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Zusammenfassung

Das Hauptziel der vorliegenden Dissertationsschrift ist eine eingehende und
möglichst umfassende Untersuchung der Potts-Funktionale

H̄γ(·, y) : RN −→ R, (1)

x 7−→ γ · |{1 ≤ i ≤ N − 1 : xi 6= xi+1}|+
N∑

i=1

(yi − xi)
2, γ > 0,

für gegebenes y ∈ RN und ihrer Minimierer. Die Zeitreihen y werden inter-
pretiert als Daten, und x ist ein Kandidat für eine geeignete Repräsentation
der Daten. Der erste Term des Funktionals bestraft Sprünge von x, der
zweite Term misst seine Datentreue. Die Minimierung des Funktionals (1)
in x bedeutet also, eine Darstellung der Daten zu finden, die diese beiden
konkurrierenden Forderungen bestmöglich erfüllt.

Im Potts-Funktional sind die wesentlichen Eigenschaften eines Signals Glatt-
heit und Sprünge. Ein Signal x hat einen Sprung, wenn die Intensitäten
in aufeinanderfolgenden Zeitpunkten verschieden sind. Der erste Term be-
straft also Sprünge unabhängig von ihrer Höhe. Der dazu gehörende kom-
plementäre Glattheitsbegriff ist beim Potts-Funktional sehr streng: Nur kon-
stante Signale sind glatt. Der Parameter γ bestimmt den Grad der Glattheit.
Ein Maß für die Datentreue ist in (1) die Summe der Abstandsquadrate. Hier
sind natürlich auch andere Abstandsbegriffe denkbar, wir beschränken uns
aber auf diesen Datenterm, da hier eine ganze Reihe von Aussagen bewiesen
werden kann.

Aufgrund ihrer Einfachheit sind Potts-Funktionale in Situationen geeignet,
in denen man nichts oder nur wenig über die genaue Erzeugung der Daten
oder der zugrundeliegenden Ausgangssignale weiß. Minimierer der Potts-
Funktionale sind also ein geeignetes Instrument zur Extraktion von einfachen
Features wie Sprüngen und Plateaus. Wir zeigen dies an zwei Datenbeispie-
len: fMRT-Daten zur Gehirnkartierung und Fraktionierungskurven aus Ex-
perimenten für Microarrays. Bei diesen Daten erscheint es sinnvoll, die

vii



viii ZUSAMMENFASSUNG

Zeitreihen durch im Sinne des Potts-Funktionals glatte Signale mit möglichst
wenigen Sprüngen darzustellen.

Im ersten Teil der Arbeit werden die Potts-Funktionale eingeführt und Eigen-
schaften ihrer Minimierer x∗(γ, y) untersucht. Wir zeigen die Existenz und
Eindeutigkeit von Minimierern für fast alle y. Außerdem stellt sich her-
aus, dass es für fast alle Daten y nur endlich viele verschiedene Minimierer
gibt, wenn der Parameter γ den gesamten Bereich von Unendlich bis Null
durchläuft. Wir zeigen die gemeinsame Stetigkeit von Minimierern x∗(γ, y)
in γ und y. Schließlich leiten wir noch exakte Algorithmen zur Berechnung
der Minimierer her.
Im zweiten Teil beschäftigen wir uns mit der Wahl des Parameters γ, was als
Modellwahl aufgefasst werden kann. Wir interpretieren Minimierer der Potts-
Funktionale als Schätzer für die Daten y. Zuerst gehen wir auf eine Mini-
malforderung an einen vernünftigen Schätzer ein, seine Äquivarianz bezüglich
Skalierung des Signals und einer Verschiebung des Nullpunkts. Für festen Pa-
rameter γ sind die Minimierer nicht äquivariant. Aus der Skalierungseigen-
schaft der Minimierer leiten wir eine hinreichende Bedingung für Äquivarianz
her. Wir stellen eine neue Klasse datenadaptierter Parameterwahlen vor.
Diese Intervallkriterien beruhen darauf, dass der Minimierer für ganze Pa-
rameterintervalle derselbe ist, und die Länge dieser Intervalle als ein Maß
für Stabilität des zugehörigen Minimierers interpretiert werden kann. Ferner
zeigen wir, wie einige bekannte Stoppkriterien und Modellwahlkriterien auch
als datenadaptierte Parameterwahl für Schätzer aus dem Potts-Funktional
genutzt werden können. Schließlich skizzieren wir weitere Ideen zur Para-
meterwahl, die vor allem die Probleme der Intervallkriterien beheben sollen.
Im Teil III wenden wir die beschriebenen Methoden auf Zeitreihen aus den
erwähnten realen Datensätzen und simulierte Daten an.
Der letzte Teil befasst sich mit der Konsistenz der Schätzer. Wir unter-
suchen das asymptotische Verhalten von Minimierern des Potts-Funktionals
in zwei Situationen. Zunächst nehmen wir an, dass die Daten von einem
einfachen Regressionsmodell erzeugt worden sind. Wir zeigen, dass Min-
imierer gegen eine geglättete Version des Ausgangssignals konvergieren, wenn
das Rauschen gegen Null geht. Im zweiten Szenario betrachten wir die
Daten als verrauschte Diskretisierung einer Funktion f . Bei Verfeinerung
der Diskretisierung und geeigneter Skalierung des Parameters konvergieren
die Minimierer des Potts-Funktionals, wenn man sie mit Treppenfunktionen
identifiziert, gegen die Funktion f .
Im Anhang findet man exemplarisch für eine Zeitreihe Bilder aller Minimierer
bei Variation von γ. Außerdem beinhaltet er eine kurze Zusammenfassung
der Modellwahlkriterien und einfache, aber langatmige Rechnungen.



Introduction

The main aim of the present thesis is a detailed and rigorous analysis of the
functional

H̄γ(·, y) : RN −→ R, (2)

x 7−→ γ · |{1 ≤ i ≤ N − 1 : xi 6= xi+1}|+
N∑

i=1

(yi − xi)
2, γ > 0,

given y ∈ RN , and its minimizers. The time series y is interpreted as data,
and x as a candidate for an appropriate ‘interpretation’ or ‘representation’ of
data. The first term penalizes roughness of x, and the second one measures
fidelity to data. Minimizing the functionals (2) in x results in particular in
a tradeoff between these two competing terms. For historical reasons, the
functionals in (2) will be called Potts functionals.

These functionals are a simple instance of variational approaches. The gen-
eral idea is to design a functional of signals and data which captures and
rates the relevant signal features and, simultaneously, fidelity to data. Then
- given a special set of data - one selects a signal according to some rule which
justifies to consider it as the desired ‘reconstruction’, ‘filter output’, or ‘rep-
resentation’. The functionals in variational approaches typically consist of a
penalty and a data term, and are formally similar to posterior or penalized
likelihood functions.

In the present analysis of the Potts functionals the relevant features are
smoothness and jumps. The general philosophy, however, applies to many
situations where both, a notion of homogeneity and a notion of heterogeneity,
are present. There are two basic concepts inherent in the Potts functionals:

(i) ‘Jump’ or ‘break’: In the Potts functional a jump is present, where the
values of the signal x in two subsequent time points differ from each
other. The first term penalizes the number of jumps irrespectively of
their size.

1



2 INTRODUCTION

The complementary notion of ‘smoothness’: This concerns the behavior
of the signal between two subsequent jumps. It is a consequence of
the penalty that the notion of smoothness is rather strict in the Potts
functional: Only constant signals are smooth. Note that the parameter
γ > 0 controls the degree of smoothness.

(ii) Fidelity to data, i.e. some measure of distance between data y and the
signal x; in (2) it is the sum of squares.

Although the above general reflections apply with suitable modifications to
a broader class of functionals, we restrict ourselves to the analysis of (2).

Due to its simplicity, the Potts functional is appropriate in situations where
there is little or no ground truth. Its minimizers are a suitable tool for
the extraction of primitive signal features like plateaus and jumps. We will
illustrate this by two selected data sets from life sciences: time series’ from
fMRI human brain mapping and from fractionation experiments for cDNA
microarrays. In view of these data sets, one may doubt about too ‘specific’
methods or too detailed models for their analysis. Estimates rely sensitively
on assumptions and therefore are not robust against even slight changes of
models. Fitting too many parameters in a specific model introduces more
variance despite slight decrease in bias. A way out of this misery is to try a
parsimonious approach. The principle of parsimony is a philosophical matter
and will not be addressed here; let us sloppily interpret it as reduction to
essential features.
In these data examples, it is reasonable to represent time series’ by signals
with only a few jumps and smooth in the sense of Potts functionals. There-
fore, Potts functionals and their minimizers seem to be appropriate in these
situations.

In its original form the Potts model was introduced in R.B. Potts (1952)
as a generalization of the well-known Ising model from E. Ising (1925) for
binary spin systems to a finite number of states. It is a Gibbs field of the
form exp(−K(x))/Z on a discrete lattice where K(x) simply counts neighbor
pairs with different values. Since the penalty in (2) corresponds to a Potts
prior in a discrete Bayesian model, we call (2) a Potts functional. Whereas
the original Potts model lives on a finite discrete space, we work in Euclidean
spaces.
The Potts functionals can also be interpreted as a degenerate case of other
classical functionals. Let us only mention an example which is both, a
specialization of the explicit edge model in the seminal paper S. Geman
and D. Geman (1984) on Bayesian image analysis, and a reformulation of
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the elasticity model from the article A. Blake (1983) and the monograph
A. Blake and A. Zisserman (1987). For y ∈ RN this functional is given
by

BZ(·, y) : RN −→ R, x 7−→
N−1∑
i=1

ϕ
(
xi+1 − xi

)
+

N∑
i=1

(
yi − xi

)2
,

with the truncated square function

ϕ(x) = ϕµ,γ(x) = min{x2

µ2
, γ}, γ > 0, µ > 0.

Here a difference |xk+1−xk| is considered to be a jump if it is greater than δ =
γ1/2µ. This functional smoothes x between two subsequent jump locations
in the L2-sense. The functional converges pointwise to the Potts functional
as δ → 0.

In the first part of this thesis, we introduce Potts functionals and analyze their
minimizers x∗(γ, y). We prove existence of minimizers and their uniqueness
for almost all y. Moreover, we show that for almost all y there are only finitely
many different minimizers as the hyperparameter γ varies from infinity to
zero. We prove joint continuity of minimizers x∗(γ, y) in y and γ. We show
further the existence of a measurable section of the set of all minimizers.
Finally, we derive exact optimization algorithms.
Part II is concerned with model choice, which amounts to the choice of the
hyperparameter γ. This problem is ubiquitous in nonparametric statistics.
In case of the Potts functionals, driven by the results on dependence of min-
imizers on the hyperparameter and its continuity, there is a chance to treat
this question rigorously. Another advantage of this simple functional is that
the estimates can be computed exactly for all values of γ. We consider equi-
variance with respect to certain group actions. This is a minimal requirement
on estimators. We establish a scaling property of minimizers and derive a
sufficient condition for equivariance.
We present a special class of data adapted parameter choices using the γ-
intervals on which minimizers of the Potts functionals do not change. We
show how some stopping criteria and model selection criteria can be inter-
preted as data adapted parameter choices for the Potts functional. Finally,
we sketch some further ideas for the choice of γ, especially to overcome cer-
tain problems of interval criteria.
In Part III, we apply these methods to two data sets from life sciences and
to simulated data.



4 INTRODUCTION

The last part deals with consistency of estimators. We study the asymptotic
behavior of minimizers of the Potts functionals in two scenarios. First, we
assume that data are generated from linear regression models. We show that
minimizers converge to a smoothed version of the signal if noise tends to zero.
In the second scenario, data are sampled from some function f and corrupted
by noise. We prove that minimizers - identified with step functions - converge
to f for increasing sampling rate.
The Appendix contains exemplarily plots of minimizers for all hyperparam-
eters for one time series. In addition, we give a brief summary of model
selection criteria, and collect straightforward, but tedious, calculations.



Part I

Analysis of Potts Functionals
and their Minimizers
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This part is concerned with Potts functionals and the analysis of their mini-
mizers x∗(γ, y). In Chapter 1, we introduce the Potts functionals which will
play the role of statistical models. Their minimizers will serve as estimators,
and as a tool for the extraction of characteristic features from data. In Chap-
ter 2, we investigate properties of the minimizers of the Potts functionals.
We prove their existence and uniqueness. Moreover, we show that for almost
all y there are only finitely many different MAP estimators when the hyper-
parameter γ is varied from infinity to zero. In particular, the minimizer is
the same for all values of the hyperparameter in intervals. This observation
plays an important role in the proof of the joint continuity of minimizers
x∗(γ, y) in γ and y. The existence of a measurable section of the set-valued
map (γ, y) 7→ X∗(γ, y) is a property of own interest. In addition, it is a
crucial property of minimizers for consistency, and a given measurable sec-
tion provides a unique minimizer. Chapter 3 completes this part with exact
algorithms for the computation of the minimizers. They eliminate all the
uncertainties of popular Markov Chain Monte Carlo methods like Simulated
Annealing. This enables us to study the Potts functional in detail and rigor.
Only with exact optimization, we can tell artefacts and effects due to mod-
elling from those caused by suboptimal optimization. This is indispensable
for a rigorous validation of methods.
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Chapter 1

Signals, Segmentations
and Potts Functionals

In this first chapter, we introduce Potts functionals. These functionals and
their minimizers are the central objects of this thesis. Potts functionals
will play the role of statistical models, and their minimizers will serve as
estimators, and as a tool for the extraction of characteristic features from
data. In Section 1.1, we introduce basic notions and notations. We give the
definition of the Potts functional and its ‘maximum posterior estimator’. In
Section 1.2, we introduce segmentations. We identify signals with minimal
segmentations, and rewrite the one dimensional Potts functional in terms
of such segmentations. Finally, we discuss briefly the relationship of the
Potts functional to the formally identical posterior log likelihood functions
of classical Bayesian models.

1.1 Potts Functionals

In this section, we first introduce some notions and notation. In particular,
we define signals and data, and then the Potts functionals and the associated
MAP estimator.
Let S be a finite set of design points or sites . In the one dimensional case,
the sites frequently correspond to time points . At the present state we do not
distinguish between time series’ and multidimensional data sets like images.
We endow S with a neighborhood structure, induced by a graph, the nodes
of which are the sites. Recall that a simple graph is a graph without loops
in which at most one edge connects any two vertices. Throughout this text
the graph will be undirected .

Definition 1.1.1 Let an undirected simple graph structure with edges in S

9



10 CHAPTER 1. SEGMENTATIONS AND POTTS FUNCTIONALS

be given. Sites s and t in S are called neighbors or neighbor sites in S
if they are connected by an edge. This will be indicated by the symbol s ∼ t.
We will say that S is endowed with a neighbor structure.

Now we specify signals and data.

Definition 1.1.2 A signal x is a family (xs)s∈S of intensities xs ∈ R.
Similarly, we define data y = (ys)s∈S with single observations ys ∈ R.
The space {(xs)s∈S : xs ∈ R} will be denoted by X.

Both, signals x and data y, are elements of RS. The notion of a jump in a
signal will play an important role. It can be made precise in various ways,
cf. G. Winkler et al. (2004). The following definition is the only one
compatible with the Potts functionals. It is particularly simple.

Definition 1.1.3 A pair of neighbors s ∼ t in S is called a jump of x if
xs 6= xt. The set J(x) = {{s, t} ∈ S × S : s ∼ t, xs 6= xt} is called the jump
set of x.

For a finite set A, the symbol |A| will denote the number of elements of A.
In particular, |J(x)| denotes the number of jumps of x.
Now we define the Potts functionals which assign a real value to each pair
of a signal x and data y. Let us agree that low values of the functional
correspond to desired pairs (x, y).

Definition 1.1.4 Let D be a real functional on X × X, and γ > 0. The
Potts functional with hyperparameter γ is given by

Hγ : X× X −→ R, (x, y) 7−→ γ · |J(x)|+ D(x, y). (1.1)

The term

γ · |J(x)| (1.2)

is called the Potts penalty term and D(x, y) is called the data term.

If there is no danger of confusion we will skip the subscript γ and write
H(x, y) instead of Hγ(x, y). The data term D measures fidelity of a signal
x to data y. In contrast, the Potts penalty term prefers signals with as few
jumps as possible. Obviously, there is a tradeoff between ‘smoothness’ and
fidelity to data. A ‘best’ pair (x, y) is given by a solution of the following
minimization problem: given y ∈ X,

minimize x 7−→ Hγ(x, y) in x ∈ X. (1.3)

The minimizers will play the role of statistical estimators.
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Definition 1.1.5 For each data set y ∈ X let

X∗(γ, y) = {x∗ ∈ X : Hγ(x
∗, y) = min

x∈X
Hγ(x, y)}

denote the set of minimizers of x 7→ Hγ(x, y) with the Potts functional from
(1.1). We call elements x∗ = x∗(γ, y) of X∗(γ, y) the maximum posterior
(MAP) estimates for the Potts functional.

In general, X∗(γ, y) is not a singleton. On the other hand, in important
special cases MAP estimates are unique, as we shall show in Section 2.3.

The functional H in (1.1) is formally equal to the log likelihood function of a
(Bayesian) posterior distribution of exponential form. For a brief introduc-
tion to the Bayesian approach of signal analysis see Section 1.3. A ‘prior’
distribution of the form c · exp(−K) will turn out to be improper if K is
invariant under diagonal translations. Although this holds in particular for
K(x) = γ · |J(x)|, we adopt nomenclature from Bayesian statistics and speak
of ‘maximum posterior’ estimators.

1.2 Segmentations

We are interested in locations of abrupt changes in a signal, and in regions
of ‘smoothness’ inbetween. This leads in a natural way to the concept of
segmentations. They are the natural setting for the Potts functionals. They
also will allow to reduce the continuous minimization problem (1.3) to a
discrete one.

A segmentation partitions the sites into regions where the signal x is ‘smooth’;
across the boundaries of these regions the signal has abrupt changes or it
‘jumps’. In continuous time the notion of smoothness usually is made precise
by the choice of a function space like a Sobolev space W p,k. In our discrete-
time setting, smoothness may be defined in terms of discrete derivatives.
The simplest definition - and in fact the only one compatible with the Potts
penalty - is that a signal is smooth, where it is constant. Therefore, we
define a segmentation of a signal as a partition of the sites into intervals and
the intensities on these intervals. Then we identify a signal with a minimal
segmentation and rewrite the Potts functional in terms of such segmentations.

Let us start with some definitions. A subset I of sites in S is called connected
if for all different sites s, t ∈ I ⊆ S there is a sequence s = s0 ∼ s1 ∼ · · · ∼
sn = t of neighbors in I. Given a signal x = (xs)s∈S, we can decompose
S into connected sets I on which xs = xt for all s, t ∈ I. This provides a
decomposition of S into sets of constant intensity.
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Definition 1.2.1 Let S be a finite set endowed with a neighbor structure. A
connected subset I of S will be called an interval. A set P = {I1, . . . , Ik},
k ∈ N, of mutually disjoint intervals I1, . . . , Ik ⊆ S with ∪k

j=1Ij = S is called
a partition of S. The set of all these partitions will be denoted by P.

Given a partition P ∈ P and a site s ∈ S, the uniquely determined interval
in P containing s will be denoted by I(s). The number |I| will be called the
length of I. Two disjoint intervals I, J ∈ P will be called neighbor intervals
if there are s ∈ I and t ∈ J with s ∼ t. Furthermore, we will write I ∼ J if
I and J are neighbors.

Definition 1.2.2 A pair (P , µP) of a partition P ∈ P and a family µP ∈ RP
of real values will be called a segmentation. The set of all segmentations
will be denoted by S. A segmentation will be called minimal if µI 6= µJ for
neighboring intervals I ∼ J in P. The space of all minimal segmentations
will be denoted by M.

The set of all segmentations can be written as

S =
⋃

P∈P

{P} × RP .

Let now a segmentation (P , µP) ∈ S be given. It uniquely defines a signal
x ∈ X by xs = µI(s). Conversely, let x ∈ X be a signal. Taking as intervals
arbitrary connected sets of constant intensity of x gives a partition P ∈ P.
In general, such a partition is not unique, whereas the maximal intervals of
constant intensity determine a unique minimal partition P .

Definition 1.2.3 Let x ∈ X be a signal. The partition given by the maximal
intervals of constant intensity of x is called the partition induced by the
signal x and will be denoted by P(x). Denote further for each I ∈ P(x)
the constant value of x on I by µI(x) and let µP(x)(x) = (µI(x))I∈P(x). The
segmentation (P(x), µP(x)(x)) is called the segmentation induced by the
signal x.

By definition, the segmentation (P(x), µP(x)(x)) induced by x is minimal. We
will write P for P(x) and µP for µP(x)(x) if there is no danger of confusion.
In view of the preceding remarks, we can summarize:

Theorem 1.2.4 The map

Σ : X −→ M, x 7−→ (P(x), µP(x)(x)
)

is one-to-one and onto.
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The Potts functionals will now be rewritten in terms of segmentations. We
start with the data term D(x, y). We will restrict ourselves to data terms of
the form

D(x, y) =
∑
s∈S

ρ(ys − xs)

with a function ρ : R → R. Throughout the text we require the following
natural conditions to hold:

Hypothesis 1.2.5 Assume that ρ fulfills the following conditions:

(H1) ρ is symmetric around zero,

(H2) ρ(0) = 0,

(H3) ρ(u) increases in u ≥ 0.

Note, that under these conditions the function ρ is nonnegative. Standard
examples are ρ(u) = u2 and ρ(u) = |u|.

Lemma 1.2.6 Let y ∈ X. Suppose that (P , µP) ∈ M is induced by x ∈ X.
Then

D(x, y) =
∑
s∈S

ρ(ys − xs) =
∑
I∈P

∑
s∈I

ρ(ys − µI) =: D
(
(P , µP), y

)
. (1.4)

Proof Since xs = µI(s), a rearrangement of the terms gives

∑
s∈S

ρ(ys − xs) =
∑
I∈P

∑
s∈I

ρ(ys − µI(s)) =
∑
I∈P

∑
s∈I

ρ(ys − µI)

which is D
(
(P , µP), y

)
in (1.4). ¤

Most parts of the text will deal with one dimensional signals or time series’ .
The set S = {1, . . . , N} will be endowed with the nearest neighbor structure
defined by s ∼ s + 1 for s = 1, . . . , N − 1. In this case one has |J(x)| =
|P(x)| − 1 and the functionals in (1.1) will be called one dimensional Potts
functionals . Let us rewrite them in terms of segmentations.

Proposition 1.2.7 Let S = {1, . . . , N} be endowed with the nearest neigh-
bor structure. Then the functional

H̃ : M× X −→ R,
(
(P , µP), y

) 7−→ γ · (|P| − 1) +
∑
I∈P

∑
s∈I

ρ(ys − µI) (1.5)
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is connected to the one dimensional Potts functional

Hγ : X× X −→ R, (x, y) 7−→ γ · |J(x)|+
∑
s∈S

ρ(ys − xs)

by the identity

H̃γ

(
(P , µP), y

)
= Hγ(x, y) (1.6)

where x = Σ−1(P , µP) with Σ from Theorem 1.2.4.

Proof By Lemma 1.2.6, and since in one dimension the Potts penalty has
the form γ · (|P(x)|− 1), each value of the Potts functional can be written as

Hγ(x, y) = γ · |J(x)|+
∑
s∈S

ρ(ys − xs)

= γ · (|P(x)| − 1) +
∑

I∈P(x)

∑
s∈I

ρ(ys − µI(x))

= H̃γ

(
(P , µP), y

)

and (1.6) is verified. ¤

Throughout the text we will adopt the following

Convention We will identify a signal x ∈ X with the induced segmentation
(P , µP) ∈ M. In view of Theorem 1.2.4 and Proposition 1.2.7, we will omit
the tilde and write Hγ

(
(P , µP), y

)
instead of H̃γ(x, y).

In one dimension, a segmentation boils down to the jump locations and
the intensities on the intervals between the jumps. In this case, the Potts
penalty (1.2) is a function of |P(x)| whereas in higher dimensions it is not.
We illustrate this by the following example. Moreover, in higher dimensions,
jump sets have boundaries with own regularity properties. This is not in the
focus of this thesis.

Example 1.2.8 Consider a 3 × 3 square grid S with a four neighborhood,
where the neighbors of a site are those in the northern, southern, eastern,
and western direction. As shown in Figure 1.1, in case of a partition of S
with two intervals there are either two, or three, or four, or six jumps.
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(a) two jumps (b) three jumps (c) four jumps (d) six jumps

Figure 1.1: Partitions of a 3× 3-grid with precisely two intervals

1.3 Relation to Bayesian Approaches

In this section, we briefly discuss the relation of the Potts functionals to
Bayesian models. First, we recall the Bayesian approach of signal analysis.
We will then show that proper prior distributions which are invariant under
diagonal translations do not exist on Rn, and that, in particular, ν(x) ∝
exp(γ · |J(x)|) is not a probability distribution.

The Potts functional (1.1) with ρ(u) = u2 is formally identical to the posterior
log likelihood functions of classical Bayesian models for image analysis like
those in the seminal paper S. Geman and D. Geman (1984). From the
point of view adopted in this section, the main difference between these
models and the variational approach is that in these Bayesian models the
functionals take values in finite sets like {0, . . . , 255} whereas we work with
real intensities.

Continuous state spaces have several advantages. For example, it is evident
that analytical and numerical discussions become extremely unwieldy for
discrete spaces.

We focus now on the fact that the Potts penalty term (1.2) depends on inten-
sity differences xs−xt only and hence is invariant under diagonal translations
x 7→ x + c1, where 1s = 1 for every s ∈ S. Such a concept does not exist on
finite spaces. This could only be circumvented wrapping the intensity range
around a torus. But this does not make sense in the present context.

The usual framework for the mentioned Bayesian models is the following
one: There is a space X of vectors (x1, . . . , xn) the components of which
take values in a finite space, and a strictly positive prior distribution π on
X. Such a prior is necessarily of exponential form π(x) ∝ exp(−K(x)), see
G. Winkler (2003), p. 21. Clearly, K corresponds to the penalty term
(1.2) of the Potts functional. There is also a - say standard - space Y of
observations y and a transition probability Q(x, dy). Q governs the random
transition from the ‘true’ configuration x to data y which are interpreted as
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a degraded version of x. The posterior distribution π(x
∣∣ y) of x given y is

then computed from the joint distribution π(x)Q(x, dy) using Bayes’ formula
and has the form π(x

∣∣ y) ∝ exp(−(K(x)− ln Q(x, y))). Hence the posterior
distribution is of exponential form with negative log likelihood

H(x, y) = K(x)− ln Q(x, y). (1.7)

The quality of an estimator x̂(y) ∈ X is rated by a loss function L : X×X→
R+ with L(x, x) = 0. The Bayes risk of x̂ for a loss function L is given by
the expectation

R(x̂, L) =
∑

x∈X
π(x)EQ(x,dy)

(
L(x̂(y), x)

)

where EP(X) denotes the expectation of X under the probability measure
P. An estimator x̂ is called Bayes estimator if it minimizes the Bayes risk.
Different Bayes estimators correspond to different loss functions. For the loss
function

L(x, x′) =

{
1 if x = x′,
0 otherwise.

the Bayes risk R(x̂, L) is minimized if and only if

x̂ = x∗(y) = argmax
x∈X

π(x|y),

see for example G. Winkler (2003). Such an estimator is called maxi-
mum posterior (MAP) estimator . The Potts functional Hγ(x, y) from (1.1)
is precisely of the form of the negative posterior log likelihood function of an
exponential posterior. Therefore, one may wonder whether the Potts func-
tional cannot be studied within the Bayesian framework. In a strict sense, the
answer is ‘no’. In fact, proper prior distributions with the above invariance
property do not exist on Rn (and neither on Zn). The deeper reason behind
is that no noncompact topological group admits a finite Haar measure. For
Euclidean space this reads as follows.

Lemma 1.3.1 Suppose that ν is a Borel measure on Rn which is invariant
under diagonal translations (x1, . . . , xn) 7→ (x1 + c, . . . , xn + c), c ∈ R. Then
either ν(Rn) = 0 or ν(Rn) = ∞.

For convenience of the reader, we give the standard arguments.

Proof The map t 7→ t1/n1/2 is an isometric isomorphism between R and the
diagonal D = {c1 : c ∈ R} of Rn with its natural norm. Let PD denote the
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orthogonal projection of Rn onto the diagonal and let the image measure q
of ν on D be given by q(B) = ν ◦ P−1

D (B) for each Borel set B of D. As will
be proved below, q is invariant with respect to all translations x 7→ x + c1,
x ∈ D, c ∈ R. Assume now that ν(Rn) < ∞. Then q(D) < ∞ as well
and in particular, q is σ-finite. By a well-known characterization of Lebesgue
measure (see for example J. Elstrodt (1996), Theorem 2.2, p. 89), q then
is a (nonnegative) multiple of Lebesgue measure. Hence ν(Rn) < ∞ and
consequently q(Rn) < ∞ would enforce q(D) = 0 which implies the assertion.
Let now c < c′ and consider an interval [c1, c′1] on D. Then

q
(
[c1, c′1] + b1

)
= q

(
[(c + b)1, (c′ + b)1]

)
= ν ◦ P−1

D

(
[(c + b)1, (c′ + b)1]

)

= ν
(
P−1

D ([c1, c′)1] + b1)
)

= ν
(
P−1

D ([c1, c′1])
)

= q
(
[c1, c′1]

)
.

Hence q is translation invariant on D, and in view of the preceding discussion
the proof is complete. ¤

The result holds mutatis mutandis for Zn with the discrete σ-algebra since
under invariance all integer translates of some x ∈ Zn must have equal mass.

Sometimes a probability measure with density proportional to exp(−(K(x)−
ln Q(x, y)) exists even if exp(−K(·)) is not Lebesgue integrable. In fact, the
data term may weight down the leading term sufficiently. Then substitutes
for most Bayesian posterior estimators can be defined, in particular ‘posterior
means’ etc. Improper priors appear in fields like intrinsic auto-regression, cf.
H. R. Künsch (1987), or J. Besag and Ch. Kooperberg (1995), see
also J. O. Berger (1980, 1985). We will not pursue this aspect in this
thesis.
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Chapter 2

MAP Estimators

In this chapter, we investigate MAP estimators for the Potts functionals.
In Section 2.1, we observe that the minimization of H

(
(P , µP), y

)
can be

divided into two steps: the minimization in the values on the intervals of a
given partition, followed by the minimization in all partitions. If the former
is assumed to be known, the continuous minimization problem boils down
to a finite discrete minimization problem. This is the crucial observation
for the investigation of MAP estimators in the following sections. It allows,
for instance, to develop the exact algorithms in Chapter 3. In Section 2.2
we show that under natural conditions MAP estimators exist for all y ∈
X. Moreover, for almost all y, MAP estimates are unique in important
special cases. This is shown in Section 2.3. In Section 2.4, we specify the
dependence of the estimator on the hyperparameter. In Section 2.5, we prove
joint continuity of MAP estimators in the arguments γ and y. Finally, in
Section 2.6, we show that there is a measurable section of the set-valued map
(γ, y) 7→ X∗(γ, y).

2.1 Splitting the Minimization

By Theorem 1.2.4, we can identify a signal x ∈ X with the minimal segmen-
tation (P(x), µP(x)(x)) ∈ M. In the one dimensional case, it is natural - and
even crucial - to work with H

(
(P , µP), y) instead of H(x, y). This is justified

by Proposition 1.2.7. The minimization problem: given y ∈ X,

minimize x 7−→ H(x, y) in x ∈ X (2.1)

is equivalent to the problem: given y ∈ X,

minimize (P , µP) 7−→ H
(
(P , µP), y

)
in (P , µP) ∈ M. (2.2)

19
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The most important observation is that the latter minimization problem can
be divided into two parts: into the minimization of µP 7→ H

(
(P , µP), y

)
in

µP ∈ RP for each fixed partition P , and into the subsequent minimization
over all partitions P ∈ P. Since by Hypothesis 1.2.5, the function ρ is non-
negative, the data term D

(
(P , µP), y

)
is minimal in µP if and only if for each

I ∈ P the sum
∑

s∈I ρ(ys − µI) is minimal in µI . If these minimizers are
known - which is the case in standard situations - then the continuous mini-
mization problem (2.1) is reduced to a finite discrete minimization problem.
This observation is at the core of the analysis of MAP estimators and of the
algorithm for the computation of MAP estimators in one dimension.
Let now P ∈ P be fixed. In the following, µ∗P will always denote a family
(µ∗I)I∈P given as a solution of

∑
s∈I

ρ(ys − µ∗I) = min
µ∈R

∑
s∈I

ρ(ys − µ), I ∈ P . (2.3)

Suppose now that such a µ∗P exists. Define the functional

H∗(·, y) : P −→ R, P 7−→ H∗(P , y) = H
(
(P , µ∗P), y

)
. (2.4)

The definition makes sense even if µ∗P is not unique since the value of H∗ is
the same for all such minimizers.

Proposition 2.1.1 Suppose that Hypothesis 1.2.5 is fulfilled. Then the fol-
lowing holds:

(1) The functional

H(·, y) : S −→ R, (P , µP) 7−→ H
(
(P , µP), y

)
(2.5)

has a minimum if and only if the functional

H∗(·, y) : P −→ R, P 7−→ H
(
(P , µ∗P), y

)
(2.6)

has a minimum.

(2) The segmentation (P∗, µ∗P∗) ∈ S is a minimizer of (2.5) if and only if
P∗ minimizes (2.6). Moreover, (P∗, µ∗P∗) is a minimal segmentation.

