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1 Introduction 

1.1 Definition and Classification of Energetic Materials 

The research on explosives or energetic compositions is a very interesting and diversified field in 

chemistry. According to the German law Sprengstoffgesetz (SprengG) potentially explosive 

materials are described as solid or liquid compounds and formulations, “which could detonate due to 

a not extraordinary thermal, mechanical or other stress” and “show explosive behavior during test 

methods such as thermal sensitivity and mechanical sensitivity with respect to either shock or 

friction”.[1] The American Society for Testing and Material (ASTM) defines energetic materials as 

“chemical compounds or compositions that contain both the fuel and the oxidizer and rapidly react to 

release energy and gas”.[2] Davin Piercey characterizes explosives in his PhD thesis as “a metastable 

compound or mixture capable of the rapid release of stored potential energy.“[3]  

Energetic materials can be distinguished into three main classes according to their different 

energetic performance and usage: propellants, pyrotechnics and explosives (Figure 1.1).[4] This 

thesis focuses on explosives, which can further be subdivided into primary and secondary 

explosives due to their sensitivity and energetic properties.[4] 

 

 
Figure 1.1. Classification of energetic materials.[4]  
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Primary explosives are substances marked by their highly sensitivity as well as their fast 

transition from deflagration to detonation.[5] Generally, these compounds are more sensitive 

towards thermal, mechanical or electrostatic stimuli than secondary explosives with typical values 

of ≤ 4 J for impact, ≤ 10 N for friction and ≤ 20 mJ for electrostatic discharge.[4-6] Likewise, primary 

explosives show lower energetic performances regarding detonation velocity, detonation pressure 

or heat of explosion.[5] After ignition, they generate either a large quantity of heat or a shockwave, 

which could ignite a less sensitive secondary explosive such as RDX.[5] Based on this property, 

primary explosives are used as initiators (e.g. detonators, blasting caps or primers) or as ignitor for 

secondary booster charges, main charges or propellants.[7] Commonly used primary explosives are 

lead azide (LA)[8] and lead styphnate (LS)[9] as well in former times also mercury fulminate (MF)[10] 

(Figure 1.2). The main disadvantage using the mentioned primary explosives is the attendance of 

heavy metals like lead and mercury, which causes environmental and human impact.[7] Due to the 

toxicity of lead or mercury, different primary explosives with absence of heavy metals are preferred 

such as diazadinitrophenole (DDNP), cyanuric triazide (CTA), tetrazene (GNGT), copper(I) 

5-nitrotetrazolate (DBX-1) or dipotassium 1,1’-dinitramino-5,5’-bistetrazolate (K2DNABT).[4-5, 11]  
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Figure 1.2. Overview of selected primary explosives: lead azide (LA), lead styphnate (LS), mercury 
fulminate (MF); diazadinitrophenole (DDNP), tetrazene (GNGT), copper(I) 5-nitrotetrazolate (DBX-1), 
cyanuric triazide (CTA) and dipotassium 1,1’-dinitramino-5,5’-bistetrazolate (K2DNABT). 

Secondary explosives are less sensitive towards external stimuli compared to primary explosives 

with values of ≥ 4 J for impact and ≥ 80 N for friction.[4] Due to their higher structural stability; 

secondary explosives cannot be ignited as easy as primary explosives. The ignition of a secondary 

explosive can be carried out by using sufficient thermal stimuli or a shockwave of a primary 

explosive. Usually, the detonation parameters (heat of explosion Q, detonation velocity VD and 
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detonation pressure pCJ) are higher than a primary explosive.[4] Most commonly used secondary 

explosives are trinitrotoluol (TNT), hexogen (RDX), octogen (HMX) and pentaerythriol tetranitrate 

(PETN) (Figure 3).[12] However, some of the up to date known explosives suffer from high 

sensitivity, low decomposition temperature, high toxicity or/and low energetic performance making 

further investigation mandatory.[4, 13] Especially the toxicity leads to an intensive research in the 

attempted replacements of RDX.[14-16] More recently developed compounds are 1,1-diamino-2,2-

dinitro ethene (FOX-7), hexanitro hexaazaisowurtzitane (CL-20), octanitrocubane (ONC), 5,5´-

bis(2,4,6-trinitrophenyl)-2,2´-bi(1,3,4-oxadiazole) (TKX-55), bis(3,4,5-trinitropyrazol-1-yl) methane 

(BTNPM), 2,6-diamino-3,5-dinitro-pyrazine-1-oxide (LLM-105) and dihydroxylammonium 5,5´-

bitetrazole-1,1´-dioxide (TKX-50) (Figure 1.3).[4, 17-19]  
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Figure 1.3. Overview of selected secondary explosives: 2,4,6-trinitro-toluene (TNT), hexogen (RDX), 
octogen (HMX), 1,1-diamino-2,2-dinitro ethene (FOX-7), 5,5´-bis(2,4,6-trinitrophenyl)-2,2´-bi(1,3,4-
oxadiazole) (TKX-55), bis(3,4,5-trinitropyrazol-1-yl) methane (BTNPM), 2,6-diamino-3,5-dinitro-
pyrazine-1-oxide (LLM-105) and dihydroxylammonium 5,5´-bitetrazole-1,1´-dioxide (TKX-50). 

Propellants commonly consist of a fuel and an oxidizer in various ratios according to their 

respective application.[4] They can further be subclassified into rocket propellants and propellant 

charges for guns. The main requirement for propellants is the generation of hot gases by 

combustion to accelerate projectiles, missiles or rockets due to the resulting propulsive force.[20] 

Another property is the almost balanced oxygen content, whereby the substances or mixtures can 

completely combust with itself.[21] Commonly used gun propellants are e.g. nitrocellulose (NC), 

nitroguanidine (NQ) or nitroglycerine (NG) (Figure 1.4). Depending on the usage there are three 

different types of compositions: single, double or triple base compositions. Smokeless single base 

propellants consist of NC, whereas the addition of NG leads to double base propellants. The addition 
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of NQ to the double base composition results in tripe base propellants. Rocket propellants can be 

categorized into either solid (e.g. NH4ClO4) or liquid (e.g. monomethylhydrazine) propellants. Solid 

rocket propellants can be subdivide into homogenous (double-base, e.g. NC/NG) or heterogeneous 

(NH4ClO4, aluminum and binder) propellants. Liquid propellants can be distinguished into 

monopropellants (e.g. hydrazine) and bipropellants. The latter consists of a fuel (e.g. hydrazine, 

monomethylhydrazine) and an oxidizer (e.g. HNO3 or dinitrogen tetroxide), which reacts hypergolic 

after contact of both liquids.[4, 22] According to the environmental impact of the widely used 

ammonium perchlorate, intensive research is carried out to replace that compound in 

propellants.[23-24]  
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Figure 1.4. Chemical structures of selected gun propellants and rocket fuels: nitrocellulose (NC), 
nitroglycerine (NG), nitroguanidine (NQ), monomethylhydrazine (MMH) and ammonium perchlorate 
(AP). 

Pyrotechnics. The expression „pyrotechnic“ can be derived from the greek words pyros and techne, 

which can be translated as the art of fire.[25] Usually, pyrotechnical formulations are designed to 

display a special effect such as heat, light, sound, smoke or to produce specific reaction products. In 

contrast to other energetic materials, pyrotechnics undergo a slower, non-detonative and self-

sustaining exothermic reaction forming in general solid residues. [4, 25-26] The exact content of each 

pyrotechnical mixture depends on the intended application; however, the main ingredients oxidizer, 

reducing agent and fuel remain the same. [27] The common knowledge use of pyrotechnics in the 

civil sector are fireworks, while research is primarily of military interest for the application as for 

example signal flares or obscurants. [26, 28-29] It is a well-known fact that historical pyrotechnic 

formulations containing perchlorates, halogens, heavy metals or potassium dichromate come with 

risks for environment and health. Nowadays, these former mixtures should be replaced by more 

harmless ones reducing the environmental impact with consistent or even higher performance. [30-

31] Regarding the research of Sabatini et al. it was already possible to remove the chlorine source in 

red-burning illuminants by using fuels such as 5-amino-1H-tetrazole or hexamethylentetramine.  
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1.2 Primary Explosives with focus on K2DNABT 

As mentioned above, the commonly used primary explosives are still lead azide and lead styphnate. 

These historically applied compounds contain heavy metals making much “greener” alternatives 

necessary due to their environmental impact. Moreover, lead azide and lead styphnate are listed on 

the REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) candidate list as 

“substances of very high concern” and will be prohibited for future use.[32] In the USA, lead is 

classified as a toxic pollutant and therefore, it should be removed from facilities like the areas of the 

US Department of Defense.[33] Lead is a chronic and acute toxin, which is not easy to remove from 

human bodies after it has been absorbed or dissolved in the blood.[6] In addition to its 

environmental impact, lead azide decomposes under ambient conditions by reacting with carbon 

dioxide and water to basic lead carbonate and greatly toxic hydrazoic acid (HN3). Besides these 

difficulties, lead azide also shows an insufficient chemical stability, since it reacts with oxidizing 

reagents and ammonia.[34]  

More recent developed heavy metal-free primary explosives as replacement for lead azide are 

copper(I) 5-nitrotetrazolate (DBX-1) and diazadinitrophenole (DDNP). However, both compounds 

suffer either from a relatively low decomposition temperature (DDNP: 142 °C)[35] or decomposition 

reactions with periodates in the case of DBX-1.[36] Therefore, there is still a claim for the 

development of a new “green” primary explosive. The main requirements for the development of 

new primary explosive are insensitivity to light and moisture, appropriate sensitivity values, high 

decomposition temperature, fast DDT, high initiation capability, long-term stability, heavy-metal-

free, cheap reagents as well as an easy and especially safe synthesis.[4]  

K2DNABT is the abbreviation of the dipotassium salt of 1,1’-dinitramino-5,5’-bistetrazolate, which 

was firstly synthesized by Fischer et al. in 2014. This compound fulfills the majority of all mentioned 

requirements for a more environmentally benign primary explosive.[37] The energetic properties 

and calculated performance data of lead azide, DDNP, DBX-1 and K2DNABT are summarized in 

Table 1. The sensitivity values towards external stimuli of these four primary explosives are in a 

similar range. The impact sensitivity values according to BAM standards[2] are in between 0.036 J 

and 4 J and the friction sensitivity is in between 0.098 N and 5 N. All evaluated compounds are 

classified as very sensitive towards electrostatic discharge ranging from 3−12 mJ. Further, 

K2DNABT shows the highest nitrogen content with 50% and the highest oxygen balance (−4.8%). 

DDNP has the lowest decomposition temperature (157 °C), whereas all others are higher than 

200 °C. The densities are with exception of DDNP (1.719 g cm−3) higher than 2.0 g cm−3.  
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The heats of formation are all positive with lead azide as the highest (450 kJ mol−1). The detonation 

parameters for all compounds were recalculated with EXPLO5 V6.03 using recalculated X-ray 

densities for a precise comparison. As shown in Table 1.1, the calculated detonation velocities and 

the detonation pressures lie in the range of 6121–8751 m s−1 and 183–484 kbar. K2DNABT has the 

highest detonation properties of the four presented primary explosives. To further determine the 

toxicity to aquatic life, the luminescent marine bacterium Vibrio fischeri was used.[38-39] Due to the 

fact of an insufficient water solubility of DBX-1 and lead azide[40], the values could only be 

determined for DDNP and K2DNABT. With an EC50 (15 min) value lower than 5.93 g L−1, it can be 

classified as nontoxic for aquatic life, whereas DDNP (0.001 g L−1) is classified as very toxic.[38]  

The synthetic route toward K2DNABT starting from commercially available dimethyl carbonate 

within a six-step synthesis is shown in Scheme 1.1.[37]  
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Scheme 1.1. Synthesis of K2DNABT according to Fischer et al.[37] 

The synthesis starts with the condensation of dimethyl carbonate with hydrazine hydrate to receive 

methyl carbazate (1) followed by a further condensation reaction using 0.5 eq. aqueous glyoxal 

solution to give (2).[41-42] Compound (2) is chlorinated using N-chlorosuccinimide (NCS) in DMF to 

get the dichloride (3). The nucleophilic chloro/azido-substitution is carried out using sodium azide 

in DMF to obtain (4), which is further ring-closed (5) by the aid of gaseous HCl in ether suspension. 
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Finally, compound (5) is nitrated with dinitrogen pentoxide in acetonitrile followed by an alkaline 

work-up with potassium hydroxide to yield K2DNABT as a colorless powder.  

Table 1.1. Energetic properties and detonation parameters of DDNP, DBX-1, Pb(N3)2 and K2DNABT. 

 
DDNP[18] DBX-1[11, 43] Pb(N3)2[5] K2DNABT[37] 

Formula C6H2N4O5 CuCN5O2 PbN6 C2K2N12O4 

FW [g mol−1] 210.1 177.6 291.3 334.3 

IS [J] [a] 1.0 0.036 2.5−4.0 <1.0 

FS [N] [b] 5.0 0.098 0.1−1.0 <1.0 

ESD [J] [c] 0.012 0.0031 <0.005 0.003 

N [%] [d] 26.7 39.4 28.9 50.3 

Ω [%] [e] −60.9 −9.0 −11.0 −4.8 

Tdec. [°C] [f] 157 337 315 200 

ρ [g cm−3] [g] 1.719 2.51 4.8 2.11 

ΔfHm° [kJ mol−1] [h] 139.0 49.9 450.1 326.4 

ΔfU° [kJ kg−1] [i] 350.5 329.8 1574.9 1036.1 

EXPLO5 V6.03    
 

−ΔExU° [kJ kg−1] [j] 4174 2464 1575 4962 

Tdet [K] [k] 3375 2899 3264 3408 

pCJ  [kbar] [l] 183 236 350 328 

VD [m s−1] [m] 6861 6739 6121 8751 

V0 [L kg−1] [n] 467 482 252 484 

Toxicity     

EC50 (15 min) [g L–1] [o] 0.001[38] − − >5.93[38] 

EC50 (30 min) [g L–1] [o] 0.001[38] − − 11.63[38] 

[a] Impact sensitivity according to BAM drophammer (method 1 of 6); [b] Friction sensitivity according to BAM friction tester 
(method 1 of 6); [c] Electrostatic discharge sensitivity (OZM ESD tester); [d] Nitrogen content; [e] Oxygen balance; [f ] Onset 
temperature of decomposition according to DSC (heating rate of 5 C min–1); [g] Density at room temperature; [h] Heat of formation; [i] 
Energy of formation. [j] Heat of detonation; [k] Temperature of detonation; [l] Detonation pressure; [m] Detonation velocity; volume 
of gases after detonation; [n] Gas volume after detonation; [o] Toxicity measurements to aquatic life using luminescent marine 
bacterium Vibrio fischeri 
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1.3 Secondary Explosives with focus on TKX-50 

RDX and TNT are mainly applied in charges due to their facile synthesis, cheap reagents and 

sufficient energetic performance. However, these compounds have a huge bearing on its 

surroundings due to their toxicity and carcinogenicity.[44] During WWI, the United Kingdom’s female 

shell makers got the nickname “canary girls”, since the exposure of TNT caused skin eruption and 

turned their skin into orange-yellow.[45] Furthermore, studies on TNT-treated rats showed a 

possible carcinogenic hazard.[46] TNT and RDX are both nerve poisons and were found to cause liver 

injury.[47-48] Drinking water supplies close to the US Army ammunition plants were intensively 

contaminated with RDX. Due to the toxicity, the American Environmental Protection Agency (EPA) 

recommended a limit concentration of 2 μg L–1 for RDX in tap water. The National Institute for 

Occupational Safety and Health (NIOSH) had set the recommended exposure limit of TNT[49] as 

0.5 mg m–3 and as 1.5 mg m–3 for RDX[50]. Further, even the decomposition products are toxic for 

plants, microorganisms or microbes.[47] Recent studies discussed that plants die with an RDX 

concentrations above 580 mg kg–1.[51] The exposure to RDX can cause hyperirritability, nausea, 

seizures, amnesia, and vomiting as well as prolonged postictal confusion.[14-15, 47]  

According to the bad environmental compatibility of RDX, there is a demand for the research of new 

“greener” secondary explosives. The main requirements for the new capable secondary explosive 

are high performance, low sensitivity toward external stimuli, low/no solubility in water, simple 

and safe synthesis with high yields, low toxicity of itself and its detonation products, high density, 

acceptable oxygen balance, cheap starting reagents, high thermal stability and compatibility with 

binder or plasticizer (Figure 1.5).  
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Figure 1.5. Requirements for new secondary explosives. 

 

During the last half century, a lot of different secondary explosives were synthesized in order to 

substitute RDX and fulfill the requirements mentioned above. The most relevant compounds with 

respect to their performance, sensitivity, thermal stability and synthetic practicability are FOX-7[52], 

Cl-20[53], BTNPM, LLM-105[54], dihydroxylammonium-3,3′-dinitro-5,5′-bi(1,2,4-triazole)-1,1′-dioxide 

(MAD-X1)[55], 3-nitro-1,2,4-triazole-5-one (NTO)[56] and dihydroxylammonium 5,5´-bitetrazole-1,1´-

dioxide (TKX-50)[17] (Figure 1.6).  
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Figure 1.6. Overview of possible RDX replacements: FOX-7, Cl-20, BTNPM, LLM-105, 
dihydroxylammonium-3,3′-dinitro-5,5′-bi(1,2,4-triazole)-1,1′-dioxide (MAD-X1), 3-nitro-1,2,4-triazole-
5-one (NTO) and dihydroxylammonium 5,5´-bitetrazole-1,1´-dioxide (TKX-50). 

NTO – as the oldest possible RDX replacement – was first prepared in 1905 by Manchot et al., 

however, major interest in its explosive characteristics was aroused first in the 1980s.[56-57] The 

synthesis is performed starting from formic acid and semicarbazide hydrochloride in a two-step 

synthesis. Australian scientists performed the reaction without isolation of the intermediate 

triazolone in an one-pot reaction.[58] NTO shows a high density (1.91 g cm–3), detonation velocity 

(8590 m s–1) and low sensitivity values (IS: 22 J, FS: 353 N).[58-59] Due to its characteristics, it has 

already found application in gas generators and is investigated to be part in low vulnerable 

warheads.[4, 60]  

CL-20 was firstly synthesized by Nilsen et al. at the Naval Air Warefare Center Wepaons Division in 

China Lake in 1987.[53] The caged compound possesses a high density, excellent energetic 

performance (VD = 9455 m s–1) and acceptable sensitivities (IS: 4 J, FS: 48 N).[61] It exists in different 

polymorphs, but only the ε-polymorph was already investigated in formulations due to the highest 

density (2.04 g cm–3).[62] However, the explosive has three main disadvantages, which are the prize 

(800 $ kg–1), the existence of different polymorphs and the extensive synthesis involving expensive 

palladium catalysis.[11, 61] 

LLM-105 was synthesized in 1994 at the Lawrence Livermore National Laboratories by 

Pagoria et al. and shows insensitivity to external stimuli (IS: > 40 J, FS: 360 N)[63-64], high thermal 

decomposition temperate of 354 °C and a detonation velocity of 8730 m s–1, which is in the range of 

RDX.[4, 11] There are two different synthetic routes starting either with commercially available 2,6-

dichloropyrazine within four steps or with N-chloro bis(cyanomethyl) amine (2 steps) in a two-step 

synthesis.[54] A further synthesis route was carried out by Zuckerman et al. using a micro reactor 

starting either with 2,6-diaminopyrazine-1-oxide or 2,6-dimethoxypyrazine.[65]  
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In 1998, the insensitive and thermally stable FOX-7 was synthesized by the Swedish FOI.[52] It is 

stable up to 238 °C, exhibits a detonation velocity of 8870 m s–1 and is less sensitive than RDX 

toward external stimuli.[4] There are different ways for the synthesis mentioned in the literature 

starting with either 4,6-dihydroxy-2-methylpyrimidine in a two-step synthesis, 2-methyl-imidazole 

in a three-step synthesis or with a mixture of acetamidine hydrochloride and diethyl oxalate in a 

three-step synthesis.[4, 52, 66] However, FOX-7 exists in at least three different polymorphs with 

different densities and thermal decomposition making its synthesis and application challenging.[66]  

The main characteristics (synthesis steps, IS, detonation velocity and decomposition temperature) 

of the mentioned RDX replacements (NTO, CL-20, LLM-105 and FOX-7), which were synthesized in 

other research groups, are summarized in Figure 1.7. 

 

Figure 1.7. Comparison of selected main characteristics (synthesis steps, impact sensitivity, 
detonation velocity and decomposition temperature) of the possible RDX replacements FOX-7, 
LLM-105, NTO and Cl-20, which were synthesized in other working groups. 
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Also in the Klapötke group, three new possible RDX replacements were characterized within the last 

six years, named MAD-X1, BTNPM and TKX-50.[17-19, 55] MAD-X1 is an ionic explosive and can be 

synthesized starting with cheap oxalic acid. However, during the synthesis of MAD-X1 a 

diazotization is performed leading to an intermediate diazonium salt, which can explode 

spontaneously. MAD-X1 is not sensitive to external stimuli (IS: >40 J; FS: >360 N), has a high thermal 

stability (217 °C) and shows a high density of 1.90 g cm–3 (room temperature).[55] The calculated 

energetic parameters show a high detonation velocity of 9087 m s–1 which surpasses the 

performance of RDX (8919 m s–1). BTNPM is a neutral explosive based on nitrated pyrazoles.[18-19] It 

decomposes at 205 °C, implicates a high density (1.934 g cm–3, room temperature), acceptable 

sensitivity values (IS: 4 J, FS: 144 N), a very promising detonation velocity of 9304 m s–1 and can be 

synthesized from commercially available 1H-pyrazole in a six-step synthesis.  

TKX-50, which is the common name for the dihydroxylammonium salt of 5,5-bitetrazole 

1,1'-dioxide and one of the most promising replacements for RDX, is an ionic explosive developed by 

Fischer et al. in 2012.[17] This molecule fulfills all requirements for a new environmentally benign 

secondary explosive as outlined in Figure 5. The impact sensitivity of TKX-50 is 20 J, which is much 

lower in comparison to TNT (15 J), RDX (7.5 J) and HMX (7 J). The same trend was observed for the 

friction sensitivity, where TKX-50 reached a value of 120 N, which is equal or lower to RDX (120 N) 

and HMX (112 N). The ESD sensitivity of the selected explosives shows similar values between 0.1–

0.2 J, which is lower than the maximum generated electrostatic discharge by humans (25 mJ). For 

military requirements, the thermal stability is an important characteristic, whereas in particular a 

decomposition temperature higher than 200 °C is favored. TKX-50 has a decomposition 

temperature up to 221 °C. The energetic performance of the four explosives TNT, RDX, HDX and 

TKX-50 was calculated with the computer code EXPLO5 V6.03 for a possible comparison 

(Table 2).[67] TKX 50 obtained the highest calculated detonation velocity (VD = 10026 m s–1) as well 

as the highest detonation pressure (pCJ = 41 GPa). To determine the toxicity to aquatic life of 

explosives, the luminescent marine bacterium Vibrio fischeri was applied.[38] The determined EC50 

values of TKX-50 is higher than the ones of RDX. Therefore, TKX-50 is classified as less toxic 

toward aquatic life.[38] The only drawback of TKX-50 at least is the extensive four-step synthesis 

involving sensitive intermediates.  
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The main characteristics with respect to synthesis steps, impact sensitivity, detonation velocity and 

decomposition temperature of the mentioned RDX replacements, which were synthesized by the 

Klapötke group, are summarized in Figure 1.8.  

 

 

Figure 1.8. Comparison of selected main characteristics (synthesis steps, impact sensitivity, 
detonation velocity and decomposition temperature) of the possible RDX replacements TKX-50, 
BTNPM and MAD-X1, which were synthesized in our research group. 
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The extensive synthesis (five steps) of TKX-50 including gaseous reactions and the isolation of 

sensitive intermediates is depicted in Scheme 1.2. 
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Scheme 1.2. Overview of the synthesis of TKX-50 from glyoxal with all intermediate steps: glyoxime, 
DCG (dichloroglyomine), DAG (diazidoglyoxime), BTOH (1,1’-dihydroxybitetrazole).[17] 

 

The synthesis starts with conventional glyoxal solution, which is reacted with sodium hydroxide 

and hydroxylammonium chloride in water to form glyoxime in high yields (95 %). The chlorination 

of glyoxime was carried out by bubbling chlorine gas through a solution of glyoxime in ethanol at –

20 °C to obtain dichloroglyoxime (DCG) as a colorless product. Next, the chloro/azido exchange was 

done using sodium azide at 0 °C in N,N-dimethylformamide (DMF) to afford the highly sensitive 

diazidoglyoxime (DAG). The cyclization step was carried out by suspending DAG in diethyl ether and 

bubbling gaseous HCl through the mixture. TKX-50 was obtained by adding hydroxylamine solution 

in warm water. Due to the high sensitivity of diazidoglyoxime (DAG), a four-step route called "One-

pot way in DMF" was invented. In this context, the mixture of the chloro/azido exchange was added 

to the ether solution without isolating DAG.  
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For a better overview, the energetic properties and recalculated performance data using the 

EXPLO5 V6.03 of TKX-50 compared to TNT, RDX and HMX are shown in Table 1.2.[67]  

 

Table 1.2. Energetic properties of TKX-50 compared to commonly used secondary explosives: TNT, 
RDX and HMX.[17] 

 TNT[4] RDX[4] HMX[4] TKX-50 

Formula  C7H5N3O6 C3H6N6O6 C4H8N8O8 C2H8N10O4 

FW [g mol−1]  227.13 222.12 296.16 236.15 

IS [J] [a] 15 7.5 7.0 20 

FS [N] [b] 353 120 112 120 

ESD [J] [c] – 0.2 0.2 0.1 

N [%] [d] 18.5 37.84 37.84 59.3 

Ω [%] [e] –74.0 –21.6 –21.6 –27.1 

Tdec. [°C] [f] 290 210 279 221 

ρ [g cm−3] [g] 1.648 1.806 1.904 1.877 

ΔfHm° [kJ mol−1] [h] –55.5 86.3 116.1 446.6 

ΔfU° [kJ kg−1] [i] –168.0 489.0 492.5 2006.4 

EXPLO5 V6.03[67]     

−ΔExU° [kJ kg−1] [j] 4999 5743 5708 5745 

Tdet [K] [k] 3192 3749 3624 3521 

pCJ [GPa] [l]  18.8 34.3 38.6 41.0 

VD [m s−1] [m] 6878 8919 9328 10026 

V0 [L kg−1] [n]  643 790 771 914 

Toxicity     

EC50 (15 min) [g L–1] [o] – 0.33[38] – 1.17[38] 

EC50 (30 min) [g L–1] [o] – 0.24[38] – 0.58[38] 
[a] Impact sensitivity according to the BAM drop hammer (method 1 of 6); [b] Friction sensitivity according to the BAM friction tester 
(method 1 of 6); [c] Electrostatic discharge sensitivity (OZM ESD tester); [d] Nitrogen content; [e] Oxygen balance; [f ] Temperature of 
decomposition according to DSC (onset temperatures at a heating rate of 5  C min–1); [g] Density at room temperature; [h] Heat of 
formation; [i] Energy of formation. [j] Heat of detonation; [k] Temperature of detonation; [l] Detonation pressure; [m] Detonation 
velocity; volume of gases after detonation; [n] Gas volume after detonation; [o] Toxicity measurements to aquatic life using the 
luminescent marine bacterium Vibrio fischeri. 

 

Due to the fact that TKX-50 has the potential of being the RDX replacement in the future, it attracts 

great attention in the chemical community. Since 2012, over 60 journal articles or patents related to 

TKX-50 were found in the literature.  
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The growing interest for TKX-50 leads to a wide range of studies to get a closer understanding 

regarding synthesis, molecular processes, thermal behavior/decomposition, compatibility, 

solubility, sensitivity, polymorphism, co-crystallization, estimated detonation velocities, 

decomposition products and formulations using TKX-50.[68-80]  

One main goal of research is the improvement of the extensive synthetic pathway toward TKX-50. 

In 2014 and 2015, two Chinese patents each described three-step synthesis starting from aqueous 

glyoxal solution with a total yields up to 72 %.[81-82] Zhang et al. prepared glyoxal in the first step, 

which is further combined with the chlorination using N-chlorosuccinimide (NCS) or 

N-bromosuccinimide (NBS) and azidation. In the final step, gaseous HCl was used for the ring-

closing reaction followed by an extensive work-up.[82] Zhou et al. likewise prepared first glyoxal, 

which is then chlorinated using chlorine gas.[81] The third step includes the azidation, ring-closing 

using gaseous HCl and salt formation while isolating the sodium BTO salt.[81] However, both 

methods include gaseous HCl, transferring mixtures to new flasks as well as isolation of 

intermediates, for this reason these routes are still extensive and at least technically four-step 

synthesis.  

In 2017, an Indian patent by Pradhan et al. reported about different synthesis of TKX-50.[83] 

However, the patent explains the original synthesis using different solvents (e.g. ethanol for 

chloro/azido exchange) or other reaction conditions. Also in 2017, a one-pot-synthesis by 

Damavarapu et al. was patented with a yield up to 71 %.[84] The patent explains the synthesis 

toward TKX-50 starting from glyoxime in DMF adding NCS for chlorination, NaN3 for chloro/azido 

exchange and a 4 M HCl dioxane solution for the ring-closing. But the synthesis shows disadvantages 

such as the sealing of the reaction mixture, long reaction durations and evaporation of the solvents 

after the ring-closing step.  

Another publication reported on the optimization of the TKX-50 synthesis established by 

Yolenko et al..[85] They focused on the improvement of the cyclization step and further combining 

several reaction steps. Interestingly, the ring-closing method by Tselinskii et al.[86] using a different 

reagent was optimized and an one-pot-reaction in N-methyl-2-pyrrolidon (NMP) starting from 

glyoxime using dioxane and gaseous HCl for the ring-closing was established with a yield of 74 %. 

However, the mentioned one-pot reaction is more a two-pot reaction due to the isolation of an 

intermediate. Moreover, it is an extensive synthesis including reaction steps which are complex to 

transfer to industrial scale.  
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The most recent synthetic approach was carried out accidentally by Shreeve et al. in 2018.[68] They 

reported on the unpredictable loss of a carbon atom and the oxime moiety during the synthesis of 

bisoxadiazoles and bis-(1-hydroxy-1H-tetrazol-5-yl)-methanone oxime (Scheme 1.3). The latter 

leads to the not expected formation of TKX-50 by cleaving the –C=NOH group between the 

tetrazoles. The new route avoids the usage of expensive and hard-to-remove solvents, however, still 

four synthesis steps are necessary to obtain TKX-50.  
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Scheme 1.3. Oxime loss during the synthesis leading toward TKX-50 according to Shreeve et al.[68] 

Detailed knowledge of possible phase transitions and thermal behaviour as well as decomposition 

were investigated by Dreger et al., Lu et al. and Steele et al.[69, 87-88] First, Dreger et al. found a 

polymorphic phase transition while the ambient pressure phase of TKX-50 is heated above 180 °C 

by Raman measurements. Second, he explained the high structural and chemical stability by the 

interionic hydrogen bonds between the molecular moieties. Under high pressure and high 

temperature, intermolecular hydrogen transfers were detected. This H-transfer from NH3OH+ to 

C2O2N8– lead to disintegration of the N–O bond and release of gaseous products, which promotes the 

decomposition of TKX-50. Additionally, the decomposition of TKX-50 can be characterized as a 

transformation into two intermediates. The first part of the decomposition is the formation of BTOH 

and NH2OH. While hydroxylamine subverts into gaseous products such as N2O, NH3 and H2O, 

bistetrazole-dioxide (BTOH) reacts with ammonia to diammonium-5,5´-bitetrazole-1,1´-dioxide, 

which is the dominating product of decomposition and decomposes into polymeric residues.[69] The 

finding of a phase transition by Dreger et al. was confirmed by Lu et al., who reported on a new 

metastable phase named meta-TKX-50 at ~180 °C.[69, 87] Further research by Steele et al. led to three 

new phases of TKX-50, each with different hydrogen bonding topology and crystallographic 

packing of the cation (NH3OH+) and anion (C2N8O22–). The first phase (P-1) is predicted to be 

energetically competitive with normal phase near ambient conditions, while the other two phases 

are stable above either 19.9 GPa (C2/c) or 30.3 GPa (P21/c).[88] 
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Different attempts to change the mechanical properties, moldability and sensitivities were carried 

out by preparing formulations with TKX-50.[72, 74, 89-90] Wang et al. prepared TKX-50/graphene 

oxide composites with the result of changing the morphology to a spherical-like structure, which 

additionally lowers the sensitivity values.[72] As a conclusion, they promote their composite as a 

promising candidate for new insensitive high energetic materials.  

Two other research groups dealt with studies about insensitive TKX-50-based melt cast high 

explosives.[74, 89] Both studies carried out formulations using TKX-50 and/or RDX, HMX and/or TNT. 

Using a melt cast formulation consisting of TKX-50/TNT instead of RDX/TNT results in a higher 

thermal stability and lower friction sensitivity.[74] The formulations instigated by Yu et al. point also 

a higher performance and thermal stability of TKX-50/TNT and TKX-50/TNT/Wax formulations 

compared to HMX/TNT and HMX/TNT/Wax.[89] Both research groups emphasize the potential of 

TKX-50 as replacement for RDX/HMX based melt cast formulations.[74, 89] Beside melt cast explosive 

formulations, TKX-50 could also serve in polymer-bonded explosives.[90-93] 

In the paper Yu et al., molecular dynamics (MD) simulations are carried out to study the 

characteristics of TKX-50 based polymer-bonded explosives using fluorine (F2311), fluorine resin 

(F2641), polyethylene glycol or ethylene vinyl acetate copolymer as binders.[93] They concluded that 

the best improvements in plasticity, moldability and binding energy were calculated for PEG. 

Further MD studies on polymer-bonded explosives with additional TKX-50 were carried out by 

Ma et al. using polyvinylidene difluoride and polychlorotrifluoroethylene as polymer.[92] Using these 

binders lead to an improvement of the ductility and decreasing the sensitivities. Besides these 

promising calculations, Niu et al. performed practical polymer-bonded explosives formulations 

using 10 % of a (C3H4O5N)n binder, which were analyzed by X-ray diffraction and thermal 

analysis.[90] The results revealed that the binder has only a weak effect on the thermal 

decomposition of that polymer bonded explosive. 

Despite the promising characteristics of TKX-50, Xiong et al. were interested in new compositions 

by combining different explosives like RDX, HMX or CL-20 with TKX-50 to obtain co-crystals.[75, 91, 94] 

The co-crystals of TKX-50/RDX, TKX-50/HMX and TKX-50/ CL-20 were closer investigated by 

molecular dynamics simulations in order to expand the application range of CL-20 and minimize the 

disadvantages of both single compounds. According to the calculations of Xiong et. al., hydrogen 

bonding exists between the three TKX-50 co-crystals resulting in significant lower sensitivity 

values as well as an improvement of the thermodynamic stability.[75, 91, 94]  
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To prove the calculated detonation properties using EXPLO5 or CHEETAH of different explosives, a 

new technique named LASEM (laser-induced air shock from energetic materials) was carried out 

and published by Gottfried et al. in 2017.[95] This method was utilized for commonly used and 

recently developed secondary explosives such as RDX, TNT, BTNPM or TKX-50. The tests showed 

that TKX-50 produced the third largest laser-induced deflagration of the measured explosives. 

Further, the estimated detonation velocities based on the LASEM measurements are in agreement 

with the calculated ones with less than 1.5 % deviation.[95]  

Using an underwater initiation test, the initiating capability of detonators containing different 

common (RDX, HDX, PETN) and recent explosives (TKX-50, MAD-X1, PETNC, DAAF) was 

undertaken by Klapötke et al. in 2016.[96] In the underwater experiment, the total energy is a sum of 

the shock wave energy and the gas bubble energy. In detail, the total energy of TKX-50 was the 

third highest behind MAD-X1 and DAAF.  The obtained densities during the experiments were lower 

for all recent explosives than the theoretically maximum density. In summary, TKX-50 can be used 

as based charge detonators at which the pressing density has to be increased to maximize the 

performance parameters.[96]  

According to Huang et al., TKX-50 shows excellent heat-resistance ability (critical temperature of 

thermal explosion: 523.39 K). Moreover, the main decomposition products were determined by TG-

FTIR as well as TG-DSC-MS to be N2, H2O, NH3, NH2, N2O and NO.[77]  

Further, a compatibility study of TKX-50 with different binders, explosives as well as additives was 

carried out by Huang et al. using DSC measurements.[76] However, their testing setup and rating was 

performed completely different than the official STANAG 4147 agreement.[97] Anyway, as a result of 

their study TKX-50/HNE as well as TKX-50/DNAN possess beneficial compatibility and 

TKX-50/HMX moderate compatibility. The compatibility of TKX-50 with TNT, RDX, Cl-20, NC, 

ammonium perchlorate, aluminium, GAP (glycidyl azide polymer) and HTPB (hydroxyl-terminated 

polybutadiene) is according to their rating poor.[76]  

Another compatibility test was performed by Nicolich et al. using a traditional vacuum stability test 

in accordance to the STANAG 4556[98] agreement.[80, 98] They reported on the outstanding 

compatibility of TKX-50 toward polymers, plasticizers, metals and metal oxides.  

Zhang et al. analyzed the solubility of TKX-50 in different solvents by gravimetric methods with the 

order of solubility: ethyl acetate < ethanol < toluene < water < DMF < formic acid < DMSO.[79] 

Further, a linear relationship between the solubility of TKX-50 and the temperature was found.[79]  
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An et al. investigated the anisotropic impact sensitivity and shock induced plasticity using molecular 

dynamics simulations.[78] The focus during that work was to set on the mechanical response under 

shock directions from (100), (010) and (001). Due to the calculated Hugoniot Elastic Limits (HEL), 

they expect anisotropic sensitivity, whereas (010) is the most sensitive shock direction with the 

highest HEL (14.2 GPa), (100) the insensitive shock direction with the lowest HEL (6.1 GPa) and 

(001) is the most moderate sensitive shock direction with 9.1 GPa.[78]  

More recent in 2018, two patents related to TKX-50 were published dealing with explosive 

nanowires or of being a possible explosive in an electromagnetic mobile active system for fitting in a 

missile with a detonation-operated magnetic field compressor.[99-100]  
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1.4 Concept, Motivation and Objectives 

Goals and motivation of this thesis consist of three main parts: the first part deals with the synthesis 

and characterization of new “green” secondary explosives based on azoles, while the second part 

discusses the synthetic improvement and further characterization of the primary explosive 

K2DNABT. The last part explains the synthetic improvement and further characterization of the 

secondary explosive TKX-50.  

The main features and characteristics of a new potential RDX replacement are a thermal stability 

over 200 °C, higher performance (VD ≥ 8800; pCJ ≥ 340 kbar), lower sensitivities toward external 

stimuli (IS ≥ 7.5 J; FS ≥ 120 N) and environmental compatibility.  

The first goal regarding the synthesis, intensive characterization and investigation of new secondary 

explosives should be solved by utilization of nitrogen-rich heterocycles such as pyrazoles or by 

combining 1,2,4-triazoles and 1,2,4,-oxadiazoles (Figure 1.9). These azoles as building blocks are 

suitable to synthesize new energetic materials inclosing the main characteristics mentioned 

above.[13, 101-102]  

pyrazole

N N
H

N N
H

N

1,2,4-triazole

N N

O

1,2,4-oxadiazole  

Figure 1.9. Chemical structures of selected nitrogen-rich heterocycles used as backbone for the 
synthesis of new secondary explosives. 

 

Pyrazoles – especially nitrated pyrazoles – arouse interest in the past due to their different 

characteristics and cheap price for the investigation of new environmentally friendly energetic 

materials.[103-107] The design of new functionalized pyrazole derivatives is an ongoing progress and 

many remarkable compounds were synthesized.[18, 23, 108-109]  

The main concept to enhance the energetic properties is to get rid of the acidic proton of the 

pyrazole ring which could cause compatibility problems.[23] Therefore, different strategies are 

known such as salt formation[110], methylation[111], N-functionalization[104, 109], azo-bridging[103], 

amination[108, 112], N-oxidation[113-114], ethylene[115] or methylene bridging[18] as well as combination 

with other heterocycles (Figure 1.10). 
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Figure 1.10. Functionalization possibilities of nitrated pyrazoles by either detaching the acid proton or 
connecting with other heterocycles. The blueish highlighted bubbles are discussed in this thesis. 

Salt formation using nitrogen-rich cations generally improve the thermal stability and – in some 

cases – also the stability toward external stimuli caused by hydrogen bonding interactions.[116] 

N-Functionalization such as the introduction of a trinitromethyl group to the nitrogen atom of 

3,4-dinitropyrazole and 3,5-dinitropyrazole (Tdec = 141–143 °C; VD = 8668–8733 m s–1) or reacting 

bromonitromethane with trinitropyrazole (TNP) mainly increase the oxygen balance  and the 

density, whereas these compounds can be classified as a high energetic density oxidizer due to their 

high oxygen content.[23, 109]  
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New pyrazole derivatives could further be synthesized by linking azoles via N,N´-alkyl-bridging.[117-

118] Examples are linked nitramino or azido substituted nitropyrazoles with nitroimino-tetrazoles 

via an N,N'-ethylene-bridge to get either thermal sensitive but powerful explosives (Tdec = 89–

137 °C; VD = 8659–8804 m s–1).[118] Decreasing the carbon amount leads to N,N'-methylene-bridged 

compounds such as bispyrazolylmethanes, which were firstly described by Fischer et al.. The 

hexanitro-bridged pyrazole shows the highest detonation velocity (VD = 9304 m s–1) and a sufficient 

thermal stability (Tdec = 205 °C) and can therefore be compared to hexanitro-hexaazaisowurtzitane 

(CL-20).[119-120] 

Another promising concept is the introduction of N-oxides in tetrazoles, triazoles or pyrazoles 

which results in higher energetic performances due to a higher oxygen balance, as well as the 

density and hence the detonation parameters. [17, 55, 114, 121-123] This class of compounds can easily be 

synthesized by using either Oxone® or hypofluorous acid (HOF).[124-125] Therefore, the N-oxide of 

TNP and some nitrogen-rich salts thereof were obtained by using Oxone® and a corresponding base. 

As a result, some of the newly developed compounds showed qualified properties as energetic 

materials (VD = 8175–8676 m s–1) with acceptable decomposition temperatures (Tdec = 118–

186 °C).[126] Nevertheless, TNP oxide is a liquid and a very high impact sensitivity (IS: 1 J) was 

observed.[126] The last possible option is the combination of pyrazoles with different nitrogen-rich 

heterocylces such as triazoles, oxdiazoles or tetrazoles, which further leads to biheterocyclic C–C- or 

C–N-bonded compounds exhibiting promising energetic performances.[127-129]  

This thesis focuses on four of the mentioned concepts (N-oxidation, salt formation, methylene-

bridging and combination with tetrazoles) carried out with (nitrated) pyrazoles (Figure 1.11).  

3,4-dinitro-1H-pyrazole

N N
H

O2N
NO2

3,5-dinitro-1H-pyrazole

N N
H

O2N
NO2

1H-pyrazole

N N
H

4-nitro-1H-pyrazole

N N
H

NO2

 

Figure 1.11. Chemical structures of (nitrated) pyrazoles used and functionalized in this thesis. 
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2 Summary and Conclusion 

Chapters 3–7 deal with the synthesis and characterization of new environmentally benign energetic 

materials with focus on secondary explosives. Chapters 3–4 and 7 have been published in peer-

reviewed scientific journals. The content of the articles is consistent with the particular publication; 

however, the layout has been modified to fit in this thesis.  
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2.1 Isomers of Dinitropyrazoles: Synthesis, Comparison and Tuning of Their 
Physicochemical Properties 

The improved synthesis and intensive characterization of three isomeric dinitro-1H-pyrazoles 

(3,4-DNP, 1,3-DNP and 3,5-DNP) is presented (Figure 2.1). The nitrated pyrazoles can be prepared 

starting from readily available 1H-pyrazole by nitration and rearrangement reactions. These three 

isomers implicate high densities, high detonation velocities, low sensitivity values and an 

interesting thermal behavior for using as melt-cast materials (1,3-DNP and 3,5-DNP).  

 

 

Figure 2.1. Crystal structures and selected properties of 3,4-dinitropyrazole (left), 1,3-dinitropyrazole 
(middle) and 3,5-dinitro-pyrazole (right). 

