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1. Summary 

In order to counteract invading pathogens, our cells evolved complex signaling cascades and 

effector proteins which constitute a part of the human innate immune system. Certain molecular 

characteristics which are normally absent in a healthy cell are used by highly specialized pattern 

recognition receptors (PRRs) to distinguish between harmless self-structures and non-self 

molecules potentially indicating a pathogenic threat. Receptor activation leads to the production 

of interferons (IFNs) and proinflammatory cytokines. For viruses, obligate intracellular parasites, 

it is essential to circumvent this response in order to establish a productive infection. The 

phosphoprotein (P) of rabies virus (RABV), the causing agent of a fatal zoonotic disease, has 

been identified as the central factor in RABV immune evasion. Besides its various crucial 

functions in the viral life cycle, RABV P antagonizes the innate immune response on two distinct 

levels. First, RABV P interferes very efficiently with RIG-I-like receptor (RLR) mediated IFN-

induction by blocking activation of the central interferon regulatory factor 3 (IRF3). Secondly, 

RABV P abrogates IFN-signaling using a separate mechanism by retaining activated signal 

transducer and activator of transcription (STAT) in the cytosol. This dual mode of action makes 

RABV P one of the most powerful viral IFN antagonists. 

Although RABV P is well known as suppressor of IFN induction, the inhibitory mode of action still 

remained unresolved. In order to shed light on this mechanism, one major goal of the present 

thesis was to examine which domains and functions of the P protein are vital for its suppressive 

abilities. 

Therefore, different RABV P regions were examined for their potential involvement in subversion 

of IFN-induction. While the N-terminal domain and a conserved dynein light chain LC8-type 1 

(DLC8) binding motif were shown to be non-essential for inhibition, dimerization deficient 

RABV P was found to be impaired in suppression of a type I interferon response. Further, RABV P 

strictly relied on the C-terminal domain (CTD) to abrogate RIG-I mediated IFN-induction.  

The CTD of RABV P was previously reported to harbor a conformational nuclear localization 

signal (NLS), which, in concert with its nuclear export signals (NES), makes RABV P a 

nucleocytoplasmic shuttling protein. In this thesis, RABV P mutant proteins deficient in this CTD-

NLS were shown to be defective in their ability to interfere with IRF3 activation. Fusion of NLS-

deficient RABV P mutants with an ectopic SV40-NLS restored the suppressive capacities, 

providing strong evidence that the trafficking behavior of RABV P mediated by the CTD-NLS is 

required for inhibition of IFN-induction. 
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Previously, a short stretch of amino acids within a disordered region of RABV P (residues 

176-186), was described as essential for the inhibition of IFN induction. However, the exact role 

of this sequence or the identity of potential molecular interaction partners remained elusive. 

Therefore, the P-176-186 region was further investigated by site-directed mutagenesis. This 

approach revealed that tryptophan 186 of RABV P is a critical residue for inhibitory function, 

since a P mutant protein containing a single alanine substitution at this position (W186A) 

completely failed in preventing IRF3 activation, equally to the previously characterized internal 

deletion mutant PΔ176-186. A recombinant virus containing the P-W186A mutant protein could 

be successfully rescued by a reverse genetics approach. Real-time PCR experiments showed that 

SAD-L16-P-W186A strongly induced IFN-β transcription, as compared to the parental strain. 

Further research employing pulldown assays and mass spectrometry analysis identified 

members of the HSP70 family as molecular interactors of RABV P. The interaction motif could be 

narrowed down to RABV P residues 180-186 and in vitro studies indicated a direct and sequence 

specific interaction between the identified P motif and HSP70. The P–HSP70 association was lost 

in the inhibition defective mutants P-W186A and PΔ176-186. These findings provide a strong 

correlation between HSP70 binding and the ability of RABV P to suppress the induction of IFN-β, 

indicating a possible role for HSP70 family members in innate immune signaling.  

In contrast to inhibition of IFN-induction, HSP70-binding deficient RABV P proteins were not 

affected in their ability to interfere with JAK-STAT signaling. Moreover, these P mutants were not 

impaired in their central role in the viral life cycle, as indicated by the wild type-like growth of 

the recombinant mutant virus SAD-L16-P-W186A. These findings strongly suggest that the failure 

of HSP70 binding-deficient RABV P mutants to impair IFN-induction is not due to aberrant 

protein folding. Furthermore, pulldown assays employing HSP70 mutants and truncation 

constructs provided evidence that the observed association with RABV P is not depending on 

heat shock protein ATPase function. 

Overexpression of wild type and mutant HSP70 and heat-shock treatment of cells strongly 

interfered with RLR mediated interferon induction, providing another hint at an involvement of 

HSP70s in innate immune regulation. Our resulting working hypothesis suggests that RABV P 

inhibits IFN induction either by abrogating HSP70 function in this pathway, or by misusing the 

protein to counteract IRF3 activation.  
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2. Introduction 

2.1. Rabies virus  

2.1.1. Overview 

Rabies is an insidious disease that inevitably leads to a fatal encephalitis in the final stage of a 

productive infection. Its causative agents are members of the Lyssavirus genus with Rabies virus 

as the type species. They belong to the Rhabdoviridae, a family of enveloped viruses exhibiting a 

rod- or bullet-like shape (“rhabdos” meaning rod in Greek). Together with several families, such 

as the Filoviridae, Paramyxoviridae, Bornaviridae and others, they form the Mononegavirales, an 

order of viruses containing a single-stranded, non-segmented, negative-sense (NNS) RNA 

genome (Davis et al., 2015). 

The first historic phenotypical descriptions that can be attributed to rabies date back to ancient 

times. Already the Babylonian Talmud described a rabid dog astonishingly accurate and 

associates its bites with a fatal outcome for the victim: “Five things were mentioned in 

connection with a mad dog. Its mouth is open, its saliva dripping, its ears flap, its tail is hanging 

between its thighs, it walks on the edge of the road. Some say, Also it barks without its voice 

being heard.”, “One whom it bites, dies.”(Mishna Yoma, 83b and 84a) (Rosner, 1974; Rupprecht 

et al., 2002). Even though no clear concept of pathogens was available in these times, the 

correlation between human deaths and bites by apparently mad dogs was already correctly 

recognized. Due to the traces rabies left during the course of human history, it is easy to imagine 

that the disease had a significant cultural impact and influenced myths and fiction about 

creatures like vampires and werewolves considerably (Gomez-Alonso, 1998; Metzger, 2013).  

It took a long time until microorganisms, such as viruses, were identified as the causing agents of 

infectious diseases. Before the breakthrough of microbiology, living things were thought to be 

spontaneously generated from inanimate material under the right circumstances, as it was 

suggested by the ancient Greek philosopher Aristotle. With the help of newly developed light 

microscopes, enabling a sufficient magnification, first microorganisms such as yeast were 

discovered in the nineteenth century. The famous work of the French chemist and microbiologist 

Louis Pasteur (Photography from around 1885 in Figure 1) demonstrated that fermentation 

cannot occur in extracts previously sterilized by heat, when atmospheric air is excluded, thus 
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falsifying the theory of “spontaneous generation” of life and underlining that fermentation is a 

process that relies on living organisms (Smith, 2012). 

Many years later, Louis Pasteur successfully developed a 

vaccine against chicken cholera, a devastating livestock 

disease at his time. Pasteur achieved this by prolonged 

passaging of the causing bacterium Pasteurella multocida, 

leading to an attenuation of the pathogen. Animals 

treated with this vaccine survived the subsequent 

challenge with virulent cultures. This achievement of 

creating a protective vaccine by attenuation of a pathogen 

is considered to be the birth of the field of immunology. 

Later on, Louis Pasteur turned to the creation of a vaccine 

for rabies, in order to establish an interventional therapy for human use. Together with Emile 

Roux, Pasteur passaged rabies from infected dogs in rabbits, yielding a virulent, however “fixed” 

strain. The spinal cords of rabbits infected with this virus were dried by desiccation over 15 days, 

resulting in a loss of pathogenicity. This vaccine successfully protected dogs against inoculation 

with the highly pathogenic version of the virus. In July 1885, the vaccine was tested on the 9-

year-old boy Joseph Meister, who had been previously bitten by a supposedly rabid dog. Pasteur 

treated the boy over several days, beginning with desiccated apathogenic spinal cord material 

and proceeding to increasingly less attenuated preparations. Although Pasteur finally inoculated 

the boy with fresh infectious spinal cord isolations, he survived, providing evidence for the 

efficacy of this method. Despite the problematic ethical considerations, this experiment paved 

the ground for the distribution of a protective vaccine against rabies virus, which saved 

thousands of people even in the following years of the nineteenth century (reviewed in Berche 

(2012) and Smith (2012)). 

Although a scientific explanation for rabies and other microbial diseases was only possible much 

later, the ancient observations of rabies being transmitted to humans by animal bites already 

correctly outlined the general concept of a zoonotic disease. Rabies virus is widely distributed all 

over the world due to its ability to infect a large variety of mammalian species, with members of 

the orders Carnivora and Chiroptera being its primary hosts (Rupprecht et al., 2002). Especially 

the high prevalence of rabies and other Lyssaviruses in different bat species makes it very hard 

to completely eradicate this disease, since in contrast to terrestrial mammals there are no 

Figure 1: Louis Pasteur, around 1885.

Picture adapted from Berche (2012).
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measures available for effective mass vaccination so far. Rabies transmitted by hematophagous 

vampire bats poses a re-emerging health threat for humans and livestock in Latin America, 

underlining the importance of Lyssavirus infected bats as zoonotic reservoir (Johnson et al., 

2014). However, by far most human cases are associated with dog bites, especially in the less 

developed countries (Knobel et al., 2005). Confirmed human-to-human transmissions have only 

been reported after transplantation of organs from infected donors (Vora et al., 2013). Except 

for these extremely rare cases, rabies is a strictly zoonotic disease only transmitted to humans 

by exposure to infected animals. 

Because rabies viral particles are enriched in saliva of the host in a later stage of infection, a bite 

by an infected animal easily brings contagious material in contact with subcutaneous tissue. 

After primary infection of muscle cells, the RABV particles gain access to primary motor neurons 

via neuromuscular junctions. Subsequently, by retrograde axonal transport and trans-synaptic 

neuron-to-neuron spread, RABV is distributed to the CNS of the host (Davis et al., 2015). The 

incubation time for human rabies is about 20-90 days, however rare cases have been reported 

showing symptoms not before one year or more after exposure. After initial, rather unspecific, 

flu-like symptoms, the disease progresses either to encephalitic or paralytic rabies, which differ 

in specific symptoms but equally end with coma and death of the patient. The encephalitic form 

of the disease is characterized by astonishing behavioral changes like generalized arousal, 

hyperexcitability and very frequently severe hydrophobia, which is a unique symptom of rabies. 

Enrichment of viral particles in saliva in combination with aggressive behavioral changes then 

provide ideal conditions for the virus to spread to a new host (Jackson, 2013). 

Although a very efficacious post-exposure prophylaxis (PEP) consisting of extensive wound 

cleansing, passive immunization with rabies immune globulin (RIG) and active immunization 

using a tissue culture rabies vaccine is available (Manning et al., 2008), no effective treatment 

after onset of clinical signs could be established yet. At this point the timeframe for an effective 

PEP has expired and the disease exhibits an extreme case fatality rate of almost 100 %, 

designating rabies as one of the most lethal infectious diseases. Up to now there is only one 

report of a 15-year-old female who survived a rabies infection without any prophylactic 

treatment prior to development of clinical symptoms (Willoughby et al., 2005). Rabies mainly 

transmitted by dog bites is still responsible for approximately 55’000 human deaths worldwide, 

largely in the less developed regions of Africa and Asia, were many patients have no access to 

proper PEP (Knobel et al., 2005). Besides the lack of sufficient medical infrastructure, this is due 

to the relatively high cost and therefore limited availability of human rabies immune globulin 

(HRIG). Improved immune globulins of equine origin as well as the use of human monoclonal 
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antibodies might provide more cost effective alternatives in the future, increasing the 

accessibility to PEP (Smith et al., 2011). 

With the lack of an effective treatment for the disease, the focus lies on prevention by human 

vaccination and control of rabies in domestic animals and the wildlife population. In addition to a 

reduction of potential animal vectors, mass vaccinations of terrestrial carnivores have been very 

successful. This was made possible with the development of several efficacious live virus based 

oral vaccines which can be distributed in baits even to remote areas by aircrafts. Oral vaccines 

used in the wildlife population encompass attenuated rabies virus strains such as SAD-B19, as 

well as recombinant viruses expressing the rabies virus glycoprotein based on vaccinia- or 

human adenovirus. Control tactics comprising this approach could significantly reduce rabies 

prevalence in wildlife animals in Europe and North America, also resulting in a decline of human 

cases. Thanks to these efforts, most regions in central Europe are nowadays considered free of 

rabies (Rosatte, 2013). In addition to the measures mentioned above, it is also important to raise 

the awareness for rabies in general and in particular for bat associated rabies among the general 

population, authorities and medical personnel. Exposure to infected bats still accounts for 

unnecessary human deaths when the risk of infection is not appropriately assessed and a 

potentially lifesaving PEP is not conducted in time (Harrist et al., 2016). 

Moreover, despite many experimental therapeutic approaches, a rational therapy for rabies is 

still elusive. Also research focusing on novel antiviral drugs like inhibitory peptides or siRNAs 

could not yet be translated into any promising clinical applications (Smith et al., 2011). 

Therefore, rabies is still an important global health concern and additional basic research is 

essential to obtain new insights into rabies virus biology and pathogenesis which might lead the 

way to the development of new therapeutic strategies. 

2.1.2. Organization of RABV particles 

The virions of rabies virus (RABV) exhibit a bullet-like shape with a diameter of about 75 nm and 

a length of 100-175 nm (for schematic representation and EM picture see Figure 2). RABV has a 

relatively small, non-segmented, negative-sense RNA genome with a length of about 12 kb. 

Equal to other rhabdoviruses, the genome contains only 5 monocistronic genes that encode 

their corresponding viral structural proteins: the nucleoprotein (N), phosphoprotein (P), matrix 

protein (M), glycoprotein (G) and the RNA-dependent RNA polymerase L (large protein). This 

order (N-P-M-G-L) is highly conserved among the genomes of Rhabdoviridae and to a certain 

extend even among the Mononegavirales. N protein is 450 amino acids (aa) in size and tightly 
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associated with the viral genome. It could be shown to encapsidate the viral RNA by enwrapping 

up to 9 nucleotides (Iseni et al., 1998), thus shielding it from cellular proteins such as antiviral 

innate immune receptors (Albertini et al., 2006). Together with P and few copies of L, the 

packaged genome forms the ribonuclear protein (RNP).  

 

Figure 2: Organization of rabies virus particles. 

A) Schematic illustration of a rabies virus virion with RNA genome, envelope and structural proteins. B) Legend for the 

viral proteins depicted in A). C) Rabies virus particles visualized by electron microscopy, “M/N-protein (orange arrow 

head), G-protein (red arrow head) and membrane (green arrow head) are clearly distinguishable.” (Guichard et al., 

2011). 

Exclusively the RNP and not naked RNA can serve as a template for transcription and replication 

by the polymerase L (2130 aa), whereby P is required as essential cofactor. Inside the viral 

particle the RNP is condensed into a helical nucleocapsid, which is surrounded by a host cell 

derived lipid bilayer, exhibiting a bullet-like shape. This envelope contains the trimeric single-

pass transmembrane protein G (505 aa), which consists of a glycosylated ectodomain on the 

outside of the viral particle and a cytoplasmic domain on the inside (Whitt et al., 1991). The G 

ectodomain is the only viral component that is on the outside of the particle and therefore 

A

B CGlycoprotein (G)

Matrix protein (M)

Nucleoprotein (N)

Phosphoprotein (P)

Large protein

(viral polymerase, L)
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mediates tropism. M protein (202 aa) is associated with the membrane on the cytoplasmic side 

and connects the RNP with the viral envelope. It is a multifunctional protein that is the central 

factor driving assembly and budding of viral particles (Mebatsion et al., 1999; Okumura and 

Harty, 2011) and is also involved in the regulation of viral transcription and replication (Finke and 

Conzelmann, 2003) (organization of viral particle reviewed in Albertini et al. (2011)). 

G and M have both been identified to play an important role in viral pathogenicity 

(Pulmanausahakul et al., 2008). Besides its function as cofactor for L, the phosphoprotein P 

(297 aa) is a highly versatile and multifunctional protein which is additionally involved in 

encapsidation of the viral genome and innate immune evasion (Mavrakis et al., 2004; Rieder and 

Conzelmann, 2009). Since the present thesis mainly focuses on this protein, RABV P will be 

discussed in more detail separately in 2.1.4. 

2.1.3. Rabies virus life cycle 

As obligate intracellular parasites, viruses have to infiltrate a host cell in order to replicate. A 

viral life cycle starts with the attachment of a viral particle to specific receptors on a target cell. 

The receptors implicated so far in attachment of RABV particles are neuronal cell adhesion 

molecule (NCAM), p75 neurotrophin receptor (p75NTR) and the nicotinic acetylcholine receptor 

(nAChR), while the latter is thought to be the primary receptor that mediates entry of the virus 

in peripheral muscle tissue (Lafon, 2005). After attachment to the extracellular target structure, 

RABV virions enter the host cell via receptor mediated endocytosis. Increasing acidification of 

the endosome finally triggers G protein mediated membrane fusion and release of the RNP into 

the cytosol of the host cell (Gaudin, 2000; Roche and Gaudin, 2004).  

With the RNP released into the cytoplasm, including copies of the RNA-dependent RNA-

polymerase L and its cofactor P, all requirements are met for the start of an infectious cycle. The 

viral genome exhibits a negative sense orientation, therefore transcription of viral mRNAs by the 

L-P polymerase complex is an essential prerequisite for viral gene expression. Viral transcription 

strictly relies on N encapsidated genomes as template. In addition to the five genes N, P, M, G 

and L, the viral genome exhibits a 3’-leader and a 5’-trailer sequence, which act as crucial signals 

in transcription and replication. The 5’ end of the viral RNA exhibits a triphosphate modification 

(genome organization see Figure 3A). The genes of rabies virus are separated by non-coding, 

intergenic regions (IGRs). Before each IGR, a transcription termination and polyadenylation 

signal (TTP) mediates transcription stop and polyadenylation of the corresponding mRNA. 

Downstream of an IGR, a transcription initiation signal (TIS) is located, which allows for 
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reinitiation of transcription of the following gene. Transcription starts at the 3’ end with 

generation of the non-coding 5’-triphosphate containing leader-RNA, followed by transcription 

of the capped and polyadenylated mRNAs of N, P, M, G and L. The viral mRNAs resemble normal 

cellular mRNAs and are likewise translated by the ribosomes of the host cell. 

 

Figure 3: Rabies virus genome organization and transcriptional gradient. 

A) Graphical representations of rabies virus genome with the five viral genes N, P, M, G and L. The genome exhibits a 

3’ leader and a 5’ trailer sequence, which are essential for initiating transcription and replication. A triphosphate 

modification is attached to the 5’ end of the genome (5’-ppp). B) Transcription starts at the 3’ end of the genome and 

results in generation of a 5’-ppp containing leader RNA and the capped and polyadenylated N mRNA. After each viral 

gene, transcription stops and reinitiates with a certain chance, resulting in a transcriptional gradient. 

Transcription is terminated after each gene at the TTP and has a certain change to reinitiate at 

the following TIS. This mechanism leads to a reduced abundance of transcripts with increased 

distance of the corresponding gene to the 3’ end of the viral genome (Figure 3B). This 

transcriptional gradient is a typical feature of NNS RNA viruses. However, it is significantly 

steeper in the case of rabies virus compared to VSV. This is mainly due to the attenuated IGRs in 

rabies virus, which are much longer than the GA dinucleotides found in VSV, leading most likely 

to a notable reduction in expression of the L gene (Finke et al., 2000; Rose, 1980). How exactly 

the polymerase complex gets access to the encapsidated genome and starts transcription is 

poorly understood. For VSV, it has been suggested that transcription is not limited to begin at 

the 3’ end but is also able to directly start with N transcription (Whelan and Wertz, 2002) (For 

review of viral transcription see Albertini et al. (2011)). 

How the switch from transcription, which is interrupted at junctions between genes, to full 

read-through replication is regulated in NNS RNA viruses could not be fully determined yet. In 

B

A
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general, most insights about molecular aspects of the viral life cycle of Rhabdoviridae have been 

obtained by studying VSV. Replication encompasses generation of an anti-genome intermediate, 

which serves as template for new viral genomes (Figure 3B). The 3’ leader sequence acts as 

promoter to start transcription or replication, while the 3’ end of the anti-genome, consisting of 

the complementary sequence of the 5’ trailer of the genome, promotes mainly read-through 

replication. This process is asymmetric, since much more genomes than anti-genomes are 

created by the polymerase complex, indicating a higher replicative activity of the 3’ promoter of 

the anti-genome. For rabies virus infected cells, the ratio of genome to anti-genome has been 

reported to be even as high as 49:1 (Finke and Conzelmann, 1997). The nucleoprotein is essential 

in viral replication and its abundance is supposed to play a role in the transition from 

transcription in the early stage of infection to replication later on and in the processivity of 

replicative RNP synthesis. According to the widely accepted model of replication of NNS RNA 

viruses, RNA transcription starts at the 3’ end of the genome and the leader sequence can be co-

transcriptionally encapsidated as soon as a sufficient amount of N is present in the host cell. The 

discovery of encapsidated leader RNA in VSV infected cells provided some evidence for this 

hypothesis (Blumberg and Kolakofsky, 1981). If the growing transcript is enwrapped rapidly 

enough, the polymerase complex switches to replication mode, ignores TTP and TIS sequences, 

and thus generates full length read-through anti-genome products which can in turn serve as 

templates for generation of new genome copies (reviewed in Whelan et al. (2004)). In addition 

to this mechanism depending on N concentration, M protein of SAD-L16 strain rabies virus has 

been shown to down-regulate mRNA synthesis and promote viral replication (Finke and 

Conzelmann, 2003; Finke et al., 2003). 

The whole process of viral RNA synthesis is not taking place arbitrarily distributed throughout 

the cytoplasm of the host cell. Recently, the so called  “Negri bodies” could be identified as the 

site of viral transcription and replication (Lahaye et al., 2009). These cytoplasmic inclusion bodies 

were named after Adelchi Negri, who discovered this diagnostic marker in 1903 as spherical 

structures in histological sections of infected nervous tissue. Concurrently, the viral proteins N, P 

and L mainly co-localize in these typical structures, together with viral nucleic acids and host cell 

factors like HSP70, DLC8 (dynein light chain LC8-type 1) and TLR3 (toll-like receptor 3) (Finke et 

al., 2004; Lahaye et al., 2009; Menager et al., 2009). 

In the late stage of infection, ongoing viral replication results in the assembly of new viral 

nucleocapsids and budding of viral particles. This process relies on the insertion of the 

transmembrane protein G into the membrane of the host cell and the matrix protein M, which is 

the main driver of budding (Mebatsion et al., 1996; Mebatsion et al., 1999). Even though G is 
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supposed to have rather a supportive function in budding, both proteins cooperatively 

contribute to the budding process by interactions between M and the cytoplasmatic tail of G 

(Mebatsion et al., 1999; Okumura and Harty, 2011). 

2.1.4. Rabies virus phosphoprotein 

The limited coding capacity of small RNA viruses lead to the evolution of highly multifunctional 

proteins, which are able to fulfill a variety of tasks. The rabies virus phosphoprotein P (RABV P) 

exhibits numerous interactions with viral as well as host cell proteins and orchestrates many 

crucial aspects of the viral life cycle, making it a central “hub” protein for RABV.  

Several serine phosphorylations are a common feature of the P proteins of NNS RNA virus, what 

is the reason for the designation as “phosphoprotein”. RABV P is phosphorylated at the 

N-terminus at Ser63/Ser64 by a unknown kinase, whereas several C-terminal phosphorylations 

(serine residues 162/219/271) are mediated by protein kinase C (PKC) (Gupta et al., 2000). The 

phosphorylated moieties at the C-terminus have been reported to modulate the trafficking 

behavior of RABV P between nucleus and cytosol (Moseley et al., 2007). However, no clear 

essential function for the viral life cycle could be attributed yet to RABV P phosphorylation 

(Gigant et al., 2000). In contrast, phosphorylation of the P protein of vesicular stomatitis virus 

(VSV), another member of the Rhabdoviridae family, was shown to be essential for growth of 

this virus (Das and Pattnaik, 2004). 

RABV P is a rather small protein of 297 amino acids length and a molecular mass of about 

33 kDa. Due to its various phosphorylations, P has an apparent size of 37 kDa in SDS-PAGE gels. 

RABV P is organized in distinct structured domains that are connected by intrinsically disordered 

regions (Figure 4A). This organization and the ability to form homo-oligomers, as well as 

functions in the viral life cycle, are shared among phosphoproteins of the Mononegavirales, 

however no sequence similarities can be found in sequence alignments (Gerard et al., 2009). The 

intrinsically disordered regions are very susceptible to proteolysis, therefore only structural data 

of the proteolysis resistant central domain (CED) (Ivanov et al., 2010) and C-terminal domain 

(CTD) (Mavrakis et al., 2004) could be determined by x-ray crystallography. 

The structured central domain of RABV P mediates dimerization (Jacob et al., 2001) and consists 

of two α-helices connected by a short loop (residues 92 to 131), forming a charged and a 

hydrophobic surface, while the latter forms the dimer interface (Gerard et al., 2009; Ivanov et 

al., 2010). Using this hydrophobic interface, the monomers form a face-to-face interaction and 
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cross with an angle of about 46° (Ivanov et al., 2010). The dimerization domain was shown to be 

dispensable for transcriptional activity in minigenome assays (Jacob et al., 2001). 

 

Figure 4: Domain organization and trafficking signals of the rabies virus phosphoprotein. 

A) RABV P consists of structured domains which are connected by intrinsically disordered regions. It is a central “hub” 

protein for the virus, since it is essential in many aspects of the viral life cycle. Together with L, it forms the viral 

polymerase complex and links it to the RNP with its NRNA binding region. RABV P keeps newly synthesized N (N0) free 

from cellular RNAs, in order to ensure correct enwrapping of viral genomes and antigenomes. A self-association 

domain mediates dimerization of the protein. In addition, RABV P is associated with host cell factors like DLC8. In this 

thesis, a region previously identified as essential for inhibition of RIG-I mediated IFN induction will be characterized as 

binding motif for HSP70 family members. Structural data available for the dimerization domain (PDB ID 3L32) and C-

terminal domain (PDB ID 3OA1) were visualized with Cn3D software by NCBI B) Overview over the RABV P trafficking 

signals. In full length P, a strong N-terminal NES dominates and causes a mainly cytoplasmic localization. In N-

terminally truncated P isoforms the N-NES can be absent, leading to enhanced nuclear localization by the N-NLS 

(reported for CVS-strain P) and C-NLS. Additionally a C-NES, which is regulated by phosphorylation, affects the 

subcellular distribution. 

Full length RABV P (P1) exhibits a size of 297 amino acids, but several additional N-terminally 

truncated versions of the protein are expressed, due to leaky scanning of the ribosome on the P 

mRNA, resulting in translation start on alternative downstream in-frame start codons. This 

generates shorter P versions starting at amino acid positions 20 (P2), 53 (P3), 69 (P4) and 83 (P5) in 

the CVS strain P, which can also be found in virions (Chenik et al., 1995). Whereas P1-3 are 

conserved, the start codon at position 69 is missing in the SAD-L16 strain of rabies virus, which is 

mainly used in this project. Therefore, SAD-L16-P4 is referring to P versions starting at residue 83 

in this thesis. Although alternative start codons are well conserved among the Lyssavirus genus, 

successful rescue of a recombinant SAD-L16 virus containing eGFP-P (Finke et al., 2004) or P with 

deleted P2/P3/P4 start codons (Brzózka et al., 2005), which are unable to produce shortened P 

isoforms, indicates that these variants are not essential for the viral life cycle. 
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RABV P isoforms exhibit differential subcellular localization, due to a strong CRM1-dependent 

N-terminal nuclear export signal (NES), which is only present in P1 and P2 and mediates 

cytoplasmic localization (Chenik et al., 1995; Pasdeloup et al., 2005) (overview over trafficking 

signals of RABV P in Figure 4B). Mutations which render this NES non-functional have been 

associated with a loss of pathogenicity and impaired inhibition of IFN-signaling in the attenuated 

Nishigahara-CE strain (Ito et al., 2010). In P3, this NES is truncated and non-functional. This leads 

to a strong nuclear localization mediated by nuclear localization signal (NLS) within the 

C-terminal domain (Pasdeloup et al., 2005) and for P3 of CVS strain by an additional N-terminal 

NLS, which localizes to residues 53-174 and only gets active upon truncation of the N-terminal 52 

amino acids (Oksayan et al., 2012). The C-terminal NLS activity strictly requires the moieties 

lysine 214 and arginine 260, which are in close proximity within the tertiary structure and form a 

positively charged stretch, constituting a conformational NLS (Mavrakis et al., 2004; Pasdeloup 

et al., 2005). Additionally, the C-terminal domain was reported to contain another NES, which 

partly overlaps with the CT-NLS and is regulated by PKC mediated phosphorylation of an 

adjacent residue (Moseley et al., 2007). 

The N-terminal truncation in the shorter isoforms also impairs other functions of the 

corresponding P products. The P proteins of the Rhabdoviridae are essential non-catalytic 

cofactors for the viral RNA-dependent RNA polymerase L (Emerson and Wagner, 1972; Emerson 

and Yu, 1975). In the case of RABV, the first 19 amino acids of the phosphoprotein are essential 

and sufficient to mediate association with the C-terminal domain of  L (Chenik et al., 1998). 

Therefore, only the full length P1 form is able to act as a cofactor for the viral polymerase.  

RABV P also exhibits two distinct binding sites for the N protein, which are localized to the N- 

and C-terminus respectively (Chenik et al., 1994; Fu et al., 1994). Co-expression of both N and P 

protein is sufficient to induce the formation of intracellular inclusions similar to Negri-Bodies, 

which contain associated N and P proteins in a ratio 1:2 (Chenik et al., 1994; Mavrakis et al., 

2003). In the absence of P, the RABV N protein forms stable complexes with endogenous cellular 

RNAs, which exhibit a morphology and N:RNA stoichiometry  similar to viral nucleocapsids (Iseni 

et al., 1998). For Sendai virus and VSV, the P protein was shown to bind newly synthesized N (N0) 

with its N-terminal domain, in order to prevent unspecific association of N with cellular RNAs 

(Curran et al., 1995; Masters and Banerjee, 1988), defining P as a molecular chaperone for N in 

regard to the encapsidation of viral RNAs. For rabies virus, this ability to associate with N0 was 

localized to P residues 4-40, which are predicted to form a conserved negatively charged α-helix 

(Mavrakis et al., 2006). Mavrakis et al. (2006) speculated that this domain mimics the negative 

charge of the RNA backbone and thus interacts with the RNA association domain of N. Since N0 



                                                                                                               2. Introduction 

 

 
14       

 

and L binding sites partially overlap, these two functions are thought to be mutually exclusive 

(Mavrakis et al., 2006). 

The C-terminal domain of RABV P (aa 186-297) mediates binding to NRNA complexes, thereby 

linking the viral polymerase to its template using the N-terminal L binding site (Chenik et al., 

1998; Mavrakis et al., 2004; Mellon and Emerson, 1978). 

Besides self-association and interactions with other viral proteins, RABV P interacts with several 

host-cell factors. Lyssavirus P proteins exhibit a strong and conserved binding site for 

cytoplasmic dynein light chain LC8-type 1 (DLC8) which could be mapped to the central part of 

RABV P adjacent to the dimerization domain (Jacob et al., 2000; Raux et al., 2000). Further 

studies could localize the binding motif precisely to the RABV P region 139-151 and showed an 

essential contribution of the residues D143 and Q147 (Poisson et al., 2001). Although this motif 

was initially assumed to be involved in axonal transport of rabies virus (Rasalingam et al., 2005), 

another study suggested that DLC8 binding by P is rather important for efficient transcription 

and replication of RABV in neurons (Tan et al., 2007). Further, the C-terminal domain of RABV P 

has been reported to associate with the promyelocytic leukemia (PML/TRIM19) protein and 

sequester PML in the cytoplasm (Blondel et al., 2002), while overexpression of the PML-IV 

isoform was shown to suppress transcription and replication of the CVS strain of RABV (Blondel 

et al., 2010). Recently, the focal adhesion kinase (FAK) was reported to be involved in viral RNA 

replication by association with RABV P (Fouquet et al., 2015). Moreover, RABV P of the CVS 

strain interacts with the mitochondrial complex I, resulting in mitochondrial dysfunction and 

oxidative stress (Alandijany et al., 2013; Kammouni et al., 2015). These studies suggest that the 

generation of reactive oxygen species (ROS) and malfunction of mitochondria contribute to 

virus-induced neuronal pathogenesis. 

In addition to the different functions in the viral life cycle, RABV P is a very potent interferon 

antagonist, which circumvents the cellular innate immune response and thus helps the virus to 

evade the host’s immune system. This is important for the establishment of a viral infection, 

since cytosolic 5’-triphosphate RNAs of viral origin are readily recognized by RIG-I-like receptors 

(RLR), resulting in the induction of type I interferon genes (Yoneyama et al., 2004). In vitro 

transcribed RNA corresponding to the RABV leader sequence, RNA isolated from viral particles 

and synthetic 5’-ppp RNAs containing the sequence of the complementary panhandle genome 

ends of rabies virus have been reported as potential triggers for RIG-I (Hornung et al., 2006; 

Schlee et al., 2009). Intriguingly, the P protein is able to interfere with innate immune signaling 

on two distinct levels.  
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First, RABV P is able to prevent transcription of type I interferon genes by blocking 

phosphorylation of the crucial interferon transcription factor IRF3 by the kinases TBK1 and IKKε 

(Brzózka et al., 2005). This was initially demonstrated by the generation of recombinant viruses 

with attenuated production of P, which induced high amounts of IFN. Further, in vitro assays 

employing ectopic expression of the phosphoprotein clearly identified it as a very potent 

antagonist of IFN induction (Brzózka et al., 2005; Marschalek et al., 2009). The suppression of 

IRF3 phosphorylation and nuclear accumulation is strictly dependent on the P region 176-186, 

which is absent in the PΔInd1/2 mutant that was characterized by previous work in this group 

(Rieder et al., 2011). Mutant viruses with deletions in this region of the P protein exhibited 

reduced mortality when injected intracerebrally into mice, indicating an involvement of 

inhibition of IFN-induction in viral pathogenicity. However, the nature of the inhibitory 

mechanism and why this region is essential for preventing interferon induction remained 

enigmatic. To clarify this issue and to identify potential molecular binding partners associated 

with this P region is a major goal of the current thesis. 

Second, in addition to interfering with induction of interferons, RABV P also blocks interferon 

signaling. Normally, secreted type I interferons initiate downstream signaling by an interaction 

with the heterodimeric IFNAR receptor (IFNAR1 and IFNAR2), in an autocrine and paracrine 

fashion. Activation of the IFNAR receptor leads to phosphorylation of intracellular residues by 

the Janus kinases (JAKs) JAK1 and TYK2, resulting in recruitment of signal transducer and 

activator of transcription (STAT) 1 and STAT2. Subsequently, the STATs get phosphorylated at 

their tyrosine residues Y701 and Y689 by the active JAKs, which are still bound to the cytosolic 

components of the IFNAR receptor. Phosphorylation of STATs leads to their hetero-dimerization 

and nuclear translocation, where they induce the transcription of interferon-stimulated genes 

(ISGs) by binding to interferon-stimulated response elements (ISREs) in their promoter regions 

(Platanias, 2005). This process is abrogated by RABV P by binding specifically to activated STATs, 

thereby preventing their nuclear accumulation and transcriptional activity (Brzózka et al., 2006). 

This effect strictly requires the CTD of RABV P and truncation of the 10 C-terminal residues 

abrogates the interaction with STATs (Brzózka et al., 2006; Vidy et al., 2005). In addition to the 

prevention of nuclear localization of STATs, the nuclear P isoform P3 was reported to interfere 

with transcriptional activity by suppressing the binding of STAT1 to target DNA sequences in the 

nucleus (Vidy et al., 2007). This would delineate an alternative inhibitory mechanism for 

repression of ISG induction by RABV P. STAT-inhibition deficient RABV was shown to be highly 

susceptible to IFN-treatment, while displaying significantly reduced pathogenicity in mice after 

intracerebral inoculation (Ito et al., 2010; Wiltzer et al., 2014). Taken together, the control of an 
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innate immune response on the levels of interferon induction and signaling by RABV P are both 

important determinants for viral pathogenicity (Immune evasion by RABV P reviewed in Rieder 

and Conzelmann (2011)). 

As shown above, RABV P is a prime example for the highly multifunctional proteins typically 

found in small RNA viruses. This illustrates how RNA viruses were forced by the limited coding 

capacity of their genomes to develop extremely efficient proteins capable of carrying out various 

tasks which are essential for the viral life cycle in many aspects. 

2.2. Innate immunity 

The cells of our body are under a permanent threat by a magnitude of different invading 

pathogens from bacteria, fungi, and protozoa to viruses. During the course of evolution, the 

development of several countermeasures to deleterious pathogens was crucial. The innate 

immune system is the first line of defense and is able to detect special molecular characteristics 

that are primarily associated with pathogens, since they are normally not present inside a 

healthy eukaryotic cell or in its extracellular environment. These specific molecular markers, 

which have been defined as pathogen-associated molecular pattern (PAMPs), are therefore used 

by our cells to discriminate between harmless self and potentially deleterious non-self structures 

(Janeway and Medzhitov, 2002). Since not only pathogens but also commensal microorganisms 

may display structures which are detected by our cells, the alternative term microbe-associated 

molecular pattern (MAMPs) has been suggested (Didierlaurent et al., 2005). 

This is achieved by several pattern recognition receptors (PRRs), which specifically detect their 

targets and act as cellular sensors for PAMPs. Foreign nucleic acids are prominent ligands that 

indicate a threat to the cellular genomic integrity and can be recognized by members of the Toll-

like receptor (TLR) and RIG-I-like receptor (RLR) family (Kawai and Akira, 2008). TLRs are a family 

of transmembrane PRRs which localize to the endolysosomal compartment and detect bacterial 

GpC motif containing DNA (TLR9, Krieg et al. (1995), Hemmi et al. (2000)), double strand (ds)RNA 

(TLR3, Alexopoulou et al. (2001)) and single strand (ss)RNA (TLR7/8, Heil et al. (2004)). Whereas 

the TLRs recognize their ligands mostly in endosomes, the RIG-I-like receptors retinoic acid-

inducible gene I (RIG-I), melanoma-differentiation-associated factor 5 (MDA5) and laboratory of 

genetics and physiology 2 (LGP2) detect dsRNAs in the cytosol (Loo and Gale, 2011). The 

recognition of non-self virus-derived nucleic acids in the cytosol by RLRs and in endosomes by 

TLR3/7/8 is central in the response to infections with RNA viruses. Depending on the activated 

receptors, different signaling cascades are initiated. Although distinct pathways are triggered by 
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their respective PRRs, they merge in the production of type I interferons and inflammatory 

cytokines. These signaling molecules elicit a broad anti-microbial cellular immune response 

through the induction of a multitude of interferon-stimulated genes (ISGs), such as Mx proteins, 

protein kinase R (PKR), 2’-5’-oligoadenylate synthase (2’-5’-OAS) and RNaseL (Haller et al., 2007). 