Proof (1) Once the partition P ∈ P is given, the jump term γ · (|P| − 1) in
H

(
(P , µP), y

)
from (1.5) is fixed, and the minimization of (2.5) boils down

to the minimization of the data term. Due to Hypothesis 1.2.5, the latter is
minimal if and only if each sum

∑
s∈I ρ(ys − µI) is minimal. Hence the min-

imization of H
(
(P , µP), y

)
in (P , µP) ∈ S is equivalent to the minimization
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of the data term in µP for each partition P and, provided that µ∗P exists for
each P , the subsequent minimization of H∗(P , y) in P ∈ P.
(2) Suppose that µ∗P ∈ RP from (2.3) exists. Suppose further that P∗ ∈ P

minimizes (2.6). It remains to prove that (P∗, µ∗P∗) is a minimal segmen-
tation. Assume that it is not minimal. Then there are neighbor intervals
I ∼ J ∈ P∗ such that µ∗I = µ∗J . Merging I and J gives a partition Q ∈ P

with the same data term as P∗ but |Q| = |P∗| − 1. Hence,

γ(|Q| − 1) +
∑
I∈Q

∑
s∈I

ρ(ys − µ∗I) < γ(|P∗| − 1) +
∑
I∈P∗

∑
s∈I

ρ(ys − µ∗I)

in contradiction to the assumption that (P∗, µ∗P∗) is a minimizer of (2.5). ¤

Theorem 2.1.2 Suppose that Hypothesis 1.2.5 is fulfilled. If a minimum of
(2.5) exists, then

min
(P,µP )∈S

H
(
(P , µP), y

)
= min

(P,µP )∈M
H

(
(P , µP), y

)
.

Moreover,

min
(P,µP )∈M

H
(
(P , µP), y

)
= min

P∈P

(
γ · (|P| − 1) +

∑
I∈P

∑
s∈I

ρ(ys − µ∗I)
)

where (µ∗I)I∈P is given by (2.3).

Proof Proposition 2.1.1 provides the statement. ¤
In case of time series’ this reads as follows.

Corollary 2.1.3 Let be S = {1, . . . , N}. Under Hypothesis 1.2.5, a MAP
estimator x∗ of the one dimensional Potts functional exists if and only if a
minimizer (P∗, µ∗P∗) of (2.5) exists. x∗ minimizes

H(·, y) : X −→ R, x 7−→ H(x, y)

if and only if

x∗s = µ∗I(s), I(s) ∈ P∗, s ∈ S. (2.7)

In particular, if minima exist, then

min
x∈X

H(x, y) = min
P∈P

(
γ · (|P| − 1) + D

(
(P , µ∗P), y

))

with D
(
(P , µP), y

)
from (1.4).

After these preparations we discuss properties of MAP estimators of the one
dimensional Potts functional.
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2.2 Existence

In this section, we prove existence of MAP estimators. The Potts function-
als Hγ(x, y) have minima under natural conditions. In addition to Hypothe-
sis 1.2.5 we will assume:

Hypothesis 2.2.1 Let ρ be such that

(M) for every interval I ⊂ S, a minimizer µ∗I of

DI : R −→ R, µI 7−→
∑
s∈I

ρ(ys − µI)

exists.

By Hypothesis 1.2.5, the function ρ is nonnegative, and by (M), for each
partition P ∈ P there is a minimizer µ∗P given by (2.3).
Hypothesis 1.2.5 does not imply Hypothesis 2.2.1 without further assump-
tions as the following example shows.

Example 2.2.2 As a counterexample consider the function

ρ(u) =

{ |u| for |u| < 1,
2|u| for |u| ≥ 1.

This function obviously fulfills Conditions (H1)-(H3) from Hypothesis 1.2.5.
Let further data y1 = 0 and y2 = 2 be given, and define for I = {1, 2} the
sum

∑
s∈I ρ(ys − µI) as the function

f(µ) = ρ(y1 − µ) + ρ(y2 − µ) = ρ(µ) + ρ(2− µ).

Inserting ρ gives

f(µ) =





|µ|+ 2|2− µ| for µ ∈]− 1, 1[,
2|µ|+ |2− µ| for µ ∈ (1, 3),
2|µ|+ 2|2− µ| for µ ∈ (−∞,−1] ∪ [3,∞) ∪ {1}.

The graph of f is displayed in Figure 2.1. Obviously this function has no
minimum. It is upper but not lower semicontinuous.

Under a continuity assumption, condition (M) is automatically fulfilled.

Lemma 2.2.3 If ρ is lower semicontinuous then Hypothesis 1.2.5 implies
Hypothesis 2.2.1.
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Figure 2.1: The symbol × indi-
cates that f takes this value, and
◦ indicates that it does not.

Proof Assume that ρ fulfills Hypothesis 1.2.5. Consider for any interval
I ⊂ S the function

f(µ) =
∑
s∈I

ρ(ys − µ).

Denote by ymin and ymax the smallest and largest, respectively, of the values
ys, s ∈ I. On (−∞, ymin], the function f is decreasing. On [ymax,∞), it is
increasing. This implies f(µ) ≥ f(ymin) for µ ≤ ymin, and f(µ) ≥ f(ymax) for
µ ≥ ymax. Therefore,

inf
µ∈R

f(µ) = inf
µ∈[ymin,ymax]

f(µ).

As a sum of lower semicontinuous functions, f is lower semicontinuous itself.
It has a minimum on the real compact interval [ymin, ymax], i. e.

inf
µ∈R

f(µ) = min
µ∈[ymin,ymax]

f(µ),

and Hypothesis 2.2.1 is fulfilled. ¤

Remark 2.2.4 Hypothesis 1.2.5 implies Hypothesis 2.2.1 for a single y ∈ RS

if u 7→ ρ(u) is lower semicontinuous for |u| ≤ maxs,t∈S |ys − yt|.
Existence of MAP estimates is now readily proved.

Theorem 2.2.5 If ρ satisfies Hypotheses 1.2.5 and 2.2.1, then a minimum
of the Potts functional x 7→ Hγ(x, y) exists.
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Proof Hypotheses 1.2.5 and 2.2.1 imply the existence of a minimizer (µ∗I)I∈P
of the data term for each partition P(x) ∈ P. Since the penalty term depends
only on the partition, the functional

H(·, y) : X −→ R, x 7−→ γ · |J(x)|+
∑

I∈P(x)

∑
s∈I

ρ(ys − µI(x))

has a minimum. Since the number of partitions in P is finite, this implies
the existence of a minimum. ¤

The assumptions in Theorem 2.2.5 hold in important cases.

Example 2.2.6 (1) Standard examples are squares and moduli:

(a) If ρ(u) = u2 then the minimizer µ∗I is the empirical mean ȳI .

(b) If ρ(u) = |u| then a minimizer µ∗I is a median of {ys : s ∈ I}.

(2) Among others, the following functions from robust statistics satisfy the
assumption of Theorem 2.2.5 as well:

(a) Functions of the form

ρ(u) =

{
λ2u2 : for |u| < δ

2λ
√

α|u| − α : for |u| ≥ δ
, δ =

√
α

λ

proposed in P. J. Huber (1981).

(b) Cup-shaped functions advocated by F.R. Hampel et al. (1986)
given by

ρ(u) =

{
λ2u2 : for |u| < δ

α : for |u| ≥ δ
, δ =

√
α

λ
.

We turn now to uniqueness.

2.3 Uniqueness

In general, a Potts functional has more than one minimizer. Fortunately, the
minimizer is unique in important special cases. We will show that uniqueness
holds for Lebesgue almost all y ∈ X if the data term D(x, y) is a sum of
squares.
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Theorem 2.3.1 For each γ > 0 there is a Lebesgue null set Nγ ⊂ X such
that for each y /∈ Nγ the Potts functional

H̄γ(·, y) : X −→ R, x 7−→ γ · |J(x)|+
∑
s∈S

(ys − xs)
2, (2.8)

has a unique minimizer x∗(γ, y).

The proof will be given shortly. Let now ν be a Borel measure on X = RS

with Lebesgue density. Then each Lebesgue null set is also a ν-null set. This
implies:

Corollary 2.3.2 For each Borel measure on X admitting a Lebesgue density
and each γ > 0 the minimizer x∗(γ, y) of (2.8) is unique for almost all y ∈ X.

The proof of Theorem 2.3.1 is based on the observation that the existence
of two different minimizers imposes a constraint on y. Recall, that the data
term in (2.8) can be rewritten as

D
(
(P(x), µP(x)(x)), y

)
=

∑

I∈P(x)

∑
s∈I

(ys − µI(x))2 (2.9)

and the family of minimizers (µ∗I)I∈P for a fixed partition P ∈ P is given by

ȳI =
1

|I|
∑
t∈I

yt, I ∈ P . (2.10)

Note that the function ρ(u) = u2 fulfills Hypotheses 1.2.5 and 2.2.1. We will
show that the set

Nγ =
{
y ∈ X : x 7→ H̄γ(x, y) has at least two different minimizers

}
(2.11)

is a Lebesgue null set.

Proof of Theorem 2.3.1 (1) Let y ∈ X, and suppose that H̄γ(x, y) =
H̄γ(x

′, y) for x 6= x′ in X. Identifying x and x′ with their induced segmenta-
tions (P(x), µP(x)(x)) and (P(x′), νP(x′)(x

′)) in M, this is equivalent to

1

γ

( ∑

I∈P(x)

∑
s∈I

(
ys − µI(x)

)2 −
∑

J∈P(x′)

∑
s∈J

(
ys − µJ(x′)

)2
)

(2.12)

= |J(x′)| − |J(x)|.
(2) Let now P 6= Q be partitions in P, and let ȳP(y) and ȳQ(y) be the asso-
ciated minimizers of the data terms (2.9), respectively. Define the function

fP,Q
γ : X→ R, y 7−→ 1

γ

( ∑
I∈P

∑
s∈I

(ys−ȳI)
2 −

∑
J∈Q

∑
s∈J

(ys−ȳJ)2
)

(2.13)
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and the set

AP,Q
γ =

(
fP,Q

γ

)−1

({−|S|, . . . , |S|}). (2.14)

By Lemma 2.3.5 below, all AP,Q
γ are Lebesgue null sets and their finite union

Aγ =
⋃

P6=Q
AP,Q

γ

is a null set as well.
(3) It remains to verify that Nγ ⊂ Aγ. To this end, choose y ∈ Nγ. Choose
further two different minimizers x∗(y) and z∗(y) and the induced partitions
P = P(x∗(y)) and Q = P(z∗(y)). Then equation (2.12) holds mutatis mu-
tandis, and in view of the right hand side fP,Q

γ (y) ∈ {−|S|, . . . , |S|}. Hence,

Nγ ⊂
⋃

P6=Q
AP,Q

γ ,

and Nγ is a null set. This completes the proof. ¤

Remark 2.3.3 Note that fP,Q
γ is continuous. Hence all AP,Q

γ are closed sets
and their finite union Aγ as well.

The following lemmata complete the proof of Theorem 2.3.1. Let us agree
that y is a column vector.

Lemma 2.3.4 Let P ∈ P and let ȳI , I ∈ P, be the mean values from (2.10).
Then ∑

I∈P
|I| ȳ2

I = ytBPy

with the |S| × |S| matrix

BP :=




1
|J1| · · · 1

|J1|
...

...
1
|J1| · · · 1

|J1|

0

. . .

0

1
|Jl| · · · 1

|Jl|
...

...
1
|Jl| · · · 1

|Jl|




. (2.15)
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Proof All empirical means ȳI are linear on X. Simple calculations then give
the assertion. ¤

We continue with notation from the proof of Theorem 2.3.1.

Lemma 2.3.5 Let be P and Q be different partitions in P. Then the set
AP,Q

γ defined in (2.14) is a Lebesgue null set.

Proof Application of the binomial formula and Lemma 2.3.4 yield the rep-
resentation of fP,Q

γ as the quadratic form

fP,Q
γ (y) =

1

γ

( ∑
J∈Q

|J | ȳ2
J −

∑
I∈P

|I| ȳ2
I

)
=

1

γ

(
yt(BQ −BP)y

)
.

Since P 6= Q we have BQ − BP 6= 0. Decompose now the set AP,Q
γ from

(2.14) into the two disjoint sets Ũ and Ṽ , where

Ũ := {y ∈ AP,Q
γ : ∇fP,Q

γ (y) = 0}, Ṽ := AP,Q
γ \Ṽ

and where ∇ denotes the gradient. Then the following inclusions hold:

Ũ ⊂ {y ∈ AP,Q
γ : (BQ −BP)y = 0} =: U,

Ṽ ⊂ {y ∈ AP,Q
γ : (BQ −BP)y 6= 0} =: V.

Since BQ−BP 6= 0, the dimension of the linear subspace U is strictly smaller
than that of X = RS. Hence, denoting by λ the Lebesgue measure on the
Borel-σ-field of RN , we have λ(U) = 0 = λ(Ũ).
For y ∈ V the gradient takes the form

∇fP,Q
γ (y) = 2(BQ −BP)y 6= 0.

Hence, for every y ∈ V there is an open neighborhood W (y) ⊂ X such
that W (y) ∩ V is a C∞-submanifold of W (y), by M. W. Hirsch (1976),
Theorem 3.2, p. 22. It is dim

(
W (y) ∩ V

)
< dimX and hence

λ
(
W (y) ∩ V

)
= 0.

By B. v. Querenburg (1976), Theorem 8.29, p. 91, the set V ⊂ RS,
equipped with the relative topology, enjoys the Lindelöf property, which
means that there is a countable subset {ui : i ∈ N} ⊂ V such that

V ⊂
⋃

i∈N
W (ui).
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Since Ṽ ⊂ V , we obtain λ(Ṽ ) ≤ λ(V ) ≤ ∑
i∈N λ(W (ui) ∩ V ) = 0. Therefore

we get

λ
(
AP,Q

γ

)
≤ λ(Ũ) + λ(Ṽ ) = 0

which implies the assertion. ¤

2.4 Dependence on Hyperparameters

In this section, we consider times series y of length N with S = {1, . . . , N}.
We will have a closer look at the relation between the hyperparameter γ in
the one dimensional Potts functionals and the set X∗(γ, y) of corresponding
MAP estimates in the case of ρ(u) = u2. Hence, we consider the functionals

H̄γ(·, y) : M −→ R, (P , µP) 7−→ γ · (|P| − 1) +
∑
I∈P

∑
s∈I

(ys − µI)
2. (2.16)

The set of all partitions P ∈ P with |P| = k will be denoted by Pk. With
the family of minimizers (ȳI)I∈P from (2.10) we will introduce the minimum
data term for partitions P ∈ Pk by

B̃y(k) := min
P∈Pk

D
(
(P , µ∗P), y

)
= min

P∈Pk

∑
I∈P

∑
s∈I

(ys − ȳI)
2. (2.17)

The next result is a corollary of Theorem 2.3.1.

Proposition 2.4.1 For Lebesgue almost all y ∈ RS the function k 7→ B̃y(k)
decreases strictly.

Proof First, we show, by way of induction, that for each y ∈ RS the function
k 7→ B̃y(k) decreases . The set Pk+1 is related to Pk in the following way:

Pk+1 =
{

(P \ {I}) ∪ {I1, I2} : P ∈ Pk, I ∈ P , I1 ∪ I2 = I, I1 ∩ I2 = ∅
}

.

Choose I ∈ Pk and write it as the disjoint union I = I1∪̇I2 of intervals I1

and I2 to get a generic element of Pk+1. Then

∑
s∈I

(ys − ȳI)
2 =

∑
s∈I1

(ys − ȳI)
2 +

∑
s∈I2

(ys − ȳI)
2

≥
∑
s∈I1

(ys − ȳI1)
2 +

∑
s∈I2

(ys − ȳI2)
2

which implies the assertion.
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Hence it is sufficient to show that B̃y(k) 6= B̃y(k
′) for k 6= k′ for Lebesgue

almost all y ∈ X. If equality holds then there are two minimal segmentations
(Q, ȳQ) and (R, ȳR) with |Q| = k 6= k′ = |R| such that

∑
I∈Q

∑
s∈I

(ys − ȳI)
2 −

∑
J∈R

∑
s∈J

(ys − ȳJ)2 = 0.

The set of y ∈ RS which satisfy this equation is a subset of the Lebesgue null
set Nγ from (2.11). Thus, the set of y ∈ RS for which B̃y(k) is not strictly
decreasing has Lebesgue measure zero. ¤

With H̄γ((P , µP), y) from (2.16), let minimum functions be defined as

hy : (0,∞) −→ [0,∞), γ 7−→ min
(P,µP )∈M

H̄γ((P , µP), y), y ∈ X.

Define further

fk
y : (0,∞) −→ R, γ 7−→ γ · (k − 1) + B̃y(k), y ∈ X, 1 ≤ k ≤ N. (2.18)

By Corollary 2.1.3, we have

hy(γ) = min
1≤k≤N

fk
y (γ). (2.19)

The minimum function has the following properties.

Proposition 2.4.2 Choose y ∈ RN . If y is a constant signal then the min-
imum functions coincide with the null function. Otherwise, there are an
integer m(y) ∈ {0, . . . , N − 2} and a set of hyperparameters

γm(y)+1 = 0 < γm(y)(y) < · · · < γ0(y) < ∞ = γ−1 (2.20)

such that hy is continuous and linear on the intervals (γi(y), γi−1(y)), 1 ≤
i ≤ m(y) + 1.

Proof We distinguish two cases.
(1) |J(y)| = 0: For constant y, the minimum data term B̃y(k) vanishes for all
k. Thus, a segmentation minimizing H̄γ for constant y is unique, coincides
with y and the minimum function is the null function.
(2) |J(y)| ≥ 1: First, we observe that there is only a finite number of linear
functions fk

y from (2.18). Any two functions have exactly one intersection
point: In fact, the intersepts of fk

y are smaller the larger k is since the function

k 7→ B̃y(k) is decreasing and the slopes increase in k. This is illustrated in
Figure 2.2 for N = 4. The finite number of intersection points where the
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γ2 γ1 γ0 γ
B̃(4)

B̃(3)

B̃(2)

B̃(1)

fk
y (γ)

Figure 2.2: The functions fk
y

minimizing function fk
y in (2.19) changes will be denoted by m(y) and the

intersection points will by denoted by γi(y), i = 0, . . . , m(y). Between the
points γi(y), i = 0, . . . , m(y), the function hy coincides with one of the linear
functions fk

y . ¤

For Lebesgue almost all y and a given number 1 ≤ k ≤ N there is precisely
one segmentation which minimizes the Potts functional H̄γ(·, y) from (2.16)
on Pk. We define

K∗
y (γ) =

{
k∗y(γ) ∈ {1, . . . , N} : f

k∗y(γ)
y (γ) = min

1≤k≤N
fk

y (γ)
}
. (2.21)

Note that a minimizer k∗y(γ) always exists since there is only a finite number
of competing functions fk

y (γ). The following proposition is a corollary to
Theorem 2.3.1.

Proposition 2.4.3 Let γ > 0. Then there is a Lebesgue null set N ⊂ X,
such that for each y /∈ N and each k∗y(γ) ∈ K∗

y (γ) there is a unique minimizer
of

H̄∗(·, y)
∣∣Pk∗y(γ) : Pk∗y(γ) −→ R, P 7−→ H̄

(
(P , ȳP), y

)
. (2.22)

Proof Choose y ∈ X, γ > 0, and k∗ ∈ K∗
y (γ). Assume that P 6= Q are

two partitions minimizing H̄∗ on Pk∗ . Then H̄∗(P , y) = H̄∗(Q, y) and, since
|P| = |Q| = k∗, we get

∑
I∈P

∑
s∈I

(ys − ȳI)
2 =

∑
J∈Q

∑
s∈J

(ys − ȳJ)2.

This is equation (2.12) for |P| = |Q| and the assertion follows from Theo-
rem 2.3.1. In particular, the Lebesgue null set does not depend on γ. ¤
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Remark 2.4.4 Suppose now that K∗
y (γ) from (2.21) is a singleton. Then,

by Proposition 2.4.3, the number k∗y(γ) defines a unique minimizer x∗(γ, y).

We will now show that for almost all y there are only finitely many different
MAP estimators. We will make this more precise in the following theorem.

Theorem 2.4.5 Let H̄γ(·, y) be the one dimensional Potts functional from
(2.16) and let be x∗(γ, y) ∈ X∗(γ, y). For Lebesgue almost all data y ∈ RS

there are an integer 0 ≤ m(y) ≤ |S| − 2 and a set of hyperparameters

γm(y)+1 = 0 < γm(y)(y) < · · · < γ0(y) < ∞ = γ−1

such that

(1) x∗(γ, y) is unique except for γ = γi(y), i = 0, . . . , m(y).

(2) x∗(γ, y) = x∗(γ′, y) for all γ, γ′ ∈ (γi(y), γi−1(y)), i = 0, . . . , m(y) + 1.
The MAP estimator x∗(γ, y) is a constant signal for each γ > γ0(y),
and x∗(γ, y) = y for γ < γm(y)(y).

(3) For each 0 ≤ i ≤ m(y) the functional x 7→ H̄γi(y)(x, y) has precisely the
two minimizers belonging to the intervals adjacent to γi(y).

The functions i 7→ |J(x∗(γ, y))| , γ ∈ (γi(y), γi−1(y)), increase strictly. The-
orem 2.4.5 suggests the following definition.

Definition 2.4.6 The minimization of the one dimensional Potts functional
for all values of the hyperparameter will be called γ-scanning. The inter-
vals (γi(y), γi−1(y)), i = 0, . . . ,m(y) + 1, of the hyperparameter from Theo-
rem 2.4.5 will be called γ-intervals.

Proof of Theorem 2.4.5 By Proposition 2.4.3, for fixed hyperparameter
γ a minimizer k∗(γ) from (2.21) uniquely defines a minimizing partition.
There is a continuum of γ-values which is mapped to the finite set of possible
values for k∗. Now we must guarantee that the partition minimizing H̄∗ from
(2.22) on P∗

k is the same for all values of γ which correspond to one number
k∗. Suppose that P and Q are different partitions in Pk∗. Then the linear
functions γ 7→ γ ·(k∗−1)+D

(
(P , ȳP), y

)
and γ 7→ γ ·(k∗−1)+D

(
(Q, ȳQ), y

)
have the same slope. Hence, if one is above the other for some γ it will stay
above for any γ. There are two alternatives: Either there is exactly one
k∗(γ) and then, by Proposition 2.4.3, there is a Lebesgue null set N ⊂ X,
independent of γ, such that for all y in the complement N c = X\N and all
γ the number k∗y(γ) defines a unique minimizer x∗(γ, y). The other case is
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|K∗
y (γ)| ≥ 2. By Proposition 2.4.2, there is only a finite number of points

γi(y) where the latter is the case. In Lemma 2.4.7 below, we will show that
for Lebesgue almost all y we have exactly two minimizers x∗(γ, y) for those
γi(y). ¤

The following lemma completes the proof of Theorem 2.4.5.

Lemma 2.4.7 For Lebesgue almost all y ∈ X and each γ = γi(y), 0 ≤ i ≤
m(y), from (2.20) there are precisely two MAP estimates x∗(γ, y) belonging
to the γ-intervals adjacent to γi(y).

Proof We will show that the set of y ∈ RS for which there are more than
two segmentations minimizing H̄γ(·, y) from (2.16) for fixed γ = γ(y) is
contained in a Lebesgue null set. Let P1, P2 and P3 be three mutually
different partitions in P and assume that they all minimize the functional
P 7→ H̄∗

γ(P , y) from (2.6) with ȳP given by (2.10). This implies the following
equations

γ · (|P1| − 1) + D
(
(P1, ȳP1), y

)
= γ · (|P2| − 1) + D

(
(P2, ȳP2), y

)

γ · (|P2| − 1) + D
(
(P2, ȳP2), y

)
= γ · (|P3| − 1) + D

(
(P3, ȳP3), y

)
.

Application of the binomial formula and straightforward calculations give

−(|P3| − |P2|)
∑
I∈P1

|I| ȳ2
I+ (2.23)

+(|P3| − |P1|)
∑
I∈P2

|J | ȳ2
J − (|P2| − |P1|)

∑
K∈P3

|K| ȳ2
K = 0.

By Lemma 2.3.4, the left hand side is a quadratic form y 7→ ytAy with

A = A1 + A2 + A3

where

A1 = −(|P3| − |P2|)BP1

A2 = (|P3| − |P1|)BP2

A3 = −(|P2| − |P1|)BP3

with BPi
from (2.15). All Ai have the same block structure as BPi

. We will
show that the Ai have blocks of different length which implies that A does
not vanish. Hence the set of y which fulfill (2.23) is the kernel of a nonzero
quadratic form and thus a Lebesgue null subset of RS.
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We denote the blocks of Ai by Ai,n(i), i = 1, 2, 3. Since, by assumption, the
partitions are different there is

j∗ = min{j : at least two blocks Ai,j are of different length}.

For these blocks there are two cases.

A1j∗

A2j∗

A3j∗

(a) All blocks are of
different size.

A1j∗

A2,3j∗

(b) Two blocks have
the same size.

Figure 2.3: Block of matrix A

(a) All Ai,j∗ are of different size. Denoting by |A| the size of a quadratic
matrix, we may assume without loss of generality that |A1,j∗| < |A2,j∗| <
|A3,j∗|. The largest block containing the two smaller blocks is symbolically
displayed in Figure 2.3(a). In the shaded region of Figure 2.3(a) only the
largest block has non-zero entries and hence A does not vanish.
(b) Assume now that |A1,j∗| < |A2,j∗| = |A3,j∗|. In Figure 2.3(b) we see the
two larger blocks (indicated by the extra thick line) containing the smaller
one. In the shaded region of Figure 2.3(b), the matrix A1 is equal to zero and
has no influence on the values of A. Either, matrix A is zero in the shaded
region, then it is not zero in the smaller block since there A1,j∗ provides a
non-zero contribution. Or, if this block of A is zero, then the entries in the
shaded region do not vanish. ¤

Let y ∈ RN outside the exceptional set from Theorem 2.4.5 be given. We
will now show in detail how the values γi(y), i = 0, . . . , m(y), from (2.20) are
computed explicitly.
The MAP estimator for the Potts functional (2.16) is a constant signal, equal
to

ȳ =
1

N

∑
t∈S

yt, (2.24)

if and only if fk
y (γ) > f 1

y (γ) for all 1 < k ≤ N . This condition gives the
following equivalent inequalities

γ · (k − 1) + B̃y(k) > B̃y(1) for all 1 < k ≤ N,
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γ >
1

k − 1

(
B̃y(1)− B̃y(k)

)
for all 1 < k ≤ N,

γ > γ0(y) := max
1<k≤N

( 1

k − 1

(
B̃y(1)− B̃y(k)

))
. (2.25)

Let k0 = k0(y) be the number k for which the right hand side of (2.25) is
maximal By Theorem 2.4.5, the one dimensional Potts functional (2.16) has
exactly two minimizers for γ = γ0(y), namely the constant estimate and the
estimate with k0 − 1 jumps. Note, that for γ > γ0(y) the minimum function
hy is constant. It does not increase, independent of how large γ is.
For γ < γ0(y) the MAP estimate x∗(γ, y) has k0 − 1 jumps if and only if
fk

y (γ) > fk0
y (γ) for all k0 < k ≤ N . This is equivalent to

γ · (k − 1) + B̃y(k) > γ · (k0 − 1) + B̃y(k0) for all k0 < k ≤ N

γ > γ1(y) := max
k0<k≤N

(
1

k − k0

(
B̃y(k0)− B̃y(k)

))
.

Let k1 = k1(y) be the k for which the maximum is attained. For γ = γ1(y)
the functional x 7→ H̄γ(x, y) has exactly two minimizers, one minimizer with
k0−1 jumps and one with k1−1 jumps. Hence, γ1(y) is the next point in the
γ-scanning. On the interval (γ1(y), γ0(y)) the minimum function hy is linear
with slope k0. This procedure will be continued until for some km(y) < N the
number k = k(y) with km(y) < k ≤ N which maximizes

1

k − km(y)

(
B̃y(km(y))− B̃y(k)

)

is equal to |J(y)| + 1 which is at most N . We then have γm(y)+1(y) = 0
and the whole range of the hyperparameter γ is exhausted. Thus, for each
γ ∈ (0, γm(y)(y)) the MAP estimator x∗(γ, y) is equal to data y and has |J(y)|
jumps.

Remark 2.4.8 The hyperparameter γ controls the number of jumps of the
MAP estimator x∗(γ, y). A large value of γ suppresses jumps. A small
value of γ admits more jumps. This means that γ controls the ‘smoothness’
of x∗. Scanning x∗(γ, y) through the entire range of the hyperparameter
reveals the complete potential of the Potts functionals. Plotting all estimates
simultaneuously is closely related to the family approach to the presentation
of (parameterized) smoothers or kernel density estimators, proposed in J.S.
Marron and S.S. Chung (2001). Exemplarily, Figure 2.4 displays the
MAP estimates for dotted data y for the first four subsequent γ-intervals,
starting with (γ0,∞). They are followed by the 7th, 9th, 24th, and the last
of the 56 γ-intervals. The complete plot of all estimates for this data can be
found in Appendix A.
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(a) γ > 11272.910 (b) γ ∈ (9534.595, 11272.910)

(c) γ ∈ (7467.272, 9534.595) (d) γ ∈ (2061.733, 7467.272)

(e) γ ∈ (680.625, 717.562) (f) γ ∈ (440.055, 672.000)

(g) γ ∈ (48.000, 48.133) (h) γ ∈ (0, 0.500)

Figure 2.4: Some steps in a γ-scanning. Data are displayed as dots. The
frames show MAP estimates of the 1st, 2nd, 3rd, 4th, 7th, 9th, 24th, and
the last of the 56 γ-intervals, starting with (γ0,∞).
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Remark 2.4.9 Obviously, there is a tradeoff between fidelity to data and
smoothness or parsimony in terms of the number of jumps.

Remark 2.4.10 If γ decreases from infinity to zero the number k of intervals
in the partition induced by the MAP estimator does not necessarily take each
value from 1 to N − 1. This is due to the fact that adding more than one
jump may be more profitable than adding only one jump.

2.5 Continuity

In this section, we study joint continuity of minimizers x∗(γ, y) in the vari-
ables (γ, y). Recall, that for fixed γ the MAP estimator is unique for almost
all y ∈ RS by Theorem 2.3.1.
Continuity of x∗(γ, y) in (γ, y) implies that for each (γ′, y′) with unique mini-
mizer there is a neighborhood such that the minimizer is unique for all (γ, y)
in this neighborhood as well. In particular, the induced partition is the same
and hence the number of jumps of the MAP estimator is constant in a neigh-
borhood of a unique minimizer. For the proof of the main theorem we need
some preparatory steps. For each P ∈ P consider ȳP as an element of RS by
the natural identification

ȳP = (ȳI1 , . . . , ȳI1︸ ︷︷ ︸
|I1|

, ȳI2 , . . . , ȳI2︸ ︷︷ ︸
|I2|

, . . . , ȳI|P| , . . . , ȳI|P|︸ ︷︷ ︸
|I|P||

)t.

Let
〈y, x〉 =

∑
s∈S

ysxs

be the Euclidian inner product on RS and

‖y − x‖2 =
∑
s∈S

(ys − xs)
2

the induced norm. For P ∈ P we define the functions

fP : (0,∞)× RS −→ R, (γ, y) 7−→ γ(|P| − 1) + ‖y − ȳP‖2. (2.26)

They are continuous in γ and y and there are finitely many since P is a finite
set. First, we will prove continuity of fP(γ, y).

Lemma 2.5.1 Choose P ∈ P. Then fP from (2.26) is continuous with
respect to the usual topology on (0,∞)× RS.
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Proof Let (γ, y), (γ′, y′) ∈ (0,∞)× RS, and P ∈ P. Then

|fP(γ, y)− fP(γ′, y′)| ≤ |γ − γ′|(|P| − 1) +
∣∣∣‖y − ȳP‖2 − ‖y′ − ȳ′P‖2

∣∣∣.

For the last term we have
∣∣∣‖y − ȳP‖2 − ‖y′ − ȳ′P‖2

∣∣∣
=

∣∣∣〈y − ȳP , y − ȳP〉 − 〈y − ȳP , y′ − ȳ′P〉

+〈y − ȳP , y′ − ȳ′P〉 − 〈y′ − ȳ′P , y′ − ȳ′P〉
∣∣∣

≤
∣∣∣〈y − ȳP , y − ȳP − y′ + ȳ′P〉

∣∣∣
+

∣∣∣〈y − ȳP − y′ + ȳ′P , y′ − ȳ′P〉
∣∣∣

≤
(
‖y − ȳP‖+ ‖y′ − ȳ′P‖

)
·
(
‖ȳ′P − ȳP‖+ ‖y − y′‖

)
.

With ȳ{S} = ȳ given by ȳs = 1/N
∑

t∈S yt for all s ∈ S we get it is

‖y − ȳP‖ ≤ ‖y − ȳ‖.
Since y 7→ ȳP is a projection and hence a contraction, we have

‖ȳ′P − ȳP‖ ≤ ‖y′ − y‖.
For the sum in the first brackets we then get

‖y − ȳP‖+ ‖y′ − ȳ′P‖ ≤ ‖y − ȳ‖+ ‖y′ − ȳ′‖
≤ ‖y − y′‖+ ‖y′ − ȳ′‖+ ‖ȳ′ − ȳ‖+ ‖y′ − ȳ′‖
≤ 2‖y − y′‖+ 2‖y′ − ȳ′‖.

In summary, we arrive at
∣∣∣‖y − ȳP‖2 − ‖y′ − ȳ′P‖2

∣∣∣ ≤ (
2‖y − y′‖+ 2‖y′ − ȳ′‖) · 2‖y′ − y‖

= 4‖y − y′‖2 + 4‖y′ − ȳ′‖ · ‖y − y′‖.
Hence, with the constants c1 = |P − 1|, c2 = 4, and c3 = 4‖y′ − ȳ′‖ we have
the inequality

|fP(γ, y)− fP(γ′, y′)| ≤ c1|γ − γ′|+ c2‖y − y′‖2 + c3‖y − y′‖.
Thus, for each ε > 0 there is δ > 0 with

δ < δ(ε) :=
1

2c2

(√
(c1 + c3)2 + 4c2ε− (c1 + c3)

)
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such that

|fP(γ, y)− fP(γ′, y′)| < ε for all (γ, y) ∈ Uδ(γ
′, y′)

where

Uδ(γ
′, y′) := {(γ, y) ∈ (0,∞)× RS : |γ′ − γ| < δ, ‖y′ − y‖ < δ}.

This proves the assertion. ¤

The main result of this section is the following theorem.