 

Additionally, the sodium and potassium as well as six selected nitrogen rich (ammonium, 

hydrazinium, hydroxylammonium, guanidinium and 3,6,7-triamino-[1,2,4]triazolo[4,3-

b][1,2,4]triazole (TATOT)) salts of 3,4-DNP and 3,5-DNP were synthesized in order to tune 

performance and sensitivity values (Figure 2.2). The salts show in general high decomposition 

temperatures, low sensitivity values and acceptable energetic parameters. Most compounds with 

exception of the hydrazinium and water free potassium salt are not sensitive to impact (IS: > 40 J) or 

friction (FS: 360 N). The most energetic compounds are the hydrazinium salts with detonation 

velocities between 8369 and 8610 m s–1, which are close to the one of RDX (VD: 8861 m s–1).  
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Figure 2.2. Crystal structures and selected properties of the hydrazinium salts of 3,4-DNP (left) and 

3,5-DNP (right). 

As a result of the toxicity measurement using the luminescent marine bacterium Vibrio fischeri the 

potassium salt of 3,5-DNP was observed to be less toxic than RDX, 3,5-DNP and the potassium salt of 

3,4-DNP.  
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2.2 Improving the Energetic Properties of Dinitropyrazoles by Utilization of Current 
Concepts 

Three different concepts (N-oxidation, salt formation and methylene bridging) for the 

functionalization of two isomeric dinitropyrazoles were used in order to improve the energetic 

properties and sensitivity values. First, two nitrated pyrazoles (3,4-DNP and 3,5-DNP) were reacted 

using Oxone® and a pH buffer system to get the N-hydroxides of both pyrazoles in high yields. 

Second, energetic salts of both hydroxides were synthesized showing that the salts of 3,5-DNP-oxide 

indicate higher decomposition temperatures, higher densities, higher detonation parameters and 

acceptable sensitivity values compared to the salts without the N-oxide (Chapter 3).  

 
Figure 2.3. Crystal structures and selected properties of guanidinium 3,4-DNP-1-oxide (left) and 
guanidinium 3,5-DNP-1-oxide (right). 

Third, two methylene bridged pyrazoles were synthesized and characterized using diodomethane in 

DMF (Figure 2.4). This class of compounds shows very high decomposition temperatures (up to 

330 °C), low sensitivity values and acceptable detonation velocities (7966 and 8140 m–1). 

 

Figure 2.4. Crystal structures and selected properties of bis-(3,4-dinitro-1H-pyrazol-1-yl)-methane 
(left) and bis-(3,5-dinitro-1H-pyrazol-1-yl)-methane (right). 
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The toxicity to Vibrio fischeri was measured for both water soluble potassium salts due to their good 

water solubility. The measurement shows that the potassium salt of 3,4-DNP oxide is more toxic and 

the potassium salt of 3,5-DNP oxide is less toxic than RDX. Based on the relative high decomposition 

temperatures, rather high detonation parameters and appropriate sensitivity values both potassium 

salts and the bridged compounds have capability as future energetic materials.  
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2.3 Combination of Different Azoles – 1,2,4-Triazolyl-1,3,4-Oxadiazoles as Precursor 
for Energetic Materials 

The synthesis of two new energetic derivatives based on the heterocycles 1,2,4-1H-triazole and 

1,3,4-oxadiazole are described. 2-Amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole can be 

synthesized in a three-step procedure and 2-amino-5-(5-nitro-1H-1,2,4-triazol-3-yl)-1,3,4-

oxadiazole in a four-step procedure by using 5-amino-1H-1,2,4-triazole-3-carboxylic acid as starting 

material. The ring closing toward the 1,3,4-oxadiazole was carried out using cyanogen bromide and 

the corresponding triazole-carbohydrazides (Figure 2.5).  

 

 
Figure 2.5. Overview of the synthetic pathway toward both triazole-oxadiazoles and the salts of the 
nitro derivative. 

 

Both biheterocycles show high thermal stabilities, high densities (ρ = 1.90 and 1.92 g cm–3) and 

acceptable detonation performances (VD = 8265 and 8477 m–1). Both heterocycles are not sensitive 

toward impact friction or ESD. The nitro derivative 6 was further functionalized by reacting it with 

four bases to yield the potassium, ammonium, guanidinium and aminoguanidinium salt. The salts 

were intensively characterized and the crystal structures were determined (Figure 2.6).  
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Figure 2.6. Crystal structures and selected properties of the guandinium (left) and aminoguanidinium 
(right) salt of 2-amino-5-(5-nitro-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole. 

The synthesized ionic compounds are insensitive toward external stimuli with sensitivity values for 

impact of 40 J and for friction with 360 N, each. The thermal stability of all four compounds ranges 

from 246 °C for the aminoguanidinium salt to 296 °C for the guanidinium salt. 2-Amino-5-(5-amino-

1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole and 2-amino-5-(5-nitro-1H-1,2,4-triazol-3-yl)-1,3,4-

oxadiazole are suitable as precursors for new energetic materials. Their energetic behavior can be 

improved by nitration, amination, N-oxidation or N-functionalization  
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2.4 3,5-Ditetrazolyl-Pyrazoles as Precursor for New Energetic Materials – New 
Mixed Heterocycles Combining Pyrazoles and Tetrazoles (unpublished) 

The first synthesis of the two triheterocyclic compounds 5,5’-(1H-pyrazole-3,5-diyl)-bis-1H-

tetrazole and 5,5’-(4-nitro-1H-pyrazole-3,5-diyl)-bis-1H-tetrazole consisting of one pyrazole and 

two tetrazoles with high nitrogen content is described. The compounds were synthesized in a five or 

six-step synthesis using commercially available reagents and show high yields and facile reaction 

conditions (Figure 2.7). 
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Figure 2.7. Synthetic pathway toward 5,5’-(1H-pyrazole-3,5-diyl)-bis-1H-tetrazole and 5,5’-(4-nitro-
1H-pyrazole-3,5-diyl)-bis-1H-tetrazole and selected properties thereof. 

 

Both compounds show high decomposition temperatures of 277 °C and 246 °C. Their sensitivity 

values as hydrates are > 40 J for impact and 360 N for friction, for which reason they are classified 

as not sensitive. The calculated detonation velocities of both compounds (VD = 6965 and 7678 m s–1) 

are lower than RDX.  

 



 

39 

 

Figure 2.8. Crystal structure of 5,5’-(1H-pyrazole-3,5-diyl)-bis-1H-tetrazole as dihydrate. 

According to their high decomposition temperatures and low sensitivity values, both triheterocylces 

are suitable as precursor for high energetic materials or due to their high nitrogen content as 

propellant charges. Their energetic characteristics can be improved by different concepts 

mentioned in the introduction of this thesis such as N-functionalization, N-oxidation or salt 

formation. Both compounds own three acidic protons, which can be functionalized individually to 

obtain mono-, di- or tri-substituted compounds implicating different energetic characteristics.  
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2.5 Metal Salts and Complexes of 1,1’-Dinitramino-5,5’-bitetrazole  

The synthesis and characterization of several new metal salts (Li, Na, Rb, Cs, Ca, Sr and Ba) and 

complexes (Ni, Cu and Zn) of 1,1’-dinitramino-5,5’-bitetrazole (H2DNABT) is described. Since the 

potassium salt K2DNABT is a very promising environmentally benign primary explosive the 

remaining alkaline salts as well as selected alkaline earth and transition metal complexes should be 

investigated toward their energetic behavior. Within the group of alkali metal salts (Li, Na, 

K2DNABT, Rb, Cs) the lithium and sodium salts form dihydrates which can reversibly be dehydrated. 

Two polymorphs of the sodium salt were explored formed by recrystallization from water and 

ethanol, respectively (Figure 2.9). 

 

      
Figure 2.9. Crystal structures of two different polymorphs of disodium 1,1’-dinitramino-5,5’-
bitetrazololate dihydrate from water (left) and ethanol (right). 

The rubidium, cesium and silver salts are poorly soluble in water. All are highly sensitive showing a 

super fast “deflagration to detonation” behavior on contact with flame or hot surfaces. The silver 

salt usually explodes during drying, latest on lightest touch when dry. The alkaline earth metal salts 

(Ca, Sr, Ba) are highly soluble in water and could not be purified sufficiently. They are forming tetra- 

(Ca and Sr) and hexahydrates (Ba) in the solid state. Neat transition metal complexes could only be 

synthesized with Ni(II), Cu(II) and Zn(II) under addition and coordination of ammonia (Figure 

2.10). The nickel and copper salts could be successfully initiated by laser irradiation. For the first 

time the cations hexaamminenickel(II) and tetraamminezinc(II) were combined with energetic 

counterions. 
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Figure 2.10. Crystal structures of silver salt (left) and Cu(II) complex under addition of ammonia 

(right). 

The crystal structure of all compounds except for calcium could be determined by low temperature 

X-ray diffraction, which gave insight in the coordination of the metal centers and hydrogen bond 

interactions. Sensitivities of the alkaline and transition metal salts were measured showing 

extremely high values partly much more susceptible. The lowest thermal stability of 155 °C was 

observed for the tetrammine-copper(II) complex which might be caused by the loss of ammonia. 

The highest value (247 °C) was observed for the dehydrated sodium salt. With respect to potential 

application in priming charges the potassium salt is still the most promising due to its manageable 

sensitivities in combination with a thermal stability of 200 °C. 

 

 

Figure 2.11. Overview of the sodium salt and the hot plate test of the synthesized salts and 
complexes.  
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Abstract: Three isomeric dinitropyrazoles (DNPs) were synthesized starting from 
readily available 1H-pyrazole by slightly improved methods than described in the 
literature. 3,4-Dinitropyrazole (3), 1,3-dinitropyrazole (4), and 3,5-dinitropyrazole (5) 
were obtained and compared to each other with respect to thermal stability, 
crystallography, sensitivity and energetic performance. Two isomers (3 and 4) show 
high densities (1.79 and 1.76 g cm–3) and interesting thermal behavior as melt-castable 
materials (3: Tmelt. = 71 °C, Tdec. = 285 °C; 5: Tmelt. = 68 °C, Tdec. = 171 °C). Furthermore, 
eight salts (sodium, potassium, ammonium, hydrazinium, hydroxylammonium, 
guanidinium, aminoguanidinium and TATOT) of 3 and 5 were synthesized in order to 
tune performance and sensitivity values. These compounds were characterized using 
1H, 13C, 14N, 15N NMR and IR spectroscopy as well as mass spectrometry, elemental 
analysis and thermal analysis (DSC). Crystal structures could be obtained of 14 
compounds (3−7, 10−12 and 15−20) by low temperature single crystal X-ray 
diffraction. Impact, friction and electrostatic discharge (ESD) values were also 
determined by standard methods. The sensitivity values range between 8.5 and 40 J for 
impact and 240 N and 360 N for friction and show mainly insensitive character. The 
energetic performances were calculated using recalculated X-ray densities, heats of 
formation and the EXPLO5 code and support the energetic character of the title 
compounds. The calculated energetic performances (VD: 6245–8610 m s–1; pCJ: 14.1–
30.8 GPa) were compared to RDX. 

 

3.1 Introduction 

Modern high energy density materials (HEDMs) have to fulfill different requirements depending on 

their application such as high energetic performance, high density, high heat of formation, low 

sensitivity toward external stimuli, thermal stability and environmental impact to replace the 

widely used RDX.[1] In contrast to the carcinogenic and hepatoxic RDX nitrogen-rich materials 

release mostly environmentally friendly dinitrogen after decomposition.[2] These goals could be 

achieved by azoles, such as tetrazoles[3], triazoles[4], imidazoles[5], oxadiazoles[6], furazanes[7] or 

pyrazoles[8]. In general the deprotonation of azoles by bases result in higher performances and 

thermal stabilities such as 5,5‘-bistetrazole-1,1-dioxide dihydrate (VD: 8764 m s–1, Tdec.: 214 °C) and 

its dihydroxylammonium salt (TKX-50 VD: 9698 m s–1, Tdec.: 221 °C) or its potassium salt (Tdec.: 

335 °C).[3, 9] Nitrated pyrazoles arouse interest in the past due to their different characteristics and 

achieve the requirements mentioned before (Figure 3.1).[10] The nitro groups decrease the electron 

density inside the pyrazole, whereas the acidity of the N bonded proton rises and the pKa value 

decreases (1H-pyrazole: 14.2; 3-nitropyrazole 9.81; 3,4-dinitropyrazole: 5.14, 3,5-dinitropyrazole: 

3.14 and 3,4,5-trinitropyrazole: 2.35).[11]  
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Hence, only the C nitrated dinitropyrazoles and trinitropyrazole (TNP) are acidic enough to get 

deprotonated by adding common bases (Figure 1). Shreeve et al. reported a series of nitrogen-rich 

salts of TNP with rather high energetic properties, low sensitivities and high thermal stabilities.[8] 

 

Figure 3.1. Overview of nitrated pyrazolates arranged according to their rising sensitivity and 
energetic performance. 

Comparing the densities of di- and trinitrated pyrazoles the calculated density of TNP (1.867 g cm–3) 

is marginally higher than the ones of the two DNP isomers (1.76 and 1.79 g cm–3).[8] But the 

sensitivity values are with 17 J for impact and 92 N for friction higher than for TNP.[8] Nitrogen-rich 

salts of dinitrated pyrazoles (DNPs) have not been mentioned in the literature yet. In this work 

three different isomeric DNPs were synthesized by partly different methods than literature and 

selected alkaline metal and nitrogen-rich salts of 3,4-DNP and 3,5-DNP were prepared, intensively 

characterized and compared to each other. 

 

3.2 Results and Discussion 

The synthesis of the three DNPs is described by. Janssen et al. starting from N-nitration of pyrazole, 

followed by thermal rearrangement in anisole (2) (Scheme 3.1).[12] A selective C4 nitration of 

compound 2 was carried out by using nitric acid and sulfuric acid yielding 3,4-DNP (3).[12a] Similar 

nitration conditions to the first step were used for the synthesis of 1,3-DNP (4).[12a] A further 

thermal rearrangement in benzonitrile and an easier work-up from literature gave 5 in good 

yields.[12a]  

Starting from compounds 3 and 5 different ionic derivatives (6–21) were synthesized by 

deprotonation. The salts were prepared using sodium hydroxide, potassium hydroxide, ammonia, 

hydroxylamine, hydrazine, guanidine bicarbonate, aminoguanidine bicarbonate and TATOT (3,6,7-
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triamino-[1,2,4]triazolo[4,3-b][1,2,4]triazole). Salts of compound 5 show a much better and faster 

crystallization behavior than the salts of compound 3.  
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Scheme 3.1. Synthesis of 1,3-dinitropyrazole (4), 3,4-dinitropyrazole (3) and 3,5-dinitropyrazole (5) as 
well as their ionic derivatives. 

 

3.2.1 Crystal structures 

In this work the crystal structures of compounds 3–7, 10–12 and 15–20 were obtained. Selected 

data and parameters from the low temperature X-ray data collection and refinements are given in 

the supporting information. Further information regarding the crystal-structure determinations 

have been deposited with the Cambridge Crystallographic Data Centre as supplementary 

publication Nos. 1835056 (3), 1835054 (4), 1835062 (5), 1835053 (6), 1835066 (7), 1835061 

(10), 1835065 (11), 1835063 (12), 1835060 (15), 1835055 (16), 1835057 (17), 1835059 (18), 

1835058 (19) and 1835064 (20). 

 

 



 

47 

Dinitropyrazoles 3–5 crystallize in common space groups (3: P21/c; 4: P21/c; 5: Pca21) with crystal 

densities between 1.796 g cm–3 (4) and 1.827 g cm–3 (5) at 173 K.  

                

Figure 3.2. Molecular units of 3 (left) and 5 (right). Ellipsoids are drawn at the 50% probability level.  

The molecular units of compounds 3–5 are shown in Figures 3.2 and 3.3. Compound 4 is disordered 

along the axis of rotation through atom N2. The bond lengths within the ring nitrogen atoms of the 

nitropyrazoles are between the values of a N−N single bond (1.47 Å) and a N=N double bond 

(1.25 Å). 

 

Figure 3.3. Molecular unit of 4. Ellipsoids are drawn at the 50% probability level.  

The nitro groups of 3 are most twisted toward the planar pyrazole ring due to their steric hindrance 

(3: –7.8(2)°, –78.83(18)°; 4: –3.1(5)°, 17.1(8)°; 5: –1.7(4)°, –8.9(3)°). Further, 3,4-DNP (3) is 

stabilized due to hydrogen bonding resulting in a high decomposition temperature (Tdec.: 285 °C). 

On the one hand classical hydrogen bonds are found involving N–H···N/O interactions and showing 

H···N/O distances between 2.9540(16) and 3.0572(16) Å.[13] Further, weak non-classical hydrogen 

bonds implicating C–H···O correlations are visible.  

The molecular moieties of water free salts are depicted in Figures 3.4–3.7. The remaining crystal 

structures can be found in the supporting information. The potassium (15) and ammonium (16) salt 

of 3,5-DNP crystallize in the space group P–1. The crystal density of 15 shows the highest value of 

all compounds with 2.037 g cm–3 whereas the density of 16 is 1.732 g cm–3 at 173 K. 
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Figure 3.4. Molecular units of 15 (left) and 16 (right). Ellipsoids are drawn at the 50% probability 
level.  

The bond lengths and angles of 15 and 16 are similar to the neutral compound 3. Compound 16 is 

stabilized by various H-bonds between the ammonium cation and the anion e.g. N5−H5A···O3, 

N5−H5A···O1, N5−H5A···O4, N5−H5B···O2 N5−H5C···N1, N5−H5D···N2. The nitro groups of 16 (5.3°; 

5.1°) are more twisted toward the planar pyrazole ring system compared to the ammonium salt 

(2.8(2)°; 1.3(2)°).  

The hydrazinium salts of both isomers (10, 18) are crystallizing in the monoclinic space groups 

P21/c and P21/n, respectively. The nitro groups of hydrazinium salt 10 are further twisted toward 

the planar ring. The density of 10 (1.704 g cm–3) is higher than that of compound 18 (1.682 g cm–3). 

This relates to the slightly higher density of the neutral compounds 3 and 5. The nitrogen bond 

lengths of both hydrazines are very similar (10: N9–N10 1.444(4); 18: N5–N6 1.446(2)) and are in 

the range of a typical N–N single bond.  

                        

Figure 3.5. Molecular units of 10 (left) and 18 (right). Ellipsoids are drawn at the 50% probability 
level.  

Both hydrazinium cations show hydrogen bonding to the pyrazole ring nitrogen and to the oxygen 

of the nitro groups. The better hydrogen interaction of 18 leads to a higher decomposition 

temperature (Figure 3.5). 
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Figures 3.6 and 3.7 depict the molecular units of the guanidinium derivatives (11, 12 and 20). They 

all crystallize in the common space groups P–1 (11), P212121 (12) and C2/c (20) with densities of 

1.657 g cm–3 (11, 173 K), 1.647 g cm–3 (12, 173 K) and 1.695 g cm–3 (20, 100 K). The structure of 11 

is dominated by strong hydrogen bonds involving all guanidinium protons and both nitro groups 

are twisted out of the pyrazole plane (O1–N3–C1–N1: 24.4(2)° and O4–N4–C2–C1: -168.89(16)°) 

due to their steric hindrance.  

 

Figure 3.6. Molecular unit of 11. Ellipsoids are drawn at the 50% probability level.  

Also the nitro groups of compound 12 are twisted toward the planar pyrazole ring with torsion 

angles of 28.28(19)° (O4−N4−C1−N1) and 24.7(2)° (O1−N3−C2−C3). Comparing the twist of the 

nitro groups of compound 12 and 20 they are only distorted slightly for the latter (-3.1(3)° and 

4.3(2)°). 

                      

Figure 3.7. Molecular units of 12 (left) and 18 (bottom). Ellipsoids are drawn at the 50% probability 
level.  

The N–N bond lengths of aminoguanidinium cations are close to a N–N single bond with distances 

between 1.4030(18) Å (12) and 1.410(2) Å (20). Both structures show hydrogen bonding involving 

all protons of the aminoguanidinium and the carbon bonded hydrogen.  
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3.2.2 Spectroscopy 

The three isomers 3–5 can easily be distinguished by 1H, 13C, 14N and 15N NMR spectroscopy as well 

as IR and Raman spectroscopy. Further a two dimensional 1H/15N NMR HMBC spectrum was 

recorded for compound 4.The NMR shifts of 3–5, 8, 11, 16 and 19 are listed in Table 3.1. In the 1H 

NMR spectra, two hydrogen signals were observed for 1,3-DNP (9.09 and 7.44 ppm) and for 3,4-

DNP (14.84 and 9.10 ppm) and one for 3,5-DNP (7.92 ppm). The reason for the missing N-H peak of 

3,5-DNP might be the fact that the molecule is deprotonated in solution because of the high pKa = 

3.14 value.[11a] In the 13C NMR spectra, two signals were determined for 3,5-DNP (151.5 and 

98.8 ppm) and three for 1,3-DNP (152.6, 130.0 and 104.7 ppm) and 3,4-DNP (148.2, 132.7 and 

126.3 ppm).  

Table 3.1. NMR signals of compounds 3–5, 8, 11, 16 and 19. 

compound 1H [ppm] 13C{1H} [ppm] 15N [ppm] 

3 14.84, 9.10 148.2, 132.7, 126.3 −175.5, −85.0, −26.1, −25.5 

4 9.09, 7.44 152.6, 130.0, 104.7 −113.5, −95.0, −63.2, −25.1 

5 7.92 151.5, 98.9 −123.4, −26.4 

8 8.14, 7.12 163.5, 138.0, 125.8 − 

11 8.03, 6.94 157.9, 150.9, 138.1, 125.3 − 

16 7.30, 7.10 156.4, 98.3 − 

19 7.30, 6.93 157.9, 156.4, 98.4 − 

In the 14N NMR spectra the resonances for the nitro groups of 3–5 are in the typical range between 

−10 and −40 ppm for carbon bonded and between −40 and −70 ppm for N nitrated species (4). The 

three isomers can further be distinguished by 15N NMR spectroscopy (supporting information). The 
15N spectra of 3,5-DNP (5) shows two signals (−123.4 and −26.4 ppm) due to its symmetry and 3 

(−175.5 ; −85.0, −26.1 and −25.5 ppm) and 4 (−113.5, −95.0, −63.2 and −25.1 ppm) show four, 

respectively. In the two dimensional HMBC NMR spectra the protons can be assigned to the carbon 

atoms (Figure 3.8). Due to the signal splitting into a doublet of doublet of the nitrogen atom at   

−113.5 ppm it can be assigned to the pyrazole nitrogen (N4). The larger coupling belongs to N−C−H 

(2J) and the smaller to the N−C−C−H (3J) coupling. The 3J coupling of the proton at 9.09 ppm with the 

carbon bonded nitro group (N1) indicates the proton (a) to be bonded at C-4.  
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Figure3.8. Two dimensional 1H, 15N HMBC spectrum of compound 3. 

The characteristic absorption bands for nitro groups can be found at 1560/1329 cm–1 for (3,5-DNP), 

1518/1346 cm-1 for (3,4-DNP) and 1351/1281 cm–1 for 1,3-DNP. The bands at 1637 and 1548 cm–1 

were assigned to the N-nitro group of 1,3-DNP.  

In the 1H NMR spectra of 3,4-DNP salts 6–13 the hydrogen signal of DNP is observed between 8.03 

and 8.30 ppm. For 3,5-DNP salts 14-21 the shift ranges from 7.28 to 7.30 ppm. In the 13C NMR 

spectra, three resonances for the 3,4-DNP anion were observed and two for 3,5-DNP anion due to its 

symmetry. The signals range from 125.3–127.3 ppm (C-H), 136.9–139.1 ppm (C-NO2) and 150.3–

163.5 ppm (C-NO2) for 3,4-DNP and from 98.3–98.4 ppm (C-H), 156.1–156.4 ppm (C-NO2) for 3,5-

DNP.  

IR spectra of compounds 6–21 were measured and the frequencies were assigned according to 

observed data reported in the literature.[14] The characteristic absorption bands for nitro groups of 

salts 6–21 were found in the region from 1527–1556 cm-1 and 1335–1369 cm-1. Further the 

absorption bands of the primary amines were found for the nitrogen-rich cations (8-13 and 16–21) 

in the range of 3125 and 3580 cm–1. Triazole ring vibrations for 13 and 21 were found in the 

regions between 1583–1446 cm–1.[1h] 
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3.2.3 Thermal Analysis, Sensitivities, Physicochemical and Energetic Properties  

The different compounds were investigated in regard to their thermal behavior, sensitivities as well 

as their energetic properties. The decomposition temperatures were measured by differential 

scanning calorimetry (DSC) or differential thermal analysis (DTA) with a heating rate of 5 °C min–1. 

Heats of formation were calculated by the atomization method using electronic energies (CBS-4M 

method). The energetic parameters were calculated with EXPLO5 V6.03.[15]  

The isomers 3–5 only differ in the position of the nitro groups. The melting and decomposition 

temperatures rise from the most instable 1,3-DNP (4) with 68 °C and 171 °C over compound (3) 

with 71 °C and 285 °C to compound (5) with 169 °C and decomposition temperature of 299 °C 

(Figure 3.9).  

 

 

Figure 3.9. DSC plots of compounds 3–4 and DTA plot of 5 measured with a heating rate of 5 °C min-1
. 

Critical temperatures are given as onset temperatures. 
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As expected all of the DNPs are not or less sensitive with IS values of 25 to 40 J, 360 N for friction 

sensitivity and ca. 1.5 J for electrostatic discharge sensitivity. 1,3-DNP (4) implies the lowest value 

of 25 J, which refers to the nitramino part, but is still higher than RDX (IS: 7.5 J). The densities of 3–5 

are in between 1.76 and 1.79 g m–3 at 298 K, which is nearby the density of RDX.[16]  

All three DNPs are isomers and therefore have the same nitrogen content and a negative oxygen 

balance. The compounds have positive heat of formations in the range of 73.2 kJ mol−1 to 

189.1 kJ mol−1. 3,5-DNP (5) represent the lowest value (73.2 kJ mol−1), followed by 3,4-DNP 3 

(124.2 kJ mol−1) and 5 (189.1 kJ mol−1) with the highest. The detonation pressures (pCJ) lie between 

28.9 and 30.8 GPa increasing from compound (5) to compound (3). The detonation velocities (VD) 

show the same trend with values between 8279 m s–1 and 8459 m s–1. Regarding the melting and 

decomposition behavior of the DNP salts they strongly vary with the corresponding cation 

(Figure 3.10). 

 

Figure 3.10. DSC plots of compounds 10–12 and 18–21 measured with a heating rate of 5 °C min-1. 
Critical temperatures are given as onset temperatures. 
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The sodium (6) and potassium (7) salts of 3,4-DNP compounds dehydrate at 80 °C or 88 °C followed 

by decomposition at 142 °C and 174 °C, respectively. Beside compound 12, which melts at 124 °C, 

all other decompose at temperatures between 101 °C and 180 °C with 13 as the highest. One reason 

could be the close position of the nitro groups destabilizing the molecule.  

As shown in Table 3.2, all 3,4-DNP salts are insensitive toward impact, friction and electrostatic 

discharge. The two exceptions are the hydrazinium (IS: 10 J) and TATOT (IS: 30 J) salt, but 

nevertheless they are less sensitive than RDX (IS: 7.5 J) and are classified as less sensitive. All salts 

have friction sensitivity values of 360 N and the ESD value varies between 1.0 and 1.5 J, which also 

shows their insensitive behavior toward external stimuli. The heats of formation ΔfH° lie in the 

range from negative values for the hydrates (6: −1071 kJ mol–1, 7: −675.4 kJ mol–1) to 221.2 kJ mol–1 

for 10. The sodium (6), potassium (7) and guanidinium (11) salt have lower heat of formations 

compared to the neutral compound 3. The densities lie between 1.61 and 1.74 g cm–3
 
at 298 K with 6 

as the highest. The calculated detonation pressures (pCJ) are in the range from 14.1 GPa (6) to 

27.5 GPa (10). The highest pCJ value of 275 bar belongs to the hydrazinium salt (10) as well as the 

highest detonation velocity (VD) with a value of 8369 m s–1. Table 3 shows the properties of different 

3,5-DNP salts compared to RDX. In contrast to the 3,4-DNP salts they have higher decomposition 

temperatures (Figure 10). Compound 15 and 16 show the best thermal stability with values of 

307 °C (15) and 300 °C (16). One reason for the relatively high decomposition temperature is the 

hydrogen bonding of 16. The heats of formation lie between −298.7 kJ mol–1 (19) and 187.8 kJ mol–1 

(18). Therefore, the hydrazinium (18) and aminoguanidinium (19) salt have a higher heat of 

formation than the neutral compound 5 (Table 3.3).  

Regarding sensitivity values most 3,5-DNP salts are not sensitive toward friction, impact and 

electrostatic discharge with exception of the water free potassium salt (IS: 8.5 J) and the 

hydrazinium (IS: 10 J) salt. The densities lie between 1.59 and 2.037 g cm–3 at 298 K. The potassium 

salt of 3,5-DNP has the highest density, which is also higher than the neutral compound 5. The 

calculated detonation pressures (pCJ) lie in the range from 19.1 GPa (19) to 29.6 GPa (18). The 

highest pCJ value (29.6 GPa) and the highest detonation velocity (VD: 8610 m s–1) were achieved for 

the hydrazinium salt (18). 

Overall both hydrazinium salts (10 and 18) and the ammonium salt 16 perform nearly as well as 

RDX regarding its detonation properties (VD = 8109–8610 m s–1) and are less sensitive. Further the 

ammonium salt is not sensitive toward impact, friction and electrostatic discharge and shows a high 

thermal stability of 300 °C.  
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Table 3.2. Energetic Properties and detonation parameters of compounds 3–11 compared to RDX. 
 3 4 5 6∙2H2O 7∙2H2O 8 9 10 11 RDX 
Formula C3H2N4O4 C3H2N4O4 C3H2N4O4 C3H5N4O6 Na C3H5N4O6K C3H5N5O4 C3H5N5O5 C3H6N6O4 C4H7N7O4 C3H6N6O6 

FW [g mol–1] 158.07 158.07 158.07 216.08 232.19 175.03 191.03 190.05 217.06 221.12 

IS [J]a 40 25 25 40 40 40 10 40 40 7.5 

FS [N]b  360 360 360 360 360 360 360 360 360 120 

ESD [J]c 1.5 1.0 1.5 1.0 1.5 1.5 1.0 1.0 1.0 0.2 

N [%]d 35.44 35.44 35.44 25.93 24.13 40.00 36.65 44.20 45.15 37.84 

Ω [%]e −30.36 –30.36 –30.36 −22.1 −20.7 −41.1 −29.3 −42.08 −55.26 –21.6 

Tdec. [°C]f 71 (m.p.) 

285 (dec.) 

68 (m.p.) 

171 (dec.) 

169 (m.p.) 

299 (dec.) 

80 (H2O) 

142 (dec.) 

88 (H2O) 

174 (dec.) 

127 101 117 139 (m.p.) 

156 (dec.) 

205[18] 

ρ [g cm–3] (298K)g 1.79 1.76 1.78 1.74 1.72 1.69o 1.72o 1.67 1.63 1.81[16] 

ΔfH° [kJ mol–1]h  124.2 189.1 73.2 −1071 −675.4 – – 221.2 40.4 70.3 

ΔfU° [kJ kg–1]i 864 1274 542 −4871 −2829 – – 1268 288.7 417.0 

EXPLO5 V6.03 values:g          

–ΔEU° [kJ kg–1]j  5409 5752 5106 2070 3543 – – 5402 3975 5845 

TE [K]k  3956 4183 3786 1841 2665 – – 3573 2866 3810 

pCJ [GPa]l 30.6 30.8 28.9 14.1 17.8 – – 27.6 21.1 34.5 

VD [m s–1]m 8426 8459 8279 6245 6800 – – 8369 7585 8861 

V0 [L kg–1]n 711 721 428 612 581 – – 832 815 785 

Toxicity:           

EC50 (15 min)  
[g L–1] 

– – 0.27 – 0.10 – – – – 0.327 

EC50 (30 min)  
[g L–1] 

– – 0.19 – 0.08 – – – – 0.239 

a impact sensitivity (BAM drophammer, 1 of 6); b friction sensitivity (BAM friction tester, 1 of 6); c electrostatic discharge device (OZM); d nitrogen content; e oxygen balance; f 
decomposition temperature from DSC (β = 5°C); g recalculated from low temperature X-ray densities (ρ298K = ρT / (1+αV(298-T0); αV = 1.5 10–4 K–1); h calculated (CBS-4M) heat of 
formation; i calculated energy of formation; j energy of explosion; k explosion temperature; l detonation pressure; m detonation velocity; n assuming only gaseous products; o measured 
pycnometrically at room temperature. 
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Table 3.3. Energetic Properties and detonation parameters of compounds 12–21. 
 12 13 14·2H2O 15 16 17 18 19∙H2O 20 21 

Formula C4H8N8O4 C6H8N12O4 C3H5N4O6Na C3HN4O4K C3H5N5O4 C3H8N6O4 C3H6N6O4 C4H9N7O5 C4H8N8O4 C6H8N12O4 

FW [g mol–1] 232.18 312.08 216.08 196.16 175.03 191.03 190.05 217.06 232.18 312.08 

IS [J]a 40 30 40 8.5 40 40 10 40 40 40 

FS [N]b  360 360 360 240 360 360 360 360 360 360 

ESD [J]c 1.5 1.5 1.5 0.4 1.5 1.0 1.0 1.0 1.0 1.0 

N [%]d 48.27 53.84 25.93 28.56 40.00 36.65 44.20 45.15 48.27 53.84 

Ω [%]e −55.2 −61.5 −22.1 −25.5 −41.1 −29.3 −42.1 −55.3 −55.2 −61.5 

Tdec. [°C]f 124 (m.p.) 
146 (dec.) 

180 99 (H2O) 
297 

307 251 (m.p.) 
300 (dec.) 

141 200 236 (m.p.) 
295 (dec.) 

226 (m.p.) 
232 (dec.) 

225 (m.p.) 
234 (dec.) 

ρ [g cm–3] (298K)g 1.61 1.71o 1.72o 1.99 1.70 1.72o 1.74 1.59 1.64 1.62o 

ΔfH° [kJ mol–1]h  149.4 – – −194.8 34.0 – 187.8 –298.7 108.1 – 

ΔfU° [kJ kg–1]i 750.3 – – −936.1 293.4 – 1091.8 –1159.4 572.4 – 

EXPLO5 V6.03 values:g          
–ΔEU° [kJ kg–1]j  4273 – – 4235 4764 – 5315 3295 4113 – 

TE [K]k  2982 – – 3064 3298 – 3481 2486 2893 – 

pCJ [GPa]l 22.2 – – 22.5 25.9 – 29.6 19.1 22.6 – 

VD [m s–1]m 7788 – – 7557 8109 – 8610 7319 7848 – 

V0 [L kg–1]n 841 – – 397 794 – 823 488 473 – 

Toxicity:           

EC50 (15 min)  
[g L–1] 

– – – 1.21 – – – – – – 

EC50 (30 min)  
[g L–1] 

– – – 0.95 – – – – – – 

a impact sensitivity (BAM drophammer, 1 of 6); b friction sensitivity (BAM friction tester, 1 of 6); c electrostatic discharge device (OZM); d nitrogen content; e oxygen balance; f 
decomposition temperature from DSC (β = 5°C); g recalculated from low temperature X-ray densities (ρ298K = ρT / (1+αV(298-T0); αV = 1.5 10–4 K–1; h calculated (CBS-4M) heat of formation; 
i calculated energy of formation; j energy of explosion; k explosion temperature; l detonation pressure; m detonation velocity; n assuming only gaseous products; o measured 
pycnometrically at room temperature. 
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3.2.4 Toxicity Assessment 

To determine the toxicity to aquatic life of 5, 7 and 15 using the luminescent marine 

bacterium Vibrio fischeri (see supporting information) was used.[17] The EC50 value (half-

maximal effective concentration) of compound 5 and 7 are lower than that of RDX (see 

Tables 2 and 3), which implies that 5 and 7 is more toxic than RDX. Hence, the potassium 

salt 15 has a higher EC50 value, which means that 15 is classified to be less toxic than RDX. 

Interestingly, the potassium salt of 3,5-DNP (15) is less toxic than the free acid (5). 

 

3.3 Conclusion 

Nitropyrazoles are valuable energetic materials due to their large variety of substitution patterns. 

While mono-nitropyrazoles are low energetic, trinitropyrazoles are characterized by an intensive 

synthetic protocol as well as higher sensitiveness which do not comply with new insensitive 

munitions regulations. Therefore in the present work, the three different dinitropyrazoles (3,4-DNP 

(3), 1,3-DNP (4) and 3,5-DNP (5) are synthesized, characterized and compared to each other. Their 

interesting thermal behavior, high detonation properties and rather low sensitivity was identified. 

In addition the potassium and sodium as well as six selected nitrogen-rich salts were synthesized of 

3,4- (3) and 3,5-DNP (5). Densities vary between 1.59 and 1.99 g cm-3. Using EXPLO5, their 

detonation parameters were calculated. Their detonation velocity ranges from 6245 to 8610 m s–1. 

With exception of 9 (10 J), 15 (8.5 J) and 18 (10 J) their IS values are higher than 40 J. According to 

their rather high thermal stabilities, low sensitivity values and detonation performances they can be 

used as HEDM. 

 

3.4 Experimental Section 

The complete experimental procedures for the synthesis of salts can be found in the supporting 

information. 

CAUTION! All investigated compounds are potentially explosive energetic materials, although no 

hazards were observed during preparation and handling these compounds. Nevertheless, this 

necessitates additional meticulous safety precautions (earthed equipment, Kevlar® gloves, Kevlar® 

sleeves, face shield, leather coat, and ear plugs). 
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1-N-Nitropyrazole (1):[12b] 1H-Pyrazole (30.0 g, 495 mmol, 1.0 eq.) was dissolved in concentrated 

acetic acid (90 mL) and was cooled to 10 °C. Subsequently, fuming nitric acid (100 %, 21 mL, 

504 mmol, 1.1 eq.) was added dropwise over 1 h, while keeping the temperature at 10 °C. The 

suspension was stirred for 30 min at 10 °C. Afterwards, the mixture was allowed to warm to room 

temperature and acetic anhydride (60 mL, 636 mmol, 1.4 eq.) was added slowly. The suspension 

was stirred for 1 h to receive a yellow solution, which was poured on ice afterwards. The resulting 

precipitate was filtered and dried on air to obtain 1 as a colorless solid (49.5 g, 438 mmol, 88 %).  

1H NMR (400MHz, DMSO d6): δ (ppm) = 8.79 (dd, 1H, 3J = 3.0 Hz, 3J = 1.7 Hz, NO2-N-CH), 7.87 (s, 1H, 

N=CH), 6.70 (dd, 1H, 3J = 3.0 Hz, 3J = 1.7 Hz, CH); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 141.5 

(NO2-N-CH), 126.8 (N=CH), 109.7 (C-H). IR (ATR, rel. int.): ṽ (cm–1) = 3150 (w), 3121 (m), 1739 (w), 

1608 (m), 1528 (w), 1477 (w), 1404 (w), 1371 (w), 1317 (m), 1283 (m), 1253 (m), 1228 (m), 1160 

(m), 1062 (m), 1028 (m), 936 (m), 903 (m), 774 (s), 630 (s), 563 (m), 457 (m).  

5-Nitropyrazole (2):[12a] Compound 1 (12.5 g, 111 mmol, 1.0 eq.) was suspended in anisole 

(250 mL) and heated for 16 h at 145 °C. Afterwards, the solution was cooled to 0 °C and the 

resulting precipitate was filtered, washed with cold anisole and dried on air. Compound 2 was 

obtained as a yellowish solid (9.91 g, 87.7 mmol, 79 %).  

1H NMR (400 MHz, DMSO d6): δ (ppm) = 13.94 (s, 1H, NH), 8.02 (d, 1H, 3J = 2.5 Hz, N=CH), 7.03 (d, 

1H, 3J = 2.5 Hz, CH); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 156.3 (C-NO2), 132.3 (N=CH), 101.8 

(CH); IR (ATR, rel. int.): ṽ (cm–1) = 3141 (m), 3021 (w), 2974 (w), 2926 (m), 2882 (m), 1556 (s), 

1510 (s), 1422 (m), 1379 (s), 1350 (s), 1249 (m), 1209 (m), 1144 (w), 1090 (m), 1048 (m), 990 (m), 

928 (w), 903 (w), 821 (s), 783 (s), 752 (s), 613 (m), 537 (w).  

3,4-Dinitropyrazole (3):[12a] Compound 2 (9.0 g, 79.6 mmol, 1.0 eq.) was dissolved in concentrated 

sulfuric acid (96 %, 15 mL) and the viscous solution was cooled to 0 °C. Subsequently, concentrated 

nitric acid (100 %, 10 mL) was added drop wise over 30 min, while keeping the temperature at 0 °C. 

Afterwards, further sulfuric acid (96 %, 30 mL) was added and the solution was allowed to warm to 

room temperature and heated at 80 °C for 3 h. The mixture was poured on ice and was extracted 

with diethyl ether (3x50 mL). The combined organic layers were dried over magnesium sulfate and 

the solvent was concentrated in vacuum. The residue was allowed to stand for crystallization. 

Compound (3) was obtained as yellowish crystals (8.56 g, 54.2 mmol, 68 %).  

1H NMR (400 MHz, DMSO d6): δ (ppm) = 14.84 (s, 1H, NH), 9.10 (s, 1H, CH); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 148.2 (N=C-NO2), 132.7 (CH), 126.3 (C-NO2); 14N NMR (DMSO d6): δ (ppm) = –

25.3 (NO2); 15N NMR (DMSO d6): δ (ppm) = –175.5 (N-H), –85.0 (N), –26.1 (NO2), –25.5 (NO2); IR 

(ATR, rel. int.): ṽ (cm–1) = 3298 (m), 3265 (m), 3148 (m), 3134 (m), 1766 (w), 1518 (s), 1446 (m), 
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1342 (s), 1273 (m), 1155 (m), 1091 (m), 1067 (m), 989 (w), 935 (w), 888 (w), 848 (m), 795 (s), 738 

(s), 607 (s), 575 (s), 470 (m); Raman (1064 nm, 200 mW, cm–1): ṽ =  3152(5), 1565(2), 1545(8), 

1534(13), 1514(25), 1479(12), 1447(8), 1429(34), 1402(3), 1383(100), 1354(48), 1321(2), 

1270(5), 1166(73), 1098(4), 1069(18), 932(18), 851(47), 810(6), 572(6), 484(5), 388(11), 279(4), 

210(5), 183(23), 103(55); Elemental analysis: calcd. (%) for C3H2N4O4 (M = 158.07 g mol–1): C 

22.80, H 1.28, N 35.44; found: C 22.83, H 1.36, N 35.18.; DSC (5 °C min–1): Tmelt. = 71 °C, Tdec. = 285 °C, 

Sensitivities (grain size: < 100 μm): BAM impact: 40 J, BAM friction: 360 N, ESD: 1.5 J. 

1,3-Dinitropyrazole (4):[12a] Compound 2 (5.0 g, 43 mmol 1.0 eq.) was suspended in acetic acid 

(100 %, 31 mL) and concentrated nitric acid (100 %, 4.14 mL) was added at r.t. to the suspension. 

The reaction was stirred for 30 min. at which the solution turned purple. Afterwards acetic 

anhydride (10 mL) was added and the solution was stirred for 24 h at room temperature. The 

mixture was poured on ice and extracted with ethyl acetate (3x50 mL). The combined organic layers 

were dried over magnesium sulfate and the solvent was concentrated in vacuum. The residue was 

stand for crystallization to give 4 as yellowish needles (5.77 g, 36.6 mmol, 85 %).  