Additionally, IFNs contribute to activation of the pathogen specific adaptive immune system, for 

instance by facilitating a CD8+ T-cell response (Goodbourn et al., 2000; Kolumam et al., 2005). 

 

 

Figure 5: Interferon induction upon activation of RIG-I signaling. 

Virus derived 5’-triphosphate (5’-ppp) dsRNA products are able to bind the helicase domain of RIG-I and mediate 

downstream signaling to MAVS in an ATP-dependent fashion (Loo and Gale, 2011). MAVS is a mitochondrial signaling 

platform and functions as an adaptor for numerous proteins involved in regulating IFN-induction. In concert with 

TRAFs and other adaptor proteins, MAVS activates TBK1/IKKε, leading to the phosphorylation of IRF3 (Belgnaoui et al., 

2011). IRF3 dimerizes and translocates to the nucleus, were it activates transcription of type I interferon genes, 

together with NF-κB and ATF2/C-Jun (Hiscott, 2007). 

RLRs recognize a present RNA virus infection and mediate downstream signaling to the 

mitochondrial antiviral-signaling protein (MAVS) after binding to certain virus-derived dsRNA 

species (Figure 5). MAVS is anchored to outer mitochondrial and to some extend peroxisomal 

membranes and acts as a signaling platform that accumulates further regulatory adaptor 
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proteins and initiates activation of TBK1 and IKKε (Dixit et al., 2010; Loo and Gale, 2011; Seth et 

al., 2005). These effector kinases mediate the phosphorylation and consequently nuclear 

translocation of interferon regulatory factor 3 (IRF3), which is the central transcription factor of 

type I interferon genes (Hiscott, 2007).  

Upon transcription and secretion of IFN and other pro-inflammatory cytokines, the activated cell 

itself and other cells in proximity enter an antiviral state in an auto- and paracrine fashion, 

respectively, characterized by the expression of interferon-stimulated genes (ISGs) via JAK-STAT 

signaling (Goodbourn et al., 2000). A more precise overview about the molecular mechanisms of 

the signaling cascade leading to induction of interferons after RLR activation by virus derived 

ligands is given below, including novel insights reported in the recent years. 

2.2.1. RLR recognition of viral nucleic acids 

Whereas professional interferon producing cells like plasmacytoid dendritic cells (pDCs) rather 

use the TLR-system for viral detection, RIG-I-like receptors (RLRs) are crucial for the induction of 

type I interferons in conventional DCs (cDCs) and fibroblasts (Kato et al., 2005). The DExD/H box 

RNA helicase RIG-I is the prototypic member of the RLR family and was the first cytosolic 

receptor identified to trigger a dsRNA dependent antiviral response by mediating activation of 

NF-κB and IRF3 (Yoneyama et al., 2004). RIG-I exhibits two caspase recruitment domains (CARDs) 

at its N-terminus, which are essential and sufficient to mediate signaling and a central helicase 

domain with intact ATPase activity (Yoneyama et al., 2004). MDA5 and LGP2 are the other two 

RIG-I related proteins found in humans. MDA5 shares the domain organization including the 

tandem CARD repeat with RIG-I and is a similar positive regulator of antiviral signaling 

(Yoneyama et al., 2005). In contrast, LGP2 completely lacks any CARD domains and has been 

characterized as a negative modulator of IFN-induction after viral infection (Rothenfusser et al., 

2005; Yoneyama et al., 2005) (overview RLR domain structure see Figure 6).  

Both RIG-I and MDA5 respond to dsRNA depending on their ATPase activity. Whereas the 

tandem CARDs of both proteins are sufficient and essential for signaling, only RIG-I mutants 

lacking the CARD domains or ATPase activity exhibit a dominant negative inhibition of antiviral 

signaling (Yoneyama et al., 2005; Yoneyama et al., 2004). Both CARD domains within the tandem 

repeat are essential for mediating downstream signaling and binding to MAVS (mitochondrial 

antiviral-signaling protein), the mitochondria-associated signaling platform downstream of RLRs 

(Saito et al., 2007; Seth et al., 2005). RIG-I and LGP2 both contain a C-terminal repressor domain 

(RD) that prevents signaling of the CARDs in absence of a ligand. The RD of LGP2 is even able to 
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suppress RIG-I signaling when co-expressed in trans. Removal of this regulatory domain renders 

RIG-I constitutively active (Saito et al., 2007).  

 

Figure 6: Schematic representation of the RLRs and their adaptor protein MAVS. 

Schematic representation of RLR and MAVS structural domains involved in antiviral signaling. RIG-I and MDA5 exhibit 

N-terminal tandem CARD domains, which are essential and sufficient to mediate downstream signaling by interacting 

with the homologous CARD domain of MAVS. The helicase domains bind dsRNA and mediate signaling in an ATP 

dependent way. LGP2 lacks any CARD domains and is a negative modulator of RLR signaling. RIG-I and LGP2, but not 

MDA5, contain a repressor domain at the C-terminal region, which blocks signaling in absence of a ligand (Loo and 

Gale, 2011). MAVS is a mitochondria-associated protein that contains an integral membrane anchor at its C-terminus. 

Adjacent to the N-terminal CARD domain, a proline rich motif regulates interactions with various regulatory proteins 

that enhance or modulate further downstream signaling (Belgnaoui et al., 2011). 

Even though RIG-I and MDA5 seem very similar in their domain organization and downstream 

signaling, they detect an almost non-redundant set of distinct viral pathogens. Whereas MDA5 is 

essential for recognizing members of the Picornaviridae family such as EMCV (Gitlin et al., 2006; 

Kato et al., 2006), RIG-I detects a broader range of RNA viruses encompassing among others the 

Rhabdoviridae VSV and rabies virus (Hornung et al., 2006; Kato et al., 2005; Yoneyama et al., 

2005), as well as members of the Orthomyxo- (Influenza A/B) and Paramyxoviridae (Sendai virus, 

measles) families (Kato et al., 2005; Kato et al., 2006; Loo et al., 2008; Plumet et al., 2007; 

Yoneyama et al., 2005). A simultaneous contribution to antiviral signaling of both RIG-I and 

MDA5 could only be shown for infections with members of the Flaviviridae and Reoviridae (Kato 

et al. (2006); Kato et al. (2008); Loo et al. (2008); for review see Loo and Gale (2011)). 

 

In the last decade, a lot of effort was put into the characterization of the RNA ligands responsible 

for triggering RIG-I and MDA5. Some aspects of this topic have been quite controversial, since 

some of the findings were contradictory to some degree. Although RIG-I was at first described as 

a cytosolic receptor that detects RNA viruses and is able to bind to the synthetic dsRNA analog 

poly I:C (Yoneyama et al., 2004), studies employing mice deficient in different RLRs could show 

that poly I:C is recognized by MDA5 but not RIG-I (Gitlin et al., 2006; Kato et al., 2006). Kato et al. 

(2008) could demonstrate later that poly I:C shortened by RNase III treatment was a ligand for 
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RIG-I, but no longer for MDA5. This provided some evidence that the differential dsRNA sensing 

of RIG-I and MDA5 might be length dependent. In other independent studies, the presence of a 

triphosphate group at the 5’ end (5’-ppp) of different short in vitro transcribed RNA species was 

shown to be essential for detection of both ssRNA and dsRNA by RIG-I (Hornung et al., 2006; 

Pichlmair et al., 2006). The apparent absence of dsRNA in cells infected with influenza A virus 

(Weber et al., 2006), an infection that is detected by RIG-I (Kato et al., 2006), hinted at a role for 

5’-ppp ssRNA as a ligand. This was strictly dependent on the 5’-ppp-structure, since phosphatase 

treatment abrogated the antiviral response to influenza A viral RNA (vRNA) purified from virions 

(Pichlmair et al., 2006). Concomitantly, Kato et al. (2008) reported that total RNA isolated from 

influenza A infected cells almost completely lost stimulatory capacity upon phosphatase 

treatment. In contrast, RNA isolates derived from VSV infected cells exhibited only a moderate 

reduction in their capacity to induce IFNs after phosphatase treatment, providing some evidence 

for the ability of certain dsRNA species to induce RLR signaling independent of a 5’-ppp 

structure. Concomitantly, chemically synthesized 70 bp dsRNA with a 5’ hydroxyl end were 

shown to induce IFN-β to a comparable low, however significant level, strictly depending on RIG-

I (Kato et al., 2008). Furthermore, Saito et al. (2008) reported that a 5’-ppp is an essential 

prerequisite but not alone sufficient for detection of in vitro transcribed ssRNA  and that a poly-

U/UC rich RNA in the 3’ non-coding region of the hepatitis C virus genome is triggering RIG-I 

signaling upon infection with this RNA virus. Later work by Schlee et al. (2009) seriously 

challenged former findings that 5’-ppp-ssRNA can be considered a RIG-I ligand by introducing 

completely chemically synthesized and thus very precisely characterized 5’-ppp RNAs. The 

authors reported that synthetic 5’-ppp-ssRNAs are in contrast to the corresponding RNAs 

generated by in vitro transcription not a trigger of antiviral signaling. Addition of a fully synthetic 

complementary single strand fully restored the stimulatory capacity. This at first seemingly 

contradictory finding was explained with the inherent property of the T7 polymerase, which is 

frequently used for in vitro transcription, to readily create self-coded 3’ end prolongations with 

complementarity to the correct transcript, thus creating in fact partly dsRNA species (Triana-

Alonso et al., 1995). Using clearly defined chemically synthesized 5’-ppp-dsRNAs, it could further 

be shown that efficient recognition of dsRNAs by RIG-I requires blunt ends, while 3’-overlaps are 

tolerated to some degree, in contrast to 5’-overhangs which abrogate recognition (Schlee et al., 

2009). In summary, according to the current literature, the ideal RIG-I ligand is a short, blunt end 

5’-triphosphate or 5’-diphosphate dsRNA lacking 2’-O-methylation of the first nucleotide 

(Schuberth-Wagner et al., 2015), although it is acknowledged that longer dsRNAs without 5’-ppp 

might also trigger signaling, however much less efficiently (for review see Schlee and Hartmann 
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(2010) and Roers et al. (2016)). Apart from in vitro transcribed or synthetic RNAs, complete RNA 

virus nucleocapsids containing 5’-ppp dsRNA “panhandle” structures are able to elicit RIG-I 

signaling (Weber et al., 2013). Moreover, in addition to its signaling functions, RIG-I was recently 

shown to have certain antiviral effector functions itself, possibly by displacement of viral 

proteins from dsRNA (Chan and Gack, 2015; Sato et al., 2015; Yao et al., 2015). 

Even when the correct ligand is bound to RIG-I and the tandem CARD (2CARD) domains are 

released from the auto-inhibitory repressor domain (Saito et al., 2007), further downstream 

signaling is tightly controlled and modulated by several proteins and post-translational 

modifications, in order to prevent erroneous and potential deleterious IFN-induction. RIG-I 

signaling is positively regulated by K63-polyubiquitination of Lys172 mediated by the RING-finger 

E3 ubiquitin ligase TRIM25 (Gack et al., 2007) and negatively regulated by a phosphorylation at 

Thr170, which antagonizes ubiquitination at Lys172 (Nistal-Villan et al., 2010). Blockage of 

TRIM25-mediated polyubiquitination of RIG-I is a viral immune evasion strategy employed by the 

influenza A virus protein NS1 (Gack et al., 2009). Moreover, also non-covalently bound K63-

polyubiquitin chains were reported to facilitate RIG-I signaling by inducing the formation of 

tandem CARD oligomers (Jiang et al., 2012; Zeng et al., 2010). Abnormal signaling by an ATPase 

deficient RIG-I mutant, the cause of atypical Singleton-Merten syndrome, was recently shown to 

signal constitutively through endogenous RNAs, emphasizing the importance of correct 

discrimination between self and non-self structures (Jang et al., 2015; Lassig et al., 2015). 

 

In addition to a further characterization of the ligands for RIG-I, also many new insights about 

how RIG-I mediates downstream signaling to MAVS have been reported in the recent years. In 

vitro studies could reveal that RIG-I binds to 5’-ppp dsRNA ends and subsequently forms 

elongated filaments as it moves along the dsRNA from the ends to the interior of the molecule in 

an ATP-dependent manner. Thereby, using the RNA as a scaffold, multiple RIG-I tandem CARD 

domains are brought in close proximity resulting in the K63-ubiquitin independent formation of 

CARD oligomers. Induced proximity is sufficient for the formation of 2CARD oligomers, which are 

able to induce unidirectional polymerization of the homologous MAVS CARDs as visualized by 

electron microscopy (Peisley et al., 2013).  

According to this proposed model, RIG-I and MDA5 mediate downstream signaling to MAVS by 

inducing prion-like polymer formation of homologous MAVS CARD domains (Hou et al., 2011; 

Peisley et al., 2013; Wu et al., 2013), as depicted in Figure 7. In contrast, oligomerization of 

isolated CARDs strictly requires binding of K63-polyubiquitin chains in an in vitro reconstituted 

signaling system (Jiang et al., 2012; Zeng et al., 2010). A crystal structure of RIG-I CARD oligomers 
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in complex with K63-Ub2 could recently be determined, revealing a tetrameric architecture of 

four 2CARDs with three bound K63-Ub2 molecules exhibiting a helical “lock-washer” structure 

(Peisley et al., 2014). 

 

Figure 7: Model of MAVS activation by filament formation. 

Schematic representation of the current model of MAVS activation after triggering of RIG-I. The 2CARD domains of 

RIG-I are auto-repressed in the absence of a ligand. Upon binding to the end of a 5’-ppp dsRNA molecule, the 

repression is released, freeing the 2CARD domain. RIG-I migrates to the dsRNA interior in an ATP dependent way, 

forming filaments of multiple RIG-I molecules. This process brings several 2CARD domains in close proximity, leading 

to the formation of 2CARD tetramers. RIG-I 2CARD tetramers are then able to imprint their structure on the similar 

MAVS CARD domains, resulting in the propagation of MAVS CARD filament formation. Thereby, induction of MAVS 

aggregation leads to downstream signal transduction and eventually to type I IFN induction (Peisley et al., 2013; Wu et 

al., 2014). 

Further, a cryo-EM approach revealed that the MAVS-CARD oligomer displays a common single-

stranded left-handed helix symmetry shared by the RIG-I 2CARD tetramer (Wu et al., 2014). 

Engineering of a tetrameric MAVS CARD fusion construct that is unable to oligomerize any 

further enabled the determination of the crystal structure of a 2CARDRIG-I:CARDMAVS complex. 

This structure strongly suggested a mechanism how RIG-I 2CARD tetramers seed the formation 

of MAVS oligomers by imprinting their helical architecture on MAVS CARDs, resulting in a 

growing filament with the same symmetry (Wu et al., 2014). This provides a precise molecular 
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model how RIG-I CARD oligomerization leads to the assembly of an oligomerized MAVS signaling 

platform on the mitochondrial membrane to initiate a cellular antiviral response.  

2.2.2. MAVS as antiviral signaling adaptor 

The mitochondrial antiviral-signaling (MAVS) protein is the central adapter protein for the RLR 

pathway and essential for mounting an antiviral response (Seth et al., 2005; Sun et al., 2006). 

Initially, MAVS was independently characterized by different groups and is therefore 

alternatively knows as IPS-1 (Kawai et al., 2005), VISA (Xu et al., 2005) or Cardif (Meylan et al., 

2005). The 57 kDA protein contains an N-terminal CARD domain, homologous to the 2CARDs of 

RIG-I and MDA5, which is essential for signal transduction from RLR (described in the previous 

chapter), an adjacent proline rich region and a C-terminal transmembrane anchor localizing 

MAVS mainly to the mitochondria (Figure 8). Although MAVS is primarily a mitochondrial 

protein, it is also associated with other cellular compartments such as peroxisomes (Dixit et al., 

2010) and a certain compartment of the endoplasmic reticulum (ER), the mitochondria-

associated membranes (MAMs) (Horner et al., 2011). Even though the mechanism underlying 

the differential sorting of MAVS to the different cellular compartments is poorly characterized, 

its signaling activity strictly relies on membrane anchoring (Seth et al., 2005). In accordance with 

the requirement for membrane localization, Hepatitis C virus attacks MAVS by using its NS3-4A 

protease to cleave the protein adjacent to the C-terminal membrane anchor, resulting in 

cytosolic relocalization of MAVS and thus abrogation of antiviral signaling (Hiscott et al., 2006; 

Meylan et al., 2005). 

 

Figure 8: Domain organization of MAVS. 

Schematic representation of MAVS, including selected interactors and modifications. MAVS contains an N-terminal 

CARD domain, which is essential for oligomerization and downstream signaling. The adjacent proline-rich region (PRO) 

contains two distinct TRAF interaction motifs (TIMs) for TRAF2 and TRAF6, respectively. Another TIM for TRAF2 and 

TRAF6 is located in proximity to the C-terminal transmembrane anchor (TM). MAVS function can be positively (Y9 and 

S442) and negatively (T234) regulated by posttranslational phosphorylation (Belgnaoui et al., 2011; Vazquez and 

Horner, 2015). 
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On the level of MAVS, the RLR pathway branches into antiviral IFN-signaling and inflammatory 

response, by activation of the corresponding transcription factors IRF3 and NF-κB (Seth et al., 

2005; Sun et al., 2006). Although MAVS is associated with numerous regulating and signaling 

proteins, activation dependent interactions with members of the TNF receptor-associated family 

(TRAF) are central for different downstream signaling functions. MAVS contains two distinct 

TRAF-interaction motifs (TIM) in the N-terminal proline rich region and another TIM at the 

C-terminus adjacent to the membrane anchor (Saha et al., 2006; Xu et al., 2005). However, the 

precise mechanism and which TRAFs are essential for IRF3 and NF-κB activation, respectively, is 

highly controversial, with partly contradictory reports in the literature. TRAF3, which is also an 

essential factor in TLR-mediated IRF3 activation (Hacker et al., 2006), was reported to be 

crucially involved in the activation of IRF3 in the RLR pathway (Oganesyan et al., 2006; Saha et 

al., 2006). Thereby, the C-terminal TRAF3 binding site of MAVS was shown to be essential for 

antiviral signaling (Paz et al., 2011). In contrast, TRAF2 and TRAF6 were associated with the 

activation of NF-κB downstream of MAVS (Xu et al., 2005). Further studies challenged the view 

that TRAF3 is essential for MAVS mediated IFN-induction and suggested that rather TRAF2, 

TRAF5 and TRAF6, which were previously linked to NF-κB activation, mediate also activation of 

IRF3 in a redundant manner, depending on their E3 ligase activity (Liu et al., 2013a; Zeng et al., 

2009). Recently, a study could demonstrate that the different TRAF interaction motifs in MAVS 

are inhibited by adjacent regions in inactive monomeric MAVS, leading to an autoinhibition of 

signaling activity. This inhibitory effect is thought to be released upon MAVS filament formation, 

proposing a model how MAVS forms an active signaling platform by oligomerization (Shi et al., 

2015) (MAVS signaling reviewed in Belgnaoui et al. (2011) and Vazquez and Horner (2015)). 

Although the specific contribution of the distinct TRAFs in MAVS signaling is not fully 

understood, the downstream adaptor protein NEMO (also known as IKKγ) is essential for both 

IRF3 and NF-κB activation, depending on its ability to bind K63-linked polyubiquitin chains 

(Yamaoka et al., 1998; Zhao et al., 2007). Further, the ability of NEMO to bind K63-linked 

polyubiquitinated TBK1 has been reported to be essential for activation of the kinase and 

subsequent IRF3 activation (Wang et al., 2012). This is consistent with the overall necessity for 

K63-linked polyubiquitination in IRF3 activation (Zeng et al., 2009). Originally, NEMO was 

characterized as regulatory subunit of the inhibitor of NF-κB (IκB) kinase (IKK) complex with its 

catalytic subunits IKKα and IKKβ. In the canonical variant of the pathway, the NF-κB subunits p50 

and Rel A are present in an inactive form bound to IκB. IKK activation leads to phosphorylation of 

IκB, triggering its polyubiquitination and subsequent proteasomal degradation. This process 

leads to a release of NF-κB and nuclear translocation. NF-κB is activated by several cell surface 
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receptors such as TNF receptors, IL-1 receptors and toll-like receptors (TLRs), a process which is 

dependent on various adaptor proteins and TRAF family members (Chen, 2005). Additionally, 

NF-κB is activated following MAVS activation by RLR signaling (Kawai et al., 2005; Seth et al., 

2005; Yoneyama et al., 2004). This is mediated by the adaptor proteins FADD (Fas-associated 

death domain) and RIP1 (receptor interacting protein 1) (Kawai et al., 2005). 

On the IRF3 activating branch of the MAVS signaling cascade, the TNFR-associated death domain 

(TRADD) protein is involved in downstream activation of the kinases TBK1 and IKKε by 

interactions with TRAF3 and TRAF family member-associated NF-κB activator (TANK) (Michallet 

et al., 2008). Besides TANK, also NAP1 and SINTBAD have been identified as potential adaptors 

mediating activation of the downstream kinases TBK1 and IKKε (Guo and Cheng, 2007; Ryzhakov 

and Randow, 2007; Sasai et al., 2006). These three adaptor proteins exhibit mutually exclusive 

interactions with TBK1 and are thought to trigger trans-autophosphorylation-mediated 

activation of TBK1 by inducing a high subcellular local concentration of the kinase, for example at 

the sites of signaling MAVS aggregates (Goncalves et al., 2011; Helgason et al., 2013; Hou et al., 

2011; Ma et al., 2012). 

2.2.3. IRF3 activation by the effector kinases TBK1/IKKε 

Initially, the two kinases TBK1 and IKKε were characterized as NF-κB activating kinases (Bonnard 

et al., 2000; Tojima et al., 2000). However, this theory was later discarded and the kinases were 

shown to be essential for the activation of interferon regulatory factor 3 (IRF3) and the 

subsequent induction of type I interferon genes (Fitzgerald et al., 2003; Hemmi et al., 2004; 

McWhirter et al., 2004; Sharma et al., 2003). Cells lacking TBK1 were shown to be defective at 

triggering IRF3 phosphorylation in a RIG-I dependent way (Yoneyama et al., 2004)(TBK1/IKKε 

regulation reviewed in Chau et al. (2008)). 

The viral induction of type I interferons relies on the transcription factors IRF3 and IRF7 

(Malmgaard, 2004; Sato et al., 2000). This antiviral response is triggered by activation of a 

transcription factor complex consisting of IRF3 and CBP/p300 (Yoneyama et al., 1998), while 

posttranslational activation of IRF3 depends on several serine phosphorylations (Yoneyama et 

al., 2002). Both IRF3 and IRF7, which are activated after RIG-I signaling (Paz et al., 2006), are 

targeted by the kinases TBK1 and IKKε in vitro (Sharma et al., 2003). A recent study could show 

that activation of IRF3 by TBK1 depends on interactions with one of its upstream adaptors 

MAVS, TRIF or STING. This association depends on phosphorylation of the adaptors at a common 

pLxIS motif (where p is a hydrophilic residue and x any residue) by TBK1 and IKK (Liu et al., 2015). 
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IRF3 is able to bind to MAVS using a pLxIS binding motif and is subsequently activated by 

phosphorylation on several residues in a Ser/Thr rich cluster in the C-terminal domain by 

TBK1/IKKε, whereby Ser386 and Ser396 have been identified as critical moieties (Mori et al., 

2004; Servant et al., 2003). Phosphorylation of these residues leads to a conformational change 

in IRF3 that allows for dimerization and CBP/p300 association. Ser396 of IRF3 is also part of a 

pLxIS motif that is used by IRF3 for self-association via its pLxIS binding motif. This interaction is 

similar to the binding of IRF3 to its upstream adaptors during activation, as revealed by 

structural studies (Zhao et al., 2016). The Rotavirus NSP1 protein employs such a motif to bind 

IRF3, thus targeting it for degradation (Zhao et al., 2016). Dimerization of IRF3 subsequently 

leads to nuclear localization and association with CBP/p300. This phosphorylation dependent 

association with CPB/p300 leads to the transcription of IFN-β among other genes (IRF3 activation 

reviewed in Hiscott (2007)). Efficient induction of IFN-β relies on the cooperative activity of IRF3, 

NF-κB and AP-1 to form an enhanceosome that drives IFN-β transcription (Kim et al., 2000; 

Thanos and Maniatis, 1995). In addition to the induction of type I interferons, IRF3 is also able to 

directly stimulate certain interferon-stimulated genes (ISGs), such as ISG15, by interaction with 

an interferon-stimulated response element (ISRE) containing promoter, independently of IFN 

signaling (Au et al., 1995). 

In summary, although many adaptor and regulatory proteins have been identified, the precise 

molecular mechanisms leading to IRF3 phosphorylation after MAVS activation is still not fully 

understood. To determine the molecular mechanism of inhibitors of this pathway, such as the 

rabies virus phosphoprotein (Brzózka et al., 2005), might contribute to a further characterization 

of this remarkably complex signaling cascade and the identification of new key players. 

2.2.4. Antiviral interferon signaling 

Once type I interferons have been induced and secreted, they bind a common receptor located 

to the cell surface, the type I IFN receptor, consisting of the two subunits IFNAR1 and IFNAR2. 

The intracellular part of these subunits is associated with the Janus activated kinases (JAKs) TYK2 

and JAK1, respectively. Upon ligand binding, the receptor subunits dimerize, leading to activation 

of the JAKs by autophosphorylation. The active JAKs in turn phosphorylate the members of the 

signal transducer and activator of transcription (STAT) family, in the case of type I interferon 

signaling mainly STAT1 and STAT2, on several tyrosine residues. This leads to STAT1-STAT2 

heterodimerization and association with IRF9, forming a complex known as ISG factor 3 (ISGF3). 

ISGF3 localizes to the nucleus and triggers transcriptional activity of numerous interferon-
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stimulated genes (ISGs) by binding to interferon-stimulated response elements (ISREs) (Levy et 

al., 1988) present within their promotor region (interferon signaling reviewed in Platanias 

(2005)). 

 

Figure 9: IFN-signaling triggers ISG induction via JAK-STAT signaling. 

The antiviral function of type I interferons is based on their ability to trigger the expression of interferon-stimulated 

genes (ISGs), coding for a variety of effector proteins and transcription factors with broad antiviral activities. IFN binds 

to the extracellular domain of the heterodimeric IFNAR receptor, leading to intracellular activation of the tyrosine 

kinases JAK1 and TYK2. These kinases in turn activate signal transducer and activator of transcription (STAT) family 

members, which heterodimerize (STAT1 and STAT2 for type I IFNs), translocate to the nucleus and induce ISG 

expression (Platanias, 2005). 

Although IRF3 can also trigger some ISGs like ISG15 and ISG56 directly in an interferon-

independent manner (Au et al., 1995; Grandvaux et al., 2002), the major antiviral response is 

driven by interferon induced ISG expression. The phosphoproteins of rabies virus and other 

members of the Lyssavirus genus exhibit a conserved mechanism to evade the induction of 

antiviral ISGs by binding to activated STATs and thereby preventing their nuclear localization and 

transcriptional activity (Brzózka et al., 2006; Vidy et al., 2005; Wiltzer et al., 2012). 

In addition to genes coding for antiviral effector proteins, also components of the antiviral 

signaling cascade such as RIG-I-like receptors, IRFs and STAT1 are upregulated upon interferon 

induced JAK-STAT signaling (Der et al., 1998). Together with the expression of transcription 

factors such as IRF1, which activates ISGs itself in an interferon-independent way, a powerful 

positive feedback loop is initiated. In total, several hundred ISGs have been identified, depending 

on IFN dose and cell type. Antiviral effector proteins, such as MX1, RNaseL and PKR, exhibit 

strong activity against a broad range of viral pathogens. However, defects in single or multiple 
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strong ISGs are not leading to a total loss of antiviral function, indicating that many effector 

proteins contribute to protection in a redundant way. Many ISGs have a rather weak activity 

when acting alone, but may still exhibit a significant suppression of viral replication when 

numerous components act in parallel in a cooperative manner (antiviral effector functions of 

ISGs reviewed in Schoggins and Rice (2011)).  

 

2.3. HSP70 – a molecular chaperone 

2.3.1. The heat shock response  

Exposure to heat is a major stressor nearly all living organisms have to deal with. Since proteins 

need to exhibit a certain conformational flexibility in order to fulfill their designated tasks, they 

are only slightly stable at the normal growing temperature of an organism. Therefore, elevation 

of the optimal temperature by just a few degrees can already lead to unfolding and aggregation 

of proteins, rendering them non-functional. Consequently, this heat shock condition disturbs the 

cellular protein homeostasis, strongly impairing protein function and integrity of the 

cytoskeleton. Additionally, heat shock has a negative impact on membranes and several cellular 

compartments such as the ER and the mitochondria. To counteract this deleterious process, the 

heat shock response, a complex and in some parts highly conserved cellular program, is initiated, 

leading to the significant induction of approximately 50-200 genes (Richter et al., 2010). Initially, 

HSPs were identified as a group of proteins which are transcriptionally upregulated during heat 

stress in Drosophila melanogaster (Ashburner and Bonner, 1979; Tissieres et al., 1974), coining 

the term “heat shock proteins”. The appearance of chromosomal puffs after heat shock, 

indicating enhanced transcriptional activity, was used to map the genetic loci of some of the 

responsible genes (Peterson et al., 1979). Other studies revealed that this effect of upregulation 

of certain genes upon temperature increase is also occurring in other eukaryotes and 

prokaryotes, showing that the heat shock response is an ancient mechanism that is conserved 

among the domains of life (Kelley and Schlesinger, 1978; Lemaux et al., 1978). The major class of 

heat stress induced proteins are heat shock proteins (HSPs), nowadays defined as molecular 

chaperones that assist in correct (re-)folding of denatured proteins and are able to dissolve 

protein aggregates or even prevent their formation, thus mediating protection from this harmful 

condition. Generally, molecular chaperones are not imparting any structural information to their 

client proteins, but contribute to correct folding by preventing or dissolving aberrant intra- or 
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intermolecular interactions. Misfolded proteins are recognized by their increased exposure of 

hydrophobic amino acid residues. The molecular chaperones are comprised of the conserved 

protein families HSP100, HSP90, HSP70, HSP60 and small heat shock proteins (sHSPs). Besides 

their role in stress protection, several heat shock proteins are also constitutively expressed 

under normal conditions and are required for the correct folding of newly synthesized proteins 

and participate in the modulation of numerous cellular processes (For review on heat shock 

response see Richter et al. (2010)). 

2.3.2. The heat shock protein 70 kDa family 

The heat shock protein 70 kDa (HSP70) family is well conserved even among the domains of life. 

The prokaryotic homolog DnaK exhibits about 60 % sequence identity with its eukaryotic 

homologs (Richter et al., 2010). HSP70 consists of a nucleotide binding domain (NBD) of 45 kDa 

and a substrate binding domain (SBD) of about 25 kDa, connected by a short disordered linker. 

The NBD is formed by two subdomains and is able to bind and hydrolyze ATP. The SBD is divided 

into a β-sandwich subdomain of 15 kDa and an adjacent C-terminal α-helical domain referred to 

as “lid” (Mayer and Bukau, 2005). The crystal structure of functionally intact HSC70 of bovine 

origin, a constitutively expressed member of the HSP70 family, could be resolved (Figure 10, 

Jiang et al. (2005)). 

 

Figure 10: Structural representation of mammalian HSC70. 

Structure of HSC70 of bovine origin, as resolved by x-ray crystallography (Jiang et al. (2005), PDB ID 1YUW; illustration 

with Cn3D by NCBI). Members of the HSP70 family are comprised of a nucleotide binding domain (depicted in blue) 

and a substrate binding domain (depicted in red) connected by a short disordered linker. The SBD is comprised of a 

β-sandwich followed by an α-helical lid. In concert with HSP40 co-chaperones, substrate binding to the SBD greatly 

increases the ATP hydrolysis rate of the NBD. Upon ATP hydrolysis, the C-terminal lid closes on the substrate, resulting 

in a high affinity interaction.   
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The HSP70 proteins assist in the correct folding of newly synthesized proteins, help to prevent 

the formation of aggregates and are even able to mediate the solubilization and refolding of 

denatured and already aggregated proteins. In addition, HSP70 interacts with central regulators 

of numerous cellular pathways and therefore is involved in the modulation of cell homeostasis, 

proliferation, differentiation and cell death, illustrating that its functions go well beyond mere 

assistance in protein folding or heat stress response. Together with HSP40 co-chaperones and 

cooperating HSPs of other families, mainly HSP90 and HSP100, the HSP70 proteins form a 

complex network that controls many aspects of the cellular life cycle (Mayer and Bukau, 2005). 

 

HSP70 recognizes exposed hydrophobic stretches within its client proteins using the substrate 

binding domain. The SBD is able to interact with approximately seven, mainly hydrophobic, 

disordered residues (Zhu et al., 1996). In the ATP bound form, HSP70 exhibits rather weak and 

transient interactions with its target proteins. Therefore, the interaction of HSP70s with their 

substrates is modulated by ATP hydrolysis, since the binding to the target residues is significantly 

stronger in the ADP bound form. Although the binding of a substrate to HSP70 increases its ATP 

hydrolysis rate, co-chaperones of the HSP40 family, the eukaryotic homologs of the bacterial 

DnaJ, are required for efficient client binding. The HSP40, or J-domain co-chaperones are 

important modulatory cofactors for HSP70 that are able to bind client proteins and mediate their 

recruitment to HSP70. In concert with substrate binding, the shared J-domain of HSP40s greatly 

enhances the ATPase activity of the HSP70 NBD. ATP hydrolysis leads to a conformational 

change in the protein and the lid of the SBD closes on the substrate, resulting in a strong 

interaction between HSP70 and its client protein. HSP70 alone exhibits rather limited selectivity 

in client binding. Functional specificity is thought to be mediated by the protein family of the 

HSP40 co-chaperones, enabling HSP70 to fulfill its multiple tasks in cellular protein homeostasis 

under normal and thermal stress conditions (Kampinga and Craig, 2010). In order to release the 

bound substrate, ADP has to be replaced by a new ATP molecule, a step mediated by a diverse 

class of proteins, the so called nucleotide exchange factors (NEFs). They associate only with ADP 

bound HSP70, leading to the release of ADP and the substrate protein, and dissociate from the 

chaperone upon binding of a new ATP molecule. At this point, a new cycle of substrate binding 

and ATP hydrolysis can begin. HSP70 therefore always cycles between an ATP and ADP bound 

state. Since NEFs define the kinetics of substrate release, they regulate the chaperoning activity 

of HSP70 in concert with the HSP40 co-chaperones (molecular functions of HSP70 chaperones 

reviewed in Mayer and Bukau (2005)). This cooperative mode of function between different 

HSP70 family members and their even more diverse cofactors leads to an enormous number of 
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potential combinations, proposing a model how substrate specificity and the functional diversity 

of the HSP70 system is achieved. 

2.3.3. HSP70 in cellular processes and disease 

As mentioned above, the functions of the HSP70 chaperone machinery go beyond the correct 

re-folding of proteins during heat stress. While the almost identical homologs HSP70-1A/1B are 

the major HSP70s induced upon heat shock, heat shock cognate 71 kDa protein (HSC70, also 

known as HSPA8) is constitutively expressed under normal conditions and fulfills important 

housekeeping functions. Additional HSP70 family members exist in human cells which are 

localized to certain cellular compartments, such as the mitochondria-associated GRP75 (HspA9) 

or BiP (GRP78, HspA5), which localizes to the lumen of the endoplasmic reticulum (For a list of 

members of the diverse human HSP70 family see Table 1 (adapted from Radons (2016)). 

Besides its role in dissolving denatured protein aggregates, HSP70 family members are also 

essential to disassemble a number of native protein complexes. HSC70 was identified as the 

central uncoating ATPase for clathrin-coated vesicles (Chappell et al., 1986). Clathrin-mediated 

endocytosis is an important route for the internalization of cellular receptors and extracellular 

ligands, as well as an essential process for neuronal cells to recycle synaptic vesicles, which 

would otherwise be used up rapidly by fusion events with the presynaptic membrane during 

signal transduction (Slepnev and De Camilli, 2000). The uncoating of these vesicles relies on the 

concerted action of HSC70, its J-domain containing cofactor auxilin and a number of NEFs such 

as HSP110 or Bag1 (Schuermann et al., 2008; Ungewickell et al., 1995). Uncoating of clathrin-

coated vesicles during neuronal endocytosis was shown to be abrogated by targeting the 

interaction between HSP70 and its critical cofactors with specific peptides, or by introducing 

dominant negative HSP70 mutant proteins defective in ATPase activity or ATP binding (Morgan 

et al., 2013; Morgan et al., 2001; Newmyer and Schmid, 2001). Suppression of vesicle uncoating 

lead to impaired endocytosis and consequently a significantly enlarged presynaptic membrane, 

indicating a crucial function for HSC70 in maintaining membrane integrity during synaptic 

transmission (Morgan et al., 2013). Moreover, distinct members of the HSP70 family are 

involved in the transport of proteins across membranes of subcellular components. BiP (also 

known as GRP78/HSPA5) and mtHSP70 (also known as GRP75/HSPA9) facilitate translocation of 

substrates into the lumen of the ER and the mitochondrial matrix, respectively. BiP interacts with 

the Sec complex on the luminal side of the ER and participates in posttranslational import by 

binding to the substrate and thus providing unidirectional transport in an ATP-dependent 
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manner (Matlack et al., 1999; Matlack et al., 1997). Using a similar mechanism, mtHSP70 assists 

in the import of proteins across the inner mitochondrial membrane. On the side of the 

mitochondrial matrix mtHSP70 is associated with the Tim44 subunit at the exit of the translocase 

of the inner membrane (TIM) complex and binds to its target substrate, thereby acting as a 

molecular ratchet that prevents retrograde movement of the incoming polypeptide (Moro et al., 

1999; Okamoto et al., 2002). Whether HSP70s implicated in transmembrane trafficking only 

work as rather passive molecular ratchets or apply power strokes to move the substrate and 

actively participate in its unfolding is controversial. Goloubinoff and De Los Rios (2007) 

suggested an “entropic pulling” model, in which the force applied by the HSP70 chaperone is of 

entropic origin, thus trying to unify the models of “molecular ratchet” and “power stroke”. 