Theorem 2.5.2 Suppose that (γ′, y′) ∈ (0,∞) × RS is such that the MAP
estimator x∗(γ′, y′) of the Potts functionals

H̄γ(·, y) : X −→ R, x 7−→ γ · |J(x)|+
∑
s∈S

(ys − xs)
2, (2.27)

is unique. Then there is a neighborhood of (γ′, y′) such that

X∗(γ, y) = {x∗(γ′, y′)}
for all (γ, y) in this neighborhood. In particular, the mapping

x∗ : (0,∞)× RS −→ X, (γ, y) 7−→ x∗(γ′, y′)

is continuous in a neighborhood of (γ′, y′).

Proof Let P∗ be the partition induced by x∗(γ′, y′). By Lemma 2.5.1, the
function fP is continuous for fixed P . Hence there is a neighborhood U(P)
of (γ′, y′) such that

fP∗ |U(P) < fP |U(P),

as illustrated in Figure 2.5.
We define

U∗ :=
⋂

P∈P,P6=P∗
U(P).

The intersection is finite and hence U∗ is open. On U∗, it is fP∗ < fP for all
P 6= P∗. Therefore the minimizing partition is the same in a neighborhood
of (γ′, y′), namely P∗. Obviously also the number |J(x∗(γ, y))| = |P∗| − 1 of
jumps is constant for all (γ, y) in U∗. ¤

This proves that the MAP estimator x∗(γ, y) of (2.27) is unique for (γ, y) in
a neighborhood of (γ′, y′) with unique MAP estimator.
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(γ′, y′) (γ, y)

fP∗

fP

fP∗

fP1

fP2

U(P2)

U(P1)

U∗

Figure 2.5: The neighborhoods U(P)

Corollary 2.5.3 Let (γ′, y′) be such that the minimizer x∗(γ′, y′) of (2.27)
is unique. Then there is a neighborhood of (γ′, y′) such that the minimizer
x∗(γ, y) is unique for all (γ, y) in this neighborhood.

In addition, the proof of Theorem 2.5.2 shows that the partition induced by
the MAP estimator x∗(γ, y), and therefore also the number of jumps, do not
change.

Corollary 2.5.4 Let (γ′, y′) be a pair of hyperparameter and data for which
the minimizer x∗(γ′, y′) of (2.27) is unique. Then there is a neighborhood of
(γ′, y′) such that the partition P(x∗(γ, y)) and the number of jumps of x∗(γ, y)
are constant in this neighborhood.

Remark 2.5.5 The number of jumps is stable - and even constant - under
variation of data y in a neighborhood of (γ′, y′) for which the minimizer
x∗(γ′, y′) is unique. Hence, the MAP estimator is an adequate instrument to
measure the number of jumps.
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2.6 Measurable Section

Recall that MAP estimators of the Potts functionals

H̄γ(·, y) : X −→ R, x 7−→ γ · |J(x)|+
∑
s∈S

(ys − xs)
2 (2.28)

are in general not unique. In this section, we will show that there is a
measurable section of the set-valued map (γ, y) 7→ X∗(γ, y).
Let (Ω, F) and (X, A) be measurable spaces. Let p(X) denote the power set
of X and let

Φ : Ω −→ p(X).

A measurable section of Φ is a map

ϕ : Ω −→ X

which is F-A-measurable and which fulfills

ϕ(ω) = Φ(ω) for every ω ∈ Ω.

Proposition 2.6.1 Let X∗(γ, y) be the set of minimizers of (2.28). Then
there is a measurable section of the set-valued map (γ, y) 7→ X∗(γ, y).

Proof Order the set of all partitions of S for example lexicographically with
respect to the length of the intervals to get the ordered set {P1,P2, . . . ,P2N−1}.
Recall that by Theorem 1.2.4 each minimizer x∗(γ, y) of (2.28) can be iden-
tified with a minimal segmentation (P(y), ȳP(y)). For a fixed partition Pj

the corresponding ȳPj
is the orthogonal projection of y to the subspace

{z ∈ RS : P(z) = Pj}. Define

i(γ, y) := min
{

j ∈ {1, . . . , 2N−1} : H̄γ(ȳPj
, y) = min

1≤k≤2N−1
H̄γ(ȳPk

, y)
}

.

The symbol B(X) will denote the σ-field of the Borel subsets of X. The map

i : [0,∞)× RS −→ {1, . . . , 2N−1}, (γ, y) 7−→ i(γ, y)

is B([0,∞))⊗ B(RS)−P({1, . . . , 2N−1}) - measurable since
{
i(γ, y) = l

}
=

{
(γ, y) ∈ [0,∞)× RS : H̄γ(ȳPl

, y) < H̄γ(ȳPk
, y) for k < l

and H̄γ(ȳPl
, y) ≤ H̄γ(ȳPk

, y) for k > l
}

=
⋃

k<l

{
H̄γ(ȳPl

, y) < H̄γ(ȳPk
, y)

} ∪
⋃

k>l

{
H̄γ(ȳPl

, y) ≤ H̄γ(ȳPk
, y)

}

and the map (γ, y) 7→ H̄γ(ȳPj
, y) is B([0,∞))⊗ B(RS)− B(R) - measurable

for each j. Hence the map (γ, y) 7→ i(γ, y) 7→ (Pi, ȳPi
) is a composition of

measurable maps and hence a measurable section of (γ, y) 7→ X∗(γ, y). ¤



Chapter 3

Exact Optimization

In Section 2.1, the minimization of the functional (P , µP) 7→ H
(
(P , µP), y

)
was split up into two steps. This allows to develop exact efficient algorithms
for the computation of MAP estimates in one dimension.

These exact algorithms eliminate all the uncertainties of popular Markov
Chain Monte Carlo methods like Simulated Annealing. This enables us to
study the Potts functional in detail and rigor. Only with exact optimiza-
tion, we can tell artefacts and effects due to modelling from those caused by
suboptimal optimization. This is indispensable for a rigorous validation of
methods. For a discussion how ‘incorrect modelling’ along with an ‘incor-
rect algorithm’ can even produce desired results see G. Winkler (2003),
Chapter 6.2, in particular Figure 6.4.

For fixed hyperparameter, an exact algorithm is derived in Section 3.1. In
Section 3.2, it is extended to an algorithm for the computation of estimates
for all values of the hyperparameter simultaneously. Both were sketched in
G. Winkler and V. Liebscher (2002). We will work out the details and
give proofs of the recursive formulae.

Assume that S = {1, . . . , N} is endowed with nearest neighbor structure and
let data y ∈ X be given. Assume further that the function ρ in the data term
of the Potts functional satisfies the Hypotheses 1.2.5 and 2.2.1.

If µ∗P and D
(
(P , µ∗P), y

)
can be computed in O(g(N)), the algorithm for fixed

hyperparameter γ is of complexity O(max{g(N), N2}) and that one for all γ
is of complexity O(max{g(N), N3}).
To simplify notation, and since y is fixed, we will write HP(µP) and DP(µP)
instead of H

(
(P , µP), y

)
and D

(
(P , µP), y

)
, respectively, throughout this

chapter.
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3.1 Minimization for Fixed Hyperparameter

In this section we assume that the hyperparameter γ is fixed. Let Pn denote
the set of all partitions of {1, . . . , n}. Let now (µ∗I)I∈P for P ∈ Pn for any
1 ≤ n ≤ N , be a family of minimizers given by (2.3). For each I ∈ P define
the interval function HI by

HI(µ
∗
I) = γ +

∑
s∈I

ρ(ys − µ∗I). (3.1)

We will use the notation [s, t] for the interval {s, s + 1, . . . , t − 1, t}. The
symbol [r, r] denotes the singleton {r}.

Lemma 3.1.1 We define for each 1 ≤ n ≤ N the function

B(n) = min
P∈Pn

HP(µ∗P). (3.2)

Let further HI be the interval function from (3.1), and set B(0) = −γ,
B(1) = 0. Then the recursive formula

B(n) = min
0≤r≤n−1

(
B(r) + min

µ∈R
H[r+1,n](µ)

)
, 1 < n ≤ N (3.3)

holds. A partition minimizes HP(µ∗P) in P ∈ Pn if and only if it is the union
of [r∗ + 1, n] and a partition minimizing HP(µ∗P) in P ∈ Pr∗ where r∗ is a
minimizer from (3.3).

Proof Let P0 denote the empty set. For r ≤ n− 1, the map

p : Pr → Pn, P 7−→ P ∪ [r + 1, n]

is one-to-one and p(Pr) = {P ∈ Pn : [r + 1, n] ∈ P}. Then

B(n) = min
P∈Pn

HP(µ∗P) = min
0≤r≤n−1

(
min

{P∈Pn:[r+1,n]∈P}
HP(µ∗P)

)
.

If [r + 1, n] ∈ P the functional HP(µ∗P) can be split into two terms:

HP(µ∗P) = −γ +
∑
I∈P

HI(µ
∗
I)

= −γ +
∑

I∈P,I 6=[r+1,n]

HI(µ
∗
I) + H[r+1,n](µ

∗
[r+1,n])

= HP\[r+1,n](µ
∗
P\[r+1,n]) + H[r+1,n](µ

∗
[r+1,n]).
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Since the second part does not depend on P , we get

B(n) = min
0≤r≤n−1

(
H[r+1,n](µ

∗
[r+1,n])

+ min
{P∈Pn:[r+1,n]∈P}

(
HP\[r+1,n](µ

∗
P\[r+1,n])

))

= min
0≤r≤n−1

(
H[r+1,n](µ

∗
[r+1,n]) + min

P∈Pr
HP(µ∗P)

)

= min
0≤r≤n−1

(
H[r+1,n](µ

∗
[r+1,n]) + B(r)

)

which is the desired recursive formula. The assertion for the minimizers is
obvious. ¤

Note that B(N) is the minimum of the one dimensional Potts functional
for fixed hyperparameter γ. B is a Bellman function in the spirit of R. E.
Bellman (1957). We adapt the dynamic programming technique to the
minimization problem (2.2) for fixed γ.

Algorithm 3.1.2 The algorithm for the computation of a MAP estimator
of the one dimensional Potts functional for fixed γ reads as follows:

(1) Compute for each interval [r, s], 1 ≤ r < s ≤ N , a minimizer µ∗[r,s] ∈
argminµ∈RH[r,s](µ), and the value H[r,s](µ

∗
[r,s]). Set H[r,r](µ

∗
[r,r]) = γ for

1 ≤ r ≤ N .

(2) Set B(0) = −γ and B(1) = 0.

(3) Determine recursively B(n) for all 1 < n ≤ N using (3.3) and store at
least one r∗n ∈ {0, . . . , n−1} for which the minimum in (3.3) is attained.

(4) Construct a partition of {1, . . . , N} recursively from the right: The
minimizer r∗N of B(N) becomes the last point of the last but one inter-
val. The rightmost interval of the partition then is [r∗N + 1, N ]. Take
now a minimizer of B(r∗N) to get the next interval to the left of [r∗N +
1, N ]. Continuing with this procedure gives a partition {I1, . . . , Ik} of
{1, . . . , N} and µ∗P is given by the family of minimizers µ∗Il

, l = 1, . . . , k.

By this algorithm we obtain a minimizer of the one dimensional Potts func-
tional (1.5).

Theorem 3.1.3 The output of Algorithm 3.1.2 is a minimizer x∗(γ, y) of
the functional x 7→ Hγ(x, y).
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Proof In step (4) of Algorithm 3.1.2 we get a partition P∗ = {I1, . . . , Ik} ∈
P and x∗ ∈ argminx∈XHγ(x, y) is determined by (µ∗I)I∈P∗ . By definition
(µ∗I)I∈P∗ is a minimizer of HP∗(µP∗) for fixed partition P∗. It remains to
show that P∗ minimizes HP(µ∗P) in P ∈ P. We take

r∗N = argmin
0≤r≤N−1

(
B(r) + H[r+1,N ](µ

∗
[r+1,N ])

)

to get the rightmost interval Ik = [r∗N + 1, N ] ∈ P∗. By definition of r∗N a
partition (Pr∗N )∗ ∪ [r∗N + 1, N ] minimizes HP(µ∗P) in P ∈ P where (Pr)∗ ∈
Pr denote a partition which minimizes Pr 7→ HPr(µ∗Pr) for fixed r. By
Lemma 3.1.1 we obtain the respective last interval of such (Pr)∗ ∈ Pr. The
collection of these intervals is a minimizing partition in P. ¤

The function f which assigns to the length N of an input the number of
basic operations which are necessary to perform the algorithm is called the
complexity of the algorithm. Basic operations are basic arithmetic operations
as summation, subtraction, multiplication, and division, assignments as the
fixing of µ∗I , and logical questions as in IF-loops. The expression f(N) =
O(g(N)) with the Landau symbol O means that |f(N)| ≤ c|g(N)| for some
constant c > 0.

Theorem 3.1.4 If, for each partition P ∈ P, a solution (µ∗I)I∈P of (2.3)
and minimum values HI(µ

∗
I), I ∈ P, can be computed in O(g(N)), then

Algorithm 3.1.2 works in complexity O(max{g(N), N2}).

Proof In step (1) of the algorithm we compute minimizers µ∗I and minimum
values HI(µ

∗
I) which is of complexity O(g(N)) according to the assumption.

In step (2) we set two values which has complexity O(1). For each B(n) we
compute n values and perform n−1 comparisons. The recursive computation
of B(n) for 1 < n ≤ N needs N(N − 1)/2 − 1 basic operations which gives
complexity O(N2) for step (3). The partition is given by the assignment of
|P| values. Since P has at most N intervals, this results in complexity O(N)
for step (4). Thus, the algorithm has complexity O(max{g(N), N2}). ¤

Corollary 3.1.5 For ρ(u) = u2 the Algorithm 3.1.2 has complexity O(N2).

Proof We have to show that the computation of minimizers and minimum
values of the interval function HI for all intervals I ⊂ {1, . . . , N} is in O(N2).
For ρ(u) = u2, the minimizer µ∗I of an interval I is given by the empirical
mean

ȳI =
1

|I|
∑
s∈I

ys.
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First, set ȳ[r,r] = yr, r = 1, . . . , N . Compute the minimizers of all intervals
[1, r + 1], r = 1, . . . , N − 1, by

ȳ[1,r+1] =
1

r + 1

r+1∑
s=1

ys =
r

r + 1
ȳ[1,r] +

1

r + 1
yr+1

which is in O(N). Then the minimizers of the remaining O(N2) intervals
[r, s], 2 ≤ r < s ≤ N can be obtained via the formula

ȳ[r,s] =
1

s− r + 1

s∑
t=r

yt =
s

s− r + 1
ȳ[1,s] − r − 1

s− r + 1
ȳ[1,r−1].

The minimum values of the interval function are given by

HI(ȳP) = γ +
∑
s∈I

(ys − ȳI)
2 = γ +

∑
s∈I

y2
s − |I|ȳ2

I .

We compute for all intervals [1, r + 1], r = 1, . . . , N − 1, the sum of squares
by

r+1∑
s=1

y2
s =

r∑
s=1

y2
s + y2

r+1

in O(N) and for all intervals [r, s], 2 ≤ r ≤ s ≤ N we have

s∑
t=r

y2
t =

s∑
t=1

y2
t −

r−1∑
t=1

y2
t .

Thus, the computation of the minimizers and the minimum values of the
interval function for all intervals needs O(N2) basic operations. ¤

3.2 Simultaneous Minimization in γ

The computation of MAP estimates x∗(γ, y) of the one dimensional Potts
functional for all values of the hyperparameter γ simultaneously is an ex-
tension of Algorithm 3.1.2. Define, similarly to the interval function HI , an
interval error function DI by

DI(µ) = HI(µ)− γ. (3.4)

Note that the partition error function DP for a partition P ∈ P is the data
term from (1.4).
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Lemma 3.2.1 Let Pn
k denote the set of all partitions of {1, . . . , n} with

|P| = k. We define for 1 ≤ k ≤ n ≤ N the function

B̃(k, n) = min
P∈Pn

k

DP(µ∗P).

Let further DI be the interval error function from (3.4), and set B̃(1, n) =
D[1,n](µ

∗
[1,n]), 1 ≤ n ≤ N . Then for 1 < k ≤ n ≤ N the recursive formula

B̃(k, n) = min
1≤r≤n−1

(
B̃(k − 1, r) + min

µ∈R
D[r+1,n](µ)

)
(3.5)

holds. A partition with k intervals minimizes HP(µ∗P) in P ∈ Pn if and only
if it is the union of [r∗+1, n] and a partition with k− 1 intervals minimizing
HP(µ∗P) in P ∈ Pr∗ where r∗ is a minimizer from (3.3).

Proof The proof is basically the same as that of Lemma 3.1.1. Note that

DP(µ∗P) = DP\[r+1,n](µ
∗
P\[r+1,n]) + D[r+1,n](µ

∗
[r+1,n])

if [r + 1, n] ∈ P ∈ Pn. ¤

By Corollary 2.1.3, the minimization problem (2.1) can be rewritten as

min
x∈X

H(x, y) = min
P∈P

(
γ · (|P| − 1) + DP(µ∗P)

)

= min
1≤k≤N

(
γ · (k − 1) + min

P∈Pk

DP(µ∗P)
)
.

The minimum energy function hy is defined as

hy(γ) = min
x∈X

Hγ(x, y) = min
1≤k≤N

(
γ · (k − 1) + B̃(k,N)

)
. (3.6)

The functions hy in case of ρ(u) = u2 were discussed in Section 2.4.

Algorithm 3.2.2 The algorithm to compute MAP estimates of the one di-
mensional Potts functional for all values of γ simultaneously reads as follows:

(1) Compute for all intervals [r, s], 1 ≤ r < s ≤ N , a minimizer µ∗[r,s] ∈
argminµ∈RD[r,s](µ), and the value D[r,s](µ

∗
[r,s]). Set D[r,r](µ

∗
[r,r]) = 0 for

1 ≤ r ≤ N .

(2) Set B̃(1, n) = D[1,n](µ
∗
[1,n]), 1 ≤ n ≤ N .

(3) Determine recursively B̃(k, n) by (3.5) for all 1 < k ≤ n ≤ N and store
at least one r∗k,n for which the minimum of B̃(k, n) in (3.5) is attained.
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(4) Construct recursively partitions {Ik
1 , . . . , Ik

k} of {1, . . . , N} from min-
imizers of B̃(k,N), B̃(k − 1, r∗k,N), . . . and µ∗P

k is given by µ∗
Ik
l
, l =

1, . . . , k. .

(5) Construct the piecewise linear function hy(γ) from (3.6).

Theorem 3.2.3 Algorithm 3.2.2 computes minimizers x∗(γ, y) of the one
dimensional Potts functional Hγ(x, y) for all γ simultaneously.

Proof A fixed number k = |P| corresponds to a fixed γ-interval and the
assertion follows from Theorem 3.1.3. It was shown in Theorem 2.4.5 that
we indeed get MAP estimates for all values of γ. ¤

Theorem 3.2.4 If families of minimizers (µ∗I)I∈P from (2.3) and minimum
values HI(µ

∗
I), I ∈ P, for all partitions P ∈ P can be computed in O(g(N)),

then Algorithm 3.2.2 has complexity O(max{g(N), N3}).

Proof The essential difference to Algorithm 3.1.2 lies in step (3). To compute
B̃(k, n) recursively we perform at most N − 1 comparisons for fixed k and
we have N(N − 1)/2 terms B̃(k, n). This results in complexity O(N3) for
step (3). To construct the function h we have to determine the break points
γi, i = 0, . . . , k, which has complexity O(N). Hence, the algorithm for
the computation of MAP estimates for all values of γ simultaneously has
complexity O(max{g(N), N3}). ¤

With the same arguments as in the case for fixed hyperparameter γ we get

Corollary 3.2.5 For ρ(u) = u2 the Algorithm 3.2.2 has complexity O(N3).

Remark 3.2.6 Algorithm 3.1.2 and Algorithm 3.2.2 work irrespectively of
uniqueness.
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Part II

Choice of Hyperparameters
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Finally, we want to apply our estimators to time series’. The present varia-
tional approach leads to a family of MAP estimators, one for each hyperpa-
rameter γ. It remains the natural problem to determine the ‘right’ or ‘best’
value of the hyperparameter γ. By piecewise constancy, this is equivalent to
decide on a γ-interval. This problem is ubiquitous in nonparametric statis-
tics, examples are the choice of a smoothing parameter, bandwidth selection,
and the decision on the prior smoothness or variance.
Concerning variational approaches, this problem was already addressed in
the early paper S. Geman and D. Geman (1984) who resorted to ad hoc
choices of the hyperparameter in the case of texture classification. Their
strategy amounted to supervised learning from probes of known texture.
For data like those from brain mapping or gene expression, discussed in
detail in Chapter 9, we do not have any ground truth or model to train our
methods, only qualitative morphological properties can be characterized with
confidence.
One strategy is to compute estimates for all γ and to display them simul-
taneously in a plot, or as a sequence, and then simply to show them. The
‘customer’ then may choose an adequate estimate by visual inspection. This
is addressed explicitly as the ‘family approach’ for example in J.S. Marron
and S.S. Chung (2001). Others, like P. L. Davies and A. Kovac (2001)
vary the hyperparameter in a monotonous way and decide to stop when
certain criteria - say for residuals - are fulfilled. Such a proceeding is appro-
priate if one aims at the reconstruction of an underlying signal, perhaps in
a parsimonious fashion. Still others, like J. Polzehl and V.G. Spokoiny
(2000), estimate variances during an iterative procedure, but they need initial
estimates.
For two reasons we are searching for automatic methods. Firstly, decisions
should be objective and should not depend on the rating of observers. Sec-
ondly, if there are too many time series’, as it is the case for the brain or
gene data, a non-automatic procedure is not feasible.
The one dimensional Potts functionals are ideally suited to study this ques-
tion rigorously and in depth. This is nourished by the results on dependence
of the MAP estimator on the hyperparameter in Sections 2.4 and 2.5. An-
other advantage is that the estimates can be computed exactly for all values
of γ.
Appropriate hyperparameters vary from time series to time series. Hence
proper hyperparameters must be chosen in a data adapted way. This is an
intricate problem and we are far from a final solution. Below we propose
some methods and study basic properties.
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Chapter 4

Equivariance and
Hyperparameters

A reasonable property of estimators is equivariance with respect to certain
group actions. In Section 4.1, we establish a scaling property of MAP estima-
tors. It implies that MAP estimators to a fixed value of the hyperparameter
are not equivariant with respect to affine linear transformations.
We will derive a sufficient condition for equivariance of estimators resulting
from the combination of MAP estimators and a data adapted parameter
choice.
In Section 4.2, we discuss normalization of data as an example of a data
adapted parameter choice. We will see that equivariance is only a minimal
requirement on an estimator.

4.1 Equivariance

The term ‘equivariance’ means that an estimator is compatible with certain
transformations of data.

Definition 4.1.1 Let G be a group acting on X, i. e. there is a map α :
G× X→ X, α(g, x) =: gx with

g1(g2x) = (g1g2)x and ex = x, g1, g2, e ∈ G, x ∈ X.

A map T : X → X is called equivariant with respect to the group
action α if

T (gx) = gT (x), g ∈ G.

The choice of transformations is crucial and should follow the needs for a spe-
cial problem. We will consider the canonical action of the affine linear group
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of R on RN and ask for equivariant MAP estimators of the one dimensional
Potts functionals given by

H̄γ(·, y) : X −→ R, x 7−→ γ · |J(x)|+
∑
s∈S

(ys − xs)
2. (4.1)

Convention Whenever we speak about equivariance, the symbol x∗(γ, y)
will denote the measurable section presented in the proof of Lemma 2.6.1.
This way, we have uniqueness of MAP estimators.

The smaller the group, the easier it is to find equivariant mappings, and vice
versa. As an illustration, we consider constant shifts and find that all MAP
estimators are equivariant with respect to this group action. Let G1 = R be
the group acting on X ∼= RN by

(b, x) 7−→ x + b1, b ∈ G1.

Proposition 4.1.2 All MAP estimators y 7→ x∗(γ, y) of the one dimen-
sional Potts functionals (4.1) are equivariant with respect to G1.

Proof We have to show that x∗(γ, y + b1) = x∗(γ, y) + b1 for each b ∈ G1.
The shifted x∗(γ, y) + b1 minimizes H̄γ(x− b1, y). Since

|J(x− b1)| = |{s ∼ t : xs − b 6= xt − b}|
= |{s ∼ t : xs 6= xt}| = |J(x)|

we have

H̄γ(x− b1, y) = γ|J(x− b1)|+
∑
s∈S

(ys − (xs − b))2

= γ|J(x)|+
∑
s∈S

((ys + b)− xs)
2 = H̄γ(x, y + b1).

Thus, x∗(γ, y) + b1 minimizes H̄γ(x, y + b1) which is the assertion. ¤

Now we study equivariance under shifts and scaling.

Definition 4.1.3 Let Aff(R) = {(b, c) : b ∈ R, c ∈ R \ {0}} denote the
affine linear group of R \ {0} acting on X by

tb,c :
(
(b, c), x

) 7−→ c · x + b1 c ∈ R∗, b ∈ R. (4.2)

The group actions (4.2) will be called scale transformations.
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We consider the equivariance property with respect to this class of trans-
formations as a minimal requirement on estimators. In a large variety of
applications, estimators should be equivariant with respect to the choice of
the reference point and unit of the y-axis.
The jump set is an invariant under this action of Aff(R).

Lemma 4.1.4 The jump set J : X → p(S), x 7→ J(x), where p(S) denotes
the power set of S, is invariant under Aff(R), i. e.

J(tb,c(x)) = J(x), x ∈ X.

In particular, the number of jumps |J(x)| is invariant with respect to scale
transformations.

Proof We have

J(tb,c(x)) = {s ∼ t : cxs + b 6= cxt + b} = {s ∼ t : xs 6= xt} = J(x)

for each scale transformation tb,c and therefore also |J(tb,c(x))| = |J(x)|. ¤

The scaling property of MAP estimators reads as follows.

Theorem 4.1.5 Let x∗(γ, y) be the MAP estimators of the Potts functionals
from (4.1). Then

x∗
(
γ, tb,c(y)

)
= tb,c

(
x∗

( γ

c2
, y

))
(4.3)

for each scale transformation tb,c.

Proof With tb,c(y) = c · y + b1 we have

H̄γ(x, tb,c(y)) = γ · |J(x)|+
∑
s∈S

(
xs − (cys + b)

)2

= γ · |J(x)|+ c2 ·
∑
s∈S

(xs − b

c
− ys

)2

= c2

(
γ

c2
· |J(x)|+

∑
s∈S

(xs − b

c
− ys

)2
)

.

By Lemma 4.1.4, the number of jumps is invariant under scale transforma-
tions, and we get

H̄γ(x, tb,c(y)) = c2 · H̄γ/c2(t−b/c,1/c(x), y). (4.4)
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Hence, we have

tb,c(x̃) = tb,c
(
x∗(

γ

c2
, y)

)
= x∗

(
γ, tb,c(y)

)
.

This completes the proof. ¤

Theorem 4.1.5 implies in particular that MAP estimators, minimizers of the
Potts functional (4.1) with fixed γ, are not equivariant.

Corollary 4.1.6 Let γ > 0 be fixed. Then the map y 7→ x∗(γ, y) is not
equivariant with respect to Aff(R).

This is only one of the reasons why the choice of the hyperparameter γ
should depend on the data at hand. To take γ fixed is even worse if we
have to find estimators for several data sets, and hence now less feasible than
ever in an automatic procedure. This statement is based on the observation
that already for two different time series’ there might be no fixed value for γ
which yields the desired estimator in both situations. This is illustrated in
the following example.

Example 4.1.7 For N = 6 consider the data displayed in Figure 4.1. For
data y in Figure 4.1(a), we want a constant estimator, whereas the character-
istic feature of y′ in Figure 4.1(b) is a jump. To simplify calculation, assume
that the respective highest jump has height 1. For γ > 17/48 we get the
desired constant MAP estimator of y. If γ < 1/3 the MAP estimator of y′ is
a signal with one jump. Hence, there is no fixed value for the hyperparame-
ter which works in both situations. This indicates that the hyperparameter
should be adapted to data.

0

1/2

1

(a) Almost constant signal.

0

1

(b) Signal with significant increase.

Figure 4.1: Two essentially different signals with identical diameter.

The following definition simply names the procedure of choosing γ according
to data.
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Definition 4.1.8 A map

Γ : X −→ (0,∞), y 7−→ Γ (y)

is called data adapted parameter choice.

One aim in choosing the parameter in a data adapted way is to derive an
equivariant estimator from the MAP estimators of the Potts functionals. We
note a sufficient condition for equivariance of these estimators with respect
to Aff(R).

Lemma 4.1.9 Let x∗(γ, y) be the minimizers of the Potts functionals from
(4.1) and let Γ be a data adapted parameter choice. If

x∗(Γ (y), y) = x∗(Γ (tb,c(y))/c2, y) (4.5)

then y 7→ x∗(Γ (y), y) is equivariant with respect to Aff(R).

Proof Let tb,c denote a scale transformation. By Theorem 4.1.5 we have

x∗
(
Γ (tb,c(y)), tb,c(y)

)
= x∗

(
Γ (cy+b1), (cy+b1)

)
= c·x∗(Γ (cy+b1)/c2, y

)
+b1.

Inserting (4.5), we get

c · x∗(Γ (cy + b1)/c2, y
)

+ b1 = c · x∗(Γ (y), y
)

+ b1 = tb,c
(
x∗(Γ (y), y)

)

which gives the desired identity. ¤

In the following chapters, we will present several data adapted parameter
choices and check whether they fulfill the sufficient condition in Lemma 4.1.9.
The following observation will be useful to characterize the equivariant esti-
mators given by the interval criteria from Section 5.2.

Proposition 4.1.10 An estimator y 7→ x∗(Γ (y), y) is equivariant with re-
spect to Aff(R) if and only if Γ (tb,c(y))/c2 is in the same γ-interval as Γ (y).

Proof An estimator y 7→ x∗(Γ (y), y) is equivariant with respect to Aff(R) if
and only if

x∗(Γ (cy + b1), cy + b1) = c · x∗(Γ (y), y) + b1. (4.6)

By the scaling property (4.3), equivariance of x∗(Γ (y), y) is equivalent to

c · x∗
(

Γ (cy + b1)

c2
, y

)
= c · x∗(Γ (y), y) + b1. (4.7)
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By Theorem 2.4.5, the MAP estimator is the same on the γ-intervals. Hence,
the map y 7→ x∗(Γ (y), y) is equivariant with respect to Aff(R) if and only if
Γ (cy + b1)/c2 is in the same γ-interval as Γ (y). ¤

Analogues to Theorem 4.1.5 and its implications are true in a slightly more
general frame with only a few modifications.

Remark 4.1.11 The considerations on equivariance are valid for a more
general class of functionals. We will now consider functionals given by

Fγ(·, y) : X −→ R, x 7−→ γ · P (x) +
∑
s∈S

(ys − xs)
2. (4.8)

The term

P : X −→ R, x 7−→ P (x)

in the functional Fγ is called α-homogeneous penalty if

P (tb,c(y)) = |c|αP (x)

for some α ∈ R and scale transformations tb,c. An example for such α-
homogeneous functionals is the functional with the total variation as penalty
term,

Fλ : X× X −→ R, (x, y) 7−→ λ · TV(x) +
∑
s∈S

(ys −ms)
2

where the total variation for x = (xs)s=1...,N ∈ X = RS is given by

TV (x) =
N−1∑
s=1

|xs+1 − xs|.

Minimizers of this functional are considered for example in E. Mammen
and S. van de Geer (1997). The taut string algorithm presented in P. L.
Davies and A. Kovac (2001) yields a minimizer of this functional.

4.2 Normalization of Data

As an example of data adapted parameter choices, we will now discuss nor-
malization of data, a popular method to prepare them for analysis. First of
all we will give a very general definition of normalization.
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Definition 4.2.1 Let be A : X→ Aff(R). The map

NA : X −→ X, x 7−→ A(x)x = c(x)x + b(x)1

is an affine normalization if it is constant on the orbits of Aff(R) on X,
i. e. if NA(gx) = NA(x) for g ∈ Aff(R), x ∈ X.

Recall that the orbit of x with respect to the group G is the set {gx : g ∈ G}.
It will turn out that for any map F : X → X there is an estimator which is
equivariant with respect to Aff(R).

Proposition 4.2.2 Let a map F : X → X be given and let NA be an affine
normalization. Then the estimator

FA : X −→ X, y 7−→ A(y)−1F (A(y)y)

is equivariant with respect to the group action of Aff(R).

Proof We have to show that

tb,c
(
FA(y)

)
= FA

(
tb,c(y)

)
.

By definition, an affine normalization is constant on the Aff(R)-orbits on X
and therefore

A(cy + b1) (cy + b1) = A(y)y and cy + b1 =
(
A(cy + b1)

)−1
A(y)y.

We conclude

FA

(
tb,c(y)

)
=

(
A(cy + b1)

)−1
F

(
A(cy + b1)(cy + b1)

)

=
(
A(cy + b1)

)−1
F

(
A(y)y

)
=

(
A(cy + b1)

)−1
A(y)

(
A(y)

)−1
F

(
A(y)y

)

=
(
A(cy + b1)

)−1
A(y)FA(y) = c · FA(y) + b1 = tb,c

(
FA(y)

)

which is the assertion. ¤

Equivariance does not single out any estimator. Whether an estimator is
equivariant essentially depends on the size of the group. In fact, Proposi-
tion 4.2.2 tells us that under normalization any estimator FA is equivariant,
irrespective how reasonable it is. Moreover, it is FA 6= F . This observation
underlines that equivariance is just a minimal requirement.

The following is a standard example for normalization.
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Example 4.2.3 Let be y ∈ RN . With the empirical mean ȳ and for diame-
ter diam(y) = maxi yi −mini yi 6= 0 we define

A(y) =
(
− 2ȳ

diam(y)
,

2

diam(y)

)
∈ Aff(R).

Then the map

NA : X→ X, y 7−→
{

0 · 1 for y = a1, a ∈ R,

A(y)y = 2(y−ȳ1)
diam(y)

otherwise
(4.9)

is an affine normalization on X. This is obvious for constant y. Otherwise,
we have

cy + b1 = cȳ1 + b1 and diam(cy + b1) = c diam(y)

and

NA(cy + b1) =
2(cy + b1− (cy + b1))

diam(cy + b1)
=

2(cy + b1− cȳ1− b1)

c diam(y)

=
2(y − ȳ1)

diam(y)
= NA(y).