1H NMR (400 MHz, DMSO d6): δ (ppm) = 9.09 (s, 1H, CH), 7.44 (s, 1H, CH); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 152.55 (N=C-NO2), 129.97 (CH), 104.73 (CH); 14N NMR (DMSO d6): δ (ppm) = –

62.4 (N-NO2), –23.5 (C-NO2); 15N NMR (DMSO d6): δ (ppm) = –113.5 (N), –95.0 (N-NO2), –63.2 (N-

NO2), –25.1 (C-NO2); IR (ATR, rel. int.): ṽ (cm–1) = 3170 (w), 3156 (w), 1740 (w), 1637 (m), 1548 

(m), 1515 (w), 1471 (w), 1435 (w), 1398 (m), 1351 (m), 1323 (m), 1281 (s), 1237 (s), 1113 (s), 

1039 (s), 983 (m), 961 (m), 899 (w), 810 (s), 781 (s), 753 (s), 616 (w), 567 (m), 523 (w), 485 (w); 

Raman (1064 nm, 200 mW, cm–1): ṽ =  3173(17), 3159(11), 2836(8), 2753(5), 1638(16), 1549(22), 

1521(17), 1474(14), 1437(58), 1400(100), 1320(21), 1324(21), 1289(31), 1238(16), 1212(10), 

1116(13), 1102(11), 1044(10), 986( 25), 964(37), 932(9), 986(9), 823(17), 788(9), 569(9); 

Elemental analysis: calcd. (%) for C3H2N4O4 (M = 158.07 g mol–1): C 22.80, H 1.28, N 35.44; found: C 

23.8, H 1.37, N 35.34.; DSC (5 °C min–1): Tmelt. = 68 °C, Tdec. = 175 °C. Sensitivities (grain size: < 

100 μm): BAM impact: 25 J, BAM friction: 360 N, ESD: 1.0 J.  

3,5-Dinitropyrazole (5):[12a] Compound 4 (9.0 g, 56.6 mmol, 1.0 eq.) was suspended in benzonitrile 

(250 mL) and heated at 180 °C for 3 hours. After cooling down the solution aqueous sodium 

hydroxide (2 M, 200 mL) was added and the precipitate was collected by filtration. The precipitate 

was acidified with conc. HCl to pH=1 and extracted with diethyl ether (3x100 mL). The combined 

organic layers were dried over magnesium sulfate and the solvent removed to yield 5 (7.0 g, 

44 mmol, 78 %).  
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1H NMR (400 MHz, DMSO d6): δ (ppm) = 7.92 (s, 1H, CH) 13C NMR (101 MHz, DMSO d6): δ (ppm) = 

151.53 (N=C-NO2), 99.78 (CH); 14N NMR (DMSO d6): δ (ppm) = –24.8 (NO2); 15N NMR (DMSO d6): δ 

(ppm) = –123.4 (N), –26.4 (NO2); IR (ATR, rel. int.): ṽ (cm–1) = 3156 (w), 1712 (w), 1640 (m), 1550 

(m), 1510 (m), 1436 (w), 1398 (m), 1329 (m), 1282 (s), 1237 (s), 1174 (w), 1111 (s), 1039 (s), 983 

(m), 809 (s), 779 (s), 751 (s), 618 (w); Raman (1064 nm, 200 mW, cm–1): ṽ =  3151(4), 1600(2), 

1576(4), 1571(4), 1552(9), 1541(8), 1504(2), 1486(3), 1447(15), 1442(14),1431(11), 1401(100), 

1358(4), 1341(5), 1273(4), 1196(4), 1025(1), 1015(3), 1005(3), 985(4), 848(1), 833(1), 762(1), 

350(4), 286(6), 96(25), 75(6); Elemental analysis: calcd. (%) for C3H2N4O4 (M = 158.07 g mol–1): C 

22.80, H 1.28, N 35.44; found: C 23.04, H 1.28, N 35.76.; DTA (5 °C min–1): Tmelt. = 171 °C, Tdec. = 

299 °C; Sensitivities (grain size: < 100 μm): BAM impact: 25 J, BAM friction: 360 N, ESD: 1.0 J.  
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3.6 Supplementary Information 

3.6.1 X-ray Diffraction 

Single crystals were picked and measured on an Oxford Xcalibur3 diffractometer with a Spellman 

generator (voltage 50 kV, current 40 mA) and a CCD area detector for data collection using Mo-Kα 

radiation (λ = 0.71073 Å). The data collection was carried out using CRYSALISPRO softwareS1 and the 

reduction were performed. The structures were solved using direct methods (SIR-92,S2 SIR-97S3 or 

SHELXS-97S4) and refined by full-matrix least-squares on F2 (SHELXLS4): The final check was done 

with the PLATON softwareS5 integrated in the WinGX software suite. The non-hydrogen atoms were 

refined anisotropically and the hydrogen atoms were located and freely refined. The absorptions 

were corrected by a SCALE3 ABSPACK multiscan method.S6 The DIAMOND2 plots are shown with 

thermal ellipsoids at the 50% probability level and hydrogen atoms are shown as small spheres of 

arbitrary radii. The SADABS program embedded in the Bruker APEX3 software has been used for 

multi-scan absorption corrections in all structures.S7 
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Table 3.S1. Crystallographic data and refinement parameters of compound 3, 4, 5 and 6. 
 3 4 5 6 

Formula C3H2N4O4 C3H2N4O4 C3H2N4O4 C3H5N4O6Na 

FW [g mol−1] 158.09 158.09 158.09 216.10 

Crystal system Monoclinic Monoclinic Orthorhombic Monoclinic 

Space Group P21/c P21/c Pca21 Cc 

Color / Habit Light yellow block Colorless block Colorless block Colorless block 
Size [mm] 0.10 × 0.22 × 0.28 0.10 × 0.25 × 0.40 0.15 × 0.3 × 0.3 0.35 x 0.25 x 0.04 

a [Å] 

b [Å] 

c [Å] 

α [°] 

β [°] 

γ [°] 

9.8326(4) 

12.0559(4) 

9.7190(4) 

90 

93.959(4) 

90 

5.7084(6) 

9.2664(8) 

11.3570(11) 

90 

103.315(10) 

90 

10.6055(3) 

10.3711(3) 

10.4933(3) 

90 

90 

90 

9.4273(6) 

16.9108(9) 

6.7574(4) 

90 

131.349(3) 

90 

V [AÅ  3] 1149.35(8) 584.60(10) 1154.17(6) 808.72 (9) 

Z 8 4 8 4 

ρcalc. [g cm−3] 1.827 1.796 1.82 1.775 

μ [mm−1] 0.170 0.167 0.169 0.211 

F(000) 640 320 640 440 

λMoKα[AÅ ] 0.71073 0.71073 0.71073 0.71073 

T [K] 123 173 173 173 

ϑ min-max [°] 4.2, 26.0 4.3, 29.0 4.3, 27.0 4.6, 27.0 

Dataset h; k; l −12:12;−12:14;−11:11 −7:7;−12:12; −15:11 −13:13;−13:13; −13:13 −12:12 ; −21:21 ; −8: 8 

Reflect. coll. 8674 5289 17350 6163 

Independ. refl. 2236 1546 2502 1763 

Rint 0.019 0.025 0.028 0.026 

Reflection obs. 1918 1211 2337 1697 

No. parameters 215 127 215 147 

R1 (obs) 0.0324 0.0339 0.0266 0.0256 

wR2 (all data) 0.0930 0.0899 0.0683 0.0637 

S 1.04 1.04 1.04 1.06 

Resd. Dens.[e AÅ −3] −0.22, 0.31 −0.23, 0.15 −0.18, 0.14 −0.13, 0.20 

Device type Oxford XCalibur3 
CCD 

Oxford XCalibur3 
CCD 

Oxford XCalibur3 
CCD 

Oxford XCalibur3 
CCD 

Solution SIR-92 SIR-92 SIR-92 SIR-92 

Refinement SHELXL-2013 SHELXL-2013 SHELXL-2013 SHELXL-2013 

Absorpt. corr. multi-scan multi-scan multi-scan multi-scan 

CCDC 1835056 1835054 1835062 1835053 
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Table 3.S2. Crystallographic data and refinement parameters of compound 7, 10, 11 and 12. 
 7 10 11 12 

Formula C3H5N4O6K C3H6N6O4 C3H7N7O4 C4H8N7O4 
FW [g mol−1] 232.21 190.14 217.17 232.18 
Crystal system Monoclinic Monoclinic Triclinic Orthorhombic 
Space Group P21/n P21/c P-1 P212121 
Color / Habit Colorless block Colorless needle Colorless block Colorless block 
Size [mm] 0.05 x 0.05 x 0.25 0.03 × 0.11 × 0.37 0.27 × 0.34 × 0.4 0.26 x 0.40 x 0.46 
a [AÅ ] 

b [AÅ ] 

c [AÅ ] 

α [°] 

β [°] 

γ [°] 

7.1818(4) 

7.3770(4) 

16.7871(8) 

90 

98.243(5) 

90 

7.6584(6) 

19.6060(11) 

9.9145(5) 

90 

95.476(5) 

90 

7.6007(7) 

7.6465(8) 

9.0964(9) 

107.092(9) 

91.714(8) 

118.419(10) 

6.5366(2) 

7.3548(2) 

19.4770(5) 

90 

90 

90 

V [AÅ  3] 880.20(8) 1481.87(16) 435.27(9) 936.36(5) 
Z 4 8 2 4 
ρcalc. [g cm−3] 1.752 1.704 1.657 1.647 
μ [mm−1] 0.619 0.154 0.146 0.144 
F(000) 472 784 224 480 
λMoKα[AÅ ] 0.71073 0.71073 0.71073 0.71073 
T [K] 173 173 173 173 
ϑ min-max [°] 4.3, 26.0 4.3, 26.5 4.3, 26.5 4.2, 28.0 
Dataset h; k; l −8:8; −9:9; −20:19 −9:9;−24:19;−11:12 −9:9;−9:9;−11:9 −8:8;−9:9;−25:25 
Reflect. coll. 6313 11369 3379 16498 
Independ. refl. 1719 3057 1803 2255 
Rint 0.028 0.06 0.018 0.024 
Reflection obs. 1377 1719 1500 2167 
No. parameters 147 283 164 177 
R1 (obs) 0.0299 0.0546 0.035 0.0260 
wR2 (all data) 0.0730 0.1408 0.0903 0.0688 
S 1.02 1.01 1.06 1.05 
Resd. Dens.[e AÅ −3] −0.25, 0.27 −0.25, 0.37 −0.28, 0.18 −0.18, 0.24 
Device type Oxford XCalibur3 

 CCD 
Oxford XCalibur3 CCD Oxford XCalibur3  

CCD 
Oxford XCalibur3 

CCD 
Solution SIR-92 SIR-92 SIR-92 SIR-92 
Refinement SHELXL-2013 SHELXL-2013 SHELXL-2013 SHELXL-2013 
Absorpt. corr. multi-scan multi-scan multi-scan multi-scan 
CCDC 1835066 1835061 1835065 1835063 

 



 

65 

Table 3.S3. Crystallographic data and refinement parameters of compound 15, 16, 17 and 18. 
 15 16 17 18 

Formula C3HN4O4K C3H5N5O4 C3H8N6O6 C3H6N6O4 
FW [g mol−1] 196.18 175.12 224.15 190.14 
Crystal system Triclinic Triclinic Triclinic Monoclinic 
Space Group P-1 P-1 P-1 P21/n 
Color / Habit Yellow block Light yellow block Yellow block Light yellow needle 
Size [mm] 0.03 × 0.10 × 0.20 0.05 × 0.10 × 0.35 0.09 × 0.10 × 0.40 0.09 × 0.10 × 0.37 
a [AÅ ] 

b [AÅ ] 

c [AÅ ] 

α [°] 

β [°] 

γ [°] 

4.7286(4) 

8.0597(9) 

9.0922(10) 

105.45(1) 

102.488(9) 

97.285(8) 

4.9061(4) 

8.0368(8) 

9.1951(9) 

103.753(9) 

104.226(8) 

96.410(7) 

3.6667(3) 

9.8416(9) 

11.7909(10) 

94.309(7) 

90.645(6) 

98.004(7) 

12.0613(5) 

3.7121(2) 

16.7722(7) 

90 

91.217(4) 

90 

V [AÅ  3] 319.77(6) 335.75(6) 420.05(6) 750.77(6) 
Z 2 2 2 4 
ρcalc. [g cm−3] 2.037 1.732 1.772 1.682 
μ [mm−1] 0.809 0.158 0.168 0.152 
F(000) 196 180 232 392 
λMoKα[AÅ ] 0.71073 0.71073 0.71073 0.71073 
T [K] 173 173 173 173 
ϑ min-max [°] 4.5, 26.0 4.3, 26.5 4.2, 26.5 4.1, 26.5 
Dataset h; k; l −4:5; −9:9; −11:11 −6:6;−10:10;−11:11 −4:4;−12:12;−14:14 −15:15;−4:4;−21:21 
Reflect. coll. 2343 4807 6055 10224 
Independ. refl. 1249 1387 1755 1545 
Rint 0.025 0.0308 0.0342 0.041 
Reflection obs. 1091 1203 1455 1250 
No. parameters 113 129 168 142 
R1 (obs) 0.0298 0.0308 0.0342 0.0382 
wR2 (all data) 0.0732 0.0794 0.0866 0.1023 
S 1.07 1.05 1.06 1.07 
Resd. Dens.[e AÅ −3] −0.31, 0.23 −0.28, 0.18 −0.27, 0.18 −0.22, 0.18 
Device type Oxford XCalibur3 CCD Oxford XCalibur3 CCD Oxford XCalibur3 CCD Oxford XCalibur3 CCD 

Solution SIR-92 SIR-92 SIR-92 SIR-92 
Refinement SHELXL-2013 SHELXL-2013 SHELXL-2013 SHELXL-2013 
Absorpt. corr. multi-scan multi-scan multi-scan multi-scan 
CCDC 1835060 1835055 1835057 1835059 
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Table 3.S4. Crystallographic data and refinement parameters of compound 19 and 20. 
 19 20 

Formula C4H9N7O5 C4H8N8O4 

FW [g mol−1] 235.18 232.15 

Crystal system Monoclinic Monoclinic 

Space Group P21/c C2/c 

Color / Habit Light yellow block Yellow rod 

Size [mm] 0.09 × 0.41 × 0.49 0.02 x 0.02 x 0.01 

a [AÅ ] 

b [AÅ ] 

c [AÅ ] 

α [°] 

β [°] 

γ [°] 

3.5832(2) 

11.5459(5) 

23.3490(8) 

90 

93.152(4) 

90 

20.5017(10) 

3.5483(2) 

26.5002(11) 

90 

109.304(2) 

90 

V [AÅ  3] 964.52(8) 1819.40 

Z 4 8 

ρcalc. [g cm−3] 1.620 1.695 

μ [mm−1] 0.146 0.149 

F(000) 488 960 

λMoKα[AÅ ] 0.71073 0.71073 

T [K] 173 100 

ϑ min-max [°] 4.4, 26.6 3.1, 26.4 

Dataset h; k; l −4:4;−13:14; -25:29 −24:23;−4:4; -33:33 

Reflect. coll. 7399 8407 

Independ. refl. 2001 1866 

Rint 0.025 0.036 

Reflection obs. 1663 1546 

No. parameters 181 177 

R1 (obs) 0.0305 0.0420 

wR2 (all data) 0.0815 0.0915 

S 1.04 1.10 

Resd. Dens.[e AÅ −3] −0.22, 0.20 −0.28, 0.22 

Device type Oxford XCalibur3 CCD Bruker D8 Venture 

Solution SIR-92 SIR-92 

Refinement SHELXL-2013 SHELXL-2013 

Absorpt. corr. multi-scan multi-scan 

CCDC 1835058 1835064 
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Figure 3.S1. Molecular structure of 19 showing the atom-labelling scheme. Thermal ellipsoids 
represent the 50% probability level. 

 

 

Figure 3.S2. Extended molecular structure of 6 showing the atom-labelling scheme. Thermal 
ellipsoids represent the 50% probability level.  
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Figure 3.S3. Extended molecular structure of 7 showing the atom-labelling scheme. Thermal 
ellipsoids represent the 50% probability level.  

 

Figure 3.S4 Extended molecular structure of 17 showing the atom-labelling scheme. Thermal 
ellipsoids represent the 50% probability level.  
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3.6.2 Heat of formation calculations 

All quantum chemical calculations were carried out using the Gaussian G09 program package.S8 The 

enthalpies (H) and free energies (G) were calculated using the complete basis set (CBS) method of 

Petersson and coworkers in order to obtain very accurate energies. The CBS models are using the 

known asymptotic convergence of pair natural orbital expressions to extrapolate from calculations 

using a finite basis set to the estimated CBS limit. CBS-4 starts with an HF/3-21G(d) geometry 

optimization; the zero point energy is computed at the same level. It then uses a large basis set SCF 

calculation as a base energy, and an MP2/6- 31+G calculation with a CBS extrapolation to correct 

the energy through second order. A MP4(SDQ)/6-31+ (d,p) calculation is used to approximate 

higher order contributions. In this study, we applied the modified CBS-4M. 

Heats of formation of the synthesized ionic compounds were calculated using the atomization 

method (equation E1) using room temperature CBS-4M enthalpies, which are summarized in Table 

3.S5.S9,S10  

ΔfH°(g, M, 298) = H(Molecule, 298) – ∑H°(Atoms, 298) + ∑ΔfH°(Atoms, 298)                (E1) 

 

Table 3.S5. CBS-4M enthalpies for atoms C, H, N and O and their literature values for atomic ΔH°f
298 / kJ mol–1 

 –H298 [a.u.] NIST S11 

H 0.500991 218.2 

C 37.786156 717.2 

N 54.522462 473.1 

O 74.991202 249.5 

 

For neutral compounds the sublimation enthalpy, which is needed to convert the gas phase enthalpy 

of formation to the solid state one, was calculated by the Trouton rule.S12 For ionic compounds, the 

lattice energy (UL) and lattice enthalpy (ΔHL) were calculated from the corresponding X-ray 

molecular volumes according to the equations provided by Jenkins and Glasser.S13 With the 

calculated lattice enthalpy the gas-phase enthalpy of formation was converted into the solid state 

(standard conditions) enthalpy of formation. These molar standard enthalpies of formation (ΔHm) 

were used to calculate the molar solid state energies of formation (ΔUm) according to equation E2. 

ΔUm  =  ΔHm – Δn RT                  (E2) 

(Δn being the change of moles of gaseous components) 
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The calculation results are summarized in Table 3.S6. 

Table 3.S6. Heat of formation calculation results. 

M –H298 [a] [a.u.]  ΔfH°(g,M)  
[kJ mol–1] [b] 

VM [Å3] [c]   ΔUL, ΔHL ;[d]  

[kJ mol–1] 
ΔfH°(s) [e] 
[kJ mol–1] 

Δn [f] ΔfU(s) [g] 
[kJ kg–1] 

3 634.428441 188.9   124.2 5 864.1 

4 634.404341 252.2   189.1 5 1274.0 

5 634.438612 162.2   73.2 5 541.5 

3 anion 633.930253 –36.6      

Na+ 161.661926 596.8      

K+ 599.035967 487.4      

NH4+ 56.796608 635.8      

N2H5+ 112.030523 773.4      

NH4O+ 131.863249 686.4      

G+ 205.453192 571.9      

AG+ 260.701802 671.6      

TATOT+ 555.474133 1080.0      

6  541.1 808.7 650.9, 657.1 –1071.1 –7.5 –4870.8 

7  541.1 880.2 635.0, 641.2 –675.4 –7.5 –2828.5 

10  737.5 1481.9 512.8, 516.3 221.2 8 1267.8 

11  535.3 435.3 491.4, 494.9 40.4 9 288.7 

12  635.0 936.4 482.1, 485.6 149.4 10 750.3 

5 anion 633.943669 –71.9      

15  415.8 319.8 613.9, 613.7 –197.8 4.5 –951.6 

16  564.0 335.8 526.4,529.9  34.0 7 293.4 

18  702.3 750.8 511.0, 514.5 187.8 8 1091.8 

19  541.1 964.5 548.7, 554.9 –298.7 10.5 –1159.4 

20  599.7 1819.4 488.1, 491.6 108.1 10 572.4 

[a] CBS-4M electronic enthalpy; [b] gas phase enthalpy of formation; [c] molecular volumes taken from X-ray structures and 
corrected to room temperature; [d] lattice energy and enthalpy (calculated using Jenkins and Glasser equations); [e] 

standard solid state enthalpy of formation; [f] Δn being the change of moles of gaseous components when formed; [g] solid 
state energy of formation. 
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3.6.3 Experimental Part 

General Procedures 

Differential Scanning Calorimetry (DSC) was recorded on a LINSEIS DSC PT10 with about 1 mg 

substance in a perforated aluminum vessel with a heating rate of 5 K∙min−1 and a nitrogen flow of 

5 dm3∙h−1. The NMR spectra were carried out using a 400 MHz instruments JEOL Eclipse 270, JEOL 

EX 400 or a JEOL Eclipse 400 (1H 399.8 MHz, 13C 100.5 MHz, 14N 28.9 MHz, and 15N 40.6 MHz). 

Chemical shifts are given in parts per million (ppm) relative to tetramethylsilane (1H, 13C) and 

nitromethane (14N, 15N). Infrared spectra were measured with a Perkin-Elmer Spectrum BX-FTIR 

spectrometer equipped with a Smiths DuraSamplIR II ATR device. Transmittance values are 

qualitatively described as “very strong” (vs), “strong” (s), “medium” (m), and “weak” (w). Raman 

spectra were recorded using a Bruker MultiRAM FT-Raman instrument fitted with a liquid-nitrogen 

cooled germanium detector and a Nd:YAG laser (λ = 1064 nm). The intensities are quoted as 

percentages of the most intense peak and are given in parentheses. DTA spectra were carried out 

using a OZM DTA 551-EX with a heating rate of 5  K∙min−1. Low-resolution mass spectra were 

recorded with a JEOL MStation JMS 700 (DEI+ / FAB+/−). Elemental analysis (C/H/N) was carried 

out using a Vario Micro from the Elementar Company. TGA spectra were recorded on a Perkin Elmer 

TGA 4000 with a heating rate of 5  K min−1.  

Impact sensitivity tests were performed according to STANAG 4489S14 modified instructionS15 using 

a Bundesanstalt für Materialforschung (BAM) drophammer.S16 Friction sensitivity tests were carried 

out according to STANAG 4487S17 modified instructionS18 using a BAM friction tester. The grading of 

the tested compounds results from the “UN Recommendations on the Transport of Dangerous 

Goods”.S19 ESD values were carried out using the Electric Spark Tester ESD 2010 EN.S20  

 

1-N-Nitropyrazole (1)S21 

1H-Pyrazole (30.0 g, 495 mmol, 1.0 eq.) was dissolved in concentrated acetic acid (90 mL) and was 

cooled to 10 °C. Subsequently, fuming nitric acid (100 %, 21 mL, 504 mmol, 1.1 eq.) was added 

dropwise over 1 h, while keeping the temperature at 10 °C. The suspension was stirred for 30 min at 

10 °C. Afterwards, the mixture was allowed to warm to room temperature and acetic anhydride 

(60 mL, 636 mmol, 1.4 eq.) was added slowly. The suspension was stirred for 1 h to receive a yellow 

solution, which was poured on ice afterwards. The resulting precipitate was filtered and dried on air 

to obtain 1 as a colorless solid (49.5 g, 438 mmol, 88 %).  



3 Isomers of Dinitropyrazoles 

72 

1H NMR (400MHz, DMSO d6): δ (ppm) = 8.79 (dd, 1H, 3J = 3.0 Hz, 3J = 1.7 Hz, NO2-N-CH), 7.87 (s, 1H, 

N=CH), 6.70 (dd, 1H, 3J = 3.0 Hz, 3J = 1.7 Hz, CH); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 141.5 

(NO2-N-CH), 126.8 (N=CH), 109.7 (C-H). IR (ATR, rel. int.): ṽ (cm–1) = 3150 (w), 3121 (m), 1739 (w), 

1608 (m), 1528 (w), 1477 (w), 1404 (w), 1371 (w), 1317 (m), 1283 (m), 1253 (m), 1228 (m), 1160 

(m), 1062 (m), 1028 (m), 936 (m), 903 (m), 774 (s), 630 (s), 563 (m), 457 (m).  

 

5-Nitropyrazole (2) S22 

1 (12.5 g, 111 mmol, 1.0 eq.) was suspended in anisole (250 mL) and heated for 16 h at 145 °C. 

Afterwards, the solution was cooled to 0 °C and the resulting precipitate was filtered, washed with 

cold anisole and dried on air. Compound 2 was obtained as a yellowish solid (9.91 g, 87.7 mmol, 

79 %).  

1H NMR (400 MHz, DMSO d6): δ (ppm) = 13.94 (s, 1H, NH), 8.02 (d, 1H, 3J = 2.5 Hz, N=CH), 7.03 (d, 

1H, 3J = 2.5 Hz, CH); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 156.3 (C-NO2), 132.3 (N=CH), 101.8 

(CH); IR (ATR, rel. int.): ṽ (cm–1) = 3141 (m), 3021 (w), 2974 (w), 2926 (m), 2882 (m), 1556 (s), 

1510 (s), 1422 (m), 1379 (s), 1350 (s), 1249 (m), 1209 (m), 1144 (w), 1090 (m), 1048 (m), 990 (m), 

928 (w), 903 (w), 821 (s), 783 (s), 752 (s), 613 (m), 537 (w).  

 

3,4-Dinitropyrazole (3) S22 

Compound 2 (9.0 g, 79.6 mmol, 1.0 eq.) was dissolved in concentrated sulfuric acid (96 %, 15 mL) 

and the viscous solution was cooled to 0 °C. Subsequently, concentrated nitric acid (100 %, 10 mL) 

was added drop wise over 30 min, while keeping the temperature at 0 °C. Afterwards, further 

sulfuric acid (96 %, 30 mL) was added and the solution was allowed to warm to room temperature 

and heated at 80 °C for 3 h. The mixture was poured on ice and was extracted with diethyl ether 

(3x50 mL). The combined organic layers were dried over magnesium sulfate and the solvent was 

concentrated in vacuum. The residue was allowed to stand for crystallization. Compound (3) was 

obtained as yellowish crystals (8.56 g, 54.2 mmol, 68 %).  

1H NMR (400 MHz, DMSO d6): δ (ppm) = 14.84 (s, 1H, NH), 9.10 (s, 1H, CH); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 148.2 (N=C-NO2), 132.7 (CH), 126.3 (C-NO2); 14N NMR (DMSO d6): δ (ppm) = –

25.3 (NO2); 15N NMR (DMSO d6): δ (ppm) = –175.5 (N-H), –85.0 (N), –26.1 (NO2), –25.5 (NO2); IR 

(ATR, rel. int.): ṽ (cm–1) = 3298 (m), 3265 (m), 3148 (m), 3134 (m), 1766 (w), 1518 (s), 1446 (m), 

1342 (s), 1273 (m), 1155 (m), 1091 (m), 1067 (m), 989 (w), 935 (w), 888 (w), 848 (m), 795 (s), 738 

(s), 607 (s), 575 (s), 470 (m); Raman (1064 nm, 200 mW, cm–1): ṽ =  3152(5), 1565(2), 1545(8), 
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1534(13), 1514(25), 1479(12), 1447(8), 1429(34), 1402(3), 1383(100), 1354(48), 1321(2), 

1270(5), 1166(73), 1098(4), 1069(18), 932(18), 851(47), 810(6), 572(6), 484(5), 388(11), 279(4), 

210(5), 183(23), 103(55); Elemental analysis: calcd. (%) for C3H2N4O4 (M = 158.07 g mol–1): C 

22.80, H 1.28, N 35.44; found: C 22.83, H 1.36, N 35.18.; DSC (5 °C min–1): Tmelt. = 71 °C, Tdec. = 285 °C, 

Sensitivities (grain size: < 100 μm): BAM impact: 40 J, BAM friction: 360 N, ESD: 1.5 J. 

 

1,3-Dinitropyrazole (4) S22 

Compound 2 (5.0 g, 43 mmol 1.0 eq.) was suspended in acetic acid (100 %, 31 mL) and concentrated 

nitric acid (100 %, 4.14 mL) was added at r.t. to the suspension. The reaction was stirred for 30 min. 

at which the solution turned purple. Afterwards acetic anhydride (10 mL) was added and the 

solution was stirred for 24 h at room temperature. The mixture was poured on ice and extracted 

with ethyl acetate (3x50 mL). The combined organic layers were dried over magnesium sulfate and 

the solvent was concentrated in vacuum. The residue was stand for crystallization to give 4 as 

yellowish needles (5.77 g, 36.6 mmol, 85 %).  

1H NMR (400 MHz, DMSO d6): δ (ppm) = 9.09 (s, 1H, CH), 7.44 (s, 1H, CH); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 152.55 (N=C-NO2), 129.97 (CH), 104.73 (CH); 14N NMR (DMSO d6): δ (ppm) = –

62.4 (N-NO2), –23.5 (C-NO2); 15N NMR (DMSO d6): δ (ppm) = –113.5 (N), –95.0 (N-NO2), –63.2 (N-

NO2), –25.1 (C-NO2); IR (ATR, rel. int.): ṽ (cm–1) = 3170 (w), 3156 (w), 1740 (w), 1637 (m), 1548 

(m), 1515 (w), 1471 (w), 1435 (w), 1398 (m), 1351 (m), 1323 (m), 1281 (s), 1237 (s), 1113 (s), 

1039 (s), 983 (m), 961 (m), 899 (w), 810 (s), 781 (s), 753 (s), 616 (w), 567 (m), 523 (w), 485 (w); 

Raman (1064 nm, 200 mW, cm–1): ṽ =  3173(17), 3159(11), 2836(8), 2753(5), 1638(16), 1549(22), 

1521(17), 1474(14), 1437(58), 1400(100), 1320(21), 1324(21), 1289(31), 1238(16), 1212(10), 

1116(13), 1102(11), 1044(10), 986( 25), 964(37), 932(9), 986(9), 823(17), 788(9), 569(9); 

Elemental analysis: calcd. (%) for C3H2N4O4 (M = 158.07 g mol–1): C 22.80, H 1.28, N 35.44; found: C 

23.8, H 1.37, N 35.34.; DSC (5 °C min–1): Tmelt. = 68 °C, Tdec. = 175 °C. Sensitivities (grain size: < 

100 μm): BAM impact: 25 J, BAM friction: 360 N, ESD: 1.0 J.  

 

3,5-Dinitropyrazole (5) S22 

Compound 4 (9.0 g, 56.6 mmol, 1.0 eq.) was suspended in benzonitrile (250 mL) and heated at 180 

°C for 3 hours. After cooling down the solution aqueous sodium hydroxide (2 M, 200 mL) was added 

and the precipitate was collected by filtration. The precipitate was acidified with conc. HCl to pH=1 
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and extracted with diethyl ether (3x100 mL). The combined organic layers were dried over 

magnesium sulfate and the solvent removed to yield 5 (7.0 g, 44 mmol, 78 %).  

1H NMR (400 MHz, DMSO d6): δ (ppm) = 7.92 (s, 1H, CH) 13C NMR (101 MHz, DMSO d6): δ (ppm) = 

151.53 (N=C-NO2), 99.78 (CH); 14N NMR (DMSO d6): δ (ppm) = –24.8 (NO2); 15N NMR (DMSO d6): δ 

(ppm) = –123.4 (N), –26.4 (NO2); IR (ATR, rel. int.): ṽ (cm–1) = 3156 (w), 1712 (w), 1640 (m), 1550 

(m), 1510 (m), 1436 (w), 1398 (m), 1329 (m), 1282 (s), 1237 (s), 1174 (w), 1111 (s), 1039 (s), 983 

(m), 809 (s), 779 (s), 751 (s), 618 (w); Raman (1064 nm, 200 mW, cm–1): ṽ =  3151(4), 1600(2), 

1576(4), 1571(4), 1552(9), 1541(8), 1504(2), 1486(3), 1447(15), 1442(14),1431(11), 1401(100), 

1358(4), 1341(5), 1273(4), 1196(4), 1025(1), 1015(3), 1005(3), 985(4), 848(1), 833(1), 762(1), 

350(4), 286(6), 96(25), 75(6); Elemental analysis: calcd. (%) for C3H2N4O4 (M = 158.07 g mol–1): C 

22.80, H 1.28, N 35.44; found: C 23.04, H 1.28, N 35.76.; DTA (5 °C min–1): Tmelt. = 171 °C, Tdec. = 

299 °C; Sensitivities (grain size: < 100 μm): BAM impact: 25 J, BAM friction: 360 N, ESD: 1.0 J.  

 

General procedure for the preparation of salts  

To a water/ethanol 1:1 solution of 3 or 5 (0.5 g, 3.16 mmol) the corresponding base (6/14: NaOH 

0.126 g, 3.16 mmol; 7/15: KOH 0.174 g, 3.16 mmol; 8/16: ammonia solution 1.6 mL, 2 M, 

3.16 mmol; 9/17: NH2OH 0.21 mL, 50% in water, 3.16 mmol; 10/18: N2H4·H2O 0.16 g, 3.16 mmol; 

11/19: guanidine carbonate 0.284 g, 3.16 mmol; 12/20: aminoguanidine bicarbonate 0.43 g, 

3.16 mmol; 13/20: 3,6,7-triamino-7H -[1,2,4]triazolo[4,3-b][1,2,4]triazol-2-ium (TATOT) 0.49 g, 

3.16 mmol) was added and heated until everything was dissolved. The solutions were filtered and 

left for crystallization.  

 

3,4-Dinitro-1H-pyrazole salts  

Sodium 3,4-dinitropyrazolate dihydrate (6)  

Yield: (0.5 g, 2.3 mmol, 74 %) as colorless crystals. 

1H NMR (400MHz, DMSO d6): δ (ppm) = 8.02 (s, 1H, CH); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 

151.0, 138.2, 125.3; IR (ATR, rel. int.): ṽ (cm–1) = 3131(w), 2203(w), 2173(w), 1637(w), 1538(w), 

1493(w), 1403(w), 1317(w), 1346(w), 1271(w), 1150(w), 1116(w), 1050(w), 998(w), 938(w), 

847(w), 808(w), 755(w), 595(s), 507(w), Mass spectroscopy: m/z (FAB+) = 23.0 (Na+), m/z (FAB–

) = 157.1 (C3HN4O4–); Elemental analysis: calcd. (%) for C3H5N4O6Na (M = 216.09 g mol–1): C 16.68, 
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H 2.33, N 25.93; found: C 17.06, H 2.42, N 25.10; DSC (5 °C min–1): TH2O = 80 °C, Tdec. = 142 °C; 

Sensitivities (grain size: < 500 μm): BAM impact: 40 J, BAM friction: 360 N, ESD: 1.0 J;  

 

Potassium 3,4-dinitropyrazolate dihydrate (7)  

Yield: (0.56 g, 2.41 mmol, 76 %) as colorless crystals. 

1H NMR (400MHz, DMSO d6): δ (ppm) = 8.07 (s, 1H, CH); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 

150.9, 137.9, 125.3; IR (ATR, rel. int.): ṽ (cm–1) = 3988(w), 3128(w), 1977(w), 1493(s), 1436(s), 

1342(s), 1288(s), 1163(s), 1113(s), 983(s), 885(s), 852(s), 807(s), 750(s), 631(s), 546(s);  Mass 

spectroscopy: m/z (FAB+) = 39.0 (K+), m/z (FAB–) = 157.1 (C3HN4O4–); Elemental analysis: calcd. 

(%) for C3H5N4O6K (M = 232.18 g mol–1): C 15.52, H 2.17, N 24.13; found: C 15.39, H 2.26, N 24.39; 

DSC (5 °C min–1): TH2O = 88 °C Tdec. = 174 °C; Sensitivities (grain size: < 500 μm): BAM impact: 40 J, 

BAM friction: 360 N, ESD: 1.5 J; 

 

Ammonium 3,4-dinitropyrazolate (8)  

Yield: (0.4 g, 2.3 mmol, 73 %) as colorless crystals. 

1HNMR (400MHz, DMSO d6): δ (ppm) = 7.12 (s, 4H, NH4), 8.14 (s, 1H, CH); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 163.5, 138.0, 125.8; IR (ATR, rel. int.): ṽ (cm–1) = 3125 (s), 2007 (m), 1538 (s), 

1493 (s), 1433 (s), 1363 (s), 1335 (s), 1279 (s), 1156 (s), 1110 (s), 1090 (s), 1076 (s), 992 (s), 945 

(s), 882 (s), 848 (s), 806 (s), 750 (s), 669 (s), 630 (s), 607 (s); Mass spectroscopy: m/z (FAB+) = 

18.1 (NH4+), m/z (FAB–) = 157.1 (C3HN4O4–); Elemental analysis: calcd. (%) for C3H5N5O4 (M = 

175.03 g mol–1): C 20.58, H 2.88, N 40.0; found: C 21.01, H 2.54, N 38.39; DSC (5 °C min–1): Tdec. = 

127 °C; Sensitivities (grain size: < 500 μm): BAM impact: 40 J, BAM friction: 360 N, ESD: 1.5 J.  

 

Hydroxylammonium ammoniumoxide 3,4-dinitropyrazolate (9)  

Yield: (0.3 g, 1.3 mmol, 42 %) as colorless crystals. 

1H NMR (400 MHz, DMSO d6): δ (ppm) = 8.72 (NH3OH), 8.30 (s, 1H, CH); 13C NMR (101 MHz, DMSO 

d6): δ (ppm) = 150.3, 136.9, 125.6; IR  (ATR, rel. int.): ṽ (cm–1) = 3588 (w), 3298 (m), 3264 (m), 3149 

(m), 3134 (m), 2898 (m), 1767 (w), 1624 (w), 1545 (s), 1518 (s), 1446 (m), 1410 (m), 1369 (s), 

1343 (s), 1274 (m), 1182 (m), 1156 (m), 1089 (s), 1069 (s), 934 (m), 888 (m), 849 (s), 806 (s), 741 

(s), 607 (s); Mass spectroscopy: m/z (FAB+) = 31.1 (NH3OH+), m/z (FAB–) = 157.1 (C3HN4O4–); 
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Elemental analysis: calcd. (%) for C3H8N6O6 (M = 224.13 g mol–1): C 16.08, H 3.60, N 37.50; found: C 

16.43, H 3.47, N 36.62; DSC (5 °C min–1): Tdec. = 101 °C; Sensitivities (grain size: < 500 μm): BAM 

impact: 10 J, BAM friction: 360 N, ESD: 1.0 J.  

 

Hydrazinium 3,4-dinitropyrazolate (10)  

Yield: (0.4 g, 2.1 mmol, 68 %) as colorless crystals. 

1HNMR (400MHz, DMSO d6): δ (ppm) = 7.19 (s, 5H, N2H5), 7.29 (s, 1H, CH); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 158.1, 139.1 , 127.3; IR (ATR, rel. int.): ṽ (cm–1) = 3467 (s), 3418 (s), 3382 (s), 

3298 (s), 3151 (s), 1651 (s), 1532 (s), 1471 (s), 1440 (s), 1348 (s), 1316 (s), 1274 (s), 1210 (s), 1155 

(s), 1092 (s), 1065 (s), 1008 (s), 994 (s), 882 (m), 834 (s), 747 (s), 718 (s), 654 (s); Mass 

spectroscopy: m/z (FAB+) = (), m/z (FAB–) = 157.1 (C3HN4O4–); Elemental analysis: calcd. (%) for 

C3H6N6O4 (M = 190.11 g mol–1): C 18.95, H 3.18, N 44.20; found: C 18.75, H 3.15, N 43.40 ; DSC (5 °C 

min–1): Tdec. = 117 °C; Sensitivities (grain size: < 500 μm): BAM impact: 40 J, BAM friction: 360 N, 

ESD: 1.0 J.  

 

Guanidinium 3,4-dinitropyrazolate (11)  

Yield: (0.4 g, 1.8 mmol, 58 %) as colorless crystals. 

1H NMR (400MHz, DMSO d6): δ (ppm) = 6.94 (s, 6H, CH6N3), 8.03 (s, 1H, CH); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 157.9 (CH6N3), 150.9, 138.1, 125.3; IR (ATR, rel. int.): ṽ (cm–1) = 3588 (w), 

3298 (m), 3264 (m), 3149 (m), 3134 (m), 2898 (w), 1767 (w), 1624 (w), 1545 (s), 1518 (s), 1446 

(m), 1410 (m), 1369 (s), 1343 (s), 1274 (m), 1182 (m), 1156 (m), 1089 (s), 1069 (s), 934 (m), 888 

(m), 849 (s), 806 (s), 741 (s), 607 (s); Mass spectroscopy: m/z (FAB+) = 60.1 (CH6N3), m/z (FAB–) 

= 157.1 (C3HN4O4–); Elemental analysis: calcd. (%) for C4H7N7O4 (M = 217.14 g mol–1): C 22.14, H 

3.25, N 45.15; found: C 22.40, H 3.25, N 45.17; DSC (5 °C min–1): Tmelt. = 139 °C, Tdec. = 156 °C; 

Sensitivities (grain size: < 500 μm): BAM impact: 40 J, BAM friction: 360 N, ESD: 1.0 J.  

 

Aminoguanidinium 3,4-dinitropyrazolate (12)  

Yield: (0.5 g, 2.2 mmol, 70 %) as colorless crystals. 

1H NMR (400 MHz, DMSO d6): δ (ppm) = 8.59 (s, 1H, N-H), 8.02 (s, 1H, CH), 7.21 (s, 2H, NH2) , 4.68 

(4H, NH2) 13C NMR (101 MHz, DMSO d6): δ (ppm) = 158.7, 150.9, 138.1, 125.1; IR (ATR, rel. int.): ṽ 
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(cm–1) = 3423 (m), 3367 (m), 3316 (m), 3126 (m), 1660 (s), 1531 (m), 1490 (s), 1422 (m), 1367 (s), 

1341 (s), 1278 (s), 1206 (m), 1163 (m), 1112 (m), 1050 (s), 950 (s), 877 (m), 847 (m), 810 (m), 753 

(s), 619 (s); Elemental analysis: calcd. (%) for C4H8N8O4 (M = 232.18 g mol–1): C 20.69, H 3.47, N 

48.27; found: C 20.98, H 3.47, N 47.64.; Mass spectroscopy: m/z (FAB+) = 75.1 (CH7N4+), m/z 

(FAB–) = 157.1 (C3HN4O4–); DSC (5 °C min–1): Tmelt. = 124 °C, Tdec. = 146 °C; Sensitivities (grain size: 

< 500 μm): BAM impact: 40 J, BAM friction: 360 N, ESD: 1.0 J.  

 

TATOT 3,4-dinitropyrazolate (13)  

Yield: (0.38 g, 1.26 mmol, 40 %) as colorless powder. 

1H NMR (400 MHz, DMSO d6): δ (ppm) =8.26 (s, 1H, CH), 7.67, 7.07, 5.73; 13C NMR (101 MHz, DMSO 

d6): δ (ppm) = 159.8, 147.7 141.6, 137.1, 125.5, 150.6; IR (ATR, rel. int.): ṽ (cm–1) = 3555 (m), 3487 

(m), 3994 (w), 3336 (m), 3295 (m), 3159 (m), 3116 (m), 2243 (w), 2184 (w), 2046 (w), 2014 (w), 

1670 (m), 1630 (m), 1581 (w), 1537 (m), 1485 (s), 1446 (m), 1356 (s), 1326 (m), 1285 (m), 1285 

(m), 1186 (m), 1097 (w), 1001 (m), 971 (m), 891 (m), 817 (m), 745 (m), 704 (m), 632 (m); Mass 

spectroscopy: m/z (FAB+) = 155.2 (C3H7N8+), m/z (FAB–) = 157.1 (C3HN4O4–); Elemental 

analysis: calcd. (%) for C6H8N12O4 (M = 312.21 g mol–1): C 23.08, H 2.58, N 53.84; found: C 23.23, H 

2.64, N 52.68; DSC (5 °C min–1): Tdec. = 180 °C; Sensitivities (grain size: < 500 μm): BAM impact: 40 

J, BAM friction: 360 N, ESD: 1.0 J.  

 

3,5-Dinitro-1H-pyrazole salts  

Sodium 3,5-dinitropyrazolate dihydrate (14) 

Yield: (0.47 g, 2.17 mmol, 70 %) as colorless crystal. 

1H NMR (400MHz, DMSO d6): δ (ppm) = 7.30 (s, 1H, CH); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 

156.5, 98.3; IR (ATR, rel. int.): ṽ (cm–1) = 3643 (w), 3552 (w), 3281(w), 3149(w), 2809(w), 2167(w), 

1682(w), 1621(w), 1531(s), 1470(s), 1351(s), 1316(s), 1273(s), 1168(s), 1072(w), 1011(s), 839(s), 

750(s), 666(w), 562(s); Mass spectroscopy: m/z (FAB+) = 23.0 (Na+), m/z (FAB–) = 157.1 

(C3HN4O4–); Elemental analysis: calcd. (%) for C3H5N4O6Na (M = 216.08 g mol–1): C 16.68, H 2.33, N 

25.93; found: C 16.51, H 2.46, N 25.02; DSC (5 °C min–1): TH2O = 99 °C, Tdec. = 297 °C; Sensitivities 

(grain size: < 500 μm): BAM impact: 40 J, BAM friction: 360 N, ESD: 1.5 J.  
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Potassium 3,5-dinitropyrazolate (15) 

Yield: (0.56 g, 2.84 mmol, 92 %) as colorless powder. 