Protein 
UniProt 

ID 
Alternative names Cellular localization 

Length 

(aa) 

HspA1A P0DMV8 
Hsp70-1, Hsp72, HspA1, 

Hsp70-1A, Hsp70i 

Cytosol, nucleus, cell 

membrane, extracellular 

exosomes 

641 

HspA1B P0DMV9 Hsp70-2, Hsp70-1B 
Cytosol, nucleus, 

extracellular exosomes 
641 

HspA1L P34931 
Hsp70-1L, Hsp70-hom, 

Hsp70-1t, Hum70t 
Cytosol, nucleus 641 

HspA2 P54652 
Heat shock 70kD protein 2, 

Hsp70.2 

Cytosol, nucleus, cell 

membrane, extracellular 

exosomes 

639 

HspA5 P11021 Hsp70-5, BiP, Grp78, Mif-2 ER, extracellular exosomes 654 

HspA6 P17066 Hsp70-6, Hsp70B’ 
Cytosol, extracellular 

exosomes 
643 

HspA7 P48741 Hsp70-7, Hsp70B 
Blood microparticles, 

extracellular exosomes 
367 

HspA8 P11142 
Hsp70-8, Hsc70, Hsc71, 

Hsp71, Hsp73 

Cytosol, nucleus, cell 

membrane, extracellular 

exosomes 

646 

HspA9 P38646 

Hsp70-9, Grp75, HspA9B, 

MOT, MOT2, PBP74, mot-

2, mtHsp70, mortalin 

Mitochondria, nucleus 679 

HspA12A O43301 
Hsp70-12A, FLJ13874, 

KIAA0417 

Intracellular, extracellular 

exosomes 
675 

HspA12B B7ZLP2 
Hsp70-12B, RP23-32L15.1, 

2700081N06Rik 

Endothelial cells, 

intracellular, blood plasma 
685 

HspA13 P48723 Hsp70-13, Stch 
ER, extracellular exosomes, 

microsomes 
471 

HspA14 Q0VDF9 Hsp70-14, Hsp70L1 Cytosol, membrane 509 

Table 1: Members of the human HSP70 family. Protein names corresponding to gene names. 
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Although HSP70 activity is important for cellular survival in regard to its involvement in protein 

homeostasis, HSP70s additionally exhibit direct anti-apoptotic functions on several levels of the 

programmed cell-death pathway. HSP70 family members have been reported to interfere with 

activation of the pro-apoptotic c-jun N-terminal kinases (JNKs), mitochondrial release of 

cytochrome c and the oligomerization of Apaf-1 (reviewed in Beere and Green (2001)). Further, 

levels of the survival kinase Akt are regulated by HSP70 in an ATPase-dependent way (Koren et 

al., 2010). 

Due to this influence on cell survival, molecular chaperones, such as members of the HSP70 

family, are upregulated in the cells of many cancer types. Additionally, elevated levels of heat 

shock proteins help aberrant cancer cells to deal with the presence of many mutated, and thus 

frequently misfolded proteins. Therefore, in addition to targeting HSP90, the modulation of 

HSP70 function is an emerging strategy in the development of new therapeutic options for 

cancer treatment (Ma et al., 2014; Murphy, 2013; Powers et al., 2008). HSP70 binding aptamers 

and peptides were shown to sensitize tumors to cisplatin treatment in a melanoma mouse 

model (Rerole et al., 2011). Another study reported that depletion of HSP70 leads to massive 

death in a human breast cancer cell-line (Nylandsted et al., 2000). These findings emphasize that 

targeting of molecular chaperones might be a promising generalized strategy in the future that 

could be applied to tumors of diverse origins. 

Protein misfolding and aggregation are not exclusively occurring during heat stress conditions.  

Between the unfolded and the correctly folded state, proteins can take numerous possible 

conformations within the energy landscape. Although the native state of a protein is supposed 

to be its most stable conformation, many alternative conformations exist that can form 

potentially deleterious aggregates and fibrillary amyloid structures, a process that is facilitated 

by mutations and stress conditions. The accumulation of amyloid protein aggregates is shared 

among many neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s 

disease, amyotrophic lateral sclerosis and prion encephalopathies, which have been therefore 

described as protein-misfolding diseases. The appearance of such toxic aggregates is 

accompanied by inflammation, oxidative stress and cell death, leading to strongly impaired 

neuronal function and survival. There is growing evidence that molecular chaperones such as 

HSP70 are part of a complex cellular network which attempts to counteract such harmful 

changes in protein homeostasis. Concurring, the progressive failure of multicellular organisms to 

induce elevated levels of heat shock proteins during aging might explain the onset of 

neurodegenerative diseases in the late phases of life. New experimental therapeutic approaches 

aim at sustaining high levels of chaperone activity, in order to reduce the toxic effect of protein 
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aggregates in neurodegenerative and other age-related diseases (reviewed in Hinault et al. 

(2006)). 

2.3.4. Viruses and heat shock proteins 

Some members of the different heat shock protein families belong to the most abundant and 

important proteins in our cells. Therefore, it is not surprising that viruses evolved means to use 

this complex machinery for their own purposes. It is a commonly observed phenomenon, that 

viruses upregulate heat shock proteins upon infection. In general, a productive viral infection is 

accompanied by extensive production of viral proteins that require correct de-novo folding. The 

newly translated viral polypeptides are thought to compete HSP70 away from Hsf1, the central 

eukaryotic heat shock transcription factor, freeing Hsf1, which in turn induces a heat shock 

response (Richter et al., 2010). In addition, expression of heat shock proteins is further induced 

by disease-mediated fever (Hasday and Singh, 2000). The elevated levels of molecular 

chaperones might contribute to the expression of viral proteins and thus viral replication. 

Notably, several DNA viruses such as adenovirus, herpes simplex virus (HSV) and Simian virus 40 

(SV40) directly induce expression of HSP70s on a transcriptional or posttranscriptional level 

(reviewed in Mayer (2005)). 

Besides the upregulation of chaperones in order to favor viral protein translation, several viral 

proteins have been shown to directly interact with HSP70s, suggesting specific functions for heat 

shock proteins in the viral life cycle. Measles virus and the closely related canine distemper virus, 

which belong to the Morbillivirus family and belong together with Lyssaviruses to the order 

Mononegavirales, react to a cellular heat shock response and elevated HSP70 levels with a 

significant increase in viral transcription and replication (Oglesbee et al., 1996; Parks et al., 

1999). The cytoplasmic tail of the measles virus N protein (NTAIL) has been identified as molecular 

binding partner of HSP70 (Zhang et al., 2002). The HSP70 binding motif in NTAIL partially overlaps 

with the phosphoprotein binding region. During transcription and replication, P links the 

polymerase L to the N-encapsidated genome. Measles virus containing a N protein version 

unable to bind HSP70 is unresponsive to heat shock induction in regard to  transcription (Zhang 

et al., 2005). It is speculated that the N-HSP70 interaction might assist in transiently weakening 

the N-P interaction, in order to promote repeated N-P binding, a process that is essential for 

transcription and replication along the RNP (Bourhis et al., 2006). 

Rabies virus was reported to be positively regulated by HSP70 in a similar way (Lahaye et al., 

2012). HSP70 interacts with purified RNPs containing only the N-protein, suggesting a N-HSP70 
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interaction. This is supported by the presence of HSP70 in viral particles (Sagara and Kawai, 

1992). Additionally, HSP70 co-localizes with Negri body-like structures, a certain type of inclusion 

bodies which have been identified as the sites of replication and transcription of rabies virus, 

illustrating the close connection between the viral life cycle and the cellular chaperone 

machinery (Lahaye et al., 2009). 

Association with HSP70 is also a known feature for several other RNA viruses. For example, 

HSP70 is recruited to the viral inclusion bodies of Mumps virus (MuV) and regulates the 

ubiquitin-proteasome-dependent degradation of MuV-P (Katoh et al., 2015). An interaction 

between HSC70 and the Orthoreovirus nonstructural protein µNS recruit the heat shock protein 

to viral factories, the sites of particle assembly, independently of chaperone function (Kaufer et 

al., 2012). In a HRSV (Human respiratory syncytial virus) infection, HSP70 interacts with the viral 

polymerase within lipid rafts, dependent on ATPase function (Brown et al., 2005). HSP70 and 

several other cellular chaperones were further identified as proviral host-factors for HRSV 

(Munday et al., 2015). Heat shock proteins of the HSP70 and HSP90 are components of the 

Dengue virus (DENV) receptor complex (Reyes-Del Valle et al., 2005). Accordingly, depletion of 

HSP70 by RNA interference or abrogation of HSP70 function by small molecule inhibitors 

significantly reduced DENV replication (Howe et al., 2016; Padwad et al., 2010). This illustrates 

that HSP70 has a role as potential target in antiviral strategies. 

The numerous examples given above show that an interplay between the cellular chaperone 

machinery and viral life cycles are rather a common phenomenon than the exception. Thereby, 

the functions of HSP70s seem to go well beyond their chaperoning function and support of viral 

protein folding. New insights about this interesting relationship might also reveal new functions 

of the complex and not yet fully understood HSP70 system.  
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2.4. Aims of the Thesis 

The ability of viruses to interfere with the induction of an IFN-mediated antiviral cellular state is 

critically required to establish a productive infection and therefore an important prerequisite for 

pathogenicity. For rabies virus, the phosphoprotein (RABV P) is very efficient at antagonizing 

innate immune signaling on two distinct levels. RABV P suppresses RIG-I mediated IFN-induction 

by blocking IRF3 phosphorylation (Brzózka et al., 2005) as well as IFN-mediated STAT-signaling 

(Brzózka et al., 2006; Vidy et al., 2005). While the abrogation of STAT-signaling can be explained 

with a sequestration of activated STATs in the cytosol, the mode of inhibition in regard to IRF3 

activation is enigmatic. Previous research in our group could show that RABV P internal 

truncation mutants lacking residues 176-186 exhibit a defect in regard to inhibition of IFN-

induction (Rieder et al., 2011). However, a clear function or direct molecular binding partner 

could not be identified for this sequence.  

A major goal of this thesis is to obtain new experimental evidence on how RABV P interferes 

with activation of IRF3, the central transcription factor of type I IFNs. To this end, features and 

domains of the P protein shall be assayed for their contribution to inhibitory function by site-

directed mutagenesis, in order to identify the minimal RABV P residues which are essential for 

inhibition of IFN-induction. Further, RABV P mutant constructs as well as RABV P derived fusion 

peptides encompassing residues 176-186 are to be analyzed by co-immunoprecipitation 

experiments and an unbiased mass spectrometry approach. Potential hits shall be examined in 

terms of a potential involvement in innate immune signaling by additional interaction studies 

using wild type and inhibition deficient RABV P versions. Target proteins exhibiting a correlation 

between P binding and inhibition of IFN-induction can then be further assayed in regard to a 

potential general contribution to RLR-mediated IFN-induction, possibly identifying new key 

players in this pathway. 
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3. Materials & Methods 

3.1. Materials 

3.1.1. Chemicals 

 

Chemical Manufacturer 

Acetic acid, 100 % Roth 

Acetone, Rotipuran 99.8 % Roth 

Acrylamide Rotiphorese® Gel 30 (37.5 : 1) Roth 

Agar BD 

Agarose, UltraPure  Invitrogen 

Albumin Fraction V (BSA) Roth 

Ammonium chloride (NH4Cl)  Merck 

Ammonium persulfate Sigma-Aldrich 

Ampicillin sodium salt (Amp)  Roth 

Bis-Tris Santa Cruz Biotech. 

Bromophenole blue  Sigma-Aldrich 

Coomassie Brilliant Blue G-250 Biorad 

Deoxycholic acid (DOC)  Sigma-Aldrich 

Dimethyl sulfoxide (DMSO) Roth 

Dimethylformamide Merck 

Disodium hydrogen phosphate Merck 

Ethanol Merck 

Ethidium bromide solution 1 %  Roth 

Ethylenediamine tetraacetic acid (EDTA)  Sigma 

G418 Roth 

Glycerol , Rotipuran 99.5 %  Roth 

HEPES Roth 

Hydrochloric acid, Rotipuran 37 % Merck 

Imidazole  Merck 

Isopropanol Merck 

Kanamycin monofulfate Sigma-Aldrich 

Leptomycin B (LMB) Santa Cruz Biotech. 

Magnesium chloride hexahydrate (MgCl2 • 6H2O)  Fluka 

Magnesium sulfate heptahydrate (MgSO4 • 7H2O)  Merck 

Methanol Roth 

Milk powder, blotting grade Roth 
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MOPS (3-(N-morpholino)propanesulfonic acid) Roth 

Nonidet™ P40 Substitute Fluka 

Orange G Fluka 

ortho-Phosphoric acid, 85 % Merck 

Paraformaldehyde (PFA) Merck 

Poly-D-lysine hydrobromide Sigma-Aldrich 

Polyethylenimine, branched Sigma-Aldrich 

Potassium acetate, extra pure (CH3CO2K)  Merck 

Potassium chloride (KCl)  Merck 

Potassium dihydrogen phosphate Merck 

Sodium bisulfite (NaHSO3) Sigma 

Sodium chloride (NaCl)  Merck 

Sodium dihydrogen phosphate Merck 

Sodium dodecyl sulfate (SDS)  Serva 

Sodium hydroxide VWR Chemicals 

Sodium orthovanadate (Na3VO4)  Sigma-Aldrich 

Tetramethylethylenediamine (TEMED)  Roth 

Tris, Pufferan 99.9 %  Roth 

Triton X-100 Merck 

Tryptone BD 

Tween-20  Roth 

Yeast Extract  BD 

β-Mercaptoethanol  Sigma-Aldrich 

Table 2: Chemicals used in this thesis. 

3.1.2. Media & cell culture additives 

The following cell culture media and additives have been acquired from Gibco: 

• D-MEM (L-Glutamine, high glucose) 

• G-MEM (L-Glutamine, high glucose) 

• Opti-MEM® I Reduced Serum Medium 

• DPBS (no calcium, no magnesium)  

• L-Glutamine (200 mM) 

• Penicillin-Streptomycin (Pen Strep), 10000 units/ml 

• Tryptose Phosphate Broth 

• MEM Amino Acids (50x) 

• Trypsin-EDTA 0.25 % 
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The following media compositions have been used for cultivation of mammalian cell lines (for 

500 ml medium): 

• D-MEM 3+: 10 % FBS, 2.5 ml Pen Strep, 5 ml L-Glutamine. 

• G-MEM 4+: 10 % FBS, 2.5 ml Pen Strep, 5 ml Tryptose Phosphate Broth, 10 ml MEM 

Amino Acids. 

 

The following media have been used for cultivating E. coli bacteria: 

• LB-Medium: 5 g NaCl, 10 g Bactotryptone, 5 g Yeast extract in 1 l with 1 mM MgSO4  

• LB++ Medium: LB medium containing additional 10 mM MgSO4 and 2.5 mM KCl 

3.1.3. Buffers 

• 20 x MOPS buffer: 1 M Tris, 1 M MOPS, 20 mM EDTA, 2 % SDS. 

• 1 x MOPS buffer: Diluted from 20 x MOPS buffer with addition of 2 ml of 2.5 M Sodium 

Bisulfite stock solution per liter (final concentration of 5 mM). 

• Extra-Dry blotting buffer: 48 mM Tris, 20 mM Hepes, 1 mM EDTA, 1.3 mM 

Sodiumbisulfite, 1.3  mM Dimethylformamide (Garic et al., 2013). 

• PBS: 137 mM NaCl, 2.7 mM KCl, 1.18 mM KH2PO4, 6.4 mM N2HPO4, pH 7.4 

• PBS-T: PBS containing 0.05 % Tween-20. 

• TBS: 50 mM Tris, 150 mM NaCl, pH 7.4 (adjusted with HCl). 

• TBS-T: TBS containing 0.05 % Tween-20. 

• Co-IP buffer: 50 mM Tris, 150 mM NaCl, 2 mM EDTA, 0.5 % Nonidet™ P40 Substitue, 

pH 7.4 (adjusted with HCl). 

• SDS sample buffer: 62 mM Tris/HCl pH 6.8, 10 % SDS, 15 % β-Mercaptoethanol, 

0.012 % Bromophenole blue, 30 % Glycerol. 

• 3.5 x Bis-Tris: 1.25 M Bis-Tris HCl pH 6.8. 

• Stacking gel mix (6 %): 1x Bis-Tris, 6 % acrylamide/bisacrylamide 37.5:1. 

• Stacking gel: 10 ml stacking gel mix, 100 µl 10 % APS, 10 µl TEMED (for one gel).   

• Separating gel mix (10 %): 1x Bis-Tris, 10 % acrylamide/bisacrylamide 37.5:1. 

• Separating gel: 25 ml stacking gel mix, 250 µl APS, 10 µl TEMED (for one gel). 

• Flexi I: 100 mM Tris, 10 mM EDTA, 200 µg/ml RNAse, pH 7.5. 

• Flexi II: 200 mM NaOH, 1 % SDS. 
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• Flexi III: 3 M Potassium acetate in 100 % acetic acid. 

• Colloidal Coomassie: 0.02 % (w/v) CBB-250, 5 % (w/v) aluminium sulfate-(14-18)-

hydrate, 10 % (v/v) ethanol, 2 % (v/v) orthophosphoric acid (Dyballa and Metzger, 2012). 

• Coomassie destainer: 10 % (v/v) ethanol, 2 % (v/v) orthophosphoric acid. 

• Recombinant purification buffer: 300 mM NaCl, 50 mM Na2HPO4, pH 8.0. 

• Purification buffer A: Recombinant purification buffer containing 15 mM imidazole, 

400 µl DNase/RNase stock solution each per 50 ml and a Roche Complete Protease 

Inhibitor EDTA-free tablet added freshly prior to use. 

• Purification Buffer B: Recombinant purification buffer containing 15 mM imidazole. 

• Elution Buffer: Recombinant purification buffer containing 300 mM imidazole. 

3.1.4. Kits 

Kit Manufacturer 
SilverQuest™ Silver Staining Kit novex, Life Technologies 

NucleoBond Xtra Midi  Macherey-Nagel 

QIAquick Gel Extraction Kit Qiagen 

QIAquick PCR Purification Kit Qiagen 

Dual Luciferase® Reporter Assay System Promega 

RNeasy Mini Kit Qiagen 

Mammalian Transfection Kit Agilent Technologies 

QuantiNova SYBR Green PCR kit Qiagen 

Table 3: Kits used in this thesis. 

3.1.5. Enzymes 

Enzyme Manufacturer 
Restriction Enzymes New England Biolabs 

Phusion DNA Polymerase NEB/Thermo Fisher Scientific 

T4 DNA ligase New England Biolabs 

Alkaline Phosphatase, Calf Intestinal (CIAP) New England Biolabs 

Instant Sticky-End Ligase Master Mix New England Biolabs 

DNase, RNase-free Qiagen 

Transcriptor Reverse Transcriptase Roche 

RNase Macherey-Nagel 

Lysozyme Fluka 

Table 4: Enzymes used in this thesis. 
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3.1.6. Cell lines & Bacteria strains 

HEK 293T, HeLa, HEp-2 and BSR T7 cells were used in mammalian cell culture for various 

experimental settings as described in the methods section of this thesis.  

The Escherichia coli strain XL-1 blue (Stratagene) was used for cloning and preparation of 

plasmid DNA. Purification of recombinant proteins was conducted using E. coli strain Rosetta™ 

(DE3) (Novagen) (3.2.12). 

3.1.7. Primary antibodies 

The following list shows the primary antibodies used in this thesis. If not indicated otherwise, the 

column “Dilution” is referring to the dilution used for Western blotting. Number in brackets after 

epitope relates to the manufacturer’s identification number for the corresponding antibody. 

Epitope (#) Host Dilution Manufacturer 
HA-tag (Y-11) Rabbit 1 : 1000 Santa Cruz Biotech. 

HSP70 (H-300) Rabbit 1 : 1000 Santa Cruz Biotech. 

Actin (20-33) Rabbit 1 : 1000 Sigma-Aldrich 

RABV P (160-5) Rabbit 1 : 50000 In house 

DLC8 (FL-89) Rabbit 1 : 1000 Santa Cruz Biotech. 

Flag-tag (F7425) Rabbit 1 : 2000 Sigma-Aldrich 

IRF3-pS396 (4D4G) Rabbit 1 : 1000 Cell Signaling Technology 

IRF3 (FL-425) Rabbit 1 : 1000 Santa Cruz Biotech. 

HSC70 (B6) Mouse 1 : 1000 Santa Cruz Biotech. 

MAVS (3993) Rabbit 1 : 1000 Cell Signaling Technology 

TBK1 (D1B4) Rabbit 1 : 1000 Cell Signaling Technology 

TBK1pS172 (D52C2) Rabbit 1 : 1000 Cell Signaling Technology 

RABV P (25E6) Mouse 1 : 500 (IF) Kindly provided by D. Blondel 

RABV N/P (S50) Rabbit 1 : 20000 Kindly provided by J. Cox 

Table 5: Primary antibodies used in this thesis. 

3.1.8. Secondary antibodies 

Alexa Fluor© labeled secondary antibodies were used for immunostaining in confocal 

microscopy, horseradish-peroxidase (HRP) coupled antibodies were used for Western blotting. 

Epitope Conjugate Host Dilution Manufacturer 
Rabbit IgG Alexa-488 Goat 1 : 200 

Molecular Probes (Invitrogen) 
Rabbit IgG Alexa-555 Goat 1 : 200 
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Mouse IgG Alexa-488 Goat 1 : 200 

Mouse IgG Alexa-555 Goat 1 : 200 

Rabbit IgG HRP Goat 1 : 20000 Jackson ImmunoResearch 

Laboratories Mouse IgG HRP Goat 1 : 20000 

Table 6: Secondary antibodies used in this thesis. 

3.1.9. Laboratory equipment 

Equipment Manufacturer 

Incubators 

Certomat BS-1 Sartorius 

Cell culture incubator  Sanyo 

37 °C incubator Heraeus 

Centrifuges 

Centrifuge 5417 R Eppendorf 

Centrifuge  5804 R Eppendorf 

Centrifuge 5418 Eppendorf 

Varifuge 3.0R  Heraeus  

Table centrifuge Z160-M Hermle 

Microscopes 

Axiovert 35 Zeiss 

Light micoscrope TMS  Nikon 

UV-Light microscope IX71  Olympus 

Freezers 

Premium No Frost Liebherr 

-80 °C II Shin  Nunc 

Forma ULT deep freezer Thermo Scientific 

Miscellaneous 

Chemiluminescence developing system (Fusion FX7 ) Vilber-Lourmat 

Luminometer Centro LB 960  Berthold  

Magnetic stirrer/heater VELP Scientifica 

pH-meter VWR International 

PIPETBOY acu IBS 

Pipettes (2/10/200/1000 µl) Eppendorf; Gilson 

Polyacrylamid gel electrophoresis system Peqlab 

Agarose gel electrophoresis system Peqlab 

Roller mixer SRT2 Stuart 

Semi-Dry blotting system Peqlab 

Spectrophotometer Nanodrop ND-1000 Peqlab 

Thermocycler T3  Biometra 

Thermomixer 5436  Eppendorf 

Thermostated hot-block 5320  Eppendorf 
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Horizontal shaker Swip SM-25 Edmund Bühler GmbH 

Digital Sonifier® Cell Disruptor Branson 

GJ Balance Kern 

Table 7: Laboratory equipment. 

3.1.10. Laboratory consumables and miscellaneous 

Consumables Manufacturer 

SUPERase•In™ RNase Inhibitor Ambion (Life Technologies) 

Pierce™ Anti-HA Magnetic Beads Thermo Fisher Scientific 

Lipofectamine® 2000 Thermo Fisher Scientific 

TO-PRO®-3 Thermo Fisher Scientific 

FITC Anti-Rabies Monoclonal Globulin Fujirebio Diagnostics 

WesternBright ECL Spray  Advansta 

Microscope slides, frosted end Roth 

Microscope cover glasses, 12 mm Ø Roth 

Recombinant human HSP70 Protein StressMarq 

Leptomycin B Santa Cruz Biotech. 

Universal Type I Interferon PBL Assay Science 

HisPur™ Cobalt Superflow Agarose Thermo Fisher Scientific 

Cell culture plates (6-well, 24-well, 96-well) Sarstedt 

1.5/2.0 ml reaction tubes Eppendorf 

15/50 ml falcons Sarstedt 

Cell culture flasks (T25/T75) Falcon 

Pierce™ Centrifuge Columns, 10 ml Thermo Fisher Scientific 

Vectashield HardSet Antifade Mounting 

Medium 
Vector Laboratories 

Precision Plus Protein™ Standard Biorad 

1 kb DNA ladder New England Biolabs 

PCR Marker New England Biolabs 

Oligo(dT)12-18 Primer Thermo Fisher Scientific 

SeV-DI preparations Kindly provided by D. Garcin 

Table 8: Consumables and miscellaneous. 

3.1.11. Plasmids 

The following list contains the plasmids which have been used for the experiments in this thesis. 

The source is indicated if the construct was not created during this thesis. If not mentioned 

otherwise, “P” refers to the RABV L16-strain phosphoprotein. Constructs which contain 

previously reported or not self-explanatory mutations are further described. 



                                                                                                               3. Materials & Methods 

 

 
44       

 

Plasmid name 
Source if not 

this thesis 
Description 

RABV P expression plasmids 

pCAGGS-HA-GST-P 
 

RABV P fused to HA-GST. 

pCAGGS-HA-GST-P-130-188 
 

RABV P truncation constructs fused 

to HA-GST. 

pCAGGS-HA-GST-P-130-297 
 

pCAGGS-HA-GST-P-153-188 
 

pCAGGS-HA-GST-P-168-188 
 

pCAGGS-HA-GST-P-170-188 
 

pCAGGS-HA-GST-P-176-188 
 

pCAGGS-HA-GST-P-180-185 
 

pCAGGS-HA-GST-P-180-186 
 

pCAGGS-HA-GST-P-180-188 
 

pCAGGS-HA-GST-P-83-188 
 

pCAGGS-HA-GST-P-83-197 
 

pCAGGS-HA-GST-P-83-297 
 

pCAGGS-HA-GST-P-83-

297Δdim  

P truncation construct with alanine 

substitutions F114A, W118A and 

I125A, impairing dimerization (Ivanov 

et al., 2010). 

pCAGGS-HA-GST-P-scr. 

Peptide  

Peptide fused to HA-GST based on P 

residues 176-188 in randomized 

order. 

pCR3-HA-CVS-P 
 

N-terminally HA-tagged CVS-strain P. 

pCR3-HA-CVS-P-P179S 
 

HA-tagged CVS-strain P containing a 

P179S substitution. 

pCR3-HA-NLS-P 
 

RABV P N-terminally fused to HA and 

a SV40-TAg-NLS. 

pCR3-HA-NLS-P-1-188 
 

P truncation construct containing an 

N-terminal HA tag and a SV40-TAg-

NLS. 

pCR3-HA-NLS-P-K214A 
 

The indicated P mutant containing an 

N-terminal HA tag and a SV40-TAg-

NLS. 

pCR3-HA-NLS-P-R260A 
 

The indicated P mutant containing an 

N-terminal HA tag and a SV40-TAg-

NLS. 

pCR3-HA-P 
Master thesis M. 

Wachowius 

Full length RABV P, N-terminally HA-

tagged. Cloned from untagged 

version created by K. Brzózka. 

pCR3-HA-P1 
Master thesis M. 

Wachowius 

RABV P lacking internal alternative 

start-codons, N-terminally HA-

tagged. Cloned from untagged 

version created by K. Brzózka. 

pCR3-HA-P-1-174 
 

N-terminally HA-tagged C-terminal 
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pCR3-HA-P-1-186 
 

RABV P truncation mutants. 

pCR3-HA-P-1-186+A 
 

pCR3-HA-P-1-186+D 
 

pCR3-HA-P-1-187 
 

pCR3-HA-P-1-188 
 

pCR3-HA-P-1-197 
 

pCR3-HA-P-D143A-Q147A 
 

P mutant with impaired DLC8 binding 

(Jacob et al., 2000). 

pCR3-HA-PΔdim 
Master thesis M. 

Wachowius 

P construct with alanine 

substitutions F114A, W118A and 

I125A, impairing dimerization (Ivanov 

et al., 2010). 

pCR3-HA-P-K214A  

Alanine substitution mutant 

impairing the CTD conformational 

NLS of P. Created from a non-tagged 

version by K. Brzózka. 

pCR3-HA-P-P181A-W186A 
  

pCR3-HA-P-R260A  

Alanine substitution mutant 

impairing the CTD conformational 

NLS of P. Created from a non-tagged 

version by K. Brzózka. 

pCR3-HA-P-S179P 
  

pCR3-HA-P-T189A 
  

pCR3-HA-P-T189D 
  

pCR3-HA-P-W186A 
  

pCR3-HA-P-Δ176-181  
HA-tag added to original construct 

from K. Brzózka (P-ΔInd1). 

pCR3-HA-P-Δ176-186  
HA-tag added to original construct 

from K. Brzózka (P-ΔInd1/2). 

pCR3-HA-P-Δ182-186 
 

HA-tag added to original construct 

from K. Brzózka (P-ΔInd2). 

pCR3-HA-THA-P 
 

N-terminally HA-tagged THA-strain P. 

Cloned from full length THA-strain 

construct obtained from H. Bourhy. 

pCR3-P-K214A K. Brzózka Mutant RABV P constructs containing 

an impaired CTD conformational NLS 

(Pasdeloup et al., 2005). 
pCR3-P-R260A K. Brzózka 

pCR3-P-WAMA D. Aberle 

RABV P construct containing the 

alanine substitutions W265A and 

M287A. 

pCR3-tagRFP-P4 
 RABV P-83-297 containing the 

indicated mutations and N-terminally 

fused to tagRFP. 

pCR3-tagRFP-P4-K214A 
 

pCR3-tagRFP-P4-R260A 
 

pET28a-HA-(H6)2-GST-P 
 

Constructs for bacterial expression 

and purification. The indicated P 

sequences were fused to HA-tag, two 
pET28a-HA-(H6)2-GST-P-

176-188  
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pET28a-HA-(H6)2-GST-P-

176-188-scrambled 
 

His6-tag repeats and a GST-tag. 

Other expression plasmids 

pcDNA5/FRT/TO GFP 

HSPA1A 

H. Kampinga 

(Addgene plasmid # 

19483)  
 

pcDNA5/FRT/TO GFP 

HSPA1L 

H. Kampinga 

(Addgene plasmid # 

19484)  
 

pcDNA5/FRT/TO GFP 

HSPA8 

H. Kampinga 

(Addgene plasmid # 

19487)  
 

pCR3-Flag-HSC70 
 

Created from GFP-tagged version 

obtained from addgene. 

pCR3-Flag-HSC70-190-511 
  

pCR3-Flag-HSP70-1A 
 

Created from GFP-tagged version 

obtained from addgene. 

pCR3-Flag-HSP70-1A-190-

511   

pCR3-Flag-HSP70-1A-362-

511   

pCR3-Flag-HSP70-1A-394-

511   

pCR3-Flag-HSP70-1A-K71E 
 

HSP70-1A mutant lacking ATPase 

activity (Zeng et al., 2004). Cloned 

from GFP-tagged version obtained 

from addgene. 

pCR3-Flag-HSP70-1A-NBD 
 

Construct coding for the NBD (aa 1-

385) of HSP70-1A. 

pCR3-Flag-HSP70-1A-NBD-

GG-DE  

HSP70-1A-NBD with G201D and 

G202E substitutions, impairing ATP 

binding (Morgan et al., 2013).  

pCR3-Flag-HSP70-1A-NBD-

K71E  

HSP70-1A-NBD mutant lacking 

ATPase activity (Zeng et al., 2004). 

pCR3-Flag-HSP70-1A-SBD 
 

Flag-tagged substrate binding 

domain (aa 394-641) of HSP70-1A.  

pCR3-HA-HSP70-1A 
  

pEGFP-HSP70-1A-K71E 
L. Greene (Addgene 

plasmid # 15216)  

 HSP70-1A mutant lacking ATPase 

activity (Zeng et al., 2004). 

pCR3-Flag-TBK1 K. Schumann 
 

pEFBos-Flag-ΔRIG-I A. Krug 

Expression construct coding for the 

CARDs of RIG-I (Yoneyama et al., 

2004). 

pCR3-Flag-IKKε K. Schumann 
 

pCR3 (empty vector) Invitrogen Mammalian expression plasmid. 

pCAGGS (empty vector) A. Garcia-Sastre Mammalian expression plasmid. 

pET28a Invitrogen Plasmid for bacterial expression. 
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pCAGGS-HA-GST 
  

pFLAG-IRF3 M. Rieder   

pTIT-N 
Finke and 

Conzelmann (1999) 

T7 polymerase and EMCV-IRES-

dependent expression of the 

corresponding RABV proteins. 

pTIT-P 

pTIT-L 

Reporter gene constructs 

p125-Firefly-Luciferase T. Fujita 
Construct coding for Firefly luciferase 

under control of the IFN-β promoter. 

p55A2-Firefly-Luciferase T. Fujita 

Construct coding for Firefly luciferase 

under control of repeated IFN-β 

promoter PRDII elements; responsive 

to NF-κB. 

p55C1B-Firefly-Luciferase T. Fujita 

Construct coding for Firefly luciferase 

under control of repeated IFN-β 

promoter PRDI elements; IRF3 

responsive. 

pCMV-Renilla-Luciferase Promega 

Construct coding for Renilla 

luciferase under control of the CMV 

promoter. 

pISRE-Firefly-Luciferase Clontech 
Construct coding for Firefly luciferase 

under control of the ISRE promoter. 

pTK-Renilla-Luciferase Promega 

Construct coding for Renilla 

luciferase under control of the HSV-

thymidine kinase promoter. 

Full length Rabies virus rescue constructs 

pSAD-T7-HH-L16-SC 
Ghanem et al. 

(2012) 

Full length L16 cDNA rescue 

construct. 

pSAD-T7-HH-L16-P-W186A-

SC 
 L16 full length rescue constructs 

containing the indicated mutations in 

the P gene. 
pSAD-T7-HH-L16-P-K214A-

SC 
 

Table 9: List of plasmids used in this thesis. 

3.1.12. Recombinant Viruses 

Recombinant rabies viruses were created from cDNA with a reverse genetics approach (Ghanem 

et al., 2012; Schnell et al., 1994). For rescue procedure see 3.2.13. The following recombinant 

viruses were used in this thesis: 

• SAD-L16 (wild type vaccine strain) 

• SAD-L16 P-W186A (described in this thesis) 

• SAD-L16 P-K214A (described in this thesis) 
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3.2. Methods 

3.2.1. Polymerase chain reaction (PCR) 

With a polymerase chain reaction (PCR), specific DNA sequences can be amplified in vitro by 

repetitive steps of double strand melting, annealing of specific primers and elongation by a heat 

resistant DNA polymerase. In this thesis, a T3 Thermocycler (Biometra) was used for the 

reactions. The correct size of the generated DNA fragments was validated by agarose gel 

electrophoresis and a 1 kb DNA Ladder (NEB) as size standard. Reaction products were purified 

using the QIAquick® PCR Purification Kit. The following buffer components and reaction 

properties were used for the corresponding PCR reactions: 

• Standard PCR reaction 

Enzyme/buffer Volume 
Template 1 µl (1 pg – 10 ng) 

Primer 1 (10 µm) 5 µl 

Primer 2 (10 µm) 5 µl 

5 x buffer 20 µl 

dNTPs 1 µl 

DMSO 3 µl 

Phusion DNA Polymerase 1 µl 

ddH2O  64 µl 

  

Reaction settings: 30 s 95 °C, 10 s 95 °C, 30 s 56 °C, 15 s/kb 72 °C (30 cycles), 10 min 72 °C. 

• Mutagenesis PCR 

Enzyme/buffer Volume 
Template 1 µl (1 pg – 10 ng) 

Primer 1 (10 µm) 2.5 µl 

Primer 2 (10 µm) 2.5 µl 

10 x buffer 10 µl 

dNTPs 1 µl 

Pfu DNA Polymerase 1 µl 

H2Odd  82 µl 

 

Reaction settings: 3 min 95 °C, 40 s 95 °C, 1 min 50 °C, 12 min 72 °C (30 cycles), 10 min 72 °C. 
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3.2.2. Plasmid construction 

• Digest and purification 

For the construction of expression plasmids, specific DNA restriction sites and epitope tags were 

attached to the desired inserts by PCR amplification and suitable primers. The purified PCR 

product (QIAquick PCR Purification Kit) and approximately 5 µg of the target plasmid were 

digested with 20 units each of the corresponding restriction enzymes (incubation at 37 °C, 2 h or 

over-night) according to the manufacturer’s (NEB) instructions. To prevent re-ligation, the vector 

reaction mix was incubated for at least 1 h at 37 °C with 1 µl CIAP after the digestion. Insert and 

plasmid DNA were subsequently purified by agarose gel purification (QIAquick Gel Extraction Kit) 

and taken up in a volume of 30 µl ddH2O.  

• Ligation reaction 

The ligation reaction was carried out at RT for 30 min or at 4 °C overnight using T4 DNA ligase 

(NEB) in a volume of 20 µl according to the manufacturer’s manual. Alternatively, “Instant Sticky-

End Ligase Master Mix” (NEB) was used to perform ligations according to the manufacturer’s 

instruction. For the creation of expression constructs with specific mutations the mutagenesis 

PCR products were at first incubated with 1 µl DpnI at 37 °C for 3 h prior to agarose gel 

purification. This way, the template DNA of the PCR reaction which does not contain the desired 

mutation can be specifically degraded, since DpnI only cuts methylated DNA, a modification 

which is found in bacterial DNA, such as the PCR template. 

• Transformation 

50 µl of chemically competent E. coli (XL-1 blue, Stratagene) were mixed with either 10 µl 

ligation reaction or 10 µl of mutagenesis PCR product and incubated for 5 min on ice. After a 

42 °C, 2 min heat shock and 2 min on ice the cells were supplemented with 250 µl LB++ medium 

and shaken for 30 min at 37 °C. The bacteria suspension was then transferred to selective LB 

plates containing 100 μg/ml ampicillin or kanamycin and incubated at 37 °C o/n. 

• Mini preparation 

Colonies grown o/n on selective LB-plates were picked and transferred to 1 ml selective LB 

medium and incubated on a shaker at 37 °C o/n. After harvesting by centrifugation (14 000 rpm, 

1 min) the cell pellet was resuspended using 200 µl Flexi I solution. The cell suspension was then 

lysed by incubation with Flexi II for 5 min at RT and neutralized with 200 µl Flexi III (5 min on ice). 