We now interpret normalization as special choice of the hyperparameter in
the MAP estimator of the Potts functionals.

Example 4.2.4 Let y 7→ x∗(γ, y) be the MAP estimator of the Potts func-
tional in (4.1). Let NA(y) denote data y normalized by an affine normaliza-
tion. Then

x∗(γ, NA(y)) =

{
0 · 1 for y = a1,

c(y) · x∗( γ
(c(y))2

, y) + b(y)1 otherwise

like in the proof of Theorem 4.1.5 with

b = b(y) = − 2

diam(y)
· ȳ and c = c(y) =

2

diam(y)
.

Hence,

x∗(γ,NA(y)) =

{
NA(x∗(γ, y) for y = a1,

NA(x∗( γ
(c(y))2

, y)) otherwise.
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This shows that the MAP estimator for normalized data is the normalization
of the MAP estimator for the original data but with scaled hyperparameter.
Hence, we do not gain anything by normalization of data in the sense that we
are still faced with the problem to choose the hyperparameter γ. Note that
the choice of a fixed γ-value for standardized data corresponds to a certain
normalization. Thus, a data adapted parameter choice corresponds to the
choice of a normalization and a fixed γ.
Moreover, the scaling does only depend on a single number. Thus, the infor-
mation about y which enters the data adapted parameter choice is reduced to
this single number. Signals with identical diameter may be rather different,
see for example those in Figure 4.1. Hence this normalization seems to be too
crude and not suitable since the Potts functionals look locally for changes -
the neighborhood to detect a jump are only two sites.
The following example shows that in some situations the scaling with the
diameter from Example 4.2.3 seems not to be adequate.

Example 4.2.5 We consider the data from Example 4.1.7. As already men-
tioned, there is no value for the hyperparameter such that we get the desired
MAP estimator in both situations. Consider now the normalization from
Example 4.2.3. As shown in Example 4.2.4 the normalization corresponds to
a scaling of the γ with a factor depending only on the diameter of data. Since
data y in Figure 4.1(a) and y′ in 4.1(b) have identical diameter, the scaling
is the same for both. Thus, normalization does not improve the situation.

Normalization is an extrinsic method to make the MAP estimator equivari-
ant. It does not take into account the special structure of the Potts functional
and its MAP estimators. The interval criteria presented in the following
chapter are intrinsic. They use the γ-scanning explicitly.
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Chapter 5

Interval Criteria

In this chapter, we present a special class of data adapted parameter choices.
They make use of the γ-intervals in the γ-scanning on which MAP estima-
tors are constant. Choosing the hyperparameter according to these interval
criteria leads to equivariant estimators.
In Section 5.1, we observe that there are properties of the γ-intervals which
do not change if data are transformed. These invariant attributes are the
base for the estimators presented in the subsequent sections as well as for
those in the following chapters.
In Section 5.2, we propose criteria based on the invariant attribute ‘to be
one of the longest γ-interval’. The idea is that the length of the γ-intervals,
after a transformation of the γ-values by a function F , corresponds to the
‘stability’ of the respective MAP estimator. We characterize those longest
interval criteria which lead to equivariant estimators.
In Section 5.3, we focus on the special case of longest interval criteria without
a transformation of the γ-axis. It will be discussed in more detail.

5.1 Invariant Attributes

The set of the finite positive boundaries of the γ-intervals arising from the
minimization of the Potts functional Hγ(·, y) for all values of γ will be denoted
by

G(y) = {γ0(y), . . . , γm(y)(y)}. (5.1)

By Theorem 4.1.5, the scaling property of the γ-values for transformed data
tb,c(y) reads

G(cy + b1) = {c2γ0(y), . . . , c2γm(y)(y)} = c2G(y).

63
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Hence, the lengths of the γ-intervals change but all in equal measure, i. e. for
example the longest interval for y stays the longest interval for tb,c(y). The
order of the intervals does not change as well as the position in any ranking
is retained unchanged. We will call a property of a γ-interval which is main-
tained for transformed data tb,c(y) an invariant attribute. Choosing a γ-value
from the interior of a γ-interval according to such an invariant attribute is a
data adapted parameter choice providing a to Aff(R) equivariant estimator.
Examples are

(1) the position in the ranking with respect to the length of the intervals,
possible after a transformation of the γ-axis. In Definition 5.2.1 we will
introduce a criterion based on the attribute to be the longest γ-interval,

(2) the property to be the k-th interval, counted from the rightmost inter-
val (γ0(y),∞), for which the corresponding estimator is monotonous.
Herefrom arises the last monotone criterion from Section 8.3,

(3) the property to be the k-th interval, counted from the rightmost interval
(γ0(y),∞), for which the corresponding estimator fulfills some stopping
condition like those in Chapter 6, and

(4) any combination of such properties, such as being the longest interval
for which the corresponding estimator is monotonous.

5.2 F -Longest Interval Criteria

In this section, we will consider estimators which are obtained as follows:
Transform the γ-axis by a strictly increasing continuous function F , pick
the longest of the intervals [F (γi−1(y)), F (γi(y))], i = 1, . . . , m(y), and as
estimate the one belonging to some interior point of the original γ-interval.
To be definite, we will choose the center point. Denoting by

dist(z, A) = min
z′∈A

|z − z′|

the distance of a real number z to a finite set A of real numbers, this procedure
is made more precise in the following definition.

Definition 5.2.1 Let F : R+ → R be a continuous and strictly increasing
function with F (1) = 0. If G(y) 6= ∅ let z∗(y) be given by

z∗(y) = max{z̃ ∈ F
(
[γm(y)(y), γ0(y)]

)
:

dist
(
z̃, F (G(y))

) ≥ dist
(
F (z), F (G(y))

)
for all z ∈ [γm(y)(y), γ0(y)]}.
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A data adapted parameter choice of the form

Γ F : X −→ R+, y 7−→
{

0 if G(y) = ∅,
F−1(z∗(y)) otherwise

(5.2)

is called F-longest interval criterion (FLIC). Estimators

X −→ X, y 7−→ x∗(Γ F (y), y) (5.3)

where y 7→ x∗(γ, y) is the MAP estimator of the Potts functional (4.1) are
called FLIC estimators.

Note that in the definition of the F -longest interval criterion we only consider
the γ-intervals of finite length. Since functions F may map infinity or zero
to infinity we do not take into account the estimators corresponding to the
leftmost interval (0, γm(y)(y)) and to the rightmost interval (γ0(y),∞).

Remark 5.2.2 Note that the data adapted parameter choice Γ F in (5.2) is
well-defined. G(y) = ∅ if and only if y is a constant signal since in this case
there is no positive γ-value. Since for constant y there is only one estimator,
namely the constant one, setting γ = 0 is reasonable.

In general, we are not interested to get data back, and hence skipping the
leftmost γ-interval (0, γm(y)(y)) is not a serious restriction. In contrast, the
fact that we will never get the MAP estimator which belongs to the rightmost
interval (γ0(y),∞) constitutes a real problem. Recall that for γ > γ0(y) the
MAP estimator is a constant signal. A reasonable estimator should map
a quasi constant time series to a constant one. FLIC estimators do not
have this important property, and thus we are forced to watch out for other
methods to handle this problem.
Recall that we are interested in equivariant estimators. In case of FLIC
estimators, Proposition 4.1.10 can be reduced to the fact that Γ F (tb,c(y))/c2

and Γ F (y) coincide.

Proposition 5.2.3 A FLIC estimator y 7→ x∗(Γ F (y), y) is equivariant with
respect to Aff(R) if and only if for all y ∈ X

Γ F (tb,c(y))

c2
= Γ F (y).

Proof We use Proposition 4.1.10. The γ-interval containing Γ F (y) is an
interval (γi(y), γi−1(y)) for which

F (γi−1(y))− F (γi(y)) ≥ F (γj−1(y))− F (γj(y)) for all j 6= i.
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Whereas Γ F (cy+b1) is given as the center point of an interval (γl(y), γl−1(y))
for which

F (c2γl−1(y))− F (c2γl(y)) ≥ F (c2γj−1(y))− F (c2γj(y)) for all j 6= l.

The value Γ F (cy + b1)/c2 is in (γi(y), γi−1(y)) if and only if (γi(y), γi−1(y))
and (γl(y), γl−1(y)) coincide. Since the γ-intervals are disjoint, this is the
case if and only if both intervals have the same center point. Hence, the
estimator y 7→ x∗(Γ F (y), y) with the F -longest interval criterion (5.2) is
equivariant with respect to Aff(R) if and only if

Γ F (cy + b1)

c2
= Γ F (y)

which proves the assertion. ¤

We will now characterize FLIC estimators which are equivariant with respect
to Aff(R).

Theorem 5.2.4 Let be F (1) = 0. The FLIC estimator y 7→ x∗(Γ F (y), y) is
equivariant with respect to Aff(R) if and only if

F (x) = a
xβ − 1

2β − 1

for some β ∈ R \ {0} and a > 0, or

F (x) = a · ln x

for β = 0 and some a > 0.

The proof of Theorem 5.2.4 will be given at the end of this section. It uses
the following implications of the equivariance of FLIC estimators.
Recall that a continuous, strictly increasing function F corresponds one-to-
one to a positive measure µF on the Borel-σ-field B(R+) with

µF ([a, b)) = F (b)− F (a).

A consequence of the equivariance of y 7→ x∗(Γ F (y), y) is the following prop-
erty of the measure µF .

Proposition 5.2.5 Suppose that the FLIC estimator y 7→ x∗(Γ F (y), y) to
the F -longest interval criterion Γ F is equivariant. Then for α ≥ 0 and
intervals I, J ⊂ R+

µF (I) = αµF (J) implies µF (CI) = αµF (CJ)

for all C > 0.
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The proof is essentially the solution of a functional equation. We will show
that the implication in Proposition 5.2.5 is valid first for integer α ∈ N and
then for rational numbers. Using a continuity argument we finally arrive at
the statement for all positive real numbers.

Proof of Proposition 5.2.5 (1) Note, that for each set A of at most N−2
real positive values we can construct data y such that A = G(y). Recall from
the proof of Proposition 2.4.2 that the γ-values are the intersection points of
the functions fk

y (γ) from (2.18). If m ≤ N − 2 values γ0, . . . , γm−1 are given,
set ym+1 = · · · = yN = 0. This fixes that the functions f i

y(γ) and f i+1
y (γ)

intersect at γi. We get m quadratic equations for m variables y1, . . . , ym.
This justifies to consider F as a function of γ and not of y.
(2) By Proposition 5.2.3, a FLIC estimator y 7→ x∗(Γ F (y), y) is equivariant
if and only if Γ F (tb,c(y))/c2 is in the same γ-interval as Γ F (y). Hence, equiv-
ariance implies that if the F -length of the γ-interval I is maximal then also
the F -length of the transformed interval c2I is maximal. Setting c2 = C this
implies that

µF (I) > µF (J) for intervals I 6= J ⊂ R+

implies
µF (CI) > µF (CJ) for C > 0.

Let now [γ1, γ2] and [γ3, γ4] be intervals with γ2 ≤ γ3 or γ1 ≥ γ4. Then the
consideration above tells us that

F (γ2)− F (γ1) > F (γ4)− F (γ3)

implies
F (Cγ2)− F (Cγ1) > F (Cγ4)− F (Cγ3).

Take now γ4 such that

F (γ2)− F (γ1) = F (γ4)− F (γ3). (5.4)

This is possible due to (1). Since F increases strictly, we have for γn
4 =

γ4 − 1/n that

F (γ2)− F (γ1) > F (γn
4 )− F (γ3) for n ∈ N.

According to the assumption, this implies

F (Cγ2)− F (Cγ1) > F (Cγn
4 )− F (Cγ3) for n ∈ N.

Using continuity of F , we conclude that

F (Cγ2)− F (Cγ1) ≥ F (Cγ4)− F (Cγ3).
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Since F (Cγ2)− F (Cγ1) > F (Cγ4)− F (Cγ3) contradicts (5.4), we have that
(5.4) always implies

F (Cγ2)− F (Cγ1) = F (Cγ4)− F (Cγ3). (5.5)

Thus, we have that (5.4) implies (5.5) for all γ1, γ2, γ3, γ4 with

|{γ > 0 : γ ∈ [γ1, γ2] ∩ [γ3, γ4]}| ≤ 1. (5.6)

(3) Equation (5.4) implies (5.5) for all γ1, γ2, γ3, γ4 without the condition
(5.6) on the intervals due to the following reasons: If the interval [γ3, γ4]
lies in [γ1, γ2] then equality of F (γ2) − F (γ1) and F (γ4) − F (γ3) would not
be possible since F is strictly monotone. Consider the case of overlapping
intervals and assume without restriction that γ1 < γ3 < γ2 < γ4. Then (5.4)
is equivalent to

F (γ3)− F (γ1) = F (γ4)− F (γ2)

for the disjoint intervals [γ1, γ3] and [γ2, γ4]. This implies

F (Cγ3)− F (Cγ1) = F (Cγ4)− F (Cγ2).

Reordering the terms yields the assumption that (5.4) implies (5.5) for all
γ1, γ2, γ3, γ4, C ∈ R+.
(4) Suppose now that

m(F (γ2)− F (γ1)) = F (γ4)− F (γ3) (5.7)

for m ∈ N and for all γ1, γ2, γ3, γ4 ∈ R+. We divide the interval [γ3, γ4] into
m pieces of the same F -length and insert division points γ3 = γm

0 < γm
1 <

· · · < γm
m = γ4 with

F (γ2)− F (γ1) = F (γm
i )− F (γm

i−1) for all i = 1, . . . , m

which is possible since F is continuously increasing. We conclude that

F (Cγ2)− F (Cγ1) = F (Cγm
i )− F (Cγm

i−1) for all i = 1, . . . ,m.

Summing up these m equations gives

m(F (Cγ2)− F (Cγ1)) = F (Cγ4)− F (Cγ3). (5.8)

Hence, we have that (5.7) implies (5.8) for m ∈ N and therefore also for a
factor m̃ = 1/m.
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(5) Assume now that

1

q
(F (γ2)− F (γ1)) =

1

p
(F (γ4)− F (γ3)) for p, q ∈ N. (5.9)

Due to the continuity of F we can find γ5 < γ6 such that

1

q
(F (γ2)− F (γ1)) = F (γ6)− F (γ5) =

1

p
(F (γ4)− F (γ3))

which implies

1

q
(F (Cγ2)− F (Cγ1)) = F (Cγ6)− F (Cγ5) =

1

p
(F (Cγ4)− F (Cγ3)).

Thus, (5.9) implies

p

q
(F (Cγ2)− F (Cγ1)) = F (Cγ4)− F (Cγ3)

for p/q ∈ Q+.
(6) Assume now that

α(F (γ2)− F (γ1)) = F (γ4)− F (γ3) for α ∈ R+. (5.10)

Take αn ∈ Q+, αn < α for all n ∈ N, such that αn → α. Since F increases
strictly, there are γn

4 < γ4 with

αn(F (γ2)− F (γ1)) = F (γn
4 )− F (γ3).

Due to the considerations in (5), this implies

αn(F (Cγ2)− F (Cγ1)) = F (Cγn
4 )− F (Cγ3).

Continuity of F and its increase imply in the limit n →∞ that γn
4 → γ4 and

α(F (Cγ2)− F (Cγ1)) = F (Cγ4)− F (Cγ3). (5.11)

Hence, (5.10) implies (5.11) for all α ∈ R+, γ1, γ2, γ3, γ4, C ∈ R+. ¤

Lemma 5.2.6 The equivariance of the FLIC estimator y 7→ x∗(Γ F (y), y)
implies that there is a function f : R+ → R+ such that for all C > 0 and
intervals I ⊂ (0,∞)

µF (CI) = f(C)µF (I). (5.12)

The function f is a real character of the multiplicative group R+, i. e.

f(1) = 1 and f(C1 · C2) = f(C1) · f(C2).
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Proof By Proposition 5.2.5, we have that F (b) − F (a) = α
(
F (d) − F (c)

)
for α > 0 implies that F (Cb)− F (Ca) = α

(
F (Cd)− F (Cc)

)
for all C > 0.

Set now a = 1, b = 2, c = a, and d = b as well as

α =
F (b)− F (a)

F (2)− F (1)
.

Since (5.10) implies (5.11), the equation

α(F (2)− F (1)) = F (b)− F (a)

then implies

F (b)− F (a)

F (2)− F (1)
· (F (2C)− F (C)) = F (Cb)− F (Ca).

Reordering the terms on left hand side yields

F (2C)− F (C)

F (2)− F (1)

(
F (b)− F (a)

)
= F (Cb)− F (Ca).

Choose

f(C) =
F (2C)− F (C)

F (2)− F (1)
.

This proves that there is f : R+ → R+ such that for all C > 0 and intervals
I ⊂ (0,∞)

µF (CI) = f(C)µF (I).

By (5.12) we have that

f(C1C2)µF (I) = µF (C1C2I) = f(C1)µF (C2I) = f(C1)f(C2)µF (I).

The function f is continuous since F is continuous and it fulfills the functional
equation f(C1 · C2) = f(C1) · f(C2). Clearly, f(1) = 1. ¤
The next lemma gives us the explicit form of functions F for which FLIC
estimators are equivariant.

Lemma 5.2.7 Assume F (1) = 0. If y 7→ x∗(Γ F (y), y) is equivariant with
respect to Aff(R) then

F (x) = a
xβ − 1

2β − 1
(5.13)

for some β ∈ R \ {0} and a > 0, or

F (x) = a · ln x (5.14)

for β = 0 and some a > 0.
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Proof By Lemma 5.2.6 there is a function f : R+ → R+ such that (5.12)
is fulfilled and f is a real character. The function f is continuous since F is
continuous, and we conclude that f is of the form f(C) = Cβ, β ∈ R. Thus,
we have that

F (Cb)− F (Ca) = Cβ
(
F (b)− F (a)

)
, β ∈ R. (5.15)

We now have to distinguish two cases.
(1) For β 6= 0 we insert C = x, a = 1, and b = 2 in (5.15) and get

F (2x)− F (x) = xβ
(
F (2)− F (1)

)
.

The choice C = 2, a = 1, and b = x gives

F (2x)− F (2) = 2β
(
F (x)− F (1)

)
.

Subtracting these two equations and elementary calculations yield

F (x) =
F (2)− F (1)

2β − 1
· xβ +

2βF (1)− F (2)

2β − 1
.

Taking into account that F (1) = 0 and setting a := F (2) > 0 we arrive at

F (x) =
a

2β − 1
· xβ − a

2β − 1

for a > 0.
(2) For β = 0, we have F (Cb) − F (Ca) = F (b) − F (a). Inserting C = y,
a = 1, and b = x we obtain

F (x · y) = F (x) + F (y)− F (1).

Now F (1) = 0 gives the functional equation of the natural logarithm, and
hence we get

F (x) = a · ln x

for some a > 0. ¤

Now we are in the position to give the proof of the main result of this section.

Proof of Theorem 5.2.4 It is easy to see that a FLIC estimator y 7→
x∗(Γ F (y), y) is equivariant if F has the stated form. In case of (5.13) we
have that

dist
(
F (c2z), F (c2G(y))

)
= min

z′∈G(y)
|F (c2z)− F (c2z′)|
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= min
z′∈G(y)

(c2)β|F (z)− F (z′)| = c2βdist
(
F (z), F (G(y))

)
.

If F has the from (5.14), then

dist
(
F (c2z), F (c2G(y))

)
= min

z′∈G(y)
|a ln(c2z)− a ln(c2z′)|

= min
z′∈G(y)

|a ln(z)− a ln(z′)| = dist
(
F (z), F (G(y))

)
.

Lemma 5.2.7 completes the proof. ¤

Examples of F -longest interval criteria which lead to equivariant estimators
for the Potts functional (4.1) are the following ones.

(1) For F (x) = x the F -longest interval criterion reads: Take the estimator
corresponding to the γ-interval (γj(y), γj−1(y)) for which the difference
γj−1(y) − γj(y) is maximal. It will be discussed in more detail in the
next section.

(2) For F (x) = ln x the F -longest interval criterion suggests to take the
estimator corresponding to the γ-interval (γj(y), γj−1(y)) for which the
ratio γj−1(y)/γj(y) is maximal.

Remark 5.2.8 It is plausible that by taking the logarithm of the γ-axis
enlarges the intervals close to zero which were originally rather short: If two
successive γ-values have the distance l we get

γi−1

γi

=
γi + l

γi

= 1 +
l

γi

.

Hence the length l of the interval has definitely more weight for smaller values
γi than for larger ones. The choice of the γ-interval for which this ratio is
maximal corresponds then to the preference of intervals close to zero.

5.3 Longest Interval Criterion

We consider a special case of the interval criteria introduced in the preceding
section. In this section, the transformation is the identity such that the F -
longest γ-interval is indeed the longest of the finite intervals (γi−1(y), γi(y)),
i = 1, . . . , m(y). We show that this provides an almost unique data adapted
parameter choice. Finally, we discuss the application of the longest interval
criterion to data with trend. It will turn out that in most of these cases this
criterion suggests the estimator with exactly one jump. The iterative proce-
dure suggested in Section 8.1 is a first approach to deal with this problem.
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Definition 5.3.1 For F (x) = x−1 the FLIC estimator will be simply called
the longest interval criterion (LIC) estimator.

The FLIC estimator is made unique by the measurable choice of x∗(γ, y). In
contrast thereto, for almost all y the LIC estimator is unique without this
restriction.

Proposition 5.3.2 For Lebesgue almost all y ∈ X, the LIC estimate is
unique.

Proof (1) We will first show that for Lebesgue almost all y ∈ X the lengths
of any two different γ-intervals are different.
For each y ∈ X, the number of γ-intervals is equal to m(y) + 1 with m(y) ∈
{0, . . . , |S| − 2} from Theorem 2.4.5.
We will denote the interval (γi(y), γi−1(y)) as the i-th γ-interval. Its length
is given by

length(i-th γ-interval) = γi−1(y)− γi(y).

At the end of Section 2.4 we gave explicit formulas for the computation of
the γ-values. Using the notation from there, for given y ∈ X, the length of
the first γ-interval is given by

γ0(y)− γ1(y) =
B̃y(1)− B̃y(k0(y))

k0(y)− 1
− B̃y(k0(y))− B̃y(k1(y))

k1(y)− k0(y)

=
B̃y(1)

k0 − 1
− B̃y(k0)

k1 − 1

(k0 − 1)(k1 − k0)
+

B̃y(k1)

k1 − k0

The length of the subsequent γ-intervals is of the same form. The set of
y ∈ X for which the lengths of at least two γ-intervals coincide is enclosed
in the solutions of quadratic equations. By analogous arguments as in the
proofs of Theorem 2.3.1 and Lemma 2.4.7 we see that those y are contained
in a Lebesgue null set.
(2) For all y ∈ X, there is a finite number of γ-intervals. ¤

It was already mentioned that the longest interval criterion suffers from the
disadvantage that the γ-interval corresponding to the constant estimator has
to be excluded. Another problem represent data with ‘trend’ where this term
has to be explained. Our interpretation is that the longest interval criterion
catches the essential feature - here it is the trend - but not the features of the
signal on a smaller scale. At the present state, there are no rigorous results,
we will consider several examples of idealized data. In these cases, there is
only a small number of γ-intervals and the computation is done quickly.
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In Example 5.3.3, we consider a signal which has, loosely spoken, no trend.
In this case, the only finite γ-interval is the correct one and its right boundary
γ0(y) increases in N . Hence, the correct γ-interval enlarges and finally takes
the whole γ-range if the length N of data goes to infinity.
In Example 5.3.4, we consider data with trend where the jumps are all of the
same height. We observe that the γ-interval with one jump - catching the
trend - is always the longest one, independently of how large N is.
We now want to extract how different jump heights affect the longest interval
in the γ-scanning. In Example 5.3.5, the length of the correct interval does
not depend on the factor k by which one jump is higher, whereas the length
of the interval with one jump increases in k. We conclude that in such cases
the longest γ-interval is always the one of the trend-catching estimator with
one jump at the position of the highest jump. The higher the jump, the
longer the corresponding γ-interval is.
Finally, we consider data where the jumps are of the same height but the
lengths of the intervals in the partition are different. From Example 5.3.6
we conclude that in such a symmetric setting the longest interval criterion
yields the correct estimator if the length of the plateau separating the two
jumps is large enough.
These examples demonstrate the difficulties of the longest interval criterion
with data with trend.
The rest of the section contains the announced examples for idealized data.
In the first example we consider a signal without trend.

Example 5.3.3 (no trend) We consider data as in Figure 5.1 with four
plateaus of the same length and three jumps of the same height. The direction
of the jumps is alternating such that we would say that this signal has no
trend. We will denote by E(l jumps at · · · ) the value of the Potts functional

0

h

0

h
Figure 5.1: No trend, 4 plateaus
of same length N/4, jumps of the
same height h

x 7→ Hγ(x, y) = γ · |J(x)|+ ∑N
i=1(yi − xi)

2 for an estimate x with l jumps at
the locations · · · . It is

ȳ =
h

2
and

N∑
i=1

y2
i =

1

2
Nh2.

In the case of idealized data, a minimum value is only achieved if the jump
set of the estimate is contained in the jump set of data y. Hence, the values
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to be considered are reduced to the following few.

E(no jump) =
N∑

i=1

(y2
i − ȳ)2 =

N∑
i=1

y2
i −Nȳ2 =

1

4
Nh2

E(1 jump at
N

4
) = γ +

1

6
Nh2 = E(1 jump at

3N

4
) (symmetry)

E(2 jumps at
N

4
,
N

2
) = 2γ +

1

8
Nh2

= E(2 jumps at
N

2
,
3N

4
) (symmetry)

= E(2 jumps at
N

4
,
3N

4
) (symmetry)

E(3 jumps at
N

4
,
N

2
,
3N

4
) = 3γ

The values γi(y) from Theorem 2.4.5 where the number of jumps changes are
then obtained by

E(0) = E(1) ⇔ γ =
1

12
Nh2,

E(0) = E(2) ⇔ γ =
1

16
Nh2,

E(0) = E(3) ⇔ γ =
1

12
Nh2 =: γ0→3.

Thus, in the scanning there are only two γ-intervals, namely the one corre-
sponding to the constant estimator (no jumps) and the one corresponding
to data (three jumps). The only finite γ-interval therefore is the correct
one with three jumps. The boundary γ0(y) = γ0→3 of the correct interval
increases in N . Hence, the correct γ-interval enlarges and finally takes the
whole γ-range if the number N of data goes to infinity.

0 1
12

Nh2

data constant

γ Figure 5.2: γ-scanning

Now we consider data with trend.

Example 5.3.4 (trend) The data in Figure 5.3 have also four plateaus of
the same length and three jumps of the same height. In contrast to the
previous example, the direction of the jumps is always the same such that we



76 CHAPTER 5. INTERVAL CRITERIA

0

h

2h

3h

Figure 5.3: Trend, 4 plateaus of
the same length N/4, jumps of the
same height h

will say that the signal has a trend. The mean value and the sum of squares
are

ȳ =
3

2
h and

N∑
i=1

y2
i =

7

2
Nh2.

The values of the Potts functional for the possible scenarios of jump sets are

E(no jump) =
5

4
Nh2,

E(1 jump at
N

4
) = γ +

1

2
Nh2 = E(1 jump at

3N

4
) (symmetry),

E(1 jump at
N

2
) = γ +

1

4
Nh2,

E(2 jumps at
N

4
,
N

2
) = 2γ +

1

8
Nh2,

= E(2 jumps at
N

2
,
3N

4
) (symmetry),

= E(2 jumps at
N

4
,
3N

4
) (symmetry),

E(3 jumps at
N

4
,
N

2
,
3N

4
) = 3γ.

The γ-values are obtained by

E(0) = E(1) ⇔ γ = Nh2,

E(0) = E(2) ⇔ γ =
9

16
Nh2,

E(0) = E(3) ⇔ γ =
5

12
Nh2,

E(1) = E(2) ⇔ γ =
1

8
Nh2,

E(1) = E(3) ⇔ γ =
1

8
Nh2,

E(2) = E(3) ⇔ γ =
1

8
Nh2.

Hence, there are three γ-intervals, corresponding to the constant estimator,
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0 1
8
Nh2 Nh2

data 1 jump constant

γ Figure 5.4: γ-scanning

to the estimator with one jump, and to data. The length l of the two finite
γ-intervals is

l(1 jump) = Nh2 − 1

8
Nh2 =

7

8
Nh2,

l(3 jumps) =
1

8
Nh2 − 0 =

1

8
Nh2.

The longest finite one is thus always the one corresponding to the estimator
with one jump.

In the next example we vary the height of the jumps.

0

h

k · h

Figure 5.5: Trend, 3 plateaus of
the same length N/3, jumps of dif-
ferent height, k > 2

Example 5.3.5 (trend plus variable jump height) The data displayed
in Figure 5.5 have three plateaus of the same length and two jumps of different
height. Without restriction, we assume that the second jump is higher, i. e.
we consider only the case k > 2. We get

ȳ =
k + 1

3
h and

N∑
i=1

y2
i =

k2 + 1

3
Nh2.

Further, we have

E(no jump) =
2(k2 − k + 1)

9
Nh2,

E(1 jump at
N

3
) = γ +

(k − 1)2

6
Nh2,

E(1 jump at
2N

3
) = γ +

1

6
Nh2,

E(2 jumps at
N

3
,
2N

3
) = 2γ.
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For k > 2 we always have

E(1 jump at
N

3
) > E(1 jump at

2N

3
).

This is intuitively clear since one would set a single jump at the position
2N/3 of the higher jump of data. The γ-values are given by

E(0) = E(1) ⇔ γ =
(2k − 1)2

18
Nh2 =: γ0→1,

E(0) = E(2) ⇔ γ =
k2 − k + 1

9
Nh2 =: γ0→2,

E(1) = E(2) ⇔ γ =
1

6
Nh2 =: γ1→2.

For k > 2 we have always γ0→1 > γ0→2. Hence, the γ-interval left to the one
of the constant estimator is the one of the estimator with one jump. Again,

0 1
6
Nh2 (2k−1)2

18
Nh2

data 1 jump constant

γ Figure 5.6: γ-scanning

there are three γ-intervals. The lengths of the finite intervals are

l(1 jump) = γ0→1 − γ1→2 =
(2k − 1)2

18
Nh2 − 1

6
Nh2 =

(2k − 1)2 − 3

18
Nh2,

l(2 jumps) = γ1→2 − 0 =
1

6
Nh2.

Note that the length of the correct interval with two jumps does not depend
on k whereas the length of the interval with one jump increases in k. For
k > 2, the γ-interval corresponding to the estimator with one jump is always
the longest.

In the following example, the jumps are of the same height but the length of
the plateaus varies.

0

h

2h Figure 5.7: Trend, different
lengths (3N/16 resp. 5N/8 resp.
3N/16) of the 3 plateaus, same
height h of jumps
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Example 5.3.6 (trend plus different plateau length) We consider the
data from Figure 5.7. Assume that the length of the middle plateau is N/k,
k > 1. Hence, the two others are each of length (k − 1)N/2k. We get

ȳ = h and
N∑

i=1

y2
i =

2k − 1

k
Nh2.

The minimum values are

E(no jump) =
k − 1

k
Nh2,

E(1 jump at
k − 1

2k
N) = γ +

k − 1

k(k + 1)
Nh2,

= E(1 jump at
k + 1

2k
N) (symmetry),

E(2 jumps at
k − 1

2k
N,

k + 1

2k
N) = 2γ.

For the γ-values in the scanning we get

E(0) = E(1) ⇔ γ =
k − 1

k + 1
Nh2 =: γ0→1,

E(0) = E(2) ⇔ γ =
k − 1

2k
Nh2 =: γ0→2,

E(1) = E(2) ⇔ γ =
k − 1

k(k + 1)
Nh2 =: γ1→2.

Under the assumption k > 1 it is always γ0→1 > γ0→2. The lengths of the
finite γ-intervals are

l(1 jump) = γ0→1 − γ1→2 =
k − 1

k + 1
Nh2 − k − 1

k(k + 1)
Nh2 =

(k − 1)2

k(k + 1)
Nh2,

l(2 jumps) = γ1→2 − 0 =
k − 1

k(k + 1)
Nh2.

We get
l(1 jump) < l(2 jumps) ⇔ 1 < k < 2.

Thus the longest interval is the correct one if the plateau separating the two
jumps is long enough.
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Chapter 6

Stopping Criteria

P. L. Davies and A. Kovac (2001) suggest the criteria presented in the
subsequent sections to stop their iterative ‘taut string’ algorithm. In this
chapter, we show that these stopping criteria may provide data adapted
parameter choices. There are at least two classes of stopping criteria. Those
of this chapter impose requirements on the residuals. In contrast to this, the
criteria presented in Section 8.3 rely on properties of the estimators itself.

The conditions considered here decide whether the residuals of an estimator
can be classified as noise. By the derived criteria we can stop for example
an iterative procedure like the one presented in Section 8.1. They can also
be used to terminate the scanning through the range of the hyperparameter
starting from infinity and hence are a method to choose γ.

The residuals (rs)s∈S of an estimate ŷ are given by rs = ŷs − ys. We will
consider the residuals of a minimizer x∗(γ, y) of H̄γ(·, y) from (4.1) given by

r(γ, y) = x∗(γ, y)− y. (6.1)

6.1 Longest Run Criterion

The criterion presented in this section looks for the longest run of signs of
the residuals.

Definition 6.1.1 The longest run condition is given by

max{|I| : I ∈ P(sgn(r))} ≤ R

where P(sgn(r)) denotes the partition induced by sgn(r) = (sgn(rs))s∈S of
the signs of the residuals and R is some given number.

81
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The value for R we use is

R = dlog2 N − 1.47e. (6.2)

This is a suggestion from P. L. Davies and A. Kovac (2001) and a justi-
fication for this value can be found there.
Now we will embed this condition in the concept of data adapted parameter
choices.

Definition 6.1.2 The longest run criterion is given by

ΓLR(y) = max
{

γ ∈ G(y) : max
{
|I| : I ∈ P

(
sgn

(
r(γ, y)

))}
≤ R

}

for some given R.

We will see that it leads to an estimator which is equivariant with respect
to Aff(R). We will first investigate how the residuals are transformed when
Aff(R) acts on X.