1H NMR (400MHz, DMSO d6): δ (ppm) = 8.07 (s, 1H, CH); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 

156.4, 98.3; IR (ATR, rel. int.): ṽ (cm–1) = 3988(w), 3157(w), 2806(w), 2597(w), 1535(s), 1471(s), 

1441(s), 1337(s), 1309(s), 1269(s), 1149(s), 1063(w), 1002(s), 829(s), 752(s), 672(w), 611(s), 

580(s), 520(w); Mass spectroscopy: m/z (FAB+) = 39.0 (K+), m/z (FAB–) = 157.1 (C3HN4O4–); 

Elemental analysis: calcd. (%) for C3HN4O4K (M = 196.07 g mol–1): C 18.80, H 0.51, N 28.56; found: 

C 19.22, H 0.89, N 29.20; DSC (5 °C min–1): Tdec. = 307 °C; Sensitivities (grain size: < 500 μm): BAM 

impact: 8.5 J, BAM friction: 240 N, ESD: 0.4 J.  

 

Ammonium 3,5-dinitropyrazolate (16) 

Yield: (0.44 g, 2.53 mmol, 80 %) as colorless powder. 

1H NMR (400MHz, DMSO d6): δ (ppm) = 7.10 (s, 4H, NH4), 7.30 (s, 1H, CH); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 156.4, 98.3; IR (ATR, rel. int.): ṽ (cm–1) = 3305 (w), 3255 (w), 3155 (m), 3019 

(w), 2971 (m), 2926 (m), 2887 (m), 2829 (m), 2777 (m), 2614 (w), 2592 (w), 2509 (w), 2479 (w), 

2442 (w), 2410 (w), 2366 (w), 2191 (w), 2168 (w), 1737 (w), 1717 (w), 1671 (w), 1608 (w), 1556 

(m), 1513 (m), 1480 (m), 1438 (m), 1423 (m), 1378 (s), 1350 (s), 1318 (m), 1276 (m), 1250 (m), 

1209 (m), 1162 (m), 1091 (m), 1048 (m), 1012 (m), 991 (m), 928 (m), 902 (m), 862 (m), 823 (s), 

784 (m), 752 (s), 720 (m), 638 (m), 609 (m); Mass spectroscopy: m/z (FAB+) = 18.1 (NH4+), m/z 

(FAB–) = 157.1 (C3HN4O4–); Elemental analysis: calcd. (%) for C3H5N5O4 (M = 175.10 g mol–1): C 

20.58, H 2.88, N 40.00; found: C 20.86, H 2.95, N 39.50; DSC (5 °C min–1): Tmelt. = 251 °C, Tdec. = 

300 °C; Sensitivities (grain size: 500 – 1000 μm): BAM impact: 40 J, BAM friction: 360 N, ESD: 

1.5 J.  

 

Hydroxylammonium ammonium oxide 3,5-dinitropyrazolate (17) 

Yield: (0.23 g, 1.0 mmol, 82 %) as colorless powder. 

1H NMR (400MHz, DMSO d6): δ (ppm) = 9.48 (s, 4H, NH3OH), 7.30 (s, 1H, CH); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 156.4, 98.3; IR (ATR, rel. int.): ṽ (cm–1) = 3580 (w), 3526 (w), 3211 (m), 3155 

(m), 2866 (m), 2593 (m), 2509 (m), 2239 (m), 2213 (m), 2191 (m), 2167 (m), 2101 (m), 2076 (m), 

2051 (m), 2034 (m), 1998 (m), 1979 (m), 1738 (m), 1618 (m), 1527 (s), 1479 (s), 1445 (s), 1350 (s), 

1320 (s), 1278 (s), 1209 (s), 1165 (s), 1073 (s), 1010 (s), 992 (s), 822 (s), 748 (s), 670 (m), 607 (m); 
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Mass spectroscopy: m/z (FAB+) = 31.1 (NH3OH+), m/z (FAB–) = 157.1 (C3HN4O4–); Elemental 

analysis: calcd. (%) for C3H8N6O6 (M = 224.13 g mol–1): C 16.08, H 3.60, N 37.50; found: C 16.06, H 

3.56, N 37.45; DSC (5 °C min–1): Tdec. = 141 °C; Sensitivities (grain size: < 500 μm): BAM impact: 40 

J, BAM friction: 360 N, ESD: 1.0 J.  

 

Hydrazinium 3,5-dinitropyrazolate (18) 

Yield: (0.56 g, 2.95 mmol, 80 %) as colorless solid. 

1H NMR (400MHz, DMSO d6): δ (ppm) = 7.08 (s, 5H, N2H5), 7.29 (s, 1H, CH); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 156.4, 98.3; IR (ATR, rel. int.): ṽ (cm–1) = 3352 (m), 3294 (m), 3188 (w), 3153 

(m), 2826 (m), 2744 (m), 2616 (m), 2356 (m), 2325 (m), 2232 (w), 2213 (w), 2193 (m), 2169 (m), 

2141 (w), 2088 (w), 2027 (w), 2008 (w), 1979 (w), 1925 (w), 1911 (w), 1645 (m), 1594 (m), 1535 

(s), 1487 (s), 1444 (s), 1373 (s), 1352 (s), 1322 (s), 1283 (s), 1172 (s), 1135 (m), 1097 (s), 1069 (m), 

1016 (s), 998 (s), 963 (s), 834 (s), 812 (s), 747 (s), 715 (m); Mass spectroscopy: m/z (FAB+) = 33.1 

(N2H5+), m/z (FAB–) = 157.1 (C3HN4O4–); Elemental analysis: calcd. (%) for C3H7N6O4.5 (M = 199.13 

g mol–1): C 18.10, H 3.54, N 42.20; found: C 17.98, H 3.71, N 42.65; DSC (5 °C min–1): Tdec. = 200 °C; 

Sensitivities (grain size: < 500 μm): BAM impact: 10 J, BAM friction: 360 N, ESD: 1.5 J.  

 

Guanidinium 3,5-dinitropyrazolate hydrate (19)  

Yield: (0.39 g, 1.79 mmol, 57 %) as colorless solid. 

1H NMR (400MHz, DMSO d6): δ (ppm) = 6.93 (s, 6H, CH6N3), 7.30 (s, 1H, CH); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 157.9 (CH6N3), 156.4, 98.4; IR (ATR, rel. int.): ṽ (cm–1) = 3993 (w), 3975 (w), 

3940 (w), 3914 (w), 3884 (w), 3823 (w), 3467 (m), 3424 (m), 3382 (m), 3151 (m), 3005 (m), 2716 

(w), 2463 (w), 2435 (w), 2340 (w), 2320 (w), 2296 (w), 2247 (w), 2212 (w), 2191 (w), 2167 (w), 

2148 (w), 2126 (w), 2076 (w), 2039 (w), 2007 (w), 1648 (m), 1570 (m), 1533 (m), 1472 (s), 1441 

(m), 1348 (s), 1315 (s), 1275 (m), 1154 (m), 1068 (m), 1008 (s), 833 (s), 748 (s), 654 (m), 606 (m); 

Mass spectroscopy: m/z (FAB+) = 60.1 (CH6N3+), m/z (FAB–) = 157.1 (C3HN4O4–); Elemental 

analysis: calcd. (%) for C4H9N7O5 (M = 235.16 g mol–1): C 20.43, H 3.86, N 41.69; found: C 20.76, H 

3.88, N 41.56; DSC (5 °C min–1): Tmelt. = 236 °C, Tdec. = 295 °C; Sensitivities (grain size: < 500 μm): 

BAM impact: 40 J, BAM friction: 360 N, ESD: 1.0 J.  
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Aminoguanidinium 3,5-dinitropyrazolate (20)  

Yield: (0.3 g, 1.3 mmol, 42 %) as colorless crystals. 

1H NMR (400 MHz, DMSO d6): δ (ppm) = 8.65 (s, 1H, N-H), 7.28 (s, 1H, CH), 7.14 (s, 2H, NH2) , 4.67 

(4H, NH2) 13C NMR (101 MHz, DMSO d6): δ (ppm) = 158.8, 156.4, 98.4; IR (ATR, rel. int.): ṽ (cm–1) = 

3475 (m), 3434 (m), 3370 (m), 3320 (m), 3299 (m), 3174 (m), 3150 (s), 2750 (m), 2716 (m), 2595 

(m), 2462 (w), 2293 (w), 2212 (w), 2193 (w), 2144 (w), 1635 (s), 1528 (m), 1480 (s), 1441 (s), 

1345 (s), 1310 (s), 1274 (s), 1189 (s), 1155 (s), 1107 (m), 1069 (s), 1008 (s), 993 (s), 920 (s), 820 

(s), 751 (s), 642 (s); Mass spectroscopy: m/z (FAB+) = 75.1 (CH7N4+), m/z (FAB–) = 157.1 

(C3HN4O4–); Elemental analysis: calcd. (%) for C4H8N8O4 (M = 232.07 g mol–1): C 20.69, H 3.47, N 

48.27; found: C 20.83, H 3.47, N 48.30; DSC (5 °C min–1): Tmelt. = 226 °C, Tdec. = 232 °C; Sensitivities 

(grain size: < 500 μm): BAM impact: 40 J, BAM friction: 360 N, ESD: 1.0 J.  

 

TATOT 3,5-dinitropyrazolate (21)  

Yield: (0.4 g, 1.32 mmol, 42 %) as colorless solid. 

1H NMR (400 MHz, DMSO d6): δ (ppm) =7.28 (s, 1H, CH) 5.76, 7.21, 8.15; 13C NMR (101 MHz, DMSO 

d6): δ (ppm) = 156.4, 98.4, 141.1, 147.4, 160.1; IR (ATR, rel. int.): ṽ (cm–1) = 3555 (m), 3484 (m), 

3427 (m), 3395 (m), 3336 (m), 3273 (m), 3159 (m), 2627 (m), 2333 (m), 2240 (m), 2213 (m), 2197 

(m), 2118 (m), 2098 (m), 2084 (m), 2045 (m), 2021 (m), 1990 (m), 1966 (m), 1939 (w), 1867 (m), 

1843 (m), 1826 (m), 1748 (m), 1703 (m), 1670 (s), 1631 (s), 1583 (m), 1537 (s), 1485 (s), 1446 (s), 

1357 (s), 1327 (s), 1285 (s), 1260 (m), 1186 (s), 1153 (m), 1098 (m), 1071 (m), 1022 (s), 1001 (s), 

971 (s), 890 (s), 849 (m), 833 (s), 817 (s), 747 (s), 722 (s), 704 (s), 633 (s); Mass spectroscopy: 

m/z (FAB+) = 155.2 (C3H7N8+), m/z (FAB–) = 157.1 (C3HN4O4–); Elemental analysis: calcd. (%) for 

C6H10N12O5 (M = 330.23 g mol–1): C 21.82, H 3.05, N 50.90; found: C 21.55, H 3.05, N 48.14; DSC (5 °C 

min–1): Tmelt. = 225 °C, Tdec. = 234 °C; Sensitivities (grain size: < 500 μm): BAM impact: 40 J, BAM 

friction: 360 N, ESD: 1.0 J.  
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3.6.4 15N NMR spectroscopy 

 

Figure 3.S5. 15N NMR spectra of compounds 3, 4 and 5. 
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3.6.5 TGA spectra of 3 and 5 

 

Figure 3.S6. TGA spectrum of 3,4-dinitropyrazole (3). 
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Figure 3.S7. TGA spectrum of 3,5-dinitropyrazole (5). 
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Abstract: The synthesis of two different isomeric dinitropyrazole-N-oxides is described 
and compared to each other. 3,4-Dinitropyrazole-1N-oxide (2) and 3,5-dinitropyrazole-
1N-oxide (4) were used and four different nitrogen-rich salts were synthesized in order 
to enhance performance and sensitivity values. Further, two methylene bridged 
isomeric dinitropyrazoles were synthesized using diiodomethane. The obtained 
compounds were characterized using low temperature single crystal X-ray diffraction, 
IR spectroscopy, multinuclear NMR spectroscopy, mass spectrometry, elemental 
analysis and DSC measurements. The bridged compounds show a high thermal stability 
(Tdec.: 319 °C and 330 °C) whereas the ionic compounds have lower values (Tdec.: 131 °C–
266 °C). Further, the sensitivity values toward impact, friction and electrostatic 
discharge were determined according to standard methods. Their sensitivity values lie 
in the range of 5 to 40 J for impact and 216 to 360 N for friction. Adapted from 
recalculated X-ray densities and calculated heats of formation the energetic 
performances were computed using the EXPLO5 code and support the high energetic 
character of the title compounds. The values (VD: 7909–8279 m s–1; pCJ: 242–282 kbar) 
of the salts and bridged pyrazoles (VD: 7966 and 8140 m s–1; pCJ: 263 and 280 kbar) 
were compared to RDX.  

 

4.1 Introduction 

The research of energetic materials currently attracts attention due to their broad application in 

both, the military and the civilian area [1]. Depending on their application, different requirements are 

needed such as good thermal stabilities for use in the mining and fracking industry or the 

application in aeronautics.[2] Nitrated pyrazoles are an interesting class in the research of new 

energetic materials due to their good thermal stability or the usage as melt-cast explosives[3]. 

Further they easily can be synthesized by nitration and rearrangement reactions.[4] One example for 

a melt-castable explosive is the already characterized 3,4-dinitro-1H-pyrazole (3,4-DNP, Tmelt.. = 87, 

Tdec. = 276 °C) that could already replace TNT as melt-cast explosives in compositions such as 

Composition B (RDX/TNT).[5]  

The design of new nitrated pyrazole derivatives is an ongoing progress and many remarkable 

compounds were synthesized. The main concept for functionalization is to get rid of the acidic 

proton of the pyrazole ring which could cause compatibility problems. Various possibilities are 

known such as salt formation[6], methylation[7], N-functionalization[3, 8], azo bridging[9], amination[10], 

N-oxidation[11], ethylene[12] or methylene[1b] bridging (Figure 4.1). 
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Figure 4.1. Functionalization of nitrated pyrazoles by detaching the acidic pyrazole proton. 

Salt formation using nitrogen-rich cations generally improves the thermal stability and in some 

cases also the stability toward external stimuli caused by hydrogen bonding interactions.[13] N-

functionalization such as the introduction of a trinitromethyl group to the nitrogen atom of 3,4-DNP 

and 3,5-DNP (Tdec. = 141, 143 °C, VD = 8668, 8733 m s–1) or reacting bromonitromethane with 

trinitropyrazole (TNP) mainly increase the oxygen balance (OB) and the density, whereas these 

compounds can be classified as a high energetic density oxidizer (HEDO) due to their high oxygen 

content.[8, 14]  

New pyrazole derivatives could further be synthesized by linking azoles via a N,N´-alkyl-bridge.[15] 

Examples are linked nitroamino or azido substituted nitropyrazoles with nitroimino-tetrazoles via 

an N,N'-ethylene-bridge to get thermal sensitive but powerful explosives (Tdec. = 89–137°C, 

D = 8659–8804 m s–1).[15b] Decreasing the carbon amount leads to N,N'-methylene-bridged 

compounds such as bispyrazolylmethanes, which were firstly described by Fischer et al..  
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The hexanitro bridged pyrazole shows the highest detonation velocity (VD = 9304 m s–1) and a good 

thermal stability (Tdec = 205°C) and can therefore be compared to hexanitrohexaazaisowurtzitane 

(CL-20).[16] 

Another concept is the introduction of N-oxides in tetrazoles, triazoles or pyrazoles which results in 

higher energetic performances due to a higher oxygen balance, as well as the density and hence the 

detonation parameters. [11b, 17] This class of compounds can easily be synthesized by using either 

Oxone® or hypofluorous acid (HOF).[18] Therefore, the N-oxide of TNP and some nitrogen-rich salts 

thereof were synthesized by using Oxone® and a corresponding base and some showed good 

properties as HEDMs (D = 8175–8676 m s–1) with acceptable decomposition temperatures 

(Tdec = 118–186 °C).[19] Nevertheless the TNP oxide is a liquid and shows very high sensitivity values 

(IS: 1 J).[19]  

We now report about the implementation of three of the concepts mentioned before using two 

isomeric dinitropyrazoles. Therefore, the literature known N-oxides of 3,4-DNP and 3,5-DNP were 

synthesized by a slightly different method increasing the yield. Further, their energetic salts were 

obtained and intensively characterized to compare the properties of these isomers.[11a] The 

literature mentioned bisdinitropyrazole-methanes[16b] (1, 3) were synthesized by an easier method 

and also intensively characterized. 

 

 

4.2 Results and Discussion 

4.2.1 Synthesis  

The synthesis of 2 (3,4-DNPO) and 4 (3,4-DNPO) is accomplished via N-oxidation of 3,4-DNP and 

3,5-DNP using Oxone® instead of KHSO5 in water holding the pH value close to their pKa values (3,4-

DNP: 5.14; 3,5-DNP: 3.14).[11a] The highest yields could be obtained for keeping the pH value at 6–8 

(2) or 3–5 (4) by a phosphate buffer (NaH2PO4/NaOH) system (Scheme 4.1). Compounds 2 and 4 

were obtained by extracting with diethyl ether and further purification with sodium acetate solution 

due its stronger acidity than the starting material. Another purification method is the better 

solubility of the oxides (2, 4) in ice cold water.  
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Scheme 4.1. Synthesis of bis-(3,5-dinitro-pyrazol-1-yl)methane (1), bis-(3,4-dinitro-pyrazol-1-
yl)methane (3), 3,4-dinitropyrazol-1-oxide (2) and 3,5-dinitropyrazol-1-oxide (4) as well as the ionic 
derivatives of 2 and 4. 

The energetic salts 2a–2d and 4a–4d were obtained by deprotonation of the neutral compounds 2 

and 4 in water/ethanol mixture by adding the corresponding bases. The mixtures were heated until 

everything was dissolved and left for crystallization to obtain the potassium (2a, 4a), ammonium 

(2b, 4b), guanidinium (2c, 4c) and aminoguanidinium (2d, 4d) salts. Further, the ammonium salts 

of 3,4-DNP and 3,5-DNP were synthesized in order to dissolve them in DMF and treating them with 

diidomethane (I2CH2) to get the isomeric methylene bridged compounds (1, 3).  

 

4.2.2 Crystal Structures  

In this work the crystal structures of compounds (1, 2, 2a–2d, 3, 4a–4d) were obtained by 

recrystallization in water/ethanol mixtures. The crystal structures of the water/ethanol containing 

compounds (2, 2a, 4a and 4b) can be found in the supporting information. Further, selected 

parameters and data from the low temperature X-ray data collection and refinements are also given 

in the supporting information. Further information regarding the crystal-structure determinations 

have been deposited with the Cambridge Crystallographic Data Centre as supplementary 

publication Nos. 1836555 (1), 1836554 (2∙H2O), 1836556 (2a∙H2O), 1836562 (2b), 1836559 (2c), 

1836558 (2d), 1836561 (3), 1836563 (4a∙EtOH), 1836560 (4b∙H2O), 1836553 (4c) and 1836557 

(4d). 
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Figure 4.2. Molecular unit of 1 (left) and 3 (right). Ellipsoids are drawn at the 50% probability level.  

Compounds 1 and 3 crystallize in the space groups Cc and P212121 with densities of 1.799 (@173°C) 

and 1.756 g cm–3 (@173°C). The molecular units are depicted in Figure 4.2. The methylene bridged 

carbon atoms (N1–C4–N5) have similar bond angles of 110.43(19)° and 110.77(16)°. The pyrazole 

rings are arranged different toward the bridging C atom. For compound 1 the pyrazoles are ordered 

inversion symmetrically like and mirror-symmetrically for compound 3. The nitro groups of 1 are 

twisted out of the planar pyrazole ring with torsion angle of O5–N7–C5–C6 = –153.4(3)°, O8–N8–

C6–C7 = 32.7(4)°, O4–N4–C2–C3 = 28.1(5) and O2–N3–C1–C2 = 30.5(4). Compared to compound 1 

the nitro groups of 3 are less twisted toward the plane pyrazole with angles of O1–N3–C1–C2 = 

179.0(2)°, O8–N8–C7–C6 = 1.3(3)°, O4–N4–C3–C2 = –1.5(3)° and O5-N7-C5-C6 = –155.0(19)°. The 

bridging C–N bond lengths are very similar with values of 1.458(4) Å (N1–C4) and 1.451(4) Å (N5–

C4) for 1 and 1.454(3) Å (N5–C4) and 1.463(2) Å (N1–C4) for 3.  

Compound 2b crystallizes in the monoclinic space group P21/n with a density of 

1.730 g cm–3 at 100 K. The molecular unit is depicted in Figure 4.3. The bond length of the 

oxygen and the pyrazole nitrogen (O1–N1 = 1.332 Å) is the longest of all structures and 

similar to other azole oxides.[17c, 17d] The torsion angles (e.g. O1–N1–N2–C2, N3–C1–C2–N4) 

of the pyrazole show the plane arrangement. The nitro groups are twisted with 8.6° (N3–

C1–C2–N4) against them self and with 31.0(5)° (O2–N3–C1–C3) and –21.5(5)° (O4–N4–C2–

C1) to the planar ring system. Various hydrogen bonds between the pyrazole and the 

ammonium protons are build up, which explains the relative high decomposition 

temperature (Tdec.: 197°C).  
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Figure 4.3. Molecular unit of 2b. Ellipsoids are drawn at the 50% probability level.  

Figures 4.4 and 4.5 depict the molecular units of the guanidinium derivatives of both isomers (2c, 

2d, 4c and 4d). They crystallize in the common space groups P-1 (2c, 4c) and P21/n (2d, 4d). The 

densities lie between 1.664 (2d, 203 K) and 1.746 (2c, 143 K) g cm–3.  

 

Figure 4.4. Molecular unit of 2c (top) and 4c (bottom). Ellipsoids are drawn at the 50% probability 
level.  

All guanidinium and aminoguanidinium salts are dominated by strong hydrogen bonding resulting 

in a good thermal stability with exception of 4d (Tdec.: 131 °C) and show an almost planar pyrazole 

ring system. Further, the oxygen atom attached to the pyrazole N atom of all four salts is located in 

the planar pyrazole heterocycle. The torsion angles of O1–N1–N2–C1 of 2c (–177.2(3)) and 4c (–

178.47(19)) show the oxide is only slightly twisted toward the plane pyrazole. The nitro groups are 
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minimal twisted toward the pyrazole ring with torsions angles of O2–N3–C1–N2 = 4.1°(3) and O4–

N4–C2–C1 = 5.7°(5) for 2c and O2–N3–C1–N2 = –4.1°(3) and O4–N4–C3–C2 = 1.2°(4) for 4c.  

                   

Figure 4.5. Molecular unit of 2d (left) and 4d (right). Ellipsoids are drawn at the 50% probability level.  

The aminoguanidinium salts 2d and 4d show that the nitro groups of 2d are twisted stronger out of 

the ring with torsion angles of O2A–N3–C1–N2 = –147.7(4)° and O4–N4–C2–C1 = –165.8(2)° 

compared to 4d (–4.6(3) and 3.5(3)) due to its more sterical hindrance of the nearby nitro groups. 

The N–N bond length between N5–N6 of both aminoguanidinium cations show values close to an N–

N single bond (2d: 1.413(2); 4d: 1.408(3)).  

 

4.2.3 Spectroscopy 

All compounds are characterized by 1H, 13C NMR spectroscopy, elemental analysis, mass 

spectrometry and IR spectroscopy. The methylene bridged compounds 1 and 3 were further 

characterized by 15N NMR spectroscopy. Both compounds 2 and 4 show one resonance in the 1H 

spectrum (9.06 and 7.77 ppm) and three in the 13C spectrum (2: 140.6, 126.0 and 124.4 ppm; 4: 

142.8, 138.6, 99.9 ppm). The OH protons were not observed due to the high acidity of both 

compounds. The IR spectra show several main absorption bands for OH (2: 2998 cm–1; 4: 2964 cm–

1), the nitro group (2: 1541/1354 cm–1; 4: 1528/1329 cm–1) or CH stretching vibration (2: 3131 cm–

1; 4: 3148 cm–1). In the 1H NMR spectra of compounds 1 and 3 two resonances are observed. The 

signals at 9.44 (1) and 8.31 (3) ppm can be assigned to the pyrazole hydrogen and the signals at 

6.75 (1) and 7.42 (3) ppm to the bridged CH2 group. In the IR spectra the main absorption bands 

2998/2933 (C-H), 1544/1523 (NO2-asym.) and 1357/1341 cm–1 (NO2-sym.) are assigned to 1 and 3. 

Measured mass spectra confirmed the synthesized compounds 1, 2, 3 and 4 as well. 
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In the 1H NMR spectra of the salts (2a–d) the hydrogen signal of pyrazole is observed at 7.72–

7.89 ppm and for 4a–d at 7.44–7.74 ppm. Further, one proton resonance for the guanidinium (2c, 

4c) and three resonances for the aminoguanidinium (2d, 4d) salts were observed in the 1H NMR 

spectra. Three signals for the carbon atoms of the pyrazoles are found in the 13C spectra between 

98.6 and 159.7 ppm with an additional carbon signal for the guanidinium derivatives.  

The absorption bands for nitro groups of salts 2a–d and 4a–d were found in the region from 1522–

1564 cm–1 (asymmetrical) and 1320–1380 cm–1 (symetrical). Further the absorption bands of the 

primary amines were found for the nitrogen-rich cations (2b–2d and 4b–4d) in the range from 

3147 to 3499 cm–1.  

In addition to 1H and 13C NMR spectra, 15N NMR spectra were recorded for the characterization of 

the methylene bridged compounds 1 and 3. Both spectra show comparatively shifts for both 

isomers (Figure 4.6 and 4.7). 

 

 

Figure 4.6. Proton coupled 15N NMR spectra of compound 1.  

As shown in figure 6 the 15N NMR spectrum shows four signals ranging from –28.04 to –179.5 ppm. 

The signals at –28.04 and –28.04 ppm can be assigned to the nitro groups, whereas nitrogen atom 4 

belongs to the signal –28.08 due to its broader proton coupling. The resonance at –179.5 ppm 

(doublet) belongs to the bridged nitrogen atom and the one at –82.4 ppm (triplett) to the other 

pyrazole ring nitrogen because of the different coupling.  
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Figure 4.7. Proton coupled 15N NMR spectra of compound 3.  

Compound 3 shows also four signals for the nitrogen atoms in the 15N NMR spectrum (Figure 4.7). 

Nevertheless the coupling of both nitro groups is not visible for which reason the nitro groups 

cannot be assigned to the resonances (–26.4 and –31.6 ppm). The signal for the bridging nitrogen 

atom has a shift of –183.6 ppm (doublet) and the remaining pyrazole nitrogen at –73.4 ppm 

(triplett). 

 

4.2.4 Thermal, Analysis, Sensitivities, Physicochemical and Energetic Properties 

The thermal stabilities of all compounds were determined by DSC measurements (heating rate of 

5 °C min−1). Both methylene bridged compounds 1 and 3 show melting (1: 156 °C; 3: 191 °C) and 

decomposition (1: 319 °C; 3: 330 °C) behavior with similar values (Table 4.1). The decomposition 

temperatures are rather high and higher than the value of RDX or other methylene bridged 

pyrazoles (3,4,5-trinitropyrazole: 205 °C; 4-amino-3,5-dinitropyrazole: 310 °C)[1b]. Regarding the 

salts (2a–d, 4a–d) the aminoguanidinium salt 2d is the only compound that melts, whereas all other 

decompose at temperatures between 131 °C (4d) and 266 °C (4c). All salts of compound 4 have 

(with exception of 4d) a higher thermal stability than the salts of 2 and RDX.  
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Compound 1 is with a value of 25 J slightly more sensitive than 3 (35 J) toward impact, whereas 

both are classified as not sensitive regarding their friction sensitivity values (>360 N). The impact 

sensitivity values of the salts (2a–d and 4a–d) range from 5 J (2a) to 40 J (4c). Classified as sensitive 

toward impact are both potassium salts with values of 5 J (2a,·H2O) and 6 J (4a, 0.5 H2O), although 

both contain crystal water.[20] Comparing the salts of both isomers the ones of 3,4-DNP are more 

sensitive than the salts of 3,5-DNP. Furthermore, all salts are almost insensitive to friction and 

electrostatic discharge. Only compounds 2a (216 N), 4a (240 N) and 4b (288 N) are slightly 

sensitive toward friction. Compared to RDX, only the potassium salts (2a, 4a) are more sensitive 

toward impact, whereas all salts have lower friction and ESD values. The densities of the bridged 

compounds are (values of 1.76 and 1.72 g cm–3) similar. Comparing the densities of the salts the 

values lie between 1.62 g cm–3 and 1.955 g cm–3 with the potassium salt (2a) as the highest. The 

calculated heats of formation (ΔfH) of the water containing compounds 2a and 4b are negative 

whereas all others are positive with values between 7 (4c) and 302 (1) kJ mol–1. The isomers 1 and 

3 have higher values for ΔfH (301.7 and 266.4 kJ mol–1) than RDX. Due to the similar ΔfH also the 

detonation velocity and pressure are similar and range from 7966–8140 m s–1 and 263–280 kbar, 

respectively. Comparing the energetic parameters of the salts, the VD vary from 7909 to 8279 m s–3 

and the pressure from 242 (4c) to 269 (2a) kbar.  

From the view of the functionalization strategies the bridged compounds show a higher thermal 

stability, higher heats of formation and an increasing of the sensitivity values compared to 

dinitropyrazole. The salts likewise show a higher thermal stability, higher density and better 

energetic properties than the similar salts of the dinitropyrazole isomers. Besides, the salts show a 

higher thermal stability as the salts of 3,4,5-trinitropyrazole-1-olate and only a slightly lower 

energetic performance.[19]  
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Table 4.1. Physicochemical properties and detonation parameters of 1, 3, 2a–2d and 4a–4d compared to RDX.  

 1 3 2a 2b 2c 2d 4a 4b 4c 4d RDX 

Formula C7H4N8O8 C7H4N8O8 C3HKN4O5 

∙H2O C3H5N5O5 C4H7N7O5 C4H8N8O5 C3HKN4O5 

∙0.5 H2O C3H5N5O5 ∙H2O C4H7N7O5 C4H8N8O5 C3H6N6O6 

FW [g mol–1] 327.2 327.2 230.19 191.12 233.15 248.06 210.69 209.12 233.15 248.06 222.12 

IS [J]a 25 35 5 10 30 10 6 30 40 10 7.5 

FS [N]b  360 360 216 360 360 360 240 288 360 360 120 

ESD [J]c 1.5 1.0 0.7 1.5 1.5 1.5 n.d. n.d. n.d. n.d. 0.20 

N [%]d 34.15 34.15 24.34 36.65 42.06 45.15 33.49 27.79 42.05 40.77 37.84 

Ω [%]e –39.0 –39.0 –13.90 –29.30 –44.60 –45.13 –19.41 –26.77 –44.60 –45.12 –21.61 

Tdec. [°C]f  

Tmelt [°C]f 

319 

156 

330 

191 

197 167 180 169 

132 

229 224 266 131 205 

ρ [g cm–3] (298K)g 1.760 1.72 1.955 1.677 1.704 1.639 - 1.62 1.68 1.68 1.806 

ΔfH° [kJ mol–1]h  301.7 266.4 –391.7 68.7 27.0 144.9 - –253.4 7.8 115.2 70.3 
ΔfU° [kJ kg–1]i 919.3 887.5 –1631.5 456.8 217.0 688.6 - –1105.1 134.5 569.1 417.0 

EXPLO5 V6.03 values:        
–ΔEU° [kJ kg–1]j 5254 5119 4636 5482 4473 4738 - 4670 4388 4643 5845 

TE [K]k 3895 3856 3182 3752 3119 3263 - 3242 3098 3186 3810 

pCJ [kbar]l 280 263 269 282 251 247 - 244 242 257 345 

VD [m s–1]m 8140 7966 7920 8279 8063 8021 - 7909 7935 8159 8861 

V0 [L kg–1]n 432 441 399 795 804 835 - 468 459 458 785 

Toxicity:            

EC50 (15 min) 
[g L–1]o 

- - 0.27 - - - 0.70 - - - 0.327 [21] 

EC50 (30 min) 
[g L–1] o 

- - 0.20 - - - 0.43 - - - 0.239 [21] 

a impact sensitivity (BAM drophammer, 1 of 6); b friction sensitivity (BAM friction tester, 1 of 6); c electrostatic discharge device (OZM); d nitrogen content; e oxygen balance; f 

decomposition and melting temperature from DSC (β = 5°C); g recalculated from low temperature X-ray densities (ρ298K = ρT / (1+αV(298-T0); αV = 1.5 10–4 K–1); h calculated (CBS-4M) 

heat of formation; i calculated energy of formation; j energy of explosion; k explosion temperature; l detonation pressure; m detonation velocity; n assuming only gaseous products; o 

Toxicity measurements to aquatic life using the luminescent marine bacterium Vibrio fischeri. 
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4.3 Conclusion 

In conclusion we report on the synthesis of 3,4-DNP-oxide (2) and 3,5-DNP-oxide (4) by N-oxidation 

using Oxone® and a phosphate buffer system with higher yields (68%; 61%) than mentioned in 

literature. Energetic salts of both isomers (2a–d; 4a–d) and methylene bridged compounds (1, 3) 

were obtained and intensively characterized. Compounds 4a–d have higher decomposition 

temperatures than 2a–d with the exception of 4d (Tdec.: 131 °C). The decomposition temperatures 

are in between 131 °C up to 266 °C with the potassium salt 4a as the highest. The methylene 

bridged compounds 1 and 3 show a similar thermal behavior with melting and high decomposition 

temperatures (319 and 330 °C). The sensitivity values of the salts are in the range from 5 to 40 J for 

impact and 216 N to 360 N for friction. Both potassium salts indicate the highest sensitivity values 

(2a: 5 J, 4a: 6 J). Compounds 1 and 3 have impact sensitivity values of 25 J and 35 J and both a 

friction sensitivity value of 360 N. Densities for the salts lie between 1.62 (4b) to 1.955 (2a) g cm−3. 

The calculated detonation velocities (VD) range from 7909 (4b) to 8279 m s−1 (2b) and the 

detonation pressure (pCJ) from 242 (4c) to 282 kbar  (2b) and are lower compared to the values of 

RDX. The main properties of water-free salts are depicted in Figure 4.8. The toxicity to vibrio fischeri 

was measured for both potassium salts due to their good water solubility. The EC50 value of 

compound 2a is lower and of compound 4a higher than that of RDX, which means that 2a is more 

toxic and 4a less toxic than RDX[21]. Based on the relative high decomposition temperatures, rather 

high detonation parameters and appropriate sensitivity values both potassium salts (2a, 4a) and 

the bridged compounds (1, 3) have capability as future energetic materials.  

 

Figure 4.8. Overview of the densities, impact sensitivities, heat of formations and detonation 
velocities of water-free compounds 1, 3, 2c, 2d, 4c and 4d.  
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4.4 Experimental Section 

The complete experimental procedures including the synthesis of salts can be found in the 

supporting information. 

CAUTION! All investigated compounds are potentially explosive energetic materials, although no 

hazards were observed during preparation and handling these compounds. Nevertheless, this 

necessitates additional meticulous safety precautions (earthed equipment, Kevlar® gloves, Kevlar® 

sleeves, face shield, leather coat, and ear plugs). 

Bis-(3,4-dinitro-1H-pyrazol-1-yl)methane (1): 3,4-Dinitro-1H-pyrazole[S22] (1.0 g, 6.2 mmol) was 

dissolved in water and aqueous ammonia solution (2 M, 3.2 mL, 6.2 mmol) was added. The mixture 

was stirred for 30 min and the solvent was removed in vacuum. The gained ammonium salt of 3,4-

dinitro-1H-pyrazole (1.0 g, 5.71 mmol, 2.2 eq.) and diiodomethane (0.21 ml, 2.6 mmol, 1.0 eq.) were 

dissolved in DMF (15 ml). The solution was stirred overnight at 80 °C and afterwards poured on ice 

to obtain 1 after filtration (0.71 g, 2.16 mmol, 83 %).1H NMR (400 MHz, DMSO d6): δ (ppm) = 9.44 

(s, 2H, CH), 6.75 (s, 4H, CH2); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 147.9, 135.6, 127.0, 66.8; 15N 

NMR (41 MHz, DMSO d6): δ (ppm) = –28.1 (-NO2), –28.1 (-NO2), –82.4 (t, N), –179.5 (d, Nbridge); IR 

(ATR, rel. int.): ṽ (cm–1) = 3124 (w), 3049(w), 2998 (w), 2161 (w), 2034 (w), 1544 (s), 1516 (s), 

1462 (m), 1436 (m), 1357 (s), 1333 (s), 1281 (m), 1147 (m), 1119 (m), 1016 (w), 999 (w), 924 (w), 

862 (m), 810 (s), 789 (m), 746 (s), 651 (m), 621 (w); Elemental analysis: calcd. (%) for C7H4N8O8 

(327.20 g mol–1): C 25.62, H 1.23, N 34.15; found: C 26.59, H 1.42, N 33.25; Mass spectroscopy: m/z 

(DEI) = 327.4 (C7H4N8O8); DSC (5°C min–1): Tmelt. = 156°C, Tdec. = 319°C. 

3,4-Dinitropyrazol-1-oxide hydrate (2): 3,4-Dinitropyrazole[S22] (4.9 g, 31.0 mmol, 1.0 eq) was 

suspended in water (100 mL) and Oxone (65.3 g, 212.4 mmol, 6.9 eq) as well as basic buffer 

(NaH2PO4/2 M NaOH) was added alternately to hold the pH between 6-8. The solution was stirred at 

55 C over 72 h, then sulfuric acid (50%, 100 mL) was added and the product was extracted with 

diethyl ether (3x 100mL). The combined organic layers were extracted with 5 % aqueous sodium 

acetate solution (3 x 100 mL). After acidification of the aqueous sodium acetate phase with 

hydrochloric acid (2 M) the product is isolated by extraction with diethyl ether (3x 100mL). The 

combined organic layers were dried over anhydrous magnesium sulfate, filtrated and the solvent 

was evaporated under reduced pressure to yield compound 2 (4.04 g, 21.1 mmol, 68 %) as 

yellowish crystals. 1H NMR (400MHz, DMSOd6): δ (ppm) = 9.06 (s, 1H, CH); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 140.6, 126.0, 124.4; IR (ATR, rel. int.): ṽ (cm–1) = 3565 (s), 3466 (s), 1710 (w), 

1614 (m), 1541 (m), 1507 (s), 1464 (s), 1400 (s), 1354 (s), 1325 (s), 1270 (s), 1144 (s), 1117 (m), 
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1022 (m), 911 (s), 857 (s), 808 (m), 741 (m), 664 (m), 624 (m), 596 (m); ); Elemental analysis: 

calcd. (%) for C3H4N4O6 (190.12 g mol–1): C 18.76, H 2.10, N 29.17; found: C 18.96, H 2.16, N 28.27; 

Mass spectroscopy: m/z (FAB-) = 173.1 (C3HN4O5–); DSC (5°C min–1): Tdec. = 167°C; Sensitivities 

(grain size: < 500 μm): BAM impact: 35 J, BAM friction: 360 N, ESD: 1.0 J. 

Bis-(3,5-dinitro-1H-pyrazol-1-yl)methane (3): 3,5-Dinitro-1H-pyrazole[S22] (1.0 g, 6.2 mmol) was 

dissolved in water and aqueous ammonia solution (2 M, 3.2 mL, 6.2 mmol) was added. The mixture 

was stirred for 30 min. and the solvent was removed in vacuum. The gained ammonium salt of 3,5-

dinitro-1H-pyrazole (0.6 g, 3.43 mmol, 2.2 eq.) and diiodomethane (0.13 ml, 1.56 mmol, 1.1 eq.) 

were dissolved in DMF (15 ml). The solution was stirred overnight at 80 °C and afterwards poured 

on ice to obtain 3 after filtration (0.28 g, 0.85 mmol, 55 %). 1H NMR (400 MHz, DMSO d6): δ (ppm) = 

8.31 (s, 2H, CH), 7.42 (s, 2H, CH2); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 153.2, 146.5, 103.5, 

65.7; IR (ATR, rel. int.): ṽ (cm–1) = 3153 (w), 3093(w), 3013 (w), 2933 (w), 1563 (m), 1523 (s), 1463 

(m), 1430 (w), 1343 (s), 1330 (s), 1273 (m), 1223 (m), 1143 (w), 1093 (m), 982 (m), 853 (m), 818 

(m), 783 (m), 738 (s), 615 (w); Elemental analysis: calcd. (%) for C7H4N8O8 (327.20 g mol–1): 

C 25.62, H 1.42, N 34.15; found: C 26.32, H 1.39, N 33.68; Mass spectroscopy: m/z (DEI) = 327.4 

(C7H4N8O8); DSC (5°C min–1): Tmelt. = 191°C, Tdec. = 330°C; Sensitivities (grain size: < 500 μm): BAM 

impact: 35 J, BAM friction: 360 N, ESD: 1.0 J. 