After removal of cell debris (7 min, 14 000 rpm) the DNA was precipitated from the supernatant 

with 400 µl isopropanol. After another centrifugation step (7 min, 14 000 rpm) the DNA pellet 
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was washed with 200 µl 70 % ethanol, dried at RT and solubilized in 50 µl ddH2O. The success of 

the plasmid construction was examined by test digestion and agarose gel electrophoresis, using 

a 1 kb marker to validate the correct insert size. Promising mini preparation samples were then 

send in for validation by sequencing (performed by GATC Biotech). 

• Midi preparation 

To obtain a midi preparation of DNA plasmids, 1 µl mini- or midi-preparation of a construct was 

first transformed into chemically competent XL-1 blue E. coli as described previously. Single 

colonies grown o/n were used to inoculate 50 ml selective LB-medium. The bacteria were 

incubated in shaking culture at 37 °C o/n and subsequently harvested by centrifugation (3500 

rpm, 20 min). Plasmid DNA was then extracted from the pellets using the Nucleobond® Xtra Midi 

kit (Macherey & Nagel) according to the manufacturer’s instructions.  

3.2.3. Cell culture 

HEK 293T, BSR T7, HeLa and HEp-2 cells were used in this thesis and stored in incubators at 37 °C 

with 5 % CO2. The cells were cultured in T25 or T75 culture flasks under sterile conditions with 

the media described in the materials section. Cell growth was monitored and cells were 

passaged every 3 - 4 days and detached by removal of media and incubation in an appropriate 

volume of Trypsin-EDTA 0.25 % (Gibco), followed by 1:8 – 1:12 dilution with the corresponding 

media (D-MEM 3+ for HEK 293T, HeLa and HEp-2 and G-MEM 4+ for BSR T7). 

3.2.4. Immunofluorescence imaging 

HeLa cells grown to confluency in a T25 cell culture flask were trypsinized and resuspended with 

20 ml fresh D-MEM 3+. A volume of 250 µl of this cell suspension was seeded in a total volume 

of 600 µl onto 12 mm Ø microscope cover glasses placed into 24-well plates. After incubation 

overnight the cells were transfected with expression plasmids coding for the protein of interest 

using Lipofectamine™ 2000 in Opti-MEM. In case fluorescent proteins were used, all following 

incubation steps were conducted in the dark to prevent photobleaching. 24 h p. t. the medium 

was removed, cells were washed once with PBS and fixed with cold 4 % PFA in PBS for 20 min at 

RT. Fixation and the following steps, including the staining procedure, were carried out with the 

cover glasses still inside 24-well plates. Cells were washed with PBS and incubated with 50 mM 

NH4Cl in PBS for 10 min at RT. After another PBS washing step the cells were incubated with 

0.5 % Triton X-100 in PBS for 10 min in order to permeabilize cellular membranes. Cells were 
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subsequently washed three times with PBS and blocked for 20 min with 2.5 % milk in PBS. 

Following a PBS washing step, cells were incubated with primary antibodies diluted in PBS for 1 h 

at 37 °C in a cell culture incubator. The wells were washed thrice with PBS and incubated with 

secondary antibodies coupled to a fluorescent dye and TO-PRO®-3 diluted in PBS. Finally the 

samples were washed again three times with PBS, once with deionized water and the cover 

glasses with the fixed and stained cells were mounted to microscope slides using Vectashield 

HardSet Antifade Mounting Medium (Vector Laboratories). After hardening of the mounting 

medium overnight the specimen were monitored using a Axiovert 35 confocal laser scanning 

microscope (Zeiss). 

3.2.5. Transfection 

Cells cultivated in T25 or T75 culture flasks and grown to confluence were used for seeding. The 

cells were trypsinized and resuspended in 10 ml (T25) or 30 ml (T75) of the appropriate medium. 

The following cell amounts were seeded in the corresponding culture dishes and incubated o/n if 

not indicated otherwise: 

Culture dish Cell number Total volume 
100 mm dish 1.6 * 106 12 ml 

60 mm dish 6.2 * 105 3.5 ml 

6-well plate 3.1 * 105 2.0 ml 

24-well plate 5.2 * 104 600 µl 

96-well plate 1,6 * 104 100 µl 

 

Cell growth was monitored by microscopy. Transfection of plasmids was performed using 2.5 µl 

Lipofectamine™ 2000 (Invitrogen) or (polyethyleneimine, 1 mg/ml) per µg DNA. Transfection 

reagent and DNA were pre-incubated separately with D-MEM w/o additives or Opti-MEM for 5 

min. DNA solution and media with Lipofectamine™ 2000 or PEI were then mixed and incubated 

for 20 min, before the mixture was added to the cells.  

3.2.6. Dual luciferase reporter gene assay 

To analyze the influence of different protein constructs on innate immune signaling pathways, 

the Dual Luciferase® Reporter Assay System (Promega) was used for reporter gene assays. This 

reporter system employs luminescence resulting from Firefly luciferase expression under the 
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control of the promoter of interest. In this thesis, Luciferase expression driven by the 

IFN-promoter (p125-FF-Luc.), artificial IRF3-promoter (p55C1B-FF-Luc.), NFκB-promoter (p55A2-

FF-Luc.) and the ISRE-promoter (pISRE-Luc.) were used as reporter plasmids. The luminescence 

of constitutive TK- (HSV-thymidine kinase) or CMV-(human cytomegalovirus immediate-early) 

promoter driven Renilla luciferase expression was used for normalization. 

100 ng of the reporter plasmid and 10 ng pCMV-Renilla or pTK-Renilla were co-transfected with 

the plasmids of interest into HEK 293T cells in a 24-well cell culture plate. Mock transfections 

were carried out using empty vector plasmid DNA. Cells were lysed 24 h p. t. using 200 µl passive 

lysis buffer (PLB, Promega) and 40 µl lysate was subsequently subjected to luminescence 

measurement using a Centro LB 960 Luminometer (Berthold). The samples were each first 

incubated with 40 µl firefly-substrate to measure reporter activity, followed by injection of 40 µl 

renilla substrate to obtain luminescence values for normalization from the constitutively 

expressed renilla luciferase construct. Protein expression levels from the lysates were examined 

using SDS-PAGE and Western blotting.  

3.2.7. Real-time PCR 

In order to measure IFN gene transcription in response to different stimuli, IFN-β mRNA levels 

were examined using real-time PCR. HEK 293T cells in 24-well culture plates were transfected 

with the plasmids coding for the proteins of interest, infected with recombinant rabies virus or 

treated with SeV-DIs according to the experimental setup. Cells were harvested 48 h after 

infection and total RNA was extracted using the “RNeasy mini kit” from Quiagen following the 

manufacturer’s protocol. RNA was transcribed into cDNA by first incubating 6.5 µl RNA with 0.5 

µl oligodT primer dilution at 65 °C for 10 min. Subsequently, 5x reaction buffer (2 µl), RNAsin 

(0.25 µl), dNTPs (25 mM, 0.4 µl) and RT enyzme (0.25 µl) were added and the rection mix was 

incubated at 55 °C for 30 min, followed by a final incubation step at 85 °C for 10 min. The 

resulting cDNA was used as template in a real-time PCR reaction with the QuantiNova SYBR 

Green PCR kit (Quiagen) using a Roche LightCycler 96. The PCR data was relatively quantified to 

mock controls using the 2-ΔΔCt method (Livak and Schmittgen, 2001). TATA binding protein (TBP) 

mRNA levels were used for normalization. 

Primer Sequence 
IFN-β forward TCC AAA TTG CTC TCC TGT TG 

IFN-β reverse GCA GTA TTC AAG CCT CCC AT 

RABV P forward ATGGTCACAGACCGTAGAAG 
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RABV P reverse GATGATTGGCTTTCTCTCTG 

TBP forward TGC ACA GGA GCC AAG AGT GAA 

TBP reverse CAC ATC ACA GCT CCC CAC CA 

Table 10: Primers used for real-time RT-PCR. 

3.2.8. Co-Immunoprecipitation (Co-IP) 

Co-immunoprecipitation was used to identify protein-protein interactions. HEK 293T cells were 

seeded in a 6 cm dish or in 6-well plates and transfected with plasmid constructs coding for the 

proteins of interest. One of the potential interaction partners was fused to a tag suitable for 

immunoprecipitation (HA-, or Flag-tag). 24 h p. t. the cells were detached from the dish with 

1 ml PBS. After centrifugation (5 min, 4 °C, 2500 rpm), the cell pellets were lysed with 500 µl 

Co-IP buffer. Following 30 min – 2 h incubation, cellular debris was removed by another 

centrifugation step (10 min, 4 °C, 14 000 rpm) and 10% of the sample (50 µl) was taken as a 

control for the total amount of protein expression. The remaining supernatant was incubated 

with a suitable amount of anti-HA magnetic beads (Pierce) for 3 h or overnight. 

Using this method, FLAG- or HA-tagged proteins can be specifically bound to an affinity matrix, 

which carries immobilized antibodies against the corresponding epitope tags. Untagged proteins 

that bind specifically to the target protein can thus be co-precipitated. Unspecifically bound 

proteins were removed by washing three times with 500 µl Co-IP buffer. After the last washing 

step and removal of supernatant, the samples were eluted with 75 µl SDS sample buffer and 

further examined by SDS-PAGE and Western blotting.  

3.2.9. Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) 

Bis-Tris polyacrylamide gels (developed by Updyke & Engelhorn for Invitrogen, US patent 

6162338) were used to separate proteins by their apparent molecular weight. A 6 % stacking gel 

was used on top of a 10 % separating gel in a Peqlab gel chamber (for gel composition see 3.1.3). 

Protein lysates were incubated with an appropriate volume of SDS sample buffer and heated to 

95 °C for 10 min. Precision Plus Protein™ Standard (Biorad) was loaded in addition to the 

samples as a marker for size determination of protein bands. Using 1x MOPS as running buffer, 

the gels were run at 175 V for about 2.5 h under water-cooling. Subsequently, the protein bands 

on the gel were where either stained directly (3.2.10) or visualized by immunostaining after 

Western blotting (3.2.11). 
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3.2.10. SDS-PAGE gel staining methods 

In order to directly visualize protein bands on SDS-gels, staining with colloidal coomassie was 

performed. The solution was prepared as previously described (Dyballa and Metzger, 2012). 

First, the gel was washed three times for 10 min on a horizontal shaker with deionized water. 

Subsequently the gel was covered in colloidal coomassie staining solution and incubated for 

2 - 6 h until the desired staining intensity. After staining, the gel was rinsed twice with deionized 

water and incubated for 10 – 60 min with destainer. After destaining the gel was rinsed with 

water twice and stored in water for further analysis and imaging (Dyballa and Metzger, 2012). 

For a more sensitive staining the SilverQuest™ Silver Staining Kit (Life Technologies) was used 

according to the manufacturer’s instruction. 

3.2.11. Western blotting 

The transfer buffer used for Western blotting in this thesis (here termed “extra-dry”) was 

previously described (Garic et al., 2013). A semi-dry blotting system (Peqlab) and Immobilon 

PVDF-membranes (Millipore) were used for Western blotting. PVDF Membranes were activated 

by soaking shortly in pure methanol. Separating gels from SDS-PAGE and activated membranes 

were separately equilibrated with extra-dry buffer for 10 min under constant agitation. Blotting 

chambers were assembled by putting the gel on top of a membrane in between extra-dry buffer 

soaked stacks of three blotting paper sheets. The electro-blotting was performed for 45 min with 

1000 mA for 2 gels and at 650 mA for 1 gel. Using this method, proteins can be transferred from 

a denaturing polyacrylamide gel onto a membrane and thus be immobilized. To avoid unspecific 

binding of antibodies, the membrane was blocked with either 2.5 % milk powder or 2.5 % BSA in 

TBS-T for at least 30 min at RT. To visualize specific protein bands, primary antibodies diluted in 

TBS-T (dilutions as described in the materials section) were applied and incubated on the 

membrane overnight at 4 °C under constant agitation. After three 10 min washing steps with 

TBS-T, suitable secondary antibodies were applied and incubated for 2 h at RT on a horizontal 

shaker. All secondary antibodies used for Western blotting in this thesis were conjugated with 

HRP (horseradish peroxidase). After incubation the membrane was washed three times with 

TBS-T for 10 min. For the final detection step WesternBright ECL Spray (Advansta) was applied to 

the membrane according to the manufacturer’s instructions. The chemiluminescence was 

directly imaged using the Fusion FX7 system (Vilber-Lourmat). 
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3.2.12. Purification of recombinantly expressed proteins 

Electrocompetent Rosetta strain E. coli were transformed with about 500 ng pET28a expression 

plasmid coding for the His6-tagged protein of interest on day 1, transferred to a selective LB 

plate containing 100 µg/ml kanamycin and incubated overnight at 37 °C. A single colony from 

the selective LB plate was used on day 2 to inoculate 100 ml selective LB medium that was 

grown overnight in a cell culture incubator at 37 °C. 1 l selective LB medium was inoculated using 

15 ml of the overnight culture on day 3 and incubated with agitation at 37 °C. Bacteria growth 

was monitored by measuring OD600 values using a Nanodrop ND-1000 Spectrophotometer. 

Between an OD600 of 0.5 and 0.8 protein expression was induced with 0.5 mM IPTG and the 

culture was incubated at 20 °C overnight. On day 4 the bacteria were harvested by 

centrifugation at 4000 g, 4 °C for 20 min, resuspended on ice in 30 ml cold purification buffer A 

and incubated with a spatula tip of lysozyme for 1 - 2 h at 4 °C in a 50 ml falcon under constant 

agitation. Subsequently the cells were disrupted by sonication for 3 min total pulse time with 3 s 

pulses interrupted by a 2 s pause in an ice cooled water bath. Cell debris and undisrupted cells 

were removed by centrifugation at 8000 g, 4 °C for 45 min. 1.5 ml HisPur™ Cobalt Superflow 

Agarose (Thermo Fisher Scientific) was added to a 10 ml centrifuge column and equilibrated with 

2 column volumes of purification buffer B by gravity flow. Afterwards the lysates previously 

cleared by centrifugation were loaded onto the column and samples were collected from the 

flow through fraction. The column was washed 4 times with 10 ml purification buffer B and 

samples were taken from each of these washing fractions. Subsequently, the bound protein was 

eluted in three fractions with 3 ml elution buffer each. Success of the purification process was 

evaluated by subjecting the collected samples to SDS-PAGE (3.2.9) and colloidal coomassie 

staining (3.2.10). 

3.2.13. Virus rescue 

A rescue of replication competent rabies virus particles from cDNA requires the generation of 

functional viral RNA genomes in the cytoplasm of a cell as well as the production of viral 

structural proteins necessary for transcription and replication. This method relies on the BSR T7 

cell line, which expresses T7 polymerase constitutively (Buchholz et al., 1999). Co-transfection of 

different T7 promoter driven expression plasmids leads to the generation of genomic RNA 

transcripts in the cytosol and the viral structure proteins N, P and L. With a certain chance, 

encapsidation of the genomic RNA with nucleoprotein N occurs, leading to the generation of a 
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functional genome, which can act as new template for both viral transcription and replication by 

the Polymerase L and its cofactor P. Such a rescue event results in the ongoing propagation of 

viral particles (Schnell et al., 1994). This method was further optimized in the Conzelmann group 

by usage of self-processing ribozymes in the full length genomic construct leading to correct 

processing of the ends of the genomic RNA and therefore a significant increase in successful 

rescue events (Ghanem et al., 2012). Since the template for the generation of viral genomic RNA 

is a DNA plasmid, the sequence can be determined by standard molecular biological techniques. 

This enables the introduction of mutations and deletions as well as the insertion of recombinant 

proteins in the rabies virus genome. 

As a first step in the virus rescue procedure, a T25 cell culture flask of BSR T7 cells grown to 

confluency was split 1:20 on day 1 and 2 ml of cell suspension (approximately 3*105 cells) was 

seeded per 6 well. 1 h prior to transfection of rescue constructs, cells were washed once with 

D-MEM (no additives) and 1 ml D-MEM (no additives) was added to the cells. The following 

transfections were carried out using the Mammalian Transfection Kit (Agilent Technologies) 

based on the CaPO4 method. 10 µg of the viral cDNA rescue construct in a volume of 40 µl was 

mixed with 50 µl of a mix containing 5 µg pTIT-N, 2.5 µg pTIT-P and 2.5 µg pTIT-L coding for the 

corresponding viral proteins (NPL-mix). In order to evaluate the transfection efficiency, 10 µg 

pTIT-eGFP was used as control in a separate sample. The DNA solution was mixed with 10 µl of 

transfection reagent #1 and put on ice for 5 min. Subsequently, 100 µl of transfection reagent #2 

was added and after incubation at room temperature for 10 – 20 min the transfection mix was 

added to the cells dropwise (1 h after the cells have been initially washed with D-MEM). 3.5 h 

after transfection the medium was removed, cells were washed once with G-MEM 4+ and 

supplemented with 2 ml G-MEM 4+. On day 3 success of transfection was monitored by 

confirming green fluorescence in cells transfected with pTIT-eGFP control plasmid using a 

fluorescence microscope. Fresh BSR T7 cells grown to confluency were split 1:10 on day 5 and 1 

ml cell suspension (approximately 3*105 cells) was seeded per 6-well. 2 h later, the supernatant 

of the previously transfected rescue cells was cleared from cell debris by centrifugation and 

added to the newly seeded BSR T7 cells (passage 1) and replaced by fresh G-MEM 4+. On day 8 

rescue cell supernatants were passaged for a second time to newly seeded cells like on day 5. 

Cells previously incubated with passage 1 on day 5 were stained for viral N protein using FITC 

Anti-Rabies Monoclonal Globulin (for fixation and staining procedure see 3.2.14) and monitored 

for viral foci indicating successful rescue. In addition, the transfected rescue cells were detached 

using 500 µl trypsin-EDTA and taken up in 1.5 ml G-MEM 4+. 1.5 ml of this cell suspension was 

transferred to a T25 flask and taken up in a total volume of 8 ml GMEM-4+. 1.5 ml G-MEM 4+ 
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were added to the remaining 500 µl cell suspension and seeded again into 6-well plates. On day 

10 the cells incubated with passage 2 supernatant as well as the rescue cells split to 6-wells on 

day 8 were fluorescence labeled for viral proteins and also monitored for successful rescue. In 

case of a positive rescue 8 ml supernatant of rescue cells previously split to a T25 cell culture 

flask was taken, cleared from cell debris by centrifugation at 1800 rpm, 5 min, 4 °C and stored at 

-80 °C in 1 ml aliquots. The cells were provided with 8 ml fresh G-MEM 4+ and supernatants 

were taken and stored again on day 12. Rescue supernatants were subsequently titrated to 

obtain the amount of focus forming units per volume (3.2.15) and used at a defined MOI in order 

to create virus stocks (3.2.16). 

3.2.14. Fluorescence labeling of RABV infected cells 

In order to label rabies virus infected cells for fluorescence microscopy, the supernatant was 

disposed and cells were washed once with PBS and once with cold 80 % acetone. Subsequently, 

cells were fixed by adding cold 80 % acetone and incubation for 20 min at 4 °C. Acetone was 

removed and the fixed cells were air dried before of a suitable amount of FITC Anti-Rabies 

Monoclonal Globulin (Fujirebio Diagnostics) was added and incubated for 2 h at 37 °C in a cell 

culture incubator. Afterwards, cells were washed 2 times with PBS and monitored under a 

fluorescence microscope. 

3.2.15. Titration of virus preparations 

In order to determine the amount of infectious particles per volume (focus forming units per ml, 

ffu/ml) in viral supernatants, BSR T7 cells were infected with serial dilutions as described below, 

stained for virus infected cells (3.2.14) and the number of viral foci was determined. Confluent 

BSR T7 cells in a T25 cell culture flask were detached with trypsin and resuspended in 20 ml 

G-MEM 4+. 100 µl of the cell suspension per well were seeded to 96-wells. 450 µl medium was 

mixed with 50 µl of the original viral supernatant or the previous dilution step. Thus 7 serial 

dilutions were created, ranging from 10-2 – 10-8. BSR T7 cells were infected in duplicates with 

100 µl of the original supernatant or the serial dilutions and fixed and stained 48 h p. i. (3.2.14). 

Wells containing a numerable amount of foci were counted and used for calculating viral titers 

for the corresponding supernatants. 
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3.2.16. Virus stock production 

For the production of viral stocks BSR T7 cells grown to confluency were split 1:3 and transferred 

to a new T25 flask in a total volume of 8 ml G-MEM 4+ on day 1. 3 h later, cells were infected 

with a defined MOI of 0.01 of a previously titrated virus rescue supernatant. On day 3, the 

supernatant of the cells was transferred to a 15 ml falcon tube, cleared form cell debris by 

centrifugation at 1800 rpm, 5 min at 4 °C, split up in 1 ml aliquots and stored at - 80 °C. Cells 

were supplied again with 8 ml fresh G-MEM 4+. Supernatant was harvested again in the same 

way on day 5. Subsequently, titers of the viral stocks were determined (3.2.15) and used for 

further experiments. 

3.2.17. Virus growth curves 

Growth kinetics of specific viruses were examined by determination of viral titers of the 

supernatant at 4.5 h, 24 h, 48 h, 72 h and 96 h past infection. BSR T7 cells grown to confluency 

were split 1:3 to a T25 flask (approximately 1*106 cells) in total volume of 8 ml G-MEM 4+ and 

infected 3 h later with a MOI of 0.01. 4.5 h past infection, directly before harvesting the first 

supernatant, cells were washed once with medium in order to remove input virus and supplied 

again with 8 ml G-MEM 4+. For every time point 1 ml of the supernatant was harvested and 

stored at -80 °C in two 500 µl aliquots, while the volume of removed supernatant was 

replenished with fresh medium. All supernatants were subsequently titrated (3.2.15) and the 

results plotted to obtain a time-dependent growth curve. 
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4. Results 

4.1. Mapping of RABV P residues essential for inhibition of 

IFN-induction 

The rabies virus phosphoprotein (RABV P) is one of the most potent known interferon 

antagonists. It exercises its dual function on two different levels of innate immune signaling, 

making it a very efficient inhibitor of the antiviral response. First, RABV P circumvents induction 

of Interferon-β (IFN-β) after RIG-I activation by blocking phosphorylation of interferon regulatory 

factor 3 (IRF3), which is the central IFN-β transcription factor (Brzózka et al., 2005; Hiscott, 

2007). In addition, also signal transduction of type I interferons is suppressed by a specific 

binding of RABV P to activated STATs (Brzózka et al., 2006).  This results in cytosolic retention of 

STAT molecules, thus preventing the induction of interferon-stimulated genes (ISGs). Due to this 

dual strategy, RABV P exhibits a very strong suppressive capacity in regard to cellular innate 

immunity. While RABV P region 176-186 could previously be identified as crucially required for 

inhibition of IFN-β induction and viral pathogenicity (Rieder et al., 2011), its precise function or 

mechanistic role in inhibition is still unknown. In order to pin down the RABV P regions critical 

for the inhibitory function, several truncation- as well as amino acid substitution mutants of P 

were created and assayed for their ability to inhibit IFN-β induction under different conditions. 

This is particularly interesting, since the RABV P region identified to be crucial for inhibition is 

located in a domain of the protein that is considered to be intrinsically disordered (Gerard et al., 

2009). Narrowing down inhibitory function to a disordered region might allow for future 

application as a peptide that retains suppressive capacity. If not mentioned otherwise, in this 

thesis “P” is always referring to the SAD-L16 strain rabies virus phosphoprotein. 

4.1.1. Inhibition of TBK1 mediated IFN-β promoter activity 

Tank-binding kinase 1 (TBK1) and IKK-related kinase epsilon (IKKε) were identified as the kinases 

required for phosphorylation and thus activation of interferon regulatory factor 3 (IRF3), the 

major transcription factor driving induction of type I interferon genes (Fitzgerald et al., 2003; 

Malmgaard, 2004; Sato et al., 2000; Sharma et al., 2003). Overexpression of the kinases alone is 

sufficient for mediating type I IFN-induction. TBK1 could be shown to be critically involved in RLR 

signaling, since IRF3 activation mediated by overexpressing constitutionally active RIG-I and 

MDA5 mutants was significantly impaired in TBK1-deficient MEFs (Yoneyama et al., 2005). 
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The N-terminal region of RABV P, which is absent in the P4 isoform, was previously shown to be 

non-essential for inhibition of TBK1 overexpression-mediated IFN-β induction (Master thesis M. 

Wachowius (2012)). To examine whether the C-terminus of P is essential for its suppressive 

capacities, two truncations constructs were created: HA-P-1-197, which lacks the highly 

conserved C-terminal structured domain, and HA-P-1-174, which is further truncated and lacks 

the residues 176-186 which have been previously identified to be essential for inhibition by 

studies characterizing the PΔInd1/2 deletion mutant (Rieder et al., 2011).  

 

Figure 11: RABV P CTD is non-essential for inhibition of TBK1-mediated IFN-β induction. 

HEK 293T cells were transfected with the reporter plasmids (100 ng p125-FF/10 ng pCMV-RL) and increasing amounts 

of the indicated constructs (200 ng Flag-TBK1, 25, 50 and 100 ng P constructs plasmid DNA). Cells were lysed 24 h p. t. 

and subjected to dual luciferase assays in order to examine the ability of different P constructs to interfere with TBK1 

overexpression-mediated IFN-β promoter activity. While the presence of the ΔInd region (contained in 175-197) is 

required for inhibition, the entire CTD (residues 197-297) is not. The bars represent the means and the error bars the 

standard deviations of biological duplicates. The lysates were subjected to SDS-PAGE followed by Western blotting 

and immunostaining with the indicated antibodies to confirm expression of the constructs. 

Together with HA-P1, a RABV P construct which only produces the full length protein due to 

mutated alternative internal start codons, the new truncation constructs were assayed for their 

ability to interfere with TBK1 overexpression-mediated IFN-β promoter activity using dual 

luciferase reporter gene assays (Figure 11). Whereas HA-P-1-197 abrogated IFN-β promoter 

activity in a dose dependent way even more efficiently than full length HA-P1, especially at lower 
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concentrations, HA-P-1-174 almost completely lost its inhibitory function. This suggests that the 

structured C-terminal domain of RABV is not essential for counteracting TBK1-mediated IFN-β 

induction and underlines the importance of the 176-186 region and potentially additional amino 

acids between positions 186 and 197. 

A number of additional C-terminal truncations were created in order to further narrow down 

RABV P residues involved in inhibition and so to find the shortest C-terminal truncation still able 

to interfere with TBK1 overexpression-mediated IFN-β reporter activity. Therefore, the new 

constructs were again subjected to IFN-β promoter dependent dual luciferase assays (Figure 

12A).  

 

Figure 12: Importance of the RABV P residues C-terminal of the ΔInd sequence. 

A) While the RABV P-1-188 truncation exhibits strong inhibitory capacities, truncation by two more residues (resulting 

in P-1-186) almost completely abrogates inhibition. Position shows no preference for a serine residue, since a 

substitution by alanine, in contrast to an aspartate substitution, has no negative impact on inhibition. B) The 

substitution of T189, which is in close proximity to the ΔInd region, by an aspartate residue impairs the inhibitory 

function of RABV P. Experimental conditions for both A) and B): HEK 293T cells were transfected with the reporter 

plasmids (100 ng p125-FF/10 ng pCMV-RL) and the indicated constructs (200 ng Flag-TBK1, 200 ng P constructs 

plasmid DNA). Cells were lysed 24 h p. t. and subjected to dual luciferase assays in order to examine the ability of 

different P constructs to interfere with TBK1-mediated IFN-β promoter activity. The bars represent the means and the 

error bars the standard deviations of biological duplicates. The lysates were subjected to SDS-PAGE followed by 

Western blotting and immunostaining with the indicated antibodies to confirm expression of the constructs. 

P-1-188 was the shortest C-terminal truncation still able to fully inhibit IFN-β promoter activity. 

Further truncation by two amino acids (P-1-186) lead to an almost complete loss of inhibitory 
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function. P-1-187 retained some inhibitory abilities but was already impaired in comparison to P-

1-188. No significant difference between P-1-187 and P-1-187-S187A (P-1-186+A) could be 

detected, whereas the phosphomimetic mutant P-1-187-S187D (P-1-186+D) exhibited a stronger 

defect. This indicates that serine 187 or phosphorylation of this residue are rather not involved 

in inhibitory function of the RABV P truncation mutants. 

In addition to C-terminal truncations, RABV P threonine 189, which is in close proximity to the 

ΔInd region (primary sequence, ΔInd underlined: 176-QIASGPPALEWSAT-189), was examined for 

a possible involvement in inhibition (Figure 12B). While an alanine substitution at this position 

showed no phenotype in regard to RABV P inhibitory function, the aspartate mutant was 

significantly impaired, showing that artificial introduction of charged residues close to the critical 

ΔInd region (P-176-186) is able to impair the suppressive capacity of P. 

As aforementioned, the shortest C-terminal truncation that still allows for suppressive capacity 

could be identified to be RABV P-1-188. In addition, we further wanted to examine the 

involvement of the N-terminal domains of RABV P. N-terminal truncations of RABV P 

corresponding to the P4 isoform (P-83-297) could already be shown to be not impaired in their 

ability to interfere with TBK1 overexpression-mediated IFN-β promoter activity (Master thesis M. 

Wachowius).  Therefore, we wanted to examine further N-terminally truncated P proteins in 

order to find the shortest construct that retains inhibitory efficacy and to determine whether a 

P-derived peptide alone might be sufficient for the suppressive function. P4 still contains the 

dimerization domain ending at amino acid 130, followed by a disordered region, which contains 

a DLC8 binding site that is conserved among the Lyssavirus genus (Jacob et al., 2000), as well as 

the ΔInd motif. We wanted to examine whether one of these specific features directly 

contributes to inhibition. However, only weak and insufficient expression levels for some 

N-terminally truncated RABV P constructs were observed (data not shown). To ensure good and 

comparable expression levels, a HA-GST construct (Figure 13B) was fused to N-terminally 

truncated P forms, as well as P-derived peptides. The HA-tag was introduced for detection and 

use in pulldown experiments, while GST (Schistosoma japonicum glutathione S-transferase) was 

included for stabilization (Smith, 2000). RABV P residue 188 was used as most C-terminal amino 

acid according to the results obtained before. P peptides of different length ranging from residue 

130 (lacking the dimerization domain), 153 (lacking the DLC8 binding site, Jacob et al. (2000)), 

168, 170, and 176 to the common C-terminal residue 188 were cloned into the HA-GST construct 

and assayed for their ability to interfere with Flag-TBK1 overexpression mediated IFN-β 

promoter activity (Figure 13A). 
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The HA-GST-P-176-188 construct, consisting only of the ΔInd1/2 motif and the following two 

amino acids (amino acid sequence: QIASGPPALEWSA) was found to be completely deficient in 

inhibition. All the other investigated peptides showed inhibitory abilities to some degree. 

Removal of the DLC8 binding site (from residue 130 to 153) showed no appreciable change in 

suppressive capacity. Even though full length HA-P showed a significantly stronger inhibition 

compared to all peptide constructs, partial inhibition of TBK1 overexpression mediated IFN-β 

promoter activity could be achieved with short, disordered P-derived peptides. Oddly, the 

degree of inhibition did not change significantly with removal of specific features, but correlated 

rather with overall construct length. 

 

Figure 13: P fragments containing the ΔInd-region inhibit TBK1-mediated IFN-β induction with increasing 

N-terminal extension. 

A) While only wild type HA-P suppresses reporter activity to basal levels, the HA-GST fusion peptides encompassing 

residues 176-186 (ΔInd region) exhibit some inhibitory function with increasing N-terminal extension. The shortest 

construct HA-GST-P-176-188 exhibits no suppression of IFN-β reporter activity. HEK 293T cells were transfected with 

reporter plasmids (100 ng p125-FF/10 ng pCMV-RL) and the indicated constructs (200 ng Flag-TBK1, 200 ng P 

constructs plasmid DNA). Cells were lysed 24 h p. t. and subjected to dual luciferase assays in order to examine the 

ability of different GST-P fusion constructs to interfere with IFN-β promoter activity mediated by Flag-TBK1 

overexpression. The bars represent the means and the error bars the standard deviations of biological duplicates. The 

lysates were subjected to SDS-PAGE followed by Western blotting and immunostaining with the indicated antibodies 

to confirm expression of the constructs. B) Plasmid map and schematic figure of HA-GST-construct. AscI/XhoI 

restriction sites allow easy insertion of different P-derived sequences into the plasmid, resulting in HA-GST-tagged 

versions.  
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In the previously shown experiment, interferon promoter activity was induced by overexpression 

of TBK1. Together with IKKε, this kinase is responsible for activation of IRF3 (Fitzgerald et al., 

2003; Sharma et al., 2003). The N-terminal tandem CARD domain of RIG-I (ΔRIG-I) was previously 

shown to be essential and sufficient for signal transduction and constitutively induces 

transcription of IFN-β (Yoneyama et al., 2004). In the absence of triggering PAMPs, the CARD 

domains of RIG-I are normally auto-inhibited to prevent signaling (Saito et al., 2007). Therefore, 

overexpression of ΔRIG-I is an effective method to mimic active RIG-I signaling. To elucidate 

whether truncated forms of RABV P also inhibit RLR pathway signaling when employing different 

stimuli than TBK1 overexpression, the following reporter gene experiment was conducted using 

ΔRIG-I. RABV P Inhibition of IFN-β promoter activity induced either by Flag-TBK1 or Flag-ΔRIG-I 

(RIG-I residues 1 to 229) overexpression was examined in reporter gene assays using HA-GST-P-

83-297 (P4 isoform) and its truncation HA-GST-P-83-197, which lacks the structured C-terminal 

domain (Figure 14A). HA-GST-P-83-297 and HA-GST-P-83-197 both very efficiently inhibited Flag-

TBK1-mediated IFN-β promoter activity. Strikingly, HA-GST-P-83-197 completely failed to 

influence IFN-β promoter activity after ΔRIG-I stimulation. This unexpected result strongly 

indicates that C-terminally truncated P-constructs cannot be considered a direct inhibitor of 

TBK1, since TBK1 is supposed to be activated following RIG-I activation or overexpression of 

ΔRIG-I. A direct inhibitor of TBK1, comparable to a small molecule inhibiting the kinase function, 

would therefore be expected to inhibit IFN-β promoter activity under both conditions. In 

addition to TBK1 activation, RIG-I signaling could also trigger the related kinase IKKε, therefore 

the ability of RABV P and several C-terminal truncations to interfere with IKKε mediated IFN-β 

induction was examined (Figure 14B). Only HA-P-1-174, which lacks the crucial 176-186 region, 

failed to abrogate promoter activity. All other P constructs included in the experiment strongly 

suppressed promoter activation, indicating that RABV P is able to suppress both TBK1 and IKKε 

overexpression-mediated IFN-β promoter activity. Overexpression of the IRF3 activating kinases 

TBK1 and IKKε is a rather artificial system for IFN induction and P inhibition might be due to a 

different mode of action in this case, as compared to normal inhibition of RIG-I mediated IRF3 

activation. Due to this discrepancy, RABV P inhibition was further examined in the context of 

ΔRIG-I stimulation, since we could no longer safely assume that P inhibits natural IFN-β induction 

downstream of TBK1/IKKε. 
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Figure 14: RABV P lacking the C-terminal domain is deficient in inhibiting ΔRIG-I, but not TBK1 or IKKε 

mediated IFN-β promoter activity. 

A) While HA-GST-P-83-297 and HA-GST-P-83-197 interfere very efficiently with TBK1 stimulation, HA-GST-P-83-197, 

lacking the C-terminal domain, completely fails to prevent ΔRIG-I mediated IFN-β promoter activity. B) C-terminal 

RABV P truncation constructs are able to inhibit IKKε mediated IFN-promoter induction, similar to results obtained 

before with TBK1. Only HA-P-1-174, which lacks the ΔInd region, fails to interfere with IFN-reporter activity. 

Experimental conditions for both A) and B): HEK 293T cells were transfected with reporter plasmids (100 ng p125-

FF/10 ng pCMV-RL) and the indicated constructs (100 ng Flag-ΔRIG-I, 200 ng Flag-TBK1 or Flag-IKKε and 200 ng P 

constructs plasmid DNA). Cells were lysed 24 h p. t. and subjected to dual luciferase assays in order to examine the 

ability of different P constructs to interfere with TBK1, ΔRIG-I or IKKε mediated IFN-β promoter activity. The bars 

represent the means and the error bars the standard deviations of biological duplicates. The lysates were subjected to 

SDS-PAGE followed by Western blotting and immunostaining with the indicated antibodies to confirm expression of 

the constructs. 

4.1.2. RABV P CTD is essential for inhibition of ΔRIG-I mediated IFN-β 

induction 

The data shown previously provide some evidence for differential inhibitory abilities of certain 

RABV P truncation constructs in regard to different RLR pathway triggers. Whereas 

HA-GST-P-83-197 very efficiently suppressed TBK1-mediated IFN-β promoter activity, it 

completely lacked any inhibitory capacity when ΔRIG-I was used for pathway stimulation (Figure 

14). Therefore, the ability of different RABV P constructs to suppress IFN-induction was further 
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examined for ΔRIG-I activation. HA-GST-tagged versions of full length P, the P4 isoform as well as 

the truncations P-83-188, P-130-188 and P-168-188 were examined for their ability to interfere 

with ΔRIG-I mediated IFN-β promoter induction (Figure 15A).   

 

Figure 15: P constructs lacking the CTD fail to inhibit ΔRIG-I and SeDi stimulation. 

A) HEK 293T cells were transfected with reporter plasmids (100 ng p125-FF/10 ng pCMV-RL) and the indicated 

constructs (100 ng Flag-ΔRIG-I, 200 ng P constructs plasmid DNA). Cells were lysed 24 h p. t. and subjected to dual 

luciferase assays in order to examine the ability of different P constructs to interfere with ΔRIG-I-mediated IFN-β 

promoter activity. The bars represent the means and the error bars the standard deviations of biological duplicates. 

Samples were subjected to SDS-PAGE followed by Western blotting and immunostaining with the indicated antibodies 

to confirm expression of the constructs. B) HEK 293T cells were transfected with 1 µg plasmid DNA coding for 

Flag-IRF3, 2 µg of the indicated P constructs and treated with SeDI 6 h post-transfection. Cells were lysed 24 h p. t. and 

samples were subjected to SDS-PAGE followed by Western blotting and immunodetection using the indicated 

antibodies. 

HA-GST-P and HA-GST-P-83-297 significantly inhibited IFN-β promoter activity. All further 

truncation constructs lacking the C-terminus, HA-GST-P-83-188, HA-GST-P-130-188 and HA-GST-

P-168-188, were clearly deficient in inhibitory function. This is again in contrast to previous 

experiments employing IFN-β promoter stimulation by TBK1 overexpression, where at least 

partial inhibition by P-130-188 and P-168-188 constructs could be observed (Figure 13A).  

