independent of 5-HT, but dependent 
on an inflammatory milieu. (Adapted 
from Rami et al.)169 
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die meisten Praktika durchgemacht und durchgestanden. Wir haben Papier in Kohlenstoff 

verwandelt und konzentrierte Säure zum Kochen gebracht. Ich glaube, ich und mein Labor 

habe es auch dir zu verdanken, dass ich teilweise so „exakt“ bin.  Ruth, bei dir muss ich mich 

erstmal dafür bedanken, dass du es auf dich genommen hast einen Teil meiner Arbeit 

Korrektur zu lesen. Wir hatten eine super Zeit, vor allem im Tox-Praktikum, bei dem ich dich 
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zwei der vielen vielen Beispiele zu nennen. Ich möchte dich nicht mehr missen!  

Auch möchte ich mich bei all meinen Freunden, besonders bei den Münchnern, den 
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schätzen und bin dankbar, solche Freunde wie euch zu haben!!! 

Mein ganz besonderer Dank gilt aber meiner Familie. Meiner Schwester Regina, die immer für 

mich da ist und meinen Eltern, die nie etwas von mir gefordert, mich aber immer bei allem 

unterstützt haben. Danke für alles was ihr für mich macht! Ich weiß, dass das nicht 
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„Wird es einfach sein? NEIN. Wird es das wert sein? ABSOLUT!“ 

 

 