3,5-Dinitropyrazol-1-oxide hemihydrate (4): 3,5-Dinitropyrazole[S22] (6.3 g, 39.8 mmol, 1.0 eq) 

was suspended in water (100 mL) and Oxone (86.2 g, 280.0 mmol, 6.9 eq) as well as basic buffer 

(NaH2PO4/2 M NaOH) was added alternately to hold the pH between 3–5. The solution was stirred 

at 55 C over 72 h, then sulfuric acid (50 %, 100 mL) was added and the product was extracted with 

diethyl ether (3x 100mL). The ether phase was extracted with 5 % aqueous sodium acetate solution 

(3 x 100 mL). After acidification of the aqueous sodium acetate phase with hydrochloric acid (2 M) 

the product is isolated by extraction with diethyl ether (3x 100mL). The combined organic layers 

were dried over anhydrous magnesium sulfate, filtrated and the solvent was evaporated under 

reduced pressure to yield compound 4 (4.44 g, 24.3 mmol, 61 %) as colorless powder. 1H NMR 

(400MHz, DMSOd6): δ (ppm) = 7.77 (s, 1H, CH); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 142.8, 

138.6, 99.9; IR (ATR, rel. int.): ṽ (cm–1) = 3215 (m), 3148 (m), 2964 (w), 2168 (w), 1692 (w), 1555 

(m), 1528 (m), 1475 (m), 1445 (s), 1332 (s), 1202 (m), 1141 (m), 1083 (m), 1014 (m), 983 (s), 831 

(s), 741 (s), 686 (s), 573 (m), 512 (m); Elemental analysis: calcd. (%) for C3H3N4O5.5 (183.08 g mol–

1): C 19.68, H 1.65, N 30.60; found: C 20.26, H 1.54, N 30.02; Mass spectroscopy: m/z (DEI) = 173.9 

(C3HN4O5); DSC (5°C min–1): Tdec. = 158°C; Sensitivities (grain size: < 500 μm): BAM impact: 35 J, 

BAM friction: 360 N, ESD: 1.0 J. 
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4.6 Supplementary Information 

4.6.1 X-ray Diffraction 

Single crystals were picked and measured on an Oxford Xcalibur3 diffractometer with a Spellman 

generator (voltage 50 kV, current 40 mA) and a CCD area detector for data collection using Mo-Kα 

radiation (λ = 0.71073 Å). The crystal structures of compounds 2b, 2d, 4a, 4b, 4c and 4d were 

determined on a Bruker D8 Venture TXS diffractometer equipped with a multilayer 

monochromator, a Photon 2 detector, and a rotating-anode generator (MoKα radiation). The data 

collection was carried out using CRYSALISPRO software[S1] and the reduction were performed. The 

structures were solved using direct methods (SIR-92, [S3] SIR-97[S3] or SHELXS-97[S4]) and refined by 

full-matrix least-squares on F2 (SHELXL [S4]): The final check was done with the PLATON software [S5] 

integrated in the WinGX software suite. The non-hydrogen atoms were refined anisotropically and 

the hydrogen atoms were located and freely refined. The absorptions were corrected by a SCALE3 

ABSPACK multiscan method.[S6] The DIAMOND2 plots are shown with thermal ellipsoids at the 50% 

probability level and hydrogen atoms are shown as small spheres of arbitrary radii. The SADABS 

program embedded in the Bruker APEX3 software has been used for multi-scan absorption 

corrections in all structures.[S7] 
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Table 4.S1. Crystallographic data and refinement parameters of compound 1, 2, 2a and 2b. 
 1 2∙H2O 2a∙H2O 2b 

Formula C7H4N8O8 C3H4N4O6 C3H3N4O6K C3H5N5O5 

FW [g mol−1] 328.18 192.10 230.19 191.12 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic 

Space Group Cc P21 P21/c P21/n 

Color / Habit Colorless rod Colorless block Orange plate Orange rod 

Size [mm] 0.14 × 0.17 × 0.34 0.20 × 0.40 × 0.40 0.09 × 0.22 × 0.24 0.03 × 0.03 × 0.1 

a [Å] 

b [Å] 

c [Å] 

α [°] 

β [°] 

γ [°] 

10.9540(8) 

12.5712(5) 

10.3265(5) 

90 

121.575(7) 

90 

4.9308(2) 

8.5502(3) 

8.4683(4) 

90 

91.521(4) 

90 

9.1277(5) 

12.3808(6) 

6.7712(4) 

90 

95.614(5) 

90 

18.418(3) 

4.8418(7) 

18.434(3) 

90 

116.748(4) 

90 

V [AÅ  3] 1211.49(15) 356.89(3) 761.53(7) 1468.0(4) 

Z 4 2 4 8 

ρcalc. [g cm−3] 1.799 1.788 2.008 1.730 

μ [mm−1] 0.165 0.174 0.714 0.162 

F(000) 664 196 464 784 

λMoKα[AÅ ] 0.71073 0.71073 0.71073 0.71073 

T [K] 173 173 130 100 

ϑ min-max [°] 4.3, 27.5 4.7, 27.5 4.3, 26.0 2.1, 26.4 

Dataset h; k; l −14:14;−16:15;−11:13 −6:6;−11:10;−9:10 −11:11;−15:15;−8:5 −23:23;−6:6; −23:23 

Reflect. coll. 5095 2835 5548 18097 

Independ. refl. 2468 1460 1498 2979 

Rint 0.016 0.013 0.028 0.075 

Reflection obs. 2371 1417 1276 2511 

No. parameters 224 134 139 269 

R1 (obs) 0.028 0.0225 0.0266 0.0445 

wR2 (all data) 0.0719 0.0550 0.0653 0.1156 

S 1.05 1.09 1.04 1.10 

Resd. Dens.[e AÅ −3] −0.17, 0.20 −0.16, 0.16 −0.25, 0.30 −0.35, 0.36 

Device type 
Xcalibur 

Sapphire 3 
Xcalibur 

Sapphire 3 
Xcalibur 

Sapphire 3 
Bruker D8 Venture 

Solution SIR-92 SIR-92 SIR-92 SIR-92 

Refinement SHELXL-2013 SHELXL-2013 SHELXL-2013 SHELXL-2013 

Absorpt. corr. multi-scan multi-scan multi-scan multi-scan 

CCDC 1836555 1836554 1836556 1836562 
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Table 4.S2. Crystallographic data and refinement parameters of compounds 2c, 2d, 3 and 4a. 
 2c 2d 3 4a∙EtOH 

Formula C4H7N7O5 C4H8N8O5 C7H4N8O8 C5H7N4O6K 

FW [g mol−1] 233.17 248.18 328.18 258.35 

Crystal system Triclinic Monoclinic Orthorhombic Monoclinic 

Space Group P−1 P21/n P212121 P21/n 

Color / Habit Orange plate Orange-yellow block Colorless rod Yellow rod 

Size [mm] 0.06 × 0.14 × 0.34 0.22 × 0.32 × 0.43 0.11 × 0.17 × 0.32 0.03 x 0.08 x 0.09 

a [Å] 

b [Å] 

c [Å] 

α [°] 

β [°] 

γ [°] 

6.9088(8) 

7.079(1) 

9.5185(11) 

72.814(11) 

87.039(9) 

86.113(10) 

9.5342(8) 

8.3482(5) 

13.2118(9) 

90 

109.608(9) 

90 

8.6423(2) 

9.8451(2) 

14.5917(4) 

90 

90 

90 

4.5793(3) 

14.819(1) 

14.7285(10) 

90 

90.993(2) 

90 

V [AÅ  3] 443.47(10) 990.59(13) 1241.53(5) 999.35(12) 

Z 2 4 4 4 

ρcalc. [g cm−3] 1.746 1.664 1.756 1.716 

μ [mm−1] 0.158 0.150 0.161 0.554 

F(000) 240 512 664 528 

λMoKα[AÅ ] 0.71073 0.71073 0.71073 0.71073 

T [K] 143 203 173 103 

ϑ min-max [°] 4.2, 26.0 4.5, 26.5 4.1, 27.5 3.1, 26.0 

Dataset h; k; l −7:8;−8:8;−11:11 −10:11;−10:10;−16:16 −11:11;−12:12;−18:18 −5:5;−18:18; −18:18 

Reflect. coll. 3328 8092 20754 13684 

Independ. refl. 1739 2040 2835 1960 

Rint 0.031 0.027 0.038 0.036 

Reflection obs. 1320 1591 2582 1801 

No. parameters 173 205 127 150 

R1 (obs) 0.0514 0.0426 0.0273 0.0245 

wR2 (all data) 0.1392 0.1202 0.0680 0.0608 

S 1.05 1.04 1.06 1.06 

Resd. Dens. [e AÅ −3] −0.38, 0.49 −0.30, 0.33 −0.17, 0.17 −0.23, 0.26 

Device type Xcalibur Sapphire 3 Bruker D8 Venture Xcalibur Sapphire 3 Bruker D8 Venture 

Solution SIR-92 SIR-92 SIR-92 SIR-92 

Refinement SHELXL-2013 SHELXL-2013 SHELXL-2013 SHELXL-2013 

Absorpt. corr. multi-scan multi-scan multi-scan multi-scan 

CCDC 1836559 1836558 1836561 1836563 
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Table 4.S3. Crystallographic data and refinement parameters of compounds 4b, 4c and 4d. 
 4b∙H2O 4c 4d 

Formula C3H7N8O6 C4H7N7O5 C4H8N8O5 

FW [g mol−1] 209.14 233.17 248.18 

Crystal system Triclinic Triclinic Monoclinic 

Space Group P−1 P−1 P21/n 

Color / Habit Yellow plate Yellow block Brown platelet 

Size [mm] 0.02 × 0.07 × 0.08 0.02 × 0.02 × 0.03 0.02 × 0.05 × 0.09 

a [AÅ ] 

b [AÅ ] 

c [AÅ ] 

α [°] 

β [°] 

γ [°] 

4.7398(4) 

9.0434(9) 

10.0417(9) 

101.309(4) 

97.471(3) 

95.925(4) 

3.6558(2) 

11.3428(6) 

11.7421(6) 

112.789(2) 

94.275(2) 

90.277(2) 

10.9035(7) 

3.5661(2) 

24.5303(14) 

90 

94.867(2) 

90 

V [AÅ  3] 414.80(7) 447.35(4) 950.37(10) 

Z 2 2 4 

ρcalc. [g cm−3] 1.674 1.731 1.735 

μ [mm−1] 0.160 0.157 0.156 

F(000) 216 240 512 

λMoKα[AÅ ] 0.71073 0.71073 0.71073 

T [K] 103 103 100 

ϑ min-max [°] 3.4, 26.4 3.2, 26.4 3.3, 26.4 

Dataset h; k; l −5:5;−11:11;−11:12 −4:4;−14:13;0:14 −13:12;−4:4; −28:30 

Reflect. coll. 4286 1823 5074 

Independ. refl. 1684 1823 1959 

Rint 0.024 0.038 0.034 

Reflection obs. 1449 1604 1478 

No. parameters 160 170 186 

R1 (obs) 0.0389 0.0397 0.0464 

wR2 (all data) 0.0885 0.0957 0.1083 

S 1.14 1.15 1.05 

Resd. Dens. [e AÅ −3] −0.31, 0.24 −0.29, 0.31 −0.28, 0.30 

Device type Bruker D8 Venture Bruker D8 Venture Bruker D8 Venture 

Solution SIR-92 SIR-92 SIR-92 

Refinement SHELXL-2013 SHELXL-2013 SHELXL-2013 

Absorpt. corr. multi-scan multi-scan multi-scan 

CCDC 1836560 1836553 1836557 

 



4 Improving the Energetic Properties of Dinitropyrazoles by Utilization of Current Concepts 

108 

 

 

Figure 4.S1. Molecular structure of 2a showing the atom-labelling scheme. Thermal ellipsoids 
represent the 50% probability level. 

 

Figure 4.S2. Extended molecular structure of 4b showing the atom-labelling scheme. Thermal 
ellipsoids represent the 50% probability level.  
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Figure 4.S3. Extended molecular structure of 4a showing the atom-labelling scheme. Thermal 
ellipsoids represent the 50% probability level.  

 

Figure 4.S4. Extended molecular structure of 2 showing the atom-labelling scheme. Thermal 
ellipsoids represent the 50% probability level.  
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4.6.2 Heat of formation calculations 

All quantum chemical calculations were carried out using the Gaussian G09 program package.[S8] 

The enthalpies (H) and free energies (G) were calculated using the complete basis set (CBS) method 

of Petersson and coworkers in order to obtain very accurate energies. The CBS models are using the 

known asymptotic convergence of pair natural orbital expressions to extrapolate from calculations 

using a finite basis set to the estimated CBS limit. CBS-4 starts with an HF/3-21G(d) geometry 

optimization; the zero point energy is computed at the same level. It then uses a large basis set SCF 

calculation as a base energy, and an MP2/6- 31+G calculation with a CBS extrapolation to correct 

the energy through second order. A MP4(SDQ)/6-31+ (d,p) calculation is used to approximate 

higher order contributions. In this study, we applied the modified CBS-4M. 

Heats of formation of the synthesized ionic compounds were calculated using the atomization 

method (equation E1) using room temperature CBS-4M enthalpies, which are summarized in Table 

4.S5.[S9,S10]  

ΔfH°(g, M, 298) = H(Molecule, 298) – ∑H°(Atoms, 298) + ∑ΔfH°(Atoms, 298)             (E1) 

 

Table 4.S5. CBS-4M enthalpies for atoms C, H, N and O and their literature values for atomic 
ΔH°f

298 / kJ mol–1 
 –H298 [ a.u.] NIST [S11] 

H 0.500991 218.2 

C 37.786156 717.2 

N 54.522462 473.1 

O 74.991202 249.5 

 

For neutral compounds the sublimation enthalpy, which is needed to convert the gas phase enthalpy 

of formation to the solid state one, was calculated by the Trouton rule.[S12] For ionic compounds, the 

lattice energy (UL) and lattice enthalpy (ΔHL) were calculated from the corresponding X-ray 

molecular volumes according to the equations provided by Jenkins and Glasser.[S13] With the 

calculated lattice enthalpy the gas-phase enthalpy of formation was converted into the solid state 

(standard conditions) enthalpy of formation. These molar standard enthalpies of formation (ΔHm) 

were used to calculate the molar solid state energies of formation (ΔUm) according to equation E2. 

ΔUm  =  ΔHm – Δn RT        (E2) 

(Δn being the change of moles of gaseous components) 
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The calculation results are summarized in Table 4.S6. 

Table 4.S6. Heat of formation calculation results. 

M –H298 [a] [ a.u.]  ΔfH°(g,M)  

[kJ mol–1] [b] 

VM  [Å3] [c]   ΔUL, ΔHL ;[d]  

[kJ mol–1] 

ΔfH°(s) [e] 

[kJ mol–1] 

Δn [f] ΔfU(s) [g] 

[kJ kg–1] 

1 1306.907808 389.0   301.7 10 995.0 

3 1306.921244 353.7   266.4 10 887.5 

2 anion 709.020387 –47.0      

K+ 599.035967 487.4      

NH4+ 56.796608 635.8      

G+ 205.453192 571.9      

AG+ 260.701802 671.6      

2a  541.1 761.5 585.1, 588.8 –391.7 –6.5 –1631.5 

2b  588.8 1468.0 516.6, 124.2 68.7 7.5 456.8 

2c  524.9 443.5 494.4, 118.9 27.0 9.5 217.0 

2d  624.6 990.6 476.3, 479.7 144.9 10.5 688.6 

4 anion 709.029271 –71.8      

4b  541.1 414.8 571.4, 575.1 –253.4 –9 –1105.1 

4c  501.6 447.4 490.3, 493.8 7.8 9.5 134.5 

4d  601.3 950.4 482.6, 486.1 115.2 10.5 569.0 

[a] CBS-4M electronic enthalpy; [b] gas phase enthalpy of formation; [c] molecular volumes taken from X-ray structures and 
corrected to room temperature; [d] lattice energy and enthalpy (calculated using Jenkins and Glasser equations); [e] 

standard solid state enthalpy of formation; [f] Δn being the change of moles of gaseous components when formed; [g] solid 
state energy of formation. 
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4.6.3 Experimental Part 

General Procedures 

Thermal analysis by Differential Scanning Calorimetry (DSC) was performed on a LINSEIS DSC PT10 

with about 1–2 mg substance in a perforated aluminum vessel with a heating rate of 5 K∙min−1 and 

a nitrogen flow of 5 dm3∙h−1. The NMR spectra were recorded on a 400 MHz instruments JEOL 

Eclipse 270, JEOL EX 400 or a JEOL Eclipse 400 (1H 399.8 MHz, 13C 100.5 MHz, 14N 28.9 MHz, and 
15N 40.6 MHz). Chemical shifts are given in parts per million (ppm) relative to Si(Me)4 (1H, 13C) and 

nitromethane (14N, 15N). Infrared spectra were measured with a Perkin-Elmer Spectrum BX-FTIR 

spectrometer equipped with a Smiths DuraSamplIR II ATR device. Transmittance values are 

qualitatively depicted as “very strong” (vs), “strong” (s), “medium” (m), and “weak” (w). Mass 

spectra were recorded with a JEOL MStation JMS 700 (DEI+ / FAB+/−). Elemental analysis was 

performed using a Vario Micro from the Elementar Company.  

Impact sensitivity tests were carried out according to STANAG 4489[S8] modified instruction[S9] using 

a Bundesanstalt für Materialforschung (BAM) drophammer.[S10] Friction sensitivity tests were 

carried out according to STANAG 4487[S11] modified instruction[S12] using the BAM friction tester. 

The classification of the compounds results from the “UN Recommendations on the Transport of 

Dangerous Goods”.[S13] The sensitivity toward electrical discharge was tested upon using the Electric 

Spark Tester ESD 2010 EN.[S14] Bis-(3,4-dinitro-1H-pyrazol-1-yl)methane (1) and bis-(3,5-dinitro-

1H-pyrazol-1-yl)methane (3) were synthesized in a different way than mentioned in literature.[S23]  

 

Bis-(3,4-dinitro-1H-pyrazol-1-yl)methane (1) 

3,4-Dinitro-1H-pyrazole[S22] (1.0 g, 6.2 mmol) was dissolved in water and aqueous ammonia solution 

(2 M, 3.2 mL, 6.2 mmol) was added. The mixture was stirred for 30 min and the solvent was 

removed in vacuum. The gained ammonium salt of 3,4-dinitro-1H-pyrazole (1.0 g, 5.71 mmol, 

2.2 eq.) and diiodomethane (0.21 ml, 2.6 mmol, 1.0 eq.) were dissolved in DMF (15 ml). The solution 

was stirred overnight at 80 °C and afterwards poured on ice to obtain 1 after filtration (0.71 g, 

2.16 mmol, 83 %). 

1H NMR (400 MHz, DMSO d6): δ (ppm) = 9.44 (s, 2H, CH), 6.75 (s, 4H, CH2); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 147.9, 135.6, 127.0, 66.8; 15N NMR (41 MHz, DMSO d6): δ (ppm) = –28.1 (-

NO2), –28.1 (-NO2), –82.4 (t, N), –179.5 (d, Nbridge); IR (ATR, rel. int.): ṽ (cm–1) = 3124 (w), 3049(w), 

2998 (w), 2161 (w), 2034 (w), 1544 (s), 1516 (s), 1462 (m), 1436 (m), 1357 (s), 1333 (s), 1281 (m), 

1147 (m), 1119 (m), 1016 (w), 999 (w), 924 (w), 862 (m), 810 (s), 789 (m), 746 (s), 651 (m), 621 
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(w); Elemental analysis: calcd. (%) for C7H4N8O8 (327.20 g mol–1): C 25.62, H 1.23, N 34.15; found: 

C 26.59, H 1.42, N 33.25; Mass spectroscopy: m/z (DEI) = 327.4 (C7H4N8O8); DSC (5°C min–1): Tmelt. 

= 156°C, Tdec. = 319°C. 

 

3,4-Dinitropyrazol-1-oxide hydrate (2) [S21] 

3,4-Dinitropyrazole[S22] (4.9 g, 31.0 mmol, 1.0 eq) was suspended in water (100 mL) and Oxone 

(65.3 g, 212.4 mmol, 6.9 eq) as well as basic buffer (NaH2PO4/2 M NaOH) was added alternately to 

hold the pH between 6-8. The solution was stirred at 55 C over 72 h, then sulfuric acid (50%, 

100 mL) was added and the product was extracted with diethyl ether (3x 100mL). The combined 

organic layers were extracted with 5 % aqueous sodium acetate solution (3 x 100 mL). After 

acidification of the aqueous sodium acetate phase with hydrochloric acid (2 M) the product is 

isolated by extraction with diethyl ether (3x 100mL). The combined organic layers were dried over 

anhydrous magnesium sulfate, filtrated and the solvent was evaporated under reduced pressure to 

yield compound 2 (4.04 g, 21.1 mmol, 68 %) as yellowish crystals. 

1H NMR (400MHz, DMSOd6): δ (ppm) = 9.06 (s, 1H, CH); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 

140.6, 126.0, 124.4; IR (ATR, rel. int.): ṽ (cm–1) = 3565 (s), 3466 (s), 1710 (w), 1614 (m), 1541 (m), 

1507 (s), 1464 (s), 1400 (s), 1354 (s), 1325 (s), 1270 (s), 1144 (s), 1117 (m), 1022 (m), 911 (s), 857 

(s), 808 (m), 741 (m), 664 (m), 624 (m), 596 (m); Elemental analysis: calcd. (%) for C3H4N4O6 

(190.12 g mol–1): C 18.76, H 2.10, N 29.17; found: C 18.96, H 2.16, N 28.27; Mass spectroscopy: m/z 

(FAB-) = 173.1 (C3HN4O5–); DSC (5°C min–1): Tdec. = 167°C; Sensitivities (grain size: < 500 μm): BAM 

impact: 35 J, BAM friction: 360 N, ESD: 1.0 J. 

 

General procedure for the preparation of salts of 2 

A water/ethanol 1:1 solution of 2 (2a: 0.5 g, 2.6 mmol; 2b: 0.16 g, 0.92 mmol, 2c: 0.22 g, 1.26 mmol; 

2d: 0.55 g, 3.17 mmol) was treated with the corresponding base (2a: KOH 0.15 g, 2.6 mmol; 2b: 

ammonia solution 25%, 0.48 mL, 0.92 mmol; 2c: guanidine carbonate 0.22 g,1.26 mmol; 2d: 

aminoguanidine bicarbonate 0.43 g, 3.17 mmol) and heated at 80 °C for 30 min. The solutions were 

filtered and left for crystallization.  
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Potassium 3,4-dinitropyrazol-1-olate hydrate (2a) 

Yield: (0.44 g, 2.1 mmol, 81 %) as orange crystals. 

1H NMR (400 MHz, DMSO d6): δ(ppm) = 7.73 (s, 1H, CH); 13C NMR (101 MHz, DMSO d6): δ(ppm) = 

136.7, 122.6, 118.7; IR (ATR, rel. int.): ṽ (cm–1) = 3614 (m), 3319 (w), 3236 (w), 3147 (m), 1647 (m), 

1526 (m), 1496 (s), 1459 (s), 1429 (m), 1376 (s), 1318 (s), 1191 (s), 1144 (m), 1114 (m), 1008 (m), 

802 (s), 737 (s), 643 (m), 600(m); Elemental analysis: calcd. (%) for C3H3KN4O6 (212.16 g mol–1): 

C 15.65, H 1.31, N 24.34; found: C 15.61, H 1.37, N 23.93; DSC (5°C min–1): Tdec. =197°C; 

Sensitivities (grain size: 100–500 μm): BAM impact: 5 J, BAM friction: 216 N, ESD: 0.7 J. 

 

Ammonium 3,4-dinitropyrazol-1-olate (2b) 

Yield: (0.13 g, 0.68 mmol, 74 %) as orange crystals. 

1H NMR (400 MHz, DMSO d6): δ(ppm) =7.89 (s, 1H, CH), 7.13 (m, 4H, NH4); 13C NMR (101 MHz, 

DMSO d6): δ(ppm) = 137.3, 122.7, 119.5; IR (ATR, rel. int.): ṽ (cm–1) = 3324 (w), 3148 (m), 1625 (w), 

1496 (m), 1564 (s), 1429 (s), 1380 (s), 1339 (s), 1310 (s), 1201 (s), 1151 (s), 1113 (s), 1011 (m), 

866 (w), 805 (s), 741 (s), 670 (m), 638 (m), 609 (m), 501 (m); Elemental analysis: calcd. (%) for 

C3H5N5O5 (191.10 g mol–1): C 18.86, H 2.64, N 36.65; found: C 19.25, H 2.62, N 34.89; DSC (5°C min–

1): Tdec. =167°C; Sensitivities (grain size: 100–500 μm): BAM impact: 10 J, BAM friction: 360 N, ESD: 

1.5 J. 

 

Guanidinium 3,4-dinitropyrazol-1-olate (2c) 

Yield: (0.20 g, 0.86 mmol, 68 %) as dark red crystals. 

1H NMR (400 MHz, DMSO d6): δ(ppm) =7.74 (s, 1H, CH), 6.95 (s, 6H, NH2); 13C NMR (101 MHz, 

DMSO d6): δ(ppm) = 157.9 (Gua+), 136.7, 122.6, 118.7; IR (ATR, rel. int.): ṽ (cm–1) = 3474 (m), 3425 

(m), 3367 (m), 3258 (m), 3172 (m), 3150 (m), 1650 (s), 1580 (m), 1527 (m), 1495 (s), 1465 (s), 

1428 (s), 1369 (m), 1320 (s), 1300 (s), 1188 (s), 1148 (s), 1110 (m), 1063 (m), 1024 (m), 929 (m), 

866 (m), 847 (m), 806 (s), 744 (s), 653 (s), 514 (s); Elemental analysis: calcd. (%) for C4H7N7O5 

(233.14 g mol–1): C 20.61, H 3.03, N 42.06; found: C 20.87, H 3.13, N 41.70; DSC (5 °C min–1): 

Tdec. = 180°C; Sensitivities (grain size: 100–500 μm): BAM impact: 30 J, BAM friction: 360 N, ESD: 

1.5 J. 
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Aminoguanidinium 3,4-dinitropyrazol-1-olate (2d) 

Yield: (0.46 g, 1.85 mmol, 58 %) as orange crystals. 

1H NMR (400 MHz, DMSO d6): δ(ppm) = 8.60 (s, 1H, NH), 7.72 (s, 1H, CH), 7.22 (s, 2H, NH2) , 4.68 

(4H, NH2); 13C NMR (101 MHz, DMSO d6): δ(ppm) = 158.8 (AG+), 136.7, 122.6, 118.6; IR (ATR, rel. 

int.): ṽ (cm–1) = 3359 (m), 3234 (m), 3151 (m), 1659 (s), 1522 (s), 1466 (s), 1434 (s), 1380 (m), 

1332 (s), 1309 (s), 1202 (s), 1152 (m), 1113 (m), 1005 (m), 798 (m), 742 (s), 513 (s); Elemental 

analysis: calcd. (%) for C4H7N7O5 (248.16 g mol–1): C 19.36, H 3.25, N 45.15; found: C 19.31, H 3.34, 

N 45.37; DSC (5°C min–1): Tmelt. = 132°C, Tdec. = 169°C. Sensitivities (grain size: 100–500 μm): BAM 

impact: 10 J, BAM friction: 360 N, ESD: 1.5 J. 

 

Bis- (3,5-dinitro-1H-pyrazol-1-yl)methane (3) 

3,5-Dinitro-1H-pyrazole[S22] (1.0 g, 6.2 mmol) was dissolved in water and aqueous ammonia solution 

(2 M, 3.2 mL, 6.2 mmol) was added. The mixture was stirred for 30 min. and the solvent was 

removed in vacuum. The gained ammonium salt of 3,5-dinitro-1H-pyrazole (0.6 g, 3.43 mmol, 

2.2 eq.) and diiodomethane (0.13 ml, 1.56 mmol, 1.1 eq.) were dissolved in DMF (15 ml). The 

solution was stirred overnight at 80 °C and afterwards poured on ice to obtain 3 after filtration 

(0.28 g, 0.85 mmol, 55 %).  

1H NMR (400 MHz, DMSO d6): δ (ppm) = 8.31 (s, 2H, CH), 7.42 (s, 2H, CH2); 13C NMR (101 MHz, 

DMSO d6): δ (ppm) = 153.2, 146.5, 103.5, 65.7; IR (ATR, rel. int.): ṽ (cm–1) = 3153 (w), 3093(w), 

3013 (w), 2933 (w), 1563 (m), 1523 (s), 1463 (m), 1430 (w), 1343 (s), 1330 (s), 1273 (m), 1223 

(m), 1143 (w), 1093 (m), 982 (m), 853 (m), 818 (m), 783 (m), 738 (s), 615 (w); Elemental 

analysis: calcd. (%) for C7H4N8O8 (327.20 g mol–1): C 25.62, H 1.42, N 34.15; found: C 26.32, H 1.39, 

N 33.68; Mass spectroscopy: m/z (DEI) = 327.4 (C7H4N8O8); DSC (5°C min–1): Tmelt. = 191°C, Tdec. = 

330°C; Sensitivities (grain size: < 500 μm): BAM impact: 35 J, BAM friction: 360 N, ESD: 1.0 J. 

 

3,5-Dinitropyrazol-1-oxide hemihydrate (4) [S21] 

3,5-Dinitropyrazole[S22] (6.3 g, 39.8 mmol, 1.0 eq) was suspended in water (100 mL) and Oxone 

(86.2 g, 280.0 mmol, 6.9 eq) as well as basic buffer (NaH2PO4/2 M NaOH) was added alternately to 

hold the pH between 3–5. The solution was stirred at 55  C for 72 h, then sulfuric acid (50 %, 

100 mL) was added and the product was extracted with diethyl ether (3 x 100mL). The ether phase 

was extracted with 5 % aqueous sodium acetate solution (3 x 100 mL). After acidification of the 
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aqueous sodium acetate phase with hydrochloric acid (2 M) the product is isolated by extraction 

with diethyl ether (3x 100mL). The combined organic layers were dried over anhydrous magnesium 

sulfate, filtrated and the solvent was evaporated under reduced pressure to yield compound 4 

(4.44 g, 24.3 mmol, 61 %) as colorless powder. 

1H NMR (400MHz, DMSOd6): δ (ppm) = 7.77 (s, 1H, CH); 13C NMR (101 MHz, DMSO d6): δ (ppm) = 

142.8, 138.6, 99.9; IR (ATR, rel. int.): ṽ (cm–1) = 3215 (m), 3148 (m), 2964 (w), 2168 (w), 1692 (w), 

1555 (m), 1528 (m), 1475 (m), 1445 (s), 1332 (s), 1202 (m), 1141 (m), 1083 (m), 1014 (m), 983 (s), 

831 (s), 741 (s), 686 (s), 573 (m), 512 (m); Elemental analysis: calcd. (%) for C3H3N4O5.5 (183.08 

g mol–1): C 19.68, H 1.65, N 30.60; found: C 20.26, H 1.54, N 30.02; Mass spectroscopy: m/z (DEI) = 

173.9 (C3HN4O5); DSC (5°C min–1): Tdec. = 158°C; Sensitivities (grain size: < 500 μm): BAM impact: 

35 J, BAM friction: 360 N, ESD: 1.0 J. 

 

General procedure for the preparation of salts of 4 

A water/ethanol 1:1 solution of 4 (4a: 0.31 g, 1.78 mmol; 4b: 0.2 g, 1.15 mmol, 4c: 0.30 g, 

1.72 mmol; 4d: 0.25 g, 1.44 mmol) was treated with the corresponding base (4a: KOH 0.10 g, 

1.78 mmol; 4b: aqueous ammonia solution 2 M, 0.6 mL, 1.15 mmol; 4c: guanidine carbonate 

0.15 g,1.72 mmol; 4d: aminoguanidine bicarbonate 0.20 g, 1.44 mmol) and heated at 80 °C for 30 

min. The solutions were filtered and left for crystallization.  

 

Potassium 3,5-dinitropyrazol-1-olate hemihydrate (4a) 

Yield: (0.30 g, 1.41 mmol, 79 %) as orange solid. 

1H NMR (400 MHz, DMSO d6): δ(ppm) = 7.45 (s, 1H, CH); 13C NMR (101 MHz, DMSO d6): δ(ppm) = 

159.7, 139.2, 98.6; IR (ATR, rel. int.): ṽ (cm–1) = 3594 (w), 3393 (w), 3149 (w), 1626 (m), 1537 (s), 

1514 (m), 1465 (s), 1399 (s), 1322 (s), 1281 (s), 1232 (s), 1138 (s), 998 (m), 925 (m), 866 (m), 

815(s), 758 (s), 652 (m), 540 (m); Elemental analysis: calcd. (%) for C3H2KN4O5.5 (221.17 g mol–1): 

C 16.29, H 0.91, N 25.33; found: C 16.31, H 0.85, N 23.63; DSC (5°C min–1): Tdec. =224°C; 

Sensitivities (grain size: 100–500 μm): BAM impact: 6 J, BAM friction: 240 N, ESD: - . 
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Ammonium 3,5-dinitropyrazol-1-olate hydrate (4b) 

Yield: (0.21 g, 1.09 mmol, 94 %) as yellow crystals. 

1H NMR (400 MHz, DMSO d6): δ(ppm) =7.49 (s, 1H, CH), 7.10 (m, 4H, NH4); 13C NMR (101 MHz, 

DMSO d6): δ(ppm) = 158.9, 138.1, 98.8; IR (ATR, rel. int.): ṽ (cm–1) = 3308 (w), 3160 (m), 2960 (m), 

2903 (m), 1547 (s), 1462 (s), 1464 (s), 1394 (s), 1321 (s), 1286 (s), 1132 (s), 1090 (s), 1002 (m), 

860 (m), 826 (m), 866 (w), 756 (m), 738 (s), 639 (m), 602 (m), 538 (m); Elemental analysis: calcd. 

(%) for C3H5N5O5 (191.10 g mol–1): C 18.86, H 2.64, N 36.65; found: C 19.04, H 2.55, N 34.71; DSC 

(5°C min–1): Tdec. =229°C; Sensitivities (grain size: 100–500 μm): BAM impact: 30 J, BAM friction: 

288 N, ESD: - . 

 

Guanidinium 3,5-dinitropyrazol-1-olate (4c) 

Yield: (0.32 g, 0.93 mmol, 80 %) as yellow crystals. 

1H NMR (400 MHz, DMSO d6): δ(ppm) =7.44 (s, 1H, CH), 6.91 (s, 6H, NH2); 13C NMR (101 MHz, 

DMSO d6): δ(ppm) = 159.6, 157.9 (Gua+), 139.2, 98.6; IR (ATR, rel. int.): ṽ (cm–1) = 3499 (m), 3408 

(m), 3345 (m), 3206 (m), 3172 (m), 3144 (m), 2197 (w), 2032 (w), 1973 (w), 1653 (s), 1532 (m), 

1460 (s), 1401 (s), 1327 (s), 1289 (m), 1238 (m), 1153 (m), 1088 (m), 1045 (m), 1003 (m), 867 (m), 

822 (m), 736 (s), 655 (s), 586 (s), 545 (s); Elemental analysis: calcd. (%) for C4H7N7O5 (233.14 

g mol–1): C 20.61, H 3.03, N 42.06; found: C 20.88, H 3.04, N 42.03; DSC (5 °C min–1): Tdec. = 266°C; 

Sensitivities (grain size: 100–500 μm): BAM impact: 40 J, BAM friction: 360 N, ESD: - . 

 

Aminoguanidinium 3,5-dinitropyrazol-1-olate (4d) 

Yield: (0.23 g, 1.85 mmol, 64 %) as brown crystals. 

1H NMR (400 MHz, DMSO d6): δ(ppm) = 8.55 (s, 1H, NH), 7.74 (s, 1H, CH), 7.24 (s, 2H, NH2), 4.68 

(4H, NH2); 13C NMR (101 MHz, DMSO d6): δ(ppm) = 159.6, 158.7 (AG+), 139.1, 98.6; IR (ATR, rel. 

int.): ṽ (cm–1) = 3446 (m), 3278 (m), 3147 (m), 1661 (s), 1538 (s), 1467 (s), 1404 (m), 1339 (s), 

1300 (m), 1247 (m), 1198 (m), 1146 (s), 1084 (m), 896 (m), 865 (m), 815 (m), 737 (s), 615 (m), 516 

(s); Elemental analysis: calcd. (%) for C4H8N8O5 (248.16 g mol–1): C 19.36, H 3.25, N 45.15; found: 

C 19.36, H 3.30, N 45.43; DSC (5°C min–1): Tdec. = 131°C; Sensitivities (grain size: 100–500 μm): 

BAM impact: 10 J, BAM friction: 360 N, ESD: - . 
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Abstract: Two new bisheterocyclic compounds 2-amino-5-(5-amino-1H-1,2,4-triazol-3-
yl)-1,3,4-oxadiazole (5) and 2-amino-5-(5-nitro-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole 
(6) were synthesized and compared to each other. Further, four energetic salts of 
compound 6 were synthesized in order to improve the energetic performance and 
sensitivity values. The obtained compounds were characterized using IR, NMR (1H, 13C, 
14N), mass, elemental analysis and thermal analysis (DSC). Crystal structures could be 
obtained of five compounds (3, 7−10) by low temperature single crystal X-ray 
diffraction. Impact, friction and ESD values were determined according to Bundesamt 
für Materialforschung (BAM) standard methods. Both bisheterocyclic compounds and 
obtained salts are not sensitive toward external stimuli and show a thermal stability up 
to 296 °C. The energetic performance of the energetic salts was calculated using 
recalculated X-ray densities, heats of formation and the EXPLO5 code. Their detonation 
velocity and pressure lie in the range of 6965–7672 m s–1 and 179–206 kbar. Both 
bisheterocycles (5 and 6) are suitable as precursors for new energetic materials 
indicating a high thermal stability. 

 

 

5.1 Introduction 

The research on new powerful explosives is an ongoing field of study due to their application in 

military and civilian areas.[1] Depending on their usage, high energetic dense materials (HEDMs) 

have to fulfil different requirements such as a safe handling, high detonation properties or high 

thermal stability.[2] The main goal is to substitute the current mostly used secondary explosive RDX 

and TNT due to its high toxicity to the environment and humans.[3] Modern research for alternatives 

to RDX and TNT focus on nitrogen-rich azoles, which show good sensitivity values, possess high 

positive heats of formation and mainly generate environmentally friendly dinitrogen gas during 

decomposition.[4] The heats of formation increase with the number of nitrogen atoms within the 

ring from imidazoles tetrazoles (Figure 5.1).[5] 1,2,4-Triazoles are suitable heterocycles as building 

blocks for energetic materials due to the high nitrogen content, positive heat of formation and good 

thermal stability.[6] The introduction of oxygen to an azole leads to oxadiazoles, which combine a 

good oxygen balance, high energetic performance and likewise high thermal stability.[2c, 7] 
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Figure 5.1. Overview of the heat of formation in kJ mol–1of selected azoles. 

A huge number of C–C bonded bisheterocyclic nitrogen-rich compounds combining triazoles, 

tetrazoles, pyrazoles and oxadiazoles have been synthesized in the past showing promising 

physicochemical and energetic properties (Figure 5.2).[6b, 7b, 8]  
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Figure 5.2. Different energetic materials based on bisheterocyclic compounds: A) 4-Nitro-5-(5-amino-
1,2,4-triazol-3-yl)-2H-1,2,3-triazole[6a], B) 3,3’-Dinitro-5,5’-bis(1H-1,2,4-triazole)[6b], C) 2,2’-
Dinitramino-5,5’-bi(1-oxa-3,4-diazole)[7b], D) 3-Nitro-4-(5-nitramino-1,2,4-triazol-3-yl)furazane[8a]. 

Bisheterocyclic compounds consisting of a 1,2,4-triazole and a 1,3,4-oxadiazole have not been 

reported in the literature yet. This contribution reports on the synthesis and intensive 

characterization of 3-amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (5) and 3-amino-5-

(5-nitro-1H-1,2,4-triazol-3-yl)-(3-amino1,3,4-oxadiazole (6). In addition, four energetic salts with 

the derivative 6 were obtained. Both compounds 5 and 6 can be used as suitable precursors for the 

synthesis of energetic materials. 
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5.2 Results and Discussion 

5.2.1 Synthesis 

5-Amino-1H-1,2,4-triazole-3-carboxylic acid was used as the starting material for the synthesis of 

the heterocyclic compounds 5 and 6 (Scheme 5.1). The concept for the synthesis of 2-amino-5-(5-

amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (5) was to obtain the triazole carboxylate, convert 

this compound into the triazole carbohydrazine (3) and perform a ring closure to yield the triazole-

oxadiazole product. The first step was performed according to the know literature by reacting the 

starting material with thionyl chloride in abs. EtOH which lead to the formation of the carboxylic 

acid ester (1).[9] The reaction of compound 1 with hydrazine hydrate in MeOH was carried out 

similar to the work of Metelkina et al. leading to the formation of the triazole carbohydrazone 

derivative (3).[10] 2-Amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (5) was obtained by 

reacting 3 with the base KOH followed by the ring closure with BrCN.[11,12] 2-Amino-5-(5-nitro-1H-

1,2,4-triazol-3-yl)-1,3,4-oxadiazole (6) was obtained similar to the synthesis of 5. For this purpose, 

compound 1 was nitrated with NaNO2 and H2SO4 according to the modified literature method to 

yield the nitro derivative 2.[13,14] Subsequent reaction first with hydrazine hydrate leads to the 

formation of compound 4 which can be further converted to the desired product 6 with BrCN and 

KOH. 
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Scheme 5.2. Synthesis of 2-amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (5) and 2-amino-
5-(5-nitro-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (6) and energetic salts (7–10). 
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Different methods for improving the energetic character of azoles are known such as salt formation, 

N-oxidation, N or C functionalization, methylene or ethylene bridging, methylation or azo 

bridging.[2a,8b,16] The bisheterocylic compounds (5 and 6) are suitable to serve as precursors for 

improving their energetic characteristics by synthesizing nitrogen-rich salts, N-oxidation or N-

functionalization. For this purpose, compound 6 was reacted with the four different bases 

potassium carbonate, ammonia, guanidinium carbonate and aminoguanidinium carbonate. 

 

5.2.2 NMR and Vibrational Spectroscopy  

All compounds (1–10) were characterized by 1H, 13C NMR spectroscopy, elemental analysis and IR 

spectroscopy. In the 1H NMR spectra, four signals were observed for compound 1 (12.60, 6.20, 4.22 

and 1.26 ppm) and two for compound 2 (4.43 and 1.35 ppm). The carbohydrazide derivative 3 

shows four signals (12.48–3.66 ppm) in the 1H spectrum whereas compound 4 only two signals at 

9.35 and 4.11 ppm. The desired heterocycle 5 exhibit three signals (12.61, 7.21 and 6.27 ppm) in the 
1H spectrum, whereas compound 6 shows only one resonance at 7.70 ppm. Both ester compounds 1 

and 2 exhibit five resonances in the 13C NMR spectrum in the range of 162.2–13.9 ppm and the 

carbohydrazides 3 and 4 show only three resonances. The heterocyclic compounds 5 and 6 show 

four resonances in the 13C NMR spectra. For the energetic salts 7 and 8 were observed only four 

resonances in the 13C NMR spectrum whereas for the compounds 9 and 10 exhibit five signals.  

IR spectra of compounds 1–10 were measured and all observed frequencies are reported in the 

Supporting Information. The deformation vibration of the amino groups for the guanidinium and 

aminoguanidinium salts 9 and 10 were observed at 1655 and 1652 cm−1, respectively. In addition, 

the asymmetric and symmetric vibration of the amino groups of compound 10 were observed at 

3380 and 3328 cm−1.[15] 

 

5.2.3 X-Ray crystallography 

Suitable crystals of compounds 3 and 7–10 were obtained by recrystallization. The structures are 

shown in Figures 5.3–5.5 and the structure of 3 and 8 can be found in the Supporting Information. 

Further information regarding the crystal-structure determinations have been deposited with the 

Cambridge Crystallographic Data Centre as supplementary publication Nos. 1869975 (3), 1869977 

(7), 1869976 (8), 1869978 (9) and 1869979 (10). 
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Figure 5.3. Molecular unit of compound 7 in the crystalline state. Ellipsoids correspond to 50% 
probability levels. Hydrogen radii are arbitrary. Selected bond lengths (Å) and angles [deg]: O1–C2 
1.362(2), O1–C1 1.376(2), O1–K1 3.3846(13), N6–K1 2.7756(15), K1–O4 2.7078(15), N2–C2 1.305(2), 
N1–N2 1.414(2), N1–C1 1.286(2), N4–N5 1.364(2), O3–N7 1.2280(19), O2–N7 1.232(2), N6–C4 
1.334(2), C1–C3 1.454(3), C1–N1–N2 106.09(14), C2–N2–N1 106.10(14), N2–C2–O1 112.46(15), C4–
N6–C3 98.80(14), C2–O1–C1 102.32(13), O3–N7–O2 123.55(16), C1–N1–N2–C2 –0.1(2), C3–N4–N5–
C4 –0.01(18), N2–N1–C1–C3 –179.28(18), N2–N1–C1–O1 0.1(2), C2–O1–C1–C3 179.44(15), N1–N2–
C2–N3 –176.45(18), C1–O1–C2–N3 176.87(16), C4–N6–C3–N4 0.48(19), C4–N6–C3–C1 –179.62(16), 
O3–N7–C4–N5 –171.11(16). 

The crystal structure of potassium 5-(2-amino-1,3,4-oxadiazolyl)-(3-nitrotriazolate) monohydrate 7 

is shown in Figure 5. 4 with bond length and angles. Compound 7 crystallizes as colorless rods in the 

monoclinic space group P 21/n with four molecules in the unit cell. The volume of the unit cell is 

898.68(5) Å3 and lattice constants are a = 6.6407(2) Å, b = 11.2308(4) Å, c = 12.3709(3) Å and β = 

103.0810(10) °. The density is 1.872 g cm-3 measured at a temperature of 100(2) K. The potassium 

salt of 5-(5-nitro-4H-1,2,4-triazol-3-yl)-2-amino-1,3,4-oxadiazole crystallize with one molecule 

water. Looking on the torsion angles, it is visible that the triazole-oxadiazole scaffold is planar. 

Furthermore, the oxygen atom of the oxadiazole, nitrogen N6 of the triazole and one oxygen atom of 

the nitro group are aligned at the potassium cation, what leads to a torsion of the nitro group 

against the plane. The oxygen atom of the crystal water is coordinating the cation, too. The distances 

to the potassium atom vary from 2.7078(15) Å (K1–O4) up to 3.3846(13) Å. The bond lengths and 

angles in the triazole correspond to the known values, while the bond angle of the nitro group O3–

N7–O2 123.55(16) ° is a bit reduced compared to the expected value of about 125 °.[18,20] The bond 

between the triazole and the oxadiazole has a length of 1.454(3) Å. Further to enhance the stability 

of the molecule small deformation of the oxadiazole scaffold are observable. This can be seen for 

example at elongation of N1–N2 (1.414(2) Å) or the reduction of N1–C1 (1.286(2) Å). The bond 

angles also differ a bit from the known values for 1,3,4-oxadiazoles, also the bond angle of the 

crystal water molecule is enlarged up to 108(3) °.[21,22] 
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Figure 5.4. X-ray structure of compound 9. Ellipsoids are drawn at the 50% probability level. Selected 
distances [Å]: C1–C3 1.448 (2), C4–N7 1.444 (2), C2–N3 1.329 (2). Selected bond angles [°]: O2–N7–C4 
117.95 (15), N10–C5–N 9 120.12 (18), N3–C2–O1 118.65 (16). Selected torsion angles [°]: O1–C1–
C3 N4 −0.8 (3), N6–C4–N7 O3 1.7 (3). 