Lemma 6.1.3 Let x∗(γ, y) denote a minimizer of the Potts functional (4.1).
Let further r(γ, y) be the residuals of x∗(γ, y). Then

r
(
γ, tb,c(y)

)
= c · r

( γ

c2
, y

)

for each scale transformation tb,c.

Proof Using the scaling property (4.3) of minimizers of H̄γ(·, y) from The-
orem 4.1.5 we get

r
(
γ, tb,c(y)

)
= x∗

(
γ, tb,c(y)

)− tb,c(y) = tb,c
(
x∗(

γ

c2
, y)

)− tb,c(y)

= c · x∗( γ

c2
, y) + b1− (cy + b1) = c · r( γ

c2
, y)

which is the assertion. ¤

We immediately get that the longest run criterion leads to equivariant esti-
mators.

Theorem 6.1.4 The longest run criterion fulfills

ΓLR
(
tb,c(y)

)
=

ΓLR(y)

c2
.

In particular, the estimator y 7→ x∗(ΓLR(y), y) is equivariant with respect to
Aff(R).



6.2. MULTIRESOLUTION CRITERION 83

Proof The sign of the residuals of x∗(γ, tc,b(y)) is sgn(c) · sgn(r(γ/c2, y)),
hence they all change simultaneously or stay the same. By Lemma 6.1.3 we
thus have that

max
{
|I| : I ∈ P

(
sgn

(
r(γ, tb,c(y))

))}
≤ R

if and only if

max
{
|I| : I ∈ P

(
sgn

(
r(γ/c2, y)

))}
≤ R

and transformation of γ yields the stated equality. ¤

6.2 Multiresolution Criterion

The criterion presented in this section is based on a multiresolution analysis
of the residuals.

Definition 6.2.1 The multiresolution coefficients are defined as

wi,j =
1√

j − i + 1

j∑

k=i

(yk − ŷk) for all 1 ≤ i ≤ j ≤ N.

The multiresolution condition then is given by

|wi,j| ≤
√

τ ln(N) · σ̂
where τ is some positive number, and for the standard deviation σ of data y
the estimator

σ̂ =
1.4862√

2
·median

(|ys − ys−1|, s = 2, . . . , N
)

(6.3)

is used.

P. L. Davies and A. Kovac (2001) suggest to choose the parameter τ
between 2 and 2.5.
Choosing the hyperparameter such that the multiresolution condition is ful-
filled can be formulated as data adapted parameter choice.

Definition 6.2.2 The multiresolution criterion is given by

ΓMR(y) = max {γ ∈ G(y) :

|wi,j(γ, y)| ≤
√

τ ln(N) · σ̂(y) for all 1 ≤ i ≤ j ≤ N }
for some given τ .
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Minimizers of H̄γ(·, y) with the hyperparameter chosen by the multiresolution
criterion also lead to equivariant estimators.

Theorem 6.2.3 The multiresolution criterion fulfills

ΓMR
(
tb,c(y)

)
=

ΓMR(y)

c2
.

In particular, the estimator y 7→ x∗(ΓMR(y), y) is equivariant with respect to
Aff(R).

Proof By Lemma 6.1.3, we get for the multiresolution coefficients

|wi,j(γ, tb,c(y))| = |c| · |wi,j(γ/c2, y)|,

and for the estimated standard deviation we arrive at

σ̂(tb,c(y)) =
1.4862√

2
·Median

(|cys + b− cys−1 − b|, s = 2, . . . , N
)

= |c| · σ̂(y).

The requirement

|wi,j(γ, tb,c(y))| ≤ σ̂(tb,c(y)) ·
√

τ · ln N

is then equivalent to

|c| · |wi,j(γ/c2, y)| ≤ |c| · σ̂(y) ·
√

τ · ln N

which proves the assertion. ¤

These criteria may also be used to stop iterative procedures like the one
presented in Section 8.1.



Chapter 7

Model Selection Criteria

In this chapter, we connect classical model selection criteria and the concept
of data adapted parameter choices. We will identify the estimators obtained
by the application of the Akaike and the Schwarz information criteria with
MAP estimators for the Potts functional (4.1) for a special choice of γ.
We assume that the true deterministic signal x is corrupted by additive
Gaußian white noise, i. e.

ys = xs + ξs(ω), s = 1, . . . , N, (7.1)

where ξs, s = 1, . . . , N , are independent and identically distributed normal
random variables with mean zero and variance σ2.
The choice of a γ-interval is equivalent to the determination of the number
of intervals in the partition of the segmentation induced by x∗(γ, y). This
number can be interpreted as the dimension of the parameter in the family
of simplest regression models given by the log likelihood functions

ln L(θk|Y ) = −N

2
ln(2πσ2

k)−
1

2σ2
k

‖y − µk‖2. (7.2)

This family is not only simple but will turn out to be the proper class of
models for the Potts functionals with sum of squares in the data term. We
will denote by P∗k = {I1, . . . , Ik} a partition in Pk which minimizes the term∑

I∈P
∑

s∈I(ys− ȳI)
2 in P ∈ Pk. The maximum likelihood estimators of the

parameter vector θk = (µk, σ2
k) are then given by

µ̂k(y) =
(
ȳI1 , . . . , ȳI1︸ ︷︷ ︸

|I1|

, . . . , ȳIk
, . . . , ȳIk︸ ︷︷ ︸
|Ik|

)
(7.3)

and

σ̂2
k(y) =

1

N
‖y − µ̂k(y)‖2 =

1

N

∑

I∈P∗k

∑
s∈I

(ys − ȳI)
2. (7.4)
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There are several criteria to select and reduce the parameter dimension. We
consider two classical model selection criteria. Let L(θ̂k|Y ) denote the like-
lihood function of the model with parameter θ evaluated at the maximum
likelihood estimator θ̂k = (θ̂k

1 , . . . , θ̂
k
k) in the subspace Θk of the parameter

space Θ. Let k be the number of parameters to be estimated.

7.1 The Akaike Information Criterion

H. Akaike (1973, 1974) suggested an information criterion (AIC) of the
following form: Maximize the log likelihood function separately for the com-
peting models and choose the model for which

AIC(k) = ln L(θ̂k|Y )− k (7.5)

is largest. This has become known as the Akaike information criterion. It is
based on the minimization of the Kullback-Leibler information. Some more
details and a derivation of a corrected version can be found in Appendix B.2.
The relation to MAP estimators is the following. Suppose that the variance
σ2 is known. Then, in case of the set of candidate models given by the family
of densities (7.2), the Akaike information criterion reads: Maximize

AIC(k) = ln L(µ̂k|Y )− k

= −N

2
ln(2πσ2)− 1

2σ2

∑

I∈P∗k

∑
s∈I

(ys − ȳI)
2 − k.

The first term can be ignored since it is the same for all competing models.
Hence, with known variance σ2, the Akaike information criterion amounts to
the maximization of

k 7−→ − 1

2σ2

∑

I∈P∗k

∑
s∈I

(ys − ȳI)
2 − k (7.6)

for 1 ≤ k ≤ N . We realize the following connection of AIC to MAP estima-
tion.

Theorem 7.1.1 Assume that the variance σ2 > 0 is known. Let k∗ be a
maximizer of (7.6). Then the corresponding maximum likelihood estimator
µ̂k∗ minimizes the Potts functional H̄(·, y) in (4.1) for γ = 2σ2 and vice
versa.

Proof If the number k of intervals in a partition P is fixed, a minimizer of
the Potts functional is given by a minimizer of the data term. Since the data
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term is a sum of squares, a minimizer maximizes the log likelihood function
(7.2) on the space of signals with exactly k intervals in the induced partition.
An estimator obtained by the maximization of (7.6) thus minimizes the Potts
functional (4.1) for the special choice of γ = 2σ2. ¤

7.2 The Schwarz Information Criterion

Further, we will consider the Schwarz information criterion (SIC) introduced
by G. Schwarz (1978). He suggested to choose the model for which

SIC(k) = ln L(θ̂k|Y )− 1

2
k ln N (7.7)

is maximal. Some more details and a derivation of a corrected version can
be found in Appendix B.3.
Similarly, we see that in case of known variance σ2 the maximization of the
Schwarz information criterion (7.7) is equivalent to the maximization of

k 7−→ − 1

2σ2

∑

I∈P∗k

∑
s∈I

(ys − ȳI)
2 − k

2
ln N. (7.8)

Hence, for the Schwarz information criterion we obtain the following identi-
fication.

Theorem 7.2.1 Assume that the variance σ2 > 0 is known. Let k∗ be a
maximizer of (7.8). Then the corresponding maximum likelihood estimator
µ̂k∗ minimizes the Potts functional (4.1) for γ = σ2 ln N and vice versa.

Proof As in Theorem 7.1.1 for the Akaike information criterion, an estimator
resulting from the maximization of (7.8) minimizes the Potts functional for
γ = σ2 ln N . ¤

7.3 Equivariant Versions

Hence, these model selection criteria give a suggestion for the choice of γ.
From Theorem 4.1.5 we know that this will not yield equivariant estimators.
The idea is now to interpret them as data adapted parameter choices by
inserting a suitable estimator σ̂2(y) for the variance. We then define

ΓAIC(y) = 2σ̂2(y)
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and
Γ SIC(y) = σ̂2(y) ln N.

We conclude that the estimators y 7→ x∗(ΓAIC(y), y) and y 7→ x∗(Γ SIC(y), y)
are equivariant with respect to Aff(R) if the estimator σ̂2(y) fulfills

σ̂2
(
tb,c(y)

)
= c2σ̂2(y).

Examples for such an estimator are the maximum likelihood estimator σ̂2
k

from (7.4) or the estimator of the standard deviation from (6.3).

Remark 7.3.1 These model selection criteria can be considered as a first
step towards interval criteria. The application of these criteria corresponds
to the reduction of the whole range of the hyperparameter to a finite discrete
set of γ-values, and then to choose γ from this set by a certain rule. The
k-th γ-value corresponds to the penalty term for the k-th model. The rule
is the maximization of a functional representing AIC and SIC, respectively.
In contrast to the interval criteria, the model selection criteria only choose
between a finite set of γ-values whereas the interval criteria incorporate all
values of γ between γm(y)(y) and γ0(y).

We will see that the classical model selection criteria, the Akaike information
criterion as well as the Schwarz information criterion, are not appropriate for
data sets like brain data from functional magnetic resonance imaging (see
Section 9.1) or fractionation curves (presented in Section 9.2). These criteria
more or less return data. One reason is that the model (7.1) and the set of
candidate models given by the log likelihood functions in (7.2) is clearly not
the adequate class of models for this kind of data. Then we might expect
better results with other classes of models, but here we would have difficulties
to derive the corrected versions of these criteria which decisively depend on
the model assumptions, see Appendices B and C. On the other hand, these
corrections are necessary since the original criteria rely on the asymptotics
as the length N of data tends to infinity, and the time series’ from fMRI
experiments have only a length of 70 time points, respectively, we have only
29 time points for the fractionation curves. Moreover, our aim was not to
study the performance of these criteria but to use them for the determination
of γ in the Potts functional. And therefore, the family (7.2) is the adequate
one.



Chapter 8

Further Ideas

This chapter contains further approaches to the choice of the hyperparameter.
At the moment, they are simply ideas, there is no rigorous treatment. The
iterative procedure presented in Section 8.1 is a first approach to overcome
the problem that the longest interval criterion cannot deal with data with
trend. Section 8.2 is concerned with the problem that the interval criteria are
not constructed to give a constant estimate. With the morphological criteria
from Section 8.3 we have a general frame for a criterion which was originally
designed for the application of MAP estimators to the gene expression data
from Section 9.2.

8.1 Iterative Procedures

In Section 5.3 we discussed the application of the longest interval criterion
to data with trend. It turned out that in most of these cases this criterion
suggests the estimator with exactly one jump. The iterative procedure sug-
gested in the following is a first approach to deal with this problem. The
idea is to decompose the signal into the essential features on different scales
catched by the respectively longest γ-interval. Repeated application of the
longest interval criterion from Section 5.3 gives a decomposition of the signal
into components beginning with the most striking feature (such as a trend)
to the details. The algorithm of this iterative procedure reads as follows:

Algorithm 8.1.1 Start with data y = y(0).

While some stopping condition is not fulfilled repeat the following steps.

(1) Apply the longest interval criterion to y(i) to get the estimate ŷ(i). Keep
it as the i-th component of the signal.
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(a) original data
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2

5j
2

(b) first component: estimate obtained
by the longest interval in γ-scanning
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j
2

−j
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j
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(c) first residuals: difference of first com-
ponent and data

Figure 8.1: Steps in the iterative
procedure of Algorithm 8.1.1

(2) Compute the residuals r
(i)
s = ŷ

(i)
s − y

(i)
s .

(3) Check the stopping condition for the residuals r(i). If it is not fulfilled,
treat the residuals as new data y(i+1).

Sum up the single components ŷ(i) to get an estimate for the original data y.

An open problem is the mentioned stopping condition. A first approach is
to use the stopping criteria from Chapter 6 but they are external criteria. It
would be nicer to have an intrinsic criterion derived from the γ-scanning. The
idea behind the iterative procedure is to continue until the number of jumps
of the recomposed final estimate does not change any more. This can only
be the case when the location of the jumps for two subsequent estimates is
the same or when the subsequent estimate is a constant. For idealized data,
in Example 8.1.2, the iterative procedure is stopped when the residuals are
identically zero. This is only the case for data in a Lebesgue null subset of
RN . Thus, we are faced with the problem to get the constant estimate which
will be discussed in Section 8.2.
For the idealized data from Example 5.3.4, we perform the iterative procedure
from Algorithm 8.1.1.

Example 8.1.2 The data shown in Figure 8.1(a) have a trend, all plateaus
are of the same length, and all jumps have the same height. We saw in
Example 5.3.4 that the longest γ-interval for such a signal is that one with
one jump at N/2 displayed in Figure 8.1(b). Substraction of this estimate
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from the original signal gives the data shown in Figure 8.1(c). This new
signal has the same form as that one in Example 5.3.3. There is only one
finite interval in the γ-scanning. Thus, the number of jumps immediately
changes from zero to three, i. e. data is recovered. Here the procedure
naturally stops.
We add the estimates of the longest (in the second case the only) finite
interval from Figure 8.1(b) and Figure 8.1(c) of these two steps. This indeed
gives back the original time series from Figure 8.1(a).

8.2 Constant Estimates

A reasonable estimator should map a nearly constant time series to a con-
stant one. Our FLIC estimators do not have this important property. The
γ-interval corresponding to the constant estimator extends to infinity and
therefore its length cannot be compared to the length of the other γ-intervals.
To handle this problem, one approach could be the following: Apply well-
known statistical tests to exclude that data y arise from a constant underlying
true signal or are only noise.
An intrinsic approach is to make use of the γ-scanning again: We investigate
properties of the distribution of the random variable γ0(Y ) when Y is consid-
ered to a random vector. Further, we could try to approximate the density of
γ0(Y ) in this case, and construct a test to decide whether the value of γ0(y)
at hand is a realization of γ0(Y ).

8.3 Morphological Criteria

Sometimes we have morphological information about the signal. This leads
to another class of stopping criteria. They decide whether the estimators,
and not the residuals as in Chapter 6, have certain properties.
An important example is monotony. Hence, we impose the additional re-
striction that x∗(γ, y) is monotone.

Example 8.3.1 Tracking x∗(γ, y) we find γ-intervals on which x∗(γ, y) is
monotone and intervals where it is not. If we want to have a monotone signal,
we take the hyperparameter γ as some point of the last interval (starting from
the rightmost interval (γ0(y),∞)) on which x∗(γ, y) is monotone. This gives
an estimator y 7→ x∗(Γ (y), y) with a data adapted parameter choice Γ (y).
Since each scale transformation tb,c for c > 0 preserves monotony such an
estimator is equivariant with respect to the subgroup of Aff(R) with c > 0.
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Part III

Application to Data
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Due to its simplicity, the Potts functionals are appropriate in situations where
there is no or only little ground truth. Their minimizers are a suitable tool
for the extraction of primitive signal features like plateaus and jumps. In
Chapter 9, we will illustrate this by two data sets from life sciences. In
view of these data sets one may doubt about too ‘specific’ methods or too
detailed models for their analysis. In our data examples we expect that the
observation period can be partitioned into intervals where the underlying
signal can be represented by a constant. Therefore, it is reasonable to fit
minimizers of the Potts functionals to this kind of data.
Chapter 10 contains a brief statistical survey of the different methods applied
to simulated data.
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Chapter 9

Data Sets from Life Sciences

In this chapter, we present two kinds of data from life sciences. We will apply
the methods from the preceding chapters to exemplary data from functional
magnetic resonance imaging and from fractionation experiments for cDNA
experiments. Characteristic for both types of experiments is the lack of reli-
able information about the detailed shape of the curves as well as a suitable
noise model. Hence, MAP estimators of the Potts functionals with suitable
parameter choice seem to be adequate to extract the essential features from
these data.

9.1 Functional Magnetic Resonance Imaging

The main target of human brain mapping is the non-invasive localization of
functional areas in the human brain where certain outer stimuli are processed.
This is done by identifying regions of increased activity in the human brain
in response to outer stimuli. Typically such stimuli are boxcar shaped as
indicated in Figure 9.1. They may represent ‘light or sound on and off’, i.e.
visual or acoustic stimuli, or tactile ones like finger tipping on a desk.
Functional magnetic resonance imaging (fMRI) exploits the blood oxygena-
tion level dependent (BOLD) effect. This is basically a change of para-
magnetic properties caused by an increase of blood flow in response to the

Figure 9.1: A boxcar shaped signal represent-
ing ‘on-off’ stimuli in fMRI brain mapping.
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demand of activated neurons for more oxygen. The degradation mechanism
along the path ‘(complex) eye - (highly complex) brain - (complicated) mea-
suring device’ is only partially known. Moreover, measurement is indirect,
since the recorded BOLD effect is a physiological quantity related to a local
increase of blood flow and not a direct function of cortical activation.

The data at hand represent the time series of the intensities in one voxel
along the duration of the experiment. Hence, one would call a voxel ‘active’
if the corresponding time series imitates the outer stimulus. This is thought
to be boxcar shaped, as shown in Figure 9.1. Thus, the approach with the
Potts functionals to get significant plateaus should be appropriate.

(a) data set 1 (b) data set 2 (c) data set 3

Figure 9.2: The three fMRI data sets.

Data displayed in Figure 9.2 are from an fRMI experiment performed by
D. Auer, Max-Planck-Institute of Psychiatry, Munich. All three time series
show the three characteristic bumps as in the representation of the outer
stimulus in Figure 9.1.

Figures 9.3, 9.4, and 9.5 show the results of the application of the criteria
introduced in Chapters 5, 6, 7, and 8, to these exemplary time series’.

First, we will briefly recapitulate the methods we used for the generation of
the pictures. LIC estimator denotes the longest interval estimator from Defi-
nition 5.3.1, discussed in Section 5.3. This estimator is the one corresponding
to the γ-interval for which the difference γi−1(y)−γi(y) is maximal. The log-
longest interval estimator is the FLIC estimator from Definition 5.2.1 with
F (x) = ln x. Hence it is the one corresponding to the γ-interval for which
the ratio γi−1(y)/γi(y) is maximal. For the model selection criteria we as-
sumed the Gaußian model from (7.1). The corrected versions of the Akaike
information criterion (AIC) and the Schwarz information criterion (SIC) are
modification of the original criteria introduced in Section 7.1 and 7.2 for short
time series’. Their derivation for this special class of models and the exact
formulae can be found in Appendix B.2 and B.3, respectively.

The fMRI data have a length of 70 time points. Hence, the maximum of the
allowed run length of the signs of the residuals for the longest run criterion
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from Section 6.1, according to (6.2), is

R = dlog2 70− 1.47e = 5.

For the multiresolution criterion from Section 6.2 we use the factor τ = 2.
The iterative procedure is the repeated application of the longest interval
criterion as described in Algorithm 8.1.1. As stopping criterion we use the
multiresolution criterion with factor τ = 2.

We consider the results of these estimators for the fMRI data set 1 displayed
in Figure 9.2(a). The longest interval estimate shown in Figure 9.3(b) yields
the expected estimate with the characteristic bumps. It coincides with the
estimate from the longest run criterion, see Figure 9.3(f), and the one from
the mulitresolution criterion, in Figure 9.3(g). Also the iterative procedure
works well. Since already in the first iteration the residuals fulfill the mul-
tiresolution criterion the estimate in Figure 9.3(h) coincides with the LIC
estimate. The log-longest interval criterion, see Figure 9.3(c), and the model
selection criteria, see Figure 9.3(d) and Figure 9.3(e), basically return data.

Data set 2 displayed in Figure 9.2(b) has a slight trend. Here, by trend
we will denote the fact that the ground levels of the bumps increase. This
becomes evident in Figure 9.4(b) showing the LIC estimator. It gives the es-
timator with exactly one jump which catches this trend. This aligns with the
theoretical considerations in Section 5.3 for data with trend. The estimators
from the log-longest interval criterion, see Figure 9.4(c), and from the model
selection criteria, in Figure 9.4(d) and Figure 9.4(e), return data. The longest
run criterion, see Figure 9.4(f), and the multiresolution criterion, as shown in
Figure 9.4(g), both provide sensible estimates. They have no problems with
the trend. Thereby, the longest run criterion seems to be more restrictive
than the multiresolution criterion, or, in other words, it resolves finer details.
In the estimate displayed in Figure 9.4(h), obtained by repeated application
of the longest interval criterion, one could find the rough structure of the
data, namely three bumps, irrespectively of the trend. This is an indication
that iteration helps to overcome the problem with data with trend. There
are visible more details than for the multiresoltion criterion which is used as
stopping criterion. This is due to the fact that the final estimate does not
appear in the scanning but is a sum of the curve in Figure 9.4(b) and further
LIC estimates for the residuals.

Data set 3 shown in Figure 9.2(c) also has a slight trend. The longest interval
estimate, see Figure 9.5(b), has no problem with the slight increase of the
base line and provides a reasonable estimate. Again, the log-longest interval
criterion and the model selection criteria, see Figure 9.5(d), Figure 9.5(e),
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(a) data (b) longest interval

(c) log-longest interval (d) corrected version of AIC

(e) corrected version of SIC (f) longest run criterion

(g) multiresolution criterion (h) iterative procedure stopped by
multiresolution criterion

Figure 9.3: Application of different criteria to fMRI data set 1.
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(a) data (b) longest interval

(c) log-longest interval (d) corrected version of AIC

(e) corrected version of SIC (f) longest run criterion

(g) multiresolution criterion (h) iterative procedure stopped by
multiresolution criterion

Figure 9.4: Application of different criteria to fMRI data set 2
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(a) data (b) longest interval

(c) log-longest interval (d) corrected version of AIC

(e) corrected version of SIC (f) longest run criterion

(g) multiresolution criterion (h) iterative procedure stopped by
multiresolution criterion

Figure 9.5: Application of different criteria to fMRI data set 3
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and Figure 9.5(c), return data. The estimator of the longest run criterion
incorporates quite a lot of details as shown in Figure 9.5(f). In Figure 9.5(b)
we see that rather long sequences of data points stay above or under the
estimate. Precisely these long runs (recall that the maximum of the allowed
run length was R = 5) are broken by the insertion of further intervals. In
contrast, the estimator suggested by the multiresolution criterion, displayed
in Figure 9.5(g), yields a sensible estimate. The beginning of a bump on the
left should not be counted as a proper bump. The iterative longest interval
performs similarly as the longest run criterion. Note that the resulting esti-
mator in Figure 9.5(h) and the longest run estimate in Figure 9.5(f) are very
similar. This is surprising since we used the multiresolution criterion to stop
the iteration and not the longest run criterion.

In summary, for all three data sets we find two groups of estimators: the
model selection criteria and the log-longest interval criterion returning data
on the one hand, and the longest interval criterion and the iterative procedure
together with the stopping criteria on the other hand. For data without
trend, the methods of the latter group give the same reasonable estimate. As
expected, in case of trend in data the longest interval criterion fails but the
iterative procedure serves its purpose to overcome this problem. Considering
further data sets, we have the impression that the longest interval criterion
has tendency to insert rather less jumps than the others. This results in a
more distinct representation of the outer stimulus if present.

9.2 Fractionation Experiments

The final aim of cDNA microarray experiments is to explore the structure of
unknown genes. To this end, single stranded sections of known cDNA which
are called targets are put on spots of microchips. A microchip typically
consists of about 20.000 spots. Each section is a finite sequence of four
nucleic acids, which are coded by the letters A(denin), C(ytosin), G(uanin),
and T(hymin). If nucleic acids are added then they tend to bind to the
targets where T binds to A, and G binds to C. Hence sections of single
stranded unknown cDNA tend to pair with complementary DNA targets.
The binding energy is maximal for perfect matches and such a perfect match
means high stability. With perfect match the unknown sequence could be
identified perfectly. A main problem is cross-hybridization, which means that
DNA sections pair with DNA of similar, but not precisely equal, structure
to the complementary sequence.
A new and innovative experiment provides data which hopefully will allow
to identify mismatch dissociation. It is called ‘Specificity Assessment From
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Fractionation Experiments’, or in short-hand notation, ‘SAFE’, see A.L.
Drobyshev et al. (2003). It is plausible that the ‘melting temperature’ of
double stranded DNA depends on length and contents of specific sequences.
Further, increasing washing stringencies with formamide solutions has similar
effects as increasing temperature since both decrease the binding energies.
In the experiment, the chips are washed repeatedly (29 times) with for-
mamide solutions of increasing concentration, and time series of intensities
are recorded, called fractionation curves . Since the binding energy of cross-
hybridizing cDNA is lower, it is washed away at lower concentrations. It is
plausible that there is a critical concentration where a special kind of cDNA is
abruptly washed away from the spot. Therefore, a statistical analysis should
aim at the identification of locations and heights of abrupt decreases.

(a) fractionation curve 1 (b) fractionation curve 2 (c) fractionation curve 3

Figure 9.6: Three typical fractionation curves.

We will consider estimates for the three typical fractionation curves of single
spots from such an experiment shown in Figure 9.6.
Figures 9.7, 9.8, and 9.9 show results of the application of the criteria intro-
duced in Chapters 5, 6, 7, and 8, to these fractionation curves.
We use the same methods as for the fMRI data from Section 9.1. The length
of the fractionation curves is 29 time points. For the longest run criterion,
note that here the maximum of the allowed run length of the signs of the
residuals, given by (6.2), is

R = dlog2 29− 1.47e = 4.

For the fractionation curves we have the additional restriction that by physi-
cal reasons the ‘true’ signal should be decreasing. Therefore, it is reasonable
to apply here in addition the last monotone criterion from Example 8.3.1. It
was designed especially for these data.

The data in Figure 9.6(a) do not show a striking decrease and by visual in-
spection one may classify them as noise. This means that under the special
conditions there is almost no specific hybridization, the corresponding gene
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(a) data (b) longest interval

(c) log-longest interval (d) corrected version of AIC

(e) corrected version of SIC (f) longest run criterion

(g) multiresolution criterion (h) iterative procedure stopped by
multiresolution criterion

(i) last monotone criterion

Figure 9.7: Application of differ-
ent criteria to the fractionation
curve of a spot with no specific
hybridization
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is not expressed. The longest interval criterion, which by default excludes
the constant estimate, suggests an almost constant estimate with a narrow
bump, see Figure 9.7(b). It seems to be rather a suggestion of embarrass-
ment since a human inspector would not necessarily extract this bump as
the essential feature of the signal. The log-longest interval, for the estimate
see Figure 9.7(c), and the model selection criteria, see Figure 9.7(d) and Fig-
ure 9.7(e), return data. The reasons are the same as in case of the brain data.
The longest run criterion yields a constant estimate, shown in Figure 9.7(f),
which is a reasonable estimate for this spot. The data points seem to lie
uniformly above and under the estimate. The estimate from the multireso-
lution criterion picks some details, see Figure 9.7(g). In the same way the
estimate resulting from the repeated application of the longest interval crite-
rion behaves, shown in Figure 9.7(h). It does not coincide with the estimate
in Figure 9.7(g) - which should not be the case anyway - but has the same
shape. The last monotone criterion yields the sensible constant estimate, see
Figure 9.7(i).

The fractionation curve 2 in Figure 9.6(b) shows a quite clear cut and seems
to jump down to another level. It corresponds to a fairly good spot where
the right complementary cDNA bound. The location of the sharp decrease
indicates that at this concentration the binding energy was amortized by
the repeated washing. The longest interval criterion detects this jump ex-
actly. The estimate from Figure 9.8(b) is the desired one and corresponds
to what a trained observer would have suggested. The log-longest interval
and the model selection criteria cannot provide anything else than data, see
Figures 9.8(c), 9.8(d), and 9.8(e). As shown in Figure 9.8(f), the longest run
criterion yields the desired estimator. Also the multiresolution criterion sug-
gests the estimate which exactly one jump, see Figure 9.8(g). The iterative
procedure stops at the first application of the longest interval criterion since
the multiresolution criterion for the residuals is immediately fulfilled. Thus
the estimator, see Figure 9.8(h), coincides with the LIC estimator. The last
monotone estimate in the γ-scanning, displayed in Figure 9.8(i), is also the
one with one jump. The estimate following in the γ-scanning inserts a peak
which breaks the monotony.

In the fractionation curve 3, shown in Figure 9.6(c), we clearly recognize three
levels with two abrupt local breaks. This indicates that one part is washed
away at one concentration level and another one at a second level. Hence, the
time series corresponds to a spot with cross-hybridization. As we know from
the examples from Section 5.3, the longest interval criterion cannot detect
the gradual decrease, it provides the estimate with exactly one jump catching
the main feature trend, see Figure 9.9(b). As we meanwhile would guess, the
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(a) data (b) longest interval

(c) log-longest interval (d) corrected version of AIC

(e) corrected version of SIC (f) longest run criterion

(g) multiresolution criterion (h) iterative procedure stopped by
multiresolution criterion

(i) last monotone criterion

Figure 9.8: Application of differ-
ent criteria to the fractionation
curve of a fairly good spot where
the right complementary cDNA
bound
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(a) data (b) longest interval

(c) log-longest interval (d) corrected version of AIC

(e) corrected version of SIC (f) longest run criterion

(g) multiresolution criterion (h) iterative procedure stopped by
multiresolution criterion

(i) last monotone criterion

Figure 9.9: Application of dif-
ferent criteria to the fractiona-
tion curve of a spot with cross-
hybridization



9.2. FRACTIONATION EXPERIMENTS 109

log-longest interval criterion and the model selection criteria return data, see
Figures 9.9(c), 9.9(d), and 9.9(e). The estimate resulting from the longest
run criterion has jumps at suitable locations between the three plateaus.
In addition, as we can see in Figure 9.9(f), it has to catch the ‘outliers’ of
the center plateau since otherwise the run of the signs would be too long,
see Figure 9.9(i). The estimate suggested by the multiresolution criterion,
displayed in Figure 9.9(g), inserts even additional intervals to handle the
outliers. We have the same situation for the estimate in Figure 9.9(h), arising
from the iterative procedure. The reason is that it was stopped by the latter.
The last monotone estimator yields exactly the desired estimate. It covers
the three plateaus without additional peaks, see Figure 9.9(i).

In summary, the last monotone criterion outperforms all others with respect
to the specific demand of the data.
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Chapter 10

Simulations

A systematic study for the various criteria to choose the hyperparameter is
desirable. Unfortunately this is presently beyond our time horizon. Never-
theless, we will apply the methods described in Part II to simulated data
and then simply show the results. This will at least support our intuition
gained from theoretical considerations. It also hopefully gives some hints
which aspects should be pursued in future work.
We will consider the following estimators using the italic terms in the plots.

• AICC : the corrected version of the Akaike information criterion. It is
a modification for short time series of the original criterion introduced
in Section 7.1 . The exact formula can be found in Appendix B.2 ;

• interval : the longest interval estimator from Definition 5.3.1;

• iterative: the estimator provided by the repeated application of the
longest interval criterion as described in Algorithm 8.1.1, and stopped
by the multiresolution criterion;

• monotone: the last monotone estimator from Example 8.3.1;

• multi : the estimator from the multiresolution criterion described in
Section 6.2 with factor τ = 2 ;

• run: the longest run estimator with maximal allowed run length of
signs of residuals, given by (6.2).

Depending on the given signal, not all methods are reasonable, and we will
exclude not well-suited estimators from our considerations.
We generate data y by regression models of the form

ys = us + ξs, s ∈ {1, . . . , N}, (10.1)

111
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where u is a given signal and ξ1, . . . , ξN are independent and identically dis-
tributed Gaußian random variables with mean zero and variance σ2 > 0.
It is reasonable to start with signals u which are simple and smooth in the
sense of the Potts functionals. In Section 10.1, we take a constant signal. In
Section 10.2, we consider a signal with one jump down, corresponding to the
fractionation curves from Chapter 9.2. In Section 10.3, the boxcar shaped
signal is an analogon to the outer stimulus in fMRI human brain mapping
from Section 9.1. The different signals u are displayed in Figure 10.1.

(a) constant signal (b) one jump signal (c) boxcar shaped signal

Figure 10.1: The underlying signals u.

We want to compare the different estimators in two respects, the number
of jumps and the fidelity to the underlying signal u. The distance of the
estimates x∗ to the underlying signal u is measured by

• the sum of the absolute deviations

d1(x
∗, u) =

N∑
s=1

|x∗s − us|,

• the sum of squares

d2(x
∗, u) =

N∑
s=1

(x∗s − us)
2,

and

• the supremum of the absolute deviations

d∞(x∗, u) = sup
s=1,...,N

|x∗s − us|.

In the model (10.1), we will fix the following parameters. The jumps in the
underlying signals u are all of the same height h = 1. The length of data
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is N = 100. We generate data for three different noise variances, taking
σ2 = 0.5h, σ2 = h, and σ2 = 2h. We generate 200 time series’ for each
setting.
The number of jumps and the distances for the different methods will be
displayed in box-and-whisker plots generated with SPlus 2000. The white
line in the light blue box marks the median of the data set. The box is
bounded by the lower and the upper quartiles, the height of the box is the
interquartile range (IQR). The whiskers represent the smallest and the largest
value, respectively, or have a length of 1.5 IQR, if there are values which differ
from the quartiles more than this amount. These values are considered as
outliers and will be marked by black bars. If the dark blue regions of two
boxes do not overlap then the medians are significantly different at a rough
5% level.
Our study is far away from a systematic simulation study. It is a very first
attempt to investigate and compare the different methods for very specific
signals u. Next steps would be to take other kinds of noise, especially from
distributions with heavy tails, to vary the length of data, and to consider
further types of signals.