Interferon regulatory factor 3 (IRF3) is the crucial transcription factor responsible for activation 

of the interferon promoter after phosphorylation by TBK1/IKKε upon triggering of the RLR 
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signaling cascade (Fitzgerald et al., 2003; Sato et al., 2000; Sharma et al., 2003; Yoneyama et al., 

2005). It exercises its function in concert with NF-κB and AP-1, forming an enhanceosome that 

triggers IFN transcription (Kim et al., 2000; Thanos and Maniatis, 1995). In addition to measuring 

IFN-promoter activity in reporter gene assays, the influence of different RABV P constructs on 

IRF3 serine 396 phosphorylation, an important marker of activation (Servant et al., 2003), was 

examined by Western blotting using a phospho-specific antibody. In order to activate the RLR 

signaling in a way that rather resembles a viral infection, Sendai Virus defective interfering 

particles (SeDI) were used (SeDI preparations were kindly provided by D. Garcin, Université de 

Genève). SeDIs were previously reported to strongly stimulate IFN-induction (Johnston, 1981; 

Strahle et al., 2006). Using this approach, we wanted to elucidate whether RABV P C-terminal 

truncation constructs also fail to inhibit SeDI mediated IFN-promoter induction. Flag-IRF3 was 

co-expressed with different P constructs and IRF3 phosphorylation after SeDI treatment was 

subsequently examined by Western blotting (Figure 15B). 

HA-GST-P and HA-GST-P-83-297 were both able to significantly inhibit IRF3 serine 396 

phosphorylation. HA-GST-P-83-188, as well as the C-terminal P truncations HA-P-1-188 and 

HA-P-1-174, however, showed no reduction in IRF3 phosphorylation compared to the EV control. 

IRF3 phosphorylation levels in the samples with HA-GST-P, HA-GST-P-83-297 and HA-GST-P-83-

188 exhibited a good correlation with the results of the reporter gene assays conducted 

previously (Figure 15A). This indicates that IRF3 phosphorylation state is indeed correlating with 

the IFN-β promoter activity observed in reporter gene assays under the given experimental 

settings. Furthermore, SeDI treatment leads to a stimulation comparable to ΔRIG-I 

overexpression in regard to the ability of RABV P to suppress IFN-promoter induction. Therefore, 

it can be assumed that ΔRIG-I pathway stimulation is preferable to TBK1 overexpression in order 

to investigate P inhibition, because it leads to results comparable to SeDI treatment, which is 

closer to the setting of a natural viral infection. In summary, these findings provide some 

evidence that the C-terminal domain of RABV P is in fact essential for inhibition of IFN-induction, 

what contrasts the data obtained previously from reporter gene assays utilizing Flag-TBK1 

overexpression. 

4.1.3. RABV P dimerization domain and DLC8 binding in inhibition 

HA-GST-P-83-297 (P4) could previously be shown to be able to fully inhibit ΔRIG-I and SeDI 

treatment mediated IFN-β induction, while RABV P C-terminal domain could be identified as 

essential for inhibition. The P4 isoform of the phosphoprotein still contains, among other 
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features, the dimerization domain and a well conserved DLC8 binding motif, which has been 

implicated in viral transcription and replication in neurons (Tan et al., 2007). Therefore, RABV P 

mutants deficient in DLC8 binding, P-D143A-Q147A (ΔDLC8, Jacob et al. (2000)), and 

dimerization, P-F114A-W118A-I125A, were used to examine whether these features might be 

implicated in the inhibitory abilities of RABV P. The critical contribution to dimerization of the P 

residues F114, W118 and I125, which are substituted with alanine in the monomeric P mutant 

(PΔDim), could be shown previously in a yeast two-hybrid system (Ivanov et al., 2010) and was 

confirmed by native-PAGE assays in the master thesis of M. Wachowius (2012). Co-IP 

experiments followed by SDS-PAGE and Western blotting were conducted to confirm that HA-

PΔDLC8 is indeed DLC8 binding deficient (Figure 16C). Reporter gene assays were performed 

with HA-PΔDLC8 and HA-GST-P-83-297-ΔDim to examine the constructs for their ability to 

interfere with IFN-β induction (Figure 16A). DLC8 binding deficient P was hardly impaired in 

regard to inhibitory function, whereas HA-GST-P-83-297-ΔDim clearly exhibited reduced 

suppression in comparison to HA-GST-P-83-297 (P4). However, dimerization deficient P was 

impaired to a lesser degree than HA-PΔ176-186 (PΔInd1/2) which has been shown to be 

defective in inhibition of IFN-β induction previously (Rieder et al., 2011).  To further investigate a 

possible involvement of the RABV P dimerization domain, a construct lacking the dimerization 

domain and N-terminus completely, HA-GST-P-130-297, was created und subjected to reporter 

gene assays (Figure 16B). In comparison to HA-GST-P-83-297 (P4), HA-GST-P-130-297 almost 

completely lost its inhibitory function, hinting at a critical involvement of the dimerization 

domain in inhibition. This is in agreement with the results obtained using the dimerization 

deficient P-mutant. 
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Figure 16: Role of DLC8 binding and dimerization of RABV P in ΔRIG-I inhibition. 

A) The DLC8 binding deficient RABV P construct HA-PΔDLC8 exhibits no substantial loss of inhibitory function. HA-GST-

P-83-297-ΔDim, a construct containing three alanine substitutions leading to impaired dimerization, shows reduced 

suppressive function. B) HA-GST-P-130-297, a RABV P construct lacking both N-terminus and dimerization domain, is 

unable to interfere with ΔRIG-I mediated IFN-reporter activity. Experimental conditions for both A) and B): HEK 293T 

cells were transfected with reporter plasmids (100 ng p125-FF/10 ng pCMV-RL) and the indicated constructs (100 ng 

Flag-ΔRIG-I, 200 ng P constructs plasmid DNA). Cells were lysed 24 h p. t. and subjected to dual luciferase assays in 

order to examine the ability of different P constructs to interfere with ΔRIG-I-mediated IFN-β promoter activity. The 

bars represent the means and the error bars the standard deviations of biological duplicates. Samples from cell lysates 

were taken and subjected to SDS-PAGE followed by Western blotting and immunostaining with the indicated 

antibodies to examine expression levels of the constructs. C) The HA-PΔDLC8 mutant fails to interact with DLC8, as 

previously reported. 293T cells were transfected with 3 µg plasmid DNA coding for the indicated constructs, lysed 24 h 

p. t. and subjected to Co-IP experiments. Samples from input and pulldown fractions were examined by SDS-PAGE 

followed by Western blotting and immunostaining with the indicated antibodies. 

4.1.4. RABV P CTD-NLS mutants exhibit inhibitory deficiency 

The distribution of RABV P and its different isoforms within the cell is determined by several 

trafficking signals. P contains an N-terminal nuclear export signal (NES, residues 49-58) and a 
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conformational nuclear localization signal (NLS) in its C-terminal domain (CT-NLS), with lysine 

214 and arginine 260 both playing a crucial role (Pasdeloup et al., 2005). However, no critical 

function in the viral life cycle could yet be attributed to the RABV P CTD-NLS. Since removal of 

the C-terminal domain of RABV P, which contains the conformational CTD-NLS, lead to a loss of 

suppressive capacity, we wanted to investigate whether P trafficking might be associated with 

inhibition of IFN-β induction. The RABV P amino acid substitutions K214A and R260A have been 

reported previously to impair NLS activity of the CVS-strain P protein (Pasdeloup et al., 2005). 

Therefore, the SAD-L16 strain RABV P CTD-NLS defective mutants K214A and R260A were co-

expressed with Flag-ΔRIG-I and assayed for their ability to interfere with interferon induction in 

dual luciferase assays using IFN-β promoter driven luciferase expression (Figure 17A). HA-tagged 

wild type P and inhibition deficient PΔ176-186 (ΔInd1/2) (Rieder et al., 2011) were used as 

positive and negative controls, respectively. While HA-P strongly repressed IFN-β promoter 

activity, P-K214A and P-R260A mutants were impaired in their inhibitory function equally to 

HA-PΔ176-186. Since expression levels of the mutants were not impaired, these results hint at 

an involvement of the C-terminal conformational NLS of RABV P in inhibition of IFN-induction.  

To investigate whether the observed defect is really due to impaired nuclear localization, RABV P 

wild type and the K214A and R260A mutant versions were N-terminally fused to a recombinant 

SV40-NLS. It has been shown that this amino acid sequence mediates nuclear import of the 

Simian virus 40 (SV40) large T antigen and is able to restore nuclear localization of NLS defective 

mutant versions of this protein when fused additionally to the N-terminus (Kalderon et al., 

1984a; Kalderon et al., 1984b). HA-P, HA-P-K214A and HA-P-R260A as well as their SV40-NLS 

containing versions were co-transfected with Flag-ΔRIG-I and assayed for their ability to suppress 

IFN-β promoter activity in reporter gene assays (Figure 17B). Both HA-tagged mutants P-K214A 

and P-R260A were strongly impaired in their inhibitory abilities, with P-K214A being slightly less 

affected. HA-NLS-P, containing a recombinant SV40-NLS, abrogated IFN-β promoter activity even 

more efficiently than wild type HA-P. Strikingly, HA-NLS-P-K214A and HA-NLS-P-K260A showed 

an inhibitory effect comparable to wild type P. This demonstrates that the suppressive defect in 

the P mutants containing a K214A or R260A substitution is indeed associated with impaired 

nuclear trafficking since inhibition can be rescued by complementing this function with an 

ectopic recombinant SV40 nuclear localization signal. Furthermore, the finding that even wild 

type P suppression profits slightly from an additional NLS suggests that nuclear localization plays 

a role in the inhibitory mode of action.  
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Figure 17: Inhibitory deficiency of RABV P CTD-NLS mutants can be rescued by fusion to a SV40-NLS. 

A) RABV P mutants containing single alanine substitutions in the C-terminal conformational NLS exhibit an inhibitory 

defect similar to HA-PΔ176-186. B) Fusion of the defective RABV P mutants P-K214A and P-R260A to a recombinant 

SV40-NLS rescues the inhibitory defect. C) In regard to inhibition, the RABV P CTD can be partially substituted by a 

recombinant SV40-NLS. Experimental conditions for A), B) and C): HEK 293T cells were transfected with reporter 

plasmids (100 ng p125-FF/10 ng pTK-RL) and the indicated constructs (100 ng Flag-ΔRIG-I, 200 ng P constructs plasmid 

DNA). Cells were lysed 24 h p. t. and subjected to dual luciferase assays in order to examine the ability of different P 

constructs to interfere with ΔRIG-I-mediated IFN-β promoter activity. The bars represent the means and the error bars 

the standard deviations of biological duplicates. Cell lysates were examined by Western blotting in order to determine 

expression levels of the constructs used. D) While P-R260A is unable to suppress ΔRIG-I mediated IRF3 Ser396 

phosphorylation, HA-NLS-P-R260A impairs IRF3 phosphorylation comparable to wild type RABV P. 293T cells were 

transfected with 1 µg Flag-IRF3, 2 µg of different P-constructs and 500 ng Flag-ΔRIG-I. 24 h p. t. cells were lysed, 
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subjected to SDS-PAGE and Western blotting and immunostained with the indicated antibodies in order to examine 

the influence of different P-constructs on IRF3 phosphorylation. 

In previous experiments it has already been shown that the C-terminal domain of RABV P is 

essential for inhibition of IFN induction under experimental settings using either Flag-ΔRIG-I or 

SeDI stimulation of RLR signaling. Given that the nuclear localization signal investigated before is 

also located in the C-terminal domain of P, this raised the question whether the inhibitory defect 

in C-terminal truncations is just due to absence of the CTD-NLS. In order to examine whether, in 

regard to inhibitory function, the C-terminal domain of RABV P can be substituted using a 

recombinant NLS, a HA-NLS-P-1-188 construct was created. HA-P, the C-terminal truncation 

HA-P-1-188 and their respective HA-NLS-versions were co-transfected with Flag-ΔRIG-I and 

examined for their inhibitory abilities in IFN-promoter dependent reporter gene assays (Figure 

17C). HA-P-1-188 had no influence on IFN-β promoter induction, concurrent with previous 

observations. Conversely, HA-NLS-P-1-188 was able to interfere with ΔRIG-I mediated IFN-

reporter activity in a solid way, especially considering the relatively low expression level 

observed for this construct (see arrowhead in Figure 17C). This indicates that the P-CTD is mainly 

essential for the inhibitory function of RABV P because it contains a nuclear localization signal. 

In addition to reporter gene assays, HA-P, the NLS defect mutant P-R260A and HA-NLS-P-R260A, 

containing the recombinant SV40-NLS, were co-expressed with Flag-ΔRIG-I and Flag-IRF3 in order 

to examine IRF3 serine 396 phosphorylation as a marker of IRF3 activation (Figure 17D). The 

non-inhibitory P mutant HA-P-W186A (this RABV P mutant will be characterized in 4.2) was used 

as a negative control in this assay and displayed no inhibition of IRF3 phosphorylation. P-R260A 

was clearly significantly impaired in its ability to interfere with IRF3 S396 phosphorylation, 

whereas wild type HA-P, as well as both SV40-NLS fused constructs HA-NLS-P and HA-NLS-P-

R260, exhibited a strong inhibitory effect. Thus, the results obtained from the IRF3 

phosphorylation assays were in agreement with the data previously observed in reporter gene 

experiments. 

In addition to circumventing IFN-induction, RABV P is also able to suppress the expression of 

interferon-stimulated genes (ISGs). RABV P blocks IFN-signal transduction by binding and 

thereby preventing nuclear translocation of phosphorylated STATs (Brzózka et al., 2006; Vidy et 

al., 2005). Since P mutants defective in NLS activity could be shown to have impaired inhibitory 

abilities in regard to IFN induction, also a possible involvement of P nuclear trafficking in 

inhibition of IFN-signaling was examined. To this end, the NLS defective P mutants P-K214A and 

P-R260A as well as the SV40-NLS fused construct HA-NLS-P-R260A were examined for their 

ability to block IFN signal transduction after treatment with type I interferon using ISRE-
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promoter dependent dual luciferase assays (Figure 18). P-WAMA (P-W265A-M287A, created and 

characterized by Dr. D. Aberle), a mutant deficient in inhibiting IFN-signaling (unpublished data), 

was used as a negative control. P-K214A suppressed ISRE-promoter activity after interferon 

treatment equally to wild type P, while addition of an SV40-NLS to wild type P did not result in 

enhanced inhibition. P-R260A could be observed to be impacted by the mutation to some 

degree. However, in contrast to the deficiency observed in regard to IFN-induction, the defect 

could not be reversed by addition of a SV40-NLS. The RABV P mutant HA-P-W186A, which is 

deficient in inhibition of IFN-induction (characterized in 4.2), was not impaired in its ability to 

inhibit IFN-signaling. P-R260A might be impaired due to proximity of arginine 260 to tryptophan 

265 which is critical for STAT-binding and changed to alanine in the defective P-WAMA mutant. 

Taken together, these results suggest that nuclear localization of P is important for suppression 

of IRF3 activation, but rather not involved in inhibition of IFN-signaling. 

 

Figure 18: RABV P nuclear trafficking is not involved in the inhibition of JAK/STAT signaling. 

The RABV P-K214A mutant was not affected in the ability to suppress IFN-mediated ISRE-promoter activity, indicating 

that the RABV P CTD-NLS plays no role in inhibition of JAK/STAT signaling. HA-P-W186A was used as a control mutant 

that is only impaired in the inhibition of IFN-induction but not JAK/STAT signaling (this mutation will be characterized 

later in this thesis), while P-WAMA was used as a deficient negative control. Fusion of P constructs to a recombinant 

SV40-NLS rather had a negative on suppression. The phenotype of the P-R260A mutant might be readily explained 

with the proximity of R260 to residues which contribute to STAT-binding. HEK 293T cells were transfected with 

reporter plasmids (100 ng pISRE-FF/10 ng pTK-RL) and 200 ng plasmid DNA coding for the indicated RABV P constructs. 

Cells were treated with 100 units universal type I interferon (human recombinant IFN-α) per 24-well 6 h post-

transfection. Cells were lysed 24 h p. t. and subjected to dual luciferase assays in order to examine the ability of 

different P constructs to interfere with ISRE promoter activity. The bars represent the means and the error bars the 

standard deviations of biological duplicates. Cell lysates were examined by Western blotting in order to determine 

expression levels of the transfected constructs. 
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4.1.5. RABV P requires a functional NLS for inhibition of IFN-β induction 

Functional reporter gene and IRF3 phosphorylation assays indicated a crucial role of nuclear 

trafficking of RABV P in its ability to interfere with IFN induction. To support this, we examined 

the intracellular localization of P constructs with mutations in the C-terminal NLS (P-K214A, 

P-R260A), as well as the corresponding RABV P constructs fused to the recombinant SV40-NLS. 

Full length RABV P is normally enriched in the cytoplasm due to a strong N-terminal nuclear 

export signal (NES) (Pasdeloup et al., 2005). Therefore, leptomycin B (LMB) treatment was 

employed which was previously shown to inhibit CRM-1 dependent nuclear export of RABV P, 

revealing impaired nuclear localization in mutant P3 isoforms (Fornerod et al., 1997; Oksayan et 

al., 2012; Pasdeloup et al., 2005). Recently, it could be shown that the RABV P C-terminal NLS is 

also involved in nuclear trafficking of full length P1 and mediates IMPα2/IMPβ1-dependent 

nuclear import (Rowe et al., 2016). Subcellular localization of wild type RABV P, the NLS 

defective mutants P-K214A and P-R260A and their corresponding versions fused to SV40-NLS 

was examined with and without LMB treatment 3 h prior to fixation using confocal 

immunofluorescence imaging (Figure 19). Differential subcellular localization could be observed 

between non-treated cells and cells treated with LMB as well as between constructs with and 

without recombinant SV40-NLS. LMB treatment lead to a significant increase in nuclear 

localization in every case. The same is true for the P constructs fused to SV40-NLS. However, all 

SV40-NLS containing constructs showed a significantly stronger nuclear localization, 

demonstrating the effectivity of this sequence in combination with different P proteins. 

Unfortunately, no significant differences between wild type P and the K214A and R260A alanine 

substitution mutants could be observed under these experimental conditions. In order to 

quantify this impression, the ratio between nuclear fluorescence and cytosolic fluorescence 

(Fn/Fc) of the different P constructs was determined using the ImageJ software with the plugin 

“Intensity Ratio Nuclei Cytoplasm Tool” (Schneider et al., 2012). Five representative images were 

taken for every condition and subjected to Fn/Fc calculation. Higher values represent a stronger 

nuclear enrichment. The average results for every condition were plotted as bars with the 

standard deviation shown as error bars (Figure 20). Between HA-P, HA-P-K214A and HA-P-R260A 

(green bars) no significant difference was observed with or without LMB treatment, confirming 

the preceding observation. Differential localization was observed only between LMB 

treated/non-treated samples and constructs with (red bars) or without (green bars) SV40-NLS. 

This might be due to fact that RABV P is a relatively small protein with a molecular mass of 34 

kDa and therefore probably able to diffuse passively through the nuclear pores relatively fast 
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(Gorlich and Kutay, 1999). Consequently, it might be possible that the defect in nuclear 

localization of the P NLS-mutants is not visible because active nuclear import is overlaid by 

passive diffusion upon shutdown of nuclear export by LMB treatment. Since all SV40-NLS 

constructs almost completely localize to the nucleus upon LMB treatment, it can be assumed 

that the P C-terminal NLS is weaker in comparison to the SV40-NLS. 

 

Figure 19: A recombinant SV40-NLS strongly confers nuclear localization to RABV P fusion constructs. 

While the effect of the recombinant SV40-NLS on localization is clearly visible, RABV P mutants P-K214A and P-R260A 

show no differential subcellular localization upon LMB treatment. HeLa cells previously seeded on microscope slides in 

24-wells were transfected with 400 ng plasmid DNA coding for the indicated P constructs. Cells were treated with 50 

nM leptomycin B (LMB) for 3 h before fixation 24 h post-transfection. Cells were stained with the indicated antibodies 

and TO-PRO-3 and monitored by confocal laser scanning microscopy.  
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Figure 20: RABV P mutations K214A and R260A cause no apparent difference in localization. 

Of the experiment depicted in Figure 19 for every condition the ratio between nuclear fluorescence and cytosolic 

fluorescence Fn/Fc of the different P constructs was calculated using ImageJ with the “Intensity Ratio Nuclei Cytoplasm 

Tool”. The bars show the means and the errors the standard deviations of Fn/Fc ratios of five representative pictures. A 

log2 scale was employed in this figure for a better simultaneous illustration of very low and very high values. 

In order to examine whether a difference in localization between NLS mutants and wild type 

RABV P can be detected in constructs which are big enough to prevent significant passive 

diffusion through the nuclear pores, tagRFP-tagged P-83-297 (P4) was used. Constructs 

comprising RABV P residues 83-297 have been shown to be able to inhibit IFN-induction before 

(4.1.2). In contrast to tagRFP-P4, the mutant proteins tagRFP-P4-K214A and tagRFP-P4-R260A 

were confirmed to be significantly impaired in inhibition of IFN-promoter activity in luciferase 

assays (Figure 21B, experiment conducted by H.-S. Luu during his research internship under 

supervision of the author of this thesis), comparable to the previously examined HA-tagged full 

length P constructs. Exhibiting a molecular mass of about 51 kDa, tagRFP-P4 is assumedly too big 

for efficient passive diffusion, since even ovalbumin, which has a molecular mass of 44 kDa, 

could be shown previously to diffuse to the nucleus only at a very slow negligible rate (Bonner, 

1975; Gorlich and Kutay, 1999). Therefore, subcellular localization experiments were repeated 

with the RABV P constructs tagRFP-P4 (wild type) and the CTD-NLS mutants tagRFP-P4-K214A and 

tagRFP-P4-R260A with and without LMB treatment. Again, at least five pictures were taken from 

each condition with typical representatives depicted in Figure 21A. While a nuclear enrichment 

upon LMB treatment is visible for tagRFP-P4, both mutants are significantly impaired in nuclear 

localization. This observation was confirmed by calculating Fn/Fc values for all conditions  

(Figure 21C).  
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Figure 21: tagRFP-P4 NLS mutants are substantially impaired in regard to nuclear accumulation. 

A) LMB treatment reveals the impaired ability of tagRFP-P4-K214A and tagRFP-P4-R260A to be actively transported to 

the nucleus. HeLa cells previously seeded on microscope slides in 24-wells were transfected with 400 ng plasmid DNA 

coding for the indicated P constructs. Cells were treated with 50 nM leptomycin B (LMB) for 3 h before fixation 24 h 

post-transfection. Cells were stained with TO-PRO-3 and monitored by confocal laser scanning microscopy. B) Dual 

luciferase assays show that the RABV P mutants tagRFP-P4-K214A and tagRFP-P4-R260A are strongly impaired in 

regard to inhibition of ΔRIG-I mediated IFN-β reporter activity, as compared to tagRFP-P4. HEK 293T cells were 

transfected with reporter plasmids (100 ng p125-FF/10 ng pTK-RL) and the indicated constructs (100 ng Flag-ΔRIG-I, 

50 ng tagRFP-P4 constructs plasmid DNA). Cells were lysed 24 h p. t. and subjected to dual luciferase assays in order to 

examine the ability of different P constructs to interfere with ΔRIG-I-mediated IFN-β promoter activity. The bars 

represent the means and the error bars the standard deviations of biological duplicates. C) The ratio between nuclear 

fluorescence and cytosolic fluorescence Fn/Fc of the different P constructs was calculated using ImageJ with the 

“Intensity Ratio Nuclei Cytoplasm Tool” for every condition. The bars show the means and the errors the standard 

deviations of Fn/Fc ratios of five representative pictures. 
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tagRFP-P4-R260A is more significantly excluded from the nucleus than wild type tagRFP-P4, even 

without addition of LMB, and hardly responds to LMB treatment. tagRFP-P4-K214A is less 

impaired in regard to nuclear accumulation compared to tagRFP-P4-R260A upon LMB treatment, 

but still exhibits a significant difference to wild type tagRFP-P4. In general, nuclear enrichment 

upon LMB treatment is much less prominent for tagRFP-P4 than for wild type HA-P examined 

previously. This discrepancy might be attributed to the different sizes of the protein constructs 

and their ability to passively diffuse to the nucleus in addition to active transport. Thus, using the 

tagRFP-P4 constructs, the difference in active nuclear transport between wild type P and K214A 

and R260A mutants could be confirmed. Previous studies in the literature characterizing these 

mutations also employed RABV P versions tagged with fluorescent proteins like eGFP, thus also 

made use of constructs which are in size above the threshold for passive diffusion (Oksayan et 

al., 2012; Pasdeloup et al., 2005; Rowe et al., 2016).  

Taken together, the results described in 4.1.4 and 4.1.5 provide some evidence that active 

nuclear translocation by a functional NLS is an essential requirement for inhibition of RIG-I 

mediated IFN induction by RABV P.  
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4.2. A novel HSP70 binding motif in RABV P is essential for 

inhibition of IFN-induction 

RABV P residues 176-186 (absent in the PΔInd1/2 deletion mutant) could be identified previously 

as crucial for inhibition of IFN-induction after RLR activation and TBK1 overexpression. In the 

viral context, these residues were found to be involved in viral pathogenicity (Rieder et al., 

2011). However, no mechanistic role or potential interaction partner for this sequence could be 

identified so far. In order to obtain new insights about this RABV P region and to elucidate 

whether the inhibitory deficiency in PΔ176-186 can be attributed to loss of a specific binding 

partner, several pulldown studies were conducted by co-immunoprecipitation (Co-IP) using full 

length RABV P constructs as well as peptide constructs of different length encompassing 

residues 176-186. 

4.2.1. RABV P co-precipitates HSP70 family members 

HA-GST-tagged RABV P peptides of different length were used in an attempt to identify a 

possible molecular binding partner associated with the residues 176-186 lacking in PΔInd1/2. 

Therefore, the constructs HA-GST-P-130-188, HA-GST-P-168-188 and HA-GST-P-176-188, 

previously examined in regard of their ability to interfere with TBK1 and ΔRIG-I overexpression 

mediated IFN-β induction, were used in Co-IP experiments employing anti-HA affinity matrix. We 

could not exclude that P interacts with a host cell protein in an activation dependent manner, 

like the binding to activated STATs after IFN-signaling (Brzózka et al., 2006). Therefore, we 

optionally stimulated cells with SeDI treatment, to induce RLR-mediated innate immune 

signaling in the pulldown assays (Johnston, 1981; Strahle et al., 2006). Empty vector transfection 

and expression of HA-GST were used as controls for specificity. Pulldown fractions of the 

experiment were visualized by silver staining on a SDS-PAGE gel (Figure 22A).  

A prominent band with the size of approximately 70 kDa (white arrowhead) could be detected 

with and without SeDI treatment in all GST-P fusion peptide pulldowns but not in the control 

fractions. The 70 kDa gel bands were excised and examined by mass spectrometry (analysis 

conducted by Dr. T. Fröhlich, Arnold Lab, Gene Center, LMU). The peptides detected in the band 

could be assigned to HSP70 family members. To confirm the data obtained from mass 

spectrometry, full length HA-P was used together with HA-GST and EV transfection as controls in 

Co-IP experiments. Using an antibody with specific reactivity towards inducible HSP70 family 

members (tested previously, data not shown), input and pulldown fractions were examined for 
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co-immunoprecipitation of endogenous HSP70 (Figure 22B). Association of RABV P with dynein 

light chain LC8-type 1 (DLC8) (Jacob et al., 2000) confirmed success of the pulldown experiment. 

HSP70 co-precipitated with RABV P but not the controls, confirming the association detected in 

MS analysis. 

 

Figure 22: RABV P interacts specifically with HSP70 depending on P residues 176-186. 

A) Silver staining of protein fractions separated by SDS-PAGE reveals that a protein of a size of approximately 70 kDa 

(white arrowhead) is specifically co-precipitated by different P-derived fusion peptides. HEK 293T cells in 10 cm dishes 

were transfected with 20 µg plasmid DNA coding for the indicated constructs, lysed 24 h p. t. and subjected to Co-IP 

experiments. The pulldown fractions were examined by silver staining of SDS-PAGE gels. B) Co-IP and Western blotting 

show that endogenous HSP70 co-precipitates with full length HA-P. 293T cells were transfected with 3 µg plasmid DNA 

coding for the indicated constructs, lysed 24 h p. t. and subjected to Co-IP experiments. Samples from input and 

pulldown fractions were examined by SDS-PAGE followed by Western blotting and immunostaining with the indicated 

antibodies. C) Flag-P co-precipitates with HA-HSP70-1A. 293T cells were transfected with 2 µg plasmid DNA coding for 

HA-HSP70-1A and 2 µg Flag-P constructs. Cells were lysed 24 h p. t. and subjected to Co-IP experiments. Pulldown 

samples were examined by SDS-PAGE followed by Western blotting and immunostaining with the indicated 

antibodies. D) In contrast to HA-P and a HA-GST-P-176-188 fusion construct, HA-PΔ176-186 fails to co-precipitate 

HSP70. 293T cells were transfected with 2 µg plasmid DNA coding for Flag-HSP70-1A and 2 µg of the indicated P 

constructs. Cells were lysed 24 h p. t. and subjected to Co-IP experiments. Pulldown samples were examined by SDS-

PAGE followed by Western blotting and immunostaining with the indicated antibodies. 

To examine whether the P–HSP70 interaction can also be shown in a reciprocal way, HA-affinity 

matrix pulldowns using HA-HSP70-1A (HSPA1A) and Flag-P were conducted (Figure 22C). HA-
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HSP70-1A was able to co-precipitate Flag-P very efficiently, showing that the association can be 

observed in Co-IP experiments regardless of which protein is immobilized on the matrix during 

the procedure. 

In the pulldown experiment shown in Figure 22A all fractions with P-derived HA-GST-fusion 

peptides contain a similar 70 kDa band identified as HSP70. This is also true for the 13 amino 

acids long fusion construct HA-GST-P-176-188, what raised the questions whether this short 

sequence might alone be responsible for mediating association with HSP70. Consequently, the 

fusion peptide HA-GST-P-176-188 and the inhibition defective HA-PΔ176-186 construct, which 

has a deletion nearly identical to the peptide, and wild type HA-P were compared in regard to 

their ability to co-precipitate endogenous HSP70 using again HA-GST and EV transfection as 

controls. In fact, HA-GST-P-176-188 exhibited an even stronger association with HSP70 than wild 

type HA-P (Figure 22D, black arrowhead). In contrast, HA-PΔ176-186 did not show any 

detectable association with HSP70, while pulldown efficiency was again confirmed by the co-

precipitation of DLC8. Taken together, these results provide evidence that residues 176-188 are 

alone sufficient and essential to mediate association of RABV P with HSP70. This is of some 

significance, since HA-PΔ176-186 has also been shown to be deficient in regard to inhibition of 

IFN-induction, revealing a correlation between the inhibitory capacity of RABV P and HSP70 

association. 

The heat shock 70 kDa protein family consists of heat shock inducible members that have a 

crucial cytoprotective function under cellular stress conditions. Also under normal conditions 

these molecular chaperones contribute to correct folding of de-novo synthesized proteins 

(Mayer and Bukau, 2005). In addition, HSP70s have a role in assembly and disassembly of native 

protein complexes as well as in protein trafficking across certain cellular membranes (Chappell et 

al., 1986; Matlack et al., 1999; Okamoto et al., 2002). HSP70 binds to short stretches of 

approximately seven amino acids with a preference for hydrophobic and basic residues (Flynn et 

al., 1991; Gragerov et al., 1994; Zhu et al., 1996). In order to exclude that HA-GST-P-176-188 is 

only being bound by HSP70 due to the chemical properties of its amino acid residues, a HA-GST-

peptide containing the residues of P-176-188 in a random order was created (176-

QIASGPPALEWSA-188 to APIAAQLWSEPGS). This was achieved by cloning artificially synthesized 

DNA oligo nucleotides coding for the intended amino acid sequence into the HA-GST expression 

vector. To obtain new information regarding the minimal HSP70 binding motif, another 

P-derived peptide further N-terminally shortened by four amino acids was created (HA-GST-P-

180-188). The scrambled construct (“HA-GST-scr. peptide” in the figure) and HA-GST-P-180-188 
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were compared to the other P constructs previously examined (Figure 22D) in regard to their 

ability to associate with Flag-tagged HSP70 in Co-IP experiments (Figure 23).  

 

Figure 23: Binding of RABV P-derived peptides to HSP70-1A is sequence specific. 

While HA-P and the P-derived fusion constructs HA-GST-P-176-188 and HA-GST-P-180-188 co-precipitate HSP70-1A, 

no interaction can be detected for a HA-GST-peptide containing the RABV P residues 176-188 in a randomized order. 

HEK 293T cells were transfected with 2 µg plasmid DNA coding for HA-HSP70-1A and 2 µg of different P constructs. 

Cells were lysed 24 h p. t. and subjected to Co-IP experiments. Pulldown samples were examined by SDS-PAGE 

followed by Western blotting and immunostaining with the indicated antibodies. 

Notably, the HA-GST-P-180-188 fusion peptide was still able to co-precipitate HSP70. Conversely, 

the scrambled version of HA-GST-P-176-188 failed completely to associate with HSP70, 

comparable to HA-PΔ176-186. This demonstrates that RABV P amino acids 180-188 are sufficient 

to mediate interaction with HSP70. Moreover, the interaction is sequence specific, since a 

scrambled version of HA-GST-176-188 which contains the same amino acids in a different order, 

shows no association to HSP70. This underlines the importance of RABV P region 176-186 and 

identifies HSP70 as molecular binding partner of this motif. 

Many different strains of rabies virus are available and are currently being used in research. 

Since viral assays in the Conzelmann group are usually conducted using the attenuated, vaccine-

strain derived SAD-L16 clone (Schnell et al., 1994), also experiments studying single viral proteins 

were mainly carried out using the L16 variant. In the experiments shown above, it was indicated 

that L16-P is associated with HSP70 family members in Co-IP experiments. In order to put these 

results in a wider context, the ability of RABV P to associate with HSP70 was also examined for 

other rabies virus strains. The phosphoproteins of Thailand-(THA) and CVS-strain were chosen 

for these assays. THA-strain is a wild type virus isolated from a human case that occurred after a 

dog bite in Thailand. A full length rescue construct for THA-strain rabies virus was kindly 

provided by the lab of Hervé Bourhy (Institut Pasteur, France). CVS-strain (challenge virus 

standard) is a fixed laboratory strain with lethal pathogenicity frequently used for studying viral 

infection employing in vivo models (Park et al., 2006). Together with SAD-L16, which is a cell 

culture attenuated vaccine strain, three very different types of rabies viruses were covered. HA-
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tagged versions of the Thailand-strain phosphoprotein (HA-THA-P) and of CVS-strain P (HA-CVS-

P) were created in order to examine whether they are also capable of associating with HSP70. 

The constructs were co-transfected with HA-L16-P as positive control and the binding deficient 

HA-L16-PΔ176-186 deletion mutant as negative control (Figure 24). Furthermore, the RABV P 

mutant HA-P-W186A was created and included in this assay, to examine whether the exchange 

of a single amino acid within the essential P region 176-186 is also able to impair binding 

comparable to a complete deletion. Tryptophan 186 was chosen due to its high conservation 

among different Lyssavirus species phosphoproteins and its outstanding chemical properties 

within the ΔInd motif. 

 

Figure 24: RABV P proteins of different strains interact with HSP70 and HSC70. 

The rabies virus phosphoproteins of the L16, THA and CVS-strain equally co-precipitate HSP70 and HSC70. In contrast, 

no binding can be detected for HA-L16-PΔ176-186 and the single alanine substitution mutant HA-L16-P-W186A, 

identifying W186 as a critical residue for the observed interaction. HEK 293T cells were transfected with 3 µg plasmid 

DNA coding for the indicated constructs, lysed 24 h p. t. and subjected to Co-IP experiments. Samples from input and 

pulldown fractions were examined by SDS-PAGE followed by Western blotting and immunostaining with the indicated 

antibodies. 

The HA-tagged rabies virus proteins of L16, THA and CVS strain were equally able to associate 

with endogenous HSP70 (HSPA1A/1B), whereas L16-PΔ176-186 failed to do so as observed 

before. In addition to HSP70, Western blots were also stained for HSC70 (HSPA8) using a specific 

antibody. Cross-reactivity between epitopes for the employed HSP70 and HSC70 antibodies was 

excluded by separate experiments (data not shown).  In comparison to HSP70, HSC70 associated 

equally well with the phosphoproteins of different rabies virus strains. Also the HA-GST fusion 

peptides HA-GST-P-176-188 and HA-GST-180-188 interacted equally well with both HSP70 family 
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members. Strikingly, HA-L16-W186A showed the same deficiency in regard to association with 

HSP70 as the deletion mutant HA-L16-PΔ176-186. This strongly indicates that RABV P tryptophan 

186 is an essential amino acid for the observed interaction. 

4.2.2. P–HSP70 association correlates with inhibitory function 

RABV P could be shown above to co-precipitate HSP70, while both mutants PΔ176-186 and 

P-W186A failed to do so. Since PΔ176-186 is deficient as well in inhibition of IFN-induction, a 

correlation between binding of HSP70 and suppressive capacity was suggested. Therefore, also 

HA-P-W186A was assayed in regard to inhibitory function in IFN-β promoter dependent reporter 

gene assays and compared to HA-P and HA-PΔ176-186 (Figure 25A). HA-P-W186A was found to 

be impaired in its suppressive capacity equally to the HA-PΔ176-186 deletion mutant. The 

observed defect of both mutant proteins was not due to impaired expression levels, since all P 

constructs including wild type HA-P were equally well expressed. This confirms that RABV P 

residue W186 is crucially involved in HSP70 association and inhibitory function alike. 

Furthermore, different RABV P deletion mutants HA-PΔ176-181 (ΔInd1), HA-PΔ182-186 (ΔInd2) 

and HA-PΔ176-186 (ΔInd1/2) (previously described by Rieder et al. (2011)) were compared to 

HA-P-PA-WA (P181A-W186A), which contains an amino acid substitution in the ΔInd1 region 

(P181A) and another in the ΔInd2 region (W186A). In IFN-β dependent reporter gene assays 

(Figure 25B), all mutant constructs were equally impaired in their inhibitory abilities, underlining 

the reported importance of the ΔInd region (Rieder et al., 2011). The same P constructs were 

assayed in addition for their ability to co-precipitate HSP70 in Co-IP experiments (Figure 25C). All 

RABV P mutants examined in this assay displayed a significant deficiency to co-precipitate 

HSP70. Only HA-PΔ176-181 displayed residual binding to HSP70, indicating that the ΔInd2 

(182-186) region is more important for the observed interaction. This is concurring with the 

previous finding that HA-GST-P-180-188 is sufficient for co-precipitation of HSP70 (Figure 22D) 

and the fact that the essential residue W186 is also located in the ΔInd2 stretch. Moreover, the 

correlation of HSP70 binding and RABV P inhibition is further supported by these findings. 
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Figure 25: A HSP70 binding motif is essential for the suppressive function of RABV P. 