Compound 9 crystallizes in the monoclinic space group C2/c with a cell volume of 1991.0(3) Å3 and 

eight formula units per cell. The cell constants are a = 20.3525(18) Å, b = 5.4863(4) Å and c = 

18.5795(14) Å, while the density is 1.709 g cm-3. The distance between the two heterocycles of the 

molecule is C1–C3 1.448(2) Å. It is in the range of single and double bond like in all the other 

heterocycle atoms.[23] One guanidinium cation is bound by two hydrogen bonds to the N1-atom and 

the N6-atom of the anion. The angle N10–C5–N9 is at 120.12(18) ° which is means the guanidine is 

planar and the positive charge is split over the whole cation. The torsion angles O1–C1–C3–N4 with 

0.8(3)° and N6–C4–N7–O3 with 1.7(3) ° are close to zero, why the anion is almost planar. 

 

Figure 5.5. Crystal structure of aminoguanidinium 5-(5-amino-1,3,4-oxadiazol-2-yl)-3-nitro-1,2,4-
triazolate (10). Ellipsoids of non-hydrogen atoms are drawn at the 50 % probability level. Selected 
distances [Å]: C4–N7 1.346(4), C2–N3 1.303(4), N7–C4 1.442(4), C2–N3 1.335(5). Selected bond 
angles [°]: C3–C1–O1 120.4(3), O1–C2–N3 118.0(3), C4–N6–C3 98.5(2), C1–O1–C2 101.6(2). Selected 
torsion angles [°]: N4–C3–C1–N2 176.5(3), O2–N7–C4–N5 −1762(3), N3–C2–N1–N2 −179.0(3), N6–
C3–C1–N2 −1.0(5). 
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Compound 10 crystallizes in the monoclinic space group P21/n with a cell volume of 1061.8 (2) Å3 

and four formula units per cell. The cell constants are a = 13.4494 (17) Å, b = 5.2321 (6) Å and c = 

15.302 (2) Å, while the density is 1.697 g cm-3. The distance between the two heterocycles of the 

molecule is C1-C3 1.454 (5) Å. It is in the range of single and double bond like in all the other 

heterocycle atoms.[23] One aminoguanidinium cation is bound by two hydrogen bonds to the N1-

atom and the N2-atom of the anion. The angle N10 C5 N11 is at 120.5 (3) ° which means the 

aminoguanidine is planar and the positive charge is split over the whole cation. Also the torsion 

angle N11–C5–N8–N9 with -178.7(3) ° reinforces the assumption of a planar cation. The torsion 

angles O1–C1–C3–N4 with 0.3(5) ° and N6–C4–N7–O3 with 4.4(5) ° are close to zero which means 

that the anion is almost planar. 

 

5.2.4 Thermal Analysis, Sensitivities, Physicochemical and energetic properties  

Since compounds 7–10 can be classified as energetic materials their energetic behaviour was 

extensively investigated. All theoretical and experimentally determined values for the energetic 

salts of compound 6 are reported in Table 5.1. The thermal behaviour was investigated with a 

LINSEIS DSC PT10 instrument at a heating rate of 5 °C min−1. The decomposition point of the 

energetic salts is in the range of 240 to 300 °C, whereas the lowest decomposition (onset) was 

observed for the aminoguanidinium salt (10, 246 °C) and the highest for the guanidinium salt (9, 

296 °C). The sensitivities of all four compounds (7–10) were measured according the BAM 

standards.[24] The energetic salts show no sensitivity toward external stimuli with sensitivity values 

for friction of < 360 N and impact < 40 J, for each compound, and can be classified as insensitive. The 

reported detonation parameters were calculated using the EXPLO5_V6.03 computer code.[25] The 

EXPLO5 detonation parameters of the energetic salts 7–10 were calculated by using the room-

temperature density values obtained from the X-ray structures as described in reference.[26] The 

potassium (7) and ammonium (8) salts were obtained as monohydrates with recalculated room 

temperature densities of 1.84 and 1.61 g cm–3, respectively. The highest detonation pressure was 

calculated for the aminoguanidinium salt 10 (VD = 7672 m s−1) and the lowest for the potassium 

monohydrate salt 7 (VD = 6965 m s−1). 
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Table 5.3. Physicochemical properties and detonation parameters of 5–10 compared to RDX. 

 5 6 7 ·H2O 8 ·H2O 9 10 RDX[1d] 
Formula C4H5N7O C4H3N7O3 C4H2N7O3K C4H6N8O3 C5H8N10O3 C5H9N11O3 C3H6N6O6 

FW [g mol–1] 167.13 197.11 253.24 232.18 256.19 271.23 221.12 

IS [J]a 40 40 40 40 40 40 7.5 

FS [N]b  360 360 360 360 360 360 120 

ESD [J]c 1.5 1.5 1.5 1.5 1.5 1.5 0.2 

N [%]d 58.7 49.7 41.7 52.3 54.7 56.8 37.8 

Ω [%]e –90.9 –52.8 –41.1 –55.1 –68.7 –67.8 –21.6 

Tdec. [°C]f 309 

(melt.) 

245 254 276 296 246 205 

ρ [g cm–3] 
(298K)g 

1.90 1.92o 1.84 1.61 1.66 1.64 1.81 

ΔfH° [kJ mol–1]h  140.3 224.2 –277.1 –123.6 133.4 241.0 70.3 

ΔfU° [kJ kg–1]i 935.6 1219.2 –1020.7 –425.5 622.2 993.7 417.0 

EXPLO5 V6.03:g    

–ΔEU° [kJ kg–1]j  1996 3933 3099 3153 2982 3281 5845 

TE [K]k  1737 2936 2446 2440 2334 2462 3810 

pCJ [kbar]l 238 285 179 190 197 206 345 

VD [m s–1]m 8265 8477 6965 7337 7500 7672 8861 

V0 [L kg–1]n 429 413 438 485 473 478 785 

a impact sensitivity (BAM drophammer, 1 of 6); b friction sensitivity (BAM friction tester, 1 of 6); c electrostatic discharge device 
(OZM); d nitrogen content; e oxygen balance; f decomposition temperature from DTA (β = 5°C); g recalculated from low 
temperature X-ray densities (ρ298K = ρT / (1+αV(298-T0); αV = 1.5 10–4 K–1); h calculated (CBS-4M) heat of formation; i calculated 
energy of formation; j energy of explosion; k explosion temperature; l detonation pressure; m detonation velocity; n assuming only 
gaseous products; o measured pycnometrically at room temperature. 
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5.3 Conclusion 

In conclusion, we reported on the synthesis of two new energetic derivatives based on the 

heterocycles 1,2,4-1H-triazole and 1,3,4-oxadiazole. 2-Amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-

1,3,4-oxadiazole (5) can be synthesized in a three-step procedure and 2-amino-5-(5-nitro-1H-1,2,4-

triazol-3-yl)-1,3,4-oxadiazole (6) in a four-step procedure by using 5-amino-1H-1,2,4-triazole-3-

carboxylic acid as the starting material. The ring closing toward the 1,3,4-oxadiazole was carried out 

using cyanogen bromide and the corresponding triazole-carbohydrazides. Compounds 5 and 6 

show high thermal stabilities, high densities (ρ = 1.90 and 1.92 g cm–3) and accetable detonation 

performances (VD = 8265 and 8477 m–1). Both heterocycles are not sensitive toward impact friction 

or ESD. Compound 6 was further functionalized by reacting it with four bases to yield the potassium 

(7), ammonium (8), guanidinium (9) and aminoguanidinium (10) salt. The synthesized ionic 

derivatives of compound 6 are insensitive toward external stimuli with sensitivity values for impact 

of 40 J and for friction with 360 N, each. The thermal stability of all four compounds ranges from 

246 °C for the aminoguanidinium salt (10) to 296 °C for the guanidinium salt (9). 2-Amino-5-(5-

amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (5) and 2-amino-5-(5-nitro-1H-1,2,4-triazol-3-yl)-

1,3,4-oxadiazole (6) can be used as precursors for the synthesis of new energetic materials. 
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5.5 Supplementary Information 

5.5.1 X-ray Diffraction 

Single crystals were picked and measured on an Oxford Xcalibur3 diffractometer with a Spellman 

generator (voltage 50 kV, current 40 mA) and a CCD area detector for data collection using Mo-Kα 

radiation (λ = 0.71073 Å). The crystal structures of compound 5 was determined on a Bruker D8 

Venture TXS diffractometer equipped with a multilayer monochromator, a Photon 2 detector, and a 

rotating-anode generator (MoKα radiation). The data collection was carried out using CRYSALISPRO 

softwareS1 and the reduction were performed. The structures were solved using direct methods 

(SIR-92,S2 SIR-97S3 or SHELXS-97S4) and refined by full-matrix least-squares on F2 (SHELXLS4): The final 

check was done with the PLATON softwareS5 integrated in the WinGX software suite. The non-

hydrogen atoms were refined anisotropically and the hydrogen atoms were located and freely 

refined. The absorptions were corrected by a SCALE3 ABSPACK multiscan method.S6 The DIAMOND2 

plots are shown with thermal ellipsoids at the 50% probability level and hydrogen atoms are shown 

as small spheres of arbitrary radii. The SADABS program embedded in the Bruker APEX3 software 

has been used for multi-scan absorption corrections in all structures.S7 
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Table 5.S1. Crystallographic data and refinement parameters of compound 3, 7, 8, 9 and 10. 

 3 7 8 9 10 

Formula C3H6N6O C4H4N7O4K C7H4N8O8 C5H8N10O3 C5H9N14O3 
FW [g mol−1] 142.14 253.24 232.18 256.21 271.23 
Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic 
Space Group P-21/n P21/c P21/n C2/c P21/n 
Color / Habit Colorless Orange Orange Yellow Colorless 
Size [mm] 0.09 × 0.10 × 0.59 0.06 × 0.14 × 0.34 0.01 × 0.05 × 0.3 0.10 × 0.25 × 0.5 0.01 × 0.03 × 0.05 

a [Å] 

b [Å] 

c [Å] 

α [°] 

β [°] 

γ [°] 

5.1775(5) 

8.5646(7) 

13.1752(12) 

90 

97.917(11) 

90 

6.6407(2) 

11.2308(4) 

12.3709(3) 

90 

103.081(1) 

90 

6.690(5) 

11.426(5)    

12.614(5)  

90 

104.623(5) 

90 

20.3525(18) 

5.4863(4) 

18.5795(14) 

90 

106.316(9) 

90 

13.4494(17) 

5.2321(6) 

15.302(2) 

90 

99.583(5) 

90 
V [AÅ  3] 578.66(9) 898.69(5) 933.0(9) 1991.0(3) 1061.8(2) 

Z 4 4 4 8 4 

ρcalc. [g cm−3] 1.632 1.872 1.653 1.709 1.697 

μ [mm−1] 0.130 0.608 0.145 0.143 0.142 

F(000) 296 512 480 1056 560 

λMoKα[AÅ ] 0.71073 0.71073 0.71073 0.71073 0.71073 

T [K] 173 100 123 130 100 

ϑ min-max [°] 4.5, 26.2 3.1, 26.0 4.3, 26.5 4.2, 26.5 2.7, 25.4 

Dataset h; k; l −6:6;−10:10; −16:16 −8:8;−13:13; −15:15 −8:8;−14:13; −15:15 −25:25;−6:6; −23:16 −16:15;−6:5; −18:18 

Reflect. coll. 4314 10517 7208 7599 6058 

Independ. refl. 1171 1757 1925 2051 1946 

Rint 0.032 0.040 0.057 0.042 0.049 

Reflection obs. 943 1487 1398 1622 1566 

No. parameters 115 161 177 195 208 

R1 (obs) 0.0394 0.0279 0.0531 0.0391 0.0613 

wR2 (all data) 0.1091 0.0682 0.1445 0.1020 0.1580 

S 1.04 1.06 1.05 1.05 1.09 

Resd. Dens.[e AÅ −3] −0.19, 0.30 −0.25, 0.23 −0.29, 0.44 −0.22, 0.27 −0.26, 0.47 

Device type Oxford Xcalibur3 
Bruker D8 Venture 

TXS 
Oxford Xcalibur3 Oxford Xcalibur3 

Bruker D8 Venture 
TXS 

Solution SIR-92 SIR-92 SIR-92 SIR-92 SIR-92 

Refinement SHELXL-2013 SHELXL-2013 SHELXL-2013 SHELXL-2013 SHELXL-2013 

Absorpt. corr. multi-scan multi-scan multi-scan multi-scan multi-scan 

CCDC 1869975 1869977 1869976 1869978 1869979 
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5.5.2 Heat of formation calculations 

All quantum chemical calculations were carried out using the Gaussian G09 program package.S8 The 

enthalpies (H) and free energies (G) were calculated using the complete basis set (CBS) method of 

Petersson and coworkers in order to obtain very accurate energies. The CBS models are using the 

known asymptotic convergence of pair natural orbital expressions to extrapolate from calculations 

using a finite basis set to the estimated CBS limit. CBS-4 starts with an HF/3-21G(d) geometry 

optimization; the zero point energy is computed at the same level. It then uses a large basis set SCF 

calculation as a base energy, and an MP2/6- 31+G calculation with a CBS extrapolation to correct 

the energy through second order. A MP4(SDQ)/6-31+ (d,p) calculation is used to approximate 

higher order contributions. In this study, we applied the modified CBS-4M. 

Heats of formation of the synthesized ionic compounds were calculated using the atomization 

method (equation S1) using room temperature CBS-4M enthalpies, which are summarized in Table 

5.S1.S9,S10  

ΔfH°(g, M, 298) = H(Molecule, 298) – ∑H°(Atoms, 298) + ∑ΔfH°(Atoms, 298)         (E1) 
 

Table 5.S2. CBS-4M enthalpies for atoms C, H, N and O and their literature values for atomic 
ΔH°f

298 / kJ mol–1 
 –H298 [a.u.] NIST S11 

H 0.500991 218.2 

C 37.786156 717.2 

N 54.522462 473.1 

O 74.991202 249.5 

 

For neutral compounds the sublimation enthalpy, which is needed to convert the gas phase enthalpy 

of formation to the solid state one, was calculated by the Trouton rule.S12 For ionic compounds, the 

lattice energy (UL) and lattice enthalpy (ΔHL) were calculated from the corresponding X-ray 

molecular volumes according to the equations provided by Jenkins and Glasser.S13 With the 

calculated lattice enthalpy the gas-phase enthalpy of formation was converted into the solid state 

(standard conditions) enthalpy of formation. These molar standard enthalpies of formation (ΔHm) 

were used to calculate the molar solid state energies of formation (ΔUm) according to equation E2. 

ΔUm  =  ΔHm – Δn RT      (E2) 

(Δn being the change of moles of gaseous components) 
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The calculation results are summarized in Table 5.S3. 

Table 5.S3. Heat of formation calculation results. 

 –H298 [a] [a.u. ] ΔfH°(g,M)  

[kJ mol–1] [b] 

VM [Å3 ][c]   ΔUL, ΔHL ;[d]  

[kJ mol–1] 

ΔfH°(s) [e] 

[kJ mol–1] 

Δn [f] ΔfU(s) [g] 

[kJ kg–1] 

5  59.6   140.3 6.5 935.6 

6  275.6   224.2 6.5 1219.2 

6 anion 761.565028 41.7      

K+ 599.035967 487.4      

NH4+ 56.796608 635.8      

G+ 205.453192 571.9      

AG+ 260.701802 671.6      

7 hydrate   898.69 599.1, 562.9 –277.1 –7.5 –1020.7 

8 hydrate   933.00 553.6, 557.3 –123.6 –10 –425.5 

9  613.6 1991.0 476.8, 480.2 133.4 10.5 822.2 

10  713.3 1061.8 468.8, 472.3 241.0 11.5 993.7 

[a] CBS-4M electronic enthalpy; [b] gas phase enthalpy of formation; [c] molecular volumes taken from X-ray structures and 
corrected to room temperature; [d] lattice energy and enthalpy (calculated using Jenkins and Glasser equations); [e] 

standard solid state enthalpy of formation; [f] Δn being the change of moles of gaseous components when formed; [g] solid 
state energy of formation. 

 

 

5.5.3 Experimental Part 

General Procedures 

Differential Scanning Calorimetry (DSC) was recorded on a LINSEIS DSC PT10 with about 1 mg 

substance in a perforated aluminum vessel with a heating rate of 5 K∙min−1 and a nitrogen flow of 

5 dm3∙h−1. The NMR spectra were carried out using a 400 MHz instruments JEOL Eclipse 270, JEOL 

EX 400 or a JEOL Eclipse 400 (1H 399.8 MHz, 13C 100.5 MHz, 14N 28.9 MHz, and 15N 40.6 MHz). 

Chemical shifts are given in parts per million (ppm) relative to tetramethylsilane (1H, 13C) and 

nitromethane (14N, 15N).  

Infrared spectra were measured with a Perkin-Elmer Spectrum BX-FTIR spectrometer equipped 

with a Smiths DuraSamplIR II ATR device. Transmittance values are qualitatively described as “very 

strong” (vs), “strong” (s), “medium” (m), and “weak” (w). Raman spectra were recorded using 

a Bruker MultiRAM FT-Raman instrument fitted with a liquid-nitrogen cooled germanium detector 

and a Nd:YAG laser (λ = 1064 nm). The intensities are quoted as percentages of the most intense 
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peak and are given in parentheses. DTA spectra were carried out using a OZM DTA 551-EX with 

a heating rate of 5  K∙min−1. Low-resolution mass spectra were recorded with a JEOL MStation JMS 

700 (DEI+ / FAB+/−). Elemental analysis (C/H/N) was carried out using a Vario Micro from the 

Elementar Company. Impact sensitivity tests were performed according to STANAG 4489S14 

modified instructionS15 using a Bundesanstalt für Materialforschung (BAM) drophammer.S16 Friction 

sensitivity tests were carried out according to STANAG 4487S17 modified instructionS18 using a BAM 

friction tester. The grading of the tested compounds results from the “UN Recommendations on the 

Transport of Dangerous Goods”.S19 ESD values were carried out using the Electric Spark Tester ESD 

2010 EN.S20  

 

Ethyl 5-amino-1H-1,2,4-triazole-3-carboxylate (1)S21 

5-amino-1H-1,2,4-triazole-3-carboxylic acid (20.0 g, 137 mmol, 1.00 eq.) was suspended in ethanol 

(300 mL) and cooled down to 0 °C. Then thionyl chloride (26.2 g, 220 mmol, 1.60 eq.) was added 

dropwise at 0 °C and the mixture was stirred for 1 h at this temperature. Subsequently the solution 

was stirred for 3 d at 75 °C. The solvent was evaporated under reduced pressure and then saturated 

sodium acetate solution (180 mL) was added. The resulting solid was filtered and washed with 

water (50 mL) to yield compound (1) as a white powder (20.7 g, 133 mmol, 85 %). 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 12.60 (s, 1H, NH), 6.20 (s, 2H, NH2), 4.21 (q, 2H, 3J = 7.1 Hz, 

CH2), 1.26 (t, 3H, 3J = 7.1 Hz, CH3);13C NMR (101 MHz, DMSO-d6): δ(ppm) = 160.4 (C=O), 157.4 

(C(triazole)), 151.9 (C(triazole)), 60.3 (CH2), 14.1 (CH3); IR (ATR, rel. int.): ѵ (cm-1) = 3447 (m), 3029 (w), 

3000 (w), 2971 (w), 2918 (w), 1723 (s), 1635 (s), 1579 (w), 1507 (m), 1464 (m), 1443 (m), 1389 

(m), 1356 (m), 1228 (s), 1155 (w), 1120 (s), 1051 (m), 1028 (s), 876 (w), 855 (m), 793 (m), 756 

(m), 718 (s), 659 (m), 630 (m), 544 (w), 528 (w), 515 (w), DSC (5 °C min-1): Tmelt.= 239 °C. 

 

Ethyl 5-nitro-1H-1,2,4-triazole-3-carboxylate (2) 

Compound (1) (5.00 g, 32.0 mmol, 1.00 eq.) was dissolved in water (40 mL) and sodium nitrate 

(21.1 g, 320 mmol, 10.0 eq.) was added. Sulfuric acid (20 %, 34.0 mL) was added dropwise over 4 h. 

Afterwards the mixture was stirred 2 h at 50 °C. The mixture was cooled down to room temperature 

and sulfuric acid (50 %, 50 mL) was added. The product was extracted with ethyl acetate 

(3 x 100 mL), the organic layer was separated and saturated NaHCO3 solution (100 mL) was added. 

The organic layer was separated and the hydrous layer was extracted with ethyl acetate (2 x 70 mL). 
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The combined organic layers were dried over anhydrous MgSO4 and the solvent was evaporated 

under reduced pressure to yield compound (2) as a yellow solid (23.70g, 19.8 mmol, 62 %). 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 4.43 (q, 2H, 3J = 7.1 Hz, CH2), 1.35 (t, 3H, 3J = 7.1 Hz, CH3);13C 

NMR (101 MHz, DMSO-d6): δ(ppm) = 162.2 (C=O), 156.1 (C(triazole)), 147.6 (C(triazole)), 62.7 (CH2), 13.9 

(CH3); 14N NMR (29 MHz, DMSO-d6): δ(ppm) = –26; IR (ATR, rel. int.): ѵ (cm-1) = 3564 (w), 3433 (w), 

1920 (m), 1722 (s), 1552 (s), 1485 (m), 1462 (m), 1424 (m), 1382 (m), 1319 (s), 1244 (s), 1185 (m), 

1091 (m), 1038 (m), 1016 (s), 842 (m), 801 (m), 759 (m), 652 (s), 601 (s), 550 (s); Mass 

spectrometry: m/z (FAB-) = 185.1 [M-], 

 

5-Amino-1H-1,2,4-triazole-3-carbohydrazide (3) 

Compound (1) (12.0 g, 76.8 mmol, 1.00 eq.) was dissolved in methanol (80 mL), hydrazine-

monohydrate (11.4 g, 230 mmol, 3.00 eq.) was added slowly. The mixture was stirred for 24 h at 

75 °C and cooled down to room temperature. Hydrochloric acid (37 %, 20.0 mL) was added, the 

solid was filtered and the residue was washed with water (3 x 30 mL), ethyl acetate (2 x 30 mL) and 

diethylether (2 x 30 mL) to yield compound (3) as a white solid (9.60 g, 55.8 mmol, 72 %). 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 12.48 (s, 1H, NH(triazole)), 9.30 (m, 1H, NH-NH2), 6.07 (s, 2H, 

NH2(triazole)), 3.66 (br s, 2H, NH2-NH);13C NMR (101 MHz, DMSO-d6): δ(ppm) = 159.4 (C=O), 157.6 

(C(triazole)), 153.2 (C(triazole)); 14N NMR (29 MHz, DMSO-d6): δ(ppm) = –26; IR (ATR, rel. int.): ѵ (cm-1) = 

3412 (w), 3311 (m), 3196 (w), 2938 (w), 2893 (w), 2571 (w), 2453 (w), 2265 (w), 2204 (w), 2166 

(w), 2063 (w), 2051 (w), 2023 (w), 2004 (w), 1982 (w), 1955 (w), 1941 (w), 1921 (w), 1720 (w), 

1681 (s), 1648 (s), 1621 (s), 1584 (s), 1533 (m), 1499 (s), 1388 (m), 1355 (m), 1294 (m), 1253 (s), 

1132 (s), 1094 (m), 1047 (s), 1011 (m), 969 (m), 862 (s), 822 (s), 757 (m), 723 (s), 661 (m), 631 

(m), 569 (s), 532 (s); Mass spectrometry: m/z (DEI+) = 142.1 [M+], DSC (5 °C min-1): Tmelt.= 175 °C. 

 

5-Nitro-1H-1,2,4-triazole-3-carbohydrazide (4) 

Compound (2) (4.20 g, 24.4 mmol, 1.00 eq.) was dissolved in methanol (50 mL), hydrazine-

monohydrate (3.80 mL, 73.2 mmol, 3.00 eq.) was added slowly. The mixture was stirred for 24 h at 

75 °C and cooled down to room temperature. Hydrochloric acid (37 %, 12.0 mL) was added, the 

solid was filtered and the residue was washed with water (3 x 20 mL), ethyl acetate (2 x 20 mL) and 

diethylether (2 x 20 mL) to yield compound (4) as a brownish solid (3.20 g, 18.6 mmol, 76 %). 
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1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 9.35 (s, 1H, NH-NH2), 4.11 (br s, 2H, NH-NH2); 13C NMR 

(101 MHz, DMSO-d6): δ(ppm) = 165.2 (C=O), 160.3 (C(triazole)), 156.5 (C(triazole)); IR (ATR, rel. int.): ѵ 

(cm-1) = 3336 (w), 3312 (w), 3209 (w), 3119 (w), 2995 (w), 2861 (w), 2741 (w), 2637 (w), 1669 

(m), 1623 (m), 1600 (m), 1540 (m), 1513 (m), 1468 (s), 1383 (s), 1332 (m), 1301 (m), 1280 (m), 

1128 (m), 1102 (s), 1056 (m), 1033 (w), 986 (m), 967 (s), 892 (w), 871 (w), 838 (m), 803 (w), 785 

(w), 770 (w), 720 (w), 640 (s), 585 (w), 520 (w), 502 (w); DSC (5 °C min-1): Tmelt..= 275 °C, Tdec. = 

295 °C. 

 

2-Amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (5) 

Compound (3) (3.00 g, 21.1 mmol, 1.00 eq.) was suspended in water (20 mL) and KOH (1.18 g, 

21.1 mmol, 1.00 eq.) was added. The solution was cooled to 0 °C and cyanogen bromide (3.38 g, 

31.7 mmol, 1.50 eq) was added slowly. The solution was stirred at 0 °C for 2 h and was further 

stirred at room temperature for 72 h. The formed residue was filtered under reduced pressure to 

yield compound (5) as a yellow solid (2.93 g, 17.5 mmol, 83 %). 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 12.48 (s, 1H, NH), 7.42 (s, 2H, NH2(oxodiazole)), 6.25 (s, 2H, 

NH2(triazole)); 13C NMR (101 MHz, DMSO-d6): δ(ppm) = 163.5 (C-NH2(oxodiazole)), 159.3 (C-NH2(triazole)), 

157.8 (C(oxodiazole)), 153.1 (C(triazole)); IR (ATR, rel. int.): ѵ (cm-1) = 3310 (m), 3153 (m), 2198 (w), 2166 

(w), 2140 (w), 2050 (w), 2004 (w), 1979 (w), 1731 (w), 1635 (s), 1589 (s), 1518 (s), 1491 (m), 

1394 (s), 1362 (s), 1288 (m), 1235 (m), 1192 (m), 1094 (m), 1043 (m), 1011 (m), 956 (w), 898 (w), 

813 (m), 732 (s), 695 (s); Mass spectrometry: m/z (DEI+) = 167.1 [M+], DSC (5 °C min-1): Tmelt. = 

309 °C 

 

2-Amino-5-(5-nitro-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (6) 

Compound (4) (4.11 g, 24.2 mmol, 1.00 eq.) was suspended in water (50 mL) and KOH (1.55 g, 

26.6 mmol, 1.10 eq.) was added. The solution was cooled to 0 °C and cyanogen bromide (3.57 g, 

33.9 mmol, 1.40 eq.) was added slowly. The solution was stirred at 0 °C for 2 h and was further 

stirred at room temperature for 72 h. The formed residue was filtered to yield compound (6) as a 

yellow solid (3.08 g, 19.3 mmol, 80 %). 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 7.70 (s, 2H, NH2);13C NMR (101 MHz, DMSO-d6): δ(ppm) = 

164.5 (C-NO2), 162.9 (C-NH2), 148.8 (C(oxodiazole)), 144.5 (C(triazole)); 14N NMR (29 MHz, DMSO-d6): 

δ(ppm) = –25; IR (ATR, rel. int.): ѵ (cm-1) = 3593 (w), 3496 (w), 3440 (w), 3365 (m), 3248 (w), 3129 

(w), 2464 (w), 2209 (w), 2182 (w), 2051 (w), 2027 (w), 2004 (w), 1980 (w), 1693 (s), 1632 (m), 
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1584 (m), 1547 (s), 1477 (m), 1445 (m), 1413 (m), 1379 (m), 1346 (w), 1308 (s), 1196 (w), 1179 

(w), 1100 (m), 1063 (m), 1032 (m), 1009 (m), 957 (m), 933 (w), 842 (s), 770 (w), 745 (w), 728 (w), 

668 (w), 646 (m), 598 (w); Mass spectrometry: m/z (FAB-) = 196.0 [M-], DSC (5 °C min-1): Tdec. = 

245 °C. 

 

General procedure for the synthesis of salts  

To a water/methanol 1:1 solution (7 mL/7 mL) of 6 (300 mg, 1.52 mmol) the corresponding base 

(K2CO3: 210 mg, 1.52 mmol; ammonia solution: 0.5 mL, 25 %, 1.52 mmol; guanidine carbonate: 

136 mg, 1.52 mmol; aminoguanidine bicarbonate: 207 mg, 1.52 mmol;) was added and heated until 

everything was dissolved. The solutions were filtered and left for crystallization.  

 

Potassium 3-(5-amino-1,3,4-oxadiazol-2-yl)-5-nitro-1,2,4-triazolate hydrate (7) 

Yield: (334 mg, 1.32 mmol, 87 %) as a dark red solid. 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 7.13 (s, 2H, NH2); 13C NMR (101 MHz, DMSO-d6): δ(ppm) = 

165.9 (C-NO2), 163.4 (C-NH2), 153.3 (C(oxadiazole)), 150.4 (C(triazole)); 14N NMR (29 MHz, DMSO-d6): 

δ(ppm) = –27; IR (ATR, rel. int.): ѵ (cm-1) = 3288 (w), 3127 (w), 1647 (m), 1614 (m), 1589 (m), 1560 

(w), 1521 (m), 1455 (m), 1393 (m), 1325 (m), 1301 (m), 1250 (m), 1197 (m), 1172 (m), 1098 (m), 

1046 (m), 1017 (m), 960 (m), 844 (m), 799 (m), 732 (s), 683 (s), 657 (s), 642 (s), 590 (s), 525 (m); 

Elemental analysis: calc. (%) for C4H4N7O4 (M = 253.22 g mol-1): C 18.97, N 38.72, H 1.59; found: C 

23.13, N 52.68, H 3.37; DSC (5 °C min-1): Tdec. = 254 °C; Sensitivities: ESD: 1.5 J, Friction: 360 N, 

Impact: 40 J. 

 

Ammonium 3-(5-amino-1,3,4-oxadiazol-2-yl)-5-nitro-1,2,4-triazolate hydrate (8) 

Yield: (220 mg, 1.03 mmol, 68 %) as a dark red solid. 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 7.13 (s, 2H, NH2); 13C NMR (101 MHz, DMSO-d6): δ(ppm) =  

165.8 (C-NO2), 163.4 (C-NH2), 153.3 (C(oxadiazole)), 150.4 (C(triazole)); IR (ATR, rel. int.): ѵ (cm-1) = 3142 

(w), 1652 (s), 1583 (w), 1528 (m), 1461 (m), 1425 (m), 1397 (s), 1327 (w), 1304 (m), 1107 (w), 

1051 (w), 1016 (w), 843 (m), 734 (w), 655 (m); Elemental analysis: calc. (%) for C4H8N8O4 

(M = 232.18 g mol-1): C 20.69, N 48.27, H 3.47; found: C 20.51, N 47.21, H 3.19; DSC (5 °C m in-1): Tdec. 

= 276 °C; Sensitivities: ESD: 1.5 J, Friction: 360 N, Impact: 40 J. 
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Guanidinium 3-(5-amino-1,3,4-oxadiazol-2-yl)-5-nitro-1,2,4-triazolate (9) 

Yield: (210 mg, 0.82 mmol, 54 %) as a brown solid. 

1H-NMR (400 MHz, DMSO-d6):δ(ppm) = 7.31 (s, 2H, NH2(oxodiazole)), 6.92 (s, 6H, 3 x NH2(guanidine)); 13C 

NMR (101 MHz, DMSO-d6): δ(ppm) = 164.9 (C-NO2), 162.7 (C-NH2), 157.8 (C(guanidine)), 151.9 

(C(oxodiazole)), 148.6 (C(triazole)); IR (ATR, rel. int.): ѵ (cm-1) = 3565 (w), 3442 (m), 3130 (m), 2167 (w), 

2003 (w), 1981 (w), 1655 (s), 1579 (m), 1517 (m), 1490 (m), 1436 (m), 1378 (s), 1317 (s), 1300 (s), 

1201 (m), 1135 (w), 1092 (m), 1054 (m), 1036 (m), 1011 (m), 973 (w), 839 (s), 752 (m), 684 (m), 

645 (s), 534 (s), 513 (s), Elemental analysis: calc. (%) for C5H8N10O3 (M = 256.18 g mol-1): C 22.44, N 

54.68, H 3.15; found: C 23.13, N 52.68, H 3.37; DSC (5 °C min-1): Tdec. = 296 °C; Sensitivities: ESD: 

1.5 J, Friction: 360 N, Impact: 40 J. 

 

Aminoguanidinium 3-(5-amino-1,3,4-oxadiazol-2-yl)-5-nitro-1,2,4-triazolate (10) 

Yield: (310 mg, 1.13 mmol, 74 %) as a brown solid. 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 8.57 (s, 1H, NH), 7.25 (m, 2H, NH2(aminoguanidine)), 7.13 (s, 2H, 

NH2(oxodiazole)), 6.76 (m, 2H, NH2(aminoguanidine)), 4.68 (s, 2H, NH2(aminoguanidine)); 13C NMR (101 MHz, DMSO-

d6): δ(ppm) = 165.8 (C-NO2), 163.3 (C-NH2), 158.7 (C(aminoguanidine)), 153.3 (C(oxodiazole)), 150.4 (C(triazole)); 

IR (ATR, rel. int.): ѵ (cm-1) = 3461 (m), 3380 (m), 3329 (m), 3303 (m), 3200 (s), 3152 (m), 3089 (s), 

3076 (m), 1652 (s), 1602 (m), 1573 (m), 1551 (m), 1493 (m), 1439 (m), 1395 (m), 1325 (m), 1304 

(m), 1199 (m), 1099 (m), 1057 (m), 1037 (m), 1021 (m), 974 (m), 952 (m), 839 (s), 686 (m), 648 

(m), 613 (m), 592 (w), 544 (m), 522 (s); Elemental analysis: calc. (%) for C5H9N11O3 

(M = 271.23 g mol-1): C 22.14, N 56.81, H 3.34; found: C 22.30, N 55.81, H 3.32; DSC (5 °C min-1): Tdec. 

= 246 °C; Sensitivities: ESD: 1.5 J, Friction: 360 N, Impact: 40 J. 
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5.5.4 Crystal Structures 

 

Figure 5.S1 Crystal Structure of 3. 

 

 

Figure 5.S2 Crystal Structure of 8 as hydrate. 
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Abstract: The new triheterocyclic compounds 5,5’-(1H-pyrazole-3,5-diyl)-bis-1H-
tetrazole  and 5,5’-(4-Nitro-1H-pyrazole-3,5-diyl)-bis-1H-tetrazole  combining one 
pyrazole and two tetrazoles were synthesized and compared to each other. These two 
compounds are suitable as precursors for new energetic materials based on azoles. The 
obtained compounds were characterized using IR, NMR (1H, 13C, 14N), mass, elemental 
analysis and thermal analysis (DSC or DTA). Crystal structures could be obtained of four 
compounds by low temperature single crystal X-ray diffraction. Impact, friction and ESD 
values were determined according to BAM (Bundesamt für Materialforschung) standard 
methods. The energetic performance of both triheterocyclic compounds were calculated 
using recalculated X-ray densities, heats of formation and the EXPLO5 code. The 
energetic performance could be further improved by salt formation, N-functionalization 
or N-oxidation. 

 

6.1 Introduction 

Depending on their different application such as for military or civil usage, high energetic dense 

materials (HEDMs) have to fulfil different requirements.[1-2] The key characteristics for that class of 

compounds are in general a high energetic performance, high positive heat of formation, low 

sensitivity values, long term stability, a high thermal stability and low toxicity.[3-6] The main goal is 

to substitute the current mostly used secondary explosive RDX due to its high toxicity.[7-9] Therefore, 

suitable backbones, which attract attention in the past, are based on five-membered nitrogen-rich 

heterocycles containing two (pyrazole or imidazole), three (triazole) or four (tetrazole) nitrogen 

atoms.[10-14] A large number of C–C-bonded mono-, bi- or triheterocyclic nitrogen-rich compounds 

have been synthesized in the past showing promising physicochemical and energetic properties 

(Figure 6.1).[3, 5, 10, 15-24] Tetrazoles are suitable as building block for triheterocyclic compounds due 

to its high nitrogen content, high positive heat of formation (1H-tetrazole: 320 kJ mol–1)[25] and 

sufficient thermal stability deriving from its aromaticity.[5, 22, 26] A large number of different 

tetrazoles have been synthesized resulting in high detonation velocities and appropriate thermal 

stability, especially for bistetrazole-based compounds.[19, 27-31] Besides tetrazoles, (nitrated) 

pyrazoles were noticed in the past due to their different characteristics, positive heat of formation 

(1H-pyrazole: 180 kJ mol–1)[25], cheap price, facile synthesis and functionalization possibilities such 

as nitration, amination, bridging or hydroxylation to improve oxygen balance, density or both.[10, 32-

35]  
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Figure 6.1. Different energetic materials based on triheterocyclic compounds: 3,4-Bis(4-nitramino-

1,2,5-oxadiazol-3-yl)-1,2,5-furoxan[20] (A), 3,4-Bis(1H-5-tetrazolyl)-furoxan[36] (B), 4,5-Bis(1H-tetrazol-

5-yl)-1H-imidazole[3] (C), 4,5-Bis(1H-tetrazol-5-yl)-2H-1,2,3-triazole[5] (D). 

Triheterocyclic compounds containing one pyrazole and two tetrazoles moieties (nitrogen content 

of C5H4N10: 69 %) have not been mentioned in literature yet. In this work, two different 

triheterocyclic compounds were prepared, intensively characterized and compared to each other. 

Both compounds could serve as precursor for high energetic dense materials. 

 

 

6.2 Results and Discussion 

The synthesis of 5,5’-(1H-pyrazole-3,5-diyl)-bis-1H-tetrazole (5) and 5,5’-(4-Nitro-1H-pyrazole-3,5-

diyl)-bis-1H-tetrazole (9) starts with the condensation of acetyl acetone and hydrazine giving 

dimethylpyrazole (1) followed by oxidation of the methyl groups to carboxyl groups (2) using 

potassium permanganate (Scheme 6.1).[37] Compound 2 was further reacted using thionyl chloride 

in ethanol to form an intermediate diester,[38] which was treated with aqueous ammonia to obtain 

the carboxamide (3).[39] The carboxamide groups were dehydrated using phosphoryl chloride to 

form dinitrile-pyrazole (4).[39] The triheterocyclic compound 5 was obtained by a [3+2] cyclo 

addition using sodium azide and zinc chloride as catalyst.[40] The nitrated heterocyclic compound 9 

is obtained by nitration using oleum (30 % SO3) and nitric acid (100 %) of compound 2 to yield 4-

nitro-1H-pyrazole-3,5-dicarboxylic acid (6).[41] The carboxylic acid (6) was esterified with thionyl 

chloride in ethanol and afterwards treated with aqueous ammonia to obtain the carboxamide (7).[39] 
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Scheme 6.1. Synthesis of 5,5’-(1H-pyrazole-3,5-diyl)-bis-1H-tetrazole (5) and 5,5’-(4-Nitro-1H-
pyrazole-3,5-diyl)-bis-1H-tetrazole (9). 

The dehydration of the carboxamide to the corresponding dinitrile (8) was investigated using 

phosphoryl chloride or phosphorus pentoxide in acetonitrile.[39, 42-43] However, both reactions led 

mainly to the monodehydrated compound. Therefore, a different method according to Fershtat et al. 

was tried out using trifluoro acetic acid in pyridine as dehydration reagents.[44] This method showed 

a successful dehydration obtaining the dinitrile pyrazole as pyridinium salt (8). Last, compound 8 

was reacted with sodium azide and zinc chloride to yield the desired triheterocyclic pyrazole (9).[40]  

Different methods for improving the energetic character of azoles are known such as salt formation, 

N-oxidation, N- or C-functionalization, methylene- or ethylene-bridging, methylation or azo-

bridging.[1, 27, 45-51] The triheterocylic compounds (5 and 9) are suitable to serve as precursors for 

improving their energetic characteristics by synthesizing nitrogen-rich salts, N-oxidation or N 

functionalization.  

 

6.2.1 NMR and Vibrational Spectroscopy  

All compounds (1–9) were characterized by 1H, 13C NMR spectroscopy, mass, elemental analysis and 

IR spectroscopy. In the 1H NMR spectra, three hydrogen signals were observed for compound 1 

(11.99, 5.73 and 2.12 ppm) and one for compound 2 (6.98 ppm). For compounds 3–5 the shift 
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ranges from 7.21 (3) to 7.89 ppm (4) for the C-H signal. The disappearance of the signal at 6.98 ppm 

shows the successful nitration from 2 to 6. The broad signals at 8.15 and 7.93 ppm indicate the 

amino group of compound 7. The 1H NMR spectra of 8 just displays the pyridine signals between 

8.94 and 8.11 ppm, whereas for the ring-closed compound 9 no signals were observed.  

In the 13C NMR spectra, three signals were determined for 1 and 2, whereas the signal at 161.5 ppm 

confirms the formation of the carboxyl group. The synthesis from 3 to 5 can be tracked by the 

emerging shift of the functional group in the 13C NMR spectra. The carboxamide group (3) has a 

signal at 161.5 ppm, the dinitrile (4) at 118.7 ppm and the triheterocycle 5 at 149.7 ppm. The 

introduction of the nitro-group toward 6 is indicated by the shift of the signal from 109.9  to 

135.5 ppm. The pyridine cation of 8 shows additional three signals (146.7 ppm, 142.0 ppm and 

127.3 ppm) besides the signal at 113.1 ppm for the characteristic nitrile group.[52] After the 

successful ring-closing to compound 9, the signals slightly shifted to 147.9 ppm, 142.7 ppm and 

131.7 ppm.  

IR spectra of compounds 1–9 were measured and the frequencies were assigned according to 

observed data reported in the literature.[52] The absorption bands between 1680–1704 cm–1 were 

assigned to the carbonyl moiety of 2–4 and 6–7. The characteristic absorption bands for the nitrile 

groups of 4 and 8 were found at 2248 cm–1 and 2247 cm–1. Further, the absorption bands in the 

region of 3000 cm–1 were assigned to the NH2-stretching vibration and the ones in the region of 

1600 cm–1 to the deformation vibration of the amino group. The vibration of the nitro groups (6–9) 

can be found in the range of 1558–1529 cm–1 for the asymmetric stretching and of 1361–1312 cm–1 

for the symmetric stretching.  

 

 

6.2.2 Thermal Analysis, Sensitivities, Physicochemical and energetic properties  

Both triheterocylces (5 and 9) were investigated in regard to their thermal behaviour and 

sensitivities (Table 6.1). All decomposition temperatures were measured by differential scanning 

calorimetry (DSC) or differential thermal analysis (DTA) with a heating rate of 5 °C min–1. For 

compound 5 the heat of formation was calculated by the atomization method using electronic 

energies (CBS-4M method). Further, the energetic parameters of 5 were calculated with 

EXPLO5 V6.03.[53]  
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Compound 5 and 9 only differ in the existence of a nitro group, which obviously led to a different 

thermal stability (Figure 6.2). DTA measurements indicated the high thermal stability of both 

compounds with decomposition temperatures of 246 °C (9) and 277 °C (5). The endothermic peaks 

validated a water loss at 88 °C (5) and 116 °C (9).  

 

 

Figure 6.2. DTA plots of compounds 5 and 9 measured with a heating rate of 5 °C min–1. 

 

Both triheterocylces are due to their hydrates not sensitive toward impact (IS: <40 J) or friction (FS: 

360 N) compared to RDX (IS: 7.5 J; FS: 120 N). The detonation velocity VD (5: 6965 m s–1, 9: 

7678 m s–1) and pressure pCJ (5: 161 kbar, 9: 220 kbar) were calculated using the EXPLO5 code, 

however these values cannot surpass RDX (VD = 8861 m s–1, pCJ = 345 kbar). Likewise, the densities 

at 298 K are lower for both triheterocylces than RDX.  
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Table 6.1. Physicochemical properties and detonation parameters of 5 and 9 compared to RDX. 