10.1 Constant Signal

In this section, the underlying signal u is the constant null signal shown
in Figure 10.1(a). We will exclude the longest interval criterion since it can
never give a constant signal. Repeated application has the same disadvantage
and thus, the iterative procedure is excluded as well.
We will first consider the number of jumps of the estimate. Figure 10.2(a)
displays box-plots of this number for all estimates for noise variance σ2 = 0.5.
The number of jumps of the AICC estimates is considerably higher than for
the others. We skip AICC in Figure 10.2(b) in order to get a more detailed
picture for the last monotone and the stop criteria. For the last monotone
criterion there is almost no variation in the number of jumps, it is either zero
or one. The median for the multiresolution criterion is significantly smaller
than the one for the longest run criterion. Both estimators yield some outliers
with a fairly high number of jumps.
AICC seems to be not suited in this situation, it will not be discussed fur-
ther. To check whether and how the number of jumps for the other methods
depends on the noise variance, we plotted them for the three noise variances
σ2 = var05 = 0.5, σ2 = var1 = 1, and σ2 = var2 = 2 in Figure 10.3. The
number of jumps for the last monotone estimator (a) seems to change not
all. We can also not say that the one for the multiresolution criterion (b)
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(b) number of jumps without AICC

Figure 10.2: box-plots for the number of jumps of the estimates for the
underlying constant signal with noise variance σ2 = 0.5

changes significantly. The behavior of the longest run criterion in (c) seems
to be interesting: the number of jumps at variance 0.5 is significantly higher
than the one at variance 2.

We will now consider the distance of the estimates from the true signal. Since
the data term in the Potts functionals is a sum of squares, we will focus on the
distance d2, the sum of the squared deviations of the estimate from u. Again,
as already indicated by the number of jumps, AICC is not comparable to the
others, see Figure 10.4(a), and will be omitted in the following discussion.
For noise variance σ2 = 0.5, the distance of the last monotone estimates to
the underlying constant is significantly smaller than the one for the others,
see Figure 10.4(b).

As expected, the median of the distance of the last monotone estimate in-
creases significantly for increasing noise variance, see Figure 10.5(a). The
box-plots (b) and (c) show a similar behavior for the two stopping criteria.

For sake of completeness, Figure 10.6 displays the box-plots of the sum and
the supremum of the absolute deviations.

The qualitative statements on the number of jumps and the distance mea-
sures are the same for all noise variance. This is not astonishing for a con-
stant underlying signal. A little bit surprising is the following observation.
Although the stopping criteria were designed to decide whether data can be
considered as white noise, the last monotone criterion discovers the underly-
ing constant signal better in the simulations we performed here. In summary,
for constant signals, the last monotone estimator outperforms the others.
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Figure 10.3: box-plots of the
number of jumps for different es-
timators for an underlying con-
stant at different noise variances
var05=0.5, var1=1, and var2=2.
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Figure 10.4: box-plots for the sum of squares for underlying constant signal
with noise variance σ2 = 0.5
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(a) last monotone criterion
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Figure 10.5: box-plots of the sum
of squares for different estimators
for an underlying constant for dif-
ferent noise variances var05=0.5,
var1=1, and var2=2.
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Figure 10.6: box-plots of different measures for the deviation of the estimates
from the underlying constant signal with noise variance σ2 = 0.5
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Figure 10.7: box-plots for the
number of jumps of the estimates
for underlying one jump signal
with noise variance σ2 = 0.5

10.2 One Jump Signal

In this section, we consider the mirrored heaviside function with jump height
h = 1 shown in Figure 10.1(b).

First of all, we ask whether the estimates have the ‘correct’ number of jumps
equal to one. Figure 10.7(a) displays box-plots for the number of jumps of all
estimates for noise variance σ2 = 0.5. This number for the AICC estimates
is always considerably higher than for the others. Omitting AICC, we find
two ‘groups’ of estimators with respect to the number of jumps: the last
monotone and the stop criteria on the one hand, and the longest interval and
the last monotone criterion on the other hand. The longest interval criterion
always detects one jump, for the last monotone criterion there are ‘outliers’
of two and three jumps, see Figure 10.7(b). As shown in Figure 10.7(c), the
other methods result in a broader spectrum of number of jumps, but their
medians are not significantly different from the one of the first group.

The qualitative statements about the number of jumps are the same for noise
variance σ2 = 1 and σ2 = 2, as we can see in Figure 10.8.
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(b) variance σ2 = 2

Figure 10.8: box-plots for the number of jumps of the estimates for underlying
one jump signal at different noise variances

We will now consider the number of jumps separately for each estimator for
varying noise. The median of the number of jumps for the iterative procedure
stopped by the multiresolution criterion is significantly higher for σ2 = 2 than
for the lower variances, see Figure 10.9(b). For all other methods the medians
do not differ significantly for different noise variances.

We will now address the distance of the estimates from the true signal. For
all distance measures, there is clearly the same partition of the estimators in
groups as for the number of jumps, see Figure 10.10 for the sum of squares,
and Figure 10.11 for the sum and the supremum of the absolute deviations.

For all methods, the median of the sum of squares increases significantly for
increasing noise, see Figure 10.12.

The simulations for the other noise variances for all the distances do not
provide new insight. One would expect that if the noise variance is equal
to or even twice the jump height of the underlying signal that then there
is a significant decrease in the reliability of the estimators. This is not the
case. The last monotone and the longest interval criterion find the correct
number of jumps absolutely reliable, independent of the noise variance. As
a consequence, the resulting estimates are significantly closer to the true
underlying signal than the others. We conclude that for a one jump signal
the last monotone criterion and the longest interval criterion perform best.

10.3 Boxcar Shaped Signal

In case of the boxcar shaped signal displayed in Figure 10.1(c), the applica-
tion of the last monotone criterion makes no sense. Concerning AICC, the
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Figure 10.9: box-plots of the
number of jumps for different es-
timators for an underlying one
jump signal at different noise vari-
ances var05 = 0.5, var1 = 1, and
var2 = 2.
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Figure 10.10: box-plots for the
sum of squares for underlying one
jump signal with noise variance
σ2 = 0.5
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Figure 10.11: box-plot of the sum and supremum of absolute deviations of
the estimates from the underlying one jump signal for σ2 = 0.5.
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Figure 10.12: box-plots of the
sum of squares for different es-
timators for an underlying one
jump signal for different noise
variances var05 = 0.5, var1 = 1,
and var2 = 2.
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Figure 10.13: box-plot of the number of jumps of the estimate for underlying
boxcar shaped signal at noise variance σ2 = 0.5.

situation is the same as in the preceding sections, it is in any category out
of the range of the other criteria.

We will first consider the number of jumps of the estimates where the cor-
rect one is four. In the present case, only the longest run criterion has an
outlier in the number of jumps, see Figure 10.13(a). Comparing the other
in Figure 10.13(b), we see that the median of the multiresolution criterion is
significantly higher than the medians of the others.

The median of the number of jumps for the longest run criterion is only for
noise variance σ2 = 0.5 equal to the correct number of jumps. For higher
noise variances, the number of jumps has the tendency to be too small, see
Figure 10.14(a). This leads to the assertion that the longest interval underes-
timates the number of jumps with increasing noise. The median for the iter-
ative procedure does not differ significantly for different noise variances, see
Figure 10.14(b). We observe a slighter tendency to underestimate the num-
ber of jumps for higher variance in the noise. As shown in Figure 10.14(d),
the median for the longest run criterion for noise variance σ2 = 2 is signifi-
cantly smaller than for σ2 = 1 . The median of the number of jumps for the
multiresolution criterion becomes significantly smaller the larger the variance
is. At the highest variance in our comparisons, the correct number of jumps
is detected more often then for lower variances, see Figure 10.14(e).

For the distance measures, we will restrict ourselves to the discussion of
the sum of squares. For it, we have a box-plot (see Figure 10.15) for noise
variance σ2 = 0.5 similar to the one for the number of jumps. The median
for the multiresolution criterion is significantly higher than the others.

All criteria show a significant increase of the median of the sum of squares
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Figure 10.14: box-plots of the
number of jumps for different es-
timators for an underlying boxcar
shaped signal at different noise
variances var05 = 0.5, var1 = 1,
and var2 = 2.
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Figure 10.15: box-plot of the sum
of squares of the estimate for the
underlying boxcar shaped signal
at noise variance σ2 = 0.5.

for increasing noise variance, see Figure 10.16.
We obtain similar results for the sum and the supremum of the absolute
deviations, see Figure 10.17.
The comparison of the different methods for noise variance σ2 = 1 does not
provide further insight since the results are qualitatively are the same. Only
for σ2 = 2, the number of jumps and the distance to the underlying signal
for the multiresolution criterion differs no more from the other criteria.
The longest interval criterion is the one with the smallest variation in the
number of jumps. For σ2 = 0.5, the estimates have in most cases the correct
number of jumps. For higher variances, it has a tendency to insert rather
three than four jumps. Here, the other methods perform better, but have also
a larger range of number of jumps including outliers. The longest interval
criterion outperforms the other methods with respect to the number of jumps,
especially if one is interested in a parsimonious representation of data. In
addition, the distance d2 of the estimates is not larger than for the others.
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(a) longest interval criterion

var05 var1 var2

0

50

100

150

su
m

 o
f 

sq
ua

re
s

(b) iterative procedure

var05 var1 var2

0

50

100

150

200

su
m

 o
f 

sq
ua

re
s

(c) multiresolution criterion

var05 var1 var2

0

50

100

150

200

su
m

 o
f 

sq
ua

re
s

(d) longest run criterion

Figure 10.16: box-plot of the sum of squares of the different estimates for
the underlying boxcar shaped signal at the noise variances var05 = 0.5,
var1 = 1, and var02 = 2.
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Figure 10.17: box-plot of the sum and the supremum of the absolute de-
viations of the estimate for underlying boxcar shaped jump signal at noise
variance σ2 = 0.5.
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Part IV

Consistency
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In this part, we study the asymptotic behavior of minimizers x∗(γ, Y n) of
the Potts functionals for data generated by regression models of the form

Y n
s = ukn

s + ξn,s, s ∈ Skn = {1, . . . , kn}.

More precisely,

ξn,s : (Ω,F ,P) −→ R, ω 7−→ ξn,s(ω), n ∈ N, s ∈ Skn = {1, . . . , kn}

are random variables and ukn ∈ RSkn is deterministic for two different sce-
narios for ξ, u, and (kn)n∈N.
We interpret minimizers of the Potts functionals as estimators of a true signal
or a smoothed version, depending whether γ is drawn to zero or fixed. This
amounts to consistency of MAP estimators.
In Chapter 11, we assume kn = N . Data Y n are generated by adding a
random vector (ξn,s)s to the true deterministic signal u of fixed length N . We
show the convergence of estimators x∗(γn, Y

n) towards x∗(γ∗, u) if ξn,s → 0
for all s and γn → γ∗.
In contrast to the fixed data length there, Chapter 12 deals the case of
increasing data length kn = n. The deterministic signal un is the mean value
of a square integrable function f over an appropriate interval. Data Y n are
then generated by adding independent and identically distributed centered
Gaußian random variables (ξn,s)s to un. Using the concept of epi-convergence,
we show that an embedded sequence of minimizers x∗(nγn, Y n) of the Potts
functionals with scaled hyperparameter converges to f if the sequence (γn)n

converges in an appropriate way.
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Chapter 11

Fixed Data Length

In this chapter, we fix the dimension kn = N of data, and hence Skn =
{1, . . . , N}. Let a signal u ∈ RN be given. We consider random variables as
data given by

Y n
s = us + ξn,s, s ∈ S = {1, . . . , N}, (11.1)

where ξn,s, s = 1, . . . , N , are real random variables on some probability space
(Ω,F ,P).
We consider the Potts functionals

H̄γ(·, y) : X −→ R, x 7−→ γ · |J(x)|+
∑
s∈S

(ys − xs)
2. (11.2)

Due to the existence of a measurable section of the set-valued map (γ, y) 7→
X∗(γ, y) statements of the form ‘x∗(γ, Y n) converges P-almost surely’ make
sense.
Let γn, n ∈ N, be random variables, also defined on the probability space
(Ω,F ,P). We will prove stochastic continuity of MAP estimators if the
sequence (ξn,·)n∈N of random variables tends to zero and (γn) tends to γ′.

Theorem 11.0.1 Let (γ, y) 7→ x∗(γ, y) be a measurable section of MAP
estimators (γ, y) 7→ X∗(γ, y) for (11.2). Let u ∈ RN and γ′ ≥ 0 be given.
Suppose that data Y n are given by (11.1) and

ξn,s −→ 0 P-almost surely as n →∞ for all s ∈ S.

Let further (γn)n∈N ⊂ (0,∞) be a random sequence with

γn −→ γ′ P-almost surely as n →∞.

Then

x∗(γn, Y
n) −→ x∗(γ′, u) P-almost surely as n →∞.
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Proof Let ω ∈ Ω be such that γn(ω) → γ′ and ξn,s(ω) → 0 for n →∞ and
all s ∈ S. The latter implies that Y n(ω) → u for n → ∞. A measurable
section (γ, y) 7→ x∗(γ, y) provides a unique x∗(γ′, u). By Theorem 2.5.2,
there is a neighborhood of (γ′, u) such that (γ, y) 7→ x∗(γ, y) is continuous in
this neighborhood. We have that x∗(γn(ω), Y n(ω)) → x∗(γ′, u) for n → ∞.
Thus,

{ω ∈ Ω : γn(ω) −→ γ′} ∩ {ω ∈ Ω : ξn,s(ω) −→ 0, s = 1, . . . , N}
⊂ {ω ∈ Ω : x∗(γn(ω), Y n(ω)) −→ x∗(γ′, u)}

which proves the assertion. ¤

The case γ′ = 0 in the preceding theorems yields consistency to recover the
true signal u.

Corollary 11.0.2 Let (γ, y) 7→ x∗(γ, y) be a measurable section of the MAP
estimators for (11.2). Suppose that data Y n are given by (11.1) and

ξn,s −→ 0 P-almost surely as n →∞ for all s ∈ S.

Let further (γn)n∈N ⊂ (0,∞) be a random sequence with

γn −→ 0 P-almost surely as n →∞.

Then
x∗(γn, Y n) −→ u P-almost surely as n →∞.

Proof For γ = 0 the unique minimizer of H̄γ(·, y) is y and therefore we have
x∗(0, u) = u in Theorem 11.0.1. ¤



Chapter 12

Increasing Data Length

In this chapter, the set of sites on which signals and data are defined increases
in n. For sake of simplicity, let kn = n, and thus the set of sites is

Sn = {1, . . . , n}.

Signals x and data y are elements of RSn .
Let λ denote the Lebesgue measure on the Borel-σ-field B([0, 1)). In the
following, L2([0, 1)) will denote the Hilbert space L2([0, 1),B([0, 1)), λ) of
equivalence classes of square-integrable functions which coincide almost ev-
erywhere. It is equipped with the inner product

〈f, g〉 =

∫

[0,1)

f · g dλ,

and the L2-norm is given by

‖f‖ =
( ∫

[0,1)

|f |2 dλ
)1/2

.

In the sequel, we adopt the following point of view: We think of data as
arising from a discretization of a ‘true’ signal f ∈ L2([0, 1)) corrupted by
noise. We consider the following discretization of f given by

4n : L2([0, 1)) −→ RSn , f 7−→ f̄n

where f̄n = (f̄n
s )s∈Sn is defined as

f̄n
s = n

∫ s
n

s−1
n

f dλ, s ∈ Sn = {1, . . . , n}. (12.1)
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Random data are given by

Y n
s = f̄n

s + ξn,s, s ∈ Sn = {1, . . . , n} (12.2)

where ξn,s, s ∈ Sn, are random variables on some probability space (Ω,F ,P).
We require the following condition to hold:

Hypothesis 12.0.3 We assume that for all n ∈ N the triangular array of
random variables ξn,s, s ∈ Sn, are independent and identically distributed
Gaußian random variables with mean zero and variance σ2 > 0. We will use
the short-hand notation ξn,s ∼ N (0, σ2).

The results of this section are still true if the random variables (ξn,s)n∈N,s∈Sn

are uniformly sub-Gaußian random variables. We refer to the forthcoming
article V. Liebscher et al. (2004).

Increasing n thus corresponds to refining the discretization. Consistency
means that the finer the discretization the higher is the accuracy of the
estimators.

We will consider minimizers of the Potts functionals

H̄n
γ (·, y) : RSn −→ R, x 7−→ γ · |J(x)|+

∑
s∈Sn

(ys − xs)
2 (12.3)

for y ∈ RSn as estimators.

To get consistency, we have to compare estimators of different discretization
levels. To this end, we will introduce counterparts of the Potts function-
als defined on the common Hilbert space L2([0, 1)). Discrete data yn are
identified with the (blurred) conditional expectations of the true signal with
respect to the equidistant partition of [0, 1) into n intervals. The correspond-
ing ‘continuous’ Potts functionals are defined such that their minimizers are
step functions which correspond to minimizers of (12.3). It turns out that
under a suitable rescaling of the hyperparameter, the minimizing step func-
tions converge to the function f . This is the main result formulated in
Theorem 12.0.5.

First of all, we have to make precise which step functions correspond to
signals and data in RSn . It is not clear which value the step function should
take at a point of discontinuity. The determination is arbitrary, and without
restriction we decide to take a right-continuous step function. The space of all
right-continuous step functions on [0, 1) given by span{1[a,b) : 0 ≤ a < b ≤ 1}
will be denoted by T ([0, 1)).
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Definition 12.0.4 Signals x ∈ RSn correspond to right-continuous step func-
tions via the embedding

jn : RSn −→ T ([0, 1)), x 7−→ xn =
n∑

s=1

xs · 1[ s−1
n

, s
n

). (12.4)

Convention In the sequel, we will frequently identify a right-continuous
step function with its equivalence class in L2([0, 1)). This is not dangerous
since for right-continuous step functions τ ∈ T ([0, 1)) the map τ 7→ [τ ] is
one-to-one. In particular, we use the right-continuous representant for the
definition of the jump set, see Definition 12.1.1 below.

The main result of this chapter is the following theorem.

Theorem 12.0.5 Let be f ∈ L2([0, 1)) and Hypothesis 12.0.3 be fulfilled.
Assume that Y n is determined by the model (12.2). Then, for any measurable
section (γ, y) 7→ x∗(γ, y) of minimizers of the Potts functional (12.3), and
for any random sequence (γn)n∈N ⊂ (0,∞) with

γn −→ 0 and γn
n

log n
−→∞ P-almost surely as n →∞,

we have

jn(x∗(nγn, Y
n)) −→ f in L2([0, 1)) as n →∞.

Proof The proof will be given in Section 12.3. ¤

12.1 Potts Functionals on L2([0, 1))

We will now construct counterparts to the Potts functionals from (12.3) de-
fined on L2([0, 1)), and show the relation of their minimizers to MAP esti-
mators.

Definition 12.1.1 The jump set J (τ) for (an L2-equivalence class of) a
right-continuous step function τ ∈ T ([0, 1)) will be defined as the set of dis-
continuities of its right-continuous representant.
For functions f ∈ L2([0, 1)) \ T ([0, 1)) we set |J (f)| = ∞.

The image of RSn under jn, the step functions identified with their L2-
equivalence classes, will be denoted by Xn and the σ-field generated by the
system {[ s−1

n
, s

n
) : s ∈ Sn} of intervals by Bn.

We can now define the following functionals on L2([0, 1)).
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Definition 12.1.2 For f ∈ L2([0, 1)) the functionals

H̃n
γ (·, f) : L2([0, 1)) −→ R̄,

g 7−→
{

γ · |J (g)|+ ‖f − g‖2 if g ∈ Xn,
+∞ otherwise.

(12.5)

will be called continuous Potts functionals.

The term ‘continuous’ should indicate that it is, in contrast to the Potts
functionals from (12.3) which are defined for intensities on the discrete set
Sn, defined for functions on the real interval [0, 1).
The space Xn is a closed linear subspace of L2([0, 1)), and hence, we have
the orthogonal projection of L2([0, 1)) onto Xn given by

PXn : L2([0, 1)) −→ Xn, f 7−→
∑
s∈Sn

f̄n
s · 1[ s−1

n
, s
n

) (12.6)

where f̄n is given by (12.1).
Note that f̄n = (f̄n

s )s∈Sn is an element of RSn and PXnf = jn(f̄n).
We will rewrite the data term ‖f − g‖2 of the continuous Potts functional.

Lemma 12.1.3 Let be f ∈ L2([0, 1)). Then the following holds.

(1) For xn = jn(x), x ∈ RSn, we have

‖f − xn‖2 =
1

n

∑
s∈Sn

(f̄n
s − xs)

2 + ‖(id− PXn)f‖2.

(2) For yn = jn(y) and xn = jn(x), x, y ∈ RSn, we can write

‖yn − xn‖2 =
1

n

∑
s∈Sn

(ys − xs)
2.

Proof (1) For xn = jn(x), x ∈ RSn , we can write

‖f − xn‖2 = ‖(id− PXn)f‖2 + ‖PXnf − xn‖2

= ‖(id− PXn)f‖2 +

∫ 1

0

(
PXnf − xn

)2
dλ

= ‖(id− PXn)f‖2 +

∫ 1

0

( ∑
s∈Sn

f̄n
s 1[ s−1

n
, s
n

) −
∑
s∈Sn

xs1[ s−1
n

, s
n

)

)2
dλ
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= ‖(id− PXn)f‖2 +

∫ 1

0

∑
s∈Sn

(f̄n
s − xs)

21[ s−1
n

, s
n

) dλ

= ‖(id− PXn)f‖2 +
∑
s∈Sn

(f̄n
s − xs)

2λ([
s− 1

n
,
s

n
))

= ‖(id− PXn)f‖2 +
1

n

∑
s∈Sn

(f̄n
s − xs)

2

which is the assertion.
(2) The assertion follows directly from (1) since jn(y) = PXnjn(y). ¤

The following lemma shows how MAP estimators of the Potts functionals
are connected to minimizers of their counterparts embedded into L2([0, 1)).

Lemma 12.1.4 Let H̄n
γ be the Potts functionals from (12.3) and H̃n

γ the
continuous ones given by (12.5). Then

(1) For x ∈ RSn, xn = jn(x), and f ∈ L2([0, 1)) the following statements
are equivalent

(a) xn minimizes H̃n
γ (·, f).

(b) xn minimizes H̃n
γ (·, PXnf).

(c) x minimizes H̄n
nγ(·, f̄n).

(2) For x, y ∈ RSn, xn = jn(x), and yn = jn(y), the following statements
are equivalent

(a) x minimizes H̄n
nγ(·, y).

(b) xn minimizes H̃n
γ (·, yn).

Proof Note that jn : RSn → Xn ⊂ L2([0, 1)) is one-to-one and onto. Hence,
we can identify jn(x) ∈ Xn with x ∈ RSn .
(1) By Lemma 12.1.3 we get the identity

H̃n
γ (xn, f) = H̃n

γ (xn, PXnf) + ‖(id− PXn)f‖2.

Since the functionals H̃n
γ (·, f) and H̃n

γ (·, PXnf) differ only by the constant
‖(id−PXn)f‖2 they have the same minimizers. This is the equivalence of (a)
and (b).
Again from Lemma 12.1.3 we derive the following relation

H̃n
γ (xn, f) = γ · |J(x)|+ 1

n

∑
s∈Sn

(f̄n
s − xs)

2 + ‖(id− PXn)f‖2
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=
1

n

(
nγ · |J(x)|+

∑
s∈Sn

(f̄n
s − xs)

2
)

+ ‖(id− PXn)f‖2

=
1

n
H̄n

nγ(x, f̄n) + ‖(id− PXn)f‖2

for x = (jn)−1(xn). The last term on the right hand side is constant and

does not have influence on minimizers of H̃n
γ (·, f). Note that a minimizer

of H̃n
γ (·, f) is necessarily in Xn. Hence, x ∈ RSn minimizes H̄n

nγ(·, f̄n) if and

only if jn(x) minimizes H̃n
γ (·, f) which is the equivalence of (b) and (c).

(2) Using the reformulation of the data term from Lemma 12.1.3 and the
coincidence of the number of jumps for x and xn we get

H̃n
γ (xn, yn) = γ · |J(x)|+ 1

n

∑
s∈Sn

(ys − xs)
2 =

1

n
H̄n

nγ(x, y)

for xn = jn(x) and yn = jn(y). Hence, x ∈ RSn minimizes H̄n
nγ(·, y) if and

only if xn minimizes H̃n
γ (·, yn). ¤

12.2 Epi-Convergence and Relative Compact-

ness

For the proof of Theorem 12.0.5 we need several preparatory steps. Note
that (jn(x∗(nγn, Y n))n∈N is a sequence of minimizers of the continuous Potts

functionals H̃n
γn

(·, jn(Y n)). Denoting ξn = jn((ξn,1, . . . , ξn,n)), we obtain

jn(Y n) =
∑
s∈Sn

Y n
s · 1[ s−1

n
, s
n

) =
∑
s∈Sn

(f̄n
s + ξn,s) · 1[ s−1

n
, s
n

)

= jn(f̄n) + ξn.

By Lemma 12.1.4, jn(x∗(nγn, Y
n)) also minimizes H̃n

γn
(·, f+ξn). Note further

that f ∈ L2([0, 1)) is the unique minimizer of the functional

H∞
0 (·, f) : L2([0, 1)) −→ R, g 7−→ ‖f − g‖2. (12.7)

Hence, the assertion of Theorem 12.0.5 is that a sequence of minimizers
of the continuous Potts functionals H̃n

γn
(·, jn(Y n)) converges to the unique

minimizer of H∞
0 (·, f). This leads to the concept of epi-convergence, see for

example A. Braides (2002).
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Definition 12.2.1 Let (Θ, d) be a metric space and Fn : Θ → R ∪ {±∞},
n ∈ N, be numerical functions. The sequence (Fn)n∈N is epi-convergent to
F∞ : Θ → R ∪ {±∞} if

(1) for all θ ∈ Θ and for each sequence (θn)n∈N with θn → θ for n → ∞
the lim inf-inequality

F∞(θ) ≤ lim inf
n→∞

Fn(θn) (12.8)

holds, and

(2) for all θ ∈ Θ there is a sequence (θn)n∈N with θn → θ for n →∞ such
that the lim sup-inequality

F∞(θ) ≥ lim sup
n→∞

Fn(θn) (12.9)

is fulfilled.

We will write Fn

epi−−−−−→ F∞ as n →∞.

The following theorem from G. Beer (1993) summarizes the main conclu-
sions from epi-convergence.

Theorem 12.2.2 ([5], Theorem 5.3.6) Let be (Θ, d) a metric space and

Fn, F∞ : Θ → R ∪ {±∞}, n ∈ N. Suppose (Fn)n∈N
epi−−−−−→ F∞ as n →∞.

(1) Let (θn)n∈N be a converging sequence of minimizers of Fn. Then limn→∞ θn

is a minimizer of F∞.

(2) Let (θn)n∈N be a sequence of minimizers of Fn. If there is a compact
set K ⊂ Θ such that {θ∗ ∈ Θ : Fn(θ∗) = minθ∈Θ Fn(θ)} ⊂ K for large
enough n then a minimizer of F∞ exists and

d(θn, {θ∗ ∈ Θ : F∞(θ∗) = min
θ∈Θ

F∞(θ)}) −→ 0

as n →∞.

(3) Let (θn)n∈N be a sequence of minimizers of Fn. If, in addition to the
assumptions in (2), the functional F∞ has a unique minimizer θ∗ then

θn → θ∗

as n →∞.
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To use the conclusions of Theorem 12.2.2 for our purposes we have to show
the epi-convergence of H̃n

γn
(·, f + ξn) and the relative compactness of the set

of minimizers.
Define

H̃∞
0 (·, f) : L2([0, 1)) −→ R, (g, f) 7−→ ‖f − g‖2 + σ2 (12.10)

for f ∈ L2([0, 1)). Clearly, differing only by a constant from the original
functional H∞

0 (·, f) in (12.7), it has the same minimizers. The following

proposition shows that H̃∞
0 is the limit functional of (H̃n

γn
(·, f + ξn))n∈N.

Proposition 12.2.3 Almost surely, for all sequences (γn)n∈N ⊂ (0,∞) with
γn → 0 and γn

n
log n

→∞ holds

H̃n
γn

(·, f + ξn)
epi−−−−−→ H̃∞

0 (·, f) as n →∞.

Proof The proof will be given later (page 146). ¤

The proof of this epi-convergence result needs some technical preparations.
Let Z be a N (0, σ2)-distributed random variable. Then

P(Z > z) < (2π)−1/2σ

z
e−

z2

2σ2 , z > 0, (12.11)

see for example H. Bauer (1990), Lemma 4.1, p. 30. We derive the following

Lemma 12.2.4 The random variable

X := sup
n∈N

1

log n
max

1≤s≤t≤n

(ξn,s + · · ·+ ξn,t)
2

t− s + 1

is P-almost surely finite, i. e.

P(X < ∞) = 1.

Proof The prove uses the Borel-Cantelli-Lemma. We consider for z > 0 the
sets

An
s,t :=

{
ω ∈ Ω :

(ξn,s(ω) + · · ·+ ξn,t(ω))2

t− s + 1
> z2 log n

}
, 1 ≤ s ≤ t ≤ n.

We get

P
((ξn,s + · · ·+ ξn,t)

2

t− s + 1
> z2 log n

)
= 2 · P

(ξn,s + · · ·+ ξn,t√
t− s + 1

> z
√

log n
)
.
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Since (ξn,s)s∈Sn are independent centered Gaußian random variables with
variance σ2 > 0 we have

ξn,s + · · ·+ ξn,t√
t− s + 1

∼ N (0, σ2).

Inserting the inequality (12.11), we arrive at

P
((ξn,s + · · ·+ ξn,t)

2

t− s + 1
> z2 log n

)
<

√
2

π
· σ

z
√

log n
· exp(−z2 log n

2σ2
).

Thus, for the sum of the probabilities of the sets An
s,t, 1 ≤ s ≤ t ≤ n, we get

∑

n∈N

∑
1≤s≤t≤n

P
((ξn,s + · · ·+ ξn,t)

2

t− s + 1
> z2 log n

)

<
∑

n∈N

∑
1≤s≤t≤n

√
2

π

σ

z
√

log n
e−

z2 log n

2σ2 =

√
2

π

∑

n∈N

σ

z
√

log n
e−

z2 log n

2σ2 · n(n + 1)

2

<

√
2

π

σ

z

∑

n∈N
n2 · e− z2 log n

2σ2 =

√
2

π

σ

z

∑

n∈N
n−

z2−4σ2

2σ2 < ∞.

The Borel-Cantelli-Lemma yields that P-almost surely

1

log n
max

1≤s≤t≤n

(ξn,s(ω) + · · ·+ ξn,t(ω))2

t− s + 1
> z2

only for finitely many n ∈ N. This implies that P-almost surely

sup
n∈N

1

log n
max

1≤s≤t≤n

(ξn,s(ω) + · · ·+ ξn,t(ω))2

t− s + 1
< ∞

which is the assertion. ¤
For any finite set J ⊂ (0, 1) we will define the σ-field

BJ = σ
({

[a, b) : a ∈ J ∪ {0}, b ∈ J ∪ {1}})

and the partition PJ of [0, 1) induced by the atoms of the σ-field BJ . For the
set J = {j1, . . . , j|J |} the induced partition PJ of [0, 1) provides a partition
Pn

J = {In
1 , . . . , In

|J |+1} of Sn with

In
l =

⋃
s∈Sn

{s ∈ Sn : njl−1 ≤ s < njl}, 1 ≤ l ≤ |J |+ 1,

where j0 := 0 and j|J |+1 := 1.

Minimizers of the continuous Potts functional H̃n
γ (·, f) are, as in the discrete

case, determined by their jumps set.
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Lemma 12.2.5 Minimizers g∗ of H̃n
γ (·, f) from (12.5) are in Xn and deter-

mined by their jump set J (g∗). If J (g∗) is fixed then g∗ is given as

g∗ =
∑

I∈PJ (g∗)

∫
I
f dλ

λ(I)
1I .

Proof This lemma is the analogue to Proposition 2.1.1. Once a jump set J
in (12.5) is fixed, the minimization of H̃n

γ (·, f) boils down to the minimization
of g 7→ ‖f − g‖2 on the subspace

Xn
J = {g ∈ Xn : J (g) = J}.

The data term ‖f − g‖2 is minimal on Xn
J if and only if g is the orthogonal

projection of f to Xn
J given by

PXn
J
f =

∑
I∈PJ

∫
I
f dλ

λ(I)
1I

which is the stated form. ¤

If the cardinality of the jump sets (Jn)n∈N does not increase too fast, the
projection of the random variable ξn to Xn

Jn
tends to zero.

Lemma 12.2.6 There is a set of P-probability 1 on which for all sequences
(Jn)n∈N of finite sets in (0, 1), Jn ⊂ {1/n, 2/n, . . . , (n− 1)/n} the relation

lim
n→∞

log n

n
|Jn| = 0 (12.12)

implies
PXn

Jn
ξn −→ 0 in L2([0, 1)) as n →∞.

Proof The orthogonal projection of ξn to Xn
Jn

is given by

PXn
Jn

ξn =
∑

I∈PJn

∫
I
ξn dλ

λ(I)
1I

=
∑

I∈PJn

∫
I

( ∑
s∈Sn

ξn,s1[ s−1
n

, s
n

)

)
dλ

λ(I)
1I

=
∑

I∈PJn

1

λ(I)

( ∑
s∈Sn

ξn,s

∫

I

1[ s−1
n

, s
n

) dλ
)
1I .
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The integral is zero if [(s − 1/n), s/n) ∩ I = ∅ and equal to 1/n otherwise.
Thus, we get

PXn
Jn

ξn =
∑

I∈PJn

1

nλ(I)

( ∑

{s∈Sn:[ s−1
n

, s
n

)⊂I}
ξn,s

)
1I .