Different RABV P mutants with deletions or alanine substitutions (P-W186A, P-P181A-W186A) in the region 176-186 

exhibit a deficiency in regard to the inhibition of ΔRIG-I mediated IFN-reporter activity. Experimental conditions for 

both A) and B): HEK 293T cells were transfected with reporter plasmids (100 ng p125-FF/10 ng pTK-RL) and the 

indicated constructs (100 ng Flag-ΔRIG-I, 200 ng P constructs plasmid DNA). Cells were lysed 24 h p. t. and subjected 

to dual luciferase assays in order to examine the ability of different P constructs to interfere with ΔRIG-I-mediated 

IFN-β promoter activity. The bars represent the means and the error bars the standard deviations of biological 

duplicates. Cell lysates were examined by Western blotting in order to determine expression levels of the constructs 

used. C) The binding of RABV P to HSP70 critically depends on residues in the region 176-186. HEK 293T cells were 

transfected with 3 µg plasmid DNA coding for the indicated constructs, lysed 24 h p. t. under native conditions and 

subjected to Co-IP experiments. Samples from input and pulldown fractions were examined by SDS-PAGE and Western 

blotting and subsequently immunostained with the indicated antibodies. 

4.2.3. Mapping of the RABV P–HSP70 interaction 

In order to further map the HSP70 association motif of RABV P on the C-terminal side with single 

amino acid precision, three different C-terminal RABV P truncation constructs differing in length 

only by one amino acid were examined. We hypothesized that binding to HSP70 might correlate 

Flag-∆RIG-I

m
oc

k
Fl

ag
-∆

RI
G

-I

H
A

-P
H

A
-P

∆
17

6-
18

6
H

A
-P

∆
17

6-
18

1
H

A
-P

∆
18

2-
18

6
H

A
-P

-P
A-

W
A

0

100

200

300

400

500

600

700

 
IF

N
-β

 p
ro

m
o

te
r 

a
ct

iv
it

y,

p
1

2
5

-L
u

c.
 [

fo
ld

 in
d

u
ct

io
n

]

m
oc

k
Fl

ag
-∆

RI
G

-I

H
A

-P
H

A
-P

∆
17

6-
18

6
H

A
-P

-W
18

6A

0

200

400

600

800

 

IF
N

-β
 p

ro
m

o
te

r 
a

ct
iv

it
y,

p
1

2
5

-L
u

c.
 [

fo
ld

 in
d

u
ct

io
n

]

α-HA

Flag-∆RIG-IA

α-HA

B

C

α-HA

α-Flag

Flag-HSP70-1A

input HA-Pulldown



                                                                                                               4. Results 

 

 
86       

 

with inhibition of TBK1 overexpression by RABV P C-terminal truncations previously observed 

(Figure 12A). To validate this hypothesis, HA-P-1-188, HA-P-1-187 and HA-P-1-186 were 

examined for their ability to co-precipitate HSP70 in Co-IP assays (Figure 26A). Although 

expression of C-terminal deletion constructs was in general very low compared to full length P 

controls, even the shortest P-1-186 was functional in co-precipitating HSP70. This indicates that 

the crucial residues within the HSP70 binding motif in RABV P range up to W186, which has been 

identified to be essential for inhibition of IFN-induction before (Figure 25A).  

A RABV P peptide starting with amino acid 180 has been shown to interact with HSP70 before 

(Figure 24). Taking into account the results observed for the C-terminal truncations in regard to 

HSP70 association, the new HA-GST fusion constructs HA-GST-P-180-186 and HA-GST-P-180-185 

were created, in order to obtain the shortest RABV P derived peptide able to associate with 

HSP70. HA-GST-P-180-185 was presumed to be binding deficient due to absence of the central 

residue W186. 

 

Figure 26: RABV P region 180-186 is sufficient to mediate an interaction with HSP70. 

A) and B) 293T cells were transfected with 3 µg plasmid DNA coding for the indicated P constructs and lysed 24 h p. t. 

under native conditions. Subsequently, the lysates were subjected to Co-IP experiments and samples from input and 

pulldown fractions were subjected to by SDS-PAGE. After Western blotting, specific protein bands were visualized 

using the indicated antibodies. 

The HA-GST fusion constructs P-176-188, P-180-188, P-180-186 and P-180-185 were therefore 

subjected to Co-IP analysis and examined for their ability to co-precipitate HSP70 (Figure 26B). 
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HA-GST-P-176-188, HA-GST-P-180-188 and HA-GST-P-180-186 associated strongly with HSP70, 

whereas HA-GST-P-180-185, being only truncated by one more residue (W186), failed 

completely to bind HSP70. This provides good evidence that the seven amino acids long 

RABV P-derived peptide with the sequence “GPPALEW” (HA-GST-P-180-186) is the minimal 

binding motif in the phosphoprotein that is alone sufficient for mediating the interaction.  

With the binding motif for HSP70 in the rabies virus phosphoprotein identified, we wanted to 

determine which region or domain of HSP70 mediates the observed interaction. Therefore, 

different Flag-tagged HSP70-1A and HSC70 truncation mutants were investigated (full length 

HSC70 structure is depicted in Figure 27A). HSP70 is the major inducible heat shock protein in 

mammalian cells and is encoded by the nearly identical paralogs HSP70-1A and HSP70-1B. In 

contrast, HSC70 (heat shock cognate 71 kDa protein, HSPA8) is constitutively expressed and is an 

essential housekeeping factor involved in many different cellular functions under normal 

conditions. HSP70 family members are characteristically comprised of a nucleotide binding 

domain (NBD), containing the ATPase function of the protein, and a substrate binding domain 

with an adjacent “lid” region.  

 

Figure 27: Different HSP70 truncation mutants used in pulldown studies. 

Schematic representations of the structure of HSP70 and different HSP70 truncation mutants based on the structure 

of bovine HSC70, for which a crystal structure comprising both domains is available (Jiang et al. (2005), PDB ID 1YUW; 

illustration with Cn3D by NCBI). Members of the HSP70 family consist of two separate domains, the nucleotide binding 

domain (NBD) and substrate binding domain (SBD) which are connected by a short linker (green). The NBD can be 

further divided into subdomain I and II (depicted in blue and turquoise). The SBD is comprised of a core of β-sheets 

with an adjacent α-helical region, referred to as “lid” (depicted in light red). The absent residues in the truncation 

mutants were just hidden, therefore these representations are based on the full length protein and do not represent 

authentic structural data.  

Upon substrate binding, the ATPase function of HSP70 is triggered and enhanced by HSP40 co-

chaperones. Hydrolysis of ATP to ADP leads to a conformational switch that closes the lid on the 

Subdomain I

Subdomain II

D

HSP70

HSP70394-511

NBD
SBD

554A

HSP70362-511

C

HSP70190-511

B

1



                                                                                                               4. Results 

 

 
88       

 

substrate, resulting in a stronger binding of the client. Bound substrates can be released by 

replacement of ADP with a new ATP molecule, a process that is modulated by nucleotide 

exchange factors (NEFs), another class of important HSP70 cofactors. In order to identify the 

HSP70 domain which is responsible for the interaction with RABV P, separate constructs coding 

for the Flag-tagged NBD (residues 1-385) and SBD (residues 394-641) of HSP70 were created and 

assayed for their ability to interact with RABV P in Co-IP experiments (Figure 28). Flag-tagged 

versions of the NBD and SBD of HSP70 could successfully be expressed individually. Whereas the 

NBD shows no binding (black arrowhead), the SBD co-precipitates with HA-P (gray arrowhead), 

however to a lesser degree than full length HSP70-1A. This indicates that the SBD is essential and 

sufficient for binding, but that other parts of the protein might contribute to a considerably 

stronger interaction as observed for full length HSP70. 

 

Figure 28: RABV P interacts with the SBD but not the NBD of HSP70-1A. 

While HA-P co-precipitates full length HSP70-1A very efficiently, the SBD alone is only bound to a lower extent (gray 

arrowhead), whereas no interaction is apparent for the NBD (black arrowhead). HEK 293T cells were transfected with 

the indicated expression plasmids (2 µg HSP70 constructs, 2 µg HA-P) and lysed 24 h p. t. under native conditions. The 

lysates were subsequently subjected to Co-IP experiments and samples from input and pulldown fractions were 

subjected to by SDS-PAGE. After Western blotting specific protein bands were visualized using the indicated 

antibodies. 

To identify which residues of HSP70 are essential to confer the strong interaction detected for 

full length HSP70, further truncation mutants were created. For both HSP70 and HSC70 

constructs containing residues 190-511 were created, lacking subdomain I (aa 1-189) of the 

nucleotide binding domain (NBD) and the C-terminal lid, which is a part of the substrate binding 

domain (SBD) (Figure 27B). Truncation constructs and full length versions of both heat shock 
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proteins were assayed for their ability to associate with HA-GST-P-176-188 in Co-IP experiments 

using anti-HA affinity matrix (Figure 29A).  

Both truncation versions of HSP70 and HSC70 retained their ability to co-precipitate with the 

RABV P derived peptide. Oddly, the Flag-tagged full length HSC70 construct displayed only 

residual interaction, whereas endogenous untagged HSC70 has been shown before to interact 

with RABV P equally well compared to HSP70. This was also indicated by mass spectrometry 

analysis of whole pulldown fractions (data not shown). The differential binding observed might 

be due to the N-terminal tag. HSP70 and HSC70 are in general well conserved (86 % sequence 

identity), but a number of amino acids at the N-terminus differ significantly and might account 

for the differential binding of N-terminal tagged constructs (MAKAAAI.. for HSP70 and 

MSKGPAV.. for HSC70). This is supported by the fact that the further N-terminally truncated 

HSC70 construct Flag-HSC70-190-511 is again able to interact with the P-peptide. In summary, 

these findings indicate that subdomain I of the NBD as well as the lid region of HSP70 proteins 

are not involved in interaction with RABV P. Since HSP70-190-511 comprises a truncated NBD, 

lacking the central catalytically important lysine 73, it is non-functional in regard to ATP 

hydrolysis (O'Brien et al., 1996). For this reason, ATPase function of HSP70 supposedly plays no 

role in the mode of interaction. 

 

Figure 29: RABV P-176-188 co-precipitates the SBD (residues 394-511) of HSP70. 

While HA-GST-P-176-188 co-precipitates full length HSP70 and an HSP70-1A-190-511 truncation construct very 

efficiently, the SBD (394-511, the core region lacking the lid) is co-precipitated to a lesser extent. For an overview over 

the constructs used see Figure 27. Experimental conditions for both A) and B): 293T cells were transfected with the 

indicated expression plasmids (2 µg HSP70 constructs, 2 µg HA-GST-P-176-188) and lysed 24 h p. t. under native 

conditions. The lysates were subsequently subjected to Co-IP experiments and samples from input and pulldown 
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fractions were subjected to SDS-PAGE. After Western blotting specific protein bands were visualized using the 

indicated antibodies. 

Since HSP70-1A-190-511 was still fully able to interact with HA-GST-P-176-188, additional 

truncations were created to elucidate the minimal binding site. In Flag-HSP70-1A-362-511 the 

N-terminal NBD is further truncated, with only the last helix before the linker to the SBD 

remaining (Figure 27C). Flag-HSP70-1A-394-511 only contains the SBD of HSP70-1A beginning in 

the linker region (Figure 27D). Both constructs were created lacking the lid region, because these 

residues have been shown before to be nonessential for the interaction. Full length Flag-

HSP70-1A, as well as the truncations Flag-HSP70-190-511, Flag-HSP70-362-511 and Flag-HSP70-

394-511 were assayed for their ability to co-precipitate with HA-GST-P-176-188 (Figure 29B). 

Even the smallest construct Flag-HSP70-394-511, consisting only of the core SBD without the lid 

region, was able to associate with the P-derived peptide. However, Flag-HSP70-190-511 

exhibited a stronger interaction. This provides some evidence that RABV P interacts with the 

substrate binding domain of HSP70 family members, independently of the lid. Additionally, these 

observations suggest that HSP70 NBD subdomain II might stabilize the interaction, since 

interaction of HA-P-GST-176-188 is significantly stronger with HSP70-190-511 compared to Flag-

HSP70-362-511 and Flag-HSP70-394-511. 

4.2.4. Recombinantly purified P-constructs co-precipitate HSP70 

Previously in this thesis, an interaction between HSP70 and RABV P residues 180-186 was 

described. This association was, however, observed in Co-IP experiments with overexpressed 

proteins in a human cell line. Therefore, an indirect interaction or mode of association requiring 

additional cofactors could not be excluded. We wanted to elucidate whether recombinantly 

expressed P derived peptides are able to co-precipitate HSP70 from cell lysate or in vitro, to 

provide some evidence for a direct interaction between the proteins. 

For recombinant expression and purification from E. coli, HA-(H6)2-GST-fusion constructs were 

cloned into the bacterial expression vector pET28a. This construct was created to comprise an 

HA-tag for detection and purification using anti-HA affinity matrix, two His6-tags for purification 

from bacteria and a GST tag for stabilization (schematic representation in Figure 31A). Full length 

P, P-176-188 and the scrambled version of the P-176-188 peptide, which has been shown to be 

unable to associate with HSP70 (Figure 23), were fused to this construct. The proteins were 

expressed and purified from E. coli as described in the Methods section of this thesis (3.2.12) 

and success of purification was validated by SDS-PAGE. Samples of elution fractions E1 - E3 of 
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the purifications were separated on a gel and stained with colloidal coomassie as shown in 

Figure 30. The fusion peptides HA-(H6)2-GST-P-176-186 as well as its scrambled version with a 

size of 32 kDa could be stably expressed and purified with a good yield. The full length RABV P 

fusion construct HA-(H6)2-GST-P (64 kDa) could also be expressed and purified, however to a 

lower concentration compared to the fusion peptides and containing more by-products. The 

smaller fragments in the full length P elution fractions might be bacterial contaminations binding 

to P, or C-terminal P degradation products still containing the N-terminal affinity tag, since they 

also strictly co-purify with the main product. The latter seems more likely, since RABV P has been 

reported previously to be prone to proteolysis due to the presence of intrinsically disordered 

regions (Mavrakis et al., 2004). 

 

 

Figure 30: Elution fractions of different P constructs purified from E. coli. 

The indicated proteins were expressed in E. coli and purified as described in 3.2.12. Samples of the elution fractions 

E1 – E3 for each protein were analyzed by SDS-PAGE and colloidal coomassie staining. 

HA-(H6)2-GST-P-176-186 as well as the scrambled version were first used in order to elucidate 

whether a recombinantly expressed, short RABV P derived peptide is able to co-precipitate 

HSP70 from 293T cell lysate. Therefore, anti-HA affinity matrix was incubated in Co-IP buffer 

with an excess of the corresponding elution fractions of the bacterial purification. After removal 

of unbound proteins by several washing steps, 293T cell lysate was added and the normal Co-IP 

protocol was conducted (Figure 31B). Cellular HSP70 co-precipitated well with the recombinantly 

expressed HA-(H6)2-GST-P-176-186, whereas only background level association could be 

observed for the HA-(H6)2-GST-Scr.-peptide. This shows that a recombinant RABV P derived 

peptide is able to co-precipitate HSP70 from cell lysates.  

In order to obtain evidence on the mode of interaction between HSP70 and RABV P, in vitro 

pulldowns were conducted using the RABV P proteins and peptides previously purified and 

recombinant human HSP70 purchased from StressMarq. Again, the different RABV P 
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HA-(H6)2-GST fusion proteins P-176-188, P-Scr.-peptide and full length P were incubated with 

HA-affinity matrix. After removal of unbound proteins by three washing steps, 4 µg of 

recombinant HSP70 per sample were taken up in Co-IP buffer and incubated with the protein 

loaded matrix (Figure 31C, input). 

 

Figure 31: RABV P peptides purified from E. coli interact with HSP70. 

A) Schematic representation of the HA-(H6)2-GST-fusion constructs used for bacterial expression. B) A RABV P-derived 

fusion peptide containing residues 176-188 co-precipitates HSP70 from HEK 293T cell lysate, in contrast to the 

scrambled negative control construct. Samples from the corresponding elution fractions of the bacterial purifications 

were incubated with HA-affinity matrix. As shown in the “SN pre-incubation” panel the recombinant proteins were 

used in excess. After washing, 293T cell lysate was added, followed by conduction of the standard Co-IP protocol. 

C) Purified full length RABV P and a P-176-186 fusion protein are able to co-purify recombinant human HSP70. A 

purified fusion peptide containing RABV P residues 176-188 in a randomized order was used as negative control. 

Samples from the corresponding elution fractions of the bacterial purifications were incubated with HA-affinity matrix. 

After removal of unbound proteins by three washing steps, the matrix was incubated with 4 µg of recombinant human 

HSP70. Subsequently, the standard Co-IP protocol was conducted. 

While only minor background binding could be detected for empty matrix control (no pre-

incubation with HA-tagged protein) and the scrambled P-peptide, P-176-186 and full length P 

were both able to interact with HSP70 (Figure 31C, HA-Pulldown). This provides some evidence 

for a direct interaction between RABV P region 176-188 and HSP70, because no other eukaryotic 

proteins that might mediate association are present in this in vitro setting. The observed 

interaction could be shown to be sequence specific for the identified residues, since the 

scrambled version of the P-derived peptide failed to associate with HSP70, equally to Co-IP 

experiments conducted previously employing co-expression of constructs in HEK 293T cells. 
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4.2.5. The mutant viruses SAD-L16-P-W186A and P-K214A induce IFN 

The rabies virus phosphoprotein mutants P-W186A and P-K214A have been shown before in this 

thesis to be deficient in inhibiting interferon induction. We wanted to further elucidate whether 

this effect can also be observed in the viral context. Therefore, the corresponding mutations 

were inserted into the P gene of the full length virus rescue construct pSAD-HH-L16-SC (Ghanem 

et al., 2012). Using these constructs, recombinant rabies virus could be successfully rescued as 

described in the methods section of this thesis (3.2.13). Cloning of the viral full length rescue 

constructs and rescue of SAD-L16-P-K214A were conducted in cooperation with Dr. D. Aberle. 

Supernatants from rescue experiments were titrated and used to infect BSR-T7 cells with a 

defined MOI of 0.01 in order to grow stocks of the corresponding recombinant viruses. For 

L16-P-W186A, viral titers equal to the parental wild type L16 strain in the range of 108 ffu/ml 

could be obtained. L16-P-K214A only reached titers of 105 ffu/ml, exhibiting a significant growth 

defect.  

In order to evaluate the growth kinetics of both L16 mutants on different cell lines, BSR-T7, 

HEp-2 and HEK 293T cells were infected with an MOI of 0.01, including SAD-L16 wild type virus 

as a control. HEp-2 and HEK 293T are human cell lines with an intact interferon system. 

Consequentially, virus mutants which fail to interfere with interferon induction might display 

impaired growth, although P still suppresses IFN signaling. Supernatants were taken 4.5, 24, 48, 

72 and 96 h after infection and the viral titers were determined for each time point (Figure 32). 

SAD-L16-P-W186A exhibited growth kinetics comparable to wild type SAD-L16 on all different 

cell lines used, indicating that defective inhibition of IFN-induction is not crucial for viral growth 

even on IFN-competent cell lines. A possible explanation is that the RABV P mutant P-W186A is 

deficient in inhibition of IFN-induction, but still capable to block JAK-STAT signaling, thereby 

preventing the induction of antiviral ISGs. SAD-L16-P-K214A was significantly impaired in growth 

on all cell lines examined. This suggests that the defect is probably not mainly due to the 

inhibitory deficiency of the mutant P in regard to IFN-induction. RABV P binding to NRNA involves 

the C-terminal domain (Chenik et al., 1994; Fu et al., 1994), consequently this function might be 

impaired in the P-K214A mutant leading to the observed severe attenuation in growth. 
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Figure 32: Growth kinetics of the recombinant 

viruses SAD-L16-P-W186A and L16-P-K214A. 

BSR-T7, HEp-2 and 293T cells were infected with the 

recombinant rabies virus mutants L16-P-W186A and 

L16-P-K214A and L16 wild type with an MOI of 0.01. 

Supernatant samples were taken at the indicated 

time points and titrated to determine the number of 

focus forming units per ml (ffu/ml). While L16-P-

W186A exhibits growth characteristics comparable to 

the parental strain, L16-P-K214A is severely 

attenuated in growth, independently of the ability of 

the respective cell line to mount an IFN-response. 

 

In order to monitor IRF3 phosphorylation and induction of IFN-β mRNA upon infection with the 

different recombinant RABV mutants, HEK 293T cells were infected in triplicates with a MOI of 

0.01 and harvested 48 h post-infection. SeDI treatment was used as a positive control for IFN-

induction. From the triplicates, two samples each were subjected to RNA extraction and one 

sample was used for Western blotting analysis. Total RNA isolates were transcribed to cDNA and 

used in real-time RT-PCR assays to determine the levels of IFN-β and RABV P mRNA relative to 

mock infection (Figure 33A).  
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Figure 33: SAD-L16-P-W186A and L16-P-K214A induce transcription of IFN-β mRNA. 

293T cells were infected with an MOI of 0.01 of the indicated recombinant viruses or treated with SeDIs in triplicates 

and harvested 48 h post-infection. A) and B) Two samples for each condition were used as duplicates in total RNA 

extraction and reverse transcription into cDNA. Real-time PCR was conducted using IFN-β (A) and RABV P (B) specific 

primers to determine the corresponding transcription levels. C) The remaining samples were subjected to SDS-PAGE 

and Western blotting. Specific protein bands were visualized using the indicated antibodies. While the levels of viral 

proteins for L16-P-W186A and the parental strain are comparable, the severe growth defect of L16-P-K214A is 

reflected in the hardly detectable signals for N and P in the corresponding lysates. 

Whereas infection with the wild type L16 virus only lead to minor induction, L16-P-W186A 

infected cells exhibited a solid upregulation of IFN-β mRNA transcription. Normalized to L16 wild 

type, the induction by L16-P-W186A is about 16-fold higher, what is in the range that has been 

reported previously for the L16-PΔInd viruses, which likewise exhibit a defect in controlling IFN-

induction (Rieder et al., 2011). Additionally, a low but detectable endogenous level of IRF3 S396 

phosphorylation could be observed by Western blotting (Figure 33B, panel with enhanced 

exposure). Expression levels of the viral proteins N and P were similar for L16 and L16-P-W186A, 
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however P mRNA levels were reduced twofold in the mutant virus. This provides good evidence 

that RABV phosphoprotein tryptophan 186 is indeed crucial for a functional inhibition of IRF3 

phosphorylation and circumvention of IFN-β mRNA induction in the viral context. 

Surprisingly, infection with L16-P-K214A lead to a very strong IFN-β mRNA induction comparable 

to SeDI treatment. This is contrasted by the strongly impaired growth which is also reflected by 

very low P mRNA levels and N and P protein levels. These findings hint at an increase in PAMP 

generation in L16-P-K214A, since induction is even much higher than in cells infected with 

L16-P-W186A, despite significantly reduced growth. 

4.2.6. CVS-strain P is deficient in inhibition of IFN-induction 

As described before, we could show that the rabies virus phosphoproteins of the different 

strains L16, THA and CVS interacted with HSP70 and HSC70 equally well (Figure 24). In addition, 

the abilities of the different RABV P proteins to interfere with IRF3 activation was assayed in 

IFN-β promoter dependent reporter gene assays. Pathway stimulation was carried out with 

ΔRIG-I or TBK1 overexpression (Figure 34). Like L16-P, THA-P abrogated the reporter activity to 

almost basal levels. Remarkably, HA-CVS-P was found to be deficient in interfering with IFN-β 

promoter activity equally to HA-L16-P-W186A. This defect was observed for pathway stimulation 

with either ΔRIG-I and TBK1 and could not be attributed to impaired expression, since Western 

blotting did not reveal a correlation between protein levels and inhibition. This finding is 

surprising, since CVS strain is a lethal virus frequently used for studying rabies virus infection in 

animal models  (Park et al., 2006) and the ability to suppress IFN induction was assumed to be 

important for viral pathogenicity of the SAD-L16 strain (Rieder et al., 2011).  

In order to find an explanation for the differential inhibitory capacities, we wanted to elucidate 

which sequence differences between the well conserved phosphoproteins are responsible for 

the defect observed in CVS-P. Therefore a number of rabies and other Lyssavirus P sequences 

were aligned and monitored for notable variations, especially in proximity of the HSP70 binding 

motif (Figure 35). The selection of rabies virus P sequences (highlighted with red overlay) 

contains vaccine strains, other fixed laboratory strains as well as wild type isolates. In general, 

the rabies virus P sequences included are quite highly conserved in the observed region. 

However, the inhibition deficient CVS-strain P protein shows an outstanding proline residue at 

position 179, where all other RABV P sequences exhibit a serine residue (highlighted as red dot).  



                                                                                                               4. Results 

 

 
97       

 

 

Figure 34: CVS strain RABV P is deficient in inhibiting IFN-β promoter activity. 

While THA-strain RABV P interferes with IFN-promoter activity like L16-P, CVS-P exhibits an inhibitory defect 

comparable to the mutant L16-P-W186A. HEK 293T cells were transfected with reporter plasmids (100 ng p125-FF/10 

ng pTK-RL) and the indicated constructs (100 ng Flag-ΔRIG-I, 200 ng Flag-TBK1, 200 ng P constructs plasmid DNA). Cells 

were lysed 24 h p. t. and subjected to dual luciferase assays in order to examine the ability of different P constructs to 

interfere with ΔRIG-I and TBK1 overexpression mediated IFN-β promoter activity. The bars represent the means and 

the error bars the standard deviations of biological duplicates. Cell lysates were examined by Western blotting in 

order to determine expression levels of the constructs used. 

 

Figure 35: Alignment of different rabies and Lyssavirus phosphoprotein sequences. 

Phosphoprotein sequences of different rabies virus strains (red overlay) and other Lyssaviruses were aligned using the 

“Clustal Omega” online tool of EMBL-EBI (European Bioinformatics Institute) and visualized with Jalview (Waterhouse 

et al., 2009). Ind1 (green) and Ind2 (yellow), the sequences missing in the respective deletion mutants, and the 

minimal HSP70 binding (red) region are annotated.  

This residue came especially in the focus of interest, because P181 is located in the Ind1 region 

and ΔInd1 deletions have been shown to be deficient in inhibition before (Figure 25; Rieder et al. 

(2011)). EBLV-1-P, a Lyssavirus proteins that has been previously shown to be able to inhibit 
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IFN-β induction (unpublished observation, Conzelmann group), also exhibits a serine residue at 

this position. Consequently, we hypothesized that CVS-P residue 179 might be responsible for 

the inhibitory defect. 

To further examine this, the mutant proteins HA-L16-P-S179P and HA-CVS-P-P179S were 

created. In these constructs, proline 179 in CVS-P has been replaced by a serine residue normally 

found in L16-P, and the other way round. Together with HA-L16-P, HA-CVS-P and 

HA-L16-P-W186A as controls, the new mutants were examined for their ability to interfere with 

ΔRIG-I mediated IFN-β promoter activity in reporter gene assays (Figure 36).  

 

Figure 36: CVS-P inhibitory deficiency can be restored by a P179S substitution. 

HEK 293T cells were transfected with reporter plasmids (100 ng p125-FF/10 ng pTK-RL) and the indicated constructs 

(100 ng Flag-ΔRIG-I, 200 ng P constructs plasmid DNA). Cells were lysed 24 h p. t. and subjected to dual luciferase 

assays in order to examine the ability of different P constructs to interfere with ΔRIG-I-mediated IFN-β promoter 

activity. The bars represent the means and the error bars the standard deviations of biological duplicates. Cell lysates 

were examined by Western blotting in order to determine expression levels of the constructs used. 

HA-L16-P inhibited induction very strongly, whereas for HA-CVS-P again no significant influence 

on promoter activity could be observed. HA-L16-P-S179P exhibited the same deficiency as CVS-P 

in regard to suppressive capacity. In contrast, HA-CVS-P-P179S impaired IFN-β promoter 

induction equally well as HA-L16-P, while the observed expression levels for the different 

proteins were comparable. Thus, the P179S substitution was able to rescue the defect in CVS-P, 

whereas L16-P was impaired by a S179P mutation. Taken together, this provides strong evidence 

that indeed P179 in the CVS strain phosphoprotein sequence is alone responsible for the 

inhibitory deficiency. Since CVS-P also binds HSP70, it can be concluded that this interaction 

alone is not sufficient, however essential for the suppressive capacities of RABV P. This has also 
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been the case for RABV P mutants deficient in nuclear trafficking previously examined, which 

contain the intact HSP70 binding motif but fail to interfere with IFN-β induction. 

4.3. Impact of HSP70 and heat shock on RLR signaling 

Previously in this thesis, an intact to HSP70 binding motif could be identified as a crucial feature 

in inhibition of IFN-β induction by RABV P. This raised the question whether HSP70 family 

members might be in general involved in the regulation of IFN induction via the RLR pathway 

and how P could utilize heat shock proteins to exert its suppressive functions. To further 

investigate this issue, several experiments with overexpression of different heat shock protein 

constructs were conducted, in order to monitor a possible impact on innate immune signaling. 

4.3.1. P inhibition is not impaired by HSP70 overexpression 

Since RABV P targets HSP70, we wanted to elucidate whether further hints can be obtained that 

this interaction is indeed responsible for the inhibitory abilities of RABV P. HSP70 is a 

ubiquitously expressed protein family and involved in a magnitude of cellular processes not 

limited to protein folding and stress response (Beere and Green, 2001; Chappell et al., 1986; 

Matlack et al., 1999). Therefore, we wanted to obtain a general overview by examining whether 

overexpression of HSP70 might interfere with IFN-β promoter activity or either impair or support 

the inhibitory function of P. Therefore, Flag-HSP70 (HSPA1A) and Flag-HSC70 were co-expressed 

with ΔRIG-I or TBK1 in the absence or presence of RABV P and IFN-β promoter activity was 

measures in luciferase reporter gene experiments (Figure 37). Sole expression of Flag-HSP70 or 

HSC70 did not lead to any promoter activation. Whereas Flag-HSC70 expression left induction by 

ΔRIG-I unaffected, Flag-HSP70 impaired IFN-β promoter activity to some degree. Co-expression 

of either heat shock protein with P displayed no significant change in the inhibitory abilities of 

RABV P. The same pattern could be observed for promoter induction with Flag-TBK1 

overexpression. 

Consequently, RABV P inhibition of IFN-β promoter induction could not be compensated or 

stimulated by overexpression of additional heat shock proteins. However, Flag-HSP70 

overexpression lead to some reduction of promoter activity, providing a first hint that heat shock 

proteins might be involved in the modulation of RLR signaling. 
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Figure 37: Overexpression of HSP70s has no impact on the inhibitory function of RABV P. 

HEK 293T cells were transfected with reporter plasmids (100 ng p125-FF/10 ng pTK-RL) and the indicated constructs 

(100 ng Flag-ΔRIG-I, 200 ng Flag-TBK1, 200 ng HSP70/P construct plasmid DNA). Cells were lysed 24 h p. t. and 

subjected to dual luciferase assays in order to examine the ability of different P and HSP70 constructs to interfere with 

ΔRIG-I-mediated IFN-β promoter activity and whether HSP70 co-expression is able to interfere with the suppressive 

capacity of RABV P. The bars represent the means and the error bars the standard deviations of biological duplicates. 

Cell lysates were examined by Western blotting in order to determine expression levels of the HSP70 constructs used. 

4.3.2. Dominant negative HSP70 constructs inhibit IFN induction 

To get a further insight into how members of the HSP70 family might interfere with innate 

immune signaling pathways, we examined wild type heat shock proteins and mutants deficient 

in chaperoning activity and their effect on different parts of the IFN-promoter. Therefore, an 

ATPase deficient Flag-HSP70-K71E mutant (based on HSPA1) was created (Zeng et al., 2004). The 

ability of Flag-P, Flag-HSP70 (HSPA1), Flag-HSP70-K71E and Flag-HSC70 to interfere with ΔRIG-I 

mediated induction of several promoters was examined. In addition to the natural IFN-β 

promoter (p125), the impact on the artificial reporter constructs p55C1B (multiple IRF3 binding 

sites) and p55A2 (multiple NF-κB binding sites) was examined (Yoneyama et al., 1996). IRF3 and 

NF-κB normally activate transcription in a cooperative way on the native IFN-β promoter (Kim et 

al., 2000). Using this reporter system, it is possible to distinguish the activation states of the two 

transcription factors that separately drive expression from the corresponding reporters  

(Figure 38). 
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Figure 38: Expression of ATPase deficient HSP70-K71E significantly impairs ΔRIG-I mediated signaling. 

200 ng plasmid DNA coding for the indicated RABV P or HSP70 constructs was co-transfected into HEK 293T cells 

together with 100 ng Flag-ΔRIG-I and the indicated reporter constructs (100 ng reporter plasmid/ 10 ng pTK-RL for 

normalization). 24 h. p. t. cells were harvested and subjected to dual luciferase assays in order to examine the capacity 

of the indicated constructs to interfere with the induction of IFN-β, IRF3 or NF-κB promoter by ΔRIG-I overexpression. 

The bars represent the means and the error bars the standard deviations of biological duplicates. Results for the 

different reporters are shown in separate plots. Cell lysates were examined by Western blotting in order to determine 

expression levels of the constructs used. 

RABV P inhibited IFN-β and IRF3 promoter activity efficiently, reflecting its ability to block 

activation of IRF3. In contrast, NF-κB promoter activity was significantly enhanced by RABV P, 

indicating that inhibition of the IFN-promoter is exclusively due to impaired IRF3 

phosphorylation. Flag-HSP70 overexpression lead to a reduction in activity for all promoters 

investigated. Flag-HSC70 only impaired IFN-promoter activity, however to a lesser degree than 

HSP70. The ATPase deficient mutant Flag-HSP70-K71E repressed activity of all examined 

reporters very efficiently. In contrast to RABV P, this was also true for NF-κB promoter induction. 

This shows that overexpression of wild type or dominant negative ATPase defective HSP70 

family members can significantly impair RLR signaling, however, not with precisely the same 

mechanism as RABV P, since NF-κB promoter activity is suppressed as well. 

In addition to K71E, also other mutations in HSP70 lead to dysfunctional and potentially 

dominant negative heat shock proteins. A construct based on the nucleotide binding domain of 
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HSC70 with glycine 201 and 202 substituted by aspartate and glutamate, respectively (GG-DE 

mutation), was previously shown to inhibit synaptic vesicle endocytosis (Morgan et al., 2013). 

Heat shock proteins with this mutations are unable to bind ATP, because the charge of the 

aspartate and glutamate residues block positioning of the gamma-phosphate of ATP. Normally, 

nucleotide exchange factors (NEFs), a family of HSP70 cofactors, bind to the chaperone after 

hydrolysis of ATP in order to replace ADP by a new molecule of ATP, so that the substrate can be 

released and a new hydrolytic cycle can start. The NEF–HSP70 binding dissolves upon ATP 

binding. Since this binding is blocked in case of the GG-DE mutant, NEFs are stuck on the protein 

and are no longer available in the cellular pool, leading to impaired nucleotide exchange 

function. This results in decreased chaperone activity and consequently a blockage in HSC70 

dependent uncoating of clathrin-coated endocytosed synaptic vesicles (Morgan et al., 2013). 

 

Figure 39: Different HSP70 mutants interfere efficiently with IFN-β promoter activity.  

The HSP70 NBD mutants K71E (ATPase deficient) and GG-DE (ATP binding deficient) interfere substantially with ΔRIG-I 

mediated IFN-reporter activity. HEK 293T cells were transfected with reporter plasmids (100 ng p125-FF/10 ng pTK-RL) 

and the indicated constructs (100 ng Flag-ΔRIG-I, 200 ng P/HSP70 construct plasmid DNA). Cells were lysed 24 h p. t. 

and subjected to dual luciferase assays in order to examine the ability of the indicated constructs to interfere with 

ΔRIG-I-mediated IFN-β promoter activity. The bars represent the means and the error bars the standard deviations of 

biological duplicates. Cell lysates were examined by Western blotting in order to determine expression levels of the 

constructs used. 
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We wanted to elucidate whether HSP70 constructs other than full length K71E mutants might be 

able to interfere with the induction of IFN-β as well. Therefore HSP70-1A-NBD versions of the 

K71E and the G201D-G202E mutant were created and assayed for their ability to suppress ΔRIG-I 

induced IFN-β reporter activity (Figure 39). Wild type HSP70-NBD alone suppressed the activity 

slightly better than the full length heat shock proteins investigated in this experiments. The 

mutant NBD constructs both inhibited IFN-β promoter activity very efficiently, while Flag-HSP70-

NBD-GG-DE exhibited the strongest inhibitory effect. 

Taken together, the results obtained from studying ATPase or ATP-binding deficient HSP70 

provide a hint that these constructs exhibit a dominant negative effect that not only impairs the 

cellular heat shock machinery, but also induction of IFN following RLR activation. 

4.3.3. Heat-shock treatment impairs RLR signaling but not IFN signaling 

In the current thesis it could be shown that overexpression of wild type and, to a much greater 

extent, deficient heat shock proteins can significantly impair IFN-β promoter activity upon ΔRIG-I 

stimulation in dual luciferase reporter gene assays. As the name suggests, heat shock proteins 

are normally upregulated in conditions of cellular stress resulting from elevated temperatures, 

leading to denaturation of proteins (Richter et al., 2010). Therefore, we wanted to examine 

whether direct heat shock (HS) treatment of HEK 293T cells might also influence interferon 

induction via RLR signaling, or impair the suppressive capacity of RABV P.  

It can be difficult to determine whether an observed effect associated with heat shock proteins 

is in fact specific, since HSP70 is involved in a plethora of different cellular functions, especially in 

regard to protein homeostasis (Balchin et al., 2016). This has to be handled with particular care 

when reporter gene experiments are employed, since the observed readout is also partly 

depending on correct folding and stability of the luminescent reporter protein. To circumvent 

this and to support a specific activity on RLR signaling, we also investigated the impact of heat 

shock on JAK-STAT signaling by using ISRE-promoter driven luciferase expression and type I IFN 

treatment. This pathway is also a part of the cellular innate immune response, but 

mechanistically unrelated to the RIG-I pathway. Stimulation by ΔRIG-I and TBK1 overexpression 

and inhibition by RABV P with and without heat shock treatment were investigated in the IFN-β 

promoter dependent reporter system. The same was simultaneously conducted for stimulation 

with type I interferon treatment using an ISRE-reporter (Figure 40A, different reporters plotted 

separately).  
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Figure 40: HS and HSP70-K71E impair IFN-β promoter induction but not IFN signaling. 