 5 · 2 H2O 9 · H2O RDX[4] 

Formula C5H8N10O2 C5H5N11O3 C3H6N6O6 

M [g mol–1] 240.21 267.17 221.12 

IS [J]a <40 <40 7.5 

FS [N]b 360 360 120 

ESD [J]c 1.5 1.5 0.2 

N [%]d 58.32 57.67 37.84 

Ω [%]e –94.04 –57.9 –21.6 

Tdec. [°C]f 
88 (H2O) 

277 (dec.) 

119 (melt.) 

246 (dec.) 
205 (dec.) 

ρ [g cm–3] (298 K)g 
1.579 

   1.44 p [54] 
1.695 o 1.81 

ΔfH° [kJ mol–1]h 723.8 p 754.2 p 70.3 

ΔfU° [kJ kg–1]i 3629.5 p 3106.2 p 417.0 

EXPLO5 V6.03:g  

–ΔEU° [kJ kg–1]j 3277 p 4262 p 5845 

TE [K]k 2558 p 3318 p 3810 

pCJ [kbar]l 161 p 220 p 345 

VD [m s–1]m 6965 p 7678 p 8861 

V0 [L kg–1]n 499 p 725 p 785 
a impact sensitivity (BAM drophammer, 1 of 6); b friction sensitivity (BAM friction tester, 1 of 6); c electrostatic discharge 

device (OZM); d nitrogen content; e oxygen balance; f decomposition temperature from DTA (β = 5 °C); g recalculated from 

low temperature X-ray densities (ρ298K = ρT / (1+αV(298-T0); αV = 1.5 10–4 K–1); h calculated (CBS-4M) heat of formation; i 

calculated energy of formation; j energy of explosion; k explosion temperature; l detonation pressure; m detonation velocity; 
n assuming only gaseous products; o measured pycnometrically; p calculated without crystal water. 
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6.2.3 X-Ray crystallography 

Suitable crystals of (4–6 and 8) were obtained by recrystallization. The structures are shown in 

Figures 6.3–6.5 and the structure of 6 can be found in the supporting information.  

 

Figure 6.3. X-ray structure of compound 4. Ellipsoids are drawn at the 50% probability level. Selected 
bond length in Ångstrom: N1–N2 1.3332(16), N1–C1 1.3559(18), N3–C4 1.1443(19), N4–C5 
1.1414(19); selected bond angles in degree: N2–N1–C1 112.67(11), C1–C2–C3 103.65(12), N3–C4–C1 
179.07(16), N4–C5–C3 177.51(16); selected torsion angles in degree:C1–N1–N2–C3 –0.04(15).  

Dinitrile (4) crystallizes from acetonitrile in the monoclinic space group P 21/n with four molecules 

per unit cell and a density of 1.477 g cm−3 at 173 K, which is illustrated in Figure 6.3. Compound 4 is 

approximately planar and both nitrile groups are also in plane toward the plane pyrazole ring.  

 

Figure 6.4. X-ray structure of compound 8. Ellipsoids are drawn at the 50% probability level. Selected 
bond length Ångstrom: N1–N2 1.348(3), N4–C4 1.142(3), N5–C5 1.139(3), N3–C2 1.425(3); Selected 
bond angles in degree: N2–N1–C1 106.35(17), O1–N3–C2 117.77(19), O2 –N3–C2 117.49(18), N4–C4–
C1 178.3(2), N5–C5–C3 178.2(2); selected torsion angles in degree: C1–N1–N2–C3 –0.6(2), N2–N1–
C1–C4 179.57(19), O1–N3–C2–C3 –177.0(2), O2–N3–C2–C1 –171.6(2), selected hydrogen bonds d(D–
H···A) in Ångstrom : N2–H2···N2 1.3200; symmetry code (i) –x, 0.5 + y, 0.5 – z.  
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Dinitrile (8) crystallizes from water in the monoclinic space group P 21/c with two molecules per 

unit cell and a density of 1.568 g cm−3 at 173 K, which is illustrated in Figure 6.4. A hydrogen bond 

between two pyrazoles stabalizes the molecule. The pyrazole ring system including the nitro and 

nitrile groups is approximately planar.  

 

Figure 6.5. X-ray structure of compound 5. Ellipsoids are drawn at the 50% probability level. Selected 
bond length Ångstrom: N1–N2 1.341(4), C3–C5 1.443(4), C1–C4 1.456(4), C2–H2 0.91(3); selected 
bond angles in degree: N2–N1–C3 112.5(2), N8–N7–H7 120(2), C5–N7–H7 129(2); selected torsion 
angles in degree: N2–N1–C3–C2 0.4(3), N2–C1–C4–N3 –9.6(4), N1–C3–C5–N7 176.3(3). 

Triheterocycle (5) crystallizes as dihydrate from water in the monoclinic space group P 21/c with 

four molecules per unit cell and a density of 1.609 g cm−3 at 173 K, which is illustrated in Figure 6.5. 

The whole molecule is almost planar with torsion angles of –9.6°(4) and 3.7°(3) for the tetrazoles.  

 

6.3 Conclusion and Outlook 

In conclusion, we reported on the first synthesis of two triheterocyclic compounds (5 and 9) 

consisting of one pyrazole and two tetrazoles with high nitrogen content. The compounds were 

synthesized in a five-step (5) or six-step (9) synthesis using commercially available reagents and 

showing high yields and facile reaction conditions. The crystal density and the calculated heat of 

formation were used to calculate the detonation performances (heat of explosion, explosion 

temperature, detonation pressure, and velocity) with. Compounds 5 and 9 obtained high 

decomposition temperatures of 277 °C and 246 °C. Their sensitivity values are 40 J for impact and 

360 N for friction, for which reason they are classified as not sensitive. The calculated detonation 



6 3,5-Ditetrazolyl-Pyrazoles as Precursor for New Energetic Materials 

154 

properties of 5 (VD = 6965 m s–1) and 9 (VD = 7678 m s–1) are lower than RDX. According to their 

high decomposition temperatures and low sensitivity values, both triheterocylces (5 and 9) are 

suitable as precursor for high energetic materials or due to the high nitrogen content as propellant 

charges. Their energetic characteristics can be improved by different methods such as N-

functionalization, N-oxidation or salt formation (Scheme 6.2). Both compounds own three acidic 

protons, which can be functionalized individually to obtain mono-, di- or tri-substituted compounds 

implicating different characteristics.  
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Scheme 6.2. Different functionalization possibilities using 4, 5, 8 or 9 as starting material. 

The oxygen balance can be increased by substituting the acid protons of the three azoles with 

nitromethyl groups (10a or 10b).[16] Another possibility to improve the thermal stability and the 

energetic performance is to perform salt formation using nitrogen-rich bases such as 

hydroxylamine, hydrazine, guanidine or aminoguanidine (12a or 12b).[6, 20, 47] The introduction of 

the N–O functionality (N-oxidation) to azoles enhances the oxygen balance, the density and the 

detonation performance.[11, 17, 27] Therefore, on the one hand N-oxidation can be performed using 

Oxone/HOF (11a and 11b) or on the other hand starting with the nitriles (4 or 8) in a four-step 
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synthesis (14a and 14b) using hydroxylamine, NaNO2, NaN3 and gaseous HCl.[18] The N–O moiety 

plays an important role as proton acceptor in ionic derivatives leading to a high density and low 

sensitivity values.[11] Hence, the nitrogen-rich salts of the N-oxidized compounds (13a, 13b, 15a and 

15b) will presumably reach the highest densities, acceptable sensitivity values and the highest 

energetic performance compared to the salts 12a and 12b.  
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6.5 Supplementary Information 

6.5.1 X-ray Diffraction 

Single crystals were picked and measured on an Oxford Xcalibur3 diffractometer with a Spellman 

generator (voltage 50 kV, current 40 mA) and a CCD area detector for data collection using Mo-Kα 

radiation (λ = 0.71073 Å). The crystal structures of compound 5 was determined on a Bruker D8 

Venture TXS diffractometer equipped with a multilayer monochromator, a Photon 2 detector, and a 

rotating-anode generator (MoKα radiation). The data collection was carried out using CRYSALISPRO 

softwareS1 and the reduction were performed. The structures were solved using direct methods 

(SIR-92,S2 SIR-97S3 or SHELXS-97S4) and refined by full-matrix least-squares on F2 (SHELXLS4): The final 

check was done with the PLATON softwareS5 integrated in the WinGX software suite. The non-

hydrogen atoms were refined anisotropically and the hydrogen atoms were located and freely 

refined. The absorptions were corrected by a SCALE3 ABSPACK multiscan method.S6 The DIAMOND2 

plots are shown with thermal ellipsoids at the 50% probability level and hydrogen atoms are shown 

as small spheres of arbitrary radii. The SADABS program embedded in the Bruker APEX3 software 

has been used for multi-scan absorption corrections in all structures.S7 
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Table 6.S1. Crystallographic data and refinement parameters of compound 4, 5, 6 and 8. 
 4 5 ·2H2O 6 8 

Formula C5H2N4 C5H8N10O2 C10H14N6O16 C15H7N11O4 

FW [g mol−1] 118.11 240.21 474.27 405.32 

Crystal system Monoclinic Monoclinic Triclinic Monoclinic 

Space Group P21/n P21/c P-1 P21/c 

Color / Habit Colorless Plate Colorless Plate Colorless Plate Colorless Block 

Size [mm] 0.05 × 0.22 × 0.38 0.01 × 0.04 × 0.05 0.12 x 0.36 x 0.45 0.10 x 0.15 x 0.25 

a [Å] 

b [Å] 

c [Å] 

α [°] 

β [°] 

γ [°] 

3.7386(2) 

6.5622(3) 

21.7083(14) 

90 

94.361(6) 

90 

4.8173(3) 

8.2655(6) 

24.9783(19) 

90 

94.229(3) 

90 

8.4124(11) 

9.1690(9) 

13.3980(16) 

85.766(9) 

88.102(10) 

65.688(11) 

10.4274(5) 

6.0887(2) 

14.4805(6) 

90 

111.007(5) 

90 

V [AÅ  3] 531.04(5) 991.86(12) 939.2(2) 858.25(7) 

Z 4 4 2 2 

ρcalc. [g cm−3] 1.477 1.609 1.677 1.568 

μ [mm−1] 0.103 0.13 0.162 0.122 

F(000) 240 496 488 412 

λMoKα[AÅ ] 0.71073 0.71073 0.71073 0.71073 

T [K] 173 173 173 173 

ϑ min-max [°] 4.2, 26.0 2.6, 25.4 4.3, 26.0 4.2, 32.3 

Dataset h; k; l −4:4;−8:7; −25:26 −5:5;−9:9; −30:30 −10:7;−11:10; −16:16 −15:15;−8:8; −19:21 

Reflect. coll. 3386 12991 6312 9140 

Independ. refl. 1043 1830 3682 2822 

Rint 0.038 0.097 0.048 0.034 

Reflection obs. 864 1396 1793 2332 

No. parameters 90 186 345 153 

R1 (obs) 0.0366 0.0586 0.0689 0.0680 

wR2 (all data) 0.0999 0.1225 0.1865 0.1302 

S 1.06 1.05 1.05 1.25 

Resd. Dens.[e AÅ −3] −0.19, 0.19 −0.30, 0.30 −0.37, 0.31 −0.28, 0.39 

Device type Oxford Xcalibur3 Bruker D8 Venture TXS Oxford Xcalibur3 Oxford Xcalibur3 

Solution SIR-92 SIR-92 SIR-92 SIR-92 

Refinement SHELXL-97 SHELXL-2013 SHELXL-97 SHELXL-2013 

Absorpt. corr. multi-scan multi-scan multi-scan multi-scan 

CCDC - - - - 
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Figure 5.S1. Molecular structure of 6 showing the atom-labelling scheme. Thermal ellipsoids 
represent the 50% probability level. 

 

6.5.2 Heat of formation calculations 

All quantum chemical calculations were carried out using the Gaussian G09 program package.S8 The 

enthalpies (H) and free energies (G) were calculated using the complete basis set (CBS) method of 

Petersson and coworkers in order to obtain very accurate energies. The CBS models are using the 

known asymptotic convergence of pair natural orbital expressions to extrapolate from calculations 

using a finite basis set to the estimated CBS limit. CBS-4 starts with an HF/3-21G(d) geometry 

optimization; the zero point energy is computed at the same level. It then uses a large basis set SCF 

calculation as a base energy, and an MP2/6- 31+G calculation with a CBS extrapolation to correct 

the energy through second order. A MP4(SDQ)/6-31+ (d,p) calculation is used to approximate 

higher order contributions. In this study, we applied the modified CBS-4M. 

Heats of formation of the synthesized ionic compounds were calculated using the atomization 

method (equation E1) using room temperature CBS-4M enthalpies, which are summarized in Table 

6.S2.S9,S10  

ΔfH°(g, M, 298) = H(Molecule, 298) – ∑H°(Atoms, 298) + ∑ΔfH°(Atoms, 298)                (E1) 
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Table 6.S2. CBS-4M enthalpies for atoms C, H, N and O and their literature values for atomic 
ΔH°f

298 / kJ mol–1 
 –H298 [a.u.] NIST S11 

H 0.500991 218.2 

C 37.786156 717.2 

N 54.522462 473.1 

O 74.991202 249.5 

 

For neutral compounds the sublimation enthalpy, which is needed to convert the gas phase enthalpy 

of formation to the solid state one, was calculated by the Trouton rule.S12 For ionic compounds, the 

lattice energy (UL) and lattice enthalpy (ΔHL) were calculated from the corresponding X-ray 

molecular volumes according to the equations provided by Jenkins and Glasser.S13 With the 

calculated lattice enthalpy the gas-phase enthalpy of formation was converted into the solid state 

(standard conditions) enthalpy of formation. These molar standard enthalpies of formation (ΔHm) 

were used to calculate the molar solid state energies of formation (ΔUm) according to equation E2. 

ΔUm  =  ΔHm – Δn RT                (E2) 

(Δn being the change of moles of gaseous components) 

 

The calculation results are summarized in Table 6.S3. 

Table 6.S3. Heat of formation calculation results. 

 –H298 [a] [a.u.] ΔfH°(g,M)  

[kJ mol–1] [b] 

VM [Å3] [c]   ΔUL, ΔHL ;[d]  

 [kJ mol–]1 

ΔfH°(s) [e] 

[kJ mol–1] 

Δn [f] ΔfU(s) [g] 

[kJ kg–1] 

5  739.347837 812.72   723.76 7 3629.54 

9 943.632928 827.93   754.21 8 3106.22 

[a] CBS-4M electronic enthalpy; [b] gas phase enthalpy of formation; [c] molecular volumes taken from X-ray structures and 
corrected to room temperature; [d] lattice energy and enthalpy (calculated using Jenkins and Glasser equations); [e] 

standard solid state enthalpy of formation; [f] Δn being the change of moles of gaseous components when formed; [g] solid 
state energy of formation. 
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6.5.3 Experimental Part 

General Procedures 

Differential Scanning Calorimetry (DSC) was recorded on a LINSEIS DSC PT10 with about 1 mg 

substance in a perforated aluminum vessel with a heating rate of 5 K∙min−1 and a nitrogen flow of 

5 dm3∙h−1. The NMR spectra were carried out using a 400 MHz instruments JEOL Eclipse 270, JEOL 

EX 400 or a JEOL Eclipse 400 (1H 399.8 MHz, 13C 100.5 MHz, 14N 28.9 MHz, and 15N 40.6 MHz). 

Chemical shifts are given in parts per million (ppm) relative to tetramethylsilane (1H, 13C) and 

nitromethane (14N, 15N). Infrared spectra were measured with a Perkin-Elmer Spectrum BX-FTIR 

spectrometer equipped with a Smiths DuraSamplIR II ATR device. Transmittance values are 

qualitatively described as “very strong” (vs), “strong” (s), “medium” (m), and “weak” (w). Raman 

spectra were recorded using a Bruker MultiRAM FT-Raman instrument fitted with a liquid-nitrogen 

cooled germanium detector and a Nd:YAG laser (λ = 1064 nm). The intensities are quoted as 

percentages of the most intense peak and are given in parentheses. DTA spectra were carried out 

using a OZM DTA 551-EX with a heating rate of 5  K∙min−1. Low-resolution mass spectra were 

recorded with a JEOL MStation JMS 700 (DEI+ / FAB+/−). Elemental analysis (C/H/N) was carried 

out using a Vario Micro from the Elementar Company. Impact sensitivity tests were performed 

according to STANAG 4489S14 modified instructionS15 using a Bundesanstalt für Materialforschung 

(BAM) drophammer.S16 Friction sensitivity tests were carried out according to STANAG 4487S17 

modified instructionS18 using a BAM friction tester. The grading of the tested compounds results 

from the “UN Recommendations on the Transport of Dangerous Goods”.S19 ESD values were carried 

out using the Electric Spark Tester ESD 2010 EN.S20  

 

3,5-Dimethyl-1H-pyrazole (1) S21 

Hydrazine monohydrate (100 %, 60 mL, 1.9 mol, 3.13 eq) was dissolved in water (150 mL) and the 

solution was cooled to 0 °C. Subsequently, acetylacetone (62 mL, 603 mmol, 1.00 eq) was added 

drop wise, whereby the temperature was kept below 15 °C. The resulting solution was allowed to 

warm to room temperature and stirred for 12 h. The precipitate was isolated by filtration, washed 

with water and dried. Compound 1 was obtained as colorless powder and used without further 

purification (60.7 g, 537 mmol, 89 %). 

1H NMR (400 MHz, DMSO d6): δ = 11.99 (s, 1H, NH), 5.73 (s, 1H, CH), 2.12 (s, 6H, CH3) ppm; 13C NMR 

(101 MHz, DMSO d6): δ = 143.0 (C), 103.2 (CH), 11.8 (CH3) ppm; IR (ATR, rel. int.): ν̃ (cm–1) = 3200 

(m), 3131 (m), 3107 (m), 3037 (m), 2991 (m), 2940 (m), 2873 (s), 2787 (m), 2727 (m), 2608 (m), 
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1667 (w), 1594 (m), 1484 (m), 1421 (m), 1306 (s), 1149 (w), 1028 (s), 1008 (s), 839 (s), 777 (s), 

737 (s), 661 (m), 590 (w); DSC (5 °C min–1): 99 °C (melt.); Elemental analysis: calcd. (%) for 

C5H8N2 (M = 96.13 g mol–1): C 62.47, H 8.39, N 29.14; found: C 62.29, H 8.19, N 29.01; Mass 

spectrometry: m/z (DEI+) = 96.1 [M]+.  

 

1H-Pyrazole-3,5-dicarboxylic acid (2) hydrate S21 

Compound 1 (20 g, 208 mmol, 1.00 eq) was suspended in water (500 mL) and the mixture was 

heated to 80 °C. Then potassium permanganate (160 g, 1.01 mol, 4.85 eq) was added portion wise, 

while keeping the temperature of the exothermic reaction between 90 and 95 °C by adding water. 

The resulting dark suspension was stirred under reflux for 4 h. Afterwards, the mixture was filtered 

hot and the colorless, clear filtrate was acidified with aqueous hydrochloric acid (37 %) to pH = 1. 

The precipitate was filtered off and dried to give compound 2 as a colorless powder (20.1 g, 

129 mmol, 62 %). 

1H NMR (400 MHz, DMSO d6): δ = 6.98 (s, 1H, CH) ppm; 13C NMR (101 MHz, DMSO d6): δ = 161.5 

(CO2H), 140.4 (C), 109.9 (CH) ppm, IR (ATR, rel. int. ): ν̃ (cm–1) = 3176 (w), 3126 (w), 2997 (w), 

2363 (brw), 1692 (m), 1640 (m), 1556 (w), 1486 (w), 1456 (w), 1397 (w), 1318 (w), 1269 (m), 

1196 (m), 1147 (brm), 1112 (m), 1010 (m), 989 (s), 857 (s), 809 (s), 800 (m), 780 (s), 655 (s); DSC 

(5 °C min–1): 361 °C (dec.); Elemental analysis: calcd. (%) for C5H6N2O5 (M = 174.11 g mol–1): C 

33.49, H 3.47, N 16.09; found: C 33.05, H 3.35, N 15.40; Mass spectrometry: m/z (DEI+) = 156.1 

[C5H4N2O4]+. 

 

1H-pyrazole-3,5-dicarboxamide (3) S22 S23 

Compound 2 (25 g, 160 mmol, 1 eq.) was suspended in ethanol (400 ml) and cooled to 0 °C. 

Afterwards, thionyl chloride (30 ml, 412.67 mmol, 2.56 eq.) was added drop wise. The mixture was 

stirred for 72 hours at 40 °C and the solvent evaporated in vacuum. Ammonia (200 ml, 25 %) was 

added and it was stirred for 48 hours at 80 °C. The solvents were evaporated in vacuum and water 

was added to the solution. Then it was acidified with hydrochloric acid and after filtration 

compound 3 was obtained (18.25 g, 118.5 mmol, 74 %). 

1H NMR (400 MHz, DMSO d6): δ = 7.84 (s, 2H, NH2), 7.45 (s, 2H, NH2), 7.21 (s, 1H, CH) ppm; 13C NMR 

(101 MHz, DMSO d6): δ = 161.2 (CO2H), 143.4 (C-CO2H), 106.4 (C-H) ppm; IR (ATR, rel. int.): ν̃ (cm–1) 

= 3440 (w), 3379 (w), 3182 (w), 1680 (s), 1622 (w), 1519 (m), 1439 (m), 1456 (m), 1328 (m), 1250  
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(w), 1131 (m), 1007 (w), 844 (s), 790 (s), 736 (m), 624 (s), 524 (s); DTA (5 °C min–1): 252 °C (melt.), 

280 °C (dec.); Elemental analysis: calcd. (%) for C5H6N4O2 (M = 154.12 g mol–1): C 38.96, H 3.92, N 

36.35; found: C 38.75, H 3.38, N 36.98; Mass spectrometry: m/z (FAB-) = 153.1 [C5H5N4O2]-. 

 

1H-Pyrazole-3,5-dicarbonitrile (4) S23 

Compound 3 (3.50 g, 18.2 mmol, 1.00 eq.) was suspended in acetonitrile (60 mL) and the reaction 

mixture was cooled to 0 °C. Then phosphoryl chloride (16.0 mL, 172 mmol, 9.45 eq.) was added 

drop wise at 0 °C and then the suspension was stirred at 120 °C for 6 h, during which the color 

changed to dark green. Then the mixture was cooled to room temperature and stirred overnight. 

Afterwards the solution was poured into an ice/water mixture (60 mL), whereby a solid 

precipitated and the color changed to purple. The suspension was filtered through kieselguhr and 

the filtrate was extracted with dichloromethane (3 x 100 mL). Subsequently, the combined organic 

layers were dried over magnesium sulfate and the solvent was evaporated in vacuum. The 

precipitate was dissolved in diethyl ether, filtered and the solvent was removed to yield 4 as a 

colorless powder (1.42 g, 12.0 mmol, 66 %). 

1H NMR (400MHz, DMSO d6): δ = 7.89 (s, 1H, CH) ppm; 13C NMR (101MHz, DMSO d6): δ =120.1 (C-

CN), 118.7 (CN), 111.5 (CH) ppm; IR (ATR, rel. int.) ν̃ (cm–1) = 3233 (m), 3139 (w), 2262 (w), 2248 

(w), 1704 (m), 1558 (w), 1537 (w), 1470 (w), 1447 (w), 1408 (w), 1377 (w), 1293 (m), 1271 (m), 

1244 (m), 1200 (s), 1136 (w), 1016 (m), 994 (s), 876 (m), 843 (s), 793 (s), 769 (s), 680 (w), 661 

(w); DSC (5 °C min–1): 181 °C (melt.), 202 °C (dec.); Elemental analysis: calcd. (%) for C5H2N4 (M = 

118.09 g mol–1): C 50.85, H 1.71, N 47.44; found: C 50.73, H 1.77, N 46.01; Mass spectrometry: m/z 

(DEI+) = 118.0 [C5H2N4]+, (FAB-) = 117.1 [M-H]-. 

 

5,5’-(1H-pyrazole-3,5-diyl)-bis-1H-tetrazole dihydrate (5) 

Compound 4 (1.4 g, 11.86 mmol, 1 eq.) was dissolved in water (60 mL). Afterwards, sodium azide 

(1.85 g, 28.5 mmol, 2.4 eq.) and zinc chloride (1.94 g, 14.23 mmol, 1.2 eq) were added. Then the 

mixture was stirred for 24 hours at 100 °C. Afterwards, hydrochloric acid (50 mL, 2 M) was added 

and the mixture was extracted with ethyl acetate (3 x 100 mL). Compound 5 was obtained after 

evaporation of the solvents (1.34 g, 5.6 mmol, 47 %). 

1H NMR (400 MHz, DMSO d6): δ =7.44 (s, 1H, CH) ppm; 13C NMR (101MHz, DMSO d6): δ = 149.7, 

108.0, 105.5 ppm; IR (ATR, rel. int.): ν̃ (cm–1) = 3509 (w), 3106 (m), 3039 (m), 2906 (m), 2681 (m), 

2010 (w), 1737 (m), 1634 (m), 1532 (m), 1459 (m), 1386 (m), 1234 (m), 1177 (m), 1079 (m), 970 
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(s), 872 (s), 743 (s), 650 (m), 536 (s), 474 (s); Mass spectrometry: m/z (FAB+) = 205.2 [C5H4N10]+, 

(FAB-) = 203.3 [C5H4N10]–; Elemental analysis: calcd. (%) for C5H8N10O2 (M = 240.18 g mol–1): C 

25.00, H 3.36, N 58.32; found: C 25.14, H 3.36, N 58.65; DTA (5 °C min–1): 87 °C (H2O), 277 °C (dec.); 

Sensitivities (grain size: < 100 μm): BAM impact: >40 J, BAM friction: 360 N, ESD: 1.5 J. 

 

4-Nitro-1H-pyrazole-3,5-dicarboxylic acid dihydrate (6) S24 

Fuming sulfuric acid (Oleum, 30 %, 13 mL) was added over 45 min to ice-cooled fuming nitric acid 

(11 mL), so as to maintain a temperature below 15 °C during the addition. Subsequently, the 

mixture was warmed to 40 °C and compound 2 (15.0 g, 100 mmol) was added portion wise. The 

reaction then stirred at 60 °C for 12 h. Afterwards, the resulting suspension was poured on ice and 

stirred till all residues were solved. The solution was extracted with ethyl acetate (3×50 mL) and the 

organic layers were dried over magnesium sulfate. Then the organic solvent was evaporated in high 

vacuum and toluene (70 mL) was added to the remaining substance. After evaporation of the 

toluene compound 6 was obtained as colorless powder (13.0 g, 64.6 mmol, 65 %). 

1H NMR (400 MHz, DMSO d6): δ = - ppm; 13C NMR (101 MHz, DMSO d6): δ = 158.9 (CO2H), 135.2 (C–

NO2), 132.8 (C–CO2H) ppm; 14N NMR (DMSO d6): δ = –21 (NO2) ppm; IR (ATR, rel. int.): ν̃ (cm–1) = 

3578 (w), 3513 (w), 3177 (m), 3019 (m), 1727 (s), 1697 (m), 1541 (m), 1512 (s), 1460 (m), 1393 

(m), 1333 (m), 1232 (s), 1125 (m), 1022 (s), 893 (m), 814 (s), 738 (s), 599 (m), 553 (s), 491 (s); DSC 

(5 °C min–1): 85 °C (H2O), 199 °C (melt.), 216 °C (dec.), Elemental analysis: calcd. (%) for 

C10H8N6O13 (M = 420.21 g mol–1): C 28.58, H 1.92, N 20.00; found: C 28.36, H 1.84, N 20.20, Mass 

spectrometry: m/z (FAB-) = 199.2 [C5HN3O6]2-. 

 

4-Nitro-1H-pyrazole-3,5-dicarboxamide (7) S25 

Compound 6 (12.5 g, 62.2 mmol, 1.00 eq) was dissolved in ethanol (150 mL) and thionyl chloride 

(29.2 mL, 404 mmol, 6.50 eq) was added drop wise to the solution over 2 h at 0 °C. Subsequently, 

the mixture was stirred under reflux for 36 h at 80 °C. The solvent of the resulting cooled solution 

was evaporated in vacuum and aqueous ammonia (25 %, 180 mL) was added and stirred under 

reflux at 70 °C for 2 d. Subsequently, the solution was cooled to room temperature and the solvent 

was evaporated in vacuum. Water (100 mL) was added and using HCl (37 %) the pH value was set 

to pH = 1. The precipitate was collected by filtration to yield compound 5 as yellowish solid (8.8 g, 

44.1 mmol, 71 %). 
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1H NMR (400 MHz, DMSO d6): δ = 8.15 (s, 2H, NH2), 7.93 (s, 2H, NH2) ppm; 13C NMR (101 MHz, 

DMSO d6): δ = 159.8 (CO2H), 138.6 (C–NO2), 130.5 (C–CO2H) ppm; IR (ATR, rel. int.): ν (cm–1) = 3440 

(w), 3083 (w), 2887 (w), 2361 (w), 2340 (w), 1693 (m), 1614 (s), 1558 (w), 1529 (m), 1508 (s), 

1492 (m), 1450 (s), 1404 (s), 1375 (m), 1354 (s), 1328 (s), 1281 (w), 1191 (w), 1127 (w), 1009 (w), 

862 (w), 840 (s), 806 (s), 767 (s) 699 (w), 608 (w); DSC (5 °C min–1): 254 °C (melt.), 280 °C(dec.); 

Elemental analysis: calcd. (%) for C4H5N5O4 (M = 199.13 g mol–1): C 30.17, H 2.53, N 35.17; found: C 

30.23, H 2.51, N 34.51. 

 
Pyridinium-3,5-dicarbonitrile-4-nitropyrazolate (8) 

Compound 7 (1.1 g, 5.5 mmol, 1.0 eq.) was dissolved in acetonitrile (30 mL) and pyridine (1.62 mL, 

20.1 mmol, 3.7 eq.) and the solution was cooled to 0 °C. Subsequently, trifluoroacetic anhydride 

(2.65 mL, 18.8 mmol, 3.4 eq.) was added drop wise over 1 h, while keeping the temperature 

between 0–5 °C. The mixture was stirred at room temperature for 72 h. Afterwards, water (10 mL) 

was added and the solvent was concentrated in vacuum. The residue was allowed to stand for 

crystallization. Compound 8 was obtained as colorless crystals (0.31 g, 1.2 mmol, 22 %).  
1H NMR (400 MHz, DMSO d6): δ = 8.94 (dd, 2H, 3J = 6.6 Hz, 4J = 1.5 Hz, CHpyr.), 8.65 (tt, 1H, 3J = 7.9 

Hz, 4J = 1.6 Hz, CHpyr.), 8.11 (dd, 2H, 3J = 7.8 Hz, 3J = 6.5 Hz, CHpyr.) ppm; 13C NMR (101 MHz, DMSO 

d6): δ = 146.7 (N-CHpyr.), 142.0 (CHpyr.), 138.3 (C-NO2), 127.3 (CHpyr.), 120.5 (C-CN), 113.1 (CN) ppm; 

IR (ATR, rel. int.): ν̃ (cm–1) = 3278 (w), 3092 (w), 2247 (w), 1739 (m), 1680 (m), 1634 (m), 1607 

(m), 1539 (m), 1485 (s), 1424 (w), 1361 (m), 1259 (w), 1190 (s), 1136 (s), 1079 (m), 1024 (m), 987 

(m), 915 (w), 830 (s), 797 (m), 721 (m), 673 (s), 606 (s), 575 (s), 481 (s); DSC (5°C min–1): 165 °C 

(melt.), 215 °C (dec.); Elemental analysis: calcd. (%) for C10H7N11O4 (M = 405.32 g mol–1): C 44.45, 

H 1.74, N 38.02; found: C 44.13, H 1.85, N 37.28; Mass spectroscopy: m/z (FAB+) = 80.1 [C5H6N+], 

m/z (FAB-) = 162.1 [C5N5O2–]. 

 

5,5’-(4-Nitro-1H-pyrazole-3,5-diyl)-bis-1H-tetrazole hydrate (9) 

A mixture of compound 8 (1.57 g, 6.48 mmol, 1.00 eq), sodium azide (0.93 g, 14.26 mmol, 2.20 eq) 

and zinc chloride (2.12 g, 15.6 mmol, 2.4 eq) in water (60 mL) was stirred under reflux at 100 °C for 

1 d. Subsequently, 2 M aqueous hydrochloric acid solution (25 mL) was added to the suspension. 

The residual solid was filtered off and washed with water to yield compound 9 as colorless solid 

(0.94 g, 3.76 mmol, 58 %). 

1H NMR (400 MHz, DMSO d6): δ = - ppm; 13C NMR (101 MHz, DMSO d6): δ = 147.9, 142.7, 131.7 ppm; 

IR (ATR, rel. int.): ν (cm–1) = 3080 (m), 1610 (m), 1580 (m), 1529 (s), 1395 (s), 1312 (m), 1179 (m), 
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1098 (m), 1042 (m), 973 (s), 779 (s), 755 (s); Elemental analysis: calcd. (%) for C5H5N11O3 (M = 

267.17 g mol–1): C 22.48, H 1.89, N 57.67; found: C 22.02, H 2.08, N 56.94; DTA (5 °C min–1): 119 °C 

(melt.), 246 °C (dec.); Mass spectrometry: m/z (FAB–) = 248.2 [C5H3N11O2]–. 
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Abstract: Potassium 1,1’-dinitramino-5,5’-bitetrazolate is one of the most promising 
primary explosives which is currently under investigation for different applications. 
This is due to its high initiation power and the exclusion of heavy metals. To close the 
gap, the remaining alkali metal salts such as the lithium 6, sodium 7, rubidium 8 and 
cesium 9 salts were synthesized by reaction of the highly soluble ammonium salt 5 with 
corresponding metal hydroxide solutions. In addition, the highly explosive silver salt 10 
as well as several other transition metal(II) amine complexes with nickel(II) 11, 
copper(II) 12 and zinc(II) 13 were prepared in a similar manner. The structure of all 
compounds was determined by X-ray diffraction. The sensitivities toward impact, 
friction, heat and electrostatic discharge as well as their behavior on laser irradiation of 
the transition metal complexes was explored. 

 

7.1 Introduction 

The research on green energetic materials is still an ongoing project in many research groups 

world-wide.[1–5] All classes of energetic materials such as explosives, propellants, pyrotechnics 

contain ingredients or at least decomposition products which are not environmentally benign. 

Nitrogen-rich derivatives are promising alternatives as energetic materials due to their high heat of 

formation and the formation of molecular nitrogen as an end product of propulsion or explosion. 

The most applied primary explosives e.g. in blasting caps still are lead azide and lead styphnate.[6] 

Lead azide is reliable, cheap, easy to manufacture and shows perfect thermal stability. However they 

are listed by REACH regulations as “substances of very high concern” and are banned for future’s 

applications.[7] Alternatives are strongly needed. In 2015, the dipotassium salt of 1,1’-dinitramino-

5,5’-tetrazole (K2DNABT) gained worldwide interest as a new and promising primary explosive.[8] It 

showed an extremely short DDT (deflagration to detonation) behavior[6] and also high sensitivities 

toward stimuli such as friction, impact and electrostatic discharge which is desirable for compounds 

used in initiators. In preliminary tests it showed almost no toxicity in aquatic media (toward the 

bacteria vibrio fischeri) which makes it an outstanding candidate for replacement of toxic lead 

azide. The search for alternatives for lead azide is an ongoing topic in many research groups or 

companies worldwide.[9] Mostly metal salts of acidic energetic organic molecules were described 

since they often show higher decomposition temperatures than pure organic salts or the 

corresponding organic acid. Examples are KDNP (potassium 4,6-dinitro-7-hydroxybenzofuroxan)[10] 

or DBX-1 (copper(I) 5-nitrotetrazolate).[11]  
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Figure 7.1. Structural formula of K2DNABT, KDNP, DBX-1, 5-nitriminotetrazole (H2AtNO2) and its 
mono- (KHAtNO2) and di-potassium (K2AtNO2) salts. Temperatures of decomposition were taken 
from different references and measured at variable heating rates and methods. 

 

The same trend can be observed for metal free salts of 1,1’-dinitramino-5,5’-tetrazole such as the 

ammonium or hydrazinium salts.[12] They are extremely powerful energetic materials with 

outstanding detonation velocities, however their high sensitivities and low thermal stabilities will 

probably prevent any application as secondary explosives.[12] An exceptional high thermal 

resistance of 223 °C was only found for 4,4’,5,5’-tetraamino-3,3’-bi-1,2,4-triazolium 1,1’-

dinitramino-5,5’-tetrazolate.[13] Low thermal stabilities were observed for a huge number of metal-

free 1- and 5-nitraminotetrazoles.[1c] The trend of increasing thermal stability by deprotonation and 

introduction of metal cations can impressively been on the following examples: 5-nitrimino-1,4-H-

tetrazole (H2AtNO2, Tdec.: 122 °C)[14] < potassium 5-nitrimino-1H-tetrazolate (KHAtNO2, Tdec.: 

245 °C)[14] < dipotassium 5-nitriminotetrazolate (K2AtNO2, Tdec.: 364 °C)[15]. Consequently in this 

paper the synthesis and characterization of a large variety of highly energetic (alkaline, alkaline 

earth and transition) metal 1,1’-dinitramino-5,5’-tetrazolates is presented. 
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7.2 Results and Discussion 

7.2.1 Synthesis 

Warning (!): Synthesized compounds 5–13 (especially 8–10) are extremely powerful and sensitive 

compounds. Unintentionally explosions of 8 and 10 happened during handling. Protective measures 

are mandatory. 

All metal salts were synthesized starting from diammonium 1,1’-dinitramino-5,5’-tetrazolate (5) as 

precursor.[12]  Compound 5 was prepared slightly different in comparison to our previous method 

illustrated in Scheme 7.1. During the synthesis of the 1,1’-dinitramino-5,5’-tetrazolate dianion the 

diazido compound 3 could be crystallized and the structure determined. Also the nitrated 

bitetrazole 4, which is highly energetic but rather unstable, could be isolated and characterized.  
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Scheme 7.1. New synthetic route to compound 5. 

The ammonium salt 5 shows a high solubility in water or concentrated ammonia and was therefore 

very well suited as starting material. The metal salts/complexes were prepared in straightforward 

ionic metathesis reactions by combining solutions of compound 5 and metal salts in the 

corresponding solvent (Scheme 7.2). Very careful heating of the reaction mixture is required to 

ensure a complete acid-base reaction. The alkaline earth metal salts 14–16 could only be 

synthesized insufficiently. In contrast to expectations compounds 14–16 are highly soluble in water. 

These solutions could not be stored by exposure to air because of the intake of carbon dioxide which 

led to the precipitation of Ca-, Sr- and BaCO3 again. Therefore 14–16 could not be purified in larger 

quantities. Solely the crystal structures of 15 as tetrahydrate and 16 as hexahydrate could be 

determined which are shown in the SI. A practical elemental analysis of 14 confirmed the inclusion 
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of four crystal water molecules. In contrast the water-free alkaline salts K2DNABT, 8 and 9 as well as 

the silver salt are hardly soluble in water. The rubidium 8 and cesium salt 9 started to precipitate 

right after addition of the metal(I) hydroxide solution. In case of 9 a very fast precipitation led to a 

violent detonation of the reaction mixture and should be avoided. Recrystallization from hot water 

afforded single crystals suitable for X-ray diffraction. Single crystals of 6–9 and 11–13 were grown 

directly from the corresponding reaction media. Two drops of concentrated ammonia were added in 

order to better the solubility of the silver salt 10. Single crystals could be isolated from the mother 

liquor and transferred into perfluorinated oil for XRD. All attempts to dry the silver salt for further 

characterization failed and led to detonation of the compound! The sodium salt was obtained in two 

different polymorphs (7a and 7b) with varying physicochemical properties depending on the 

solvent. H2O afforded monoclinic 7a, recrystallization of the compound from EtOH yielded 

orthorhombic 7b. 
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Scheme 7.2. Synthesis of 6–16 based on ionic metathesis reactions. 
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7.2.2 Crystal structures 

The structures of 2, 6–13 as well as 15 and 16 were determined by low temperature crystal X-ray 

diffraction. Details on the measurements and refinements are given in the SI. The crystal structures 

were deposited in the CSD database [16] and can be obtained free of charge with the CCDC Nos. 

1502966 (2), 1500005 (6), 1500002 (7a), 1500003 (7b), 1500001 (8), 1500004 (9), 1502967 (10), 

1510458 (11), 1502968 (12), 1510459 (13), 1524647 (15) and 1524646 (16). 

Azide 2 crystallizes in the form of red rods in the triclinic space group P−1 with one formula unit per 

unit cell and a calculated density of 1.584 g cm−3 at 173 K. The molecular unit consists of two 

asymmetric moieties with a centre of inversion on the C1–C1i bond and is illustrated in Figure 7.2. 

The molecule shows an obvious conjugation of the π-electrons and is almost planar. Only the azide 

chains are marginally twisted out of the plane. All bond lengths in the chain from oxygen atom O2 to 

O2i are between typical single and double bonds. 

 

Figure 7.2. Molecular structure of 2 showing the atom-labelling scheme. Selected bond lengths [Å]: 
C1–C1i 1.468(4), N1–C1 1.399(3), N1–N2 1.242(2), N2–N3 1.126(3), N4–C1 1.282(3), N4–N5 1.364(2), 
N5–C2 1.356(3), C2–O1 1.215(3), C2–O2 1.334(2), O2–C3 1.439(3). Selected bond angles [°]: N1–N2–
N3 168.7(2), C1–N1–N2 122.5(2). Thermal ellipsoids in all structures represent the 50 % probability 
level. Hydrogen atoms are shown as small spheres of arbitrary radii Symmetry code (i) 2−x, 1−y, 1−z.  

The bond lengths, bond angles, and torsion angles for the 1,1’-dinitramino-5,5’-tetrazolate dianion 

in all metal salts 6–13 are in the range of the literature reported neutral parent compound and its 

potassium salt.[12,8] All four alkaline metal salts crystallize in common space groups (8: P–1; 6, 7a, 9: 

P21/c; 7b: Pbca) with almost increasing densities (7a: 1.927 g cm−3 (173 K) < 7b: 1.940 g cm−3 

(123 K); 6: 1.949 g cm−3 (123 K); 8: 2.551 g cm−3 (173 K) < 9: 2.829 g cm−3 (173 K)) in different 

coordination spheres (6: fivefold; 7a/b: sixfold; 8: ninefold; 9: eightfold). The lithium and sodium 

salts were the only two alkaline metals, which crystallized as dihydrates. Their molecular units are 

shown in Figure 7.3 and 7.4. 
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Figure 7.3. Extended molecular structure of 6 showing the atom-labelling scheme. Selected bond 
lengths [Å]: O1–Li1 2.047(3), O1iii–Li1 2.114(3), O2–Li1 2.097(3), O2iii–Li1 2.051(3), N2iii–Li1 2.208(4). 
Symmetry codes (i) 1−x, −y, 1−z); (ii) −x, 0.5+y, 0.5−z; (iii) x, −0.5−y, −0.5+z; (iv) x, −0.5−y, −0.5+z.  

The sodium salt 7 crystallizes in two varying polymorphs (Figure 7.3) depending on the solvent 

used. Each compound exhibits a different hydrogen bond network that affects their packing. 

Therefore both compounds can be clearly distinguished through infrared spectroscopy 

(Figure 7.S3).  

 

 

Figure 7.4. Extended molecular structures of 7a (left) and 7b (right) showing the atom-labelling 
scheme. Selected coordination distances [Å] 7a: Na1–O3 2.368(2), Na–O3v 2.391(2), Na–N3 2.491(2), 
Na–N5vi 2.594(2), Na–O2iv 2.454(2), Na–O2iii 2.433(2); 7b: Naii–O1 2.378(1), Naii–O3iii 2.336(1), Naii–
N3iv 2.602(1), Naii–O2vi 2.377(2), Naii–N5v 2.543(1), Naii–O3ii 2.392(1). Symmetry codes 7a: (i) −x, 1−y, 
1−z; (ii) −1+x, y, z; (iii) 1−x, 1−y, 1−z; (iv); 1−x, −0.5+y, 1.5−z; (v) 1−x, −y, 1−z; (vi) x, 0.5−y, −0.5+z. 7b: (i) 
−1−x, 1−y, −z; (ii) −0.5−x, 0.5+y, z; (iii) −x, 0.5+y, 0.5−z; (iv) −0.5−x, 1−y, 0.5+z; (v) −1−x, 0.5+y, 0.5−z; 
(vi) −1.5+x, y, 0.5−z. 
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The very sensitive heavy metal rubidium 8 and cesium 9 salts crystallize without inclusion of crystal 

water and are illustrated in Figure 7.5.  