Let Pn
Jn

denote the partition of Sn corresponding to PJn . Then

‖PXn
Jn

ξn‖2 =

∫ 1

0

(PXn
Jn

ξn)2 dλ =
∑

I∈PJn

( 1

nλ(I)

∑
s∈In

ξn,s

)2
λ(I)

=
1

n

∑
I∈Pn

Jn

1

|I|
( ∑

s∈I

ξn,s

)2

≤ 1

n
(|Jn|+ 1) · sup

I∈Pn
Jn

( ∑
s∈I ξn,s

)2

|I|

≤ log n

n
(|Jn|+ 1)X −→ 0 P-almost surely (12.13)

for X from Lemma 12.2.4. Condition (12.12) then gives the assertion. ¤

We consider now the data term of H̃n
γ .

Lemma 12.2.7 Almost surely, for any sequence of sets (Jn)n∈N with (12.12)
and (gn)n∈N ⊂ L2([0, 1)) where gn is BJn-measurable and gn → g for n →∞,
we have

‖f + ξn − gn‖2 −→ ‖f − g‖2 + σ2 as n →∞.

Proof First observe that

‖f + ξn − gn‖2 = ‖f‖2 + 2〈f, ξn〉+ ‖ξn‖2 − 2〈f, gn〉 − 2〈ξn, gn〉+ ‖gn‖2

= ‖f − gn‖2 + 2〈f, ξn〉+ ‖ξn‖2 − 2〈ξn, gn〉.

We consider the single terms.

(1) We have that ‖f − gn‖2 → ‖f − g‖2 for n → ∞ since gn converges to g
for n →∞.

(2) Since ξn ∈ Xn the inner product of f and ξn can be computed by

〈f, ξn〉 = 〈PXnf, ξn〉 =

∫ 1

0

∑
s∈Sn

(f̄n
s · ξn,s)1[ s−1

n
, s
n

)) dλ =
1

n

∑
s∈Sn

f̄n
s · ξn,s.
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By Hypothesis 12.0.3 on (ξn,s)s∈Sn , the expression 〈f, ξn〉 is as a sum of inde-
pendent Gaußian random variables also a centered Gaußian random variable
with variance

Var(〈f, ξn〉) =
∑
s∈Sn

( f̄n
s

n

)2

Var(ξn,s) =
σ2

n
· 1

n

∑
s∈Sn

(f̄n
s )2

=
σ2

n
· ‖PXnf‖2 ≤ σ2

n
· ‖f‖2.

To show that 〈f, ξn〉 tends P-almost surely to zero we will use the following
theorem, see D. Williams (1991), Theorem 12.2, p. 112: Let (Xn)n∈N be a
sequence of independent random variables with E(Xn) = 0 and Var(Xn) < ∞
for every n. Then

∑
n Var(Xn) < ∞ implies that

∑
n Xn converges almost

surely.
We will consider the independent random variables

Xn := 〈f, ξn〉2 − E(〈f, ξn〉2) = 〈f, ξn〉2 − σ2

n
· ‖PXnf‖2.

They have zero mean and the variance is given by

Var(Xn) = E(X2
n) = E(〈f, ξn〉4)− 2σ2

n
‖PXnf‖2 · E(〈f, ξn〉2) +

σ4

n2
‖PXnf‖4

= E(〈f, ξn〉4)− σ4

n2
‖PXnf‖4.

Using the formula for the moments of the normal distribution (see for example
J. Schmetterer (1966), p. 71) we get for the fourth moment of 〈f, ξn〉

E(|〈f, ξn〉|4) = 3 · (Var(〈f, ξn〉))2 =
3σ4

n2
· ‖PXnf‖4.

This yields

Var(Xn) =
2σ4

n2
‖PXnf‖4 ≤ 2σ4

n2
‖f‖4,

and hence, the sum of variances of Xn converges. By the cited theorem
above, this implies that

∑
n Xn converges P-almost surely which implies that

〈f, ξn〉2 − σ2

n
· ‖PXnf‖2 −→ 0 P-almost surely for n →∞.

Since

〈f, ξn〉2 ≤ |〈f, ξn〉2 − σ2

n
· ‖PXnf‖2|+ |σ

2

n
· ‖PXnf‖2|
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we have that

〈f, ξn〉2 −→ 0 P-almost surely for n →∞

which implies that 〈f, ξn〉 tends to zero P-almost surely.
(3) The third term is

‖ξn‖2 =

∫ 1

0

( ∑
s∈Sn

ξn,s1[ s−1
n

, s
n

)

)2
dλ =

∫ 1

0

∑
s∈Sn

ξ2
n,s1[ s−1

n
, s
n

) dλ =
1

n

∑
s∈Sn

ξ2
n,s.

The (ξ2
n,s) are independent and identically distributed random variables with

finite expectation σ2. Hence,

‖ξn‖2 −→ σ2 P-almost surely for n →∞

by the strong law of large numbers.
(4) For the remaining term we obtain

〈ξn, gn〉 = 〈ξn, PXn
Jn

gn〉 = 〈PXn
Jn

ξn, gn〉

since gn is BJn-measurable. By the Cauchy-Schwarz-inequality we have

|〈PXn
Jn

ξn, gn〉| ≤ ‖PXn
Jn

ξn‖ · ‖gn‖.

By assumption, (Jn)n∈N fulfills condition (12.12) such that P-almost surely

PXn
Jn

ξn −→ 0 in L2([0, 1)) as n →∞

by Lemma 12.2.6. Since (gn)n∈N converges in L2([0, 1)) the sequence (‖gn‖)n∈N
is bounded. Thus, we have

〈PXn
Jn

ξn, gn〉 −→ 0 P-almost surely as n →∞.

In summary, the items (1)-(4) give the assertion. ¤

We will need that the set of functions in L2([0, 1)) with a limited number
of jumps is a closed subset which corresponds to lower semicontinuity of the
number of jumps.

Definition 12.2.8 A functional F : X → R∪{±∞} is called lower semi-
continuous if for all u ∈ X and for all sequences (un)n tending to u we
have

F (u) ≤ lim inf
n→∞

F (un).
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The last ingredient to prove the epi-convergence of the continuous Potts
functionals is the lower semicontinuity of the number of jumps.

Lemma 12.2.9 The map

L2([0, 1)) −→ N0 ∪ {∞}, g 7−→
{ |J (g)| for g ∈ T ([0, 1)),

+∞ otherwise

is lower semicontinuous.

Proof We will show that the set {g ∈ L2([0, 1)) : |J (g)| > M} is open
for all M ∈ N0. Assume that (gn)n∈N is a sequence in T ([0, 1)) converging
to g ∈ T ([0, 1)) with |J (gn)| ≤ M < |J (g)|. The sequence (J (gn))n∈N
is a sequence of bounded closed sets. Let C(X) be the set of all closed
sets in the compact metric space (X, d). For (A,B) ∈ C(X) × C(X) define
h(A,B) = sup{d(x,B) : x ∈ A}. Equipped with the Hausdorff metric dH
given by

dH(A, B) = max{h(A,B), h(B, A)}
the space (C(X), dH) is a compact metric space. Since in a metric space
compactness and sequentially compactness is the same, we can extract a
subsequence, again denoted by (J (gn))n∈N, with

J (gn) ∪ {0, 1} dH−−−−−→ J ∪ {0, 1} as n →∞

for some closed set J ⊂ [0, 1). The cardinality is lower semicontinuous with
respect to dH and thus, J is finite. Let (s, t) ⊂ [0, 1) be such that (s, t)∩J = ∅
and let ε > 0. Then (s + ε, t − ε) ∩ J (gn) = ∅ and hence gn is constant on
(s+ε, t−ε). We observe that gn1(s+ε,t−ε) converges in L2([0, 1)) to g1(s+ε,t−ε)

such that g is constant on (s + ε, t − ε) as well. Since ε was arbitrary we
conclude that g is constant on (s, t). Hence, g ∈ T ([0, 1)) and J (g) ⊆ J .
Lower semicontinuity of the cardinality on the space of closed subsets of [0, 1]
yields

|J (g)| ≤ |J | ≤ lim inf
n→∞

|J (gn)| ≤ lim sup
n→∞

|J (gn)|.

Since |J (gn)| ≤ M for all n ∈ N, we have that

|J (g)| ≤ lim sup
n→∞

|J (gn)| ≤ M

which contradicts the assumption |J (g)| > M . ¤

We will now prove the epi-convergence of the continuous Potts functionals.

Proof of Proposition 12.2.3 We have to show that for a set of P-measure
one the following two inequalities hold:
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(i) If gn → g for n →∞ then the liminf-inequality (12.8) is fulfilled, i. e.

lim inf
n→∞

H̃n
γn

(gn, f + ξn) ≥ H̃∞
0 (g, f).

(ii) For all g ∈ L2([0, 1)) there is a sequence (gn)n∈N ⊂ L2([0, 1)) which
converges to g in L2([0, 1)) such that the limsup-inequality (12.9) is

fulfilled, i. e. lim supn→∞ H̃n
γn

(gn, f + ξn) ≤ H̃∞
0 (g, f).

(i) Let gn → g for n → ∞. We want to investigate the limes inferior of

H̃n
γn

(·, f + ξn) meaning that there is a subsequence (gnk
)k of (gn)n such that

lim inf
n→∞

H̃n
γn

(gn, f + ξn) = lim
k→∞

H̃nk
γnk

(gnk
, f + ξnk)

Taking this subsequence if necessary, we may assume without loss of general-
ity that H̃n

γn
(gn, f +ξn) converges in R∪{±∞}. We distinguish the following

three cases:
(a) Suppose that gn /∈ Xn for infinitely many n ∈ N. Then

lim inf
n→∞

H̃n
γn

(gn, f + ξn) = lim sup
n→∞

H̃n
γn

(gn, f + ξn) = +∞

and the liminf-inequality is trivially fulfilled.
(b) Suppose that

|J (gn)| > H̃∞
0 (g, f)

γn

for infinitely many n ∈ N.

Then

H̃n
γn

(gn, f + ξn) > H̃∞
0 (g, f) + ‖f + ξn − gn‖2 ≥ H̃∞

0 (g, f)

for infinitely many n ∈ N. Hence, we have

lim inf
n→∞

H̃n
γn

(gn, f + ξn) = lim sup
n→∞

H̃n
γn

(gn, f + ξn) ≥ H̃∞
0 (g, f),

and the liminf-inequality is fulfilled.
The cases (a) and (b) do not exclude each other but are complementary to
(c) We have that gn ∈ Xn for finitely many n ∈ N and

|J (gn)| > H̃∞
0 (g, f)

γn

for finitely many n ∈ N.
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We will show that in this case (J (gn))n∈N fulfills condition (12.12). Since
log n/n and |J (gn)| are both nonnegative, we have lim infn→∞

log n
n
|J (gn)| ≥

0 as well. For the limes superior we get

0 ≤ lim inf
n→∞

log n

n
|J (gn)| ≤ lim sup

n→∞

log n

n
|J (gn)|

≤ lim sup
n→∞

log n

n · γn

H̃∞
0 (g, f) = 0

since by assumption limn→∞ γn
n

log n
= ∞. Hence, we have

lim inf
n→∞

log n

n
|J (gn)| = lim sup

n→∞

log n

n
|J (gn)| = lim

n→∞
log n

n
|J (gn)| = 0

which is (12.12). Application of Lemma 12.1.3 then yields

H̃n
γn

(gn, f + ξn) = γn|J (gn)|+ ‖f + ξn − gn‖2 ≥ ‖f + ξn − gn‖2

for infinitely many n ∈ N. Hence,

lim inf
n→∞

H̃n
γn

(gn, f + ξn) ≥ lim inf
n→∞

‖f + ξn − gn‖2

= lim
n→∞

‖f + ξn − gn‖2 = ‖f − g‖2 + σ2 = H̃∞
0 (g, f)

P-almost surely.
(ii) Choose gn as some best approximation of g in Xn with at most 1/

√
γn

jumps. Then gn → g for n → ∞, and the condition (12.12) is fulfilled since
log n

n
|J (gn)| ≥ 0 and

lim sup
n→∞

log n

n
|J (gn)| ≤ lim sup

n→∞

log n

n

1√
γn

= lim sup
n→∞

log n

n · γn

· √γn = 0.

By Lemma 12.1.3, we have P-almost surely

lim sup
n→∞

H̃n
γn

(gn, f + ξn) = lim sup
n→∞

(
γn · |J (gn)|+ ‖f + ξn − gn‖2

)

≤ lim sup
n→∞

√
γn + lim sup

n→∞
‖f + ξn − gn‖2

= 0 + ‖f − g‖2 + σ2 = H̃∞
0 (g, f)

by the assumption γn → 0. ¤

To draw conclusions from epi-convergence as in Theorem 12.2.2, we need the
following compactness result.
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Lemma 12.2.10 For any f ∈ L2([0, 1)) the set {PXn
J
f : J ⊂ (0, 1)} is

relatively compact.

Proof The proof is done in several steps.
(1) For 0 ≤ s < t ≤ 1 the map (s, t) 7→ 1[s,t) is continuous since

‖1[s,t) − 1[s′,t′)‖2 =

∫ 1

0

(1[s,t) − 1[s′,t′))
2 dλ

=

∫ 1

0

(1[s,t))
2 dλ− 2

∫ 1

0

(1[s,t) · 1[s′,t′)) dλ +

∫ 1

0

(1[s′,t′))
2 dλ

= t− s− 2 ·max
(

min(t, t′)−max(s, s′), 0
)

+ t′ − s′.

Hence, the sets {∑m
i=1 αi1Ii

: |αi| ≤ C, Ii ⊂ [0, 1) right half-open intervals}
are compact for all m ∈ N and C > 0 as they are continuous images of
compact sets.
(2) If f = 1I for some right half-open interval I ⊂ [0, 1) then, for any
J ⊂ (0, 1), the projection PXn

J
f is a linear combination of at most three

different indicator functions. Namely,

PXn
J
f =

∑

I′∈PJ

1

λ(I ′)

∫

I′
f dλ1I′ =

∑

I′∈PJ

1

λ(I ′)

∫

I′
1I dλ1I′

=
∑

I′∈PJ

1

λ(I ′)
λ(I ′ ∩ I)1I′ .

For those I ′ ∈ PJ with I ′ ⊂ I it is λ(I ′ ∩ I) = λ(I ′) and
∑

I′⊂I 1I′ = 1I .
Further contributions yield only the - at most two - intervals in PJ which
have nonempty intersection with I.
(3) If f =

∑m
i=1 αi1Ii

is a right-continuous step function and J arbitrary then

PXn
J
f =

∑

I′∈PJ

1

λ(I ′)

∫

I′

( m∑
i=1

αi1Ii

)
dλ1I′ =

∑

I′∈PJ

1

λ(I ′)

∫

I′

m∑
i=1

αiλ(I ′ ∩ Ii)1I′

and by the same arguments as in (2) we have PXn
J
f =

∑m′
j=1 βj1Jj

for some
m′ ≤ 3. It is

|βj| = | 1

λ(Jj)

∫

Jj

f dλ| ≤ 1

λ(Jj)

∫

Jj

|f | dλ ≤ 1

λ(Jj)
· λ(Jj) · sup

t∈Jj

|f(t)|

≤ ‖f‖∞ < ∞
since f is a step function. Hence, by (1), we get that {PXn

J
f : J ⊂ (0, 1)} is

relatively compact for right-continuous step functions f ∈ T ([0, 1)).
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(4) Suppose now that f ∈ L2([0, 1)) is arbitrary and let ε > 0. We will show
that we can cover {PXn

J
f : J ⊂ (0, 1)} by finitely many ε-balls. Since step

functions are dense in L2([0, 1)) we can fix a function g ∈ T ([0, 1)) such that
‖f−g‖ < ε/2. By contractivity of projections, we get that ‖PXn

J
f−PXn

J
g‖ <

ε/2 for all finite J ⊂ (0, 1). By (3), every covering of {PXn
J
g : J ⊂ (0, 1)}

contains a finite covering. Thus, there are finitely many J1, . . . , Jp ⊂ (0, 1)
such that

max
1≤l≤p

‖PXn
J
g − PXn

Jl
g‖ <

ε

2
for all finite J ⊂ (0, 1).

This implies

max
1≤l≤p

‖PXn
J
f − PXn

Jl
g‖ ≤ ‖PXn

J
f − PXn

J
g‖+ min

1≤l≤p
‖PXn

J
g − PXn

Jl
g‖ <

ε

2
+

ε

2
= ε,

and hence,

{PXn
J
f : J ⊂ (0, 1)} ⊂

p⋃

i=l

B(PXn
Jl

g, ε)

which is the pre-compactness of {PXn
J
f : J ⊂ (0, 1)}. By Lemma 3.9, p. 18,

in F. Hirzebruch and W. Scharlau (1971), a subspace of a metric space
is relatively compact exactly if it is pre-compact and its closure is complete.
Its closure is complete as it is a closed subset of the complete space L2([0, 1)).
Thus, the proof is complete. ¤

12.3 Proof of the Main Theorem

At last, we complete the proof of the main theorem of this section.

Proof of Theorem 12.0.5 By the fundamental Theorem 12.2.2 and the
reformulation in Lemma 12.1.4, it is enough to prove that almost surely there
is a compact set containing

⋃

n∈N
{gn ∈ L2([0, 1)) : gn minimizes H̃n

γn
(·, f + ξn)}.

First note that all minimizers gn of H̃n
γn

(·, f +ξn) are projections PXn
Jn

(f +ξn)

for some random sets Jn ⊂ {1/n, . . . , (n − 1)/n}. We compare the value of
the minimizers with the value for the constant zero and get

H̃n
γn

(PXn
Jn

(f + ξn), f + ξn) = γn · |Jn|+ ‖f + ξn − PXn
Jn

(f + ξn)‖2

≤ H̃n
γn

(0, f + ξn) = ‖f + ξn‖2
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which implies

γn · |Jn| ≤ ‖PXn
Jn

(f + ξn)‖2 ≤ ‖PXn
Jn

(f + ξn)‖2 + ‖PXn
Jn

(f − ξn)‖2.

Application of the parallelogram inequality and the contraction property of
projections then yield

γn · |Jn| ≤ 2‖PXn
Jn

f‖2 + 2‖PXn
Jn

ξn‖2 ≤ 2‖f‖2 + 2‖PXn
Jn

ξn‖2.

By inequality (12.13) in the proof of Lemma 12.2.6, we then get

γn · |Jn| ≤ 2‖f‖2 + 2X
log n

n
(|Jn|+ 1)

for all n ∈ N and X finite P-almost surely. This is equivalent to

(γn
n

log n
− 2X)

log n

n
|Jn| ≤ 2‖f‖2 + 2X

log n

n

for all n ∈ N. Since by assumption limn→∞ γn
n

log n
= ∞ and limn→∞

log n
n

= 0
we have that

lim
n→∞

log n

n
|Jn| = 0 P-almost surely

which is condition (12.12). From Lemma 12.2.6 it then follows that P-almost
surely PXn

Jn
ξn → 0. Since, by Lemma 12.2.10, the set {PXn

Jn
f : Jn ⊂ (0, 1)}

is relatively compact in L2([0, 1)), relative compactness of

⋃

n∈N
{gn ∈ L2([0, 1)) : gn minimizes H̃n

γn
(·, f + ξn)}

⊂
⋃

n∈N
{PXn

Jn
f + PXn

Jn
ξn : Jn ⊂ (0, 1)}

follows by continuity of addition. This completes the proof. ¤
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Discussion and Outlook

We studied the Potts functionals

H̄γ : X −→ R, x 7−→ γ · |J(x)|+
∑
s∈S

(ys − xs)
2, γ > 0 (1)

for y ∈ RS. There are functionals with modified and more complicated penal-
ties and variants in the data term. A more general class of functionals with
α-homogenous penalties was briefly mentioned in Remark 4.1.11. For the
minimizers of these functionals we can prove equivariance properties similar
to those for the MAP estimators of the Potts functionals. Other statements
like existence, uniqueness, and continuity of minimizers are not straightfor-
ward to generalize, or even do not hold. For functionals with total variation
penalty term, minimizers are considered for example in E. Mammen and
S. van de Geer (1997); an algorithm for the approximation of a minimizer
can be found in P. L. Davies and A. Kovac (2001). We are not aware
of rigorous results for the dependence on the hyperparameter or continuity.
In contrast, in Chapter 3 we presented exact and fast algorithms, at least in
the case of time series’.
In summary, even moderate change of the penalty causes problems to carry
out the ‘program’ outlined in this thesis. Another way to modify the Potts
functionals is to allow other data terms. Sum of squares could for exam-
ple be replaced by sum of absolute deviations. Further examples for data
terms which guarantee at least the existence of minimizers were given in
Example 2.2.6.
Statements on uniqueness and dependence on hyperparameters of minimizers
are the programme for future work. The present thesis may serve as a kind
of outline of what we wish to prove for more general functionals. This was
also the reason to study just the functionals in (1). There we could achieve
in some sense the maximum of rigorous results.

Another field of future work will be the choice of hyperparameters. Still
missing is an intrinsic criterion which includes constant estimators. The

153
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application of the last monotone criterion presented in Section 8.3 is a step
into this direction but has the restriction that it needs additional information
or assumptions on the morphology. One approach for other criteria is the
analysis of the distribution of γ0(y) in case of data y = Y n arising from a
constant signal which could be described by the model

Y n
s = c + ξn,s, s ∈ S = {1, . . . , N}, (2)

where c is some constant and (ξn,s)s∈S are random variables from a certain
distribution. The aim will be to prove a central limit theorem. This would
allow to construct tests in order to exclude data arising from a constant signal
with a certain error probability.

Central limit theorems are also in the focus of further consistency investiga-
tions. We think of a (possible random) sampled function which provides data
replacing the constant c in the model (2) by the collected function values.
The aim is then to prove convergence of suitably embedded minimizers of
an appropriately scaled Potts functionals with fixed γ towards the original
function.
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In order to keep the text streamlined, we relieve it from too many figures and
lengthy calculations, and collect them in this appendix. We also give a brief
summary for the Akaike and the Schwarz information criteria for convenience
of the reader.
In Appendix A, exemplarily for a time series from the fMRI experiment
described in Section 9.1, a full γ-scanning is displayed to illustrate Theo-
rem 2.4.5. The subsequent two chapters are devoted to the model selection
criteria. In Appendix B, we carry out in more detail what was only sketched
in Chapter 7. We justify the choice of the family of regression models and
summarize the well-known justifications and derivations of the Akaike and
Schwarz information criteria. In addition, we then give a complete deriva-
tion of variants of these criteria in the special case of the considered family
of regression models. They correct the original (asymptotic) criteria in the
case of shorter time series’ and seemed to be required for the fMRI-data (70
time points) and the fractionation curves (29 time points) from Chapter 9.
The proofs of necessary lemmata, elementary but lengthy calculations, are
contained in Appendix C.
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Appendix A

γ-Scanning

This is a supplement to Section 2.4. By Theorem 2.4.5 we know that for
almost all data y there are only finitely many different MAP estimators
x∗(γ, y) which are the same on γ-intervals. The number of jumps increases
in these intervals, to be more precise, the functions i 7→ |J(x∗(γ, y))| , γ ∈
(γi(y), γi−1(y)), increase strictly. Figure 2.4 was a sample of MAP estimates
for a certain time series, for sake of completeness, we display here the full
γ-scanning. Figure A.1 displays the MAP estimates (blue line) for dotted
data for all γ-intervals, starting with the constant estimate of the rightmost
interval (γ0,∞), and ending with data.

(1) data (2) (11272.910,∞) (3) (9534.5957, 11272.910)

(4) (7467.2729, 9534.5957) (5) (2061.7334, 7467.2729) (6) (1040.4000, 2061.7334)

159



160 APPENDIX A. γ-SCANNING

(7) (882.44446, 1040.4000) (8) (717.56250, 882.44446) (9) (680.62500, 717.56250)

(10) (672.00000, 680.62500) (11) (440.05554, 672.00000) (12) (433.50000, 440.05554)

(13) (337.50000, 433.50000) (14) (307.20001, 337.50000) (15) (228.16667, 307.20001)

(16) (210.04167, 228.16667) (17) (169.17461, 210.04167) (18) (162.00000, 169.17461)

(19) (138.28572, 162.00000) (20) (128.00000, 138.28572) (21) (126.75000, 128.00000)
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(22) (121.50000, 126.75000) (23) (91.000000, 121.50000) (24) (84.500000, 91.000000)

(25) (48.133335, 84.500000) (26) (48.000000, 48.133335) (27) (42.666668, 48.000000)

(28) (41.607143, 42.666668) (29) (40.500000, 41.607143) (30) (37.500000, 40.500000)

(31) (36.000000, 37.500000) (32) (34.133335, 36.000000) (33) (33.482143, 34.133335)

(34) (32.666668, 33.482143) (35) (31.083334, 32.666668) (36) (24.500000, 31.083334)

(37) (24.500000, 24.500000) (38) (24.500000, 24.500000) (39) (18.000000, 24.500000)
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(40) (13.500000, 18.000000) (41) (12.500000, 13.500000) (42) (12.500000, 12.500000)

(43) (12.500000, 12.500000) (44) (12.375000, 12.500000) (45) (12.000000, 12.375000)

(46) (8.0000000, 12.000000) (47) (8.0000000, 8.0000000) (48) (8.0000000, 8.0000000)

(49) (8.0000000, 8.0000000) (50) (4.1666665, 8.0000000) (51) (3.5999999, 4.1666665)

(52) (2.0000000, 3.5999999) (53) (2.0000000, 2.0000000) (54) (1.5000000, 2.0000000)
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(55) (0.5000000, 1.5000000) (56) (0.5000000, 0.5000000) (57) (0.5000000, 0.5000000)

(58) (0, 0.50000000)

Figure A.1: All steps in the γ-scanning of
fMRI-data. The intervals below the frames
give the corresponding γ-intervals.
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Appendix B

Model Selection Criteria

In Chapter 7 we used classical model selection criteria to choose the hyper-
parameter. We observed a close relation of the resulting estimators to MAP
estimators for the Potts functional.

In Section B.1, we will now first specify a parametric family of regression
models and give the corresponding maximum likelihood estimators. These
models are piecewise constant approximations of data. The number of con-
stant pieces is the dimension of the parameter (eventually plus one), and
thus, it will be interpreted as the number of intervals in the partition in-
duced by a MAP estimator. Hence, this family is the suitable one for the
Potts functionals. There are several criteria to select and reduce the pa-
rameter dimension. We consult two classical model selection criteria. In
Section B.2, we will briefly recall the well-known justification and derivation
of the Akaike information criterion from H. Akaike (1974) in general. Fi-
nally, we will derive a variant of it in the setting of the special model class,
and arrive at the well-known corrected version, known as AICC. It corrects
the original criterion for shorter time series’. The analogous procedure for
the Schwarz information criterion from G. Schwarz (1978) is carried out
in Section B.3. Concerning the corrected version we will derive here, we are
not aware of that this special form was already treated in the literature.

B.1 A Simple Family of Regression Models

In Theorem 2.4.5 we established the connection between the γ-intervals and
MAP estimators x∗(γ, y). Recall that a MAP estimator was identified with
a minimal segmentation. We further know that for almost all y ∈ X, a MAP
estimator is unique on the γ-intervals and that its number of jumps is con-
stant on these γ-intervals. Hence, the choice of a γ-interval is equivalent to

165
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the determination of the number of intervals in the partition of the (unique)
segmentation corresponding to x∗(γ, y) for γ in this interval. This number
is interpreted as the dimension of the parameter of the family of the sim-
plest regression models which will be introduced below. This is not only a
simple family but also the parametric family of models suitable for the Potts
functional. We will restrict ourselves to the Potts functionals

H̄γ : RS × RS −→ R, (x, y) 7−→ γ · |J(x)|+
∑
s∈S

(ys − xs)
2.

We assume that the true deterministic signal x is corrupted by additive
Gaußian white noise, i. e.

ys = xs + εs(ω), s = 1, . . . , N, (B.1)

where εs, s = 1, . . . , N , are independent and identically distributed nor-
mal random variables with mean zero and variance σ2. By Theorem 1.2.4
we can identify a signal x ∈ X with the induced minimal segmentation
(P(x), µP(x)(x)). Suppose that P(x) = {J1, . . . , Jk}. Hence, a signal x ∈ X
corresponds to the parameter vector

µ = (µJ1 , . . . , µJ1︸ ︷︷ ︸
|J1|

, µJ2 , . . . , µJ2︸ ︷︷ ︸
|J2|

, . . . , µJk
, . . . , µJk︸ ︷︷ ︸
|Jk|

)t ∈ RN .

We will now recall the definition of likelihood functions and of maximum
likelihood estimators.

Definition B.1.1 Let y be a realization of the random variable Y . Given a
family

Π = {f(·, θ); θ ∈ Θ}
of densities and a set of parameters Θ ⊂ RN , the function

L(· |Y ) : Θ −→ R, θ 7−→ f(y, θ)

is called the likelihood function of y.

An estimator θ̂(y) which maximizes the likelihood function θ 7→ L(θ|Y )

θ̂ = argmax
θ∈Θ

L(θ|Y )

is called a maximum likelihood estimator.
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The maximization of the likelihood function is equivalent to the maximization
of the log likelihood function ln L(θ|Y )).
Let a now realization y of random variable Y be given. The likelihood func-
tion L(θ|Y ) with parameter θ = (µ, σ) for the random vector Y in the model
(B.1) is given by

L(θ|Y ) =
1

(σ
√

2π)N
exp(− 1

2σ2
‖y − µ‖2), µ ∈ RN , σ2 > 0 (B.2)

where ‖y−µ‖2 =
∑N

s=1(ys−µs)
2. If the variance σ2 in model (B.1) is known

we will write L(µ|Y ) instead of L(θ|Y ).
Let µ∗I be given by (2.10). Let P∗k = {I1, . . . , Ik} ∈ {P ∈ P : |P| = k}
minimize

∑
I∈P

∑
s∈I(ys − µ∗I)

2. Let Pk : RN → RN denote the orthogonal
projection

Pk =




1
|I1| · · · 1

|I1|
...

...
1
|I1| · · · 1

|I1|

0

. . .

0

1
|Ik| · · · 1

|Ik|
...

...
1
|Ik| · · · 1

|Ik|




. (B.3)

The maximum likelihood estimator µ̂k(y) for the likelihood functions in (B.2)
is given by

µ̂k(y) = Pky (B.4)

=
( 1

|I1|
∑
s∈I1

ys, . . . ,
1

|I1|
∑
s∈I1

ys

︸ ︷︷ ︸
|I1|

, . . . ,
1

|Ik|
∑
s∈Ik

ys, . . . ,
1

|Ik|
∑
s∈Ik

ys

︸ ︷︷ ︸
|Ik|

)t

.

The maximum likelihood estimator σ̂2
k of the variance σ2

0 is

σ̂2
k(y) =

1

N
‖y − µ̂k(y)‖2 =

1

N
‖y − Pky‖2 (B.5)

with Pk from (B.3). The model with parameter vector θk = (µk, σk) corre-
sponding to the segmentation (P∗k , µ∗kP∗k ) will be called the k-th model and
its log likelihood reads

ln L(θk|Y ) = −N

2
ln(2πσ2

k)−
1

2σ2
k

∑

I∈P∗k

∑
s∈I

(ys − µ∗kI )
2.
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To avoid confusion with too many indices the log likelihood function of the
k-th model will be written as

ln L(θk|Y ) = −N

2
ln(2πσ2

k)−
1

2σ2
k

∑
I∈P

∑
s∈I

(ys − µk
I )

2, (B.6)

having in mind that µk
I and P are the respective minimizers.

B.2 The Akaike Information Criterion

Let L(θ̂k|Y ) denote the likelihood function of the distribution with parameter
θ evaluated at the maximum likelihood estimator θ̂k = (θ̂k

1 , . . . , θ̂
k
k) in the

subspace Θk of the parameter space Θ. Let k be the number of parameters
to be estimated. H. Akaike (1973, 1974) suggested an information criterion
(AIC) of the following form: Maximize the log likelihood function separately
for the competing distributions and choose that distribution for which

AIC(k) = ln L(θ̂k|Y )− k (B.7)

is largest. This has become known as the Akaike information criterion. It is
based on the minimization of the Kullback-Leibler information.

Definition B.2.1 Let be given a family of distributions with densities L(θ|Y ).
Let y be a sample of the distribution with parameter θ0. Denoting by Eθ0 the
expectation with respect to θ0, the Kullback-Leibler information of a dis-
tribution with likelihood L(θ|Y ) with respect to the distribution with likelihood
L(θ0|Y ) is defined as

KL(θ0, θ) = Eθ0

(
ln

L(θ0|Y )

L(θ|Y )

)
.

The Kullback-Leibler information has the following properties

(1) KL(θ0, θ) = Eθ0

(
ln L(θ0|Y )

)− Eθ0

(
ln L(θ|Y )

)

(2) KL(θ0, θ) ≥ 0 and KL(θ0, θ) = 0 if and only if θ = θ0.

We consider L(θ0|y) as the likelihood function of the data generating dis-
tribution. If one wants to select between distributions with parameters θk

from different subspaces Θk of Θ one approach is to minimize the Kullback-
Leibler information in θ. Since the first term Eθ0

(
ln L(θ0|Y )

)
in (1) is the
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same for all competing distributions this is equivalent to the maximization
of the discrepancy

d(θ0, θ) = Eθ0

(
ln L(θ|Y )

)
. (B.8)

of distributions with parameter θ with respect to the true distribution with
parameter θ0. Once a subspace Θk is fixed, the Kullback-Leibler information
is minimal for the maximum likelihood estimator θ̂k(y) in this subspace.
Therefore, when the parameter θ must be estimated, the evaluation of the
discrepancy at the maximum likelihood estimator θ̂k(y)

δ(Θk, θ) = d(θ, θ)|θ=θ̂k(y) (B.9)

is a useful measure of the discrepancy (B.8) of the distribution with parame-
ter in the subspace Θk. As θ0 is unknown, (B.9) cannot be computed exactly.
H. Akaike (1974) used the maximized log likelihood function as an estima-
tor for (B.9). He derived that under certain regularity conditions its bias can
be estimated by k and arrived at (B.7) as an unbiased estimator for (B.9).