A) Heat shock treatment of cells strongly interferes with ΔRIG-I and TBK1 mediated IFN-β reporter activity, while IFN-

mediated ISRE-reporter activity is slightly increased. The inhibitory abilities of RABV are not affected in both cases. 

HEK 293T cells were transfected with reporter plasmids (100 ng p125-FF or pISRE-FF, 10 ng pTK-RL) and the indicated 

constructs (100 ng Flag-ΔRIG-I, 200 ng Flag-TBK1 and 200 ng P construct plasmid DNA). Heat shock treatment was 

conducted 3 h p. t. at 45 °C for 30 min and 100 units type I interferon were added to the cells per 24-well 6 h p. t. as 

indicated. Cells were lysed 24 h p. t. and subjected to dual luciferase assays in order to examine the ability of heat 

shock treatment to interfere with IFN-β or ISRE promoter activity or the suppressive capacity of RABV P. The bars 

represent the means and the error bars the standard deviations of biological duplicates. Results for the different 

reporters are shown in separate plots. B) While Flag-HSP70-K71E expression strongly impairs ΔRIG-I mediated IFN-

induction, IFN-mediated ISRE-reporter activity is not affected. HEK 293T cells were transfected with reporter plasmids 

(100 ng p125-FF or pISRE-FF, 10 ng pTK-RL) and the indicated constructs (100 ng Flag-ΔRIG-I and 200 ng P/HSP 

construct plasmid DNA). 100 units type I interferon were added to the cells per 24-well 6 h p. t. as indicated. Cells 

were lysed 24 h p. t. and subjected to dual luciferase assays in order to examine the ability of ATPase deficient HSP70 

to interfere with IFN-β or ISRE promoter activity. The bars represent the means and the error bars the standard 

deviations of biological duplicates. Results for the different reporters are shown in separate plots. 
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Interestingly, IFN-β reporter activity mediated by ΔRIG-I as well as TBK1 overexpression was 

significantly reduced upon HS. This is concurrent with the suppression previously observed with 

heat shock protein overexpression. Notably, the inability of HS treatment to impair ISRE-reporter 

activity after IFN-treatment demonstrates that the suppression observed with the IFN-β 

promoter dependent system is not only due to impaired stability or expression of firefly 

luciferase after heat shock. Consequently, it can be assumed that the luciferase reporter system 

yields specific results, also when investigating heat shock proteins by overexpression or heat 

shock treatment. Regardless of heat shock treatment, RABV P was able to very efficiently 

suppress ΔRIG-I and TBK1 overexpression mediated IFN-β promoter induction, as well as ISRE-

reporter activity after addition of type I IFN. Heat shock treatment thus could not impair the 

inhibitory capacities of RABV P, rather a slightly supportive activity on IFN-signaling was 

suggested by the data. 

To further ensure the reliability of the reporter assay, we wanted to compare the suppressive 

capacities of the HSP70-1A-K71E mutant on ΔRIG-I induced IFN-β promoter activity with a 

potential impact on ISRE-reporter activity after IFN treatment, similar to the previous 

experiment (Figure 40B, different reporters plotted separately). In accordance with previous 

results, HA-P and Flag-HSP70-K71E suppressed IFN-β promoter activity very efficiently. In 

contrast, whereas HA-P also impaired ISRE-promoter induction after type I IFN treatment, 

Flag-HSP70-K71E exhibited no significant influence on reporter activity. This provides again 

strong evidence that suppression of promoter induction with the HSP70-K71E mutant observed 

in the IFN-β dependent system is not due to impaired stability of the firefly luciferase reporter. 

Consequently, this indicates that expression of dominant negative ATPase deficient heat shock 

proteins indeed specifically impairs the mechanisms responsible for IFN-β induction after RIG-I 

activation. 

Since an involvement of HSP70 family members in induction of IFN-β was suggested by previous 

results, we wanted to examine whether the inducible heat shock protein HSP70-1A is essential 

for induction or inhibition by RABV P. To examine this, a HEK 293T HSP70-1A/1B knockout cell 

line was used in IFN-β promoter dependent reporter gene assays. This cell line was previously 

generated in our laboratory by Dr. K. Sparrer and W. Greulich using the CRISPR-Cas9 system 

(Mali et al., 2013). Both genes, HSP70-1A and HSP70-1B, were targeted simultaneously by the 

same gRNA, since they exhibit an identical sequence in the corresponding target region. Overall, 

HSP70-1A and HSP70-1B differ only in two amino acids on the protein level and can therefore be 

considered functionally identical. HA-P was co-expressed with ΔRIG-I or TBK1 in HSP70-1A/1B-

KO or wild type cells and optionally subjected to heat shock treatment (HS) (Figure 41). 
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Figure 41: IFN induction and inhibition by P is not affected in 293T HSP70-1A/1B KO cells. 

Induction of IFN-promoter activity by ΔRIG-I or TBK1 and inhibition by RABV P or heat shock treatment are not 

differing substantially between HEK 293T wild type and HSP70-1A/1B KO cells. HEK 293T wild type or HSP70-1A/1B KO 

cells were transfected with reporter plasmids (100 ng p125-FF/10 ng pTK-RL) and the indicated constructs (100 ng 

Flag-ΔRIG-I, 200 ng Flag-TBK1 and 200 ng P construct plasmid DNA). Heat shock treatment was conducted 3 h p. t. at 

45 °C for 30 min. Cells were lysed 24 h p. t. and subjected to dual luciferase assays in order to examine the ability of 

the indicated constructs to interfere with ΔRIG-I-mediated IFN-β promoter activity with or without heat shock 

treatment in wild type and HSP70-1A/1B KO cells. The bars represent the means and the error bars the standard 

deviations of biological duplicates.  

IFN-β promoter activity was not impaired in HSP70-1A/1B KO cells compared to wild type HEK 

293T cells. Likewise, the suppressive capacities of RABV P remained unaffected in the knockout 

cells. Heat shock treatment impaired reporter activity equally in wild type and KO cells, similar to 

previously observed results (Figure 40A). In summary, no significant difference could be 

observed between wild type and HSP70-1A/1B KO cells in this experimental setting. Although HS 

seemed to have an even greater inhibitory effect in the KO cells, this indicates that HSP70-1A/1B 

is either not significantly involved in RLR signaling or RABV P inhibition, or the functional 

contribution of heat shock proteins to this pathway exhibits a high degree of redundancy. The 

latter possibility should especially be considered, since there are many conserved members of 

the HSP70 family that also might be involved in multiple cellular functions, such as the 

constitutively expressed HSC70 and several other HSP70-like proteins.  
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5. Discussion 

All forms of life are constantly threatened by numerous invading microbial pathogens. The main 

goal of viruses, obligate intracellular parasites, is to introduce their genetic information into their 

host cells, an essential prerequisite for replication and viral propagation. This poses a significant 

danger to the genomic integrity of the target cell. In order to counteract this pathogenic threat 

and to protect the whole organism, a sophisticated immune system developed in the course of 

human evolution. The adaptive immune system, comprising diverse specialized immune cells 

and antibodies, is highly efficient and very specifically directed against a certain pathogen but 

reacts rather slowly. In contrast, the innate immune system is able to mediate protection against 

a wide range of pathogens on a cellular level without a substantial delay. It is a first line of 

defense that contributes to the initiation of an adaptive immune response but also confers anti-

microbial activity directly via the interferon system. The innate immune system utilizes germ-line 

encoded receptors in order to detect pathogen-associated molecular pattern (PAMPs), which are 

chemically or in regard to their subcellular localization distinct from self-structures, such as viral 

RNAs (Roers et al., 2016). Triggering of these receptors by their ligands, such as viral RNA for 

RIG-I, results in the activation of a complex signaling cascade leading to the production of type I 

interferons and inflammatory cytokines. These signaling molecules elucidate a potent antiviral 

state that can potentially suppress the replication of many pathogens on different levels. 

However, most viruses successfully adapted and evolved means to circumvent the innate 

immune reaction, in order to establish an infection (Randall and Goodbourn, 2008). 

The Rabies virus phosphoprotein P is able to interfere with innate immune signaling on two 

distinct levels. P suppresses IRF3 activation and consequently IFN induction (Brzózka et al., 2005) 

and further abrogates IFN-signaling on the level of STAT signal transduction (Brzózka et al., 2006; 

Vidy et al., 2005). This dual function makes P one of the most potent known viral IFN-

antagonists. Whereas it is well establishes that the inhibition of IFN-signaling is based on a 

blockage of nuclear accumulation of STATs by RABV P, the mode of inhibition of IRF3 activation 

remains opaque. P residues 176-186, part of an intrinsically disordered region connecting 

dimerization domain and C-terminal domain, were shown to be critically involved in inhibition of 

IRF3 phosphorylation, however no clear function or binding partner could be identified (Rieder 

et al., 2011).  

In this thesis, some light could be shed on the domains and functions of RABV P that are 

essential for suppression of IFN induction. Whereas the N-terminal domain of RABV was not 

involved in inhibition, the C-terminus and a conformational NLS located in this domain could be 
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shown to be required for inhibition of IRF3 activation. Further, an interaction of the previously 

identified RABV P stretch 176-186 with members of the HSP70 family could be characterized. P 

residues 180-186 were identified as minimal interaction motif. In vitro pulldowns employing 

recombinantly purified proteins suggested a direct mode of interaction. Tryptophan 186 was 

identified as essential residue for this interaction and, most importantly, also for the ability of 

RABV P to interfere with IFN induction, suggesting a correlation between HSP70 binding and 

inhibitory capacities. When investigating the phosphoproteins of different RABV strains, the CVS-

strain P was found to be deficient in inhibition of IFN induction, due to an outstanding serine to 

proline mutation at position 179. Further, recombinant rabies viruses containing mutant 

phosphoproteins with a W186A or a CTD-NLS associated K214A substitution could be 

successfully rescued. L16-P-W186A showed growth kinetics similar to the parental strain, 

whereas L16-P-K214A exhibited severely attenuated growth. Real-time PCR experiments 

revealed that L16-P-W186A induces significant amounts of IFN, comparable to the phenotype of 

the previously reported L16-PΔ176-186 mutant (Rieder et al., 2011). L16-P-K214A induced high 

amounts of IFN despite its poor growth, indicating defects that go beyond the loss of inhibition 

of IFN induction. Since phosphoproteins defective in association with HSP70 were also shown to 

be defective in inhibition of IRF3 activation, a possible involvement of HSP70 family members on 

innate immune signaling and P inhibition was investigated. Overexpression of HSP70 family 

members, as well as heat shock treatment of the cells significantly impaired IFN-β promoter 

activity using ΔRIG-I or TBK1 overexpression as stimuli. Different dominant negative HSP70 

constructs significantly impaired IFN-β promoter activity. In contrast to IFN induction, ISRE-

reporter activity after IFN treatment was not altered by heat shock treatment or transfection of 

dominant negative HSP70 versions, suggesting that this observed effect is rather specific for IFN 

induction.  

5.1. RABV P domains and functions involved in inhibition 

At the beginning of this project, the RABV P residues 176-186 were already identified as a region 

critically involved in the inhibition of IFN induction (Rieder et al., 2011). However, there was no 

clear indication for the function of this motif leading to suppression of IRF3 activation. 

Therefore, a major goal of this thesis was the identification of further regions and functions of 

RABV P that might contribute to inhibition and possibly to assign a role or molecular target to 

the P region 176-186. Initial experiments employed RABV P truncation mutants that were 

assayed with IFN-promoter dependent dual luciferase assays for their ability to suppress 
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reporter activity in order to identify RABV P domains which are crucial for inhibitory function. 

Previously, TBK1 and IKKε were characterized as the central kinases responsible for the 

activation of IRF3, and overexpression of these proteins is alone sufficient to induce IFN-β 

transcription (Fitzgerald et al., 2003; Sharma et al., 2003). Since RABV P was reported to inhibit 

TBK1-overexpression mediated IRF3 activation (Brzózka et al., 2005), this stimulus was also used 

for initial experiments in this thesis. 

5.1.1. RABV P derived peptides inhibit TBK1-overexpression mediated 

IFN induction 

Reporter gene assays utilizing different RABV P truncation constructs could demonstrate that the 

C-terminal domain of RABV P is not essential for suppression of TBK1-mediated IFN-promoter 

activity (Figure 11). In contrast, RABV P region 176-186 was confirmed to be essential, since 

HA-P-1-174 left IFN-promoter activity unchanged. In further experiments RABV P-1-188 could be 

identified as the shortest C-terminal truncation still fully able to inhibit TBK1-mediated IFN-β 

induction (Figure 12). Since the RABV P region 176-186 is located to a disordered region of the 

protein, we wanted to elucidate whether a P derived peptide alone might be applicable as 

inhibitor for TBK1-mediated IFN induction. Therefore, N-terminal truncation constructs were 

introduced to identify the minimal RABV P region necessary for inhibition. Since N-terminally 

truncated P constructs and isoforms could not be expressed to a satisfactory level (data not 

shown), they were fused N-terminally to a HA-GST dual-tag connected by three G4S linker 

repeats. The RABV P isoform P4 (residues 83-297) was shown to be capable of inhibition of IFN 

induction previously (Master thesis M. Wachowius (2012)), suggesting that the N-terminal amino 

acids 1-82 are not involved in inhibition. In order to find the smallest functional P variant, 

N-terminal truncation mutants starting with different RABV P residues and ending at the 

previously identified amino acid 188 were created and assayed for their ability to interfere with 

TBK1-mediated IFN-β induction in reporter gene assays (Figure 13A, schematic representation of 

constructs used in Figure 42). Oddly, although P-derived HA-GST-fusion peptides of different 

length were partly able to interfere with IFN-promoter activity, the grade of inhibition correlated 

directly with the length of the constructs, however not significantly with distinct functions like 

dimerization (absent in HA-GST-P-130-188) or DLC8 binding (absent in HA-GST-P-153-188, Jacob 

et al. (2000)). Inhibition decreased with further N-terminal shortening, with HA-GST-P-170-188 

being the shortest construct that still exhibited some degree of suppressive capacity. HA-GST-P-

176-188 had no influence on promoter activity. This gradual loss of inhibitory function with 
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decrease in length of the P-derived peptide made it difficult to draw any conclusions in regard to 

clear functions of the phosphoprotein that are required for inhibition. Nevertheless, it could be 

shown that inhibition of TBK1 overexpression-mediated IFN induction is possible using P-derived 

peptides. 

 

Figure 42: RABV P truncation constructs inhibiting TBK1-mediated IFN induction. 

Schematic representation of select HA-GST-P fusion constructs used in this thesis. Since N-terminal truncation 

construct could only be expressed insufficiently (data not shown), these constructs were N-terminally fused to HA-

GST. The RABV P derived fusion peptides lack distinct P features with further shortening, such as the dimerization 

domain, DLC8-binding site (shown in blue), or the phosphoacceptor site Ser162. The C-terminus of the constructs 

encompasses RABV P amino acids 176-186, which have been previously shown to be essential for inhibition of IFN 

induction (Rieder et al., 2011). 

5.1.2. Differential inhibition of TBK1 and ΔRIG-I mediated IFN induction 

by P truncations 

In order to obtain new insights about the mode of inhibition observed for RABV P C-terminal 

truncations and P-derived fusion peptides, we additionally assayed the inhibitory function of 

these constructs for stimuli other than TBK1-overexpression. Since TBK1 is the kinase directly 

engaged in IRF3 phosphorylation (Fitzgerald et al., 2003; Sharma et al., 2003), it should be 
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assumed that an inhibitor which directly blocks TBK1-mediated IRF3 phosphorylation should also 

be effective when RLR signaling is triggered further upstream. To verify this hypothesis, we 

assayed C-terminal RABV P truncation mutants for their ability to interfere with IFN-promoter 

activity mediated by ΔRIG-I expression, a constitutively active RIG-I mutant comprising only the 

N-terminal CARD domains (Yoneyama et al., 2004).  

Strikingly, while HA-GST-P-83-197 abrogated TBK1-mediated IFN-β promoter activity almost to 

the basal level, the same construct failed completely to interfere with ΔRIG-I mediated IFN 

induction, albeit the levels of reporter induction by the respective stimuli were nearly identical 

(Figure 14A). This provides strong evidence, that the C-terminal RABV P truncation mutants are 

not targeting the kinase activity of TBK1 directly, otherwise the mode of activation should not 

have an impact. Potentially RIG-I signaling also activates additional factors different from TBK1, 

such as IKKε. Notably, a recent study indicates that the phosphoproteins of select rabies virus 

strains contribute to IFN antagonism by binding and blocking IKKε (Masatani et al., 2016). In 

order to rule out that the C-terminal truncation constructs fail to inhibit due to a defect in 

suppression of IKKε mediated IFN-promoter activity, we conducted further reporter gene assays 

to clarify this. Several C-terminal RABV P truncation mutants were found to efficiently interfere 

with IKKε mediated IFN-promoter activity, similar to experiments with TBK1-overexpression 

(Figure 14B). Only the HA-P-1-174 construct, lacking the Ind1/2 region (Rieder et al., 2011), failed 

to inhibit, as already observed for TBK1 (Figure 11). Although this indicates that TBK1 and IKKε 

are inhibited almost equally by the RABV P truncation mutants, it remains enigmatic why 

promoter activity is not influenced after ΔRIG-I stimulation. Reporter gene assays including the 

RABV P derived peptide fusion constructs HA-GST-P-130-188 and HA-GST-P-168-188 showed 

similar results (Figure 15A), indicating a loss of inhibitory function for constructs lacking the 

C-terminal domain, including peptide constructs which previously exhibited a significant degree 

of inhibition in assays using TBK1-overexpression (Figure 13). The ability of different RABV P 

truncation constructs and peptides to interfere with TBK1 and ΔRIG-I mediated IFN-β promoter 

activation is summarized in Table 11. 

To verify these surprising results, several RABV P constructs were assayed for their ability to 

interfere with IRF3 Ser396 phosphorylation after treatment with Sendai virus defective 

interfering particles (SeDI), which have been shown to induce IFN induction through RIG-I 

signaling (Johnston, 1981; Strahle et al., 2006) (Figure 15B). These experiments confirmed the 

results previously obtained with reporter gene assays using ΔRIG-I stimulation and indicated that 

C-terminal truncation mutants are unable to interfere with ΔRIG-I or SeDI mediated IRF3 

activation. Since infection with SeDIs, potently triggering RIG-I activation (Kato et al., 2005; 
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Yoneyama et al., 2005), and transfection with ΔRIG-I lead to the identical outcome in regard to P 

inhibition, it could be concluded that ΔRIG-I stimulation is in this case a preferential model 

which, in comparison to TBK1 overexpression, more closely resembles the setting of a viral 

infection triggering RIG-I. This suggests that RABV P C-terminal truncation mutants only inhibit 

IFN-β promoter activity induced by the overexpression of TBK1 but are unable to interfere with 

TBK1 function in the normally activated RIG-I/MAVS/IRF3 signaling cascade.  

RABV P construct 
TBK1  

inhibition 

ΔRIG-I 

inhibition 
HA-P (1-297) +++ +++ 

HA-P-1-197 +++ - 

HA-P-1-188 +++ - 

HA-P-1-174 - - 

HA-GST-P-83-297 (P4) +++ +++ 

HA-GST-P-83-197 +++ - 

HA-GST-P-83-188 +++ - 

HA-GST-P-130-188 ++ - 

HA-GST-P-168-188 + - 
 

 

Legend 

+++ strong inhibition 

++ robust inhibition 

+ weak inhibition 

- no inhibition 

Table 11: Inhibition of TBK1/ΔRIG-I mediated IFN induction by different RABV P constructs. 

Although inhibition of both ΔRIG-I and TBK1 overexpression-mediated IFN induction relies on 

RABV P residues 176-186, as demonstrated by the deficiency of full length PΔ176-186 and the 

P-1-174 truncation construct, the reason for this discrepancy remains elusive. Possibly an 

explanation lies in the mode of activation of TBK1. Normally activation of TBK1 downstream of 

MAVS requires its upstream adaptor proteins TANK, NAP1 or SINTBAD (Guo and Cheng, 2007; 

Ryzhakov and Randow, 2007; Sasai et al., 2006). These proteins interact mutually exclusive with 

the coiled-coil 2 motif (also referred to as adaptor binding (AB) motif) at the C-terminus of TBK1 

(Goncalves et al., 2011). Using this motif, TBK1 is thought to be recruited to active signaling 

complexes by its adapters, resulting in a high subcellular local concentration of the kinase. Close 

proximity of multiple TBK1 homodimers then leads to interdimer interactions and trans-

autophosphorylation of TBK1 Ser172 by activation loop-swapping, activating the kinase (Ma et 

al., 2012). Once active, TBK1 readily phosphorylates the activation loops of further TBK1 

molecules as a substrate, resulting in the rapid activation of the unphosphorylated TBK1 pool 

(Helgason et al., 2013; Ma et al., 2012). Moreover, also substrate specificity is thought to be 

mediated by TBK1 subcellular localization, since TBK1 activation leads only to phosphorylation of 

a subset of potential targets, depending on the upstream stimulus (Helgason et al., 2013). Due to 

this mode of tightly regulated activation, TBK1 strictly requires the AB motif when expressed at 

endogenous levels. However, under overexpression conditions TBK1 is able to stimulate IFN-β 
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promoter activity without activation of upstream signaling components and even independent 

of the AB motif, as shown by truncation mutants (Goncalves et al., 2011). This indicates an 

artificial mode of auto-activation that is significantly different from the natural induction of TBK1 

activity. While RABV P constructs lacking the C-terminus are able to counteract IRF3 

phosphorylation under TBK1 overexpression conditions, they completely fail to do so when an 

upstream signal is present. In the case of physiological TBK1 signaling, the kinase and its 

potential substrates are thought to be recruited to their upstream signaling complexes, 

providing ideal conditions for the phosphorylation of TBK1 targets. To counteract this complex 

process, RABV P seems to need additional residues and functions located to the C-terminal 

domain, while constructs lacking the CTD are sufficient to abrogate rather unspecific TBK1 

overexpression mediated signaling. Since the mode of auto-activation for overexpressed TBK1 is 

highly artificial and poorly characterized, other stimuli such as ΔRIG-I or SeDI treatment were 

used for further experiments in this thesis. Moreover, RABV triggers IFN induction via RIG-I 

activation (Hornung et al., 2006; Schlee et al., 2009), therefore upstream stimulation of the RLR 

pathway rather resembles the signaling events during viral infection. Although no clear 

explanation for the differential inhibition of C-terminal RABV P truncation mutants could be 

provided, this finding underlines that TBK1 activation might be fundamentally different 

depending on the mode of pathway activation. Therefore, the use of TBK1 overexpression as a 

model for IFN induction should be handled with increased caution in further studies.  

5.1.3. RABV P nuclear shuttling is essential for inhibition of RIG-I 

mediated IFN induction 

As discussed above, in order to inhibit phosphorylation of IRF3 and subsequent induction of 

type I interferons after upstream activation of RIG-I signaling, RABV P depends on its structured 

C-terminal domain (structural representation in Figure 43). This raised the question which 

functions or residues of the CTD are involved in inhibition of IFN induction.  

RABV P is predominantly a cytosolic protein, due to a strong N-terminal nuclear export signal 

(NES) (Pasdeloup et al., 2005). Additionally, the C-terminal domain of P contains a 

conformational NLS, as revealed by inhibition of nuclear export by the CRM1 inhibitor 

leptomycin B (Fornerod et al., 1997; Pasdeloup et al., 2005; Rowe et al., 2016). The CTD-NLS 

requires the P residues Lys214 and Arg260, which are in close proximity in the protein structure 

and form a positively charged patch at the surface (Mavrakis et al. (2004), Figure 43B). Although 

RABV P is mainly cytosolic, it shuttles between the nucleus and the cytoplasm due to the 
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presence of both NES and NLS sequences. The C-terminal NES of P was previously reported to be 

involved in efficient cytosolic retention and thus suppression of STAT signaling, showing that 

trafficking signals of RABV P might be involved in controlling innate immune signaling (Ito et al., 

2010). 

 

Figure 43: Structure of the C-terminal domain of RABV P. 

Structural representation of the C-terminal domain of RABV P (Mavrakis et al. (2004), PDB ID 1VYI), created with 

PyMol (Schrodinger, 2015). A) Only backbone and helix objects of the RABV P-CTD are shown. Sidechains of lysine 214 

and arginine 260 shown in red B) Surface rendering of the P-CTD, colorization based on surface potential (positive 

charge in blue, negative charge in red, surface map created with PyMol APBS plugin (Baker et al., 2001)). Lys214 and 

Arg260 strongly contribute to a positively charged patch on the protein surface (highlighted with yellow circle). 

In order to examine whether the CTD-NLS might be involved in the inhibition of IRF3 activation 

by RABV P, the mutants P-K214A and P-R260A, which exhibit alanine substitutions that impair 

NLS function (Pasdeloup et al., 2005), were assayed for their capacity to suppress IFN-promoter 

activity in reporter gene assays. Remarkably, the constructs impaired in NLS activity exhibited a 

complete failure in inhibition of IFN induction comparable to PΔ176-186, a deletion mutant that 

was previously shown to be unable to prevent IRF3 phosphorylation (Rieder et al., 2011) (Figure 

17A). This observation provided a good hint that nuclear trafficking might be indeed critically 

involved in the inhibition of IFN induction.  

Since substitutions of polar amino acids such as lysine and arginine with hydrophobic alanine 

might impair the overall tertiary structure of the C-terminal domain and thus proper protein 

function, we wanted to validate that indeed the presence of a functional NLS was necessary for 

inhibition. Therefore RABV P constructs with mutated NLS (K214A and R260A) and C-terminal 

truncation constructs lacking the CTD completely were N-terminally fused to a SV40 large T 

antigen NLS, which has been previously shown to impart nuclear localization (Kalderon et al., 

1984b)(schematic representation of constructs in Figure 44). IFN-promoter dependent dual 

luciferase assays could reveal that N-terminal addition of a recombinant NLS to the RABV 

P-K214A and P-R260A constructs restored inhibitory function almost to wild type levels, in spite 

of comparable low expression levels of the fusion constructs (Figure 17B). Notably, even wild 

type RABV P fused with an N-terminal SV40-NLS exhibited slightly enhanced inhibitory 

A B

W186
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capacities. Assays using IRF3 Ser396 phosphorylation as an activation marker after SeDI 

treatment confirmed that the SV40-NLS-P-R260A fusion construct regained inhibitory function 

(Figure 17D). 

These findings provide strong evidence that a functional NLS signal indeed contributes to 

suppression of IFN induction by RABV P. Moreover, the C-terminal truncation construct P-1-188, 

completely lacking the CTD-NLS, exhibited a solid degree of inhibition when N-terminally fused 

to the SV40-NLS, suggesting that in regard to inhibition of IFN induction the CTD is mainly 

required due to its nuclear localization signal (Figure 17C). 

 

Figure 44: RABV P trafficking signals and SV40-TAg-NLS fusion constructs. 

Schematic representation of RABV P domain organization including trafficking signals. The C-terminal nuclear 

localization signal depends on residues K214 and R260, which are in close proximity in the tertiary structure, forming a 

conformational NLS. In order to investigate the functional relevance of nuclear trafficking signals, different RABV P 

constructs with mutated (K214A, R260A) or absent CTD were N-terminally fused to the NLS of the SV40 large T antigen 

(Kalderon et al., 1984b). 

Nuclear trafficking of RABV P seems to be exclusively required for the inhibition of IFN induction 

but not for suppression of STAT-signaling, since HA-P-K214A inhibited ISRE promoter activity 

after type I IFN treatment similar to the wild type protein (Figure 18). HA-P-R260A was impaired 

in regard to inhibition of JAK-STAT signaling to some degree, however this might be explained 

with the proximity of R260 to W265, which has been shown previously to be involved in this 

inhibitory function (Wiltzer et al., 2014). In addition, in this case the defect could not be rescued 

by fusion with a SV40-NLS, indicating that the inhibition of IFN-signaling is not connected to the 

NLS activity of RABV P. 

In order to validate the effectivity of the SV40-NLS and to further examine the correlation of 

nuclear trafficking and inhibition of IFN induction, we employed immunofluorescence confocal 

microscopy using the RABV P constructs previously examined in reporter gene assays (Figure 19). 
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The N-terminal SV40-NLS fusion constructs exhibited a significantly stronger nuclear localization. 

Whereas the normal P versions mainly localize to the cytosol, mediated by the N-terminal 

nuclear export signal (Pasdeloup et al., 2005), the SV40-NLS fusions are strongly enriched in the 

nucleus or completely localized to the nucleus upon LMB treatment, confirming the effectivity of 

the SV40-NLS in the context of the P-fusion constructs. Unfortunately, RABV P wild type and the 

mutant versions P-K214A and P-R260A showed no differential trafficking behavior in our 

experiments with or without LMB treatment. Since we used only single amino acid substitutions, 

it cannot be excluded that the P-K214A and P-R260A mutants retained some residual NLS 

activity. In addition, RABV P exhibits a relatively small size of about 34 kDa which enables fast 

passive diffusion through the nuclear pores (Gorlich and Kutay, 1999). In combination with 

residual NLS activity this might blur the difference in localization upon LMB treatment. The 

existing studies on RABV P nuclear trafficking employed eGFP-P fusion proteins exhibiting a 

molecular mass of about 60 kDA (Pasdeloup et al., 2005; Rowe et al., 2016). Consequently, these 

constructs are most probably too big for fast passive diffusion (Bonner, 1975; Gorlich and Kutay, 

1999). Since the N-terminal domain of RABV P was shown before to be not involved in 

suppression of IFN induction, we employed tagRFP-P4 fusion proteins with a molecular mass of 

about 51 kDa for further experiments. Using tagRFP-P4 based wild type, K214A and R260A 

constructs, reduced nuclear import was successfully revealed by LMB treatment (Figure 21). 

Taken together, these results indicate that enhanced active nuclear trafficking, mediated by a 

functional NLS, is important for RABV P inhibition of IRF3 activation. Especially the possibility to 

rescue the defect of the CTD-NLS mutants with a recombinant SV40-NLS provides strong 

evidence for this hypothesis. Notably, this result is rather unexpected, since recognition of 

nucleic acids by RLRs and activation of IRF3 are thought to be cytosolic processes and thus a 

connection between RABV P inhibition and nuclear trafficking cannot be drawn easily. It is 

further unclear, whether nuclear trafficking itself or the ability to bind importins, which mediate 

nuclear import (Gorlich and Kutay, 1999), is the crucial feature. For instance, a peptide derived 

from the NLS sequence of the NF-κB p50 subunit has been reported to impair nuclear import and 

thus transcriptional activity of the proinflammatory transcription factors NF-κB, AP-1 and NFAT 

and the interferon responsive factor STAT1, by binding to specific importin heterodimers and 

thereby blocking importin-transcription factor association (Torgerson et al., 1998). Possibly, a 

similar mechanism might contribute to the inhibition of IFN induction by RABV P to some degree, 

since import of both P and IRF3 is thought to depend on importin-α (Rowe et al., 2016; Zhu et 

al., 2015). Moreover, it could be speculated that RABV P mediates a subcellular mislocalization 

of specific host cell factors depending on its trafficking signals. Since RABV P could be shown in 
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this thesis to interact with HSP70 family members (discussed below), it is tempting to speculate 

that P might confer a subcellular redistribution of HSP70, however no experimental evidence 

could be obtained hitherto. Consequently further experiments will be necessary in the future to 

determine the molecular mechanism underlying the involvement of RABV P nuclear trafficking in 

inhibition of IFN induction. 

5.2. RABV P interacts with HSP70 

5.2.1. RABV P contains a novel HSP70 binding motif 

The RABV P residues 176-186, located to an intrinsically disordered region of RABV P (Gerard et 

al., 2009), were previously reported to be involved in the blockage of IRF3 activation (Rieder et 

al., 2011). However, despite the identification of these critical amino acids, no clear function 

could be assigned to this region. It was speculated that this region might be important for the 

correct folding of parts of the protein or that it acts as a linker that guarantees the correct 

spacing of the structured domains of RABV P, enabling inhibition of IFN induction.  

In order to gain new insights and possibly identify molecular interaction partners associated with 

this RABV P region, we assayed several RABV P derived HA-GST-fused peptides encompassing 

the previously identified critical residues 176-186 for potential interaction partners from HEK 

293T whole cell lysates using an unbiased mass spectrometry approach. The HA-tag was 

introduced for detection and pulldown experiments, whereas the GST-tag was used to ensure 

proper expression and solubility. Initially, an interaction of all examined RABV P peptides with 

HSP70 family members was identified by Co-IP experiments coupled to MS analysis (Figure 22A). 

The observed association was subsequently verified by additional Co-IP experiments employing 

the full length P protein as well as the P-176-188 fusion peptide already used in the initial MS 

experiment (Figure 22B-D). Notably, the HSP70 interaction was absent in the HA-PΔ176-186 

mutant, providing strong evidence that this motif is sufficient and essential for this association. 

Since the binding to disordered, partly hydrophobic peptides is among the normal functions of 

heat shock proteins, we were concerned about the specificity of this finding. Therefore, a 

plasmid coding for a fusion peptide containing RABV P residues 176-188, however in a 

randomized order, was created by using synthetic DNA oligos. This construct exhibited no 

interaction with HSP70 in Co-IP experiments, indicating that the observed binding is indeed 

sequence specific (Figure 23). 



                                                                                                               5. Discussion 

 

 
118       

 

 

Figure 45: RABV P contains a novel binding motif for HSP70. 

The RABV P residues 180-186 could be identified as a novel motif that mediates an interaction with HSP70 family 

members. This region is located to an intrinsically disordered stretch of the phosphoprotein connecting CTD and 

dimerization domain. The identified motif is alone sufficient and essential for binding of RABV P to HSP70.  

Further investigations could show that RABV P region 180-186 (amino acid sequence GPPALEW, 

Figure 45) fused to HA-GST is the shortest sequence still able to mediate binding, while removal 

of the C-terminal tryptophan (W186 in the full length protein) completely abrogated the 

interaction (Figure 26). Full length RABV P proteins of L16, THA and CVS-strain as well as L16-P-

derived peptides co-purified endogenous HSP70-1A/1B and HSC70 equally well from HEK 293T 

whole cell lysates in Co-IP experiments (Figure 24). This was expected, since the identified HSP70 

binding motif GPPALEW is conserved in these phosphoproteins. Accordingly, removal of residues 

176-186 from RABV P resulted in a loss of association with both HSP70s. The same is true for a 

L16-P construct containing a single W186A substitution, highlighting the importance of this 

conserved residue already described above by truncations of the binding peptide. These findings 

provide good evidence, that the RABV P region 180-186 is an HSP70 binding peptide that is alone 

sufficient and essential to mediate this interaction, with a critical contribution of W186. 

The interaction of RABV P with endogenous HSP70-1A/1B and HSC70 has been validated in Co-IP 

experiments. Further, the heat shock protein HSPA1L, which is normally of low abundance in 

HEK 293T cells, also interacts with RABV P in Co-IP assays when co-expressed (data not shown). 

In addition, further pulldown assays coupled to MS analysis indicated an interaction in 293T cell 

lysates with other HSPA family members, including mitochondrial HSP70 (mtHSP70, GRP75) and 

the ER-associated heat shock protein BiP (GRP78) (data not shown). An association of GRP75 and 

GRP78 was already observed previously by Co-IP assays and Western blotting by K. Brzózka, a 

former member of our group (unpublished data). However, it is questionable that these 

interactions with organelle-associated HSP70s are in fact present in the living cell or are a results 

of the disruption of cellular membranes during the Co-IP procedure. Nevertheless, this indicates 

. . G P P A L E W . .

HSP70



                                                                                                               5. Discussion 

 

 
119       

 

that the binding motif identified in this thesis rather indiscriminately mediates interactions with 

many different members of the HSP70 family.  

5.2.2. Nature of the HSP70 – RABV P interaction 

The RABV P binding motif for HSP70 has been narrowed down to the seven residues 180-186, 

whereby the most C-terminal amino acid tryptophan 186 is essential. With these findings, we 

further wanted to elucidate the mode of interaction between the identified peptide and HSP70 

family members.  

It is important to mention that the assays shown in this thesis were not conducted with isolated, 

synthesized peptides, but rather with HA-GST-peptide fusion constructs, containing three 

repeats of a G4S linker in between GST and peptide. Therefore, theoretically it is possible that 

additional amino acids from the fusion construct contribute to a stable interaction. However, 

since the association with HSP70 is completely abrogated when the most C-terminal amino acid 

(W186) of the binding motif GPPALEW is removed, it is fair to assume that this P-derived binding 

peptide indeed mediates the interaction independently of its context. This might be verified in 

the future by analyzing the affinity between HSP70 and synthetic RABV P derived peptides using 

further in vitro assays. 

Co-IP assays of RABV P or P-derived peptide fusion constructs provide no evidence whether the 

observed interaction is direct or might be indirectly mediated by additional proteins present in 

the cell. Although the stoichiometry observed in the silver stain gels of pulldown assays 

suggested a direct interaction (Figure 22A), since the protein bands on the height of HSP70s 

were the only significant bands that appeared specifically for the peptides tested, we wanted to 

evaluate this issue further by interaction studies using recombinantly purified proteins. 

Therefore, HA-(His6)2-GST-fusion constructs with full length P, P-176-188 and the scrambled 

version of the peptide were created. The corresponding fusion proteins were expressed in E. coli 

and purified using a cobalt affinity matrix (Figure 30). Eluates of these purifications were used in 

excess in order to saturate a specific amount of HA-affinity matrix. The pre-incubated matrix was 

washed and subsequently incubated with purified human HSP70-1A, purchased from Stressgen. 

These experiments revealed that full length RABV P and the fusion peptide were equally able to 

co-precipitate recombinant HSP70 in this in vitro setting, whereas the scrambled peptide version 

failed to do so (Figure 31). Since other eukaryotic proteins are absent under these conditions, 

this provides strong evidence that the interaction between RABV P and HSP70 is direct. 
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In order to further characterize P/HSP70 association, we wanted to elucidate which target 

domains and residues of HSP70 are bound by the identified RABV P motif. Since HSP70 exhibits a 

huge interactome encompassing not only the bound client peptides but also numerous co-

modulating proteins like J-domain proteins and NEFs (Mayer, 2013), various modes of 

interaction are conceivable. Therefore, with the aim of narrowing down the domains and 

moieties involved in binding, several HSP70 truncation mutants, based on HSP70-1A, were 

created and assayed for their ability to interact with RABV P or P-derived peptides in Co-IP 

assays (HSP70 truncation constructs depicted in Figure 46).  

 

Figure 46: HSP70 truncation constructs used in this thesis. 

Schematic representation of the domain organization of different HSP70 truncation constructs that were used for 

mapping the interaction with RABV P. 