 

Figure 7.5. Molecular structures of 8 (left) and 9 (right) showing the atom-labelling scheme. Selected 
coordination distances lengths [Å] 8: Rb1–O1 2.872(2); 9: Cs1iii–N2 3.334(3), Cs1ii–O2 3.335(3), Cs1ii–
O1 3.043(2). Symmetry codes 8: (i) −x, 1−y, 1−z; 9: (i) x, 0.5−y, 0.5+z; (ii) 1+x, 0.5−y, 0.5+z; (iii) 1−x, 
−0.5+y, 0.5−z. 

The silver salt 10 crystallizes in the form of colorless needles in the monoclinic space group P2/c 

with four formula units per unit cell and a calculated density of 3.240 g cm−3 at 173 K. Figure 7.6 

displays the extended molecular structure of compound 10 and its labeling scheme. Both silver 

cations show different surroundings. Silver atom Ag2 is positioned on the crystallographic origin 

(0,0,0), while atom Ag1 is on (0,0.0140(1),1/4) bearing a rotation axis. Both are strongly linear 

coordinated (Ag1–N4/N4iv 2.267(7) Å, Ag2–N3/N3ii 2.250(7) Å). Taking into account also weaker 

coordination distances up to 3 Å, atom Ag1 is coordinated by eight donor atoms, while atom Ag2 is 

octahedrally coordinated by six donors. The coordination distances are in agreement with values 

reported for silver 1-methyl-5-nitriminotetrazolate in literature.[17] 
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Figure 7.6. Extended molecular structure of 10, indicating a strong linear coordination of the silver 
cations by the nitrogen atoms N4 and N3. Selected bond lengths [Å]: Ag2–N3 2.250(7), Ag2–N5ii 
2.776(7), Ag2–O2v 2.680(4), Ag1–N4 2.267(7), Ag1–N5iii 2.883(8), Ag1–O2vi 2.594(4), Ag1–O1vi 
2.881(6). Symmetry codes (i): 1−x, y, 0.5−z; (ii) −x, −y, −z; (iii) −1+x, y, z; (iv) −x, y, 0.5−z; (v) 1−x, 1−y, 
−z; (vi) 1−x, −1+y, 0.5−z.  

Compound 11 is, to the best of our knowledge, the first energetic hexamminenickel(II) complex in 

literature. It crystallizes in the form of clear light purple cylinders in the monoclinic space group 

P21/c with four formula units per unit cell and a calculated density of 1.708 g cm−3 at 173 K. The 

nickel(II) centers are octahedrally coordinated (Figure 7.7) by six ammine ligands. The DNABT 

counterion is (in contrast to the other already discussed metal salts) not involved in coordination. 

All bond lengths between the d8-metal(II) center and the ligands lie in the same range between 2.09 

and 2.16 Å and are in good agreement with values reported in the literature.[18] 
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Figure 7.7. Molecular structure of 11 showing the atom-labelling scheme. Selected bond lengths [Å]: 
Ni1–N17 2.098(4), Ni1–N13 2.116(3), Ni1–N15 2.119(3), Ni1–N16 2.124(4), Ni1–N14 2.128(4), Ni1–
N18 2.154(4). Symmetry code (i): 1−x, 1−y, −z. 

Complex 12 crystallizes in the form of blue blocks in the monoclinic space group C2/c with four 

formula units per unit cell and a calculated density of 1.860 g cm−3 at 123 K. The extended molecular 

structure is illustrated in Figure 7.8 and shows an Jahn-Teller distorted octahedral coordination 

sphere of the copper(II) cation. The metal centers are coordinated by four ammine ligands in a 

plane (Cu1–N7 2.022(7) Å, Cu1–N8 2.008(7) Å) and two longer coordinated nitramine nitrogen 

atoms N5 of the DNABT in axial positions (Cu1–N5 2.573(2) Å). The coordination octahedron is 

slightly distorted and deviates partly from 90° (< N5i–Cu1–N8 = 94.83(8)° and < N5i–Cu1–N8i = 

85.17(8)°) which might be the sterical influence of the DNABT dianion. The structure (bond lengths 

and angles) of the complex is comparable to a similar copper(II)-ammine-tetrazolate described  in 

literature.[19] Both compounds crystallize with one crystal water. In the case of 8 a hydrogen bond to 

the tetrazole nitrogen atom N3 and the nitrogen atom N7 of one of the ammine ligands is formed. 

The bidentate DNABT ligand bridges the copper atoms to linear one-dimensional polymeric chains 

along the c axis. The closest Cu-Cu distance is 6.82 Å along a/b. Hydrogen bonds between the 

ammine and tetrazole ligands stabilize the polymeric chains to each other. 
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Figure7.8. Extended molecular structure of 12 showing the distorted octahedral coordination sphere 
of the copper cation. Selected bond lengths [Å]: Cu1–N5 2.573(2), Cu1–N7 2.022(2), Cu1–N8 2.008(2). 
Selected bond angles [°]: N5i–Cu1–N8 94.83(8), N5i–Cu1–N8i 85.17(8). Symmetry codes (i) −x, −y, −z; 
(ii) −x, y, 0.5−z. 

To the best of our knowledge, tetramminezinc(II) complexes with energetic counter anions have not 

been reported in literature so far. The zinc(II) DNABT complex 13 crystallizes in the form of 

colorless rods in the monoclinic space group P21/n with four formula units per unit cell and a 

calculated density of 1.812 g cm−3. In contrast to 9 and 10 the coordination sphere of the zinc(II) 

metal center (Figure 7.9) is tetrahedral and consists of four ammine ligands with similar bond 

distances (Zn–N15 1.995(2) Å, Zn–N16 2.009(2) Å, Zn–N13 2.019(2) Å and Zn–N14 2.016(2) Å). The 

observed zinc ammine distance values are consistent with the literature data.[21] The tetrahedral 

coordination sphere only show small divergences (Figure 9 caption) to the perfect angle of 109.4°. 

This may be due to the large set of hydrogen bonds of the NH3 ligands formed. 
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Figure 7.9. Molecular structure of 13. Selected bond lengths [Å]: Zn–N15 1.995(2), Zn–N16 2.009(2), 
Zn–N13 2.019(2), Zn–N14 2.016(2). Selected bond angles [°]: N15–Zn–N16 109.86(9), N14–Zn–N16 
106.74(9), N13–Zn–N16 103.44(9). Symmetry code (i) 1−x, −y, −z. 

 

7.2.3 Energetic Properties and Laser Initiation 

The sensitivities toward friction, impact and electrostatic discharge for 4 and 6–13 were 

determined according to BAM standards. The compounds have been classified in accordance to the 

UN recommendations on the transport of dangerous goods using the obtained values.[22] In addition, 

the thermal stabilities were determined by various methods. An overview of the physicochemical 

properties of 4 and 6–13 is given in Table 1.  

 

7.2.4 Thermal behavior 

The thermal stabilities of 4 and 6–13 were determined either by DSC, DTA or TGA scans at a heating 

rate of 5 °C min−1. All of the compounds 6–13 have the ability to strongly damage the thermal 

analytical device during their violent decomposition or detonation, respectively. All synthesized 

DNABT salts and complexes showed a higher thermal stability than the neutral parent compound 

H2DNABT of 107 °C.[2] The decomposition temperatures of the investigated metal compounds, given 

as the extrapolated onset temperatures, range from 186 °C (8) up to a 247 °C (7b dehydrated) for 

the metal salts and from 155 °C (12, Figure 10) to 182 °C (13) for the metal complexes. Compound 4 
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shows an even lower thermal stability than H2DNABT (4: 102 °C, H2DNABT: 107 °C). The quite 

disappointing low thermal stabilities of the complexes 11–13 can be explained by the loss of the 

coordinated ammine ligands, which leads to decomposition of the compound (Cu < Ni < Zn). The 

thermo plots of compound 6 and 12 show endothermic signals (6: 50–70 °C, 12: 123 °C), which 

indicates the loss of crystal water. This loss could also be observed in the TGA scans of the sodium 

salts 7a and 7b. Interestingly the two sodium salts show different decomposition temperatures, 

which can be explained by the different hydrogen bond networks. With 220 °C cesium salt 9 is the 

most temperature stable of all investigated water-free compounds although being one of the most 

sensitive.  

 

7.2.5 Sensitivities 

All investigated compounds show sensitivities in the range of primary explosives such as lead or 

silver azide. They are very sensitive toward impact with sensitivities of 1 J (or less) (2, 6–9) up to 3 J 

for the nickel ammine complex (11). The friction sensitivities are comparable with values from less 

than 5 N (2, 6–9) up to 80 N for compound 11. A possible explanation for the low sensitivity of 11 

could be the high number of non-energetic ammine ligands. As expected, the silver salt (10) is the 

most sensitive compound, which can even detonate without any external manipulation! The range 

of sensitivities toward electrostatic discharge range from 0.003 to 0.150 J. Interestingly, polymorph 

7b is significantly less sensitive toward electrostatic discharge than 7a. 

 

7.2.6 Hot plate and hot needle test 

The ignitibility of metal compounds 6–9 and 11–13 was further tested through hot needle and hot 

plate tests. The hot needle test was performed by securing a small amount of sample underneath 

adhesive tape, followed by penetration with a red heated needle. Except for the rubidium (8) and 

cesium (9) salts, which detonated to the extent desired, all tested compounds only decomposed or 

deflagrated. Detonation of the compound indicates a primary explosive. The practicable hot plate 

test instead, only shows the behavior of the unconfined sample toward fast heating on a hot copper 

plate. It does not necessarily allows to draw conclusions on its capability as a primary explosive. All 

compounds except the copper complex 12 which deflagrated sharply, detonated when reaching 

their respective ignition temperatures.  
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7.2.7 Laser initiation 

Approximately 15 mg of 11 and 12 (which are the only colored compounds in this work) were filled 

into a plastic cap, pressed with 1 kN and sealed by an UV-curing adhesive. The confined samples 

were then irradiated through an optical lens connected to an optical fibre with a monopulsed diode 

laser at a wavelength of 915 nm, a pulse length of 15 ms and a current of 7 A. Both investigated 

complexes 11 and 12 detonated after initiation by laser irradiation and could therefore be used as 

photosensitive primary explosives in suitable detonation systems. 
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Table 7.1. Energetic properties and laser initiation tests of 2, 6–13. 

 
2 6 7a 7b 8 9 10 11 12 13 

formula  C6H6N12O8 C2H4Li2N12O6 C2H4Na2N12O6 C2H4Na2N12O6 C2Rb2N12O4 C2Cs2N12O4 C2Ag2N12O4 C2H18NiN18O4 C2H14CuN16O5 C2H12ZnN16O4 

FW  

[g mol−1]  
374.2 306.0 338.1 338.1 427.0 512.9 471.8 417.0 405.8 389.7 

IS [J] [a] < 1 < 1 < 1 < 1 < 1 < 1 n.d. 3 2 1.5 

FS [N] [b] < 5 < 5 < 5 < 5 < 5 < 5 n.d. 80 10 6 

ESD [J] [c] 0.003 0.020 0.030 0.150 0.020 < 0.020 n.d. 0.130 0.150 0.100 

grain size  
[μm] < 100 < 100 500–1000 500–1000 100–500 100–500 n.d. 100–500 100–500 100–500 

N [%] [d] 44.9 54.9 49.7 49.7 39.4 32.2 35.6 60.5 55.2 57.5 

Tdec. [°C] [e] 102 239 241 247 186 220 n.d. 167 155 182 

ρ [g cm−3] 
[f] 1.538 1.911 1.889 1.887 2.501 2.774 3.177 1.675 1.809 1.777 

hot needle n.d. dec. [i] dec. [i] dec. [i] det. [k] det. [k] n.d. defl. [j] dec. [i] defl. [j] 

hot plate n.d. det. [k] det. [k] det. [k] det. [k] det. [k] n.d. det. [k] defl. [j] det. [k] 

laser init. [g] n.d. n.d. n.d. n.d. n.d. n.d. n.d. det. [k] det. [k] n.d. 

[a] Impact sensitivity according to the BAM drophammer (method 1 of 6); [b] Friction sensitivity according to the BAM friction tester (method 1 of 6); [c] electrostatic 

discharge sensitivity (OZM ESD tester); [d] Nitrogen content; [e] Temperature of decomposition according to DSC, DTA or TGA (onset temperatures at a heating rate of 

5 ° min−1); [f] X-ray density converted to RT ((ρ298K = ρT / (1 + αV(298 − T0); αV = 10−4 K−1); [h] Laser initiation (λ = 915 nm, τ = 15 ms); [i] Decomposition; [j] Deflagration; 

[k] Detonation; n.d. = not determined (either not possible or meaningful) 
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7.3 Conclusion 

The synthesis and characterization of several new metal salts and complexes of 1,1’-dinitramino-

5,5’-bitetrazole (H2DNABT) is described. Since the potassium salt K2DNABT is a very promising 

environmentally benign primary explosive the remaining alkaline salts as well as selected alkaline 

earth and transition metal complexes should be investigated toward their energetic behavior. 

Within the group of alkali metal salts (Li (6), Na (7), K2DNABT, Rb (8), Cs (9)) the lithium and 

sodium salts form dihydrates which can reversibly be dehydrated. Two polymorphs of latter one 

were explored formed by recrystallization from water (7a) and ethanol (7b), respectively. The 

rubidium, cesium and silver (10) salts are poorly soluble in water. All are highly sensitive showing a 

super fast “deflagration to detonation” behavior on contact with flame or hot surfaces. The silver 

salt usually explodes during drying, latest on lightest touch when dry. The alkaline earth metal salts 

(Ca (14), Sr (15), Ba (16)) are highly soluble in water and could not be purified sufficiently. They 

are forming tetra- (14, 15) and hexahydrates (16) in the solid state. Neat transition metal 

complexes could only be synthesized with Ni(II) (11), Cu(II) (12) and Zn(II) (13) under addition 

and coordination of ammonia. The nickel and copper salts could be successfully initiated by laser 

irradiation. For the first time the cations hexaamminenickel(II) and tetraamminezinc(II) were 

combined with energetic counterions. The crystal structure of all compounds except for 14 could be 

determined by low temperature X-ray diffraction, which gave insight in the coordination of the 

metal centers and hydrogen bond interactions. Sensitivities of the alkaline and transition metal salts 

were measured showing extremely high values partly much more susceptible. The lowest thermal 

stability of 155 °C was observed for the tetrammine-copper(II) complex which might be caused by 

the loss of ammonia. The highest value (247 °C) was observed for the dehydrated sodium salt 7b. 

With respect to potential application in priming charges the potassium salt is still the most 

promising due to its manageable sensitivities in combination with a thermal stability of 200 °C. 

 

7.4 Experimental Section 

General methods: 

All chemicals and solvents were employed as received (Sigma-Aldrich, Fluka, Acros). The synthesis 

of compounds 1–5 can be found in the Supporting Information. 1H, 13C and 14N spectra were 

recorded with neat solids as samples at ambient temperature using a JEOL Eclipse 270, JEOL EX 400 

or a JEOL Eclipse 400 instrument. The chemical shifts quoted in ppm in the text refer to typical 
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standard tetramethylsilane (1H, 13C) and nitromethane (14N) in d6-DMSO as the solvent. 

Decomposition temperatures were measured through differential thermal analysis (DTA) with an 

OZM Research DTA 552-Ex instrument, through differential scanning calorimetry (DSC) with a 

LINSEIS DSC PT10 or by thermogravimetric analysis (TGA) with a Perkin Elmer TGA4000 

instrument. The samples were measured in a range of 25–400 °C at a heating rate of 5 °C min−1. 

Infrared spectra were measured with a Perkin–Elmer FT-IR Spectrum BXII instrument equipped 

with a Smith Dura SampIIR II ATR unit. Mass spectra of the described compounds were measured at 

a JEOL MStation JMS 700 using FAB technique. Determination of the carbon, hydrogen and nitrogen 

contents were carried out by combustion analysis using an Elementar Vario El (nitrogen values 

determined are often lower than the calculated ones due to their explosive behavior. Sensitivity 

tests are described in the SI. 

 

CAUTION! All investigated compounds are potentially explosive energetic materials, which show 

increased sensitivities toward various stimuli (e.g. elevated temperatures, impact, friction or 

electrostatic discharge). Therefore, proper security precautions (safety glass, face shield, earthed 

equipment and shoes, leather coat, Kevlar gloves, Kevlar sleeves and ear plugs) have to be applied 

while synthesizing and handling the described compounds.  

General procedure for the preparation of the DNABT alkali salts (6, 7a, 8–9): An aqueous solution of 

the ammonium salt 5 (6/7a: 100 mg, 0.34 mmol; 8/9: 29.0 mg, 0.10 mmol) was treated with the 

corresponding aqueous metal hydroxide solution (6: lithium hydroxide (8.14 mg, 0.34 mmol); 7a: 

sodium hydroxide (13.6 mg, 0.34 mmol); 8; 50 wt.% rubidium hydroxide (20.5 mg, 0.10 mmol); 9; 

50 wt.% cesium hydroxide (30.0 mg, 0.10 mmol)) and stirred mechanically for 10 min at 70 °C. The 

clear solutions were left to crystallize until a crystalline solid appeared. The products were filtered 

off, washed with ethanol and dried in air. 

 

Li2DNABT · 2 H2O (6): Colorless crystals of compound 6, which were suitable for X-ray, started to 

crystallize within several days. Yield: 84.1 mg (0.27 mmol, 80 %). DSC (5 °C min−1): 50–70 °C 

(dehydration), 239 °C (dec.); IR (atr, cm−1):  = 3441 (m), 3293 (m), 3210 (m), 3083 (w), 1652 (m), 

1432 (s), 1401 (s), 1373 (s), 1288 (vs), 1271 (vs), 1184 (s), 1129 (s), 1048 (m), 1042 (m), 1020 (m), 

1002 (m), 876 (s), 778 (s), 731 (w), 714 (m), 672 (w), 622 (m), 488 (w), 467 (w); EA (C2H4Li2N12O6, 

306.01): calc.: C 7.85, H 1.32, N 54.93 %; found: C 8.36, H 1.75, N 55.34 %; BAM drophammer: < 1 J; 

friction tester: < 5 N; ESD: 25 mJ. 

ν~
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Na2DNABT · 2 H2O (7a): Compound 7a was isolated within several days in the form of colorless 

blocks suitable for X-ray determination. Yield: 95.4 mg (0.28 mmol, 83 %). TGA (5 °C min−1): 95–

105 °C (dehydration), 241 °C (dec.); IR (atr, cm−1):  = 3568 (m), 3469 (w), 1616 (w), 1430 (m), 

1370 (s), 1325 (s), 1299 (vs), 1268 (s), 1177 (m), 1168 (m), 1129 (m), 1037 (m), 1004 (m), 881 (m), 

835 (m), 774 (m), 733 (w), 713 (w), 676 (w), 463 (s), 457 (s); EA (C2H4Na2N12O6, 338.11): calc.: C 

7.10, H 1.19, N 49.71 %; found: C 7.39, H 1.39, N 49.78 %; BAM drophammer: < 1 J; friction tester: 

< 5 N; ESD: 30 mJ. 

 

Na2DNABT · 2 H2O (7b): Colorless blocks of polymorph 7b were obtained by recrystallization of 

compound 7a (42.3 mg, 0.13 mmol) out of ethanol within one day suitable for X-ray determination. 

Yield: 38.8 mg (0.11 mmol, 92 %). TGA (5 °C min−1): 112–126 °C (dehydration), 247 °C (dec.); IR 

(atr, cm−1):  = 3574 (s), 3399 (m), 1622 (m), 1428 (vs), 1369 (s), 1299 (vs), 1265 (vs), 1166 (m), 

1122 (s), 1035 (m), 1018 (m), 995 (m), 883 (s), 776 (m), 733 (w), 714 (w), 675 (w), 614 (w), 531 

(m), 492 (m), 457 (m); EA (C2H4Na2N12O6, 338.11): calc.: C 7.10, H 1.19, N 49.71 %; found: C 7.37, H 

1.23, N 49.45 %; BAM drophammer: < 1 J; friction tester: < 5 N; ESD: 1.50 J. 

 

Rb2DNABT (8): Suitable crystals for X-ray determination were obtained of compound 8 in a 

quantitative yield within one day. DTA (5 °C min−1): 186 °C (dec.); IR (atr, cm−1):  = 1424 (s), 1394 

(m), 1359 (m), 1283 (vs), 1253 (vs), 1170 (m), 1161 (s), 1121 (s), 1031 (s), 1005 (m), 998 (s), 870 

(s), 828 (m), 809 (m), 803 (m), 772 (vs), 726 (s), 714 (s), 698 (m), 691 (m), 680 (m), 671 (m), 658 

(m); BAM drophammer: < 1 J; friction tester: < 5 N; ESD: 20 mJ. 

 

Cs2DNABT (9): Compound 9 was isolated in a quantitative yield in form of colorless needles 

suitable for X-ray determination within a few hours. DTA (5 °C min−1): 220 °C (dec.); IR (atr, cm−1): 

 = 1410 (s), 1360 (m), 1281 (vs), 1254 (s), 1171 (m), 1161 (m), 1128 (s), 1124 (s), 1034 (m), 1000 

(m), 868 (s), 774 (m), 723 (w), 715 (m), 672 (w); BAM drophammer: < 1 J; friction tester: < 5 N; 

ESD: < 20 mJ. 

 

Ag2DNABT (10): An aqueous solution of compound 5 (50.0 mg, 0.17 mmol) was reacted with an 

aqueous solution of silver nitrate (28.9 mg, 0.17 mmol). The precipitating colorless silver salt 10 

was dissolved in 2 drops of concentrated ammonia. Colorless crystals suitable for X-ray 

determination were isolated overnight.  

ν~

ν~

ν~

ν~



 

189 

General procedure for the synthesis of metal(II) DNABT amine complexes (11–13): 

Compound 5 (11: 182 mg, 0.62 mmol; 12: 35.0 mg, 0.12 mmol; 13: 189 mg, 0.65 mmol) was 

dissolved in the least necessary amount of concentrated ammonia and added to a solution of the 

corresponding metal(II) nitrate (11: nickel(II) nitrate hexahydrate (180 mg, 0.62 mmol); 12: 

copper(II) nitrate trihydrate (29.0 mg, 0.12 mmol); 13; zinc(II) nitrate hexahydrate (193 mg, 

0.65 mmol)) in concentrated ammonia and stirred mechanically for 1 min at room temperature. The 

reaction mixtures were left to crystallize until a solid appeared. The products were filtered off and 

dried at 50 °C overnight. 

 

[Ni(NH3)6]DNABT (11): Complex 11 was obtained within 30 min in the form of purple cylinders 

suitable for X-ray determination. Yield: 133 mg (0.32 mmol, 51 %). DTA (5 °C min−1): 167 °C (dec.); 

IR (atr, cm−1):  = 3354 (m), 3282 (m), 1615 (m), 1478 (m), 1415 (s), 1365 (m), 1285 (vs), 1245 

(vs), 1161 (s), 1124 (s), 1034 (m), 996 (m), 874 (m), 777 (m), 629 (s); EA (C2H18NiN18O4, 416.98): 

calc.: C 5.76, H 4.35, N 60.46 %; found: C 6.27, H 4.24, N 57.05 %; BAM drophammer: 3 J; friction 

tester: 80 N; ESD: 0.13 J. 

 

[Cu(NH3)4DNABT] · H2O (12): Compound 12 was isolated within 20 min in the form of blue 

crystals suitable for X-ray determination. Yield: 32.9 mg (0.08 mmol, 68 %). DSC (5 °C min−1): 

123 °C (dehydration), 155 °C (dec.); IR (atr, cm−1):  = 3543 (w), 3361 (m), 3342 (m), 3269 (m), 

3194 (w), 1618 (m), 1414 (s), 1368 (m), 1290 (s), 1264 (vs), 1247 (vs), 1166 (m), 1151 (m), 1123 

(m), 1013 (w), 994 (w), 877 (m), 770 (m), 678 (s), 558 (w), 544 (w); EA (C2H14CuN16O5, 405.79): 

calc.: C 5.92, H 3.48, N 55.23 %; found: C 6.45, H 3.44, N 54.63 %; BAM drophammer: 2 J; friction 

tester: 10 N; ESD: 0.15 J. 

 

[Zn(NH3)4]DNABT (13): The tetrammine zinc(II) complex 13 was obtained within several hours in 

the form of colorless rods suitable for X-ray determination. Yield: 105 mg (0.27 mmol, 41 %). DTA 

(5 °C min−1): 182 °C (dec.); IR (atr, cm−1):  = 3309 (m), 3263 (m), 3252 (m), 3224 (m), 3183 (m), 

1620 (w), 1408 (s), 1367 (m), 1280 (vs), 1268 (vs), 1249 (vs), 1160 (m), 1127 (s), 1117 (s), 1032 

(w), 999 (w), 872 (m), 773 (m), 692 (s), 674 (s); EA (C2H12ZnN16O4, 389.61): calc.: C 6.17, H 3.10, N 

57.52 %; found: C 6.68, H 3.06, N 56.13 %; BAM drophammer: 1.5 J; friction tester: 6 N; ESD: 0.10 J. 
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7.6 Supplementary Information 

7.6.1 X-ray Diffraction 

For all compounds (except for 4, 15 and 16), an Oxford Xcalibur3 diffractometer with a CCD area 

detector was employed for data collection using Mo-Kα radiation (λ = 0.71073 Å). By using the 

CRYSALISPRO software[S1] the data collection and reduction were performed. The structures were 

solved by direct methods (SIR-92, [S3] SIR-97[S3] or SHELXS-97[S4]) and refined by full-matrix least-

squares on F2 (SHELXL [S4]) and finally checked using the PLATON software [S5] integrated in the WinGX 

software suite. The non-hydrogen atoms were refined anisotropically and the hydrogen atoms were 

located and freely refined. The absorptions were corrected by a SCALE3 ABSPACK multiscan 

method.[S6]. All DIAMOND2 plots are shown with thermal ellipsoids at the 50% probability level and 

hydrogen atoms are shown as small spheres of arbitrary radii. The crystal structures of compounds 

4, 15 and 16 were determined at 100 K on a Bruker D8 Venture TXS diffractometer equipped with a 

multilayer monochromator, a Photon 2 detector, and a rotating-anode generator (MoKα radiation). 

The SADABS program embedded in the Bruker APEX3 software has been used for multi-scan 

absorption corrections in all structures.[S7] 
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Table 7.S1. Crystallographic data and refinement parameters of compound 2, 6, 7a and7b. 
 2 6 7a 7b 

Formula C6H8N10O4 CH2LiN4O4 C2H4N12Na2O6 C2H4N12Na2O6 

FW [g mol−1] 284.22 306.06 338.08 338.08 

Crystal system Triclinic Monoclinic Monoclinic Orthorhombic 

Space Group P−1 (No. 2) P21/c (No. 14) P21/c (No. 14) Pbca (No. 61) 

Color / Habit Colorless block Colorless block Colorless block Colorless block 

Size [mm] 0.01 x 0.03 x 0.10 0.15 x 0.34 x 0.39 0.08 x 0.15 x 0.28 0.29 x 0.45 x 0.56 

a [AÅ ] 

b [AÅ ] 

c [AÅ ] 

α [°] 

β [°] 

γ [°] 

4.1866(7) 

7.2348(10) 

10.3368(13) 

81.092(5) 

83.309(6) 

75.044(6) 

8.2760(9) 

10.8140(8) 

6.0650(4) 

90  

106.073(10) 

90 

8.8347(5) 

9.4711(5) 

7.2402(4) 

90 

105.804(5)  

 90 

6.2136(3)  

10.9858(6) 

16.9609(8) 

90 

90 

90 

V [AÅ  3] 297.88(8) 521.58(8) 582.92(6) 1157.77(10) 

Z 1 2 2 4 

ρcalc. [g cm−3] 1.584 1.949 1.927 1.940 

μ [mm−1] 0.134 0.176 0.236 0.238 

F(000) 146 308 340 680 

λMoKα[AÅ ] 0.71073 0.71073 0.71073 0.71073 

T [K] 173 173 173 123 

ϑ min-max [°] 3.3, 26.0 4.2,  26.7 4.3, 26.0 4.4, 26.0 

Dataset h; k; l −5:4; −8:8; −12:12 −5:10; −13:13; −7:7 −10:10; −11:11; −6:8 −7:6; −13:13; −20:20 

Reflect. coll. 3156 3905 2933 8554 

Independ. refl. 1159 1105 1136 1132 

Rint 0.039 0.032 0.027 0.022 

Reflection obs. 880 893 956 1059 

No. parameters 96 108 108 108 

R1 (obs) 0.0481 0.0334 0.0305 0.0277 

wR2 (all data) 0.1184 0.0805 0.0812 0.0791 

S 1.08 1.08 1.11 1.09 

Resd. Dens.[e AÅ −3] −0.22, 0.22 −0.28, 0.26 −0.26, 0.26 −0.21, 0.37 

Device type Bruker D8 Venture  
rotating anode 

Oxford XCalibur3 
CCD 

Oxford XCalibur3 
CCD 

Oxford XCalibur3 
CCD 

Solution SIR-92 SIR-92 SIR-92 SHELXS-97 

Refinement SHELXL-97 SHELXL-97 SHELXL-97 SHELXL-97 

Absorpt. corr. multi-scan multi-scan multi-scan multi-scan 

CCDC 1502966 1500005 1500002 1500003 
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Table 7.S2. Crystallographic data and refinement parameters of compound 8–11. 
 8 9 10 11 

Formula C2N12O4Rb2 C2N12O4Cs2 C2Ag2N12O4 C2H18N18O4Ni 

FW [g mol−1] 427.08 521.96 471.88 417.05 

Crystal system Triclinic Monoclinic Monoclinic Monoclinic 

Space Group P−1 (No. 2) P21/c (No. 14) P2/c (No. 13) P21/c (No. 14) 

Color / Habit Colorless needle Colorless needle Colorless plate Purple cylinder  

Size [mm] 0.03 x 0.05 x 0.44 0.04 x 0.09 x 0.37 0.02 x 0.10 x 0.12 0.09 x 0.13 x 0.26 

a [AÅ ] 

b [AÅ ] 

c [AÅ ] 

α [°] 

β [°] 

γ [°] 

5.3034(5) 

7.0632(6) 

8.5675(7) 

66.821(8)  

86.667(7) 

70.964(8) 

5.5885(2)  

12.4847(4) 

8.7893(3) 

90 

92.250(3) 

90 

6.7520(4) 

5.0649(4) 

14.1529(9) 

90 

92.180(6) 

90 

13.5062(12) 

11.5426(8) 

10.4455(7)  

90 

95.176(7)  

90 

V [AÅ  3] 277.98(5) 612.76(4) 483.65(6) 1621.8(2) 

Z 1 2 2 4 

�calc. [g cm−3] 2.551 2.829 3.240 1.708 

� [mm−1] 8.845 5.989 4.097 1.255 

F(000) 202 476 444 864 

λMoKα[AÅ ] 0.71073 0.71073 0.71073 0.71073 

T [K] 173 173 173 173 

ϑ min-max [°] 4.3,  26.0 4.6,  26.0 4.3,  26.0 4.1, 25.0 

Dataset h; k; l −6:6; −8:8; −10:10 −6:6; −15:15; −10:10 −7:8; −5:6; −17:17 −10:16; −13:13; −12: 12 

Reflect. coll. 3969 8446 2377 7466 

Independ. refl. 1096 1195 955 2837 

Rint 0.041 0.034 0.029 0.063 

Reflection obs. 1000 1061 761 1838 

No. parameters 91 91 93 232 

R1 (obs) 0.0242 0.0172 0.0333 0.0503 

wR2 (all data) 0.0509 0.0386 0.0779 0.0992 

S 1.04 1.08 1.05 0.97 

Resd. Dens.[e AÅ −3] −0.47, 0.49 −0.37, 0.77 −1.43, 0.85 −0.53, 0.81 

Device type Oxford XCalibur3 
CCD 

Oxford XCalibur3 
CCD 

Oxford XCalibur3 
CCD 

Bruker D8 Venture  
rotating anode 

Solution SIR-92 SIR-92 SHELXS-97 SHELXS-97 

Refinement SHELXL-97 SHELXL-97 SHELXL-97 SHELXL-97 

Absorpt. corr. multi-scan multi-scan multi-scan multi-scan 

CCDC 1500001 1500004 1524647 1524646 
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Table 7.S3. Crystallographic data and refinement parameters of compound 12, 13, 15 and 16. 
 12 13 15 16 

Formula C2H14CuN16O5 C2H12N16O4Zn C2H8N12O8Ba C2H12N12O10Ba 

FW [g mol−1] 405.83 389.65 415.82 501.58 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic 

Space Group C2/c (No. 15) P21/n (No. 14) P21/c (No. 14) P21/n (No. 14) 

Color / Habit Blue block Colorless block Colorless block Colorless block 

Size [mm] 0.05 x 0.11 x 0.23 0.10 x 0.13 x 0.20 0.03 x 0.07 x 0.10 0.03 x 0.06 x 0.09 

a [AÅ ] 

b [AÅ ] 

c [AÅ ] 

α [°] 

β [°] 

γ [°] 

11.4131(5) 

7.4648(3) 

17.2079(8) 

90 

98.739(5) 

90 

10.2414(3) 

10.6483(3) 

13.1297(4) 

90 

94.149(3) 

90 

10.7948(3) 

15.0619(4) 

9.3539(2) 

90 

110.333(1) 

90 

8.9593(3) 

9.5952(3) 

17.9981(6) 

90 

92.798(1) 

90 

V [AÅ  3] 1449.03(11) 1428.09(7) 1426.09(6) 1545.39(9) 

Z 4 4 4 4 

�calc. [g cm−3] 1.860 1.812 1.937 2.156 

� [mm−1] 1.570 1.774 3.849 2.651 

F(000) 828 792 824 976 

λMoKα[AÅ ] 0.71073 0.71073 0.71073 0.71073 

T [K] 123 173 100 173 

ϑ min-max [°] 4.2, 26.0 4.1, 26.0 2.8, 27.5 2.3,  26.0 

Dataset h; k; l −13:14; −9:9; −21:21 −12:12; −13:8; −16:14 −14:14; −19:19; −12:12 −11:11; −11:11; −22:22 

Reflect. coll. 5250 10947 23112 49826 

Independ. refl. 1422 2785 3271 3024 

Rint 0.040 0.030 0.029 0.030 

Reflection obs. 1205 2310 2910 2875 

No. parameters 117 256 240 246 

R1 (obs) 0.0300 0.0257 0.0202 0.0162 

wR2 (all data) 0.0695 0.0675 0.0501 0.0868 

S 1.08 1.03 1.07 1.43 

Resd. Dens.[e AÅ −3] −0.31, 0.27 −0.37, 0.58 −0.29, 0.86 −1.12, 0.80 

Device type Oxford XCalibur3 
CCD 

Oxford XCalibur3 
CCD 

Oxford XCalibur3 
CCD 

Oxford XCalibur3 
CCD 

Solution SHELXS-97 SHELXS-97 SHELXS-97 SHELXS-97 

Refinement SHELXL-97 SHELXL-97 SHELXL-97 SHELXL-97 

Absorpt. corr. multi-scan multi-scan multi-scan multi-scan 

CCDC 1502968 1510459 1510459 1510459 
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Figure 7.S1. Molecular structure of 15 showing the atom-labelling scheme. Thermal ellipsoids 
represent the 50% probability level. 

 

Figure 7.S2. Extended molecular structure of 16 showing the atom-labelling scheme. Thermal 
ellipsoids represent the 50% probability level. Symmetry codes: (i) −x, −y, 2−z; (ii) 1−x, −y, 1−z. 
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7.6.2 Experimental Part 

General Procedures 

Differential Scanning Calorimetry (DSC) was performed on a LINSEIS DSC PT10 with about 1 mg 

substance in a perforated aluminum vessel with a heating rate of 5 K∙min−1 and a nitrogen flow of 

5 dm3∙h−1. Differential Thermal Analysis (DTA) measurements were carried out in glass tubes on an 

OZM DTA 552-Ex device with a heating rate of 5 K∙min−1. Thermal gravimetric analysis (TGA) 

measurements were performed on a Perkin Elmer TGA4000 with a heating rate of 5 K min−1 in Al2O3 

crucibles. The NMR spectra were recorded with a 400 MHz instrument (1H 399.8 MHz, 
13C 100.5 MHz, 14N 28.9 MHz, and 15N 40.6 MHz). Chemical shifts are given in parts per million 

relative to tetramethylsilane (1H, 13C) and nitromethane (14N, 15N). Infrared spectra were measured 

with a Perkin-Elmer Spectrum BX-FTIR spectrometer equipped with a Smiths DuraSamplIR II ATR 

device. Transmittance values are qualitatively described as “very strong” (vs), “strong” (s), 

“medium” (m), and “weak” (w). Raman spectra were recorded using a Bruker MultiRAM FT-Raman 

instrument fitted with a liquid-nitrogen cooled germanium detector and a Nd:YAG laser (λ = 

1064 nm). The intensities are quoted as percentages of the most intense peak and are given in 

parentheses. Low-resolution mass spectra were recorded with a JEOL MStation JMS 700 (DEI+ / 

FAB+/−). Elemental analysis was carried out using a Vario Micro from the Elementar Company.  

The impact sensitivity tests were carried out according to STANAG 4489[S8] modified instruction[S9] 

using a Bundesanstalt für Materialforschung (BAM) drophammer.[S10] The friction sensitivity tests 

were carried out according to STANAG 4487[S11] modified instruction[S12] using the BAM friction 

tester. The classification of the tested compounds results from the “UN Recommendations on the 

Transport of Dangerous Goods”.[S13] All compounds were tested upon the sensitivity toward 

electrical discharge using the Electric Spark Tester ESD 2010 EN.[S14]  

 

1N,1N’-Dimethylnitrocarbamate-5,5’-bitetrazole (4)  
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0.45 g (4.17 mmol) N2O5 was dissolved in 50 mL MeCN at −5°C and 0.3 g 3 (1.05 mmol) was added 

portion wise. The mixture was stirred for 2.5 h at −5 °C and finally quenched by adding the mixture 

to 50 g of ice-water. The precipitate was filtered off giving 4 (355 mg, 0.95 mmol, 90 %). DTA (5 °C 

min−1): 102 °C (dec.); IR (atr, cm–1) ν~  = 3223 (w), 2969 (w), 1794 (m), 1658 (m), 1438 (w), 1408 

(w), 1322 (m), 1220 (s), 1180 (m), 1103 (w), 1041 (w), 990 (w), 936 (w), 864 (w), 818 (m), 769 (s), 

732 (m), 666 (m), 590 (w); 1H NMR (dmso-d6, 25 °C, ppm): δ:  3.85 (s, 6H, CH3); 13C{1H} NMR 

(dmso-d6, 25 °C, ppm) δ: 48.7 (CH3), 124.3 (CQ), 141.0 (C=O); 14N NMR (dmso-d6, 25 °C, ppm): δ = 

−66; MS m/z (FAB+): 375.4 (C6H7N12O8+); EA (C6H6N12O8, 374.19): calc.: C 19.26, H 1.62; N 44.92; 

found: C 20.31, H 1.90, N 44.73 %; BAM drophammer: 1 J, friction tester: <5 N, ESD: 3 mJ.  

 

Diammonium 1,1’-dinitramino-5,5’-bitetrazolate (5) 

N N
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1.00 g (3.52 mmol) of 3 was suspended in 50 mL dry acetonitrile and cooled to −10°C. 1.5 g of 

dinitrogen pentoxide (13.9 mmol) was added all at once and the reaction mixture was stirred for 2 h 

at the initial temperature. An excess of concentrated ammonia solution (3 mL) was added to the 

obtained solution and the suspension was stirred for 20 minutes. The pH-value was checked to be 

above 9 and the colorless precipitate was collected by suction filtration and washed with ice-cold 

water (1 mL) and ethanol to give 5 (0.89 g, 3.06 mmol, 87 %). IR (atr, cm–1) ν~  = 3177 (w), 3050 (w), 

1395 (s), 1368 (s), 1280 (s), 1259 (s), 1179 (w), 1126 (m), 1036 (w), 1009 (w), 995 (w), 875 (s), 

778 (m), 772 (w); 1H NMR (dmso-d6, 25 °C, ppm): δ:  7.07 (s, 8H, NH4+); 13C{1H} NMR (dmso-d6, 

25 °C, ppm) δ:  140.4 (CQ); 14N NMR (dmso-d6, 25 °C, ppm): δ = −359. 

 



7 Metal Salts and Complexes of 1,1’-Dinitramino-5,5’-bitetrazole 

198 

7.6.3 IR spectroscopy of 7a and 7b 
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10 Appendix 

10.1 General Analytical Information 

All solvents and chemicals were purchased (Sigma-Aldrich, Acros, Fluka, Grüssing) and used 

without any further purification.  

The NMR spectra were carried out using a JEOL Eclipse 270, JEOL EX 400 or a JEOL Eclipse 400 

(1H 399.8 MHz, 13C 100.5 MHz, 14N 28.9 MHz, and 15N 40.6 MHz). Chemical shifts are given in parts 

per million (ppm) relative to the reference tetramethylsilane (1H, 13C) or nitromethane (14N, 15N).  

Infrared spectra were measured with a Perkin-Elmer Spectrum BX-FTIR spectrometer equipped 

with a Smiths DuraSamplIR II ATR device. Transmittance values are qualitatively described as 

“strong” (s), “medium” (m), and “weak” (w). Raman spectra were recorded using a Bruker 

MultiRAM FT-Raman instrument fitted with a liquid-nitrogen cooled germanium detector and 

a Nd:YAG laser (λ = 1064 nm). The intensities are quoted as percentages of the most intense peak 

and are given in parentheses.  

Differential Scanning Calorimetry (DSC) was recorded on a LINSEIS DSC PT10 with about 1–2 mg 

substance in a perforated aluminum vessel with a heating rate of 5 K∙min−1 and a nitrogen flow of 

5 dm3∙h−1. DTA spectra were carried out using a OZM DTA 551-EX with a heating rate of 5  K∙min−1. 

TGA spectra were recorded on a Perkin Elmer TGA 4000 with a heating rate of 5  K min−1. 

Low-resolution mass spectra were recorded with a JEOL MStation JMS 700 (DEI+ / FAB+/−). 

Elemental analysis (C/H/N) were carried out using a Vario Micro from the Elementar Company.  

Pynometer measurements were performed on a Quantachrome gas pycnometer Ultrapyc 1200e 

using helium as inert gas.  

HPLC measurements were carried out on a Shimadzu HPLC Prominence equipped with a Shimadzu 

SPD-M30A UV detector and a reversed phase column (Kinetex 2.6 µm Biphenyl 100 Å, LC Column 

150 x 4.6 mm, Ea).  

Single crystals were picked and measured on an Oxford Xcalibur3 diffractometer with a Spellman 

generator (voltage 50 kV, current 40 mA) and a CCD area detector for data collection using Mo-Kα 

radiation (λ = 0.71073 Å). The crystal structures of compound 5 was determined on a Bruker D8 

Venture TXS diffractometer equipped with a multilayer monochromator, a Photon 2 detector, and a 

rotating-anode generator (MoKα radiation). The data collection was carried out using CRYSALISPRO 

softwareS1 and the reduction were performed. The structures were solved using direct methods 
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(SIR-92,S2 SIR-97S3 or SHELXS-97S4) and refined by full-matrix least-squares on F2 (SHELXLS4): The final 

check was done with the PLATON softwareS5 integrated in the WinGX software suite. The non-

hydrogen atoms were refined anisotropically and the hydrogen atoms were located and freely 

refined. The absorptions were corrected by a SCALE3 ABSPACK multiscan method.S6 The DIAMOND2 

plots are shown with thermal ellipsoids at the 50% probability level and hydrogen atoms are shown 

as small spheres of arbitrary radii. The SADABS program embedded in the Bruker APEX3 software 

has been used for multi-scan absorption corrections in all structures.S7 

Impact sensitivity tests were performed according to STANAG 4489S14 modified instructionS15 using 

a Bundesanstalt für Materialforschung (BAM) drophammer.S16 Friction sensitivity tests were carried 

out according to STANAG 4487S17 modified instructionS18 using a BAM friction tester. The grading of 

the tested compounds results from the “UN Recommendations on the Transport of Dangerous 

Goods”.S19 ESD values were carried out using the Electric Spark Tester ESD 2010 EN.S20  
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