A Corrected Version of AIC

It is well known that AIC is applicable in a very general framework but has a
large bias when the sample size is small, see for example C. M. Hurvich and
C. L. Tsai (1989). The corrected version AICC, presented for example in
C. M. Hurvich and C. L. Tsai (1989), corrects for this bias but its special
form depends on the form of the candidate models. J.E. Cavanaugh (1997)
derives AIC and AICC for linear regression models which connects both.
In this section we construct a corrected version of the Akaike information
criterion for the family (B.6) of densities where the number k of intervals in
the partition P varies. The derivation follows the lines in J.E. Cavanaugh
(1997).
We assume not that the true variance σ2

0 in the model (B.1) is known. Hence,
the variance is an additional parameter to be estimated. The expected value
of the discrepancy (B.9) with respect to the true distribution corresponding
to the parameter θ0 can be written as

Eθ0

(
d(θ0, θ)|θ=θ̂k(y)

)
= Eθ0

(
Eθ0

(
ln L(θ|Y )

)
|θ=θ̂k

)

= Eθ0

(
ln L(θ̂k|Y )

)

+ Eθ0

(
ln L(θ0|Y )

)− Eθ0

(
ln L(θ̂k|Y )

)
(B.10)

+ Eθ0

(
Eθ0

(
ln L(θ|Y )

)
|θ=θ̂k

)− Eθ0

(
ln L(θ0|Y )

)
.(B.11)

The computations for the single parts (B.10) and (B.11) will be given in the
following lemmata. For the difference (B.10) we get
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Lemma B.2.2

Eθ0

(
ln L(θ0|Y )

)− Eθ0

(
ln L(θ̂|Y )

)
= −N ln(σ0

√
2π) + Eθ0

(
N ln(σ̂

√
2π)

)
.

Proof The proof is given in Appendix C.1. ¤

For part (B.11) we have

Lemma B.2.3

Eθ0

(
Eθ0

(
ln L(θ|Y )

)
|θ=θ̂k

)− Eθ0

(
ln L(θ0|Y )

)

= Eθ0

(−N ln(σ̂k

√
2π)

)− N(N + k)

2(N − k − 2)
+ N ln(σ0

√
2π) +

N

2
.

Proof The proof is given in Appendix C.1. ¤

With the maximum likelihood estimators µ̂k from (B.4) and σ̂2
k from (B.5)

for θ0 = (µ0, σ
2
0) we arrive at the following corrected version of the Akaike

information criterion (AICC). It is of the same form as for example in the
setting of estimating the order of autoregressive time series, see for example
P. J. Brockwell and R. A. Davis (1991).

Theorem B.2.4 Let y be a sample from the distribution with parameter
(µ0, σ0) from model (B.1). A corrected version of AIC from (7.5) includ-
ing second order terms reads: Choose the distribution with that number k∗

intervals in the corresponding minimizing partition for which

AICC(k) = −N

2
ln(σ̂2

k)−
N(N + k)

2(N − k − 2)

is maximal.

Proof Using Lemma B.2.2 and Lemma B.2.3 we get for the term
Eθ0

(
Eθ0

(
ln L(θ|Y )

)
|θ=θ̂k

)
the expression

Eθ0

(
Eθ0

(
ln L(θ|Y )

)
|θ=θ̂k

)
= Eθ0

(
ln L(θ̂k|Y )

)− N(N + k)

2(N − k − 2)
+

N

2

= Eθ0

(−N ln(σ̂k

√
2π)

)− N(N + k)

2(N − k − 2)
.

The first term is estimated by −N ln(σ̂k

√
2π) = −N ln(

√
2π) − N

2
ln(σ̂2

k).
Since there the first part is the same for all competing distributions, the
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maximization of the expectation of the discrepancy (B.9) is equivalent to the
maximization of

k 7−→ −N

2
ln(σ̂2

k)−
N(N + k)

2(N − k − 2)
.

¤

For the question how AICC improves the approximations for AIC, we refer
to J.E. Cavanaugh (1997).

B.3 The Schwarz Information Criterion

Let y be data of length N . Let {M1, . . . ,ML} denote the set of candidate
models which are not necessarily nested. Assume that the model Mk can
uniquely be parameterized by a parameter vector θk in the parameter space
Θk. Let L(θ̂k|Y ) denote the likelihood function based on the model Mk

with parameter θk evaluated at the maximum likelihood estimator θ̂k(y) =
argmaxθk∈Θk L(θk|Y ). The number of parameters to be estimated in the
model Mk will be called the dimension Dk of the k-th model. For the case
of independent and identically distributed observations ys, s = 1, . . . N , and
linear models and under the assumption that the likelihood functions belong
to the regular exponential family G. Schwarz (1978) suggested the following
model selection criterion: Choose that model for which

SIC(k) = ln L(θ̂k|Y )− 1

2
Dk ln N (B.12)

is maximal. The derivation of the Schwarz information criterion is based
on a Bayesian approach. The expression (B.12) is an approximation of a
transformation of the posterior probability of the k-th candidate model. The
model which maximizes SIC in (B.12) should for large N correspond to the
model with maximal posterior probability. Assume that we have

(1) a prior probability π(Mk) of the k-th model being true,

(2) a prior distribution g(θk|Mk) for the parameter θk given the k-th model,

(3) a family of distributions given by the family of their likelihood functions
L(θk|Y ).

Denoting by h(Y ) the marginal density of the data and using Bayes’ formula
the joint posterior density of the model Mk and the parameter θk given data
Y is

f((Mk, θ
k)|Y ) =

π(Mk)g(θk|Mk)L(θk|Y )

h(Y )
.
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We get the distribution of the model Mk given data Y by integration of
f((Mk, θ

k)|Y ) over Θk,

P (Mk|Y ) =
π(Mk)

h(Y )

∫

Θk

L(θk|Y )g(θk|Mk) dθk. (B.13)

The maximization of the posterior probability (B.13) is equivalent to the
maximization of its transformation

ln P (Mk|Y ) + ln h(Y ) = ln π(Mk) + ln
( ∫

Θk

L(θk|Y )g(θk|Mk) dθk
)
.(B.14)

J.E. Cavanaugh and A.A. Neath (1999) show in a general setting that
under certain regularity conditions (B.12) provides a large-sample approxi-
mation to ln P (Mk|Y ) + ln h(Y ).

A Variant of SIC

It is obvious that SIC has the tendency to choose more parsimonious models
than AIC. Since the Schwarz information criterion is also based on asymptotic
approximations, its performance can improved by adding second order terms
in small sample settings. As in the case of the Akaike information criterion,
corrections for the bias depend on the set of candidate models. We will derive
a corrected version of SIC in the special setting of the family of log likelihood
functions in (B.6) following the lines in J.E. Cavanaugh and A.A. Neath
(1999). In the rest of this section we will always assume that ln L(θk|Y ) from
(B.6) fulfills the regularity conditions in Appendix C.2.
We will first consider the integral

∫

Θk

L(θk|Y )g(θk|Mk) dθk (B.15)

which appears on the right hand side of (B.14).

Lemma B.3.1 An approximation to the integral (B.15) is given by
∫

Θk

L(θk|Y )g(θk|Mk) dθk

≈ L(θ̂k|Y ) ·
∫

Θk

e
1
2
(θk−θ̂k)tM

(
ln L(θ̂k|Y )

)
(θk−θ̂k)g(θk|Mk) dθk.

Proof Let M
(
ln L(θ̂k|Y )

)
be the Hessian matrix of ln L(θk|Y ) evaluated at

the maximum likelihood estimator θ̂k. If θk is close to θ̂k we get

ln L(θk|Y ) ≈ ln L(θ̂k|Y ) +
1

2
(θk − θ̂k)tM

(
ln L(θ̂k|Y )

)
(θk − θ̂k). (B.16)
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Using this Taylor expansion the integral (B.15) can be written in the form
∫

Θk

L(θk|Y )g(θk|Mk) dθk =

∫

Θk

eln L(θk|Y )g(θk|Mk) dθk

≈
∫

Θk

eln L(θ̂k|Y )+ 1
2
(θk−θ̂k)tM

(
ln L(θ̂k|Y )

)
(θk−θ̂k)g(θk|Mk) dθk

= L(θ̂k|Y ) ·
∫

Θk

e
1
2
(θk−θ̂k)tM

(
ln L(θ̂k|Y )

)
(θk−θ̂k)g(θk|Mk) dθk

which is the stated formula. ¤

The observed Fisher information matrix is given by

FN(θ̂k|Y ) = − 1

N
M

(
ln L(θ̂k|Y )

)
. (B.17)

Provided the regularity conditions from Appendix C.2 hold the maximum
likelihood estimator θ̂k converges almost surely to some θk

∗ and FN(θk|Y )
converges almost surely uniformly in θk to a matrix which is positive def-
inite in a neighborhood of θk

∗ . As a consequence, for large N it is possi-
ble to find positive constants independent of N such that det

(
FN(θ̂k|Y )

)
is

bounded in between, see J.E. Cavanaugh and A.A. Neath (1999). In
the further derivation we set g(θk|Mk) = 1 which is interpreted as to use a
non-informative prior.

Lemma B.3.2 With g(θk|Mk) = 1 we have for the integral (B.15)
∫

Θk

L(θk|Y )g(θk|Mk) dθk =

∫

Θk

L(θk|Y ) dθk

≈ L(θ̂k|Y ) ·N−Dk/2 · (2π)Dk/2 ·
(
det

(
FN(θ̂k|Y )

))−1/2

.

Proof Application of Lemma B.3.1 to (B.15) leads to
∫

Θk

L(θk|Y ) dθk ≈ L(θ̂k|Y ) ·
∫

Θk

e
1
2
(θk−θ̂k)tM

(
ln L(θ̂k|Y )

)
(θk−θ̂k) dθk.

With FN(θ̂k|Y ) defined in (B.17) we can rewrite the remaining integral as
∫

Θk

e
1
2
(θk−θ̂k)tM

(
ln L(θ̂k|Y )

)
(θk−θ̂k) dθk =

∫

Θk

e−
N
2

(θk−θ̂k)tFN (θ̂k|Y )(θk−θ̂k) dθk.

Since ∫

Rk

e−
1
2
xtAx dx =

√
(2π)k

detA
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we get

∫

Θk

L(θk|Y ) dθk ≈ L(θ̂k|Y ) ·N−Dk/2 ·
√

(2π)Dk

det
(
FN(θ̂k|Y )

) .

¤
The considerations above are summarized in the following theorem.

Theorem B.3.3 Let data y ∈ X be given. Assume that g(θk|Mk) = 1. Then
we get the following approximation for (B.14),

ln P (Mk|Y ) + ln h(Y ) (B.18)

≈ ln π(Mk) + ln L(θ̂k|Y )− Dk

2
ln N +

Dk

2
ln(2π)− 1

2
ln

(
det(FN(θ̂k|Y ))

)
.

Ignoring terms which are bounded as N tends to infinity, the maximization
of the posterior probability (B.13) leads to the Schwarz information criterion:

maximize k 7−→ SIC(k) = ln L(θ̂k|Y )− Dk

2
ln N. (B.19)

Proof The approximation (B.18) follows from Lemma B.3.1 and Lemma B.3.2.
As N tends to infinity the term Dk/2 · ln(2π) is obviously bounded. It is
shown in J.E. Cavanaugh and A.A. Neath (1999) that the term con-
taining the determinant of FN(θ̂k|Y ) is asymptotically bounded due to the
assumed regularity conditions. ¤
We specialize now to the model (B.1). In Appendix C.2 we show that the
regularity conditions are fulfilled in case of the family of likelihood functions
L(θk|Y ) from (B.6). Here is Θk = RDk .
We will derive a variant of the Schwarz information criterion (B.19) for the
family of likelihood functions in (B.6) in the case when the variance σ2 has to
be estimated. The parameter vector θk = (µk, σk) is an element of Θ = Rk+.
First, we compute the Hessian matrix M(ln L(θk|Y )) of ln L(θk|Y ).

Proposition B.3.4 Let θ̂k = (µ̂k, σ̂k) be the maximum likelihood estimator
of ln L(θk|Y ) from (B.6) and let P = {I1, . . . , Ik} be the partition induced
by µ̂k. Evaluation of the Hessian matrix M of ln L(θk|Y ) at the maximum
likelihood estimator θ̂k gives

M
(
ln L(θ̂k|Y )

)
= − 1

σ̂2
k




|I1|
. . .

|Ik|
0

0 2N


 (B.20)
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Proof The proof is in Appendix C.3. ¤
The derivatives of the log likelihood function of higher order do not vanish
in the case of estimated variance. Hence, the Taylor expansion (B.16) of
ln L(θk|Y ) around the maximum likelihood estimator θ̂k = (µ̂k, σ̂2

k) is only
an approximation. From Theorem B.3.3 we can derive the following variant
of the Schwarz information criterion presents a corrected version of SIC(k)
from (B.19) in case of smaller length N of data y.

Corollary B.3.5 Let data y ∈ X be given. We consider the model (B.1)
and the family of log likelihood functions ln L((µk, σk)|Y ) from (B.6) with
the maximum likelihood estimators µ̂k from (B.4) and σ̂2

k from (B.5). Let P
be the partition induced by µ̂k. Suppose further that g(θk|Y ) = 1 and that
the prior π(Mk) is the same for all models. Then the maximization of the
posterior probability (B.13) over all candidate models Mk is approximately
equivalent to the maximization of

SICC(k) =
k + 1−N

2
ln(2πσ̂2

k)−
1

2

∑
I∈P

ln |I|. (B.21)

for k = 1, . . . , L.

Proof By Theorem B.3.3 we get for the transformation (B.14) of the poste-
rior distribution

ln P (Mk|Y ) + ln h(Y ) = ln π(Mk)

+ ln L(θ̂k|Y )− k + 1

2
ln N

+
k + 1

2
ln(2π)

−1

2
ln

(
det(FN(θ̂k|Y ))

)
. (B.22)

From the computations in Appendix C.3 we get the observed Fisher infor-
mation matrix FN(θ̂k|Y ) as

FN((µ̂k, σ̂k)|Y ) =
1

Nσ̂2
k




|I1|
. . .

|Ik|
0

0 2


 .

with determinant

det(FN(θ̂k|Y )) =

(
1

Nσ̂2
k

)k+1

· 2 ·
∏
I∈P

|I|.
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Hence we get for (B.22)

−1

2
ln

(
det(FN(θ̂k|Y ))

)
=

k + 1

2
ln N +

k + 1

2
ln(σ̂2

k)−
1

2
ln 2− 1

2

∑
I∈P

ln |I|.

The log likelihood function evaluated at the maximum likelihood estimator
gives

ln L(θ̂k|Y ) = −N

2
ln(2πσ̂2

k)−
1

2σ̂2
k

∑
I∈P

∑
s∈I

(ys − µ̂I)
2

= −N

2
ln(2πσ̂2

k)−
N

2

Together we get for the transformation (B.14) of the posterior distribution

ln P (Mk|Y ) + ln h(Y ) ≈ ln π(Mk)− N

2
ln(2πσ̂2

k)−
N

2
− k + 1

2
ln N

+
k + 1

2
ln(2π)

+
k + 1

2
ln N +

k + 1

2
ln(σ̂2

k)−
1

2
ln 2− 1

2

∑
I∈P

ln |I|

=
k + 1−N

2
ln(2πσ̂2

k)−
1

2

∑
I∈P

ln |I| (B.23)

+ ln π(Mk)− N + ln(2N)

2
. (B.24)

Ignoring the terms in (B.24) which do not depend on k and assuming the same
prior for all models we arrive at the following corrected version of the Schwarz
information criterion: If we want to maximize the posterior distribution we
have to choose that number k of intervals in the partition P which maximizes
(B.23). ¤



Appendix C

Calculations for the Model
Selection Criteria

In this chapter, we collect proofs and calculations for the model selection
criteria from Chapter B.

C.1 Proofs Concerning

the Akaike Information Criterion

In this section we prove the two Lemmata from Section B.2 used in the proof
of Theorem B.2.4.

Proof of Lemma B.2.2 With the maximum likelihood estimators µ̂k and
σ̂2

k for θ0 = (µ0, σ
2
0) the single parts in part (B.10) give the following. We

have

Eθ0

(
ln L(θ0|Y )

)
= Eθ0

(−N ln(σ0

√
2π)− 1

2σ2
0

‖y − µ0‖2
)

= −N ln(σ0

√
2π)− N

2

and

Eθ0

(
ln L(θ̂|Y )

)
= Eθ0

(−N ln(σ̂
√

2π)− 1

2σ̂2
‖y − µ̂‖2

)

= Eθ0

(−N ln(σ̂
√

2π)
)− N

2
.

The difference (B.10) is then equal to
Eθ0

(
ln L(θ0|Y )

)−Eθ0

(
ln L(θ̂|Y )

)
= −N ln(σ0

√
2π) +Eθ0

(
N ln(σ̂

√
2π)

)
. ¤
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Proof of Lemma B.2.3 We have

Eθ0

(
ln L(θ|Y )

)
= Eθ0

(−N ln(σ
√

2π)− 1

2σ2
‖y − µ‖2

)

= −N ln(σ
√

2π)− N

2
· σ2

0

σ2
− 1

2σ2
‖µ0 − µ‖2.

Evaluation at the maximum likelihood estimator θ̂k = (µ̂k, σ̂2
k) results in

Eθ0

(
ln L(θ|Y )

)
|θ=θ̂k = −N ln(σ̂k

√
2π)− N

2
· σ2

0

σ̂2
k

− 1

2σ̂2
k

‖µ0 − µ̂k‖2.

Taking the expectation above gives

Eθ0

(
Eθ0

(
ln L(θ|Y )

)
|θ=θ̂k

)
(C.1)

= Eθ0

(−N ln(σ̂k

√
2π)

)− N2

2
Eθ0

( σ2
0

‖y − Pky‖2

)
− N

2
Eθ0

(‖µ0 − µ̂k‖2

‖y − Pky‖2

)
.

The random variable ‖y−Pky‖2/σ2
0 is χ2 - distributed with N −k degrees of

freedom, see for example in H. Witting (1985). The expected value of the
inverse of a χ2

df - distributed random variable is equal to 1/(df− 2). Hence

N2

2
Eθ0

( σ2
0

‖y − Pky‖2

)
=

N2

2

1

N − k − 2
.

The third term in (C.1) can be written as

‖µ0 − µ̂k‖2

‖y − Pky‖2
=

1
σ2
0
‖µ0 − µ̂k‖2

1
σ2
0
‖y − Pky‖2

=
k∑

l=1

∑
s∈Il

1

|Il|
(
√
|Il| 1

σ2
0
(µ0s − ȳIl

))2

1
σ2
0
‖y − Pky‖2

.

The numerator is standard normal distributed and the denominator is χ2-
distributed with (N − k) degrees of freedom. Then the ratio

(
√
|Il| 1

σ2
0
(µ0s − ȳIl

))2

1
N−k

1
σ2
0
‖y − Pky‖2

is F (1, N − k)-distributed with expected value N−k
N−k−2

. Together we have

Eθ0

( 1

2σ̂2
k

‖µ0 − µ̂k‖2
)

=
N

2

k∑

l=1

∑
s∈Il

1

|Il| ·
1

N − k
· N − k

N − k − 2
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=
N

2
· 1

N − k − 2

k∑

l=1

|Il| 1

|Il|

=
Nk

2(N − k − 2)
.

For (C.1) we then get

Eθ0

(
Eθ0

(
ln L(θ|Y )

)
|θ=θ̂k

)

= Eθ0

(−N ln(σ̂k

√
2π)

)− N2

2(N − k − 2)
− Nk

2(N − k − 2)

= Eθ0

(−N ln(σ̂k

√
2π)

)− N(N + k)

2(N − k − 2)
.

The difference (B.11) is then

Eθ0

(
Eθ0

(
ln L(θ|Y )

)
|θ=θ̂k

)− Eθ0

(
ln L(θ0|Y )

)

= Eθ0

(−N ln(σ̂k

√
2π)

)− N(N + k)

2(N − k − 2)
+ N ln(σ0

√
2π) +

N

2
.

¤

C.2 Regularity Conditions

on the Likelihood Function

In this section, we check the regularity conditions, mentioned in Section B.3,
for the derivation of the Schwarz Information Criterion. Let data y be a
sample from the model (B.1) with parameter θ0 = ((µJ)J∈P0 , σ0). We will
show that the likelihood function L(θk|YN) from (B.6) of the k-th model
fulfills the regularity conditions from J.E. Cavanaugh and A.A. Neath
(1999). We will use the their notation and define

VN(θk) = − 1

N
L(θk|YN).

(1) VN(θk) has first- and second order derivatives which are continuous over
Θk since L(θk|YN) has.

(2) VN(θk) has a unique global minimum at θ̂k = (µ̂k, σ̂k) with µ̂k from
(B.4) and σ̂k from (B.5).
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(3) We compute the expectation of VN(θk) with respect to the distribution
with parameter θ0 and define

WN(θ) = Eθ0

(
VN(θk)

)
= Eθ0

(− 1

N
ln L(θk|YN)

)
.

We decompose the data term

∑
I∈P

∑
s∈I

(ys − µk
I )

2 =
∑
I∈P

∑
s∈I

(ys − µ0
J(s) + µ0

J(s) − µk
I )

2

=
∑

J∈P0

∑
s∈J

(ys − µ0
J)2 +

∑
I∈P

∑

J∈P0

|I ∩ J |(µ0
J − µk

I )
2

+2
∑
I∈P

∑
s∈I

(ys − µ0
J(s))(µ

0
J(s) − µk

I ) (C.2)

and get

WN(θk) =
1

2
ln(2πσ2

k) +
1

2Nσ2
k

Eθ0

( ∑
I∈P

∑
s∈I

(ys − µk
I )

2
)

=
1

2
ln(2πσ2

k) +
σ2

0

2σ2
k

+
1

2Nσ2
k

∑
I∈P

∑

J∈P0

|I ∩ J |(µ0
J − µk

I )
2.

An increase of N in the frame of the Schwarz information criterion
is interpreted as a refinement of the sampling of a function which is
defined on a real interval of R. That is, the number |I| of sample
points in the discrete interval I depends on N . The ratio |I ∩ J |/N
represents the fraction of sample points in I∩J . As N tends to infinity
this fraction tends to the length of the continuous interval I ∩ J , also
denoted by |I ∩ J |. Thus, we have for N →∞

WN(θk) → W (θk) :=
ln(2πσ2

k)

2
+

σ2
0

2σ2
k

+
1

2σ2
k

∑
I∈P

∑

J∈P0

|I ∩ J |(µ0
J − µk

I )
2

uniformly in θk. W (θk) has first- and second order derivatives which
are continuous over Θk. Using the calculations in the proof of Propo-
sition B.3.4 we get

∂

∂µI

W (θk) =
1

σ2
k

( ∑

J∈P0

|I ∩ J |µ0
J − |I|µI

)

∂2

∂µI∂µI′
W (θk) =

{
0 I 6= I ′
|I|
σ2

k
I = I ′
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∂

∂σk

W (θk) =
1

σk

− σ2
0

σ3
k

− 1

σ3
k

∑
I∈P

∑

J∈P0

|I ∩ J |(µ0
J − µI)

2

∂2

∂σ2
k

W (θk) = − 1

σ2
k

+
3σ2

0

σ4
k

+
3

σ4
k

∑
I∈P

∑

J∈P0

|I ∩ J |(µ0
J − µI)

2

∂2

∂µI∂σk

W (θk) =
2

σ2
k

( ∑

J∈P0

|I ∩ J |µ0
J − |I|µI

)

(4) Necessary conditions for W (θk) to have a minimum at θk
∗ = ((µ∗I)I∈P , σ∗k)

are

∂

∂µI

W (θk) = 0 ⇔ µ∗I =
1

|I|
∑

J∈P0

|I ∩ J |µ0
J

∂

∂σk

W (θk) = 0 ⇔ (σ∗k)
2 = σ2

0 +
∑
I∈P

∑

J∈P0

|I ∩ J |(µ0
J − µ∗I)

2

It is indeed a minimum since

∂2

∂σ2
k

W (θk)|θk=θk∗

= − 1

(σ∗k)
4

(
(σ∗k)

2 − 3(σ2
0 +

∑
I∈P

∑

J∈P0

|I ∩ J |(µ0
J − µ∗I)

2)
)

=
2

(σ∗k)
2

∂2

∂µI∂µI′
W (θk)|θk=θk∗ =

{
0 I 6= I ′
|I|

(σ∗k)2
I = I ′

∂2

∂µI∂σk

W (θk)|θk=θk∗ =
2

σ2
k

( ∑

J∈P0

|I ∩ J |µ0
J − |I|µ∗I

)
= 0.

(5) With the decomposition from (C.2) we can write VN(θk) as

VN(θk) = −1/N ln L(θk|YN)

=
1

N

∑

J∈P0

∑
s∈J

(ys − µ0
J)2 (C.3)

+2 · 1

N

∑
I∈P

∑
s∈I

(ys − µ0
J(s))(µ

0
J(s) − µk

I ) (C.4)

+
1

N

∑
I∈P

∑

J∈P0

|I ∩ J |(µ0
J − µk

I )
2. (C.5)
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We consider the single parts. For part (C.3) we have

1

N

∑

J∈P0

∑
s∈J

(ys − µ0
J)2 −→ Eθ0

(
(ys − µ0

J)2
)

= σ2
0 θ0-almost surely.

The second part (C.4) tends to zero since

1

N

∑
I∈P

∑
s∈I

(ys − µ0
J(s)) −→ Eθ0

(
ys − µ0

J(s)

)
= 0 θ0-almost surely.

In the last part (C.5) there are no random variables included and we
have convergence of the discrete interval length to the continuous one.
Thus have

− 1

N
ln L(θk|YN) −→ W (θk) θ0-almost surely

as N →∞ and uniformly in θk.

(6) The uniform almost sure convergence of the second derivatives of VN(θk)
to those of W (θk) follows from the calculations in Section C.3.

(7) The Hessian matrix of W (θk) is positive definite in a neighborhood of
θk
∗ ,

∂2

∂σ2
k

W (θk) > 0 ⇔ σ2
k < 3(σ2

0 +
∑
I∈P

∑

J∈P0

|I ∩ J |(µ0
J − µI)

2)

⇔ σ2
k < 3(σ∗k)

2.

In this neighborhood, its eigenvalues are bounded and bounded away
from zero.

C.3 The Hessian Matrix

of the Log Likelihood Function

In this section, we will compute the Hessian matrix of the log likelihood
function in question. We will compute the second derivatives of ln L(θk|Y )
from (B.6). In case of θk = µk = (µk

I )I∈P we have

∂

∂µI

ln L(θk|Y ) =
1

σ2

(∑
s∈I

ys − |I|µI

)
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∂2

∂µIµJ

ln L(θk|Y ) =

{
0 I 6= J

− |I|
σ2 I = J

For θk = (µk, σk) we replace there σ by σk and get in addition

∂

∂σk

ln L(θk|Y ) = −N

2

1

2πσ2
k

· 2π · 2σk −
(−3

σ3
k

)
· 1

2

∑
I∈P

∑
s∈I

(ys − µI)
2

= −N

σk

+
1

σ3
k

∑
I∈P

∑
s∈I

(ys − µI)
2

∂2

∂µIσk

ln L(θk|Y ) = − 2

σ3
k

(∑
s∈I

ys − |I|µI

)

∂2

∂σ2
k

ln L(θk|Y ) =
N

σ2
k

+

(−3

σ4
k

) ∑
I∈P

∑
s∈I

(ys − µI)
2

=
1

σ2
k

(
N − 3

σ2
k

∑
I∈P

∑
s∈I

(ys − µI)
2

)

Evaluation at the maximum likelihood estimator θ̂k = µ̂k from (B.4) gives

∂2

∂µk
Iµ

k
J

ln L(µk|Y )|µk=µ̂k =

{
0 I 6= J,

− |I|
σ2 I = J

,

respectively, for θ̂k = (µ̂k, σ̂k) with µ̂k from (B.4) and σ̂k from (B.5)

∂2

∂µIµJ

ln L(θk|Y )|θk=(µ̂k,σ̂k) =

{
0 I 6= J

− |I|
σ̂2

k
I = J

∂2

∂µIσk

ln L(θk|Y )|θk=(µ̂k,σ̂k) = − 2

σ̂3
k

(∑
s∈I

ys − |I|µ̂k
I

)

= − 2

σ̂3
k

· 0 = 0

∂2

∂σ2
k

ln L(θk|Y )|θk=(µ̂k,σ̂k) =
1

σ̂2
k

(
N − 3

σ̂2
k

∑
I∈P

∑
s∈I

(ys − µ̂k
I )

2

)

=
1

σ̂2
k

(
N − 3

σ̂2
k

·Nσ̂2
k

)
= −2N

σ̂2
k

.
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Symbols

S set of sites 9
s ∼ t neighbors 10
X space of families (xs)s∈S, xs ∈ R 10

J(x) jump set of x ∈ X 10
|A| number of elements of A 10
|J(x)| number of jumps of x 10

γ hyperparameter 10
Hγ Potts functional on XtimesX 10

X∗(γ, y) set of minimizers of the Potts functional 11
x∗(γ, y) minimizer of the Potts functional 11
P partition of S 12
P set of all partitions of S 12

I ∼ J neighboring intervals 12
(P , µP) segmentation 12

S set of segmentations 12
M space of minimal segmentations 12
P(x) partition of S induced by x 12
µI(x) constant value of x on I ∈ P(x) 12

1 (1, . . . , 1) ∈ RS 15
EP(X) expectation of X under the probability measure P 16

µ∗I minimizer of µ 7→ ∑
s∈I ρ(ys − µ) 20

H∗(·, y) functional on P 20
H̄γ(·, y) Potts functional on X with sum of squares 25

ȳI empirical mean of the ys, s ∈ I 25
∇ gradient 27
Pk set of all partitions P ∈ P with |P| = k 28
N c complement of N 31
ȳ empirical mean of the ys, s ∈ S 33

〈y, x〉 Euclidian scalar product
∑

s∈S ysxs 36
‖y − x‖2 Euclidian norm on RS 36
B(X) σ-field of the Borel subsets of X 40
Pn set of all partitions of {1, . . . , n} 42

185
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HI interval function 42
[s, t] interval {s, s + 1, . . . , t− 1, t} 42
O Landau symbol 44
DI interval error function 45
Pn

k set of all partitions of {1, . . . , n} with |P| = k 46
R∗ R \ {0} 54

Aff(R) group of the affine linear transformations of R 54
tb,c scale transformation x 7→ c · x + b1 54

p(A) power set of A 55
Γ data adapted parameter choice 57
NA affine normalization 59
G(y) set of finite positive γ-values in the scanning 63
ξn,s random variables on probability space (Ω,F ,P) 129
λ Lebesgue measure on the Borel-σ-field B([0, 1)) 133
4nf discretization of f 133

N (µ, σ2) normal distribution with mean µ and variance σ2 134
H̄n

γ (·, y) Potts functional on RSn with sum of squares 134
T ([0, 1)) space of right-continuous step functions on [0, 1) 134

jn embedding of x ∈ RSn into T ([0, 1)) 135
J (τ) jump set (for an L2-equivalence class)

of a right-continuous step function τ 135
Xn image of RSn under embedding jn 135
Bn σ-field induced by {[ s−1

n
, s

n
) : s ∈ Sn} 135

H̃n
γ (·, f) continuous Potts functional on L2([0, 1)) 136
PXn orthogonal projection of L2([0, 1)) onto Xn 136
ξn embedding jn((ξn,1, . . . , ξn,n)) 138

H∞
0 (g, f) L2-norm of f − g 138

H̃∞
0 (·, f) functional on L2([0, 1)) equal to H∞

0 (·, f) + σ2 140
BJ σ-field σ

({
[a, b) : a, b ∈ J ∪ {0, 1}})

for J ⊂ (0, 1) 141
PJ partition of [0, 1) induced by the set J 141
Pn

J partition of Sn induced by the partition PJ 141
Xn

J subspace of g ∈ Xn with J (g) = J 142
dH Hausdorff metric 146

L(θ|Y ) likelihood function 167

M
(
ln L(θ̂k|Y )

)
Hessian matrix of ln L(θk|Y )
evaluated at the maximum likelihood estimator 172



Index

Γ-convergence, 139
α-homogeneous penalty, 58
γ-interval, 31
γ-scanning, 31

affine linear group, 54
AIC, 86, 168
AICC, 170
Akaike information criterion, 86, 168

Bayes estimator, 16
Bayes risk, 16
BOLD effect, 97

complexity of an algorithm, 44
continuous Potts functional, 136

data, 10
data adapted parameter choice, 57
data term, 10
diameter, 60
discrepancy, 169
discretization, 133

embedding, 135
epi-convergence, 139
equivariant, 53
exponential form of a probability

measure, 15

F-longest interval criterion, 65
family approach, 34
FLIC, 65

-estimator, 65
fMRI, 97

fractionation curves, 104

hyperparameter, 10

induced partition, 12
induced segmentation, 12
intensities, 10
interval, 12
interval error function, 45
interval function, 42
invariant attribute, 64

jump, 10
jump set, 10
jump set for right-continuous step

functions, 135

Kullback-Leibler information, 168

Landau symbol, 44
length of an interval, 12
LIC, 73
likelihood function, 166
log likelihood function, 167
longest interval criterion

-estimator, 73
longest run condition, 81
loss function, 16
lower semicontinuous, 145

MAP, 11
-estimator, 11, 16

maximum likelihood estimator, 166
maximum posterior estimator, 11,

16
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measurable section, 40
minimal segmentation, 12
minimum function, 29
multiresolution condition, 83

nearest neighbor, 13
neighbor

-sites, 10
-structure, 10

neighboring intervals, 12
neighbors, 10

observations, 10
observed Fisher information matrix,

173
orbit, 59
orthogonal projection, 136

partition, 12
posterior distribution, 16
Potts

- functional, 10
- one dimensional, 13

- penalty term, 10
Potts model, 2
prior

-distribution, 15
-improper, 17

real character, 69
residuals, 81
right-continuous step functions, 134

scale transformation, 54
Schwarz information criterion, 87
segmentation, 12
SIC, 87, 171
SICC, 175
signal, 10
simple graph, 9
site, 9
step functions, 134

taut string algorithm, 58
time point, 9
time series, 13

undirected graph, 9
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