The HSP70-NBD alone completely failed to associate with RABV P. In contrast, an interaction 

between RABV P and the SBD was clearly detectable, however significantly weaker in 

comparison to full length HSP70 (Figure 28). Truncation constructs of both HSP70-1A and HSC70 

lacking the C-terminal lid region, as well as subdomain I of the NBD, were shown to interact with 

a RABV P-176-188 fusion peptide equally well as full length HSP70 (Figure 29A). Notably, 

although the truncation constructs of HSP70 and HSC70 were co-precipitated to a similar extend, 

the Flag-tagged version of full length HSC70 hardly exhibited any association with P or RABV P 

derived peptides. This is strictly in contrast to the data previously obtained by pulldowns of 

endogenous untagged HSP70s, which clearly indicated an equal binding of HSP70-1A/1B and 

HSC70. Therefore, we concluded that the recombinant N-terminal Flag-tag might impair the 

interaction only in the case of HSC70, what might be explained by the differences in amino acid 

composition at the N-terminus between the two otherwise well conserved proteins (MAKAAAI.. 

for HSP70 and MSKGPAV.. for HSC70). Equal binding of the truncation mutants suggests an 
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identical mode of interaction. Furthermore, this finding provides good evidence that the lid 

region of HSP70, as well as subdomain I of the NBD are dispensable for binding. Subdomain I, 

encompassing residues 1-188 (Flaherty et al., 1990), forms one half of the ATP-binding 

hydrophilic pocket and contains lysine 71, a moiety which is essential for ATP hydrolysis (O'Brien 

et al., 1996). Insofar, it can be concluded that ATPase activity of HSP70 plays no role in binding to 

the identified P motif. This is further supported by the observation that Flag-HSP70-1A-K71 and 

wild type HSP70-1A were equally associated with HA-GST-P-176-188 in Co-IP assays (data not 

shown). Furthermore, a SBD construct lacking the lid region interacted with RABV P-176-188, 

however to a lesser extend compared to HSP70-190-511 (Figure 29B). This indicates that the SBD 

of HSP70 is alone sufficient and essential to mediate the interaction but that subdomain II of the 

NBD might have a stabilizing function, thus contributing to the interaction. 

At the present time, the open question which residues of HSP70 are in contact with the RABV P 

motif and which conformation of HSP70 is being bound remains. Since no structural data is 

available of HSP70 in complex with the identified binding motif, this can only be discussed on a 

speculative basis by falling back on the identified involved domains as well as on the amino acid 

composition of the P motif.  

For the bacterial HSP70 homolog DnaK structural data is available for the open ATP-bound 

(Figure 47A, Kityk et al. (2012)) and closed ADP-bound conformation (Figure 47B, Bertelsen et al. 

(2009)). In the closed conformation, the lid is closed over the substrate binding groove and the 

whole SBD is positioned in a certain distance from the NBD, only connected by a short linker 

without any visible surface interactions. In contrast, in the open conformation NBD and SBD are 

in direct contact stabilized by several hydrogen bonds (Kityk et al., 2015). The substrate binding 

cavity of the SBD is open with the lid subdomain docking to a distal site of the NBD. Our data 

indicated, that subdomain II might be involved in the interaction between RABV P and HSP70, 

since Flag-HSP70-1A-190-511 (lacking NBD-subdomain I and the lid) was co-precipitated more 

efficiently by P-176-188 than Flag-HSP70-1A-394-511 (only SBD lacking the lid). This implies that 

HSP70 is rather being bound in the open ATP-bound conformation, since NBD and SBD are at 

some distance in the closed conformation, making a cooperative binding of NBD subdomain II 

and the SBD with the P motif unlikely. This is supported by the finding that neither the lid 

subdomain, nor the ATPase activity of HSP70-1A are critically involved in binding to RABV 

P-176-188 (Figure 29B). If the P motif was bound by the closed high affinity conformation of 

HSP70, it could be assumed that ATP-hydrolysis and subsequent closing of the lid would be of 

importance. 
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Figure 47: Structure of the bacterial HSP70 homolog DnaK in open and closed conformation. 

A) Representation of bacterial HSP70 homolog DnaK in the ATP-bound open conformation depicted in two different 

orientations. NBD and SBD make direct contact, while the lid region is positioned at a distal site of the NBD, leaving 

the substrate binding groove of the SBD accessible (PDB ID 4B9Q, Kityk et al. (2012)). B) Bacterial HSP70 in the ADP-

bound closed conformation. The lid is closed over the substrate binding groove of the SBD, while no direct contact 

between NBD and SBD is visible (PDB ID 2KHO, Bertelsen et al. (2009)). Illustrations were created using the Cn3D tool 

by NCBI. 

In regard to the HSP70 residues that are contacted by the P motif, there are two options to 

consider: either the peptide is bound by the hydrophobic pocket of the SBD, similar to HSP70 

client peptides, or the interaction occurs at a different site of the molecule in an atypical way. 

Crystal structures have been solved for HSP70 substrate binding domains of bacterial (Zhu et al., 

1996) and human (Zhang et al., 2014) origin bound to the model substrate peptide NRLLLTG 

(Figure 48).  

 

Figure 48: SBD of human inducible HSP70 in complex with peptide substrate. 

Representation of human inducible HSP70 (HSP70-1A) SBD in complex with a peptide substrate (green) bound to the 

hydrophobic binding groove. In this closed conformation the lid is covering the substrate binding groove, resulting in 

high affinity binding (PDB ID 4PO2, Zhang et al. (2014)). The Illustration was created with the Cn3D tool by NCBI. 
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These structures reveal a binding of hydrophobic peptides to the conserved peptide binding 

groove of the HSP70 substrate binding domain. The length of the identified minimal RABV P 

binding motif for HSP70 of seven residues (GPPALEW, Figure 26) fits to the identified heptameric 

HSP70 binding peptides. However, the substrate binding groove within the SBD is located at 

some distance to the NBD, even in the open conformation of HSP70 (Figure 47A). Considering 

that subdomain II of the nucleotide binding domain of HSP70 might contribute to the interaction 

with the P-motif (Figure 29B), this gives a weak hint that the interaction might be located to a 

different site of the SBD. 

Several studies tried to identify common peptide motifs that are bound by HSP70 by screening of 

libraries containing numerous potential clients with different techniques such as phage display 

or cellulose-bound peptide scans (Blond-Elguindi et al., 1993; Gragerov et al., 1994; Rüdiger et 

al., 1997a; Rüdiger et al., 1997b). Although no clear binding motif could be identified, these 

studies suggested the common principle that the SBD of HSP70 binds preferentially to 

heptameric peptides consisting of a core of five amino acids enriched in hydrophobic residues 

flanked by positively charged moieties. Although some hydrophobic residues are present in the 

GPPALEW motif, a clearly defined hydrophobic core as well as flanking basic residues are absent. 

In contrast, the most C-terminal tryptophan residue, which has been identified as a crucial amino 

acid for binding, is nonpolar and aromatic. In addition, the negatively charged and thus 

hydrophilic glutamate residue at position 6 of the peptide might speak against an interaction 

with the hydrophobic substrate binding groove. Prediction algorithms that integrate sequence 

information from peptide binding experiments and structural data had partial success in 

determining potential binding partners for specific HSP70s (Schneider et al., 2016; Van Durme et 

al., 2009). The resulting model proposed by Van Durme et al. (2009) for bacterial DnaK assigns a 

score to every amino acid of a given heptamer depending on the position. Following this model, 

the GPPALEW peptide obtains a negative score of approximately -28, clearly defining it as a non-

binder with a disfavorable amino acid at nearly every position. Accordingly, the algorithm that 

has been made available by the group as a web-based tool (http://limbo.switchlab.org/) is not 

even detecting the experimentally identified HSP70 binding peptide in RABV P when using the 

“highest sensitivity” setting. Although this provides a weak hint that the RABV P might not 

interact with the substrate binding groove, one has to consider that the prediction is based on 

data obtained for bacterial HSP70. A recently published workflow for the computational 

prediction of binding peptides for the human HSP70 variant BiP (GRP78) is not yet available as a 

public tool and could therefore not be applied to predict the identified RABV P motif (Schneider 

et al., 2016). Anyway, these models are not completely accurate, making it essential to validate 
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every potential binding peptide experimentally. Moreover, still little is known about potential 

differences in substrate specificity of the different HSP70 family members present in mammalian 

cells. There is some evidence that the substrate specificity of human HSP70 isoforms may differ 

significantly under certain conditions (Hageman et al., 2011). 

Although the RABV P derived HSP70 binding peptide identified in this thesis exhibits rather 

unusual properties for a HSP70 client peptide according to the available models, it cannot be 

excluded that it is bound by the substrate binding groove of the SBD. Further experiments are 

necessary in the future to clarify this issue. The most precise information about the mode of 

interaction could be obtained by solving of a crystal structure of HSP70 bound to the P-derived 

peptide or the full RABV P protein, although this might rather be a technically challenging 

approach. The easiest way to confirm or rule out a binding of RABV P to the substrate binding 

groove of HSP70 would be to employ binding assays utilizing a SBD with a V436F substitution. 

This mutation blocks the substrate binding cavity by the introduction of a much larger 

phenylalanine residue, leading to significantly impaired client binding (Mayer et al., 2000). This 

way, a potential involvement of the substrate binding groove could be clarified. If the HSP70 

residues involved in binding could be determined, this might imply a hypothesis how RABV P 

manipulates HSP70 function. 

5.2.3. Correlation between P-HSP70 association and inhibition 

The results described in this thesis indicate a direct correlation between the ability of RABV P to 

bind HSP70 and its ability to interfere with IFN induction. Several experiments provided good 

evidence that the inhibitory defect of RABV P mutants lacking HSP70 association is not due to 

defective P protein folding. Protein expression was not significantly impaired in these mutants, 

as determined by Western blotting (Figure 24). Further, other functions of the P protein, such as 

inhibition of IFN-signaling, were left unchanged by mutations impairing HSP70 association 

(Figure 18). Most importantly, replication competent viruses containing the P-W186A mutation 

could be rescued and exhibited growth characteristics comparable to the parental strain (Figure 

32, discussed below). This emphasizes that the P protein is intact in every regard that is 

important for the viral life cycle. It can be expected that aberrant folding of P would significantly 

impair viral growth, since the phosphoprotein is central to transcription and replication as a 

polymerase cofactor and N-binding protein (Chenik et al., 1994; Chenik et al., 1998; Emerson and 

Yu, 1975; Fu et al., 1994). Therefore, these findings strongly indicate that the observed 

interaction is exclusively important for inhibition of IRF3 activation. Moreover, there is some 
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recent evidence suggesting that rather HSP90 and its co-chaperone Cdc37 assist in correct 

folding of RABV P (Xu et al., 2016). 

Although a clear correlation between HSP70 binding and the ability of RABV P to interfere with 

IFN induction could be shown, this is, strictly speaking, no definite proof that RABV P relies on 

members of this protein family for inhibition. An impact of different wild type and mutant HSP70 

proteins and heat shock treatment on IFN induction was demonstrated in this thesis, suggesting 

an involvement in the regulation of RIG-I-MAVS signaling and P inhibition. However, theoretically 

RABV P might also bind other proteins or molecules, possibly using the same binding motif, 

which could not be identified yet. Due to the abundance and pleiotropic functions of HSP70s, 

this possibility is hard to eliminate, especially considering the binding of RABV P to various 

members of the HSP70 family. In addition, if heat shock protein function is manipulated 

experimentally, many effects could arise and a possible specific impact on innate immune 

signaling or P inhibition is hard to distinguish. Therefore additional research is necessary, in 

order to obtain further evidence and to clarify the role of HSP70 for the inhibition of IFN 

induction by RABV P and which specific HSP70 family members are involved.  

Potentially, RABV P could influence many steps of the HSP70 chaperone cycle. Various small 

molecules have been shown to modulate HSP70 function either by impairing ATPase activity, 

targeting the substrate binding domain, or by abrogating interactions of HSP70 with distinct 

cofactors (Patury et al., 2009). Future research could employ the different classes of HSP70 

inhibitors and screen these compounds for their potential ability to interfere with IFN induction, 

thus hinting at an inhibitory mechanism for RABV P. Conversely, it could be promising to 

determine whether RABV P or P-derived peptides could be used as modulators or inhibitors for 

HSP70 function, providing a new tool to investigate this interesting class of chaperones. This 

might be achieved in future research by examining the folding or ATPase activity of HSP70 in 

vitro, in the presence or absence of RABV P or P-derived peptides. 

In addition to modulating HSP70 function, RABV P might also lead to subcellular mislocalization 

of possibly select heat shock proteins involved in innate immune signaling. This option seems 

promising for further investigation, since nuclear trafficking signals of RABV P have been 

identified as essential for inhibition of IFN induction. However, no impact on heat shock protein 

localization could be experimentally identified so far. This attempt was complicated by the need 

for sensitive and specific antibodies suitable for immunofluorescence imaging which are able to 

clearly distinguish between the different HSP70 family members. Future research with optimized 

detection strategies and fluorescent fusion proteins might reveal new insights into a possible 

connection between HSP70 binding and RABV P trafficking, two features which likewise were 



                                                                                                               5. Discussion 

 

 
126       

 

identified as critical prerequisites for inhibition of IFN-induction by P. Emerging evidence 

suggests that subcellular localization of signaling components is a crucial determinant of innate 

immune pathway activation and TBK1 substrate specificity (Helgason et al., 2013), making the 

link between RABV P inhibition and trafficking an interesting subject of investigation. 

In general, two mechanistic possibilities might be distinguished in regard to inhibition of IFN 

induction by RABV P and the described interaction with HSP70: First, RABV P might utilize 

specific or multiple HSP70 chaperones in order to interfere with innate immune signaling, 

whereby HSP70 is normally not critically involved in IFN induction. Second, HSP70 family 

members might be critical regulatory components of the RLR-MAVS signaling cascade. In this 

scenario RABV P would need to target this essential function in order to abrogate the induction 

of type I IFNs. Further research is necessary to determine which of the two possibilities is more 

likely. Since overexpression of heat shock proteins, heat shock treatment of cells and 

overexpression of HSP70 mutants defective in specific functions were shown to interfere with 

innate immune signaling in this project, we favor the second working hypothesis. 

5.3. L16-P-W186A and L16-P-K214A induce IFN 

The RABV P mutants P-W186A, P-K214A and P-R260A were identified in this thesis as deficient in 

inhibition of IFN induction (Figure 17, Figure 25). In order to validate these mutations in the viral 

context, we attempted to rescue recombinant viruses from cDNA harboring the corresponding 

amino acid substitutions. While the W186A substitution, similar to PΔ176-186 (Rieder et al., 

2011), was shown in this thesis to be deficient in binding to HSP70 family members, the P-K214A 

and P-R260A mutants exhibit a deficiency in the C-terminal conformational NLS of RABV P 

(Pasdeloup et al., 2005; Rowe et al., 2016). 

Whereas the rescue procedure resulted in the successful generation of replication competent 

viruses for L16-P-W186A and L16-P-K214A, the same approach failed for the L16-P-R260A 

mutant. Furthermore, cells transiently expressing RABV P-R260A did not support growth of a 

recombinant L16-ΔP-eGFP virus (data not shown), indicating an essential defect in the viral life 

cycle for the L16-P-R260A mutant virus. A positively charged patch on the surface of the CTD of 

RABV P encompassing K214A and R260A is critically involved in P–NRNA binding, an interaction 

which is essential for viral replication (Jacob et al., 2001; Mavrakis et al., 2004; Ribeiro et al., 

2009). This feature of the positively charged patch is likely the reason for the defect of L16-P-

R260A,  thereby emphasizing that the positively charged region of the CTD has a dual function, 

mediating both importin binding for nuclear trafficking and NRNA binding (Rowe et al., 2016). 
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The L16-P-W186A mutant could be grown to titers and exhibited growth kinetics 

indistinguishable from those of the L16 parental strain in BSR T7, HEp-2 and HEK 293T cells. 

Notably, growth of the mutant virus L16-PΔ176-186, which is defective in preventing IFN 

induction, was previously reported to be about 10-fold reduced in comparison the L16 wild type 

strain (Rieder et al., 2011). In contrast to L16-P-W186A, the mutant virus L16-P-K214A was 

significantly attenuated in growth (Figure 32). This underlines the importance of the positively 

charged patch in the RABV P CTD for efficient viral replication. The RABV P residue R260 seems 

to be more critical for this function than K214, because a recombinant virus containing the 

R260A substitution could not be rescued. Since the defect in growth is also observed in BSR cells, 

which cannot mount an antiviral IFN-response, the observed defect in inhibition of IFN induction 

by RABV P-K214A is not the reason for the strongly attenuated replication. Although HEK 293T 

and HEp-2 cells have an intact innate immune system that might potentially impair viral 

replication, L16-P-W186A exhibited growth kinetics equal to the wild type strain in these cell 

lines. The reason for this might be the ability of RABV P to interfere not only with IFN induction, 

but also with IFN-mediated STAT signaling (Brzózka et al., 2006; Vidy et al., 2005), a function that 

is fully retained in P-W186A (Figure 18). This way, the mutant virus L16-P-W186A might induce 

IFN but could still block its antiviral effects by abrogating STAT signaling. 

In order to examine to which extent the described mutant viruses induce an IFN-response, 

HEK 293T cells were infected with the parental L16 strain and the recombinant viruses L16-P-

W186A and L16-P-K214A, followed by extraction of cellular RNAs 48 h post-infection. Reverse 

transcription of mRNAs and real-time PCR with IFN-β mRNA specific primers were used to 

evaluate the level of IFN induction (Figure 33A). Compared to the parental isogenic strain, L16-P-

W186A infection lead to a 16-fold increase in IFN-β mRNA transcription. This ratio is in 

agreement with the data obtained from reporter gene assays with overexpression of wild type 

and mutant P proteins (Figure 25A) and with the IFN induction by L16-PΔ176-186 reported 

previously (Rieder et al., 2011). Thereby, the inhibitory defect of P-W186A could be confirmed in 

the viral context, providing good evidence that W186 is indeed crucial for both HSP70 binding 

and suppression of IFN induction. Further, it should be noted that the P mRNA levels were 2-fold 

reduced in L16-P-W186A in comparison to the wild type. However, since the P levels were 

comparable on the protein level as shown by Western blotting, it is unlikely that reduced 

transcription or mRNA stability had an impact on inhibition. This finding might provide a slight 

hint at a potential additional role of the characterized P-HSP70 interaction in transcription, 

similar to the role for N-HSP70 interaction in facilitating measles virus transcription (Bourhis et 

al., 2006; Zhang et al., 2005; Zhang et al., 2002). 
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Strikingly, in spite of the strongly attenuated growth, L16-P-K214A induced even higher amounts 

of interferon mRNA. This is surprising, considering the very limited viral replication as shown by 

Western blotting (Figure 33C). Accordingly, RABV P mRNA levels were very low for L16-P-K214A. 

This somewhat resembles the previously reported phenotype of the L16-ΔPLP virus, which 

contains a P gene shifted to a genomic position 5’ of the L gene, resulting in strongly reduced P 

expression in relation to other viral proteins (Rieder et al., 2011).  

Since RABV P is not only involved in inhibition of IFN-signaling, but also in viral replication, 

transcription, proper N encapsidation of viral RNAs and RNP binding (Chenik et al., 1994; Chenik 

et al., 1998; Curran et al., 1995; Jacob et al., 2001), the mutant virus containing the P-K214A 

protein might be severely impaired in one or multiple of these functions, as discussed above. It 

could be speculated that defects in viral transcription and replication due to defective P function 

might lead to aberrant generation of PAMPs, potentially specific viral nucleic acid species that 

strongly trigger RLRs. In this hypothesis, the P-W186A mutation unmasks the level of IFN-

inducing PAMPs which is present in an otherwise natural infection, whereas additional defects in 

the viral life cycle, like in the L16-P-K214A mutant virus, lead to an increase in PAMP generation 

or reduced shielding of PAMPs due to aberrant RNA encapsidation, and thereby IFN induction.  

Since L16-P-W186A exhibits wild type-like growth kinetics while inducing IFN, this newly 

characterized mutant is an ideal tool for investigating the mechanism and importance of IFN 

induction in rabies virus infection in the future. Moreover, these traits might designate this 

mutant virus as an interesting candidate for a rabies vaccine. Previous studies reported that the 

recombinant virus L16-PΔ176-181 (PΔInd1) failed in inducing higher titers of virus neutralizing 

antibodies in foxes after oral vaccination in comparison to the parental strain (Vos et al., 2011). 

L16-P-W186A might be more promising, because, in contrast to L16-PΔ176-181, its growth 

kinetics are comparable to the wild type virus while the inhibitory abilities of RABV P in regard to 

IFN induction are absent, potentially leading to an augmented immune response. 

5.4. CVS-strain P is deficient in inhibition of IFN induction 

The rabies virus strain CVS (challenge virus standard) is a typical fixed, laboratory adapted strain 

that retained pathogenicity and leads to fatal infections in laboratory animals (Park et al., 2006). 

Due to this properties, CVS-strain is frequently used for rabies in vivo studies. However, the 

findings reported in this thesis raised the questions whether CVS is actually a typical street 

virus-like rabies virus that should be considered and used as a “standard”. When comparing the 

phosphoproteins of SAD-L16, THA and CVS strain in reporter gene assays for their ability to 
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interfere with ΔRIG-I and TBK1 overexpression mediated IFN-β promoter activation, we found 

the CVS variant to exhibit a defect similar to the inhibition deficient L16-P mutants, such as 

P-W186A, which were characterized in this thesis (Figure 34) and previous research (Rieder et 

al., 2011). By analyzing alignments of various RABV phosphoproteins, we found an outstanding 

variation in the primary sequence of CVS-P at position 179 (Figure 35, section below in Figure 

49).  

 

Figure 49: Sequence alignment of residues 162-197 of THA, CVS and L16-strain RABV P. 

Rabies virus phosphoprotein sequence alignment for THA, CVS and L16-strain encompassing residues 162-197. 

Sequences were aligned using the “Clustal Omega” online tool of EMBL-EBI (European Bioinformatics Institute) and 

visualized with Jalview (Waterhouse et al., 2009). The minimal HSP70 binding region (GPPALEW) is annotated and 

CVS-P-P179 is highlighted with a red dot. 

Whereas all other RABV phosphoproteins exhibit a serine residue at this position, in the case of 

CVS-P a proline residue is present. This position was identified as potentially important due to 

the otherwise strong conservation at this position and because it is located within the amino 

acid region which is associated with the inhibitory abilities of RABV P and is absent in the RABV 

PΔInd1 and PΔInd1/2 mutants described previously (Rieder et al., 2011). The exchange of a 

serine for a proline residue at position 179 in CVS-P restored the inhibitory function completely 

(Figure 36). The other way round, L16-P-S179P mutants displayed the same inhibitory defect as 

CVS-P or L16-P-W186A. This clearly shows that the P179 residue in CVS-P is responsible for the 

defect in the inhibition of IFN induction. Since all other RABV P sequences examined contain a 

serine residue at this position, it is well possible that the P179 in CVS-strain P is a mutation the 

strain acquired during passaging. Since the STAT-inhibition is still intact in this protein, the 

selective pressure for maintaining inhibition of IFN induction could be rather weak, especially in 

the artificial setting of a cell culture adapted fixed virus strain. 

Rabies virus immune evasion is thought to be an important determinant of viral pathogenesis 

(Ito et al., 2016). The observed defect of CVS strain P raises the question whether the inhibition 

of IRF3 activation is strictly required for viral pathogenicity under the condition that inhibition of 

IFN signaling by RABV P is still intact. Although antiviral function is mostly mediated by IFN 

signaling, certain ISGs can also be directly induced by IRF3 independently of IFN signaling (Au et 

al., 1995). Expression of these gene would consequently not be suppressed by P proteins which 

are exclusively able to abrogate STAT signaling. The situation is severely complicated by the fact 

that pathogenicity of rabies virus and possibly the potential to stimulate IFN induction could be 
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multigenic traits that differ significantly among different rabies virus strains (Ito et al., 2010; 

Pulmanausahakul et al., 2008; Rieder et al., 2011; Wiltzer et al., 2014). CVS strain RABV might 

compensate its lack in inhibitory function in regard to IFN induction for instance with reduced 

PAMP generation, or a more efficient control of JAK-STAT signaling by its phosphoprotein in 

comparison to SAD-L16. Alternatively, RABV proteins other than P might compensate for the lack 

of inhibitory function, such as the matrix protein, which has been reported to target RelAp43, a 

class I member of the NF-κB family, leading to inhibition of the NF-κB pathway and a significant 

reduction of IFN-β transcription (Luco et al., 2012). A comparison of the L16 and CVS strain of 

rabies virus in regard to PAMP generation and analysis of corresponding chimeric recombinant 

viruses might reveal new interesting insights about which viral proteins and features are crucial 

prerequisites for immune evasion. 

For the L16 strain, the ability to interfere with IFN induction was shown to be an important 

determinant of viral pathogenicity in a mouse model employing intracranial injection (Rieder et 

al., 2011). Furthermore, for Nishigahara (Ni) strain a critical connection between suppression of 

IFN induction and stable replication in muscle cells, enabling infection of peripheral nerves, was 

reported (Yamaoka et al., 2013). This underlines the importance of inhibition of IFN induction for 

the course of rabies virus infection. The necessity for RABV P to interfere with IRF3 activation 

might vary, depending on cell or tissue type and depending on the potential of the respective 

virus strain to induce IFN-signaling. Further research, preferably including in vivo studies, is 

necessary to clarify which viral characteristics contribute to pathogenesis. 

5.5. Heat shock proteins and innate immune signaling 

In this thesis a RABV P binding motif for HSP70 was identified and localized to P residues 

180-186, with a critical contribution of the C-terminal residue W186. This HSP70 binding motif is 

contained in a RABV P region previously shown to be essential for inhibition of IFN induction 

(Rieder et al., 2011). All RABV P proteins deficient in HSP70 interaction also fail in inhibition of 

IFN induction (Figure 25). This provides strong evidence that the identified HSP70 binding motif 

in RABV P is essential for suppression of IRF3 activation, suggesting a connection between HSP70 

chaperones and innate immune signaling. 

To further evaluate this possible connection, we employed overexpression of wild type and 

mutant HSP70 family members as well as thermal stress (heat shock), in order to verify whether 

heat shock proteins might have an impact on IFN induction by RLR signaling. 
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Initial reporter gene experiments demonstrated that overexpression of inducible HSP70 

interferes moderately with ΔRIG-I and TBK1 overexpression-mediated IFN-promoter activity 

(Figure 37). The ability of RABV P to interfere with IFN induction was not significantly altered by 

HSP70 co-expression. Further experiments revealed that HSP70-K71E, an ATPase deficient 

mutant (Zeng et al., 2004), significantly impaired ΔRIG-I mediation IFN-promoter induction, 

comparable to RABV P (Figure 38). However, in contrast to RABV P, also NF-κB activation by 

ΔRIG-I co-expression was significantly abrogated by HSP70-K71E. Although the observed 

inhibition by RABV P and HSP70-K71E was similar for IFN induction, the differential suppression 

in regard to NF-κB activation indicates that the modes of action are not identical. RABV P seems 

to interfere with IFN induction in a more specific way. Anyway, the significant impact of an 

ATPase deficient HSP70 mutant on IFN induction provides a further hint at a connection 

between the function of molecular chaperones and innate immune signaling.  

 

Figure 50: HSP70 mutant constructs used in this thesis. 

Schematic representation of different dominant negative HSP70 constructs used in this thesis. K71 is centrally 

involved in ATPase activity, whereas the GG-DE mutation abrogates ATP binding. 

In addition to the ATPase deficient mutant, another HSP70 mutation (G201D/G202E, termed GG-

DE below) has been reported previously to interfere with HSP70 function by its inability to bind 

ATP, thus binding and blocking nucleotide exchange factors such as auxilin (Morgan et al., 2013). 

The K71E and the GG-DE mutation were separately introduced into nucleotide binding domain 

constructs of HSP70-1A and assayed for inhibition of IFN induction in comparison to RABV P and 

different HSP70 constructs (Figure 39). Both mutants, K71E and GG-DE, in the context of the 

HSP70-1A NBD interfered very efficiently with IFN-promoter activity. Inhibition was comparable 

with RABV P for the GG-DE construct, and slightly less efficient for the K71E version. 

Interestingly, expression of the wild type NBD alone also interfered with IFN induction 

significantly and moderately better than wild type full length HSP70-1A. Taken together, these 

experiments provide evidence that interfering with proper chaperone function in a dominant 

negative way may impair innate immune signaling considerably. 
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In further experiments we obtained some evidence that similar to heat shock protein 

overexpression, heat shock treatment of cells impaired ΔRIG-I and TBK1-overexpression 

mediated IFN-promoter activity, while the inhibitory function of RABV P remained intact (Figure 

40A). In parallel, the reliability of the reporter gene assay was verified by assaying heat shock 

treatment for an influence on IFN-mediated ISRE promoter activity. While RABV P, which is a 

known inhibitor for STAT signaling (Brzózka et al., 2006; Vidy et al., 2005), abrogated reporter 

activity under normal and after thermal stress conditions, heat shock treatment alone had rather 

a slightly positive effect on ISRE-promoter activity. In a similar setting, the dominant negative 

mutant HSP70-K71E abrogated ΔRIG-I mediated IFN-promoter activity, but not induction of IFN-

induced ISRE-reporter activation (Figure 40B). This indicates that the utilized dual luciferase 

assay is suitable for the employed experimental conditions and is not in general indicating 

reduced reporter activity after heat shock treatment or expression of dominant negative HSP70 

mutants, for example due to impaired folding of the luciferase reporter. Therefore, it can be 

concluded that changes in cellular heat shock protein function might specifically impair IFN 

induction while leaving other cellular pathways unaffected. 

In order to evaluate a possible involvement of inducible HSP70 family members, which exhibited 

a higher impact on IFN induction before, we created HSP70-1A/1B HEK 293T knock-out cells 

using the CRIPR/Cas9 technology (Mali et al., 2013). However, experiments conducted with this 

knock-out cell line did not reveal any significant differences in regard to induction of IFN-β 

promoter activity by TBK1 or ΔRIG-I (Figure 41). Also inhibition of IFN induction by RABV P or the 

reaction to heat shock treatment were not notably altered in comparison to the parental cell 

line. This indicates that the inducible form of HSP70 (HSP70-1A/1B) is not involved in the 

induction of type I interferons, or that the corresponding function might be redundant and 

shared with other heat shock proteins. The constitutively expressed variant HSC70 might be an 

interesting candidate for future research, since it is expressed in all cell types also under non-

stress conditions. It might be challenging to obtain further evidence for a potential role for 

HSC70 in innate immune signaling, since this chaperone was shown to be essential for cell 

viability. This was indicated previously by the non-viability of knockout cells (Florin et al., 2004) 

and massive cell death upon knockdown (Rohde et al., 2005). Therefore it might be preferential 

in future experiments to employ small molecule inhibitors targeting the function of HSC70 or 

other chaperones. The compounds of the diverse pool of available HSP70 inhibitors (Patury et 

al., 2009) could be screened for their ability to modulate IFN induction, possibly providing 

further evidence for a general involvement of HSP70 chaperones in innate immune signaling. An 

interesting, however technically more challenging approach would be the generation of cell lines 
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with inducible degradation of HSC70, based on the auxin-inducible degron system (Nishimura et 

al., 2009) or small molecule-assisted shutoff (SMASh) technology (Chung et al., 2015). 

In addition to the findings presented in this thesis, there is emerging evidence in the literature 

that heat shock proteins have many different roles in cellular processes besides maintaining 

protein homeostasis under stress and normal conditions. The drug deoxyspergualin (DSG) is a 

potent immunosuppressant with clinical applications (Ito et al., 1990). Although the exact 

mechanism of action is still unknown, it could be demonstrated that the compound binds to 

members of the HSP70 family (Nadler et al., 1992). Studies using different DSG analogs and 

inactive metabolites revealed a correlation between the ability of these molecules to interact 

with HSP70 and their efficacy as immunosuppressants (Nadeau et al., 1994).  

In the last decade, different heat shock proteins have been further shown to be involved in 

different aspects of innate immune signaling. HSPD1, a mitochondria-associated member of the 

HSP60 chaperonin family, was shown to be involved in the positive regulation of IRF3 

phosphorylation in the RLR pathway (Lin et al., 2014). HSC70, a constitutively expressed HSP70 

member was reported to negatively regulate MAVS filament formation, thus impairing IFN 

induction (Liu et al., 2013b). However, this report could not be supported in this thesis, since 

HSC70 overexpression only lead to minor changes of RLR-dependent IFN induction (Figure 38). 

Another HSP70 family member, the ER-resident chaperone GRP78 (BiP) modulates the TLR3-

dependent innate immune response in HCV infection (Wei et al., 2016). Another heat shock 

protein family, HSP90, was reported to regulate IRF3 activation by stabilization of TBK1 (Yang et 

al., 2006). 

These examples and the results presented in this thesis illustrate that heat shock proteins might 

rather play a common and possibly underestimated role in innate immune signaling. The 

involvement of HSP70 chaperones in IFN induction could be further elucidated in further 

research using RABV P as a promising tool. It should be clarified whether RABV P exhibits 

selectivity towards defined HSP70 family members or targets the whole protein group, possibly 

by interacting with a conserved motif. This approach and further methods discussed above 

might lead to promising novel insights into the involvement of possibly select HSP70 chaperones 

in innate immune signaling. 
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5.6. Conclusion and outlook 

In the present thesis, several novel insights about the potent IFN-antagonist RABV P could be 

reported. Inhibition of RIG-I signaling could be shown to depend on the C-terminal domain of the 

protein, while in contrast the N-terminal domain was found to be non-essential. Some evidence 

could be gathered that this requirement for the CTD is based on the presence of a 

conformational nuclear localization signal in this domain. RABV P mutants exhibiting CTD-NLS 

mutations lost their ability to interfere with IFN induction, similar to C-terminal truncation 

mutants. Notably, this defect could be rescued in both cases by N-terminal fusion with a 

recombinant SV40-NLS sequence, strongly suggesting that indeed active nuclear trafficking is a 

prerequisite for inhibition of IRF3 activation.  

Further, a novel HSP70 binding peptide in RABV P was identified and characterized. It could be 

mapped to a seven amino acid stretch (residues 180-186) located to a part of the disordered 

region of the protein previously implicated in the inhibition of IFN induction (Rieder, 2012). In 

addition to internal deletion of this interaction motif, the binding to HSP70 could also be 

abrogated by a single amino acid substitution (W186A). Strikingly, all RABV constructs which 

exhibited defective HSP70 binding also failed in interfering with IFN induction, revealing an 

interesting correlation. To follow up on these results, overexpression of heat shock proteins, 

dominant negative HSP70 mutants and direct heat shock treatment were employed to 

investigate a potential connection between the molecular chaperone machinery and innate 

immune signaling. The obtained data indicates that interference with proper HSP70 function is 

impairing IFN induction, while other pathways such as STAT signaling remain unaffected. These 

findings provide good hints that HSP70 family members might have an important and so far not 

appreciated role in the regulation of innate immune signaling. 

In order to shed more light on the detected RABV P-HSP70 interaction and potential functional 

implications a closer understanding on the binding interface between the two proteins is of 

great interest and could potentially provide a hint at how P modulates HSP70 function. Further 

mutational analysis of select HSP70s and structural studies might provide new insights about this 

issue. The function of HSP70s in regard to innate immune signaling could be further investigated 

by selectively modulating the function of one or multiple chaperones by small molecule 

inhibitors or genetic engineering techniques. This way, the potential involvement of this class of 

proteins in IFN induction could be further clarified. Since HSP70s were identified as a target of 

RABV P in the present thesis, this viral protein might be a valuable tool in the future to further 

examine the contribution of HSP70 chaperones to cellular signaling pathways. Further, it might 
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be interesting to evaluate, whether already available HSP70 inhibitors might be suitable for 

modulation of IFN induction, or conversely whether RABV P derived constructs might be able to 

modulate HSP70 function. This could lead to the development of novel compounds targeting 

HSP70, what might be promising considering that HSP70 is an emerging target for 

chemosensitization of cancer cells (Powers et al., 2008; Rerole et al., 2011). Moreover, 

molecules targeting HSP70 function might be assayed for potential interference with IFN 

induction. A potential modulation of IFN induction by small molecules targeting chaperone 

function might in this case be used as new therapeutic option in the treatment of auto-immune 

disorders in the future. 
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6.3. Abbreviations 

Abbreviation Description 
5’-ppp 5’-triphosphate 

aa amino acids 

APS ammonium persulfate 

bp base pair 

CARD caspase activation and recruitment domain 

cDNA copy DNA 

CIAP calf intestinal alkaline phosphatase 

Co-IP co-immunoprecipitation 

CTD C-terminal domain 

Da dalton 

ddH2O bidestilled water 

DLC8 dynein light chain LC-type 1 

dsRNA double stranded RNA 

EM electron microscopy 

EV empty vector 

FCS fetal calf serum 

FF firefly luciferase 

ffu focus forming unit 

GFP green fluorescent protein 

HA hemagglutinin tag 

HRP horseradish peroxidase 

HS heat shock 

HSP heat shock protein 

IF immunofluorescence 



                                                                                                               6. Appendix 

 

 
139       

 

IFN interferon 

IFNAR interferon-α/β receptor 

IKK IκB kinase 

IRF interferon regulatory factor 

ISG interferon-stimulated gene 

ISRE interferon-stimulated response element 

IκB inhibitor of κB 

JAK Janus kinase 

KO knock out 

LGP2 laboratory of genetics and physiology 2 

LMB leptomycin B 

MAMP microbe-associated molecular pattern 

MAVS mitochondrial antiviral-signaling protein 

MDA5 melanoma differentiation-associated gene 5 

MOI multiplicity of infection 

MS mass spectrometry 

NBD nucleotide binding domain 

NEF nucleotide exchange factor 

NES nuclear export signal 

NF-κB nuclear factor κB 

NLS nuclear localization signal 

o/n overnight 

OD optical density 

OE overlap extension (PCR) 

p. i. post-infection 

p. t. post-transfection 

PAGE polyacrylamide gel electrophoresis 

PAMP pathogen associated molecular pattern 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PEI polyethyleneimine 

PKC protein kinase C 

PO peroxidase 

PRR pattern recognition receptor 

PVDF polyvinylidene fluoride  

RABV P Rabies virus phosphoprotein 

RD regulatory domain 

RIG-I retinoic acid inducible I 

RL renilla luciferase 

RLR RIG-I like receptor 

RNP ribonucleoprotein 

RT room temperature 

SBD substrate binding domain 

SeDI Sendai virus defective interfering particles 

ssRNA single stranded RNA 

STAT signal transducer and activator of transcription 
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TBK1 tank-binding kinase 1 

TIM TRAF interaction motif 

TLR toll-like receptor 

TRAF TNF-receptor-associated factor 

VSV Vesicular stomatitis virus 

WB Western blotting 

wt wild type 
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